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General Introduction

Cable-Driven Parallel Robots (CDPRs) represent a subclass of parallel kinematic
manipulators in which rigid links are replaced by cables. They consist mainly of a
mobile platform driven by cables, which transmit the forces generated by winches.
Accordingly, the platform motion is managed controlling the winch motors.

Since a large length of cable may be wound on the drum of each winch, CDPRs
can have a large workspace. Furthermore, thanks to the reduced inertia of the ca-
bles, CDPRs can attain high velocities and accelerations. In addition, cables are able
to transmit large forces, which make possible the handling of heavy payloads. Among
other advantages, these characteristics motivated studies applying CDPRs for high
speed manipulation, simulations in virtual reality, handling of heavy payloads in large
workspaces, etc. As a matter of fact, the design, control and analysis of CDPRs are well
established research subjects [11].

The work presented in this thesis has been made in the framework of the european
H2020 project called Hephaestus [12]. The main goals of this project include the design
and control of a CDPR able to install the Curtain Wall Modules (CWMs) of a building
facade. Inspired by the specificities of the Hephaestus project, this thesis contributes
to the development of advanced control techniques.

Clearly, the mounting of CWMs demands high positioning precision (10 mm). In
addition, safety and disturbance rejection capabilities are major concerns considering
that the robot should work in a construction site. Moreover, the control scheme should
be compatible with a specific set of industrial hardware and software. Finally, due to
design constraints, the robot needs to operate close to the boundaries delimiting the
safe conditions of the system operation.

Considering this context, it was noted that the state-of-the-art control schemes
would lead to a crucial issue. Namely, the operation close to system constraints with
a significant influence of disturbances may lead to undesired responses. This is due
to the fact that the existing strategies do not consider system constraints as an integral
part of the main control scheme. In order to overcome this issue, this thesis introduces
Model Predictive Control (MPC) schemes (linear and nonlinear) able to explicitly han-
dle the system constraints within the formulation of the controller. Numerical and
experimental results validate the proposed strategies. Moreover, the stability of a non-
linear MPC (NMPC) scheme is also analyzed.



6 General Introduction

Before applying the proposed MPC schemes, several issues related to the experi-
mental implementation had to be solved. Some of them are addressed in this
manuscript. In particular, a chapter is dedicated to contributions related to the ca-
ble tension control and forward kinematics of CDPRs. In addition, the programming
solutions proposed to the development of the control schemes in an industrial software
are briefly examined.

Organization of the Thesis

A brief description of the chapters and appendices of this thesis are presented in
the following.

• Chapter 1 presents the context of this thesis and review the pertinent state-of-
the-art on the control of CDPRs. Considering this context, an issue raised by
the existing control schemes is identified and discussed. It is noted that a con-
trol scheme suitable for the project Hephaestus should consider the system con-
straints as an integral part of the main controller. Some details on MPC are
reviewed, demonstrating that this control architecture may be suitable in the
context of this thesis;

• Chapter 2 introduces the implemented kinematic model and the control of ca-
ble tensions. A forward kinematic algorithm considering the pulley geometry
is proposed. These results were published in (I). Regarding the cable tension
control, two different approaches are considered. Numerical simulations and
experimental tests indicate that a velocity-based scheme is suitable for the stud-
ied systems;

• Chapter 3 introduces a linear MPC for the position tracking control of CDPRs.
The strategy is validated numerically and experimentally, indicating that the
proposed MPC controller overcomes the issues described in Chapter 1. Simula-
tion results were published in (III) and experimental ones in (II);

• Chapter 4 proposes a nonlinear MPC scheme. In contrast to the linear MPC,
this approach leads to satisfying results even with an increased incidence of
nonlinearities. The stability of the nominal closed-loop system is analyzed. The
comparison between the linear and nonlinear MPC is performed through real-
time experimental tests and numerical simulations;

• Appendix A briefly discusses the development of a C++ numerical library com-
patible with the industrial software TwinCAT. Thanks to this library, complex
matrix operations can be programmed in an intuitive manner, facilitating the
implementation of the proposed MPC schemes;

• Appendix B presents a closed-form tension distribution algorithm able to min-
imize the infinity-norm of the cable tensions vector. The optimality of the algo-
rithm output is proved and experimental results are discussed. The proposed
algorithm is based on the results published in (IV).
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• Appendix C addresses the stability criterion that is used in the analysis of the
proposed NMPC scheme. The results introduced in [13] that are used Chapter 4
are discussed more in detail.
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Introduction and State of the Art

Cable-Driven Parallel Robots (CDPRs) present several particular advantages when compared
to rigid link robots. Section 1.1 discusses the reasons that lead to these advantages and exem-
plify some of the various applications of CDPRs that take advantage of them. Section 1.2 then
introduces the main goals of the project Hephaestus that form the context of this thesis. The
main models of CDPRs proposed in the literature are briefly presented in Section 1.3. Notably,
this section examines the various assumptions that may be taken and the main consequences
on the resulting models. A summary of the state of the art on position tracking of CDPRs is
introduced in Section 1.4. The vast majority of the studies presented in this section are coupled
to some tension distribution algorithm. This subject is addressed in Section 1.5. Section 1.6
presents existing cable tension control schemes. The very beginning of Section 1.7 highlights an
important limitation of the coupling between schemes presented in Section 1.4 and algorithms
of Section 1.5. Model Predictive Control (MPC) is then proposed as a solution to overcome
this drawback. Section 1.7 presents details on this type of feedback control strategies. Finally,
Section 1.8 summarizes the main contributions presented in this thesis.
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1.1 Cable-Driven Parallel Robots

The main components of a Cable-Driven Parallel Robot (CDPR) are cables, winches
and a mobile platform. Each cable has one end attached to the platform and the other
one wound on a drum. Each one of these drums is coupled to a motor, composing the
winches. Figure 1.1 depicts a CDPR and highlights these main elements. Altogether,
the cables transmit the torques applied on the drums so that the platform motion may
be driven by the actuation of the motors.

Cables

Platform

Winches

Attachment
Points

Drawing
Points

Figure 1.1 – HRPCable prototype and its CAD view.

1.1.1 CDPR characteristics and main applications

CDPRs have several advantages compared to rigid link robots. Since the rigid links
are replaced by cables that may present a large length wound on the drums, the mo-
bile platform may be displaced over a large workspace. A few examples among the
numerous robots that take advantage of this feature are the well known Skycam [14]
and large-scale radio telescopes [2, 15]. Figure 1.2 (a) depicts the large dimension tele-
scope FAST installed in China. Moreover, the use of cables may be very efficient to
handle heavy payloads, rendering the application of CDPRs favorable for the handling
of heavy objects [3, 6], as the CoGiRo prototype shown in Figure 1.2 (b).

The combination of a large workspace with the reduced visual interference ob-
tained using cables instead of rigid links makes cable-driven parallel mechanisms a
pertinent solution for haptic devices [4, 16–18]. Rehabilitation is a typical application
of such solutions. The haptic device Inca, commercialized by Haption, is shown in
Figure 1.3.

As a subclass of parallel robots, CDPRs typically present their actuators fixed to the
inertial base. In addition, the inertia of the moving links may be drastically reduced
using cables instead of rigid links. As a result, several works focused on the capability
of CDPRs to reach high velocities and accelerations [19–22]. For instance, the FALCON
prototype is able to generate 13 m/s of maximal velocity and 43 g of maximal accel-
eration [19]. Similarly, motion simulators may take advantage of the high dynamic



1.1. Cable-Driven Parallel Robots 11

(a) (b)

Figure 1.2 – (a) The five-hundred-meter aperture spherical radio telescope FAST [1, 2] and (b)
the prototype built in the framework of the research project CoGiRo (Control of Giant Robots)
- TECNALIA/LIRMM [3].

Figure 1.3 – The commercial solution Inca, a cable-driven haptic device from Haption [4].

capabilities obtained with the architecture of CDPRs [5] (see Figure 1.4).

In contrast to these advantages, CDPRs also have important drawbacks. The ca-
ble elasticity may introduce undesired vibrations [23–26]. Similarly, substantial degra-
dation of the positioning precision may be obtained when neglecting cable elonga-
tion [27]. Moreover, the cable tensions should be kept sufficiently high in order to
avoid the presence of slack cables, which not only may lead to the malfunctioning of
the winches but also degrades positioning accuracy.

1.1.2 CDPR types

Whereas rigid links may transmit both compression and tensile forces, cables can
only operate in tension. Considering this limitation, the Wrench Closure Workspace
(WCW) defined in [28] is “the set of poses of the platform for which any wrench can be gener-
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Figure 1.4 – A motion simulator prototype developed in the Max Planck Institute for Biological
Cybernetics [5].

ated at the platform by tightening the cables”. Here, the term pose refers to the combination
of position and orientation. A mobile platform pose within the WCW is said to be
fully-constrained.

It is interesting to note that many CDPRs present nonexistent WCW. This is the
case of the suspended CDPRs, such as the ones depicted in Figures 1.2 (a) and (b). Since
every cable force applied on the platform is directed upwards, this type of CDPR can
not generate a force directed downwards. Therefore, suspended CDPRs rely on the
gravitational forces in order to constraint the platform.

In contrast, if the WCW represents a substantial part of the robot workspace, the
CDPR is classified as fully-constrained. While suspended CDPRs may have superior
payload capacity, fully constrained CDPRs typically present better precision, stiffness
and dynamic capabilities. Robots depicted in Figures 1.3, 1.4, and 1.5 are examples of
fully-constrained CDPRs. It is worth noting that a fully-constrained CDPR necessarily
presents a number of cables greater than the number of Degrees of Freedom (DoF)
of the mobile platform. This actuation redundancy yields some particularities on the
control. These particularities play an important role on the main results presented in
this thesis. Sections 1.5 and 1.7 discuss these particularities more in detail. At any
rate, even though the studies presented in this thesis are focused mainly on redundant
CDPRs, they may be directly applied for non-redundant and suspended CDPRs.

Conversely, the platform pose cannot be determined geometrically for CDPRs with
less cables than DoF. In addition to the kinematic model, a static or dynamic model
should be considered in order to determine the platform pose. Accordingly, such
robots are classified as under-constrained CDPRs. This class of CDPRs was studied,
for instance, in [29, 30]. In spite of the interesting research subjects devoted to under-
constrained CDPRs, this thesis does not deal with this kind of robot.
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Figure 1.5 – Hephaestus prototype and an illustration of its main application, the installation
of curtain wall modules.

1.2 Context of the Thesis

The contributions of this thesis were developed within the framework of the Euro-
pean Horizon 2020 project Hephaestus [12]. The main goal of this project is to develop
a robotic solution for the installation of Curtain Wall Modules (CWM) on building fa-
cades. Figure 1.5 presents the Hephaestus CDPR prototype and illustrates its main
application. Indeed, one may note that the choice of using a CDPR for this application
is in accordance with the advantages introduced in the previous section, notably the
possibility to reach large workspaces (the size of a building facade) and the capability
to handle heavy payloads (approximately 1300 kg in this specific case).

The positioning of the CWMs is performed with the aid of suction cups installed
on the mobile platform. Furthermore, the prototype also assists the installation of the
brackets on the building slabs. This task includes the drilling of the slabs, position-
ing and mounting of the brackets. In spite of the interesting challenges involved in
the bracket installation, the contributions presented in the present manuscript are not
dependent on technical details related to them. For this reason, among the extensive
technical data involved in the whole project, just a few relevant inputs are detailed in
Table 1.1.

The main contributions of LIRMM in the Hephaestus project are (i) the geometric
design optimization of the CDPR and (ii) the development of advanced control tech-
niques. Since most of the remaining tasks of the project depend on the outputs of (i),
the results related to this task were delivered in the first half of the project. These re-
sults are presented in [31] and my contributions in this task were minor. Therefore, this
thesis is mainly focused on the development of CDPR control strategies.

The time length in which the Hephaestus prototype was fully built and available
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Slab
Curtain Wall Module

Bracket

Figure 1.6 – Illustration of the CWM assembly.

for tests is short in comparison to the duration of the project. Moreover, this available
time needs to be shared between the partners of the consortium who participate to the
experimental tests. As a result, knowing that the experimental activities were crucial
and might reveal non-predicted difficulties, a secondary experimental set-up was used.
This set-up is a CDPR prototype, HRPCable, with characteristics rather similar to the
ones of the Hephaestus prototype. The HRPCable is shown in Figure 1.1 and Table
1.1 summarizes its main features. Indeed, most of the experimental results presented
within this thesis were performed with this prototype.

Table 1.1 – Hephaestus and HRPCable main features.

Hephaestus HRPCable
Payload 1300 kg 100 kg
Footprint 14× 4× 12 m 8× 4× 6 m (x× y × z)
Number of cables 8 8
Degrees of freedom 6 6
Maximum cable tension 16 kN 2 kN
Diameter of the cables (steel) 12 mm 4 mm
Diameter of the pulleys 300 mm 80 mm
Platform mass 23 kg 400 kg
Motors and Hardware Beckhoff Beckhoff

PLC C6650 3.6 GHz i7 C6920 2.4 GHz i7
Motors AM8071 AM8061
Gear trains (reduction) Planetary in line (76.2:1) AG2210 (25:1)

Before addressing the modeling and control of CDPRs, the main concerns related
to them should be summarized considering the specificities of the Hephaestus project:
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• A crucial challenge is the mounting of the CWMs on the brackets. High precision
is necessary and a versatile control strategy may be needed, since the assem-
bly is performed in four brackets simultaneously (see the illustration in Figure
1.6). The position of the brackets are not necessarily known with the precision
required to the assembly;
• Since the robot should work outdoors, in a non-controlled environment, the

proposed control scheme should possess external disturbance rejection capabilities;
• Given that the robot is intended to operate on a construction sites (with the

possible presence of non-trained personnel) and the payload of the machine is
large, safety is a critical concern;
• Due to the reduced available area in front of the building facade, the nominal de-

signed workspace presents a small margin dedicated to uncertainties. In other
words, some poses necessary to the accomplishment of the desired tasks are
close to the nominal workspace limits. Therefore, the proposed control scheme
should be able to safely handle the robot operation close to system constraints;
• Considering that the robot is intended to operate on a construction sites (with

the possible presence of non-trained personnel) and the payload of the machine
is heavy, safety is a critical concern;
• Knowing that the machine is intended to be commercialized, the used hardware

and software should be compatible with the ones commonly used in the indus-
try. Since the commonly available industrial softwares are not compatible with
advanced mathematical programming libraries, this last aspect leads to remark-
able constraints related to the implementation of advanced control schemes.

1.3 Modeling

Most of the control strategies discussed in Section 1.4 are model-based control
schemes. Indeed, the design of these control strategies takes advantage of the well-
known modeling of CDPRs. For this reason, it is interesting to present some details
on the kinematic and dynamic models of CDPRs before addressing the control design
itself.

The kinematic model of a CDPR correlates the pose and velocity of the mobile plat-
form to the motor positions and velocities. The model relating a set of joint positions to
a known pose of the platform is the Inverse Kinematic (IK) model. Conversely, the cal-
culation of a platform pose for a known set of motor positions is the Forward Kinematic
(FK) model. The different mathematical models used to implement et IK and FK may
be classified with respect to their assumptions, leading to different levels of precision.

One may neglect the cable elasticity and mass, considering that the profile of each
cable is a straight line linking an attachment point to the corresponding drawing point.
Even though these may seem rather naive assumptions, several important studies were
based on the corresponding model [32–34]. On the other hand, several approaches
were proposed seeking more precise models, as discussed in the following.

Typically, previous works search for a compromise between model simplicity and
precision in the context of each specific study. Firstly, one may address the problem that
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cable end attached 
to the platform

drawing
point

pulley

revolute joint

Figure 1.7 – A typical mechanism on which the drawing pulleys are mounted, illustrating that
the drawing point is not fixed.

drawing points are not fixed. In general, the drawing pulleys rotate and the wrapping
angles change in order to follow the motion of the mobile platform, as illustrated in Fig-
ure 1.7. The influence of these changes, which is often referred to as pulley kinematics,
may be significant [35] and may be taken into account in the control of CDPRs [36,37].

Moreover, the fact that in reality the cables are elastic and do not present a straight
line profile may be also studied. In cases where the cable tensions are low and the
lengths are large, the influence of the cable distributed mass may be non negligible.
Therefore, as an example, it is not surprising that this phenomenon was considered in
the design of the CDPR FAST illustrated in Figure 1.2 (a). Yao et al. obtained in [2]
a good compromise between precision and computing time approximating the cable
profile with a parabola. A model proposed in [38] (usually referred to as Irvine model)
is often used to obtain more precise results [39–43]. In contrast, if cable tensions are
sufficiently high and cable specific mass is relatively low, cables may also be considered
as springs [26, 44, 45].

At any rate, one may note that if a model considering the cable elasticity and/or
distributed mass is used, the static and dynamic loads applied on the platform result
in different outputs of the kinematic model. In other words, the pose does not depend
only on cable lengths, but also on the loads applied on the platform. The kinematic
model is, therefore, coupled to the dynamic model. Whereas cable sagging and elas-
ticity may be very difficult to integrate in the model of the robot, the platform motion
for known cable forces may be modeled with a rather simple approach. As a matter
of fact, for a known set of cable forces, the platform motion can be modeled using the
Euler’s equations of motion [46, Section 5.5].

Apart from the modeling of the cables, pulley kinematics and platform motion, a
particular attention was dedicated to the forward kinematics. As for parallel robots
in general, the estimation of the platform pose for given positions of the actuators
is not a trivial task. Whereas this issue may be avoided with the application of an
external measurement system capturing the pose of the platform. This can be done, for
instance, with the motion-capture system Bonita developed by Vicon [47], with a multi-
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cameras setup [48] or with a single camera embedded on the mobile platform [49].
Nevertheless, the implementation of such measurement systems within uncontrolled
environments may lead to various issues related to occlusions and lighting variations.
Furthermore, these solutions also depend on additional sensors, which may be costly.

Therefore, several studies sought a reliable and accurate algorithm able to compute
the CDPR platform pose for a given set of winch positions, i.e., Forward Kinematic
(FK) Algorithms. The FK problem may be solved with interval analysis [50, 51]. This
approach allows one to find all the possible FK problem solutions, taking into account
that some cables may be slack. Even though this method is considered mathemati-
cally complex, real-time capability has been presented [52]. Additionally, iterative nu-
merical schemes constitute an alternative typical solution [53–55]. In general, the FK
problem is formulated as a nonlinear optimization problem. The iterative algorithm
(usually, Levenberg-Marquadt) delivers a platform pose that locally minimizes mod-
eling errors, taking the winch positions as input. To this end, a differential kinematic
model is necessary.

1.4 Position Tracking Control

As discussed in the previous sections, this thesis is focused on advanced control
techniques for CDPRs. The present section introduces the state-of-the-art of the stud-
ies addressing this topic. The main subject addressed in this thesis is the problem of
position tracking control. The fundamental input of this problem is a desired trajectory.
The control scheme is responsible for tracking this desired trajectory, i.e. generate a mo-
tion so that, at each instant of the movement, the measured (or estimated) actual pose
is as close as possible to the desired one.

The approaches presented in the literature of position tracking control for CDPRs
may be organized as follows. A commonly used classification separates the control
schemes in two groups, namely, Joint Space Control (JSC) and Operational Space Con-
trol (OSC). In this thesis, a control strategy is classified as an OSC scheme if it measures
(or estimates) the mobile platform pose error. Otherwise, the strategy is classified as
JSC. Loosely speaking, an OSC strategy presents a closed loop which handles the plat-
form pose error.

1.4.1 Joint space control

Most probably, the simpler schemes to first operate a CDPR were JSC strategies.
Consider an actuation in which the motor angular positions are controlled taking the
values obtained using the IK model for each pose of the desired trajectory. Such control
scheme is commonly referred to as kinematic control and was the control scheme used
to control the NIST ROBOCRANE [6] shown in the Figure 1.8.

As the reader may note, the JSC approach may certainly lead to a simple CDPR
control strategy. Nevertheless, more elaborate strategies may be derived with the same
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Figure 1.8 – The NIST ROBOCRANE, controlled with a Joint Space control [6].
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Figure 1.9 – A Joint Space Control scheme proposed in [7]. The main variables are: The desired
and actual pose xd and x, desired and measured motor positions qd and q, Jacobian matrix J,
desired cable tensions τd, dynamic motor friction constant Fv, motor inertias Im, motor currents
i, a diagonal constant matrix CT and PD gains K′p and K′v. The blocks TD and IK stand for
the Tension Distribution algorithm and Inverse Kinematics, respectively. Time derivatives are
denoted using the dot notation.

basis. Kawamura et al. propose a similar scheme adding the compensation of the grav-
itational effects and the management of internal forces [56]. Fang et al. propose in [7]
the control strategy of Figure 1.9. The closed-loop in this block diagram is exclusively
dedicated to the joint space and the Inverse Dynamics block delivers the feedforward
wrench which generates the desired motion.

These control strategies implement uncoupled feedback gains, i.e. the feedback
gain matrices are diagonal. Alternatively, the synchronous tracking control approach
introduced in [57] may be used in order to improve the coordination between the cable
displacements [58]. In practice, this strategy is based on gain matrices that are not
diagonal.
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Figure 1.10 – The Operational Space Control proposed in [8]. The variables that were not intro-
duced in Figure 1.9 are: The pseudo-inverse jacobian matrix J+, static motor friction constant
Fs, tracking error of the pose ∆x and PID gains on operational space Kp, Ki and Kv.

Kraus et al. [59, 60] propose a control scheme in which the cable tensions are con-
trolled using the measurement of force sensors. As in [7], the desired wrench to be
applied on the platform (and the corresponding cable tensions) are computed based
on the desired trajectory without the estimation of the error of the platform pose.

1.4.2 Operational space control

As a matter of fact, the majority of the advanced control techniques for the position
tracking of CDPRs belongs to the class of OSC. The strategy implemented by Lamaury
and Gouttefarde in [8] and presented in Figure 1.10 may be taken as an example to
introduce the rationale commonly used on OSC. Comparing Figures 1.9 and 1.10, one
may note that the schemes proposed in [7] and [8] are rather similar. The main differ-
ence lies on the fact that instead of applying the closed-loop strategy directly on the
difference between desired and measured motor positions, the PID correction in Fig-
ure 1.10 takes as input the estimated error of the platform pose (an estimation obtained
as ∆x = J+(qd − q)).

Inasmuch as a large amount of studies present a very similar approach, it is worth-
while to highlight some details involved in its motivations. One may note that the
feedforward terms compensate most of the nonlinearities of the system, rendering the
proposed approach closely related to the widely used computed torque control [61]
or the feedback linearization method [62, Section 9.3]. Indeed, most of the control
strategies discussed in this section presents a very similar rationale. The correspond-
ing schemes are alike the one in Figure 1.10, changing notably the highlighted region,
which computes the wrench representing the feedback correction for a given error of
the platform pose. Note that full feedback linearization may be easily applied for non-
redundant CDPRs, as proposed in [63]. Nevertheless, the presence of a number of
cables greater than the number of degrees of freedom may prevent the application of
such method for redundant CDPRs.

Whereas the nominal stability of these approaches can be straightforwardly proven
given the simplicity of the nominal closed-loop system, interesting results were ob-
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tained regarding robustness. The robust stability considering structured and unstruc-
tured uncertainties of a rather similar scheme was proved in [64] using Lyapunov the-
ory. Similarly, Korayem et al. analyzed the robustness regarding the flexibility of the
joints of a fully feedback linearized control scheme [63]. Alternatively to the direct Lya-
punov theory, Khosravi and Taghirad addressed in [44] the stability of a similar scheme
using singular perturbation theory [65]. A simple and elegant solution was proposed
to extend the stability results when the elasticity of the cables are considered.

Yet in the field of linear control systems, more advanced techniques may be imple-
mented. The Linear Quadratic Regulator (LQR) method was used in [66] considering
the feedback linearized system. As for the study in [63], a non-redundant robot is nec-
essary to obtain a linear system. The LQR method delivers the optimal gain matrices
corresponding to a deterministic infinite horizon optimal control problem applied for
linear systems [67, Section 9.2.1]. Due to the fact that its theoretical basis relies on the
deterministic model of the system, the LQR may be sensitive to disturbances. To deal
with this issue, the H∞ (H-infinity) robust control [67, Section 9.3.4] method may be
used. This possibility was investigated in [47, 68] using the Inca robot (as the one in
Figure 1.3). Motivated by the fact that all the aforementioned studies present control
schemes that are based on the theory of linear systems, such methods are denoted in
this section as linear-based methods.

Clearly, methods developed with theories that are not based on the linearization
of the studied system may be used. These approaches are classified in this section as
nonlinear-based methods. Firstly, Sliding Mode Control (SMC) received particular at-
tention in the control of CDPRs. The main advantages of this nonlinear control method
are finite time convergence and robustness to modeling uncertainties and disturbances.
Moreover, the implementation of SMCs are often simpler than other advanced nonlin-
ear control techniques.

Oh and Agrawal [69] implemented the theory proposed in [70] in order to esti-
mate the feasible workspace of CDPRs. Subsequently, improved versions were pro-
posed, e.g. terminal sliding mode [71] and super twisting controller [72]. Nevertheless,
chattering is a well-known issue commonly addressed in studies implementing SMCs.
Even though numerous methods were proposed in order to reduce this difficulty, chat-
tering is still observed in recent results [72]. Besides SMC, other nonlinear feedback
control approaches were proposed, such as fuzzy control [73], neural networks [74]
and the intricate method proposed in [75] involving dynamic programming with an
actorcritic structure.

Inspired by the fact that the applications of CDPRs are frequently subjected to non-
negligible uncertainties (in particular regarding the payload and the friction of the
winches), a lot of effort has been devoted to adaptive strategies. Most of them are
based on the adaptation law introduced in [76], also proposed by Slotine. An adap-
tive version of [8] is presented in [77], resulting in a better tracking performance than
its predecessor. As a matter of fact, many of the aforementioned nonlinear control
schemes are classified as adaptive strategies [71,72,74,75]. Figure 1.11 summarizes the
classifications discussed in the present subsection.

One may note that most of the schemes discussed in the present section define,
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Figure 1.11 – Summary of main studies addressing position tracking of CDPRs.

at some point, a desired wrench to be applied on the platform. This wrench should
be generated by the combination of the forces applied by the cables on the mobile
platform. For a non-redundant CDPR, i.e. having a number of cables equal to the
number of DoF, the relation between these sets of variables may be straightforwardly
obtained. Nevertheless, for a redundantly actuated CDPR, this subject merits special
attention. The next subsection is devoted to this issue.

1.5 Tension Distribution Algorithms

Different kinds of redundancies may be defined in robotics [78–80]. In the context
of this thesis, a specific type is of particular interest, namely, actuation redundancy. Al-
though the definition of this class of redundancy may be the subject of discussions [78],
a simple definition may be synthesized for the CDPRs studied in this thesis. The clas-
sification of redundancy for reconfigurable CDPRs [81–84] or robots presenting artic-
ulated mobile platform [85, 86] may render necessary a detailed discussion. Never-
theless, the studies presented here are focused on non-reconfigurable robots with a
platform consisting of a unique non-articulated body. In this case, a CDPR having a
number of cables (m) greater than the number of DoF of the mobile platform (n) is
classified as redundantly actuated. Most of the results presented in this thesis takes as
motivation some particularities of this class of CDPRs.

For the majority of commonly used modeling approaches, for a given platform
pose, one may define a constant linear mapping between the vector of cable tensions
τ and the resulting wrench f applied on the platform [87]. Here, each element τi of the
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vector τ is the euclidean norm of the (vectorial) force applied on the platform by the
corresponding cable. More precisely, there exists a matrix W, named wrench matrix,
so that f = W τ .

Therefore, if m = n, a set of cable tensions able to generate a desired wrench fd
may be trivially obtained inverting such (bijective) linear mapping (if the considered
pose is not singular, leading to an invertible square matrix W). Otherwise, non-trivial
problems emerges if m 6= n. Robots with m < n are referred to as under-constrained
CDPRs [29, 30] and their study is out of the scope of this thesis. In contrast, if m > n,
infinitely many sets of cable tensions may generate the same wrench. The algorithms
responsible for the definition of the most pertinent set of cable tensions for a given
desired wrench are called Tension Distribution Algorithms (TDA).

In general, TDAs should comply with two sets of constraints. Clearly, one set of
constraints result from the fact that the cable tensions should generate the desired
wrench, i.e. vector τ should satisfy fd = W τ . In addition, cable tensions should be
within a positive interval. This positive interval is delimited by sets of maximal and
minimal cable tensions, τmax and τmin, respectively. The minimal cable tensions are
considered in order to avoid excessively low tensions leading to the malfunctioning of
the winches and to slack cables, which may result in deteriorated precision and stiff-
ness. Maximal cable tensions are defined according to the maximal load with under
which every mechanical part operates safely.

To sum up, the goal of a TDA is to define a pertinent set of cable tensions τ so
that fd = W τ and τmin 6 τ 6 τmax, taking as input the linear mapping W, the de-
sired wrench fd and the cable tension limits τmin and τmax. Accordingly, a TDA can be
formulated as an optimization problem

τ ∗ = arg min
τ

f(τ ) ,

s. t. fd = W τ

τmin 6 τ 6 τmax

(1.1)

with a given cost function f : Rm → R, so that the essential difference among them is
the definition of f .

A natural choice for f is some norm of the vector τ . Using the typical definition of
vector norms as in [88, Section 2.2] with ‖τ‖p = (τ p1 + τ p2 + · · ·+ τ pm)1/p, several studies
address the TDA formulated as (1.1) for f(τ ) = ‖τ‖p with p some positive non-null
integer.

Using the 1-norm with p = 1, the corresponding optimization problem (1.1) is clas-
sified as a Linear Programming (LP) problem [89]. Snyman and Hay simplified the
general methodology implemented to the solution of LP problems for the specific con-
straints of TDAs [90]. Similarly, an explicit expression of the vector of cable tensions
minimizing ‖τ‖1 = ∑

τi is deduced in [7]. As an alternative this, one may apply weigh-
ing costs ci for each individual cable i according to the specific needs of the CDPR. For
instance, a critical issue for the suspended CDPR in [91] is to keep the longer cables
sufficiently tighten. Hence, a cost function f(τ ) = ∑

ci τi with negative ci may be used
for the cables that need to be under increased cable tensions.
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Figure 1.12 – Illustration that, in general, a cost function ‖τ − τ‖2 (i.e. p = 2) leads to a smaller
margin between cable tensions and unfeasible tensions than its counterpart with p =∞ [9].

Besides the case of f(τ ) = ∑
ci τi, the LP methodology may be used to minimize

the maximum element of the vector τ (also known as minimax problem). As a matter
of fact, any minimax problem with linear constraints may be solved through an equiv-
alent LP problem [92]. Based on this approach, a versatile method is proposed in [93]
to minimize f(τ ) = max τi. Since maxi τi = limp→∞ ‖τ‖p, the notation ‖τ‖∞ := maxi τi
is commonly used. Moreover, the proposed method is versatile in the sense that it is
able to maximize the minimal cable tension. Nevertheless, as highlighted in this study,
TDAs based on norms with p = 1 or p = ∞ may lead to discontinuities in the profiles
of cables tensions, i.e. infinitesimal changes in fd may lead to finite changes of the τ ∗

obtained with the corresponding TDAs. Clearly, additional constraints may be taken
into account in the optimization problem (1.1) so that the variation of cable tension
remains limited [91].

In contrast, methods taking f(τ ) = ‖τ‖p with 1 < p <∞ (with strict inequalities) in-
trinsically lead to continuous profiles of cable tensions. Gosselin presents an overview
on this matter in [9] emphasizing this advantage. On the other hand, assuming that
the presence of cable tensions in the neighborhood of the bounds τmin and τmax should
be avoided, he points out that it may be preferable to minimize f(τ ) = ‖τ − τ‖∞ with
τ = 1/2 (τmin + τmax). It is shown that this approach, compared to the application of
other values of p, tends to maximize the difference between the desired cable tensions
and the cable tension limits, preventing the incidence of values close to τmin and τmax
(see Figure 1.12). Inspired by this advantage, p = 4 is proposed in order to ally conti-
nuity of cable tensions and increased difference between τ ∗ and bounds τmin and τmax.
Figure 1.13 illustrates that this value of pmay be used to this end. Moreover, an explicit
expression for the TDA taking m = n+ 1 and f(τ ) = ‖τ − τ‖4 is presented in [9].

