
HAL Id: tel-03154815
https://theses.hal.science/tel-03154815v1

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerated Monte-Carlo methods for piecewise
deterministic Markov processes for a faster reliability

assessment of power generation systems within the
PyCATSHOO toolbox

Thomas Galtier

To cite this version:
Thomas Galtier. Accelerated Monte-Carlo methods for piecewise deterministic Markov processes for
a faster reliability assessment of power generation systems within the PyCATSHOO toolbox. General
Mathematics [math.GM]. Université Paris Cité, 2019. English. �NNT : 2019UNIP7176�. �tel-03154815�

https://theses.hal.science/tel-03154815v1
https://hal.archives-ouvertes.fr


 

Université de Paris
Ecole doctorale de Sciences Mathématiques

de Paris Centre  (ED 386)

LPSM 

Accelerated Monte-Carlo methods for

Piecewise Deterministic Markov Processes

for a faster reliability assessment of power generation

systems within the PyCATSHOO toolbox

Par Thomas GALTIER

Thèse de doctorat en Statistique

Dirigée par Josselin Garnier

Présentée et soutenue publiquement le 20/09/2019

Devant un jury composé de :  

Rapporteur : Benoite De Saporta, professeure, université de Montpellier
Rapporteur : Marko Cepin, professeur, université de Ljubljana
Examinateur : Randal  Douc , professeur, Telecom sudparis
Examinateur : Stephane Boucheron, professeur, université paris diderot
Examinateur : Nicolae Brinzei, maitre de conference, université de Lorraine
Encadrant EDF : Hassane Chraibi 

  

1



 

     

2



 

Titre :

3



 

Résumé : 

Cette thèse porte sur l'estimation de la fiabilité des centrales hydrauliques
et nucléaires  construites et exploitées par EDF (Électricité de France). La
défaillance d'une centrale étant associée à des conséquences majeures
(crue,  rupture  de  barrage,  ou  fusion  du  cœur),  pour  des  raisons
réglementaires  et  de  sûreté  EDF  doit  s'assurer  que  la  probabilité  de
défaillance d'une centrale est suffisamment faible.                            

La défaillance de tels système intervient lorsque des variables physiques
(température, pression, niveau d'eau) dépassent un certain seuil critique.
Typiquement, ces variables entrent dans cette région critique seulement
lorsque  plusieurs  composants  du  système  sont  détériorés.  Donc  pour
estimer la probabilité de défaillance du système, nous devons modéliser
conjointement  le  comportement  des  composants  et  celui  des  variables
physiques. Pour ce faire nous utilisons un modèle basé sur un Processus
Markovien Déterministe par Morceaux (PDMP).                         

Ce modèle permet d'estimer la probabilité de défaillance du système par
simulation.  Malheureusement  le  modèle  demande  d'importantes
ressources de calcul pour être simulé. La méthode classique d'estimation
par Monte-Carlo, qui demande beaucoup de simulations pour estimer les
probabilités d'événements rares,  est alors beaucoup trop lente à exécuter
dans notre contexte. Il est nécessaire d'utiliser des méthodes faisant appel
à moins de de simulations pour estimer la probabilité de défaillance du
système : des méthodes de réduction de variance.                                 

Parmi les méthodes de réduction de variance on distingue les méthodes de
type "tirage préférentiel" (importance sampling) et les méthodes de type
"splitting", mais ces méthodes présentent des difficultés lorsqu'elles sont
employées  avec  des  PDMPs.                                  

En effets les fondements théoriques du tirage préférentiel avec les PDMPs
sont encore à définir.  Pour être utilisé le tirage préférentiel demande de
pondérer les simulations par un rapport de vraisemblance, et,  pour les
trajectoires de PDMPs, ce rapport de vraisemblance n'a pas pas encore été
rigoureusement  défini  jusqu’ici.  Aussi  des  processus  d'importance
efficaces pour les PDMP sont encore à définir.  Cette thèse propose une
façon  de  construire  rigoureusement  le  rapport  de  vraisemblance,  puis
étudie  les  caractéristique  du  processus  d'importance  optimal  pour  les
PDMPs,  elle  en  déduit  une  façon  pratique  de  spécifier  un  processus
d'importance  efficace.  Cette  méthode  est  testée  sur  des  systèmes  de
différentes tailles, les résultats montrent de très bonnes performances sur
de  petits  systèmes,  mais  sur  des  systèmes  de  tailles  industrielles  la
méthode proposée reste encore difficile à mettre en œuvre.
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Abstract : 

This thesis deals with the reliability assessment of nuclear or hydraulic
power  plants,  which  are  built  and  exploited  by  the  company  EDF
(Électricité de France). As the failures of such systems are associated to
major  human  and  environmental  consequences,  for  both  safety  and
regulatory reasons, EDF must ensure that the probability of failure of its
power  generation  systems  is  low  enough.  
 
The failure of a system occurs when the physical variables characterizing
the system (temperature, pression, water level) enter a critical  region.
Typically, these physical variables can enter a critical region only when a
sufficient  number  of  the  basic  components  within  the  system  are
damaged. So, in order to assess the probability of having a system failure,
we have to jointly model the evolution of the physical variables and of the
statuses of the components. To do so we use a model based on piecewise
deterministic Markovian processes (PDMPs).

This model allows to estimate the probability of failure of the system by
simulation. Unfortunately the model is computationally intensive to run,
and the classic Monte-carlo method,  which needs a lot of simulations to
estimate  the  probability  of  a  rare  event,  is  then  too  computationally
intensive in our context. Methods requiering less simulations are needed,
like for instance variance reduction methods.

Among variance reduction methods, we distinguish importance sampling
methods and splitting methods. The difficulty is that we need to use these
methods on PDMPs, which raises a few issues. 

The  theoretical  foundations  for  the  importance  sampling  methods  with
PDMPs are yet to be defined. Indeed these methods require to weight the
simulations  with  likelihood  ratios,  and  these  likelihood  ratios  have  not
been properly defined so far for PDMP trajectories, which are degenerate
processes.  Also  efficient  biasing  strategies  (i.e.  altered  simulation
processes yielding a small variance estimator) have not been proposed for
PDMPs.  This  thesis  presents  how  to  build  the  likelihood  ratios,  it
investigates the characteristics of the ideal optimal biasing strategy, and it
presents  a  convenient  and  efficient  way  to  specify  practical  biasing
strategies for systems of reasonable size.

Concerning  particular  filters  methods,  they  tend  to  perform poorly  on
PDMPs with  low jump rates and therefore they need to be adapted in
order  to  be  successfully  applied  to  reliable  power  generation  systems.
Indeed  in this context, splitting methods are sometimes less efficient than
the naive Monte-Carlo method. This thesis investigates how it is possible
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to  efficiently  use  these  methods  with  PDMPs.  Namely  we  propose  an
adaptation of  the interacting particles  system method (IPS) for  PDMPs
with low jump rates, and we investigate the convergence properties of the
estimators of our methods. The efficiency of the method is tested  on a
reasonable  size  system  showing  a  perfomance  slightly  better  than  or
equivalent to the Monte-Carlo method.

An additionnal result on the IPS method is  also proposed in a general
Markovian framework (beyond PDMPs). The IPS method takes as input
certain  potential  functions  that  directly  impact  the  variance  of  the
estimator. In this PhD, we show that there are optimal potential functions
for  which  the  variance  is  minimized  and  we  give  their  closed-form
expressions.

Keywords :  importance sampling- PDMP – interacting particle sytem – 
reliability assessment
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Context and positioning

This thesis deals with the reliability assessment of nuclear, or hydraulic, power plants,
which are built and exploited by the company EDF (Électricité de France). As the failure
of such systems is associated to major human and environmental consequences, for both
safety and regulatory reasons, EDF must ensure that the probability of failure of its power
generation systems is low enough.

The failure of a system occurs when the physical variables characterizing the system
enter a critical region. For instance, a nuclear power plant fails when the temperature of
its core exceeds a fusion threshold, a dam fails when the water level exceeds the over-
flowing threshold, or when the pressure on evacuation valves is so high that they open
spontaneously.

Typically, these physical variables can enter a critical region only when a sufficient
number of the basic components within the system are damaged. So, in order to assess
the probability of having a system failure, we have to jointly model the evolution of the
physical variables and of the statuses of the components. We define the state of the system
as the pair of the physical variables and of the statuses of the components. At a time t,
the state of the system is denoted by

Zt = (Xt,Mt),

where Xt denotes the physical variables at time t, and Mt denotes the statuses of all the
components in the system at time t. We consider that each of the Nc components within
the system can be in a status ON, OFF, or "F" for failed, so Mt takes discrete values in
{ON,OFF,F}Nc , whereas the physical variables are continuous and evolve in Rd. Note
the state of the system Zt is made of both continuous and discrete coordinates, such a
variable is sometimes referred to as an "hybrid variable" in the reliability community.

The evolution of the state of the system Zt can be modeled by a piecewise deterministic
Markovian process (PDMP). Indeed, these processes are well suited to model the evolution
of hybrid variables such as Zt. When they were introduced, PDMPs were meant to gather
all the Markovian processes that do not include diffusion, as such they benefit from very
high modeling capacities. They can model the evolution of the state of most of the power
generation systems.

Once we have modeled a given power generation system, we want to assess its prob-
ability of failure. More precisely we want to assess the probability, denoted pD, that the
state of the system Zt enters the failure region D before a given observation time tf and
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after being initiated in a safe state z0. We are interested in computing pD in order to
assess the reliability of the system, denoted r, and defined by:

r = 1− pD. (1)

Denoting Z = (Zs)s∈[0,tf ) a trajectory of the state of the systems of size tf , and
τD = inf{s > 0, Zs ∈ D} the time at which the state of systems enters D, pD is de-
fined by

pD = P (τD < tf |Z0 = z0) . (2)

Or denoting by D the set of trajectories hitting the region D before tf , the probability
of failure pd can be defined by:

pD = P (Z ∈ D |Z0 = z0) . (3)

Due to the complexity of the considered system (and of the associated PDMP model),
it is not possible to compute this probability analytically, so we have to rely on simulation
techniques. The company EDF has recently developed the PyCATSHOO toolbox 1, which
allows simulating and modeling such power generation systems. Thanks to the well-known
Monte Carlo method, it evaluates dependability criteria, among which is the reliability of
the system.

Unfortunately, when the Monte-Carlo method is used to assess the probability of
a rare event like system failure, it is computationally intensive. Indeed, if we want to
identify the order of magnitude of pD, the Monte-Carlo method requires a huge number
of simulations, and it becomes excessively time consuming. Typically the assessment of
a probability p ' 10−n with the Monte-Carlo method requires N = 10n+2 simulations,
which takes too much time to run. In order to reduce computation times, we need an
estimator that is more accurate and requires less simulations. Typically, in our industrial
setting, the question is somehow to ensure with few thousand samples that a system is
unsafe with a probability pD lower than 10−6.

At this stage, a variance reduction method can provide a more accurate estimator.
In such a variance reduction method, we generally increase the probability of simulating
system failure by altering the simulation process, and then we correct the induced bias by
an appropriate weighting of each simulation. Among variance reduction methods, one can
think of two main groups of methods: the importance sampling methods and the particle
filtering methods. The difficulty is that we need to use these methods on PDMPs, which
raises a few issues.

1. See the website http://pycatshoo.org/
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The theoretical foundations for the importance sampling methods with PDMP are
yet to be defined. Indeed these methods require to weight the simulations with likelihood
ratios, and these likelihood ratios have not been properly defined so far for PDMP trajec-
tories, which are degenerate processes. Also efficient biasing strategies (i.e. altered simu-
lation processes yielding a small variance estimator) have not been proposed for PDMP.
This thesis presents how to build the likelihood ratios, and it presents a convenient and
efficient way to specify biasing strategies for systems of reasonable size.

Concerning particular filters methods, they tend to perform poorly on PDMP with
low jump rates and therefore they need to be adapted in order to be successfully applied
to power generation systems. This thesis investigates how it is possible to efficiently use
this method with PDMP. Namely we propose an adaptation of the importance sampling
method and of a particular filter method for PDMPs, and we investigate the convergence
properties of the estimators of our methods.
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Chapter 1

Piecewise Deterministic Markov
Processes

The motivation of this thesis is to provide efficient simulation methods for the assess-
ment of the reliability of power generation systems. The prerequisite to any simulation
method, is to have a probabilistic model for the simulation output. This chapter aims at
presenting how we can model and simulate the evolution of the state of a power generation
system by using a Piecewise Deterministic Markovian Process (PDMP).

PDMPs benefit from high modeling capacities and can model many industrial systems.
When they were first introduced by M.H.A Davis [19], this class of processes were meant
to include all the Markovian objects that do not include diffusion. Therefore most of
the classical Markovian objects are included in the class of PDMP. This is noteworthy
because results derived for PDMPs stay true for any of these processes within the class of
PDMP. For instance the results of this thesis, that are presented in part II, are adapted
for PDMP and therefore can be generalized to Markov chains, to continuous time Markov
chains, to compound Poisson processes, and to queuing models and to any object that
can be viewed as a PDMP. To begin this Chapter we quickly present some generalities
on Markov chains and Markov processes, and then we present the classical Markovian
objects that are included in the PDMP class. We present the different types of PDMP
models in the second section of this chapter. A third section presents how we can model a
power generation system with this model. Most of the notions presented in these sections
come from the books [18] and [54].

1.1 Markovian objects

The notations introduced here are used only in this section and in the subsection 1.2.4
which present how to specify some Markovian objects such as PDMP.

1.1.1 Markov chains

Definition 1 (Markov chain, Homogeneity). Let (A,A,P) be a probability space and let
(M,M) be a measurable space. The sequence (Mn)n∈N of random variables from (A,A,P)

3



Partie I, Chapter 1 – A model based on Piecewise Deterministic Markov Processes (PDMPs)

to (M,M) is a Markov chain if it verifies the following memory-less property:

∀B ∈M, k ∈ N, n ∈ N∗,

P (Mn+k ∈ B |Mn−1, Mn−2, . . . , M0) = P (Mn+k ∈ B |Mn−1). (1.1)

Furthermore the chain is said to be homogeneous if the probability P (Mn+k ∈ B |Mn−1)
does not depend on the time n.

Definition 2 (Filtration). The σ-algebra generated by the random variables (Mk)k≤n is
denoted by FM

n . These σ-algebras form the natural filtration of the Markov chain (Mk)k∈N.

The memory-less property displayed in equation (1.1) can then be rewritten using the
filtration:

∀B ∈M, k ∈ N, n ∈ N∗,

P
(
Mn+k ∈ B | FMn−1

)
= P (Mn+k ∈ B |Mn−1). (1.2)

An important notion for Markovian objects is the stopping time. Such stopping times
are convenient to work with, because they allow to use the corollary of strong Markov
property presented below .

Definition 3 (Stopping time). A random variable T with value in (N⋃{∞},P (N⋃{∞}))
is a stopping time for the Markov chain (Mk)k∈N, if, for all n ∈ N, the event {T ≤ n}
belongs to the filtration FMn .

Definition 4 (σ-algebra on a stopping time). If T is a stopping time, one can define a
σ-algebra on this stopping time by

FMT =
B ∈ FM∞ = σ

⋃
n∈N
FMn

 ∣∣∣∣∣ B ∩ {T ≤ n} ∈ FMn , ∀n ≥ 0
 . (1.3)

Theorem 1 (Corollary of the Strong Markov property). A Markov Chain (Mk)k∈N verifies
the strong Markov property. As a consequence for a finite stopping time T (such that
P (T <∞)=1) we have

∀B ∈M,∀h ∈ N P
(
MT+h ∈ B | FMT

)
= P (MT+h ∈ B |MT ). (1.4)

For a countable space M and a homogeneous chain (Mn)n∈N, we use the following
notations:

∀ (i, j) ∈M2, n ∈ N∗,

P (Mn = j |Mn−1 = i) = pij. (1.5)
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1

2 3
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Figure 1.1 – Representation of a homogeneous Markov chain

with state space M = {1, 2, 3} and a one-step transition matrix P =

0.50 0.25 0.25
0.30 0.60 0.10
0.20 0.10 0.70

.

Definition 5 (Transition matrix). Assuming the chain (Mn)n∈N is homogeneous and M is
countable, the one-step transition matrix is defined by P =

(
pij
)

(i,j)∈M2
. It is a stochastic

matrix as ∀i ∈M,
∑
j∈M pij = 1.

The k-step transition matrix is denoted P (k) =
(
p

(k)
ij

)
(i,j)∈M2

and is such that ∀n ∈ N:

p
(k)
ij = P (Mn+k = j |Mn = i). (1.6)

For instance, the figure 1.1 represents a Markov with three states and a one-step
transition matrix, and a possible realization of this Markov chain is displayed in figure
1.2.

Mt

0

1

2

3

t1 2 3 n− 1 n

• •

•

• •

• • •

• •

•

0.3

0.1

0.6

Figure 1.2 – Example of realization of a Markov chain
with state space M = {1, 2, 3} and a one-step transition matrix

P =

0.50 0.25 0.25
0.30 0.60 0.10
0.20 0.10 0.70

.
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Partie I, Chapter 1 – A model based on Piecewise Deterministic Markov Processes (PDMPs)

Property 1 (Chapman-Kolmogorov equations). The transition matrices satisfy the Chapman-
Kolmogorov equations:

∀s ≤ k, P (k) = P (k−s)P (s) (1.7)

and in fact on can show that P (k) = P k and P (0) = I.

1.1.2 Markov processes

Definition 6 (Stochastic process). Let (A,A,P) be a probability space and (E, E) be a
measurable space. A sequence (Zt)t∈R+ of random variables from (A,A,P) to (E, E) is a
stochastic process.

Definition 7 (Filtration). The σ-algebra generated by the sequences of random variables
(Zt)t≤v is the filtration associated to the stochastic process (Zt)t∈R+ , it is denoted by Fv.
The σ-algebra generated by (Zt)t<v is denoted by Fv− .

Definition 8 (Markov process,Homogeneity). The stochastic process (Zt)t∈R+ is aMarkov
process with values in (E, E) if it verifies the memory-less property:

∀B ∈ E ,∀h > 0, t > 0, P (Zh+t ∈ B | Ft) = P (Zh+t ∈ B | Zt). (1.8)

The process is considered homogeneous when P (Zh+t ∈ B | Zt) does not depend on the
time t.

Definition 9 (Stopping time). A random variable T with value in (R+⋃{+∞},B (R+⋃{+∞}))
is a stopping time for the process (Zt)t∈R+ , if ∀t, {T ≤ t} ∈ Ft.

Definition 10 (σ-algebra on a stopping time). If T is a stopping time,

FT =
B ∈ F∞ = σ

 ⋃
t∈R+

Ft

 ∣∣∣∣∣ B ∩ {T ≤ t} ∈ Ft, ∀t ≥ 0
 (1.9)

Theorem 2 (Corollary of the Strong Markov property). A Markov process (Zt)t∈R+ ver-
ifies the strong Markov property and consequently for a finite stopping time T we have:

∀B ∈ E , P (ZT+h ∈ B | FT ) = P (ZT+h ∈ B | ZT ). (1.10)

Definition 11 (Transition matrix). If the state space of the process (E, E) is count-
able, and the process is homogeneous, one can define the t-step transition matrix. Let
pij(t) = P (Zt+h = j | Zh = i) = P (Zt = j | Z0 = i), the t-step transition matrix is then
defined by

P (t) =
(
pij(t)

)
(i,j)∈E2

. (1.11)

It is a stochastic matrix as ∀i ∈ E, ∑j∈E pij(t) = 1.
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1.1. Markovian objects

Property 2 (Chapman-Kolmogorov equations). Assuming the state space of the homo-
geneous Markov process (E, E) is countable, the transition matrices satisfy the Chapman-
Kolmogorov equations:

∀s ≤ t, P (t) = P (t− s)P (s) with P (0) = I (1.12)

as
∀(i, j) ∈ E2, ∀s ≤ t, pij(t) =

∑
k∈E

pkj(t− s)pik(s) (1.13)

Sometimes it can be interesting to work with some local properties of the process. In
order to describe the local evolution of a process one can use its infinitesimal generator.
This quantity is defined as follows:

Definition 12 (Generator). We denote by M (E) the set of real-valued measurable func-
tions on a set (E, E). For a homogeneous Markov process (Zt)t∈R+ with values in (E, E),
let D(Q) ⊂ M (E) be the set of bounded measurable functions such that for all z ∈ E
the following limit exists:

lim
t↓0

E [f(Zt)|Z0 = z]− f(z)
t

. (1.14)

D(Q) is called the domain of the generator Q.

The infinitesimal generator is the linear operator Q defined by

Qf(Zs) = lim
t↓0

E [f(Zs+t)|Zs]− f(Zs)
t

(1.15)

where f ∈ D(Q).

A Markov chain as Markov process

Note that it is possible to extend any Markov chain Mn, evolving in a countable state
space M, to a Markov process (Zt), evolving in a state space E = R × (−∞, 1) ×M, by
setting

Zt =
(
t, t− btc,Mbtc

)
. (1.16)

The coordinate t − btc is optional, it will be used in subsection 1.2.4 to express (Zt) as
a PDMP. Here we can check that (Zt) is a Markov process as, ∀t, u ∈ R, with t > u, it
verifies:

∀m ∈M, P (Zt = (t, t− btc,m) | Fu) = p
(btc−buc)
Mum

= P (Zt = (t, t− btc,m) | Zu = (u, u− buc,Mu)).
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1.1.3 Poisson Processes

A Poisson process is frequently used as a model for counting events occurring one at
a time, such as the number of births in a hospital, the number of arrivals at a service
system, the number of accidents in a given section of a road, etc. In this section we present
three equivalent definitions of the Poisson Processes. Then we introduce the inhomoge-
neous Poisson processes which are useful to model events having higher or lower chances
of occurring in some periods of time.

Homogeneous Poisson processes

The Poisson process can first be defined as a process counting events separated by
independent exponential times:

Definition 13 (Poisson process). We denote by (Sn)n∈N a sequence of event times, with
the convention that S0 = 0, and we denote by (Tn)n∈N the sequence of inter-event times
such that Sn = ∑n−1

k=0 Tk. Let the number of events occurring in the time interval [0; t] be

Nt = max{n ≥ 0 | Sn ≤ t}. (1.17)

The process (Nt)t≥0 is said to be a Poisson process with parameter λ if the inter-event
times are iid exponential random variables 1 of parameter λ.

An example of realization of a Poisson process is displayed in figure 1.3.

The second definition of Poisson processes can be given by setting the properties of
its increments:

Definition 14 (Poisson process, properties of the increments). An integer valued stochas-
tic process (Nt)t≥0 is a Poisson process if and only if its increments verify the three fol-
lowing properties:

(i) Independent increments:
The increments over non-overlapping intervals are independent

(ii) Stationary increments:
The law of each increment over an interval (s, t+ s] is independent of s

(iii) Poisson distributed increments:
The increment over an interval of length t has a Poisson law of parameter λt:

∀s, t > 0, P (Nt+s −Ns = k) = (λt)k
k! exp[−λt] (1.18)

1. iid stands for independent and identically distributed
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1.1. Markovian objects

Note the independence of the increments implies the process has no memory. In par-
ticular the Poisson process is a Markov process, as:

P (Nt+s = k | (Nk)k≤s) = P (Nt+s −Ns = k −Ns | (Nk)k≤s)
= P (Nt+s −Ns = k −Ns | Ns) (by independence of the increments)
= P (Nt+s = k | Ns).

Nt

0

1

2

3

4

5

6

t

T0

S1

T1

S2

T2

S3

T3

S4

T4

S5

T5

S6

Figure 1.3 – Example of realization of a Poisson process

Thirdly, one can define a Poisson by its local behavior:

Definition 15 (Poisson process, local characterization). The integer valued stochastic
process (Nt)t≥0 is a Poisson process with parameter λ if and only if the following three
conditions are satisfied:

(i) The process (Nt)t≥0 has independent increments
(ii) P (N0 = 0) = 1,
(iii) For any time t ≥ 0, and for a time h > 0 (in the neighborhood of zero):

P (Nt+h −Nt = 0) = 1− λh+ o(h), (1.19)
P (Nt+h −Nt = 1) = λh+ o(h), (1.20)
P (Nt+h −Nt > 1) = o(h). (1.21)
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Proof that the definition 15 is equivalent to the definition 14. We only prove the implica-
tion "definition 15 ⇒ definition 14", as the other implication "definition 14 ⇒ definition
15" is straightforward. Assuming definition 15 we can obtain the derivative dP (Nt = k)

dt
.

First note that for k > 0

P (Nt+h = k) = E
[
P (Nt+h = k | Nt)

]
=

k∑
j=0

P (Nt+h = k | Nt = j)P (Nt = j)

=
k∑
j=0

P (Nt+h −Nt = k − j | Nt = j)P (Nt = j)

=
k∑
j=0

P (Nh = k − j)P (Nt = j) by independence of the increments

=
(
1− λh+ o(h)

)
P (Nt = k) + λhP (Nt = k − 1) + o(h). (1.22)

Therefore:

P (Nt+h = k)− P (Nt = k)
h

= −λP (Nt = k) + λP (Nt = k − 1) + o(1). (1.23)

Making h tend to 0, we get

dP (Nt = k)
dt

= λP (Nt = k − 1)− λP (Nt = k) (1.24)

Proceeding in a similar fashion, for the case k = 0, we get

dP (Nt = 0)
dt

= λP (Nt = 0). (1.25)

Using the initial condition P (N0 = 0) = 1 ∀k ≥ 1 ,we can resolve the above equation,
yielding

P (Nt = 0) = exp(−λt). (1.26)

Then using the initial condition P (N0 = k) = 0, we can solve (1.24) recursively to get

P (Nt = k) = (λt)k
k! exp[−λt]. (1.27)

This proves the statement (ii) and (iii) of the definition 14.

Inhomogeneous Poisson processes

In a Poisson process, the event rate is constant, but one might want to model events
that occur at different rates according to the time period. For instance, if the events of
interest are the arrivals of the consumers at a post office, the event rates should be higher

10
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during rush hours, and lower during off-peak times. In order to model such situations, an
Inhomogeneous Poisson process with a variable jump rate is better suited than a Poisson
process which has a constant jump rate. One can define an Inhomogeneous Poisson process
by its local behavior:

Definition 16 (Inhomogeneous Poisson process, local characterization). Let λ : R+ →
R+ be a function that is Lebesgue-integrable on any finite interval (a, b) ⊂ R+. The integer
valued stochastic process (Nt)t≥0 is an Inhomogeneous Poisson process with a function of
parameter λ if and only if:

(i) The process (Nt)t≥0 has independent increments
(ii) P (N0 = 0) = 1
(iii) For all time ∀t > 0, and for a time h > 0 (in the neighborhood of zero):

P (Nt+h −Nt = 0) = 1− λ(t)h+ o(h), (1.28)
P (Nt+h −Nt = 1) = λ(t)h+ o(h), (1.29)
P (Nt+h −Nt > 1) = o(h). (1.30)

Following the same kind of reasoning as for the Poisson process, one can define the
Inhomogeneous Poisson process by its increments.

Definition 17 (Inhomogeneous Poisson process, increments ’properties). An integer val-
ued stochastic process (Nt)t≥0 is an inhomogeneous Poisson process if and only if its
increments verify two following properties:

(i) Independent increments:
The increments over non-overlapping intervals are independent

(ii) The increments are distributed in the following manner:

∀s, t > 0, P (Nt+s −Ns = k) = (∆s(t))k

k! exp [−∆s(t)] (1.31)

where ∆s(t) =
∫ t+s
s λ(u)du

1.1.4 Compound Poisson process

Compound Poisson processes can be viewed as a generalization of the Poisson process.
The Poisson process assumes the events to arrive one at a time, this assumption is relaxed
in the Compound Poisson processes. In practice, this process is used when we want to
count events that arrive in batches, like the customers arriving at a restaurant, or the
number of cars involved in an accident, demands occurring in batches, etc.

Let Nt be the number of batches arrived before time t, and let Yn be the number of
event contained in the n − th batch. The process (Xt)t>0 counting the number of events

11
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is defined by:

Xt =
Nt∑
i=1

Yi. (1.32)

Definition 18. The process (Xt)t>0 is a compound Poisson process if and only if:
(i) (Nt)t≥0 is a Poisson process with rate λ (i.e; the batches arrive at constant rate)
(ii) The sequence (Yn)n∈N is iid and independent of (Nt)t≥0

Note that the compound Poisson process is more than just a counting process when
it is defined in this manner. The compound Poisson process can also be used to model
a quantity Xt impacted by events occurring at a rate λ. Indeed Yn is not necessarily an
integer or a positive random variable.

Xt

0

1

2

3

−1

−2

−3

tS1

+Y1

S2

+Y2

S3

+Y3

S4

+Y4

S5

+Y5

S6

+Y6

Figure 1.4 – Example of realization of a compound Poisson process

1.1.5 Continuous time Markov chains

A continuous time Markov chain (CTMC) can be viewed as a generalization of a
Markov chain, where the time between jumps is an exponential random variable, instead
of being fixed to 1.

Definition 19 (CTMC). The sequence of random variables (Mt)t∈R+ is a CTMC in the
countable measurable space (M,M), if and only if:

(i) (Yn)n∈N is a homogeneous Markov chain with values in (M,M). We take the con-
vention that this Markov Chain cannot jump on the current state, therefore its
transition matrix P = (pij)(i,j)∈M2 is such that ∀i ∈M, pii = 0.

12
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(ii) (Sn)n∈N is a sequence of increasing random times such that S0 = 0 and condition-
ally on (Yn)n∈N, Tn = Sn+1−Sn are independent exponential variables of parameter
λYn ∈ R+.

(iii)
∀t ∈ [Sn, Sn+1), Mt = Yn. (1.33)

(Yn)n∈N is called the embedded Markov chain of the continuous time Markov chain (Mt)t∈R+ .

This definition implies that:

P
(
MSn = j, Tn−1 ≥ t | MSn−1 = i, Tn−2,MSn−2 , . . . , T0,MS0

)
= P

(
MSn = j, Tn−1 ≥ t | MSn−1 = i, Sn−1

)
= P (MS1 = j, T0 ≥ t | M0 = i, S0 )
= pij exp[−λit]. (1.34)

Mt

0

1

2

3

t

T0

S1

T1

S2

T2

S3

T3

S4

T4

S5

p21

p23

p32
p31

Figure 1.5 – Example of realization of a continuous time Markov chain with M = {1, 2, 3}

Definition 20 (Generator,Forward and backward equations). The generator of the CTMC
(Mt)t∈R+ is the matrixQ = D(P−I), whereD = diag

i∈M
(λi). The generator characterizes the

local evolution of the chain, indeed denoting Pt the t-step transition matrix of (Mt)t∈R+ ,
we have:

dPt
dt

= QPt (forward equation) (1.35)
dPt
dt

= PtQ (backward equation) (1.36)

This implies that ∀t ≥ 0, Pt = P0e
Qt. So Pt = eQt as P0 = I.

When they are coupled with the memory less property, these forward and backward
equations fully define the distribution of the process (Mt)t∈R+ . Indeed it is possible to
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provide an alternative definition to a continuous time Markov chain by specifying only its
local behavior:

Definition 21 (CTMC local definition). A sequence of random variables (Mt)t∈R+ is a
continuous time Markov chain, if and only if the two following conditions are satisfied:

(i) ∀i, j ∈M, P (Mh+t = j |Mt = i) = 1i=j + qijh+ o(h)
(ii) knowing Mt, Mt+h is independent of the past values (Ms)s<t.

1.2 Piecewise Deterministic Markov Processes

A PDMP is a process that follows a deterministic dynamic, but this dynamic can
change at random or deterministic times. Such deterministic dynamics are defined by
ordinary differential equations. Therefore this section starts with a few reminders about
ordinary differential equations. Then we gradually present PDMPs, as we start to present
a particular case of PDMP before presenting the full PDMP model. The particular case
of PDMP we present is the PDMP without boundary. This model is the most common
form of PDMP. The most general form of PDMPs being unsurprisingly PDMPs with
boundaries. This distinction between PDMPs with and without boundary is important,
indeed we will see that, contrarily to PDMPs without boundary, PDMPs with boundaries
can be very singular processes.

1.2.1 Generalities on first order ordinary differential equations

Definition 22. An application g : Rd → Rd is global Lipschitz if it exists a constant
C > 0, such that we have:

∀x1 ∈ Rd, ∀x2 ∈ Rd,
∣∣∣∣∣∣g(x1)− g(x2)

∣∣∣∣∣∣ ≤ C
∣∣∣∣∣∣x1 − x2

∣∣∣∣∣∣. (1.37)

Corollary 1. The Cauchy-Lipschitz theorem or Picard-Lindelöf theorem implies that if
g is global Lipschitz, the differential equation

dX(t)
dt

= g
(
X(t)

)
, such that X(a) = xa ∈ Rd, (1.38)

admits a unique global solution of class C1.
Let φ be the function on Rd × R such that X(a + t) = φ(xa, t) is the solution to the
differential equation. φ is called a flow.

One can deduce from the uniqueness of the solution that φ verifies the two following
properties
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Property 3. The application φt : x→ φ(x, t) is inversible, and its inverse is continuous,
so it is a homeomorphism. Indeed we have that φ−1

t (x) = φ(x,−t).

Property 4. The family (φt)t∈R is a group, meaning that for t and s in R φt+s = φt ◦ φs,
or more explicitly φ(x, t+ s) = φ(φ(x, s), t).

Definition 23. If f is a C1 function, then

d

dt
f
(
φ(x, t)

)
=

d∑
i=1

∂f

∂xi

(
φ(x, t)

)
gi
(
φ(x, t)

)
, (1.39)

where gi is the i-th coordinate of g

Definition 24. We denote by X the differential operator of the first order:

X f(x) =
d∑
i=1

∂f

∂xi
(x)gi(x) (1.40)

1.2.2 PDMPs without boundary

We start our presentation of PDMPs by introducing the class of PDMPs without
boundary.

State space

A PDMP is a process that models the evolution of a hybrid variable Zt. This variable
is characterized as hybrid because it is made of two coordinates Xt and Mt of different
natures: The first coordinate Xt being a continuous variable taking its values in Rd,
whereas the second coordinate is a discrete variable with values in a countable set M. At
a time t ∈ R, the state of the PDMP is defined by:

Zt =
(
Xt,Mt

)
. (1.41)

Throughout this thesis we call Xt the position of the PDMP and Mt the mode of the
PDMP. The state space of the PDMP is denoted E, and for each mode m ∈ M we
denote Em the set of all the states with mode m. For a PDMP without boundary Em =
{(x,m), x ∈ Rd}, and the state space is defined by:

E =
⋃
m∈M

Em = Rd ×M (1.42)

15



Partie I, Chapter 1 – A model based on Piecewise Deterministic Markov Processes (PDMPs)

One can equip E with the metric dist defined by:

∀z1 = (x1,m1), z2 = (x2,m2) ∈ E, (1.43)

dist(z1, z2) =
 1 if m1 6= m2

2
π
tan−1(||x1 − x2||) if m1 = m2

. (1.44)

By taking the topology induced by this metric, we can define a Borelian σ-algebra on E.
We denoted this Borelian σ-algebra on E by B(E).

Deterministic dynamics

Within a mode m, the position follows a differential equation. For each m ∈M, we let
Fm : Rd → Rd be a function, which is global Lipschitz. AssumingMt = m for t ∈ [s, s+T ),
then Xt satisfies:

dXt

dt
= Fm(Xt). (1.45)

The figure 1.6 shows a representation of the state space. Each plan represents a subset
Em, with the vector fields induced by the associated differential equations (1.45). Note
the equation (1.45) also allows that the function Fm can also depend on t, because we can
include t in the coordinates of Xt.

