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Résumé en français

As required by the French law concerning PhD manuscripts written in English, here are some para-
graphs written in French which summarize the content of this manuscript. English speakers can
safely skip this section.

La sophistication des mathématiques modernes incite à représenter divers objets mathéma-
tiques ainsi que les constructions associées de façon uni�ée par un langage commun. Depuis les
travaux de MacLane et Eilenberg dans les années 1940, un tel point de vue uni�ant est fourni
par la théorie des catégories. En e�et, initialement développées dans le cadre de la topologie
algébrique, les catégories permettent de représenter des objets mathématiques di�érents de la
même façon : ensembles, groupes, anneaux, espaces topologiques, variétés di�érentiables, etc.
Loin de se restreindre aux mathématiques « pures », les catégories peuvent être utilisées pour
fournir un point de vue simple pour des objets venant d’autres domaines, comme la physique et
l’informatique.

Cependant, pour décrire certaines situations que l’on peut rencontrer en mathématiques (et,
a fortiori, dans d’autres domaines), la structure élémentaire de catégorie peut s’avérer insu�sante.
En e�et, tandis que les catégories ne permettent que de représenter des interactions de « bas
niveau » entre des objets mathématiques, on cherche souvent à comprendre les interactions de
plus « haut niveau » (les interactions entre les interactions, les interactions entre ces dernières,
etc.). Dans ce genre de situation, il est ainsi utile d’avoir recours aux catégories supérieures. Ces
dernières sont des généralisations multidimensionnelles des catégories simples. En e�et, tandis
que l’on peut voir les catégories simples comme des structures avec des cellules de dimension 0
et 1, les catégories supérieures peuvent avoir des cellules de dimensions arbitraires. Ces cellules de
di�érentes dimensions peuvent alors être composées par diverses opérations qui satisfont divers
axiomes qui varient suivant la théorie de catégories supérieures considérée.

La complexité des di�érentes axiomiatiques fait que les catégories supérieures sont des struc-
tures complexes, et le but de cette thèse est d’introduire plusieurs outils informatiques facilitant
la manipulation et l’étude de ces structures.

Catégories supérieures

Une première tâche de ce travail fut de développer un cadre uni�é pour considérer les catégories
supérieures permettant de donner des dé�nitions génériques à un certain nombre de constructions

ix
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sur ces structures. Un tel programme fut partiellement mis en œuvre par Batanin [Bat98a] a�n de
généraliser à toute une classe de catégories supérieures la notion de polygraphe. Cette dernière
structure fut en e�et initialement introduite uniquement dans le cadre des catégories supérieures
strictes par Street [Str76] (sous le nom de computad) et par Burroni [Bur93]. Les polygraphes
sont des structures particulièrement intéressantes par rapport au sujet de cette thèse dans la
mesure où elles fournissent un moyen d’encoder �niment des catégories supérieures potentielle-
ment in�nies, permettant ainsi de les transmettre comme entrées à des programmes. Le travail de
Batanin généralise ces polygraphes à toute la classe des catégories supérieures dites globulaires
algébriques �nitaires, qui englobe la plupart des catégories supérieures usuelles. Cependant, plu-
sieurs constructions intervenant dans la dé�nition des polygraphes de catégories strictes et qui
apparaissaient chez Burroni n’ont pas été considérées par Batanin, qui s’est strictement focalisé
sur les polygraphes. Étant donné que ces constructions interviennent fréquemment dans l’étude
des catégories supérieures, il parut utile de donner une dé�nition générique de ces constructions
en utilisant le cadre de Batanin.

Dans ce dernier, une théorie de catégories supérieures de dimension = est simplement vue
comme une monade

) : Glob= → Glob=

sur la catégorie Glob= des ensembles =-globulaires. Les =-catégories qui sont les instances de cette
théorie de catégories supérieures sont alors les algèbres de la catégorie d’Eilenberg-Moore Alg=
associée à ) . De plus, à partir de ) , on peut obtenir des théories de catégories supérieures de
dimensions 0, . . . , = − 1 en tronquant la monade ) en dimensions 0, . . . , = − 1 respectivement. On
obtient ainsi des monades ) 0, . . . ,)=−1 sur les catégories Glob0, . . . ,Glob=−1, qui induisent donc
des catégories Alg0, . . . ,Alg=−1 d’algèbres sur ces monades. Nous dé�nissons alors des foncteurs
de troncations et d’inclusions

(−)Alg
≤:,; : Alg; → Alg: et (−)Alg

↑;,: : Alg: → Alg;

qui forment naturellement une adjonction pour :, ; ∈ N= avec : < ; .
Une opération que l’on cherche souvent à faire dans les catégories supérieures est la dé�ni-

tion d’une (:+1)-catégorie en ajoutant librement des (:+1)-générateurs à une :-catégorie. Il est
possible d’écrire cette construction dans ce cadre. Pour cela, on introduit les catégories Alg+

:
des

:-catégories équipées d’ensembles de (:+1)-générateurs. On parvient alors à dé�nir un foncteur

−[−]: : Alg+
:
→ Alg:+1

qui représente la construction libre de (:+1)-catégories à partir d’objets de Alg+
:
. On donne aussi

des propriétés plus précises de ce foncteur dans le cas où la monade) est troncable. Cette dernière
dé�nition apparaissait déjà chez Batanin et stipule la compatibilité de ) avec la troncation sur
les ensembles globulaires. En utilisant cette construction, on obtient alors une autre dé�nition
générique des polygraphes pour toute la classe de catégories supérieures évoquée plus tôt. On
énonce ensuite quelques propriétés de ces polygraphes et de leurs catégories qui n’apparaissent
pas chez Batanin, comme la présentabilité localement �nie. Pour �nir, on instancie ces proprié-
tés et constructions pour deux exemples de catégories supérieures : les catégories strictes et les
précatégories.

Le problème du mot

Comme énoncé plus tôt, une théorie de catégories supérieures consiste en un certain nombre
d’opérations pour composer les cellules de di�érentes dimensions, ainsi que des axiomes que sa-
tisfont ces di�érentes opérations. Étant donné un ensemble de cellules d’une catégorie supérieure,
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il est souvent possible de les composer formellement de plusieurs manières. Le problème du mot
consiste alors à déterminer si deux composées formelles de cellules représente la même cellule
d’après la théorie considérée.

Une solution à ce problème a été donnée par Makkai dans le cas des catégories strictes [Mak05].
Cependant, sa solution est relativement ine�cace et ne permet pas de résoudre des instances
concrètes qui sont trop sophistiquées. Une partie du travail de cette thèse a consisté à améliorer
l’algorithme proposé par Makkai en donnant une meilleure description calculatoire des catégories
strictes libres. Pour cela, il a fallu clari�er la notion de calculabilité dans le cadre des catégories
supérieures, ce que nous avons fait en utilisant le formalisme des fonctions récursives. Finalement,
nous avons produit une implémentation utilisable de notre algorithme résolvant le problème du
mot pour les catégories strictes.

Diagrammes de recollement

Les diagrammes de recollement (pasting diagrams en anglais) sont un outil standard dans l’étude
des catégories strictes et, plus généralement, d’un certain nombre de catégories supérieures. Ils
permettent de désigner une cellule d’une catégorie supérieure simplement en dessinant la façon
de recoller les cellules qui la composent sur un diagramme comme le suivant :

D E F G ~
0

2

1

3

⇓ U

⇓ V
5

4

6

ℎ
⇓ W

⇓ X
.

Il est en e�et possible de véri�er que toutes les façons de composer les cellules de ce diagramme
induisent la même cellule, et donc que ce diagramme permet bien de représenter une unique
cellule sans que l’on ait besoin de préciser une composée formelle des cellules la constituant.
Cependant, cette propriété n’est pas satisfaite par tous les diagrammes de cellules : certains
sont associés à plusieurs compositions formelles di�érentes, et d’autres sont associés à aucune
composition. Ainsi, a�n de pouvoir utiliser des diagrammes dans l’étude des catégories strictes, il
est important de pouvoir distinguer les diagrammes qui sont associés à une unique composition.
Pour cela, trois formalismes di�érents ont été introduits jusqu’à présent : les complexes de parité de
Street [Str91], les schémas de recollement de Johnson [Joh89] et les complexes dirigés augmentés
de Steiner [Ste04].

Une partie du travail de cette thèse a consisté à essayer de mieux comprendre les liens entre
ces di�érents formalismes ainsi que les di�érences entre leurs expressivités. Durant cette étude,
il fut découvert que l’axiomatique des complexes de parité et des schémas de recollement étaient
défectueuses, dans le sens où ces formalismes acceptaient des diagrammes qui n’étaient pas asso-
ciés à des compositions formelles uniques. Cela motiva l’introduction d’un nouveau formalisme,
appelé complexes sans torsion, généralisant les trois introduits et corrigeant les défauts des com-
plexes de parité et des schémas de recollement. Nous avons prouvé en détail la correction de ce
nouveau formalisme en adaptant et complétant les preuves données par Street pour les complexes
de parité. Nous avons ensuite e�ectué la comparaison avec les autres formalismes et montré,
selon des restrictions raisonnables, que ceux-ci étaient des cas particuliers de complexes sans
torsion. Pour �nir, nous avons illustré l’utilité de cette nouvelle structure en en fournissant une
implémentation qui permet de faciliter l’interaction avec le programme résolvant le problème du
mot évoqué plus haut.
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Cohérence dans les catégories de Gray

Les dé�nitions des structures algébriques usuelles, comme celle des monoïdes, peuvent être gé-
néralisées dans des catégories supérieures. On s’intéresse généralement aux dé�nitions qui sont
cohérentes, c’est-à-dire où tous les diagrammes commutent. Par exemple, on peut généraliser la
dé�nition des monoïdes aux 2-catégories monoïdales. Les conditions d’unitalité et d’associativité
des monoïdes sont alors exprimées sous forme d’isomorphismes de dimension 2. Le célèbre théo-
rème de cohérence de MacLane nous dit qu’une dé�nition cohérente est obtenue en demandant
la commutativité de deux classes de diagrammes, dont le fameux pentagone de MacLane

(, ⊗ - ) ⊗ (. ⊗ / )

((, ⊗ - ) ⊗ . ) ⊗ /

(, ⊗ (- ⊗ . )) ⊗ / , ⊗ ((- ⊗ . ) ⊗ / )

, ⊗ (- ⊗ (. ⊗ / )) .

La question se pose alors de comment trouver de telles classes de diagrammes, appelés diagrammes
de cohérence, pour les autres structures algébriques a�n de rendre les dé�nitions cohérentes.

Généralisant un résultat de Squier sur les monoïdes, Guiraud et Malbos [GM09] ont introduit
une technique permettant de trouver de tels diagrammes de con�uence pour des structures algé-
briques exprimées dans des catégories strictes. Ils ont montré que, dans le cas où les axiomes de
ces structures pouvaient être orientés de façon à constituer un système de réécriture convergent,
les diagrammes de cohérence pouvaient être obtenus comme étant les diagrammes de con�uence
de ce système de réécriture.

Une partie du travail de cette thèse a consisté à adapter cette technique aux catégories de Gray.
Ces dernières sont des catégories 3-dimensionnelles qui sont intéressantes car assez simples et
qui pourtant sont équivalentes aux tricatégories, qui modélisent tous les types d’homotopie de
dimension 3. Pour faire cette adaptation, nous avons développé un cadre permettant de faire de
la réécriture dans les catégories de Gray basé sur les précatégories. L’utilisation de ces dernières
est justi�ée par le fait qu’elles permettent d’avoir de meilleures propriétés calculatoires que les
catégories strictes par exemple. Nous obtenons ainsi un résultat analogue à celui de Guiraud
et Malbos qui stipule que, dans le cas où les 3-cellules d’une catégories de Gray induisent un
système de réécriture convergent, les diagrammes de con�uence de ce système de réécriture
peuvent être choisis comme diagrammes de cohérence pour la structure algébrique considérée.
Nous appliquons ensuite ce résultat sur quelques exemples, ce qui nécessite entre autres de
développer des résultats de terminaison pour les systèmes de réécriture dans ce cadre.
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Notations

In this thesis, we use the following notations:

– l denotes the smallest in�nite ordinal,

– N denotes the set of natural integers and N∗ denotes the set N \ {0},

– given = ∈ N, N= denotes the set {0, . . . , =} and N∗= denotes the set {1, . . . , =},

– we extend the previous notation to in�nity by putting Nl = N and N∗l = N∗,

– in accordance with the above notations, given = ∈ N ∪ {l}, we often write N= ∪ {=} to
denote either N= when = ∈ N, or N ∪ {l} when = = l ,

– given a product
∏
8∈� -8 of objects -8 of some category indexed by the elements of a set � ,

we write c 9 :
∏
8∈� -8 → - 9 for the projection on the 9-component for 9 ∈ � ,

– given a coproduct
∐
8∈� -8 of objects -8 of some category indexed by the elements of a set � ,

we write ] 9 :
∐
8∈� -8 → - 9 for the coprojection on the 9-component for 9 ∈ � .
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Introduction

The sophistication of modern mathematics incites to take into account not only the mathematical
objects at stack, but also the way they interact, the interaction between those interactions, and
so on. We have entered a higher-dimensional approach to the mathematical world. The algebraic
structures involved in such studies, called higher categories, are becoming more and more complex
and computationally involved. The aim of this PhD thesis is to introduce several computational
tools to assist with the manipulation of some of these higher categories.

We shall �rst give some general background about this work before introducing the topics of this
thesis in more details.

General background

Higher categories. The beginnings of category theory can be traced back to the 1940s, with the
work of Eilenberg and MacLane in algebraic topology, when they investigated the notion of natural
transformation [EM42; EM45]. A category is a simple structure: objects (or 0-cells) and arrows (or
1-cells) between them that can be composed associatively by a binary operation, together with an
identity arrow for each object. Yet, its generality allowed it to become an important abstraction
tool in modern mathematics, physics and computer science, for considering algebraic structures
equipped with some notion of composition [BS10].

Even though the scope of categories is broad, there are some situations where they fail to
apply. One kind of such situations is when there is additional structure, such as other composi-
tion operations, that does not �t in the structure of a category. This is the case when describing
categories themselves: categories and functors form a category, but this description does not
encompass the natural transformations between functors and the associated composition opera-
tions (the one with between functors and natural transformations, and the one between natural
transformations). Another kind of situtations is when the unitality and associativity properties of
the composition operation of categories are too strong. For example, when considering the paths
on some topological space - , two paths can be composed by concatenation, but this operation is
then neither unital nor associative. Of course, one can instead consider the paths up to homotopy,
for which the above composition operation is unital and associative, and obtain the category of
paths up to homotopy of - , called the fundamental groupoid of - . But one might still be inter-
ested in representing the structure of these homotopies, for which categories are not expressive
enough, so that we fall back into the �rst situation.
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A better treatment of the two above situations can be obtained by considering generalizations
of the notion of category that have higher cells, i.e., (8+1)-cells between 8-cells for 8 ≥ 1, and
several composition operations for the di�erent cells that can satisfy multiple axioms. We call
higher category an instance of this informal class of structures, and call =-category a higher cate-
gory that has cells up to dimension =. The two above situations can then be properly represented
by considering the adequate notion of higher category. For instance, the categories, functors,
natural transformations and the di�erent compositions between them �t in a strict 2-category,
which is a 2-category with unital and associative compositions of the 1- and 2-cells, �rst intro-
duced by Ehresmann [Ehr65]; the paths on the space - and their homotopies �t in a bicategory,
which is 2-category whose composition of 1-cells is associative up to a 2-cell, introduced by
Bénabou [Bén67].

By de�nition, there is an in�nity of notions of higher categories. Indeed, the di�erent notions
can di�er with regard to the maximal dimension of cells which are handled, the shape of the cells
(globular, cubical, simplicial, etc.), the operations allowed on these cells, and the axioms satis�ed
by these operations. Each notion of higher category is usually informally situated in the strict-
weak spectrum: the higher categories whose axiomatic consists of equalities between composites
of cells are called strict, whereas the ones whose axiomatic consists of the existence of coherence
cells between two composites of cells are called weak. For example, categories and strict 2-cate-
gories require that the composition of 1-cells be strictly associative, and thus lie on the ‘strict’ side
of the strict-weak spectrum, whereas bicategories require the mere existence of invertible 2-cells
between 1-cells composed using di�erent parenthesizing schemes (e.g., there exists a coherence
2-cell between (D∗0E)∗0F andD∗0 (E∗0F) for composable 1-cellsD, E,F ), and thus lie on the ‘weak’
side of the strict-weak spectrum. Strict higher categories have usually simpler de�nitions and
are easier to work with, but, as suggested above, they are not adequate for encoding homotopical
information, and one usually turns to weak higher categories for such matters. The downside is
that the axiomatics of weak higher categories are usually technically quite involved, the situation
becoming worse and worse as the dimension of the considered categories increases because of
the multiple coherence cells between the composition operations [GPS95]. Indeed, in addition
to the already evoked coherence cells for associativity, particular de�nitions of weak categories
can also involve coherence cells for identities, that witness that identities are weakly unital, and
exchange coherence cell, that witness that two parallel cells that appear one after the other in
some cell can be exchanged, and many more. All these coherence cells should moreover satisfy
several compatibility conditions which are di�cult to list exhaustively.

In between those two ends of the spectrum, there is the so-called semi-strict de�nitions of
higher categories, which involve a balanced mixture of strict equations and coherence cells,
so that such higher categories are expressive enough for encoding homotopical information,
while keeping the complexity of the axiomatic at bay. Notably, in dimension 3, a fundamental
result of Gordon, Power and Street [GPS95] is that tricategories, the 3-dimensional analogues of
bicategories, are equivalent (for the right notion of equivalence) to semi-strict 3-categories called
Gray categories. The latter are ‘strict’ in every respect except for the exchange of 2-cells. Other
interesting semi-strict 3-categories are the ones that we call Kock categories, which were shown to
correctly model 3-dimensional homotopical properties [JK06]. Those are ‘strict’ in every respect
except that identities are only weakly unital. See Figure 1 for a comparison of the axiomatics of
the 3-dimensional categories introduced so far. Similar semi-strict de�nitions are still looked for
in higher dimensions, even though some propositions were made [BV17].

The case for strict categories. Even though strict categories do not represent as well homotopi-
cal properties as weak categories, there are still interesting objects that are worth studying. First,
they have already found several applications. As remarked by Burroni [Bur93], strict 3-categories
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3-categories unitality associativity exchange

strict categories equality equality equality
Gray categories equality equality coherence cell
Kock categories coherence cell equality equality
weak categories coherence cell coherence cell coherence cell

Figure 1 – Strict-weak characteristics of some 3-dimensional categories

can be used as a framework which generalizes classical term rewriting systems, and this fact
motivated the interpretation of =-categories for = ≥ 4 as “higher rewriting systems”. This idea
led to several developments and applications [Laf03; Mim14; CM17]. In a related manner, strict
categories found some applications in the study of homological properties of monoids, mainly in
the work of Guiraud and Malbos [GMM13; GGM15; GM18]. Moreover, strict categories play a role
in the de�nition of other (possibly weak) higher categories. For example, Gray categories can be
de�ned from the Gray tensor product, which is a construction on strict 2-categories. Another ex-
ample is the notion of globular operad, developed by Batanin and Leinster [Bat98b; Lei98], which
is a device based on strict categories that allows de�ning other higher categories. In particular,
weak categories admit an elegant de�nition in this setting [Lei04]. In a related manner, Henry was
able to de�ne semi-strict higher categories which exhibit the same good homotopical properties
of weak categories using several constructions on strict categories [Hen18]. Finally, as suggested
by Ara and Maltsiniotis [AM18], since weak categories are quite complicated objects which are
hard to manipulate, the study of properties and constructions on strict categories, as a simpler
case, seems a necessary step before considering the general case of weak categories.

In addition to the above motivations and applications, strict categories exhibit some nice
properties which make them more pleasant to work with than other higher categories. In partic-
ular, they possess a graphical language which enables to easily consider cells that are composites
of other cells. Indeed, whereas one introduce such composites in a general higher-dimensional
category by expressions which precisely state how some given cells are composed, it is often
enough, in strict categories, to simply draw these cells. For example, in usual categories, i.e., strict
1-categories, a diagram like

G0 G1 · · · G=−1 G=
51 52 5=−1 5= (1)

which represents a sequence of 1-cells 51, . . . , 5= of some category � unambiguously de�nes “the”
composite of 51, . . . , 5= . This is simply a consequence of the fact that the composition of 1-cells is
associative, so that all the expressions one can think of to compose the 58 ’s together are equivalent.
This property, which is rather trivial for 1-categories, generalizes to higher dimensions, so that,
for example, a diagram like

F

E G ~ I

10

2

3

4

5

6

⇓U ⇓V

⇓W

can be used to de�ne unambiguously a 2-cell in some strict 2-category, thus without the need
for an explicit expression which states precisely how to compose the generators of the diagram
together. Such diagrams are called pasting diagrams, since they express how a given set of cells of
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a strict category are “pasted” together. They �rst appeared for strict 2-categories in the work of
Bénabou [Bén67]. The use of such pasting diagrams facilitate the manipulation of strict categories
and is widespread in the literature about these categories.

Computability. The notion of computation appeared long before the �rst modern computers.
Written calculation procedures were identi�ed on Babylonian clay tablets [Knu72] (circa 1600 B.C.)
and some well-known arithmetical algorithms still used today were invented in ancient Greece,
like Euclid’s algorithm and the sieve of Eratosthenes (circa 300 B.C.). But it was only in the 20th
century that the notions of computation and computability were seriously formalized. In 1923,
Skolem �rst de�ned a class of functions that can be computed by �nite procedures [Sko23],
now known as primitive recursive functions. Later, Gödel gave a more general class of computable
functions [Göd34], now known as recursive functions. Other models of computation were proposed
at the time, like Church’s lambda calculus [Chu36] and Turingmachines [Tur36], that in fact turned
out to be equivalent to recursive functions. This led to the introduction of the Church-Turing
thesis, which asserts that any “computable procedure” can be expressed in one of these models.

The latter were introduced in order to provide answers to foundational problems of mathe-
matics raised by Hilbert and others at the time. On the one hand, Hilbert’s second problem asked
whether the axiomatic of arithmetics could be shown consistent, considering the advances in the
logical aspects of mathematics at the time. Using his formalism of primitive recursive functions,
Gödel provided a negative answer to this question, in the form of his famous incompleteness
theorem. On the other hand, Hilbert and Ackermann’s Entscheidungsproblem (“decision problem”)
asked whether there existed a general computable procedure that would decide whether a given
mathematical statement is true or false. Church and Turing gave two di�erent negative answers
to this question, by showing more generally the existence of undecidable problems, i.e., problems
that can not be solved by computable procedures. In particular, Turing showed that the halting
problem, i.e., the problem that consists in deciding whether a given Turing machine stops after a
�nite number of steps, was undecidable.

Since then, a lot of other undecidable problems were discovered. The proof of undecidability of
a given problem usually relies on reducing the halting problem or some other known undecidable
problem to it. A common source for undecidable problems are the word problems associated
with presentations. Recall that mathematical objects are often de�ned by means of presentations,
i.e., as sets of generators that can be combined into terms, or words, such that the evaluation
of these terms satisfy several equations. In particular, monoids can be de�ned by presentations,
where the words that appear in the equations are simply sequences of generators. For example,
the monoid (N2, (0, 0), +) can be presented as the monoid induced by two generators 0 and 1
satisfying the equation 01 = 10. Instances other algebraic theories (groups, rings, etc.) can be
presented by a similar fashion. In fact, theories themselves are usually de�ned by means of
presentations. The words in this case are �nite trees which represent expressions that can be
written in the considered theory. For example, the theory of monoids can be presented as the
theory of structures consisting in a unit 4 and a binary operation rsuch that the equations

4 rG = G G r4 = G (G r~) rI = G r (~ rI)
are satis�ed for all elements G,~, I of the structure. Other algebraic theories can be presented in a
similar fashion. Given any kind of presentation, the word problem consists in deciding whether
two given words are equal with regard to the equations of the presentation. Before the appearance
of recursive functions and the other computation models, it was already asked whether there
existed a procedure to decide the word problem for presentations of groups by Dehn [Deh11],
and for presentation of monoids by Thue [Thu14]. It was shown not to be the case, since there
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are examples of presentations with undecidable word problems: this was shown by Post [Pos47]
and Markov [Mar47] for monoids, and by Novikov [Nov55] for groups.

