
HAL Id: tel-03155006
https://theses.hal.science/tel-03155006

Submitted on 1 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Facilitating Reuse on the Web of Data
Benjamin Moreau

To cite this version:
Benjamin Moreau. Facilitating Reuse on the Web of Data. Data Structures and Algorithms [cs.DS].
Université de Nantes - Faculté des Sciences et Techniques, 2020. English. �NNT : �. �tel-03155006�

https://theses.hal.science/tel-03155006
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Thèse de doctorat

Benjamin Moreau

Université de Nantes
Comue Université Bretagne Loire
École Doctorale N°601
Mathématiques et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Facilitating Reuse on the Web of Data

Thèse présentée et soutenue à Nantes, le 6 Novembre 2020
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes

Composition du Jury
Président : M Pascal Molli Professeur, Université de Nantes
Rapporteurs : Mme Serena Villata Chargée de recherche CNRS HDR, Sophia Antipolis

M Olivier Curé Maître de conférences HDR, Université Marne-la-Vallée
Examinateurs : M Bernd Amann Professeur, Sorbonne Université

M Serge Garlatti Professeur, IMT Atlantique de Brest
M Philippe Pucheral Professeur, Université de Versailles Saint Quentin

Directeur de thèse : Mme Patricia Serrano Alvarado Maître de conférences HDR, Université de Nantes
Co-encadrant de thèse : M Emmanuel Desmontils Maître de conférences, Université de Nantes
Invités : M David Thoumas Co-Founder & CTO, Opendatasoft

M Nicolas Terpolilli Director of Engineering, Opendatasoft

Acknowledgements

I would like to thanks people that have contributed to this thesis through their
ideas, knowledge, advice, and general support.

First, I want to thank Serena VILLATA and Olivier CURÉ for accepting reading
my Ph.D. thesis and writing up a report. I would also like to thank Bernd AMANN,
Serge GARLATTI, Philippe PUCHERAL and, Pascal MOLLI for accepting to be
part of the Ph.D. jury. I also thank Sylvie CAZALENS and Serge GARLATTI for
following the progress of my thesis each year.

I want to thank my supervisor Patricia SERRANO ALVARADO for offering
and encouraging me to do this thesis. I also want to thank my second supervisor
Emmanuel DESMONTILS for introducing me to teaching. That was an enriching
experience. Thank you both for supporting me with your knowledge and experience
through these three years.

I am also thankful to all the GDD team and the LS2N laboratory that provided a
excellent environment, and that helped me throughout my thesis: Thomas MINIER,
Arnaud GRALL, Matthieu PERRIN, Achour MOSTEFAOUI, Hala SKAF-MOLLI,
Pascal MOLLI, Pauline FOLZ, and Brice NÉDELEC.

I also thank Margo BERNELIN and Sonia DESMOULIN-CANSELIER from
the laboratory of Droit et Changement Social for our helpful discussions about my
work. I would also want to thank all students from the University of Nantes that
participate in this work: Chanez AMRI, Alan BARON, Marion HUNAULT, Fatim
TOURE, and Manoé KIEFFER.

Last but not least, I am very thankful to the Opendatasoft team for having
welcomed me so well in the company and entrusting me during these three years.
They all taught me a lot and gave me the opportunity to have interesting discus-
sions with their clients. Finally, I want to thank David THOUMAS and Nicolas
TERPOLILLI for taking the time to have followed and actively participated in this
thesis.

Thank you all for taking part in this work. It was a pleasure to work with you.

Contents

1 Introduction 1
1.1 Reuse on the Web of Data . 1
1.2 Research Issues . 4
1.3 Contributions . 6
1.4 Organization . 9

2 Preliminaries 11
2.1 The Web of Data . 11
2.2 Querying the Web of Data . 17

3 Integrating Data into the Web of Data 21
3.1 Introduction and Motivation . 22
3.2 Querying non-RDF Datasets using Triple Patterns 25
3.3 Assessing the Quality of RDF Mappings with EvaMap 34
3.4 Generating RDF Mappings with a Semi-Automatic Tool 39
3.5 Conclusion . 44

4 Modelling the Compatibility of Licenses 47
4.1 Introduction and Motivation . 48
4.2 Related Work . 50
4.3 CaLi: a Lattice-based License Model 52
4.4 A CaLi Ordering for Creative Commons Licenses 58
4.5 Implementation of CaLi Orderings 60
4.6 Conclusion . 65

5 Ensuring License Compliance in Federated Query Processing 67
5.1 Introduction and Motivation . 68
5.2 Related Work . 70
5.3 A Federated License-Aware Query Processing Strategy 73
5.4 Experimental Evaluation . 82
5.5 Conclusion . 86

iii

6 Conclusion 87
6.1 Summary . 87
6.2 Perspectives . 90

A Supplemental Materials 93

List of Figures 107

List of Algorithms 109

List of Tables 111

List of Listings 113

Bibliography 115

Chapter 1

Introduction

Contents
1.1 Reuse on the Web of Data . 1

1.2 Research Issues . 4

1.2.1 Ordering Licenses in Terms of Compatibility 5

1.2.2 Ensuring License Compliance During Federated Query
Processing . 5

1.3 Contributions . 6

1.3.1 CaLi, a Model that Orders Licenses in Terms of Com-
patibility . 6

1.3.2 FLiQue, a License Aware Federated Query Processing
Strategy . 7

1.3.3 Integrating Data into the Web of Data 8

1.4 Organization . 9

1.1 Reuse on the Web of Data

The Web of Data, also known as the Semantic Web [2], is an extension of the World
Wide Web based on standards set by the World Wide Web Consortium (W3C)1. It
provides a normalized way to find, share, reuse and combine information. Semantics
is encoded in the data with ontologies that are sets of concepts and categories
that formally represent an area or domain. Semantic data is machine-readable
and machine-understandable offering significant advantages such as reasoning over

1https://www.w3.org/

1

https://www.w3.org/

1. Introduction

data and facilitating interoperability among heterogeneous data sources in terms
of format or schema.

The W3C recommendation to represent data on the Web of Data is the Re-
source Description Framework (RDF). RDF allows writing directed labelled graphs
(RDF graphs) using triples 〈subject, predicate, object〉 where the elements may be
Internationalized Resource Identifiers (IRIs), blank nodes, or datatyped literals. A
triple represents a statement about a resource. For example, Listing 1 shows two
RDF triples stating that Opendatasoft is a company located in the city of Paris.

1 ex:Opendatasoft a dbo:Company .
2 ex:Opendatasoft dbo:locationCity dbpedia:Paris .

Listing 1: Two triples about Opendatasoft.

OWL (Web Ontology Language)2 and RDFS (RDF Schema)3 are the two
recommended languages to describe RDF ontologies. These languages are based on
description logics, making automatic processing of data possible such as inferring
implicit triples or checking the consistency of an RDF dataset4.

The main idea behind the Web of Data is to break data silos by creating a global
graph-based web of interlinked datasets [4]. This web of interlinked datasets is often
called the Linked Data5. To make such a web a reality, Tim Berners-Lee proposed
the Linked Data principles6 that are best practices to publish RDF datasets on the
Web. These principles are about:

1. the use of IRIs as names for resources;

2. the ability to get further information and navigate among resources using the
Hypertext Transfer Protocol (HTTP);

3. and the use of existing IRIs to refer to a resource the same way other datasets
do.

These principles encourage the publication of interlinked and interoperable data.
The last decade has seen significant growth in the Web of Data. Over 2.5 billion
web pages describe resources using the schema.org7 ontology [3]. Since 2007, the

2https://www.w3.org/TR/owl2-overview/
3https://www.w3.org/TR/rdf-schema/
4https://www.w3.org/standards/semanticweb/inference
5https://www.w3.org/standards/semanticweb/data
6https://en.wikipedia.org/wiki/Linked_data#Principles
7https://schema.org/

2

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/standards/semanticweb/inference
https://www.w3.org/standards/semanticweb/data
https://en.wikipedia.org/wiki/Linked_data#Principles
https://schema.org/

1.1. Reuse on the Web of Data

Linked Open Data cloud (LOD) grew from 12 RDF datasets to more than 1239
in May 20208. Tim Berners-Lee suggested the 5-star deployment scheme9 that
promotes the publication of RDF Open Data according to Linked Data principles.

The SPARQL Query Language is the W3C recommended language to retrieve
and manipulate information on the Web of Data. Query engines can execute
SPARQL queries on live HTTP interfaces. To take advantage of the interoperability
of the Linked Data, SPARQL allows expressing queries across several RDF graphs
published by autonomous data providers10. They are called federated queries and
can be evaluated on a set of RDF data sources by a federated SPARQL query
engine.

An example of a federated query would be to asks for the population of each
city where the Opendatasoft company is located. Listing 2 shows this federated
query. Such a query can be evaluated on RDF graphs of Listing 1 and DBpedia11

dataset that describes among others statements about the city of Paris. Listing 3
shows two RDF triples from DBpedia about the city of Paris. The result of the
federated query contains data from both RDF graphs.

1 PREFIX ex: <https://example.org/> .
2 PREFIX dbo: <http://dbpedia.org/ontology/> .
3

4 SELECT *
5 WHERE
6 {
7 ex:Opendatasoft dbo:locationCity ?city .
8 ?city dbo:populationTotal ?population .
9 }

Listing 2: A SPARQL query that retrieves population of each city where Open-
datasoft company is located.

8The Linked Open Data Cloud is a diagram that depicts publicly available linked datasets
https://lod-cloud.net/#about

9https://5stardata.info/
10https://www.w3.org/TR/sparql11-federated-query/
11DBpedia is an RDF dataset generated by extracting structured information from the infoboxes

in Wikipedia https://wiki.dbpedia.org/

3

https://lod-cloud.net/#about
https://5stardata.info/
https://www.w3.org/TR/sparql11-federated-query/
https://wiki.dbpedia.org/

1. Introduction

1 dbpedia:Paris a dbo:City .
2 dbpedia:Paris dbo:populationTotal "2229621"^^xsd:integer .

Listing 3: Two triples about the city of Paris.

Linked Data principles and federated queries encourage the reuse of datasets on
the Web of Data to create new ones. Thus, in the Web of Data, reuse is common
and occurs, for example, when an RDF dataset uses IRIs from existing ontologies
or another dataset, or when the result of a federated query is used.

To facilitate reuse, resource producers should systematically protect their re-
sources with licenses before sharing or publishing them12 [64]. A license specifies
precisely the conditions of reuse of a resource, i.e., what actions are permitted,
obliged, and prohibited when using it. To protect a new resource, resource producers
can create a new license or reuse an existing one. For instance, very well known
and reusable licenses are the set of Creative Commons RDF licenses13 that are de-
scribed using the CC Rights Expression Language (CC REL)14. Datasets published
on the web are usually distributed along with licenses. At the time of writing,
publicly available catalogs of datasets, such as Opendatasoft’s Data Network15

or DataHub.io16 respectively have 80% and 86% of their datasets protected by
licenses.

When several licensed datasets are reused to create a new one, the resulting
dataset must be protected with a license such that all licenses of reused datasets
are compatible with it. For instance, the result of the federated query in Listing 2
should be protected by a license such that the license of the RDF graph in Listing
1 and the license of DBpedia are both compatible with.

1.2 Research Issues

To facilitate reuse of licensed datasets, web applications that combine them should
preserve license compliance. More precisely, we focus on license compliance during
federated query processing. But, to make this possible, applications need to know
the compatibility among licenses. In this thesis, we focus on two problems, (1) how
to position licenses in terms of compatibility and (2) how to create a license-aware
federated query engine.

12https://en.wikipedia.org/wiki/FAIR_data
13https://creativecommons.org/licenses/
14https://wiki.creativecommons.org/wiki/CC_REL
15https://data.opendatasoft.com/
16https://old.datahub.io/

4

https://en.wikipedia.org/wiki/FAIR_data
https://creativecommons.org/licenses/
https://wiki.creativecommons.org/wiki/CC_REL
https://data.opendatasoft.com/
https://old.datahub.io/

1.2. Research Issues

1.2.1 Ordering Licenses in Terms of Compatibility

Choosing the appropriate license for a combined dataset or choosing appropriate
licensed datasets for a combination is a difficult process. It involves choosing a
license compliant with all the licenses of combined datasets as well as analyzing the
reusability of the resulting dataset through the compatibility of its license. Finding
the right trade-off between protection and reusability is delicate. The risk is either,
to choose a license too restrictive making the dataset difficult to reuse, or to choose
a not enough restrictive license that will not sufficiently protect the dataset.

Relations of compatibility, compliance and restrictiveness on licenses could be
very useful in a wide range of applications. We consider simplified definitions of
compliance and compatibility inspired by works like [19, 23, 34, 70]: a license lj is
compliant with a license li if a resource licensed under li can be licensed under lj
without violating li. If a license lj is compliant with li then we consider that li is
compatible with lj and that resources licensed under li are reusable with resources
licensed under lj. In general, if li is compatible with lj then lj is more (or equally)
restrictive than li.

In this thesis, we are interested in facilitating users to choose a license for a
combined dataset or selecting licensed datasets for a combination. We think that
an automatic ordering over licenses would facilitate this task.

There exist some works[34, 71] proposing compatibility graphs of well-known
licenses. However, these graphs are built from a manual interpretation of each
license, making it impossible to insert a new license automatically.

Thus, the first research problem we focus on is: given a license li, how to auto-
matically position li over a set of licenses in terms of compatibility and compliance?

The challenge is to generalize the definition of the ordering relations among
licenses while taking into account the semantics of the actions that influence the
compatibility and compliance relation.

1.2.2 Ensuring License Compliance During Federated
Query Processing

Another problem occurs when multiple licensed datasets across the Web of Data
participate in the evaluation of a federated query. The query result must be
protected by a license that is compliant with each license of involved datasets.
However, such a license does not always exist, and this leads to a query result that
cannot be reused.

A solution to the compatibility of licenses is to negotiate licenses with data
providers. But this negotiation takes time and is not always possible. Another
solution is to discard data sources of conflicting licenses during the source selection
process. But removing data sources before query evaluation can lead to an empty

5

1. Introduction

query result. This problem can be tackled by using query relaxation techniques
[15, 16, 31, 32]. That is, to relax the constraints of a query to match triples from
other datasets. But the number of possible relaxed queries is exponential with the
size of the query and the relaxation possibilities of it. Moreover, checking if each
relaxed query returns a non-empty result is costly in terms of execution time in a
federated context.

In this thesis, we are interested in facilitating the combination of licensed
datasets using a license compliant federated query engine. Existing federated
query engines do not ensure license compliance with all licenses involved in query
execution.

Thus, the second problem we focus on is: given a SPARQL query and a
federation of licensed datasets, how to guarantee a relevant and non-empty query
result whose license is compliant with each license of involved datasets?

In a distributed environment, the challenge is to limit the overhead on the query
execution time when the relaxation process is necessary.

1.3 Contributions

To answer our research problems, we propose two contributions: (1) CaLi, a model
that can partially order licenses in terms of compatibility, and (2) FLiQue, a license
aware query processing strategy for federated query engines. Sections 1.3.1 and
1.3.2 introduce these contributions.

This thesis is done in collaboration with the Opendatasoft17 company. Open-
datasoft is a data-sharing platform that can be used to easily access, reuse, and
share data across an organization or publicly on the web. Within the scope of
this thesis, we also proposed several demonstrators to facilitate the integration of
datasets to the Web of Data. Section 1.3.3 introduces these contributions.

1.3.1 CaLi, a Model that Orders Licenses in Terms of
Compatibility

To automatically position a license over a set of licenses in terms of compatibility
and compliance, we propose CaLi. CaLi is a model to order licenses that uses
restrictiveness relations and constraints among licenses to define compatibility and
compliance. We validate CaLi experimentally with an algorithm that can add any
RDF license in a set of ordered licenses in terms of compatibility and compliance.

17https://www.opendatasoft.com/

6

https://www.opendatasoft.com/

1.3. Contributions

Our approach enables the development of license compliant applications. We
show the usability of CaLi with a license-based search engine that can find resources
reusable under a specific license.

This contribution led to the following publications:

1. B. Moreau, P. Serrano-Alvarado, and E. Desmontils. “CaLi: A Lattice-Based
Model for License Classifications”. In: Gestion de Données – Principes,
Technologies et Applications (BDA). Oct 2018, Bucharest, Romania.
https://hal.archives-ouvertes.fr/hal-01934596

2. B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils. “Modelling
the Compatibility of Licenses”. In: Extended Semantic Web Conference
(ESWC). Jun 2019, Portorož, Slovenia.
https://hal.archives-ouvertes.fr/hal-02069076

3. B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils. “A License-
Based Search Engine”. In: Extended Semantic Web Conference (ESWC),
Demo session. Jun 2019, Portorož, Slovenia.
https://hal.archives-ouvertes.fr/hal-02097027

4. B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils. "Modéliser
la Compatibilité Entre les Licences". In: Journées Francophones d’Ingénierie
des Connaissances (IC), Jun 2020, Angers, France.
https://hal.archives-ouvertes.fr/hal-02877913

1.3.2 FLiQue, a License Aware Federated Query
Processing Strategy

To guarantee a relevant, license compliant, and non-empty query result for any
federated SPARQL query, we propose FLiQue, a federated license-aware query
processing strategy. FLiQue is designed to detect and prevent license conflicts and
gives informed feedback with licenses able to protect a result set of a federated
query. If necessary, it uses query relaxation to propose a set of relevant relaxed
queries whose result set can be licensed. Finally, to reduce the overhead induced
by the query relaxation process in a federated context, FLiQue uses pre-calculated
dataset summaries instead of communicating with the federation.

Our approach enables the creation of license-aware federated query engines
facilitating reuse and creation of license compliant datasets on the Web of Data.
We show the usability of our approach by integrating FLiQue in a state-of-the-art
federated query engine. We experimentally validate our approach with a federated
query benchmark to show the overhead produced by our approach compared to
the original federated query engine.

7

https://hal.archives-ouvertes.fr/hal-01934596
https://hal.archives-ouvertes.fr/hal-02069076
https://hal.archives-ouvertes.fr/hal-02097027
https://hal.archives-ouvertes.fr/hal-02877913

1. Introduction

The contribution led to the following publication:

5. B. Moreau, and P. Serrano-Alvarado. “Ensuring License Compliance in Fed-
erated Query Processing”. In: Gestion de Données – Principes, Technologies
et Applications (BDA). Oct 2020, Online.
https://hal.archives-ouvertes.fr/hal-02904076

1.3.3 Integrating Data into the Web of Data

Opendatasoft’s Data Network18 allows to search, find and reuse datasets among
publicly available datasets published with the Opendatasoft platform. However,
despite the benefits of the Web of Data, many data publishers like Opendatasoft
are sharing data in documents, or column-oriented formats and not in RDF. One of
the reasons is that the integration of data in the Web of Data needs an investment
in terms of time, storage, and maintainability.

To facilitate the integration of structured datasets in the Web of Data, we
propose three solutions

• ODMTP, an interface to execute SPARQL queries on non-RDF datasets with
high availability using RDF mappings. An RDF mapping allows describing
the transformation of a structured dataset into RDF. The advantage of this
approach is that the RDF dataset is not materialized and thus it does not
increase storage costs.

• EvaMap, a framework that can evaluate the quality of an RDF mapping.
EvaMap can evaluate the quality of the resulting RDF dataset at the beginning
of the integration process on the RDF mapping and, thus, saves time.

• The SemanticBot, a conversational interface to semi-automatically generate
RDF mappings for structured datasets. It allows users that are not familiar
with RDF concepts to integrate their dataset in the Web of Data easily and
quickly.

These contributions led to the the following demonstration papers:

6. B. Moreau, P. Serrano-Alvarado, E. Desmontils, and D. Thoumas. “Querying
non-RDF Datasets Using Triple Patterns”. In: International Semantic Web
Conference (ISWC), Demo session. Oct 2017, Vienna, Austria.
https://hal.archives-ouvertes.fr/hal-01583518

18https://data.opendatasoft.com/

8

https://hal.archives-ouvertes.fr/hal-02904076
https://hal.archives-ouvertes.fr/hal-01583518
https://data.opendatasoft.com/

1.4. Organization

7. B. Moreau, E. Desmontils, and P. Serrano-Alvarado. “Enrichissement de
Données RDF Intégrées à la Volée”. In: Atelier Web des Données (AWD) in
EGC. Jan 2019, Metz, France.
https://hal.archives-ouvertes.fr/hal-01990875

8. B. Moreau and P. Serrano-Alvarado. “Assessing the Quality of RDF Mappings
with EvaMap”. In: Extended Semantic Web Conference (ESWC), Demo
session. Jun 2020, Heraklion, Greece.
https://hal.archives-ouvertes.fr/hal-02612705

9. B. Moreau, N. Terpolilli, and P. Serrano-Alvarado. “A Semi-Automatic Tool
for Linked Data Integration”. In: International Semantic Web Conference
(ISWC), Demo session. Oct 2019, Auckland, New Zealand.
https://hal.archives-ouvertes.fr/hal-02194315

10. B. Moreau, N. Terpolilli, and P. Serrano-Alvarado. “SemanticBot: Intégration
Semi-Automatique de Données au Web des Données”. In: Atelier Web des
Données (AWD) in EGC. Jan 2020, Brussels, Belgium.
https://hal.archives-ouvertes.fr/hal-02454592

1.4 Organization
In the following, we introduce the organization of this document.

Chapter 2 explains the main concepts concerning the representation and the
manipulation of information on the Web of Data. It is dedicated to readers that
are not familiar with the Web of Data and contains the main concepts required for
a good understanding of this thesis.

Chapter 3 gives a more in-depth explanation of RDF mappings and presents
our demonstrators concerning the integration of data into the Web of Data. First,
we present ODMTP, an approach to execute SPARQL queries on non-RDF
datasets with high availability using RDF mappings. Then, we present EvaMap,
a framework that can evaluate the quality of an RDF dataset through its RDF
mapping. Finally, we present the SemanticBot, a conversational interface, to
semi-automatically generate RDF mappings for structured datasets.

Chapter 4 presents CaLi, our model, that partially orders licenses in terms of
compatibility. We also show how it can be used to create license-aware applications
through a demonstrator of a license-aware search engine for datasets and source
codes.

9

https://hal.archives-ouvertes.fr/hal-01990875
https://hal.archives-ouvertes.fr/hal-02612705
https://hal.archives-ouvertes.fr/hal-02194315
https://hal.archives-ouvertes.fr/hal-02454592

1. Introduction

Chapter 5 presents FLiQue, our license aware query processing strategy for
federated query engines. We show how it can be integrated into a federated query
engine to ensure that compliant licenses protect the results of federated queries.

Chapter 6 outlines conclusions and presents new challenges that are highlighted
by this thesis.

10

Chapter 2

Preliminaries

Contents
2.1 The Web of Data . 11

2.1.1 The Resource Description Framework 12

2.1.2 Ontologies . 14

2.1.3 Inference . 15

2.1.4 Linked Data Principles 15

2.2 Querying the Web of Data . 17

2.2.1 The RDF Query Language 17

2.2.2 SPARQL Query Engines 18

This chapter is intended to provide readers that are not familiar with the Web
of Data with a more in-depth understanding of the context of this thesis. First
section explains the main concepts of the Web of Data, the Resource Description
Framework, inference, and the principles of Linked Data. Second section reminds
the fundamentals of SPARQL and federated queries to retrieve and manipulate the
Web of Data.

2.1 The Web of Data
This section shows standardized semantic web technologies that make the Web of
Data possible. Section 2.1.1 presents the standard model for data representation
on the Web of Data, ontologies to encodes the semantic in the data are introduced
in Section 2.1.2, Section 2.1.3 presents the inference that enables discovering
knowledge, and the Linked Data principles to create a web of interlinked data is
presented in Section 2.1.4.

11

2. Preliminaries

2.1.1 The Resource Description Framework

The Resource Description Framework 1 (RDF) is the standard model for data
representation on the Web of Data. The RDF model provides three RDF terms to
represent information:

1. Internationalized Resource Identifiers (IRIs) that extends URL with various
alphabets used in different languages. It identifies web resources uniquely. I
denotes the infinite set of IRIs.

2. Literals that are values. Literals can be tagged with a data type (e.g., string,
integer, date, etc.) or a language (e.g., @fr, @en, etc.). L denotes the infinite
set of Literals.

3. Blank Nodes that are identifiers locally scoped to a dataset. B denotes the
infinite set of blank nodes.

An RDF graph is a set of RDF triples. An RDF triple 〈subject, predicate, object〉
describes a statement about a resource where the subject, is either an IRI or a
blank node, the predicate is an IRI and, the object is either an IRI, a literal or a
blank node. That is 〈subject, predicate, object〉 ∈ 〈(I ∪B)× I × (I ∪ L ∪B)〉.

Several serialization formats for storing and exchanging RDF graphs are available
such as Turtle, JSON-LD, RDF-XML, RDFa, etc.

For example, Listing 4 shows an RDF graph serialized in the Turtle format. It
contains five triples. These triples are statements about a resource identified by
the IRI:

<https://example.org/Opendatasoft>.

They respectively state that it is a company, founded in 2011, and located in three
cities identified by the following IRIs:

<http://dbpedia.org/resource/Paris>
<http://dbpedia.org/resource/Boston>
<http://dbpedia.org/resource/Nantes>

Listings 9, 10, and 11 in the Appendix A show the same RDF graph serialized in
other formats.

1https://www.w3.org/TR/rdf11-concepts/

12

https://www.w3.org/TR/rdf11-concepts/

2.1. The Web of Data

1 @prefix ex: <https://example.org/> .
2 @prefix dbo: <http://dbpedia.org/ontology/> .
3 @prefix dbpedia: <http://dbpedia.org/resource/> .
4 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
5

6 ex:Opendatasoft a dbo:Company .
7 ex:Opendatasoft dbo:formationYear "2011"^^xsd:gYear .
8 ex:Opendatasoft dbo:locationCity dbpedia:Paris .
9 ex:Opendatasoft dbo:locationCity dbpedia:Boston .

10 ex:Opendatasoft dbo:locationCity dbpedia:Nantes .

Listing 4: An RDF graph serialized in Turtle that describes five statements about
Opendatasoft.

