
HAL Id: tel-03153445
https://theses.hal.science/tel-03153445v1

Submitted on 26 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vers un apprentissage sans exemple plus réaliste
Yannick Le Cacheux

To cite this version:
Yannick Le Cacheux. Vers un apprentissage sans exemple plus réaliste. Intelligence artificielle [cs.AI].
Conservatoire national des arts et metiers - CNAM, 2020. Français. �NNT : 2020CNAM1282�. �tel-
03153445�

https://theses.hal.science/tel-03153445v1
https://hal.archives-ouvertes.fr

ÉCOLE DOCTORALE Informatique, Télécommunications et Électronique de Paris

Centre d’Études et de Recherche en Informatique et Communications

THÈSE DE DOCTORAT

présentée par : Yannick LE CACHEUX
soutenue le : 10 décembre 2020

pour obtenir le grade de : Docteur du Conservatoire National des Arts et Métiers

Discipline : Informatique

Spécialité : Apprentissage automatique

Toward more practical

zero-shot learning

THÈSE dirigée par
M. Crucianu Michel Professeur des Universités, CNAM

et co-encadrée par
M. Le Borgne Hervé Chargé de recherche, CEA

RAPPORTEURS
M. Jurie Frédéric Professeur des Universités, Université de Caen-Normandie
M. Gravier Guillaume Directeur de recherche, CNRS

PRÉSIDENT DU JURY
Mme Hudelot Céline Professeur des Universités, CentraleSupélec

EXAMINATEURS
M. Sahbi Hichem Professeur des Universités, UMPC

Remerciements

Cette thèse a été effectuée au Laboratoire d’Analyse Sémantique Texte Image (LASTI) du Commis-

sariat à l’Énergie Atomique (CEA), membre de l’Université Paris-Saclay, ainsi qu’au Centre d’Études

et de Recherche en Informatique et Communications (CEDRIC) du Conservatoire National des Arts

et Métiers (CNAM).

Je tiens tout d’abord à remercier mes deux encadrants de thèse, Michel Crucianu et Hervé Le

Borgne, pour leur patience, leur gentillesse et leur disponibilité tout au long de la thèse. Ce fut un

plaisir de travailler avec eux.

Je remercie Frédéric Jurie et Guillaume Gravier pour avoir accepté de rapporter mon manuscrit. Je

remercie également les autres examinateurs Hichem Sahbi et Céline Hudelot, qui m’ont fait l’honneur

de participer à mon jury.

Je remercie tous mes collègues et amis du laboratoire, pour les échanges fructueux et discussions

passionnantes que j’ai eu la chance d’avoir avec eux.

Je remercie Coline pour sa présence et son soutien durant toute la durée de ma thèse.

Je remercie mes colocataires Raphaël et Adrien pour les moments de détente nécessaires pour faire

diminuer la pression. Je remercie également tous les amis sur qui j’ai eu la chance de pouvoir compter

pendant cette période, et dont la liste exhaustive serait bien trop longue.

Enfin, je remercie mes parents, mon frère et ma soeur, ma grand-mère et mon grand-père, ainsi

que l’ensemble de ma famille pour leur soutien et leur amour durant la thèse et toutes les années qui

ont précédées.

3

REMERCIEMENTS

4

Résumé

Cette thèse porte sur la reconnaissance visuelle « zero-shot », qui vise à classifier des images de

catégories non rencontrées par le modèle pendant la phase d’apprentissage. Après avoir classé les méth-

odes existantes en trois grandes catégories, nous défendons l’idée que les méthodes dites de classement

se basent habituellement sur plusieurs hypothèses implicites préjudiciables. Nous proposons d’adapter

leur fonction de coût pour leur permettre d’intégrer des relations inter et intra-classe. Nous proposons

également un processus permettant de diminuer l’écart entre les performances sur les classes vues et

non vues dont souffrent fréquemment ces méthodes. Dans notre évaluation expérimentale, ces contri-

butions permettent à notre modèle d’égaler ou surpasser les performances des méthodes génératives,

tant en étant moins restrictif. Dans un second temps, nous nous intéressons aux représentations sé-

mantiques utilisées dans un contexte d’application à grande échelle. Dans ce contexte, l’information

sémantique provient généralement de plongements lexicaux des noms de classe. Nous soutenons que

les plongements habituels souffrent d’un manque de contenu visuel dans les corpus servant à leur ap-

prentissage. Nous proposons donc de nouveaux corpus de texte davantage connotés visuellement, ainsi

qu’une méthode permettant d’adapter les modèles de plongement à ces corpus. Nous proposons en

outre de compléter ces représentations non supervisées par de courtes descriptions en langage naturel,

dont la production ne requiert qu’un effort minimal comparé à des attributs génériques.

Mots-clés : apprentissage zero-shot, reconnaissance visuelle, apprentissage automatique

5

RESUME

6

Abstract

This thesis focuses on zero-shot visual recognition, which aims to recognize images from unseen

categories, i.e. categories not seen by the model during training. After categorizing existing methods

into three main families, we argue that ranking methods habitually make several detrimental implicit

assumptions. We propose to adapt the usual formulation of the hinge rank loss so that such methods

may take inter and intra-class relations into account. We also propose a simple process to address

the gap between accuracies on seen and unseen classes, from which these methods frequently suffer

in a generalized zero-shot learning setting. In our experimental evaluation, the combination of these

contributions enables our proposed model to equal or surpass the performance of generative methods,

while being arguably less restrictive. In a second part, we focus on the semantic representations used in

a large-scale zero-shot learning setting. In this setting, semantic information customarily comes from

word embeddings of the class names. We argue that usual embeddings suffer from a lack of visual

content in training corpora. We thus propose new visually oriented text corpora as well as a method

to adapt word embedding models to these corpora. We further propose to complete unsupervised

representations with short descriptions in natural language, whose generation requires minimal effort

when compared to extensive attributes.

Keywords: zero-shot learning, image recognition, machine learning.

7

ABSTRACT

8

Contents

Remerciements 3

Résumé 5

Abstract 7

List of tables 15

List of figures 20

Introduction 21

1 State-of-the-Art 29

1.1 An introduction to zero-shot learning . 31

1.1.1 What is zero-shot recognition? . 31

1.1.2 A simple example . 34

1.1.3 Formal framework . 37

1.1.4 Zero-shot learning settings . 38

1.1.4.1 Available information at training time: inductive vs. transductive set-

tings . 39

1.1.4.2 Use of additional information . 41

1.1.4.3 Task during the testing phase: classical vs. generalized ZSL 41

9

CONTENTS

1.2 Standard methods . 42

1.2.1 Baselines . 42

1.2.2 Ridge regression . 45

1.2.3 Ranking methods . 51

1.2.3.1 Linear compatibility function . 53

1.2.3.2 Non linear compatibility function . 54

1.2.4 Generative methods . 56

1.2.4.1 Parametric distribution . 57

1.2.4.2 Non parametric distribution . 59

1.3 Visual and semantic representations . 62

1.3.1 Visual features . 62

1.3.2 Semantic representations . 64

1.4 Generalized zero-shot learning . 67

2 Ranking methods and generalized zero-shot learning 73

2.1 Semantic margin . 75

2.2 Impact of the margin . 78

2.3 Relevance weighting . 82

2.4 Proposed model . 85

2.5 Experimental evaluation of the proposed method . 87

2.5.1 Zero-shot learning results . 90

2.5.2 Ablation study . 92

2.5.3 Generalized zero-shot learning results . 93

2.6 Addressing the seen-unseen classes gap . 95

2.6.1 Calibration . 95

2.6.2 Hyper-parameter selection . 98

10

CONTENTS

2.7 Experimental evaluation of the calibration process . 101

2.7.1 Reproduction of results . 101

2.7.2 Results of the proposed approach . 104

2.8 Discussion . 107

3 Semantic representation for large scale zero-shot learning 109

3.1 Unsupervised semantic prototypes . 111

3.1.1 Dataset collection . 112

3.1.2 Corpus pre-processing . 114

3.2 Evaluation of the proposed semantic embeddings . 115

3.2.1 Experimental setting . 116

3.2.2 Results . 118

3.2.3 Ablation of user filtering . 122

3.2.4 Comparison to manual attributes . 122

3.2.5 Influence of collection size . 124

3.2.6 Error analysis . 124

3.3 Using sentences as semantic information . 126

3.3.1 Attention approaches . 129

3.3.1.1 Visualness-based method . 129

3.3.1.2 Learned attention . 132

3.3.2 Multi-prototype approach . 132

3.4 Evaluation of sentence-based approaches . 134

3.4.1 Evaluation of the visualness-based methods . 134

3.4.2 Multi-prototype . 136

3.5 Combination of sentences and class names . 139

3.6 Discussion . 141

11

CONTENTS

Conclusion 143

3.7 Summary of contributions . 144

3.8 Perspectives . 146

Bibliography 149

List of appendices 165

A Additional details 165

A.1 Zero-shot learning datasets . 165

A.2 Implementation details . 167

A.3 Illustrations . 168

A.3.1 Illustrative examples for the semantic margin 168

A.3.2 Illustrative examples for the relevance weighting 168

A.3.3 ImageNet hierarchy . 171

B Résumé en français 173

B.1 Introduction . 173

B.2 Hypothèses implicites dans les méthodes de classement 177

B.3 Déséquilibre entre les classes vues et non vues dans un contexte d’apprentissage zéro-

shot généralisé . 184

B.4 Représentations sémantiques non supervisées . 186

B.5 Utilisation de descriptions courtes en tant que représentations sémantiques 191

B.6 Conclusion et perspectives . 196

12

List of Tables

1.1 Mathematical notations . 32

1.2 Frequently used notations . 33

1.3 Frequently used abbreviations . 33

1.4 Summary of the main zero-shot learning settings. The classical instance-inductive,

class-inductive setting is assumed to be the default setting in this document. 39

1.5 Summary of the notations used for accuracies on samples from seen and unseen classes.

By default, we assume that per class accuracy is used. 70

2.1 Per class accuracy AU→U measured for different ZSL models on 3 datasets. Results

reported in [161] are marked with * next to the model’s name. Other results are reported

from their respective cited articles, except for RidgeV→S and RidgeV→S which were

independently implemented. The generative models, marked with †, rely on stronger

hypotheses as explained in Section 1.2.4. Our results are averaged over 10 runs. 91

2.2 Ablation study on the CUB dataset for the two variants of our model θ + ϕ and θ + I.

Results are averaged over 10 runs. 91

2.3 GZSL results for different ZSL models on 3 datasets. Results reported in [161] are

marked with * next to the model’s name. Other results are reported from their re-

spective cited articles, except for RidgeV→S and RidgeV→S which were independently

implemented. The generative models, marked with †, rely on stronger hypotheses as

explained in Section 1.2.4. Our results are averaged over 10 runs. 93

13

LIST OF TABLES

2.4 Intra-class and inter-class variance for several datasets. Intra-class variance is the mean

squared distance between visual samples of a class and the mean of samples from this

class, averaged over all classes. Inter-class variance is the mean squared distance be-

tween all samples and the mean sample. 100

2.5 Reproduction of ZSL results from [163, 161], as measured by AU→U . “Mean” is the

mean result over 5 runs with different random initializations. “std”, “min” and “max”

are the respective corresponding standard deviation minimal score and maximal score

obtained over these 5 runs. 102

2.6 Reproduction of GZSL results from [163, 161], as measured by AU→U , AU→U and H.

We report the mean result as well as the standard deviation over 5 runs with different

random initializations . 103

2.7 GZSL results without calibration, with calibration, and with calibration and hyper-

parameters specific to the GZSL task. Result are averaged over 5 runs. 105

2.8 GZSL results without calibration, and with calibration and hyper-parameters specific

to the GZSL task. Results from [161] are marked with * next to the model’s name.

Results with calibration were all obtained from our independent implementation, use

10crop visual features, and are averaged over 5 runs. The generative models, marked

with †, rely on stronger hypotheses as explained in Section 1.2.4. Results for our model

are averaged over 10 runs. 108

3.1 ZSL accuracy on the large scale ImageNet dataset, for three embedding models Word2vec,

GloVe and FastText. We compare the results from the proposed approaches flwiki flcust

and to the baselines wiki and clue as well as pre-trained embeddings (pt). We use the

experimental protocol from [53]. Results marked with “*” correspond to a setting close

to Table 2 from Hascoet et al. [53], and are consistent with the results reported there. 119

3.2 ZSL accuracy on the smaller scale CUB dataset with unsupervised semantic embeddings.

We use the “proposed splits” from Xian et al. [163]. 120

3.3 ZSL accuracy on the smaller scale AwA2 dataset with unsupervised semantic embed-

dings. We use the “proposed splits” from Xian et al. [163]. 121

14

LIST OF TABLES

3.4 ZSL accuracy on the ImageNet dataset for different models with the flcust approach

with FastText embeddings, with distinct pairs of words (wi, wj) limited to 1 per user

(left), or without restrictions on the impact of each user (right). 122

3.5 ZSL performance with 100%, 50%, 25% and 10% of the initial data from the wiki and

flcust collections. Results obtained on the ImageNet dataset, with FastText embeddings. 124

3.6 Comparison of approaches on ImageNet withWordNet definitions, with the RidgeS→V model.

The result marked with * corresponds to a setting similar to [53] (use of Classname with

GloVe embeddings) but with a different model. 134

3.7 Multi-proto pred. column: the Multi-Prototype model is trained with Equation (3.14).

DeViSE is trained with the standard triplet loss similarly to Equation (3.11). Predic-

tions are made with Equation (3.15), P = Q = R is cross-validated when applicable.

Standard pred. column: same as leftmost column, but predictions are made with Equa-

tion (3.16). P = 1 column: we fix P = Q = R = 1. P = ∞ column: all lemmas or

all words from definitions are used. The results are obtained on the ImageNet dataset

with WordNet definitions and lemmas, and GloVe embeddings. 136

3.8 Comparison of approaches on ImageNet withWordNet definitions, with the RidgeS→V model.

The result marked with * corresponds to a setting similar to [53] (use of Classname with

GloVe embeddings) but with a different model. 140

3.9 Top-k ZSL accuracy for different models, using the Classname+Defvisualness+Parent

prototypes built from FastText embeddings. Results for models marked with * are

reported from [53] and employ Classname prototypes with GloVe embeddings, but

make use of additional graph relations for models marked with †. 141

A.1 Training parameters for the different semantic embedding models. 167

A.2 Command lines used to train the embeddings. 167

15

LIST OF TABLES

16

List of Figures

1.1 A giraffe and a tiger, not necessarily in this order. 31

1.2 Illustration of a simple zero-shot learning (ZSL) model. In the training phase, the model

learns the relationship between visual instances and class attributes. In the prediction

phase, the model estimates the presence of attributes in test images, and predicts classes

from the corresponding prototypes. 36

2.1 t-SNE [96] visualization of 300 visual instances from the first 8 training classes of the

CUB dataset. Classes least auklet (purple) and parakeet auklet (brown) are much more

similar to each other than classes least auklet and laysan albatross (orange). The nestling

from class laysan albatross is quite dissimilar from other samples from this class. . . . 75

2.2 Left : histogram of the raw semantic distances M as measured on the seen classes from

the CUB dataset, with mean distance µ̂M and standard deviation σ̂M approximately

equal to 15.4 and 1.2. Right : rescaled with µM and σM set to respectively 0.5 and 0.15. 78

2.3 Most similar and least similar classes to classes “red-legged kittiwake” (top) and “arctic

tern” (bottom) from the CUB dataset, as measured by Equation (2.4). Examples for

additional classes are provided in Appendix A.3. 79

2.4 Average norm of the projected visual features ∥θ(x)∥2 with respect to the margin M as

measured on the CUB dataset. The value ρ = 0 corresponds to no (partial) normalization. 81

2.5 Histogram (blue) of the distances to the class center
∗xc (Equation (2.12)) and associated

weights (orange) from Equation (2.17) for visual samples from class “laysan albatross”

from the CUB dataset. The weights of the nestling and adult samples represented in

Figure 2.1 are respectively 0.02 and 0.78. 84

17

LIST OF FIGURES

2.6 Most and least representative samples from classes“red-legged kittiwake” (top) and“arc-

tic tern” (bottom) from the CUB dataset, as measured by Equation (2.17). Examples

for additional classes are provided in Appendix A.3. 84

2.7 Seen-Unseen Accuracy Curve for the RidgeS→V model evaluated on the CUB dataset.

When γ=0, we obtain an AU→C of 23.7 and an AS→C of 52.8, resulting in an H of 32.7 as

in Table 2.3. When γ = +∞, only unseen classes can be predicted and AU→C is maximal

and equal to 53.5, which corresponds to the ZSL score AU→U from Table 2.1. When

γ = −∞, only seen classes can be predicted and AS→C is maximal. The best possible

trade-off between the two occurs when both AU→C and AS→C are approximately equal

to 43.4, resulting in a maximum theoretical H of 43.4. The AUSUC is the area under

the curve. 94

2.8 Training-validation-testing splits in different settings. Each column represents a class,

and each small rectangle a sample of this class (classes are represented as balanced

in this figure, even though this is not necessarily the case). Top: standard ML split,

with respect to samples. Middle: “classical” ZSL split, with respect to classes. Bottom:

proposed GZSL split. 96

2.9 Illustration of how the regularization parameter λ of the RidgeS→V model affects the

accuracies on samples from seen and unseen classes AS→S (blue) and AU→U (red), as

measured on the test sets of CUB (left) and AwA2 (right). The optimal value for λ is

not the same in a ZSL setting, where performance is measured with AU→U (red vertical

dotted line), and in a GZSL setting, where performance is measured by the harmonic

mean H of AU→C and AS→C (black vertical dotted line). 98

2.10 Left: Illustration of the bias-variance decomposition. Right: Mean squared error of

predicted attributes (averaged over attributes and samples) as a function of the reg-

ularization parameter λ with the RidgeS→V model on the validation set of the AwA2

dataset. 99

3.1 Histogram of the most frequent words in a context window of size 4 around the word

“tiger” in the Wikipedia corpus. 112

18

LIST OF FIGURES

3.2 Ablation of manual attributes on the CUB (left) and AwA2 (right) datasets. Each

time, a random subset of the attributes is selected, and the resulting ZSL score is mea-

sured with the RidgeS→V model. The blue dots indicate the mean score over 10 runs

with different random attributes selected, the vertical blue bars indicate corresponding

standard deviations. Best results for prototypes based on unsupervised word embed-

dings are also reported for the proposed method (yellow horizontal line) and previous

embeddings (red horizontal line), all with the RidgeS→V model. 123

3.3 (a) Distance from predicted class to correct class in the WordNet hierarchy. Correlation

ρ between ZSL accuracy and (b) distance to the closest seen class, (c) the number of

immediate unseen test class siblings, (d) the number of unseen classes closer than the

closest seen class, for all 500 unseen ImageNet classes. 125

3.4 Graph visualization of parts of the WordNet hierarchy. Green and pink leaves are resp.

seen and unseen classes. Intermediate nodes are orange if there is no seen class among

their children, and blue otherwise. Full graph is available in Figure A.7. 127

3.5 Australian terrier (left) and Irish terrier (right). 127

3.6 Top: words with highest visualness. Bottom: words with lowest visualness. The visu-

alness of a word is the inverse of the mean distance (shown in parenthesis) to the mean

representation of visual features from the top 100 corresponding images from Flickr.

Top 1 image with no copyright restriction is displayed. Words with the highest and

lowest visualness as well as corresponding inverse visualness (the mean distance to the

mean feature representations for images associated with this word) and the correspond-

ing top image result with no copyright restriction from Flickr. 130

3.7 Inverse of the visualness (low values correspond to high visualness) for the 4059 words

from class names and WordNet definitions. 130

3.8 Illustration of definitions and attention scores on some test classes from ImageNet, with

the associated WordNet definitions. Left : weights from the Defvisualness approach after

softmax; the temperature is τ = 5 so differences are less pronounced than initially.

Right : weights learned with the Defattention approach, with FastText embeddings. . . 131

19

LIST OF FIGURES

3.9 Illustration of the word compatibilies associated with the descriptions of the top-5 can-

didates with the multi-prototype method. Compatibility is displayed for words with a

positive compatibility only. P = Q = R = 3 is used for training and predictions. The

correct class is displayed in orange. 137

A.1 Top 4 most (middle) and least (bottom) similar classes to class Laysan Albatros (top). 168

A.2 Top 4 most (middle) and least (bottom) similar classes to class Least Auklet (top). . . 169

A.3 Top 4 most (middle) and least (bottom) similar classes to class Vesper Sparrow (top). 169

A.4 Top 4 most (top) and least (bottom) relevant samples for class Laysan Albatros 170

A.5 Top 4 most (top) and least (bottom) relevant samples for class Least Auklet 170

A.6 Top 4 most (top) and least (bottom) relevant samples for class Vesper Sparrow 171

A.7 Overview of the full class hierarchy. Pink nodes refer to test classes, green nodes refer

to train classes, orange nodes have only test classes below them and blue nodes are

other intermediate nodes. Best viewed in color with at least 600% zoom. 172

20

Introduction

21

INTRODUCTION

Computer vision is becoming of increasing importance in many scientific and industrial fields.

Handwritten digits on bank checks or postal mail have been read and processed automatically for

years [84, 85]. Smartphones can now be effortlessly unlocked using face recognition [134, 133]. Crop

yields can be monitored from aerial and satellite images [106]. Early detection of cancer cells in

medical images may soon contribute to save thousands of lives [58]. Autonomous driving promises to

revolutionize mobility [27]. And many future game-changing innovations are probably just waiting to

be envisioned.

Yet, giving visual abilities to a computer is not straightforward. Even something as simple for

a human as differentiating pictures of cats and dogs is not straightforward to computerize. Defining

precisely on a pixel-level the properties that an image must possess to represent a cat or any other high-

level category proved to be an insurmountable challenge. Instead, computer vision practitioners use a

completely different paradigm: rather than attempting to explicitly specify the defining features of a

cat as fixed rules, they let the program learn the differences between cats and dogs from examples. This

generic approach is widely known as machine learning. More specifically, virtually all the applications

mentioned above rely on deep convolutional neural networks [86]. These architectures produce higher-

and higher-level features, computed sequentially using kernels whose parameters are learned by the

model on a large number of training examples. As an example, AlexNet [72], the architecture that

won the 2012 edition of the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [132]

and arguably initiated the latest deep learning revolution [83], had access to more than one million

labeled images. While seemingly impressive, this amount of training data is now dwarfed by recent

models [143, 16] trained on datasets with 300 million images [143].

Despite allowing unmatched performance, deep learning models’ need for data uncovers other

challenges. The most obvious one is the important human annotation effort required to provide the

large amount of labels necessary to train a deep model in a supervised learning setting. This may

limit applications when stakeholders do not have the resources or means necessary to implement such

a large investment. Furthermore, there are some classes for which it may be hard to collect hundreds

or thousands of images. As an example, the saola, a critically endangered, antelope-like species from

Vietnam, has only been photographed a handful of times in the wild since its discovery in 1992 [147].

More critically, the outputs of deep learning models are integrally dependent on the data used to train

the model. This raises additional concerns regarding the quality and objectivity of data, as human

22

INTRODUCTION

biases reflected in training datasets may have dire consequences [127].

Active efforts have been exerted by the research community to address this insatiable need for data.

The transfer learning framework aims to transfer“knowledge”acquired by a model on a source problem

onto a target problem, and thus reduce the amount of data necessary for the target problem. The

main idea can be illustrated by a model trained to classify cats and dogs, and then retrained to classify

tigers and wolves: its ability to identify snouts and fur patterns acquired from the source problem

may also be useful in the target problem [145]. In practice in the case of convolutional networks, this

often consists in re-using the weights of low-level kernels [125, 25]. A bit more specifically, the task of

few-shot learning consists in designing models capable of accurately recognizing new categories after

being exposed to only a few training examples, usually by heavily re-using abilities previously acquired

on source problems [99, 137]. One-shot learning is the extreme application of this idea, where only a

single training sample is allowed in order to assimilate new categories [39, 74].

And yet, the task of zero-shot learning aims to bring this strategy one step further. The goal of

this ultimate exercise in terms of data frugality is to design models capable of recognizing objects

from categories for which no training examples are provided [77, 75, 112]. The basic principle can be

illustrated by the human ability to relate visual and non visual contents. For instance, someone who

has never seen a single picture or illustration of a tiger – and naturally has never seen one in real life

either – should still be able to recognize one instantly if they were told that a tiger is similar to a

(very) big orange cat with black stripes and a white belly. Quite evidently, there needs to be some

sort of semantic information similar to the “striped orange cat” description regarding the class tiger

for zero-shot recognition to be possible. In this sense, zero-shot basic principles are actually quite

different from few- and one-shot learning, as these tasks are usually purely visual tasks. On the other

hand, zero-shot learning is by essence a multimodal task, which requires the ability to relate content

from the visual modality (i.e. images) to at least one non visual modality (e.g. text, attributes...).

More precisely, in this document, we consider that the term zero-shot learning refers to the design

and training of a model whose goal is to classify images from unseen classes, for which no training

examples are provided. Instead, training instances from strictly different seen classes can be accessed

by the model during training. In addition, semantic information is provided for both seen and unseen

classes.

23

INTRODUCTION

Historically, this concept of zero-shot learning emerged more than a decade ago, with pioneering

works such as the ones from Larochelle et al. [77], who first performed classification on test classes

distinct from training classes, or Lampert et al. [75], who used attributes such as“black”,“brown”or“has

stripes” to classify images of animal species for which no training examples were available. Around the

same time, Farhadi et al. [37] likewise emphasized the relevance of predicting attributes from images

in order to relate them to attributes from different classes; Palatucci et al. [112] similarly attempted

to classify “unseen” words from functional magnetic resonance images (fMRI) of neural activity, using

semantic representations constructed from either attributes or word co-occurrence statistics. These

pioneering methods were generally fairly simple, but nevertheless led to promising results for this novel

and challenging task.

This quickly sparked interest in the computer vision community, and new models and benchmark

datasets were quickly introduced [129, 99, 2, 40, 138, 108]. Different settings were considered: Socher et

al. [138] introduced a novelty detection mechanism, so that models could recognize both unseen and

seen classes, a setting which later became known as generalized zero-shot learning [24]. Rohrbach et

al. [128] popularized the transductive zero-shot learning task, in which unlabeled samples from unseen

classes are available during training [42, 69]. Multi-label zero-shot recognition [98, 44], zero-shot

detection [8, 124, 32] or zero-shot segmentation [19] were also proposed. Zero-shot learning was

conjointly applied to other modalities, such as video and action recognition [93, 52] or natural language

understanding [13, 141]. In parallel, the “deep learning revolution” gained momentum in computer

vision, with better performing architectures being regularly introduced [136, 144, 55]. The use of

these pre-trained networks as feature extractors [125, 25, 120] enabled zero-shot learning to benefit

from these progresses [40, 108].

As a general framework aiming to drastically reduce the amount of data required to train models,

zero-shot learning is arguably all the more relevant in a large scale setting. Consequently, Rohrbach et

al. [129] proposed to employ 200 out of 1000 classes from ILSVRC as unseen test classes, making use

of hierarchical information from WordNet to create class representations. Frome et al. [40] pushed

the scale even further, by using the 1000 classes from ILSVRC as seen training classes and 20,000

additional classes from ImageNet as unseen test classes. As providing attributes for thousands of

classes is impractical, scalable semantic representations are required in such a large scale setting.

These representations usually take the form of word embeddings [100, 102], which consist in rich

24

INTRODUCTION

vector representations of words capturing interesting semantic properties. The embeddings have the

big advantage of typically coming from models trained on huge text corpora in an unsupervised

manner, and thus of requiring close to no human annotation effort. It was thus proposed to use pre-

trained word embeddings of class names as semantic representations in a large scale zero-shot learning

setting [40, 138, 108].

The ability to successfully classify images in this setting could arguably be considered as the “Holy

Grail” of effort-efficient approaches, as this could theoretically produce models capable of recognizing

thousands of classes with close to no human annotation effort. However, in practice, performance

remains modest, with reported accuracies on standard large scale benchmarks arguably too low for

many practical use cases [53]. In general, performance of zero-shot learning models is unsurprisingly

lower than performance of standard supervised models [164]. In addition, most zero-shot learning

approaches tend to suffer from additional limitations. For instance, in the more realistic generalized

zero-shot learning setting in which test classes can be either seen or unseen, many existing models tend

to predict seen classes far more often than unseen classes [24, 163], which greatly decreases performance

on the latter and thus the interest of using zero-shot recognition. This imbalance between seen and

unseen classes is partly reduced with recent generative approaches [17, 152, 162], but this comes at

the cost of more restrictive hypotheses, since contrary to other approaches, the addition of new classes

often requires additional training for such models.

In this thesis, we attempt to address some of these limitations to efficient large scale zero-shot

learning. We analyse existing approaches to zero-shot learning, and in particular models based on the

hinge rank loss. We argue that previous models of this family implicitly make several assumptions

regarding the nature of classes and training samples, and that these assumptions may not be justified in

practice. In particular, these models typically consider that all classes are “equally different”, meaning

that no two classes are considered closer to each other than to other classes. Previous models further

assume that every training instance is representative of its corresponding class. On the contrary,

we argue that this is not the case in practice, and that failing to account for these two factors may

be detrimental to the performance of the model. We thus propose a model capable of taking these

elements into account, with the aim of improving the robustness of the learned multi-modal relations.

We also consider the performance gap between seen and unseen classes in a generalized zero-shot

25

INTRODUCTION

learning setting. We investigate theoretical aspects of this phenomenon, and propose a simple process

to reduce the difference in accuracy between instances from seen and unseen classes. Experiments are

conducted to test the effectiveness of this process as well as the performance of the previously proposed

model. Results confirm that the combination of both propositions enable to obtain state-of-the-art

results in the tasks of classical and generalized zero-shot recognition. The proposed approach also has

the advantage of enabling the effortless addition of new unseen classes to a trained model: contrary

to most existing generative approaches, no additional training is required.

Keeping in mind the objective of keeping annotation efforts to a minimum, we investigate the role

of semantic representations obtained in an unsupervised manner which are typically employed in a

large scale setting, as this aspect is surprisingly under-studied in the current literature. We argue

that generic text corpora may not be suitable to generate embeddings capturing meaningful visual

properties of words, and instead propose new corpora together with a suitable pre-processing method.

We conduct extensive experiments to measure the impact of this approach and explore its limitations.

Nonetheless, in spite of significantly improved results enabled by our proposed method, we argue

that using word embeddings of class names as semantic representations may eventually have insur-

mountable limitations. We thus propose a compromise between employing unsupervised embeddings

requiring absolutely no effort and laboriously providing extensive attributes, in the form of using short

sentence descriptions in natural language. We propose several approaches to exploit such sentences,

and eventually opt for semantic representations consisting of combinations of unsupervised representa-

tions and short sentence descriptions. We show that this combination enables to obtain state-of-the-art

results in a large scale zero-shot learning setting, while keeping the amount of human annotation effort

required at a fairly reasonable level.

This manuscript is organized as follows:

• In Chapter 1, we provide a generic overview of the field of zero-shot learning for visual recognition.

In particular, we introduce the different existing settings such as the generalized or transductive

settings; we present the main families of approaches; and we explain how visual features and

semantic representations are usually obtained. We also provide more details on tasks relevant

to this document such as generalized zero-shot learning.

26

INTRODUCTION

• In Chapter 2, we focus on identifying unjustified assumptions made by existing models and hinge

rank loss models in particular, and we introduce a model taking the corresponding aspects into

account. In addition, we attempt to address the gap between seen and unseen classes mentioned

previously by providing theoretical insight and corresponding empirical evidence, and we propose

a simple process to address this gap. We provide detailed experiments to evaluate the impact of

the proposed approaches.

• In Chapter 3, we focus more specifically on the semantic representations used for large scale zero-

shot learning. We collect new text corpora arguably more suitable for the creation of visually

discriminative embeddings, and propose a process to train embeddings from these corpora. We

also introduce several approaches to employ short sentence descriptions as semantic embeddings.

We provide experimental results for these different methods.

• Finally, Chapter 3.6 provides a summary of these contributions as well as directions for future

research.

At least some contributions from most parts of this document were published in different scientific

venues. The publications corresponding to each part are provided in Chapter 3.6. Furthermore, the

code corresponding to the experiments has most of the time been made publicly available. This

information is also provided in Chapter 3.6.

Throughout this document with maybe the exception of this introduction and Section 1.1.1, we

assume that the reader has working knowledge of machine learning and deep learning. In particular,

we assume the reader is familiar with the – non exhaustive – concepts of a loss function, overfitting,

regularization, gradient descent, back-propagation, convolutional neural networks... We refer the

reader to [12] for an introduction to machine learning and to [46] for an introduction to deep learning

if needed.

27

INTRODUCTION

28

Chapter 1

State-of-the-Art

Content

1.1 An introduction to zero-shot learning . 31

1.1.1 What is zero-shot recognition? . 31

1.1.2 A simple example . 34

1.1.3 Formal framework . 37

1.1.4 Zero-shot learning settings . 38

1.2 Standard methods . 42

1.2.1 Baselines . 42

1.2.2 Ridge regression . 45

1.2.3 Ranking methods . 51

1.2.4 Generative methods . 56

1.3 Visual and semantic representations . 62

1.3.1 Visual features . 62

1.3.2 Semantic representations . 64

1.4 Generalized zero-shot learning . 67

In this chapter, we provide a generic overview of the field of zero-shot learning, and particularly

of the different experimental settings, the different families of methods, and the visual and semantic

representations frequently employed. Importantly, although the term zero-shot learning may have

several meanings, we consider in this chapter and in virtually all of this document that this refers to

the task of designing a training a model whose end goal is the classification of images from classes not

seen during training. This is in contrast to tasks where the end goal may be image segmentation [19],

or where the entities to classify may be sentences [141], which are beyond the scope of this document.

Other surveys of the field of zero-shot learning [43] or categorizations of zero-shot learning methods

have been produced [161], including fairly recently [157]. However, the organisation of this section and

29

of Section 1.2 in particular is fairly different, as we categorize methods by the type of loss function

they employ. We also provide significantly more details on many approaches. As a result, we do not

attempt to be fully comprehensive. As of October 2020, a query with the exact wording “zero-shot

learning” in Google Scholar returns more than 5000 results, so we argue that such an endeavour is not

reasonably feasible anyway.

This chapter is organized as follows: Section 1.1 provides a general public introduction to zero-

shot learning (Section 1.1.1), introduces a more formal framework with a more detailed description of

a simple method (sections 1.1.2 and 1.1.3), and introduces different settings such as transductive or

generalized zero-shot learning. Section 1.2 provides a broad categorization of zero-shot learning models

organized as baseline models (Section 1.2.1), least square regression models (Section 1.2.2), hinge rank

loss models (Section 1.2.3) and generative models (Section 1.2.4). Specific details are included for

several noteworthy models from each category. Section 1.3 provides information on the main types of

visual features and semantic representations most frequently employed by zero-shot learning methods.

Finally, Section 1.4 provides more details on the generalized zero-shot learning setting, as such details

will be necessary in other chapters.

30

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

1.1 An introduction to zero-shot learning

1.1.1 What is zero-shot recognition?

Figure 1.1 – A giraffe and a tiger, not necessarily in this order.

The zero-shot recognition task consists in assigning the correct names to items that the entity

performing the classification has never encountered before. Most humans are reasonably capable of

this feat.

As an example, let’s imagine a person that has never seen a tiger in his life, neither directly nor

through any indirect visual support such as books, movies or cartoons. Let’s further imagine that this

person has never seen or heard of a giraffe. We give this person the following descriptions, adapted

from their respective Wikipedia entries:

The tiger is the largest extant cat species. It is most recognisable for its dark vertical

stripes on orange-brown fur with a lighter underside.

The giraffe’s chief distinguishing characteristics are its extremely long neck and legs,

its horn-like protuberances, and its distinctive brown patches on a lighter coat.

We then proceed to show them pictures of tigers and giraffes as in Figure 1.1 and ask them to

tell us which ones correspond to a tiger and which ones correspond to a giraffe. Provided this person

speaks English, has previously seen other animals such as cats, understands the concepts of stripes,

necks, colors and fur, is of average intelligence and is willing to cooperate, it is reasonable to expect

that they will successfully be able to complete this exercise.

31

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

Notation Meaning

x a scalar
x a vector
X a matrix

xi or (x)i the ith element (scalar) of vector x
Xi,j or (X)i,j the element (scalar) at line i and column j of matrix X

ID the D × D identity matrix
0D / 1D the D-dimensional vector whose elements are all 0 / 1

diag(a) the square diagonal matrix whose diagonal
elements are the elements of vector a

a2 the vector whose elements are the elements of a squared
|A| the determinant of A
A−1 the inverse of A
A⊤ the transpose matrix of A
f(·) a function returning a scalar
f(·) a function returning a vector

f(· ; w) or fw(·) a function parameterized by w

F [·] a functionnal (taking a function as input
and returning a scalar)

∥·∥p the p-norm

∥·∥2 or ∥·∥ the euclidean norm for vectors or
the Frobenius norm for matrices

⊙ the Hadamard (element-wise) product

f(a) / f(A) the element-wise application of f
on the elements of a / A

1[·] the indicator function (1 if · is true, 0 otherwise)
P (·) a discrete probability
p(·) a continuous probability density function

N (·|µ, Σ) the multivariate gaussian density function

{xk}k∈J1,KK a set of K elements x1 . . . xK

|{xk}k| the cardinal of a set

exp(·) the exponential function
log(·) the natural logarithm function
σ(·) the sigmoid function

tanh(·) the hyperbolic tangent function
[·]+ the function max(· , 0)

Table 1.1 – Mathematical notations

32

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

Symbol Meaning

CS the set of seen classes
CU the set of unseen classes
C the set of all classes CS ∪ CU

V the visual space RD

S the semantic space RK

xn ∈ RD the D-dimensional visual features of the nth image
yn ∈ C the label of the nth image
sc ∈ RK the K-dimensional semantic prototype of class c
tn ∈ RK the prototype syn associated with (xn, yn)
X ∈ RN×D the visual features of all N images, arranged in lines
y ∈ CN the labels associated with all N images
S ∈ RC×K the semantic prototypes of all C classes, arranged in lines
T ∈ RN×K the semantic prototypes corresponding to individual images

xtr / xte a training / testing visual instance
xc

m the mth instance of class c

Dtr the training dataset ({(xn, yn)}n∈J1,NK, {sc}c∈CS)
Dte the testing dataset

f(x, s; w) a compatibility function RD × RK → R, with parameter w
L(·) a loss function
λΩ[f] a regularization on f , weighted by hyper-parameter λ

Table 1.2 – Frequently used notations

Abbreviation Meaning

ZSL Zero-Shot Learning
GZSL Generalized Zero-Shot Learning

CNN Convolutional Neural Network
GAN Generative Adversarial Network
VAE Variational Auto-Encoder
SVM Support Vector Machine
SGD Stochastic Gradient Descent

Table 1.3 – Frequently used abbreviations

33

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

We can identify three main ingredients which are necessary to achieve this task:

• Things to recognize, in our case tigers and giraffes.

• Semantic information on things to recognize. For instance, the fact that tigers have stripes,

giraffes have a long neck, etc.

• The ability to link the semantic information to the things to classify. This generally requires

previous experience involving both visual instances and the semantic information. For example,

the concept of striped fur can be learned by seeing zebras and being told the alternating black

and white patterns on its back are called “stripes”.

Learning to associate the visual and semantic features with the objective to perform zero-shot

recognition is usually called Zero-Shot Learning (abbreviated ZSL), although zero-shot learning and

zero-shot recognition are often used interchangeably.

1.1.2 A simple example

Task and notations. We start by describing a very simple way to train a model to perform zero-shot

recognition and introduce some useful notations in the process. Such notations are summarized in

Table 1.2. In addition, mathematical notations used in this document are similarly summarized in

Table 1.1, while frequently used abbreviations such as ZSL are summarized in Table 1.3.

The objective is to train a model to classify images belonging to categories that the model has

never seen before. Such categories will be referred to as unseen classes, as opposed to seen classes,

which can – and should – be used to train the model. In the previous example, tiger and giraffe

would be considered unseen classes, whereas cat and for example zebra would be seen classes. Seen

and unseen classes are sometimes also called respectively source and target classes. We will call the

set of seen classes CS , and the set of unseen classes CU . The set of all classes is C = CS ∪ CU , with

CS ∩ CU = ∅.

For each class c ∈ C, semantic information is provided. For now, let us suppose that this informa-

tion consists of binary attributes, for example “is orange”, “has stripes”, “has hooves” and “has a long

neck”. In such a case, the semantic representation for tiger is the vector (1 1 0 0)⊤ since a tiger is – at

34

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

least partly – orange, has stripes, and does not have hooves nor a long neck1. Similarly, the semantic

representation for giraffe can be (1 0 1 1)⊤. For a given class c, we call sc its corresponding semantic

representation vector. Such a vector is also called the class prototype. Prototypes of all classes have

the same dimension, which we call K, and represent the same attributes. More generally, the semantic

information does not need to be binary attributes, and may not need to be attributes at all. More

details on the most common types of prototypes are provided later in Section 1.3.2. But for now,

suffice is to say that most ZSL methods can be applied as long as all classes are represented by vectors

with the same characteristics (number of dimensions and meaning of each dimension).

Additionally, for each class c, a set of images {I1, . . . , IM } is available. Raw images are not always

convenient to work with, particularly in a ZSL context. For this reason, we don’t usually make use

of the raw pixels themselves, but rather of a vector of high-level visual features extracted from this

image. For image Ii, we write this vector xi ∈ RD, D being the fixed dimension of the visual features

space. xi is typically extracted from Ii using a pre-trained deep neural network; more details on this

process are provided in Section 1.3.1. For the sake of brevity, we will sometimes refer to xi as the ith

image, although it is not strictly speaking an image. We will also refer to xi as a visual sample, or an

instance of class c.

Zero-shot recognition is customarily achieved in two phases: a training and a testing phase. During

the training phase, the model typically only has access to the semantic representations of seen classes

{sc}c∈CS , and to the images (or corresponding visual features) associated with these classes. We usually

write {xn}n∈J1,NK the set of N images available to the model during the training phase. yn ∈ CS refers

to the class associated with, or label, of training image xn. The full training dataset, i.e. the information

to which the model has access during the training phase, is thus Dtr = ({(xn, yn)}n∈J1,NK, {sc}c∈CS).

During the testing phase, the model has access to the semantic representations of unseen classes

{sc′}c′∈CU , and to the N ′ unlabeled images belonging to unseen classes {xn′}n′∈J1,N ′K. We will some-

times write xtr or xte to make it explicit whether x belongs to the training (tr) or testing (te) set, if

there is a possible ambiguity. The objective for the model is to make a prediction ŷn′ ∈ CU for each

test image xte
n′ , assigning it to the most likely unseen class.

We now have novel things to recognize, semantic information regarding these things, and training

1These classes and these attributes are actually part of the Animals with Attributes dataset [76, 161], described in
more details in Appendix A.1.

35

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

Figure 1.2 – Illustration of a simple zero-shot learning (ZSL) model. In the training phase, the model
learns the relationship between visual instances and class attributes. In the prediction phase, the
model estimates the presence of attributes in test images, and predicts classes from the corresponding
prototypes.

data with similar semantic information associated to visual samples. All that is missing is a way to

link the semantic and visual features.

A first zero-shot learning model. The following approach was first proposed in [75], and is one of the

very first attempts to perform zero-shot recognition. It consists in a simple probabilistic framework,

which computes the probability of presence of fixed binary attributes for a given visual input, and

uses these estimated probabilities to predict the most likely unseen class corresponding to the image.

Let us recall that for each class c, we have a semantic representation sc composed of binary

attributes. Although the value of the attributes may change, the attributes themselves are the same

for all classes. Let’s call a1 the first of these attributes, for example “is orange”. Similarly, we will call

the other attributes a2, . . . , aK . For every training image xn, we know its class yn and have access to

the corresponding semantic attributes syn . The corresponding kth attribute ak of image xn is therefore

(syn)k ∈ {0, 1}.

For any attribute ak, we can thus build a labeled training set Dk = {(xn, (syn)k)}n with the training

images and corresponding labels indicating whether attribute ak is associated with each image. We

can then use this dataset to train a binary classifier to predict P (ak|x), the probability that attribute

36

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

ak is present in an image x. This classifier can be a simple logistic regression2, in which case

P (ak = 1|x) = σ(w⊤
k x) = 1

1 + e−w⊤
k

x
(1.1)

where σ(·) is the sigmoid function and wk are the classifier’s parameters.

