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Introduction

Context

Plasma-based accelerator: an alternative to the conventional accelerator

The continuous upgrade in laser technology has permitted the investigation of a wide range of
applications related to laser-matter interaction. In this context, Laser WakeField Acceleration
(LWFA)[Tajima and Dawson, 1979][Esarey et al., 2009] [Malka et al., 2002] has been proven to
be a promising and efficient path for producing high energy electron beams.

When an ultra-short ultra-intense laser pulse propagates trough an under-dense plasma, a
large amplitude plasma wave is excited, in which electrons can be trapped and accelerated
to relativistic energies over very short distances of the order of few millimeters. These plasma
waves support very high accelerating gradients of 100 GeV/m, which is three orders of magnitude
higher than the maximum field in conventional radio-frequency accelerators. As a result, LWFA
paved the way to interesting prospects towards more compact accelerators. The plasma wave
generation is the result of the laser ponderomotive force, which perturbs locally the plasma
density by pushing radially outward the electrons from the intense region of the laser pulse while
keeping the background-plasma ions practically immobile thus creating charge separation. The
space charge force of the ions recalls the electrons back, hence forming the wake.

With the currently available laser powers, it became possible to achieve a complete pon-
deromotive blowout of the electrons which are completely expelled thus forming an ion cavity
surrounded by a thin electrons sheath behind the laser pulse. This so-called bubble regime
[Pukhov and Meyer-ter Vehn, 2002; Rosenzweig et al., 1991a; Lu et al., 2007a] is characterized
by its nonlinear plasma waves created by an intense laser with a spot size comparable to the
wake’s wavelength. Nowadays, most of the LWFA experiments are operating in the bubble regime
in which the highest acceleration gradients are reached. This regime is particularly interesting
thanks to its linear focusing forces that do not vary in the longitudinal direction and its accel-
erating forces that are independent of the transverse coordinates. Therefore, it ensures a quite
stable propagation of low phase-space-volume electron bunches over several Rayleigh lengths.

Over the past two decades, LWFA has witnessed a significant progress thanks to the devel-
opment of the laser technique called Chirped Pulse Amplification (CPA). Particularly, in 2004
the field has reached a major milestone with the experimental demonstration of the first quasi-
monoenergetic beam in three groups from the UK [Mangles et al., 2004a], USA [Geddes et al.,
2004a] and France [Faure et al., 2004a]. These ∼ 100 MeV electron beams were produced by
∼ 10 TW lasers in ∼ 1 mm plasmas of densities n0 ∼ 1019 cm−3. Subsequently, the observation
of the first beam beyond 1 GeV was reported in [Leemans et al., 2006]. A sea change in the
field of laser plasma acceleration has occurred with the success in constructing petawatt class
lasers that allow to reach unprecedented electron energies of few GeVs [Kim et al., 2013; Wang
et al., 2013; Leemans et al., 2014]. The latest record in this race is the production of a 7.8 GeV
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Introduction

electron beam [Gonsalves et al., 2019] by guiding a 0.85 PW laser over 20 cm-long capillary of
n0 = 3.41017 × cm−3.

These laser-driven electron sources are of great interest because the generated electron bunches
have a very short duration reaching down to few femtoseconds only, a small transverse size, and
a high peak intensity. The tremendous progress in LWFA opens up the way to several practical
applications such as high-resolution gamma radiography [Ben-Ismail et al., 2011] in material
science, cancer treatment [Glinec et al., 2006] in medicine, phase-contrast imaging [Fourmaux
et al., 2011] in biology. Moreover, the use of laser plasma accelerators as potential future light
sources is identified by the scientific community. In particular, LWFA is a promising technique
to develop compact and affordable synchrotrons and free-electron lasers.

Numerical modeling and the role of simulations in plasma based accelerators
research

Theory and experiments play a complementary role: from the observations we make and the
understanding we develop to the problem, we create an analytical model and we derive equations
from fundamental physics that describe the observed phenomena to the best of our knowledge.
Then, by its implications, the accuracy and the precision of this model are verified when compared
to the results from experience. The consistency or deviancy of its estimation from the measured
results will guide us to review the assumptions made for this model in order to enhance it. If
the model prediction does not agree with a measured result then either the theory that gave rise
to the prediction, or the manner in which the prediction was inferred from the theory has to be
modified. Thereby creating a loop of mutual influence and control based on reciprocal feedback:
it’s what we call a scientific method.

In some cases, the system we are studying is very complicated and the processes that are
involved are highly non linear and it is hard to break it into a simple practically usable set of
governing equations that can be solved directly. It is the case for example in plasma physics
where the governing equations of Maxwell-Vlasov do not have an explicit analytical solution
except under some specific statements and assumptions that can not be generalized in the case
of most applications. With numerical models, we can use a multitude of methods ranging from
numerical analysis to linear algebra to approximate the solutions of these equations. Therefore
numerical modeling, which is a mathematical representation of a physical behavior, based on
relevant hypothesis and simplifying assumptions [Sirois and Grilli, 2015], plays a crucial role
to bridge this gap. It is often considered as an intermediate branch between theoretical and
experimental physics.

In plasma physics, numerical modeling is a widely adopted technique to tackle complex prob-
lems with computational simulations of physical scenarios. In particular, the understanding and
developing of LWFA relies on the strong coupling between experiments and numerical modeling.
In order to investigate the different experimental set-ups and to determine the optimal parame-
ters to achieve this goal, simulation is the key to perform a parametric scan and analyze regimes
that haven’t been explored yet.

Particle-In-Cell codes

That one may model correctly the interaction between the laser and the plasma, a full kinetic
description of the plasma is needed. Particle-in-Cell algorithm is ubiquitously used as an estab-
lished tool that solves Vlasov equation for the different species presented in the plasma coupled
with Maxwell’s equations. It is a powerful method that gives an accurate description of the

2



plasma response to the laser and captures a wide range of physical phenomena [Birdsall and
Langdon, 2004]. Nevertheless, precise and realistic results are obtained only with full 3D de-
scriptions and high resolutions. Even though 2D simulations are used in the context of 2D
Cartesian slab or in the cylindrical geometry r-z to illuminate the physics, there is a qualitative
and quantitative difference with the 3D simulations especially in the case of LWFA when study-
ing non linear regime. This is mainly because self focus and self modulation of the phase are not
well described by a 2D simulation [Davoine et al., 2008]. In spite of the necessity of using well
resolved 3D simulations for the accurate description, this type of simulations is computationally
very expensive and pushes the existent computing resources, available nowadays, to the limit
in order to have the simulation results in a reasonable amount of time. Therefore, there have
been many methods suggested to overcome this obstacle among which we mention the moving
window, the quasi-static approximation [Mora and Antonsen, 1997], the ponderomative guiding
center or envelope description [Benedetti et al., 2010, 2017] and the boosted frame [Vay, 2007].

Azimuthal Fourier field decomposition

A particularly interesting method that leverages the azimuthale symmetry of the LWFA, is
the Fourier field decomposition in cylindrical geometry [Lifschitz et al., 2009]. It combines an
accurate modeling of the physics at stake and a significant speed-up. In fact, with a cylindrically
symmetric laser envelope like a Gaussian one, the laser pulse is fully described by the azimuthal
mode 1 and the wakefield is described by the azimuthal mode 0. Therefore, the cost of the
simulation is roughly 2 times the cost of a 2D simulation.

Realistic lasers in simulations

So far, most of the simulations have dealt with Gaussian or Laguerre-Gaussian laser pulses. How-
ever, realistic lasers have a more complicated asymmetric structure due to the imperfections in
the laser system thus leading to aberrations in the intensity and wave front profiles. Presently, the
highest acceleration gradients are achieved in the bubble regime with the self-injection scheme.
However, self-injection process is very sensitive to shot-to-shot fluctuations and to the laser’s
condition [Beaurepaire et al., 2015; Ferri et al., 2016] . In order to realize practical devices based
on LWFA, it is crucial to understand the system sensitivity to the laser aberrations and their
implications on the performance of the accelerator.

Objectives and outline

In this context, the objective of this thesis consists in two parts: on the one hand, I implemented
the Fourier field decomposition method in cylindrical geometry with finite differences and pseudo-
spectral schemes in the PIC code Smilei. On the other hand, I studied the impact of laser
aberrations on the electrons acceleration and the quality of the injected bunch via 3D numerical
simulations with realistic laser profiles measured from the Apollon facility. The simulations
are then reproduced in the quasi-cylindrical geometry, after determining the optimal number
of azimuthal modes required to correctly model the laser. The importance of including higher
modes in such simulations is evaluated by varying the number of modes and analyzing the
differences. The reliability of the algorithm in this case is analyzed by comparing the results of
simulations run with different number of modes with the ones from 3D Cartesian simulations.
The manuscript is organized as follows:
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Chapter 1 introduces some of the main theoretical concepts of the underlying physics in laser
wakefield acceleration that are used later throughout the thesis. Figures of merit used to quantify
the quality of the electron bunches are also presented.

Chapter 2 describes the numerical modeling tools for laser-wakefield acceleration simulations.
It sums up the principle of PIC method and its features in the framework of Smilei code.

Chapter 3 details the implementation of the Fourier field decomposition method in cylindrical
geometry with finite differences in Smilei and highlights the limits of this discretization scheme.
It also presents the implementation of this method with the pseudo-spectral scheme in PICSAR
library and explains the parallelization technique that enables the coupling of the library with
the Smilei code.

Finally, chapter 4 is dedicated to the study of the effect of experimental laser imperfections
on laser wakefield acceleration and the quality of the generated electron bunches using 3D and
quasi-cylindrical geometries. In particular, it analyzes the impact of including higher modes
in quasi-cylindrical geometry and emphasizes the importance of using experimentally measured
laser profiles to accurately model the experiments.

4



Chapter 1

Physics of laser-wakefield acceleration

The development of shorter, more powerful lasers thanks to novel technologies such as the
Chirped Pulse Amplification (CPA) [Strickland and Mourou, 1985], has been spurring an in-
creasing interest in related research work. In particular, it allowed a breakthrough in Laser
Wakefield Acceleration (LWFA) where the achievement of high acceleration gradients on the or-
der of 100 GeV/m became possible. Therefore, it paved the way to interesting prospects towards
more compact and cost-efficient plasma-based accelerators.

The intent of this chapter is to introduce some important theories and concepts pertaining
to LWFA which will be used throughout the rest of this dissertation. Sections 1.1 and 1.2,
introduce the basic field equations and approximations which are used to describe respectively
the laser and the plasma. In section 1.3, the properties of linear and nonlinear plasma waves
are discussed. In section 1.5, methods for injection and trapping electrons in plasma waves are
reviewed. Basic physics of laser pulse evolution in underdense plasmas is summarized such as
the propagation, and self-focusing of the laser pulse. Limits to the electron energy gain are
outlined, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and
beam loading limitations. Finally, the emittance of the accelerated beam is defined and the
principal sources of its degradation are presented.

Contents

1.1 UHI laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
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1.2 Plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Plasma parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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1.1. UHI laser

1.1 UHI laser

Laser pulses used in LWFA are characterized by a very short duration (∼ 15 − 30 fs ) which
allows to achieve high powers (TW-PW) with relatively low energies (∼ 1−10 J). In this section,
we will try to briefly summarize the baseline of the mathematical description of an ultra-short
laser pulse.

A laser pulse is an electromagnetic wave characterized by its electric field E and magnetic
field B. The propagation of the laser pulse is governed by Maxwell’s equations:

∇×E(x, t) = −∂B(x, t)

∂t
(1.1)

∇×B(x, t) = µ0 J(x, t) +
1

c2
∂E(x, t)

∂t
(1.2)

∇ ·E(x, t) =
ρ(x, t)

ǫ0
(1.3)

∇ ·B(x, t) = 0 (1.4)

Where ρ, J are respectively the charge and current densities of the medium (in vacuum ρ = 0
and J = 0), µ0 and ǫ0 are the permittivity and permeability of vacuum. c is the speed of light.

An alternative but equivalent way to write Maxwell’s equations is the potential formalism
where the calculation of the electric and magnetic fields is based on the associated scalar electric
potential φ and vector magnetic potential A:

E(x, t) = −∂A(x, t)

∂t
−∇Φ (1.5)

B(x, t) = ∇×A (1.6)

These relations can be substituted into Maxwell’s equations to express the latter in terms of
the potentials.

∇
2Φ+

∂

∂t
(∇ ·A) =− ρ

ǫ0
(1.7)

(

∇
2A− 1

c2
∂2A

∂t2

)

−∇

(

∇ ·A+
1

c2
∂Φ

∂t

)

=− µ0J (1.8)

These potentials are not described uniquely i.e for any choice of a twice-differentiable scalar
function of position and time λ, if (Φ,A) is a solution then (Φ′,A′) is also a solution given that
it verifies :

Φ′ = Φ− ∂λ

∂t
A′ = A+∇λ

In the Lorenz gauge ∇ ·A+ 1
c2

∂Φ
∂t = 0, the potentials solve the following equations:

(

∇
2 − 1

c2
∂2

∂t2

)

A = −µ0J (1.9)
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(

∇
2 − 1

c2
∂2

∂t2

)

Φ = − 1

ǫ0
ρ (1.10)

In the Coulomb gauge, we impose ∇ · A = 0. By combining (1.5) and (1.3), we obtain :
∂∇·A
∂t −∆Φ = ρ

ǫ0
. Together with Coulomb gauge , we can find Poisson equation:

∆Φ = − ρ

ǫ0
(1.11)

1.1.1 Gaussian beam formalism

Gaussian beam formalism [Siegman, 1986] constitutes a simplified analytical description of beams
propagation and a keystone to develop models of laser-plasma interactions. The subsequent
derivation follows the one presented in [Kallala, 2020].

From Maxwell equations 1.2 and 1.1, one can derive the wave equation in vacuum. We assume
in the following a linearly-polarized laser propagating in the z direction which can be completely
characterized by its transverse electric component E⊥(x, y, z, t). Therefore, it propagates in
vacuum according to the following equation:

∆E⊥ − ∂2

c2∂t2
E⊥ = 0 (1.12)

We consider a laser pulse with a wave length λ0 propagating dominantly in the longitudinal
z-direction and that solutions to eq. (1.12) are of the general form:

E⊥(x, y, z, t) = E0(x, y, z, t) exp(ik0z − iω0t) (1.13)

where k0 = ω0/c is the wave number, ω0 = 2πc/λ0 is the angular frequency and E0(x, y, z, t)
is the spatio-temporal envelope. By replacing the laser expression (1.13) in the propagation
equation (1.12), we obtain the following PDE for E0:

∆E0 − k20E0 + 2ik0
∂E0

∂z
− 1

c2

(

∂2E0

∂t2
− ω2

0E0 − 2iω0
∂E0

∂t

)

= 0 (1.14)

The slowly varying envelope approximation assumes that the electric field envelope amplitude
E0 varies slowly with both z and t variables. As a result, when taking derivatives, the highest-
order derivatives in the z-direction and time may be neglected. Precisely, the approximation
reads:

∣

∣

∣

∣

∂2E0

∂2z

∣

∣

∣

∣

≪
∣

∣

∣

∣

k0
∂E0

∂z

∣

∣

∣

∣

(1.15)
∣

∣

∣

∣

∂2E0

∂2t

∣

∣

∣

∣

≪
∣

∣

∣

∣

ω0
∂E0

∂t

∣

∣

∣

∣

(1.16)

The previous expanded propagation equation (1.14) is reduced to the following parabolic
wave equation:

k0

(

∂E0

∂z
+

∂E0

c∂t

)

− i

2
∆⊥E0 = 0 (1.17)
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1.1. UHI laser

where ∆⊥ = ∂2

∂x2 + ∂2

∂y2
is the transverse Laplace operator. Admissible solutions to equation

(1.17) can be expressed in the form of the product of a transverse spatial envelope f(x, y, z) and
a temporal envelope g(z, t) of the electric field:

E0(x, y, z, t) = f(x, y, z)g(z, t)

When replacing the latter electric field expression in the parabolic wave equation (1.17), we
obtain:

k0

(

∂f

∂z
g + f

∂g

∂z
+

1

c
f
∂g

∂t

)

− g
i

2
∆⊥f = 0 (1.18)

g

(

k0
∂f

∂z
− i

2
∆⊥f

)

+ k0f

(

∂g

∂z
+

1

c

∂g

∂t

)

= 0 (1.19)

=⇒
{

k0
∂f
∂z − i

2∆⊥f = 0
∂g
∂z + 1

c
∂g
∂t = 0

(1.20)

The first equation in 1.20 represents the Helmoltz equation under the paraxial approximation.
Gaussian beam is among valid solutions to this equation.

f(x, y, z) =
w0

w(z)
exp

[

−(x2 + y2)

w(z)2

]

exp

[

−ik0
(x2 + y2)

2R(z)
− iφ0

]

(1.21)

We define the following terms involved in the previous expression (see fig. 1.1):

• w(z) = w0

√

1 + (z/Zr)2 is the laser radius at the position z.

• w0 is the laser waist. It is the minimum value of the laser radius w which is reached in the
focal plane.

• Zr = πw2
0/λ0 the laser Rayleigh length. This physical parameter represents the length

where the laser intensity on axis drops by a factor 2 compared to the intensity in the focal
plane (z = 0). This is also the distance over which the phase fronts are approximately flat.

• R(z) = z[1 + (Zr/z)
2] the laser radius of curvature. It is infinite in the focal plane.

• φ0 = arctan(z/Zr) is the Gouy phase which shifts of π when a Gaussian beam goes through
a focus (from the far field to the far field on the other side of the focus).

We can also define the laser beam divergence θ, which represents the angle covered by the
laser cone of the light far from the laser focus:

tan θ = lim
z→+∞

ω(z)

z
(1.22)

The second equation in the system 1.20 is simply an homogeneous transport equation whose
solutions are given by:

g(z, t) = g(z − ct, t = 0) (1.23)

A possible representation of g is a Gaussian temporal envelope:

9



Chapter 1. Physics of laser-wakefield acceleration

Figure 1.1: Evolution of the Gaussian beam radius w(z) as a function of the propagation distance
z in vacuum. z = 0 is the focal plan, where the beam has its minimum spot size w0. After
propagating to a distance of one Rayleigh length Zr away from the focal plan, the spot size
increases to

√
2w0.

g(z, t) = Emax exp

[

−
(

t− z/c

τ0

)2
]

(1.24)

where Emax is the laser maximum amplitude and τ0 is the temporal laser duration.

The slowly varying envelope approximation in time requires that the laser duration τ0 to
be larger than the laser period T0 = 2π/ω0 (τ0 ≫ T0). The laser intensity full width at half
maximum: FWHM I =

√

2 log(2)τ0 = 1.177τ0 is often used to characterize the temporal duration
of ultra-short lasers. The intensity I of a linearly-polarized laser pulse can be introduced as the
average of the Poynting vector in vacuum S = c2ǫ0E ∧B over a laser period T0.

I = 〈|S|〉T0
=

cǫ0
2
|E0|2 (1.25)

where brackets designate the temporal average over a laser period 〈|S|〉T0
= 1

T

∫ T0/2
−T0/2

|S|dt.
Therefore, we can deduce the expression of the intensity for a Gaussian laser beam:

10



1.1. UHI laser

I(x, y, z, t) = I0
w2
0

w(z)2
exp

[

−2
(x2 + y2)

w(z)2

]

exp

[

−2

(

(t− z/c)

τ0

)2
]

where I0 =
ǫ0c

2
Emax

(1.26)

−4 −2 0 2 4

time (s) ×10−14

−4

−2
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×1010

Eenv
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0.0

0.5
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/m
2
)

×1018

Figure 1.2: The intensity profile I and the related electric field E and its temporal envelope Eenv

of a laser pulse with a wavelength λ0 = 0.8µm , and duration τ0 = 25fs.

The quantities usually measured during experiments are the laser energy U and its distribu-
tion in space, and the pulse duration τ0. They are used to evaluate the laser intensity, which is
a key parameter for laser plasma interaction. The laser peak power for a Gaussian pulse in time
is written as :

P = 2

√

2

π

ln(2)U

τ0
≃ U

τ0
(1.27)

And the corresponding peak laser intensity of a laser with a Gaussian transverse envelope in
the focal plane is:

I0 =
2P

πw2
0

≃ 2U

πτ0w2
0

(1.28)

It is useful to define the normalized vector potential a by:

a =
eA

mec
=

eE

mecω0
(1.29)

where e is the electron charge and me its mass. Its peak value a0, also called the normalized
laser amplitude can be expressed as a function of the intensity:

a0 =
eEmax

meω0c
= λ0[µm]

√

I0[W.cm−2]/(1.37× 1018) (1.30)

The critical value a0 = 1 is the threshold around which an electron oscillating in a laser field
reaches a relativistic velocity. This dimensionless parameter differentiates the non-relativistic
regime a0 ≪ 1 and the relativistic regime a0 > 1. In the context of laser plasma interaction
processes, the normalized laser amplitude is a key parameter that determines the nature of the
interaction regime [TAJIMA, 2010].
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Chapter 1. Physics of laser-wakefield acceleration

1.2 Plasma

A plasma is a state of matter made of a collection of unbound positively and negatively charged
particles that exhibit a collective behavior through electromagnetic fields induced by the motion
of free charged particles. It can be generated by heating or subjecting a neutral gas to a strong
electromagnetic field to the point where the medium is ionized [Mor, 2012].

1.2.1 Plasma parameters

Debye length

We consider a globally neutral, non-isothermic plasma. Due to their larger mass, ions are sup-
posed to be immobile on the time scale of electron motion. As a consequence, the current in the
plasma is mainly generated by the electrons motion [Tonks and Langmuir, 1929].

In the presence of a large collection of charged particles, each one of them simultaneously
interacts with many nearby charged particles through the associated Coulomb potential, resulting
in the collective behavior of the plasma.

When a local perturbation occurs, the influence of the electrostatic field of an individual
charged particle, felt by the other charged particles inside the plasma is damped over a charac-
teristic length called Debye length λD [Hückel and Debye, 1923] given by:

λD =

√

ǫ0kBTe

n2
e

(1.31)

where ǫ0 is the vacuum permittivity, kB is Boltzmann constant, Te is the temperature and ne is
the electron density.

Plasma frequency

Slightly displacing a sheath of electrons from its equilibrium position generates an electrostatic
field E resulting from the charge separation and creating a force F = −eE that pulls it back
to restore the initial equilibrium. The kinetic energy gain from this shift results in a harmonic
oscillation with a characteristic frequency often referred to as the plasma frequency (or Langmuir
frequency) ωp [Rax, 2005].

wp =

√

nee2

ǫ0me
(1.32)

This parameter sets the time scale of relaxation of internal electrostatic perturbations. Hence,
high-density plasmas respond more quickly to an external perturbation than low-density ones.
The associated plasma wavelength is defined by:

λp = 2πc/ωp ≃
3.34× 1010
√

ne[cm−3]
(1.33)

1.2.2 Electromagnetic waves propagation in a plasma

Let us consider an electromagnetic monochromatic plane wave E = E0e
i(ω0t−kz) propagating in

a cold homogeneous collision-less plasma of density ne where ions are considered immobile. For

12



1.2. Plasma

small perturbations in the case of non relativistic regime, the fluid description of the plasma can
be used and non linear terms in the equation of motion of the electrons can be neglected :

∂v

∂t
= − e

me
E (1.34)

Considering the current density J = −enev, eq. (1.34) can be rewritten as :

∂J

∂t
= ǫ0ω

2
pE (1.35)

By combining Faraday’s eq. (1.1) and Ampere’s eq. (1.2) and with taking into account
eq. (1.35) the usual wave equation is found

(c2k2 − ω2
0)E = − nee

2

ǫ0me
E (1.36)

where we recognize the plasma frequency in the right side term. Therefore, we can derive the
dispersion relation for an electromagnetic wave in a cold plasma:

ω2
0 = ω2

p + c2k2 k =
ω0

c

√

1−
ω2
p

ω2
0

=

√

ω2
0 − ω2

p

c
(1.37)

In order to understand the propagation of a laser in a plasma, one should distinguish between
two cases where the plasma frequency ωp is compared to the laser frequency ω0. The transition
limit between the two cases corresponds to ωp = ω0. The plasma density corresponding to

ωp = ω0 is defined as the critical plasma density nc =
meǫ0ω2

0

e2
. It can be approximated as:

nc[cm
−3] = 1.1×1021

λ0[µm] .

Overdense plasma In the case of ωp > ω0 or equivalently ne > nc, k in eq. (1.37) is imaginary
and corresponds to an evanescent wave with a skin depth of 1/|k|. The density is too high for
the laser to propagate through: the collective response of the plasma electrons to the incoming
electromagnetic field is faster than its wave oscillation. The effect of the incident laser oscillations
inside the plasma is canceled by the generated currents from the plasma so that the overall field
is 0 within the skin depth. This kind of plasma is known as overdense, it reflects totally or
partially the incident electromagnetic field.

Underdense plasma In the case of ωp < ω0 or equivalently ne < nc, k in eq. (1.37) is real
which means that the electromagnetic wave can propagate in the plasma: the collective response
of the plasma electrons to the incoming electromagnetic field is longer than the optical period
of the incoming laser pulse and it is unable to cancel its effect. This kind of plasma is known
as underdense and transparent to the incident electromagnetic field field which can propagate in
it. However, the plasma modifies the laser propagation since it is a dispersive medium with a
dispersion relation eq. (1.37) that is different from the one in vacuum ω0 = kc.

One can define the phase and group velocity of the laser in the plasma denoted respectively
by vφ and vg thanks to the index of refraction η:

13



Chapter 1. Physics of laser-wakefield acceleration

vφ =
ω0

k
=

c

η
(1.38)

vg =
dω0

dk
= ηc (1.39)

where η =

√

1−
ω2
p

ω2
0

=

√

1− ne

nc
< 1 (1.40)

In laser wakefield experiments, the plasma is very under-dense ne ≪ nc thus ωp ≪ ω0, so
that η ≈ 1 and vφ ≈ vg ≈ c.

1.2.3 Kinetic description of plasmas

In theory, a full description of a plasma should take into account the position and speed of each
of the N particles composing it. However, due to the complexity of resolving an N-body problem
when N ≫ 1, a statistical description is usually employed [Krall and Trivelpiece, 1973]. In this
approach, the plasma is described by the distribution functions fs of each species s in the phase
space (x,p). For a non-collisional plasmas 1, the corresponding kinetic equation that governs
the evolution of the distribution functions is the Vlasov equation given by:

∂fs
∂t

+
dx

dt
· ∂fs
∂x

+
dp

dt
· ∂fs
∂p

= 0 (1.41)

where fs(x,p, t) is the distribution function pertaining to a given species s of mass ms and
charge qs. It is defined as the number density per element of the phase space or the probability
of finding a particle of species s in a volume of size dx× dp around a certain phase space point
(x,p) with charge qs. The position is denoted by x and the momentum by p. The Vlasov
equation is simply an advection equation whose characteristic lines (x,p) are solutions to the
following equations:

dp

dt
= F

dx

dt
= v =

p
√

m2
s + |p2|/c2

(1.42)

where F = qs(E + v ∧B) is the Lorentz force acting on a particle with velocity v with E

and B are respectively the electric and magnetic field satisfying Maxwell’s eqs. (1.1) to (1.4).
The Vlasov-Maxwell system describes the evolution of the plasma in a self-consistent way.

The Maxwell’s equations are coupled to the density distribution functions fs(x,p, t) via the
source terms ρ and J given by:

ρ(x, t) =
∑

s

qs

∫

fs(x,p, t)dp

J(x, t) =
∑

s

qs

∫

vfs(x,p, t)dp

(1.43)

1In the context of laser and plasma wakefield experiments, the collisions between particles can be neglected
[P., 2013].
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1.3. Wakefield generation by a laser pulse

1.2.4 Fluid description of plasmas

A more tractable and simplified model can be obtained by describing the particles of each species
through their averaged densities ns and vs. This approach is called fluid description of the
plasma. By integrating the equation (1.41) over the different momentum, we obtain the conti-
nuity equation that describes particle conservation for each species:

∂ns

∂t
+∇ · (nsvs) = 0 (1.44)

The equation of motion for a specie s in the scope of fluid description for a cold plasma
becomes:

∂ps

∂t
+ (vs · ∇)ps = −qs(E + v ×B) (1.45)

1.3 Wakefield generation by a laser pulse

1.3.1 Ponderomotive force

Looking at poisson equation (1.11), Φ represents the potential in the plasma due to charge
separation while, the vector potential A in the potential formalism (1.5) and (1.6) represents
almost exclusively the laser field. Therefore, the electric field E can be decomposed in two
components: E = EL + Ep where the laser component EL = −∂A

∂t and the plasma field
Ep = −∇Φ.

In order to emphasize the role of the laser on particles dynamics, we will assume in the
following that the electrons only witness the laser field by neglecting the plasma field.

Under this assumption, the electron fluid momentum equation in an under-dense cold 2

plasma where ions are supposed to be immobile3 can be written as :

∂p

∂t
+

1

γme
(p · ∇)p = −e(EL + v ×BL) (1.46)

where p = γmev is the momentum, v is the velocity and γ =
√

1 + (p/mec)2 is the Lorentz
factor.

The movement of electrons upon interacting with the laser pulse can be decomposed on two
time scales: on a short time scale, the electrons wiggle in response to the fast oscillating electric
and magnetic field of the laser pulse and acquire from it a momentum known as the quiver
momentum on a time scale of ω−1

0 . On a long time scale, they respond to the low frequency
corresponding to the average force over fast oscillations associated with the laser pulse envelope
variation known as ponderomotive force [Startsev and McKinstrie, 1997; Bauer et al., 1995]
which pushes the electrons away from the pulse creating a wake on a scale of ω−1

p
4 . Since

ωp ≪ ω0, we can separate the time scales of the electron motion into p = pf +ps, with pf is the
fast component considered as first order and hence vanish when averaging over one laser period

2 In LWFA, this is justified because in an under-dense plasma the thermal velocity: vth =
√

kBTe/me is
neglected because the temperature remains small (few eV) compared to the typical oscillation energy (multi-keV)
that the electrons acquire from the quiver velocity of electrons in the laser field.

3 While the laser duration is comparable with the plasma electrons response time τ0 ∼ 2π/ωp, the typical time
for ion motion 2π/ωpi is large compared to the driver pulse duration τ0 ≪ 2π/ωpi.

4In LWFA, we typically use lasers with duration τ0 ∼ 2π/ωp. Therefore, the slow motion scales like the
temporal envelope of the laser pulse ∼ ω−1

p while fast motion scales like the laser frequency ∼ ω−1

0 .
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Chapter 1. Physics of laser-wakefield acceleration

(〈pf 〉 = 0), and ps the slow component considered as second order and constant over a laser
period (〈ps〉 = ps).

By linearizing the previous equation 1.46, one gets to the first order:

∂pf

∂t
= −eEL (1.47)

Using the expression of EL = −mec
e

∂a
∂t where a is the normalized vector potential defined in

(1.29), we deduce the corresponding momentum pf = meca.
Since ∇ × EL = −∂BL/∂t, one can write: BL = 1

e∇ × pf = mec
e ∇ × a. By taking into

account BL expression, one can write the second order or slow components of the equation of
motion:

∂ps

∂t
+

mec
2

γ
(a · ∇)a = −mec

2

γ
a×∇× a (1.48)

Using the identity a×∇×a = ∇|a|2/2−(a ·∇)a in the right-hand term of eq. (1.48), we obtain:

F p =
∂ps

∂t
= −mec

2

2γ
∇|a|2 (1.49)

The term F p, proportional to the gradient of the laser intensity, is the ponderomotive force.
The negative sign implies that the ponderomotive force, introduced by the spatial distribution
of the laser intensity, tends to expel electrons from regions of locally higher intensity to lower
ones. This movement of electrons upon interacting with the laser pulse creates a rarefaction
zone of electrons behind the laser pulse. However, the ions remain almost immobile and the
global electron density remain unchanged. The electric field induced by the charge separation
pulls back the electrons causing quasi-periodic oscillations in the electron density behind the
laser pulse. Thus, a plasma wave that co-moves with the laser pulse similar to the wake behind
a speedboat, is generated.

1.3.2 Plasma waves driven by a laser pulse

When a high intensity laser pulse is focused in an under-dense plasma, the non linear ponderomo-
tive force of the pulse expels a large amount of plasma electrons and can excite large amplitude
plasma waves behind the laser [Akhiezer and Polovin, 1956].

The system of equations that governs this mechanism is presented in the following. A detailed
derivation of these equations can be found in appendix A. It is based on the Lorentz equation
of motion for the electrons in a cold fluid plasma, in addition to the Maxwell’s equations in the
potential formalism in the Coulomb gauge ∇·A = 0. This description rests upon several assump-
tions: we consider a cold, collisionless underdense (ωp ≪ ω0) fully-ionized plasma. Therefore,
under the coulomb gauge, the electromagnetic laser field A corresponding to the high frequencies
ω0 can be separated from the electrostatic plasma field Φ corresponding to the low frequencies
ωp. Recombination of electrons with ions are neglected on the considered time scale. The ions
are considered motionless in the plasma and treated as a homogeneous neutralizing background:
n0 = Zni with Z the atomic number and ni the ion number density whereas ne is the displaced
electron density. Thus, we can express the charge density and current as: ρ = −e(ne − n0) and
J = −enev where v is the electrons velocity. We suppose that there is no trajectory crossing
in the motion of the electrons. Therefore, these equations are valid in the limit of the cold fluid
description presented in section 1.2.4 5.

5Note that in this case, kinetic effects like electrons trapping are neglected.
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1.4. Regimes of plasma wave excitation

∇2Φ =
e

ǫ0
(ne − n0) (1.50)

∂ne

∂t
+∇ · (nev) = 0 (1.51)

(

∇2 − 1

c2
∂2

∂t2

)

A =
ene

ǫ0c2
v +

1

c2
∂

∂t
∇Φ (1.52)

∂p

∂t
= e∇Φ+ e

∂A

∂t
−mec

2∇γ (1.53)

where γ =
√

1 + (p/mec)2. Here ∇Φ is the space charge force and F p = −mec
2∇γ represents

the generalized nonlinear ponderomotive force 6.
In order to simplify these equations we use the following normalization: φ = eΦ/mc2, a =

eA/mc, u = p/mc = γv/c = γβ and γ = (1 + u2)1/2, we obtain the following system of
equations:

∇2φ = k2p

(

ne

n0
− 1

)

(1.54)

∂ne

∂t
+ c∇ ·

(

n0u

γ

)

= 0 (1.55)

(

∇2 − 1

c2
∂2

∂t2

)

a = k2p
neu

γn0
+

1

c

∂

∂t
∇φ (1.56)

∂u

∂t
= c∇(φ− γ) +

∂a

∂t
(1.57)

where kp = ωp/c =
√

e2n0/ǫ0mec2 is the wave number of the plasma.

1.4 Regimes of plasma wave excitation

The ponderomotive force resulting in electrons motion leads to a charge density modulation,
which in return introduces a coulomb restoring force to the electrons. This process leads to the
creation of the wakefield which strongly depends on the strength parameter of the laser pulse a0.
In pratice, two limiting cases are particularly insightful [Esarey et al., 2009] : the linear regime
and the non-linear regime.

Theories and analytical models of the wakefield established so far, are valid only in certain
regimes. In the previous section, the behavior of plasma wakefield generated in the case of a laser
pulse driver was analytically described based on plasma fluid theory [Sprangle et al., 1988; Esarey
et al., 1989; Gorbunov and Kirsanov, 1987]. This theory is valid in the linear regime even in three
dimensions. Yet, it is restricted to one dimensional description when it comes to the nonlinear
regime [Akhiezer and Polovin, 1956]. For sufficiently high laser intensities ( ∼> 1018W/cm2),
relativistic effects become very important and crossings occur in electron trajectories. In this
case, the fluid theory fails to describe accurately these relativistic and kinetic effects and the
self-consistent evolution of the driver laser pulse. Therefore, multi-dimensional effects in the non
linear regime must be modeled numerically.

6Note that if we consider p = meca we retrieve the expression for the ponderomotive force in eq. (1.49)
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1.4.1 Linear regime

In the linear regime, the laser strength is sufficiently low a20 ≪ 1 [Kruer, 2003; Gibbon, 2005]
to not trigger almost any relativistic effects. It only drives small perturbations in the quiescent
background electronic density. All the plasma parameters X = (ne, φ, γ,u) can be written as:
X = X0 + δX where δX ≪ X0. Thus, they can be considered as first-order quantities in
Taylor development. The trajectories of the electrons, in this case, are laminar (i.e. there are no
trajectory crossing). Therefore, the use of cold fluid theory is justified.

Since ωp ≪ ω0, we can separate the quantities in high frequencies (∼ ω0) and low frequencies
(∼ ωp). Therefore, quantities pertaining to the plasma are considered as low frequencies denoted
by the exponent s (φ = φs and ne = ns

e), while those related to the laser field are considered
as high frequencies denoted by the exponent f ( a = af ). The electrons motion has both
components: u = us + uf where uf = a as demonstrated previously in section 1.3.1.

Thus, the equation of motion (1.57) for the slow component reads:

∂us

∂t
= c∇(φ− 〈γ〉)

where〈γ〉 ≃ 1+ 〈a2〉/2 is the average of γ over the fast oscillations 7. The equation of motion
in the linear regime becomes:

∂us

∂t
= c∇φ− c∇〈a2〉

2
(1.58)

where −∇〈a2〉/2 is the expression of the normalized ponderomotive force in the linear weakly
relativistic regime. The electrons motion resulting from the ponderomotive force will lead to a
charge density modulation. This density modulation in return will introduce a coulomb restoring
force to the electrons that can be described with Poisson’s equation (1.54):

∇2φ = k2p
δne

n0
(1.59)

The plasma density can be described with the continuity equation (1.55), which can be
linearized in the case of weak density perturbation:

∂

∂t

δne

n0
+ c∇ · us = 0 (1.60)

Deriving (1.60) in time and using (1.58) and (1.59), we get :

∂2

∂t2
δne

n0
+ c∇ · (∂u

s

∂t
) =

∂2

∂t2
δne

n0
+ c2∇2φ− c2∇2 〈a2〉

2

We finally obtain:

(

∂2

∂t2
+ ω2

p

)

δne

n0
= c2∇2 〈a2〉

2
(1.61)

By substituting (1.61) in Poisson’s equation (1.59), one obtains the plasma wave potential
equation:

7 By linearization, the expression becomes : 〈γ〉 ≃ 1 + 〈(uf )2〉/2 + (us)2/2. However, us can be neglected in
this expression because it is on the order of a2 as it will be demonstrated later on, hence 〈γ〉 ≃ 1 + 〈a2〉/2.
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(

∂2

∂t2
+ ω2

p

)

φ = ω2
p

〈a2〉
2

(1.62)

From equations (1.61) and (1.62), we can see that δne/n0 and φ are on the order of 〈a2〉 and
hence us too, which justify the assumption we made earlier in Taylor development for γ.

In an under-dense plasma, it is assumed that the laser driver and the corresponding wakefield
propagate very close to the speed of light i.e vg ∼ c and vφ ∼ c [Sprangle et al., 1990] 8, so it
is practical to use the copropagating coordinates τ = t and ξ = z − ct (where z is the spatial
coordinate along the axis of propagation) in order to follow the laser pulse. The partial derivatives
under this transformation are detailed in appendix B, in both cases of vg ∼ c and vg 6= c.

Furthermore, we assume that the changes in the driving laser during its propagation, occur
on timescales much larger than the pulse duration and the plasma period λp. Actually, changes in
the laser envelope start occurring at propagation distances on the order of Zr. Consequently, we
can consider that the laser envelope remains unchanged throughout its propagation (any change
in the laser field induced by the plasma is neglected). It is also assumed that the pulse duration
is much longer than the laser period: τ0 ≫ T0 = 2π/ω0 where τ0 is the laser duration and ω0

is its frequency. Therefore, the laser pulse and the plasma wave can be considered stationary
during the time a plasma electron needs to slip through the pulse (quasi-static approximation
9). This allows us to neglect derivatives in τ compared to the ones in ξ, i.e ∂/∂τ = 0. The
quasi-static approximation is only valid for plasma electrons with sufficiently low energy. It fails
to describe electrons which have been accelerated to high energies and traveling with the laser
pulse.

Applying this approximation, one finally gets the potential equation with the quasi-static
approximation in the co-moving coordinates:

(

∂2

∂ξ2
+ k2p

)

φ = k2p
〈a(ξ)2〉

2
(1.63)

This equation simply shows that the plasma electrons behave like harmonic oscillator driven
by the laser ponderomotive force which generates a periodic oscillation of the electron density
with a wavelength λp = 2π/kp where kp = ωp/c.

Equation (1.63) can be solved using Green functions:

φ = −kp
2

∫ ∞

ξ
〈a(ξ′)2〉 sin(kp(ξ − ξ′))dξ′ (1.64)

The above expression determines the wakefield components which are zero at an infinite
distance ξ (no plasma perturbation before the driver pulse). We are interested in perturbations
behind the laser pulse (ξ < 0). Let us express these fields explicitly in the case where the driver
is a linearly polarized femtosecond Gaussian laser pulse:

a = â(r, ξ) cos(k0ξ)ex

with
â(r, ξ) = a0 exp(−ξ2/L2

0) exp(−r2/σ2)

8The generalization of the theory for velocities different from c such as the laser group velocity vg or the wake
phase velocity vφ was the focus of many works presented in the following references [Esarey et al., 1997; Mori
et al., 1993].