Notice the usage of prefixes to reduce the size of the IRIs. A prefixed name is a
prefix label and a local part separated by a colon “:”. RDF turns a prefixed name
into an IRI by concatenating the IRI corresponding to the prefix label with the
local part (e.g., ex:Opendatasoft is converted into the IRI:

<https://example.org/Opendatasoft>).

The “a” in the predicate position of the first triple is an abbreviation for the IRI:

<http://www.w3.org/1999/02/22-rdf-syntax-ns##type>.

An RDF graph can also be visualized as a labelled directed multigraph where
nodes represent subjects and objects, and arcs represent predicates. Figure 2.1
shows the RDF graph of Listing 4 as a labelled directed multigraph.

Figure 2.1: An rdf graph vizualized as a labelled directed multigraph.

13

2. Preliminaries

2.1.2 Ontologies

The main advantage of RDF is its capability to encode the semantics with the data
for both machines and humans using ontologies.

An ontology, also called vocabulary, defines concepts and relationships used to
formally describe an area of concern.

Languages such as RDF Schema (RDFS) and Web Ontology Langage (OWL)
enable the description of RDF ontologies.

An RDF ontology provides a set of classes that can be understood as types of
objects, properties that are relations between classes and, constraints that restrict
the usage of classes and properties.

Ontologies for a variety of domains are published on the Web of Data, for
instance, on the Linked Open Vocabularies (LOV) [68]. Figure 2.2 shows an excerpt
of the DBpedia ontology2 used in Figure 2.1. DBpedia is a widely used cross-
domain ontology which has been manually created based on the most commonly
used infoboxes within Wikipedia.

Figure 2.2: An extract of the DBpedia ontology.

In ontologies, classes are organized in a class hierarchy, also called a tax-
onomy, using the property rdfs:subClassOf. It is also possible to define a
property hierarchy using rdfs:subPropertyOf. In the DBpedia ontology, the
class dbo:Company is defined as a sub-class of dbo:Organisation, itself defined
as a sub-class of dbo:Agent that is a sub-class of owl:Thing. It means that
resources of type dbo:Company are also resources of types dbo:Organisation,
dbo:Agent, and owl:Thing. A property may be seen as a function that asso-
ciates a set of objects (i.e., a class), called domain, to another set of objects,

2http://dbpedia.org/ontology/

14

http://dbpedia.org/ontology/

2.1. The Web of Data

called range. That is Property : domain → range. RDFS provides properties
rdfs:domain and rdfs:range to restrict domain and range of a property to a
set of objects that belong to a specific class. In the DBpedia ontology, property
dbo:locationCity associates objects of type dbo:Organisation to objects of type
dbo:City, dbo:formationYear associates objects of type dbo:Organisation to
literals of datatype xsd:gYear.

2.1.3 Inference

One of the main advantages of the RDF representation model is that it enables
deducing implicit statements in RDF graphs through ontologies. This approach,
called inference, is based on entailment rules defined in both RDFS3 and OWL4.
A saturated RDF graph is a graph where there are no longer statements to
deduce. Figure 2.3 shows the saturated RDF graph of Figure 2.1. Inferred
information is represented with red dashed lines. Resources dbpedia:Paris,
dbpedia:Boston and, dbpedia:Nantes are inferred as resources of type dbo:City
because the class dbo:City is the range of the property dbo:locationCity.
Moreover, ex:Opendatasoft is inferred as a resource of type dbo:Organisation,
dbo:Agent and owl:Thing because these are super-classes of dbo:Company.

Figure 2.3: The saturated RDF graph of Figure 2.1.

2.1.4 Linked Data Principles

To take full advantage of the Web of Data, data producers must respect Linked
Data principles as well as possible. Linked Data is a set of best practices to publish
data on the Web of Data [4].

1. Use Internationalized Resource Identifier (IRIs) to identify any object or
concept in the data.

3https://www.w3.org/TR/rdf-mt/#RDFSRules
4https://www.w3.org/TR/owl-ref/#Property

15

https://www.w3.org/TR/rdf-mt/#RDFSRules
https://www.w3.org/TR/owl-ref/#Property

2. Preliminaries

2. Use dereferenceable HTTP IRIs. That is, returning information about the
object or concept when someone looks up for its IRI.

3. Use already existing IRIs as much as possible to link RDF graphs.

Figure 2.4 shows RDF graphs D1 and D2 that respect the third principle of
Linked Data. Dotted lines represent the links between the two graphs. Notice that
using the same IRIs in several RDF graphs creates links among datasets. That
is, describing statements about the same resource or using the same ontology to
describe a resource.

Publishing RDF data according to Linked Data principles, makes it readable
and understandable by both machines and humans. Thus, it has many advantages,
such as:

• interoperability, because several datasets may describe the same resources
and use equivalent ontologies;

• discoverability, because search engines understand ontologies;

• and maintainability, because ontologies remove ambiguities that may exist
on the name of attributes used in datasets;

Figure 2.4: Links between two RDF graphs that share the same IRIs.

When published as open data, RDF datasets that respect the principles of
Linked Data are interlinked and form a Linked Open Data Cloud5 (LOD). Some
of these RDF datasets are more and more used such as DBpedia6, Wikidata7,
Geonames8, etc.

Since the 2012 announcement by Google9, knowledge graph (KG) [30] has become
a non-formally defined term for a graph that uses an ontology to describe entities

5https://lod-cloud.net/
6https://wiki.dbpedia.org/
7https://www.wikidata.org/
8https://www.geonames.org/
9https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

16

https://lod-cloud.net/
https://wiki.dbpedia.org/
https://www.wikidata.org/
https://www.geonames.org/
https://www.blog.google/products/search/introducing-knowledge-graph-things-not/

2.2. Querying the Web of Data

such as real-world objects, events, situations or abstract concepts. Knowledge
graphs are now used in a variety of domains such as: query engines (e.g., Google,
Yahoo!10, Bing11), social media (e.g., Facebook [51], LinkedIn12), commerce (e.g.,
Amazon13, Ebay14), and media (e.g., BBC15, New York Times16).

2.2 Querying the Web of Data

This section presents the RDF query language (SPARQL) (cf. Section 2.2.1) and
query engines (cf. Section 2.2.2) that are used to retrieve and manipulate RDF
graphs on the Web of Data.

2.2.1 The RDF Query Language

SPARQL Protocol and RDF Query Language (SPARQL)17 is a query language to
retrieve and manipulate data available in RDF format.

A SPARQL query, denoted by Q, is a set of basic graph patterns (BGP) that is
a set of triple patterns. A triple pattern (tp) is a triple where subject, predicate
and object may be a variable, denoted by V . That is 〈subject, predicate, object〉 ∈
〈(I ∪B ∪ V)× (I ∪ V)× (I ∪ L ∪B ∪ V)〉.

Listing 5 shows an example of SPARQL query that retrieves companies, associ-
ated to their city, that are located in the same city as an office of the Opendatasoft
company. This query contains one BGP which consists of three triple patterns tp1,
tp2, and tp3.

10https://www.researchgate.net/publication/322899161_The_Yahoo_Knowledge_
Graph

11https://blogs.bing.com/search-quality-insights/2017-07/
bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps

12https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
13https://blog.aboutamazon.com/innovation/making-search-easier
14https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
15https://www.bbc.co.uk/blogs/internet/entries/78d4a720-8796-30bd-830d-648de6fc9508
16https://open.nytimes.com/build-your-own-nyt-linked-data-application-8b91fb71fd23
17https://www.w3.org/TR/rdf-sparql-query/

17

https://www.researchgate.net/publication/322899161_The_Yahoo_Knowledge_Graph
https://www.researchgate.net/publication/322899161_The_Yahoo_Knowledge_Graph
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places-things-and-local-businesses-to-your-apps
https://engineering.linkedin.com/blog/2016/10/building-the-linkedin-knowledge-graph
https://blog.aboutamazon.com/innovation/making-search-easier
https://www.ebayinc.com/stories/news/cracking-the-code-on-conversational-commerce/
https://www.bbc.co.uk/blogs/internet/entries/78d4a720-8796-30bd-830d-648de6fc9508
https://open.nytimes.com/build-your-own-nyt-linked-data-application-8b91fb71fd23
https://www.w3.org/TR/rdf-sparql-query/

2. Preliminaries

1 PREFIX ex: <https://example.org/> .
2 PREFIX dbo: <http://dbpedia.org/ontology/> .
3

4 SELECT ?city ?company
5 WHERE
6 { #BGP
7 ex:Opendatasoft dbo:locationCity ?city . #tp1
8 ?company dbo:locationCity ?city . #tp2
9 ?company a dbo:Company . #tp3

10 }

Listing 5: A SPARQL query that retrieves companies, associated to their city, that
are located in the same city as an office of the Opendatasoft company.

2.2.2 SPARQL Query Engines

A SPARQL query engine can evaluate a SPARQL query on an RDF graph. That
is to match each BGP of the query to sub-graphs of the RDF graph. A BGP
matches an RDF graph when RDF terms from that graph may be substituted for
the variables, and the result are two equivalent RDF graphs.

Figure 2.5 shows the BGP of the SPARQL query in Listing 5 matching a sub-
graph of an RDF graph. The RDF sub-graph that matches the BGP is highlighted.
Notice that sub-graph containing the resource dbpedia:Paris does not match the
BGP because, in our example, no other company is located in this city.

Figure 2.5: A BGP matching a subgraph of an RDF graph.

18

2.2. Querying the Web of Data

The SELECT clause of the SPARQL query identifies the variables to appear in
the result set of the query. RDF terms that match these variables are retrieved from
the RDF graph. In the query of Listing 5, the SELECT clause identifies the variables
?city and ?company. If the query is evaluated on the RDF graph of Figure 2.5,
the resources that match the variables ?city and ?company in the matching sub-
graph are respectively dbpedia:Boston with dbpedia:Fenway_Sport_group and
dbpedia:Nantes with dbpedia:Lefèvre-Utile.

To take advantage of the interoperability provided by the Linked Data, SPARQL
allows expressing queries across several RDF graphs published by autonomous
data providers18. A federated SPARQL query engine [54] can evaluate a federated
SPARQL query on a set of RDF data sources, known as a federation. An RDF
data source is any dataset accessible in RDF format (e.g., RDF file, triplestore,
etc.)

As an example, consider that dataset D1 and dataset D2 in Figure 2.4 are two
autonomous RDF data sources on the web. Then, a federated query engine can
evaluate the federated query in Listing 5 on D1 and D2 as if they were a single
RDF graph.

(a)

(b)

Figure 2.6: A query processed by a query engine (a) and a federated query engine
(b).

18https://www.w3.org/TR/sparql11-federated-query/

19

https://www.w3.org/TR/sparql11-federated-query/

2. Preliminaries

Figure 2.6 shows how a query is processed on a query engine (a) and a federated
query engine (b). During federated query processing, not all data sources participate
in the evaluation of a federated query. Thus, the source selection process allows
the identification of the data sources in the federation that may contain relevant
data. During the processing of query in Listing 5, the source selection process can
identify data source D1 as relevant to evaluate triple pattern tp1, tp2 and tp3, and
D2 as relevant to evaluate tp2 and tp3. It is because D1 contains one triple that
match tp1 and tp3, and three triples that matches tp2, and D2 contains two triples
that matches tp2 and two triples that matches tp3.

Data published on the web in RDF format and queryable through a live SPARQL
interface are integrated into the Web of Data. Once integrated, data has the
advantage of being highly reusable. The following chapter presents approaches that
facilitate the integration of non-RDF data into the Web of Data.

20

Chapter 3

Integrating Data into the Web of
Data

Contents
3.1 Introduction and Motivation 22

3.1.1 Virtually Integrate non-RDF Datasets with Triple Pat-
tern Fragments Interface 24

3.1.2 Assessing the Quality of RDF Mappings 24

3.1.3 Facilitating the Creation of RDF Mappings 24

3.2 Querying non-RDF Datasets using Triple Patterns 25

3.2.1 ODMTP: On-Demand Mapping using Triple Patterns . 27

3.2.2 Supporting Inference with ODMTP 28

3.2.3 Implementation . 30

3.2.4 Experimental Evaluation 31

3.3 Assessing the Quality of RDF Mappings with EvaMap 34

3.3.1 EvaMap: A Framework to Evaluate RDF Mappings . . 36

3.3.2 Implementation and Demonstration Tool 38

3.4 Generating RDF Mappings with a Semi-Automatic Tool 39

3.4.1 SemanticBot: A Conversational Interface to Generate
RDF Mappings . 41

3.4.2 Implementation and Demonstration Tool 43

3.5 Conclusion . 44

21

3. Integrating Data into the Web of Data

The majority of datasets on the web are not published as RDF. Yet, transforming
structured datasets into RDF datasets is possible thanks to RDF Mappings. During
the process of transformation and publication of non-RDF datasets as RDF, data
producers face several challenges, which can be obstacles to integrate datasets to the
Web of Data. We think that facilitating this process can help some data-producers
to publish RDF data and, thus, will foster the Web of Data growth.

This chapter is based on articles [41, 42, 45, 49, 50] and presents three approaches
that aim to facilitate the publication of RDF datasets through RDF mappings.
Section 3.2 presents ODMTP. It allows executing SPARQL queries on non-RDF
datasets through RDF mappings with high availability. Then, Section 3.3 presents
EvaMap, a framework to evaluate the quality of RDF mappings. Finally, Section
3.4 presents SemanticBot, a semi-automatic tool to generate RDF mappings for
structured datasets.

3.1 Introduction and Motivation

Despite the growing number of information on the Web of Data and the benefits of
Linked Data, a lot of datasets are not available in RDF or do not always respect
Linked Data principles. Publishing data sources as RDF datasets that respect
Linked Data principles requires methods to translate structured datasets into an
RDF representation. This is possible through the implicit description of a mapping,
for instance, in the source code of a software, that describes the transformation
of the data into RDF. Another solution is through the explicit description of an
RDF Mapping such that the mapping is an RDF dataset that can be shared and
reused. Many RDF mapping languages where proposed to transform relational
databases in RDF [66]. More recent works like RDF Mapping Language (RML)
[13] or SPARQLGenerate [37] propose generic languages to integrate data from
heterogeneous formats into RDF.

An RDF mapping is an RDF graph that allows describing the transformation of
a structured dataset into RDF. It consists of a set of triples that are transformation
rules containing references to the initial dataset, and represents the semantics
of the resulting RDF dataset. Consider Table 3.1 that shows an excerpt of a
structured dataset describing Roman Emperors and Figure 3.1 that represents an
RDF mapping allowing to transform such dataset in RDF. In this mapping, Bold
text starting with $ are references to a column in the dataset.

A mapper generates an RDF dataset by evaluating an RDF mapping on a
dataset. Figure 3.1 shows the RDF dataset resulting from the transformation of
the dataset in Table 3.1 with the mapping in Figure 3.1. In this example, the
mapper generates the RDF dataset by replacing references in the RDF mapping

22

3.1. Introduction and Motivation

string date string string float float
Name Birth Birth City Birth Province Lat Long

Augustus 0062-09-23 Rome
Caligula 0012-08-31 Antitum
Claudius 0009-08-01 Lugdunum Gallia Lugdunensis 47.932559 0.191854

...

Table 3.1: An excerpt from a structured and typed dataset describing Roman
emperors.

Figure 3.1: An RDF mapping for Roman emperors dataset.

by values of the referenced columns for each row in the initial dataset.

Figure 3.2: An RDF dataset describing Roman emperors.

However, publishing an existing dataset as an RDF dataset that respects Linked
Data principles is not easy. In this chapter, we focus on three problems that data
producers face during transformation and publication process.

23

3. Integrating Data into the Web of Data

3.1.1 Virtually Integrate non-RDF Datasets with Triple
Pattern Fragments Interface

After the transformation of a dataset into RDF, storing the result in a triple-store
is an important investment in terms of storage and maintainability. Existing works
propose to use RDF mappings to integrate datasets as RDF virtually. That is to
enable querying non-RDF datasets with SPARQL as if they were stored as RDF.
These works focus on the SPARQL endpoint interface to expose non-RDF data.
But, this interface suffers from availability issues [5]. To tackle this problem, Triple
Pattern Fragments (TPF) [69] has been proposed. However, no work focus on the
TPF interface to expose non-RDF data.

Thus, the first problem we focus on is: how to virtually integrate non-RDF
datasets as RDF simply and efficiently using RDF mappings and Triple Pattern
Fragments interface?

The challenge is to limit the overhead produced by the virtual integration on
the global query execution time.

3.1.2 Assessing the Quality of RDF Mappings

Making an RDF mapping for a dataset is a crucial step in the integration of a
dataset into the Web of Data. The quality of the resulting RDF dataset highly
depends on the quality of its RDF mapping. Making a relevant RDF mapping for a
dataset while respecting the Linked Data principles is a challenging task. Moreover,
in addition to possible errors a user can make, different RDF mappings are possible
for the same dataset, for example, depending on the ontology chosen to describe
the dataset.

Thus another problem we focus on is: How to automatically help users to create
RDF mappings without errors and how to choose the best mapping from a set of
RDF mappings?

The challenge is to evaluate the quality of the RDF mapping instead of the
resulting RDF dataset to identify errors at the beginning of the transformation
process and saves time.

3.1.3 Facilitating the Creation of RDF Mappings

Writing a relevant mapping for a dataset is not a simple task. It requires answering
several questions, for instance: what are the concepts described in the dataset?
Which existing RDF ontologies are relevant to describe these concepts? But,
answering these questions requires both to know the dataset perfectly and to be
familiar with RDF. Unfortunately, many data producers are not familiar with RDF
and are not yet ready to invest time in writing RDF mappings.

24

3.2. Querying non-RDF Datasets using Triple Patterns

The third problem we focus on is: how to simplify as much as possible the
creation of RDF mappings for existing structured datasets?

The challenge we face is to automate the part of the integration process that
requires getting familiar with RDF.

In the following, we present three contributions that answer our three problems.

3.2 Querying non-RDF Datasets using Triple
Patterns

Transforming existing datasets as RDF and storing them in triple-stores requires
to store data as RDF and non-RDF in two separate databases and to synchronize
them during updates. Existing works [17, 39] propose to query non-RDF datasets
on-demand with SPARQL. That is to virtually integrate non-RDF data sources
through RDF mappings to make run-time evaluations of SPARQL queries.

Several HTTP client-server interfaces have been proposed to publish and access
datasets on the Web of Data [26, 40, 69], but the SPARQL endpoint interface
remains the most popular despite a study [5] that shows that this interface suffers
from availability issues.

Each of these client-server SPARQL interfaces is characterized by the type of
requests the server can evaluate. The type of requests has a significant impact
on the effort made by the server during the evaluation of a SPARQL query and,
thus, on its availability. Figure 3.3 shows several HTTP client-server SPARQL
interfaces ordered according to the effort made by the server during the evaluation
of a SPARQL query.

Figure 3.3: HTTP client-server SPARQL interfaces.

Triple Pattern Fragments interface [69] is one of the interfaces proposed to
query RDF datasets with high availability. One of the reasons for server availability
is the simplicity of the server interface. An important part of the query execution
is on the client-side.

Differences between SPARQL endpoints and TPF interfaces are respectively
shown in Figures 3.4 and 3.5. With TPF, the client receives a SPARQL query and
decomposes it into Triple Pattern Queries (TPQ). TPQs are sent to TPF servers.

25

3. Integrating Data into the Web of Data

A server matches triple pattern and page to an RDF dataset and sends results back
to the client along with metadata and controls (e.g., the total number of triples
matching the triple pattern, the number of triples per page, the link to the next
page, etc.). RDF graph returned by TPF servers are called fragments and are used
by the TPF client to build the complete answer of the SPARQL query. Listing 12
in the Appendix A shows a fragment returned by a TPF server.

Figure 3.4: The SPARQL Endpoint interface.

Figure 3.5: The Triple Pattern Fragments interface.

Existing works focus on exposing non-RDF datasets through SPARQL endpoints
but not through Triple Pattern Fragments interface. Figure 3.6 shows the execution
of a SPARQL query on a virtually integrated non-RDF dataset.

Figure 3.6: The execution of a SPARQL query on a virtually integrated non-RDF
dataset.

As explained in section 2.1.3, the inference is the execution of entailment rules on
RDF datasets through ontologies to discover implicit triples. Supporting inference

26

3.2. Querying non-RDF Datasets using Triple Patterns

in a query engine is very important to return complete results. But supporting
inference on virtually integrated non-RDF datasets is not straightforward because
explicit triples are required to deduce implicit triples.

In this section, the problem we focus on is how to integrate non-RDF datasets
on-demand as Linked Data simply and efficiently using TPF.

The challenge is to support inference and limit the overhead produced by the
virtual integration and the inference on the global query execution time.

We propose ODMTP, an On-Demand Mapping using Triple Patterns over
non-RDF datasets [45] that supports inference [41]. To illustrate our approach,
we implemented ODMTP to query Twitter, GitHub, and LinkedIn with SPARQL
queries.

3.2.1 ODMTP: On-Demand Mapping using Triple
Patterns

We propose to modify the TPF server such that, instead of evaluating TPQs over
an RDF store, it sends TPQs to ODMTP.

Figure 3.7 presents the global architecture of ODMTP. TPF clients receive
SPARQL queries and decompose them into several TPQs. TPQs are sent to
ODMTP through a TPF server.

Figure 3.7: The global architecture of ODMTP.

When ODMTP receives a TPQ, it translates it into the target query language
and sends it to the target non-RDF dataset. The query engine of the non-RDF
dataset evaluates this query and returns the result set to ODMTP. Then, ODMTP
translates this answer in triples, it constructs fragments and sends them to the
TPF server.

ODMTP translations are possible thanks to the RDF mapping of the target
dataset. Several mappings can be defined for one target dataset depending on the
needs of semantic applications.

Figure 3.8 shows more details about the ODMTP module. The trimmer
component receives a TPQ and from a mapping file it extracts the mappings

27

3. Integrating Data into the Web of Data

pertinent to the triple pattern. Then, the TPQ and its corresponding mapping is
received by TP2Query that uses the mapping to translate the triple pattern into a
query in the query language of the non-RDF dataset. TP2Query communicates with
the query engine of the non-RDF dataset and obtains the result set corresponding
to TPQ. It also estimates the total number of triples matching the triple pattern.
The implementation of this component depends on the non-RDF dataset. Finally,
the Mapper component uses the mapping to translate the resultset in triples. And
it produces the fragment that is sent to the TPF server.

Figure 3.8: The components of the ODMTP module.

3.2.2 Supporting Inference with ODMTP

Supporting inference in a query engine is very important to return complete results.
Implicit triples can be materialized before query execution or returned during query
execution.

Existing works [20, 67] propose to materialize implicit triples. But, this approach
increases the size of RDF datasets. Other works [53, 58] use query rewriting to
evaluate queries on implicit triples without materializing them. The size of the
RDF dataset remains constant but the query execution time increases.

Supporting inference on virtually integrated non-RDF datasets is not straightfor-
ward because explicit triples are required to deduce implicit triples. Moreover, query
rewriting approaches increase the query execution time that is already increased
by virtual integration. To limit the overhead produced by inference, we propose a
simple approach that consists of applying entailment rules on RDF mapping to
allow the execution of new SPARQL queries on non-RDF datasets.

As an example, consider the RDF mapping for the Roman emperors dataset in
Figure 3.1. With this mapping, ODMTP can execute query of Listing 6 that asks
for resources of type dbo:Place but returns an empty result when the query of

28

3.2. Querying non-RDF Datasets using Triple Patterns

Listing 7 asking for resources of type dbo:Location is executed. Figure 3.9 shows
an extract of the DBpedia ontology that defines super classes and equivalent classes
of the dbo:Place class. The query of Listing 7 should not return an empty result
set because dbo:Place is equivalent to the class dbo:Location. To tackle this
problem, we use the ontology to deduce and materialize implicit transformation
rules in the RDF mapping. Figure 3.10 shows the saturated RDF mapping of
Figure 3.1. Inferred transformation rules are represented with red dashed lines.
The saturated mapping allows ODMTP to execute queries on implicit triples such
as the query in Listing 7.

Figure 3.9: Super classes and equivalent classes of the dbo:Place class.

Figure 3.10: The saturated RDF mapping of Figure 3.1 according to the ontology
of Figure 3.9.

PREFIX dbo: <http://dbpedia.org/ontology/>.

SELECT ?place
WHERE
{
?place a dbo:Place .

}

Listing 6: A query that retrieves re-
sources of type dbo:Place.

PREFIX dbo: <http://dbpedia.org/ontology/>.

SELECT ?loc
WHERE
{
?loc a dbo:Location .

}

Listing 7: A query that retrieves re-
sources of type dbo:Location.

ODMTP supports inference through its reasoner module. Figure 3.11 shows
the reasoner module integrated into the ODMTP approach. It can infer implicit

29

3. Integrating Data into the Web of Data

triples from the RDF mapping using RDFS and OWL entailment rules and the
ontology used in the mapping.

Figure 3.11: The reasoner module integrated to ODMTP.

The saturated RDF mapping is computed before query execution during the
deployment of ODMTP. Thus, the execution time remains constant. Moreover, the
overhead in terms of storage is limited because the number of implicit triples in an
RDF mapping is small compared to implicit triples in the resulting RDF dataset.

A limitation of this approach is that only the rules concerning properties and
classes in the RDF mapping are taken into account in our approach. Rules
that apply to instances are not supported by ODMTP because instances are not
materialized in RDF mappings. The list of supported rules is available on the
repository of ODMTP1.

3.2.3 Implementation

To show the usability of our approach, we implemented ODMTP for Twitter,
GitHub, and LinkedIn APIs. This implementation is available on GitHub under
the MIT license2. ODMTP is a Django3 application that can receive requests
from any TPF client4. Our implementation allows users to query tweets, GitHub
repositories, or LinkedIn profiles using SPARQL. RDF mappings are also available
on the repository5. Moreover an online video demonstration is available6.

1https://github.com/benjimor/odmtp-tpf#supported-rules
2https://github.com/benjimor/odmtp-tpf
3https://www.djangoproject.com/
4http://query.linkeddatafragments.org/
5https://github.com/benjimor/odmtp-tpf/tree/master/mapping
6https://youtu.be/wruH8teK9tU

30

https://github.com/benjimor/odmtp-tpf#supported-rules
https://github.com/benjimor/odmtp-tpf
https://www.djangoproject.com/
http://query.linkeddatafragments.org/
https://github.com/benjimor/odmtp-tpf/tree/master/mapping
https://youtu.be/wruH8teK9tU

3.2. Querying non-RDF Datasets using Triple Patterns

S P O
S P ?o
S ?p O
S ?p ?o
?s P O
?s P ?o
?s ?p O
?s ?p ?o

Table 3.2: The eight types of triple patterns.

