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Abstract

Mobile edge computing (MEC) concept proposes to bring the computing and storage
resources in close proximity to the end user by placing these resources at the network edge
which could be any type of base station in the network. The motivation is to alleviate the
mobile core and to reduce latency for mobile users due to its close proximity. MEC servers
are candidates to host mobile applications and serve web contents. Edge caching is one of
the most emerging technologies recognized as a content retrieval solution in the edge of the
network. It has been also considered as enabling technology of mobile edge computing that
presents an interesting opportunity to perform caching services. Particularly, the MEC
servers are implemented directly at the base stations which enable edge caching and ensure
deployment in close-proximity to the mobile users. However, the integration of servers in
mobile edge computing environment (base stations) complicates the energy saving issue
because the power consumed by mobile edge computing servers is costly especially when
the load changes dynamically over time. Furthermore, users with mobile devices arise their
demands, introducing the challenge of handling such mobile content requests beside the
limited caching size. Thus, it is necessary and crucial for caching mechanisms to consider
the mentioned factors, meanwhile most existing studies focus on cache allocation, content
popularity and cache design. In this thesis, we present a novel energy-efficient fuzzy caching
strategy for edge devices that takes into consideration four influencing features of mobile
environment, while introducing a hardware implementation using Field-Programmable
Gate Array (FPGA) to cut the overall energy requirements. Performing an adequate
caching strategy on MEC servers opens the possibility of employing artificial intelligence
(AI) techniques and machine learning at mobile network edges. Exploiting users context

information intelligently makes it possible to design an intelligent context-aware mobile
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edge caching. Context awareness enables the cache to be aware of its environment, while
intelligence enables each cache to make the right decisions of selecting appropriate contents
to be cached so that to maximize the caching performance. Inspired by the success of
reinforcement learning (RL) that uses agents to deal with decision making problems, we
extended our fuzzy-caching system into a modified reinforcement learning model. The
proposed framework aims to maximize the cache hit rate and requires a multi awareness.
The modified RL differs from other RL algorithms in the learning rate that uses the method
of stochastic gradient decent beside taking advantage of learning using the optimal caching

decision obtained from fuzzy rules.

Keywords : Information Centric Network, Caching, Mobile Edge Computing, Reinforce-
ment Learning, Fuzzy Logic, FPGA.



Résumé

Le paradigme de MEC (Mobile Edge Computing) repose sur le placement des ressources
de calcul et de stockage aux « extrémités » du réseau a proximité des utilisateurs finaux. Le
terme « edge » désigne n’importe quel type de station de base du réseau. Les motivations
pour l'adoption de ce nouveau concept sont principalement la réduction de la charge
au cceur du réseau et la diminution de la latence grice a la proximité des ressources
afin d’améliorer I’expérience utilisateur. Les serveurs MEC sont de bons candidats pour
héberger les applications mobiles et diffuser le contenu Web. La mise en cache a 'extrémité
du réseau, ou Edge Caching en anglais, est 'une des technologies les plus émergentes
connues comme solution de récupération de contenus au bord du réseau. Elle est aussi
considérée comme une technologie permettant la mise en place du concept MEC puisqu’elle
présente une opportunité intéressante pour implémenter les services de mise en cache. En
particulier, les serveurs MEC sont implémentés directement au niveau des stations de
base, ce qui permet la mise en cache a 'extrémité du réseau et le déploiement a proximité
des utilisateurs finaux. Cependant, I'intégration des serveurs MEC dans les stations de
base complexifie le probleme de la consommation énergétique parce que l’environnement
est dynamique et sujet a des changements au fil du temps. Par ailleurs, la demande des
utilisateurs des appareils mobiles est en constante augmentation notamment en termes
d’expérience utilisateur. Sachant que la taille des caches est limitée, il devient nécessaire
et crucial que les mécanismes de mise en cache soient en mesure de faire face a cette
situation et de proposer des solutions efficaces et satisfaisantes a long terme. La plupart
des études existantes se sont focalisées sur I'allocation de cache, la popularité du contenu
ou encore la maniere de concevoir le cache. Dans cette these, nous présentons une nouvelle

stratégie de mise en cache écoénergétique basée sur la logique floue. Notre proposition
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prend en compte les quatre caractéristiques d’un environnement mobile et introduit une
implémentation matérielle en utilisant les FPGA (Field-Programmable Gate Array) pour
réduire les contraintes énergétiques. L’adoption d’une stratégie de mise en cache adéquate
sur les serveurs MEC ouvre la possibilité d’utiliser des techniques d’intelligence artificielle
et d’apprentissage automatique aux extrémités des réseaux mobiles. L’exploitation des
informations de contexte des utilisateurs permet de concevoir une mise en cache intelligente
sensible au contexte. La connaissance du contexte permet au gestionnaire de cache de
tenir compte de I’environnement, tandis que 'intelligence lui permet de prendre les bonnes

décisions pour la mise en cache afin d’optimiser les performances.

Inspiré par le succeés de 'apprentissage par renforcement utilisant des agents pour
traiter des problémes de prise de décision, nous avons étendu notre systeme de mise en
cache basé sur la logique floue & un modeéle d’apprentissage par renforcement modifié. La
méthode d’apprentissage par renforcement modifiée differe des autres algorithmes par le
taux d’apprentissage qui utilise la méthode du gradient stochastique en plus de tirer parti
de 'apprentissage en utilisant la décision de mise en cache optimale obtenue & partir des

regles de la logique floue.

Mots clés : Mise en cache, informatique mobile de proximité, Réseaux de contenus,

logique floue, FPGA, apprentissage par renforcement.

Page de remerciements :



Remerciements



ACKNOWLEDGEMENTS




Acknowledgement

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Samia
Bouzerfane for the continuous support, for her patience, motivation, and immense knowledge.
Her guidance helped me in all the time of research and writing of this thesis. I could
not have imagined having a better advisor and mentor. I would like also to express my
deepest thanks to my advisors Prof. Mehammed Daoui and Dr Soumya Banerjee for their

dedicated support, help and guidance.

Besides, I would like to thank the members of my thesis committee, who took time to
report my thesis and to be part of my jury support, namely Dr Malika Belkaid, Dr. Nadjib
Achir, Prof. Bouabdellah Kechar and Dr. Hassine Moungla.

My sincere thanks also goes to my father Djamel who taught me once that our greatest
weakness lies in giving up and the most certain way to succeed is always to try just
one more time. My mom Fahima who have been always supporting me no matter what.
My grandmother, sisters khawla, Aya and Ibtihel and my little brothers Adem and Abd
elmoudjib who were the happiness in my dark days. My husband Billel,for his encouragement
and sacrifice without which I could not have strengths to overcome all the difficulties during
my overseas study time. My father in law Laid Lasledj and my mother in law Houria and

my sister in law Hadjer for their endless love.

Finally a big thanks to everyone contributed from near or far especially my friends
Hasna,Ahlem, Imene and Younes, my collegues Nacer,Lyes and Khaled for their encourage-

ments.



ACKNOWLEDGEMENT

10



Contents

ABSTRACT] 3
[Résumé| 5
[ Acknowledgement | 9
[List of Tables] 15
[List of Figures| 17
[Résumeé de la Thesel 19
Mntroductionl 33
I__Context and State of the Art | 39

[1 Context: Mobile Edge Computing and Information Centric Networking| 41

(L1 Introductionl. . . . . . . . .. . 41
1.2 Mobile edge network |. . . . . . ..o oo 42
1.3 Mobobile edge computing | . . . . .. ... Lo o 42
[1.3.1 Mobile Edge Computing servers| . . ... .. .. ... ........ 43
1.4 Information centric networking| . . . . . . . ... ... L. 45
[1.4.1  Information centric networking vs current Internet| . . . . . . . . .. 49

11



CONTENTS

[Lo Conclusionl . . . . . . . . 50
[2 Intelligent mechanisms: fuzzy logic and reinforcement learning| 51
2.1 Introductionl. . . . . . . . . . . 51
2.2 Fuzzy logic| . . . . . . . o1
2.2.1 Preliminaries| . . . . . . .. ... oo 51
2211 Definitionsl . . . ... ... oo o 52

[2.2.1.2  Membership tunction| . . . . . . ... ... 52

2.2.1.3 Mamdani Fuzzy Controll. . . . . . . . ... ... ... ... 54

[2.2.2  General Procedure for Intuitionistic Fuzzy decision system|. . . . . . 54
[2.2.3  Fuzzy logic : decision making | . . . ... ... ... ... ... ... 55

2.3 Reinforcement learning|. . . . . . . . . . ... oL 99
[2.3.1 Reinforcement Learning Modell . . . . . . .. .. ... ... ... 56

24 Conclusionl . . ... .. . 59
[3 Caching mechanisms in Mobile Edge Computing| 61
B.1 Introduction|. . . . . . . . . .. 61
[3.2  Caching: the Beginning | . . . . . . . ... .. ... .. L. 61
[3.2.1 Caching Places| . . . . . . ... ... .. ... . 0. 62
[3.2.2 Caching Strategies| . . . . . . . . .. .. ... ... 62
[3.2.2.1  Caching Strategies Principles| . . . . . . . . ... ... ... 63

3.2.2.2 Performance Measures. . . . . . ... ... ... ...... 63

[3.2.2.3  State of the Art on Caching Strategies|. . . . . . . . . ... 67

13.2.3  Comparison of Caching Strategies| . . . . . ... .. ... ...... 69
[3.2.4  Differentiated caching service]. . . . . . . . . . ... 70

[3.3  Caching over tuzzy logic|. . . . . . . . . . ... L 70
3.4 Caching over Reinforcement learning | . . . . ... ... ... ... ..... 71

12



CONTENTS

.o Conclusion] . . . . . . . o 72
Il Contributions 75
[4 Energy-efficient caching decision using Fuzzy Logic| 7T

4.1 Introductionl. . . . . . . ... 7

4.2 The Systemmodel| . . . . .. . ... . 77

4.2.1  Fuzzy decision system| . . . . . . . .. ... Lo 79
[4.2.1.1  Design of the fuzzy decision algorithm|. . . . . . . .. . .. 81

4.3 Implementation and evaluation|. . . . . . . ... ... ... L. 85
[4.3.1  Software solutionl . . . . . . . . .. ... 85
4.3.1.1 Comparison and evaluation| . . ... ... ... ... ... 88

4.3.1.2  Long term performance|. . . . . .. ... ... ... .... 89

4.3.1.3  Short term performance| . . . .. ... ... ... ..... 90

432 Hardware solutionl . . .. . ... ... ... ... .. ......... 90
4.3.2.1 FPGA: Field programmable get array utilization| . . . .. 90

4322 Results discussion|. . . ... .. ... ... ... ... ... 90

44 Conclusionl . . .. ... . . 91
[5 Caching strategy with mRL (modified Reinforcement Learning)| 93

b1 Introductionl. . . . . . . ..o 93

5.2 Presentation of the solutionl . . . . . . .. .. ... ... oo 0oL 94

[5.3  Modified reinforcement learning (mRL) over the edge caching system| . . . 94

[5.3.1 The proposed scenario| . . . . . .. ... ... ... ... ... .... 94
b.3.2 Mathematical modell . . . . .. ... ... o0 oo 97
5.4  Problem formulation and model development|{ . . . . . . ... ... ... .. 100
5.4.1  High level descriptionof mRL|. . . . . . ... .. ... ... ... .. 100

13



CONTENTS

9.4.2  Policy improvement| . . . . . . .. ... ... ..

[5.4.2.1  Formal model of policy improvement| . .. ... ... ...

|6 Simulation : caching strategy for MEC/ICN based architecture|

[6.2  Architecture and design| . . . . . . . ..o

[6.3 Evaluation

of Fuzzy Caching System (FCS) based algorithm|. . . . . . . ..

6.3.1 Trace parsers| . . . . . . . . ...

/Conclusion!

[Publications|

(Bibliographie|

14

115

115

115

116

117

119

121

123

125

127

143

143



List of Tables

[1.1 The potential need of Mobile Edge Computing server|. . . . . . . . . .. .. 46
1.2 Key concepts and principles of ICN|. . . . . ... ... ... .. ... 49
2.1 'The membership tunction several shapes| . . . . . . . ... ... ... .... 53
3.1  Summary of some existing classical placement mechanisms| . . . . . . . .. 73
[3.2  Summary of some existing classical replacement mechanisms| . . . . . . .. 74
4.1 TInput variable description |. . . . . . . . . ... o oo o 80
4.2 Output variable description |. . . . . . . . . . ... Lo 80
4.3 Fuzzification of input variables) . . . . .. .. .. ... ... ... 81
4.4 Fuzzification of output| . . . . . . . .. ... o o 81
HE5 Notafionl. . . . . v v vt o e e e e 86
4.6 the resources used by our hardware design| . . . . . . . . .. ... ... ... 91
[5.1 List of mathematical symbols|. . . . . . ... ... ... ... .. ...... 99
6.1 Simulation Environment| . . . . . . . .. ... L 117

15



LIST OF TABLES

16



List of Figures

1.1  Edge network schemes| . . . . . . ... ... ... ... 42
1.2 The outdoor scenarios of MEC| . . . . . . .. .. ... ... ... ...... 44
(1.3 MEBEC architecturel. . . . . . . . .. .. oo 44
[[.4 Taxonomy of the Mobile Edge Computing [6]] . . . . . . ... ........ 47
[[.5 The hourglass approach of [nformation centric networking (ICN)*¥ (right) |

compared to the current Internet (left).| . . . .. ... ... ... ... ... 48
[2.1 Block diagram of Intuitionistic fuzzy system|. . . . . . . ... ... ... .. 52
2.2  Reintorcement Learning, Machine Learning and Deep Learning relation| . . 57
2.3 Reinforcement learning model| . . . . . . . . ..o 58
3.1 Edge caching architecture|. . . . . . . .. ... o000 65
4.1 Fuzzy interence system of caching decision | . . . . . .. .. ... ... ... 80
4.2 Membership function for the input variables . . . . . . . .. ... ... ... 83
4.3 Membership function for the output| . . . .. .. ... ... .. ... .... 84
4.4 Cachig priority according to fuzzy system |. . . . . . . . .. .. .. ... .. 84
4.5 Distinction between web object by giving each a priority | . . . . . .. . .. 87
4.6 Cache hit ratio in high priority requests|. . . . . . . . . .. ... ... ... 87
4.7 Cache hit ratio of tuzzy caching system, LRU and FIFO| . . . . . .. . ... 88
4.8 Cache hit ratio stability over time | . . . . . . .. ... ... 000 89

17



LIST OF FIGURES

4.9  The values of energy consumption, thermal properties, voltage and current.| 91

[b.1 scenario of caching using reinforcement learning | . . . . . . ... ... ... 95
5.2 block diagram of caching over mRL | . . . . . . ... .. ... .. ... ... 97
5.3 caching Agnet process|. . . . . . . . . .. L o 98
B4 Cache size over timel. . . . . . . . . .. 108
5.5  Frequency histogram | . . . . . .. ... oo Lo 110

5.6  Caching decision evaluation and the optimization of the objective function| 111

5.7 Relation between cost, frequency and size | . . . . . . . . ... ... ... .. 111
5.8 Optimal clustering for cost and frequency and size|. . . . . . . . ... ... 112
6.1  High-level architecture and workload of the simulation tool | . . . . . . . .. 116
6.2 GEANT Topology| . . . . .. .. . ... . 118
6.3 cache hit ratio and latency over size with a fixed o |. . . . . . . . .. .. .. 120

6.4  Cache hit ratio and latency over content distribution with a fixed cache size |120

18



Résumé de la These

Nouvelles stratégies intelligentes de gestion de cache et de mobilité pour les

architectures MEC utilisant des réseaux de contenus

Les appareils mobiles sont aujourd’hui des plates-formes incontournables pour offrir des
services et des contenus divers a l'utilisateur. De plus, les clients sont devenus de plus en plus
exigeants en termes de consommation de contenus mais aussi en matiere de sécurité et de
qualité du service. L’informatique distante ou mobile a été initialement batie sur le modele
client-serveur impliquant une hiérarchie a deux niveaux. L’évolution de I'informatique
a permis l'introduction du concept de "cloud" pour désigner une collection de serveurs
disposant de ressources informatiques ou de machines virtuelles, sur lesquelles tourne tout
calcul déporté par un client mobile. C’est ce qu’on appelle le cloud mobile. Le cloud
mobile prend en compte divers facteurs liés a la mobilité contrairement aux techniques
traditionnelles client-serveur, tels que ’énergie des appareils, le colit d’utilisation de la bande
passante, la connectivité réseau, la mobilité, la sensibilité au contexte et a la localisation

[92] [102].

Malgré les avantages du cloud mobile, il reste un certain nombre de défis a relever dus
a ’éloignement des serveurs cloud des équipements mobiles. Ce qui est un frein pour avoir
de bonnes performances et un temps de réponse acceptable pour l'utilisateur. C’est ainsi
que l'idée est venue de déporter le calcul de 'utilisateur sur de petits data centers qui
seraient déployés a proximité de l'utilisateur, c’est-a-dire, au sein des stations de base. Ce
nouveau paradigme est ce qu’on appelle en anglais MEC (Mobile Edge Computing) et qu’on
peut traduire comme l'infrastructure réseau mobile de proximité. La technologie MEC est

aujourd’hui une solution prometteuse pour satisfaire différentes exigences telles que : une
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faible latence, la proximité de l'utilisateur, une bande passante élevée, des informations
fournies en temps réel et la prise en compte de la localisation de 'utilisateur. La technologie
MEC est percue aujourd’hui comme 'une des technologies clés favorisant 1’émergence
de la nouvelle génération de réseaux mobiles comme la 5G. La demande croissante de
services sur le réseau mobile souléve plusieurs problémes comme la capacité de stockage et
la bande passante. Dans ’architecture traditionnelle des réseaux mobiles, les demandes des
utilisateurs sont traitées par des fournisseurs de contenus traversant ’ensemble du réseau
mobile, ce qui méne a une congestion du réseau et donc a un temps d’acces aux services
élevé. L’architecture MEC offre a I'utilisateur des ressources cloud qui seraient hébergées a
Pextrémité du réseau afin de rapprocher les contenus de I'utilisateur mobile. Ces extrémités
réseau peuvent étre des passerelles, des stations de base ou méme des équipements mobiles
de l'utilisateur. Au niveau de ces extrémités, se trouvent des serveurs MEC qui traitent
et stockent des contenus utilisateurs évitant ainsi la congestion et la latence réseau. En
exécutant des analyses et des mises en cache sur les serveurs MEC, le volume de données
transmis au coeur du réseau pour traitement ainsi que 'impact du trafic de données a
travers le réseau sont réduits. Cependant, les caches ont été congus pour permettre une
communication fluide et rapide, ainsi qu'une distribution des contenus entre les serveurs
MEC et les équipements des utilisateurs. Cependant, ces caches ne permettent de diffuser
que des contenus populaires autour du réseau sans tenir compte d’autres facteurs comme

la mobilité des utilisateurs.