In spite of the advantages highlighted in [9] led by the use of higher values of p, the
majority of studies addressing TDAs with the format (1.1) is focused on values of p 6 2.
Besides the above-mentioned works addressing the case in which p = 1, particular at-
tention has been devoted to the problem of TDAs based on the 2-norm of the vector of
cable tensions [94–98]. In addition to the fact that such algorithms intrinsically delivers
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Figure 1.13 – Comparison of Loci with constant ‖τ − τ‖p for different values of p.

continuous profiles of cable tensions, the resulting optimization problems are strictly
convex Quadratic Programming (QP) problems [99]. The numerical tractability of this
class of optimization problem is an important advantage. Accordingly, the well-known
numerical tools [100,101] able to solve QP problems were applied to TDAs minimizing
the 2-norm of cable tensions [94, 95]. Alternatively, the Dykstra’s Projections Algo-
rithm [97] or direct consequences of the Karush–Kuhn–Tucker (KKT) conditions [102]
may be used [98]. All these methods [94–98] are iterative and, therefore, yield a per-
formance highly dependent on the initial guess. Fortunately, since TDAs with 2-norm
cost functions deliver continuous cable tensions for continuous variations of desired
wrenches, consecutive time samplings should deliver solutions close to each other.
This evidence justifies the use of the solution obtained in a sampling time as initial
guess for the next sampling time (the so-called warm start). Moreover, as discussed
in [94], gradient-based algorithms such as the gradient projection method may be used
with a limited number of iterations, providing feasible suboptimal solutions if real-
time constraints hinder the computation of the global optimal solution.

Even though TDAs may be used in different circumstances, such as the design of
CDPRs [103], it is reasonable to assert that the main application of such algorithms
is the real-time control. Therefore, the computation time is a major concern. Pott et
al. proposes in [104] a closed-form expression able to minimize ‖τ − τ‖2 = ‖τ − τ‖.
Besides the short computation time, this method presents an attractive simplicity of
implementation. Additionally, in contrast to iterative methods, the closed-form solu-
tion demands well defined floating point operations, which may be used to bound the
worst case of the computational burden. Nevertheless, even though an improved algo-
rithm was introduced in [105], these methods do not have a clear proof that a feasible
distribution may be found for any feasible desired wrench.

Alternatively to norms of the vector of cable tensions, indirect consequences of the
changes in τ may be addressed as well. In particular, changes in the internal forces
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may result in variations on the stiffness of the CDPR [106–108]. The influence of the
cable tensions on the robot stiffness is studied under different approaches [109, 110].
Probably, the most commonly applied approach considers cables as springs with a
profile consisting of a straight line [109]. Using this model, the stiffness along a given
direction may be optimized as proposed in [107].

Moreover, other methods not based on the formulation (1.1) were also proposed.
Many studies are based on the characterization of the set formed by the constraints in
(1.1). This is the set of feasible cable tensions that generate the desired wrench. As
discussed in [111, 112], this set is a polytope which is a subset of Rm. As any polytope,
it may be described by its vertices. Aiming at the avoidance of cable tensions close to
tension limits, Mikelsons et al. proposes the determination of the barycenter of such
polytope in [113]. The method is proved to be continuous, but the computation of the
polytope itself is not discussed in depth. Accordingly, Gouttefarde et al. introduces a
method in [114] (with preliminary study published in [115]) able to compute this set for
the specific case ofm = n+2. This approach proved to be versatile in the sense that sev-
eral TDAs may be adopted based on the output delivered by such algorithm. Explicit
computation of the following outputs are presented: centroid, weighed barycenter, 1-
norm and 2-norm optimal solutions. The algorithm finds the values of λ ∈ R2 so that
τ = W+ fd + Nλ are the vertices of the polytope of the TDA solutions, with N ∈ Rm×2

the null space matrix of W. Therefore, the identification of the polytope vertices lying
on R8 is simplified to computations in the 2-dimensional space of λ.

1.6 Cable Tension Control

Inasmuch as the output of the TDAs is a set of desired cable tensions, a strategy
should be implemented to convert desired cable tensions to a variable that is mean-
ingful to the motor drivers, typically motor torques (or currents), positions or veloci-
ties. Such strategies are denoted in this thesis as cable tension control schemes. Com-
pared to the position tracking control, this problem received less attention among the
research studies related to the control of CDPRs. Notably, many works presenting
exclusively simulations focused on the position tracking control neglect this subject,
considering that the desired cable tensions are instantly generated [71, 72].

Maybe due to the fact that the measurement of forces are often very noisy or be-
cause force sensors to measure cable tensions were not available, the majority of pub-
lished experimental results were obtained with open-loop cable tension control schemes.
Figure 1.14 presents a very simple scheme using motor torques as control input to the
motor drivers 1. In spite of its simplicity, this strategy has been widely used. Clearly,
this is the case for the schemes in Figures 1.9 and 1.10 of works [7] and [77], respec-
tively. Additionally, such open-loop control is also used in other studies cited previ-
ously, e.g. [8, 58].

Alternatively, force sensors may be used enabling the implementation of a feed-
back control strategy. Kraus et al. used motor positions as control inputs to the motor

1. The used notations are in accordance with those in Figures 1.9 and 1.10.
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Figure 1.14 – A simple open-loop cable tension control scheme [8].

drivers [59]. This work presents details on the identification of the dynamic system
and satisfying experimental results on position tracking control. With a very similar
cable tension control scheme, the same author implemented a hybrid force-position
control [116]. Reichert et al. attains a similar goal using torques as control inputs of
the motor drivers [117]. Using a disturbance observer, a robust internal force-based
impedance control is proposed [117]. A more advanced technique is proposed and
tested through numerical simulations in [118] usingH∞ robust control in order to com-
pensate the influence of the cable elasticity.

The use of measured cable tensions as feedback signals may be of particular inter-
est for fully-constrained CDPRs. Consider a suspended CDPR presenting a pose and
payload in accordance with the designed nominal workspace and admissible payloads.
Excessively high cable tensions necessarily lead to high accelerations. Therefore, safety
of suspended CDPRs regarding the limits of cable tension may be indirectly monitored
by other aspects, namely, pose, payload, velocity and accelerations. For this reason,
some suspended CDPRs do not present force sensors (even though most of the cranes
directly monitor cable tension for safety purposes). In contrast, fully-constrained CD-
PRs may develop excessively high cable tensions without any other apparent variation
on these variables. Therefore, for safety reasons, the use of force sensors monitoring
cable tensions of a fully-constrained CDPR is highly recommended. This is the case for
the robots studied in this thesis. Accordingly, the implementation of an inexpensive
(regarding the cost) cable tension control scheme taking advantage of the presence of
the force sensors is pertinent.

1.7 Model Predictive Control

According to the studies presented in Section 1.5, the minimal and maximal cable
tensions play a major role in the control of CDPRs. However, one may note that the ca-
ble tension limits, in spite of their critical importance, are generally taken into account
(in the TDA) once the desired wrench is already computed. In other words, the wrench
feasibility cannot be directly considered in the corresponding control approaches. In
practice, if a non-feasible wrench is computed by any of the OSC modules [8]-[77],
the corresponding TDA will not be able to compute cable tensions, resulting in a sud-
den interruption of the robot operation. Similarly, the discussed JSC schemes handle
the tension limits uniquely in the feedforward terms, as in the scheme in Figure 1.9.
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Therefore, one cannot guarantee that the final cable tension is within the feasible lim-
its.

Typically, a non-feasible desired wrench may be necessary in case of excessive dis-
turbances or if the desired pose is out of the actual workspace. Even though the robot
workspace can be theoretically computed beforehand, so that the feasible trajectories
may be analyzed out of the real-time operation, the proposed workspace computation
methods were proven to deliver not more than estimative results. Depending on the
considered assumptions and all kind of uncertainties including approximate knowl-
edge of the CDPR geometric parameters, the dimensions of the estimated workspace
may change considerably and the computation itself may be troublesome [119, 120].
Moreover, changes on the values and location of the payload lead to variations in the
workspace dimensions.

As discussed in Section 1.2, the robot designed in the Hephaestus project should
operate in a construction site so that the presence of disturbances is a major concern
and safety deserves particular attention. In addition, the limited available area in the
neighborhood of the building results in a workspace with small margin for uncertain-
ties, i.e. the difference between the workspace predicted in the robot design and the
necessary to perform the tasks is very narrow. In this context, the operation of the
Hephaestus prototype with a control scheme similar to state of the art approaches [8]-
[77] would be probably subjected to the sudden interruptions described above, which
may lead to unacceptable safety issues. In practice, a control scheme able to resolve
this problem should take into account the cable tension limits within the computation
of the desired wrench.

Model Predictive Control (MPC) is one of the few control methodologies able to
explicitly handle system constraints [121,122]. The main idea of MPC is well described
in the early work of Lee and Markus [123]:

One technique for obtaining a feedback controller synthesis from knowledge of
open-loop controllers is to measure the current control process state and then com-
pute very rapidly for the open-loop control function. The first portion of this func-
tion is then used during a short time interval, after which a new measurement of
the process state is made and a new open-loop control function is computed for this
new measurement. The procedure is then repeated.

In other words, an open loop optimal control problem is repeatedly solved based
on updated measured states and the first portion of the optimal sequence is applied
during one control cycle time. The procedure is repeated at each control cycle. As
better discussed in the course of the present section, this optimal control problem may
explicitly handle the system constraints.

Although the main idea of MPC is remarkably simple, its implementation relies
on the solution of an optimal control problem in real-time. Clearly, considering the
numerous possible combinations of system dynamics and strategies to solve the cor-
responding optimal control problem, the class of MPC schemes includes a variety of
control strategies with characteristics remarkably different. This section tries to sum-
marize these main characteristics and evaluate their pertinence in the context of this
thesis.
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Figure 1.15 – An illustrative system used to introduce the main elements of an OCP.

1.7.1 Optimal control

According to Vinter [124], Optimal Control Problems (OCPs) emerged in the 1950s
taking the aerospace engineering field of the American and Russian space programs
as important source of motivating problems. As an illustrative example, take the very
simple system of Figure 1.15. The motion of a body with unitary mass within a one-
dimensional space is studied in a time span t ∈ [0, tf ]. The body departs from position
x(0) = 0 with null initial velocity v(0) = 0 and is actuated by a force, namely, f(t). The
motion satisfies the Newton’s Second Law v̇(t) = f(t) and the system is constrained
with respect to the applied force and velocity according to |f(t)| 6 fmax and v(t) 6 vmax
for all t ∈ [0, tf ]. A twofold goal is defined: The final position x(tf ) should be as close
as possible to a desired position xd and the squared final velocity v(tf )2 should be
minimized as well. Accordingly, the following OCP may be formulated:

min
f

(
x(tf )− xd

)2
+ v(tf )2 .

s. t. x(0) = 0, v(0) = 0
ẋ(t) = v(t), v̇(t) = f(t)
|v(t)| 6 vmax, |f(t)| 6 fmax, ∀ t ∈ [0, tf ]

(1.2)

In spite of its simplicity, this illustrative example introduces the main elements of a
general OCP, which may be summarized as follows:

Present example

• A dynamic system v̇(t) = f(t)
• A time span (bounded or unbounded) t ∈ [0, tf ]
• System constraints |v(t)| 6 vmax, |f(t)| 6 fmax

• A cost functional
(
x(tf )− xd

)2
+ v(tf )2

It is worth noting that, as presented in the list above, the analyzed time span may
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be bounded or unbounded. In contrast to this illustrative example that implements a
finite time span, the interval of time t ∈ [t0,∞) for a given initial time t0 is used in
OCPs with an unbounded time span. The theory of infinite horizon optimal control
[125] addresses this class of OCP. The (LQR) and Linear Quadratic Gaussian (LQG)
controllers are well-known methods using this approach.

Even though OCPs based on continuous time systems may be categorized within
the class of optimization problems, it is worth highlighting that they present a rather
particular characteristic when compared to the classical problems addressed in opti-
mization theory. Instead of taking as argument a finite set of numbers, a continuous
OCP take as argument a vector function, namely, the control inputs within the studied
time span (f(t) in the example above). This is the reason why the term cost functional
(instead of cost function) was used in the list of the main elements of an OCP. As de-
fined in [126], a functional is a “correspondence which assigns a definite (real) number
to each function (or curve) belonging to some class”. Briefly speaking, the main goal
of a continuous OCP is to minimize (or maximize) a cost functional, which quantifies
how good is the obtained behavior. The solution of the problem represents the optimal
profile of control inputs.

Once the problem is stated, a method to compute the control inputs as functions
of time should be defined. To this end, the variations of the control inputs should be
mapped to the variations of the cost functional. This subject is addressed by means
of the Variational Calculus, which constitutes the theoretical basis to the solution of
classical problems such as the derivation of the seminal Euler-Lagrange equation [126,
Section 1.4]. More precisely, the Euler-Lagrange equations are differential equations
that are necessary conditions to the optimality of a functional. In order to cope with the
solution of a general optimal control problem (in particular, the system constraints), the
results of the Variational Calculus were extended by Pontryagin [127], who introduced
the maximum principle.

As an alternative to these methods, the continuous system may be studied with
a discrete-time approach. In this case, continuous-time control inputs and states are
converted to sequences of control inputs and states. This numerical discretization may
be performed using the methods proposed in [13, Chapter 9] and leads to a discrete-time
system, which is an approximation of the original continuous system.

As an illustration, considering the example introduced earlier, the functions rep-
resenting the force f(t) and states s(t) for t ∈ [0, tf ] are converted to finite sequences

{f0, ..., fnf} and {s0, s1, ..., snf+1}, with sk =
[
xk vk

]T
containing the actual position

and velocity, xk and vk respectively. In this discrete-time version (in the sense of [128,
Section 2.3]) of the aforementioned example, the sequence of states {s0, s1, ..., snf+1}
and the sequence of control inputs {f0, f1, ..., fnf} satisfy a transition mapping

sk+1 = φ(sk, fk), ∀ k ∈ {0, 1, ..., nf}, (1.3)
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and the OCP (1.2) may be reformulated as

min
f0,...,fnf

(
xnf+1 − xd

)2
+ v2

nf+1 .

s. t. s0 = 0
sk+1 = φ(sk, fk) ∀ k ∈ {0, ..., nf}
|vk| 6 vmax, |fk| 6 fmax, ∀ k ∈ {0, ..., nf}

(1.4)

This discrete counterpart of the OCP discussed earlier takes as argument a sequence
of control inputs, instead of a continuous function. Therefore, the resulting optimiza-
tion problem may be solved with standard optimization techniques. Furthermore,
since the vast majority of control systems used nowadays are digital, the discrete-time
approach of OCP led to relevant influences on the current state of the art of the MPC.
For this reason, this subject is discussed here more in detail.

The Dynamic Programming Principle (DPP), introduced by Bellman [10], is able
to break some optimization problems in several smaller subproblems in a recursive
manner. As illustrated in Figure 1.16, the DPP is useful when decisions should be taken
successively. This figure introduces the main elements of a problem addressed by this
principle. The possible states are distributed in several layers, and successive layers
present their states connected by transitions with corresponding costs. The problem
of finding the sequence of transitions linking the initial state to the final state with a
minimal accumulated cost (optimal path) may be divided into several subproblems in
which a cost-to-go is attributed to each state of a layer. For a given state s, the cost-to-go
is the minimal cost to attain the final state departing from the state s.

More precisely, the DPP may be sketched as follows. Denote s′i the possible states
that can be reached directly from s, and ci the stage cost corresponding to the transition
from s to s′i, with i ∈ {1, ..., ns} and ns the number of possible states reachable from s.
Denote also V (s) the cost-to-go of any state s. The DPP states that

V (s) = min
i

(
ci + V (s′i)

)
. (1.5)

The applicability of the DPP in discrete-time OCPs is evident. However, taking
a continuous system such as the dynamic model of a CDPR, one may note that the
application of the DPP as it is involves two instances of discretization. Firstly, the
system should be discrete-time, i.e. time should be considered as a discrete sequence
t ∈ {t0, t1, ..., tf}, instead of a continuous interval. Secondly, the states and control in-
puts themselves should be discretized as well. That is to say, instead of considering
continuous intervals of admissible cable tensions, platform poses and velocities, one
should consider finite discrete sets. As a result, a mesh of possible states and con-
trol inputs need to be considered. As already pinpointed by Bellman [129, page 322],
this second instance of discretization leads to a severe drawback for systems with high
dimensions (this drawback is commonly referred to as the curse of dimensionality).
Nevertheless, the DPP plays a very important role as an analysis tool for the perfor-
mance and stability evaluation of MPC schemes [13]. Moreover, the theory introduced
in [10] inspired other MPC approaches that do not require the discretization of states
and control inputs, such as the Differential Dynamic Programming (DDP) [130] which
has been used in recent and advanced applications of MPC [131].
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Figure 1.16 – A simple example of an application of the Dynamic Programming principle in-
troduced in [10].

1.7.2 Receding horizon model predictive control

Note that the discussions related to optimal control hitherto do not consider a
closed-loop strategy. Recalling the discussion at the beginning of this section, the main
idea involved in MPC is to recompute the optimal control inputs as frequently as pos-
sible taking the measured states into account, leading to a closed-loop algorithm (see
the illustration in Figure 1.17). Consequently, an optimal control problem should be
solved in each cycle of the feedback loop.

Such as illustrated in Figure 1.17, this concept results in an interesting consequence
on the analyzed time span of MPC schemes. First, consider a control scheme that solves
repeatedly an OCP with a finite time span. In the context of MPC, the final instant of
such time span is called prediction horizon. Obviously, the initial time of the OCP is
shifted every time it is computed. Since the analyzed length of time is kept constant,
the prediction horizon is also shifted. This feature presented by MPC schemes solving
OCP with finite time spans inspires the commonly used term Receding Horizon Model
Predictive Control. On the other hand, if infinite time span is used, the horizon is
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Figure 1.17 – MPC strategies solve a finite horizon OCP at each control cycle taking updated
measured states.

constant (tf = ∞). Therefore, the aforementioned examples LQR and LQG do not
present receding horizons. For this reason, even though this class of feedback control
repeatedly solves OCPs taking updated measures of states, they are rarely included
within the set of MPC schemes. In brief, the commonly used classification indicates
that a control scheme is considered as an MPC scheme only if it presents a receding
horizon. Accordingly, the definition of MPC used in the present thesis is as in [132]:

Model predictive control (MPC) or receding horizon control (RHC) is a form of
control in which the current control action is obtained by solving on-line, at each
sampling instant, a finite horizon open-loop optimal control problem, using the
current state of the plant as the initial state; the optimization yields an optimal
control sequence and the first control in this sequence is applied.

In spite of the fact that earlier works, such as [133], introduced strategies match-
ing with the aforementioned rationale, the origin of MPC is commonly attributed to
Richalet. The work [134] coined the name Model Predictive Heuristic Control to the
method in which impulse-response methodology is used to identify and model the
controlled system. Promising experimental results were obtained for the control of a
steam generator, a distillation column in an oil refinery and a complete chemical plant
synthesizing vinyl chloride. Richalet already highlighted the prominent advantage
that constraints may be handled explicitly within the feedback loop. Handling con-
straints is particularly relevant since the optimal operation in industrial processes are
frequently attained on the boundary of the set of feasible states and control inputs.
However, some strategies which cannot be neglected on the timeline of the develop-
ment of MPC schemes do not consider system constraints, e.g. the Generalized Predic-
tive Control (GPC) proposed by Clarke [135].
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Since Richalet’s work [134], MPC has been the focus of a great deal of attention
both in academia and industry. Indeed, as advocated by Maciejowski [121], MPC is
sometimes known as “the only advanced control technique — that is, more advanced
than standard PID — to have had a significant widespread impact on industrial pro-
cess control”. Here, it is interesting to highlight the scope of industrial process control.
Besides the evident profitability obtained with a control scheme able to safely run close
to constraints, industrial processes often present system dynamics much slower than
other typical applications of advanced control strategies, such as robotics. Systems
with slow dynamics enable the application of control running with longer cycle times.
Therefore, issues related to the numerical solution of OCPs in real-time may be over-
come. For these reasons, the vast majority of relevant applications of MPC in the 20th
century was focused on industrial process control, or more specifically, to chemical
processes [136–138].

Fortunately, thanks to the improvements on the numerical optimization methods
and on the computational capability of the commercial hardware, the applicability of
MPC has been extended to systems with fast dynamics. As a matter of comparison, in
1990, Hidalgo and Brosilow used a sampling time of 1 min [136], whereas numerous
recent studies apply intricate MPC schemes on robots with sampling time of a few
milliseconds, e.g. the trajectory optimization proposed in [139] that may be computed
within 25 ms. Accordingly, MPC is a mature subject within the field of robotics, e.g.
[139–150].

MPC schemes may be categorized according to several classes. The classes that are
relevant to the discussions present in this thesis are discussed in the sequel. Firstly, as
for the control strategies discussed in Section 1.4, several simplifications can be consid-
ered if the system to be controlled is assumed to be linear. In this case, the resulting
strategy is classified as linear MPC. Even though linear systems represent a very spe-
cific class of system among the broad set of possible applications of MPC, a great part
of the most well-known books dedicated to the MPC theory are focused exclusively on
linear MPC [121,122,151]. For this reason, linear MPC is commonly referred to as MPC,
shortly. Otherwise, if the control scheme considers a nonlinear system, it is classified
as Nonlinear MPC (NMPC) [13, 152].

In the scope of linear MPC, linear systems generally lead to a simple analytical ex-
pression for the cost functional optimized in the OCP. Revisiting the example of Figure
1.15, the corresponding transition mapping φ in (1.3) may be written as

sk+1 =

A︷ ︸︸ ︷[
1 ∆t
0 1

]
sk +

B︷ ︸︸ ︷[
∆t2/2

∆t

]
fk. (1.6)

This expression may be recursively applied so that

s1 = B f0

s2 = A B f0 + B f1

...

snf+1 =
nf∑
i=0

(
Anf−iB fi

)
= Bf ,

(1.7)
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with B =
[
AnfB Anf−1B . . . B

]
and f =

[
f0 . . . fnf

]T
. As a result, the following

explicit expression for the functional in (1.4) may be obtained

(
xnf+1 − xd

)2
+ v2

nf+1 =
(

Bf −
[
xd
0

])T (
Bf −

[
xd
0

])
=

= fTBTBf − 2
[
xd 0

]
Bf + x2

d,

(1.8)

which is a quadratic function of the vector of forces f . Similarly, the constraints in (1.4)
may be written as linear constraints in f . As a result, the OCP (1.4) may be rewritten
in the format

min
f
fT Qf + cT f ,

s. t. Aineq f 6 bineq
(1.9)

with constant matrices Aineq and Q, and constant vectors bineq and c, so that the studied
OCP is actually a QP problem. Moreover, the fact that the hessian matrix Q = BTB is
positive semidefinite demonstrates that the optimization problem is convex.

As in this illustrative example, MPC schemes very often use cost functionals that
are quadratic functions of the states and control inputs. For the sake of comparison,
among all the previously cited references of MPC applied to robotics [139, 142–150],
the work of Worthmann et al. [149] is the only one that does not belong to this class of
MPC.

The main characteristic illustrated in the OCP (1.9) is that a cost functional which
is a quadratic function of the states and control inputs applied to linear systems may
be optimized with standard QP algorithms. Recalling that, as discussed in Section 1.5,
numerous software can be used to efficiently solve QP problems (see [99, Section 16.8]),
the numerical solution of such OCPs may be seen as an elementary task. On the other
hand, the same kind of cost functional applied to nonlinear systems leads to OCPs
demanding nonlinear numerical optimization methods.

Based on this contrast between linear MPC and NMPC, the first control solution
proposed in this thesis applies linear MPC (Chapter 3). Numerical simulations and
experimental studies proved that the proposed solution yields to satisfying results.
Nevertheless, in order to guarantee stability and good performance independent of
the level of nonlinearities of the CDPR dynamics, an NMPC scheme is necessary. For
this reason, additional studies presented in Chapter 4 address this type of MPC. Both
approaches cope with the issue discussed at the very beginning of this section, i.e.
the cable tension limits are explicitly handled in the OCP formulated within the MPC
scheme. As a result, the tension distribution is integrated within the main feedback
control. Moreover, the proposed scheme computes feasible sets of cable tensions even
for reference trajectories that escape from the robot workspace.

The majority of studies addressing the stability and robustness of MPC schemes
is focused on the so-called tracking MPC (or stabilizing MPC), which penalizes the
deviation to a predefined feasible equilibrium or trajectory [153]. More precisely, se-
quences of desired states and desired control inputs should be computed beforehand.
The cost functional should penalize the euclidean distance to these desired sequences.
Therefore, the cost functional should be null for states and control inputs equal to their
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desired counterparts, and strictly positive otherwise. The illustrative example of Fig-
ure 1.15 can be used to show the typical approach implemented to obtain a standard
tracking MPC.

The control scheme considers sequences of desired states {sd,0, sd,1, . . . , sd,nf+1} and
forces {fd,0, . . . , fd,nf} determined beforehand. These sequences represent the desired
behavior of the system. The sequence of desired states determines the reference tra-

jectory departing from sd,0 = s0 and arriving on sd,nf+1 =
[
xd 0

]T
. The sequence

{fd,0, . . . , fd,nf} is the sequence of forces that generates the desired trajectory. Clearly,
both sequences should satisfy the system constraints. For a given discrete instant k and
actual state sa, a typical standard tracking MPC could apply the OCP

min
{fk,..., fk+h}

k+h∑
i=k
‖si − sd,i‖2 + (fi − fd,i)2 (1.10a)

s. t. sk = sa (1.10b)
si+1 = φ(si, fi) ∀ i ∈ {k, . . . , k + h} (1.10c)
|vi| 6 vmax, |fi| 6 fmax ∀ i ∈ {k, . . . , k + h} (1.10d)

where a positive integer h was used in order to determine the prediction horizon. As
described before, the cost functional (1.10a) penalizes deviations with respect to the
desired trajectory (with the term ‖si− sd,i‖2) and also with respect to the desired forces
(with (fi − fd,i)2). Moreover, if the actual state is equal to the desired one (sa = sd,k),
the sequence of desired forces within the prediction horizon {fd,k, . . . , fd,k+h} leads to

fi = fd,i and si = sd,i ∀ i ∈ {k, . . . , k + h},⇒

⇒
k+h∑
i=k
‖si−sd,i‖2 + (fi − fd,i)2 = 0

(1.11)

resulting in a null cost functional in (1.10). If any of the elements of {sk, . . . , sk+h}
and {fk, fk+h} is not equal to their desired counterparts, the cost functional is strictly
positive. This is the desired characteristic described above.

Note, however, that such approach requires the definition beforehand of the de-
sired sequence of control inputs ({fd,0, . . . , fd,nf} in the example above). The MPC
schemes proposed in this thesis perform the tension distribution as an integral part of
the main controller. Therefore, the sequence of control inputs (cable tension vectors) is
not known beforehand. Accordingly, an alternative approach is proposed in Chapter 4
in order to obtain a standard tracking NMPC with a similar characteristic as in (1.11).
The proposed NMPC scheme allows the stability analysis of the corresponding closed-
loop system. Even though the design and stability analysis of the proposed NMPC
is based on the feasibility of the desired trajectory, numerical simulation results show
that the controller is able to operate with unfeasible desired trajectories.

The class of tracking NMPC algorithms may be divided between control schemes
(i) with and (ii) without terminal conditions. An NMPC scheme with terminal condi-
tions (i) solves OCPs with additional costs and constraints related to the terminal states
so that the cost-to-go function can be easily proved to be a Lyapunov function. Accord-
ingly, NMPC schemes with terminal conditions typically lead to simpler stability and
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Figure 1.18 – Illustration of feasibility issues resulted from the application of terminal con-
straints under the incidence of disturbances.

performance analysis [132] compared to algorithms without terminal constraints [154].
Nevertheless, the application of terminal conditions leads to crucial drawbacks in the
context of the present thesis. As a matter of fact, “the construction of such stabilizing
(terminal) constraints may be challenging and their use may considerably reduce the oper-
ating range of the MPC scheme” [155]. The design of the terminal constraints may be
particularly troublesome when the disturbances and modeling errors are considered.
As illustrated in Figure 1.18, an NMPC of type (i) forces the terminal state in the pre-
diction horizon to be within a terminal constraint set consisting in a neighborhood of
the desired trajectory. In the incidence of significant modeling errors and disturbances,
feasibility issues may be met. Recalling the considered requirements for the Hephaes-
tus project, one may note that this limitation may lead to safety issues.

Conversely, even though the stability analysis of tracking NMPC schemes with-
out terminal conditions also assumes feasibility of the desired trajectory, controllers of
type (ii) are typically less prone to the incidence of unfeasible OCPs. This subject is
discussed in detail in [154, 156] and in [13, Section 7.4]. Grüne presents an intuitive
example in [154] illustrating the applicability of NMPC with unfeasible desired states.

In addition, terminal constraints may hinder the numerical solution of the OCP [13]
and the implementation of NMPC schemes of type (ii) is typically easier than (i) [157].
Recalling that the numerical implementation of the proposed MPCs should be per-
formed from scratch, these advantages also play an important role. Therefore, the con-
trol strategies proposed in this thesis are MPC schemes without terminal conditions.
This choice is in accordance with the MPC schemes commonly used in the industry.
Indeed, MPC schemes with terminal constraints “are mostly not used in the process in-
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dustries” [156].

Apart from tracking NMPC, it is also interesting to highlight an alternative MPC
architecture. Similarly to the control strategies in Chapters 3 and 4 of this thesis, the
use of MPC to track unreachable setpoints was also addressed in [158]. A few years
latter, the term Economic MPC (EMPC) has been coined referring to MPC algorithms
that do not penalize the deviation to a feasible equilibrium (or trajectory) [159, 160]. In
other words, MPC schemes that do not match with the definition of standard tracking
MPC may be categorized as EMPC. The common use of cost functions evaluating the
economic performance of a system inspired the expression “economic”. As a matter of
fact, as discussed in [13], the cost function in an EMPC can “model all kinds of quantities,
like energy consumption, yield of a substance, income of a firm, etc., which one would like to
minimize or maximize”. Considering that the ability to track unfeasible desired trajecto-
ries is one of the main goal in this manuscript, the control strategies proposed in this
thesis may be also classified as EMPC schemes.

As for standard tracking NMPC, the class of EMPC algorithms may be divided
between control schemes with [160–162] and without [163, 164] terminal conditions.
Similarly to the strategy described above, an EMPC scheme applying terminal con-
ditions takes advantage of a terminal cost that is a Lyapunov function within the
terminal state constraint set. The same disadvantages described before are valid for
EMPC schemes with terminal conditions. Stability and performance estimations of
this class of NMPC are closely related to the theory of dissipativity of nonlinear sys-
tems, which was introduced in [165] and firstly used within the framework of EMPC
in [159]. Whereas the stability conditions of systems with a constant unfeasible refer-
ence are well-known [164, 166], the case for time-varying references is still an active
field of research. Most of these studies are focused on periodical reference trajecto-
ries [163, 167, 168]. Some exceptions are the works [169, 170], which address the case
for general optimal operation regimes.

Independently of the aforementioned classes, MPC schemes involve the numerical
solution of OCPs in real-time. On the other hand, the vast majority of control schemes
discussed in Section 1.4 defines a precomputed policy. More precisely, studies [8]-[77]
define an explicit expression to the computation of the desired wrenches. The com-
parison between the complexity involved in these two approaches reveals an impor-
tant drawback related to MPC schemes. As discussed in the end of Section 1.2, the
control schemes developed in this thesis were implemented in a software commonly
used in industrial environments. Since such software is not compatible with common
programming libraries, the control schemes proposed here were implemented from
scratch. This is a minor aspect in the scientific perspective, but crucial from a practical
point of view.

Previous studies addressing the implementation of MPC in the control of CDPRs
are very few and recent. Katliar et al. proposed a nonlinear MPC for a motion simulator
in [171]. Its performance was investigated through numerical simulations. To the best
of our knowledge, no experimental results were published so far. The feasibility of the
MPC implementation in real time was addressed taking into account solvers such as
HPMPC [172] and qpOASES [173]. However, these solvers are not compatible with
common industrial real-time environments. As a motion simulator control, the focus
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in [171] is a set of desired accelerations and velocities. The present thesis is focused on
trajectory tracking, which prioritizes positioning accuracy.

The recent work [174] presents simulations and experimental results of a linear
MPC scheme implemented in a hybrid cable-driven robot. However, the studied cable-
driven system consists of a 2-DoF platform with planar movements. Only some of
the cables are controlled in tension. The remaining cables are controlled in position.
The actual tensions of these cables are not considered in the real-time controller and
the proposed MPC strategy is used to control the vibration of the system. This thesis
present results on trajectory tracking of CDPRs with six DoF, eight cables, and each
cable tension is controlled by the MPC scheme. Additionally, the focus of the work
[174] is vibrations attenuation. One may note that both schemes proposed in [171,174]
cannot be classified as position tracking control.

1.8 Contributions of the Thesis

Based on the state of the art discussed in Sections 1.4, 1.5, 1.6 and 1.7, MPC proved
to be an appropriate strategy to the context introduced in Section 1.2. The state-of-
the-art control strategies do not explicitly consider the cable tension limits in the com-
putation of the feedback correction. Therefore, feasibility issues may be faced when
the robot operates close to the system constraints. These risks present particular rele-
vance in this thesis. Being one of the few control strategies able to explicitly handle the
system constraints, MPC corresponds with the specific requirements in the Hephaes-
tus project. Therefore, this thesis proposes different position tracking control solutions
using MPC. As a matter of fact, the integration of the TDA within the main feedback
control computation is a relevant achievement for the control of CDPRs, in general.
Details on the design, numerical simulations, implementation, and real-time experi-
mental results related to two MPC schemes are presented.