3.2.4 Experimental Evaluation

The goal of our experimental evaluation is to measure the overhead produced
by the ODMTP TPF server compared to the original TPF server in terms of
execution time of a triple pattern query. This execution time is tightly related to
the performance and the capabilities of the data source of the TPF server. The
ODMTP TPF server is a Python implementation connected to several datasets
stored in JSON and queried through Elasticsearch. The cardinality of datasets
goes from 100,000 to 500,000 triples. Experiments were executed locally7.

We measured the time to evaluate the eight possible types of triple patterns to
see if the place of the variable in a triple pattern has an impact on the execution
time. Table 3.2 shows the eight types of triple patterns. Variables are preceded
with a question mark. Constants are in bold capitals and can be IRIs, Literals,
or blank nodes. We executed each query five times and get the average execution
time.

We also measured the time to evaluate the last page (i.e., the potentially most
expensive result page) to take into account the pagination capabilities of the TPF
server data source.

We compared these performances with two traditional TPF servers. One is
connected to RDF datasets materialized in HDT [14] files that support pagination.
The other is connected to RDF datasets materialized in Turtle files (TTL) that do
not support pagination.

Figure 3.12 shows the average execution time of the last page for each type of
triple pattern, depending on the size of the dataset. The execution time increases
linearly with the size of the dataset when the TPF server query a data source
that does not support pagination. That is because, to compute a page, it needs to
compute all previous pages. For the sources that support pagination, we see that
execution time does not increase with dataset size and that the type of triple pattern

7on a computer with a processor intel i7 2,5 GHz with 16 GB of RAM.

31

3. Integrating Data into the Web of Data

does have an impact on the execution time but does not affect the complexity.
Thus, we can compute the average overhead of ODMTP comparing to a TPF server
connected to an HDT data source.

Figure 3.12: The average execution time to retrieve the last page for each type of
triple pattern.

Figure 3.13 shows the average execution time of the last page for all types of
triple patterns. On average, ODMTP produced a constant overhead (on average

32

3.2. Querying non-RDF Datasets using Triple Patterns

+0,250 seconds). The reason for this limited overhead is the set of efficient indexes
produced by Lucene8 that is used by Elasticsearch.

Figure 3.13: The average execution time to retrieve the last page of a triple triple
pattern.

Finally, we also measured the average execution time of a complete SPARQL
query that retrieves all triples of the dataset (i.e., a query with a BGP containing
the triple pattern ?s ?p ?o). We compared the execution time of the complete set
of TPQs with our ODMTP approach versus the TPF server connected to the HDT
file. The execution time is measured on the client side.

Figure 3.14 shows the average execution time of the SPARQL query depending
on the size of the RDF dataset. The execution time of this SPARQL query grows
linearly with both TPF servers. It grows faster with ODMTP compared to the TPF
server with an HDT file. That is because of the overhead produced by ODMTP
for each TPQ to execute in order to answer the complete SPARQL query.

8https://lucene.apache.org/

33

https://lucene.apache.org/

3. Integrating Data into the Web of Data

Figure 3.14: The average time to execute a SPARQL query.

This experimental evaluation confirms that ODMTP can evaluate any triple
pattern query in constant time despite the size of the dataset. Moreover, the
complexity of the ODMTP approach is similar to a TPF server connected to an
HDT file.

3.3 Assessing the Quality of RDF Mappings with
EvaMap

Making a relevant RDF mapping for a dataset is a challenging task because it
requires to answer several questions:

1. What are the different resources described in the dataset (e.g., cars, persons,
cities, places, etc.)?

2. What are the attributes of these resources (e.g., price, age, etc.)?

3. How should the IRI of resources be defined?

4. What are the possible relations between the different resources (e.g., the city
is the birthplace of the person)?

5. Which ontology, classes, and properties should be used?

As well as possible errors by the user, different answers are possible for some
of these questions and, thus, different RDF mappings are possible for the same
dataset.

In addition to the mapping in Figure 3.1, Figure 3.15 presents two possible
mappings for the dataset in Table 3.1. Unlike mapping 3.15(a), mapping 3.15(b)
does not include a class description in resource IRIs and does not reference the
Birth Province column.

34

3.3. Assessing the Quality of RDF Mappings with EvaMap

Figure 3.15: Two other RDF mappings for the Roman emperors dataset.

We think that assessing the quality of mappings is important because it directly
impacts the quality of the resulting RDF dataset. A triple in an RDF mapping
can generate multiple triples in the resulting RDF dataset. Thus, correcting an
error in the mapping is more effective than correcting the generated errors in the
RDF dataset. Moreover, to save time during the publishing process, the earlier
quality is assessed, the better [12].

We believe that a tool capable of evaluating the quality of an RDF mapping
and returning feedback would make the creation and the choice of RDF mappings
easier.

In this work, we answer the following question: Given a structured dataset, how
to help users to create RDF mappings without errors automatically, and how to
choose the best mapping from a set of RDF mappings?

In the state-of-the-art, [12] proposes a framework that assesses and refines
RML mappings. However, authors focus on logical errors due to incorrect usage
of ontologies (e.g., violation of domain, range, disjoin classes, etc.). [72] proposes
a framework to assess the quality of RDF datasets through metrics. Metrics are
organized in dimensions evaluating different aspects of a dataset (e.g., availability,
interlinking, etc.). But, [72] does not propose to assess the quality of an RDF
mapping. In our work, like in [12], we evaluate metrics on the RDF mapping
instead of on the resulting RDF dataset. This choice allows us to identify errors at
the beginning of the publishing process and saves time.

However, not all metrics can be applied to mapping. Thus, the challenge is to
evaluate as many metrics as possible on the RDF mapping.

Based on the framework proposed in [72], we propose EvaMap [42]. EvaMap
is a framework to Evaluate RDF Mappings. We propose an extension of the set
of metrics proposed in [72]. The goal is to control the quality of the resulting
dataset through its mapping without having to generate the RDF dataset. It is
also capable of returning feedback to the user to improve its mapping.

35

3. Integrating Data into the Web of Data

Dimension Description
Availability Checks if IRIs are dereferenceable
Clarity Checks human-readability of the mapping and the resulting dataset
Conciseness Checks if the mapping and the resulting dataset is minimal while being complete
Consistency Checks if the mapping is free from logical errors
Coverability Checks if the RDF mapping is exhaustive compared to the initial dataset
Connectability Checks if links exist between local and external resources
Reusability Checks if metadata enables reuse

Table 3.3: The set of dimensions used in EvaMap.

3.3.1 EvaMap: A Framework to Evaluate RDF Mappings

EvaMap uses a set of metrics organized in 7 dimensions. When it is possible,
metrics are evaluated on the RDF mapping. Otherwise, they are evaluated on
an extract of the resulting RDF dataset. For example, the available resource
IRIs metric needs RDF dataset to check if generated IRIs are dereferenceable. In
this case, EvaMap generates a sample such that applying each mapping rule to
the entire input dataset is not necessary. Table 3.3 describes each dimension of
EvaMap. These dimensions are based on [72]. From these dimensions, we propose
the Coverability one that detects the lose of data between the input dataset and the
resulting RDF dataset. Table 3.4 shows the set of metrics used by EvaMap. New
metrics proposed in EvaMap are highlighted in blue. The last column indicates if
the metric is evaluated on the RDF mapping or if the initial dataset is also needed.

In order to compute the quality of a mapping, Mi applied on a raw dataset D,
we propose a function q(Mi, D) ∈ [0, 1] that is the weighted mean of the quality of
each metric mj(Mi, D):

q(Mi, D) =

∑n
j=1 wj.mj(Mi, D)∑n

j=1wj

EvaMap also computes the score for each dimension. To do that, it only
considers the subset of metrics for the corresponding dimension.

Weights wj associated with metrics can be used to give more or less importance
to each metric. For example, the user does not always want to generate RDF triples
for all data in the input dataset. Thus, weights associated with coverability metrics
can be lowered or set to zero.

Figure 3.16 shows the global architecture of EvaMap. In addition to the quality
of the RDF mapping, it returns feedback to improve the mapping.

36

3.3. Assessing the Quality of RDF Mappings with EvaMap

Dimension Metric Description Evaluation

Ontology availability Checks if IRIs of classes and properties return a 2xx success
HTTP code. Mapping

Availability Dataset availability Checks if IRIs of instances return a 2xx success HTTP code. Dataset
Entities human-readability Checks if entities have a label or a description. MappingClarity IRIs human-readability Checks if IRIs are human-readable. Mapping

Rules conciseness Checks that there are no several transformation rules
generating the same set of triples. Mapping

Conciseness IRIs conciseness Checks if IRIs are not too long. Mapping
Properties consistency Checks if domain and range of property are respected. Mapping
Class hierarchy consistency Checks super-classes and equivalent classes. Mapping
Property hierarchy consistency Checks super-properties and equivalent properties. Mapping

Disjoint class consistency Checks that there are no instances belonging to
disjoint classes. MappingConsistency

Datatype consistency Checks if datatypes are consistent with datatypes
in the input dataset. Dataset

Coverability Vertical coverability Checks if all attributes of the input dataset are
considered. Dataset

Entities connectability Checks if entities are linked to other entities using
the sameAs property. Mapping

External connectability Checks if IRIs from external graphs are referenced. Mapping
Local connectability Checks if IRIs from the local graph are linked to each other. MappingConnectability

Ontology connectability Checks if already existing ontologies are used. Mapping
License availability Checks if the mapping is protected with a license. Mapping

License compatibility Checks if licenses of the dataset and the mapping are
compatible. Dataset

Reusability
Expiration Checks if the last update of the mapping is newer than

the last update of the dataset. Dataset

Table 3.4: The set of metrics used in EvaMap.

Figure 3.16: The global architecture of EvaMap.

37

3. Integrating Data into the Web of Data

3.3.2 Implementation and Demonstration Tool

We implemented EvaMap to evaluate YARRRML [28] mappings for datasets of the
Opendatasoft’s Data Network9. The source code of our tool10 and web service11

are available on GitHub under the MIT license.

Our tool is available as a web service12. Users are able to select different
mappings and use EvaMap to compare them. For each mapping, the global quality
score is computed as well as the quality score for each dimension. Our tool also
gives feedback that can be used to refine the RDF mapping. For instance, users can
assess two mappings for the dataset football-ligue. They can see that the mapping
football-ligue obtains a worse global score than the mapping football-ligue-fixed. In
the detailed report, users can analyze by dimension why these scores are different.

Figures 3.17 and 3.18 respectively show the quality score and feedback on the
clarity dimension returned by our implementation of EvaMap.

Figure 3.17: The quality score for an RDF mapping returned by EvaMap.

9https://data.opendatasoft.com
10https://github.com/benjimor/EvaMap
11https://github.com/benjimor/EvaMap-Web
12https://evamap.herokuapp.com/

38

https://data.opendatasoft.com
https://github.com/benjimor/EvaMap
https://github.com/benjimor/EvaMap-Web
https://evamap.herokuapp.com/

3.4. Generating RDF Mappings with a Semi-Automatic Tool

Figure 3.18: The feedback on the clarity dimension for an RDF mapping returned
by EvaMap.

3.4 Generating RDF Mappings with a
Semi-Automatic Tool

As we have seen previously, writing RDF mappings is not easy. Consider the Roman
Emperor dataset in Table 3.1 and Figure 3.1 that represents an RDF mapping
for this dataset. Writing this mapping requires to answer several questions, for
instance: (i) what concepts contain the Name and Birth city columns? In this
case, Name contains entities that are Persons (emperors) and Birth city contains
entities that are Places (cities). (ii) What are the relationships between these two
concepts? Here, Places are birth places of Persons. (iii) Which existing ontologies
are relevant to describe these concepts? In this example, DBpedia, GeoNames, etc.

Answering these questions requires two types of skills. It requires, to know the
dataset perfectly (i.e., its structure, context, meaning, etc.) and to be familiar with
RDF concepts such as RDFS, OWL, and RDF mapping languages. Unfortunately,
many data producers are not familiar with RDF and are not yet ready to invest
time to integrate their data. In this work, we focus on how to simplify as much as
possible the integration of existing structured datasets as Linked Data. The challenge
we face is to automate part of the integration process that requires getting familiar
with RDF.

Even if there exist simplified and human-readable syntaxes of mapping languages
like YARRRML [28], writing a mapping requires to be familiar with RDF. Recently,
interesting tools have been proposed to assist users during the creation of an RDF
mapping. These tools use different representations of the mapping to hide the
complexity of RDF mapping languages. KARMA [24] and RMLeditor [29] represent
the mapping as a graph while Juma [33] uses a puzzle block metaphor to avoid
misuse of RDF mapping languages terms. KARMA also uses machine learning to

39

3. Integrating Data into the Web of Data

automatically generate parts the RDF mappings that are common to previously
integrated datasets. Figures 3.19, 3.20, and 3.21 respectively show the user interface
of KARMA, RMLeditor, and Juma.

Figure 3.19: The user interface of KARMA.

Figure 3.20: The user interface of RMLEditor.

40

3.4. Generating RDF Mappings with a Semi-Automatic Tool

Figure 3.21: The user interface of Juma.

However, these tools are not easy to use for users that are not familiar with
RDF concepts because they require to search for ontologies and understand RDFS
and OWL rules.

We propose SemanticBot [49], a conversational interface that can generate an
RDF mapping from a structured dataset by only asking simple questions to users
about their dataset. Our tool can simply and quickly integrate datasets as Linked
Data and encourages new users to make their first steps into Linked Data.

3.4.1 SemanticBot: A Conversational Interface to
Generate RDF Mappings

To generate an RDF mapping from a structured dataset, our tool uses two knowledge
graphs, DBpedia and YAGO, the ontologies of LOV13, and the semantic web
languages OWL and RDFS.

Roughly speaking, from a set of instances of each column, our tool searches cor-
responding entities in DBpedia and YAGO. The goal is to find a class corresponding
to each column. Then, similarly, LOV is used to find the most relevant properties
that may correspond to column names, such that instances of a column correspond
to the object of a property. To confirm and complete these correspondences, the
tool asks simple questions to the user. User confirmed correspondences allow to
generate a first RDF mapping. Finally, this mapping is saturated with entailment
rules of OWL and RDFS.14 Figure 3.22 shows the architecture of the SemanticBot.

13https://lov.linkeddata.es/dataset/lov/
14We only consider rules 2, 3, 5, 7, 9 and 11 from RDFS: https://www.w3.org/TR/rdf11-mt/

#rdfs-entailment and rules based on owl:equivalentClass and owl:equivalentProperty
from OWL: https://www.w3.org/TR/owl-ref

41

https://lov.linkeddata.es/dataset/lov/
https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
https://www.w3.org/TR/owl-ref

3. Integrating Data into the Web of Data

Figure 3.22: The global architecture of Semanticbot.

Using the Roman emperor dataset of Table 3.1, in the class recognition step, the
Augustus value of the Name column corresponds to the entity dbpedia:Augustus
of the class dbo:Person in DBpedia. Thus, Augustus is identified as an entity
of the class dbo:Person. In this example, we obtain two class correspondences
suggesting that columns Name and Birth City contain respectively entities of the
classes dbo:Person and dbo:Place. These correspondences are suggested to the
user with simple yes or no questions: “Does the column Name in your dataset contain
Persons?” . In order to hide IRIs, questions are built using the rdfs:label property
of classes.

In the property recognition step, our tool obtains 5 property correspondences
suggesting that columns Name, Birth, Birth City, Lat and Long are respectively
objects of properties dbo:name, locah:dateBirth, dbo:birthPlace, geo:lat and
geo:long. Again, these correspondences are suggested to the user with simple yes
or no questions: “It seems that the column Lat is the latitude of a Spatial thing. Is it
true?”. These questions are built using the rdfs:label and the rdfs:domain of
the property.

To complete confirmed correspondences, the tool asks the user to select the
column of the dataset that will correspond to the subject of the property. If the
user confirms the geo:lat correspondence with column Lat, the tool asks “latitude
is a characteristic of a Spatial Thing. Select the column that contains Spatial Thing.” .
In our example, if the user answers correctly, the column Birth Province is used as
the subject of the geo:lat property.

Our tool uses heuristics to reduce the number of questions. It suggests at most
one class and one property for each column. Only the class that corresponds to
the most instances of a column is suggested. The property that is suggested for a
column is the property that has the best popularity score in the LOV answer. Our
tool does not suggest a property if its LOV score is lower than a fixed lower bound.
Moreover, to improve the pertinence of suggested properties, the type of a column
can also be added in the text search. In our example, it searches for the property
Birth date instead of Birth.

From user confirmed correspondences, our tool generates a first RDF map-

42

3.4. Generating RDF Mappings with a Semi-Automatic Tool

ping. In a final step, our tool saturates this mapping by applying RDFS and
OWL entailment rules. Using the range and domain of all properties (rdfs:range
and rdfs:domain), new classes are infered. This is possible because the domain
of a property represents the class of the subject and the range represents the
type (i.e., a class or the literal datatype) of the object. In our example, for in-
stance, the user defined Birth Province as the subject of the latitude property. In
the GeoNames ontology, the rdfs:domain of this property is geo:SpatialThing.
Thus, our tool infers that the column Birth Province contains entities of type
geo:SpatialThing. Our tool also takes into account owl:equivalentClass,
owl:equivalentProperty, rdfs:subClassOf and rdfs:subPropertyOf proper-
ties of concerned ontologies. For example, column Birth City containing entities of
the class dbo:Place are also considered as entities of the classes dbo:Location,
schema:Place and geo:SpatialThing.

3.4.2 Implementation and Demonstration Tool

We implemented a chatbot-like tool that is able to generate YARRRML mappings
for datasets of the Opendatasoft’s Data Network15. We chose YARRRML because,
at our knowledge, it is the most human readable and understandable RDF mapping
syntax for users that are not familiar with LD. Listing 13 in Appendix A shows an
RDF mapping for the Roman emperors dataset serialized in YARRRML. Source
code of out tool is available at GitHub16 under the MIT license. Our tool is also
available as a web service17. Figure 3.23 shows the user interface of SemanticBot.

15https://data.opendatasoft.com
16https://github.com/opendatasoft/ontology-mapping-chatbot
17https://semanticbot.opendatasoft.com/

43

https://data.opendatasoft.com
https://github.com/opendatasoft/ontology-mapping-chatbot
https://semanticbot.opendatasoft.com/

3. Integrating Data into the Web of Data

Figure 3.23: The user interface of SemanticBot.

A limitation of this tool is that the quality of the resulting RDF mapping is
highly dependant on:

• the quality of the initial dataset and, in particular its column names, data
types, and entities;

• the instances described in DBpedia and YAGO datasets;

• and the ontologies available on Linked Open Vocabularies.

SemanticBot does not aim to generate the best mapping for a dataset but, the
first mapping for a user that wants to try semantic web technologies and see how
Linked Data can enrich its dataset.

3.5 Conclusion

This chapter proposed solutions for difficulties that data producers face during the
publication of non-RDF datasets on the Web of Data. In particular, we presented
three approaches: ODMTP to query non-RDF datasets with SPARQL using
mappings, EvaMap to evaluate the quality and refine mappings, and SemanticBot
to semi-automatically generate RDF mappings for dataset.

44

3.5. Conclusion

Through these three tools, we proposed a complete workflow to publish non-
RDF datasets on the Web of Data. Figure 3.24 shows how SemanticBot, EvaMap,
and ODMTP can be used together to publish RDF datasets.

Figure 3.24: The worflow to publish non-RDF datasets on the Web of Data.

SemanticBot can be used to generate a first RDF mapping for the dataset. But,
this mapping is not always complete. Thus, mapping quality and feedback returned
by EvaMap can be used to refine the mapping. RDF mapping can be improved
iteratively during the assessment and refinement process. Finally, the dataset can
be published on the Web of Data using the ODMTP approach.

In this worflow, each tool can be replaced by other existing tools. This interoper-
ability among tools is possible thanks to the explicit description of mappings using
a state of the art RDF mapping language. For example, the mapping refinement
process can be made with RDF mapping editors presented before (i.e., RMLeditor,
Karma, or Juma). These approaches are used on the Opendatasoft platform to
integrate hundreds of open datasets into the Web of Data.

45

Chapter 4

Modelling the Compatibility of
Licenses

Contents
4.1 Introduction and Motivation 48

4.2 Related Work . 50

4.3 CaLi: a Lattice-based License Model 52

4.3.1 Formal model description 53

4.3.2 Example . 56

4.4 A CaLi Ordering for Creative Commons Licenses 58

4.4.1 Description of a CC ordering based on CaLi 58

4.4.2 Analysis of CC_CaLi 59

4.5 Implementation of CaLi Orderings 60

4.5.1 Insertion sort algorithm 60

4.5.2 Experimental validation 62

4.5.3 A search engine based on an ODRL CaLi ordering . . . 63

4.6 Conclusion . 65

Once a dataset is ready for integration on the Web of Data, it has to be
associated with a license[64]. The license protects and facilitates the reuse of the
dataset by specifying the conditions of reuse, i.e., what actions are permitted, obliged
and prohibited when using the dataset.

The Web of Data facilitate combining datasets to create new ones. For a dataset
producer, choosing the appropriate license for a combined dataset is not easy. It
involves choosing a license compliant with all the licenses of combined datasets
and analyzing the reusability of the resulting dataset through the compatibility

47

4. Modelling the Compatibility of Licenses

of its license. The risk is either, to choose a license too restrictive making the
dataset difficult to reuse, or to choose a not enough restrictive license that will not
sufficiently protect the dataset. Finding the right trade-off between compliance
and compatibility is a difficult process. An automatic ordering over licenses would
facilitate this task. In this chapter, we present CaLi, a model that partially orders
licenses. It answers our research question: given a license li, how to automatically
position li over a set of licenses in terms of compatibility and compliance?

This chapter is based on articles [44, 46, 47, 48] and is organized as follows.
Section 4.1 illustrates and motivates our research question. Section 4.2 discuses
related works, Section 4.3 introduces the CaLi model, Section 4.4 illustrates the
usability of our model, Section 4.5 shows experiments of the implemented algorithm
as well as the prototype of a license-based search engine, and Section 4.6 concludes.

4.1 Introduction and Motivation
Relations of compatibility, compliance and restrictiveness on licenses could be very
useful in a wide range of applications. Imagine license-based search engines for
services such as GitHub1, APISearch2, LODAtlas3, DataHub4, Google Dataset
Search5 or OpenDataSoft6 that could find resources licensed under licenses com-
patible or compliant with a specific license. Answers could be partially ordered
from the least to the most restrictive license. We argue that a model for license
orderings would allow the development of such applications.

We consider simplified definitions of compliance and compatibility inspired by
works like [19, 23, 34, 70]: a license lj is compliant with a license li if a resource
licensed under li can be licensed under lj without violating li. If a license lj is
compliant with li then we consider that li is compatible with lj and that resources
licensed under li are reusable with resources licensed under lj. In general, if li is
compatible with lj then lj is more (or equally) restrictive than li. We also consider
that a license lj is more (or equally) restrictive than a license li if lj allows at most
the same permissions and has at least the same prohibitions/obligations than li.

Usually but not always, when li is less restrictive than lj then li is compatible
with lj. For instance, see Figure 4.1 that shows an excerpt of three Creative
Commons (CC)7 licenses described in RDF and using the ODRL vocabulary8.

1https://github.com/
2http://apis.io/
3http://lodatlas.lri.fr/
4https://datahub.io/
5https://toolbox.google.com/datasetsearch
6https://data.opendatasoft.com/
7https://creativecommons.org/
8The term duty is used for obligations https://www.w3.org/TR/odrl-model/

48

https://github.com/
http://apis.io/
http://lodatlas.lri.fr/
https://datahub.io/
https://toolbox.google.com/datasetsearch
https://data.opendatasoft.com/
https://creativecommons.org/
https://www.w3.org/TR/odrl-model/

4.1. Introduction and Motivation

Figure 4.1: A set of three RDF Creative Commons licenses with their compatibility
and restrictiveness relationships.

Notice that there exists a restrictiveness order among these licenses, (a) is less
restrictive than (b) and (b) is less restrictive than (c). By transitivity (a) is less
restrictive than (c). Notice also that (a) is compatible with (b) and (c), but (b)
is not compatible with (c). This is due to the semantics of the prohibited action
DerivativeWorks that forbids the distribution of a derivation (remix, transform or
build upon) of the protected resource under a different license. Thus, depending
on the semantics of their actions, a restrictiveness relation between two licenses
does not imply a compatibility relation.

Our research question is: given a license li, how to automatically position li
over a set of licenses in terms of compatibility and compliance? The challenge we
face is how to generalise the automatic definition of the ordering relations among
licenses while taking into account the influence of the semantics of actions.

Inspired by lattice-based access control models [11, 63], we propose CaLi (ClAs-
sification of LIcenses) [48], a model for license orderings that uses restrictiveness
relations and constraints among licenses to define compatibility and compliance.
We validate experimentally CaLi with a quadratic algorithm and show its usability
through a prototype of a license-based search engine [46]. Our work is a step
towards facilitating and encouraging the publication and reuse of licensed resources
in the Web of Data. However, it is not intended to provide legal advice.

49

4. Modelling the Compatibility of Licenses

4.2 Related Work

Machine-readable licenses Automatic license classification requires machine-
readable licenses. License expression languages such as CC REL9, ODRL, or
L4LOD10 enable fine-grained RDF description of licenses. Works like [59] and
[6] use natural language processing to automatically generate RDF licenses from
licenses described in natural language. Other works such as [8, 27, 57] propose a
set of well-known licenses in RDF described in CC REL and ODRL. Thereby, in
this work, we suppose that there exist consistent licenses described in RDF.

Tools for license compliant resources There exist some tools to facilitate
the creation of license compliant resources. TLDRLegal11, CC Choose12 and
ChooseALicense13 help users to choose actions to form a license for their resources.
CC search14 allows users to find images licensed under Creative Commons licenses
that can be commercialized, modified, adapted, or built upon. DALICC [27] allows
to compose arbitrary licenses and provides information about equivalence, similarity
and compatibility of licenses. Finally, Licentia15, based on deontic logic to reason
over the licenses, proposes a web service to find licenses compatible with a set of
permissions, obligations and prohibitions chosen by the user. From these tools, only
Licentia and DALICC use machine-readable licenses16,17 in RDF. But unfortunately,
these works do not order licenses in terms of compatibility or compliance.