At test time, given an unlabeled test image x belonging to one of the unseen classes, a few

simplifying assumptions – detailed in Section 1.2.1 – lead to predict label ŷ corresponding to the

unseen class which maximizes the probability to observe the predicted attributes:

ŷ = argmax
c∈CU

K∏︂
k=1

P (ak = (sc)k|x) (1.2)

This process is illustrated in Figure 1.2.

1.1.3 Formal framework

More generally, many ZSL methods in the literature are based on a compatibility function f :

RD ×RK → R assigning a “compatibility” score f(x, s) to a pair composed of a visual sample x ∈ RD

and a semantic prototype s ∈ RK . Ideally, if the visual sample corresponds to the semantic description,

e.g. if x is of class c and s is sc, f(x, s) should be high – and vice versa. This function may be

parameterized by a vector w or a matrix W, or by a set of parameters {wi}i. We will write fw(x, s),

f(x, s; {wi}i) or use similar notations when we need to explicitly refer to these parameters. These

parameters are generally learned using the training dataset Dtr = ({(xn, yn)}n∈J1,NK, {sc}c∈CS) by

applying a suitable loss function L and by minimizing the total training loss Ltr over the training

dataset Dtr with respect to the parameters w:

Ltr(Dtr) = 1
N

N∑︂
n=1

∑︂
c∈CS

L[(xn, yn, sc), fw] + λΩ[fw] (1.3)

where Ω[f] is a regularization penalty based on f and weighted by the hyper-parameter λ (or in

some cases by a set of hyper-parameters), which aims to reduce overfitting and thus increase the

generalization abilities of the model [12].

Obtaining the global minimum of the cost in Equation (1.3) is not always possible, and sometimes

not desirable. In such cases, iterative numerical optimization algorithms may be used. Examples of

2In [75], either a logistic regression or a support vector machine (SVM) classifier with Platt scaling [119] is used to
estimate probabilities.

37

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

such algorithms include a standard stochastic gradient descent (SGD), AdaGrad [34], RMSProp [56]

or Adam [65].

After the training phase – once “good” parameters w have been learned – and given a test image

x, the predicted label ŷ can be selected among candidate testing classes based on their semantic

representations {sc}c∈CU :

ŷ = argmax
c∈CU

fw(x, sc) (1.4)

Link with the previous example. In our previous example in Section 1.1.2, the compatibility function

f between x and s was the estimated probability to observe attributes corresponding to s given image

x, assuming independence of the K attributes and using logistic regressions to estimate probabilities.

It could be written

f(x, s; {wk}k) =
K∏︂

k=1

(︂
sk σ(w⊤

k x) + (1 − sk)(1 − σ(w⊤
k x))

)︂
(1.5)

Each of the parameters wk are learned on a training set Dk = {(xn, (syn)k)}n using a standard log

loss Llog:

Llog(x, y; w) = −
(︂
y log(σ(w⊤x)) + (1 − y)

(︂
1 − log(σ(w⊤x))

)︂)︂
(1.6)

wk = argmin
w

N∑︂
n=1

Llog(xn, (syn)k; w) (1.7)

So the loss function L in Equation (1.3) could be written:

L[(xn, yn, sc), fw] =
{︄∑︁

k Llog(xn, (sc)k; wk) if sc = syn

0 otherwise
(1.8)

Although no explicit regularization is mentioned in [75], it would be straightforward to add an ℓ1 or

ℓ2 penalty to the model:

Ωℓ2[f(·, · ; {w}k)] =
K∑︂

k=1
∥wk∥2

2 =
K∑︂

k=1

D∑︂
i=1

((wk)i)2 (1.9)

Other examples of compatibility and loss functions will be studied in more details in Section 1.2.

1.1.4 Zero-shot learning settings

So far, we considered that the only information available during the training phase was (1) the class

prototypes of the seen classes, and (2) labeled visual samples from these seen classes. The information

38

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

Setting Description

Information available for training

Class-inductive Prototypes from seen classes only
Class-transductive Prototypes from seen and unseen classes

(Instance-)inductive Instances from seen classes only

(Instance-)transductive
Instances from seen classes and
(unlabeled) instances from unseen classes

Candidate classes during testing

Standard supervised learning Seen classes only
(Classical) ZSL Unseen classes only
Generalized ZSL Seen and unseen classes

Table 1.4 – Summary of the main zero-shot learning settings. The classical instance-inductive, class-
inductive setting is assumed to be the default setting in this document.

regarding the class prototypes of unseen classes as well as unlabeled instances from these unseen classes

was only provided during the testing phase, after the model was trained. In addition, the test samples

for which we made predictions could only belong to these unseen classes; we considered they could

not belong to a seen class, or to a new class for which no semantic information is available.

This corresponds to the most common ZSL setting, and the one we will assume is the default in this

document. However, it is important to mention that other settings may be considered, with different

information being made available at different times, or with different tasks being conducted. We will

simply describe briefly the other possible settings in this section. Later sections such as Section 1.4

will be entirely dedicated to some of these settings and their specificities.

1.1.4.1 Available information at training time: inductive vs. transductive settings

Class-inductive and class-transductive settings. In some settings, class prototypes of both seen and

unseen classes are available during the training phase. Such a setting is referred to as a class-

transductive setting by [157], as opposed to a class-inductive setting in which unseen class prototypes

are only made available after the training of the model is completed. In a class-transductive setting,

the prototypes of unseen classes can for example be leveraged by a generative model, which tries to

synthesize images of objects from unseen classes based on their semantic description (Section 1.2.4).

They can also simply be used during training to ensure that the model does not misclassify a sample

from a seen class as a sample from an unseen class.

Having access to this information as soon as the training phase may be legitimate for some use-

39

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

cases. However, this still implies that the model loses some flexibility: new classes cannot be added as

seamlessly as in a class-inductive setting, in which a new class can be introduced by simply providing

its semantic representation.

(Instance-)inductive and (instance-)transductive settings. Some settings are even more permissive,

and consider that (unlabeled) instances of unseen classes are available during training. Such a setting is

called an instance-transductive setting in [157], as opposed to an instance-inductive setting. These two

settings are often simply referred to as respectively a transductive setting and an inductive setting, even

though there is some ambiguity on whether the (instance-)inductive setting designates a class-inductive

or a class-transductive setting. Some methods use approaches which specifically take advantage of the

availability of these unlabeled images [41, 128], for example by extracting additional information on

the geometry of the visual manifold [42, 165].

Even though models operating in and taking advantage of a transductive setting can often achieve

better accuracy than models designed for an inductive setting, we can argue that such a setting is not

suitable for many real-life use cases. With a few exceptions [90, 169], most transductive approaches

consider that the actual (unlabeled) testing instances are available during the training phase, which

excludes many practical applications. Even without this assumption, it is not always reasonable to

expect that we will have access to unlabeled samples from many unseen classes during the testing

phase. One may further argue that this is all the more unrealistic as there is some evidence that

labeling even a single instance per class (in a “one-shot learning” scenario) can lead to a significant

improvement in accuracy over a purely zero-shot learning scenario [164].

To summarize, a ZSL setting may be (instance-)inductive or (instance-)transductive depending on

whether unlabeled instances of test classes are available during the training phase. An (instance-

)inductive setting may further be class-inductive or class-transductive depending on whether semantic

prototypes of unseen classes are available at training time, even though this aspect is not always explic-

itly stated in the literature and an“inductive setting”may designate both. The default class-inductive,

instance-inductive setting is thus the most restrictive setting, but makes the fewest assumptions on

the availability of information during the different phases and is therefore the most broadly appli-

cable. By default, we will consider in this document that we are operating in this class-inductive,

40

1.1. AN INTRODUCTION TO ZERO-SHOT LEARNING

instance-inductive setting. This will specifically be the case for models studied in Section 1.2, with

a few exceptions in the section dealing with generative models (Section 1.2.4). Information on these

different settings is summarized in Table 1.4.

1.1.4.2 Use of additional information

In some settings, the available information itself can be different from the default setting. For

example, in addition to the semantic prototypes, some methods make use of relations between classes

defined with a graph [158, 60] or a hierarchical structure [129]. Others make use of information

regarding the environment of the object, for example by detecting surrounding objects [166] or by

computing co-occurence statistics using an additional multilabel dataset [98]. Other methods consider

that instead of a semantic representation per class, a semantic representation per image is available,

for example in the form of text descriptions [126] or human gaze information [61]. Further details on

some of these settings are provided in Section 1.3.2. Although all these settings can lead to interesting

alternative problems, they are mostly out of the scope of this document.

1.1.4.3 Task during the testing phase: classical vs. generalized ZSL

So far, we considered that the test instances could only belong to one of the unseen classes, and

thus only these unseen classes can be predicted. However, there is generally no particular reason to

assume that the seen classes we encountered during the training phase cannot be encountered again

when applying and testing our model; in a real-life use case, one may legitimately want to recognize

both seen and unseen classes. The setting in which testing instances may belong to both seen and

unseen classes is usually called generalized zero-shot learning, abbreviated GZSL.

Even though GZSL is less restrictive than standard ZSL, it presents some specific challenges which

will be detailed in Section 1.4 and are not always straightforward to address. For this reason, we

consider that unless stated otherwise, we are not in a GZSL setting. We will use the term classical

ZSL as opposed to generalized ZSL when we need to make this explicit.

Other even less restrictive tasks may be considered during the testing / application phase. For

instance, one may want a model able to answer that a visual instance does not match either a seen

nor an unseen class. Or one may want to recognize entities belonging to several categories, a setting

41

1.2. STANDARD METHODS

known as multilabel ZSL [98, 44, 88]. However, these tasks are outside the scope of this document.

Similarly, there exist transductive and generalized settings [140], but we dot not aim to (and are not

able to) be fully comprehensive.

1.2 Standard methods

In this section, we provide an overview of the different usual types of methods which have been

developed to solve the ZSL problem. Standard methods are separated into three main categories:

regression methods (Section 1.2.2), ranking methods (Section 1.2.3) and generative methods (Section

1.2.4), in addition to really simple methods which we refer to as baselines (Section 1.2.1).

This is simply one possible categorization, and different ones have been proposed in [161, 43, 157].

As with all possible categorizations, it is sometimes not so clear which category best fits a given

method; but overall, we think this choice is well-suited to give a general overview of the field. We

would also like to emphasize that sometimes, methods described here are slightly different from their

initial formulation in the original articles. This is done for the sake of brevity and simplicity; the

aim is to give a general overview of the types of methods, their strengths, weaknesses and underlying

hypotheses, not to dive deep in very specific implementation details. We usually try to disclose it

explicitly when what is described is different from the cited article, and refer the reader to the original

publications for further details.

Experimental results on standard ZSL benchmark datasets (presented in Appendix A.1) are avail-

able in Table 2.5 for several methods of each category, originating from the reference comparison from

Xian et al. [161] as well as from our independent reproduction of some of these results.

1.2.1 Baselines

This section describes very simple methods, which were usually proposed early in ZSL history.

These methods have the advantage of being easy to implement and requiring very little computing

power – or at least, no more than regular supervised classification. Some of them even enable to

directly adapt a standard supervised classifier to a ZSL setting. However, their performance is usually

quite low compared to more advanced methods.

42

1.2. STANDARD METHODS

We already encountered the Direct Attribute Prediction or DAP [75] approach in Section 1.1.2.

Recall that this method simply consists in training K standard classifiers which provide the prob-

ability P (ak|x) that attribute ak is present in visual input x. At test time, we predict the class c

which maximizes the probability to have attributes corresponding to its class prototype sc (Equa-

tion (1.2)). We now provide some additional information regarding the underlying assumptions which

led to Equation (1.2).

Ideally, we would like to be able to estimate the conditional probability P (c|x) that a visual

instance x belong to class c. For a given test image x, this would lead to predict label ŷ such that

ŷ = argmax
c∈CU

P (c|x) (1.10)

From the sum and product rules of probability,

P (c|x) =
∑︂

a∈{0,1}K

P (c|a)P (a|x) (1.11)

From Bayes’ theorem,

P (c|a) = P (a|c)P (c)
P (a) (1.12)

Assuming deterministic attributes a = sc given the class c,

P (a|c) = 1[a = sc] =
{︄

1 if a = sc

0 otherwise
(1.13)

From equations (1.12) and (1.13),

P (c|a) =

⎧⎨⎩
P (c)

P (a=sc) if a = sc

0 otherwise
(1.14)

Which means we only keep one term in the sum in Equation (1.11)

P (c|x) = P (c|a = sc)P (a = sc|x) = P (c)
P (a = sc)

P (a = sc|x) (1.15)

If we further assume identical class priors P (c) and uniform attribute priors3 P (ak) = 1
2 , the only

non-constant term in Equation (1.15) is P (a = sc|x). Finally, assuming independence of attributes,

P (a|x) =
K∏︂

k=1
P (ak|x) (1.16)

3The authors of [75] also suggest to compute attribute priors P (a) by assuming independent attributes and estimating
the probability of each attribute using the training dataset, but indicate that experimental results of both approaches
are similar.

43

1.2. STANDARD METHODS

which gives us the same result as in Equation (1.2):

argmax
c∈CU

P (c|x) = argmax
c∈CU

K∏︂
k=1

P (ak = (sc)k|x) (1.17)

Note that here we further assumed that the class prototypes consist of binary attributes. Sim-

ilar results may be obtained with continuous attributes by using probability density functions and

regressors instead of classifiers.

The Indirect Attribute Prediction or IAP was also proposed in [75]. It is very close to DAP, with

one notable difference: it does not require any model training beyond a standard multi-class classifier

on seen classes, and in particular does not require any training related to the attributes. As such,

it enables to seamlessly convert any pre-trained standard supervised classification model to a ZSL

setting provided a semantic representation is available for each seen and unseen class.

To achieve this, we can simply rewrite P (ak|x) in Equation (1.2) (or Equation (1.17)) as

P (ak|x) =
∑︂

c∈CS

P (ak|c)P (c|x) (1.18)

Here P (c|x) for seen class c ∈ CS can be obtained using any “standard” (not zero-shot learning)

supervised classifier trained on the dataset {(xn, yn)}n, and the deterministic attributes assumption

tells us that P (ak|c) is 1 if ak = (sc)k and 0 otherwise, so

P (ak|x) =
∑︂

c∈CS
(sc)k=ak

P (c|x) (1.19)

And Equation (1.2) can be rewritten as

ŷ = argmax
c∈CU

K∏︂
k=1

∑︂
c′∈CS

(sc)k=(sc′)k

P (c′|x) (1.20)

From now on, we consider that values in semantic representations can be either binary or contin-

uous, and are not restricted to [0, 1]. These representations may also not be attributes, as detailed in

Section 1.3.2. We only assume that all prototypes have the same dimension K.

Convex semantic embeddings. The method based on convex semantic embeddings, or ConSE [108],

is similar to IAP in that it also relies only on standard classifiers and can be used to adapt pre-trained

standard models to a ZSL setting without any further training.

44

1.2. STANDARD METHODS

We assume that we already have a classifier which gives P (c|x), the probability that visual instance

x belongs to class c for any seen class c ∈ CS . Such a classifier can be trivially trained on the dataset

{(xn, yn)}n. We will write ĉ1(x) = argmax
c∈CS

P (c|x) the prediction with the highest probability for input

image x. Similarly ĉ2(x) is the prediction with the second highest probability, and ĉt(x) is the tth best

prediction.

Given a visual sample x, we estimate its semantic representation ŝ(x) ∈ RK as a convex combina-

tion4 of the semantic prototypes sĉ of the best predictions ĉt(x) for x, each prototype being weighted

by its classification score P (ĉt(x)|x):

ŝ(x) =
T∑︂

t=1
P (ĉt(x)|x) sĉt(x) (1.21)

sĉt(x) being the class prototype associated with the tth predicted seen class ĉt(x). T is a hyperparameter

of the model.

For a test instance x, we can then simply predict ŷ as the class c whose class prototype sc is the

closest to the estimated semantic representation ŝ(x) as measured with cosine similarity:

ŷ = argmax
c∈CU

cos(ŝ(x), sc) = argmax
c∈CU

ŝ(x)⊤sc

∥ŝ(x)∥2∥sc∥2
(1.22)

We can notice that contrary to DAP and IAP, ConSE does not make any implicit assumption

regarding the nature of the class prototypes – it can be used with either binary or continuous semantic

representations. It is also interesting to note that if T = 1, this method is equivalent to simply

determining the best matching seen class to (unseen) test instance x, and predicting the unseen class

whose prototype is closest to the prototype of the best matching seen class.

1.2.2 Ridge regression

Zero-shot learning as a regression problem. One simple approach to ZSL is to view this task as a

regression problem, where we are trying to predict continuous attributes from a visual instance. A

very straight-forward implementation of this idea consists in learning to predict the attributes from

the visual samples with a simple linear regression.

4To truly be a convex combination, ŝ(x) in Equation (1.21) should be divided by a normalization term∑︁T

t=1 P (ĉt(x)|x), but since we use cosine similarity to make predictions in Equation (1.22), the norm of ŝ(x) does
not matter.

45

1.2. STANDARD METHODS

Given a visual sample x and the corresponding semantic representation s, we aim to predict each

semantic dimension sk of s with ŝk = w⊤
k x so as to minimize the squared distance between the

prediction and the true value (ŝk − sk)2, wk ∈ RD being the parameters of the model. If we write

W = (w1, . . . , wK)⊤ ∈ RK×D, we can directly estimate the entire prototype with ŝ = Wx. We

can also directly compare how close ŝ is to s with ∥ŝ − s∥2
2 =

∑︁
k(ŝk − sk)2. As with a standard

linear regression, we determine the optimal parameters W⋆ by minimizing the training error over the

training dataset Dtr:

W⋆ = argmin
W

1
N

N∑︂
n=1

∥Wxn − syn∥2
2 (1.23)

We denote tn = syn the prototype associated with the class of the nth image xn. We further

denote X = (x1, . . . , xN)⊤ ∈ RN×D the matrix whose N lines correspond to the visual features of

training samples. Similarly, we write T = (t1, . . . , tN)⊤ ∈ RN×K . This enables us to write the loss in

Equation (1.23) in matrix form 1
N ∥XW⊤ − T∥2

2 – to simplify notations, we denote ∥·∥2 both the ℓ2

norm ∥a∥2 =
(︁∑︁

i a2
i

)︁1/2
when applied to a vector, and the Frobenius norm ∥A∥F =

(︂∑︁
i

∑︁
j A2

i,j

)︂1/2

when applied to a matrix. Additionally, we can add a regularization in the form of a ℓ2 penalty on

the model parameters W, weighted by a hyperparameter λ. This results in the following loss:

1
N

∥XW⊤ − T∥2
2 + λ∥W∥2

2 (1.24)

A loss of the form of Equation (1.24) has the huge advantage of having a closed-form solution,

which enables to directly obtain the value of the optimal parameters. We will shortly derive such

a closed-form solution from Lemma 1.26, which expresses a slightly more generic relation that will

enable us to obtain solutions to other similar problems in this section.

At test time, given an image x belonging to an unseen class, we estimate its corresponding semantic

representation ŝ = Wx and predict the class with the closest semantic prototype:

ŷ = argmin
c∈CU

∥Wx − sc∥2 (1.25)

It is also possible to use other distances or similarity measures such as a cosine similarity during the

prediction phase.

46

1.2. STANDARD METHODS

Lemma. For matrices X, A, B and C defined such that the following equation makes sense, we have

∂∥AXB + C∥2
2

∂X = 2A⊤(AXB + C)B⊤ (1.26)

Proof : let’s write Z = AXB + C.

∥AXB + C∥2
2 = ∥Z∥2

2 =
∑︁

i

∑︁
j(Zi,j)2, and

∂∥Z∥2
2

∂X =
∑︂

i

∑︂
j

∂(Zi,j)2

∂X (1.27)

We have Zi,j =
∑︁

k Ai,k(XB)k,j + Ci,j , or

Zi,j =
∑︂

k

Ai,k

(︄∑︂
l

Xk,lBl,j

)︄
+ Ci,j (1.28)

In Equation (1.27), for any Xm,n, we have

∂(Zi,j)2

∂Xm,n
= 2Zi,j

∂Zi,j

∂Xm,n
(1.29)

Using Equation (1.28),
∂Zi,j

∂Xm,n
= Ai,mBn,j (1.30)

Combining equations (1.27), (1.29) and (1.30), we have

∂∥Z∥2
2

∂Xm,n
=
∑︂

i

∑︂
j

(2Zi,jAi,mBn,j) = 2
∑︂

i

(A⊤)m,i

⎛⎝∑︂
j

Zi,j(B⊤)j,n

⎞⎠
and finally

∂∥Z∥2
2

∂Xm,n
= 2(A⊤ZB⊤)m,n

Q.E.D.

In the regularized least-square loss in Equation (1.24), noticing that ∥Z∥2
2 = ∥Z⊤∥2

2 enables us to

use Lemma 1.26 to get the derivative with respect to W:

2
N

(WX⊤ − T⊤)X + 2λW (1.31)

Setting the derivative from Equation (1.31) to 0 and rearranging, we get:

W(X⊤X + λNID) = T⊤X (1.32)

47

1.2. STANDARD METHODS

Which finally gives us the closed-form solution to Equation (1.24):

W = T⊤X(X⊤X + λNID)−1 (1.33)

We call this ridge-regression based method the RidgeV→S method, as we learn a mapping from the

visual (V) to the semantic (S) space.

The embarrassingly simple approach. The Embarrassingly Simple approach to Zero-Shot Learning

proposed in [130], often abbreviated ESZSL, makes use of a similar idea with a few additional steps.

We again aim to learn parameters W ∈ RK×D such that the linear projection t̂n = Wxn from the

image xn corresponds to “good” predicted semantic representations. However, instead of comparing

the estimated attributes to the ground truth tn = syn using a squared distance as in Equation (1.23),

we measure how similar they are using a dot product t̂⊤
n tn. Ideally and somewhat arbitrarily, we

would like this similarity to be close to 1. Conversely, we would like the similarity t̂⊤
n sc between t̂n

and the prototype sc of another class c ̸= yn to be close to −1.

We therefore introduce a matrix Y ∈ {−1, 1}N×C representing this objective: for an image xn with

label yn, line n of Y is −1 everywhere except on column yn where it is 1. Using the same notations

as previously, XW⊤ ∈ RN×K represents the predicted semantic representations for all N training

images. We write S = (s1, . . . , sC)⊤ ∈ RC×K , C being the number of seen classes C = |CS |. Then, the

matrix XW⊤S⊤ ∈ RN×C should be as close to Y as possible.

We can therefore use the following loss:

1
N

∥XW⊤S⊤ − Y∥2
2 (1.34)

In [130], the authors further propose to add regularization terms so that visual features projected

on the semantic space XW⊤ have similar norms to allow for fair comparison. The same idea is applied

to semantic prototypes projected on the visual space W⊤S⊤. They also add an ℓ2 penalty on the

model parameters W as we did in Equation (1.24). This results in the final, regularized loss:

1
N

∥XW⊤S⊤ − Y∥2
2 + γ∥W⊤S⊤∥2

2 + λ

N
∥XW⊤∥2

2 + γλ∥W∥2
2 (1.35)

λ and γ being hyperparameters controlling the weights of the different regularization terms.

48

1.2. STANDARD METHODS

Using the same method as previously, we compute the derivative of Equation (1.35) using Lemma 1.26,

set it to zero and rearrange the resulting equation to obtain the closed-form solution:

W = (S⊤S + λNIK)−1S⊤Y⊤X(X⊤X + γNID)−1 (1.36)

The prediction phase is again straightforward. Given a test image x, we predict the unseen class

c ∈ CU with the highest similarity to the predicted semantic representation t̂ = Wx of x:

ŷ = argmax
c∈CU

s⊤
c Wx (1.37)

From the perspective of the formal framework introduced in Section 1.1.3, this means that the

compatibility function f between visual sample x and semantic representation s is a bilinear form

f(x, s) = s⊤Wx. We will meet compatibility functions of this form again later in Section 1.2.3.

Predicting visual features: RidgeS→V . Instead of trying to predict the class prototypes s from the

visual features x, we can consider predicting the visual features from the class prototypes’ features.

This is very similar to what we did in the beginning of this section with the RidgeV→S model: we

predict each visual dimension xd with x̂d = w⊤
d s, a linear combination of s parameterized by wd ∈ RK .

Writing W = (w1, . . . , wD) ∈ RK×D, we can estimate the “average” visual representation associated

with prototype s with x̂ = W⊤s. We therefore call this method the RidgeS→V model, as we learn a

mapping from the semantic (S) space to the visual (V) space.

The distances between the observations and our predictions are this time measured in the visual

space: for each training sample xn, we want to minimize the distance ∥xn − x̂n∥2 between the sample

xn and the predicted visual features x̂n = W⊤syn of the corresponding semantic prototype syn . Using

the same notations as previously, we can write the corresponding loss:

1
N

∥X − TW∥2
2 + λ∥W∥2

2 (1.38)

Using Lemma 1.26 and the same method as previously, we find the closed-form solution

W = (T⊤T + λNIK)−1T⊤X (1.39)

For test image x, we predict label ŷ based on a nearest-neighbor search in the visual space:

ŷ = argmin
c∈CU

∥x − W⊤sc∥2 (1.40)

49

1.2. STANDARD METHODS

Although this approach is very similar to the first approach of this section, it turns out projecting

semantic objects to the visual space has an advantage compared to doing the opposite. Like other

machine learning methods, ZSL methods can be subject to the hubness problem [123], which describes

a situation where certain objects, referred to as hubs, are the nearest neighbors of many other objects.

In the case of ZSL, a semantic prototype s being the nearest neighbors of many projections of visual

samples t̂n into the semantic space is not desirable if s is not the prototype of the associated classes,

as this will lead to predict the wrong label.

When using ridge regression for ZSL, it has been verified experimentally [78, 135] that this situation

tends to happen. However, it is evidenced in [135] that this effect is mitigated when projecting from

the semantic to the visual space, compared to projections from the visual to the semantic space.

It should be noted that the hubness problem does not occur exclusively when using ridge regression,

and more complex ZSL methods such as [168] make use of the findings of [135].

Semantic autoencoder. The semantic autoencoder (SAE) [70] approach can be seen as a combination

of the two approaches RidgeS→V and RidgeV→S . The main idea consists in first encoding a visual

sample xn by linearly projecting it onto the semantic space with t̂n = Wxn, and then decoding it by

projecting the result into the visual space again with x̂n = Vt̂n, W ∈ RK×D and V ∈ RD×K being

the parameters of the model.

While a standard autoencoder would only be concerned with the reconstruction error ∥x̂n − xn∥2,

we have an additional constraint since we want the encoded representation t̂n to correspond to the

semantic representation tn = syn of xn. This can be taken into account by adding another component

∥t̂n − tn∥2 to the loss to measure the encoding error. To simplify the problem, we can use only one

matrix of parameters W by setting V = W⊤. Using the same notations as previously, this results in

the following loss:

∥X − TW∥2 + γ∥T − XW⊤∥2 (1.41)

where γ is a hyperparameter and represents a trade-off between the reconstruction loss ∥X − TW∥2

and the semantic encoding loss ∥T − XW⊤∥2.

Using Lemma 1.26 to obtain the derivative of Equation (1.41) with respect to W, setting it to 0

50

1.2. STANDARD METHODS

and rearranging, we get

T⊤TW + γWX⊤X = (1 − γ)T⊤X (1.42)

Contrary to the previous examples, there is no immediate closed-form solution to this problem.

However, if we define A = T⊤T, B = γX⊤X and C = (1 − γ)T⊤X, Equation (1.42) can be written

AW+WB = C. This corresponds to a Sylvester equation, and a numerical solution can be computed

efficiently using the Bartels-Stewart algorithm [9].

During the testing phase, predictions can be made either in the semantic space using Equa-

tion (1.25) or in the visual space using Equation (1.40).

Non linear approaches. For now, all methods of this section used linear projections to predict features

of one modality (visual or semantic) from the other. However, the losses in equations (1.24), (1.35),

(1.38) or (1.41) could be easily adapted to non-linear regression methods.

One such example, Cross-Modal Transfer or CMT, is proposed in [138]. It consists in a simple

fully-connected, 1-hidden layer neural network with hyperbolic tangent non-linearity, which is used to

predict semantic prototypes from visual features. Equation (1.23) (and (1.24)) can therefore simply

be re-written as
1
N

∑︂
n

∥tn − W2tanh(W1xn)∥2
2 (1.43)

W1 ∈ RH×D and W2 ∈ RK×H being the parameters of the model, and H being the dimension of the

hidden layer which is a hyperparameter.

Similar or more complex adaptations can easily be made for other methods. The main drawback

of such non linear projections compared to the linear methods presented earlier is that there is no

general closed-form solution, and iterative numerical algorithms must be used to determine suitable

values for the parameters.

1.2.3 Ranking methods

Ranking methods make a more direct use of the compatibility function f . The intuition behind

these methods is that the compatibility of matching pairs should be much higher than the compatibility

of non-matching pairs. More specifically, given a visual sample x with label y, we expect that its

compatibility with the corresponding prototype sy should be much higher than its compatibility with

51

1.2. STANDARD METHODS

sc, the prototype of a different class c ̸= y:

f(x, sy) ≫ f(x, sc), c ̸= y (1.44)

How “much higher” can be more precisely and quantitatively defined through the introduction of

a margin m, such that f(x, sy) ≥ m + f(x, sc). This is equivalent to say that we want

m + f(x, sc) − f(x, sy) ≤ 0 (1.45)

To enforce this constraint, we can penalize triplets (x, sy, sc), c ̸= y for which this inequality is not

true using the triplet loss:

Ltriplet(x, sc, sy; f) = [m + f(x, sc) − f(x, sy)]+ (1.46)

where [·]+ = max(0, ·). This way, for a given triplet (x, sy, sc), c ̸= y, the loss is 0 if f(x, sc) is much

smaller than f(x, sy), and is all the higher as f(x, sc) gets close to – or surpasses – f(x, sy).

This triplet loss is also often called hinge rank loss, as it can be viewed as an extension of the

standard hinge loss used with SVMs for binary classification. The hinge loss can be written [1 −

y · f(x)]+, where y is a binary label in {−1, 1} and f attributes a score to input x, for example

fw(x) = w⊤x with a linear kernel. This hinge loss can be modified to handle multi-class classification

directly, without requiring strategies such as one-versus-one or one-versus-all. An example of such a

modification is the Weston-Watkins [160] multi-class SVM loss:

LWW(x, y; f) =
∑︂
c̸=y

[1 + fwc(x) − fwy (x)]+ (1.47)

This corresponds to the triplet loss in Equation (1.46) summed over all classes c ̸= y, with m = 1 and

a special case of f where fw(x) = f(x, w) = w⊤x.

In general, it is not possible to derive a solution analytically for methods based on a triplet loss,

so we must resort to the use of numerical optimization. It should be noted that the use of the triplet

loss is far from being restricted to ZSL, and is in fact widespread in other tasks requiring to learn

compatibilities, such as image-sentence retrieval [63, 62, 156] or face recognition [133] among many

others.

52

1.2. STANDARD METHODS

1.2.3.1 Linear compatibility function

In many triplet loss approaches to ZSL, the compatibility function f is simply defined as a bilinear

mapping between the visual and semantic spaces parameterized by a matrix W ∈ RD×K :

fW(x, s) = x⊤Ws (1.48)

This compatibility function is actually the same as the one we encountered earlier with ESZSL, even

though the loss function used to learn its parameters W is different.

The Deep Visual-Semantic Embedding model or DeViSE [40] is one of the simplest applications of

a triplet loss with a linear compatibility function to ZSL: the total loss is simply the sum of the triplet

loss over all training triplets (xn, syn , sc), c ̸= y:

Ltr(Dtr) = 1
N

N∑︂
n=1

∑︂
c∈CS
c̸=yn

[m + f(xn, sc) − f(xn, syn)]+ (1.49)

DeViSE can also be viewed as a direct application of the Weston-Watkins loss [160] to ZSL. It

can be noted that the link with the generic loss framework in Equation (1.3) is this time pretty

straightforward, as with many triplet loss methods. Although no explicit regularization Ω on f is

mentioned in the original publication – even though the authors make use of early stopping in the

gradient descent – it is again straightforward to add an ℓ2 penalty Ω[fW] = ∥W∥2
2.

The Structured Joint Embedding approach, or SJE [4], is fairly similar to DeViSE. It is inspired

by works on structured SVMs [148, 149], and makes use of the Cramer-Singer loss [30] for multi-class

SVM. The general formulation for the Crammer-Singer loss is

LCS(x, y; f) = [max
c̸=y

(︁
m + fwc(x) − fwy (x)

)︁
]+ (1.50)

Applied to a ZSL setting, this means that only the class which is violating the constraint in

Equation (1.45) the most is taken into account for each sample. In our case, this results in

Ltr(Dtr) = 1
N

N∑︂
n=1

max
c∈CS
c ̸=yn

([m + f(xn, sc) − f(xn, syn)]+) (1.51)

53

1.2. STANDARD METHODS

The Attribute Label Embedding approach or ALE [2, 3] considers the ZSL task as a ranking problem,

where the objective is to rank the correct class c as high as possible on the list of possible candidate

unseen classes. From this perspective, we can consider that SJE only takes into account the top

element of the ranking list provided the margin m is close to 0. By contrast, DeViSE penalizes all

ranking mistakes: given labeled sample (x, y), for all classes c mistakenly ranked higher than y, we

have f(x, sc) > f(x, sy) which contributes to the loss. The ALE approach aims to be somewhere in

between these two approaches, so that a mistake on the rank when the true class is close to the top

of the ranking list weighs more than a mistake when the true class is lower on the list.

Inspired by works on weighted approximate ranking [159, 150], the authors of [2] define

r(x, y) = 1 +
∑︂

c, c̸=y

1[Ltriplet(x, sc, sy) > 0] (1.52)

the number of triplets violating the constraint in Equation(1.45), which is an upper bound on the

rank of label y for image x. They further define

γ(r) = 1
r

r∑︂
i=1

1
i

(1.53)

which is a slowly decreasing function of r. The final total loss is

Ltr(Dtr) = 1
N

∑︂
n

γ(r(xn, yn))
∑︂

c∈CS
c̸=yn

[m + f(x, sc) − f(x, sy)]+ (1.54)

which is similar to DeViSE but decreases the contribution to the loss for training samples with many

ranking mistakes. This prompts the model to prioritize images whose correct label is already close to

the top of the ranking list.

As a side note, each of [40, 4, 2] proposes more contributions in the original article than is presented

here. For example, DeViSE uses fine-tuning on the convolutional network, SJE enables the use of

several semantic prototypes, ALE takes attributes correlation into account and proposes an extension

to few-shot learning. However, we are mostly interested in providing a general overview of the use of

triplet loss in ZSL, and we refer the reader to the original articles for further details.

1.2.3.2 Non linear compatibility function

Similarly to CMT in the previous section, all models above can be extended to be non linear; such an

extension is even more straightforward as this time, having no closed-form solution, all models require

54

1.2. STANDARD METHODS

the use of numerical optimization. One such example of a non linear model worth describing due to

its historical significance and still reasonable performance is the Synthesized Classifiers approach, or

SynC [22, 23]. Based on a manifold learning framework, it aims to learn phantom classes in both the

semantic and visual spaces, so that linear classifiers for seen and unseen classes can be synthesized as

a combination of such phantom classes.

More precisely, the goal is to synthesize linear classifiers wc in the visual space such that the

compatibility between image x and class c can be computed with f(x, sc) = w⊤
c x. This will lead to

predict

ŷ = argmax
c

w⊤
c x (1.55)

Let’s call respectively { ∗xp}p∈J1,P K and {∗sp}p∈J1,P K the P phantom classes in the respective visual

and semantic spaces. These phantom classes are learned and constitute the parameters of the model5.

Each visual classifier will be synthesized as a linear combination of visual phantom classes:

wc =
P∑︂

p=1
vc,p

∗xp (1.56)

The value of each coefficient vc,p is set so as to correspond to the conditional probability of observing

phantom class
∗sp in the neighborhood of real class sc in the semantic space. Following works on

manifold learning [57, 96], this can be estimated with

vc,p = exp
(︁
−∥sc − ∗sp∥2/2σ2)︁∑︁

q exp (−∥sc − ∗sq∥2/2σ2) (1.57)

The parameters of the model, i.e. the phantom classes {(∗xp,
∗sp)}p, can be estimated by making use

of the Crammer-Singer loss5 similarly to equations (1.50) and (1.51), and using adequate regularization

to obtain the following objective:

minimize
{(∗xp,

∗sp)}p

1
N

N∑︂
n=1

max
c∈CS
c ̸=yn

(︂
[m + w⊤

c xn − w⊤
yn

xn]+
)︂

+ Ω (1.58)

Ω = λ
∑︂

c∈CS

∥wc∥2 + γ
P∑︂

p=1
∥∗sp∥2 (1.59)

5A number of simplifications were made for the sake of clarity and brevity: in the original article [22], phantom
classes are actually sparse linear combinations of semantic prototypes, vc,p can further use Mahalanobis distance, other
losses such as squared hinge loss can be used instead of the Crammer-Singer loss, euclidean distances between semantic
prototypes can be used instead of a fixed margin in the triplet loss, additional regularization terms and hyperparameters
are introduced, and optimization between {∗xp}p and {∗sp}p is performed alternatingly.

55

1.2. STANDARD METHODS

where λ and γ are hyperparameters along with σ2 in Equation (1.57).

It is interesting to note that ALE can actually be considered as a special case of SynC, where the

classifiers are simply a linear combination of semantic prototypes wc = Wsc.

Other methods making use of a triplet loss include [28], which uses multiple training objectives and

is based on an architecture inspired by adversarial autoencoders [97]. [90] applies an extension of the

Crammer-Singer loss which enables the use of unlabeled samples during training.

1.2.4 Generative methods

Generative methods aim to generate visual samples belonging to unseen classes based on their

semantic description; these samples can then be used to train standard classifiers. Partly for this

reason, most generative methods directly generate high-level visual features, as opposed to raw pixels

– another reason being that generating raw images is usually not as effective [162].

Generative methods have gained a lot of attention in the last few years: many if not most recent

high-visibility ZSL approaches are generative models [152, 162, 164]. This is partly because such

approaches have interesting properties, which make them particularly suitable to certain settings such

as Generalized ZSL (Section 1.4). However, a disadvantage of these approaches is that they can usually

only operate in a class-transductive setting, since the class prototypes of unseen classes are needed

to generate samples belonging to these classes; contrary to methods based on regression or explicit

compatibility functions, additional training is often necessary to integrate new classes to the model.

We divide generative methods into two main categories: methods generating a parametric distri-

bution, which consider visual samples behave according to a standard probability distribution such

as a multivariate Gaussian and try to estimate its parameters so that visual features can be sampled

from this distribution, and non-parametric methods, where visual samples are directly generated by

the model.

Whether RidgeS→V is a generative method can be debated, as it predicts visual features from

semantic descriptions. However, since in the standard ZSL setting, a single prototype is available for

each class, RidgeS→V can only generate a single visual sample per class. On the other hand, we expect

a generative method to be able to produce many visual instances. For this reason, we consider that

RidgeS→V or other similar methods are not generative models.

56

1.2. STANDARD METHODS

1.2.4.1 Parametric distribution

Methods in this category assume that visual features for each class follow a standard parametric

distribution. For example, we may assume that for each class c, visual features are samples from a

multivariate Gaussian with mean µc ∈ RD and covariance Σc ∈ RD×D (with the constraint that Σc

must be positive semi-definite). This results in the following probability density function for samples

x from class c:

p(x; µc, Σc) = N (x|µc, Σc) (1.60)

N (x|µ, Σ) = 1√︂
(2π)D|Σ|

exp

(︃
−1

2(x − µ)⊤Σ−1(x − µ)
)︃

(1.61)

If we can estimate these parameters (µ, Σ) for unseen classes, we will be able to generate samples

belonging to these classes. Zero-shot recognition can then be performed by training a standard multi-

class classifier – usually a softmax as in [17, 162] or an SVM as in [49, 152] – on the labeled generated

samples.

Alternatively, once the probability density functions’ parameters have been estimated for unseen

classes, we may determine the class of a test visual sample x using maximum likelihood or similar

methods [153]:

ŷ = argmax
c∈CU

p(x; µc, Σc) (1.62)

Other approaches [162] also propose to further train a ZSL model based on an explicit compatibility

function using the generated samples and the corresponding class prototypes, and then perform zero-

shot recognition as usually with Equation (1.4).

The Generative Framework for Zero-Shot Learning or GFZSL [153] assumes that visual features

are normally distributed given their class as in Equation (1.60). To simplify, we can further assume

that Σc = diag(σ2
c) with σ2

c ∈ R+D. The parameters of the distribution (µc, σ2
c) are easy to estimate

for seen classes c ∈ CS . For example, using maximum likelihood estimators:

µ̂c = 1
Mc

Mc∑︂
m=1

xc
m (1.63)

σ̂2
c = 1

Mc

Mc∑︂
m=1

(xc
m − µ̂c) ⊙ (xc

n − µ̂c) (1.64)

57

1.2. STANDARD METHODS

where {xc
1, . . . , xc

Nc
} are the Mc visual samples with label y = c, and ⊙ is the Hadamard (element-wise)

product.

However, these parameters are unknown for unseen classes. Since the only information we have

about unseen classes is the class prototypes, we can – or have to – assume that the parameters µc and

σ2
c of class c depend on class prototype sc. [153] further assumes a linear dependency, such that

µc = W⊤
µ sc (1.65)

ρc = log(σ2
c) = W⊤

σ sc (1.66)

The models’ parameters Wµ ∈ RK×D and Wσ ∈ RK×D can then be obtained using ridge re-

gression, using the class distribution parameters {(µ̂c, ρ̂c)}c∈CS estimated on seen classes as training

samples. In a similar way to what we did in Section 1.2.2, we write M = (µ̂1, . . . , µ̂C)⊤ ∈ RC×D and

R = (ρ̂1, . . . , ρ̂C)⊤ ∈ RC×D the regression targets, with C = |CS | the number of seen classes. We

want to minimize regularized ℓ2 losses

∥M − SWµ∥2 + λµ∥Wµ∥2 (1.67)

∥R − SWσ∥2 + λσ∥Wσ∥2 (1.68)

λµ and λσ being hyperparameters.

Equations (1.67) and (1.68) are of the same form as Equation(1.38) in Section 1.2.2, so solutions

are of the same form as Equation (1.39):

Wµ = (S⊤S + λµIK)−1S⊤M (1.69)

Wσ = (S⊤S + λσIK)−1S⊤R (1.70)

We can then predict parameters (µ̂c, ρ̂c) for all unseen classes c ∈ CU , and sample visual features

of unseen classes accordingly. Predictions can then be made using either a standard classifier or the

estimated distributions themselves using Equation (1.62) as detailed previously.

[153] also propose to extend this approach to include more generic distributions belonging to the

exponential family and non-linear regressors.

58

1.2. STANDARD METHODS

The Synthesized Samples for Zero-Shot Learning or SSZSL [49] approach similarly assumes that

p(x|c) is gaussian, estimates parameters (µ, Σ) for seen classes with techniques similar to GFZSL

(equations (1.63) and (1.64)) and aims to predict parameters (µ̂, Σ̂) for unseen classes. We can again

assume that Σ = diag(σ2). In a way that reminds the ConSE method, the distributions parameters

are estimated using a convex combination of parameters from seen classes d:

µ̂ = 1
Z

∑︂
d∈CS

wdµd (1.71)

σ̂2 = 1
Z

∑︂
d∈CS

wdσ2
d (1.72)

with Z = 1⊤w =
∑︁

d wd. The model therefore has one parameter wc ∈ R|CS | to determine per unseen

class c.

These model parameters wc are set such that the semantic prototype stec from unseen class c

is approximately a convex combination of prototypes from seen classes, i.e. stec ≃ S⊤wc/Zc, while

preventing classes dissimilar to stec from being assigned a large weight. This results in the following

loss for unseen class c:

∥stec − S⊤wc∥2
2 + λw⊤

c dc (1.73)

where each element (dc)i of dc is a measure of how dissimilar6 unseen class c is to seen class i, and

λ is a hyperparameter. Minimizing the second term in Equation (1.73) will naturally lead to assign

smaller weights to classes dissimilar to c. Using Lemma 1.26, we get the closed-form solution

wc = (SS⊤)−1(λ

2 dc − Sstec) (1.74)

Other examples of methods which assume that class-conditional distribution of visual samples is

gaussian and estimate the corresponding parameters using class prototypes include [155], which models

locally linear dependencies between visual and semantic spaces and makes use of sparse coding.