Rewriting. Even though there is no general procedure to solve the word problem for all pre-
sentations of monoids, groups, theories, etc. solutions might exist for some presentations. In
particular, one can derive a solution to the word problem when the considered presentation is
associated with a rewriting system with good properties. Formally, one obtains a rewriting system
from a presentation by simply orienting the equations of the presentation. Such orientations
should be thought as de�ning a set of allowed moves, or rewrite rules, from a word to another.
In order for the rewriting system to exhibit good properties, the orientations of the equations
should be chosen so that the word obtained after applying a rewrite rule is simpler than the word
one started from. The de�nition of “simpler” here is relative to each situation. It can mean for
example “being smaller” or “being better bracketed” (on the left or on the right, depending on
convention). By combining all the rewrite rules, one then obtains a rewrite relation on the words.
For example, one can orient the equations of the theory of monoids as follows:

4 rG ⇒ G G r4 ⇒ G (G r~) rI ⇒ G r (~ rI).
The above rewrite rules induce a rewrite relation⇒ for which we have the rewrite sequence

(G r (~ r4)) r (I r4) ⇒ (G r~) r (I r4) ⇒ (G r~) rI ⇒ G r (~ rI)
where the �nal word is simpler than the one we started from.

Once a rewriting system is introduced for a presentation, one can try a normal form strategy
to solve the word problem: given two words that are to be compared, we reduce both words
with the rewrite relation until they can not be reduced further, and then compare the resulting
normal forms. For this strategy to work, several additional conditions should be satis�ed. First,
the rewriting system should have a �nite number of rewrite rules, so that we are able to detect
when we have found a normal form. Moreover, the rewrite relation⇒ should be terminating, i.e.,
it should not allow in�nite rewrite sequences. Finally, the relation⇒ should satisfy a property
of con�uence, which states that all the di�erent possible rewrite sequences starting from a given
word lead to the same normal form. When these conditions are satis�ed, the normal form strategy
provides a computational procedure which solves the word problem.

The aim of rewriting theory is, among others, to provide generic criteria for showing several
properties of rewrite relations, including termination and con�uence, even though such proper-
ties are undecidable in general [Ter03]. In particular, as a consequence of two classical results,
namely Newman’s lemma and the critical pair lemma, the con�uence of a terminating rewrite
relation reduces to the con�uence of rewrite sequences associated to the critical branchings of the
rewriting system: those are pairs of the generating rewrite rules that are minimally overlapping.
The con�uence of the theory of monoids can be deduced this way, since the associated rewrite
relation can be shown terminating, and since moreover each of its critical branching can be shown
con�uent. For example, this theory admits the critical branching

(F r (G r~)) rI ⇐ ((F rG) r~) rI ⇒ (F rG) r (~ rI)
and this branching is witnessed con�uent by the diagram

(F rG) r (~ rI)
((F rG) r~) rI

(F r (G r~)) rI F r ((G r~) rI)
F r (G r (~ rI)) . (2)
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The use of con�uent and terminating rewriting systems for providing a decidable solution to
the word problem naturally led to the question, initially raised by Jantzen [Jan84], of whether any
monoid with decidable word problem can be presented by a �nite terminating con�uent rewriting
system, so that the normal form strategy apply. This question was answered by Squier [Squ87].
He showed that monoids which can be presented with �nite terminating con�uent rewriting
systems satisfy a �niteness homological property which does not depend on the presentation.
He then gave an example of a monoid which has a decidable word problem but does not satisfy
this homological condition, answering negatively Jantzen’s question. The work of Squier on this
problem had deep consequences, since it establishes a link between presentations and homological
invariants of monoids. In fact, this connection extends to homotopical invariants of monoids, as
was shown in a posthumous article [SOK94]. The latter result formalizes the idea that con�uence
diagrams of critical branchings like (2) are the elementary “holes” of a space associated to a
presented monoid.

Coherence. In mathematics, coherence properties are an informal class of results which can
appear in various contexts and take di�erent forms. Maybe one of the �rst coherence result is
the coherence of an associative binary operation [Bou07, Théorème 1]. This result states that,
given a binary operation ron a set which satis�es that (G r~) rI = G r(~ rI), one does not need to
parenthesize an expression G1 r · · · rG= since all parenthesizing schemes induce the same result.
This is a fundamental fact about associative operations that is used daily by most mathematicians.
More generally, coherence properties assert that the choices we can have in using the operations
of some structure do not matter in the end, since all possible choices lead to the same result.

Coherence results are particularly present in (higher) category theory. They usually ap-
pear when considering weakened versions of algebraic structures expressed in some category.
Such weakened versions are obtained by replacing the equalities of the algebraic theories by
isomorphisms. A classical example is monoidal categories, which are weakened monoids, or
pseudomonoids, expressed in the category of categories. The “associativity” here takes the form
of isomorphisms

(- ⊗ . ) ⊗ / → - ⊗ (. ⊗ / )

which allow to change the bracketing. Given a sequence of objects -1, . . . , -= , there are then
di�erent possible ways one can use the above associativity morphisms to relate the left and right
bracketings

((· · · (-1 ⊗ -2) ⊗ · · · ) ⊗ -=−1) ⊗ -= -1 ⊗ (-2 ⊗ (· · · ⊗ (-=−1 ⊗ -=) · · · )).

MacLane’s coherence theorem for monoidal categories [Mac63] asserts that all the di�erent iso-
morphisms one can build between the two above objects using the associativity isomorphisms
are equal. The proof of this fact reduces to the commutation of the pentagon diagrams

(, ⊗ - ) ⊗ (. ⊗ / )

((, ⊗ - ) ⊗ . ) ⊗ /

(, ⊗ (- ⊗ . )) ⊗ / , ⊗ ((- ⊗ . ) ⊗ / )

, ⊗ (- ⊗ (. ⊗ / )) (3)

which is required by the de�nition of monoidal categories. Several coherence results were
proved for other weak structures: symmetric monoidal categories [Mac63], braided monoidal
categories [JS93], Frobenius pseudomonoids [DV16], etc. Like MacLane’s theorem, these coher-
ence properties are the consequence of the commutation of a �nite number of classes of diagrams,
that we call coherence tiles, which are required by the de�nitions of the structures. In fact, the
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coherence tiles of the de�nitions of these structures are chosen so that the coherence properties
hold.

Coherence properties are particularly interesting in higher category theory, since they often
imply stricti�cation results, which state that the considered weak structures are equivalent to
stricter ones (for a case-dependent notion of “equivalent”). Such results are useful since they allow
replacing weak structures by stricter ones, the latter being simpler in practice. For example, from
the coherence property for monoidal categories, one can deduce that monoidal categories are
equivalent to stricter versions where the associativity isomorphisms are identities [Mac13]. Simi-
larly, one can derived the equivalence between bicategories and strict 2-categories [MP85; Lei04],
and the equivalence between tricategories and Gray categories [GPS95] from coherence results.
This justi�es that we are mainly interested in �nding coherent de�nitions of weak structures, i.e.,
de�nitions for which the coherence properties hold.

Topics of this thesis

Higher categories as globular algebras. As we have seen, there are various ways of axioma-
tizing the notion of higher category. In order to unify several shared constructions among the
di�erent theories, it is necessary to set some common ground. Here, we mostly focus on the
approach laid out by Batanin [Bat98a], in which a particular theory of globular higher categories
is encoded as an algebraic theory on globular sets. More precisely, a theory of =-categories is de-
scribed there as a monad on the category of =-globular sets, and the category of =-categories that
are instances of this theory is then simply the Eilenberg-Moore category on this monad. Sadly,
this de�nition does not exhaust the concept of higher category since, in particular, there are
de�nitions of higher categories that are not algebraic [Lei04; Gur06]. Still, this perspective encom-
passes a lot of higher categories that are frequently encountered. In particular, theories of globular
higher categories with equational de�nitions, like strict =-categories, �t in this description.

The formalism of Batanin is interesting for us since it allows de�ning for all globular algebraic
theory of higher categories the notion of polygraph. An =-polygraph is a system of generating
8-cells, also called 8-generators, for 8 ∈ N: from which a free =-category can be constructed. Such
structure allows extending to higher categories the classical notion of presentation by generators
and relations. In particular, it enables to encode higher categories with possibly in�nitely many
cells as �nite data, which can then be given as input to a program. Before their general de�nitions
for all globular algebraic higher categories given by Batanin [Bat98a], polygraphs were �rst
introduced by Street [Str76] for strict 2-categories under the name computad, and then extended to
arbitraty dimension by Power [Pow91]. The de�nition (for strict categories) was later rediscovered
by Burroni [Bur93], who introduced the name polygraph.

The article of Batanin is mainly concerned with the generalization of polygraphs to other
globular categories and does not say much more about other constructions that can be done in
the setting he introduced. In particular, even though it is noted that a notion of =-category (i.e., a
monad on =-globular sets) automatically induces notions of 0, . . . , (=−1)-categories, no functors
relating the di�erent dimensions is introduced. Moreover, since the de�nition of polygraph of
Batanin is rather direct, it does not involve a structure, that we call cellular extension, which
appears in the de�nition of polygraphs of strict categories of Burroni. This structure encodes a
strict =-category equipped with a set of (=+1)-generators from which one can consider the strict
(=+1)-category obtained by freely extending the =-category with the (=+1)-generators.

Another concern about the setting of Batanin is that it relies on the monad on globular sets
associated to a given notion of higher category in order to de�ne the structure of polygraph.
However, a notion of higher categories is rarely introduced by a monad. Instead, it is usually
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presented, like other algebraic theories, as a structure with operations satisfying several equations.
Even though the task of describing the associated monad is not conceptually di�cult, it is still
tedious and one usually prefers avoiding it. But some properties introduced by Batanin often
require verifying that the considered monad is truncable, i.e., exhibits some compatibility with the
truncation operations on globular sets, so that it seems di�cult to escape an explicit description
of the monad at �rst glance. These technicalities likely hinder a wider use of the general results
that can be formulated in the setting of Batanin.

Word problem. Like usual free algebraic objects, the cells of the =-category freely generated on
an =-polygraph can be described by words which combine the generators of the polygraphs with
the operations the considered theory of =-category. Since these operations can be required to
satisfy several axioms, there are usually several words that can represent the same cell. The word
problem on polygraphs of higher categories consists in deciding whether two words represent the
same cell. Solving this problem is important for providing e�cient computational descriptions
and helping with the study of higher categories.

Given the role that strict categories play in higher categories, �nding an e�cient and usable
solution to the word problem on (polygraphs of) strict categories is particularly important. In this
context, it seems that the usual normal form strategy can not be applied, since there is no known
orientation of the axioms of strict categories that would induce a con�uent and terminating
rewriting system. In [Mak05], Makkai gave a solution to this problem. He showed that, even
though there is no known unique normal form for the words, they still admit canonical forms.
Moreover, the canonical forms of two equivalent words can be related by a sequence of moves,
and these canonical forms can be enumerated by a terminating procedure. This solves the word
problem, since two words are equivalent if and only if they have canonical forms which can be
related by a sequence of moves. However, the resulting procedure is computationally expensive
and quickly overwhelmed by rather simple instances (Makkai deemed himself its procedure as
“infeasible”), which prevents its use on concrete instances.

The work of Makkai revealed that the canonical forms for the cells exist for a more primitive
structure than the one of strict =-category, that we call =-precategory: the latter are a variant
of strict categories that do not satisfy the exchange identity of strict categories (c.f. Figure 1).
The word problem on polygraphs of precategories then admits a simple solution: two words
are equivalent if they have the same unique canonical form. These good computational proper-
ties motivate searching for other situations in which =-precategories can be used. Interestingly,
they are already the underlying structure of Globular, a diagrammatic proof assistant for higher
categories [BKV16; BV17].

The article of Makkai on the word problem [Mak05] introduced several notions and tools
that are of more general interest to the study of strict categories. In particular, he introduced a
“content function”, that we call Makkai’s measure, which assesses the complexity of the cells of
strict categories freely generated on polygraphs. More precisely, this function gives some account
on how many times each generator of the polygraph is used in the de�nition of a given cell. This
function admits a simple inductive de�nition and moreover possesses several good properties.
Makkai used it to show that his procedure which computes all the canonical forms of a given word
terminates. His measure appears to have one shortcoming though: it counts multiple times low-
dimensional generators. This defect raised the question, formulated by Makkai, of the existence of
another measure that would not display this bad behavior. The existence of such a measure would
be useful, since it could help to characterize a class of polygraphs called computopes by Makkai,
and later studied by Henry [Hen17] under the name polyplexes, which seem to play an important
role in the study of polygraphs. In particular, they were used to show that some subcategories of
the category of polygraphs are presheaf categories or not [Mak05; Hen17].
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Pasting diagrams. Even though the word problem for polygraphs of strict =-categories is
decidable, using words to manipulate the cells of strict=-categories can be cumbersome in practice.
As already mentioned, one can instead use pasting diagrams to describe cells of such categories.
However, not all cells can be unambiguously described this way, since not all diagrams are pasting
diagrams. A �rst issue is that some diagrams might be associated to several possible cells. For
example, in dimension 1, given the diagram

G

~ I

0

1

2

the “composite of 0, 1, 2” is not uniquely de�ned because of the loop. It could denote

either 0 ∗0 (1 ∗0 2), or (1 ∗0 2) ∗0 0, or (0 ∗0 1) ∗0 (2 ∗0 0), etc.

that are not the same cells. Another issue is that it might not be possible to compose the generators
of a given diagram at all. For example, given the diagram

F G ~ I
0 1

the “composite of 0 and 1” does not make any sense. Still, the pasting diagrams are easily charac-
terized in dimension 1: they are �nite connected linear diagrams without loops like (1).

However, it is harder to characterize precisely what a 2-dimensional pasting diagram is and,
more generally, what an =-dimensional pasting diagram is. We can only say that the latter is a
diagram that satisfy conditions which ensure that the generators it is made of can be composed
together in a unique way (up to the axioms of strict =-categories). As suggested by the 1-dimen-
sional case, one can expect =-dimensional pasting diagrams to be �nite set of generators that are
at least “without loops” and “conected” (for the right generalizations of these notions). But these
conditions can be shown insu�cient already in dimension 2.

Several formalisms for pasting diagrams were introduced until now, which aim at helping
identify pasting diagrams among general diagrams. The three most important of them are parity
complexes [Str91], pasting schemes [Joh89], and augmented directed complexes [Ste04]. Each of
these formalisms introduces a structure to represent general diagrams and provides a set of
conditions under which a diagram is to be considered as a pasting diagram. Moreover, each
formalism de�nes a structure of l-category on the set of sub-pasting diagrams of a diagram, and
proves that thisl-category is freely generated on the generators of the diagram, which formalizes
the property that pasting diagrams describe cells of strict categories unambiguously. Even though
the ideas underlying the de�nitions of these pasting diagram formalisms are quite similar, they
di�er on many subtle points and comparing them precisely is uneasy, and actually, to the best of
our knowledge, no comparison of the formalisms was ever made.

Pasting diagrams appear as important tools in the study of strict =-categories and, indirectly,
of other higher categories. First, they provide a simpler solution to the word problem on strict
categories: two words are equal if their associated pasting diagrams (when they exist) are the
same. They also allow de�ning l-categories from structures that satisfy combinatorial properties.
This way, Street [Str87; Str91] was able to de�ne a higher-dimensional analogue of simplices,
called orientals, from which he derived a nerve functor for strict l-categories. Moreover, pasting
diagrams are dense in strict l-categories, so that the de�nitions of constructions on general
strict l-categories can often be reduced to their de�nitions on pasting diagrams. This way,
Steiner [Ste04] sketched a simple de�nition of the Gray tensor product onl-categories, which was
later completed by Ara and Maltsiniotis [AM16]. In a related manner, Kapranov and Voevodsky,
after extending the theory of pasting schemes [KV91b], attempted to give a description of weak
l-groupoids using pasting diagrams [KV91a], but their results were shown paradoxical [Sim98].
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Coherence for Gray categories. In order to make a weakened de�nition of some algebraic
structure expressed in a higher category coherent, one faces the problem of �nding a correct set
of coherence tiles. Recently, it was shown by Guiraud and Malbos [GM09] that, in the context
of strict categories, these coherence tiles can be found using an extension of Squier theorems to
“higher rewriting systems” on strict categories.

A higher rewriting system in their setting is simply a polygraph of strict categories. Indeed,
it was noted by Burroni when he introduced his de�nition of polygraphs [Bur93] that polygraphs
generalize the classical notion of rewriting system. For example, one can encode the earlier
introduced rewriting system of the theory of monoids as the 3-polygraph with two 2-generators

and

representing the generating operations of the theory of monoids, and three 3-generators

L : V R : V A : V

representing the rewrite rules of the rewriting system. This motivated the interpretation of
polygraphs of higher dimensions as higher-dimensional rewriting systems, for which the classical
results from rewriting theory, and even Squier theorems, can be adapted.

In particular, when searching for a coherent de�nition of a weakened algebraic theory ex-
pressed in strict categories, if this theory is presented by a �nite, con�uent and terminating higher
rewriting system, one can choose the coherence tiles to be the con�uence diagrams of the critical
branchings of this rewriting system. For instance, Guiraud and Malbos showed that the coher-
ence tiles of monoidal categories can be derived from the critical branchings of an associated
rewriting system, as already suggested by the resemblance between (2) and (3). Even though
several additional conditions need to be proved in each situation, like the termination and the
con�uence of the associated rewriting system, this still provides a generic method for �nding
coherent weakened de�nitions of algebraic structures expressed in strict categories.

Adaptations of this method would be useful in order to �nd coherent de�nitions in other
higher categories, in particular weak categories. Since bicategories (i.e., weak 2-categories) are
equivalent to strict 2-categories, which are already handled by the framework of Guiraud and
Malbos, tricategories are the �rst interesting case. But tricategories are complicated objects, for
which the development of rewriting techniques might prove di�cult. However, since tricategories
are equivalent to the simpler Gray categories, it is enough to adapt the tools of Guiraud and Malbos
for the latter. These tools could be used to recover existing coherent de�nitions of weak structures
for Gray categories, like pseudomonoids or pseudoadjunctions [Lac00; Dos18] and �nd new ones.

In order to adapt these tools, the development of a rewriting framework for Gray categories
is required. Since the latter have exchange coherence cells (c.f. Figure 1) that might interact
with the operations of the studied weakened de�nitions, it is useful to consider a more primitive
structure as the underlying rewriting setting. A good candidate are precategories, which we
already mentioned earlier. Indeed, they admit a simple computational representation and their
word problem is trivial. Moreover, they do not require the exchange identity of strict categories,
which was shown problematic in the context of higher rewriting since it allows a �nite rewriting
system to have an in�nite number of critical branchings [Laf03; Mim14], which prevents their
exhaustive enumeration by a computer.

Outline of the thesis. The object of this thesis is the introduction of several computational
tools for strict categories and Gray categories. It is organized around three main topics: the word
problem for strict categories, the pasting diagram formalisms, and the coherence problem for
Gray categories. The detailed structure of this manuscript follows.
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In Chapter 1, we recall the formalization, given by Batanin [Bat98a], of higher categories
as globular algebras, and derive several constructions and de�nitions, like the one of polygraph.
Then, we introduce the equational de�nitions of the two theories of higher categories that will
mainly concern us during this thesis: strict =-categories and =-precategories. In order to obtain
all the properties and constructions given by the framework of Batanin, we will have to show
that these theories are derived from monads on globular with su�cient properties. In order to
avoid the tedious task of explicitly describing the monads of each theory, we introduce criteria
on the categories of algebras to decide whether these algebras are derived from adequate monads
on globular sets.

In Chapter 2, we revisit the solution to the word problem on strict =-categories given by
Makkai in [Mak05]. For this purpose, we recall the de�nition of Makkai’s measure for such
polygraphs, by deriving it from another measure de�ned by Henry [Hen18]. Using an equivalent
description of strict categories as precategories satisfying some exchange condition, we provide
a syntactical description of the free =-categories which is amenable to computation. From this
description, we derive a solution to the word problem which is a more e�cient version of the one
given by Makkai, and give an implementation for it. Finally, we answer the question raised by
Makkai and show by the mean of a counter-example the nonexistence of a measure on polygraphs
that does not double-count generators.

In Chapter 3, we study the pasting diagrams for strict categories and consider the three main
existing formalisms for them, namely parity complexes, pasting schemes and augmented directed
complexes. We show that the axiomatics of parity complexes and pasting schemes are �awed,
in the sense that they do not guarantee that the cells of strict categories can be represented
faithfully by the diagrams which these formalisms consider as pasting diagrams. This motivates
the introduction of a new formalism, called torsion-free complexes, based on parity complexes,
for which we give a detailed proof of correctness as a pasting diagram formalism. We illustrate
the interest of this formalism by implementing a pasting diagram extension based on torsion-
free complexes for the solver of the word problem whose implementation was introduced in
the previous chapter. Finally, we prove that this new formalism generalizes augmented directed
complexes and �xed versions of parity complexes and pasting schemes, in the sense that the class
of pasting diagrams it accepts is larger than the classes accepted by those other formalisms.

In Chapter 4, we study the problem of coherence of several algebraic structures expressed in
Gray categories. For this purpose, we de�ne a higher rewriting framework based on precategories.
First, we show how Gray categories can be presented by prepolygraphs, i.e., polygraphs for precat-
egories. Then, interpreting prepolygraphs as higher rewriting systems, we translate the classical
results of rewriting theory, like Newman’s lemma and the critical pair lemma to this prepolygraph
setting. Next, adapting the results of Squier [SOK94], Guiraud and Malbos [GM09] to our context,
we show that the coherence tiles for weakened de�nitions expressed in Gray categories can be
chosen to be the con�uence diagrams of the critical branchings of a con�uent and terminating
rewriting system. We �nally illustrate the use of this result on several examples and give coherent
weakened de�nitions of several algebraic structures expressed in Gray categories.





Chapter 1

Higher categories

Introduction

The notion of “higher category” encompasses informally all the structures that have higher-
dimensional cells which can be composed together with several operations. Such structures can
di�er on many points. First, there are several possible shapes for the cells of higher categories.
For example, globular higher categories have 0-cells, 1-cells, 2-cells, 3-cells, etc. of the form

G, G ~
5

, G ~

5

6

⇓q , G ~

5

6

q ⇓
�
≡V⇓k , etc.

But one can consider higher categories with other shapes than the globular ones. Common vari-
ants include cubical [ABS00] and simplicial [Joy02] higher categories, whose 2-cells for example
are respectively of the form

G ~

G ′ ~ ′

5

6 ⇓q ℎ

5 ′

and
~

G I

65

ℎ

⇓q .

Moreover, higher categories have several operations which satisfy axioms that can take di�erent
forms, according to their position in the strict/weak spectrum (c.f. the general introduction). For
example, a strict 2-category is a globular 2-dimensional category that have, among others, an
operation ∗0 to compose 1-cells in dimension 0, as in

G ~
5 ∗0 ~ I

6
= G I

5 ∗06 ,

and operations ∗0 and ∗1 to compose 2-cells in dimensions 0 and 1 respectively, as in

G ~

5

6

⇓q ∗0 ~ I

5 ′

6′

⇓q ′ = G I

5 ∗0 5 ′

6∗06′

⇓q∗0q ′

1
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and

G ~

5

6

⇓q ∗1 G ~

6

ℎ

⇓k = G ~

5

ℎ

⇓q∗1k .

These operations are required to satisfy several axioms consisting in equalities, like the associa-
tivity axiom: given 0-composable 1- or 2-cells D, E,F ,

(D ∗0 E) ∗0 F = D ∗0 (E ∗0 F)
and, given 1-composable 2-cells q,k, j ,

(q ∗1 k ) ∗1 j = q ∗1 (k ∗1 j).
An example of a weak higher category is given by a bicategory, which is a globular 2-dimensional
category that has operations similar to a strict 2-category but which satisfy axioms in the form
of “weak equalities”. For example, the 0-composition of 1-cells is only required to be weakly
associative, in the sense that, given 0-composable 1-cells

F G ~ I
5 6 ℎ ,

the equality (5 ∗06) ∗0ℎ = 5 ∗0 (6∗0ℎ) does not hold necessarily, but there should exist a coherence
cell between the two sides, i.e., an invertible 2-cell U 5 ,6,ℎ as in

F I

(5 ∗06)∗0ℎ

5 ∗0 (6∗0ℎ)

⇓U 5 ,6,ℎ .