License compatibility and license combination The easiest way to choose
a license for a combined resource is to create a new one by combining all resource
licenses to combine. Several works address the problem of license compatibility
and license combination. In web services, [19] proposes a framework that analyses
compatibility of licenses to verify if two services are compatible and then generates
the composite service license. [38] addresses the problem of license preservation
during the combination of digital resources (music, data, picture, etc.) in a
collaborative environment. Licenses of combined resources are combined into a
new one. In the Web of Data, [70] proposes a framework to check compatibility
among CC REL licenses. If licenses are compatible, a new license compliant with

9https://creativecommons.org/ns
10https://ns.inria.fr/l4lod/
11https://tldrlegal.com/
12https://creativecommons.org/choose/
13https://choosealicense.com/
14https://ccsearch.creativecommons.org/
15http://licentia.inria.fr/
16http://rdflicense.appspot.com/rdflicense
17https://www.dalicc.net/license-library

50

https://creativecommons.org/ns
https://ns.inria.fr/l4lod/
https://tldrlegal.com/
https://creativecommons.org/choose/
https://choosealicense.com/
https://ccsearch.creativecommons.org/
http://licentia.inria.fr/
http://rdflicense.appspot.com/rdflicense
https://www.dalicc.net/license-library

4.2. Related Work

combined ones is generated. [23] formally defines the combination of licenses using
deontic logic. [65] proposes PrODUCE, an approach to combine usage policies
taking into account the usage context. These works focus on combining operators
for automatic license combination but do not propose to position a license over a
set of licenses.

License ordering Concerning the problem of license ordering to facilitate the
selection of a license, [9] uses Formal Concept Analysis (FCA) to generate a lattice
of actions. Once pruned and annotated, this lattice can be used to classify licenses
in terms of features. This classification reduces the selection of a license to an
average of three to five questions. However, this work does not address the problem
of license compatibility. Moreover, FCA is not suitable to generate compatibility
or restrictiveness relations among licenses. FCA defines a derivation operator on
objects that returns a set of attributes shared by the objects. We consider that the
set of actions in common of two licenses is not enough to infer these relations. If
applied to our introductory example, FCA can only work with permissions but not
with obligations and prohibitions. That is because li is less restrictive than lj if
permissions of li are a superset of permissions of lj, but regarding obligations and
prohibitions, li is less restrictive than lj if they are a subset of those of lj. In the
context of Free Open Source Software (FOSS), [34] proposes an approach, based on
a directed acyclic graph, to detect license violations in existing software packages.
It considers that license li is compatible with lj if the graph contains a path from
li to lj. However, as such a graph is built from a manual interpretation of each
license, its generalisation and automation is not possible.

Lattice-based access control In the domain of access control, [11] proposes
a lattice model of secure information flow. This model classifies security classes
with associated resources. Like in the compatibility graph of [34], security class
sci is compatible with scj if the lattice contains a path from sci to scj. Thus, this
path represents the authorized flow of resources (e.g., resource ri protected with
sci can flow to a resource protected by scj without violating sci.). The lattice can
be generated automatically through a pairwise combination of all security classes if
sci combined with sck gives scj where sci and sck are both compatible with scj.
[63] describes several models based on this approach but none focuses on classifying
licenses.

None of these works answers our research question. They do not allow to
automatically position a license over a set of licenses in terms of compatibility or
compliance. In our work we propose a lattice-based model inspired by [11]. This

51

4. Modelling the Compatibility of Licenses

model is independent of any license description language, application context and
licensed resource so that it can be used in a wide variety of domains.

4.3 CaLi: a Lattice-based License Model

We propose to partially order licenses in terms of compatibility and compliance
through the restrictiveness relation. In a license, actions can be distributed in
what we call status, e.g., permissions, obligations and prohibitions. To decide if a
license li is less restrictive than lj, it is necessary to know if an action in a status
is considered as less restrictive than the same action in another status. In the
introductory example (Figure 4.1), we consider that permissions are less restrictive
than obligations, which are less restrictive than prohibitions, i.e., Permission 6
Duty 6 Prohibition. This relation can be seen in Fig 4.2b.

We remark that if two licenses have a restrictiveness relation then it is possible
that they have a compatibility relation too. The restrictiveness relation between the
licenses can be automatically obtained according to the status of actions without
taking into account the semantics of the actions. Thus, based on lattice-ordered
sets [10], we define a restrictiveness relation among licenses.

To identify the compatibility among licenses, we refine the restrictiveness
relation with constraints. The goal is to take into account the semantics of actions.
Constraints also distinguish valid licenses from non-valid ones. We consider a
license li as non-valid if a resource can not be licensed under li, e.g., a license that
simultaneously permits the Derive action18 and prohibits DerivativeWorks19.

This approach is based on:

1. a set of actions (e.g., read, modify, distribute, etc.);

2. a restrictiveness lattice of status that defines (i) all possible status of an
action in a license (i.e., permission, obligation, prohibition, recommenda-
tion, undefined, etc.) and (ii) the restrictiveness relation among status; a
restrictiveness lattice of licenses is obtained from a combination of 1 and 2;

3. a set of compatibility constraints to identify if a restrictiveness relation between
two licenses is also a compatibility relation; and

4. a set of license constraints to identify non-valid licenses.

Next section introduces formally the CaLi model and Section 4.3.2 introduces a
simple example of a CaLi ordering.

18https://www.w3.org/TR/odrl-vocab/#term-derive
19https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks

52

https://www.w3.org/TR/odrl-vocab/#term-derive
https://www.w3.org/TR/odrl-vocab/#term-DerivativeWorks

4.3. CaLi: a Lattice-based License Model

4.3.1 Formal model description

Before introducing our definitions, we recall some basis related to lattices. A
partially ordered set (or poset) is a pair (X,6), where X is a set and 6 is a
reflexive, transitive and antisymmetric binary relation on X. For a subset Y ⊂ X
and an element x of X, x is an upper bound of Y if it is greater than all elements of
Y , that is if ∀y ∈ Y, y 6 x. Moreover, x is the least upper bound (or supremum) of Y
if it is smaller than all upper bounds of Y , that is ∀z ∈ X, (∀y ∈ Y, y 6 z)⇒ x 6 z.
Symmetrically, a lower bound of Y is smaller than all elements in Y , and the
greatest of them, if it exists, is called the greatest lower bound (or infimum) of Y .
If they exist, the greatest lower bound and the least upper bound are necessarily
unique. Let (X,6X) and (Y,6Y) be two posets. Their product (X,6X)× (Y,6Y)
is defined as the pair (X × Y,6), where 6 designates the coordinatewise order on
X × Y defined as follows. For all (xi, yi), (xj, yj) ∈ X × Y , (xi, yi) 6 (xj, yj) if
xi 6X xj and yi 6Y yj. We denote

∏n
i=1(Xi,6i) = (X1,61) × · · · × (Xn,6n). A

poset (X,6) is a lattice [10] if any pair {x, y} of elements of X has a least upper
bound, called the join of x and y and denoted x ∨ y, and a greatest lower bound,
called the meet of x and y and denoted x ∧ y. If (X,6X) and (Y,6Y) are two
lattices, then (X,6X)× (Y,6Y) is also a lattice.

We now formally introduce the CaLi model. We first define a restrictiveness
lattice of status. We use a lattice structure because it is necessary, for every pair of
status, to know which status is less (or more) restrictive than both.

Definition 1 (Restrictiveness lattice of status LS).
A restrictiveness lattice of status is a lattice LS = (S,6S) that defines all possible
status S for a license and the relation 6S as the restrictiveness relation over S.
For two status si, sj, if si 6S sj then si is less restrictive than sj.

Different LSs can be defined according to the application domain. Figure
4.2 shows examples of LSs. Dashed arrows represent restrictiveness, for exam-
ple, in 4.2a, Permission is less restrictive than Prohibition (i.e., Permission 6S

Prohibition). Figure 4.2a shows the diagram of a LS inspired by file systems where
actions can be either prohibited or permitted. With this lattice, prohibiting to read
a file is more restrictive than permitting to read it. Figure 4.2b illustrates a LS
for CC licenses where actions are either permitted, required (Duty) or prohibited.
Figure 4.2c shows a LS inspired by the ODRL vocabulary. In ODRL, actions can
be either permitted, obliged, prohibited or not specified (i.e., undefined). In this
lattice, the undefined status is the least restrictive and the prohibited one the most
restrictive. Figure 4.2d shows a LS where a recommended or permitted action is
less restrictive than the same action when it is permitted and recommended.

Now we formally define a license based on the status of its actions.

53

4. Modelling the Compatibility of Licenses

(a) (b) (c) (d)

Figure 4.2: Examples of restrictiveness lattices of status (LS).

Definition 2 (License).
Let A be a set of actions and LS = (S,6S) be a restrictiveness lattice of status. A
license is a function l : A → S. We denote by LA,LS the set of all licenses.

For example, consider A = {read ,modify , distribute}, LS the lattice of Figure
4.2c and two licenses: li which permits read and distribute but where modify
is undefined and lj where modify is also undefined but which permits read and
prohibits distribute. We define li and lj as follows:
∀a ∈ A:

li(a) =

{
Undefined if a ∈ {modify};
Permission if a ∈ {read , distribute}.

lj(a) =

Undefined if a ∈ {modify};
Permission if a ∈ {read};
Prohibition if a ∈ {distribute}.

A restrictiveness lattice of status and a set of licenses make possible to partially
order licenses in a restrictiveness lattice of licenses.

Definition 3 (Restrictiveness relation over licenses).
Let A be a set of actions and LS = (S,6S) be a restrictiveness lattice of status
associated to the join and meet operators ∨S and ∧S, and li, lj ∈ LA,LS be two
licenses. We say that li is less restrictive than lj, denoted li 6R lj, if for all actions
a ∈ A, the status of a in li is less restrictive than the status of a in lj. That is,
li 6R lj if ∀a ∈ A, li(a) 6S lj(a).

Moreover, we define the two operators ∨ and ∧ as follows. For all actions
a ∈ A, the status of a in li ∨ lj (resp. li ∧ lj) is the join (resp. meet) of the

54

4.3. CaLi: a Lattice-based License Model

status of a in li and the status of a in lj. That is, (li ∨ lj)(a) = li(a) ∨S lj(a) and
(li ∧ lj)(a) = li(a) ∧S lj(a).

For example, consider LS the lattice of Figure 4.2c, and licenses li and lj
defined previously; li 6R lj because li(read) 6S lj(read), li(modify) 6S lj(modify)
and li(distribute) 6S lj(distribute). In this example, li ∨ lj = lj because ∀a ∈ A,
(li ∨ lj)(a) = lj(a), e.g., (li ∨ lj)(distribute) = lj(distribute) = Prohibition. If for
an action, it is not possible to say which license is the most restrictive then the
compared licenses are not comparable by the restrictiveness relation.

Remark 1. The pair (LA,LS ,6R) is a restrictiveness lattice of licenses, whose ∨
and ∧ are respectively the join and meet operators.

In other words, for two licenses li and lj, li ∨ lj (resp. li ∧ lj) is the least (resp.
most) restrictive license that is more (resp. less) restrictive than both li and lj.

Remark 2. For an action a ∈ A, we call (L{a},LS ,6R) the action lattice of
a. Remark that (LA,LS, 6R) and

∏
a∈A(L{a},LS ,6R) are isomorphic. That is, a

restrictiveness lattice of licenses can be generated through the coordinatewise product
[10] of all its action lattices. The total number of licenses in this lattice is |LS||A|.

For example, consider A = {read ,modify}, LS the lattice of Figure 4.2a,
(LA,LS ,6R) is isomorphic to (L{read},LS ,6R)× (L{modify},LS ,6R). Figure 4.3a,b,c
illustrates the product of these action lattices and the produced restrictiveness
lattice of licenses.

To identify the compatibility relation among licenses and to distinguish valid
licenses from non-valid ones it is necessary to take into account the semantics of
actions. Thus, we apply two types of constraints to the restrictiveness lattice of
licenses: license constraints and compatibility constraints.

Definition 4 (License constraint).
Let LA,LS be a set of licenses. A license constraint is a function
ωL : LA,LS → Boolean which identifies if a license is valid or not.

For example, the license constraint ωL1 considers a license li ∈ LA,LS non-valid
if read is prohibited but modification is permitted (i.e., a modify action implies a
read action):

ωL1(li) =

{
False if li(read) = Prohibition and li(modify) = Permission;
True otherwise.

Definition 5 (Compatibility constraint).
Let (LA,LS ,6R) be a restrictiveness lattice of licenses. A compatibility constraint
is a function ω→ : LA,LS × LA,LS → Boolean which constraints the restrictiveness
relation 6R to identify compatibility relations among licenses.

55

4. Modelling the Compatibility of Licenses

For example, consider that a license prohibits the action modify. In the spirit of
DerivativeWork, we consider that the distribution of the modified resource under a
different license is prohibited. Thus, the compatibility constraint ω→1 , considers
that a restrictiveness relation li 6R lj can be also a compatibility relation if li does
not prohibit modify. This constraint is described as:

For li, lj ∈ LA,LS ,

ω→1(li, lj) =

{
False if li(modify) = Prohibition;
True otherwise.

Now we are able to define a CaLi ordering from a restrictiveness lattice of licenses
and constraints defined before.

Definition 6 (CaLi ordering).
A CaLi ordering is a tuple 〈A,LS, CL, C→〉 such that A and LS form a restrictive-
ness lattice of licenses (LA,LS ,6R), CL is a set of license constraints and C→ is a
set of compatibility constraints. For two licenses li 6R lj ∈ LA,LS , we say that li is
compatible with lj, denoted by li → lj, if ∀ωL ∈ CL, ωL(li) = ωL(lj) = True and
∀ω→ ∈ C→, ω→(li, lj) = True.

Remark 3. We define the compliance relation as the opposite of the compatibility
relation. For two licenses li, lj, if li → lj then lj is compliant with li.

A CaLi ordering is able to answer our research question, given a license li, how
to automatically position li over a set of licenses in terms of compatibility and
compliance? It allows to evaluate the potential reuse of a resource depending on
its license. Knowing the compatibility of a license allows to know to which extent
the protected resource is reusable. On the other hand, knowing the compliance of
a license allows to know to which extent other licensed resources can be reused.
Next section shows an example of CaLi ordering.

4.3.2 Example

Consider a CaLi ordering 〈A,LS, {ωL1}, {ω→1}〉 such that:

• A is the set of actions {read, modify},

• LS is a restrictiveness lattice of status where an action can be either permitted
or prohibited, and Permission 6S Prohibition (cf Figure 4.2a),

• ωL1 is the license constraint introduced in the example of Def. 4, and

• ω→1 is the compatibility constraint introduced in the example of Def. 5.

56

4.3. CaLi: a Lattice-based License Model

Figure 4.3: An example of CaLi ordering.

Figure 4.3 shows how this CaLi ordering can be obtained. Figure 4.3a and
Figure 4.3b are the action latices (L{read},LS ,6R) and (L{modify},LS ,6R), where
A = {read ,modify} and LS is the lattice of Figure 4.2a (Pr=Prohibition and
P=Permission). The product of these action lattices gives the restrictiveness lattice
of licenses Figure 4.3c (LA,LS ,6R) (reflexive relations are not represented). Figure
4.3d is the CaLi ordering 〈A,LS, {ωL1}, {ω→1}〉.

Figure 4.3d shows a visual representation of this CaLi ordering. Licenses in
grey are identified as non-valid by ωL1 . They are part of the ordering but cannot
protect resources. Dashed arrows represent restrictiveness relations 6R. Black
arrows represent restrictiveness relations that are also compatibility relations.

Consider a set of resources R = {r1, r2, r3, r4, r5}. ⇀ is the has license relation
such that {r1, r2}⇀ l1; r3 ⇀ l3; {r4, r5}⇀ l4. Thanks to our CaLi ordering, next
questions can be answered.

• Which licensed resources can be reused in a resource that has as license l3?
Those resource whose licenses are compatible with l3: r1 and r2 that have
license l1 which precedes l3, as well as r3 that has the license l3 itself.

• Which licensed resources can reuse a resource that has as license l1? Those
resource whose licenses are compliant with l1: r3, r4 and r5 that have licenses
l3 and l4 which follow l1, as well as r1 and r2 that have the license l3 itself.

Resulting licenses can be returned ordered in a graph of compatibility.
We illustrated CaLi with a simple restrictiveness lattice of status, next section

introduces a more realistic CaLi ordering inspired by licenses of Creative Commons.

57

4. Modelling the Compatibility of Licenses

4.4 A CaLi Ordering for Creative Commons
Licenses

Creative Commons proposes 7 licenses that are legally verified, free of charge,
easy-to-understand and widely used when publishing resources on the Web. These
licenses use 7 actions that can be permitted, required or prohibited. In this
CaLi example, we search to model a complete compatibility ordering of all possible
valid licenses using these 7 actions.

4.4.1 Description of a CC ordering based on CaLi

Consider CC_CaLi, a CaLi ordering 〈A,LS, CL, C→〉 such that:

• A is the set of actions {cc:Distribution, cc:Reproduction, cc:DerivativeWorks,
cc:CommercialUse, cc:Notice, cc:Attribution, cc:ShareAlike},

• LS is the restrictiveness lattice of status depicted in 4.2b20, and

• CL, C→ are the sets of constraints defined next.

CL = {ωL2 , ωL3} allows to invalidate a license (1) when cc:CommercialUse is
required and (2) when cc:ShareAlike is prohibited:

ωL2(li) =

{
False if li(cc:CommercialUse) = Duty;
True otherwise.

ωL3(li) =

{
False if li(cc:ShareAlike) = Prohibition;
True otherwise.

C→ = {ω→2 , ω→3} allows to identify (1) when cc:ShareAlike is required and (2)
when cc:DerivativeWorks is prohibited. That is because cc:ShareAlike requires
that the distribution of derivative works be under the same license only, and
cc:DerivativeWorks, when prohibited, does not allow the distribution of a derivative
resource, regardless of the license.

ω→2(li, lj) =

{
False if li(cc:ShareAlike) = Duty;
True otherwise.

ω→3(li, lj) =

{
False if li(cc:DerivativeWorks) = Prohibition;
True otherwise.

Other constraints could be defined to be closer to the CC schema21 but for the
purposes of this compatibility ordering these constraints are enough.

20To simplify, we consider that a requirement is a duty.
21https://creativecommons.org/ns

58

https://creativecommons.org/ns

4.4. A CaLi Ordering for Creative Commons Licenses

4.4.2 Analysis of CC_CaLi

The size of the restrictiveness lattice of licenses is 37 but the number of valid licenses
of CC_CaLi is 972 due to CL. That is, 5 actions in whatever status and 2 actions
(cc:CommercialUse and cc:ShareAlike) in only 2 status: 35 ∗ 22.

The following CC_CaLi licenses are like the official CC licenses.

CCBY (a) =

Permission if a ∈ {cc:Distribution, cc:Reproduction

cc:DerivativeWorks, cc:CommercialUse
cc:ShareAlike};

Duty if a ∈ {cc:Notice, cc:Attribution}.

CCBY NC(a) =

Permission if a ∈ {cc:Distribution, cc:Reproduction

cc:DerivativeWorks, cc:ShareAlike};
Duty if a ∈ {cc:Notice, cc:Attribution};
Prohibition if a ∈ {cc:CommercialUse}.

The following CC_CaLi licenses are not part of the official CC licenses. License
CC l1 is like CC BY-NC but without the obligation to give credit to the copyright
holder/author of the resource. CC l2 is like CC BY but with the prohibition of
making multiple copies of the resource. License CC l3 allows only exact copies of
the original resource to be distributed. CC l4 is like CC l3 with the prohibition of
commercial use.

CC l1(a) =

Permission if a ∈ {cc:Distribution, cc:Reproduction,

cc:DerivativeWorks, cc:ShareAlike,
cc:Notice, cc:Attribution};

Prohibition if a ∈ {cc:CommercialUse}.

CC l2(a) =

Permission if a ∈ {cc:Distribution, cc:DerivativeWorks,

cc:CommercialUse, cc:ShareAlike};
Duty if a ∈ {cc:Notice, cc:Attribution};
Prohibition if a ∈ {cc:Reproduction}.

CC l3(a) =

Permission if a ∈ {cc:Distribution, cc:ShareAlike, cc:CommercialUse};
Duty if a ∈ {cc:Notice, cc:Attribution, cc:Reproduction};
Prohibition if a ∈ {cc:DerivativeWorks}.

CC l4(a) =

Permission if a ∈ {cc:Distribution, cc:ShareAlike};
Duty if a ∈ {cc:Notice, cc:Attribution, cc:Reproduction};
Prohibition if a ∈ {cc:DerivativeWorks, cc:CommercialUse}.

In CC_CaLi, the minimum is the license where all actions are permitted (i.e.,
CC Zero) and the maximum is the license where all actions are prohibited.

Figure 4.4 shows two subgraphs of CC_CaLi with their compatibility relations.
Figure 4.4a shows only the 7 official CC licenses and Figure 4.4b includes also

59

4. Modelling the Compatibility of Licenses

Figure 4.4: Compatibility subgraphs of CC_CaLi.

CC l1 to CC l4. These graphs can be generated using the CaLi implementation (cf
Section 4.5). Thanks to ω→2 , the restrictiveness relation between CC BY-SA and
CC BY-NC-SA is not identified as a compatibility relation and thanks to ω→3 , the
restrictiveness relation between CC BY-ND and CC BY-NC-ND is not identified as
a compatibility relation. We recall that a license that prohibits cc:DerivativeWorks
is not compatible even with itself.

The compatibility relations of Figure 4.4a are conform to the ones obtained
from the CC license compatibility chart22. This example shows the usability of
CaLi with a real set of licenses.

4.5 Implementation of CaLi Orderings

The goal of this section is threefold, to present the algorithm we implemented to
produce CaLi orderings, to evaluate this algorithm and, to illustrate the usability
of CaLi through a prototype of a license-based search engine.

4.5.1 Insertion sort algorithm

The size growth of CaLi orderings is exponential, i.e., |LS||A|. Nevertheless, it is
not necessary to explicitly build a CaLi ordering to use it. Sorting algorithms like
insertion sort can be used to produce subgraphs of a CaLi ordering.

We implemented an algorithm that can sort any set of licenses. The goal is to
be able to insert a license in a graph in linear time O(n) without sorting again
the graph. We use a heuristic, based on the restrictiveness of the new license and
the restrictiveness of the licenses in the graph, to chose between two strategies,

22https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility

60

https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility

4.5. Implementation of CaLi Orderings

1) to insert a license traversing the graph from the bottom or 2) from the top of
the graph. The goal is to minimize the number of comparison needed to find the
position of the new license in the graph. To do this, our algorithm calculates the
relative position of the new license (i.e., the level of the node) from the number
of actions that it obliges and prohibits. The median depth (i.e., number of levels)
of the existing graph is calculated from the median of the number of prohibited
and obliged actions of existing licenses. Depending on these numbers, a strategy
is chosen to find the place of the new license in the graph. Algorithm 1 choose a
strategy to insert a new license in a CaLi ordering graph.

Algorithm 1: The choice of a strategy to insert a new license in a CaLi or-
dering graph.
1 Function insert(li, G):

Data: li: License,
G: Graph,
level_medianG: Median of the number of levels of G
levelli : Level of li
Result: Returns G with li classified

2 if valid(li, CL) then
// li respects all CL constraints

3 if (levelli < level_medianG) then
// li will be classified in the bottom half of G

4 G = insertFromBottom(li, G)
5 else

// li will be classified in the top half of G
6 G = insertFromTop(li, G)

7 return G

Algorithm 3 in Appendix A resursively insert a new license in a CaLi ordering
graph starting from the bottom of the graph. Notice the usage of supremum S
and infimum I to access respectively the top and the bottom of the graph. The
supremum is the most restrictive license of the CaLi ordering and the infimum is
the least restrictive license.

The insertion sort algorithm to add a new license in the Graph starting from
the top (i.e., insertFromTop) can be obtained by inverting restrictiveness relation
tests in Algorithm 3.

61

4. Modelling the Compatibility of Licenses

4.5.2 Experimental validation

We experimentally validate that our algorithm can sort any set of licenses in∑n−1
i=0 i = n(n−1)

2
comparisons of restrictiveness (approx. n2/2), n being the number

of licenses to sort, i.e., O(n2).
Results shown in Figure 4.5 demonstrate that our algorithm sorts a set of

licenses with at most n2/2 comparisons. We used 20 subsets of licenses of different
sizes from the CC_CaLi ordering. Size of subsets was incremented by 100 up to
2187 licenses. Each subset was created and sorted 3 times randomly. The curve
was produced with the average of the number of comparisons to sort each subset.

Figure 4.5: The performance of the CaLi insertion sort algorithm in number of
comparisons with incremental size of subsets of licenses.

A comparison of restrictiveness takes on average 6 milliseconds23, thus to insert
a license in a 2000 licenses graph takes an average of 12 seconds.

The implementation in Python of our algorithm and details of our experiments
are available on GitHub24. For interoperability purposes, constraints can be
described in RDF using OWL or Shapes Constraint Language (SHACL)25. Moreover,
to represent restrictiveness lattices of status in RDF format, we extended the
ODRL ontology with the cali:Status class and the cali:lessRestrictiveThan
property26. Figure 14 in Appendix A shows the restrictiveness lattice of status of
Figure 4.2c in RDF format.

23With a 160xIntel(R) Xeon(R) CPU E7-8870 v4 2.10GHz 1,5 Tb RAM.
24https://github.com/benjimor/CaLi-Search-Engine
25https://www.w3.org/TR/shacl/
26http://cali.priloo.univ-nantes.fr/ontology

62

https://github.com/benjimor/CaLi-Search-Engine
https://www.w3.org/TR/shacl/
http://cali.priloo.univ-nantes.fr/ontology

4.5. Implementation of CaLi Orderings

4.5.3 A search engine based on an ODRL CaLi ordering

Imagine a license-based search engine that can answer questions such as “find
all resources that can be reused under the CC BY-NC license”. The answer must
contain resources licensed under licenses such as CC BY and CC BY-NC itself that
are less or as restrictive as CC BY-NC and compatible with it.