The flow function solution of the differential equation (1.45) is denoted φm(x, .), so we
have

∀t ∈ [s, s+ T ),
Xt+s = φm(Xs, t). (1.46)

We also define the associated flow function Φ for the state, such that:

∀s ∈ [0, T ),
Zt+s = ΦZt(s) =

(
φMt(Xt, s),Mt

)
= (Xt+s,Mt) (1.47)

Zt follows this flow function until it reaches a point of discontinuity in its value. Such
discontinuity is called a jump. Between two jumps or discontinuities, the trajectory of Zt
is determined by the flow ΦZt hence the designation of "piecewise deterministic" processes.
We denote Sk the time of the k-th jump of the process, and Tk = Sk+1 − Sk the time
between two consecutive jumps. The figure 1.8 shows an example of trajectory associated
with the vector field of figure 1.6.
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Figure 1.6 – Schematic representation of the state space of a PDMP without boundary

Timing of the jumps

Knowing Zt = z = (x,m), let T be the time until the next jump. This time T is
random. Its law is expressed through a state-related intensity function λ : E → R+. We
have:

P (T ≤ h | Zt = z) = 1− exp
[
−
∫ h

0
λ
(
Φz(u)

)
du

]
. (1.48)

One can also provide a time-related intensity by taking λz : R+ → R+ such that λz(u) =
λ
(
Φz(u)

)
. We will assume that limt→∞

∫ t
0 λz(u)du = +∞. Using the following notation

Λz(h) =
∫ h
0 λz(u)du, the law of T , knowing Zt = z can be expressed through λz with:

P (T ≤ h | Zt = z) = 1− e−Λz(h) (1.49)

=
∫ h

0
λz(u)e−Λz(u)du. (1.50)

Note that any continuous law with positive support can be specified through an in-
tensity. If fz is the density of T knowing Zt = z, we have

∀u > 0, λz(u) = fz(u)
1−

∫ u
0 fz(v)dv and fz(u) = λz(u)−Λz(u). (1.51)

Arrival state of a jump

Definition 25 (Markovian kernel). Let (A,A) and (E, E) be two measurable spaces.
An application Q : A × E → [0, 1] is a Markovian kernel from (A,A) to (E, E) if
∀z ∈ A, Q(z, .) is a probability on

(
E, E

)
, and ∀B ∈ E , z → Q(z,B) is A-measurable.
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Figure 1.7 – Some possible arrival states of a jump in a PDMP without boundary

Let K : (E,B(E))→ [0, 1] be a Markovian kernel from (E,B(E)) to ([0, 1],B([0, 1])).
To ease the presentation we use the notation Kz(.) instead of K(z, .), and we denote Kz(.)
the density of the probability Kz with respect to a reference measure νz:

∀B ∈ B(E), Kz(B) =
∫
B
Kz(z+)dνz(z+), (1.52)

and for h ∈M (E), such that h bounded, Kz(h) =
∫
E
h(z+)Kz(z+)dνz(z+). (1.53)

Knowing Zt, we have a jump at time t+T . Right before this time, one considers the process
is in the state Z−t+T = lim

s ↑T
ΦZt(s) = z−. We consider that the state Z−t+T is the departure

state of the jump. The arrival state of the jump, which is Zt+T , is chosen randomly. Its
law is given by the probability KZ−t+T such that:

∀B ∈ B(E), P
(
Zt+T ∈ B

∣∣∣Z−t+T = z−
)

= Kz−(B). (1.54)

As a jump implies to jump to an other state, when νz has discrete parts the jump kernel
must satisfy:

Kz(z) = 0, ∀z ∈ E. (1.55)
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1.2. Piecewise Deterministic Markov Processes

Figure 1.8 – Example of a trajectory of a PDMP without boundary

Generate a trajectory

As advised in [19, 18, 27], in order to generate a realization of the PDMP on a time
interval [0, tf ], one follows these steps:

1. Start at a state Z0 = z0

2. Generate T the time of the next jump using (1.48)

3. Follow the flow Φ until T using (1.47)

4. Generate ZT = zT the arrival state of the jump knowing the departure state is
Z−T = Φz(T ) using (1.54)

5. Starting with zT , repeat steps 1 to 4 until a trajectory of size tf is obtained

Note we are sure to reach Tf in a finite number of jumps, because the intensities are
integrable.

Homogeneity

Note that with the definition we used a PDMP is a homogeneous process, indeed
the four elements characterizing a PDMP: E, Φ, λ, and K do not depend on the time.
But this definition also covers the non-homogeneous case: indeed, it is possible to add a
dependency on the time by simply adding the time t in the coordinates of the position
Xt.

Example

A PDMP without boundary can model a differential equation with random coeffi-
cients. For instance M = {−1, 0, 1}, dXt

dt
= Mt and λ(z) = 2 for z = (x,m) ∈ E, and
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Kz−
(
{(x,m)}

)
= 1

21x−=x1m− 6=m. In this case Mt is independent of the values of Xt, be-
cause λ depends only on the modes, and because MS, the arrival mode of a jump at
a time S, only depends on the previous mode M−

S . Mt is therefore a continuous time
Markov chain, which values determine the coefficient of the differential equation on Xt.
An example of trajectory for this PDMP is presented in figure 1.9.

Xt

0
tS1 S2 S3 S4 S5

Mt
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T1
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T3

S4
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1
2

1
2

1
2

1
2

Figure 1.9 – Example of realization of the position and mode of a PDMP without boundary.
This PDMP being defined by M = {−1, 0, 1}, dXt

dt = Mt, λ(z) = 2, and Kz−
(
{(x,m)}

)
=

1
21x=x−1m 6=m−

Note the position is not necessarily continuous. For instance, one can change the kernel
so that the position is reset to zero at each jump. Such PDMP would yield realization
similar to the one displayed in Figure 1.10.
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Figure 1.10 – Example of realization of the position and mode of a PDMP without boundary.
This PDMP being defined by M = {−1, 0, 1}, dXt

dt = Mt, λ(z) = 2, and Kz−
(
{(x,m)}

)
=

1
21x=01m 6=m−

1.2.3 PDMPs with boundaries

Restricted state space

In a PDMP with boundaries the state space is different. Indeed for each mode m, one
can restrict the position to an open set Ωm ⊂ Rd. See Figure 1.11. Therefore the set of
states with mode m becomes Em = {(x,m), x ∈ Ωm} = Ωm × {m} and the state space
becomes the open set:

E =
⋃
m∈M

Em =
⋃
m∈M

{
(x,m), x ∈ Ωm

}
. (1.56)

Deterministic dynamics

Within the restricted set of positions Ωm the dynamic of the position is still given
through a differential equation like in (1.45), and the flow function Φ still gives the evolu-
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Figure 1.11 – Representation of the state space of a PDMP with boundaries

tion of the state until the next jump. See Figure 1.11. The difference is that now, when the
flow brings the state to the boundary of Em, the process has to jump to another location
to stay in the state space, as shown in Figure 1.12

We denote the boundary of Em by ∂Em. The time until we hit a boundary starting
from a state z = (x,m) is denoted t∗z, it is defined by t∗z = inf{t > 0,Φz(t) ∈ ∂Em}.

Figure 1.12 – Representation of a trajectory of a PDMP with boundaries
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1.2. Piecewise Deterministic Markov Processes

Timing of the jumps

As the state space is now restricted the law of the timing of the jump is different.
Assume Zt = z = (x,m), and that we want to characterize the law of T , the time until
the next jump after time t. As a jump is triggered if we hit the boundary ∂Em, the law
of T becomes:

P (T ≤ h | Zt = z) =
 1− exp

[
−
∫ h

0 λ
(
Φz(u)

)
du
]

if h < t∗z,

1 if h ≥ t∗z.
(1.57)

Written with the time-related intensity λz = λ ◦ Φz, we have:

P (T ≤ h | Zt = z) =
 1− exp

[
−
∫ h

0 λz(u)du
]

if h < t∗z,

1 if h ≥ t∗z.
(1.58)

An example of the cumulative distribution function of T is displayed in figure 1.13

Figure 1.13 – An example of the cumulative distribution function of T , where x ∈ R+,
z = (x,m), Φz(t) = (x+ t,m), λ(z) = x(5−x)

12 , and t∗z = 4

Destination of the jumps

The departure state of a jump Z−t+T now belongs to Ē (the closure of E). The prob-
ability KZ−t+T still takes values within the open measurable set (E,B(E)). The law of the
arrival state of a jump is still defined through equations (1.54) and (1.52), and jumps onto
the departure state are still forbidden. ∀z− ∈ E, If νz− has a Dirac component on z−:

Kz−(z−) = 0. (1.59)

Similarly if the departure state z− is on the boundary ∂E, the jump cannot land on the
departure state z− as Kz− is defined only on the open set E which does not contain z−.
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Generate a trajectory

In order to generate a realization of a PDMP with boundaries on a time interval [0, tf ],
one can proceed like before, expect the timing of jump (step 2), is now affected by the
boundaries (equation (1.58)):

1. Start at a state Z0 = z0

2. Generate T the time of the next jump using (1.58)

3. Follow the flow Φ until T using (1.47)

4. Generate ZT = zT the arrival state of the jump knowing the departure state is
Z−T = Φz(T ) using (1.54)

5. Starting with zT , repeat steps 1 to 4 until a trajectory of size tf is obtained

Example of PDMP with boundaries

Xt

0

1.5

tS1 S2 S3 S4 S5

1 1 1

Mt

0

−1

0

1

t

T0

S1

T1

S2

T2

S3

T3

S4

T4

S5

1
2

1
2

1
21
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Figure 1.14 – Example of realization of the position and mode of a PDMP without bound-
ary. This PDMP being defined by M = {1, 0,−1}, dXt

dt = Mt, λ(z) = 2, and Kz−
(
(x,m)

)
=

1
21x=01m 6=m− , and E1 = {(x, 1)|x ∈ (−∞, 1.5)}, E0 = {(x, 0)|x ∈ R}, E−1 = {(x,−1)|x ∈
R}

An example of PDMD with boundaries can be given by adding a boundary of the
PDMP displayed previously in Figure 1.10. Within the mode m = 1, we set Ω1 =
(−∞, 1.5) and therefore E1 = {(x, 0)|x ∈ (−∞, 1.5)} and we let the other character-
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1.2. Piecewise Deterministic Markov Processes

istics (Φ, λ,K) and E0 = {(x, 0)|x ∈ R}, and E−1 = {(x,−1)|x ∈ R} unchanged. A
realization of this PDMP with a boundary is displayed in Figure 1.14.

Trajectories of PDMP

Z = (Zt)t∈[0,tf ] denotes a trajectory defined on the interval [0, tf ]. For trajectories
defined on an interval [0, s] starting at 0, we precise the upperbound of the interval in the
index, so that Zs = (Zt)t∈[0,s]. If the interval of definition of the trajectory is right-open
then we add a "−" to the index, so that Zs− = (Zt)t∈[0,s). For trajectories defined on a
different interval I, we precise the interval on definition in index, so that ZI = (Zt)t∈I .
We also denote by n(ZI) the number of jumps in a trajectory ZI . For a trajectory ZI ,we
denote Sk the time of the k-th jump, and the time between the k-th and the k + 1-th
jumps is Tk. If a is the lowerbound of I and b is its upperbound: we take the convention
that S0 = a, and Sn(ZI)+1 = b and Tn(ZI)+1 = b− Sn(ZI).

As a trajectory of a PDMP follows a deterministic flow piecewisely, it is possible to
sum up the random trajectory Z by only keeping the information on its jumps. By the
information on its jumps we mean the timing between two consecutive jumps in Z and
the arrival of each jump in Z. The vector gathering this information is called the skeleton
of the trajectory, it is defined by: (ZS0 , T1, ZS1 , . . . , Tn(Z), ZSn(Z) , Tn(Z)+1).

There is a one to one connection between the set of skeletons and the set of trajectories
satisfying (1.47). Indeed each trajectory has a skeleton, and from any skeleton we can build
a trajectory by filling the gaps between the jump with flow Φ via equation (1.47). For a
time s > 0, we denote by Θs the map that changes a trajectory defined on an interval
[0, s] in its skeleton:

Θs : Zs −→
(
ZSk , Tk

)
k≤n(Zs)

. (1.60)

Denoting by Es the space of the trajectories of the PDMP (Zt) defined on [0, s], we have:

Es = Θ−1
s

( ⋃
n∈N∗

{(
zsk , tk

)
k≤n
∈ (E × R∗+)n

∣∣∣∣ n∑
i=0
ti = s, ∀k < n,KΦzsk (tk)(zsk) > 0

})
.

(1.61)
Similarly for any time s > 0, we denote by Θs− the map that changes a trajectory defined
on an interval [0, s) in its skeleton:

Θs− : Zs− −→
(
ZSk , Tk

)
k≤n(Zs− )

. (1.62)

we denote by Es− the space of the trajectories of the PDMP (Zt) defined on [0, s), and
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we have:

Es− = Θ−1
s−

( ⋃
n∈N∗

{(
zsk , tk

)
k≤n
∈ (E×R∗+)n

∣∣∣∣ n∑
i=0
ti = s, tn > 0, ∀k < n,KΦzsk (tk)(zsk) > 0

})
.

(1.63)

Infinitesimal generator

Remember we denote by X the differential operator of the first order such that for a
function f : E → R:

X f(x) =
d∑
i=1

∂f

∂xi
(x)gi(x) (1.64)

where gi is the i-th coordinate of g when g(Xt) = ∂Xt
∂t

.

Definition 26. For a function f which is integrable along the flow, i.e. such that t →
f(Φz(t)) is absolutely continuous, the infinitesimal generator of a PDMP is the linear
operator defined by:

∀z ∈ E, Qf(z) = X f(z) + λ(z)
(∫

z+∈E
Kz(z+)f(z+)dνz(z+)− f(z)

)
(1.65)

Working on PDMP with boundaries and the issue of the topology

PDMP with boundaries are complex processes, and working with these processes can
be challenging. There are three main points of difficulty to keep in mind when we work
with these processes. Firstly, a PDMP models a hybrid variable that has continuous
coordinates and discrete coordinates, therefore, the state space E = ∪n∈MEm is by essence
discontinuous and is not Euclidean. Because of the discrete coordinates and the shapes of
the open sets Ωm, we have no obvious metric on the state space. In order to work with
an easier topology, one option is to avoid working directly with the states, by working
with their image through a real function defined on the state space. Secondly, the inter-
jump times are hybrid random variables whose distributions have continuous and discrete
parts, which can be tricky to manipulate. We will see in part II that the PDMPs are very
degenerate processes because of these hybrid random variables involved in their laws.
Thirdly, the trajectories on an interval of time are complex objects, not only because they
evolve in the space E which does not have a metric, but also because their skeletons have
variable sizes. Therefore it is also difficult to define a metric on the space of trajectories.

1.2.4 Markovian object as PDMPs

We end this subsection on PDMP by reviewing how classical Markovian objects can
be modeled by a PDMP.
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1.2. Piecewise Deterministic Markov Processes

Markov chain as a PDMP

We have seen that a Markov chain (M ′
n)n∈N can be extended into a Markov process

(Zt)t≥0 by setting
Zt = (t, t− btc,M ′

btc). (1.66)

This process can be seen as a PDMP defined by
— A position Xt = (t, t− btc) and a mode Mt = M ′

btc.

— a differential equation dXt

dt
=
1

1


— In order to force jumps when t is an integer we put a boundary on the second

coordinate of Xt , setting: ∀m ∈ M, Ωm = (−∞,+∞) × (−∞, 1). Therefore we
have a state space defined by:

E =
⋃
m∈M

Em =
⋃
m∈M
{(x1, x2,m) |x1 ∈ R, x2 ∈ (−∞, 1)} (1.67)

— A null jump intensity: λ = 0
— A jump kernel corresponding to the kernel of the Markov chain:

∀u ∈ N, K(u,1,i) ({(u, 0, j)}) = pij(u), (1.68)

where pij(u) is the (i, j) coefficient of the one-step transition matrix of the Markov
chain (M ′

n)n∈N at time u ∈ N.

Poisson process as a PDMP

A Poisson process (N ′t)t≥0 with jump variable intensity λ′(t) can be expressed as a
PDMP (Zt)t≥0 by setting

Zt = (t, N ′t , 0). (1.69)

This PDMP would be defined by
— A position Xt = (t, N ′t) ∈ R × N and a simple set of mode: M = {0}, so that
∀t,Mt = 0.
This gives a state space E = R2 × {0}

— A differential equation dXt

dt
=
1

0


— A jump intensity:

∀t ∈ R, n ∈ N, λ(t, n, 0) = λ′(t) (1.70)

— A jump kernel:

∀t ∈ R, n ∈ N, K(t,n,0)
({

(t, n+ 1, 0)
})

= 1 (1.71)
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Compound Poisson process as a PDMP

A Compound Poisson process (Xt) is defined by

Xt =
Nt∑
i=1

Yi, (1.72)

where (Nt) is a Poisson process of intensity λ0 > 0 and the Yi are independent random
variables, can be expressed as in a PDMP (Zt) by setting

Zt = (Xt, Nt, 0). (1.73)

We denote by fYi the density of Yi with respect to a reference measure νi on (R,B(R)).
We assume that P(Yi = 0) = 0. The characteristics of this PDMP would be:

— A set space E = R2 × {0}

— A differential equation dXt

dt
=
0

0


— A jump intensity:

∀x, n ∈ R, λ(x, n, 0) = λ0 (1.74)

— A jump kernel: ∀x, n ∈ R, ν(x,n,0) = νn and

K(x,n,0)

(
((x+ A)× {n+ 1, 0})

)
=
∫
A
fYn+1(y)dν(x,n,0)(y) (1.75)

Continuous time Markov chain as a PDMP

A homogeneous continuous time Markov chain (M ′
t)t≥0 with jump intensities (λ′m)m∈M

and transition P = (pij)i,j∈M, can be expressed as a PDMP (Zt)t≥0 by setting

Zt = (0,M ′
t). (1.76)

The characteristics of this PDMP would be:

— A set space E = R×M
— A differential equation dXt

dt
= 0

— A jump intensity:
∀x, n ∈ R, λ(0,m) = λ′m (1.77)

— A jump kernel:
∀x, n ∈ R, K(0,i)

({
(0, j)

})
= pij (1.78)
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1.3 Model a multi-component system with a PDMP

Remember that, when they were first introduced by M.H.A Davis [18], PDMPs were
meant to include all the Markovian objects that do not include diffusion. Consequently,
PDMPs benefit from high modeling capacities, and most of the systems used for power
generation can be modeled by using a PDMP. Such PDMP models have been proposed
by several authors already [54, 27]. In this section we present our model of the state of a
power generation system.

1.3.1 Model the evolution of the state of the system

We want to eventually assess the probability of failure of a system used for power
generation. Such systems fail when the physical variables characterizing the system enter
a critical region. For instance, one can consider a dam as failing when the water level
inside the dam exceeds a security threshold, or if the dam is overflown. Similarly, a nuclear
power-plant fails when the values of the pressure and temperature of its core enter the
liquid phase and lead to the fusion of the core.

Consequently, we need an accurate model of the physical variables. The evolution of
such physical variables is ruled by differential equations issued form the laws of physics.
But these differential equations change according to the statuses of the components within
the system. Indeed, the physics inputs, and so the differential equations, change when some
components are activated, or deactivated, or when some components fail. For instance the
physical variables can enter the critical region corresponding to the system failure, only
if a sufficient number of the basic components of the system are damaged.

The values of the physical variables also influence back the statuses of the components
in two different ways. Firstly because in industrial systems there are some automatic
control mechanisms, as some components are programmed to turn on or off when the
physical variables cross some thresholds. Secondly because the values of the physical
variables can impact the failure rates of the components. This is often the case when the
physical variables include the pressure on a component: the more pressure there is on the
component the more likely it is to fail.

So there is an interplay between the components’ statuses and the dynamics of the
physical variables. In order to accurately model the evolution of the physical variables,
we need to model the joint evolution of the physical variables and of the statuses of the
components. The vector gathering these two variables is called the state of the system.
We denote the state of the system at a time t by Zt. Denoting Xt the physical variables
at a time t, and Mt the statuses of the components at a time t, we have:

Zt =
(
Xt,Mt

)
. (1.79)
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We consider the system has d real valued physical variables: Xt ∈ Rd. If the system
includes Nc components then the mode takes the following form:Mt = (M1

t ,M
2
t , ...,M

Nc
t ),

where M i
t is the status of the i-th component. For ease of presentation we consider that

the status of a component can be either ON for an activated component, OFF for a
deactivated one, or F for a failed component, so that M = {ON,OFF, F}Nc . But as
long as M stays countable, it is possible to consider more options for the statuses of the
components. For instance, one could consider different regimes of activity instead of the
simple status ON , or different types of failure instead of the status F . Note that we can
also deal with continuous degradations, like the size of a breach in a pipe for instance:
the presence of the degradation can be included in the mode and its size in the position.

1.3.2 A model for reliability assessment

For a given system, we want to assess its reliability r, which is defined by the probability
that the system does not fail before a final observation time tf . Assuming pD is the
probability that the system fails before the final observation time tf , we have

r = 1− pD. (1.80)

So to assess r is equivalent to assess pD. That is why in the rest of the thesis we focus on
the assessment of pD the probability of the system failure.

We consider that the state of the system is initiated in a safe state zo = (x0,m0) ∈ E.
We want to access the probability of the system failure which corresponds to the physical
variable entering a critical region. We denote by DX this critical region within Rd, and
by D = {(x,m) ∈ E|x ∈ DX} the associated critical region within the state space E. We
consider DX and D are closed subsets of Rd and E respectively. We define τD the reaching
time of D by

τD = inf{t > 0, Zt ∈ D}, (1.81)

with the convention that τD = +∞ if {t > 0, Zt ∈ D} = ∅. The probability of system
failure pD, is then defined by:

pD = P
(
τD < tf |Z0 =zo

)
= Pzo

(
τD < tf

)
. (1.82)

Or denoting D the set of trajectories which enters D before the time tf , one can define
pD by:

pD = P
(
Z ∈ D |Z0 =zo

)
= Pzo

(
Z ∈ D

)
. (1.83)
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1.3.3 The model

In this section, we present the characteristics of the PDMP associated to our system.
Indeed boundaries and state spaces, jumps kernels on boundaries, jump rates, and jump
kernels outside boundaries directly come from the system architecture.

Laws of physics give the flow function Φ

When the components of the system are in some given statuses, the laws of physics
within the system determine the evolution of the physical variables of the system through
a differential equation, like in equation (1.45). The flow function Φ is derived from the
solution of each of these equations like in equation (1.47).

Automatic control mechanisms shape the boundaries of state space E

Generally, there are some components in the system which are programmed to activate
or deactivate when the position crosses some thresholds. This is what we call an automatic
control mechanism. For instance, it is typically what happens with a safety valve on a
pipe: when the pressure inside the pipe rises above a safety limit, the valve opens. In
other words: when the flow Φ brings the physical values to a safety limit, a component is
programmed to change its status. So for each control mechanism, the change in the value
of Mt implies a jump in the process Zt = (Xt,Mt). Therefore, to model such forced jumps
we shape the boundaries of the state space so that they coincide with the thresholds
triggering the control mechanisms.

Remember that in a PDMP with boundaries the state space is the union of the sets
Em corresponding to the possible states for each mode m ∈M. We have:

E =
⋃
m∈M

Em where ∀m ∈M, Em =
{

(x,m), x ∈ Ωm

}
. (1.84)

Ωm being an open set included in Rd. So for each mode m ∈M we specify the set Ωm such
that its boundary ∂Ωm matches with the thresholds triggering the control mechanisms.
Then the jump corresponding to the control mechanism is triggered when Z−t hits ∂Em.
The law of the arrival of the jumps is then given by the jump kernel KZ−t .

Control mechanisms and failure-on-demand define the Kernel on boundaries

During a control mechanism triggered at a state z−, the system is programmed to
switch to a safer state a ∈ E. If the only possible output of the control mechanism is the
state a, such programming can simply be modeled by setting Kz−({a}) = 1.

But sometimes, in industrial systems, some components have a small probability to
fail right at moment of their activation: this phenomenon is called a failure on demand.
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Figure 1.15 – Forced jump at the boundary

Let A(z−) be the set of the indices of the components required to turn on during the
control mechanism. Let γiz− be the probability that the i-th component of the system fails
during its activation from the state z−. Let b ∈ E be a state accessible from z− in one
jump. Let Fod(z−, b) be the set of indices of the components that fail on demand during
a jump from z− to b. Then we can take:

Kz−({b}) =
∏

i∈A(z−)\Fod(z−,b)
(1− γiz−)

∏
i∈Fod(z−,b)

γiz− (1.85)

to model the control mechanism and the failures-on-demand, from the state z−. Note for
instance, the probability of reaching the safer state a would then be

Kz−({a}) =
∏

i∈A(z−)
(1− γiz−). (1.86)

The form of the jump Kernel outside of boundaries is determined by the
possible transitions

By opposition to jumps at boundaries, the spontaneous jumps are used to model
failures and repairs and passive backup mechanisms that do not necessarily happen dur-
ing a control mechanism. Remember the mode is the vector M = (M1,M2, ...,MNc) ∈
{ON,OFF,F}Nc gathering the statuses ("ON", "OFF" or "F" for failed) of the Nc compo-
nents. So a repair, a spontaneous failure, or spontaneous simultaneous failures, are events
that can be considered as transitions from a mode m to an other mode m+. For instance,
if the transition corresponds to the repair of the i-th component, the coordinates of m+

would typically be all identical to those of m, except for the i-th one where we would
have mi = F, as the i-th component is initially failed, and m+i = OFF or m+i = ON
as the components is then repaired. Whether m+i = OFF or m+i = ON will depend
on whether the component is turned on or off after its repair. Conversely, for a failure,
the coordinate associated to the failing component would switch from the status ON or
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OFF to the status F. Simultaneous failures can be modeled by switching the statuses of
several components to the failed status F. Backup mechanisms can also be modeled in
the transition from m to m+, for instance, if the j-th component is programmed to turn
on when the i-th component fails m+ would also differ in its j-th coordinate as we would
have mj = OFF and m+j = ON.

Although in a PDMP the jumps model a transition from state to state (z to z+), we
often only consider transitions from mode to mode (m to m+). The reason is that the
evolution of the physical variables during a jump is often deterministic once we know the
arrival statuses of the components. In most cases, as soon as the mode m+ is known, we
know the only option for the physical variables is to arrive in a point denoted xz→m+. If
all transitions are of this kind, the jump Kernel then verifies

∀B ∈ B(E), Kz(B) =
∑

m+∈M
P
(
ZT = z+|Z−T = z

)
δ(xz→m+,m+)(B), (1.87)

where δ(xz→m+,m+) is the dirac measure in state (xz→m+,m
+). In this case the jump Kernel

is a discrete law of probability.

Though in most cases the kernel is discrete, one can also imagine some cases where
the kernel include a continuous part. For instance consider that the physical variables
have two dimensions, the first corresponding to pressure on a concrete structure, and the
second to the size of a crack in the structure. One can consider that the crack length
increases in a jerky way, and that the amplitude of the increase is random and has a
continuous law. For a jump triggered from a state z− =

(
(x−1 , x−2 ),m−

)
∈ E we could

have:

∀B ∈ B(E), νz−(B) =
∫{

y2>0
∣∣∣((x−1 ,y2),m−

)
∈B
} µLeb(dy2) (1.88)

where µLeb(.) corresponds to the Lebesgue measure, and

∀B ∈ B(E),

Kz−(B) =
∫
B
Kz−(z) νz−(dz) =

∫{
y2>0

∣∣∣((x−1 ,y2),m−
)
∈B
}Kz−

((
(x−1 , y2),m−

))
µLeb(dy2).

(1.89)

We think that the cases of non-discrete jump kernels should be rather rare in the reliability
analysis field, but PDMPs are also used in other fields, like finance, where non-discrete
jump kernels could be more common and for which the use of importance sampling can
be of interest too [45]. That is why we keep the most general form of PDMP, which can
handle any type of jump kernel.
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A link between jump rate and the hazard rates of the possible spontaneous
events

Let the system be in the state z = (x,m) at time t, it follows the flow Φz until time of
the next jump at t+T . For a starting state Zt = z, we consider there are a finite number
of possible transitions. We denote by Jz the set that indices these possible transitions.
For a transition j we define T j as the time at which this transition occurs. We denote by
Ajz(u) the set of the possible arrivals of the jump when it is triggered by the transition
j with T j = u. In order to identify each type of transition we consider that for i 6= j we
have Aiz(u) ∩ Ajz(u) = ∅. For each transition

T j = inf{u ∈ [0, t∗z), Z−t+u = Φz(u), Zt+u ∈ Aiz(u)} (1.90)

with the convention that T j = +∞ if {u > t, Z−t+u = Φz(u), Zt+u ∈ Aiz(u)} = ∅. In order
to model the law of T j we use a state-related intensity function λj : E → R+ so that:

P
(
T j ≤ h | Zt = z

)
= 1− exp

[
−
∫ h

0
λj
(
Φz(u)

)
du

]
, (1.91)

and we can introduce a time-related intensity function λjz = λj ◦ Φz so that:

P
(
T j ≤ h | Zt = z

)
= 1− exp

[
−
∫ h

0
λjz(u)du

]
. (1.92)

The function λj would be a failure rate if the transition j from Z−t+T j to Zt+T j ∈ Ajz(T j)
is associated to failure, similarly it would be a repair rate if the transition j from Z−t+T j

to Zt+T j ∈ Ajz(T j) corresponds to a repair. Note that the time until the next jump, if we
start from z, satisfies:

T = min
[
{T j, j ∈ Jz} ∪ {t∗z}

]
. (1.93)

In order to compute the cdf of T we make the assumption that the times T j for j ∈ Jz
are independent knowing Zt = z. This assumption is true if the position gathers all the
variables affecting a transition rate. It allows to get the cdf of T as it allows to go from
equation (1.94) to (1.95) in the following reasoning:

P (T > h | Zt = z) =
 P (T j > h,∀j | Zt = z) if h < t∗z,

0 if h ≥ t∗z,
(1.94)

⇔ P (T > h | Zt = z) =

∏
j∈Jz P (T j > h | Zt = z) if h < t∗z,

0 if h ≥ t∗z,
(1.95)

⇔ P (T ≤ h | Zt = z) =
 1−∏j∈Jz P (T j > h | Zt = z) if h < t∗z,

1 if h ≥ t∗z,
(1.96)
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1.3. Model a multi-component system with a PDMP

⇔ P (T ≤ h | Zt = z) =
 1− exp

[
−
∫ h

0
∑
j∈Jz λ

j
z(u)du

]
if h < t∗z,

1 if h ≥ t∗z.
(1.97)

So the cdf of T can be expressed with an intensity function λz that is the sum of the
intensities of all the possible transitions:

P (T ≤ h | Zt = z) =
 1− exp

[
−
∫ h

0 λz(u)du
]

if h < t∗z,

1 if h ≥ t∗z,
, (1.98)

where
∀u ∈ [0, t∗z), λz(u) =

∑
j∈Jz

λjz(u). (1.99)

Similarly the state related intensity satisfies

∀z ∈ E, λ(z) =
∑
j∈Jz

λj(z). (1.100)

Figure 1.16 – A spontaneous jump before the boundary

Probability of a transition knowing T

Note that equations (1.98) and (1.99) characterize the time of the next jump, but do
not tell which transition is being triggered. Knowing the timing of the jump, the nature
of the jump is still random, and the index of the transition triggered is then given by the
transition Kernel KZ−t+T . One can define this kernel KZ−t+T by using the assumption that
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the times T j are independent knowing Zt = z. As T = min
[
{T j, j ∈ Jz}∪{t∗z}

]
, we have:

P
(
T = T i | Zt = z

)
= P

(
T i < T j,∀j ∈ Jz, j 6= i | Zt = z

)
(1.101)

=
∫ t∗z

0
P
(
u < T j,∀j ∈ Jz, j 6= i | T i = u, Zt = z

)
fT i|Zt=z(u)du

(1.102)

=
∫ t∗z

0

 ∏
j∈Jz ,j 6=i

P
(
u < T j | T i = u, Zt = z

) fT i|Zt=z(u)du (1.103)

=
∫ t∗z

0

 ∏
j∈Jz ,j 6=i

exp[−Λj
z(u)]

λiz(u) exp[−Λi
z(u)]du (1.104)

=
∫ t∗z

0

λiz(u)
λz(u)λz(u) exp[−Λz(u)]du (1.105)

P
(
T = T i | Zt = z

)
=
∫ t∗z

0

λiz(u)
λz(u)λz(u) exp[−Λz(u)]du+ 0. exp[−Λz(t∗z)] (1.106)

P
(
T = T i | Zt = z

)
=
∫ t∗z

0

λiz(u)
λz(u)fT (u)du+ 0.fT (t∗z), (1.107)

where the assumption of independence of the T j’s knowing Zt = z, implies the equality
between (1.102) and (1.103). Therefore we can identify that:

P
(
T = T i | T = u, Zt = z

)
= λiz(u)
λz(u)1u<t

∗
z
. (1.108)

Which implies that we have for any departure state z−t+u = Φz(u), such that u ∈ [0, t∗z)
the jump kernel satisfies:

∀B ∈ B(E), Kz−t+u
(
Aiz(u)

)
= λiz(u)∑

j∈Jz λ
j
z(u)

. (1.109)

1.3.4 Example of the Heated room system

As an example of a system, we consider a room heated by three identical heaters. Xt

represents the temperature of the room at time t. xe is the exterior temperature. β1 is
the rate of the heat transition with the exterior. β2 is the heating power of each heater.
The differential equation giving the evolution of the position (i.e. the temperature of the
room) has the following form:

dXt

dt
= β1(xe −Xt) + β21M1

t orM
2
t orM

3
t =ON . (1.110)

The heaters are programmed to maintain the temperature within an interval (xmin, xmax)
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Figure 1.17 – A sketch of a trajectory of the heated-room system
(the mode is represented with colors)

where xe < 0 < xmin. Heaters can be on, off, or out-of-order, so M = {ON,OFF, F}3.
We consider that the three heaters are in passive redundancy in the sense that: when
X ≤ xmin the second heater activates only if the first one is failed, and the third one
activates only if the two other heaters are failed. When a repair of a heater occurs, if
X ≤ xmin and all other heaters are failed the heater status is set to ON , else the heater
status is set to OFF . To handle the programming of the heaters, we set Ωm = (−∞, xmax)
when all the heaters are failed m = (F, F, F ) or when at least one is activated, otherwise
we set Ωm = (xmin, xmax).
Due to the continuity of the temperature, the reference measure for the Kernel is ∀B ∈
B(E), ν(x,m)(B) = ∑

m+∈M\{m} δ(x,m+)(B). On the top boundary in xmax, heaters turn
off with probability 1. On the bottom boundary in xmin, when a heater is supposed to
turn on, there is a probability γ = 0.01 that the heater will fail on demand. So, for in-
stance, if z− =

(
xmin, (OFF, F,OFF )

)
, we have Kz−

(
xmin, (ON,F,OFF )

)
= 1− γ, and

Kz−

(
xmin, (F, F,ON)

)
= γ(1− γ), and Kz−

(
xmin, (F, F, F )

)
= γ2.

Let j be a transition from m to m+. For the spontaneous jumps that happen outside
boundaries, if the transition j corresponds to the failure of a heater, then: λj(x,m) =
0.0021 + 0.00015 × x and, if the transition corresponds to a repair, then λj(x,m) =
0.2 when M j = F . A possible trajectory of the state of this system is depicted in figure
1.17. Here the system failure occurs when the temperature of the room falls below zero, so
D = {(x,m) ∈ E, x < 0}. Trajectory of the temperature, and of an indicator checking if
Mt = ON, both obtained with the PyCATSHOO tool are also displayed in figures 1.18 and
1.19. Note that the trajectory depicted in this figure is a trajectory with no failure. Having
no failure in a trajectory is very likely because in industrial systems the failure rates are
usually very low. Consequently, a PDMP modeling a reliable system often generates the
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trajectory with no failure when it is initiated in a state with no degraded component.