1.2.4.2 Non parametric distribution

As explained previously, such approaches do not explicitly make simplifying assumptions about

the shape of the distribution of visual features, and use powerful generative methods such as varia-

6In [49], the authors use (dc)i =
(︂
exp
(︂

− ∥stec −stri ∥2

ᾱ2

)︂)︂−1
to measure how dissimilar unseen class c is to seen class i,

where ᾱ is the mean value of the distances between any two prototypes from seen classes.

59

1.2. STANDARD METHODS

tional auto-encoders (VAEs) [66] or generative adversarial networks (GANs) [47] to directly synthesize

samples. Although these models are in principle able to capture complex data distribution, they can

prove to be hard to train [6].

The Synthesized Examples for GZSL, or SE-GZSL [152] is an example of an approach based on a

conditional VAE [139] architecture. It consists of two main parts: an encoder E(·) which maps an

input x to an R-dimensional internal representation or latent code z ∈ RR, and a decoder D(·) which

tries to reconstruct the input x from the internal representation. An optional third part can be added

to the model: a regressor R(·) which estimates the semantic representation t of the visual input x.

All components consist of multi-layer feedforward networks.

To be more precise, the encoder learns a distribution over the internal representations, and the

latent code z is randomly sampled from this distribution. We usually assume it is a gaussian

N (µ,diag(σ2)), such that the encoder predicts the estimated parameters7 µ̂ ∈ RR and σ̂2 ∈ R+R

based on the input x: E : RD → RR ×R+R. We will still write z = E(x) to indicate a representation z

sampled from the distribution N (µ̂, σ̂2) regressed from x by E . Similarly, the decoder and regressor

output parameters of probability distributions, which we also assume to be normal.

To help the decoder to produce class-dependant reconstructed outputs, the corresponding class

prototype tn = syn is concatenated to the representation zn for input xn. The decoder is then a

function D : RR × RK → RD × R+D. We will write x̂n = D(E(xn), tn) the (sampled) reconstructed

input.

The loss of the model is the (conditional) variational lower-bound [66, 139]:

LVAE(x) = −Ep(z|x)[log(p(x|z, t))] + KL[p(z|x)||p(z)] (1.75)

where Ep(x)[g(x)] denotes the expectation of quantity g(x) with respect to distribution p(x), and

KL[p||q] is the Kullback-Leibler divergence [73] of distributions p and q. In our case, since the encoder

outputs a probability distribution with parameters (µ̂, σ̂2) from x, we have p(z|x) = N (z|µ̂, σ̂2). The

same idea can be applied to the decoder and p(x̂|z, t). The prior p(z) over the latent code is usually

assumed to be a unit gaussian N (0, I). Given the forms of p(z|x) and p(z), their KL divergence has

7We actually predict ρ̂ ∈ RR such that σ̂2 = exp(ρ̂) ∈ R+R as in Equation (1.66).

60

1.2. STANDARD METHODS

a closed-form solution:

KL[p(z|x)||p(z)] = −1
2

R∑︂
r=1

(1 + log(σ2) − µ2 − σ2)r (1.76)

Other approaches such as [105] consider that only the encoder outputs a probability distribution.

In the latter case, we may assume that the true distribution of visual samples is an isotropic gaussian

given the latent representation, i.e. p(x|z, t) = N (x|µ(z, t), σ2I). In this case, the output of the

decoder should be x̂ = µ(z, t), and it can be shown that minimizing −log(p(x|z, t)) is equivalent to

minimizing ∥x − x̂∥2. Furthermore, in [105], the class prototype is appended to the visual sample as

opposed to the latent code. This results in the following training loss:

1
N

N∑︂
n=1

∥xn − D(E(xn, tn))∥2
2 + λ∥µ2 + σ2 − log(σ2) − 1∥1 (1.77)

where λ is a hyper-parameter.

The authors of [152] further propose to use the regressor R to encourage the decoder to generate

discriminative visual samples, by adding other weighted components to the loss in Equation (1.75). An

example of such components consists in evaluating the quality of predicted attributes from synthesized

samples, and takes the form L = −Ep(x̂|z,t)p(z)p(t)[log(p(a|x̂))]. The regressor itself is trained on both

labeled training samples and generated samples, and the parameters of the encoder / decoder and the

regressor are optimized alternatingly.

f-GAN [162] is based on a similar approach, but makes use of conditional GANs [104] to generate

visual features. It consists of two parts: a discriminator D which tries to distinguish real images from

synthesized images, and a generator G which tries to generate images that D cannot distinguish from

real images. Both parts consist in a multi-layer neural network.

The generator is similar to the decoder from the previous approach in that it takes as input a latent

code z ∈ RR and the semantic representation sc of a class c, and tries to generate a visual sample x̂ of

class c: G : RR ×RK → RD. The key difference is that the latent code is not the output of an encoder

but consists of random gaussian noise. The discriminator takes as input a visual sample, either real or

generated, of a class c as well as the prototype sc, and predicts the probability that the visual sample

was generated: D : RD × RK → [0, 1].

61

1.3. VISUAL AND SEMANTIC REPRESENTATIONS

G and D both compete in a two-player minimax game, such that the optimization objective is:

min
G

max
D

Ep(x,y),p(z)[log(D(x, sy)) + log(1 − D(G(z, sy), sy))] (1.78)

The authors of [162] further propose to train an improved Wasserstein GAN [7, 48], and similarly

to [152], they add another component to the loss to ensure that generated features are discriminative,

using a classification loss instead of a regression loss. They call this extended approach f-CLSWGAN.

Several other generative approaches have been proposed. [17, 18] notably explore many such ap-

proaches, such as generative moment matching networks [91], standard conditional generative adversar-

ial networks [47, 110], denoising auto-encoders [11] and adversarial auto-encoders [97]. f-VAEGAN-D2

[164] proposes a combination of VAE and GAN, which is also applicable to few-shot learning.

1.3 Visual and semantic representations

As mentioned in Section 1.1.2, usual ZSL methods employ high-level visual features denoted x

to represent images, as well as a single semantic prototype per class denoted s. Both have a fixed

number of dimensions, which we call D for the dimension of the visual space and K for the dimension

of the semantic space. In this section, we provide an overview of the main approaches used to obtain

such representations. We also briefly present a few alternative settings were additional of different

information may be used.

1.3.1 Visual features

As mentioned earlier, in the ZSL task, images are usually represented by vectors of high-level

visual features, as opposed to raw pixels. In the early days of ZSL [75], these high-level visual repre-

sentations were obtained with “hand-crafted” visual feature extractors such as Scale Invariant Feature

Transform (SIFT) [94], Speeded Up Robust Features (SURF) [10] or Pyramid of Histograms of Orien-

tation Gradients (PHOG) [15]. Since then, the computer vision field has embraced the deep learning

revolution [83], and deep convolutional neural networks are now used for many if not most computer

vision tasks [72, 136]. These networks can be either trained from scratch for a specific task, or trained

for a source task within a source domain with the aim of being used later on a target task and a target

domain, according to a transfer learning paradigm [145].

62

1.3. VISUAL AND SEMANTIC REPRESENTATIONS

In the field of zero-shot learning, it is thus conventional to use a deep convolutional neural network

trained on a generic image classification task as a fixed feature extractor [40, 108, 161]. Examples

of deep architectures often used as feature extractors for zero-shot learning – or as a matter of fact

for other tasks [156, 145] – include AlexNet [72], VGG [136], GoogLeNet [144] or ResNet [55]. These

networks are typically trained on image classification tasks with datasets containing a large num-

ber of diverse classes, such as the ImageNet dataset [33] with the 1000 classes from the ImageNet

Large Scale Visual Recognition Challenge (ILSVRC) [132]. As a side note, most major deep learning

frameworks [113, 1] include pre-trained versions of common architectures, so that it is usually not

necessary to actually train these networks. For a given image, high-level visual features can then be

extracted from the internal representations resulting from a forward pass of the data in the network.

These features typically correspond to the penultimate activations of the network, i.e. the internal

representation just before the last fully connected layer producing activation outputs for each class.

For AlexNet and VGG, these representations correspond to the 4096-dimensional activations after the

second fully connected layers, themselves located after the convolutional layers; for GoogLeNet, these

are the 1024-dimensional activations of the pooling units. The most common visual features extractor

in recent ZSL works [5, 162, 53, 23] is now the ResNet-101 [55] architecture, in which the extracted

features are the 2048-dimensional activations of the last pooling layer.

It is of course also possible to train a deep learning architecture from scratch on images from the

ZSL dataset, provided we only use images from the seen classes [142] – and also do not use test images

from seen classes in a generalized ZSL setting, Section 1.4. Some works [92, 115] adopt a hybrid

approach and fine-tune pre-trained networks either on a classification task on images from seen classes

or in an end-to-end fashion, but this approach is not common in recent literature as it may hinder the

reproducibility of ZSL results. Other works [126, 70, 28]8 further perform variants of “10-crop”, which

consists in extracting visual features for an image cropped on its middle, lower left, upper left, lower

right and upper right parts as well as the equivalent for the horizontally-flipped image, and averaging

the resulting visual features to obtain the final visual features corresponding to the image.

Finally, it is important to mention that as evidenced in [163, 161], using neural networks pre-

trained on generic image datasets as visual feature extractors may induce a serious bias on some

8The use of 10-crop is not explicitly mentioned in [70], but the authors of [161] explain that they confirmed with the
authors of [70] the use of 5 random crops from images.

63

1.3. VISUAL AND SEMANTIC REPRESENTATIONS

datasets. Indeed, 6 of the 10 unseen test classes of the Animals with Attributes (AwA) dataset [75]

(Appendix A.1) are also classes in the ImageNet dataset used to train most standard visual feature

extractors, and similar issues are present in other datasets such as the Attributes Pascal Yahoo (aPY)

dataset [37]. As a result, these classes cannot be considered as truly unseen since some instances

have been “seen” by the visual feature extractor. It is therefore important to either select test classes

for ZSL benchmark datasets so that they are not present in ImageNet, or use different datasets

which do not induce this bias for pre-training visual feature extractors. The first solution has been

largely embraced by the community, and recent ZSL works [5, 18, 162, 23] overwhelmingly employ the

“proposed splits” from [161] as train/test splits. Previously reported results which use “standard splits”

should additionally be considered to be biased.

1.3.2 Semantic representations

In the example from Section 1.1.2, we assumed the semantic prototype sc associated with class c

consisted of attributes such as “is orange”, “has stripes” or “has hooves” and “has a long neck”. Such

prototypes can be either binary, in which case the class tiger may be represented by (1 1 0 0)⊤, or

continuous, for example in [0, 1], in which case the representation of tiger may be (0.8 0.9 0.0 0.2)⊤

to indicate among other things that a typical tiger is not fully orange, or that not all tigers are orange

as there exist white tigers.

Nonetheless, these 4-attribute examples are quite simplistic, as standard ZSL datasets such as

CUB [154] may have up to hundreds of attributes per class (Appendix A.1), and performance of usual

ZSL models may drop quickly when fewer attributes are used, as will be studied in Section 3.2.4.

However, in a large scale ZSL setting [129] with datasets such as ImageNet [33] with up to thousands

of classes (Appendix A.1), it may not be practical to manually provide hundreds of attributes for

thousands of classes. Although attribute selection methods have been proposed, they typically require

to keep at least half of the initial attributes for usual ZSL datasets [50]. In addition, for an open

generic dataset where novel classes are expected to appear over time, it may even be impossible to

define a relevant set of attributes a priori. It may therefore be preferable to use different sources of

semantic information in large scale settings.

64

1.3. VISUAL AND SEMANTIC REPRESENTATIONS

Unsupervised prototypes. It has been proposed in [129, 40] to use word embeddings [131, 102] as a

source of semantic information. Similarly to the visual feature extractors which can be trained on large

generic image datasets (Section 1.3.1), these word embeddings can be trained on large generic text

corpora such as Wikipedia. In addition, the models producing these word embeddings can be trained

in an unsupervised way, and thus require almost no human annotation effort. For example, given a

sequence of T words {w1, . . . , wT }, the skip-gram [100] architecture aims to find word representations

which enable to predict the context, i.e. the surrounding words, of a word wt in this sequence. This

can be achieved by minimizing

− 1
T

T∑︂
t=1

∑︂
−S≤i≤S

i ̸=0

log p(wt+i|wt) (1.79)

where S is the size of the context window. To obtain the word embeddings from this objective, each

unique word w is associated with an “input” vector vw and an “output” vector v′
w, and p(wi|wt) is

computed such that

p(wi|wt) =
exp(v⊤

wt
v′

wi
)∑︁

w exp(v⊤
wt

v′
w) (1.80)

The input vector representation vw can then be used as the embedding of word w.

Different approaches have additionally been proposed to address shortcomings of the (skip-gram)

Word2Vec [100, 102] method we just described. For instance, [102] proposes to use negative sampling

as well as subsampling of frequent words to speed up training and obtain better word representations.

GloVe [117] uses matrix factorization on a global word co-occurrence matrix to leverage global statis-

tics of a corpus in addition to local contexts. FastText [14] can leverage “subword” information by

computing vector representations for character n-grams instead of whole words.

As these embedding models provide a fixed-size K-dimensional representation for a given word, it

is then possible to use the embedding corresponding to a class name, for instance the word embed-

ding of “tiger”, as the class prototype. For classes whose name consists of several words, for instance

“white tiger”, the embeddings of the two words “white” and “tiger” can be averaged to obtain the

class prototype. Likewise, for classes consisting of several multi-word lemmas as is the case for the

ImageNet dataset, the word embeddings from each lemma can be averaged to obtain lemma repre-

sentations, which are then averaged to obtain class prototypes [54, 53]. Similarly to attribute-based

prototypes (and sometimes visual features), class prototypes may further be “ℓ2-normalized” to obtain

representations with unit ℓ2 norm [167].

65

1.3. VISUAL AND SEMANTIC REPRESENTATIONS

Graph-based information. Some ZSL models further make use of auxiliary information in addition to

the fixed-dimensional class prototypes s when such information is available. For instance, [129, 158, 60]

make use of the existing hierarchical relations between classes available for certain datasets such as

ImageNet (more details are provided in Appendix A.1). More specifically, [158] and [60] are based on

Graph Convolutional Networks (GCN) [31, 67], and use an adjacency matrix A ∈ RC×C defining graph

relations between the C seen and unseen classes in addition to the “base” semantic representations

S ∈ RC×K . This additional information is used by an L-layer fully connected neural network with

activation weights Hl at layer l ∈ J1, LK defined such that

Hl = σ (AHl−1Wl) (1.81)

where Wl are learned parameters and σ is a non linear activation function, and H0 = S. [158] and

[60] use derivatives of this architecture, with the objective that the rows of the last activation matrix

HL ∈ RC×D corresponding to seen classes match the weights of pre-trained linear visual classifiers.

The rows of HL corresponding to unseen classes can then be used as classifiers for these unseen

classes. On the other hand, [95] uses only relations between classes by first computing a pairwise

distance matrix D between classes using path lengths in the WordNet hierarchy as distances, and

then performing classical multidimensional scaling on D to obtain semantic prototypes as the rows of

the resulting matrix.

Importantly, it has been recently evidenced in [53] that many classes previously used as unseen test

classes in the ImageNet dataset are subcategories or supercategories of seen classes which, among other

problems affecting this benchmark, induces an important bias for ZSL evaluation. In particular, this

tends to confer an unfair advantage to methods making use of hierarchical relations between classes.

Similarly to the new “proposed splits” from [163] for AwA [75], [53] proposed to use new test classes

for the ImageNet ZSL benchmark, which do not suffer from these problems. As a consequence, large

scale results anterior to [53] should be considered to be biased.

Other methods may also use different types of additional information. For instance, [166] considers

the task of identifying an object in an image, and uses context in addition to the visual appearance

of the object and its semantic description, where context is defined as the set of objects appearing

in the same image. Bounding boxes are provided for these objects. This context enables the use of

contextual priors, based on the idea that next to a knife and a plate, an apple is more likely to appear

66

1.4. GENERALIZED ZERO-SHOT LEARNING

than a tennis ball. [98] is based on the same idea, but instead employs co-occurrence statistics of

objects appearing together in multi-labeled images.

Instead of using fixed-dimensional semantic representations, other methods employ information

which requires additional processing. For instance, [35, 89, 122, 36, 170] use detailed descriptions in

natural language, extracted from the Wikipedia pages corresponding to the classes from the CUB and

Flower datasets (Appendix A.1). Raw vector representations can be extracted using a simple bag-

of-words approach [122] or Term Frequency-Inverse Document Frequency (TF-IDF) [35, 89, 36, 170],

before being further processed by a multi-layer perceptron [89], dimensionality reduction [35, 36] or

noise reduction through the ℓ2,1 regularization [109] of a linear transformation [122]. Instead of one

prototype per class, [126] takes advantage of 10 short sentences per image, collected for the CUB

and Flower datasets, to train a character-level neural language model from scratch in an end-to-end

fashion.

1.4 Generalized zero-shot learning

As described in Section 1.1.4, in a Generalized Zero-Shot Learning (GZSL) setting, test instances

can belong to either a seen or an unseen class. As GZSL is a central aspect in later sections, especially

in Chapter 2, we provide more details on this specific setting in this section. In particular, we present

different approaches to the problem of GZSL, emphasize some problems specific to this setting, and

introduce standard metrics to measure ZSL and GZSL scores.

Approaches to extend zero-shot recognition to generalized zero-shot recognition can be divided

into roughly two categories: (1) approaches which explicitly try to identify when a sample does not

belong to a seen class, and use either a standard classifier or a ZSL method depending on the result,

and (2) approaches which use a unified framework for both seen and unseen classes.

Dealing with seen and unseen classes. In [138], the authors explicitly estimate gu(x) = P (y ∈ CU |x),

the probability that a test instance x belongs to an unseen class c ∈ CU . They propose to first

estimate the class-conditional probability density p(x|c) for all seen classes c ∈ CS . This is achieved

by assuming the projections ŝ(x) of visual features in the semantic space9 are normally distributed

9[138] actually corresponds to the CMT method from Section 1.2.2, so ŝ(x) = W2tanh(W1x) (Equation (1.43)).

67

1.4. GENERALIZED ZERO-SHOT LEARNING

around the semantic prototype sc, so that

p(x|c) = N (ŝ(x)|sc, Σc), c ∈ CS (1.82)

where Σc is assumed to be diagonal and is estimated using the training samples.

It can then be considered that an instance x does not belong to a seen class if its class-conditional

probability is below a threshold γ for all seen classes c ∈ CS :

gu(x) = 1[∀c ∈ CS , p(x|c) < γ] (1.83)

The threshold γ can be considered to be a hyper-parameter of the model.

Writing gs(x) = 1 − gu(x) the probability that x belongs to a seen class, it is also possible to

use gs(x) ∝ max
c∈CS

p(x|c) so that estimated probabilities are not binary. The authors of [138] also

propose further approaches for estimating gu(x), for example using unsupervised outlier detection

approaches [71].

Provided the compatibility f(x, sc) can be interpreted as the probability that the label of visual

instance x is c, i.e. f(x, sc) ≈ P (y = c|x), the compatibilities of seen and unseen classes can be

weighted by the estimated probabilities that x belongs to a seen or unseen class, so that

ŷ = argmax {f(x, sc)gu(x)}c∈CU ∪ {f(x, sc)(1 − gu(x))}c∈CS (1.84)

Alternatively [24] proposed to use a threshold γ (e.g. γ = 0.5) such that

ŷ =

⎧⎪⎨⎪⎩
argmax

c∈CS
f(x, sc) if gu(x) ≤ γ

argmax
c∈CU

f(x, sc) if gu(x) > γ
(1.85)

For seen classes c ∈ CS , f(x, sc) can be replaced by the output of a standard supervised classifier

trained on seen classes.

Most recent GZSL methods adopt a more direct approach [152, 162, 23], refered to as direct stacking

in [24]: the unweighted compatibility function f is used to directly estimate compatibilities of seen

and unseen classes, so that we simply have

ŷ = argmax
c∈CS∪CU

f(x, sc) (1.86)

68

1.4. GENERALIZED ZERO-SHOT LEARNING

This approach has the advantage that using a trained ZSL model in a GZSL setting is straight-

forward, as all there is to do is adding the seen class prototypes to the list of prototypes whose

compatibility with x needs to be evaluated. However, it has been empirically demonstrated that many

ZSL models suffer from a bias towards seen classes when this approach is used to evaluate a classical

ZSL model in GZSL setting [24, 163, 161]. More specifically, visual instances belonging to one of the

unseen classes tend to be classified as instances from seen classes, resulting in a lower accuracy on

samples from unseen classes than on sample from seen classes. As an example, a model trained with

the seen classes horse and fox will tend to consider that a visual instance of the unseen class zebra is

more likely a “weird” horse than a zebra when provided with the semantic prototypes of both classes.

Some experimental results highlighting this effect are provided later in Table 2.6.

Measuring ZSL and GZSL score. The most obvious metric to measure the performance of a ZSL

model is the standard accuracy, sometimes also called per sample accuracy, which is the micro-average

rate of correct predictions. Given N test instances {x1, . . . , xN } with ground-truth labels {y1, . . . , yN }

and associated predictions {ŷ1, . . . , ŷN }, both belonging to a set of test classes Cte, the per sample

accuracy is

Ap.s. = 1
N

N∑︂
n=1

1[ŷn = yn] = 1
N

∑︂
c∈Cte

Mc∑︂
m=1

1[ŷc
m = yc

m] (1.87)

where ŷc
m is the prediction corresponding to the mth test sample of class c. In a classical ZSL setting

– as opposed to a generalized ZSL setting – the test classes are all unseen classes, so that Cte = CU

(so that and yn, ŷn ∈ CU for all n). On the other hand, in a GZSL setting, Cte = C = CS ∪ CU .

Xian et al. [163] proposed to use per class accuracy to take class imbalance in certain benchmark

datasets into account. Per class accuracy is the macro-average rate of correct predictions, i.e. the

mean accuracy of the average accuracy 1
Mc

∑︁Mc
m=1 1[ŷc

m = yc
m] of each class c, each class having the

same weight regardless of its number of associated test instances Mc:

Ap.c. = 1
|Cte|

∑︂
c∈Cte

1
Mc

Mc∑︂
m=1

1[ŷc
m = yc

m] (1.88)

Per class accuracy is much more common than per sample accuracy in the recent ZSL literature

[163, 162, 152, 18, 28], so we will use A = Ap.c. as the default measure of accuracy unless otherwise

stated.

69

1.4. GENERALIZED ZERO-SHOT LEARNING

Notation Description

AU→U
Accuracy on samples from unseen classes
when candidate are unseen classes only

AS→S
Accuracy on samples from seen classes
when candidate are seen classes only

AU→C or AU
Accuracy on samples from unseen classes
when candidate are seen and unseen classes

AS→C or AS
Accuracy on samples from seen classes
when candidate are seen and unseen classes

AC→C or AS
Accuracy on samples from all classes
when candidate are from all classes

H Harmonic mean of AU→C and AS→C

Table 1.5 – Summary of the notations used for accuracies on samples from seen and unseen classes.
By default, we assume that per class accuracy is used.

However, in a GZSL setting, the accuracy alone does not always provide the full picture regarding

the performance of a model: assuming per class accuracy is used and 80% of classes are seen classes,

a perfect supervised model could achieve 80% accuracy with absolutely no ZSL abilities. This is all

the more important as many GZSL approaches suffer from a bias towards seen classes as mentioned

earlier.

To take the trade-off between performances on seen and unseen classes into account, accuracies on

both types of class, seen and unseen, are often measured separately. Inspired by [24], AU→C is defined

in [163] as the (per class) accuracy evaluated on test instances of unseen classes when candidate classes

are all classes C, seen and unseen. Similarly, AS→C is the accuracy evaluated on test instances of seen

classes when candidate classes are all classes C:

AU→C = 1
|CU |

∑︂
c∈CU

1
Mc

Mc∑︂
m=1

1[ŷc
m = yc

m] (1.89)

AS→C = 1
|CS |

∑︂
c∈CS

1
Mc

Mc∑︂
m=1

1[ŷc
m = yc

m] (1.90)

It is possible to similarly define AU→U as the accuracy evaluated on unseen classes when candidate

classes only consist in unseen classes, and AS→S as the accuracy evaluated on seen classes when

candidate classes only consist in seen classes. AU→U corresponds to the classical ZSL accuracy defined

in Equation (1.88) with Cte = CU . AS→S corresponds to what is measured in a standard supervised

learning setting. AC→C would correspond to the standard per class accuracy (Equation (1.88)) in

70

1.4. GENERALIZED ZERO-SHOT LEARNING

a GZSL setting, i.e. with Cte = CS ∪ CU . We will sometimes simply use AU and AS to refer to

respectively AU→C and AS→C . This information is summarized in Table 1.5.

AU→C and AS→C measure how well a GZSL model is performing on respectively seen and unseen

classes. [163] proposed to use the harmonic mean H as a trade-off between the two measures, to avoid

models with a very high score in one of these two sub-tasks but mediocre performance in the other.

The final performance score of a GZSL is then

H = 2 · AU · AS
AU + AS

(1.91)

This measure is the most commonly used in the recent literature [161, 162, 152, 18, 28].

It can be noted that this metric requires to keep some instances from seen classes for the testing

phase for a given ZSL benchmark dataset. For datasets where this is not convenient – for example if the

number of training samples per class is really small or if the dataset suffers from biases (Appendix A.1),

sometimes only AU→C is evaluated in order to still provide some measure of GZSL performance [53].

Alternatively, Chao et al. [24] introduced calibrated stacking, where a weight γ is introduced in

order to change the original prediction of the model based on whether the test sample belongs to a

seen or an unseen class:

ŷ = argmax
c∈C

f(x, sc) − γ1[c ∈ CS] (1.92)

This weight can either favor AU→C when γ > 0, or favor AS→C when γ < 0. [24] defined the Area

Under Seen-Unseen accuracy Curve (AUSUC) as the area under the curve of the plot with AU→C on

the x-axis and AS→C on the y-axis, when γ goes from −∞ to +∞. Similarly to the area under a

Receiver Operating Characteristic (ROC) curve [38], the AUSUC can be used as a metric to evaluate

the performance of a GZSL model. More details will be provided in Section 2.6.1

71

1.4. GENERALIZED ZERO-SHOT LEARNING

72

Chapter 2

Ranking methods and generalized zero-shot
learning

Content

2.1 Semantic margin . 75

2.2 Impact of the margin . 78

2.3 Relevance weighting . 82

2.4 Proposed model . 85

2.5 Experimental evaluation of the proposed method . 87

2.5.1 Zero-shot learning results . 90

2.5.2 Ablation study . 92

2.5.3 Generalized zero-shot learning results . 93

2.6 Addressing the seen-unseen classes gap . 95

2.6.1 Calibration . 95

2.6.2 Hyper-parameter selection . 98

2.7 Experimental evaluation of the calibration process . 101

2.7.1 Reproduction of results . 101

2.7.2 Results of the proposed approach . 104

2.8 Discussion . 107

In this chapter, we focus on identifying aspects which arguably play an important role in zero-

shot recognition, and which are not usually taken into account by existing zero-shot learning models.

We more specifically focus on triplet loss methods (detailed in Section 1.2.3), and argue that such

methods make several implicit hypotheses which may hinder their performance. We propose fairly

simple modifications to existing approaches that may enable them to reach state-of-the-art perfor-

mance, equalling or even surpassing the performance of generative models (Section 1.2.4) while being

73

more broadly applicable due to less restrictive hypotheses. We also focus on the bias benefiting the

performance of seen classes in a generalized ZSL setting (Section 1.4) at the expense of unseen classes.

We provide insights on why this bias appears and propose a simple solution resulting in important

performance gains for all models and enabling our triplet loss approach to again equal or surpass the

GZSL performance obtained with generative models.

This chapter is organized as follows: after a brief reminder on how triplet loss methods work,

Sections 2.1, 2.2 and 2.3 argue that they usually make the implicit assumptions that respectively

(1) classes are equally different, (2) the margin is an efficient regularizer, and (3) visual instances are

all relevant. They also introduce the following respective mechanisms to overcome these limitations:

(1) a flexible semantic margin, (2) a partial normalization and (3) a sample relevance weighting scheme.

Section 2.4 combines these contributions in a cohesive ZSL model, whose performance is evaluated

in Section 2.5. Section 2.5 also highlights the gap in performance between the accuracies on seen

and unseen classes in a GZSL setting. In Section 2.6, we attempt to explain why this bias exists and

propose a simple mechanism to hinder its impact, whose effectiveness is finally evaluated in Section 2.7.

Section 2.8 provides a discussion on some of the design choices made in this chapter. Throughout this

chapter, we use the same notations as in sections 1.1.2 and 1.2. Such notations are summarized in

Table 1.2. Many concepts in this chapter are illustrated with examples from the CUB dataset [154],

which is described in Appendix A.1.

74

2.1. SEMANTIC MARGIN

Figure 2.1 – t-SNE [96] visualization of 300 visual instances from the first 8 training classes of the
CUB dataset. Classes least auklet (purple) and parakeet auklet (brown) are much more similar to each
other than classes least auklet and laysan albatross (orange). The nestling from class laysan albatross
is quite dissimilar from other samples from this class.

2.1 Semantic margin

As explained earlier in Section 1.2.3, triplet loss methods are based on the intuition that each

visual sample should be “much”more compatible with the prototype corresponding to its class than to

all the others given a compatibility function f . More formally, they aim to enforce f(x, sy) ≫ f(x, sc),

with (x, y) a labeled visual sample, sy the corresponding semantic prototype and sc another prototype

(c ̸= y). This is achieved by enforcing

f(x, sy) ≥ m + f(x, sc) (2.1)

for a fixed margin m. This can be expressed with the triplet loss

Ltriplet(x, sc, sy; f) = [m + f(x, sc) − f(x, sy)]+ (2.2)

It can be noticed that the margin is not strictly necessary, as it should be enough that f(x, sy) >

f(x, sc). But similarly to SVMs, the margin plays a regularization role, as this approach is inspired

75

2.1. SEMANTIC MARGIN

by and is a generalization of the hinge loss as explained in Section 1.2.3.

A straightforward implementation of a triplet loss, such as DeViSE [40], consists in using a bilinear

compatibility function fW(x, s) = x⊤Ws and simply summing the loss from Equation (2.2) over all

combinations of training samples and prototypes:

1
N

N∑︂
n=1

∑︂
c∈CS
c̸=yn

[m + f(xn, sc) − f(xn, syn)]+ (2.3)

Several other variations of this idea [4, 3] have been detailed in the previous section. However, although

these methods have led to promising results for ZSL, we argue that they fail to consider several

important aspects of the problem due to implicit hypotheses.

The first such hypothesis is that classes are equally different, as there is no difference between any

two incorrect class assignments in the triplet loss in Equation (2.2). However, in many cases, and

particularly in fine-grained datasets comprising many classes, there may be groups of very similar

classes. Figure 2.1 illustrates such a case: two samples from classes 6 “least auklet” and 7 “parakeet

auklet” from the CUB dataset are much more difficult to tell apart than two samples from classes 6

“least auklet”and 2“laysan albatross”. These classes“least auklet”and“parakeet auklet”may be hard to

tell apart even for standard supervised models, and it may be impossible not to violate inequality 2.1.

When building the similarity-based decision model, a confusion between two nearly indistinguishable

classes should arguably not be penalized as much as a confusion between two grossly different classes.

To improve the robustness of the learned mapping between the semantic and visual spaces, we

propose to replace the fixed margin m in equations (2.1) and (2.2) by a variable margin m(c, c′)

measuring the (dis)similarity between classes c and c′. This way, for very similar classes c and c′ with

dissimilarity close to 0, it is enough that f(x, sc) > f(x, sc′), c being the class corresponding to x.

Conversely, very dissimilar classes should be easy to tell apart, and we expect f(x, sc) > M +f(x, sc′),

with M = m(c, c′) being very large.

We propose to measure this similarity in the semantic space. As attributes tend to be corre-

lated [59], we use a Mahalanobis distance to take these correlations into account. The dissimilarity

between classes i and j with respective prototypes si and sj is therefore

m(i, j) =
(︂
(si − sj)Σ−1(si − sj)

)︂ 1
2 (2.4)

76

2.1. SEMANTIC MARGIN

where Σ−1 is the inverse of the covariance matrix between attributes, which can be estimated using

the prototypes of seen classes.

The impact of using a Mahalanobis distance as opposed to a standard euclidean distance will be

measured in Section 2.5 and are available in Table 2.2.

One problem with the Mahalanobis distance is that its estimation does not scale well with the

dimension K of the semantic space, as O(K2) parameters need to be estimated. For the CUB dataset

with 312 attributes, this represents 156 × 313 parameters, which are learned using the prototypes of

only 150 seen classes. We therefore need to employ methods which enable a robust estimation of the

(inverse of) the covariance matrix. An example of such a method is the Ledoit-Wolf method [87],

which produces a regularized version of the maximum likelihood estimation of the covariance matrix.

We use the corresponding scikit-learn [116] implementation in our experiments.

We are still left with a few issues. First, the expected (mean) distance between two classes m(c, c′)

in the semantic space is arbitrary, and is not necessarily a suitable value for the margin. Second, since

the semantic space is usually high-dimensional, these distances typically have low variance, so that

distances are close to the mean. This means that the margins corresponding to two very similar and

two very dissimilar classes will not be significantly different, and therefore will not have a large impact

during the training of the model. Both of these aspects are illustrated in Figure 2.2 (left).

As a solution, we propose to rescale the distances to have a mean µM and a standard deviation

σM set by the user. We write M ∈ RK×K the matrix representing the distances between all pairs of

classes, such that Mi,j = m(i, j). We estimate the empirical mean µ̂M and standard deviation σ̂M of

these distances:

µ̂M = 1
K2

K∑︂
i=1

K∑︂
j=1

Mi,j (2.5)

σ̂M =

⌜⃓⃓⎷ 1
K2

K∑︂
i=1

K∑︂
j=1

(1 − µ̂M)2 (2.6)

We can then rescale the elements of M so that they have approximately mean µM and standard

deviation σM while still being positive:

M =
[︃M − µ̂M

σ̂M
σM + µM

]︃
+

(2.7)

77

2.2. IMPACT OF THE MARGIN

Figure 2.2 – Left : histogram of the raw semantic distances M as measured on the seen classes from
the CUB dataset, with mean distance µ̂M and standard deviation σ̂M approximately equal to 15.4
and 1.2. Right : rescaled with µM and σM set to respectively 0.5 and 0.15.

The elements of this new matrix M correspond to the final margins used between all pairs of classes:

for the two classes i and j corresponding to row i and column j of M, we use the margin m(i, j) such

that

m(i, j) = Mi,j (2.8)

We consider that µM and σM are hyperparameters of the model. An illustration of the rescaled

distances with set mean µM and standard deviation σM is shown in Figure 2.2 (right). We can note

that with σM close to 0 and µM set to 1, for example, the semantic margin is no longer variable and

the method is equivalent to DeViSE.

Illustrations of the most similar and least similar classes to classes “red-legged kittiwake” and “arc-

tic tern” from the CUB dataset are available in Figure 2.3; additional illustrations are provided in

Appendix A.3. Interestingly, some form of the hubness phenomenon can be observed, as “American

crow” and “fish crow” seem to be among the most similar classes of many classes. The most and least

similar classes otherwise appear to be fairly consistent.

Experimental results including the use of the variable semantic margin are provided in Section 2.5.

2.2 Impact of the margin

In equations (2.1) and (2.2), the margin m is supposed to act as a regularizer and reduce overfitting

on the training set. We intuitively expect that a larger value of the margin m should incentivize the

model to increase the difference f(x, sy)−f(x, sc) between compatibility of matching pair f(x, sy) and

78

2.2. IMPACT OF THE MARGIN

Figure 2.3 – Most similar and least similar classes to classes “red-legged kittiwake” (top) and “arctic
tern” (bottom) from the CUB dataset, as measured by Equation (2.4). Examples for additional classes
are provided in Appendix A.3.

79

2.2. IMPACT OF THE MARGIN

compatibility of non matching pair f(x, sc), and thus improve the robustness of the model – up to the

point where the constraint in Equation (2.1) becomes unsatisfiable. However, this is not always what

happens, particularly with dot product compatibility functions. This is what we call the assumption

that the margin is an efficient regularizer. We will discuss both theoretical and experimental aspects.

As mentioned in Section 1.2.3, the compatibility function f often takes the form of a dot product

between the projection θ(x) of a visual sample x and the projection ϕ(s) of a semantic prototype s:

f(x, s) = θ(x)⊤ϕ(s) (2.9)

For example, for models with a linear compatibility function such as DeViSE, ALE or SJE from

Section 1.2.3, we have θ(x) = W⊤x and ϕ(s) = s, which results in the bilinear compatibility function

f(x, s) = x⊤Ws from Equation (1.48). This dot product θ(x)⊤ϕ(s) can also be written

θ(x)⊤ϕ(s) = ∥θ(x)∥2 · ∥ϕ(s)∥2 · cos(α) (2.10)

where α is the angle between θ(x) and ϕ(s).

Thus, the value of the compatibility f(x, s) depends on three components: the norm ∥θ(x)∥2 of

the projected visual sample, the norm ∥ϕ(s)∥2 of the projected prototype, and the cosine cos(α) of

the angle between the projections θ(x) and ϕ(s). The cosine of the angle α is obviously bounded.

Since s is usually unit-normalized, so is ϕ(s) when ϕ is the identity. However, the norm of θ(x) is not

bounded.

In practice, this means that if we double the margin m with respect to a base model, the new model

can simply double the difference f(x, sy) − f(x, sc) in Equation (2.2) by doubling the compatibility

f(x, s) for all s, which can be achieved by simply doubling the norm ∥θ(x)∥2 of the projection θ(x).

This can result in a new model very similar to the base model despite a different value of m, where

the values of θ(x) have simply been doubled. Therefore, the actual value of the margin m has little

impact on the parameters learned by the model.

This effect can be empirically measured. The blue line (corresponding to ρ = 0) in Figure 2.4

represents the average norm of θ(x) as measured on the training samples of the CUB dataset. Triplet

loss models similar to DeViSE are trained on the dataset, with values of the margin m ranging from

0.2 to 2.0. It can be seen that the average norm of the projected visual features does indeed increase

significantly with m.

80

2.2. IMPACT OF THE MARGIN

Figure 2.4 – Average norm of the projected visual features ∥θ(x)∥2 with respect to the margin M as
measured on the CUB dataset. The value ρ = 0 corresponds to no (partial) normalization.

This makes the actual value of the margin m of little relevance, and thus reduces the regularization

provided by the margin.

Several solutions can be considered to address this problem: (1) Regularize the parameters of θ(·)

with an ℓ2 penalty to mitigate the scaling of the norm of θ(x) with m; or (2) Fully normalize θ(x)

so that it always has unit norm. However, none of these solutions led to satisfying results in our

preliminary experiments. In particular, completely removing the constraint of θ(x) having consistent

norms – when θ(x) is fully normalized – led to severe overfitting on the some datasets.

We thus a introduce a partial normalization function Ψ, taking a vector v as input and parame-

terized by a scalar ρ ∈ [0, 1] such that

Ψρ(v) = 1
ρ (∥v∥2 − 1) + 1 · v (2.11)

A value of ρ = 0 means no transformation is applied to v, and a value of ρ = 1 means that v is fully

normalized to have unit euclidean norm. Values between 0 and 1 have intermediate results.

The value of ρ is then considered to be a hyperparameter of the model, which controls how much

we allow the model to scale the projections of visual samples to deal with a large margin. Figure 2.4

shows the effect of different values of ρ regarding the scaling of the projected norm of θ(x) with respect

to the margin m as measured on the CUB dataset1. It is important to realize that when ρ ̸= 1, θ(x)

1It is interesting to observe that on this specific dataset, cross-validation leads to selecting values of ρ close to 1, and
results obtained with fully normalized projections are unsurprisingly very close. The results are not as pronounced on
other datasets such as AwA2 [161].

81

2.3. RELEVANCE WEIGHTING

can still be scaled up to compensate for the effect of the partial normalization, which therefore needs

to be combined with a regularization on θ(x) – e.g. an ℓ1 or ℓ2 penalty – to be fully effective.

2.3 Relevance weighting

The third assumption made by triplet loss methods, and more broadly by ZSL methods, is that all

training samples are relevant. This means that all the samples from seen classes are considered equally

representative when building the model. However, as illustrated in Figure 2.1, some samples can be

quite different from most samples from their class, sometimes to the point of being nearly impossible

to correctly classify even in a standard supervised learning setting. This can have an adverse effect

during training if these atypical samples contribute a lot to the training loss, encouraging the model

to focus specifically on these samples – possibly at the expense of more typical samples.

We propose to assign a score to each training sample to quantify its “representativeness” with

respect to its class, and to weigh the loss associated with each training sample using this score. This

way, a mistake regarding a sample deemed typical should be way more penalized than a mistake

regarding an outlier during training, which should improve the robustness of the learned multi-modal

relations.

For each class c, we compute the mean visual representation
∗xc. For each sample xc

m belonging to

this class, we then compute the distance uc
m to the mean visual representation of class c in the visual

space.

∗xc = 1
Mc

Mc∑︂
m=1

xc
m (2.12)

uc
m = ∥xc

m − ∗xc∥2 (2.13)

Provided the visual features are suitable for these distances to be meaningful, this provides a first

estimation of how different an image is from the other images in the same class.

However, similarly to the semantic distances in Section 2.1, the scale of these distances is somehow

arbitrary. In particular, this may be problematic when classes have different intra-class variance:

classes whose instances are on average farther away from the center than other classes will be assigned

82

2.3. RELEVANCE WEIGHTING

smaller weights, and will contribute less to the training loss.

We therefore normalize these distances so that they are roughly on the same scale regardless of the

inter-class variance. We compute the empirical mean µc and standard deviation σc of the distances

from Equation (2.13) for each class c, and set the distances uc
m so that they have zero mean and unit

variance for all classes.

µc = 1
Mc

∑︂
m

uc
m (2.14)

σc =
√︄

1
Mc

∑︂
m

(uc
m − µc)2 : (2.15)

uc
m = (uc

m − µc)/σc (2.16)

We finally define the relevance weights vc
m based on the rescaled distances uc

m so that larger weights

mean “more relevant” samples and such that they belong to the interval [0, 1]:

vc
m = 1 − Φ (uc

m) (2.17)

where Φ(·) is the cumulative density function of the normal distribution2. This way, instances which

are very far away from the centroid of their class have a weight close to 0, and instances very close to

the centroid have a weight close to 1.

Although this is not made explicit here, there is obviously a one-to-one correspondence between

the nth sample xn of the whole dataset, with label yn, and the mth sample xyn
m of class yn for some m.

The weight vyn
m associated with this xyn

m is thus also the weight associated with xn. We will simply

write vn to refer to the relevance weight corresponding to the nth instance xn.

The distribution of all the weights vc
m obtained with Equation (2.17) for the class“laysan albatross”

from the CUB dataset is illustrated in Figure 2.5. Illustrations of the most similar and least relevant

instances for classes “red-legged kittiwake” and “arctic tern” from the CUB dataset are available in

Figure 2.6; additional illustrations are provided in Appendix A.3.

It is important to note that while this relevance weighting scheme can improve the overall robust-

ness of the model (see experiments in Section 2.5) by relating the impact of each training sample to its

2This choice is motivated by the fact that the distribution of the weights roughly has a Gaussian shape but is somewhat
arbitrary, and very similar results can be obtained with a sigmoid function.

83

2.3. RELEVANCE WEIGHTING

Figure 2.5 – Histogram (blue) of the distances to the class center
∗xc (Equation (2.12)) and associated

weights (orange) from Equation (2.17) for visual samples from class “laysan albatross” from the CUB
dataset. The weights of the nestling and adult samples represented in Figure 2.1 are respectively 0.02
and 0.78.

Figure 2.6 – Most and least representative samples from classes “red-legged kittiwake” (top) and “arctic
tern”(bottom) from the CUB dataset, as measured by Equation (2.17). Examples for additional classes
are provided in Appendix A.3.