There exist search engines that can find resources licensed under a particular
license. However they can not find resources whose licenses are compatible or
compliant with a particular license.

We illustrate the usability of CaLi by implementing a prototype of a search
engine27 that allows to find linked data28 and source code repositories29 based on
the compatibility or the compliance of their licenses. The goal is to be able find
resources whose licenses are compatible or compliant with a particular license. Our
prototype can answer questions such as: “find licensed resources that can be reused
under a given license” or “find licensed resources that can reuse a resource that has
a particular license”.

In our search engine, resources (i.e., linked data and source code) are associated
to licenses. Licenses are described in RDF with the ODRL vocabulary30. In addition
to indexing licenses, the titles, descriptions and IRI of each licensed resources are
also indexed to enable full-text search. We use the ODRL vocabulary because it is
the most complete vocabulary for licenses and it is well accepted by the community.
Our search engine is based on the ODRL_CaLi ordering. It is a CaLi ordering
〈A,LS, CL, C→〉 such that:

• A is the set of 72 actions considered by ODRL31;

• LS is the restrictiveness lattice of status depicted in 4.2c; and

• CL, C→ are the sets of constraints, inspired from the ODRL information
model.

It use license constraints and compatibility constraints of CC_CaLi ordering but
with a new license constraint that invalidates a license when the semantics of a
permitted or obliged action is included in a prohibited action (e.g. if CommercialUse
is permitted then use should not be prohibited because CommercialUse implies

27http://cali.priloo.univ-nantes.fr/
28http://cali.priloo.univ-nantes.fr/ld/
29http://cali.priloo.univ-nantes.fr/rep/
30https://www.w3.org/TR/odrl-model/
31https://www.w3.org/TR/odrl-vocab/#actionConcepts

63

http://cali.priloo.univ-nantes.fr/
http://cali.priloo.univ-nantes.fr/ld/
http://cali.priloo.univ-nantes.fr/rep/
https://www.w3.org/TR/odrl-model/
https://www.w3.org/TR/odrl-vocab/#actionConcepts

4. Modelling the Compatibility of Licenses

use). This constraint ωL4 is defined below.

ωL3(li) =

False if ai odrl:includedIn aj

AND (li(ai) = Permitted OR li(ai) = Obliged)
AND li(aj) = Prohibited;

True otherwise.

Other constraints could be defined to be closer to the ODRL information model
but for the purposes of this demonstration these constraints are enough.

The size of this ordering is 472 and it is not possible to build it. This search
engine illustrates the usability of ODRL_CaLi through two subgraphs. The first
one is a subgraph with the most used licenses in DataHub32 and Opendatasoft.
Licenses in this graph are linked to some RDF datasets such that it is possible to
find datasets whose licenses are compatible or compliant with a particular license.
The second one is a subgraph with the most used licenses in GitHub. Here, licenses
are linked to some GitHub repositories and it is possible to find repositories whose
licenses are compatible or compliant with a particular license.

Both compatibility graphs of licences are visually available. Figure 4.6 shows
the compatibility graph of the CaLi ordering for some licensed RDF datasets. Blue
nodes are licenses, grey arrows are compatibility relations among licenses and
orange nodes are RDF datasets associated to licenses. Licenses that have the same
actions in the same status are represented in the same node. In the graph, licenses
that are compatible with a particular license li are below li and licenses that are
compliant with li are above li. We recall that the ordering relations of compatibility
and compliance that we define are reflexive, transitive and asymmetric.

Figure 4.7 shows the search bar of our search engine. It enables full-text and
license-compliant searches over each graph, for RDF datasets33 or repositories34.
For example, users can search for datasets about ‘bikes’ whose licenses are compatible
with the CC BY-NC license (i.e. datasets about ‘bikes’ that can be reused under
the CC BY-NC license). The result contains all RDF datasets indexed in the search
engine where title or description contains the word ‘bikes’ and whose license is
compatible with CC BY-NC (e.g. CC BY, MIT, CC-Ze, etc.).

Both compatibility graphs of licences are available through a documented
API35. Finally, these graphs are also accessible through a TPF server36,37 or can
be exported in RDF (turtle, xml, n3 and json-ld).

32https://old.datahub.io/
33http://cali.priloo.univ-nantes.fr/ld/
34http://cali.priloo.univ-nantes.fr/rep/
35http://cali.priloo.univ-nantes.fr/api
36http://cali.priloo.univ-nantes.fr/api/ld/tpf
37http://cali.priloo.univ-nantes.fr/api/rep/tpf

64

https://old.datahub.io/
http://cali.priloo.univ-nantes.fr/ld/
http://cali.priloo.univ-nantes.fr/rep/
http://cali.priloo.univ-nantes.fr/api
http://cali.priloo.univ-nantes.fr/api/ld/tpf
http://cali.priloo.univ-nantes.fr/api/rep/tpf

4.6. Conclusion

Figure 4.6: A graph of the ODRL_CaLi ordering for some licensed RDF datasets.

Figure 4.7: The search bar of the license-based search engine.

A possible extension of our search engine is to allow the collaborative addition
of licenses and licensed resources. That is, to allow users to add new licenses and
resources to increase the size and therefore the interest of these two graphs.

We also proposed a framework that implements the CaLi model on Github38.
It allows creating any CaLi ordering by defining a set of actions, a restrictiveness
lattice of status, license constraints, compatibility constraints, and a set of licenses.

4.6 Conclusion

We proposed a lattice-based model to define compatibility and compliance relations
among licenses. Our approach is based on a restrictiveness relation that is refined
with constraints to take into account the semantics of actions existing in licenses.
We have shown the feasibility of our approach through two CaLi orderings, one using
the Creative Commons vocabulary and the second using ODRL. We experimented
the production of CaLi orderings with the implementation of an insertion sort
algorithm whose cost is n2/2. We implemented a prototype of a license-based

38https://github.com/benjimor/CaLi

65

https://github.com/benjimor/CaLi

4. Modelling the Compatibility of Licenses

search engine that highlights the feasibility and usefulness of our approach. Our
compatibility model does not intent to provide a legal advice but it allows to
exclude those licenses that would contravene a particular license.

The model we propose uses restrictiveness as the basis to define compatibility
and compliance among licenses. This strategy works most of the time, as we
have shown in this work, but it has certain limitations. In particular, CaLi is
not designed to define the compatibility of two licences if it is not coherent with
their restrictiveness relation. As an example consider two versions of MPL licenses.
Version 2.0 relaxes some obligations compared to version 1.1. Thus, MPL-2.0 is
less restrictive than MPL-1.1. With CaLi constraints, it can only be possible to
say that MPL-2.0 is compatible with MPL-1.1. But in the legal texts it is said the
opposite, i.e., MPL-1.1 is compatible with MPL-2.0.

Thereby, particularities in the usage of compatibility of licenses, the granularity
of the semantisation of licenses and the understanding of some actions (like Share-
Alike) are the main reasons of the difference between CaLi orderings and other
classifications. This is the case, for instance, of our compatibility graph devoted to
licenses of GitHub and the graph presented in [34].

A perspective of this work is to take into account other aspects of licenses
related to usage contexts like jurisdiction, dates of reuse, etc. Another perspective
is to analyse how two compatibility orderings can be compared. That is, given
two CaLi orderings, if there is an alignment between their vocabularies and their
restrictiveness lattices of status are homomorphic then find a function to pass from
a CaLi ordering to another.

66

Chapter 5

Ensuring License Compliance in
Federated Query Processing

Contents
5.1 Introduction and Motivation 68

5.2 Related Work . 70

5.3 A Federated License-Aware Query Processing Strategy 73

5.3.1 Query relaxation techniques 75

5.3.2 Information content measures 78

5.3.3 Data summaries . 79

5.3.4 Algorithm for the similarity-based relaxation graph . . 81

5.4 Experimental Evaluation . 82

5.4.1 Setup and implementation 83

5.4.2 Performance of FLiQue vs CostFed 83

5.5 Conclusion . 86

In the previous chapter, we showed the usefulness of the CaLi model for the
creation of license-aware applications. We now focus on using our model to create
a license-aware federated query engine.

When several licensed data sources participate in the evaluation of a federated
query, the query result must be protected by a license that is compliant with each
license of the involved datasets. However, such a license does not always exist,
and this leads to a query result that cannot be reused. One solution is to discard
datasets of conflicting licenses during the federated query processing. But, a query
with an empty result set can be obtained. In this chapter, we present FLiQue, a
license-aware query processing strategy for federated query engines. It answers our

67

5. Ensuring License Compliance in Federated Query Processing

research question: given a SPARQL query and a federation of licensed datasets,
how to guarantee a relevant and non-empty query result whose license is compliant
with each license of involved datasets?

This chapter is based on [43] and is organized as follows. Section 5.1 illustrates
and motivates our research question. Section 5.2 discuses related works, Section
5.3 introduces FLiQue, Section 5.4 shows experimental results, and Section 5.5
concludes.

5.1 Introduction and Motivation

A federated SPARQL query can retrieve information from several RDF data sources
distributed across the Linked Data. When two or more licensed data sources
participate in the evaluation of a federated query, the query result must be protected
by a license that is compliant with each license of involved datasets.

Unfortunately, it is not always possible to find a license compliant with each
license of datasets involved in a federated query [48]. If such a license does not exist,
the query result cannot be licensed and, thus, should not be reused nor published.
We consider that a query whose result set cannot be licensed should not be executed.
Notice that having the rights to query several datasets individually does not mean
having the rights to execute a federated query involving these datasets.

Consider datasets of LargeRDFBench [60], a benchmark for federated query
processing. Figure 5.1 shows the compatibility graph of Creative Commons licenses1
that protect LargeRDFBench datasets. License CC BY is compatible with itself,
with CC BY-SA, CC BY-NC, and CC BY-NC-SA. Thus, datasets protected by
CC BY can be queried along with other datasets protected by these licenses. But
the whole set of datasets of Figure 5.1 cannot be queried together because there is
no license compliant with the fourth licenses. For instance, there is no license with
which CC BY-SA and CC BY-NC-SA are both compatible.

In May 2020, Linked Data catalogs like Datahub2 or LODAtlas3 show that
the problem of license compliance when combining datasets can be frequent. For
instance, Datahub has 382 datasets with the license CC BY-SA and 292 with
license CC BY-NC. LODAtlas similarly has 118 datasets with the license CC-BY
SA and 90 with license CC NC.

One solution to the incompatibility of licenses is to negotiate with data providers
to change a conflicting license, e.g., to ask DBpedia to change their license to CC
BY or CC BY-NC. But negotiation takes time and is not always possible. A second

1This compatibility graph conforms to the license compatibility chart shown in https:
//wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility.

2https://old.datahub.io
3http://lodatlas.lri.fr

68

https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility
https://wiki.creativecommons.org/wiki/Wiki/cc_license_compatibility
https://old.datahub.io
http://lodatlas.lri.fr

5.1. Introduction and Motivation

CC
BY

KEGG

ChEBI

Affymetrix

New York Times

Geonames

Linked MDB

SW Dog Food

CC
BY-NC-

SA
Jamendo

License

Dataset

Compatibility
Has license

CC
BY-SA

CC
BY-NC

Linked TCGA

Drug bank

DBpedia

Figure 5.1: The compatibility graph of licenses for datasets of LargeRDFBench.

solution is to discard datasets that are protected by conflicting licenses. However,
this solution can lead to a query with an empty result set. To face this problem,
we use query relaxation techniques. That is, we use relaxation rules to relax triple
patterns to match triples of other datasets.

Consider the query Q of Listing 8 showing a SPARQL query annotated with
the datasets over which each triple pattern can be evaluated. It asks for students
enrolled in a course held at the University of Nantes taught by ex:Ben. D2 and D3
should not be queried together because their licenses are respectively CC BY-SA
and CC BY-NC, and there is no license compliant with both as shown in Figure
5.1. Thus, the result set of the query cannot be licensed. Creating a sub-federation
without D2 makes the result set licensable with CC BY-NC or with another license
compliant with CC BY-NC (e.g., CC BY-NC-SA). The problem is that the query
gives no result because there is no more dataset to evaluate tp4. The case is similar
if D3 is discarded because there is no more dataset to evaluate tp1 and tp2.

As there is no sub-federation able to produce a licensable and non-empty result
set for Q, we use query relaxation techniques. In such relaxation, for instance,
instead of asking for students in tp1, the query could ask for persons, or instead of
asking for courses taught by ex:Ben in tp4, the query could ask for courses taught
by anybody.

69

5. Ensuring License Compliance in Federated Query Processing

1 SELECT ?student WHERE {
2 ?student rdf:type ex:Student . #tp1@{D3} CC BY-NC
3 ?student ex:enrolledIn ?course . #tp2@{D3} CC BY-NC
4 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1} CC BY
5 ex:Ben ex:teaches ?course . #tp4@{D2} CC BY-SA
6 }

Listing 8: A SPARQL query Q annotated with the sources for each triple pattern
and dataset licenses.

The number of possible relaxed queries can be huge. To find the most relevant
relaxed queries efficiently, we use approaches that compute relaxed queries from
the most to the least similar to the original query [15, 16, 31, 32]. But the most
similar queries may produce no results. In a distributed environment, verifying
each relaxed query is not feasible. So the challenge is to find the most similar
relaxed queries that return a non-empty result while limiting communication costs.

Our research question is, given a SPARQL query and a federation of licensed
datasets, how to guarantee a relevant and non-empty query result whose license
is compliant with each license of involved datasets? The challenge is to limit the
communication cost when the relaxation process is necessary.

We propose FLiQue4 [43], a Federated License-aware Query processing strategy.
FLiQue is designed to detect and prevent license conflicts and gives informed
feedback with licenses able to protect a result set of a federated query. If necessary,
it applies distributed query relaxation to propose a set of most similar relaxed
queries whose result set can be licensed. Our contributions are:

• a license-aware query processing strategy,

• an implementation of a license-aware federated query engine, and

• an experimental evaluation of our approach.

5.2 Related Work
To our knowledge, there is no federated query engine that ensures license compliance
with all licenses involved in query execution.

Many works focus on access control over linked data using policy-based [7,
35, 36, 56], view-based [18], or query-rewriting [52] approaches. In these works,
datasets are protected by access control rules that prevent non-authorized users

4In French, FLiQue is a homophone of flic, which means cop.

70

5.2. Related Work

from querying data of each dataset. These approaches do not resolve our problem
statement because having the right to query datasets individually does not mean
that it should be possible to execute a federated query involving these datasets.

Compatibility graph of licenses. To know if a result set can be licensed,
we need to know the license(s) with whom all licenses of datasets involved in a
federated query are compatible. A compatibility graph of licenses contains a set
of licenses partially ordered by compatibility. It can be defined by hand using,
for instance, the license compatibility chart of Creative Commons. But licenses
used in the Linked Data are not limited to Creative Commons licenses. Works
like [70] address the problem of license compatibility and license combination. If
licenses are compatible, a new license compliant with combined ones is generated.
This approach allows defining the compatibility graph of licenses progressively.
However, it does not allow us to know all the compliant licenses that can be used
to protect a result set. CaLi [46, 48], is a lattice-based model for license orderings.
It automatically positions a license over a set of licenses in terms of compatibility
and compliance. It uses restrictiveness relations and constraints among licenses
to define compatibility. CaLi defines all the licenses that can be expressed with
a set of actions. For instance, the CaLi ordering for the set of 7 actions used by
Creative Commons has 972 licenses. CaLi can provide all the licenses than can
protect a result set ordered by restrictiveness. It can also identify which licenses
are in conflict. In this work, we use CaLi to verify license compliance.

When the result set of a federated query cannot be licensed, we propose to
define sub-federations that avoid license conflicts. If there is no sub-federation able
to produce a licensable and non-empty result set for the user query, we propose
alternative queries through query relaxation.

Query relaxation. Query relaxation techniques are used to provide an alterna-
tive for queries producing no result. [32] proposes query relaxation using RDFS
entailment and RDFS ontologies. The idea consists of relaxation rules that use
information from the ontology; these include relaxing a class to its super-class,
relaxing a property to its super-property, etc. Other relaxations include dropping
triple patterns, replacing constants with variables, and suppressing join depen-
dencies. All possible relaxed queries are organized in a lattice called relaxation
graph. The size of the relaxation graph grows combinatorially with the number
of relaxation rules, the richness of the ontology, and the relaxation possibilities of
each triple pattern in the original query.

[16, 31] focus on obtaining a certain number of alternative results (top-k) by
relaxing a query that produces no results. Their challenge is to execute as less as
possible relaxed queries to obtain the top k results. Relaxed queries are executed in

71

5. Ensuring License Compliance in Federated Query Processing

a similarity-based rank order to avoid executing all relaxed queries in the relaxation
graph. The information content is used to measure the similarity between a relaxed
query and the original query. That is, statistical information about the concerned
dataset, like the number of entities per class and the number of triples per property.
But, the number of failing relaxed queries executed before obtaining the top-k results
can be considerable. Thus, it is necessary to identify unnecessary relaxations that
do not generate new answers. Relaxed queries containing unnecessary relaxation
should not be executed.

[31] proposes OBFS (Optimized Best First Search algorithm) to identify un-
necessary relaxations in a similarity-based relaxation graph. It is based on the
selectivity of relaxations using the number of entities per class or the number of
triples per property. If the selectivity is the same before and after the relaxation,
the relaxation is considered unnecessary. That is, if the number of entities of a
class is equal to the number of entities of its super-class, then the class relaxation
does not generate new answers. The same idea is used for property relaxation.

[16] proposes OMBS (Optimized Minimal-failing-sub-queries-Based Search al-
gorithm) as an improvement to OBFS. The contribution of OMBS is to identify
the minimal sets of triple patterns in failing queries that fail to return answers.
These failing sets of triple patterns are called Minimal Failing Sub-queries (MFS).
MFS existing in a query must be relaxed, otherwise, the query fails in producing
results. Relaxed queries where the MFS are not relaxed are considered unnecessary.
OMBS defines optimal similarity-based relaxation graphs where relaxed queries
producing no results (based on MFS), or not new results (based on selectivity) are
not executed.

We use OMBS to find relaxed queries with non-empty result sets. To limit the
communication overhead, during the distributed query relaxation process, we use
data summaries.

Data summaries. Some federated query engines, use statistics to reduce the
number of requests sent to data sources during query processing, in particular in the
source selection and query optimization steps. For instance, SPLENDID [21], uses
VOID descriptions of datasets to speed-up query processing. VOID descriptions
contain basic statistical information about datasets, such as the number of entities
per class and the number of triples per property. HIBISCuS [61], a join-aware source
selection algorithm, discards dataset that are relevant for a triple pattern, but that
do not contribute to a query result. It proposes data summaries, called dataset
capabilities, containing all the distinct properties with all the URI authorities of their
subjects and objects. CostFed [62], an index-assisted federated engine for SPARQL
endpoints, extends the join-aware source selection of HIBISCuS by considering URI
prefixes instead of URI authorities. The dataset capabilities calculated by CostFed

72

5.3. A Federated License-Aware Query Processing Strategy

are more precise, its source selection chooses, in general, more pertinently the data
sources for each query.

We use the licenses of the data sources identified by a source selection process
to know if the result set of a federated query (or a relaxed federated query) would
be licensable. We use the join-aware source selection of CostFed.

5.3 A Federated License-Aware Query Processing
Strategy

We propose FLiQue, a federated license-aware query processing strategy to detect
and prevent license conflicts. Our approach gives informed feedback with licenses
that can protect a result set of a federated query. When the result set of a federated
query cannot be licensed, we define sub-federations that avoid license conflicts. If
there is no sub-federation able to produce a licensable and non-empty result set,
we propose alternative relaxed federated queries.

Figure 5.2: A federated license-aware query engine using FLiQue.

Figure 5.2 shows a license-aware federated query engine that uses FLiQue.
FLiQue is located between the query parsing and the query optimization functions
of a federated query engine. A join-aware source selection [62], selects the capable
datasets for each triple pattern of a query. The Algorithm 2 shows the global

73

5. Ensuring License Compliance in Federated Query Processing

approach of FLiQue. Using a compatibility graph of licenses, we search for the set
of licenses compliant with each license of the chosen pertinent endpoints (line 3). If
it is not empty, the original query can be executed and is returned with the licenses
that can protect its result set (line 18). If no compliant license exists, we identify
the license conflicts and define sub-federations that avoid these conflicts (line 5). If
one sub-federation can produce a licensable and non-empty result, the query can
be executed (line 8). Otherwise, for each sub-federation (line 12), we propose to
the query issuer a relaxed query whose result set is licensable and non-empty (line
13). Notice that when the result set of a relaxed query is computed during query
relaxation (line 13), the query is only executed if the source selection finds at least
one dataset capable of executing the query. The result of the algorithm is a set of
ordered triplets representing candidate queries. A triplet (Q,E,L) is a query Q
that returns a non-empty result set when executed on a set of pertinent endpoints
E that can be protected by a set of licenses L.

Several sub-federations may produce a licensable and non-empty result. In that
case, we choose the sub-federation that produces a result set licensable by the least
restrictive license.5

Consider the query Q of Listing 8, and the federation containing datasets D1,
D2, and D3 shown in Tables 5.1, 5.2, and 5.3. As there is no license compliant
with the licenses of D2 and D3, the result set of Q cannot be licensed. Thus, our
strategy defines the sub-federations F1={D1, D2} and F2={D1, D3} that avoid
license conflicts. The source selection for Q over F1 and F2 fails to obtain a data
source for each triple pattern. This launches a process of federated query relaxation
for each sub-federation. To avoid verifying that the result set of a large number of
relaxed queries is not empty, our strategy defines, by sub-federation, an optimal
similarity-based relaxation graph. When we find one licensable and non-empty
relaxed query, we stop the relaxation process. OMBS guarantees that a candidate
query is the most similar to Q for a sub-federation.

Figure 5.3 shows Q and three relaxed queries. Figure 5.4 shows the ontology
used in our example. �sc is rdfs:subClassOf, �sp is rdfs:subPropertyOf, ←↩d is
rdfs:domain, and ↪→r is rdfs:range.

As we explain next, Q′4b and Q′4d are the most similar licensable, and non-
empty relaxed query for F1 and F2 respectively.

In the next, Section 5.3.1 shows the relaxation techniques we use. Section 5.3.2
presents the information content measures that allow us to rank relaxed queries.
Section 5.3.3 shows the data summaries that allow limiting communication costs.
Finally, Section 5.3.4 explains how we define the similarity-based relaxation graph.

5Other options could be defined, for example, based on the cardinality estimations of result
sets or based on the number of involved data sources.

74

5.3. A Federated License-Aware Query Processing Strategy

Algorithm 2: The global approach of FLiQue.
1 Function FLiQue(Q, F , E, S, C):

Data: Q: RDF Query,
F : Federation of endpoints,
E ⊆ F : Set of pertinent endpoints for Q,
S: Dataset summaries,
C: Compatibility graph of licenses.
Precondition : resultSet(Q,E) 6= ∅.
Result: A set of tuples 〈Q,E,L〉 representing candidate queries with

corresponding pertinent endpoints and compliant licenses.
2 Candidates = ∅
3 L = compliantLicenses(E,C)
4 if L == ∅ then
5 Fs = {F ′ ⊆ F | compliantLicenses(F ′, C) 6= ∅}
6 for F ′ ∈ Fs do
7 E ′ = sourceSelection(Q,F ′,S)
8 if E ′ can evaluate Q then

// The original query can be executed on E ′.
9 L = compliantLicenses(E ′,C)

10 Candidates = Candidates ∪ 〈Q,E ′,L〉

11 if Candidates == ∅ then
// Compute most similar queries.

12 for F ′ ∈ Fs do
13 Q′ = queryRelaxation(Q, F ′, S)
14 E ′ = sourceSelection(Q′,F ′,S)

// The relaxed query Q′ can be executed on E ′.
15 L = compliantLicenses(E ′,C)
16 Candidates = Candidates ∪ 〈Q′, E ′,L〉

17 else
// The original query can be executed on E.

18 Candidates = {〈Q,E,L〉}
19 return Candidates

5.3.1 Query relaxation techniques

In this work, we use query relaxation using RDFS entailment and RDFS ontologies.
We consider that ontologies of datasets are accessible and that SPARQL endpoints
expose saturated RDF data (or support on-the-fly entailment) according to the

75

5. Ensuring License Compliance in Federated Query Processing

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D3}
 ?student ex:enrolledIn ?course . #tp2@{D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ex:Ben ex:teaches ?course . #tp4@{D2}
 }

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ?x ex:teaches ?course . #tp4’b@{D2}
 }

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ex:UniversityOfNantes . #tp3@{D1}
 ?x ex:attends ?course . #tp4’d@{D2,D3}
 }

Q’4b with Simple relaxation Result licensable
Sim=0.66 in F1 if D3 excluded

Q’4d with Simple and Property relaxations Result licensable
Sim=0,33 in F2 if D2 excluded

SELECT * WHERE {
 ?student rdf:type ex:Student . #tp1@{D2,D3}
 ?student ex:enrolledIn ?course . #tp2@{D2,D3}
 ?course ex:heldAt ?y . #tp3b@{D1}
 ?x ex:teaches ?course . #tp4’b@{D2}
 }

Q’3b4b with Simple relaxations Result licensable
 Sim=0.44 in F1 if D3 excludedQ (original query) Result not licensable

Figure 5.3: Example of SPARQL query Q and some relaxed queries Q’.

Figure 5.4: Ontology representing courses in a university.

RDFS entailment rules rdfs7 and rdfs9. We use the relaxations of triple patterns
and queries as proposed in [31].

Triple Pattern Relaxation. Given two triple patterns tp and tp′, tp′ is a relaxed
triple pattern obtained from tp, denoted tp ≺ tp′, by applying one or more triple
pattern relaxations. We use the three following triple pattern relaxations:

• Simple relaxation replaces a constant of a triple pattern by a variable. For
example, tp4 = 〈ex:Ben, ex:teaches, ?course〉, can be relaxed to tp′4 = 〈?x,
ex:teaches, ?course〉, thus tp4 ≺s tp

′
4.