Figure 1.18 – example of evolution of the temperature in the Heated-Room system ob-
tained with PyCATSHOO

Figure 1.19 – example of evolution of the status of the Heater in the Heated-Room system
obtained with PyCATSHOO

1.3.5 Example of the spent fuel pool

The spent fuel pool system is used in a nuclear power plant to stock the spent fuel
which is still heating and radioactive. As this system involves many components it would
be quite long to expose all the features of its PDMP model. Therefore we just present the
structure of the system and the differential equations ruling its main physical variables.
The idea here is simply to give the reader a glimpse of the complexity of an industrial
system. We refer the reader to [13] for a more complete presentation of this system.

The fuel is placed in the water, because it contains the remaining radiations produced
by the fuel. It is important to control the level of the water in the pool so that the fuel
stays immersed, without which radiations would be released in the environment. Also it
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Figure 1.20 – The spent fuel pool system

is important to control the temperature of the pool so that the water does not vaporize.

To do so a cooling system is attached to the pool. This system is designed to cool
down the fuel without rejecting any radioactive matter in the river. As the water of the
pool is in contact with radioactive matter it can not be released in the nearby river, and
it stays in a circuit of water called the primary circuit. This water is heated to the contact
of the fuel, and, further in the circuit, it is cooled down by a secondary circuit of water
through a heat-exchanger. The heat gathered by the secondary circuit is then absorbed
by a third circuit through an other heat-exchanger. The water of the third circuit is taken
directly from the nearby river, and goes back to the river once heated. Each circuit has a
pump, a valve, and a clap, if one of these elements breaks the water cannot circulate in
the circuit. The combination of these three circuits is called a line.

In case the line would fail, it is backed up by two other lines in passive redundancy.
All the lines are connected to the river by a pumping system. In case this pumping system
fails the third line has an additional backup pumping system. The lines need current to
function, and in case of a power grid loss, each line disposes of a switch system which
launches a diesel generator that powers the line. The system is schematized in figure 1.20
without its electric-powering part. When the three lines stay failed, the temperature rises
to 100 °C, once this evaporating temperature is reached, the level of the water starts to
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decrease 2.
The logic diagram in figure 1.21 represent the logic in the systems. In this diagram

if there is an uninterrupted path between the bottom line and the top line it means the
main function of the system is fulfilled and that the temperature does not rise nor the
level decreases. In this diagram each box represents a component, and acts like a switch
that breaks the path when the component is failed. The arrows represent conditional ac-
tivations, meaning the component pointed by an arrow is activated only if the component
at the beginning of the arrow is failed. If a pointed component is not activated it breaks
the logic path it is a part of. One can associate a logic function to the figure 1.21 which

Figure 1.21 – reliability diagram of the static approximation of the spent-fuel-pool system

is true if the function of the system is fulfilled giving the statuses of the components.
We denote Lpool : m ∈ M → {False, True} the logic function. For each component we
define Boolean indicators that are true if they are failed and false otherwise: Grid is the
Boolean indicating that the power is no longer available from the grid, Swi indicates if
the switch of the i-th line is failed, Gni indicates if the diesel generator of the i-th line is
failed, Lni indicates if the i-th line is failed, Exij indicates if the j-th exchanger of the
i-th line is failed, Rvi indicates the i-th pump on the river is failed, Wcij indicates if the

2. In a real spent-fuel-pool at this stage water would be added to the pool to compensate the loss of
level, but we consider in this thesis a spent-fuel-pool system without this function of level management.
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j-th water circuit of the i-th line is failed, Ppij indicates if the pump of the j-th water
circuit of the i-th line is failed, V aij indicates if the valves of the j-th water circuit of
the i-th line is failed, Clij indicates if the clap of the j-th water circuit of the i-th line
is failed. Considering multiplication of Booleans as an AND operator and the sum as an
OR operator, we have:

Lpool(M) =Grid [Rv1(Ln3 + Sw3 +Gn3 +Rv2)
+(Ln1 + Sw1 +Gn1)(Ln2 + Sw2 +Gn2)(Ln3 + Sw3 +Gn3)]

+Rv1(Ln3 +Rv2),
+(Ln1)(Ln2)(Ln3), (1.111)

where Lni = Wci1 + Exi1 +Wci2 + Exi2 +Wci3 (1.112)
and Wcij = Ppij + V aij + Clij (1.113)

We denote by X1
t the temperature of the pool at time t in Celsius degrees, and X2

t

the water level of the pool. P is the residual power of the fuel in the pool, C is the mass
heat capacity, ρ is the density of the water, S is the area of the surface of water in contact
with the air, Qin is the entering debit water, Tin is the temperature of the entering water,
respectively Qout is the debit of water leaving the pull, and Tout is the temperature of the
water leaving the pool, l is the mass latent heat of vaporization. When the temperature
is below 100 °C or when P + ρC(QinTin−QoutTout) < 0, the differential system ruling the
evolution of Xt = (X1

t , X
2
t ) is:

∀X1
t ∈ (0, 100), and X2

t > 0, dX1
t

dt
= P + ρC(QinTin −QoutTout)

ρCSX2
t

(1.114)

dX2
t

dt
= 0. (1.115)

When the temperature of the water is at 100 °C and when P +ρC(QinTin−QoutTout) > 0
the differential system is

for X1
t = 100, and X2

t > 0, dX1
t

dt
= 0 (1.116)

dX2
t

dt
= −P + ρC(QinTin −QoutTout)

ρCSl
. (1.117)
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Chapter 2

Monte-Carlo methods for rare events

As the previous Chapter presented our model for the simulation output, the present
chapter deals with the simulation methods. We start this chapter by introducing the
naive Monte-Carlo method and its rare event issue, and then we present the importance
sampling method and the interacting particle system method. Our goal here is not to
review all the methods used in reliability analysis, but rather to introduce the methods
that we adapt to PDMP in parts II and IV. We refer the readers to [3, 47, 8, 46, 32] for
reviews of methods used in rare event analysis.

2.1 The Monte-Carlo method and its rare event issue

Let Y be a random variable with values in a measurable space (A,A), let ζ be a
reference measure on (A,A) , let f be the density of Y with respect to ζ, and let h be a
measurable function from A to R.

The Monte-Carlo method allows the estimation of an expectation defined by:

p = Ef [h(Y )] =
∫
A
h(y)f(y)dζ(y). (2.1)

The estimator of Monte-Carlo takes the following form:

p̂f = 1
Nf

Nf∑
i=1

h(Yi), where Yi iid∼ f. (2.2)

Theorem 3. If E [|h(X)|] < ∞ the strong law of large numbers implies that the Monte-
Carlo estimator is strongly consistent:

p̂f
a.s.

−−−−−−−→
Nf−→+∞

p. (2.3)

Theorem 4. If E [h2(Y )] < ∞, the Monte-Carlo estimator also satisfies a central limit
theorem (CLT): √

Nf (p̂f − p)
L

−−−−−−−→
Nf−→+∞

N (0, σ2
f ), (2.4)

where σ2
f = Varf (h(Y )).

This CLT allows to define an asymptotic confidence interval of level 1 − α for the
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Figure 2.1 – Normally distributed estimator and confidence interval

quantity p which is defined by:

IC1−α =
p̂f − q 1−α

2

√√√√ σ̂2
f

Nf

, p̂f + q 1−α
2

√√√√ σ̂2
f

Nf

 , (2.5)

where σ̂f = 1
Nf

∑Nf
i=1(h(Yi)− p̂f )2 and q 1−α

2
is the quantile of level 1−α

2 of a N (0, 1) normal
distribution. According to the Theorem 2.4 and Slutsky’s theorem, IC1−α is an asymptotic
confidence interval of level 1− α, as

lim
Nf→∞

P (p ∈ IC1−α) = 1− α. (2.6)

Most of the time, one considers a confidence interval of level 95%. In this case
qα

2
' 1.96, and:

IC95% =
p̂f − 1.96

√√√√ σ̂2
f

Nf

, p̂f + 1.96

√√√√ σ̂2
f

Nf

 . (2.7)

If we want to get a confidence interval of level 1 − α of size smaller than L > 0, we
have to set a number of simulations verifying:

Nf ≥
4 q2

α
2
σ2
f

L2 (2.8)

The more we want to be accurate and have a narrow confidence interval, the higher the
number of simulations needs to be. We can even see in the inequality (2.8), that there is
a quadratic relation between the number of simulations required and the inverse of width
of the CI 1

L
.
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2.1.1 Computational burden of the Monte-Carlo estimator

For the Monte-Carlo estimator, when pf << 1 the coefficient of variation satisfies

CV =

√√√√pf (1− pf )
Nf

1
pf
' 1√

pfNf

. (2.9)

Making the approximation CV = 1√
pfNf

, a condition CV < c where c ∈ R+ implies that

Nf >
1
c2

1
pf
. (2.10)

So when the value of pf is close to zero, the condition (2.10) shows that the number of
simulations needed must be very high. Running that many simulations being computa-
tionally intensive, the Monte-Carlo method is therefore ill-suited to rare event analysis.
In order to avoid the computational burden of the Monte-Carlo method, one generally
prefers using a variance reduction method.

2.1.2 The principle of variance reduction method

The principle of a variance reduction method is to replace the Monte-Carlo estimator
by an estimator satisfying a CLT and for which the asymptotic variance is smaller. The
interest of taking such an estimator is that it requires less simulation runs to reach a given
precision, which eventually accelerates the estimation.

A more accurate estimator means less simulation runs

Denote by p̂ an estimator of p based on N simulation runs, and such that

√
N(p̂− p)

L
−−−−−−−→
N−→+∞

N (0, σ2). (2.11)

If we choose both N and Nf to get a length of confidence interval L, we would have:

2qα
2

√√√√ σ2
f

Nf

= L = 2qα
2

√
σ2

N
, (2.12)

and therefore
N = σ2

σ2
f

Nf . (2.13)

We can see that, for a given accuracy, when σ2 < σ2
f we have N < Nf . Equation (2.13)

even indicates that reducing the variance by a factor x reduces the required number of
simulations by a factor x2.

Note that this heuristic reasoning (and especially the equation (2.12)) is valid only if
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we assume that the estimators have reached their asymptotic regime. So even if N can
be chosen σ2

σ2
f
times smaller then Nf , N still has to be big enough so that the Normal

approximation on
√
N(p̂− p) and

√
Nf (p̂f − p) are satisfied.

Efficiency and comparison of estimators

In variance reduction methods, getting an estimator with a reduced asymptotic vari-
ance is often done by altering the simulation process, and this can sometimes slow down
the simulation process. In practice, there is a trade-off between reducing the number of
simulation runs and increasing the computational time of each simulation run. For this
reason, in [36] the efficiency of an estimator is defined by:

eff = 1
τσ2 , (2.14)

where τ is the mean computational time for a simulation run. This quantity eff can
be interpreted as the contribution of a second of computation to the precision of the
estimator. It is a good indicator to compare estimators in practice.

In this thesis we focus on the reduction of the variance, putting aside the mean com-
putational time for a simulation run, mainly because the variance reduction often com-
pensates for the increase of the time of simulation runs, and because reducing the mean
computational time for a simulation run is essentially a code optimization issue, which
is not our main domain of expertise. This is why we will sometimes compare estimators
directly with their variances and not their efficiencies.

2.2 Importance Sampling

In this section we present the method we adapt for PDMP in the Part 2. Namely we
present the importance sampling method and the adaptive Cross-Entropy method which
we will use to optimize the variance of the importance sampling estimator. For a more
complete review of the different uses of importance sampling, and of different ways to
optimize it we refer the reader to [51].

2.2.1 Principle

Like the Monte-Carlo method the importance sampling estimate quantities of the
form:

p = Ef [h(Y )]. (2.15)

With the Monte-Carlo method, when h = 1D and p ' 10−a < 10−4, having Yi ∈ D is
not likely. Consequently, when Nf is not big enough, p̂f is likely to be null. In practice,
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if p ' 10−a, we often have to simulate approximately 10a in order to get at least one
simulation Yi in D, and 10a+2 simulations are required to get a good estimation of p. To
avoid waiting this time before getting a first Yi in D, the first idea of the Importance
Sampling is to simulate from an other random variable

∼
Y , for which the region D is more

likely. We give more "importance" to a specific region. Let (
∼
Yi)i=1..N be a sequence of

N independent random variables and distributed like
∼
Y . We denote by g their density

with respect to the reference measure ζ. Replacing the Yi’s by other random variables
∼
Yi’s

distributed as
∼
Y would yield an estimator 1

N

∑N
i=0 1D(

∼
Yi) that is less likely to be null. This

estimator would provide a positive estimation sooner but would unfortunately be biased.
The second idea of the Importance Sampling is to add a weight to each simulation output
in order to correct this induced bias. If a simulation has been drawn with x times more
chances then it is weighted by 1

x
. So a simulation

∼
Yi is weighted by a likelihood ratio f(

∼
Yi)

g(
∼
Yi)

,
which yields the following estimator:

p̂g = 1
N

N∑
i=1

1D(
∼
Yi)

f(
∼
Yi)

g(
∼
Yi)

, where
∼
Yi

iid∼ g. (2.16)

Then these ideas can be generalized for any function h.

2.2.2 The Importance Sampling estimator

The importance sampling estimator of p = Ef [h(Y )] is

p̂g = 1
N

N∑
i=1

h(
∼
Yi)

f(
∼
Yi)

g(
∼
Yi)

, where
∼
Yi

iid∼ g. (2.17)

Theorem 5. This estimator is unbiased, if and only if for ζ-almost every y

g(y) = 0⇒ h(y)f(y) = 0. (2.18)

Proof. Indeed in this case the reasoning below provides the equality (2.19):

p = Ef
[
h(Y )

]
=

∫
A
h(y)f(y)dζ(y)

=
∫
A
h(y)g(y)f(y)

g(y)dζ(y)

p = Eg
[
h(
∼
Y )f(

∼
Y )

g(
∼
Y )

]
, (2.19)
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and therefore

E[p̂g] = E

 1
N

N∑
i=1

h(
∼
Yi)

f(
∼
Yi)

g(
∼
Yi)

 = 1
N

N∑
i=1

Eg
[
h(
∼
Y )f(

∼
Y )

g(
∼
Y )

]
= p. (2.20)

Theorem 6. The estimator p̂g is consistent according to the strong law of large number.

Theorem 7. If Eg
[
h(
∼
Y )2

(
f(
∼
Y )

g(
∼
Y )

)2
]
< +∞, the estimator p̂g satisfies a CLT:

√
N(p̂g − p)

L
−−−−−−−→
N−→+∞

N (0, σ2
g), (2.21)

where σ2
g = Eg

h(
∼
Y )2

f(
∼
Y )

g(
∼
Y )

2
− p2. (2.22)

The variance σg can be estimated by the quantity:

σ̂2
g = 1

N − 1

N∑
i=1

h(
∼
Yi)

f(
∼
Yi)

g(
∼
Yi)
− p̂g

2

(2.23)

Theorem 8. The estimator σ̂2
g is an unbiased estimator of σ2

g , and it is consistent.

2.2.3 Dynamical importance sampling

Note that the the application scope of the importance sampling method is very general
as it can be used with any random variables Y and

∼
Y as soon as we can define the likelihood

ratio f(
∼
Y )

g(
∼
Y )

and that Eg
[
h(Y )2

(
f(Y )
g(Y )

)2
]
< +∞. In particular it can deal with the dynamic

cases: For instance if we consider that Y = (X0, X1, . . . Xk) and
∼
Y = (

∼
X0,

∼
X1, . . .

∼
Xk)

are a Markov chain with respective kernels densities Q(Xj+1, Xj) and
∼
Q(

∼
Xj+1,

∼
Xj) with

respect to a commune measure, assuming
∼
Y is absolutely continuous with respect to Y

then the likelihood ratio exists and it is defined by:

f(
∼
Y )

g(
∼
Y )

=
k∏
j=0

Q(
∼
Xj+1,

∼
Xj)

∼
Q(

∼
Xj+1,

∼
Xj)

. (2.24)

Importance sampling can also be used for others sub-classes of PDMPs like continuous
time Markov chains, or homogeneous and inhomogeneous Poisson processes [29]. In part II
we will show that it can also be generalized when Y is a PDMP trajectory.
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2.2.4 Variance and optimal density

The variance of the importance sampling estimator is Var(p̂g) = σ2
g

N
, where the value of

σ2
g depends on the importance density g. If g is well chosen the variance of the importance

sampling estimator can be smaller than the variance of the Monte-Carlo estimator. Indeed:

σ2
g =

∫
A
h(y)2

(
f(y)
g(y)

)2

g(y)dζ(y)− p2

=
∫
A
h(y)2f(y)

g(y)f(y)dζ(y)− p2

= Ef
[
h(Y )2f(Y )

g(Y )

]
− p2, (2.25)

and so:

σ2
g − σ2

f = Ef
[
h(Y )2

(
f(Y )
g(Y ) − 1

)]
. (2.26)

Which gives the following theorem:

Theorem 9. The variance of the importance sampling estimator is smaller than the one
of the Monte-Carlo estimator if and only if

Ef
[
h(Y )2

(
f(Y )
g(Y ) − 1

)]
< 0. (2.27)

There is an optimal density, that minimizes the variance:

Theorem 10 (optimal density). The importance density g∗ such that

g∗(y) = |h(y)|f(y)
E[|h(Y )|] , (2.28)

minimizes the variance as:
σ2
g∗ = Ef [|h(Y )|]2 − p2, (2.29)

and for any density g such that supp(h.f) ⊂ supp(g)

σ2
g∗ ≤ σ2

g . (2.30)
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Proof. If g is a density such that supp(fh) ⊂ supp(g) we

p2 + σ2
g∗ = Eg∗

[
h(
∼
Y )2 f(Ỹ )2

g∗(
∼
Y )2

]
(2.31)

=
∫
h(y)2f(y)2

g∗(y)dζ(y) (2.32)

= Ef [|h(Y )|]
∫
h(y)2 f(y)2

|h(y)|f(y)dζ(y) (2.33)

= Ef [|h(Y )|]2 (2.34)

= Eg

|h(
∼
Y )|f(

∼
Y )

g(
∼
Y )

2

. (2.35)

(2.36)

So by Cauchy-Schwarz inequality

p2 + σ2
g∗ ≤ Eg

|h(
∼
Y )|2f(

∼
Y )2

g(
∼
Y )2

 (2.37)

≤ Eg

h(
∼
Y )2f(

∼
Y )2

g(
∼
Y )2

 (2.38)

≤ p2 + σ2
g (2.39)

and so σ2
g∗ ≤ σ2

g (2.40)

Which proves theorem 10.

In some case, it is even theoretically possible to bring Var(p̂g) to zero as expressed in
the following corollary:

Corollary 2 (optimal density for constant sign functions). If ∀Y ∈ D, h(y) ≥ 0 or if
∀y ∈ A, h(y) ≤ 0 then

g∗(y) = |h(y)|f(y)
p

, and Var(p̂g∗) = 0. (2.41)

This corollary applies in particular in the reliability assessment case where h = 1D.
In practice it is impossible to set g = g∗ as the expression of g∗ involves p, the unknown

quantity we are trying to estimate and it would require to build a pseudorandom number
generator with the distribution with the density g∗. This expression g∗ serves more as a
guide to specify efficient importance densities that are close to this optimal density, than
as an actual candidate density. The figure 2.2 illustrates a possible importance density g
along with the original and optimal density f and g∗ in the case h = 1D.
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2.2. Importance Sampling

Figure 2.2 – Some importance densities in the case h = 1D

2.2.5 Important practical concerns

In the case h = 1D, the optimal density g∗ indicates that we have to increase the
probability of drawing in D, but we have to do it homogeneously, keeping the importance
density proportional to f . In the general case, g∗ indicates that we have to increase the
probability in supp(h), keeping the importance density proportional to h.f . This is well
illustrated by following property:

Property 5. If ∀y ∈ A, h(y) ≥ 0, and

∀ y ∈ supp(h), g(y) ≥ h(y)f(y)
C + p

(2.42)

where C ∈ [0, 1− p], then

σ2
g ≤ Cp, and Var(p̂g) ≤

Cp

N
. (2.43)

The closer the constant C is to 0, the better the variance reduction is. Which means that
the more we increase the density g while keeping a proportionality with h.f , the better
the variance reduction is.

Conversely, in the case h = 1D, increasing the probability inhomogeneously in D

(D = supp(h)), can lead to a slow convergence and to misleading results in practice.
Consider that the regions D1 and D2 form a partition of D, and let p1 = E[1D1(Y )] and
p2 = E[1D2(Y )] so that p = p1 + p2. Assume the importance density is such that the
probability of the region D2 is increased as much as possible but not the region D1:

g(y) = 1D1(y)f(y) + 1− p1

p2
1D2(y)f(y). (2.44)

In this case, we assume that p1 << 1 and p2 << 1, and that p1 > p2. So the asymptotically
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variance satisfies

σ2
g = p1 + p2

2
1− p2

− p2 ' p1. (2.45)

If p1 and p are small and of the same order of magnitude, this variance is comparable
to the asymptotic variance of the Monte-Carlo method p(1− p), so g is not such a good
importance density in this case.

An other issue with such an unbalanced importance density is that we may not obtain
the right results if we do not take a sufficient number of simulations. The estimator is still
convergent but its convergence is too slow. Indeed if N << 1

p1
we have small chances of

drawing a simulation in D1. For instance, if only N2 simulations of the sample are drawn
in D2 and none is drawn in D1, then the result is underestimated as then p̂g = N2

N
p2

1−p1

and the empirical variance does not reflect the asymptotic variance at all as: σ̂2
g = 0 6= σ2

g ,
hence the slow convergence.

The example we took is deliberately extreme, but the consequence of taking an impor-
tance density not proportional to h.f can affect real cases: this typically happens when
the region supp(h) is not connex, or when h.f is multimodal, and when the shape of
importance density considered are not flexible enough to match the shape of h.f while
increasing the probability mass in supp(h). If the importance density only favors a mode
of h.f , or only one region of D, then a too small number of simulations will yield an
empirical variance that does not represent the asymptotic variance and this will give
an underestimated probability estimate. Consequently the practitioners must try to ad-
dress this issue of homogeneously increased importance densities when they consider any
importance density.

2.3 Variance optimization methods for importance
sampling

As we lack mathematical tools to minimize the variance over the set of the possible
importance densities, one often restricts the minimization to a set of parametric densities,
which allows optimizing over a set of parameters. In the case where h = 1D, and Y

involves an empirical mean of random variables the choice of the parametric densities can
be based on a large deviation analysis, see [28, 29, 50], though this supposes that the
random variable Y is defined in an Euclidean space. In other cases the parametric family
is generally built using the practitioner’s knowledge about g∗, or, if no valuable knowledge
about g∗ is available, by taking a flexible family of parametric importance densities.
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2.3.1 Variance optimization: the Cross-Entropy method

Once the parametric family of importance densities is chosen, we can use different
methods to find the best parameters. We denote by α ∈ Aparam ⊆ Rn the possible
parameters, where n ∈ N∗ and Aparam is the set of the possible parameters. We denote
by (gα)α∈Rn the parametric importance densities. In this subsection we present the Cross-
Entropy method [20, 34] which optimizes the parameters in order to get the best variance
reduction.

The Cross-Entropy method consists firstly in measuring a distance between the den-
sities gα and g∗, and secondly in minimizing it or in minimizing an approximation of
this distance to get the best parameter. The distance between the densities gα and g∗ is
measured thanks to the Kullback-Leibler pseudo-metric:

D(g∗, g) = Eg∗
[
log

(
g∗(Y )
g(Y )

)]
. (2.46)

As Eg∗ [log (g∗(Y ))] is a constant (i.e., it does not depend on g), minimizing

D(g∗, gα) = Eg∗ [log (g∗(Y ))]− Eg∗ [log (gα(Y ))] (2.47)

is equivalent to maximizing
Eg∗ [log (gα(Y ))] , (2.48)

and as g∗(y) = h(y)f(y)
p

, minimizing D(g∗, gα) is also equivalent to finding

α∗ ∈ argmax
α∈Aparam

Ef
[
h(Y )log

(
gα(Y )

)]
. (2.49)

This can be done if Ef
[
h(Y )log

(
gα(Y )

)]
and its derivative with respect to α can be

computed analytically.

When Ef
[
h(Y )log

(
gα(Y )

)]
can not be computed analytically, one can approximate it

empirically by using the following estimator based on NCE,0 simulations:

1
NCE,0

NCE,0∑
i=1

h(Yi)log
(
gα(Yi)

)
, where Yi ∼ f. (2.50)

A first approximation of α∗, denoted by α1, can now be given by solving:

1
NCE,0

NCE,0∑
i=1

h(Yi)∇αlog
(
gα(Yi)

)
= 0, where Yi ∼ f (2.51)

Note that, in (2.50), it is important to get at least one realization Yi such that h(Yi) 6= 0,
so that the minimization in (2.51) yields a meaningful minimum α1. If the practitioner
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chose a number NCE,0, there is a chance that all simulations are such that h(Yi) = 0.
Therefore in practice, it can be interesting to first chose a number nCE ∈ N∗ and to to
gradually increase the number of simulations NCE,0 so that nCE of the simulations are
such that h(Yi) 6= 0. With a well-chosen parametric family of importance densities this
optimization should provide a parameter α1 for which the importance density gα1 is closer
from g∗ than f .

Now note that, if we generate the simulations Yi’s according to the distribution gα1 ,
so it should provide a better approximation than in equation (2.50), because it is a better
importance density than f in this case. By using an importance sampling strategy with
the density galpha1 , one can improve the approximation of Ef

[
h(Y )log

(
gα(Y )

)]
with the

following estimator based on NCE,1 simulations:

1
NCE,1

NCE,1∑
i=1

h(Yi)
f(Yi)
gα1(Yi)

log
(
gα(Yi)

)
, where Yi ∼ gα1 . (2.52)

Consequently one can sometimes get a better parameter α2 by solving:

1
NCE,1

NCE,1∑
i=1

h(Yi)
f(Yi)
gα1(Yi)

∇αlog
(
gα(Yi)

)
= 0, where Yi ∼ gα1 . (2.53)

This step can even be iterated to get an α3, an α4, etc... This yields the algorithm 2.1,
where we denote f by gα0 . It is also possible to start the algorithm 2.1 with gα0 6= f , in
order to start with a better empirical approximation of Ef

[
h(Y )log

(
gα(Y )

)]
.

Initialization: chose α0 ∈ Aparam and nCE ∈ N∗ and set t = 0, and ε > 0
while ||αk − αk+1|| < ε do

Set k = 1, and generate Y1 ∼ gαt
while ∑k

i=1 1h(Yi)>0 < nCE do
Generate Yk+1 ∼ gαt
k := k + 1

N = k − 1
Compute αt+1 = argmin

α∈Aparam

1
N

∑N
i=1 h(Yi) f(Yi)

gαt (Yi)
log
(
gα(Yi)

)
t := t+ 1

End: Estimate p with p̂αt−1

Table 2.1 – CE algorithm

2.3.2 Important remark on the Cross-Entropy

Note that the theoretical convergence properties of the CE method are not yet fully
understood [40] and that the efficiency of this method has only been confirmed by many
empirical examples. The convergence on the CE method has only been proven on par-
ticular cases, and, in practice, there are cases for which the method does not converge.
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This can be due to the fact that Ef
[
h(Y )log

(
gα(Y )

)]
is poorly approximated because

the number of simulations at each step NCE,t is too small, or because the approximation
(2.52) is not convex in α and its minimization falls in a local minimum, or because the
parametric family of candidate importance densities is ill-suited to the shape of h(Y )f(Y ).

The approximation of Ef
[
h(Y )log

(
gα(Y )

)]
is an importance sampling estimation so it

suffers from the same practical problems which we mentioned in the subsection 2.2.5.
This typically happens when h(Y )f(Y ) is multi-modal, which will often the case in the
reliability assessment of a complex system.

It is therefore important NOT to blindly take the result of this method, and to check if
its output is robust by running the method several times with different tuning parameters,
and to check if the outputs are coherent with our knowledge of the shape of h(Y )f(Y ).
Though they also do not guarantee the convergence, to go further one could also consider
adaptation of the methods that have been proposed to handle multi-modal cases [33, 6,
26, 4].

2.3.3 Adaptive Cross-Entropy

We have seen previously that the CE method can be pursued if we can compute

argmax
α∈Aparam

Ef
[
h(Y )log

(
gα(Y )

)]
analytically, or if we are able to approximate it which re-

quires to generate a simulation such that h(Yi) 6= 0 at least once. For reliability assessment
we have h = 1D and p = Ef [h(Y )] = P (Y ∈ D) is very low, so having h(Yi) 6= 0 (or equiv-
alently Yi ∈ D) almost never happens. Indeed in practice the number of simulations to
realize before getting Yi ∈ D is of the order 1/p, which is often too high compared to the
computational capacities. To get the event h(Yi) 6= 0 in a reasonable time is not always
possible. In this situation is it preferable to resort to a multi-level importance sampling
technique, or an adaptive multi-level importance sampling technique. In this section we
present one of these methods which is the adaptive Cross-Entropy method [20].

Assume we dispose of a real function S such that for s ∈ R:

p = P (Y ∈ D) = P (S(Y ) ≥ s). (2.54)

The idea of the multi-level importance sampling is to decompose the problem into a
sequence of intermediate problems of reduced complexity. That is to say where the event
is obtained faster so that we can get good estimations faster. Let s̃ ∈ R, so that s̃ ≤ s.
We denote p̃ = P (S(Y ) ≥ s̃). The event S(Y ) ≥ s̃ contains the event S(Y ) ≥ s, so p̃ ≥ p.
Therefore the event S(Y ) ≥ s̃ is easier to simulate.
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The optimal density to estimate p̃ is given by:

∼
g∗(y) = 1(S(y)≥s̃)f(y)

p̃
(2.55)

If s̃ is not too far from s the two densities ∼g∗ and g∗ are very similar (they are proportional
on D). Thus when a density gα gets close to ∼g∗, it also gets close to g∗.

The technique of the multi-level importance sampling consists in taking a sequence of
thresholds (st)t≥0 for which, starting from a density gαt−1 tuned to estimate P (S(Y ) ≥ st−1),
one can easily find an efficient parametric density gαt to estimate P (S(Y ) ≥ st), and so
on.... If the sequence of thresholds tends to s one can construct a sequence of densities
gαt that tends to gα∗ (the best density in the parametric family to estimate p).

This method works well when the thresholds (st)t≥0 are chosen so that the probabilities
Pαt−1(S(Y ) ≥ st) are not too big, about the order of ρ = 10−2 for steps with 10000
simulations, see [20]. Thus, in adaptive multi-level importance sampling st is chosen to be
equal to the empirical quantile of order 1− ρ.

In the end the adaptive multi-level importance sampling consists in applying the algo-
rithm displayed in 2.2, where we denote by (S(1), . . . S(N)) an ordered sample of the S(Yi),
so that the empirical quantile of order 1− ρ of this sample is S(b(1−ρ)Nc).

Initialization: choose α0 ∈ Aparam and ∀t, NCE,t ∈ N and set t = 0, s0 ≤ s
while st 6= s do

Generate (Si)i = 1..NCE,t with Si = S(Yi) and Yi iid∼ gαt
Set st = min

(
S(b(1−ρ)NCE,tc), s

)
Compute αt+1 = argmin

α∈Aparam

1
N CE,t

∑NCE,t
i=1 1S(Yi)>st

f(Yi)
gαt (Yi)

log
(
gα(Yi)

)
t := t+ 1

End: Estimate p with p̂αt−1

Table 2.2 – Adaptive CE algorithm
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2.4 The interaction particle method

The notations of this section are independent from the notation of the first chapter
1 on PDMPs. Let (Zk)k∈{0,...,n} be a Markov chain with values in the measurable spaces
(Ek, Ek), and with initial law ν0, and with a kernel vk such that for k > 0 and for any
bounded measurable function t : Ek → R

E[t(Zk)|Zk−1] =
∫
Ek

t(zk)vk(dzk|Zk−1). (2.56)

For any bounded measurable function t : E0 × · · · × En → R we have:

E[t(Z0, . . . , Zn)] =
∫
En×···×E0

t(z0, . . . , zn)vn(dzn|zn−1) · · · v1(dz1|z0)ν0(dz0) (2.57)

Let Zk = (Z0, Z1, . . . , Zk) be a trajectory of size k, and let Ek = E0×E1×· · ·×Ek be the set
of trajectories of size k that we equip with the product σ-algebra
Ek = E0 ⊗ E1 ⊗ · · · ⊗ Ek. For i < j, consider two trajectories zi and zj: when it is nec-
essary to differentiate the coordinates of these trajectories we write the coordinates zi,k
for k ≤ i and zj,k for k ≤ j such that zi = (zi,0, zi,1, . . . , zi,i) and zj = (zj,0, zj,1, . . . , zj,j).
We introduce the Markov Chain of the trajectories (Zk)k≥0 with values in the measurable
spaces (Ek,Ek), and with the transition kernels Vk such that:

Vk(dzk|zk−1) = δzk−1

(
d(zk,0, . . . , zk,k−1)

)
vk(dzk,k|zk−1,k−1). (2.58)

For any bounded measurable function h : En → R we have

p = E [h(Zn)] =
∫∫∫

En×···×E0
h(zn)

n∏
k=1

Vk(dzk|zk−1)ν0(dz0). (2.59)

The IPS method provides an estimator of p with a different variance than the Monte-
Carlo estimator. It was first introduced in [23], and with an alternative formulation in
[22].

In the rest of this section 2.4 we use the following notations: We denote by M (A)
the set of bounded measurable functions on a measurable set (A,A). If f is a bounded
measurable function, and η is a measure we note η(f) =

∫
f dη. If M is a Markovian

kernel, we denote by M(f) the function such that M(f)(x) =
∫
f(y)M(dy|x), and for a

measure η, we denote by ηM the measure such that

ηM(f) =
∫ ∫

f(y)M(dy|x)η(dx). (2.60)
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2.4.1 A Feynman-Kac model

The IPS method relies on a Feynman-Kac model [21] whose main characteristics are
defined in this subsection. A Feynman-Kac model is a sequence of target distributions
and of propagated distributions on the sets (Ek,Ek), that are linked by a selection and
propagation pattern defined below.

Target and propagated distributions

For each k, 0 ≤ k ≤ n, we consider a potential function Gk : Ek → R+ and we define
the target probability measure η̃k on (Ek,Ek), such that:

∀B ∈ Ek, η̃k(B) =
E
[
1B(Zk)

∏k
s=0Gs(Zs)

]
E
[∏k

s=0Gs(Zs)
] . (2.61)

For each k, 1 ≤ k ≤ n, note that assuming that η̃k is a probability measure and not the
null measure means that E

[∏k
s=0Gs(Zs)

]
> 0.

