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ABSTRACT

This thesis presents theoretical investigations on electron scattering with two polyatomic molecules

of atmospheric pollution interest, the NO2 and N2O molecules. Regarding the NO2 molecule, we

study the vibrational excitation between the lowest levels within the ground electronic states of this

molecule. The calculation is carried out by an approach that combines the normal modes approx-

imation for the vibrational states of the NO2, the UK R-matrix code to obtain electron–molecule

S-matrix for fixed geometries of the target and the vibrational frame transformation to evaluate the

scattering matrices for vibrational transitions. To our knowledge, the vibrational excitation cross

section calculated in this thesis is reported for the first time for NO2 molecule. The uncertainty

estimation of the results is thus performed to validate the present theoretical approach.

Similarly, the vibrational excitation cross sections of N2O molecule are determined. The obtained

results are in reasonable agreement with experimental data. The rate coefficient of vibrational

excitation are obtained from the cross-sections for temperatures in the 10–10000 K range. The

rotational structure of the target neutral molecules is neglected in the present approach, which

implies that the obtained cross-sections and rate coefficients should be viewed as averaged over

initial rotational states and summed over final rotational states of the corresponding initial and

final vibrational levels.

Finally, the dissociative electron attachment (DEA) of NO2 are also studied in this thesis. This

process competes with vibrational excitation at the scattering energy range below the first elec-

tronic excited state of the target. The DEA cross section is calculated by the method based on

the Bardsley-O’Malley theory developed for diatomic molecules and generalized to complex poly-

atomic molecules by Chi Hong Yuen et al. afterwards compared with available experimental mea-

surements. The obtained results could be used in plasma modeling for control and reduction of
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atmospheric pollution.
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CHAPTER 1: INTRODUCTION

Electron-molecule collisions play a vital role in many active areas of modern research. In atmo-

spheric physics, they occur naturally in the upper atmosphere of the Earth and other planets [1]

through auroras [2–5] and lightning [6]. In considering the biological effects of ionising radiation,

the majority of energy deposited in cells is found to be channeled into the production of secondary

electrons with kinetic energies between 1–20 eV [7]. Along with damage caused directly by the ra-

diation, these energetic electrons can themselves collide with molecules and cause damage to cells

and may play a part in genetic mutation [8]. Electron collisions also underlie the development

of many plasma-based technologies such as magnetohydrodynamic power generation [9], electron

lasers [10, 11], ignition of internal combustion engines [12], as well as plasma etching [13] and

thin film deposition [14].

Computer modeling and performance optimization of the plasma environments listed above require

a detailed understanding of the relevant electron collision processes occurring in the plasma them-

selves. At electron impact energies below the molecular ionization limit, some of the especially

important processes between electron and neutral molecules are listed1 here:

Elastic scattering

AB+ e−→ AB+ e− (1.1)

Rotational excitation

AB( j)+ e−→ AB( j′)+ e− (1.2)

1Unless otherwise specified AB is a generic polyatomic molecule.
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where j denotes the rotational state of the target.

Vibrational excitation (VE)

AB(ν)+ e−→ AB(ν ′)+ e− (1.3)

where ν denotes the vibrational state of the target.

Dissociative electron attachment (DEA)

AB+ e−→ AB−∗→ A−+B/A+B− (1.4)

where AB−∗ is a temporary negative ion state.

Electronic excitation

AB+ e−→ AB∗+ e− (1.5)

where the asterisk denotes an electronically excited state.

The specific data for these reactions needed by researchers are the relevant cross sections. Cross

section (denoted by a σ with various subscripts and superscripts) is a measure of the probability

for a reaction to occur between two systems and is an energy dependent quantity. It is defined more

rigorously in Equation (2.23) of Chapter 2. Since the dynamical description of an ensemble of par-

ticles colliding with each other in plasma numerical modeling, such as the direct simulation Monte

Carlo (DSMC) method [15] are on the macro-scale, cross-sections are often thermally averaged

to give a reaction rate-coefficient. This describes the rate of a process as a function of tempera-

ture. The rate-coefficients then offer detailed information about the distribution of each rotational,

vibrational and electronic excited state that affect thermodynamics, transport coefficients and ki-
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netics of the plasma. For instance, the time-resolved molecular vibrational distribution function

(VDF) determines the vibrational-state population of the molecules in non-equilibrium plasma and

is important to construct accurate kinetic evolution of the plasma. It relies on the rate constants of

vibrational excitations and can be expressed by [16]:

∂nν

∂ t
= ne ∑

ν

[
αν ′,νnν ′−αν ,ν ′nν

]
(1.6)

where ne is the electron density, αν ,ν ′ is the rate constant for the ν → ν ′ vibrational-excitation

process.

Besides the academic research and industrial field studies mentioned above, electron-molecule

collisions are also important to know more about the mechanism of pollution control using non-

equilibrium plasma technology2 [17–22]. Non-equilibrium plasma is a promising tool for abating

environmental pollutants such as nitrogen oxides NOx ( NO, NO2 ) and nitrous oxide N2O pro-

duced by coal-based power plants which can have detrimental effects on the human respiratory sys-

tem and the environment. Although the plasma technology can reduce more than 90 % NOx [23],

it is still in early stage for commercialization since detailed understanding of how it works is still

unavailable. Therefore, providing the accurate cross sections of collisions between low-energy3

electron and common atmospheric pollutant NO2 and N2O is the major theme of this thesis.

Cross sections can be obtained by theoretically calculating or experimentally measuring. Mainly

three experimental branches exist by which electron scattering cross sections can be determined.

These are: molecular beam experiments [24, 25] which are specifically powerful tool for investi-

gating electron-molecule differential cross-sections; single collision experiments [26] are used to

2A non-equilibrium plasma is one in which the mean electron energy, or temperature, is considerably higher than
that of the bulk-gas molecules

3The low energy region is defined as the incident electron energy below the ionization threshold of the target
molecule.
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determine total cross sections and also state-specific integral cross sections and differential cross-

sections; and swarm experiments that can provide very accurate elastic momentum transfer cross

sections [27]. The details of these branches are described by Brunger and Buckman [28]. Whilst

an experimental measurement could be considered to give the most exact representation of a cross-

section or reaction rate-coefficient, it is usually expensive, time consuming and can still produce

limitations in the results. For example, the measurements of differential cross-sections using sin-

gle collision experiments may need to be supplemented in the forwards and backwards scattering

regions as these un-accessed parts of the integrand which quite often make a significant contribu-

tion to the integral. Experimentalists also have the particular problems in obtaining a unique set

of low-energy electron-molecule scattering cross-sections from swarm experiments. Not to men-

tion there are many molecules whose cross sections by electron impact have not been measured,

or contradictions exist between the published cross sections. Thus, in order to fill these gaps and

supplement or verify the experimental results, theoretical study of cross-sections and reaction rates

for processes relevant to pollution abatement are strongly needed.

The main focus of the thesis is theoretical studies of vibrational excitations of NO2 and N2O

molecule (see Equation (1.3), (3.1) and (4.1). Vibrational excitation is specifically important pro-

cess at the electron impact energy below electronic-excitation thresholds of target molecules. How-

ever, sparsity of data of these processes is a great hindrance to nitrogen- and oxygen-containing

plasma kinetic modeling. Another process that competes with vibrational excitation but is of par-

ticular importance for depollution is dissociative electron attachment (Equation (1.4)), which is

considered to be a major route to molecular break-up in cool plasma. In DEA process, specific

ionic and neutral fragments are produced by neutral molecules destruction through a resonance

state at low energy. If one makes use of the resonances of the electron-molecule system to disso-

ciate NOx directly, then it is possible to significantly reduce the power consumption for pollution

control using the non-equilibrium plasma technology. However, theoretical study of DEA process
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involving polyatomic molecule is extremely difficult. We will give a brief discuss for DEA of

NO2 (Equation (5.1)) using a simplified model [29] in this thesis. Other processes such as elec-

tronic excitation (Equation(1.5)) will be considered in a near future and we will give an idea on the

treatment of those processes.

This thesis will be organized as follows. The next chapter will describe all theory relevant to

the calculations presented in this thesis. A general overview of scattering theory will be given

in the context of its specific application in one implementation of the R-matrix scattering method

[30] provided from the UK polyatomic R-matrix suite [31]. Chapter 3 will compute the cross

sections and rate-coefficients for vibrational (de-)excitation of NO2 by low-energy electron impact.

Chapter 4 will discuss the computation of vibrational excitation of N2O and the role of Renner-

Teller coupling. Finally Chapter 5 will give a brief overview of the model applied to treat the

electron attachment of polyatomic molecules and the actual computation of the DEA cross-section

of NO2. In Chapter 6. the thesis will conclude with a summary of the results obtained and any

future work that could result from the research that was carried out here such as improving the

DEA result of NO2 and calculating the electronic excitation cross section of N2O.
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CHAPTER 2: THEORETICAL BACKGROUND

This chapter gives the tools and the theoretical background required to follow the manuscript and

analyze the obtained results.

First of all, the Born–Oppenheimer (BO) approximation is used to treat the motion of electrons and

nuclei in a target molecule separately. Molecular electronic structure calculations are then carried

out with appropriate basis sets and levels of theory. Symmetry rules implemented to simplify the

structure calculation is introduced conceptually. On the other hand, the nuclear dynamics, i.e.

solving the Schrödinger equation for nuclei is described under the normal modes approximation.

These later are obtained from the electronic structure calculations. The practical implementation

of the target properties calculation through quantum chemistry software, MOLPRO, is shown in

the last part of section 2.1

Section 2.2 is devoted to the scattering part. We present the basic quantum scattering concepts in

section 2.2.1 to give a brief idea. Section 2.2.2 gives an introduction to R-matrix theory, which is

the most widely used method for electron-molecule collisions in the fixed-nuclei (FN) approxima-

tion. To determine the vibrational excitation cross sections, section 2.2.3 introduces the theory of

vibrational frame transformations.

2.1 Target Molecule Properties

2.1.1 Theoretical methods for solving the electronic Schrödinger equation

All molecular properties are, in principle, calculable by solving the Schrödinger equation for

the molecule. Because of the great mathematical difficulties involved in solving the molecular
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Schrödinger equation, one must make the Born–Oppenheimer approximation in which it is sup-

posed that the nuclei, being so much heavier than an electron, move relatively slowly and may be

treated as stationary while the electrons move in their field. We can therefore think of the nuclei as

being fixed at arbitrary locations, and then solve the Schrödinger equation for electrons alone, viz.,

Ĥelψ = Eψ (2.1)

The electronic energy E is usually referred as potential energy surface U (a function of the molec-

ular geometry) because it provides the potential for nuclear motion equation (see Equation (2.10)).

It forms the central concept in the application of the electronic structure methods to the study of

molecular structures, properties , and reactivities [32].

In fact, it’s hard to obtain the solution of electronic Schrödinger equation (2.1) for many-electron

systems. Hence a simpler, albeit more approximate method has been adopted whereby the individ-

ual electrons could be separated (the many-electron wave function ψ would be a product of one

electron wave function φi), and the one-electron wave functions, i.e. Molecular orbitals (MOs) are

constructed from linear combination of the basis functions, conventionally called atomic orbitals

(MOs = LCAO, Linear Combination of Atomic Orbitals),

φi = ∑
j

ci jg j, (2.2)

where ci j is combination coefficient. The set of functions usually refers to the basis set. There

are two types of basis functions usually employed in molecular orbital calculations: Slater Type

Orbitals (STOs) and Gaussian Type Orbitals (GTOs). STOs come from hydrogen-like wave func-

tion. With STOs one can obtain the best possible representation of the molecular orbitals as STOs

reproduce more the interaction between electron and molecule. However, most quantum chem-

istry calculations use Gaussian functions as the basis functions which provide an approximation of
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the more accurate Slater type orbitals (STOs) and are more numerically efficient to compute. A

primitive set of GTOs is written as,

gabc
j = Nabcxaybzce−αr2

, (2.3)

where

r2 = x2 + y2 + z2, (2.4)

x, y and z are Cartesian coordinate of electrons and Nabc is a normalization constant. Here a,b,c

are not quantum number, but simply the integral exponents. The sum of the exponents is used

analogously to the angular momentum quantum number for atoms. When a+b+ c = 0, the GTO

is called an s-type Gaussian, when a + b + c = 1, p-type, when a + b + c = 2, d-type and so

on. α is known as the orbital exponent which controls the width of the orbital (large α gives

tight function, small α gives diffuse function) and could be either optimized variationally or by

fitting the GTO to an STO. A basis set is therefore built out of a linear combination of different

primitive Gaussians centered on the same atom and having different values of α which is known

as contracted Gaussians.

Many Gaussian basis sets have been devised in molecular calculations. Some of the most widely

used are the basis sets devised by Pople and co-workers [33]. These basis sets include the STO-

3G, 3-21G, 3-21G*, 6-31G*, 6-31G**, etc., where the numbers and symbols are related to the

number of basis functions on each atom. For example, an STO-3G basis set is that an atomic

orbital (a single STO) is described by the linear combination of 3 primitive Gaussian functions

(Equation (2.3)). And the correlation consistent basis sets (such as cc-pVDZ, cc-pVTZ, cc-pVQZ,

...) devised by Dunning and co-workers [34] are also widely used. For details of these basis sets,

see Levine [35], Section 15.4.
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One should also note that the more atomic orbitals we allow into our basis, the closer our basis

will come to ‘spanning’ the true molecular orbital space. The quality of a result can therefore be

assessed by running calculations with an increasingly larger basis set. The basis sets (in MOLPRO

style) for N and O atoms used in this thesis are listed in Table 2.1. Using an uncontracted atomic

Table 2.1: Basis sets used for NO2 in this thesis.

Basis set N O
cc-pVDZ 9s4p1d→ 3s2p1d 9s4p1d→ 3s2p1d

DZP 9s5p1d→ 4s2p1d 9s5p1d→ 4s2p1d
6-311G* 11s5p1d→ 4s3p1d 11s5p1d→ 4s3p1d
cc-pVTZ 10s5p2d1 f → 4s3p2d1 f 10s5p2d1 f → 4s3p2d1 f
cc-pVQZ 12s6p3d2 f 1g→ 5s4p3d2 f 1g 12s6p3d2 f 1g→ 5s4p3d2 f 1g

basis set as the starting point for the development of contracted versions suitable for the treatment

of molecular systems is common practice. In Table 2.1, the uncontracted basis sets are specified

on the left hand side of the arrow and the resulting contracted versions are on the right hand side of

the arrow. If proper care is taken during the contraction process, calculations using the contracted

basis sets can be performed with similar accuracy but dramatically reduced computational cost.

If the individual electron is assumed moving in a mean field of all other electrons and the overall

wave function is antisymmetric (change sign upon swapping any two electrons), it is convenient to

express the many-electron wave function ψ of Equation (2.1) as a Slater determinant,

ψHF =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(1) φ2(1) · · · φN(1)

φ1(2) φ2(2) · · · φN(2)
...

... . . . ...

φ1(N) φ2(N) · · · φN(N)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.5)

where N is the total number of electrons and spin-orbitals φi are orthonormal. The electronic
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energy can therefore be obtained by calculating the expectation values of electronic Hamiltonian

over Slater determinants (electronic states),

EHF =

〈
ψHF | Ĥel | ψHF

〉
〈ψHF | ψHF〉

. (2.6)

Having selected a basis set (2.2) to construct a determinant as an initial trial wave function, the

variational principle can be used to derive the Hartree-Fock (HF) equation,

F̂iφi = εiφi, (2.7)

by minimizing the energy of Equation (2.6). Here εi is the eigenenergy of the fock operator F̂i for

ith MO. The thorough mathematics and proofs are given by Roothaan [36]. This equation states

that the MOs which give the ground state are all eigenfunctions of the Fock operator,

F̂i = ĥi +
N

∑
j
(Ĵ j− K̂ j). (2.8)

The Fock operator is an effective one-electron energy operator, describing the kinetic energy of an

electron and the attraction to all the nuclei (ĥi), as well as the repulsion to all the other electrons (via

the Ĵ and K̂ operators). The eigenvalues of Equation (2.7), εi are the orbital energies. An iterative

procedure is used to solve the HF equation until the set of φi and εi agree (when 2 successive values

of εi are small than a fixed value 1× 10−7 in MOLPRO), that is, a self-consistent field has been

achieved. This method is the Hartree Fock self-consistent field (HFSCF) method.

However, the HF wave function is usually considered to contain no electron correlation effects be-

cause electrons in HF model do not instantaneously interact with each other, as they do in reality.

Each electron only interacts with the average, or mean, field created by all other electrons. The dif-

ference between the exact (non-relativistic) energy and the HF energy (calculated with a complete
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basis), Ecorr = Eexact−EHF, is thus defined as the correlation energy. A distinction is sometimes

made between dynamic, and non-dynamic or static correlation energy. Dynamic correlation energy

is the energy to keep the electrons sufficiently far apart. Classically speaking, each electron moves

in a way so that it avoids locations in a close proximity to the instantaneous positions of all other

electrons. The failure of the HF model to correctly reproduce such motion of electrons is the first

source of Ecorr. This type of correlation is called dynamic correlation since it is directly related

to electron dynamics. Another reason why EHF may differ from Eexact is that there are additional

(near-)degenerate configurations which contribute strongly to the nature of the wave function. The

wave function in the HF model with single Slater determinant would give a poor representation in

that case. Since this kind of correlation is not related to electron dynamics, it is usually called as

the static correlation, or non-dynamic correlation. More details about electron correlation can be

found in Section 5.4.1 of Ref. [37] for example.

It is therefore clear that the HF model is of limited accuracy to describe the target properties due

to the neglect of the electron correlation. Nowadays, HF is mainly used as a starting point for

correlated wave-function method. Of the correlated methods, the Configuration Interaction (CI)

treatment is the conceptually simplest one. The correlation effects can be taken into account by

constructing the wave function as a linear combination of multiple determinants, i.e.,

ψCI = ∑
i

aiψi = a0ψHF +∑
i=1

aiψi, (2.9)

where the coefficients ai reflect the weight of each determinant in the expansion and also ensure

normalization. Each Slater determinant ψi, or spin-adapted Configuration State Functions (CSFs)

is typically constructed from Hartree-Fock orbitals such that ψ0 is the ground-state Hartree-Fock

determinant of Equation (2.5). Depending on how many electrons are "excited" out of the HF

configuration at a time, we have single, double, triple,... excitation in the CI description. The total
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number of determinants that can be generated depends on the size of the basis set: The larger the

basis, the more virtual (unoccupied) MOs, and the more excited determinants can be constructed.

If all possible determinants in a given basis set are included, all the electron correlation (in a given

basis) is (or can be) recovered. This method is called Full CI. It is the most complete solution to

the Schrödinger Equation (2.1) but can be applied to only the smallest systems in practice.

The correlation method used in the present thesis is Multi Configuration Self Consistent Field

(MCSCF) method. It can be considered as a CI method where one optimises both the coefficients

in front of the different configurations in Equation (2.9) and the MOs of Equation (2.2) for each

determinant. The MCSCF optimization is iterative like the SCF procedure and is believed to be

“sufficiently” accurate for most of the interesting properties of a chemical system. If the number

of determinants or CSFs used in the expansion are defined by dividing the orbitals into the sub-

spaces drawn in Figure 2.1, we have a Complete Active Space Self Consistent Field (CASSCF)

wavefunction, which has been popularized by Roos et al. [38]. The CASSCF is the most com-

monly applied MCSCF method. The doubly occupied core orbitals constitute the inactive space.

Typically, the active space consists of some of the highest occupied orbitals and lowest unoccupied

orbitals (virtual orbitals) from an HF calculation. Within this orbital space, a full-CI expansion is

considered. The MOs to include in the active space must be decided manually, by considering the

problem at hand and the computational expense.

The methods described so far consider only CSFs generated by exciting electrons from a single

determinant. This corresponds to have an HF type wave function as the reference. However, an

MCSCF wave function may also be chosen as the reference. In that case, excitation of one or

two electrons out of all the determinants that enter the MCSCF are involved, defining the Multi-

Reference Configuration Interaction (MRCI) method. Compared with the single-reference CI, the

number of configurations is increased by a factor roughly equal to the number of configurations

included in the MCSCF. MRCI can generate very accurate wave functions, but are also computa-
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Figure 2.1: Sketch of illustrating the CAS orbital partitions.

tionally very intensive.

Methods that include electron correlation require a multi-determinant wave function, since HF is

the best single-determinant wave function. Multi-determinant methods are computationally much

more involved than the HF model, but can generate results that systematically approach the exact

solution of the Schrödinger equation. Note that “exact” in this context is not the same as the

experimental value, because the relativistic effects are neglected.

2.1.2 Symmetry point groups

An important tool in setting up an electronic structure calculation and interpreting the results is

symmetry. The symmetry of a molecule is most easily described by using one of the standard

designations like C2v, C∞v, Cs, etc., which are used in various places in this thesis. These are
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called point groups. The classification is according to the presence of symmetry elements and

corresponding symmetry operations. Excellent expositions of symmetry are given by Levine [35]

for example.