84

2.4. PROPOSED MODEL

representativeness of the class, it also makes atypical samples harder to recognize. With the example of

the CUB dataset, nestlings are treated as outliers because they are significantly under-represented, but

the corresponding images still belong to their respective species. Being unable to recognize atypical

samples may be an issue for some practical cases. A way to circumvent the problem could be to define

sub-classes and process each of them separately, provided that each is sufficiently well represented in

the training set. For example, on the seen classes, sub-classes could be found by applying clustering

algorithms to the visual features. However, usual ZSL benchmarks such as CUB often do not have

enough samples of such sub-categories for these types of approaches to be meaningful – at most a

single instance of a nestling is present for most classes in CUB as illustrated in Table 2.6. As a result,

we do not explore these approaches.

2.4 Proposed model

We can now bring together the ideas from sections 2.1, 2.2 and 2.3 into a single ZSL triplet loss

model which makes use of a flexible semantic margin, partial normalization and relevance weighting.

The model consists in learning projections θ and ϕ which respectively map visual samples x

and semantic prototypes s to a common space, such that the compatibility between x and s can be

evaluated in this space with a dot product. Partial normalization Ψρ (Equation (2.11)) is applied

to the resulting projections θ(x) and ϕ(s) before performing the dot product. We therefore have a

compatibility function f such that

fθ,ϕ(xn, sc) = Ψρ(θ(xn))⊤Ψρ(ϕ(sc)) (2.18)

Using m(c, c′) from Equation (2.8) as the flexible semantic margin between two classes c and c′,

for a triplet (xn, syn , sc), c ̸= yn, the triplet loss now takes the form

Ltriplet(xn, syn , sc; fθ,ϕ) = [m(yn, c) + fθ,ϕ(xn, sc) − fθ,ϕ(xn, syn)]+ (2.19)

We adopt the simplest approach to apply this triplet loss to the training set: it consists in simply

summing this triplet loss over all training triplets (xn, syn , sc), c ̸= yn, in a setting similar to DeViSE.

The loss from each triplet is further weighted by the weight vn from Equation (2.17). The resulting

85

2.4. PROPOSED MODEL

final loss function is:

1
N

N∑︂
n=1

⎛⎜⎜⎝vn

∑︂
c∈CS
c ̸=yn

Ltriplet(xn, syn , sc; fθ,ϕ)

⎞⎟⎟⎠+ λΩ[fθ,ϕ] (2.20)

where λ is a hyperparameter controlling the weight of the regularization Ω. Ω[fθ,ϕ] is defined as the

sum of the normalized ℓ1 norms3 of the respective parameters θ1, . . . , θP and ϕ1, . . . , ϕQ of projections

θ and ϕ:

Ω[fθ,ϕ] = 1
P

P∑︂
p=1

|θp| + 1
Q

Q∑︂
q=1

|ϕq| (2.21)

In our implementation, we choose simple linear projections for θ and ϕ. We actually consider two

variants of the model: in the first one, we only project the visual features x onto the semantic space,

so that

θ(x) = Wθ · x (2.22)

ϕ(s) = s (2.23)

with Wθ ∈ RK×D. This corresponds to the setting from DeViSE, save the partial normalization (and

relevance weight and semantic margin).

In the second variant, we linearly project both x and s onto a common space with the same

dimension K as the semantic space, so that

θ(x) = Wθ · x (2.24)

ϕ(s) = Wϕ · s (2.25)

with Wθ ∈ RK×D and Wϕ ∈ RK×K . Both variants θ + I (equations (2.22) and (2.23)) and θ + ϕ

(equations (2.24) and (2.25)) can either be evaluated separately, or we can consider that the variant

itself is a hyperparameter and choose the variant with the best score on the validation set.

To simplify the model and since semantic prototypes are frequently ℓ2-normalized [24, 22], we

choose to always fully normalize the projection of sc, so that its final projection is Ψ1(ϕ(sc)) = ϕ(sc)
∥ϕ(sc)∥2

(and sc is still normalized when ϕ(s) = s).
3Similarly to [22], an ℓ1 regularization can introduce some sparsity so that only a subset of attributes is used for

instance.

86

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

We employ the following protocol to select the hyper-parameters µM and σM (Equation (2.7)), ρ

(Equation (2.11)), and λ (Equation (2.20)): for a given variant, whether θ + I (equations (2.22) and

(2.23)) or θ + ϕ (equations (2.24) and (2.25)), we first set σM and ρ to 0, and µM to 1, so that the

setting is approximately the one from DeViSE. We determine the best λ using the validation set(s).

We then divide this value by a factor of 10 in order to not over-constrain the model, and use this new

value when jointly selecting ρ and µM. We select σM while keeping the other hyper-parameters fixed.

Finally, we explore values in the neighborhood of the selected quadruplet (µM, σM, ρ, λ). We retain

the variant of the model producing the best results on the validation set.

Although this framework does introduce a number of hyper-parameters which may seen cumber-

some to select, the whole framework can be seen as being simply a generalization of DeViSE or other

simple triplet loss models, and components can be easily activated or deactivated depending on the

specificities of the dataset on which it is applied. We have already seen that setting σM close to 0

and µM close to 1 removes the effect of the flexible semantic margin, which may not be needed if

the dataset only consist of fairly dissimilar classes. Similarly, setting ρ = 0 deactivates the partial

normalization. In some cases, it may also be possible to set ρ = 1, in which case the regularization Ω

may not be needed. Setting vn = 1 for all n in Equation (2.20) deactivates relevance weighting. Using

the θ + I variant and further fixing λ = 0 in Equation (2.20) yields a model identical to DeViSE.

One advantage of this approach is that whatever the training setting, we simply learn a (bi)linear

compatibility function. Once the model is trained, making predictions is as easy as for any model with

a direct compatibility function: given a test sample x, we predict

ŷ = argmax
c∈CU

fθ,ϕ(x, sc) (2.26)

using the formulation of fθ,ϕ(x, sc) from Equation (2.18).

2.5 Experimental evaluation of the proposed method

We now evaluate the effectiveness of the proposed approach. The experimental protocol, detailed

below, is essentially the same as in [161], which provides a fair comparison of many ZSL models under

similar experimental settings and has become a reference benchmark in recent literature [161, 162, 152,

18, 28]. In particular, we use the same metrics to measure performance: the per-class accuracy Ap.c.

or AU→U for the ZSL setting, and the harmonic mean H of AU→C and AS→C for the GZSL setting, as

87

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

detailed in Section 1.4. We compare our results to those reported in [161]. We further independently

reproduce some of these results later in Section 2.7. We also report results obtained with additional

relevant ZSL models as detailed below.

Datasets and splits. Similarly to [161], we perform evaluation on three standard ZSL benchmarks4:

the Caltech UCSD Birds 200-2011 dataset (CUB) [154], the SUN Attribute dataset (SUN) [114])

and the Animals with Attributes 2 dataset (AwA2) [161]. CUN and SUN are fine-grained datasets

representing 200 bird species for the former and 717 scenes for the latter, while AwA2 is a more coarse-

grained dataset of 50 animal species. More details on each dataset are provided in Appendix A.1.

We use the “Proposed Splits” introduced in [163] to avoid biases resulting from the presence of

unseen classes in the ImageNet [33] dataset used to pre-train the visual features extractor, as detailed

in Section 1.3.1. Also similarly to [163], we randomly remove 20% of the images from seen classes,

which we use as unseen samples from seen classes during testing in the GZSL setting.

We select the hyper-parameters with 3-fold cross-validation on the training sets for CUB and SUN,

by using some of the seen classes as unseen validation classes as illustrated later in Figure 2.8 (top).

More details on cross-validation for (G)ZSL will be provided in Section 2.6.2. For AwA2, the selection

of the validation set is more difficult, as among the 40 training classes only 8 are not in ImageNet.

As a consequence, randomly selected cross-validation folds would contain few such classes. This may

introduce significant differences between hyper-parameter values that are optimal for cross-validation

folds (as they would mostly contain ImageNet classes) and those optimal for truly unseen classes. We

therefore use a single validation split containing all 8 classes that are not in ImageNet, and perform

each evaluation of a set of hyper-parameters with 3 different random initializations of parameters in

order to improve the robustness of the estimate.

4In [161], in addition to CUB, SUN and AwA2, experiments are also conducted on the Attributes Pascal and Yahoo
dataset (aPY) [37] and on the Animal with Attributes dataset (AwA1) [75]. However, AwA1 is not available anymore
due to copyright issues, so we could not measure the performance of our approach on this dataset. Instead, AwA2 is
used as a replacement. As for aPY, as detailed in Appendix A.1, this dataset suffers from very large class imbalance and
biases, so we choose not to use it since evaluation on this dataset is not common in recent literature [162, 152, 164, 23].
[161] also conducts large-scale experiments on the ImageNet [33] dataset. However, results in the setting of [161] cannot
be fairly compared since [53] demonstrated that this setting induces a large bias. Large scale ZSL will be discussed in
depth in Chapter 3.

88

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

Visual and semantic features. We employ a ResNet-101 [55] network pre-trained on ImageNet as

a deep visual feature extractor in order to have results comparable with the rest of the state-of-

the-art, and in particular with [163] in which similar visual features are used. Keeping the activation

weights of the last pooling layer gives us a 2048-dimensional visual feature representation as detailed in

Section 1.3.1. Because we need a robust representation to compute distances between visual samples,

we apply“10-crop”on the original images (Section 1.3.1), i.e. each 256 × 256 image is cropped into ten

224 × 224 images: one in each corner and one in the center for both the original image and its y-axis

symmetry. The visual features of the resulting images are then averaged to obtain a 2048-dimensional

vector. The visual vectors are finally normalized so that each vector of visual features x has unit ℓ2

norm.

We employ the standard attributes provided with each ZSL dataset, which we normalize to obtain

class prototypes having unit ℓ2 norm.

Zero-shot learning models. We compare our approach to a number of ZSL approaches. We report

results for the most relevant and best performing models from [161]: we include results for DeViSE [40],

SJE [4] and ALE [2] as similarly to our approach, they are models based on a triplet loss and a bi-

linear compatibility function. We also include SynC [22] and GFZSL [153], which are frequently

the best performing models in [161]. To have models based on different approaches, we also include

results for the ridge regression approaches ESZSL [130] and SAE [70] from [161], and independently

implement the RidgeV→Sand RidgeS→Vmodels (Section 1.2.2). Finally, we include results reported in

other relevant works, for instance the PSR [5] approach, which considers how close classes are in the

attribute space by explicitly including this information in the objective function to learn a mapping

from the attribute space to the visual space.

We also include results from a few state-of-the art generative approaches such as SE-GZSL [152],

f-GAN [162] and GMMM-ZSL [17, 18]. However, as mentioned in Section 1.4, the generative models

trained in a class-inductive setting usually require additional training or processing steps to generate

samples and train a supervised classifier given the prototypes of unseen classes, so integrating a single

class into the model is not as straightforward as with other approaches. As a result, these models are

often considered to operate in a class-transductive setting [157]. This different underlying hypothesis

is more restrictive regarding the possible applications of the model. For this reason, we choose to

89

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

separate generative models from non generative models in results reported in tables 2.1 and 2.3. For f-

GAN, we report the results with the f-CLSWGAN version with softmax as they are the best reported

results in [162]. We do not report results for instance-transductive models as they rely on a quite

different set of assumptions.

The model described in Section 2.4 is implemented5 in PyTorch [113]. We report results for both

variants θ + I (equations (2.22) and (2.23)) and θ + ϕ (equations (2.24) and (2.25)), as well as results

for the “full” model where the choice of the variant is considered to be a hyper-parameter. We train

our models for 50 epochs using the ADAM optimizer [65], with parameters β1 = 0.9, β2 = 0.999 and

a learning rate of 0.001. All reported results for our models are the mean result over 10 runs of the

model, with a different random initialization of the parameters each time. The importance of this step

will be highlighted later in Section 2.7.1.

2.5.1 Zero-shot learning results

Table 2.1 reports results in a standard ZSL setting, where test samples belong to unseen classes

and candidate classes consist of unseen classes only so that the reported accuracy is AU→U .

Both variants θ + I and θ + ϕ outperform all non-generative models on two out of three datasets,

and the best variant θ+I for AwA2 also outperforms all non-generative models. On all three datasets,

the variant with the best validation score corresponds to the best final result, so model selection is quite

robust. We therefore also include the result of the final model, where the choice of variant is considered

to be a hyper-parameter. Interestingly, the final model also outperforms generative approaches on two

datasets and is the highest performing model on average6.

The fact that our model is not performing as well on AwA2 as on CUB and SUN compared to

the other models is not really surprising: since this dataset is not a fine-grained dataset with a large

number of classes, some of the proposed components such as the flexible semantic margin are not as

relevant as on CUB or SUN.

90

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

Method CUB SUN AwA2 Average6

RidgeV→S 41.8 46.7 49.7 46.1
RidgeS→V 53.5 61.5 68.9 61.3
ESZSL* [130] 53.9 54.5 58.6 55.6
SAE* [70] 33.3 40.3 54.1 42.6
DeViSE* [40] 52.0 56.5 59.7 56.0
SJE* [4] 53.9 53.9 61.9 56.6
ALE* [3] 54.9 58.1 62.5 58.5
SynCo-vs-o* [22] 55.6 56.3 46.6 52.8
PSR [5] 56.0 61.4 63.8 60.4

Ours, θ + I 61.4 62.2 67.9 63.8
Ours, θ + ϕ 63.8 63.5 61.5 62.9

Ours 63.8 63.5 67.9 65.1

Generative models†

GFZSL*† [153] 49.3 60.6 63.8 57.9
SE-GZSL† [152] 59.6 63.4 69.2 64.0
f-GAN† [162] 57.3 60.8 68.2 62.1
GMMM-ZSL† [18] 59.4 60.1 69.9 63.1

Table 2.1 – Per class accuracy AU→U measured for different ZSL models on 3 datasets. Results
reported in [161] are marked with * next to the model’s name. Other results are reported from their
respective cited articles, except for RidgeV→S and RidgeV→S which were independently implemented.
The generative models, marked with †, rely on stronger hypotheses as explained in Section 1.2.4. Our
results are averaged over 10 runs.

Variant
Flexible
margin

(︂Mahalanobis
distance

)︂ Partial
normalization

Relevance
weighting

Score

θ + ϕ

✓ ✓ ✓ 63.8
✓ - ✓ ✓ 61.7

- ✓ ✓ 61.8
✓ - ✓ 57.6
✓ ✓ - 61.7
- ✓ - 61.0
- - - 56.6

θ + I

✓ ✓ ✓ 61.3
- ✓ ✓ 61.1
✓ - ✓ 55.3
✓ ✓ - 60.0
- ✓ - 60.1
- - - 55.0

Table 2.2 – Ablation study on the CUB dataset for the two variants of our model θ + ϕ and θ + I.
Results are averaged over 10 runs.

91

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

2.5.2 Ablation study

We perform an ablation study in order to evaluate the impact of the individual components of our

proposed approach. We successively deactivate the flexible semantic margin by setting σM to 0 in

Equation (2.7) so that m(c, c′) = µM; the partial normalization by setting ρ to 0 in Equation (2.11)

so that Ψρ(v) = v; and the relevance weighting scheme by setting all the weights vn to 1 in Equa-

tion (2.20) so that all samples have the same weight. We also evaluate the impact of taking attribute

correlations into account to estimate class similarities by setting Σ−1 to the identity matrix IK in the

Mahalanobis distance in Equation (2.4), so that semantic distances correspond to euclidean distances.

Active hyper-parameters are re-evaluated on the validation set. Each reported result is the average

result over 10 runs with different random initializations to avoid reporting artifacts from random noise.

Table 2.2 shows the results on the CUB dataset for both variants θ + ϕ and θ + I. Partial

normalization has the largest impact in both cases: for the θ+ϕ, deactivating the partial normalization

only makes the score drop from 63.8 to 57.6. Conversely, activating the partial normalization only

increases the score from 56.6 to 61.0. Similar results can be observed with the θ + I variant. The

flexible semantic margin and relevance weighting also significantly increase the final score. The three

components work well together, as their combined impact is better than the sum of their marginal

impacts, particularly in the θ + ϕ variant.

As explained in Section 2.4, deactivating all three components and using the θ + I variant yields

a model very close to DeViSE. The bottom line in Table 2.2 corresponds to this setting and has

comparable results. The slight increase in performance compared to the result reported in [161] (55.0

compared to 52.0 in [161] as reported in Table 2.1) may be attributed to the fact that the fixed-

value µM of the margin is still considered to be a hyper-parameter in our approach, and may provide

additional regularization. Our reproduction of DeViSE in Table 2.5 of Section 2.7.1 in which the size

of the margin is not a hyperparameter produces a closer score of 52.6.

92

2.5. EXPERIMENTAL EVALUATION OF THE PROPOSED METHOD

Method
CUB SUN AwA2 H̄6

AU AS H AU AS H AU AS H
Non generative approaches

RidgeV→S 11.0 52.3 18.2 12.4 23.5 16.3 4.4 86.8 8.3 14.3
RidgeS→V 23.7 52.8 32.7 19.6 32.5 24.4 30.3 82.0 44.3 33.7
ESZSL* [130] 12.6 63.8 21.0 11.0 27.9 15.8 5.9 77.8 11.0 15.9
SAE* [70] 7.8 54.0 13.6 8.8 18.0 11.8 1.1 82.2 2.2 9.2
DeViSE* [40] 23.8 53.0 32.8 16.9 27.4 20.9 17.1 74.7 27.8 27.2
SJE* [4] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4 22.6
ALE* [3] 23.7 62.8 34.4 21.8 33.1 26.3 14.0 81.8 23.9 28.2
SynC* [22] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0 17.0
PSR [5] 24.6 54.3 33.9 20.8 37.2 26.7 20.7 73.8 32.3 31.0

Ours, θ + I 30.4 64.0 41.2 21.3 34.1 26.2 17.6 79.8 28.9 32.1
Ours, θ + ϕ 26.0 65.8 37.3 22.0 33.9 26.7 14.8 78.0 24.9 29.6

Ours 30.4 64.0 41.2 22.0 33.9 26.7 17.6 79.8 28.9 32.3

Generative approaches†

GFZSL*† [153] 0.0 45.7 0.0 0.0 39.6 0.0 2.5 80.1 4.8 1.6
SE-GZSL† [152] 41.5 53.3 46.7 40.9 30.5 34.9 58.3 68.1 62.8 48.1
f-GAN† [162] 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 49.6
GMMM-ZSL† [18] 49.1 55.9 52.3 39.7 37.7 38.7 46.3 77.3 57.3 49.4

Table 2.3 – GZSL results for different ZSL models on 3 datasets. Results reported in [161] are marked
with * next to the model’s name. Other results are reported from their respective cited articles,
except for RidgeV→S and RidgeV→S which were independently implemented. The generative models,
marked with †, rely on stronger hypotheses as explained in Section 1.2.4. Our results are averaged
over 10 runs.

2.5.3 Generalized zero-shot learning results

Table 2.3 reports results in a GZSL setting, where test samples (and therefore candidate classes)

can belong to either seen or unseen classes. We measure AU→C and AS→C as well as their harmonic

mean H (Section 1.4).

As observed in [163] and [24], and mentioned in Section 1.4, for non generative approaches there

is usually a strong imbalance in favor of the seen classes, as AS→C is much higher than AU→C , which

penalizes the final score H. As a result, the best GZSL models are typically those with the best AU→C ,

which happens to be the case for our model on two out of three datasets. We will implement a simple

solution to reduce this seen-unseen class imbalance and thus improve the GZSL score for all models

5Our demo code is available at https://github.com/yannick-lc/iccv2019-triplet-loss.
6Reporting the score averaged over several datasets is debatable, but this enables to highlight the fact that the model

outperforms other methods even if it does not obtain the best score on all datasets.

93

https://github.com/yannick-lc/iccv2019-triplet-loss

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

Figure 2.7 – Seen-Unseen Accuracy Curve for the RidgeS→V model evaluated on the CUB dataset.
When γ=0, we obtain an AU→C of 23.7 and an AS→C of 52.8, resulting in an H of 32.7 as in Table 2.3.
When γ = +∞, only unseen classes can be predicted and AU→C is maximal and equal to 53.5, which
corresponds to the ZSL score AU→U from Table 2.1. When γ = −∞, only seen classes can be predicted
and AS→C is maximal. The best possible trade-off between the two occurs when both AU→C and AS→C
are approximately equal to 43.4, resulting in a maximum theoretical H of 43.4. The AUSUC is the
area under the curve.

in Section 2.6.

On the other hand, generative models typically suffer much less from performance imbalance

between seen and unseen classes, as generated samples from unseen classes are most often used to train

standard supervised classifiers alongside samples from seen classes. One notable exception is GFZSL,

which does not train a standard classifier but instead uses the estimated distributions of unseen classes

in the visual space to take a maximum likelihood approach for prediction (Section 1.2.4). This may

explain the poor performance of GFZSL in a GZSL setting.

94

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

2.6 Addressing the seen-unseen classes gap

2.6.1 Calibration

We now propose a simple process to address the gap in performance between seen and unseen

classes in a GZSL setting evidenced in Table 2.3. This process is based on the idea that a small

degradation on AU→C could result in a large improvement on AS→C .

As mentioned in Section 1.4, [24] proposed a simple mechanism, called calibrated stacking, in which

a weight γ is introduced to constrain the model to predict unseen classes more often when γ > 0, or

seen classes more often when γ < 0:

ŷ = argmax
c∈C

f(x, sc) − γ1[c ∈ CS] (2.27)

However, in [24], no specific value is attributed to γ. Instead, all possible values7 of γ from −∞

to +∞ are used to estimate the impact on AU and AS . When γ = −∞ (or rather, when γ is negative

and its absolute value very large), the model can only predict seen classes; as a result AS is maximal

and AU is equal to 0, as illustrated in Figure 2.7. Similarly, when γ = +∞, the model can only predict

unseen classes: AU is maximal and AS is 0. All values in between correspond to different trade-offs

between AU and AS , with γ = 0 corresponding to the “default” trade-off. All the values of γ are

used to draw a parametric plot with the value of AU on the x-axis and the value of AS on the y-axis

(Figure 2.7). The area under this curve, the Area Under Seen-Unseen Accuracy Curve or AUSUC,

can be used to measure the performance of the model similarly to the area under a Receiver Operating

Characteristic curve [38].

It is important to emphasize that this process is applied a posteriori to an already trained ZSL

model in order to evaluate its performance. In particular, the impact of γ is measured on the test set.

As a result, this process is not directly applicable to balance the performance of the model between

seen and unseen classes.

By contrast, we propose to employ a similar process, i.e. a weight γ used to adjust the estimated

compatibility depending on the nature of each prototype sc, in order to balance AU and AS without

7In practice, it is not necessary (nor feasible) to test all possible values. It is sufficient to have a largest value large
enough to classify all test samples as unseen classes, and a smallest value small enough to classify all test samples as
seen classes.

95

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

Figure 2.8 – Training-validation-testing splits in different settings. Each column represents a class,
and each small rectangle a sample of this class (classes are represented as balanced in this figure, even
though this is not necessarily the case). Top: standard ML split, with respect to samples. Middle:
“classical” ZSL split, with respect to classes. Bottom: proposed GZSL split.

having access to the test set. We call this process the calibration process. This requires to select a

good value for γ using the training set only. This is achieved with a cross-validation specific to the

GZSL setting, as we are about to describe.

In a standard supervised machine learning setting, the training set is typically further divided into

a “true” training set, used to learn the parameters w of the model, and a validation set, employed

to select the best hyper-parameter(s) λ of the model – in some cases, k-fold cross-validation is used

so there is not a single validation set, but this distinction is not important here and the proposed

approach can easily be extended to this setting. In a multi-class classification setting with enough

samples per class, there are usually samples from all classes in all splits. This corresponds to the top

part in Figure 2.8.

On the other hand, in a ZSL setting, the training / validation / testing split is done with respect to

the classes as opposed to the samples: a set of classes is used for training, a disjoint set for validation,

and a final set disjoint from the first two is employed for testing. This corresponds to the middle part

in Figure 2.8.

96

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

In GZSL, a fraction (typically 20% [163]) of the samples from the seen classes (classes in the

training or validations sets) is not used for training or validation and is kept for the testing phase in

order to evaluate AS . We refer to this set as the seen test set. We emphasize that here seen simply

means that the samples belong to seen classes, and not that these specific instances have been used

during training or previously seen by the model.

In order to be able to cross-validate hyper-parameters in a GZSL setting, we keep an additional

20% of the remaining training set from being used in training, and we use these samples as samples

from seen classes during validation. We refer to this set as the seen validation set. This way, it is

possible to evaluate the impact of hyper-parameters on both AU and AS on the validation set(s),

without using any sample from the seen and unseen test sets. All the different sets and splits are

illustrated in Figure 2.8.

It is now possible to determine the optimal value of γ in Equation (2.27) with the following process.

(1) The dataset is split as explained previously and as illustrated by the bottom part of Figure 2.8.

A standard ZSL model is trained using the samples in the seen train set. (2) Its ZSL accuracy AU→U

can be evaluated on the unseen validation set, so that hyper-parameters can be selected accordingly.

(3) The unseen validation set can also be employed to measure AU→C ; on the other hand, the seen

validation set can be used to measure AS→C . We can then test different values of γ and measure their

impact on AU and AS . We emphasize that no retraining of the model is required, as γ only affects the

prediction phase of a trained model (Equation (2.27)). The optimal value of γ can finally be selected

so as to maximize the harmonic mean H of AU and AS , or any other relevant GZSL metric.

(4) The ZSL model is subsequently retrained using the seen train set, seen validation set and

unseen validation set as the new training set. (5) The class compatibilities f(xn, sc) are evaluated

for all testing samples xn, in the unseen test set as well as the seen test set, with respect to all

class prototypes sc. (6) For class prototypes sc in seen classes c ∈ CS , the constant value γ selected

previously is subtracted from the corresponding compatibilities in accordance with Equation (2.27) to

predict ŷ. (7) AU and AS can finally be measured on respectively the unseen test set and the seen

test set to obtain the final score H.

The effectiveness of this selected γ to reduce the imbalance between AU and AS will be evaluated

in Section 2.7.

97

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

Figure 2.9 – Illustration of how the regularization parameter λ of the RidgeS→V model affects the
accuracies on samples from seen and unseen classes AS→S (blue) and AU→U (red), as measured on the
test sets of CUB (left) and AwA2 (right). The optimal value for λ is not the same in a ZSL setting,
where performance is measured with AU→U (red vertical dotted line), and in a GZSL setting, where
performance is measured by the harmonic mean H of AU→C and AS→C (black vertical dotted line).

2.6.2 Hyper-parameter selection

In the usual direct stacking approach to GZSL (see Section 1.4), the hyper-parameters of the model

are typically selected with a train / validation split similar to the middle one in Figure 2.8, before

evaluating the model in a GZSL setting [24, 163]. We argue that hyper-parameters selected with this

process may be suitable for the classical ZSL task but are not necessarily adapted to the GZSL task.

We provide empirical evidence and theoretical insights to justify this view.

Figure 2.9 shows AU→U (red) and AS→S (blue) as a function of λ, the hyperparameter for a

regularized linear model RidgeV→S as described in equations (1.24) and (1.33), measured on a ZSL

validation split for the datasets CUB (left) and AwA2 (right). In this setting, a larger value of λ

means a stronger regularization. In both datasets, there is a value of λ that maximizes the ZSL score

AU→U , indicated by the red dotted vertical line. We call this value λ∗
ZSL. λ∗

ZSL seems to correspond to

a local (or even a global) maximum. On the other hand, the overall tendency for AS→S is to decrease

as λ increases. This tendency is not a concern for the ZSL task, since we only consider samples from

unseen classes. However, for the GZSL task, we want the best trade-off between AU→C and AS→C as

measured by their harmonic mean H.

Since the (red) curve for AU→U seems much flatter around λ∗
ZSL than the (blue) curve for AS→S ,

we can expect that a small decrease in λ will increase AS→S more than it will decrease AU→U . Since

98

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

Figure 2.10 – Left: Illustration of the bias-variance decomposition. Right: Mean squared error of pre-
dicted attributes (averaged over attributes and samples) as a function of the regularization parameter
λ with the RidgeS→V model on the validation set of the AwA2 dataset.

AU→U and AS→S are upper bounds of AU→C and AS→C (with equality only if we are able to perfectly

distinguish samples from seen and unseen classes), we can expect a similar result on AU→C and AS→C ,

and thus an increase of their harmonic mean H. The actual gains on the GZSL task obtained by

decreasing λ compared to λ∗
ZSL will be quantified in Section 2.7.

The reason why λ affects AU→U and AS→S in this way can be at least partly explained with

the bias-variance decomposition. For a regression task, we generally assume that we are given a

dataset D = ({x1, . . . , xN }, {t1, . . . , tN }), consisting of samples (xn, tn) independently drawn from a

joint distribution p(x, t), such that p(t|x) = N (t|h(x), σ2), where h is the true dependence function.

For a prediction function ĥD estimated from D we can then decompose the expected squared error

ED,x,t[(t − ĥD(x))2] on a new pair (x, t) drawn from the same distribution as:

ED,x,t[(t − ĥD(x))2] = σ2 +
(︂
ED,x[h(x) − ĥD(x)]

)︂2
+ varD,x[ĥD(x)] (2.28)

where the first term is the intrinsic noise of the distribution, the second is the (squared) bias of the pre-

dictor ĥD and the third is the variance in the estimation of the predictor [12]. It can be shown [151]

that for ridge regression the bias increases and the variance decreases with the regularization (hy-

per)parameter λ, as illustrated in Figure 2.10 (left). There is usually a value of λ that represents the

best trade-off between bias and variance as measured by the expected total error.

In the case of ZSL, x corresponds to a visual instance and t to attribute(s) to be estimated from

x. The variance in the dataset D comes from both the differences between samples from the same

99

2.6. ADDRESSING THE SEEN-UNSEEN CLASSES GAP

Dataset Intra-class variance Inter-class variance

CUB 138.0 231.9

AwA2 226.4 379.0

SUN 239.9 397.3

Table 2.4 – Intra-class and inter-class variance for several datasets. Intra-class variance is the mean
squared distance between visual samples of a class and the mean of samples from this class, averaged
over all classes. Inter-class variance is the mean squared distance between all samples and the mean
sample.

class (intra-class variance) and from the differences between classes (inter-class variance). Intra-class

variance is usually significantly smaller than inter-class variance in ZSL datasets (Table 2.4). Therefore,

most of the variance in Equation (2.28) can be attributed to the choice of the training classes CS .

For samples from unseen classes, the bias-variance decomposition applies and there exists a λ

corresponding to the best trade-off between the two. This is evidenced in Figure 2.10 (right), where

the red curve shows the mean squared error (MSE) in the predictions of attributes from unseen classes

as a function of λ, for a regularized linear model on a validation split of AwA2. This curve is similar

to the dotted black curve on the right, corresponding to the total error (bias plus variance plus noise).

On the other hand, for samples from seen classes, the variance in the dataset D – and thus in the

predictor ĥD – attributable to the choice of the training classes is much smaller since, by definition,

these seen classes must be present in the training dataset. This allows to better estimate attributes

from seen classes and most of the expected error therefore comes from the intrinsic noise and the

bias. Thus, the expected error mostly increases with λ, as evidenced by the blue curve in Figure 2.10

(right). This curve is similar to the sum of the red and orange curves on the right, corresponding to

the variance plus noise.

If we reasonably assume that the accuracy of predictions for samples from a given class depends on

how well we estimate their attributes, this explains both why predictions are better for samples from

seen classes than from unseen classes and why their behavior with respect to λ is different. Although

we assumed that λ correspond to the regularization hyper-parameter from a ridge regression model,

this reasoning is applicable to any model where a (set of) hyper-parameter(s) enables to increase the

bias and reduce the variance.

100

2.7. EXPERIMENTAL EVALUATION OF THE CALIBRATION PROCESS

We then suggest the following procedure to select the optimal value of λ or any other set of hyper-

parameters in a GZSL setting: we repeat the protocol described in Section 2.6.1 to select the calibration

weight γ and we take the value of λ which gives the best result for the harmonic mean H of AU→C

and AU→C on the validation set after having subtracted γ from the compatibilities of seen classes as

in Equation (2.27). The rest of the process is identical: we retrain the ZSL model on the seen train,

seen validation and unseen validation sets (Figure 2.8, bottom) with the hyperparameter λ that we

just selected, we compute compatibilities for the test set, subtract γ from the compatibilities of seen

classes and compute the resulting GZSL score.

2.7 Experimental evaluation of the calibration process

We now evaluate the impact of the proposed calibration and hyper-parameters selection process.

2.7.1 Reproduction of results

In addition to our proposed model from Section 2.4, we would like to evaluate the effectiveness of

this process on other methods from tables 2.1 and 2.3. With this goal in mind, we independently re-

implement ESZSL [130], SAE [70], DeViSE [40], SJE [4], ALE [2] and SynC [22] from their descriptions

in their respective original publications. We provide the following details and clarifications: for SAE,

during the prediction phase, distances are evaluated in the visual space as it yields better results. For

ALE, DeViSE and SJE, we add a hyperparameter λ weighing a regularization term of the form ∥W∥2
2,

W being the parameters of the models used in their bi-linear compatibility functions fW(x, s) =

x⊤Ws. For SynC, we use the “structured loss” version described in [22] as it yields better results.

We mostly use the same experimental protocol as in [161] and Section 2.5: we perform experiments

on CUB, SUN and AwA2, using the same“proposed”ZSL splits as [161]. Visual features are extracted

from a pre-trained ResNet-101 model. We do not apply 10-crop for now to be as close as possible to the

experimental setting in [161]. Result with 10-crop are provided later in Table 2.8. Semantic prototypes

are ℓ2 normalized. For models based on iterative numerical optimization, namely DeViSE, SJE, ALE

and SynC, we perform training and evaluation multiple times with different random initializations of

the parameters. We train and evaluate these models 5 times unless stated otherwise.

We compare our reproduced results with results reported in [161] in tables 2.5 and 2.6 in the

101

2.7. EXPERIMENTAL EVALUATION OF THE CALIBRATION PROCESS

Method Reported in [161] Mean std min max

CUB dataset

ESZSL 53.9 34.9 ±0.0 34.9 34.9
SAE 33.3 53.3 ±0.0 53.3 53.3
DeViSE 52.0 52.9 ±1.0 51.4 54.1
SJE 53.9 49.4 ±1.1 48.4 50.8
ALE 54.9 54.6 ±0.7 53.3 55.4
SynC 55.6 58.8 ±0.6 57.9 59.7

SUN dataset

ESZSL 54.5 16.0 ±0.0 16.0 16.0
SAE 40.3 61.0 ±0.0 61.0 61.0
DeViSE 56.5 61.6 ±0.3 61.3 61.9
SJE 53.7 55.3 ±1.1 53.9 56.5
ALE 58.1 59.4 ±0.3 58.8 59.7
SynC 56.3 56.6 ±1.8 54.1 59.1

AwA2 dataset

ESZSL 58.6 50.8 ±0.0 50.8 50.8
SAE 54.1 62.8 ±0.0 62.8 62.8
DeViSE 59.7 62.1 ±1.6 58.9 63.2
SJE 61.9 62.3 ±1.2 60.1 63.4
ALE 62.5 62.9 ±2.3 59.1 65.6
SynC 46.6 58.1 ±0.8 56.9 59.3

Table 2.5 – Reproduction of ZSL results from [163, 161], as measured by AU→U . “Mean” is the mean
result over 5 runs with different random initializations. “std”, “min” and “max” are the respective
corresponding standard deviation minimal score and maximal score obtained over these 5 runs.

102

2.7. EXPERIMENTAL EVALUATION OF THE CALIBRATION PROCESS

Method Reported in [161] Reproduced

AU AS H AU AS H
CUB dataset

ESZSL 12.6 63.8 21.0 10.5 ±0.0 61.8 ±0.0 17.9 ±0.0
SAE 7.8 54.0 13.6 16.7 ±0.0 56.3 ±0.0 25.7 ±0.0
DeViSE 23.8 53.0 32.8 24.8 ±0.7 58.1 ±1.3 34.8 ±0.5
SJE 23.5 59.2 33.6 19.7 ±0.7 53.2 ±1.5 28.7 ±0.8
ALE 23.7 62.8 34.4 25.3 ±0.8 59.3 ±1.3 35.4 ±0.7
SynC 11.5 70.9 19.8 22.6 ±1.0 62.3 ±1.3 33.2 ±1.0

SUN dataset

ESZSL 11.0 27.9 15.8 4.3 ±0.0 15.3 ±0.0 6.7 ±0.0
SAE 8.8 18.0 11.8 20.6 ±0.0 31.9 ±0.0 25.1 ±0.0
DeViSE 16.9 27.4 20.9 21.5 ±0.4 30.4 ±0.2 25.2 ±0.2
SJE 14.7 30.5 19.8 19.6 ±0.7 36.4 ±0.5 25.5 ±0.6
ALE 21.8 33.1 26.3 23.0 ±0.3 32.3 ±0.4 26.9 ±0.3
SynC 7.9 43.3 13.4 16.2 ±0.8 28.4 ±1.0 20.6 ±0.8

AwA2 dataset

ESZSL 5.9 77.8 11.0 26.6 ±0.0 79.8 ±0.0 39.9 ±0.0
SAE 1.1 82.2 2.2 17.6 ±0.0 90.2 ±0.0 29.5 ±0.0
DeViSE 17.1 74.7 27.8 9.7 ±2.5 89.8 ±0.8 17.4 ±4.1
SJE 8.0 73.9 14.4 17.4 ±1.7 85.8 ±0.5 28.9 ±2.3
ALE 14.0 81.8 23.9 23.0 ±0.3 32.3 ±0.4 26.9 ±0.3
SynC 10.0 90.5 18.0 18.7 ±0.3 83.4 ±0.4 30.6 ±0.3

Table 2.6 – Reproduction of GZSL results from [163, 161], as measured by AU→U , AU→U and H. We
report the mean result as well as the standard deviation over 5 runs with different random initializations

103

2.7. EXPERIMENTAL EVALUATION OF THE CALIBRATION PROCESS

respective ZSL and GZSL settings. In Table 2.5, we report the mean per class accuracy over 5 runs of

each model, as well as the associated standard deviation, and the minimum and maximum accuracy

obtained during these runs. In Table 2.6, we report the mean AU→C , AS→C and H over 5 runs as well

as the associated standard deviations.

Our first observation is that there can be variance in the measured accuracy depending on the

random initialization of the parameters. The most striking example in a ZSL setting occurs with ALE

on the AwA2 dataset, with an accuracy ranging from a mediocre score – compared to the other models

– of 59.1% to the absolute best score of 65.6% over 5 runs. This highlights the importance of reporting

a score averaged over several random initializations to make comparisons more reliable. We therefore

recommend as a good practice to run each model 5 times or more depending on the computational

resources and time available. Note that there is no variance in the results for ESZSL and SAE since

these models are based on closed-form solutions and do not use stochastic optimization. This is also

true for other models such as RidgeV→Sor RidgeS→V .

Regarding the closeness of our reproduction, in a ZSL setting (Table 2.5), DeViSE, SJE, ALE

and SynC tend to match results from [161], with a few exceptions. On the other hand, we obtain

significantly different results for ESZSL and SAE. For ESZSL, our results are usually significantly

below those from [161] in this experimental setting. However, we obtained results comparable to [161]

if semantic prototypes are not ℓ2-normalized. For the sake of consistency, we nonetheless chose to

always report results with normalized attributes. On the contrary, for SAE, our results are usually

significantly above these from [161]. This is likely due to our choice to perform comparisons in the

visual space as opposed to the semantic space: we found that results for SAE were close to RidgeS→V in

the former case, and close to the RidgeV→S in the latter case, which seems to match results from

[161].

Similar trends can be seen in a GZSL setting, as reported in Table 2.6.

2.7.2 Results of the proposed approach

We now evaluate the impact of the proposed calibration and hyper-parameter(s) selection process.

Table 2.7 shows results on the models reproduced in Section 2.7.1 as well as on RidgeS→V and

RidgeV→S . “No calibration” indicates that the same protocol as in Section 2.7.1 is used: the models

104

2.7. EXPERIMENTAL EVALUATION OF THE CALIBRATION PROCESS

Method
No calibration Calibration Cal. + hyper-p.

AU AS H AU AS H AU AS H
CUB dataset

RidgeV→S 11.0 52.3 18.2 38.2 31.2 34.3 39.3 32.4 35.5
RidgeS→V 23.7 52.8 32.7 45.8 38.6 41.9 45.4 41.7 43.5
ESZSL 10.5 61.8 17.9 32.6 34.8 33.7 34.2 33.7 33.9
SAE 16.7 56.3 25.7 41.6 44.7 43.1 41.6 44.7 43.1
DeViSE 24.8 58.1 34.8 47.2 41.1 44.0 43.1 43.7 43.4
SJE 19.7 53.2 28.7 41.5 41.1 41.3 45.2 44.2 44.7
ALE 25.3 25.9 35.4 48.9 43.3 46.0 48.7 45.0 46.8
SynC 22.6 62.3 33.2 48.7 44.0 46.2 48.8 46.5 47.6

Average 19.3 52.8 28.3 43.1 39.8 41.3 43.3 41.5 42.3

SUN dataset

RidgeV→S 12.4 23.5 16.3 33.7 17.8 23.3 33.9 20.0 25.2
RidgeS→V 19.6 32.5 24.4 44.9 27.6 34.2 46.9 27.7 34.8
ESZSL 4.3 15.3 6.7 10.5 11.9 11.1 10.5 11.9 11.1
SAE 20.6 31.9 25.1 45.0 27.4 34.1 47.7 27.4 34.8
DeViSE 21.5 30.4 25.2 46.1 23.8 31.4 46.1 23.8 31.4
SJE 19.6 36.4 25.5 45.2 28.5 34.9 45.1 29.1 35.3
ALE 23.0 32.3 26.9 46.7 26.2 33.6 46.7 26.2 33.6
SynC 16.2 28.4 20.6 35.1 23.1 27.9 35.1 23.1 27.9

Average 17.1 28.8 21.3 38.4 23.3 28.8 39.0 23.6 29.3

AwA2 dataset

RidgeV→S 4.4 86.8 8.3 36.7 66.6 47.3 37.3 67.4 48.7
RidgeS→V 30.3 82.0 44.3 52.0 79.1 62.7 53.2 80.3 64.0
ESZSL 26.6 79.8 39.9 50.4 57.2 53.6 47.1 62.5 53.7
SAE 17.6 90.2 29.5 48.0 80.7 60.2 48.0 80.7 60.2
DeViSE 9.7 89.8 17.4 40.6 83.0 54.6 40.6 83.0 54.6
SJE 17.4 85.8 28.9 46.4 78.2 58.2 46.2 81.8 59.0
ALE 15.9 87.4 26.9 42.8 80.1 55.8 42.8 80.1 55.8
SynC 18.7 83.4 30.6 49.4 79.7 61.0 49.4 79.7 61.0

Average 17.6 85.6 28.2 45.8 75.6 56.7 45.6 76.9 57.1

Table 2.7 – GZSL results without calibration, with calibration, and with calibration and hyper-
parameters specific to the GZSL task. Result are averaged over 5 runs.

105

2.7. EXPERIMENTAL EVALUATION OF THE CALIBRATION PROCESS

are trained in a ZSL setting, and then evaluated with the same hyper-parameters in a GZSL setting.

“Calibration” indicates that we use the calibration process described in Section 2.6.1, while hyper-

parameters are still selected in a ZSL setting. Finally, “Cal. + hyper-p.” indicates that calibration is

used, and hyper-parameters are selected using the process described in Section 2.6.2.

As expected, the calibration process is effective in reducing the gap between AU→C and AS→C :

on the CUB dataset, the average values of AU and AS evaluated over the 8 models are respectively

19.3 and 52.8 without calibration, and 43.1 and 39.8 with calibration, which enables the average H to

increase from 28.3 to 41.3. On AwA2, a similar effect can be observed. Even though the gap between

AU and AS is still important, it is much less pronounced than without calibration which enables to

double the average H. Interestingly, on the SUN dataset, the reduction in the gap between AU and

AS is not as pronounced: the models tend to over-predict unseen classes instead of seen classes before

calibration, so the increase in H is less striking.

Choosing hyper-parameters specific to the GZSL task enables to further increase the final score

on all datasets, although the marginal impact of this step is not as dramatic. As a side note, some

models have the exact same scores in the “Calibration” and “Cal. + hyper-p.” columns, for instance

SAE when evaluated on the CUB dataset. This happens when the hyper-parameter(s) selected for

the GZSL task are the same as the one selected for the ZSL task, leading to the same score8.

