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∆q Vector containing differentials of actuator positions/lengths

U Matrix containing scaling factors that scale DUσ2ε̃∆XM
to respective ele-

ments ofCov( DUεXA)
Xin Pose vector of a robot’s end-effector/platform when the load vector ap-

plied on it is Fin

Xfi Pose vector of a robot’s end-effector/platform when the load vector ap-

plied on it is Ffi

XA Pose attained by a robot after elastostatic error compensation when

there are no errors in identified parameters

X̂A Pose attained by a robot after elastostatic error compensation when

there are errors in identified parameters

XC Pose vector that is entered into the controller of a robot that doesn’t have

the compliance error model embedded in it (command pose)

X̂C Predicted command pose with error

XD Pose at which best positioning is desired

XM Pose vector of a robot’s end-effector/platform at a pose where stiffness

identification is performed

∆X Deflection of a robot’s end-effector/platform due to a change in load∆F

on it

∆XC Deflection at pose XC due to a load∆FD

∆̂XC Predicted deflection with error at pose X̂C and load FD

∆XM Deflection measured at pose XM under the influence of force/moment

applied∆FM
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∆̂XM Deflections measured during stiffness identification and corrupted by
DUε∆XM & FEε∆XM

ac∆XC Actual deflection of the end-effector/platform at the pose X̂C as a result

of actual stiffness parameters (c) and applied load∆FD

∆XD Deflection at pose XD due to an applied load∆FD

∆XD
t Vector containing translational elements of∆XD

∆XD
r Vector containing rotational elements of∆XD

Z Matrix containing scaling factors that scaleε∆FM to FEεXA
tZ Rows of Z corresponding to FE,tεXA
rZ Rows of Z corresponding to FE,rεXA
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General introduction

Context

The work presented in this thesis was carried out within the framework of POSILAB

project. This project was carried out in a joint laboratory, POSILAB, between an academic

laboratory called LIRMM (Laboratoire d’Informatique, de Robotique et de Microélectron-

ique de Montpellier) and a private enterprise named Symétrie. LIRMM is a multi-partner

multi-disciplinary research institution which conducts research in computer science, mi-

croelectronics and robotics. The DEXTER team within LIRMM is involved in the POSI-

LAB project and this team specializes in, among other things, development of robotic ma-

nipulators, especially, parallel robots (example: hexapods). Symétrie is an enterprise that

specializes in hexapods for precise-positioning and motion applications. This project was

funded by French National Research Agency (ANR). The main aim of this project was to

find innovative solutions to achieve better positioning performance, than what is currently

possible, with high-precision hexapod positioning systems.

Hexapods (see figure 1), commonly known as Gough–Stewart platforms, are parallel

robots with six actuated legs. Parallel robots have multiple serial chains connecting the

base to the end-effector/platform. In contrast, serial robots have a single chain connect-

ing the base to the end-effector/platform (see Figure 2). The first hexapods were developed

15
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in 1950’s and 1960’s. Notably, the first known hexapods were developed by V. E. Gough for

testing tyres and D. Stewart for flight simulation [Stewart, 1965] (see figure 3). Hence, the

name Gough–Stewart platform. Today, they are extensively used for two main class of ap-

plications: high-precision 6-DOF positioning (see figure 4) and 6-DOF motion generation

(see figure 5). Hexapods are attractive for high-precision positioning applications due to

their high stiffness 1 and due to the fact that they are statically determinate or isostatic

structures. The advantage of hexapod being statically determinate is that the platform is

not susceptible 2 to unwanted internal stresses that deform the platform.

Figure 1: A hexapod

1. This is a general advantage of parallel robots over their serial counterparts.
2. Consider a septapod (hexapod with one extra leg). This robot is statically indeterminate. Assuming

that only position control is used, the platform will be subjected to (even if it is minimal) internal stresses.
This is because there are more legs constraining the platform than that are absolutely required. Conse-
quently, the constraining legs fight with each other and induce stresses in the hexapod and its platform,
unless the legs are machined and controlled extremely precisely. Furthermore, temperature changes can
worsen the internal stresses in the structure [Soemers, 2011]. These internal stresses can deform the struc-
ture and these are not easily predictable (since static equilibrium equations can’t be solved), thereby making
them unattractive for high-precision positioning applications.
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Figure 2: Serial robots (leftmost) connect the base to the end-effector/platform (red) using
single chain with all actuators (blue) in series, as opposed to parallel robots (second and
third robots)

Figure 3: Figures showing the first designs of hexapod proposed by D. Stewart (left) and V.
E. Gough (right) [Stewart, 1965]
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Figure 4: Figures showing hexapods used for high-precision 6-DOF positioning applica-
tions such as for positioning samples in synchrotrons [Symétrie, c] (top) and for position-
ing mirrors in telescopes [Symétrie, e] (bottom)
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Figure 5: Figures showing hexapods used for 6-DOF motion applications such as for: (a)
moving ship models (& other components) in wave basins [Symétrie, b], (b) flight simula-
tion [TUDelft], and (c) offshore platform stabilization [Gangan]
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Motivation

A robot’s static positioning performance is affected by many factors such as geometric,

errors, thermal deflections, friction, compliance of robot’s components, etc. Depending

on the application at hand and the components used in a robot, some of these factors

dominate positioning errors over others. Symétrie’s positioning hexapods are designed to

achieve high repeatability. Various techniques – such as geometric calibration – are used

to ensure high accuracy too (see figure 6 for difference between repeatability and accuracy

of positioning). However, as new challenging applications emerge, problems that could be

neglected before must be taken into consideration. One such problem is the deflection of

the hexapod when a heavy load is placed on the platform. The accuracy of these hexapods

deteriorate when heavy payload is mounted on their platforms, as a result of compliance

of their components. Consequently, Symétrie was interested in understanding the influ-

ence of compliance of hexapod’s components on its accuracy when a heavy payload is

mounted on its platform. Subsequently, the goal was to improve the accuracy of hexapods

with heavy payload mounted on their platforms. This was important because a growing

number of their clients have been demanding for positioning with high payload and high

accuracy.

Figure 6: Illustration of repeatability and accuracy of positioning [Slocum, 1992]

Accuracy of loaded robots can be increased in two ways. The robot can be designed
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to be more stiff 3 or the errors in positioning due to payload on the platform can be com-

pensated for by prescribing extra displacements in actuators. The former option is not

attractive as it is expensive to achieve this and deflections can’t be completely eliminated.

Robot calibration is a concept that deals with compensating for robot’s positioning errors

due to various factors. Robot elastostatic calibration [Dumas, 2011; Wu, 2014] deals with

compensating for positioning errors of loaded robots due to compliance of their compo-

nents. The general 4 manner of performing robot elastostatic calibration involves (in the

order mentioned): (a) modelling stiffness of the robot using a parametric model, (b) mea-

suring deflections of the robot when known loads are applied, (c) identifying/estimating

the parameters of the stiffness model, and (d) compensating for the positioning errors

of the loaded robot. It is known that in this elastostatic calibration method, the choice

of end-effector/platform poses (position and orientation) and forces/moments used for

performing the deflection measurements affects the quality of estimated parameters [Du-

mas, 2011; Wu, 2014]. This, in turn, influences the quality of compensation. In the litera-

ture, best poses and forces/moments were chosen for stiffness identification using criteria

which minimized the influence of deflection measurement uncertainty 5 on stiffness iden-

tification. Many such criteria exist and they can be broadly classified into the ones that

minimize parameter errors and the ones that minimize pose error after compensation, for

a given uncertainty of deflection measurement.

For applications concerning many of Symétrie’s customers and for many other robotic

positioning applications, precise positioning is often required only at some predetermined

poses in the workspace, along predetermined axes and with a predetermined payload.

It is, therefore, important to have criterion for selecting poses and forces/moments for

stiffness identification that can maximize positioning accuracy after compensation under

the given conditions. Furthermore, preliminary study 6 revealed that realistic differences

between forces/moments actually applied during stiffness identification experiment and

those assumed to have been applied can have considerable impact on compensation qual-

3. Using stiffer materials and/or designing a stiffer geometry.
4. Other methods also exist for performing robot elastostatic calibration. However, this method is more

common and advantageous due to reasons explained in section 1.1.2.
5. Uncertainty of deflection measurements exists as a consequence of uncertainty of pose measurement

instrument used for performing deflection measurements.
6. Presented later in this thesis.
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ity. Hence, the criterion for selecting poses and forces/moments for stiffness identification

must also minimize the influence of this error on compensation quality.

The criteria present in the literature for selecting best poses and forces/moments for

stiffness identification can’t ensure best possible positioning performance at predeter-

mined poses, along predetermined axes and with predetermined forces/moments on end-

effector/platform. Furthermore, these criteria do not minimize the influence of errors in

forces/moments applied during stiffness identification on compensation quality. Hence,

new criteria had to be developed to satisfy the requirements stated above.

Thesis goals

In the view of above mentioned requirements, the following goals were defined for this

thesis:

◦ Thesis goal 1: Development of new criterion or set of criteria for selection of poses

and forces/moments for stiffness identification which:

— Sub-goal 1: minimize the influence of deflection measurement uncertainty and

errors in forces/moments applied during stiffness identification experiment on

compensation quality.

— Sub-goal 2: maximize positioning accuracy after compensation at predeter-

mined pose(s), along predetermined axe(s) of end-effector/platform and with

predetermined force(s) & moment(s) applied to the end-effector/platform.

◦ Thesis goal 2: Implementing elastostatic calibration of a high-precision hexapod po-

sitioning system and using the developed criterion/criteria for optimizing its stiff-

ness identification.

Thesis outline

To address the above defined goals of this thesis, the contents of this thesis are orga-

nized as follows:
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Chapter 1 introduces the state of the art of robot elastostatic calibration and its

optimization. It presents the concept of robot elastostatic calibration and type of

robot elastostatic calibration chosen to accomplish the goals of this thesis. The nec-

essary mathematical background of elastostatic calibration and its optimization is

also presented. This chapter concludes with the presentation of existing criteria for

stiffness identification optimization, their limitations and subsequent requirements

from new criterion/criteria to be developed.

Chapter 2 presents the framework to formulate stiffness identification optimization

criterion/criteria that counters the limitations of the existing criteria for the same.

The necessary mathematical formulations of the said framework are derived and the

ways to use them are discussed.

Chapter 3 is devoted to validation of efficacy of the presented stiffness identification

optimization framework using simulated elastostatic calibrations of a bipod. These

simulation studies were performed on a bipod to facilitate ease of analysis of results

as this mechanism is simple.

Chapter 4 documents the experimental studies on elastostatic calibration of a high-

precision positioning hexapod. The presented studies validate the efficacies of elas-

tostatic calibration of hexapods and the stiffness identification optimization frame-

work presented in chapter 2.

Finally, the conclusions of this thesis are presented which highlights the main contri-

butions of this thesis and presents some recommendations for future work.
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Chapter Abstract

This chapter presents the state of the art of robot elastostatic calibration and its optimiza-

tion. The concept of robot elastostatic calibration, the need for it and the different types of

it are presented first. The elastostatic calibration framework necessary to achieve the aim of

this thesis is then presented, followed by the necessary mathematical framework for this. The

concept of stiffness identification optimization is presented along with the existing criteria

for achieving the same. Finally, limitations of the existing stiffness identification optimiza-

tion criteria and subsequent requirements from new criteria to be developed are presented.
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1.1 Introduction to robot elastostatic calibration

1.1.1 Need for robot elastostatic calibration

The static positioning performance of a robotic manipulator is deteriorated due to a

number of factors. Some of the major factors include geometric errors, thermal deflec-

tions of robot’s components, compliance of robot’s components, friction between mating

components of the robot, clearance in joints and play/backlash in gears, ball screws, etc.

Different factors, from the ones listed, dominate the total positioning error depending on

the robot, the control method and the application. In order to achieve good positioning

performance, these errors are kept minimal (relative to required positioning accuracy and

repeatability) by using high-quality mechanical components. Alternatively or additionally,

appropriate compensation techniques are used to minimize or eliminate the influence of

these error sources on the robot’s positioning performance.

The concept of robot calibration deals with compensation for robot’s positioning error

due to different errors [Roth et al., 1987]. Different types of robot calibrations seek to min-

imize the influence of different types of errors on the static positioning performance of a

robot: geometric calibration [Hayati et al., 1988] to minimize the influence of geometric

errors, elastostatic calibration [Gong et al., 2000; Dumas, 2011] to minimize the influence

of compliance errors, thermal calibration [Gong et al., 2000] to minimize the influence of

thermal errors, and so on.

Robot geometric calibration is a widely studied and applied concept. However, robot

elastostatic calibration has only recently garnered serious attention. Robot elastostatic cal-

ibration becomes necessary for robots that are used for applications that require high-

accuracy positioning in the presence of heavy loads at the end-effector/platform. One

application where the need for this has been demonstrated is high-accuracy machining

[Dumas, 2011]. In these high-accuracy machining applications, machining forces induce

considerable deformations within the robot that reduce the accuracy of the end-effector

to unacceptable levels [Wu, 2014]. This in turn affects the quality of the machined prod-

uct. Similarly, for other high-accuracy positioning applications, positioning accuracy can

deteriorate to unacceptable levels when relatively heavy loads are applied on the robot.
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In the context of high-precision positioning hexapods, figure 1.1 illustrates the prob-

lem of accuracy deterioration due to compliance of robot’s components and the required

solution. A hexapod which is designed for and is capable of accurate positioning, without

heavy load mounted on the platform, will deliver less positioning accuracy when a heavy

load is placed on it. This decrement in accuracy increases with increase in applied load.

Furthermore, the resulting accuracy deterioration is dependent on the hexapod design,

configuration/pose of the robot and the nature & magnitude of applied forces/moments.

Figure 1.1: Phenomenon of accuracy deterioration of a hexapod positioning system with
mounted payload and the required solution
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In order to investigate this problem, a preliminary test was performed on a high-

precision hexapod positioning system from Symétrie. The repeatability of this hexapod

is ±0.75 µm along translational coordinates and ±3.25 µrad along rotational coordinates.

More details about this product can’t be disclosed due to confidentiality reasons. In this

test, the deflection of the hexapod’s platform due to mounting of load was measured. The

hexapod was loaded using a series of weights with the platform in zero pose 1. These

weights were placed in a manner that made sure that the force applied was (approximately)

purely along the Z-axis of the platform. The 6-DOF pose of the platform was measured 2

with different (and no) weights placed on the platform. These measurements were in turn

used to calculate the 6-DOF deflections of the robot’s platform. Figure 1.2 shows the test

setup used in this test. The loads applied during this test were below the maximum allow-

able payload of this system. Figure 1.3 shows the results of this test. As can be seen from

these results, mounted weights cause considerable deflections (relative to the repeatabil-

ity) of the hexapod’s platform. For example, a mass of 26.5 kg (≈260 N) mounted on the

platform causes deflections of upto 11 µm in translations and 21 µrad in rotations. These

deflections will also degrade the accuracy of this hexapod by the same amounts. Hence,

there is considerable room for improvement of this hexapod’s positioning accuracy when

payload is mounted on its platform.

1. For Symétrie’s hexapods, pose (position & orientation) of the platform is defined using a coordinate
frame fixed at the center of the platform (platform frame). The pose of the platform with the hexapod in any
arbitrary configuration is defined with respect to the platform frame that exists when all of the hexapod’s
legs are locked at the center of their strokes. Zero pose is the pose of the platform in which all the six pose
parameters (defining the 3 translations & 3 rotations) are zero. All of the hexapod’s legs are locked at the
center of their strokes in zero pose.

2. Pose measurement performed using method described in Appendix A.
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Figure 1.2: Setup to measure the deflection of the platform of a high-precision hexapod
positioning system due to load mounted on it’s platform
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Figure 1.3: Measured 6-DOF deflections of the platform of the hexapod under study (see
figure 1.2) due to applied loads
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1.1.2 Different approaches to robot elastostatic calibration

Figure 1.4 shows the classification of approaches to robot elastostatic calibration. As

also mentioned earlier, robot elastostatic calibration is one of the many different types

of calibrations that can be performed on a robot. At a broader level, elastostatic calibra-

tion approaches can be classified into: (a) parametric elastostatic calibration , and (b) non-

parametric elastostatic calibration. This classification nomenclature (parametric and non-

parametric) also exists for robot geometric calibration [Chen-Gang et al., 2014]. Follow-

ing this classification, parametric elastostatic calibration can be further classified into two

types: one that employs experimental parameter identification and the other that employs

analytical parameter identification.

Figure 1.4: Classification of robot calibration approaches

The distinction between parametric and non-parametric elastostatic calibration ap-

proaches is based on the use of parametric model (or not thereof) to predict and correct

the pose error due to compliance of a loaded robot. The parametric model referred to
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here relates the pose error of the end-effector/platform to the load applied on it, for any

given configuration of the robot, either by means of: (a) stiffness parameters [Zhou and

Kang, 2015; Dumas, 2011; Wu, 2014; Kammerer and Perrot, 2012; Khalil and Besnard, 2002;

Lightcap et al., 2008; Abele et al., 2007; Gong et al., 2000], or (b) geometric parameters de-

pendent on load and robot’s configuration [Meggiolaro et al., 2005; Chalfoun et al., 2007].

Therefore, in the parametric approach to elastostatic calibration, a parametric model is

used to predict and correct the pose error due to applied load at the end-effector/platform.

Non-parametric elastostatic calibration, on the other hand, doesn’t use parametric rela-

tionships to compensate for pose error due to applied load. This could be achieved using:

(a) measured relationships between the platform pose errors and joint variables when the

platform is subjected to load(s) 3 [Shamma and Whitney, 1987], or (b) compensation of

pose error by measuring it in real-time. Most of the work present in the literature on robot

elastostatic calibration is based on the parametric approach. However, non-parametric

approaches to robot elastostatic calibration have found their use in some companies.

Non-parametric elastostatic calibrations have been used by some companies to im-

prove the accuracy of their loaded robots because they can be very easy to implement

when: (a) the requirements are not very challenging (for example: high accuracy at some

selected poses), or (b) budget allows use of expensive sensors. When an application doesn’t

allow this leniency, non-parametric elastostatic calibration isn’t a very attractive option.

This is because the mentioned non-parametric elastostatic calibration approaches (listed

before) have disadvantages such as: (a) large number of measurements required to achieve

compensation in rather small workspace volume, or (b) necessity of extra sensors. The

parametric approach, on the other hand, do not pose these problems. The identified pa-

rameters can be used to predict and correct pose error of a loaded robot throughout its

workspace without any extra sensors. Within the parametric approach, using stiffness pa-

rameter model is better than using load and configuration dependent geometric param-

eters. This is because the identification of load and configuration dependent geometric

parameters requires large number of measurements as compared to the ones required for

identification of stiffness parameters.

3. These relationships can be measured at discrete pose(s) in the workspace with certain load(s) applied
to the platform, in order to compensate at those pose(s) and load(s). Furthermore, polynomial interpolation
can be used to predict these relationships for positioning at different poses and using different loads.
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Efficient parametric elastostatic calibration needs the chosen parametric (stiffness)

model to make accurate predictions. This requires accurate estimation of stiffness pa-

rameters. Stiffness parameter estimation has been approached in the literature along the

following directions: (a) experimental estimation of stiffness model parameters [Dumas,

2011; Wu, 2014; Abele et al., 2007; Carbone and Ceccarelli, 2006; Alici and Shirinzadeh,

2005; Bonnemains et al., 2009; Zhou and Kang, 2015; Chalfoun et al., 2007; Meggiolaro

et al., 2005; Kammerer and Perrot, 2012; Lightcap et al., 2008; Ruggeri et al., 2009; Gong

et al., 2000], and (b) analytical estimation of stiffness model parameters [Majou et al., 2007;

Clinton et al., 1997; Li et al., 2002; Deblaise et al., 2006; Chen and Lan, 2008; Rebeck and

Zhang, 1999; Klimchik et al., 2013]. Analytical estimation of stiffness parameters, as the

name suggests, relies on analytically estimating the stiffness of components of the robot

(such as using FEM). These analytically estimated stiffness of components are then used

to estimate the stiffness parameters of the chosen stiffness model. In contrast, experimen-

tal estimation of stiffness parameters involves their estimation by means of measurements

carried out in suitably designed experiments.

Analytical estimation of stiffness parameters can be more computationally expensive,

more time consuming and more complicated as compared to their experimental estima-

tion. Also, analytical estimation needs to be performed again when any small design

change is implemented on the robot. Furthermore, it is known from experience that

two robots with same design and components exhibit different stiffnesses at the end-

effector/platform to a level that is unacceptable for applications such as precise position-

ing. This behavior can be difficult or impossible to capture using an analytical estimation

approach since the reasons for this behavior are not understood. This behavior can, how-

ever, be captured using the experimental estimation approach.

For the application in focus in this thesis, precise elastostatic error compensation is

desired throughout the workspace of the robot at low cost. From the characteristics of

available approaches to elastostatic calibration presented above, parametric elastostatic

calibration using experimental stiffness parameter identification seems ideal for our ap-

plication. Hence, this approach was chosen.
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1.1.3 Stiffness modelling

As mentioned in section 1.1.2, parametric elastostatic calibration using stiffness pa-

rameters is desired. This type of model relates the deflection of the platform/end-effector

to the load applied on it. This model can then be used to predict and correct the pose error

due to load applied on the platform/end-effector. The modelling technique differs based

on the type of robot under consideration. The modelling technique needs to take into ac-

count if: (a) the robot is over-constrained or not, (b) the compliance of links are negligible

or not, etc., and (c) the arms/links of the robot are heavy enough to cause considerable

deflections of robot’s components or not [Klimchik et al., 2014]. Pashkevich et al. [Pashke-

vich et al., 2011] and Klimchik et al. [Klimchik et al., 2014] have presented good overview of

all the stiffness modelling methods available for all sorts of robotic manipulators. It must

be noted here that robot of interest in this thesis, hexapod, is not over-constrained. Fur-

thermore, the hexapods studied in this project had light (not heavy) legs. Therefore, the

modelling approaches relevant only to such robots will be discussed. Stiffness modelling

of such robotic manipulators can be classified based on two characteristics: parametric

model being used and stiffness mapping method.

Based on parametric model being used, stiffness modelling approaches can be can be

classified into the ones based on: (a) finite element analysis (FEA) [Corradini et al., 2003;

Nagai and Liu, 2007; Bouzgarrou et al., 2004; Deblaise et al., 2006], (b) matrix structural

analysis (MSA) [Deblaise et al., 2006; Li et al., 2002], and (c) virtual joint modelling (VJM)

[Klimchik et al., 2013] or lumped stiffness modelling. FEA based modelling uses the classi-

cal finite element theory to discretize the components of the robot and evaluate the stiff-

ness at the end-effector/platform using computed stiffnesses of the discrete components.

The stiffnesses of these discrete elements are computed by making use of the known ma-

terial properties of the components of robots. This computation is executed completely

analytically (on the computer) and no experiments are involved. This method is very com-

putationally expensive and time consuming. MSA is based on the idea similar to FEA but

considers larger elements (trusses, beams, etc). This reduces the computation effort and

time as compared to FEA. VJM or lumped stiffness modelling is based on extension of the

conventional rigid model of the robot by considering virtual springs to describe elastic
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deformations of links, joint and actuators. The number of parameters is largely reduced

in comparison to FEA and MSA in this method. The stiffness parameters need to be an-

alytically computed in FEA and MSA whereas VJM allows for experimental stiffness pa-

rameter identification. Many versions of the VJM modelling technique can be found in

literature and they differ in modelling assumptions. One of the simplest versions of VJM

is where each actuated joint is replaced by virtual spring [Gosselin, 1990]. This is used

when the compliance of parts other than the actuated joints are negligible. This modelling

technique is very simple and largely reduces complications in an experimental parameter

identification framework. Such a modelling technique has also been used successfully for

elastostatic calibration of serial robots for precise machining [Wu, 2014].