Finally, a subtle di�erence between the di�erent kinds higher categories is the algebraicity of their
de�nition [Lei04; Gur13]. This notion essentially pertains to weak higher categories. Informally,
a de�nition of some sort of higher categories is algebraic when it can be equivalently described by
means of a monad. Concretely, algebraic de�nitions of weak higher categories involve coherence
cells that are distinguished (like the de�nition of bicategories, which requires that “there exists an
invertible 2-cell U 5 ,6,ℎ between (5 ∗0 6) ∗0 ℎ and 5 ∗0 (6 ∗0 ℎ)”), whereas non-algebraic de�nitions
of weak higher categories involve coherence cells that are not (a non-algebraic de�nition of
bicategories would only require that “there exists some invertible 2-cell between (5 ∗0 6) ∗0 ℎ
and 5 ∗0 (6 ∗0 ℎ)”).

In order to factor out several common constructions and properties across the di�erent possi-
ble higher categories, it is useful to consider a restriction of this general notion to a more formal
class of theories. This was done by Batanin [Bat98a], who introduced a uni�ed formalism for
algebraic globular higher categories. The latter are very common, since they include all the glob-
ular higher categories de�ned by a set of operations and equations between them. Moreover,
the instances of such higher categories form locally �nitely presentable categories and, as such,
have very good properties, like being complete and cocomplete [AR94]. The setting of Batanin
then enables to derive several common constructions for such higher categories. In particular,
one can generalize to those the notion of polygraph, originally de�ned by Street [Str76] for strict
2-categories. However, the drawback of the Batanin’s setting is that one has to work with the
monad associated to a given higher category theory. This can be problematic since concrete
de�nitions of higher categories usually involve equations and existences of coherence cells (like
for strict 2-categories and bicategories), from which the description of the associated monad is
usually tedious [Pen99].
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Outline. The object of this chapter is to recall and introduce several notions of higher categories
that we will need in the following chapters. Even though we only consider strict and semi-strict
higher categories in this work, we will use Batanin’s general formalism to derive several common
constructions for them. This chapter is organized as follows. First, we recall the notion of locally
�nitely presentable category (Section 1.1), of which most of the structures we will consider are
instances. Then, we recall the setting of Batanin of “higher categories as globular algebras”,
i.e., categories of algebras of a monad on globular sets (Section 1.2). In order to better relate this
setting with classical equational de�nitions of higher categories, we introduce criteria to recognize
whether some particular de�nition of higher categories �ts in this setting (Theorem 1.2.3.20 and
Theorem 1.2.4.11). Next, we introduce constructions of free higher categories that can be derived
in the setting of Batanin (Section 1.3). In particular, we de�ne the notion of polygraph for any
algebraic globular higher category. Our de�nition is less direct than the one of Batanin since it
uses the intermediate notion of free extension. We instantiate all these notions and constructions
when de�ning strict categories and precategories, that are strict higher categories that will concern
us in the next chapters (Section 1.4). Finally, we also mention enriched de�nitions for higher
categories (Section 1.5), and prove an enriched de�nition for precategories (Theorem 1.5.3.1).

1.1 Finite presentability

Locally presentable categories are a standard tool for deriving elementary properties on categories
of algebraic structures (monoids, groups, but also categories, 2-categories, etc.). They are those
categories where every object is a directed colimit of “�nitely presentable” objects, which are
a generalization of the notions of �nitely presentable monoids or groups. Knowing that some
categories are locally �nitely presentable category is helpful since those categories are complete,
cocomplete and satisfy other nice properties. In this thesis, most of the categories we consider
are locally presentable categories, which motivates recalling some of their properties. For a more
complete presentation, we refer to the existing literature [GU06; AR94; Bor94b].

We �rst recall the de�nition of locally �nitely presentable categories (Section 1.1.1) and then
introduce essentially algebraic theories, which are a standard tool to show that some categories
are locally �nitely presentable (Section 1.1.2).

1.1.1 Presentability

In this section, we de�ne the notion of locally �nitely presentable category, after recalling directed
colimits and presentable objects of categories.

1.1.1.1 — Directed colimits. A partial order (�, ≤) is directed when � ≠ ∅ and for all G,~ ∈ � ,
there exists I ∈ � such that G ≤ I and ~ ≤ I. A small category � is called directed when it is
isomorphic to a directed partial order (�, ≤).

Given a category C ∈ CAT, a diagram in C is the data of a functor 3 : � → C where � is a
small category. We say that it is a directed diagram when � is moreover directed. A directed colimit
of � is a colimit cocone (?8 : 3 (8) → - )8∈� on a directed diagram 3 : � → C.

Example 1.1.1.2. A set is a directed colimit of its �nite subsets. A monoid is a directed colimit of
its �nitely generated submonoids.

In Set, we have the following characterization of directed colimits:

Proposition 1.1.1.3. Let 3 : � → Set be a directed diagram in Set and (?8 : 3 (8) → �)8∈� be a
cocone on 3 . Then, (?8 : 3 (8) → �)8∈� is a directed colimit on 3 if and only if
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(i) for all G ∈ � , there is 8 ∈ � and G ′ ∈ 3 (8) such that ?8 (G ′) = G ,

(ii) for all 81, 82 ∈ � , G1 ∈ 3 (81) and G2 ∈ 3 (82), if ?81 (G1) = ?82 (G2), then there exists 8 ∈ � such that
81 → 8 ∈ � , 82 → 8 ∈ � and 3 (81 → 8) (G1) = 3 (82 → 8) (G2).

Proof. See for example [Bor94a, Proposition 2.13.3]. �

1.1.1.4 — Finitely presentable objects. Let C ∈ CAT. An object % ∈ C is �nitely presentable
when its hom-functor

C(%,−) : C → Set

commutes with directed colimits. By Proposition 1.1.1.3, it means that, given a directed colimit

(?8 : 3 (8) → - )8∈�

on a directed diagram 3 : � → C, we have

(i) for every - ∈ C and 5 : % → - , there is a factorization of 5 through 3 , i.e., there exists 8 ∈ �
and 6 : % → 3 (8) such that 5 = ?8 ◦ 6;

(ii) this factorization is essentially unique, i.e., if there exist others 8 ′ ∈ � and 6′ : % → 3 (8) such
that 5 = ?8′ ◦ 6′, then there exist 9 ∈ � , ℎ : 8 → 9 ∈ � and ℎ′ : 8 ′→ 9 ∈ � such that

3 (ℎ) ◦ 6 = 3 (ℎ′) ◦ 6′.

Example 1.1.1.5. Given a set ( , ( is �nitely presentable if and only if it is �nite. See [AR94,
Example 1.2(1)] for details.

Example 1.1.1.6. A monoid is �nitely presentable when it admits a presentation consisting of a �nite
number of generators and equations. A similar description of �nitely presentable objects holds
for the other categories of algebraic structures (groups, rings, etc.). See [AR94, Theorem 3.12] for
details.

1.1.1.7 — Locally �nitely presentable categories. A locally small category C ∈ CAT is locally
�nitely presentable when

(i) it has all small colimits,

(ii) every object of C is a directed colimit of locally �nitely presentable objects,

(iii) the full subcategory of C whose objects are the �nitely presentable objects is essentially
small.

Example 1.1.1.8. The category Set is locally �nitely presentable. Indeed, it is cocomplete and
every set is a directed colimit of its �nite subsets, which are �nitely presentable objects of Set.

Example 1.1.1.9. The category Mon of monoids is locally �nitely presentable. More generally, the
categories of algebraic structures (groups, rings, etc.) are locally �nitely presentable. This is the
consequence of the fact that such categories can be described by means of essentially algebraic
theories, as we will see in the next section.

Identifying a category as locally �nitely presentable enables to derive several elementary proper-
ties, like completeness:

Proposition 1.1.1.10. A locally presentable category is complete.
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Proof. See [AR94, Corollary 1.28, Remark 1.56(1), Theorem 1.58] for details. �

Moreover, showing that a functor between two locally �nitely presentable categories is a left or
right adjoint is easier than in the general case, since we do not need the existence of solution set
like in Freyd’s adjoint theorem ([Bor94a, Theorem 3.3.3]):

Proposition 1.1.1.11. Given a functor � : C → D between two locally presentable categories C
and D, the following hold:

(i) � is left adjoint if and only if it preserves colimits,

(ii) if � preserves limits and directed colimits, then it is right adjoint.

Finally, there is a simple criterion for a category of algebras on a monad to be locally �nitely
presentable. We recall that a functor � is �nitary when � preserves directed colimits, and a
monad (), [, `) on a category C is �nitary when ) is �nitary. We then have:

Proposition 1.1.1.12. Given a locally �nitely presentable category� and a �nitary monad (), [, `)
on C, the category of algebras C) is locally �nitely presentable. Moreover, the canonical forgetful
functor C) → C preserves directed colimits.

Proof. The category C) is �nitely locally presentable by [AR94, Theorem 2.78 and the following
remark]. Moreover, since ) is �nitary, the directed colimits of C) are computed in C, so that the
mentioned forgetful functor preserves directed colimits. �

Example 1.1.1.13. The category Mon is equivalent to the category of algebras Set) where (), [, `)
is the free monoid functor on Set. It can be shown that ) is �nitary, so that we obtain another
proof that Mon is locally �nitely presentable using Proposition 1.1.1.12.

1.1.2 Essentially algebraic theories

Verifying that some category is locally �nitely presentable with the above de�nition can be tedious.
A simpler way consists in describing it as the category of models of some essentially algebraic
theory. The latter is similar to an algebraic theory (theory of monoids, theory of groups, etc.),
except that operations with partial domains are allowed, as long as those domains are speci�ed by
equations. Another interesting property is that morphisms between such theories induce functors
between the associated categories of model, and those functors are moreover right adjoints and
preserve directed colimits. The main reference here is [AR94, Section 3.D].

1.1.2.1 — De�nition. Given a set ( , an (-sorted signature is the data of a set Σ of symbols such
that each f ∈ Σ has an arity under the form of a �nite sequence (B8)8∈N∗= of elements of ( for
some = ∈ N, and a target in the form of an element B ∈ ( and we write

f : B1 × · · · × B= → B

such a symbol f of Σ with such arity and target.
Let (G8)8∈N be a chosen sequence of distinct variable names. Given a set ( , an (-sorted context

is the data of a �nite sequence Γ = (B8)8∈N∗= of elements of ( for some = ∈ N. Under the context Γ,
the variable G8 should be thought “of type B8” for 8 ∈ N= so that we often write

G1 : B1, . . . , G= : B=

for such a context Γ.
Given a set ( and (-sorted signature Σ and context Γ, we de�ne Σ-terms on Γ together with

judgements Γ ` C : B where C is a Σ-term and B ∈ ( , inductively as follows:
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– if Γ = (B8)8∈N∗= for some = ∈ N and B1, . . . , B= ∈ ( , then, for every 8 ∈ N∗= , Γ ` G8 : B8 ,

– given f : B1 × · · · × B= → B ∈ Σ and Σ-terms C1, . . . , C= such that Γ ` C8 : B8 for 8 ∈ N∗= ,
then Γ ` f (C1, . . . , C=) : B .

Note that B is uniquely determined by C in a judgement Γ ` C : B .

An essentially algebraic theory is a tuple

T = ((, Σ, �, ΣC ,Def)

where

– ( is a set,

– Σ is an (-sorted signature,

– � is a set of triples (Γ, C1, C2) where Γ is an (-sorted context, and C1, C2 are Σ-terms on Γ such
that there exists B ∈ ( so that Γ ` C8 : B for 8 ∈ {1, 2},

– ΣC is a subset of Σ,

– Def is a function which maps f : B1×· · ·×B= → B ∈ Σ\ΣC to a set of pairs (C1, C2) of ΣC -terms
such that there exists B ∈ ( so that (G1 : B1, . . . , G= : B=) ` C8 : B for 8 ∈ {1, 2}.

The set ( represents the di�erent sorts of the theory, the set Σ the di�erent operations that appear
in the theory, the set � the global equations satis�ed by the theory, the set ΣC the operations
whose domains are total, and the function Def the equations that de�ne the domains of the
partial operations. Given such an essentially algebraic theory T, a model of T, or T-model, is the
data of

– for all B ∈ ( , a set "B ,

– for all f : B1 × · · · × B= → B ∈ ΣC , a function

"f : "B1 × · · · ×"B= → "B ,

– for all f : B1 × · · · × B= → B ∈ Σ \ ΣC , a partial function

"f : "B1 × · · · ×"B= → "B ,

such that

– for all f : B1 × · · · × B= → B ∈ Σ \ ΣC , "f is de�ned at ~̄ = (~1, . . . , ~=) ∈ "B1 × · · · ×"B= if
and only if, for all (C1, C2) ∈ Def (f), we have ÈC1É~̄ = ÈC2É~̄ ,

– for every triple (Γ, C1, C2) ∈ � where Γ = (B8)8∈N∗= for some = ∈ N and sorts B1, . . . , B= ∈ ( ,
given a tuple ~̄ = (~1, . . . , ~=) ∈ "B1 × · · · × "B= , if both ÈC1É~̄ and ÈC2É~̄ are de�ned,
then ÈC1É~̄ = ÈC2É~̄ ,

where, given an (-sorted context Γ = (B8)8∈N∗= , a sort B ∈ ( , a Σ-term C such that Γ ` C : B , and a
tuple ~̄ = (~1, . . . , ~=) ∈ "B1 × · · · ×"B= , the evaluation of C at ~̄, denoted ÈCÉ~̄ , is either unde�ned
or an element of "B , and is de�ned by induction on C by
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– if C = G8 for some 8 ∈ N∗= , then ÈCÉ~̄ is de�ned and

ÈCÉ~̄ = ~8 ,

– if C = f (C1, . . . , C: ) for some : ∈ N∗ and ΣC -terms C1, . . . , C: , then ÈCÉ~̄ is de�ned if and only
if ÈC1É~̄, . . . , ÈC:É~̄ are de�ned and "f is de�ned at ÈC1É~̄, . . . , ÈC:É~̄ and, in this case,

ÈCÉ~̄ = "f (ÈC1É~̄, . . . , ÈC:É~̄).

Given two models " and " ′ of T, a morphim of T-model between " and " ′ is a family of
functions 5 = (5B : "B → " ′B )B∈( such that

– for all f : B1 × · · · × B= → B ∈ ΣC , 5B ◦"f = " ′f ◦ (5B1 × · · · × 5B= ),

– for all f : B1 × · · · × B= → B ∈ Σ \ ΣC and ~̄ = (~1, . . . , ~=) ∈ "B1 × · · · ×"B= such that "f is
de�ned on ~̄, 5B ◦"B (~̄) = " ′B (5B1 (~1), . . . , 5B= (~=)).

We then write Mod(T) for the category of T-models and their morphisms. We say that a (big)
category C ∈ CAT is essentially algebraic when it is equivalent to the category of models of some
essentially algebraic theory.

Identifying a category as essentially algebraic enables to deduce that it is locally �nitely
presentable, since the two notions are the same:

Theorem 1.1.2.2. Given a category C ∈ CAT, C is essentially algebraic if and only if it is locally
�nitely presentable.

Proof. See the proof of [AR94, Theorem 3.36]. �

Example 1.1.2.3. The category Set is essentially algebraic since it is the category of models of the
essentially algebraic theory ({B}, ∅, ∅, ∅,⊥).
Example 1.1.2.4. The category Mon is essentially algebraic since it is the category of models of
the essentially algebraic theory

Tmon = ({B}, {4 : 1→ B,< : B × B → B}, �, {4,<},⊥)

where � consists of three equations

– <(4, G1) = G1 in the context (G1 : B),

– <(G1, 4) = G1 in the context (G1 : B),

– <(<(G1, G2), G3) =<(G1,<(G2, G3)) in the context (G1 : B, G2 : B, G3 : B).

In particular, it gives a simple proof that Mon is locally �nitely presentable.

Example 1.1.2.5. The categoryCat of small categories is essentially algebraic since it is the category
of models of the essentially algebraic theory Tcat = ((, Σ, �, ΣC ,Def) de�ned as follows. The set (
consists of two sorts 20 and 21 corresponding to 0-cells and 1-cells, and

Σ = {m−0 : 21 → 20, m+0 : 21 → 20, id1 : 20 → 21, ∗ : 21 × 21 → 21}.

Moreover, � consists of the equations

– m−0 (id
1(G1)) = G1 and m+0 (id

1(G1)) = G1 in the context (G1 : 20),
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– m−0 (∗(G1, G2)) = m−0 (G1) and m+0 (∗(G1, G2)) = m+0 (G2) in the context (G1 : 21, G2 : 21),

– ∗(id1(m−0 (G1)), G1) = G1 and ∗(G1, id1(m+0 (G1))) = G1 in the context (G1 : 21),

– ∗(∗(G1, G2), G3) = ∗(G1, ∗(G2, G3)) in the context (G1 : 21, G2 : 21, G3 : 21).

Finally, ΣC = {m−0 , m+0 , id
1}, and Def (∗) is the singleton set containing the equation m+0 (G1) = m−0 (G2).

This shows that Cat is a locally �nitely presentable category.

1.1.2.6 — Morphisms of theories. Given two essentially algebraic theories

T = ((, Σ, �, ΣC ,Def) and T′ = (( ′, Σ′, � ′, Σ′C ,Def ′)

a morphism of essential algebraic theories between T and T′ is the data of

– a function 5 : ( → ( ′,

– a function 6 : Σ→ Σ′,

such that

– given f : B1 × · · · × B= → B ∈ Σ, we have 6(f) : 5 (B1) × · · · × 5 (B=) → 5 (B) ∈ Σ′,

– given f ∈ Σ, f ∈ ΣC if and only if 6(f) ∈ Σ′C ,

– given (Γ, C1, C2) ∈ �, we have (5 (Γ), 6(C1), 6(C2)) ∈ � ′,

– given f ∈ Σ \ ΣC and two ΣC -terms C1 and C2, we have that (C1, C2) ∈ Def (f) if and only
if (6(C1), 6(C2)) ∈ Def ′(6(f)),

where, given Γ = (B8)8∈N∗= , we write 5 (Γ) for (5 (B8))8∈N∗= and, given a Σ-term C , we write 6(C) for
the Σ′-term de�ned by induction on C by

– for all variable G8 ,
6(G8) = G8 ,

– for all f : B1 × · · · × B= → B ∈ Σ and Σ-terms C1, . . . , C= ,

6(f (C1, . . . , C=)) = 6(f) (6(C1), . . . , 6(C=)).

Such a morphism (5 , 6) : T→ T′ induces a functor

Mod((5 , 6)) : Mod(T′) → Mod(T)

which maps a model " ′ ∈ Mod(T′) to a model " ∈ Mod(T) de�ned by

– for all B ∈ ( , "B = "
′
5 (B) ,

– for all f ∈ Σ, "f = " ′6 (f) ,

and which maps morphisms of models as expected. The functors induced this way by morphisms
between theories have good properties:

Theorem 1.1.2.7. Given a morphism (5 , 6) : T→ T′ between two essentially algebraic theories T
and T′, the functor Mod((5 , 6)) is a right adjoint which preserves directed colimits.
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Proof. The fact that it is a right adjoint is given by [PV07, Theorem 5.4]. Moreover, one easily
veri�es that the directed colimits are computed pointwise in both Mod(T) and Mod(T′), so that
they are preserved by Mod((5 , 6)). �

Remark 1.1.2.8. A more general de�nition of morphisms between essentially algebraic theories
for which Theorem 1.1.2.7 holds can be de�ned. However, it would require the introduction of
formal deduction systems, which would be quite long and technical. This would be in vain since
our de�nition of morphisms is enough for our purposes.
Example 1.1.2.9. One can de�ne the essentially algebraic theory Tgrp of groups from the one of
monoids given in Example 1.1.2.4 by adding a symbol 8 : B → B representing a total function, and
by adding the equations<(8 (G1), G1) = 4 and<(G1, 8 (G1)) = 4 in the context (G1 : B). The canonical
embedding Tmon → Tgrp induces a functor Grp → Mon between the categories of groups and
monoids which is the expected forgetful functor. This functor is a right adjoint and preserves
directed colimits by Theorem 1.1.2.7.
Example 1.1.2.10. The essentially algebraic theory

Tgph = ({20, 21}, {d−0 : 21 → 20, d+0 : 21 → 20}, ∅, {d−0 , d+0 },⊥)

exhibits the category Gph of graphs as an essentially algebraic category. Recalling from Ex-
ample 1.1.2.5 the de�nition of Tcat, the mappings d−0 ↦→ m−0 and d+0 ↦→ m+0 de�ne a morphism
of essentially algebraic theories Tgph → Tcat, which induces a functor Cat → Gph that is the
expected forgetful functor. This functor is a right adjoint and preserves directed colimits by
Theorem 1.1.2.7.

1.2 Higher categories as globular algebras

In this section, we recall and extend the setting for globular algebraic higher categories introduced
by Batanin in [Bat98a]. In this setting, a particular theory of :-categories is a monad on the
category of :-globular sets. Most globular higher categories that one usually encounters �t in
this setting: strict :-categories, bicategories, precategories (de�ned later in this chapter), Gray
categories, etc. From this unifying viewpoint, several notions and constructions can be de�ned
once for all theories, like the notion of:-polygraph and the associated free:-category construction
as we will see in the next section. Moreover, a notion of :-category de�ned in this setting
canonically induces notions of 0-, . . . , (:−1)-categories with associated truncation and inclusion
functors between the di�erent dimensions. Among the broad class of theories of higher categories
that are captured by this setting, one can distinguish the theories that are associated with a
truncable monad. Such theories are better behaved in some aspects and more closely match
the idea that one can have of higher categories. Indeed, the general setting of Batanin allows
de�ning notions of higher categories with unusual operations. This can be problematic since
these operations can induce too much interaction between cells of di�erent dimensions, so that
for example the construction of free instances can not be done dimensionwise. This motivates
the consideration of truncable monads, that do not allow this kind of operations.

The setting of Batanin o�ers a nice abstraction of the di�erent higher category theories. How-
ever, the textbook de�nitions of the di�erent higher categories are generally not given by a monad.
Instead, notions of :-categories are usually de�ned by sets of operations (identities, compositions)
that satisfy several equations. Moreover, the de�nitions of several natural operations, like the
truncation and inclusion functors, are usually additional boilerplate that is not explicitly derived
from general constructions. It is quite simple to show that an equational de�nition of higher
categories induces a monad, but to give an explicit description of this monad in order to apply the
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general results and constructions of Batanin’s setting can be quite tedious. Thus, there is a gap
between Batanin’s abstract viewpoint on higher categories and actual de�nitions, and it deserves
to be �lled.

The plan for this section is as follows. First, we recall the de�nitions of an algebra over a
monad and the associated Eilenberg-Moore category, using some abstract reformulations for these
objects coming from the formal theory of monads of Street [Str72] (Section 1.2.1). Then, we recall
the de�nition of globular sets and some operations on these objects (Section 1.2.2). Next, we recall
Batanin’s setting of higher categories as globular algebras, i.e., the Eilenberg-Moore categories
derived from a monad on globular sets (Section 1.2.3). We show how a monad on :-globular set
induces globular algebras from dimension 0 to : and de�ne truncation and inclusion functors
between the di�erent dimensions. We moreover introduce a criterion that enables to relate actual
de�nitions of higher categories to the ones obtained with this setting without having to explicitly
describe the underlying monads (Theorem 1.2.3.20). Finally, we recall from [Bat98a] the notion
of truncable monad and give several additional properties that they have over general monads on
globular sets (Section 1.2.4). We moreover introduce a criterion to recognize that the underlying
monads of globular algebras are truncable, without having to explicitly describe those monads
(Theorem 1.2.4.11).

1.2.1 Algebras over a monad

In this section, we recall the de�nition of an algebra over a monad, together with the associated
notion of Eilenberg-Moore category, taking the formal perspective introduced by Street [Str72].
We moreover recall the related notions of monadicity and of monad morphism.

1.2.1.1 — Algebras. Given a monad (), [, `) on a category C, a ) -algebra is the data of an
object - ∈ C together with a morphism ℎ : )- → - such that

ℎ ◦ [- = id- and ℎ ◦ `- = ℎ ◦) (ℎ).

A morphism between two algebras (-,ℎ) and (- ′, ℎ′) is the data of a morphism 5 : - → - ′ of C
satisfying

5 ◦ ℎ = ℎ′ ◦) (5 ).
We write C) for the category of ) -algebras, also called Eilenberg-Moore category of ) . There is a
canonical forgetful functor

U) : C) → C
which maps the ) -algebra (-,ℎ) to - . This functor has a canonical left adjoint

F) : C → C)

which maps - ∈ C to the ) -algebra ()-, `- ), such that the unit of F) a U) is [, and the
associated counit, denoted n) , is such that n)(-,ℎ) = ℎ for a given ) -algebra (-,ℎ). The monad
induced by F) a U) is then exactly (), [, `).