Finally, in Table 2.8, we compare the GZSL results of these models to our proposed model(s)

from Section 2.4, with calibration and hyper-parameters selected specifically for the GZSL task. For

fair comparison, we use visual features extracted using 10-crop for all reproduced approaches. The

proposed process enables to increase the H score of our proposed model by more than 18 points on

average. Our model outperforms all non generative approaches on two out of three datasets, and

outperforms them “on average” as well.

We also include results with generative approaches in Table 2.8, even though as stated earlier,

these approaches are typically based on more restrictive hypotheses. We do not apply calibration to

the generative approaches as they usually do not suffer from the performance gap between seen and

unseen classes. Interestingly, our proposed model also outperforms generative approaches on the CUB

8One may still expect some minor differences caused by random noise. However, for the sake of reproducibility, we
use a fixed set of random seeds, which leads to the same results.

106

2.8. DISCUSSION

dataset, as well as “on average”. As a side note, it is also interesting to notice that using visual features

extracted with 10-crop enables an increase of 1.6 points on average on the evaluated GZSL models.

2.8 Discussion

We proposed a ZSL model based on the triplet loss aiming to address some of the usual limitations

of such approaches. We also proposed a simple process to fairly evaluate standard ZSL models in a

GZSL setting, by reducing the performance gap between AU→C and AS→C . Under these conditions,

our proposed model outperforms all non generative approaches, and gets performance close to or

even better than recent generative approaches, even though the latter may rely on more restrictive

hypotheses.

Our proposal relies on a number of design choices. There could be reasonable alternative possi-

bilities for many of these components. For example, the architecture could be modified to include

non-linearities; higher order statistics could be used to measure the distances and thus the “represen-

tativeness” in the visual space, similarly to the second order statistics employed to measure distances

between classes in the semantic space; inter-class distances could be computed using both the semantic

and the visual space, etc.

Experiments have been conducted for some of these alternative possibilities. Most of the time,

we chose what appeared to be the simplest design choice if no significant difference in performance

was observed. An example of such a more complicated approach consists in using a calibration hyper-

parameter γc per class c instead of a unique γ as in Equation (2.27). However, since it did not lead to a

measurable improvement in the GZSL score, we chose the simpler approach described in Section 2.6.1.

Nonetheless, many of these alternate design choices are yet to be explored, as the possible combinations

of such choices are too numerous to be exhaustively tested.

107

2.8. DISCUSSION

Method
CUB SUN AwA2 H̄6

AU AS H AU AS H AU AS H
Non generative approaches, without calibration

RidgeV→S 11.0 52.3 18.2 12.4 23.5 16.3 4.4 86.8 8.3 14.3
RidgeS→V 23.7 52.8 32.7 19.6 32.5 24.4 30.3 82.0 44.3 33.7
ESZSL* [130] 12.6 63.8 21.0 11.0 27.9 15.8 5.9 77.8 11.0 15.9
SAE* [70] 7.8 54.0 13.6 8.8 18.0 11.8 1.1 82.2 2.2 9.2
DeViSE* [40] 23.8 53.0 32.8 16.9 27.4 20.9 17.1 74.7 27.8 27.2
SJE* [4] 23.5 59.2 33.6 14.7 30.5 19.8 8.0 73.9 14.4 22.6
ALE* [3] 23.7 62.8 34.4 21.8 33.1 26.3 14.0 81.8 23.9 28.2
SynC* [22] 11.5 70.9 19.8 7.9 43.3 13.4 10.0 90.5 18.0 17.0
PSR [5] 24.6 54.3 33.9 20.8 37.2 26.7 20.7 73.8 32.3 31.0

Ours, θ + I 30.4 64.0 41.2 21.3 34.1 26.2 17.6 79.8 28.9 32.1
Ours, θ + ϕ 26.0 65.8 37.3 22.0 33.9 26.7 14.8 78.0 24.9 29.6

Ours 30.4 64.0 41.2 22.0 33.9 26.7 17.6 79.8 28.9 32.3

Non generative approaches, with calibration

RidgeV→S 41.7 38.2 39.8 35.2 21.5 26.7 38.2 68.3 49.0 38.5
RidgeS→V 48.5 46.8 47.7 45.9 30.0 36.3 54.8 80.0 65.1 49.7
ESZSL** [130] 42.4 35.6 38.7 11.0 12.7 11.8 52.1 56.9 54.4 35.0
SAE** [70] 44.7 48.0 46.3 43.1 30.8 35.9 49.9 82.8 62.3 48.2
DeViSE** [40] 46.9 38.7 42.4 48.8 24.3 32.5 40.7 85.0 55.0 43.3
SJE** [4] 48.6 45.0 46.7 47.7 29.9 36.8 46.1 83.3 59.4 47.6
ALE** [3] 52.3 46.7 49.4 48.9 27.1 34.9 43.7 81.7 56.9 47.1
SynC** [22] 49.5 48.3 48.9 35.1 23.1 27.9 50.8 81.7 62.6 46.5

Ours, θ + I 55.8 48.1 51.6 47.9 28.1 35.4 48.5 83.2 61.3 49.4
Ours, θ + ϕ 53.8 52.3 53.0 46.5 30.4 36.8 45.4 77.9 57.3 49.0

Ours 53.8 52.3 53.0 46.5 30.4 36.8 48.5 83.2 61.3 50.4

Generative approaches†

GFZSL*† [153] 0.0 45.7 0.0 0.0 39.6 0.0 2.5 80.1 4.8 1.6
SE-GZSL† [152] 41.5 53.3 46.7 40.9 30.5 34.9 58.3 68.1 62.8 48.1
f-GAN† [162] 43.7 57.7 49.7 42.6 36.6 39.4 57.9 61.4 59.6 49.6
GMMM-ZSL† [18] 49.1 55.9 52.3 39.7 37.7 38.7 46.3 77.3 57.3 49.4

Table 2.8 – GZSL results without calibration, and with calibration and hyper-parameters specific
to the GZSL task. Results from [161] are marked with * next to the model’s name. Results with
calibration were all obtained from our independent implementation, use 10crop visual features, and
are averaged over 5 runs. The generative models, marked with †, rely on stronger hypotheses as
explained in Section 1.2.4. Results for our model are averaged over 10 runs.

108

Chapter 3

Semantic representation for large scale
zero-shot learning

Content

3.1 Unsupervised semantic prototypes . 111

3.1.1 Dataset collection . 112

3.1.2 Corpus pre-processing . 114

3.2 Evaluation of the proposed semantic embeddings . 115

3.2.1 Experimental setting . 116

3.2.2 Results . 118

3.2.3 Ablation of user filtering . 122

3.2.4 Comparison to manual attributes . 122

3.2.5 Influence of collection size . 124

3.2.6 Error analysis . 124

3.3 Using sentences as semantic information . 126

3.3.1 Attention approaches . 129

3.3.2 Multi-prototype approach . 132

3.4 Evaluation of sentence-based approaches . 134

3.4.1 Evaluation of the visualness-based methods . 134

3.4.2 Multi-prototype . 136

3.5 Combination of sentences and class names . 139

3.6 Discussion . 141

In Chapter 2, we considered ZSL datasets whose semantic prototypes consisted of binary or con-

tinuous attributes. However, when the number of classes becomes very large, it can be impractical to

design high quality semantic representations using attributes. For instance, the CUB dataset comes

with manually-defined 312-dimensional vectors of attributes, and performance of ZSL models drops

109

very quickly as the number of attributes decreases, as will be measured in Section 3.2.4. It may thus

not be practicable to manually provide hundreds of such attributes for each class of a large scale dataset

consisting of thousands of classes, such as the ImageNet dataset. As a result, in a large scale setting,

it is common to use semantic prototypes which can be automatically obtained in an unsupervised way.

These prototypes typically consist in word embeddings of class names, which use an embedding model

pre-trained on a large text corpus. However, performance with this type of semantic representation is

generally much lower than with manually-designed attributes, as will also be measured in Section 3.2.4.

In this chapter, we focus primarily on the impact of semantic representations in a large scale zero-

shot learning setting. We propose several approaches for designing and making use of suitable semantic

prototypes, with the aim of enabling a better trade-off between the high effort - high performance

nature of manually designed attributes and the low effort - low performance nature of “unsupervised”

semantic prototypes than the current status quo. The chapter is organized as follows: in Section 3.1,

we argue that generic text corpora may not be optimal to produce embeddings suitable for zero-shot

recognition. We thus propose to collect new datasets with more visually oriented textual content.

We further propose to adapt existing word embedding models via some pre-processing steps in order

to adequately leverage these corpora1. Performance of this method is evaluated in Section 3.2. In

addition, this section provides a comparison of unsupervised embeddings with manual attributes, as

well as a detailed error analysis. In Section 3.3, we argue that short descriptions may provide relevant

information not contained in word embeddings for a reasonable annotation cost. We propose several

ways to employ short sentences as semantic information for zero-shot learning. Section 3.4.1 provides

an experimental evaluation of these approaches. Section 3.5 explores the combination of embeddings

from class names and from short sentence descriptions as class prototypes. Finally, Section 3.6 provides

a discussion on some design choices, limits of the proposed methods and currently unsuccessful tracks.

Similarly to Chapter 2, we adopt the notations defined in Section 1.1.2 and summarized in Table 1.2.

1This work is the result of a collaboration with Adrian Popescu, Université Paris-Saclay, CEA, List.

110

3.1. UNSUPERVISED SEMANTIC PROTOTYPES

3.1 Unsupervised semantic prototypes

As detailed in Section 1.3.2, in a large scale ZSL setting, it is customary to use word embeddings

of class names to obtain class prototypes with close to zero annotation effort. This is made possible

by the fact that word embedding models are trained in an unsupervised way, and thus do not require

human-defined labels. For instance, in the Word2vec approach [102], the skip-gram objective aims to

predict the words present in the context of a given word. If we consider a corpus of L sentences, where

the lth sentence consists of Tl words {w1, . . . , wTl
}, this can be achieved by minimizing

−
L∑︂

l=1

Tl∑︂
t=1

∑︂
−S≤i≤S

i ̸=0

log p(wt+i|wt) (3.1)

Here S is the size of the context window and determines how close to each other two words wi, wj need

to be to be considered part of each other’s context. p(wi|wt) in Equation (3.1) is typically estimated

using a 1-hidden layer fully connected neural network. Each unique word w is thus associated with an

“input” vector vw and an “output” vector v′
w, and p(wi|wt) is computed such that

p(wi|wt) =
exp(v⊤

wt
v′

wi
)∑︁

w exp(v⊤
wt

v′
w) (3.2)

The input vector representation vw can then be employed as the embedding of word w, and a seman-

tic representation sc for class c can be obtained by using the word embedding corresponding to its

name. For classes whose name consists of several words, we can simply employ the average of the

corresponding word embeddings as the semantic prototype – and repeat this process recursively for

classes consisting of several multi-word lemmas as in the ImageNet dataset [33] (Appendix A.1).

The word embedding models are typically trained on large generic text corpora such as Wikipedia,

Google News or CommonCrawl. Although these embeddings enable to effortlessly obtain semantic

prototypes and thus to extend ZSL to very large scale settings, a significant performance gap still

exists between prototypes obtained in an unsupervised way and with human annotations [22]. This

gap will be further explored in Section 3.2.4.

One possible explanation for this gap is that the text corpora habitually used to train the word

embedding models do not contain enough visual information. As illustrated in Figure 3.1, among the

20 most frequent words in the context of the word “tiger” in the Wikipedia corpus (with a context

window of size 4), only “white” and “tail” could correspond to visual aspects of the word “tiger”. Even

111

3.1. UNSUPERVISED SEMANTIC PROTOTYPES

Figure 3.1 – Histogram of the most frequent words in a context window of size 4 around the word
“tiger” in the Wikipedia corpus.

then, these words are not necessarily the most relevant, as white is not usually the predominant color

of a tiger. We therefore do not expect the resulting embeddings to adequately encompass useful visual

attributes of a tiger, such as “orange” or “stripes”.

We can thus hypothesize that word embedding models trained on corpora with a more visual

essence could lead to embeddings better suited for the ZSL task. We therefore propose to create such

datasets.

3.1.1 Dataset collection

To ensure the datasets mostly contain words with a visual nature, we propose to collect corpora

consisting of words or tags describing pictures. We use the Flickr API to collect tags defined by users:

given a query q consisting of keywords such as “tiger”, the API returns a list of pictures and associated

metadata. We are interested in three fields in the metadata associated with each picture:

• The title, which is a user-defined description of the image, for instance “Amur tiger chilling in

the water”2 for a result of the query “tiger”

2These examples were cherry-picked among results for illustrative purposes; for the query “tiger”, the first results
frequently have the single word “tiger” as both the title and the tags.

112

3.1. UNSUPERVISED SEMANTIC PROTOTYPES

• A list of user-defined tags associated with the picture. Examples include “tiger”, “sumatra”,

“wildlife”2 or “tiger”, “orange”, “zoo”2 for the query “tiger”.

• The user identifier, so that each picture can be associated with a unique user. This will be

employed in Section 3.1.2 to address the problem of bulk-tagging.

For each query, we keep the corresponding metadata associated with the first 5000 results. These

results are sorted by “relevance” by the default Flickr ranking algorithm.

It is important to note that as all the content is generated by users, the titles and tags are not

always relevant with respect to the pictures, and the pictures themselves do not necessarily corre-

spond to the searched keywords. In addition, the annotations can be in any language. For instance,

the following description and tags can be found among results corresponding to the query “ivory

gull”: “Ísmáfur Pagophila eburnea Ivory Gull” and “minnesota flying inflight gull arctic juvenile duluth

rare lakesuperior canalpark ivorygull saintlouiscounty”. Here, the title includes the Icelandic, Latin

and English variants of the name while the tags themselves provide information about the location

and activity of the ivory gull. Furthermore, tags can be single words (“gull”) or concatenated ones

(“ivorygull”,“lakesuperior”).

We still need to determine the queries to be used to create the full corpus. As a first approach, we

can use generic concepts from Wikipedia to create the Flickr-Wikipedia collection, or flwiki. To select

common generic concepts, Wikipedia pages are ranked by the number of associated incoming links in

the Wikipedia corpus, and the top 120,000 concepts are kept. The corresponding titles of these pages

are used as queries to collect metadata using Flickr as described previously. These 120,000 queries

result in 62.7 million results (pictures from which we only keep the metadata), corresponding to a

total of 1.11 billion words. This approach has the advantage of being agnostic to the types of classes

used in the ZSL task: the dataset can be collected once, and the resulting word embeddings can then

be employed for multiple ZSL datasets.

In a second approach called flcust, we use the class names of the ZSL classes to collect metadata

specifically suited to the task. This approach assumes that we have access to the names of both seen

and unseen classes before training the ZSL model. As a result, we can consider that this approach

operates in a class-transductive setting, and is more restrictive than the flwiki approach as such an

113

3.1. UNSUPERVISED SEMANTIC PROTOTYPES

assumption is not always valid in real use-cases. However, as mentioned in previous chapters, this is

still a frequent assumption in many ZSL works, particularly with generative models (Section 1.2.4).

Combining the class names of the three datasets CUB, AwA2 and ImageNet3 used in the evaluation

section of this chapter (Section 3.2), this corresponds to 40,989 queries resulting in 61.9 million results

for a total of 995 million words.

To summarize, each collection consists of Q concepts with associated queries Q = {q1, . . . , qQ},

Q ≤ 120, 000. For each query q, we have a list of Mq results with associated metadata pieces Mq =

{m1, . . . , mMq }, Mq ≤ 5, 000. Each metadata piece m consists of a list of words Wm = {w1, . . . , wTm},

as well as a user identifier idm mapping the author idm of the picture and metadata m with a unique

user uidm . The Tm words are the words constituting the title and tags, with stopwords removed.

3.1.2 Corpus pre-processing

Since we have collections of words, we could consider applying the standard skip-gram objective

(Equation (1.79)), either to each list of words {w1, . . . , wT } or to concatenations of these lists, to learn

word embeddings. However, such a direct approach raises several problems.

First, unlike in standard text collections such as Wikipedia, the order of the words Wm =

{w1, . . . , wTm} in each metadata result m is somehow arbitrary. Even though there can be some

order in words in the titles, this is not always the case as illustrated previously. As for the order of the

tags, it is completely meaningless. As a result, no specific order is preserved when the list of words

Wm is extracted from the title and tags of m. Consequently, the fixed size context window from the

usual skip-gram formulation (Equation (3.1)) is not well suited since two words appearing in the same

context, e.g. in the same metadata result m, are not necessarily close to each other in {w1, . . . , wTm}.

Instead of using a fixed size window, i.e. considering that two words appear in the same context

if they are closer to each other than the size S of the context window in Equation (1.79), we consider

that two words wi and wj appear in the same context if both of them appear in Wm of the same

metadata result m. As a result, the more frequently two words wi and wj are used to describe the

same picture, the stronger the semantic link between the two will be. The skip-gram objective in

3CUB and AwA2 have respectively 200 and 50 classes with a single class name per class; the full ImageNet dataset
has a total of 21,842 classes with certain classes having several class names or lemmas, which results in a total of 40,739
concepts for this dataset.

114

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

Equation (3.1) can therefore be rewritten as

−
∑︂
q∈Q

∑︂
m∈Mq

∑︂
(wi,wj)

wi,wj∈Wm, i̸=j

log p(wi|wj) (3.3)

This is equivalent to extracting all pairs of words (wi, wj) such that wi, wj belong to the same

Wm similarly to Equation (3.3), and creating a corpus whose sentences consist of pairs of such words.

Training the embedding model can then be achieved with the skip-gram objective from Equation (3.1).

The same method can be applied to learn embeddings with GloVe [117] and FastText [14]. This has

the advantage of enabling the use of available implementations for different word embedding models.

The corpus created from all pairs of words appearing in the same context on which embedding models

are trained will sometimes be referred to as the training corpus.

Another problem arising with datasets consisting of user-defined tags is sometimes referred to as

bulk-tagging [111]: it describes the action of a user attributing the same tags or description to a whole

set of photos. Semi-bulk is a related problem, where a few tags are attributed by a user to a set of

photos and completed with picture-specific tags for each photo. These phenomena are known to bias

language models obtained from Flickr [121, 111]. As an example, if a user posts many photos with the

description or tags “nice tiger”, the words “nice” and “tiger” may become more related than we would

intuitively expect.

To avoid this problem, we enforce the rule that a pair of words (wi, wj) is taken into account at

most once per distinct Flickr user. This translates into adding a pair (wi, wj) in the training corpus

only once for each user. Such an approach resulted in interesting performance gains in [121] and [111],

on the respective tasks of image retrieval and automatic geo-tagging. It also has the positive side

effect of decreasing the size of the training corpus, such that embeddings can be learned faster. The

impact of restricting the importance of a single user will be evaluated in Section 3.2.3.

3.2 Evaluation of the proposed semantic embeddings

We compare results obtained with the proposed approach to results obtained with standard em-

beddings trained on generic text corpora, for a variety of ZSL models.

115

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

3.2.1 Experimental setting

Baseline methods. In the wiki approach, we train word embeddings with the standard methods

Word2vec, GloVe and FastText on the customary Wikipedia corpus. This corpus contains well-formed

sentences such as “The ivory gull is found in the Arctic, in the northernmost parts of Europe and

North America.”, and is often used to train embeddings for a variety of tasks [101, 102, 117] because

it covers a wide array of topics [45]. We make use of a dump from January 2019 which includes 20.8

billion words. This is actually the same data as the one we used to obtain the 120, 000 concepts for

our method described in Section 3.1.1. However, as mentioned earlier, the Wikipedia corpus does not

specifically describe visual relations between words.

In the clue approach, we train word embeddings on an subset of the ClueWeb12 [21, 20] collection,

with the specific goal to extract more visually oriented textual content. The full collection consists of

733 million Web pages which were collected so as to cover a wide variety of topics. We extract data

associated with the images referenced in the dataset, by retrieving metadata from the corresponding

title and alt HTML attributes. The resulting content is usually quite similar to what we retrieved

from Flickr earlier, and typically consists of short texts such as “ivory gull flying”. After sentence

deduplication [101], the resulting corpus includes 628 million unique metadata pieces and 3.7 billion

words.

Finally, for each of the three embedding models Word2vec, GloVe and FastText, we compare

our approach to generic pre-trained embeddings similar to the ones habitually used in previous ZSL

works [40, 22, 53]. We employ common pre-trained embeddings freely available on the Internet4.

Word2vec was trained on the Google News corpus including 100 billion words, GloVe was trained on a

Common Crawl version with 840 billion token, and FastText was trained on a Common Crawl version

with 600 billion tokens.

4The pre-trained embeddings can be downloaded at the following URLs:
• Word2vec: https://code.google.com/archive/p/word2vec/ (version trained on GoogleNews with 100 billion

words)
• FastText: https://fasttext.cc/docs/en/english-vectors.html (version trained on Common Crawl with 600B

tokens, no subword information).
• GloVe: https://nlp.stanford.edu/projects/glove/ (version trained on Common Crawl with 840B tokens).

116

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/english-vectors.html
https://nlp.stanford.edu/projects/glove/

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

ZSL datasets. Since we are interested in results in a large scale setting, we mostly conduct our

experiments on the ImageNet dataset [33]. It was proposed in [40] to use the 1,000 classes from

ILSVRC [132] as seen training classes, and the remaining 20,841 as unseen test classes. However, as

mentioned in Section 1.3.2, it has been recently shown that a structural bias appears in this setting

which allows a “trivial model” to outperform most existing ZSL models [53]. For this reason, we adopt

the evaluation protocol proposed by Hascoet et al. [53], who consider the same training classes as [40]

but employ 500 classes with a minimal structural bias for testing. We use the same visual features

as [53], which consist of features extracted with a ResNet-101 model pre-trained on ImageNet.

To get insight into the gap existing between manual attributes and unsupervised embeddings, we

also conduct experiments on smaller benchmarks on which the ZSL task is usually conducted with

manual attributes. We therefore also make use of the CUB [154] and AwA2 [161] datasets, described

in Appendix A.1. The usual manual attributes of CUB and AwA2 are respectively 312 and 85-

dimensional. In our setting, we are only concerned with semantic prototypes which can be obtained

automatically; our results therefore cannot be directly compared to the state-of-the-art algorithms

which exploit manual attributes. Apart from the attributes, we adopt the experimental protocol of

Xian et al. [161], and specifically their “proposed splits”, for these two datasets. This setting is very

similar to the one we employed in Section 2.5, the only differences being the semantic representations.

ZSL methods. We conduct experiments with DeViSE [40], ESZSL [130] and ConSE [108] (described

in Section 1.2) as they are the three standard methods used in Hascoet et al. [53], and therefore

the only methods for which comparable results are currently available. Although results for other

models – namely GCN-6 [158], GCN-2 and ADGPM [60] – are also reported in [53], these models

are based on graph-convolutional networks [67] which make use of additional intermediate nodes in

the WordNet [103] hierarchy. Such methods are outside the scope of this section. We additionally

provide results for SynC [22] as well as RidgeV→S and RidgeS→V . We employ the same protocol as

in Section 2.5 to train the models and select the hyper-parameters. For ImageNet, we sample 200

random classes as validation classes. Following Section 2.7.1, we report results averaged over 5 runs

with different random initialization of the models parameters when applicable.

117

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

Implementation details. Word embeddings are computed with the original implementations of Word2vec [102],

GloVe [117] and FastText[14], with the same hyperparameters5. In particular, we follow the usual text

processing steps they propose, and employ an embedding dimension of K = 300 for all embedding

models. Semantic prototypes for all classes are computed using the same protocol as [53] for fair com-

parison. For the same reason, we employ the implementation from [53] to run ConSE, ESZSL and De-

ViSE. We use the implementation from [22] for SynC, and our own implementation for RidgeV→S and

RidgeS→V . All semantic prototypes are ℓ2-normalized except with ESZSL to have a setting similar to

[53] when applicable.

3.2.2 Results

The main results for the large scale ImageNet dataset are reported in Table 3.1. We evaluate

the three embedding models Word2vec, GloVe and FastText, trained with our two approaches flwiki

and flcust as well as on the two corpora wiki and clue, and we report results for existing pre-trained

embeddings.

The best results overall for each ZSL model are consistently obtained with the flcust approach with

FastText. Class prototypes obtained with this approach enable to significantly outperform previous

ZSL results in a large scale setting. In particular, the best previously reported result in this setting

was 13.5 with ESZSL in [53]. By contrast, the best result in Table 3.1 is 17.2 with the simple

RidgeS→Vmodel with flcust and FastText, obtained with embeddings trained on a dataset more than

800 times smaller. The best result with ESZSL in Table 3.1 is 15.8 with flcust and FastText. It can also

be emphasized that the absolute best previously reported result was 14.1 in [53] with the ADGPM [60]

model, which additionally makes use of the WordNet hierarchy.

As a side note, results with ConSE, ESZSL and DeViSE with the GloVe pretrained embeddings

(marked with“*”in Table 3.1) can be seen as a reproduction of the results from [53] since we employ the

same visual features, and the GloVe embeddings pre-trained on Common Crawl are used as semantic

embeddings in [53]. Our results are mostly consistent with the ones reported in [53], as we obtain

5The original implementations of each method are available at:
• Word2vec: https://code.google.com/archive/p/word2vec/
• Glove: https://nlp.stanford.edu/software/GloVe-1.2.zip
• FastText: https://github.com/facebookresearch/fastText

The hyperparameters as well as the corresponding commands used to train these models are provided respectively in
Table A.1 and Table A.2 of Appendix A.2.

118

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/software/GloVe-1.2.zip
https://github.com/facebookresearch/fastText

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

pt wiki clue flwiki flcust
Word2vec

ConSE 9.9 10.5 11.3 11.9 13.5

RidgeV→S 6.8 9.8 9.6 10.5 12.6

RidgeS→V 11.6 11.8 12.2 12.8 17.1

ESZSL 10.5 10.0 10.7 9.5 15.3

DeViSE 9.0 9.8 9.9 9.6 13.3

SynC 12.2 12.4 12.6 12.5 16.3

GloVe

ConSE 11.3* 8.1 7.8 11.3 11.9

RidgeV→S 10.2 6.2 4.2 9.6 9.2

RidgeS→V 14.1 7.9 8.0 9.2 11.4

ESZSL 14.1* 8.0 10.3 11.1 12.0

DeViSE 11.0* 5.9 5.4 3.8 3.4

SynC 15.0 10.9 11.2 12.4 13.3

FastText

ConSE 11.0 10.5 5.4 12.6 14.5

RidgeV→S 6.0 8.9 2.8 11.6 14.2

RidgeS→V 14.4 12.1 8.0 13.3 17.2

ESZSL 14.2 10.1 1.1 11.9 15.8

DeViSE 12.3 10.1 5.6 10.3 13.8

SynC 14.6 12.6 7.0 13.2 16.5

Table 3.1 – ZSL accuracy on the large scale ImageNet dataset, for three embedding models Word2vec,
GloVe and FastText. We compare the results from the proposed approaches flwiki flcust and to the
baselines wiki and clue as well as pre-trained embeddings (pt). We use the experimental protocol from
[53]. Results marked with “*” correspond to a setting close to Table 2 from Hascoet et al. [53], and
are consistent with the results reported there.

119

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

pt wiki clue flwiki flcust
Word2vec

ConSE 8.3 19.5 21.6 18.0 21.1

RidgeV→S 7.5 14.0 13.9 12.2 16.3

RidgeS→V 11.3 18.0 17.2 21.5 23.0

ESZSL 15.8 20.4 17.9 23.0 25.2

DeViSE 12.6 17.0 15.8 19.0 19.2

SynC 15.3 19.8 17.3 20.3 21.3

GloVe

ConSE 14.1 15.1 14.9 16.8 18.4

RidgeV→S 8.0 11.6 9.8 12.7 14.2

RidgeS→V 18.2 16.0 13.4 14.6 19.0

ESZSL 19.9 17.5 16.9 19.0 20.8

DeViSE 14.6 16.3 9.9 18.4 14.8

SynC 17.6 17.2 17.6 21.6 20.5

FastText

ConSE 14.0 17.7 19.9 17.6 23.4

RidgeV→S 7.2 13.8 12.2 11.6 17.5

RidgeS→V 16.1 16.2 16.0 19.9 24.4

ESZSL 21.1 18.7 1.7 23.5 26.5

DeViSE 16.0 13.2 13.7 17.4 22.5

SynC 17.0 15.0 15.7 20.2 24.0

Table 3.2 – ZSL accuracy on the smaller scale CUB dataset with unsupervised semantic embeddings.
We use the “proposed splits” from Xian et al. [163].

an accuracy of 11.3 with ConSE compared to 10.6 in [53], 14.1 compared to 13.5 with ESZSL, and

11.0 compared to 11.1 with DeViSE. Our slightly different reported accuracies may be attributed to

small differences during the pre-processing of class names as well as random noise due to the different

initializations and choice of validation classes.

We also provide results for the smaller scale datasets CUB and AwA2 in tables 3.2 and 3.3. These

results are less relevant since manual attributes exist for these datasets, but still bring interesting

insights. Importantly, these results are produced using unsupervised prototypes, which should be

kept in mind when comparing to results obtained with manual attributes. On CUB, the best results

are obtained with the embeddings learned on the flcust collection for the three configurations and

significantly outperform previous embeddings. Interestingly, there does not seem to be a clear tendency

on AwA2. It turns out that performance obtainable with unsupervised prototypes on AwA2 is already

120

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

pt wiki clue flwiki flcust
Word2vec

ConSE 27.4 31.3 34.3 43.3 39.2

RidgeV→S 31.1 40.2 38.5 43.6 37.9

RidgeS→V 38.1 44.1 49.7 53.9 55.0

ESZSL 40.9 42.2 55.8 53.1 57.1

DeViSE 37.2 34.1 46.6 33.7 43.4

SynC 43.9 41.1 45.8 47.1 47.5

GloVe

ConSE 31.3 27.4 29.8 38.4 41.4

RidgeV→S 40.4 26.9 34.6 40.5 43.3

RidgeS→V 56.6 42.4 48.1 41.2 57.7

ESZSL 61.4 37.7 49.0 48.2 44.3

DeViSE 43.2 42.6 44.9 30.6 36.4

SynC 46.9 46.6 47.4 50.0 52.1

FastText

ConSE 34.7 31.3 16.7 42.3 42.1

RidgeV→S 42.1 39.9 28.1 38.5 41.6

RidgeS→V 54.7 49.3 14.4 50.4 46.5

ESZSL 48.2 37.6 7.9 49.7 54.6

DeViSE 52.0 40.7 13.5 32.7 37.6

SynC 53.3 40.0 15.2 45.5 48.1

Table 3.3 – ZSL accuracy on the smaller scale AwA2 dataset with unsupervised semantic embeddings.
We use the “proposed splits” from Xian et al. [163].

121

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

Unique (wi, wj) per user No restriction

ConSE 14.5 12.6

RidgeS→V 17.2 13.8

ESZSL 15.8 12.5

DeViSE 13.8 11.2

Table 3.4 – ZSL accuracy on the ImageNet dataset for different models with the flcust approach with
FastText embeddings, with distinct pairs of words (wi, wj) limited to 1 per user (left), or without
restrictions on the impact of each user (right).

quite close to performance with manual attributes – as detailed in Section 3.2.4. The proposed method

is therefore unable to provide a significant improvement, unlike on the other two datasets.

3.2.3 Ablation of user filtering

In Section 3.1.2, we proposed to employ a simple mechanism to prevent a single user from having too

much impact on the collected corpus, in order to minimize for instance the effect of bulk-tagging. This

mechanism consists in using a pair of words (wi, wj) at most once per user when creating the training

corpus. In order to measure the impact of this preprocessing step, we compare results obtained with

and without this step with the approach flcust with the best performing embedding model FastText

on the ImageNet dataset for different ZSL models. These results are reported in Table 3.4, showing a

gain from 1.9 to 3.4 points of accuracy depending on the models. It confirms that limiting the impact

of a single user on the training corpus has a significant positive impact on the final performance of

the ZSL model.

3.2.4 Comparison to manual attributes

Although our webly semantic prototypes enable to achieve significantly better results than with

previously available prototypes extracted from text corpora, it is still interesting to compare them to

what can be achieved with hand-crafted attributes. Such attributes do not exist for very large scale

datasets such as ImageNet, but they are provided with smaller scale datasets such as CUB and AwA2.

To quantify how much better hand-crafted prototypes perform when compared to webly supervised

prototypes, we progressively remove attributes from the class prototypes of CUB and AwA2. We start

with the full list of attributes, initially comprising 312 attributes for each bird species from CUB

122

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

Figure 3.2 – Ablation of manual attributes on the CUB (left) and AwA2 (right) datasets. Each
time, a random subset of the attributes is selected, and the resulting ZSL score is measured with the
RidgeS→V model. The blue dots indicate the mean score over 10 runs with different random attributes
selected, the vertical blue bars indicate corresponding standard deviations. Best results for prototypes
based on unsupervised word embeddings are also reported for the proposed method (yellow horizontal
line) and previous embeddings (red horizontal line), all with the RidgeS→V model.

and 85 attributes for each animal species from AwA2, and we randomly remove attributes while

measuring the resulting ZSL score. The scores are measured for the RidgeS→V model due to its good

results, robustness and simplicity. To account for the noise caused by the randomness of the removed

attributes, each reported score is the average of 10 measurements, each with different random attributes

removed. The remaining attributes are ℓ2-normalized, and the hyper-parameter λ (Equation (1.38)) is

re-selected by cross-validation for each run. Figure 3.2 provides a visualization of the results, the blue

dots representing the average score for a fixed number of hand-crafted attributes. We also display as a

reference the results of the unsupervised embeddings with the highest scores for previous pre-trained

embeddings as well as for our proposed method, also measured with the RidgeS→V model.

On CUB, there is still a substantial margin for improvement; even though the proposed approach

enables a significant increase over other methods, the ZSL score is still barely above results achievable

by selecting only 20 attributes among the 312 initial attributes. Interestingly, the difference between

webly supervised and hand-crafted prototypes is not so pronounced on the AwA2 dataset; the ZSL

accuracies of the two settings are even surprisingly close. This may be explained by the fact that AwA2

only contains 10 test classes; class prototypes need not enable a ZSL model to subtly distinguish very

similar classes. Consequently, the best result of the proposed approach is comparable to the best result

provided by previous methods.

123

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

Collection size 100% 50% 25% 10%

wiki

ConSE 10.5 11.0 10.5 9.9
RidgeS→V 12.1 11.6 11.3 10.2
ESZSL 10.1 9.8 9.9 9.6
DeViSE 10.1 8.3 8.7 8.0

flcust

ConSE 14.5 14.1 14.1 14.3
RidgeS→V 17.2 16.8 16.3 15.6
ESZSL 15.8 15.1 15.3 14.3
DeViSE 13.8 13.4 13.2 12.5

Table 3.5 – ZSL performance with 100%, 50%, 25% and 10% of the initial data from the wiki and
flcust collections. Results obtained on the ImageNet dataset, with FastText embeddings.

3.2.5 Influence of collection size

The quality of semantic embeddings is usually influenced by the size of the text collections used to

train the embedding models [102, 117]. To evaluate the effect of the collections sizes on our embeddings,

we ablate 50%, 75% and 90% of the wiki and flcust collections and report results for ImageNet using the

FastText embeddings in Table 3.5. Performance is as expected correlated to the collection size, with

the best results being obtained for full text collections and the worst when 90% of them is removed.

Interestingly, the performance drop is not drastic for either collection. For instance, with only 10% of

the initial collections, accuracy decreases from 12.1 to 10.2 for wiki (a 15.7% relative decrease) and

from 17.2 to 15.6 for flcust (a 9.3% relative decrease) with the best performing RidgeS→V model. This

is all the more surprising as the score of 15.6 obtained with only 10% of the flcust collection can still

be considered to be state-of-the-art with respect to previously published results.

3.2.6 Error analysis

We analyze how far incorrect predictions are from the correct class by computing the distance

between the predicted class and the correct class. We define the distance between two classes as the

shortest path between them in the WordNet hierarchy. For a given distance d, we measure the number

of predictions that are exactly d nodes away from the correct class, a distance of 0 being a correct

prediction. Results for wiki and flcust are presented in Figure 3.3(a); the general tendency seems to be

that classes farther away from the correct class are less likely to be predicted. Note that no two test

classes are at a distance of one from each other, since it is not possible for a test class to be a direct

124

3.2. EVALUATION OF THE PROPOSED SEMANTIC EMBEDDINGS

Figure 3.3 – (a) Distance from predicted class to correct class in the WordNet hierarchy. Correlation ρ
between ZSL accuracy and (b) distance to the closest seen class, (c) the number of immediate unseen
test class siblings, (d) the number of unseen classes closer than the closest seen class, for all 500 unseen
ImageNet classes.

125

3.3. USING SENTENCES AS SEMANTIC INFORMATION

parent or child of another test class.

We further analyze the main factors behind classification errors. Experiments below are conducted

on ImageNet, with the RidgeS→V model trained using the FastText flcust embeddings. A first hypoth-

esis is that the distance between unseen and seen classes influences classification accuracy: the less an

unseen class resembles any seen class, the harder it is to identify. To test this hypothesis, we consider

for each unseen class cu the minimal distance to a seen class min
c∈Cs

d(cu, c), and analyze its relation to

the prediction accuracy. The resulting plot is displayed in Figure 3.3(b). Surprisingly, the distance to

the closest seen class seems to have little to no effect on the accuracy (correlation ρ = −0.02).

Another hypothesis may be that unseen classes close to other unseen classes are harder to classify

than isolated unseen classes, as more confusions are possible. For each unseen class, we therefore

compute the number of immediate siblings, a sibling being defined as an unseen class having the same

parent in the WordNet hierarchy as the reference (unseen) class. The link between this metric and

class accuracy is slightly stronger, with a correlation ρ = −0.16 as illustrated in Figure 3.3(c), but

still weak overall.

We combine these two hypotheses by considering the number of unseen classes closer than the

closest seen class for each unseen class. The link with class accuracy is more pronounced than by

simply considering the number of siblings, with a correlation ρ = −0.22 as illustrated in Figure 3.3(d).

Examples of classes at both ends of the spectrum are visible in Figure 3.4: unseen class morel (on

the left) is close to seen class agaric and has no unseen siblings; its class accuracy is 0.63. On the

other hand, classes holly, teak and grevillea (on the right) have many unseen siblings and are far from

any seen class; their respective accuracy are 0.01, 0.00 and 0.03. More generally, classes which are

descendant of the intermediate node woody plant have an average accuracy of 0.053. The full graph

visualization of the 1000 training classes, 500 testing classes and intermediate nodes of the ImageNet

ZSL dataset is available in Figure A.7.

3.3 Using sentences as semantic information

We have obtained interesting results in a large scale setting in Section 3.2, by creating and leverag-

ing corpora with more visual components which enable to create better performing embeddings from

class names. However, as evidenced in Figure 3.2, results with such an approach are still significantly

126

3.3. USING SENTENCES AS SEMANTIC INFORMATION

Figure 3.4 – Graph visualization of parts of the WordNet hierarchy. Green and pink leaves are resp.
seen and unseen classes. Intermediate nodes are orange if there is no seen class among their children,
and blue otherwise. Full graph is available in Figure A.7.

Figure 3.5 – Australian terrier (left) and Irish terrier (right).

127

3.3. USING SENTENCES AS SEMANTIC INFORMATION

below those obtainable with human defined attributes on CUB. We argue that this approach may

still be limited for fine-grained visual recognition. For instance, even with embeddings created from a

more “visual” corpus, it is not obvious that it is possible to learn the difference between an Australian

terrier and an Irish terrier, two classes illustrated in Figure 3.5 and present in the ImageNet dataset,

just from their class name embeddings.

Even a human would certainly need more visual information to recognize these breeds, as the

word “terrier” is common to the two classes, and the words “Australian” and “Irish” by themselves do

not provide visual information. An ideal solution could be to use short natural sentences to describe

each class, as this is less time-consuming than providing comprehensive attributes and can be more

visually informative than word embeddings derived from generic text corpora. Examples of such short

descriptions could be “small greyish wire-haired breed of terrier from Australia” and “medium-sized

breed with a wiry brown coat; developed in Ireland” for the respective classes Australian terrier and

Irish terrier. These examples are actually taken from the WordNet definitions [103] and correspond

to the class descriptions we will employ in sections 3.3.1 and 3.3.2.

The use of short sentences as class descriptions in ZSL is not well studied. Although some works

described in Section 1.3.2 make use of descriptions in natural language, they either employ large

quantities of text extracted from the Wikipedia pages of each class [35, 89, 122, 36, 170], or they use

10 short sentences per image [126]. In both cases, providing these descriptions does not save human

effort when compared to providing attributes. [54] experiments with different standard methods [68, 29]

to obtain sentence representations from WordNet definitions for ZSL. However, reported scores are

significantly below those obtained with word embeddings in the same article6.

We therefore propose different approaches to employ short descriptions in natural language for

zero-shot learning. A first approach consists in using a weighted average of word embeddings from a

definition to build a usual single semantic prototype for a given class (Section 3.3.1). Another approach

consists in adapting a ZSL model to make it capable of exploiting a variable number of prototypes per

class, and using the word embeddings from a definition as a set of prototypes (Section 3.3.2). Both

approaches are evaluated in Section 3.4.

6Experiments from [54] are performed on the biased version of ImageNet as described in [53] and in sections 1.3.2 and
A.1. As a consequence, the results cannot be directly compared to ours and are therefore not reported.

128

3.3. USING SENTENCES AS SEMANTIC INFORMATION

3.3.1 Attention approaches

The most straightforward approach to obtain a semantic prototype from a short sentence descrip-

tion consists in averaging the embeddings of the words in the description, as is usually done for class

names consisting of several words: if a sentence s describing a class has T words with respective

embeddings {v1, . . . , vT }, then the corresponding semantic representation is

s = 1
T

T∑︂
t=1

vt (3.4)

We call this baseline the Defaverage approach. However, as illustrated in Figure 3.8, not all words

are equally important in a short sentence description. We therefore explore the use of attention

mechanisms: the sentence embedding is a weighted average of the embeddings of its words, so that

more important words contribute more to the resulting embedding. We consider two ways to achieve

this: an approach in which words are weighted by their “visualness” estimated from external data

sources, and an approach in which the weights corresponding to each word are directly estimated from

the word embeddings.

Unless stated otherwise, we employ the RidgeS→V model to evaluate the resulting class prototypes,

as it has the best results on average in a large scale setting in Section 3.2 and is fairly simple with a

single hyper-parameter λ (Equation (3.9)).

3.3.1.1 Visualness-based method

In the Defvisualness approach, we aim to estimate how “visual” a word is. As an example, we

intuitively expect the word“striped” to carry a more visual connotation than the word“constitutional”.

For a given word wi, we thus collect the Mi ≤ 100 most relevant images from Flickr using the website’s

search ranking. Similarly to sections 1.3.1 and 2.5, we obtain visual representations {ri
1, . . . , ri

M } for

the M collected images using a pre-trained ResNet-101, such that rm ∈ R2048. We hypothesize that

for words with high visual content, the visual representations of collected images corresponding to this

word are close to each other. We thus measure the average distance of vectors ri
m to the mean vector

ri to obtain the quantity vi:

ri = 1
M

M∑︂
m=1

ri
m (3.5)

129

3.3. USING SENTENCES AS SEMANTIC INFORMATION

Figure 3.6 – Top: words with highest visualness. Bottom: words with lowest visualness. The visualness
of a word is the inverse of the mean distance (shown in parenthesis) to the mean representation of
visual features from the top 100 corresponding images from Flickr. Top 1 image with no copyright
restriction is displayed. Words with the highest and lowest visualness as well as corresponding inverse
visualness (the mean distance to the mean feature representations for images associated with this
word) and the corresponding top image result with no copyright restriction from Flickr.

Figure 3.7 – Inverse of the visualness (low values correspond to high visualness) for the 4059 words
from class names and WordNet definitions.

130

3.3. USING SENTENCES AS SEMANTIC INFORMATION

Figure 3.8 – Illustration of definitions and attention scores on some test classes from ImageNet, with
the associated WordNet definitions. Left : weights from the Defvisualness approach after softmax; the
temperature is τ = 5 so differences are less pronounced than initially. Right : weights learned with the
Defattention approach, with FastText embeddings.

vi = − 1
M

M∑︂
m=1

∥ri
m − ri∥2 (3.6)

which can be interpreted as the “visualness” of word wi, i.e. a measure of how visual the concept

associated with wi is. Similarly to outliers in Section 2.3 being far from more representative samples,

our intuition is that concepts with low visual content have associated images consisting mostly of

outliers, and thus have a large average inter-class distance. Examples of words with high and low

visualness shown in Figure 3.6 tend to confirm that this hypothesis is reasonable. Figure 3.7 shows

the distribution of the additive inverse of the visualness vi – i.e. the average of the raw distances to the

class mean vector ri for each word wi – for the 4059 unique words from the classnames and WordNet

definitions of the 1000 training classes and 500 testing classes from [53] that we used in Section 3.2.