Chapter 3 introduces a linear MPC scheme, highlighting its main advantage: The
control scheme is able to perform the tracking of unfeasible trajectories satisfying the
constraints of feasible cable tensions. In other words, the performed trajectory is as
close as possible to the desired one without violating the interval of feasible cable ten-
sions. To the best of our knowledge, this controller led to the first experimental results
of a CDPR control scheme with this characteristic. Additionally, characteristics related
to disturbance rejection capabilities are also discussed.

Acknowledging the nonlinearities intrinsically inherent to the dynamics of a CDPR,
Chapter 4 addresses an NMPC. Whereas this control scheme is inspired by the strategy
of Chapter 3, it seeks guarantees of stability and performance based on the theoretical
studies of tracking NMPC. Consequently, a more intricate scheme is proposed and
its stability analysis is performed. Similarly to the linear MPC of Chapter 3, terminal
conditions are not used. The output of both MPC schemes is a set of desired feasible
cable tensions for each sampling time.

Even though the results presented in Chapters 3 and 4 represent the main contribu-
tions of this thesis, the corresponding implementation in experimental set-ups would
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not have been possible without the development of some other technical solutions.
Some of these technical solutions are discussed in Chapter 2.

Since the output of the proposed predictive controllers is a set of desired cable ten-
sions, a strategy should be implemented to convert desired cable tensions to a variable
that is meaningful to the motor drivers, e.g. motor torques, positions or velocities. As
discussed in Section 1.6, the CDPRs studied in this thesis have force sensors in order
to measure the cable tensions. Therefore, even though the majority of published stud-
ies address this problem with open-loop cable tension control schemes, measurements
obtained with the force sensors may be used in order to guarantee that the actual ten-
sions are as close as possible to the desired ones. Nevertheless, the CDPRs considered
in this thesis have servo motors coupled to gear trains with a large reduction ratio.
Real-time experiments described in Chapter 2 demonstrate that the influence of the
friction introduced by these gears is non-negligible and scarcely repeatable. Inasmuch
as every feedback state of the art cable tension control method discussed in Section 1.6
is highly dependent on a precise identification of the system dynamics, a non-model
based scheme was developed. Chapter 2 presents the design of this controller and the
corresponding experimental results.

In addition, in accordance with the priorities enumerated in Section 1.2, an efficient
estimation of the pose of the platform should be used in order to improve the position-
ing accuracy of the CDPR. As can be seen in Table 1.1, a relatively large cable diameter
(12 mm) is necessary due to the the large payload presented in the Hephaestus project.
As a result, a large pulley diameter is necessary in order to satisfy the minimal cur-
vature specific for this cable, which increases the influence of the pulley kinematics
discussed in Section 1.3. Therefore, a forward kinematics algorithm considering the
pulley kinematics is proposed in Chapter 2. The main contribution here consists of
explicit expressions of the corresponding differential kinematics. Such expressions fa-
cilitate the implementation of an efficient algorithm using QR factorization.

One may note that implementation of the methods discussed in Chapters 2, 3 and
4 demands advanced numerical algebra, e.g. QP, QR factorization, null space compu-
tation, among others. Since industrial software and hardware should be used (see
Section 1.2), the real-time operation of the programmable logic controller (PLC) is
most often not compatible with existing libraries of advanced mathematical opera-
tions. Consequently, the necessary operations were programmed from scratch using
C++ language compatible with the used industrial software (TwinCAT - Beckhoff).
The Appendix A is devoted to the these implementations.

Additionally, Appendix B introduces a TDA able to minimize the infinity norm of
the vector of cable tensions. In contrast to most of the algorithms compatible with
m > n + 1, the proposed TDA consists in a closed-form expression. The optimality of
the proposed algorithm is proved and experimental results are presented. The discon-
tinuity inherent of TDAs minimizing the infinity norm is exemplified.
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Kinematic Model and Cable Tension
Control

Several variables considered in the position tracking control strategies proposed in Chapters 3
and 4 do not have a direct relation with variables that can be directly measured and controlled
in the CDPRs studied in this thesis. The variables that can be directly measured and controlled
in real-time are the motor currents, positions and velocities. Interestingly, the model on which
the control is based presents numerous parameters and variables that are not directly related
to the motors operation. The present chapter is devoted to the development of strategies and
algorithms relating these variables, which are a priori abstract to the control system, with the
variables that can be directly accessed through the motor drives. Section 2.1 introduces an
algorithm able to estimate the platform poses and velocities based on the motor positions and
velocities. Sections 2.2 and 2.3 discuss two different control strategies responsible to generate
the desired cable tensions. In the first one, the control inputs are the motor currents whereas
the second one is based on motor velocities.
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2.1 Kinematic Model

The main goal of this section is to develop a method with which the most probable
platform pose and velocity could be estimated for given measured motor positions and
velocities. On the one hand, precise estimations are necessary in order to obtain an
accurate position tracking control algorithm. On the other hand, since this estimation
should be done in real-time, the computation time is a major concern.

Even though Pott showed in [35] that relevant errors may be obtained assuming
fixed proximal anchor points, most of the previous works discussed in Section 1.3 do
not address the influence of the pulley kinematics. An exception is the work of Schmidt
[175], in which the FK problem considering the pulley kinematics is solved but the
equations are not derived explicitly.

Accordingly, the present section explicitly derives the differential kinematics for
CDPRs considering the pulley kinematics and, based on that, proposes a real-time ca-
pable Forward Kinematics (FK) algorithm. The algorithm applies iteratively QR de-
composition to solve a linearized version of the least squares problem representing
the FK. Differential kinematics consists here of a closed-form expression of the jaco-
bian matrix of CDPRs considering the pulley kinematics. This jacobian matrix is used
to construct the linearization of the FK problem. Experimental and numerical results
address the convergence capabilities of the proposed algorithm.

Following the typical approach for the kinematic modeling of parallel robots, the
kinematic constraints are firstly formulated by means of the inverse kinematics.

2.1.1 Inverse kinematic model

A 6-DoF CDPR is considered but the proposed algorithm can be applied to CDPRs
with fewer DoF. The platform is driven by m cables. The main variables and param-
eters of the kinematic model are introduced in Figure 2.1. The position of each cable
attachment point Bi on the platform is given by the vector bi, with i = 1, ...,m. Each
point Ai is a fixed point which lies on the circumference of pulley i. Each pulley i is
able to rotate around the line passing through Ai tangent to the pulley circumference.
The constant position of Ai is given by vector ai in the fixed reference frame.

The platform pose is given by the vector x =
[
pT ψT

]T
. The position of the plat-

form is p =
[
px py pz

]T
. Its orientation is represented by the vector ψ =

[
α β γ

]T
.

The elements of this vector are Euler angles so that bi = p + Rz(γ) Ry(β) Rx(α) bpi,
where bpi is the vector of the platform attachment point i written in the coordinate sys-
tem Op, attached to the platform, and Rx, Ry and Rz are the rotation matrices around

x, y and z axis, respectively. The vector of cable lengths is l =
[
li ... lm

]T
, where li

is the length of cable i and the cable elongations are neglected. The inverse kinematics
model gives the motor positions for a given pose of the platform, i.e. compute l for a
given x. The remainder of this section recalls the inverse kinematics considering the
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Figure 2.1 – Illustration of the main geometric notations.
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Figure 2.2 – Pulley geometry and coordinate systems.

influence of the pulley geometry. Similar models were notably presented in [35, 53].

The pulley geometry is illustrated in Figures 1.7 and 2.2. One drawing pulley i
among the m CDPR pulleys is considered and subscript i is dropped in the remainder
of this section. Consider the definition of coordinate systems E0 =

[
e0

1 e0
2 e0

3

]
and

E1 =
[
e1

1 e1
2 e1

3

]
. These coordinate systems are defined with respect to the inertial

frame Ob. The pulley can rotate about the fixed axis e0
3 (with angle ρ). E0 is any fixed

coordinate system with e0
3 aligned with the rotation axis of the pulley. E1 rotates with

the pulley and e1
3 = e0

3. E1 is thus pose dependent and its orientation is computed in
the inverse kinematics.

Define v = bi − ai, written in the CDPR fixed reference frame. Vector ai is constant
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for a given CDPR and bi depends on the platform pose. Vector v can be written in
the coordinate system E0 as v0 = ET

0 v. The angle ρ shown in Figure 2.2 is obtained
as atan2(v0

2, v
0
1), with v0

1 and v0
2 the first and second components of v0. Therefore, the

coordinate system E1 is obtained as E1 = E0 Rz(ρ), where Rz is the rotation matrix
around the z axis.

The vector v1 written in the coordinate system E1 is v1 = ET
1 v =

[
v1

1 0 v1
3

]T
. The

component v1
2 = 0 because the coordinate system is aligned to the pulley orientation

so that vector v lies in the plan defined by the vectors e1
1 and e1

3. This can be seen in
Figure 2.2.

Analyzing the geometry presented in Figure 2.2, the following system of trigono-
metric equations is obtained

v1r =
[
v1

1
v1

3

]
= lf

[
sinφ
cosφ

]
+ rp

[
1− cosφ

sinφ

]
, (2.1)

where rp is the primitive radius of the pulley and lf is the length depicted in the Fig-
ure 2.2. Eliminating the variable lf , (2.1) leads to

v1
3 sinφ+ (rp − v1

1) cosφ− rp = 0. (2.2)

Trigonometric functions sinφ and cosφ may be written as

sinφ = 2 tan(φ/2)
1 + tan2(φ/2) , cosφ = 1− tan2(φ/2)

1 + tan2(φ/2) , (2.3)

so that (2.2) leads to

tan2(φ/2) (v1
1 − 2 rp) + tan(φ/2) (2 v1

3)− v1
1 = 0. (2.4)

Equation (2.4) can be solved as a quadratic equation in tan(φ/2). Then, using the
inverse tangent function, two solutions are obtained in the interval [−π, π], namely,

φ1 = 2 atan


√
v1

1
2 − 2v1

1rp + v1
3

2 − v1
3

v1
1 − 2rp

 , (2.5)

φ2 = 2 atan

−
√
v1

1
2 − 2v1

1rp + v1
3

2 − v1
3

v1
1 − 2rp

 . (2.6)

If v1
1 > 2rp (typical situation), φ1 > 0 and φ2 < 0. In this case the angle respecting

the geometry of the problem is φ1. Otherwise, φ2 should be taken.

The length lf may be easily obtained from (2.1) once φ is known. The cable length
li is given by

li = rp φ+ lf + lci, (2.7)

where lci is a constant additional length. This constant additional length may, for in-
stance, take into account the total distance between fixed pulleys.
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Additionally, the unitary vector ui shown in Figure 2.1 can be computed as

ui = E1 Ry(φ)
[
0 0 −1

]T
= −E1

[
sinφ 0 cosφ

]T
. (2.8)

This vector is used in the computation of the wrench matrix, as detailed in Sec-
tion 3.1.1.

2.1.2 Differential kinematics

The jacobian matrix J is used in the solution of the FK problem since it relates δl to
δx as

δl = J δx, (2.9)

where δ(·) denotes the differential variation of (·). This section presents the analytical
expression of the matrix J obtained from the equations in Section 2.1.1. As in Section
2.1.1, subscript i is dropped.

The vector v = bi − ai is computed as

v = p + R(ψ) bpi − ai, (2.10)

with R(ψ) = Rz(γ) Ry(β) R(α).

Differentiating this expression with respect to the platform pose, the following
equation is obtained

δv =
[
I3

∂
∂ψ

(R(ψ) bpi)
]

︸ ︷︷ ︸
∂v
∂x

δx, (2.11)

where
∂

∂ψ
(R(ψ) bpi) =

=

 bpiy σ1 + bpiz σ2 bpiz cα cβ cγ − bpix cγ sβ + bpiy cβ cγ sα bpiz σ3 − bpiy σ4 − bpix cβ sγ
−bpiy σ3 − bpiz σ4 bpiz cα cβ sγ − bpix sβ sγ + bpiy cβ sα sγ bpiz σ3 − bpiy σ2 + bpix cβ cγ

bpiy cα cβ − bpiz cβ sα −bpix cβ − bpiz cα sβ − bpiy sα sβ 0

 ,
with

σ1 = (sα sγ + cα cγ sβ), σ2 = (cα sγ − cγ sα sβ), (2.12)
σ3 = (cγ sα − cα sβ sγ), σ4 = (cα cγ + sα sβ sγ), (2.13)

and cθ = cos θ and sθ = sin θ. Defining v0r =
[
v0

1 v0
2

]T
and E0r =

[
e0

1 e0
2

]
, one may

write

v0r = ET
0r v = l0

[
cos ρ
sin ρ

]
, (2.14)

with l0 the length shown in Figure 2.2. Differentiating (2.14) and isolating δρ, this
equation leads to the derivative of ρ with respect to x

δρ =
(

1
l0

[
− sin ρ cos ρ

]
ET

0r
∂v
∂x

)
︸ ︷︷ ︸

∂ρ
∂x

δx. (2.15)



46 Chapter 2. Kinematic Model and Cable Tension Control

Defining

RT
zr(ρ) =

[
cos ρ sin ρ 0

0 0 1

]
,

equation (2.1) may be rewritten as follows

v1r = RT
zr(ρ) ET

0 v = lf

[
sinφ
cosφ

]
+ rp

[
1− cosφ

sinφ

]
. (2.16)

Differentiating this equation, the following relation is obtained

∂v1r
∂x︷ ︸︸ ︷(

DRz(ρ) ET
0 v

∂ρ

∂x
+ RT

zr(ρ) ET
0
∂v
∂x

)
δx =

=
(
rp

[
sinφ
cosφ

]
+ lf

[
cosφ
− sinφ

])
δφ+

[
sinφ
cosφ

]
δlf ,

(2.17)

with

DRz(ρ) =
[
− sin ρ cos ρ 0

0 0 0

]
. (2.18)

The differential δφ can be isolated in (2.17) leading to the derivative of φ

δφ =
(

1
lf

[
cosφ − sinφ

] ∂v1r

∂x

)
︸ ︷︷ ︸

∂φ
∂x

δx. (2.19)

Moreover, this expression can be substituted for δφ in (2.17) and δlf is thereby ob-
tained as

δlf =
([

sinφ cosφ
] ∂v1r

∂x
− rp

∂φ

∂x

)
︸ ︷︷ ︸

∂lf
∂x

δx. (2.20)

Differentiation of (2.7) leads to

δli =
(
rp
∂φ

∂x
+ ∂lf
∂x

)
︸ ︷︷ ︸

∂li
∂x

δx. (2.21)

Finally, the computations detailed above can be applied to each kinematic chain
i = 1, ...,m, and the derivatives are concatenated to form the expression of the Jacobian
matrix

δl =


δl1
...
δlm

 =


∂l1
∂x
...

∂lm
∂x


︸ ︷︷ ︸

J

δx. (2.22)
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2.1.3 Forward kinematic model

The FK model consists in computing the platform pose for a given set of winch
motor positions. In the case of redundant CDPRs with m > n, n being the number
of degrees of freedom of the mobile platform, the kinematic model is overdetermined.
In general, due to modeling and measurement inaccuracies, it is impossible to find a
platform pose that satisfies exactly the kinematic constraints set by the m kinematic
chains. Therefore, the FK may be formulated as the problem of minimizing the error
between the measured cable lengths and the cable lengths computed by the IK with
(2.7).

Let lm be the set of measured cable lengths and l̂(x) the cable lengths obtained
with the IK model for a given pose x. The error to be minimized is defined as e(x) =
‖l̂(x) − lm‖2, where ‖(·)‖2 denotes the 2-norm of (·). Therefore, for a given lm, the FK
algorithm should return the solution x∗ = arg min x ‖l̂(x)− lm‖2.

In general, the function e(x) = ‖l̂(x) − lm‖2 possesses several local minima. The
proposed FK algorithm takes an initial guess xg and find a x∗ that locally minimizes
the function e(x). The proposed algorithm assumes that xg is sufficiently close to the
current platform pose and consists of an iterative scheme. For an iteration k with plat-
form pose xk, the next iteration takes xk+1 = xk +∆xk. Considering the approximation
∆l̂ ≈ J(xk) ∆x, a reasonable choice for ∆xk is

∆xk = arg min
∆x

∥∥∥J(xk) ∆x−
(
lm − l̂(xk)

)∥∥∥
2
. (2.23)

The minimization problem (2.23) is a Linear Least Squares problem. The solution
of (2.23) might be computed solving

J(xk)TJ(xk) ∆x = J(xk)T
(
lm − l̂(xk)

)
, (2.24)

for ∆x. However, SVD and QR factorizations may solve this linear least-square prob-
lem more efficiently [88, 176]. The SVD may be preferred because of its greater diag-
nostic capability in pathological cases. Nevertheless, QR factorization presents faster
computing time. The latter being critical in real-time applications, the QR factorization
is preferred. Therefore, the Jacobian matrix J is decomposed using the QR factorization
such that

J = Q R,

with Q orthogonal and R upper triangular. The solution of (2.23) is then obtained from
the back substitution of the system

R ∆x = QT
(
l̂(xk)− lm

)
.

Once ∆xk is obtained, the next pose xk+1 = xk + ∆xk is computed. This procedure
is repeated until ‖∆x‖2 < ε, for ε the desired tolerance.

Note that the proposed algorithm does not use numerical damping. This was not
necessary for the studied scenarios. Numerical damping is applied in commonly used
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2nd pose
3rd pose
4th pose
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Figure 2.3 – CAD view of the HRPCable prototype presenting the performed trajectory.

Levenberg-Marquadt methods in order to compensate the incidence of ill-conditioned
configurations. If a given iteration k reaches a pose in which J(xk)T J(xk) is close to
singular, one may solve

(
J(xk)TJ(xk) + λ I

)
∆x = J(xk)T

(
lm− l̂(xk)

)
instead of (2.24),

for a positive λ ∈ R. This procedure improves numerical stability.

2.1.4 Experimental results

The proposed FK algorithm has been implemented in the HRPCable prototype
shown in Figure 1.1. As introduced in Section 1.2, this prototype has a 6-DoF plat-
form fully constrained by 8 cables. The control control software has been developed in
C++ and runs in an industrial PC Beckhoff C6920 equipped with 2.4GHz i7 core pro-
cessor. The platform pose control loop runs at 125 Hz. An inner feedback loop running
at 2 kHz control the cable tensions according to the control scheme proposed in Sec-
tion 2.3. Cable tensions were measured by means of force sensors (load pins) placed in
the drawing pulleys. Figure 2.3 depicts the performed trajectory. The threshold ε was
defined as ε = 1× 10−6.

In addition to the components shown in Figure 1.1, a Metris K600 camera system is
used to measure the pose (6-DoF) of the platform in real time with a precision of 70 µm.
The measurements obtained with the K600 camera system were used as reference to
compare with the estimations obtained with the proposed FK algorithm. These results
are shown in Figure 2.4. This figure also shows the number of iterations necessary to
the FK algorithm to converge for each sampling time during the trajectory.

Figure 2.4 indicates the presence of significant errors obtained with the proposed
FK algorithm. Such errors are probably a consequence of the assumption that the ca-
bles are inelastic. Accordingly, an identification of the elastic behavior of the cables
combined with the cable tension measurements may lead to an improved kinematic
model. This is, indeed, a subject of possible future works.



2.1. Kinematic Model 49

0 10 20 30 40 50 60 70 80 90
-2

-1

0

1

2

Po
si

tio
ns

 [m
]

x
y
z

0 10 20 30 40 50 60 70 80 90
time [sec]

-10

0

10

20

30

Po
si

tio
n 

er
ro

rs
 [m

m
] x

y
z

0 10 20 30 40 50 60 70 80 90
-20

-10

0

10

20

O
rie

nt
at

io
ns

 [d
eg

]

0 10 20 30 40 50 60 70 80 90
time [sec]

-1

-0.5

0

0.5

1

1.5
O

rie
nt

at
io

n 
er

ro
rs

 [d
eg

]

0 10 20 30 40 50 60 70 80 90
time [sec]

1

1.5

2

2.5

3

N
um

be
r o

f i
te

ra
tio

ns

Figure 2.4 – Experimental results: Solid lines represent the poses estimated with the proposed
FK algorithm and dashed lines represent the poses measured by the Metris K600 camera sys-
tem. On the right, the number of iterations necessary for the FK algorithm to converge for each
sampling time during the trajectory is presented.

For a given pair of pose and length vectors x∗ and l∗ consistent with the constraints
presented in section 2.1.1, rigorously evaluating the capability (denoted here as con-
vergence capability) of an FK iterative algorithm to quickly and reliably find x∗ for
given l∗ is not a trivial task and is out of the scope of this thesis. The FK problem
of a Stewart-Gough platform (topologically very similar to CDPRs) may have up to
40 solutions [177] and redundant configurations do not necessarily present a reduced
number of possible solutions compared to the non-redundant ones [178]. Therefore, it
is necessary to prove that the algorithm is able to converge to x∗, and not just to one of
the (potentially) many x that are consistent with l∗. Nevertheless, it is still interesting
to address this capability as follows.

The FK algorithm has been applied to IK solutions corresponding to more than
30 × 103 poses equally spaced across the workspace keeping the initial guess constant

equal to xg =
[
0 0 .8 0 0 0

]T
for all the poses. The workspace of the prototype is

a 4× 2× 1.4 m3 (x, y, z) cuboid, considering −10◦ 6 γ 6 10◦, α = β = 0. The algorithm
obtained a pose with errors smaller than the proposed tolerance within 7 iterations
for all these poses. Clearly, this test was not performed in real-time. The cable length
vectors l corresponding to the IK solutions were artificially fed to the FK algorithm.
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2.2 A Torque-Based Cable Tension Control

The vast majority of CDPR position tracking control strategies for CDPRs define, at
some point, a set of desired cable tensions. The present and next sections are dedicated
to the control strategies responsible for generating these cable tensions by controlling
variables that can be directly managed in the motor drives, namely, motor currents (or
torques) and velocities.

As discussed in Section 1.6, the cable tension control in CDPRs is often performed
by means of an open-loop scheme based on a model relating the motor torques to
the cable tensions. Nevertheless, the precision obtained with such models may be
deteriorated for winches presenting significant friction. Clearly, the implementation of
a closed-loop strategy measuring the actual cable tensions may reduce this error.

Moreover, fully-constrained CDPRs typically have cable tension sensors for safety
reasons. Hence, it is appropriate to consider the inexpensive information of measured
cable tensions within these strategies. Therefore, Sections 2.2 and 2.3 focus on closed-
loop strategies.

Based on the intuitive relation between cable tensions and motor torques, a torque-
based scheme is firstly proposed. Several previous works presented satisfying results
with torque-based cable tension control schemes operating in open-loop [8, 47]. Nev-
ertheless, the conducted experimental tests on the HRPCable prototype indicate that a
torque-based closed-loop scheme would have its implementation hindered or substan-
tially complicated by the presence of significant friction in the gear trains. This section
aims to provide theoretical and experimental data allowing to analyze the applicability
of a torque-based scheme.

Before addressing the control schemes themselves, the experimental set-up used to
evaluate the proposed schemes is introduced.

2.2.1 Problem formulation and experimental setup

Sections 2.2 and 2.3 address cable tension control with different approaches. Ac-
cordingly, the results presented in both sections are based on the same experimental
set-up. This set-up is illustrated in Figure 2.5. Two kinematic chains of the HRPCable
prototype (cf. Figure 1.1) are used. The mobile platform is not used. The corresponding
cable ends are attached together.

The resulting system may be seen as a 1-DoF mechanism driven by two cables. The
position of the attachment point is given by the variable x. The torques applied by
the motors in winches 1 and 2 are denoted by γ1 and γ2, respectively. Similarly, motor
positions are denoted by q1 and q2.

Consider given desired positions xd(t) and desired cable tensions τd(t) in function
of time. The present section proposes a control scheme meant to generate measured
cable tensions τ1 as close as possible to the desired ones controlling motor torques
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Figure 2.5 – An illustrative schematic view of the experimental set-up.

γ1. The motor drive of winch 2 is controlled in position mode. The position q2(t) is
controlled considering the desired position xd(t) and inelastic cables. More precisely,
the motor position q2 is controlled as

q2(t) = q2(t0) + kqx (xd(t)− xd(t0)), (2.25)

with t0 the initial time and a constant kqx linearly relating cable length variations to the
angular displacements of the motors.

Note that, whereas the final goal is to generate the desired cable tension applied
on the attachment point P , the considered goal is to track τd(t) based on τ1(t). There-
fore, the influence of distributed mass of the cable and the friction on the pulleys are
neglected. These are the main causes of divergence between measured tension in the
load-pin 1 and the force applied in point P . Even though, this subject is addressed in
Section 2.3.4.

As shown in Table 1.1, the diameter of the cables is 4 mm and the diameter of the
pulleys is 80 mm. The winches are composed of Beckhoff AM8061 motors coupled
to AG2210 gear trains. These gear trains have a reduction ratio equal to 25. Load
pins Sensy 5300-1T with integrated amplifier are positioned on the pulley axes. It is
worth noting that a sufficiently small influence of noise could be obtained with this
configuration of force sensing. Therefore, filtering was not necessary.

2.2.2 Dynamic Model

As stated in the previous section, the cable distributed mass is neglected so that the
cable tension is considered constant all over the cable length. Under this assumption,
the model of the system depicted in Figure 2.5 is reduced to the model of the winches.

A detailed model of the actuator may take into account each body of the actuator.
Take as example the illustrative gear train depicted in Figure 2.6. This gear train con-
sists of three bodies. These bodies are identified by letters a, b and c. Body b presents
two gears, identified by numbers 1 and 2. Each body presents a corresponding inertia
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Figure 2.6 – Drawing of a simplified gear train.

(Ia, Ib and Ic). The angular positions are denoted by qa, qb and qc. The external torques
γa and γc are applied on axes a and c, respectively. The number of teeth of the gears
are Na, Nb1, Nb2 and Nc. By neglecting backlash, the rigid-body dynamic model of the
system can be written as

Ic q̈c =
(

(γa − Ia q̈a)
Nb1

Na

− Ib q̈b
)
Nc

Nb2
− γc − γF (q̇a, q̇b, q̇c, γa, γc). (2.26)

The torque γF is a function of (q̇a, q̇b, q̇c, γa, γc) that suitably models the friction of
the system. Denoting c1 = Nc

Nb2

Nb1
Na

and c2 = Nc
Nb2

, all velocities and accelerations may be
written in function of the derivatives of qc

q̇a = c1 q̇c
q̈a = c1 q̈c
q̇b = c2 q̇c
q̈b = c2 q̈c

. (2.27)

Therefore, a new function may be written as γf (q̇c, c1 τ1, τ3) = γF (c1q̇c, c2 q̇c, q̇c, τ1, τ3).
Furthermore, the model (2.26) may be simplified as

(Ia c2
1 + Ib c

2
2 + Ic) q̈c = −γc + c1 γa − γf (q̇c, c1 γa, γc). (2.28)

Denoting I = (Ia c2
1 + Ib c

2
2 + Ic), γ = c1 γa, γout = γc and q = qc, an equivalent single

body system is obtained with

I q̈ = γ − γout − γf (q̇, γin, γout). (2.29)

Even if model (2.29) seems rather simple, a precise model usually involves an elabo-
rate function γf [179,180]. Highly nonlinear phenomena such as stick-slip may present
non-negligible influence in the studied system.
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For the system illustrated in Figure 2.5, γ is the motor torque multiplied by the gear
ratio. The output torque γout is the torque applied by the cables γt. Note that γt = τ rw,
where τ is the cable tension and rw is the radius of the winch drum.

Let y be the state vector consisting of the angular position q and velocity q̇ of the
winch drum so that

y(t) =
(
y1(t)
y2(t)

)
=
(
q(t)
q̇(t)

)
. (2.30)

In order to take into account the stick-slip phenomenon, the following state-space
model is proposed

ẏ(t) =



(
0
0

)
, if |γ| 6 γsd and y2 = 0;(

y2
1
I

(γ − γkf (y2)− τ rw)

)
, othewise

(2.31)

where γsd is the static dry friction torque. The scalar γkf is the kinetic friction torque,
which is function of the angular velocity y2 = q̇. Different definitions of the function
γkf (y2) were proposed in the literature. It is worth noting that the model typically
considered in the control of CDPRs (such as in [7, 8, 58, 77]) is described by (2.31) with
γsd = 0. The model considered in [77] is often used in this field and is given by

γkf1(y2) = fkd tanh(µ y2) + fv1 y2, (2.32)

where fkd is the kinetic dry friction coefficient and fv1 is a viscous friction coefficient.
The function tanh(µ y2) is a continuous approximation of the function sign(y2) and the
constant µ is used to tune this function. However, Section 2.2.3 shows that a better
consistency with the experimental data was obtained with the following definition of
the kinetic friction torque

γkf (y2) = fkd tanh(µ y2) + fv1 y2 + fv2 sign(y2)
√
|y2|, (2.33)

with a second viscous friction coefficient fv2. The model presented in (2.33) is used in
the remainder of this section. The obtained results presented in Section 2.2.3 show that
this model is able to fit experimental and numerical data thanks to the addition of the
term fv2 sign(y2)

√
|y2|.

Next, before presenting the proposed control scheme and the corresponding results,
the parameters of (2.31) and (2.33) need to be identified. The next section addresses this
subject.

2.2.3 Parameters Identification

Since the dynamic parameters (inertia and friction constants) of the actuator are
independent of the cable tensions, all experimental data described in this section are
obtained with the winch running freely (no cable is attached to the actuator).
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Figure 2.7 – Identification of the static dry friction torque.

The first identified parameter was the static dry friction torque γsd. Consider as
initial state γ = q̇ = 0. Increasing gradually γ, velocity q̇ will still equal to zero until
γ = γsd. The value of γsd may be estimated using this procedure. The presented torques
are given by the motor driver based on the measured motor current. The experiment
depicted in Figure 2.7 was repeated several times in order to obtain a good estimation
of γsd. According to model (2.31), the torque values highlighted in Figure 2.7 are equal
to the static dry friction torque. The conducted experiments show that the behavior of
the actuator regarding the friction is significantly different considering the direction of
the torque. The analysis of the friction torque has thus been done separately for each
direction (q̇ positive and negative). The obtained results are summarized in Table 2.1.

q̇ > 0 q̇ < 0
Mean Value 3.575 3.207

Standard Deviation 0.149 0.257

Table 2.1 – Estimation of the static dry friction torque (measured values in Nm).

The remaining friction coefficients have been estimated repeating the experiment
depicted in Figure 2.8. Piecewise constant motor torque setpoints are sent to the drives.
A constant value is set until the transient behavior ends. For each value of desired mo-
tor torque, the related angular velocity has been recorded after the transient interval.
Thereby, the relationship between the recorded velocities and torques are independent
of the inertia. This procedure have been repeated several times, leading to the chart
depicted in Figure 2.9. The coefficient µ was set empirically equal to 103. A gradient
based optimization (interior-point method) yielded to the coefficients of model (2.31)
minimizing the difference between the predicted torque and the experimental one. The
obtained results are also shown in Figure 2.9. Similarly to the estimation of γsd, differ-
ent values of friction coefficients were obtained for q̇ > 0 and q̇ < 0. This figure also
shows the relevance of the nonlinear term fv2 sign(y2)

√
|y2| in (2.33).

Finally, the inertia of the actuator has been identified by applying sinusoidal torques
with different frequencies and amplitudes. The value of I = 507.5 kg.cm2 minimizes
the difference between the measured profile of q̇ and the one given by the model, tak-
ing measured torques as inputs.
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desired torques
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Figure 2.8 – Estimation of the kinetic friction coefficients.

Figure 2.9 – Estimation of the kinetic friction coefficients.

2.2.4 Proposed control scheme

The torque applied on the winch is closely related to the cable tensions. For this rea-
son, a unique control loop where the motor torque is the control input may seem rea-
sonable. Anyhow, the lowest level control input applied on the motor is the torque/cur-
rent. Accordingly, the present section proposes a control scheme that is based on the
studies presented in [47, 77].

The proposed scheme is depicted in the block diagram of Figure 2.10 and it may be
expressed as

γ = kP (τd − τ) + kI

∫ ta

t0
(τd − τ) dt− kD q̇ + γkf (q̇) + ẍ

I

rw
, (2.34)

with γkf given by (2.33) and gains kP , kI , kD. Instants t0 and ta denote the initial and
actual time, respectively.

The friction and inertia effects are compensated by the terms γkf (q̇) and ẍ I/rw, re-
spectively. The proportional and integral terms reduce the error between measured
tension τ and desired tension τd. Stability is enhanced by the term −kD q̇. Note that
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Figure 2.10 – Block diagram of the proposed torque control scheme.

the addition of a term proportional to the derivative of cable tensions τ̇ is not recom-
mended due to the presence of noise.

2.2.5 Numerical simulation results

This section presents simulations considering the control scheme (2.34), the actuator
model (2.31) and the parameters identified in Section 2.2.3. In addition to the actuator
model, the cable elasticity needs to be modeled in order to obtain numerical results
consistent with the experimental ones.