A symmetry operation transforms an object into a position that is physically indistinguishable from

the original position and preserves the distances between all pairs of points in the object. Typical

symmetry operations include rotations (Ĉn), reflections (σ̂), and inversions (î). A symmetry el-

ement is a geometrical entity with respect to which a symmetry operation is performed such as

the line (Cn), plane (σ), or point (i). The “hat” distinguishes symmetry operations from symme-

try elements. For instance, a rotation Ĉn (a symmetry operation) is carried out around an axis Cn

(the corresponding symmetry element) by 2π/n degrees, where n is an integer. And the inversion

operation (î) moves a point at (x,y,z) to (−x,−y,−z) along origin i. We shall see that we can clas-

sify molecules by identifying all their symmetry elements, and grouping together molecules that

possess the same set of symmetry elements.

A molecule whose symmetry elements are a Cn axis (where n can be 2 or 3 or 4 or . . .) and n

planes of symmetry that each containing the Cn axis belongs to the point group Cnv. The v stands

for “vertical.” A vertical symmetry plane (symbol σv ) is one that contains the highest-order axis

of symmetry of the molecule. The NO2 molecule has symmetry elements: a C2 axis and two

planes of symmetry that contain this axis (see Figure 2.2), so its point group is C2v. The symmetry

operations of NO2 are Ê, Ĉ2(z), σ̂(xz), and σ̂(yz).

In a linear molecule with no center of symmetry (for example, N2O), the molecular axis is a C∞

axis, since rotation about this axis by any angle is a symmetry operation. Also, any plane that

contains the molecular axis is a symmetry plane, and there are infinite number of such vertical

symmetry planes. Hence linear molecules with no center of symmetry belong to group C∞v .

A molecule with only a symmetry plane (molecular plane) belongs to Cs . Such as the asymmetry
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Figure 2.2: The symmetry elements of NO2 .

stretching mode of NO2 (see Figure 3.1) and bent shape of N2O at bending mode (see Figure 4.1).

The symmetry operations are Ê and σ̂ .

Each of the symmetry operations mentioned above can be described by a matrix in group theory

[39]. A set of matrices that can be combined among themselves in a manner parallel to the way in

which a group of symmetry operations combination is defined as the group representation. Each

representation can be split into a sum of irreducible representations in a unique way (irreducible

means it cannot be deconstructed into smaller representations), and one of the most important

ways of studying a finite group is to find all its irreducible representations. Partial correlation of

irreducible representation for C∞v, C2v and Cs point groups is shown in Table 2.2. It should be

noted that the complete correlations to an infinite group are not possible, because there are infinite

number of irreducible representations.

Irreducible representation is used in discussing the symmetry of wave functions. For example,

each electronic state of NO2 can be classified as belonging to one of the irreducible representa-

tions A1 , A2 , B1 , or B2 of the C2v point group. Recall that atomic terms ( 1S, 3P, etc.) are
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Table 2.2: Partial correlation table between C∞v, C2v and Cs. In infinite group C∞v, Greek capital
letters are used to denote the irreducible representation. The superscripts + and − are attached
to symbols for representations which are symmetric and antisymmetric with respect to the verti-
cal mirror plane inversion. One-dimensional representations that are symmetric with respect to
rotation by 2π/n about the principal Cn axis are designated A, while those antisymmetric in this
respect are designated B in C2v point group. Subscripts 1 and 2 are usually attached to A′s and B′s
to designate those which are, respectively, symmetric and antisymmetric with respect to a C2 axis
perpendicular to the principle Cn axis, or in the absence of this element, to a σv plane. Primes and
double primes are attached to all letters, when appropriate, to indicate those which are, respectively,
symmetric and antisymmetric with respect to horizontal mirror plane σh.

C∞v C2v Cs
Σ+ A1 A′
Π B1⊕B2
Σ− A2 A′′
Π B1⊕B2

specified by giving the spin multiplicity 2S+1 (where S is the total spin angular momentum quan-

tum number) as a left superscript on the letter (S,P,D, ...) specifying the total electronic orbital

angular momentum. A molecular electronic term is specified by giving the spin multiplicity as a

left superscript on the irreducible representation such as 1A1,
3 A1,

1 B1 , etc.

In addition, each MO of a molecule can be classified according to one of the irreducible repre-

sentations of the molecular point group. Lowercase letters are used for the symmetry species of

MOs. The MOs belonging to a given symmetry species are numbered in order of increasing or-

bital energy. For example, the lowest MOs of NO2 are labeled as 1a1,2a1,1b2, etc. The electron

configuration of a molecule is specified by giving the number of electrons in each shell, where a

shell is a set of MOs with the same energy. Using group theory, the solution of the Hartree-Fock

equation is considerably simplified since it enables one to deal separately with MOs of different

symmetry species.
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2.1.3 Normal mode approximation

Most of this chapter deals with the electronic Schrödinger Equation (2.1) for molecule, but this

section will examine the nuclear motion of polyatomic molecules. After finding the electronic

energy E of Equation (2.1) by BO approximation, one could formulate and solve a Schrödinger

Equation for nuclear motion, using it as the potential energy U (U also includes the energy of

nuclear repulsion) for nuclear motion1 .

In the case of polyatomic molecules, if we expand the potential energy U in a multi-dimensional

Taylor expansion truncated at second order around equilibrium, the nuclear Schrödinger equation

for an N atom system is given by

[
−

3N

∑
i

h̄2

2mi

∂ 2

∂x2
i
+

1
2
(x−xeq)

T d2U
dx2 (x−xeq)

]
Ξ(x) = EnucΞ(x). (2.10)

Where N is the number of atoms, mi is the atomic mass, x is the vector of atomic coordinates

(N atoms each with coordinates (x,y,z) can be represented by a single vector of 3N coordinates

x = {x1x2x3 · · ·x3N}), xeq defines the equilibrium structure, and Ξ(x) is the nuclear wave function.

While Equation (2.10) has a well-defined potential energy function, it is quite difficult to solve it

in the indicated coordinates. If we use the mass-weighted coordinates,

x̃i =
√

mi
(
xi− xeqi

)
⇒ ∂ 2

∂ x̃2
i
=

1
mi

∂ 2

∂x2
i
, (2.11)

Equation (2.10) can now be written as

[
−

3N

∑
i

h̄2

2
∂ 2

∂ x̃2
i
+

3N

∑
i, j

1
2
H jix̃ix̃ j

]
Ξ(x̃) = EnucΞ(x̃). (2.12)

1We could also add non BO coupling to improve BO approximation Schrödinger equation
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where Hi j is defined as the mass−weighted Hessian

Hi j =
1

√
mi
√m j

∂ 2U
∂xi∂x j

. (2.13)

If we find a matrix D that diagonalizes the mass-weighted Hessian, yielding eigenvalues ω2
i [40]

and eigenvectors Q, Equation (2.12) can be rewritten in diagonal form as

[
−

3N

∑
i

h̄2

2
∂ 2

∂Q2
i
+

1
2

QT (D−1H D
)

Q

]
Ξ(Q) = EnucΞ(Q). (2.14)

That is, [
−

3N

∑
i

h̄2

2
∂ 2

∂Q2
i
+

3N

∑
i

1
2

ω
2
i Q2

i

]
Ξ(Q) = EnucΞ(Q). (2.15)

The new set of coordinate Q is defined by the linear combination of the mass-weighted Cartesian

coordinates as Q = DT X̃. Clearly, the kinetic energy operator is still diagonal in these coordinates,

and the 3N-dimensional Schrödinger equation (2.10) can therefore be separated into 3N uncoupled

one-dimensional Schrödinger equations which are just in the form of a standard harmonic oscil-

lator 2 with unit mass . For a nonlinear molecule composed of N atoms, there should be 3N− 6

(3N− 5 for a linear molecule) nonzero eigenvalues ω2
i of the Hessian matrix, providing the nor-

mal, or fundamental, frequencies of vibration [41]. The associated eigenvectors Q are the normal

coordinates 3 of vibration normal modes of the molecule, which give the directions and relative

amplitudes of the atomic displacements in each mode.

Generally, it is convenient to introduce the dimensionless normal coordinate qi = Qi

√
ω

h̄ which

will be used later in our calculation. The normal mode Hamiltonian in Equation (2.15) can thus be

2Hamiltonian for a one-dimensional harmonic oscillator is Ĥ(x) = − h̄2

2m
∂ 2

∂x2 +
1
2 mω2x2, where m stands for the

molecular mass and ω =
√

k
m is, in classical mechanics, the characteristic frequency of the oscillations. k is the force

constant, i.e., the second derivative of the energy with respect to x at xeq in the present case.
3Q = {Q1,Q2,Q3 · · ·}, corresponding to different modes
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written in a neater expression

Ĥ(q) =
h̄ωi

2
(−

3N

∑
i

∂ 2

∂q2
i
+

3N

∑
i

q2
i ). (2.16)

The nuclear energy, in other words the vibrational energy of a polyatomic molecule is then approx-

imately the sum of 3N− 6 or 3N− 5 (linear molecules) uncoupled harmonic-oscillator energies,

Enuc ≈
3N−6(5)

∑
i

(
vi +

1
2

)
h̄ωi. (2.17)

Where ωi is the frequency of the ith normal mode and vi is its quantum number. For the ground

vibrational level vi equals zero and has the zero-point energy 1
2 h̄ωi (anharmonicity neglected). The

nuclear wave function being a product of harmonic oscillator functions,

Ξ(q) =
3N−6(5)

∏
i

ηνi(qi), (2.18)

where the harmonic vibrational function ηνi with νi quanta can be expressed as

ηνi(qi) =

(
1
π

) 1
4 1√

2νiνi!
e−

qi
2

2 Hνi(qi). (2.19)

Hνi in Equation (2.19) is the Hermite polynomial. Thus the wave function of the ground vibrational

state is

ηνi=0(qi) =

(
1
π

) 1
4

e−
qi

2

2 . (2.20)

The normal mode approximation is accurate for the lower vibrational levels. As vi increases,

the nuclei spend more time in regions far from their equilibrium separation. For such regions

the potential energy deviates substantially from that of a harmonic oscillator and the harmonic-

oscillator approximation becomes poor.
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In a words, the main goal of electronic calculation of target is to compute the molecular properties

(such as equilibrium geometry and permanent dipole moments), normal mode frequency ωi and

Hessian Equation (2.13) needed in the molecular motion section.

2.1.4 Quantum chemistry software

In practice, we use the quantum chemistry software-MOLPRO [42,43] to compute the target prop-

erties. MOLPRO is an ab initio and density functional program designed for highly accurate

calculations on small- and medium-size molecules and includes electron-correlation methods. Its

execution is controlled by an input file. In general, each input record begins some keywords con-

taining the basic information of geometry specification, symmetry, basis set, calculation method,

etc. For full details about each command, consult the MOLPRO users manual [44]. The tools im-

plemented in properties calculation of NO2 and N2O are described in later Section 3.2 and Section

4.2.

The first step of structure calculation usually is the geometry optimization. A very efficient way

to find the equilibrium geometry involves calculating the derivatives of the electronic energy with

respect to each of the nuclear coordinates (this set of derivatives is called the energy gradient) for

an initially guessed geometry. One then uses the values of these derivatives to change the nuclear

coordinates to new values that are likely to be closer to the equilibrium geometry, and one then

calculates the wave function, energy, and energy gradient at the new geometry. This process is

repeated until the components of the energy gradient are all very close to zero, indicating that the

energy minimum has been found. After a geometry optimization, harmonic vibrational frequencies

ωi and normal modes Qi can be obtained by diagonalizing the Hessian matrix (2.13) mentioned

in Section 2.1.3 whcih is related to the coefficient of the restoring force k. It should be noted

that normal mode frequencies should be calculated at the same level (e.g. CASSCF/cc-pVTZ, ...)
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as used for the geometry optimization because accurate calculation of the curvature of the PES

at a stationary point requires that the second derivatives (Hessian matrix 2.13) be found at the

same level as used to create the surface on which the point sits. Obviously, the output results of

interest here are the equilibrium geometry and harmonic frequency (see Table 3.1 as an example).

Good agreement between those results and corresponding experimental data are the most important

criterion for accurate description of the target molecule structure.

Another important indicator for the efficacy of structure calculation is the permanent dipole mo-

ment of target molecule. It is a measure of asymmetry in the molecular charge distribution and can

be evaluated via an expectation value of the wavefunction over the dipole moment operator µ̂ in

MOLPRO:

µ =
〈ψ | µ̂ | ψ〉
〈ψ | ψ〉

. (2.21)

It is easy to evaluate this equation once the electronic wavefunction ψ is known. Therefore, the

most important thing is to get a reasonably accurate approximation to ψ using the appropriate basis

set and method as introduced in Section 2.1.1.

2.2 Scattering Theory

2.2.1 General quantum scattering

Since the electronic structure and vibrational levels of the target molecule can be obtained by tools

introduced in Section 2.1, the following content will be devoted to the scattering part. Scattering

events can occur between different kinds of particles. In this thesis, we have considered scat-

tering between a low-energy electron and neutral molecules (NO2 and N2O) in the vibrational
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Figure 2.3: Schematic illustration of the general electron scattering event with spherical symmetric
potential. Scattering of waves; incoming plane wave generates outgoing spherical wave. θ is the
scattering angle (the angle between the Z-axis and the direction of the scattered particle).

(de-)excitation and DEA studies. First of all, it is necessary to briefly remind some basic concepts

of general quantum scattering to know more about the scattering part. Detailed derivation can be

found in Refs. [45, 46] for example.

For simplicity, consider a short-range spherical interaction potential U(r), where r now denotes the

radial distance between the electron and the target, the scattering processes between an incoming

electron and a molecular target can be shown schematically in Figure 2.3. The entry channel

consists of the target in its initial state and an incoming electron with wave number k traveling

along the collision axis. The exit channel can be the target in its final state and the electron traveling

with a different wave number and in a direction k′. At large r, the scattered wave function should

consist of an incoming plane wave in the entrance channel i and outgoing spherical waves in the

energetically available exit channels j. If the incoming plane wave is taken as traveling along the

axis (the z-axis) the boundary condition for scattering from channel i to channel j can be written
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as

ψ(r,θ) ∼
r→∞

δi jeikiz +
fi j(θ)eik jr

r
, (2.22)

where the azimuthal angle ϕ dependence has been omitted due to the cylindrical symmetry around

the collision axis. The function fi j(θ) is the scattering amplitude which tells us the probability of

scattering in a given direction and ki is the asymptotic wave number. The cross section σi j for the

reaction is obtained by integrating the differential cross section, dσi j =
∣∣ fi j(θ)

∣∣2 dΩ, given by the

absolute square of the scattering amplitude, over all solid angles4, viz.,

σi j =
2πk j

ki

∫
π

0

∣∣ fi j(θ)
∣∣2 sinθdθ . (2.23)

As discussed in Chapter 1, it is the most useful scattering quantity for experimentalists and theo-

reticians in plasma modeling. It describes the likelihood of two particles interacting under certain

conditions.

To determine the scattering amplitudes, fi j(θ), the asymptotic form of the scattered wave function,

Equation (2.22), is expanded in terms of Legendre polynomials and radial wave functions. The ra-

dial wave functions in the asymptotic limit can be written as a linear combination of an incoming

wave and an outgoing wave multiplied by a Scattering matrix (S-matrix) element, Si j, which mea-

sures the response of the target. When this expression is inserted into the partial wave expansion 5,

and the final expansion is compared with the asymptotic boundary condition, Equation (2.22), the

4Solid angle dΩ = sinθdθdϕ .
5Since we are assuming the potential is spherically symmetric, the angular momentum is conserved. Each partial

wave (labeled by a particular l = 0,1,2,3...) scatters independently.
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following expression for the scattering amplitude fi j(θ) is obtained,

fi j(θ) =
i

2
(
kik j
) 1

2

∞

∑
l=0

(2l +1)Pl(cosθ)(Si j,l−δi j), (2.24)

where l is the angular momentum of electron, Pl(cosθ) is the Legendre polynomial and δi j is delta

function. The S-matrix element Si j,l is defined by

Si j,l = e2iδi j,l . (2.25)

The quantity δi j,l here is denoted as the phase shift, which measures a phase delay (advance)

between incident and scattered waves passing through the target scattering center. It can be used

to obtain the resonance which is a nearly bound state forming when the electron is temporarily

trapped by the target at certain energy. The resonance gives rise to a sharp variation in the cross

section and more information about it can be found in Section 5.2.

Inserting the expression for fi j(θ) into that for the cross section, Equation (2.23), and using or-

thogonality of the Legendre polynomials,

∫
π

0
Pl(cosθ)Pl′(cosθ)sinθdθ =

(
2

2l +1

)
δll′ , (2.26)

yields

σi j =
∞

∑
l=0

σi j,l. (2.27)

where

σi j,l =
π

k2
i
(2l +1)

∣∣Si j,l−δi j
∣∣2 . (2.28)
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Consider a totally elastic collision in one of the channels i. The cross section for this channel,

σe = σii,l , becomes

σe =
π

k2 (2l +1) |Sl−1|2 , (2.29)

where Sl = Si j,l and the quantity 1− Sl = Tl is the transition, or T-matrix. In an actual electron-

molecule scattering event (for example the calculations in the present thesis, i.e. the e−+NO2

and e−+N2O collisions), the interaction potential, U(r), is non-spherical and the S (or T) matrix

will have both l and λ indices where λ is the projection of l. It should also be noted that the

eigenphase sums are more widely studied in actual scattering calculation. As a function of energy,

the eigenphase sums is given by:

δ (E) = ∑
l,λ

δl,λ (qi,E). (2.30)

Consequently, the most important task for scattering calculation is to obtain the accurate scatter-

ing quantities such as eigenphase sums and S (or T) matrix. There are a variety of theoretical

procedures developed for computing these quantities of low-energy electron-molecule scattering,

such as the Complex Kohn variational method [47], the Schwinger multi-channel method [48] and

the R-matrix method [49]. The former two methods are variational approaches, while R-matrix

method employed in the present scattering calculation is a bound state approach [50] and this

method will be outlined later in Section 2.2.2.

2.2.2 R-matrix theory

Collisions between the low-energy electron and molecules are the major interactions determining

the behavior of the plasma. Most of them are difficult and expensive to make the relevant measure-
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ments in the laboratory. There is thus an increasing demand of computational procedures for ob-

taining reliable cross sections and rate constants for key processes. The R-matrix method is one of

the most effective tools for calculating those important data. It was initially introduced by Wigner

and Eisenbud [51, 52] in the 1940s for nuclear scattering processes. In the early 1970s the method

was extended to treat a number of electron-atom [53–55] and electron-diatomic molecule scatter-

ing [56–58]. Untill 1990s, the polyatomic codes were developed for general electron-molecule

scattering by Nestmann et al. [59] and Morgan et al. [60, 61]. Comprehensive reviews of the

method and of recent work are given by Burke [62] and Tennyson [30]. This section will start with

a short overview of the R-matrix methods, described without mathematics. This may be useful to

get a feeling for the R-matrix methods, without embarking on all the mathematical details. The

overview is followed by a more detailed mathematical description of the method, including some

key derivation and references which provide more details to understand how the R-matrix method

treats the electron-molecule scattering.

The main idea of R-matrix approach is to divide the configuration space into an inner and an outer

regions by a sphere of radius a (between 10 a0 and 15 a0) around the molecular center-of-mass,

see Figure 2.4. In the inner region r ≤ a (r is the radial coordinate of the scattered electron), the

scattering electron is considered to be indistinguishable from the electrons of the target, hence the

exchange and correlations effects between the target electrons and scattered electrons has to be

considered. In the outer region, the scattering electron can be distinguished and the interactions

between it and and the target can be described by long-range potentials [50]. The R-matrix is then

calculated at the boundary between the inner and outer regions, and propagated from a to about

100 a0. Finally, the reaction matrix and scattering matrix can be extracted from the R-matrix.

We are now in a position to derive the formal definition of the R-matrix. An electron-target scat-

tering problem is defined as an N +1 electron problem where N is the number of target electrons

and +1 is the scattering electron. The scattering process can thus be described by the electronic
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Figure 2.4: A diagram showing the R-matrix sphere surrounding an NO2 molecule. Space is
separated into the ‘inner’ and ‘outer’ regions by a sphere of radius a.