Given a definition with T words with corresponding embeddings {v1, . . . , vT }, we then apply a

softmax on the corresponding visualnesses {v1, . . . , vT } to obtain a sentence representation s from the

weighted average of the embeddings, giving more weight to visual words. As the initial scale of the

average distances / negative visualnesses is arbitrary, a temperature τ is introduced in the softmax,

so that the resulting sentence embedding is

s =
T∑︂

t=1

exp(vt/τ)∑︁T
k=1 exp(vk/τ)

vt (3.7)

τ is considered to be a hyper-parameter and its value is selected by cross-validation on the validation

set, as detailed in Section 3.4.1. In practice, this often leads to selecting τ = 5. An illustration of the

resulting weights for a few sentences is shown in Figure 3.8 (left).

131

3.3. USING SENTENCES AS SEMANTIC INFORMATION

3.3.1.2 Learned attention

In the Defattention approach, we aim to learn to predict the visualness vi of word wi from its

embedding vi ∈ RK such that

vi = w⊤vi (3.8)

where w are learned parameters. Equation (3.7) can then be used to create a prototype from a class

definition. As the visualnesses vi are directly learned, it is no longer necessary to account for their

initial scale. We can thus discard the temperature in the softmax by setting τ = 1 in Equation (3.7).

Different ways could be considered to learn the parameters w from Equation (3.8). A straight-

forward approach could consist in randomly initializing w along with the parameters W from the

RidgeS→V model (Equation (3.9)), then computing visualnesses vi = w⊤vi for each word wi, comput-

ing class prototypes sc for each class c using the vi and Equation (3.7), computing T = (t1, . . . , tN)⊤

with tn = syn similarly to Section 1.2.2, and finally computing the loss of the RidgeS→V model:

1
N

∥X − TW∥2
2 + λ∥W∥2

2 (3.9)

We could then use back-propagation and gradient descent to update w and W until convergence.

However, we instead take advantage of the existence of a closed-form solution for Equation (3.9)

and proceed as follows: we randomly initialize w and compute class prototypes sc and T using

Equation (3.7) as previously. We then directly estimate W using the closed-form solution

W = (T⊤T + λNIK)−1T⊤X (3.10)

derived in Section 1.2.2 and employ this value to compute the loss in Equation (3.9). We then back-

propagate the gradient and perform gradient descent on w only, the value of W being estimated with

Equation (3.10) at each iteration. We repeat this process for 50 “epochs”. An illustration of the

resulting attention weights for a few sentences is shown in Figure 3.8 (right).

3.3.2 Multi-prototype approach

Instead of combining embeddings of words in a definition to form a single class prototype with

a fixed dimension, another solution may be to adapt existing ZSL approaches to enable the use of a

class prototype consisting of several parts with the same fixed dimension. We propose to explore this

approach by adapting the triplet loss in order to accommodate several prototypes per class.

132

3.3. USING SENTENCES AS SEMANTIC INFORMATION

In the standard approach described in Section 1.2.3 and upgraded in sections 2.1 and 2.2, for a

triplet (x, sc, sy) where x ∈ RD is a (training) visual sample with label y, sy ∈ RK is the corresponding

semantic prototype and sc ∈ RK is a different prototype, the triplet loss takes the form

[m + f(x, sc) − f(x, sy)]+ (3.11)

Instead of having a class c represented by a unique semantic vector sc, we now consider that each

class c is represented by a set of Tc prototypes {s1
c , . . . , sTc

c }, with st
c ∈ RK . Such prototypes may for

example be the embeddings {v1, . . . , vTc} of the words constituting a short sentence description of the

class.

The triplet loss in Equation (3.11) can then be adapted so that for instance, for the correct class

y, only the textual embedding st
y with the highest compatibility f(x, st

y) is taken into account, so that

the triplet loss becomes

[m + f(x, sc) − max
t∈[1,Ty]

f(x, st
y)]+ (3.12)

We note that in this example, we still consider that there is a unique prototype sc for incorrect classes

c ̸= y instead of a set of textual embeddings {s1
c , . . . , sT

c }. Such a prototype can be simply obtained

by averaging the word embeddings such that sc = 1
T

∑︁T
t=1 st

c, similarly to the Defaverage approach from

Section 3.3.1.

More generally, we can consider the P embeddings {sp1
c , . . . , spP

c } with the highest compatibility

f(x, sp
y). Writing TP = {p1, . . . , pP } the indexes of these “top-P” embeddings, the triplet loss becomes

[m + f(x, sc) − 1
P

∑︂
p∈TP

f(x, sp
y)]+ (3.13)

Finally, this approach can be extended so that we similarly consider the top-Q embeddings with

the highest compatibility for incorrect classes c ̸= y. Adapting the triplet loss from Equation (3.13)

and summing the losses over the training set in a setting similar to DeViSE (Section 1.2.3), this results

in the following total training loss:

1
N

N∑︂
n=1

∑︂
c∈CS
c̸=yn

⎡⎣m + 1
Q

∑︂
q∈TQ

f(xn, sq
c) − 1

P

∑︂
p∈TP

f(xn, sp
yn

)

⎤⎦
+

(3.14)

We note that if P and Q are equal to the number of words in each definition, this is equivalent to

133

3.4. EVALUATION OF SENTENCE-BASED APPROACHES

Word2vec GloVe FastText Elmo

Classname 12.4 14.5* 14.8 10.9

Defaverage 9.7 10.0 10.6 8.7
Defvisualness 10.5 10.5 10.9 9.5
Defattention 10.5 10.2 11.0 9.5

Table 3.6 – Comparison of approaches on ImageNet with WordNet definitions, with the
RidgeS→V model. The result marked with * corresponds to a setting similar to [53] (use of Classname
with GloVe embeddings) but with a different model.

averaging the compatibilities with all the textual embeddings. If f is further linear in s, this reduces

to the standard triplet loss from Equation (3.11).

To make predictions with a model trained with the loss from Equation (3.14), we can again use the

mean of the top R textual embeddings with the highest compatibility, and predict the unseen class c

with the highest such mean:

ŷ = argmax
c∈CU

1
R

∑︂
r∈TR

f(x, sr
c) (3.15)

Alternatively, we can make standard predictions similarly to Equation (1.4) from Section 1.1.3 using

the mean of textual embeddings as a single prototype:

ŷ = argmax
c∈CU

f(x,
1
R

∑︂
r∈TR

sr
c) (3.16)

Both approaches from equations (3.15) and (3.16) are equivalent when the compatibility function f is

linear with respect to s.

3.4 Evaluation of sentence-based approaches

3.4.1 Evaluation of the visualness-based methods

The sentence embeddings obtained from the two approaches Defvisualness and Defattention can be

compared to the standard class prototypes obtained by embedding the class names, which we call

the Classname approach. We conduct our experiments on the large scale ImageNet [33] dataset,

using the WordNet [103] definitions corresponding to the synsets associated with the classes as short

sentence descriptions. As stated in Section 3.3.1, we employ the RidgeS→V model to measure the ZSL

performance associated with the obtained sentence embeddings.

134

3.4. EVALUATION OF SENTENCE-BASED APPROACHES

We use the same experimental protocol as in Section 3.2, i.e. the same as in [53]. In particular, we

employ the same train / test splits, and the same ℓ2-normalized visual features extracted with a pre-

trained ResNet model. Similarly to Section 3.2, we evaluate performance with the three embedding

models Word2vec, GloVe and FastText. We also conduct experiments with the Elmo [118] embedding

model, which enables to obtain word embeddings that depend on the context of the words. This ability

may be beneficial since we are interested in obtaining semantic representations from full sentences.

For Glove and FastText, we use the same pre-trained embeddings4 as in Section 3.2.1; for Word2vec,

we employ a model pre-trained on Wikipedia7. All three models have an embedding dimension of

K = 300. For Elmo, we similarly use a pre-trained version8. Elmo embeddings have dimension 3×1024

(a 1024-dimensional embedding from each of the three layers). For the sake of simplicity we combine

the three layers using the same weight of 0.33 to obtain a single 1024-dimensional representation for

each word, as weights fine-tuned for our specific task gave similar results.

Results are shown in Table 3.6. The result for GloVe embeddings with the Classname approach

(marked with“*”) corresponds to a setting similar to the one from [53], but with the better performing

RidgeS→V model. Results with the Classname approach correspond to the results with pre-trained

embedding models from Table 3.1.

The baseline Defaverage performs poorly compared to the usual Classname approach. Attention

mechanisms provide a slight improvement, with comparable results for the two approaches Defvisualness

and Defattention, but performance remains significantly below that of the Classname approach. This is

consistent with results reported in [54], in which embeddings obtained from WordNet definitions also

performed significantly worse than class name embeddings6. Similarly to Section 3.2, the embedding

model has an impact on performance, with FastText performing consistently better than the other two

non-contextual embedding models. Elmo has surprisingly low performance, including with attention,

even though one could expect attention to be more effective here as Elmo can be considered to embed

the role of a word in a sentence.

7The pre-trained embeddings for Word2vec can be downloaded from https://wikipedia2vec.github.io/

wikipedia2vec/pretrained/ (English version trained on Wikipedia with 300 dimensions).
8The pre-trained Elmo model can be downloaded from https://allennlp.org/elmo. We use the original version

with 93.6 million parameters, pre-trained on the 1 Billion Word Benchmark [26].

135

https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://wikipedia2vec.github.io/wikipedia2vec/pretrained/
https://allennlp.org/elmo

3.4. EVALUATION OF SENTENCE-BASED APPROACHES

Multi-proto pred. Standard pred. P = 1 P = ∞
Multi-prototypes from lemmas

DeViSE, no-norm (11.0) 11.0* - -
DeViSE, norm (12.1) 13.4 - -

Multi-P., no-norm 13.3 11.6 13.3 10.7
Multi-P., norm 13.5 13.1 13.5 12.0

Multi-prototypes from definitions

DeViSE, no-norm (6.3) 6.3 - -
DeViSE, norm (5.3) 9.3 - -

Multi-P., no-norm 8.0 3.8 6.3 6.1
Multi-P., norm 8.0 5.0 5.3 5.1

Table 3.7 – Multi-proto pred. column: the Multi-Prototype model is trained with Equation (3.14).
DeViSE is trained with the standard triplet loss similarly to Equation (3.11). Predictions are made
with Equation (3.15), P = Q = R is cross-validated when applicable. Standard pred. column:
same as leftmost column, but predictions are made with Equation (3.16). P = 1 column: we fix
P = Q = R = 1. P = ∞ column: all lemmas or all words from definitions are used. The results are
obtained on the ImageNet dataset with WordNet definitions and lemmas, and GloVe embeddings.

3.4.2 Multi-prototype

We conduct experiments on the ImageNet dataset similarly to Section 3.4.1, with the same experi-

mental setting. We compare results obtained with the multi-prototype approach from Equation (3.14)

with a standard triplet loss approach (Equation (3.11)) similar to DeViSE, in which the word embed-

dings are averaged to obtain a single prototype sc = 1
T

∑︁T
t=1 st

c per class c. We also compare with

results obtained using a multi-prototype approach with class names instead of descriptions in natural

language. Since some classes from ImageNet have “synsets” consisting of multiple lemmas, themselves

possibly consisting of multiple words, we treat the different words from these lemmas in the same way

as a short sentence.

For both the Multi-Prototype and the DeViSE model, we consider two variants: the“norm”variant,

in which the projections Ws of semantic prototypes are ℓ2-normalized, so that the compatibility

function is

f(x, s) = x⊤ Ws
∥Ws∥2

(3.17)

and the “no-norm” variant, in which the compatibility function is simply f(x, s) = x⊤Ws. In the

latter case, f is linear in s. For both the DeViSE-like model and the Multi-Prototype approach, we

use a margin of m = 0.1. For the sake of simplicity, we employ P = Q = R in equations (3.14), (3.15)

136

3.4. EVALUATION OF SENTENCE-BASED APPROACHES

Figure 3.9 – Illustration of the word compatibilies associated with the descriptions of the top-5 can-
didates with the multi-prototype method. Compatibility is displayed for words with a positive com-
patibility only. P = Q = R = 3 is used for training and predictions. The correct class is displayed in
orange.

137

3.4. EVALUATION OF SENTENCE-BASED APPROACHES

and (3.16) when applicable. The exact value of this hyper-parameter is selected by cross-validation.

Results are shown in Table 3.7. The leftmost column Multi-proto pred. provides results with

the model trained with the multi-prototype loss from Equation (3.14) (or a loss derived from Equa-

tion (3.11) for DeViSE), and predictions made with Equation (3.15) for both DeViSE (in which case we

use all multi-prototypes to make predictions) and the Multi-Prototype model. The Multi-Prototype

model obtains better results than DeViSE when we employ the distinct lemmas of a synset as multi-

prototypes. Interestingly, a value of P = 1 is selected by cross-validation in this case, meaning that

the model only considers the most compatible lemma. However, the results of the Multi-Prototype

model with multi-prototypes consisting of words from definitions are still significantly below. In this

case, a value of P = 3 is selected by cross-validation, meaning that the model considers the 3 most

compatible words from a definition.

In the Standard pred. column, we use the same models as is the Multi-proto pred. column but

we make “standard” predictions with Equation (3.16), using a single average prototype per class.

Unsurprisingly, this results in better scores for DeViSE and worse scores for the Multi-Prototype

approach, since the former was not trained with multiple prototypes while the latter was. We note

that as expected, results are the same as in the Multi-proto pred. column for the “no-norm”variants of

DeViSE since in these cases the compatibility function is linear in s. These settings are similar to the

one from [53], and we obtain comparable results with DeViSE using the embeddings from lemmas.

Finally, we conduct experiments setting P to 1 and to ∞, meaning in the latter case that we

consider all multi-prototypes in Equation (3.14) (up to 9 lemmas and up to 45 words in definitions).

The results are visible in the two rightmost columns of Table 3.7. For the multi-prototypes from

lemmas, the results are the same as in the leftmost column since we selected a value of P = 1 by cross-

validation. For the multi-prototypes from definitions, results are worse than in the leftmost column

corresponding to P = 3 .This means that we selected a somehow relevant value of P , as using a single

word or all the words leads to worse results in this context.

However, in all cases, the performance using definitions remains far below the one obtained with

lemma embeddings, despite compatibility scores on individual words looking mostly reasonable (Fig-

ure 3.9). The performance reached with this approach is also below that of the attention approaches

from Section 3.3.1.

138

3.5. COMBINATION OF SENTENCES AND CLASS NAMES

3.5 Combination of sentences and class names

So far, the results obtained using short sentence definitions alone are not as good as the results ob-

tained with standard unsupervised prototypes using class names in the form of lemmas. This may be

partly explained by the fact that some of the definitions from WordNet do not really include relevant

information to describe a class. For instance, for the two test classes turtledove and Australian turtle-

dove, the corresponding descriptions are “any of several Old World wild doves” and “small Australian

dove”. However, we hypothesize that in other cases there may still be some interesting additional

information in these definitions compared to the class names alone.

We therefore experiment with a very simple approach to combine these sources of information:

given s1 and s2 ∈ RK two semantic representations obtained with different approaches, for example

the Classname and Defaverage approaches from Section 3.3.1, we create a combined prototype s as a

convex combination of the two prototypes parameterized by a scalar µ ∈ [0, 1]:

s = µs1 + (1 − µ)s2 (3.18)

We use this idea to combine Classname prototypes with representations of sentences from Sec-

tion 3.3.1 which, contrary to the multi-prototype approaches, have the advantage of easily providing a

single fixed-dimension representation of a sentence, and offer better performance. We call for instance

Classname+Defvisualness the combination of the Classname prototype with the Defvisualness prototype

using Equation (3.18). Since recent results show that hierarchical and graph relations between classes

contain valuable information [53, 60], in the Classname+Parent approach we combine the prototype

obtained using a class lemmas with the prototype resulting from the lemmas of its parent in the

WordNet hierarchy. We similarly define the Classname+Defvisualness+Parent as the combination of

the Classname+Defvisualness prototype with the prototype from its parent class, the latter also being

obtained by a combination of lemmas and definition embeddings.

Apart from the combination of prototypes, we use the same experimental protocol as in Sec-

tion 3.4.1, and in particular the same train/test splits, visual features and word embedding models,

and employ the RidgeS→V model as the ZSL model unless otherwise specified. All prototypes are ℓ2-

normalized before being combined. We select the value of µ jointly with the model hyper-parameters

using cross-validation, except when combining a prototype with the prototype from its parent class.

139

3.5. COMBINATION OF SENTENCES AND CLASS NAMES

Word2vec Glove FastText Elmo

Classname 12.4 14.5* 14.8 10.9
Classname+Parent 13.4 15.4 15.9 11.4

Defaverage 9.7 10.0 10.6 8.7
Defvisualness 10.5 10.5 10.9 9.5

Classname+Defaverage 14.6 16.9 17.2 12.2
Classname+Defvisualness 14.8 16.8 17.3 12.1
Classname+Defvisualness+Parent 15.4 17.3 17.8 12.5

Table 3.8 – Comparison of approaches on ImageNet with WordNet definitions, with the
RidgeS→V model. The result marked with * corresponds to a setting similar to [53] (use of Classname
with GloVe embeddings) but with a different model.

In the latter case, cross-validation tended to yield very inconsistent and unstable values. This is con-

sistent with the findings of [4], which states that it was critical in their approach to cross-validate

the weights on unseen classes when combining different semantic prototypes. In our case, whether

validation classes can be considered truly unseen is debatable, as all the 1000 ILSVRC [132] classes

we use as seen classes and unseen validation classes were used to train the visual feature extractor

(Section 1.3.1). As a result, when combining a prototype with its parent prototype, we somehow ar-

bitrarily fix µ = 0.75, meaning the resulting prototype is 75% the child prototype and 25% the parent

prototype.

Results are provided in Table 3.8. The combination of Classname with the Def approaches brings

significantly better scores than either separately. Surprisingly, while any Def approach alone has

lower performance than Classname alone, the best trade-off between the two in Equation (3.18) as

determined by µ and selected by cross-validation consists in using 70% definition and 30% classname

in every case. This means that counter-intuitively, the definition has a stronger presence than the

class name in the resulting embedding.

The use of parent information in addition to the Classname prototypes improves results when

compared to the child prototypes alone, which is consistent with [53] where the best methods make use

of hierarchical relations between classes. The same effect is observed when using parent information

with the Classname+Defvisualness approach. This enables to reach a score of 17.8 with FastText

embeddings, significantly higher than the 14.8 achieved with the use of Classname alone.

Finally, we provide additional results for different ZSL models in Table 3.9 with the best performing

140

3.6. DISCUSSION

Top-1 Top-5 Top-10

ConSE* 10.6 25.1 -
ESZSL* 13.5 32.6 -
DeViSE* 11.1 29.5 -

GCN-6*† 9.6 27.2 -
GCN-2*† 14.1 35.1 -
ADGPM*† 14.1 36.0 -

ConSE 12.7 31.8 42.4
RidgeV→S 9.1 26.2 36.7
RidgeS→V 17.8 43.6 56.7
ESZSL 16.3 40.6 52.4
DeViSE 14.0 38.3 52.1

Table 3.9 – Top-k ZSL accuracy for different models, using the Classname+Defvisualness+Parent pro-
totypes built from FastText embeddings. Results for models marked with * are reported from [53] and
employ Classname prototypes with GloVe embeddings, but make use of additional graph relations for
models marked with †.

approach, the Classname+Defvisualness+Parent approach with FastText embeddings, and report results

from [53] for comparison. Performance is significantly improved for all models.

3.6 Discussion

We argued that the quality of semantic representations plays an important role in the performance

of ZSL models, particularly in a large scale scenario. In this scenario, the usual word embeddings

may be inadequate for fine grained recognition. We proposed several approaches to produce more

suitable class prototypes, such as training embeddings on more visually oriented text corpora, or

using a combination of class name embeddings and short descriptions in natural language as semantic

representations. These methods enable to improve performance in a large scale setting while keeping

the required human annotation effort to a reasonable level.

Similarly to Chapter 2, a number of design choices had to be made, as exploring all possible varia-

tions of these proposals may not be reasonably feasible. We still explored a few different possibilities.

For instance, we experimented selecting hyper-parameters P , Q and R in equations (3.14) and (3.15)

so that they can be different from each other in the multi-prototype approach (Section 3.3.2). We

handled sentences by recasting zero-shot recognition as an image-sentence retrieval problem [156].

We tried phrase representation [102] in addition to single-word embeddings. We experimented with

141

3.6. DISCUSSION

other types of multi-modal representations [51]. However, results were either disappointing or did not

provide a significant improvement over simpler methods, so they were not included.

Furthermore, the practical relevance of some of the proposed approaches can be debated. For

instance, since we query the Flickr API to obtain the “visualness” associated with each word of a

definition in the visualness approach (Section 3.3.1.1), one may legitimately argue that it may be

easier to use this API to simply collect images from unseen classes, and thus get rid of the “zero-shot”

hardship altogether. Nonetheless, we consider that our process still provides interesting insights and

constitutes a challenging baseline. In addition, this method is not exclusive to Flickr and is transferable

to other situations. Furthermore, the approach based on learned attention produces comparable results

while being more applicable in practice.

Finally, despite the observed significant improvements, the performance of zero-shot recognition

in the large scale scenarios explored in this chapter remains quite low. However, we consider that

focusing on the semantic representation aspect of the zero-shot learning task is promising. We hope

that in addition to the current focus on the zero-shot learning models themselves, future works will

also take this aspect into consideration.

142

Conclusion

143

3.7. SUMMARY OF CONTRIBUTIONS

3.7 Summary of contributions

Throughout this manuscript, we focused on zero-shot learning as a means to decrease the need

for human-provided annotations. We specifically focused on the more realistic generalized zero-shot

learning setting, in which test classes can be both seen and unseen, as well as the more challenging

large scale setting, in which semantic prototypes are obtained in an unsupervised manner.

In a first part, we identified several implicit assumptions frequently made by ranking methods,

also called triplet loss methods, which may be detrimental to their performance. The first of these

assumptions is the idea that different classes are equally distinct. In practice, some classes may be close

to being indistinguishable even for a human, as illustrated on the CUB dataset. Penalizing confusions

between such similar classes as much as confusions between very dissimilar classes may have adverse

effects on the robustness of the learned multi-modal relations. We thus introduced a flexible semantic

margin in the hinge rank loss, which depends on the distance between classes in the semantic space and

takes attribute correlations into account. We further argued that in the usual formulation of the triplet

loss, the actual value of the margin has little effect as the norm of the learned multi-modal projections

can be arbitrarily scaled to compensate for the value of the margin. We thus proposed to constrain

the norms of these projections, while still leaving some flexibility to the model with respect to the

scale of these norms. Finally, zero-shot learning models usually consider that all training samples are

relevant and should therefore be treated equally, while some instances may actually be highly atypical

– again as illustrated on the CUB dataset. We introduced a simple weighting scheme in the training

loss to take this effect into account. These different ideas led to the introduction of a reasonably simple

zero-shot learning model based on a triplet loss. Notably, once trained, predictions can be made with

either one or two elementary bi-linear projections from the visual features and semantic prototypes.

State-of-the-art results were achieved in our experimental evaluation.

We then considered the gap between the accuracies on seen and unseen classes many models

suffer from in a generalized zero-shot learning setting. We provided some theoretical and empirical

insights on why this gap exists, and introduced a simple calibration process to reduce this gap and

therefore increase performance. This process is based on a training-validation-testing split specific to

generalized zero-shot learning and is applicable to most existing models. Experimental evaluations

144

3.7. SUMMARY OF CONTRIBUTIONS

showed a significant increase in performance for all evaluated models on all datasets. Importantly,

this process can easily be combined with our proposed triplet loss model. This combination enables

our model to equal or surpass the performance of generative methods, while being less restrictive in

practice: while most best performing generative models require at least some additional training to

assimilate new classes, our model can operate in a strictly class-inductive setting.

Some of the contributions in this first part were published in the proceedings of the International

Conference on MultiMedia Modeling, 2019 [79], the others in the proceedings of the International

Conference on Computer Vision, 2019 [80]. Our implementation of the triplet loss model has been

released9. In addition, an adaptation of the survey of the state-of-the-art (Chapter 1) is in the process

of being published as the chapter of a book on deep learning (release planned in early 2021).

In a second part, we focused on semantic representations in the context of large-scale zero-shot

learning. In this context, class prototypes usually consist of word embeddings of the class names. We

argued that embeddings trained on prevailing text corpora are likely to be unsuited for fine-grained

zero-shot recognition. We thus proposed to collect new corpora with more visually oriented textual

content by retrieving user-defined tags and image descriptions. We further proposed to adapt the

usual skip-gram objective to take into account some phenomena related to this context, such as bulk-

tagging. This adaptation can be reduced to some simple pre-processing steps, and thus enables to train

most popular word embedding models with their original implementations. Experimental evaluation

showed that the resulting embeddings lead to significantly better results in a large scale setting for

most evaluated zero-shot learning models. However, evaluation on smaller scale datasets showed

that performance is still considerably lower than performance obtained with hand-crafted attributes,

particularly for the fine-grained dataset.

We then argued that using class name embeddings as semantic representations may have some

hard limitations. We thus proposed to employ short descriptions in natural language as semantic

information, and experimented with several approaches applicable to this task. In a first approach,

we aimed to obtain a single prototype from a short sentence by using a weighted average of the

constituting word embeddings. In a second approach, we instead adapted the triplet loss to enable

a model to handle several semantic prototypes, and used the individual word embeddings as distinct

9https://github.com/yannick-lc/iccv2019-triplet-loss

145

https://github.com/yannick-lc/iccv2019-triplet-loss

3.8. PERSPECTIVES

prototypes. While qualitatively, the weights given to each word in a sentence seemed reasonable for

both approaches, the quantitative results were disappointing. Indeed, both approaches led to results

below the class name embedding baseline.

We finally experimented with the combination of prototypes obtained from class name embeddings

and from short descriptions. We performed this with a simple convex combination. As recent large

scale models make use of the class hierarchy, we further incorporated some information from parent

classes. In spite of the poor performance of short definitions alone, this combination led to significantly

better scores in our experimental evaluation.

Some contributions in this second part were published in the proceedings of the European Confer-

ence on Computer Vision Workshops, 2020 [81], and some are about to be published in the proceedings

of the Asian Conference on Computer Vision, 2020 [82]. Corresponding semantic representations as

well as the code used to generate them are in the process of being made publicly available on GitHub10.

3.8 Perspectives

Even though they already enabled interesting results, many of our proposed contributions could

be further explored. For instance, the current triplet loss model is based on elementary linear projec-

tions. Even though this simple architecture may be considered a strength, it could still be interesting

to explore more complex, non linear architectures. Nonetheless, such architectures may require larger

datasets to be efficiently trained. Additionally, as mentioned in Section 1.2.4, some generative meth-

ods [152, 162] incorporate a regression or classification loss besides the usual VAE or GAN losses. It

may thus be worth it to try to combine high performing generative architectures with the proposed

enhanced triplet loss.

Similarly, our proposed methods for employing short descriptions as semantic representations are

fairly simple for now, even though they still lead to increased scores when combined with other types

of embeddings. This “simplicity” is partly due to the limited amount of training data, as our models

only had access to a thousand short sentences for training. With a larger training dataset, it is

likely that other more complex approaches may produce better results. Since the combination of

prototypes obtained from these simple methods with class name embeddings is already promising, it

10https://github.com/yannick-lc/zsl-sentences

https://github.com/yannick-lc/semantic-embeddings-zsl

146

https://github.com/yannick-lc/zsl-sentences
https://github.com/yannick-lc/semantic-embeddings-zsl

3.8. PERSPECTIVES

seems reasonable to think that an approach leading to better results with sentences alone may produce

exciting results when combined with class name embeddings.

Beyond these contributions to zero-shot learning, some ideas may also be transposed to different

tasks. For instance, the tasks of person re-identification and multimedia retrieval also frequently make

use of the hinge rank loss. It could therefore be beneficial to explore whether some contributions can be

applied to these tasks. Applications to different multi-modal tasks in general such as Visual Question

Answering (VQA), that similarly to ZSL aims at relating visual to textual information, may also be

contemplated. On the other hand, advances in VQA may similarly have an impact on the field of ZSL.

For instance, in the recent LXMERT architecture [146], a single model is trained on multiple tasks

such as cross-modality matching and image question answering. Leveraging VQA datasets may thus

enable to produce more robust visual-textual mappings from larger datasets, which may be exploited

for zero-shot recognition.

Finally, we remain optimistic regarding the large-scale zero-shot learning scenario. Even though

current scores are still arguably too low for many practical use cases, we hope our contributions will

emulate further research regarding the semantic representations of classes. Indeed, this element seems

to be a crucial point for large scale zero-shot learning scenarios, and yet very few works have focused

on this aspect. Similarly to how zero-shot recognition benefited from advances in computer vision

in general, it is also likely that advances in different fields such as natural language processing could

benefit to this task. In the long term, an efficient large scale zero-shot recognition model based on

unsupervised class prototypes would constitute a tremendous achievement in data frugality, and could

greatly contribute to democratize the use of computer vision and machine learning.

147

3.8. PERSPECTIVES

148

Bibliography

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed

systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for attribute-based

classification. In Computer Vision and Pattern Recognition, pages 819–826, 2013.

[3] Z. Akata, F. Perronnin, Z. Harchaoui, and C. Schmid. Label-embedding for image classification.

Pattern Analysis and Machine Intelligence, 38(7):1425–1438, 2015.

[4] Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for

fine-grained image classification. In Computer Vision and Pattern Recognition, 2015.

[5] Y. Annadani and S. Biswas. Preserving semantic relations for zero-shot learning. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, pages 7603–7612, 2018.

[6] M. Arjovsky and L. Bottou. Towards principled methods for training generative adversarial

networks. arXiv preprint arXiv:1701.04862, 2017.

[7] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,

2017.

[8] A. Bansal, K. Sikka, G. Sharma, R. Chellappa, and A. Divakaran. Zero-shot object detection.

In European Conference on Computer Vision, 2018.

[9] R. H. Bartels and G. W. Stewart. Solution of the matrix equation ax+ xb= c [f4]. Communi-

cations of the ACM, 15(9):820–826, 1972.

149

BIBLIOGRAPHY

[10] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. In European

conference on computer vision, pages 404–417. Springer, 2006.

[11] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Generalized denoising auto-encoders as generative

models. In Advances in neural information processing systems, pages 899–907, 2013.

[12] C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[13] J. Blitzer, D. P. Foster, and S. M. Kakade. Zero-shot domain adaptation: A multi-view approach.

Tech. Rep. TTI-TR-2009-1, 2009.

[14] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with subword

information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017.

[15] A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel.

In Proceedings of the 6th ACM international conference on Image and video retrieval, pages

401–408, 2007.

[16] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image

synthesis. arXiv preprint arXiv:1809.11096, 2018.

[17] M. Bucher, S. Herbin, and F. Jurie. Generating visual representations for zero-shot classification.

In Proceedings of the IEEE International Conference on Computer Vision Workshops, pages

2666–2673, 2017.

[18] M. Bucher, S. Herbin, and F. Jurie. Zero-shot classification by generating artificial visual fea-

tures. In RFIAP, 2018.

[19] M. Bucher, V. Tuan-Hung, M. Cord, and P. Pérez. Zero-shot semantic segmentation. In Advances

in Neural Information Processing Systems, pages 468–479, 2019.

[20] J. Callan. The lemur project and its clueweb12 dataset. In Invited talk at the SIGIR 2012

Workshop on Open-Source Information Retrieval, 2012.

[21] J. Callan, M. Hoy, C. Yoo, and L. Zhao. The clueweb09 dataset, 2009. URL http://boston. lti.

cs. cmu. edu/Data/clueweb09, 2009.

150

BIBLIOGRAPHY

[22] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized classifiers for zero-shot learning.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5327–

5336, 2016.

[23] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Classifier and exemplar synthesis for zero-shot

learning. International Journal of Computer Vision, 128(1):166–201, 2020.

[24] W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized

zero-shot learning for object recognition in the wild. In European Conference on Computer

Vision, pages 52–68. Springer, 2016.

[25] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:

Delving deep into convolutional nets. In British Machine Vision Conference, BMVC 2014,

Nottingham, UK, September 1-5, 2014, 2014.

[26] C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants, P. Koehn, and T. Robinson. One

billion word benchmark for measuring progress in statistical language modeling. arXiv preprint

arXiv:1312.3005, 2013.

[27] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning affordance for direct

perception in autonomous driving. In Proceedings of the IEEE International Conference on

Computer Vision, pages 2722–2730, 2015.

[28] L. Chen, H. Zhang, J. Xiao, W. Liu, and S.-F. Chang. Zero-shot visual recognition using

semantics-preserving adversarial embedding networks. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 1043–1052, 2018.

[29] A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learning of universal

sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364,

2017.

[30] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector

machines. Journal of Machine Learning Research, 2(Dec):265–292, 2001.

151

BIBLIOGRAPHY

[31] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs

with fast localized spectral filtering. In Advances in neural information processing systems,

pages 3844–3852, 2016.

[32] B. Demirel, R. G. Cinbis, and N. Ikizler-Cinbis. Zero-shot object detection by hybrid region

embedding. In British Machine Vision Conference (BMVC), 2018.

[33] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical

image database. In Computer Vision and Pattern Recognition, pages 248–255. Ieee, 2009.

[34] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of machine learning research, 12(Jul):2121–2159, 2011.

[35] M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely

textual descriptions. In Proceedings of the IEEE International Conference on Computer Vision,

pages 2584–2591, 2013.

[36] M. Elhoseiny, Y. Zhu, H. Zhang, and A. Elgammal. Link the head to the” beak”: Zero shot

learning from noisy text description at part precision. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6288–6297. IEEE, 2017.

[37] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth. Describing objects by their attributes. In

Computer Vision and Pattern Recognition, pages 1778–1785. IEEE, 2009.

[38] T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874, 2006.

[39] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE transactions

on pattern analysis and machine intelligence, 28(4):594–611, 2006.

[40] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean, T. Mikolov, et al. Devise: A deep visual-

semantic embedding model. In Advances in Neural Information Processing Systems, 2013.

[41] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Learning multimodal latent attributes. IEEE

transactions on pattern analysis and machine intelligence, 36(2):303–316, 2013.

[42] Y. Fu, T. M. Hospedales, T. Xiang, and S. Gong. Transductive multi-view zero-shot learning.

IEEE transactions on pattern analysis and machine intelligence, 37(11):2332–2345, 2015.

152

BIBLIOGRAPHY

[43] Y. Fu, T. Xiang, Y.-G. Jiang, X. Xue, L. Sigal, and S. Gong. Recent advances in zero-shot

recognition: Toward data-efficient understanding of visual content. IEEE Signal Processing

Magazine, 35(1):112–125, 2018.

[44] Y. Fu, Y. Yang, T. Hospedales, T. Xiang, and S. Gong. Transductive multi-label zero-shot

learning. arXiv preprint arXiv:1503.07790, 2015.

[45] E. Gabrilovich, S. Markovitch, et al. Computing semantic relatedness using wikipedia-based

explicit semantic analysis. In IJcAI, volume 7, pages 1606–1611, 2007.

[46] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[47] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and

Y. Bengio. Generative adversarial nets. In Advances in neural information processing systems,

pages 2672–2680, 2014.

[48] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of

wasserstein gans. In Advances in neural information processing systems, pages 5767–5777, 2017.

[49] Y. Guo, G. Ding, J. Han, and Y. Gao. Synthesizing samples fro zero-shot learning. In IJCAI.

IJCAI, 2017.

[50] Y. Guo, G. Ding, J. Han, and S. Tang. Zero-shot learning with attribute selection. In Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[51] T. Gupta, A. Schwing, and D. Hoiem. Vico: Word embeddings from visual co-occurrences. In

Proceedings of the IEEE International Conference on Computer Vision, pages 7425–7434, 2019.

[52] A. Habibian, T. Mensink, and C. G. Snoek. Composite concept discovery for zero-shot video

event detection. In Proceedings of International Conference on Multimedia Retrieval, pages

17–24, 2014.

[53] T. Hascoet, Y. Ariki, and T. Takiguchi. On zero-shot recognition of generic objects. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9553–9561,

2019.

153

BIBLIOGRAPHY

[54] T. Hascoet, Y. Ariki, and T. Takiguchi. Semantic embeddings of generic objects for zero-shot

learning. EURASIP Journal on Image and Video Processing, 2019(1):13, 2019.

[55] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[56] G. Hinton. Neural networks for machine learning. lecture 6a: Overview of mini-batch gradient

descent. Coursera lecture slides, 2012.

[57] G. E. Hinton and S. T. Roweis. Stochastic neighbor embedding. In Advances in Neural Infor-

mation Processing Systems, pages 857–864, 2003.

[58] Z. Hu, J. Tang, Z. Wang, K. Zhang, L. Zhang, and Q. Sun. Deep learning for image-based cancer

detection and diagnosis- a survey. Pattern Recognition, 83:134–149, 2018.

[59] D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic visual attributes by resisting

the urge to share. In Computer Vision and Pattern Recognition, pages 1629–1636, 2014.

[60] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang, and E. P. Xing. Rethinking knowledge

graph propagation for zero-shot learning. In Computer Vision and Pattern Recognition, pages

11487–11496, 2019.

[61] N. Karessli, Z. Akata, B. Schiele, and A. Bulling. Gaze embeddings for zero-shot image classifi-

cation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

4525–4534, 2017.

[62] A. Karpathy and L. Fei-Fei. Deep visual-semantic alignments for generating image descriptions.

In Computer Vision and Pattern Recognition, pages 3128–3137, 2015.

[63] A. Karpathy, A. Joulin, and L. F. Fei-Fei. Deep fragment embeddings for bidirectional image

sentence mapping. In Advances in Neural Information Processing Systems, pages 1889–1897,

2014.

[64] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li. Novel dataset for fine-grained image

categorization: Stanford dogs. In Proc. CVPR Workshop on Fine-Grained Visual Categorization

(FGVC), 2011.

154

BIBLIOGRAPHY

[65] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[66] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on

Learning Representations, 2014.

[67] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

[68] R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler.

Skip-thought vectors. In Advances in neural information processing systems, pages 3294–3302,

2015.

[69] E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised domain adaptation for zero-shot

learning. In Proceedings of the IEEE international conference on computer vision, pages 2452–

2460, 2015.

[70] E. Kodirov, T. Xiang, and S. Gong. Semantic autoencoder for zero-shot learning. In Computer

Vision and Pattern Recognition, pages 4447–4456. IEEE, 2017.

[71] H.-P. Kriegel, P. Kröger, E. Schubert, and A. Zimek. Loop: local outlier probabilities. In

Proceedings of the 18th ACM conference on Information and knowledge management, pages

1649–1652, 2009.

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional

neural networks. In Advances in Neural Information Processing Systems, pages 1097–1105, 2012.

[73] S. Kullback and R. A. Leibler. On information and sufficiency. The annals of mathematical

statistics, 22(1):79–86, 1951.

[74] B. Lake, R. Salakhutdinov, J. Gross, and J. Tenenbaum. One shot learning of simple visual

concepts. In Proceedings of the annual meeting of the cognitive science society, volume 33, 2011.

[75] C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by

between-class attribute transfer. In Computer Vision and Pattern Recognition, 2009. CVPR

2009. IEEE Conference on, pages 951–958. IEEE, 2009.

155

BIBLIOGRAPHY

[76] C. H. Lampert, H. Nickisch, and S. Harmeling. Attribute-based classification for zero-shot visual

object categorization. Pattern Analysis and Machine Intelligence, 36(3):453–465, 2014.

[77] H. Larochelle, D. Erhan, and Y. Bengio. Zero-data learning of new tasks. In AAAI, volume 2,

pages 646–651, 2008.

[78] A. Lazaridou, G. Dinu, and M. Baroni. Hubness and pollution: Delving into cross-space mapping

for zero-shot learning. In Proceedings of the 53rd Annual Meeting of the Association for Compu-

tational Linguistics and the 7th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 270–280, 2015.

[79] Y. Le Cacheux, H. Le Borgne, and M. Crucianu. From classical to generalized zero-shot learning:

A simple adaptation process. In International Conference on Multimedia Modeling, pages 465–

477. Springer, 2019.

[80] Y. Le Cacheux, H. Le Borgne, and M. Crucianu. Modeling inter and intra-class relations in

the triplet loss for zero-shot learning. In Proceedings of the IEEE International Conference on

Computer Vision, pages 10333–10342, 2019.

[81] Y. Le Cacheux, H. Le Borgne, and M. Crucianu. Using sentences as semantic representations in

large scale zero-shot learning. European Conference on Computer Vision Workshops, 2020.

[82] Y. Le Cacheux, A. Popescu, and H. Le Borgne. Webly supervised semantic embeddings for large

scale zero-shot learning. Asian Conference on Computer Vision, 2020.

[83] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature, 521(7553):436–444, 2015.

[84] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551,

1989.

[85] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D.

Jackel. Handwritten digit recognition with a back-propagation network. In Advances in neural

information processing systems, pages 396–404, 1990.

[86] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

156

BIBLIOGRAPHY

[87] O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices.

Journal of Multivariate Analysis, 88:365–411, 2004.

[88] C.-W. Lee, W. Fang, C.-K. Yeh, and Y.-C. Frank Wang. Multi-label zero-shot learning with

structured knowledge graphs. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1576–1585, 2018.

[89] J. Lei Ba, K. Swersky, S. Fidler, et al. Predicting deep zero-shot convolutional neural networks

using textual descriptions. In Proceedings of the IEEE International Conference on Computer

Vision, pages 4247–4255, 2015.

[90] X. Li and Y. Guo. Max-margin zero-shot learning for multi-class classification. In Artificial

Intelligence and Statistics, pages 626–634, 2015.

[91] Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In International

Conference on Machine Learning, pages 1718–1727, 2015.

[92] Y. Li, J. Zhang, J. Zhang, and K. Huang. Discriminative learning of latent features for zero-

shot recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 7463–7471, 2018.

[93] J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR 2011,

pages 3337–3344. IEEE, 2011.

[94] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International journal of

computer vision, 60(2):91–110, 2004.

[95] Y. Lu. Unsupervised learning on neural network outputs: with application in zero-shot learning.

arXiv preprint arXiv:1506.00990, 2015.

[96] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of machine learning

research, 9(Nov):2579–2605, 2008.

[97] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial autoencoders. arXiv

preprint arXiv:1511.05644, 2015.

157

BIBLIOGRAPHY

[98] T. Mensink, E. Gavves, and C. G. Snoek. Costa: Co-occurrence statistics for zero-shot classifi-

cation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

2441–2448, 2014.

[99] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Distance-based image classification:

Generalizing to new classes at near-zero cost. IEEE transactions on pattern analysis and machine

intelligence, 35(11):2624–2637, 2013.

[100] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in

vector space. arXiv preprint arXiv:1301.3781, 2013.

[101] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin. Advances in pre-training

distributed word representations. arXiv preprint arXiv:1712.09405, 2017.

[102] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations

of words and phrases and their compositionality. In Advances in neural information processing

systems, pages 3111–3119, 2013.

[103] G. A. Miller. WordNet: An electronic lexical database. MIT press, 1998.

[104] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint

arXiv:1411.1784, 2014.

[105] A. Mishra, S. Krishna Reddy, A. Mittal, and H. A. Murthy. A generative model for zero shot

learning using conditional variational autoencoders. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition Workshops, pages 2188–2196, 2018.

[106] P. Nevavuori, N. Narra, and T. Lipping. Crop yield prediction with deep convolutional neural

networks. Computers and electronics in agriculture, 163:104859, 2019.

[107] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large number of classes.

In 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing, pages 722–

729. IEEE, 2008.

[108] M. Norouzi, T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. S. Corrado, and J. Dean.

Zero-shot learning by convex combination of semantic embeddings. In International Conference

on Learning Representations, pages 488–501, 2014.

158

BIBLIOGRAPHY

[109] G. Obozinski, B. Taskar, and M. Jordan. Multi-task feature selection. Statistics Department,

UC Berkeley, Tech. Rep, 2(2.2):2, 2006.