• Type relaxation replaces a class C of a triple pattern with its super-class C ′. It
is based on the rdfs9 rule (rdfs:subClassOf). For example, tp1 = 〈?student,
rdf:type, ex:Student〉, can be relaxed to tp′1 = 〈?student, rdf:type,
ex:Person〉, thus tp1 ≺sc tp

′
1.

• Property relaxation replaces a property P of a triple pattern with its super-
property P ′. It is based on the rdfs7 rule (rdfs:subPropertyOf). For ex-

76

5.3. A Federated License-Aware Query Processing Strategy

Subject Predicate Object
ex:UniversityOfNantes rdf:type ex:University
ex:SemanticWeb rdf:type ex:Course
ex:SemanticWeb ex:heldAt ex:UniversityOfNantes
ex:Databases rdf:type ex:Course
ex:Databases ex:heldAt ex:UniversityOfNantes

Table 5.1: Dataset D1 containing courses. D1 has licence CC BY.
Subject Predicate Object
ex:Ben rdf:type ex:Teacher
ex:Ben rdf:type ex:Person
ex:Ben ex:attends ex:SemanticWeb
ex:Ben ex:teaches ex:SemanticWeb
ex:Mary rdf:type ex:Teacher
ex:Mary rdf:type ex:Person
ex:Mary ex:attends ex:Databases
ex:Mary ex:teaches ex:Databases
my:William rdf:type ex:Student
my:William rdf:type ex:Person
my:William ex:attends ex:Databases
my:William ex:enrolledIn ex:Databases

Table 5.2: Dataset D2 containing teachers and students. D2 has licence CC BY-SA.
Subject Predicate Object
ex:Elsa rdf:type ex:Student
ex:Elsa rdf:type ex:Person
ex:Elsa ex:attends ex:SemanticWeb
ex:Elsa ex:enrolledIn ex:SemanticWeb

Table 5.3: Dataset D3 containing students. D3 has licence CC BY-NC.

ample, tp1 = 〈?student, ex:enrolledIn, ?course〉, can be relaxed to
tp′1 = 〈?student, ex:attends, ?course〉, thus tp1 ≺sp tp

′
1.

The set of all possible relaxed triple patterns of tp can be represented as a lattice
called a relaxation lattice of a triple pattern. Figure 5.5 shows this lattice for triple
pattern tp4 of Q. tp4′b, tp4′c and tp4′e show simple relaxations. tp4′a shows a
property relaxation. This lattice has three levels of relaxation.

Query Relaxation. Given two queries Q and Q′, Q′ is a relaxed query obtained
from Q, denoted Q ≺ Q′, by applying one or more triple pattern relaxations to
triple patterns of Q. ≺ is a partial order over the set of all possible relaxed queries
of Q. This order can be represented as a lattice, called a relaxation lattice of a
query (or relaxation graph) that is the product of the relaxation lattices of all triple
patterns of the query. Figure 5.3 shows the query Q and three relaxed queries of
its relaxation graph where, Q ≺ Q′4b ≺ Q′4d and Q ≺ Q′4b ≺ Q′3b4b.

77

5. Ensuring License Compliance in Federated Query Processing

tp4
(ex:Ben ex:teaches ?cours)

(ex:Ben ex:attends ?cours)

(?x ex:attends ?cours)

(?x ?y ?cours)

(?x ex:teaches ?cours)

(ex:Ben ?y ?cours)

tp4’a tp4’b

tp4’c tp4’d

tp4’e

≺sp

≺s

≺s

≺sp≺s

≺s≺s

Figure 5.5: Relaxation lattice of triple pattern tp4 of query Q.

5.3.2 Information content measures

Analyzing all relaxed queries is time-consuming and unnecessary. We use informa-
tion content measures to compute the similarity of relaxed queries to the original
query. To avoid the analysis of an important number relaxed queries, our approach
generates and executes relaxed queries from the most to the least similar. This
execution allows to verify that the result set is not empty. It is stopped when
the first result is returned. We use the similarity mesures proposed in [31], and
explained in the following.

Similarity between terms. FLiQue uses three similarity measures for terms
in a triple pattern. They correspond to the three relaxations described in Section
5.3.1.

• Similarity between classes is Sim(C,C ′) = IC(C′)
IC(C)

where IC(C) is the informa-
tion content of C: −logPr(C), where Pr(C) = |Instances(C)|

|Instances| is the probability
of finding an instance of class C in the RDF dataset. For example, if the
subject or object of a triple pattern is a class c1 and is relaxed to its super
class c2 using type relaxation, the similarity between c1 and c2 is Sim(c1, c2).

• Similarity between properties is Sim(P, P ′) = IC(P ′)
IC(P)

where IC(P) is the
information content of P : −logPr(P), where Pr(P) = |Triples(P)|

|Triples| is the
probability of finding a property of P in triples of the RDF dataset. For
example, if the predicate of a triple pattern is a property p1 and is relaxed
to its super property p2 using property relaxation, the similarity between p1
and p2 is Sim(p1, p2).

78

5.3. A Federated License-Aware Query Processing Strategy

• Similarity between constants and variables is Sim(Tconst, Tvar) = 0. For
example, if the object of a triple pattern tconst is a class and is relaxed to a
variable tvar using simple relaxation, the similarity between tconst and tvar is
0.

Similarity between triple patterns. Given two triple patterns tp and tp′, such
that tp ≺ tp′, the similarity of the triple pattern tp′ to the original triple pattern
tp, denoted Sim(tp, tp′), is the average of the similarities between the terms of the
triple patterns:

Sim(tp, tp′) =
1

3
.Sim(s, s′) +

1

3
.Sim(p, p′) +

1

3
.Sim(o, o′)

where s, p, o, s′, p′ and o′ are respectively the subject, predicate and object of the
triple pattern tp and the relaxed triple pattern tp′. If tp′ and tp′′ are two relaxations
obtained from tp and tp′ ≺ tp′′ then Sim(tp, tp′) ≥ Sim(tp, tp′′).

Similarity between queries. Given two queries Q and Q′, such that Q ≺ Q′,
the similarity of the original query Q′ to the original query Q, denoted Sim(Q,Q′),
is the product of the similarity between triple patterns of the query:

Sim(Q,Q′) =
n∏

i=1

wi.Sim(tpi, tp
′
i)

Where tpi is a triple pattern of Q, tp′i a triple pattern of Q′, tpi � tp′i and, wi ∈ [0, 1]
is the weight of triple patterns tpi. Weight can be specified by the user to take into
account the importance of a triple pattern tpi in query Q. Thus Sim(Q,Q′) ∈ [0, 1]
is a function that defines a total order among relaxed queries.

This similarity function is monotone, i.e., given two relaxed queriesQ′(tp′1, ..., tp′n)
and Q′′(tp′′1, ..., tp

′′
n) of the user query Q, if Q′ ≺ Q′′ then Sim(Q,Q′) ≥ Sim(Q,Q′′).

Considering the query Q and datasets D1 and D2, Sim(Q,Q′4b) = 0.66 is
greater than Sim(Q,Q′3b4b) = 0.44. This verifies the ordering of these relaxed
queries, Q′4b ≺ Q′3b4b, where Q′4b is analyzed first.

5.3.3 Data summaries

A data summary is a compact structure that represents an RDF dataset. Using
dataset statistics and dataset capabilities as in [62], allow us to limit communication
cost in the similarity calculation and the source selection process.

79

5. Ensuring License Compliance in Federated Query Processing

Number of triples
Property F1 = {D1, D2} F2 = {D1, D3}

ex:enrolledIn 1 1
ex:teaches 2 0
ex:heldAt 2 2
ex:attends 3 1
rdf:type 9 5
Total 17 9

Table 5.4: Statistics of properties in
federations F1 and F2.

Number of entities
Class F1 = {D1, D2} F2 = {D1, D3}

ex:University 1 1
ex:Student 1 1
ex:Teacher 2 0
ex:Course 2 2
ex:Person 3 1
Total 6 4

Table 5.5: Statistics of classes in feder-
ations F1 and F2.

F1 = {D1, D2} F2 = {D1, D3}
Property subjPrefixes objPrefixes subjPrefixes objPrefixes

rdf:type ex:
my:William

ex:Person
ex:Student
ex:Teacher

ex:

ex:University
ex:Course
ex:Student
ex:Person

ex:heldAt ex: ex:UniversityOfNantes ex: ex:UniversityOfNantes

ex:attends ex:
my:William ex: ex:Elsa ex:SemanticWeb

ex:teaches ex: ex:
ex:enrolledIn my:William ex:Database ex:Elsa ex:SemanticWeb

Table 5.6: Capabilities of federations F1 and F2.

Dataset statistics. Statistics contain VOID descriptions [1], such as the number
of entities per class and the number of triples per property. Having dataset
statistics is twofold; they allow computing similarities, and they help during the
source selection process. Tables 5.4 and 5.5 show respectively statistics about
properties and classes for F1 and F2. In Table 5.4, the property ex:teaches has
no triples in F2. So there is no data source for tp4. That allows us to identify Q′4b
as a failing query in F2.

Dataset capabilities. Capabilities contain the properties of a dataset with the
common prefixes of their subjects and objects. The rdf:type property, is treated
differently. The prefixes of its objects are replaced by all the classes used in the
dataset. Dataset capabilities are used in the source selection process. The goal is
to discard datasets that individually return results for a triple pattern, but that
fail to perform joins with other triple patterns of the query. For multiple triple
patterns of a query sharing a variable, the dataset capabilities allow identifying
data sources that do not share the same URIs prefixes and thus whose joins yield
empty results. This information allows performing an optimal source selection
by limiting the communication with the data sources. FLiQue performs source
selection for the original query but also during query relaxation for relaxed queries.

Table 5.6 shows the capabilities of F1 and F2. Consider tp4′a of Q′4a that asks
for 〈ex:Ben ex:attends ?cours〉. Table 5.4 shows one triple for ex:attends but
capabilities of this property in F2 show only one subject prefix that is ex:Elsa,
not ex:Ben. Consider the join tp3 . tp4′c of Q′4c:

80

5.3. A Federated License-Aware Query Processing Strategy

tp1 tp2 tp3 tp4
Q, sim=1

tp1 tp2 tp3 tp4’a
Q’4a, sim=0.66

tp1 tp2 tp3 tp4’b
Q’4b, sim=0.66

tp1 tp2 tp3 tp4’c
Q’4c, sim=0.66

tp1 tp2 tp3 tp4’e
Q’4e, sim=0.33

tp1 tp2 tp3 tp4’d
Q’4d, sim=0.33

Q’4a
Q’4b

Q’4b
Q’4c
Q’4d

Q’4c
Q’4d
Q’4e

Q’4d
Q’4e

Q’4a Q’4cQ’4b

(b) Similarity-ordered query queue(a) Relaxation sub-graph

(1) (2) (3) (4)

Figure 5.6: Relaxation sub-graph of Q over F2 with relaxations of tp4.

{〈?course ex:heldAt ex:UniversityOfNantes〉, 〈ex:Ben ?y ?cours〉}

Table 5.4 shows two triples for ex:heldAt. Capabilities of ex:heldAt do not
discard this join. But, analyzing the subject and object capabilities of whatever
property (the property of tp4′c is a variable), we notice that when there exists
ex:SemanticWeb in the object, the subject contains ex:Elsa, not ex:Ben, so the
join dependency on ?cours cannot be satisfied. Thus, thanks to the dataset
capabilities of F2, we identify Q′4a and Q′4c as failing queries.

5.3.4 Algorithm for the similarity-based relaxation graph

When the distributed query relaxation is necessary, we define an optimal similarity-
based relaxation graph by sub-federation. The goal is to avoid verifying that the
result set of an important number of relaxed queries is not empty. Relaxed queries
are generated and executed from the most to the least similar. When we find one
licensable and non-empty relaxed query that we call candidate query, we stop the
relaxation process.

In the following, we explain how FLiQue finds the candidate query for the
sub-federation F2. First, the algorithm computes the MFS of the original query,
MFS(Q)={〈ex:Ben ex:teaches ?course〉}. It contains only tp4 because F2 does
not contain a data source to evaluate tp4. Using the MFS, the algorithm considers
only relaxed queries that contain a relaxation of tp4.

The relaxation algorithm uses a query queue ordered by similarity. This query
queue gives the analysis order of relaxed queries. Figure 5.6 shows (a) a relaxation
sub-graph where tp4 is relaxed, and (b) the analysis process of relaxed queries with
the query queue (failing relaxed queries are in gray).

81

5. Ensuring License Compliance in Federated Query Processing

Relaxed queries of the first level, Q′4a and Q′4b, are generated and inserted in
the queue (1). The most similar relaxed query Q′4a is analyzed. It is identified as a
failing query. It is not executed, but it is relaxed, so Q′4c, and Q′4d are generated
and inserted in the query queue (2). Then, the first relaxed query in the queue,
now Q′4b, is analyzed. It is also identified as a failing query so it is relaxed in Q′4d,
which is already in the queue (3). Then, the first relaxed query in the queue, now
Q′4c, is analyzed and identified as a failing query, so it is relaxed into Q′4e, which
is inserted in the queue (4). Then, the first relaxed query in the queue, now Q′4d,
is analyzed. It is executed returning a non-empty result set. Thus, Q′4d (in bold)
is the candidate query of query Q for the federation F2, and the relaxation process
stops.

The MFS and the failing relaxed queries of this example are identified thanks
to data summaries without making requests to data sources (cf. Section 5.3.3).

In this example, we found a candidate query only with the relaxation of tp4.
But the relaxation may continue until all triple patterns are composed of variables.
A threshold of similarity can be used to avoid such a case.

Figure 5.3 shows the candidate query Q′4d, whose similarity with Q is 0.33.
This query asks for students attending a course held at the University of Nantes.

The candidate query for federation F1 is Q′4b, whose similarity with Q is 0.66.
Figure 5.3 shows Q′4b, this query asks for students enrolled in a course held at the
University of Nantes and taught by someone.

CC BY-SA can protect relaxed queries for F1. Relaxed queries for F2 can be
protected by CC BY-NC but also by CC BY-NC-SA because both licenses are
compliant with licenses of D1 and D3. Table 5.7 shows the feedback returned to
the query issuer so that she can choose which query to execute.

Sub-federation Query Similarity Compliant licenses
F1={D1, D2} Q’4b 0.66 CC BY-SA
F2={D1, D3} Q’4d 0.33 CC BY-NC, CC BY-NC-SA

Table 5.7: Feedback with candidate queries for the user query Q.

5.4 Experimental Evaluation

The goal of our experimental evaluation is to measure the overhead produced by
the implementation of our proposal. In particular, (a) when the result set of the
original query is licensable, and (b) when the original query is relaxed.

82

5.4. Experimental Evaluation

5.4.1 Setup and implementation

FLiQue is implemented over CostFed, a state-of-the-art federated query engine,
which relies on a join-aware triple-wise source selection. Recent studies show that
the source selection of CostFed least overestimates the set of capable data sources,
with a small number of ASK requests [60, 62]. These performances make CostFed
a good choice for our license-aware query processing strategy. The join ordering of
CostFed is based on left-deep join trees. It implements bind and symmetric hash
joins.

Our test environment uses LargeRDFBench[60], a benchmark for federated
query engines. It contains real linked datasets and real queries that require several
data sources to be evaluated. This benchmark contains 32 queries that are executed
over a federation of 11 data sources. We identified the license of each dataset (cf.
Figure 5.1). We use a Creative Commons CaLi ordering [48] to verify compatibility
and compliance among licenses.

Our experiment runs on a single machine with a 160xIntel(R) Xeon(R) CPU
E7-8870 v4 2.10GHz 1,5 Tb RAM. Each dataset of LargeRDFBench is saturated
and made available using a single-threaded Virtuoso endpoint in a docker container
with 4 Gb RAM. Between each query execution, caches are reset.

5.4.2 Performance of FLiQue vs CostFed

To measure the overhead produced by FLiQue, we compare two different federated
query engines: CostFed and CostFed+FLiQue (that we call FLiQue to simplify).
They correspond to the original implementation of CostFed6 and our extension
of CostFed that includes FLiQue7. CostFed executes a query without considering
licenses while FLiQue ensures license compliance of the result set. We executed
all queries 5 times with each federated query engine. We measured the time in
milliseconds to return the first result of each query.

Using the capable data sources by query, and the compatibility graph of licenses,
we identified 16 queries whose result set cannot be licensed. Table 5.8 shows these
queries, their conflicting capable data sources and conflicting licenses. 10 need
to be relaxed, they are shown in bold. We recall that the DBpedia license (CC
BY-SA) is not compliant with the licenses of Jamendo (CC BY-NC-SA), Linked
TCGA and Drug bank (CC BY-NC). The average time to check license conflicts is
296 milliseconds which is negligible.

Evaluation of queries that do not need relaxation. Figure 5.7 presents the
execution of 22 queries of LargeRDFBench. For 16 queries, {S2, S3, S4, S5, S7,

6https://github.com/dice-group/CostFed
7https://github.com/benjimor/FLiQuE

83

https://github.com/dice-group/CostFed
https://github.com/benjimor/FLiQuE

5. Ensuring License Compliance in Federated Query Processing

Conflicting sources Conflicting licenses Queries
DBP, DB CC BY-SA, CC BY-NC S1, S10, C9
DBP, TCGA CC BY-SA, CC BY-NC L7
DBP, JA CC BY-SA, CC BY-NC-SA L6
DBP, DB, TCGA CC BY-SA, CC BY-NC C10
DBP, DB, TCGA, JA CC BY-SA, CC BY-NC, CC BY-NC-SA S6, S8, S9, C3, C5, C8, L1, L3, L5, L8

Table 5.8: The 16 queries of LargeRDFBench whose result set cannot be licensed.
DBP (DBpedia), DB (Drug bank), TCGA (Linked TCGA), JA (Jamendo).

Figure 5.7: Average time to get the first result of the 22 queries of LargeRDFBench
that can produce a licensable result set without relaxation.

S11, S12, S13, S14, C1, C2, C4, C6, C7, L2, L4}, FLiQue finds a license that can
protect the result set when the query is executed on the complete federation. For
these queries, the overhead of FLiQue is negligible and corresponds to the time to
check license conflicts among the capable datasets. This overhead depends on the
number of distinct licenses that protect the capable datasets.

For 6 queries, {S1, S6, S9, C3, L1, L3}, FLiQue does not find a license that
can protect the result set when the query is executed over the complete federation.
However, it finds a sub-federation such that the original query returns a non-empty
result set that is licensable. In this case, the overhead of FLiQue corresponds to
the time to check license conflicts, to compute sub-federations, and to execute
the original query on these sub-federations until the first result is returned. This
overhead depends on the number of tested sub-federations. The number of sub-
federations depends on the number of distinct conflicting licenses by query. In our
test environment, this number is always 2. For instance, conflicting licenses CC
BY-SA, CC BY-NC, and CC BY-NC-SA can be separated into two non-conflicting
sets {CC BY-SA} and {CC BY-NC, and CC BY-NC-SA}. These sub-federations
are ordered by the number of datasets in the federation. In the benchmark, the
average time to generate the sub-federations and find a non-empty result set is

84

5.4. Experimental Evaluation

11020 milliseconds. For these 6 queries, we remark that this overhead is almost
constant. That is because, a non-empty result set is found when FLiQue executes
the original query on the second sub-federation.

Evaluation of queries that are relaxed. Figure 5.8 represents the execution
of 10 queries of LargeRDFBench that need relaxation to return a non-empty result
set that can be protected by a license. For each query, we compare the time to
get the first result of the original query for CostFed, and the time to get the first
result of the first candidate query found by FLiQue.

Figure 5.8: Average time to get the first result of the 10 queries of LargeRDFBench
that need relaxation to produce a licensable result set.

The FLiQue overhead corresponds to the time to check license conflicts, to
compute sub-federations, and to find the first candidate query. We remark that the
execution time of an original query and a candidate query is not comparable. They
are not the same query, and they are not executed on the same number of data
sources. To have an idea (non-representative) of the similarities, the maximum is
0, 811 (L5’), the minimum is 0, 077 (C8’), the average is 0, 487, and the median is
0.603. Figures 15-24 in Appendix A show candidate queries and their similarities.

Overhead varies a lot depending on the queries. It depends on the number of
generated and executed failing relaxed queries, before finding the first candidate
query. Figure 5.9 shows the number of failing relaxed queries, (1) generated, and (2)
executed before finding each candidate query. We recall that an important number
of generated relaxed queries are identified as failing thanks to data summaries. The
candidate query C5′, is found after generating 69 failing relaxed queries, but only 3
were executed. In contrast, candidate query L5′ is found after generating 3 failing
relaxed queries but executing only one. For 6 out of 10 relaxed queries, FLiQue does
not need to execute any generated relaxed query to identify them as failing. With

85

5. Ensuring License Compliance in Federated Query Processing

Figure 5.9: Number of generated and executed failing relaxed queries until finding
each candidate query.

this benchmark, on average FLiQue generates 21.4 failing relaxed queries, and
executes 1.75 failing relaxed queries. Thus, we consider that FLiQue succeeds
in limiting communication costs during the relaxation of queries whose result set
cannot be licensed.

We use SPARQL 1.0. We think that, with SPARQL 1.1, the SERVICE clause
can restrict the evaluation of a BGP to a subset of data sources. Thus, the
source selection and the source discovering processes would generate less licensing
conflicts.

5.5 Conclusion
In this chapter, we propose FLiQue, a federated license-aware query processing
strategy. It ensures that a license protects the result set of any SPARQL query.
To our knowledge, this is the first work that uses query relaxation in a distributed
environment. Our implementation extends an existing federated query engine
with our license-aware query processing strategy. Our prototype demonstrates the
usability of our approach. Experimental evaluation shows that FLiQue ensures
license compliance with a limited overhead in terms of execution time. FLiQue is
a step towards facilitating and encouraging the publication and reuse of licensed
resources in the Web of Data. FLiQue is not a data access control strategy. It
empowers well-intentioned data users in respecting the licenses of datasets involved
in a federated query.

86

Chapter 6

Conclusion

Contents
6.1 Summary . 87

6.1.1 Ordering Licenses in Terms of Compatibility 88

6.1.2 Ensuring License Compliance During Federated Query
Processing . 88

6.1.3 Integrating Data into the Web of Data 89

6.2 Perspectives . 90

6.2.1 Extending the SemanticBot 90

6.2.2 Deducing Federated Queries from RDF Mappings . . . 90

6.2.3 Extending the Definition of Licenses 91

6.2.4 Defining Relations Among CaLi Orderings 91

6.2.5 Ranking Candidate Queries 92

6.1 Summary

In this thesis, we focused on license compliance during reuse on the Web of Data.
In particular, we focused on two research problems, (1) how to position licenses in
terms of compatibility and (2) how to ensure license compliance in federated query
engines that we answered with two contributions. Within the scope of this thesis,
we also proposed three demonstrators that address the problem of data integration
in the Web of Data.

87

6. Conclusion

6.1.1 Ordering Licenses in Terms of Compatibility

The first research problem we answered is: given a license, how to automatically
position it over a set of licenses in terms of compatibility and compliance?

1. CaLi is the first model to partially order any set of RDF licenses in terms of
compatibility. Restrictiveness relation among RDF licenses is automatically
deduced and refined with constraints to identify compatibility relations. We
validate CaLi experimentally with a quadratic algorithm that can add an RDF
license in a set of n ordered licenses in at most n2/2 comparisons. To show its
usability, we implemented a prototype of a license-based search engine that
can find RDF datasets or source codes that can be reused under a specific
license. CaLi is a step towards facilitating and encouraging the publication
and reuse of licensed resources on the Web. A limitation of our approach is
that it does not take into account some aspects of licenses that can impact
compatibility such as, jurisdiction, date of reuse or explicit definition of
compatibility relations that are not coherent with the restrictiveness relation.

6.1.2 Ensuring License Compliance During Federated
Query Processing

The second research problem we answered is: given a SPARQL query and a
federation of licensed datasets, how to guarantee a relevant and non-empty query
result whose license is compliant with each license of involved datasets?

2. FLiQue is the first license aware query processing strategy for federated
query engines. For any federated query, it guarantees that a non-empty result
set that can be protected by a license compliant with each license of involved
datasets is returned. It uses CaLi to check license compliance. If such a
license does not exist, FLiQue discards datasets with conflicting licenses and
uses query rewriting to find the most similar query that returns a non-empty
result set. It also uses data summaries to limit communication costs during
query evaluation and query relaxation process. To demonstrate the usability
of FLiQue, we implemented our strategy on a state-of-the-art federated query
engine, enriched an existing federated querying benchmark with licenses and,
executed the benchmark with our implementation. Experimental evaluation
shows that the overhead produced by FLiQue is negligible when queries do
not need relaxation. In the other case, it depends on the number of executed
relaxed queries before finding the most similar one. To our knowledge, it is
the first attempt to query relaxation in a distributed environment.

88

6.1. Summary

6.1.3 Integrating Data into the Web of Data

In chapter 3 we proposed three demonstrators addressing the problem of data
integration in the Web of Data. With Opendatasoft, we aimed at facilitating as
much as possible the transformation and publication of structured datasets on the
Web of Data. Our approaches are based on RDF mappings. Explicit description
of mappings using RDF mapping languages improves interoperability among data
integration tools and allows mappings to be shared and reused across the Web of
Data.

3. ODMTP is the first interface that allows executing SPARQL queries on
non-RDF datasets using the Triple Pattern Fragments interface and RDF
mappings. The advantage of our approach is that RDF is not materialized
and thus reduces storage costs. Another advantage is the high availability
guaranteed by the simplicity of the Triple Pattern Fragments server inter-
face. We also show how ODMTP supports RDFS and OWL inference rules.
Experimental results show that the ODMTP approach produces a limited
overhead compared to the classical Triple Pattern Fragments approach. To
demonstrate its usability, we implemented ODMTP to query Twitter, GitHub,
and LinkedIn APIs. An implementation of this approach is used on the Open-
datasoft platform. A limitation of this approach is that inference rules that
need instances are not supported because they are not materialized in RDF
mappings.

4. EvaMap is a framework that can evaluate the quality of RDF mappings. We
proposed new dimensions and metrics to state-of-the-art to evaluate different
aspects of an RDF mapping. The advantage of EvaMap is that metrics are
evaluated at the beginning of the publishing process on the RDF mapping
instead of the resulting RDF dataset and, thus, saves time. EvaMap is
highly configurable and allows giving more or less importance to each metric.
To shows its usability, we implemented EvaMap to evaluate mappings for
datasets of the Opendatasoft platform.