Schrödinger equation 2.1 with the Hamiltonian ĤN+1

(ĤN+1−E) | ψ〉= 0. (2.31)

In order to solve this equation in a finite volume, i.e. inside the sphere drawn in Figure 2.4, an extra

term L̂B derived by Bloch [63] has to be included to keep the hermicity of ĤN+1 which is broken

by inserting the boundary r = a in the coordinate space. By adding the Bloch operator to Equation

(2.31) and rearranging, a formal solution of the Schrödinger equation for r ≤ a can be found as

follows

| ψ〉=
(
ĤN+1 + L̂B−E1̂

)−1
L̂B | ψ〉. (2.32)

The operator ĤN+1 + L̂B will be referred to as the inner region Hamiltonian below which only

satisfied at discrete values of the energy, E. Denoting the energy of each solution Ek and its

associated wave function ψk (subscript k denotes the kth inner region wavefunction) , these satisfy
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the equation:

〈
ψk
∣∣ĤN+1 + L̂B

∣∣ψk′
〉
= Ekδkk′. (2.33)

Therefore, eigenstates ψk of the system form a complete basis set here. Appealing to the closure

relation:

∑
k
| ψk〉〈ψk |= 1̂, (2.34)

Equation (2.32) is rewritten

| ψ〉= ∑
k,k′
| ψk〉〈ψk |

(
ĤN+1 + L̂B−E1̂

)−1 | ψk′〉〈ψk′ | L̂B | ψ〉

= ∑
k

| ψk〉〈ψk | L̂B | ψ〉
Ek−E

. (2.35)

Now let us use a channel basis function | ΦN
j Y λ j

l j
Θ 1

2
〉 (see Equation 2.59 in Ref. [50] for more

details), where ΦN
j is the N-electron target wave function for channel j, Θ 1

2
is the electron spin

function which describe the spin motion of the scattered electron, Y λ j
l j

is spherical harmonic with

azimuthal and magnetic quantum numbers l j,λ j associated with channel j and define the reduced

radial function

Fj(a) =
〈

Φ
N
j Y λ j

l j
Θ 1

2
| ψ
〉
, (2.36)

the (energy-independent) boundary amplitude of the kth inner region function for the jth channel,

w jk(a) =
〈

Φ
N
j Y λ j

l j
Θ 1

2
| ψk

〉
, (2.37)

substituting the expression of Bloch operator L̂B and projecting the inner region total wave function
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(2.35) onto the channel basis function |ΦN
j Y λ j

l j
〉, gives the following expression ,

Fi (a) =
1
2 ∑

k

wik (a)
Ek−E ∑

j
w jk (a)

[
r

dFj

dr
−bFj

]∣∣∣∣
r=a

. (2.38)

The standard form of the R-matrix on the boundary Ri j(a,E) is defined as

Ri j(a,E) =
1
2 ∑

k

wik(a)w jk(a)
Ek−E

. (2.39)

Obviously, the R-matrix makes a link between the reduced radial function and the derivative of the

reduced radial function. It provides the boundary condition for the Schrödinger equation appropri-

ate for the outer region. Since the required values to construct R-matrix are the eigenenergies Ek,

and the associated surface amplitudes, wik(a), of the inner region wave functions ψk, the precise

structure of the trial wavefunction employed by the UK R-matrix package to represent the inner

region wavefunctions will be discussed further below.

In the inner region, the N + 1 electron wavefunction is constructed using the standard close-

coupling (CC) expansion [64],

ψk = Â∑
i j

ai jkΦ
N
i (X1 · · ·XN)ui j (XN+1)+∑

i
bikχ

N+1
i (X1 · · ·XN) . (2.40)

The functions are labeled as N or N + 1 according to whether they refer to the target or the com-

pound scattering system respectively. ΦN
i is the wavefunction of the ith target state, and ui j denotes

the extra continuum orbitals used to represent the jth scattering electron. The continuum orbitals

are constructed from continuum basis functions [64, 65] with a partial wave expansion (similarly

to Equation (2.24)) up to some maximum value of l. For the partial wave of the scattering electron,

lmax = 4 (s, p,d, f ,g) is defaulted in the R-matrix calculation. Considering λ could be the value

from −l to l, we will have ∑
4
0(2l +1) = (lmax +1)2, i.e. 25 partial waves in this thesis. These par-
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tial waves belong to different symmetries in Table 2.2, and target virtual orbitals. It should also be

noted that, the electrons represented by the space-spin coordinates, Xi, must obey the Pauli princi-

ple which is met by the use of the antisymmetrization operator Â. The first summation runs over the

electronic target states. It describes a situation in which the scattering electron is restricted to only

the continuum orbitals and the target electrons restricted to only target orbitals, the configurations

that arise are known as ‘target + continuum’ configurations. The second summation in the above

expression represents short-range polarization effects. It runs over configurations χ
N+1
i , where all

electrons are placed in orbitals associated with the target. These square-integrable functions χ
N+1
i

are zero on the R-matrix boundary and are hence known as ‘L2’ -functions 6 [66]. The variational

coefficients ai jk and bik can be obtained by diagonalizing the N +1 electron Hamiltonian.

On the R-matrix boundary, Equation (2.40) can be simplified as

ψk|a = ∑
i j

ai jkΦ
N
i ui j(a). (2.41)

Because the scattering electron is now distinct from the target electrons there is no requirement for

an antisymmetrisation operator. Additionally, the ‘L2’ -functions in the Equation (2.40) vanish as

there are no longer exchange or correlation effects with the target electrons. Substituting Equation

(2.41) into definition (2.37), gives the following expression:

wik(a) = ∑
j

ui j(a)ai jk. (2.42)

We can find that in practice the continuum orbitals are also used to compute the surface amplitudes

rather than the integral given in Equation (2.37).

6L2 configuration means all the electrons are in non-continuum, short range orbitals.
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In outer region, the wave function can be written as:

ψ =
n

∑
i=1

Φ
N
i (X1 · · ·XN)Fi(rN+1)Y

λi
li
(θ ,φ)Θ 1

2
(2.43)

where the summation runs over the all n channels and terms in the above equation have already

been defined above. Substituting this wavefunction into the Schrödinger Equation (2.31) and pro-

jecting onto the channel basis functions result in a set of coupled differential equations for the

reduced radial functions,

[
− d2

dr2 +
li(li +1)

r2 − k2
i

]
Fi(r) = 2

n

∑
j=1

Ui j(r)Fj(r). (2.44)

To solve the outer region problem, outer region potentials and information about asymptotic chan-

nels of the problem are needed. The long range potentials in the outer region, Ui j(r), is defined

by

Ui j(r) = ∑
β=0

α
β

i j

rβ+1 . (2.45)

The coefficients αi j of expansion dictate the coupling between the channels i and j defined in terms

of the Clebsch-Gordan coefficients and target moment. In general, only the first few terms in the

expansion over β play a significant role in the outer region collision. For neutral targets such as

NO2 and N2O, β is 1.

Asymptotic channel i describes a state of the target molecule and a partial wave (see Section 2.2.1)

of the scattering electron, (li, mi ). If the target state associated with channel i has energy EN
i , then

the wave number of the scattering electron associated with this channel is given by

k2
i = 2(E−EN

i ). (2.46)
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By convention, the lowest target state is taken to be zero. Channels are described as being open,

or closed depending on whether k2
i is positive or negative (respectively). Normalization to energy,

the outer region solutions asymptotically approach the following results:

lim
r→∞

Fi j(r)∼


1√
ki
(sinθiδi j + cosθiKi j) if Ei ≥ 0

0 otherwise
(2.47)

where channel angle θi, for neutral target, has the form

θi = kir−
1
2

liπ. (2.48)

With the asymptotic expansion techniques [67, 68] and propagating the R-matrix (2.39) from a to

100 a0 (beyond 100 a0 the non-coulombic potential can be ignored) [69,70] , the critical parameter

in Equation (2.47), the K-matrix elements Ki j, can be obtained. K-matrix is a symmetric matrix

whose dimension is the number of open channels. Many of the other scattering matrices and

observables are defined in terms of the K-matrix. For example, it provides another way to express

the phase shift of Equation (2.30)

δ (E) = ∑
i

arctan(KD
ii ). (2.49)

δ (E) is the eigenphase sums over all partial waves, KD
ii

7are the eigenvalues of the K-matrix.

Eigenphase is a quantity analogous to the phase shift mentioned in Section 2.2.1. It is very useful

for studying the convergence of the calculations and comparing different models. Examples of this

quantity can be seen in Figure 3.12. By fitting the eigenphase to a Breit-Wigner form (Equation

(5.3)) we can obtain the resonance position and width. The information of resonance is the key to

many potential problems such as the Dissociative Electron Attachment (DEA) process which will

7D stands for diagonal.
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be discussed in Chapter 5.

The S-matrix (the S-matrix element is Sl′λ ,lλ ) mentioned in Equation (2.25) is also related to the

K-matrix by the equation

Ŝ =
1̂+ iK̂
1̂− iK̂

, (2.50)

Ŝ can be diagonalized by the real orthogonal transformation which also diagonalizes K-matrix.

Hence we can write

ATSA = exp(2i∆∆∆) = ΛΛΛ. (2.51)

where the diagonal elements of ΛΛΛ have the same form with Equation (5.3) in potential scattering

Section 2.2.1 and can be expressed in terms of the eigenphases, as follows:

Λii = exp(2iδi) , i = 1, ...,na (2.52)

where δi is a real eigenphase, and na is the number of open channels of the energy E. The cross

sections can then be derived from the scattering matrix.

In the practice, running an R-matrix calculation is complicated, especially for a fresh PhD student.

Users have to make a large number of choices covering issues such as the implementation of

symmetry rules, target basis set, continuum basis set, the R-matrix interaction radius, models for

the inner region scattering problem, reference configurations for CI expansions, resonance fitting

etc. Therefore, an expert system Quantemol-N with a friendly and intuitive graphical user interface

was developed to address this problem. The Quantemol-N software can not only make ab initio

scattering calculations accessible to the non-specialists, but also make it much easier and quicker

for specialists to perform such calculations. UKRmol suite with Quantemol-N interface is used in
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this thesis to obtain relevant scattering quantities in the FN approximation. A tutorial system was

created in Quantemol-N to show how to set up calculation and yield results quickly. More details

can be found by clicking on the ‘?’ button on the displaying panel in software and Ref. [71]. A

briefly guidance of the main procedure associated with the cases of this thesis and some points

have not been emphasized in other literatures can be found in Appendix A.

2.2.3 Vibrational frame transformation

The S-matrix constructed in R-matrix theory represents the electron-molecule scattering only if

the nuclei are seen to be stationary from the perspective of the scattering electron (referred as

fixed-nuclei (FN) S-matrix in the following). However, as the distance between the scattering

electron and the target increases, the speed of the scattering electron will be decelerated due to

the attenuation of the target attraction. The FN approximation may no longer be valid when the

collision energy is comparable to the vibrational energy of the molecule. Therefore, the vibrational

motion has to be taken into account to advance the FN approximation in low-energy collision.

One way to involve the possibility of nuclear motion during the full collision process is by applying

the theory of vibrational frame transformation [72–74],

Sν ′i l
′λ ′,νilλ =

〈
ην ′i

(qi)|Sl′λ ′,lλ (qi)|ηνi(qi)
〉
, (2.53)

where different normal modes are assumed to be uncoupled. In the above expression, qi is nor-

mal coordinate for mode i; index νi denote the vibrational quantum number for each normal mode

{ν1,ν2, · · ·}; ηνi is the vibrational wave functions of different normal modes as mentioned in Equa-

tion (2.19). Sl′λ ′,lλ is an element of the fixed-nuclei scattering matrix obtained from R-matrix with

initial channel lλ and exit channel l′λ ′, l being the electron angular momentum and λ its projection
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on the molecular axis. This formalism allows us to use the fixed-nuclei matrix to construct a phys-

ically meaningful matrix describing the amplitude of scattering from a particular vibrational state

νi of the target to another one ν ′i . The two matrices are considered as two equivalent forms of the

same scattering operator in two different representation bases (or say the frame transformation as

a change of basis from the molecular reference frame to the laboratory reference frame). Further-

more, Sl′λ ′,lλ has the same energy channel while we are below the ionization threshold. Equation

(2.53) implies two origins for the energy one with respect to the state νi and the other to ν ′i . Thus

there is an uncertainty on the origin of the energy we should take : εvi or εv′i
, where ενi = E−Eνi;

The problem could be fixed if S(qi,εvi) ≈ S(qi,εv′i
). In other words, one requires the Sl′λ ′,lλ to be

independent on the scattering energy within the spacing of vibrational levels. For convenience,

using S-matrix from vibrational frame transformation (2.53) we introduce the quantities

Pν ′i νi
= ∑

l′λ ′,lλ

∣∣∣Sν ′i l
′λ ′,νilλ −δν ′i l

′λ ′,νilλ

∣∣∣2 , (2.54)

which could interpreted as the probability of excitation of the vibrational mode i. Using Pν ′i νi
,

similarly to Equation (2.28), the vibrational excitation cross section can then be written as [75]

σν ′i νi
=

π

k2 Pν ′i νi
=

π h̄2

2mε
∑

l′λ ′,lλ

∣∣∣Sν ′i l
′λ ′,νilλ −δν ′i l

′λ ′,νilλ

∣∣∣2 , (2.55)

where kν ′i
≈ kνi = k is the wave vector of the scattering electron (ε is electron scattering energy)

and m is the reduced mass of the electron–target system. This cross section should be viewed

as averaged over initial rotational states and summed over final rotational states of corresponding

vibrational levels8.

Very often, at low energy scattering, one can use the Taylor expansion to expand the fixed-nuclei

8Neglecting the rotational structure would correspond to an experiment for which the energy resolution is worse
than a typical energy splitting between rotational levels.
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S-matrix obtained from R-matrix theory, Sl′λ ′,lλ (q) at the first order along normal coordinates as,

Sl′λ ′,lλ (q) = Sl′λ ′,lλ (qeq)+∑
i

∂Sl′λ ′,lλ (qi)

∂qi
qi. (2.56)

where qeq is the equilibrium configuration of the target and keep in mind the following identity

qi =
1√
2
(â+ â†), (2.57)

〈
ην ′i

(qi)|ηνi(qi)
〉
= δν ′i νi

, (2.58)

where â is the creation operator, and â† is the annihilation operator. It follows

Sν ′i l
′λ ′,νilλ ≈ Sl′λ ′,lλ (qeq)δν ′i νi

+
∂Sl′λ ′,lλ (qi)

∂qi

〈
ην ′i

(qi)|
1√
2
(â+ â†)|ηνi(qi)

〉
.

= Sl′λ ′,lλ (qeq)δν ′i νi
+

1√
2

∂Sl′λ ′,lλ (qi)

∂qi
(
√

νiδν ′i ,νi−1 +
√

νi +1δν ′i ,νi+1). (2.59)

by substituting Equations (2.56, 2.57, 2.58) into Equation (2.53).

As the probability defined in Equation (2.54), the excitation probabilities for the corresponding

vibrational transitions can now be written as

Pi =
gi

2 ∑
l′λ ′,lλ

∣∣∣∣∂Sl′λ ′,lλ (qi)

∂qi

∣∣∣∣2 , (2.60)

where gi is the degeneracy of the mode i, the cross-section for inelastic vibrational excitation of

one quanta ν ′i = 1← νi = 0 for mode i writes

σ
i
10 =

π h̄2

2mε
θ(ε− h̄ωi)Pi. (2.61)
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θ is the Heaviside step function which opens the vibrational excitation channel when ε ≥ h̄ωi.

The cross section for vibrational de-excitation of one quanta for the ith normal modes is given by

removing the Heaviside step function θ from Equation (2.61). Equation (2.61) is an approximation

of Equation (2.55) at the first order of qi. It is clear that this expression significantly reduce the

computational effort because only two values of qi are need to calculate the derivative of the fixed-

nuclei S-matrix used in cross section calculation. This simple formulation above can describe the

(de-)excitation process changing only one quantum in each normal mode of the target molecule

(for more details, see Appendix C). Excitation cross-sections for changing two or more quanta in

a mode is neglected in Equation (2.61) due to the propensity rule.

According to the simple analytical form of the cross sections, the corresponding rate coefficients

are easily evaluated from the general expression

ανi′νi (T ) =
8π

(2πkbT )
3
2

∫
∞

0
σνi′νi (ε)e−

ε

kbT εdε, (2.62)

giving

α
i
10(T ) =

√
2π

kbT
h̄2

m3/2 Piexp
(
− h̄ωi

kbT

)
, (2.63)

where kb is the Boltzmann coefficient and T is the temperature.

To summarize, the theory of frame transformation extends the FN approximation by including

the vibrational motion of the target adiabatically. This theory is valid as long as the fixed-nuclei

scattering matrix is smooth with respect to the scattering energy. Generally, this theory is robust

for ionic targets due to the smooth behavior of S-matrix (for ionic targets, the Coulomb force in

the electron-ion collision accelerates the incident electron, which leads to an energy-independent

eigenphase). For neutral target, its usefulness comes most often from the quality of the obtained re-
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sults. We can directly apply this method when the S-matrix of electron-neutral collision is smooth.

If the S-matrix is energy-dependent, we can remove the energy dependence by choosing a differ-

ent normalization factor for the scattering wave function [76–78]. Then, the re-normalized S̃(qi)

is energy-independent and can be used for frame transformations in Equation (2.53). After the

transformations, the re-normalization factor is multiplied back, and the energy dependence is re-

covered.
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CHAPTER 3: CROSS SECTIONS AND RATE COEFFICIENTS FOR

VIBRATIONAL (DE-) EXCITATION OF NO2 BY ELECTRON IMPACT

In this chapter, we use the theoretical tools introduced in Chapter 2 to compute cross sections for vi-

brational excitation of NO2
(
X2A1

)
by electron impact. Calculations are based on a combination of

the normal mode approximation for vibrational states of the target molecule (Section 2.1.3), fixed-

nuclei electron-NO2 scattering matrices (Section 2.2.2) and the vibrational frame transformation

(Section 2.2.3) employed to evaluate the scattering matrix for vibrational transitions. Thermally-

averaged rate coefficients are derived from the obtained cross sections for temperatures in the

10-10000 K interval for excitation of each normal mode of the target molecule. Analytical fits

for the rate coefficients for singlets and triplets are provided to simplify their utilization in plasma

depollution models as mentioned in Chapter 1. In addition, a comprehensive set of calculations

are performed for assessing the uncertainty of the present calculations because of lack of experi-

mental data. The uncertainty assessments indicate that the computed observables for vibrational

(de-)excitation is reasonable for later use in NO2-containing plasma kinetics modeling. The fol-

lowing work has been published in Plasma Sources Science and Technology [79].

3.1 Introduction

The nitrogen dioxide (NO2) molecule has a number of applications in engineering and science.

For instance, it is used in the sterilization of medical instruments [80]. In atmospheric science,

the chemiluminescent emission from electronically excited NO2 in the O+NO reaction, known as

“air afterglow” [81], is important for understanding the complex physical processes in the middle

and upper atmosphere. However, nitrogen dioxide is an undesirable pollutant in the troposphere.

Exposure to the environment where the concentration of NO2 exceeds 3ppm for longer than 8

39



hours (or > 5ppm for longer than 15 minutes) yields the negativ effect on the human respiratory

system [82]. The role of this trace constituent of atmosphere constantly increases along with

an increase in its emission rate caused mainly by human activities such as automobile exhaust

and industrial combustion. Non-equilibrium plasma technology has been introduced over the past

several years as a promising technique for NO2 removal. The development of the technology

requires knowledge of physical and chemical processes taking place in NO2 plasma. Especially

important processes are collisions between electrons and NO2 molecules because the availability

of accurate data for these process is crucial for plasma modeling.

Electron collisions with the NO2 molecule have been extensively investigated in the past, with first

studies focused on the NO2 ionization [83–85] due to a variety of applications in plasma technol-

ogy. In more recent studies, other processes in the e−–NO2 collisions were studied. For example,

Szmytkowski et al. [86] measured absolute total cross sections for electron-NO2 collisions in a

linear transmission experiment for the interval 0.6 to 220 eV of collision energies. A further in-

vestigation from intermediate to high energies was carried out by Zecca et al. [87]. Experiments

by Fox [88] and Rangwala et al. [89] reported dissociative electron attachment (DEA) to NO2 as a

mechanism on negative-ion formation. Munjal et al. [90] reported theoretical data on elastic inte-

gral, differential, momentum transfer cross sections, as well as electronic-excitation cross sections

from the ground electronic state to the five lowest electronically excited states of NO2.

Despite these efforts, still little information is available on the electron-impact vibrational exci-

tation (VE) of NO2. This process plays an important role in the chemistry and the physics of

molecular plasma because vibrationally excited NO2 reacts differently, compared to the ground-

state NO2, with other species present in the plasma [91]. To the best of our knowledge, there exist

only one measurement on VE cross sections for energies 0.3∼ 2.5 eV by Benoit and Abouaf [92].

No theoretical study on VE of NO2 has been reported until now. As excitation of different modes

have almost the same fundamental frequencies cannot be separated experimentally at least by the
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conventional techniques, so the theoretical treatment for the VE of NO2 is indeed necessary. To

fill this gap, the objective of the present study is to provide VE cross sections and correspond-

ing thermally-averaged rate coefficients obtained theoretically. Systematic calculations were per-

formed for the excitation of the 3 lowest excited vibrational levels in the ground electronic state

of NO2. For higher vibrational states, processes such as DEA become more predominant than

vibrational excitation which will be discussed later in Chapter 5.

The chapter is organized as follows. In the next section, the theoretical approach used in the

present calculation is briefly described according to Chapter 2. In Section 3.3, the obtained VE

cross sections and corresponding rate coefficients are shown and discussed. Section 3.4 presents

uncertainty estimations of the present approach. The concluding remarks are given in Section 3.5.

3.2 The Properties Of The NO2 Molecule And Scattering Calculations

As mentioned in Section 2.1.2, NO2 is an open-shell molecule belonging to the C2v point group at

its equilibrium, with the ground state electronic configuration

X2A1 : 1a2
12a2

11b2
23a2

12b2
24a2

15a2
13b2

21b2
14b2

21a2
26a1

1.

It is characterized by three normal modes of vibration: bending (ν1), symmetric stretching (ν2),

and asymmetric stretching (ν3) (see Figure 3.1). Displacements along the bending and symmetric

stretching modes do not break the C2v symmetry of the molecule, while the asymmetric stretching

mode reduces the symmetry to the Cs group according to the correlation Table 2.2.