Stiffness mapping deals with mapping the influence of stiffness parameters of a robot

to the stiffness experienced at the end-effector/platform. Based on stiffness mapping

method, two types of stiffness modelling techniques exist: one based on conservative stiff-

ness mapping and the other based on non-conservative stiffness mapping. When the end-

effector/platform of a robot is loaded, the configuration of the robot changes and con-

sequently, the stiffness experienced at the end-effector/platform changes. Conservative

stiffness mapping considers the impact of change in robot’s configuration, when loaded,

on stiffness at the end-effector/platform whereas non-conservative stiffness mapping does

not. Salisbury [Salisbury, 1980] first introduced the non-conservative stiffness mapping

for a robotic manipulator and the conservative stiffness mapping was later introduced by

Griffis & Duffy [Griffis and Duffy, 1993]. The magnitude of the difference in stiffness com-

puted by the conservative and non-conservative methods depends on the stiffness of the

robot and the load applied at the end-effector/platform. Therefore, non-conservative stiff-

ness mapping is sufficient for robots which are very stiff and don’t experience large deflec-

tions when loaded.

For the application concerned to this thesis, a parametric stiffness model was needed

that could be used for experimental parameter identification (due to reasons stated in

section 1.1.2) and that could make precise deflection predictions. Also, the robots under

consideration in this thesis are very stiff and experience very small deflections relative to

the size of the robot (see figure 1.3). Furthermore, compliance along actuated joints in

these hexapods was expected to be dominate the compliance experienced at their plat-
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forms since other components of these hexapods are relatively rigid. Therefore, a simple

VJM based stiffness model (like the one in [Gosselin, 1990]) along with non-conservative

stiffness mapping was used.

1.1.4 Outline of robot elastostatic calibration framework used in this

thesis

The robot elastostatic calibration framework that will be used in this thesis was chosen

as a result of the choices that were presented in sections 1.1.2 and 1.1.3. These choices were

made considering the intended application: elastostatic calibration of a high-precision

hexapod. As follows from those choices, a parametric robot elastostatic calibration frame-

work shall be used that employs experimental stiffness identification. An elastostatic cali-

bration framework of this nature consists of the following steps (in the order mentioned):

(a) stiffness modelling, (b) measurement of pose deflections caused by application of a

known forces/moments, (c) stiffness parameter identification, and (d) pose error compen-

sation of the loaded robot. These steps can be described as follows:

(a) Stiffness modelling : This is the first step in this process. The stiffness properties

of the robot must be suitably modelled. This stiffness model must facilitate ease of

experimental parameter identification while describing the system’s stiffness prop-

erties accurately. As follows from the choices made in sections 1.1.2 and 1.1.3, the

stiffness model to be used here will be based on virtual joint modelling (VJM) that

will only consider stiffness in actuated joints. This stiffness modelling will also em-

ploy non-conservative stiffness mapping to map the influence of stiffness of actuated

joints on the stiffness experienced at the end-effector/platform. Section 1.2 deals

with the mathematical details of this modelling methodology.

(b) Measurement of pose deflections: This is the second step in this process. A known

load (or set of loads) must be applied at the end-effector/platform and the resul-

tant pose deflections must be measured. Appropriate measurement system and

method must be used which are suitable for the level of precision of compensa-

tion required. Redundant measurements of pose deflections must be made since

the measurements are always accompanied with measurement noise. Furthermore,
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these pose deflection measurements must be carried out in carefully designed ex-

periments. Sections 1.2 and 1.3 present further insights into the nature of pose de-

flection measurements to be performed.

(c) Stiffness parameter identification: This is the third step in this process. In this step,

the pose deflection measurements must be appropriately treated (mathematically)

to estimate the stiffness parameters. Least squares technique is generally used to

identify the best set of parameters using the redundant pose deflection measure-

ments acquired. Care should be taken to ensure that the acquired measurements are

properly treated while employing the least squares technique. Section 1.2 elaborates

on the mathematical details of this step.

(d) Compensation: This is the fourth and the last step in this process. The desired pose

to be achieved and the desired load to be applied on the end-effector/platform must

be known. The set of stiffness parameters identified in the previous step can be used

to predict the deflection of the end-effector/platform under desired loading. This

prediction model can then be used to obtain the right set of actuator displacements

that let the robot achieve the desired pose after undergoing deflection under the in-

fluence of the desired load.

Figure 1.5 illustrates this procedure applied to a bipod.
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Figure 1.5: Outline of elastostatic calibration used in this thesis (illustrated on a bipod)
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1.2 Mathematical framework for experimental stiffness

identification in robot elastostatic calibration

This section presents the mathematical framework that is required for experimental

stiffness identification in robot elastostatic calibration. This mathematical framework is as

per the choices described in section 1.1. Section 1.2.1 presents the mathematical equations

concerning the chosen stiffness modelling method and the stiffness identification tech-

nique. The stiffness parameter identification relies on least squares technique and this

requires appropriate scaling of measured deflections and parameters, to facilitate good

identification of stiffness parameters [Siciliano and Khatib, 2008, Chapter 14]. Section 1.2.2

presents the necessary appropriate techniques for scaling the measurements and param-

eters for good identification of these stiffness parameters.

1.2.1 Experimental stiffness identification framework

Let Fin and Ffi be the initial and final load vectors applied at the end-effector/platform

of the robot. In a 3D case, these vectors have the components of force in the first three

elements followed by the components of 3D moment in the next three elements. Let Xin

and Xfi be the corresponding initial and final pose vectors of the end-effector/platform.

The relationship between change in force/moment on the platform (∆F) and its resultant

deflection (∆X) is given by [Merlet, 2006]

∆F=KC ∆X (1.1)

Here,∆F and∆X are given by

∆F= Ffi−Fin (1.2)

∆X=Xfi−Xin (1.3)
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KC is called the Cartesian stiffness matrix. In order to obtain the expression for KC,

we need to use the equivalence between work done by the wrench applied at the end-

effector/platform and the work done by resultant forces in the actuators of the robot. This

relationship can be written as

ηT F= q̇T τ (1.4)

Here, F is any wrench applied at the end-effector/platform and η is its resulting velocity

vector. τ is the force in each actuator as a consequence of F andq is the vector with actuator

positions/lengths. η and q̇ are related by means of the Jacobian matrix [Khalil and Dombre,

2004] as

η= J q̇ (1.5)

Equations 1.4 and 1.5 give us

F= J−T τ (1.6)

Differentiating equation 1.6, we get

dF= J−T dτ+d(J−T ) τ (1.7)

When non-conservative stiffness mapping is employed, i.e., the influence of change

in geometry of the robot (due to applied load) on the stiffness experienced at the end-

effector/platform is neglected, the second term of equation 1.7 is neglected [Chen and Kao,

2000]. Equation 1.7 can then be rewritten as

dF= J−T dτ (1.8)
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Using equation 1.8, we can write

∆F= J−T ∆τ= J−T (τfi−τin) (1.9)

Here, τfi and τin are the forces along actuators corresponding to the end-

effector/platform wrenches Ffi and Fin, respectively. We also have

∆τ=K∆q (1.10)

Here,∆q is the change in actuator lengths as a result of change in forces along actuators

∆τ. This type of modelling assumes virtual springs along each actuator (as was mentioned

in section 1.1.3). K is a diagonal matrix with the stiffness of actuators as its diagonal ele-

ments.

K=diag(k1,k2, ...,knp) (1.11)

Here, np denotes the number of stiffness parameters which is equal to the number of

actuators in this case. Substituting for∆τ from equation 1.10 in equation 1.9, we get

∆F= J−T K∆q (1.12)

We also have

∆q= J̌−1 ∆X (1.13)

Here, J̌ is the modified Jacobian matrix. When a robot has less than two rotational

degrees of freedom at the end-effector/platform, J̌= J. Using equations 1.12 and 1.13, we

can write

∆F= J−T K J̌−1 ∆X (1.14)
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Comparing equations 1.1 and 1.14, we can write

KC= J
−T K J̌−1 (1.15)

Equation 1.14 can be rearranged to get

∆X= J̌ K−1 JT ∆F (1.16)

When elements of equation 1.14 are rearranged, we obtain

A c=∆X (1.17)

A in equation 1.17 is a function of ∆F and the Jacobians and is called the observation

matrix. It is given by

Aij= J̌ij
( np∑
r=1

Jrj∆Fr
)

(1.18)

Here,Aij, Jij and J̌ij denote the jth element of the ith row of matricesA, J and J̌, respec-

tively. ∆Fr denotes the rth element of vector∆F. c is the vector containing the compliance

parameters.

c=
[ 1
k1

1

k2
...

1

knp

]T
(1.19)

The goal is to estimate the parameter vector c by measuring pose deflections ∆XM at

some poses XM under the influence of force/moment applied ∆FM. However, measure-

ments are always accompanied with errors. All previous works on this subject have con-

sidered the error due to uncertainty of pose measurement system. It is then necessary to

ensure that all the systematic errors of the measurement instrument are corrected. Taking
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the random errors (due to uncertainty of pose measurements) into account, equation 1.17

can be rewritten as

AM (c+ DUεc)=∆XM+ DUε∆XM (1.20)

Here, AM is the mn×np observation matrix corresponding to ∆FM and XM, where

m is the number of measurements and n is the number of elements in a single deflection

vector (DOFs of the end-effector/platform). DUε∆XM is a mn× 1 vector containing the

errors in measurement due to uncertainty of the measurement system. The left superscript

"DU" stands for deflection uncertainty. DUεi∆XM is the ith measurement vector (of size

n× 1) of DUε∆XM vector. The expectations of DUεi∆XM and DUε∆XM , E(DUεi∆XM) and

E(DUε∆XM), are zero vectors. DUεc is the error in the estimated parameter set due to
DUε∆XM . The parameters that give the best fit are then generally estimated using least

squares approach.

1.2.2 Scaling deflections and parameters for proper stiffness

identification

Appropriate scaling of measurements and parameters is necessary to ensure good pa-

rameter estimation. This topic has been studied very well in the context of robot geomet-

ric calibration [Siciliano and Khatib, 2008; Schröer, 1993]. Since parameter identification

framework for robot geometric calibration is similar to that of elastostatic calibration, same

problems (and solutions) regarding scaling exist.

Two types of scaling need to be performed here [Siciliano and Khatib, 2008, Chapter 14]:

(a) task variable scaling, and (b) parameter scaling. Task variable scaling is performed to

ensure that: (a) the elements of the measured deflection error vector are independent 4 and

identically distributed 5, and (b) the units of measurements being used for least squares fit-

ting are same. Parameter scaling is done to improve the conditioning of the regressor ma-

trix which in turn improves the identification quality. The regressor matrix is generally ill-

conditioned when the parameter vector contains entities of varying magnitudes [Schröer,

4. meaning the elements of the vector are uncorrelated
5. meaning the elements of the vector have same standard deviation
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1993]. Taking these scaling recommendations into account, equation 1.20 can be rewritten

as

GAM HH
−1 (c+ DUεc)=G∆XM+G DUε∆XM (1.21)

In equation 1.21,G andH are the task variable and parameter scaling matrices, respec-

tively. It must be noted that the parameter scaling matrix,H, is generally an identity matrix

for elastostatic calibration of the kind being used in this work. This is because the stiff-

ness parameters (the stiffnesses of actuated joints) of the robot have approximately same

values.

The method to obtain G is well known when elements of DUε∆XM are independent

but don’t have identical distribution (different standard deviations). In this case, G must

contain the inverse of standard deviations of the corresponding elements of DUε∆XM as

its diagonal elements. Let this resulting task variable scaling matrix be calledGU.

GU=

mn×mn︷ ︸︸ ︷

1
M11

0 · · · 0

0 1
M12

. . . 0
...

... 1
M1n

0 1
M21

. . . 0

0 · · · 0 1
Mmn


(1.22)

In equation 1.22, Mi1...Min are the standard deviations of elements of DUεi∆XM (the

ith measurement of the DUε∆XM vector). When GU is used for task variable scaling in

least squares estimation, the method is also referred to as weighted least squares estimation

[Seber and Lee, 2012]. When the elements of DUε∆XM are correlated, it is usually ignored

[Klimchik et al., 2012]. However, this ignorance is not necessary. Correlated measurements

can be dealt with using the generalized least squares method [Seber and Lee, 2012] in which
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task variable scaling is dealt with differently. The task variable scaling matrix in this case,

GC, is given by

GC=

mn×mn︷ ︸︸ ︷
1S

−1 0 · · · 0

0 2S
−1 · · · 0

...
. . .

...

0 · · · 0 mS
−1

 (1.23)

iS is related toCov
(DUεi∆XM) as

Cov
(DUεi∆XM)= iV = iS iS

T (1.24)

To obtain iS, eigen value decomposition of Cov
(DUεi∆XM) needs to be performed. As

mentioned earlier, task variable scaling is done so that the resulting measured deflection

vector becomes I.I.D (independent and identically distributed) and their elements possess

same units. Appendix B presents the proof of the resulting deflection error vector being

I.I.D and dimensionless.

1.3 Stiffness identification optimization

This section presents the concept and state of the art of the methods to optimize ex-

perimental stiffness parameter identification for robot elastostatic calibration. Section

1.3.1 presents the mathematical background behind parameter identification optimiza-

tion while using a least squares technique. Section 1.3.2 presents the various methods that

exist in the literature for optimizing parameter identification and provides an in-depth ex-

planation of each one of them. Section 1.3.3 lists and elaborates on the limitations of the

existing stiffness identification optimization methods.
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1.3.1 Optimizing experiment design

In experimental parameter identification, a linear regression model is used to describe

the relation between measurements and parameters to be estimated by means of a regres-

sor. Equation 1.25 shows the general form of this regression model.

A X̆=A (X+εX)=B+εB= B̆ (1.25)

Here, parameter vector X needs to be identified when B is measured. These two are

assumed to be related using the regressor matrix A. Many redundant measurements are

performed in order to find the parameter set that best fits the measurement data. Measure-

ment is always accompanied with error vectorεB which are assumed to be a consequence

of random measurement errors from the measurement system. This measurement error

leads to errors in identified parameters,εX. X̆ is obtained using

X̆=

A+︷ ︸︸ ︷(
AT A

)−1
AT B̆ (1.26)

where A+ is the pseudo-inverse of A. It can be seen clearly in equation 1.26 that the

regressor matrix A controls the propagation of errors from measurements to identified

parameters. Hence, choice of A is crucial for good parameter identification. Theory of ex-

periment design [Atkinson et al., 2007] focuses this phenomenon and approaches to obtain

better parameter estimates when measurements have the said random errors.

To understand the significance of optimization of experiment design in the context of

experimental stiffness parameter identification, let us first reformulate equation 1.21 to

obtain

ÃM H
−1c̆= ÃM c̆=G(∆XM+ DUε∆XM) (1.27)
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Here, ÃM=GAM H, c̆= c+ DUεc and c̆=H−1c̆. The stiffness parameter estimate is

then obtained as per

c̆=H
(
ÃM

T

ÃM

)−1
ÃM

T (
G(∆XM+ DUε∆XM)

)
(1.28)

It is apparent from equation 1.28 that ÃM controls the propagation of error (due to

measurement uncertainty) from measurements to identified parameters. Consequently,

ÃM must be chosen carefully for stiffness parameter identification. It is important to min-

imize this propagation and identify best set of parameters because they directly affect the

quality of compensation achieved. Figure 1.6 shows an illustration of error propagation

from measured deflection to accuracy attained after compensation in a one dimensional

case when an identification experiment is performed many number of times. Many pre-

vious works have also demonstrated the importance of good experiment design by choos-

ing a good regressor matrix for robot geometric calibration [Menq et al., 1989; Driels and

Pathre, 1990; Joubair and Bonev, 2013]. In the context of robot geometric calibration, the

regresor matrix is a function of pose at which the identification experiment is performed.

Consequently, best set of poses are chosen for performing geometric parameter identifica-

tion. In our case, as ÃM depends on the choice of measurement pose (XM) and the effective

force/moment applied at the platform (∆FM), it is necessary to find the best set of XM and

∆FM.

1.3.2 Existing methods for optimizing parameter identification

As mentioned earlier, the topic of finding the best regressor matrix in order to obtain

the best set of parameter estimates has been a topic of interest in various fields. Many cri-

teria exist in the theory of experiment design that are used to optimize experiment design

in order to obtain best parameter estimates [Atkinson et al., 2007]. This topic has also been

extensively studied to find the best set of poses for measurement in robot geometric cali-

bration. Due to similarity of the general mathematical framework of parameter estimation,

the parameter identification optimization criteria proposed in theory of experiment design

and robot geometric parameter identification can be directly applied to robot stiffness pa-
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Figure 1.6: Error propagation from measured deflection to attained compensation in a one
dimensional case when an identification experiment is performed many number of times
(with the assumption that the stiffness model is perfect)

rameter identification. These optimization criteria can be broadly classified into:(a) cri-

teria focused on minimizing parameter error, and (b) criteria focused on minimizing pose

error after compensation. The former focuses on different interpretations of what it means

to minimize the errors in identified parameters. Criteria that fall under this classification

do not explicitly consider the specific requirements of the positioning application that the

robot will be used for. In contrast, criteria focused on minimizing pose error after com-

pensation considers (to varying extents, depending on the criterion) the intended appli-

cation’s specification. This allows the user to identify the set of parameters best suited for

the particular application. Some of these criteria are listed in table 1.1. This classification

defines the difference between application-oriented and non-application-oriented robot

elastostatic calibrations (see figure 1.7).

The reasoning behind different previously proposed criteria for optimizing parameter

identification, explained in the context of stiffness parameter identification optimization,

are as follows:

(a) A-optimality: This criterion aims at minimizing the total variance of parameter es-
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Table 1.1: Existing criteria to select best robot calibration experiment design

Criterion Objective function

A−optimality [Atkinson et al., 2007] tr(Cov(c̆))→min

D−optimality [Atkinson et al., 2007] det
((
Cov(c̆)

)−1)→max

E−optimality [Atkinson et al., 2007] min
(
eig
((
Cov(c̆)

)−1))→max

G−optimality [Atkinson et al., 2007] max
(
diag

(
Cov(c̆)

))→min

O1 [Borm and Menq, 1989] (µ1µ2µ3....µnp)
1/np

p
m

→max

O2 [Driels and Pathre, 1990] µmin
µmax

→max

O3 [Nahvi et al., 1994] µmin→max

O4 [Nahvi and Hollerbach, 1996] (µmin)
2

µmax
→max

O5[Sun and Hollerbach, 2008]
1

1
µ1

+ 1
µ2

+...+ 1
µnp

→max

OTP [Wu, 2014] tr
(
AD H

(
ÃM

T
ÃM

)−1
HT ATD

)→min;l= 1

OMV [Carrillo et al., 2013] 1
l

∑l
i=1

(
tr
(
iAD H

(
ÃM

T
ÃM

)−1
HT iATD

))→min

’l’ is the number of pose-force sets at which best performance is required; ’µ1,µ2....µnp ’ are the singular

values of ÃM; ’µmin’ and ’µmax’ are the minimum and maximum singular values of ÃM, respectively; ’AD
is the matrixA formulated using the set of poses (XD) and forces/moments (∆FD) at which best positioning
performance is desired

timates. Considering the identification as per equation 1.28, the optimization prob-

lem of this criterion is framed as

tr(Cov(c̆))→min (1.29)

Another variation of this criterion is called T-optimality criterion. This is given by

tr
((
Cov(c̆)

)−1)→max (1.30)

A- and T-optimality criteria are the same objective functions in essence.

(b) D-optimality: D-optimal design aims at minimizing the determinant of information
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Figure 1.7: Application-oriented and non-application-oriented stiffness identifications

matrix (inverse of the covariance matrix) of the estimated parameters. The optimiza-

tion problem of this criterion is given by

det
((
Cov(c̆)

)−1)→max (1.31)

To understand the aim of this criterion, consider the illustration of figure 1.8. In

this figure, the propagation of an error ellipse 6 representing randomly varying mea-

surement error to error ellipse representing the corresponding parameter errors is

shown. The regressor matrix, as already known, controls the scaling and rotation of

6. Error ellipses (or confidence ellipse/ellipsoid) are used to visualize the boundary within which a cer-
tain number of samples of randomly varying variables lie. These elliptical/ellipsoidal boundaries are defined
by axes dependent on standard deviations of the variables. For example, for a bi-variate (two-dimensional)
Gaussian distribution in which both variables have same variance, 99.7% of the samples lie within the cir-
cular boundary defined by a radius that is three times the standard deviation of the variables’ distributions
[Seber and Lee, 2012].
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these error ellipses. D-optimal design aims at minimizing the area (or volume for an

ellipsoid) of the parameter error ellipse for a given measurement error ellipse.

Figure 1.8: Propagation of error ellipses in stiffness parameter identification routine
(shown for a two dimensional case)

(c) E-optimality: This criterion maximizes the minimum eigen value of the information

matrix. The optimization problem for this criterion is given by

min
(
eig
((
Cov(c̆)

)−1))→max (1.32)

(d) G-optimality: This criterion aims at minimizing the maximum of the variances of the

predicted parameters. The optimization problem for this criterion is given by

max
(
diag

(
Cov(c̆)

))→min (1.33)

(e) O1: Borm and Menq [Borm and Menq, 1989] first proposed this observability index

for robot geometric calibration. This aims at maximizing the product of singular

values of the regressor matrix.

(µ1µ2µ3....µnp)
1/np

p
m

→max (1.34)

Here,µi are the singular values of ÃM. From a geometrical viewpoint (of error ellipse

propagation as in figure 1.8), it can be shown that the volume of parameter error el-

lipsoid is proportional to the product of the singular values of the inverse of regressor
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matrix. Maximzing the product of singular values of the regressor matrix minimizes

the product of the singular values of the inverse of regressor matrix. This will effec-

tively minimize the volume of parameter error ellipsoid for any given measurement

error ellipsoid.

(f ) O2: Driels and Pathre [Driels and Pathre, 1990] introduced this observability index.

It is given by

µmin
µmax

→max (1.35)

Here, µmin and µmax are the minimum and maximum singular values of ÃM, re-

spectively. In the context of the illustration in figure 1.8, criterion aims at minimizing

the eccentricity of the parameter error ellipsoid.

(g) O3: Nahvi et al. [Nahvi et al., 1994] proposed this index and it aims at maximizing

the minimum singular value of the regressor matrix.

µmin→max (1.36)

Nahvi et al. [Nahvi et al., 1994] showed that the minimum singular value of the re-

gressor matrix acts as a de-amplifier in the propagation of the norm of measured

deflection errors to norm of estimated parameter errors. In the context of the illus-

tration in figure 1.8, this criterion aims at minimizing the largest semi-axis of the

parameter error ellipsoid.

(h) O4: Nahvi and Hollerbach [Nahvi and Hollerbach, 1996] proposed the following op-

timization problem to optimize parameter identification:

(µmin)
2

µmax
→max (1.37)

This observability index is also called the noise amplification index. This is because

Nahvi and Hollerbach [Nahvi and Hollerbach, 1996] have shown that the norm of

error in identified parameters is an amplification of the norm of error in measured

deflections by a factor µmax
(µmin)2

. Consequently, maximizing (µmin)
2

µmax
will lead to mini-

mum norm of error in identified parameters. In terms of error ellipsoid propagation
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(as in figure 1.8), this observability index minimizes both the eccentricity and the size

of parameter error ellipsoid.

(i) O5: Sun and Hollerbach [Sun and Hollerbach, 2008] showed that the previous four

observability indices,O1 − O4, are related to the alphabet optimalities from experi-

ment design theory, except A-optimality. They then proposedO5 which is equivalent

to A-optimality.

1
1
µ1

+ 1
µ2

+ ...+ 1
µnp

→max (1.38)

(j) OTP: Wu [Wu, 2014] proposed this criterion and this minimizes the RMS value of Eu-

clidean norm of possible end-effector pose errors after calibration. The optimization

problem of this criterion is given by

tr
(
AD H

(
ÃM

T

ÃM
)−1

HT ATD

)→min;l= 1 (1.39)

In this,AD is a function of the desired set of poses and forces/moments at and with

which best performance positioning is required. l is the number of pose-force sets

at which best positioning performance is required. This criterion is useful when the

end-effector pose coordinates have translational coordinates only 7.