In contrast to the experimental set-up, the position x(t) may be simulated without
the presence of pulleys. Accordingly, the simulated system may be simplified as pre-
sented in Figure 2.11. It consists of an actuator (motor, gears and drum) connected to
a cable. The other end of the cable is attached to a moving point P . This point moves
in one direction and its displacement is given by x. A force sensor measures the cable
tensions. The real stretched length of the portion of the cable that is not in contact with
the winch drum is l1. The unstretched length of this portion of the cable is equal to l2.
The angular position of the drum is q. The model (2.31) is applied including the linear
elastic cable model

t = max
(
EA (l1 − l2)

l2
, 0
)
, (2.35)

where the term EA is the specific elastic constant of the cable. It is equal to the Young
Modulus of the material multiplied by the area of the cross section of the cable. This
model is based on the one proposed in [44]. Consider E = 110 GPa [181] the Young
Modulus of stainless steel, and the fill rate equal to 0.7 (70% of the area defined by the
nominal diameter of the cable is actually filled with steel). The resulting value of EA
is equal to 9.68× 105 N.

Simulations take as initial conditions l1 = l2 = l0 and x = q = 0. This way, l2 =
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Figure 2.11 – Illustration of the simulated simplified system.
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Figure 2.12 – Simulation results with the torque control: evolution of the cable tension and the
torque versus time.

q rw + l0 and l1 = l0 − x. Moreover, simulations considers a cycle time of 1 ms.

Figure 2.12 presents the obtained results. The controller is not able to continuously
track the desired cable tensions due to the so-called stick-slip phenomenon. This phe-
nomenon results in a discontinuous relation between the input torque and the cable
tension. This discontinuity cannot be compensated with a torque-based continuous
control policy. More precisely, although γkf may be compensated in (2.34), the dis-
continuous system (2.31) introduces the stick-slip torque represented by γsd that is not
considered in the control law. Clearly, a discontinuous torque-based control scheme
compensating the stick-slip phenomenon in (2.31) is not viable.

The aforementioned issue is present for velocities q̇ close to zero. This is the condi-
tion in which the system is susceptible to the discontinuity represented in (2.31). For
sufficiently large velocities, the proposed scheme (2.34) may lead to satisfying results.
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Figure 2.13 – Simultaneous plot of the applied torque and measured cable tension (with the
cable attached to a fixed support).

2.2.6 Issues related to a torque-based control approach

Section 2.2.5 demonstrated that the application of the proposed torque-based con-
trol approach may lead to problems resulting from the presence of friction in the winches.
Indeed, preliminary experimental results confirmed this issue. More specifically, the
main concern related to the control of the cable tensions is the presence of static dry
friction in the actuators. In some cases, this may be a minor problem. For instance, for
the CDPR CoGiRo (Figure 1.2 (b)), motor torques of each winch are transmitted to the
corresponding drum by a system of pulleys and belt with a reduction ratio equals to 3.
Whereas each motor of HRPCable is connected to a 2 stage gear train Beckhoff AM8061
with a reduction ratio equals to 25. This leads to increased friction torques. Figure 2.13
illustrates this problem. In this experiment, one end of the cable is attached to a fixed
point and the values of the measured cable tensions are obtained for different motor
torques. One can see that a continuous torque variation results in abrupt changes of
cable tensions.

As a matter of fact, every experiment performed with variations of the torque-based
closed-loop scheme (2.34) led to technical issues. The resulting closed-loop system is
not able to track cable tensions when the velocity q̇ is small.

In addition, the estimations presented in Section 2.2.3 are time-consuming and lead
to parameters identified with a bad level of precision. Considering that such estima-
tions should be repeated for each one of the winches, a bad compromise regarding the
complexity of implementation and the level of precision is obtained.

Within this context, a non-model based scheme able to minimize the influence of
friction may be an appropriate alternative to the proposed torque-based scheme. This
forms the rationale of the method presented in the next section.
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Figure 2.14 – Simultaneous plot of variations in the unstretched length and the measured cable
tension (with the cable attached to a fixed support).

2.3 A Velocity-Based Cable Tension Control

Section 2.2.6 discussed the main limitations of torque-based cable tension control
schemes when gear trains with large reduction ratio are used. Since this is the case
of both HRPCable and Hephaestus prototypes, an alternative approach is proposed in
this section.

As the motor torques, one may note that there is an intuitive relation between cable
tensions and motor positions. For a given x, variations on q lead to variations on τ
according to the cable elasticity. Figure 2.14 illustrates this idea. The presented test is
very similar to the one used to obtain the results of Figure 2.13: one cable end is at-
tached to a fixed point and the cable tension is measured while the winch is controlled.
The difference between the tests performed in Figure 2.13 and Figure 2.14 is that the
motor is controlled in position mode instead of torque mode.

The motor position is changed continuously while the cable tensions are measured.
As a matter of fact, the results presented in Figure 2.14 are rather obvious consider-
ing the elastic behavior of the cable. Nevertheless, the comparison between Figures
2.13 and 2.14 demonstrates that a more promising scenario is obtained with the later
approach.

In general, a trivial position control is able to perform a sufficiently precise posi-
tion tracking of q independently of the external torques applied on the winches. This
means that satisfying positioning precision of q may be obtained independently of the
cable tension τ . That said, the motor position q may be controlled in order to generate
the desired cable tension τd. Noting that the relation between the cable tension τ and
the position q is continuous and well behaved, one may conclude that better results
than the ones presented in Section 2.2 may be obtained controlling the motor position
(instead of torque).
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Figure 2.15 – Block diagram of the proposed velocity-based cable tension control scheme.

This rationale would lead to a cascade control scheme in which the outer loop takes
as control input the motor position and the inner loop controls the motor torque.
Thereby, the influence of the friction within the gear trains would be managed by
the position (inner) control loop, which presents good robustness capabilities against
model uncertainties.

This is indeed the approach proposed in [59, 60]. Nevertheless, some secondary
complications come up with this method. Namely, a precise identification of the sys-
tem dynamic may be necessary and the suppression of steady-state errors demands the
application of an anti-windup feedback strategy (refer to [59] for further details). For
this reason, the present section proposes a scheme in which the motor velocity is taken
as control input. This method allies the aforementioned advantage without leading to
secondary issues.

2.3.1 Control scheme

Figure 2.15 depicts the proposed velocity-based cable tension control. An outer
feedback loop takes the cable tension τ as measured state and delivers the desired
winch velocity q̇d as intermediary control input. This outer loop applies a linear PI
correction and a feedforward term to compensate the velocity corresponding to ẋ. An
inner loop defines the motor torque taking the desired velocity as reference. Similarly,
it applies a linear PI term and applies a feedforward term compensating the inertia
and friction. In the considered experimental setup, the servo drives are responsible for
this inner loop. Depending on the features available on the motor drive, an alternative
feedforward term may be used. The control setpoint delivered to the motor drive is
the desired motor velocity. The servo drives may present lower cycle time (between
62.5 µs and 250 µs for the servo drives used in this chapter) than the PLC cycle time.
The reduced sampling time used in the torque control loop may lead to better perfor-
mances.

For a given actual instant ta, the mathematical expressions for q̇d and γ in Figure
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2.15 are

q̇d = kV P (τd − τ) + kV I

∫ ta

t0
(τd − τ) dt+ ẋ

rw
, (2.36a)

γ = kTP (q̇d − q̇) + kTI

∫ ta

t0
(q̇d − q̇) dt+ γkf (q̇) + ẍ

I

rw
. (2.36b)

The values of ẋ and ẍ are inputs of the block diagram in Figure 2.15. These are the
time derivatives of x, which represents the desired cable length. Therefore, ẋ and ẍ can
be determined using the inverse kinematics proposed in Section 2.1.

Since the inner loop is performed by the servo drives in the experimental set-up, the
control (2.36b) is used uniquely for the simulations. Note that the control implemented
in the experimental set-up is the outer loop (2.36a) which consists of a PI feedback
control with feedforward ẋ/rw. Therefore, the implementation and tuning are rather
simple.

2.3.2 Numerical simulation results

As discussed at the beginning of this section, the influence of friction should be
reduced by controlling the motor velocity instead of the motor torques directly. Ac-
cordingly, in contrast to the data presented in Section 2.2.5, the numerical simulations
using the proposed velocity-based control yielded to satisfying results. As depicted in
Figure 2.16, this strategy is able to keep a small error. Maximum error for this simula-
tion is equal to 0.539 N with desired cable tensions varying with an amplitude of 400
N.

The spikes in the cable tension error and torque are consequences of the stick-and-
slip phenomenon. The discontinuity in (2.31) is faced when the time derivative of the
desired cable tensions is close to zero. Nevertheless, in contrast to the scheme proposed
in Section 2.2, the position control is sufficiently robust to reduce the influence of the
friction.

2.3.3 Real-time experimental results

In accordance with the description given in Section 2.2.1, two winches of the CDPR
HRPCable were used as shown in Figure 2.5. Motor 1 is controlled with the velocity
control described in section 2.3.1 and cable tension obtained with load pin 1 is taken
as feedback signal. Motor 2 is controlled in position mode according to (2.25). This
scenario represents the conditions in which the cable tensions should be controlled
while the attachment point position is variable. This application is equivalent to the
cable tension control necessary to actuate a CDPR. As for the simulations presented in
Section 2.3.2, the controller gains used in the present section were tuned by trial and
error.

Figure 2.17 shows the results obtained with the velocity-based control with a step
input. The lower level is 190 N and the upper is 440 N. The rise time to reach 440
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Figure 2.16 – Simulation results with the velocity-based control: evolution of the cable tension
and the torque versus time.
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Figure 2.17 – Measured cable tension with a step input in the desired tension.

N is 0.4 s. The position x was kept constant. Figure 2.18 shows the results for τd
varying with low frequency. This figure shows that the obtained error is negligible so
that desired and measured cable tensions are virtually equivalent. Moreover, the small
error obtained with a slow variation of τd shows that the proposed strategy successfully
avoids the stick-slip problem.

Figure 2.19 depicts the results for a sinusoidal x and constant τd. This figure com-
pares strategies with and without the feedforward term ẋ/rw. This figure shows that a
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Figure 2.18 – Measured and desired cable tensions. Displacement x is constant and desired
cable tension is determined according τd = 320 + 220 cos(2π t/62.5) [N]. One may note that the
obtained error is rather small.
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Figure 2.19 – Experimental results for a constant desired cable tension and sinusoidal displace-
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placement x .

control scheme without the feedforward term would lead to large errors when variable
x is used. The small errors obtained when the feedforward term is applied indicates
that the compensation of ẋ is satisfying.

Finally, Figure 2.20 presents the results with sinusoidal x and τd. A small delay may
be observed. Nevertheless, the obtained results with the proposed control strategy
are considered suitable. Accordingly, the velocity-based cable tension control (2.36) is
experimentally validated and may be used in the position tracking discussed in the
next chapters.
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Figure 2.21 – Experimental results highlighting the hysteresis present on the behavior of the
cable elasticity.

2.3.4 Further results

Some additional results were obtained during the experiments described above.
Figure 2.21 shows several repetitions of the experiment depicted in Figure 2.18. One
can see that the relation between the cable tension and the displacement of the winch
(q rw) is repeatable. The plot displaying the elongation vs. cable tension indicates that
the relation between stress and strain for increasing cable tensions can be reasonably
approximated with an affine function. Nevertheless, the values obtained for decreas-
ing tensions shows that significant hysteresis is present.

As shown in Figure 2.5, there is a second load pin measuring the cable tensions in
pulley 2. Figure 2.22 presents the values obtained with both sensors. One may see that
the cable tensions measured by sensor 2 shift when the direction of movement changes
(velocity equals to zero). This shift is probably caused by the friction in pulleys 3 and 4
shown in Figure 2.5. Since τ1 is the value used in the control loop, it is continuous and
close to the desired cable tension.

In order to clarify the influence of the friction in the pulleys, consider a simplified
model

τ̃2 = τ1 − 2 τf sign(ẋ) + τk, (2.37)
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Figure 2.22 – Difference between cable tensions measured by load pins 1 and 2 (τ1 and τ2).

Figure 2.23 – Identification of the pulley friction: measured cable tension τ2 (experimental data)
and predicted value τ̃2 given by (2.37) (fitted data).

where τf is the the dry friction force due to pulleys 3 and 4, the friction forces in these
pulleys being considered equal. The scalar τk is a constant that depends on the ini-
tialization of the system. Parameters τf and τk were identified using data from Figure
2.22. The fitted data is shown in Figure 2.23. The pulley dry friction force obtained is
τf = 3.9 N.

This correction may be easily integrated in the cable tension control. However,
considering the small influence of τf = 3.9 N in the interval of feasible cable tensions,
this correction is not included in the remainder of this thesis.
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Linear Model Predictive Control

A Linear Model Predictive Control (LMPC) for the position tracking of CDPRs is proposed and
its performance is evaluated through numerical simulations and real-time experiments. Sec-
tion 3.1 introduces the control algorithm and the dynamic model on which the control scheme
is based. In order to simplify the formulation of the corresponding optimal control problem and
its numerical solution, a linear discrete-time approximation is proposed based on the original
continuous nonlinear dynamic model. Simulation results presented in Section 3.2 indicate that
such approximation is pertinent for the Hephaestus prototype. Finally, Section 3.3 details the
experimental validation of the proposed linear MPC. These results prove that the MPC scheme
copes with the main concerns discussed in Chapter 1, namely, the cable tension limits are ex-
plicitly handled as an integral part of the main controller.
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3.1 Control Design

The main motivations to use an MPC strategy for the position tracking control of
CDPRs were discussed in Section 1.7. In brief, the feedback correction of the state-
of-the-art schemes discussed in Section 1.4 are subjected to feasibility issues since the
cable tension limits are not considered in the main computation of the feedback loop. A
known advantage related to MPC schemes lies in its ability to explicitly handle the sys-
tem constraints. Considering that, the present section proposes a linear MPC scheme
able to handle the cable tension limits as an integral part of the main feedback control.
This MPC is based on the dynamic model discussed in Section 3.1.1, while the control
strategy is introduced in Section 3.1.2.

3.1.1 Dynamic model

Before addressing the model itself, some notations are introduced. Sequences of
vectors are denoted with bold lowercase letters followed by (·) (as, for instance, s(·)).
The set of sequences of vectors with dimension ns and infinite elements is denoted as
Sns . Similarly, Sns2

ns1 denotes the set of sequences containing ns1 vectors with dimension
ns2. Accordingly, the kth vector of a sequence s ∈ Sns2

ns1 is denoted as s(k) = sk ∈ Rns2 .
The set of strictly positive integers is referred to as N. The set of non-negative integers
is N0 = N ∪ {0}. Moreover, for a, b ∈ R, Na,b = {i ∈ N0 | a 6 i 6 b}.

This subsection presents the dynamic model of a CDPR consisting of an n-DoF mo-
bile platform driven by m cables, where n ≤ m. The platform pose in time is given by

the vectorial function x : R → Rn, so that x(t) =
[
p(t)T ψ(t)T

]T
is the pose vector

containing both the platform position p(t) and orientationψ(t) at instant t. The depen-
dence on time is dropped leading to the short notation x whenever there is no risk of
confusion. The same practice is used for other vectorial and matricial functions in the
remainder of this thesis.

Typically, ψ consists of Euler angles. The common dot notation is used to refer to
the time derivatives, so that dx/dt = ẋ and d2x/dt2 = ẍ. In general, the angular
velocity ω is not equal to the time derivative orientation vector ψ. For this reason, the
following relations need to be introduced[

ṗT ωT
]T

= S(x) ẋ[
p̈T ω̇T

]T
= S(x) ẍ+ Ṡ(x, ẋ) ẋ,

(3.1)

with S(x) a square matrix responsible for transforming ψ̇ into ω. On the other hand,
Ṡ(x, ẋ) is the component-wise time derivative of S(x).

Considering that the platform pose and cable forces are known, the magnitude τi
and the direction ui of the force applied by the cable i ∈ N1,m on the platform are also
known. Vector ui is shown in Figure 2.1 and can be computed with (2.8). Accordingly,
in this thesis, the vectors ui are uniquely computed in function of the platform pose.
In contrast, if cable sagging is considered, the direction ui also varies in function of the
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cable tension itself. This variation is neglected here. Therefore, we denote these vectors
as vectorial functions ui(x).

The vectorial function τc : R → Rm returns the vector of cable tensions in function
of time τc(t) =

[
τ1(t) . . . τm(t)

]T
. Each cable force is applied on the corresponding

point Bi of the mobile platform (see Figure 2.1). Summing up the contributions of
forces and moments of every cable force, the resultant wrench f(x, τ ) applied on the
platform is obtained with the linear mapping

f(x, τc) = W(x) τc, (3.2)

with the wrench matrix W(x) representing this linear mapping. In a general 6-DoF
CDPR, as for vectors ui, the vectors b′i in Figure 2.1 may be written as functions of the
platform pose with

b′i(x) = R(ψ) bpi, (3.3)

where R and bpi were defined in Section 2.1.1. The wrench matrix W is then by

W(x) =
[

u1(x) . . . um(x)
b̂′1(x)u1(x) . . . b̂′m(x)um(x)

]
, (3.4)

with v̂1 denoting a skew-symmetric matrix so that v̂1 v2 = v1 × v2 is the cross product
between vectors v1, v2 ∈ R3.

Knowing the wrench applied by the cables on the platform, its motion is modeled
using Newton-Euler formalism, which leads to the following expression:

M′(x)
(
Ṡ(ẋ,x) ẋ+ S(x) ẍ

)
+ C′(ẋ,x) S(x)ẋ =

= g(x) + W(x) τc,
(3.5)

where matrices M′ and C′ are given by

M′(x) =
[
mp I −mp ĉ(x)

mp ĉ(x) H(x)

]
and (3.6)

C′(x, ẋ) ẋ =
[
mp ω̂x ω̂x c(x)
ω̂x H(x)ωx

]
. (3.7)

The scalar mp is the platform mass and I is the identity matrix with dimensions
suitably chosen. Denoting as cp the vector going from the platform geometric center to
its center of mass, expressed in the coordinate system Op attached to the platform, the
corresponding vector in the global coordinate system is computed as

c(x) = R(ψ)cp =
[
cx cy cz

]T
. (3.8)

The angular velocity ωx is obtained from x according to (3.1). The matrix H is
defined as H(x) = R(ψ) IG R(ψ)T + mp ĉ(x) ĉ(x)T where IG is the platform inertia
matrix in respect to the coordinate system Op. The vector of gravitational forces is

g(x) = mp g
[
0 0 −1 −cy cx 0

]T
, with g the gravitational acceleration.
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Denoting
M(x) = M′(x) S(x) and

C(x, ẋ) = C′(x, ẋ) S(x) + M′(x) Ṡ(x, ẋ),
(3.9)

the dynamic system (3.5) can be rewritten as

M(x) ẍ+ C(x, ẋ) ẋ = g(x) + W(x) τc. (3.10)

The dynamic model (3.10) is considered as the nominal system in the remainder
of this thesis. This is a continuous-time nonlinear system. Nevertheless, as discussed
in Section 1.7, the MPC strategy proposed in this chapter needs a linear discrete-time
system. To this end, the sequences of vectors x(·), ẋ(·), ẍ(·) ∈ Sn and y(·) ∈ S2n are
defined as

x(k) = xk = x(t0 + k∆t)
ẋ(k) = ẋk = ẋ(t0 + k∆t)
ẍ(k) = ẍk = ẍ(t0 + k∆t)

y(k) = yk =
[
xTk ẋTk

]T
(3.11)

for all k ∈ N0, an initial time t0 and a sampling period ∆t. Without loss of generality,
since the continuous system (3.10) is time-invariant (as defined in [62, Chapter 1]) the
initial time is considered to be t0 = 0.

Similarly, considering a digital control approach, the continuous time representa-
tion of the actual cable tensions τc is considered piece-wise constant and given by its
discrete counterpart τ (·) ∈ Sm, i.e.

τc(t) = τ (k) = τk, for t ∈
{
t
∣∣∣ (k − 1)∆t 6 t < k∆t

}
and k ∈ N. (3.12)

Using the Euler method of numerical integration, the state space representation of
(3.10) may be approximated by

yk+1 ≈

A︷ ︸︸ ︷[
I ∆t I
0 I

]
yk +

B(yk)︷ ︸︸ ︷[
0

∆tM(xyk)−1 W(xyk)

]
τk+

+
[

0
∆tM(xyk)−1

(
g(xyk)−C(xyk , ẋyk)ẋyk

)]
︸ ︷︷ ︸

v(yk)

.

(3.13)

with xy, ẋy ∈ Rn denoting the pose and velocity vectors extracted from a vector y ∈
R2n. Additionally, 0 denotes a matrix or vector with dimensions suitably chosen and
all its elements equal to zero.

In accordance with the notation introduced in the equation above, the considered
approximated discrete model is

yk+1 ≈ A yk + B(yk) τk + v(yk). (3.14)
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3.1.2 Control strategy

As introduced in Section 1.7, a key element of an MPC algorithm is the formulation
of an OCP based on a bounded time span. This time span is determined by hp ∈
N, called prediction horizon. For given instant k, state yk and finite sequence of cable
tensions τ ∈ Smhp , an estimation of the sequence of future states should be defined
based on the discrete-model (3.14).

3.1.2.1 State Predictions

In order to simplify the computation of the estimated future states, the variations
of the matrix B and the vector v in (3.14) within the prediction horizon is assumed to
be negligible. Therefore, the following approximations are considered

B(yk+i) ≈ B(yk)
v(yk+i) ≈ v(yk)

∀ i ∈ N1,hp . (3.15)

In other words, for a given time instant k, these matrices are considered to be
constant within the prediction horizon and are denoted shortly as B = B(yk) and
v = v(yk).

Moreover, as Maciejowski discusses in [121], considering every possible combina-
tion of cable tensions in the prediction horizon may lead to a bad compromise between
performance improvement and computational burden. Therefore, it is interesting to
consider every combination within a reduced horizon hc < hp, denoted as control hori-
zon, and constraint the last ith components with hc < i 6 hp, as follows

τk+i = τk+hc ∀ i ∈ Nhc,hp . (3.16)

Using the proposed notations and assumptions, the future states along the predic-
tion horizon are estimated applying recursively (3.14) with the identities (3.15) yielding
to

γ(yk,u)︷ ︸︸ ︷

ỹk+1

ỹk+2

ỹk+3

...
ỹk+hc+1

...
ỹk+hp


=

D︷ ︸︸ ︷

A

A2

A3

...
Ahc+1

...
Ahp


yk +

E(yk)︷ ︸︸ ︷

B 0 . . . 0

AB B 0
...

A2B AB
. . . 0

...
...

...
Ahc B Ahc−1B . . . B

...
...

...
...

Ahp−1B ... Ahp−hc+1B
∑hp−hc

i=0 Ai B



u︷ ︸︸ ︷
τk

τk+1

...
τk+hc

+

ν(yk)︷ ︸︸ ︷

v

A v

A2v
...

Ahc v
...

Ahp−1v


or, with a compact notation,

γ(y,u) = Dy + E(y) u + ν(y). (3.17)

Note that, since B and v are functions of y, E and ν are also functions of y.
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3.1.2.2 Optimal Control Problem Formulation

Our goal is to define a functional cost of the MPC scheme including (i) the pre-
dicted errors, (ii) the magnitude of the cable tensions and (iii) the variation of the cable
tensions. The minimization of the cable tensions variation (iii) is important mainly
because large variations of cable tensions may be not physically feasible. This issue
is also relevant during the initialization of the robot. If the initial cable tensions are
not close to an optimal cable tension distribution, the MPC will automatically find a
smooth transition between these two sets of cable tensions.

Consider sequences xd(·), ẋd(·) ∈ Snnt describing a desired trajectory, with tf = nt ∆t
the trajectory final time. The vector of desired states within a prediction horizon hp for
an instant k is γd(k) =

[
xd(k + 1)T ẋd(k + 1)T . . . xd(k + hp)T ẋd(k + hp)T

]
. The

weighted expressions of (i), (ii) and (iii) are then respectively given by

Jγ(y,u, k) = ‖γd(k)− γ(y,u)‖2
Kγ

(3.18)

Ju(u) = ‖u‖2
Ku

(3.19)

JD(u, τc(k∆t)) = k∆u

hc−1∑
i=0
‖∆τi+k‖2 (3.20)

where Kγ and Ku are positive definite diagonal weighting matrices and k∆u is a posi-
tive scalar. In addition, ‖w‖2

K = wTK w denotes the weighted norm of w ∈ Rnw with
a weighting symmetric positive semi-definite matrix K ∈ Rnw×nw . The vector of the
variation of cable tensions can be expressed as

∆τi =
{
τu(i)− τu(i− 1), if i > 1
τu(1)− τc(k∆t), if i = 1 , (3.21)

where τu(i) ∈ Rm is obtained by extracting the ith vector of cable tensions of u. Alter-
natively, (3.21) may be written as

∆u =
[
∆τ T1 . . . ∆τ Thc

]T
= Q u− z, (3.22)

with

Q =



Im 0 . . .
−Im Im 0 . . .

0 −Im Im . . .
... . . . . . . . . . 0
0 . . . . . . −Im Im

 , z =


τc(k∆t)

0
...
0

 .

Note that z depends on the measured cable tensions. Alternatively, the desired
cable tension obtained at t−∆tmay be used. The dimensions of Q and z aremhc×mhc
and mhc × 1, respectively.

Defining KD = k∆u I, JD can be rewritten as

JD(u, τc(k∆t)) = uTQTKD Q u− 2 zTKDQ u + zTKD z. (3.23)
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Figure 3.1 – Block diagram of the proposed control scheme

Using (3.17), the overall cost function J(y,u) is defined as the sum of Jγ , Ju and JD
neglecting the terms independent of u according to

J(y,u, k, τc(k∆t)) = uT
Hc︷ ︸︸ ︷

(ETKγ E + Ku + QTKD Q) u+
+ 2

(
(D y + F− γd(k))TKγ E− zTKDQ

)
︸ ︷︷ ︸

dT

u.
(3.24)

The proposed MPC scheme consists in computing the optimal sequence of cable
tensions by solving in real-time the following QP problem

u∗ = arg min
u

1
2uTHcu + dTu

s.t. umin 6 u 6 umax
(3.25)

where umin, umax ∈ Rnhc are given by

umin =
[
τ Tmin . . . τ Tmin

]T
and

umax =
[
τ Tmax . . . τ Tmax

]T
.

(3.26)

The optimal solution u∗ =
[
τ ∗k

T . . . τ ∗k+hc
T
]T

represents the optimal control inputs
over the control horizon. The vector of desired cable tension is set as τd(t) = τ ∗k for
(k−1)∆t 6 t < k∆t. The solution of (3.25) is repeated at each sampling time, updating
matrices Hc and d in function of yk and τc(k∆t).

The desired set of cable tensions is used as setpoint for the cable tension control
introduced in Section 2.3.1. The cable tension control is responsible for generating
actual cable tensions τc(t) for (k − 1)∆t 6 t < k∆t as close as possible to τ ∗k .

Figure 3.1 depicts the block diagram of the implemented control scheme, show-
ing that the kinematic model and cable tension control introduced in Chapter 2 are
necessary complements to the MPC strategy. The Cartesian velocity ẋMPC predicted
by the MPC is used in the cable tension control. This vector is obtained with yk+1 =
A yk + B τk + v.
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Alternatively to the optimization problem (3.25), the constraints may be changed
using

u∗ = arg min
U

1
2uTHcu + dTu

s.t. umin 6 u 6 umax
|∆u| 6 ∆umax

(3.27)

with |∆u| representing the absolute values of ∆u given by (3.22) and a scalar ∆umax
limiting the maximal cable tension variations. This way, the variation of cable tensions
is explicitly constrained. In this case, the scalar k∆u may be set to 0.

3.2 Numerical Simulations

The present section compares through numerical simulations the performance ob-
tained with the MPC scheme proposed in Section 3.1 with those obtained with state-
of-the-art strategies. To this end, the control schemes with which the proposed MPC
is compared should be revisited. The results presented in this section were published
in [182].

3.2.1 Background on the state-of-the-art controllers

The performance obtained with the proposed MPC is compared to those led by
strategies commonly used for the control of CDPRs. Namely, MPC is compared to:
(i) a linear PID+ controller [183] and (ii) a Sliding Mode Control (SMC) [70]. A brief
description of these two control methods is presented in the sequel.

For a given reference trajectory in time t0 6 t 6 tf , the desired poses, velocities
and accelerations are denoted by xd(t), ẋd(t) and ẍd(t), respectively. At a given instant
t, the error in the Cartesian space is expressed as ex(t) = xd(t) − x(t). Similarly, the
error in joint space is denoted by ej(t) = ld(t)− l(t), where ld(t) is the vector of desired
cable lengths obtained from xd(t) with the inverse kinematics and l(t) is the estimated
current cable length vector computed according to motor positions.

3.2.1.1 PID + computed torque

This control strategy, hereinafter referred to as PID+, applies the following wrench

f = M(x)ẍd + C(x, ẋ) ẋd − g(x) + W(x)
(
Kp ej + Ki

∫ t

ti
ej(τ) dτ + Kd ėj

)
, (3.28)

where Kp, Ki and Kd are diagonal matrices containing the linear feedback PID gains.
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3.2.1.2 Sliding Mode Control

The SMC strategy defines a sliding surface s = ex + Ce ėx, with Ce a positive defi-
nite diagonal matrix. The wrench control law to be applied on the platform is

f = M
(
ẍd + Cd (ẋd − ẋ) + K sat(s) + Q s

)
+ C(x, ẋ) ẋd − g(x), (3.29)

where K, Q and Cd are diagonal feedback gain matrices. The function sat(s) is a con-
tinuous approximation of the sign function. Each component of this vector-valued
function is calculated as follows

sat(si) =


1, if si > ∆
si
∆ , if |si| 6 ∆
−1, if si < ∆

. (3.30)

The resulting function presents the same output than the sign(s) function except for
the interval −∆ 6 s 6 ∆ in which a linear interpolation eliminates the discontinuity.

3.2.1.3 Redundancy Resolution

The two above control strategies define the wrench f to be applied on the platform.
The final control output is the vector of cable tensions τ (or motor torques). For fully-
constrained CDPRs, m > n and some TDA should be implemented, as discussed in
Section 1.5. In the simulations described in this section, the 2-norm of the vector of
cable tensions is minimized according to

min
τ
‖τ‖2 (3.31)

s.t. W τ = f (3.32)
τmin 6 τ 6 τmax (3.33)

Satisfying the constraints above, the tension distribution generates the desired wrench
(3.32) with cable tensions in an admissible interval (3.33).

In some cases, the wrench demanded by the controller may be not feasible. More
precisely, in the space of cable tensions, the intersection of the subspaces defined by
the constraints (3.32) and (3.33) is empty. Another strategy should then be defined and
the following optimization problem is proposed

min
τ
‖W τ − f‖P

s.t. τmin 6 τ 6 τmax
(3.34)

where the subscript P indicates that the 2-norm is calculated with a weighting positive
definite diagonal matrix P, which is necessary since f has components with inconsis-
tent units (forces and moments).
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3.2.2 Simulations results

This section presents simulation results comparing the performances obtained with
the control strategies presented in subsections 3.1 and 3.2.1. The OCP formulation con-
straining cable tension variations according to (3.27) is used. The context of these sim-
ulations is the project Hephaestus described in Section 1.2. A large-dimension CDPR
is intended to automatize several tasks in the construction and maintenance of build-
ing facades. The main task of the CDPR is the installation of curtain wall modules.
The robot workspace is a rectangular region in front of the building facade. Thereby,
the CDPR mobile platform can pick up curtain wall modules on the ground and po-
sition them where needed on the building facade. Since the CDPR will operate in an
outdoor environment, it will be subjected to external disturbances. One of the main
concerns is the incidence of wind gusts. For this reason, the simulations presented in
this section are focused on external disturbance rejection performances of the studied
control strategies. An impulsive disturbance is applied and the response of the CDPR
is analyzed. Note that the simulated trajectory is relatively short. However, the simula-
tion of a longer trajectory would not affect the results which highlight the disturbance
rejection capabilities of each control strategy.

The initial and final positions are depicted in Figure 3.2. The path between these
two positions is a straight line segment. The trajectory is the fastest possible respecting
upper bounds on linear velocities, accelerations and jerks. These bounds are 0.3 m/s,
0.3 m/s2 and 1.0 m/s3, respectively. The resulting trajectory has continuous derivatives
up to the acceleration level. The desired orientation of the platform is constant along
the trajectory. An impulsive disturbance fd is applied at the instant t = 2 s. This

impulsive wrench is fd =
[
55 55 550 0 0 0

]T
(N and Nm) and is applied at the

reference point of the platform.

The CDPR configuration (cable drawing points, cable-platform attachments, and
cable arrangement) can also be seen in Figure 3.2. Moreover, the parameters of the
CDPR dynamic model are the following: τmin = 100 N, τmax = 14 kN, mp = 1000 kg,
cp = [0 5 0]T m, IG = diag([400 100 400]) kg.m2.