Le paradigme traditionnel de I'Internet présente plusieurs limites. Tout d’abord, bien
qu’Internet fournisse des contenus multiples et différents, ces contenus ne sont pas liés
entre eux. D’autre part, il existe une relation forte entre le contenu et son emplacement, ce
qui a une forte incidence sur la qualité de service. En effet, a chaque fois qu’un contenu
est demandé, une adresse spécifique liée a I’emplacement du contenu est nécessaire, alors
que 'objectif principal est d’obtenir le contenu le plus rapidement possible quelque soit
son emplacement. Pour résoudre ce probleme de maniére explicite, il faut remplacer ou
(emplacement) par quoi (information). Sur la base de cette prémisse, les réseaux de contenus
ICN (pour Information Centric Networking en anglais) proposent un changement radical

avec un modele centré sur ’h6te en se concentrant sur ce qui est livré ou fourni. Aujourd’hui,
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les utilisateurs consomment des contenus web en grande quantité, en particulier des vidéos.
Les statistiques de YouTube dans le monde selon les prévisions de 2016 a 2021 montrent
que le nombre de visionneuses de plates-formes vidéo en ligne s’élevera a 1,86 milliard en
2021, contre 1,47 milliard en 2017 E Sur Netflix, le nombre prévu de souscriptions pour un
abonnement a la vidéo a la demande a travers le monde passerait de 250 millions en 2018
a 450 millions en 2022 H Cela ouvre la voie & un probléme sérieux ou la congestion du
réseau devient incontrdlable et ol de nouveaux mécanismes sont nécessaires pour répondre

aux exigences du réseau et des utilisateurs.

Dans ce contexte, le stockage de contenus temporaires sur plusieurs serveurs du réseau
a été utilisé pour répondre aux demandes des utilisateurs. Ce stockage temporaire est
exécuté sur un systeme appelé systeme de mise en cache. Le concept de mise en cache n’est
pas nouveau dans les réseaux cellulaires. Il a été utilisé dans la mise en cache Web mais
aussi dans les réseaux de contenus qui visent a améliorer I’évolutivité du réseau, en mettant
en cache les contenus dans des serveurs proxy ou dans des noeuds intermédiaires du réseau.
Le déploiement de caches a trés grande échelle augmente ’espace de stockage disponible.
Mais en méme temps, cela augmente la complexité de gestion de ces caches qui nécessitent
des stratégies capables de déterminer ou et quand le contenu doit étre mis en cache tout
en tenant compte de sa popularité. Cependant, la croissance émergente de la demande des
utilisateurs et du paradigme Internet exige une gestion des caches qui soit sensible aux

contextes multiples, offrant ainsi la possibilité de définir de meilleures stratégies.

A T'heure ou Internet est inondé par les données, le stockage des contenus populaires a
Pextrémité du réseau semble étre une technique prometteuse pouvant satisfaire les exigences
de 'utilisateur tout en atténuant la surpopulation du coeur de réseau. A cet effet, les
serveurs MEC équipés de caches locaux peuvent étre utilisés intelligemment. Par ailleurs,
les progres techniques récents et le développement d’applications MEC ont favorisé la
croissance du trafic de données puisque les services MEC utilisent des données massives
issues de domaines variés. En effet, les serveurs MEC sont équipés de capacités de calcul et

de stockage, permettant le traitement de quantités importantes de requétes et de contenus,

Ihttps:/ /www.statista.com /statistics /805656 /number-youtube-viewers-worldwide/
Zhttps://www.statista.com/statistics /322737 /svod-households-worldwide/
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améliorant ainsi la qualité de service (QoS) du réseau et la qualité d’expérience (QoE)
de l'utilisateur. Les caches locaux font partie des équipements MEC qui aident a réduire
le trafic et a améliorer le temps de réponse. En particulier, la mise en cache au niveau
des extrémités du réseau permet d’accélérer la récupération des données et de réduire le
trafic sur le réseau, car les requétes des utilisateurs peuvent étre satisfaites par les noeuds
extrémités les plus proches de I'utilisateur. Cependant, la mise en cache dans les extrémités
du réseau est considérée comme un goulot d’étranglement pour le développement des
systemes MEC, car les caches de proximité ont des capacités de stockage limitées. Ces
caches utilisent en général différentes stratégies de placement et de remplacement, qui sont
généralement congues pour permettre la diffusion de contenus populaires sur le réseau.
Répondre aux exigences du réseau et de 'utilisateur est un point clé dans les réseaux MEC
car il s’agit d’une part de déléguer la gestion de caches aux extrémités du réseau et d’autre
part de prendre une décision qui soit optimale dans tout le réseau. En d’autres termes,
comment résoudre le probléeme du réseau stochastique-dynamique tout en améliorant la

décision optimale de mise en cache

Plusieurs travaux pionniers sur la gestion des caches dans les réseaux MEC ont été pro-
posés et donnent de tres bons résultats. Cependant, ces travaux présentent les inconvénients

suivants :

o Entrées insuffisantes : les travaux existants considérent uniquement la popularité
comme facteur d’information clé, alors qu’en fait il y a plusieurs facteurs qui influent

sur la décision de mise en cache.

e Combinaison des stratégies : Ils considérent soit des stratégies de placement, soit des
stratégies de remplacement, mais ne considerent pas les deux types de stratégies a la

fois.

e Conditions dynamiques : la dynamique de ’environnement et le systeme de mise en

cache ne sont pas bien traités.

e Isolement indicatif : La plupart des stratégies de gestion de caches ne tiennent pas

compte de l'effet a long terme de la décision actuelle de mise en cache.
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D’autres travaux de la littérature proposent des solutions optimales, mais elles ne sont
pas suffisamment intelligentes pour adapter la décision en fonction de I’évolution du systéme.
Afin de combler cette lacune, dans cette these, nous nous concentrons sur la conception
de nouvelles stratégies de mise en cache qui s’appuient sur les méthodes d’apprentissage
automatique. En particulier, nous nous intéresserons a ’apprentissage par renforcement
qui permet aux agents de prendre des décisions en apprenant a ’aide d’interactions avec

Penvironnement [104].

La principale contribution de cette these est de formuler un systeme de décision
intelligent pour la gestion de caches dans le cas ou les serveurs MEC distribués de fagon
stochastique sont équipés de caches a capacité limitée. Notre travail differe des travaux
existants dans le sens ou il propose un systeme qui integre a la fois le placement et le
remplacement de contenus pour une architecture MEC tout en reposant sur un modeéle

d’apprentissage par renforcement modifié.

Cette these comporte trois parties divisées en 6 chapitres. Chaque chapitre est résumé
comme ci-dessous: le premier chapitre décrit le paradigme MEC qui est actuellement en

cours de standardisation par I'ETSI (ISG) ﬂ

Le concept de "edge computing" permet d’optimiser 'utilisation du cloud computing.
Plutét que de transférer les données générées par des appareils connectés vers le Cloud, il
s’agit de traiter les données en périphérie du réseau directement la ou elles sont générées.
Cette méthode réduit les besoins en bande passante des communications entre les capteurs
et le centre de traitement des données en entreprenant les analyses et les connaissances
au plus prés de la source des données. En d’autres termes, les données sont traitées
directement par le périphérique qui les génere (objet connecté, smartphone, etc.) ou par
un ordinateur/serveur local. Jusqu’a récemment, le concept de "edge computing" a permis
principalement d’ingérer, de stocker, de filtrer et d’envoyer des données sur des systémes
dans le cloud. Toutefois, nous sommes aujourd’hui dans la situation ou ces systemes
possedent plus de puissance de calcul, de stockage et d’analyse pour consommer et agir sur
les données dans le réseau machine. Un facteur de croissance important de la technologie

"edge computing" est le besoin croissant de systemes de communication fonctionnant en

3 https://www.etsi.org/technologies/multi-access-edge-computing
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temps réel. Mobile edge computing est une application du "edge computing". C’est
un concept d’architecture en réseau qui offre les capacités du cloud computing dans un
environnement de service informatique en périphérie du réseau cellulaire. L’architecture
MEC fournit un environnement informatique et des ressources cloud placées a 'extrémité
du réseau mais aussi au sein du réseau d’acces radio. L’objectif étant de réduire la latence,
d’assurer un fonctionnement correct et une prestation de services efficace de maniere a offrir
une meilleure expérience a l'utilisateur. Contrairement aux réseaux mobiles traditionnels,
les réseau de sorte que le contenu soit plus proche de 'utilisateur. En effectuant des
mises en cache des contenus sur les serveurs MEC, le volume de données transmis au
coeur du réseau est réduit. Ce qui empéche la congestion et la latence des applications
qui tournent sur les serveurs MEC [61]. En d’autres termes, la conception de I'Internet
actuel crée des problemes que 1'utilisateur ne peut pas supporter, comme les problemes de
sécurité ou la sensibilité au contexte. Les différents défis tels que la mobilité, la sécurité, la
mise en cache et la QoS ont donné lieu a de nouvelles exigences. De plus, les utilisateurs
commencent a se concentrer sur l'information désirée, ce qui augmente la nécessité de
recentrer la communication sur ’acces au contenu plutét que sur I'interaction héte-hote.
Les chercheurs estiment que les réseaux de contenus et les architectures MEC peuvent
jouer un réle clé dans la croissance universelle de 'Internet en traitant les contenus comme
I’entité de premiere classe dans I’architecture réseau et en étant en mesure de stocker le

contenu a différents endroits mais a proximité de 1'utilisateur.

Le deuxiéme chapitre décrit les pré-requis de cette thése. Le développement des nouvelles
technologies de communication a considérablement accéléré la livraison de contenus et
a amélioré la qualité de l'expérience. En apportant plus d’intelligence dans les prises
de décision lors du stockage de contenus en général et dans les architectures MEC en
particulier, on pourrait fournir des services efficaces dans un environnement mobile en
pleine mutation. Nous présentons dans ce chapitre deux techniques que nous avons utilisées

dans nos contributions : La logique floue et 'apprentissage par renforcement.

L’expression "logique floue" recouvre principalement un ensemble de modéles et de
techniques mathématiques, qui sont basées sur la notion de (sous)-ensemble flou. Un

sous-ensemble flou est décrit sur un référentiel donné par une fonction d’appartenance a
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valeur sur une échelle totalement ordonnée, bornée supérieurement et inférieurement. On
emploie le plus souvent en pratique 'intervalle réel [0, 1], mais cette échelle peut aussi
ne comporter qu’un nombre fini de niveaux . La construction d’un systeme de logique
floue consiste a sélectionner les entrées et sorties du systeme avant de les découper au sein
de catégories adéquates nommées ensembles flous. La prise de décisions en utilisant une
logique floue a été utilisée pour de nombreux objectifs, comme pour réduire les cofits et

maximiser la qualité du service.

L’apprentissage par renforcement (Reinforcement Learning en anglais) est une méthode
d’apprentissage pour les modeéles de Machine Learning. Pour faire simple, cette méthode
consiste a laisser ’algorithme apprendre de ses propres erreurs. Afin d’apprendre a prendre
les bonnes décisions, I'algorithme se retrouve directement confronté a des choix. S’il se
trompe, il est "pénalisé“. Au contraire, s’il prend la bonne décision, il est "récompensé*.
Afin d’obtenir toujours plus de récompenses, ’algorithme va donc faire de son mieux pour
optimiser sa prise de décision. L’apprentissage par renforcement est né de la rencontre entre
la psychologie expérimentale et les neurosciences computationnelles. Il tient en quelques

concepts clés simples basés sur le fait que 'agent intelligent:

e Observe les effets de ses actions.
e Déduit de ses observations la qualité de ses actions.

o Améliore ses actions futures.

L’idée de base de 'apprentissage par renforcement est de changer la base des agents
programmés a l'aide d'un systéeme de récompense et de punition dans le but de résoudre le
probleme auquel sont confrontés les agents, ou ils doivent apprendre un comportement et

des actions spécifiques dans un environnement dynamique et stochastique.

Nous avons dédié le troisieme chapitre aux mécanismes de gestion de caches. Un cache
est une zone ou sont stockées des copies de données qui seront trouvables plus simplement et
rapidement par une application. Le but du cache est donc d’optimiser 'acces aux données
afin de gagner en vitesse d’affichage ou encore pour limiter une quantité de données stockées

en mémoire.
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La mise en cache est 'une des technologies les plus émergentes reconnue comme solution
de récupération de contenus aux extrémités du réseau. Elle a également été considérée
comme une technologie qui offre une opportunité intéressante d’effectuer des services
de mise en cache. En particulier, les serveurs MEC sont implantés directement sur les
stations de base qui permettent la mise en cache et assurent le déploiement a proximité des
utilisateurs mobiles. Ce chapitre présente un apercu général de la mise en cache, illustre les
principales stratégies de mise en cache. Il contient également une description des mesures de
rendement ainsi que les critéres de base utilisés couramment pour comparer les mécanismes
de mise en cache existants. Enfin, nous présentons les principes de base de la logique floue

et de I'apprentissage par renforcement qui seront utilisés dans cette these.

Méme si le placement des caches sur les serveurs MEC semble intéressant en vue de
rapprocher les contenus a proximité de l'utilisateur, cela peut poser le probleme de la
consommation énergétique que ca soit sur les data-centers que c¢a soit sur les équipements
mobiles de I'utilisateur en raison notamment de la taille limitée des caches. Ainsi, il est
crucial que les mécanismes de mise en cache proposés tiennent compte de la dimension
énergétique mais aussi d’autres facteurs comme la taille du cache, la popularité du contenu,

etc.

Ainsi, dans le quatriéme chapitre, nous proposons une stratégie de mise en cache efficace
en terme d’énergie pour les extrémités MEC, qui prend en compte quatre caractéristiques
influencant I’environnement mobile, tout en introduisant une implémentation matérielle a
laide de FPGA (Field-Programmable Gate Array) pour réduire la consommation énergé-
tique. Dans ce chapitre, nous avons présenté le modele de logique floue envisagé. Notre
nouveau systéme de mise en cache de proximité, combine la taille, la mobilité et les cotits
en utilisant la logique floue. Les tests menés sur notre solution montrent que ’approche
proposée améliore le taux de succes et qu’une implémentation basée sur du matériel (FPGA)
réduit considérablement la consommation énergétique. Un FPGA sert a implémenter un
systeme numérique, méme si un simple microcontréleur peut souvent faire ’affaire. Les
microcontrdleurs sont peu coliteux et faciles & monter sur une carte a circuit imprimé. Les
FPGA sont de puissants outils, mais ne conviennent pas forcément a toutes les applications.

Ils présentent davantage d’exigences concernant la puissance, la configuration et le circuit
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externe, et ces exigences supplémentaires peuvent entralner un cofit prohibitif. Le fait
d’utiliser un FPGA beaucoup plus cher et qui implique tout un tas d’exigences spécifiques
peut paraitre absurde. Apres la migration de I’algorithme principal vers le matériel a I’aide
de FPGA, nous avons remarqué que le matériel ne consomme que 12 cycles d’horloge. Ce
qui peut étre considéré comme un avantage par rapport au role critique du cache dans le
bord du réseau. Nous avons mesuré la consommation d’énergie, les propriétés thermiques,
la tension ainsi que le courant électrique lors de I'exécution du systeme de décision de mise
en cache floue. Nous avons remarqué qu’une puissance de P=0,45W est consommée lors de
la prise de décision de mise en cache. Contrairement a la stratégie RLU qui consomme
P=0,9W, nous avons donc déduit que la stratégie de mise en cache basée sur la logique

floue consomme moins d’énergie.

Avec la déportation du calcul sur les extrémités du réseau, il devient pertinent
d’accomplir des taches spécifiques comme 'analyse de données et 'apprentissage automa-
tique au niveau de ces extrémités qui sont dotées de ressources dont les capacités ne sont
pas négligeables. L’exploitation intelligente des informations contextuelles des utilisateurs
permet de concevoir une mise en cache intelligente qui prend en compte le contexte. La
prise en compte du contexte permet au cache de tenir compte de 'environnement et de son
évolution, tandis que l'intelligence permet a chaque cache de prendre les bonnes décisions

en sélectionnant le contenu approprié a mettre en cache afin d’optimiser les performances.

A

Afin d’augmenter le taux de succes de la mémoire cache, les études sont destinées & étre
appropriées pour différentes topologies de réseau, mais elles ne considerent ni les propriétés
du contenu lui-méme comme la taille, ni les facteurs d’influence et les caractéristiques de
I'utilisateur final comme le colit et la mobilité. Ils ne font qu’accumuler des contenus avec
une grande popularité ou une fréquence élevée passée, ce qui peut ne plus étre utile au fil
du temps. Pour ajuster de maniere adaptative les propriétés de contenu variées et leurs
facteurs d’influence, nous présentons un systéme de cache de controle flou pour les serveurs
de bord qui peuvent choisir le contenu le plus prioritaire a mettre en cache en fonction
de facteurs bien choisis. Pour décider s’il convient de mettre en cache ou d’expulser des
contenus, le processus décisionnel repose sur les éléments suivants: mobilité, fréquence,

occupation de cache et colt de récupération.
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Inspirés par le succes de 'apprentissage par renforcement qui utilise des agents pour
gérer les probléemes de prise de décision, nous présentons dans le cinquieme chapitre un
modele d’apprentissage par renforcement adapté a la mise en cache de contenus dans
une infrastructure MEC. La solution proposée vise a maximiser le taux de succes de
mise en cache en s’appuyant sur une connaissance multiple des facteurs influents sur les
performances du cache. L’apprentissage par renforcement proposé ici differe des autres
algorithmes d’apprentissage dans la mesure ou le taux d’apprentissage utilise la méthode de
gradient stochastique [18][59] et profite de 'apprentissage en utilisant la décision optimale
de mise en cache obtenue a partir de regles de logique floue. Dans ce contexte, nous
définissons un systéeme de mise en cache modifié basé sur I'apprentissage par renforcement
(mRL) pour MEC, qui rejette les caractéristiques de contenu, a savoir la fréquence, le
colit et la taille, ainsi que la fonctionnalité de I'appareil comme la mobilité et la capacité
de stockage. Cela vise a résoudre le probleme de la mise en cache de maniere réaliste.
La principale contribution de cet article est d’apporter une solution aux problémes de
mise en cache dans un scénario ou les unités de mise en cache sont distribuées de maniere
stochastique par I'intermédiaire de serveurs MEC avec une capacité de stockage limitée. En
particulier, nous nous basons sur un modele de systéme de mise en cache et définissons ses
mesures de performance (taux de réussite et stabilité du cache). De plus, nous définissons
la taille du stockage du cache, la mobilité de 1'utilisateur et la distribution de la popularité
du contenu. En associant le probleme de la décision de mise en cache avec les niveaux
d’apprentissage de renforcement, tout en s’appuyant sur les résultats récents de [61], nous
montrons qu’'un certain taux de réussite peut étre atteint en augmentant la taille totale de
stockage pendant que le nombre de MECs est fixé. Enfin, nous présentons un schéma de
décision réaliste pour le scénario de mise en cache en utilisant un modele d’apprentissage

par renforcement modifié.