(k) OMV : Carillo et al. [Carrillo et al., 2013] proposed a criterion similar toOTP. In this,

the average (over desired high performance pose-force sets) of the RMS of Euclidean

norms of possible end-effector pose errors after calibration is minimized.

1

l

l∑
i=1

(
tr
(
iAD H

(
ÃM

T

ÃM
)−1

HT iATD

))→min (1.40)

From all the stiffness parameter identification criteria listed above, all exceptOTP and

OMV focus on minimizing parameter errors. It is worth noting here that Imoto et al. [Imoto

et al., 2009] were the first ones to present a parameter identification optimization criterion

focused on minimizing pose error after compensation. This criterion was developed for

7. Alternatively, the end-effector’s orientations can be expressed using Cartesian coordinates of several
reference points, as done by Wu [Wu, 2014].
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robot geometric calibration. However, this criterion was designed considering their spe-

cific method of measuring the robot’s accuracy which is different from how accuracy of

robots are generally specified or measured.

1.3.3 Limitations of existing stiffness identification optimization

methods

Having robots perform their assigned positioning task as best as possible is very desir-

able. In many cases, the specification of these positioning tasks are pre-defined. It is very

desirable in these cases to identify parameters which are best suited for the intended ap-

plication. It must be noted that parameter estimation is just a stepping stone to pose error

compensation. Parameter errors can not be eliminated completely but can be acquired

in a way that is most favorable for the intended compensation. Thus, it is advantageous

to find poses and forces/moments for stiffness identification that minimize the influence

of errors influencing stiffness identification on the accuracy after compensation. More-

over, some applications can demand best positioning performance along certain selected

axes of the end-effector/platform only. In such a case, it is best to identify parameters

that minimize the pose errors after compensation along those axes only as the user does

not need best positioning performance along the other axes 8. This is especially important

in the context of the project corcerned to this thesis. This is because the partner com-

pany, Symétrie, often receives demands of this nature from their customers. Appendix C

presents the details of an application where best positioning was required along certain

selected axes of the platform of the robot. None of the methods present in the literature

can be used in this case to obtain best possible results.

Furthermore, one aspect of stiffness parameter identification optimization has not

been given any attention as yet. It is the fact that the force/moment actually applied during

identification experiment will not be the same as the assumed value. This can have signif-

icant impact on compensation accuracy, especially for high-precision positioning robots.

8. Not obtaining best positioning performance along certain axes does not imply that the positioning
performance along the those axes will be extremely bad. The robot will achieve high positioning performance
along "non-best-performance axes" as well when a high-precision pose measurement instrument is used
However, it won’t achieve the best possible positioning performance along these non-best-performance axes.
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Appendix D presents a study in which the impact of error in applied force/moment on

the compensation accuracy has been studied for a hexapod positioning system. Results of

this study show that error in applied force/moment indeed has a non-negligible impact on

compensation accuracy.

The limitations of existing stiffness parameter identification criteria highlighted above

define the requirements for a new criterion/criteria to be developed. Therefore, this new

method should allow the user to optimize stiffness parameter identification such that:

1. best possible positioning performance can be achieved: (a) at desired poses, (b)

along desired axes of the robot, and (c) with desired loads on the robot’s platform.

2. the influence of error sources impacting stiffness identification, deflection measure-

ment uncertainty and errors in forces/moments applied, on compensation quality

can be minimized.

1.4 Conclusion

This chapter presented the state of the art and background of robot elastostatic cali-

bration and its optimization. The concept of elastostatic calibration was first introduced

along with the justification for its need for high-precision positioning hexapods. Different

existing choices to perform elastostatic calibration were presented. This was followed by

presentation and justification of the chosen method: parametric elastostatic calibration

with experimental stiffness identification. The necessary mathematical background for

experimental stiffness identification and its optimization was then presented. The existing

criteria for optimizing stiffness identification for robot elastostatic calibration were pre-

sented and their limitations were discussed. These limitations dictated the requirements

for a new criterion/set of criteria to be developed for optimizing stiffness identification.

This set of requirements have been presented and discussed.



CHAPTER

2
Application-oriented robot

elastostatic calibration optimization

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2 Reformulation of the stiffness identification problem . . . . . . . . . . . . . 61

2.3 Minimizing the influence of deflection measurement uncertainty on po-

sitioning error after compensation (DUIR criterion) . . . . . . . . . . . . . 65

2.4 Minimizing the influence of applied force/moment error on positioning

error after compensation (FEIR criterion) . . . . . . . . . . . . . . . . . . . . 72

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

57



58
CHAPTER 2. APPLICATION-ORIENTED ROBOT ELASTOSTATIC CALIBRATION

OPTIMIZATION

Chapter Abstract

This chapter presents a stiffness identification optimization framework that counters the

limitations 1 of the existing criteria for the same. This framework helps to choose measure-

ment conditions for stiffness identification (poses and forces/moments) that minimize the

impact of errors influencing stiffness identification 2 on compensation quality. Discussion

on the usage of the proposed framework is also provided.

1. Presented in chapter 1.
2. Deflection measurement errors and errors in forces/moments applied.
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2.1 Introduction

2.1.1 Requirements and proposed solutions

As mentioned in chapter 1, parametric elastostatic calibration with experimental stiff-

ness identification was chosen to improve the accuracy of high-precision positioning

hexapods when their platforms are loaded. This involves modelling the stiffness proper-

ties of the robot using a parametric stiffness model. The parameters of this model are esti-

mated with the help of least squares method using measured deflections of the robot due

to known applied loads. It was also shown that stiffness identification can be optimized by

choosing the best set of poses and forces/moments used for the identification experiment.

Several works proposing different criteria for stiffness identification optimization exist in

the literature. These can be classified into the ones focused on minimizing the errors in

estimated parameters and the ones focused on minimizing the compensation error after

calibration. The latter approach was considered suitable for the work in this thesis. How-

ever, the existing criteria to achieve this have two main disadvantages and they define the

requirements for the new criterion/criteria to be developed.

The first disadvantage of existing stiffness identification optimization criteria is their

inability in ensuring best possible compensation no matter what the specifications of the

positioning application are. Robot positioning applications can be of varied natures. An

application might require the robot to be able to achieve best possible accuracy: (a) at

some chosen poses or throughout the workspace, (b) along some chosen axes of the robot

or along every axis, and (c) using some fixed load or a set of loads. Therefore, a truly

application-oriented elastostatic calibration method must be able to deliver best possible

positioning accuracy no matter what the application’s specifications are. Consequently,

the stiffness identification optimization criterion/criteria must be able to ensure best com-

pensation quality in any specified positioning application. As explained in chapter 1, none

of the stiffness identification optimization criteria present in the literature can satisfy this

requirement. Hence, the new criterion or set of criteria for stiffness identification opti-

mization must be able to satisfy this requirement.

The second disadvantage of existing stiffness identification optimization criteria is
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their inability to minimize the influence of errors in forces/moments applied during stiff-

ness identification on compensation quality. It was shown that the errors in applied

forces/moments during stiffness identification experiment can have considerable impact

on the positioning accuracy after compensation of a loaded robot. No work exists in the lit-

erature that considers the influence of this while choosing the best set of poses and forces/-

moments for stiffness identification experiment. Hence, the new criterion/criteria to be

developed must minimize the influence of: (a) the errors in forces/moments applied dur-

ing stiffness identification experiment, and (b) the uncertainty of measured deflections, on

the positioning accuracy after compensation of the loaded robot.

In light of the requirements mentioned above, a two step strategy is used here to find

the criterion/criteria to optimize stiffness identification. First, the stiffness identification

problem (equation 1.21) is reformulated to consider the influence of applied force/mo-

ment error on estimated stiffness parameters. Following this, equations are derived that

relate the input 3 and the output 4 errors. These relationships allow a user to formulate cri-

terion/criteria to choose best set of poses and forces/moments for stiffness identification

based on a given application’s specifications.

2.1.2 Outline of this chapter

Section 2.2 presents the reformulation of the stiffness identification problem. Section

2.3 presents the relationship between uncertainty of measured deflections and the uncer-

tainty of resultant pose errors after compensation. It also discusses ways to formulate cri-

teria to minimize the influence of uncertainty of measured deflections on the pose error

after compensation in the application at hand. Section 2.4 presents the relationship be-

tween errors in applied forces/moments during stiffness identification and the resultant

pose error after compensation. Subsequently, it discusses ways to formulate criterion/cri-

teria to minimize the influence of errors in forces/moments applied for stiffness identifi-

cation on the pose error after compensation in the application at hand. Finally, section 2.5

presents the conclusions of this chapter.

3. Errors in applied forces/moments and uncertainty of deflection measurement errors.
4. Resultant pose errors after compensation.
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2.2 Reformulation of the stiffness identification problem

The need for reformulating the stiffness identification problem as in equation 1.21 is

necessary in order to accommodate the influence of error in applied forces/moments dur-

ing stiffness identification experiment. To do this, let us first mathematize the origin of this

problem.

The origin of the problem is the difference (no matter how small) between the assumed

and actual forces/moments applied during stiffness identification experiments. As a con-

sequence of this, matrix AM of equation 1.21 will be formulated using assumed applied

loads and not the actual loads applied. Let the matrixAM formulated using assumed loads

be called asAM. asAM is a function ofXM and the assumed differential force vector applied

at the platform (as∆FM). as∆FM is given by

as∆FM=

nfm×1︷ ︸︸ ︷[
as
11∆FM

T as
12∆FM

T .... as21∆FM
T ....

]T
(2.1)

Here, nf is the number of elements in a single force vector. as
ij ∆FM is the assumed

differential force vector corresponding to the jth measurement at ith measurement pose

XiM. asij ∆FM is given by

as
ij ∆FM= as

ij F
fi
M− as

ij F
in
M (2.2)

Here, asij F
fi
M and as

ij F
in
M are the final and initial loads that are assumed to have been

applied at the end-effector/platform during the corresponding measurement, respec-

tively. These are, however, different from the loads that are actually applied at the end-

effector/platform. The actual differential load applied, acij ∆FM, is given by

ac
ij ∆FM= ac

ij F
fi
M− ac

ij F
in
M (2.3)

Here, acij F
fi
M and acij F

in
M are the final and initial loads that are actually applied at the end-
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effector/platform during the corresponding measurement. The error in applied force/mo-

ment is then given by

ijε∆FM = ac
ij ∆FM− as

ij ∆FM (2.4)

ε∆FM =
[
11ε∆FM

T
12ε∆FM

T ... 21ε∆FM
T ..
]T

(2.5)

The error in applied force/moment, ε∆FM , will result in an extra error in measured

deflection 5. Let this error in measured deflection due to ε∆FM be called FEε∆XM . The

left superscript "FE" stands for force error. The stiffness identification problem can then

be reformulated to include the influence of applied force/moment error in the following

manner:

G asAM HH
−1 (c+ DUεc+ FEεc)=G (∆XM + DUε∆XM + FEε∆XM) (2.6)

In equation 2.6, errors in estimated stiffness parameters are a consequence of errors in

applied forces/moments and errors in deflection measurements. In this, FEε∆XM , which

is a consequence of ε∆FM , leads to the corresponding error in estimated parameter, FEεc.

It must be noted here that matrix G must be appropriately computed in this case. This is

because FEε∆XM can also influence the variance of the total measured deflection vector.

As mentioned before, DUε∆XM is a consequence of the uncertainty of pose measure-

ment system. Consequently, the variance of measurements of pose measurement system

decides the variance of DUε∆XM . This in turn contributes to the variance of positioning

errors after compensation. Hence, a relationship relating the variance of DUε∆XM to the

corresponding component of variance of compensation errors can be useful in minimizing

the influence of the former on the latter when the former is given. Section 2.3 presents this

relationship and the ways to use it to optimize stiffness identification. The stiffness iden-

tification optimization criterion developed using this approach shall be called DUIR cri-

terion, which stands for deflection measurement uncertainty influence reduction criterion.

5. In addition to the error in measured deflection due to uncertainty of the pose measurement system.
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Similarly, a relationship relating FEε∆XM and the corresponding component of compen-

sation error can be useful in minimizing the influence of the former on the latter. Section

2.4 presents this relationship and the ways to use it to optimize stiffness identification.

The stiffness identification optimization criterion developed using this approach shall be

called FEIR criterion, which stands for force error influence reduction criterion. Figure 2.1

presents the flowchart of procedure to find best set of poses and forces/moments for stiff-

ness identification using this method.



64
CHAPTER 2. APPLICATION-ORIENTED ROBOT ELASTOSTATIC CALIBRATION

OPTIMIZATION

Figure 2.1: Flowchart of procedure to find best set of poses and forces/moments for stiff-
ness identification as per the proposed method
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2.3 Minimizing the influence of deflection measurement

uncertainty on positioning error after compensation

(DUIR criterion)

2.3.1 Relationship between deflection measurement uncertainty and

the uncertainty of resultant positioning error after compensation

In order to derive the necessary relationship, the expression for the estimated param-

eter set can be first derived. To simplify this derivation, equation 2.6 can be rewritten in a

simpler form as

asÃM H
−1 ĉ=G ∆̂XM (2.7)

In equation 2.7, asÃM = G asAM H, ĉ = c + DUεc + FEεc and ∆̂XM =

∆XM + DUε∆XM + FEε∆XM . The estimated parameter set ĉ can then be estimated

using the formula

ĉ=H (asÃM
T
asÃM)−1 asÃM

T︸ ︷︷ ︸
asÃM

+

G ∆̂XM (2.8)

In equation 2.8, (asÃM
T
asÃM)−1 asÃM

T

is nothing but the pseudo-inverse of asÃM,

asÃM
+

. From equations 2.8 and 2.6, the following expression can be written:

DUεc=H

asÃM
+︷ ︸︸ ︷

(asÃM
T
asÃM)−1 asÃM

T︸ ︷︷ ︸
N

G DUε∆XM︸ ︷︷ ︸
DUε̃∆XM

(2.9)

Let H (asÃM
T
asÃM)−1 asÃM

T

in equation 2.9 be replaced by N for simplifying its

further analysis. Furthermore, letGDUε∆XM be replaced byDUε̃∆XM for the same reason.
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Now, the influence of deflection measurement uncertainty on the uncertainty of estimated

parameter set can be evaluated using the expression

Cov( DUεc)=NCov( DUε̃∆XM)NT (2.10)

In equation 2.10,Cov( DUε̃∆XM) can be written as

Cov( DUε̃∆XM)= ( DUσε̃∆XM
)2 I (2.11)

Here, DUσε̃∆XM
is the standard deviation of elements 6 of DUε̃∆XM and I is an identity

matrix. The expression of equation 2.11 follows from the fact that DUε̃∆XM is independent

and identically distributed 7. By substituting for Cov( DUε̃∆XM) from equation 2.11 in

equation 2.10, the following expression can be obtained:

Cov( DUεc)=N ( DUσε̃∆XM
)2 I NT (2.12)

Equation 2.12 can then be expanded to get

Cov( DUεc)

= ( DUσε̃∆XM
)2
(
H (asÃM

T
asÃM)−1 asÃM

T) (
H (asÃM

T
asÃM)−1 asÃM

T)T
= ( DUσε̃∆XM

)2 H (asÃM
T
asÃM)−1 asÃM

T (
(asÃM

T
asÃM)−1 asÃM

T)T
HT

= ( DUσε̃∆XM
)2 H (asÃM

T
asÃM)−1 asÃM

T
asÃM︸ ︷︷ ︸

I

(asÃM
T
asÃM)−T HT

= ( DUσε̃∆XM
)2 H (asÃM

T
asÃM)−1 HT

(2.13)

Equation 2.13 presents the relationship that governs the scaling of uncertainty of mea-

sured deflections to uncertainty of resultant errors in estimated parameters. The goal is,

6. Note that all the elements ofDUε̃∆XM have the same standard deviation. Therefore,DUσε̃∆XM
is a

scalar value.
7. See section 1.2.2 to know more about this.
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however, to find the relationship governing scaling of uncertainty of measured deflections

to uncertainty of resultant errors in compensation. Hence, it is necessary to understand

the propagation of errors in estimated parameters to compensation errors.

The parameters identified are used to predict the necessary actuator displacements,

qC, that ensures that the end-effector/platform reaches the desired pose XD after under-

going deflection due to an applied load FD. Let XC be the pose array corresponding to qC

considering zero deflection due to load. XC is the pose array that needs to be entered into

the control interface of a robot’s controller that doesn’t have the compliance error model

embedded in it. Let XC be called "command pose". XC is estimated using the formula

XD=XC+∆XC (2.14)

Here, ∆XC is the deflection at pose XC due to a load ∆FD. The initial load on the

end-effector/platform, which is the load on the platform for which the XD = XC, is con-

sidered zero. The solution to XC in equation 2.14 needs to be found so that the robot’s

platform/end-effector reaches (close to) the desired pose.

In reality, however, the predicted command pose will have errors due to errors in esti-

mated parameters. This can be expressed as

X̂C=XD− ∆̂XC (2.15)

where X̂C is the predicted command pose with error and ∆̂XC is the predicted deflec-

tion with error at pose X̂C and load∆FD. X̂C and ∆̂XC are given by

X̂C=XC + DUεXC + FEεXC (2.16)

∆̂XC=∆XC + DUε∆XC + FEε∆XC (2.17)

∆̂XC= ÂC ĉ (2.18)
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Here, DUε∆XC and FEε∆XC are the components of error in predicted deflection ∆̂XC as

a result of DUεc and FEεc, respectively. DUεXC and FEεXC are the components of error in

predicted command pose as a consequence of DUε∆XC and FEε∆XC , respectively. Matrix

ÂC is a function of X̂C and∆FD.

The robot’s end-effector/platform attains a pose XA after elastostatic error compensa-

tion and this is equal to XD when there are no parameter errors. Therefore, the following

expression can be written:

XA=XC+∆XC=XD (2.19)

In the presence of errors in estimated parameters, however, the platform reaches a dif-

ferent pose X̂A. The following can then be written:

X̂A= X̂C + ac∆XC (2.20)

Here, ac∆XC is the actual deflection of the end-effector/platform at the pose X̂C as a

result of actual stiffness parameters (c) and applied load∆FD.

Now, the following expression can be obtained using equations 2.20 and 2.15:

X̂A=XD− ∆̂XC+
ac∆XC (2.21)

Equation 2.21 can be expanded to obtain

XA+
DUεXA+

FEεXA =XD−
(
∆XC+

DUε∆XC+
FEε∆XC

)
+ ac∆XC (2.22)

In equation 2.22, DUεXA and FEεXA are the errors in pose attained after compensation

as a consequence of DUε∆XC and FEε∆XC , respectively. DUε∆XC and FEε∆XC are, in turn,
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a consequence of DUεc and FEεc, respectively. DUε∆XC and FEε∆XC can be expressed

as

DUε∆XC = ÂC
DUεc (2.23)

FEε∆XC = ÂC
FEεc (2.24)

Furthermore, the following can also be written:

∆XC=AC c≈ ÂC c= ac∆XC (2.25)

Note thatAC is a function ofXC and FD while ÂC is a function of X̂C and FD. XC and X̂C

need to be very close in the workspace for equation 2.25 to be true. XC and X̂C will indeed

be very close in the workspace unless: (a) the errors in measurements are very high relative

to the level of positioning precision required 8, and/or (b) the force/moment assumed to

have been applied at the end-effector/platform during positioning is very different from

the force/moment actually applied. These two reasons are assumed to be untrue. Hence,

XC and X̂C can be assumed to be close and consequently, equation 2.25 can be assumed

to be valid. Simlarly,XD andXC will also be very close in the workspace. The following can

then be written:

∆XC=AC c≈AD c=∆XD (2.26)

Here, AD is a function of XD and FD. Now, using equation 2.22 and that XA = XD

(see equation 2.19) and∆XC ≈ ac∆XC (see equation 2.25), the following expression can be

obtained:

DUεXA ≈ − DUε∆XC (2.27)

8. When, for example, the required positioning precision is in microns and the errors in measurements
are in centimeters.
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Finally, the covariance matrix of DUεXA can be derived which will be useful in evalu-

ating the influence of uncertainty of measured deflections on the uncertainty of resultant

compensation errors. Using equation 2.27, the following can be obtained:

Cov( DUεXA) ≈ Cov( DUε∆XC)

≈ Cov(AC
DUεc) (2.28)

Since,AD andAC are approximately equal, equation 2.28 can be further expanded as

Cov( DUεXA) ≈ Cov(AD
DUεc)

≈ AD Cov(
DUεc)ATD (2.29)

Finally, equations 2.29 and 2.13 lead to the following expression:

Cov( DUεXA)≈ ( DUσε̃∆XM
)2 AD H (asÃM

T
asÃM)−1 HT ATD︸ ︷︷ ︸
U

(2.30)

Equation 2.30 presents the relationship that governs the propagation of uncertainty

in measured deflections to uncertainty of resultant errors in pose attained after compen-

sation. In this, matrix U contains the scaling factors that scale DUσ2ε̃∆XM
to respective

elements ofCov( DUεXA). U is a function of the poses and forces/moments used for stiff-

ness identification. Hence, U can be used as a medium to evaluate the influence of poses

and forces/moments used for stiffness identification on the propagation of uncertainty

from deflection measurements to resultant compensation errors. Section 2.3.2 discusses

about the appropriate usage of the relationship of equation 2.30 to identify the set of poses

and forces/moments for stiffness identification which are best suited for the application at

hand.
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2.3.2 Formulation of DUIR criterion

As seen in equation 2.30, matrixU controls the propagation of uncertainty in measured

deflections to uncertainty of resultant compensation errors. Hence, relevant components

of U must be minimized in order to optimize stiffness identification in a way that is best

for a given application at hand. The diagonal elements of U scale DUσ2ε̃∆XM
to the vari-

ances of the respective elements of DUεXA . Minimizing the first diagonal element of U,

for example, will ensure that variance of first element of DUεXA will be the least possible

for a given DUσε̃∆XM
. When best positioning performance is needed along multiple axes

of the robot’s end-effector/platform, multiple diagonal elements ofUmust be minimized.

This can be done using a multi-objective optimization approach or by minimizing some

combination of the diagonal elements ofU.

When the robot’s end-effector/platform pose coordinates have both translations and

rotations, the diagonal elements ofU correspond to translational and rotational elements.

Consequently, if the diagonal elements ofU need to be compared in an optimization pro-

cedure, the issue of non-homogeneous comparison arises. This is because comparing the

diagonal elements ofU corresponding to translational coordinates of DUεXA with the di-

agonal elements of U corresponding to rotational coordinates of DUεXA is not valid. To

solve this issue, equation 2.30 can be split into two: one concerned only to the translational

elements of DUεXA and the other concerned only to rotational elements of DUεXA . They

can be written as

Cov( DU,tεXA)≈ ( DUσε̃∆XM
)2 tAD H (asÃM

T
asÃM)−1 HT tATD (2.31)

Cov( DU,rεXA)≈ ( DUσε̃∆XM
)2 rAD H (asÃM

T
asÃM)−1 HT rATD (2.32)

In equation 2.31, DU,tεXA contains the translational components of DUεXA . Similarly,

in equation 2.32, DU,rεXA contains the rotational components of DUεXA . rAD and tAD

are the rows ofAD corresponding to the rotational and translational elements of∆XD, re-
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spectively. tAD and rAD are related to their respective elements of∆XD,∆XD
t and∆XD

r,

respectively, as

AD︷ ︸︸ ︷[
tAD
rAD

]
c=

∆XD︷ ︸︸ ︷[
∆XD

t

∆XD
r

]
(2.33)

Furthermore, some applications can demand for minimization of positioning error af-

ter compensation in terms of translational distance (Euclidean norm). Appendix E shows

the relationship between the RMS value of possible Euclidean norms of DU,tεXA , denoted

as DUρ, andCov( DU,tεXA). In equation E.7 of Appendix E, it can be seen that DUΩ from

E.6 is a scalar that is directly proportional to DUρ and it is dependent on the measurement

conditions (poses and forces/moments used for stiffness identification). Therefore, choos-

ing appropriate poses and forces/moments for stiffness identification that minimizesDUΩ

will minimize the RMS value of possible Euclidean norms of DU,tεXA . It must be noted

here that this criterion is similar to OTP and OMV (see table 1.1). When positioning at

multiple poses and/or multiple loads needs to be optimized, multiple values of DUΩ are

obtained (one corresponding to each positioning case). A multi-objective optimization to

minimize the multiple values of DUΩ can then be done. Alternately, some combination of

the values of DUΩ can be minimized.