9Also called frozen field approximation by Whittum [Whittum, 1997]
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where L0 = cτ0 is the pulse length and σ = w0/
√
2 with w0 is the Gaussian waist. In this

case 〈a2〉 = â/2 and

φ = −
√
πa20

kpL0

4
exp

(

−
k2pL

2
0

4

)

exp

(

− r2

σ2

)

sin(kpξ) (1.65)

As we can see from this equation, in the linear regime the laser pulse triggers a sinusoidal
oscillation of the plasma electron density behind the laser pulse with a wavelength λp = 2π/kp.
The above expression of φ entirely determines the wakefield since:

E

E0
= − 1

kp
∇φ = − 1

kp
(
∂φ

∂ξ
ez +

∂φ

∂r
er)

and

δne

n0
= − 1

kpE0

(

∂Ez

∂ξ
+

1

r

∂(rEr)

∂r

)

where E0 = mecωp/e is the maximal electric field in the linear regime, when the density
perturbation is total and the resonance condition is fulfilled. It quantifies how efficiently the
laser pulse excites the wakefield.

The expressions for the longitudinal and transverse electric fields Ez and Er for ξ < 0 can
thus be written :

Ez

E0
=

√
πa20

kpL0

4
exp

(

−
k2pL

2
0

4

)

exp

(

− r2

σ2

)

cos(kpξ) (1.66)

Er

Ep
= −

√
π
a20
2

L0r

σ2
exp

(

−
k2pL

2
0

4

)

exp

(

− r2

σ2

)

sin(kpξ) (1.67)

and the expression of the density perturbation in the plasma for ξ < 0 is:

δne

n0
=

√
πa20

kpL0

4
exp

(

−
k2pL

2
0

4

)

exp

(

− r2

σ2

)

sin(kpξ)

[

1 +
4

σ2k2p

(

1− r2

σ2

)]

(1.68)

The linear wakefield is driven more efficiently (the maximal wakefield amplitude φmax is
obtained) when the pulse duration is approximately half the plasma period. More precisely, as
shown in fig. 1.3, the optimal pulse length to achieve the resonant condition is kpL0 =

√
2 which

can also be written ωpτ0 =
√
2. This means that plasma wave formation is optimal in low density

plasmas for long pulses while higher-density plasmas are better suited for shorter pulses. For
example, a density ne ≈ 1018cm−3 imposes to use a laser pulse with a duration FWHM ≈ 40fs
in order to optimally drive the wakefield.

The electrostatic accelerating structure resulting from the propagation of a Gaussian beam
in an underdense plasma exercises two types of force on a relativistic electron traveling with the
wakefield. The longitudinal component Ez can accelerate electrons while the radial component Er

can focus the electrons close to the r = 0 axis. According to the expression of Er, the transverse
resulting force F⊥ = −e(Er−vzBθ)er = −eErer is focusing in the first half wavelength (−2π <
kpξ < −π) of the wakefield and defocusing in the second half- wavelength (−π < kpξ < 0).
Whereas, the longitudinal force F z = −eEzez is decelerating in the first quarter wavelength
(−2π < kpξ < −3π/2) and accelerating in the second quarter-wavelength (−3π/2 < kpξ < −π).
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Figure 1.3: Normalized amplitude of the longitudinal field Ez,max/E0 of the wakefield created
by a Gaussian pulse with a0 = 0.5 as a function of ωpτ0 for different values of r/w0 where r is
the distance from axis. All curves exhibits a resonance for ωpτ0 =

√
2

Over all, efficient electrons acceleration in a linear regime can only take place in the second quarter
wavelength indicated by the delimited zone in fig. 1.4 which is both accelerating and focusing.
If relativistic electrons traveled along in this region, they would be focused and accelerated over
long distances and can result in high-quality beams.

1.4.2 Non-linear regime

The laser strength parameter a0 is a key parameter to distinguish between the linear (a20 ≪ 1)
and non-linear regime (a20 ≫ 1) of the laser wakefield excitation. In the nonlinear regime, the
evolution of the laser includes non linear effects that deform the laser pulse spatially. Therefore
the laser transverse size w0 becomes also an important factor to take into account. In fact, for a
broad pulse (kpw0 ≫ 1), the plasma fluid model presented in section 1.3.2 can still be adapted
to model the wakefield analytically but only in the 1D limit. Nevertheless, this is no longer
valid when the laser pulse is radially bounded (kpw0 ≤ 1) and the transverse ponderomotive
force becomes sufficiently strong to dislodge the electrons and create electron-free cavities. This
phenomena is referred to as the blowout or bubble regime. In this case, three dimensional
effects in the wakefield become very important and must be modeled numerically, typically using
particle-in-cell (PIC) codes.

One dimensional solution of the fluid model

The relativistic nonlinear theory of laser driven plasma waves can be solved analytically in the
limit of 1D which is only valid in the case of a broad laser pulse (kpw0 ≫ 1) [Akhiezer and
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Figure 1.4: From left to right: colormaps of the radial electric field Er/E0, the longitudinal
electric field Ez/E0 and the density perturbation δn/n0 in the linear regime for a0 = 0.2 rep-
resented in the coordinates (kp(ξ − ξl), kpx) where ξl is the laser peak intensity position in the
comoving coordinates ξ = z − ct. The laser pulse, represented here by its envelope, is the red
spot in the density plot and propagates from left to right. The dashed lines delimit the second
quarter-wavelength which is both the focusing and accelerating region.

Polovin, 1956; Dawson, 1959; Berezhiani and Murusidze, 1990] and can be a good starting point
to understand the phenomena related to the non linear regime in the multidimensional case.

We consider that all quantities depend only on (z, t) where z is the axis along which a purely
transverse non evolving laser pulse a = a⊥ is propagating. This simplification implies that the
following differential equation is verified by the normalized electric potential under the quasi-
static approximation with the transformations (τ = t, ξ = z − vgt) and ∂τ ≪ c∂ξ [Berezhiani
and Murusidze, 1992; Esarey and Pilloff, 1995]:

∂2φ

∂ξ2
= k2pγ

2
g

[

βg

(

1− 1 + a2

γ2g (1 + φ)2

)−1/2

− 1

]

(1.69)

where βg = vg/c and γg = 1/
√

1− (vg/c)2. In the case where wp ≪ w0, the laser group
velocity can be confused with the speed of light vg ∼ c, thus βg ≈ 1 and γg ≫ 1. Therefore, the
above equation can be simplified:

∂2φ

∂ξ2
=

k2p
2

[

1 + a2

(1 + φ)2 − 1

]

(1.70)

In the limit of weak perturbations φ ≪ 1 corresponding to the case where a0 ≪ 1 we can
retrieve the differential equation of the potential in the case of linear regime eq. (1.63) from
eq. (1.70).

The expressions for the plasma potential, longitudinal electric field and plasma density in 1D
can be calculated by integrating eq. (1.70) numerically. The generated plasma waves evaluated
in both linear regime (a0 = 0.2) and non-linear regime (a0 = 2) using the 1D nonlinear plasma
fluid theory are shown in fig. 1.5.

The density perturbation (δn/n0) in the linear regime is small and plasma wake quantities
evolve sinusoidally. However, it is no more the case in the nonlinear regime where the density
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Figure 1.5: Normalized envelope of the laser vector a, plasma potential φ, the associated longitu-
dinal electric field, Ez/E0 and density perturbation δne/n0 on axis in the co-moving coordinate
system for a Gaussian laser pulse with a0 = 0.2 (linear regime) in the right panel and a0 = 2
(non-linear regime) in the left panel.

exhibits sharp peaks that can reach several times the initial density value with a typical saw tooth
shape and steep gradients. One can notice that the effective plasma period becomes non-linear
λp,NL and undergoes a lengthening when the laser amplitude increases and electrons velocity
becomes relativistic. As a0 increases, wakes become sharper and bent like a horse shoe shape
and the wave front becomes curved due to the relativistic shift of the plasma frequency. The
peaks in the density profile correspond to the points where the electric field switches its sign. It
is where electrons have velocities close to the plasma wave velocity. If Ez is sufficiently important
(Ez > E0) electron self-trapping is susceptible to occur 10. Trapped electrons can be efficiently
accelerated up to relativistic energies over half a plasma wavelength, assuming transverse fields
are focusing over this length.

Even though the one dimensional model is insightful for the phenomena that takes place in
the non-linear regime, it is not sufficient to describe the non-linear effects that play an important
role in defining the radial structure of the plasma wave. For instance, besides wave steepening and
period lengthening, the wave front can exhibit severe curvature resulting in a nonlinear plasma
wavelength that is greater on axis than off axis. Hence, the laser pulse acts as a snowplow for
the electron density expelling electrons off axis which are pulled afterwards toward it creating
thus a bare ion cavity surrounded by a thin sheath of expelled electrons. This is known as
bubble regime, because the cavity usually has an approximately spherical shape [Sun et al.,
1987; Rosenzweig et al., 1991b]. Since neither fluid nor one-dimensional theory applies in this
case, a phenomenological description of the LWFA in the blowout regime has been established
through numerical simulations [Mora and Antonsen, 1996; Lefebvre et al., 2003; Pukhov and

10Ez can be more important than E0 while still being below the relativistic cold wave breaking-limit EWB =
E0

√

2(γp − 1)( This limit is modified in the case of relativistic electrons due to thermal effects in the plasma
[Rosenzweig et al., 1988; Katsouleas and Mori, 1988] which suggests that additional laser plasma instabilities
such as the coupling of Raman backscatter (RBS) and Raman sidescatter (RSS) may play a role in lowering the
effective amplitude for electron self-trapping.
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Chapter 1. Physics of laser-wakefield acceleration

Meyer-ter Vehn, 2002; Lu et al., 2006b,a]. The core of the work established in this thesis is
based on the results in the bubble regime. Therefore PIC simulations has been extensively used
throughout this manuscript.

Bubble regime

In 2002, the pioneering theoretical work of [Pukhov and Meyer-ter Vehn, 2002] has predicted the
possibility of generating quasi-monoenergetic accelerated electron distribution based on three-
dimensional PIC simulations with the code VLPL [Pukhov, 1999]. In this acceleration mech-
anism, called the bubble regime, the dimensions of the focused laser in both longitudinal and
transverse directions are shorter than the plasma wavelength. The laser ponderomotive force
varies as the laser energy gradient, therefore when the energy contained in the laser spherical
volume is important enough, it expels the electrons radially from the plasma. This results in
the formation of a bubble-like cavity, free from the electrons and surrounded by a thin sheath
of higher electrons density, behind the laser. Behind this cavity, the electrons density increases
gradually until some electrons are trapped and injected at the back of the cavity and thereby
accelerated along the propagation axis. A schematic representation of the bubble is shown in
fig. 1.7.

The accelerating field, limited to the wave breaking limit for a non-relativistic cold plasma
E0 = mecωp/e, can exceed it in the bubble regime which leads to large electron oscillations. As a
result, some electrons can escape the collective motion and trajectories intersections may occur.
This is the origin of electron injection in the bubble regime. Contrarily, in the linear regime,
the relativistic electrons need to be produced by an external source and injected into the linear
plasma wave in order to be accelerated.

The signature of this regime is quasi-monoenergetic electron spectra resulting from the local-
ization of the injection at the back of the cavity where interaction between the trapped electrons
and the electric field of the laser is negligible and gives similar initial properties in the phase
space to injected electrons, hence creating an electron beam with a transverse dimension smaller
than the initial laser waist and a duration shorter than that of the laser pulse. This is of a major
interest for a number of applications, because it is possible to transport it and then refocus the
resulting beam. Since most of LWFA experiments generating self-injected electrons take place
in the blowout regime, it was necessary to develop a model that describes the characteristics of
the accelerating cavity and specify the plasma parameters in this regime.

Firstly, Gordienko and Puhkov have proposed a model based on a single similarity parameter
S = n0/nca0 determined via simulations which states that for laser-plasma interactions with
different a0 and n0/nc scale in the same way as soon as the similarity parameter is constant
[Gordienko and Pukhov, 2005]. However, this model is not very useful, because it is restricted
to the case where a0 ≫ 1, while in most of the lasers used in experiments up to date do not have
an a0 ≫ 1 but rather an a0 ∼> 1. Therefore, [Lu et al., 2007b] established a phenomenological
description of three-dimensional plasma waves in the blowout regime driven by an extremely
intense laser with a0 ∼> 1. In their semantic paper, they presented several useful scaling laws for
the ideal laser spot size in terms of self-guiding. They also provided an expression to estimate
the expected accelerated particle energies for fixed LWFA parameters. Their scaling laws help
identifying key characteristics of the physics such as wake excitation, pump depletion, dephasing
and beam loading in order to design future LWFA experiments and predict simulations.

For a given plasma density n0 and a Gaussian laser pulse with a fixed power PL, Lu’s model
presumes that a laser with a size matched to the condition kpw0 = 2

√
a0 [Lu et al., 2007b]

(where the factor of 2 is deduced from full PIC simulations) and a duration resonant with the
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1.4. Regimes of plasma wave excitation

Figure 1.6: Representation of the blowout regime: an intense laser pulse propagating in the
x-direction drives a strong wakefield with an accelerating field (red gradient) and a decelerating
field (blue gradient). All background electrons within a blow-out radius Rb are totally expelled
outward from the axis, creating a spherical ion cavity just behind the pulse. The expelled
electrons form a thin sheath around the cavity of a width ∆. They are then pulled towards
the axis because of the transverse force produced by the ion cavity. Electron trajectories cross
behind the cavity and close it. Some of the electrons are trapped and injected at the back of the
bubble (yellow dots) in the accelerating region.

plasma period ωpτ0,res = 2, triggers a transverse ponderomotive force sufficiently strong to expel
all the electrons from the first bucket of the wakefield. Under this condition, the cavity takes a
quasi-spherical shape and the optical guiding of the laser is optimal. Once this requirement is
fulfilled, the acceleration can last over a significant distance.

The blowout regime provides a three dimensional spherical accelerating and focusing structure
for self-guided electrons with a maximum blowout radius Rb = 2

√
a0/kp (since kpw0 ∼ kpRb ) [Lu

et al., 2007b] that is determined by the balance of two forces: the space-charge force of electrons
and the ponderomotive force of the laser. If the waist is larger than the matched laser spot size,
a0 would not be strong enough to reach the blowout regime. Inversely, if the laser’s waist is
smaller than the matched laser spot size, the ponderomotive force will expel the electrons to the
edge of the laser from the beginning resulting in wide bubble and only a small fraction, if any, of
them would feel the impact of the ponderomotive force to be injected in the back of the cavity.
Additionally, the laser would be too small to be guided and will diffract very early.

Considering the quasi-static approximation inside the bubble, the plasma wave can be de-
scribed entirely in terms of the cavity radius rb(ξ). In the case of a sufficiently intense laser
(a0 > 4), the cavity has a perfectly spherical shape of a maximal radius Rb and one can derive
the expressions for the normalized potential and the longitudinal and transverse electromagnetic
fields inside the bubble in cylindrical coordinates (r, θ, z) [Lu et al., 2006a; Xie et al., 2007] for
r ≤ rb(ξ):
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φ = −
k2pr

2

4
+ φ0(ξ) (1.71)

Ez ≃
kpξ

2
E0 (1.72)

Er

E0
≃ kpr

4
E0 (1.73)

Bθ ≃ −kpr

4c
E0 (1.74)

with φ0(ξ) = φ0(r = 0, ξ), where (r = 0, ξ = 0) is the center of the bubble, and E0 = mecωp/e
is the cold wavebreaking maximum field.

This regime is particularly interesting in the design of an accelerator because it conserves the
transverse emittance of the electrons all along their acceleration. In fact, the transverse force
associated with the fields above F⊥ = −meω

2
pr/2 is always focusing, linear in r and independent

of ξ, contrarily to the linear regime. Hence, it is uniform for all the phases and it compensates the
natural diffraction of the electrons bunch. The accelerating force Fz = −meω

2
pξ/2 experienced

by an electron in the cavity is independent of the transverse position with respect to the cavity
axis. Its expression shows that it is zero near the maximum of the cavity (rb(ξ = 0) = Rb),
decelerating in the first half of the cavity (ξ > 0) and accelerating in the second half (ξ < 0).
The order of magnitude of the longitudinal accelerating field inside the cavity can be evaluated
by considering the typical length of the bubble Lb = 4

√
a0c/wp [Lu et al., 2007b] as

|Ez| ≃
mecωp

e

√
a0 ≃ 96

√

a0n0[1018cm−3]GeV.m−1

In this regime, the cavity shape and thus the associated transverse and longitudinal fields
can be controlled by adjusting the focal spot transverse size and the pulse duration and tuning
the plasma electron density. Hence, electron injection can be somehow controlled. Moreover, the
electron energy distribution exhibits peaked distributions and the accelerating structure prevents
emittance growth.

Experimental demonstration

With the increase in laser power and the development of short pulse durations in laser facilities
worldwide, nonlinear plasma waves in the blowout regime became experimentally achievable.
The first experimental demonstrations of self-injection resulted in a large energy distribution of
the accelerated bunch with most of the electrons at low energy ( < 10 MeV) [Modena et al.,
1995a; Umstadter et al., 1996a; Leemans et al., 2002; Malka et al., 2002]. Subsequently, a
major breakthrough has been made and in 2004: several laboratories succeeded in accelerating
quasi-monoenergetic electrons up to ∼ 100 MeV. This has been achieved using a laser energy
Elaser ∼ 1J and a plasma density n0 ∼ 1019cm−3 in France [Faure et al., 2004b] with a laser
pulse shorter than the plasma period, but also with pulses slightly longer than the plasma
period in the U.K [Mangles et al., 2004b] and in the United States [Geddes et al., 2004b].
Despite their quasi-monoenergetic spectra, the produced bunches were not sufficiently stable and
better beam quality with improved stability and tunability has been achieved thereafter through
better control of self- injection and dephasing length [Faure et al., 2006a; Geddes et al., 2008;
Gonsalves et al., 2011]. Electrons in the GeV level were firstly observed in this regime in 2006
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Figure 1.7: Representation of a typical normalized electron charge density map along with the
associated normalized electromagnetic fields in the blowout regime from PIC simulation. An
intense and short laser pulse of an a0 = 2.9 and a duration of FWHM≃ 28 fs propagating in the
x-direction, expels all the electrons from the optical axis creating an ionic cavity. These electrons
then form a dense sheath surrounding the cavity, before crossing the axis and closing the cavity
where some of the electrons are trapped and accelerated to high energies. A superposition of the
normalized electronic density map with the longitudinal field is presented in the left-hand panel,
and with the transverse field in the right-hand panel. The bubble provides an ideal structure
for accelerating electrons because beyond the sheath there is a linear response region with fields
that are both accelerating and focusing over nearly half a plasma wavelength.

using preformed plasma channel from capillary discharge to guide the 40 TW peak power laser
pulse over a 3 cm acceleration distance [Leemans et al., 2006] in a low density n0 ∼ 1018cm−3.
With the development of PW class lasers with femtosecond pulses, multi-GeV electron beam has
been reported in 2013 using uniform plasma and with considerably higher laser energy reaching
Elaser = 30 J in the case of 2 GeV [Kim et al., 2013] and Elaser = 150 J in the case of 3 GeV.
Afterwards, in 2014 a 4.2 GeV electron beam using 16 J of laser energy has been achieved in a 9
cm-long preformed plasma channel waveguide. The latest record in this race is the production of
7.8 GeV by guiding a 0.85 PW peak power laser with an energy of Elaser = 31 J over 20 cm-long
capillary of n0 = 3.41017 × cm−3 [Gonsalves et al., 2019].

1.5 Laser-wakefield acceleration

In order to be accelerated, electrons with sufficient initial velocity should be placed in the ac-
celerating and focusing phase of the wakefield as mentioned earlier. Otherwise, they would slip
back experiencing defocusing and will leave the plasma wave without any energy gain. The first
requirement to the electrons acceleration is then trapping. In the following section, first the
theoretical conditions for trapping and the different injection schemes will be presented, then
key physics of the acceleration and its limits will be summarized. Finally, the properties of the
accelerated electron bunch will be detailed.
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Chapter 1. Physics of laser-wakefield acceleration

1.5.1 Electrons trapping

The study of electron trapping can be carried out using a one-dimensional Hamiltonian model
which describes the total energy of a single electron in the wakefield. We assume a Gaussian laser
vector potential, polarized in the y-direction and propagating in the z-direction. The Hamiltonian
for an electron with Lorentz factor γ interacting with a laser and a plasma wave represented by
the normalized potential φ [Esarey and Pilloff, 1995] writes:

H = γp − φ(z − vgt) =
√

1 + u2⊥ + u2z − φ(z − vgt) (1.75)

where u2⊥ = p⊥/mec and u2z = pz/mec are respectively the transverse and longitudinal
normalized momenta.

Using a canonical transformation (z, uz) → (ξ, uz) with ξ = z − vgt and supposing f a
function verifying : f(z, u) = u(z− vgt) = uξ, the transformation satisfies ξ = ∂f/∂uz = z− vgt
and uz = ∂f/∂z. The new Hamiltonian H ′ [Esirkepov et al., 2006], hence reads:

H ′ = H − vguz
c

(1.76)

=
√

1 + u2⊥ + u2z − φ(ξ)− βpuz (1.77)

Where φ(ξ) is the potential of the wakefield, oscillating between φmin and φmax. Since in 1D
the laser field has only a transverse component, from Hamilton’s equation we can see that the
transverse canonical momentum ũ⊥ = u⊥ − a is conserved (u̇⊥ = −∂H/∂r⊥ = 0). Therefore,
u⊥(ξ) − a(ξ) = u0, with u0 is a constant of motion representing the initial perpendicular mo-
mentum of the electron. For an electron initially at rest in front of the laser pulse (ξi = +∞,
where index i denotes initial), u⊥ = a(ξ). In eq. (1.76), H ′ does not depend explicitly on time,
so dH ′/dt = 0 and hence H ′ = constant, which means that the energy of the system is conserved
along an electron orbit. By solving the Hamiltonian for uz, one can derive the trajectory of an
electron with initial energy H0 in phase space :

uz = βpγ
2
p(H

′
0 + φ)± γp

√

γ2p(H
′
0 + φ2)− γ2⊥ (1.78)

The trajectory of particles in phase space (ξ, uz) can be understood thanks to the study of
the Hamiltonian once a(ξ) and φ(ξ) are known. We can distinguish a particular trajectory that
separates the closed orbits of trapped electrons and the open orbits of untrapped electrons that
flow from the right to the left of the phase portrait depicted in fig. 1.8. This special trajectory
is denominated the separatrix and defined by electrons initially located at a minimum potential
φ(ξmin) = φmin < 0 and moving with uz(ξmin) = γpβp. It can be obtained when the conservation
of canonical momentum verifies uz(ξmin) = a(ξmin)

Hsep =

√

1 + a(ξmin)

γp
− φmin (1.79)

From figure 1.8, two types of trajectories partitioned by the separatrix (red line) [Teychenné
et al., 1994; Esarey and Pilloff, 1995] can be distinguished: fluid orbits (blue lines) where electrons
are not trapped, they correspond to the trajectory of plasma background electrons that contribute
to the formation of the plasma wakefield by just oscillating in the plasma wakefield with low
energies. They correspond to electrons initially at rest in front of the laser pulse, ξ = +∞
and uz(ξ) = u⊥(ξ) = 0 and a Hamiltonian H ′

0 = 1. The second trajectory refers to orbits of
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Figure 1.8: Phase space of a plasma wave in the co-moving coordinates driven by a laser pulse
with a0 = 2, τ0 = 44 fs in a plasma with a background electron density n0/nc = 0.44×10−2. The
blue lines represents the trajectory of non-trapped electrons called fluid orbits, they contribute
to the plasma wakefield formation. The red line represents the separatrix, which separates the
trapping and non- trapping orbits. The green lines represent the trajectory of trapped electrons.

trapped electrons (green lines) corresponding to Htrapped ≤ Hsep. The plasma wave potential
of a trapped electron behind the laser pulse with a phase ξtrapped and uz(ξtrapped) = γpβp is
φ(ξtrapped) = φtrapped ≥ φmin.

From eq. (1.76) the Hamiltonian for a trapped electron can be written as

Htrapped =
√

1 + γ2pβ
2
p − φtrapped − γ2pβ

2
p =

1

γp
− φtrapped (1.80)

The necessary and sufficient condition for trapping can therefore be found: Htrapped ≤ Hsep.
For an electron initially located in the front of the laser pulse to be trapped and accelerated in the
bubble regime, it must have an initial longitudinal momentum greater than the initial momentum

of the separatrix uz(+∞) > uz,sep(+∞) = βpγ
2
pHsep − γp

√

γ2pH
2
sep − 1 and a sufficient initial

kinetic energy E > Etrapped = mec
2(
√

1 + uz,sep(+∞) − 1), once it finds itself in the rear part
of the bubble where fields are both accelerating and focusing.

The presented 1D model gives insight into the electrons dynamics and how they can be
trapped. However, transverse effects and laser evolution which play a very important role during
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the interaction are neglected. The multi-dimensional study of self-trapping cannot be carried
out analytically and need 3D numerical simulations using PIC codes in order to describe kinetic
non-linear effects [Kostyukov et al., 2004; Kalmykov et al., 2011]. 3D simulations show that in
order to reach the trapping threshold, the laser pulse should be shorter than λp.

1.5.2 Electrons injection schemes

Plasma densities typically used in laser driven acceleration in the non linear regime are in the
range of 1018−1019 cm−3 corresponding to plasma wavelengths of 10−40 µm. Generated cavities
in such wakefields have dimensions on the order of the plasma wavelength. Successful injection of
electrons in these cavities requires fine tuning of the injection phase, the energy of the electrons
and the strength of the plasma wakefield in order to place them in the closed orbits. In order
to be efficiently accelerated, the electrons should be injected in the back of the cavity where the
field is both focusing and accelerating. This makes the injection in such cavities very challenging.
Several physical mechanisms leading to electrons riding on the wake have been demonstrated and
further studied. The most important techniques are summarized below.

self-injection

A relatively simple and convenient way to inject electrons in the plasma wave is to directly trap
and accelerate the electrons from the plasma itself when the plasma wave amplitude is close to
the wave-breaking threshold. This technique is referred to as the self-injection scheme [Modena
et al., 1995b; Umstadter et al., 1996a; Faure et al., 2004b; Benedetti et al., 2013]. Two distinct
sub-categories can be distinguished: longitudinal and transverse self-injection.

Longitudinal injection

In longitudinal self-injection, the transverse motion is negligible and the process is similar
to longitudinal wavebreaking in 1D. It is the result of the relativistic lengthening of the plasma
wake that follows strong relativistic self-focusing effects. The only electrons that are trapped
are those that were initially close to the propagation axis (r0 < Rb) where the laser intensity
and the wakefield amplitude are the highest and where the ponderomotive force is small. The
injected electrons pass through the laser pulse without being strongly deviated, so they remain
in the region of largest accelerating field Ez and gain energy while crossing the first period of
the plasma wave. When they reach its rear, their longitudinal velocity exceeds the wake phase
velocity and the electrons are eventually injected. Longitudinal self-injection is possible when
the pulse self-focuses at the beginning of the propagation: a0 steadily increases thus the plasma
wavelength increases and the wake phase velocity decreases resulting in a sudden expansion of
the bubble where electrons near the axis are trapped [Corde et al., 2013].

Longitudinal injection produces electron beams with low charge (∼ 2 − 10 pC) but also a
relatively low divergence (quasi-monoenergetic spectrum). It ensures a good shot-to-shot stability
since longitudinal injection happens at the beginning of the self-focusing process, which is less
fluctuating than the intensity oscillations during the propagation.

Transverse injection

Contrarily to the longitudinal injection, transverse self-injection is a multi-dimensional effect
that occurs in the bubble regime when electrons inside the sheath cross the axis to contribute to
close the cavity in the bubble regime [Lu et al., 2007b]. It is usually triggered when the cavity
frontier abruptly changes [Kalmykov et al., 2009; Kostyukov et al., 2010] due to the strong self-
focusing of the laser. The injected electrons in this case, are initially located at approximately
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one laser waist from the axis (r0 ∼ w0), where w0 is the laser waist in vacuum [Kalmykov et al.,
2011; Benedetti et al., 2013].

Transverse injection can be easily achieved with currently available setups and results in
higher charge bunches (> 50−100 pC ) but lower quality than the longitudinal one. The process
lacks stability as it is triggered by self-focusing which is highly non linear and it is very sensitive
to the shot-to-shot fluctuations of the laser intensity profile. Since injected electrons are far from
the axis, the betatron oscillations are important leading to large beam divergence. Besides, the
process can last for a long propagation distance leading to electron beams with large energy
spread.

Both longitudinal and transverse injection were experimentally demonstrated by [Corde et al.,
2013]. It was shown that it is possible to achieve transverse injection with the same experimental
parameters as longitudinal injection but after a longer propagation of the laser in the plasma:
electrons in the first bunch come from regions close to the axis and were injected in the beginning
of the self-focus when the normalized laser amplitude is still low and the radial ponderomotive
force close to the axis is small. Electrons in the second bunch originate from positions close to the
laser waist, hence they were triggered by transverse injection. Usually, longitudinal self-injection
is dominant at low electron plasma densities (n0 < 1019 cm −3), while transverse self-injection
is predominant at higher densities [Corde et al., 2013].

The self-injection scheme is unstable due to non-linear effects of the laser such as relativistic
self-focusing and self-compression. In order to improve the electron bunch quality, more control
over the injection process is desirable. In the following, several controlled injection techniques
to overcome this shortcoming, are presented.

Ionization injection

Ionization injection is a technique based on the use of a mixture of low-Z gaz (hydrogen or
helium) with a smaller percentage of high-Z gas (oxygen, nitrogen, or argon) [McGuffey et al.,
2010; Pak et al., 2010; Pollock et al., 2011] or a pure high-Z gas [Singh and Sajal, 2009; Mori
et al., 2009; Guillaume et al., 2015a] to control the injection process into the wakefield by ionizing
deeply bound electrons from the high-Z gas at a proper phase inside the wakefield. Thanks to the
difference in ionization potentials between successive ionization thresholds in large Z gas, some
electrons are released later than others. On one hand, electrons from the low-Z atoms together
with the electrons from the outer shells of the high-Z atoms are stripped from their atoms earlier
by the edge of the laser, where the laser intensity is still relatively low. On the other hand, the
electrons from the inner shell of the high-Z atoms are ionized near the peak of the pulse. They
may be easily trapped directly in the bubble as they are born inside an optimal location of the
wake and thus can be accelerated.

The advantage of using this method is that the energy required to trap electrons is reduced
compared to the self-injection scheme, which allows to produce electron beams with a important
charge at moderate laser energy. Due to the relativistic self-focusing effect, the laser is guided
through a long distance where the peak intensity variations can trigger inhomogeneous continuous
electrons injections, thus leading to electron beams with high charge but also large relative energy
spread [Pak et al., 2010]. One way to overcome his limitation is to use two stages accelerators,
with the first stage based on ionization injection technique followed by a second stage with only
low-Z gas [Bourgeois et al., 2013].
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Optical injection

Another way to trigger electron injection in the wakefield is optical or ponderomotive injection
using a secondary laser pulse (injection pulse) that injects electrons precisely and locally in the
wakefield driven by a primary intense laser (pump or excitation pulse). In fact, the interaction
between the two laser pulses creates a beat wave that can provoke electrons injection. The first
proposed configuration was based on two perpendicular pulses [Umstadter et al., 1996b]. The
transverse ponderomotive force of the injection pulse provides some electrons with the necessary
momentum to cross the wakefield separatrix and be trapped. An other scheme known as the
colliding pulse optical injection scheme was suggested in [Esarey et al., 1997] and experimentally
demonstrated by [Faure et al., 2006b] using two counter-propagating pulses . This technique
has demonstrated a good control over the injected charge and energy gain, thus producing high
quality electron beams. It was shown that the beam energy and charge of the accelerated particles
were controlled by tuning the intensity and delay between the two pulses in order to adjust the
injection phase and therefore the acceleration length which defines the final energy [Rechatin
et al., 2009b].

Another colliding laser pulse scheme, where the the lasers are in circular polarization and the
second pulse has a very low-energy, called cold optical injection was proposed by [Davoine et al.,
2009]. In this scheme the longitudinal motion of electrons remains frozen during the interaction
between the pulses by the injection pulse and the electrons can enter into the propagating plasma
wave, at a phase-space position across the separatrix allowing their injection.

In the previous method the electrons were injected longitudinally. [Lehe et al., 2013b] have
proposed a scheme where the pulses collision occuring in low densities results in a fast expansion of
the bubble to control transverse injection. This scheme, known as the optical transverse injection
demonstrated a generation of low emittance electron beam with relatively high charge. The
two last schemes have been studied through PIC simulations but have not been experimentally
demonstrated so far.

Although optical injection can provide extremely stable, quasi-monoenergetic bunches of
electrons, the system is quite complicated to implement since it requires femtosecond level syn-
chronization and micrometer level alignment.

Density transition injection

Another method of controlling the injection process is by using a downward density ramp. The
inhomogeneities in the plasma can trigger local particles injection. The downward density tran-
sition causes slowing of the plasma wave phase velocity vφ at the density ramp when the density
downramp length is long compared to the plasma wavelength λp which lowers the threshold for
trapping the plasma background electrons and causes wave-breaking of the wakefield in a local-
ized manner. This idea was first demonstrated theoretically [Bulanov et al., 1998] the studied
experimentally [Geddes et al., 2008; Gonsalves et al., 2011]. The change in the plasma phase
velocity triggers an expansion of the bubble resulting in electrons injection at the back of the
bubble. Nevertheless, a long downramp leads to continuous injection along the density ramp
and thus a large energy spread. When using a sharper density transition with a length smaller
than the plasma wavelength λp, the injection method is more commonly known as shock-front
injection. This scheme has been both studied numerically [Kim et al., 2004; Brantov et al., 2008]
and demonstrated experimentally by forming the density transition either with a second laser
pulse propagating transversely to the main interaction pulse [Faure et al., 2010] or by a shock in
a supersonic gas flow [Schmid et al., 2010; Burza et al., 2013]. By correctly tailoring the density
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transition, the injection process is controlled. Particularly, injection in sharper gradients leads
to better beam quality.

Controlled injection techniques offer better regulation over the quality of the beam. However,
they are usually hard to implement experimentally. With the increase in the laser power, self-
injection which usually requires a high laser strength a0 has become more accessible. Hence,
we have chosen this scheme to study the properties of the produced electron bunches via PIC
simulations with realistic laser profiles in chapter 4.

In figure 1.9, a summary of main but not exclusive achievements in LWFA experiments with
the different injection techniques is presented [A. Ghaith, 2020]
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Figure 1.9: Beam charge (top left), energy (top right), energy spread (bottom left) and divergence
(bottom right) reported in LWFA experiments obtained through different injection techniques.
(•) Self-Injection [Mangles et al., 2004b; Geddes et al., 2004b; Faure et al., 2004a; Leemans et al.,
2006; Osterhoff et al., 2008; Kneip et al., 2009; Kim et al., 2013; Wang et al., 2013; Leemans et al.,
2014; Guillaume et al., 2015b; Gonsalves et al., 2019], (⋆) Colliding Pulse Injection [Faure et al.,
2006b; Rechatin et al., 2009a; Hansson et al., 2016], (N) Ionization Injection [McGuffey et al.,
2010; Pak et al., 2010; Pollock et al., 2011; Golovin et al., 2015; Mirzaie et al., 2015; Couperus
et al., 2017; Irman et al., 2018], (+) Downramp Injection [Faure et al., 2010; Gonsalves et al.,
2011; Burza et al., 2013; Hansson et al., 2015], (×)Density Transition (/ Shock) Injection [Schmid
et al., 2010; Buck et al., 2013; Wang et al., 2016; Swanson et al., 2017], (�) Downramp / Shock
+ Ionization Injection [Thaury et al., 2015; Hansson et al., 2016]. The definition of the beam
parameters in the given references may vary.
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1.5.3 Laser propagation and modulation in plasma

At high intensities, electrons become relativistic and local properties of the medium are altered
due to the effective relativistic mass increase of electrons in the plasma. In particular, the
dispersion relation of the laser electromagnetic wave becomes

ω2
0 = c2k20 + ωp(r)

2 (1.81)

where ωp(r)
2 = (ω2

p0/γ(r))(ne(r)/n0) is the effective plasma frequency.
The corresponding refractive index in the equation of propagation varies as a function of the

laser intensity.

η(r) =
ck0
ω0

=

√

ω2
0 − ωp(r)2

ω2
0

=

√

1−
ω2
p0

ω2
0

ne(r)

γ(r)n0
(1.82)

we assume that ω2
p0/ω

2
0 ≪ 1 and γ ≃ γ⊥ ≃ (1 + a2)1/2 since the leading-order motion of

the electrons in the laser field is the quiver motion p⊥ = meca. In the weakly relativistic case
(a2 ≪ 1 and δne ≪ n0), the local group velocity of the drive laser can be written

η ≃ vg
c

≃ c

vφ
≃ 1−

ω2
p0

2ω2
0

(

1− a2

2
+

δne

n0

)

(1.83)

Self-focus

In the standard theory of self-focusing of laser beams by relativistic effects [Sprangle et al., 1987],
only the effects of the transverse quiver motion of the electrons are included in the expression1.83,
while the density response has been neglected ne = n0:

η ≃ 1−
ω2
p0

2ω2
0

(

1− a2

2

)

(1.84)

For a laser where the intensity is peaked on axis, typically a Gaussian pulse, ∂a2(r)/∂r < 0.
This implies ∂η/∂r < 0 and ∂vφ/∂r > 0 (η = c/vφ) which satisfies the condition for refractive
guiding. Hence, the on-axis phase velocity is less than the off-axis velocity, making the laser
wavefront curved. Therefore, the plasma medium acts as a focusing lens in optics terminology,
for the electromagnetic field of the laser. This mechanism is known as self-focusing, and plays
an important role in laser guiding during its propagation to balance laser diffraction.

self-compression

Besides its evolution in the transverse direction, the beam size is also modulated in the longi-
tudinal direction. The variation of plasma density along the propagation axis δne(ξ) makes the
laser pulse undergo different local refraction indices that will either compress or relax the laser
in the temporal domain.

From equation eq. (1.83), the laser group velocity decreases vg < vg0 when δne > 0 while it
increases vg > vg0 when δne < 0 where vg0 corresponds to the laser group velocity in the back-
ground plasma (δne = 0). As a consequence of this variations, the rear of the laser pulse moves
faster than its front edge and the spectral bandwidth of the short laser pulse will increase. While
most of the laser is redshifted the back is blueshifted specially when it comes to pulses longer
than the plasma period [Schreiber et al., 2010]. This mechanism is called temporal compression
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or pulse shortening and it contributes to matching the laser pulse duration and plasma wave
period when the initial laser pulse duration is long.

It can also lead to a piston shaped laser pulse sometimes responsible for continuous self-
injection [Kalmykov et al., 2011].

1.5.4 Limits of acceleration

The maximum of energy that an electron accelerated in a plasma wave can gain ∆E can be
estimated as the the product of the accelerating longitudinal field Ez and the acceleration length
Lacc over which the electron undergoes the effect of the acceleration field.

∆E = eEzLacc (1.85)

Both the amplitude of the accelerating field and the acceleration length depend on the regime
of the laser wakefield. The acceleration distance is typically bounded with three main constraints:
if not couter-balanced by a focusing mechanism, laser diffraction restricts acceleration to a length
of the order of the Rayleigh length, pump depletion determines the length over which half of
the laser energy is transferred to the plasma wave and dephasing length defines the distance in
which accelerated electrons outrun the plasma wave and enter a decelerating phase. These three
shortcomings are described next.

Laser diffraction

If the laser is not properly guided, its spot size expands progressively decreasing the intensity until
the laser is not able to drive efficiently a substantial accelerating wakefield anymore. However
this shortcoming can be mitigated in the non-linear regime by self-focusing which extends the
acceleration length over few Rayleigh lengths by shaping the transverse density profile to act
as a transient focusing lens. For a given beam divergence, there is a minimum threshold for
laser intensity to compensate diffraction by self-focusing which will occur when the laser power
P exceeds a critical power [Sprangle et al., 1992]

Pc =
8πǫ0m

2
ec

5ω2
0

e2ω2
p

≃ 17
ω2
0

ω2
p

[GW] (1.86)

Practically, the refractive index is modified by other phenomena such as the plasma wave
and the ponderomotive channelling [Hafizi et al., 2000]. For example, the plasma wave tends
to defocus the laser pulse, which might block the pulse from self-focusing at Pc [Ting et al.,
1990]. Meanwhile, ponderomotive channelling slightly relaxes the critical power for self-guiding
to Pc = 16.8(ω2

0/ω
2
p)[GW].

However, in the linear regime the self-focusing is negligible and external guiding is requisite.
Various methods of optical guiding can be applied to maintain the laser-plasma interaction for a
longer propagation distance among which we mention using preformed plasma density channels
[Steinhauer and Ahlstrom, 1971; Johnson and Chu, 1974; Leemans et al., 2006; Karsch et al.,
2007; Walker et al., 2013] or dielectric capillaries [Cros et al., 2002; Desforges et al., 2014].