Dans le sixieme chapitre, nous avons présenté une simulation pour notre systéme de
mise en cache en utilisant ICARUS, qui est un simulateur de mise en cache basé sur Python
pour les réseaux de contenus. L’outil de simulation nous permet d’évaluer notre solution
de mise en cache pour toute implémentation de type de réseau ICN (Information Centric

Networking en anglais).
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Les réseaux ICN définissent un paradigme dans lequel les contenus échangés sont au coeur
du fonctionnement du réseau, depuis le nommage des paquets jusqu’au routage. Apparues
en 2006, les solutions actuelles sont suffisamment matures pour envisager leur déploiement
et c’est notamment le cas de NDN (Named Data Networking), architecture largement
étudiée dans la littérature scientifique qui possede une implémentation fonctionnelle et
maintenue. Toutefois, pour un opérateur de I'Internet, envisager de déployer une telle
solution protocolaire n’est pas envisageable pour deux raisons. La premiere est le cofit
associé a son déploiement qui nécessite un changement d’infrastructure; la seconde est le

manque de solutions pour sa surveillance et sa sécurité.

Dans ce chapitre, nous avons comparé les stratégies de mise en cache les plus répandues
(LRU, FIFO) avec notre propre solution. Nous avons présenté un scénario commun pour
évaluer différentes stratégies dans le méme environnement de simulation. Les résultats
obtenus montrent que notre solution de cache offre de meilleures performances comparées
a celles des autres stratégies. Nous avons implémenté notre systéme de cache flou avec
le simulateur ICARUS qui a été congu pour répondre & deux exigences principales non
fonctionnelles: extensibilité et évolutivité. L’architecture de haut niveau du simulateur

contient les phases suivantes :

o Configuration et génération de scénarios : Cette phase inclut toutes les étapes
nécessaires a la configuration d’une topologie réseau entierement configurée et d’un
générateur d’événements aléatoires pour la simulation. La génération de scénarios

est basée sur la chaine d’outils Fast Network Simulation Setup (FNSS) .

e Orchestration: Dans cette phase, le simulateur utilise le fichier de configuration afin
d’extraire la plage de parametres (par exemple, la taille du cache, la stratégie utilisée
par le cache, la distribution de popularité du contenu) et entame principalement des

expériences avec tous les parametres choisis.

o Exécution : Apres des expériences, une exécution réelle de la simulation commence

par une mesure d’instance des différentes mesures.

o Collecte et analyse des résultats : A la fin de l'expérience et de I'exécution, les

résultats sont recueillis et agrégés avec la possibilité de calculer les intervalles de
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confiance et les résultats de la courbe de confiance.

Des expériences ont été réalisées avec LRU, FIFO et notre systeme de mise en cache flou.
Nous avons évalué les performances dans une gamme de tailles de catalogue de contenu de
103 & 107. 11 convient de mentionner que la taille du cache est calculée comme le rapport
entre la taille cumulée du cache et le catalogue de contenu. Par conséquent, un scénario
avec un catalogue de contenu volumineux a aussi une grande taille de cache. Afin d’évaluer
I’évolution du systeme de mise en cache flou et de valider sa capacité a fonctionner dans
un environnement ICN a grande échelle, nous avons évalué ses performances en termes de
taux de réussite et de latence du cache par des conditions variables. En particulier, notre
analyse se concentre sur la mesure du taux de succes du cache et de la latence de: FCS,
LRU et FIFO avec différentes tailles de diffusion et de cache. Le taux de succes du cache et
la modification de la latence de la topologie GEANT par rapport a la taille du cache avec
un parametre Zipf et un ratio de population de contenu variable (taille totale du cache
réseau en tant que fraction de la population de contenu). Nous avons remarqué que FCS
fonctionne mieux que FIFO et LRU et que la latence diminue avec la croissance de la taille
du cache. Nous devions tenir compte du fait que plus la taille du cache est grande, plus il
est facile d’obtenir de bons résultats de mise en cache. Par conséquent, notre solution reste
un bon candidat pour la mise en cache dans des réseaux de contenus. La thése se termine
par une conclusion qui rappelle le contexte et les principales contributions, avant de citer
quelques pistes de recherche en termes de perspectives a ce travail. Dans cette thése, nous
avons proposé un nouveau systeme intelligent de mise en cache pour la mise en oeuvre de
mobile edge computing utilisant la logique floue et un modele d’apprentissage renforcé. Ce
systeme de mise en cache a été construit en deux étapes : La premiere étape consiste a
fournir des services de mise en cache efficaces dans un environnement mobile dynamique et
fortement limité en ressources. Nous avons proposé une technique de mise en cache floue
économe en énergie pour les périphériques de bord qui améliore le taux de succes du cache
et qui consomme moins d’énergie. Dans la deuxieme étape, nous avons étendu ’algorithme
du systeme de mise en cache a I'aide d’'un apprentissage par renforcement modifié afin
d’avoir une décision optimale de mise en cache. En termes de perspectives, a court terme,

nous souhaitons améliorer la phase d’apprentissage de la politique de mise en cache afin de
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maximiser le taux de succes. Une autre perspective a ce travail serait d’étudier la flexibilité
du systéme de mise en cache et son adaptation a différents environnements ICN. Il serait,

en outre, intéressant d’intégrer notre solution au sein d’un serveur MEC réel.
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Introduction

The present architecture of mobile cloud computing is the result of the tremendous
demand from users to have different types of services on their mobile devices. By the end
of the decade, global mobile data traffic will have reached 30.6 exabytes — approximately
30 quintillion bytes or 30 billion gigabytes — per month, up from 3.7 exabytes in 2015 El In
addition, over 75% of global mobile data traffic will be video content. Given the current
trend, more than 100 videos will be added each minute in YouTube. Counting the trend to
the volume of data representing the video that has been produced so far, this volume will
increase to 62% instead of 57%. As result, mobile devices became a dominant platform in
the worldwide. In time with this, clients enhanced their expectations facing substantial
number of issues related to the performance, environment, security and quality of service.
The preliminary mobile computing scheme is originally client-server model which adopted
2-level hierarchy. Later on, the terminology "cloud" was used to represent a collection
of servers with computational and information resources, which leads to the research on
mobile cloud computing [92]. Mobile cloud computing considers various mobile-related
factors compared to the traditional computation offloading techniques, such as device
energy, bandwidth utilization cost, network connectivity, mobility, context awareness and

location awareness [45], [102].

Despite the merits of mobile cloud computing, it experiences unavoidable issues due

to the distance between mobile devices and the cloud. Realizing the benefits of providing

services and cloud resources more closely, [Mobile edge computing (MEC)** which deploys

cloud servers in base stations, has become promising solution towards factors like: low

latency, proximity, high bandwidth, real-time radio network information and location

Yhttps:/ /www.statista.com /statistics /271405 /global-mobile-data-traffic-forecast /
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awareness. [MEC] is recognized as one of the key technologies for the next generation 5G

networks by the European 5G PPP (5G Infrastructure Public Private Partnership) [37].

The increasing demand for mobile services over network poses several challenges concern-
ing storage capacity and bandwidth. In traditional centralized mobile network architecture,
the requests of mobile users are served by content providers crossing the whole mobile net-
work leading to service congestion. [MEC]is providing cloud computing capabilities to bring
popular contents at the network edge (e.g., gateways, base stations and end-user devices),
which helps the content to be closer to the end user. Applications and analytic at the
[MEC] servers are not impacted by congestion and latency. In fact, by performing analytic
or caching contents at the MEC servers, the volume of data transmitted to the core for
processing is reduced, and the impact of the data traffic through the network is minimized.
However, the caches originally designed to enable a smooth and fast communication as well
as a content distribution between edge servers and end users, allow to spread only popular
contents around the network without taking into consideration other factors such as user

mobility.

The traditional Internet paradigm presents several limitations. Firstly, although the
Internet provides multiple and different contents, these contents are not linked together.
Hence, TCP/IP, CDN (Content Delivery Network), and P2P are used in order to achieve
a fast and reliable content transfer. Secondly, the fact of the strong relation between
retrieving content and location is an important factor that impacts the QoS. Each time
the content is requested, a specific address linked to a particular location is needed, while
the most important need is to get the content as fast as possible. Resolving this problem
in an explicit way requires replacing where (location) by what (information). Based on
this premise, (Information Centric Network) is a shift from a host-centric pattern
by focusing on what is being delivered and by introducing the named information as
a focal point regardless to the location. Today, users consume web contents in a huge
quantity especially videos. The statistics of YouTube viewers worldwide according to the
forecast from 2016 to 2021 shows that the number of online video platform viewers will

amount to 1.86 billion in 2021, up from 1.47 billion in 2017 EL On netflix, the projected

Shttps://www.statista.com/statistics /805656 /number-youtube-viewers-worldwide,/
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number of subscription video on demand (SVoD) households worldwide would grow from
250 million in 2018 to 450 million in 2022 H This opens up a serious issue where network
congestion becomes out of control and new mechanisms are needed to fulfill network and
user requirements. In this context, storing content temporary on several servers over
the network has been used in order to supply user’s requests. This temporary storage
is running over a system called caching system. The concept of caching is not new in
cellular networks. It has been used in web caching but also in that aims to improve
the scalability of the network, by caching contents in the proxy servers and/or intermediate
nodes of the network. Deploying caches in a very large scale, increases the available
storing space but in the same time it increases the complexity of management. Managing
the caches requires strategies that decide where and when the content should be cached
depending on the content popularity. However, the emerging growth of user demand and
Internet paradigm requires multi awareness caching management posing the possibility of
defining better strategies. In the era of data flood, storing popular contents at the edge is a
promising technique to satisfy the user’s demands while alleviating the overcrowding on the
back-haul. To this purpose, mobile edge computing servers equipped with local caches must
be intelligently used. In the other hand, recent technical advances and the development
of [MEC] applications have led to unprecedented growth of data traffic as [MEC] services
are relying on big data with different types and of significant amount. Specifically, mobile
edge computing servers (MECs) are equipped with computation, analytic and storage
capability, which deal with the significant amount of content requests leading to improve
the quality-of-service (QoS) of the network and the quality-of-experience (QoE) to the end
user. Local caches are one of the MEC]| equipments that helps to reduce the request traffic
and improves the response time. In particular, edge caching can speed up the data retrieval
and reduce the traffic in the network, since data requests could be satisfied by edge nodes
closer to the end user. This also implies that edge caching may relax the need of continuous
connectivity by decoupling the producer and the receiver. However, edge caching has been
widely investigated due to the requirements in term of information freshness. Caching is

considered as a critical bottleneck for the development of [MEC]| systems, as edge caches

Shttps://www.statista.com/statistics /322737 /svod-households-worldwide/
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are located at the edge of the network and physically closer to the end user. With limited
storage, edge caches use different strategies of placement and replacement, which are in
general designed to allow spreading only popular contents around the network. In addition,
[MEC] servers present an exclusive opportunity to implement edge caching and to perform
caching placement and replacement strategy design. Therefore, considering the benefits of
avoiding potential network congestion and alleviating the backhaul links burden, caching
popular content at [MEC]| servers for backhaul capacity-limited mobile network has emerged
as a cost effective solution [55]. Fulfilling the requirement of both network and the end
user is a key point of MEC] that consists of a dynamic computational offloading that might
cause congestion in the network hence decreasing QoS and raising the decision making
and the optimization problem on the whole system. That is, how to jointly encompass the
problem of stochastic dynamics of the network and to enhance the decision of caching?
Several pioneer works about caching in mobile edge computing have been proposed and

realize quite good results but these works suffer from the following issues:

e Not enough inputs: They consider only popularity as a key information factor while

actually there are several factors that effect on the caching decision.

e Strategy combination: They consider either placement or replacement strategies and

not the whole caching system.

e Dynamic conditions: the dynamic of the environment and the caching system are

not well addressed.

o Tentative isolation: Most of caching strategies do not consider the long term effect of

the current caching decision.

The other proposed solutions are optimal but they suffer from a lack of intelligence
that can serve to adapt the decision depending on the evolution of the system. In order to
fill this gap, in this thesis, we focus on the design of novel intelligent caching strategies
that tailor Mobile edge computing servers among learning methods. As one of the learning
methods, reinforcement learning (RL) is a method that enables agents to deal with decision

making problems by learning through interactions with the environment [104].

36



INTRODUCTION

The main contribution of this thesis is to formulate an intelligent caching decision
problem in a scenario where stochastically distributed MECs are equipped with caching
units characterized by a limited backhaul and a storage capacity. Our work differs from
the previous works in terms of studying a new system model with both placement and

replacement aspects of edge caching using a modified reinforcement learning model.

This thesis contains three main parts:

e In Part I, we focus on the context and the state of the art. In particular:

— Chapter 1 recalls our context by presenting environment and charac-
teristics.
— Chapter 2 is the background. It is related to two intelligent mechanisms that

have been used in the contributions : fuzzy logic and reinforcement learning.

— Chapter 3 is the problem statement. It takes a close view on caching mechanisms

in mobile edge computing using the intelligent mechanisms.

e In the second part of the thesis, we take a more practical approach to investigate the

gains of caching throw our contributions. In particular:

— Chapter 4 contains the first contribution where we proposed a novel energy-aware
caching strategy using fuzzy logic by relying on a hardware implementation
using Field-Programmable Gate Array (FPGA) as an alternative computational
architecture that cuts overall energy requirements.

— Chapter 5 contains the second contribution. We introduced a novel reinforcement
learning-based caching system. This is done by modifying the traditional
reinforcement learning algorithm and use the results extracted from fuzzy
caching system interactions, referred to as source entries. This prior information
with reinforcement learning techniques are incorporated where the goal is to

optimally cache the contents.

— Chapter 6 that contains caching strategies simulation and clarifies the gain of

our proposed strategy against the existing ones in based environment.

o Finally, Part III includes our conclusions and future works for this thesis.
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Chapter 1

Context: Mobile Edge Computing
and Information Centric
Networking

1.1 Introduction

Mobile Edge Computing (MEC) is a new technology which is currently being stan-
dardized in an ETSI Industry Specification Group (ISG) E] of the same name. Mobile
Edge Computing provides an IT service environment and cloud-computing capabilities
at the edge of the mobile network, within the Radio Access Network (RAN) and in close
proximity to mobile subscribers. The aim is to reduce latency, ensure highly efficient
network operation and service delivery, and to offer an improved user experience [37]. MEC
increases response time from the edge and allows contents, services and applications to
be accelerated in order to enhance mobile user’s experience over an efficient network and
services. Unlike traditional centralized mobile networks, MEC is providing cloud-computing
capabilities to bring popular contents at the network edge (e.g., gateways, base stations and
end-user devices) so that the content is closer to the end user. Applications and analytics
at the MEC servers are not impacted by congestion and latency [61]. In fact, by performing
analytics or caching contents at the MEC servers, the volume of data transmitted to the
core for processing is reduced, and the impact of the data traffic through the network is

minimized.

1 https://www.etsi.org/technologies/multi-access-edge-computing
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Figure 1.1: Edge network schemes

1.2 Mobile edge network

The main idea of mobile edge networks is to shift the network components closer to end
users, using virtualization technologies like NVF and programmable networks like SDN.
The network resources mainly include computing, storage or caching, and communication
resources. While, in some literature, caching is included in computing resources [15], in
this thesis we discuss the caching from the two aspects while the cache is a computing
storage and also a computing resource. Three different schemes of edge computing have
been proposed in the literature : mobile edge computing, fog computing and cloudlet. A
demonstration of the three schemes regarding to the architecture, node device and context

awareness is shown in figure [1.1

1.3 Mobile edge computing

The basic idea of mobile edge computing is to reduce latency by providing the ability
of computing and storing in close proximity and allowing the services to be hosted on
the edge. The prime objective of mobile edge computing, particularly, raises in indoor
scenarios like improving quality of services and users’ Quality of Experience (QoE), by
providing customized services and reducing latency, beside optimizing network efficiency.

It also provides services relevant to Machine-to-Machine scenarios, Big data analytics
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and offloading. With the tight integration with environment, making easy to understand
network and user characteristics. Figure 77 illustrates the outdoor scenarios of MEC
including technology integration and the supported use cases that can be enabled by MEC
such as e-Health, connected vehicles, augmented reality, gaming, IoT services, distributed
contents and DNS caching. Figure 7?7 represents the MEC architecture where the basic

elements are:

e Mobile devices, which are connected to the internet via a backhaul;

e MEC servers where there are two variations depending on whether the server is
incorporated directly with the base station (BS) (interacting with BS in very sensitive

way) or not incorporated directly with the BS (aggregation site);

e Edge cloud has the responsibility of network traffic controlling and hosting various

mobile edge applications;

e Public cloud is the cloud infrastructure hosted in the Internet.

1.3.1 Mobile Edge Computing servers

The services that have provided by MEC servers are the following:

e Offloading: to increase the computation limit storage, bandwidth and device battery

capacity, while reducing the energy consumption.

e Edge Content Delivery: MEC servers provide resources for deploying additional
delivery content services to edge networks. MEC servers function as distribution

nodes of local contents and use cached contents.

o Aggregation: Instead of routing all the data separately to the base routers, MEC
servers are able to aggregate similar or related traffic and therefore to reduce network

traffic.

e Local Connectivity: When the traffic is routed through MEC servers, the servers are

able to separate the traffic flow and redirect it to other destinations.
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o Augmentation: when additional data are available at the base station site, these data

can be shared to improve the quality of the experience.

Typically, mobile edge computing is characterized by its locality and isolation, because
it can have direct access to local resources that run isolated from the network. In addition,
MEC nodes are so close from the end users and the source of information, which can
easily extract information for analytics in order to analyze user’s behaviors. In addition to
providing context-aware services. As edge services run close to end devices, this reduces
latency and increases the bandwidth, due to the close proximity of the edge and being a
part from the wireless network. Mobile edge computing platform has characteristics which
enable MEC servers to host and preform many kinds of applications which are not suitable
to run in user’s devices regarding to the different requirements, especially storage capacity.
2.1 presents these characteristics in presence and absence of MEC servers. The realization
of MEC technology needs support of various key technologies like virtualization and servers
including components and functional elements. Ejaz et Arif [6] presented a taxonomy of
mobile edge computing. As in figure the taxonomy shows that MEC is characterized
by many properties and also, comprises many individuals and organizations representing
different actors with different roles. Regarding to the services, MEC offers a huge range of
applications in all domains to enhance quality of experience. Devices could access to mobile
edge computing environment, by using any of the available access technologies. MEC is
also characterized by its objectives. Its principal goal is to minimize latency and energy
consumption. Finally, realizing a MEC environment necessitates the support of various key
enablers represented by different technologies which contribute to provide better services

to the mobile user.