In order to study functors of the form D → C) , it is useful to introduce an abstract char-
acterization for such functors, which is a specialization in CAT of the general description of
Eilenberg-Moore objects given by Street in his formal theory of monads [Str72]. To give some
intuition, note that ) -algebra can be equivalently described as a functor � : 1→ C together with
a natural transformation U : )� ⇒ � such that

U ◦ ([� ) = id� and U ◦ (`� ) = U ◦ ()U)

This correspondence extends to more general functors to C) in the form of the following property,
that can be derived from [Str72, Theorem 1]:
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Theorem 1.2.1.2. Given a category D, the operation which maps a functor � : D → C) to the
pairs (U)�,U)n)�) induces a natural bijective correspondence between the functorsD → C) and
the pairs (�, U) where � : D → C is a functor and U : )� ⇒ � is a natural transformation such that

U ◦ ([� ) = id� and U ◦ (`� ) = U ◦ ()U).

In fact, the correspondence of [Str72, Theorem 1] relies on a 2-adjunction, so that it extends to
natural transformations as well:

Theorem 1.2.1.3. Given a category D and functors�,� ′ : D → C) , the operation which maps a
natural transformation V : � ⇒ � ′ toU) V induces a bijective correspondence between the natural
transformation � ⇒ � ′ and the natural transformations V̄ : U)� ⇒U)� ′ such that

V ◦ (U)n)�) = (U)n)� ′) ◦ ()V)

1.2.1.4 — Monadicity. Let (), [, `) be a monad on a category C. Given a category D and an
adjunction F a U : D → C such that the monad induced by this adjunction is exactly (), [, `),
recall that there is a canonical functorH : D → C) , called comparison functor, derived from this
adjunction (c.f. [Mac13, Theorem VI.3.1]). This functor can also be de�ned in the setting of Street
using Theorem 1.2.1.2:

Theorem 1.2.1.5 ([Str72, Theorem 3]). There is a unique functorH : D → C) such that

U)H = U and U)n)H = Un

where n is the counit of F a U. The functorH moreover satis�es that F) = HF and n)H = Hn .

A functor Ū : D̄ → C̄ is said monadic when it has a right adjoint F̄ : C̄ → D̄ such that the
comparison functor H̄ : D̄ → C̄)̄ is an equivalence of categories, where ()̄ , [̄, ¯̀) is the monad
induced by the adjunction F̄ a Ū. Monadic functors can be characterized by Beck’s monadicity
theorem that we introduce later (c.f. Theorem 1.4.1.6).

1.2.1.6 — Morphisms of monads. Finally, we shall describe some functoriality property be-
tween monads and their associated Eilenberg-Moore categories. Given two monads ((,W, a)
and (), [, `) on a category C, a morphism of monads between ((,W, a) and (), [, `) is the data of
a natural transformation q : ( ⇒ ) such that

q ◦ W = [ and q ◦ a = ` ◦ (qq).

Such a morphism induces a functor
Cq : C) → C(

de�ned by the following lemma:

Lemma 1.2.1.7. Given a morphism of monad q : ((,W, a) → (), [, `) on a category C, there is a
functor

Cq : C) → C(

characterized by
U(Cq = U) and U(n(Cq = (U)n) ) ◦ (qU) ).
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Proof. It is su�cient to show that the conditions of Theorem 1.2.1.2 are satis�ed. Let

U = (U)n) ) ◦ (qU) )

By the equations satis�ed by adjunctions, we have

U ◦ (WU) ) = (U)n) ) ◦ (qU) ) ◦ (WU) ) = (U)n) ) ◦ ([U) ) = idU)

Moreover

U ◦ (aU) ) = (U)n) ) ◦ (qU) ) ◦ (aU) )
= (U)n) ) ◦ (`U) ) ◦ (qqU) )
= (U)n) ) ◦ (U)n)F)U) ) ◦ (qqU) )
= (U)n) ) ◦ (U)F)U)n) ) ◦ (qqU) ) (by naturality)
= (U)n) ) ◦ (qU) ) ◦ (U(F (U)n) ) ◦ (U(F (qU) ) (by naturality)
= U ◦ ((U)

Thus, using Theorem 1.2.1.2, there is a unique functor Cq : C) → C( as wanted. �

1.2.2 Globular sets

Here, we recall the classical notion of globular set. It is the underlying structure of a globular
higher category which describes globes of di�erent dimensions together with their sources and
targets. We moreover de�ne the truncation and inclusion functors between globular sets of
di�erent dimensions.

1.2.2.1 — De�nition. Given = ∈ N ∪ {l}, an =-globular set (-, m−, m+) (often simply denoted - )
is the data of sets -: for : ∈ N= together with functions m−8 , m

+
8 : -8+1 → -8 for 8 ∈ N=−1 as in

-0 -1 -2 · · · -: -:+1 · · ·
m−0

m+0

m−1

m+1

m−2

m+2

m−
:−1

m+
:−1

m−
:

m+
:

m−
:+1

m+
:+1

such that
m−8 ◦ m−8+1 = m−8 ◦ m+8+1 and m+8 ◦ m−8+1 = m+8 ◦ m+8+1 for 8 ∈ N=−1.

When there is no ambiguity on 8 , we often write m− and m+ for m−8 and m+8 . An element D of -8
is called an 8-globe of - and, for 8 > 0, the globes m−8−1(D) and m+8−1(D) are respectively called the
source and target and D. Given =-globular sets - and . , a morphism of =-globular set between -
and . is a family of functions � = (�: : -: → .: ):∈N= , such that

m−8 ◦ �8+1 = �8 ◦ m−8 for 8 ∈ N=−1.

We write Glob= for the category of =-globular sets.

Remark 1.2.2.2. The above de�nition directly translates to an essentially algebraic theory, so
that Glob= is essentially algebraic. In particular, Glob= is locally �nitely presentable, complete
and cocomplete by Theorem 1.1.2.2 and Proposition 1.1.1.10,.

For n ∈ {−, +} and 9 ≥ 0, we write

mn8, 9 = m
n
8 ◦ mn8+1 ◦ · · · ◦ mn8+9−1
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for the iterated source (when n = −) and target (when n = +) operations. We generally omit
the index 9 when there is no ambiguity and simply write mn8 (D) for mn8, 9 (D). Given 8, :, ; ∈ N=
with 8 < min(:, ;), we write -: ×8 -; for the pullback

-: ×8 -; -;

-: -8

m−8

m+8

.

Given ? ≥ 2 and :1, . . . , :? ∈ N= , a sequence of globes D1 ∈ -:1, . . . , D? ∈ -:? is said 8-com-
posable for some 8 < min(:1, . . . , :?), when m+8 (D 9 ) = m−8 (D 9+1) for 9 ∈ N∗?−1. Given : ∈ N=
and D, E ∈ -: , D and E are said parallel when : = 0 or mn

:−1(D) = m
n
:−1(E) for n ∈ {−, +}. To remove

the side condition : = 0, we use the convention that -−1 is the set {∗} and that m−−1, m
+
−1 are the

unique function -0 → -−1.
For D ∈ -8+1, we sometimes write D : E → F to indicate that m−8 (D) = E and m+8 (D) = F . In

low dimension, we use =-arrows such as⇒,V, , etc. to indicate the sources and the targets of
=-globes in several dimensions. For example, given a 2-globular set - and q ∈ - , we sometimes
write q : 5 ⇒ 6 : G → ~ to indicate that

q ∈ -2, m−1 (q) = 5 , m+1 (q) = 6, m−0 (q) = G and m+0 (q) = ~.

We also use these arrows in graphical representations to picture the elements of a globular set - .
For example, given an =-globular set - with = ≥ 2, the drawing

G ~ I

5

6

ℎ

⇓q

⇓k
: (1.1)

�gures two 2-cells q,k ∈ -2, four 1-cells 5 , 6, ℎ, : ∈ -1 and three 0-cells G,~, I ∈ -0 such that

m−1 (q) = 5 , m+1 (q) = m−1 (k ) = 6, m+1 (k ) = ℎ,
m−0 (5 ) = m−0 (6) = m−0 (ℎ) = G, m+0 (5 ) = m+0 (6) = m+0 (ℎ) = m−0 (:) = ~, m+0 (:) = I.

1.2.2.3 — Truncation and inclusion functors. Given < ∈ N= and - ∈ Glob= , we denote
by -≤< the<-truncation of - , i.e., the<-globular set obtained from - by removing the 8-globes
for 8 ∈ N= with 8 > <. This operation extends to a functor

(−)Glob
≤<,= : Glob= → Glob<

often denoted (−)Glob
≤< when there is no ambiguity. This functor admits a left adjoint

(−)Glob
↑=,< : Glob< → Glob=

often denoted (−)Glob
↑= when there is no ambiguity, and which maps an<-globular set - to the

=-globular set -↑= , called =-inclusion of - , and which is de�ned by (-↑=)≤< = - and (-↑=)8 = ∅
for 8 ∈ N= with 8 > <. The unit of the adjunction (−)Glob

↑= a (−)Glob
≤< is the identity and the counit

is the natural transformation denoted i<,= , or simply i< when there is no ambiguity, which is
given by the family of canonical morphisms

i<- : (-≤<)↑= → -
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for - ∈ Glob= . The functor (−)Glob
≤<,= also admits a right adjoint

(−)Glob
⇑<,= : Glob< → Glob=

denoted (−)Glob
⇑< when there is no ambiguity, and which maps an<-globular set to the =-globular

set -⇑= de�ned by (-⇑=)≤< = - , and, for 8 ∈ N= with 8 > <,

(-⇑=)8 = {(D, E) ∈ -< | D and E are parallel}

such that, for (D, E) ∈ (-⇑=)8 ,

m−< ((D, E)) = D and m+< ((D, E)) = E
and

m−9 ((D, E)) = m+9 ((D, E)) = (D, E) for 9 ∈ N8−1.

Note that, since they are left adjoints, the functors (−)Glob
↑=,< and (−)Glob

≤<,= preserves colimits.

1.2.3 Globular algebras

We now introduce categories of globular algebras, i.e., the Eilenberg-Moore categories induced
by monads on globular sets, as were �rst introduced by Batanin in [Bat98a]. We moreover give
several additional constructions and properties on these objects.

1.2.3.1 — De�nition. Let = ∈ N∪{l} and (), [, `) be a �nitary monad on Glob= . We write Alg=
for the category of ) -algebras Glob)= and

U= : Alg= → Glob= F= : Glob= → Alg=

for the induced left and right adjoints, that were denotedU) and F) in Section 1.2.1. Explicitly,
given (-,ℎ) ∈ Alg= , the image of (-,ℎ) by U= is - and, given . ∈ Glob= , F=. is the free
) -algebra

()., `. : )). → ). ) .
Given : ∈ N= , there is a monad (): , [: , `: ) on Glob: de�ned from (), [, `) by

): = (−)Glob
≤: ) (−)Glob

↑=

and such that [: : idGlob: → ): is the composite

idGlob: (−)Glob
≤: (−)

Glob
↑= ):

(−)Glob
≤: [ (−)Glob

↑=

i.e., [:
-
= ([-↑= )≤: for - ∈ Glob: , and such that `: : ):): → ): is the composite

):): (−)Glob
≤: )) (−)Glob

↑= ):
(−)Glob
≤: ) i: ) (−)Glob

↑= (−)Glob
≤: ` (−)Glob

↑= .

The axioms of monads are easily veri�ed for (): , [: , `: ) using the fact that (), [, `) is a monad.
So, for : ∈ N= , there is a category of algebra Glob)

:

:
, that we denote Alg: , and canonical functors

U: : Alg: → Glob: F: : Glob: → Alg:

de�ned like U= and F= above. The objects of Alg: are called :-categories. Moreover, given a
:-category � = (-,ℎ), the elements of -8 are called the 8-cells of � for 8 ∈ N: . We can already
derive several properties of the categories Alg: :
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Proposition 1.2.3.2. For : ∈ N∪{=}, the categoryAlg: is locally �nitely presentable. In particular,
it is complete and cocomplete. Moreover, the functorU: preserves and creates directed colimits, and
creates limits.

Proof. The category Alg: is locally �nitely presentable as a consequence of Proposition 1.1.1.12
since Glob: is locally �nitely presentable by Remark 1.2.2.2. The functorU: preserves directed
colimits by Proposition 1.1.1.12. Moreover, since U: re�ects isomorphisms and Alg: is cocom-
plete,U: creates directed colimits. Finally, it is well-known that the forgetful functor associated
to an Eilenberg-Moore category creates limits (see [Bor94b, Proposition 4.3.1] for example). �

We can usually derive monads from equational de�nitions of higher categories as illustrated by
the following examples.
Example 1.2.3.3. Since 1-globular sets are graphs, the �nitary forgetful functorCat→ Gph de�ned
in Example 1.1.2.10 induces a �nitary monad (), [, `) on Glob1. This monad maps a 1-globular
set� seen as a graph to the underlying 1-globular set of the category of paths on� . Using Beck’s
monadicity theorem (Theorem 1.4.1.6), one can verify that the functor Cat→ Gph is monadic, so
that Alg1 ' Cat. Moreover, the monad () 0, [0, `0) is essentially the identity monad on Glob0, and
thus Alg0 ' Set. More generally, we will see in Section 1.4.1 that the monads of strict :-categories
for : ∈ N are derived from the monad of strict l-categories.
Example 1.2.3.4. We de�ne a notion of weird 2-category as follows: a weird 2-category is a 2-glo-
bular set � equipped with an operation

∗ : �2 ×�2 → �0.

Note that we do not require the composability of the arguments of ∗, and we do not enforce
any axiom on ∗. A morphism between two weird 2-categories is then a morphism between the
underlying 2-globular sets that is compatible with ∗. The category Weird of weird 2-categories
and their morphisms is essentially algebraic, and the functor which maps a weird 2-category
to its underlying 2-globular set is induced by an essentially algebraic theory morphism, so that
it is a right adjoint and �nitary by Theorem 1.1.2.7. From the adjunction, we derive a �nitary
monad (), [, `) on Glob2, and, given - ∈ Glob2, we have that

()- )0 ' -0 t (-2 × -2) ()- )1 ' -1 ()- )2 ' -2

so that, for Alg2 derived from the monad ) , Alg2 ' Weird. Moreover, the monads () 0, [0, `0)
and () 1, [1, `1) are essentially the identity monads on Glob0 and Glob1 respectively, so that the
associated notions of weird 0- and 1-categories are simply 0- and 1-globular sets.
The last example moreover illustrates the unusual operations that notions of higher categories
de�ned in the setting of Batanin can have. It is also an example of a monad on globular sets which
is not truncable (c.f. Example 1.2.4.3).
Remark 1.2.3.5. In the above de�nition, we require that the monad (), [, `) is �nitary in order
to prove later the existence of several free constructions on the :-categories. This is not too
restrictive, since it includes all the monads of algebraic globular higher categories that have
operations with �nite arities, i.e., most theories of algebraic globular higher categories.

1.2.3.6 — Truncation and inclusion functors. We now introduce truncation and inclusion
functors between the categories Alg: together with some of their properties. Let = ∈ N ∪ {l}
and (), [, `) be a �nitary monad on Glob= . Given :, ; ∈ N= ∪ {=} with : < ; and a ) ; -algebra

(-,ℎ : ) ;- → - ),
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there is a canonical ): -algebra (-≤: , ℎ′), where ℎ′ is de�ned as the composite

): (-≤: ) () ;- )≤: -≤:
( (−)Glob

≤:,;)
; i:,; )- ℎ≤:

and the operation (-,ℎ) ↦→ (-≤: , ℎ′) extends to a functor

(−)Alg
≤:,; : Alg; → Alg:

often simply denoted (−)Alg
≤: . The image of (-,ℎ) in Alg; by (−)Alg

≤: is called the :-truncation
of (-,ℎ) and we denote it (-,ℎ)≤: . Note that the image of a morphism 5 : (-,ℎ) → (- ′, ℎ′)
by (−)Alg

≤: is 5≤: (the globular :-truncation of 5 ). The �nitary assumption on ) enables the
existence of a left adjoint to truncation functors:

Proposition 1.2.3.7. Given :, ; ∈ N= ∪ {=} with : < ; , the functor (−)Alg
≤:,; admits a left adjoint.

Proof. The functor (−)Alg
≤:,; is �nitary since, by Proposition 1.2.3.2, U: creates directed colimits

and the functor
U: (−)Alg

≤:,; = (−)
Glob
≤: U;

preserves directed colimits. Moreover, (−)Alg
≤:,; preserves limits since U: creates limits and the

functorU: (−)Alg
≤:,; = (−)

Glob
≤: U; preserves limits (both (−)Glob

≤:,; andU; are right adjoints). Then, by
Proposition 1.1.1.11, the functor (−)Alg

≤:,; admits a left adjoint. �

Given :, ; ∈ N= ∪ {=} with : < ; , we write

(−)Alg
↑;,: : Alg: → Alg;

for the left adjoint to (−)Alg
≤:,; , or even (−)Alg

↑; when there is no ambiguity on : . The image of (-,ℎ)
in Alg: by (−)Alg

↑; is called the ;-inclusion of (-,ℎ) and we denote it (-,ℎ)↑; .
We verify that the di�erent truncation functors are compatible between themselves:

Proposition 1.2.3.8. Given 9, :, ; ∈ N= ∪ {=} with 9 < : < ; , we have

(−)Alg
≤ 9,: ◦ (−)

Alg
≤:,; = (−)

Alg
≤ 9,;

Proof. Let (-,ℎ) ∈ Alg; and ℎ′, ℎ′′, ℎ̄ be the globular morphisms such that

(-≤: , ℎ′) = (-,ℎ)≤: , (-≤ 9 , ℎ′′) = (-≤: , ℎ′)≤ 9 , and (-≤ 9 , ℎ̄) = (-,ℎ)≤ 9

We compute that

ℎ′′ = ℎ′≤ 9 ◦ ((−)Glob
≤ 9,:)

: i9,: )-≤:
= (ℎ≤: ◦ ((−)Glob

≤:,; )
; i:,; )- )≤ 9 ◦ ((−)Glob

≤ 9,:)
: i9,: )-≤:

= ℎ≤ 9 ◦ ((−)Glob
≤ 9,; )

; i:,; )- ◦ ((−)Glob
≤ 9,:)

: i9,: )-≤:
= ℎ≤ 9 ◦ ((−)Glob

≤ 9,=) (−)Glob
↑=,; (i

:,;

-
◦((−)Glob

↑;,: i9,: (−)Glob
≤:,9 )- ))

= ℎ≤ 9 ◦ ((−)Glob
≤ 9,=) (−)Glob

↑=,; (i
9,;

-
))

= ℎ̄

so that the property holds. �
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1.2.3.9 — Alg8 as a limit. Let (), [, `) be a �nitary monad on Globl . The purpose of this
paragraph is to characterize Algl as a limit on the categories Alg: for : ∈ N using the truncation
functors (−)Alg

≤: . Before showing this property, we need to recall the notion of co�nal functor.
First, given a category � , we de�ne a relation ∼� on the objects on � as the smallest equivalence
relation such that, for every 5 : G → ~ ∈ � , we have G ∼� ~. The category� is then said connected
when G ∼� ~ for all G,~ ∈ �0. A functor � : � → � between two categories � and � is co�nal when,
for each 8 ∈ �0, the arrow category 8 ↓ � is connected. The interesting fact about co�nal functors
is that they witness that two diagrams have the same colimit:

Proposition 1.2.3.10. Let � : � → � be a co�nal functor between two categories � and � , 3 : � → �

be a functor into a category � and ? : 3 ⇒ Δ; be a cocone on 3 of vertex ; ∈ �0 (where Δ; is the
constant functor � → � of value ;). Then, ? is a colimit cocone on 3 if and only if ?� is a colimit
cocone on 3 ◦ � .

Proof. See [Mac13, Section IX.3] or [KS06, Section 2.5]. �

The co�nal functors between two directed categories are easily characterized:

Proposition 1.2.3.11. Let � : � → � be a functor between two directed categories � and � . Then, �
is co�nal if and only if, for each 9 ∈ � , there exists 8 ∈ � and a morphism 9 → � (8) ∈ � .

Proof. The implication is clear. Conversely, suppose that for each 9 ∈ � , there exists 8 ∈ � and a
morphism 9 → � (8) ∈ � . Then, given 9 ∈ � , the category 9 ↓ � is not empty. Moreover, given two
morphisms 51 : : 9 → � (81) and 52 : 9 → � (82) in � for some 81, 82 ∈ � , since � is directed, there
exist morphisms 61 : 81 → 8 and 62 : 82 → 8 for some 8 ∈ � , that induce morphisms

61 : (81, 51) → (8, 61 ◦ 51) and 62 : (82, 52) → (8, 62 ◦ 52)

in 9 ↓ � . Since � is directed, we have 61 ◦ 51 = 62 ◦ 52. Thus, 9 ↓ � is connected. Hence, � is
co�nal. �

We can now characterize Algl as a limit:

Proposition 1.2.3.12. ((−)Alg
≤: : Algl → Alg: ):∈N is a limit cone in CAT on the diagram

Alg0 Alg1 Alg2 · · · Alg: Alg:+1 · · ·
(−)Alg
≤0 (−)Alg

≤1 (−)Alg
≤2 (−)Alg

≤:−1 (−)Alg
≤: (−)Alg

≤:+1

Proof. Let �: = (-: , 6: : ):-: → - ) ∈ Alg: for : ∈ N be such that �:+1≤: = �: . Then, in
particular, we have -:+1≤: = -: , so that there exists - ∈ Globl such that -: = -≤: for : ∈ N.
Let ': be the functor

': = (−)Glob
↑l (−)

Glob
≤: : Globl → Globl

and ) ;,: be the functor
) ;,: = ';)': : Globl → Globl

and j: be the natural transformation

j: = (−)Glob
↑l i:,:+1 (−)Glob

≤:+1 : ': ⇒ ':+1

for :, ; ∈ N. Note that, for all . ∈ Globl , (i:,l
.

: ':. → . ):∈N is a colimit cocone in Globl on
the diagram

'0. '1. · · · ':. ':+1. · · ·
j0
.

j1
.

j:−1
.

j:
.

j:+1
.
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Since ) is �nitary, (() i:,l )- : ) (-≤: )↑l → )- ):∈N is a colimit cocone on the diagram

)'0- )'1- · · · )':- )':+1- · · ·() j0)- () j1)- () j:−1)- () j: )- () j:+1)-

By commutation of colimits, ((i;,l ) i:,l )- : ) ;,:- → )- ):,; ∈N is a colimit cocone of the grid
diagram

...
...

· · · ) ;+1,:- ) ;+1,:+1- · · ·

· · · ) ;,: ) ;,:+1 · · ·

...
...

(';+1) j:−1)- (';+1) j: )-

(j;+1)': )-

(';+1) j:+1)-

(j;+1)':+1)-

(';) j:−1)-

(j; )': )-

(';) j: )- (';) j:+1)-

(j; )':+1)-

(j;−1)': )- (j;−1)':+1)-

Note that the diagonal functor Δ : (N, ≤) → (N × N, ≤ × ≤) is co�nal by Proposition 1.2.3.11, so
that, by Proposition 1.2.3.10, the cocone ((i:,l ) i:,l )- : ):,:- → )- ):∈N is a colimit cocone on
the diagram

) 0,0- · · · ):,:- ):+1,:+1- · · ·(j0) j0)- (j:−1) j:−1)- (j: ) j: )- (j:+1) j:+1)- (1.2)

where ):,:- is exactly ():-: )↑l for : ∈ N and, by the de�nition of (−)Alg
≤: , we have

6: = 6:+1≤: ◦ ((−)
Glob
≤: ) j: )-

so that

j:- ◦6
:
↑l = ((−)Glob

↑l i:,:+1 (−)Glob
≤:+1)- ◦ (6

:+1
≤: )↑l ◦ ('

:) j: )-
= ((−)Glob

↑l i:,:+1)-:+1 ◦ (6:+1≤: )↑l ◦ ('
:) j: )-

= 6:+1↑l ◦ ((−)
Glob
↑l i:,:+1)):+1-:+1 ◦ (':) j: )- (by naturality of (−)Glob

↑l i:,:+1)

= 6:+1↑l ◦ (j
: )':+1)- ◦ (':) j: )-

= 6:+1↑l ◦ (j
: ) j: )- .