Laser pump depletion

Another common limit to the acceleration is the so-called pump depletion, denoted by Lpd,
over which the driving laser has lost a substantial amount of energy. In fact, as the laser pulse
propagates in the plasma, it transfers its energy to the plasma wave. This energy transfer
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progressively damps the amplitude of the laser and hence that of the wakefield resulting in the
termination of the acceleration. The pump depletion length [Bulanov et al., 1992; Shadwick et al.,
2009] can be estimated by equating the energy contained in the laser pulse to that transferred to
the wakefield E2

z,maxLpd ≈
∫

ξ E
2
Ldξ where EL is the laser field and Ez,max is the maximum of the

longitudinal electric field of the plasma wave. For linearly polarized laser pulses, the depletion
length [Esarey et al., 2004] can be estimated according to the following relations:

Lpd ∝







λ3
p

λ2
0

a−2
0 if a0 ≪ 1

λ3
p

λ2
0

a0 if a0 > 1

Pump depletion is bound to happen, but its consequences can be delayed by increasing the
initial energy contained in the driver pulse and decreasing the plasma density or staging with a
fresh pump pulse.

Electron dephasing

Another underlying cause that may cease the acceleration is electron dephasing, which is due to
the fact that the group velocity of the laser pulse vg is slightly lower than c. While relativistic
electrons can reach velocities extremely close to the speed of light c, the plasma wave is bound
to the group velocity of the laser pulse vg. Therefore, electrons will eventually outrun the
accelerating phase of the wakefield and slip into the decelerating phase over a length referred
to as the electron dephasing length Ld [Tajima and Dawson, 1979; Esarey et al., 1996; Geddes
et al., 2005].

In the linear regime, the maximum length over which the field is accelerating during one
period is a quarter-wavelength distance from the laser pulse. In this case and supposing that
electrons travel at the speed of light c, Ld can be evaluated as ∆vLd/c = λp/4 with ∆v = c− vg
and vg/c = 1− ω2

p/2ω
2
0. Therefore:

Ld =
λ3
p

2λ2
0

(1.87)

In the 3D bubble regime, the dephasing occurs once the electrons reach the center of the
cavity where the accelerating field is zero. Beyond that point, they enter the decelerating zone
and therefore do not gain energy anymore. The phase velocity of the plasma wave in 3D non-
linear wakefield is modified and accordingly the dephasing length yields:

Ld ≃ 2

3

ω2
0

ω2
p

Rb =
4

3

ω2
0

ω2
p

√
a0
kp

=
2

3π

λ3
p

λ2
0

√
a0 (1.88)

Although electron dephasing cannot be avoided, it can be delayed. Since the 3D non-linear
dephasing length depends on both the plasma electron density and the laser intensity, it can be
increased either by decreasing the plasma density (the laser propagates faster) or by increasing
the laser intensity. Among acceleration limitations dephasing remains probably the most serious
challenge for applications of LWFA. Several solutions to overcome this problem can be suggested
such as staging with a second laser- plasma accelerator, where the electron bunch is re- injected
into a new plasma wave at the appropriate phase before reaching the decelerating region. Another
solution proposed theoretically by [Sprangle et al., 2001], suggests to spatially tailor the plasma
density so that the accelerated bunch of electrons would see an accelerating field whose phase
velocity is c. Later, this idea has been experimentally demonstrated at LOA by [Guillaume
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et al., 2015b] where a density step was introduced to reduce suddenly the plasma wavelength
and therefore guarantee that the bunch would stay in an accelerating region for a longer time.

Beamloading effect

When the injected charge accumulated in the rear region becomes very important, the electron
bunch can exert a space charge force that repels plasma electrons with a lighter relativistic
mass away and distort the local wakefield. This effect is called beam loading [Katsouleas et al.,
1987; Tzoufras et al., 2008] and can place severe limitations on the efficiency of the plasma-
based accelerator by altering the bubble shape and the accelerating field to the point that it
prevents further injection. The trapping process stops when the charge contained in the cavity
compensates the ionic charge.

The loaded charge can be estimated in both linear and nonlinear plasma waves based on the
following formulas:

Q =







ǫ0mec2

2reEl

(

nl

n0

)2 (

1− E2
l

E2
0

)

πǫ0mec2

42reEnl
(kprb)

4

where E is the accelerating field, the subscript l represents quantities in the linear regime
and nl those in the non-linear regime.

Scaling laws

Scaling laws play a crucial role in understanding and designing laser plasma accelerators, since
they give an approximation of the optimal key parameters in LWFA. They have been established
based on phenomenological considerations and 3D PIC simulations by [Lu et al., 2007a] and have
been verified in the experiments. The table 1.1 summarizes the main scaling laws to find the
limits leading to the termination of electrons acceleration and their corresponding energy gain
in the different regimes.
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Table 1.1: Summary of the scaling laws with w0 is the matched laser waist, Ld the dephasing
length 11, Lpd the depletion length, γp the relativistic factor of the plasma wave and ∆E the
energy gain of an electron accelerated over the dephasing length.

1.5.5 Properties of the accelerated electron bunch

Electron beams generated from LWFA can be accelerated to high energies over a very short
distance compared to conventional accelerators. This attractive feature that made them a po-
tential candidate for multiple applications such as Free-Electron Lasers (FEL) [Nakajima, 2008;

10τ0 here denotes directly the FWHM and not the laser duration as defined previously.
11τ0 here denotes directly the FWHM and not the laser duration as defined previously.
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Schlenvoigt et al., 2008], compact high-energy colliders [Schroeder et al., 2010; Humphries, 1990]
or X-rays source (for instance using betatron radiation) for single-shot phase-contrast imaging
[Fourmaux et al., 2011]. Nevertheless, accelerated electron beams from LWFA are still far from
being monoenergetic. In fact, their energy spread presently of the order of a few percents [Pollock
et al., 2011; Wiggins et al., 2010] is still very large compared to the one achieved conventional
accelerators reaching 10−4 percent energy spread. Besides, they suffer from large divergence that
reaches ∼ 1 mrad [Plateau et al., 2012]. However, there have been some progress recently to
make high-quality bunches foreseeable using different plasma sources such as capillary waveg-
uides [Leemans et al., 2014] and tailored density profiles [Gonsalves et al., 2011]. In this section,
the main electron bunch parameters to quantify its quality are presented. These definitions hold
for the rest of the manuscript unless stated otherwise.

Bunch definition

Energy distribution dQ/dE of the accelerated bunch is one of the main properties in the beam
quality study. It expresses the charge of electrons dQ in the interval between E and E + dE as
a function of the energy E. In order to reach capabilities of conventional accelerators, the peak
energy must be increased and the energy spread strongly reduced.

In order to introduce the bunch parameters, one should define what is considered as a bunch.
Among the various approaches to define the bunch, the root-mean-square (rms) and the full-
width at half-maximum (FWHM) are the most commonly used estimators to define the bunch
and thus its charge Q. In both ways, the definition is closely related to the peak energy of the
beam Epeak which is defined as the energy where the charge per MeV is maximum.

FWHM bunch definition
In this approach, the bunch is defined as the part of the energy distribution between 2 full-

width at half-maximum (FWHM) around the Energy peak. The FWHM corresponds to the
width of the energy spectrum curve measured between the two abscissa corresponding to half of
the maximum amplitude. The charge of the bunch Q is therefore defined as the charge contained
in the delimited area by 2 FWHM around Epeak. Even though this definition suppose that the
distribution of the electron bunch can be fitted with the Gaussian distribution, in reality it is
not the case. Hence, the bunch is not necessarily centered on Epeak.

Nrms bunch definition
The definition of Nrms bunch is a more sophisticated one. It is based on the root-mean

square of the energy part corresponding to the FWHM bunch definition. It can be calculated
according to:

∆rms =
√

〈(∆EFWHM − 〈∆EFWHM 〉)2〉 (1.89)

where 〈.〉 defines the average over the macro-particles and within ∆EFWHM as defined pre-
viously by 2 FWHM around the energy peak.

The charge of the bunch Q in this case is the fraction between Epeak − Nrms∆rms and
Epeak +Nrms∆rms where Nrms can be chosen arbitrarily.

Energy spread

The energy spread, ∆Erms is given by the following expression:

∆Erms =
√

〈(E − 〈E〉)2〉 (1.90)

where 〈.〉 is the average over the bunch macro-particles.
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1.5. Laser-wakefield acceleration

It is usually more practical to define the energy spread in percentage by normalizing to the
energy peak Epeak. In fig. 1.10, a typical energy spectrum of an electron bunch in the bubble
regime from a PIC simulation is presented. The delimited area by the blue dashed lines indicates
the bunch defined with FWHM estimator which gives an energy spread ∆E/Epeak = 4.7%. On
the other hand, the area between the red dashed lines indicates the bunch estimation with Nrms
definition using Nrms = 3. The latter gives ∆E/Epeak = 3.7%.

The properties of the bunch may then vary with the chosen bunch estimator. This makes
the comparison between different simulations not straightforward.

Figure 1.10: Energy spectrum dQ/dE from simulation of laser-accelerated electron beam in the
non-linear regime. The bunch defined with ∆FWHM is delimited with the dashed blue lines
while the bunch defined with 3∆rms is delimited with dashed red lines.

Sources of energy spread increase There are several sources of energy spread increase in
the electron injector. The following is not an exhaustive list.

Degradation due to long injected bunch: electrons in elongated bunch might not all be
injected at the same phase in the wakefields. Due to the difference between the accelerating field
experienced by the front and the back of the bunch, the energy spread tends to increase when
electrons located at higher accelerating field region already have a larger energy.

Degradation by continuous injection: when the injection lasts for a relatively long duration,
electrons injected later are not accelerated for as long as earliest ones, hence it creates a bulk of
low energy electrons, often referred to as dark current [Schroeder et al., 2006]. This phenomenon
results in a large energy spread.

Emittance

For a large variety of potential applications of laser-wakefield accelerators, producing high quality
beams with high luminosity, i.e large numbers of particles and with very small bunch sizes, is
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Chapter 1. Physics of laser-wakefield acceleration

crucial. This requirements can be translated in a low divergence and a low transverse beam
size. However, these quantities evolve during the acceleration and can further be manipulated
after the acceleration, by the use of drift spaces and focusing devices. A figure of merit and
an intrinsic quantitative measurement of the transverse quality is the transverse emittance that
will be presented in this paragraph along with a discussion regarding the sources of emittance
growth, that degrade the beam quality.

The beam transverse emittance ǫ is a measure that combines the bunch energy spread as well
as its transverse size and divergence. In the case of a beam propagating in the z direction, the
transverse emittance is usually represented by the volume occupied by the beam in the transverse
trace space (x, y, x′, y′) where x′ = px/pz and y′ = py/pz are the measures of angular deviation
from straight motion along the propagation axis (velocity spread), thus related directly to the
beam divergence [Floettmann, 2003] in the paraxial approximation where px, py ≪ pz which is the
case for relativistic electrons. Projecting this volume V onto the orthogonal planes (x, x′), (y, y′)
results in the same expression for ǫx and ǫy. Therefore, for simplicity we limit the discussion to
the x-dimension. It is convenient to describe the beam distribution in trace space as an ellipse
(as shown in fig. 1.11) that best fits the electrons distribution with equation:

γx2 + 2αxx′ + βx′2 = ǫx (1.91)

where α, β and γ are the Twiss parameters related through γβ−α2 = 1 [Ferrario, 2016]. From
figure 1.11 we can see that β and γ quantify respectively the projected bunch size X =

√
βǫ

and its divergence X ′ =
√
γǫ while ϕ = 1/2 arctan(2α/(γ − β)) measures the bunch rotation

during a drift in free space where α defines whether the bunch is converging towards the waist
(α > 0) or diverging away from it (α < 0, as it is the case presented in the figure 1.11). As the
beam propagates, the orientation and size of the trace-space ellipse change and hence the Twiss
parameters vary accordingly. However, according to Liouville’s theorem [Goldstein et al., 1980;
C. Lejeune, 1980] the phase space volume V remains constant for a conservative system which
means that the emittance is conserved under ideal accelerating conditions like propagation of the
bunch in vacuum or through linear focusing systems. The geometrical emittance is calculated
from the area occupied by the ellipse A in the trace space that best fits the beam distribution:

ǫx =
1

π

∫

A
dxdx′ (1.92)

Nevertheless, in practice electron beams do not have a well-defined shape and sometimes it
is hard to fit well the electrons distribution with an ellipse in order to calculate its value. In
addition to its geometrical definition, emittance can also be evaluated statistically based on the
root mean square (rms) values for the first and second momenta of the distribution.

ǫx,rms =
√

〈x2〉〈x′2〉 − 〈xx′〉2 (1.93)

where 〈.〉 defines the average value over all the particles in the bunch. The last term 〈xx′〉
indicates the correlation in trace-space between the bunch size x and the divergence x′. This
definition is more general than the geometrical one since it is not limited by a specific shape
and it is the one usually used in simulations analysis. From the definition in eq. (1.93), we can
see that the emittance will decrease when the beam energy increases which is the case for the
accelerated electrons in LWFA. In fact, while being accelerated, the longitudinal momentum of
electrons increases drastically compared to the transverse momenta, resulting in a divergence
reduction and thus a rms emittance decrease. It is more convenient when studying the evolution
of the beam emittance throughout its propagation to take into account the energy dependence
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1.5. Laser-wakefield acceleration

Figure 1.11: Electrons distribution represented by an ellipse in the transverse trace space (x, x0).
The geometrical emittance is the area of the ellipse multiplied by π. The yellow ellipse represents
a bunch at waist while the orange one represents a bunch drifting in free space, diverging from
the waist (adapted from ??).

and define a normalized rms emittance which is invariant during acceleration. In this definition
the transverse momentum px = pzx

′ = mecβγx
′ is used instead of the divergence, the equation

is written as:

ǫx,n,rms =
1

mec

√

〈x̃2〉〈p̃x2〉 − 〈x̃p̃x〉2 (1.94)

=
√

〈x̃2〉〈β2γ2x̃′2〉 − 〈x̃β2γx̃′〉2 (1.95)

where x̃ = x− 〈x〉. Assuming that the correlation between the energy and transverse diver-
gence is negligible, the normalized emittance can be approximated by:

ǫ2x,n,rms = 〈x̃2〉〈β2γ2〉〈x̃′2〉 − 〈βγ〉2〈x̃x̃′〉2 (1.96)

Introducing the definition of the energy spread as :

σ2
E = 〈β2γ2〉 − 〈βγ〉2 (1.97)

Equation (1.98) can be rearranged to be:

ǫ2x,n,rms = σ2
E〈x̃2〉〈x̃′2〉+ 〈βγ〉2(〈x̃2〉〈x̃′2〉 − 〈x̃x̃′〉2) (1.98)

= σ2
E〈x̃2〉〈x̃′2〉+ 〈βγ〉2ǫ2 (1.99)

Assuming relativistic electrons (β = 1), the energy spread defined in eq. (1.97) is related
to our definition of energy spread in eq. (1.90) by ∆E = mec

2σE , and hence the normalized
emittance reads:

ǫ2x,n,rms =
∆E2

m2
ec

4
〈x̃2〉〈x̃′2〉+ 〈γ〉2ǫ2 (1.100)
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Chapter 1. Physics of laser-wakefield acceleration

To simplify the notations, σx =
√

〈x̃2〉 is used to denote the bunch size and σ′
x =

√

〈x̃′2〉 is
used to denote its divergence. Equation (1.100) rewritten with new notations reads:

ǫ2x,n,rms =
∆E2

m2
ec

4
σ2
xσ

′2
x + 〈γ〉2ǫ2 (1.101)

We recover the expression of the un-normalized emittance in the second right-hand term. The
resulting projected normalized emittance then becomes a function position σx, divergence σ′

x and
energy spread ∆E. The main advantage of using the definition of the normalized rms emittance
is the concatenation of all transverse properties in a single quantity. Thanks to small energy
spread values in conventional accelerators beams, the first term is negligible and ǫ2x,n,rms ≈ 〈γ〉2ǫ2.
However, the same does not apply to LWFA beams due to the large value of the energy spread
as well as the big angular divergence which make the first term the leading one. Moreover, since
the energy spread varies with the propagation distance, the normalized emittance is not constant
in this scenario. The relation between normalized and un-normalized emittance is adressed in
details in [Antici et al., 2012].

sources of emittance growth Theoretically and under ideal acceleration conditions, the emit-
tance should remain constant throughout acceleration and further beam manipulation, thereby
determined at injection. Small emittance is a major requirement for most of LWFA applications.
It implies high focusability and the potential of generating high quality radiation sources. In or-
der to lower the initial beam emittance, one should consider optimizing the conditions during the
generation process of the particle beam by mitigating all possible sources of emittance growth.
The degradation of the transverse quality of the beam can have several origins [Reiser, 2008]
such as experiencing nonlinear forces or chromatic aberration of the focusing magnetic optics or
transport line misalignment The most common ones for LWFA are the following.

Degradation by betatron oscillations: Electrons undergoing betatron oscillations rotate around
the origin of (x, px) phase space with a frequency ωβ = ωp/

√
2γ. Since γ varies across the bunch,

each electron will rotate with its own frequency. In particular, low-energy electrons will rotate
faster than high- energy electrons in phase space spreading out the area occupied by the whole
bunch and increasing emittance. This phenomenon is known as decoherence [Michel et al., 2006b]
and depicted in fig. 1.12.

Degradation by ξ-dependent linear focusing forces:
focusing forces can be linearly dependent on the longitudinal variable ξ (in the direction of

their propagation) besides being transversely linear (i.e Fx = −K1(ξ)x, Fy = −K2(ξ)y). This
phenomenon can happen for instance in the linear regime where the focusing forces close to the
axis rotate the electrons at different ξ with different frequencies in the phase space which results
also in decoherence [Mehrling et al., 2012] that distorts the beam ellipse in trace space. However,
in this case the emittance is preserved per thin slice at a given ξ in time, for electrons close to
the axis.

Degradation by nonlinear focusing forces: non-linear transverse focusing forces can be a
source of emittance growth specially when the transverse size of the bunche in the laser wakefield
is large. In the linear regime, electrons traveling very far from the axis experience much stronger
focusing force F⊥ = −eEr(eq. (1.67)) than the ones close to the axis due to the non-linear
term exp(−2r2/w2

0). Therefore, outer particles phase in trace-space can evolve faster. Electrons
initially distributed along a straight line will rotate at different frequencies depending on their
transverse coordinate. Thus, their distribution in phase space later becomes distorted. However,
this does not happen in the blow-out regime, because the focusing forces are perfectly linear in
r and independent of ξ due to the ion cavity.
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Figure 1.12: Schematic representation of the decoherence phenomenon: the initial distribution of
the beam electrons in the phase space (x, px) presented in the left-hand panel encounters betatron
oscillations and low-energy electrons rotate faster than the high-energy electrons in phase space
resulting in the emittance growth and a final distribution presented in the right-hand panel.

Another type of non-linear forces are the space charge forces that the beam exerts on itself.
However, the emittance increase due to them is significant only for low-energy, wide bunches.
In LWFA, the bunches are usually narrow with high energies, which makes the degradation of
emittance due to space-charge forces usually negligible in this case.

Degradation by direct interaction with the laser pulse: in [Shaw et al., 2017], it has been
demonstrated that electrons being accelerated in a laser wakefield accelerator operating in the
forced or blowout regimes gain significant energy from both the direct laser acceleration (DLA)
and the laser wakefield acceleration mechanisms. DLA is the process by which electrons that
undergo betatron oscillations in the transverse plane gain energy directly from the laser field itself
when the betatron frequency coincides with the laser frequency [Pukhov et al., 1999]. Electrons
are thus accelerated at the betatron resonance when the laser power overcomes significantly the
critical power for self-focusing. In spite of the energy gain, the transverse momentum of the
electrons increases from the DLA. This results in emittance growth of the electron bunch.
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Chapter 2

Numerical modeling and simulation

tools for laser-wakefield acceleration

With the fast-paced development of both computational resources and algorithmic methods,
numerical simulations has become a reliable and cost-effective tool to corroborate theoretical
predictions, complete experimental studies and investigate unexplored interaction regimes in the
Laser WakeField Acceleration (LWFA).

In this context, the Particle-In-Cell (PIC) is the method of choice for LWFA community
to study numerically the plasma dynamics at the kinetic level, since the full set of Maxwell’s
equations and the relativistic equations of motion are self-consistently evolved. Within the
validity of classical physics and numerical accuracy, they provide a very detailed and accurate
description on the processes occurring in the plasma.

This chapter is dedicated to the introduction of the standard PIC algorithm and the specific
features of the open-source PIC code Smilei which has been extensively used in this thesis.
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Chapter 2. Numerical modeling and simulation tools for laser-wakefield acceleration

2.1 Numerical resolution of Maxwell-Vlasov system

2.1.1 Overview of numerical methods

Maxwell-Vlasov system eqs. (1.1) to (1.4) and eq. (1.41) can be numerically solved with an
Eulerian approach 1 in the so-called Vlasov simulation. In this case, the phase space (x,p) is
discretized along all directions and each particle distribution function fp(x,p, t) is evaluated on
computation axes at each time step. However this approach, while very accurate, is extremely
computationally expensive. In fact, discretizing the phase space in 3D geometry (3 space dimen-
sions and 3 momentum dimensions) would require thousands of billions of cells.

Another shortcoming in Vlasov simulations is that one has to process many empty regions and
maintain them as parts of the numerical arrays leading to an enormous waste of computational
time and computer memory. This is depicted in fig. 2.1 (a). It shows a grid of the phase space
(x, px) in 1D (one spatial coordinate and one momentum/velocity coordinate). The colored area
represents the region occupied by plasma, where the associated two-dimensional distribution
function fp(x, px) is non-zero whereas the rest of the area is void of particles. This burden
becomes more significant with a higher dimensionality, yet crucial for a correct LWFA modelling.

Another more popular choice to solve the Maxwell-Vlasov system, is the Particle-In-Cell
(PIC) algorithm which is a particle-mesh method. This numerical approach is based on a
Lagrangian description 2 of the density distribution functions in the phase space. This description
relies on the introduction of numerical macro-particles that represent a small volume of the phase
space.

On the one hand, the electromagnetic quantities, obeying to Maxwell’s equations are dis-
cretized using an Eulerian description on a fixed simulation grid. On the other hand, macro-
particles are free to move in the simulation domain under the effect of Lorentz forces.

In this context, it represents a good numerical strategy to substantially reduce the computa-
tional complexity of the Maxwell-Vlasov system while still keeping an accurate kinetic description
of the physics at play.

The PIC method, extensively used in this work, is presented hereafter with more details.

2.1.2 Particle-In-Cell method

The Particle-In-Cell (PIC) method [Hockney and Eastwood, 1988; Birdsall and Langdon, 2004]
is the most frequently used approach to study numerically the plasma dynamics at the kinetic
level. It assumes that the distribution function of each species is given by the superposition of
several elements called macro-particles. Each macro-particle regroups physical particles close to
each other in phase space fig. 2.1 (b). Thus, the distribution function of each species s can be
written as a sum of N elementary functions assigned to each macro-particle p of this species.

fs(x,p, t) =

Ns
∑

p=1

fp(x,p, t) (2.1)

where Ns is the total number of macro-particles of the species s in the domain.
The specific functional form of each macro-particle describes the distribution in the phase

space (x,p) of the actual particles. This is performed by assigning a weight wp and a shape
function S to the macro-particles.

1The Eulerian description is often described with an analogy of watching the flow of the river from the bridge
2In the Lagrangian description, we follow the behavior of the particle. It is compared to sitting in a boat

carried by the water
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2.1. Numerical resolution of Maxwell-Vlasov system

Figure 2.1: Kinetic plasma simulations: (a) Vlasov method, using an Eulerian grid in the phase
space. (b) PIC method, where numerical macro-particles describe the distribution function.

fp(x,p, t) = wpSx(x− xp)Sp(p− pp) (2.2)

In this equation, Sx and Sp are the shape functions of the macro-particles respectively in
space and momentum.

To simplify the calculation, the shape function is a fixed function verifying
∫

S = 1, which is
identical for all macro-particles of all species. The macro-particle is supposed to have a certain
finite spatial extent around its average position xp with a definite momentum pp at all times.
This means that Sp(p− pp) is chosen to be a Dirac impulse δp(p− pp) in order to ensure that
there is no deformation of Sx(x−xp). The latter is the support function centered at the position
of the macro-particle. It represents the spatial extent of one macro-particle. This choice has the
fundamental advantage that if all particles within the element of phase space described by one
computational particle have the same speed, they remain close to each other in phase space
during the subsequent evolution. Since each macro-particle usually stands for a large number
of physical particles of the same species, its spatial shape function shows a non-Dirac shape
function.

In PIC simulation, the plasma involves displacements of charges that modify the electric
and magnetic fields discretized on a spatial grid and calculated by solving Maxwell’s equations.
Meanwhile, particles are moving freely in space and their contributions to the local charge and
current densities are calculated on the neighboring grid nodes. Therefore, interpolations between
particle variables (xp,pp) and grid variables (E,B, ρ,J) are required. Because the shape factor
has a bounded support that spans few grid cells, its contribution is zero for most of the cells and
only the grid cells that are in the immediate neighborhood of the macro-particles contribute to
the interpolation.

The simplest method consists in depositing the particle current to the Nearest Grid Point
(NGP method). Yet, when a particle travels through the grid, its contribution suddenly shifts
from one grid point to its neighbor, provoking a statistical fluctuation both in the charge and the
current densities. This introduces, in its turn, a fluctuation in electromagnetic fields and thus
in the force acting on the particles and results in numerical noise. Even though this noise can
be smoothed by increasing the number of particles, it is not sufficient since the noise scales only
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as the inverse of the square root of the number of particles. Hence, the NGP method is seldom
used. Instead, it is substituted with higher-order shape functions that involve one or more grid
cells of the immediate neighborhood of the particles contributing to the interpolation.

Choice of particle shape functions

The canonical expressions for the shape functions are the so called b-splines through which the
particle contribution is assigned to several neighbors [Lapenta, 2015]. The b-spline functions
are a series of consecutively higher-order functions obtained from each other by convolution.
The first b-spline is the flat-top function corresponding to the NGP method, also known as the
zero-order weighting. Below, we present its expression for the 1D case for simplicity reasons.

b0(ξ) =

{

1 if |ξ| < 1/2
0 otherwise

for NGP (2.3)

The subsequent b-splines bl are obtained by successive integration via the following generating
formula:

bl(ξ) =

∫ ∞

−∞
b0(ξ − ξ′)bl−1(ξ − ξ′) (2.4)

The Cloud-In-Cell (CIC) method, also known as the first-order area weighting, corresponds
to l = 1 and involves non-zero contribution to two neighbors which allows for an accuracy
improvement at the cost of increasing the number of arithmetic operations per macro-particle
for each time step. The Triangular-Shaped density Cloud (TSC) method further improves the
accuracy of interpolation of field quantities to particles. It involves the contribution of three
grid-points and corresponds to the third b-spline l = 2, implying even a higher computational
cost than the CIC method.

b1(ξ) =

{

1− |ξ| if |ξ| < 1
0 otherwise

for CIC (2.5)

b2(ξ) =







3
4 − ξ2 if |ξ| < 1/2
1
2

(

3
2 − |ξ|

)2
if 1/2 < |ξ| < 3/2

0 otherwise

for TSC (2.6)

Based on the b-splines, the spatial shape function of PIC methods is chosen as:

Sx(x− xp) = bl(
x− xp

∆x
) (2.7)

where ∆x is the cell size.
The choice of the interpolation method is a trade-off between numerical noise and computa-

tional cost. An interpolation involving many neighbors (such as TSC) typically reduces the noise,
but requires of course more operations. The three commonly used shape functions corresponding
to the three first b-splines are depicted in fig. 2.2.

2.2 Overview of the Particle-In-Cell algorithm

2.2.1 Particle dynamics

The macro-particles can be seen as collisionless solid bodies driven by electromagnetic forces.
For each macro-particle p, (xp(t),pp(t)) follow a well determined Vlasov characteristic line in
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Figure 2.2: Particle shape functions in the x-direction, in units of grid cells. a) is the b-spline of
order 0 corresponding to the Nearest Grid Point method. b) is the b-spline of order 1 correspond-
ing to the Cloud-In-Cell method. c) is the b-spline of order 2 corresponding to the convolution
of the Triangular-Shaped density Cloud method.

the phase space, specified by eq. (1.42). Macro-particles have a finite size in space due to their
shape functions. Therefore, E and B are averaged over the spatial extent of the macro-particle.

We note each macro-particle with an index p, its mass with mp, charge with qp
3, position

with xp and momentum with pp = vp

√

m2
p + p2

p/c
2. The Lorentz force acting on the particles

is computed from the electric and magnetic fields evaluated at the particle position by :

F p = qp(Ē(xp) + vp × B̄p(xp)) (2.8)

where Ē and B̄ are the averages of the electromagnetic fields E and B over the macro-particle
spatial extent.

The evolution of the particle dynamics is described by the following equations:

dxp

dt
= vp =

pp
√

m2
p + p2

p/c
2

dpp

dt
= qp[ Ē(xp) + vp × B̄(xp) ] (2.9)

where Ē =

∫

Sx(x
′ − xp)E(x′) dx′ B̄ =

∫

Sx(x
′ − xp)B(x′) dx′ (2.10)

The evolution of the fields on the grid is tightly coupled with the motion of the charged
macro-particles through this grid. This coupling requires some kind of weighting procedure
between the macro-particles and the grid to build the charge and current densities on the grid,
and for interpolating forces that are found on the grid back to the particles.

Since the particles are weighted to the grid points, their charge is effectively a charge smoothed
over the grid cell, hence the name of the method. The charge density ρ and current density J

evaluated at the grid are:

ρ =
∑

s

qs

∫

fs dp J =
∑

s

qs

∫

pp
√

1 + p2
p

fs dp (2.11)

3All the real particles represented by a given macro-particle have the same mass and charge
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More precisely and taking into account the definition of fs eq. (2.2), ρ and J are expressed
as the following

ρ =
∑

s

qs
∑

p

wp Sx(x− xp) J =
∑

s

qs
∑

p

wp vpSx(x− xp) (2.12)

After initializing the plasma macro-particles and initial fields in the simulation domain, the
fields are interpolated to macro-particles whose positions and momenta are updated under the
effect of Lorentz force modifying as a consequence the charge densities and currents. Those charge
and currents are projected onto the simulation grid nodes then used to update the electromagnetic
fields over one time step on the simulation domain.

2.2.2 Yee method

Conversely to macro-particles which move freely across the grid and are therefore only discretized
in time, fields and densities have to be discretized in both space and time.

In 3D cartesian coordinates, Maxwell’s equations read:
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1
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∂By
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− ∂Bx

∂y
− µ0Jz

∂Bz

∂t
= −∂Ey

∂x
+

Ex

∂y
(2.13)

Thanks to its simplicity, the Yee method [Yee, 1966] also referred to as the Finite-Difference
Time-Domain (FDTD) method, is the most popular technique to solve Maxwell’s equations by
introducing a numerical spatial grid. The time-dependent Maxwell’s equations are discretized
using central-difference approximations to the space and time partial derivatives.

Spatial discretization: The spatial numerical grid for field discretization used in this method
is known as the Yee lattice. This space grid defines two spatially staggered meshes (i.e shifted
by a half-cell) along each axis, usually referred to as primal and dual grids, where the electric
and magnetic fields E andB , the currents J and the charge densities ρ are discretized.

One can distinguish the standard Finite-Difference scheme from the Non-Standard finite-
difference (NSFD) schemes where both use the Yee lattice [Yee, 1966], but the computational
stencil to discretize Maxwell’s equations is altered. In fact, in NSFD schemes such as Cole-
Karkkainen [Gjonaj et al., 2006], Cowan [Cowan et al., 2013] and Lehe [Lehe et al., 2013a], the
fields are still defined at the same position as in the Yee lattice, but the discretization of the
space derivatives in the Maxwell-Faraday equation is modified. However, the NSFD solvers are
not presented in this manuscript and the study case is limited to standard finite differences when
the Finite Difference Time Domain solver is used.

The Yee lattice is captured in fig. 2.3 along with the field notations which will be used in
section 2.2.3.

Time discretization: The Maxwell equations are also discretized in time using a centered
scheme, where the electromagnetic fields E and B are staggered by a half time step: E is
defined at integer time steps n∆t and B is defined at half-integer time steps (n+ 1/2)∆t.
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Field Position in space and time Notation
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Figure 2.3: Schematic representation of fields staggering on the Yee lattice in 3D: i,j,k are integers
corresponding to the primal grid (Black) and i+ 1

2 , j +
1
2 , k + 1

2 are half-integers corresponding
to the dual grid (red). The table shows at which position and time each component of the fields
is defined where ∆x, ∆y, ∆z are the spatial steps of the grid.

In the FDTD method, the Maxwell’s equations are solved on the numerical grid with a
second-order accurate explicit solver. This second- order convergence is ensured by centering the
differentiation both in time and in space without increasing the computational cost significantly
provided that both the fields and the charge and current densities are evaluated at specific times,
and positions that allow for a spatio-temporal leap-frog integration of Maxwell’s equations.

The coupling with the macro-particles via the source term J has to be dealt with. We deduce
from the equations (2.13) that current density and the magnetic field should be calculated at the
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same time step which is half time steps (n+ 1/2)∆t. From the continuity equation,

∂ρ(x, t)

∂t
= −∇J(x, t) (2.14)

it is deduced that the charge density should be evaluated at the same time as the electric
field n∆t.

Even though macro-particles are free to move across the grid and thus their momenta/positions
are not discretized spatially, they are discretized in time. Their discretization relies on temporal
staggering between position and momentum, in order to enable leap-frog integrations of macro-
particles dynamics as well.

2.2.3 The PIC cycle

After introducing the basics of the PIC method, we present here in details the different steps
involved in this process and their ordering in time starting from a given configuration.

Let us assume that at a given time step n∆t, the following quantities Bn−1/2, En and
Bn+1/2 as well as xn

p and p
n−1/2
p corresponding to the Yee lattice in fig. 2.3 are known. One

single update of these quantities over one time step is known as a PIC cycle or PIC loop,
illustrated in fig. 2.4. This section describes the operations that allow us to obtain the unknown
quantities En+1, Bn+3/2, xn+1

p and p
n+1/2
p at the next iteration (n + 1)∆t from the previous

known quantities.

Interpolation

To solve the macro-particles dynamics, the evaluation of Lorentz force on their positions is
required. Hence, the knowledge of Ē(xp) and B̄(xp) defined by eq. (2.10) on the grid is also
needed. For this, the electromagnetic fields initially defined on the mesh are interpolated on the
macro-particles positions employing shape functions. Therefore, eq. (2.10) is discretized on the
Yee grid with respect to the staggering of E and B in time and space:
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A straightforward solution to determine the interpolation factors Pi′,j′,k′ is by integrating the
shape function Sx(x− xp) between two grid-points over a length given by the cell size

Pi′,j′,k′(x
n
p ) ≡

∫ (i′+ 1

2
)∆x

(i′− 1

2
)∆x

dx

∫ (j′+ 1

2
)∆y

(j′− 1

2
)∆y

dy

∫ (k′+ 1

2
)∆z

(k′− 1

2
)∆z
dz S(x− xn

p ) (2.17)
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where Pi′,j′,k′(x
n
p ) = Pi′(x

n
p )Pj′(y

n
p )Pk′(z

n
p ) and

∑

i′,j′,k′

Pi′,j′,k′(x
n
p ) = 1 (2.18)

i′,j′,k′ can be integers or half-integers. Equations (2.15) and (2.16) are the discretized version
of eq. (2.10) and can be derived from it by considering that the fields E and B are piecewise
constant in between the grid points.

Since the shape factors have a bounded support that cover few grid cells as shown in fig. 2.2,
the sums in eq. (2.15) and eq. (2.16) over i, j, k are restricted only to the few immediate neigh-
boring cells of the macro-particles which contribute to the interpolation. They depend on the
order of the interpolation according to the choice of the shape factors [Hockney and Eastwood,
1988].

To use the leap-frog algorithm for the equations of motion, one needs to know the value of
B̄ at the integer time n∆t in eq. (2.16), whereas B is known at half-integer times on the grid.
For this reason, we use the average in time value of Bn = (Bn−1/2 +Bn+1/2)/2.

Particle pusher

Once the fields Ē
n and B̄

n are determined according to the previous step, the discretized equa-
tions of motion eq. (2.19) are used to obtain (pn+1/2

p ,xn+1
p ) from (pn−1/2

p ,xn
p ).

p
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p − p
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p
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[

Ē
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√
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√
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(

p
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p + p
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p

2mpc

)2

(2.19)
At first glance, eq. (2.19) may seem to imply that this scheme is implicit. However, the

dependence on p
n+1/2
p is linear and p

n+1/2
p can be found analytically in terms of pn−1/2

p . There
are several equivalent numerical approaches to do so. The most commonly employed method
in PIC codes is the well-known Boris pusher [Boris, 1970]. It combines speed and accuracy to

update the macro-particles momenta p
n−1/2
p and positions xn

p through a leap-frog integration.
It shows that this integration can be performed explicitly by splitting the Lorentz force and
separating the electric and magnetic force as follows:

p−
p = pn−1/2

p + qp
∆t

2
Ē

n (2.20)

p+
p − p−

p

∆t
=

qp
2γn

(

p+
p − p−

p

)

× B̄
n (2.21)

pn+1/2
p = p+

p + qp
∆t

2
Ē

n (2.22)

This scheme can be summarized in the following three steps:

1. First, half of the electric field contribution is added to calculate p−
p from p

n−1/2
p according

to eq. (2.20) to perform a half-step acceleration by the electric field.

2. p+
p is calculated from eq. (2.21) by performing a full rotation to p−

p due to the magnetic
field.
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Figure 2.4: Sketch of the PIC cycle steps in a 2D Yee grid (x, y): Starting from the initial
fields, charge and current density deposited on the grid at iteration n. The successive four steps
are executed at each iteration: (i) Maxwell’s equations are solved to update the electric and
magnetic fields. (ii) Field values are gathered from the mesh to each particle position using
interpolation (iii) Particles are advanced using equations of motion (particle push) knowing the
values of the electromagnetic fields at their position to determine the position and momentum
at iteration n+ 1. (iv) Current/charge contribution of each particle on the grid is deposited on
the neighboring grid points.

3. Finally, pn+1/2
p is obtained by adding the remaining half of the electric field to p+

p using
eq. (2.22).

Once p
n+1/2
p is known, xn+1

p can be directly calculated from xn
p , through the following dis-

cretized equation:
xn+1
p − xn

p

∆t
=

p
n+1/2
p

√

m2
p + (p

n+1/2
p )2/c2

(2.23)

The Boris pusher intrinsically ensures that the kinetic energy of the particle remains constant
when no electric field is present (i.e. when E = 0 and B 6= 0). However, an issue occurs
with Boris pusher if we apply a constant non-zero E and B in such a way that their mutual
contributions cancel the Lorentz force E + v ×B = 0. For instance, in the relativistic regime,
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when particles travel near the speed of light with Lorentz factor close to 1 and the force from
their own magnetic field compensates the electric field repulsion i.e E + v ×B = 0, the particle
velocity should remain unchanged as long as the electric field cancels the magnetic rotation.
Nevertheless, if we suppose pn+1/2 = pn−1/2 in Boris scheme eq. (2.19) the system has a solution
only if E = B = 0. Consequently, this results in particles undergoing a spurious force. In this
context, another leap-frog pusher has been proposed by Vay [Vay, 2008a], in order to mitigate
this effect when the electric and magnetic fields compensate. It reads
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A comparison between the two pushers can be found in [Lobet, 2015].

Projection

In order to solve Maxwell’s equations and after updating the particles positions and momenta,
each particle contribution to the current and charge density has to be known on the grid, at time
(n + 1/2)∆t and (n + 1)∆t respectively through eq. (2.11). Numerically, retrieving the charge
density from the macro-particles distribution consists in averaging ρ over each grid cell:
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where the projection factor Si,j,k = Pi,j,k is again given by eq. (2.17). Depending on the

spatial extension of shape functions, each macro-particles inducts a charge density on an arbitrary
number of grid points. Note that the shape functions used for both the fields interpolation
eq. (2.15) and eq. (2.16) and the current and charge deposition need to be the same to avoid an
asymmetry that will introduce unphysical self-exerted fields [Innocenti et al., 2016].

In principle, the same computational method described to compute ρn+1 can be used to com-
pute Jn+1/2. However, such an expression would not guarantee that the discretized continuity
equation eq. (2.26) is verified and in this case, the scheme is not charge conserving, leading to
error accumulation during the interaction process.
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For this reason, several solutions have been proposed to ensure a better charge conservation
with the Yee solver among which we mention Boris correction [Boris, 1970] in which the electric
field E is corrected by adding an electrostatic term at every time step after solving the Ampere
equation. Marder has introduced a "pseudo-current" F [Marder, 1993] in the Maxwell-Ampere
equation to correct the error buildup. However, they are not the most efficient way due to
their high computational cost. For this reason, Jn+1/2 is instead commonly obtained using a
modified version of the current deposition, known as the Esirkepov current deposition algorithm
[Esirkepov, 2001]. It is the generalization of the method developed by Villasenor and Buneman
[Villasenor and Buneman, 1992]. In Villasenor and Buneman, only the first and second order
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of B-spline particle shape factor are used whereas in the Esirkepov method, it is extended to
particle shape factor of an arbitrary order assuming that the particle trajectory over one time-step
is linear. Esirkepov algorithm intrinsically satisfies the discretized continuity equation eq. (2.26),
considering second order spatial and temporal derivative operators and hence ensures the charge
conservation.