1.4 Information centric networking

Resource sharing was a primary goal in the 1960s and the design of the Internet appears
in order to reach this goal. High-speed devices and computers were hosted shared on
sites. Currently, Internet Protocol (IP), which names the attachment point, was designed

to support this sharing and to deliver data. Internet designers had not visualize the
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CONTEXT: MOBILE EDGE COMPUTING AND INFORMATION

Without MEC servers

With MEC servers

Content Optimization

traditional content
optimization is per-
formed to satisfy user
expectation. It uses
user’s web history

stored in the database.

content optimizer can
be hosted at MEC
servers in order to en-
hance network perfor-
mance, Quality of Ex-
perience and new ser-
vices can be added.

Offloading and Aggre-
gation

traditional high ten-
sive computational like
offloading and aggrega-
tion can not be per-
formed in the device.
In order to solve this
issue, the applications
are split into small
tasks and perform at
the core network

Offloading the tasks at
the edge server without
transferring the tasks
to the core network
will certainly reduce
the latency.

Big Data Analytic

The process of data col-
lection from the edge
devices and transfer it
to the core network
takes high bandwidth
and latency.

Mobile Edge Comput-
ing server can perform
the big data analytic
process and after the
analysis, the results
can be sent to the core
network. Hence, re-
ducing bandwidth con-
sumption and improv-
ing the latency.

Table 1.1: The potential need of Mobile Edge Computing server
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Figure 1.5: The hourglass approach of (right) compared to the current Internet (left).

tremendous growth and the plenty ways to use the Internet, especially distributing data for
the large scale using cloud and edge computing. On the other side, resources are distributed
everywhere, while the user essentially cares about the data itself not the location. While
IP, focusing on the location (where), is applied to deliver data (what), most of the recent
applications such as gaming, big data, IoT, etc. do not give importance to the location,
but to the data. A clean-slate method to address the above issues is to abandon the IP
paradigm which was designed for resource sharing on the limited number of sites 50+ years
ago, replacing with what to ship bits. Hence, Information-centric Networking (ICN) is
proposed by naming the data directly, which breaks the limitation of point-to-point IP

semantic [94].

The term Information-Centric Networking (ICN) is generally used to refer to the entire
class of Internet architectures that focus on contents as the focal entity as opposed to a
host centric networking architecture. [[CN] defined as a shift in networking paradigm that
allows applications, services and networks to interact using network primitives centered on
the information to be transferred. The key design of is attributed to the hourglass
approach, as shown in Figure followed by the Internet’s protocol architecture: the
network layer forming the waist of the hourglass is transparent enough, so that almost any
application can run on top of it and simple enough, so that it can run over almost any

link-layer technology.
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key concept Description

Naming data ICN primitives are based on naming the data.
The names of each data must be unique and
persistent. The name identity also must be in-
dependent from storage and the transmission
path either in hierarchical or self-certifying
scheme.

Retrieving data Retrieving a requested content is divided into
two tasks : The first is the step of discovering
the content i.e forwarding requests towards
data location. The second step is content de-
livery, which is the operation of transmitting
contents to the requester. To satisfy future
requests, caching data along the path is used.

Securing data The security in ICN is decoupled from content
containers and it is based on itself, allowing
contents to be verified wherever it is stored
and whoever retrieves it by including a signa-
ture directly.

Table 1.2: Key concepts and principles of ICN

1.4.1 Information centric networking vs current Internet

has proposed solutions to several issues of the current Internet architectures, such
as resource occupancy and utilization and security, as well as mobility and scalability.
Although the ICN has reached much popularity, it has also many challenges such as caching,
naming, routing and security [35].Among all these challenges, caching is considered the
most crucial component since it needs a flexible strategy to decide how to cache via the
network. The need of shifting towards a new network paradigm became a necessity in order
to address the current host centric communication model issues and limitations. In[[CN]
the data becomes independent from location, application and storage enabling caching and
replication. We present the expected benefits focusing on four main concepts and principles:
information naming, information delivery, mobility and security. Table [I.2] summarizes the
key concepts and principles of ICN, and shows how each one of them aims to treat some of

the current Internet problems.
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1.5 Conclusion

The design of the current Internet creates some issues that the user cannot support like
denial of service attacks, spams, and the lack of information awareness inside the network.
Besides, the different challenges like mobility, security, caching and QoS have given rise
to new requirements. As well, the users start focusing on the desired information, which
increases the need of refocus communication centering on content access rather than on
host-to-host interaction. Researchers believe that Information Centric Networking (ICN)
and Mobile Edge Computing (MEC) could play a key role towards universal Internet
growth by treating the data content as the first class entity in network architecture and
being able to store/cache server contents from various locations in close proximity to the
end user. The next chapter introduces fuzzy logic and reinforcement learning, which are

elementary concepts to build our caching system.
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Chapter 2

Intelligent mechanisms: fuzzy
logic and reinforcement learning

2.1 Introduction

Along the development of the network communication, mobile edge computing has
significantly accelerated the content delivery and improved the quality of experience.
Bringing more intelligence to the network on general and to the edge computing in
particular is a necessity to provide effective services in the dynamically changing mobile
computing environment. We present in this chapter two intelligent techniques that we
have used in our contributions. In this section, we review some elementary concepts whose

understanding is necessary fully benefit from this thesis.

2.2 Fuzzy logic
2.2.1 Preliminaries

Fuzzy logic is an extension of Boolean logic dealing with the concept of partial truth
which denotes the extent to which a proposition is true. While classical logic holds that
everything can be expressed in binary terms (0 or 1, black or white, yes or no), fuzzy logic
replaces Boolean truth values with a degree of truth. The degree of truth is often employed
to capture the imprecise modes of reasoning that play an essential role in the human ability

to make decisions in an environment of uncertainty and imprecision [26].
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- Inference .
Inputs :: Fuzzifier :: Engine :: Defuzzifier : Qutputs

Figure 2.1: Block diagram of Intuitionistic fuzzy system

A Fuzzy Inference System (FIS) consists of an input phase, a processing phase and an
output phase. In the input phase, the inputs are mapped to an appropriate membership
function with specific values. The processing stage consists in performing each appropriate
rule and in generating a corresponding result. It then combines the results. Finally,
the output phase converts the combined result back into a specific output value. The
membership function of a fuzzy set represented by divided ranges defines how each value
in the input space is mapped to a membership degree. The inference system is based
on a set of IF-THEN statements representing logic rules, where the IF part is called the

"antecedent" and the THEN part is called the "consequent'.

2.2.1.1 Definitions

Definition 1: An Intuitionistic Fuzzy Set A in X is defined as an object of the form A
= {< x, pA(x), 9A(z) > x € X} where the functions uA : X — [0, 1] and ¥vA : X — [0,
1] define the degree of membership and the degree of non-membership of the element x €

X, respectively, and for every x € X in A, 0 < pA(x) + YA(x) < 1 holds.

Definition 2: For every common fuzzy subset A on X, intuitionistic fuzzy index of x in
A is defined as TA(z) = 1 - pA(x) - YA(z). It is also known as the degree of hesitancy or

the degree of uncertainty of the element x in A. Obviously, for every x € X, 0 < 7A(z) < 1.

Figure shows a block diagram of an intuitionistic fuzzy decision maker.

2.2.1.2 Membership function

The membership functions are a very delicate point in the design of the fuzzy system.

The main restriction that a membership function should satisfy is that its values must
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Name Description

Rectangular

H_{ 1, left <z <right }

0, Otherwise
Triangular
1-9=C,c<x<b
1-Eb<x<c
x,a,b,c) = b—c’
1 ) leou
0,otherwise
Gaussian

xr—cC

u(w,c) = 6(@)

Table 2.1: The membership function several shapes

be in the [0,1] range. Therefore, A fuzzy set can be represented by an infinite number of
membership functions, unlike a crisp one. The membership function could be defined in
several shapes: triangular, trapezoidal or Gaussian ones and so forth (see Table . The
fact that a fuzzy set can be described by an infinite number of membership functions is

advantageous in term of making the adjustment of a fuzzy model possible.

In general, we can sort out three methods to determine a membership function following

three ways :

1. Automatic method : This method is used when no experts are available or in the case
when there are so many data about the case study. Determine such a membership
function consists of two main phases: the first one is creating a primary membership
function which is aleatory and incorrectly adjusted. The second one is the adjustment

and the optimization of such primary function.

2. Statistical method: In the statistical methods, data is represented in the form of
frequency histograms or other probability curves. This data is used as a base to
construct a membership function. There is a variety of possible conversion methods,

each with its own mathematical and methodological representation.
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3. Psychological method: This method is a natural extraction of membership functions
as a general rule. The experts in the field specify the membership curve that is
appropriate to the given problem, or choose a curve from an assigned set of possible
membership functions. In this case, it will appear as an infinite number of possible
membership functions. Hence, the choice is restricted to predefined membership

functions.

We note that all these methods share the same idea of a fuzzy set made of two parts:
an exact part and the gradual one. The exact part is defined as : Xg U X7, where Xy = X
- sup(A)andX; = Ker(A). While the gradual one is defined as : Xy = sup(A) —ker(A4).

2.2.1.3 Mamdani Fuzzy Control

An outer-loop for the fuzzy system, Mamdani’s fuzzy inference method, is the most
commonly fuzzy methodology. It was proposed in 1975 by Ebrahim Mamdani as an attempt
to control a steam engine and boiler combination. Mamdani-type inference expects the
output membership functions to be fuzzy sets. After the fuzzification process, there is a

fuzzy set for each output variable that needs defuzzification.

Mamdani method is widely accepted for capturing expert knowledge. It allows to
describe the expertise in more intuitive, more human-like manner. Particularly for dynamic
non linear systems, it can be used to customize the membership functions so that the fuzzy
system behaves in better way. The most fundamental difference between Mamdani-type
FIS and Sugeno-type FIS is the way the crisp output is generated from the fuzzy inputs.
While Mamdani-type FIS uses the technique of defuzzification of a fuzzy output, Sugeno-
type FIS uses weighted average to compute the crisp output. The expressive power and
interpretability of Mamdani output is lost in the Sugeno FIS since the consequents of the

rules are not fuzzy [34].
2.2.2 General Procedure for Intuitionistic Fuzzy decision system

Building a fuzzy decision system consists in selecting the inputs and the outputs of the
system before dividing them into adequate categories named fuzzy set. This division is used

to create a set of rules which determines the conduct of the defined fuzzy set. Each input
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variable changes according to the corresponding membership function. Inputs, outputs,
membership function and processing build together a Fuzzy Inference System (FIS) which

consists of the following stages:

— Fuzzification : to establish the linguistic input variables.

— Inference: which is the processing stage that applies appropriate rules and generates

the corresponding results.

— Defuzzification: is the process of producing a quantifiable result, given fuzzy sets and

the corresponding membership degrees.

In the input phase, the inputs are mapped to an appropriate membership function
with specific values. The processing stage consists in performing each appropriate rule and
generating a corresponding result. It then combines the results. Finally, the output phase
converts the combined result back into a specific output value. The membership function
of a fuzzy set represented by divided ranges defines how each value in the input space is

mapped to a membership degree.

2.2.3 Fuzzy logic : decision making

Decision-making is a logical human judgment process for identifying and choosing
options or actions based on the values and preferences of the decision maker. Recently,
decision-making has gained immense popularity in industries because of their global
competitiveness. Therefore, decision-making plays a vital role especially in minimizing
costs and time as well as improving the quality of service. Hence, network’s problems in
decision-making generally faces many confusions due to the uncertainty and subjectivity.
To deal with this kind of vagueness, fuzzy logic has been widely used in the field of networks

in order to make the best decision in the environment from a given information.

2.3 Reinforcement learning

Machine Learning is a form of artificial intelligence (AI) that allows computers to

acquire the ability to improve their performance on a specific task. Reinforcement learning
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(RL) appearance backs to the days of statistics in computer science and neuroscience. RL
has attracted increasing interest in the filed of machine learning and artificial intelligence
communities. In fact, it is possible to combine these different techniques. This is why it is
difficult to clearly distinguish reinforcement learning from other machine learning methods.
Reinforcement learning can be defined as a specialized application of Machine Learning
and Deep Learning techniques, designed to solve problems in a specific way. Particularly,
RL is based on a system of rewards and penalties to allow the computer to learn and solve
a problem autonomously. The human programmer just changes the learning environment
and makes changes to the rewards system. This method is particularly relevant when
there is no single way to perform the requested task, but rules must be followed. What
distinguishes reinforcement learning from other machine learning techniques is the way the
AT agent is trained. Rather than inspecting the data provided, the model interacts with
the environment and seeks solutions to maximize its rewards. Figure [5.6] summaries the

explanation above.

2.3.1 Reinforcement Learning Model

The reinforcement learning enables agents to deal with decision making problems by
learning through interactions with the environment [I04] [80]. The basic components of

reinforcement learning enrolment, as shown in figure [5.5] are:

e A reinforcement learning agent that learns through the interaction with environment
over time. At each time step t, the agent observes a state S; in a state space S
about its environment, and chooses an action a; from an action space A, following a
behaviour policy m = P(ay|s;) which is a mapping from state s; to a probability of

choosing action ay.

o Then, the agent obtains a reward r; and transitions to a new state Sy, according to
the environment dynamics or model, for reward function R(s,a) and a state transition
probability P(S+1 | S, a¢) respectively. The accumulated reward is defined as return

Ry = o0 k=0 ~* ryy; with a discount factor v € (0, 1].
e The goal of the agent is to find an optimal policy, 7*, which achieves the maximum
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Figure 2.2: Reinforcement Learning, Machine Learning and Deep Learning relation
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expected return from all states. The state-value function V 7(s) = E[R; | s; = s] and
the action-value function Q 7 (s, a) = E[R; | st = s, a; = a] can measure how good
7 is. V 7 (s) represents the expected return for the following policy 7 from state s,
and Q 7(s, a) represents the expected return for selecting initial action a in state s

and then following 7.

Agent

..]ill

Observation

r

Environment

Figure 2.3: Reinforcement learning model

In all RL methods, it is critical for RL agents to trade off exploitation and exploration.
Exploitation means taking the perceived best action to maximize rewards greedily. Explo-
ration means taking perceived non-optimal actions with the aim of finding better actions

when the policy is not optimal yet or the environment is not entirely explored. An example
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of this is the e-greedy exploration policy, which selects a random action with probability

e € [0,1], and the optimal action otherwise.

2.4 Conclusion

Building a fuzzy decision system consists in selecting the inputs and the outputs of the
system before dividing them into adequate categories named fuzzy set. Decision making
using fuzzy logic has been used many objectives such as minimizing cost and maximizing
quality of service. The basic idea of RL is to change the base of programming agents by
reward and punishment for the aim of solving the problem that face the agents, where they
must learn a specific behavior and actions through a dynamic and stochastic environment.

The next chapter will introduce caching over these two intelligent mechanisms.
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Chapter 3

Caching mechanisms in Mobile
Edge Computing

3.1 Introduction

Edge caching is one of the most emerging technologies recognized as a content retrieval
solution in the edge of the network. It has been also considered as enabling technology of
mobile edge computing hat presents an interesting opportunity to perform caching services.
Particularly, the MEC servers are implemented directly at the base stations (BSs) which
enable edge caching and ensure deployment in close-proximity to the mobile users. This
chapter presents a general overview on caching, illustrates the main caching strategies and
their principles. Moreover, it contains a description of the performance measures as well
as the basic criteria used commonly to compare between the existed caching mechanisms.
Finally, we introduce how fuzzy logic and reinforcement learning have been used to enhance

caching operation.

3.2 Caching: the Beginning

Caching is the process of storing data in a cache. A cache is a temporary storage
area, from where we can get the files rather than the original server, hence saving the
time retrieval and saving the network from additional traffic. Caching has been constantly
growing with the load on the Internet and Web servers. Web caching has proven to be a

valuable tool. Three features of Web caching make it attractive to all Web participants,
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including users, network managers and content creators [24] namely:

e (Caching reduces network bandwidth usage.
o Caching reduces user-perceived delays.

e (Caching reduces loads on the origin server.
3.2.1 Caching Places

Generally, caching operation can be performed in three main locations: the core network,
the radio access network (RAN) and the end user devices. For edge network, the caching

places are the following:

o Macro base stations (MBSs) Caching: The macro BS manages the requests that can
not be handled locally. It has more coverage areas, hence, it can serve more users.

Beside, a better cache hit can be obtained.

 small-cell base stations (SBSs) caching : small-cell base stations can be equipped
with cache memories to store popular contents. Multiple SBSs can serve a mobile
user and create a flexibility association, which, in a broad sense, aim to maximize

the number of served contents and reduce the load on the macro-cell base stations

(MBSs).

o Device (D2D) caching: D2D communication is one of the key technologies in next
generation bG networks. It takes advantage of the storage capabilities of other user’s
devices in the system i.e a request can be served by another user through a device-to-
device (D2D) communication, without requiring a connection to the small or macro

base stations. It allows a fast serving due to the short distance communication.

3.2.2 Caching Strategies

A caching strategy is a management policy that handles temporary storage resources.
A caching strategy decides what, where and when information is stored. In this section, we
present the principles of caching strategies and then the caching strategies proposed in the

literature.
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3.2.2.1 Caching Strategies Principles

For better understanding of caching strategies, some concepts must be understood.
Every edge node holds a cache that stores content temporarily. The cache is managed with
placement and replacement policies. Cache placement policies face two challenging issues:
which content should be stored in nodes (i.e. what to cache, since content is the pivotal
factor in connections) and which cache nodes of the network should be selected as caching
points (i.e. where to cache, since most nodes inherently hold caching capacity)[46] The
placement policy defines the admission phase when the cache requires to store contents.
The replacement policy defines the structure of the cache to evict content when space
is required. Most of the caching systems have been studied only from the replacement
aspect. The most common replacement policies are Least Recently Used (LRU), First-In
First-Out (FIFO), Last Frequently Used (LFU) and Random that will be explained in the
subsection below. Different caching strategies exhibit the same performance in the long
term. However, caching strategies target the optimization of a metric. The metric could
be any specific objective in order to enhance the network performance including traffic
reduction, decreasing latency and achieving best QoE. Counting the number of hits and
measuring the delay are one of the most common metrics used. In a caching operation,
after requesting a content, a hit occurs when the content is found in the cache whereas a
miss occurs when the content is not found. Cache hit-ratio metric is the number of cache
hits divided by the sum of cache misses and hits (total number of requests) in a given time.
A high hit ratio means that a cache performs well. A low hit ratio means that the data in
cache should not be cached or that the cache size is too small to stand temporal locality of
all the contents. The delay metric describes the time incurred to retrieve a piece of content.
Caching can be evaluated also based on other metrics such as stretch and diversity which
are very common metrics to evaluate caching strategies. Stretch is the ratio of the complete
path from client to server. Diversity expresses the ratio of a unique content stored across

all the caches.