2.4 Minimizing the influence of applied force/moment

error on positioning error after compensation (FEIR

criterion)

2.4.1 Relationship between applied force/moment error and resultant

positioning error after compensation

In order to derive the necessary relationship, the expression relating errors in forces/-

moments applied during stiffness identification and the resultant errors in estimated pa-
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rameters can be obtained first. Equation 2.6 can be used to obtain this expression and it

can be written as

G asAM HH
−1 FEεc=G FEε∆XM (2.34)

Furthermore, the following expression can also be written:

as
ij ∆FM= iJ

−T K iJ̌
−1 ∆XM

ij (2.35)

In equation 2.35, ∆XM
ij is the jth deflection measurement performed at the ith mea-

surement pose, XiM. iJ and iJ̌ are the Jacobians corresponding to XiM.

Any error in the load applied on the platform leads to an error in the measured deflec-

tion. Therefore, the following can be written:

as
ij ∆FM+ ijε∆FM = iJ

−T K iJ̌
−1(∆XM

ij+ FE
ij ε∆XM) (2.36)

In equation 2.36, FE
ij ε∆XM is the error corresponding to ∆XM

ij due to the applied

force/moment error ijε∆FM . Equations 2.36 and 2.35 give

ijε∆FM = iJ
−T K iJ̌

−1 FE
ij ε∆XM (2.37)

Equation 2.37 can be rewritten as

FE
ij ε∆XM = iJ̌ K

−1
iJ
T︸ ︷︷ ︸

iD

ijε∆FM (2.38)
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Equation 2.38 leads to the following expression:

FEε∆XM =

D︷ ︸︸ ︷

1D

1D 0
. . .

2D

0
. . .

. . .


ε∆FM (2.39)

Substituting for FEε∆XM from equation 2.39 in equation 2.34 leads to

G asAM HH
−1 FEεc=GDε∆FM (2.40)

Equation 2.40 can be rewritten as

FEεc=H asÃM
+
GDε∆FM (2.41)

Equation 2.41 can be used to evaluate the effect of ε∆FM on FEεc. However, matrix

D is not known a priori since K (matrix containing stiffness parameters to be estimated)

is not known a priori. Consequently, a preliminary test must be performed to obtain the

matrix containing approximate values of stiffness parameter values, apK. The following

expressions can then be written:

ap
i D= iJ̌

apK−1
iJ
T (2.42)

apD=diag( ap1 D
ap
1 D ...

ap
2 D...) (2.43)

apD is the matrixD formulated using apK. Equation 2.41 can then be rewritten as

FEεc=H asÃM
+
G apDε∆FM (2.44)
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Equations 2.15, 2.16 and 2.17 give

XC+
DUεXC + FEεXC =XD−(∆XC + DUε∆XC + FEε∆XC) (2.45)

Following from the definitions of DUεXC , FEεXC , DUε∆XC and FEε∆XC and equations

2.45 and 2.14, the following can be written:

FEεXC =−FEε∆XC (2.46)

Furthermore, equations 2.46, 2.18, 2.25, 2.26 and 2.6 give

FEεXC = −ÂC
FEεc

≈ −AD
FEεc (2.47)

Also, equations 2.47 and 2.44 give

FEεXC ≈−AD H
asÃM

+
G apDε∆FM (2.48)

Additionally, equation 2.21 gives

XA + DUεXA + FEεXA ≈XC + DUεXC + FEεXC+∆XD (2.49)

In equation 2.49, DUεXA and FEεXA are the errors in pose attained after compensation

as a consequence of DUεXC and FEεXC , respectively. DUεXC and FEεXC are a conse-

quence of DUε∆XC and FEε∆XC (see equation 2.45), respectively. Equation 2.49 is true

because∆XD ≈ ac∆XC (see equation 2.25 and 2.26).

Now, using equations 2.49 and 2.19 and from definitions ofDUεXA , FEεXA ,DUεXC and
FEεXC , the following can be written:

FEεXA ≈ FEεXC (2.50)



76
CHAPTER 2. APPLICATION-ORIENTED ROBOT ELASTOSTATIC CALIBRATION

OPTIMIZATION

Finally, equations 2.48 and 2.50 yield the necessary expression:

FEεXA ≈ −AD H
asÃM

+
G apDε∆FM (2.51)

≈ −AD
asAM

+ apD︸ ︷︷ ︸
Z

ε∆FM

Equation 2.51 presents the relationship that governs the propagation of errors in ap-

plied force/moment during stiffness identification to the resultant errors in pose attained

after compensation. The choice of poses and forces/moments for stiffness identification

experiment changes matrix "Z" which in turn influences propagation of ε∆FM to FEεXA .

Z can be used as a medium to evaluate the influence of poses and forces/moments used

for stiffness identification on the propagation of errors in applied force/moment during

stiffness identification to the resultant errors in pose attained after compensation. Section

2.4.2 discusses about the appropriate usage of the relationship of equation 2.51 to identify

the set of poses and forces/moments for stiffness identification which are best suited for

an application at hand.

2.4.2 Formulation of FEIR criterion

As can be seen in equation 2.51, matrix Z controls the propagation of errors in forces/-

moments applied for stiffness identification to the resultant errors in pose attained after

compensation. Hence, relevant components of Zmust be minimized in order to optimize

stiffness identification in a way that is best for a given application at hand. For example,

when best performance is required along the first axis of the end-effector/platform (first

element of XD) at the desired target pose, the first element of FEεXA must be minimized.

When no prior information about the errors in applied forces/moments is available, for

example when force/moment is manually applied without measuring it, it is best to mini-

mize all the elements of first row of Z. One way to do this is to minimize the 2-norm of the

first row of Z. Sometimes, even when the load is applied manually without measuring it,

the user can have an idea as to which element(s) of ε∆FM might acquire high values. This
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can be evident due to the nature of loading 9. Consequently, the corresponding elements

of matrix Z can be minimized.

When the applied load is measured using some force measurement instrument, the

uncertainty of these measurements are usually specified by the instrument’s supplier. This

information can be helpful in optimizing stiffness identification. Equation 2.51 can be

used to get the following expression:

Cov
(
FEεXA

)≈ ZCov(ε∆FM) ZT (2.52)

When the uncertainties of force measurements are known, Cov
(
ε∆FM

)
can be de-

duced. The concerned elements of Z Cov
(
ε∆FM

)
ZT can then be minimized as per the

requirement of the application. ZCov
(
ε∆FM

)
ZT has a structure similar to any covariance

matrix. The variances of the individual elements of FEεXA are along its diagonal while the

off-diagonal elements correspond to correlations between elements of the vector FEεXA .

Therefore, the diagonal elements ofZCov
(
ε∆FM

)
ZT decide the variances along the corre-

sponding elements of FEεXA . Minimizing the first diagonal element of Z Cov
(
ε∆FM

)
ZT ,

for example, will ensure that variance of first element of FEεXA will be the least possible

for a given Cov
(
ε∆FM

)
. When best positioning performance is needed along multiple

axes of the robot’s end-effector/platform, multiple diagonal elements ofZCov
(
ε∆FM

)
ZT

must be minimized using a multi-objective optimization approach or by minimizing some

combination of its diagonal elements.

When the robot’s end-effector/platform pose coordinates have both translations and

rotations, care must be taken while comparing elements of Z or Z Cov
(
ε∆FM

)
ZT . This

is because comparing variances of rotational coordinates (or scaling factors correspond-

ing to thereof) with their translational counterparts is not valid. To solve this issue, sep-

arate relationships corresponding to the rotational and translational coordinates of the

9. For example, in the loading case for stiffness identification in Appendix D, moment errors about the X
and Y axes of the robot’s platform can be expected due to the nature of loading.
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end-effector/platform pose vector can be used. Equations 2.51 and 2.52 can be used to

get the following expressions:

FE,rεXA ≈ −

rZ︷ ︸︸ ︷
rAD

asAM
+ apD ε∆FM (2.53)

FE,tεXA ≈ −

tZ︷ ︸︸ ︷
tAD

asAM
+ apD ε∆FM (2.54)

Cov
(FE,rεXA)≈ rZCov

(
ε∆FM

)
rZT (2.55)

Cov
(FE,tεXA)≈ tZCov

(
ε∆FM

)
tZ
T

(2.56)

In the above equations, FE,tεXA and FE,rεXA are the translational and rotational com-

ponents of FEεXA , respectively. tZ and rZ are the rows of Z corresponding to FE,tεXA
and FE,rεXA , respectively.

Furthermore, some applications demand for minimization of positioning error after

compensation in terms of translational distance (Euclidean norm). In such cases, another

set of expressions can be useful to formulate FEIR criterion. When the variance of expected

force/moment error is not known, the relationship between the norm of FE,tεXA and the

error in applied force/moment can be useful. This expression can be obtained using equa-

tion 2.54 in the following form 10:

|| FE,tεXA ||2 ≈ ||− tZ ε∆FM ||2 ≤ ||− tZ||2 ||ε∆FM ||2 (2.57)

It can be seen in equation 2.57 that minimizing ||− tZ||2 minimizes the influence of

errors in applied forces/moments on the resultant distance error after compensation.

10. This follows from the inequality ||A X||2 ≤ ||A||2 ||X||2 for any m×n matrix A and n-vector X (refer
chapter 9 of [Seber and Lee, 2012]).
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When the variance of the expected force/moment error is known 11, the expression de-

rived in Appendix F can be useful. In this, the relationship between the RMS value of

possible Euclidean norms of FE,tεXA , denoted as FEρ, and Cov( FE,tεXA) is shown. In

Appendix F, it can be seen that 12 tr
(
tZ Cov(ε∆FM) tZT

)
is equal to FEρ and the value of

tr
(
tZCov(ε∆FM) tZT

)
is dependent on the measurement conditions (poses and forces/-

moments used for stiffness identification). Consequently, choosing poses and forces/mo-

ments for stiffness identification that minimize tr
(
tZCov(ε∆FM) tZT

)
will minimize the

RMS value of possible Euclidean norms of FE,tεXA . When positioning at multiple poses

and/or multiple loads needs to be optimized, multiple values of tr
(
tZ Cov(ε∆FM) tZT

)
are obtained (one corresponding to each positioning case). Consequently, multiples values

of tr
(
tZ Cov(ε∆FM) tZT

)
must be minimized. This can be accomplished using a multi-

objective optimization approach or by minimizing some combination of those values.

2.5 Conclusion

This chapter presented a stiffness identification optimization framework that counters

the limitations of the existing criteria for the same, which were presented in chapter 1.

To accomplish this, a reformulated stiffness identification problem was firstly presented.

This reformulated stiffness identification problem considers the influence of two error

sources impacting stiffness identification: the errors in forces/moments applied during

stiffness identification experiment and the uncertainty of deflection measurements per-

formed. This is unlike previous works as they ignored the former source of error. This was

followed by derivation of relationships that relate the errors impacting stiffness identifi-

cation to the resultant pose errors after compensation. Discussion was then provided on

the usage of the presented relationships to formulate necessary criterion/criteria for best

stiffness identification depending on the specifications of the application at hand.

11. For example, when the force/moment applied is measured using an instrument and the uncertainty
of the measurements made using this instrument is known.

12. Note here that tr() denotes the trace of the corresponding matrix.
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Chapter Abstract

This chapter aims at validating the efficacy of stiffness identification optimization frame-

work presented in chapter 2. This is achieved using simulated elastostatic calibrations of a

bipod. Three simulation studies are presented which validate the efficacy of using: (a) DUIR

criterion 1, (b) FEIR criterion 2, and (c) both criteria together, to select best poses and forces

for stiffness identification. Results of these simulation studies confirm the efficacy of the pre-

sented stiffness identification optimization framework.

1. This criterion can be formulated using the presented stiffness identification optimization framework.
It minimizes the influence of uncertainty of deflection measurements (performed for stiffness identification)
on the compensation quality.

2. This criterion can be formulated using the presented stiffness identification optimization framework.
It minimizes the influence of errors in forces applied for stiffness identification on the compensation quality.
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3.1 Introduction

This chapter presents simulation studies performed on a planar bipod to evaluate the

efficacy of the presented stiffness identification optimization framework. This mechanism

was chosen for these simulation studies to facilitate ease of analysis of results as this mech-

anism is simple.

Three simulation studies are presented in this chapter. In these studies, elastostatic

calibrations of a bipod are simulated. In the first simulation study, elastostatic calibrations

are simulated with only deflection measurement uncertainty influencing stiffness identifi-

cations. The performances of stiffness identification measurement conditions (poses and

forces) selected using DUIR criterion and various previously proposed criteria 3 are then

compared. In the second simulation study, elastostatic calibrations are simulated in which

stiffness identifications are influenced only by errors in forces applied. These are used to

evaluate the ability of FEIR criterion to recommend stiffness identification measurement

conditions which minimize the influence of these errors on compensation quality. In the

third and the last simulation study, errors from both sources 4 influence the simulated stiff-

ness identifications. These are then used to evaluate the efficacy of using DUIR and FEIR

criteria together to select best set of poses and forces for stiffness identification.

This chapter is organized as follows: section 3.2 describes the assumed mechanism, its

kinematics and its stiffness model. Sections 3.3, 3.4 and 3.5 present the details and results

of the three simulation studies. Finally, section 3.6 presents the conclusion of this chapter.

3.2 Mechanism description, kinematics and stiffness

model

Figure 3.1 shows the bipod under study and its assumed dimensions. This bipod is

assumed to be driven using two prismatic actuators as shown in the figure. This bipod

is assumed to have a simple workspace, as shown in figure 3.1, for ease of analysis. The

compliance is assumed to exist only in the actuated joints and the rest of the structure

3. For minimizing the influence of deflection measurement uncertainty on stiffness identification.
4. Deflection measurement uncertainty and errors in forces applied.
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is assumed to be rigid. The stiffness of each of the two actuated joints is assumed to be

10 N/µm. Also, the joints of this mechanism are assumed to be frictionless and the legs

are assumed to have negligible mass.

Figure 3.1: Schematic of the bipod under study

The end-effector position vector, BX, defines the position of the end-effector with re-

spect to its position when the bipod has the configuration as in figure 3.1. Bq contains the

lengths of the prismatic links and is written as

Bq= [Bq1 Bq2 ]
T (3.1)

The relationship between the velocity of the end-effector and those of the actuated

joints is given by

Bη= BJ Ḃq (3.2)

Here, Bη is the end-effector’s velocity vector, Ḃq contains the velocities of the actuators

and BJ is the Jacobian matrix. The equation relating the differential position vector (B∆X)
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and the differential actuator position vector (B∆q), as in equation 1.13, can be written for

this case as

B∆q= BJ
−1

B∆X (3.3)

Note that the relationship in equation 3.3 contains the normal Jacobian matrix BJ in-

stead of a modified Jacobian matrix as in equation 1.13. This is because the end-effector

pose coordinates have less than two rotational degrees of freedom (zero in this case).

A simple lumped stiffness model (shown in figure 3.2) was used to model the static stiff-

ness characteristics of this mechanism. One spring is used to model the stiffness of each

leg (Bki=1,2). This modelling method is consistent with the method described in chapter 1.

Figure 3.2: Lumped stiffness model of the bipod under study

The Cartesian stiffness matrix (as in equation 1.15), BKC, for this bipod can be written

as

BKC= BJ
−T

BK BJ
−1 (3.4)

where matrix BK is diagonal matrix with leg stiffnesses forming its diagonal elements.

It is given by

BK=

[
Bk1 0

0 Bk2

]
(3.5)
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The Cartesian stiffness matrix BKC relates the differential force vector (B∆F) and the

differential position vector (B∆X) as

B∆F= BKC B∆X (3.6)

Rearrangement of this equation yields the relationship similar to equation 1.17:

BA Bc= B∆X (3.7)

Here, BA is the observation matrix and it is given by

BAij= BJij
( 2∑
r=1

BJrj B∆Fr
)

(3.8)

where BAij and BJij denote the jth element of the ith row of matrices BA and BJ, re-

spectively. B∆Fr denotes the rth element of vector B∆F. Bc is the vector with compliance

parameters and is given by

Bc=
[ 1
Bk1

1

Bk2

]T
(3.9)

3.3 Simulation study 1: validation of DUIR criterion

Consider a case in which elastostatic calibration of the bipod (figure 3.1) must be per-

formed to position its end-effector precisely at a position B1XD = [250;−250]mm with a

force B1FD = [0;−200]N applied on it. Assume that best possible positioning accuracy is

desired only along the X-axis of the end-effector and that the positioning accuracy along

its Y-axis is inconsequential. Also suppose that stiffness identification can be done at only

one position using three deflection measurements and with a force of B1FM = [0;−200]N

applied at the end-effector. Let the uncertainty of position measurement system lead to

independent deflection measurement uncertainties of 10 µm and 20 µm standard devi-

ations along the end-effector’s X and Y axes, respectively. Furthermore, let the errors in



3.3. SIMULATION STUDY 1: VALIDATION OF DUIR CRITERION 87

forces applied during stiffness identification be zero in this case. The best position for

stiffness identification must, therefore, be selected to minimize the influence of deflection

measurement uncertainty on positioning accuracy after compensation.

Since only uncertainty of measured deflections affects stiffness identification quality,

DUIR criterion must be formulated to find the best position for stiffness identification in

this case. For the sake of comparison, other previously proposed criteria 5 (O1-O5, OTP

and OMV ) can be used to find the best position for stiffness identification. To compare

the performances of different identification positions, Monte-Carlo simulations were per-

formed in which elastostatic calibrations of the bipod were simulated many times. Section

3.3.1 presents the details and results of stiffness identification optimization. The details

and results of the validation simulations are then presented in section 3.3.2.

3.3.1 Stiffness identification optimization

The stiffness identification equation ( equation 2.6) can be rewritten for this case as

B1GU
as
B1AM B1H B1H

−1 ( B1c + DU
B1 εc)= B1GU ( B1∆XM + DU

B1 ε∆XM) (3.10)

Here, the left subscript "B1" specifies that the corresponding matrices/arrays of equa-

tion 2.6 have been formulated for this case. Since there is no applied force error, the cor-

responding terms of equation 2.6 do not exist in equation 3.10. B1GU is a 6× 6 matrix

with inverse of deflection measurement standard deviations along its diagonal elements

and is formulated as shown in equation 1.22. B1H is a 2× 2 identity matrix because the

expected magnitudes of estimated parameters are same. B1∆XM and DU
B1 ε∆XM are 6× 1

vectors which together constitute the measured deflections. DUB1 ε∆XM contains the errors

in measured deflections due to deflection measurement uncertainty. asB1AM is a 6×2matrix

which is a function of the forces assumed to be applied and the position used for stiffness

identification. Parameter set of equation 3.10 is estimated using least squares method.

5. The criteria from theory of experiment design (ex: A-optimality, D-optimality, etc.) are not mentioned
here because each of them has an equivalent observability index [Sun and Hollerbach, 2008].
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Let B1X̂A be the position attained after compensation in this case. U from equation

2.30 can be rewritten for this case as

B1U= B1AD B1H
( ˜as
B1AM

T ˜as
B1 AM

)−1
B1H

T
B1A

T
D (3.11)

Here, B1U and B1AD are 2×2 matrices. B1AD is a function of the target position and

force applied at the end-effector during the intended positioning. The first diagonal el-

ement of B1U, B1U11, is the scaling factor corresponding to variance along the X-axis of

B1X̂A. Hence, the identification position which minimizes B1U11 must be found.

The plot of DUIR criterion formulated for this case, B1U11, varying across the allowed

workspace is shown in figure 3.3. Also, figure 3.4 shows values of other position selection

criteria (O1-O5, OTP andOMV ) at positions across the workspace of the bipod. Note that

OTP andOMV yield same values in this case. This is because these two criteria have same

expressions when best positioning is desired at just one position (see table 1.1). Figure 3.5

shows the best position as per each criterion for this case.
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Figure 3.3: Plot showing values of DUIR criterion (B1U11) for the elastostatic calibration
of simulation study 1 (position having the lowest value of B1U11 is the best position for
stiffness identification as per DUIR criterion in this case)
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Figure 3.5: Plot showing different positions at which stiffness identifications were simu-
lated in simulation study 1

3.3.2 Validation simulations

In order to validate the proposed criterion, Monte-Carlo simulations of simulated elas-

tostatic calibrations were performed. Stiffness identification experiment was simulated

10000 times at each of the identification positions 6. For the sake of comparison, stiff-

ness identification experiments were also simulated at: (a) the desired target position,

[250;−250]mm, (b) the worst position as per DUIR criterion, and (c) four other randomly

chosen positions (see figure 3.5). During each trial of simulated stiffness identification, a

different measured deflection error was supplied and they varied as per the assumed stan-

dard deviations: 10 µm and 20 µm standard deviations along X and Y axes, respectively.

The estimated parameter set in each trial was used to simulate the compensation. The

standard deviations of errors in positions attained after these simulated compensations

can be used to evaluate the quality of each identification position. Figure 3.6 shows the

flowchart of this simulation.

Figure 3.7 shows the probability density functions of errors in positions attained after

simulated compensations using parameters identified at different identification positions

mentioned above. Table 3.1 lists the standard deviations of these distributions along with

the corresponding values of B1U11. These results show that the best identification position

6. Suggested by different criteria.
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Figure 3.6: Flowchart of the Monte-Carlo simulations of simulation study 1

as per DUIR criterion performs best. Also, the worst identification position as per DUIR

criterion is seen to perform worst among all the identification positions. Furthermore,
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comparing the values of B1U11 with the standard deviations of X-coordinate of errors in

attained positions shows that the performance trend (of identification positions) shown

by the two are same. These observations show that DUIR can effectively predict and help

to optimize stiffness identification such that influence of deflection measurement uncer-

tainty on compensation errors is minimized.

Figure 3.7: Probability density functions of errors in positions attained after simulated
compensations in Monte-Carlo simulations of simulation study 1

Table 3.1: Standard deviations of X-coordinate of attained position errors (obtained from
Monte Carlo simulations of simulation study 1) and the corresponding values of B1U11

Identification position
Standard deviation of X-coordinate
of attained position errors (µm) Value ofB1U11 (m

2)

Best position as per DUIR criterion 3.27 1.044×10−11
Worst position as per DUIR criterion 13.45 1.781×10−10

Best position as perOTP/OMV 3.99 1.557×10−11
Best position as perO1 3.75 1.377×10−11

Best position as perO2,O3 &O4 4.05 1.602×10−11
Best position as perO5 3.82 1.425×10−11

Desired target position B1XD 5.84 3.3×10−11
Randomly chosen position 1 6 3.579×10−11
Randomly chosen position 2 6.15 3.687×10−11
Randomly chosen position 3 6 3.55×10−11
Randomly chosen position 4 3.4 1.127×10−11
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3.4 Simulation study 2: validation of FEIR criterion

Consider a case where elastostatic calibration of the bipod (figure 3.1) must be per-

formed to position its end-effector precisely at a position B2XD = [0;0] mm with a force

B2FD = [0;−200] N applied on it. Assume that the measurement system used for deflec-

tion measurements has zero (relatively negligible) uncertainty. Also suppose that identi-

fication can only be done at one position using one deflection measurement and using a

force B2FM= [0;−200]N applied at the end-effector. Furthermore, assume that the forces

applied along the X and Y axes at the end-effector are measured using two independent

force gauges which have standard uncertainty 7 of 10 N. Therefore, the force assumed to

be applied at the end-effector will have an error due to the uncertainty of the force mea-

surement instrument used. The best position for stiffness identification must, therefore, be

selected to minimize the influence of error in force applied during stiffness identification

on compensation quality, depending on the specifications of desired positioning task 8.

Since only uncertainty of force applied affects stiffness identification, only FEIR crite-

rion had to be formulated to evaluate the suitability of positions for stiffness identification.