Maxwell solver

In the FDTD scheme, En+1 and Bn+3/2 are determined from respectively En and Bn+1/2 know-
ing Jn+1/2 on the grid nodes and using a finite difference scheme to discretize Maxwell-Ampere
and Maxwell-Faraday equations in both time and space using a low order stencil according to Yee
grid and a leap frog integration previously described in section 2.2.2. The discretized equations
read:
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The numerical operators Dx, Dy, Dz are defined (for any field F ) by

(DxF )i′,j′,k′ =
Fi′+ 1

2
,j′,k′ − Fi′− 1

2
,j′,k′

∆x
(2.33)

(DyF )i′,j′,k′ =
Fi′,j′+ 1

2
,k′ − Fi′,j′− 1

2
,k′

∆y
(2.34)

(DzF )i′,j′,k′ =
Fi′,j′,k′+ 1

2

− Fi′,j′,k′− 1

2

∆z
(2.35)

where i′, j′ and k′ can be integers or half-integers. When replacing n by n + 1, eqs. (2.30)
to (2.32) can be used to obtain Bn+3/2 from Bn+1/2 and En+1.

By staggering the electric and magnetic fields both spatially and temporally as defined in the
Yee lattice, all the numerical derivatives are time-centered and space-centered, and therefore they
are second-order accurate i.e the numerical error induced by the spatial and temporal derivatives
over a single time step is of order two in both time and space.

Notice that when updating the electromagnetic fields, only two of Maxwell’s equations are
used: Maxwell Fraday eq. (1.1) and Maxwell Ampere eq. (1.2). Using the FDTD scheme with
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Yee discretization on the grid and provided that the numerical divergence of B is initially verified
to be zero, the discretized Maxwell Thomson corresponding to eq. (1.4) is automatically satisfied
throughout the simulation.
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One can apply the operator ∇· to the Faraday equation eq. (1.1) and use the Gauss equation
eq. (1.3) to obtain the continuity equation eq. (2.14). The opposite is true as well: if the
charge density always satisfies the continuity equation, then the discretized Gauss law is satisfied
automatically during the evolution of the system, if it was initially satisfied.

(DxE
n
x )i,j,k + (DyE

n
y )i,j,k + (DzE

n
z )i,j,k −

ρni,j,k
ǫ0

= 0

Consequently, using a charge conserving algorithm for the current deposition such as Esirke-
pov algorithm along FDTD scheme as mentioned previously in section 2.2.3, guarantees that
the Maxwell-Gauss equation is verified at each time step, provided that the initial electric field
verifies it. When other algorithms are used to calculate Jn+1/2, additional corrections (known
as Poisson correctors) have to be applied to E in order to ensure eq. (1.3).

The FDTD scheme is the most common implementation for Maxwell solver in PIC codes
because it is a "local" algorithm (provided that no Poisson correction is done) i.e. at each time
step information is exchanged between neighbouring grid cells only and no global information
exchange is necessary. Therefore, it is very scalable and well-suited to be parallelized at ar-
bitrary scale on distributed memory architectures. In the next section, the features of FDTD
parallelization in Smilei are presented.

2.3 The PIC code Smilei

Turning the prevailing promising technology of plasma based accelerators into an evolved scien-
tific tool depends tightly on the advent of high-performance, high-fidelity simulation tools. These
tools will harness the power of future exascale supercomputers for the exploration of outstanding
questions in the physics of plasma based acceleration. In this context, efforts were put together
to meet the growing needs in terms of accurate and scalable simulations by developing the PIC
code Smilei.

Smilei is a collaborative open-source project, developed by both physicists and High Per-
formance Computing (HPC) experts and written based on object-oriented programming in
C++. It is designed for high performances on massively parallel computers thanks to hybrid
MPI/OpenMP parallelization, dynamic load balancing and SIMD operations. It also offers a
user-friendly Python interface for inputs and post-processing besides a whole set of run-time
diagnostics based on HDF5.

Smilei is a multi-purpose Particle-In-Cell code providing the scientific community in plasma
physics with a wide variety of simulation-related applications ranging from relativistic laser-
plasma interaction to astrophysics owing to a large choice of additional physics modules such as:
ionization, binary collisions and QED processes ...

A detailed account of the code’s structures, capabilities, parallelization strategy and perfor-
mances can be found in [Derouillat et al., 2018]. In this section, the focus will be mainly on HPC
features of the code.
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2.3.1 Parallelization strategy of the PIC algorithm with the FDTD scheme

The number of cores available on massively parallel hybrid supercomputers relying on both
shared and distributed memory has skyrocketed. As high-performance computing (HPC) systems
are evolving towards the exascale, software development has to meet the emerging needs of
parallelism in order not to be lagged by the technologies evolution. This can be achieved by
implementing an efficient parallelization strategy that allows for conserving data locality and
minimizing load imbalance. In this section, first the overall parallelization strategy chosen for
Smilei is presented, followed by the descriptions of some of its features.

Standard domain decomposition

In this section, we present the overall parallelization strategy chosen for Smilei within the FDTD
discretization scheme for the fields.

Figure 2.5: Domain decomposition and parallelization strategy in the PIC algorithm. The simu-
lation domain is divided in subdomains, each of whom is juxtaposed with ghost cells. Each MPI
task handles the computations associated to a unique subdomain with its ghost cells. Macro-
particles deposit current and charge in the whole combo subdomain+ghost cells. Then contri-
butions to densities and currents within ghost-cells are summed to the overlapping neighbouring
subdomains and Maxwell’s equations are solved. Updated values of the electromagnetic field
from neighbours are then communicated to update the field quantities of the local ghost cells.
Macro-particles are pushed after fields interpolation. If their new positions is in the ghost cells,
they are sent to the neighboring corresponding subdomain(figure adapted from [Kallala, 2020]).

The FDTD scheme is a relatively simple numerical approach to implement Maxwell’s solver.
Besides, it is straightforward to parallelize at arbitrary scale on distributed memory architectures
since the electric/magnetic field values on each node are only correlated with values located on
the adjacent nodes. Therefore, the computational domain can be simply divided into several
subdomains by employing a standard domain decomposition technique illustrated in fig. 2.5 and
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where each subdomain can execute independently. Each subdomain is handled by an independant
Message Passing Interface (MPI) process. There is no correlation between the grid points in the
subdomain and other subdomains except over a small region of few cells called ghost-region
where neighboring subdomains overlap. At each time step, the data from the ghost region is
used to advance electromagnetic fields near the subdomains borders. Reciprocally, data from
neighboring subdomains intervenes to update the electromagnetic quantities inside the ghost
regions of adjacent subdomains.

The same principle is also applied to the computations pertaining to the macro-particles since
no intra-particles communications are required because particles only interact with fields and are
independent from each other. However, particles are volatile objects traveling throughout the en-
tire domain. That is why, macro-particles are exchanged between neighboring subdomains when
they cross the boundaries. Note that the number of ghost-cells depends on the differentiation
order in the FDTD scheme used but also on the shape function used for the particles: extended
shape functions with larger support implies that macro-particles laying near subdomains borders
are handled differently when it comes to the computation of their contributions in current/charge
densities to the next subdomain.

This standard parallelization strategy based on pure MPI communication between distinct
nodes of the distributed-memory architecture is implemented in many PIC softwares. However, it
limits the scalability of the code and a better performance can be achieved by using a second layer
of parallelization in the shared memory level with Open Multi-Processing (openMP) interface to
harmonize the computational load within each node with a reduced programming complexity.

A hybrid MPI+Open MP parallelization

In Smilei, each MPI region (the grid portion pertaining to one MPI task and where communica-
tion between two portions is handled by MPI library) is divided in many sub-subdomains called
"patches". Each MPI process handles many small patches with the same content as the global
subdomain that regroups those patches: computations related to particles and fields belonging
to that portion of the grid are performed at the patch level before being merged with synchro-
nization on the MPI region level. Patches being independent, the work load associated to each
patch is distributed among different threads belonging to each MPI task using the shared mem-
ory parallelization API OpenMP which offers more local parallelism within the MPI region. As
a result, this hybrid MPI + OpenMP implementation of a patch-based decomposition illustrated
in fig. 2.6 naturally extends the pure MPI one.

The computational load related to each patch may be different from one to another due to the
imbalance in the particles distribution between them. Hence, the use of the openMP dynamic
scheduler which shares the computational load between threads grants a local load balancing
and an optimized cache reuse at a reasonable cost as synchronization between patches belonging
to the same MPI process is cheaper than the one between patches belonging to different MPI
processes. This cost is minimized in Smilei by grouping patches in compact clusters that reduce
the interface between MPI sub-domains as much as possible using patches ordering along a
Hilbert space-filling curve fig. 2.7 divided into as many segments of similar length as there are
MPI processes.

Dynamic load balancing

Besides the local load balance that is done between threads thanks to the dynamic scheduler
of OpenMP at the node level, Smilei offers the chance to perfom a dynamic load balancing
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MPI 1

MPI 2MPI 4

MPI 3

Figure 2.6: The simulation box is divided into sub-domains. Each one of them is handled by an
MPI process and subdivided in smaller domains called "patches". Each patch being independent,
they can be easily treated in parallel by the threads owned by the MPI process.

between MPI tasks by exchanging patches from two neighbour MPI regions along the Hilbert
space-filling curve. An overloaded MPI process sends patches to its neighbours along the Hilbert
curve. Inversely, an underloaded process will receive patches from its neighbours. Thus, its
segment shortens or lengthens depending whether he sends or receives patches. The number of
OpenMP threads is restricted to the number of physical cores accessible on the shared memory
system.

The best performances are obtained when a single MPI process is affected to each processor
and when all cores of the processor are managed by the OpenMP scheduler. Hence, the best
configuration of the load balancing via the OpenMP dynamic scheduler strictly depends on the
size (in number of cores) of the processors composing the nodes.

The patch size defines the balance grain: the smaller the patches the smoother the balance.
Yet, the patch size minimization is limited by the number of ghost cells used which are dictated,
as mentioned before, by the order of Maxwell’s equations discretization scheme, and by the
shape function of the macro-particles: the number of cells in a patch should be greater than the
number of ghost cells. Typically, with a standard second-order Yee scheme, 4 ghost cells per
dimension (2 on each side) are used. Therefore, the patch in this case should include at least 6
cells per dimension. This condition also insures that ghost cells from non-neighbour patches do
not overlap, which is necessary for a synchronization limited to neighbor patches only.

SIMD

Particles are volatile objects traveling through the grid from one domain to another which triggers
randomness in the memory access whenever they interact with the grid throughout the different
operations pertaining to particles. This randomness affects negatively the code performances
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Figure 2.7: Example of 8 × 4patches domain decomposition, shared between 5 MPI processes.
MPI domains are delimited by different colors. Patches are organized along a one dimensional
Hilbert space-filling curve (red line). MPI processes can exchange their patches to balance their
load along the space-filling curve.

especially that in most cases, PIC simulations are becoming increasingly memory bound as
memory performance is not developing as fast as the computation capabilities. In order to
enhance the performance, this randomness should thereby be mitigated for an optimized memory
usage.

Figure 2.8: Scalar mode: one instruction produces one result versus SIMD processing: one
instruction produces multiple results.

A first method to avoid this randomness is the use of fine domain decomposition so that the
size of data laying within each patch can fit into the fastest cache memory layer to enable an
efficient cache reuse and optimized computations. This method enables a kind of sorting since
particles of each patch all access the same grid region which is limited by the patch extension.
An other approach to mitigate this randomness is to perform particles sorting by organizing the
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particles in memory according to their location. Once particles are sorted, not only the cache use
is improved but also computations within each patch are significantly accelerated by allowing the
use of vectorized implementations of different PIC steps via Single Instructions Multiple Data
instruction set, which are very efficient at speeding up memory-bound operations yet restricted to
very regular memory access patterns [Vincenti et al., 2017]. Nevertheless, the vectorized operators
are faster than the scalar ones only when the number of particles per cell is larger than the vector
register length. On top of that, the sorting procedure implies a significant computation overhead
because of potentially heavy data movements. Therefore, using vectorized operators combined
with sorting becomes more beneficial than their scalar counterparts only when the number of
Particle-Per-Cell (PPC) is above the inversion point where sorting can actually overcome its cost,
which depends on the architecture.

Since, the number of PPC in many application of PIC such as laser-plasma interaction may
drastically vary between patches and in time for the same patch, this shortcoming is addressed in
Smilei by suggesting an adaptive vectorization mode. It can locally (each patch, each species)
and dynamically (same patch in time) switch between the scalar and vectorized operators at run
time, choosing the most efficient one in the region of interest.

More details about the implementation strategy of the adaptive SIMD optimizations with
fine-grain particle sorting in Smilei as well as its impact on the performances can be found in
[Beck et al., 2019].

62



Chapter 3

Azimuthal Fourier decomposition in

cylindrical geomerty

Particle-In-Cell (PIC) algorithms are extensively used in several areas of nonlinear laser-plasma
interactions including astrophysics [Hughes and Bregman, 2006], plasma based accelerators [Qiang
et al., 2000], and advanced radiation sources [Thaury and Quéré, 2010]. A PIC code self-
consistently calculates the positions and momenta of a large number of particles and the fields
they generate. Although full PIC codes are powerful tools which capture a wide range of physical
phenomena, they also require large computational resources. This problem becomes particularly
acute with regard to laser–plasma interactions because of the large disparity between the scales
involved in this process: resolving the high-frequency laser field requires the use of fine space
and time resolution. This task becomes very challenging in three-dimensions where it requires
hundreds of nodes on super computers.

Despite the extensive work on maximizing the code parallelism and efficiency on today’s
supercomputer, high-resolution simulations in 3D can only be run on costly large-scale computer
facilities which are not accessible to everyone. In order to reduce the computational cost of such
simulations, we need to resort to reduced numerical models which simplify the problem while
retaining a high fidelity.

While the two dimensional simulations in Cartesian coordinates can be very useful for carrying
out parametric scans and to have physical insight, they can not be relied on as a reference.
There are some physics problems in which three dimensional effects lead to both qualitative
or quantitative differences. Unlike 2D simulations in Cartesian geometry, the ones carried in
cylindrical geometry preserve the representation of the geometric scaling factors for the wake
excitation in the nonlinear blowout regime, when there is cylindrical symmetry. In Particle
WakeField Acceleration (PWFA)1, 2D cylindrical simulations can be used successfully except in
modeling effects of hosing or asymmetric transverse envelope of both the driving and trailing
particle beams. Unfortunately, it is not the case for LWFA. The reason is that even with an
azimuthally symmetric laser spot, the high frequency in the laser plays in important role and
its polarization breaks this symmetry. Therefore, a linearly or any linear combination of linearly
polarized lasers: such as circularly or elliptically polarized laser with an azimuthally symmetric
transverse envelope is not azimuthally symmetric in cylindrical geometry [Davidson, 2016].

In 2009, an algorithm based on azimuthal Fourier decomposition of the electromagnetic fields
was proposed by [Lifschitz et al., 2009] and implemented in the PIC code Calder-Circ. It enables

1PWFA is a plasma-based particle accelerator where an intense, relativistic charged-particle bunch is the
wakefield driver with analogy to the laser in LWFA.
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an accurate modeling of close-to-cylindrical physical systems and captures physical effects that
are intrinsically 3D in laser propagation like self-focusing [Esarey et al., 2009]. Besides, it has a
similar computational load to that of a cylindrical code.

This geometry has been implemented with Finite Difference Time Domain (FDTD) dis-
cretization scheme for the Maxwell solver in Smilei and with Pseudo Spectral Analytical Time
Domain (PSATD) solver in PICSAR library as part of the work undertaken during my PhD.
The PSATD solver is then coupled with Smilei to benefit from its parallelization technique.

In this Chapter, first the theory and mathematical derivation of this reduced model is de-
scribed in section 3.1. The FDTD implementation of the algorithm in Yee grid is detailed in
section 3.2 while its PSATD implementation is detailed in section 3.3. The parallelization tech-
nique that enabled the coupling of PICSAR with Smilei is presented in section 3.4. Finally, the
advantages of the PSATD solver over its FDTD counter part are summarized in section 3.5.
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3.1. Theory and mathematical derivation of azimuthal Fourier field decomposition

3.1 Theory and mathematical derivation of azimuthal Fourier

field decomposition

In this algorithm the fields and currents are expanded into azimuthal modes resulting in a set
of fields and currents that only depend on r and z. They are then substituted into Maxwell’s
equations to generate a series of equations where each mode is evolving independently from the
others. However, the particles are still pushed in 3D Cartesian geometry.

We begin by detailing the mathematical derivation of the equations describing this method.
In this algorithm, the fields E,B,J, ρ in cylindrical coordinates (r, z, θ) are 2π-periodic and thus
can be decomposed in Fourier series in θ direction according to (3.1) and (3.3).

F (r, z, θ) =

∞
∑

m=−∞
F̂m(r, z)e−imθ with F̂m(r, z) =

1

2π

∫ 2π

0
dθ F (r, z, θ)eimθ (3.1)

where F denotes any of the cylindrical components Er,z,θ, Br,z,θ, Jr,z,θ or ρ and F̂m is the
associated Fourier components with m is the azimuthal mode index.

When taking into consideration the fact that all the physical fields F are real (F̄ = F ) and

that F̂−m =
¯̂
Fm where the bar denotes the complex conjugate, the above sum on both negative

and positive modes can be rewritten to include only positive ones. We therefore define the
quantities calculated in the code F̃m as:

F̃0 = F̂0 and F̃m = 2F̂m for m ≥ 1

Using the definition of F̃m, the field F can be written as the following:

F (r, z, θ) = ℜ
( ∞
∑

m=0

F̃m(r, z)e−imθ

)

(3.2)

= F̃0(r, z) +
∞
∑

m=1

ℜ
(

F̃m(r, z)
)

cos(mθ) + ℑ
(

F̃m(r, z)
)

sin(mθ) (3.3)

where ℜ is the real part and ℑ is the imaginary one. The fields modes F̃m are complex for
m ≥ 1 and real for m = 0, whereas the corresponding physical fields are real.

Because the algorithm is able to take into account modes m > 0 and not only fields that
are independent of θ (mode 0) in contrast with cylindrical codes, it is referred to as quasi-
3D algorithm [Davidson et al., 2014], or as quasi-cylindrical algorithm. For simplicity, quasi-
cylindrical is used in the following to refer to this algorithm.

At first glance, the method does not simplify the complexity of the problem since an infinity
of modes should be included to calculate the fields. However, in practice the Fourier series in
equations 3.1 and 3.3 is usually truncated up to very first modes in the case of low dependence
on θ. In fact, any linearly polarized laser or any linear combination of linearly polarized lasers
such as circularly or elliptically polarized lasers2 with a cylindrically-symmetric envelope can be
modeled exclusively by the mode m = 1.

2Circularly and elliptically polarized lasers can be obtained by combining two linearly polarized lasers with
equal or different amplitudes and phase and polarization offset by π/2
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For a cylindrically symmetric pulse (for example a Gaussian one) propagating in z and
polarized linearly along eα = cos(α)ex + sin(α)ey, the field component E can be transformed
to the cylindrical frame, depicted in fig. 3.1, according to:

E = E0(r, z)eα

= E0(r, z)[ cos(α)(cos(θ)er − sin(θ)eθ) + sin(α)(sin(θ)er + cos(θ)eθ) ]

= Re[ E0(r, z)e
iαe−iθ ]er + Re[ −iE0(r, z)e

iαe−iθ ]eθ

= Erer + Eθeθ (3.4)

Here the amplitude E0 does not depend on θ because the pulse envelope was assumed to be
cylindrically symmetric. By equating the fields in eq. (3.4) to the modes expansion in eq. (3.3),
one can identify the fields Er and Eθ of the laser as the first order term in Fourier expansion of
the electric field E. Hence, they are represented exclusively by the mode m = 1 and the same
stands for Br and Bθ.

Ẽr,1 = E0(r, z)e
iα B̃r,1 = iE0(r, z)e

iα

Ẽθ,1 = −iE0(r, z)e
iα B̃θ,1 = E0(r, z)e

iα (3.5)

Figure 3.1: Definition of the cylindrical frame.

Thus, any laser pulse with a symmetric envelope can be thoroughly described by the mode
m = 1. On the other hand, the pondoromotive force that drives the wakefield in LWFA has
the same symmetry as the laser envelope. Therefore, for an axis-symmetric laser envelope, the
wakefield and his associated fields do not depend on θ and can be mostly represented by the
mode m = 0.

As a consequence, the infinite sum of modes can be truncated at the first two modes since
only the modes m = 0 and m = 1 are necessary to model laser wakefield acceleration with
linearly polarized lasers with axis-symmetric envelope such as Gaussian ones.
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3.2. FDTD scheme

3.1.1 Maxwell’s equations in azimuthal geometry

Maxwell’s equations in cylindrical geometry are given by:

∂Br

∂t
= −1

r

∂Ez

∂θ
+

∂Eθ

∂z

1

c2
∂Er

∂t
= −1

r
Bz −

∂Bθ

∂z
− µ0Jr

∂Bθ

∂t
= −∂Er

∂z
+

∂Ez

∂r

1

c2
∂Eθ

∂t
=

∂Br

∂z
− ∂Bz

∂r
− µ0Jθ

∂Bz

∂t
= −1

r

∂(rEθ)

∂r
+

1

r

∂Er

∂θ

1

c2
∂Ez

∂t
=

1

r

∂(rBθ)

∂r
+

1

r

∂Br

∂θ
− µ0Jz (3.6)

Once the electromagnetic fields, E and B are properly defined, their Fourier expansion
presented in (3.3) is replaced in Maxwell’s equations (3.6).

∂
(

F̃m(r, z)e−imθ
)

∂θ
= −imF̃m(r, z)e−imθ (3.7)

Owing to the linearity of Maxwell’s equations and using the relation (3.7), it generates a set
of equations (3.8) where each mode m evolves independently in vacuum and different modes can
be coupled in the presence of the plasma through the source term J .

∂B̃r,m

∂t
=

im

r
Ẽz,m +

∂Ẽθ,m

∂z

1

c2
∂Ẽr,m

∂t
= − im

r
B̃z,m − ∂B̃θ,m

∂z
− µ0J̃r,m

∂B̃θ,m

∂t
= −∂Ẽr,m

∂z
+

∂Ẽz,m

∂r

1

c2
∂Ẽθ,m

∂t
=

∂B̃r,m

∂z
− ∂B̃z,m

∂r
− µ0J̃θ,m

∂B̃z,m

∂t
= −1

r

∂(rẼθ,m)

∂r
− im

r
Ẽr,m

1

c2
∂Ẽz,m

∂t
=

1

r

∂(rB̃θ,m)

∂r
+

im

r
B̃r,m − µ0J̃z,m (3.8)

When the plasma response is linear, each mode for the current is driven by the same mode for
the fields. The electromagnetic modes coupling occurs due to the nonlinearities in the plasma
excitation. But even with a high level of nonlinearity, the symmetry of the wakefield is still
approximately conserved since nonlinearities are independent of the polarization direction and
depend mainly on the field modules and hence remain mainly axis-symmetric. Therefore, this
coupling is assumed to take place mainly between mode 0 and mode 1. However, the maximal
number of modes used mmax is kept as a free parameter in the implementation of the method,
in order to allow for less-symmetric configurations.

The major advantage of using this method is that even with the inclusion of few higher
Fourier modes, if modes up to mmax are retained, the cost of such a simulation would be roughly
equivalent to performing (mmax + 1) bi-dimensional calculations.

3.2 FDTD scheme

In this section, first the finite difference discretization of Maxwell’s equations modes eq. (3.8)
on the Yee grid is presented. Then, specificities related to its numerical implementation like the
associated complications near the r = 0 axis and the suitable boundary conditions are addressed.
The adaptation of the different steps in the PIC loop to this method are presented. Finally, the
limits of using FDTD scheme are discussed.
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3.2.1 Discretized Maxwell equations in the Yee grid

Just like in cylindrical coordinates, each field mode in eq. (3.8) is discretized on a two-dimensional
Yee grid (r,z) with respect to the fields duality according to the layout in fig. 3.2. We define the
numerical differentiation operators (DrF ) and (DzF ) :

(DrF )j′,k′ =
Fj′+ 1

2
,k′ − Fj′− 1

2
,k′

∆r

(DzF )j′,k′ =
Fj′,k′+ 1

2

− Fj′,k′− 1

2

∆z

where j′ and k′ can be integers or half-integer. Using these notations, the discretized Maxwell
modes in cylindrical coordinates are written:

B̃r
n+ 1

2

j,k+ 1

2
,m

− B̃r
n− 1

2

j,k+ 1

2
,m
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Ẽz

n
j,k+ 1

2
,m + (DzẼ
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2
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Ẽz
n+1
j,k+ 1

2
,m − Ẽz
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(3.9)

Note that the above expressions are no more valid on axis r = 0 (ie. j = 0) due to the arising
singularities in some terms from the division by r. Therefore, a special boundary condition
should be applied for these quantities based on their symmetry properties [Lifschitz et al., 2009;
Davidson, 2016] before using them in the equations of dynamics.

3.2.2 On axis condition

Due to singularities at r = 0 in the cylindrical coordinates, a special treatment for the fields on
axis is required. In this section, specific on-axis conditions are derived for the FDTD solver of the
quasi-cylindrical algorithm in a Yee lattice. The conditions on axis, implemented in Smilei are
based on the original paper [Lifschitz et al., 2009]. However, only the conditions for the m = 0
mode of the longitudinal electric field and the m = 1 mode of the radial magnetic field are given
in the paper. The current implementation has improved those specific boundary conditions and
extended them to all the fields and to greater modes. It is based on contributions from Davoine
in Calder-Circ and the Smilei team.
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Field Position in space and time Notation
r z t
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Ẽz,m j∆r (k + 1
2)∆z n∆t Ẽz
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2)∆t B̃z
n+ 1

2

j+ 1

2
,k,m

ρ̃m j∆r k∆z n∆t ρ̃nj,k,m

J̃r,m (j + 1
2)∆r k∆z (n+ 1

2)∆t J̃r
n+ 1

2

j+ 1

2
,k,m

J̃θ,m j∆r k∆z (n+ 1
2)∆t J̃θ

n+ 1

2

j,k,m

J̃z,m j∆r (k + 1
2)∆z (n+ 1

2)∆t J̃z
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2

j,k+ 1

2
,m

Figure 3.2: Schematic representation of fields modes staggering on the Yee lattice where j,k are
integers corresponding to the primal grid (blue) and j + 1

2 , k+
1
2 are half-integers corresponding

to the dual grid (red). The table shows at which positions and time each component of the fields
modes is defined where ∆r, ∆z are the spatial grid cell sizes.

The primality/duality of the fields plays an important role in the definition of this condition,
therefore an illustrative scheme of the ghost cells representation with the primal and dual points
next to the axis is shown in fig. 3.3 in the case of Nghost = 2 . In Smilei, ghost cells in the radial
direction (light blue) are located "below" the axis and the number of ghost cells Nghost equals
the number of the primal points (blue) before reaching the physical domain (light red) separated
by the actual geometric axis r = 0. If ∆r is a radial cell size, the dual points (red) on the radial
axis are shifted by −∆r/2 from primal ones.
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Chapter 3. Azimuthal Fourier decomposition in cylindrical geomerty

Figure 3.3: Scheme of the electric and magnetic fields representation in the ghost region (light
blue) and physical domain (light red) for a few primal (blue) and dual (red) nodes next to the
geometrical axis r = 0 on Yee-grid.

Transverse fields on axis

The first basic principle is that a mode 0 field defined on axis can only be longitudinal otherwise
it would be ill defined. From this we can already state that Ẽr,m=0, Ẽθ,m=0, B̃r,m=0 and B̃θ,m=0

are zero on axis. This condition is straightforward for primal fields in r which are defined exactly
on axis, hence their values are simply set to zero. For dual fields in r the value is set using a
linear interpolation between nearest grid points F (r = 0) = (Fj=− 1

2

+ Fj= 1

2

)/2 = 0. Therefore,
the discretized transverse fields on axis for the mode m = 0 are given by:

Ẽθj=0,k,m=0 =0 Ẽrj=− 1

2
,k,m=0 =− Ẽrj= 1

2
,k,m=0

B̃rj=0,k,m=0 =0 B̃θj=− 1

2
,k,m=0 =− B̃θj= 1

2
,k,m=0 (3.10)

The transverse electric field can be described by the two components Er and Eθ

E⊥ = Ey +Ez = (Er cos θ − Eθ sin θ)ey + (Er sin θ + Eθ cos θ)ez (3.11)
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3.2. FDTD scheme

It can not depend on θ otherwise it would be ill defined, i.e

∂E⊥
∂θ

(r = 0) = 0 ∀θ (3.12)

Thus

cos θ

(

∂Er

∂θ
− Eθ

)

+ sin θ

(

∂Eθ

∂θ
+ Er

)

= 0 for r = 0 ∀θ (3.13)

This leads to the two following conditions:

∂Er

∂θ
− Eθ =0 ∀θ (3.14)

∂Eθ

∂θ
+ Er =0 ∀θ (3.15)

Using the definition of the azimuthal decomposition of a given field F in θ (3.2), we can write
the previous equations for each mode m as follows:

Ẽr,m =
iẼθ,m

m
Ẽr,m = imẼθ,m (3.16)

Since we have already established earlier that the mode m = 0 must cancel on axis, we are
concerned only about m > 0. The system of equations 3.16 can have a non-zero solution only
for m = 1. We therefore conclude that all modes must cancel on axis except for m = 1. The
same principle applies also for the magnetic field.

Ẽθj=0,k,m>1 =0 Ẽrj=− 1

2
,k,m>1 =− Ẽrj= 1

2
,k,m>1 (3.17)

B̃rj=0,k,m>1 =0 B̃θj=− 1

2
,k,m>1 =− B̃θj= 1

2
,k,m>1 (3.18)

To calculate the transverse electric fields on axis for m = 1, we use Maxwell-Gauss equation
(1.3):

∇ · Ẽm=1 =
ρ̃m=1

ǫ0
(3.19)

The charge density being a scalar field, it takes zero for a value on axis. Since the longitudinal
fields are zero on axis for all modes m > 0, the previous equation can be rewritten as:

Ẽr,m=1 − imẼθ,m=1

r
+

∂Ẽr,m=1

∂r
= 0 (3.20)

The second equation in (3.16) already establishes that the first term is zero. It is only
necessary to cancel the second term. In order to do so, we build an uncentered finite difference
scheme of the second order. Simple Taylor developments for any quantity u give:

u(r +
dr

2
) = u(r) +

dr

2
u′(r) +

dr2

8
u′′(r) +O(dr3)

and

u(r +
3dr

2
) = u(r) +

3dr

2
u′(r) +

9dr2

8
u′′(r) +O(dr3)
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By combining them, we obtain the scheme we are looking for:

u′(r) =
9u(r + dr

2 )− u(r + 3dr
2 )− 8u(r)

3dr

We can therefore write:

∂Ẽrm=1

∂r
(r = 0) =

9Ẽrm=1(r = ∆r
2 )− Ẽrm=1(r = 3∆r

2 )− 8Ẽrm=1(r = 0)

3∆r
(3.21)

Since (∂Ẽrm=1/∂r)(r = 0) = 0, the previous equation results in :

Ẽrm=1(r = 0) =
1

8

(

9Ẽrm=1(r =
∆r

2
)− Ẽrm=1(r =

3∆r

2
)

)

(3.22)

And from eq. (3.16) this turns into:

Ẽθm=1(r = 0) = − i

8

(

9Ẽrm=1(r =
∆r

2
)− Ẽrm=1(r =

3∆r

2
)

)

(3.23)

giving the corresponding boundary condition for Ẽθm=1:

Ẽθj=0,k,m=1 = − i

8

(

9Ẽrj= 1

2
,k,m=1 − Ẽrj= 3

2
,k,m=1

)

(3.24)

Once Ẽθm=1 is defined on axis, we need to pick Ẽrm=1 so that the condition in eq. (3.16) is
matched. With a linear interpolation we obtain:

Ẽrj=− 1

2
,k,m=1 = 2iẼθj=0,k,m=1 − Ẽrj= 1

2
,k,m=1 (3.25)

Although the same principle also applies to the magnetic field, a different treatment should
be accorded due to the difference in the duality. The expression of B̃rm in (3.6) has a Ẽzm/r
term which makes it undefined on axis. This term can be evaluated for the mode m = 1 using
the fact that Ẽzm=1 vanishes at the axis.

lim
r→0

Ẽzm=1(r)

r
= lim

r→0

Ẽzm=1(r)− Ẽzm=1(r = 0)

r
(3.26)

Since Ẽzm=1(r = 0) = 0 and by definition of a derivative, we have:

lim
r→0

Ẽzm=1(r)− Ẽzm=1(r = 0)

r
=

∂Ẽzm=1

∂r
(r = 0) (3.27)

This derivative can be evaluated by a simple finite difference scheme. We get the following
result:

lim
r→0

Ẽzm=1(r)

r
=

Ẽzm=1(∆r)

∆r
(3.28)

Plugging this result in the standard FDTD scheme for B̃rm=1, we get the on-axis boundary
condition:

B̃r
n+1
j=0,k,m=1 = B̃r

n
j=0,k,m=1 +∆t

(

i

∆r
Ẽz

n
j=1,k,m=1 +

Ẽθ
n
j=0,k+1,m=1 − Ẽθ

n
j=0,k,m=1

∆z

)

(3.29)

Exactly as for the electric field, we need to have Bm=1
r = iBm=1

θ . With a similar interpolation,
we obtain the boundary condition on axis for B̃θm=1:

B̃θj=− 1

2
,k,m=1 = −2iB̃rj=0,k,m=1 − B̃θj= 1

2
,k,m=1 (3.30)
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Longitudinal fields on axis

Longitudinal fields on axis can only be of mode 0, since they do not depend on θ. Therefore, the
discretized longitudinal fields on axis for modes m > 0 are given by:

Ẽzj=0,k,m>0 = 0 B̃zj=− 1

2
,k,m>0 = −B̃zj= 1

2
,k,m>0 (3.31)

In order to get an evaluation of Ẽzm=0 on axis, one can use the same approach as for B̃rm=1.
Since Ẽθm=0 is zero on axis, the following relation can be derived using similar arguments as
eq. (3.28):

lim
r→0

1

r

∂rB̃θm=0

∂r
=

4B̃θm=0(∆r/2)

∆r
(3.32)

Introducing this result in the discretized Maxwell’s equation for Ẽzm=0, we get:

Ẽz
n+1
j=0,k,m=0 = Ẽz

n
j=0,k,m=0 +∆t

(

4

∆r
B̃θ

n+ 1

2

k= 1

2
,k,m=0

− J̃z
n+ 1

2

j=− 1

2
,k,m=0

)

(3.33)

To calculate B̃zm=0 which is independant of θ, we assume it is differentiable at r = 0 then
its derivative along r is zero on axis (derivative of a pair function is zero at r = 0 ). From this,
we get:

B̃zj=− 1

2
,k,m=0 = B̃zj= 1

2
,k,m=0 (3.34)

3.2.3 Boundary conditions

In this part, the specific longitudinal and transverse boundary conditions implemented in Smilei

for the FDTD quasi-cylindrical scheme are presented.

Silver-Muller

Silver-Müller is a boundary condition (BC) that has a double function. On the one hand, it
allows the injection of the laser at the entry of the simulation box. On the other hand, it
enables the absorption of the reflected waves by determining the magnetic field components in
the perpendicular direction to the boundary wall. In our case, Silver-Müller BCs are implemented
in the left Zmin and right Zmax boundaries in the propagation direction z.

Any electromagnetic wave can be represented as a sum of linearly polarized plane waves,
therefore we consider a monochromatic plane wave propagating in the z-direction E = E0e

i(k·z−ωt)

and B = B0e
i(k·z−ωt) where k is the wave vector and k · z = kzz.

The fields are considered as a sum of forward and backward moving plane waves with a given
frequency and wave number, therefore E = E+ +E− and B = B+ +B−. We start by writing
the Maxwell-Ampère equation in vacuum:

∂tE = ∇×B where ∇ = (0, 0, ∂z)
T

We then obtain for each mode m:







∂tẼzm = 0

∂tẼrm = −∂zB̃θm

∂Ẽθm = ∂zB̃rm

Using the fact that ∂t ≡ −iωt , ∂z ≡ ikz and that |k|/ω = kz/ω = 1 in vacuum, the transverse
fields corresponding to the last two equations are rewritten in the following way:
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Chapter 3. Azimuthal Fourier decomposition in cylindrical geomerty

Ẽrm =B̃θ
+
m − B̃θ

−
m

Ẽθm =− B̃r
+
m + B̃r

−
m

Left boundary Zmin:

At the left boundary, the known fields are the incoming ones B̃θ
+
m and B̃r

+
m. Hence, we can

write:
Ẽrm = 2B̃θ

+
m − B̃θm (3.35)

Ẽθm = −2B̃r
+
m + B̃rm (3.36)

We start by discretizing the first equation (3.35) while centering all the fields in the first
equation (3.35) on the same point r = (j + 1

2)∆r and time t = (n+ 1
2)∆t

1

2

(

Ẽr
n+1
j+ 1

2
,k,m + Ẽr

n
j+ 1

2
,k,m

)

= 2B̃θ
+,n+ 1

2

j+ 1

2
,k− 1

2
,m

− 1

2

(

B̃θ
n+ 1

2

j+ 1

2
,j− 1

2
,m

+ B̃θ
n+ 1

2

j+ 1

2
,k+ 1

2
,m

)

(3.37)

The discretized Maxwell-Ampère equations for Ẽrm and Ẽθm read:

Ẽr
n+1
j+ 1

2
,k,m − Ẽr

n
j+ 1

2
,k,m = −c2∆t

∆z

(

B̃θ
n+ 1

2

j+ 1

2
,k+ 1

2
,m

− B̃θ
n+ 1

2

j+ 1

2
,k− 1

2
,m

)

− im

(j + 1
2)∆r

B̃z
n+ 1

2

j+ 1

2
,k,m

(3.38)

Ẽθ
n+1
j,k,m − Ẽθ

n
j,k,m =

c2∆t

∆z

(

B̃r
n+ 1

2

j,k+ 1

2
,m

− B̃r
n+ 1

2

j,k− 1

2
,m

)

− c2∆t

∆r

(

B̃z
n+ 1

2

j+ 1

2
,k,m

− B̃z
n+ 1

2

j− 1

2
,k,m

)

(3.39)

Using the given quantities by eq. (3.38) and eq. (3.37), we obtain the unknown quantity

B̃θ
n+ 1

2

j+ 1

2
,k− 1

2
,m

for the left boundary given by:

(

1 +
c2∆t

∆z

)

B̃θ
n+ 1

2

j+ 1

2
,k− 1

2
,m

=−
(

1− c2∆t

∆z

)

B̃θ
n+ 1

2

j+ 1

2
,k+ 1

2
,m

+ 4B̃θ
+,n+ 1

2

j+ 1

2
,k− 1

2
,m

+
im

(j + 1
2)∆r

B̃z
n+ 1

2

j+ 1

2
,k,m

− 2Ẽr
n
j+ 1

2
,k,m (3.40)

The discretized version of eq. (3.36) after centering all fields at the same position r = j∆r
and time t = (n+ 1

2)∆t reads:

1

2

(

Ẽθ
n+1
j,k,m + Ẽθ

n
j,k,m

)

= −2B̃r
+,n+ 1

2

j,k− 1

2
,m

+
1

2

(

B̃r
n+ 1

2

j,k− 1

2
,m

+ B̃r
n+ 1

2

j,k+ 1

2
,m

)

(3.41)

Using eq. (3.39) and eq. (3.41), the unknown field B̃r
n+ 1

2

j,k− 1

2
,m

for the left boundary can be

determined according to:

(

1 +
c2∆t

∆z

)

B̃r
n+ 1

2

j,k− 1

2
,m

=−
(

1− c2∆t

∆z

)

B̃r
n+ 1

2

j,k+ 1

2
,m

+ 4B̃r
+,n+ 1

2

j,k− 1

2
,m

+ 2Ẽθ
n
j,k,m − c2∆t

∆r

(

B̃z
n+ 1

2

j+ 1

2
,k,m

− B̃z
n+ 1

2

j− 1

2
,k,m

)

(3.42)
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Right boundary Zmax:

In the case of right boundary, the known fields are the incoming ones B̃θ
−
m and B̃r

−
m and

therefore

Ẽrm =B̃θm − 2B̃θ
−
m (3.43)

Ẽθm =− B̃rm + 2B̃r
−
m (3.44)

Applying the same previous procedure, one can determine the fields B̃θ
n+ 1

2

j+ 1

2
,k+ 1

2
,m

and B̃r
n+ 1

2

j,k+ 1

2
,m

at the right boundary which are given by the following equations:

(

1 +
c2∆t

∆z

)

B̃θ
n+ 1

2

j+ 1

2
,k+ 1

2
,m

=−
(

1− ∆t

∆z

)

B̃θ
n+ 1

2

j+ 1

2
,k− 1

2
,m

+ B̃θ
−,n+ 1

2

j+ 1

2
,k+ 1

2
,m

+ 2Ẽr
n
j+ 1

2
,k,m +

im

(j + 1
2)∆r

B̃z
n+ 1

2

j+ 1

2
,k,m

(3.45)

(

1 +
c2∆t

∆z

)

B̃r
n+ 1

2

j,k+ 1

2
,m

=−
(

1− c2∆t

∆z

)

B̃r
n+ 1

2

j,k− 1

2
,m

+ 4B̃r
−,n+ 1

2

j,k+ 1

2
,m

− 2Ẽθ
n
j,k,m − c2∆t

∆r

(

B̃z
n+ 1

2

j+ 1

2
,k,m

− B̃z
n+ 1

2

j− 1

2
,k,m

)

(3.46)

Buneman

Buneman’s absorbing boundary condition [Buneman, 1993] is a good alternative to reflecting or
open boundary conditions. In the context of this PhD, this boundary condition is implemented
and adapted to the architecture of Smilei. We start by the general case in a Cartesian 3D
frame (O, e1, e2, e3), where an incoming electromagnetic wave is propagating towards the plane
S = (e2, e3) with the normal vector n = e1 as illustrated in fig. 3.4.