[110] A. Odena, C. Olah, and J. Shlens. Conditional image synthesis with auxiliary classifier gans.

In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages

2642–2651. JMLR. org, 2017.

[111] N. O’Hare and V. Murdock. Modeling locations with social media. Information retrieval,

16(1):30–62, 2013.

[112] M. Palatucci, D. Pomerleau, G. E. Hinton, and T. M. Mitchell. Zero-shot learning with semantic

output codes. In Advances in neural information processing systems, pages 1410–1418, 2009.

[113] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-

jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative

style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,

F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing

Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[114] G. Patterson and J. Hays. Sun attribute database: Discovering, annotating, and recognizing

scene attributes. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages

2751–2758. IEEE, 2012.

[115] A. Paul, N. C. Krishnan, and P. Munjal. Semantically aligned bias reducing zero shot learning.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

7056–7065, 2019.

[116] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning

Research, 12:2825–2830, 2011.

[117] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representa-

tion. In Proceedings of the 2014 conference on empirical methods in natural language processing

(EMNLP), pages 1532–1543, 2014.

159

BIBLIOGRAPHY

[118] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer. Deep

contextualized word representations. In Proceedings of NAACL-HLT, pages 2227–2237, 2018.

[119] J. Platt. Probabilities for sv machines, advances in large margin classifiers, 1999.

[120] A. Popescu, G. Etienne, and H. Le Borgne. Scalable domain adaptation of convolutional neural

networks. preprint arXiv:1512.02013, 2015.

[121] A. Popescu and G. Grefenstette. Social media driven image retrieval. In Proceedings of the 1st

ACM International Conference on Multimedia Retrieval, pages 1–8, 2011.

[122] R. Qiao, L. Liu, C. Shen, and A. Van Den Hengel. Less is more: zero-shot learning from online

textual documents with noise suppression. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2249–2257, 2016.

[123] M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest neighbors in

high-dimensional data. Journal of Machine Learning Research, 11(Sep):2487–2531, 2010.

[124] S. Rahman, S. Khan, and F. Porikli. Zero-shot object detection: Learning to simultaneously

recognize and localize novel concepts. In S. LNCS, editor, Asian Conference on Computer Vision

(ACCV), Perth, Australia, 2018.

[125] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: An

astounding baseline for recognition. In Proceedings of the 2014 IEEE Conference on Computer

Vision and Pattern Recognition Workshops, CVPRW ’14, pages 512–519, Washington, DC, USA,

2014. IEEE Computer Society.

[126] S. Reed, Z. Akata, H. Lee, and B. Schiele. Learning deep representations of fine-grained vi-

sual descriptions. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 49–58, 2016.

[127] R. Richardson, J. M. Schultz, and K. Crawford. Dirty data, bad predictions: How civil rights

violations impact police data, predictive policing systems, and justice. NYUL Rev. Online, 94:15,

2019.

[128] M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In Advances

in neural information processing systems, pages 46–54, 2013.

160

BIBLIOGRAPHY

[129] M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning

in a large-scale setting. In CVPR 2011, pages 1641–1648. IEEE, 2011.

[130] B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In

International Conference on Machine Learning, pages 2152–2161, 2015.

[131] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. nature, 323(6088):533–536, 1986.

[132] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,

A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International

journal of computer vision, 115(3):211–252, 2015.

[133] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition

and clustering. In Computer Vision and Pattern Recognition, pages 815–823, 2015.

[134] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Inte-

grated recognition, localization and detection using convolutional networks. arXiv preprint

arXiv:1312.6229, 2013.

[135] Y. Shigeto, I. Suzuki, K. Hara, M. Shimbo, and Y. Matsumoto. Ridge regression, hubness,

and zero-shot learning. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, pages 135–151. Springer, 2015.

[136] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recog-

nition. arXiv preprint arXiv:1409.1556, 2014.

[137] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances in

neural information processing systems, pages 4077–4087, 2017.

[138] R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal

transfer. In Advances in Neural Information Processing Systems, pages 935–943, 2013.

[139] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional

generative models. In Advances in neural information processing systems, pages 3483–3491,

2015.

161

BIBLIOGRAPHY

[140] J. Song, C. Shen, Y. Yang, Y. Liu, and M. Song. Transductive unbiased embedding for zero-shot

learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1024–1033, 2018.

[141] S. Srivastava, I. Labutov, and T. Mitchell. Zero-shot learning of classifiers from natural language

quantification. In Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 306–316, 2018.

[142] G. Sumbul, R. G. Cinbis, and S. Aksoy. Fine-grained object recognition and zero-shot learning in

remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 56(2):770–779,

2017.

[143] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting unreasonable effectiveness of data

in deep learning era. In Proceedings of the IEEE international conference on computer vision,

pages 843–852, 2017.

[144] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and

A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[145] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. A survey on deep transfer learning.

In International conference on artificial neural networks, pages 270–279. Springer, 2018.

[146] H. Tan and M. Bansal. Lxmert: Learning cross-modality encoder representations from trans-

formers. arXiv preprint arXiv:1908.07490, 2019.

[147] The Guardian. Saola sighting in vietnam raises hopes for rare mammal’s recovery. The Guardian,

November 1999.

[148] I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine learning

for interdependent and structured output spaces. In Proceedings of the twenty-first international

conference on Machine learning, page 104, 2004.

[149] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured

and interdependent output variables. Journal of machine learning research, 6(Sep):1453–1484,

2005.

162

BIBLIOGRAPHY

[150] N. Usunier, D. Buffoni, and P. Gallinari. Ranking with ordered weighted pairwise classification.

In Proceedings of the 26th annual international conference on machine learning, pages 1057–

1064, 2009.

[151] W. N. van Wieringen. Lecture notes on ridge regression. arXiv preprint arXiv:1509.09169, 2015.

[152] V. K. Verma, G. Arora, A. Mishra, and P. Rai. Generalized zero-shot learning via synthesized

examples. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 4281–4289, 2018.

[153] V. K. Verma and P. Rai. A simple exponential family framework for zero-shot learning. In

Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages

792–808. Springer, 2017.

[154] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-UCSD Birds-200-2011

dataset, 2011.

[155] D. Wang, Y. Li, Y. Lin, and Y. Zhuang. Relational knowledge transfer for zero-shot learning.

In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[156] L. Wang, Y. Li, and S. Lazebnik. Learning deep structure-preserving image-text embeddings.

In Computer Vision and Pattern Recognition, pages 5005–5013, 2016.

[157] W. Wang, V. W. Zheng, H. Yu, and C. Miao. A survey of zero-shot learning: Settings, methods,

and applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–37,

2019.

[158] X. Wang, Y. Ye, and A. Gupta. Zero-shot recognition via semantic embeddings and knowledge

graphs. In Computer Vision and Pattern Recognition, pages 6857–6866, 2018.

[159] J. Weston, S. Bengio, and N. Usunier. Large scale image annotation: learning to rank with joint

word-image embeddings. Machine learning, 81(1):21–35, 2010.

[160] J. Weston, C. Watkins, et al. Support vector machines for multi-class pattern recognition. In

European Symposium on Artificial Neural Networks, volume 99, pages 219–224, 1999.

163

[161] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-shot learning—a comprehensive eval-

uation of the good, the bad and the ugly. IEEE transactions on pattern analysis and machine

intelligence, 41(9):2251–2265, 2018.

[162] Y. Xian, T. Lorenz, B. Schiele, and Z. Akata. Feature generating networks for zero-shot learning.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 5542–

5551, 2018.

[163] Y. Xian, B. Schiele, and Z. Akata. Zero-shot learning-the good, the bad and the ugly. In

Computer Vision and Pattern Recognition, pages 4582–4591, 2017.

[164] Y. Xian, S. Sharma, B. Schiele, and Z. Akata. f-vaegan-d2: A feature generating framework

for any-shot learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 10275–10284, 2019.

[165] X. Xu, F. Shen, Y. Yang, D. Zhang, H. Tao Shen, and J. Song. Matrix tri-factorization with man-

ifold regularizations for zero-shot learning. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 3798–3807, 2017.

[166] E. Zablocki, P. Bordes, L. Soulier, B. Piwowarski, and P. Gallinari. Context-aware zero-shot

learning for object recognition. In International Conference on Machine Learning, pages 7292–

7303, 2019.

[167] H. Zhang and P. Koniusz. Zero-shot kernel learning. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 7670–7679, 2018.

[168] L. Zhang, T. Xiang, and S. Gong. Learning a deep embedding model for zero-shot learning. In

Computer Vision and Pattern Recognition, pages 2021–2030, 2017.

[169] Z. Zhang and V. Saligrama. Zero-shot recognition via structured prediction. In European con-

ference on computer vision, pages 533–548. Springer, 2016.

[170] Y. Zhu, M. Elhoseiny, B. Liu, X. Peng, and A. Elgammal. A generative adversarial approach for

zero-shot learning from noisy texts. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1004–1013, 2018.

Appendix A

Additional details

A.1 Zero-shot learning datasets

We briefly present the zero-shot learning datasets we use throughout the manuscript.

Animals with Attributes or AwA [76] is one of the first proposed benchmarks for ZSL [75]. It

contains 50 classes representing 50 animal species such as antelope, grizzly bear or dolphin. Class

prototypes have 85 attributes such as brown, stripes, hairless or claws. Both binary and continuous

attributes are provided with the dataset. The original dataset has recently been replaced by the very

similar AwA2 [161] due to copyright issues on some images. The latter contains the same animal

species and attributes, for a total of 37322 images. 10 classes are used as unseen test classes, and the

rest represents seen training classes and validation classes.

Importantly, it has been pointed out that 6 of the initial 10 unseen test classes from AwA are also

among the 1000 classes from the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [132].

Since classes from ILSVRC are frequently used to train deep convolutional neural network employed

as visual feature extractors (Section 1.3.1), this induces an important bias in the case of zero-shot

recognition, as these classes cannot be considered as truly unseen [163]. As a result, Xian et al. [163]

introduced a new “proposed split” for this dataset such that no unseen test class is among the 1000

classes from ILSVRC. Similarly to most recent works [5, 164, 23], these are the splits we use in this

manuscript.

Caltech UCSD Birds 200-2011 or CUB [154] is referred to as a “fine-grained” dataset, as its 200

classes all correspond to bird species (black footed albatross, rusty blackbird, eastern towhee...), and

165

A.1. ZERO-SHOT LEARNING DATASETS

many categories can be considered to be fairly similar. It contains a total of 11788 images. The class

prototypes consist of 312 usually continuous attributes with values between 0 and 1. These continuous

attributes are the class average of binary attributes provided for each image. Examples of attributes

include “has crown color blue”, “has nape color white” or “has bill shape cone”. 50 classes are used as

unseen test classes. Similarly to AwA2, we also employ the seen-unseen split proposed by Xian et

al. [163].

SUN [114] is another example of a fine-grained dataset. It contains 717 classes representing different

scenes such as abbey, classroom, hospital or playground, for a total of 14340 images. Class prototypes

consist of 102 attributes, initially provided for each individual image and then averaged to obtain class

representations. Examples of attributes include fire, cluttered space or diving. 72 classes are used

as unseen test classes. Similarly to AwA2 and CUB, we employ the seen-unseen split proposed by

Xian et al. [163].

The ImageNet [33] dataset has also been used as a large-scale ZSL benchmark [129, 40, 53]. This

dataset contains classes as diverse as coyote, goldfish, lipstick or speedboat. Contrary to AwA or CUB,

the usual semantic prototypes do not consist of manually-defined attributes. Instead, word embeddings

of the class names are used as class representations – more details are provided in Section 1.3.2.

The seen training classes usually consist of the 1000 classes of the ImageNet Large Scale Visual

Recognition Challenge (ILSVRC) [132]. In the past, the approximately 20,000 remaining classes were

used as unseen test classes. However, Hascoet et al. [53] recently showed that this induces a bias, in

part due to the fact that unseen classes are often subcategories or supercategories of seen classes. The

authors suggested instead to use only a subset of 500 of the total unseen classes such that they do not

exhibit this problem. We use these 500 classes as unseen test classes in this manuscript.

Since classes from ImageNet correspond to WordNet “synsets” [103], additional information can

be provided by the WordNet database. For instance, each synset is associated with a short definition.

We make use of these definitions in Section 3.3. In addition, a word hierarchy is provided, with words

representing hypernyms or hyponyms of other words. Some models exploit this information in the

form of graph relations, as detailed in Section 1.3.2.

In addition to the four described above, other datasets have been employed as benchmarks for zero-

shot recognition. For instance, Attribute Pascal and Yahoo or aPY [37] contains 32 generic classes

166

A.2. IMPLEMENTATION DETAILS

Parameter Word2vec GloVe FastText

Epochs 25 100 25

Learning rate 0.1 0.05 0.1

Window 10 10 10

Embedding dimension 300 300 300

Table A.1 – Training parameters for the different semantic embedding models.

Model Command

word2vec -size 300 -window 1 -sample 1e-4 -negative 5 -hs 0 -binary 0
-cbow 0 -iter 25 -min-count 5

GloVe -x-max 100 -iter 100 -eta 0.05 -vector-size 300 -alpha 0.75

FastText skipgram -dim 300 -epoch 25 -minn 4 -maxn 6 -lr 0.1
-ws 10 -minCount 5

Table A.2 – Command lines used to train the embeddings.

such as person, building or wolf with 64 attributes. The Oxford Flowers-102 dataset of Flowers [107]

has been used for fine-grained recognition. Its semantic representations consist in 10 sentences per

image as in [126], or in text from the corresponding Wikipedia pages as in [89]. The Stanford Dogs

or Dogs [64] dataset has also been used as a fine-grained benchmark associated with corresponding

Wikipedia pages [4]. However, these datasets are either less common, correspond to different settings

with different semantic representations, or suffer from biases. For instance, most classes from aPY

are in the 1000 classes from ILSVRC, which induces an even greater bias than in AwA as detailed

above [163]. As a result, we do not make use of these datasets in this manuscript.

A.2 Implementation details

We provide additional implementation details regarding the parameters associated with the training

of the word embedding models from Section 3.2.1 in tables A.1 and A.2.

167

A.3. ILLUSTRATIONS

Figure A.1 – Top 4 most (middle) and least (bottom) similar classes to class Laysan Albatros (top).

A.3 Illustrations

A.3.1 Illustrative examples for the semantic margin

We provide illustrative examples of the closest and farthest classes from a few additional classes

from the CUB dataset, namely Laysan Albatross, Least Auklet (both present in Figure 2.1) and Vesper

Sparrow in figures A.1, A.2 and A.3.

The distances are computed using the process described in Section 2.1. On average, closest and

farthest classes seem to be reasonably consistent with what one would intuitively expect. Interestingly,

classes Fish Crow and American Crow appear very often among the most similar classes, even for

very different reference classes.

A.3.2 Illustrative examples for the relevance weighting

We also provide most and least relevant samples as measured by the relevance weighting scheme

described in Section 2.3 for a few additional classes from CUB, again classes Laysan Albatross, Least

Auklet and Vesper Sparrow in figures A.4, A.5 and A.6.

168

A.3. ILLUSTRATIONS

Figure A.2 – Top 4 most (middle) and least (bottom) similar classes to class Least Auklet (top).

Figure A.3 – Top 4 most (middle) and least (bottom) similar classes to class Vesper Sparrow (top).

169

A.3. ILLUSTRATIONS

Figure A.4 – Top 4 most (top) and least (bottom) relevant samples for class Laysan Albatros

Figure A.5 – Top 4 most (top) and least (bottom) relevant samples for class Least Auklet

Most and least relevant samples for each class seem to be reasonably consistent. In particular,

the nestling from Figure 2.1 is considered to be an outlier (Figure A.4). Other images considered as

irrelevant include images of low quality (low resolution, over-saturated...), with atypical background

or taken from unusual angles, e.g. focused only on a specific part of the bird.

It should be noted that if all images are relevant for a given class, some relevant images will

be included in the “least relevant” examples. However, we consider that having a relevant image

considered as irrelevant is not as detrimental as having an irrelevant image considered as relevant.

170

A.3. ILLUSTRATIONS

Figure A.6 – Top 4 most (top) and least (bottom) relevant samples for class Vesper Sparrow

A.3.3 ImageNet hierarchy

Figure A.7 represents the visualization of the full WordNet hierarchy for all 1000 (resp. 500)

training (resp. testing) classes, as well as some intermediate nodes. Parts of this hierarchy are visible

in Figure 3.4. We only keep one parent per node. For nodes which originally have several hypernyms,

we keep the nodes corresponding to the longest path to the root node“entity”; we found that this leads

to more meaningful paths, with fewer classes at each level. For example, we keep the path“greyhound”

→ “hound” → “hunting dog” → “dog” → . . .→ “animal” (visible in Fig. A.7) instead of “greyhound”

→ “racer” → “animal”. We remove intermediate nodes which are not direct hypernyms of either a

training or a testing class, as well as some other hand-picked nodes to improve readability.

It is interesting to observe that ZSL training and testing classes are not homogeneous in the

hierarchy: some tree branches contain very few unseen classes, e.g. “carnivore”, while other contain

many unseen classes and not a single seen class, e.g. “woody plant”. These latter classes appear very

challenging to correctly predict.

171

A.3. ILLUSTRATIONS

Figure A.7 – Overview of the full class hierarchy. Pink nodes refer to test classes, green nodes refer to
train classes, orange nodes have only test classes below them and blue nodes are other intermediate
nodes. Best viewed in color with at least 600% zoom.

172

Appendix B

Résumé en français

B.1 Introduction

Ces dernières années, la vision par ordinateur s’est imposée comme incontournable dans de nom-

breux domaines scientifiques comme industriels : les chèques bancaires sont généralement lus et traités

automatiquement depuis des années [84, 85], les rendements agricoles peuvent être surveillés et an-

ticipés via des images aériennes et satellite [106], la détection anticipée de tumeurs cancéreuses sur des

images médicales pourrait bientôt contribuer à sauver des milliers de vies [58], la conduite autonome

promet de révolutionner le secteur du transport [27], et de nombreuses autres innovations majeures

ne demandent qu’à voir le jour.

Pratiquement toutes ces applications reposent sur des réseaux neuronaux convolutifs profonds [86].

Ces architectures d’apprentissage automatique ou machine learning produisent des caractéristiques

(features) d’un niveau d’abstraction croissant, calculées séquentiellement à l’aide de noyaux de convolu-

tion dont les paramètres sont appris automatiquement par un modèle sur un grand nombre d’exemples

d’entrâınement. Malgré des performances inégalées, le besoin de données des modèles d’apprentissage

profond est à l’origine de nouveaux défis. Le plus évident est l’important effort d’annotation requis

pour fournir la grande quantité « d’étiquettes » (labels) nécessaires pour entrâıner un modèle neuronal

dans un contexte d’apprentissage supervisé. Cette contrainte peut être un frein à l’utilisation de ces

architectures lorsque les ressources ou les moyens nécessaires pour mettre en œuvre un investissement

aussi important ne sont pas disponibles. D’importants efforts de recherche ont été consacrés à ce

problème. Par exemple, la tâche d’apprentissage « en quelques vues » (few-shot learning) vise à con-

cevoir des modèles capables de reconnâıtre de nouvelles catégories après n’avoir eu accès qu’à quelques

173

B.1. INTRODUCTION

exemples d’entrâınement, généralement en réutilisant fortement des capacités précédemment acquises

sur des problèmes source [99, 137]. L’apprentissage « une vue » (one-shot learning) est l’application

extrême de cette idée, où seul un unique exemple d’apprentissage peut être utilisé par le modèle pour

intégrer de nouvelles catégories [39, 74].

Et pourtant, la tâche d’apprentissage « zéro vue » ou zero-shot learning (ZSL) vise à pousser cette

stratégie encore plus loin. Le but de cet exercice de frugalité ultime en termes de données est de

concevoir des modèles capables de reconnâıtre des catégories visuelles pour lesquelles aucun exemple

d’apprentissage n’est fourni [77, 75, 112]. Le principe de base peut être illustré par la capacité hu-

maine à relier des contenus visuels et non visuels. À titre d’exemple, une personne n’ayant jamais

vu une seule image ou une seule représentation d’un tigre – et n’en ayant naturellement jamais ren-

contré physiquement – devrait être en mesure d’en reconnâıtre un instantanément si on lui fournit

l’information selon laquelle un tigre est similaire à un (très) gros chat orange avec des rayures noires

et un ventre blanc. De toute évidence, une information sémantique similaire à la description du « chat

orange rayé » concernant la classe tigre est nécessaire pour que la reconnaissance « zéro-shot » soit

possible. En ce sens, les principes de base de l’apprentissage zéro-shot sont en fait assez différents de

l’apprentissage « few-shot » et « one-shot », car ces tâches sont généralement purement visuelles. À

l’inverse, l’apprentissage zéro-shot est par essence une tâche multimodale, qui nécessite la capacité de

faire le lien entre une modalité visuelle (c’est-à-dire des images) et au moins une modalité non visuelle

(par exemple du texte, des attributs...). Plus précisément, dans ce document, nous considérons que

le terme zero-shot learning fait référence à la conception et à l’entrâınement d’un modèle dont le but

est de classifier des images appartenant à des classes non vues (unseen), pour lesquelles aucun exem-

ple d’entrâınement n’est fourni. Pour ce faire, pendant la phase d’entrâınement, le modèle dispose

d’exemples appartenant aux classes vues, qui sont strictement différentes des classes non vues. Des

informations sémantiques sont en outre fournies pour les classes vues et non vues.

Historiquement, ce concept d’apprentissage zéro-shot est apparu il y a plus de dix ans avec les

travaux de pionniers tels que Larochelle et al. [77], qui ont montré qu’il était possible de reconnâıtre

automatiquement des classes de test distinctes des classes d’entrâınement, ainsi que Lampert et al. [75],

qui ont utilisé des attributs tels que « noir », « orange » ou « à rayures » pour reconnâıtre des images

d’espèces animales pour lesquelles aucun exemple d’apprentissage n’était fourni au modèle.

174

B.1. INTRODUCTION

Ce nouveau défi a rapidement suscité l’intérêt de la communauté de vision par ordinateur, et de

nouveaux modèles et jeux de données d’évaluation ont été rapidement proposés [129, 99, 2, 40, 138, 108].

Différentes tâches et contextes ont été pris en compte: Socher et al. [138] ont introduit un mécanisme

de détection de nouveauté, afin que les modèles puissent reconnâıtre à la fois les classes non vues et

vues, un contexte désormais connu sous le nom d’apprentissage zéro-shot généralisé (generalized zero-

shot learning ou GZSL1) [24]. En tant que méthode visant à réduire considérablement la quantité de

données nécessaires pour entrâıner des modèles, l’apprentissage zéro-shot est d’autant plus pertinent

dans un contexte « large échelle ». Par conséquent, Rohrbach et al. [129] ont proposé d’employer

200 des 1000 classes du challenge ILSVRC (ImageNet large scale visual recognition challenge [132])

comme classes de test non vues, en utilisant les informations hiérarchiques de WordNet pour créer

des représentations de classe. Frome et al. [40] sont allés encore plus loin, en utilisant les 1000 classes

d’ILSVRC comme des classes d’entrâınement et les 20 000 classes supplémentaires d’ImageNet comme

classes de test non vues. Comme il est généralement difficile de fournir des attributs pour des milliers de

classes, des représentations sémantiques adaptées sont nécessaires dans un contexte de si grande échelle.

Ces représentations prennent généralement la forme de plongements lexicaux (word embeddings [100,

102]), des représentations lexicales vectorielles conservant des propriétés sémantiques intéressantes.

Ces plongements ont l’avantage notoire de provenir de modèles entrâınés sur des corpus de texte

conséquents de manière non supervisée, et donc de ne nécessiter pratiquement aucun effort humain

d’annotation. Il est donc désormais standard d’appliquer ces modèles d’embeddings pré-entrâınés

aux noms des classes pour obtenir des représentations sémantiques dans un contexte d’apprentissage

zéro-shot à grande échelle [40, 138, 108].

La capacité de reconnâıtre efficacement des images dans ce contexte pourrait sans doute être

considérée comme le « Graal » des approches économes en efforts humains, car on pourrait ainsi

envisager de produire des modèles capables de reconnâıtre des milliers de classes ne nécessitant quasi-

ment aucun effort d’annotation. Cependant, en pratique, les performances de ces modèles restent

modestes, et les performances rapportées sur les benchmarks grande échelle standard sont sans doute

trop faibles pour de nombreux cas d’applications pratiques [53]. En général, les performances des

modèles d’apprentissage zéro-shot sont sans surprise inférieures à celles des modèles supervisés stan-

dard [164]. En outre, la plupart des approches d’apprentissage zéro-shot ont tendance à souffrir de

1La liste des abréviations fréquemment utilisées dans ce document est disponible table 1.3

175

B.1. INTRODUCTION

limitations supplémentaires. Par exemple, dans un contexte d’apprentissage zéro-shot généralisé plus

réaliste dans lequel les classes de test peuvent être vues ou non vues, de nombreux modèles existants

ont tendance à prédire les classes vues beaucoup plus fréquemment que les classes non vues [24, 163],

ce qui diminue considérablement les performances sur ces dernières et donc l’intérêt d’utiliser la re-

connaissance zéro-shot. Ce déséquilibre entre les classes vues et non vues est en partie réduit avec les

approches génératives récentes [17, 152, 162], mais cela se fait au prix d’hypothèses plus restrictives, car

contrairement à d’autres approches, l’ajout de nouvelles classes nécessite souvent un réentrâınement

au moins partiel pour ces modèles.

Dans cette thèse, nous tentons de surmonter certaines de ces limites à un apprentissage zéro-shot à

grande échelle utilisable en pratique. Nous analysons les approches existantes de l’apprentissage zéro-

shot, et en particulier les modèles basés sur des fonctions de coût dites de « triplet » ou de classement

(hinge rank loss). Dans une première partie (section B.2 ou sections 2.1 à 2.5 du chapitre 2), nous

défendons l’idée selon laquelle les modèles appartenant à cette famille font généralement plusieurs

hypothèses implicites concernant la nature des classes et des exemples d’apprentissage, et que ces

hypothèses peuvent ne pas être justifiées en pratique. Par exemple, ces modèles considèrent générale-

ment que toutes les classes sont « pareillement différentes », ce qui signifie qu’aucune paire de classes

distinctes n’est considérée comme plus similaire qu’une autre paire. Au contraire, nous soutenons que

ce n’est souvent pas le cas en pratique et que ne pas tenir compte de cet aspect peut être préjudiciable

à la performance du modèle.

Dans une seconde partie (section B.3 ou sections 2.6 à 2.7 du chapitre 2), nous nous intéressons

à l’écart de performances entre les classes vues et non vues dans un cadre d’apprentissage zéro-shot

généralisé. Nous proposons un processus simple pour réduire la différence de performance entre les

instances des classes vues et non vues. L’approche proposée a également l’avantage de permettre

d’ajouter sans effort de nouvelles classes non vues à un modèle déjà entrâıné : contrairement à la

plupart des approches génératives existantes, aucun apprentissage supplémentaire n’est requis.

En partant du constat qu’un des objectifs du ZSL est de minimiser les efforts d’annotation, nous

nous intéressons dans une troisième partie (section B.4 ou sections 3.1 à 3.2 du chapitre 3) au rôle

des représentations sémantiques obtenues de manière non supervisée typiquement employées à grande

échelle. Cet aspect est étonnamment sous-étudié dans la littérature actuelle. Nous argumentons que

176

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

les corpus de texte génériques peuvent être inadaptés pour l’obtention d’embeddings intégrant les

propriétés visuelles des mots, et proposons à la place de nouveaux corpus ainsi qu’une méthode de

prétraitement appropriée.

Néanmoins, en dépit de résultats significativement améliorés par la méthode proposée, nous défendons

que l’emploi d’embeddings de noms de classes en tant que représentations sémantiques peut se heurter

à des limitations difficilement surmontables. Dans une quatrième et dernière partie (section B.5 ou

sections 3.3 à 3.5 du chapitre 3), nous proposons ainsi un compromis entre l’emploi de plongements

non supervisés ne nécessitant absolument aucun effort humain et la conception laborieuse d’attributs

exhaustifs, sous la forme de l’utilisation de descriptions courtes en langage naturel. Nous proposons

plusieurs approches pour exploiter de telles descriptions, et optons finalement pour des prototypes

sémantiques constitués de combinaisons de représentations non supervisées et de descriptions cour-

tes. Nous montrons que cette combinaison permet d’obtenir des résultats « à l’état de l’art » dans

un cadre d’apprentissage zéro-shot à grande échelle, tout en maintenant la quantité requise d’effort

humain d’annotation à un niveau relativement raisonnable.

Il est à noter que par nature, ce résumé en français contient moins de détails que le texte original

complet en anglais. En particulier, certains détails d’implémentation non essentiels sont parfois omis

dans un souci de concision. Nous référons les lecteurs intéressés par ces détails, par exemple dans le

but de reproduire certains de nos résultats, au texte principal en anglais.

B.2 Hypothèses implicites dans les méthodes de classement

Tout au long de ce document, la notation x représentera un vecteur de caractéristiques visuelles

d’une image, obtenu par exemple en utilisant un réseau de neurones convolutif profond tel que

ResNet [55] comme extracteur de caractéristiques [125, 25]. La notation y désignera l’étiquette (label)

associée à cette image, représentant la classe de l’image (par exemple tigre, zèbre...). Le prototype

sémantique d’une classe c sera représenté par sc. Un tel prototype peut par exemple consister en un

vecteur d’attributs tels que « est orange », « a des rayures » et « a des sabots », auquel cas la classe

tigre pourrait être représentée par (1 1 0)⊤. Ces notations ainsi que d’autres sont résumées dans le

tableau 1.2.

De nombreux modèles sont basés sur une fonction de compatibilité f entre la représentation d’une

177

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

image x et la représentation sémantique d’une classe s. Par exemple, les méthodes de basées sur un

« coût de triplet » ou coût de classement (triplet loss ou hinge rank loss) peuvent être présentées

comme visant à répondre à l’intuition selon laquelle chaque représentation visuelle x devrait être

« beaucoup plus » compatible avec le prototype sc correspondant à sa classe c qu’avec tous les autres

prototypes étant donné une fonction de compatibilité f . Plus formellement, ces méthodes ont pour

objectif d’imposer la contrainte f(x, sy) ≫ f(x, sc), avec (x, y) une représentation visuelle étiquetée,

sy le prototype sémantique correspondant et sc un autre prototype (c ̸= y). Ceci est appliqué en

visant à ce que f(x, sy) ≥ m + f(x, sc), où m est une marge fixée. Cet objectif peut être exprimé par

la fonction de coût

Ltriplet(x, sc, sy; f) = [m + f(x, sc) − f(x, sy)]+ (B.1)

Une implémentation simple d’un fonction de coût de triplet telle que DeViSE [40] consiste à utiliser

une fonction de compatibilité bilinéaire fW(x, s) = x⊤Ws et à sommer le coût de l’équation (B.1) sur

toutes les combinaisons d’exemples visuels et de prototypes de classe de l’ensemble d’entrâınement:

1
N

N∑︂
n=1

∑︂
c∈CS
c̸=yn

[m + f(xn, sc) − f(xn, syn)]+ (B.2)

Plusieurs variations de cette idée ont été proposées [4, 3]. Cependant, bien que ces méthodes aient

conduit à des résultats prometteurs pour la tâche de ZSL, nous défendons dans cette section l’idée

selon laquelle ces méthodes ne prennent pas en compte plusieurs aspects importants du problème en

raison d’hypothèses implicites.

La première hypothèse de ce type est que les classes sont pareillement distinctes, car il n’y a au-

cune différence entre deux affectations de classe incorrectes dans le coût de triplet de l’équation (B.1).

Cependant, dans de nombreux cas, et en particulier dans les jeux de données à granularité fine com-

prenant de nombreuses classes, il peut y avoir des groupes de classes très similaires. La figure 2.1

illustre un tel cas.

Pour améliorer la robustesse de la correspondance apprise entre les espaces sémantique et visuel,

nous proposons de remplacer la marge fixe m dans l’équation (B.1) par une marge variable m(c, c′)

mesurant la (dis)similarité entre les classes c et c′. De cette façon, pour des classes c et c′ très

similaires avec une dissemblance proche de 0, il suffit que f(x, sc) > f(x, sc′), c étant la classe associée

178

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

à x. Inversement, des classes très différentes devraient être faciles à distinguer, et nous nous attendons

à ce que f(x, sc) > M + f(x, sc′), avec M = m(c, c′) très grand.

Nous proposons de mesurer cette similarité dans l’espace sémantique. Comme les attributs ont

tendance à être corrélés [59], nous utilisons une distance de Mahalanobis pour prendre en compte ces

corrélations. La différence entre les classes i et j avec les prototypes respectifs si et sj est donc

m(i, j) =
(︂
(si − sj)Σ−1(si − sj)

)︂ 1
2 (B.3)

où Σ−1 est l’inverse de la matrice de covariance entre les attributs, qui peut être estimée en utilisant

les prototypes des classes vues. Nous obtenons une estimation robuste de Σ−1 en utilisant la méthode

de Ledoit-Wolf [87]. Nous proposons également de réajuster les distances pour avoir une moyenne µM

et un écart type σM (équation (2.7)), où µM et σM sont considérés comme des hyperparamètres du

modèle. Une illustration des distances d’origine (à gauche) et remises à l’échelle avec la moyenne µM

et l’écart-type σM définis (à droite) est présentée figure 2.2. Une illustration des classes les plus et les

moins similaires aux classes “red-legged kittiwake” et “arctic stern” du jeu de données CUB [154] est

disponible figure 2.3.

Dans l’équation (B.1), la marge m est censée agir comme un régulariseur et réduire le surajustement

(overfitting) sur l’ensemble d’apprentissage. Intuitivement, on s’attend à ce qu’une plus grande valeur

de la marge m incite le modèle à augmenter la différence f(x, sy) − f(x, sc) entre la compatibilité

de la paire correspondante f(x, sy) et la compatibilité de la paire non correspondante f(x, sc), et

permette ainsi d’améliorer la robustesse du modèle – du moins jusqu’à ce que la contrainte imposée

par l’équation (B.1) devienne non satisfiable. C’est ce que nous appelons l’hypothèse que la marge est

un régulariseur efficace. Cependant, une plus grande valeur de m peut produire des effets différents

non désirables, en particulier avec les fonctions de compatibilité de produit scalaire.

La fonction de compatibilité f prend souvent la forme d’un produit scalaire entre la projection

θ(x) d’une représentation visuelle x et la projection ϕ(s) d’un prototype sémantique s :

f(x, s) = θ(x)⊤ϕ(s) (B.4)

Par exemple, pour les modèles avec une fonction de compatibilité linéaire tels que DeViSE, nous avons

θ(x) = W⊤x et ϕ(s) = s, ce qui donne la fonction de compatibilité bilinéaire f(x, s) = x⊤Ws. Ce

179

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

produit scalaire θ(x)⊤ϕ(s) peut également être écrit

θ(x)⊤ϕ(s) = ∥θ(x)∥2 · ∥ϕ(s)∥2 · cos(α) (B.5)

où α est l’angle entre θ(x) et ϕ(s).

Ainsi, la valeur de la compatibilité f(x, s) dépend de trois composantes: la norme ∥θ(x)∥2 de la

projection de la réprésentation visuelle, la norme ∥ϕ(s)∥2 de la projection du prototype sémantique,

et le cosinus cos(α) de l’angle entre les projections θ(x) et ϕ(s). Le cosinus de l’angle α est de toute

évidence borné. Puisque s est généralement normalisé pour avoir une norme unitaire, il en est de

même pour ϕ(s) lorsque ϕ est l’identité. Cependant, la norme de θ(x) n’est pas bornée.

En pratique, cela signifie que si l’on double la marge m par rapport à un modèle de base, le nouveau

modèle peut simplement doubler la différence f(x, sy) − f(x, sc) dans l’équation (B.1) en doublant la

compatibilité f(x, s) pour tout s, ce qui peut être obtenu en doublant simplement la norme ∥θ(x)∥2

de la projection θ(x). Cela peut aboutir à un nouveau modèle très similaire au modèle de base malgré

une valeur différente de m, où les valeurs de θ(x) ont simplement été doublées. Par conséquent, la

valeur réelle de la marge m a peu d’impact sur les paramètres appris par le modèle.

Cet effet est visible empiriquement tel qu’illustré figure 2.4. Cela rend la valeur de la marge m peu

pertinente, et réduit ainsi la régularisation fournie par la marge.

Pour résoudre ce problème, nous introduisons une fonction de normalisation partielle Ψ, prenant

un vecteur v comme entrée et paramétrée par un scalaire ρ ∈ [0, 1] tel que

Ψρ(v) = 1
ρ (∥v∥2 − 1) + 1 · v (B.6)

Une valeur de ρ = 0 signifie qu’aucune transformation n’est appliquée à v, et une valeur de ρ = 1 signifie

que v est entièrement normalisé pour avoir une norme euclidienne unitaire. Les valeurs comprises entre

0 et 1 ont des résultats intermédiaires. Cette norme partielle est combinée avec une régularisation sur

θ(x) – par exemple une pénalité ℓ1 ou ℓ2.

La valeur de ρ est alors considérée comme un hyperparamètre du modèle, qui permet de contrôler

dans quelle mesure nous permettons au modèle d’ajuster l’échelle les projections d’instances visuels

pour accommoder une plus grande marge. La figure 2.4 montre l’effet de différentes valeurs de ρ sur

l’ajustement de l’échelle de la norme de la projection θ(x) par rapport à la marge m.

180

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

La troisième hypothèse faite par les modèles basés sur un coût de triplet, et plus largement par la

plupart des modèles de ZSL, est que tous les exemples d’apprentissage sont pertinents. Cela signi-

fie que tous les exemples des classes vues sont considérés comme pareillement représentatifs lors de

l’apprentissage du modèle. Cependant, comme illustré figure 2.1, certains exemples peuvent être assez

différents de la plupart des éléments de leur classe, ce qui peut avoir des effets indésirables pendant

l’entrâınement.

Nous proposons d’attribuer un score à chaque exemple d’apprentissage pour quantifier sa « représen-

tativité » par rapport à sa classe, ainsi que de pondérer le coût associé à chaque exemple d’apprentissage

dans la fonction objectif à l’aide de ce score. Pour chaque classe c, nous calculons la représentation

visuelle moyenne
∗xc. Pour chaque exemple xc

m appartenant à cette classe, nous calculons ensuite la

distance uc
m à la représentation visuelle moyenne

∗xc de la classe c dans l’espace visuel.

A condition que les caractéristiques visuelles conviennent pour que ces distances aient un sens,

cela fournit une première estimation du degré de différence entre une image et les autres images de

la même classe. Nous normalisons ces distances pour qu’elles soient à peu près sur la même échelle

quelle que soit la variance inter-classe et fixons les distances uc
m de sorte qu’elles aient une moyenne

nulle et une variance unitaire pour toutes les classes.

Nous définissons enfin les poids de représentativité vc
m en fonction des distances redimensionnées

uc
m :

vc
m = 1 − Φ (uc

m) (B.7)

où Φ(·) est la fonction de représentation de la distribution normale. De cette façon, les instances très

éloignées du centre de gravité de leur classe ont un poids proche de 0, et les instances très proches

du centre de gravité ont un poids proche de 1. Un exemple de distribution de tous les poids vc
m est

représenté figure 2.5. Une illustration des instances les plus pertinentes et les moins pertinentes pour

les classes “red-legged kittiwake” et “arctic stern” telles que mesuré par les poids de représentativité est

disponible figure 2.6.

Nous pouvons unifier ces idées dans un modèle de ZSL basé sur un coût de triplet. Le modèle

consiste à apprendre les projections θ et ϕ qui projettent respectivement des échantillons visuels x et

des prototypes sémantiques s vers un espace commun, de sorte que la compatibilité entre x et s puisse

être évaluée dans cet espace avec un produit scalaire. La normalisation partielle Ψρ (equation (B.6))

181

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

est appliquée aux projections résultantes θ(x) et ϕ(s) avant d’effectuer le produit scalaire. On a donc

une fonction de compatibilité f telle que

fθ,ϕ(xn, sc) = Ψρ(θ(xn))⊤Ψρ(ϕ(sc)) (B.8)

En utilisant m(c, c′) de l’équation (B.3) (et (2.7)) comme marge sémantique souple entre deux

classes c et c′, pour un triplet (xn, syn , sc), c ̸= yn, le coût de triplet prend maintenant la forme

Ltriplet(xn, syn , sc; fθ,ϕ) = [m(yn, c) + fθ,ϕ(xn, sc) − fθ,ϕ(xn, syn)]+ (B.9)

Nous adoptons l’approche la plus simple pour évaluer ce coût sur l’ensemble d’apprentissage, qui

consiste à simplement additionner ce coût sur tous les triplets d’apprentissage (xn, syn , sc), c ̸= yn,

dans un cadre similaire à DeViSE. La coût de chaque triplet est en outre pondéré par le poids de

représentativité vn de l’équation (B.7). La fonction de coût finale qui en résulte est :

1
N

N∑︂
n=1

⎛⎜⎜⎝vn

∑︂
c∈CS
c ̸=yn

Ltriplet(xn, syn , sc; fθ,ϕ)

⎞⎟⎟⎠+ λΩ[fθ,ϕ] (B.10)

où λ est un hyperparamètre contrôlant le poids de la régularisation Ω. Ω[fθ,ϕ] est défini comme la

somme des normes2 ℓ1 des paramètres respectifs θ1, . . . , θP et ϕ1, . . . , ϕQ des projections θ et ϕ:

Ω[fθ,ϕ] = 1
P

P∑︂
p=1

|θp| + 1
Q

Q∑︂
q=1

|ϕq| (B.11)

Dans notre implémentation, nous utilisons de simples projections linéaires pour θ et ϕ. Nous

considérons deux variantes du modèle : dans la première appelée θ + I, nous projetons uniquement les

caractéristiques visuelles x sur l’espace sémantique. Dans la deuxième variante θ + ϕ, nous projetons

linéairement à la fois x et s sur un espace commun de même dimension K que l’espace sémantique.

On peut considérer que la variante choisie est un hyperparamètre, nous sélectionnons donc la variante

avec le meilleur score sur l’ensemble de validation.

Bien que ce cadre introduise un certain nombre d’hyperparamètres qui peuvent sembler difficiles

à sélectionner, cette approche peut être vue comme étant simplement une généralisation de DeViSE

ou d’autres modèles simples basés sur un coût de triplet. Un avantage de cette approche est que

2De manière similaire à Chao et al. [22], une régularisation ℓ1 peut introduire de la parcimonie de sorte que seul un
sous-ensemble d’attributs est utilisé.

182

B.2. HYPOTHÈSES IMPLICITES DANS LES MÉTHODES DE CLASSEMENT

nous apprenons simplement une fonction de compatibilité (bi)linéaire. Une fois le modèle entrâıné,

des prédictions peuvent être effectuées aussi simplement que pour n’importe quel modèle basé sur une

fonction de compatibilité directe : étant donné une instance de test x, nous prédisons la classe ŷ telle

que

ŷ = argmax
c∈CU

fθ,ϕ(x, sc) (B.12)

Nous comparons notre modèle à plusieurs modèles de l’état de l’art sur plusieurs jeux de données de

référence tels que CUB [154], SUN [114]) et AwA2 [161]. Le protocole expérimental est essentiellement

le même que celui de Xian et al. [161], qui proposent une comparaison équitable de nombreux modèles

de ZSL avec des paramètres expérimentaux similaires, et dont les résultats font office de référence

dans la littérature récente [161, 162, 152, 18, 28]. En particulier, nous utilisons les mêmes métriques

pour mesurer les performances: la précision par classe Apc ou AU→U pour le contexte ZSL, et la

moyenne harmonique H de AU→C et AS→C pour le contexte GZSL. Une synthèse de la signification

des différentes métriques est disponible dans le tableau 1.5.

Le tableau 2.1 présente les résultats dans un contexte ZSL standard, où les instances de test

appartiennent à des classes non vues et les classes candidates sont constituées de exclusivement de

classes non vues afin que le score rapporté soit AU→U . Les deux variantes du modèle surpassent tous

les modèles non génératifs sur deux jeux de données sur trois. Fait intéressant, le modèle final surpasse

également les approches génératives sur deux ensembles de données et est le modèle le plus performant

en moyenne.