Here, FEIR criteria were formulated for the case where best positioning would be desired

along the X-axis or Y-axis of the end-effector after compensation. In order to validate the

proposed criteria, Monte-Carlo simulations were performed in which elastostatic calibra-

tions were simulated many times. In these Monte-Carlo simulations, stiffness identifica-

tions were simulated at different positions across the workspace. The performance of these

identification positions were then compared with the indication of the proposed FEIR cri-

teria. Section 3.4.1 presents the formulation and indications of FEIR criteria for this case.

The details and results of the validation simulations are then presented in section 3.4.2.

7. Uncertainty of measurement expressed in terms of standard deviation.
8. Depending on whether best positioning accuracy is desired : (a) along the X-axis only, or (b) along the

Y-axis only, or (c) along both axes, or (d) in terms of distance errors, of the end-effector after compensation.
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3.4.1 Formulation of FEIR criterion

The stiffness identification equation (equation 2.6) can firstly be rewritten for this case

as

B2G
as
B2AM B2H B2H

−1 ( B2c + FE
B2εc)= B2G ( B2∆XM + FE

B2ε∆XM) (3.12)

Here, the left subscript "B2" specifies that the corresponding matrices/arrays of equa-

tion 2.6 have been formulated for this case. Since there are no errors in measured deflec-

tions due to uncertainty of deflection measurement system, the corresponding terms of

equation 2.6 do not exist in equation 3.12. B2G is a 2×2 identity matrix since there is only

one deflection measurement. B2H is a 2× 2 identity matrix because the expected mag-

nitudes of estimated parameters are same. B2∆XM and FE
B2ε∆XM are 2× 1 vectors which

together constitute the measured deflection. FEB2ε∆XM contains the error in measured de-

flection due to error in force applied during stiffness identification experiment. asB2AM is a

2×2 matrix which is a function of the force assumed to be applied and the position used

for stiffness identification. Parameter set of equation 3.12 is estimated using least squares

method.

Matrix Z from equation 2.51 can be written for this case first as it relates the errors in

force applied during stiffness identification to the resultant errors in position attained after

compensation. It is given by

B2Z= B2AD
as
B2AM

+ ap
B2D (3.13)

where B2Z is a 2×2 matrix. 2×2 matrix B2AD is a function of the target position and

force applied at the end-effector during the intended positioning. apB2D is also a 2×2matrix

which is a function of the identification position and the approximate values of stiffness

parameters (see section 2.4.1). The assumed actual values of stiffness parameters were

used as approximate stiffness parameters.

In this case, the relation between covariance matrices of applied force error and the cor-

responding error in position attained after compensation (see equation 2.52) can be used
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to optimize stiffness identification. The relation between covariance matrices of applied

force error and the corresponding attained position error in this case is given by

Cov
(FE
B2
εXA

)≈ B2ZCov
(
B2
ε∆FM

)
B2Z

T (3.14)

Here, FEB2εXA is the error in position attained after compensation due to the error in

force applied during stiffness identification (B2ε∆FM). Cov
(
B2ε∆FM

)
is known from data

about uncertainty of the force gauges. Equation 3.14 can then be written as

Cov
(
FE
B2εXA

)≈ B2Z v I B2Z
T

≈ v B2Z B2Z
T

(3.15)

v in equation 3.15 is a scalar which is determined by the diagonal elements of

Cov
(
B2ε∆FM

)
. The diagonal elements ofCov

(
B2ε∆FM

)
contain the variances of each el-

ement of B2ε∆FM and they are equal to 9 100. Consequently, v is equal to 100. Cov
(
FE
B2εXA

)
is a 2×2matrix and its first diagonal element corresponds to the variance along the X-axis

of end-effector after compensation. Consequently, the position that minimizes the first di-

agonal element ofCov
(
FE
B2εXA

)
must be found for best positioning along end-effector’s X-

axis. Similarly, its second diagonal element must be minimized for best positioning along

end-effector’s Y-axis. Since B2Z B2Z
T is only scaled with v to get Cov

(
FE
B2εXA

)
, the diago-

nal elements of B2Z B2Z
T can also be minimized. Let ζ contain the diagonal elements of

B2Z B2Z
T .

ζ=diag
(
B2Z B2Z

T
)

(3.16)

Therefore, the position that minimizes the first element of ζ, ζ1, must be found for best

positioning along X-axis of the end-effector. Similarly, the second element of ζ, ζ2, must

be minimized for best positioning along its Y-axis. Figures 3.8 and 3.9 show the values of

ζ1 and ζ2 for different identification positions across the workspace of the bipod.

9. Since the standard deviations of each element of B2ε∆FM is 10 N.
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Figure 3.8: ζ1 values for different identification positions across the workspace of the bipod

Figure 3.9: ζ2 values for different identification positions across the workspace of the bipod
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3.4.2 Validation simulations

Monte Carlo simulations were performed to validate the efficacy of the proposed FEIR

criteria. Figure 3.10 shows the flowchart for this simulation. In these Monte Carlo simula-

tions, stiffness identification experiments were simulated at different positions. These are:

P1 = [0;250] mm, P2 = [0;0] mm, P3 = [0;−250] mm, P4 = [−250;−250] mm and

P5 = [250;−250]mm. At each of these identification positions, stiffness identification ex-

periments were simulated 10000 times and the error in applied force was different in each

trial 10. The estimated parameter set in each trial was used to simulate the compensation

at the target position B2XD with a force [0;−200]N at its end-effector. To validate the pro-

posed FEIR criteria, the compensation quality achieved (in terms of compensation errors

along the X and Y axes) using the different identification positions can be cross-checked

with the indication of FEIR criteria (figures 3.8 and 3.9).

Table 3.2 lists the standard deviations of errors in positions attained after performing

the Monte-Carlo simulations described above. Comparing the indication of FEIR criteria

(ζ1 and ζ2) with the results of Monte Carlo simulations (standard deviations of errors in

positions attained), one can observe the following:

(a) positions P1, P2 and P3 have the same standard deviations of FEB2ε
y
XA

in the results of

the Monte-Carlo simulations. The standard deviation of FEB2εxXA for P1 is smaller than

that of P2, which in turn is smaller than that of P3. The same corresponding trends

are seen in plots of ζ1 and ζ2 (figures 3.8 and 3.9) which are the indicators of com-

pensation performance along X and Y coordinates of the end-effector, respectively.

That is, ζ2 remains the same (and is minimum) for P1, P2 and P3 while ζ1 decreases

along the +ve direction of Y-axis.

(b) positions P3 and P4 have the same standard deviations of FEB2εxXA in the results of the

Monte-Carlo simulations whereas the standard deviation of FEB2ε
y
XA

for P3 is smaller

than that of P4. The same corresponding trends can be seen for ζ1 and ζ2.

(c) positions P4 and P5 have same standard deviations of FEB2εxXA and FE
B2ε

y
XA

. Corre-

sponding values of ζ1 and ζ2 also indicate the same.

10. The applied force error varied as per the assumed standard deviations of force gauge uncertainty: 10N
along X and Y coordinates of the applied force.
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Figure 3.10: Flowchart of the Monte-Carlo simulations of simulation study 2

The observations listed above indicate that FEIR criterion can predict and consequently,

allow to minimize the influence of errors in forces applied during stiffness identification

experiment on the compensation quality.
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Table 3.2: Standard deviations of errors in positions attained after compensations, in the
Monte-Carlo simulations described in figure 3.10

Position label
Identification
position (mm)

Standard deviation
of FEB2ε

x
XA

(µm)
Standard deviation
of FEB2ε

y
XA

(µm)

P1 [0;250] 0.4 1.3
P2 [0;0] 0.7 1.3
P3 [0;-250] 1.9 1.3
P4 [-250;-250] 1.9 2.5
P5 [250;-250] 1.9 2.5

Note: FEB2ε
x
XA

and FEB2ε
y
XA

are the X and Y coordinates of FEB2εXA , respectively.

3.5 Simulation study 3: validation of use of both criteria

together

Consider a case where elastostatic calibration of the bipod (figure 3.1) has to be per-

formed to position its end-effector at position B3XD = [0;0] mm with a force B3FD =

[0;−200]N applied to it. Assume that best positioning accuracy is required only along its X-

axis. Also suppose that stiffness identification can be done at only one position using three

deflection measurements and using force B3FM = [0;−200]N applied at the end-effector.

Let the uncertainty of position measurement system lead to independent deflection mea-

surement uncertainty of 10 µm standard deviation along end-effector’s X and Y axes. Fur-

thermore, assume that the applied force can’t be determined precisely due to the setup

being used. Let there be an error in applied force described by the vector [−75;−75] N

every time force is applied using this apparatus. Note that this applied force error is not

known to the user. Best position for stiffness identification must, therefore, be selected to

identify optimal parameter set.

Stiffness identification is bound to be affected by uncertainty of deflection measure-

ments and errors in forces applied in this case. Therefore, both DUIR and FEIR criteria

must be used together to find the best position for stiffness identification. For the sake of

comparison, best position for stiffness identification can also be found using only DUIR

criterion and only FEIR criterion. To compare the performances of these identification

positions, Monte-Carlo simulations can be performed to simulate elastostatic calibrations
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of the bipod many times. Section 3.5.1 presents the details and results of stiffness identi-

fication optimization. The details and results of the validation simulations are shown in

section 3.5.2.

3.5.1 Stiffness identification optimization

The stiffness identification equation (equation 2.6) can be written for this case as

B3GU
as
B3AM B3H B3H

−1 ( B3c + DU
B3 εc+ FE

B3εc)= B3GU ( B3∆XM + DU
B3 ε∆XM+ FE

B3ε∆XM)

(3.17)

Here, the left subscript "B3" specifies that the corresponding matrices/arrays of equa-

tion 2.6 have been formulated for this case. B3GU is a 6×6 matrix with inverse of deflec-

tion measurement uncertainties along its diagonal elements and is formulated as shown in

equation 1.22. B3H is a 2×2 identity matrix because the expected magnitudes of estimated

parameters are same. B3∆XM, DUB3 ε∆XM and FEB3ε∆XM are 6×1 vectors which together con-

stitute the measured deflections. DUB3 ε∆XM and FE
B3ε∆XM contain the errors in measured

deflections due to deflection measurement uncertainty and errors in force applied during

stiffness identification, respectively. asB3AM is a 6×2matrix which is a function of the forces

assumed to be applied and the position used for stiffness identification. Parameter set of

equation 3.17 is estimated using least squares method.

To formulate a DUIR criterion, matrix U must first be formulated for this case. Using

equation 2.30, matrixU for this case can be written as

B3U= B3AD B3H
( ˜as
B3AM

T ˜as
B3 AM

)−1
B3H

T
B3A

T
D (3.18)

Here, B3AD is a 2×2matrix which is a function of the target position and the force ap-

plied at the end-effector during the intended positioning. B3U is a 2×2matrix and it relates

the uncertainty of deflection measurements to uncertainty of resultant errors in position-

ing after compensation (see equation 2.30). The first element of B3U, B3U11, is the scaling

factor corresponding to the variance of X-coordinate of errors in position attained after
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compensation. Hence, the identification position that leads to minimum value of B3U11

minimizes the impact of uncertainty of measured deflections on the desired compensa-

tion.

To formulate a FEIR criterion for this case, matrixZ needs to be formulated first. Using

equation 2.51, Z can be written for this case as

B3Z= B3AD
as
B3AM

+ ap
B3D (3.19)

Here, B3Z is a 2×6 matrix. apB3D is a 2×2 matrix which is a function of the identifica-

tion position and the approximate values of stiffness parameters (see section 2.4.1). The

assumed actual values of stiffness parameters (10 N/µm for each spring) were used as ap-

proximate stiffness parameters. Given that prior information is not available about the

error in applied force, one way to minimize its impact on the desired compensation is to

minimize the norm of first row of B3Z. The reason for this is that the values of the first row

of B3Z scale the error in applied force to give the X component of error in position attained

after compensation.

Since both DUIR and FEIR criteria need to be considered to find the best position

for stiffness identification, a multi-objective optimization needs to be done. The multi-

objective optimization problem for this case can be written as

min
B3XM

{f1,f2}

s.t. Workspace limits

where, f1= B3U11

f2=norm
([
B3Z11 B3Z12 ... B3Z16

]) (3.20)

Here, B3XM is the identification position which minimizes both f1 and f2. B3Zij is the

jth element of ith row of B3Z. The optimization problem of equation 3.20 leads to a number

of Pareto optimal solutions. These are shown in figure 3.11. 50 solutions were considered

on the Pareto front. Many methods exist to choose the optimal solution from these Pareto

solutions. One of these methods, called the method of global criterion [Miettinen, 1999],

was used to find the optimal solution in this case. For this, the ideal objective vector must be
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obtained first, which is a solution that would be ideal but not reachable. The ideal objective

vector, denoted here aswid, is defined by the lower bounds of the Pareto front. It is given

by

wid=
[
min

(
f1(

PF
B3X

i
M )
)
,min

(
f2(

PF
B3X

i
M )
)]
, i= 1...50 (3.21)

where PF
B3X

i
M is the identification position corresponding to the ith solution on the

Pareto front. The solution on the Pareto front that is closest to the ideal objective vector is

then usually chosen as the optimal solution. However, when the objective functions have

different units and magnitudes, the function values of Pareto solutions must be scaled be-

fore choosing the closest point [Miettinen, 1999]. The new scaled objective function values

are given by

f1
r
=
fr1−w

id
1

wnad1

(3.22)

f2
r
=
fr2−w

id
2

wnad2

(3.23)

In equations 3.22 and 3.23, f1
r
, f2

r
, f1

r and f2
r are the values of f1, f2, f1 and f2 corre-

sponding to the rth Pareto solution (out of 50), respectively. widi andwnadi refer to the ith

components ofwid andwnad, respectively. wnad is the Nadir objective vector [Miettinen,

1999] and it is defined by the upper bounds of Pareto front. It is given by

wnad=
[
max

(
f1(

PF
B2X

i
M )
)
,max

(
f2(

PF
B2X

i
M )
)]
, i= 1...50 (3.24)

Ideal and Nadir objective vectors are shown in figure 3.11. The scaled Pareto front and

the corresponding ideal and Nadir objective vectors are shown in figure 3.12 . The solution

on the scaled Pareto front closest to the scaled ideal objective vector was then chosen as

the optimal solution. The optimal solution is shown in figures 3.11 and 3.12.

The best position for stiffness identification were found using: (a) both FEIR and DUIR

criteria (optimal solution on the Pareto front), (b) DUIR criterion only (minimizing only f1
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from 3.20), and (c) FEIR criterion only (minimizing only f2 from 3.20). The best positions

for stiffness identification as per all three criteria mentioned above are shown in table 3.3.

Figure 3.11: Pareto front for the multi-objective optimization problem of equation 3.20

Figure 3.12: Scaled Pareto front for the multi-objective optimization problem of equation
3.20



104
CHAPTER 3. VALIDATION OF DEVELOPED TECHNIQUES USING SIMULATED

ELASTOSTATIC CALIBRATIONS OF A BIPOD

Table 3.3: Best position for stiffness identification as per different criteria discussed in sec-
tion 3.5.1

Best position as per Position (mm)
DUIR and FEIR criteria [25.4;134.4]

DUIR criterion only [0;-100]
FEIR criterion only [300;300]

3.5.2 Validation simulations

To compare performances of different identification positions, Monte-Carlo simula-

tions of simulated elastostatic calibrations of the bipod were performed with the position-

ing specifications of this simulation study. Stiffness identification experiment was simu-

lated 10000 times at each identification position with different set of errors in measured

deflections every time. The errors in measured deflections had errors due to: (a) uncer-

tainty of measured defections (10 µm standard deviation along each axis), and (b) error in

force applied ([−75;−75] N). The estimated set of stiffness parameters in each trial was

used to simulate position compensation. The mean and standard deviations of errors in

positions attained after simulated compensations can then be used to evaluate the per-

formance of the three identification positions. Figure 3.13 shows the flowchart for this

Monte-Carlo simulation.

Figure 3.14 shows the probability density functions of X-coordinates of position errors

after compensation, obtained using the Monte-Carlo simulations described above. Table

3.4 lists the corresponding standard deviations and means. These results show that the

standard deviation of X-coordinates of position errors is least when only DUIR criterion

was used to choose the best identification position. This result was expected because the

variance of position errors after compensation was dependent only on the variance of de-

flection measurements in this case and DUIR criterion was framed to minimize this prop-

agation. Furthermore, the mean of X-coordinates of position errors after compensation

is least when only FEIR criterion was used to select the best identification position. This

too is as expected because the constant error in forces applied in the Monte-Carlo simula-

tions lead to a constant offset in positions attained after compensation and the FEIR cri-

terion formulated here minimizes this propagation. When the best identification position
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Figure 3.13: Flowchart for the Monte-Carlo simulations of simulation study 3
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according to both criteria was used for stiffness identification, the resulting distribution

shows that a middle ground has been found. This distribution is desirable over the other

two because it has the highest probability of achieving perfect compensation (zero error in

position attained after compensation).

Figure 3.14: Probability density functions of errors in positions attained after compen-
sation in the Monte-Carlo simulations described in section 3.5.2 (dashed lines show the
mean of each distribution)

Table 3.4: Standard deviations and means of errors in positions attained after compensa-
tion in the Monte-Carlo simulations described in section 3.5.2

Identification position
as per

Standard deviation of X-coordinates
of errors in attained positions (µm)

Mean of X-coordinates of
errors in attained positions (µm)

DUIR criterion only 5.6 7.2
FEIR criterion only 9.3 3.1

DUIR and FEIR criteria 6.6 4.1

3.6 Conclusion

This chapter presented three simulation studies performed on a bipod to evaluate

the efficacy of stiffness identification optimization framework presented in chapter 2. In

the first simulation study, elastostatic calibrations were simulated in which only deflec-
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tion measurement uncertainty affected stiffness identification. In this, stiffness identifi-

cation measurement conditions (poses and forces) suggested by DUIR criterion and vari-

ous previously proposed criteria were used for stiffness identification. The measurement

conditions suggested by DUIR criterion lead to best compensation quality as compared

to the ones suggested by previously proposed criteria. Furthermore, results also showed

that DUIR criterion could precisely predict the influence of stiffness identification mea-

surement conditions on compensation quality, in the presence of deflection measurement

uncertainties. In the second simulation study, elastostatic calibrations were simulated in

which stiffness identification was affected only by errors in applied forces. In this, elas-

tostatic calibrations were simulated using different measurement conditions for stiffness

identification. The positioning performances achieved using the different stiffness identi-

fication measurement conditions were compared to the indications of FEIR criteria. Re-

sults showed that FEIR criterion can precisely predict and allow to minimize the influ-

ence of errors in forces applied during stiffness identification on the compensation quality.

In the last simulation study, elastostatic calibrations were simulated in which errors from

both sources 11 were made to influence stiffness identification. In these simulated elasto-

static calibrations, three sets of measurement conditions were selected for stiffness iden-

tification: one using DUIR criterion, another using FEIR criterion and the last one using

both criteria. Results confirmed that using both criteria for selecting measurement condi-

tions for stiffness identification gives best compensation quality in this case.

11. Deflection measurement uncertainty and errors in forces applied during stiffness identification.
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Chapter Abstract

In this chapter, experimental studies on elastostatic calibration of a high-precision position-

ing hexapod are documented. These studies were aimed at experimentally validating the ef-

ficacies of elastostatic calibration of hexapods and the stiffness identification optimization

framework presented in chapter 2. Results of these studies confirm the efficacies of both.
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4.1 Introduction

This chapter presents experimental studies on elastostatic calibration of a high-

precision hexapod positioning system. These studies are aimed at: (a) experimentally

validating elastostatic calibration of hexapod, and (b) experimentally validating the FEIR

criterion. Experimental validation of DUIR criterion was not performed because of im-

practicality of this endeavour with the setup available. This is because this study would re-

quire repetition of positioning experiments large number of times (>> 1000) and this was

not practical with the experimental setup available. Large number of positioning exper-

iments are required because obtaining reliable values of variance of poses attained after

compensation is necessary for validation of DUIR criterion. This is because DUIR crite-

rion minimizes the variance of possible errors in poses attained after compensation (see

section 2.3).

The experimental studies presented in this chapter were performed on a hexapod used

for high-precision positioning applications from Symétrie [Symétrie, d] (see figures 4.1 and

4.2). This hexapod has a repeatability of ±0.5 µm in translations and ±2.5 µrad in rota-

tions. More details about this hexapod can’t be disclosed due to confidentiality. These

experiments required an apparatus for measuring the pose of the hexapod’s platform and

an apparatus for applying necessary forces/moments on it. The pose measurement appa-

ratus consisted of a coordinate measuring machine (LK-METRIS CMM with a RENISHAW

SP25M scanning probe [Renishaw]) and three precision balls. The uncertainty of points

measured using this CMM, quantified using theMPEP value [ISO, 2000], is about ±2 µm..

The apparatus available for applying force/moment consisted of a set of weights that could

be only placed on the platform (see figure 4.2). This loading setup lead to the constraint

that load could be applied only along the Z-axis of the hexapod’s platform. Furthermore,

the hexapod couldn’t be rotated about its X and Y axes with the mass mounted on it as it

would lead to sliding off of the weights from the platform.

This chapter is organized as follows: section 4.2 presents the kinematic and stiffness

modelling of hexapods. Section 4.3 presents the details and results of the experimental

study performed to validate elastostatic calibration of the hexapod. This is followed by
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Precision balls

CMM touch probe

Hexapod}
X

Y

Z

Figure 4.1: Hexapod (without mass mounted on the platform) along with the pose mea-
surement apparatus

CMM touch probe

Precision ball

Weights

}Hexapod

Figure 4.2: Hexapod (with mass mounted on the platform) along with the pose measure-
ment apparatus



4.2. KINEMATIC AND STIFFNESS MODELLING OF HEXAPOD 113

details and results of the experimental study performed on the hexapod to validate FEIR

citeria in section 4.4. Finally, section 4.5 presents the conclusions of this chapter.

4.2 Kinematic and stiffness modelling of hexapod

Figure 4.3 shows the kinematic scheme of the UPS (universal-prismatic-spherical)

hexapod of figures 4.1 and 4.2. Each leg consists of a UPS chain that connects the base

to the platform. Poses of the platform of this hexapod are defined by a coordinate frame

fixed to the platform at its center (platform frame).

Figure 4.3: Kinematic scheme and the lumped stiffness model of the hexapod under study

HX contains the 6-DOF pose coordinates of the platform frame with the hexapod in any

arbitrary configuration, with respect to the same frame when the hexapod is in configura-

tion shown in figure 4.1 (zero pose 1). It is given by

HX= [Tx Ty Tz Rx Ry Rz]T (4.1)

where Tx,Ty and Tz denote the translations along the X, Y and Z axes of the platform

1. This is the configuration of the hexapod in which all of the platform pose parameters are zero. In this
configuration, all the legs are locked in the center of their strokes and have the same lengths.
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frame. Rx,Ry and Rz denote the rotations about the X, Y and Z axes of the platform frame.

Hq contains the lengths of the legs and is given by

Hq= [Hq1 Hq2 Hq3 Hq4 Hq5 Hq6]
T (4.2)

The velocity of the end-effector and those of the actuated joints are related as per the

following equation:

Hη= HJ Ḣq (4.3)

Here, Hη is the end-effector’s velocity vector, Ḣq contains the velocities of the actuators

and HJ is the Jacobian matrix. The equation relating the differential pose vector (H∆X) and

the differential actuator position vector (H∆q), as in equation 1.13, can be written for this

case as

H∆q= HJ̌
−1

H∆X (4.4)

Here, HJ̌ is the modified Jacobian matrix. HJ̌
−1 is given by

HJ̌
−1= HJ

−1

[
1 0

0 B

]
(4.5)

where I is a 3×3 identity matrix and B is given by

B=
cRz.cRy −sRz.cRx+cRz.sRy.sRx sRz.sRx+cRz.sRy.cRx

sRz.cRy cRz.cRx+sRz.sRy.sRx −cRz.sRx+sRz.sRy.cRx

−sRy cRy.sRx cRy.cRx


︸ ︷︷ ︸

R


1 0 −sRy

0 cRx cRy.sRx

0 −sRx cRy.cRx

 (4.6)

In equation 4.6, c• = cos(•), s• = sin(•) and R is the rotation matrix. The operation

of equation 4.5 is necessary because HJ̌
−1 relates the derivatives of components of HX to
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the derivatives of components of Hq whereas HJ
−1 relates the end-effector velocity vector

to the actuator velocities. Consequently, J−1 must be modified to get HJ̌
−1 as per equation

4.5 to take into account the relationship between angular velocities and angle derivatives.