The projection of the outgoing wave vector k in the frame (O, e1, e2, e3) in terms of the
angles θs and ϕs represented in fig. 3.4, reads:

k · e1 = k cos θ cosϕ

k · e2 = k sin θ

k · e3 = k cos θ sinϕ (3.47)

Based on the previous representation of the wave vector in spherical coordinates (3.47) and
using the notations Bn = (B · n) · n = Be1 and BS = (Be2,Be3), the absorption condition
at the boundaries can be found from Maxwell’s equations. It is given by the general formula
[Buneman, 1993]

(∂t + ∂n)BS = cB∇SBn − cE∇S ×En (3.48)

where ∂t is the time derivative, ∂n is the normal spatial derivative, cB = cos θs cosϕs

1+cos θs cosϕs
and

cE = 1− cB.
The application of this condition to the upper border Rmax in the case of azimuthal geom-

etry is equivalent to apply an absorbing boundary condition in Ymin, Ymax, Xmin, Xmax in the

75



Chapter 3. Azimuthal Fourier decomposition in cylindrical geomerty

Figure 3.4: Representation of the absorbed wave propagating toward the border S in the Carte-
sian frame (O, e1, e2, e3).

Cartesian geometry. It results in two constraints on B̃θm and B̃zm fields. Thus, eq. (3.48) in the
azimuthal cylindrical coordinates (r, z, θ) reads:

(∂t + ∂r)B̃θ,m = − imcB
r

B̃r,m − cE∂zẼr,m − cB
r
B̃θ,m

(∂t + ∂r)B̃z,m = cB∂zB̃r,m − imcE
r

Ẽr,m − cE
r
Ẽθ,m

Discretizing the above equations on the grid with respect to the duality of the fields in time
and space and after centering all the quantities on the position r = j∆r and on the time t = n∆t,
results in:

B̃θ
n+ 1

2

j+ 1

2
,k+ 1

2
,m

=
1

αθ

(

βθB̃θ
n+ 1

2

j− 1

2
,k+ 1

2
,m

+ γθB̃θ
n− 1

2

j+ 1

2
,k+ 1

2
,m

+ κθB̃θ
n− 1

2

j− 1

2
,k+ 1

2
,m

− imcB
j∆r

(

B̃r
n+ 1

2

j,k+ 1

2
,m

+ B̃r
n− 1

2

j,k+ 1

2
,m

)

− cE
∆z

(

Ẽr
n
j+ 1

2
,k+1,m + Ẽr

n
j− 1

2
,k+1,m − Ẽr

n
j+ 1

2
,k,m − Ẽr

n
j− 1

2
,k

))

(3.49)

B̃z
n+ 1

2

j+ 1

2
,k,m

=B̃z
n− 1

2

j− 1

2
,k,m

+ αz

(

B̃z
n− 1

2

j+ 1

2
,k,m

− B̃z
n+ 1

2

j− 1

2
,k,m

)

+
cBβz
∆z

(

B̃r
n+ 1

2

j,k+ 1

2
,m

+ B̃r
n− 1

2

j,k+ 1

2
,m

− B̃r
n+ 1

2

j,k− 1

2
,m

− B̃r
n− 1

2

j,k− 1

2
,m

)

− imcEβz
j∆r

(

Ẽr
n
j+ 1

2
,k,m + Ẽr

n
j− 1

2
,k,m

)

− 2
cEβz
j∆r

Ẽθ
n
j,k,m (3.50)

where

αθ =
1

∆t
+

1

∆r
+

cB
2∆r

βθ = − 1

∆t
+

1

∆r
− cB

2∆r
γθ =

1

∆t
− 1

∆r
− cB

2∆r
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κθ =
1

∆t
+

1

∆r
− cB

2∆r
αz =

∆r −∆t

∆r +∆t
βz =

∆r∆t

∆r +∆t

3.2.4 Esirkepov algorithm for charge conserving current deposition

In the original paper suggesting the quasi-cylindrical algorithm [Lifschitz et al., 2009], the current
deposition did not conserve the charge therefore a Marder’s correction[Marder, 1987] was used to
maintain the validity of Gauss’s law. This correction is obtained by solving the Poisson equation
where a field Ec is added to the uncorrected electric field E so that ∇ · (E + Ec) = ρ. The
correction term is defined as Ec = −∇Φc with ∇2Φc = ∇ ·E − ρ.

In order to maintain the accuracy of Gauss’s law without resorting to a correction of the
electric field at each time step, an implementation of a charge conserving current deposition in
the quasi-cylindrical algorithm was proposed in [Davidson et al., 2014]. It is the adaptation of
Esirkepov charge conserving current deposition scheme to the azimuthal Fourier field decompo-
sition algorithm for an arbitrary number of modes. This method, also implemented in Smilei is
detailed in this paragraph.

Esirkepov is a charge conserving current deposition method valid for arbitrary particle shape
functions. In this method, when a particle moves from (xi, yi) to (xf , yf ) during one time step, its
current contribution is averaged over its path by decomposing its motion into segments orthogonal
to cell faces. If the particle crosses the cell boundary, then the particle current contribution in
each cell is calculated by splitting its motion path into segments lying entirely inside each cell
then the same principle is applied to these segments.

Even though the fields modes are solved on a 2D cylindrical grid (r, z) in the quasi-cylindrical
algorithm, the particles are still freely moving in a 3D Cartesian frame. Therefore, particles
depositing their charges and currents into a rectangular cell of the 2D (r, z) grid located between
rg and rg + ∆r, are actually lying in a 3D volume defined by the revolution of this rectangle
around the z axis (fig. 3.5). Since this 3D volume is proportional to rg, the weight of macro-
particles with a fixed charge is scaled with a factor 1/rg in order to correctly estimate their
charge density and currents contributions.
In cylindrical geometry, particles have the shape function S = Sr(r − rp(t))Sθ(θ − θp(t))Sz(z −
zp(t)). The corresponding electrons charge density reads:

ρ =
∑

p

qpwpSr(r − rp(t))Sθ(θ − θp(t))Sz(z − zp(t)) (3.51)

where qp is the charge of the particle p and wp is its associated weight. For simplicity, we suppose
qp = 1 for the rest of this derivation.

In the quasi-cylindrical geometry, charge and currents are only defined on the (r, z) grid and
there is no grid in θ, therefore it is not straightforward to define Jθ using the standard method of
Esirkepov for current deposition . In order to determine the expression of Jθ, the current density
vector J is decomposed into two components Jθ and J⊥ where ⊥ refers to the vector in r − z
plane. Hence, the continuity equation can be written

∂

∂t
ρ+∇⊥ · J⊥ +

1

r

∂

∂θ
Jθ = 0 (3.52)

The shape function Sθ is expanded in azimuthal modes by proceeding with a Fourier decom-
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Figure 3.5: Representation of the cylindrical and Cartesian frames in quasi-cylindrical algorithm:
the macroparticles (red dots) are defined by their position and momenta in 3D Cartesian coordi-
nates. Particles depositing their charges and currents in the portion of the 2D (r, z) grid located
between rg and rg +∆r (dashed brown lines), are actually lying in a 3D volume defined by the
revolution of this rectangle around the z axis.

position in θ:

Sθ(θ − θp) =

+∞
∑

m=−∞
Sθ,m(θp)e

−imθ (3.53)

where

Sθ,m =
1

2π

∫ 2π

0
Sθ(θ

′ − θp)e
imθdθ′

We consider that particles have a punctual shape function in θ, Sθ = δ(θ − θp) then Sθ,m =
1
2πe

imθp . For each particle, the charge density modes ρ̂m and the transverse current density Ĵ⊥,m

for m > 0 can be obtained from ρ̂0 and Ĵ⊥,0 (Sθ,0 = 1). The total charge density ρ and current
density J are calculated by summing over the modes:

ρ =

+∞
∑

m=−∞
ρ̂me−imθ where ρ̂m = ρ̂0Sθ,m (3.54)

J⊥ =
+∞
∑

m=−∞
Ĵ⊥,me−imθ where Ĵ⊥,m = Ĵ⊥,0Sθ,m (3.55)

Jθ =

+∞
∑

m=−∞
Ĵθ,me−imθ (3.56)

We are looking for solutions of J that satisfy the continuity equation:
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∂

∂t
ρn+

1

2 =
∑

p

wp

∆t

[

Sr(r − rn+1
p )Sθ(θ − θn+1

p )Sz(z − zn+1
p )− Sr(r − rnp )Sθ(θ − θnp )Sz(z − znp )

]

=−∇ · Jn+ 1

2 (3.57)

Substituting eq. (3.54), eq. (3.55) and eq. (3.56) in the Yee-FDTD version of eq. (3.52) and
using Sθ expansion in azimuthal modes gives:

+∞
∑

m=−∞
e−imθ

(

∑

p

{wp

∆t

[

Sr(r − rn+1
p )Sθ,m(θn+1

p )Sz(z − zn+1
p )− Sr(r − rnp )Sθ,m(θnp )Sz(z − znp )

]

+∇⊥ · Ĵn+ 1

2

⊥,m − im

rg
Ĵ
n+ 1

2

θ,m

})

= 0 (3.58)

Substituting the expression of Ĵ⊥,m into eq. (3.58) gives for each m and p in the sum

wp

∆t

[

Sr(r − rn+1
p )Sθ,m(θn+1

p )Sz(z − zn+1
p )− Sr(r − rnp )Sθ,m(θnp )Sz(z − znp )

]

+ Sθ,m(θ
n+ 1

2
p )∇⊥ · Ĵn+ 1

2

⊥,0 − im

rg
Ĵ
n+ 1

2

θ,m = 0 (3.59)

Using a charge conserving definition for Ĵ⊥,0 similar to the current deposition in 2D Cartesian
geometry guarantees that ∂

∂t ρ̂0 +∇⊥ · Ĵ⊥,0 = 0 and thus leads to an expression for Ĵθ,m:

Ĵ
n+ 1

2

θ,m = −i
wprg
m∆t

(

Sr(rg − rn+1
p )Sz(zg − zn+1

p )

[

Sθ,m(θn+1
p )− Sθ,m(θ

n+ 1

2
p )

]

−Sr(rg − rnp )Sz(zg − znp )

[

Sθ,m(θnp )− Sθ,m(θ
n+ 1

2
p )

])

(3.60)

Using the relation Sθ,m = 1
2πe

imθp and defining the following quantities θ̄p =
θn+1
p +θnp

2 and

∆θp =
θn+1
p −θnp

2 , we obtain the result for each particle,

Ĵ
n+ 1

2

θ,m = −i
wprg
m∆t

eimθ̄p

2π

(

Sr(rg − rn+1
p )Sz(zg − zn+1

p )
[

e−im∆θp − 1
]

−Sr(rg − rnp )Sz(zg − znp )
[

eim∆θp − 1
])

(3.61)

where the particle shapes in r and z are still general. The complex exponentials eimθ used in
the previous equations are evaluated by the the recurrence relation ei(m+1)θ = eiθ × eimθ where
eiθ = y+iz

r and e−iθ = y−iz
r .

3.2.5 Interpolation

Since, the interpolation step involves interactions with macro-particles that move freely in Carte-
sian 3D coordiantes while the fields modes are defined on 2D cylindrical grid (r, z), this step re-
quires a special treatment to take into account this specific representation just like in the charge
and current deposition.
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Therefore, the Fourier fields are summed over the azimuthal modes to obtain the real fields
besides summing over the grid points.

Ē
n
(xn

p ) = Re





mmax
∑

m=0

∑

j,k

e−imθp [ Pj+ 1

2
,k(rp, zp)Ẽr

n
j+ 1

2
,k,m er

+ Pj,k(rp, zp)Ẽθ
n
j,k,m eθ

+Pj,k+ 1

2

(rp, zp)Ẽz
n
j,k+ 1

2
,mez ]

)

(3.62)

B̄
n
(xn

p ) = Re





mmax
∑

m=0

∑

j,k

e−imθp [ Pj,k+ 1

2

(rp, zp)
1

2

(

B̃r
n+ 1

2

j+ 1

2
,k,m

+ B̃r
n− 1

2

j+ 1

2
,k,m

)

er

+ Pj+ 1

2
,k+ 1

2

(rp, zp)
1

2

(

B̃θ
n+ 1

2

j,k,m + B̃θ
n− 1

2

j,k,m

)

eθ

+Pj+ 1

2
,k(rp, zp)

1

2

(

B̃z
n+ 1

2

j,k+ 1

2
,m

+ B̃z
n− 1

2

j,k+ 1

2
,m

)

ez ]

)

(3.63)

where the general expression of Pi′,j′,k′ is determined by integrating the shape function S(x−
xp) around the grid-points and given by the same relation as in eq. (2.17). S(x−xp) is the same
as the one used for charge and current deposition with Sθ(θ − θp) = δ(θ − θp).

Once the fields are gathered onto the particles, the motion of the particles is integrated in
Cartesian coordinates using the usual discretized equations of motion eqs. (2.19) and (2.23)

3.2.6 Numerical dispersion relation and stability condition for FDTD

The discretization in FDTD scheme introduces numerical artifacts arising from the unphysical
behaviour of the electromagnetic field when propagated via this scheme. It is insightful to proceed
with a numerical dispersion analysis in order to study the accuracy and stability of the FDTD
solver used in the PIC simulation. To do so, plane monochromatic waves are injected into the
discretized wave propagation equation which combines Maxwell’s equations in vacuum (J = 0
and ρ = 0).

∆E =
1

c2
∂2E

∂t2
(3.64)

In cylindrical coordinates, the wave equation (3.64) leads to the following 3 equations:

(∆E)r = ∆Er −
2

r2
∂Eθ

∂θ
− Er

r2
=

1

r

∂

∂r

(

r
∂Er

∂r

)

+
1

r2
∂2Er

∂θ2
+

∂2Er

∂z2
− 2

r2
∂Eθ

∂θ
− Er

r2

(∆E)θ = ∆Eθ +
2

r2
∂Er

∂θ
− Eθ

r2
=

1

r

∂

∂r

(

r
∂Eθ

∂r

)

+
1

r2
∂2Eθ

∂θ2
+

∂2Eθ

∂z2
+

2

r2
∂Er

∂θ
− Eθ

r2

(∆E)z = ∆Ez =
1

r

∂

∂r

(

r
∂Ez

∂r

)

+
1

r2
∂2Ez

∂θ2
+

∂2Ez

∂z2
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By performing a Fourier modes expansion in the previous equations, we obtain:

(∆E)r,m =
1

r

∂

∂r

(

r
∂Er,m

∂r

)

− m2

r2
Er,m +

∂2Er,m

∂z2
+

2im

r2
Eθ,m − Er,m

r2

(∆E)θ,m =
1

r

∂

∂r

(

r
∂Eθ,m

∂r

)

− m2

r2
Eθ,m +

∂2Eθ,m

∂z2
− 2im

r2
Er,m − Eθ,m

r2

∆Ez,m =
1

r

∂

∂r

(

r
∂Ez,m

∂r

)

− m2

r2
Ez,m +

∂2Ez,m

∂z2

The dispersion relation for each mode can be readily obtained by injecting plane monochro-
matic waves modes propagating in the z direction of the form Em(r, z, t) = E0e

iωt−kzz in the dis-
cretized wave equation for each Fourier mode m. According to Gauss’s law in vacuum, k ·Em = 0
thus Ez,m = 0 and Er,m, Eθ,m ∝ eiωt−kzz with kz ∈ [−π/∆z, π/∆z] .

We define the following numerical differentiation operations

∂2Fm

∂z2
=

Fm(r, z +∆z, t)− 2Fm(r, z, t) + Fm(r, z −∆z, t)

∆z2
(3.65)

∂2Fm

∂t2
=

Fm(r, z, t+∆t)− 2Fm(r, z, t) + Fm(r, z, t−∆t)

∆t2
(3.66)

Using eq. (3.65) and eq. (3.66), the discretized wave equation for Er,m and Eθ,m components
read:

(

−m2

r2
− 4

∆z2
sin2(

kz∆z

2
)− 1

r2

)

Er,m +
2im

r2
Eθ,m = − 4

c2∆t2
sin2(

ω∆t

2
)Er,m (3.67)

(

−m2

r2
− 4

∆z2
sin2(

kz∆z

2
)− 1

r2

)

Eθ,m − 2im

r2
Er,m = − 4

c2∆t2
sin2(

ω∆t

2
)Eθ,m (3.68)

The above two relations can be written as a matrix multiplication by the vector (Er,m, Eθ,m)T .

(

α β
−β α

)(

Er,m

Eθ,m

)

= − 4

(c∆t)2
sin2(

ω∆t

2
)

(

Er,m

Eθ,m

)

(3.69)

where α = − (m2+1)
r2

− 4
∆z2

sin2(kz∆z
2 ) and β = 2im

r2

This formulation is of the from Av = λv where v is an eigenvector of A. It can be equivalently
written as (λI −A)v = 0. The vector v can be non zero, only if the matrix (λI − A) has a non
zero kernel. Thus this matrix is not invertible, and its determinant is zero. The eigenvalues of
A are the roots of the characteristic polynomial pA(λ) = det(λI −A).

pA(λ) =(λ− α)2 + β2

=

(

λ+
m2 + 1

r2
+

4

∆z2
sin2(

kz∆z

2
)

)2

−
(

2m

r2

)2

(3.70)

The solutions of the pA(λ) = 0 are:
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λ1 = −
(

m2 + 1

r2
+

4

∆z2
sin2(

kz∆z

2
)

)

−
(

2m

r2

)

λ2 = −
(

m2 + 1

r2
+

4

∆z2
sin2(

kz∆z

2
)

)

+

(

2m

r2

)

(3.71)
λ1 and λ2 are the eigenvalues of A. On the other hand, we have:

λ1 = − 4

(c∆t)2
sin2(

ω∆t

2
) or λ2 = − 4

(c∆t)2
sin2(

ω∆t

2
)

The numerical dispersion relation satisfied by the waves modes in the leap-frog scheme is
found for λ1. It relates the numerical wave vector kz, the wave frequency ω and the time and
space steps, ∆t and ∆z and it reads:

(

sin(
ω∆t

2
)

)2

=

(

c∆t

∆z
sin(

kz∆z

2
)

)2

+

(

(m+ 1)c∆t

2r

)2

(3.72)

A direct consequence of the numerical dispersion relation (3.72) is the existence of a stability
constraint that restricts the time step ∆t with an upper limit. In fact, due to the projection
of the particles momentum onto the grid, the source terms of Maxwell’s equations is subject to
noise. The artifact induced by the noise should propagate without any further amplification,
otherwise the time integration scheme is no longer stable. Therefore, ω should have a real value
for any values of the wavenumber, because complex roots entails an exponential growth of its
corresponding solution in time. For instance, at the Nyquist frequency kz = ±π/∆z eq. (3.72)
becomes:

(

sin(
ω∆t

2
)

)2

=

(

c∆t

∆z

)2

+

(

(m+ 1)c∆t

2r

)2

(3.73)

which requires that

(

c∆t

∆z

)2

+

(

(mmax + 1)c∆t

2r

)2

≤ 1 (3.74)

where mmax = Nm − 1 is the maximal non zero mode and Nm is the total number of modes.
To ensure the stability of the scheme, ∆t must satisfy the following condition:

∆t ≤ 1

c

√

1
1

∆z2
+ (mmax+1)2

4r2

(3.75)

This condition is known as the Courant-Friedrichs-Lewy (CFL) condition [Courant et al.,
1967]. In our case, the condition becomes more restrictive close to the axis when r = ∆r for
primal fields and r = ∆r/2 for dual ones. Consequently, the condition at its minimum reads

∆t ≤ 1

c

√

1
1

∆z2
+ (mmax+1)2

∆r2

(3.76)

However, this relation is only true for the specific case of plane waves that propagate purely
along the longitudinal z axis (kx = 0 and ky = 0).

Functions of the form E(r, z, t) = E0e
i(ωt−kxx−kyy−kz) are not eigenmodes of the propagation

equations in the general case of the quasi-cylindrical algorithm and the complete set of solutions
of the discretized equations of propagation has to be found numerically and not analytically.
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3.2. FDTD scheme

However, the above relation can give us a good insight about the role of the number of modes in
the CFL condition: the more modes we use, the smaller the time step ∆t should be. Accordingly,
the code is more performant when we use less number of modes.

3.2.7 limits of the FDTD

Another important consequence of the numerical dispersion relation (3.72) is the introduction
of a numerical vacuum phase velocity of the electromagnetic waves vsimφ that depends on the
discretization. In quasi-cylindrical geometry and under the previous assumption (kx = ky = 0)
the latter reads for each mode m

vsimφ,m =
ω

k
=

2

kz∆t
arcsin





√

[

c∆t

∆z
sin(

kz∆z

2
)

]2

+

[

(m+ 1)c∆t

2r

]2


 (3.77)

Thus in the simulations, the electromagnetic waves propagate with a phase velocity lower than
c in vacuum. Besides, the electromagnetic wave modes have different different phase velocities
depending on their mode vsimφ,m which gives rise to numerical artifacts that can in some cases
have a substantial impact on the simulation results especially for long propagation distances. To
reduce this impact, the following condition should be fulfilled ∆z ≪ ∆r/(m+ 1). In particular,
when vsimφ,m < c, relativistic particles may travel at v > vsimφ,m and generate a nonphysical radiation
known as numerical Cherenkov radiation.

Numerical Cherenkov radiation in LWFA simulations

Numerical Cherenkov radiation (NCR) is associated to the well-known Cherenkov effect. This
effect occurs when a relativistic charged particle travels with a velocity v > vφ through a medium
in which the phase velocity of light vφ is lower than c. This will lead to the emission of a
characteristic radiation, known as the Cherenkov emission [Jackson, 1998]. This effect can occur
in dielectric media, such as air or water, yet not in vacuum (vφ = c) nor in plasma (vφ > c).
In the case of LWFA, the relativistic accelerated bunch is either surrounded by the plasma
(linear regime) or by the vacuum (in the blow-out regime neglecting the impact of the ion
cavity on the light propagation). Therefore, the Cherenkov emission can not take place in
any configuration during LWFA. Nevertheless, in simulations with FDTD solvers, the unphysical
numerical Cherenkov effect can occur due to the numerical dispersion relation (vsimφ ≤ c). In this
case, accelerated particles traveling at a velocity larger or equal to the numerical phase velocity
emit radiations that stay in phase with the accelerated particles leading to a resonant numerical
instability that can impact the quality of the simulations [Boris and Lee, 1973; Godfrey, 1974].

In order to reduce the impact of the numerical Cherenkov effect and its related instabilities,
c− vsimφ should be reduced to its minimum which is reached when the time step is fixed almost
at its CFL limit. Besides, in most of the LWFA simulations the spatial step in the propagation
direction z is chosen to be much smaller than the ones in the transverse direction (∆z ≪ ∆r) in
order to resolve the laser wavelength λ0, thus the optimal time step should satisfy ∆t = ∆z/c−ǫ
with 0 < ǫ ≪ 1.

Impact of FDTD solver on the accuracy of LWFA simulations

The FDTD scheme has several advantages specially when it comes to the optimization of the
simulation cost. In fact, the differentiation operator in standard FDTD scheme is discretized
to the second order which means that the information on a grid node is only correlated to the
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juxtaposed ones. Thus, the number of ghost cells is usually restricted to two which reduces the
overlapping region between two domains. This allows an efficient parallelization based on a fine-
grain domain decomposition particularly in Smilei where there are two layers of parallelism:
each sub-domain is divided itself into smaller portions called "patches" (chapter 2). Besides,
most of the required calculations for the FDTD solver are basic operations over large tables
which motivates the use of Single Instruction Multiple Data (SIMD) capibility, known also as
vectorization.

Despite its scalability and cost efficiency, the FDTD method suffers from some limitations that
hinder its accuracy. In order to guarantee the stability of the second-order finite-difference solver
the choice of the time step ∆t is constrained with an upper limit fixed by the CFL condition.
The latter becomes more restrictive in the case of quasi-cylindrical algorithm, when many modes
are used. However, the most important limitation remains the NCR which was proven to cause
spurious unphysical emittance growth specially in the case of high charge density bunches. The
accuracy of the numerical simulation results is strongly affected by the instabilities originating
from the NCR that alters the particle dynamics and results in wrong estimation of the maximum
attained energy and angular divergence of the particles [Lehe et al., 2013a]. Therefore, several
methods have been proposed in order to alleviate this deficiency.

These methods include lowpass spectral filters to attenuate the waves caused by the NCR.
However, this method is not specifically selective to frequency bands related to NCR as a high
number of passes would inevitably damp some of the lower-frequency fields as well. In the case of
LWFA simulations, the low-frequency fields include for instance the laser pulse, and thus digital
filtering can alter the physics of interest at stake. A more physically accurate choice is the use
of modified computational stencils to approximate the curl operator in FDTD discretization of
Maxwell-Faraday equation [Vay et al., 2011; Cowan et al., 2013; Pukhov, 1999]. These extended
computational stencils allow to suppress NCR along the grid axes under some conditions by
increasing the numerical phase velocity in this direction. A comparison between these schemes
can be found in [Nuter et al., 2014]. However, they are still dispersive off the main axes. Besides,
it is hard to quantify how much these added corrections could impact the underlying physics.

3.3 Pseudo Spectral Analytical Time Domain scheme

A more sophisticated alternative to the finite difference based methods is the class of pseudo-
spectral time-domain (PSTD) solvers [Liu, 1997; Dawson, 1983] which represents the spatial
derivatives in the frequency domain. They are typically less prone to numerical artifacts. In par-
ticular, [I. Haber and Boris, 1973] presented a pseudo-spectral solver that integrates analytically
Maxwell’s equations over a finite time step, under the assumption of constant source (currents)
over that time step. It is therefore more robust than the PSTD scheme that still relies on finite
difference for temporal integration. This formulation, usually referred to as the Pseudo-Spectral
Analytical Time-Domain (PSATD) method offers various advantages over the FDTD scheme
which advances electromagnetic fields in the Yee lattice. This type of solvers provides a higher
level of numerical accuracy since the derivatives are correctly evaluated. Thereby, it correctly
models the dispersion of electromagnetic waves and mitigates the problem of NCR in simula-
tions of relativistic beams [Vay et al., 2013]. Besides, it is not subject to a CFL time step limit
in vacuum as long as the assumption of constant current source over that time step is verified.
Furthermore, pseudo-spectral methods allow the centering of all fields in time 3, eliminating stag-

3We note that the electric and magnetic field components can also be expressed at staggered times in the
context of PSATD solver.
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gering errors which lead to inexact cancellation of relativistic beams’ self electric and magnetic
components in the calculation of the Lorentz force E + v ∧B [Vay, 2008b].

Until recently, the pseudo-spectral solvers were exclusively implemented in Cartesian system
coordinates employing Fourier transforms which are incompatible with the radial coordinate in
cylindrical geometry. In [Lehe et al., 2016], a formalism that combines the speed of the quasi-
cylindrical algorithm with the accuracy of dispersion-free PSATD algorithms, is proposed.

These advantages motivated the implementation of this spectral quasi-cylindrical algorithm
in the open-source library PICSAR during my PhD. It is then coupled and adapted to the
parallelization startegy of the PIC code Smilei. Besides, it also opens up the way to other PIC
codes to benefit from this contribution.

The following section describes the concept behind this formalism and explains the derivation
and implementation of the algorithm in PICSAR library coupled with Smilei PIC code.

3.3.1 Spectral Cartesian representation

Before presenting the algorithm in the quasi-cylindrical geometry, the formulation of Maxwell’s
equations in 3D Cartesian Fourier space is reminded here.

The equations are obtained by employing Fourier transform:

Fu(k) =

∫ ∞

−∞
dx

∫ ∞

−∞
dy

∫ ∞

−∞
dzFu(r)e

−i(kxx+kyy+kzz) (3.78)

with

Fu(r) =
1

(2π)3

∫ ∞

−∞
dkx

∫ ∞

−∞
dky

∫ ∞

−∞
dkzFu(k)e

i(kxx+kyy+kzz) (3.79)

where F is any of the fields E,B or J , and u is either x, y or z. F represents the Fourier
components of F denoted by E for E, B for B and J for J .

Replacing the fields in Maxwell’s equations (2.13) by their Fourier representation eq. (3.78)
in the spectral space (kx, ky, kz) gives:

1

c2
∂Ex
∂t

= ikyBz − ikzBy − µ0Jx ∂tBx = −ikyEz + ikzEy (3.80)

1

c2
∂Ey
∂t

= ikzBx − ikxBz − µ0Jy ∂tBy = −ikzEx + ikxEz (3.81)

1

c2
∂Ez
∂t

= ikxBy − ikyBx − µ0Jz ∂tBz = −ikxEy + ikyEx (3.82)

These equations can then be analytically integrated in time and then advanced for an interval
of ∆t assuming constant source term over that interval. This analytical integration in time allows
to get rid of the temporal staggering between the electric and magnetic fields usually necessary
in other solvers.

The pseudo in PSATD algorithm refers to the use of an intermediate interpolation grid in
real space where the current deposition and field gathering steps are performed. Therefore, at
each time step of the PIC loop we make use of the Fourier transform (3.78) to solve Maxwell’s
equations in the spectral space then we proceed with the inverse Fourier transform (3.79) to
bring back the calculated fields to real space before interpolating them onto the particles.
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3.3.2 Spectral quasi-cylindrical representation

The Fourier transform is incompatible with Maxwell’s equations written in cylindrical coordi-
nates. In fact, if we apply the Fourier transform in eq. (3.78) to equations (3.6), the Fourier
modes do not decouple. For close to cylindrical geometry, a popular alternative that enables the
decoupling between r and θ in the spectral space is the Fourier-Hankel transform, also called
Fourrier-Bessel transform, because it makes use of Bessel functions denoted by Jm for the order
m. The transformed fields in the spectral space F̂z,m, F̂+,m and F̂−,m are related to the real
ones Fr, Fθ and Fz by the following relations:

F̂z,m(kz, k⊥) =

∫ ∞

−∞
dz

∫ ∞

−∞
rdr

∫ ∞

−∞
dθ × Fz(r)Jm(k⊥r)e

imθ−ikzz (3.83)

F̂+,m(kz, k⊥) =

∫ ∞

−∞
dz

∫ ∞

−∞
rdr

∫ ∞

−∞
dθ × Fr(r)− iFθ(r)

2
Jm+1(k⊥r)e

imθ−ikzz (3.84)

F̂−,m(kz, k⊥) =

∫ ∞

−∞
dz

∫ ∞

−∞
rdr

∫ ∞

−∞
dθ × Fr(r) + iFθ(r)

2
Jm−1(k⊥r)e

imθ−ikzz (3.85)

where F̂z,m , F̂+,m and F̂−,m represent the spectral components of F with F is either E,B
or J . The last-mentioned ones can be found by operating the inverse Fourier Bessel transform
using the following relations:

Fz(r) =
1

(2π)2

∞
∑

m=−∞

∫ ∞

−∞
dkz

∫ ∞

−∞
k⊥dk⊥ × F̂z,m(kz, k⊥)Jm(k⊥r)e

−imθ+ikzz (3.86)

Fr(r) =
1

(2π)2

∞
∑

m=−∞

∫ ∞

−∞
dkz

∫ ∞

−∞
k⊥dk⊥

× (F̂+,m(kz, k⊥)Jm+1(k⊥r) + F̂−,m(kz, k⊥)Jm−1(k⊥r))e
−imθ+ikzz (3.87)

Fθ(r) =
1

(2π)2

∞
∑

m=−∞

∫ ∞

−∞
dkz

∫ ∞

−∞
k⊥dk⊥

× i(F̂+,m(kz, k⊥)Jm+1(k⊥r)− F̂−,m(kz, k⊥)Jm−1(k⊥r))e
−imθ+ikzz (3.88)

Injecting eqs. (3.86) to (3.88) into Maxwell’s equations in cylindrical coordinates (3.6) leads to
modes decoupling and the equations in the spectral space (k⊥, kz) become:

1

c2
∂tÊ+,m = −i

k⊥
2
B̂z,m + kzB̂+,m − µ0Ĵ+,m ∂tB̂+,m = i

k⊥
2
Êz,m − kzÊ+,m (3.89)

1

c2
∂tÊ−,m = −i

k⊥
2
B̂z,m − kzB̂−,m − µ0Ĵ−,m ∂tB̂−,m = i

k⊥
2
Êz,m + kzÊ−,m (3.90)
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1

c2
∂tÊz,m = i

k⊥
2
B̂+,m + ik⊥B̂−,m − µ0Ĵz,m ∂tB̂z,m = −ik⊥Ê+,m − ik⊥Ê−,m (3.91)

These equations are the core of the quasi-cylindrical PSATD solver.
In this formalism, the conservation equations ∇ ·E = ρ/ǫ0 and ∇ ·B = 0 read:

k⊥
(

Ê+,m − Ê−,m

)

+ ikzÊz,m =
ρ̂m
ǫ0

k⊥
(

B̂+,m − B̂−,m

)

+ ikzB̂z,m = 0 (3.92)

These equations are verified by the Maxwell’s equations eqs. (3.89) to (3.91), provided that

the charge density continuity equation in spectral space is satisfied i.e ∂tρ̂m+k⊥
(

Ĵ+,m − Ĵ−,m

)

+

ikzĴz,m = 0.
The Maxwell’s equations in spectral space eqs. (3.89) to (3.91) are combined with the spec-

tral conservation equations eq. (3.92) to obtain the propagation equations for E and B. The
propagation equations are then integrated analytically between n∆t and (n + 1)∆t supposing
that the currents are constant over one time step, and that the charge density is linear in time.

3.3.3 Overview of the quasi-cylindrical spectral algorithm

In Cartesian PSATD formalism once the electromagnetic fields are advanced in the spectral space,
they are transformed to real space where operations pertaining to macro particles are performed.
The reason why those operations are kept in the real grid is that only the few cells neighboring
the particle (depending on the order of the deposition) are used for the deposition and hence for
the gathering. In fact, they are rather local operations in real space. Contrarily, they become
global operations that effects all the spectral modes simultaneously in spectral space.

With regard to quasi-cylindrical PSATD formalism, a similar approach is also applied to
guarantee the locality of the current deposition and field gathering operations. In this context,
the spectral fields are transformed into an "intermediate" grid where only the Fourier transform
in the θ direction is preserved. The latter coincides with the grid used in the FDTD quasi
cylindrical formalism. Therefore, the current deposition and field gathering steps in this case are
the same as the ones used for the FDTD where the particles are still distributed in 3D and their
motion is integrated in 3D Cartesian coordinates.

Hereafter, the transformations from the intermediate grid to the spectral one and vice versa,
in the context of quasi-cylindrical PSATD solver, are presented.

Transformations between spectral and intermediate grid

At each time step, transformations between spectral and intermediate grid are operated. The
fields representation in the intermediate grid is recalled here:

F (r, z, θ) =
∞
∑

m=−∞
F̂m(r, z)e−imθ (3.93)

with

F̂m(r, z) =
1

2π

∫ 2π

0
dθF (r, z, θ)eimθ (3.94)
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where F denotes any cylindrical component of E,B,J or ρ and F̂m is the associated Fourier
components where m is the azimuthal mode index.

From intermediate to spectral

The transformation from intermediate grid F̂m(r, z) to spectral one F̂(k⊥, kz) is done in two
interchangeable steps: Fourier transform along propagation direction z and Hankel transform in
the radial direction r.

F̂z,m(k⊥, kz) = HTm[FT[F̂z,m(r, z)]] (3.95)

F̂+,m(k⊥, kz) = HTm+1[FT[
F̂r,m(r, z)− iF̂θ,m(r, z)

2
]] (3.96)

F̂−,m(k⊥, kz) = HTm−1[FT[
F̂r,m(r, z) + iF̂θ,m(r, z)

2
]] (3.97)

where FT denotes the Fourier transform and HTm the Hankel transform of order m. Their
respective expressions are the following:

FT[f ](kz) =

∫ ∞

−∞
f(z)e−ikzzdz (3.98)

and

HTm[f ](k⊥) = 2π

∫ ∞

0
f(r)Jm(k⊥r)rdrdz (3.99)

where Jm denotes the Bessel function of order m.
From spectral to intermediate

The transformation from the spectral grid F̂(k⊥, kz) to the intermediate one F̂m(r, z) is done
using the corresponding inverse transforms:

F̂z,m(r, z) = IFT[IHTm[F̂z,m(k⊥, kz)]] (3.100)

F̂r,m(r, z) = IFT[IHTm+1[F̂+,m(k⊥, kz)] + IHTm−1[F̂−,m(k⊥, kz)]] (3.101)

F̂θ,m(r, z) = i IFT[IHTm+1[F̂+,m(k⊥, kz)]− IHTm−1[F̂−,m(k⊥, kz)]] (3.102)

where IFT denotes the inverse Fourier transform and IHTm the inverse Hankel transform of
order m. Their expressions are give by:

IFT[f ](z) =
1

2π

∫ ∞

−∞
f(kz)e

ikzzdkz (3.103)

and

IHTm[f ](r) =
1

2π

∫ ∞

0
f(k⊥)Jm(k⊥r)k⊥dk⊥ (3.104)

where Jm denotes the Bessel function of order m.
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3.3. Pseudo Spectral Analytical Time Domain scheme

Numerical implementation of the transforms

The fourier transform is carried out with a 1D Discrete Fourier Transform (DFT) along the
longitudinal axis z. This transform requires a regular discretization in intermediate and spectral
space respectively denoted by z and kz:

zj = j∆z j ∈ 0, .., Nz − 1 where ∆z = zmax

Nz

and

kzj = j∆kz j ∈ 0, .., Nz − 1 where ∆z = zmax

Nz

However, the discretization of the transverse radial direction is different between the inter-
mediate space and the spectral one.

In the intermediate grid, a regular discretization in r is kept but with a shift of a half cell.
In contrast with z that is discretized on a the primal grid, r is discretized on a dual grid.

rj =
(

j + 1
2

)

∆r j ∈ 0, .., Nr − 1 where ∆r = rmax

Nr

On the other hand, in the spectral grid the k⊥ vector is discretized on an irregular grid
corresponding to the zeros of Bessel functions following this expression:

km⊥,j =
αm
j

rmax
where j ∈ 0, .., Nr − 1

with αm
j is the jth zeros of Bessel function of order m where m corresponds to the considered

azimuthal mode index. As a consequence, we have a different discretization for each mode in the
spectral grid. Nevertheless, it’s not a problem since the spectral modes are decoupled and each
one evolves separately in Maxwell’s equations. Actually, we can see each mode as being operated
on a separate grid.

Once the m-grid is discretized in km⊥ , the Discrete Hankel Transform (DHT) for each mode
is evaluated on the correspoonding grid nodes by performing a set of linear operations. Thus, it
can be represented by a matrix multiplication of the field. The inverse of the DHT (IDHT) is
obtained by inversion of the DHT matrix. The inverse matrix is found by proceeding with an
algorithm based on pseudo-inversion. Thereby, the DHT and IDHT of a field F are calculated
as:

DHTm
n [F ](km⊥,j) =

Nr−1
∑

p=0

(Mn,m)j,pF (rp) (3.105)

IDHTm
n [F ](rj) =

Nr−1
∑

p=0

(M ′
n,m)j,pF (km⊥,p) (3.106)

The square matrices Mn,m and M ′
n,m of size (Nr × Nr) depend on both the order n of the

Bessel function Jn and m the index of the mode where n ∈ {m − 1,m,m + 1} as it can be
seen in eqs. (3.95) to (3.97) and eqs. (3.100) to (3.102). Note that the computation of the
matrices Mn,m and M ′

n,m need to be performed only once at the beginning of the simulation
and then used at each time step. Despite the cost of the matrix multiplication (∝ N2

r ), the
quasi-cylindrical PSATD solver cost (∝ N2

rNz log(Nz)) is still less important than the one in 3D
Cartesian (NzNyNx(log(NxNyNz))).
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PSATD Maxwell solver in quasi-cylindrical geometry

Assuming constant currents and a linear time dependence for the charge density over one time
step t ∈ [n∆t, (n + 1)∆t] and following a similar scheme as the one described in [I. Haber and
Boris, 1973], the integration of eqs. (3.89) to (3.91) between n∆t and (n+ 1)∆t gives:

Ên+1
+,m = CÊn

+,m+c2
S

ω

(

− ik⊥
2

B̂n
z,m + kzB̂n

+,m − µ0Ĵ
n+ 1

2

+,m

)

+
c2

ǫ0

k⊥
2

[

ρ̂n+1
m

ω2

(

1− S

ω∆t

)

− ρ̂nm
ω2

(

C − S

ω∆t

)]

(3.107)

Ên+1
−,m = CÊn

−,m+c2
S

ω

(

− ik⊥
2

B̂n
z,m − kzB̂n

+,m − µ0Ĵ
n+ 1

2

−,m

)

− c2

ǫ0

k⊥
2

[

ρ̂n+1
m

ω2

(

1− S

ω∆t

)

− ρ̂nm
ω2

(

C − S

ω∆t

)]

(3.108)

Ên+1
z,m = CÊn

z,m+c2
S

ω

(

ik⊥B̂n
+,m + ik⊥B̂n

−,m − µ0Ĵ
n+ 1

2
z,m

)

− c2

ǫ0
kz

[

ρ̂n+1
m

ω2

(

1− S

ω∆t

)

− ρ̂nm
ω2

(

C − S

ω∆t

)]

(3.109)

B̂n+1
+,m = CB̂n

+,m − S

ω

(

− ik⊥
2

Ên
z,m + kzÊn

+,m

)

+ µ0c
2 1− C

ω2

(

− ik⊥
2

Ĵ n+ 1

2
z,m + kzĴ

n+ 1

2

+,m

)

(3.110)

B̂n+1
−,m = CB̂n

−,m − S

ω

(

− ik⊥
2

Ên
z,m − kzÊn

−,m

)

+ µ0c
2 1− C

ω2

(

− ik⊥
2

Ĵ n+ 1

2
z,m − kzĴ

n+ 1

2

−,m

)

(3.111)

B̂n+1
z,m = CB̂n

z,m − S

ω

(

ik⊥Ên
+,m + kzÊn

−,m

)

+ µ0c
2 1− C

ω2

(

ik⊥Ĵ
n+ 1

2

+,m + ik⊥Ĵ
n+ 1

2

−,m

)

(3.112)

where ω = c
√

k2z + k2⊥, C = cos(ω∆t) and S = sin(ω∆t). In the above equations, all the
fields are centered at integer time steps except for the currents, which are defined at half time
steps (particles momenta are calculated at half time steps). However, it does not preclude the
accuracy of the integration since the currents are considered constant over this time step and

equal to Ĵ n+ 1

2
m

4.
A full detailed derivation of the method and the implementation of the utilized transforms

can be found in the original paper describing the algorithm [Lehe et al., 2016].