For each k, 1 ≤ k ≤ n, we define the propagated target probability measure ηk on
(Ek,Ek) such that ηk = η̃k−1Mk−1 and for k = 0 we set η0 = η̃0. We have:

∀B ∈ Ek+1, ηk+1(B) =
E
[
1B(Zk+1)∏k

s=0Gs(Zs)
]

E
[∏k

s=0Gs(Zs)
] . (2.62)

Link between distributions

Notice that, for k > 1, ηk is the propagation of η̃k−1 through the transition kernel Vk

as:
ηk = η̃k−1Vk. (2.63)

Let Ψk be the application that transforms a measure η defined on Ek into a measure
Ψk(η) defined on Ek and such that

Ψk(η)(f) =
∫
Gk(z)f(z)dη(z)

η(Gk)
. (2.64)

We say Ψk(η) give the selection of η through the potential Gk. Notice that η̃k is the
selection of ηk as

η̃k = Ψk(ηk). (2.65)

The target distributions can therefore be built according to the following pattern of suc-
cessive selection and propagation:

ηk
Ψk
−−−−→ η̃k

.Vk+1
−−−−→ ηk+1. (2.66)
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Unnormalized measures and expectations

We also define the associated unnormalized measures γ̃k and γk+1, such that for f ∈
M (Ek):

γ̃k(f) = E
[
f(Zk)

k∏
s=0

Gs(Zs)
]

and η̃k(f) = γ̃k(f)
γ̃k(1) , (2.67)

and for f ∈M (Ek+1):

γk+1(f) = E
[
f(Zk+1)

k∏
s=0

Gs(Zs)
]

and ηk+1(f) = γk+1(f)
γk+1(1) . (2.68)

Remember p = E[h(Zn)]. Denoting fh(zn) = h(zn)∏n−1
s=0 Gs(zs)

, notice that we have:

p = γn(fh) = ηn(fh)
n−1∏
k=0

ηk
(
Gk

)
. (2.69)

2.4.2 The IPS algorithm and its estimator

Weighted samples to approximate the distributions and the expectations

The IPS method provides an algorithm to generate weighted samples which approxi-
mate the probability measures ηk and η̃k respectively for each step k, these approximations
are then used to provide an estimator of p. For the sample approximating ηk, we denote
Zj
k the jth trajectory and W j

k its weight. Respectively in the sample approximating η̃k, we
denote

∼
Zj
k the jth trajectory and

∼
W j
k its associated weight. The trajectories within these

samples are sometime called particles. This designation inherits from one of the first case
of application of the IPS method that modeled trajectories of particles. For simplicity
reasons, in this section, we consider that the samples all contain N trajectories (or parti-
cles), but it is possible to modify the sample size at each step, as illustrated in [38]. The
empirical approximations of ηk and η̃k are denoted ηNk and η̃Nk and are defined by:

η̃Nk =
N∑
i=1

∼
W i
k δ∼Zi

k

and ηNk =
N∑
i=1

W i
k δZik . (2.70)

So for all k ≤ n and f ∈M (Ek),

η̃Nk (f) =
N∑
i=1

∼
W i
k f
(∼
Zi
k

)
and ηNk (f) =

N∑
i=1

W i
k f
(
Zi
k

)
. (2.71)

By plugging these estimations into equations (2.67) and (2.68), we get estimations for
the unnormalized distributions. Noting γ̃Nk and γNk these estimations, for all k ≤ n and

59



Partie I, Chapter 2 – Monte-Carlo methods for rare events

f ∈M (Ek), we have:

γ̃Nk (f) = η̃Nk (f)
k−1∏
s=0

ηNs (Gs) and γNk (f) = ηNk (f)
k−1∏
s=0

ηNs (Gs). (2.72)

In particular if we apply (2.72) to the test function fh(Zn) = h(Zn)∏n−1
s=0 Gs(Zs)

, we get an
estimator p̂G of p defined by:

p̂G = ηNn (fh)
n−1∏
k=0

ηNk
(
Gk

)
. (2.73)

Sequentially build the samples

The IPS algorithm builds the samples sequentially, alternating between a selection
step and a propagation step.

The kth selection step transforms the sample (Zj
k,W

j
k )j≤N , into the sample (

∼
Zj
k,
∼
W j
k )j≤N .

This transformation is done with a multinomial resampling scheme. This means that the
values of the

∼
Zj
k’s are drawn with replacement from the sample (Zj

k)j≤N , each trajectory
Zj
k having a probability W j

k
Gk(Zj

k
)∑N

i=1 W
i
k
Gk(Zi

k
)
to be drawn each time. We let Ñ j

k be the number

of times the particle Zj
k is replicated in the sample (

∼
Zj
k,
∼
W j
k )j, so N = ∑N

j=1 Ñ
j
k . After this

resampling the weights
∼
W j
k are set to 1

N
.

The interest of this selection by resampling is that it discards low potential trajectories
and replicates high potential trajectories. Thus, the selected sample focuses on trajectories
that will have a greater impact on the estimations of the next distributions once extended.
If one specifies potential functions that are not positive everywhere, there can be a pos-
sibility that at a step k we get ∀j, Gk(Zj

k) = 0. When this is the case, the probability
for resampling can not be defined, the algorithm stops, and we consider that ∀s ≥ k the
measures η̃Ns and ηNs are equal to the null measure.

Then the kth propagation step transforms the sample (
∼
Zj
k,
∼
W j
k )j≤N , into the sample

(Zj
k+1,W

j
k+1)j≤N . Each trajectory Zj

k+1 is obtained by extending the trajectory
∼
Zj
k one

step further using the transition kernel Vk+1. The weights satisfy W j
k+1 =

∼
W j
k , ∀j. Then

the procedure is iterated until the step n. The full algorithm to build the samples is
displayed in table 2.3. Figure 2.3 displays an example of genealogy of the particles of the
samples.

Potential and convergence properties of the estimator

For k < n, we denote by Êk = {zk ∈ Ek, Gk(zk) > 0} the support of Gk, and we denote
Ên = {zn ∈ En, h(zn) > 0} the support of h. We will make the following assumption on
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Initialization: k = 0, ∀j = 1..N, Zj
0
i.i.d.∼ η0 and W j

0 = 1
N
, and

∼
W j

0 = G0(Zj0)∑
s
G0(Zs0)

while k < n do
Selection:
(
∼
Zj
k)j=1..N

i.i.d.∼ ∑N
i=1

∼
W i
kδZik

∀j := 1..N,
∼
W j
k := 1

N

Propagation:
for j := 1..N do

using the kernel Vk+1, sample the trajectory
∼
Zj
k to get Zj

k+1

set W j
k+1 =

∼
W j
k and

∼
W j
k+1 = W j

k+1Gk+1(Zj
k+1)∑

s
W s
k+1Gk+1(Zs

k+1)

if ∀j,
∼
W j
k+1 = 0 then

∀q > k, set ηNq = η̃Nq = 0 and Stop
else

k := k + 1

Table 2.3 – IPS algorithm
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Figure 2.3 – A genealogical tree of an interacting particle system

the potential functions:

∃ ε > 0, ∀k ≤ n, ∀zk−1 ∈ Êk−1, Vk(Êk|zk−1) > ε, (G)

Theorem 11. When the potential functions satisfy (G), p̂G is unbiased and strongly
consistent.

The proof of theorem 11 can be found in [21] chapter 7.

Theorem 12. When the potential functions are strictly positive:

√
N(p̂G − p) d−→

N→∞
N
(
0, σ2

IPS,G

)
(2.74)
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where, with the convention that
−1∏
i=0
Gi(Zi) =

−1∏
i=0
G−1
i (Zi) = 1:

σ2
IPS,G =

n∑
k=0

{
E
[
k−1∏
i=0

Gi(Zi)
]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]
− p2

}
. (2.75)

A proof of this CLT can be found in [21] chapter 9.

2.4.3 Estimate the variance of the IPS estimator

The recent work [38] provides two estimators of the variance σ2
IPS,G. These estimators

are weakly convergent in the sense that they converge only in probability to the asymptotic
variance.

The study of the variability of the IPS method is connected with the genealogical
history of the particles. In order to present the estimator of the variance we need to
introduction a few notations to handle the history of the particle. Let Ajk be the ancestor
index of the jth trajectory in the k-th selected sample, such that

∼
Zj
k = ZAj

k
k . Let ein be the

original ancestor index of i, also called the Eve index of i, it is defined recursively by:

ei0 = i and for k, 0 < k ≤ n, eik = A
eik−1
k . (2.76)

So eik is the ancestor index at step 0 of the i-th particle of the k-th sample.
The first estimator of the variance σ2

IPS,G is:

σ̂2
1 = γNn (1)2

ηNn (fh)2 − Nn−1

(N − 1)n+1

∑
i,j:ein 6=e

j
n

fh(Zi
n)fh(Zj

n)

 . (2.77)

Theorem 13. σ̂2
1 is an unbiased and weakly convergent estimator of σ2

IPS,G.

The second estimator relies on a rewriting of (2.75) in (2.79). For a given vector
b ∈ {0, 1}n we introduce the expectation Eb with respect to a pair of random vectors
(Yk)k≤n and (Y′k)k≤n. For a given vector b ∈ {0, 1}n, the law of these vectors are defined
as follow: Y0 ∼ η0 and for k > 0 Yk ∼ Vk(.|Yk−1). If b0 = 0 Y′0 ∼ η0 with Y′0 independent
of Y0, and if b0 = 1 we take Y′0 = Y0; Similarly for k > 0 if bk = 0 take Y′k ∼ Vk(.|Y′k−1)
with Y′k independent of Yk, and if bk = 1 we take Y′k = Yk. Now for a function f̃ : E2

n → R
we define the quantity µb(f̃) by:

µb(f̃) = Eb
[
n−1∏
k=0

Gk(Yk)Gk(Y′k)f̃(Yn,Y′n)
]
, (2.78)

For a function f ∈ REn we define f⊗2 as the function of RE2
n such that f⊗2(Y,Y′) =

f(Y)f(Y′). Denoting by ep the vector with the p+ 1th coordinate equal to 1 and null
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coordinates everywhere else, and denoting by 0n the null vector of size n, we can rewrite
the variance as follows:

σ2
IPS,G =

n−1∑
k=0

µek(f⊗2
h )− µ0n(f⊗2

h ) (2.79)

In order to estimate the variance the authors of [38] provide an estimator µNb (f⊗2) of the
quantity µb(f⊗2) for any b ∈ {0, 1}n and define the second estimator by:

σ̂2
2 =

n−1∑
k=0

µNek(f
⊗2
h )− µN0n(f⊗2

h ). (2.80)

In order to estimate the quantities µb(f̃) they introduce two auxiliary random vec-
tors. These vectors are drawn from the samples built with the IPS algorithm. They are
denoted by ZL1 = (ZL1

0
0 , . . . ,ZL1

n
n ) and ZL2 = (ZL2

0
0 , . . . ,ZL2

n
n ), where L1 = (L1

0, . . . , L
1
n) and

L2 = (L2
0, . . . , L

2
n) represent the indices of the trajectories picked in the samples. So these

vectors of indices are associated with the genealogical structure of the samples within the
algorithm. L1 traces backward the ancestral lineage of a trajectory. L2 traces backward
the ancestral lineage of a trajectory that breaks each time it touches the L1 lineage. They
are built as follows:

- L1
n is drawn uniformly from {1, . . . , N}, and ∀p < n, we set L1

p = A
L1
p+1

p .

- We then build L2 knowing L1:
L2
n is drawn uniformly from {1, . . . , N}, and ∀p < n, we set L2

p = A
L2
p+1

p only when
L2
p+1 6= L1

p+1, otherwise in the case L2
p+1 = L1

p+1, we draw L2
p from {1, . . . , N} with

a probability

P(L2
p = j) =

W j
pG(Zj

p)∑N
s=1W

s
pG(Zs

p)
. (2.81)

An example of realization of ZL1 and ZL2 is displayed in figure 2.4.

Z1
0

Z2
0

Z3
0

Z4
0

Z1
1

Z2
1

Z3
1

Z4
1

Z1
2

Z2
2

Z3
2

Z4
2

Z1
3

Z2
3

Z3
3

Z4
3

Z1
4

Z2
4

Z3
4

Z4
4

Z1
5

Z2
5

Z3
5

Z4
5

Figure 2.4 – A genealogical tree of an interacting particle system, with a possible lineage
ZL1 in red and a possible lineage ZL2 in blue
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We denote by A = {Ajk | 0 ≤ k ≤ n, 1 ≤ j ≤ N} the set of all ancestors, and by
Z = {Zj

k | 0 ≤ k ≤ n, 1 ≤ j ≤ N} the set of all the sampled trajectories. So knowing
the structure and leaves of the tree of the particles is equivalent to knowing A and Z.
Denoting by Ib the set of pairs of lineage (L1,L2) such that L1

p = L2
p if and only if bp = 1,

µb(f) can be estimated by:

µNb (f) =
 n∏
p=0

N

(N − 1)1−bp

 γNn (1)2E
[
1Ib(L1, L2) f

(
ZL1

n
n ,ZL2

n
n

) ∣∣∣∣A,Z] . (2.82)

An algorithm to compute µNb (f) can be found in the supplement of [38].

Theorem 14. µNb (f) is an unbiased and weakly convergent estimator of µb(f).

Therefore we have the following theorem:

Theorem 15. σ̂2
2 is an unbiased and weakly convergent estimator of σ2

IPS,G.

The proof for both theorems 14 and 15 can be found in the supplement of [38].

2.4.4 Classical improvements of the IPS method

The SMC method

We have seen that the resampling steps have the advantage of replicating high potential
trajectories and discarding low potential trajectories. However the resampling steps also
introduce some additional fluctuations to the estimation (see (2.75)). So we would like to
trigger them only when it is judicious. Typically, we do not want to trigger them when the
potentials of all the trajectories are similar, as in this case there is not point in discarding
or replicating some trajectories over others. In order to avoid pointless resampling, one
can trigger the selection step only when the weights are unbalanced. This is done in the
SMC algorithm with adaptive resampling [22] presented in table 2.4. In this algorithm,
the heterogeneity of the weights is quantified using the effective sample size. At the kth

step the effective sample size is defined by:

ESSk =

(∑N
j=1W

j
k Gk(Zj

k)
)2

∑N
i=1 (W i

kGk(Zi
k))

2 . (2.83)

It is between 1 andN and measures the homogeneity in the candidate weights W i
kGk(Zik)∑

j
W j
k
Gk(Zj

k
) :

when ESSk = N the weights are perfectly balanced and are all worth 1
N
, and conversely

when ESSk = 1 all the weights are null except one, which concentrates the totality of
the mass. Therefore, one considers the weights are too unbalanced when ESSk < eN

where e ∈ [0, 1] is a tuning parameter. Although the resamplings are random in the SMC,
in literature people often neglect this point when it comes to variance analysis. In the
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Initialization: k = 0, ∀i := 1..N,Zi
0 = (z0) and W i

0 = 1
N
, and

∼
W i

0 = G0(Zi0)∑
j
G0(Zj0)

while k < n do
Selection:
if ESSk < eN then

(
∼
Zj
k)j=1..N

i.i.d.∼ ∑N
i=1

∼
W i
kδZik

and set ∀i = 1..N,
∼
W i
k := 1

N

else
for i := 1..N do

set
∼
Zi
k := Zi

k
Propagation:
for i := 1..N do

sample Zi
k+1 ∼ Vk(.|

∼
Zi
k)

set W i
k+1 =

∼
W i
k and

∼
W i
k+1 = W i

k+1Gk+1(Zik+1)∑
j
W j
k+1Gk+1(Zj

k+1)

if ∀j,
∼
W j
k+1 = 0 then

∀q > k, set ηNq = η̃Nq = 0 and Stop
else

k := k + 1

Table 2.4 – SMC algorithm with adaptive resampling steps

expression of the variance of the SMC in the article [22] consider that the steps with a
resampling are chosen deterministically, because the authors identify the variance of the
SMC estimator with the variance of an IPS estimator for which the resampling steps are
tuned to match the one selected by the SMC. To our knowledge we have not found a
justification for this simplification.

Alternative resampling schemes

Note that in the presented algorithm one can use alternative strategies to select high
potential trajectories. Here, the presented algorithms include a standard multinomial re-
sampling procedure, but one can also use residual resampling or stratified resampling
without altering the properties of the estimator. Empirical results suggest that these alter-
native resampling schemes yield estimations with smaller variances [25, 30]. There are also
theoretical results on the higher performance of stratified resampling scheme compared
to the classical multinomial scheme [gerber2017negative]. In [gerber2017negative]
the authors also propose a new SSP resampling scheme for which the algorithm converges
and is as efficient as the systematic resampling.

Other improvements

MCMC steps with invariant distribution η̃k can also be included in the algorithm after
the resampling step. Some adaptations of the algorithm for parallel implementations have
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also been studied in [52]. As the Feymann-kac model is used in IPS and SMC methods,
any improvement for the SMC in the literature, might be of interest for the IPS. As the
use of SMC for filtering or for Bayesian algorithms have also been an active subject of
research in the last decades, we encourage the reader that would want go further in the
improvement of the IPS to search the filtering and Bayesian literature where there might
be some improvement that could be transposed for the IPS. Indeed, the literature is quite
abundant on these subjects.
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Remember that Ztf is a trajectory of the state of the system on an interval [0, tf ], and
that this trajectory is modeled using a PDMP. For h ∈M (Etf ) we define

p = E
[
h(Ztf )|Z0 = z0

]
, (2.84)

in this part we focus on the estimation of p with the importance sampling method.
Let D be the set of the trajectories involving a system failure and that are defined

on the interval defined on [0, tf ]. For reliability assessment purposes, we want to estimate
the probability that the system fails before tf , therefore we are especially interested in
the case h = 1D . Indeed in that situation p is the probability of failure and

p = E
[
1D(Ztf )|Z0 = z0

]
= P

(
Ztf ∈ D |Z0 = z0

)
. (2.85)

In this context, importance sampling would consist in simulating from a more fragile
system, while weighting the simulation outputs by the appropriate likelihood ratios. If
the trajectories Z1 ′

tf
, Z2 ′

tf
, . . . , ZN ′

tf
have been generated from a more fragile system, an

importance sampling estimator would have the following form:

p̂IS = 1
N

N∑
i=1

1D

(
Zi ′
tf

) f (Zi ′
tf

)
g
(
Zi ′
tf

) (2.86)

where
f

(
Zi ′tf

)
g

(
Zi ′tf

) is the appropriate likelihood ratio. But as the variables of interest, i.e. the

Z′tf ’s, are now trajectories of a PDMP, in order to use equation (2.86), we first need to
define what is the likelihood ratio for these trajectories of PDMP.

The definition of these likelihood ratios for trajectories of PDMP, requires to define a
reference measure so that we can define the densities involved in the likelihood ratio. The
existence of such a reference measure for PDMP trajectories is crucial, because it pre-
conditions the existence of the likelihood ratio needed to apply the importance sampling
method. In simple cases of dynamical importance sampling, this issue of the reference
measure is often eluded, because the reference measure has an obvious form: it is often a
product of Lebesgue measures, or a product of discrete measures, but PDMPs are very
degenerate processes for which the existence of a reference measure needs to be proven.

Chapter 1 shows that for a PDMP with boundaries, the time between two consecutive
jumps can be a hybrid random variable. Such hybrid random variable has a reference
measure which is a mixture of Dirac and Lebesgue measures. Secondly, these hybrid jumps
may occur multiple times and in a nested way in the law of the trajectory of PDMP. With
these mixtures of Dirac and Lebesgue measures involved, the existence of a sigma-finite
reference measure on the trajectory space is not obvious, yet it is mandatory to properly
define the density of a trajectory.
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Chapter 3 therefore investigates the existence of such a reference measure, and intro-
duces the theoretical foundations needed for applying importance sampling on trajectories
of PDMP.

Note that the interest of this work on the reference measure and the densities is not
purely theoretical, as knowing the reference measure and densities also allows to identify
what are the possible importance processes, which is an important practical issue. Indeed,
the choice of the importance process is paramount as it determines the variance reduction,
and it is important to determine which parameters can be tuned to obtain an efficient
important process.

In our search for more efficient importance processes, we give a specific attention to
the optimal importance process, in the hope that with better information on this optimal
process we can design importance processes closer to the optimal one, and therefore that
are more efficient. We find the characteristics of the optimal process in Chapter 4, along
with a convenient way to specify an importance process inspired from the optimal process.

Chapter 5 is then dedicated to the application of the method on two examples. The
first example is a toy system, and the second example is inspired from a real industrial
system.

The main results of this part are also presented in the article [15].
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Chapter 3

Theoretical foundation for
Importance sampling on PDMP

3.1 Prerequisite for importance sampling

Suppose that ζtf is a reference measure for the law of Ztf , and that we denote by f
the density of Ztf with respect to ζtf , and by g the density of an importance process Z′tf
with respect to ζtf . If ζtf exists, and f and g satisfy ∈ Etf , h(z)f(z) 6= 0⇒ g(z) 6= 0, for
ζtf -almost every z, then we can write:

p = Ef
[
h(Ztf )

]
=
∫

Etf
h(z)f(z) dζtf (z) =

∫
supp(h)

h(z)f(z)
g(z) g(z) dζtf (z) = Eg

[
h(Ztf )

f(Ztf )
g(Ztf )

]
.

(3.1)

If
(
Z1
tf
, . . .ZN

tf

)
is a sample of independent trajectories simulated according to an impor-

tance process with density g, then p can be estimated without bias by:

p̂IS = 1
N

N∑
i=1

h(Zi
tf

)
f(Zi

tf
)

g(Zi
tf )

with Var(p̂IS) =
Ef
[
h(Ztf )2 f(Ztf )

g(Ztf )

]
− p2

N
. (3.2)

When Ef
[
h(Ztf )2 f(Ztf )

g(Ztf )

]
< ∞ and the conditions above are verified, we have a central

limit theorem on p̂g:

√
N(p̂g − p) −→ N (0, σ2

IS) where σ2
IS = Ef

[
h(Ztf )2f(Ztf )

g(Ztf )
]
− p2. (3.3)

Thus the use of importance sampling on PDMP trajectories requires the following
three conditions:

(C1) We have a measure ζtf on the trajectory space, and the trajectory Ztf of the
system state has density f with respect to ζtf ,

(C2) We are able to simulate trajectories according to an importance process Ztf which
has density g with respect to ζtf on supp(h) (note supp(h) = D when h = 1D),
and such that Ef

[
h(Ztf )2 f(Ztf )

g(Ztf )

]
<∞,

(C3) For ζtf -almost all z ∈ Etf , we have h(z)f(z) 6= 0⇒ g(z) 6= 0
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Many authors have used importance sampling on particular cases of PDMP some-
times without noting they were PDMPs, see [36, 37, 39, 41]. Sometimes, the authors
using PDMPs avoid considering automatic control mechanisms which activate and deac-
tivate components depending on the values of physical variables. Such automatic control
mechanisms play an important role in power generation systems, and therefore they can
not be avoided in our case. Also, the modeling of control mechanisms implies to work with
a special kind of PDMPs, which are the PDMPs with boundaries. These PDMP are typi-
cally the kind for which the reference measure is complex. In [41, 44], importance sampling
is used on PDMP with boundaries but the reference measure is not clearly identified.

In order to identify a reference measure we start by studying the law of the trajectories.

3.1.1 The law of the trajectories

In order to build the law of the trajectories, we use the fact that a trajectory can be
summed up by its skeleton. Remember that we denote by Θtf the map that changes Ztf

into its skeleton
(
ZSk , Tk

)
k≤n(Ztf )

. The law of Ztf can be defined as the image law of(
ZSk , Tk

)
k≤n(Ztf )

through Θtf , but the law of the skeleton is yet to be defined.

We can get the law of
(
ZSk , Tk

)
k≤n(Ztf )

, by using the dependencies between its coor-
dinates. Indeed the equation (1.58) provides the law of Tk knowing ZSk , as it gives

P (Tk ≤ t | ZSk = z) =
 1− exp

[
−
∫ t
0 λz(u)du

]
if t < t∗z,

1 if t ≥ t∗z,
(3.4)

and the equation (1.54) provides the law of ZSk+1 knowing
(
ZSk , Tk

)
, as

∀B ∈ B(E), P
(
ZSk+1 ∈ B

∣∣∣ZS−
k+1

= ΦZSk
(Tk)

)
= KΦZSk (Tk)(B). (3.5)

Let µz be the measure on (R+,B(R+) defined by

∀B ∈ B(R+), µz(B) = leb(B ∩ (0, t∗z)) + δt∗z(B), (3.6)

where leb(.) corresponds to the Lebesgue measure. We can define the density of Tk knowing
ZSk with respect to µZSk by

fTk|ZSk=z(u) =
(
λz(u)

)
1u<t∗z exp

[
-Λz(u)

]
, (3.7)
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as

∀t ∈ [0, t∗z], P (Tk ≤ t | ZSk = z) =
∫ t

0

(
λz(u)

)
1u<t∗z exp

[
-Λz(u)

]
dµz(u). (3.8)

The density of ZSk+1 knowing
(
ZSk , Tk

)
with respect to νZ

S−
k+1

has already been defined
by

fZSk+1 |ZSk ,Tk(z
+) = KΦZSk (Tk)(z+), (3.9)

as we have:

∀B ∈ B(E), P
(
ZSk+1 ∈ B

∣∣∣ZS−
k+1

= ΦZSk
(Tk)

)
=
∫
B
KZ

S−
k+1

(z+)dνZ
S−
k+1

(z+). (3.10)

Using the Markov structure of the sequence
(
ZSk , Tk

)
k≤n(Ztf )

, the law of(
ZSk , Tk

)
k≤n(Ztf )

can be expressed as an integral of the product of the conditional densi-
ties given by (3.7) and (3.9).

Definition 27. We define the σ-algebra St, on the set of the possible values of(
ZSk , Tk

)
k≤n(Ztf )

such that
n(Ztf )∑
i=0

Ti = t, as the σ-algebra generated by the sets in
⋃
n∈N∗

B
({(

zsk , tk
)
k≤n
∈ (E × R∗+)n,

n∑
i=0
ti = t

})
, where B(.) indicates the Borelians of

a set:

St = σ

 ⋃
n∈N∗

B
({(

zsk , tk
)
k≤n
∈ (E × R∗+)n,

n∑
i=0
ti = t

}) (3.11)

Similarly for an interval I of length l > 0, we define the σ-algebra SI on the set of

the possible values of
(
ZSk , Tk

)
k≤n(ZI)

such that
n(ZI)∑
i=0

Ti = l as the σ-algebra generated

by the sets in ⋃
n∈N∗

B
({(

zsk , tk
)
k≤n
∈ (E × R∗+)n,

n∑
i=0
ti = l

})
, where B(.) indicates the

Borelians of a set:

SI = σ

 ⋃
n∈N∗

B
({(

zsk , tk
)
k≤n
∈ (E × R∗+)n,

n∑
i=0
ti = l

}) (3.12)

Definition 28. The law of the trajectories is defined as follows, for B ∈ Stf , if An is the
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set of skeletons with n jumps:

Pzo
(
Z ∈ Θ−1

tf
(B)

)
= Pzo

(
Z ∈ Θ−1

tf

( ⋃
n∈N

B ∩ An
))

=
∑
n∈N

Pzo
(
Z ∈ Θ−1

tf
(B ∩ An)

)

=
∑
n∈N

∫
B∩An

n∏
k=0

(
λzk(tk)

)
1tk<t

∗
zk exp

[
− Λzk(tk)

] n∏
k=1

Kz−
k

(zk)

× dδt∗n(tn) dνz−n (zn) dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0)

(3.13)

Pzo
(
Ztf ∈ Θ−1

tf
(B)

)
=
∫
B

n∏
k=0

(
λzk(tk)

)
1tk<t

∗
zk exp

[
− Λzk(tk)

] n∏
k=1

Kz−
k

(zk)

× dδt∗n(tn) dνz−n (zn) dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0) , (3.14)

where z−j = Φzj−1(tj−1), and t∗n = tf −
∑n−1
i=0 ti.

Note that with our construction, this is a probability law on the space of the trajectories
in Θ−1

tf

( ⋃
n∈N∗

{(
zsk , tk

)
k≤n
∈ (E ×R∗+)n

∣∣∣∣ n∑
i=0
ti = tf

})
, not on the set of all the trajectories

with values in E.

3.1.2 The dominant measure and the density

Definition 29. For a time tf > 0, we define the measure ζtf on Θ−1
tf (Stf ) so that

ζtf (Θ−1
tf

(B)) =
∫

dδt∗n(tn) dνz−n (zn)
(z
k
,t
k

)k≤n∈B

dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0) . (3.15)

The equation (3.14) shows that ζtf is a reference measure for the law of trajectories.

Theorem 16. If ∃C > 0,∀z ∈ E , νz(E) < C and tf <∞, then ζtf is a σ-finite measure.
By Radon-Nikodym theorem, the density of a trajectory z = Θtf

(
(z0 , t0), ... , (zn , tn)

)
with

respect to the measure ζtf is

f(z) =
n∏
k=0

(
λzk(tk)

)1tk<t∗zk
exp

[
− Λzk(tk)

] n∏
k=1

Kz−
k

(zk) . (3.16)

Proof. Let Bn =
{(
zsk , tk

)
k≤n
∈ (E × R∗+)n,

n∑
i=0
ti = tf

}
. Then Θ−1

tf (Bn) is the set of
possible trajectories with n jumps, and the sets Bn for n ∈ N∗ form a partition of the set
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of all possible trajectories. Note that Bn ⊆ (E × [0, tf ])n, so

ζtf
(
Θ−1
tf

(Bn)
)
≤ ζtf (Θ−1

tf

(
(E × [0, tf ])n

)
≤
∫

dδt∗n(tn)
(E×[0,tf ])n

dνz−n (zn) dµt∗zn−1
(tn−1) ... dνz−1 (z1) dµt∗zo (t0)

We suppose that the νz− are bounded, ∃M > 0,∀z− ∈ E , νz−(E) < M . Under this
assumption, we have:

ζtf
(
Θ−1
tf

(Bn)
)
≤M

∫
dµt∗zn−1

(tn−1)
(E×[0,tf ])n−1

... dνz−1
(z1) dµt∗zo (t0)

≤M
∫

(E×[0,tf ])n−2

∫
E

∫
[0,tf ]

dµt∗zn−1
(tn−1) dνz−n−1

(zn−1) ... dνz−1 (z1) dµt∗zo (t0)

≤M(tf + 1)
∫

(E×[0,tf ])n−2

∫
E
dνz−n−1

(zn−1)dµt∗zn−2
(tn−2) ... dνz−1 (z1) dµt∗zo (t0)

≤M2(tf + 1)
∫

(E×[0,tf ])n−2

dµt∗zn−2
(tn−2)dνz−n−2

(zn−2) ... dνz−1 (z1) dµt∗zo (t0)

By recurrence we get that ζtf
(
Θ−1
tf (Bn)

)
≤Mn(tf + 1)n, which proves that ζtf is σ-finite.

The expression of the density then directly follows from equation (3.14).

Note that it is always possible to choose the measures νz− so they are all bounded by
the same constant. Indeed the transition Kernel is itself bounded by 1, as it is a probability
measure. So, to get a measure ζtf that is σ-finite, we can simply take the measures ν equal
to the transition Kernel, so the densities are properly defined whenever the observation
time tf is finite.
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Chapter 4

The practical and optimal
importance processes

4.1 Admissible importance processes

Recall that an admissible importance process is any process whose law is absolutely
continuous with respect to ζtf (condition C2), and which has a density g with respect to
ζtf satisfying ∀ z ∈ supp(h), h(z)f(z) 6= 0 ⇒ g(z) 6= 0 ζtf -almost everywhere (condition
C3). In this section, we try to clarify the previous statement, and we try to identify to
which extent we can modify the original process to obtain an admissible importance pro-
cess. Throughout the rest of the thesis we denote the elements relative to this importance
process with a ′, except for its density that is denoted by g.

Our first remark is that condition C2 implies that the realizations of the importance
process must satisfy equation (1.47). Indeed, the measure ζtf involves the transformation
Θ which uses the equation (1.47) to rebuild a trajectory from a skeleton. Consequently,
the importance process has to piecewisely follow the same flows as the original process.
The importance process is similar to the original one in the sense that it jumps to a new
state each time there is a change in the flow. To ensure condition C2, the law of the T ′k has
to be dominated by µZ′

S′
k

, and the law of Z ′S′
k+1

has to be dominated by νZ′−Sk . This means
that the boundaries of the Ωm’s and the set of the possible arrivals of a jump remain
unchanged. So the modification of the original process focuses on the timing and nature
of changes of modes, i.e. the laws of the jumps.

To generate an importance process, we keep generating trajectories by successively
generating the arrival state of a jump (Z ′S′

k
) and the time until the next jump (T ′k). As

there is no requirement for the importance process to be Markovian, nor homogeneous, we
consider that the law of a point of the trajectory Z ′t can depend on the past values of states,
and the current time t. For all t ∈ [0, tf ], we let Z′t = (Z ′s)s∈[0,t] and Z′−t = ((Z ′s)s∈[0,t), Z

′−
t )

where Z ′−t = limu↑t Z
′
u. If S is the time of the last jump before t, the piece of trajectory

on the interval [S, t) is deterministic because it follows the flow. Therefore having Z ′t that
depends on Z′−t = (Z ′s)s∈[0,t) and t is like having Z ′t that depends on Z′S and t, and so, the
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law of T ′k depends on Z′S′
k
and S ′k. As S ′k is a stopping time, one can also show that the

law of Z ′S′
k
depends on Z′−S′

k
and S ′k. Denoting by λ′zs,s the intensity function associated to

T ′k when S ′k = s and Z′S′
k

= zs, we have:

∀t ∈ [0, t∗zk ],

P(T ′k ≤ t|Z′S′
k

= zs, S ′k = s) =
∫

[0,t]

(
λ′zs,s(u)

)
1u<t∗zs

exp
[
− Λ′zs,s(u)

]
dµzs(u). (4.1)

The density, with respect to µzs , of T ′k knowing Z′S′
k

= zs and S ′k = s satisfies

∀u ∈ [0, t∗zs ], f ′T ′
k
|Z′
S′
k

=zs,S′k=s(u) =
(
λ′zs,s(u)

)
1u<t∗zs

exp
[
− Λ′zs,s(u)

]
µzs-almost everywhere.

(4.2)

Denoting by K ′z−s the importance Kernel density of the k-th jump when Z′−S′
k

= z−s , we
have:

∀B ∈ B(E), P(Z ′S′
k
∈ B|Z′−S′

k
= z−s , S ′k = s) =

∫
B
K ′z−s (z)dνz−s (z) (4.3)

Notice that the intensity function λ′zs,s in equation (4.1) does not have to be of the form
λ′ ◦ φzs , where λ′ is a positive function on E. This means that at the time S ′k + t, the
intensity does not depend only on the state Z ′S′

k
+t as it would be the case if Z′tf were

a PDMP. So, in the importance process, we consider that the intensity can depend on
the arrival state of the last jump and on previous states ZS′

k
and on the current time.

Therefore the importance process can be seen as a piecewise deterministic process (PDP)
which is not necessarily Markovian nor homogeneous.

Definition 30 (Deterministic extension of trajectories). For a trajectory z[a,b] = (zs)s∈[a,b]

and u ∈ [0, t∗zb ], we define Φz(u) as the jump-less extension of z[a,b] on the interval [a, b+u]
so that, if z[a,b+u] = Φz[a,b](u), then ∀v ≤ u, zb+v = Φzb(v).

Concerning condition C3, we notice the following necessary and sufficient condition:

Property 6. The condition C3 is satisfied if and only if ∀s > 0, zs ∈ Es, z−s ∈ E−s , and
t ∈ (0, t∗zs ] we have:

if
{
E
[
|h(Ztf )|

∣∣∣ZSk = zs, Sk = s
]
> 0 and Kz−s

(zs) > 0
}
, then K ′z−s (zs) > 0,

and if
{
E
[
|h(Ztf )|

∣∣∣ZSk+t− = Φzs(t), Sk = s
]
> 0 and λzs(t) > 0

}
, then λ′zs(t) > 0.

Unfortunately with complex systems, the support of h can be very hard
to manipulate, and we do not always know if E

[
|h(Ztf )|

∣∣∣ZSk = zs, Sk = s
]

or
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E
[
|h(Ztf )|

∣∣∣ZSk+t− = Φzs(t), Sk = s
]
are positive. So in practice we often only use the

following sufficient condition which states that for almost any zs ∈ E, and z−s ∈ E , and
t ∈ (0, t∗zs ]:

Kz−s
(zs) > 0 ⇒ K ′z−s (zs) > 0

λzs(t) > 0 ⇒ λ′zs(t) > 0.

4.2 A way to build an optimal importance process

Definition 31. Let U∗ be the function defined on ⋃s∈[0,tf ] Es × {s} by:

U∗(z, s) = E
[
|h(Ztf )|

∣∣∣Zs = z
]
. (4.4)

Definition 32. Let U− be the function defined on ⋃s∈[0,tf ] E−s × {s} by:

U -(z−s , s) =
∫
E
U∗(zs, s)Kz-

s
(zs)dνz-

s
(zs), where zs = (z−s , zs). (4.5)

These quantities play an important role in the following sections, as shown by the next
theorem:

Theorem 17. The densities

g∗T ′
k
|Z′
S′
k

=zs,S′k=s(u) =
U−

(
Φzs(u), s+ u

)
U*(zs, s)

fTk|ZSk=zs(u) (4.6)

and kernel densities

K∗z−s ,sk(zs) =
U∗
(
zs, s

)
U−

(
z−s , s

)Kz−s
(zs) (4.7)

correspond to the jump densities and the transition kernel densities of an optimal impor-
tance process. Moreover these densities are the only ones that can be associated with an
optimal process with density g∗ defined by g∗(z) = |h(z)|f(z)

p
.