Nous réalisons également une étude d’ablation afin d’évaluer l’impact des composants individuels

(marge sémantique souple, normalisation partielle et poids de représentativité) de l’approche proposée.

Les résultats sont présentés dans le tableau 2.2. Les trois composants fonctionnent bien ensemble :

leur impact combiné est meilleur que la somme de leurs impacts marginaux.

Le tableau 2.3 contient les résultats dans un contexte GZSL, où les exemples de test (et donc les

classes candidates) peuvent appartenir à des classes vues ou non vues. Nous mesurons AU→C et AS→C

ainsi que leur moyenne harmonique H. Comme observé dans [163] et [24], pour les approches non

génératives il y a généralement un fort déséquilibre en faveur des classes vues : AS→C est significative-

ment supérieur à AU→C , ce qui pénalise le score final H. À l’inverse, les modèles génératifs souffrent

généralement beaucoup moins de ce déséquilibre des performances entre les classes vues et non vues,

183

B.3. DÉSÉQUILIBRE ENTRE LES CLASSES VUES ET NON VUES DANS UN
CONTEXTE D’APPRENTISSAGE ZÉRO-SHOT GÉNÉRALISÉ

car les exemples générés à partir de classes non vues sont le plus souvent utilisés en plus des exemples

des classes vues pour entrâıner des classifieurs supervisés standard.

B.3 Déséquilibre entre les classes vues et non vues dans un contexte d’apprentissage
zéro-shot généralisé

Dans cette section, nous proposons un processus simple pour combler l’écart de performances

entre les classes vues et non vues dans un contexte GZSL mis en évidence dans le tableau 2.3. Ce

processus est basé sur l’idée qu’une petite dégradation de AU→C pourrait être à l’origine d’une grande

amélioration de AS→C .

Chao et al. [24] ont proposé un mécanisme simple, appelé « empilement calibré » (calibrated

stacking), dans lequel une pondération γ est introduite pour contraindre le modèle à prédire les classes

non vues plus souvent lorsque γ > 0, ou les classes vues plus souvent lorsque γ < 0:

ŷ = argmax
c∈C

f(x, sc) − γ1[c ∈ CS] (B.13)

Cependant, dans [24], aucune valeur spécifique n’est attribuée à γ. Au lieu de cela, toutes les

valeurs possibles de γ de −∞ à +∞ sont utilisés pour estimer l’impact sur AU et AS , et pour tracer une

courbe paramétrique avec la valeur de AU sur l’axe x et la valeur de AS sur l’axe y (figure 2.7). L’aire

sous cette courbe (area under seen-unseen curve) est utilisée comme métrique. Il est ici important de

souligner que ce processus est appliqué a posteriori à un modèle de ZSL déjà entrâıné afin d’évaluer ses

performances. En particulier, l’impact de γ est mesuré sur le jeu de données de test. Par conséquent,

ce processus n’est pas directement applicable pour équilibrer les performances du modèle entre les

classes vues et non vues.

Par contraste, nous proposons d’employer un processus similaire, c’est-à-dire une pondération

γ permettant d’ajuster la compatibilité estimée en fonction de la nature de chaque prototype sc,

afin d’équilibrer AU et AS sans avoir accès à l’ensemble de test. Nous appelons ce processus le

processus calibration. Cela nécessite de sélectionner une valeur de γ appropriée en utilisant uniquement

l’ensemble d’apprentissage, ce qui est effectué avec une validation croisée spécifique au contexte de

GZSL.

En GZSL, une fraction (généralement 20% [163]) des exemples des classes vues (les classes dans

les ensembles d’apprentissage ou de validation) n’est pas utilisée pour l’entrâınement ou la validation

184

B.3. DÉSÉQUILIBRE ENTRE LES CLASSES VUES ET NON VUES DANS UN
CONTEXTE D’APPRENTISSAGE ZÉRO-SHOT GÉNÉRALISÉ

et est conservée pour la phase de test afin d’évaluer AS . Nous appelons cet ensemble ensemble de test

vu. Ici, le terme vu désigne le fait que ces éléments appartiennent aux classes vues, et non le fait que

ces éléments aient été vus par le modèle.

Afin de pouvoir sélectionner les hyperparamètres par validation croisée dans un contexte GZSL,

nous gardons 20% supplémentaires de l’ensemble d’entrâınement restant, et nous utilisons ces échan-

tillons comme instances de classes vues lors de la validation. Nous appelons cet ensemble ensemble de

validation vu. De cette façon, il est possible d’évaluer l’impact des hyperparamètres à la fois sur AU

et AS sur l’ensemble de validation, sans utiliser aucune instance des ensembles de test vus et non vus.

Tous ces différents ensembles et partitionnements sont illustrés dans la figure 2.8.

Il est maintenant possible de déterminer la valeur optimale de γ dans l’équation (B.13) avec

le processus suivant. (1) L’ensemble de données est partitionné comme expliqué précédemment et

comme illustré par la partie inférieure de la figure 2.8. Un modèle ZSL standard est entrâıné en

utilisant les exemples de l’ensemble d’apprentissage vu. (2) Sa performance de ZSL mesurée par AU→U

peut être évaluée sur l’ensemble de validation non vu, de sorte que les hyperparamètres peuvent être

sélectionnés de manière adéquate. (3) L’ensemble de validation non vu peut également être utilisé

pour mesurer AU→C ; d’autre part, l’ensemble de validation vu peut être utilisé pour mesurer AS→C .

On peut alors tester différentes valeurs de γ et mesurer leur impact sur AU et AS . Nous soulignons

qu’aucun réentrâınement du modèle n’est nécessaire, car γ n’affecte que la phase de prédiction d’un

modèle entrâıné (équation (B.13)). La valeur optimale de γ peut enfin être sélectionnée de manière à

maximiser la moyenne harmonique H de AU et AS , ou toute autre métrique de GZSL pertinente.

(4) Le modèle de ZSL est ensuite réentrâıné en utilisant l’ensemble d’apprentissage vu, l’ensemble

de validation vu et l’ensemble de validation non vu comme nouvel ensemble d’apprentissage. (5) Les

compatibilités de classe f(xn, sc) sont évaluées pour toutes les instances de test xn, dans l’ensemble

de test non vu ainsi que dans l’ensemble de test vu, pour tous les prototypes de classe sc. (6) Pour les

prototypes de classe sc des classes vues c ∈ CS , la valeur de γ sélectionnée précédemment est soustraite

des compatibilités correspondantes conformément à l’équation (B.13) pour prédire ŷ. (7) AU et AS

peuvent finalement être mesurés respectivement sur l’ensemble de test non vu et sur l’ensemble de test

vu pour obtenir le score final H.

Comme le montre la figure 2.9, les hyperparamètres optimaux en GZSL peuvent être différents des

hyperparamètres optimaux en ZSL. Ceci peut être expliqué par une décomposition de l’erreur en un

185

B.4. REPRÉSENTATIONS SÉMANTIQUES NON SUPERVISÉES

compromis biais-variance spécifique au GZSL, ce qui est illustré dans la figure 2.10. Nous proposons la

procédure suivante pour sélectionner la valeur optimale de régularisation λ d’un modèle de régression

ridge (équations (B.17) et (B.18), section B.5) ou tout autre ensemble d’hyperparamètres dans un

contexte GZSL : nous répétons le protocole décrit précédemment pour sélectionner la pondération de

calibration γ, et nous prenons la valeur de λ qui donne le meilleur résultat pour la moyenne harmonique

H de AU→C et AU→C sur l’ensemble de validation après avoir soustrait γ des compatibilités des classes

vues comme dans l’équation (B.13). Le reste du processus est identique.

Les résultats expérimentaux mesurant l’impact des processus proposés de calibration et de sélec-

tion des hyperparamètres sont disponibles dans le tableau 2.7, et montrent une amélioration signi-

ficative pour la plupart des modèles évalués sur tous les jeux de données. Dans le tableau 2.8, nous

comparons les résultats GZSL de ces modèles au modèle propos section B.2, avec la calibration et

les hyperparamètres sélectionnés spécifiquement pour la tâche de GZSL. Le procédé proposé permet

d’augmenter le score H de notre modèle de plus de 18 points en moyenne. Notre modèle surpasse

alors toutes les approches non génératives sur deux jeux de données sur trois, et surpasse également

les approches génératives « en moyenne ».

B.4 Représentations sémantiques non supervisées

Dans cette section, nous nous concentrons principalement sur l’impact des représentations séman-

tiques dans un contexte d’apprentissage zéro-shot à grande échelle. Lorsque le nombre de classes

est important, il peut être fastidieux de concevoir des représentations sémantiques de haute qualité à

l’aide d’attributs définis manuellement. Par exemple, le jeu de données CUB contient 312 attributs par

classe, et les performances des modèles de ZSL diminuent très rapidement avec le nombre d’attributs

utilisé, comme illustré figure 3.2. Il est ainsi rarement envisageable de créer manuellement des cen-

taines d’attributs pour chacune des milliers de classes d’un jeu de données à grande échelle comme

ImageNet. Dans un contexte de grande échelle, il est donc courant d’utiliser les plongements lexicaux

des noms des classes pour obtenir des prototypes sémantiques, ce qui requiert un effort d’annotation

quasiment nul. Ceci s’explique par le fait que les modèles de plongement de mots sont entrâınés

de manière non supervisée, et ne nécessitent donc pas d’annotations préalables. Par exemple, dans

l’approche Word2vec [102], l’objectif du skipgram vise à prédire les mots présents dans le contexte

d’un mot donné. Si nous considérons un corpus de L phrases, où la lème phrase est constituée de Tl

186

B.4. REPRÉSENTATIONS SÉMANTIQUES NON SUPERVISÉES

mots {w1, . . . , wTl
}, l’objectif est de minimiser

−
L∑︂

l=1

Tl∑︂
t=1

∑︂
−S≤i≤S

i ̸=0

log p(wt+i|wt) (B.14)

Ici, S est la taille de la fenêtre contextuelle et indique à quel point deux mots wi, wj doivent être

proches l’un de l’autre pour être considérés comme faisant partie de leurs contextes respectifs. La

probabilité p(wi|wt) dans l’équation (B.14) est généralement estimée à l’aide d’un réseau neuronal

entièrement connecté (fully connected) à une couche cachée, l’activation de la couche cachée étant

utilisée comme le plongement du mot w. La représentation sémantique sc pour la classe c peut par

la suite être obtenue en utilisant le plongement lexical correspondant à son nom, où la moyenne des

différents plongements dans le cas d’une classe dont le nom est constitué de plusieurs mots. Cependant,

les performances avec ce type de représentation sémantique sont généralement bien inférieures à celles

des attributs conçus manuellement, comme représenté figure 3.2.

Une explication possible de cette différence est que les corpus de texte habituellement utilisés

pour entrâıner les modèles de plongements lexicaux ne contiennent pas suffisamment d’informations

visuelles, comme illustré figure 3.1. On peut ainsi faire l’hypothèse que les modèles de plongements

lexicaux entrâınés sur des corpus avec une nature plus visuelle pourraient conduire à des embeddings

mieux adaptées à la tâche de ZSL. Nous proposons ainsi de créer de tels ensembles de données.

Nous utilisons l’API Flickr pour collecter des balises (tags) définies par les utilisateurs : étant

donnée une requête q constituée de mots-clés tels que « tigre », l’API renvoie une liste d’images et

de métadonnées associées. Nous nous intéressons à trois champs dans les métadonnées associées à

chaque image : (1) Le titre, qui est une description de l’image définie par l’utilisateur, par exemple

“Amur tiger chilling in the water ”3 pour un résultat de la requête « tigre ». (2) Une liste de balises

associées à l’image également définies par l’utilisateur, par exemple « tigre »’, « sumatra », « faune »

ou encore « tigre », « orange », « zoo » pour la requête « tigre ». (3) L’identifiant de l’utilisateur,

afin que chaque image puisse être associée à un utilisateur unique.

Nous nous basons sur deux approches pour déterminer les requêtes à utiliser pour créer le corpus

complet. Dans la première approche, nous utilisons des concepts génériques de Wikipedia pour créer

la collection Flickr-Wikipedia, ou flwiki. Pour sélectionner des concepts génériques communs, les pages

3“Amur tiger chilling in the water” dans la version non traduite, associé à la requête “tiger”.

187

B.4. REPRÉSENTATIONS SÉMANTIQUES NON SUPERVISÉES

Wikipédia sont triées en fonction de leur nombre de liens entrants dans le corpus Wikipédia, et les 120

000 premiers concepts sont conservés. Les titres de ces pages sont utilisés comme requêtes pour collecter

des métadonnées en utilisant Flickr comme décrit précédemment. Dans une seconde approche appelée

flcust, nous utilisons les noms des classes du jeu de données de ZSL pour collecter des métadonnées

spécifiques à la tâche.

Chaque collection se base sur Q concepts et les requêtes associées Q = {q1, . . . , qQ}, Q ≤ 120000.

Pour chaque requête q, nous obtenons une liste de Mq résultats avec les métadonnées associées Mq =

{m1, . . . , mMq }, Mq ≤ 5000. Chaque résultat (métadonnées) m se compose d’une liste de mots Wm =

{w1, . . . , wTm}, ainsi que d’un identifiant utilisateur idm associant l’auteur idm de l’image et des

métadonnées m avec un utilisateur unique uidm . Les Tm mots sont les mots constituant le titre et les

balises.

Dans nos collections de texte, contrairement aux corpus standard tels que Wikipedia, l’ordre des

mots Wm = {w1, . . . , wTm} dans chaque résultat (métadonnées) m est arbitraire. Par conséquent, la

fenêtre de contexte de taille fixe de la formulation habituelle de l’objectif skipgram (équation (B.14))

n’est pas adaptée : deux mots apparaissant dans le même contexte, par exemple dans les mêmes

métadonnées m, ne sont pas nécessairement proches l’un de l’autre {w1, . . . , wTm}.

Au lieu d’utiliser une fenêtre de taille fixe, nous considérons que deux mots wi et wj apparaissent

dans le même contexte si les deux apparaissent dans l’ensemble de mots Wm des métadonnées m.

L’objectif skipgram de l’équation (B.14) peut donc être adapté ainsi :

−
∑︂
q∈Q

∑︂
m∈Mq

∑︂
(wi,wj)

wi,wj∈Wm, i̸=j

log p(wi|wj) (B.15)

Cette formulation est équivalente à extraire toutes les paires de mots (wi, wj) telles que wi, wj ap-

partiennent au même Wm comme dans l’équation (3.3), et à créer un corpus dont les phrases sont

constituées des paires de tels mots. L’entrâınement du modèle de plongement peut alors être effectué

avec l’objectif skipgram de l’équation (3.1). La même méthode peut être appliquée pour apprendre des

plongements avec d’autres méthodes telles que GloVe [117] ou FastText [14]. Cela présente l’avantage

de permettre l’utilisation des implémentations standard de ces différents modèles.

Un problème pouvant survenir avec des jeux de données constitués de balises définies par l’utilisateur

est celui du « balisage de masse » (bulk-tagging) [111] : ce terme décrit l’action d’utilisateurs attribuant

188

B.4. REPRÉSENTATIONS SÉMANTIQUES NON SUPERVISÉES

les mêmes balises ou descriptions à de grands ensembles de photos. Ce phénomène peut parfois biaiser

les modèles de langage obtenus à partir de Flickr ou d’autres sites communautaires [121, 111]. Pour

éviter ce problème, nous mettons en place un « filtrage par utilisateur » (user filtering), c’est-à-dire

que nous appliquons la règle selon laquelle une paire de mots (wi, wj) est prise en compte au plus une

fois par utilisateur Flickr distinct. Concrètement, cela se traduit par l’ajout d’une paire (wi, wj) dans

le corpus d’entrâınement une unique fois pour chaque utilisateur.

Nous comparons les résultats obtenus avec l’approche proposée aux résultats obtenus avec des

plongements standard formés sur des corpus de texte génériques, pour une variété de modèles de ZSL.

Nous comparons également avec deux approches basiques : dans l’approche wiki, nous entrâınons les

plongements lexicaux avec les méthodes standardWord2vec, GloVe et FastText sur le corpus Wikipédia

habituel. Dans l’approche clue, nous entrâınons les plongements sur un sous-ensemble de la collection

ClueWeb12 [21, 20], ayant pour but de correspondre à un contenu textuel plus visuellement connoté.

Nous extrayons pour cela les données associées aux images référencées dans l’ensemble de données, en

récupérant les métadonnées des attributs HTML title et alt correspondants.

Puisque nous nous intéressons aux résultats à grande échelle, nous menons principalement nos

expériences sur l’ensemble de données ImageNet [33]. Il a été proposé dans [40] d’utiliser les 1000

classes d’ILSVRC [132] en tant que classes d’entrâınement, et les 20 841 autres en tant que classes de

test non vues. Cependant, il a été récemment mis en évidence qu’un biais structurel peut survenir

dans ce cadre, et permettre à un modèle « trivial » exploitant spécifiquement ce biais de surpasser la

plupart des modèles de ZSL existants [53]. Pour cette raison, nous adoptons le protocole d’évaluation

proposé par Hascoet et al. [53], qui considèrent les mêmes classes d’entrâınement que [40] mais utilisent

500 classes avec un biais structurel minimal pour les tests.

Pour avoir un aperçu de l’écart existant entre les attributs définis manuellement et les plongements

obtenus de façon non supervisée, nous menons également des expériences sur des benchmarks plus

petits, sur lesquels la tâche de ZSL est généralement accomplie avec des attributs manuels. Nous

utilisons ainsi également les ensembles de données CUB [154] et AwA2 [161]. Les attributs manuels

habituels de CUB et AwA2 comportent respectivement 312 et 85 dimensions. À l’exception des

attributs, nous adoptons le protocole expérimental de Xian et al. [161], et plus précisément leurs

partitionnements apprentissage-test proposés (“proposed splits” pour ces deux jeux de données.

189

B.4. REPRÉSENTATIONS SÉMANTIQUES NON SUPERVISÉES

Les principaux résultats pour le jeu de données à grande échelle ImageNet sont rapportés dans le

tableau 3.1. Les meilleurs résultats sont la plupart du temps obtenus avec l’approche flcust et Fast-

Text. Les prototypes de classe obtenus avec cette approche surpassent significativement les résultats

précédents dans un contexte grande échelle.

Nous rapportons également des résultats pour les jeux de données à plus petite échelle CUB et

AwA2 dans les tableaux 3.2 et 3.3. Ces résultats sont moins pertinents car des attributs manuels

existent pour ces jeux de données, mais apportent tout de même des informations intéressantes. Il

est important de garder à l’esprit que ces résultats sont produits à l’aide de prototypes obtenus de

façon non supervisée lors de la comparaison avec les résultats possibles avec des attributs manuels.

Sur CUB, les meilleurs résultats sont obtenus avec les embeddings appris sur la collection flcust pour

les trois modèles de plongement et surpassent les embeddings précédents. De façon intéressante, il ne

semble pas y avoir de tendance marquée sur AwA2. Il s’avère que les performances atteignables avec

des prototypes non supervisés sur AwA2 sont déjà assez proches des performances avec des attributs

manuels, comme visible figure 3.2. La méthode proposée n’est donc pas en mesure d’apporter une

amélioration significative sur ce jeu de données.

Afin de mesurer l’impact du filtrage des utilisateurs, nous comparons les résultats obtenus avec et

sans cette étape avec l’approche flcust appliquée à FastText, le modèle de plongement le plus performant

sur l’ensemble de données ImageNet pour différents modèles ZSL. Ces résultats sont reportés dans le

tableau 3.4 et confirment que limiter l’impact de chaque utilisateur sur le corpus d’apprentissage a un

impact positif significatif sur les performances finales du modèle de ZSL.

Pour quantifier les performances des prototypes conçus manuellement par rapport aux prototypes

« non supervisés », nous retirons progressivement des attributs des prototypes de classe de CUB et

AwA2. Nous commençons avec la liste complète des attributs, et nous supprimons aléatoirement

certains attributs tout en mesurant le score ZSL en résultant. Les scores sont mesurés avec un modèle

linéaire (équations (B.17) et (B.18)) en raison de ses bons résultats, de sa robustesse et de sa simplicité.

Les résultats sont visibles figure 3.2, les points bleus représentant le score moyen pour un nombre fixe

d’attributs fabriqués à la main. Sur CUB, il y a encore une marge d’amélioration substantielle. La

différence entre les prototypes supervisés et annotés manuellement n’est pas aussi prononcée sur AwA2.

190

B.5. UTILISATION DE DESCRIPTIONS COURTES EN TANT QUE
REPRÉSENTATIONS SÉMANTIQUES

B.5 Utilisation de descriptions courtes en tant que représentations séman-
tiques

Nous avons obtenu des résultats intéressants dans un contexte grande échelle en créant et en

exploitant des corpus avec une connotation plus visuelle, ce qui permet de créer des plongements plus

performants à partir des noms de classe. Cependant, sur certains datasets tels que CUB, les résultats

avec une telle approche sont encore nettement inférieurs à ceux pouvant être obtenus avec des attributs

définis manuellement. Nous défendons que cette approche peut être limitée pour la reconnaissance

visuelle fine. Par exemple, même avec des plongements créés à partir d’un corpus plus « visuel », il

n’est pas évident qu’il soit possible d’apprendre la différence entre un terrier australien et un terrier

irlandais, deux classes visibles figure 3.5 et présentes dans le jeu de données ImageNet, juste à partir

des embeddings de leurs noms de classe.

Une solution idéale pourrait être l’utilisation de courtes phrases en langage naturel pour décrire

chaque classe. Une telle solution prendrait moins de temps que de fournir des attributs exhaustifs pour

chaque classe et pourrait être plus informative visuellement que les plongements de mots appris à partir

de corpus de texte génériques. Des exemples de telles descriptions courtes pourraient être « petite

race de terrier grisâtre à poil dur d’Australie » et « race de taille moyenne avec un pelage brun raide

développée en Irlande » pour les classes respectives « terrier australien » et « terrier irlandais »4. Dans

cette section, nous proposons différentes approches pour utiliser de courtes descriptions en langage

naturel dans le cadre de l’apprentissage zéro-shot.

L’approche la plus simple pour obtenir un prototype sémantique à partir d’une courte description

consiste à utiliser la moyenne des plongements des mots constituant la description. Nous appelons

cette approche Defaverage. Cependant, comme illustré figure 3.8, tous les mots d’une description ne

sont généralement pas d’importance égale. Nous nous intéressons donc à l’utilisation de mécanismes

d’attention : nous construisons l’embedding d’une phrase comme une moyenne pondérée des em-

beddings de ses mots, de sorte que les mots plus importants contribuent davantage à l’embedding

résultant. Nous envisageons deux manières d’y parvenir. Sauf indication contraire, nous utilisons un

modèle de régression linéaire régularisé de l’espace sémantique vers l’espace visuel (équations (B.18)

4Ces deux classes sont présentes dans ImageNet et les descriptions mentionnées sont traduites des définitions WordNet
correspondantes.

191

B.5. UTILISATION DE DESCRIPTIONS COURTES EN TANT QUE
REPRÉSENTATIONS SÉMANTIQUES

et (B.17)) pour évaluer les prototypes de classe résultants.

Dans l’approche appelée Defvisualness, nous essayons d’estimer à quel point un mot est pertinent d’un

point de vue visuel. Pour un mot wi donné, nous collectons les Mi ≤ 100 images les plus pertinentes

de Flickr. Nous obtenons des représentations visuelles {ri
1, . . . , ri

M } pour les images collectées M

en utilisant un ResNet-101 [55] pré-entrâıné. Nous faisons l’hypothèse que pour les mots à forte

connotation visuelle, les représentations visuelles des images collectées correspondant à ce mot sont

proches les unes des autres. Nous mesurons ainsi la distance moyenne des vecteurs ri
m au vecteur moyen

ri pour obtenir l’inverse de la pertinence visuelle vi. Des exemples de mots avec une pertinence visuelle

élevée ou faible sont représentés figure 3.6. Ces exemples tendent à confirmer que cette pertinence

visuelle estimée est raisonnable.

Étant donné une définition de T mots dont les embeddings correspondants sont {v1, . . . , vT }, nous

appliquons ensuite la fonction softmax sur les pertinences visuelles correspondantes {v1, . . . , vT } pour

obtenir une représentation s de la phrase à partir de la moyenne pondérée des plongements, donnant

ainsi plus de poids aux mots connotés visuellement. Comme l’échelle initiale des distances moyennes

ou pertinences visuelles inverses est arbitraire, une température τ est introduite dans le softmax, de

sorte que le plongement de phrase résultant est

s =
T∑︂

t=1

exp(vt/τ)∑︁T
k=1 exp(vk/τ)

vt (B.16)

τ est considéré comme un hyperparamètre et sa valeur est sélectionnée par validation croisée sur

l’ensemble de validation. Une illustration des pondérations résultantes pour quelques phrases est

présentée dans la figure 3.8 (à gauche).

Dans l’approche Defattention, nous visons à apprendre à prédire la pertinence vi du mot wi à partir

de son plongement vi ∈ RK tel que vi = w⊤vi où w sont des paramètres appris. L’équation (B.16)

peut ensuite être appliquée pour créer un prototype sémantique à partir d’une définition. Différentes

manières pourraient être envisagées pour apprendre les paramètres w. Une approche simple pourrait

consister à initialiser aléatoirement w avec les paramètres W du modèle linéaire (équation (B.17)),

puis à estimer les pertinences vi = w⊤vi pour chaque mot wi, à construire les prototypes de classe sc

pour chaque classe c en utilisant vi et l’équation (3.7), à calculer T = (t1, . . . , tN)⊤ avec tn = syn , et

enfin à évaluer la fonction de coût du modèle linéaire :

1
N

∥X − TW∥2
2 + λ∥W∥2

2 (B.17)

192

B.5. UTILISATION DE DESCRIPTIONS COURTES EN TANT QUE
REPRÉSENTATIONS SÉMANTIQUES

Nous pourrions alors utiliser une descente de gradient (à l’aide d’une rétropropagation) pour mettre

à jour w et W jusqu’à leur convergence. Cependant, nous pouvons profiter de l’existence d’une

solution analytique à l’équation (B.17) et procéder comme suit : nous initialisons aléatoirement w et

construisons les prototypes de classe sc ainsi que T en utilisant l’équation (B.16) comme précédemment.

Nous estimons alors directement W en utilisant la solution analytique à l’équation (B.17)

W = (T⊤T + λNIK)−1T⊤X (B.18)

et utilisons cette estimation de W pour calculer le coût dans l’équation (B.17). Nous rétro-propageons

ensuite le gradient et effectuons la descente du gradient sur w uniquement, la valeur de W étant estimée

avec l’équation (B.18) à chaque itération. Nous répétons ce processus jusqu’à la convergence. Les poids

d’attention résultants de quelques phrases sont illustrés figure 3.8 (à droite).

Plutôt que de combiner des plongements de mots dans une définition pour former un prototype

de classe unique avec une dimension fixe, une autre solution peut consister à adapter les approches

de ZSL existantes pour permettre l’utilisation d’un prototype de classe composé de plusieurs parties

avec la même dimension fixe. Nous proposons d’explorer cette approche en adaptant le coût de triplet

évoqué section B.2 afin de permettre l’utilisation de plusieurs prototypes par classe.

Au lieu d’avoir une classe c représentée par un vecteur sémantique unique sc, nous considérons

maintenant que chaque classe c est représentée par un ensemble de Tc prototypes {s1
c , . . . , sTc

c }, avec

st
c ∈ RK . De tels prototypes peuvent par exemple être les embeddings {v1, . . . , vTc} des mots con-

stituant une courte description de la classe. Le coût de triplet de l’équation (B.1) peut alors être

adapté pour que par exemple, pour la classe correcte y, seuls les P embeddings {sp1
c , . . . , spP

c } avec la

compatibilité f(x, sp
y) la plus élevée soient pris en compte. En écrivant TP = {p1, . . . , pP } les index

des « top-P » plongements, le coût de triplet devient

[m + f(x, sc) − 1
P

∑︂
p∈TP

f(x, sp
y)]+ (B.19)

Nous pouvons remarquer que dans cet exemple, nous considérons toujours qu’il existe un proto-

type unique sc pour les classes incorrectes c ̸= y au lieu d’un ensemble de représentations textuelles

{s1
c , . . . , sT

c }. Un tel prototype peut être obtenu simplement en faisant la moyenne des embeddings de

mots de telle sorte que sc = 1
T

∑︁T
t=1 st

c, de façon similaire à la précédente approche Defaverage.

193

B.5. UTILISATION DE DESCRIPTIONS COURTES EN TANT QUE
REPRÉSENTATIONS SÉMANTIQUES

Plus généralement, nous pouvons considérer de la même manière les Q plongements avec la compati-

bilité la plus élevée pour les classes incorrectes c ̸= y. En adaptant le coût de triplet de l’équation (B.19)

et en additionnant les coûts sur l’ensemble d’apprentissage, cela se traduit par l’objectif suivant :

1
N

N∑︂
n=1

∑︂
c∈CS
c̸=yn

⎡⎣m + 1
Q

∑︂
q∈TQ

f(xn, sq
c) − 1

P

∑︂
p∈TP

f(xn, sp
yn

)

⎤⎦
+

(B.20)

Nous pouvons remarquer que si P et Q sont égaux au nombre de mots dans chaque définition, cela

équivaut à faire la moyenne des compatibilités avec tous les plongements lexicaux. Si f est en outre

linéaire par rapport à s, cette équation est équivalente à la fonction de coût de triplet standard des

équations (B.1) et (B.2). Pour effectuer des prédictions avec un modèle entrâıné avec l’objectif de

l’équation (B.20), nous pouvons à nouveau utiliser la moyenne des R plongements lexicaux avec la

compatibilité la plus élevée, et prédire la classe non vue c avec la moyenne la plus élevée :

ŷ = argmax
c∈CU

1
R

∑︂
r∈TR

f(x, sr
c) (B.21)

.

Les plongements de phrases obtenus à partir des deux approches Defvisualness et Defattention peu-

vent être comparés aux prototypes de classe standard obtenus à partir du plongement des noms de

classe. Nous appelons cette approche l’approche Classname. Nous menons nos expériences sur le jeu

de données à grande échelle ImageNet [33], en utilisant les définitions WordNet [103] correspondant

aux synsets associés aux classes en tant que courtes descriptions. Nous utilisons le même protocole

expérimental que dans la section B.4, c’est-à-dire le même que dans [53]. Nous évaluons les perfor-

mances avec les trois modèles de plongement Word2vec, GloVe et FastText. Nous menons également

des expériences avec le modèle de plongement Elmo [118], qui permet d’obtenir des embeddings con-

textuels.

Les résultats sont présentés dans le tableau 3.6. L’approche de base Defaverage fonctionne moins bien

que l’approche habituelle Classname. Les mécanismes d’attention apportent une légère amélioration,

avec des résultats comparables pour les deux approches Defvisualness et Defattention, mais les perfor-

mances restent nettement inférieures à celles de l’approche Classname. Ces résultats sont cohérents

avec ceux rapportés dans [54], dans lequel les plongements obtenus à partir des définitions WordNet

sont également à l’origine de résultats nettement inférieurs à ceux obtenus avec les noms de classe. Les

194

B.5. UTILISATION DE DESCRIPTIONS COURTES EN TANT QUE
REPRÉSENTATIONS SÉMANTIQUES

résultats obtenus avec Elmo sont étonnamment moins bons, y compris avec l’attention, alors que l’on

pouvait s’attendre à ce que l’attention soit plus efficace ici dans la mesure où les plongements d’Elmo

peuvent être considérés comme incluant le rôle d’un mot dans une phrase.

Nous comparons les résultats obtenus avec l’approche multi-prototype de l’équation (B.20) avec

une approche standard de coût de triplet (équations (B.1) et (B.2)) dans laquelle les plongements de

mots sont moyennés pour un seul prototype sc = 1
T

∑︁T
t=1 st

c par classe c. Les résultats sont présentés

dans le tableau 3.7. Le modèle multi-prototype obtient de meilleurs résultats que DeViSE lorsque

nous utilisons les lemmes distincts d’un synset comme multi-prototypes. Cependant, les résultats du

modèle multi-prototype avec des multi-prototypes composés de mots issus de définitions sont encore

médiocres, malgré des scores de compatibilité qui semblent raisonnables d’un point de vue qualitatif

comme illustré figure 3.9). Les scores atteints avec cette approche sont également inférieurs à ceux

des approches d’attention.

Les résultats décevants des deux approches peuvent s’expliquer en partie par le fait que certaines

des définitions de WordNet n’incluent pas vraiment d’informations pertinentes pour décrire une classe.

Par exemple, pour les deux classes de test « tourterelle » et « tourterelle tigrine », les descriptions

correspondantes sont respectivement « n’importe quelle espèce de colombe sauvage d’Europe, d’Afrique

ou d’Asie » et « petite colombe australienne »5. Cependant, nous émettons l’hypothèse que dans

d’autres cas, il peut malgré tout y avoir des informations supplémentaires intéressantes dans ces

définitions par rapport aux seuls noms de classe.

Nous étudions donc une approche très simple pour combiner ces sources d’information : étant donné

s1 et s2 ∈ RK deux représentations sémantiques obtenues avec des approches différentes, par exemple

les approches Classname et Defaverage, nous créons un prototype combiné s via une combinaison

convexe des deux prototypes paramétrée par un scalaire µ ∈ [0, 1] telle que s = µs1 + (1 − µ)s2.

Nous utilisons cette idée pour combiner des prototypes Classname avec des plongements de phrases

qui, contrairement aux approches multi-prototypes, ont l’avantage de fournir facilement une seule

représentation à dimension fixe d’une phrase. Nous appelons par exemple Classname + Defvisualness

la combinaison du prototype Classname avec le prototype Defvisualness. Puisque des résultats récents

indiquent que les relations hiérarchiques et graphiques entre les classes contiennent des informations

5Les descriptions originales des classes turtledove et Australian turtledove sont “any of several old world wild doves”
et “small Australian dove”.

195

B.6. CONCLUSION ET PERSPECTIVES

intéressantes [53, 60], dans l’approche Classname + Parent, nous combinons le prototype obtenu

en utilisant un nom de classe avec le prototype obtenu à partir de sa classe parent dans la hiérarchie

WordNet. Nous définissons de la même manière l’approche Classname + Defvisualness + Parent comme

la combinaison du prototype Classname + Defvisualness avec le prototype de sa classe mère, ce dernier

étant également obtenu par une combinaison de plongements de noms de classe et de définitions.

Nous sélectionnons la valeur de µ conjointement avec les hyperparamètres du modèle en utilisant

la validation croisée, sauf lors de la combinaison d’un prototype avec le prototype de sa classe par-

ent. Dans ce dernier cas, la validation croisée a tendance à produire des valeurs très incohérentes et

instables, ce qui est cohérent avec les résultats de [4]. Lors de la combinaison d’un prototype avec son

prototype parent, nous imposons relativement arbitrairement µ = 0, 75.

Les résultats expérimentaux sont présentés dans le tableau 3.8. La combinaison de Classname avec

les approches Def apporte des scores nettement meilleurs que l’un ou l’autre séparément. L’utilisation

d’informations parentes en plus des prototypes Classname améliore les résultats par rapport aux

prototypes enfants seuls, ce qui est cohérent avec [53] où les meilleures méthodes utilisent des rela-

tions hiérarchiques entre les classes. Le même effet est observé lors de l’utilisation des informations

parentales avec l’approche Classname + Defvisualness. Enfin, nous fournissons des résultats supplé-

mentaires pour différents modèles de ZSL dans le tableau 3.9 pour l’approche la plus performante,

l’approche Classname + Defvisualness + Parent avec les plongements FastText, et nous rapportons les

résultats de [53] pour comparaison. Les performances sont considérablement améliorées pour tous les

modèles.

B.6 Conclusion et perspectives

Dans cette thèse, nous nous avons étudiés l’apprentissage zéro-shot en tant que moyen de réduire

le besoin d’annotations humaines pour entrâıner des modèles de reconnaissance visuelle. Nous nous

sommes en particulier concentrés sur le contexte plus réaliste d’apprentissage zéro-shot généralisé,

dans lequel les classes de test peuvent être à la fois vues et non vues, ainsi que sur le contexte plus

difficile de zéro-shot à grande échelle, dans lequel les prototypes sémantiques sont obtenus de manière

non supervisée. Dans une première partie, nous avons fait valoir que les méthodes de classement

font habituellement plusieurs hypothèses implicites potentiellement préjudiciables. Nous avons pro-

196

B.6. CONCLUSION ET PERSPECTIVES

posé d’adapter la formulation habituelle du coût de triplet afin que ces méthodes puissent prendre en

compte les relations inter et intra-classe. Dans une deuxième partie, nous avons proposé un processus

simple pour combler l’écart entre les performances sur les classes vues et non vues, dont ces méthodes

souffrent fréquemment dans un contexte d’apprentissage zéro-shot généralisé. Dans notre évaluation

expérimentale, la combinaison de ces contributions a permis au modèle que nous proposons d’égaler

ou de surpasser les performances des méthodes génératives, tout en étant moins restrictif en pratique.

Dans une troisième partie, nous nous sommes concentrés sur les représentations sémantiques utilisées

dans un cadre d’apprentissage zéro-shot à grande échelle. Dans ce contexte, les informations séman-

tiques proviennent généralement de plongements lexicaux des noms de classe. Nous avons défendu

l’idée selon laquelle les plongements habituels souffrent d’un manque de contenu à connotation visuelle

dans les corpus d’entrâınement. Nous avons donc proposé de nouveaux corpus de textes davantage

connotés visuellement ainsi qu’une méthode pour adapter les modèles d’apprentissage de plongements

à ces corpus. Enfin, dans une quatrième et dernière partie, nous avons proposé de compléter ces

représentations non supervisées par de courtes descriptions en langage naturel, dont la production ne

nécessite qu’un effort minimal par rapport à des attributs exhaustifs. Ces différentes contributions

ont permis d’obtenir des résultats significativement améliorés par rapport à l’état de l’art antérieur.

Il pourrait être intéressant d’explorer plus en détail plusieurs des contributions proposées. Par

exemple, les méthodes que nous proposons pour utiliser de courtes descriptions comme représentations

sémantiques sont assez simples pour le moment, même si elles conduisent déjà à une augmentation

des scores lorsqu’elles sont combinées avec d’autres types de représentations. Cette simplicité est en

partie due à la quantité limitée de données d’entrâınement disponibles, car nos modèles n’avaient

accès qu’à un millier de phrases courtes lors de la phase d’entrâınement. Avec un ensemble de données

d’apprentissage plus grand, il est probable que d’autres approches plus complexes puissent mener

à de meilleurs résultats. Même si les scores actuels sont sans doute encore trop faibles pour de

nombreux cas d’utilisation pratiques, nous restons optimistes concernant la tâche d’apprentissage zéro-

shot à grande échelle. Nous espérons que nos contributions émuleront d’autres recherches au sujet des

représentations sémantiques des classes. En effet, cet aspect semble être un élément important pour

les scénarios d’apprentissage zéro-shot à grande échelle, et pourtant très peu de travaux portent sur

ce sujet. De la même manière que la reconnaissance zéro-shot a bénéficié des progrès de la vision

197

B.6. CONCLUSION ET PERSPECTIVES

par ordinateur en général, il est également probable que les progrès dans différents domaines tels que

le traitement du langage naturel puissent bénéficier à cette tâche. À plus long terme, un modèle de

reconnaissance zéro-shot efficace à grande échelle et basé entièrement sur des prototypes de classe

non supervisés représenterait un atout majeur en matière d’approches frugales en termes de données,

et pourrait ainsi grandement contribuer à démocratiser l’utilisation de la vision par ordinateur et de

l’apprentissage automatique.

198

Yannick LE CACHEUX

Toward more practical zero-shot learning

Résumé : Cette thèse porte sur la reconnaissance visuelle « zero-shot », qui vise à classifier des images de

catégories non rencontrées par le modèle pendant la phase d’apprentissage. Après avoir classé les méthodes

existantes en trois grandes catégories, nous défendons l’idée que les méthodes dites de classement se basent

habituellement sur plusieurs hypothèses implicites préjudiciables. Nous proposons d’adapter leur fonction de

coût pour leur permettre d’intégrer des relations inter et intra-classe. Nous proposons également un processus

permettant de diminuer l’écart entre les performances sur les classes vues et non vues dont souffrent fréquemment

ces méthodes. Dans notre évaluation expérimentale, ces contributions permettent à notre modèle d’égaler ou

surpasser les performances des méthodes génératives, tant en étant moins restrictif. Dans un second temps, nous

nous intéressons aux représentations sémantiques utilisées dans un contexte d’application à grande échelle. Dans

ce contexte, l’information sémantique provient généralement de plongements lexicaux des noms de classe. Nous

soutenons que les plongements habituels souffrent d’un manque de contenu visuel dans les corpus servant à leur

apprentissage. Nous proposons donc de nouveaux corpus de texte davantage connotés visuellement, ainsi qu’une

méthode permettant d’adapter les modèles de plongement à ces corpus. Nous proposons en outre de compléter

ces représentations non supervisées par de courtes descriptions en langage naturel, dont la production ne requiert

qu’un effort minimal comparé à des attributs génériques.

Mots clés : Apprentissage zero-shot, reconnaissance visuelle, apprentissage automatique

Abstract : This thesis focuses on zero-shot visual recognition, which aims to recognize images from unseen

categories, i.e. categories not seen by the model during training. After categorizing existing methods into three

main families, we argue that ranking methods habitually make several detrimental implicit assumptions. We

propose to adapt the usual formulation of the hinge rank loss so that such methods may take inter and intra-class

relations into account. We also propose a simple process to address the gap between accuracies on seen and

unseen classes, from which these methods frequently suffer in a generalized zero-shot learning setting. In our

experimental evaluation, the combination of these contributions enables our proposed model to equal or surpass

the performance of generative methods, while being arguably less restrictive. In a second part, we focus on the

semantic representations used in a large-scale zero-shot learning setting. In this setting, semantic information

customarily comes from word embeddings of the class names. We argue that usual embeddings suffer from a lack

of visual content in training corpora. We thus propose new visually oriented text corpora as well as a method to

adapt word embedding models to these corpora. We further propose to complete unsupervised representations

with short descriptions in natural language, whose generation requires minimal effort when compared to extensive

attributes.

Keywords : zero-shot learning, image recognition, machine learning

	Remerciements
	Résumé
	Abstract
	List of tables
	List of figures
	Introduction
	State-of-the-Art
	An introduction to zero-shot learning
	What is zero-shot recognition?
	A simple example
	Formal framework
	Zero-shot learning settings
	Available information at training time: inductive vs. transductive settings
	Use of additional information
	Task during the testing phase: classical vs. generalized ZSL

	Standard methods
	Baselines
	Ridge regression
	Ranking methods
	Linear compatibility function
	Non linear compatibility function

	Generative methods
	Parametric distribution
	Non parametric distribution

	Visual and semantic representations
	Visual features
	Semantic representations

	Generalized zero-shot learning

	Ranking methods and generalized zero-shot learning
	Semantic margin
	Impact of the margin
	Relevance weighting
	Proposed model
	Experimental evaluation of the proposed method
	Zero-shot learning results
	Ablation study
	Generalized zero-shot learning results

	Addressing the seen-unseen classes gap
	Calibration
	Hyper-parameter selection

	Experimental evaluation of the calibration process
	Reproduction of results
	Results of the proposed approach

	Discussion

	Semantic representation for large scale zero-shot learning
	Unsupervised semantic prototypes
	Dataset collection
	Corpus pre-processing

	Evaluation of the proposed semantic embeddings
	Experimental setting
	Results
	Ablation of user filtering
	Comparison to manual attributes
	Influence of collection size
	Error analysis

	Using sentences as semantic information
	Attention approaches
	Visualness-based method
	Learned attention

	Multi-prototype approach

	Evaluation of sentence-based approaches
	Evaluation of the visualness-based methods
	Multi-prototype

	Combination of sentences and class names
	Discussion

	Conclusion
	Summary of contributions
	Perspectives

	Bibliography
	List of appendices
	Additional details
	Zero-shot learning datasets
	Implementation details
	Illustrations
	Illustrative examples for the semantic margin
	Illustrative examples for the relevance weighting
	ImageNet hierarchy

	Résumé en français
	Introduction
	Hypothèses implicites dans les méthodes de classement
	Déséquilibre entre les classes vues et non vues dans un contexte d'apprentissage zéro-shot généralisé
	Représentations sémantiques non supervisées
	Utilisation de descriptions courtes en tant que représentations sémantiques
	Conclusion et perspectives