3.2.2.2 Performance Measures

The performance measures for caching-mechanisms evaluation are the following :
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o Cache Hit Ratio: A cache hit means that a request for a content can be satisfied
from the cache directly. Otherwise, if a request cannot be satisfied by the cache, a
cache miss occurs. Therefore, the cache hit ratio is defined as the ratio of the number
of cache hits to the sum of the number of cache hits and cache misses. A high cache

hit ratio can reduce the access latency and the server load.

o Cache Hit Distance: let D(r) the distance from the requester to the MEC server
containing the cache that will serve the request. The hit distance is then defined
as the average of distance D(r) over all requests. A shorter cache hit distance is

preferred for a better user experience.

e Cost: the operational cost is the time incurred to retrieve a content. Therefore, it is
desirable that the operational cost is as low as possible, so that a caching mechanism

can be applied to large scale networks.

In general, edge caching means that popular contents can be cached in edge nodes such
as macro base stations (MBSs), small base stations (SBSs) or even user equipment (UE)
as shown in figure Caching content when close to the end users can effectively reduce

the redundant data traffic and greatly improve the QoE of users[12].

Concerning what to cache, the range of contents is widely increasing including videos,
audio files and Internet-of-Things data, what makes the number of the reachable contents
over the Internet extremely huge. Not all of the available contents should be cached,
regarding to the fact of limited storage space of edge nodes. In the literature, to decide
what to cache, content’s popularity is one of the prime concern. It represents the probability
of requesting contents by users or the frequency of demanding the contents over specific
time period. This property should be taken into consideration as a main factor. Most of
current works on mobile edge caching assume that content popularity follows a static Zipf
distribution [52].

However, since the user groups associated with individual edge nodes are different and
user preferences may change with time, considering only content popularity is not enough
parameter to infer the caching decision. Edge caches select appropriate contents to be

cached using caching policies. The caching policies decide to obtain different objectives
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Figure 3.1: Edge caching architecture
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such as traffic offloading, quality of experience, energy consumption and so on, in order to
maximize the cache hit ratio. Caching policies can be divided into categories depending on

their characteristics:

e Depending on cache coordination:

Coordinated: caches are required to exchange information in order to have a good estimation
of where to cache the content and avoid storing too many contents of the same content.
Coordinating cache is represented by a distributed session feature that allows multiple
instances of a session to broadcast content changes among each other so that each cache is

updated.

Uncoordinated: in uncoordinated scheme, each cache is working in an individual way.

e Depending on cache size:

Homogeneous: all caches in BS have the same size.

Heterogeneous: each cache has a different size.

e Depending on the cooperation between caches

Cooperative: caches cooperate with each other by establishing a cache state that allows

other caches to know the different states like in [8§].

Non-cooperative: caches make caching decisions independently and do not advertise the

information of cache state.

e Depending on where the content is cached:

On path: caching only the contents caught a long the downloading path.
Off path: caching the content caught outside the downloading path.

In general, conventional caching policies are divided into two main phases: placement phase

66



CHAPTER 3. CACHING MECHANISMS IN MOBILE EDGE COMPUTING

and replacement phase. The placement phase which is the process that decides whether we
should cache and how and when we can cache the contents. The replacement phase which

is the process that decides which data to drop if there is no free storage space.

3.2.2.3 State of the Art on Caching Strategies

To make best usage of edge caching, researchers have prosperously used classical web
caching algorithms either for placement or replacement phases that rely on popularity as
a main factor. In the literature, we identify distinct placement strategies such as: leave
copy everywhere (LCE) which is the default caching mechanism in most cache designs.
It aims to minimize the upstream bandwidth demand and downstream latency [100]. In
LCE, the popular contents are cached at every cache along the path and it is considered as
homogeneous-non cooperative caching mechanism. leave copy down (LCD) and move copy
down (MCD) are methods to realize the heterogeneous caching in a cooperative way in
order to reduce redundancy [100] [26]. Probabilistic mechanisms have been widely used,
like the policy which is referred to Prob(p). It was used as a benchmark scheme in the
literature [69][72][22]. This mechanism sets to every content a probability p in advance and
does not cache the content for a probability equal to (1-p). This is a heterogeneous and
non-cooperative strategy. We also mention Prob-cache which is on path, heterogeneous
and cooperative probabilistic caching mechanism. It adds additional fields to each request
and content Time Since Inception (TSI) and Time Since Birth (TSB) [70] in order to
allow the cached content to be visible to neighboring caches, i.e, enhance cooperation.
Jason Min et al [90] proposed an explicit cache cooperation named intra-domain cache
cooperation. Specifically it maintains two cache summary tables that record the information
of content currently cached by the content router and exchange it with other caches. For
edge caching, classical web caching was used widely. However, several works have proposed
new placement strategies for the edge, such as [99]. They present edge buffer as a caching
and a pre-fetching strategy, pointing out the insufficiency of strategies that rely on the past
history of the device. Instead, they propose a prediction model based on the aggregated
network-level statistics. Unlike blind popularity decisions, authors in [57] proposed a

mobility-aware probabilistic (MAP) placing scheme, which caches content at edge servers
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where the vehicles are connected considering the vehicular trajectory predictions and the
time required to serve a content. S. Zhang et al. [101] explore a delay-optimal cooperative
edge caching in large-scale, where the content placement and cluster size are optimized
based on the stochastic information of network topology, traffic distribution, channel quality
and file popularity. The CCPNC caching decision strategy considers the popularities of
content objects and the distribution rules of routing nodes. It caches the popular contents
to the core routing node with the highest node centrality and its next hop node in the
content return path, and the non-popular contents are cached to the non-core routing

nodes by the coefficient cache probability related to the request distance [63]
Table [4.6] summaries some of classical placement strategies.

The replacement phase is the phase that decides which content to evict from cache. It
is categorized into: recency, frequency based such as the least frequently used (LFU) [4] and
least recently used (LRU) [68], and semantic like First In First Out (FIFO) that always
replaces the oldest contents in the cache [56]. Recently, an age-based caching replacement
was developed in [52]. To minimize the cache replacement, a penalty caused by removing
the old contents is proposed in MAz-Gain In-Network Caching (MAGIC) [71]. It allows
also maximizing the local cache gain of the new cached content. An other strategy named
Cache Less For More [19] aims to cache at the best location in the downloading path using

the concept of "betweenness centrality" [I1].

Some works obtain fundamental insights into caching operation like Harald Beck et
al. [I4]that provide an architecture for the dynamic selection of caching strategies. Their
idea is to switch between the existing replacement strategies according to the changes in
user’s behavior using an intelligent agent ( ICA). Matha Deghel et al. [25] investigated the
benefits of edge caching in multiple-input multiple-output (MIMO) interference channel.
Qinghua Ding et al. [27] have discussed a collaborative edge caching and designed a
sequential auction mechanism (SAM) to allocate the cache spaces in a sequential way. For
Named Data Networking caching, Noor Abani et al. [3] have considered in their research
an NDN-based vehicular networks where they have presented a proactive caching based on
mobility prediction using Markov model eliminating the cache redundancy introduced by

edge caching. The work in [23] concentrates on comparing the performance of caching at
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the edge versus the standard on-path caching on a random geometric topology and chooses
then the most adequate strategy. Some works gathered processing and caching capabilities
of the cloud such as [82], [84], [85] [83]. In [82], they proposed a new framework to provide
a cloud caching/processing of data using Information-theoretic model for F-RAN (Fog
Radio Access Network (F-RAN) which is an emerging wireless network architecture that
leverages caching capabilities at the wireless edge nodes. The authors in [84], [85] and
[83] have proposed a novel cooperative hierarchical caching framework in a Cloud Radio
Access Network (C-RAN), in which a new cloud-cache at Cloud Processing Unit (CPU) is
envisioned to bridge the storage-capacity/delay-performance gap between the traditional
edge-based and core-based caching paradigms. The previous caching mechanisms have
been successfully adopted in classical web caching, but they could not have been satisfied
performance in the mobile edge caching due the ignorance of other properties and the use
only of popularity, thus being unable to take advantage of specific characteristics of both
the environments and the end user like mobile network topology uncertainty, user mobility,
limited storage and cost.
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3.2.3 Comparison of Caching Strategies

Four parameters have been extracted to point out and compare between caching
strategies in diverse simulation environments of the most known caching strategies :

topology, popularity model, catalog and cache size.

e Topology : there are several topologies used to evaluate caching strategies. These
typologies vary from k-ary trees to complex ISP (Internet Service Provider) level

topologies or a combination of the all.

e Popularity model : The popularity indicates the demands of users and the priority.
The priority changes as time passes by[50]. The content popularity model is a
function that establishes the popularity of every content, i.e., how often the content is

going to be requested. The content popularity is usually modeled with a probability
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distribution function such as a Zipf or MZipf [5] [72]. Other works have resorted to

real traces.

o Catalog : The catalog represents the entire collection of contents in the network. The
number of requests for a certain content depends therefore directly on the popularity
model. A wide range of values for the catalog size have been used, most commonly,

Youtube used as a catalog of 10* to 10® contents.

e Cache size : The cache size determines the space available in every MEC server to
store temporally web contents. This size is usually expressed with an absolute value
or a ratio with regards to the catalog size. the work in [33] have studied the impact
of different object sizes on the performance and the overhead of web caching and

show how the awareness of the size and could be crucial for the cache efficiency.

3.2.4 Differentiated caching service

The significance of providing differentiated caching services is emphasized in the study

by Lu [54], which can be summarized as follows:

e From the user side: cache is important and useful for end users from the aspect of
the fast access and enhance QoE. If the cache is located in the core of the network,
then it can reduce the transmission delay. Otherwise, if the cache is in the edge
network then the transmission delay will be greatly reduced and the cache utility will

be enhanced. Hence, users will be served with faster access delay.

e From the content side: caching the most frequent contents more often improves
client grasp performance. Since different web contents contribute differently to users’
perception, the caching systems should treat the content as a focal point and requires

a distinguish between different contents to improve the quality of experience of users.

3.3 Caching over fuzzy logic

The last few years have witnessed an emerging growth in the number of novel caching

strategies. Fuzzy logic has been widely used in many applications because of its rapid

70



CHAPTER 3. CACHING MECHANISMS IN MOBILE EDGE COMPUTING

preliminary study on different inputs, its easy adaptation and interpretation of the rules
and its ability of using heterogeneous inputs which facilitates the combination between
several factors in the most desirable way without using mathematical relations. The work
in [44] has attempted to combine recency and frequency. They described the use of fuzzy
logic to improve cache replacement decisions by using fuzzy rules that can combine these
parameters. Fuzzy logic has been used in [78] to combine removal policies to perform the

cleanup task in an efficient way and to optimize the performance of the proxy cache.

An other neuro-fuzzy caching strategy has been introduced in [49]. The authors
proposed an adaptive neuro-fuzzy inference system-based caching (ANFIS-BC) scheme
to improve the cache performance. The proposed ANFIS-BC scheme used the feature
of centrality-measures for selection of a router for caching in a network. Their results
demonstrated that the ANFIS-BC scheme consistently achieves better caching gain across

the multiple network topologies.

In the field of caching prediction, the authors present a model to predict the data in
cache operation on the mobile side by applying fuzzy logic method in order to prevent the
transaction failures during execution in the mobile system that communicate across the
wireless networks. Despite the success of using fuzzy logic in caching systems, it is a little
bit power and time consuming because of the nature of fuzzy inference process. In this

thesis, we take into consideration this consumption and we will explain it in the next part.

3.4 Caching over Reinforcement learning

As one of learning methods, reinforcement learning (RL) that enables agents to deal
with decision making problems by learning through interactions with the environment have
been used in caching systems and addressed to solve several issues such as caching in Next-G
cellular networks [75], in which local and global content popularity profiles exhibit in a
dynamic environment. Hence, a proactive caching is accommodated by casting the problem
in a reinforcement learning framework. A caching control unit is used and it continuously
learns, tracks, and possibly adapts to the underlying dynamics of user demands. The

work in [95] explores cache design problem in small cell networks (SCNs) with multiple
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small base stations (SBSs) when user preferences are unknown. This multi-agent decision
making problem is formulated as one of reinforcement learning algorithms. In the same
context, authors in [41] proposed a multi-agent reinforcement learning (MARL)-based
cooperative content caching policy for MEC architecture where only the historical content
demands can be observed. They propose a MARL-based algorithm to solve the caching
problem formulated as a multi-agent multi-armed bandit problem. Continuously, authors
in [20] proposed a dynamic edge caching policy for heterogeneous vehicular network via
Reinforcement Learning on adaptive traffic intensity and hot content popularity. The aim
of this work is to enhance the download rate of vehicles by caching the popular contents
on heterogeneous network edge stations. For taking the optimal caching decision, the work
in [42] has proposed a novel caching strategy using multi-agent reinforcement learning.
Specifically, they modeled the D2D (Device to Device) caching problem as a multi-agent
multi-armed bandit problem and used Q-learning to learn how to coordinate the caching
decisions. Any reinforcement learning based strategy interacts in an unknown environment
and tries always to maximize its cumulative reward. It is important for the agent to explore
optimal or even near to optimal actions as well as to choose the actions with highest
known rewards. Yet, in real-time domains, collecting data and exploring it is not always a
possible option, but it is still important to find a suitable policy with a certain performance

guaranty.

3.5 Conclusion

In this chapter, we have presented the state of the art of caching mechanisms presenting
the main principles. We first discussed the caching from a general aspect and the most
known strategies in particular placement and replacement schemes, before ending with
the description of caching over fuzzy logic and reinforcement learning, thereby finalizing
this pre-apprehension part. In the following part, we will present our contributions that

contain the caching system model.
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Table 3.1: Summary of some existing classical placement mechanisms

Placement strategy

Type

Description

Leave Copy Everywhere
(LCE) [28; 6]

Leave Copy Down (LCD) [51}
74]

Move Copy Down(MCD) [98]

Probabilistic Cache (Prob-
Cache) [21} 87]

Intra-AS Cooperative
Caching [91}; [103]

Least Unified Value (LUV)
2l

WAVE [22]

Opportunistic Caching (OC)
[13; 23]

Congestion-Aware Caching

(CAC) [9; 29]

Progressive caching policy
(PCP) [64; B9; 6]

Homogeneous, non-

cooperative, on-path

Heterogeneous, cooperative
on-path

Heterogeneous, coopera-
tive, on-path
Heterogeneous, coopera-

tive, on-path
Homogeneous, cooperative,

off-path

Homogeneous, cooperative,
on-path,

Homogeneous, non cooper-
ative, on-path

Homogeneous, non cooper-
ative, off-path

Homogeneous, non cooper-

ative, on-path

Heterogeneous,
tive, on-path,

coopera-

caching the content at each node that
it traverses along the downloading path
what causes caching redundancy.
caching the content one hop closer to
the user or to the next hop down, it
caches only popular content and pre-
vent the unpopular

caching all popular contents, the policy
moves the copy of the requested content
with a hit to its underlying cache in the
path and deletes it, it may suffer from
caching pollution on the local replica
in case of multiple requests

Contents should be cached closer to
their destination with higher probabil-
ity in order to leave caching space
allows different caches to serve each
other’s request leading to solve the lim-
ited storage space problem and elimi-
nate redundancy.

Each cached content is assigned a Least
Unified Value (LUV) with cache dis-
tance from the content source and
caches the content later according to
this value

The contents are cached based on their
popularity and counts the access fre-
quency of requests.

Probability based caching policy that
uses the distance factor beside the pop-
ularity factors to cache a content.

it aims to decrease the download time
by exploiting the available cache capac-
ity, it is based on two factors: the down-
load time and the content popularity
it is a combination of some existing
caching policies that are based on the
position of a cache in the network
. intermediate or edge , PCP avoids
caching unpopular contents and shares
the characteristics of both LCD and
probabilistic caching
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Table 3.2: Summary of some existing classical replacement mechanisms

Placement strategy

Description

Modified-LRU [48]

SF-LRU [7]

NC-SDN [43]

Cache Replacement Strategy With Limited
Service Capacity [40]

Cache Replacement Strategy Based on Hier-
archical Popularity [53]

Multi-metric Cache Replacement [67]

LRU modification is made to combine fre-
quency and recently files in the decision stage
to replace files so that the Modified-LRU can
improve performance more optimally

Second chance-frequency - least recently used
that combines the LRU (least recently used)
and the LFU (least frequently used) using
the second chance concept. the idea is that
the replacement algorithm provides a second
chance to the block that may be deleted ac-
cording to LRU. Thiswas done by comparing
the frequency of the block with the block next
to it in the set.

Named Data Networking Cache replacement
approach based on SDN, relies on data popu-
larity calculation performed by the switches
to define a cache replacement strategy.

a replacement strategy for heterogeneous net-
works that consider the limitation of service
capacity and user mobility. The authors used
the user characteristics, such as user mobil-
ity and file popularity, to estimate the user
demands, and then define the system cost.
The cache strategy design was formulated as
a mixed integer linear programming problem
to minimize the system cost.

a cache replacement strategy based on hier-
archical popularity in NDN according to the
popularity of data packets to be replaced. The
simulation results show that the cache replace-
ment strategy based on hierarchical can im-
prove cache hit ratio.

considers the content popularity, relevance,
freshness, and distance of a node to devise a
set of algorithms for selection of the content
to be replaced.
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Chapter 4

Energy-efficient caching decision
using Fuzzy Logic

4.1 Introduction

As stated in the preceding chapter, edge caching is viewed as an enabling technology of
mobile edge computing where [MEC] servers are implemented directly at the base stations
to ensure deployment in close-proximity to the mobile users. However, the integration of
servers in mobile edge computing environment complicates the energy saving issue because
the power consumed by [MEC]|servers is costly especially when the load changes dynamically
over time. Furthermore, users with mobile devices arise their demands, introducing the
challenge of handling such mobile content requests beside the limited caching size. Thus, it is
necessary and crucial for caching mechanisms to consider the mentioned factors, meanwhile
most existing studies focus on cache allocation, content popularity and cache design. In
this chapter, we propose an energy-efficient fuzzy caching strategy for edge devices, called
Fuzzy Caching system for Edge Computing (FCEC), that takes into consideration four
influencing features of mobile environment, while introducing a hardware implementation

using Field-Programmable Gate Array (FPGA) to cut the overall energy requirements.