The reader is referred to [Ardakani and Bridges, 2010] for the derivation of the expression

for B.

A simple lumped stiffness model can be used to model the static stiffness character-

istics of this hexapod (see figure 4.3). This model uses one linear spring 2 to model the

stiffness of each leg (Hki=1..6). This modelling method is consistent with the method de-

scribed in chapter 1, i.e., only stiffnesses along actuated joints are considered. The Carte-

sian stiffness matrix (as in equation 1.15), HKC, for this stiffness model of the hexapod can

be written as

HKC= BJ
−T

HK HJ̌
−1

(4.7)

where matrix HK is diagonal matrix with leg stiffnesses forming its diagonal elements.

It is given by

HK=



Hk1 0 0 0 0 0

0 Hk2 0 0 0 0

0 0 Hk3 0 0 0

0 0 0 Hk4 0 0

0 0 0 0 Hk5 0

0 0 0 0 0 Hk6


(4.8)

Matrix HKC relates the differential force vector (H∆F) and the differential position vec-

tor (H∆X) as

H∆F= HKC H∆X (4.9)

2. This follows the assumption that each of the legs exhibit linear stiffness behavior.
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Rearranging equation 4.9 yields a relationship similar to equation 1.17:

HA Hc= H∆X (4.10)

In equation 4.10, HA is the observation matrix and it is given by

HAij= HJ̌ij
( 6∑
r=1

HJrj H∆Fr
)

(4.11)

HAij, HJij and HJ̌ij in the above equation denote the jth element of the ith row of ma-

trices HA, HJ and HJ̌ij, respectively. H∆Fr is the rth element of vector H∆F. Hc is the vector

containing compliance parameters and is given by

Hc=
[ 1

Hk1

1

Hk2

1

Hk3

1

Hk4

1

Hk5

1

Hk6

]T
(4.12)

Appendix G presents a preliminary study performed on another high-precision posi-

tioning hexapod to validate the efficacy of the stiffness model (for hexapods) presented

here to predict the deflections of a hexapod with loaded platform.

4.3 Experimental study 1: validation of elastostatic

calibration of hexapod

This section presents the details and results of an experimental study performed to val-

idate elastostatic calibration of the hexapod shown in figures 4.1 and 4.2. This elastostatic

calibration was performed to achieve best possible positioning performance along all the

axes (Tx−Rz) of the platform and throughout its workspace, with a mass of 121.25 kg (close

to the maximum payload allowed for the given hexapod) mounted on it. The setups used

for pose measurement and loading for this study are described in section 4.1.

One of the factors 3 defining the possible pose-force sets for stiffness identification was

3. Other factors defining the possible pose-force sets were: (a) the joint and actuator limits, and (b) pay-
load limit.
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the apparatus available for applying forces/moments on the platform. As shown in fig-

ure 4.2, this setup consisted of a set of weights which could be placed on the hexapod’s

platform. Due to this loading constraint, force could be applied only along the Z-axis of

the platform and the poses for stiffness identification needed to have Rx and Ry to be

zero. The magnitude of mass to be placed on the platform for stiffness identification ex-

periment also had to be chosen. The maximum possible mass (121.25 kg - close to the

hexapod’s payload limit) was chosen for this purpose. This was desirable because higher

magnitude of measured deflections leads to lesser impact of measurement uncertainty on

identified parameters. Furthermore, choice was made to perform stiffness identification

at just one pose for the sake of simplicity. Therefore, the best pose had to be found for

stiffness identification of this hexapod and maximum possible number of deflection mea-

surements had to be performed at this pose. The factor limiting the maximum number of

deflection measurements was the thermal deflection of the hexapod during pose measure-

ments. It was necessary to keep the thermal deflection of the hexapod as less as possible

so that it wouldn’t adulterate the load-deflection measurements. From past experience,

30 minutes was deemed as a good estimation of the maximum time until which thermally

stable readings could be made. Approximately 5 deflection measurements (5 pose mea-

surements before and after loading) could be made in these 30 minutes using the method

described in appendix A.

Section 4.3.1 presents the details and results of stiffness identification and its optimiza-

tion in this case. This is followed by details and results of the experiments performed to

validate the compensation using estimated stiffness parameters in section 4.3.2.

4.3.1 Stiffness identification optimization

For performing stiffness identification as per choices described above, the stiffness

identification equation can be written for this case first. Equation 2.6 can be written for

this case as

H1GC
as
H1AM H1H H1H

−1 ( H1c+
DU
H1 εc+ FE

H1εc)= H1GC (H1∆XM + DU
H1 ε∆XM + FE

H1ε∆XM)

(4.13)
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Left subscript "H1" of the variables in the above equation specifies that the correspond-

ing matrices/arrays of equation 2.6 have been formulated for this case. H1GC is a 30×30
task variable scaling matrix 4 and is formulated as shown in equation 1.23. Matrix H1H in

this case is a 6× 6 identity matrix because the stiffness parameters are expected to have

the same order of magnitude. This is because every leg of the given hexapod has the same

design and materials. H1∆XM, DUH1 ε∆XM and FE
H1ε∆XM are 30× 1 vectors which together

constitute the measured deflections. DU
H1 ε∆XM and FE

H1ε∆XM contain the errors in mea-

sured deflections due to deflection measurement uncertainty and errors in force/moment

applied during stiffness identification, respectively. asH1AM is a 30×6matrix which is a func-

tion of the forces/moments assumed to be applied and the pose used for stiffness identifi-

cation. Parameter set of equation 4.13 is estimated using least squares method. Best pose

had to be found using the DUIR and FEIR criteria to ensure best possible compensation.

For the formulation of a DUIR criterion, matrix H1GC must be known beforehand (see

section 2.3). Formulation of matrix H1GC requires knowledge of variance and correlation

of deflection measurements. However, the variance and correlation of measured deflec-

tions is extremely difficult to predict in this case. Among other factors such as complexity

of CMM measurements and the measurement method (as in appendix A), minor thermal

deflections of the hexapod complicate the estimation of deflection measurement uncer-

tainty beforehand. Consequently, H1GC could not be determined beforehand in this case

and a DUIR criterion could not be formulated. Hence, the best pose for stiffness identifi-

cation was found using FEIR criterion only.

For the formulation of FEIR criterion, matrix Z must be formulated first. Since the

platform pose coordinates have both translations and rotations, two separate Z matrices

must be formulated here as in equations 2.53 and 2.54. They can be written as

FE,r
H1 εXA ≈ −

r
H1Z︷ ︸︸ ︷

r
H1AD

as
H1AM

+ ap
H1D H1ε∆FM (4.14)

4. Note that the deflection measurements are correlated in this case and consequently, task variable scal-
ing matrix must be formulated as per equation 1.23. The deflection measurements are correlated because
the individual measured pose parameters (Tx, Ty,...,Rz) are correlated. This is a consequence of the pose
measurement method (refer appendix A).
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FE,t
H1 εXA ≈ −

t
H1Z︷ ︸︸ ︷

t
H1AD

as
H1AM

+ ap
H1D H1ε∆FM (4.15)

where the left subscript ’H1’ specifies that the corresponding matrices/arrays of equa-

tions 2.53 and 2.54 have been formulated for this case. tH1AD and r
H1AD are the matrices

containing first and last three rows of H1AD, respectively. H1AD is a 6×6matrix which is a

function of the target pose and the force/moment applied at the end-effector during the in-

tended positioning. To get apH1D, some preliminary approximate stiffness estimations must

be made 5. The approximate stiffness parameter values were found by performing a set of

three deflection measurements at zero pose by mounting 121.25 kg mass on the platform.

Table 4.1 shows the approximate values of these stiffness parameters. r
H1Z and t

H1Z are

3×30matrices. H1ε∆FM is a 30×1 array in which the first six elements repeat themselves

five times due to presence of redundant measurements. It must be noted that equations

4.14 and 4.15 consider only one pose at which best positioning is desired. Since best possi-

ble positioning is desired throughout the workspace, equation that relatesH1ε∆FM to posi-

tioning errors at poses throughout the workspace must be found. To do this, the workspace

was discretized using uniformly distributed poses in the allowed workspace. The position-

ing errors at these poses were then minimized. This is one way to ensure best positioning

performance throughout the workspace. 3409 uniformly distributed poses were chosen

for this purpose. The equations relating H1ε∆FM to the errors in poses attained (at 3409

uniformly distributed poses) after compensation are given by

FE,r
H1 εstXA ≈ −

r
H1Z

st︷ ︸︸ ︷
r
H1A

st
D
as
H1AM

+ ap
H1D H1ε∆FM (4.16)

FE,t
H1 εstXA ≈ −

t
H1Z

st︷ ︸︸ ︷
t
H1A

st
D
as
H1AM

+ ap
H1D H1ε∆FM (4.17)

In these equations, the right superscript ‘st ′ indicates that the corresponding matri-

ces/arrays from equations 4.14 and 4.15 are stacked row-wise and they correspond to 3409

5. See section 2.4 for more explanation.
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arrays of FE,rH1 εXA and FE,r
H1 εXA . rH1Z

st and t
H1Z

st can be used to optimize positioning after

compensation at the 3409 target poses in the workspace. The sizes of FE,rH1 εXA and r
H1Z

st

are 10227×1 and 10227×30, respectively. FE,tH1 εXA and tH1Z
st have sizes similar to FE,rH1 εXA

and rH1Z
st, respectively.

Table 4.1: Approximate values of stiffness parameters evaluated for the hexapod studied in
section 4.3.1

Approximate stiffness parameter values (N/µm)

ap
H1k1

ap
H1k2

ap
H1k3

ap
H1k4

ap
H1k5

ap
H1k6

10.51 12.11 12.59 10.86 11.57 11.03

An information important for formulating FEIR criterion for this case is that the errors

in applied forces/moments are due to the offset of the center of mass from its assumed

position. This offset produces undesired moments about the X and Y axes of the platform.

This implies that H1ε∆FM can have non-zero terms in its fourth and fifth elements. Due

to the redundant nature of H1ε∆FM , the fourth and fifth elements also repeat themselves

at the appropriate spots within this array 6. The elements of rH1Z
st and t

H1Z
st that scale

these elements of H1ε∆FM had to be minimized. Furthermore, the elements of rH1Z
st and

t
H1Z

st that couple with the fourth and fifth elements of H1ε∆FM also repeat themselves

at appropriate spots in these matrices. Consequently, minimizing the terms of rH1Z
st and

6. For instance, the 4th element ofH1ε∆FM repeats itself at 10th, 16th, 22nd and 28th spots.
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t
H1Z

st that couple with fourth and fifth elements of H1ε∆FM will also minimize the other

relevant terms of rH1Z
st and tH1Z

st. Therefore, the following minimization can be done:

min
H1XM

{f3,f4,f5,f6}

s.t. Workspace constraints

where, f3=max(E
t)

f4=avg(E
t)

f5=max(E
r)

f6=avg(E
r)

Eti =norm2

(
t
H1Z

st
i,4
t
H1Z

st
i,5

)
;i= 1...10227

Eri =norm2

(
r
H1Z

st
i,4
r
H1Z

st
i,5

)
;i= 1...10227

(4.18)

H1XM in equation 4.18 is the identification pose. Eti and Eri are the ith elements of

Et and Er, respectively. tH1Z
st
i,j and r

H1Z
st
i,j are the jth elements of the ith rows of tH1Z

st and
r
H1Z

st, respectively. The optimization problem of equation 4.18 leads to a number of Pareto

solutions. The best solution was obtained using the method of global criterion [Miettinen,

1999], similar to the manner in which the optimal solution was chosen for the optimization

problem of equation 3.20 of chapter 3. Subsequently, the best pose obtained for stiffness

identification for this case was [14.3 mm −1.8 mm −4.3 mm 0◦ 0◦ −3.67◦].

Stiffness identification experiment was performed at the best pose obtained for this

case. To accomplish this, the hexapod’s platform was commanded to the identified best

pose for stiffness identification. The platform’s pose was measured 7 five times without the

mass (121.25 kg) mounted on its platform first. Following this, the mass was mounted and

the platform’s pose was measured five times again. The variance and correlation of the de-

flection measurements were computed and matrix H1GC was formulated as per equation

1.23. The set of six stiffness parameters was then identified using least squares method.

Table 4.2 lists the identified optimal stiffness parameter set.

7. Using the pose measurement method outlined in appendix A.
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Table 4.2: Optimal values of stiffness parameters identified for the hexapod using the
method described in section 4.3.1

Optimal stiffness parameter values (N/µm)

op
H1k1

op
H1k2

op
H1k3

op
H1k4

op
H1k5

op
H1k6

11.46 12.05 11.68 10.43 12.99 11.70

4.3.2 Evaluation of compensation efficiency

In order to assess the efficiency of compensation using estimated stiffness parameters

(table 4.3.1), positioning errors of the hexapod’s platform were measured: (a) without load,

(b) with load and without elastostatic error compensation, and (c) with load and with elas-

tostatic error compensation. These positioning experiments were performed at different

poses along the X and Y axes of the hexapod. These poses are listed in table 4.3 and visu-

ally described in figure 4.4. The pose measurements were performed using the method 8

outlined appendix H. The mass mounted on the hexapod during these positioning experi-

ments was 121.25 kg.

Table 4.3: Poses of hexapod’s platform at which positioning experiments were performed

Poses along
Pose parameters

Tx (mm) Ty (mm) Tz (mm) Rx (deg) Ry (deg) Rz (deg)

X-axis

-60

0 0 0 0 0
-30

0
30
60

Y-axis 0

-60

0 0 0 0
-30

0
30
60

8. The pose measurement method outlined in appendix H was used instead of the one in appendix A
because latter is susceptible to thermal deflections of the hexapod when pose measurements need to be per-
formed for long duration, unlike the former one. The pose measurements to be performed for the validation
study in section 4.3.2 was bound to take long time. Consequently, pose measurement method outlined in
appendix H was used for pose measurement in this case.
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Figure 4.4: Visual description of platform frame poses at which compensation efficiency
was evaluated

Figures 4.5 and 4.6 show the measured errors in poses attained by the hexapod’s plat-

form (εTx, εTy,...,εRz) at the poses listed in table 4.3. These measured pose errors are the

difference between the measured and target poses. Several trials of these measurements

were performed and the results were found to be very repeatable (< ±1µm for transla-

tions and < ±2µrad for rotations). Consequently, results of just one trial are presented.

These measured pose errors are a consequence of: (a) errors in geometric parameters, (b)

errors in stiffness parameters (for cases where compensation is done), and (c) error in mea-

sured reference coordinate frame 9. Since the purpose here is to evaluate the efficiency of

elastostatic error compensation, measured pose errors of the loaded hexapod (with and

without compensation) must be compared with measured pose errors without load. With

this comparative framework in mind, one can see (in figures 4.5 and 4.6) that elastostatic

error compensation using the identified stiffness parameters works very well. The loaded

hexapod with elastostatic error compensation is able to reach the level of accuracy of the

hexapod without load. Tables 4.4 and 4.5 present some quantitative metrics to assess the

level of improvement in positioning accuracy with the use of elastostatic error compen-

9. This is the coordinate frame with respect to which all poses were measured.
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sation. It can be seen that the maximum of differences between measured pose errors of

the loaded hexapod with compensation and the hexapod without load are less than 5.48

µm for translations and 23.9 µrad for rotations, as compared to 31.25 µm and 90.27 µrad

for loaded hexapod without compensation. Furthermore, the RMS values of differences

between measured pose errors of the loaded hexapod with compensation and the hexa-

pod without load are less than 3.28 µm for translations and 12.86 µrad for rotations, as

compared to 26.08 µm and 49.49 µrad for loaded hexapod without compensation.
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Figure 4.5: Measured errors in poses attained by the hexapod’s platform at poses along
X-axis
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Figure 4.6: Measured errors in poses attained by the hexapod’s platform at poses along
Y-axis

Table 4.4: Comparing measured pose errors of loaded hexapod (with and without com-
pensation) with those of the hexapod without mounted load, for poses measured along its
X-axis

Axis ξmax,WC ξmax,WoC ξRMS,WC ξRMS,WoC

Tx 2.25 µm 30.24 µm 1.53 µm 19.26 µm
Ty 1.79 µm 2.95 µm 1.17 µm 2.09 µm
Tz 1.29 µm 31.25 µm 0.75 µm 26.08 µm
Rx 23.92 µrad 20.47 µrad 11.55 µrad 11.35 µrad
Ry 13.65 µrad 90.27 µrad 9.44 µrad 49.49 µrad
Rz 13.90 µrad 6.14 µrad 7.49 µrad 4.54 µrad

ξmax,WC and ξRMS,WC are the maximum and RMS values of absolute differences between measured
pose errors of hexapod without load and those of hexapod with load & with compensation, respectively.;
ξmax,WoC and ξRMS,WoC are the maximum and RMS values of absolute differences between measured
pose errors of hexapod without load and those of hexapod with load & without compensation, respectively.
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Table 4.5: Comparing measured pose errors of loaded hexapod (with and without com-
pensation) with those of the hexapod without mounted load, for poses measured along its
Y-axis

Axis Ξmax,WC Ξmax,WoC ΞRMS,WC ΞRMS,WoC

Tx 5.48 µm 2.75 µm 3.28 µm 1.48 µm
Ty 3.44 µm 25.74 µm 2.41 µm 17.77 µm
Tz 3.55 µm 28.58 µm 1.99 µm 25.15 µm
Rx 9.33 µrad 70.69 µrad 6.79 µrad 48.84 µrad
Ry 17.54 µrad 23.18 µrad 12.86 µrad 13.66 µrad
Rz 13.90 µrad 6.34 µrad 9.73 µrad 4.25 µrad

Ξmax,WC and ΞRMS,WC are the maximum and RMS values of absolute differences between measured
pose errors of hexapod without load and those of hexapod with load & with compensation, respectively.;
Ξmax,WoC and ΞRMS,WoC are the maximum and RMS values of absolute differences between measured
pose errors of hexapod without load and those of hexapod with load & without compensation, respectively.

4.4 Experimental study 2: validation of FEIR criterion

In this section, an experimental study is presented which was performed to validate the

FEIR criterion. This study was performed on the hexapod shown in figures 4.1 and 4.2, and

using the measurement and loading apparatuses shown in them.

In order to validate FEIR criterion, a simple scenario of elastostatic calibration was con-

sidered. In this, elastostatic calibration of the hexapod was required to achieve best pos-

sible positioning along its Tz axis and at poses listed in table 4.3, with a mass of 121.25

kg mounted on its platform. The force/moment to be applied for stiffness identification

was fixed. Stiffness identification experiments were then performed at: (a) best poses for

stiffness identification as per FEIR criterion 10, (b) respective target poses, and (c) the zero

pose. Each of these stiffness identification experiments was performed with a high error in

force/moment applied at the platform. The compensation qualities using stiffness param-

eters identified at each of these identification poses were then compared.

For stiffness identification at the various poses listed above, the force/moment was

applied on the platform by mounting a mass of 121.25 kg (as shown in figure 4.2) on it.

10. One pose for stiffness identification was chosen for each target pose.
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However, the force/moment that was assumed to have been applied 11 had an extra mo-

ment of 1000 Nm about the X-axis (Mx). This big error in applied load was introduced to

clearly show the problem and improvement (using the proposed optimization). The errors

in identified stiffness parameters would, in this case, be dominated by errors (in thereof)

due to applied force/moment error. Owing to this, only one deflection measurement was

enough for each stiffness identification experiment.

The remaining part of this section is organized as follows: section 4.4.1 presents the

details about stiffness identification optimization using FEIR criterion. This is followed by

section 4.4.2 which presents the details of experiments performed to validate the improve-

ment in compensation quality when FEIR criterion are used to optimize stiffness identifi-

cation.

4.4.1 Stiffness identification optimization

For performing stiffness identifications as per choices described above, the stiffness

identification equation can be written for this case first. Equation 2.6 can be rewritten for

this case as

H2G
as
H2AM H2H H2H

−1 ( H2c+
DU
H2 εc+ FE

H2εc)= H2G (H2∆XM + DU
H2 ε∆XM + FE

H2ε∆XM)

(4.19)

Left subscript "H2" of the variables in the above equation specifies that the correspond-

ing matrices/arrays of equation 2.6 have been formulated for this case. Matrix H2G is a

6×6 identity matrix. This is because only one measurement is performed in each stiffness

identification experiment in this case, resulting in zero variance of measured deflections.

Matrix asH2AM is the observation matrix which is a function of the identification pose used

in each stiffness identification experiment and the forces/moments assumed to have been

applied in them. Matrix H2H is a 6×6 identity matrix since the stiffness parameters are ex-

pected to have the same order of magnitude. This is because every leg of the given hexapod

has the same design and materials. H2∆XM, DUH2 ε∆XM and FEH2ε∆XM are 6×1 vectors which

11. as∆FM from equation 2.1.
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together constitute the measured deflections. DUH2 ε∆XM and FE
H2ε∆XM contain the errors in

measured deflections due to deflection measurement uncertainty and errors in force/mo-

ment applied during stiffness identification, respectively. Parameter set of equation 4.19

is estimated using least squares method. The errors in these estimated parameters were

bound to be (mostly) a consequence of errors in forces/moments applied during stiffness

identification. This is a consequence of the large error in force/moment applied for stiff-

ness identification.

In order to formulate a FEIR criterion for this case, matrix Z (from equation 2.51) must

be formulated first. This is because this matrix relates the errors in forces/moments ap-

plied during stiffness identification to the resultant errors in poses attained after compen-

sation. Equation 2.51 can be rewritten for this case as

FE
H2εXA ≈ −

H2Z︷ ︸︸ ︷
H2AD

as
H2AM

+ ap
H2D H2ε∆FM (4.20)

In equation 4.20, H2Z and apH2D are 6×6matrices. apH2Dwas computed (as per equation

2.43) using the approximate values of stiffness parameter values listed in table 4.1. H2ε∆FM
is the 6×1 array containing errors in forces/moments applied during stiffness identifica-

tion and FE
H2εXA is the 6× 1 array containing the resultant errors in poses attained after

compensation. Since the applied force/moment error is a moment about the X-axis and

best positioning performance was desired along Tz axis, identification pose that minimizes

the fourth element of the third row of H2Z, H2Z34, had to be found. This is because H2Z34

scales the element of H2ε∆FM corresponding to the moment about X-axis to contribute to

the element of FEH2εXA corresponding to platform’s Tz axis. The minimization problem to

find an identification pose for each of the target poses listed in table 4.3 can be written as

min
H2XM

H2Z34

s.t. Workspace constraints
(4.21)

where H2XM is the identification pose. H2Z34 from equation 4.21 was minimized to

obtain one identification pose for each target pose. MATLAB optimization toolbox was
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used to solve the optimization problem and obtain the best identification poses. These

optimization routines are very sensitive to the starting point supplied. To tackle this, a

large number of starting points were supplied so that the best solution could be found.

The deflection measurements were then performed at the identified best poses, the tar-

get poses and the zero pose. The mass weighing 121.25 kg (as in figure 4.2) was mounted on

the platform during these stiffness identification experiments. The measured deflections

and the "false assumed applied load" were used to estimate the stiffness parameters.

4.4.2 Evaluation of compensation efficiency

For validation of optimal parameter sets identified using FEIR criterion, positioning ex-

periments were performed at poses listed in table 4.3. The platform was commanded to

position at these poses with a mass of 121.25 kg mounted on its platform using command

poses that were generated using: (a) the identified optimal parameter sets, (b) parameter

set identified when stiffness identification was performed at zero pose, and (c) parame-

ter sets identified when stiffness identification was performed at respective target poses.