Proof. Assume the trajectory z = Θ
(
(zs0 , t0), ... , (zsn , tn)

)
has been simulated with (4.6)

and (4.7). (Remember we take the convention that sn+1 = tf .) Then the density of the
trajectory g(z) with respect to ζtf is defined by:

g(z) =
n∏
k=0

g∗T ′
k
|Z′
S′
k

=zsk ,S
′
k
=sk(tk)

n∏
k=1

K∗z−sk
(zsk)
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So it verifies:

g(z) =
n∏
k=0

U -
(
Φzsk (tk), sk + t

)
U∗
(
zsk , sk

) n∏
k=1

U∗
(
zsk , sk

)
U -
(
z−sk , sk

) n∏
k=0

fTk|ZSk=zsk (tk)
n∏
k=1

Kz
s−
k

(zsk)

=
n∏
k=0

U -
(
z−sk+1

, sk+1
)

U*
(
zsk+1 , sk+1

) n−1∏
k=0

U∗
(
zsk+1 , sk+1

)
U -
(
z−sk+1

, sk+1
) f(z)

=
U -
(
z−sn+1 , sn+1

)
U∗
(
zs0 , s0

) f(z) = |h(z)|f(z)
E
[
|h(Ztf )|

∣∣∣Z0 = zs0
] = g∗(z),

where g∗(z) is the optimal density density. This proves the first part of the theorem.

Assume that g′zsk ,sk and K ′z
s−
k

,sk
are respectively jump densities and transition kernel

densities such that for any trajectory z = Θ
(
(zs0 , t0), ... , (zsn , tn)

)
we have

n∏
k=0

g′zsk ,sk
(tk)

n∏
k=1

K ′z
s−
k

,sk
(zk) = g∗(z).

So
n∏
k=0

g′zsk ,sk
(tk)

n∏
k=1

K ′z
s−
k

,sk
(zk) =

n∏
k=0

g∗T ′
k
|Z′
S′
k

=zsk ,S
′
k
=sk(tk)

n∏
k=1

K∗z
s−
k

,sk
(zk)

As all these densities integrate to one, by integrating over (zs1 , t1 , zs2 , t2, ... , zn , tn) on both
sides, we obtain that

∀s0, zs0 , t0, g′zs0 ,s0(t0) = g∗T ′0|Z′S′0
=zs0 ,S′0=s0(t0)

Then by integrating over (ts1 , zs2 , t2, ... , zsn , tn), we obtain that

∀z−s1 = Φzs0 (t0), s1 = t0 K ′z−s1 ,s1
(zs1) = K∗z-

s1 ,s1
(zs1).

By recurrence of this reasoning, we can show that for any possible k -th jump the den-
sities g′zsk ,sk and K ′z

s−
k

,sk
are identical to g∗T ′

k
|Z′
S′
k

=zsk ,S
′
k
=sk and K∗z

s−
k

,sk
, which proves the

uniqueness of the jump densities such that g(z) = g∗(z).

Equations (4.6) and (4.7) serve as a guide to build an importance process: one should
try to specify densities as close as possible to these equations so as to get an estimator
variance as close as possible to the optimal variance.

Also note that we could have used any function proportional to U∗ instead of U∗,
because the proximity function always appears in a ratio U∗

U−
or U−

U∗
. Indeed U− =

∫
U∗dK

so a proportionality constant would be canceled out in the ratios.
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4.3 Remarks on the optimal process

As we generally do not know the explicit forms of U∗ and U−, the construction of an
importance process close to the optimal one is delicate. Nonetheless, the equations (4.6)
and (4.7) can give us information on how to build an importance process in practice. In
this section, we investigate the properties of the optimal importance process and of the
function U∗ with the aim of building a good and practical importance process.

For instance, we can get the expression of the jump rate of the optimal process. For the
time of the k-th jump, by definition of the jump rate and knowing that
Z′S′

k
= zs and that S ′k = s, we get:

λ∗zs,s(u) =
g∗T ′

k
|Z′
S′
k

=zs,S′k=s(u)∫
(u,t∗z ] g

∗
T ′
k
|Z′
S′
k

=zs,S′k=s(v)dv ,

⇔ λ∗zs,s(u) =
U -
(
Φzs(u), s+ u

)(
λzs(u)

)
1u<t∗z exp

[
− Λzs(u)

]
∫

(u,t∗z ] U
-
(
Φzs(v), s+ v

)(
λzs(v)

)
1v<t∗z exp

[
− Λzs(v)

]
dµzs(v)

. (4.8)

Using some properties of U∗ and (4.8) we can prove the following theorem:

Theorem 18. The jump rate of the optimal importance process defined by the densities
(4.6) and (4.7) verifies:

λ∗zs,s(u) =
U -
(
Φzs(u), s+ u

)
U∗
(
Φzs(u), s+ u

)λz(u) . (4.9)

The proof is provided in appendix V.
Note that this expression (4.9) can be easily interpreted. λ∗zs,s(u) corresponds to the

jump rate at the state Zs+u = Φz(u) when Zs+u = Φzs(u). U∗
(
Φzs(u), s + u

)
is the

probability of generating a failing trajectory knowing Zs+u = Φzs(u) and knowing there
is no jump at time s+u. U−

(
Φzs(u), s

)
is the probability of generating a failing trajectory

knowing there is a jump at time s + u from the departure state is Z−s+u = Φzs(u) and

knowing Z−s+u = Φzs(u). So the ratio
U -
(
Φzs(u), s+ u

)
U∗
(
Φzs(u), s+ u

) is the factor multiplying the

expectation of h when there is a jump at time s + u. The expression indicates that, in
order to reach the optimal variance, one should increase the original jump rate in the
same proportion as a jump would increase the expectation of h. In the case h = 1D , the
expression indicates that, in order to reach the optimal variance, one should increase the
original jump rate in the same proportion as a jump would increase the probability of
getting a failing trajectory.

Also note that equations (4.9) and (4.7) indicate that, once the region D has been
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reached, the optimal process does not differ from the original process. Indeed if τD is the
reaching time of the critical region D, then for s ≥ τD we have for all trajectories zs and
z−s , U∗(zs, s) = U−(z−s , s) = 1 and so for s ≥ τD we get K∗z−s ,s = Kz−s

, and for s+ u ≥ τD

we get λ∗zs,s(u) = λzs(u).

The theorem 18 is noteworthy, because in practice the law of the jump time is specified
through the jump rate. Thus it can be used to specify the laws of the jump times of an
importance process, as we will do in chapter 5.

As it plays an important role in the expression of the optimal process, we look for
more information about the function U∗. We first notice that: if τ is a stopping time such
that tf > τ > s, then

U∗(zs, s) = E
[
h(Ztf )

∣∣∣Zs = zs
]

= E
[
E
[
h(Ztf )

∣∣∣Zτ

]∣∣∣∣Zs = zs
]

and so U∗(zs, s) = E
[
U∗(Zτ , τ)

∣∣∣Zs = z
]
. (4.10)

Using (4.10) we can show the two following properties:

Theorem 19. U∗ is kernel invariant on boundaries:

∀z ∈ E, lim
t↗t∗z

U∗
(
Φzs(t), s+ t

)
= U -

(
Φzs(t∗z), s+ t∗z

)
. (4.11)

Theorem 20. If u→ U -
(
Φzs(u), s+u

)
and u→ λz(u) are continuous almost everywhere

on [0, t∗z), then almost everywhere U∗ is differentiable along the flow, with:

∂U∗
(
Φzs(v), s+ v

)
∂v

=
(
U∗
(
Φzs(v), s+ v

)
− U -

(
Φzs(v), s+ v

))
λz(v) (4.12)

The theorems 19 and 20 can in fact be seen as forward Kolmogorov equations on U∗.
A complete proof for these two theorems is in the appendix V.

Though we think these equations might be useful, we did not manage to use these
equations to identify U∗. This, mainly because there are many functions that also satisfy
these equations. Indeed, the proof in the appendix V also works for any function of the
form zs → E[|

∼
h(Ztf )||Zs = zs], where

∼
h is a measurable function on Etf .
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4.4 Practical importance processes for reliability as-
sessment

We now focus on the reliability assessment case, and we set h = 1D until the end of
part II. We have seen in section 4.1, that the admissible importance processes have jump
densities that depend on the trajectory already followed (see (4.1) and (4.3)). In the case
h = 1D , we can restrict the search of an efficient importance process within a special class
of processes without any loss in efficiency, because the optimal importance process with
density g∗(z) = 1D(z)f(z)

p
belongs to this special class.

The processes of this class can be defined through the expressions (4.1) and (4.3) too
but, they do not use all the information contained in zs and z−s . In this special class the
jump rates λ′zs,s(t) depend only on three variables which are: the arrival state of the last
jump zs, the time s + t, and the indicator 1τD≤s+t which tells if the system failure has
already happened. The kernels K′z−s depend only on three variables, which are: the current
departure state z−s , the time s left before tf , and the indicator 1τD≤s.

To ease the presentation of such jump rates and transition kernels densities, we slightly
modify the state space by adding an active boundary at the boundary of D and we add
a coordinate on the mode which indicates if the trajectory has already visited D. The
state now becomes Z =

(
X, (M,MD)

)
where MD = 0 if D has not been visited, and 1

if it has. This way, for any time t we have Zt = (Xt, (Mt,1τD≤t)). For instance, with the
heated-room system the set of modes becomes M = {ON,OFF, F}3×{0, 1}. The Kernel
density KZ− is unchanged when M−

D = M+
D , and is null when M−

D 6= M+
D , except at the

boundary of D where K(0,(F,F,F,0))
(
0, (F, F, F, 1)

)
= 1.

The three variables that determine the jump rates and kernels densities of the processes
of the special class can now be identified by the current state and the current time.
Therefore, we now consider importance processes with jump rate λ′zk,sk(t) and transition
kernel density K ′

z−
k
,sk
. Such processes have the following laws of jump times and jump

arrivals:

∀t ∈ (0, t∗zk ], P(T ′k ≤ t|Z ′S′
k

= zk, S
′
k = sk)

=
∫

(0,t]

(
λ′zk,sk(u)

)
1u<t∗zk

exp
[
− Λ′zk,sk(u)

]
dµzk(u) (4.13)

∀B ∈ B(E), P(Z ′S′
k
∈ B|Z ′

S′−
k

= z−k , S
′
k = sk) =

∫
B
K ′
z−
k
,sk

(z)dνz−
k

(z). (4.14)

Note that the class of processes that can be defined by (4.13) and (4.14) is included in
the class of admissible importance processes.

With this new definition of the states, the quantity U∗(zs, s) does not depend on the
whole trajectory zs but only on the last state zs and the time s. Indeed, as Zt is Markovian
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we can write

U∗(zs, s) = E
[
1D(Ztf )

∣∣∣Zs = zs
]

= E
[
1D(Ztf )

∣∣∣Zs = zs
]
. (4.15)

So for the case h = 1D , we also redefine U∗ and U−:

Definition 33. If h = 1D , we let U∗ be the proximity function defined on E × [0, tf ] by:

U∗(z, s) = E
[
|h(Ztf )|

∣∣∣Zs = z
]
. (4.16)

Definition 34. For the case h = 1D , we let U− be the function defined on Ē × [0, tf ] by:

U -(z−, s) =
∫
E
U∗(z, s)Kz-(z)dνz-(z). (4.17)

In the case h = 1D , we call U∗ the proximity function, because in that case , we have
U∗(z, s) = E[1D(Ztf )|Zs = z]: so the quantity U∗(z, s) measures the proximity between
the situation Zs = z and a system failure before tf . The quantity U−(z−, s) measures the
chances of having a system failure before tf knowing the system is jumping from the state
z− at time s.

Definition 35. If h = 1D , the optimal jump rates and jump kernel densities are such
that:

∀z ∈ E, s ∈ [0, tf ], λ∗z,s(u) =
U -
(
Φzs(u), s+ u

)
U∗
(
Φzs(u), s+ u

)λz(u) (4.18)

∀z− ∈ Ē, z ∈ E, s ∈ [0, tf ], K∗z−,s(z) =
U∗
(
z, s

)
U−

(
z−, s

)Kz−(z) (4.19)

4.5 A parametric family of importance processes for
reliability assessment

In order to find an importance process that gives a good variance reduction, we usually
restrict the search within a parametric family of importance densities. Then we rely on
optimization routines to find the parameters yielding the best variance reduction. Here,
we propose to use a parametric approximation of U∗(z, s), or to any function propor-
tional to U∗(z, s), and then to combine it with equations (4.18) and (4.19) to get the
form of the importance Kernels and of the importance intensities. If we denote Uα(z, s)
our approximation of U∗(zs, s), and set U−α

(
z−, s

)
=
∫
E Uα(z, s)Kz−(z)dνz−(z), then the
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corresponding importance intensities and Kernels are given by:

λ′z,s(u) =
U -
α

(
Φz(u), s+ u

)
Uα
(
Φz(u), s+ u

)λz(u) , (4.20)

K ′z-,s(z) =
Uα
(
z, s

)
U -
α

(
z−, s

)Kz-(z) . (4.21)

With these settings and notations, condition (C3) can be expressed as:
{
U∗(zk, sk) > 0 and Kz−

k
(zk) > 0

}
⇒ Uα(zk, sk) > 0{

U−(Φzk(t), sk + t) > 0 and λzk(t) > 0
}
⇒ U−α (Φzk(t), sk + t) > 0,

for any zk ∈ E, and z−k ∈ E , and t ∈ (0, t∗zk ]. It is therefore satisfied if we take Uα positive
everywhere for instance.

Here we switch the problem of setting a density g close to g∗ by finding λ′ and K ′, to
the problem of finding a surface Uα on E × R+ close to the surface U∗.

Note that this way of building a parametric family of importance processes can be
applied to any kind of system, though the form of Uα may have to be adapted from case
to case. Indeed, we expect the form of U∗ to depend on the configuration of the system
and so does the form of the Uα’s.

We could also have plugged the approximations Uα and U−α into (4.6), rather than
into (4.9), but the option we have chosen is in fact more convenient and computationally
more efficient. With the equation (4.20), we pass through the intensity, so the associated
densities of the T ′k’s automatically integrate to 1. Conversely if we had passed through
equation (4.6), setting

gT ′
k
|Z′
S′
k

, S′
k
=z,s(u) ∝

U−α
(
Φz(u), s+ u

)
U∗α
(
z, s

) fTk|ZSk=z(u)

we would need, before simulating a realization of the T ′k, to renormalize this density so
that it integrates to 1. As this renormalization requires to compute an integral, the use
of (4.6) is more computationally demanding than the use of (4.20).
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Chapter 5

Applications to power generation
systems

In this chapter we start by applying importance sampling on a small system which
is the heated room system presented in section 1.3.4, then we present some heuristics
to build families of parametric proximity functions for industrial systems, and lastly we
apply importance sampling on the spent-fuel-pool system.

5.1 Application to the Heated-Room system

In this section we present how we build an importance process for the heated room
system presented in section 1.3.4. Recall that, for Zs = z, if T denotes the time between
s and the next jump, the reference measure for the density of T is µz. This measure is
such that

∀B ∈ B(R+), µz(B) = µLeb(B ∩ [0, t∗z]) + δt∗z(B) (5.1)

where if z = (x,m) then t∗z is the time until we hit a boundary : t∗z = inf{s > 0,Φz(s) ∈
Em}. The reference measure for the arrival state, when the departure state is z− =
(x−,m−), is denoted νz− and we have

∀B ∈ B(E), Kz−(B) =
∫
B
Kz−(z)νz−(z). (5.2)

In the heated-room system we have

∀B ∈ B(E), νz−(B) =
∑

m∈M\{m−}
δ(x−,m)(B). (5.3)

5.1.1 A parametric family of importance processes for the Heated-
Room system

In the heated-room system, the three heaters are identical and are in parallel re-
dundancy, so we expect the probability U∗(z, s) = E

[
1D(z)|Zs = z

]
to increase with the
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number of failed heaters in the state z. Therefore, noting b(z) the number of failed heaters
in state z, we start by setting

Uα(z, s) = Hα

(
b(z)

)
Q(x, s) (5.4)

where Q is a function of position and time, and Hα is a function on integers. We set
Hα(0) = 1. As we want Uα(z, s) to increase with b(z), Hα has to be an increasing function.

If T denotes the time until the next jump after a time s, using (4.10) with τ = s+ T

we get:

U∗(z, s) = E
[
U∗(Zs+T , s+ T )

∣∣∣Zs = z
]
. (5.5)

As the repair rates are larger than the failure rates by one order of magnitude in practice,
when there is at least one failed heater, the probability of arriving in a more degraded
state ZT is much lower than the probability of having a repair. This last remark can
actually be applied to any reliable industrial system (see for instance [17]). Ideally we
would like Uα to mimic the property of U∗ so we would like to have

Uα(z, s) = E
[
Uα(ZT , s+ T )

∣∣∣Zs = z
]

(5.6)

which can be reformulated as :

Hα

(
b(z)

)
=

∑
m+∈M

Hα

(
b(x,m+)

) ∫
(0,t∗z ]
KΦz(u)

(
(φmx (u),m+)

)
wz(u)dµz(u) (5.7)

where wz(u) = Q(φmx (u), s+ u)
Q(x, s) exp

[
-Λz(u)

]
, and remember φmx is the flow on the position

not on the state. As a repair is much more likely than failure, if the transition from state
(φmx (u),m) to the state (φmx (u),m+) indexes a repair, then KΦz(u)

(
(φmx (u),m+)

)
is larger

than if it had indexed a failure. So, (5.7) implies that, when b(z) > 1, the value of Hα(b(z))
is closer from Hα(b(z)−1) than from Hα(b(z) + 1). As Hα is supposed to be increasing, it
must also be convex. So we propose that Hα(b(z)) = exp

[
α1b(z)2], with α1 > 0. If, from

a Zs− = Φz(u), the transition j corresponds to a failure then we have:

∀u ∈ [0, t∗z), λ′
j
z,s(u) = λjz(u) exp

[
α1
(
2b(z) + 1

)
] , (5.8)

and if it corresponds to a repair then we have:

∀u ∈ [0, t∗z), λ′
j
z,s(u) = λjz(u) exp

[
− α1

(
2b(z)− 1

)
] . (5.9)

If J is the set of all transition ’s indices, an j is the index of the transition from z to z+,
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the jump rate and the kernel density satisfy:

∀u ∈ [0, t∗z), λ′z,s(u) =
∑
i∈J

λ′
i
z,s(u) and K ′Φz(u)-,s(z+) =

λ′jz,s(u)∑
i∈J λ′

i
z,s(u)

. (5.10)

We set the jump kernel such that its density satisfies for any departure state z− ∈ E:

K ′z-(z+) =
Kz-(z+) exp

[
− α1 b(z+)2

]
∫
EKz-(z) exp

[
− α1 b(z)2

]
dνz-(z)

. (5.11)

Note that plugging Uα into the equations (4.18) and (4.19) imposes some kind of symmetry
in the biasing of failure and repair rates. It is especially visible in equations (5.8) and
(5.9): On the one hand the failure rate associated to the transition from a state z− to
z+ is multiplied by a factor exp

[
α1
(
2b(z−) + 1

)
], and on the other hand the repair rate

corresponding to the reversed transition (from state z+ to state z−) is divided by a factor
exp

[
α1
(
2b(z−) − 1

)
]. The equations (4.18) and (4.19) not only imply that the failures

should be enhanced and the repairs inhibited, but it also states that the magnitudes of
the distortions should be reciprocal.

The square in Hα’s formula is introduced to strengthen the failure rates when the
number of broken heaters gets larger. The idea is to shorten the duration where several
heaters are simultaneously failed in the simulated trajectories. Indeed, as repair is faster
than failure, the shorter are the durations with a failed heater the more likely is the
trajectory. Increasing the failure rates with the number of broken heaters is a mean to
simulate more trajectories in D while maintaining the natural proportion between the
likelihoods of the trajectories, which should decrease the variance.

As the failure on demand is likely to play an important role in the system fail-
ure, we choose to separate it from spontaneous failure in our parametrisation setting
Uα((xmin,m), s) = exp[−α2b(z)2]Hα(xmin, s). This allows to better fit Uα to U∗. Under
this assumption, the equation (4.21) implies that for z− = (xmin,m), the importance
kernel takes this form:

K ′z-(z+) =
Kz-(z+) exp

[
− α2 b(z+)2

]
∫
EKz-(z) exp

[
− α2 b(z)2

]
dνz-(z)

. (5.12)

5.1.2 Results

The Monte-Carlo simulations have been carried out using the Python library PyCAT-
SHOO. (The flow functions φmx were computed using a Runge-Kutta method of order 4
with a discretization step of 0.01. This discretization step is small enough so that reducing
it further does not change the estimations.) As the Cross-Entropy method was not yet im-
plemented in PyCATSHOO, we have used a specific Python code for the Cross-Entropy
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and the importance sampling methods. The system parameters used in the simulation
were the following ones: xmin = 0.5, xmax = 5.5, xe = −1.5, β1 = 0.1, β2 = 5, tf = 100.
Trajectories were all initiated in the state z0 =

(
7.5, (OFF,OFF,OFF )

)
. The probabil-

ity of having a system failure before tf was estimated to p = 1.29×10−5 with an intensive
Monte-Carlo estimation based on 108 runs.

Nsim p̂ σ̂2/Nsim IC× 105 tsim êff

IS

103 1.28× 10−5 4.37× 10−13 [1.15, 1.41] 0.073 s 3.1× 1010

104 1.273× 10−5 5.07× 10−14 [1.228, 1.317] 0.073 s 2.7× 1010

105 1.289× 10−5 5.01× 10−15 [1.275, 1.303] 0.077 s 2.6× 1010

106 1.288× 10−5 5.05× 10−16 [1.283, 1.292] 0.079 s 2.5× 1010

MC
106 0.4× 10−5 4.00× 10−12 [0.01, 0.79] 0.022 s no convergence

107 1.3× 10−5 1.28× 10−12 [1.07, 1.51] 0.022 s 3.5× 106

Table 5.1 – Comparison between Monte-Carlo and importance sampling estimations

The values of the parameters selected by the cross-entropy method were α1 ' 0.915 and
α2 ' 1.197, and for the first step, the approximation of the Kullback-Leibler divergence
between g∗ and gα was obtained by simulating from a biased density with parameters
(0.5, 0.5). The whole cross-entropy method lasted approximately 9 minutes. Most of the
running time was allocated to the optimization within each step of the cross-entropy,
because each evaluation of the objective function and of its gradient was costly. In order
to optimize the running time of the cross-entropy method, the size of the sample used
for the approximations of the Kullback-Leibler divergence was set by simulating until we
would get nCE = 100 trajectories with a system failure. The number of nCE = 100 roughly
guaranties that the two first digits of the Kullback-Leibler divergences are identified by
their approximations. For each of the three steps needed to select the parameters, samples
of respectively 1970, 126, 127 trajectories were used.

A comparison between Monte-Carlo and the associated importance sampling estimates
is presented in Table 5.1, where we display the number Nsim of simulations used for each
method, the estimates p̂ of the probability, the associated empirical variances σ̂2/Nsim

and confidence intervals IC = [p̂− 1.96
√
σ̂2/Nsim, p̂+ 1.96

√
σ̂2/Nsim], and the mean time

of a simulation tsim in seconds. For 106 simulations the results show that the Monte-
Carlo estimator has not converged yet, whereas the importance sampling estimate is very
accurate. To compare the two methods we estimate the efficiency of their estimators
when they have converged. The efficiency is defined by the ratio of the precision and the
computational time:

eff = 1
σ2/Nsim

× 1
Nsimtsim

= 1
σ2tsim

.
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The efficiency can be interpreted as the contribution of a second of computation to the
precision of the estimator. We estimate it by êff = 1

σ̂2tsim
. The results indicate that our

importance sampling strategy is approximately 7 000 times more efficient than a Monte-
Carlo method.

We also verify that the importance sampling estimations are asymptotically normally
distributed. The asymptotic normality was not observed for Nsim = 103, but it was
observed for larger sample sizes. For instance for Nsim = 104, the Figure 5.1 shows a
normalized histogram on 100 estimations p̂IS that matches the normal density with mean
p and with the empirical standard deviation of the 100 estimations . We also recorded

Figure 5.1 – Asymptotic normality of the IS estimator (for Nsim = 104)

the weights of the failing trajectories in the sample of one run of the IS method with
Nsim = 104. The Figure 5.2 shows that the weights are close to the value p, suggesting
that the importance density is close to the optimal density. The figure 5.3 is a zoom-in
on the largest weight: It shows there is no degenerated preponderant weight such that
f(Z′i)
gα(Z′i)

� p, suggesting there is no sign of under-favored region of D in gα. Here we do not
need to check the weight degeneracy in all parts of D because, as we know the value of
p, we can simply check the estimation are unbiased and normally distributed to ensure
convergence is reached. Finally, in Figures 5.4 and 5.5, we present the graphs of two
trajectories obtained respectively with the original process with density f and with the
importance process selected by the CE method with density g(α1,α2).
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Figure 5.2 – Allocation of the weights of failing trajectories (for Nsim = 104)

5.2 Practical issues with power generation systems

When we want to apply importance sampling on power generation systems we pursue
two main goals: Firstly, we want to specify a family of parametric densities gα that are
flexible enough to include a density close to the optimal density g∗, and secondly, we need
to find a parameter α∗ that yields a density gα∗ as close as possible to g∗. As we showed in
the previous section, we can also transpose these goals in terms of the proximity function:
instead of the density g∗, one can consider the optimal proximity function U∗, and instead
of the densities gα, one can consider the proximity functions Uα. The goals are then to
specify a family of parametric functions Uα that are flexible enough to include a function
close to an optimal proximity function U∗, and secondly, we need to find a parameter α∗

that yields a function Uα∗ as close as possible to a function proportional to U∗. In this
section we presents some heuristic reasoning to build the family of functions Uα for any
system. Despite our effort we did not have the time to develop a rigorous method to do
so, but we believe that finding a rigorous way to specify the family of Uα is a important
point of interest for future research, so we present here the ideas we had on the matter.

5.2.1 Specify a parametric family of proximity functions

We have seen in the introduction (subsections 2.2.5 and 2.3.2), that if we are not
cautious enough we can design a parametric family of importance densities that is not
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Figure 5.3 – Allocation of the largest weights in the sample (for Nsim = 104) (zoom-in of
Figure 5.2)

flexible enough, and this can lead to misleading and biased estimates. Indeed, a density
of importance should increase (in comparison to f) the density of the trajectories in D

homogeneously: ideally we want that

∀z ∈ D , and C ∈ [0, 1− p], g(z) ≥ f(z)
C + p

, (5.13)

with C as close as possible from 0 (See the property 5). But if we choose an importance
density for which the increase of the density in comparison to f is inhomogeneous within
D , it can lead to an unnoticed slow convergence and to a non-conservative underestimation
of p. (See section 2.2.5.)

Note that the set D is difficult to apprehend, mainly because we have no obvious
metric on the set of trajectories. Still we can already note that there are different types of
failing trajectories, with very different skeletons, and so it seems unlikely to us that this
set could be convex if we had such a metric. In order to control the increase of the density
on all the trajectories of the set D, we believe it is important to first identify all the parts
of D , and then, to ensure that the chosen importance density increases the probability of
each of these parts proportionally.

This is why we have searched a way to identify all the different types of failing trajec-
tories: We believe a good way to do so is to use the minimal groups of the systems.
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Figure 5.4 – A trajectory of the coordi-
nates of the state of the system. This tra-
jectory was generated with the original pro-
cess with density f .

Figure 5.5 – A trajectory of the coordinates
of the state of the system. This trajectory
was generated with the importance process
with density g(α1,α2).
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Minimal groups

How does the system moves from a safe state to a failing one (i.e a state in region
D)? The system needs to go through successive failures of components that degrade the
system to such a point that it becomes unable to run its main function. Then the system
needs to stay in this degraded mode long enough so its state goes to D.

In order to classify the different types of failing trajectories we look for the causes
of the failure. The first cause of the failure is the failure of a vital group components.
This notion of vital group corresponds the notion of Minimal group. A minimal group is
a group of components having two characteristics 1) if all the components of the group
stay failed the system will fail, 2) A permanent repair of one component within the group
prevents the system from failing. For dynamic system we would rather consider the notion
of minimal sequence. A minimal sequence is like a minimal group in which the failures
of the components are chronologically ordered. But as the minimal sequences of a system
are generally harder to find then its minimal groups, we choose to focus only on minimal
groups. It is equivalent to consider a static approximation of the system.

To each failing trajectory we can assign one or more minimal groups that were failed
at the moment of the system failure τD. For a minimal group indexed by i we denote by
Di the set of trajectories within D for which the i-th minimal group is failed at τD. If
Iminimals is the set of the indices of the minimal groups, we have

D =
⋃

i∈Iminimals
Di. (5.14)

Note that the sets Di do not form a partition of D as we may have Di ∩ Dj 6= ∅. Indeed,
if for a trajectory z the groups i and j are failed at τD, then z ∈ Di ∩ Dj.

Identification of the minimal groups

In order to identify the minimal groups we suggest a heuristic method. We propose
to make a static approximation of the system by considering that it fails as soon as the
components maintaining its main functionalities are failed. We therefore neglect the time
needed to go from this degraded state to a state in D. This static approximation allows
to use common tools of the field of reliability analysis of static systems [9]. Among those
tools is the reliability diagram. This diagram indicates which components need to break
in order to reach a failing state. It gives the modes m ∈ M such that there is a position
x ∈ Ωm, with (x,m) ∈ D. This diagram is in fact a representation of the logic function that
tells if the statuses of the components Mt ∈ M are degraded enough so that the system
is going to fail if no repair occurs. For instance, in the example of the spent-fuel pool
in section 1.3.5, we have deduced the logic function (1.111) from the diagram 1.21. The
minimal groups of the system can be identified by fully developing the expression of the
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Figure 5.6 – Alternative reliability diagram associated to a system withNg minimal groups

Logic function of the system, each term of the developed sum identifying a minimal group.
Given the size of the industrial systems this diagram can be very helpful to determine the
Logic function of the system.

If we allow for replicates of the box of a component in the diagram, we can associate an
alternative diagram to the developed form of the logic function. This diagram is a series
diagram in which each part corresponds to the components of a minimal group in parallel.
In figure 5.6 we represent the alternative diagram of a system with Ng minimal groups. If
we allow for replicates of the box of a component in the diagram, we can also represent the
diagram as a diagram using only parallel and series structures. For instance, for the spent
fuel pool one could transform the diagram 1.21 into the diagram presented in Figure 5.7.
For big systems, these forms of reliability diagrams with replicates are probably easier to
build, and it can still be used to identify the logic function and the minimal groups.

This approach being based on a static approximation of the system, it might be insuf-
ficient for complex systems, especially if some components reconfigure the structure of the
system, based on dynamic events like a physical variable crossing a threshold. For such
more complex systems it might be an option to include boxes in the diagram that repre-
sent the crossing of the thresholds, and to treat this event like the failure of a component,
therefore adding Boolean associated to the event in the logic function of the system. Yet
we did not have the time to investigate this idea.
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Figure 5.7 – Alternative series/parallel reliability diagram associated to the spent fuel
pool system
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A family of parametric proximity functions based on minimal groups

Having an importance density that can increase the density proportionally in all
sets Di, seems a good strategy to get a well proportioned importance density. We present
here two possible ways to specify a family of parametric importance densities that are
flexible enough so that, getting a homogeneous increase of the density can be achieved by
choosing the right sets of parameters.

We start by presenting an option that we could not test as it requires to implement
new functionalities in the PyCATSHOO toolbox. In this option, we assume that the
probability associated to the trajectories with more than one minimal group failed at τD
is negligible, so that for a state z before the failure:

U∗(zs, s) = E
[
1D(Ztf )|Zs = z

]
'

∑
i∈Iminimal

E
[
1Di(Ztf )|Zs = z

]
. (5.15)

Then we approximate each term of the sum, Uα,i(zs, s) being the approximation of
E
[
1Di(Ztf )|Zs = z

]
so that

Uα(zs, s) =
∑

i∈Iminimal
Uα,i(zs, s).

We let ij be the index of the j-th component in the i-th minimal group, and let Nmin,i be
the number of components in the i − th minimal group. For j ∈ {1, . . . , Nc}, we denote
by αj the parameter associated to the contribution of the failure of the j-th component of
the system to Uα. Let αNc+1 be a shape parameter. For a state z = (x, (m, 0)) we denote
by zmin,i = (x, (m′, 0)) the state identical to z except that the i-th minimal group is failed
in m′: so ∀j ∈ {1, ..., Nmin,i} m′ij = F , and for other coordinates j, m′j = mj. We denote
by λrepzmin,i the sum of the repair rates of the broken components in state zmin,i. We propose
to take if τD > s

Uα,i(zs, s) = exp
− ∫ t∗zmin,i

0
λrepzmin,i(u)du+

Nmin,i∑
j=1

αij1M ij
s 6=F

αNc+1 .
and if τD < s, Uα,i(zs, s) = 1. But this would make too many parameters for the optimiza-
tion method of the CE method, so we propose to make groups of components according
to their repair and jumping rates and failure on demand probabilities, and to set the
parameters αj of the components of the same group equal. This way we drastically reduce
the number of parameters to optimize. The number of groups is left to the practitioner,
keeping in mind that the more groups we take the more flexible is the parametric approx-
imation but the less easy is the optimization of the parameters.
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5.2. Practical issues with power generation systems

A family of parametric proximity functions based on series/parallel approxi-
mations of the system

As we have noticed earlier, we can also have an alternative diagram that is a se-
ries/parallel diagram. With this kind of static diagrams it is possible to express the prob-
ability of system failure using products and sums of the probabilities of failure of the
components. When some components form a system and are organized in series, one can
sum the probabilities of failure to get a good approximation of the system probabilities of
failure. Similarly when the components are in parallel, one can multiply the probability of
failure to get a good approximation of the system probability of failure. Using this logic
and if we consider that each component has a probability of failing exp(−αi), we get that
if τD > s:

Uα,i(zs, s) = exp
Nmin,i∑

j=1
αij1M ij

s 6=F

 .
and if τD < s, Uα,i(zs, s) = 1. Here again one can regroup the parameters of the compo-
nents sharing similar characteristics, and set their parameters equal to reduce the number
of parameters.

5.2.2 Results with the series/parallel parametric proximity func-
tion on the spent-fuel-pool system

We have tried to run the Cross-Entropy method with this family of parametric prox-
imity functions, see the algorithm 2.1. As generating some failing trajectories directly
with the original system (i.e. with α0 = 0) is too computationally demanding, we try to
start the algorithm with different values of α0. Unfortunately the CE method has not
identified the same minimum each time. We have tried to run the IS with each value of
the parameters suggested by the CE method, but we have obtained very different and
biased estimations of p. In this section we discuss the reasons of our method failure, and
provide some ideas to improve the method.

Remember the CE consists in finding the parameter α∗ such that

α∗ ∈ argmax
α∈Aparam

Ef
[
1D(Ztf )log

(
gα(Ztf )

)]
.

In our case α∗ can not be computed analytically because the derivative of

α → Ef
[
1D(Ztf )log

(
gα(Ztf )

)]
is unknown, so we rely on an approximation of it.

Ef
[
1D(Ztf )log

(
gα(Ztf )

)]
is approximated by:

1
NCE,0

NCE,0∑
i=1

1D(Zi)log
(
gα(Zi)

) f(Zi)
gα0(Zi)

, where Yi ∼ gα0 . (5.16)
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And the first approximation of α∗, denoted by α1, can now be given by solving:

1
NCE,0

NCE,0∑
i=1

h(Zi)∇αlog
(
gα(Zi)

) f(Zi)
gα0(Zi)

= 0, where Yi ∼ gα0 . (5.17)

Then we repeat the process, getting an α2, α3, ... and soon on until the value of αn is
stabilized.