4Since the currents are considered constant over the integration time step, their derivatives drops in the
propagation equations for Ê
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Boundary conditions

In Cartesian spectral algorithms, periodic boundary conditions are arbitrarily adopted in the
spectral grid for mathematical convenience, in order to be able to represent the fields with discrete
Fourier sum. This periodic boundary conditions are also applied in the spectral quasi-cylindrical
algorithm, along the longitudinal axis z where the FFT is applied. However, in order to ensure
the correctness of the simulation, absorbing boundary conditions should be implemented to
avoid instabilities coming from reflected or reinjected waves due to the periodicity of FFT.
These absorbing boundary conditions should be applied in the real space and within the finite
box before transforming the fields back to spectral space at each time step. For instance a
widely adopted and efficient type of boundary conditions especially for spectral solvers are the
PML (Perfectly Matched Layers) [Lee and Vay, 2016]. However, they are not straightforward to
implement. Instead, we apply simple boundary conditions on z which consist in damping linearly
the fields to zero over the first ndamp ghost cells laying next to the boundaries, where ndamp is a
user-defined parameter.

On the other hand, Dirichlet boundary conditions are applied on the upper limit of the r
axis ie. E(rmax) = 0 and B(rmax) = 0 which is compatible with the definition of Fourier-Bessel
decomposition in this direction. Note that for the PSATD solver the complications related to
the on axis non-defined fields in FDTD are avoided by the half-cell shift in the r axis.

Interaction with macro-particles

Even with the second-order Esirkepov charge/current deposition algorithm 3.2.4 like the one used
with FDTD, the PSATD solver does not conserve Maxwell-Gauss equation due to the difference
in the spatial derivative order between Maxwell’s equations and the numerical continuity equa-
tion verified by Esirkepov scheme. In fact, Maxwell’s equations are solved using exact spatial
differentiation while the Esirkepov current/charge deposition verifies the continuity equation to
the second order only and does not satisfy the discretized continuity equation in Fourier space
ρ̂n+1 = ρ̂n − i∆tkĴ n+ 1

2 .
In order to prevent the accumulation of errors resulting from the violation of the discretized

Gauss’ Law, a Boris correction to the electric field [Birdsall and Langdon, 2004] or alternatively
a current correction should be applied [Vay and Godfrey, 2014].

Following the implementation in [Lehe et al., 2016], the interpolation and current deposition
are performed using linear shape functions for the particles and a current correction is applied to
the currents after their deposition in the spectral space at each time step [Vay et al., 2013] with
some similarity to the current deposition presented by Morse and Nielson in their potential-based
model in [Morse and Nielson, 1971].

This is done by slightly modifying the currents without modifying their curl: J ′ = J −∇G

where G satisfies the Poisson-like equation ∇2G = ∂tρ+∇ · J .
In the spectral space the correction reads:

Ĵ
′n+ 1

2

+,m = Ĵ n+ 1

2

+,m +
k⊥
2
Ĝn+ 1

2
m Ĵ

′n+ 1

2

−,m = Ĵ n+ 1

2

−,m − k⊥
2
Ĝn+ 1

2
m Ĵ

′n+ 1

2
z,m = Ĵ n+ 1

2
z,m −kzĜ

n+ 1

2
m (3.113)

with

Ĝn+ 1

2
m = − 1

k2⊥ + k2z

(

ρ̂n+1
m − ρ̂nm

∆t
+ k⊥

(

Ĵ n+ 1

2

+,m − Ĵ n+ 1

2

−,m

)

+ ikzĴ
n+ 1

2
z,m

)

(3.114)
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An overview of the successive steps of the PIC cycle, including the corresponding intermediate
grid F̂u,m or spectral grid F̂u,m involved in the step is summarized in fig. 3.6.

Figure 3.6: Schematic description of the 4 steps of a PIC cycle in the quasi-cylindrical spec-
tral algorithm. At each time step, the fields are shown in red while quantities pertaining to
particles in blue. The quantities that are being calculated at a given step are displayed with a
colored background. The quantities that are used for this calculation, are displayed with a white
background.
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3.4 Parallelization strategy of the PIC algorithm with the PSATD

scheme

3.4.1 Domain decomposition and parallelization of the PSATD solver

Pseudo-spectral electromagnetic solvers, integrating analytically the solution over a finite time
step, have been firstly introduced by [I. Haber and Boris, 1973]. However, despite their extraordi-
nary precision, they have not been widely adopted in PIC codes due to the difficulty of an efficient
parallelization and their poor scalability beyond few thousands of cores. In fact, the use of Fast
Fourier Transforms (FFTs) on a distributed data sets requires global communications that span
the entire domain. Contrarily, the FDTD solvers require only local communications between
neighboring subdomains, making them well suited for massively parallel super-computers based
on distributed memory architectures scaling to hundreds of thousand of CPU cores.

In [Vay et al., 2013], an efficient method for the parallelization of the PSATD solver in
Cartesian geometry has been proposed and demonstrated. This method is based on a standard
domain decomposition, just like the one used in the case of FDTD solvers, where FFTs are
computed locally. It exploits the properties of Discrete Fourier Transforms (DFTs), the linearity
of Maxwell’s equations and the finite speed of electromagnetic waves propagation to enable the
parallelization and limit the data exchange within ghost cells between neighboring subdomains.
Hence, the proposed method combines the efficiency of suppressing numerical instabilities and
the scalability level of the FDTD scheme, provided that enough ghost cells are used.

One limitation of the use of the parallel PSATD algorithm is that the number of the ghost
cells is relatively high compared to its FDTD counterpart, where usually 2 ghost cells are enough.
This is due to the fact that the spatial derivative in the Fourier space does not correspond to the
same local grid points in real space and it may involve data from arbitrarily distant grid points.
Therefore, the truncation of the derivative operator in Fourier space by the domain decomposition
results in numerical noise especially near the subdomains edges. However, a detailed analysis of
the truncation error in [Vincenti and Vay, 2016] has shown that the noise is mainly localized
near the subdomain boundaries and does not build up to affect the whole simulation domain and
that it decreases significantly with the use of sufficiently large ghost regions.

This paper also suggests to employ a finite order derivative stencils instead of the exact
computation of the derivative operator ik which corresponds to an infinite order with a stencil
extending across the entire simulation grid. The purpose of reducing the order of the solver
is to bring more locality, so that the truncation error is less important when decomposing the
simulation grid since the required number of the ghost cells is governed by this order. However,
this order reduction comes at the cost of slightly reducing the accuracy of the solver. A detailed
study of the relation between the accuracy and the order of the solver as well as the required
number of ghost cells for an arbitrary order can be found in [Jalas et al., 2017].

At each time step, the following steps are applied to the spectral grid:

• Local DFT followed by Hankel matrices multiplication of the fields is performed on each
subdomain including ghost cells.

• Fields are advanced in time using eqs. (3.107) to (3.112).

• Local IDFTs of the fields are computed including the ghost cells to recover the fields in the
corresponding real space.

• The fields in the guard regions are updated from data in the neighboring subdomains.
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3.4.2 Single domain multiple decompositions (SDMD)

Regarding the quasi-cylindrical spectral algorithm, the solver is parallelized only along the z
direction where the FFT is applied while a single domain in the r direction is kept. This is due to
the non-locality in matrix-matrix multiplication, making the parallelization in r very complicated
and incompatible with domain decomposition. This limits the scalability of the solver and
the gain that can be achieved with the standard domain decomposition. Moreover, the large
number of ghost cells associated to spectral solvers imposes a coarse-grain domain decomposition
with large subdomains. Contrariwise, small subdomains allow for a better scalability and load
balancing.

In order to circumvent this limitation, a two-level decomposition has been implemented in
Smilei [Derouillat and Beck, 2020]. This decomposition technique, referred to as "Single Domain
Multiple Decompositions" uncouples the fields related grid from the one pertaining to macro-
particles.

Figure 3.7: Schematic illustration of the decomposition involved in each type of grid with the
associated transformations and its pertaining fields. MPI domains are delimited by different
colors.

Therefore, it grants the use of large and static subdomains for the fields operations called
regions on one hand and small dynamic subdomains for the macro-particles operations called
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patches on the other hand. In this configuration, the patch stores both the informations of the
fields and macro-particles that belong to it while the region is totally unaware of macro-particles
and only stores the fields information.

For each mode in the quasi-cylindrical pseudo-spectral solver, the spectral grid (k⊥, kz) is
decomposed only into regions while the intermediate grid (r, z) has the two decompositions: the
one into regions and that into patches.

This decomposition technique slightly alters the PIC loop steps by introducing two additional
steps illustrated in fig. 3.7 in order to ensure the communication between the two grids:

• After charge/current deposition on patches, charge and current densities must be commu-
nicated from patches to regions.

• Once the electromagnetic fields are updated after solving Maxwell’s equations on regions,
electromagnetic fields must be communicated from regions to patches.

This can improve the performances of the code since the simulation cost is dominated by
the cost of particle-related operations. In fact, using small patches enables benefiting from
the full capacity of the OpenMP dynamic scheduler by offering a better distribution of the
particles between OpenMP threads. Contrarily, MPI processes with few patches may lead to
load imbalance at the thread level.

In the case where the same decomposition is used for both the fields and for the particle
operations, smaller patches usually lead to an increase of the fields synchronization cost. This
fine grain decomposition overhead cost can also be mitigated using SDMD since the fields syn-
chronization is handled between regions instead of patches.

Besides, the use of patches allows a radial decomposition for the particle-related operations,
which enables a good strong scaling of the code. In fact, without the patches in the r direction,
the code’s performance is quickly limited once the number of cores reaches the number of patches.
This is illustrated in fig. 3.8, where we can see that using the maximal number of patches in the
longitudinal direction npatch,z = 256 and just one radial patch does not scale beyond the point
where the number of cores equals the number of patches. On the other hand, the use of more
patches in the radial direction leads to a better strong scaling which allows a significant speed-up
in the code’s performance.

3.5 Advantages of PSATD

Thanks to their analytical integration over time and accurate spatial differentiation in Fourier
space, spectral algorithms offer a multitude of advantages over the finite difference ones. For
example, in finite difference simulations the group velocity of the laser vg depends on the grid res-
olution and it is under-estimated compared to the analytical prediction even for a relatively high
resolution, due to spurious numerical dispersion. Conversely, the PSATD algorithm estimates
correctly the group velocity which is practically independent of the resolution in its framework.

Besides, contrarily to the FDTD method, the PSATD does not impose a CFL condition on
the time step and offers an unconditional stability. However in the case of PIC codes, the time
step is limited by the condition:

∆t ≤ min(∆z,∆r)

c
(3.115)

This condition ensures that ultra-relativistic particles do not travel more than one mesh cell
over a single time step. Therefore, the PSATD solver allows the use of larger time step compared
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Figure 3.8: Scaling of the particles operation with the number of cores for different number of
radial patches.

to the FDTD one especially in the case of quasi-cylindrical geometry where the CFL condition
becomes more strict with the number of modes included.

Moreover, the centering in time in the PSATD solver allows an accurate estimation of the
force felt by the electrons inside a copropagationg laser which is overestimated in the case of the
standard finite-difference PIC solvers due to the staggering in time of their E and B fields [Lehe
et al., 2016].

Most importantly, since the PSATD algorithm is dispersion-free, it allows the suppression
of the zero-order numerical Cherenkov effect 5 caused by the spurious numerical dispersion. In
order to illustrate this, a comparison is performed between two equivalent simulations of LWFA,
one with the spectral and the other with the finite difference quasi-cylindrical algorithm, both
implemented in the PIC code Smilei.

3.5.1 Comparison between FDTD and PSATD schemes

In order to benchmark the PSATD implementation and to test its accuracy and its ability to
suppress the NCR, a comparison between two simulations run with the FDTD solver and the
PSATD solver in the quasi-cylindrical geometry is presented next.

5 The PSATD solver correctly models the dispersion of electromagnetic waves and thereby mitigates the
problem of numerical Cherenkov radiation (NCR) also called zero-order numerical Cherenkov effect, in simulations
of relativistic beams. Yet, it is not free of the numerical Cherenkov instability (NCI) also called high-order
numerical Cherenkov effects [Pukhov, 2020; Kirchen et al., 2020]. However, the NCI are most likely to appear in
boosted-frame simulations while they are negligible and usually do not have enough time to develop in the case
of lab-frame simulations [Lehe et al., 2016].
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Numerical parameters

The simulations are performed in a moving window of respectively longitudinal and transverse
dimensions of 92 µm and 205 µm with ∆z = 0.032 µm and ∆r = 0.32 µm where a laser pulse
linearly polarized along ex with a waist w0 = 6.2 µm, a wavelength λ0 = 0.8 µm, a FWHM
duration in intensity τ0 = 25 fs and a normalized peak vector potential a0 = 7 is sent in a
plasma target. The plasma target has a density up-ramp of 500 µm at its entry followed by a
plateau of a density ne = 8.6× 1017 cm−3 = 4.94× 10−4 nc where nc = ω2

0meǫ0/e
2 is the critical

density at this laser frequency ω0. In both simulations, 54 regularly initialized particles per cell
are used.

The PSATD solver is used with the finite order norder = 32 and nghost = 64 as recommended
in [Jalas et al., 2017]. In the boundaries of the domain, ndamp = 44 cells were used to avoid the
reflection of the waves inside the simulation domain.

In the finite-difference simulation a time step of c∆t = 0.99∆z is used, while the spectral
simulation was run with c∆t = ∆z. These specific parameters have been selected to allow an
important self-injected charge over a short propagation distance as well as to easily highlight the
effects of numerical Cherenkov. In both simulations, the currents6 are smoothed with a single-
pass binomial filter in the longitudinal z and transverse r directions. In the case of the spectral
algorithm, the smoothing is directly applied in the spectral space kz, k⊥.

Results

Figure 3.9 is a snapshot of both FDTD simulation (left panel) and PSATD simulation (right
panel) after 885µm of propagation. The red colormap in the top panels represents the laser field
|Ey| while the superimposed shades of blue represent the charge density ρ . In the bottom panels,
the quantity Ey + cBx is shown in blue and red along with bubble and the injected bunch in
grey. The quantity Ey + cBx is chosen instead of Ey in order to cancel the strong space-charge
field that would otherwise dominate the figure. In fact, both the laser and the self-generated
field of a relativistic beam propagate at vφ ∼ c along z direction and their contributions cancel
out leaving only the contribution from the cavity fields (|E+ c×B| ≪ |E|) [Jackson, 1998]. The
quantity Ey + cBx is particularly interesting because it is proportional to the y-component of
the Lorentz force felt by a relativistic electron of a velocity v = cez. In the bubble regime, this
transverse force component is linear in y i.e Fy ∝ y. This can be seen in fig. 3.9 (bottom panels)
where Ey + cBx is stronger off axis and decreases linearly to cancel on the axis of the bubble.

Despite the qualitative resemblance between the overall aspect of the bubble structure and
the shape of the injected beam in the two simulations, the Ey + cBx color map reveals a high
frequency radiation inside the ionic cavity around the accelerated bunch in the finite difference
scheme. Zooming on the bunch and rescaling the field |Ey + cBx| in the top panels of fig. 3.10
shows clearly this high frequency radiation surrounding the electrons beam in the simulation
with the FDTD solver. The amplitude of this unphysical radiation is comparable to that of
|Ey + cBx| inside the bubble and hence can substantially alter the physics at stake.

3.5.2 Discussion

The high frequency radiation around the bunch is a typical signature of the zero-order NCR which
modifies the electromagnetic fields inside the ionic cavity and may hence influence the transverse

6In spectral solver, the charges are also smoothed as they are also used in the source term to solve Maxwell’s
equations.

97



Chapter 3. Azimuthal Fourier decomposition in cylindrical geomerty

875 880 885

z (µm)

−40

−20

0

20

40

y
(µ
m
)

FDTD

0

2000

4000

6000

8000

10000

|E
y
|(
G
V
.m

−
1
)

875 880 885

z (µm)

−40

−20

0

20

40

y
(µ
m
)

PSATD

0

2000

4000

6000

8000

10000

|E
y
|(
G
V
.m

−
1
)

875 880 885

z (µm)

−40

−20

0

20

40

y
(µ
m
)

−60

−40

−20

0

20

40

60

E
y
+
c
B

x
(G

V
.m

−
1
)

875 880 885

z (µm)

−40

−20

0

20

40

y
(µ
m
)

−60

−40

−20

0

20

40

60

E
y
+
c
B

x
(G

V
.m

−
1
)

Figure 3.9: Comparison of simulations outputs between FDTD (left) and PSATD (right) after
885 µm of propagation. Upper panels: The laser field amplitude |Ey| in red and superimposed
with the charge density ρ in blue. Lower panels: representation of the bubble with the field
Ey + cBx color map in red and blue and the injected bunch in grey.

motion of the electrons inside the bubble. This hypothesis is confirmed by the observation of the
corresponding characteristic double-parabola in Fourier space [Lehe et al., 2013a, 2016; Bourgeois
and Davoine, 2020] shown in the lower left panel of fig. 3.10. The physically relevant frequencies
are confined in the center around ky = 0 and kz = 0 while the higher values covering a wide
range of frequencies correspond to the unphysical radiation around the beam.

On the other hand, this radiation is absent in the case of the PSATD simulation in both real
(top right) and Fourier space (lower right) in fig. 3.10 which confirms that the PSATD solver is
free from the zero-order numerical Cherenkov radiation associated with the numerical dispersion
[Godfrey, 1974].

A direct consequence of the Cherenkov radiation is the unphysical emittance growth of the
bunch [Lehe et al., 2013a]. In order to confirm this, the energy spectrum of the previous simu-
lations are plotted after a propagation distance of 885µm corresponding to the same time where
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Figure 3.10: Comparison of simulations outputs between FDTD (left) and PSATD (right) after
885 µm of propagation. Upper panels: close-up look to the bunch and its surrounding |Ey+cBx|
region shows a high frequency radiation. Lower panels: two-dimensional Fourier transform of
the quantity Ey + cBx.

the snapshots fig. 3.9 and fig. 3.10 were taken. The bunches (shaded area delimited by two verti-
cal red dashed lines) were selected by energy interval = [29, 34] (MeV) with only electrons in the
quasi-monoenergetic peak of the spectrum. They are presented in fig. 3.11. The bunch properties
are summarized in table 3.1. The FDTD scheme overestimates the transverse emittance of the
bunch which is 40% more than that of its PSATD counterpart. Here the accelerated electrons are
in a fully evacuated cavity characterized by linear focusing fields and the space charge effects can
be neglected, thus the emittance growth could be only caused by the energy spread. However,
conversely the bunch’s energy spread in the case of PSATD scheme is more important (∼ 39%)
than that in the case of FDTD and both bunches have almost the same divergence θ⊥. The main
difference between the two bunches is the emittance in the y-direction which is correlated to the
y-rms bunch size (1.101) and results in an important transverse emittance value in the case of
the FDTD bunch compared to the one in PSATD scheme. Based on the previous observations,
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Figure 3.11: Energy spectrum of the electrons after a 885 µm of propagation. The shaded areas
in grey correspond to the selected bunches for which the bunch-related quantities are evaluated
and compared in table 3.1.

the difference in the transverse emittance can only be explained by the numerical-Cherenkov
radiation.

This study puts forward the importance of suppressing this unphysical radiation in order
to correctly estimate the bunch charge and its transverse properties. Therefore, it has been
shown that the PSATD suppresses efficiently the NCR responsible of a non-physical growth of
the transverse size, divergence and beam emittance and may also modify the physics which is not
straightforwardly discerned in a finite-difference simulation especially in the cases where there is
no exact analytical formula to predict them as it is the case for the dephasing length.

Bunch properties FDTD PSATD

Q (pC) 126 115
Epeak (MeV) 31.5 30.5

∆ E / Epeak (%) 2.8 3.9
θ⊥ (mrad) 14 13

x-rms size (µm) 0.98 1.14
y-rms size (µm) 1.47 0.8
z-rms size (µm) 4.62 4.44
εn,x (mm ·mrad) 0.25 0.36
εn,y (mm ·mrad) 0.54 0.22
εn,⊥ (mm ·mrad) 0.59 0.42

Table 3.1: Summary of the bunch-related quantities in FDTD and PSATD schemes.
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Chapter 4

High fidelity simulations using realistic

Apollon laser profile

Laser WakeField Acceleration (LWFA)[Tajima and Dawson, 1979; Esarey et al., 2009; Malka
et al., 2002] has been proven to be a promising efficient way to accelerate electrons up to few
GeVs[Leemans et al., 2006, 2014; Gonsalves et al., 2019] within a short propagation of distance.
Nevertheless, one important challenge that arouses an increasing interest in the community is the
improvement of the shot-to-shot reproducibility for the beam charge and energy [Mangles et al.,
2007], which is important for most of the applications of this technology. In fact, fluctuations
of the laser intensity profile, can affect the quality of the electron beam: divergence, emittance,
energy spread and maximum energy gain [Cummings and Thomas, 2011]. In particular, multi-
GeV electrons which are generated by self-injection in the bubble regime, are very sensitive to
the quality and the complicated structure of the laser spot in ultra-short TW to PW systems.

So far, the influence of the presence of non-Gaussian features and imperfections in the laser
pulse have been little investigated in the case of PW systems. Most theoretical and numerical
studies on LWFA suppose an ideal Gaussian intensity profile. There were only few studies that
dealt with realistic laser features and their impact on the beam quality and on the production
of the betatron oscillations. However, they were carried with much lower power and energy
than the one Apollon is aiming to produce. It is a particularly interesting feature because the
self-focusing process depends to the first order on the pulse power thus, different results should
be expected. Furthermore, it was found that in addition to the transverse intensity distribution,
the electron beam distribution is sensitive to the laser wave front distortions [Beaurepaire et al.,
2015].

The use of ideal laser profiles in the simulations may explain the gap between their results
and the ones found in experiments. Hence it urges the use of realistic pulses as input in the
simulations to retrieve some trends found in the LWFA experiments.

The aim of this chapter is to study the influence of both realistic laser intensity and wave front
profiles from measurements in Apollon installation. As a first step, the algorithm of propagation
using Fresnel integration is presented in section 4.1. It is used throughout the chapter to recover
the laser intensity and wave front at the border of the simulation box close to the focal plan.
The experimental set-up of laser focusing results in the presence of a hole in the near field,
which is the region close to the laser output aperture before the focus. A study on the impact
of this hole using a simplified case of a theoretical super-Gaussian fit to the intensity profile is
presented in section 4.2. Finally, the results of a computational investigation into the influence
of experimental intensity distribution and wave front on the electrons beam quality are presented

101



Chapter 4. High fidelity simulations using realistic Apollon laser profile

and discussed in section 4.3.
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4.1. Propagation using Fresnel integration

4.1 Propagation using Fresnel integration

In optics, the propagation of the field is usually addressed as a diffraction problem. In order to
solve this problem, diffraction integrals need to be invoked. However, it is rare to find rigorous
solutions to diffraction integrals and in most cases of practical interest, approximate methods
are used [Welford, 1975; Azmayesh-Fard, 2013].

The propagation of waves far from the source can be efficiently estimated using the Huygens
and Fresnel integral approaches. According to Huygens principle [Huygens, 1962]: "Every un-
obstructed point of a propagating wave front at a given instant, serves as a source of spherical
secondary wavelets (with the same frequency as that of the primary wave) such that later the
wave front is the superposition of all these wavelets (considering their respective amplitudes and
phases)."

In other words, the amplitude of the electric field U(x, y, z) at any plane (x, y) far from the
source U(X,Y ) = U(X,Y, z = 0) in the plane (X,Y ) by a distance z is the sum of all these
wavelets. This leads to Fresnel diffraction integral:

U(x, y, z) =
−i

λ0

∫ +∞

−∞

∫ +∞

−∞
U(X,Y )

eikr

r
cos θdXdY (4.1)

where r =
√

z2 + (x−X)2 + (y − Y )2 and k is the wavenumber 2π/λ. The term cos θ is an
"obliquity factor" defined by the angle θ between the line r and the normal to the plane (X,Y )
≡ the propagation axis z in our case (fig. 4.1).

Figure 4.1: Diffraction geometry, showing aperture (or diffracting object) plane U(X,Y ) and
image plane U(x, y, z) after a propagation distance z, with the corresponding coordinate system.

Far from the source, the paraxial approximation is well verified, i.e. z ≫ (x − X) and
z ≫ (y− Y ), hence r ≃ z and cos θ = r/z ≃ 1. We can Taylor-expand r and we can retrieve the
Fresnel approximation valid under the previous inequality:

r ≃ z +
(x−X)2

2z
+

(y − Y )2

2z
= z +

x2 + y2

2z
− xX + yY

z
+

X2 + Y 2

2z
(4.2)
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Therefore, under Fresnel approximation, the field at (x, y, z) reads:

U(x, y, z) =
eikz

iλ0z
ei

k
2z

(x2+y2)

∫ +∞

−∞

∫ +∞

−∞
U(X,Y )ei

k
2z

(X2+Y 2)e−i k
z
(xX+yY )dXdY (4.3)

Assuming that the source U is the result of the focalization of a source U ′ through a lens of

focal length f, we can write: U(X,Y ) = U ′(X,Y )e
−i k

2f
(X2+Y 2) (we extract the phase introduced

by the lens from U), we can rewrite the previous integral as

U(x, y, z) =
eikz

iλ0z
ei

k
2z

(x2+y2)

∫ +∞

−∞

∫ +∞

−∞

(

U ′(X,Y )e
i k
2
(X2+Y 2)( 1

z
− 1

f
)
)

e−i k
z
(xX+yY )dXdY (4.4)

Hence, if the distance z from the lens is sufficiently large so that the paraxial approximation

is valid, the field U(x, y, z) is a rescaled Fourier transform of U ′(X,Y )e
i k
2
(X2+Y 2)( 1

z
− 1

f
) evaluated

at kx = k
zx and ky = k

z y, where U ′(X,Y ) is the field ( amplitude and phase) just before the lens.
In practice, the input U ′(X,Y ) is a digitized measurement provided by a CCD camera far

from focus, thus it is a discrete signal with a given number of pixels n and a definite pixel size
that only depends on the properties of the camera.

Therefore, the output field distribution at U(x, y, z) after the lens is retrieved algorithmically
using the following steps:

1. Applying a Discrete Fourier transform (DFT) algorithm to decompose the term

U ′(X,Y )e
i k
2
(X2+Y 2)( 1

z
− 1

f
).

2. Multiplying the obtained result with the multiplicative factor eikz

iλ0z
ei

k
2z

(x2+y2) where the
terms in the exponential are evaluated in the target plane z by computing the new pixel
size from the source pixel size as:

NewPixelSize =
2πz

n× PixelSize× k

When using the DFT, the signal has to be recentered at 0 first in order to obtain the correct
phase. Otherwise, the resulting phase would be punctuated with additional minus signs every
two pixels. In order to understand this, the DFT of a signal centered in 0 and that of a signal
centered on the middle of the grid are compared.

The DFT of a signal centered in 0 on a nx × ny grid is written

u(kx, ky) =
1

nx × ny

nx−1
∑

x=0

ny−1
∑

y=0

u(x, y) exp

(

−2πi

(

kx
nx

x+
ky
ny

y

))

(4.5)

Whereas, the DFT of the same signal, but centered on the middle of a nx×ny grid, is written:

u(kx, ky) =
1

nx × ny

nx−1
∑

x=0

ny−1
∑

y=0

u(x, y) exp

(

−2πi

(

kx
nx

(x− nx/2) +
ky
ny

(y − ny/2)

))

(4.6)

=
1

nx × ny

nx−1
∑

x=0

ny−1
∑

y=0

u(x, y) exp

(

−2πi

(

kx
nx

x+
ky
ny

y

))

exp(ikxπ) exp(ikyπ) (4.7)

=
1

nx × ny

nx−1
∑

x=0

ny−1
∑

y=0

u(x, y) exp

(

−2πi

(

kx
nx

x+
ky
ny

y

))

(−1)kx(−1)ky (4.8)
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In the last case when the signal is centered on the middle of the grid, there is an extra
multiplicative factor (−1)kx(−1)ky , leading to alternating signs in the DFT compared to the first
case where the signal is centered on 0. Hence, the signal should be centered to 0 in order to
obtain the correct results.

The implemented algorithm was benchmarked and validated (not presented here). It was
proven to yield the desired phase and intensity as long as the paraxial approximation assumption
is valid.

4.2 Study on the presence of a hole in the laser’s near-field with

a theoretical fit

Before focusing, the intensity distribution delivered by laser systems usually exhibits an imper-
fect, nearly flat-top distribution in the transverse plane. Therefore, the corresponding intensity
profile in the focal plane is not purely Gaussian and exhibits a profile close to an Airy pattern.
An example of the intensity distribution delivered by the Apollon laser in the near-field before
the focusing mirror, is presented in fig. 4.2. The corresponding intensity profile in the focal plane,
computed with the Fresnel diffraction is presented in fig. 4.3.

In the chosen design for the Apollon laser, the near field exhibits a hole of a radius rhole =
16 mm at approximately but not exactly, the center of the distribution. A simplified schematic
representation of the experimental set-up for the laser beam propagation and focusing is shown
in fig. 4.4: a laser beam of 1/e2 diameter ∼ 2σ ≃ 130 mm propagates until a reflecting drilled
mirror positioned at 45◦ where a small fraction of the laser beam is lost. The rest of the laser
beam is then reflected and focused with spherical mirror. The focused beam passes through the
same hole and propagates in the plasma target.

Figure 4.2: Left panel : typical 2D intensity profile delivered by the Apollon laser in the near-field.
Right panel : 1D lineouts corresponding to the red and blue lines in the 2D colormap.

The center of the laser beam in near-field is determined as the barycenter of the area where
the intensity is above 5% of the maximum intensity. The center of the hole is calculated as the
barycenter of the area around the beam center within a radius r = 1.5×rhole where the intensity
is below 5%. To obtain a symmetrical spot with a finite size, the intensity at a distance larger
than Rmax is set to zero. Rmax is the radius after which the radial profile, obtained by averaging
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Figure 4.3: Left panel : 2D intensity profile in the focal plane for f = 9 m obtained by a Fresnel
integration of the near field. Right panel : 1D lineouts corresponding to the ones in fig. 4.2.

Figure 4.4: Schematic representation of the experimental set-up for the laser beam propagation
and focusing in Apollon installation: a laser beam of a 1/e2 diameter ≃ 130 mm is sent and
reflected by a mirror at 45◦ presenting a hole of a radius = 16 mm where a small fraction from
the center of the laser is lost (estimated to be around ∼ 12%). The beam is focused by a spherical
mirror of a focal length f .
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the distribution over the azimuthal variable θ, is lower than 1% of the maximum.
The intensity profile is retrieved from the experimental data supposing a total energy U= 15

J and a Gaussian envelope in time with a duration τ0 = 25 fs corresponding to a power P
∼ U

τ0
= 600 TW. To do so, each "count" measured by the camera is multiplied by the quantity

Icount = U/(Ncounts × τ0 × PixelSize2) where Ncounts is the sum of all the data counts.
The Apollon installation offers the possibility of two focal lengths f = 3m or f = 9m. In

both cases, the laser’s radius in near-field σ ≃ 65 mm is small enough compared to the focal
length σ ≪ f . Therefore, the paraxial approximation is verified and the use of Fresnel integral
to calculate the intensity and phase of the propagated field around the focal plane is justified.

4.2.1 Laser profile fitting with super-Gaussians in the near-field

2D curve fitting

In order to study the effect of the hole presence in the laser’s transverse distribution, the in-
tensity profile is fitted to a smooth theoretical function that can best describe the experimental
measurement. The method of non-linear least squares is therefore used to determine the best fit.
This method is based on minimizing the sum of the residuals squares where the residuals denote
the offsets of the points from the curve. The approach is based on iterative refinement of the
solution until convergence is achieved.

Firstly, we are looking to the best fitting function among super-Gaussian profiles defined by:

In(x, y) = In0 exp

(

−2

(

(r − r0)

σ

)n)

(4.9)

= In0 exp

(

−2

(

(x− x0)
2 + (y − y0)

2

σ2

)n/2
)

with

In0 =
P

∫

x

∫

y exp

(

−2
(

(x−x0)2+(y−y0)2

σ2

)n/2
)

dxdy

where n denotes the order of the super-Gaussian, x0 and y0 are the coordinates of its center and
σ is the radius.

The goal consists in adjusting the parameters σ, x0 and y0 of the model function while varying
the order n to best fit the data set for a fixed laser power of P= 600 TW corresponding to a
total energy of 15 J and a duration of 25 fs. Due to the presence of the hole in the experimental
profile, the fitting functions in eq. (4.9) are multiplied by the indicator function 1A in order to
estimate correctly the fit.

1A =

{

0 if r − r0 < rhole
1 else.

The order of the super-Gaussian n is varied from 2, corresponding to a Gaussian profile,
to 16. The lineouts of these fitting functions are presented in fig. 4.5. For each order n, the
normalized root-mean-square error (NRMSE) is calculated from the residuals ŷi − yi which are
the differences between the actual observed values yi and the predicted values ŷi.
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Figure 4.5: Lineouts of the super-Gaussians fitting functions superposed with the experimental
intensity lineouts in the x and y directions.

NRMSE =

√

∑N
i=1(ŷi − yi)2

N
(4.10)

The choice of the best fit is based on the criterion of minimizing the NRMSE. The evolution
of the NRMSE as a function of the order n is depicted in fig. 4.6. For this experimental data,
even though the NRMSE starts to converge starting from the order 10 as it barely changes for the
following orders, the super-Gaussian of order 14 is found to be the best fit because it corresponds
to the inversion point i.e the error starts to increase slightly for the order 16.
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Figure 4.6: Normalized root-mean-square error of the 2D fitting super-Gaussians as a function
of the order n.
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Radial curve fitting

The provided experimental intensity profile is not symmetric and it exhibits a very complicated
pattern in near field fig. 4.2. Thus, it is hard to find a smooth symmetric function in general and
a super-Gaussian in particular to fit correctly the data. This is why, the values of the NRMSE
are still high even for the best super-Gaussian fit.

In order to smooth a little bit the experimental intensity profile, it is integrated in θ to
obtain the radial profile. However, we can see in fig. 4.2 that the hole is not centered in the
data due to the fluctuations of shot-to-shot in laser. So basically, there are two centers that we
can distinguish, the hole center and the global center which is defined as the barycenter of the
intensity here. The purpose of the fitting with a super-Gaussian is to better describe the steep
slope at the edges of the intensity distribution, so it is better to integrate with respect to the
global center and not with the center of the hole.

In this case the hole in the radial profile is concealed as shown in fig. 4.7. We thereafter apply
a filter to estimate the fitting only beyond the hole radius. Finally, the error curve of the radial
fitting has a resembling pace as the one with the 2D fitting with a minimum also reached for the
order 14. Thus, the choice of order 14 for the super-Gaussian is justified with a double check.
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Figure 4.7: Left panel : Radial fitting functions with super-Gaussians superposed with the radial
profile of the measured intensity. Right panel : the normalized root-mean-square error of the
radial fitting super-Gaussians as a function of the order n.

4.2.2 Choice of the laser profiles

According to the previous study, it is found that the best super-Gaussian fit is of order 14. In
order to study the impact of the hole in the laser near field on the future LWFA experiments,
we perform a numerical study with super-Gaussians with and without the hole. In particular,
we are interested in the effect of the hole presence from a geometrical point of view. Therefore,
in the case of super-Gaussians with hole, the profile is rescaled either to have the same power or
the same laser strength parameter a0 as the one without the hole. It is also insightful to study
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the effect of non-Gaussian features by comparing the results with the ones of an "equivalent"
Gaussian.
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Figure 4.8: Normalized vector potential of the input laser profiles used in simulations.

The used input laser profiles presented in fig. 4.8 are detailed in the following.

1. SG no hole: theoretical fit of the measured laser intensity with a super-Gaussian of order
14 using non-linear least squares method. The hole presence as well as the resulting power
loss is neglected.

2. SG hole same a0: theoretical fit of the measured laser intensity with a drilled super-
Gaussian of order 14. In this case, the lost power due to the presence of the hole is taken
into account in the fitting function, then the profile is rescaled so that it has the same laser
strength parameter a0 as the profile without the hole.

3. SG hole same P: theoretical fit of the measured laser intensity with a super-Gaussian of
order 14 presenting a hole of the same power as the one with no hole.

4. Geq in near field: theoretical fit of the measured laser intensity with a Gaussian that has
the same radius σ as the super-Gaussians as well as the same power P in the near field.

5. Geq in far field: theoretical fit of the SG no hole intensity profile with a Gaussian of
the same maximal intensity I0 in the far field.

The main parameters of the input laser profiles are summarized in table 4.1 where the radius
σ is calculated in the near field and the waist is estimated from the intensity profile in the focal
plan.

The laser profiles described in table 4.1 are then used to run a set of simulations with the quasi-
cylindrical algorithm in Smilei using only the first two azimuthal modes (m=0 and m=1). All the

1The waist was estimated to be the radius of the laser beam d/2 at the first intersection from the center
where the intensity is 1/e2 of I0 (note that it is possible that there are multiple intersection in the case of
super-Gaussians).
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Profiles radius σ (mm) waist w0 (mm)1 Power P (TW) a0 hole

SG no hole 67.1 4.5×10−2 600 2.81 no
SG hole same a0 67.1 4.3×10−2 628 2.81 yes
SG hole same P 67.1 4.3×10−2 600 2.735 yes
Geq in near field 67.1 3.4×10−2 600 3.9 no
Geq in far field 49.1 4.66×10−2 577 2.81 no

Table 4.1: Summary of the laser profiles parameters.

simulations are run in a 6400×1280 moving window with a resolution defined by ∆z = 0.0127 µm,
∆r = 0.19 µm and c∆t = 0.99×∆z. All the lasers have a wavelength λ0 = 0.8 µm and a Gaussian
time envelope of a duration τ0 = 25 fs. Using Fresnel integration, the laser profiles are evaluated
at z = f − 5 × 10−4 m where the focal length is f = 9 m. This position corresponds to the
beginning of the plasma target that has a 500 µm-long rising density gradient at its entrance,
followed by a plateau of an electronic density ne = 8.6× 1023 cm−3.

4.2.3 Results and discussion
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Figure 4.9: Evolution of the peak normalized laser field strength as a function of the propagation
distance z.

The evolution of the peak normalized laser field strength as a function of the propagation
distance z is depicted in fig. 4.9 for the different simulations. In all the cases, there is a main
peak corresponding to a first important self-focusing of the laser at the entrance of the plasma.
Then the maximal intensity starts to modulate corresponding to an alternation of focusing and
defocusing which is a common behavior in self-guided propagation. The laser in the simulation
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Figure 4.10: Evolution of total charge of tracked particles.

with Geq in near field (green) starts focusing earlier than the others and exhibits a higher main
peak due to its higher initial a0. All the super-Gaussian lasers self-focus almost at the same time
in the beginning. Yet, the super-Gaussians with a hole defocus earlier than the SG no hole. On
the other hand, the Geq in far field (brown) self-focuses a bit later than them and takes longer to
defocus and thus to refocus afterwards. However, the self-modulation of all the lasers becomes
comparable beyond 12.5 mm of propagation.

The same initial a0 for the SG no hole (red) and the Geq in far field (brown) with comparable
waists indicate that they have approximately the same power contained in the central part of
the laser while the additional power in the case of the SG no hole is contained in the wings.
Nevertheless, the SG no hole has a higher maximal intensity in the first self-focusing. Therefore,
one can conclude that the energy in the wings of the super-Gaussian contributes to the self-
focusing process. It has been previously reported in [Vieira et al., 2012] that super-Gaussian
profiles may lead to a more effective self-guiding in the blowout regime. The SG hole (pink) has
the same a0 as the SG no hole (red) and even a higher total power. Yet, with the same radius
in the near field, it has a slightly smaller waist. This means that the hole leads to less energy
in the central part of the laser and to more energy diffracted in the wings as it can be seen in
fig. 4.8. Therefore, the SG hole same a0 leads to a less important maximal intensity in the first
self-focusing phase. This suggests that even though the energy in the wings may contribute to
the self-focusing, a high ratio of the maximal intensity in the wings to the main peak intensity
may lead to a less intense self-focusing. This is the case for example for the SG hole same a0
and SG hole same P, where the hole leads to an increase of the energy portion in the wings.