Electronic structure and frequencies of normal modes can be determined using the ab initio quan-

tum chemistry package MOLPRO as introduced in Section 2.1.4. As it is becoming increasingly

recognized that uncertainty estimation is a necessary procedure for molecular structure calcula-
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Figure 3.1: The sketch of three normal modes of NO2: bending (ν1), symmetric stretching (ν2),
and asymmetric stretching (ν3). The red balls represent the O atoms and the blue balls represent
the N atoms. The arrows indicate the force vectors.

tion [93], we performed calculations by the complete active space self-consistent field (CASSCF)

(see Section 2.1.1) method with different CAS and basis sets shown in Table 2.1 to assess the

present property calculation. Firstly, we use the same CAS which freezes 3 core orbitals and al-

lowing the remaining 17 electrons freely distributed in 12 active orbitals (3-7a1, 1-2b1, 2-5b2 and

1a2) and increase the size of basis set. We can find that the equilibrium geometry and normal

mode frequency obtained by cc-pVTZ basis set agree with experimental data well. Thus we keep

cc-pVTZ basis set and increase the size of CAS. Clearly, CASSCF (17,12) with cc-pVTZ can

provide us a good agreement between our results and experiment.

It is more intuitive to investigate the stability of other target properties such as the permanent dipole

moment introduced in Equation (2.21) and ground state energy of NO2. The results is shown in

Figure 3.2. As we can see, when we set the "CAS" used in calculation as CAS5 (CASSCF(17,12)

is set as CAS5 here) and increase the size of basis set, the dipole moment gradually approaches
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Table 3.1: Structure and vibrational frequencies of NO2 obtained in this study and compared with
experimental data. ω1, ω2 and ω3 are the frequencies of bending mode, symmetric stretching mode
and asymmetric stretching mode, respectively. The numbers such as (17, 12) in the parentheses
indicate 17 electron are kept free in 12 active orbitals.

Method Basis set Bond (Å) Angle(Degrees) ω1 (cm−1) ω2 (cm−1) ω3 (cm−1)
CASSCF(17,12) cc-pVDZ 1.208 133.8 750 1327 1640
CASSCF(17,12) DZP 1.219 133.2 753 1316 1620
CASSCF(17,12) 6-311G* 1.206 133.7 756 1325 1634
CASSCF(17,12) cc-pVTZ 1.204 133.9 756 1319 1625
CASSCF(17,12) cc-pVQZ 1.203 133.9 759 1322 1623
CASSCF(9,8) cc-pVTZ 1.186 136.3 764 996 1407

CASSCF(11,9) cc-pVTZ 1.197 134.2 762 1315 1653
CASSCF(13,10) cc-pVTZ 1.203 133.8 761 1325 1637
CASSCF(15,11) cc-pVTZ 1.203 133.9 758 1322 1632
CASSCF(17,12) cc-pVTZ 1.204 133.9 756 1319 1625

Exp. 1.193 134.1 750 1318 1618

the experimental value and the ground state energy decreases monotonically. The results with cc-

pVTZ basis set is more closer to the experiment. Similarly, we keep the basis set as cc-pVTZ and

increase the CAS, both of the dipole moment and ground state energy did not change significantly

above CAS3, which means the property calculation with cc-pVTZ basis set and the CAS which is

larger than CAS3 can provide us convergent results. Therefore, in the present electronic structure

calculations, we use CASSCF method built from Hartree Fock (HF) orbitals with the CAS (17,12)

and cc-pVTZ basis set since the properties calculated by this model match excellently with the

experiment and are convergent result, namely accurate description of target molecule is obtained.

Corresponding outputs, especially Hessian equilibrium geometry and frequencies will be used in

the scattering part below.

The electron-scattering calculations were carried out using the UK R-matrix code [30] with the

Quantemol-N interface [71]. The first step is characterizing the potential energy curve of NO2

along the normal coordinates. The cc-pVTZ basis set and the complete active space configura-
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Figure 3.2: The uncertainty estimation of NO2 property calculations using MOLPRO. For example,
the numbers in brackets (17e, 12o) indicates the CAS that 17 electrons are kept free in 12 active
orbitals

tion interaction (CAS-CI) method built on orbitals obtained from the same CASSCF calculation in

MOLPRO were used in Quantemol-N calcuation1. To make the dynamical R-matrix calculation

tractable 2, we freeze 10 electrons in the core 1a1,2a1,3a1,1b2,2b2, while the remaining 13 elec-

1we have to check that center of mass does not change and the equilibrium should be the same with Quantemol-N
and MOLPRO.

2The CAS used in electronic structure calculation is too expensive to run in R-matix calculation.
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Figure 3.3: Potential energy curves for the ground electronic state of NO2 as a function of the
(a) bending; (b) symmetric stretching; (c) asymmetric stretching modes. The abscissa axes in
the figure represent dimensionless normal coordinates. In each panel, only one mode is varied,
while the other modes are kept fixed at their equilibrium positions. Red solid curves are the actual
potential energies obtained from the UKRmol suite, while black dashed curves represent energies
calculated in the harmonic approximation. Horizontal dashed lines denote energies of vibrational
states.

trons are kept free in the active space of the 4a1,5a1,3b2,1b1,4b2,1a2,6a1,7a1,2b1,5b2 molecular

orbitals. We used an R-matrix sphere of radius 14 Bohr, large enough to envelop the entire charge

clouds of all the target electronic states included in the calculation. A partial waves expansion is

used with continuum Gaussian-type orbitals up to l ≤ 4. All the target states below cutoff energy

10 eV are retained in the final close-coupling calculation (Equation (2.40) of Chapter 2).

We plot the potential energy of the ground state of NO2 computed with the R-matrix code 3 in

Figure 3.3. As discussed in Section 2.1.3, the potential energy surface of NO2 is split into the three

potential energy curves along normal modes according Equation (2.16) and (2.17). Compared with

the harmonic potential potential calculated by h̄ωi
2 q2

i , we found that an accurate description of the

target molecule for bending mode (panel (a) in the figure) and asymmetric stretching mode (panel

(c)). Almost no anharmonic contribution is observed for these two modes. However, the potential

3Quantemol-N can also perform electronic structure calculation but can not give us normal frequency. Thus we
calculated the normal modes using MOLPRO and performed scattering calculations along these normal coordinates.
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Table 3.2: Vertical excitation energies (in eV) of NO2 using CI model at equilibrium geometry

Symmetry No. State Present work (eV)
1 X2A1 0.00
2 2B2 3.78
3 2A2 3.82
4 2B1 4.28
5 4B2 5.93
6 4A2 5.95
7 2A2 6.97
8 2B2 7.17
9 2B1 8.23

10 2A2 8.54
11 2A1 8.65
12 4A1 9.83
13 2A1 10.61
14 2B2 10.62
15 4B1 10.90

energy of the symmetric stretching mode is slightly anharmonic as evident from panel (b) in the

figure. The dipole moment of NO2 obtained by Quantemol-N in this model is 0.317 D, which is

also in remarkably good agreement with the experimental value of 0.316 D [94].

The vertical excitations energies of the doublet and quartet states calculated using our CI model

are presented in Table 3.2. The energy of the first excited state A2B2 in our CI model is 3.78 eV 4

which is in good agreement with the CASSCF value 3.425 eV of other theoretical study [95] and

3.07 eV obtained by other R-matrix calculation with CAS-CI model [90]. Clearly, all the quantities

presently obtained through Quantemol-N indicate a good description of target molecule .

In the R-matrix scattering calculations, we obtain the reactance matrix (K-matrix) for the e−–

NO2 collisions for all four irreducible representations (irrep) A1, B1, B2 and A2. The fixed-nuclei

4In fact, our VE calculation will focus on the energy range below first excited state, i.e. the vibrational transitions
within the ground electronic state of NO2 is the main theme in the present calculation.
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reactance matrices are then used to compute scattering matrices numerically according to Equation

(2.50). The fixed-nuclei S-matrix elements Sl′λ ′,lλ with 25 partial waves are used to compute the

scattering matrix Svi′vi for VE,

e−(l,λ )+NO2(νi)→ e−(l′λ ′)+NO2(νi
′), (3.1)

relying on the vibrational frame transformation stated by Equation (2.53). The Gaussian-Legendre

quadrature (see Appendix B) with 10 points is used to numerically compute the integral in Equa-

tion (2.53).

As explained in Section 2.2.3, the vibrational frame transformation (2.53) treatment becomes fea-

sible, at least in principle, only if the elements of the fixed-nuclei S-matrix for the e−−NO2 system

are smooth with respect to the incident energy. Therefore, the treatment is not appropriate if there

are low-energy resonances in the e−−NO2 spectrum at low energies. In an attempt to analyse the

behavior of S-matrix elements, we computed the absolute value squared
∣∣Sl′λ ′,lλ

∣∣2 of the matrix

elements obtained from Quantemol-N calculations as a function of the electron scattering energy at

the equilibrium geometry. Figure 3.4 gives an idea about couplings between different partial waves

in the scattering process. Here, singlet states are chosen as an example. Clearly, only couplings

between channels with ∆l < 2 are not negligible for inelastic scattering. The contribution from the

∆l ≥ 2 couplings is very small. Notably, the
∣∣Sl′λ ′,lλ

∣∣2 coupling producing the dominant contribu-

tion to the inelastic process for each symmetry depends only weakly on the scattering energy, as

shown in Figure 3.5. Therefore, it is reasonable to employ the vibrational frame transformation

(2.53) to compute Svi′vi for the VE calculations.

With Svi′vi in hand, and taking an average over initial rotational states and a sum over final rotational

states in the process, i.e. neglecting the rotational structure of the molecule, the cross sections of

Equation (3.1) is then computed by Equation (2.55).
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∣∣Sl′λ ′,lλ

∣∣2 with respect to all possible allowed combinations of
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shown. For 1A2 (solid pink line with stars), s and p partial wave scatterings are not allowed.

3.3 Cross Sections And Rate Coefficients

In this section, we present the calculated cross sections and rate coefficients for vibrational (de-

)excitation of NO2 for collision energies below the first resonance < 1.6 eV of the 3B1 symmetry.

The VE cross sections for changing up to two quanta are obtained for the three vibrational modes.

For the symmetric stretching mode, the results for the double-quantum transition should be viewed

as not very accurate, because the normal mode approximation is poor for the symmetric stretching

mode as discussed above.
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Figure 3.5: The figures show dominant (absolute value squared) elements
∣∣Sl′λ ′,lλ

∣∣2 of the scat-
tering matrix as a function of the electron scattering energy at the NO2 equilibrium. Black lines:
couplings between channels with ∆l = 0. Color lines: couplings between channels with ∆l = 1

Figure 3.6 displays the VE cross sections for the singlet and triplet states of the e−–NO2 complex

with the target molecule being initially in the ground vibrational level. Not surprisingly, the 1← 0

cross sections of the e−–NO2 singlet complex (solid red curves) are the largest compared to the

triplet and 2← 0 transitions due to propensity rule. The 1← 0 VE cross section for triplet (dashed

red curve) bending mode has the same shape as that of the singlet. Its magnitude is smaller than that

for the singlet by more than a factor of 4. For the symmetric stretching mode (see Figure 3.6(b)), the

1← 0 VE cross sections for both singlet and triplet depend very weakly on the scattering energy up

to 0.6 eV. Note that the 1← 0 VE cross sections for the asymmetric stretching mode are zero due to

the symmetry of the scattering matrix with respect to positive and negative values of displacements

along the mode. We plot the square of dominant fixed-nuclei S-matrix elements versus q3 as an

example in Figure 3.7. As we can see, S-matrix is symmetric with respect to q3. Thus the integral

of Equation (2.53) vanishes for one quanta transition due to the symmetry forbidden of the wave

49



0.1 0.2 0.3 0.4 0.5 0.6
Electron scattering energy (eV)

10
-18

10
-17

10
-16

V
ib

.e
x
c.

cr
o
ss

 s
ec

ti
o
n
 (

cm
2
)

triplet

singlet
triplet

ν
1
=0ν

1
’=1,2

ν
1
’=1

ν
1
’=1

ν
1
’=2

ν
1
’=2

(a)Bending

singlet

0.2 0.3 0.4 0.5 0.6
Electron scattering energy (eV)

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

singlet

triplet

ν
2
=0ν

2
’=1,2

ν
2
’=1

ν
2
’=1

(b)Symmetric stretching

singlet

triplet

ν
2
’=2

ν
2
’=2

0.4 0.5 0.6
Electron scattering energy (eV)

10
-18

10
-17

10
-16

10
-15

singlet

triplet

ν
3
=0ν

3
’=1,2

ν
3
’=2

(c)Asymmetric stretching

Figure 3.6: Calculated cross sections as functions of the electron scattering energy for the vibra-
tional excitation of NO2 being initially in the lowest vibrational state vi = 0 for the three normal
modes (see the text for detailed discussion): (a) cross sections for v′i = 1,2← vi = 0 transitions for
bending mode; (b) for symmetric stretching mode; (c) for asymmetric stretching mode.

functions 5(see Equation (2.19)). Furthermore, there is no significant difference in the magnitude

of the cross sections for the symmetric stretching and asymmetric stretching modes due to the close

fundamental frequencies (see Table 3.1).

5The overlap between wave functions having opposite parity (for example ν3 = 0 and ν3 = 1 ) is suppressed, since
the wave function of ν3 = 0 and S-matrix are even-parity functions with respect to q3 and the wave function of ν3 = 1
is an odd-parity function.
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Figure 3.7: The figure shows dominant (absolute value squared) elements
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∣∣2 of the scatter-
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energy. Solid curve: singlet for NO2+e− system. Dashed curve: triplet for NO2+e− system. The
corresponding symmetry is indicated in parentheses. The numbers indicate different partial waves
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In addition, as mentioned in Section 2.2.3, the VE cross section for changing only one quanta

can also be calculated by computing the square of the derivative of fixed nuclei S-matrix element,

Sl′λ ′,lλ . Choosing the ν1 = 0→ ν ′1 = 1 cross sections for bending mode as an example, we display

the comparison between the present result and that one calculated from Equation (2.61) in Figure

3.8. The derivative of fixed-nuclei S-matirx here is computed using the finite difference method

with two points : q1 = 0.2 and q1 = 1. As we can see in this figure, the cross section calculated

by the analytical formula (2.61) (simple formulation) agree well with the cross section calculated

numerically and discussed in Section 3.2 for triplet (the deviation is less than 10%). In the case

of singlet, the VE cross section calculated by Equation (2.61) (green solid curve) is larger than
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the numerical one (red solid curve) by about 30%. We therefore plot the dominant fixed-nuclei

S-matrix element Sl′λ ′,lλ versus q1 to give an idea about this deviation in Figure 3.8. Figure 3.9

displays the S-matrix for triplet (upper figure) and singlet (bottom figure) respectively. The left

panels in Figure 3.9 are the real parts of S-matrix, and the right panels are the imaginary parts of

S-matrix. In the upper Figure 3.9, we see oscillations for the S-matrix elements of triplet. However

we found that the maximum deviation of the S-matrix elements along q1 is less than 2%, for the

middle panels (S00,00 versus q1), which implies the S-matrix elements are in fact linear. Therefore,

the derivative approximation for triplet is reasonable. For singlet, in the lower Figure 3.9, the S-

matrix elements seems smooth with respect to q1. However, if we compute the forward difference

of all the Sl′λ ′,lλ , as shown in Figure 3.10, we can find that the derivative of S-matrix element for

singlet is in fact depending on q1. If we take q1 at q1 = 0.2 and q1 = 1 in singlet, it will give us

a different slope form other set of q1 points. This can explain the overestimation of the S-matrix
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Figure 3.9: The figures show dominant elements Sl′λ ′,lλ of the scattering matrix as a function of
normal coordinate q1 (bending mode) at 0.3 eV scattering energy. Upper figure: S-matrix elements
for triplet . Lower figure: S-matrix elements for singlet. Solid curve: the real parts of S-matrix
elements. Dashed curve: the imaginary parts of S-matrix elements. The numbers indicate different
partial waves l′,λ ′← l,λ .
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derivative and, hence, in the cross section of Figure 3.8. To conclude, the VE cross section for

singlet calculated by Equation (2.61) is somewhat larger than the present result. However, the

analytical formula (2.61) apparently can provide one another efficient approach to compute the VE

cross section with one quanta transition.

The thermally averaged rate coefficient ανi′νi (T ) for VE of NO2 is obtained by Equation (2.62)

from the energy-dependent cross sections of Equation (2.55). It should be noted that as NO2 is a

open-shell molecule, the multiplicity of (NO2 + e−) system is 1 or 3 (more details can be found

in Section 2.1.2). The rate coefficient is therefore first calculated separately for singlet and triplet

transitions and then the final rate coefficient is obtained taking into account the corresponding
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the three lowest vibrational states of the bending mode. Vibrational excitations are labeled by
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also demonstrates the quality of the fit of Equation (3.3): Fitted curves are shown by stars with the
same color for each transition.

statistical weights: 1/4 for singlet and 3/4 for triplet as

αν ′i ,νi
(T ) =

1
4

α
singlet
ν ′i ,νi

(T )+
3
4

α
triplet
ν ′i ,νi

(T ). (3.2)

Figure 3.11 displays the spin- and thermally-averaged rate coefficients for (de-)excitation transi-

tions between the three lowest vibrational states of the bending mode as an example. For T > 400

K, the rate coefficient for one quanta transition increase rapidly from about 10−10 to 10−8 cm3/s.

Similarly to the previous studies [75, 96] for conveniently using the computed rate constants in

plasma depollution models, we fitted the numerical spin- and thermally-averaged rate coefficients
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to the following analytical formula

α
f it

νi′νi
(T ) =

1√
T

e−
∆

νi′νi
T P f it

νi′νi
(x), (3.3)

where

P f it
νi′νi

(x) = a0 +a1x+a2x2 and x = ln(T ). (3.4)

The quantity P f it
νi′νi

(x) is the (de-)excitation probability. It depends weakly on the scattering energy.

The temperature in the above equation should be in kelvin. In Equation (3.3), ∆νi′νi is the threshold

energy defined as

∆νi′νi =


Eνi′−Eνi > 0 for excitation,

0, for (de-)excitation.
(3.5)

The numerically fitted values of coefficients ai (i = 0,1,2) for each individual transitions νi
′← νi

are listed in Tables 3.3,3.4,3.5. Figure 3.11 also demonstrates the fitted curves by Equation (3.3).

These curves are displayed in stars with same color for each transition obtained numerically. Evi-

dently, the fitting curves exhibit a good agreement with that numerically obtained. The coefficient

a0 of the 1← 0 transition for symmetric stretching mode is negative because the behavior of the

cross section is not ε−1 as shown in Figure 3.6(b).

Table 3.3: Parameters a0, a1 and a2 of the polynomial P f it
νi′νi

(x) of Equation (3.3) and (3.4) between
the three lowest vibrational states of bending mode. The pairs of the final and initial vibrational
levels for each normal mode are at the second line in each header of the three tables. The third line
in each header gives the threshold energies ∆νi′νi in Equation (3.5).

νi
′← νi 1← 0 2← 0 0← 1 2← 1 0← 2 1← 2

∆νi ′νi (K) 1092 2142 0 1050 0 0
a0 1.98×10−8 1.25×10−8 2.66×10−8 4.33×10−8 1.33×10−8 5.75×10−8

a1 1.47×10−9 2.17×10−10 −4.13×10−10 3.75×10−9 6.17×10−12 −2.96×10−10

a2 1.65×10−11 −1.09×10−11 1.40×10−10 −1.03×10−10 3.10×10−12 1.67×10−10
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Table 3.4: Same as Table 3.3 for symmetric strtching mode

νi
′← νi 1← 0 2← 0 0← 1 2← 1 0← 2 1← 2

∆νi ′νi (K) 1904 3735 0 1831 0 0
a0 −3.32×10−9 1.48×10−8 1.58×10−8 2.92×10−8 1.56×10−8 5.79×10−8

a1 4.24×10−9 2.46×10−10 −9.05×10−10 7.34×10−9 1.77×10−11 −5.71×10−10

a2 −4.28×10−11 −1.35×10−10 2.81×10−10 −2.54×10−10 1.84×10−12 2.60×10−10

Table 3.5: Same as Table 3.3 for asymmetric stretching mode. The ∆υ = 1 transitions for asym-
metric stretching mode are forbidden by symmetry.

νi
′← νi 1← 0 2← 0 0← 1 2← 1 0← 2 1← 2

∆νi ′νi (K) 2346 4604 0 2257 0 0
a0 — 2.03×10−7 — — 1.81×10−7 —
a1 — −5.45×10−9 — — 3.63×10−10 —
a2 — 2.40×10−10 — — −1.22×10−10 —

3.4 Uncertainty Estimation

To the best of our knowledge, there is no experimental or theoretical VE cross sections and rate

coefficients data available for comparison with the present results. Hence, the uncertainty estima-

tions for the theoretical model are very important to validate the present results. There are 2 kinds

of uncertainty: one is the electronic structure as discussed in Section 3.2 and the other is scattering

calculation by changing different parameters.