4.2 The System model

In order to increase the cache hit ratio, the above studies are directed to be appropriate

for different network topologies, but they consider neither the properties of the content
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itself like size nor the influencing factors and the end user characteristics such as cost and
mobility. They only accumulate contents with past high popularity or high frequency which
may no longer be useful over time. To adjust adaptively the varied content properties and
its influencing factors, we present a fuzzy control caching system for edge servers which
can select the more priority content to be cached based on well chosen factors. To decide
whether to cache or evict contents, we propose to base the decision making process on the

following: mobility, frequency, cache occupancy and cost of retrieval.

Mobility: since mobility is a fundamental feature of wireless systems, several analytical
models are available [I0]. Mobility-based caching policies have been investigated, such as
in [57] and [99] where they used the mobility of users to predict the next base station in
addition to the next requested content to be cached on it. The mobility can be modeled
by several ways and the most used in literature is Markov chain. When the user mobility
is modelled by a Markov chain random walk, the optimal storage space is approximately
solved using the same model in [3] and [97]. The use of mobility in caching leads to insure
its influencing role. Authors in [I0] and [39] developed a mathematical model to explore
the impact of user mobility on the performance of caching and it has been proved that user
mobility can be turned into an advantage to enhance caching decision and to minimize the

incurred service cost.

Frequency: in the present context, the frequency is defined as how often the contents are
requested or intended to be requested. It is extracted from a function that establishes the
popularity of every content. Content popularity is commonly modeled with a probability
distribution function such as a Zipf or MZipf [31I]. Authors in [8; 62 69] used a Zipf
popularity model with a parameter € [0.6-2.5]. Other authors have extracted real traces
from Content delivery network (CDN) [I7]. Frequency based caching schemes store only
popular contents and keep count of the frequency of contents to determine the ones that
are expected to become popular. The above studies have demonstrated how the frequency

parameter can be fine tuned to obtain the best caching performance.

Cache Occupancy: The cache occupancy determines the size available in the cache.
This size is usually expressed with an absolute value or a ratio. We express it by the

following: CO = 1 means that the content occupies 100% of cache size. There are many
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related studies in the literature that propose and make use of the distribution of the content
sizes [39]. In the literature, mostly, the size of cache is fixed and contents are used with
homogeneous or heterogeneous sizes and gathered in a catalogue to represent the entire
collection of contents in the network. Hence clarifying the strong correlation of size on

cache performance can be determined.

Cost of Retrieval: In our work, we take into account the cost of content retrieval, i.e.,
the cost associated to the external bandwidth needed by a MEC to retrieve the requested
content to the end users. Classical caching strategies aim to maximize cache efficiency and
propose solutions with high overall cost. To solve this mismatch, authors in [§] formulate a
polynomial-time greedy algorithm to solve the optimization models that either minimize the
cost or maximize the hit-ratio. Results show that significant cost savings are attainable. It

is confirmed that the consideration of cost can impact the performance of caching systems.

4.2.1 Fuzzy decision system

Building a fuzzy decision system consists in selecting the inputs and the outputs of the
system before dividing them into adequate categories named fuzzy set. This division is used
to create a set of rules which determines the conduct of the defined fuzzy set. Each input
variable changes according to the corresponding membership function. Inputs, outputs,
membership function and processing build together a Fuzzy Inference System (FIS) which

consists of the following stages:

1. Fuzzification : to establish the linguistic input variables.

2. Inference: which is the processing stage that applies appropriate rules and generates

the corresponding results.

3. Defuzzification: is the process of producing a quantifiable result, given fuzzy sets and

the corresponding membership degrees.

Our FIS proposed model, illustrated in Figure is made of the main FIS components.

In our context, the proposed fuzzy algorithm integrates a fuzzification stage that consists
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Figure 4.1: Fuzzy inference system of caching decision

of four linguistic variables as shown in table The output variable is the decision of

caching, as depicted in table [4.2

Table 4.1: Input variable description

Input Description
Fr Frequency of demand of each content in time period
Cr The time incurred to retrieve the content
CO Occupancy of content in the cache
Mb The users proximity from the base station

Table 4.2: Output variable description

ouTPUT Description
DECISION The decision taken to cache contents

The first input parameter in FIS is the frequency which is the value assigned to the
data content after each request is issued by the user. The second input variable is the
cache occupancy which is the free space in the cache. The third input parameter is the
user mobility while the fourth one is the cost of retrieval which represents the cost incurred
to retrieve the data content. The output is the caching decision. Concerning the processing
stage, we use Mamdani’s inference method proposed by Mamdani and Assilian [58]. Its

principle is to synthesize a set of linguistic control rules obtained from experienced human
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operators [38]. Fuzzy rules combine these four parameters, as they are connected, by

experts reasoning in the real world.
4.2.1.1 Design of the fuzzy decision algorithm

Our proposed algorithm is designed based on different parts in respect to the fuzzy-logic

system, as in the following.

e Input and output variables

It is important to well define the relevant input and output parameters. Frequency (Fr),
mobility (Mb), cache occupancy (CO) and cost of retrieval (Cr) are the four factors used
as the inputs of the fuzzy decision algorithm. Each factor has three categorical dimensions
and must be partitioned into appropriate ranges. The fuzzification process is described in

tables 4.3l and 4]

Table 4.3: Fuzzification of input variables

Description Ranges
Fr || Low, Medium, High || [0-0.2], [0.3-0.5], [0.6-1.0]
Cr || Short, Medium, Long || [0-0.3], [0.4-0.6], [0.7-1.0]
CO || Small, Medium, Large || [0-0.3], [0.4-0.6], [0.7-1.0]
[0-0.3], [ I, [ ]

Mb So-close, Close, Far 0-0.3], [0.4-0.7], [0.8-1.0

Table 4.4: Fuzzification of output

Description Ranges
Caching decision || Low, Medium, High || [0-0.2], [0.3-0.5], [0.6-1.0]

o Membership functions (inference)

There are three membership functions for each of the input and the output fuzzy variables,
all the inputs ranges of membership are [0-1] and each range is divided into three membership

functions as shown in table .3
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The membership functions of the Frequency parameter (Fr) are {Low, Medium, High}
and this is set according to the frequency of demand of each content in the time period.
Different contents have each a distinct frequency value, and the most requested content
has the highest value. The frequency feature is valuable in static environments where the
popularity of objects does not change very much over a specific time period (day, week)
[68].

The membership functions of the Cache Occupancy (CO) parameter are: {Small,
Medium, Large}. Referring to this parameter, the larger is the cache size the bigger is the
possibility of caching more contents. Using the size as input parameter is due either to the
variation of the contents sizes or to its combination with other parameters to use its space

in a wise way.

The membership functions of the Mobility parameter (Mb) are {So-close, Close, Far}
in reference to the user’s proximity from the base station where the cache is located. The
network is divided into location areas where each area is covered by a base station that is
equipped with a MEC server that hosts a cache. Each user moves from a location area
to another from time to time. According to GPS traces, the user’s location is set and its
proximity to a base station is determined. We use this distance between the user and the
base station as one of the input parameters to decide whether the content should be in

cache or not because the closer is the cache, the less time is spent for retrieval.

Finally, the membership functions of the cost of retrieval parameter (Cr) are {Short,

Medium, Long} as a reference to the time incurred to retrieve the content.

The mentioned membership functions are shown in Figure where y-axis represents
the degree of the membership of each input variable and the x-axis represents the quantized

sensed values of the inputs.

The output variable is the decision of caching represented by flowing membership
functions :{Low, Medium, High} as in Figure Assuming we have N mobile users in
the network, everyone is sending one request at the same time. The output values will be
used to determine the priority for each request. Based on the first results that show the

caching decision order, we observe that each request has a priority order. According to
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this order, we put the contents in the cache in respect to the placement phase. In case of a
full cache, we remove the one with the less priority in respect to the replacement phase as
shown in Figure [£.4] We notice that each parameter has a value that influences on the

decision strength and gives as finally a priority order for each content.

Membership function plots °* """ 181 Membership function plots """ 161
| Low Medium High short Medium Long
input variable "Fr _ input variable "Cr"
Membership function plots "™ 161 Membership function plots """ 181
small Medium Large So,lose Close Far
input variable "CO* input variable "Mb"

Figure 4.2: Membership function for the input variables

e Rule base

After defining the membership function, we build the rule base. These rules are represented
by IF-Then clauses in which the antecedents are the conditions of the mobile user and the
properties of the content while the consequence is the caching decision. There is no general
procedure to decide the number of fuzzy rules and the role of each involved factor in the
decision making. In our case, the set of rules are based on the understanding of cache
behaviour under different scenarios. Examples of some fuzzy logic rules are the following:

(see Appendix)
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Membership function plots ™ "™ 181
T T T T T T T T T !
Low Medium High
1
0.5 |
0| n l : : L J , l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
output variable "Decision”

Figure 4.3: Membership function for the output
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Figure 4.4: Cachig priority according to fuzzy system
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IF Fr is LOW and CO is SMALL and Cr
is SHORT and Mb is SO CLOSE
THEN DECISION is MEDIUM
IF Fr is LOW and CO is SMALL and Cr
is SHORT and Mb is CLOSE
THEN DECISION is MEDIUM
IF Fr is LOW and CO is SMALL and Cr
is SHORT and Mb is FAR
THEN DECISION is LOW
IF Fr is LOW and CO is SMALL and Cr
is MEDIUM and Mb is SO _CLOSE
THEN DECISION is MEDIUM

4.3 Implementation and evaluation

This section presents the implementation and the evaluation of our proposed fuzzy
caching system for edge computing (FCEC). We divide the evaluation into two parts: first,
we compare the software implementation of FCEC with the Least Recently Used (LRU)
[16] and First In First Out (FIFO) strategies. We used typescript [[| with RxJS [f| which
is a reactive programming library for the software implementation. Then, we moved the
algorithm into hardware using FPGA Xilinx virtex-5 LX50T-1156 board from DIGILENT
coded with VHDL (VHSIC Hardware Description Language). The basic performance
characteristic of a cache is a hit ratio. The hit ratio is computed according to the following

equation:
=1 =1 =1
cacheHit = thtz/(z hitsi —I—Zmissi) (4.1)
N N N

4.3.1 Software solution

In our software solution, we designed a client-server model with a cache as a proxy
between the client and the server. We generated a set of resources (contents with heteroge-
neous sizes) and a set of requests, then we investigated how the cache hit ratio changes

when the average cache size varies. In the admission phase (placement), we note that the

Yhttps://www.typescriptlang.org/
2https://rxjs.dev/
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fuzzy caching system gives each content in the web a priority and places it in the cache

according to this priority, unlike LRU and FIFO.

Table 4.5: Notation

Notation Description
S cache size
Id; Id or Index of content
N Number of contents
R Number of Requests
B Priority of caching decision for each Id;

Algorithm 1 Fuzzy Caching strategy

Initialization: Initialize N, R with Zipf distribution function
Client sends Request R

Base station receives R

Apply fuzzy rules to set P;

while S > 0 do

if content in cache then

hit < hit+1

return Id;
else

miss < miss+1
get Id; fromserver
while S = 0 do
check P(Id;)
Evict :Id with min{P(Id)}
end
Push in cache : 1d;

return Id;
end

end

In Figure we have a catalogue of 10? different contents with heterogeneous sizes.
The requested contents were classified into Low, Medium and High priority in order to

take the caching decision.

In the eviction phase (replacement), we used the content priority and the content size

to choose the object that should be replaced. The efficiency of our proposed technique
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Figure 4.5: Distinction between web object by giving each a priority
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Figure 4.6: Cache hit ratio in high priority requests
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appears when we launch random requests over time. We should mention that it became
significant that high-priority contents in the web are most likely to be requested followed

by Medium and Low ones. In Figure 4.6, a hit rate of 65% appears in high priority content.

Legend

[ ]
0.7 a
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0.4

Hit ratio
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0.0
300 400 500 600 700 800

Cache size

Figure 4.7: Cache hit ratio of fuzzy caching system, LRU and FIFO

4.3.1.1 Comparison and evaluation

To evaluate our proposal, we compared hit ratios with two caching strategies Least
Recently Used (LRU) and First In First Out (FIFO). For the distribution of requests and
contents, we used Zipf distribution function. Zipf distributions of finite support for a
content catalogue of N contents with request probabilities Z(r) have been determined for

the objects popularity ranks r € {1,2,5...,N}:

N
Z(r):ozrﬁwith:rﬁ<O;ﬁ:Z(1):1/Zrﬁ>0 (4.2)
r=1

where 3 is an adaptive shape parameter and « a normalization constant. R represents the
users requests with R = 103 that is generated according to the Zipf distribution function

with a set as : o = 0.75. A catalogue of N= 103 contents is then generated, where each

88



CHAPTER 4. ENERGY-EFFICIENT CACHING DECISION USING FUZZY LOGIC

content is accompanied with its size, frequency, cost and mobility. These factors are first

initialized randomly and then change over time according to a.

4.3.1.2 Long term performance

We first study the stability of cache hit ratio over time to characterize how the hit ratio
changes with the changing of contents distribution in order to study the long term cache
performance. Then, we focus on the short-term performance by studying the relationship

between cache size and hit ratio.

Regarding to the long term study, we express it by the variation of a Zipf parameter
to have different request distributions in order to evaluate the capability of our proposed
system against the above strategies in term of maintaining good performance over time.
We distribute a data set based on the random changing of « Zipf parameter value. From
Figure we can observe that the proposed fuzzy caching strategy and LRU are stable
over time unlike FIFO. We also notice that our proposed algorithm shows more advantage

with cache size = 600 and a hit ratio approximating 0.8 %.

Legend
os ﬁ a8
0.6
o
2
18]
—
= 0.4
T
0.2
0.0
0.0 1.0 2.0 3.0 4.0 5.0

Time

Figure 4.8: Cache hit ratio stability over time
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4.3.1.3 Short term performance

For the short term performance, Figure shows a hit ratio achieved by our proposed
strategy and the other caching strategies introduced above. We can see how the hit ratio
varies with the cache size measured with UNIT. We noticed also that each time the cache
size increases, the hit ratio augments and the proposed FCEC system provides a higher
cache hit rate for all cache capacity values. When the cache size is small, the performance
of LRU is close to our proposed strategy. As the cache size increases, the gap between
FCEC strategy and other two caching algorithms increases at first, and then gradually
becomes almost similar with LRU and wobbling for FIFO. At cache capacity C = 700,
the cache hit ratio of the three algorithms is increased at around 0.8%. At this point, the
cache hit ratio achieved by the mentioned strategies tends to converge because the cache

size is high enough to store all the contents.

4.3.2 Hardware solution

4.3.2.1 FPGA: Field programmable get array utilization

FPGAs are made up of an interconnection of logic blocks in the form of a bi-dimensional
array. The logical blocks consist of look-up tables (LUTs) constructed over simple memories
that store boolean functions. The FPGA architecture makes it possible to implement
any combinational and sequential circuit, which can range from a simple logic function to
a high-end soft-processor [47]. We propose an FPGA implementation for fuzzy-caching
decision algorithm in the aim of reducing energy consumption since it has been proved
in [30] that the energy consumption is lower with an FPGA-based solution than with a
software implementation. We implemented our fuzzy system as presented in [66] on the
FPGA Xilinx virtex-5 LX50T-1156 board from DIGILENT. The system was coded in
VHDL and table shows the resources used by our hardware design.

4.3.2.2 Results discussion

We migrated the main algorithm into hardware using FPGA. We noticed that the

hardware consumes only 12 clock cycles, which can be considered as an advantage regarding
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Table 4.6: the resources used by our hardware design

Logic Utilization Used || Available || Utilization
Nbr of slices registers 286 28800 0%
Nbr of Slice LUTs 1403 28800 4%
Nbr of fully used LUT-FF pairs || 148 1541 9%
Nbr of bonded IOBsMb 52 480 10%
Nbr of BUFG/BUFGCTRLSs 1 32 3%
Nbr of DSP48Es 17 48 35%

to the critical role of the cache in the edge of the network. Figure[d.9shows the measurement
of energy consumption, the thermal properties, the voltage and the electric current during
the run of the fuzzy caching decision system. We notice that a power of P =0.45W is

consumed when making the caching decision.

When comparing our FCEC strategy with LRU that consumes P =0.9 W [105], it is

notable that FCEC consumes less power.

Figure 4.9: The values of energy consumption, thermal properties, voltage and current.

4.4 Conclusion

In this chapter, we present the envisioned Fuzzy decision system model. We have
presented a novel caching system for edge devices, that combines size, mobility and cost
awareness and continuously optimized using fuzzy logic decision maker model of edge
caching. The software implementation shows that the proposed approach improves the hit

ratio and the hardware implementation reduces the power utilization. As more different
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applications with various contents migrate into the Internet, future mobile edge computing
system will experience more variability in requests, content sizes and costs. We believe

that the proposed caching strategy can address these challenges.

In the next chapter, we investigate the reinforcement learning as an additional model
to improve our current proposal. The reinforcement learning learns with its agents the
dynamics of the environment, which will encompass the problem of stochastic dynamics

and enhance the quality of caching decision.
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Chapter 5

Caching strategy with mRL
(modified Reinforcement Learning)

5.1 Introduction

The tremendous growth of Mobile Edge Computing empowers the edge network nodes
with more computation capabilities and storage; thus, achieving specific tasks like data
analysis and deep learning in edge networks. This allows the possibility of employing
artificial intelligence (AI) techniques and machine learning at mobile network edges. Ex-
ploiting users context information intelligently makes it possible to design an intelligent
context-aware mobile edge caching. Context awareness enables the cache to be aware of its
environment, while intelligence enables each cache to make the right decisions of selecting
appropriate contents to be cached so that to maximize the caching performance. Inspired
by the success of reinforcement learning (RL) that uses agents to deal with decision making
problems, in this chapter, we present a modified reinforcement learning (mRL) for content
caching in the edge of the network. The proposed solution aims to maximize the cache hit
rate and requires a multi awareness of the influencing factors on cache performance. The
modified RL differs from other RL algorithms regarding the learning rate that uses the
method of stochastic gradient decent(SGD) [I8] [59] beside taking advantage of learning

using the optimal caching decision obtained from fuzzy rules.
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5.2 Presentation of the solution

Despite the efficacy of RL model in many areas, it still has many limitations. The basic
RL model does not cope well with domains involving a large space of possible environment
states or a large set of possible actions. Therefore, most of the RL models have been
applied to highly simplified learning situations [79]. In this context, we define a modified
reinforcement learning mRL based caching system for MEC, which considers the content
features namely frequency, cost and size and also the device feature like mobility and
storage capability. It aims to solve the problem of caching decision making in a realistic
way. Modified reinforcement learning is combining RL and Fuzzy logic to embody the idea
of exploiting previously acquired knowledge and capabilities from others in order to speed
up learning in RL. For example, knowledge about the content distribution, mobile user
properties and network conditions can be used by the caching agent. The combination
of knowledge methods and RL has significant advantages like constructing more efficient
caching policies. On one hand, transfer prior knowledge can be used to help training RL
agents, thus making convergence to the optimal caching decision easier. On the other hand,
it allows using policies learned by other relative networks with RL agents, thus improving
the efficiency and robustness of the current RL algorithm. The modification of the initial
RL algorithm consists in using the fuzzy rules as a policy, and in modifying the learning
rate. However, the modification of learning rate may alter the conventional method of
stochastic gradient descent (SGD) considerably. Typically, we can say that we defined a
control of caching decision as a set of equations that maximize the value of the reward

function.