In the following, the results obtained with the three studied motion control strate-
gies are presented and discussed. The control parameters used in the simulations are
the following: Kp = 71400 I, Ki = 71400 I, Kd = 71400 I, Ce = 2 × 10−3 I, Cd = 36 I,
Q = 40 I, K = 0.2 I, hp = 20, ∆t = 6×10−4, ∆r = 5×10−1,Kγ,p = 6×109,Kγ,v = 1×10−2,
Ku = 2× 10−5 I and k∆u = 0. These gains were tuned with trial-and-error method.

The components of Kγ related to the pose errors are set equal to the scalar Kγ,p,
whereas Kγ,v is used for velocity errors. Value of ∆t is used in (3.30) as ∆ for transla-
tional inputs of sat(s), and ∆r is used for rotational inputs.

Figure 3.3 shows the evolution versus time of the norms of the translational and
rotational errors. All the control strategies are able to compensate the tracking error
caused by the applied external disturbance, but PID+ presents an oscillatory behavior
and an increased settling time. SMC responds faster and without oscillations. MPC
presents the fastest response, resulting in the smallest tracking errors along the whole
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Figure 3.2 – Illustration of the initial and final positions of the simulated trajectory.
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Figure 3.3 – Norm of the (a) translational and (b) rotational errors.

trajectory.

The histograms of Figure 3.4 present a performance comparison on different as-
pects. Let et be the 2-norm of the translational error. Histogram (a) quantifies the
maximum value et over the trajectory. Histogram (b) compares the RMS value of et
along the trajectory. Taking these two performance measures, MPC leads to the small-
est error.

Regarding cable tension values, as shown in Figure 3.4-(c), MPC demands the max-
imal allowed value τmax = 14 kN. This is also visible in Figure 3.5, which depicts the
cable tensions near the instant of application of the impulsive disturbance. Indeed, as
discussed earlier, the main advantage of MPC is that the controller takes into account
the constraints of the system and optimizes the control actions in order to reduce the
tracking errors. Here, the maximum allowed cable tension is an active constraint just
after the impulsive disturbance is applied. In the case of SMC, the maximum tension
value is 13.7 kN along the trajectory, which indicates that this controller response is
close to the largest admissible value τmax = 14 kN. If higher gains were used, the
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Figure 3.4 – Comparative results: (a) maximal errors, (b) RMS errors, (c) maximal cable ten-
sions, (d) maximal cable tension derivatives, (e) RMS of cable tension derivatives, and (f) con-
sumed energy.

wrench f would then be unfeasible. In order to not exceed the limit τmax, the strat-
egy described in Eq. (3.34) would be necessary and the resulting wrench would not be
equal to f . However, the MPC strategy does not lead to this risk. The PID+ controller
has |τmax| = 9.1 kN. This relatively low tension is a consequence of the use of small
gains Kp. Indeed, small gains were used because larger gains lead to high frequency
oscillations of cable tensions. For instance, increasing the gains of less than 1% with
this strategy leads to RMS(τ̇ ) equal to 86 kN.

The time derivative of the cable tensions is a measure of the degree of aggressivity
of the control action. Large values of this variable may excite high frequency dynam-
ics which are difficult to control. Figure 3.4-(d) presents the maximum derivative of
cable tensions over the trajectory considering all cables. Mathematically, the values in
Figure 3.4-(d) are equal to maxt

(
maxi |τ̇i(t)|

)
. The smallest maximum cable tension

derivative is obtained for the PID+, which is an advantage of this strategy. SMC is the
most aggressive controller considering this performance measure. The proposed MPC
strategy constraints this variable (according to (3.27)). Therefore, any value can be im-
posed independently of the rest of the controller parameters. In simulations, the value
used is 800 kN/s and Figure 3.4-(d) shows that this value is reached. Figure 3.4-(e)
presents the values of the maximum RMS value of τ̇i considering all cables i ∈ N1,m.
More precisely, Figure 3.4 (e) presents values of maxi

(
RMS(τ̇i)

)
. The MPC strategy

presents the largest RMS of cable tension derivatives. Note that variables depending
on the system states beyond the prediction horizon cannot be taken as constraints in
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Figure 3.5 – Simulated cable tensions for (a) PID+ Controller, (b) Sliding Mode Controller and
(c) Model Predictive Control.

the MPC optimization. The prediction horizon covers only a small part of the whole
trajectory over which the RMS values are calculated.

The consumed energy over the trajectory is roughly the same for all the control
schemes, cf. Figure3.4-(f). The consumed energy is calculated as

∫ tf
ti |l̇(t)Tτ (t)|dt.

3.3 Real-time Experiments

As frequently concluded for MPC applications, the numerical solution of OCPs in
real-time is a crucial challenge in the implementation on an experimental prototype.
Moreover, since industrial software is used, this implementation could not take ad-
vantage of commonly used numerical libraries. Finally, the experiments unveil issues
that may be neglected in simulations, e.g. the cable tension control and forward kine-
matics discussed in Chapter 2.

3.3.1 Experimental platform and implementation aspects

The control scheme introduced in Section 3.1 is experimented on the prototype
HRPCable, a 6-DoF CDPR driven by 8 cables, installed in LIRMM facilities. Figure 1.1
shows this experimental setup and the corresponding CAD model. Details on the com-
ponents of this CDPR are given in Table 1.1.

The MPC control scheme has been implemented in an industrial PC and developed
in TwinCAT environment, using C++ language. As discussed before, TwinCAT is a
software from Beckhoff commonly used in the industry, which turns PC-based sys-
tems into real-time controllers using Microsoft Windows kernel. In order to guarantee
real-time performances, TwinCAT is not compatible with standard C++ libraries, in-
cluding basic libraries such as math.h. This issue generally mitigates the application
of MPC with constraints in industrial robotics. The control methods described in the
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Figure 3.6 – Illustration of a pick-and-place path in the CAD view of HRPCable.

previous sections were thus programmed from scratch. Some notes on the numerical
implementation are presented in Appendix A. The OCP formulation (3.25) is used.

In the experiments reported below, the control parameters are the following: hp = 6,
hc = 3, Ku = 3.3 × 10−3I, k∆u = 0.3. Matrix Kγ is diagonal and positive definite. Di-
agonal elements are repeated for each set of 12 elements (size of y). These 12 elements
are equal to

k′y = [ k′Tx k′Tẋ ]T =
= [ 2× 107 2× 107 3.3× 107 2× 107 . . .

2× 107 2× 107 1.2× 10−3 0.6× 10−3 . . .
0.6× 10−3 0.6× 10−3 1.3× 10−3 0.6× 10−3 ]T .

(3.35)

These gains were tuned manually.

3.3.2 Experimental results

The present section experimentally evaluates the efficiency of the proposed MPC
scheme with respect to the main goals considered in this thesis. Summarizing some of
the key concerns presented in Section 1.2, the proposed method should combine satis-
fying positioning precision, disturbance rejection capabilities and should safely oper-
ate close to system constraints. Section 1.7 shows that this latter characteristic presents
particular relevance in the context of this thesis. Indeed, state-of-the-art control strate-
gies are not able to explicitly handle system constraints within the computation of the
main feedback correction and, therefore, may be vulnerable to feasibility issues dur-
ing the robot operation. The proposed MPC strategy is not prone to this issue since
it handles the tension limits within the OCP formulation (3.25). In order to show the
effectiveness of the proposed controller, Section 3.3.2.1 presents the results for a typ-
ical pick-and-place task performed with two different scenarios: τmax = 400 N and
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Cable tension limits

(a) (b)

Figure 3.7 – Pick-and-place task results with (a) τmax = 400 N and (b) τmax = 260 N. The actual
pose is shown in continuous lines and the desired one in dashed lines. Note that the axes limits
for TE and OE are different for (a) and (b).

τmax = 260 N. The same cable tension limits were assumed for all the cables. The de-
sired trajectory escapes from the robot workspace when the reduced maximum tension
τmax = 260 N is applied. The proposed MPC is able to comply with this reduced max-
imum cable tension while minimizing the Cartesian error between the actual and the
desired trajectories. This is an important result related to the safety of the operation
of CDPRs. Moreover, Section 3.3.2.2 evaluates the capabilities of the proposed MPC
related to robustness against uncertainties.

3.3.2.1 Pick-and-Place task

The first scenario considered is a typical pick-and-place task. Figure 3.6 shows the
sequence of the six desired platform poses defining the pick-and-place path. The tra-
jectory between each subsequent pair of desired poses is defined with a 5th degree
polynomial function. In the following, the results obtained with two different scenar-
ios of cable tension constraints are compared.

Nominal constraints: Figure 3.7-(a) shows the experimental results obtained with
τmax = 400 N and τmin = 100 N. The proposed controller is able to keep the translation
errors (TE) smaller than 4.5 mm and the orientation errors (OE) smaller than 0.3◦.

Reduced maximum tension: Figure 3.7-(b) shows the experimental results obtained
with τmax = 260 N and τmin = 100 N. The proposed MPC finds poses as close as
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(a)

(b)

Figure 3.8 – Overlaid views of both scenarios (nominal constraints and reduced maximum
tension). The upper view (a) depicts an instant in which the desired pose is feasible for both
cases. Conversely, the lower view (b) depicts an instant in which the desired pose is feasible
for τmax = 400 N and unfeasible for τmax = 260 N.

possible to desired poses complying with these cable tension limits. The translation
errors reach values greater than 250 mm and orientation errors are close to 8◦.

Figure 3.8 depicts overlaid views comparing the scenarios with nominal and re-
duced maximum tension. This comparison is done for two different instants. The
view in Figure 3.8-(a) was taken when the desired pose was feasible for both scenar-
ios. In contrast, Figure 3.8-(b) depicts an instant in which the desired was feasible for
the nominal case and unfeasible for the reduced maximum cable tension. The shift
between desired and actual poses is evident in this case.

Strictly complying with the cable tension limits while minimizing the Cartesian
errors in following the desired trajectory is the main advantage of the proposed con-
troller. The control strategies discussed in Section 1.4 combined with a tension dis-
tribution schemes described in Section 1.5 would fail to fulfill this objective since the
main controller would demand an unfeasible wrench. Figure 3.9 depicts the results
obtained using the control scheme proposed in [8]. The robot operation is suddenly
stopped when the desired trajectory reaches unfeasible poses, exemplifying the risks
taken with such control strategy when operating close to system constraints.
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Figure 3.9 – Experimental results obtained with the control scheme proposed in [8] for unfea-
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Figure 3.10 – Illustration of the robustness test.

3.3.2.2 Robustness against payload uncertainties

In many applications of CDPRs, the platform should pick weights from one po-
sition and release them in another position. In order to validate the applicability of
the proposed control strategy in such tasks, it is important to evaluate its robustness
against uncertainties on the lifted mass. To this end, the experiment illustrated in Fig-
ure 3.10 is proposed. The results are presented in Figure 3.11. An additional mass of
11.5 kg was used. This mass represents 50% of the platform mass mp. The controller
is able to keep the tracking errors smaller than 6 mm and 0.14◦, despite this significant
uncertainty.

3.3.3 Conclusions

The experimental results presented in this section show that the proposed control
strategy is able to perform a trajectory keeping reduced errors while complying with
cable tension limits. The real-time control was implemented in an industrial software
and hardware environment to enable applicability of the proposed scheme in industry.

The proposed MPC scheme is able to address the cable tension limits explicitly, in-
tegrating the redundancy resolution within the main controller. As a result, cable ten-
sion limits are not violated even for reduced maximum cable tensions. Indeed, when a
desired pose cannot be reached with some given tension limits, the proposed MPC is
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Figure 3.11 – Robustness test results with an additional payload.

able to find a trajectory as close as possible to the desired one while strictly respecting
the tension limits. The obtained experimental results also show its robustness against
payload uncertainties.

Chapter 1 showed that state-of-the-art control schemes lead to safety issues when
operating close to system constraints. The results presented in this section demonstrate
that the proposed linear MPC scheme overcome this issue. Therefore, the implemented
control algorithm fulfills the main purpose for which it was conceived.

Whereas the necessity to safely operate close to system constraints is a specific re-
quirement in the Hephaestus project, this characteristic is also favorable for the design
of CDPRs. Considering the limitations of the existing state-of-the-art schemes, the de-
signer must oversize the margin dedicated to model uncertainties in order to guarantee
the safety of the robot operation. In contrast, a more efficient design may be used for a
CDPR operating with the proposed MPC.

Nevertheless, the performance of this linear MPC may be deteriorated with the
incidence of significant nonlinearities. More precisely, the vector γ obtained with the
affine system (3.17) may be a bad approximation of the future states if (3.15) is not true.
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In order to extend the results obtained in this chapter to system with significant
nonlinearities, an NMPC scheme should be developed. The next chapter addresses
this subject.





4

Nonlinear Model Predictive Control

The linear MPC presented in the previous chapter is based on a linear approximation of the
CDPR dynamic model. As a result, it may present deteriorated performance in presence of
significant nonlinearities. Accordingly, a nonlinear MPC is proposed in this chapter. After a
preliminary discussion presented in Section 4.1, the overall NMPC algorithm and its optimal
control problem are formulated in the Section 4.2. Since this strategy is based on the origi-
nal nonlinear dynamic system, the stability of the corresponding closed-loop may be analyzed.
This section also highlights additional aspects of the linear MPC proposed in the previous chap-
ter that differ from the standard form of tracking MPC schemes. Notably, in order to attain
this standard form, an alternative method aiming to the minimization of the cable tensions
is proposed. Section 4.3 discusses issues related to the numerical discretization of the origi-
nal continuous-time system and proposes numerical solutions for the optimization problems
proposed in Section 4.2. The NMPC strategy is validated by numerical simulation results
presented in Section 4.4.
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4.1 Nonlinear Model Predictive Control

The present section outlines the main objectives and the rationale of the NMPC
proposed in this thesis. Before addressing the problem itself, some definitions and
notations are introduced in the following.

4.1.1 Definitions and notations

In addition to the previously used notations, some additional sets should be intro-
duced

R+ := {r ∈ R | r > 0};
R0

+ := {r ∈ R | r > 0};
Rnv

+ := {v ∈ Rnv | vi > 0 ∀ i ∈ N1,nv};
Ra,b := {r ∈ R | a 6 r 6 b};
U := {τ ∈ Rm | τmin 6 τ 6 τmax} (set of feasible cable tensions);

Unu := {τ (·) ∈ Smnu | τmin 6 τi 6 τmax ∀ i ∈ N1,nu};

Y :=
{
y ∈ R2n

∣∣∣ y =
[
xT ẋT

]T
with x and ẋ admissible

}
;

X :=
{
x ∈ Rn

∣∣∣ ∃ ẋ ∈ Rn,
[
xT ẋT

]T
∈ Y

}
.

The set Y should restrict the set of poses and velocities within which the control is
able to operate. This definition should use the tools related to the computation of the
workspace of CDPRs, e.g. [28, 119, 184, 185]. More details on this matter are discussed
in Sections 4.2 and 4.4.

The set X is the projection of Y in the space of platform poses. This set represents
the admissible poses (poses x ∈ Rn for which there exists a velocity vector ẋ ∈ Rn such

that
[
xT ẋT

]T
∈ Y).

Additionally, some comparison functions are used in this chapter. In accordance
with the commonly used notations [13, 62], the following classes of functions are con-
sidered

K := {α ∈ R+
0 → R+

0 | α continuous, strictly increasing and α(0) = 0};
K∞ := {α ∈ K | α unbounded };
L := {δ ∈ R+

0 → R+
0 | δ continuous, strictly decreasing and lim

t→∞
δ(t) = 0};

KL := {β ∈ R+
0 × R+

0 → R+
0 | β(r, ·) ∈ L and β(·, t) ∈ K}.

(4.1)

As in Chapter 3, any vectorial function representing the cable tensions in time τc :
R → Rm is considered piece-wise constant. Accordingly, a sequence of cable tensions
τ (·) ∈ Sm is related to τc by

τ (k) = τk = τc(t), for t ∈
{
t
∣∣∣ (k − 1)∆t 6 t < k∆t

}
and k ∈ N, (4.2)
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for a given sampling period ∆t. The initial time is considered t0 = 0. Note that, as in
Chapter 3, a sequence of vector is denoted with bold letters followed by (·), such that
the kth vector of a sequence s(·) ∈ Sns is denoted by s(k) = sk.

Moreover, the euclidean distance between two vectors v1, v2 ∈ Rnv , for any nv ∈ N,
is denoted as ‖v1‖v2 = ‖v2‖v1 =

√
(v1 − v2)T (v1 − v2).

The reader is invited to refer to the Glossary at the end of this manuscript, which is
a summary of the used notations.

4.1.2 Problem formulation

Since the cost functional (3.24) considers a linear approximation (3.17) of the contin-
uous model (3.10), the satisfying results presented in Section 3.2 and 3.3 are obtained
only for dynamic systems with limited nonlinearities. Therefore, a rigorous stability
analysis of a general CDPR nonlinear dynamic model and its closed-loop is hindered.
In this context, the goal of the present chapter is to obtain an NMPC scheme based on
the original nonlinear model leading to satisfying performance and stability indepen-
dently of the influence of nonlinearities.

Thanks to the simplicity resulting from the linear model, several issues in the design
and implementation of a general NMPC could be addressed in Chapter 3 without a
clear separation between themselves. Due to the increased complexity involved in the
NMPC controller proposed in the present chapter, it is important to decouple these
issues and address them separately. Accordingly, the design and implementation of an
NMPC scheme may be divided into four aspects, namely:

(i) Numerical discretization: Definition of a transition-mapping representing a
discrete-time approximation of the continuous-time state space model;

(ii) Optimal Control Problem (OCP) formulation: Definition of the cost functional
to be minimized, as well as the control input and state constraints;

(iii) Formulation of the OCP as a Nonlinear Programming (NLP) problem: In gen-
eral, the OCP obtained in (ii) is not formulated as a standard NLP. Typically, the
transition mapping defined in (i) is not explicitly considered in the OCP. There-
fore, (i) and (ii) should be integrated, leading to a standard NLP problem;

(iv) Numerical solution of the NLP: The output of the controller is obtained by solv-
ing numerically the NLP formulated in (iii). Interior-point and Sequential
Quadratic Programming (SQP) methods are numerical algorithms commonly used
to this end.

Numerical discretization is necessary since most of NMPC schemes assume discrete-
time systems and the CDPR dynamic model (3.10) is continuous in time. More in detail,
consider constants ta ∈ R, xa, ẋa ∈ Rn, τa ∈ Rm representing the actual time, pose, ve-
locity and cable tensions, respectively. Considering that the cable tensions τa are kept
constant during a controller cycle period ∆t, the solutions x : R→ Rn and ẋ : R→ Rn
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of the Initial Value Problem (IVP)

ẍ = M(x)−1
(
g(x) + W(x) τa −C(x, ẋ) ẋ

)
, (4.3a)

x(ta) = xa (4.3b)
ẋ(ta) = ẋa, (4.3c)

lead to a transition mapping φx : Rn × Rn × Rm → Rn such that[
x(ta + ∆t)
ẋ(ta + ∆t)

]
= φx

(
xa, ẋa, τa

)
. (4.4)

Using a more compact notation, the vector of the next pose and velocity y+ =[
x(ta + ∆t)T ẋ(ta + ∆t)T

]T
obtained with initial conditions

[
x(ta)T ẋ(ta)T

]T
= y =[

xTa ẋTa
]T

and application of constant cable tensions τ ∈ Rm is described with the
transition mapping φy : R2n × Rm → R2n according to

y+ = φy(y, τ ). (4.5)

Typically, the OCP formulation of an NMPC scheme and the subsequent stabil-
ity analysis consider that the transition mapping representing the dynamic system is
known. Accordingly, Section 4.2 considers that the expression for φy is known. The
definition of the numerical discretization method is closely related to the definition of
the NLP corresponding to an OCP. A deeper discussion on this matter is postponed
to the Section 4.3. This section also discusses the items (iii) and (iv). Before that, the
reader should be introduced to the proposed NMPC algorithm.

Section 4.2 introduces an NMPC taking the same state vector as the one introduced
in Chapter 3. This state vector includes the CDPR platform pose and velocity. Since
this set constitutes the minimal set of states with which the dynamic system may be
modeled with a state space formulation, the corresponding NMPC scheme is called
minimal state NMPC.

4.2 Minimal State NMPC

The present section introduces a minimal state NMPC scheme and is organized as
follows: Section 4.2.1 details the control algorithm, Section 4.2.2 introduces the optimal
control problem. The stability of the proposed scheme is discussed in the Section 4.2.3.

4.2.1 NMPC algorithm

The operation of the NMPC scheme proposed in this chapter may be presented
with a block diagram equivalent to the used in Chapter 3 (i.e. Figure 3.1). The differ-
ence here consists in the MPC formulation which is present in the corresponding block



4.2. Minimal State NMPC 91

in Figure 3.1. Instead of a linear MPC, the present chapter proposes an NMPC scheme.
In accordance with the definition of receding horizon MPC schemes discussed in Sec-
tion 1.7.2, an optimal control problem is solved every controller cycle such that a cost
functional is minimized satisfying system constraints.

As for the control scheme proposed in Chapter 3, no terminal condition is used (in
accordance with the reasons discussed in Section 1.7). Accordingly, the cost functional
(denoted by Jhp : N × Y × Smhp → R) consists of a sum of individual costs associated
to each sampling time within the prediction horizon hp ∈ N. The function responsible
to compute these individual costs is called stage cost function and is denoted by ` :
N × Y × U → R. Therefore, for an instant k ∈ N, actual state ya ∈ Y and sequence of
cable tensions τ (·) ∈ Smhp , the cost functional is given by

Jhp(k,ya, τ (·)) =
hp∑
j=1

`
(
k,yτ (·)(j,ya), τj

)
, (4.6)

where the state yτ (·) (j,ya) represents the jth term of the sequence of states ypa(·) ∈ S2n
hp

resulting from the application of the cable tensions τ (·) taking as initial state ya. This
sequence of states is obtained applying recursively the transition mapping (4.5) j times,
such that

ypa(1) = yτ (·) (1,ya) = φy(ya, τ1)
ypa(2) = yτ (·) (2,ya) = φy (ypa(1), τ2)
ypa(3) = yτ (·) (3,ya) = φy (ypa(2), τ3)

...

(4.7)

The implemented NMPC algorithm is in accordance with the standard formulation
of NMPC schemes without terminal conditions. The Algorithm 1 recalls the common
implementation of NMPC schemes with the notations used in this chapter. This al-
gorithm is also used to define the control policy τfb : N × Y → U, which computes
the vector of desired cable tensions τfb(k,ya) for given instant k ∈ N and actual state
ya ∈ Y.

Considering a stage cost ` : N × Y × U (which will be defined in Section 4.2.2),
this vector is computed based on the solution of the OCP (4.8). Algorithm 1 inte-
grates this control policy within the feedback loop such that the OCP (4.8) is solved for
each controller cycle with updated estimations of the states. Accordingly, the NMPC
scheme defines a set of desired cable tensions τd(t) to be applied in the time interval
t ∈ [k∆t, (k + 1) ∆t). These outputs are used as setpoints for a cable tension control
scheme.

The estimation of the states yk in step 3 is performed with the tools introduced in
Chapter 2. The detailed definition of the OCP (4.8) (mainly the considered stage cost)
is presented in the Section 4.2.2.
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Algorithm 1 NMPC Algorithm

Main control loop

1: Set k ← 0;
2: loop
3: Estimate the actual states yk;
4: Set desired cable tensions τd(t)← τfb(k,yk) for t ∈ [k∆t, (k + 1) ∆t);
5: Set k ← k + 1;
6: end loop

Control policy
Inputs: ya ∈ Y and k ∈ N;
Output: τ vfb ∈ U;

1: function τfb(k,ya)
2: Solve the OCP

τ ∗ ← arg min
τ (·)∈Uhp

hp∑
j=1

`
(
j + k,yτ (·)(j,ya), τj

)
s. t. yτ (·)(j,ya) ∈ Y ∀ j ∈ N1,hp

(4.8)

3: Set τ vfb ← τ ∗1 ;
4: return τ vfb.
5: end function

4.2.2 OCP formulation

The definition of a pertinent stage cost is a crucial step for the design of a stable and
effective NMPC scheme. In order to meet the theoretical requirements necessary to
guarantee stability and satisfying performance of an NMPC scheme, one should seek
some particular properties of the stage cost. Postponing the formal discussion on this
matter to Section 4.2.3, some key properties may be sketched to explain the rationale
used in the design of the proposed OCP. The next paragraphs are dedicated to this end.

Typically, NMPC schemes penalize states and control inputs with respect to the
desired behavior of the system. In order to better formulate this desired behavior, the
following assumption defines the sequence of desired cable tensions and presents the
conditions under which they are feasible.

Assumption 4.1. Consider the sequences xd(·), ẋd(·) ∈ Sn of desired poses and velocities,
respectively, and yd(·) ∈ S2n such that yd(k) =

[
xd(k)T ẋd(k)T

]T
represents the desired

trajectory. The sequence yd(·) is considered feasible, in the sense that there exists a sequence of
desired cable tensions τ ′d(·) ∈ Sm such that, for y0 = yd(1),

yτ ′
d
(·)(k,y0) = yd(k) ∈ Y (4.9a)

τ ′d(k) ∈ U (4.9b)
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for all k ∈ N. Moreover, each vector of τ ′d(·) is considered to have minimal 2-norm such that,
for every k ∈ N,

@ τ ∈ U |W (xd(k)) τ ′d(k) = W (xd(k)) τ and ‖τ‖ < ‖τ ′d(k)‖. (4.10)

The cost functional of a tracking MPC (or classical stabilizing MPC) scheme should
be null for states and control inputs equal to the desired trajectory and desired con-
trol inputs, and strictly positive if the states are not equal to the desired ones. More
precisely, the stage cost function should satisfy{

`(k,y, τ ) = 0 if y = yd(k) and τ = τ ′d(k),
`(k,y, τ ) > 0 if y 6= yd(k). (4.11)

NMPC schemes satisfying this property are called hereinafter in this thesis as Stan-
dard Tracking NMPC (ST-NMPC). As a matter of fact, the formulation proposed in Sec-
tion 3.1 is not in accordance with the standard MPC form. Since the stage cost used
in Chapter 3 presents a term proportional to the squared norm of the vector of cable
tensions (the term (3.19)), which is always strictly positive due to the minimal cable
tension bounds, the corresponding OCP does not have null cost for trajectories co-
inciding with the desired one. Therefore, this section proposes a different approach
aiming to minimize the 2-norm of the cable tension vector while satisfying (4.11).

As for the desired states, ST-NMPC schemes commonly penalize a weighted norm
of the difference between control inputs taken as argument of the stage cost and the
desired control inputs. For the stage cost `(k,y, τ ) studied here, a weighted norm
of τ − τ ′d(k) could be used. Nevertheless, in order to obtain τ ′d(·), one would need
to solve the tension distribution problem of the whole trajectory beforehand, using
a TDA coupled to the inverse dynamics. Although this is a reasonable solution, the
OCPs proposed in this thesis exempt the control scheme of this previous computation.
To this end, the following stage cost is proposed

`(k,y, τ ) = ‖y− yd(k)‖2
Ky + ‖τ − τ̃r(xy, τ )‖2

Kτ
, (4.12)

where Ky = diag(ky) and Kτ = diag(kτ ), with constant vectors ky ∈ R2n
+ and kτ ∈ Rm

+ .
‖(·)‖K is the norm of (·) weighted with a symmetric positive definite matrix K. The
vector xy represents the pose vector obtained by extracting the first n elements of the
y. The vectorial function τ̃r : X × U → U denotes the estimation of desired cable
tensions, such that, for given x ∈ X and τin ∈ U,

τ̃r(x, τin) = arg min
τ ′

‖τ ′‖2
2 (4.13a)

s. t. W(x) τin = W(x) τ ′ (4.13b)
τmin 6 τ

′ 6 τmax (4.13c)

In words, τ̃r(x, τin) is the vector of cable tensions with minimal 2-norm that is
able to generate the same wrench than τin at the pose x. Therefore, for given k ∈
N, y ∈ Y and τin ∈ U, the term ‖τ − τ̃r(xy, τin)‖2

Kτ
= 0 iff τ presents minimal 2-norm

(τ = τ̃r(xy, τin)). Otherwise, ‖τ − τ̃r(xy, τin)‖2
Kτ

> 0, indicating that there exists a
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τ̃r(xy, τin) ∈ U generating the same wrench (thanks to (4.13b)) with ‖τ̃r(xy, τin)‖2 <
‖τ‖2.

The Algorithm 2 presented in Section 4.3 is able to solve the optimization problem
(4.13). As discussed in Section 1.5, one crucial part of a TDA is to compute a feasible
cable tension vector able to generate the desired wrench. Since τin ∈ U, this vector is
necessarily feasible and τmin 6 τin 6 τmax. Moreover, the desired wrench in (4.13b) is,
in fact, the one generated by τin. Therefore, the cable vector of tensions τin may be used
as a feasible initial guess in an iterative optimization, which may be much simpler than
a general TDA.

For a given actual state ya at time instant k the proposed optimal control problem
is summarized as follows

min
τ (·)∈Uhp

hp∑
j=1

`
(
j + k,yτ (·) (j,ya) , τi

)
.

s. t. yτ (·)
(
j,ya

)
∈ Y ∀ j ∈ N1,hp

(4.14)

Note that, as a consequence of (4.10) and (4.13),

‖τ̃r(xd(k), τ ′d(k))− τ ′d(k)‖ = `
(
k,yd(k), τ ′d(k)

)
= 0 ∀ k ∈ N (4.15)

and conditions (4.11) are satisfied with the stage cost (4.12). Thereby, the tension dis-
tribution is implicitly performed when solving the OCP (4.14).

4.2.3 Stability analysis

This section presents the stability analysis of the closed-loop system obtained with
the NMPC proposed in Sections 4.2.1 and 4.2.2. More precisely, the main goal is to
study the conditions under which the corresponding closed-loop system is uniformly
asymptotically stable according to the following definition.

Definition 4.2. Consider the NMPC Algorithm 1 with prediction horizon hp ∈ N and a
feasible sequence of desired states yd(·) ∈ S2n. The resulting closed-loop system

yj+1 = φy (yj, τfb(j,yj)) , ∀ j ∈ N (4.16)

is called uniformly asymptotically stable to yd(·) on Y if, for each ya ∈ Y and k ∈ N, there
exists a β ∈ KL such that yfb(·) ∈ S2n defined according

yfb1 = φy (ya, τfb(k,ya))
yfbj+1 = φy

(
yfbj , τfb(j + k,yfbj )

)
, ∀ j ∈ N

(4.17)

satisfies the following relation

‖yfbj ‖yd(k+j) 6 β(‖ya‖yd(k), j), ∀ j ∈ N. (4.18)
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In words, (4.17) constructs the sequence of states yfb(·) that is obtained consider-
ing the closed-loop (4.16) “departing” from ya at sampling time k. The closed-loop
(4.16) takes as feedback control policy τfb defined in Algorithm 1. The definition of
uniform asymptotic stability presented above is based on the upper bound of the error
‖yfbj − yd(k + j)‖ = ‖yfbj ‖yd(k+j).

Note that, since the sequence yfb(·) starts shifted from k sampling periods from the
initial time, the error between yfb(·) and yd(·) should be shifted in time as well. In other
words, k represents the initial discrete time of the studied trajectory and j represents
its evolution in time starting from sampling time k. The same notations are used in the
remainder of this section for trajectories others than yfb(·).

The upper bound used to limit the tracking error is established in terms of the func-
tion β ∈ KL. An illustrative example of a function belonging to this class is presented
in Figure 4.1. In accordance to the definition presented in Section 4.1.1, the illustra-
tive function βex(r′, t) tends to zero for t → ∞ and is strictly decreasing with respect
to the second argument (for a constant r′ ∈ R+). Since the second argument in (4.18)
represents the time, the tracking error asymptotically converges to zero. In contrast, β
is strictly increasing with respect to the first argument. Therefore, for increased initial
errors ‖ya‖yd(k), the function of time β(‖ya‖yd(k), ·) ∈ Lmay be increased as well.

Definition 4.2 is used in [13, Definition 2.16] for the analysis of MPC schemes and
is closely related to [62, Definition 4.2], which is more often used in general nonlinear
control. As a matter of fact, the analysis presented in this section is based on [13] and
the used notations are similar to those proposed in this reference.

Since the OCP (4.14) does not use stabilizing terminal conditions, tools designed
to the analysis of NMPC schemes without terminal conditions should be used in the
stability analysis of the closed-loop (4.16). The minimal time-varying stage cost denoted
by `∗ : N× Y→ R is fundamental in this context. This function is defined as

`∗(k,y) = min
τ∈U

`(k,y, τ ). (4.19)

The asymptotic stability of ST-NMPCs without terminal conditions is addressed
in [13, Chapter 6]. Summarizing some of the results presented in this chapter, the
following theorem can be stated.

Theorem 4.3. Consider the NMPC Algorithm 1 with prediction horizon hp ∈ N and minimal
stage cost satisfying

α1(‖y− yd(k)‖) 6 `∗(k,y) 6 α2(‖y− yd(k)‖) ∀ k ∈ N,y ∈ Y (4.20)

with suitable α1, α2 ∈ K∞. Suppose that, for all ya ∈ Y, there exist a feasible τ e(·) ∈ Sm, real
C <∞ and σ ∈ (0, 1) satisfying

`
(
k + j,yτ e(·)(j,ya), τ ej

)
6 C σj `∗ (k,ya) , (4.21)

for all k, j ∈ N. Then, the nominal closed-loop (4.16) is uniformly asymptotically stable on Y
provided that hp is sufficiently large. �
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Figure 4.1 – An illustrative example of a function βex ∈ KL.