Thus, we obtain a diagram

() 0(-≤0))↑l · · · (): (-≤: ))↑l ():+1(-≤:+1))↑l · · ·

(-≤0)↑l · · · (-≤: )↑l (-≤:+1)↑l · · ·

(j0) j0)-

60
↑l

(j:−1) j:−1)- (j: ) j: )-

6:↑l

(j:+1) j:+1)-

6:+1↑l
j0
-

j:−1
-

j:
-

j:+1
-

where each square commutes, and it induces a morphism 6 : )- → - ∈ Globl . By a similar
argument as above, we have a colimit cocone

((i:,l ) i:,l ) i:,l )- : ():):-: )↑l → ))- ):∈N
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on a diagram analogous to (1.2). We compute that, for : ∈ N,

6 ◦ `- ◦ (i:,l ) i:,l ) i:,l )-
= 6 ◦ `- ◦ (i:,l )) i:,l )- ◦ (':) i:,l )': )- (by naturality)

= 6 ◦ (i:,l ) i:,l )- ◦ (':`': )- ◦ (':) i:,l )': )- (by naturality)

= i:,l
-
◦6:↑l ◦ ((−)

Glob
↑l `: (−)Glob

≤: )- (by de�nition of 6 and `: )

= i:,l
-
◦6:↑l ◦ ((−)

Glob
↑l `: )-≤:

= i:,l
-
◦(6: ◦ `:-≤: )↑l

= i:,l
-
◦(6: ◦): (6: ))↑l (since (-: , 6: ) is an algebra)

= 6 ◦ (i:,l ) i:,l )- ◦ (): (6: ))↑l (by de�nition of 6)

= 6 ◦ (i:,l ) )- ◦ ':) (i:,l- ◦6
:
↑l )

= 6 ◦ (i:,l ) )- ◦ ':) (6 ◦ (i:,l ) i:,l )- ) (by de�nition of 6)

= 6 ◦ (i:,l ) )- ◦ ':) (6) ◦ (':) i:,l ) i:,l )-
= 6 ◦) (6) ◦ (i:,l ) )- ◦ (':) i:,l ) i:,l )- (by naturality)

= 6 ◦) (6) ◦ (i:,l ) i:,l ) i:,l )-

so that 6 ◦ `- = 6 ◦) (6). Moreover, for : ∈ N, we have

6 ◦ [- ◦ i:,l
-

= 6 ◦ [- ◦ i:,l
-
◦(': i:,l )- (since (': i:,l )- = id

':-
)

= 6 ◦ [- ◦ (i:,l i:,l )-
= 6 ◦ (i:,l ) i:,l )- ◦ (':[': )- (by naturality)

= i:,l ◦6:↑l ◦ ((−)
Glob
↑l [: (−)Glob

≤: )-
= i:,l ◦6:↑l ◦ ((−)

Glob
↑l [: )-:

= i:,l ◦(6: ◦ [:
-:
)↑l

= i:,l (since (-: , 6: ) is an algebra)

thus, since (i:,l : ':- → - ): is a colimit cocone, we have 6 ◦ [- = id- . Hence, (-,6) ∈ Algl .
For : ∈ N, let (-: , 6̄: : ): (-≤: ) → -≤: ) be the image of (-,6) by (−)Alg

≤: . We have

i:,l
-
◦6̄:↑l = i:,l

-
◦': (6) ◦ (':) i:,l )- (by de�nition of (−)Alg

≤: )

= 6 ◦ i:,l
)-
◦(':) i:,l )- (by naturality of i:,l )

= 6 ◦ (i:,l ) i:,l )-
= i:,l ◦6:↑l (by de�nition of 6)

thus, since i:,l is a monomorphism and (−)Glob
↑l is faithful, we have 6̄: = 6: . Moreover, given an

algebra (-, 6̃) ∈ Algl such that (-, 6̃)≤: = (-: , 6: ) for every : ∈ N, we have

6̃ ◦ (i:,l ) i:,l )- = 6̃ ◦ i:,l
)-
◦(':) i:,l )-

= i:,l
-
◦': (6̃) ◦ (':) i:,l )- (by naturality of i:,l

-
)

= i:,l
-
◦6:↑l (by de�nition of (−)Alg

≤: )

= 6 ◦ (i:,l ) i:,l )-
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so that 6̃ = 6 by the colimit de�nition of )- .
Now, let (.,ℎ) ∈ Globl , (.: , ℎ: ) be the image of (.,ℎ) by the functor (−)Alg

≤: for : ∈ N, and
a morphism 5 : - → . ∈ Globl such that 5≤; induces a morphism between (- ; , 6; ) and (. ; , ℎ; )
in Alg; for ; ∈ N. We compute that, for : ∈ N,

ℎ ◦) (5 ) ◦ (i:,l ) i:,l )- = ℎ ◦ (i:,l ) i:,l ). ◦ ':)': (5 ) (by naturality)

= i:,l
.
◦ℎ:↑l ◦ '

:)': (5 ) (by de�nition of ℎ)

= i:,l
.
◦(ℎ: ◦): (5≤: ))↑l

= i:,l
.
◦(5≤: ◦ 6: )↑l (since 5≤: ∈ Alg: )

= i:,l
.
◦': (5 ) ◦ 6:↑l

= 5 ◦ i:,l
-
◦6:↑l (by naturality)

= 5 ◦ 6 ◦ (i:,l ) i:,l )- (by de�nition of 6)

so that, by the colimit de�nition of )- , we have ℎ ◦ ) (5 ) = 5 ◦ 6. Thus, the l-globular mor-
phism 5 induces a morphism 5 : (-,6) → (.,ℎ) of Algl . Finally, a morphism 5 ′ of Algl is
completely characterized by its images by the functors (−)Alg

≤: for : ∈ N, which concludes the
proof that ((−)Alg

≤: : Algl → Alg: ):∈N is a limit cone of CAT. �

1.2.3.13 — A criterion for globular algebras. Usually, a speci�c notion of higher category and
the associated truncation and inclusion functors are not directly derived from a monad. Instead,
we often manipulate higher categories that are de�ned, in each dimension : ∈ N, as structures
with operations satisfying some equations, and the truncation and inclusion functors are de�ned
by hand. Such equational de�nitions surely induce monads on :-globular sets, but it is not clear
that the monad in dimension ;1 is obtained by truncating the monad in dimension ;2 for ;1 < ;2, as
in Paragraph 1.2.3.1. Moreover, it is not immediate that the boilerplate de�nitions of truncation
and inclusion functors correspond to the ones from Paragraph 1.2.3.6. Verifying the equivalences
of these de�nitions is required in order to use general constructions for globular algebras, like
the ones of the next section. But, without a generic argument, the veri�cation can be tedious
since it involves, among others, an explicit description of the di�erent monads. In this paragraph,
we give a criterion, in the form of Theorem 1.2.3.20, to recognize that some functor between two
categories is the truncation functor as de�ned in Paragraph 1.2.3.6 derived from some monad
on globular sets. It will allow us to show in Section 1.4 that the equational de�nitions of strict
:-categories and :-precategories and their truncation and inclusion functors are equivalent to
the ones derived as in Paragraphs 1.2.3.1 and 1.2.3.6 from a monad on Globl .

The proofs of this criterion will involve showing several equalities on natural transformations
between left and right adjoints. In order to allow for simpler manipulations of these equalities,
we use string diagrams. We quickly remind the reader the rules of this graphical calculus for
adjunctions. Recall that an adjunction in CAT can be described as the data of two functors

! : � → � and ' : � → �

between categories � and � , together with natural transformations

W : id� ⇒ '! and n : !' ⇒ id�

that satisfy the “zigzag equations”

(n!) ◦ (!W) = id! and ('n) ◦ (W') = id' . (1.3)
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One can represent the above situation using string diagrams as follows: the natural transforma-
tions W and n can be pictured as

' !

W
and

! '

n

and the zigzag equations can be pictured by

!

!

W

n

=

!

!

and

'

'

W

n

=

'

'

.

Note that the above equations generate a congruence: they apply as well when both sides appear as
subdiagrams of a bigger string diagram. Using this language, we graphically show the elementary
property that an isomorphism between two left adjoints induces an isomorphism between the
two right adjoints (and vice versa):

Proposition 1.2.3.14. Let

! a ' : � → � and !′ a '′ : � → �

be two adjunctions with respective unit-counit pairs (W, n) and (W ′, n ′), and

\ : ! ⇒ !′ and \̄ : '′⇒ '

be two natural transformations such that \ = (n!′) ◦ (!\̄!′) ◦ (!W ′), i.e., graphically:

\

!

!′

= \̄! !′

W ′

n

.

Then, \ is an isomorphism if and only if \̄ is an isomorphism.

Proof. Suppose �rst that \ is an isomorphism. Note that, by the zigzag equations satis�ed by (W, n)
and (W ′, n ′), we have

\' '′

W

n ′

= \̄

'′

'

.
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By the same zigzag equations, one then easily veri�es that the morphism depicted by the following
string diagram is an inverse to \̄ :

\−1'′ '

W ′

n

.

Conversely, suppose that \̄ is an isomorphism. Then, by the zigzag equations, one easily veri�es
that the diagram

\̄−1!′ !

W

n ′

de�nes an inverse of \ , which concludes the proof. �

Moreover, we recall how to derive an adjunction from the composition of two adjunctions, using
the graphical language:

Proposition 1.2.3.15. Given two adjunctions !1 a '1 : �1 → �2 and !2 a '2 : �2 → �3 with
unit-counit pairs (W1, n1) and (W2, n2) respectively, there is a canonical adjunction !1!2 a '2'1 whose
unit and counit are respectively

('2W1!2) ◦ W2 and n1 ◦ (!1n2'1)

that can be represented by

'2 '1 !1 !2

W1

W2

and

!1 !2 '2 '1

n1

n2 .

Proof. Using the zigzag equations satis�ed by (W1, n1) and (W2, n2), we easily verify that

'2 '1 !1 !2 '2 '1

W1

W2

n1

n2

= '2 '1
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and

!1 !2 '2 '1 !1 !2

W1

W2

n1

n2

= !1 !2

so that ('2W1!2) ◦ W2 and n1 ◦ (!1n2'1) equip the functors !1!2 and '2'1 with a structure of an
adjunction !1!2 a '2'1 : �1 → �3. �

Note that Proposition 1.2.3.15 generalizes to compositions of sequences of adjunctions

!1 a '1 : �1 → �2, . . . , !: a ': : �: → �:+1

for every : ∈ N∗. We now show several technical lemmas that we will use in the proof of
Theorem 1.2.3.20 below.

Lemma 1.2.3.16. Let the (not necessarily commutative) diagram of functors in CAT

�

�

� ′

'

*

!

!′
'′

�

where ! a ', !′ a '′ and � a * are adjunctions such that '′* = ', and write ((,W, a) and (( ′, W ′, a ′)
for the monads associated to ! a ' and !′ a '′ respectively. Then, the unit of the adjunction � a *
induces a morphism of monads q : ( ′⇒ ( such that the following diagram commutes

� �(

� ′ �(
′

�

* �q

� ′

where � and � ′ are the comparison functors associated to the adjunctions ! a ' and !′ a '′.

Proof. Let (U, X), (V, n), (V ′, n ′) be the unit-counit pairs of the adjunctions � a * , ! a ', and !′ a '′
respectively. Note that V = W and V ′ = W ′. Since '′* = ', the natural transformation \ : �!′⇒ !

de�ned as the composite
\ = (X!) ◦ (�n ′*!) ◦ (�!′W)
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which can be represented as

� !′

!

\ =

� !′

!

W

n ′

X

=

is an isomorphism by Propositions 1.2.3.14 and 1.2.3.15. Moreover, one easily checks with the
zigzags equations satis�ed by (U, X), (W, n) and (W ′, n ′) that we have

W ′

U

= \

' !

=

W

' !

(1.4)

and
� !′ '′ *

\ =

n

=

� !′ '′ *

n ′

X

. (1.5)

Now let q : ( ′⇒ ( be the natural transformation de�ned as the composite

q : ( ′ = '′!′ '′*�!′ = '�!′ '! = (
'′U!′ '\

which can be pictured by

'′ !′

' !

q =

'′ !′

U

= \

' !

.

By (1.4), we have q ◦W ′ = W . Moreover, since a = 'n! and a ′ = '′n ′!′, we have q ◦a ′ = a ◦ (qq) (see
Figure 1.1). Thus, q is a morphism of monads between ((,W, a) and (( ′, W ′, a ′). By Lemma 1.2.1.7,
the functor �q : �(′ → �( is characterized by

U(′�q = U( and U(′n(
′
�q = U(n( ◦ (qU( ).

Remember from Theorem 1.2.1.5 that the comparison functors

� : � → �( and � ′ : � ′→ �(
′
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'′ !′ '′ !′

U

= \

n ′

' !

=

'′ !′ '′ !′

U

=

U

\n ′

X

' !

(by zigzag equations)

=

'′ !′ '′ !′

U

= \

U

= \

n

' !

(by (1.5))

Figure 1.1 – Proof that q ◦ a ′ = a ◦ (qq)
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'′ !′ '

U

= \

n

'

=

'′ !′ '

=

U

=

n ′

X
'

(by (1.5))

=

'′ !′ '

=

=

n ′

'

(by zigzag equations)

Figure 1.2 – Proof that ('n) ◦ (q') = '′n ′*

are the unique functors such that

U(� = ' U(′� ′ = '′

U(n(� = 'n U(′n(
′
� ′ = '′n ′.

Thus,
U(′�q� = U(� = ' = '′* = U(′� ′* .

Moreover, we have ('n) ◦ (q') = '′n ′* (see Figure 1.2), so that

U(′n(
′
�q� = (U(n(� ) ◦ (qU(� ) = ('n) ◦ (q') = '′n ′* = U(′n(

′
� ′* .

We conclude by Theorem 1.2.1.2 that �q� = � ′* . �

Lemma 1.2.3.17. Let �1 a *1 and I ′ a T ′ be adjunctions as in

�1 �1 �2
*1 T′

�1 I′
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and write
()1, [1, `1) and (( ′, W ′, a ′)

for the monads associated to the adjunctions �1 a *1 and �1I ′ a T ′*1. The comparison functor

T ′′ : �)1
1 → �(

′
2

induced by the adjunction F)1I ′ a T ′U)1 : �)1
1 → �2 makes the following diagram commutes

�1 �
)1
1 �1

�(
′

2 �2

�1

� ′

U)1

T′′ T′

U(′

where �1 and � ′ are the comparison functors induced by the adjunctions �1 a *1 and �1I ′ a T ′*1
respectively.

Proof. By the de�nition of T ′′ (given in Theorem 1.2.1.5), the right square commutes. In order to
show that the left triangle commutes, we use the characterization of functors � → �(

′
2 given by

Theorem 1.2.1.2. First, we compute that

U(′� ′ = T ′*1 = T ′U)1�1 = U(′T ′′�1.

Moreover, writting n1 and n ′ for the counit of �1 a *1 and I ′ a T ′ respectively, we have

U(′n(
′
� ′ = (T ′*1n1) ◦ (T ′)1n

′*1) (by de�nition of � ′ and Proposition 1.2.3.15)
= T ′U)1n)1�1 (by de�nition of �1)

= U(′n(
′T ′′�1 (by de�nition of T ′′).

Thus T ′′�1 = �
′ by Theorem 1.2.1.2. �

Lemma 1.2.3.18. Let a commutative square

�1 �1

�2 �2

*1

T T′

*2

where*1,*2,T ,T ′ are right adjoints with associated left adjoints �1, �2,I,I ′, such that*1,*2 are
monadic and I is fully faithful. Write

()1, [1, `1) ()2, [2, `2) ((,W, a) (( ′, W ′, a ′)

for the monads associated with the adjunctions

�1 a *1 �2 a *2 I�2 a *2T �1I ′ a T ′*1

respectively, and write

�1 : �1 → �
)1
1 and T ′′ : �)1

1 → �(
′

2
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for the comparison functors associated to the adjunctions �1 a *1 and F)1I ′ a T ′U)1 respectively.
Then, there exists an equivalence of categories �2 : �2 → �(

′
2 such that the diagram

�1 �
)1
1

�2 �(
′

2

�1

T T′′

�2

commutes andU(′�2 = *2.

Proof. By Lemma 1.2.3.17, we have a commutative diagram

�1 �
)1
1

�(
′

2

�1

� ′
T′′

where � ′ and T ′′ are the comparison functors induced by the adjunctions

�1I ′ a T ′*1 and F)1I ′ a T ′U)1

respectively. Let U be the unit of the adjunction I a T , and n1, n
′ be the counits of the ad-

junctions �1 a *1 and I ′ a T ′ respectively. Since T ′*1 = *2T by hypothesis, the natural
transformation \ : �1I ′⇒ I�2 de�ned as the composite

\ = (n1I�2) ◦ (�1n
′*1I�2) ◦ (�1I ′*2V�2) ◦ (�1I ′[2)

which can be represented as

�1 I ′

I �2

\ =

�1 I ′

I �2

[2

U

n ′

n1

=

is an isomorphism by Proposition 1.2.3.14. One can then verify with the zigzag equations that the
natural transformation q : ( ′⇒ ( de�ned by q = *2T\ is an isomorphism of monads. Moreover,
writing� for the comparison functor induced by the adjunction I�2 a *2T , we have the diagram

�1 �(
′

2 �2

�(2

� ′

�

U(′

U(
�
q

2
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where the left triangle commutes by the de�nitions of �,� ′, �q2 and the characterization of
functors �1 → �(2 (c.f. Theorem 1.2.1.2), and the right triangle commutes by Lemma 1.2.1.7.
Writingk : )2 ⇒ ( for the morphism of monads induced by the unit of I a T , by Lemmas 1.2.1.7
and 1.2.3.16, we have a commutative diagram

�1 �(2 �2

�2 �
)2
2

�

T

U(

�
k

2

�̄2

U)2

where �̄2 is the comparison functor induced by the adjunction �2 a *2. Since I is supposed fully
faithful, the unit of I a T is an isomorphism, so that �k2 is an isomorphism. Write �2 for

�2 = �
q

2 (�
k

2 )
−1�̄2.

From the above commutative diagrams, we deduce that

�1 �
)1
1

�2 �(
′

2

�1

T T′′

�2

commutes. Moreover, since *1 and *2 were supposed monadic, �1 and �̄2 are equivalence of
categories (and so is �2). By the de�nition of �1 and �̄2, we haveU)1�1 = *1 andU)2�̄2 = *2.
From the later equality and the above commutative diagrams, we deduce thatU(′�2 = *2. �

Lemma 1.2.3.19. Let :, = ∈ N ∪ {l} with : < = and (), [, `) be a �nitary monad on Glob= . The
comparison functor associated to the adjunction

F= (−)Glob
↑= a (−)Glob

≤: U= : Alg= → Glob:

is (−)Alg
≤: : Alg= → Alg: .

Proof. By de�nition of (−)Alg
≤: , we have

U: (−)Alg
≤: = (−)Glob

≤: U= .

Moreover, given (-,ℎ : )=- → - ) ∈ Alg= , recall that the image of (-,ℎ) by (−)Alg
≤: is (-≤: , ℎ′),

where
ℎ′ = ℎ≤: ◦ ((−)Glob

≤: ) i:,=)- .

Writting n= for the counit of F= a U= and X for the counit of F= (−)Glob
↑= a (−)Glob

≤: U= , we have

ℎ′ = ((−)Glob
≤: U=n

=)(-,ℎ) ◦ ((−)Glob
≤: U=F= i:,=U=)(-,ℎ) = ((−)Glob

≤: U=X)(-,ℎ) .

Thus, writting n: for the counit of F: a U: , we have

(U:n: (−)Alg
≤: )(-,ℎ) = ℎ

′ = ((−)Glob
≤: U=X)(-,ℎ)

so that (−)Alg
≤: is the comparison functor associated to F= (−)Glob

↑= a (−)Glob
≤: U= as a consequence

of Theorem 1.2.1.5. �
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We have now enough material to show the following criterion for recognizing that some functor
between two categories is equivalent to the truncation functor between two categories of globular
algebras as de�ned in Paragraph 1.2.3.6:

Theorem 1.2.3.20. Let :, = ∈ N ∪ {l} with : < =, and a diagram in CAT

� Glob=

� ′ Glob:

*1

T (−)Glob
≤:

�1

*2

I

�2

such that (−)Glob
≤: *1 = *2T and such that we have adjunctions

�1 a *1 �2 a *2 I a T

where I is fully faithful and *1,*2 are monadic. Write (), [, `) for the monad induced by �1 a *1,
and Alg= and Alg: for the globular algebras de�ned from ) , and � : � → Alg= for the comparison
functor induced by �1 a *1. Then, there exists an equivalence of categories

� ′ : � ′→ Alg:

making the following diagram commute

� Alg=

� ′ Alg:

�

T (−)Alg
≤:

� ′

and such thatU:� ′ = *2.

Remark 1.2.3.21. By its de�nition as comparison functor, � satis�es thatU=� = *1. Since *1 is
monadic, � is moreover an equivalence of categories.

Proof. By Theorem 1.2.1.5, we haveU=� = *1. The last part of the statement is a consequence
of Lemmas 1.2.3.18 and 1.2.3.19. �

In the above theorem, � and � ′ should be thought as categories of =-categories and :-categories,
and T as a truncation functor, all de�ned “by hand” outside Batanin’s setting. The theorem
then gives a criterion to know whether these objects are equivalent to the ones de�ned in Para-
graphs 1.2.3.1 and 1.2.3.6. In particular, we will use this theorem to show that the equational
de�nitions of strict categories and precategories, and their truncation functors, are equivalent to
the ones given by Batanin’s setting (c.f. Theorems 1.4.2.8 and 1.4.1.10). For now, we illustrate the
use of Theorem 1.2.3.20 on a dummy example:
Example 1.2.3.22. Consider the monad (), [, `) on Glob1 de�ned in Example 1.2.3.3. Write Ū1 for
the monadic functor Cat→ Glob1 de�ned in Example 1.1.2.10 (where we identify the category
of graphs Gph with the category of 1-globular sets Glob1), and write Ū0 for the identity functor
between Set and Glob0, which is monadic too. Consider the canonical functor T : Cat → Set
which maps a small category� to its underlying set of 0-cells�0. This functor makes the following
diagram commute:

Cat Glob1

Set Glob0

Ū1

T (−)Glob
≤0

Ū0

.



1.2. HIGHER CATEGORIES AS GLOBULAR ALGEBRAS 31

Moreover, T has a left adjoint I which maps a set ( to the small category whose set of 0-cells
is ( and whose only 1-cells are the identity cells id1

B for B ∈ ( . The functor I is then fully
faithful since TI = idSet and the unit of the adjunction I a T is the identity on idSet. Thus,
Theorem 1.2.3.20 applies and, writing �1 : Cat → Alg1 for the comparison functor associated
with the functor Ū1, there exists an equivalence of categories �0 : Set → Alg0 such that the
diagram

Cat Alg1

Set Alg0

�1

T (−)Alg
≤0

�0

commutes and we moreover haveU0�0 = Ū0 andU1�1 = Ū1. Note that �1 is an equivalence of
categories too since Ū1 is monadic.

1.2.4 Truncable globular monads

The general setting of higher category theories as monads over globular sets allows de�ning
theories with unusual operations, like compositions of ;-cells that produce unrelated ; ′-cells for
some ; ′ < ; (c.f. Example 1.2.3.4). Anticipating the next section, such theories are badly be-
haved when it comes to freely adding new (:+1)-generators to :-categories, since the underlying
:-categories will not be preserved in the process. In order not to allow such monads, we recall
from [Bat98a] the notion of truncable monad which forbids those problematic operations and
still includes most usual theories for higher categories: those are the monads which “commute
with truncation” in a suitable sense. As we will see in the nextsection, the :-categories of these
theories are preserved when freely adding (:+1)-generators.

1.2.4.1 — Truncability. Let = ∈ N∪ {l} and (), [, `) be a �nitary monad on Glob= . For : ∈ N= ,
the counit of the truncation and inclusion functors between =- and :-globular sets

i:,= : (−)Glob
↑= (−)

Glob
≤: → idGlob=

induces a natural transformation t: where

t: = (−)Glob
≤: ) i:,= : ): (−)Glob

≤: ⇒ (−)
Glob
≤: ) : Glob= → Glob:

The monad ) is said weakly truncable when t: is an isomorphism for each : ∈ N; it is truncable
when ): (−)Glob

≤: = (−)Glob
≤: ) and t: is the identity natural transformation for each : ∈ N.

Example 1.2.4.2. The monad (), [, `) of categories on Glob1 de�ned in Example 1.2.3.3 is weakly
truncable. By choosing adequately the left adjoint Glob1 → Cat that de�nes ) , we can even
suppose that ) is truncable. More generally, we will see in Section 1.4.1 that the monad of strict
l-categories is weakly truncable, and even truncable up to an isomorphism of monads.