5. The SemanticBot is a conversational interface that can generate RDF
mappings for structured datasets. It only asks simple questions to users
about their datasets. The advantage of SemanticBot is that it allows users
that are not familiar with RDF concepts to quickly integrate their datasets
as Linked Data, allowing them to make their first steps into the Web of
Data. To demonstrate its usability, we implemented SemanticBot to generate
RDF mappings for datasets of Opendatasoft’s data network. A limitation
of our approach is that the quality of the generated RDF mapping is highly

89

6. Conclusion

dependant on the quality of the structured dataset, the instances described in
DBpedia and YAGO and, ontologies available on Linked Open Vocabularies.

In the next section, we discuss about perspectives related to our contributions.

6.2 Perspectives

Our contributions highlight several challenges that need to be addressed. Here, we
discuss these perspectives, in particular: (1) extending the SemanticBot to improve
the quality of generated mappings; (2) deducing queries from RDF mappings to
know how an RDF dataset can benefit from other datasets of the Web of Data; (3)
extending our definition of licenses to improve the reliability of CaLi orderings; (4)
defining relations among CaLi orderings to exchange information among license-
aware applications based on CaLi orderings; and finally, (5) ranking candidate
queries returned by FLiQue to take into account other aspects than reuse.

6.2.1 Extending the SemanticBot

A limitation of the SemanticBot is that the coverability dimension quality of the
generated mapping is not always satisfying. It means that all attributes of an
initial dataset are not always mapped. That is because the quality of the generated
mapping highly depends on (1) the quality of the initial dataset because the
SemanticBot uses the metadata of the dataset (i.e., column name, data types) to
find relevant ontologies; (2) the ontologies available on Linked Open Vocabularies
that is the dataset used to find ontologies; and (3) the resources described on
DBpedia and YAGO that are used in the entities recognition step.

To improve the average quality of the generated mappings, we propose to
extend the SemanticBot. DBpedia, YAGO, and Linked Open Vocabularies are
cross-domain RDF datasets. Thus, our approach fails to describe domain-specific
datasets with their ontologies. A solution is to consider other domain-specific
datasets and especially to allow users to choose ontologies and datasets. Another
problem is that the name and the data type of a column are not always enough
to find an ontology to describe it. To tackle this problem, we are working on new
interactions with the user, such as asking him to describe the meaning of a column
in natural language.

6.2.2 Deducing Federated Queries from RDF Mappings

Publishing data as RDF is an expensive investment in terms of storage and time.
Before publishing data as RDF, a data provider needs to know how and which

90

6.2. Perspectives

datasets might benefit from the Web of Data. That is, with which datasets of
the Web of Data its dataset can be queried. We think that having examples of
federated queries and a list of ranked datasets from the Web of Data according
to their degree of conjunction or disjunction with a specific dataset would be very
valuable.

Existing works propose to generate SPARQL queries based on the dataset [22,
55] or logs [25] of query execution. But these approaches cannot be used with newly
virtually integrated non-RDF datasets because the dataset is not materialized
in RDF, and a log of SPARQL queries does not yet exist. Moreover, they do
not propose to rank RDF datasets according to their degree of conjunction or
disjunction with a specific dataset.

An interesting approach is to generate federated queries from a set of RDF
mappings instead of an RDF datasets or query logs. This approach has the
advantage of working with newly integrated datasets and does not require an
important investment in terms of time from the data provider.

6.2.3 Extending the Definition of Licenses

Creating applications that preserve license compliance requires to take into account
compatibility among licenses. We proposed CaLi, a model that can automatically
order licenses in terms of compatibility and compliance.

CaLi allows to guarantee incompatibilities among licenses but fails to guarantee
that a license is legally compatible with another license. Thus, applications using
CaLi cannot provide legal advice and need to be confirmed by legal experts.

To improve the reliability of the compatibility relation in CaLi, a solution is
to extend the definition of licenses such that it takes into account other aspects.
Among the most important (1) the jurisdiction that can impact the distribution
of actions in status according to the country in which the license is used; (2) the
explicit definition of licenses with which the license is compatible with; and (3) the
temporal validity of the license.

6.2.4 Defining Relations Among CaLi Orderings

The CaLi model is based on a set of actions, a restrictiveness lattice of status, and
constraints. Composing these three elements allows users to define their own CaLi
orderings according to the application domain.

Imagine two applications using two different CaLi orderings. In this context,
reusing resources of these two applications while preserving license compliance is
difficult. That is because adding a license from one CaLi order to the other is not
always possible.

91

6. Conclusion

A perspective is to analyze how two CaLi orderings can be compared. That
is (1) to define conditions allowing two CaLi orderings to be compared (e.g., a
function to pass from a set of actions to another, An inclusion relation between
both sets of actions, A lattice homomorphism between the restrictiveness lattice of
status, etc.) and (2) to define the function that passes from a CaLi ordering to
another.

6.2.5 Ranking Candidate Queries

When several licensed data sources (i.e., federation) participate in the evaluation of
a federated query, the result must be protected by a license that preserves license
compliance.

In our implementation of FLiQue, candidate queries are ranked from the least
to the most restrictive license that can protect the result set of the query. This
choice encourages producing highly reusable result sets. However, other ranking
orders could be considered.

Even if each candidate query is the most similar to the original query for its
sub-federation, this ranking does not consider the similarity to the original query
across sub-federations. A different ranking could be a trade-off between similarity
and reuse. Another problem occurs when the execution time of the first candidate
query is longer than the second one. In this case, the time to retrieve the first result
could be improved if the second candidate query is executed first. To tackle this
problem, we can imagine an order based on an estimation of the time to execute
each query.

92

Appendix A

Supplemental Materials

1 {
2 "@context": {
3 "dbpedia": "http://dbpedia.org/resource/",
4 "rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
5 "rdfs": "http://www.w3.org/2000/01/rdf-schema#",
6 "xsd": "http://www.w3.org/2001/XMLSchema#"
7 },
8 "@id": "https://example.org/Opendatasoft",
9 "@type": "http://dbpedia.org/ontology/Company",

10 "http://dbpedia.org/ontology/formationYear": {
11 "@type": "xsd:gYear",
12 "@value": "2011"
13 },
14 "http://dbpedia.org/ontology/locationCity": [
15 {
16 "@id": "dbpedia:Paris"
17 },
18 {
19 "@id": "dbpedia:Nantes"
20 },
21 {
22 "@id": "dbpedia:Boston"
23 }
24]
25 }

Listing 9: An RDF graph serialized in JSON-LD.

93

A. Supplemental Materials

1 <?xml version="1.0" encoding="utf-8" ?>
2 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3 xmlns:dbo="http://dbpedia.org/ontology/">
4 <rdf:Description rdf:about="https://example.org/Opendatasoft">
5 <rdf:type rdf:resource="http://dbpedia.org/ontology/Company"/>
6 <dbo:formationYear rdf:datatype="http://www.w3.org/2001/XMLSchema#gYear">
7 2011
8 </dbo:formationYear>
9 <dbo:locationCity rdf:resource="http://dbpedia.org/resource/Paris"/>

10 <dbo:locationCity rdf:resource="http://dbpedia.org/resource/Boston"/>
11 <dbo:locationCity rdf:resource="http://dbpedia.org/resource/Nantes"/>
12 </rdf:Description>
13 </rdf:RDF>

Listing 10: An RDF graph serialized in RDF-XML.

1 <div xmlns="http://www.w3.org/1999/xhtml"
2 prefix="
3 dbo: http://dbpedia.org/ontology/
4 rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
5 xsd: http://www.w3.org/2001/XMLSchema#
6 rdfs: http://www.w3.org/2000/01/rdf-schema#"
7 >
8 <div typeof="dbo:Company" about="https://example.org/Opendatasoft">
9 <div rel="dbo:locationCity" resource="http://dbpedia.org/resource/Boston">

10 </div>
11 <div rel="dbo:locationCity" resource="http://dbpedia.org/resource/Paris">
12 </div>
13 <div rel="dbo:locationCity" resource="http://dbpedia.org/resource/Nantes">
14 </div>
15 <div property="dbo:formationYear" datatype="xsd:gYear" content="2011">
16 </div>
17 </div>
18 </div>

Listing 11: An RDF graph serialized in RDFa.

94

1 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
2 @prefix hydra: <http://www.w3.org/ns/hydra/core#> .
3 @prefix ns1: <http://purl.org/dc/terms/> .
4 @prefix ns2: <urn:x-rdflib:> .
5 @prefix ods: <https://public.opendatasoft.com/ld/ontologies/roman-emperors/> .
6 @prefix ods_tpf: <https://public.opendatasoft.com/api/tpf/roman-emperors/#> .
7 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
8 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
9 @prefix void: <http://rdfs.org/ns/void#> .

10 @prefix xml: <http://www.w3.org/XML/1998/namespace> .
11 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
12
13 ods_tpf:metadata { # Metadata and Controls
14 <https://public.opendatasoft.com/api/tpf/#dataset/#dataset>
15 hydra:member ods_tpf:dataset .
16
17 ods_tpf:metadata
18 foaf:primaryTopic <https://public.opendatasoft.com/api/tpf/roman-emperors/> .
19
20 <https://public.opendatasoft.com/api/tpf/roman-emperors/?predicate=https%3A%2F%2Fpublic....>
21 a hydra:PartialCollectionView ;
22 ns1:description "Triples of the roman-emperors dataset matching the pattern {?s=..." ;
23 ns1:source ods_tpf:dataset ;
24 ns1:title "roman-emperors Opendatasoft dataset of public domain" ;
25 void:triples "9"^^xsd:int ;
26 hydra:first <https://public.opendatasoft.com/api/tpf/roman-emperors/?predicate=...> ;
27 hydra:itemsPerPage "40"^^xsd:int ;
28 hydra:totalItems "9"^^xsd:int .
29
30 <https://public.opendatasoft.com/api/tpf/roman-emperors/>
31 void:subset <https://public.opendatasoft.com/api/tpf/roman-emperors/...> .
32
33 ods_tpf:dataset a void:Dataset,
34 hydra:Collection ;
35 void:subset <https://public.opendatasoft.com/api/tpf/roman-emperors/> ;
36 void:uriLookupEndpoint "https://public.opendatasoft.com/api/tpf/roman-emperors/..." ;
37 hydra:search [hydra:mapping [hydra:property rdf:object ;
38 hydra:variable "object"],
39 [hydra:property rdf:predicate ;
40 hydra:variable "predicate"],
41 [hydra:property rdf:subject ;
42 hydra:variable "subject"] ;
43 hydra:template "https://public.opendatasoft.com/api/tpf/roman-emperors/..." ;
44 hydra:variableRepresentation hydra:ExplicitRepresentation] .
45 }
46
47 { # Results
48 <https://public.opendatasoft.com/ld/resources/roman-emperors/roman-emperors-record/5057...>
49 ods:birth_cty "Rome"^^xsd:string .
50
51 <https://public.opendatasoft.com/ld/resources/roman-emperors/roman-emperors-record/6971...>
52 ods:birth_cty "Rome"^^xsd:string .
53 ...
54 }

Listing 12: An extract of a fragment returned by a Triple Pattern Fragments server.

95

A. Supplemental Materials

1 prefixes:
2 ex: "http://example.org/"
3 dbo: "http://dbpedia.org/ontology/"
4 locah: "http://data.archiveshub.ac.uk/def/"
5 geo: "http://www.w3.org/2003/01/geo/wgs84_pos#"
6 foaf: "http://xmlns.com/foaf/0.1/"
7 schema: "http://schema.org/"
8 wikidata: "http://www.wikidata.org/entity/"
9 dul: "http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#"

10 sources:
11 dataset-source: [people.csv~csv]
12 mappings:
13 person:
14 source: dataset-source
15 s: ex:Person/$(Name)
16 po:
17 - [a, dbo:Person]
18 - [a, dbo:Agent]
19 - [a, foaf:Person]
20 - [a, dul:NaturalPerson]
21 - [a, wikidata:Q215627]
22 - [a, wikidata:Q5]
23 - [a, schema:Person]
24 - [dbo:name, $(Name)]
25 - [locah:dateBirth, $(Birth)]
26 - [dbo:birthPlace, ex:Place/$(Birth City)~iri]
27 - [dbo:birthPlace, ex:Place/$(Birth Province)~iri]
28 - [rdfs:label, $(Name)]
29 place:
30 source: dataset-source
31 s: ex:Place/$(Birth City)
32 po:
33 - [a, dbo:Place]
34 - [a, dbo:Location]
35 - [a, schema:Place]
36 - [a, geo:SpatialThing]
37 - [rdfs:label, $(Birth City)]
38 spatialthing:
39 source: dataset-source
40 s: ex:Place/$(Birth Province)
41 po:
42 - [a, geo:SpatialThing]
43 - [geo:lat, $(Lat)]
44 - [geo:long, $(Long)]
45 - [rdfs:label, $(Birth Province)]

Listing 13: An RDF mapping serialized in YARRRML.

96

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
2 @prefix odrl: <http://www.w3.org/ns/odrl/2/> .
3 @prefix cali: <http://cali.priloo.univ-nantes.fr/ontology#> .
4
5 cali:Undefined a cali:Status ;
6 rdfs:label "Undefined status" ;
7 rdfs:comment "Stating that an action is in an Undefined state" ;
8 cali:lessRestrictiveThan odrl:Permission .
9

10 odrl:Permission a cali:Status ;
11 rdfs:label "Permission" ;
12 rdfs:comment "The ability to perform an Action over an Asset." ;
13 cali:lessRestrictiveThan odrl:Duty .
14
15 odrl:Duty a cali:Status ;
16 rdfs:label "Duty" ;
17 rdfs:comment "The obligation to perform an Action" ;
18 cali:lessRestrictiveThan odrl:Prohibition .
19
20 odrl:Prohibition a cali:Status ;
21 rdfs:label "Prohibition" ;
22 rdfs:comment "The inability to perform an Action over an Asset." .

Listing 14: The restrictiveness lattice of status of Figure 4.2c in RDF format.

97

A. Supplemental Materials

1 PREFIX tcga: <http://tcga.deri.ie/schema/>
2 PREFIX kegg: <http://bio2rdf.org/ns/kegg#>
3 PREFIX dbpedia: <http://dbpedia.org/ontology/>
4 PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
5 PREFIX purl: <http://purl.org/dc/terms/>
6
7 SELECT DISTINCT ?patient ?gender ?country ?popDensity ?drugName ?indication ?formula ?compound
8 WHERE
9 {

10 ?uri tcga:bcr_patient_barcode ?patient .
11 ?patient tcga:gender ?gender .
12 ?patient dbpedia:country ?country .
13 ?country dbpedia:populationDensity ?popDensity.
14 ?patient tcga:bcr_drug_barcode ?drugbcr.
15 ?drugbcr tcga:drug_name ?drugName.
16 ?drgBnkDrg drugbank:genericName ?drugName.
17 ?drgBnkDrg drugbank:indication ?indication.
18 ?drgBnkDrg drugbank:chemicalFormula ?formula.
19 ?drgBnkDrg drugbank:keggCompoundId ?compound .
20 }
21
22
23 SELECT DISTINCT ?patient ?gender ?country ?popDensity ?drugName ?indication ?formula ?compound
24 WHERE
25 {
26 ?uri tcga:bcr_patient_barcode ?patient .
27 ?patient tcga:gender ?gender.
28 ?patient dbpedia:country ?country.
29 ?country ?7sqC60 ?popDensity.
30 ?patient tcga:bcr_drug_barcode ?drugbcr.
31 ?drugbcr tcga:drug_name ?drugName.
32 ?drgBnkDrg drugbank:genericName ?drugName.
33 ?drgBnkDrg drugbank:indication ?indication.
34 ?drgBnkDrg drugbank:chemicalFormula ?formula.
35 ?drgBnkDrg drugbank:keggCompoundId ?compound .
36 }
37
38 # Similarity: 0.66666666666

Listing 15: The query C10 followed by the candidate query C10’.

98

1 PREFIX linkedmdb: <http://data.linkedmdb.org/resource/movie/>
2 PREFIX dcterms: <http://purl.org/dc/terms/>
3 PREFIX dbpedia: <http://dbpedia.org/ontology/>
4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
5
6 SELECT ?actor ?movie ?movieTitle ?movieDate ?birthDate ?spouseName
7 {
8 ?actor rdfs:label ?actor_name_en .
9 ?actor dbpedia:birthDate ?birthDate .

10 ?actor dbpedia:spouse ?spouseURI .
11 ?spouseURI rdfs:label ?spouseName .
12 ?imdbactor linkedmdb:actor_name ?actor_name.
13 ?movie linkedmdb:actor ?imdbactor .
14 ?movie dcterms:title ?movieTitle .
15 ?movie dcterms:date ?movieDate .
16 FILTER(STR(?actor_name_en) = STR(?actor_name))
17 }
18
19 SELECT ?actor ?movie ?movieTitle ?movieDate ?birthDate ?spouseName
20 {
21 ?actor rdfs:label ?actor_name_en .
22 ?actor ?SxzR4W ?birthDate .
23 ?actor ?1OCiE4 ?spouseURI .
24 ?spouseURI rdfs:label ?spouseName .
25 ?imdbactor linkedmdb:actor_name ?actor_name .
26 ?movie linkedmdb:actor ?imdbactor .
27 ?movie dcterms:title ?movieTitle .
28 ?movie dcterms:date ?movieDate .
29 FILTER(STR(?actor_name_en) = STR(?actor_name))
30 }
31 # Similarity: 0.44444444444

Listing 16: The query C5 followed by the candidate query C5’.

99

A. Supplemental Materials

1 PREFIX swc: <http://data.semanticweb.org/ns/swc/ontology#>
2 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
3 PREFIX eswc: <http://data.semanticweb.org/conference/eswc/>
4 PREFIX iswc: <http://data.semanticweb.org/conference/iswc/2009/>
5 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
6 PREFIX purl: <http://purl.org/ontology/bibo/>
7 PREFIX dbpedia: <http://dbpedia.org/ontology/>
8 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
9

10 SELECT DISTINCT * WHERE
11 {
12 ?paper swc:isPartOf iswc:proceedings .
13 iswc:proceedings swrc:address ?proceedingAddress.
14 ?paper swrc:author ?author .
15 ?author swrc:affiliation ?affiliation ;
16 ?author rdfs:label ?fullnames ;
17 ?author foaf:based_near ?place.
18 ?place dbpedia:capital ?capital .
19 ?place dbpedia:populationDensity ?populationDensity .
20 ?place dbpedia:governmentType ?governmentType .
21 ?place dbpedia:language ?language .
22 ?place dbpedia:leaderTitle ?leaderTitle .
23 }
24
25
26 SELECT DISTINCT * WHERE
27 {
28 ?paper swc:isPartOf iswc:proceedings .
29 iswc:proceedings swrc:address ?proceedingAddress.
30 ?paper swrc:author ?author .
31 ?author swrc:affiliation ?affiliation .
32 ?author rdfs:label ?fullnames .
33 ?author foaf:based_near ?place.
34 ?place ?mM9RIT ?capital .
35 ?place ?cZP8iP ?populationDensity .
36 ?place ?Pp7c1t ?governmentType .
37 ?place ?z2uYJB ?language .
38 ?place ?de7OQZ ?leaderTitle .
39 }
40
41 # Similarity: 0.07777777777

Listing 17: The query C8 followed by the candidate query C8’.

100

1 PREFIX dbpedia: <http://dbpedia.org/ontology/>
2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 PREFIX owl: <http://www.w3.org/2002/07/owl#>
4 PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
5
6 SELECT * WHERE
7 {
8 ?Drug rdf:type dbpedia:Drug .
9 ?drugbankDrug owl:sameAs ?Drug .

10 ?InteractionName drugbank:interactionDrug1 ?drugbankDrug .
11 ?InteractionName drugbank:interactionDrug2 ?drugbankDrug2 .
12 ?InteractionName drugbank:text ?IntEffect .
13 OPTIONAL
14 {
15 ?drugbankDrug drugbank:affectedOrganism ’Humans and other mammals’ .
16 ?drugbankDrug drugbank:description ?description .
17 ?drugbankDrug drugbank:structure ?structure .
18 ?drugbankDrug drugbank:casRegistryNumber ?casRegistryNumber .
19 }
20 }
21 ORDER BY (?drugbankDrug)
22
23
24 SELECT * WHERE
25 {
26 ?Drug ?0OgzMk ?Cvqg5H .
27 ?drugbankDrug ?c5DqMr ?Drug .
28 ?InteractionName drugbank:interactionDrug1 ?drugbankDrug .
29 ?InteractionName drugbank:interactionDrug2 ?drugbankDrug2 .
30 ?InteractionName drugbank:text ?IntEffect .
31 OPTIONAL
32 {
33 ?drugbankDrug drugbank:affectedOrganism ’Humans and other mammals’ .
34 drugbank:description ?description .
35 drugbank:structure ?structure .
36 drugbank:casRegistryNumber ?casRegistryNumber .
37 }
38 }
39 ORDER BY (?drugbankDrug)
40
41 # Similarity: 0.222222222222

Listing 18: The query C9 followed by the candidate query C9’.

101

A. Supplemental Materials

1 PREFIX dbpedia: <http://dbpedia.org/resource/>
2 PREFIX dbprop: <http://dbpedia.org/property/>
3 PREFIX dbowl: <http://dbpedia.org/ontology/>
4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
5 PREFIX owl: <http://www.w3.org/2002/07/owl#>
6 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
7 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
8 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
9 PREFIX factbook: <http://www4.wiwiss.fu-berlin.de/factbook/ns#>

10 PREFIX mo: <http://purl.org/ontology/mo/>
11 PREFIX dc: <http://purl.org/dc/elements/1.1/>
12 PREFIX fb: <http://rdf.freebase.com/ns/>
13
14 SELECT * WHERE {
15 ?a dbowl:artist dbpedia:Michael_Jackson .
16 ?a rdf:type dbowl:Album .
17 ?a foaf:name ?n .
18 }
19
20
21 SELECT * WHERE {
22 ?a dbowl:artist dbpedia:Michael_Jackson .
23 ?a rdf:type dbowl:Album .
24 ?a rdfs:label ?n .
25 }
26
27 # Similarity: 0.8115399282213058

Listing 19: The query L5 followed by the candidate query L5’.

102

1 PREFIX dbpedia: <http://dbpedia.org/resource/>
2 PREFIX dbowl: <http://dbpedia.org/ontology/>
3 PREFIX owl: <http://www.w3.org/2002/07/owl#>
4 PREFIX linkedMDB: <http://data.linkedmdb.org/resource/>
5 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
6 PREFIX geo: <http://www.geonames.org/ontology#>
7
8 SELECT * WHERE {
9 ?director dbowl:nationality dbpedia:Italy .

10 ?film dbowl:director ?director.
11 ?x owl:sameAs ?film .
12 ?x foaf:based_near ?y .
13 ?y geo:officialName ?n .
14 }
15
16
17 SELECT * WHERE {
18 ?director dbowl:nationality dbpedia:Italy .
19 ?film dbowl:director ?director.
20 ?x owl:sameAs ?film .
21 ?x ?6GKJwd ?y .
22 ?y geo:officialName ?n .
23 }
24
25 # Similarity: 0.66666666666

Listing 20: The query L6 followed by the candidate query L6’.

1 PREFIX tcga: <http://tcga.deri.ie/schema/>
2 PREFIX dbpedia: <http://dbpedia.org/ontology/>
3 SELECT DISTINCT ?patient ?p ?o
4 WHERE
5 {
6 ?uri tcga:bcr_patient_barcode ?patient .
7 ?patient dbpedia:country ?country.
8 ?country dbpedia:populationDensity ?popDensity.
9 ?patient tcga:bcr_aliquot_barcode ?aliquot.

10 ?aliquot ?p ?o.
11 }
12
13
14 SELECT DISTINCT ?patient ?p ?o
15 WHERE
16 {
17 ?uri tcga:bcr_patient_barcode ?patient .
18 ?patient dbpedia:country ?country .
19 ?country ?cG4icP ?popDensity.
20 ?patient tcga:bcr_aliquot_barcode ?aliquot .
21 ?aliquot ?p ?o .
22 }
23
24 # Similarity: 0.66666666666

Listing 21: The query L7 followed by the candidate query L7’.

103

A. Supplemental Materials

1 PREFIX kegg: <http://bio2rdf.org/ns/kegg#>
2 PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
3 PREFIX owl: <http://www.w3.org/2002/07/owl#>
4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
5 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
6
7 SELECT * WHERE {
8 ?drug drugbank:drugCategory drugbank:micronutrient .
9 ?drug drugbank:casRegistryNumber ?id .

10 ?drug owl:sameAs ?s .
11 ?s foaf:name ?o .
12 ?s skos:subject ?sub .
13 }
14
15
16 SELECT * WHERE {
17 ?drug drugbank:drugCategory drugbank:micronutrient .
18 ?drug drugbank:casRegistryNumber ?id .
19 ?drug ?XKeC36 ?s .
20 ?s rdfs:label ?o .
21 ?s skos:subject ?sub .
22 }
23
24 # Similarity: 0.5410266188142039

Listing 22: The query L8 followed by the candidate query L8’.

1 PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
2 PREFIX owl: <http://www.w3.org/2002/07/owl#>
3 PREFIX dbo: <http://dbpedia.org/ontology/>
4
5 SELECT ?Drug ?IntDrug ?IntEffect WHERE {
6 ?Drug a dbo:Drug .
7 ?y owl:sameAs ?Drug .
8 ?Int drugbank:interactionDrug1 ?y .
9 ?Int drugbank:interactionDrug2 ?IntDrug .

10 ?Int drugbank:text ?IntEffect .
11 }
12
13
14 SELECT ?Drug ?IntDrug ?IntEffect WHERE {
15 ?Drug ?zkB8o2 ?OKS9kY .
16 ?y ?Y2df3t ?Drug .
17 ?Int drugbank:interactionDrug1 ?y .
18 ?Int ?Q6kLIS ?IntDrug .
19 ?Int drugbank:text ?IntEffect .
20 }
21
22 # Similarity: 0.11111111111

Listing 23: The query S10 followed by the candidate query S10’.