From a point of view of an electro-static model potential for the electron-NO2 collisions, the major

contribution to the scattering amplitude for vibration excitation is expected to be due to variations

of the permanent dipole moment and the polarizabilities of NO2 along the normal mode coordi-

nates. We don’t use the model potential method in this study: The accuracy of the final cross

sections depends on the accuracy of wave functions of the target and the scattering electron. The
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accuracy of computed wave functions cannot be compared with previous results directly. How-

ever, comparing the dipole moment, evaluated from wave functions of the target molecule, with

the available accurate data can give an idea about the accuracy of computed wave functions used

in the R-matrix calculations and, correspondingly, about the accuracy of the final cross sections.

Here, we investigate the stability of the dipole moment of target molecule as an example by per-

forming a complete R-matrix calculation with different active spaces and basis sets and compare

the results with experimental data. We carried out two set of computations: (1) using the CAS

(referred here as CAS4) mentioned in Section 3.2 and increasing the size of basis sets; (2) in-

creasing the complete active space (CAS) with the cc-pVTZ basis set. The obtained results at the

equilibrium geometry using the various parameters are illustrated in Figure 3.12. As one can see

in Figure 3.12 (a), the dipole moment approaches the experimental value 0.316 D [94] when we

increase the basis set. Evidently, the dipole moment obtained by cc-pVTZ basis set used in this

study agrees with the experimental data very well. Augmented (aug-) basis sets are not used as

they would significantly extend outside the R-matrix sphere. Figure 3.12 (b) displays the varia-

tion of dipole moment as a function of different CAS’s for the cc-pVTZ basis set. Obviously, the

CAS used currently, i.e. CAS4 corresponds to the dipole moment closest to the experimental data.

Therefore, we concluded that the target properties obtained by Quantemol-N are well converged

and accurately represented. It might also be desirable to provide uncertainties for other interme-

diate quantities computed in collisional studies, such as eigenphase sums. These are also shown

in Figure 3.12, panel (c). As shown in the figure, the small shift observed in calculations with

different CAS’s indicates the convergence of the scattering data.

Another source of the uncertainty is the accuracy of the S-matrix derived from the UKRmol suite,

when the dipole term (Equation (2.21)) is included in the interaction. As reported in Ref. [97],

the presence of the dipole moment induces a strong anisotropy in the electronic potential, which

reflects in an increase of the difference in S-matrix and stronger electronic couplings. It is respon-
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Figure 3.12: Variation of the computed permanent dipole moment of NO2 versus different basis
sets (panel (a)) and CAS (panel (b)). CAS1: 7 electrons are kept free in the active space including
7 orbitals; CAS2: 9 electrons are kept free in the active space including 8 orbitals; CAS3: 11
electrons are kept free in the active space including 9 orbitals; CAS4 (CAS used in this work):
13 electrons are kept free in the active space including 10 orbitals; CAS5: 15 electrons are kept
free in the active space including 11 orbitals. The blue dashed line indicates the experimental
value of the dipole moment. (c) The eigenphase sums of scattering of the 3B1 symmetry of the
e−–NO2 complex as a function of the electron scattering energy for different CAS’s. The inset
enlarges the region where a sharper energy-dependence is observed around 1.6 eV corresponding
to a resonance.

sible for an increase of the HCO+ DR cross section. Therefore, it is necessary to confirm that if the

weak dipole-electron interaction in the present study makes a significant contribution to the final

cross sections.

For the electron scattering by a non-polar molecule, the electronic angular momenta l are decou-

pled at large distances from the target, such that l is a good quantum number for large separations

between the electron and the molecule. However, for a dipolar molecule the electronic angular mo-

menta l are coupled at long, as at short distances. For this reason, we cannot use the specified basis

of electronic states to represent the electronic Hamiltonian of the system. We stress that the dipolar
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interaction exhibits the same long-range behavior as the centrifugal potential, thus, it is possible

to combine the dipole and centrifugal terms, i.e. potentials with asymptotic behavior l(l+1)
2r2 − µ̂

r2 ,

where r is the radial electronic coordinates, µ is the dipole moment of NO2 and l is an integer. The

Schrödinger equation for an electron in a dipole field is therefore given by (in atomic units6.).

(
−1

2
d2

dr2 +

(
L̂2

2r2 −
µ̂

r2

)
−E

)
ψ(θ ,φ) = 0 (3.6)

where L̂ is the angular momentum operator7 and E is the total energy of the system. If we expand

the dipole operator µ̂ in spherical tensor and assume µ is constant for any q, the problem can be

reduced to the diagonalization of the angular part of electronic Hamiltonian with the form

Ĥ =

 0 〈Y0,0|µ cosθ |Y1,0〉
r2

〈Y1,0|µ cosθ |Y0,0〉
r2

1
r2

 (3.7)

where θ is the azimuthal angle of the electron in the molecular coordinate system. Here we show

the sσ − pπ part of the electronic Hamiltonian as an example (in fact for 1A1 symmetry the Ĥ

should be a 9× 9 matrix and for 1A2 symmetry it should be a 4× 4 matrix etc.). We can obtain

the effective angular momentum by compute the eigenvalues of Equation (3.7) and corresponding

eigenvectors can be used to transform S-matrix in new channel states. According to the table of

spherical harmonics [98], we know that Y1,0 =
√

3
4π

cosθ , the µ cosθ can thus be written in terms

of Y1,0. The numerator in the non-diagonal elements can be easily evaluated by (see Equation

(107.14) in the page 444 of Ref. [99])

〈
Yl′,λ ′

∣∣Y1,0
∣∣Yl,λ

〉
= (−1)λ i−l+l′+1

 l 1 l′

−λ 0 λ ′


 l 1 l′

0 0 0

√(2+1)(2l +1)(2l′+1)
4π

(3.8)

6The dipole moment µ of NO2 in atomic unit is 0.12431 (µ = 0.316 Debye/2.542)
7L̂2Ylλ = l (l +1) h̄2Ylλ
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Table 3.6: Coefficients from the curves fitting
∣∣Sl′λ ′,lλ

∣∣2 = βEα and
∣∣S̃l′λ ′,lλ

∣∣2 = β ′Eα ′ (E is in
eV).

l′λ ′← lλ β α β ′ α ′

00← 00 1.00×100 1.82×10−3 1.00×100 1.56×10−3

10← 00 2.84×10−2 6.40×10−2 4.54×10−2 1.86×10−1

20← 00 4.21×10−5 1.01×10−1 1.98×10−5 1.90×10−1

22← 00 4.30×10−3 9.34×10−1 4.34×10−3 9.34×10−1

20← 10 4.07×10−3 1.14×10−3 8.01×10−3 1.46×10−3

30← 20 1.77×10−3 7.61×10−4 3.53×10−3 3.28×10−4

40← 30 9.84×10−4 6.28×10−4 1.96×10−3 3.83×10−4

32← 00 7.42×10−6 1.06×100 1.05×10−6 1.10×100

42← 00 2.43×10−9 1.12×100 7.23×10−10 7.50×10−1

44← 00 1.25×10−7 1.92×100 1.26×10−7 1.92×100

where the triangular inequalities:

∣∣l− l′
∣∣≤ 1≤ l + l′ (3.9)

should be obeyed and the sum l + 0+ l′ must be even. The 3-j symbols in Equation (3.8) can be

conveniently calculated by calculator on internet: [100]. We will find that most of the calculated8

non-diagonal elements are zero. When we diagonalize the Hamiltonian for each symmetry, the

values of the effective angular momentum l could be non-integer and even complex.

The eigenvectors of matrix (3.7) are used to build the unitary matrix to transform the scattering

matrix into the effective angular momentum representation. On the next step, we fitted the ob-

tained S-matrix elements (absolute values squared) before
∣∣Sl′λ ′,lλ

∣∣2 and after
∣∣S̃l′λ ′,lλ

∣∣2 the unitary

transformation with power law:
∣∣Sl′λ ′,lλ

∣∣2 = βEα and
∣∣S̃l′λ ′,lλ

∣∣2 = β ′Eα ′ , respectively, where α ,

β and α ′, β ′are the fitted parameters. The obtained parameters are listed in Table 3.6. Figure

3.13 shows a few examples of scattering matrix elements of dominant channels (∆l ≤ 2 and λ is

8The results should finally be divided by the factor of Y1,0, i.e.
√

3
4π

.
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Figure 3.13: The figure compares selected values of the 1A1 scattering matrix elements (absolute
value squared) before (solid color lines) and after (dashed lines of the same color) the unitary
transformation that eliminates the long-range dipolar coupling between asymptotic channels in the
e−–NO2 scattering matrix in the body frame. See the detailed discussion in the text. Each curve
is labeled at the left of the figure with the pair of indexes (l′λ ′← lλ ), corresponding to the final
channels and initial channel. The results for other irreps are not displayed but the situation is very
similar to the 1A1 symmetry.

zero) of the 1A1 symmetry at equilibrium. The largest matrix element for the 00← 00 transition is

unchanged after the unitary transformation. It is the variation of this matrix element with respect

to the normal coordinates that gives the largest contribution to the cross sections. Therefore, the

uncoupling the partial-wave channels at large distances would not produce a significant change in

the final cross sections. This also means that the coupling between partial waves induced by the

permanent dipole moment of the target has a minor effect on the final cross sections.

Assuming that the order of magnitude of the vibrational excitation cross sections is determined

by the square of the derivatives of the permanent dipole moment and polarizabilities of the target
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with respect to the normal coordinates, and also assuming that the relative uncertainties of the

derivatives are of the same order as the relative uncertainties of the dipole moment, we can estimate

the uncertainty of the obtained cross sections with respect to the accuracy of the wave functions

of the target. From panels (a) and (b) in Figure. 3.12, we estimate that the uncertainty in the

dipole moment of NO2 is less than 2%, producing the uncertainty in cross sections less than 4%.

Another source of uncertainty in the final cross sections is due to the variation of the geometry-fixed

scattering matrix with energy. The choice of the energy at which the scattering matrix Sl′λ ′,lλ (q)

in Equation (2.53) is computed produces the corresponding uncertainty. Figure 3.5 gives an idea

about the energy variation of Sl′λ ′,lλ (q). The largest components with ∆l = 0 vary for about 3%

over the energy interval of 0.4 eV. It gives an uncertainty in the cross sections of the order of 6%.

No other significant uncertainty sources were identified. Therefore, the overall uncertainty of the

present calculations seems to be below 10%.

3.5 Conclusions

This chapter reported the first theoretical results on vibrational (de-)excitation of the NO2
(
X2A1

)
molecule in collisions with a low-energy electron. The calculation is performed using an approach

that combines the normal mode approximation for the vibrational states of the target, the R-matrix

method, and the vibrational frame transformation. Cross sections and spin- and thermally-averaged

rate coefficients are obtained for excitation of all three NO2 modes by one and two quanta from

the ground vibrational level.

In addition, extensive uncertainty estimations were performed by changing the basis sets and or-

bital spaces in the R-matrix calculations. Converged results for the target properties and eigen-

phase sums demonstrated the validity of the obtained results. We expect that the data reported in

the present study could be valuable in kinetic studies of low-temperature NO2-containing plasma.
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Moreover, we expect that our approach will also work for other triatomic molecules of atmospheric

interest and have similar symmetry and electronic properties to NO2, such as SO2, O3 and the N2O

molecule which will be investigated in Chapter 4.
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CHAPTER 4: CROSS SECTIONS AND RATE COEFFICIENTS FOR

VIBRATIONAL (DE-) EXCITATION OF N2O BY ELECTRON IMPACT

Theoretical study of vibrational (de-)excitation of N2O by low-energy electron impact is carried

out in this chapter. This study is in the continuity of the one done on NO2, on where we applied

our theoretical model introduced in Chapter 2 to compute cross sections and rate coefficients for

transitions between the lowest vibrational levels. The theoretical approach employs the normal

mode approximation (Section 2.1.3) for the description of target vibrational states, the vibrational

frame transformation (Section 2.2.3) to compute amplitudes of vibrational transitions, and the R-

matrix method (Section 2.2.2) to compute ab initio electronic bound and continuum states. It

was found that the non-adiabatic Renner-Teller effect, which couples partial waves of the incident

electron with degenerate bending vibrations of N2O, is responsible for the excitation of the bending

mode. Obtained theoretical results agree reasonably well with available experimental data at low

energies. Thermally averaged rate coefficients are computed for temperatures in the 10-10000 K

range. The following work has been published in Physical Review A [101].

4.1 Introduction

As introduced in Equation (1.3), vibrational (de-)excitation by electron impact is a process in which

an electron scatters off a molecule and exchanges energy with it in a way that leaves the molecular

target in a different vibrational state. For N2O, vibrational (de-)excitation can be depicted by

e−(l,λ )+N2O(νi)→ e−(l′λ ′)+N2O(νi
′), (4.1)

in which νi and and ν ′i denoted the initial and final vibrational states of N2O, respectively.
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Due to the importance of nitrous oxide (N2O) in a plethora of research fields ranging from astro-

chemistry [102–104] to low temperature plasma technology [105] and medicine [106], different

electron-N2O collisional processes have been experimentally and theoretically explored over the

years. Differential and integrated cross sections for elastic and certain inelastic processes have

been measured by several groups [89, 107–126]. Although the experimental investigations gener-

ally agree on the position of an observed resonance near 2.3-2.5 eV, they disagree on the assignment

for the symmetry of the resonant state. Furthermore, there is also disagreement with respect to a

second resonance observed around or above 8.0 eV. On the theoretical side, the earlier studies of

Morgan [60], Sarpal et al. [127], and Bettega et al. [128] aimed at clearly specifying the nature of

the two resonances observed in the experiments. Morgan and Sarpal et al. employed the R-matrix

method with different models to study electron scattering by N2O in its equilibrium geometry.

They obtained a resonance near 2.3 eV with 2Π symmetry. Later on, using a slight modification

of the Schwinger multichannel (SMC) method of incorporating polarization effects, Bettega [128]

was able to reproduce the experimental features between the two resonances.

To our knowledge, no theoretical vibrational cross sections has been reported so far, while there

are several experimental cross sections: by Hayashi and Akashi [129], Kitajima [119] et al. ,

Allan and Skalicky [121], and Nakamura [122]. A compilation of their work can be found in a

recent review [130]. Hayashi and Akashi presented cross sections for electron-induced vibrational

excitations from electron swarm parameters in pure N2O. Kitajima et al. as well as Allan and

Skalicky measured absolute differential cross sections (DCS) for the vibrationally inelastic electron

scattering with a range of the electron scattering energy from the threshold region up to 20 eV.

Allan and Skalicky reported the measurements only for one scattering angle 135◦ and multiplied

each of the measured DSC by factor 4π to estimate the integral cross section. Nakamura [122]

derived cross sections for vibrational excitation from swarm parameters.

The present chapter represents the first theoretical vibrational excitation (VE) study of N2O by

66



electron impact. We present cross sections and rate coefficients for transitions between ground

and first vibrational states of N2O. The rotational structure is also neglected in the present study.

The chapter is organized as follow. In Section 4.2, we describe the theoretical approach accord-

ing to Chapter 2 and computational details in our calculations. In Section 4.3, the obtained VE

cross sections and corresponding rate coefficients are shown and discussed. Section 4.4 presents

uncertainty estimations of the present approach, and the last section, Section 4.5, is devoted to our

conclusions.

4.2 Theoretical Approach And Computational Details

Our approach can be summarized as follows. We start by characterizing the molecular target

according to its equilibrium geometry, vibrational frequencies, and dipole moment value at equi-

librium; features that can be obtained performing ab initio electronic bound molecular states cal-

culations. We proceed by performing ab initio electronic continuum molecular states calculations

to obtain a scattering matrix at different molecular geometries along the vibrational normal mode

coordinates. We then transform the scattering matrix into the basis of vibrational states of the target

molecule. Finally, we compute the vibrational (de-)excitation cross sections from the transformed

scattering matrix.

The approach used in this chapter has been described and applied to the NO2 molecule in Chapter

2 and Section 3.2, and a more detailed narrative of the simplified model on which our approach is

based can be found in Section 2.2.3 and Section 3.3 and references therein [131, 132]. Therefore,

we will limit the description presented in this section to the main ingredients of the theoretical

formalism – the normal mode approximation and the vibrational frame transformation – and the

computational details of our calculations.
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Figure 4.1: The three normal modes for N2O. The red balls represent the O atoms and the blue
balls represent the N atoms. The arrows indicate the force vectors.

At low energies around the equilibrium position, the potential energy curve of the most rigid

molecules is fairly well described by the quadratic potential of a harmonic oscillator. In our ap-

proach, we describe vibrational wave functions of the molecular target using the normal mode

approximation (see Section 2.1.3). N2O has three normal modes of vibration, namely: the doubly

degenerate bending mode, NO stretching, and NN stretching represented by ν1,ν2, and ν3, respec-

tively (see Figure 4.1) . The approximation allows us to perform a significant part of calculations

analytically. For molecules of astrophysical and low temperature plasma interest, like N2O, only

the lowest vibrational levels are significantly populated at low temperatures and the range of scat-

tering energies needed to study vibrational excitation is within the validity of the normal mode

model.

After computing the scattering matrix, we perform a vibrational frame transformation (see Section

2.2.3) to change the scattering matrix obtained for clamped nuclei for a number of molecular

geometries to the vibrating-molecule picture, that the electron sees, when it is at large electronic
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Figure 4.2: The three axes of the molecular coordinate system are chosen along the principal axes
on the inertia of the molecule.

distances. The clamped nuclei basis of asymptotic channels is denoted by the channel quantum

numbers {l,λ} that label the angular momentum of the incoming and outgoing electron and their

respective projections on z-axis in the molecular frame coordinate system. The three axes of the

molecular coordinate system are chosen along the principal axes on the inertia of the molecule,

such that the quantization axis (the z-axis) is directed along the molecular axis in calculations for

linear geometries as shown in the left panel in Figure (4.2). For bent geometries of the molecule,

the z-axis is perpendicular to the plane of the molecule with the x-axis aligned along the axis of the

smallest moment of inertia (see the right panel in Figure (4.2)). In Section 4 we introduce another

set of quantum numbers {l, λ̃} and corresponding channel functions, which replace the spherical

harmonic Y λ
l with their real-valued combinations of Y±λ

l . The vibrational frame transformation

of the scattering matrix elements is then given by Equation (2.53). The physical meaning of an

element of the transformed scattering matrix is the scattering amplitude from one vibrational state

ηνi (q) of the target molecule to another ην ′i
(q) as expressed by Equation (2.19). As discussed in

Section 2.2.3, the vibrational frame transformation of Equation. (2.53) can only be performed if
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the fixed-nuclei S-matrix element, Sl′λ ′,lλ , is a smooth function of the incident electronic energy.

It means, in particular, that for this approach to be applicable, the fixed-nuclei S-matrix should

not have low-energy electronic resonances. As discussed below, the lowest electronic resonance in

e-NO2 collisions occurs at collisions energies about 2.5 eV.

The cross section σνi′νi for vibrational (de-)excitation can be obtained from the corresponding ma-

trix element Sν ′i l
′λ ′,νilλ by Equation (2.55). Although the fixed-nuclei scattering matrix Sl′λ ′,lλ (q)

is weakly-dependent on energy, the remaining energy-dependence introduces an ambiguity in the

choice of the matrix in integrand of Equation (2.53). In the present calculation, we choose fol-

lowing procedure: Integrating over the normal mode q in Equation (2.53) for a given energy ε of

the electron in the incident channel (see the above equation), and at each integration point q, the

scattering matrix Sl′λ ′,lλ (q) is taken from the R-matrix calculations performed at this particular

fixed-nuclei geometry q and the electron-scattering energy Eel . Because the energy-dependence

of the fixed-nuclei scattering matrix is weak below 2.5 eV, the corresponding uncertainty of the

final cross section is much smaller than the uncertainty related to the choice of the ab initio model

(discussed below). To demonstrate the energy dependence of the integrand of Equation (2.53),

we also give three figures showing the integrands for the NO stretching mode for three among the

largest matrix elements 0,0← 0,0, 1,1← 1,1, 2,−2← 2,−21. Each figure shows the integrand

for one matrix element for three energies 0.3eV, 0.4eV (which are just above the vibrational exci-

tation threshold), and 1.6eV (the energy is well above the threshold). As one can see, the energy

dependence is very weak. For the 1,1← 1,1 and 2,−2← 2,−2 transitions as shown in the two

lower panels in Figure (4.3), the curves for different energies are indistinguishable.

The cross section for vibrational excitation does not account for the rotational structure and can be

compared with experiments or used in applications where the rotational structure of the initial and

1The numbers indicates l′,λ ′← l,λ
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Figure 4.3: The integrands of Equation (2.53) for the NO stretching mode for three among the
largest matrix elements 0,0← 0,0, 1,1← 1,1, 2,−2← 2,−2 as an example. Each figure shows
the integrand for one matrix element for three energies 0.3 eV, 0.4 eV and 1.6 eV.

final vibrational levels is not important or not resolved. This is, generally, the case for the most of

current experiments (including swarm measurements) and plasma applications at room or higher

temperatures: With the rotational N2O constant of 0.41901 cm−1= 5.195×10−5 eV [133] at 300 K,

at least, 25 rotational states are significantly populated.