Theorem 4.3 describes sufficient conditions to obtain a stable closed-loop system
with the proposed NMPC for hp sufficiently large. Inequalities (4.20) are closely related
to (4.11). These conditions will be quite straightforwardly deduced at the end of this
section.

Nevertheless, inequality (4.21) represents an important restriction to the properties
of the stage cost. This inequality imposes, for each discrete instant k ∈ N and actual
state ya ∈ Y, the existence of a feasible sequence τ e(·) that leads to a stage cost con-
verging exponentially to zero in time. The term `

(
k + j,yτ e(·)(j,ya), τ ej

)
represents this

stage cost. The exponential convergence is a result of the term C σj with σ ∈ (0, 1).
Note that the upper bound function C σj `∗ (k,ya) is proportional to the initial minimal
stage cost `∗ (k,ya).

It is important to highlight that Theorem 4.3 is based on the existence of any feasi-
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ble sequence τ e(·) that satisfies (4.21). The control policy τfb is not considered explic-
itly in this theorem. In contrast to most of the control architectures, constrained MPC
schemes generally do not have an analytical expression for the control policy. For this
reason, the closed-loop cannot be studied explicitly. This is done by means of suitable
properties of the stage cost. In this chapter, this suitable property is described by (4.21).

Since one of the terms in the stage cost (4.12) is the error ‖y−yd‖2
Ky , this error need

to be bounded as well. Based on that, the following assumption establishes important
properties of the controlled system in order to attain (4.21).

Assumption 4.4. Consider the error ey : N× Y→ R given by

ey(k,y) = ‖y− yd(k)‖2
Ky . (4.22)

For each ya ∈ Y and k ∈ N, there exist τ (·) ∈ Sm, real C1, <∞ and σ1 < 1 such that

ey
(
k + j,yτ (·)(j,ya)

)
6 C1 σ

j
1 ey(k,ya) (4.23a)

τ j ∈ U (4.23b)

for all j ∈ N.

If Assumption 4.4 is true, then, for each state ya ∈ Y and instant k ∈ N, there exists
a feasible sequence of cable tensions τ (·) that generates a trajectory in which the error
‖yτ (·)(k + j,ya) − yd(k + j)‖Ky exponentially converges to zero. Moreover, the upper
bound function in (4.23a) is proportional to the initial errors ey(k,ya). Note that, for
given k and ya, the error ey(k,ya) is a constant with respect to the discrete time j.

It is easy to show that this assumption may be satisfied with a typical control
scheme. Consider, for instance, a continuous-time OSC scheme that applies the wrench

f = M(x)
(
ẍd + KP (xd − x) + KD(ẋd − x)

)
+ C(x, ẋ) ẋ− g(x) (4.24)

with diagonal gain matrices KP and KD. The nominal closed-loop system dynamics is
given by

ẍ = ẍd + KP (xd − x) + KD(ẋd − x) (4.25)

or, written in terms of the error e(t) = xd(t)− x(t),

ë = −KD ė−KP e. (4.26)

Choosing, for instance, KP = KD = I, the solution to the differential equation (4.26)
can be written as

e(t) = e−t/2 (a1 sin (ω t) + a2 cos (ω t)) , (4.27)

with ω =
√

3/2 and constant vectors a1, a2 ∈ Rn given by

a1 = e0

a2 = 1
ω

(
ė0 −

1
2e0

) (4.28)
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where e0 = e(0), ė0 = ė(0). The expressions of the error e and its time derivative
satisfy

‖e(t)‖ =
∥∥e−t/2(a1 sin(ω t) + a2 cos(ω t)

)∥∥ 6
(
e−1/2

)t
(‖a1‖+ ‖a2‖)

‖ė(t)‖ =
∥∥∥∥∥e−t/2

{(1
2 a1 − ω a2

)
︸ ︷︷ ︸

a3

sin(ω t) +
(1

2 a2 + ω a1

)
︸ ︷︷ ︸

a4

cos(ω t)
}∥∥∥∥∥ 6 (e−1/2

)t
(‖a3‖+ ‖a4‖)

A tedious but straightforward computation using (4.28) leads to the bound ‖e(t)‖2+
‖ė(t)‖2 6 cey e

−t (‖e0‖2 + ‖ė0‖2), with cey = (16 + 2
√

3)/3.

Define kx, kẋ ∈ Rn subvectors of the previously defined ky such that ky =
[
kTx kTẋ

]T
and matrices Kx, Kẋ ∈ Rn×n diagonal matrices with Kx = diag(kx), Kẋ = diag(kẋ).
Denoting also

Kmax
y = max

i
(ky,i) ,

Kmin
y = min

i
(ky,i) ,

(4.29)

the following inequalities hold

‖e(t)‖2Kx + ‖ė(t)‖2Kẋ 6 Kmax
y (‖e(t)‖2 + ‖ė(t)‖2)

6
(
e−1

)t
Kmax

y cey (‖e0‖2 + ‖ė2
0‖)

6
(
e−1

)t Kmax
y

Kmin
y

cey (‖e0‖2Kx + ‖ė0‖2Kẋ)

which is the continuous counterpart of (4.23a) with C1 = ceyK
max
y /Kmin

y < ∞ and
σ1 = e−1 < 1.

As important as (4.23a) imposing the exponential convergence of error ey(k, ·),
(4.23b) requires that the sequence τ (·) is feasible. Considering an OSC strategy, this
means that the wrench defined in the feedback control policy is feasible for any pose
and velocity within the state constraint set Y. Clearly, the definition of the robot
workspace and the set Y ⊂ R2n play crucial roles in Assumption 4.4. The study of the
feasibility of a given wrench considering different poses and velocities is addressed in
several works (e.g. [28, 119, 184, 185]) and it is out of the scope of this thesis. Moreover,
it is important to highlight that assumption (4.23b) is often implicitly taken. Studies
such as [26,58,71] analyze the corresponding closed-loop systems considering that the
feedback loop does not lead to unfeasible cable tensions.

Since the term ey(k,y) = ‖y − yd(k)‖2
Ky in the expression (4.12) of the stage cost

`(k,y, τ ) is independent of τ , the minimal time-varying stage cost is given by

`∗(k,y) = ey(k,y) + min
τ∈U

(‖τ − τ̃r(xy, τ )‖2
Kτ

). (4.30)

Lemma 4.7 will show that the minimum minτ∈U(‖τ − τ̃r(xy, τ )‖Kτ ) is known and
(4.30) can thus be simplified. Before stating and proving Lemma 4.7, a preparatory
lemma is necessary.
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Lemma 4.5. Consider τ a, τ b ∈ U and x ∈ X. If

W(x) τ a = W(x) τ b, (4.31)

then,

τ̃r(x, τ a) = τ̃r(x, τ b). (4.32)

Proof. First, the existence of a τ̃r(x, τin) for all x ∈ Rn, τin ∈ U should be proved. The
objective function ‖τ ′‖2

2 in (4.13a) is quadratic and strictly convex. The substitution of
τ ′ = τin ∈ U in the constraints of (4.13b)-(4.13c) shows that τin itself is an element of
the set defined by these constraints. Hence, this is a convex non-empty set. Therefore,
(4.13) is a feasible strictly convex inequality constrained QP problem, which assumes a
global minimum.

Denoting f ′ ∈ Rn the wrench such that f ′ = W(x) τ a, the definition (4.13) indicates
that both τ̃r(x, τ a) and τ̃r(x, τ b) are obtained with

τ̃r(x, τ a) = τ̃r(x, τ b) = arg min
τ ′

‖τ ′‖2
2 , (4.33)

s. t. W(x) τ ′ = f ′ (4.34)
τmin 6 τ

′ 6 τmax (4.35)

and, therefore, (4.32).

Lemma 4.9 shows that if two vectors of cable tensions generate the same wrench in
a given pose, they lead to the same estimation of desired cable tensions. The following
corollary is based on this conclusion.

Corollary 4.6. For every τ a, τ b ∈ U and x ∈ R, if

τ b = τ̃r(x, τ a), (4.36)

then
τ b = τ̃r(x, τ b). (4.37)

Proof. Taking τ a, τ b and x from the corollary statement such that τ b = τ̃r(x, τ a), con-
straints (4.13b)-(4.13c) in the definition of τ̃r implies that W(x) τ a = W(x) τ b and
τ b ∈ U. Therefore, applying Lemma 4.5, τ̃r(x, τ a) = τ̃r(x, τ b). Thanks to (4.36), this
leads to τ b = τ̃r(x, τ b).

Lemma 4.7. For every y ∈ Y, τin ∈ U and k ∈ N,

min
τ∈U

(‖τ − τ̃r(xy, τin)‖Kτ ) = 0, (4.38)

and the minimal time-varying stage cost is given by

`∗(k,y) = ‖y− yd(k)‖2
Ky = ey(k,y). (4.39)
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Proof. For every y ∈ Y and τin ∈ U, one may set τout = τ̃r(xy, τin). Thanks to the
constraints (4.13c), τout ∈ U. Moreover, ‖τout − τ̃r(xy, τin)‖Kτ = 0. Since the expression
‖τout− τ̃r(x, τin)‖Kτ = 0 is non-negative, this proves (4.38). Substituting (4.38) in (4.30),
equation (4.39) is obtained.

As discussed in Section 4.2.2, τ̃r(x, τ ) is the vector of cable tensions with minimal 2-
norm that generates the same wrench than τ in pose x. Loosely speaking, the influence
of τ̃r(x, τ ) and τ on the system dynamics should be equivalent. This equivalence is
described in a more precise manner in the following assumption.

Assumption 4.8. Consider y, y+ ∈ Y and τ a, τ b ∈ U. If these vectors satisfy

y+ = φy(y, τ a) and (4.40a)

W(xy) τ b = W(xy) τ a (4.40b)

then, the following relation also holds

y+ = φy(y, τ b) = φy(y, τ a). (4.41)

Limitations resulting from this Assumption 4.8 are better discussed in Section 4.3.
This assumption is also commonly used in the state-of-the-art control schemes pre-
sented in Section 1.4.

Based on Assumption 4.8, for a given initial state vector, two sequences of cable
tensions that generate identical wrenches on the corresponding poses result in iden-
tical trajectories. Therefore, any trajectory performed with an arbitrary sequence of
feasible cable tensions may be also generated with an alternative sequence consisting
of minimal 2-norm vectors. In this case, the stage cost related to each instant along
the trajectory is equal to the minimal time-varying cost. This assertion is rigorously
formulated in Lemma 4.9.

Lemma 4.9. For each ya ∈ Y, y(·) ∈ S2n and τ (·) ∈ Sm such that, for all k ∈ N,

yk = yτ (·)(k,ya) ∈ Y (4.42a)
τk ∈ U, (4.42b)

there exists a τ ∗(·) ∈ Sm that satisfies

yτ (·)(k,ya) = yτ∗(·)(k,ya) = yk, (4.43a)
τ̃r(xyk , τ

∗
k ) = τ ∗k ∈ U (4.43b)

`(k,yk, τ ∗k ) = ey(k,yk) = `∗(k,yk) (4.43c)

for all k ∈ N.

Proof. For ya, y(·) and τ (·) stated in the lemma, define τ ∗(·) ∈ Sm and y∗(·) ∈ S2n

according to
τ ∗k = τ̃r(xyk , τk),
y∗k = yτ∗(·)(k,ya)

(4.44)
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for all k ∈ N. Due to the constraint (4.13b),

W(xya) τ1 = W(xya) τ ∗1 (4.45)

and, according to Assumption 4.8,

y∗1 = φy(ya, τ ∗1 ) = yτ∗(·)(1,ya) = y1. (4.46)

Moreover, (4.44)-(4.45) and Lemma 4.5 imply that

τ̃r(xy1 , τ
∗
1 ) = τ̃r(xy1 , τ1) = τ ∗1 . (4.47)

Replacing recursively ya by yk, ∀ k ∈ N in (4.45)-(4.47), equations (4.43a) and (4.43b)
are obtained.

Equation (4.43b) and Lemma 4.7 imply that

`(k,yk, τ ∗k ) = ey(k,yk) + ‖τ ∗k − τ̃r(xyk , τ
∗
k )‖Kτ = ey(k,yk) = `∗(k,yk), (4.48)

as in (4.43c).

Finally, the main results regarding the stability of the ST-NMPC scheme proposed
in Section 4.2.1 may be presented as follows.

Theorem 4.10. Consider the ST-NMPC Algorithm 1 with prediction horizon hp ∈ N and
feasible desired trajectory yd(·) ∈ S2n. Consider also that Assumptions 4.4 and 4.8 hold. Then,
the nominal closed-loop system (4.16) is uniformly asymptotically stable on Y provided that hp
is sufficiently large.

Proof. The proof consists of the analysis of the conditions presented in Theorem 4.3.
First, it is necessary to prove that there exist α1, α2 ∈ K∞ such that α1(‖y − yd(k)‖) 6
`∗(k,y) 6 α2(‖y − yd(k)‖) ∀ k ∈ N. According to Lemma 4.7, `∗(k,y) = ‖y − yd(k)‖2

Ky

such that the following inequalities hold for all k ∈ N

Kmin
y ‖y− yd(k)‖2 6 `∗(k,y) = ‖y− yd(k)‖2

Ky 6 Kmax
y ‖y− yd(k)‖2. (4.49)

where Kmin
y and Kmax

y were defined in (4.29).

Defining α1, α2 ∈ K∞ by α1(r) = Kmin
y r2 and α2(r) = Kmax

y r2, (4.49) can be written
as

α1(‖y‖yd(k)) 6 `∗(k,y) 6 α2(‖y‖yd(k)) ∀ k ∈ N. (4.50)

In addition, (4.21) should be proved. If Assumption 4.4 holds, then for each ya ∈ Y
and k ∈ N, there exist τ (·) ∈ Sm, real C1, <∞ and σ1 ∈ (0, 1) such that

ey
(
k + j,yτ (·)(j,ya)

)
6 C1 σ

j
1 ey(k,ya) (4.51a)

τ j ∈ U (4.51b)
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for all j ∈ N. Applying Lemma 4.9 with τ (·) = τ (·), the obtained sequence τ ∗(·) leads
to the same trajectory (as implied by (4.43a)) and, therefore, (4.51a) remains valid. In
addition, (4.43c) implies that

`
(
j + k,yτ∗(·)(j,ya), τ ∗j

)
= ey(j + k,yτ∗(·)(j,ya)) (4.52a)

6 C1 σ
j
1 ey(k,ya) (4.52b)

= C1 σ
j
1 `
∗(k,ya), (4.52c)

where (4.51a) and (4.39) were used in order to obtain (4.52b) and (4.52c), respectively.
Inequality (4.52) proves (4.21), finalizing the stability analysis.

4.3 Numerical Implementation of the Control Algorithms

The present section introduces the main numerical algorithms necessary to the im-
plementation of the control scheme discussed in Section 4.2. Section 4.3.1 proposes a
numerical discretization method, Section 4.3.2 introduces the algorithm to compute τ̃r
and the numerical solution of the optimal control problem is discussed in Section 4.3.3.

4.3.1 Numerical discretization

As discussed in Section 4.1, a discrete-time system approximating the continuous-
time model (3.10) is necessary in order to implement the proposed NMPC.

As for general nonlinear systems, it is not possible to compute the exact solution
of the initial value problem (4.3) (represented by the transition mapping φy in (4.5)).
Therefore, one may define an estimation φ̃y of the exact transition mapping φy. In
practice, a discrete-time system is obtained using some kind of numerical integration
method such as the Euler’s or Runge-Kutta’s methods [186]. The control scheme pro-
posed in Section 4.2 may be implemented with any of these integration algorithms.

Recalling the IVP (4.3), explicit numerical integration methods return ỹ+ = φ̃(ya, τa)
based on the computation of ẍ according to (4.3a) for suitably chosen combinations
of x and ẋ in the neighborhood of xa and xa. Calling nφ the number of considered
combinations of x and ẋ, the integration error may be reduced increasing nφ. This is
illustrated in Figure 4.2 comparing the approximation given by the Euler’s method for
nφ,1 = 3 and nφ,2 = 6. The resulting error for nφ,2 is approximately the half of the one
obtained for nφ,1.

The maximal error obtained with the approximate transition mapping is denoted
by ε ∈ R0

+, such that

‖φy(y, τ )− φ̃y(y, τ )‖ 6 ε ∀ y ∈ Y, τ ∈ U. (4.53)

It should be noted that the stability analysis presented in the previous sections ne-
glects the error ε. In order to prove the stability of the closed-loop system considering
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Figure 4.2 – Illustration of how the numerical integration precision is influenced by ∆t and nφ
for the Euler’s method.

this divergence, one may analyze the robustness of the control scheme and consider the
numerical discretization errors as disturbances. This is indeed, a possible follow-up of
the studies presented in this thesis.

Besides the number of evaluations nφ, the error ε is also influenced by the time
step ∆t and the implemented numerical discretization method. Generally, shorter time
steps lead to smaller discretization errors. Figure 4.2 illustrates this fact considering a
reduced ∆t′. Clearly, the original accumulated error (obtained for nφ,2 = 6 and ∆t) is
obtained for ∆t′ = ∆t/3 and n′φ,2 = 2.

Similarly, the numerical integration method should be chosen in order to obtain a
good compromise between precision and computational burden. Figure 4.3 compares
the Euler’s and Runge-Kutta’s methods. One may note that improved results are ob-
tained with Runge-Kutta’s method. Indeed, Runge-Kutta with nφ = 4 (known as clas-
sical Runge-Kutta’s method) is frequently used for the numerical solution of ordinary
differential equations. For most of the applications, this represents a good compromise
between computation time and numerical precision. The interested reader is referred
to the large amount of textbooks addressing the numerical solution of ordinary differ-
ential equations, e.g. [176, 187].

In spite of the advantages obtained with advanced numerical discretization meth-
ods, some specific concerns related to the proposed NMPC scheme should be evalu-
ated. Firstly, the sampling period used for the position tracking of CDPRs is shorter
than typical applications of MPC schemes. Section 1.7 recalled the example of
∆t = 1 min used in [136], whereas the control schemes implemented in this thesis
use sampling periods close to 10 ms. Moreover, the approximate transition mapping φ̃
should be integrated in the OCP formulation (4.14) in order to obtain a standard NLP
problem (this is discussed in detail in Section 4.3.3.1). Accordingly, intricate formula-
tions of φ̃may hinder the numerical solution of (4.14).

Therefore, a rather simple method is proposed in this thesis. Similarly to Chapter 3,
nφ = 1 is chosen. In this case, Euler’s and Runge-Kutta’s methods are equivalent. For
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Euler Runge-Kutta

Figure 4.3 – Comparison between Euler’s and Runge-Kutta’s methods for the same nφ.

an actual time ta, the derivatives of x are considered constant within the sampling
period, i.e. ẋ(t) ≈ ẋ(ta), ẍ(t) ≈ ẍ(ta) for t ∈ Rta,ta+∆t and

x(ta + ∆t) ≈ x(ta) + ∆t ẋ(ta)
ẋ(ta + ∆t) ≈ ẋ(ta) + ∆t ẍ(ta).

(4.54)

Hence, the transition mapping introduced in Chapter 3 is also used here:

ỹ+ = φ̃y(y, τ ) =

A︷ ︸︸ ︷[
I ∆t I
0 I

]
y +

B(y)︷ ︸︸ ︷[
0

∆tM(xy)−1 W(xy)

]
τ+

+
[

0
∆tM(xy)−1

(
g(xy)−C(xy, ẋy)ẋy

)]
︸ ︷︷ ︸

v(y)

.

(4.55)

It is worth noting that estimation (4.55) satisfies Assumption 4.8, as proved in the
following. For the state y ∈ Y and cable tension vectors τ a, τ b ∈ U stated in Assump-
tion 4.8, denote by f ′ ∈ Rn the wrench vector given by

f ′ = W(xy) τ a = W(xy) τ b, (4.56)

where (4.40b) was used. The application of (4.55) leads to

φ̃y(y, τ b) = φ̃y(y, τ a) = A y +
[

0
∆tM(xy)−1 f ′

]
+ v(y), (4.57)

which is equivalent to (4.41).

This means that the presented stability results are valid for a closed-loop system
defined as

yk+1 = φ̃y (yk, τfb(k,yk)) , (4.58)

with the NMPC feedback policy τfb defined in Algorithm 1.
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Figure 4.4 – Active-set method: illustrative example of steps taken for the solution of a con-
strained optimization problem.

Nevertheless, a general transition mapping does not necessarily satisfy this as-
sumption. Similarly to the influence of the error ε, the presented stability results are
valid for systems in which ‖φ(y, τ )− φ̃(y, τ )‖ are smaller than the disturbance magni-
tude established by the robustness of the NMPC controller. The same aforementioned
robustness study should be done in order to quantify this magnitude.

4.3.2 Estimation of the desired cable tensions τ̃r

The estimation of the desired cable tensions defined according to the optimization
(4.13) plays an important role in the stability analysis of the proposed control schemes.
The present section introduces an algorithm able to solve this optimization problem.

More in detail, the efficiency of the proposed NMPCs depends on the fast computa-
tion of τ̃r(x, τ ). For this reason, special attention is dedicated to some details involved
in the numerical solution of (4.13).

Denoting Aineq =
[
I −I

]T
and bineq =

[
τ Tmin −τ Tmax

]T
, the problem (4.13) may be

written as

τ̃r(x, τin) = arg min
τ ′

‖τ ′‖2
2 (4.59a)

s. t. W(x) τin = W(x) τ ′ (4.59b)
Aineq τ

′ > bineq (4.59c)

Taking τ ′ = τin, (4.13b) (and (4.59b)) are satisfied. Moreover, in accordance with
the domain declared in (4.13), τin ∈ U. As a result, (4.13c) (and (4.59c)) are satisfied
substituting τin = τ ′. The cable tension vector τin is, therefore, in the feasible region
defined by (4.59b)-(4.59c) and may be used as a feasible initial guess in an iterative
active-set method [99].
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Figure 4.4 depicts an illustrative example of the methodology implemented with
the active-set. The feasible region is determined by three linear inequalities, repre-
sented by A, B and C. Taking as initial guess the vector p1, the algorithm is able
to compute the global optimum p∗ within 3 iterations. In each iteration, an equality
constrained optimization problem is solved considering some of the inequalities as
equalities. In a given iteration, constraints that are considered as equalities are called
active constraints. The remaining constraints, which are neglected, are called inactive
constraints. Taking the initial guess p1 in the first iteration, the inequality A is consid-
ered as an equality and inequalities B and C are neglected (inactive). The vector p∗1 is
obtained solving this subproblem and is taken as input for the next iteration.

One may conclude that the cost function may be decreased by setting inequality
constraint A as inactive (this is done analyzing the Lagrangian multipliers related to
constraint A, considered as equality in iteration 1). Therefore, iteration 2 solves a sub-
problem neglecting this constraint. The obtained solution is p∗2. However, this vec-
tor is not within the feasible region. Accordingly, the next iteration considers p3 =
p2 +α2 (p∗2−p2), with some α2 ∈ [0, 1]. Since an additional constraint is faced, iteration
3 considers B as an equality constraint. The solution of the optimization problem tak-
ingB as equality constraint returns the vector p∗3. As in iteration 2, the global optimum
is obtained as p∗ = p3 + α3(p∗3 − p3).

Similarly, the active-set method solving (4.59) computes a τ ∗k in an iteration k as
the solution of an equality-constrained QP problem in which some of the inequalities
(4.59c) are set as equalities 1. Denoting fin = W(x) τin, the sub-problems considered in
an iteration k has the following form

τ ∗k = arg min
τ

τ Tτ (4.60a)

s. t.


W(x)
aa1,k

aa2,k
...


︸ ︷︷ ︸

Aeq,k

τ =


fin
ba1,k

ba2,k
...


︸ ︷︷ ︸

beq,k

(4.60b)

Vectors aai,k are row vectors of Aineq, which have one term equal to 1 or -1 and
the remaining elements equal to 0. Similarly, bai,k are elements of bineq. The indices
a1,k, a2,k, ... are given by the set of active constraintsAk = {a1,k, a2,k, . . . , ana,k} ⊂ N1,2m,
with na,k the number of active inequalities in iteration k. The overall number of equal-
ities in (4.60) is ne,k = na,k + n. Clearly, considering that τmin,i < τmax,i ∀ i ∈ N1,m, if
a constraint τi = τmin,i is active, then τi 6= τmax,i (its counterpart for τmax,i is not ac-
tive) and vice-versa. Moreover, assuming that matrices Aeq,k are full rank, constraints
(4.60b) may be seen as a system of ne,k linearly independent equations with m vari-
ables. Therefore, ne,k 6 m.

The optimization problem (4.60) is strictly convex with an Hessian matrix equals to
the identity matrix. A vector τ ∈ Rm satisfying the first-order optimality conditions of

1. Even though the proposed numerical solution generates a sequence of cable tensions {τ1, τ2, . . .},
this sequence does not present any relation with the evolution of tension in time (as it was the case of
sequences τ (·) in Section 4.2).
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this equality constrained problem is a global minimum [99, Theorem 16.2]. The first-
order optimality conditions (KKT conditions) for (4.60) can be written as

τ + AT
eq,k µk = 0 (4.61a)

Aeq,k τ = beq,k, (4.61b)

where µk ∈ Rne,k is the vector of Lagrange multipliers.

In order to solve (4.61), the matrix AT
eq,k may be factorized with QR decomposition

such that

AT
eq,k =

[
Yk Zk

] [Rk

0

]
, (4.62)

with Yk, Zk orthonormal and Rk square and upper triangular.

According to the definition of Yk and Zk, column vectors of
[
Yk Zk

]
form an or-

thonormal basis for Rm. Therefore, any vector in Rm may be written as a linear combi-
nation of the column vectors of this matrix. Denoting the number of columns of Yk and
Zk as ny = ne,k and nz = m − ne,k, respectively, this implies that there exists τy ∈ Rny

and τz ∈ Rnz such that the solution of (4.60) may be written as

τ ∗k = Yk τy + Zk τz (4.63)

Left multiplying (4.61a) by ZT
k and recalling that ZT

k AT
eq,k = ZT

k Yk = 0,

ZT
k Zk τz = 0⇒ τz = 0. (4.64)

Similarly, since Aeq,k Zk = 0, (4.63) substituted in (4.61b) leads to

Aeq,k Ykτy = beq,k (4.65)

and using (4.62) with the orthogonality of Yk (YT
k Yk = I),

RT
k τy = beq,k. (4.66)

Since Rk is upper triangular, vector τy can be computed with back-substitution in
(4.66). One may note that, once Yk, Rk and Zk are defined, the solution τ ∗k = Yk τy +
Zk τz = Yk τy of the sub-problem (4.60) can be obtained solving (4.66) without great
computational effort. Indeed, the same solution may be obtained with

τ ∗k = A†eq,k beq,k (4.67)

with A†eq,k the pseudo-inverse of Aeq,k. Nevertheless, the back-substitution in (4.66)
demands significantly less computational effort than the computation of A†eq,k. Details
on the computation of Yk, Zk and Rk are further discussed below.

Since only some of the inequalities (4.59c) are considered in (4.60), τ ∗k may violate
the cable tension limits. Hence, the definition of a feasible τk+1 is done as illustrated in
Figure 4.5. Denoting q ∈ Rm with q = τ ∗k − τk, some αk ∈ [0, 1] may be defined so that
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Figure 4.5 – Notations used in order to compute αk.

τmin 6 τk+1 = τk + αk q 6 τmax. More in detail, it is interesting to set αk as large as
possible within [0, 1] without violating the cable tension limits.

To this end, one may evaluate the intersection of each hyperplane

Πi = {τ ∈ U | ai τ = bi}, (4.68)

for i ∈ N1,2m, and the half-line

L = {τ ∈ Rm | ∃ α ∈ R0
+ : τ = τk + αq}. (4.69)

Half-line L and hyperplanes Πi are illustrated in Figure 4.5 for the case m = 2.
Clearly, for a j ∈ N1,m, if qj > 0, the half-line L does not intersect Πj and intersects Πj+m
(hyperplanes defining the lower bound and upper bound of τj , respectively). Using the
example in Figure 4.5, q1 = τ ∗k,1 − τk,1 > 0 such that Π1 ∩ L = ∅ and Π3 ∩ L = {τ pl1 }.
Conversely, if qj < 0, the half-line L intersects Πj and does not intersect Πj+m. In
Figure 4.5, Π2 ∩ L = {τ pl2 } and Π4 ∩ L = ∅. Moreover, if qj = 0, the intersection of Πj

(or Πj+m) with L is either empty or the half-line L itself. Therefore, Πj and Πj+m are
not considered in the computation of αk if qj = 0.

Thereby, for each pair Πj, Πj+m (upper and lower bound for τj) with qj 6= 0, only
one intersection point is computed. Accordingly, the elements of the vector τb ∈ U are
defined as

τb,j =
{
τmax,j if qj > 0
τmin,j otherwise ∀ j ∈ N1,m, (4.70)
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and the intersection of Πj (or Πj+m) with qj 6= 0 may be expressed as

τ pl,j = τk + τb,j − τk,j
qj︸ ︷︷ ︸
α′j

q. (4.71)

If every α′j > 1, then τ ∗k ∈ U and τk+1 = τ ∗k = τk + q. Otherwise, the minimal
value of α′j should be taken. In this case, the inequality corresponding to the minimal
α′j (called blocking constraint) is added to the set of active constraints. The index of the
inequality in (4.59c) representing the blocking constraint is denoted by jb.

More precisely, the scalar αk is computed according to

αk = min
(

1,min
j∈Ik

τb,j − τj
qj

)
, (4.72)

with Ik ⊂ N1,m defined as
Ik = {j ∈ N1,m | qj 6= 0}. (4.73)

Once αk is computed, the next iteration takes the feasible τk+1 = τk +αk q ∈ U and,
if a blocking constraint is met, the corresponding inequality is added as equality in the
set Ak+1.

In a given iteration k, a possible solution of (4.60) may be τ ∗k = τk itself. In this case,
q = 0 and the computation of αk is inappropriate (Ik = ∅). Then, if the current τk
is not optimal, the active set Ak should be updated. Possibly, dropping one equality
constraint from the set of active constraints may allow a further reduction of the cost
function without violating the cable tension limits. The Lagrange multipliers in (4.61a)
contains sufficient information to perform the evaluation of which equality constraint
should be dropped.

The vector of Lagrangian multipliersµk may be decomposed asµk =
[
µTeq,k µTineq,k

]T
with µeq,k ∈ Rn and µineq,k ∈ Rna,k . The vector µeq,k is related to the constraints

W(x) τ = fin, (4.74)

while the vector µineq,k is related to the constraints
aa1,k

aa2,k
...

 τ =


ba1,k

ba2,k
...

 . (4.75)

According to [99, Theorem 16.4], since the Hessian of (4.59) is positive definite, a
τ satisfying the first order optimality conditions of (4.59) is the global minimum of
this QP problem. Moreover, the vector τk is optimal if every element of µineq,k is non-
negative for an iteration returning τk+1 = τ ∗k = τk [99, Section 16.5]. On the other
hand, if one of its elements is negative, this indicates that dropping the corresponding
inequality fromA leads to a lower value of the cost function without violating the cable
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tension limits. Accordingly, denoting by jmin the index of the inequality that leads to
the (negative) minimal element of µineq,k, the active set considered in the next iteration
is taken as

Ak+1 = Ak\{jmin}. (4.76)

However, it is necessary to compute µineq,k in order to determine jmin. The substi-
tution of (4.63) in (4.61a) followed by the left multiplication of the obtained equation
by YT

k lead to
τy + YT

k AT
eq,kµk = 0, (4.77)

and reminding that, as in (4.65)-(4.66), Aeq,k Yk = RT
k , (4.77) implies that

Rk µk = −τy. (4.78)

Vector µk =
[
µTeq,k µTineq,k

]T
can be computed performing back-substitution of

(4.78). Moreover, whereas the vector µineq,k is necessary to decide the set Ak+1, vec-
tor µeq,k is unimportant in the numerical algorithm. Therefore, one may perform the
back-substitution only for the last na,k lines of the system (4.78) (the lines correspond-
ing to µineq,k).

Summarizing the handling of the active set for two subsequent iterations (k and
k + 1) with non-optimal τk+1, three actions may be taken. Namely,

• If the solution τ ∗k (with τ ∗k 6= τk) is feasible, then Ak+1 = Ak;
• If τ ∗k /∈ U, the blocking constraint jb is added such that Ak+1 = Ak ∪ {jb};
• If τ ∗k = τk, then jmin is dropped such that Ak+1 = Ak\{jmin}.

The Algorithm 2 summarizes the proposed procedure to compute the estimation
of desired cable tensions. Algorithm 2 is equivalent to the active set method proposed
in [99, Section 16.5]. This algorithm identifies the global minimum of a strictly convex
problem in a finite number of iterations. Considering the particular form of (4.59),
some adaptations with respect to [99, Algorithm 16.3] have been made in order to
improve the computation time.