In fig. 4.10, the evolution of the total charge of tracked electrons is plotted. A tracked
particle is a particle whose position and momentum are saved and updated for the rest of the
simulation once its normalized longitudinal momentum verifies the condition pz/mec > 50. Fig-
ure 4.11 reports the evolution of the energy spectrum of the tracked electrons as a function of
the propagation distance.

The charge of the tracked electrons depends intrinsically on the self-focusing process during
the propagation of the self-guided laser. The early self-focusing and the high peak in the normal-
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4.2. Study on the presence of a hole in the laser’s near-field with a theoretical fit

ized laser field strength, in the case of Geq in near field, results in an earlier (around 0.75 mm)
but also a more important injection in the beginning of the propagation that can be seen in both
fig. 4.10 and in fig. 4.11. The injection in the super-Gaussian cases starts almost at the same
time which is 2 mm later than the Geq in near field. The Geq in far field is the last to start the
injection, due to the small delay in its self-focusing. All the curves reach a plateau afterwards
which means that the injection has temporarily stopped. A second and longer injection in time
starts due to the refocusing and modulation of the self-guided lasers, until reaching a second
plateau at the end of the propagation towards 20 mm of propagation. However, these three
phases do not start at the same time for all the cases. For example, the first injection in the
cases where there is a hole stops slightly before the SG no hole because they have a shorter
self-focusing duration. Also, the second injection starts first for the Geq in near field then for the
super-Gaussians and finally for the Geq in far field.

From fig. 4.11, we can see that the bunch starts to be well established (dQ/dE has an
important value and has a narrow extent meaning a low energy spread) around 7.5 mm of
propagation for all the simulations except for the one with Geq in near field where the bunch
is well established at around a propagation distance of 6.25 mm. These distances, designed by
bullets in fig. 4.10, also correspond to the beginning of the first plateau in the total charge of the
tracked particles. In order to make sense of the comparison of the bunch characteristics between
the different cases, it is essential to consider the bunch-related quantities only after these points
when the bunches are properly defined.

Bunch-related quantities

For this set of simulations, the comparison between the bunch-related quantities starts from
6.25 mm of propagation where the bunch is determined using the FWHM bunch definition
introduced in chapter 1.

Bunch charge

By comparing the total charge in fig. 4.10 and the bunch charge in fig. 4.13, one can notice
that a lot of particles that were tracked are not actually part of the bunch but rather of the
dark current [Schroeder et al., 2006]. This is particularly true for the Geq in near field (green).
Despite the fact that it has the highest value of the total charge of tracked electrons, a large
part of that charge is outside of the bunch definition. This can be seen in fig. 4.12 which shows
the energy spectra of the electrons after 8.5 mm of propagation. The bunches are delimited by
the vertical lines corresponding to 2 FWHM around the peak. In the case of the Geq in near
field, the high energy part of the distribution has a low charge that is not included in the defined
bunch. On the other hand, the SG no hole (red) has the least dark current and most of the
electrons distribution sits inside the delimiting area of the bunch definition.

The injected quantity of charge depends on the evolution of the maximal laser intensity inside
the plasma resulting from the self-focusing process which is conditioned to the first order by the
power contained in the center of the laser. However, as mentioned before, the power in the
wings can also contribute to the self-focusing. For instance, the SG no hole (red) reaches a more
important maximal intensity in the first self-focusing phase than the other super-Gaussians with
a hole. Therefore, it has a higher bunch charge. This has been also observed in [Michel et al.,
2006a] where the authors report that laser profiles exhibiting higher Laguerre-Gauss modes, and
thus have a portion of their energy outside the central part, may result in a higher injected charge
when they are properly tailored.

The presence of the hole in both cases, where the SG profiles have either the same a0 or
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Figure 4.11: Evolution of dQ/dE as a function of the acceleration distance z and the energy.

the same power P as the SG no hole, results in a lower bunch charge. Precisely, with the same
focusing duration, the SG hole same P (blue) has a lower maximal intensity and thus a lower
bunch charge compared to the other SG with hole (pink).

By comparing SG no hole (red) and SG hole same a0 (pink), one can remark that with almost
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Figure 4.12: Energy spectra of the electron bunches, after 8.5 mm of propagation.
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Figure 4.13: Evolution of the bunch charge Q as a function of the acceleration distance z.

the same power contained in the central peak but a higher energy in the wings, the maximal
intensity reached with the self-focusing is less important and thus leads to less injected charge.
Now, by comparing SG no hole (red) and SG hole same P (blue), one can see that with the same
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after 3 mm of propagation.
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Figure 4.15: Evolution of the bunch’s peak energy as a function of the acceleration distance z

total power in the overall laser but with less power in the center and more power in the wings
also leads to less efficient self-focusing and thus less injected charge. Since the self-focusing is
related to the ratio of the initial maximal intensity in the wings to the initial maximal intensity
in the central in the case of super-Gaussians, a high ratio may lead to a less efficient injection.
Thus, increasing the fraction of pulse energy contained within the central part of the focal spot
while keeping the total energy and central spot size constant, can increase the amount of energy
transferred to the wakefield and thus enables a more important injected charge [Genoud et al.,
2013]. In fact, when the fraction of energy in the wings is sufficiently important, it can self-focus
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Figure 4.17: Evolution of the bunch’s absolute energy spread as a function of the acceleration
distance z.

and act like a secondary laser pulse which drives its own wakefield [Nakanii et al., 2016]. This
can be seen in fig. 4.14 which displays the colormap of the normalized longitudinal electric field
in the case of SG hole same a0 (pink) around 3 mm of propagation. In this case, the interaction
between the wakefield of the main pulse and the wakefield driven by the wings interact together
and may lead to instabilities that can lead to a less efficient self-focusing and therefore a lower
amount of injected charge.
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Figure 4.18: Evolution of the RMS longitudinal size of the bunch as a function of the acceleration
distance z.
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Figure 4.19: Evolution of the RMS transverse size of the bunch in y as a function of the accel-
eration distance z.

Bunch energy

The peak energy of the bunch presented in fig. 4.15 reflects the efficiency of the energy transfer
from the laser to the wakefield and thus to the electrons.

The Geq in near field (green) is the first case where the self-focusing starts and thus the
physical processes involved (such as bubble formation) also occur first, which triggers an earlier
injection. Therefore, these electrons are accelerated over a longer distance. This explains why
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Figure 4.20: Evolution of the bunch’s divergence as a function of the acceleration distance z.
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Figure 4.21: Evolution of the bunch’s transverse emittance as a function of the acceleration
distance z.

in the beginning of the peak energy plot there is a delay between the Geq in near field and the
other cases where the injection occurs later. This delay is significantly reduced afterwards for
longer acceleration distances.

The trend in the energy peak plot is mainly correlated to the start of the injection. However,
the SG hole same P (blue) has the higher energy peak. In fact, in this case the hole seems to
help optimizing the conditions for wake excitation. The portion of the laser pulse laying in the
wings modifies, by its driven wake, the bubble properties and therefore enhance its accelerating
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field in some cases [Vieira et al., 2012; Lu et al., 2006b].

Transverse quality of the bunch

In fig. 4.17, the absolute energy spread is increasing with the propagation distance z. However,
the relative energy spread (fig. 4.16) corresponding to the absolute energy spread divided by the
bunch’s peak energy decreases, because the peak energy Epeak (fig. 4.15) increases.

The increase in the absolute energy spread in this scenario is explained by the fact that the
resulting bunches are relatively long (∼ 2.5 µm). Due to the difference between the accelerating
field experienced by the front and the back of the bunch, the energy spread tends to increase. In
fact, the electrons situated at the back of the bunch experience a higher accelerating field and
they already have a higher energy. This is confirmed by comparing the trend in the longitudinal
rms-length of the bunch (fig. 4.18) and the absolute or relative energy spread (fig. 4.17 and
fig. 4.16) between the different laser profiles. For instance, the SG no hole (red) has the longer
bunch and the most important energy spread among all. From fig. 4.18, we can also see that
the presence of the hole leads to a shorter bunch and hence a better energy spread. In fact, the
hole causes the injection to stop earlier. Therefore, a shorter injection in time leads to a shorter
bunch.

The decrease in the longitudinal rms bunch size can be explained by the rotation of the bunch
in phase-space (z, pz) which in return is also responsible for the energy spread growth. In fact,
electrons at the back of the bunch have a higher energy and a higher velocity thus slowly catch
up with the electrons at the front.

The different bunch-related quantities increase suddenly around 10− 12 mm of propagation
with some delay between the different cases. This increase corresponds approximately to the
beginning of the second self-focusing as it can be seen in fig. 4.9. In fact, the second injection is
the consequence of a change in the bubble structure. Accordingly, the accelerating and focusing
fields felt by the electrons in the bubble also change abruptly which affects the properties of the
bunch such as its divergence, transverse size and emittance.

However, this effect vanishes later when the fast modulations start. One can see that these
modulations from the successive focusing and defocusing lead also to modulations in the prop-
erties of the bunch. This can be confirmed by comparing the period of the two modulations
(∼ 2 mm). This is also related to the FWHM bunch definition which is very sensitive to the fast
variations in the electrons energy spectrum resulting themselves from the laser modulations.

Due to these modulations, it is hard to distinguish clearly the impact of the hole or the
non-Gaussian features on the divergence and on transverse size of the bunch except for the Geq

in near field (green) which has the highest values. The SG hole same P (blue) has a slightly
more important transverse size and divergence in its bunch.

Finally the transverse emittance, which is an important key parameter to estimate the bunch’s
transverse quality is illustrated in fig. 4.21. It concatenates the energy spread, the divergence
and the transverse bunch size in one relevant quantity.

We recall the expression of the normalized emittance:

ǫ2x,n,rms =
∆E2

m2
ec

4
σ2
xσ

′2
x + 〈γ〉2ǫ2 (4.11)

where ∆E is the energy spread, σx is the bunch size, σ′
x is its divergence, 〈γ〉 is the average

relativistic factor and ǫ is the un-normalized emittance, one can analyze the correlation between
these terms for the previous plots.

In conventional accelerators, the first term is negligible and ǫ2x,n,rms ≈ 〈γ〉2ǫ2 and remains
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4.3. Influence of experimental laser imperfections on laser wakefield acceleration

almost constant thanks to the small value of the energy spread and divergence. However, this is
not the case in LWFA where the first term becomes the leader one because of the high values of
the energy spread and in the divergence of the produced bunches.

From fig. 4.21, the two cases of the super-Gaussian with a hole (blue and pink) have a more
important slope and a higher emittance compared to the SG no hole (red) or Geq in far field
(brown) cases. Therefore the hole leads to a slightly worse overall quality of the bunch in the
case of long propagations.

4.2.4 Conclusions

From the previous results, lasers exhibiting high-order Gaussian profiles may lead to a better
self-focusing and thus to higher bunch charges. However, when the ratio of the maximal intensity
in the wings to the intensity in the center of the pulse becomes important, it can lead to less
efficient self-focusing and therefore less charge. This is the case for example with the lasers
presenting a hole where the hole leads to a more important energy diffracted in the wings.

In fact, the hole in the Apollon laser leads to a shorter self-focusing thus a shorter injection.
This results in a shorter bunch with a lower energy spread. The hole also leads to a higher
divergence and promotes the transverse emittance growth. Nevertheless, the results are not
drastically different and the hole influence is not very important over a long propagation distance
like the one presented in this study. Therefore, this technical choice in the design of the Apollon
laser is justified at the cost of a small degradation in the bunch quality.

4.3 Influence of experimental laser imperfections on laser wake-

field acceleration

4.3.1 Motivation

Laser wakefield acceleration (LWFA) has been demonstrated as an established technique for
accelerating electrons efficiently via the interaction of a femtosecond-scale laser pulse with a
plasma. The continuous progress in increasing the laser power made it possible to exceed the
critical power for relativistic self-focusing [Sun et al., 1987] (P/Pc > 1), hence the laser pulses
can be self-focused over several Rayleigh lengths. The region where the laser is self-focused
triggers a highly nonlinear plasma wave in which plasma electrons are trapped and accelerated
to relativistic energies in millimeter distances. Nowadays, the highest acceleration gradients are
reached in the bubble regime (section 1.4.2) allowing the generation of multi-GeV electrons. Ow-
ing to its simplicity, self-injection (section 1.5.2) is definitely the least experimentally demanding
[Benedetti et al., 2013], thus the most commonly used mechanism to produce multi-GeV electrons
[Malka, 2013].

However, the self-injection technique offers little control on the injection process because it is
very sensitive to both the conditions of the plasma and laser. One major limitation of the particle
accelerators based on this technique, compared to conventional accelerators, is the shot-to-shot
reproducibility of the beam charge, energy and emittance. The injection process is a key factor
to determine the final bunch properties. This emphasis the importance of establishing a more
stable and controllable self-injection in order to generate laser-driven electron bunches that meet
the requirements in terms of high charge, low emittance and low-energy spread simultaneously.

The improvement of this injection scheme relies intrinsically on understanding the sensitivity
of the accelerator’s performance to deviations from the ideal physics. In fact, tightly focused
femtosecond laser pulses used to accelerate the electrons from the plasma have a complicated
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structure with asymmetries in the laser’s focal spot, aberrations in the wave front and variations
in the temporal profile of the pulse. These imperfections affecting the laser pulse propaga-
tion [Kaluza et al., 2010; Glinec et al., 2008], also affect the self-injection processes and may
lead to poor bunch quality [Ferri et al., 2016; Vieira et al., 2012]. Nevertheless, it has been
demonstrated that laser profiles exhibiting higher order Laguerre-Gauss modes may lower the
self-trapping thresholds when they are properly tailored [Michel et al., 2006a] and that laser
profile imperfections can promote the production of betatron oscillations [Glinec et al., 2008;
Mangles et al., 2009; Ferri et al., 2016].

Kinetic simulations provide an ideal venue to investigate and help understanding the response
of the LWFA to laser imperfections as it allows to deliberately control the shape of the introduced
laser pulse and its associated phase.

So far, most of the theoretical and numerical studies dealing with realistic laser pulses used
either higher order Laguerre–Gaussian transverse profiles [Vieira et al., 2012; Genoud et al., 2013]
or theoretical fits of the experimental measure: a combination of two Gaussian pulses with the
same duration was used in [Nakanii et al., 2016] to mimic the halo effect by shifting the center
of the second lower-energy pulse from the axis of the first pulse in the transverse direction. In
[Maslarova et al., 2019], the laser beam has been chosen to fit a profile that reaches the super-
Gaussian in the focus and in [Cummings and Thomas, 2011] the presence of comatic aberration
is modeled by modifying a Gaussian pulse and adding some terms from the expansion of Bessel
functions and Zernike Polynomials in the diffraction integral.

In this section, the impact of realistic laser imperfections on the electron bunch formation
by the self-injection technique in the bubble regime, is studied numerically via fully relativistic
particle-in-cell (PIC) simulations. In this study, the experimental wave front measured in the
Apollon laser as well as its intensity profile are included in the simulation and their influence
is studied by comparing the results to that of a theoretical fit of the intensity profile with a
super-Gaussian along with a flat wave front. Firstly, the simulations carried in 3D Cartesian
geometry are compared to evaluate the impact of the laser aberrations on the bunch properties.
Subsequently, the same simulations are reproduced in the quasi-cylindrical geometry while vary-
ing the number of modes. Then, the sensitivity of the results to the inclusion of higher modes is
investigated, by comparing them to the 3D reference simulations.

4.3.2 Effect of realistic laser profiles on 3D Cartesian simulations

In order to enlighten the origin of some trends that may be found in the future experiments
of LWFA with the Apollon laser, 3D Cartesian simulations are performed in the bubble regime
with the self injection scheme for different laser profiles. In the first scenario, the experimental
measure of the intensity laser profile is fitted with a super-Gaussian of order 4 and a flat wave
front is assumed. In the second case, the same super-Gaussian fit is used but with the measured
wave front. Finally, both the experimentally measured intensity profile and wave front are used.

In the following, first the method of realizing the experimental acquisition and the numerical
settings are described. Then, the simulation results on the laser propagation and focusing as well
as the electron injection and acceleration are compared. Finally, the influence of the realistic
parameters on the simulation are discussed and the conclusions are stated.

Experimental data acquisition and numerical modeling

The experimental data measurement was carried using the Apollon laser facility in Saclay, France.
The laser system delivers a linearly polarized pulse of 0.8 µm wavelength with a 25 fs FWHM
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Figure 4.22: (a) and (c) are respectively the super-Gaussian fit SG4 of the intensity profile
and the measured wave front in the near field corresponding to (b) and (d) in the far field at
z = f − 5× 10−4 m.

duration and a total energy of 15 J corresponding to 600 TW power. The experimental results
were obtained in the near field after the reflection on the mirror with the hole represented in
fig. 4.4.

From shot to shot, the intensity profile in the near field does not vary that much while
the wave front does fluctuate. Therefore, The wave front measurement is averaged on over
10− 100 shots to have a representative case of the Apollon beam systematic defaults. Note that
spatio-temporal distortions i.e spatial dependencies of the temporal properties are not taken into
consideration and that the wave front is also averaged over its spectrum.

The raw data from the camera in the near field was interpolated into the computational
grid using a quadratic interpolation function taking into account the number of pixels of the
camera and the pixel size. Using Fresnel diffraction described in section 4.1, the laser profile in
the near field is then focused and propagated up to the far field at the beginning of the plasma
target z = f − 5 × 10−4 m where f denotes the focal length of the spherical mirror. Given
the information about the laser intensity profile and phase, Fresnel propagation allows a correct
calculation of the laser field at any point close enough to the focal plane. Apollon facility offers
the possibility of using two focal lengths of 3 m and 9 m. For the upcoming results, the study is
carried with the focal length of 3 m, resulting in a tightly focused laser spot size w0 ∼ 15.5 ≈ µm
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Figure 4.23: (a) and (c) are respectively the experimentally measured intensity profile and wave
front in the near field corresponding to (b) and (d) in the far field at z = f − 5× 10−4 m.

which corresponds to a FWHMI ≈ 25.8 µm.
The intensity profile and the corresponding wave front are shown in near field and far field

for the case of super-Gaussian fit with the measured wave front in fig. 4.22 and for the case of
the measured intensity and wave front in fig. 4.23.

In the following, the three cases are referred to as: SG4 + φflat for the super-Gaussian fit of
order 4 assuming a perfectly flat wave front (null phase), SG4+φmeasured for the super-Gaussian
fit of order 4 with the measured wave front and I + φmeasured for the experimentally measured
intensity and wave front.

In all the three configurations, the laser beams have the same duration and contain the same
total energy which corresponds to the remaining energy after the reflection on the mirror with
the hole where a fraction of the energy is lost (∼ 12%). Their waists are also kept close to each
other by adequately fitting the super-Gaussian profile to the intensity measurement in the near
field, so that only the introduction of the measured wave front and imperfections in the intensity
profile are responsible for the differences observed in the results.

The 3D cartesian PIC simulations with the different transverse laser profiles are carried out
using the code Smilei in a 6400 × 640 × 640 moving window with cell dimensions of 0.1 c/ω0

in the longitudinal direction and 2.5 c/ω0 in the transverse direction and 4 particles per cell.
The simulations start with the laser at z = f − 5 × 10−4 m so that the focal plane is situated
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4.3. Influence of experimental laser imperfections on laser wakefield acceleration

at the end of the 500 µm rising ramp of the pre-ionized plasma plateau of an electronic density
ne = 8.6 × 1017 cm−3. The simulation results are compared up to 1.9 mm of propagation
corresponding to ∼ 2 Rayleigh length (Zr ≃ 0.94 mm). This distance is limited by the end of
the self-guiding.

Laser focusing and electron acceleration results

First, we start investigating the evolution of the energy spectrum of the trapped electrons. An
example for the three simulations after a propagation of 1.9 mm is shown in fig. 4.24. The
first remarkable difference between them is the presence of a low charge high energy bunch of
electrons only in the case of SG4 + φflat which is probably originating from an early longitudinal
injection [Corde et al., 2013].
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Figure 4.24: Energy spectrum of the electron bunches, after 1.9 mm of propagation. The shaded
areas in grey correspond to the selected parts for which the bunch-related quantities are evaluated
and compared.

In order to accurately compare the quantities related to the different resulting bunches, this
first longitudinal injection is neglected as it entirely vanishes in the two other simulations. In
the following analysis, the bunch-related quantities are evaluated only for the main high charge
bunches designated by the grey shaded area in fig. 4.24.

To begin, the focusing effect of the different lasers is examined by plotting the evolution of
the peak normalized laser field strength amax as a function of the propagation distance fig. 4.25.
In all cases, the maximal intensity first increases when the laser self-focuses at the entrance of
the plasma, then decreases when the laser is defocused. However, the laser is not well self-guided
later in the plasma and diffracts quickly which limits the acceleration length to 1.9 mm in these
simulations.

The self-focusing process begins approximately at the same time for the different profiles.
Nevertheless, the initial value of a0 is lower when the experimental features are introduced
(a0 ≃ 7.5 for SG4 + φflat , 6.5 for SG4 + φmeasured and 6.75 for I+φmeasured). The transverse
laser profiles in the far field presented in fig. 4.26 being different, the laser intensity peak is also
different in these three cases.

This difference is due to the diffraction of a portion of the laser energy in the wings, out of
the central spot, when it propagated from the near field to the far field. Thus, this fraction of
energy does not contribute initially to the maximal intensity leading to a less important initial
a0.
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Chapter 4. High fidelity simulations using realistic Apollon laser profile

Figure 4.25: The top left panel shows the evolution of the peak normalized laser field strength
amax. The other panels show the evolution of the bunch-related quantities as a function of the
propagation distance z.

With the same initial power in the near field and a similar spatial distribution of the laser in
far field, the small difference in the initial a0 between SG4+φmeasured and I+φmeasured is explained
by a compensation of the diffracted portion of the laser power in the wings introduced by the
inhomogeneities in the intensity profile. In fact, in the case of I+φmeasured the correctly focused
area from the near field carries in average more intensity compared to the case of SG4+φmeasured.

Due to the introduction of the realistic wave front, the laser self-focusing evolution is modified.
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Figure 4.26: From left to right: the laser transverse field of the SG4 + φflat, SG4 + φmeasured and
I+φmeasured in near field (top panels) and in far field at z = f − 5× 10−4 m with f = 3 m (lower
panels).

Despite the difference in the initial value of a0, the laser self-focusing is quicker when the realistic
wave front is introduced in either SG4+φmeasured or I+φmeasured (note the difference in the slope).
In fact, the initial gap in the intensity between SG4 + φflat and the realistic profiles is gradually
reduced during the self-focusing, suggesting that a part of the energy contained in the outer
part is actually self-focused and guided by the plasma. Therefore, it eventually contributes to
the physical processes involved in LWFA like bubble formation and electron acceleration. The
maximal intensity with realistic features reaches a comparable, yet slightly inferior, value to the
one found with a flat wave front. The effect of the portion of the laser pulse energy situated out
of the focus spot, referred to as halo effect has been investigated experimentally and numerically
in [Nakanii et al., 2016]. In their paper, they demonstrate that the halo of the pulse can be
self-focused and thus can also contribute in the self-injection process, given that it has enough
power itself.

The gap in the initial a0 between SG4 + φmeasured and I+φmeasured is conserved during the
focusing phase of the laser. However, it is slightly reduced during the defocusing phase. This
suggests that the wave front effect is dominant compared to imperfections related the intensity
profile.

Because of the lower intensity peak in the realistic profiles during their propagation in the
plasma, the effective energy transferred from the laser into the plasma is less important resulting
in the generation of a wakefield with a lower amplitude. Even though the energy in the wings
of laser spot is partially self-focused, the rest of it is actually wasted and not coupled into the
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plasma wave [Genoud et al., 2013]. Therefore, the quantity of the injected charge is less important
when the imperfections of the experimental laser is added (∼ 30% less than SG4 + φflat). Since
the simulations are carried in the blow-out regime, electrons are almost completely expelled
from the region behind the laser pulse around its propagation axis. As a result, an ion cavity
surrounded by an electron sheath is formed behind the pulse. This sheath creates a separation
between the bubble and the surrounding plasma and bends the laser-pulse wave fronts outwards
for r ∼> w0 ∼ Rb, and inwards for r ∼< w0 ∼ Rb (Rb is the maximal radius of the bubble). Hence,
the blowout region acts as a spatial filter of the laser pulse by confining the main pulse only
while the rest of the pulse is lost via diffraction and pump depletion and does not contribute to
electrons acceleration [Vieira et al., 2012].

Besides, by looking at the different quantities related to the bunch properties in fig. 4.25
around 1.6 mm of acceleration, one can see that the laser imperfections lead to some differences
in the quality of the bunch. The inhomogeneities in the laser pulse lead to a distorted wakefield
whose focusing and defocusing properties may affect the electron distribution. As a consequence,
the corresponding distribution of accelerated electrons is less collimated than that in the case of
SG4+φflat. Despite the lower injected charge, the realistic profiles lead to a slightly higher value
of divergence.

By evaluating the terms in eq. (4.11), the transverse emittance is rather governed by the
energy spread for these cases. As a result, the same trend is found in the energy spread and
the transverse emittance. For example SG4 + φflat has the highest value of energy spread and
thus of transverse emittance. Counter-intuitively, the laser imperfections in this case lead to an
enhanced transverse beam emittance particularly in the y−direction where the profiles are more
distorted in far field. This has been also observed in the simulations conducted in [Cummings
and Thomas, 2011] where the wings are referred to as coma aberration. This enhancement can
be explained by the difference in the quantity of injected electrons. The aberrations introduced
by the experimental profiles also drive a longer bunch yet smaller transversely.

The differences in the quantities indicating the quality of the bunch are considerably reduced
afterwards around 1.9mm of acceleration especially between the SG4+φmeasured and I+φmeasured.
This puts forward the sensitivity of the electron beam distribution to the laser wave front rather
than the intensity profile itself [Beaurepaire et al., 2015]. In fact, by examining closely the
transverse laser profiles in the far field of SG4+φmeasured and I+φmeasured, there is an important
resemblance between the far-field laser profiles in the two cases. Therefore, most of the spatial
inhomogeneities are rather dictated by the laser wave front distortions.

It also demonstrates the role of the plasma to filter the spatial asymmetries of the transverse
wakefield by homogenizing it during the laser propagation. Indeed, the halo of the pulse once
self-focused, gives rise to its own wakefield. Because of the difference in the size between the halo
and the main laser pulse, the angle of the generated wakefield is different and the interaction
between the different wakefields induces some instability at the beginning.

However since the energy contained in the wings is way lower than that of the central part, it is
quickly depleted in the plasma leading to a smoother propagation afterwards when the fraction
of this energy is dissipated in the plasma. Therefore, the broad distribution of the electrons
beam becomes more collimated and its divergence is decreased under the effect of the strong
self-focusing field inside the bubble. This is illustrated in fig. 4.27a and fig. 4.27b which show

the normalized transverse laser field E⊥/E0 with E⊥ =
√

E2
x + E2

y and E0 = mecω0/e and the

transverse electron distributions in (θx, θy) for respectively 1.2 mm and 1.9 mm of propagation.
Figure 4.27b shows that the aberrations in the transverse wakefield are self-corrected by the

plasma response, leading to a stable propagation and little deviation in the electron distributions.
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Figure 4.27: From left to right: simulations results for the SG4 + φflat, SG4 + φmeasured and
I+φmeasured. The top panels are the cross-sections of the normalized transverse fields E⊥/E0

where E0 = mecω0/e and the lower panels are the distribution of the electron bunches in (θx, θy)
in (a) after 1.2 mm and in (b) after 1.9 mm of propagation.
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Discussion and conclusion

In this study, the effects of realistic laser profiles have been numerically investigated where both
the experimental intensity distribution and wave front are used as input in the simulations. The
results are compared with a super-Gaussian profile of order 4 along with a perfectly flat wave
front.

Keeping the total laser energy constant, the introduction of realistic features results in a
significant drop in the quantity of the injected charge. This clearly emphasizes the limitation of
using standard profiles in simulations and put forward the importance of the wave front impact
which can be deleterious to the results. It has been shown that the wave front distortions in the
near field play an important role in shaping the asymmetries and inhomogeneities present in the
laser’s far field[Leemans et al., 2014]. These imperfections in the laser pulse result in a complex
wakefield pattern that in return influence the electrons injection process and their quality.

This suggests the possibility of boosting the electron bunch quality by properly tailoring the
laser wave front, which can be achieved by using a deformable mirror as proposed in [He et al.,
2013, 2015]. Presently, the main solution to increase the electron charge or energy relies on rising
the laser power. However, this analysis emphasizes the benefit of improving the quality of the
laser in far field [Genoud et al., 2013; Mangles et al., 2012]. By controlling the wave front, the
pulse energy contained within the central part of the focal spot can be increased while keeping
the total energy constant resulting in a better coupling with the plasma and a more efficient
energy conversion to the accelerated electrons.

It also has been demonstrated that the plasma plays an important role to focus and guide a
portion of the energy in the wings. In [Ferri et al., 2016], this role is highlighted by examining
the position of the focal plane with respect to the plasma. A better guiding was found by moving
the focal plane further inside the plasma explained by an increase in the homogeneity of the laser
spot.

4.3.3 Effect of realistic laser profiles on quasi-cylindrical simulations

In chapter 3, it has been shown that any linear combination of linearly polarized lasers E =
E0(r, z)eα with a cylindrically-symmetric envelope, i.e E0 does not depend on θ, can be modeled
exclusively by the mode m = 1 (3.5). On the other hand, in LWFA the plasma response to a
cylindrically-symetric laser envelope is also cylindrically-symetric. In fact, the wake is driven
by the ponderomotive force which depends only on the envelope of the laser. Therefore, it
is dominated by the mode m = 0. Therefore, the infinite sum of modes in eq. (3.3) can be
truncated at the first two modes since only the modes m = 0 and m = 1 are necessary to model
laser-wakefield acceleration in this case.

However, ultra-short laser pulses with TW-PW powers are far from being ideal Gaussian
beams as it is supposed in most of the theoretical and numerical studies. Furthermore, in the
previous section it has been demonstrated that even a fit with an axis-symmetric profile such
as a super-Gaussian with a flat wave front is not enough to accurately model the electrons
acceleration in LWFA. This definitely highlights the importance of the wave front effects and the
imperfections in the intensity profiles which result in complex non-homogeneous structures like
the ones presented in fig. 4.26.

In order to accurately model more realistic lasers with the quasi-cylindrical geometry, two
modes are not sufficient and it is crucial to include higher modes [Zemzemi et al., 2020]. This
is why, mmax the maximal number of modes that can be used is kept as a free parameter in the
code.
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4.3. Influence of experimental laser imperfections on laser wakefield acceleration

In this section, the influence of laser aberrations on azimuthal Fourier modes decomposition is
studied. The optimal number of modes to describe accurately the realistic laser profiles presented
in the previous section is first defined. Then, simulations are run with different modes. Finally,
the impact of including higher modes on the simulation results is investigated and the ability of
the quasi-cylindrical scheme to reproduce the 3D results is tested by comparing them.

Azimuthal modes decomposition from Cartesian data

In Smilei, the laser field is injected by imposing a corresponding magnetic field at the injection
boundary using Silver-Muller condition. This condition has been adapted to inject each mode of
the corresponding components in cylindrical geometry, separately as described in section 3.2.3.
In the following, we consider a linearly polarized laser pulse along ey and propagating in z
direction.

In order to proceed with the azimuthal modes decomposition, we first start by a canoni-
cal transformation to change the variables in the transverse plane into cylindrical coordinates
(x, y) 7−→ (r, θ). Therefore, the fields that were initially on a (Nx, Ny) Cartesian grid are trans-
formed into a (Nr, Nθ) grid. Subsequently, the field By is projected onto the the plane (r, θ) to
get the corresponding components Br and Bθ. Since the fields are sampled with a finite number
of points, we apply thereafter a Discrete Fourier Transfrom (DFT) on the θ direction in order
to obtain the different modes. Originally, the DFT operator returns both negative and positive
modes then the result is rearranged in order to work with only positive modes according to
eq. (3.3) where fields modes are designated by F̃m.

In the following we will simply use B to designate either of the components Br or Bθ as the
exact same principal can be applied in both cases. The injected field B is defined as:

B(r, θ, t) =B0(r, θ) cos(φ(r, θ)− ω0t)

=B0(r, θ) (cos(φ(r, θ)) cos(ω0t) + sin(φ(r, θ)) sin(ω0t)) (4.12)

Thanks to the linearity of the DFT operator we can write:

DFTθ(B(r, θ, t)) = DFTθ [B0(r, θ) cos(φ(r, θ))] cos(ω0t) + DFTθ [B0(r, θ) sin(φ(r, θ))] sin(ω0t)
(4.13)

Using the complex notation, B = B0(r, θ)e
iφ, we can write ℜ(B(r, θ)) = B0(r, θ) cos(φ) and

ℑ(B(r, θ)) = B0(r, θ) sin(φ).
The equation (4.12) can be decomposed in azimuthal Fourier modes using eq. (3.3):

B(r, θ, t) =
+∞
∑

m=−∞
ℜ̂(B)m(r, θ)e−imθ cos(ω0t) +

+∞
∑

m=−∞
ℑ̂(B)m(r, θ)e−imθ sin(ω0t) (4.14)

=
[

ℜ̃(B)0(r, θ) +
∑+∞

m=1ℜ
(

ℜ̃(B)m(r, θ)
)

cos(mθ) + ℑ
(

ℜ̃(B)m(r, θ)
)

sin(mθ)
]

ℜ(B)

cos(ω0t)

+
[

ℑ̃(B)0(r, θ) +
∑+∞

m=1ℜ
(

ℑ̃(B)m(r, θ)
)

cos(mθ) + ℑ
(

ℑ̃(B)m(r, θ)
)

sin(mθ)
]

ℑ(B)

sin(ω0t)
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In practice, the infinite sum is replaced with a finite number of modes with mmax is the
highest mode index such that the total number of modes Nm = mmax + 1. In fact, the latter
is conditioned by the number of points Nθ to discretize the field in θ direction (Nm ≤ Nθ/2 ).
To ensure an exact description of the field, Nθ should be chosen large enough. According to a
convergence study that is not presented here, the results are converged with Nθ = 400 points,
which correspond to 200 modes (Nθ = 2Nm).

However, we are interested in a low value for Nm in order to limit the cost of the simulation
and to benefit from the use of this reduced model. In order to determine the optimal number of
required modes for an accurate description, we would like to identify the smallest number that
minimize the error between the actual laser field and the reconstructed field by fixing a threshold.
The reconstructed field is obtained by the truncation of the the infinite sum in eq. (4.15) up to
mmax modes.

The decomposition procedure described by eq. (4.15), can be divided into two identical and
independent steps one for the real part and the other for the imaginary part denoted respectively
by ℜ(B) and ℑ(B) where B ∈ {Br,Bθ}. Therefore, the reconstruction of each part of each
component can also be performed separately. Then the reconstructed fields, denoted by the index
rec are transformed into the Cartesian frame where the error is calculated Fy,rec = Fr,rec sin(θ)+
Fθ,rec cos(θ) with F ∈ {ℜ(B),ℑ(B)} (in our case the laser is fully described by its By component
and Bx=0).

By,rec(r, θ, t) = Br,rec(r, θ, t) sin(θ) +Bθ,rec(r, θ, t) cos(θ)

= (ℜ(B)r,rec(r, θ) cos(ω0t) + ℑ(B)r,rec(r, θ) sin(ω0t)) sin(θ)

+ (ℜ(B)θ,rec(r, θ) cos(ω0t) + ℑ(B)θ,rec(r, θ) sin(ω0t)) cos(θ)

= (ℜ(B)r,rec(r, θ) sin(θ) + ℜ(B)θ,rec(r, θ) cos(θ))
ℜ(B)y,rec

cos(ω0t)

+ (ℑ(B)r,rec(r, θ) sin(θ) + ℑ(B)θ,rec(r, θ) cos(θ))
ℑ(B)y,rec

sin(ω0t) (4.15)

Determination of the optimal number of modes

To illustrate the influence of the number of modes, the results of the decomposition in the case
of both the experimental intensity and wave front I + φmeasured are presented.

Qualitatively, from the reconstructed real part of the field in fig. 4.28a and imaginary part
in fig. 4.28b, one can remark that the more modes are taken into account, the closer they get
to the exact laser field and the more asymmetry appears. For example, the 2 modes (mode 0 +
mode 1) reconstructed field has an almost axis-symmetric envelope and a homogeneous intensity
distribution surrounding the main spot. However, more contrast and heterogeneity appear in
this area with a higher number of modes.

Even though including higher modes in the reconstruction process is important to repro-
duce the heterogeneity in the field distribution, fig. 4.29a and fig. 4.29b show that most of the
energy is contained in mode 1, which is the only non-zero mode in the case of a linearly polar-
ized cylindrically-symmetric laser. On the other hand, small portions are unequally distributed
between the rest of the modes: lower modes have more energy than the higher ones whose
contributions decrease with the mode index (note the different color bars for each panel).
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(a) Reconstructed real part of the laser field.
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(b) Reconstructed imaginary part of the laser.

Figure 4.28: Reconstructed real part (a) and imaginary part (b) of the I+φmeasured laser normal-
ized to B0 = meω0/e for different number of modes Nm.
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(a) Reconstructed real part of the laser for each mode m.
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(b) Reconstructed imaginary part of the laser for each mode m.

Figure 4.29: Reconstructed fields of the real part (a) and imaginary part (b) of the I+φmeasured

laser normalized to B0 = meω0/e for different separate modes m.

In order to determine the optimal number of modes, the analysis presented next is based on
the estimation of the energy norm. This analysis is a crucial step to determine the number of
modes that will be plugged in the simulations of realistic lasers profiles run with the azimuthal
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cylindrical geometry.

After a canonical coordinates transformation (r, θ) 7−→ (x, y) and writing By(x, y, t) =
ℜ(Bx)(x, y) cos(ω0t) + ℑ(By)(x, y) sin(ω0t), the relative error can be found via :

‖By,rec −By‖2
‖By‖2

(t) =
‖(ℜ(B)y,rec −ℜ(B)y) cos(ω0t) + (ℑ(B)y,rec −ℑ(B)y sin(ω0t))‖2

‖ℜ(B)y cos(ω0t) + ℑ(B)y sin(ω0t)‖2
(4.16)

where ||x||2 =
∑

i,j |xi,j |2.
From eq. (4.16), one can see that the value of the error E = ‖By,rec − By‖2/‖By‖2 depends

on time t, hence on the position since they are inter-dependent. Therefore, it is important when
choosing the optimal number of modes, to look at the error variation in time/space and not only
at a specific instant/position (for example at the focal plan or at the entry of the simulation
box). Another way to look at the problem is that the laser field is more generally described with
|B(r, θ)| cos(φ(r, θ) − ω0t + φ0) where φ0 is an arbitrary phase and this should not change the
physics related to the laser evolution. Varying φ0 is equivalent to varying ω0t between 0 and 2π.

The left panels in figs. 4.30a and 4.30b show the evolution of the relative energy norm error
of the reconstructed field E as a function of time while varying the number of modes between
2 and 10. They exhibit a periodic sinusoidal-like pattern with local maximums and minimums.
Therefore an accurate criterion should be based on minimizing the maximum value of the error
in time. The latter is presented in the right panels of figs. 4.30a and 4.30b as a function of
the number of modes Nm in logarithmic scale. The maximal error decreases with the number
of modes. However, running the simulation with 10 modes is very expensive. In fact the cost
of the simulation in quasi-cylindrical geometry depends on two main factors: first, the number
of modes used: a simulation with this geometry using mmax modes can be seen as operating
mmax× 2D simulations and second, the Courant–Friedrichs–Lewy (CFL) condition which should
be respected in order to avoid instabilities induced by the discretization scheme.

In azimuthal FDTD scheme, the latter is given by the relation in eq. (3.76) and depends
on mmax. It becomes more strict and implies smaller time step ∆t when including higher
modes. However, we usually use ∆z ≪ dr in order to solve the laser wavelength with typically
∆r = 15∆z. This means that for mmax ≪ ∆r/∆z, increasing the number of modes will have
little impact on the time step and therefore on the simulation time. For mmax ≫ ∆r/∆z, the
time step becomes inversely proportional to mmax and the simulation time proportional to mmax.
The total cost of the simulation is a combination of the two previous factors: it is proportional to
mmax if mmax ≪ ∆r/∆z and to m2

max if mmax ≫ ∆r/∆z. Another factor that can be in play for
the cost is the number of particles. Note that using higher number of modes may require a higher
number of particles per cell in the θ-direction in order to correctly model the fast variations of
currents and charges along θ associated to higher modes.