Example 1.2.4.3. The monad (), [, `) of weird 2-categories on Glob2 de�ned in Example 1.2.3.4 is
not truncable since, for - ∈ Glob2, we have

()- )0 ' -0 t (-2 × -2) and () 0(-≤0))0 ' -0.

The following property justi�es that we only handle the case of truncable monads:

Proposition 1.2.4.4. If (), [, `) is weakly truncable, then it is isomorphic to a monad which is
truncable.
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Proof. We de�ne a truncable monad ()̄ , [̄, ¯̀) on Glob= and an isomorphism of monad q : ) → )̄

from their trunctations

(−)Glob
≤: )̄ and q≤: : (−)Glob

≤: ) → (−)Glob
≤: )̄

and we de�ne those using an induction on : for : ∈ N= . In dimension 0, we put

(−)Glob
≤0 )̄ = ) 0(−)Glob

≤0 and q0 = (t0)−1

Then, given : ∈ N= and a (:+1)-globular set - , we de�ne ()̄- )≤:+1 as the (:+1)-globular set .
where

.≤: = ()̄- )≤: and .:+1 = ():+1(-≤:+1)):+1
and the operation mn

:
: .:+1 → .: is de�ned as the composite

.:+1 = ():+1(-≤:+1)):+1
mn
:−−→ ():+1(-≤:+1)):

(t:+1):−−−−−→ ()- ):
(q: ):−−−−→ ()̄- ):

for n ∈ {−, +}. Our de�nition extends canonically to a functor

(−)Glob
≤:+1)̄ : Glob= → Glob:+1.

We also extend q≤: on dimension : + 1 by putting, for - ∈ Glob= ,

(q- ):+1 = ((t:+1- )
−1):+1 : ()- ):+1 → ()̄- ):+1

So we de�ned )̄ : Glob= → Glob= together with an isomorphism q : ) → )̄ . Finally, we put

[̄ = q ◦ [ and ¯̀ = q ◦ ` ◦ (q−1q−1)

so that ()̄ , [̄, ¯̀) is a monad. By the de�nition of )̄ , we easily verify that ()̄ , [̄, ¯̀) is truncable. �

When) is truncable, the): , [: and `: can be related through the equations given by the following
lemma:

Lemma 1.2.4.5. If ) is truncable, then, for :, ; ∈ N= ∪ {=} with : < ; , we have

): (−)Glob
≤:,; = (−)

Glob
≤:,; )

; and (−)Glob
≤:,; [

; = [: (−)Glob
≤:,; and (−)Glob

≤:,; `
; = `: (−)Glob

≤:,;

Proof. We compute that

): (−)Glob
≤:,; = )

: (−)Glob
≤:,= (−)

Glob
↑=,;

= (−)Glob
≤:,=) (−)

Glob
↑=,;

= (−)Glob
≤:,; )

;

and
(−)Glob
≤:,; [

; = (−)Glob
≤:,; (−)

Glob
≤;,= [ (−)

Glob
↑=,; (by de�nition of [; )

= ((−)Glob
≤:,=[ (−)

Glob
↑=,; ) ◦ ((−)

Glob
≤:,= i:,= (−)Glob

↑=,; )

= ((−)Glob
≤:,=) i:,= (−)Glob

↑=,; ) ◦ ((−)
Glob
≤:,=[ (−)

Glob
↑=,: (−)

Glob
≤:,= (−)

Glob
↑=,; ) (by naturality)

= (−)Glob
≤:,=[ (−)

Glob
↑=,: (−)

Glob
≤:,; (by truncability)

= [: (−)Glob
≤:,; (by de�nition of [: )
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and
(−)Glob
≤:,; `

; = ((−)Glob
≤:,; (−)

Glob
≤;,= ` (−)

Glob
↑=,; ) ◦ ((−)

Glob
≤:,; (−)

Glob
≤;,=) i;,=) (−)Glob

↑=,; ) (by de�nition of `; )

= ((−)Glob
≤:,=` (−)

Glob
↑=,; ) ◦ ((−)

Glob
≤:,; (−)

Glob
≤;,=) i;,=) (−)Glob

↑=,; )

= ((−)Glob
≤:,=` (−)

Glob
↑=,; ) (by truncability)

= ((−)Glob
≤:,=` (−)

Glob
↑=,; ) ◦ ((−)

Glob
≤:,=) i:,=) (−)Glob

↑=,; ) (by truncability)

= ((−)Glob
≤:,=` (−)

Glob
↑=,; ) ◦ ((−)

Glob
≤:,=) i:,=) (−)Glob

↑=,; )

◦ ((−)Glob
≤:,=) (−)

Glob
↑=,: (−)

Glob
≤:,=) i:,= (−)Glob

↑=,; ) (by truncability)

= ((−)Glob
≤:,=` (−)

Glob
↑=,; ) ◦ ((−)

Glob
≤:,=)) i:,= (−)Glob

↑=,; )

◦ ((−)Glob
≤:,=) i:,=) (−)Glob

↑=,: (−)
Glob
≤:,= (−)

Glob
↑=,; ) (by naturality)

= ((−)Glob
≤:,=) i:,= (−)Glob

↑=,; ) ◦ ((−)
Glob
≤:,=` (−)

Glob
↑=,: (−)

Glob
≤:,= (−)

Glob
↑=,; )

◦ ((−)Glob
≤:,=) i:,=) (−)Glob

↑=,: (−)
Glob
≤:,= (−)

Glob
↑=,; ) (by naturality)

= ((−)Glob
≤:,=` (−)

Glob
↑=,: (−)

Glob
≤:,; ) ◦ ((−)

Glob
≤:,=) i:,=) (−)Glob

↑=,: (−)
Glob
≤:,; ) (by truncability)

= `: (−)Glob
≤:,; (by de�nition of `: )

which concludes the proof. �

We now prove several properties of truncable monads regarding truncation of algebras. First, the
truncation of algebras has now a simpler de�nition:

Proposition 1.2.4.6. If ) is truncable, then given :, ; ∈ N= ∪ {=} such that : < ; , and an ;-alge-
bra (-,ℎ) ∈ Alg; , we have (-,ℎ)≤: = (-≤: , ℎ≤: ).

Proof. Indeed, since ) is truncable, we have

((−)Glob
≤:,; )

; i:,; )- = (): (−)Glob
≤:,; i:,; )- = id

):-

so that (-,ℎ)≤: = (-≤: , ℎ≤: ). �

Moreover, the operation of truncation of algebras is now a left adjoint:

Proposition 1.2.4.7. If ) is truncable, then, given :, ; ∈ N= ∪ {=} with : < ; , the functor

(−)Alg
≤:,; : Alg; → Alg:

is a left adjoint. In particular, it preserves colimits.

Proof. Given (.,ℎ : ):. → . ) an element of Alg: , we de�ne a ) ; -algebra

(. ′, ℎ′ : ) ;. ′→ . ′)

that will represent the functor

Alg: ((−)
Alg
≤: , (.,ℎ)) : Alg

op
;
→ Set

We put . ′ = .⇑; and we de�ne ℎ′ : ) ;. ′→ . ′, by the universal property of the adjunction

(−)Glob
≤: a (−)

Glob
⇑;
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as the unique morphism such that ℎ′≤: = ℎ. We verify that (. ′, ℎ′) ∈ Alg; . By Lemma 1.2.4.5, we
have

() ; (ℎ′))≤: = ): (ℎ), (−)Glob
≤: [; = [: (−)Glob

≤: and (−)Glob
≤: `; = `: (−)Glob

≤:

so that

(ℎ′ ◦ [;. ′)≤: = ℎ ◦ [:.
= id.
= (id. ′)≤:

and
(ℎ′ ◦ `;. ′)≤: = ℎ ◦ `:.

= ℎ ◦): (ℎ)
= (ℎ′ ◦) ; (ℎ′))≤: .

By the universal property of . ′ = .⇑; , this implies

ℎ′ ◦ [;. ′ = id. ′ and ℎ′ ◦) ; (ℎ′) = ℎ′ ◦ `;. ′

so that (. ′, ℎ′) is a) ; -algebra. Now, since) is truncable, given a) ; -algebra (-,6) and a) ; -algebra
morphism 5 : (-,6) → (. ′, ℎ′), the globular :-truncation of 5 induces a ): -algebra morphism

5≤: : (-,6)≤: → (.,ℎ).

Conversely, given a ): -algebra morphism 5 : (-,6)≤: → (.,ℎ), by the universal property of . ′,
there is a unique morphism 5 ′ : - → . ′ of Glob; such that 5 ′≤: = 5 . Moreover, we have

(ℎ′ ◦) ; (5 ′))≤: = ℎ ◦): (5 )
= 5 ◦ 6≤: (by Proposition 1.2.4.6)
= (5 ′ ◦ 6)≤:

so that ℎ′ ◦) ; (5 ′) = 5 ′ ◦ 6 by the same argument as above. Thus, 5 ′ is a ) ; -algebra morphism.
Hence, there is a bijection

Φ(-,6) : Alg: ((-,6)≤: , (.,ℎ)) → Alg; ((-,6), (. ′, ℎ′))

which is natural in (-,6). We conclude that (−)Alg
≤: is a left adjoint. �

1.2.4.8 — Characterization of truncable monads. Earlier, we introduced Theorem 1.2.3.20
that allows to recognize that some categories and functors between them are equivalent to the
categories of globular algebras and the associated truncation functors derived from a monad )
on globular sets, without having to explicitly describe this monad. But, by the current de�nition
of truncability, in order to show that the monad ) is truncable, a direct proof would require to
show that the natural transformations (−)Glob

≤; ) i;,= are isomorphisms, so that a description of )
is still needed. Below, we introduce a characterization of the truncability of ) that does not rely
on such tedious description.

We start by proving the following lemma, relating the functors F: :

Lemma 1.2.4.9. Let = ∈ N ∪ {l} and (), [, `) be a �nitary monad on Glob= . Given : ∈ N such
that : < =, we have

(−)Alg
≤: F= (−)

Glob
↑=,: = F: .
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Proof. We �rst compute that

U: (−)Alg
≤: F= (−)

Glob
↑=,: = (−)Glob

≤: U=F= (−)
Glob
↑=,:

= (−)Glob
≤: )= (−)Glob

↑=,:

= ):

= U:F: .

Moreover, writting n: and n= for the counit of the adjunctions

F: a U: and F= a U=

respectively, we have

n: (−)Alg
≤: F= (−)

Glob
↑=,: = (−)Glob

≤: ((U=n
=) ◦ ()= i:,=U=))F= (−)Glob

↑=,: (by de�nition of (−)Alg
≤:,=)

= (−)Glob
≤: ((U=n

=F=) ◦ ()= i:,=)=)) (−)Glob
↑=,:

= (−)Glob
≤: (`

= ◦ ()= i:,= F=)) (−)Glob
↑=,:

= `: (by de�nition of `: )

= n:F:

so that
(−)Alg
≤: F= (−)

Glob
↑=,: = F:

by Theorem 1.2.1.2. �

Now, we prove that truncable monads can be characterized through the associated globular
algebras:

Proposition 1.2.4.10. Let = ∈ N ∪ {l} and (), [, `) be a �nitary monad on Glob= . Then, the
monad (), [, `) is weakly truncable (resp. truncable) if and only if, for : ∈ N=−1, the natural
transformation

(−)Alg
≤: F= i:,= : F: (−)Glob

≤: ⇒ (−)
Alg
≤: F=

is an isomorphism (resp. an identity).

Proof. Note that the domain of (−)Alg
≤: F= i:,= is the claimed one by Lemma 1.2.4.9. For : ∈ N=−1,

we have that

U: (−)Alg
≤: F= i: = (−)Glob

≤: U=F= i:

= (−)Glob
≤: ) i: .

The proposition follows from the fact thatU: re�ects isomorphisms (resp. identities). �

Given : ∈ N, we write
j:,= : idGlob= ⇒ (−)

Glob
⇑=,: (−)

Glob
≤:,=

or simply j: , for the unit of the adjunction (−)Glob
≤:,= a (−)

Glob
⇑=,: : Glob: → Glob= . We have the

following criterion for showing the truncability of monads through their globular algebras:

Theorem 1.2.4.11. Let= ∈ N∪{l} and (), [, `) be a �nitarymonad onGlob= . The monad (), [, `)
is weakly truncable if and only if, for : ∈ N=−1, the functor (−)Alg

≤:,= has a right adjoint, that we
write (−)Alg

⇑=,: , which satis�es that j:U= (−)Alg
⇑=,: is an isomorphism.
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Proof. By Proposition 1.2.4.7, if ) is weakly truncable, (−)Alg
≤:,= has a right adjoint, so we can

suppose that it is the case and denote it by (−)Alg
⇑=,: . Then, the morphism (−)Alg

≤: F= i: , pictured by

(−)Alg
≤: F= (−)Glob

↑= (−)Glob
≤:

i:

is a natural transformation between two composites of left adjoints. Then, by Proposition 1.2.3.15
and (the dual of) Proposition 1.2.3.14, the latter natural transformation is an isomorphism if and
only if the morphism depicted by the string diagram

(−)Glob
⇑= (−)Glob

≤: U= (−)Alg
⇑= (−)Alg

≤: F= (−)Glob
↑= (−)Glob

≤: U= (−)Alg
⇑=

U

[=

W

j:

i:

n=

U ′

is an isomorphism, where (U, U ′), ([=, n=), (W, i: ) are the pairs of units and counits associated with
the adjunctions (−)Alg

≤: a (−)
Alg
⇑= , F= a U= and (−)Glob

↑= a (−)Glob
≤: respectively. Using the equations

satis�ed by adjunctions to reduce the above diagram, we obtain

(−)Glob
⇑= (−)Glob

≤: U= (−)Alg
⇑=

j:

which is the diagram associated to the morphism j:U: (−)Alg
⇑: . Thus, (−)Alg

≤: F= i: is an isomorphism
if and only if j:U: (−)Alg

⇑: is an isomorphism. We conclude with Lemma 1.2.4.10. �

We will use the above criterion to show that the monads associated to the theories of strict
categories and precategories are weakly truncable (c.f. Theorems 1.4.2.9 and 1.4.1.11). For now,
we illustrate its use by showing that the simple monad from Example 1.2.3.3 is weakly truncable:

Example 1.2.4.12. Consider the monad (), [, `) on Glob1 from Example 1.2.3.3. Recall from Ex-
ample 1.2.3.22 the de�nitions of the functors

T : Cat→ Set Ū0 : Set→ Glob0 Ū1 : Cat→ Glob1.



1.3. FREE HIGHER CATEGORIES ON GENERATORS 37

One easily veri�es that the functor T : Cat→ Set has a right adjoint G : Set→ Cat which is the
canonical functor mapping a set ( to the category whose set of 0-cells is ( and which has exactly
one 1-cell between every pair of 0-cells. For this de�nition and the one of j0, we have that j0Ū1G
is an isomorphism. Since, from Example 1.2.3.22, we have a commutative diagram

Cat Alg1

Set Alg0

�1

T (−)Alg
≤0

�0

where �0 and �1 are equivalences of categories such that U0�0 = Ū0 and U1�1 = Ū1, the
functor (−)Alg

≤0,1 has a right adjoint (−)Alg
⇑1,0 such that j0U1(−)Alg

⇑1,0 is an isomorphism. Thus, the
monad ) is truncable by Theorem 1.2.4.11.

1.3 Free higher categories on generators

Given some theory of higher categories, an important construction is the one that builds a :-cate-
gory which is freely generated on a set of generators. Indeed, like for other algebraic theories,
a :-category can be described by means of a presentation, i.e., by quotienting a free :-category
by a set of relations. Such presentations are all the more interesting from a computational per-
spective since they allow encoding higher categories with possibly in�nite number of cells as
�nite data. For example, a formal adjunction can be described as the strict 2-category generated
by two 0-cells G and ~, two 1-cells ; : ~ → G and A : G → ~, and two 2-cells W : id~ ⇒ ; ∗0 A
and n : A ∗0 ; ⇒ idG satisfying the zigzag equations (1.3). Given a theory of higher categories
expressed in Batanin’s setting, i.e., as a monad (), [, `) on Glob= for some = ∈ N ∪ {l}, there are
several free constructions that one can consider. First, the functors F: : Glob: → Alg: already
enable to construct the free :-category on a :-globular set. Moreover, there is a construction
which produces a (:+1)-category from a :-cellular extension, i.e., a pair consisting of a :-category
and a set of (:+1)-generators. Such construction was introduced for strict categories in [Bur93].
Finally, one can consider the free :-category on a :-polygraph: the latter is a system of 8-gene-
rators for 8 ∈ N= which is organized inductively as cellular extensions. It di�ers from a mere
:-globular set in the sense that a :-polygraph allows generators to have complex sources and
targets that are composites of other generators, whereas the sources and targets of generators or-
ganized in a :-globular set can only be globes. Polygraphs were �rst introduced by Street [Str76]
and Burroni [Bur93] for strict categories, and then generalized to any �nitary monad on globular
sets by Batanin [Bat98a].

The aim of this section is to introduce the de�nitions of cellular extensions and polygraphs
together with the associated free constructions. Since most of the de�nitions rely on pullbacks
in CAT, we �rst recall some properties of these pullbacks (Section 1.3.1). Then, we introduce cel-
lular extensions together with the associated free construction for any �nitary monad on globular
sets, and, in the case of a truncable monad, we show that this construction is stable, i.e., that freely
adding (:+1)-generators does not change the underlying :-category (Section 1.3.2). Finally, we
introduce polygraphs together with the associated free construction for any �nitary monad on
globular sets (Section 1.3.3). Our de�nition di�ers from the one of Batanin since ours is based on
cellular extensions, whereas the one of Batanin is more direct. We moreover prove a local �nite
presentability result for the categories of polygraphs.
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1.3.1 Pullbacks in CAT

In the following sections, we de�ne the categories of cellular extensions and polygraphs using
pullbacks in CAT. We will be interested in showing that these categories are cocomplete and that
several of the projection functors are left or right adjoints. Such properties are consequence of
general properties of pullbacks that we recall below. In particular, a pullback of an iso�bration,
i.e., a functor which lifts isomorphisms, has good properties with regard to cocompleteness and
preservation of colimits. This is convenient since, as we will see below, all the truncation functors
introduced until now are iso�brations.

In the following, given � ∈ CAT, we write id2
� for the identity natural transformation on the

identity functor id� : � → � . We begin with a property of compatibility of pullbacks in CAT with
left and right adjoints:

Proposition 1.3.1.1. Given a pullback in CAT

� ′ �

� ′ �

� ′

�′ �

�

and a functor � : � → � such that �� = id� , then there exists a canonical � ′ : � ′ → � ′ such
that � ′� ′ = id�′ . Moreover, if there is an adjunction � a � (resp. � a � ) whose unit (resp. counit)
is id2

� , then there is an adjunction � ′ a � ′ (resp. � a �) whose unit (resp. counit) is id2
�′ .

Proof. We de�ne � ′ using the universal property of pullbacks by

� ′

� ′ �

� ′ �

�◦�

� ′

id
�′

� ′

�′ �

�

which satis�es � ′� ′ = id�′ by de�nition. Moreover, suppose that there is an adjunction � a �
whose unit is id2

� . Then, since � ′ is de�ned by a pullback, a morphism 5 : � ′- → . ∈ � ′ is the
data of morphisms 5; : - → � ′. and 5A : ��- → � ′. with � (5; ) = � (5A ). But, since the unit
of � a � is id2

� , � induces a bijective correspondence between � (��-, � ′. ) and � (�-,�� ′. ),
so that 5A is uniquely de�ned by � (5; ). Thus, � ′ induces a bijective natural correspondence be-
tween� ′(� ′-,. ) and� ′(-,� ′. ) for all- ∈ � ′ and. ∈ � ′, so that there is an adjunction� ′ a � ′
with unit id2

�′ . The case where � is left adjoint is similar. �

Moreover, we prove that iso�brations are well-behaved regarding pullbacks in CAT. We re-
call that a functor � : � → � ∈ CAT is an iso�bration when it lifts isomorphisms, i.e., for
all - ∈ � and .̃ ∈ � , given an isomorphism 5̃ : �- → .̃ in � , there exists . ∈ � and an
isomorphism 5 : - → . such that �. = .̃ and � (5 ) = 5̃ . We then have:

Proposition 1.3.1.2. Given a pullback in CAT

� ′ �

� ′ �

� ′

�′ �

�

such that � is an iso�bration, the following hold:
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(i) � ′ is an iso�bration,

(ii) given a small category � , if � and � ′ have all � -colimits and � and � preserve them, then � ′

has all � -colimits and � ′ and � ′ preserve them.

Proof. Proof of (i): Let - ∈ � ′, .! ∈ � ′ and \! : � ′- → .! be an isomorphism. Then, since �
is an iso�bration, there is .' ∈ � and an isomorphism \' : � ′- → .' such that � (\!) = � (\').
Moreover, � (\−1

!
) = � (\−1

'
) so that (\!, \') : - → (.!, .') is an isomorphism of � ′.

Proof of (ii): Let 3 : � → � ′ be a functor, which is the data of 3! : � → � ′ and 3' : � → � . Then,
there are colimit cocones (?!,8 : 3! (8) → -!)8∈� and (?',8 : 3' (8) → -')8∈� . Since both � and �
preserve colimits, both

(� (?!,8) : � (3! (8)) → � (-!))8∈� and (� (?',8) : � (3! (8)) → � (-'))8∈�

are colimit cocones for � ◦ 3! . So there exists an isomorphism \ : � (-!) → � (-') between the
two cocones. Since � is an iso�bration, we can suppose that � (-!) = � (-') and \ = id

� (-!) .
Thus, we have a cocone ((?!,8 , ?',8) : 3 (8) → (-!, -'))8 on 3 , and we easily verify that it is a
colimit cocone. �

Remark 1.3.1.3. Pullbacks in CAT should normally raise suspicion since strict limits are not well-
behaved in CAT in general. Indeed, a limit cone in CAT on a diagram is not stable when replacing
some functors of the diagram by isomorphic functors. Moreover, the limit cone is de�ned up to
isomorphism, and not up to equivalence of categories. To solve this problem, one usually considers
a weaker notion of limits, where the triangles of cones commute only up to isomorphisms, as
with weighted bilimits [MP89]. But the strict limit on a diagram is generally not equivalent
to the associated weighted bilimit. However, introducing weighted bilimits here would be an
unnecessary pain for what we want to do, since the pullbacks along iso�brations are equivalent
to the weighted bipullbacks (see [MP89, Proposition 5.1.1]).

We now verify that several functors of interest to us are iso�brations:

Proposition 1.3.1.4. Given : ∈ N, the functor (−)Glob
≤:,:+1 is an iso�bration.

Proof. Given - ∈ Glob:+1 and an isomorphism �̃ : -≤: → .̃ in Glob: , we de�ne . ∈ Glob:+1
by .≤: = .̃ and .:+1 = -:+1 and such that the :-source and :-target operations of . are de�ned
as � ◦ m−

:
and � ◦ m+

:
respectively. Then, �̃ is lifted by the isomorphism � : - → . of Glob:+1

de�ned by �≤: = �̃ and �:+1 = 1-:+1 . �

Proposition 1.3.1.5. Let = ∈ N∪ {l} and (), [, `) be a �nitary monad on Glob= . Given : ∈ N=−1,
the functor (−)Alg

≤:,:+1 is an iso�bration.

Proof. Given an object (-,6 : ):+1- → - ) of Alg:+1 and an isomorphism �̃ : (-,6)≤: → (.̃ , ℎ̃)
of Alg: , by Proposition 1.3.1.4, there is . ∈ Glob:+1 and an isomorphism � : - → . in Glob:+1
such that �≤: = �̃ . We can equip . with a structure of):+1-algebra by de�ning ℎ : ):+1. → . as

ℎ = � ◦ 6 ◦ ():+1(� ))−1
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so that � : (-,6) → (.,ℎ) is a morphism of Alg:+1. It remains to show that (.,ℎ)≤: = (.̃ , ℎ̃). By
de�nition of . , we have .≤: = .̃ . Moreover, we compute that

ℎ≤: ◦ ((−)Glob
≤: ):+1 i: ). ◦): (�̃ )

= ℎ≤: ◦ ():+1(� ))≤: ◦ ((−)Glob
≤: ):+1 i: )- (by naturality of i: )

= �̃ ◦ 6≤: ◦ ((−)Glob
≤: ):+1 i: )- (since � is a morphism of Alg:+1)

= ℎ̃ ◦): (�̃ ) (since �̃ is a morphism of Alg: )

so that ℎ≤: ◦ ((−)Glob
≤: ):+1 i: ). = ℎ̃, i.e., (.,ℎ)≤: = (.̃ , ℎ̃). Thus, �̃ , as a morphism of Alg: , is lifted

by � . Hence, (−)Alg
≤:,:+1 is an iso�bration. �

1.3.2 Cellular extensions

In this section, we introduce the notion of :-cellular extension, which describes a :-category (for
some theory of higher categories) equipped with a set of (:+1)-generators. We moreover give
the construction of the free (:+1)-category on a :-cellular extension together with more speci�c
results when the theory we are considering is associated with a truncable monad.