Indeed, regarding the complexity of implementation, solutions simpler than Al-
gorithm 2 could be obtained. Besides the explicit solution (4.67), alternative simpler
methods such as the projected gradient method could lead to good convergence. Nev-
ertheless, we believe that the proposed method presents a reduced computation time.
A rigorous evaluation of different numerical solutions of (4.59) may be the subject of
future studies.

For each iteration of states 6 to 29 in Algorithm 2, the computation time related to
the determination of τ ∗k , q and µineq,k is small. On the other hand, the QR decompo-
sition necessary to the computation of Yk, Zk and Rk may lead to significant compu-
tational burden. To lower this burden, the fact that at most one inequality is added or
suppressed from two successive Ak and Ak+1 may be used so that Yk, Zk and Rk do
not need to be computed from scratch.

The computation of Y1, Z1 and R1 is performed with Householder transforma-
tions, as proposed in [176, Section 2.10] and detailed in [176, Section 11.2]. Appendix A
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Algorithm 2 Computation of τ̃r(x, τ )

Inputs: x, τin.
Internal variables: τmin, τmax.
Output: τ̃r(x, τin).

1: function τ̃r(x, τin)
2: k ← 1;
3: τ1 ← τin;
4: Set A1 as the lines of Aineq τ1 = bineq that are satisfied;
5: Set I1 according to (4.73);
6: for k = 1, 2, ... do
7: Compute Yk, Rk and Zk that satisfy (4.62);
8: Compute τy with back-substitution in (4.66);
9: τ ∗k ← Yk τy and q ← τ ∗k − τk;

10: if q = 0 then
11: Compute µineq,k with back-substitution in (4.78);
12: if µineq,k > 0 then
13: stop
14: else
15: Determine index jmin of (4.59c) leading to minimal element of µineq,k;
16: Ak+1 ← Ak\{jmin};
17: τk+1 ← τk;
18: end if
19: else
20: Compute αk according to (4.72);
21: if there is a blocking inequality then
22: Determine the index jb of (4.59c) that leads to the blocking constraint;
23: Ak+1 ← Ak ∪ {jb};
24: else
25: Ak+1 ← Ak;
26: end if
27: τk+1 ← τk + αk q;
28: end if
29: end for
30: return τk;
31: end function

briefly discusses this subject. Subsequently, for k > 1, Yk−1, Zk−1 and Rk−1 are used
to obtain their updated counterparts (Yk, Zk and Rk ). These matrices need to be up-
dated in two possible scenarios: (i) one equality is added to the active set (step 23 in
Algorithm 2) or (ii) one equality is removed (step 16 in Algorithm 2).

Consider firstly case (i). In the iteration k, an inequality jb 6 m (an analogous
procedure is used for cases with m < jb 6 2m) was added such that

AT
eq,k+1 =

[
AT
eq,k em,jb

]
, (4.79)

where em,jb ∈ Rm given by em,jb =
[
0 . . . 1 . . . 0

]T
with the jthb element equal to 1
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and the remaining equal 0.

Since the matrix
[
Yk Zk

]
is orthonormal, Yk YT

k + Zk ZT
k = I and (4.79) may be

written as

AT
eq,k+1 =

[
Yk Zk

] [Rk YT
k em,jb

0 ZT em,jb

]
. (4.80)

Denoting the row vectors of Yk and Zk with Yk =
[
uT1 . . . uTm

]T
and Zk =[

vT1 . . . vTm
]T

, the equation above may be rewritten as

AT
eq,k+1 =

[
Yk Zk

] [Rk ujb
0 vjb

]
. (4.81)

It is possible to define an orthonormal Q̂ such that vr = Q̂ vjb has all its elements
equal to zero except for the first element. More precisely,

Q̂ vjb =
[
‖vjb‖

0

]
= vr. (4.82)

Denoting vb = ‖vjb‖, (4.82) may be rewritten as vjb = Q̂T
[
vb 0

]T
and (4.81) may

be decomposed as follows

AT
eq,k+1 =

[
Yk Zk

] [I 0
0 Q̂T

]
︸ ︷︷ ︸

Q′

[
Rk ujb
0 vr

]
︸ ︷︷ ︸

R′

= Q′R′ (4.83)

Noting that Q′ is orthonormal and R′ is square and upper triangular, expression
(4.83) may be rewritten as

AT
eq,k+1 =

[
Yk+1 Zk+1

] [Rk+1
0

]
, (4.84)

which determines the updated Yk+1, Zk+1 and Rk+1.

In case (ii), an equality is removed from the active set. The matrix AT
eq,k+1 is obtained

removing one column, say column jr, of AT
eq,k. As a consequence, the corresponding
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column of Rk is also removed and AT
eq,k+1 is given by

AT
eq,k+1 =

[
Yk Zk

]



r1,1 r1,2 . . . r1,jr−1 r1,jr+1 . . . r1,ne,k
0 r2,2 . . . r2,jr−1 r2,jr+1 . . . r2,ne,k
...

... . . . ...
... . . .

...

0 0 . . . rjr,jr−1 rjr,jr+1 . . .
...

0 0 . . . 0 rjr+1,jr+1 . . .
...

0 0 . . . 0 rjr+2,jr+1 . . .
...

0 0 . . . 0 0 . . . ...
0 0 . . . 0 0 0 rne,k,ne,k
0 0 . . . 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0


︸ ︷︷ ︸

R̃

, (4.85)

where ri,j is the element in the ith row and jth column of Rk.

Even though R̃ is not upper triangular, the set of Householder transformations
necessary to render R̃ upper rectangular is cheaper than the QR factorization of AT

eq,k+1
computed from scratch. Hence, an orthonormal Q̃ can be determined by means of
Householder transformations such that

R̃ = Q̃
[
Rk+1

0

]
, (4.86)

with upper triangular Rk+1. Then, (4.85) may be expressed as

AT
eq,k+1 =

[
Yk Zk

]
Q̃︸ ︷︷ ︸

Q′′

[
Rk+1

0

]
︸ ︷︷ ︸

R′′

= Q′′R′′, (4.87)

which defines Yk+1, Zk+1 and Rk+1.

4.3.3 OCP numerical solution

Section 4.2 presented an NMPC scheme considering the existence of a numerical al-
gorithm able to solve the corresponding OCP. The present section introduces a solution
using the numerical integration discussed in subsection 4.3.1.

4.3.3.1 NLP Formulation

The discretization (4.55) should be integrated within the OCP formulation so that,
for given actual state ya ∈ Y and sequence of cable tensions τ (·) ∈ Smhp , the states
yτ (·)(i,ya) can be explicitly considered within the cost function of an NLP. This subject
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is addressed in detail in [13, Chapter 11]. A straightforward method is to add the
sequence ỹ ∈ S2n

hp of states within the prediction horizon as argument of the NLP and
consider the transition mapping (4.55) as equality constraints. This approach leads to
the following optimization problem

min
τ (·)∈Smhp
ỹ(·)∈S2n

hp

hp∑
j

`
(
j + k, ỹj, τj

)
(4.88a)

s. t. ỹ0 = ya (4.88b)

ỹj = φ̃(ỹj−1, τj), ∀ j ∈ N1,hp (4.88c)
ỹj ∈ Y, ∀ j ∈ N1,hp (4.88d)
τj ∈ U, ∀ j ∈ N1,hp (4.88e)

Even though (4.88) is a standard NLP problem, its solution is hindered by the in-
creased number of arguments and constraints.

In order to overcome this drawback, the expression (4.55) can be applied recursively
(as in (4.7)) so that states yτ (·)(i,ya) can be explicitly written in function of the actual
state ya and the sequence τ (·). More precisely, the recursive application of (4.55) leads
to

ỹ0 = ya,

ỹj = yτ (·)(j,ya) = Aj ya +
j∑
i=1

{
Aj−i

(
B(ỹj−1) τi + v(ỹj−1)

)}
, ∀ j ∈ N1,hp .

(4.89)

Denoting u =
[
τ T1 . . . τ Thp

]T
and γ =

[
ỹT1 . . . ỹThp

]T
, (4.89) may be written as

γ = E u + Ψ, (4.90)

where, E and Ψ are given by

Ψ =
[
ψT

1 ψT
2 ... ψT

hp

]T
(4.91a)

E =



E′1,1 0 0 . . . 0
E′2,1 E′2,2 0 . . . 0
E′3,1 E′3,2 E′3,3 . . . 0

...
...

... . . . ...
E′hp,1 E′hp,2 . . . . . . E′hp,hp

 , (4.91b)

with

ψj = Ajya +
j∑
i=1

Aj−i v(ỹi−1)

E′j,i = Aj−i B(ỹj−1).
(4.91c)

Similarly, for given instant k ∈ N, cable tension sequence τ (·) ∈ Smhp and states
ỹ ∈ S2n

hp , vectors γd,k ∈ R2nhp and ũd ∈ Rmhp are defined as

γd,k =
[
yd(k + 1)T . . . yd(k + hp)T

]T
(4.92)

ũd =
[
τ̃r(xỹ1 , τ1)T . . . τ̃r(xỹhp , τhp)

T
]T
. (4.93)
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Considering the definition of stage cost (4.12), the cost functional in (4.14) may be
written as

hp∑
i=1

`
(
i+ k,yτ (·) (i,ya) , τi

)
=

= ‖γ − γd,k‖2
Kγ

+ ‖ũd − u‖2
Ku

= (E u + Ψ− γd,k)T Kγ(E u + Ψ− γd,k) + (u− ũd)T Ku (u− ũd)
= uT Hỹ,k u + 2 hTỹ,k u + cγ,

(4.94)

with
Hỹ,k = ET Kγ E + Ku,

hỹ,k = (Ψ− γd,k)T Kγ E− ũTd Ku,

cγ = (Ψ− γd,k)TKγ (Ψ− γd,k) + ũTdKu ũd,
(4.95)

and Kγ ∈ Rhp2n×hp2n, Ku ∈ Rhpm×hpm given by

Kγ = diag
([

kTy kTy . . . kTy
]T)

,

Ku = diag
([

kTτ kTτ . . . kTτ
]T)

.
(4.96)

Therefore, for given ya ∈ Y and k ∈ N, the OCP (4.14) may be expressed as

u∗ = arg min
u∈Rmhp

uT Hỹ,k u + 2 hTỹ,k u (4.97a)

s. t. ỹ0 = ya (4.97b)

ỹj = φ̃
(
ỹj−1, τu(j)

)
∀ j ∈ N1,hp (4.97c)

ỹj ∈ Y ∀ j ∈ N1,hp (4.97d)
τu(j) ∈ U ∀ j ∈ N1,hp (4.97e)

where τu(j) is obtained extracting the jth vector with dimension m from u, such that

u =
[
τu(1)T . . . τu(hp)T

]T
. In spite of the similarity between (4.88) and (4.97), these

two NLPs present two crucial differences.

Optimization problem (4.97) has a reduced set of arguments (ỹ(·) is not an argu-
ment). More precisely, (4.88) has (m+ n)hp arguments while (4.97) has mhp.

Moreover, the constraint (4.88c) demands particular attention in the numerical solu-
tion of (4.88) because it implies that arguments τ (·) and ỹ(·) are consistent with respect
to the transition mapping φ̃. In contrast, constraint (4.97c) is implicitly satisfied. Since
the sequence ỹ(·) is not an argument of (4.97), each vector ỹj ∀ j ∈ N1,hp is attributed
according to (4.97c) and, thereby, satisfy these equality constraints. The sequence ỹ(·)
in (4.97) is nothing more than an internal variable (neither output nor argument of
the optimization problem) used to compute the matrices Hỹ,k, hỹ,k and to check the
constraint (4.97d).

Optimization problem (4.97) represents a standard NLP, which can be solved with
standard numerical optimization libraries, e.g. [101, 188]. Note that matrices Hỹ,k, hỹ,k
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are dependent of ỹ(·) and, therefore, are not constant. An optimization problem taking
as argument u ∈ Rm.hp can be classified as a QP problem only if its cost function can be
written as f(u) = uT H u + 2 hTu, with constant matrix H and vector h. Hence, (4.97)
is not a QP problem.

4.3.3.2 Numerical Solution of the NLP problem

Section 4.3.3.1 introduced a standard nonlinear optimization problem representing
the OCP proposed in Section 4.2. Since the CDPR prototypes used in this thesis are not
compatible with third party numerical libraries, the present section briefly describes
the implemented numerical solution of (4.97). Results presented in Section 4.5 were
obtained using this implementation.

The proposed algorithm is inspired by the SQP method. Nocedal and Wright [99,
Chapter 18] discuss this class of numerical algorithm in detail. Grüne and Pannek
[13, Chapter 12] study the applicability of such algorithms to NMPC solutions. These
are iterative algorithms in which, at each iteration, the original nonlinear problem is
approximated as a QP problem. Each of these sub-problems may be solved with a
standard QP algorithm. An SQP approach is considered appropriate for the solution
of (4.97) since the proposed OCP possesses a quadratic cost function.

As discussed in [99, Chapter 6], the computation of the second derivatives of a non-
linear cost function is often computationally expensive. For this reason, the quadratic
approximation taken for each iteration of an SQP method commonly considers an es-
timation of the exact hessian matrix. Typically, this approximation is done with quasi-
Newton algorithms such as the BFGS or SR1 methods [99, Sections 6.1 and 6.2]. Indeed,
the implemented algorithm uses the BFGS method.

Quasi-Newton algorithms determine approximations of the Hessian matrix of a
given cost function considering its first derivatives. The direct application of such
methods for (4.97) may be possible but would lead to a troublesome implementation.
The first derivatives of the cost function in (4.97a) should take into account the varia-
tions of ũd with respect to u according to (4.93). The variations of τ̃r with respect to
x ∈ X and τin ∈ U in (4.13) may be not continuous. For this reason, (4.97) is solved
iteratively considering, for each iteration, a constant vector ûd = ũd, as described in the
following.

Figure 4.6 summarizes the implemented numerical algorithm. Broadly speaking,
the algorithm solves iteratively the original NLP problem applying, for each iteration, a
standard SQP method for a simpler version of (4.97), which takes a constant ûd instead
of ũd.

More in detail, for given actual state ya and initial guess u0, the vectors γ0 and ũd,0
can be computed using (4.90) and (4.93), respectively. An approximation of the NLP
(4.97) is constructed replacing ũd by a constant ûd in (4.94) and (4.95). The resulting
cost function possesses continuous first derivatives that can be computed numerically
or analytically. Results presented in Section 4.5 were obtained with first derivatives
computed analytically, which were defined with tedious (but straightforward) calcu-
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Figure 4.6 – Summary of the implemented numerical solution of (4.97).

lations. Based on these derivatives, a standard SQP method can be used, leading to a
sequence of cable tensions represented by u1. This new vector is used to obtain up-
dated γ1 and ũd,1. The procedure is repeated until the convergence of ûd is satisfied.

As described above, for each iteration of the overall algorithm, an SQP algorithm
takes place. As indicated by its name, a sequential quadratic programming method
solves a sequence of subproblems consisting of QP problems. The Hessian matrix of
each one of these QP problems is estimated using the BFGS method. The quadratic
programming problems themselves should be solved with a given QP algorithm.

The implemented QP algorithm consists of a combination of the gradient projection
and conjugate gradient methods. The gradient projection method (in contrast to the
active-set method used for the LMPC in Chapter 3) is known to be particularly suitable
for QP problems with box constraints, which is the case of the constraint set U. Indeed,
if the state constraint set is given by

Y = R2n, (4.98)
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constraints (4.97d) can be neglected and the optimization problem (4.97) is constrained
uniquely by the box constraints (4.97e). Section 4.4 discusses that assumption (4.98)
may be typically considered. Therefore, Sections 4.4 and 4.5 consider Y = R2n.

As discussed in [99, Section 16.7], the convergence of the projected gradient method
can be significantly improved if it is coupled with the conjugate gradient method
( [99, Chapter 5]). For this reason, these two methods are combined in the proposed
algorithm.

4.4 Numerical Simulations

This section presents numerical simulations comparing the linear MPC proposed in
Chapter 3 with the strategy introduced in Section 4.2. Results show that the linear ap-
proximation considered in Chapter 3 may lead to poor performances when the system
dynamics presents significant nonlinearities.

More precisely, for a given instant k, the influence of changes on yk+i ∀ i ∈ N1,hp
in the approximation (3.15) may deteriorate the performance obtained with the corre-
sponding linear MPC. The error resulting from approximation (3.15) is increased for
substantial variations of B(yk+i) and v(yk+i). In general, this issue is present for high
velocities and accelerations. A crucial imprecision that may be obtained with the ap-
proximation (3.15) is that the wrench matrix W is considered constant within the pre-
diction horizon. This matrix may change significantly for high velocities, leading to
non-negligible variations of B(yk+i). In contrast, this section shows that the proposed
NMPC overcomes this drawback since it considers the original nonlinear model.

In order to stress the differences between these different MPC approaches, results
presented in this section simulate the operation of the CDPR HRPCable (Figure 1.1),
which can safely operate with relatively high velocities and accelerations in compari-
son to the Hephaestus prototype.

As for the previous chapter, a typical pick-and-place trajectory is used in order to
represent the operation of the robot. Figure 4.8 illustrates the poses visited in this
trajectory. The desired trajectory is generated using fifth degree polynomials in time
relating two consecutive poses through a straight line path. Maximal linear velocity
and acceleration are 0.7 m/s and 0.26 m/s2.

It is interesting to note that the workspace dimensions should be considered when
comparing the magnitude of developed velocities between different prototypes. Typ-
ically, velocities with similar order of magnitude may lead to higher variations of W
(and B, consequently) for CDPRs with smaller workspace such as illustrated in Fig-
ure 4.7. The same displacement is considered for two planar illustrative CDPRs. One
may note that the variations on the cable orientation for the CDPR of Figure 4.7-(a) is
greater than the one corresponding to Figure 4.7-(b). This leads to an increased varia-
tion on the wrench matrix. Commonly, for given operational space velocities, CDPRs
with smaller workspace lead to increased variations of W.
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(a) (b)

Figure 4.7 – Comparison of the variation on the cable orientation for illustrative 2-DoF CDPRs
with the same platform displacement.

Both linear MPC (proposed Chapter 3) and NMPC (introduced in Section 4.2) were
simulated using the trajectory illustrated in Figure 4.8 and cable tension limits τmin =
100 N, τmax = 2000 N. For the linear MPC, the following controller parameters have
been used:

k′x = 106
[
1.4 2.2 8.8 7.7 4.4 7.6

]T
(4.99a)

k′ẋ = 106
[
0.28 0.44 1.76 1.54 0.88 1.52

]T
(4.99b)

K′u = k′u I = 1.0× 10−6 I (4.99c)
k′∆u = 0.026. (4.99d)

Gains (4.99) were obtained using a particle swarm optimization algorithm (built-in
MATLAB function). More in detail, for a given set of controller gains, the considered
objective function computes a weighted sum of

1. The maximal translation error;

2. The maximal orientation error;

3. The RMS value of the variation of cable tensions (computed according to Sec-
tion 3.2).

Approximate values of the gains were tuned manually and used in order to define
the lower and upper bounds for each gain being optimized. Sampling period and
prediction horizon were defined as 10 ms and 12, respectively. Results are shown in
Figure 4.9.

Due to the reasons discussed above, the linear MPC strategy leads to deteriorated
results. The maximal tracking errors reaches almost 36 mm and 0.17◦. This indicates
that a nonlinear approach is necessary.

Similarly to the procedure used to define the gains of the linear MPC, a particle
swarm algorithm was used in order to tune the NMPC gains. In this case, the con-
sidered objective function computes a weighed sum of the maximal translation and
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Figure 4.8 – Visited poses of the simulated trajectory

rotation errors. Since the NMPC scheme of Section 4.2 does not address the variations
of cable tensions, the RMS value of the variation of cable tensions was not considered
in the optimization of the NMPC gains. In contrast to the linear MPC, the proposed
NMPC does not penalize the variation of cable tensions. The following gains were
obtained:

kx = 104
[
1.4 1.7 1.2 1.3 1.3 0.9

]T
(4.100a)

kẋ = 100
[
10.8 13.1 9.1 10.1 9.7 7.0

]T
(4.100b)

Ku = ku I = 5.8× 10−7 I. (4.100c)

The same sampling period is used (10 ms) and the prediction horizon is taken equal
to 6. Figure 4.10 depicts the results obtained with the proposed minimal state NMPC.

The errors depicted in Figure 4.10 indicate that the proposed NMPC effectively
tracks the desired trajectory even with the incidence of significant nonlinearities due
to relatively high velocities and accelerations. As a matter of fact, the obtained errors
are virtually null (less than 0.05 mm and 0.9×10−4 degrees), as expected for a scenario
without the occurrence of disturbances or model uncertainties. It is also interesting
to highlight that the prediction horizon used in the NMPC scheme is the half of its
counterpart used in the linear MPC (6 versus 12). Moreover, increasing further the
prediction horizon of the linear MPC controller does not lead to improved performance
since the linear approximation is more susceptible to imprecision for longer prediction
horizons. The considered value of 12 was the best compromise found.

As in Section 3.3, it is also pertinent to evaluate the ability of the proposed con-
trol scheme to perform the tracking of unfeasible desired trajectories. To this end, a
shortened trajectory is studied. The first, second and third poses in Figure 4.8 were
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Figure 4.9 – Simulation results obtained with the linear MPC proposed in Chapter 3.

considered taking as cable tension limits τmin = 100 N and τmax = 500 N. Results are
depicted in Figure 4.11.

As expected, the tracking of the trajectory can be performed without violating the
cable tension limits. For time in 7.3 6 t 6 12.1 (s) the tension of cable 3 is equal to
500 = τmax,3 and the desired trajectory cannot be tracked without errors. Accordingly,
tracking errors ranging up to 35 mm and 1.3◦ are obtained. Therefore, one may expect
to extend the stability analysis results of Section 4.2.3 for cases in which the feasibility
considered in Assumption 4.1 is not satisfied. This is, indeed, a subject currently under
study.

It is worth noting that the results presented in this section consider the state con-
straint set equal to Y = R2n. As a result, constraint (4.97d) does not affect the solution
of (4.97). This indicates that, in practice, the robot workspace may be indirectly delim-
ited by the constraint (4.97e) (cable tension limits). This exempts the control designer
from the potentially arduous task of defining the set Y. Moreover, the solution of (4.97)
is also facilitated by the reduced number of constraints.
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Figure 4.10 – Simulation results obtained with the NMPC proposed in Section 4.2.

4.5 Real-Time Experiments

The NMPC scheme proposed in Section 4.2 was implemented on the HRPCable
prototype leading to the experimental results detailed in the present section. The per-
formance of the LMPC and NMPC schemes (proposed respectively in Section 3.1 and
4.2) are compared using typical pick-and-place trajectories. These control schemes are
also compared with respect to their robustness against payload uncertainties.

The control parameters were tuned by trial and error and are given as follows:

kx =
[
56 68 48 52 52 36

]T
(4.101a)

kẋ =
[
11 13 9 10 10 7

]T
(4.101b)

Ku = ku I = 6× 10−7 I (4.101c)
hp = 4. (4.101d)

4.5.1 Pick-and-place trajectories

Typical pick-and-place trajectories were performed taking the visited poses shown
in Figure 4.12. The desired trajectories are defined using 5th degree polynomials based
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Figure 4.11 – Application of the proposed NMPC with an unfeasible desired trajectory.
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Figure 4.12 – Visited poses for the real-time experiments.

on these poses. Similarly to the experiments presented in Section 3.3, two scenarios
of maximal cable tension are considered: (i) τmax = 400 N and (ii) τmax = 250 N.
These scenarios are addressed respectively in Sections 4.5.1.1 and 4.5.1.2 and both cases
consider τmin = 100 N.
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Figure 4.13 – Experimental results for τmax = 400 N.

Table 4.1 – Summary of comparative errors between LMPC and NMPC.

RMS Maximal error
TE OE TE OE

LMPC 4.28 mm 0.15◦ 7.47 mm 0.27◦

NMPC 1.52 mm 0.08◦ 2.34 mm 0.14◦

Improvement 64.5% 44.6% 68.6% 48.1%

4.5.1.1 Nominal cable tension limits

Figure 4.13 depicts the experimental results obtained using the proposed NMPC
scheme taking cable tension limits of τmin = 100 N and τmax = 400 N. The same trajec-
tory was performed with the LMPC proposed in Section 3.1. Figure 4.14 compares the
corresponding results.

In accordance with the goals defined in the present chapter, the comparative results
presented in Figure 4.14 indicates that the proposed NMPC scheme leads to signifi-
cantly better tracking errors than the LMPC approach. Indeed, Table 4.1 shows that
significant improvements were obtained considering both the RMS of the tracking er-
rors and the maximal errors.
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Figure 4.14 – Tracking errors for LMPC and NMPC.

4.5.1.2 Reduced maximal cable tension

Chapter 3 highlighted that the main contribution of the LMPC scheme proposed
in Chapter 3 lies in its capability to handle cable tension limits explicitly. Thanks to
this feature, this LMPC is not prone to the feasibility issues discussed in Section 1.7
and exemplified in Figure 3.9. In order to verify this property, an unfeasible desired
trajectory is used in Section 3.3. The same behavior should be validated for the NMPC
scheme proposed in the present chapter.

Therefore, as for Section 3.3.2.1, a second scenario is considered taking a maximal
cable tension reduced to τmax = 250 N. The obtained results are shown in Figure 4.15.
The whole trajectory could be performed without interruption and the restricted cable
tension limits were satisfied. Therefore, this experiment demonstrates that the pro-
posed NMPC scheme is not prone to the feasibility issues depicted in Figure 3.9.
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Figure 4.15 – Experiments taking τmax = 250 N.

4.5.2 Robustness against payload uncertainties

In addition to the presented pick-and-place trajectories, the robustness against pay-
load uncertainties of the proposed NMPC scheme was evaluated using the experiment
illustrated in Figure 3.10. An additional payload of 15.1 kg was used, representing
65.6% of the platform mass. The obtained results are depicted on Figure 4.16. The
same procedure was performed using the LMPC proposed in Chapter 3. Comparative
results are presented in Figure 4.17. Table 4.2 shows that, as for the results presented
in Section 4.5.1.1, significantly better tracking errors were obtained with the proposed
NMPC scheme.

Table 4.2 – Summary of comparative errors between LMPC and NMPC regarding the robust-
ness against payload uncertainties.

RMS Maximal error
TE OE TE OE

LMPC 4.66 mm 0.52◦ 12.37 mm 1.05◦

NMPC 3.92 mm 0.31◦ 7.83 mm 0.63◦

Improvement 16.0% 40.7% 36.7% 40.0%
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Figure 4.16 – Experimental results obtained with the NMPC scheme addressing the robustness
against payload uncertainties.
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Figure 4.17 – Tracking errors for the LMPC and NMPC schemes in the experiment testing the
robustness against payload uncertainties.

4.6 Conclusions

This chapter discussed the main drawbacks of the LMPC scheme proposed in Chap-
ter 3. Namely, this approach hindered the stability analysis of the resulting closed-loop
system and it may lead to deteriorated tracking errors. To overcome these drawbacks,
an NMPC is introduced based on a nonlinear discrete time model and a new cost func-
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tional formulation. The stability of the corresponding closed-loop system can be an-
alyzed. Sufficient conditions leading to uniform asymptotic stability were deduced.
Numerical simulations and real-time experiments validated the applicability of the
proposed NMPC scheme. Significantly better tracking errors were obtained for a typi-
cal pick-and-place trajectory. The proposed NMPC scheme also led to improved preci-
sion regarding its robustness against payload uncertainties. A video summarizing the
main experiments performed with the proposed NMPC scheme can be watched here.

https://youtu.be/NIb_XYSVv84


General Conclusion

The present thesis contributes to the state-of-the-art on trajectory position control of
CDPRs. In the following, the main obtained results are summarized and an overview
of possible future works are presented.

Summary of the work

The present thesis was developed within the framework of the european union
H2020 project named Hephaestus. Chapter 1 introduced the main requirements re-
lated to the position tracking of the CDPR prototype used in this project. Besides po-
sitioning accuracy, one important requirement is that the CDPR should safely operate
close to the system constraints. More in detail, the robot operation includes trajecto-
ries demanding nominal cable tensions close to the cable tension limits. Moreover, a
significant incidence of disturbances and modeling errors is expected.

In this context, particular attention should be devoted to the cable tension limits.
A conventional control scheme may return feedback corrections that are not consistent
with the interval of admissible tensions. Indeed, the overview of the state-of-the-art on
position tracking of CDPRs presented in Chapter 1 indicates that the existing control
schemes are prone to this issue. More precisely, these control schemes operating in
the aforementioned conditions expected for the Hephaestus project may either return
unfeasible desired cable tensions, or simply crash (attain a condition without a well-
defined output). Since MPC is one of the few control strategies able to explicitly handle
system constraints, this control design methodology is chosen.

Before addressing the MPC control strategies, some preliminary issues had to be
solved. Some of these issues are addressed in Chapter 2. In order to meet high posi-
tioning precision, an FK algorithm considering the pulley kinematics is proposed. An
explicit expression for the differential kinematics enabled the implementation of a nu-
merical solution of the nonlinear least squares system representing the FK problem. Its
convergence capabilities are evaluated experimentally and numerically.

Moreover, the applicability of different closed-loop cable tension control strategies
is studied. Such control schemes aim to generate the desired cable tensions using the
measurements obtained with force sensors. Firstly, a torque-based control scheme is
analyzed. Simulations and experimental results indicate that this approach leads to
crucial issues related to the friction present in the gear trains. In contrast, the pro-
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posed velocity-based scheme is able to tackle these issues with a non-model based
approach. Accordingly, the proposed strategy may be implemented without the iden-
tification of the dynamic parameters of the winches. Details on the numerical and
experimental validation are presented. This approach proves to be appropriate for CD-
PRs presenting winches with large reduction ratio, which leads to significant friction
and model uncertainties. Using the aforementioned kinematic model and the velocity-
based cable tension control, the implementation of different MPC position tracking
control schemes is enabled.

Assuming limited incidence of nonlinearities on the CDPR dynamic system, Chap-
ter 3 introduces a linear model able to estimate the mobile platform motion within the
prediction horizon. Based on this approximation, a linear MPC scheme is proposed.
Numerical simulations and experimental tests proved that the linear MPC may safely
operate close to system constraints. This capability is validated applying a desired
trajectory that cannot be performed without violating the cable tension limits. The
proposed linear MPC scheme is able to perform a trajectory as close as possible to the
desired one while satisfying cable tension bounds. Conversely, state-of-the-art control
schemes are not able to suitably respond under such conditions. Comparing the be-
havior obtained with the proposed linear MPC and a state-of-the-art control scheme,
one may conclude that the capability to operate close to system constraints represents
an important result related to the safety of operation of CDPRs.

Additionally, this achievement may enable improvements on the design of CD-
PRs. Typically, acknowledging the risks taken when operating close to system con-
straints, the design of a CDPR should lead to oversized dimensions. The proposed
MPC scheme, being able to safely operate in these conditions, enables the designer to
reduce such oversized dimensions.

Nevertheless, it was noted that the proposed linear MPC may be sensitive to in-
creased nonlinearities. The positioning precision may be deteriorated for trajectories
presenting relatively high velocities. Accordingly, Chapter 4 introduces an NMPC able
to consider system nonlinearities. In contrast to its linear counterpart, the proposed
NMPC can be classified as a standard tracking NMPC, and the stability of the resulting
closed-loop system could be analyzed. In order to fit with the required characteristics
of standard tracking NMPCs, an alternative method for the minimization of the ca-
ble tensions is proposed. Details on its numerical implementation are presented. The
improved performance is validated experimentally and with numerical simulations.

After the construction of the Hephaestus CDPR prototype, the very first tests using
this prototype were performed on November 2019. Acceptable results were obtained
using a kinematic control (discussed in Section 1.4.1). For this reason, the consortium
dedicated low priority to the implementation of advanced control strategies with re-
spect to other primordial tasks. Accordingly, the time available (one week) for the
implementation of the proposed MPC schemes on the Hephaestus prototype was not
sufficient to obtain significant results. Such implementation remains a focus of possible
future works.

It is worth recalling that all the experimental results presented in this thesis were
obtained using software and hardware commonly used in the industry. This demon-
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strates the applicability of the proposed methods in commercial applications.

Perspectives

Satisfying results were obtained with the numerical algorithms proposed in this
thesis. Nevertheless, as highlighted in the course of this manuscript, many of them
should be subjected to a rigorous analysis in order to be thoroughly validated. This
is the case, for instance, of the numerical solution of the NLP (4.97) proposed in Sec-
tion 4.3.3.2. Even though the algorithm described in Section 4.3.3.2 led to satisfying
results in the studied CDPRs and trajectories, a thorough evaluation of its conver-
gence capabilities may validate its applicability in a general case. Similarly, the Al-
gorithm 2 used to compute τ̃r and the numerical solution of QP problems proposed in
Section A.3.2 should be compared to other numerical methods in order to evaluate if
the computation time can be reduced.