Errors in poses attained were then measured 12. For the sake of comparison, errors in at-

tained poses were also measured with the platform commanded to those poses without

load. These positioning experiments were conducted multiple times and the results were

found to be very repeatable (<±1µm for translations and <±2µrad for rotations). Owing

to this, results of just one trial are presented here for analysis.

Figure 4.7 shows the measured errors in poses attained by the hexapod’s platform at

different poses. It can be seen that the best compensations were achieved using stiff-

ness parameters identified at poses as per FEIR criterion. Two data points stand out in

the obtained results (in figure 4.7): (a) pose error at pose [30 mm 0 mm 0 mm 0◦ 0◦ 0◦]

using parameters identified at the same pose, and (b) pose error at pose [0 mm −

60 mm 0 mm 0◦ 0◦ 0◦] using parameters identified at the best pose as per FEIR crite-

rion. The reader is referred to figure 4.8 to gain an understanding of the reason behind

(a). This figure shows values of H2Z34 for each of the poses along X-axis (listed in ta-

ble 4.3) when stiffness identification is performed at the respective poses for positioning

12. Pose measurement method described in appendix H was used for this.
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at the same pose. These values scale the error in forces/moments applied during stiff-

ness identification to the Tz-axis error in pose attained after compensation. As can be

seen in figure 4.8, the large error in (a) is due to the scaling provided by H2Z34 for this

particular case. The magnitude of H2Z34 is approximately 11.7 times larger for the pose

[30 mm 0 mm 0 mm 0◦ 0◦ 0◦] as compared to the other poses in figure 4.8. This corre-

lates with the observation in figure 4.7, i.e., the magnitude of positioning error is approxi-

mately 11.7 times larger for pose [30 mm 0 mm 0mm 0◦ 0◦ 0◦] as compared to the other

poses along X-axis when stiffness identification is performed at those respective poses. Re-

garding (b), two possibilities exist for the reason behind the error in pose attained for the

best case scenario (using FEIR criterion) not reaching the ideal level (measured accuracy

of hexapod without load). One is that the matrix H2Z possible under the given workspace

constraints can’t completely eliminate the impact of the applied load error 13 considered in

this case on the positioning task intended in this case. The second reason could be that the

best solution was not found in the optimization routine. The second possibility is highly

unlikely because optimization was carefully performed using a large number of starting

points.
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Figure 4.7: Measured errors in poses attained by the hexapod’s platform, along its Tz axis,
at poses listed in table 4.3

13. During stiffness identification.
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Figure 4.8: Values of H2Z34 for each of the poses along X-axis listed in table 4.3 when stiff-
ness identification is performed at the respective poses for positioning at the same pose

4.5 Conclusion

This chapter presented experimental studies on elastostatic calibration of a high-

precision positioning hexapod. The aims of these studies were to experimentally vali-

date elastostatic calibration of the hexapod and to experimentally validate the FEIR cri-

terion. Validation of DUIR criterion was not performed because it was not possible with

the setup available. In the first experimental study, elastostatic calibration of hexapod was

performed to achieve best possible positioning performance along all the axes of the plat-

form and throughout its workspace. The estimated parameters were used to compensate

the pose errors of the loaded hexapod at different poses. Results confirmed the efficacy

of developed elastostatic calibration framework and the estimated stiffness parameters in

compensating for positioning accuracy deteriorated due to load on the platform. In the

second experimental study, stiffness identification experiments were performed at poses

suggested by FEIR criterion and some other poses. Parameters estimated in these stiffness

identification experiments were used to compensate the pose errors of the loaded hexa-

pod at different poses. Results confirmed the efficacy of FEIR criterion in obtaining best

compensation quality.





Conclusions

Here, general conclusions of this thesis are presented. The prime contributions of this

thesis are highlighted first. This is followed by some recommendations for future work.

Contributions of this thesis

The contributions of this thesis can be summarized as follows:

1. A new approach to optimize stiffness identification for robot elastostatic calibra-

tion: This is a framework to formulate criteria to choose the best set of poses and

forces/moments for stiffness identification of non-over-constrained robots in which

compliance can be considered only in actuated joints. The parameters identified

under experimental conditions (poses and forces/moments) suggested by these cri-

teria ensure minimum impact of deflection measurement uncertainty and errors

in forces/moments applied during stiffness identification on compensation quality.

Furthermore, it also maximizes positioning accuracy at desired pose(s), along de-

sired axe(s) of the end-effector/platform and with desired forces/moments on the

end-effector/platform. Validation studies documented in this thesis confirm the ef-

ficacy of this framework. This stiffness identification optimization framework was

developed to enable best possible compensation of positioning errors due to com-

133



134 CONCLUSIONS

pliance of robots in predefined applications. This aspect is very important in high-

precision applications in which the robot’s positioning specifications are predefined.

2. Elastostatic calibration of hexapod: Elastostatic calibration of a high-precision

hexapod positioning system was accomplished. The stiffness of this hexapod was

modelled using a lumped stiffness model. The parameters of this model were iden-

tified at best poses and forces/moments as per the criteria formulated using the

proposed stiffness identification optimization framework. The identified parame-

ters were then used to compensate for the pose errors (due to compliance) of the

loaded hexapod. Results showed that the loaded hexapod with compensation us-

ing identified stiffness parameters can achieve the level of accuracy of the unloaded

hexapod. Elastostatic calibration of hexapod is necessary to facilitate high-accuracy

6-DOF positioning when a heavy payload is mounted on a high-precision position-

ing hexapod.

3. Thermal deflection decoupled 6-DOF pose measurement method for hexapods: A

method was developed to eliminate the influence of thermal deflection of a hexapod

on the measured 6-DOF pose of its platform. This was validated experimentally us-

ing pose measurements of a high-precision hexapod using a CMM. This method is

necessary to ensure that the thermal deflections of the hexapod do not impact pose

measurement of hexapods. This was crucial in some tests that were performed to

validate methods developed in this thesis. Furthermore, this method is also benefi-

cial for robot geometric calibration which requires pose measurements at constant

temperature, which is difficult and expensive to achieve.

Recommendations for future work

The work documented in this thesis solves many problems. Additionally, it also opens

up new research directions that can be explored. Some of them are:

1. Using presented parameter identification optimization method for optimizing

robot geometric calibration: In this thesis, a framework for formulating criteria to

choose best measurement conditions (poses and forces/moments) for stiffness iden-
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tification is presented. The parametric calibration framework is similar for robot

elastostatic and geometric calibrations. Also, one error source, uncertainty of de-

flection measurements performed, impacts parameter identification in both these

calibration routines. Consequently, the framework for formulating criteria for mini-

mizing the influence of this error on elastostatic calibration performance, the DUIR

criterion, can also be used for minimizing the influence of this error on the perfor-

mance of robot geometric calibration. Appendix I discusses this in further detail.

Further investigations can be carried out on this.

2. Evaluating uncertainty of pose measurement: Methods to evaluate the uncertainty

of 6-DOF pose measurement methods, documented in appendixes A and H, must

be developed. Alternatively, a new 6-DOF pose measurement method for hexapods

can be developed in which the uncertainty of pose measurement can be evaluated

easily. This is necessary to exploit the developed parameter identification optimiza-

tion framework completely. Currently, the criterion to minimize the influence of de-

flection measurement uncertainty on compensation quality, DUIR criterion, can’t be

used with the pose measurement methods documented in appendices A and H. This

is because, in order to use DUIR criterion, it is necessary to know the uncertainty of

measured deflections. This, in turn, is dependent on the uncertainty of pose mea-

surements performed.

3. Elastostatic calibration of large and heavy hexapods: The method documented in

this thesis to perform elastostatic calibration of hexapods must be tested for large

and heavy hexapods. The stiffness modelling method for hexapod used in this thesis

assumes that the legs are light enough to cause negligible deflections of the hexa-

pod’s components. In large and heavy hexapods, this assumption might not hold

true [Klimchik et al., 2014]. If this assumption does indeed not hold true for large

and heavy hexapods, the stiffness model needs to be amended.
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APPENDIX

A
A method to measure the 6-DOF pose

of hexapod’s platform

Here, a method is presented which can be used to perform 6-DOF pose measurements

of hexapod’s platform using a coordinate measurement machine (CMM). Section A.1 pro-

vides the details of the measurement setup required for this measurement and section A.2

presents the measurement method.

A.1 Measurement setup

Figure A.1 shows the test setup required for this measurement. It consists of the hexa-

pod fixed to the granite table of a CMM by means of an appropriate fixture. The platform

of the hexapod have precision balls screwed to them. At least three precision balls must be

used due to reasons stated in section A.2. The setup shown in figure A.1 contains three of

these precision balls.

A.2 Measurement method

Pose measurements are always performed by measuring several points using a mea-

surement system. Here, this measurement system is the CMM. Let M be the coordinate

frame of the CMM. A coordinate frame fixed to the platform defines the pose of the plat-
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Figure A.1: Test setup used for pose measurement of hexapod

form. For Symétrie’s hexapods, this is usually at the center of the platform as shown in

figure A.1. The coordinate frame fixed to the platform of the hexapod is first measured

with the hexapod commanded to be in zero pose 1. All poses of the hexapod’s platform

are expressed with respect to this coordinate frame. This coordinate frame is identified

by measuring several points in reference holes (see figure A.1) and on surfaces of the plat-

form. Let this coordinate frame be called O (see figure A.2). The centers of the precision

balls fixed to the platform (p1,i with i= 1..3) are then measured. To do this, several points

on the surface of each precision ball are measured. The positions of the centers of these

spheres are then expressed in the coordinate frame O. Let the position vectors of these

points be called pO1,i (i= 1..3). The platform can then be commanded to any desired pose.

Consequently, the platform frame attains a new pose. Let this new coordinate frame be

called S. With the platform in the new desired pose, the new positions of the precision

1. This is the pose of the platform in which all its pose parameters (defining the 3 translations and 3
rotations) are zero. In this pose, all the legs are locked at the center of their strokes and have the same length.
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balls (p2,i with i = 1..3) are measured and expressed in the coordinate frame O. Let the

position vectors of these points be called pO2,i (i= 1..3).

Figure A.2: Illustration of the measurement method

The task is then to obtain the pose parameters defining the transformation [Spong

et al., 2006] between the coordinate frames O and S. In order to do this, the following

relation is first considered:

pS2,i=p
O
1,i ; i= 1..3 (A.1)

In equation A.1, pS2,i are the points p2,i expressed in the coordinate frame S. Equation

A.1 means that the positions of the centers of spheres do not change with respect to the

platform frame when the platform moves and this is true. We then have,

[
pO2,i

1

]
= TOS

[
pS2,i

1

]
; i= 1..3 (A.2)

In equation A.2, TOS is the transformation matrix that transforms the points expressed

in the frame S to points expressed in the frame O. pO2,i and pO2,i are already known from

measurements. TOS can then be obtained using the method outlined by [Arun et al., 1987].

This method requires i to be at least three. As a result, at least three precision balls are

needed to perform pose measurement as per the method outlined here.





APPENDIX

B
Proof of (GC DUε∆XM) being I.I.D and

dimensionless

To prove that (GC
DUε∆XM) is independent and identically distributed, it needs to be

shown that Cov( iS
−1 DUεi∆XM) is a diagonal matrix containing same numbers along its

diagonal (equal variances). Equations 1.23 and 1.24 give us

Cov( iS
−1 DUεi∆XM) = iS

−1 Cov(DUεi∆XM) iS
−T (B.1)

= iS
−1

iS iS
T
iS

−T (B.2)

= I (B.3)

It can be seen from equations B.1, B.2 and B.3 that (GC
DUε∆XM) is independent and

identically distributed.

The elements of the jth column of iS
−1 possess a unit which is the inverse of that of the

jth element of DUεi∆XM . Consequently, the resulting measurement vector after scaling,

GC
DUε∆XM , is dimensionless. In order to check this, let us consider a simple case where

DUεi∆XM has two coordinates, one translational and the other rotational. Matrices iV and

iS (refer equation 1.24), in this case, will have the following structure and units:
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iV =

[
iV11 (m

2) iV12 (mrad)

iV21 (mrad) iV22 (rad
2)

]
(B.4)

=

[
iS11 (m) iS12 (m)

iS21 (rad) iS22 (rad)

] [
iS11 (m) iS21 (rad)

iS12 (m) iS22 (rad)

]
=i S iS

T (B.5)

Here, iVpq and iSpq are the pth elements the qth column of matrices iV and iS, respec-

tively. iS
−1, for this case, can be written as

iS
−1 =

1

( iS11 iS22− iS12 iS21)
(mrad)−1

[
iS22 (rad) − iS12 (m)

− iS21 (rad) iS11 (m)

]
(B.6)

=

[
iS22

iS11 iS22− iS12 iS21
(m−1) − iS12

iS11 iS22− iS12 iS21
(rad−1)

− iS21
iS11 iS22− iS12 iS21

(m−1) iS11
iS11 iS22− iS12 iS21

(rad−1)

]
(B.7)

The resulting ith measured deflection error vector is then given by

iS
−1 DUεi∆XM =[

iS22
iS11 iS22− iS12 iS21

(m−1) − iS12
iS11 iS22− iS12 iS21

(rad−1)

− iS21
iS11 iS22− iS12 iS21

(m−1) iS11
iS11 iS22− iS12 iS21

(rad−1)

][
DUεi,1∆XM(m)
DUεi,2∆XM(rad)

]
(B.8)

DUεi,j∆XM is the jth element of DUεi∆XM . As can be seen from equation B.8,

iS
−1 DUεi∆XM is dimensionless. Consequently, GC

DUε∆XM is also dimensionless. This

can be seen in equation B.9.

GC
DUε∆XM =

 1
S−1 0

2S
−1

0
. . .



DUε1∆XM
DUε2∆XM

...

=

 1
S−1 DUε1∆XM
2S

−1 DUε2∆XM
...

 (B.9)



APPENDIX

C
An example application requiring

high positioning performance along

selected axes of the robot’s platform

Figure C.1 shows a 6-DOF hexapod developed by Symétrie [Symétrie, a] for positioning

a mirror with high accuracy along its five axes. High accuracy was desired only along the

three translations (Tx, Ty and Tz) and two rotations (Rx and Ry) of the platform. The mirror

had to be positioned in order to integrate it on a satellite. Payload capacity of 250 kg was

required. Furthermore, micrometer-level accuracy was needed along the mentioned high

performance axes.

Figure C.1: Hexapod used for positioning a mirror with high accuracy along 5 axes (Tx, Ty,
Tz, Rx and Ry) [Symétrie, a]
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APPENDIX

D
Simulation study to assess the

influence of error in applied

force/moment during stiffness

identification on compensation

accuracy for a hexapod positioning

system

Here, a simulation study is presented which was performed to assess the influence of

error in applied force/moment during stiffness identification on compensation accuracy,

for a high-precision hexapod positioning system. Section D.1 presents the details of this

simulation study and section D.2 presents the results of this study.

D.1 Simulation description

This simulation study consists of a Monte-Carlo simulation in which elastostatic cal-

ibrations of a high-precision hexapod positioning system (shown in figure D.1) was sim-

ulated many times. These simulated elastostatic calibrations were assumed to be influ-

enced by realistic errors in applied forces/moments during stiffness identification. The

deflection measurement errors were assumed to be negligible in these simulations. These
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elastostatic calibrations were simulated 10,000 times. Tx, Ty and Tz denote the transla-

tional coordinates of this hexapod’s platform and this hexapod possesses a repeatability of

0.5 µm along these coordinates. Rx, Ry and Rz denote the rotational coordinates of this

hexapod’s platform and this hexapod possesses a repeatability of 2.5 µrad along these co-

ordinates. These simulated realistic stiffness identification experiments are performed at

the zero pose of the hexapod. Also, the desired pose to reach was the zero pose in the sim-

ulated positioning experiments. The load was assumed to be applied by placing a mass of

120 kg on the platform of this hexapod (as in figure D.1). This is similar to the manner in

which stiffness identification is performed in the experimental study performed in chap-

ter 4. The error in applied force/moment during identification experiments is due to the

difference between the assumed position of the center of mass (CoM) and its real value. Re-

alistic value of CoM position errors are assumed. These CoM position errors are assumed:

(a) to be distributed normally (Gaussian distribution), and (b) to have maximum values of

approximately 3mm along X-, Y- and Z-coordinates (99.7 % confidence interval). Also, the

pose measurement system is assumed to be perfect, i.e., deflection measurement errors

are assumed to be zero. The resulting compensation errors are, therefore, a consequence

of the errors in applied forces/moments (during stiffness identification) only.

Figure D.2 shows the flowchart of the Monte-Carlo simulation performed. Firstly,

10,000 samples of errors in CoM position were generated. These CoM position errors had

standard deviations of 1 mm and mean of 0 mm, along each coordinate (X, Y and Z). Using

each sample of CoM position error, the resultant 6-DOF measured deflection was calcu-

lated. This calculation was done by using a stiffness model of the hexapod like the used in

chapter 4. Realistic values were used as the actual stiffness parameters (10 N/µm for vir-

tual spring in each leg). Stiffness parameters were then estimated using the said stiffness

model and the simulated measured deflections (with errors due to applied force/moment

errors). Subsequently, command pose 1 was generated such that the platform reaches the

desired target pose (zero pose). The pose attained after compensation using estimated

stiffness parameters was then computed and subsequently, the difference between the at-

1. Command pose is the pose entered in the control interface of a robot’s controller that doesn’t have the
compliance error model embedded in it. When the robot’s platform is commanded to reach this command
pose, the robot’s platform reaches (close to) the desired target pose due to the platform’s deflection under the
given load.
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Figure D.1: Hexapod positioning system with 120 kg mass mounted on the platform

tained and the target poses was computed for this trial. After 10,000 trials of this simu-

lation, the 10,000 samples of compensation errors were analysed to study their statistical

properties. Section D.2 shows these results.
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Figure D.2: Flowchart of Monte-Carlo simulations to assess the influence of error in ap-
plied force/moment during stiffness identification on compensation accuracy, for a hexa-
pod positioning system
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D.2 Results

Figure D.3 shows the probability density functions of the CoM position errors which are

the input errors in the Monte-Carlo simulation. Figure D.4 shows the probability density

functions of the resultant output, the compensation errors. The dotted lines in these fig-

ures show the corresponding 99.7% confidence intervals. As can be seen from the output

probability functions, the 99.7% confidence interval boundaries of compensation errors

along Rx and Ry axes are considerably more than the repeatability of this hexapod along

the respective axes (2.5 µrad). Since, the goal is to reach the level of repeatability of the

hexapod, these compensation errors are unacceptable. Hence, it can be seen in this exam-

ple that the influence of errors in applied forces/moments during stiffness identification

on compensation accuracy is indeed not negligible in a realistic case.

Figure D.3: Probability density functions of the input errors (CoM position errors)
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Figure D.4: Probability density functions of the output errors (compensation errors)



APPENDIX

E
Relation betweenCov( DU,tεXA) and

the RMS value of possible Euclidean

norms of DU,tεXA

Here, the derivation of relationship betweenCov( DU,tεXA) and the RMS value of pos-

sible Euclidean norms of DU,tεXA is shown.

Firstly, using equation 2.27, the following can be written:

DU,tεXA ≈ − DU,tε∆XC (E.1)

≈ − tAC
DUεc (E.2)

≈ − tAD
DUεc (E.3)

In equation E.1, superscript t indicates that they are the translational components (or

elements corresponding to translational components) of the respective array/matrix cor-

responding to them 1. The following can then be written:

E
(
DU,tεXA

T DU,tεXA
)
= DUρ2=E

((
− tAD

DUεc
)T(

− tAD
DUεc

))
(E.4)

1. DU,tε∆XC contains the translational components of DUε∆XC .
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Here, E(e) denotes expectation of e. In equation E.4, DUρ is the RMS value of possible

Euclidean norms of translational components of DUεXA . This equation can be further

expanded to get

DUρ2= tr
(
E
((

− tAD
DUεc

)(
− tAD

DUεc
)T))

= tr
(
E
(
tAD

DUεc DUεTc tAD
T
))

= tr
(
tAD E

(
DUεc DUεTc

)
tAD

T
) (E.5)

Here, tr(W) denotes trace of matrix W. However, E
(
DUεc DUεTc

)
= Cov( DUεc).

Therefore, using equations 2.13 and E.5, the following can be written:

DUρ2= ( DUσε̃∆XM
)2

DUΩ︷ ︸︸ ︷
tr
(
tAD H (asÃM

T
asÃM)−1 HT tAD

T
)

(E.6)

Comparing equations E.6 and 2.31, the following relationship can be obtained:

DUρ2= tr
(
Cov( DU,tεXA)

)
(E.7)

Equation E.7 describes the relationship between Cov( DU,tεXA) and the RMS value of

possible Euclidean norms of DU,tεXA , DUρ.



APPENDIX

F
Relation betweenCov( FE,tεXA) and

the RMS value of possible Euclidean

norms of FE,tεXA

Here, the derivation of relation between Cov( FE,tεXA) and the RMS value of possible

Euclidean norms of FE,tεXA is shown.

Equation 2.54 can be used to get the following expression:

E
(
FE,tεXA

T FE,tεXA
)
= FEρ2=E

(
( tZ ε∆FM)T ( tZ ε∆FM)

)
(F.1)

Here, E(e) denotes expectation of e. In equation F.1, FEρ is the RMS value of possi-

ble Euclidean norms of translational components of FEεXA , FE,tεXA . Equation F.1 can be

further expanded to get

FEρ2= tr
(
E
((
tZ ε∆FM

)(
tZ ε∆FM

)T))
= tr

(
E
(
tZ ε∆FM ε∆FM

T tZT
))

= tr
(
tZ E(ε∆FM ε∆FM

T ) tZT
) (F.2)
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Here, tr(W) denotes trace of matrix W. However, E(ε∆FM ε∆FMT ) = Cov(ε∆FM).

Consequently, equation F.2 can be written as

FEρ2= tr
(
tZCov(ε∆FM) tZT

)
(F.3)

Finally equations 2.56 and F.3 give the following expression:

FEρ2= tr
(
Cov( FE,tεXA)

)
(F.4)

Equation F.4 describes the relationship between Cov( FE,tεXA) and the RMS value of

possible Euclidean norms of FE,tεXA , FEρ.



APPENDIX

G
Preliminary results of stiffness

identification of a hexapod using the

stiffness model presented in chapter

4

Here, the details and results of a preliminary study performed to validate the efficacy

of stiffness model for hexapods, presented in section 4.2 of chapter 4, is presented. In this

study, stiffness identification of a hexapod was performed using the said stiffness model.

Following this, the estimated stiffness parameters of this stiffness model were used to pre-

dict the deflections of the loaded hexapod. These predictions were compared with the

measured deflections to study the efficacy of this stiffness model and the estimated pa-

rameters. This study was performed on another high-precision positioning hexapod 1 from

Symétrie and this is shown in figures G.1 and G.2. The setup available for performing pose

measurements and for applying force/moment on the platform were same as described in

section 4.1 of chapter 4.

Section G.1 presents the details and results of stiffness identification performed on this

hexapod. This is followed by details and results of the study performed to validate the

efficacy of the stiffness model and its estimated parameters in section G.2.

1. Different from the one used for experimental study in chapter 4.
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APPENDIX G. PRELIMINARY RESULTS OF STIFFNESS IDENTIFICATION OF A

HEXAPOD USING THE STIFFNESS MODEL PRESENTED IN CHAPTER 4

Figure G.1: Hexapod (without mass
mounted on the platform) along
with the pose measurement appara-
tus, used in this study

Figure G.2: Hexapod (with mass
mounted on the platform) along
with the pose measurement appara-
tus, used in this study

G.1 Stiffness identification

Figure G.3 shows the kinematic scheme and the stiffness model of the SPS (spherical-

prismatic-spherical) hexapod used for this study. Note that this stiffness model is the same

as the one shown in section 4.2 of chapter 4. Consequently, the equations pertaining to

stiffness modelling of this hexapod are also same (as in section 4.2) in this case.