5.3 Modified reinforcement learning (mRL) over the edge
caching system

5.3.1 The proposed scenario

In this section, we focus on the scenario of caching contents in edge nodes, as depicted

in Figure 5.1}

There are C contents, denoted as ¢; = {1, ....C' } : ¢ € C, we note that all mobile users
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Figure 5.1: scenario of caching using reinforcement learning
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in the system may request R requests. The content popularity is defined as fr, which is
the frequency distribution of content requests from all users. S is the content size denoted
as: s; = {1, ....5 }:s € S, the user mobility is modeled by the distance between the user
and the nearest base station and finally the cost of retrieving the requested content. The
contents distribution is described by MZipf distribution function. For each request, the
RL agent in the edge node can make a decision to cache or not to cache according to
the decision of fuzzy rules, and if yes, the agent determines which local content shall be
replaced if there is no storage space. We assume that content distribution, user mobility,
cost and average arrival time of the requests are assigned to each content during a ¢ time
period. The most important part is how to define a reward function because it directly
affects the algorithm performance [65]. In order to design an appropriate reward function
to achieve our goal, the key idea is to assign high reward values to content caching actions
beside enhancing the cache hit ratios. The gain is calculated by the amount of cache hits
to be enhanced by the newly cached content while the loss is calculated by the amount
of misses. We illustrate an example of applying mRL to the mobile edge caching, where
one MEC server is considered and the storage space of the edge cache is initialized to be
enough for caching half of the available contents in the network. The MEC server can
serve all the requests directly, according to the arrival time. Initially, the caching policy
caches locally the contents according to the priority accomplished by the fuzzy system and
to the cache size availability. Otherwise, the cache replaces the content less prior by the
highest one. Our aim is to find the optimal caching decision by maximizing the cache hit
ratio, that is, the number of contents answered by the edge cache. This problem can be
solved based on mRL which requires training an agent for representing the policy, and an
appropriate reward function that describes how the agent ought to behave. In other words,

reward functions have normative contents that provide what the agents should accomplish.

The detailed features are shown in figures [5.2] [5.3] and explained below :
The environment is modeled as a stochastic finite state with inputs (actions sent from the
agent : fuzzy rules and user requests) and outputs (observations and rewards sent to the

agent):

o State transition function P(Sy+1 | St at)
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o Observation (output) function P(O; | st, at)
e Reward function R; = oo k=0 v* r., .

It is noted that the agent observations depend on his actions, which reflects the fact that
perception is an active process. The agent is also modelled as stochastic finite state machine
with inputs (observations and rewards sent from the environment) and outputs (actions

sent to the environment).
o State transition function: S; = £(Sy—1 Oy, Ry , at)
o Policy/output function: =P (a¢|s;)

The agent’s goal is to find the optimal policy and the state function so that to maximize

the expected sum of discounted rewards.

Fuzzy rules
network and content
parametrs

[ Intilaize the network model J

/T‘JS‘ENE

cache
measure

No

Update policy reward good ?

caching based on
optimal policy

Figure 5.2: block diagram of caching over mRL

5.3.2 Mathematical model

Reinforcement learning is usually preformed using parameterized function approximators

to store value functions. RL algorithms are developed and then applied to function
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Figure 5.3: caching Agnet process
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Table 5.1: List of mathematical symbols

Symbol description

Sy State

Action

Policy

Reward function
state-value function
action-value function
weight

learning rate
Gradient descent
Mean value
Variance function
Fuzzy policy
Kernal space

FEm® T AR o<

approximators. These algorithms are very complicated and difficult to analyze and to
combine with other algorithms. New types of algorithms are derived based on stochastic
gradient descent. In order to improve existing types of algorithms from both sides theory
and practice, the gradient-descent approach makes it possible to create entirely new classes
of reinforcement-learning algorithms. Hence, it became possible to take any of standard

algorithms in the field and rederive a new form of it with provable convergence.

It is shown in [98] how gradient descent allows an inelegant, inconvenient algorithm
like Advantage updating to be converted into a much simpler and more easily analyzed

algorithm.

In case of caching decision with fuzzy policy dynamically, the learning rate should be
modified. However, the modification of learning rate may alter the conventional method of

stochastic gradient descent (SGD) considerably.

We represent the weight adjustment of mRL as follows:

new_ weight = (existing_weight — learning rate xgradient),i.e :

0—0—alco (5.1)
69/

with ( is the tendency of SGD. if « is too small, the gradient descent can be slow. If « is

too large, the gradient descent can overshoot the minimum. It may fail to converge or even
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to diverge. We define a cost function for a neural network. The goal is to minimize this
cost function. Hence, here it becomes an optimization problem using SGD. Mathematically,
if the cost function (or loss function) is L, then the goal is to minimize L. For a convex

optimization problem like this, we use the derivation of the loss function AL. Thus,
0=0—aAL (5.2)

while « is the learning rate.

To consider this principle, we initiate certain modifications of « in the reinforcement
learning, which will be a considerable modification over SGD. Precisely, we will modify the

flowing parameters for mRL with respect to SGD:

Momentum : it will help normal SGD by adding a function of the direction of the
previous step to a current step. The function is usually a range of [0.1]. Hence, the proposed

model of RL can make use of the following configuration changes of learning:

o The learning rate will select new learning values at the end of each epoch/session

combining statistical optimization and rejection strategy.
We provide further the following modification :
1. Input search space S.

2. Find a mean function p and variance function p

3. Optimizing «, as in the following equation:

Om = nesa(n;u(n)m(n)) (5.3)

5.4 Problem formulation and model development
5.4.1 High level description of mRL

The reinforcement learning based algorithms have been successfully applied to various

optimization problems in many domains. However, in order to obtain better solutions for

100



CHAPTER 5. CACHING STRATEGY WITH MRL (MODIFIED REINFORCEMENT
LEARNING)

specific optimization problem like our multi awareness caching system. The core of the
modified RL algorithm used in this study is to generate a sub-environment based on fuzzy

policy as following;:

o Fuzzy policy weight : Fy, 6.
e Input search space S, the number of initial search

e Update the value of o toward an optimum value o*

We minimize the expected value of the objective in next dynamic instances which

implies :

policy[f () = policylf (1(0e-1), )] (5:4)

We update the previous learning rate a;_1 to the final value ;. Then, we perform GD:

op = (fop(bs, o)/ (neve) (5.5)

We also assume that the optimum value of learning rate and at each step descent value
will change towards all the sessions. However, we need to introduce a continuous function

with the context of noise, hence:

ar = a1 —BAaf(Or—1) + Aap(0i—2,04-1) (5.6)

The rule can be interpreted as multiplication. This will be an additive adaptation of

changing of A.

5.4.2 Policy improvement

The caching policy can be defined as a set of dynamic artifacts [81]. This phenomenon
becomes obvious as the context of caching particularly should be dynamic depending on
the condition of network traffic. Hence, the modification of RL also demands an essential

formal model to cope up with respect to dynamic policies.
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5.4.2.1 Formal model of policy improvement

We define a finite state space S for caching policies including all the possible actions as
the policy of caching is stochastic. Therefore, to measure the random changes of the state
space of caching denoted by S., we introduce a transaction kernel function. For simplicity,

we assume a finite set of caching policies and we have as follows:

{Ksc:7— 10,00} < o0 (5.7)

where K. is the kernel state space for caching.

In the dynamic context of caching, we may have more than one context. This additional
context either can be combined or mixed to derive the improved policy. Let there are two
such transitional finite kernels to make decision for caching from S, to 7. Therefore, to
evaluate these two kernels, we need to multiply them. Hence, the final policy (as improved)

can be formed:

scl

K2 0 KR, (S, A) = / K2,(S,dt). / KR (Spt)du x 1A(t,u) (5.8)

o If the search space is predefined from a stochastic caching mechanism from 7 to u for

allt eruelU.

If the policy for both kernel Kgﬂ and K, can be combined by integration, the policy 7

chosen randomly for caching decision is known as greedy.

Therefore, if there is a caching context with all four parameters, then obviously we will
select a policy that gives a maximum reward. Therefore, the estimated policy for caching
decision to a particular network content is :

~ Totalnumbero ftrailiyparameters

Pg

(5.9)

In equation 5.9 , Ng is the number of time this policy has been used and the training
parameters are out of our four parameters. Among these parameters, the one that has the

highest gain at a particular instance allows us to find the number of iterations that the
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same policy can trigger; which will assist us in decision making. Hence, as a high level step,

we formulate the following algorithms:

Algorithm 2 Policy iteration scheme
fr+<0;

Pr + 0.5;

trails <P g xntrails;

for (int i = 0; ¢ <ntrails; i++)
trails <P g xntrails;

end for

If (fr <trails)

detect greedy ();

fr ++;

else

select A();

Algorithm 3 mRL Caching policy for edge node

Input: Parameters of the system including dynamic conditions: Mb, Fr, CO and Cr
initialization: initialize the network model: content and requests, fuzzy rule table
Learning Loop

Choose an action a; from an action space A following policy based on fuzzy caching system
™ = P(at|st)

Measure the delay of downloading and cache hit ratio according to (A1)

Apply greedy policy iteration scheme according to (A2)

Update fuzzy rule table

Generate the new caching policy

EndLoop

Cache content based on the optimal policy

5.4.2.2 Reward function

Recently, there has been novel technologies that replace prediction with a much more
efficient way known as reward functions. Reward functions are used for reinforcement
learning models and allow to obtain the final results as a conclusion instead of prediction.
For decision making problems, prediction is not the only input as the other fundamental

input is judgment.

For our caching system, mRL treats learning and content placement/replacement as a
whole operation. The caching policy adopted by the mRL agent is trained with observations,

based on a reward resulting from its actions that relate to the factors that affect caching
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performance such as mobility. Usually, this reward should be chosen in a way that covers a

wide range of factors that can affect the performance such as offloaded traffic or QoE.

Finding the best reward function to reproduce a set of observations can be implemented
by the maximum likelihood estimation, Bayesian, or information theoretic methods. The
system reward represents the optimization objective. In our work, the objective is to
maximize cache hit ratio. For our caching approach, we have all the variables that can go
into known values. The time of retrieving is determined while distributing the contents

and the users requests (including the associated parameters of each).

In the scenario of mRL, when the system state s(t) and the system action a(t) are given,
the priority can be determined. When the content requests of a typical user arrive, the
system can acquire the knowledge from the fuzzy rules, whether the cache should preform
the operation of placement or replacement and also satisfies the requests. We defined a
network model where several MECs are deployed. At the network edge, the cache with
limited resources is connected to the cloud via the backhaul link. Let C=1,2,...,c. C
denotes the content provider which is located in the cloud content center. For simplicity,
each cache can store X (X <= C) contents. Meanwhile, a time-slotted system is considered.
Let N =1,2,...,n the users served by the MECs during time slot ¢t. The distribution
of user requests and contents is determined by the ZIPFs distribution function [32]. Let
d.(t) denote the amount of the instantaneous user requests towards C' contents during
time t. Let I;(t) denote the cache indicator for the considered MECs during a time slot
t. Specifically, I. (t)=1 (with a corresponding priority) indicates that the c¢'* content is
cached during time slot ¢ and I.(t) = 0 otherwise. Correspondingly, the caching decisions
are made according to fuzzy caching system where cache hit rate is a measure of the
caching performance. Hence, it is used as reward function in the mRL — caching framework.
In conventional reinforcement learning, an agent learns how to optimize its behaviors in
uncertain environment by executing control polices experiencing the decision of rewards and
improvising the policy based on the reward. Without satisfyingly strong reward function
or decision, learning may look very difficult for the present problem of caching the state
space (combination of mobility, cost, frequency and cache size) that could be too extended.

Therefore, the time of retrieving information should be maximum and the learning would be
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difficult. This type of cases may shape the reward decision of caching as extremely sparse.

We can approach three different reward decisions on caching itself as in the following:

1. A reward decision with the sparse value that is multiplied with certain values compared
to the goal state. However, this kind of reward decision may also slow down the
learning because the agent needs to achieve many actions before getting the decision

of good caching or not effective caching

2. Reverse reward in case of collisions where the constraints of caching may suffer from
the situation where keeping cost always lower cannot optimize the other values of

constraints.

3. Zero reward for any other state (ideally, there may be some situations where no

decision can be made satisfying the cost as lower).

The reverse reward can be a primary objective in terms of evaluation of the distance
and the time of information to be propagated from an initial base station to a nearest base
station. It has been observed that collision may happen not for the initial iteration, but
when both the number of iterations are increased and either of the three parameters like
MB, Fr and size of the cache are made dynamic. In most of the cases, the designing of
the reward function in terms of decision is amalgamated with the respect to the procedure
of designing state space. For example the cache is a time depending problem. Therefore,
the distance covered to reach the nearest base station can make a good reward decision or
not effective reward decision. To simplify, we only mentioned a generic reward function

customized with the present problem:

o The state value function vm(s) gives the long term value of state S when following

the policy m

o The action value function ¢m(s,a) is the expected return starting form state s taking

an action a as in the following:

vm(s) = X, € Am(als)qn(s,a) (5.10)
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The expected return of decision for caching will be dynamic for caching process. This
is because the state of constraints except the cost will change from time to time. This

relation is composed with state value function v (s) and the action value function g7 (s/,a).

In the given expression below, A belongs to the all number of actions and X denotes

the all number f states to achieve the based reward decision of caching.

5.5 Data and result analysis

A catalogue of N= 103 contents has been generated, where each content is accompanied
with its size, frequency and later on the cost and mobility are calculated. The cache
occupancy is the percentage of the content size on the free space in the cache. A cache size
of 600MB is used and randomly we set a size for each content. Each time the user requests
a content, the frequency is calculated depending to the catalogue size and the number of
requests. With U number of users U = {u,...uy}: u € U, the mobility is formed as the
distance d = XY between the users in the points X ={x1,zs....2y} and the base station in

the point Y.

Mb=Y — Xy (5.11)

The cost to retrieve each content is the time incurred to retrieve the content to the end
user. This time is calculated according to the maximum bandwidth required to provide
peak data rates of at least B = 0.2 Mbit/s, and the distance d= XY between the end user

and the base station where the cache is located.

Mb
t=— 12
Cos 5 (5.12)

A resource from the catalogue content is an object that contains an ID, a size and a
payload that refer to the type of the content we have (video, image, audio). For simplicity,
it is set to a string value. For the distribution of requests and contents, studies have
confirmed Zipfs law as an appropriate distribution model for access pattern to contents on

the Internet such as videos hosted on YouTube or peer-to-peer file sharing systems like
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Bit-Torrent. According to Zipfs law, a small fraction of popular web objects attracts most
user requests, which is favourable for the efficiency of small caches. Zipfs distributions of
finite support for a content catalogue of N contents with request probabilities Z(r) have

been determined for the objects popularity ranks :

N
Z(r):arﬁwith:rﬁ<0;ﬁ:Z(1):1/Zrﬁ>0 (5.13)
r=1

where [ is an adaptive shape parameter and « a normalization constant. R represents the

users requests with R = 103, with « set as : o« = 0.75.

Based on this distribution law, sever characteristics curves can be generated. The

characteristics of the curves are defined as following:

e Choosing an optimization function to balance the four optimal parameters like
frequency, mobility, size and cost. However, the cost as well as the mobility always

have to be kept as minimum as possible.
e Deviation of cache size and time of caching are expected.
e The optimization of objective function is repeated to balance mobility and cost.

o It is also expected that there will be reference mean and there will be actual mean
between the max and min values of bandwidth. Hence, therefore setting histogram

plots could be worthy to demonstrate these variations.

5.6 Results Discussion

We should mention that unbalanced data have been used for two reasons. First, the
scenario is a multi-objective function [60]. Second, using unbalanced data requires methods
to solve the problems of optimization under nonlinear constraints of inequalities like Karush-
Kuhn-Tucker conditions (KKT) which is an optimization problem with interval-valued

objective function [93] [1].

For general characteristics, the deviation of cache size may occur with respect to time

of caching (see figure [5.4]). In this figure, there are two segments of curves. one in red color
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demonstrates that the cache size is 0.01 unit and the time of caching is only variable (in
ms), then the slop of the curve becomes linear and deviates more toward a sustain value.
After a period of time estimated to 3 ms, there is no significant change in deviation of cache
size. However, in the same figure, the upper segment shows cache size between [0.02-0.03]
units. If it differs, then the slop of the curve can only be flat after 25 to 30 ms time. This
describes that the deviation of cache size while keeping the time of caching fixed can be a

significant characteristic to the performance of this model.

0.05 A

0.04

0.03 A
Deviations of Cache Sizes ( in Units)

" 0.021

0.014 &,

5 10 15 20 25 30 35
Time of Caching (in milliseconds)

Figure 5.4: Cache size over time

In the histogram plot of figure frequency is a range of 10% samples. However, these

large samples of ranges of frequency may not serve the RL model as part of the given data.
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It also shows that the axis x of the plot of histogram can be sustained and becomes non
significant after 2 x10* values of frequency. Therefore, there is a requirement to bifurcate
the maximum and the minimum range of frequency by using the actual mean value as a
reference as shown in the plot. This will help to generate the data proposed for this model
accordingly. After formulating the data generation and investigating the tendency of cache
size with time, the given performance has been focused to a multi objective optimization
problem. Here, the four parameters, used to analyze the trusted caching decision, can vary

and significantly impure the results.