There are several explanations for the misleading results we obtained. The slow con-
vergence observed can be related to our choice of the family (Uα)α∈Aparam that may result
in importance densities gα that favor some areas of D over others in the density. The slow
convergence can also be related to an approximation error in equation 5.16, leading to a
wrong selection of the parameter α. Furthermore, if we make an approximation error at
the first step of the CE, we may bias the whole parameter optimization. For instance if
the density gα0 favors an area Dprivileged,α0 of D over others, we may not have realizations
Zi in D\Dprivileged,α0 . Consequently, as all the Zi are in Dprivileged,α0 , we could replace 1D

by 1Dprivileged,α0
in the equation 5.16 without changing the approximation, the situation

would be the same as if we were estimating P(Ztf ∈ Dprivileged,α0), and the optimization
of α will yield a parameter for which gα only privileges the region Dprivileged,α0 . The issue
is that we lack diagnostic tools to identify in which of these two situations we are.

To prevent such errors in the optimization we believe it would be good to start the
optimization only after we get some realizations Zi in all the parts Dj. The problem, is
that it would require that the number of simulations NCE,k be very high, which we can
not afford. Although we have not found a rigorous way to do it, we think it would be
interesting to use a trajectory Zi in each part Dj that is not generated but fully constructed
by the practitioner from its skeleton. This way all the parts of Di will be represented in
the sample, which could give a better estimations of Ef

[
1D(Ztf )log

(
gα(Ztf )

)]
. In order

to check if the importance density homogeneously increase in D , we could ensure that the
likelihood-ratios for these trajectories in all the parts Dj, have roughly the same values
and that these values are lower than one.
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Chapter 6

Conclusion on the importance
sampling for PDMP

Our work makes the use of importance sampling on PDMPs with boundaries possible,
and it provides a convenient way to specify the law of the importance process. We have
obtained significant variance reduction on a small system, yet more work is needed to
determine an efficient importance process for systems of industrial size.

We have developed the theoretical foundations of importance sampling for PDMPs
with boundaries. The challenge is to properly define the likelihood ratio involved in the
weighting of the simulation outputs in importance sampling when the random variable
of interest is a trajectory of PDMP with boundaries. We have exhibited the reference
measure ζtf on the space of PDMP trajectories, which allowed us to identify the closed
form expression of the density of a PDMP trajectory, and to properly define the likelihood
ratio. Thanks to the reference measure, we also have been able to identify the possible
importance processes.

Then we have studied the characteristics of the optimal process with density
g∗(z) = |h(z)|f(z)

p
. We have managed to show that the law of this optimal process is

connected to a function U∗ defined by:

U∗ :
⋃

s∈[0,tf ]
Es × {s} −→ R

(zs, s) −→ E[h(Ztf )|Zs = zs]

and to the function U− =
∫
U∗dK. Indeed, we have shown that the density of the time

between, for instance, the k-th jump and of the k+1-th jump is such that, ∀s ∈ [0, tf ), zs ∈
Es, u ∈ [0, t∗zs) :

g∗T ′
k
|Z′
S′
k

=zs,S′k=s(u) =
U -
(
Φzs(u), s+ u

)
U*
(
zs, s

) fTk|ZSk=zs(u).

We have shown that the transition kernels and the jump rates associated to this optimal
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process are such that, ∀s ∈ [0, tf ), zs ∈ Es, u ∈ [0, t∗zs) :

K∗zs-,s(z) =
U∗
(
zs, s

)
U -
(
z−s , s

)Kz-
s
(zs),

λ∗zs,s(u) =
U -
(
Φzs(u), s+ u

)
U∗
(
Φzs(u), s+ u

)λzs(u).

Our approach through the function U∗ can be applied to any sub-classes of PDMP,
like, for instance, Markov chains [35], or continuous time Markov Chain, or queing models.
In the particular case of PDMP that is a continuous time Markov Chain, the definition
of the function U∗ is close to the forward committor function used in the transition path
theory [42]. In the case of a general PDMP, a committor function would be a function
(z, s) → E

[
1DA(Z)|Zs = z

]
where DA is the set of trajectories that pass through D

without passing through a set A ⊂ E first. U∗ is therefore a commitor function for which
A = ∅. It is also interesting to note that, in the Adaptive Multilevel Splitting algorithm,
the asymptotic variance is minimized when using the committor function as the score
function [5, 10], similarly, in the interacting particles system method [23], the function U∗

also plays a role in the optimal potential function methodwhich is a result proved in the
part III and in [16]. Approaching the function U∗, allows to efficiently estimate rare event
for importance sampling, but also for Adaptive Multilevel Splitting algorithm and the
interacting particles system method. A method that allows to approximate this function
would lead to significant improvement in the reliability assessment field.

As finding an efficient importance density is easier when we restrict the search to
a family of parametric importance densities, we propose a way to specify the family of
parametric importance densities. We have proposed to approximate the function U∗ by
parametric functions Uα, and to plug this approximation instead of U∗ into the expressions
of the optimal jump rates and of the transition kernels, which yields an importance process
with some transition kernels and jump rates such that, ∀s ∈ [0, tf ), zs ∈ Es, u ∈ [0, t∗zs) :

K ′z-,s(zs) =
Uα
(
zs, s

)
U -
α

(
z−s , s

)Kz-
s
(zs),

λ′zs,s(u) =
U -
α

(
Φzs(u)

)
, s+ u

Uα
(
Φzs(u), s+ u

)λzs(u).

Passing through the expressions of the jump rates being beneficial because it allows to
avoid computing renormalization constants during the generation of the trajectories of the
importance process. We propose to then optimize the parameters with the Cross-entropy
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method.
We have applied our importance sampling method to two systems: the heated room

system and the spent-fuel-pool system. The method has worked very well on the heated
room system, but has failed on the bigger system of the spent-fuel-pool. This shows our
importance sampling method can work very well but it needs to be improved to be efficient
on industrial systems.

We believe the failure on the industrial system is due to two main factors. The first
reason being that the system is complex and has many ways to fail. Indeed the parametric
function Uα must give an importance density that favors all the ways to fail, which is
difficult to do. The second reason is that the cross-entropy is not well suited to find the
optimal parameters when the failure region is not convex and is made of many parts.
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Part III

A contribution to the IPS method
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The second focus on this thesis is the interacting particle system (IPS) method, that
was presented in section 2.4. The results of this part are also presented in the article [16].
Like importance sampling, the IPS method can provide a significant variance reduction,
so we would like to use it for the reliability assessment of Power generation system too.
Before considering the application of the method on PDMP, we shortly present a simple
and useful theoretical result on the IPS method. We essentially choose to present this
result in a separated part in order to emphasize that it is not necessarily related to a
PDMP model, and that it can be used for a broader spectrum of models.

Indeed, in this part the model is a Markovian chain (Zk)k≤n with values in measurable
sets (Ek, Ek) for k ≤ n. For instance, it could be the realization of a Gaussian process
at successive times, or a simple random walk. The notations of this part are consistent
with the notation of the section 2.4 in the introduction. In particular we consider the
trajectories Zk = (Z0, Z1, . . . Zk) with values in the measurable sets (Ek,Ek) where Ek =
E0 ×E1 × · · · ×Ek and Ek = E0 × E1 × · · · × Ek for k ≤ n. The Markovian chain (Zk)k≤n
has a a transition kernel vk such that for k > 0 and for any bounded measurable function
t : Ek → R

E[t(Zk)|Zk−1] =
∫
Ek

t(zk)vk(dzk|Zk−1).

For any bounded measurable function t : E0 × · · · × En → R we have:

E[t(Z0, . . . , Zn)] =
∫
En×···×E0

t(z0, . . . , zn)vn(dzn|zn−1) · · · v1(dz1|z0)ν0(dz0)

For i < j, consider two trajectories zi and zj: when it is necessary to differentiate the
coordinates of these trajectories we write the coordinates zi,k for k ≤ i and zj,k for k ≤ j

such that zi = (zi,0, zi,1, . . . , zi,i) and zj = (zj,0, zj,1, . . . , zj,j). We introduce the Markov
Chain of the trajectories (Zk)k≥0 with values in the measurable spaces (Ek,Ek), and with
the transition kernels Vk such that:

Vk(dzk|zk−1) = δzk−1

(
d(zk,0, . . . , zk,k−1)

)
vk(dzk,k|zk−1,k−1).
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Chapter 7

The optimal potential functions

We have seen in section 2.4, that the IPS takes in input a sequence of potential
functions (Gk)k<n, and provides an estimator p̂G of p = E[h(Zn)] such that

√
N(p̂G − p) d−→

N→∞
N
(
0, σ2

IPS,G

)
(7.1)

where, with the convention that
−1∏
i=0
Gi(Zi) =

−1∏
i=0
G−1
i (Zi) = 1:

σ2
IPS,G =

n∑
k=0

{
E
[
k−1∏
i=0

Gi(Zi)
]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]
− p2

}
. (7.2)

So the amplitude of the variance reduction is associated to the choice of potential func-
tions, yet there is not much information in the literature on how to choose these potentials
functions (Gk)k<n.

In this part we tackle the issue of the choice of the potential functions. Our contribution
is to provide the expressions of the theoretical optimal potential functions that minimize
the variance of the estimator of the IPS method. We hope these expressions will lead the
practitioners to design more efficient potential functions, that are closer from the optimal
ones.

Note that the result we present here, is not especially related to PDMP, and that it
applies to any case of application of the IPS method.
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7.1 The potentials used in the literature

As we said, the choice of the potential functions (Gk)k<n is paramount because it
determines the variance of the IPS estimator, but so far, little information has been
provided on the form of efficient potential functions. The standard approach is to find the
best potential function within a set of parametric potential functions, and so the efficiency
of the method strongly depends on the quality of the chosen parametric family.

For instance, in [23] the authors obtain their best variance reduction by choosing

Gk(Zk) = exp [−λR(Zk)]
exp [−λR(Zk−1)]

where λ is a positive tuning parameter, and the quantity R(z) = a− z roughly measures
the proximity of z to the critical region that was D = [a; +∞).

In [53] the authors stress out that it seems better to take a time-dependent proximity
function Rk instead of R, yielding:

Gk(Zk) = exp [−λRk(Zk)]
exp [−λRk−1(Zk−1)] ,

where the quantities Rk(z) are again measuring the proximity of z to D. Once the set of
parametric potential functions is chosen, it is necessary to optimize the tuning parameters
of the potentials. Different methods have been proposed. In [31], an empirical heuristic
algorithm is provided; in [43] a meta model of the variance is minimized; in [23] the large
deviation principle is used as a guide.

An other common option for the potential functions is the one done in splitting meth-
ods. Indeed the splitting method can also be seen as a version of the IPS method [12].
In this method one wants to assess the probability that a random variable Z belongs
to a subset Bn. A succession of nested sets E = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn is
chosen by the practitioner or possibly chosen in an adaptive manner [11]. The small
probability P(Z ∈ Bn) can then be decomposed into a product of conditional probabil-
ities: P(Z ∈ Bn) = ∏n

i=1 P(Z ∈ Bi|Z ∈ Bi−1) and P(Z ∈ Bn) = E [h(Zn)] by setting
h(Zn) = 1Bn(Zn). In this method the potential functions are chosen of the following form

Gk(Zk) = 1Bk(Zk).

One usually optimizes the variance reduction within this family of potential functions by
optimizing the choice of the sets (Bk)k≤n.
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7.2 The optimal potential

Note that if potential functions Gk and G′k are such that Gk = a.G′k with a > 0, then
they yield the same variance: σ2

IPS,G = σ2
IPS,G′ . Therefore the potential function is defined

up to a multiplicative term.

Theorem 21. For k ≥ 1, let G∗k be defined by:

G∗k(zk) ∝



√√√√√√√ E

[
E
[
h(Zn)

∣∣∣Zk+1

]2∣∣∣Zk=zk

]
E

[
E
[
h(Zn)

∣∣∣Zk]2∣∣∣Zk−1=zk,0:k−1

] if E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1 = zk,0:k−1

]
6= 0

0 if E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1 = zk,0:k−1

]
= 0

(7.3)

and for k = 0,

G∗0(z0) ∝
√
E
[
E
[
h(Zn)

∣∣∣Z1
]2∣∣∣Z0 = z0

]
. (7.4)

The potential functions minimizing σ2
IPS,G are the ones that are proportional to the G∗k’s

∀k ≤ n. The optimal variance of the IPS method with n steps is then

σ2
IPS,G∗ = E

[
E
[
h(Zn)

∣∣∣Z0
]2]
− p2

+
n∑
k=1

E
[√

E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1

]]2

− p2

 . (7.5)

Proof. As we lack mathematical tools to minimize σ2
IPS,G over the set of positive functions

(Gk)k≤n, we had to guess the expressions (7.3) and (7.4) before providing the proof of
the results. We begin this proof by presenting the heuristic reasoning that provided the
expressions (7.3) and (7.4).

Assuming we already know the k − 2 first potential functions, we started by trying
to find the k − 1-th potential function Gk−1 that minimizes the k-th term of the sum in
(7.2). This is equivalent to minimize the quantity

E
[
k−1∏
i=0

Gi(Zi)
]
E
[
E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
] k−1∏
s=0

G−1
s (Zs)

]
(7.6)

over Gk−1. As the Gk−1 are equivalent up to a multiplicative constant, we simplify the

equation by choosing a multiplicative constant so that E
[∏k−1

i=0 Gi(Zi)
]

= 1. Our minimiz-

ing problem then becomes the minimization of (7.6) under the constraint E
[∏k−1

i=0 Gi(Zi)
]

=

1. In order to be able to use a Lagrangian minimization we temporarily assume that the
distribution of Zk−1 is discrete and that Zk−1 takes its values in a finite or numerable
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set E. For z ∈ E, we denote az = P(Zk−1 = z) and dz = E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1 = z
]
and

gz = ∏k−2
i=0 Gi(zi)Gk−1(z). Our minimization problem becomes the minimization of

L =
∑

z∈E

azdz

gz

− λ
1−

∑
z∈E

azgz

 (7.7)

Finding the minimum of this Lagrangian we get that gz =
√
dz∑

z′∈E az′
√
dz′

. Now relaxing the
constraint of the multiplicative constant, we get that

k−1∏
i=0

Gi(zk−1,0:i) ∝
√
E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1 = zk−1
]
,

which gives the desired expressions. After these heuristic arguments we can now rigorously
check that these expressions, obtained by minimizing each term of the sum in (7.2) one
by one, also minimize the whole sum for any distribution of the Zk−1’s.

The proof now consists in showing that, for any set of potential functions (Gs)s<n, we
have σ2

IPS,G ≥ σ2
IPS,G∗ . This is done by bounding from below each term of the sum in

(7.2). We start by decomposing a product of potential functions as follows:

∀k ∈ {1, . . . , n},
k−1∏
s=0

Gs(zk−1,0:s) = εk−1(zk−1)
k−1∏
s=0

G∗s(zk−1,0:s) + ε̄k−1(zk−1) (7.8)

where when zk−1 ∈ supp
∏k−1
s=0 G

∗
s,

εk−1(zk−1) =
∏k−1
s=0 Gs(zk−1,0:s)∏k−1
s=0 G

∗
s(zk−1,0:s)

, and ε̄k−1(zk−1) = 0

and when zk−1 /∈ supp
∏k−1
s=0 G

∗
s,

εk−1(zk−1) = 0, and ε̄k−1(zk−1) =
k−1∏
s=0

Gs(zk−1,0:s).

Using (7.8) we get that

E
[

k−1∏
s=0

Gs(Zs)
]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

= E
[
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)
]
E
[
E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
] k−1∏
s=0

G−1
s (Zs)

]

+ E
[
ε̄k−1(Zk−1)

]
E
[
E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
] k−1∏
s=0

G−1
s (Zs)

]
.
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so

E
[

k−1∏
s=0

Gs(Zs)
]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

≥ E
[
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)
]
E

E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
]

∏k−1
s=0 Gs(Zs)

+ 0 (7.9)

For zk−1 ∈ supp
∏k−1
s=0 G

∗
s we have:

k−1∏
s=0

G∗s(zk−1,0:s) ∝
√
E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1 = zk−1

]

So suppE
[
E[h(Zn)|Zk]2

∣∣∣Zk−1 = zk−1
]

= supp
∏k−1
s=0 G

∗
s and we get

E

E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
]

∏k−1
s=0 Gs(Zs)

 = E

 E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
]

εk−1(Zk−1)∏k−1
s=0 G

∗
s(Zs)


= E

[
1

εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)
]
. (7.10)

Combining (7.10) with inequality (7.9) we get that

E
[

k−1∏
s=0

Gs(Zs)
]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

≥ E
[
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)
]
E
[

1
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)
]

(7.11)

and using the Cauchy-Schwarz inequality on the right term, we get that

E
[

k−1∏
s=0

Gs(Zs)
]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

≥ E
[
k−1∏
s=0

G∗s(Zs)
]2

= E
[
k−1∏
s=0

G∗s(Zs)
]
E

E
[
E[h(Zn)|Zk]2

∣∣∣Zk−1
]

∏k−1
s=0 G

∗
s(Zs)

 . (7.12)

By summing the inequalities (7.12) for each k, we easily see that

σ2
IPS,G ≥ σ2

IPS,G∗ ,

which completes the proof of the theorem.

Remark that the optimal potential may be not positive everywhere, unfortunately, so
it violates the hypothesis under which the TCL was proven in [21]. We claim that this
question of the positiveness of the potential has not much interest in practice. Assume we
take potential functions (Gk)k<n such that in the equation (7.9) we have εk(Zk) = 1 and
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ε̄k(Zk) = ε > 0 with ε very small. Choosing ε small enough, we can get (Gk)k<n as close
as we want from (G∗k)k<n. With such potential functions (Gk)k<n and ε small enough,
it is very likely that we would obtain the same samples in the algorithm as if we had
taken the potentials (G∗k)k<n, and so we would have the same estimation. Moreover, with
such potential functions we would also have a TCL with a variance very close to σ2

IPS,G∗ .
(According to (7.9) by choosing ε as small as we want, we get a variance as close as we
want from σ2

IPS,G∗ .) In practice, positive potential functions (Gk)k<n with ε close to zero
give the same results as the potentials (G∗k)k<n.

An other important remark is that the optimal potentials (G∗k)k<n favor the particles
with large increments of the quantity E

[
E
[
h(Zn)

∣∣∣Zk+1
]2∣∣∣Zk = zk

]
rather than particles

with a large value for this quantity.

7.3 A short simulation study for the comparison of
potentials

In this section we confirm empirically the results of the previous section by carrying out
a short simulation study. Here, we apply the IPS method on a toy system for which we have
explicit formulas. The system under consideration is the Gaussian random walk Zk+1 =
Zk + εk+1, Z0 = 0, where the (εk)k∈{1,...,n} are i.i.d. Gaussian random variables with mean
zero and variance one. We explore two situations, one where the quantity to estimate,the
optimal potential and the variance of the estimator can be calculated explicitly, and one
where these quantities can be approximated by a large deviation inequality.

7.3.1 First example

In the first situation, taking b, a > 0 and n ∈ N\{0}, the goal is to compute the
expectation p = E[h(Zn)] when h(zn) = exp[b(zn − a)]. As Zn is a centered Gaussian of
variance n, a simple calculation gives that for k < n:

E[h(Zn)|Zk = z] = exp
(

(n− k)b
2

2 + b(z − a)
)
. (7.13)

Consequently we have that:

p = exp
(
n

2 b
2 − ab

)
, (7.14)
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and that, for k ≥ 1:
√√√√√√√ E

[
E
[
h(Zn)

∣∣∣Zk+1
]2∣∣∣Zk = zk

]
E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1 = zk,0:k−1

] = exp
[
−b

2

2 + b(zk,k − zk,k−1)
]

(7.15)

with E
[
E
[
h(Zn)

∣∣∣Z1
]2∣∣∣Z0 = z0

]
= exp

[
(n+ 1)b2

2 + b(z0 − a)
]
, (7.16)

or equivalently that:

G∗k(zk) ∝ exp
[
b(zk,k − zk,k−1)

]
(7.17)

with G∗0(z0) ∝ exp
[
bz0
]
. (7.18)

We can observe here that the optimal potential favors particles with a big increment of the
value zk rather than particles with a large value zk, with confirms what was empirically
observed in [23]. Using the equations (7.17) and (7.18) in (7.2), it can easily be shown
that the variance of the IPS estimator with these optimal potential functions is:

σ2
IPS,G∗ = n

(
exp(b2)− 1

)
exp

[
nb2 − 2ab

]
= n

(
exp(b2)− 1

)
p2. (7.19)

It is notable that we obtain an asymptotically optimal variance [28], i.e. a variance pro-
portional to p2.

In order to confirm these theoretical results, we have carried out a simulation study. We
have run the method 200 times with N = 105, n = 10 and different values of a and b, and
for each of these values we have computed the mean of the estimation and the empirical
variance of the estimation. The results are displayed in table 7.1, where we compare the
theoretical value of p to the empirical mean of the 200 estimations, and σ2

IPS,G∗ to the
empirical variance. As the theoretical values are close to the empirical ones, this confirms
that the method is unbiased and that the variance given by the equation (7.2) is the
right one. We also compare the empirical variance to the variance of the Monte-Carlo
estimator, showing that, on this example, the IPS method provides a significant variance
reduction with the optimal potential, as the variance is reduced by at least a factor 104

on the considered cases.
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a b p σ2
IPS,G∗ σ2

MC mean(p̂) σ̂2
IPS,G∗

40
√
log(1 + 1

n) 6.98× 10−6 6.87× 10−16 6.98× 10−6 6.98× 10−6 6.72× 10−16

40
√
log(1 + 2

n) 9.51× 10−8 1.81× 10−14 9.51× 10−8 9.51× 10−8 1.76× 10−14

40
√
log(1 + 3

n) 4.69× 10−9 6.61× 10−17 4.69× 10−9 4.69× 10−9 7.37× 10−17

40
√
log(1 + 4

n) 4.50× 10−10 8.13× 10−19 4.50× 10−10 4.50× 10−10 7.39× 10−19

35
√
log(1 + 1

n) 3.27× 10−5 1.09× 10−9 3.27× 10−5 3.27× 10−5 9.69× 10−10

35
√
log(1 + 2

n) 8.04× 10−7 1.29× 10−12 8.04× 10−7 8.04× 10−7 1.35× 10−12

35
√
log(1 + 3

n) 6.07× 10−8 1.11× 10−14 6.07× 10−8 6.07× 10−8 1.06× 10−14

35
√
log(1 + 4

n) 8.19× 10−9 2.69× 10−16 8.19× 10−9 8.19× 10−9 2.85× 10−16

Table 7.1 – Theoretical and empirical comparisons (example 1)
N = 2 ∗ 105, n = 10

7.3.2 Second example

In the second situation, the goal is to compute the probability that Zn exceeds a large
positive value a. Therefore we take h(zn) = 1[a;+∞)(zn) so that

p = P(Zn ≥ a). (7.20)

In that case one can not compute E[h(Zn)|Zk = z] but the Chernov-Bernstein’s inequality
gives the following sharp exponential bound:

E[h(Zn)|Zk = z] ≤ exp
[
− (a− z)2

2(n− k)

]
, (7.21)

from which we can deduce that:

k−1∏
i=0

G∗i (zk−1,0:i) =
√
E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1 = zk−1

]
≤ C1 exp

[
C2 −

(zk−1 − a)2

2(n− k + 2)

]
,

(7.22)
where C1 and C2 are some constants independent of zk−1. One can therefore try to set
the product of the potentials equal to this upper bound, which yields:

for k ≥ 1, Gk(zk) ∝ exp
[
− (zk − a)2

2(n− k + 1) + (zk−1 − a)2

2(n− k + 2)

]
(7.23)

and G0(z0) ∝ exp
[
−(z0 − a)2

2(n− 1)

]
. (7.24)

Similarly as for the first example, we have carried out a simulation study. We have run
the method 200 times with N = 105, n = 10 and different values of a, and for each of
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a p σ2
IPS,G∗ σ2

MC mean(p̂) σ̂2
IPS,G

4
√
n 3.17 ∗ 10−5 ? 3.17 ∗ 10−5 3.18 ∗ 10−5 8.14 ∗ 10−8

5
√
n 2.87 ∗ 10−7 ? 2.87 ∗ 10−7 2.86 ∗ 10−7 1.88 ∗ 10−11

6
√
n 9.87 ∗ 10−10 ? 9.87 ∗ 10−10 9.67 ∗ 10−10 6.63 ∗ 10−16

7
√
n 1.28 ∗ 10−12 ? 1.28 ∗ 10−12 1.29 ∗ 10−12 4.47 ∗ 10−21

Table 7.2 – Theoretical and empirical comparisons (example 2)
results obtained with N = 105 and n = 10

these values we have computed the empirical mean of the estimation and the empirical
variance of the estimation. We compare these estimations with the actual values of p and
the variance of the Monte-Carlo method σ2

MC , showing that the potentials built with the
Chernov-Bernstein large deviation inequality and our formula yield a significant variance
reduction. Indeed the variance reduction compared to the Monte-Carlo method is at least
by a factor 8500, and at best by a factor 2.4 ∗ 106.

We have also compared the efficiency of different potentials. We run the method with
1) the potential used on a Gaussian random walk in [31]: Gk(zk) = exp [α(zk − zk−1)]
where the parameter was optimized to α = 1.1, 2) the potential built with the Chernov-
Bernstein large deviation inequality, and 3) with the optimal potential that we computed
thanks to quadrature methods. The parameter α was chosen after several tries of values
between 0.5 and 1.5 with a step 0.1. The value selected was the one yielding the best
results in term of variance, and it was α = 1.1. The results are displayed in table 7.3, and
show that indeed the potential functions (G∗k)k<n, where

G∗k(zk) =

√√√√√√√
∫
R

(∫∞
a exp

[
- (z′n-z′

k+1)2

2(n-k+1)

]
dz′n

)2
exp

[
- (z′

k+1-zk)2

2

]
dz′k+1∫

R

(∫∞
a exp

[
- (z′n-z′

k
)2

2(n-k)

]
dz′n

)2
exp

[
- (z′

k
-zk-1)2

2

]
dz′k

,

yield the best variance.

Gk(zk) mean(p̂) σ̂2
IPS,G

exp [α(zk-zk-1)] 1.04 ∗ 10−6 2.44 ∗ 10−10

exp
[
- (zk-a)2

2(n-k+1) + (zk-1-a)2

2(n-k+2)

]
1.03 ∗ 10−6 1.78 ∗ 10−10

G∗k(zk) 1.04 ∗ 10−6 1.62 ∗ 10−10

Table 7.3 – Comparisons of the efficiency of potentials (example 2)
results obtained for p = 1.05 ∗ 10−6 N = 2000, n = 10, a = 15, α = 1.1
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Chapter 8

Conclusions and implications

In this part, we have given closed form expressions of the optimal potential functions
for the IPS method with multinomial resampling, and for its minimal variance. The ex-
istence of optimal potential functions proves that the possible variance reduction of an
IPS method is lower-bounded. The expressions have been validated analytically and have
been empirically confirmed in toy examples.

Furthermore the results found in the literature seem consistent with our findings.
Indeed, in [23] the authors made the observation that it seemed better to build a po-
tential which is defined in terms of the increments of an energy function, this observa-
tion is confirmed as the optimal potential is the multiplicative increment of the quantity√
E
[
E
[
h(Zn)

∣∣∣Zk

]2∣∣∣Zk−1 = zk−1

]
which is then the optimal energy function. Also, the fact

that in [53] the authors find better results with time-dependent potentials is explained by
the fact that the expression of the optimal potential shows a dependency on k. Finally, as
splitting methods can be viewed as a version of the IPS-method with indicator potential
functions, our results show that the selections of splitting algorithms are not optimal, and
could be improved by using information on the expectations E

[
h(Zn)

∣∣∣Zk = z
]
.

The optimal potential functions may be hard to find in practice. Indeed, the expecta-
tions E

[
h(Zn)

∣∣∣Zk = z
]
play a big role in the expression of the optimal potentials, but if we

are trying to assess p = E
[
h(Zn)

]
, we typically lack information about the expectations

E
[
h(Zn)

∣∣∣Zk = z
]
. If no information on the expectation E

[
h(Zn)

∣∣∣Zk = z
]
is available, it

might be preferable to use more naive variance reduction method, where no input func-
tions are needed. In such context, the Weighted Ensemble (WE) method [1, 2] seems to
be a good candidate, as it does not take in input potential functions but only a partition
of the state space. Conversely if the practitioner has information about the expectation
E
[
h(Zn)

∣∣∣Zk = z
]
, this information could be used to derive very efficient potentials.

The knowledge of these expectations is therefore crucial for a well optimized use of the
IPS method, but it is interesting to remark that the same knowledge seems to be crucial
for a well optimized importance sampling method. Indeed in part II we showed that,
when it is used on a piecewise deterministic process, the optimal density of importance
sampling depends on E

[
|h(Ztf )|

∣∣∣Z[0,s] = z[0,s]
]
where Z[0,s] is the trajectory of the PDMP

on an interval [0, s]. This confirms the well known fact [7] that, with a good knowledge of
the dynamic of the process (Zt)t≥0, the importance sampling method is preferable to the
IPS.
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Chapter 9

The inefficiency of IPS on
concentrated PDMP

In the previous part, we have seen that a well tuned IPS methods can provide a
significant variance reduction. We now want to adapt and apply this method to the
PDMP case for the purpose of the reliability assessment of power generation systems.
The work presented in this part led to the publication of [14] in the review Chaos: An
Interdisciplinary Journal of Nonlinear Science.

Notations

We first start by defining the notations required to use the IPS on PDMPs. We mainly
redefine here the notations of the section on the IPS 2.4, so that they coincide with the
notations we used for the PDMPs in the chapter 1 of the introduction, and with the
notations of part II on importance sampling.

(Zs)s>0 denotes a PDMP, as defined in the chapter 1 of the introduction: Zs = (Xs,Ms)
represent the state of an industrial system at time s. Xs being the vector of the physical
variable, and Ms being the vector of the statuses of the components within the system.
Zt is a random variable with value in the measurable space (E, E). The state space is
denoted by E, the flow on the states is denoted by Φ, the jump rate is denoted by λ, and
the jump transition kernel is denoted by K. D ⊂ E is the failure region of the system,
τD is the first hitting time of D. Θ is the application that transform a trajectory into its
skeleton.

For any time t, we denote by Zt = (Zs)s∈[0,t] the trajectory of the states up to time t.
Et is the set of the trajectories defined on the interval [0, t] that satisfy equation (1.47)
page 16, and E t a σ-algebra on Et such that E t = θ−1(St), St being defined in page 74. D

is the set of the trajectories including a system failure and defined on the interval [0, tf ],
it corresponds the set of trajectories such that τD ∈ (0, tf ]. We are interested in assessing

p = P
(
τD ≤ tf

)
= P

(
Ztf ∈ D

)
= E

[
1D(Ztf )

]
,

but we present the method in the more general case. If h is a measurable function on
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(Eτn ,Eτn), we present the method to assess the quantity:

p = E
[
h(Ztf )

]
.

9.1 IPS with PDMP

We consider n + 1 times (τk)0≤k≤n such that 0 = τ0 < τ1 < · · · < τn = tf , and we
decompose the interval [0, tf ] in a series of sub intervals (τk, τk+1] where k ∈ {0, ..., n−1}.
For each k ≤ n, Zτk is a trajectory on [0, τk], and for k < n Z(τk,τk+1] denote the piece of
the trajectory on the interval (τk, τk+1]. Remember that E(τk,τk+1] is the set of trajectories
defined on the interval (τk, τk+1] and following the flow Φ. We defined its sigma algebra
by E (τk,τk+1] = Θ−1(S(τk,τk+1]) with S(τk,τk+1] defined in page 73. We denote by v0 the
distribution of Z0 or Zτ0 , and for each k, 1 ≤ k ≤ n we denote by vk the transition kernel
of the Z(τk,τk+1] such that for any bounded measurable function h :

(
E(τk,τk+1],E (τk,τk+1]

)
→

(R,B(R)),

E[h(Z(τk,τk+1])|Z(τk−1,τk] = z(τk−1,τk]] =
∫

E(τk,τk+1]

h(z(τk,τk+1])vk(dz(τk,τk+1]|z(τk−1,τk]).

For any bounded measurable function h : Eτ0 × · · · × Eτn → R we have:

E[h(Zτn)] =
∫

Eτ0×E(τ0,τ1]···×E(τn−1,τn]

h(zτn)vn(dz(τn−1,τn]|z(τn−2,τn−1]) · · · v1(dz(τ0,τ1]|z0)ν0(dz0)

Then we let Vk be the Markovian kernel that extends Zτk into Zτk+1 , such that

Vk+1(dz̃τk+1|zτk) = vk+1(dz̃(τk,τk+1]|z(τk−1,τk])δzτk
(
dz̃τk .

)
For any bounded measurable function h : Eτn → R we have

p = E [h(Zτn)] =
∫∫∫

Eτn×···×Eτ0
h(zτn)

n∏
k=1

Vk(dzτk |zτk−1)ν0(dzτ0). (9.1)

In the rest of this section 2.4 we use the following notations: We denote by M (A)
the set of bounded measurable functions on a measurable set (A,A). If f is a bounded
measurable function, and η is a measure we note η(f) =

∫
f dη. If M is a Markovian

kernel, we denote by M(f) the function such that M(f)(x) =
∫
f(y)M(dy|x), and for a

measure η, we denote by ηM the measure such that

ηM(f) =
∫ ∫

f(y)M(dy|x)η(dx).
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Remember the IPS method provides an estimator of p with a different variance than the
Monte-Carlo estimator. It was first introduced in [23], and with an alternative formulation
in [22].
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We now represent the whole method with the PDMP notation. If you feel confident
with the notation change explained above we suggest the reader to go directly to section
9.2.

9.1.1 A Feynman-Kac model

The IPS method relies on a Feynman-Kac model [21] whose main characteristics are
defined in this subsection. A Feynman-Kac model is a sequence of target distributions
and of propagated distributions on the sets (Eτk ,Ek), that are defined using a series of
potential function (Gk)k<n. These distributions are linked by a selection and propagation
pattern defined below.

Potential functions

For each k < n we denote Gk the potential function on Eτk , such that:

∀zτk ∈ Eτk , Gk(zτk) ≥ 0. (9.2)

Target and propagated distributions

We consider a target probability measure η̃k for each k ≤ n , which is defined by:

η̃k(dzτk) ∝
k∏
s=0

Gs(zτs)
k−1∏
s=0

Vs+1(dzτs+1|zτs), (9.3)

or equivalently by

∀B ∈ Eτk
, η̃k(B) =

E
[
1B(Zτk)

∏k
s=0Gs(Zτs)

]
E
[∏k

s=0Gs(Zτs)
] . (9.4)

Then, we define the propagated target measures ηk such that η0 = η̃0 and for k ≥ 0,
ηk+1 = η̃kVk+1. We have :

ηk+1(dzτk+1) ∝
k∏
s=0

Gs(zτs)
k∏
s=0

Vs+1(dzτs+1|zτs), (9.5)

or equivalently

∀B ∈ Eτk+1 , ηk+1(B) =
E
[
1B(Zτk+1)∏k

s=0Gs(Zτs)
]

E
[∏k

s=0Gs(Zτs)
] . (9.6)

For k = 0 we will consider that η0 = δz0 , but the methods would still be valid if we had
η0 6= δz0 .
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Link between distributions

As we defined it earlier ηk+1 is the propagation of η̃k as

ηk+1 = η̃kVk+1.

Let Ψk be the application that transforms a measure η defined on Eτk into a measure
Ψk(η) defined on Eτk and such that

Ψk(η)(f) =
∫
Gk(zτk)f(zτk)dη(zτk)

η(Gk)
. (9.7)

We say that Ψk(η) gives the selection of η through the potential Gk. Notice that η̃k is the
selection of ηk as η̃k = Ψk(ηk). The target distributions can therefore be built according
to the following pattern:

ηk
Ψk
−−−−→ η̃k

.Vk+1
−−−−→ ηk+1,

where there are successive selection and propagation steps.