Based on the previous analysis and from figs. 4.30a and 4.30b, it seems that something
between 5 and 7 modes is a good compromise between precision and a reasonable simulation
cost. Actually, with these number of modes the error on the norm reaches a value close to the
1%. Besides, running a simulation with 5 modes (respectively with 7 modes ) while using the
same number of particles per cell, is just 1.7 (respectively 2.3) more expensive than the one with
2 modes. Therefore it is still much less expensive than a 3D simulation, which is almost 22 times
more expensive than the 7-modes quasi-cylindrical simulation.
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Figure 4.30: Left panels: relative energy errors of the reconstructed laser fields as a function of
ω0t varied between 0 and 2π for different number of modes Nm. The number of modes for each
plot is indicated by the color in the right colorbar. Right panels: The maximum relative energy
errors are plotted in a logarithmic scale for 2 to 10 modes.
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Simulation results and Influence of the number of modes

To understand the influence of including higher modes on the simulation results, 3D cartesian sim-
ulations of the laser profiles described in the previous section are reproduced in quasi-cylindrical
geometry with the first strictly minimum required 2 modes then 5 modes and 7 modes in the case
of SG4 + φmeasured and I + φmeasured. Note that for these two cases, the mode 0 is not negligible
and introduces some asymmetries of the laser as it can be seen in fig. 4.29a and fig. 4.29b for the
real and imaginary part of B in the case of I+φmeasured. For the SG4+φflat simulation, only the
2 first modes are used because the laser profile is axis-symmetric and thus fully described by the
mode 1 while the wakefield is mostly described by the mode 0 2. In this study, physical processes
such as the bubble formation, wakefield generation and electron acceleration are investigated and
the results are compared with their 3D counter parts.

In all the simulations, the laser wavelength is fixed to λ0 = 0.8 µm and a Gaussian time
envelope of a duration τ0 = 25 fs is assumed. The lasers propagate in a 500 µm rising plasma
ramp followed by a plateau of an electronic density ne = 8.6 × 1017 cm−3. The numerical
parameters for the simulations with different number of modes and for each case are summarized
in table 4.2 where ∆ti indicates the specific time step used in the simulation with i modes.

simulation
Numerical params

Nz Nr ∆z ∆r ∆t2 ∆t5 ∆t7
SG4 + φflat 6400 640 0.1 c/ω0 2.5 c/ω0 0.9974 ∆z None None

SG4 + φmeasured 7936 1280 0.1 c/ω0 1.5 c/ω0 0.99 ∆z 0.96 ∆z 0.928 ∆z

I+φmeasured 7936 1280 0.1 c/ω0 1.5 c/ω0 0.99 ∆z 0.96 ∆z 0.928 ∆z

Table 4.2: Numerical parameters in the simulations with realistic laser profiles in quasi-cylindrical
geometry.

SG4 + φflat:

Figure 4.31 compares respectively the cross sections of the electronic density map and the
longitudinal electric field obtained with 3D and quasi-cylindrical simulations after 1.9 mm of
propagation, in the case of SG4 + φflat. As expected, a qualitative agreement between the two
simulations is found.

To quantify the convergence between the two geometries, the energy spectrum of the two
electron bunches at the end of the acceleration is shown in fig. 4.32. The bunch is defined as the
collection of electrons sitting in the accelerating region of the bubble. This region is identified
by the profile of the longitudinal electric field.

Both distributions exhibit a high energy (∼ 500 MeV) low charge electron bunch corre-
sponding to first longitudinal injection. However, its energy is slightly higher in the case of 3D
simulation. Due to the very small charge quantity in the latter, an energy filter up to 400 MeV
is applied in this case and the bunch related quantities are then evaluated only for the main part
of the bunch.

2Note that non-linearities in the wakefield lead to non-zero contributions from higher modes. However, they
are still negligible compared to the 0 mode contribution in this case.
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Figure 4.31: Comparison of the simulation results in quasi-cylindrical with 2 modes and in 3D of
the SG4+φflat laser pulse after 1.9 mm of propagation. Top panels: colormaps of the normalized
electronic densities. Lower panels: colormaps of the normalized longitudinal electric fields.
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Figure 4.32: Energy spectra of the electrons for the 2-modes quasi-cylindrical and 3D simulations
of the SG4 + φflat laser pulse after 1.9 mm of propagation. The selected bunches for which the
bunch-related quantities are evaluated in table 4.3, are designated by the shaded areas.
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Bunch properties 2 modes 3D

Q (pC) 596 599
∆ E / 〈E〉 (%) 33.5 33.8
θ⊥ (mrad) 25.9 22

x-rms size (µm) 12.3 20
y-rms size (µm) 29 21.5
z-rms size (µm) 1.9 2.2
εn,⊥ (mm ·mrad) 66.1 47.8

Table 4.3: Summary of the bunch-related quantities for the 2-modes quasi-cylindrical and 3D
simulations of the SG4 + φflat laser pulse after 1.9 mm of propagation.

From the integrated values of the bunch-related quantities presented in table 4.3, a good
agreement is found in terms of the charge quantity and energy spread. Nevertheless, the quasi-
cylindrical slightly overestimates the bunch’s divergence and emittance in this case.

SG4 + φmeasured:
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Figure 4.33: Comparison of the normalized electronic density colormaps in 2, 5 and 7-modes
quasi-cylindrical and in 3D simulations of the SG4 + φmeasured laser pulse after 1.9 mm of prop-
agation.
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By looking at the electronic density map and longitudinal field presented in figs. 4.33 and 4.34
for the different simulations, it is clear that the 2-modes simulation fails to reproduce the inho-
mogeneity present in the 3D simulation. For instance, the off-axis laser part around y = 0.06 mm
which drives its own wakefield, is absent in the 2-modes simulation. However, the 2-modes case
presents an axis-symmetric ring-like distributed energy around the main laser pulse which creates
a weaker wakefield fig. 4.34.

By adding more modes, we can see that the 5 and 7-modes simulations are able to reproduce
the 3D features qualitatively. This puts forward the importance of including higher modes in
the case of an asymmetric transverse laser field.
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Figure 4.34: Comparison of the normalized longitudinal electric field colormaps in 2, 5 and 7-
modes quasi-cylindrical and in 3D simulations of the SG4 + φmeasured laser pulse after 1.9 mm
of propagation.

In order to examine the impact of using higher modes on the electrons acceleration from
a quantitative point of view, I evaluated the bunch-related quantities presented in table 4.4 by
integrating over their spectra. By comparing the overall bunch properties, all the quasi-cylindrical
simulations give a good approximation of the injected charge quantity. The rest of the quantities
are comparable, however the energy spread, divergence and emittance in the case of the 5 modes
and 7 modes simulations are more important. This can be misleading because the values are
integrated on the whole bunch. Looking closely to the shape of the energy spectrum after 1.9
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mm of propagation in fig. 4.35, the 2 modes distribution is tilted towards the low energies, by
adding more modes the pattern gets closer to that of the 3D simulation. For instance, the global
shape of the 7-modes distribution tends to become a plateau with spikes as in 3D. The 5 modes
distribution exhibits an intermediate pattern between the 2 and 7 modes distributions.

Bunch properties 2 modes 5 modes 7 modes 3D

Q (pC) 405 388 419 418
∆ E / 〈E〉 (%) 29 32 36 32.1
θ⊥ (mrad) 19.4 22.5 22.4 19.4

x-rms size (µm) 9.2 15.4 13 7.2
y-rms size (µm) 10 18.5 15.5 7
z-rms size (µm) 1.53 1.6 1.63 2
εn,⊥ (mm ·mrad) 19.3 35.8 35 17.1

Table 4.4: Summary of the bunch-related quantities for the 2, 5 and 7-modes quasi-cylindrical
and 3D simulations of the SG4 + φmeasured laser pulse after 1.9 mm of propagation.
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Figure 4.35: Energy spectra of the electrons for the 2, 5 and 7-modes quasi-cylindrical and 3D
simulations of the SG4+φmeasured laser pulse after 1.9 mm of propagation. The selected bunches
for which the bunch-related quantities are evaluated in table 4.4, are designated by the shaded
areas.

Since it is hard to select a well-defined bunch from the enrgy spectra using the traditional
bunch definition, I evaluated some bunch-related quantities per longitudinal slice by decomposing
the total bunch length into 20 slices as presented in fig. 4.40. Looking to the charge and the mean
energy per slice, we can see that the quasi-cylindrical simulations give a good approximation to
the 3D case. In particular, the 5-modes simulation for the charge and the 7-modes for the mean
energy. However, for the divergence and transverse-emittance per slice there is an agreement
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only at the front of the electron bunch and they are overestimated at the back of the bunch
where the charge is low, meaning that there are few particles in that slice.
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Figure 4.36: Comparison of the bunch-related quantities in the 2, 5 and 7-modes quasi-cylindrical
and in 3D simulations of the SG4 + φmeasured laser pulse after 1.9 mm of propagation.

I + φmeasured:

In regard to the I+φmeasured case, the influence of higher modes on the shape of the injected
electron bunches is even more striking in fig. 4.37. With the measured intensity added to the laser
profile, the bunch becomes disrupted in the 3D simulation and separated from the back of the
bubble. Once again, the 2-modes simulation is not able to reproduce this effect and contrarily,
the injection is continuous and its bunch is symmetric and not separated from the back of the
bubble. This disruption in the bunch starts to be visible with the 5-modes and its more obvious
with the 7-modes simulation.

As explained previously, the shape of the bunch is affected by the structure of the wakefield.
The non-uniformity of the laser pulse leads to a complex structure of the accelerating field
presented in fig. 4.38 where the outer part of the laser have enough energy to act as a secondary
laser pulse that drives its own wakefield. This induces a sort of instability in the wakefield that
disturb the injection and acceleration process.

This time the total quantity of the injected charge is over estimated in the case of 2 modes
but it starts to converge to the 3D simulation result with higher modes. The bunch properties
metrics in the 7-modes simulation, summarized in table 4.5 are very close to those of the 3D
simulation. This convergence with higher modes is also visible in the shape of the energy spectra
of the electron bunches as displayed in fig. 4.39. In particular, the high energy part situated
above 200 MeV is well reproduced. This demonstrates the importance of the higher modes role

142



4.3. Influence of experimental laser imperfections on laser wakefield acceleration

for an accurate description.
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Figure 4.37: Comparison of the normalized electronic density colormaps in 2, 5 and 7-modes
quasi-cylindrical and in 3D simulations of the I+φmeasured laser pulse after 1.9mm of propagation.

This is confirmed by looking to the bunch properties per slice. The 7-modes is a very good
approximation for the 3D case in terms of charge and mean energy despite some difference at
the back of the bunch. The emittance and the divergence at the front of the bunch, where the
charge quantity is important, are correctly modeled. However, these statistical quantities are
very sensitive to the number of particles per slice and they tend to increase rapidly when the
charge is quiet low.

Conclusion:

To conclude, in the case of an axis-symmetric laser envelope and a flat wave front, such as
the case of SG4 + φflat, the 2-modes quasi-cylindrical is able to describe with fidelity the physics
and reproduce with accuracy the results of the 3D simulation. However, some differences are
found in the statistical bunch-related quantities.
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Figure 4.38: Comparison of the normalized longitudinal electric field colormaps in 2, 5 and 7-
modes quasi-cylindrical and in 3D simulations of the I + φmeasured laser pulse after 1.9 mm of
propagation.

Bunch properties 2 modes 5 modes 7 modes 3D

Q (pC) 554 463 454 428
∆ E / 〈E〉 (%) 32.5 37 32 29.5
θ⊥ (mrad) 18. 17.7 19 21.1

x-rms size (µm) 6.5 10.2 9.7 9.2
y-rms size (µm) 5.4 8.6 7.5 5.4
z-rms size (µm) 2.4 2.36 2.31 2.1
εn,⊥ (mm ·mrad) 19.6 17.3 22 21.1

Table 4.5: Summary of the bunch-related quantities for the 2, 5 and 7-modes quasi-cylindrical
and 3D simulations of the I+φmeasured laser pulse after 1.9 mm of propagation.

In the case of SG4+φmeasured, the inhomogeneities triggered by the wave front can be reason-
ably described with 5 modes. Even though the 7-modes simulation gives a slightly better results
than the 5-modes simulation, the difference is not very important between the two.
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Figure 4.39: Energy spectra of the electrons for the 2, 5 and 7-modes quasi-cylindrical and 3D
simulations of the I+φmeasured laser pulse after 1.9 mm of propagation. The selected bunches
for which the bunch-related quantities are evaluated in table 4.5, are designated by the shaded
areas.
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Figure 4.40: Comparison of the bunch-related quantities in the 2, 5 and 7-modes quasi-cylindrical
and in 3D simulations of the I + φmeasured laser pulse after 1.9 mm of propagation.

145



Chapter 4. High fidelity simulations using realistic Apollon laser profile

In the case of I+φmeasured, the difference between the 5 and 7 modes results becomes slightly
more important important. This can be seen, for example, from the charge per slice profile. In
fact, adding the intensity profile increase the overall asymmetries and 7 modes are required in
this case for a better fidelity.

This trend can be explained from the maximum of the normalized error between the exact
field and the reconstructed field plotted in fig. 4.30a for the SG4+φmeasured case and in fig. 4.30b
for the I+φmeasured case: the slope in the case of SG4+φmeasured is steeper than that of I+φmeasured

which indicates that the error in higher modes decreases faster. Therefore, the sensitivity of the
code to higher modes is more important in the case of the I+φmeasured laser. This demonstrates
the importance of such a study in order to understand the sensitivity of a given laser to the
number of the azimuthal modes used to describe it. This study helps to get a rough estimation
of the required number of modes. However, it remains difficult to evaluate an exact estimation
of the optimal number of modes in order to reproduce exactly the 3D results.

In the two last cases where the realistic laser features are used, including higher modes is
very important to model the homogeneities induced by the laser imperfections and therefore
their impact on the wake formation and electrons acceleration.

The quasi-cylindrical simulations are very insightful to run parametric scans. They are not
expensive to run and they give a good estimation of the acceleration process, the quantity of the
injected charge and its mean energy. This is true even when using realistic lasers that present
asymmetries in their profiles, when using a sufficient number of modes. However, the model
has its limits when it comes to the estimation of the divergence and emittance. In fact, these
statistical metrics are very sensitive to the number of particles. As it has been showed through
the plots of the bunch-related quantities per slice, the estimation of the divergence and transverse
emittance is correctly modeled only for the parts of the bunch where the charge is sufficiently
high. The main differences between the quasi-cylindrical simulations and the 3D ones are found
at the back of the bunch, and thus the back of the bubble.

It is not straightforward to find an explanation for this, as this can be related to many
possible reasons. Among the possible reasons, one can mention the numerical parameters such
as the number of particles per cell, the different numerical dispersion and thus the numerical
phase velocity which depends on the mode in the quasi-cylindrical geometry. In fact, simulations
with higher modes are more prone to numerical Cherenkov radiation. This can be also related
to the on-axis condition in the quasi-cylindrical geometry which leads to a numerical noise.

Simulation 2 modes 5 modes 7 modes 3D

Particles per cell 56 56 56 4
CPU-hours 16496 27483 37413 800000

Number of cores 1536 1536 1536 16000
Vectorization None None None Adaptative vectorization

Table 4.6: Comparison of the simulation cost between the different quasi-cylindrical simulations
and the 3D one.

On the other hand,these simulations are not expensive to run and do not require large compu-
tational resources. From table 4.6, the 5-modes simulations are roughly 1.7 times more expensive
than the 2-modes ones while the 7-modes are 2.3 times more expensive than the 2-modes simu-
lations if the number of particles per cell is kept the same when varying the number of modes.
Using even 7-modes with the quasi-cylindrical geometry, is still 21.5 times cheaper than the
3D simulations despite the fact that the quasi-cylindrical algorithm is still not vectorized yet.
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Therefore, a better performance can still be achieved in the future by implementing an adaptative
vectorization like the one used in 3D.
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Summary of the results

The body of my research work focuses on studying the impact of laser imperfections on laser wake-
field acceleration through numerical simulations. In this context, I implemented the azimuthal
Fourier field decomposition in cylindrical geometry, referred to as quasi-cylindrical geometry, in
the Particle-In-Cell code Smilei. Then, I used it to carry out a study with realistic laser profiles
from the Apollon installation. This section summarizes the main results of this thesis.

First, I implemented the quasi-cylindrical geometry in Smilei using Finite Difference Time
Domain (FDTD) discretization scheme. However, it is known that this scheme may lead to an
artificial spurious radiation emitted by the relativistic electrons which hinders the accuracy of
PIC simulations and tends to increase the estimation of the emittance. This numerical artifact,
called numerical Cherenkov radiation (NCR), can be mitigated by using pseudo-spectral solvers.
Therefore, I also implemented a Pseudo Spectral Analytical Time Domain (PSATD) version of
this algorithm in PICSAR library. Nevertheless, the precision of this approach comes with a
significant increase in the computational cost due to their limited scaling performances and their
important memory footprint at large scales. In fact, to guarantee the accuracy of the method,
the simulation domain should be decomposed into large subdomains with an important number
of ghost cells. Typically 64 ghost cells are used with the 32 order solver.

In order to optimize the performance of the method and benefit from the patch-based load
balancing in Smilei, a special two-level domain decomposition, denoted by Single Domain Multi-
ple Decompositions (SDMD), is used to couple PICSAR with Smilei. This spatial decomposition
allows the use of a coarse-grain decomposition with large subdomains, called regions, where the
Maxwell’s equations are solved and a fine-grain decomposition with small subdomains, called
patches, where operations pertaining to macro-particles are handled. The PSATD implemen-
tation is then benchmarked and its results are compared to those of the FDTD scheme. The
PSATD solver has been proved to be NCR-free leading to noise-free results and a lower estimation
of the transverse emittance as expected.

The second part of my PhD research work focuses on the physics where I leveraged the
developed numerical tools to perform LWFA simulations for the future experiments with the
Apollon laser.

In the technical design of the Apollon laser, the incoming laser is reflected on a drilled
mirror leading to a hole in the laser’s near field. To analyze the effect of this hole on the
LWFA experiments, I carried out a numerical study with different laser profiles. The choice of
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the profiles was based on fitting the experimental intensity profile with a super-Gaussian after
determining the best order. Then, for each case, the parameters such as the power, the a0 and
the presence of the hole were varied. These profiles also included a Gaussian fit of the measured
intensity in near field and an "equivalent" Gaussian in the far field. The results show that the
wings in the super-Gaussians may help in the self-focusing process and hence, trigger a more
important charge injection. On the other hand, the hole leads to a lower intensity peak in the
main pulse and to a more important energy diffracted in the wings. When the energy in the
wings is sufficiently high, like in the case of the hole, it can act as a secondary laser pulse that
disrupt the wakefield of the main pulse. This leads to a shorter injection in time and thus less
injected charge and a shorter bunch length. It also causes a higher divergence and promotes
emittance growth. However, it leads to a higher energy peak and to a lower energy spread. In all
the cases, the overall quality of the produced bunches is comparable and the differences are not
very significant over long acceleration distances like the ones presented in this study. Therefore,
the technical choice for the design of the Apollon laser is justified, at the expense of slightly
degrading the electron bunch quality.

Using 3D Cartesian simulations, I studied the impact of the Apollon laser imperfections on
LWFA and particularly on the quality of the generated electron bunches. The outcome of the
results showed the importance of including experimentally measured features. In particular,
the wave front has an important impact in shaping the transverse laser profile in the far field,
thus on the structure of the wakefield and on the injection process of the electrons and their
quality. This suggests that by properly tailoring the wave front, better focal spots and thus
better quality of the electrons can be achieved. The same simulations are also run in the quasi-
cylindrical geometry. First, an optimal range of the required number of modes is determined
from the curve of the normalized error between the reconstructed fields and the actual laser field.
Then, the simulations are performed with different number of modes. The comparison between
the results highlights the importance of including higher modes to accurately model the laser’s
asymmetries with realistic profiles.

Future prospects

The presented results open up several prospects regarding the numerical methods to model LWFA
with PIC codes on the one hand and the study of realistic laser profiles on the other hand.

Numerical aspect

Despite the use of the SDMD approach to optimize the performance of the PSATD solver, this
kind of simulations is still very expensive compared to its FDTD counter-part. This is partially
due to the parallelization of the solver currently restricted to the longitudinal direction, which
limits the scaling of the code.

In order to optimize the performance of the solver, it should also be parallelized in the
transverse direction r. This can be tricky and not straightforward because the Hankel transform
employs matrix multiplication which is a non-local operation. A possible way to do that, is to
resort to the use of dedicated libraries such as scalapack combined with the adequate algorithms
to perform a parallel calculation of matrix multiplication.

Currently, the initialization of the laser with the PSATD solver is done by calculating the
electric and magnetic fields of the laser directly in the simulation box. This method is limited to
the Gaussian profiles. In order to enable the generalization of the laser profile to any arbitrary
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function, an antenna should be implemented to inject the laser. This is very important to
reproduce the realistic simulations with the PSATD solver.

Another considerable improvement, that can be brought to the code in quasi-cylindrical
geometry, is the implementation of the Perfectly Matched Layer (PML). In fact, for the moment
the transverse size of the simulation box is chosen to be relatively large in order to avoid any
reflections from the upper boundary inside the box. This reflections may lead to an important
numerical instability, especially near the axis, and can be detrimental to the accuracy of the
results. On the one hand, implementing the PML will help reducing the computational time by
allowing the use of smaller boxes and thus less grid points in the radial direction. On the other
hand, it will ensure the accuracy of the simulations results by inhibiting any reflections inside
the domain.

Physical aspect

The realistic LWFA simulations show that the plasma may focus a part of the laser’s halo. In
fact, the plasma can act as focusing or defocusing optics for the laser. It is a key factor in
determining whether the energy in the wings contributes in the self-focusing and acceleration or
it is spatially filtered. Therefore, it is important to study the effect of the laser’s imperfections
with different plasma densities.

Besides, it has been shown in [Ferri et al., 2016] that the position of the focal plane compared
with the beginning of the plasma plateau plays an important role in the evolution of the laser
inside the plasma. Thus, it is interesting to also look at how this may affect the results in the
case of the Apollon laser.

The presented results concern the case of the Apollon laser with the focal of f = 3 m.
However, the installation offers the possibility of using a focal of f = 9 m. The difference in the
focal length will lead to a different focal spot and therefore, different results should be expected
in this case. In particular, the focal length of f = 3 m leads to a very intense and a tightly
focused laser with a short Rayleigh length while the focal of f = 9 m offers a larger Rayleigh
length. Therefore, it can be self-guided for a longer propagation in the plasma.

Besides, if the same strategy is applied to other lasers with different distortions, then other
conclusions can be reached.

Finally, spectral measurements of the Apollon laser have been carried out recently. The
same methodology of determining the optimal number of modes can be applied to each spectral
component of the laser. Then, these modes can be used in the quasi-cylindrical simulations in
order to identify the impact of spatio-spectral coupling in LWFA.
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Appendix A

Theory of plasma waves excitation by a

laser pulse

The goal of the following part is to establish a model that describes the generation of a plasma
wave driven by a laser pulse. For this aim, we define the assumptions for this theoretical frame-
work:

1. We use fluid model to describe the plasma with its macroscopic quantities. Therefore
kinetic effects such as trapping and wave breaking are not taken into account.

2. The plasma is cold because the thermal velocity vth is neglected compared to the electrons
velocity acquired from the laser field ve.

3. Plasma ions are supposed to be immobile in the time scale of the electrons motion.

4. The plasma is strongly under-dense n0 ≪ nc. Therefore, ωp ≪ ω0 where ω0 is the laser
frequency and ωp is the plasma frequency.

The starting equations to establish the plasma wave excitation description in the case of a
laser driver are the Lorentz equation of motion for the electrons in a cold fluid plasma, plus the
Maxwell’s equations in the potential formalism under the Coulomb gauge ∇·A = 0. In an under
dense plasma, we can distinguish the laser high frequencies from the plasma low frequencies
(ωp ≪ ω0). Therefore, the coulomb gauge enables us to separate the electromagnetic laser field
A from the electrostatic plasma field Φ due to charge separation.

We start with the Poisson equation(1.11) obtained under the Coulomb gauge ∇·A = 0 where
ρ = −e(ne−n0) is the source term that comes from charge separation in the plasma. The ions are
treated as a homogeneous neutralizing background: n0 = Zni with Z the atomic number and ni

the ion density whereas ne is the displaced electron density. Since, only electrons are displaced
we replace fe by f where f denotes any quantity related to electrons. The displacement of
electrons by the laser creates charge separation in the plasma. Therefore the Poisson equation
can be written:

∇2Φ =
e

ǫ0
(ne − n0) (A.1)

The second equation is the continuity equation:

∂ne

∂t
+∇ · (nev) = 0 (A.2)
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Writing Maxwell-Ampere equation (1.2) using potentials results in:
(

∇2 − 1

c2
∂2

∂t2

)

A =
ene

ǫ0c2
v +

1

c2
∂

∂t
∇Φ (A.3)

where J has been replaced by the expression J = −enev.
By replacing the electromagnetic fields with their potential formalism, the equation of motion

reads :
(

∂

∂t
+ v · ∇

)

p = e

(

∇Φ+
∂A

∂t
− v ×∇×A

)

We rearrange this equation to be :

∂

∂t
(p− eA) = e∇Φ+ (v · ∇)p− ev × (∇×A)

Using the following property:

∇p2

2
= (p · ∇)p+ p× (∇× p) = mγ [(v · ∇)p+ v × (∇× p)]

where p = mγv and γ =
√

1 + (p/mc)2), we find that:

∇γ =
1

m2c2γ
∇p2

2
=

1

mc2
[(v · ∇)p+ v × (∇× p)]

Thus:

(v · ∇)p = mc2∇γ − v × (∇× p)

Inserting this identity in the equation of motion, the latter reads:

∂

∂t
(p− eA) = ∇(eΦ−mc2γ) + v × [∇× (p− eA)]

where v × [∇× (p− eA)] = 0. This can be proved by applying the rotational operator to
the previous equation3:

∂

∂t
g = ∇× v × g

where g = ∇ × (p − eA). Since at t=0 v = p = A = 0, g = 0 = ∂g/∂tt=0 = 0. Thus,
then the quantity e∇ × (p − eA) = 0, ∀t. Finally the equation of motion after simplification
becomes:

∂p

∂t
= e∇Φ+ e

∂A

∂t
−mc2∇γ (A.4)

Using the normalized quantities: φ = eΦ/mc2, a = eA/mc , u = p/mc = γv/c = γβ and
γ =

√

1 + u2) in eq. (A.1), eq. (A.2), eq. (A.3) and eq. (A.4) , we obtain the following system
of equations:

∇2φ = k2p

(

n

n0
− 1

)

(A.5)

3Note that ∇×
[

∇(eΦ−mc2γ)
]

= 0
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∂n

∂t
+ c∇ ·

(

nu

γ

)

= 0 (A.6)

(

∇2 − 1

c2
∂2

∂t2

)

a = k2p
nu

γn0
+

1

c

∂

∂t
∇φ (A.7)

∂u

∂t
= c∇(φ− γ) +

∂a

∂t
(A.8)

where kp = ωp/c =
√

e2n0/ǫ0mec2 is the wave number of the plasma.
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Appendix B

Comoving coordinates

In an under-dense plasma, it is assumed that the laser driver and the corresponding wakefield
propagate very close to the speed of light i.e vg ∼ c and vφ ∼ c, so it is practical to use the
copropagating coordinates, also called coordinates in the laboratory frame , in order to follow the
laser pulse when the latter is short. In the case of a laser propagating along z, the transformation
is τ = t and ξ = z − ct. This implies :

∂

∂t
=

∂

∂τ
− c

∂

∂ξ
(B.1)

∂

∂z
=

∂

∂ξ
(B.2)

∂2

∂2t
=

∂2

∂τ2
+ c2

∂2

∂ξ2
− 2c

∂2

∂τ∂ξ
(B.3)

∂2

∂z2
=

∂2

∂ξ2
(B.4)

However, in reality the laser propagation velocity slightly differs from the light speed (vg 6= c).
It becomes more important to take into account this velocity instead of c when it comes to
relativistic particles acceleration where relativistic effects become important such as dephasing.
Therefore, when using the transformation τ = t and ξ = z − vgt instead of ξ = z − ct and
supposing that the wake velocity vp ≃ vg we have:

∂

∂t
=

∂

∂τ
− vg

∂

∂ξ
(B.5)

∂

∂z
=

∂

∂ξ
(B.6)

∂2

∂2t
=

∂2

∂τ2
+ v2g

∂2

∂ξ2
− 2vg

∂2

∂τ∂ξ
(B.7)

∂2

∂z2
=

∂2

∂ξ2
(B.8)
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Appendix C

One dimensional model of plasma

waves excitation theory in the case of a

laser pulse driver

In this appendix, we propose to solve the system of equations given by eq. (1.54), eq. (1.55),
eq. (1.56) and eq. (1.57) in the limit of 1D. Hence, all quantities depend only on (z, t) and
∇ = ∂

∂zez. In this case, the Coulomb gauge ∇ ·A = 0 implies that Az = 0 and that the laser is
purely transverse a = a⊥. The longitudinal and transverse component of the equation of motion
eq. (1.57) obey respectively to:

∂(γβz)

∂t
= c

∂(φ− γ)

∂z
(C.1)

∂(u⊥ − a)

∂t
= 0 (C.2)

This entails that the transverse electrons motion is only due to the laser field u⊥ = a. We
can also rewrite the Lorentz factor as:

γ = (1− β2
⊥ − β2

z )
−1/2 =

(1 + a2)1/2

(1− βz)1/2
(C.3)

Afterwards, we decompose eq. (1.56) into its longitudinal and transverse part. We obtain:

(

∇2 − 1

c2
∂2

∂t2

)

a =
nk2p
n0γ

a (C.4)

1

c

∂2φ

∂t∂z
= −

nk2p
n0γ

uz (C.5)

Adopting the transformation of the comoving coordinates in the laser frame (τ = t, ξ = z−ct)
described in appendix B supposing that it propagates at a velocity vg ≃ c implies:

∂2φ

∂ξ2
= k2p

(

ne

n0
− 1

)

(C.6)

∂ne

∂τ
= c

∂

∂ξ
(ne(1− βz)) (C.7)
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∂(γβz)

∂τ
= c

∂

∂ξ
(φ− γ(1− βz)) (C.8)

(

2

c

∂2

∂ξ∂τ
− 1

c2
∂2

∂τ2

)

a =
nk2p
n0γ

a (C.9)

According to the quasi-static approximation introduced in section 1.4, we can neglect tem-
poral derivatives ∂/∂τ . Therefore under this assumption,eq. (C.7) and eq. (C.9) become after
integration:

ne(1− βz) = n0 (C.10)

γ(1− βz) = 1 + φ (C.11)

Using the above relations in eq. (C.6) and eq. (C.8) gives us the coupled equations to describe
the laser a and the potential φ evolution along the propagation axis:

∂2φ

∂ξ2
=

k2p
2

[

1 + a2

(1 + φ)2 − 1

]

(C.12)

δne

n0
=

1

2

[

1 + a2

(1 + φ)2 − 1

]

(C.13)

However, when relativistic effects become important, the laser propagation velocity can no
longer be confused with the light speed (vg 6= c). Therefore, when using the transformation τ = t
and ξ = z − vgt instead of ξ = z − ct and supposing that the wake velocity vp ≃ vg and after
some math the potential equation reads:

1

w2
p

∂2φ

∂ξ2
= γ2g

[

βg

(

1− 1 + a2

γ2g (1 + φ)2

)−1/2

− 1

]

(C.14)
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Résumé

Le sujet de ma thèse porte sur le développement et l’exploitation d’un modèle réduit pour les
codes de simulation cinétiques du type Particle-In-Cell (PIC). Cette approche implémentée dans
le code libre Smilei, exploite la symétrie azimutale du problème pour en réduire la dimension-
nalité et donc permettre un gain important en temps de calcul. Dans le cadre de ma thèse, j’ai
mis le code en oeuvre pour réaliser des simulations numériques d’accélération d’électrons par
sillage laser dans des plasmas sous denses.

L’accélération laser-plasma est un domaine de recherche visant à développer les accélérateurs
de particules de demain. Le plasma est un état de la matière, dans lequel les atomes sont
partiellement ou totalement ionisés. Ces particules ionisées répondent de manière collective à
l’influence des champs électromagnétiques qu’ils soient externes ou générés par le plasma lui-
même. Depuis près d’un siècle, la physique des plasmas est devenue un domaine de recherche
très actif, tant d’un point de vue fondamental qu’applicatif. Parallèlement à l’essor de la physique
des plasmas, les technologies laser ont, elles aussi, connu un progrès très important. L’utilisation
de la technique de CPA (Chirped Pulse Amplification), dont la mise au point a été récompensée
par le prix Nobel de physique de 2018, a permis d’augmenter considérablement la puissance
des lasers à plusieurs PetaWatts (1015 W) tout en réduisant leurs durées à quelques dizaines de
femtosecondes (10−15 s). Focalisés sur la matière, ces lasers ionisent complètement les milieux
avec lesquels ils interagissent, donnant lieu à des plasmas, dans lesquels une large panoplie de
phénomènes complexes peut avoir lieu. La physique UHI (Ultra-High-Intensity) est la branche
de la physique qui s’intéresse à la compréhension de tels phénomènes. Un des volets les plus
importants en physique UHI est l’étude des mécanismes d’accélération de particules par laser
dans les plasmas sous denses. Proposée en 1979 par Tajima & Dawson, l’accélération par sillage
laser peut avoir lieu lorsqu’on envoie une impulsion laser ultra courte et ultra intense dans un
plasma obtenu par ionisation d’un gaz dilué. Le laser va se propager dans le plasma ainsi créé, et
générer dans son sillage une onde de Langmuir. Cette onde constitue une structure accélératrice
pour les électrons qui y sont injectés. Les champs accélérateurs dans cette structure peuvent
atteindre 100 GeV/m, ce qui dépasse de plusieurs ordres de grandeur, l’amplitude des champs
d’accélération obtenus dans les accélérateurs conventionnels.

Le développement de cette physique et l’amélioration de la qualité des faisceaux d’électrons
reposent énormément sur l’exploitation des outils de simulation numérique. La méthode PIC est
une approche cinétique très puissante pour modéliser des plasmas hors équilibre. Elle est no-
tamment très utilisée pour modéliser des expériences d’interaction laser-plasma. Une description
précise des phénomènes en jeu nécessite cependant de réaliser des simulations premier-principe
en géométrie 3D. Ces simulations sont néanmoins très coûteuses à cause des volumes de données
massives qui sont en jeu et qui peuvent atteindre plusieurs dizaines de terabytes et nécessiter
plusieurs millions d’heures de calcul.

L’optimisation du temps de calcul de ces simulations est donc une problématique très critique
dans les codes PIC. À cet égard, on peut exploiter la symétrie azimutale des données physiques
dans le cadre des simulations d’accélération par sillage laser, pour développer un formalisme
numérique réduit. Dans ce formalisme, les données de simulation sont projetées dans une base
réduite composée des modes de Fourier fondamentaux associés à la variable angulaire azimutale
en coordonnées cylindriques. Ainsi on peut obtenir une description 3D avec un coût de simulation
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comparable avec celui de 2D.
J’ai implémenté ce modèle réduit dans le code open source, massivement parallèle, SMILEI

développé par la communauté UHI du plateau de Saclay. Dans cette implémentation, les équa-
tions de Maxwell sont résolues à chaque pas de temps par un schéma de différences finies. Cette
approche est massivement parallélisable mais peut induire des instabilités numériques qui peu-
vent dégrader les résultats de la simulation. Pour pallier ces limites, j’ai également implémenté
un solveur de Maxwell pseudo-spectral qui offre une précision inégalée. Cette implémentation
a été réalisée dans PICSAR dans le cadre d’une collaboration avec Lawrence Berkeley National
Laboratory (LBNL). PICSAR est une librairie PIC open source de routines de calcul optimisées,
pensée à rendre exploitable par d’autres codes PIC.

Pendant la deuxième partie de ma thèse, j’ai exploité ce travail pour épauler numériquement
les physiciens exploitant le laser Apollon pour réaliser des expériences d’accélération d’électrons.
J’ai utilisé les mesures du profil laser réalisés par des collaborateurs pour faire des simulations
réalistes tenant compte des défauts du laser en 3D. Ceci afin de mieux rendre compte des effets
physiques induits par les défauts présents dans le profil du laser et donner une prévision la plus
fidèle possible et la plus proche des résultats qui pourront être obtenus pendant les expériences.
Cette analyse a montré qu’inclure les défauts du laser mènent à des différences dans les résultats
obtenus et que ces derniers dégradent la performance des accélérateurs laser-plasma notamment
en termes de quantité de charge injectée. Ensuite, j’ai développé des algorithmes de reconsti-
tution de profils compatibles avec la méthode azimutale et j’ai étudié sa capacité à modéliser
correctement les processus physiques présents en déterminant le nombre de modes nécessaires et
en comparant ses résultats avec ceux issus des simulations 3D en géométrie Cartésienne. Cette
étude a montré l’importance d’inclure des modes supérieurs pour avoir une modélisation fidèle
et précise.

Ces simulations, instructives pour les futures expériences d’accélération d’électrons par le laser
Apollon, mettent en avant la nécessité d’inclure les mesures expérimentales dans la simulation
pour aboutir à des résultats précis d’une part, et la possibilité d’utiliser la géométrie quasi-
cylindrique avec un nombre de modes suffisant pour ce type d’étude d’autre part.

Mots-clés: accélération laser-plasma, simulations Particle-In-Cell, modèle réduit, lasers réalistes
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Titre : Calcul haute-performance et simulation numérique pour l’accélération d’électrons par sillage laser avec des
profils laser réalistes

Mots clés : accélération laser-plasma, simulations Particle-In-Cell, modèle réduit, lasers réalistes

Résumé : Le développement des lasers ultra-courts à
de hautes intensités a permis l’émergence de nouveaux
domaines de recherche en relation avec l’interaction
laser-plasma. En particulier, les lasers petawatt femto-
seconde ont ouvert la voie vers la possibilité de concevoir
une nouvelle génération d’accélérateurs de particules. La
modélisation numérique a largement contribué à l’essor
de ce domaine d’accélération des électrons par sillage
laser. Dans ce contexte, les codes Particle-In-Cell sont
les plus répandus dans la communauté. Ils permettent
une description fiable de l’interaction laser plasma et sur-
tout de l’accélération par sillage laser. Cependant, une
modélisation précise de la physique en jeu nécessite de
recourir à des simulations 3D particulièrement coûteuses.
Une manière pour accélérer efficacement ce type de si-
mulations est l’utilisation de modèles réduits qui, tout
en assurant un gain en temps de calcul très important,
garantissent une modélisation fiable du problème. Parmi
ces modèles, la décomposition des champs en modes de
Fourier dans la direction azimutale est particulièrement
adaptée à l’accélération laser plasma. Dans le cadre de
ma thèse, j’ai implémenté ce modèle dans le code open-
source Smilei, dans un premier temps, avec un schéma

différences finies (FDTD) pour discrétiser les équations
de Maxwell. Néanmoins, ce type de solveur peut in-
duire un effet de Cherenkov numérique qui corrompt les
résultats de la simulation. Pour mitiger cet artéfact, j’ai
également implémenté une version pseudo-spectrale du
solveur de Maxwell qui présente de nombreux avantages
en termes de précision numérique. Cette méthode est
ensuite mise en oeuvre pour étudier l’impact de profils
de lasers réalistes sur la qualité du faisceau d’électrons
en exploitant des mesures réalisées sur le laser Apollon.
Sa capacité à modéliser correctement les processus phy-
siques présents est analysée en déterminant le nombre
de modes nécessaires et en comparant les résultats avec
ceux issus des simulations 3D en géométrie Cartésienne.
Cette étude montre qu’inclure les défauts du laser mène
à des différences dans les résultats et que ces derniers
dégradent la performance des accélérateurs-laser plasma
notamment en termes de quantité de charge injectée.
Ces simulations, instructives pour les futures expériences
d’accélération d’électrons par le laser Apollon, mettent en
avant la nécessité d’inclure les mesures expérimentales
dans la simulation et particulièrement celle du front de
phase, pour aboutir à des résultats précis.

Title : High performance computing and numerical simulation for laser wakefield acceleration with realistic laser
profiles

Keywords : laser-wakefield acceleration, Particle-In-Cell simulations, reduced models, realistic lasers

Abstract : The advent of ultra-short high-intensity lasers
has paved the way to new and promising, yet challenging,
areas of research in laser-plasma interaction physics. The
success of building petawatt femtosecond lasers offers a
promising path for designing future particle accelerators
and light sources. Achieving this goal intrinsically relies
on the combination of experiments and numerical mode-
ling. So far, Particle-In-Cell (PIC) codes have been the
ultimate tool to accurately describe the laser-plasma in-
teraction especially in the field of Laser WakeField Ac-
celeration (LWFA). Nevertheless, the numerical modeling
of laser-plasma accelerators in 3D can be a very challen-
ging task due to their high computational cost. A useful
approach to speed up such simulations consists of em-
ploying reduced numerical modes which simplify the pro-
blem while retaining a high fidelity. Among these models,
Fourier field decomposition in azimuthal modes for the
cylindrical geometry is particularly well suited for physi-
cal problems with close to cylindrical symmetry, which is
the case in LWFA. During my Ph.D., I first implemented
this method in the open-source code SMILEI in the Finite

Difference Time Domain (FDTD) discretization scheme
for the Maxwell solver. However, this kind of solvers may
suffer from numerical Cherenkov radiation (NCR). To mi-
tigate this artifact, I also implemented Maxwell’s solver in
the Pseudo Spectral Analytical Domain (PSATD) scheme
which offers better accuracy of the results. This method
is then employed to study the impact of realistic laser
profiles from the Apollon facility on the quality of the ac-
celerated electron beam. Its ability to correctly model the
involved physical processes is investigated by determining
the optimal number of modes and benchmarking its re-
sults with full 3D Cartesian simulations. It is shown that
the imperfections in the laser pulse lead to differences in
the results compared to theoretical profiles. They degrade
the performance of laser-plasma accelerators especially in
terms of the quantity of injected charge. These simula-
tions, insightful for the future experiments of LWFA that
will be held soon with the Apollon laser, put forward the
importance of including realistic lasers in the simulation
to obtain reliable results.
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