To compute VE cross section, computational details should be introduced systematically. At its

equilibrium geometry, N2O has a linear asymmetric “N–N–O” molecular structure, described by

the C∞v symmetry point group introduced in Section 2.1.2 with the ground electronic state of the

1Σ+ symmetry. The equilibrium geometry and the normal mode coordinates with corresponding

frequencies were computed with the MOLPRO suite [42] using the Complete Active Space Self-
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Table 4.1: Energies h̄ωi (in eV) of N2O normal modes obtained in the present study and compared
with experimental data from Ref. [94].

Mode (νi) Degeneracy Symmetry Experimental h̄ωi Calculated h̄ωi
Bending (ν1) 2 Π 0.0739 0.0761

NO stretching (ν2) 1 Σ+ 0.1610 0.1622
NN stretching (ν3) 1 Σ+ 0.2830 0.2849

Consistent Field (CASSCF) method and the cc-pVTZ basis set [134] centered on each atom. N2O

has 22 electrons in a closed-shell electronic ground state configuration given by

1
Σ
+ : 1σ

22σ
23σ

24σ
25σ

26σ
21π

47σ
22π

4.

In the calculations preserving the C∞v symmetry group, the 10 electrons, which occupy the low-

est five σ molecular orbitals, were kept frozen and the remaining 12 electrons were allowed to

distribute themselves accordingly to symmetry and spin restrictions in the Complete Active Space

(CAS) formed by the remaining 6σ1π7σ2π ground-configuration orbitals and the next 3 molec-

ular orbitals 8σ ,9σ ,3π , that are empty in the ground configuration. Because available quantum

chemistry codes cannot handle continuous groups like C∞v, the calculations were performed in the

C2v group for the geometries describing NO and NN stretching displacements. For geometries,

breaking the C∞v symmetry group – the bending-mode displacements – the same 10 electrons were

kept frozen in the lowest five a′ orbitals and the remaining 12 electrons were distributed in the

6-12a′ and 1-3a′′ orbitals of the corresponding Cs symmetry group.

Upon optimization of the equilibrium geometry, the N-N and N-O bond lengths were found to be

1.131 Å and 1.186 Å, respectively, in good agreement with the experimental value 1.128 Å and

1.184 Å [94]. Table 4.1 shows a comparison between obtained normal mode frequencies and the

available experimental data [94]. Our frequencies agree with a percentage difference of less than

3% with the experimental references.
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After characterizing the equilibrium geometry and normal mode frequencies with MOLPRO [42],

we carried out calculations of the potential energy of the ground electronic state of N2O and cal-

culations of continuum states using the UK R-matrix code [30] with the Quantemol-N suite [71].

In order to achieve consistency with the MOLPRO calculations, we have used the same basis set

and CAS. However, Quantemol-N does not have CASSCF built in it, and a series of convergence

tests showed that the available Complete Active Space Configuration Interaction (CAS-CI) model

with the Hartree-Fock (HF) orbitals built with MOLPRO gave the best results. Figure 4.4 dis-

plays ground state electronic potential energy curves of N2O for each normal mode obtained with

Quantemol-N. For comparison, we also show potential energy curves of harmonic oscillators gen-

erated with the frequencies obtained from MOLPRO. The Quantemol-N potential energy curves

agree reasonably well with the potential energies calculated in the harmonic approximation. Small

discrepancies are attributed to the anharmonicity of the actual N2O potential. The permanent elec-

tric dipole moment of the target molecule obtained from the R-matrix calculation is 0.1 D, which

is considered to be in satisfactory agreement with experimental value 0.16 D [94].

Using the molecular orbitals obtained from the structure calculations and the continuum Gaussian

type orbitals with partial waves up to l ≤ 4, we performed the electronic continuum molecular

states calculations with Quantemol-N. The radius of the R-matrix sphere was set to be 11 bohrs

2. All the electronic states of the target below the cutoff energy 16 eV have been included in the

close-coupling (CC) expansion. From the scattering calculations we can obtain the eigenphase

sums and the reactance matrix, K-matrix, at clamped nuclei.

The indicator for the efficacy of the scattering calculation is the eigenphase sums. Figure 4.5

displays the eigenphase sum of different irreducible representations at equilibrium and at displace-

ments away from the equilibrium along each normal-mode coordinate. We can extract the position

2N2O is a closed shell molecule. We have verified that 11 bohrs is sufficient to obtain a convergent R-matrix
calculation result.
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Figure 4.4: Potential energy curves for the ground electronic state of N2O as a function of the (a)
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the actual potential energies obtained from the R-matrix code, while black dashed curves represent
energies calculated in the harmonic approximation, i.e. simply ∼ h̄ωi

2 q2
i . Horizontal dashed lines

denote the energies of vibrational states.

and width of calculated resonances by fitting the eigenphase sum to a Breit-Wigner form (see Equa-

tion (5.3)). At equilibrium, the lowest resonances is found at 3.0 eV and has the 2Π symmetry. To

compare with available experimental data (the resonance around 2.3-2.5 eV [121, 135]), the zero-

point energy h̄(ω1 +2ω2 +ω3)/2 = 0.3 eV of the ground vibrational level should be accounted

for. Therefore, in the present calculation, the energy of the resonance is 2.7 eV above the ground

vibrational level. The difference with the experimental position of the resonance is attributed to the

large uncertainty associated with the Born-Oppenheimer approximation used to identify the energy

of the resonance in the theoretical calculation: The position of the resonance depends strongly on

the choice of the fixed geometry near the N2O equilibrium, at which the scattering calculations

were performed. In addition, the width (about 1 eV) of this shape resonance is larger than the

difference between the experimental and theoretical results.

The K-matrix obtained from the scattering calculations was used to compute the clamped-nuclei

scattering matrix, S-matrix. Figure 4.6 displays selected dominant elements (the absolute value
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squared) of the S-matrix at equilibrium geometry. In the figure (as well as in Figure 4.7 below),

indices λ̃ refer to real-valued combinations of spherical harmonics Y±λ

l with positive and negative

projections λ . The real-valued harmonics Ylλ̃ with positive λ̃ transform as cosine-type functions

with respect to the rotational angle φ about the axis z perpendicular to the plane of the molecule,

while the harmonics with negative λ̃ transform as sine-type functions. Except for the S10,00 el-

ement, all other elements behave smoothly with the electronic energy below the first resonance.

The minimum is observed near 0.4 eV for the 10← 00 transition. Although the S10,00 element

has a strong energy dependence, which breaks the condition of the applicability of the vibrational

frame transformation (the energy dependence should be smooth), its contribution to the VE cross

section in Equation (2.55) is negligible when compared to dominant terms (diagonal over lλ ) and,
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therefore, it does not compromise the present theoretical approach. The vibrationally transformed

S-matrix is calculated according to Equation (2.53), where the integration over vibrational coordi-

nates is performed numerically using a Gaussian-Legendre quadrature (more details can be found

in Appendix B) with 10 points.

4.3 Renner-Teller Coupling In N2O Vibrational Excitation By Electron

It is instructive to analyze the dependence of major coupling elements of the scattering matrix as

a function of normal coordinates, especially for the bending mode. We start by introducing few

general aspects of the Renner-Teller effect for linear molecules. The Renner-Teller coupling is,
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of course, a particular type of the non-Born-Oppenheimer (non-adiabatic) coupling3 . It induces

a coupling between the vibrational and the electronic motions. Its effect on electron-molecule

collisions was discussed in several previous studies [131, 136–140].

For N2O molecule, at its linear equilibrium configuration, the Renner Renner-Teller coupling is

zero. The main contribution to the VE cross section of the NO and NN stretching modes is thus

due to variation of the diagonal elements of the scattering matrix with low l.

In contrast, for the bending mode, the major contribution is due to the q1-dependence of non-

diagonal elements between the 2Σ+ and 2Π states of the e−+N2O system near the linear geometry

which is the Renner-Teller coupling. For a linear triatomic (and larger) molecule with a ground

electronic state of 1Σ symmetry, the Renner-Teller effect couples σ and π partial waves 4 of the

incident electron with vibrational bending motion of the target molecule.

Due to the symmetry of the bending mode, all matrix elements Sl′λ̃ ′,lλ̃ are symmetric or antisym-

metric with respect to the change of the sign q1 → −q1 of the displacement along the bending

mode. The elements, which are symmetric, such as diagonal elements and some non-diagonal, do

not contribute to the vibrational excitation by one quantum of the bending mode. For an element

Sl′λ̃ ′,lλ̃ to be antisymmetric with respect to the q1 → −q1 operation, one of λ̃ ′ and λ̃ should be

negative with the other one to be positive or zero. In addition, there is a selection rule on the ele-

ments that do not vanish: For displacements along q1, both spherical harmonics in Sl′λ̃ ′,lλ̃ should

be of a′ or a′′ irreducible representations 5 of the Cs symmetry group (of the bent molecule). Fig-

3The coupling between adiabatic electronic states computed in the Born-Oppenheimer approximation is often
called non-Born-Oppenheimer coupling as well as non-adiabatic coupling. The two terms are almost equivalent but the
term “non-adiabatic” is somewhat more general and may refer to the coupling between states different than electronic
states obtained in the Born-Oppenheimer approximation.

4We denote both the π−π and σ −π couplings as Renner-Teller couplings, whereas in some other studies, only
the former is denote by this term.

5The symmetric and antisymmetric with respect to reflection in a plane containing the molecular axis is denoted
by single and double primes.
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Figure 4.7: Largest fixed-nuclei S-matrix elements as a function of the bending coordinate q1,
computed for scattering energy 0.26 eV. The upper (lower) panel shows the real (imaginary) part
of the S-matrix elements. Couplings l′λ̃ ′← lλ̃ between different partial waves, represented by real
harmonics Yl,λ̃ , are labeled by curves of different colors.

ure 4.7 shows largest (in magnitude) antisymmetric S-matrix elements as a function of the bending

coordinate.

In Fig. 4.7, we see that the most of the elements are linear with the q1 coordinate with a notable

exception of S1−1,00, which has a strong cubic dependence q3
1. We attribute the significant cubic

contribution to the coupling to the fact that the sσ partial wave penetrates closer to the N2O core

electrons such that the linear approximation for the coupling between the Y0,0 and Y1,−1 harmonics

is not valid any more and higher terms, if a Taylor expansion is used to represent the coupling, are

needed.

The linear dependence of the coupling between partial wave components in a linear molecule
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for small displacements along the bending coordinate 6 is one of the main characteristics of the

Renner-Teller effect (more details can be found in Equation (1) of Ref. [136]). The effect can not

be easily observed in e−-N2O scattering experiments, but it manifests itself in the bound states of

e−-N2O system: Due to the degeneracy of the 2Π electronic state of the e−-N2O complex and the

degenerate bending mode of N2O, the relatively strong Renner-Teller coupling results in a bending

configuration of the equilibrium geometry of the N2O− anion [141, 142].

4.4 Cross Sections And Rate Coefficients

We calculated vibrational (de-)excitation cross sections for transitions between the ground and

first excited vibrational states for each of the normal modes. Figure 4.8 displays the comparison

of the theoretical 1← 0 VE cross sections with the available experimental data [121, 122, 129],

mentioned in the introduction. All three experimental data do not resolve the ν2 = 1/ν1 = 2 and

ν3 = 1/ν2 = 2 thresholds, i.e. the experimental cross section for the excitation of the NO mode

(ν2 = 0→ 1) includes also a contribution for the transition ν1 = 0→ 2, and the cross section for

the excitation of the NN mode includes a contribution for the ν2 = 0→ 2 transition. But these

additional contributions are expected to be significantly smaller due to the vibrational propensity

rule: The transitions with a change of only one vibrational quantum are the largest. There is a

significant disagreement between the experimental data, up to a factor of 20-50 for certain energies.

On the other hand, the theoretical results also don’t agree better with one or another experiments:

For the NO stretching mode (panel b), the theory agrees better with the experiment by Hayashi

[129]. For the bending mode (panel a), the theory agrees better with the two other experiments,

although the agreement is quite poor. Finally, for the NN stretching mode (panel c), the theory

6With this choice of the quantization axis z (see Figure (4.2)), under the transformation q1 → −q1 the angle φ

changes sign and, correspondingly, sinφ →−sinφ and cosφ → cosφ . As a result, only the scattering matrix elements
Sl′λ̃ ′,lλ̃ , in which the product of real spherical harmonics Yl′λ̃ ′Ylλ̃ changes sign under q1→−q1, are linear with q1 in
the lowest order.
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Figure 4.8: Comparison of the present theoretical results with available experimental cross sections
for the vibrational vi = 0→ v′i = 1 excitation of the (a) bending, (b) NO stretching, and (c) NN
stretching modes. The experimental results are taken from Hayashi [129, 130] (solid line with
circles), Allan and Skalicky [121] (solid line with triangles), and Nakamura [122] (dashed-dotted
line).

agrees better again with the data by Hayashi [129].

In a recent review article [130], the swarm data by Nakamura [122], shown by the dashed-dotted

lines in the figure, were recommended as the most accurate one among the available experimental

cross sections. However, it should be stressed that the recommended swarm data may not be very

accurate because of an ambiguity in the interpretation of the swarm data [122] (see the discussion

in Sections 3.3 and 3.5 of Ref. [130]). Therefore, the recommended experimental data should have
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Figure 4.9: Thermally-averaged rate coefficients for (de-)excitation transitions between the ground
and first excited vibrational states of the bending mode (blue curves), NO stretching mode (black
curves) and NN stretching mode (red curves). Vibrational (de-)excitations are labeled by νi

′← νi.
To give an idea of the uncertainty of the present results, we also plotted the results of calculations
with Model 2 (dotted lines) and Model 3 (thin lines). The three calculations produce curves which
are almost indistinguishable in the figure.

a relatively large uncertainty and could be improved in a future in a more accurate experiment.

The present theoretical cross sections are expected to be valid only for energies below the energy

of the 2Π resonance mentioned above, i.e. below 2.3 eV.

Thermally averaged rate coefficients ανi′νi (T ) for vibrational excitation are obtained from the cross

sections of Equation (2.55) using the standard formula (2.62). The computed rate coefficients are

shown in Figure. 4.9 with different color. For a convenient use in plasma models, the computed

coefficients were also fitted using the analytical formula (3.3), (3.4) and (3.5) employed in Chapter

3. The numerically fitted parameters for vibrational (de)-excitation are given in Table 4.2. When
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Table 4.2: Parameters a0, a1 and a2 of the polynomial P f it
νi′νi

(x) in Equation (3.3) and (3.4) for
transitions between the ground and first vibrational states in each normal mode. We specify the
excitation threshold energies ∆νi′νi of Equation (3.5) in the second column. The threshold ∆νi′νi = 0
for de-excitation process.

1↔ 0 ∆νi′νi(K) a0 a1 a2

Bending 885 1.37×10−8 −2.50×10−11 4.40×10−12

NO stretching 1888 1.22×10−7 6.60×10−11 −3.14×10−11

NN stretching 3316 4.34×10−7 7.42×10−10 −5.20×10−10

the parameters given in the table are used in the fitting formulas of Equation (3.3) and (3.4) with

temperature in kelvin, the obtained numerical values of rate coefficients will be in units of cm3/s.

4.5 Uncertainty Estimation

Similar to Section 3.4, we have performed a number of calculations to assess the uncertainty of the

obtained theoretical results for N2O molecule. There are two main sources of uncertainty in the

present theoretical approach. The first one is the accuracy of the fixed-nuclei S-matrix elements

computed for the polar molecule (with a small dipole moment) in the limited basis of spherical

harmonics. It has been previously discussed in Section 3.4. The uncertainty associated with this

approximation was estimated to be of the order of 6 % for NO2 in Chapter 3. It should not be

larger for N2O because it has a smaller dipole moment so that the couplings between partial waves

induced by the permanent dipole moment of this molecule has a weaker effect on the final cross

sections. Therefore, it is reasonable to assume that the corresponding uncertainty in the present

case is below 6 %.

The second source of uncertainty is from the particular scattering model used in the calculation.

The uncertainty can be assessed by performing a complete calculation with different parameters of
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the model. With parameters discussed in Section 4.2, referred as Model 1, we obtained the results

shown above. In the second calculation with Model 2, the CAS in the configuration calculation is

the same as in Model 1 but a larger basis set cc-pVQZ was used. Finally, in Model 3 calculation the

electronic basis set is kept cc-pVTZ, but the CAS is reduced compared to Model 1: 12 electrons

were placed in frozen orbitals and remaining 10 electrons in the lowest orbitals were allowed to be

freely distributed in the active space (see Table 4.3).

Table 4.3: The explicit characteristics of different Models used in uncertainty estimation for N2O.
The second row is the basis sets. The numbers on the left side hand in parentheses indicate the
number of active electrons. The numbers on the right side hand in parentheses indicate the number
of active orbitals. For example, Model 1 means that the calculation is carried out using cc-pVTZ
basis set and the CAS is 12 electrons are kept free in 10 active orbitals.

Model 1 Model 2 Model3
cc-pVTZ cc-pvQZ cc-pvTZ

CAS(12e,10o) CAS(12e,10o) CAS(10e, 8o)

The rate coefficients obtained in the three models are shown in Fig. 4.9. The difference in the rate

coefficients produced in the three models is about 6 %. Consequently, the overall uncertainty of

the present theoretical result is estimated to be below 12 %.

4.6 Conclusions

In this chapter, we computed cross sections for vibrational (de-)excitations of N2O by a low-energy

electron using our developed model in Chapter 2: (1) the normal mode approximation describing

the vibrational states of the target molecule, (2) the R-matrix method evaluating the fixed-nuclei

electron-N2O scattering matrices, and (3) the vibrational frame transformation to evaluate ampli-

tudes for vibrational transitions. In this approach, we neglected the rotational structure of each

vibrational level, which corresponds to the situation where rotational structure is not resolved in
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the initial and final states of the target molecule.

The computed results show a reasonable agreement with experimental data for NO and NN stretch-

ing modes. For the bending mode the agreement is rather poor at energies above 0.4 eV. It was

found that the Renner-Teller coupling is responsible for the excitation of the bending mode, as it

was expected from general theoretical considerations. We are quite confident about the present

theoretical cross sections for the bending mode because the numerical calculations of fixed-nuclei

scattering matrix fit well to the theory of Renner-Teller coupling.

It should be stressed here that the most reliable experimental cross section for the bending mode by

Nakamura [122, 130] is obtained from swarm data and a direct measurement of differential cross

section at a single scattering angle by Allan and Skalicky [121] and, therefore, may have a large

uncertainty. This suggests that a better direct measurement of vibrational excitation in N2O, at

least, for a few energies is needed.
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CHAPTER 5: DISSOCIATIVE ELECTRON ATTACHMENT OF NO2.

In low-energy electron–molecule collisions, dissociative electron attachment (DEA) is another

dominant inelastic process which is in competition with rotational excitation and vibrational exci-

tation that we studied in Chapter 3 and 4. As discussed in Chapter 1, DEA of NO2 is important

in depollution of combustion since it is an efficient process to remove the unwanted pollutant

molecule by fragmenting it (the neutral toxic molecule) into neutral and charged fragments. How-

ever, the theoretical description of this process is still an extremely challenging task. In this chap-

ter, we use a theoretical approach based on the Bardsley-O’Malley theory combined to the normal

mode approximation of the target in order to estimate the DEA cross section for NO2 with mod-

est computational efforts. The obtained cross section agree with the available experimental results

qualitatively. The quantitative discrepancy at the lowest resonance will be reserved for future study.

5.1 Introduction

Dissociative electron attachment of polyatomic molecule is represented symbolically by Equation

(1.4) in Chapter 1. Generally, DEA can be described as a two-step process. Step one entails the

resonant capture of a free electron by the molecule AB leading to the formation of a complex

negative ion AB−∗. Step two concerns the decay of this negative ion via either electron ejection

or dissociation into neutral and negative ion fragments. The latter channel is termed DEA. The

products from DEA could take part very efficiently in various chemical processes leading to a

wide variety of applications.

Due to the fact that the anionic product from DEA can be detected with standard mass spectrome-

ter, DEA has been studied extensively in experiments. Experimental studies of DEA to molecules
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from the size of diatomic molecules up to the size of bio-molecules were reviewed in Hotop et

al. [143] and Fabrikant et al. [144]. Common experimental techniques for DEA are briefly men-

tioned here. Details can be found in Hotop et al. [143], Fabrikant et al. [144] and references

therein. The electron beam used in DEA experiments is commonly produced from hot filament

or photoionization. The beam is then crossed with molecular beam or stagnant gas target. The

anionic products from DEA are then collected and analyzed in a time-of-flight mass spectrome-

ter. Absolute DEA cross section can be obtained if the spectrometer is coupled with a trochoidal

electron monochromator [145]. In addition, if the molecular beam has a well-defined profile, the

absolute cross section can be obtained using the relative flow technique [146].

Apart from measuring the absolute cross section, it is of physical interest to study the velocity

map of anionic products from DEA. From the velocity map, one can obtain the kinetic energy and

angular distribution of the products, thereby understanding the dynamics of DEA. The velocity

map imaging is achieved by the combination of time-of-flight spectrometer and position-sensitive

detector [144], and its implementation to DEA experiments was first done by Krishnakumar and

co-workers [147].