104

1 PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3
4 SELECT ?drug ?melt WHERE {
5 { ?drug drugbank:meltingPoint ?melt. }
6 UNION
7 { ?drug dbo:meltingPoint ?melt . }
8 }
9

10
11 SELECT ?drug ?melt WHERE {
12 { ?drug drugbank:meltingPoint ?melt. }
13 UNION
14 { ?drug ?1HmoLC ?melt . }
15 }
16
17 # Similarity: 0.666666666666666

Listing 24: The query S8 followed by the candidate query S8’.

105

A. Supplemental Materials

Algorithm 3: The insertion of a new license in a CaLi ordering graph starting
from the bottom.
1 Function insertFromBottomRec(li, lj, G):

Data: li, lj, lcomplj : License,
G: Graph,
S: Supremum,
I: Infimum,
C→: Compatibility constraints,
LRCompllj : Least restrictive licenses compliant with lj in G,
LRComplli : Least restrictive licenses compliant with li in G

2 if lj is not already visited then
3 for lcomplj ∈ LRCompllj do
4 if li ∨ lcomplj = lcomplj and is_compatible(li →L lcomplj , C→) then

// li is compatible with lcomplj

5 for lcompli ∈ LRComplli − lcomplj do
6 if lcompli ∨ lcomplj = lcompli and

is_compatible(lcomplj →L lcompli, C→) then
// lcomplj is compatible with lcompli

7 delete li → lcompli from G
// li is now compatible with lcompli through

lcomplj

8 if not compatible(li →L lcomplj , G) then
9 add li → lcomplj to G

10 if li ∨ lj = li and is_compatible(lj →L li, C→) then
// li is between lj and lcomplj

11 add lj → li to G
12 delete lj → lcomplj from G

13 else
// Classifies li in licenses compliant with lcomplj

14 return insertFromBottomRec(li, lcomplj , G)

15 lj is marked as visited if LRComplli == ∅ then
// li is compatible with no license

16 add li → S to G

17 if MRCompli == ∅ then
// li is compliant with no license

18 add I → li to G

19 return G

106

List of Figures

2.1 An rdf graph vizualized as a labelled directed multigraph. 13
2.2 An extract of the DBpedia ontology. 14
2.3 The saturated RDF graph of Figure 2.1. 15
2.4 Links between two RDF graphs that share the same IRIs. 16
2.5 A BGP matching a subgraph of an RDF graph. 18
2.6 A query processed by a query engine (a) and a federated query engine (b). 19

3.1 An RDF mapping for Roman emperors dataset. 23
3.2 An RDF dataset describing Roman emperors. 23
3.3 HTTP client-server SPARQL interfaces. 25
3.4 The SPARQL Endpoint interface. 26
3.5 The Triple Pattern Fragments interface. 26
3.6 The execution of a SPARQL query on a virtually integrated non-RDF

dataset. 26
3.7 The global architecture of ODMTP. 27
3.8 The components of the ODMTP module. 28
3.9 Super classes and equivalent classes of the dbo:Place class. 29
3.10 The saturated RDF mapping of Figure 3.1 according to the ontology of

Figure 3.9. 29
3.11 The reasoner module integrated to ODMTP. 30
3.12 The average execution time to retrieve the last page for each type of

triple pattern. 32
3.13 The average execution time to retrieve the last page of a triple triple

pattern. 33
3.14 The average time to execute a SPARQL query. 34
3.15 Two other RDF mappings for the Roman emperors dataset. 35
3.16 The global architecture of EvaMap. 37
3.17 The quality score for an RDF mapping returned by EvaMap. 38
3.18 The feedback on the clarity dimension for an RDF mapping returned

by EvaMap. 39
3.19 The user interface of KARMA. 40

107

List of Figures

3.20 The user interface of RMLEditor. 40
3.21 The user interface of Juma. 41
3.22 The global architecture of Semanticbot. 42
3.23 The user interface of SemanticBot. 44
3.24 The worflow to publish non-RDF datasets on the Web of Data. 45

4.1 A set of three RDF Creative Commons licenses with their compatibility
and restrictiveness relationships. 49

4.2 Examples of restrictiveness lattices of status (LS). 54
4.3 An example of CaLi ordering. 57
4.4 Compatibility subgraphs of CC_CaLi. 60
4.5 The performance of the CaLi insertion sort algorithm in number of

comparisons with incremental size of subsets of licenses. 62
4.6 A graph of the ODRL_CaLi ordering for some licensed RDF datasets. 65
4.7 The search bar of the license-based search engine. 65

5.1 The compatibility graph of licenses for datasets of LargeRDFBench. . . 69
5.2 A federated license-aware query engine using FLiQue. 73
5.3 Example of SPARQL query Q and some relaxed queries Q’. 76
5.4 Ontology representing courses in a university. 76
5.5 Relaxation lattice of triple pattern tp4 of query Q. 78
5.6 Relaxation sub-graph of Q over F2 with relaxations of tp4. 81
5.7 Average time to get the first result of the 22 queries of LargeRDFBench

that can produce a licensable result set without relaxation. 84
5.8 Average time to get the first result of the 10 queries of LargeRDFBench

that need relaxation to produce a licensable result set. 85
5.9 Number of generated and executed failing relaxed queries until finding

each candidate query. 86

108

List of Algorithms

1 The choice of a strategy to insert a new license in a CaLi ordering
graph. 61

2 The global approach of FLiQue. 75

3 The insertion of a new license in a CaLi ordering graph starting from
the bottom. 106

109

List of Tables

3.1 An excerpt from a structured and typed dataset describing Roman
emperors. 23

3.2 The eight types of triple patterns. 31
3.3 The set of dimensions used in EvaMap. 36
3.4 The set of metrics used in EvaMap. 37

5.1 Dataset D1 containing courses. D1 has licence CC BY. 77
5.2 Dataset D2 containing teachers and students. D2 has licence CC BY-SA. 77
5.3 Dataset D3 containing students. D3 has licence CC BY-NC. 77
5.4 Statistics of properties in federations F1 and F2. 80
5.5 Statistics of classes in federations F1 and F2. 80
5.6 Capabilities of federations F1 and F2. 80
5.7 Feedback with candidate queries for the user query Q. 82
5.8 The 16 queries of LargeRDFBench whose result set cannot be licensed.

DBP (DBpedia), DB (Drug bank), TCGA (Linked TCGA), JA (Jamendo). 84

111

List of Listings

1 Two triples about Opendatasoft. 2
2 A SPARQL query that retrieves population of each city where

Opendatasoft company is located. 3
3 Two triples about the city of Paris. 4
4 An RDF graph serialized in Turtle that describes five statements

about Opendatasoft. 13
5 A SPARQL query that retrieves companies, associated to their city,

that are located in the same city as an office of the Opendatasoft
company. 18

6 A query that retrieves resources of type dbo:Place. 29
7 A query that retrieves resources of type dbo:Location. 29
8 A SPARQL query Q annotated with the sources for each triple

pattern and dataset licenses. 70
9 An RDF graph serialized in JSON-LD. 93
10 An RDF graph serialized in RDF-XML. 94
11 An RDF graph serialized in RDFa. 94
12 An extract of a fragment returned by a Triple Pattern Fragments

server. 95
13 An RDF mapping serialized in YARRRML. 96
14 The restrictiveness lattice of status of Figure 4.2c in RDF format. . 97
15 The query C10 followed by the candidate query C10’. 98
16 The query C5 followed by the candidate query C5’. 99
17 The query C8 followed by the candidate query C8’. 100
18 The query C9 followed by the candidate query C9’. 101
19 The query L5 followed by the candidate query L5’. 102
20 The query L6 followed by the candidate query L6’. 103
21 The query L7 followed by the candidate query L7’. 103
22 The query L8 followed by the candidate query L8’. 104
23 The query S10 followed by the candidate query S10’. 104
24 The query S8 followed by the candidate query S8’. 105

113

Bibliography

[1] K. Alexander, R. Cyganiak, M. Hausenblas, and J. Zhao. “Describing Linked
Datasets”. In: Linked Data on the Web (LDOW) collocated with WWWC.
2009.

[2] T. Berners-Lee, J. Hendler, and O. Lassila. “The Semantic Web”. In: Scientific
American (2001).

[3] A. Bernstein, J. Hendler, and N. Noy. “A New Look at the Semantic Web”.
In: Communications of the ACM (2016).

[4] C. Bizer, T. Heath, and T. Berners-Lee. “Linked Data: The Story so Far”. In:
Semantic Services, Interoperability and Web Applications: Emerging Concepts.
2011.

[5] C. Buil-Aranda, A. Hogan, J. Umbrich, and P.-Y. Vandenbussche. “Sparql
Web-Querying Infrastructure: Ready for Action?” In: International Semantic
Web Conference (ISWC). 2013.

[6] E. Cabrio, A. P. Aprosio, and S. Villata. “These Are Your Rights”. In: Extended
Semantic Web Conference (ESWC). 2014.

[7] L. Costabello, S. Villata, and F. Gandon. “Context-Aware Access Control
for RDF Graph Stores”. In: European Conference on Artificial Intelligence
(ECAI). 2012.

[8] Creative Commons licenses in RDF. https://github.com/creativecommons/
cc.licenserdf.

[9] E. Daga, M. d’Aquin, E. Motta, and A. Gangemi. “A Bottom-up Approach
for Licences Classification and Selection”. In: Workshop on Legal Domain and
Semantic Web Applications (LeDA-SWAn) collocated with ESWC. 2015.

[10] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. 2002.

[11] D. E. Denning. “A Lattice Model of Secure Information Flow”. In: Communi-
cations of the ACM (1976).

115

https://github.com/creativecommons/cc.licenserdf
https://github.com/creativecommons/cc.licenserdf

Bibliography

[12] A. Dimou, D. Kontokostas, M. Freudenberg, R. Verborgh, J. Lehmann,
E. Mannens, S. Hellmann, and R. Van de Walle. “Assessing and Refining
Mappings to RDF to Improve Dataset Quality”. In: International Semantic
Web Conference (ISWC). 2015.

[13] A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and
R. Van de Walle. “RML: A Generic Language for Integrated RDF Mappings
of Heterogeneous Data”. In: Linked Data on the Web (LDOW) collocated with
WWWC. 2014.

[14] J. D. Fernández, M. A. Martínez-Prieto, C. Gutiérrez, A. Polleres, and M.
Arias. “Binary RDF Representation for Publication and Exchange (HDT)”.
In: Journal of Web Semantics (2013).

[15] S. Ferré. “Answers Partitioning and Lazy Joins for Efficient Query Relaxation
and Application to Similarity Search”. In: Extended Semantic Web Conference
(ESWC). 2018.

[16] G. Fokou, S. Jean, A. Hadjali, and M. Baron. “RDF Query Relaxation
Strategies Based on Failure Causes”. In: Extended Semantic Web Conference
(ESWC). 2016.

[17] P. Folz, G. Montoya, H. Skaf-Molli, P. Molli, and M.-E. Vidal. “Semlav:
Querying Deep Web and Linked Open Data with SPARQL”. In: Extended
Semantic Web Conference (ESWC). 2014.

[18] A. Gabillon and L. Letouzey. “A View Based Access Control Model for
SPARQL”. In: International Conference on Network and System Security
(NSS). 2010.

[19] G. Gangadharan, M. Weiss, V. D’Andrea, and R. Iannella. “Service License
Composition and Compatibility Analysis”. In: International Conference on
Service-Oriented Computing (ICSOC). 2007.

[20] B. Glimm, A. Hogan, M. Krötzsch, and A. Polleres. “OWL: Yet to Arrive
on the Web of Data?” In: Linked Data on the Web (LDOW) collocated with
WWWC. 2012.

[21] O. Görlitz and S. Staab. “SPLENDID: SPARQL Endpoint Federation Ex-
ploiting VOID Descriptions”. In: Workshop Consuming Linked Data (COLD)
collocated with ISWC. 2011.

[22] O. Görlitz, M. Thimm, and S. Staab. “SPLODGE: Systematic Generation
of SPARQL Benchmark Queries for Linked Open Data”. In: International
Semantic Web Conference (ISWC). 2012.

[23] G. Governatori, A. Rotolo, S. Villata, and F. Gandon. “One License to
Compose Them All. A Deontic Logic Approach to Data Licensing on the
Web of Data”. In: International Semantic Web Conference (ISWC). 2013.

116

Bibliography

[24] S. Gupta, P. Szekely, C. A. Knoblock, A. Goel, M. Taheriyan, and M. Muslea.
“Karma: A System for Mapping Structured Sources Into the Semantic Web”.
In: Extended Semantic Web Conference (ESWC), Poster&Demo. 2012.

[25] F. Hacques, H. Skaf-Molli, P. Molli, and S. E. Hassad. “PFed: Recommending
Plausible Federated SPARQL Queries”. In: International Conference on
Database and Expert Systems Applications (DEXA). 2019.

[26] O. Hartig and C. Buil-Aranda. “Bindings-restricted Triple Pattern Fragments”.
In: On the Move to Meaningful Internet Systems Confederated International
Conferences (OTM). 2016.

[27] G. Havur, S. Steyskal, O. Panasiuk, A. Fensel, V. Mireles, T. Pellegrini, T.
Thurner, A. Polleres, and S. Kirrane. “DALICC: A Framework for Publish-
ing and Consuming Data Assets Legally”. In: International Conference on
Semantic Systems (SEMANTICS), Poster&Demo. 2018.

[28] P. Heyvaert, B. De Meester, A. Dimou, and R. Verborgh. “Declarative Rules
for Linked Data Generation at Your Fingertips!” In: Extended Semantic Web
Conference (ESWC), Poster&Demo. 2018.

[29] P. Heyvaert, A. Dimou, A.-L. Herregodts, R. Verborgh, D. Schuurman, E.
Mannens, and R. Van de Walle. “RMLEditor: a Graph-Based Mapping Editor
for Linked Data Mappings”. In: Extended Semantic Web Conference (ESWC).
2016.

[30] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez,
J. E. L. Gayo, S. Kirrane, S. Neumaier, A. Polleres, et al. “Knowledge Graphs”.
In: arXiv Preprint arXiv:2003.02320 (2020).

[31] H. Huang, C. Liu, and X. Zhou. “Approximating Query Answering on RDF
Databases”. In: Journal of World Wide Web (2012).

[32] C. A. Hurtado, A. Poulovassilis, and P. T. Wood. “Query Relaxation in RDF”.
In: Journal on Data Semantics X (2008).

[33] A. C. Junior, C. Debruyne, and D. O’Sullivan. “An Editor that Uses a Block
Metaphor for Representing Semantic Mappings in Linked Data”. In: Extended
Semantic Web Conference (ESWC), Poster&Demo. 2018.

[34] G. M. Kapitsaki, F. Kramer, and N. D. Tselikas. “Automating the License
Compatibility Process in Open Source Software With SPDX”. In: Journal of
Systems and Software (2017).

[35] Y. Khan, M. Saleem, A. Iqbal, M. Mehdi, A. Hogan, A.-C. N. Ngomo, S.
Decker, and R. Sahay. “SAFE: Policy Aware SPARQL Query Federation
Over RDF Data Cubes”. In: Semantic Web Applications and Tools for Life
Sciences (SWAT4LS). 2014.

117

Bibliography

[36] S. Kirrane, A. Abdelrahman, A. Mileo, and S. Decker. “Secure Manipulation
of Linked Data”. In: International Semantic Web Conference (ISWC). 2013.

[37] M. Lefrançois, A. Zimmermann, and N. Bakerally. “A SPARQL Extension
for Generating RDF from Heterogeneous Formats”. In: Extended Semantic
Web Conference (ESWC). 2017.

[38] M. Mesiti, P. Perlasca, and S. Valtolina. “On the Composition of Digital
Licenses in Collaborative Environments”. In: Conference on Database and
Expert Systems Applications (DEXA). 2013.

[39] F. Michel, C. Faron-Zucker, and J. Montagnat. “A Mapping-based Method
to Query MongoDB Documents with SPARQL”. In: Database and Expert
Systems Applications (DEXA). 2016.

[40] T. Minier, H. Skaf-Molli, and P. Molli. “SaGe: Web Preemption for Public
SPARQL Query Services”. In: The World Wide Web Conference (WWW).
2019.

[41] B. Moreau, E. Desmontils, and P. Serrano-Alvarado. “Enrichissement de
Données RDF Integrées à la Volée”. In: Atelier Web des Données (AWD)
collocated with EGC. 2019.

[42] B. Moreau and P. Serrano-Alvarado. “Assessing the Quality of RDF Map-
pings with EvaMap”. In: Extended Semantic Web Conference (ESWC),
Poster&Demo. 2020.

[43] B. Moreau and P. Serrano-Alvarado. “Ensuring License Compliance in Feder-
ated Query Processing”. In: Gestion de Données – Principes, Technologies et
Applications (BDA). 2020.

[44] B. Moreau, P. Serrano-Alvarado, and E. Desmontils. “CaLi: A Lattice-Based
Model for License Classifications”. In: Gestion de Données – Principes, Tech-
nologies et Applications (BDA). 2018.

[45] B. Moreau, P. Serrano-Alvarado, E. Desmontils, and D. Thoumas. “Querying
non-RDF Datasets Using Triple Patterns”. In: International Semantic Web
Conf (ISWC), Poster&Demo. 2017.

[46] B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils. “A License-
Based Search Engine”. In: Extended Semantic Web Conference (ESWC),
Poster&Demo. 2019.

[47] B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils. “Modéliser
la Compatibilité Entre les Licences”. In: Journées francophones d’Ingénierie
des Connaissances (IC). 2020.

118

Bibliography

[48] B. Moreau, P. Serrano-Alvarado, M. Perrin, and E. Desmontils. “Modelling the
Compatibility of Licenses”. In: Extended Semantic Web Conference (ESWC).
2019.

[49] B. Moreau, N. Terpolilli, and P. Serrano-Alvarado. “A Semi-Automatic Tool
for Linked Data Integration”. In: International Semantic Web Conference
(ISWC), Poster&Demo. 2019.

[50] B. Moreau, N. Terpolilli, and P. Serrano-Alvarado. “SemanticBot: Intégration
Semi-Automatique de Données au Web des Données”. In: Atelier Web des
Données (AWD) collocated with EGC. 2020.

[51] N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, and J. Taylor. “Industry-
scale Knowledge Graphs: Lessons and Challenges”. In: Queue (2019).

[52] S. Oulmakhzoune, N. Cuppens-Boulahia, F. Cuppens, S. Morucci, M. Barhamgi,
and D. Benslimane. “Privacy Query Rewriting Algorithm Instrumented by
a Privacy-Aware Access Control Model”. In: Annals of Telecommunications
(2014).

[53] H. Pérez-Urbina, I. Horrocks, and B. Motik. “Efficient Query Answering for
OWL 2”. In: International Semantic Web Conference (ISWC). 2009.

[54] B. Quilitz and U. Leser. “Querying Distributed RDF Data Sources with
SPARQL”. In: Extended Semantic Web Conference (ESWC). 2008.

[55] N. A. Rakhmawati, M. Saleem, S. Lalithsena, and S. Decker. “QFed: Query
Set for Federated SPARQL Query Benchmark”. In: International Conference
on Information Integration and Web-based Applications & Services (iiWAS).
2014.

[56] P. Reddivari, T. Finin, A. Joshi, et al. “Policy-Based Access Control for
an RDF Store”. In: Workshop Semantic Web for Collaborative Knowledge
Acquisition (SWeCKa) collocated with IJCAI. 2007.

[57] V. Rodríguez Doncel, A Gómez-Pérez, and S. Villata. “A Dataset of RDF
Licenses”. In: Legal Knowledge and Information Systems Conference (ICLKIS).
2014.

[58] R. Rosati and A. Almatelli. “Improving Query Answering over DL-Lite
Ontologies”. In: Principles of Knowledge Representation and Reasoning (KR).
2010.

[59] N. Sadeh, A. Acquisti, T. D. Breaux, L. F. Cranor, and et.al. “Towards
Usable Privacy Policies: Semi-Automatically Extracting Data Practices from
Websites’ Privacy Policies”. In: Symposium on Usable Privacy and Security
(SOUPS), Poster&Demo. 2014.

119

Bibliography

[60] M. Saleem, A. Hasnain, and A.-C. N. Ngomo. “LargeRDFBench: a Billion
Triples Benchmark for Sparql Endpoint Federation”. In: Journal of Semantic
Web (2018).

[61] M. Saleem and A.-C. N. Ngomo. “HIBISCuS: Hypergraph-Based Source
Selection For SPARQL Endpoint Federation”. In: Extended Semantic Web
Conference (ESWC). 2014.

[62] M. Saleem, A. Potocki, T. Soru, O. Hartig, and A. N. Ngomo. “CostFed:
Cost-Based Query Optimization for SPARQL Endpoint Federation”. In:
International Conference on Semantic Systems (SEMANTICS). 2018.

[63] R. S. Sandhu. “Lattice-Based Access Control Models”. In: Computer (1993).

[64] O. Seneviratne, L. Kagal, and T. Berners-Lee. “Policy-Aware Content Reuse
on the Web”. In: International Semantic Web Conference (ISWC). 2009.

[65] V. Soto-Mendoza, P. Serrano-Alvarado, E. Desmontils, and J. A. Garcia-
Macias. “Policies Composition Based on Data Usage Context”. In: Workshop
Consuming Linked Data (COLD) collocated with ISWC. 2015.

[66] D.-E. Spanos, P. Stavrou, and N. Mitrou. “Bringing Relational Databases
Into the Semantic Web: A Survey”. In: Journal of Semantic Web (2012).

[67] J. Subercaze, C. Gravier, J. Chevalier, and F. Laforest. “Inferray: Fast In-
memory RDF Inference”. In: VLDB Endowment (2016).

[68] P.-Y. Vandenbussche, G. A. Atemezing, M. Poveda-Villalón, and B. Vatant.
“Linked Open Vocabularies (LOV): a Gateway to Reusable Semantic Vocab-
ularies on the Web”. In: Semantic Web (2017).

[69] R. Verborgh, M. Vander Sande, O. Hartig, J. Van Herwegen, L. De Vocht,
B. De Meester, G. Haesendonck, and P. Colpaert. “Triple Pattern Fragments:
A Low-cost Knowledge Graph Interface for the Web”. In: Journal of Web
Semantics (2016).

[70] S. Villata and F. Gandon. “Licenses Compatibility and Composition in the
Web of Data”. In: Workshop Consuming Linked Data (COLD) collocated with
ISWC. 2012.

[71] D. A. Wheeler. The Free-Libre/Open Source Software (FLOSS) License Slide.
https://www.dwheeler.com/essays/floss-license-slide.pdf. 2007.

[72] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, and S. Auer.
“Quality Assessment for Linked Data: a Survey”. In: Journal of Semantic
Web (2016).

120

https://www.dwheeler.com/essays/floss-license-slide.pdf

Facilitating Reuse on the Web of Data
Keywords : Web of Data, Linked Data, RDF, SPARQL, licenses, usage control, federated query
processing, query relaxation, data integration, RDF mappings

Abstract: The Web of Data is a web of inter-
linked datasets that can be queried and reused
through federated query engines. To protect
their datasets, data producers use licenses to
specify their condition of reuse. But, choosing
a compliant license is not easy. Licensing reuse
of several licensed datasets must consider com-
patibility among licenses. To facilitate reuse,
federated query engines should preserve license
compliance. To do so, we focus on two prob-
lems (1) how to compute compatibility relations
among licenses, and (2) how to ensure license
compliance during federated query processing.

To the first problem, we propose CaLi, a model
that partially orders any set of licenses in terms
of compatibility. To the second problem, we pro-
pose FLiQue, a license-aware federated query
processing strategy. FLiQue uses CaLi to de-
tect license compatibility conflicts and ensures
that the result of a federated query preserves
license compliance. Within the scope of this the-
sis, we also propose three approaches ODMTP,
EvaMap, and the SemanticBot that aim to
facilitate the integration of datasets to the Web
of Data.

Faciliter la Réutilisation sur le Web des Données
Mots-clés : Web des données, données liées, RDF, SPARQL, licences, contrôle d’usage, traite-
ment des requêtes fédérées, relâchement de requête, intégration de données, mappings RDF

Résumé : Le Web des données est un en-
semble de données liées qui peuvent être in-
terrogées et réutilisées à l’aide de moteurs de
requêtes fédérées. Pour protéger les jeux de
données, les licences renseignent leurs condi-
tions d’utilisation. Cependant, choisir une li-
cence conforme n’est pas toujours aisé. En ef-
fet, pour protéger la réutilisation de plusieurs
jeux de données, il est nécessaire de prendre
en considération la compatibilité entre leurs li-
cences. Pour faciliter la réutilisation, les mo-
teurs de requêtes fédérées devraient respecter
les licences. Dans ce contexte, nous nous intéres-
sons à deux problèmes (1) comment calculer la
relation de compatibilité entre des licences, et (2)

comment respecter les licences pendant le traite-
ment de requêtes fédérées. Pour le premier prob-
lème, nous proposons CaLi, un modèle capable
d’ordonner partiellement n’importe quel ensem-
ble de licences selon leur compatibilité. Pour
le second problème, nous proposons FLiQue,
un moteur de requête fédéré respectant les li-
cences. FLiQue utilise CaLi pour détecter les
conflits de compatibilité entre licences et assure
que le résultat d’une requête fédérée respecte
les licences. Dans le cadre de cette thèse, nous
proposons également trois approches ODMTP,
EvaMap et le SemanticBot ayant pour objec-
tif de faciliter l’intégration de données au web
des données.

	Introduction
	Reuse on the Web of Data
	Research Issues
	Contributions
	Organization

	Preliminaries
	The Web of Data
	Querying the Web of Data

	Integrating Data into the Web of Data
	Introduction and Motivation
	Querying non-RDF Datasets using Triple Patterns
	Assessing the Quality of RDF Mappings with EvaMap
	Generating RDF Mappings with a Semi-Automatic Tool
	Conclusion

	Modelling the Compatibility of Licenses
	Introduction and Motivation
	Related Work
	CaLi: a Lattice-based License Model
	A CaLi Ordering for Creative Commons Licenses
	Implementation of CaLi Orderings
	Conclusion

	Ensuring License Compliance in Federated Query Processing
	Introduction and Motivation
	Related Work
	A Federated License-Aware Query Processing Strategy
	Experimental Evaluation
	Conclusion

	Conclusion
	Summary
	Perspectives

	Supplemental Materials
	List of Figures
	List of Algorithms
	List of Tables
	List of Listings
	Bibliography