1.3.2.1 — De�nition. Let= ∈ N∪{l} and (), [, `) be a �nitary monad onGlob= . Given: ∈ N=−1,
we de�ne the category Alg+

:
of :-cellular extensions as the pullback

Alg+
:

Glob:+1

Alg: Glob:

G:+1

A: (−)Glob
≤:

U:

We verify that:

Proposition 1.3.2.2. The functor A: is an iso�bration and has both left and right adjoints.

Proof. This is a consequence of Proposition 1.3.1.4 and Proposition 1.3.1.2. �

There is a functorV: : Alg:+1 → Alg+
:

de�ned as the factorization arrow

Alg:+1

Alg+
:

Glob:+1

Alg: Glob:

U:+1

(−)Alg
≤:

V:

A:

G:+1

(−)Glob
≤:

U:

.

There is an operation which produces a (:+1)-category from a :-cellular extension. It is the left
adjoint toV: , that exists by the following property:

Theorem 1.3.2.3. V: has a left adjoint.
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Proof. Let U: be the unit of the adjunction (−)Alg
↑:+1,: a (−)

Alg
≤:,:+1, and n; be the counit of the ad-

junction F; a U; for ; ∈ {:, : + 1}. Let

ΦL : Alg:+1((−)
Alg
↑:+1,−) ⇒ Alg: (−, (−)

Alg
≤: )

ΨL : Alg: ((−)
Alg
↑:+1F: (−),−) ⇒ Glob: (−,U: (−)Alg

≤:,:+1)

ΦR : Alg:+1(F:+1(−),−) ⇒ Glob:+1(−,U:+1(−))

ΨR : Glob:+1(F:+1(−)Glob
↑:+1,: ,−) ⇒ Glob: (−, (−)Glob

≤: U:+1(−))

be the natural bijections derived from the associated adjunctions de�ned in Paragraphs 1.2.2.3,
1.2.3.1 and 1.2.3.6. Note that these bijections can be de�ned using the units of the adjunctions.
For example, given � ∈ Alg: and � ∈ Alg:+1, ΦL maps a morphism 5 : �↑:+1 → � ∈ Alg:+1 to
the morphism 5≤: ◦ U:� : � → �≤: ∈ Alg: . Since

F:+1(−)Glob
↑:+1 and (−)Alg

↑:+1F:

are both left adjoint toU: (−)Alg
≤:,:+1 = (−)

Glob
≤: U:+1, the natural morphism

\ : F:+1(−)Glob
↑:+1,: ⇒ (−)

Alg
↑:+1F:

de�ned as the composite

\ = (n:+1(−)Alg
↑:+1,:F: ) ◦ (F:+1 i: U:+1(−)Alg

↑:+1,:F: ) ◦ (F:+1(−)
Glob
↑:+1,:U:U

:F: ) ◦ (F:+1(−)Glob
↑:+1,:[

: )

which can be represented by

F:+1 (−)Glob
↑:+1,:

(−)Alg
↑:+1,:

F:

\ =

F:+1 (−)Glob
↑:+1,:

(−)Alg
↑:+1,:

F:

[:

U:

i:

n:+1

=

is an isomorphism as a consequence of Propositions 1.2.3.14 and 1.2.3.15. In the following, given a
morphism 5 : - → . of a category C, we write 5 ∗ : C(., / ) → C(-,/ ) for the function 6 ↦→ 6◦ 5
for all / ∈ C. One can verify using the zigzag equations that the natural transformation \ makes
the diagram

Alg:+1((F:/ )↑:+1, �) Glob: (/,U: (�≤: ))

Alg:+1(F:+1(/↑:+1), �) Glob: (/, (U:+1�)≤: )
(\/ )∗

ΨL
/,�

ΨR
/,�

(1.6)
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commutes for all / ∈ Glob: and� ∈ Alg:+1. Let (�,- ) ∈ Alg+
:
, � ∈ Alg:+1 and (�≤: , . ) beV:� .

Since
U:� = -≤: and U:� = .≤:

and by the properties of adjunctions, we have a diagram

Alg:+1(�↑:+1, �) Alg: (�, �≤: )

Alg:+1((F:U:�)↑:+1, �) Glob: (U:�,U: (�≤: ))

Alg:+1(F:+1((-≤: )↑:+1), �) Glob: (-≤: , .≤: )

Alg:+1(F:+1-, �) Glob:+1(-,. )

(4L
(�,- ) )

∗ U:

(\-≤: )
∗

(4R
(�,- ) )

∗ (−)Glob
≤:

ΦL
�,�

ΨL
U:�,�

ΨR
-≤: ,�

ΦR
-,�

(1.7)

such that each square commutes and where 4L and 4R are the natural transformations

4L = (−)Alg
↑:+1n

:A: and 4R = F:+1 i: G:+1
respectively. Indeed, the middle square commutes by (1.6) and the top and bottom squares com-
mute by the zigzag equations. By de�nition of Alg+

:
, the set Alg+

:
((�,- ),V:�) is the pullback

Alg+
:
((�,- ),V:�) Glob:+1(-,G:+1V:�)

Alg: (�,A:V:�) Glob: (-≤: , (G:+1V:�)≤: )

G:+1

A: (−)Glob
≤:

U:

.

Since
(−)Alg
≤: = A:V: and U:+1 = G:+1V:

and by the commutative diagram (1.7), the following diagram is also a pullback:

Alg+
:
((�,- ),V:�) Alg:+1(F:+1-, �)

Alg:+1(�↑:+1, �) Alg:+1(F:+1((-≤: )↑:+1), �)

(ΦR
-,�
)−1◦G:+1

(ΦL
�,�
)−1◦A: (4R

(�,- ) )
∗

(4L
(�,- )◦\-≤: )

∗

.

Since Alg:+1 is cocomplete by Proposition 1.2.3.2, the diagram

Alg:+1(� [- ], �) Alg:+1(F:+1-, �)

Alg:+1(�↑:+1, �) Alg:+1(F:+1((-≤: )↑:+1), �)

(?R
(�,- ) )

∗

(?L
(�,- ) )

∗ (4R
(�,- ) )

∗

(4L
(�,- )◦\-≤: )

∗

is also a pullback, where � [- ], ?L
(�,- ) and ?R

(�,- ) are de�ned as the pushout

� [- ] F:+1-

�↑:+1 F:+1((-≤: )↑:+1)

?R
(�,- )

?L
(�,- ) 4R

(�,- )

4L
(�,- )◦\-≤:

.
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Thus, there is an isomorphism

Alg:+1(� [- ], �) ' Alg+
:
((�,- ),V:�)

which is natural in � . Hence,V: admits a left adjoint. �

The operation (�,- ) ↦→ � [- ] de�ned in the proof of Theorem 1.3.2.3 extends to a functor

−[−]: : Alg+
:
→ Alg:+1

that we often write −[−] when there is no ambiguity on : , and which is left adjoint toV: . The
image � [- ] of some (�,- ) ∈ Alg+: is called the free extension on (�,- ).
Example 1.3.2.4. Consider the monad (), [, `) on Glob1 de�ned in Example 1.2.3.3. A 0-cellular
extension (�,- ) is then essentially the data of a set �0 of 0-cells, a set -1 of 1-generators, and
functions d−0 , d

+
0 : -1 → �0, i.e., a graph. Moreover, the 1-category � [- ] is the image of (�,- )

seen as a graph by the left adjoint to the functor Cat→ Gph de�ned in Example 1.1.2.10.

Remark 1.3.2.5. Theorem 1.3.2.3 is a particular case of the fact that the category of locally pre-
sentable categories and right adjoints are closed under weak limits (see [Bir84] and the end
of [MP89, §5.1]). Since we did not introduce those limits, we explicitly described the construction
of the left adjoint ofV: in the case of a strict pullback.

1.3.2.6 — The truncable case. Let = ∈ N ∪ {l} and (), [, `) be a �nitary monad on Glob= . In
this paragraph, we consider the case where) is a truncable monad, and show that the underlying
:-category of a :-cellular extension is preserved by −[−]: . For this purpose, we �rst prove that
the functor (−)Alg

↑:+1,: preserves the underlying :-category. A direct proof method for this would

be to explicitly describe the functor (−)Alg
↑:+1,: , but that would be tedious and tiresome. We prefer

an indirect method based on a monadicity argument. We start by giving another description of
the images of free :-categories by (−)Alg

↑:+1:

Proposition 1.3.2.7. If ) is truncable, then, given : ∈ N=−1 and - ∈ Glob: , (−)Alg
≤:,:+1 induces a

natural isomorphism

Alg:+1(F:+1(-↑:+1),−) → Alg: (F: (- ), (−)
Alg
≤: ).

Proof. Given (.,ℎ : ):+1. → . ) ∈ Alg:+1, consider the function

Θ(.,ℎ) : Alg:+1(F:+1(-↑:+1), (.,ℎ)) → Alg: (F: (- ), (.,ℎ)≤: )

induced by (−)Alg
≤: . This function is well-de�ned, since, by the de�nitions of F: and F:+1, and by

the fact that ) is truncable, we have (−)Alg
≤: F:+1 = F: (−)

Glob
≤: , so that (−)Alg

≤: F:+1(−)
Glob
↑:+1 = F: . We

�rst show that Θ(.,ℎ) is a monomorphism. Let 5 : F:+1(-↑:+1) → (.,ℎ) be a morphism of Alg:+1.
We compute that

():+1 i: ):+1(−)Glob
↑:+1)- ◦ ()

:+1(−)Glob
↑:+1[

: )-
= ():+1 i: ):+1(−)Glob

↑:+1)- ◦ ()
:+1(−)Glob

↑:+1(−)
Glob
≤: [:+1(−)Glob

↑:+1)- (by de�nition of [: )

= ():+1[:+1(−)Glob
↑:+1)- ◦ ()

:+1 i: (−)Glob
↑:+1)- (by naturality)

= ():+1[:+1(−)Glob
↑:+1)- (since i: (−)Glob

↑:+1 = id(−)Glob
↑:+1

)
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and

ℎ ◦):+1(5 ) ◦ ():+1[:+1(−)Glob
↑:+1)- = 5 ◦ `:+1-↑:+1

◦ ():+1[:+1)-↑:+1 = 5 .

Thus, there is a diagram

):+1(-↑:+1) ):+1(():- )↑:+1) ):+1(.≤: )↑:+1

):+1(-↑:+1) ):+1):+1(-↑:+1) ):+1. .

():+1 (−)Glob
↑:+1[

: )- ):+1 ( (5≤: )↑:+1)

():+1 i: ):+1 (−)Glob
↑:+1)- ():+1 i: ).

():+1[:+1 (−)Glob
↑:+1)- ):+1 (5 ) ℎ

where the �rst square commutes by the �rst calculation, the second square commutes by naturality
and the bottom row is equal to 5 by the second computation. Thus, 5 can be recovered from 5≤: ,
which proves that Θ(.,ℎ) is injective.

We now show that Θ(.,ℎ) is surjective. Let 5 : ():-, `- ) → (.,ℎ)≤: be a morphism in Alg: .
We de�ne a morphism 5 ′ : ):+1(-↑:+1) → . of Glob:+1 as the composite

):+1(-↑:+1) ):+1(():- )↑:+1) ):+1((.≤: )↑:+1) ):+1. .

():+1 (−)Glob
↑:+1[

: )- ):+1 (5↑:+1) ():+1 i: ). ℎ
.

We compute that

ℎ ◦):+1(5 ′) = ℎ ◦):+1(ℎ) ◦):+1):+1(i:. ◦5↑:+1 ◦ ([
:
- )↑:+1)

= ℎ ◦ `:+1. ◦):+1):+1(i:. ◦5↑:+1 ◦ ([
:
- )↑:+1) (since ℎ ∈ Alg:+1)

= ℎ ◦):+1(i:. ◦5↑:+1 ◦ ([
:
- )↑:+1) ◦ `

:+1
-↑:+1

(by naturality of `:+1)

= 5 ′ ◦ `:+1-↑:+1

so 5 ′ induces a morphism in Alg:+1. Moreover, we have

5 ′≤: = ℎ≤: ◦ ():+1(i:. ))≤: ◦)
: (5 ) ◦ ():[: )-

= ℎ≤: ◦): ((i:. )≤: ) ◦)
: (5 ) ◦ ():[: )- (since ) is truncable)

= ℎ≤: ◦): (5 ) ◦ ():[: )- (since (−)Glob
≤: i: = id(−)Glob

≤:
)

= 5 ◦ `:- ◦ ()
:[: )- (by Proposition 1.2.4.6)

= 5

so that 5 ′≤: = 5 , which proves that Θ(.,ℎ) is surjective. Finally, it is clear from the de�nition
of Θ(.,ℎ) that it is natural in . , which concludes the proof. �

Given : ∈ N=−1, let [A,: be the natural transformation

[A,: : idAlg: ⇒ (−)
Alg
≤: (−)

Alg
↑:+1

often simply denoted [A, which is the unit of the adjunction (−)Alg
↑:+1 a (−)

Alg
≤: . We are going to

show that [A is an isomorphism when ) is truncable. First, Proposition 1.3.2.7 implies that the
restriction of [A to free :-algebras is an isomorphism:

Proposition 1.3.2.8. If ) is truncable, then, given : ∈ N= , [AF: is a natural isomorphism.
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Proof. Given - ∈ Glob: , we prove that ([AF: )- is an isomorphism. By adjunction properties,
the functor

Alg: (F:-, (−)
Alg
≤: ) : Alg:+1 → Set

is representable by the pair ((F:- )↑:+1, ([AF: )- ), and, by Proposition 1.3.2.7, it is also repre-
sentable by the pair (F:+1(-↑:+1), idF:- ). The sequence of bijections

Alg:+1((F:- )↑:+1, (F:- )↑:+1) ' Alg: (F:-, ((F:- )↑:+1)≤: ) ' Alg:+1(F:+1(-↑:+1), (F:- )↑:+1)

sends id(F:- )↑:+1 to a morphism q : F:+1(-↑:+1) → (F:- )↑:+1, and one can verify that the latter
is an isomorphism by constructing its inverse in a dual manner. Moreover, by representability
and naturality, we have ([AF: )- = q≤: ◦ idF:- = q≤: , so that ([AF: )- is an isomorphism. �

Since Alg: is the category of algebras of (): , [: , `: ), every object of Alg: can be expressed as a
quotient of free :-algebras, so that the isomorphism of Proposition 1.3.2.8 extends to Alg: as a
whole:

Proposition 1.3.2.9. If ) is truncable, then [A is an isomorphism.

Proof. Given � ∈ Alg: , we prove that [A
�

is an isomorphism. Let n: be the counit of the ad-
junction F: a U: (concretely, n:(-,ℎ) = ℎ for (-,ℎ) ∈ Alg: ). By the naturality of [A, we have a
diagram

F:U:F:U:� F:U:� �

((F:U:F:U:�)↑:+1)≤: ((F:U:�)↑:+1)≤: (�↑:+1)≤:

(F:U:n: )�

(n: F:U: )�

([AF:U: F:U: )�

n:
�

([AF:U: )� [A
�

( (−)Alg
≤: (−)

Alg
↑:+1F:U:n

: )�

( (−)Alg
≤: (−)

Alg
↑:+1n

: F:U: )�

( (−)Alg
≤: (−)

Alg
↑:+1n

: )�

where the two squares on the left corresponding to F:U:n: and n:F:U: respectively, and the
square on the right commute. Since the functor U: is monadic by de�nition, the top row is a
coequalizer (see [Bor94b, Lemma 4.3.3] for example). Moreover, since both (−)Alg

≤: and (−)Alg
↑:

preserves colimits (both are left adjoints by Propositions 1.2.3.7 and 1.2.4.7), the bottom row is a
coequalizer too. By Proposition 1.3.2.8, the two vertical arrows on the left are isomorphisms, so
that [A

�
is an isomorphism. �

We can conclude a conservation result for the underlying:-category of (:+1)-categories produced
by −[−]: :

Proposition 1.3.2.10. If ) is truncable, then, given : ∈ N= and (�,- ) ∈ Alg+: , there is an isomor-
phism � ' � [- ]≤: which is natural in (�,- ).

Proof. Recall that � [- ] was de�ned in the proof of Theorem 1.3.2.3 as the pushout

� [- ] F:+1-

�↑:+1 F:+1((-≤: )↑:+1)

?R
(�,- )

?L
(�,- ) 4R

(�,- )

4L
(�,- )◦\-≤:

.
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By Proposition 1.2.4.7, the following diagram is also a pushout

� [- ]≤: (F:+1- )≤:

(�↑:+1)≤: (F:+1((-≤: )↑:+1))≤:

(?R
(�,- ) )≤:

(?L
(�,- ) )≤: (4R

(�,- ) )≤:

(4L
(�,- )◦\-≤: )≤:

.

Since ) is truncable, we have (−)Alg
≤: F:+1 = F: (−)

Glob
≤: . Thus,

(4R)≤: = (−)Alg
≤: F:+1 i: G:+1

= F: (−)Glob
≤: i: G:+1

= idF: (−)Glob
≤: G:+1

(since (i: )≤: = idGlob: )

so that (4R
(�,- ) )≤: = idF: (-≤: ) . Hence, (?L

(�,- ) )≤: is an isomorphism, since the pushout of an
isomorphism is an isomorphism. By Proposition 1.3.2.9, we conclude that the composite

� (�↑:+1)≤: � [- ]≤:
[A
�

(?L
(�,- ) )≤:

is an isomorphism. �

Remark 1.3.2.11. If ) is truncable, given : ∈ N= , by Proposition 1.3.1.5, we can suppose that we
chose −[−]: so that the isomorphism of Proposition 1.3.2.10 is the identity. When such a choice
is made, we have � [- ]≤: = � for all :-cellular extension (�,- ).

1.3.3 Polygraphs

In this section we recall the de�nition and several properties of polygraphs, that were �rst intro-
duced by Street [Str76] for strict 2-categories (under the name computads), and then rediscovered
and extended by Burroni [Bur93] to strict:-categories, and �nally generalized by Batanin [Bat98a]
to all algebraic globular higher categories. Polygraphs are structures that are inductively cellular
extensions, and which allow to specify a system of generators for :-categories whose sources
and targets are composites of other generators. They will play an important role in the following
chapters.

1.3.3.1 — Another de�nition of cellular extensions. Let= ∈ N∪{l} and (), [, `) be a �nitary
monad on Glob= . Before de�ning polygraphs, we �rst provide an alternative de�nition of Alg:
which is simpler than the one based on pullbacks given in Paragraph 1.3.2.1.

Proposition 1.3.3.2. Given : ∈ N=−1, the category Alg+
:
is isomorphic to the category

– whose objects are the pairs (�, () where � ∈ Alg: and ( is a set, equipped with two functions

d−
:
, d+
:

: ( → �:

such that mn
:−1 ◦ d−

:
= mn

:−1 ◦ d+
:
for n ∈ {−, +},

– and whose morphisms between two such pairs (�, () and (� ′, ( ′) are the pairs (�, 5 ) where

� : � → � ′ ∈ Alg: and 5 : ( → ( ′ ∈ Set

and such that dn
:
◦5 = �: ◦ dn

:
for n ∈ {−, +}.
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Proof. Write Ālg+: for the category described in the statement. An isomorphism between Alg+
:

and Ālg+: can be described as follows. Given (�,- ) ∈ Alg+
:
, we map (�,- ) to the pair (�,-:+1)

and, for n ∈ {−, +} and G ∈ -:+1, we put dn
:
(G) = mn

:
(G) (where mn

:
is the operation of the globular

structure on- ), and we extend this mapping to morphisms of Alg+
:

as expected. SinceU:� = -≤:
for (�,- ) ∈ Alg+

:
, the resulting functor is an isomorphism of categories. �

In the following, we will prefer the de�nition of cellular extensions given by the above proposition
instead of the one of Paragraph 1.3.2.1. In particular, we use it to show that Alg+

:
is cocomplete:

Proposition 1.3.3.3. Alg+
:
has all colimits.

Proof. Given a diagram 3 : � → Alg+
:
, where 3 (8) = (�8 , (8) for 8 ∈ � , we de�ne the colimit of 3

as follows. Let (� 8 : �8 → �)8∈� be a colimit cocone of the diagram 8 ↦→ �8 in Alg: (which exists
since Alg: is cocomplete by Proposition 1.1.1.12) and let (5 8 : (8 → ()8∈� be a colimit cocone of
the diagram 8 ↦→ (8 in Set. We de�ne functions d−

:
, d+
:

: ( → �: by the universal property of ( as
the functions such that, for n ∈ {−, +} and 8 ∈ � ,

dn
:
◦5 8 = � 8

:
◦ dn

:

so that they make (�, () an object of Alg+
:
. From such a de�nition, one can easily verify that the

cocone ((� 8 , 5 8) : (�8 , (8) → (�, ())8∈� is a colimit cocone in Alg+
:
. �

1.3.3.4 — Categories of polygraphs. Let= ∈ N∪{l} and (), [, `) be a �nitary monad on Glob= .
For : ∈ N= , we de�ne the category Pol: of :-polygraphs by induction on : , together with a functor

(−)∗,: : Pol: → Alg:

simply denoted (−)∗ when there is no ambiguity on : , that maps a :-polygraph P to the free
:-category on P. First, we put

Pol0 = Glob0 and (−)∗,0 = F0.

Now suppose that Pol: and (−)∗,: are de�ned for some : ∈ N=−1. We de�ne Pol:+1 as the pullback

Pol:+1 Alg+
:

Pol: Alg:

(−)Pol
≤:,:+1

E:+1

A:

(−)∗,:

and (−)∗,:+1 as the composite

Pol:+1 Alg+
:

Alg:+1
E:+1 −[−]: .

Like for globular sets and algebras, we write P≤: for the image of P ∈ Pol:+1 by (−)Pol
≤:,:+1, and

we often simply write (−)Pol
≤: for the latter functor.

Using the simpler de�nition of Alg+
:

from Proposition 1.3.3.2, we can give a more concrete
description of Pol: for : ∈ N= . A 0-polygraph P is the data of a set P0 of 0-generators, and a
morphism P → P′ in Pol0 is the data of a function �0 : P0 → P′0. Given : ∈ N=−1, a (:+1)-poly-
graph is the data of a pair

P = (P≤: , P:+1)
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where P≤: is a :-polygraph and P:+1 is a set of (:+1)-generators, together with functions

d−
:
, d+
:

: P:+1 → ((P≤: )∗):

such that
mn
:−1 ◦ d−

:
= mn

:−1 ◦ d+
:

for n ∈ {−, +}, where m−
:−1, m

+
:−1 : ((P≤: )∗): → ((P≤: )∗):−1 are the source and target operations

of the :-category (P≤: )∗. Moreover, a morphism P→ P′ in Pol:+1 is the data of a pair (�≤: , �=+1)
where �≤: : P≤: → P′≤: is a morphism of Pol: and �=+1 : P=+1 → P′=+1 is a function such that

dn
:
◦�=+1 = (�≤: )∗ ◦ dn

:

for n ∈ {−, +}, i.e., a (:+1)-generator 6 is mapped by �=+1 to a generator 6′ whose :-source and
:-target are exactly the images of the :-source and :-target of 6 by (�≤: )∗.
Remark 1.3.3.5. Note that the diagram

Pol:+1 Glob:+1

Pol: Glob:

G:+1E:+1

(−)Pol
≤: (−)Glob

≤:

U: (−)∗,:

(1.8)

is a pullback, since Alg+
:

is de�ned as a pullback and the concatenation of two pullbacks is still a
pullback.
In order to better handle side conditions, we use the convention that

Alg+−1 = Glob0, E0 = idGlob0
, and −[−]0 = F0

so that (−)∗,0 = −[−]0 ◦ E0. We then have:

Proposition 1.3.3.6. For : ∈ N= , the following hold:

(i) Pol: is cocomplete,

(ii) the functors (−)∗,: and E: preserve colimits,

(iii) when : > 0, the functor (−)Pol
≤:−1,: lifts isomorphisms and has both a left and a right adjoint.