As mentioned in Chapter 1, NO2 is known as an industrial pollutants and controlling its emission is

crucial for protection of the environment. Since DEA of NO2 is identified as one of the underlying

mechanism for NO2 removing using non-equilibrium plasma, it has been studied experimentally

by many groups. It was found that the DEA leads to the production of O−, NO− and O−2 and that

the production peak of NO− and O−2 in comparison to O− is more than two orders of magnitude

smaller. Fox [88] reported O− ion peaks at 1.9 eV, 3.0 eV and 8.75 eV. He assigned the 8.75 eV

peak as due to impurities like NO or H2O. Rallis and Goodings [148] reported O− ion peaks at 3.0

eV and 8.1 eV. Abouaf and Fiquet-Fayard [149] reported that O− produced with NO (X2Π) in the

first peak is due to dissociation of NO− in the 1B1 resonant state. Rangwala et al. [89] measured

absolute cross section of O− from DEA of NO2 and compared it with that of O3. They observed

86



three main peaks at 1.4 eV, 3.1 eV and 8.3 eV in the O− channel. The cross section at 1.4 eV peak

is 1.02×10−17cm2. They noted that the peak positions in DEA cross sections of NO2 and O3 are

similar. From these similarities they concluded that shape resonance mechanism is dominant at the

first peak, however at higher energies core excited shape resonance and Feshbach resonance may

contribute.

Even though a notable advancement in DEA experiments of NO2 has been obtained over the last

decades, theoretical development for DEA of this molecule is sparse. In fact, even for diatomic

molecules such as Cl2 and O2, obtaining an accurate ab-initio DEA cross section is a very chal-

lenging task [150], not to mention the case of polyatomic molecules. The full-scale treatment

of polyatomic molecules is unlikely in the near future due to the multi-dimensional nature of the

problem. To the best of our knowledge, theoretical values are not available for NO2. Thus, more

effort is needed for searching a simplified approach to provide estimations on DEA cross sections

for NO2 molecule.

Following the introduction. the theoretical approach used in the present DEA calculation will be

presented in the next section. In Section 5.3, the obtained results are discussed. The concluding

remarks are given in Section 5.4.

5.2 Resonance Calculation And Theory of Resonant Capture

Following the discussions of introduction, it was found that the DEA to NO2 gives O− as the

dominant ion with peaks at about 1.6 eV [89, 151]. The process will be studied here is therefore

the following one, [90]

NO2(X2A1)+ e−→ NO2
−∗(1,3B1)→ O−(2P)+NO(X2

Π). (5.1)
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Figure 5.1: Schematics of DEA of NO2(X2A1) depicting the break up channel O−(2P) +
NO(X2Π). The graph shows the molecular potential energy curves as a function of the normal
coordinate introduced in Section 2.1.3 (the reason why the abscissa is q2 will be discussed below).
The neutral molecule captures an incoming electron with a certain kinetic energy (red arrow) and
the system forms a temporary negative molecular ion NO2

−∗(1,3B1) that eventually dissociates.
It should be noted that the NO2

−∗(3B1) and NO2
−∗(1B1) states have the same dissociation lim-

its. qε denotes the Frank-Condon point. qE denotes the classical turning point and qs denotes the
stabilization point. E is total energy and ε is incident energy. The nuclei wave function ξ (q2)
and η2(q2) of NO2

−∗(3B1) and NO2(X2A1) are illustrated by the green and black dotted curves
respectively.

This process can be illustrated schematically by the potential energy curves in Figure 5.1. The

black solid curve and green solid (dashed) curve represent the potential energy curves of NO2(X2A1)

and NO2
−∗(3B1) (NO2

−∗(1B1)) respectively. The black horizontal line indicates the ground vibra-

tional state of NO2(X2A1) where the process might start (the zero-point energy of NO2(X2A1)).

The vertical red arrow indicates the electronic capture process, i.e., the electron attaching to

NO2(X2A1) at a specific incoming electron energy to form a temporary negative ion NO2
−∗(3B1)

(the nature of this intermediate state will be discussed below). The following red arrows indicate

the dissociation path, when the temporary negative ion finds itself in a dissociative state leading
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to the breakdown of the molecule. When the molecule has a normal coordinate larger than the

position of the crossing point qs between the potential of NO2 and NO2
−∗, autoionization (that is,

re-emit the incoming electron) is no longer energetically possible. The dissociative state become

bound and stable and will then continue to dissociate into the fragments O−(2P)+NO(X2Π). For

this reason the crossover point qs is often called the stabilization point.

The metastable intermediate state NO2
−∗(1,3B1) mentioned above are called resonance states. The

energy of the resonant anionic state relative to the neutral state of the molecule (the length of the

vertical red arrow) therefore corresponds to the resonance energy. Generally, the DEA cross section

σDEA can be written as the product of the cross section σc for the formation of this resonance state

and the “survival probability,” S f , i.e., the probability that the resonance NO2
−∗ state will decay

by dissociation rather than by autoionization, viz.,

σDEA = σcS f . (5.2)

The separation of the cross section into two independent factors describing the formation and dis-

sociation of the intermediate resonance state as Equation (5.2) is extremely useful for a qualitative

analysis of the DEA process [152–154].

In order to determine the capture cross section σc and survival probability S f of Equation (5.2), the

location (energy) and width of resonances are essential parameters. We employed the UK R-matrix

code in Quantemol-N suite to compute these parameters. We first calculate the reaction matrix K

mentioned in Section 2.2.2, then diagonalize it. Next, the eigenphase is extracted and summed over

all different partial waves according to Equation (2.49). The derivative of the eigenphase sums is

then fitted to the Breit-Wigner form

dδ

dε
= ∑

i

Γi/2
(E−∆i)2 +(Γi/2)2 (5.3)
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Figure 5.2: The derivative of the eigenphase sums (for NO2 + e− system) with respect to elec-
tron scattering energy for 3B1 (red curve) and 1B1 (blue curve) symmetries at equilibrium. The
maximum of the derivative is used to obtained the width of the resonance according to Equation
(5.4).

where ∆i and Γi are the ith resonance energy and width. For isolated resonances, one can locate the

resonance energies ∆i from the peaks of the derivative (see Figure 5.2) and calculate the widths by

Γi = 2

(
dδ

dε

∣∣∣∣
∆i

)−1

. (5.4)

From Figure 5.2, it is clear to find that the resonance width is the full width at half maximum

(FWHM) of the peak. At electron energy below 4 eV, and at equilibrium geometry, we found two

shape resonances (NO2 + e− system) which are usually appear as broad peaks in the eigenphase

sum as a function of energy; 3B1 (∆ = 1.65 eV, Γ = 0.11 eV) and 1B1 (∆ = 2.93 eV, Γ = 0.25

eV). As mentioned in Equation (5.1), these two resonance can lead to dissociation to O−(2P)+

NO(X2Π).
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Figure 5.3: The capture coordinate determination. Only q2 normal coordinate is relevant for elec-
tron capture process.

We then computed the resonance energy ∆ over different normal displacements to determine the

capture coordinate, as shown in Figure 5.3 (a). We can find that for q1 (bending mode) and q3

(asymmetric stretching mode), resonance energy ∆ at negative and positive displacement are equal.

It implies that the resonance energies depend at least quadratically on the normal displacement near

the equilibrium, thus they are almost flat. The variation of ∆ over q2 is in a linear behavior, which
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strongly suggest that only q2 coordinate is responsible for electron capture. For a more visually

picture, we roughly plot the potential energy surface of NO2(X2A1) and NO2
−∗(3B1) over each

normal mode in Figure 5.3 (b), (c) and (d). According to Figure 5.1, we found that to obtain

the potential energy of the resonant state, the neutral state has to be added to resonance energy.

Since the resonance energies for q1 and q3 are almost constant, the potential energy surface of

NO2
−∗(3B1) over q1 and q3 obtained by adding the constant energies to PES of NO2(X2A1) is

almost parallel to NO2 PES (see Figure 5.3 (b)). Clearly, the potential energy surfaces can only

cross in the q2 dimension (see Figure 5.3 (b) and (d)) which gives the capture behavior as shown

in Figure 5.1.

Since only one coordinate is responsible, no transformation is needed as in paper [29] 1. The

equation for the metastable nuclear wave function ξ (q2) is then

[
−h̄ω2

2
d2

dq2
2
+Ud(q2)−

iΓ(q2)

2
−E

]
ξ (q2) =

√
Γ(q2)

2π
ην2(q2), (5.5)

Ud(q2) =
1
2

h̄ω2q2
2 +∆(q2), (5.6)

where Ud is defined as the potential energy curve of NO2
−∗ (green solid curve in Figure 5.1) ob-

tained by adding the resonance energy to the potential energy of NO2 in Equation (2.16) with

dimensionless normal coordinate. The nuclear wave function of NO2
−∗(3B1) state, ξ (q2), as il-

lustrated in Figure 5.1 with green dashed curve is an Airy function. It is largest near qE , oscillates

rapidly for q2 > qE , and decreases exponentially as q2 is decreased from qE . qE is the classical

turning point, at which the potential energy of NO2
−∗(3B1) state, Ud , is equal to the total energy E

(E is the sum of zero-point energy for frequency ω2 and energy of the scattering electron ε , namely

1There are 6 different normal modes for the molecule investigated in Ref. [29], two normal coordinates are related
to capture process. Thus a transformation is needed to obtain the capture coordinate.
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E = h̄ω2
2 +ε). ην2 is the initial wave function of NO2 nuclei. Since the width of the resonance Γ is

in the order of 0.1 eV, autodetachment is non-negligible. Thus, the survival probability, against au-

todetachment has to be included in DEA calculation. Using the WKB approximation, the survival

probabilities S f can be explicitly written as [155–157]

S f = exp
(
−1

h̄

∫ ts

tE
Γ(q)dt

)
= exp

(
−
∫ qs

qE

Γ̃(q)
υ̃(q)

dq
)
, (5.7)

where Γ̃ = Γ/(h̄ω2). υ̃ is the relative velocity of separation of the dissociating fragments O−(2P)

and NO(X2Π), υ̃(q) =
√

2 [(E−Ud(q))/(h̄ω2)]. The integration is extended over the region be-

tween the Frank-Condon point qε (the point at which the difference between the potential curve

for NO2
−∗(3B1) and NO2(X2A1) is equal to the incident energy ε) and the stabilization point qs

(see Figure 5.1). The cross section for dissociative attachment, Equation (5.1), is then given by

σDEA(ε) = g
2π2

k2
Γ(qε)∣∣U ′
d(qE)

∣∣ |ην2(qE)|2 S f , (5.8)

where k is the wave number of incident electron and g is the spin statistical ratio (g = 3
4 for

NO2
−∗(3B1), g = 1

4 for NO2
−∗(1B1)). In order to evaluate this expression, one needs to know

four things: the capture width Γ(qε), the exact positions of the classical turning point qE , the slope

of the repulsive potential energy curve U
′
d and the initial nuclei wave function of target ην2(qE).

5.3 Results and Discussion

In order to obtain those parameters in Equation (5.8), we display the resonance energy ∆ of

NO2
−∗(1,3B1) and the potential energy curve Un of NO2(X2A1) along q2 obtained from Quantemol-
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Figure 5.4: The anionic potential energy Ud (green curve), neutral potential energy Un (black
curve) and 3B1 resonance energy ∆ (circles) ( 1B1 in squares) and its linear approximation (red
straight line) along q2 for NO2 at q1 = q3 = 0. The first excited electronic state of NO2 (pink solid
curve) obtained from Quantemol-N is also displayed in this figure. It indicates the DEA process is
carried out below the first excited state of the target molecule.

N in Figure 5.4. The red line shows the first order approximation of ∆(q2),

∆(q2)≈ ∆(0)+
d∆

dq2
(0)q2. (5.9)

The potential energy Ud of NO2
−∗(3B1) is obtained by

Ud(q2) =Un(q2)+∆(q2). (5.10)

The slope term in Equation (5.9) is therefore the derivative of U
′
d at equilibrium. The ην2 is the

ground vibrational wave function of NO2 as expressed in Equation (2.20). The classical turning

point qE is obtained by solving the Ud(qE) = E. The potential energy curve of NO2 and NO2
−

cross to each other around qs = 3.7. The stabilization point is far from the Frank-Condon region.

94



-1.2 -0.8 -0.4 0 0.4 0.8 1.2
q

2

0

0.1

0.2

0.3

0.4

Γ
 

1
B

1

3
B

1

Figure 5.5: The width of the 3B1 (red crosses) and 1B1 (blue triangles) resonances against its
position with different values of q2 for NO2 at q1 = q3 = 0. Straight lines are the corresponding
fitting part using Equation (5.9)

However, the classical turning point qE starting at -1.5 is within the range of the nuclear vibrations

in the initial neutral state. The capture process can clearly occur in this molecule in a well-defined

region of normal coordinates, thereby our approach is justified. The formation of NO2
−∗ is most

likely to occur when the normal coordinate is close to the Frank-Condon point obtained by solving

∆(qε) = ε . At this point electron capture can occur without any simultaneous transfer of energy

into nuclear motion. We therefore show the effective width against its position with different values

of q2 in Figure 5.5. As discussed in paper [29], the effective width is related to the resonance energy

∆(qε) which can be fitted by electron energy ε to enforce the threshold behavior. In the present

case, the effective width can be fitted as

Γ(qε) = α

[
∆(0)+

d∆

dqε

(0)qε

]β

, (5.11)
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Figure 5.6: The calculated survival probability of the 3B1 (red curve) and 1B1 (solid curve)
resonances with respect to electron scattering energy.

since the electron energy is set to equal the resonance energy in our approach. α and β are fitting

coefficient. As we offset the resonance energy, the effective width will be zero at the crossing point

between the anionic and neutral potential.

With all the necessary quantities in hand, we can obtain the survival probabilities S f as plotted

in Figure 5.6 and the DEA cross section of Equation (5.8) is shown in Figure 5.7. The first peak

value of the cross section in the present study is 2.655× 10−16 cm2 at 1.49 eV. It is about 26

times of magnitude larger than the cross section measured by Rangwala et al. [89]. The deviation

could be explained by the fact that the existence of potential barrier in the dissociation pathway

O−+NO, such that there is reflection of the outgoing flux from the barrier causing significant

increase of the cross section. If we can compute the potential energy curve of NO2
− and then

estimate the tunneling probability, the DEA cross section results may be improved. However, the

peak location is only about 3.5% different from the experiment by Rangwala et al. [89], which
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is within their uncertainty. In addition, an onset of the calculated cross section can be seen from

Figure 5.7 which represents the threshold energy at which O− ions start to form. The O− cannot be

formed at 0 eV as DEA of NO2 is an endothermic process, such that there is an activation energy.

The threshold energy in experiment is 1.65eV. It is determined by the ON-O bond dissociation

energy (DON−O = 3.11 eV) and O electron affinity (EAO =1.46 eV). The electron affinity of an

atom or molecules is the energy released when the extra electron is detached from a singly charged

negative ion. The calculated threshold energy is 1.42 eV (Eth = 1.65− h̄ω2
2 ) which agree with

the experimental data well. The threshold energy of cross section by Rangwala et al. [89] is

much lower than 1.65 eV due to the finite energy resolution of the electron beam and limitation

in calculating the average initial kinetic energy from FWHM of the peak with fairly Gaussian

shape [147]. The position of the second peak at 2.9 eV observed by Rangwala et al. [89] and

Nandi et al. [147] at 3.0 eV was also well reproduced in the present study. But the magnitude of

the cross section is still 6 times larger than the experiments by Rangwala et al. [89].
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5.4 Conclusion And Further Works

To summarize, we calculated the DEA cross section of NO2 using an ab− initio method based on

the Bardsley-O’Malley theory [152, 154, 155] proposed for diatomic molecules and generalized to

polyatomic molecules by Chi Hong Yuen et al. [29]. Survival probability can be implemented to

compute DEA cross section in the present model. The peak location and threshold energy have a

good agreement with experiments which implying the simplified approach capture partial physics

of DEA. It thus encourages study of other similar systems such as SO2 and N2O using the same

approach. But more information is needed for the potential energy surface of NO2
− to enhance the

DEA cross section. Potential energy surface calculation is computationally expensive and will be

reserved for future study. Despite many works will be required to improve the present model, our

approach can still provide an idea of the DEA cross section when other more accurate approach

are computationally expensive or not available.
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CHAPTER 6: CONCLUSION AND PERSPECTIVES

In this thesis, we present theoretical studies of electron-induced vibrational excitation of NO2

(Chapter 3) and N2O (Chapter 4). It is the most important process for nitrogen oxides con-

taining plasma kinetic modeling. The dissociative electron attachment which is the competitive

process of vibrational excitation is also investigated in this thesis for NO2 molecule (Chapter

5). The purpose of this work is to develop a theoretical formulation for this process for an ar-

bitrary polyatomic molecule, and to understand the mechanism of depollution procedure using

non-equilibrium plasma technology, because DEA is considered to be a major route to NO2 pol-

lutant molecular break-up in cool plasma. A brief summary of the results chapter by chapter is

given below followed by conclusions for the individual quantities calculated. Finally a discussion

of future work is given to conclude.

Cross sections for the vibrational excitation of NO2 between the lowest vibrational states were cal-

culated for all the normal modes (Section 3.2 and 3.3). The theoretical approach applied for cross

section calculation can be summarized as following. We start by characterizing the molecular

target ( Section 2.1) according to its important physical properties such as equilibrium geometry,

permanent dipole moment and vibrational frequencies using the MOLPRO procedure. The corre-

sponding outputs will be used in the scattering part. We performed an R-matrix theory calculation

(Section 2.2.2) to obtain the scattering matrices for different molecular geometries along the vi-

brational normal mode coordinates. We then transform the fixed-nuclei S-matrix into the basis of

vibrational states of the target molecule (Section 2.2.3). Finally, we compute the vibrational (de-)

excitation cross sections from the transformed scattering matrix. The VE cross sections for NO2

was reported for the first time. Therefore, the uncertainty estimation was performed to validate the

present theoretical approach. The uncertainty may arise from varying parameters of the computa-

tional model such as a chosen Gaussian basis set, the size of the R-matrix box, and other parameters

99



of the model. Uncertainties for some intermediate quantities were shown and discussed to give an

idea about the convergence of our results (Section 3.4). Thermally averaged rate coefficients are

computed for temperatures in the 10-10000 K range.

Cross sections for the vibrational excitation of N2O between the lowest vibrational states were

calculated for all the normal modes (Section 4.2 and 4.3). The calculation was carried out using

the similar approach applied to NO2. It was found that the non-adiabatic Renner-Teller effect,

which couples partial waves of the incident electron with degenerate bending vibrations of N2O,

is responsible for the excitation of the bending mode. The obtained theoretical results for NO

stretching and NN stretching mode agree reasonably well with available experimental data at low

energies. Thermally averaged rate coefficients were also computed for temperatures in the 10-

10000 K range.

For NO2 and N2O, the obtained cross section and rate coefficient of vibrational excitation should

be viewed as averaged over initial rotational states and summed over final rotational states of the

corresponding initial and final vibrational levels. The obtained thermally-averaged rate coefficients

are relevant for the kinetic modeling of molecule based cold non-equilibrium plasma, in the context

of a complete lack of other theoretical or experimental data on these processes for these molecules,

and are ready to be used in the modeling of plasma for depollution processes. The thermally-

averaged rate coefficients were all thus fitted by analytical form for convenient use in plasma

modeling.

Besides the vibrational excitation, there is a probability for DEA process (Chapter 5) occurring at

collision energies of the incident electron below the first excited state of the target molecule. This

process was therefore a necessary part in the present thesis to understand more of the dynamic

within the NO2 containing plasma. We started from the method based on the Bardsley-O’Malley

theory developed for diatomic molecules and generalized to complex polyatomic molecules by Chi
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Hong Yuen et al. The resonance parameters obtained in R-matrix calculation for VE of NO2 was

directly set as the input for DEA cross section calculation. Our cross sections were compared with

experimentally measured of this reaction. However, the magnitude of cross section calculated in

this thesis is 26 times larger than the experimental result. The reason may attributed to the exis-

tence of the potential barrier on the potential energy surface of the NO−∗2 after the crossing point.

If we can determine the location and height of the potential barrier, and compute the tunneling

probability according it, there is a chance to improve the present DEA result.

Therefore, computing the potential energy surface of NO2 and NO−2 will be the future work to

try to improve our DEA results. In addition, extending the approach applied in vibrational ex-

citation to vibronic excitation 1 for N2O is also a meaningful proposal for the future work since

the corresponding experiment results are available and this process is also necessary in N- and O-

containing plasma modeling. Electronic structure calculation for the excited state should be the

first step. Scattering calculation of the excited state along normal coordinates will be a challenging

work in vibronic project. A theoretical approach combined with vibronic frame transformation

used in Ref. [158] can be applied to the vibronic excitation of N2O.

1The excitations between vibrational levels of different electronic states.
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APPENDIX A: Quantemol-N

Quantemol-N is menu driven by a series of panels:

Panel 1: Molecule Definition

In this panel, we can write the target molecular formula in accordance with the standard way or

select the corresponding elements from the periodic table.