Unnormalized measures

We also define the associated unnormalized measures γ̃k and γk+1, such that for f ∈
M (Eτk):

γ̃k(f) = E
[
f(Zτk)

k∏
s=0

Gs(Zτs)
]

and η̃k(f) = γ̃k(f)
γ̃k(1) , (9.8)

and for f ∈M (Eτk+1):

γk+1(f) = E
[
f(Zτk+1)

k∏
s=0

Gs(Zτs)
]

and ηk+1(f) = γk+1(f)
γk+1(1) . (9.9)

Denoting fh(zτn) = h(zτn )∏n−1
s=0 Gs(zτs )

, notice that we have:

p = γn(fh) = ηn(fh)
n−1∏
k=0

ηk
(
Gk

)
. (9.10)

Weighted propagation

We define Qk such that for f ∈M (Eτk+1),

Qk(f)(zτk) =
∫

Eτk+1

f(zτk+1)Vk(dzτk+1 |zτk)Gk(zτk) (9.11)

and set Qk,n = QkQk+1 . . . Qn. With this notation we have

∀s < k, γk(f) = γsQs,k(f) = γ0Q0,k(f) = η0Q0,k(f). (9.12)
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9.1.2 The IPS algorithm and its estimators

The IPS method provides an algorithm to generate weighted samples which approx-
imate the probability measures ηk and η̃k respectively for each step k. For the sample
approximating ηk, we denote Zj

τk
the jth trajectory and W j

k its weight. Respectively, for
the sample approximating η̃k, we denote

∼
Zj
τk

the jth trajectory and
∼
W j
k its associated

weight. For simplicity reasons, in this algorithm, we consider that the samples all contain
N trajectories, but it is possible to modify the sample size at each step, as illustrated
in [38]. The empirical approximations of ηk and η̃k are denoted by ηNk and η̃Nk and are
defined by:

η̃Nk =
N∑
i=1

∼
W i
k δ∼Ziτk

and ηNk =
N∑
i=1

W i
k δZiτk

. (9.13)

So for all k ≤ n and f ∈M (Eτk),

η̃Nk (f) =
N∑
i=1

∼
W i
k f
(∼
Zi
τk

)
and ηNk (f) =

N∑
i=1

W i
k f
(
Zi
τk

)
. (9.14)

By plugging these estimations into equations (9.8) and (9.8), we get estimations for the
unnormalized distributions. Denoting by γ̃Nk and γNk these estimations, for all k ≤ n and
f ∈M (Eτk), we have:

γ̃Nk (f) = η̃Nk (f)
k−1∏
s=0

ηNs (Gs) and γNk (f) = ηNk (f)
k−1∏
s=0

ηNs (Gs). (9.15)

Plugging the estimations ηNk into equation (9.10), we get an estimator p̂ of p defined by:

p̂ = ηNn (fh)
n−1∏
k=0

ηNk
(
Gk

)
. (9.16)

The algorithm building the samples is presented in figure 9.1. It follows the same logic as
the algorithm that we presented in 2.4.2, except notations are adapted to the PDMP case.

We keep the following assumption: ∃ ε1, ε2 ∈ R+ such that ∀ zτk ∈ Eτk :

ε1 > Gk(zτk) > ε2 > 0, (G-PDMP)

so the following theorems still apply:

Theorem 22. When (G) is verified the estimator (9.16) is unbiased and strongly consis-
tent.

The proof of theorem 22 can be found in [21] chapter 7.
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Initialization : k = 0, ∀j = 1..N, Zj
0
i.i.d.∼ η0 and W j

0 = 1
N
, and

∼
W j

0 = G0(Zj0)∑
s
G0(Zs0)

while k < n do
Selection:
(Ñ j

k)j=1..N ∼Mult
(
N, (

∼
W j
k )j=1..N

)
∀j := 1..N,

∼
W j
k := 1

N

Propagation :
for j := 1..N do

continue trajectory
∼
Zj
τk

to get Zj
τk+1

for j := 1..N do
set W j

k+1 =
∼
W j
k and

∼
W j
k+1 = W j

k+1Gk+1(Zjτk+1 )∑
s
W s
k+1Gk+1(Zsτk+1 )

if ∀j,
∼
W j
k+1 = 0 then

∀q > k, set ηNq = η̃Nq = 0 and Stop
else

k := k + 1

Figure 9.1 – IPS algorithm

Theorem 23. When (G) is verified:

√
N(p̂− p) d−→

N→∞
N
(
0, σ2

IPS,G

)
, (9.17)

where

σ2
IPS,G =

n−1∑
k=0

γk(1)2ηk

([
Qk,n(fh)− ηkQk,n(fh)

]2)
(9.18)

=
n−1∑
k=0

{
Ez0

[
k−1∏
i=0

Gi(Zτi)
]
Ez0

[
E[h(Zτn)|Zτk ]2

k−1∏
s=0

G−1
s (Zτs)

]
− p2

}
. (9.19)

A proof of this CLT can be found in [21] chapter 9.

9.1.3 Variance estimation for the PDMP case

For the estimation of the variance σ2
IPS,G, the two estimators presented in [38] and

subsection 2.4.3 can also be transposed to the PDMP case. Let Ajk be the ancestor index
of the jth trajectory in the k-th selected sample, such that

∼
Zj
τk

= ZAj
k

τk . Let ein be the Eve
index of i, that is defined recursively by:

ei0 = i and for k, 0 < k ≤ n, eik = A
eik−1
k . (9.20)

So eik is the ancestor index at step 0 of the i-th particle of the k-th sample.
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The first estimator of the variance is then defined by:

σ̂2
1 = γNn (1)2

ηNn (fh)2 − Nn−1

(N − 1)n+1

∑
i,j:ein 6=e

j
n

fh(Zi
τn)fh(Zj

τn)

 . (9.21)

It satisfies the following theorem:

Theorem 24. σ̂2
1 is an unbiased and weakly convergent estimator of σ2

IPS,G.

The second estimator relies on a rewriting of (9.19) in (9.23). For a given vector
b ∈ {0, 1}n and function f ∈ RE2

τn we introduce the quantity µb(f) defined by:

µb(f) = Eb
[
n−1∏
k=0

Gk(Yτk)Gk(Y′τk)f(Yτn ,Y′τn)
]
, (9.22)

Where the random trajectories (Yτk)k≤n with values in (E, E) are such that Yτ0 ∼ η0

and for k > 0 Yτk ∼ Vk(.|Yτk−1). The second random vector (Y′τk)k≤n is such that,
if b0 = 0 Y′τ0 ∼ η0 with Y′τ0 independent of Yτ0 , and if b0 = 1 set Y′τ0 = Yτ0 . For
k ≤ 0 if bk+1 = 0 take Y′τk+1

∼ Vk+1(.|Y′τk) with Y′τk+1
independent of Yτk+1 , and if

bk = 1 set Y′τk+1
= Yτk+1 . Note the expectation Eb now includes the vector b used to

build (Y′τk)k≤n. For a function f ∈ REτn we define f⊗2 as the function of RE2
τn such that

f⊗2(Yτn ,Y′τn) = f(Yτn)f(Y′τn). Denoting by ek the vector with the k + 1th coordinate
equal to 1 and null coordinates everywhere else, and denoting by 0n the null vector of size
n, we can rewrite the variance has follows:

σ2
IPS,G =

n−1∑
k=0

µek(f⊗2
h )− µ0n(f⊗2

h ) (9.23)

In order to estimate the variance the authors of [38] provide an estimator µNb (f⊗2) of the
quantity µb(f⊗2) for any b ∈ {0, 1}n and set

σ2
2 =

n−1∑
k=0

µNek(f
⊗2
h )− µN0n(f⊗2

h ). (9.24)

In order to estimate the quantities µb(f⊗2) they introduce two auxiliary random vectors.
These vectors are drawn from the samples built with the IPS algorithm. They are denoted
noted ZL1 = (ZL1

0
τ0 , . . . ,ZL1

n
τn ) and ZL2 = (ZL2

0
τ0 , . . . ,ZL2

n
τn ), where L1 = (L1

0, . . . , L
1
n) and

L2 = (L2
0, . . . , L

2
n) represent the indices of the trajectories picked in the samples. These

vectors of indices are associated with the genealogical structure of the samples with the
algorithm. L1 traces backward the ancestral lineage of a trajectory. L2 traces backward
the ancestral lineage of a trajectory that breaks each time it touches the L1 lineage.
They are built as follows: L1

n is drawn uniformly from {1, . . . , N}, and ∀k < n, we set
L1
k = A

L1
k+1

k . L2
n is also drawn uniformly from {1, . . . , N}, but ∀p < n, if L2

k+1 6= L1
k+1, we
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set L2
k = A

L2
k+1

k , and when L2
k+1 = L1

k+1 we draw L2
k from {1, . . . , N} with a probability

P(L2
k = j) = W j

k
G(Zjτk )∑N

s=1 W
s
k
G(Zsτk )

.

Denoting A = {Ajk | 0 ≤ k ≤ n, 1 ≤ j ≤ N} the set of all ancestors, and Z = {Zj
τk
| 0 ≤

k ≤ n, 1 ≤ j ≤ N} the set of all the sampled trajectories, and Ib the set of pairs of lineage
such that L1

k = L2
k if and only if bk = 1, µb(f) is estimated by:

µNb (f) =
(

n∏
k=0

N

(N − 1)1−bk

)
γNn (1)2E

[
1Ib(L1, L2) f

(
ZL1

n
τn ,Z

L2
n

τn

) ∣∣∣∣A,Z] . (9.25)

Theorem 25. µNb (f) is an unbiased and weakly convergent estimator of µb(f).

Therefore we have the following theorem:

Theorem 26. σ̂2
2 is an unbiased and weakly convergent estimator of σ2

IPS,G.

The proof for both these theorems can be found in the supplement of [38].

9.1.4 The SMC improvement for PDMP

Similarly to what was presented in subsection 2.4.4, in order to avoid pointless resam-
pling, one can trigger the selection step only when the weights are unbalanced. This is
done in the Sequential Monte Carlo (SMC) algorithm with adaptive resampling presented
in Figure 9.2. In this algorithm, the heterogeneity of the weights is quantified using the
effective sample size. At the kth step the effective sample size is defined by:

ESSk =

(∑N
j=1W

j
k Gk(Zj

τk
)
)2

∑N
i=1

(
W i
kGk(Zi

τk
)
)2 . (9.26)

Its value is between 1 and N and it measures the homogeneity in the candidate weights
W i
kGk(Ziτk )∑

j
W j
k
Gk(Zjτk ) : when ESSk = N the weights are perfectly balanced and are all equal to 1

N
,

and conversely when ESSk = 1 all the weights are null except one, which concentrates
the totality of the mass. Therefore, one considers the weights are too unbalanced when
ESSk < eN where e ∈ [0, 1] is a tuning parameter.
Other improvements of the IPS, like those mentioned in subsection 2.4.4, are compatible
with PDMP.
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Initialization : k = 0, ∀i := 1..N,Zi
0 = (z0) and W i

0 = 1
N
, and

∼
W i

0 = G0(Zi0)∑
j
G0(Zj0)

while k < n do
Selection:
if ESSk < eN then

(Ñ j
k)j=1..N ∼Mult

(
N, (

∼
W j
k )j=1..N

)
and set ∀i = 1..N,

∼
W i
k := 1

N

else
for i := 1..N do

set
∼
Zi
τk

:= Zi
τk

Propagation :
for i := 1..N do

continue trajectory
∼
Zi
τk

to get Zi
τk+1

for i := 1..N do
set W i

k+1 =
∼
W i
k and

∼
W i
k+1 =

W i
k+1Gk+1(Ziτk+1 )∑

j
W j
k+1Gk+1(Zjτk+1 )

if ∀j,
∼
W j
k+1 = 0 then

∀q > k, set ηNq = η̃Nq = 0 and Stop
else

k := k + 1

Figure 9.2 – SMC algorithm with adaptive resampling steps for PDMP

9.2 Concentrated PDMP make the IPS inefficient

9.2.1 The kind of PDMP used in the reliability analysis

Low jump rate

For reliability assessment of a highly reliable system one often models the system by a
PDMP with low jump rates. Indeed, the possible spontaneous transitions are often failures
or repairs, and the components of the system are reliable: their failures are rare and their
repairs take time, hence the low jump rates.

Discrete jump kernel

Although in a PDMP the jumps model transitions from state to state (z− to z+), we
here only consider transitions from mode to mode (m− to m+). The reason is that the
evolution of the physical variables during a jump is often deterministic once we know the
arrival statuses of the components. We consider that as soon as the mode m+ is known,
the only option for the physical variables is to arrive in a point denoted xz→m+. Therefore
νz− the reference measure for the jump kernel is taken to be equal to:

∀B ∈ B(E), νz−(B) =
∑

m+∈M
δ(xz→m+,m+)(B), (9.27)
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and the jump kernel is such that :

∀B ∈ B(E), Kz−(B) =
∑

m+∈M
P(ZT = (xz→m+,m

+)|Z−T = z−)δ(xz→m+,m+)(B), (9.28)

The jump Kernel is therefore a discrete law of probability.

Concentrated jump kernel on the boundaries

The boundaries are used to model control mechanisms, and the jump kernel on bound-
aries gives the probability for each possible output of the control mechanism triggered.
As failures on demand during a control mechanism are unlikely the jump kernels on
boundaries are concentrated on one safe arrival state (i.e. the state aimed by the control
mechanism).

9.2.2 Concentrated PDMP

Definition 36. For an interval I, the PDMP (Zs)s∈I is said to be a concentrated PDMP
if there exists a trajectory a ∈ EI such that

P(ZI = a) ' 1 (9.29)

In reliability analysis, the systems are often modeled by concentrated PDMPs.

The preponderant trajectory

In reliability analysis the trajectory a is often the trajectory without failure nor repair.
As jump rates are low the probability of not having a spontaneous jump is close to one.
For instance at a k + 1-th jump this probability verifies

Pzsk
(
Tk = t∗zsk

)
= exp

[
− Λzsk

(t∗zsk )
]
' 1.

So only jumps on boundaries are likely. When the process hits a boundary ∂Em, remember
the reference measure of the jump is discrete, see equation (9.28). At this point there is
a high probability that the arrival state is the state aimed by the control mechanism.
Denoting by zsk this state for a k-th jump, we have :

Kz−sk
(zsk) = Kz−sk ({zsk}) ' 1.

So if zt is a trajectory with no failure and no repair of reasonable size we have:

P
(
Zt = zt

)
=

n∏
k=0

exp
[
− Λzsk

(t∗zsk )
] n∏
k=1
Kz−sk ({zsk}) ' 1. (9.30)
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In the IPS method, in order to simulate trajectories on the interval [τ0, τn] we simulate
the trajectories sequentially by simulating on the successive intervals (τk, τk+1] where k
range from 0 to n− 1. As these intervals of time are relatively small the PDMP modeling
the state of the system is often a concentrated PDMP on (τk, τk+1].

9.2.3 A poor empirical approximation of the propagated distri-
butions within the IPS

When it is used on a reliable system and therefore on a concentrated PDMP (see the
previous Section 9.2.2), the IPS method tends to loose in efficiency. This efficiency loss
can be attributed to the exploration steps. Remember that an exploration step comes
after a selection step: it builds a sample (Zj

τk+1
,W j

k+1)j≤N by extending the trajectories
of a selected sample (

∼
Zj
τk
,
∼
W j
k )j≤Ñ . This newly built sample (Zj

τk+1
,W j

k+1)j≤N fulfills two
goals : 1) It contributes to the empirical approximation ηNk+1 of ηk+1. 2) It is used as a
candidate sample for the next selection. But this second goal is often poorly achieved with
a concentrated PDMP.

Indeed, in order to get a good approximation η̃Nk+1 of η̃k+1, it is preferable that the
candidate sample to selection (Zj

τk+1
,W j

k+1)j≤N contains as many different trajectories as
possible, along with high potential trajectories. Unfortunately, with this kind of PDMP, it
is generally not the case: the candidate sample often contains several replicates of the same
trajectories, and no high potential trajectory. Therefore each distribution η̃k is poorly rep-
resented, and so is each target distribution ηk+1, which eventually deteriorates the quality
of the estimator p̂.

To understand why the exploration steps are not likely to generate many different
trajectories with a concentrated PDMP, we have to come back at the beginning of the
propagation step. At that point, the sample (

∼
Zj
τk
,
∼
W j
k )1≤j≤N is naturally clustered because

of the previous selection step, each of the clusters containing several replicates of the same
trajectories. We can rewrite (9.13) in the following way

η̃Nk =
N∑
i=1

∼
W i
k δ∼Ziτk

= 1
N

N∑
j=1

Ñ j
kδZjτk

(9.31)

where ∑N
j=1 Ñ

j
k = N . In practice many of the Ñ j

k are null and only a few are positive
and the N resampled trajectories (

∼
Zj
τk

)j≤N are concentrated on a few trajectories. Then,
each of the Ñ j

k trajectories of the j-th cluster is extended by using the same distribution
Vk+1(.|Zj

τk
). (For each index i such that Aik = j the trajectory

∼
Zi
τk

is extended with the
kernel Vk+1(.|Zj

τk
)). As the kernel Vk+1(.|Zj

τk
) corresponds to a concentrated PDMP, it is

likely to extend all the trajectories of a cluster in the same manner. The trajectory ak,jτk+1

which extends Zj
τk

until τk+1 without spontaneous jump or failure concentrates the mass
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of the kernel Vk+1(.|Zj
τk

). Indeed, at this point we have :

Vk+1(
{
ak,jτk+1

}
|Zj

τk
) = P

(
Zτk+1 = ak,jτk+1

∣∣∣Zτk = Zj
τk

)
' 1. (9.32)

Therefore each of the trajectories
∼
Zi
τk

= Zj
τk

in a cluster tends to be extended into ak,jτk+1
.

Thus, the trajectories within a cluster are likely to stay clumped together during the
propagation, and the propagated sample (Zj

τk+1
,W j

k+1)j≤N is very likely to be clustered
too. When the preponderant trajectories ak,jτk+1

have low potential values, the sample is
not likely to contain high potential trajectories. Consequently the selection step having
no good candidates and too few candidates, it tends to yield an inaccurate estimation of
the distributions η̃k.
This situation is typical of reliability assessment. In that context, a well constructed po-
tential function is close to G∗k wherein h = 1D . So the potential of a trajectory Gk+1(Zτk+1)
should be high if its final state Zτk+1 is more degraded than the state Zτk . This generally
implies that Zτk+1 includes at least one component failure between τk and τk+1. As the
preponderant trajectories ak,jτk+1

do not contain failure between τk and τk+1 they generally
are associated with low potential values.

This phenomenon is due to the fact that the distribution of zτk+1 can be decomposed
into a Dirac measure in ak,jτk+1

with a high probability Vk+1
(
{ak,jτk+1

}|Zj
τk

)
and a continuous

part. As the segment of the trajectory ak,jτk+1
on (τk, τk+1] relates to a Dirac contribution

of the measure ζZjτk ,τk+1−τk , we can decompose the expected propagation of the trajectory
∼
Zj
τk

in this way:

δZjτk
Vk+1(f) = f

(
{ak,jτk+1

}
)
Vk+1

(
{ak,jτk+1

}|Zj
τk

)
+
∫

Eτk+1\{a
k,j
τk+1}

f
(
zτk+1

)
Vk+1

(
dzτk+1|Zj

τk

)
,

= f
(
{ak,jτk+1

}
)
vk+1

(
ak,jτk+1,(τk,τk+1]|Z

j
τk,(τk−1,τk]

)
+
∫

Eτk+1\{a
k,j
τk+1}

f
(
zτk+1

)
vk+1

(
dzτk+1,(τk,τk+1]|Zj

τk,(τk−1,τk]

)
δZjτk

(dzτk) (9.33)

where f ∈M (Eτk+1). And the expected propagation of ηNk would be:

η̃Ñk Vk+1(f) =
N∑
j=1

Ñ j
k

N
δZjτk

Vk+1(f)

=
N∑
j=1

Ñ j
k

N
f
(
{ak,jτk+1

}
)
Vk+1

(
{ak,jτk+1

}|Zj
τk

)

+ Ñ j
k

N

∫
Eτk+1\{a

k,j
τk+1}

f
(
zτk+1

)
Vk+1

(
dzτk+1 |Zj

τk

)

'
N∑
j=1

Ñ j
k

N
f
(
{ak,jτk+1

}
)
, (9.34)
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because the probability Vk+1
(
{ak,jτk+1

}|Zj
τk

)
' 1. The consequence is the set Eτk+1\{ak,jτk+1

}
is not likely to be explored empirically, and unfortunately this set is where the high
potential trajectories are in our case. The issue of the IPS with concentrated PDMPs is
that, in practice, this set is not represented empirically in the samples of the algorithm,
which deteriorates the estimates of the target densities.

Our solution is to modify the propagation step, using the memorization method pre-
sented in the next chapter because this method enforces the simulation of trajectories in
this set.
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Chapter 10

Efficient generation of the
trajectories using the Memorization

method

This chapter presents the memorization method that was first introduced in [36].
Remember that we consider that a trajectory at is preponderant whenever pat = P(Zt =
at) > 0. Assuming we know such a preponderant trajectory at, the memorization method
allows to generate a trajectory Zt which differs from this preponderant trajectory at.

10.1 Advantage of Memorization over a rejection al-
gorithm

The interest of the method, compared to a rejection algorithm, is that we generate
a trajectory Zt 6= at in one shot, whereas a rejection algorithm may generate several
times the preponderant trajectory at before generating a trajectory different from at.
This is especially interesting when the probability pat = P(Zt = at) is close to 1, as,
with a rejection algorithm, the average number of tries to get a trajectory different from
at would be 1

1−pat
which is then very high. Therefore with a rejection algorithm much

computational effort would be wasted generating at over and over.

10.2 Principle of the memorization method

Work with the differentiation time

The key idea of the memorization method is to consider the stopping time τ defined
such that:

∀s < τ, Zs = as and Zτ 6= aτ . (10.1)

This time τ is the time at which the trajectory Zt differentiates itself from at. So, to
generate Zt knowing τ ≤ t is equivalent to generate Zt knowing it differs from at. In order
to simulate a trajectory Zt avoiding at, one can follow these three steps:

1. generate τ knowing τ ≤ t, and set Zτ− = aτ− ,
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2. generate Zτ knowing Zτ 6= aτ ,

3. generate the rest of the trajectory normally until t.

These steps are not difficult to realize, except for the first one.

Generate τ knowing τ ≤ t

To achieve this first step, the authors in [36] propose to generate τ knowing τ ≤ t by
using a method equivalent to the inverse transform sampling method. We present hereafter
the theoretical foundation for this method. We denote by F the cumulative distribution
function (cdf) of τ knowing τ ≤ t:

F (v) = P
(
τ < v|τ ≤ t

)
, (10.2)

and we denote by F−1 its generalized inverse defined by

F−1(x) = inf
v>0
{v | F (v) ≥ x}. (10.3)

We also denote by F̃ the function defined by

F̃ (v) = P(Zv− = av−) =
n(av)∏
k=0

exp
[
− Λask

(tk)
] n(av)∏
k=1

(
Ka−sk ({ask})

)
1tk>0 (10.4)

where Θv(av) =
(
(ask , tk)

)
0≤k≤n(av)

. Note that F̃ is discontinuous in each jump time sk
where Ka−sk ({ask}) 6= 1, so the inverse of F̃ is not necessarily defined everywhere on [pat , 1].
For this reason we consider F̃−1, the generalized inverse of F̃ defined by

F̃−1(x) = sup
v>0
{v | F̃ (v) ≤ x}. (10.5)

F̃−1 extends the inverse of F̃ constantly where it is not defined, this extension being done
from the left so that F̃−1 is right continuous.

The inverse transform sampling method consists in generating U ∼ Unif(0, 1) and
taking F−1(U) as a realization of τ | τ ≤ t. The simulation of such random variables is
also presented in [24]. Now, note that the expression of the cdf F can be related to F̃ ,
indeed we have:

∀v < t, F (v) = P(τ < v)
P(τ ≤ t) = 1− P(τ ≥ v)

1− P(τ > t) = 1− P(Zv− = av−)
1− P(Zt = at)

= 1− F̃ (v)
1− pat

.
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Consequently we have that

F−1(U) = inf
v>0
{v | F (v) ≥ U}

= sup
v>0

{
v | F̃ (v) ≤ 1− U

(
1− pat)

)}
,

= F̃
(

1− U
(
1− pat

))
. (10.6)

Also, as U has uniform distribution on [0, 1], Ũ = 1 − U
(
1 − pat) is uniform on [pat , 1].

Therefore, sampling with the inverse transform method is equivalent to simulating Ũ ∼
Unif(pat , 1) and taking F̃−1(Ũ) as a realization of τ | τ ≤ t.

Assuming we first generate the trajectory at and generate Ũ according to a uniform
distribution on (pat , 1), we now show how to evaluate F̃−1(Ũ). We consider that during
the generation of at, we computed and memorized P(Zs−

k
= as−

k
) and P(Zsk = ask) for

each jump in the trajectory, and also for P(Zt = at). Then we distinguish two cases,
either there exists k ≤ n(at) such that P(Zs−

k
= as−

k
) ≥ Ũ > P(Zsk = ask), either there

exists k ≤ n(at) such that P(Zsk = ask) ≥ Ũ > P(Zs−
k+1

= as−
k+1

) where we take the
convention that s−n(at)+1 = t. The first case is quite simple as by definition of F̃−1 we get
F̃−1(Ũ) = sk. In the second case, F̃ being continuous and strictly decreasing on [sk, sk+1),
it is invertible on this interval, and F̃−1 corresponds to F ’s inverse on (F̃ (s−k+1), F̃ (sk)].
So F̃−1(Ũ) ∈ [sk, sk+1) and F̃ (F̃−1(Ũ)) = Ũ . Notice that

∀v ∈ [sk, sk+1), F̃ (v) = F̃ (sk)× exp
[
−Λask

(v − sk)
]
. (10.7)

So in particular, for v = F̃−1(Ũ), we have :

Ũ = F̃ (F̃−1(Ũ)) = F̃ (sk)× exp
[
−Λask

(F̃−1(Ũ)− sk)
]
, (10.8)

or equivalently

log
(
F̃ (sk)
Ũ

)
=
∫ F̃−1(Ũ)−sk

0
λask (u)du. (10.9)

To determine F̃−1(Ũ) we look for the value s such that the integral
∫ s

0 λask (u)du is equal

to log
(
F̃ (sk)
Ũ

)
by dichotomy, then we set F̃−1(Ũ) = sk + s.

To sum up the generation of a realization of τ |τ ≤ t we proceed as follows:

1. Generate Ũ ∼ Unif(pat , 1), and set k = 0
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2. If P(Zsk = ask) ≥ Ũ > P(Zs−
k+1

= as−
k+1

), then find s ∈ [0, sk+1 − sk) such that

log
(
F̃ (sk)
Ũ

)
=
∫ s

0
λask (u)du,

and set τ = sk + s.

3. If P(Zs−
k+1

= as−
k+1

) ≥ Ũ > P(Zsk+1 = ask+1), then τ = sk+1

4. If the condition above is not satisfied, set k = k + 1, if k ≤ n(as) repeat the steps
2 to 4
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Chapter 11

The IPS+M method for
concentrated PDMPs

11.1 Modify the propagation of clusters

We have seen in section 9.2.3 that, when they are applied on a concentrated PDMP,
the exploration steps of the IPS method tend to simulate the same trajectory, which
reduces the efficiency of the exploration and consequently it reduces the efficiency of the
IPS method. In order to diversify the simulated trajectories, and to increase the precision
of the estimation, we propose to modify the exploration steps, by modifying the way we
extend the selected trajectories. Here we consider that the size of the propagated sample
can differ from the size of the previous selected sample. We now denote Ñk the size of the
kth selected sample, and Nk+1 the size of the kth propagated sample, with the convention
N0 = N . We stressed out, in section 9.2.3, that the propagation step aims at providing
an estimation of ηk+1 = η̃kVk+1 using the selected sample (

∼
Zj
τk
,
∼
W j
k )j≤Ñk . In other words,

the selection step aims at providing a propagated weighted sample (Zj
τk+1

,W j
k+1)j≤Nk+1 to

estimate the distribution η̃Ñkk Vk+1 defined by:

η̃Ñkk Vk+1(f) =
Ñk∑
j=1

∼
W j
k δ∼Zjτk

Vk+1(f) =
Nk∑
j=1

Ñ j
k

Ñk

δZjτk
Vk+1(f), (11.1)

where f ∈ M (Eτk+1). We denote by V̄k+1 the Markovian kernel from Eτk to Eτk+1 such
that, for any trajectory Zj

τk
, V̄k+1(.|Zj

τk
) is the conditioning of Vk+1(.|Zj

τk
) to Eτk\{ak,jτk+1

}.
V̄k+1’s density with respect to ζτk+1 verifies:

V̄k+1(dzτk+1|Zj
τk

) =
Vk+1(dzτk+1|Zj

τk
)

1−Vk+1
(
{ak,jτk+1}

∣∣∣Zj
τk

)1zτk+1 6=ak,jτk+1
. (11.2)

Using (11.1) we can decompose η̃Ñkk Vk+1 as follows:

η̃Ñkk Vk+1(f) =
Nk∑
j=1

Ñ j
k

Ñk

Vk+1
(
{ak,jτk+1

}|Zj
τk

)
f
(
{ak,jτk+1

}
)

+
(
1−Vk+1

(
{ak,jτk+1

}|Zj
τk

))
δZjτk

V̄k+1(f)
.

(11.3)
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In the original IPS algorithm, the sample approximating η̃Ñkk Vk+1 is built by directly
extending each trajectory in the selected sample. When we extend the replicates of a
cluster, in average a proportion Vk+1({ak,jτk+1

}|Zj
τk

) of the replicates are extended into
ak,jτk+1

. This proportion of trajectories extended into ak,jτk+1
then serves as an estimation of

Vk+1({ak,jτk+1
}|Zj

τk
). But it is not necessary to waste all these replicates to estimate the

probability of the preponderant trajectory. If we use equation (11.3), we would need to
generate the trajectory ak,jτk+1

only once to assess its contribution to the propagation of the
cluster. Also, ak,jτk+1

is easy to get. To generate it, it generally suffices to run the simulation
process starting from the state Zj

τk
until time τk+1, while setting the jumps rates and the

probability of failure on demand to zero.

Therefore, for each cluster, we propose to use an additional replicate to generate
ak,jτk+1

and compute exactly its contribution. So for any j ∈ {1, . . . Nk}, we will extend
the selected trajectory Zj

τk
, N j

k times, where N j
k = Ñ j

k + 1Ñj
k
>0. We denote ji the in-

dex of the ith replicate of Zj
τk
, and consider the added replicate has index 0 such that

for i ∈ {0, . . . , Ñ j
k} we have

∼
Zji
τk

= Zj
τk
. The additional replicate is deterministically ex-

tended to the preponderant trajectory, so we have Zj0
τk+1

= ak,jτk+1
, and we set its weight

to W j0
k+1 = Vk+1({ak,jτk+1

}|Zj
τk

) Ñ
j
k

Ñk
, so that it carries all the mass associated to the pre-

ponderant trajectories of a cluster. Then we can use all the remaining Ñ j
k trajectories

in the cluster to estimate the non preponderant part of the cluster’s propagation (the
1st term in the right hand side of equation (11.3)). For i > 0, we condition the exten-
sions to avoid ak,jτk+1

generating the Z ji
τk+1

according to the kernel V̄k+1(.|Z j
τk

) and set

W ji
k+1 = 1−Vk+1({ak,jτk+1}|Z

j
τk

)
Ñj
k

Ñj
k

Ñk
.

Usually, the simulations of a restricted law are carried out using a rejection algorithm, but
in our case a rejection algorithm would perform poorly. The rate of rejection would be too
high, as it would be equal to Vk+1({ak,jτk+1

}|Zj
τk

) which is typically close to 1. For PDMPs,
such simulations, conditioned to avoid a preponderant trajectory, can be efficiently carried
out using the memorization method. This method, introduced in [37], shares similarities
with the inverse method. It therefore benefits from not using any rejection, and so it is
well suited to our applications. The memorization method is presented in chapter 10.

The target distributions η̃k are still estimated with η̃Ñkk , using equation (9.31), but for
k = 0 to n− 1, ηk+1, the propagation of a target distribution, is now estimated by :

η
Nk+1
k+1 =

Nk+1∑
i=1

W i
k+1δZiτk+1

=
Nk∑

j=1,Ñj
k
>0

Ñj
k∑

i=0
W ji
k+1δZjiτk+1

=
Nk∑

j=1,Ñj
k
>0

Ñ j
k

Ñk

Vk+1
(
{ak,jτk+1

}|Zj
τk

)
δak,jτk+1

+

(
1−Vk+1

(
{ak,jτk+1

}|Zj
τk

))
Ñ j
k

Ñj
k∑

i=1
δZjiτk+1


(11.4)
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11.1. Modify the propagation of clusters

Let Ñk = (N0, Ñ0, N1, Ñ1, . . . , Ñk) and Nk = (N0, Ñ0, N1, Ñ1, . . . , Nk). We now note
γ̃Ñk
k and γNk

k the estimations of the unnormalized distributions, and for all k ≤ n and
f ∈M (Eτk), we define them by:

γ̃Ñk
k (f) = η̃Ñkk (f)

k−1∏
s=0

ηNss (Gs) and γNk
k (f) = ηNkk (f)

k−1∏
s=0

ηNss (Gs). (11.5)

In the end, p is estimated using the equation :

p̂ = ηNnn (fh)
n−1∏
k=0

ηNkk
(
Gk

)
. (11.6)

The full modified version of the algorithm is presented in Figure 11.1. We call this modi-
fied version of the IPS algorithm the IPS+M algorithm.

Throughout the rest of the manuscript, the notation E
M

will indicate that the expec-
tation is associated to the IPS+M method and E will still denote the expectation for the
original IPS method.

Initialization : k = 0, ∀j = 1..N,Zj
0 = (z0) and W j

0 = 1
N
, and

∼
W j

0 = G0(Zj0)∑
s
G0(Zs0)

while k < n do
Selection:
set Ñk = N , and sample (Ñ j

k)j=1..Nk ∼Mult
(
Ñk, (

∼
W j
k )j=1..Nk

)
∀i = 1..Ñk,

∼
W i
k := 1

N

∀j = 1..Nk, set N j
k = Ñ j

k + 1Ñj
k
>0

set Nk+1 := ∑Nk
j=1N

j
k

Propagation :
for j := 1..Ñk do

if N j
k > 0 then
set Z j0

τk+1
= ak,jτk+1

and W j0
k+1 = Vk+1

(
{ak,jτk+1

}|Zj
τk

)∑Ñj
k

i=1
∼
W ji
k

for j = 1..Ñ j
k do

Z ji
τk+1
∼ V̄k+1(.|Z j

τk
) and set W ji

k+1 =
(1−Vk+1

(
{ak,jτk+1}|Z

j
τk

)
)

Ñj
k

∑Ñj
k

i=1
∼
W ji
k

for i := 1..Nk+1 do
∼
W i
k+1 =

W i
k+1Gk+1(Ziτk+1 )∑

j
W j
k+1Gk+1(Zjτk+1 )

if ∀j,
∼
W j
k+1 = 0 then

∀q > k, set ηNqq = η̃Ñqq = 0 and Stop
else

k := k + 1

Figure 11.1 – IPS+M algorithm
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11.2 Convergence properties of the IPS+M estima-
tors

In this section we show that the estimator p̂ of the IPS+M method has the same basic
properties as the IPS estimator. With the IPS+M method, p̂ converges almost surely to p,
it is unbiased, and it satisfies a CLT. The proofs that we provide in this section follow the
reasoning of the proofs in [21]. We present how to adjust the original proofs to take into
account that the extensions of the trajectories within a cluster are no longer identically
distributed. Finally we show that the asymptotic variance of the CLT is reduced with the
IPS+M method.