For example in figure it is shown z axes containing an iteration count and y axes
containing an optimization function. In this case, the optimization function can vary
with cost and mobility, although two variables are kept as minimum with respect to the
remaining two variables. Finally, this will produce at least two optimization functions with
respect to the cost and mobility. Therefore, the data part here should be unbalanced to
yield an optimal solution of caching. It is shown in the figure that the training data in
this model has been occurred from fuzzy model and therefore there may be substantial
possibilities to present a data in a mixed cluster of any of these four variables. These
features provide that there is a necessity of final clustering on the unbalanced data for
optimal caching decision. The figure has demonstrated three dots where clearly the middle
part shows dense clusters of any of the four variables line in this region. However, the left
and right sides of those dots are clearly isolated from these clusters, which means that the
middle dense cluster can be suitable for a good caching decision whereas the other may not.
These all dots represent the combination of any of the four parameters without any balance
ratio. This necessitates the requirement KKT optimization in the analysis part of these
data. First of all, we went through solving convex maximization problems under inequality
constraints. Our particular caching problem led to constrained equations with 4 parameters
(Mb, Cr, Co, Fr). To determine their optimal values, we used the KKT condition. We
assumed that three constraints of our problem were active. We, therefore, eliminated the
inactive constraint. Since all these equations happened to be linear, we obtained a solvable

algebraic problem. We followed a simple linear regression model according to Figure [5.7}

In this figure, the three dimensional plot designates the relation between cost and
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Figure 5.5: Frequency histogram
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Figure 5.6: Caching decision evaluation and the optimization of the objective function

Figure 5.7: Relation between cost, frequency and size
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frequency and in the below part we can notice that the regression becomes dense. However,
the upper part becomes scattered and we observe that the generated data have not been
balanced enough to produce a good outlier decision for caching. Outlier means that, each
time, the data and the iterations of caching session should be proportional. Data signifies
the combination of four parameters as it is unbalanced. Therefore, the relationship between
cost and frequency may not provide any significant decision for caching. Additionally, it
can be noted that for bandwidth or frequency, we have referred the histogram plot for
reference mean and actual mean of the maximum and minimum frequency. Therefore, we

require more optimal clustering for Figure [5.8

Figure 5.8: Optimal clustering for cost and frequency and size

Here, we observe that there are three axes in the given plot where Fr of the content CR
and CO of the content are plotted based on the sample data generated. In the given figure,

there are three sections based on the distribution of the optimization function:

e The dense blue dots occupy the Fr and the CR region of the plot. This entropy will

distribute certain scattered blue dot from CR toward the mapping region of the cost.
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As it is mentioned, the cost should be kept as minimum. Therefore, very few blue
dots are available in the cost region satisfying the variable FR and CR according to

the generated data.

e This plot is a broader outlier analysis of clustering. It describes the plot regions into
different visible sections. However, due to the absence of real effective cost data, it is
not possible to find more blue dots which may represent appropriate cost of caching

with respect to the other parameters.

e The modified RL thus can distribute a map value for state - action and reward

clustered for appropriate decision of caching.

In the both figures:

e 3D distribution of input data has been shown using scatter diagram. Additionally,

these following values are analyzed :

— Means, Median, Std/Variance all attributes, data distribution and histograms.

— Co-variance of pair of attributes.

Pairwise linear regressions.

e Fr=a+bxCr.
e Fr=a+bxCCo.
o Fr=a+bxMb.
e Cr=a+bxCo.
e Cr=a+bxMband Co=a+bxMb

o Multiple linear regressions (Fr=a+bxCr+cxCo,Fr=a+bxCr+cx MB,Co=
a+bx Fr+ex Mb,Fr=a+bxCr+cxCo+dx Mb)

e Multiple quadratic regressions F'r =cyg+c1 X Cr4+cog X Co+cg X Mb+c4 x Cr x Cr+
cs X CoxCo+cg X Mbx Mb+c7 x Cr x Co.8 x Cr x Mb+cqg x Cox Mb
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To identify possible clustering, results are shown using graphical representations. For
all regressions, we have used Least Square optimization techniques for the learning of model

constants, i.e. regression coefficients.

The scatter diagram is showing the distribution of the data in all directions. There
is no such biased or prominent grouping of data. From the graphical and tabular views,
it can be easily found that some models are working with certain errors. This is also to
emphasize that apparently it seems to formulate a perfect optimization function based on

four parameters. However, in real time, it may not be suitable too.

5.7 conclusion

In this chapter, we presented a realistic decision scheme for caching scenario using a
modified reinforcement learning model. We also described thef analogy behind the data and
demonstrated the four given components as a holistic performance of the model followed
by an optimization characteristic curve. The next chapter addresses the simulation part in

order to verify that our proposed algorithm works in realistic situations.
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Chapter 6

Simulation : caching strategy for
MEC/ICN based architecture

6.1 Introduction

Information-Centric Networking (ICN) is a promising network that is based on shifting
the main network host identifiers to location content identifiers. Caching capabilities are
one of the common key feature used by all ICN proposed architectures. In this chapter, we
present a simulation for our proposed caching system in ICARUS, which is a Python-based
caching simulator for ICN. The simulation tool allows us to evaluate our caching system

for any ICN implementation.

6.2 Architecture and design

In order to compare caching strategies for ICN under simulation environment and
common evaluation scenarios, we implemented our fuzzy caching system in ICARUS
simulator written in Python as programming language, which provides several advantages
such as the high-level syntax [(7]. ICARUS has been designed to satisfy two main non-
functional requirements: extensibility and scalability. Figure [6.1] shows the High-level

architecture of the simulator that contains the following phases :

e Configuration and scenario generation: This phase includes all the steps required
to set up a fully configured network topology and a random event generator for the

simulation. The scenario generation is based on the Fast Network Simulation Setup
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(FNSS) toolchain [77].

e Orchestration: In this phase, the simulator uses the configuration file in order to
extract the range of parameters (e.g. cache sizes, cache policies, content popularity

distribution) and starts primarily experiments with all the chosen parameters.

o FExzecution: After experiments, an actual execution of the simulation starts up with

an instance measurement of the various metrics.

e Results collection and analysis: At the end of the experiment and execution, results
are collected and aggregated with the possibility to calculate confidence intervals and

plot results.

Configuration

Topology
> Results
SCenario P Orchestration 2 Results
Setting ry
Topology Results
¥

Execution

Figure 6.1: High-level architecture and workload of the simulation tool

6.3 Evaluation of Fuzzy Caching System (FCS) based algo-
rithm

This simulation tool needs all the parameters defined in FCS algorithm as described in

the preceding chapter. Hence, we perform simulation experiments for our fuzzy caching
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system and for the following caching strategies as presented in table of Chapter 3:

e Least Recently Used.

e Leave Copy Everywhere.
o First In First Out.

e Random.

We varied the parameters of the common evaluation scenario (Table [6.1). For each
simulation experiment, three runs are performed and before running the simulation, the
requests are placed randomly in the nodes of the topology. Table shows also the list of
metrics to be measured in the experiments: Cache Hit which is the ratio of the number
of cache hits to the number of lookups, usually expressed as a percentage. Cache size
expressed by the total size of network cache as a fraction of content population and latency,
which is the delay taken to deliver a content. We varied the range of alpha values of the
Zipf distribution function used to generate content requests. We used a catalogue of N =
2%10° with a number of requests estimated by R = 10 requests per second (over the whole
network). The topology used to evaluate the different caching mechanisms is GEANT
which is an ISP level topology [36]. The first GEANT network was launched in 2000 (see
Figure and has stayed well ahead and used in many works like in [73], [76] and [90].

Table 6.1: Simulation Environment

Simulation
Runs 2
Evaluation metrics Cache hit ratio, Cache size, latency
Cache configuration FCS, LRU, FIFO,
Topology GEANT topology
Popularity Model MZipf(a = 0.6, 0.8, 1.0, 1.2, 5 = 0)
Cache size 0.004, 0.002, 0.01, 0.05

6.3.1 Trace parsers

ICARUS simulator provides a set of functions allowing to parse content traces from the

most common datasets. These traces are used to feed a request generator and simulation.
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Figure 6.2: GEANT Topology
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ICARUS supports parsing from two data formats. First, it supports the parsing of logs
generated by a Squid proxy server. This is one of the most common open-source HTTP
proxy available. This is also the format in which the traces provided by the IRCache project
are made available. Second, it supports parsing requests from the Wikibench dataset [86].
This is a dataset of requests received by all Wikimedia websites over a period of time

between 2007 and 2008 [77].

6.3.2 Performance evaluation

Experiments have been run with LRU, FIFO and Fuzzy caching system. We evaluate
the performance in a range of content catalogue sizes from 103 to 107. It should be
mentioned that the cache size is calculated as the ratio between cumulative cache size and
content catalogue. Hence, a scenario with a large content catalogue has also a large cache
size. In order to assess the scalability of the fuzzy caching system and to validate its fitness
for running in large scale ICN environment, we evaluate its performance in terms of both
cache hit ratio and latency by varying many conditions. In particular, our analysis focuses
on measuring the cache hit ratio and the latency of: FCS, LRU and FIFO with various
catalogue and cache sizes. Figure [6.3] shows the cache hit ratio and the latency alteration
for GEANT topology over the cache size with a fixed Zipf’s parameter v = 1.2 and a varied
content population ratio (total size of network cache as a fraction of content population).
We notice that FCS performs better than FIFO and LRU and the latency decreases with
the growth of the cache size. We should pay attention that the bigger the cache size ratio

is, the easier to achieve good caching results.

We also study the cache behaviour under various values of « in order to cope different
workloads. Regarding the hit ratio achieved by FCS, we can see that it increases with the
augmentation of a value and marks better values than FIFO and LRU. In terms of latency,
the three caching strategies have approximately the same high value equal to 0.9, then it
starts decreasing for the three caching strategies, noticing that the fuzzy caching system
shows less latency value. In high popularity scenarios (a = 1.1landa = 1.2), the level of

performance of FCS increases.

Finally, in Figure [6.5] we fixed the size of the cache and « value and we measured the
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Figure 6.3: cache hit ratio and latency over size with a fixed «
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Figure 6.4: Cache hit ratio and latency over content distribution with a fixed cache size
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cache hit ratio over time, where it appears that FCS achieves 0.7 which is the highest value

compared to LRU and FIFO.

Cache hit ratio: A=1.2 C=0.004

e, [ FUZZY. -
e LRU
FIFO

Cache hit ratio

0.0 -
GEANT

Figure 6.5: Cache hit ratio with fixed size and «

6.4 Conclusion

In this chapter, we compared the most relevant ICN caching strategies (LRU, FIFO)
with our solution. We first provide a common evaluation scenario to evaluate the strategies
under the same simulation environment. Then, we implemented our fuzzy caching system.
We summarized the results that show that our proposed fuzzy caching system outperforms
other caching strategies but it still has a high computational cost even if the cost of our
caching solution is better than the others. However, it could be a good candidate to be

used as caching strategy for ICN. As the evaluation of ICN caching is an important topic,
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we aim to complement this work and contribute to the future deployment of the ICN

architecture.
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In this thesis, we have proposed a new intelligent caching system for mobile edge
computing using fuzzy logic and reinforcement learning model. This caching system
was built along two steps : The first step is supplying effective caching services in the
highly resource constrained and dynamic mobile environment. We proposed an energy-
efficient fuzzy caching technique for edge devices that enhances the cache hit ratio and that
consumes less power. In the second step, we extended the caching system algorithm with a
reinforcement learning model through which we have modified reinforcement learning in
order to have an optimal caching decision. We recall, below, the remaining chapters and
the contributions of our thesis. We introduced six chapters spread over two main parts,
the first part is an introductory part that contains the basic concepts of the thesis and also

the state of the arts. This part is organized as follows :

e Chapter 1: Presents and describe ICN environment and MEC characteristics.

o Chapter 2: Contain the background related to the intelligent mechanism used in the

thesis to formulate the intelligent caching mechanism.

e Chapter 8: The stat of the art of the existed caching strategies in general , ans in

particular using fuzzy logic and reinforcement learning.

the second part contains three chapters each describe and present a contribution. The
first contribution presented in chapter 4 is a novel energy efficiency and multi awareness
caching strategy using fuzzy logic. We took into consideration four influencing factors
related to the network nature and the user behaviour. To cuts overall energy requirements,

we relied on a hardware implementation of the caching system using Field-Programmable
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Gate Array (FPGA) as an alternative computational architecture. The results showed
a better performance through a less power consumption compared with some existing
caching strategies. In chapter 5, we presented the second contribution that demonstrated a
realistic decision scheme for caching scenarios by using a modified reinforcement learning.
Elementary modification in reinforcement learning was done to incorporate RL in the
mobile edge caching system. Hence, a formulation of a hybrid model with fuzzy and RL
was required. The modification customized the four influencing factors and the dynamic
properties of the proposal can support the different caching scenarios. We demonstrated
that to keep cost minimum for the whole system and to vary different other parameters,
a well balanced machine learning based optimization function was necessary. Finally,
Chapter 6 which is the third contribution where we simulated the caching system in an
ICN simulator to check the robustness and the ability of applying this system in ICN
environment. The results of simulation show that our fuzzy caching system outperforms
the other caching strategies used in this simulation. In conclusion, the work in this thesis
addressed the challenge of caching for mobile edge computing, in ICN environment. The
proposed intelligent caching strategy has showed a good performance and proved that it
can be the best candidate to incorporate in the design of MEC/ICN environment. We
aim later to use our fuzzy caching algorithm in MEC systems to take advantages from
MEC characteristic like processing and data analysis in order to bring intelligence at the
edge of the mobile network, hence reducing latency and enhancing the offered capacity.
We aim to propose a new architecture that aligns and integrates the caching system with
the MEC/ICN based architecture by introducing a system that enriches the network
with caching-oriented orchestration capabilities. This opens new opportunities on jointly
managing caches by allowing processing and intelligent operations to be triggered by MEC

services.
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Fuzzy rules for caching decision:
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Abstract :

Mobile edge computing (MEC) concept proposes to bring the computing and storage resources in close
proximity to the end user by placing these resources at the network edge. The motivation is to alleviate
the mobile core and to reduce latency for mobile users due to their close proximity to the edge. MEC
servers are candidates to host mobile applications and serve web contents. Edge caching is one of the
most emerging technologies recognized as a content retrieval solution in the edge of the network. It
has been also considered as enabling technology of mobile edge computing that presents an interesting
opportunity to perform caching services. Particularly, the MEC servers are implemented directly at the
base stations which enable edge caching and ensure deployment in close-proximity to the mobile users.
However, the integration of servers in mobile edge computing environment (base stations) complicates the
energy saving issue because the power consumed by mobile edge computing servers is costly especially
when the load changes dynamically over time. Furthermore, users with mobile devices arise their demands,
introducing the challenge of handling such mobile content requests beside the limited caching size. Thus,
it is necessary and crucial for caching mechanisms to consider context-aware factors, meanwhile most
existing studies focus on cache allocation, content popularity and cache design. In this thesis, we present a
novel energy-efficient fuzzy caching strategy for edge devices that takes into consideration four influencing
features of mobile environment, while introducing a hardware implementation using Field-Programmable
Gate Array (FPGA) to cut the overall energy requirements. Performing an adequate caching strategy
on MEC servers opens the possibility of employing artificial intelligence (AI) techniques and machine
learning at mobile network edges. Exploiting users context information intelligently makes it possible
to design an intelligent context-aware mobile edge caching. Context awareness enables the cache to be
aware of its environment, while intelligence enables each cache to make the right decisions of selecting
appropriate contents to be cached so that to maximize the caching performance. Inspired by the success
of reinforcement learning (RL) that uses agents to deal with decision making problems, we extended our
fuzzy-caching system into a modified reinforcement learning model. The proposed framework aims to
maximize the cache hit rate and requires a multi awareness. The modified RL differs from other RL
algorithms in the learning rate that uses the method of stochastic gradient decent beside taking advantage
of learning using the optimal caching decision obtained from fuzzy rules.

Keywords :

Information Centric Network, Caching, Mobile Edge Computing, Reinforcement Learning, Fuzzy Logic,
FPGA.




ARésdling :
Le paradigme de MEC (Mobile Edge Computing) consiste & mettre les ressources de calcul et de stockage
aux « extrémités » du réseau a proximité des utilisateurs finaux. Le terme « edge » désigne n’importe
quel type de station de base de réseau. Les motivations pour ’adoption de ce nouveau concept sont
principalement la réduction de la charge au coeur du réseau et la diminution de la latence grace a la
proximité des ressources et ainsi améliorer I'expérience utilisateur. Les serveurs MEC sont de bons
candidats pour héberger les applications mobiles et diffuser le contenu Web. La mise en cache a ’extrémité
du réseau, ou Edge Caching en anglais, est I'une des technologies les plus émergentes connues comme
solution de récupération de contenu au bord du réseau. Elle est aussi considérée comme une technologie
permettant la mise en place du concept MEC puisqu’elle présente une opportunité intéressante pour
implémenter les services de mise en cache. En particulier, les serveurs MEC sont implémentés directement
au niveau des stations de base, ce qui permet la mise en cache & ’extrémité du réseau et assure un
déploiement a proximité des utilisateurs finaux. Cependant, 'intégration des serveurs MEC dans les
stations de base complexifie le probleme de la consommation de 1’énergie, particulierement dans un tel
environnement qui est dynamique et sujet a des changements au fil du temps. Par ailleurs, la demande
des utilisateurs des appareils mobiles est en constante augmentation ainsi que leur expectation d’une
expérience meilleure. Sachant que le cache est d’une taille limitée, il est donc nécessaire et crucial que les
mécanismes de mise en cache soient en mesure de faire face a cette situation et de proposer des solutions
valables et satisfaisants a long terme. La plupart des études existantes se sont focalisées sur ’allocation
de cache, la popularité du contenu ou encore la maniere de concevoir le cache. Dans cette thése, nous
présentons une nouvelle stratégie de mise en cache écoénergétique basée sur la logique floue (Fuzzy logic).
Notre proposition prend en compte les quatre caractéristiques d’un environnement mobile et introduit
une implémentation matérielle en utilisant les FPGA (Field-Programmable Gate Array) pour réduire les
besoins globaux en énergie. L’adoption d’une stratégie de mise en cache adéquate sur les serveurs MEC
ouvre la possibilité d’utiliser des techniques d’intelligence artificielle (IA) et d’apprentissage automatique
(Machine Learning) aux extrémités des réseaux mobiles. L’exploitation des informations de contexte des
utilisateurs permet de concevoir une mise en cache intelligente sensible au contexte. La reconnaissance
du contexte permet au cache de connaitre son environnement, tandis que l'intelligence lui permet de
prendre les bonnes décisions en sélectionnant le contenu approprié a mettre en cache afin d’optimiser les
performances du caching.
Inspiré par le succes de 'apprentissage par renforcement utilisant des agents pour traiter des problemes
de prise de décision, nous avons étendu notre systéme de mise en cache basé sur la logique floue a un
modele d’apprentissage par renforcement modifié. Le cadre proposé vise a maximiser le taux de réussite
du cache (hit rate) et nécessite une prise de conscience multiple sure les conditions de web et I'utilisateur
final. La méthode d’apprentissage par renforcement modifiée differe des autres algorithmes par le taux
d’apprentissage qui utilise la méthode du gradient stochastique décent (stochastic gradient decent) en
plus de tirer parti de 'apprentissage en utilisant la décision de mise en cache optimale obtenue a partir
des regles de la logique floue.
Mots clés :
Mise en cache, informatique mobile de proximité, réseaux de contenus, logique floue, FPGA, apprentissage
par renforcement.
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