Panel 2: Set Isotope

Panel 3: Coordinate Entry

This panel deals with the target geometry. The Cartesian position vectors of the constituent atoms

are entered into the table in Angstroms. Rotation operation on the right of the panel can be used to

adjust the molecular point group. Note that the center-of-mass frame are adopted in the R-matrix

calculation. Namely, the origin of the input coordinate of the target molecular ion should locate at

the center of mass of the target. To make sure that the origin is put at the center of mass, we just

need to click the button "move to the center of mass" in this panel. While for MOLPRO, it doesn’t

matter since the origin will be automatically moved to the center of mass. The obtained potential

energies are the same and only behavior as a function of normal coordinates.

Panel 4: Symmetry Definition

By clicking on the point group menu in panel 3, the point group symmetry operations are imposed

on the molecule. The symmetrically equivalent atoms must be selected also in order to proceed.

Panel 5: Electronic structure

We can supply the ground state configuration of the target molecule in this panel.

Panel 6: Target Model

This panel deals with the assumptions of the quantum chemistry method and basis set used to

represent the target wavefunctions. The basis set is selected usually from the library supplied with

the software. Another option is available to import other basis sets in supermolecule format from
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EMSL [159]. The number of atomic symmetries in the bottom of this panel means that how many

kinds of GTO functions are used in the calculation. Please note that the Quantemol-N module only

interprets up to g functions.

Panel 7: Scattering Parameters

This panel deals with the outer region calculation. The number of target states to be included in

the calculation can be altered here. Choosing the total number states as zero here means that all the

electronic states below the cut-off energy will be taken into account. The ‘CAS Virtuals’ option

requires us to select additional orbitals to construct the complete active space (not the number of

all the active orbitals ). The R-matrix interaction radius, default 10 a0, and the energy grid, default

setting 0.1 eV to 10 eV in steps of 0.02 eV, all of which may be set here.

Panel 8: Additional Functionality

This panel allows us to decide whether to run additional modules to give extra data such as DEA

cross sections and high-energy cross sections.

Panel 9: Advanced Settings

Virtual orbitals and frozen orbitals (occupied-open) can be set at this panel. In addition, the HFSCF

and MCSCF orbitals generated by MOLPRO can also be imported in the R-matrix calculation by

clicking the related options on the right of this panel. Options ’Open Orbs ’ and ’Valence Orbitals’

respectively refer to the open orbitals and CAS virtuals defined before. ’States’ means the state

average.

Panel 10: Review Calculation

The last panel gives a summary of the previously set parameters which must be saved in order to

proceed with the R-matrix calculation

Quantemol-N generates vertical excitation energies, graphs of eigenphase sums, inelastic cross

sections, BEB ionization cross sections and rate coefficients. Resonances are automatically fitted

to yield their parameters. The data are saved to simple text files to facilitate further analysis.
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Common error exits in Quantemol-N

Error 38 means that there is no enough space in the hard disk. It can be resolved by deleting the

‘qntmp’ folder.

Error 64 means that some problems occurred while rearranging the data to be displayed on the

computation end panel. It doesn’t matter if this error occurs because all the data will be used for

further analyzing has already been saved in the ‘results’ and ‘matrices’ folders.

Error174 means that the chosen CAS is too big.

Error 62 is coming when there are excited states near to the energy of the scattering electron.

In ions in particular, there are low lying excited states, and when you get near to a threshold of

an excited state there can be an infinite number of resonances which leads to instabilities in the

R-matrix codes. This problem can be solved by using the small electron scattering grid such as

0.001 eV and decreasing the finishing energy to avoid the resonances that are currently causing the

instabilities. Another suggestion is to increase the propagation distance such as 500 a0 - something

that has to be done manually in the input files.
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APPENDIX B: Gauss–Legendre quadrature

Gauss-Legendre quadrature technique is a numerical integration technique in which the definite

integral of a function can be stated as a weighted sum of function values at specified points within

the domain of integration: ∫ 1

−1
f (q)dq =

n

∑
i=1

wi f (qi). (B.1)

Here, qi is the Gauss node (the ith root of Legendre polynomials Pn
1) and its weight wi is given by

wi =
2(1−q2

i )

[nPn−1(qi)]
2 , (B.2)

where the Legendre polynomials can be defined via the recursive relation

Pn+1(q) =
2n+1
n+1

qPn(q)−
n

n+1
Pn−1(q). (B.3)

Fortunately, the roots of the Legendre polynomials and their corresponding weights have been

extensively tabulated, so we can simply use these tables (such as Table B.1) without redoing the

calculations. The only issue to be careful about is that the tabulated values were computed by

taking [−1,1] as the integration interval, whereas in any given problem the integration interval

may not be [−1,1]. Therefore we need to transform the tabulated values to analogous values on a

general interval [a,b]. This is done through the following change of variable:

−1≤ q̃ < 1↔ a < q≤ b, (B.4)

1The first few are P0(q) = 1,P1(q) = q, P2(q) = 3
2

(
q2− 1

3

)
, P3(q) = 5

2

(
q3− 3

5

)
and P4(q) = 1

8

(
35q4−30q2 +3

)
.
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if
q̃− (−1)
1− (−1)

=
q−a
b−a

, (B.5)

so that

q =
b−a

2
q̃+

a+b
2

, (B.6)

∫ b
a f (q)dq =

∫ 1
−1 f

(b−a
2 q̃+ a+b

2

) dq
dq̃dq̃

=
∫ 1
−1 f

(b−a
2 q̃+ a+b

2

) b−a
2 dq̃

= b−a
2
∫ 1
−1 f

(b−a
2 q̃+ a+b

2

)
dq̃

≈ b−a
2 ∑

n
i=1 wi f

(b−a
2 q̃i +

a+b
2

)
(B.7)

If we define h = b−a
2 (the length of the interval) and c = a+b

2 (the midpoint of the interval), then

the roots q̃i in [−1,1] are transformed to the nodes qi in [a,b] via qi =
h
q̃i
+ c , and the quadrature

formula for approximating
∫ b

a f (q)dq will be h
2 times the formula for approximating the equivalent

integral over [−1,1]. The quadrature rules defined above, using the roots of Legendre polynomials

as their nodes, are called Gauss–Legendre rules which is used in the Sν ′i l
′λ ′,νilλ of Equation (2.53)

calculation.
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Table B.1: Gauss–Legendre nodes and weights

number of points, i nodes, qi weights, wi
1 0 2

2 − 1√
3

1
+ 1√

3
1

3 −
√

3
5

5
9

0 8
9

+
√

3
5

5
9

4 −
√

15+2
√

30
35

18−
√

30
36

−
√

15−2
√

30
35

18+
√

30
36

+

√
15−2

√
30

35
18+
√

30
36

+

√
15+2

√
30

35
18−
√

30
36

...
...

...
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APPENDIX C: The simple VE formulation

Starting from the harmonic potential

V (x) =
1
2

mω
2x2, (C.1)

and introducing the dimensionless normal coordinate q = x
√

mω

h̄ , Eq.(C.1) becomes

V (q) =
h̄ω

2
q2, (C.2)

where m and ω stand for the mass and angular frequency of the particle, respectively. Expanding

the S-matrix of 2sd-order in the normal mode coordinate qi (of mode i)

Sl′λ ′,lλ (q) = Sl′λ ′,lλ (qeq)+∑
i

∂Sl′λ ′,lλ

∂qi

∣∣∣∣
qeq

qi +
1
2 ∑

i

∂ 2Sl′λ ′,lλ

∂q2
i

∣∣∣∣∣
qeq

q2
i +O(q3

i ) (C.3)

The vibrational frame transformation consists on evaluating the matrix elements

〈v|Sl′λ ′,lλ (q) |v〉 (C.4)

where qi =
1√
2
(âi+ â†

i ) upon introducing the operator of annihilation ai and its adjoint, the creation

operator, a†
i that act on any ket |vi〉 as

âi |vi〉=
√

vi |vi−1〉 and â†
i |vi〉=

√
vi +1 |vi +1〉 . (C.5)
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Plugging Eq.(C.3) into Eq.(C.4) yields

〈v|Sl′λ ′,lλ (q)
∣∣v′〉= 〈v|Sl′λ ′,lλ (qeq)

∣∣v′〉+∑
i

∂Sl′λ ′,lλ

∂qi

∣∣∣∣
qeq

〈vi|qi
∣∣v′i〉+ 1

2 ∑
i

∂ 2Sl′λ ′,lλ

∂q2
i

∣∣∣∣∣
qeq

〈vi|q2
i
∣∣v′i〉

Lets evaluate each term above using Eqs.(C.5) :

〈v|Sl′λ ′,lλ (qeq)
∣∣v′〉= Sl′λ ′,lλ (qeq)

〈
v|v′
〉
= Sl′λ ′,lλ (qeq)δv v′ (C.6)

∑i
∂Sl′λ ′,lλ

∂qi

∣∣∣
qeq
〈vi|qi |v′i〉 = 1√

2 ∑i
∂Sl′λ ′,lλ

∂qi

∣∣∣
qeq
〈vi| âi + â†

i |v′i〉

= 1√
2 ∑i

∂Sl′λ ′,lλ
∂qi

∣∣∣
qeq
〈vi| âi |v′i〉+ 1√

2 ∑i
∂Sl′λ ′,lλ

∂qi

∣∣∣
qeq
〈vi| â†

i |v′i〉

= 1√
2 ∑i

∂Sl′λ ′,lλ
∂qi

∣∣∣
qeq

√
v′i 〈vi|v′i−1〉+ 1√

2 ∑i
∂Sl′λ ′,lλ

∂qi

∣∣∣
qeq

√
v′i +1〈vi|v′i +1〉

= 1√
2 ∑i

∂Sl′λ ′,lλ
∂qi

∣∣∣
qeq

(√
v′iδvi vi−1 +

√
v′i +1δvi v′i+1

)
(C.7)

and

1
2 ∑i

∂ 2Sl′λ ′,lλ
∂q2

i

∣∣∣∣
qeq

〈vi|q2
i |v′i〉= 1

2(
√

2)2 ∑i
∂ 2Sl′λ ′,lλ

∂q2
i

∣∣∣∣
qeq

〈vi|
(

âi + â†
i

)2
|v′i〉

= 1
4 ∑i

∂ 2Sl′λ ′,lλ
∂q2

i

∣∣∣∣
qeq

(
〈vi| â2

i |v′i〉+ 〈vi| â†2

i |v′i〉+ 〈vi|2N̂i + 1̂ |v′i〉
)

= 1
4 ∑i

∂ 2Sl′λ ′,lλ
∂q2

i

∣∣∣∣
qeq

(√
v′i(v

′
i−1)〈vi|v′i−2〉+

√
(v′i +1)(v′i +2)〈vi|v′i +2〉+(2v′i +1)〈vi|v′i〉

)
= 1

4 ∑i
∂ 2Sl′λ ′,lλ

∂q2
i

∣∣∣∣
qeq

(√
v′i(v

′
i−1)δvi v′i−2 +

√
(v′i +1)(v′i +2)δvi v′i+2 +(2v′i +1)δvi v′i

)
(C.8)

Assuming that the molecule is in its vibrational ground state (∀i, v′i = 0), in the first order, the

electron can be captured only in the first excited vibrational state of each mode. Hence, Eqs.(C.6)
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and (C.8) cancel out and Eq.(C.7) gives

∑i
∂Sl′λ ′,lλ

∂qi

∣∣∣
qeq
〈vi|qi |v′i〉 = 1√

2 ∑i
∂Sl′λ ′,lλ

∂qi

∣∣∣
qeq
×1 (C.9)

Thus, the VE cross section for mode i can be expressed as

σν ′i νi
= π h̄2

2mE ∑l′λ ′,lλ

∣∣∣∣ ∂Sl′λ ′,lλ
∂qi

∣∣∣
qeq
〈vi|qi |v′i〉

∣∣∣∣2
= π h̄2

2mE ∑l′λ ′,lλ

∣∣∣∣ 1√
2

∂Sl′λ ′,lλ
∂qi

∣∣∣
qeq

∣∣∣∣2
= π h̄2

4mE ∑l′λ ′,lλ

∣∣∣∣ ∂Sl′λ ′,lλ
∂qi

∣∣∣
qeq

∣∣∣∣2 .
(C.10)
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APPENDIX D: La synthèse

Le NO2 et le N2O sont connus comme des polluants atmosphériques générés comme sous-produits

de la combustion de combustibles fossiles, qui ont un effet délétère sur la santé humaine et l’environnement

atmosphérique. De nouvelles technologies telles que le plasma hors équilibre sont prometteuses

pour contrôler et détruire ces deux molécules. Les collisions de molécules électron-neutre sont

les processus dominants qui se déroulent dans l’environnement du plasma hors équilibre, et qui

ont donc un effet critique sur le comportement du plasma. Il est évident que les données de diffu-

sion, y compris les sections efficaces et les constantes de vitesse, entre les molécules d’électrons

et d’oxydes d’azote sont nécessaires pour développer et optimiser la technologie de dépollution du

plasma.

Cette thèse présente des études théoriques sur la diffusion des électrons avec des molécules de

NO2 et de N2O. En ce qui concerne la molécule NO2, nous étudions l’excitation vibratoire en-

tre les niveaux les plus bas au sein des états électroniques de cette molécule. Ce processus de

diffusion est important dans la modélisation cinétique du plasma. Le calcul est effectué par une

approche qui combine l’approximation des modes normaux pour les états vibratoires du NO2, le

code de la UK R-matrice pour obtenir la électron-molécule S-matrice pour les géométries fixes

de la cible et la « vibrational frame transformation » pour évaluer les matrices de diffusion pour

les transitions vibratoires. En ce qui nous concerne, il n’existe aucune donnée théorique ou ex-

périmentale sur l’excitation vibratoire du NO2. Par conséquent, la section efficaces d’excitation

vibratoire calculée dans cette thèse est rapportée pour la première fois pour cette molécule. Les

coefficients de vitesse correspondants de l’excitation vibratoire sont obtenus à partir des sections

efficaces pour la plage de températures de 10K à 10000 K. Comme aucun résultat expérimental ne

peut être utilisé pour la comparaison, l’estimation de l’incertitude des résultats est effectuée pour

valider l’approche théorique actuelle, où l’on peut voir que les résultats calculés de l’excitation
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(dé) vibratoire sont convergents. Par conséquent, les coefficients de taux peuvent être ajustés par

polynôme et sont raisonnables pour une utilisation ultérieure dans la modélisation de la cinétique

des plasmas contenant du NO2.

Les sections efficaces d’excitation vibratoire de la molécule de N2O sont déterminées dans un cadre

similaire. Nous utilisons la même méthode appliquée à la molécule de NO2 pour calculer la section

efficaces de transition entre le sol et les premiers états vibratoires du N2O. Les résultats obtenus

sont en accord raisonnable avec les données expérimentales. Il est donc utile d’expliquer les ré-

sultats expérimentaux. Les coefficients de vitesse d’excitation vibratoire sont également obtenus à

partir des sections efficaces pour la plage de températures de 10K à 10000 K. Les coefficients de

taux moyennés thermiquement sont ajustés par forme analytique pour une utilisation pratique dans

la modélisation du plasma. La structure rotationnelle des molécules neutres cibles est négligée

dans la présente approche, ce qui implique que les sections efficaces et les coefficients de vitesse

obtenus doivent être considérés comme moyennés sur les états rotationnels initiaux et additionnés

sur les états rotationnels finaux des niveaux vibratoires initiaux et finaux correspondants. Il a été

constaté que l’effet Renner-Teller non adiabatique, qui couple des ondes partielles de l’électron in-

cident avec des vibrations de flexion dégénérées de N2O, est responsable de l’excitation du mode

de flexion. Les résultats convergents pour les propriétés cibles et les coefficients de taux démon-

trent la validité des résultats théoriques obtenus. L’incertitude des présents calculs est un peu plus

élevée que pour le NO2.

Enfin, l’attachement dissociatif des électrons (DEA) du NO2 est étudié dans cette thèse. Ce pro-

cessus est important pour la compréhension du mécanisme de dépollution du plasma car le proces-

sus DEA est la principale voie de destruction du NO2. Le processus DEA est en compétition avec

l’excitation vibratoire dans la gamme d’énergie de diffusion en dessous du premier état d’excitation

électronique de la cible. Dans ce processus, l’électron diffusant peut être capturé par la molécule

cible en formant un état temporaire. Cet état est en fait un état de résonance qui se dissocie de
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la molécule neutre et des fragments d’ions négatifs. La méthode utilisée pour calculer la sec-

tion efficaces de la DEA du NO2 est basée sur la théorie de Bardsley-O’Malley développée pour

les molécules diatomiques et généralisée aux molécules polyatomiques complexes par Chi Hong

Yuen et al. Elle a été vérifiée en la comparant avec les mesures expérimentales disponibles. La

probabilité exacte de survie est impliquée dans le présent modèle. Les sections efficaces obtenues

montrent un accord qualitatif avec les résultats expérimentaux disponibles. Mais l’écart quantitatif

sera réservé aux travaux futurs.
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Titre: Etude théorique des collisions d’électrons avec les molécules de NO2 et N2O pour le contrôle et
la réduction de la pollution atmosphérique
Mots clés: Méthode R-matrix, Diffusion d’électrons-NOx, Transformation du cadre vibratoire, exci-
tation vibrationnelle, Attachement dissociatif d’électrons
Résumé: Cette thèse présente des recherches
théoriques sur la diffusion électronique avec deux
molécules polyatomiques d’intérêt pour la pollu-
tion atmosphérique, les molécules NO2 et N2O. En
ce qui concerne la molécule NO2, nous étudions
l’excitation vibrationnelle entre les niveaux les plus
bas des états électroniques fondamentaux de cette
molécule. Le calcul est effectué par une approche
qui combine l’approximation des modes normaux
pour les états vibrationnels du NO2, le code de la
UK R-matrice pour obtenir la électron-molécule S-
matrice pour les géométries fixes de la cible et la
« vibrational frame transformation » pour évaluer
le matrices de diffusion pour les transitions vibra-
tionnelles. En ce qui nous concerne, la sections effi-
caces d’excitation vibrationnelle calculée dans cette
thèse est rapportée pour la première fois pour la
molécule NO2. L’estimation de l’incertitude des ré-
sultats est ainsi réalisée pour valider la présente ap-
proche théorique.

De même, les sections efficaces d’excitation vi-
brationnelle de la molécule de N2O sont déterminées.
Les résultats obtenus sont en accord raisonnable
avec les données expérimentales. Les rate coeffi-

cient d’excitation vibrationnelle sont obtenus à par-
tir des sections efficaces pour la plage de tempéra-
tures de 10K à 10000 K. La structure rotationnelle
des molécules neutres cibles est négligée dans la
présente approche, ce qui implique que les sections
efficaces et les rate coefficient obtenus doivent être
considérés comme une moyenne sur états de rota-
tion initiaux et additionnés sur les états de rotation
finaux des niveaux vibrationnels initial et final cor-
respondants.

Enfin, l’attachement dissociatif aux électrons
(DEA) du NO2 est également étudié dans cette
thèse. Ce processus est en concurrence avec
l’excitation vibrationnelle dans la plage d’énergie
de diffusion en dessous du premier état électron-
ique excité de la cible. La DEA sections effi-
caces est calculée par la méthode basée sur la
théorie de Bardsley-O’Malley développée pour les
molécules diatomiques et généralisée aux molécules
polyatomiques complexes par Chi Hong Yuen et al.
par la suite par rapport aux mesures expérimentales
disponibles. Les résultats obtenus pourraient être
utilisés dans la modélisation du plasma pour le con-
trôle et la réduction de la pollution atmosphérique.

Title: Theoretical study of electron collisions with NO2 and N2O molecules for control and reduction
of atmospheric pollution
Keywords: R-matrix method, Electron-NOx scattering, Vibrational frame transformation, Vibra-
tional excitation, Dissociative electron attachment
Abstract: This thesis presents theoretical inves-
tigations on electron scattering with two polyatomic
molecules of atmospheric pollution interest, the NO2
and N2O molecules. Regarding the NO2 molecule,
we study the vibrational excitation between the low-
est levels within the ground electronic states of this
molecule. The calculation is carried out by an ap-
proach that combines the normal modes approxima-
tion for the vibrational states of the NO2, the UK
R-matrix code to obtain electron–molecule S-matrix
for fixed geometries of the target and the vibrational
frame transformation to evaluate the scattering ma-
trices for vibrational transitions. To our knowledge,
the vibrational excitation cross section calculated in
this thesis is reported for the first time for NO2
molecule. The uncertainty estimation of the results
is thus performed to validate the present theoretical
approach.

Similarly, the vibrational excitation cross sec-
tions of N2O molecule are determined. The obtained
results are in reasonable agreement with experimen-

tal data. The rate coefficient of vibrational excita-
tion are obtained from the cross-sections for tem-
peratures in the 10–10000 K range. The rotational
structure of the target neutral molecules is neglected
in the present approach, which implies that the ob-
tained cross-sections and rate coefficients should be
viewed as averaged over initial rotational states and
summed over final rotational states of the corre-
sponding initial and final vibrational levels.

Finally, the dissociative electron attachment
(DEA) of NO2 are also studied in this thesis. This
process competes with vibrational excitation at the
scattering energy range below the first electronic ex-
cited state of the target. The DEA cross section
is calculated by the method based on the Bardsley-
O’Malley theory developed for diatomic molecules
and generalized to complex polyatomic molecules by
Chi Hong Yuen et al. afterwards compared with
available experimental measurements. The obtained
results could be used in plasma modeling for control
and reduction of atmospheric pollution.
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