The martingale decomposition of the anticipated biases

For p ≤ 2n, we define Fp the filtration associated to the sequence of the p first
random samples built with the IPS+M algorithm:

(
(Zj

τ0)j≤N0 , (
∼
Zj
τ0)j≤N , (Zj

τ1)j≤N1 , . . . ,
)
.

So when p is an even number such that p = 2k, Fp is the filtration generated by the vector(
(Zj

τ0)j≤N0 , (
∼
Zj
τ0)j≤N , . . . , (Zj

τk
)j≤Nk , (

∼
Zj
τk

)j≤N
)
. For an odd number p = 2k + 1, Fp is the

filtration generated by the vector
(
(Zj

τ0)j≤N0 , (
∼
Zj
τ0)j≤N , . . . , (Zj

τk
)j≤Nk

)
. For f ∈M (Eτn)

we let ΓN
p,2n(h) be defined by

ΓN
2k,2n(f) = γNk

k (Qk,n(f))− γk(Qk,n(f))
= γNk

k (Qk,n(f))− γn(f) (11.7)

and

ΓN
2k+1,2n(f) = γ̃Ñk

k (Vk+1Qk+1,n(f))− γ̃k(Vk+1Qk+1,n(f))

= γ̃Ñk
k (Vk+1Qk+1,n(f))− γn(f). (11.8)

Using a telescopic argument we get

ΓN
p,2n(f) =

2b p2 c∑
k=0

γNk
k (Qk,n(f))− γ̃Ñk−1

k−1 (VkQk,n(f))

+1p>0

2b p+1
2 c∑

k=1
γ̃

Ñk−1
k−1 (VkQk,n(f))− γNk−1

k−1 (Qk−1,n(f)) , (11.9)
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11.2. Convergence properties of the IPS+M estimators

with the convention for k = 0, γ̃Ñ−1
−1 (V−1Q0,n(f)) = γn(f).

Noticing that γNk
k (1) = γ̃

Ñk−1
k−1 (1) = γ

Nk−1
k−1 (Gk−1), we can rewrite (11.9) as

ΓN
p,2n(f) =

b2pc
2∑

k=0
γNk
k (1)

(
ηNkk (Qk,n(f))− η̃Ñk−1

k−1 Vk−1(Qk,n(f))
)

+1p>0

b2p+1c
2∑

k=1
γ̃

Ñk−1
k−1 (1)

(
η̃
Ñk−1
k−1 (Vk−1Qk,n(f))−Ψk−1(ηNk−1

k−1 )(VkQk,n(f))
)
,

(11.10)

where for k = 0, we use the convention γN0
0 (1)η̃Ñ−1

−1 (V0Q0,n(f)) = γn(f). The benefit of
this decomposition is that it distinguishes the errors associated to the propagation steps
and the errors associated to the selection steps. For the propagation steps, using (11.1)
we easily get that for any f ∈M (Eτk+1):

EM
[
ηNkk (f)

∣∣∣F2k−1
]

= η̃
Ñk−1
k−1 Vk(f). (11.11)

For the selection steps, as the resampling schemes are the same ones as for the IPS
algorithm, we still have for any f ∈M (Eτk):

EM
[
η̃Ñkk (f)

∣∣∣F2k
]

= Ψk(ηNk )(f). (11.12)

Thus, each selection step and propagation step is conditionally unbiased. Note that γNk
k (1)

is F2k−1-measurable and γÑk
k (1) is F2k-measurable, so, when the samples are generated

with the IPS+M algorithm, (ΓN
p,2n(h))p≤2n is a Fp-martingale. Therefore, p̂ stays unbiased

with the IPS+M method, because

EM [ΓN
2n,2n(fh)] = EM [p̂− p] = 0.

Almost sure convergence

Thanks to this martingale decomposition, we can use the same arguments as in the
proof in Chapter 7.4.2 in [21]. Therefore the Theorems 7.4.2 and 7.4.3 page 239 and 241
are satisfied with the IPS+M method too, which yields the following theorem:

Theorem 27. For any h ∈ M (Eτn), p̂ converges almost surely to p, and, for any f ∈
M (Eτk), η

Nk
k (f) converges to ηk(f) almost surely, γNkk (f) converges to γk(f) almost surely.

A Central Limit Theorem

Theorem 28. If the potential functions satisfy the assumption (G-PDMP) (page 128)
and the samples are generated with the IPS+M algorithm, then we have the following
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convergence in distribution:

√
N(p̂− p) −→

N→∞
N
(
0, σ2

M,G

)
,

where

σ2
M,G = η0

([
Q0,n(fh)− η0Q0,n(fh)

]2
)

+
n∑
k=1

γk(1)2η̃k-1

((
1−Vk({aτk}|Zτk-1)

)2
V̄k

[
Qk,n(fh)− V̄kQk,n(fh)

]2
)

+
n∑
k=1

γ̃k(1)2η̃k-1

([
VkQk,n(fh)− η̃k-1VkQk,n(fh)

]2
)
. (11.13)

Proof. Similarly to what is done in [21], in order to prove that p̂ satisfies a CLT, we begin
by proving that the errors associated to the selection and propagation steps are normally
distributed using Lindeberg’s theorem.
For a sequence of function (fk)k≤2n such that f2k and f2k+1 are in M (Eτk), we define the
sum of errors until the pth selection and propagation by:

MN
p,2n(f) =

b p2 c∑
k=0

ηNkk (f2k)− η̃Ñk−1
k−1 Vk(f2k)

+ 1p>0

b p+1
2 c∑

k=1
η̃
Ñk−1
k−1 (f2k−1)−Ψk−1(ηNk−1

k−1 )(f2k−1). (11.14)

For j ∈ {1, . . . N} we let

UN
(2k+1)N+j(f) = 1√

N

(
f2k+1(

∼
Zj
τk

)−Ψk(ηNkk )(f2k+1)
)
. (11.15)

For k ≥ 0, j ∈ {1, . . . , Nk} and i ∈ {0, . . . , N j}, we consider that the indices ji are ordered
in such way that j0 > N and ji < N when i > 0. With such indexing ∀s ∈ {1, . . . , N},
∃j ∈ {1, . . . , Nk} and i ∈ {1, . . . , N j} such that s = ji, and for such s we let

UN
2kN+s(f) =

1−Vk+1
(
{ak,jτk+1

}|Zj
τk

)
√
N

(
f2(k+1)(Zji

τk+1
)− V̄k+1(f2(k+1))(Zj

τk
)
)
. (11.16)

For j ∈ {1, . . . , N0}, let

UN
j (f) = 1√

N

(
f0(Zj

0)− η0(f0)
)
. (11.17)

Thus,
√
NMN

p,2n(f) =
(p+1)N∑
k=0

UN
k (f). (11.18)
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Noting PNk a filtration adapted to the k first trajectories generated in the IPS+M al-
gorithm. Note that we have that E

[
UN
k (f)|PNk−1

]
= 0, and E

[
UN
k (f)2|PNk−1

]
< ∞, and

|UN
k (f)| < 2√

N
sup

k≤n,Zτk∈Eτk
{|f2k(Zτk)| ∧ |f2k+1(Zτk)|}, so the Lindeberg condition is clearly

satisfied. Then, we have that

〈
√
NMN

p,2n(f)〉p =
(p+1)N∑
k=0

E
[
UN
k (f)2|PNk−1

]

= ηN0

([
f0 − ηN0 (f0)

]2
)

+
b p2 c∑
k=1

η̃Nk-1

((
1−Vk({aτk}|Zτk-1)

)2
V̄k

[
f2k − V̄kf2k

]2))

+
b p+1

2 c∑
k=1

η̃Nk-1

([
f2k−1(Zτk-1)−Ψk-1(ηNk-1

k-1 )f2k−1

]2
)
.

(11.19)

As ηNkk and η̃Nk converge almost surely to ηk and η̃k, 〈
√
NMN

p,2n(f)〉n converge in probability
to

σ2
p(f) = η0

([
f0 − η0(f0)

]2
)

+
b p2 c∑
k=1

η̃k-1

((
1−Vk({aτk}|Zτk-1)

)2
V̄k

[
f2k − V̄kf2k

]2))

+
b p+1

2 c∑
k=1

η̃k-1

([
f2k−1(Zτk-1)− η̃k-1f2k−1

]2
)
.

(11.20)

By application of the Lindeberg’s theorem for triangular array (see for instance Theorem
4 on page 543 in [49]), we get that

√
NMN

p,2n(f) converges in law to a centered Gaussian of
variance σ2

p(f). As a corollary, if for p 6= 2k we take fp = 0 and for p = 2k f2k = Qk,n(fh),
we get that

√
N

(
ηNkk Qk,n(fh)− η̃Nk−1VkQk,n(fh)

)

−→
N→∞

η̃k-1

((
1−Vk({aτk}|Zτk-1)

)2
V̄k

[
Qk,n(fh)− V̄kQk,n(fh)

]2))
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and if for p 6= 2k − 1 we take fp = 0 and for p = 2k − 1 f2k−1 = VkQk,n(fh), we get that

√
N

(
η̃Nk−1(VkQk,n(fh))−Ψk−1(ηNk−1

k−1 )(VkQk,n(fh))
)

−→
N→∞

η̃k-1

([
VkQk,n(fh)− η̃k-1VkQk,n(fh)

]2
)
.

As γNkk (1)2 and γ̃Nk (1)2 converges almost surely to γk(1)2 and γ̃k(1)2, by an application
of Slutsky’s Lemma, we get that

√
NΓN

2N,2n(fh) converges in law to a centered Gaussian
with variance

σ2
M,G = γ0(1)2η0

([
Q0,n(fh)− η0Q0,n(fh)

]2
)

+
n∑
k=1

γk(1)2η̃k-1

((
1−Vk({aτk}|Zτk-1)

)2
V̄k

[
Qk,n(fh)− V̄kQk,n(fh)

]2))

+
n∑
k=1

γ̃k-1(1)2η̃k-1

([
VkQk,n(fh)− η̃k-1VkQk,n(fh)

]2
)
. (11.21)

Variance reduction

Theorem 29. The variance of the original IPS can be decomposed as follows:

σ2
IPS,G = σ2

M,G +
n∑
k=1

γk(1)2η̃k-1

(
vk(Zτk-1)V̄k

([
Qk,n(fh)(aτk)−Qk,n(fh)(Zτk)

]2))
,

(11.22)

where vk(Zτk-1) = Vk({aτk}|Zτk-1)
(
1−Vk({aτk}|Zτk-1)

)
. Therefore we have σ2

M,G ≤ σ2
IPS,G.

Proof.

σ2
IPS,G =

n∑
k=0

γk(1)2ηk

([
Qk,n(fh)− ηkQk,n(fh)

]2)
(11.23)

= η0

([
Q0,n((fh)− η0Q0,n((fh)

]2
)

+
n∑
k=1

γk(1)2η̃k−1Vk

([
Qk,n(fh)−VkQk,n(fh) + VkQk,n(fh)− ηkQk,n(fh)

]2)

= η0

([
Q0,n((fh)− η0Q0,n((fh)

]2
)

+
n∑
k=1

γk(1)2η̃k−1Vk

([
Qk,n(fh)−VkQk,n(fh)

]2
)

+
n∑
k=1

γ̃k−1(1)2η̃k−1

([
VkQk,n(fh)− η̃k−1VkQk,n(fh)

]2
)

(11.24)
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Temporarily using the notation Vk({aτk}|Zτk-1) = pk, for any f ∈M (Eτk), we get

Vk

([
f(Zτk)−Vkf

]2
)

= Vk

([
f(Zτk)− pkf(aτk)− (1− pk)V̄k(f)

]2
)

= Vk

(
f(Zτk)2 − 2pkf(Zτk)f(aτk)− 2(1− pk)f(Zτk)V̄kf

+ p2
kf(aτk)2 + 2pkf(aτk)V̄kf + (1− pk)2

(
V̄kf

)2
)

= pkf(aτk)2 + (1− pk)V̄k(f 2)
− 2p2

kf(aτk)2 − 2pk(1− pk)f(aτk)V̄k(f)
− 2pk(1− pk)f(aτk)V̄kf − 2(1− pk)f 2V̄k(f)2

+ p2
kf(aτk)2 + 2pkf(aτk)V̄kf + (1− pk)2V̄k(f)2

= pk(1− pk)
[
f(aτk)2 − 2f(aτk)V̄kf + V̄k(f 2)

]
+ (1− pk)2

(
V̄k(f 2)− V̄k(f)2

)
= pk(1− pk)V̄k

([
f(aτk)− f(Zτk)

]2)
+ (1− pk)2

(
V̄k(f 2)− V̄k(f)2

)
. (11.25)

In particular, for f = Qk,n(fh) we get

Vk

([
Qk,n(fh)−VkQk,n(fh)

]2
)

= pk(1− pk)V̄k

([
Qk, n(fh)(aτk)−Qk, n(fh)

]2)
+ (1− pk)2

(
V̄k(f 2)− V̄k(f)2

)
(11.26)

Plugging (11.26) into the second line of (11.24), yields (11.22).
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Chapter 12

Application to two test systems

12.1 Empirical confirmation

In order to confirm our results empirically, we have applied the IPS method and the
IPS+M method to two two-components systems.

12.1.1 The Heated-room system

The system is a room heated by two heaters in passive redundancy. Heaters are pro-
grammed to maintain the temperature of the room above negative values, turning on
when the temperature drops below some positive threshold and turning off when the tem-
perature crosses a high threshold. The second heater can activate only when the first one
is failed. The system fails when the temperature falls below zero.

Xt represents the temperature of the room at time t. Mt represents the status of the
heaters at time t. Heaters can be on, off, or out-of-order, so M = {ON,OFF, F}2. The
state of the system is Zt = (Xt,Mt).

The differential equation that governs the temperature can be derived from the physics.
xe is the exterior temperature. β1 is the rate of the heat transition with the exterior. β2

is the heating power of each heater. The differential equation giving the evolution of the
temperature of the room has the following form:

dXt

dt
= β1(xe −Xt) + β21M1

t orM
2
t =ON .

The heaters are programmed to maintain the temperature within an interval
(xmin, xmax) where xe < 0 < xmin. We consider that the two heaters are in passive
redundancy in the sense that: when X ≤ xmin the second heater activates only if the
first one is failed. When a repair of a heater occurs, if X ≤ xmin and the other heater
is failed, then the heater status is set to ON , else the heater status is set to OFF . To
handle the programming of the heaters, we set Ωm = (−∞, xmax) when all the heaters are
failed m = (F, F ) or when at least one is activated, otherwise we set Ωm = (xmin, xmax).
Due to the continuity of the temperature, the reference measure for the Kernel is ∀B ∈
B(E), ν(x,m)(B) = ∑

m+∈M\{m} δ(x,m+)(B). On the top boundary in xmax, heaters turn
off with probability 1. On the bottom boundary in xmin, when a heater is supposed
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to turn on, there is a probability γ = 0.01 that the heater will fail on demand. So,
for instance, if z− =

(
xmin, (OFF,OFF )

)
, we have Kz−

(
xmin, (ON,OFF )

)
= 1 − γ,

and Kz−

(
xmin, (F,ON)

)
= γ(1− γ), and Kz−

(
xmin, (F, F )

)
= γ2.

Let j be a transition from m to m+. For the spontaneous jumps (jumps that does not
happen on a boundary), if the transition j corresponds to the failure of a heater, then:
λj(x,m) = 0.0021 + 0.00015 × x and, if the transition corresponds to a repair, then
λj(x,m) = 0.2 when M j = F . Here the system failure occurs when the temperature
of the room falls below zero, so D = {(x,m) ∈ E, x < 0}. A possible trajectory of the
state of this system is plotted in figure 1.17. The probability of failure p was estimated to
2.71× 10−5 thanks to a massive Monte-Carlo of 107 simulations.

MC IPS IPS+M

n = 0 p̂ 2.71× 10−5

σ̂2 2.90× 10−10

n = 5 p̂ 2.86× 10−5 2.70× 10−5

σ̂2 1.78× 10−9 1.37× 10−10

n = 10 p̂ 2.85× 10−5 2.64× 10−5

σ̂2 1.08× 10−9 1.07× 10−10

Table 12.1 – Empirical means and empirical variances on 100 runs with N = 105 for the
MC, the IPS and the IPS+M methods

12.1.2 Results of the simulations on the Heated-room system

The results of the simulation study for the heated-room system are displayed in table
12.1. Here we have used the potential functions:

∀k < n, G(Zτk) = 1τD>τk exp
[
−α1(b(Zτk) + 1)2

]
+ 1τD≤τk , (12.1)

where b(Zτk) is the number of working components and τD is the time of the failure of the
system. The value of α was set to 1.1. We have tried different values of α between 0.5 and
1.5 with a step 0.1. The value of α = 1.1 was chosen among our trials as the one yielding
the best variance reduction for the IPS method. For the IPS, IPS+M, and MC methods
the variances are estimated empirically: we run the methods 100 times and we take the
empirical variances of the 100 estimates. The results highlight that the IPS method is
ill-suited to PDMPs, as it yields a higher variance than the MC method. Conversely, our
IPS+M method performs well and has overcome the issue of the PDMP. Indeed, in the
case n = 10, it reduces the variance by a factor 2.7 compared to the MC method, and by
a factor 10 compared to the IPS method.

The IPS+M is about 4 times slower than the IPS method, so, in terms of computational
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12.1. Empirical confirmation

cost, the method is only 2.5 more efficient than the IPS method on this test case. For
a run of N = 105 the IPS+M is about 2.7 time slower than Monte-carlo method. So in
terms of computational cost the IPS+M is slightly more efficient than the Monte-Carlo
Method.

12.1.3 Remark on the SMC with Memorization

The SMC method can be seen as an improvement of the IPS method. Therefore,
one may think that the IPS+M algorithm can be improved in the form of a SMC+M
algorithm by adding adaptive optional re-sampling steps to the IPS+M. However, it is
not beneficial to add these adaptive optional re-sampling steps. Indeed we noticed that,
as we greatly modify the propagation process, the weights are greatly imbalanced and the
effective-sample-size ends up being extremely small, which would trigger the re-sampling
each time. Therefore adding adaptive optional re-sampling to the IPS+M has no effect,
and in practice the IPS+M methods and the SMC+M methods are the same.

12.1.4 A dam system

The second system models a dam subjected to an incoming water flow. The physical
variable of interest is the water level in the dam denoted by Xt. The failure of the system
occurs when the water level exceeds a security threshold xlim = 10 before time tf = 50.
The initial level is set to X0 = 0. The water flow is characterized by the input debit
Q = 10. The dam has two evacuation valves with output debit Q. Each valve can be
either open, close or stuck closed. So M = {Open,Closed, Stuckclosed}2. The valves
are programmed in passive redundancy, so if the valves are in functioning order there is
always one valve open and one valve closed. Though, the valve can get stuck closed and
this happens at random times with exponential distribution with intensity λ = 0.001.
The valves are repaired with a repair rate µ = 0.1. When both valves are stuck closed the
reservoir of the dam starts filling up according to the equation dXt

dt
= Q/S, where S = 10

is the surface of the reservoir.

12.1.5 Results of the simulations for the dam system

The results of the simulation study for the dam system are displayed in table 12.2.
Here we have used the potential functions:

∀k < n, G(Zτk) = 1τD>τk exp
[
α1(xlim −Xτk) + α2(b(Zτk) + 1)2

]
+ 1τD≤τk , (12.2)

where b(Zτk) is the number of working components. The value of α1 was set to −0.9
and the value of α2 was set to −1 (these are a priori guesses, we have not tried to use
any optimization). For the IPS and the IPS+M methods the variances are estimated
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empirically: we run the methods 50 times and we take the empirical variances of the
50 estimates. The results are presented in table 12.2. The results highlight that the IPS

MC IPS IPS+M
p̂ 1.12× 10−4

σ̂2 1.12× 10−9

n = 5 p̂ 1.75× 10−4 1.12× 10−4

σ̂2 3.08× 10−8 4.37× 10−9

Table 12.2 – Empirical means and empirical variances on 50 runs with N = 105 for the
MC, the IPS and the IPS+M methods

method is again ill-suited to PDMPs, as it yields a variance 30 times larger than the MC
method. Our IPS+M method performs better than the IPS method as the variance is
reduced by a factor 7. Yet on this example the IPS+M method has not overcome the
issue of the PDMP, as its variance is 3.4 times larger than the variance of the Monte-carlo
estimator. In terms of computational cost, on this example the IPS+M method was 3.6
times slower than the IPS, and 11.8 times slower then than the Monte-Carlo method. So
the efficiency of the IPS+M is about 40 lower than the Monte-Carlo method. Clearly,
the implementation of the IPS+M method requires a careful choice of the form of the
potential functions and of their parameters.
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Chapter 13

Conclusion on the IPS+M

As the IPS method does not perform well when it is used on a concentrated PDMP,
we introduce and analyze the IPS+M method, that is a modified version of the IPS that
performs better with concentrated PDMP. The IPS+M method is similar to the IPS
but has different propagation steps. Its propagation steps focus on clusters of identical
particles rather then on particles individually. For each cluster a memorization method is
used to get an empirical approximation of the distribution of the propagated cluster, which
allows to greatly improve the accuracy of the method. We have shown that the proposed
algorithm yields a strongly consistent estimation, and that this estimation satisfies a
CLT. We prove that the asymptotic variance of the IPS+M estimator is always smaller
than the asymptotic variance of the IPS estimator. Simulations also confirm these results,
showing that the IPS+M can yield a variance reduction when the IPS cannot. In terms
of computational cost, our implementations of the IPS+M method give approximately
the same efficiency as the Monte-Carlo method in the examples considered in this paper,
where the goal is to estimate a probability of the order of 10−5 for rather simple toy
models. The numerical implementations certainly deserve more careful attention. We also
believe that there are ways to improve the efficiency of the IPS+M method by finding
a better class of potential functions. Another interesting improvement to the IPS+M
method would be to propose an estimator of the variance. We believe that it should be
possible to adapt one of the estimators proposed in [38] for the IPS method in order to
get an estimator of the variance for the IPS+M estimator.
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Part V

Conclusion and prospects for future
work
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Our goal is to accelerate the reliability assessment of power generation systems done
within the EDF’s toolbox PyCATSHOO. This reliability assessment is originally done
by a Monte-Carlo method, and based on the stochastic model of Piecewise deterministic
Markovian processes (PDMP)[19, 18]. Our work focuses on two methods used for Monte-
Carlo acceleration : The importance sampling (IS) method [39, 47], and the interacting
particles system (IPS) method [23, 21, 22]. These methods are designed to estimate an
integral or a probability with a better accuracy than the Monte-Carlo method. We propose
adaptations of these methods to the PDMP case in order to assess the reliability of power
generation systems with a better accuracy and therefore with less simulation runs.

Conclusion on the IS method

The IS method is adapted to the PDMP case

Concerning the IS method, our work [15] makes the use of importance sampling on
PDMPs with boundaries possible, and it provides a convenient way to specify the law
of the importance process. We have developed the theoretical foundations of importance
sampling for PDMPs with boundaries. The challenge was to properly define the likeli-
hood ratio involved in the weighting of the simulation outputs when the random variable
of interest is a trajectory of PDMP with boundaries. We have exhibited the reference mea-
sure ζ on the space of PDMP trajectories, which allowed us to identify the closed form
expression of the density of a PDMP trajectory, and to properly define the likelihood
ratio. Thanks to the reference measure, we have also been able to identify the possible
importance processes. Then we have studied the characteristics of the optimal process
to assess the quantity E[h(Z)] where h ∈ M (Etf ). The distribution of this process has
density g∗(z) = |h(z)|f(z)

p
, when used as an importance process it brings the variance of the

IS estimator to zero. We have managed to show that the closed form expression of the
law of this optimal process depends on a function U∗ defined by:

U∗ :
⋃

s∈[0,tf ]
Es × {s} −→ R

(z, s) −→ E[h(Z)|Zs = z]

and to the function U− =
∫
U∗dK. Indeed, we have shown that the density of the time be-

tween, for instance, the k-th jump and of the k + 1-th jump is such that,
∀s ∈ [0, tf ), zs ∈ Es, u ∈ [0, t∗zs) :

g∗T ′
k
|Z′
S′
k

=zs,S′k=s(u) =
U -
(
Φzs(u), s+ u

)
U*
(
zs, s

) fTk|ZSk=zs(u).
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We have shown that the transition kernels and the jump rates associated to this optimal
process are such that, ∀s ∈ [0, tf ), zs ∈ Es, u ∈ [0, t∗zs) :

K∗zs-,s(z) =
U∗
(
zs, s

)
U -
(
z−s , s

)Kz-
s
(zs), (13.1)

λ∗zs,s(u) =
U -
(
Φzs(u), s+ u

)
U∗
(
Φzs(u), s+ u

)λzs(u). (13.2)

As finding an efficient importance density is easier when we restrict the search to
a family of parametric importance densities, we propose a way to specify the family of
parametric importance densities. We have proposed to approximate the function U∗ by
parametric functions Uα, and to plug this approximation instead of U∗ into the expressions
(13.1) and (13.2) of the optimal transition kernel densities and jump rates.

Inefficiency on a big system

This strategy yields spectacular results on the small system of the heated room, which
is very encouraging, but so far the IS method does not work with the second case of
industrial size. In order to fit the parameters of the importance process, we used the
Cross entropy method. We believe the inefficiency on the industrial system is due to two
main factors. The first reason being that the system is complex and has many ways to fail.
Indeed the parametric function Uα must give an importance density that favors all the
ways to fail, but it must also favor a way to fail proportionally to its probability, which is
difficult to do. The second reason is that the cross-entropy is not well suited to find the
optimal parameters when the failure region is not connected and is made of many parts.

Prospect on IS

In order to improve the developed IS method for PDMP, we need to find a way to
specify better Uα functions, and to improve the optimization of the parameter. We believe
that the design of the Uα should depend on the identification of the minimal groups, and
that the classic tools of reliability analysis can help to the identification of the minimal
groups, and therefore can help the design of a family of Uα functions containing a function
close to the optimal proximity function U∗. We also believe that in order to avoid over-
biasing situations, the optimization method used (the cross entropy) should handle the
fact that the optimal density may be, in some sense yet to be defined, multimodal, or the
fact that the optimal density may concentrate its probability mass on distinct parts of
the trajectory space.

More generally, for the use of IS method with any model, it is important to develop a
tool to identify a situation with over-biasing and under-estimated variance.
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Conclusion on the IPS method

Tuning of the IPS method

In part III, we provide the closed from expressions of the optimal potential functions
(G∗k)k<n for which the variance of the IPS estimator is minimized. This work is also
presented in the preprint [16]. It is interesting to note that the expressions of the Gk’s
depend on the function U∗ also involved in the optimal importance process of the IS
method. As the optimal potentials (G∗k)k<n yield a positive variance, it confirms that the
reductions of variance achievable with the IPS method is lower bounded. This result having
already been observed empirically or analytically on some examples. The dependency of
the Gk’s on U∗ also confirms that the IS method is preferable to the IPS method when we
are able to closely approximate U∗ and when the importance process can be simulated.

Concerning the search of the best potential functions within a family of parametric
potential functions, notice that the new possibility to estimate the variance of the estima-
tors of the IPS [1] gives a new brick to build a method of optimization of the parameter.
With these estimators, it might be possible to build an IPS algorithm that optimizes
the parameters of the potentials, like the minimization of the variance method [48, pages
62,83] does for IS.

The IPS+M method is better suited to a concentrated PDMP
case

In part IV, we develop the IPS+M method which is an adaption on the IPS method
to the case of a concentrated PDMP. This work is also presented in the paper [14]. This
method consists in modifying the propagation steps of the IPS method: it modifies the
propagation of identical trajectories using the memorization method, and correct the
induced bias by appropriately weighting the propagated particles. We prove that the
IPS+M method yields a strongly consistent estimator that satisfies a CLT. We prove that
the asymptotic variance of the estimator is always smaller with the IPS+M method than
with the IPS method.

The unbalanced weights within the IPS+M methods, makes it impossible to use adap-
tive resampling with the effective sample size criteria.

A suggestion for improvement of the IPS+M

The benefit of the IPS+M method is that it forces the generation of trajectories with
one jump between two consecutive subdivisions [τk, τk+1]. This allows to better explore
the set of trajectories and yields a smaller variance of the estimator. But we can notice
that the failing trajectories may very well jump more than once between two consecutive
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subdivisions [τk, τk+1], and that our IPS+M method does not force the exploration of such
trajectories with more than one jump between two consecutive subdivisions [τk, τk+1]. We
think that we could reach an even smaller variance if the method would also generate
trajectories with several close jumps with a higher probability. We believe that one good
way to generate trajectories with any length between two consecutive jumps is to no
longer use a subdivision on fixed times (τk)k≤n but to use a subdivision on jumps, setting
for each trajectory τk = Sk. The issue with that option is that, at a the k − th step of
the algorithm, we get a sample of trajectories containing k jumps, but these trajectories
are not of the same length. The challenge is then to find a way so that the last sample
of trajectories (at the n− th step) contains only trajectories of length tf , so that we can
estimate the quantity p = P(Ztf ∈ D).
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Appendix A

Optimal intensity’s expression, and
some properties of U∗

A.1 Proof of Equality (4.11)

Let zs be a trajectory of size s. Remember that equality (4.11) states that

U -
(
Φzs(t∗zs), s+ t∗zs)

)
= lim

t↗t∗z
U∗
(
Φzs(t), s+ t

)
.

Proof. We denote by T the time until the next jump after the trajectory has reached the
state Zs+t = φzs(t). Then we have:

U∗
(
Φzs(t), s+ t

)
= E

[
|h(z)|

∣∣∣Zs+t = Φzs(t), s+ t
]

= E
[
E
[
|h(z)|

∣∣∣Zs+t+T
]∣∣∣∣Zs+t = Φzs(t)

]
= E

[
(1T<t∗Φz(t)

+ 1T=t∗Φz(t)
)U∗(Zs+t+T )

∣∣∣∣Zs+t = Φzs(t)
]

=
∫ t∗Φzs (t)

0
U−(ΦΦzs (t)(u), s+ t+ u)λΦzs (t)(u) exp

[
− ΛΦzs (t)(u)

]
du

+ exp
[
− ΛΦzs (t)(t∗Φzs (t))

] ∫
E
Kz−(zs+t+t∗Φzs (t)

)U∗(zs+t+t∗Φzs (t)
)dνz−(zs+t+t∗Φzs (t)

)

where z− = ΦΦzs (t)(t∗Φzs (t))

U∗
(
Φzs(t), s+ t

)
=
∫ t∗zs

t
U−(Φzs(u), s+ u)λzs(u) exp

[
− Λzs(u) + Λzs(t)

]
du

+ exp
[
− ΛΦzs (t)(t∗zs − t)

] ∫
E
Kz−(zs+t∗zs )U

∗(zs+t∗zs )dνz−(zs+t∗zs )

where z− = Φzs(t∗zs)

so U∗
(
Φzs(t), s+ t

)
= o(1) +

(
1 + o(1)

)
U -
(
Φzs(t∗zs)

)
as t→ t∗zs , t < t∗zs .
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A.2 Proof of theorem 18

Proof. We have seen in the proof above that

U∗
(
Φzs(t), s+ t

)
=
∫ t∗zs

t
U−(Φzs(u), s+ u)λzs(u) exp

[
− Λzs(u) + Λzs(t)

]
du

+ exp
[
− ΛΦzs (t)(t∗zs − t)

] ∫
E
Kz−(zs+t∗zs )U

∗(zs+t∗zs , s+ t∗zs)dνz−(zs+t∗zs )

so

U∗
(
Φz(t), s+ t

) ∫ t∗zs

t
U−(Φzs(u), s+ u)λzs(u) exp

[
− Λzs(u) + Λzs(t)

]
du

+ exp
[
− Λzs(t∗zs) + Λzs(t)

] ∫
E
Kz−(zs+t∗zs )U

∗(zs+t∗zs , s+ t∗zs)dνz−(zs+t∗zs )

= 1
exp

[
− Λzs(t)

] ∫
[t,t∗z ]

U−(Φzs(u), s+ u)
(
λz(u)

)
1t<t∗z exp

[
− Λz(u)

]
dµz(t)

This last equality allows to transform (4.8) into (4.9).

A.3 Equality (4.12)

Let s ∈ [0, tf ] and zs ∈ Es . Remember that equality (4.12) states that if the functions
u → U -

(
Φzs(u), s + u

)
and u → λz(u) are continuous almost everywhere on [0, t∗z), then

almost everywhere

∂U∗
(
Φzs(v), s+ v

)
∂v

=
(
U∗
(
Φzs(v), s+ v

)
− U−

(
Φzs(v), s+ v

))
λz(v)

Proof. We denote by T the time until the next jump after the trajectory has reached
Zs = z. For 0 ≤ h < t∗z, we define τ = min(h, T ).

U∗(zs) = E
[
|h(Z)|

∣∣∣Zs = zs
]

= E
[
E
[
|h(Z)|

∣∣∣Zs+τ
]∣∣∣∣Zs = zs

]
= E

[
(1τ=h + 1τ<h)E

[
|h(Z)|

∣∣∣Zs+τ
]∣∣∣∣Zs = zs

]
= E

[
1T=h E

[
|h(Z)|

∣∣∣Zs+h = Φzs(h)
]∣∣∣∣Zs = zs

]
+ E

[
1T<h E

[
|h(Z)|

∣∣∣Zs+T
]∣∣∣∣Zs = zs

]
= U∗(Φzs(h), s+ h) E

[
1T=h

∣∣∣Zs = zs
]

+ E
[
1T<h U

∗(Φzs(T ), s+ T )
∣∣∣∣Zs = zs

]

= U∗(Φzs(h), s+ h) exp
[
− Λz(h)

]
+∫ h

0

∫
E
KΦz(u)(zs+u)U∗(zs+u, s+ u)dνΦz(u)(zs+u)λz(u) exp

[
− Λz(u)

]
du
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As λz(.) is continuous almost everywhere we have that almost everywhere:

U∗(zs, s) = U∗(Φzs(h), s+ h) (1− λz(0)h+ o(h)) +
∫ h

0
U -
(
Φzs(u), s+ u

)
λz(u) exp

[
− Λz(u)

]
du

As u→ U -(Φzs(u), s+ u)λz(u) is continuous almost everywhere, and we can do a Taylor
approximation of the integral, which gives:

U∗
(
zs, s

)
− U∗

(
Φzs(h), s+ h

)
= −λz(0) .h .U∗

(
Φzs(h), s+ h

)
+ h .U -

(
zs, s

)
λz(0) + o(h)

So u→ U∗(Φzs(u), s+u) is right-continuous almost everywhere. Therefore U∗(Φzs(h), s+
h) = U∗(zs, s) + o(1), and we get:

U∗
(
zs, s

)
− U∗

(
Φzs(h), s+ h

)
h

= −λz(0)U∗
(
zs, s

)
+ U -

(
zs, s

)
λz(0) + o(1)

Making h tends to zero we get that u→ U∗(Φzs(u), s+ u) has a right-derivative in zero.
Assuming that Φzs(−h) is the trajectory defined on [0, s− h] obtained by removing to zs
its states on [s − h, s]. Applying the same kind of reasoning in state Φzs(−h) instead of
zs, we would find that the left-derivative exists and is equal to the right-derivative. So for
almost every trajectory zs ∈ Es,

(
∂U∗

(
Φzs(v), s+ v

)
∂v

)
v=0

= U∗
(
Φzs(0), s

)
λzs(0)− U -

(
Φzs(0), s

)
λzs(0)

Applying the same reasoning in a state Φzo(v) instead of z and using the additivity of the
flow, we get that almost everywhere:

∀zs ∈ Es, v > 0,
∂U∗

(
Φzs(v), s+ v

)
∂v

= U∗
(
Φzs(v), s+v

)
λzs(v)−U -

(
Φzs(v), s+v

)
λzs(v)
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