Before performing loading experiments for stiffness identification, practical con-

straints needed to be taken into account. This constraint was a result of the loading setup

available. This loading setup consisted of weights that could be placed on the platform of

the hexapod (see figure G.2). This setup demanded the platform to not be rotated about its

X and Y axes. This constraint was incorporated to make sure that the mounted mass does

not slide off of the platform. Furthermore, using this setup for loading also came with the

constraint that the force could only be applied along the Z axis of the platform.
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Figure G.3: Kinematic scheme and the lumped stiffness model of the hexapod under study

The number of poses and number of deflection measurements per pose also had to

be chosen. High number of measurements leads to better accuracy of identified param-

eters but time limits the number of measurements. Hence, compromising between time-

efficiency and accuracy, three poses and three measurements per pose were chosen. Fur-

thermore, it is also assumed that the legs of the hexapod exhibit linear stiffness behavior.

Consequently, just one load vector should be enough to identify the stiffness in each leg.

Figure G.4 shows the the results of an experiment that shows the hexapod’s linear stiffness

behavior. Also, it is best to apply maximum possible force/moment for better identifiability

of parameters 2. Due to the above reasons, choice was made to use just one load vector of

maximum possible magnitude. This was 34.5 kg in the given case. Also, it was necessary to

place an initial load of 12.2 kg on the platform to suppress the play in actuators. Hence, the

effective force using which the platform deflection was to be measured was 22.3 kg along

the Z-axis of the platform.

Considering the choices listed above, it was necessary to choose three poses at which

stiffness identification had to be performed. Since the goal here was only to validate the

stiffness model, these three identification poses were chosen arbitrarily. The chosen iden-

2. More force/moment leads to more deflection of the platform and this is good for identifiability of pa-
rameters. This is because the errors in deflection measurements have less impact on the identified parame-
ters when the magnitude of platform deflections are high.
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HEXAPOD USING THE STIFFNESS MODEL PRESENTED IN CHAPTER 4
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Figure G.4: Plot showing the deflection of the hexapod’s platform along its Z-axis when a
series of pure forces along its Z-axis were applied

tification poses respected the workspace constraints due to joint & actuator limits of the

hexapod. Additionally, these poses didn’t have rotations about X and Y axes to prevent the

mounted load from sliding off of the platform. The hexapod’s platform was loaded in these

poses and the platform deflections were measured 3. Least squares estimation, as outlined

in chapter 2, was employed to get the stiffness parameters which are tabulated in table G.1.

Table G.1: Estimated stiffness parameters

Stiffness parameter value (N/µm)
k1 k2 k3 k4 k5 k6

4.1981 3.7898 2.7503 4.3200 3.6716 3.7288

G.2 Validation of stiffness model efficacy

To validate the efficacy of the stiffness model and the estimated parameters, platform

deflection measurements were performed at different poses along the X and Y axes of the

hexapod’s platform. The poses at which these pose measurements were performed are

3. Pose measurement method presented in appendix A was used in this case.
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listed in table G.2. The load applied during these deflection measurements was same as

the one used for for stiffness identification.

Table G.2: Poses used for experimental validation

Pose along
Pose parameters

Tx(mm) Ty(mm) Tz(mm) Rx(deg) Ry(deg) Rz(deg)

X-axis

-30

0 0 0 0 0
-15

0
15
30

Y-axis 0

-30

0 0 0 0
-15

0
15
30

Figures G.5 and G.6 show the comparison between the predicted and measured 6-DOF

deflections of the platform at different poses along the X and Y axes of the hexapod, respec-

tively. Table G.3 shows the RMS values of errors in prediction of these 6-DOF deflections.

These results show that the predicted and measured deflections of the platform are very

close. As seen in table G.3, the RMS values of prediction errors are under 3.1 µm for trans-

lational deflections and 8.8 µrad for rotational deflections. Therefore, it can be concluded

that the stiffness model and its estimated parameters are effective in predicting the deflec-

tions of the loaded hexapod.
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HEXAPOD USING THE STIFFNESS MODEL PRESENTED IN CHAPTER 4
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Figure G.5: Plot of predicted and measured 6-DOF deflections of the loaded hexapod at
poses along X-axis
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Figure G.6: Plot of predicted and measured 6-DOF deflections of the loaded hexapod at
poses along Y-axis

Table G.3: Error in deflection prediction (RMS values)

ε∆Tx 2.7 µm

ε∆Ty 3.1 µm

ε∆Tz 2.2 µm

ε∆Rx 6.4 µrad

ε∆Ry 8.3 µrad

ε∆Rz 8.8 µrad





APPENDIX

H
Thermal defection decoupled 6-DOF

pose measurement method for

hexapods

The method presented in appendix A for 6-DOF pose measurement of hexapods is sus-

ceptible to thermal deflections of the hexapod. In this appendix, a new method is pre-

sented which is not susceptible to thermal deflections of the hexapod. Section H.1 presents

a deeper understanding of the aforementioned problem with the conventional pose mea-

surement method (like the one on appendix A). Section H.2 presents the thermal deflec-

tion decoupled pose measurement method. This is followed by details and results of an

experimental study performed to validate the presented method in section H.3.

H.1 Conventional pose measurement method and its

drawback

Pose measurements are always performed by measuring points using a measurement

system which has a coordinate frame (M) attached to it. All the points are measured

with respect to this coordinate frame. The requirement in 6-DOF pose measurement of

a hexapods is to measure the coordinate frame fixed to the platform (platform frame), Si,

when the hexapod is in any ith arbitrary configuration with respect to another coordinate
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frameO. For the case of hexapods studied in this paper, coordinate frameO is the platform

frame when the hexapod’s platform is in zero pose 1.

The conventional method to measure the 6-DOF pose of the platform frame of an ar-

bitrary pose S1 with respect to frame O is illustrated in figure H.1. The frame O is mea-

sured 2 with respect to M first. This coordinate frame is measured with the legs having a

temperature set t1 = [t11,t12, ..,t16], where t1i is the temperature of the ith leg during this

measurement. Let this measured frame be called Ot1 . The platform is then commanded

to the arbitrary pose at which the pose measurement needs to be performed. The transfor-

mation (translation and rotation) between the frameOt1 and the platform frame S1 is then

measured as described in appendix A. However, this measurement happens with the legs

having a temperature set t2 = [t21,t22, ..,t26]. Let the coordinate frame with the legs have

temperature set t2 be called St21 . Therefore, the actual transformation measured is the one

betweenOt1 and St21 , written as T
S
t2
1

Ot1
. Let the corresponding measured pose be denoted as

XO
t1

S
t2
1

.

Figure H.1: Illustration of the conventional pose measurement method to measure the
pose of an arbitrary coordinate frame S1 with respect to a coordinate frameO

1. This is the pose of the platform in which all the pose parameters are zero. In this pose, all the legs have
the same length.

2. O is measured with respect toM by measuring different points on the platform of the hexapod. Check
appendix A for more description where a similar measurement is described.
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From the description presented above, it can be easily seen that the measured trans-

formation would have been different if the legs of the hexapod would have had the tem-

perature set t1. The platform frame in this case (St11 ) would have a different pose vector

XO
t1

S
t1
1

. This is due to the thermal deflection of the legs of the hexapod with the change in

their temperatures from set t1 to set t2. Temperature change also affects other dimensions

of the hexapod. However, for most hexapods, the thermal deflection of legs is much higher

than that of the other parts because: (a) the legs generally have larger dimensions (length)

as compared to the other parts, and (b) driving motors are mounted on/near the legs which

heat the legs more than the other parts.

To understand the drawback of this measurement method, consider a case in which

pose measurements need to be performed for a long duration of time 3. When conven-

tional pose measurement is used in this case, different platform poses will be measured

with legs at different temperatures. This can happen due to heating supplied by motors

or the surrounding air. Consequently, different measured poses have the influence of dif-

ferent magnitudes of thermal deflections of legs. This can be problematic, for example,

in the case of pose measurements performed in the experimental studies in sections 4.3.2

and 4.4.2. In these cases, the accuracy of positioning of the unloaded robot and the loaded

robot with error compensation are compared to evaluate the efficiency of compensation.

These two measurements are made with legs possibly at different temperatures. The ther-

mal deflections in the legs due to the aforementioned temperature difference can cause

considerable thermal deflections, thereby making it difficult to evaluate the efficiency of

compensation. Therefore, a new pose measurement method is necessary that is insuscep-

tible to thermal deflections of the hexapod.

H.2 Thermal deflection decoupled pose measurement

method

Figure H.2 illustrates the proposed method to measure the 6-DOF pose of the platform

frame with the platform at an arbitrary pose S1, with respect to frame O. In this method,

3. Like in pose measurements needed in validation studies described in sections 4.3.2 and 4.4.2
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frame Ot1 must be measured first (with the legs having temperature set t1). Immediately

after this, the platform must be moved to a reference pose R. The transformation between

the platform frame R andOt1 must be measured quickly such that the measurement hap-

pens with the legs having the temperature set t1. Let this measured frame be called Rt1 .

The platform can then be moved to any arbitrary pose (frame S1). The transformation be-

tween this frame andOt1 can be measured with the legs having a temperature set t2. This

measured frame is St21 . An additional measurement, transformation between framesR and

Ot1 , must be performed quickly before/after measuring St21 . This measurement must be

performed with the hexapod’s legs having the temperature set t2 (measured coordinate

frame: Rt2).

Figure H.2: Illustration of the thermal deflection decoupled pose measurement method to
measure the pose of an arbitrary coordinate frame S1 with respect to a coordinate frameO

Figure H.3 illustrates the method to obtain the necessary pose vector XO
t1

S
t1
1

using the

measurement data obtained from the measurements outlined above. The measurement

procedure described can be used to obtain three transformations: TR
t1

Ot1
, TR

t2

Ot1
and T

S
t2
1

Ot1
.
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Consequently, the corresponding 6-DOF pose vectors, XO
t1

Rt1
, XO

t1

Rt2
and XO

t1

S
t2
1

can be ob-

tained. These pose vectors can be used to get the corresponding leg lengths of the hexapod

by using the inverse geometric model (IGM) of the hexapod. qRt1 , qRt2 and q
S
t2
1

are the

arrays containing the leg lengths of the hexapod corresponding to pose vectorsXO
t1

Rt1
,XO

t1

Rt2

and XO
t1

S
t2
1

, respectively. qRt1 and qRt2 can then be used to compute the thermal deflection

the hexapod’s legs corresponding to temperature change from set t1 to set t2, with the plat-

form at reference poseR. Let the array containing these leg deflections be called∆qRt1−Rt2

and let ∆qi
Rt1−Rt2

be the deflection of the ith leg. The thermal deflection due to tempera-

ture change of legs from set t1 to set t2 of the ith leg of the hexapod at the arbitrary pose

S1,∆qi
S
t1
1 −S

t2
1

, can then be estimated easily. The task here is to find the thermal deflection

of the legs with lengths qS1t2 , when the temperature of these legs change from set t1 to set

t2, when the thermal deflection of the same legs with lengths qRt1 are known. The method

to perform this computation must respect the dimensions and material properties of the

components of the leg assembly. ∆q
S
t1
1 −S

t2
1

can then be subtracted from qS1t2 to obtain

qS1t1 . qS1t1 is the array containing the leg lengths when the platform is at the arbitrary

pose S1 and the legs have temperature set t1. Finally, the necessary pose vector XO
t1

S
t1
1

can

be obtained by using forward geometric model (FGM) of the hexapod corresponding to

qS1t1 . When multiple platform poses shall be measured using this method while leg tem-

peratures change, the measured poses will not have the influence of different magnitudes

of thermal deflections of legs. Hence, the drawback of the conventional method can be

overcome using this method.

H.3 Experimental validation of the proposed pose

measurement method

This section presents the details of an experimental study performed to compare the

conventional and proposed methods for 6-DOF pose measurement of hexapods. The legs

of the hexapod were heated during this experiment to control and slightly exaggerate heat-

ing in legs.This was done to clearly show the advantage of the proposed pose measurement

method over the conventional method. Figure H.4 shows the test setup used for this exper-
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Figure H.3: Flowchart of procedure to post-process the measured data to obtain the re-
quired pose vector in the thermal deflection decoupled pose measurement method

imental study. The hexapod used in this study is the same as the one used for experimental

studies in chapter 4. A flexible electric heating mat was fixed to each leg to facilitate heat-

ing. Thermocouples were used to measure the temperature of each leg and the surround-

ing air. Precision balls were fixed to the hexapod’s platform which were used for measuring

the coordinate frame fixed to the platform. The measurements were performed using a LK-
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METRIS CMM equipped with a RENISHAW SP25 touch probe. The uncertainty of points

measured using this CMM, quantified using theMPEP value [ISO, 2000], is about ±2 µm.

Figure H.4: Test setup

Poses of the platform of the hexapod used in this study are defined by a coordinate

frame fixed to the platform at its center. The position and orientation of this platform

frame is predefined using holes and planes which are precisely machined on the platform

in the manufacturing phase (see sppendix A for more details). The coordinate frame with

respect to which any pose of the platform is defined (O) is the platform frame with the

hexapod in zero pose configuration 4 (see figure H.5).

In this experimental study, the pose to be measured (refered to as measurement pose

from here), called S1 in sections H.1 and H.2, was the zero pose. This pose was chosen to be

measured in order to facilitate the ease of understanding results as the hexapod is symmet-

rical in this configuration (see figure H.5). The reference pose R to be used in the proposed

pose measurement method had the pose vector [0 mm 0 mm − 40 mm 0◦ 0◦ 0◦]. The

4. This is the configuration of the hexapod in which all of the platform pose parameters are zero. In this
configuration, all the legs have the same length.
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Figure H.5: Hexapod with platform in [0mm 0mm 0mm 0◦ 0◦ 0◦] pose (top view)

necessary measurements were made to perform the pose measurement as per the thermal

deflection decoupled method (see section H.2). Note that (a part of) these measurements

can also be used for performing pose measurements as per the conventional method of ap-

pendix A. Ten trials of measurements were performed and the hexapod’s legs were heated

during this using the electric heating mats. The measurements were then post-processed

as per the conventional (appendix A) and proposed (section H.2) methods.

In the proposed pose measurement method, the thermal expansion of the legs with the

platform in measurement pose had to be predicted. This had to be done using the mea-

sured thermal expansions of the legs at the reference pose (see section H.2). The following

logic was used for this: the legs of the hexapod used in this study could be divided length-

wise into an Aluminium part of fixed length and a Steel part of variable length. When the

platform is moved from one pose to another, the Steel parts of legs change their lengths

to achieve the new required lengths. When the thermal expansion of legs at the reference

pose were measured, the corresponding thermal expansions of the Aluminium and the

Steel parts could be determined. This could be done because the lengths and the ther-

mal expansion coefficients of the two parts were known. The length of each leg and the

corresponding length of the Steel part, with the hexapod in the measurement pose, were

also known. The thermal expansion of the Steel part of each leg measured in reference

pose was then appropriately scaled to estimate the thermal expansion of the Steel part of

each leg in measurement pose. The thermal expansion of the Aluminium part was same

for the reference and measurement poses as this part does not change its length. The total
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thermal expansion of each leg at the measurement pose was then obtained by adding the

corresponding thermal expansions of the Steel and Aluminium parts.

Figure H.6 shows the pose parameters of the measurement pose measured by using

the conventional and proposed methods. Txmes, Tymes and Tzmes are the components of

measured pose vector corresponding to translations along X, Y and Z axes of the hexapod,

respectively. Rxmes, Rymes and Rzmes are the components of measured pose vector corre-

sponding to rotations about X, Y and Z axes of the hexapod, respectively. Figure H.7 shows

the temperatures measured at different locations during this test.

Figure H.6: Measured pose parameters using conventional and thermal deflection decou-
pled methods with the platform in zero pose

It can be seen in figure H.6 that the measured pose parameters obtained using the con-

ventional method deviates significantly with every trial. These observed deviations can be
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Figure H.7: Measured temperatures

correlated with the change in leg temperatures between trials. The trend of deviation of

Tzmes using the conventional method is similar to the trend of the change in temperature

of all legs. This behaviour is logical given the orientation of all legs in zero pose. Also, devi-

ation seen in Txmes using conventional method increases with every consecutive trial until

the end. This can be explained by the temperatures measured in legs 2, 3, 4 and 5. The

temperatures of legs 2 and 5 are higher than those of legs 3 and 4 during the test and this

difference increases with every consecutive trial until the end. Consequently, legs 2 and 5

push the platform more in positive X-direction as compared to legs 3 and 4 pushing it in the

opposite direction. Furthermore, deviation seen in Rxmes using conventional method also

increases with every consecutive trial until the end. This can be explained by the difference

in temperatures of legs 3 and 5 (with leg 5 heating more than leg 3) which follows a similar

trend. Consequently, leg 5 pushes the platform more about the X-axis as compared to leg 3

and results in a positive rotational deviation about the X-axis with every consecutive trial.

The pose parameters measured using the proposed method do not deviate with change

in temperature of hexapod’s legs, unlike the ones measured using conventional method.

It is, therefore, clear that the proposed method is effective in eliminating the influence of

thermal deflection of the hexapod on the measured pose parameters.



APPENDIX

I
Formulating DUIR criterion for

optimizing geometric parameter

identification in robot geometric

calibration

This thesis presented a framework for formulating criteria for choosing the best set

of poses and forces/moments for stiffness identification. These formulated criteria mini-

mize the impact of errors influencing stiffness identification 1 on the poses attained after

positioning compensation. As was mentioned in section 1.3.2, the parametric calibration

framework used for robot elastostatic calibration is similar to the one used for robot ge-

ometric calibration. Furthermore, one error source impacts parameter identification in

both these robot calibrations: uncertainty of deflection measurements performed. As a re-

sult, the framework for formulating criterion for minimizing the influence of this error on

elastostatic calibration performance, the DUIR criterion, can also be used for minimizing

the influence of this error on the performance of robot geometric calibration. The manner

of formulating DUIR criterion for optimizing geometric parameter identification in robot

geometric calibration is discussed below.

1. Deflection measurement uncertainty and errors in forces/moments applied during stiffness identifi-
cation experiment.
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Equation 1.17 can be rewritten for the case of geometric calibration as

W p=∆X (I.1)

In equation I.1, A and c from equation 1.17 are replaced by W and p, respectively. W

and p are the equivalents ofA and c in the case of geometric calibration, respectively. W is

a function of actuator positions and the assumed geometric parameter set whilep contains

the difference between the actual and assumed geometric parameters’ values [Sun and

Hollerbach, 2008]. ∆X in this case is the difference between the measured and expected

poses. Let all variables have the same names in the case of geometric calibration, except

for the ones related toA and c (AM,AD,.. etc replaced byWM,WD,.. etc and ĉ,DUεc,...etc

replaced by p̂, DUεp,...etc).

Equation 2.30, which is used for formulating DUIR criterion in the case of robot elasto-

static calibration, can be written for the case of geometric calibration as

Cov( DUεXA)≈ ( DUσε̃∆XM
)2 WD H ( asW̃M

T
asW̃M)−1 HT WT

D︸ ︷︷ ︸
Ug

(I.2)

Here,Ug is a function of poses used for geometric parameter identification. It controls

the propagation of uncertainty in measured pose deflections to uncertainty of resultant

errors in poses attained after compensation. Equation I.2 can be used in ways similar to the

ways described in section 2.3.2 to find best poses for geometric parameter identification.
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Abstract

Hexapods are increasingly being used for high-precision 6-DOF positioning applica-

tions such as for positioning mirrors in telescopes and for positioning samples in syn-

chrotrons. These robots are designed and controlled to be very repeatable and accurate.

However, structural compliance of these positioning systems limits their positioning ac-

curacy. As accuracy requirements become more stringent in emerging applications, com-

pensating for inaccuracy due to structural compliance becomes necessary.

In this regard, firstly, a method for elastostatic calibration of hexapods is presented. This

method uses a lumped stiffness parameter model to parametrize the relationship between

the platform deflections and the force/moment applied on it. These parameters can be es-

timated using deflection measurements performed using known forces/moments applied

on the platform. The estimated parameters can then be used to predict and correct hexa-

pod’s positioning errors due to compliance.

Secondly, a new approach is presented to optimize stiffness identification for robot elas-

tostatic calibration. In this, a framework is proposed to formulate criteria to choose best

set of poses and forces for stiffness identification experiment. The parameters identified

under experimental conditions (poses and forces) suggested by these criteria ensure min-

imum impact of errors influencing stiffness identification (uncertainty of deflection mea-

surements and errors in forces applied) on compensation quality. Additionally, it also max-

imizes accuracy after compensation at desired pose(s), along desired axe(s) of the platform

and with desired forces/moments on the platform. This stiffness identification optimiza-

tion framework ensures best compensation for positioning errors due to compliance as per

the positioning requirements of the application at hand.

Lastly, a method is presented to eliminate the influence of thermal deflection of a hexapod

on the measured 6-DOF pose of its platform. This method is necessary when thermal de-

flections of the hexapod are large enough to impact results of a study, which was the case

with some tests performed to validate methods developed in this thesis.

The efficacy of presented methods have been validated by means of simulation studies on

a bipod and experimental studies on a high-precision hexapod positioning system.

Keywords: hexapod, elastostatic calibration, stiffness identification, parameter identifica-

tion, design of experiments, observability index, pose measurement



Résumé

Les hexapodes sont de plus en plus utilisés pour des applications de positionnement

de haute précision à 6 degrés de liberté, comme pour le positionnement des miroirs des

télescopes ou pour le positionnement des échantillons dans les synchrotrons. Ces robots

sont conçus et commandés pour faire preuve de grande répétabilité et de grande justesse.

Cependant, la souplesse structurelle de ces systèmes de positionnement limite leur pré-

cision de positionnement. Comme les exigences de précision deviennent de plus en plus

strictes dans les applications émergentes, il devient nécessaire de compenser ces déforma-

tions.

À cet égard, tout d’abord, une méthode d’étalonnage élastostatique des hexapodes est pré-

sentée. Cette méthode utilise un modèle de paramètre de rigidité forfaitaire pour paramé-

trer la relation entre les flèches de la plate-forme et la force / le moment qui lui est appli-

qué. Ces paramètres peuvent être estimés à l’aide de mesures de déflexion effectuées en

utilisant des forces / moments connus appliqués sur la plate-forme. Les paramètres esti-

més peuvent ensuite être utilisés pour prévoir et corriger les erreurs de positionnement

des hexapodes dues à la conformité.

Deuxièmement, une nouvelle approche est présentée pour optimiser le processus d’iden-

tification des paramètres de raideur de l’étalonnage élastostatique. Cette approche repose

sur l’utilisation de critères qui permettent de déterminer le meilleur ensemble de poses

et de forces pour identifier les paramètres de raideur. Les paramètres identifiés dans les

conditions expérimentales (poses et forces) suggérées par ces critères permettent une

contribution minimum des erreurs influençant l’identification des raideurs (incertitude

des mesures des déflections et erreurs des forces appliquées) sur la qualité de la compensa-

tion. De plus, suivre cette approche maximise également la précision après compensation

aux poses souhaitées, le long des axes souhaités, et avec les combinaisons force/moment

souhaitées sur la plateforme. Ce cadre d’optimisation pour l’identification des raideurs as-

sure la meilleure compensation des erreurs de positionnement dues à la souplesse struc-

turelle, selon les exigences de positionnement de l’application en question.

Enfin, une méthode est présentée qui permet de s’affranchir des effets dues à la thermique

sur la mesure des 6 degrés de liberté de la pose de la plateforme d’un hexapode. Cette mé-

thode est nécessaire lorsque les déflections dues à la thermique de l’hexapode sont suffi-



samment importantes pour avoir un impact sur les résultats d’une étude, ce qui était le cas

avec certains des tests effectués pour valider les méthodes développées dans cette thèse.

L’efficacité des méthodes présentées a été validée au moyen d’études en simulation sur un

bipède, et d’études expérimentales sur un système de positionnement hexapode de haute

précision.

Mots clefs : hexapode, étalonnage élastostatique, identification de la rigidité, identification

des paramètres, plan expérience, indice d’observabilité, mesure de la pose

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France
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