In addition to the studies presented in this manuscript, some other works were ini-
tiated and may be pursued in future works. An MPC scheme based on path following
was proposed. Whereas a trajectory defines desired poses for each time instant, a path
defines a set of poses that are used as reference without any connection with time.
Therefore, in contrast to position tracking schemes, this path following MPC does not
consider a specific desired state for each sampling time. The main goal is to attain
a final desired pose as fast as possible following a predefined path. The path is de-
fined as a curve in an n dimensional space (with n the number of DoF of the CDPR)
representing the platform poses.

Additionally, preliminary results were obtained using the proposed cable tension
control in order to operate a CDPR with an admittance control scheme. Thereby, the
robot pose may be passively controlled by external efforts applied on its mobile plat-
form. Moreover, hybrid position-force control was also successfully tested. Some de-
grees of freedom may be tracked with high stiffness whereas the remaining degrees
of freedom are driven by the influence of external wrenches. This approach may be
helpful to perform CDPR aided assembly tasks. Tests using the HRPCable prototype
indicates that the platform may be positioned by hand while gravitational effects are
compensated.

The reader may note that an important result obtained with the control schemes
proposed in Chapters 3 and 4 is the capability to track unfeasible trajectories. Never-
theless, Assumptions 4.1 and 4.4 are not satisfied in this case. Accordingly, improved
versions of the NMPC proposed in Chapter 4 could be examined in order to guaran-
tee stability in cases where Assumptions 4.1 and 4.4 are violated. The corresponding
stability analysis would use tools designed to economic MPC schemes. In accordance
with the brief overview on EMPC presented in Section 1.7.2, the stage cost of such con-
trol schemes does not satisfy (4.11). As also discussed in Section 1.7.2, while results for
constant and periodic reference states are well-known [163,164,166–168], there are very
few studies addressing the case of a general desired trajectory [169, 170]. Therefore, a
first stability analysis using the theory addressing EMPC would probably consider a
time-invariant system (with a constant desired pose).
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Real Time Implementation - TwinCAT

The application of the proposed MPC strategies demands non-trivial numerical operations and
algorithms. Most of these operations consist of matrix manipulations. There are several open
source libraries that may be used for this purpose. Nevertheless, the software TwinCAT is not
compatible in real-time with third party mathematical libraries. More precisely, TwinCAT uses
an alternative mathematical library instead of the basic header math.h. Therefore, C++ codes
were developed based on the alternative TwinCAT mathematical library. The present appendix
discusses some details of this implementation. Section A.1 compares typical programming ap-
proaches that can be used for matrix manipulation, highlighting the constraints imposed by the
real-time applications in TwinCAT. Section A.2 briefly introduces the main rationale involved
in the implementation of the C++ library. Some details of the implemented matrix factorization
methods and optimization algorithms are presented in Section A.3.
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A.1 Motivation

Limitations of memory allocation in real-time are difficult to manage and to pre-
dict [189]. For this reason, it is preferable to allocate the necessary memory before the
real-time operation. Accordingly, this is also recommended for TwinCAT real-time ap-
plications [190]. Hence, variables are often declared using static allocation in robotic
applications. Nevertheless, the implementation of the proposed MPC schemes would
most probably be troublesome with this approach. This is illustrated in the following.

Generally, the use of interpreted programming languages (such as MATLAB and
Python) or libraries of matrix manipulation for compiled programming languages (such
as Eigen [191] for C++) enables the user to numerically manipulate matrices in a way
similar to the notation commonly used for symbolic matrix operations. For instance,
using one of the aforementioned programming solutions, one may compute C as the
sum of two known matrices A and B with one line of code similar to the following
script:

C = A + B; (A.I)

More in detail, in order to compute (A.I), the operator + dynamically allocates the
memory equivalent to a matrix with the same size of A (and B), and computes the
sum of each element A[i][j] + B[i][j]. Subsequently, the operator = attributes
to C the obtained values and frees the dynamically allocated memory. Using operators
similarly defined, more elaborate matrix operations may be performed. For instance,
several operations may concatenated such as in the script below:

C = (A’ - B*8)*(B + A*B’); (A.II)

where the notation defined in MATLAB was used for illustrative purpose.

One may note that this approach may significantly facilitate the implementation of
numerical algorithms using complex matrix operations. Nevertheless, dynamic mem-
ory allocation is a crucial step for each one of the operators. Using the illustrative oper-
ation (A.II), an equivalent C++ code with static memory allocation can be represented
as the following:

transpose(At*,A*,na,na);
multiplication_by_scalar(B1*,B*,8,na,na);
difference(AtB*,At*,B1*,na,na);
transpose(Bt*,B*,na,na);
multiply(ABt*,A*,Bt*,na,na);
sum(BABt*,B*,ABt*,na,na);
multiply(C*,AtB*,BABt*,na,na);

(A.III)

with additional statically allocated matrices At, B1, AtB, Bt, ABt and BABt. These
matrices present the same number na of rows and columns than A, B and C. In addition,
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A* represents the pointer to the first element of matrix A (and similarly to the remaining
matrices).

Clearly, although (A.II) and (A.III) lead to equivalent outputs, the comparison be-
tween these scenarios indicates that the implementation of elaborate matrix operations
should be facilitated with an approach similar to the one used in (A.II). However, as
recommended in [190], memory allocation before the real-time operation should be
preferred.

A.2 Basics

The main goal sought in the implementation of the proposed library (called MatLib)
is to attain similar programming advantages to the interpreted programming languages
without the need of dynamic memory allocation. To this end, a large memory is allo-
cated in the initialization of the control scheme (out of real-time) and MatLib is re-
sponsible to explicitly manage this memory. By this means, MatLib enables the user
to declare matrices with different sizes using the memory which has been allocated
before the real-time operation.

Every operator and function available in this library (and its dependent libraries)
are compatible with any 2 dimensional matrix. With the same philosophy, operations
with multidimensional matrices are possible. Nevertheless, since the proposed control
can be implemented with 2 dimensional matrices, the multidimensional case was not
addressed.

Each matrix is declared as an object of the class Matrix. This class presents, among
others, the members rows and columns of type int determining the number of rows
and columns of the matrix. Additionally, the member p of type double * points to
the first element of the corresponding matrix. Once a Matrix is declared, the members
p, rows and columns may change.

Besides these members, this class presents several overloaded operators so that the
matrix operations may be programmed in an intuitive manner (such as in (A.II)). These
operators use an object belonging to the class ProvisoryMatrix. This object has
access to a large memory which is allocated before the real-time operation. In order to
illustrate the main used rationale, consider the following definition of the operators +
and = which are applied between two objects belonging to the class Matrix:

Matrix Matrix::operator+(Matrix M)
{

MpAllocate(rows, columns, Mp, MpG);
for(i = 1; i <= rows; i++) { \\

for (j = 1; j <= columns; j++) {
Mp(i, j) = (*this)(i, j) + M(i, j);

}
}
return Mp;

}
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void Matrix::operator=(Matrix M)
{

for (i = 1; i < M.rows + 1; i++) {
for (j = 1; j < M.columns + 1; j++) {

(*this)(i,j) = M(i, j);
}

}
MpG.free = 0;

}

Objects Mp and MpG belong, respectively, to the classes Matrix and
ProvisoryMatrix. The function MpAllocate(rows, columns, Mp, MpG) re-
serves the necessary memory in MpG and sets-up Mp to access this memory. This is
done setting the pointer Mp.p to the address of the first element within this memory
slot and attributing Mp.rows = rows and Mp.columns = columns. The necessary
memory reserved is equal to rows*columns numbers of type double. The memory
is managed by the variable MpG.free, which indicates how many numbers of type
double are being currently used within the memory allocated by MpG. Accordingly,
the MpAllocate(rows, columns, Mp, MpG) sets MpG.free = MpG.free +
rows*columns. Conversely, this variable is set to 0 whenever the operator = is called,
indicating that the memory of managed by MpG may be overwritten. The operator ()
taking two integers (say i and j) as arguments returns the reference of the element in
row i and column j of the corresponding matrix. This way, the returned variable from
the operator () may be used to read and write the corresponding element of a matrix.

Using a similar methodology, the common matrix operations were programmed
using intuitive operators without the need of dynamic memory allocation. The imple-
mented notation is inspired by the one used in MATLAB. Following, a non-extensive
list of implemented trivial matrix operations and declarations is presented:

• Matrix operator() (int i1, int i2, int j1, int j2): Returns a
submatrix of rows between i1 and i2, columns between j1 and j2. A call
M(i1,i2,j1,j2) is equivalent to M(i1:i2,j1:j2) in MATLAB;

• Basic matrix operations +, - and * (sum, difference and multiplication);

• Method Matrix trp(): returns the transposed of the matrix;

• Method Matrix Norm(): returns the matrix with the norm of each column
vector;

• Matrix eiFun(int iIn, int mIn): returns a vector with mIn lines with
every element equal to zero, except for the iInth, which is equal to 1;

• Matrix Eye(int iIn, int jIn): returns a iIn×jIn matrix with every
element equal to zero, except for those in the main diagonal, which are equal to
1;

• Matrix Zeros(int iIn, int jIn): iIn×jIn zero matrix;

• Matrix Ones(int iIn, int jIn): iIn×jIn matrix with every element
equal to 1;

• Matrix Sum(Matrix Min, int Dir): Calculates the sum of each row or



A.3. Advanced Matrix Computation 139

column;

• Matrix Unit(Matrix A): Calculates the unit vector corresponding to each
column of the input matrix;

• Basic IIR and FIR filters;

• Rotations matrices and their derivatives in the group SO(3).

As a matter of fact, the operation (A.II) can be performed with the implemented
library in TwinCAT with the line of code presented below:

C = (A.trp() - B*8)*(B + A*B.trp()); (A.IV)

In contrast to the matrices used by the operators presented above, a Matrix may
present a fixed allocated memory. This is the case for most of the matrices used in
more elaborate implemented functionnalities. For instance, matrices used in the dy-
namic model of the CDPR (such as M, C, and W) are preallocated before the real-time
operation.

Besides operations with matrices containing floating point numbers, other func-
tionalities dealing with matrices containing integers as elements (class IntMatrix)
were also implemented. A short list of implemented features is presented below:

• Columns and row operations: access, add or delete non-consecutive columns or
rows;

• Intersection and Union of two sets represented by two vectors;

• GetLines(B, A, I1): Assign to matrix B the lines I1 of the matrix A;

• iMinVect(vin) and iMaxVect(vin): Returns the index of the minimal and
maximal member of a vector;

• FindZerosVector: Finds elements that has absolute value smaller than a
threshold.

Thanks to the tools obtained with MatLib, an additional module able to simulate
the control scheme was implemented in C++ (compatible with TwinCAT). This module
simulates the closed-loop system representing the CDPR behavior. This significantly
facilitates the debugging during the implementation.

A.3 Advanced Matrix Computation

In order to implement the proposed MPC and other control strategies, basic fea-
tures introduced in Section A.2 were used as a basis to develop methods of matrix
algebra. The theory and the implementation in C++ (compatible with TwinCAT) of
these methods are briefly discussed in this section. The theory used here is detailed
in [88, 99, 176].
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A.3.1 Matrix factorization

Several features of matrix algebra are frequently based on matrix factorization.
For instance, the solution of linear systems (determined, undetermined or overdeter-
mined), matrix inversion, calculation of the null space, the Moore-Penrose inverse and
the Singular Value Decomposition (SVD) are typically based on matrix factorization.
This section discusses three important methods: LU, Cholesky and QR. All of them
present advantages and drawbacks relevant in the context of this thesis. Accordingly,
they were implemented based on [88, 176].

For a given nonsingular square matrix A, the aim of the LU decomposition is to
find an upper triangular square matrix U and a lower traingular matrix L so that

Π A = L U,

with Π a permutation matrix resulted from pivoting. This decomposition is particulaly
useful for the solution of determined linear systems. Using LU factorization, a linear
set may be decomposed as

A x = b⇒ L U x = Π−1b (A.1)

which can be solved by

L y = Π−1b (A.2a)
U x = y. (A.2b)

Since both matrices L and U are triangular, equations (A.2) may be solved with
backsubstitution (firstly (A.2a) and then (A.2b) using the obtained y). LU decomposi-
tion was implemented using pivoting and Crout’s algorithm. This method is known
as the preferrefed way to solve a linear set of equations [176].

If the matrix of interest is symmetric and positive definite, a more convenient factor-
ization may be used, namely, the Cholesky decomposition. In this case, matrix A may
be decomposed as A = L LT and the solution of the linear system may be computed
similarly to (A.1)-(A.2). Generally, this method is approximatelly two times faster than
a conventional LU decomposition and presents good numerical stability without the
need of pivoting. Symmetric positive definite matrices are often present in convex op-
timization problems. For this reason, Cholesky decomposition was used as described
in the Section A.3.2.

Additionally, the QR factorization also presents advantages that were important
in several steps in this thesis. Here, a rectangular matrix B is decomposed as B =
Q R with Q square orthonormal and R upper triangular. This decomposition was
implemented using Householder reductions as described in [176, Section 11.2] and
[88, Section 5.1]. Clearly, the solution of the linear system B x = b can be computed
applying backsubstitution for

R x = QTb. (A.3)

Note that, since no permutation matrix is present in (A.3), pivoting is not necessary.
However, other applications of the QR factorization motivated its application in this
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thesis. As discussed in [88], this factorization is particularly efficient for the solution
of least squares problems. Accordingly, this method was used in Section 2.1.3 for the
solution of the FK problem.

In addition, for B ∈ Rn1×n2 , n1 > n2, the matrices Q and R can be written with
submatrices as

B = Q R =
[
Q1 Q2

] [R1
0

]
, (A.4)

with columns(Q1) = rows(R1) (number of columns of Q1 is equal to the number of
rows of R1), it is easy to verify that

QT
2 B = 0. (A.5)

This indicates that Q2 is in the null-space of BT . Indeed, QR factorization may be
used in order to compute the null-space of a rectangular matrix. This utility was used
in Section 4.3.2. This section also details that matrices Q and R may be updated with
reduced computational cost if one row is added or removed from B, which is useful in
active-set optimization algorithms.

A.3.2 Quadratic programming

This section discusses the numerical solution of QP problems of type

min
u∈Rnu

1
2 uTH u + dTu (A.6a)

s. t. umin 6 u 6 umax (A.6b)

with H ∈ Rnu×nu symmetric and positive definite, and d, umin, umax ∈ Rnu constant
vectors.

Two methods were considered: active-set and projected gradient [99]. Projected
gradient is simpler to implement and may be pertinent for box constraints such as
(A.6b). Nevertheless, active-set finds the optimal solution in a finite number of itera-
tions and can easily consider additional constraints (this later advantage may be used
in future works). Therefore, the active-set technique was chosen. This method solves
a simplified version of (A.6) taking a subset of the constraints as equality constraints at
each iteration (a detilaed discussion addressing this technique is presented in [99, Sec-
tion 16.5]). The resulting subproblem in a given iteration can be written as

min
u

1
2uTHu + dTu

s.t.
{
ui = umin,i, for i ∈M
uj = umax,j, for j ∈ N

(A.7)

with M ⊂ {1, ..., nu}, N ⊂ {1, ..., nu} and M ∩ N = ∅. Take A = (M ∪ N ) and
F = {1, ..., nu}\(M ∪ N ). For notation simplicity, let us consider that F = {1, ..., nf},
M = {nf + 1 , ... , nf + nm } and N = {nu − nn + 1 , ... , nu}, with nf the number
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u

u

u u u

u

uk

max,2

2

min,1 max,1 1

uk+1

u*

min,2u

Figure A.1 – An illustrative example demonstrating that the saturation (A.8) may reduce the
necessary number of iterations.

of elements of F , nm the number of elements ofM and nn the number of elements of
N . H, U and d in (A.7) can be written as follows

H =
[
Hf H1
HT

1 H2

]
, u =

uf
um
un

 , d =

df
dm
dn

 ,
where Hf ∈ Rnf×nf , H1 ∈ Rnf×nm+nn , H2 ∈ Rnm+nn×nm+nn , uf ∈ Rnf , um ∈ Rnm

and un ∈ Rnn . Note that each element of um is equal to the corresponding element
of umin and each element of un is equal to the corresponding element of umax. The
solution of (A.7) is (u∗)T =

[
(u∗f )T uTm uTn

]
, with u∗f the vector that solves Hf uf =

−df −H1
[
uTm uTn

]T
.

It is worth noting that Hf is symmetric and positive definite. As a consequence,
Hf may be factorized with Cholesky decomposition such that Hf = L LT , with L
lower triangular, as described in the last section. Advantages of using this technique
were also presented. The optimal u∗f is obtained from two successive back substitution

procedures: L s = −df −H1
[
uTm uTn

]T
, and then LTu∗f = s.

Before starting the next iteration of the active-set method, components of u∗f should
comply with cable tension limits. Good results were obtained using a simple saturation
function. More precisely, each element ui of the vector u used in the next iteration is
obtained as a saturation of the corresponding element u∗i of u∗

ui = min
(

max(u∗i , umin,i), umax,i
)
. (A.8)

It was noted that, generally, the application of (A.8) reduces the necessary number
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of iterations in order to obtain the solution of (A.6) in comparison to the conventional
method discussed in Section 4.3.2 (and illustrated in Figure 4.5). The probable cause
for this difference is illustrated in Figure A.1. Whereas the conventional method de-
scribed in Section 4.3.2 would demand two iterations in order to obtain u, this vector is
obtained in the first iteration using (A.8). This difference related to the necessary num-
ber of iterations was noticed experimentally and in numerical simulations. However,
the finite termination guaranteed by a conventional method [99, Section 16.5] is not
valid in this case. The vector u is used as input for the next iteration of the active-set
method changing the set of active constraints, similarly to the algorithm described in
Section 4.3.2.
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Minimum Infinity Norm Redundancy
Resolution

A tension distribution algorithm able to minimize the infinity norm of the vector of cable
tensions is introduced. As discussed in Section 1.5, most of the TDA implemented for robots
with m > n + 1 are based on iterative algorithms. In contrast, the proposed TDA presents a
closed form expression for the computation of the optimal cable tensions. The algorithm itself is
introduced in Section B.1. Section B.2 proves that the algorithm returns the optimal vector of
cable tensions. Finally, experimental results are presented in Section B.3.
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B.1 Tension Distribution Algorithm

Considering the tension distribution problem of a CDPR with n degrees of freedom
driven by m cables (m > n), this section presents a closed-form solution for the mini-
mization of the infinity norm of the cable tensions vector. More precisely, the proposed
non-iterative algorithm is able to solve (B.1):

min
τ∈Rm

‖τ‖∞

s. t. W τ = f
τmin 6 τ

(B.1)

for given wrench matrix W ∈ Rn×m, desired wrench f ∈ Rn and minimal cable tension
τmin (it is assumed that τmin,i = τmin, τmax,i = τmax ∀ i ∈ N1,m in order to simplify the
presentation of the algorithm). Note that the definition of the infinity norm leads to

‖τ‖∞ = max
i

(τi).

The proposed algorithm is based on the theory of wrench feasibility discussed in
[111, 112]. The tension distribution constraints imposed for cable tensions τ are{

W τ = f
τmin 6 τ 6 τmax

(B.2)

Using the hyperplane shifting method [111, 112], (B.2) can be written as (B.3)

C f 6 d (B.3)

where each line of the matrix C is perpendicular to n− 1 columns taken among the m
columns of W. More specifically, there are nc =

(
m
n−1

)
possible combinations of vectors

for a W ∈ Rn×m. Denote Wk
0 the submatrix formed by each one of these combinations

with k ∈ N1,nc . Each Wk
0 results in two lines (say cl and cp) of C:{

cT
l = null

{
(Wk

0)T
}

cp = −cl
. (B.4)

Each line ci corresponds to the orientation of a hyperplane which restricts the fea-
sible wrenches. Vector d translates these hyperplanes. Their components dj are the
translation normal to each hyperplane in relation to the origin. These components are
given by (B.5)

dj = τmax
∑
i∈I+

j

cjwi + τmin
∑
i∈I−j

cjwi. (B.5)

Sets I+
j , I−j and I0

j are subsets of I = N1,m and are defined according to
I+
j =

{
i ∈ I | cjwi > 0

}
I−j =

{
i ∈ I | cjwi < 0

}
I0
j =

{
i ∈ I | cjwi = 0

} (B.6)
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For given τmin, W and f , Hussein et al. [31] propose the minimization of τmax as
follows

τ ∗max = max
j

cjf −
∑
i∈I−j

τmincjwi∑
i∈I+

j
cjwi

. (B.7)

The τ ∗max obtained with (B.7) is the minimum value for τmax that may be used in
(B.2) for which there is a tension distribution τ ∗ satisfying these constraints. Using the
theory of the hyperplane shifting method, it is possible to calculate the tension distri-
bution τ ∗ 6 τ ∗max which satisfies (B.2). In other words, the definition presented in (B.7)
calculates the optimal τ ∗max and the completion of the TDA demands the calculation of
each component of the cable tension vector. The optimality of the algorithm described
below is proved in Section B.2.

Naming h the argument j that maximizes the expression present in (B.7). The τ ∗ =[
τ ∗1 τ ∗2 . . . τ ∗m

]T
satisfying (B.1) should also satisfy (B.8):


τ ∗max if i ∈ I+

h

τ ∗i = τmin if i ∈ I−h
τmin < τ ∗i < τ ∗max if i ∈ I0

h

. (B.8)

Therefore, elements {τ ∗i , i ∈ (I+
h ∪ I−h )} are trivially defined using (B.8). The re-

maining {τ ∗i , i ∈ I0
h} should be computed considering the equality constraint in (B.2).

Define submatrices and subvectors of W and τ ∗ relating to the sets I+
h , I−h and I0

h ac-
cording to 

W0 = [wi], i ∈ I0
h

W+ = [wi], i ∈ I+
h

W− = [wi], i ∈ I−h


τ ∗0 = [τ ∗i ], i ∈ I0

h

τ ∗+ = [τ ∗i ], i ∈ I+
h

τ ∗− = [τ ∗i ], i ∈ I−h
. (B.9)

Constraints (B.2) impose that

W0 τ
∗
0 + W+ τ

∗
+ + W− τ

∗
− = f . (B.10)

.

Recalling that (B.8) defines τ ∗+ and τ ∗−, the remaining elements may be calculated
using (B.10). In summary:

τ ∗+ = τ ∗max
τ ∗− = τmin

τ ∗0 = W†
0

(
f −W+ τ

∗
+ −W− τ

∗
−

) , (B.11)

where τ ∗max is defined according to (B.7). For a full-rank W, Section B.2 proves that
solution of (B.1) and TDA proposed in (B.11) are both unique and equivalent.

As an example, for a robot with 6 DoF, n = 6. Therefore, once each row of C is
composed of a vector spanning the nullspace of five columns of the wrench matrix,

#I0
h = 5,
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with #(·) denoting the cardinality of the set (·). Considering a full rank W, a cable
robot with m = 8 cables has

#I0
h = 5

#(I+
h ∪ I−h ) = 3. (B.12)

B.2 Optimality Proof

The present section proves the equivalence between the tension distribution ob-
tained with the general optimization (B.1) and the closed-form solution (B.11).

Consider given W, f and τmin. Take also the matrix C computed as in [112]. Let
τ ∗max be defined according to

τ ∗max = max
j

cjf −
∑
i∈I−j

τmincjwi∑
i∈I+

j
cjwi

=
chf −

∑
i∈I−

h
τminchwi∑

i∈I+
h

chwi

(B.13)

where h is equal to the argument which maximizes (B.13). The equation (B.13) can be
written as

chf =
∑
i∈I−

h

τminchwi +
∑
i∈I+

h

τ ∗maxchwi (B.14)

Suppose that optimization (B.1) obtains a ‖τ‖∞ = tb < τ ∗max. Let db be the vector
calculated using τmax = tb in (B.5). See that

chf =

∑
i∈I−

h

τminchwi +
∑
i∈I+

h

τ ∗maxchwi

 >

∑
i∈I−

h

τminchwi +
∑
i∈I+

h

tb︸︷︷︸
<τ∗max

chwi︸ ︷︷ ︸
>0

 = dbh

(B.15)

Therefore, hth line of C f < db is violated. This proves that τ ∗max is equal to the
solution of (B.1). After that, it is necessary to prove that TD proposed in (B.11) satisfies
(B.2) with τmax = τ ∗max.

Indeed, substituting τmax = τ ∗max in (B.2), f is feasible. As a consequence, there is at
least one τ ∗ so that {

W τ ∗ = f
τmin 6 τ ∗ 6 τ ∗max

(B.16)

Therefore, using the same notation introduced in Section B.1

W0 τ
∗
0 + W+ τ

∗
+ + W− τ

∗
− = f . (B.17)

Multiplying (B.17) by ch and using (B.14)

chW+τ
∗
+ + chW−τ

∗
− =

∑
i∈I−

h

τminchwi +
∑
i∈I+

h

τ ∗maxchwi. (B.18)
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Notice that chW0 = 0. Equation (B.18) can then be written as

∑
i∈I−

h

chwi(τmin − τ ∗−,i) +
∑
i∈I+

h

chwi(τ ∗max − τ ∗+,i) = 0. (B.19)

According to (B.6), the definition of I+
h and I−h imposes that

{
chwi < 0, i ∈ I−h
chwi > 0, i ∈ I+

h

. (B.20)

Besides, (B.16) leads to

τmin − τ
∗
−,i 6 0, i ∈ I−h

τ ∗max − τ ∗+,i > 0, i ∈ I+
h

. (B.21)

The combination of (B.20) and (B.21) results in

∑
i∈I−

h

chwi(τmin − τ ∗−,i) > 0 (B.22)

∑
i∈I+

h

chwi(τ ∗max − τ ∗+,i) > 0. (B.23)

According to (B.19), the sum of l.h.s. of (B.22) and (B.23) should be equal to zero.
Once chwi 6= 0 for i ∈ (I+

h ∪ I−h ),

{
τ ∗−,i = τmin
τ ∗+,i = τ ∗max

⇒
{
τ ∗− = τmin
τ ∗+ = τ ∗max

. (B.24)

This proves the two first equations of (B.11). The remaining unknown components
τ ∗0 should satisfy (B.17):

W0 τ
∗
0 = f −W+ τ

∗
+ −W− τ

∗
−. (B.25)

As stated in the beginning of this section, W is a full-rank matrix. Consequently,
W0 also has full rank. Besides, W0 has dimensions of (n)× (n− 1). Thereby, there is a
unique τ ∗0 that satisfies (B.25). This vector can be computed as follows

τ ∗0 = W†
0

(
f −W+ τ

∗
+ −W− τ

∗
−

)
. (B.26)

Therefore, the optimization (B.1) has a unique solution which is equal to the TDA
(B.11). �
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Figure B.1 – CAD view of HRPCable and visited poses.
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Figure B.2 – Performed trajectory.

B.3 Experimental Results

The TDA proposed in Section B.1 was implemented in the HRPCable prototype
using the programming tools described in Appendix A. This section presents the main
experimental results obtained with this algorithm. The trajectory depicted in Figs. B.1
and B.2 was used in this test.

Figure B.3 compares cable tensions obtained with the proposed tension distribution
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Figure B.3 – Desired and measured cable tensions using the minimization of (a) infinity norm
and (b) 2-norm.

method (minimization of the infinity norm) and the cable tensions obtained with the
minimization of the 2-norm of the cable tensions vector (the method described in [114]
was used). As discussed earlier, (B.11) represents a closed-form expression able to solve
the tension distribution problem in the control of CDPRs. This is an important ad-
vantage of the proposed method. Nevertheless, the main drawback resulted from the
minimization of the infinity norm is the presence of discontinuous desired cable ten-
sions. This drawback is visible in Figure B.3. At t ≈ 25 s, one of the desired cable
tensions jumps from 290 N to 230 N. However, this same figure also shows that the
control of cable tensions can respond sufficiently fast. At any rate, discontinuities on
the desired cable tensions should be avoided. Methods able to overcome this issue are
still under investigation.





C

On the Proof of Theorem 4.3

This appendix discusses how the Theorem 4.3 is obtained based on the results described in [13].
The general formulation presented in [13, Chapter 6] is applied using the notations introduced
in Chapter 4. Theorem 4.3 is based mainly on [13, Theorem 6.24]. The later addresses time-
invariant closed-loop systems (with a constant desired state vector). Accordingly, first, a sim-
plified case of Theorem 4.3 is considered taking a constant desired state. Sufficient conditions
presented in [13, Theorem 6.24] are reviewed and shown to be equivalent to the conditions of
the time-invariant case of Theorem 4.3. The time-varying case is obtained in accordance with
the results of [13, Section 6.5].
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Theorem 4.3 is based mainly on [13, Theorem 6.24]. As discussed in Chapter 4,
the results presented in [13, Chapter 6] are based on upper bounds of the cost func-
tional. More precisely, these upper bounds are studied with respect to the optimal value
function, which is defined in the following.

For a K ∈ N, the optimal value function VK : N × Y → R is computed based on an
instant k and state y according to

VK(k,y) = inf
τ (·)∈UK

JK (k,y, τ (·)) ,

s. t. yτ (·)(j,y) ∈ Y ∀ j ∈ N1,K

(C.1)

with the cost functional JK defined in (4.6). The scalar VK(k,y) is also known as the
cost-to-go for given instant k and state y. Note that, if the global minimum for the
following optimal control problem exists,

τ ∗(·) = arg min
τ (·)∈UK

K∑
j=1

`
(
j + k,yτ (·) (j,y) , τi

)
,

s. t. yτ (·)
(
j,y

)
∈ Y ∀ j ∈ N1,K

(C.2)

then τ ∗(·) satisfies the equality

JK (k,y, τ ∗(·)) = VK(k,y). (C.3)

In order to deduce Theorem 4.3, let us first consider a simplified case with a con-
stant desired state

yd(k) = yd ∀ k ∈ N (C.4)

with a constant vector yd ∈ Y. In this case, the closed-loop is time-invariant, the pro-
posed NMPC scheme obtained with Algorithm 1 may be written as in [13, Algorithm
3.1] and the [13, Theorem 6.24] may be directly applied as it is. Moreover, the value
function VK is constant with respect to time and may be simplified to

V ′K(y) = VK(k,y) ∀ k ∈ N. (C.5)

Similarly, the stage cost and minimal stage cost can be simplified according to

`c(y, τ ) = `(k,y, τ )
`∗c(y) = `∗(k,y)

}
∀ k ∈ N. (C.6)

The conditions stated in [13, Theorem 6.24] address time-invariant systems and are
summarized as

(i) There exist α1, α2 ∈ K∞ such that for every y ∈ Y the following relation holds

α1(‖y‖yd) 6 `∗c(y) 6 α2(‖y‖yd); (C.7a)

(ii) ( [13, Assumption 6.3] with linear BK) For each y ∈ Y and K ∈ N, there exists
γK ∈ R with γK <∞ so that the optimal cost functional VK(y) satisfies

V ′K(y) 6 γK `
∗
c(y). (C.7b)
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Additionally, [13, Lemma 6.6] shows that, if, for each y ∈ Y and N ∈ N, there exist
τ (·) ∈ UN and real constants C > 1, σ ∈ (0, 1) such that

`c
(
yτ (·)(n,y), τn

)
6 C σn `∗c(y) ∀ n ∈ N1,N−1, (C.8)

then condition (C.7b) is satisfied with

γK = C
1− σK
1− σ (C.9)

and supK γK <∞ ∀ K ∈ N.

Condition (C.8) is referred to as exponential controllability. Under this condition,
there exists τ (·) that generates a trajectory with stage cost exponentially converging to
zero in time.

Therefore, the conditions (C.7) are equivalently given as (C.7a) and (C.8). Consid-
ering (C.4) (and (C.6), consequently), the conditions of Theorem 4.3 are simplified to

(a) There exist α1, α2 ∈ KL∞ such that

α1(‖y− yd(k)‖) 6 `∗c(y) 6 α2(‖y− yd(k)‖) ∀ y ∈ Y. (C.10)

(b) For all y ∈ Y, there exist feasible τ e(·) ∈ Sm, real C <∞ and σ ∈ (0, 1) satisfying

`c
(
yτ e(·)(j,y), τ ej

)
6 C σj `∗c (y) , ∀ j ∈ N. (C.11)

These conditions are equivalent to (C.7a) and (C.8).

The time-varying case addressed in Theorem 4.3 is obtained considering [13, As-
sumptions 6.29 and 6.30], which indicate that the results above can be straightfor-
wardly extended to time-varying systems.
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+ = R0 ∪ {0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
R0
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Classes of Comparison Functions

K := {α ∈ R+
0 → R+

0 | α continuous,
strictly increasing and α(0) = 0} . . . . . . . . . . . . . . . . . . . . . . 88

L := {δ ∈ R+
0 → R+

0 | δ continuous,
strictly decreasing and limt→∞ δ(t) = 0} . . . . . . . . . . . . . . 88

K∞ := {α ∈ K | α unbounded } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
KL := {β ∈ R+

0 × R+
0 → R+

0 | β(r, ·) ∈ L and β(·, t) ∈ K} . . . . . . . . 88
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