Proof. We show this property by induction on : . The category Pol0 = Glob0 is certainly cocom-
plete and, since F0 is a left adjoint, the functor (−)∗,0 = F0 preserves colimits and so does the
functor E0 = idGlob0

. So suppose that : > 0. By induction hypothesis and Proposition 1.3.3.3,
both Pol:−1 and Alg+

:
are cocomplete. Moreover, by Proposition 1.3.2.2, the functor A:−1 pre-

serves colimits, lifts isomorphisms and has both a left and a right adjoint. So, by Proposition 1.3.1.2,
we deduce that Pol: is cocomplete, the functor E: preserves colimits, and the functor (−)Pol

≤:−1,:
lift isomorphisms and has both a left and a right adjoint. Finally, since −[−]:−1 is a left adjoint,
the functor (−)∗,:+1 = (−)∗ ◦ E: preserves colimits. �

Given 8, : ∈ N such that 8 ≤ : < = + 1, we write

(−):8 : Pol: → Set

or simply (−)8 when there is no ambiguity on : , for the functor which maps a :-polygraph P to
its set of 8-generators P8 . We can re�ne Proposition 1.3.3.6(i) and say that colimits are computed
dimensionwise:
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Proposition 1.3.3.7. Given 8, : ∈ N= such that 8 ≤ : , the functor (−):8 preserves colimits.

Proof. We show this property by induction on : − 8 . When : = 8 , we have that (−):8 = � ◦ E:
where � is the functor

� : Alg+
:
→ Set

which maps (�,- ) ∈ Alg+
:

to the set of (:+1)-generators - . By Proposition 1.3.3.6 and the proof
of Proposition 1.3.3.3, both E: and � preserve colimits, so that (−):8 preserves colimits. Otherwise,
if : > 8 , then note that (−):8 = (−):−1

8 ◦ (−)Pol
≤:−1 where, by Proposition 1.3.3.6 and induction

hypothesis, both (−)Pol
≤:−1 and (−):−1

8 preserve colimits, so that (−):8 preserves colimits, which
concludes the induction. �

In the case where ) is truncable, given :, ; ∈ N with : < ; , the underlying :-category of the free
;-category on an ;-polygraph is only determined by the underlying :-polygraph, as stated by the
following proposition:

Proposition 1.3.3.8. If ) is truncable, then, given : ∈ N such that : < = and a (:+1)-polygraph,
there exists an isomorphism (P∗)≤: ' (P≤: )∗.

Proof. By de�nition of (−)∗,: , we have

P∗ = (P≤: )∗ [P:+1]

so that the wanted isomorphism comes from Proposition 1.3.2.10. �

Remark 1.3.3.9. When ) is truncable, under the assumption of Remark 1.3.2.11, the isomorphism
given by Proposition 1.3.3.8 is the identity. This enables to simplify some notations: given:, ; ∈ N=
with : ≤ ; and an ;-polygraph P, we write directly P∗≤: for both (P∗)≤: and (P≤: )∗, and P∗

:
for

both (P∗): and ((P≤: )∗): .
Remark 1.3.3.10. When ) is truncable, given : ∈ N= , a :-polygraph P can be alternatively de-
scribed as a diagram in Set of the form

P0 P1 P2 . . . P:−1 P:

P∗0 P∗1 . . . P∗
:−2 P∗

:−1

e0

d−0
d−0 e1

d−1
d−1 e2

d−
:−2

d−
:−2

e:

d−
:−1

d−
:−1

m−0

m+0

m−1

m+1

m−
:−2

m+
:−2

where, for 8 ∈ N:−1, e8 is the embedding of the 8-generators in the 8-cells induced by the unit of
the adjunction −[−]8 a V8−1 at ((P≤8−1)∗, P8), such that

m−8 ◦ d−8+1 = m
−
8 ◦ d+8+1 and m+8 ◦ d−8+1 = m

+
8 ◦ d+8+1

for 8 ∈ N:−1. The above description of polygraphs can already be found in the original paper of
Burroni [Bur93] for polygraphs of strict categories.

1.3.3.11 — 8-polygraphs. Let (), [, `) be a �nitary monad on Globl . We de�ne the category
of l-polygraphs Poll as the limit in CAT

((−)Pol
≤:,l : Poll → Pol: ):∈N

on the diagram

Pol0 Pol1 · · · Pol: Pol:+1 · · ·
(−)Pol
≤0 (−)Pol

≤1 (−)Pol
≤:−1 (−)Pol

≤: (−)Pol
≤:+1
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Concretely, an l-polygraph P is the data of a sequence (P: ):∈N, where P: is a :-polygraph, such
that (P:+1)≤: = P: for : ∈ N. We verify that the truncation functors (−)Pol

≤:,l have left and right
adjoint, just like the functors (−)Pol

≤;,;+1:

Proposition 1.3.3.12. For : ∈ N, the functor (−)Pol
≤:,l : Poll → Pol: has both a left and a right

adjoint.

Proof. Let : ∈ N. De�ne (−)Pol
↑l,: : Pol: → Poll to be the unique functor such that

(−)Pol
≤;,l (−)

Pol
↑l,: =


(−)Pol
↑;,: if : < ; ,

idPol: if : = ; ,
(−)Pol
≤;,: if : > ; .

We have that (−)Pol
↑l,: is a left adjoint for (−)Pol

≤:,l . Indeed, a morphism P↑l,: → Q is the data
of a sequence of morphisms � ; : (P↑l,: )≤; → Q≤; for ; ∈ N with ; ≥ : such that (� ;+1)≤; = � ; .
But, for ; ∈ N with ; > : , we have (P↑l,: )≤; = P↑;,: and, by the universal property of P↑;,: , � ; is
completely determined by � ;≤: = �: . So there is a natural correspondence between Poll (P↑l,: ,Q)
and Pol: (P,Q≤: ). Thus, (−)Pol

↑l,: is a left adjoint for (−)Pol
≤:,l .

Dually, let (−)Pol
⇑l,: : Pol: → Poll be the functor such that

(−)Pol
≤;,l (−)

Pol
⇑l,: =


(−)Pol
⇑;,: if : < ; ,

idPol: if : = ; ,
(−)Pol
≤;,: if : > ; .

By a similar proof as above, we have that (−)Pol
⇑l,: is a right adjoint for (−)Pol

≤:,l . �

Moreover, in the truncable case, we can easily de�ne the free l-category on an l-polygraph, just
like for �nite-dimensional polygraphs:

Proposition 1.3.3.13. If) is truncable, there is a functor (−)∗,l : Poll → Algl which is uniquely
de�ned by

(−)Alg
≤:,l ◦ (−)

∗,l = (−)∗,: ◦ (−)Pol
≤:,l

for : ∈ N.

Proof. By Remark 1.3.2.11 and Remark 1.3.3.9, we have a commutative diagram

Pol0 Pol1 · · · Pol: Pol:+1 · · ·

Alg0 Alg1 · · · Alg: Alg:+1 · · ·

(−)∗,0

(−)Pol
≤0

(−)∗,1

(−)Pol
≤1 (−)Pol

≤:−1

(−)∗,:

(−)Pol
≤:

(−)∗,:+1

(−)Pol
≤:+1

(−)Alg
≤0 (−)Alg

≤1 (−)Alg
≤:−1 (−)Alg

≤: (−)Alg
≤:+1

which, by the de�nition of Poll and Proposition 1.2.3.12, induces a functor (−)∗,l which satis�es
the wanted properties. �

Remark 1.3.3.14. We can still de�ne a functor (−)∗,l : Poll → Algl in the case where ) is not
truncable. However, this functor is not expected to be compatible with the functors (−)Alg

≤: as
in Proposition 1.3.3.13. Indeed, in this case, the functor −[−]: does not preserve the underlying
:-category � of a :-cellular extension (�, () ∈ Alg+

:
.
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We moreover derive the cocompleteness of Poll from the cocompleteness of the categories Pol: :

Proposition 1.3.3.15. The category Poll is cocomplete.

Proof. Given a diagram 3 : � → Poll , for : ∈ N, the diagrams (−)Pol
≤:,l ◦ 3 admits a colimit

(�:,8 : 3 (8)≤: → P: )8∈�

By Proposition 1.3.3.6(iii), we have that P: ' (P:+1)≤: for : ≥ 0. Moreover, since (−)Pol
≤: lifts

isomorphisms, we can suppose that

P: = (P:+1)≤: and �:,8 = (�:+1,8)≤:

for : ≥ 0 and 8 ∈ � . Then, by the de�nition of Poll , this induces a cone

(� 8 : 3 (8) → P)8∈�

in Poll and we can easily verify that it is a limit cone in Poll . �

1.3.3.16 — Presentability. Let = ∈ N ∪ {l} and (), [, `) be a �nitary monad on Glob= . We
conclude this section by showing that associated categories of polygraphs of various dimensions
are locally �nitely presentable. Given : ∈ N∪{=}, a :-polygraph P is �nite when the sett8∈N:%8 is
�nite. Note that the full subcategory of Pol: whose objects are the �nite :-polygraph is essentially
small, i.e., there is a set ( ⊆ (Pol: )0 such that every �nite :-polygraph P is isomorphic to an
element of ( . We prove that Pol: is locally �nitely presentable by showing that every :-poly-
graph is a directed colimit of �nite :-polygraphs, and that those �nite :-polygraphs are precisely
the �nitely presentable objects of Pol: . We start with the case : ∈ N= .

Proposition 1.3.3.17. Given : ∈ N= , every :-polygraph is a directed colimit of �nite :-polygraphs.

Proof. We prove this property by induction on : . If : = 0 the property holds, since every set is
the directed colimit of its �nite subsets. So suppose that : > 0. Let (P, () be a :-polygraph and, by
induction hypothesis, let P(−) : � → Pol:−1 be a diagram on Pol:−1 together with colimit cocone

(� 8 : P8 → P)8∈� .

We write � for the small category whose objects are the tuples (8,* , 6−, 6+) where 8 ∈ � , * is a
�nite subset of ( , and 6−, 6+ are functions of type* → (P8)∗

:−1 such that

* (

(P8)∗
:−1 P∗

:−1

6n dn
:−1

(� 8 )∗
:−1

commutes for n ∈ {−, +}, and whose morphisms (81,*1, 6
−
1 , 6
+
1 ) → (82,*2, 6

−
2 , 6
+
2 ) are the mor-

phisms ℎ : 81 → 82 ∈ � such that*1 ⊆ *2 and

*1 *2

(P81)∗
:−1 (P82)∗

:−1

6n1 6n2

(Pℎ)∗
:−1

commutes for n ∈ {−, +}.
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We now prove that � is directed. There is a canonical functor + : � → � which maps 8 ∈ �
to (8, ∅,⊥,⊥) ∈ � . Thus, � is not empty since � is directed. Now, given

C1 = (81,*1, 6
−
1 , 6
+
1 ) and C2 = (82,*2, 6

−
2 , 6
+
2 )

in � , we show that there are morphisms ℎ1 : C1 → C and ℎ2 : C2 → C in � for some C ∈ � . Since �
is directed, there exist 8 ∈ � and morphisms ℎ1 : 81 → 8 and ℎ2 : 82 → 8 in � , so we can suppose
that 81 = 82 = 8 . We then have

(� 8)∗(6n1 (G)) = dn
:−1(G) = (�

8)∗(6n2 (G))

for all G ∈ *1 ∩ *2. Note that, since ) is �nitary, U:−1 preserves directed colimits. Thus, by
Proposition 1.3.3.6(ii), U:−1 ◦ (−)∗,:−1 preserves directed colimits, so that, since *1 and *2 are
�nite, there is 8 ′ ∈ � and a morphism ℎ′ : 8 → 8 ′ ∈ � such that

(Pℎ′)∗(6n1 (G)) = (Pℎ
′)∗(6n2 (G)).

Let 6−, 6+ : *1 ∪*2 → (P8
′)∗
:−1 be the functions such that

6n (G) =
{
6n1 (G) if G ∉ *2

6n2 (G) if G ∈ *2

for n ∈ {−, +} and G ∈ *1 ∪*2. We then have a tuple C = (8 ′,*1 ∪*2, 6
−, 6+) ∈ � , and ℎ′ induces

morphisms of � between C1 and C , and between C2 and C . Thus, � is directed.

Now, we consider the functor
Q (−) : � → Pol:

which maps C = (8,* , 6−, 6+) ∈ � to the :-polygraph QC = (P8 , (C ) de�ned by (C = * and such
that d−

:−1, d
+
:−1 : (C → (%8)∗ are the functions 6− and 6+ respectively. There is then a cocone

((� 8 , ]C ) : (P8 , (C ) → (P, ())C=(8,* ,6−,6+) ∈� (1.9)

where ]C : (C → ( is the inclusion function* ↩→ ( for C = (8,* , 6−, 6+) ∈ � .
We now prove that (1.9) is a colimit cocone. Given G ∈ ( , since U:−1(−)∗,:−1 preserves

directed colimits, there are 8−, 8+ ∈ � , D− ∈ (P8−)∗:−1 and D+ ∈ (P8+)∗:−1 such that

(� 8n )∗(Dn ) = dn
:−1(G) for n ∈ {−, +}.

Since � is directed, we can suppose that 8− = 8+ = 8 for some 8 ∈ � . Moreover, we have

(� 8)∗(mX
:−2(D−)) = m

X
:−2 ◦ d−

:−1(G) = m
X
:−2 ◦ d+

:−1(G) = (�
8)∗(mX

:−2(D+))

for X ∈ {−, +}, so that we can suppose that we chose 8 big enough such that mX
:−2(D−) = m

X
:−2(D+).

Hence, there is C = (8, {G}, 6−, 6+) ∈ � with 6−, 6+ de�ned by 6n (G) = dn
:−1(G) for n ∈ {−, +}, so

that G = ]C (G). Moreover, if G = ]C1 (G) = ]C2 (G) for some C1, C2 ∈ � , then, since � is directed, there
exists C ′ ∈ � and morphisms ℎ1 : C1 → C ′ and ℎ2 : C2 → C ′ in � so that both G ∈ (C1 and G ∈ (C2 are
mapped to G ∈ (C ′ . Thus, by Proposition 1.1.1.3 and Proposition 1.3.3.7, we have

(colim
C ∈�

QC ): ' ( .

Now, write, : � → � for the functor which maps (8,* , 6−, 6+) ∈ � to 8 . In particular, for every 8 ∈ � ,
we have 8 =, (8, ∅,⊥,⊥) so that, is a co�nal functor by Proposition 1.2.3.11. Then, since

(−)Pol
≤:−1Q

(−) = P(−),

and (−)Pol
≤:−1 preserves colimits, we have (colimC ∈� QC )≤:−1 ' P. Finally, since (−)Pol

≤:−1 and (−):
are jointly conservative, we have colimC ∈� QC ' (P, (). �
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We now characterize the presentable objects of �nite-dimensional polygraphs:

Proposition 1.3.3.18. Given : ∈ N= and P ∈ Pol: , P is �nitely presentable if and only if it is �nite.

Proof. Suppose �rst that P is �nitely presentable. By Proposition 1.3.3.17, there is a colimit cocone

(� 8 : P8 → P)8∈�

on some directed diagram P(−) : � → Pol: where P8 is �nite for 8 ∈ � . Since P is �nitely presentable,
there is a factorization of idP : P→ P through some P8 , so that we have � 8 ◦ � = idP for some 8 ∈ �
and � : P → P8 . Then, for every 9 ∈ N: , we have (� 8)9 ◦ � 9 = idP9 in Set. Since (P8)9 �nite, we
deduce that P9 is �nite for 9 ∈ N: .

We show converse implication by induction on : . If : = 0, the property holds since Pol0 = Set
(see Example 1.1.1.5). So suppose that : > 0. Let

(�8 : Q8 → Q)8∈�

be a colimit cocone in Pol: on a directed diagram

3 : � → Pol:

and � : P → Q be a morphism in Pol: . By Proposition 1.3.3.6(iii), (−)Pol
≤:−1,: preserves colimits.

Thus, by induction hypothesis, there is 91 ∈ � and �̄ : P≤:−1 → Q 91
≤:−1 ∈ Pol:−1 such that

�
91
≤:−1 ◦ �̄ = �≤:−1.

By Proposition 1.3.3.7 and since P: is �nite, there exists 92 ∈ � and a function 5 : P: → Q 92
:
∈ Set

such that
�
92
:
◦ 5 = �: .

Since � is directed, we can suppose 91 = 92 = 9 for some 9 ∈ � . Moreover, since ) is �nitary,U:−1
preserves directed colimits. Thus, by Proposition 1.3.3.6(ii), U:−1 ◦ (−)∗,:−1 preserves directed
colimits, so that we have a colimit cocone

((�8≤:−1)
∗
:−1 : (Q8

≤:−1)
∗
:−1 → (Q≤:−1)∗:−1)8∈�

on (−):−1U:−1(−)∗,:−1Q (−) . Note that, for n ∈ {−, +}, the diagram

P: Q 9

:

(P≤:−1)∗:−1 (Q 9

≤:−1)
∗
:−1

dn
:−1

5

dn
:−1

�̄ ∗
:−1

commutes when postcomposed with (� 9

≤:−1)
∗
:−1 since

(� 9

≤:−1)
∗
:−1 ◦ dn

:−1 ◦5 = dn
:−1 ◦�

9

:
◦ 5

= dn
:−1 ◦�:

= (�≤:−1)∗:−1 ◦ dn
:−1

= (� 9

≤:−1)
∗
:−1 ◦ �̄

∗
:−1 ◦ dn

:−1 .
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Thus, by the properties of directed colimits and since P: is �nite, up to choosing a bigger 9 ∈ � ,
we can suppose that the above diagram commutes for n ∈ {−, +}. So, (�̄ , 5 ) is a morphism of Pol:
of type P→ Q 9 satisfying

� = � 9 ◦ (�̄ , 5 )

and this factorization can be shown essentially unique using the fact that the factorizations

�≤:−1 = �
9

≤:−1 ◦ �̄ and �: = �
9

:
◦ 5

are essentially unique. Hence, P is �nitely presentable. �

Theorem 1.3.3.19. For every : ∈ N= , Pol: is locally �nitely presentable.

Proof. The category Pol: has all colimits by Proposition 1.3.3.6(i) and, by Proposition 1.3.3.17,
every :-polygraph is a directed colimit of �nite :-polygraphs (that are �nitely presentable by
Proposition 1.3.3.18), and the subcategory of �nite :-polygraphs is essentially small. Thus, Pol:
is �nitely presentable. �

Until the end of the paragraph, we suppose that = = l . We now verify that Poll is locally �nitely
presentable by showing properties similar to the ones of �nite-dimensional polygraphs.

Proposition 1.3.3.20. Every l-polygraph is a directed colimit of �nite l-polygraphs.

Proof. Let P be an l-polygraph. Using the proof of Proposition 1.3.3.17, we can de�ne, by induc-
tion on : ∈ N, small directed categories �: and diagrams P:,(−) : �: → Pol: where P:,8 is �nite
for 8 ∈ �: , with colimit cocones

(�:,8 : P:,8 → P≤: )8∈�: .

In the following, given : ∈ N, a category � and G ∈ �0, we denote the constant functor �: → �

of value G by Δ:G . For : ∈ N, the proof of Proposition 1.3.3.17 moreover gives functors

+ : : �: → �:+1 and , : : �:+1 → �:

such that, :+ : = id
�:

(in particular,, : is co�nal by Proposition 1.2.3.11) and such that

P:+1,(−) ◦+ : = (−)Pol
↑:+1,: ◦ P

:,(−) , (1.10)

P:,(−) ◦, : = (−)Pol
≤:,:+1 ◦ P

:+1,(−) , (1.11)

�:, : = (−)Pol
≤:,:+1�

:+1 (1.12)

where �: = (�:,8)8∈�: is seen as a natural transformation P:,(−) ⇒ Δ:P≤: . Let

(+̄ : : �: → � ):∈N (1.13)

be a colimit on the diagram

� 0 � 1 � 2 � 3 · · ·+ 0 + 1 + 2 + 3

We prove that � is directed. First, � is not empty since every �: is not empty. Now, given G1, G2 ∈ � ,
since the colimit (1.13) is directed, there is : ∈ N, G ′1, G

′
2 ∈ �: such that +̄ : (G ′8 ) = G8 for 8 ∈ {1, 2}.

Thus, since �: is directed, there exists G ′ ∈ �: and morphisms ℎ′8 : G ′8 → G ′ for 8 ∈ {1, 2}. Thus, we
have morphisms +̄ : (ℎ′8 ) : G8 → +̄ : (G ′) for 8 ∈ {1, 2}. Finally, given G,~ ∈ �0 and 51, 52 : G → ~ ∈ � ,
since (1.13) is a colimit cocone, there exist :8 ∈ N, objects G ′8 , ~

′
8 and morphisms 5 ′8 : G ′8 → ~ ′8 of �:8
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such that +̄ :8 (5 ′8 ) = 58 for 8 ∈ {1, 2}. Since (1.13) is directed, we can suppose that :1 = :2, G ′1 = G
′
2

and ~ ′1 = ~
′
2. Thus, since �:1 is directed, we have 5 ′1 = 5 ′2 , so that 51 = 52. Hence, � is directed.

For : ∈ N, we de�ne a functor ,̄ : : � → �: using the colimit (1.13) as the unique functor such
that

,̄ : ◦ +̄ ; =, : ◦ · · · ◦, ;−1

for ; ∈ N with ; ≥ : . In particular, we have ,̄ : ◦ +̄ : = id
�:

, so that ,̄ : is co�nal by Proposi-
tion 1.2.3.11).

In the following, given : ∈ N and ; ∈ {: + 1, l}, we write n:,; for the counit of the adjunction

(−)Pol
↑;,: a (−)

Pol
≤:,;

given by Proposition 1.3.3.6(iii) and Proposition 1.3.3.12. Then, given : ∈ N, the cocone �: induces
another cocone

(�̄:,8 : (P:,8)↑l → P)8∈�:

on the diagram (−)Pol
↑l,: ◦ P

:,(−) , where

�̄: = (n:,lΔ:P) ◦ ((−)
Pol
↑l,:�

: ).

By (1.10), we have
(−)Pol
↑l,:+1 ◦ P

:+1,(−) ◦+ : = (−)Pol
↑l,: ◦ P

:,(−)

so that, by the colimit (1.13), there exists a unique functor P(−) : � → Poll such that, for : ∈ N,

P(−) ◦ +̄ : = (−)Pol
↑l,: ◦ P

:,(−) .

In particular, since P:,8 is �nite for : ∈ N and 8 ∈ �: , we have that P8 is a �nite l-polygraph
for 8 ∈ � . Given a category � and G ∈ �0, we write ΔG for the constant functor � → Poll of
value G . For : ∈ N, we compute that

�̄:+1+ : = (n:+1,lΔ:+1P + : ) ◦ ((−)Pol
↑l,:+1�

:+1+ : )

= (n:+1,lΔ:P) ◦ ((−)
Pol
↑l,:+1�

:+1+ : ) ◦ ((−)Pol
↑l,:+1n

:,:+1(−)Pol
↑:+1,: ◦ P

:,(−) )

(by (1.10) and since m−1 (�:+1) = P:+1,(−) and n:,:+1(−)Pol
↑:+1,: = id(−)Pol

↑:+1,:
)

= (n:+1,lΔ:P) ◦ ((−)
Pol
↑l,:+1n

:,:+1(−)Pol
≤:+1,lΔ

:
P) ◦ ((−)

Pol
↑l,: (−)

Pol
≤:,:+1�

:+1+ : )
(by naturality)

= (n:,lΔ:P) ◦ ((−)
Pol
↑l,:�

:, :+ : )

(since n:+1,l ◦ ((−)Pol
↑l,:+1n

:,:+1(−)Pol
≤:+1,l ) = n

:,l )

= (n:,lΔ:P) ◦ ((−)
Pol
↑l,:�

: )

= �̄: .

Thus, by the colimit (1.13), there exists a unique cocone �̄ : P(−) ⇒ ΔP such that, for : ∈ N,

�̄+̄ : = �̄: .
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We verify that it is a colimit cocone. For :, ; ∈ N with : ≤ ; , we have

(−)Pol
≤:,l �̄+̄

; = (−)Pol
≤:,l �̄

;

= ((−)Pol
≤:,ln

;,lΔ;P) ◦ ((−)
Pol
≤:,l (−)

Pol
↑l,;�

; )

= (−)Pol
≤:,;�

; (since (−)Pol
≤;,ln

;,l = id(−)Pol
≤;,l

)

= �:, : · · ·, ;−1 (by (1.12))

= �:,̄ :+̄ ;

so that, by the colimit (1.13), we have (−)Pol
≤:,l �̄ = �:,̄ : for every : ∈ N. Since �: is a colimit

cocone and ,̄ : is co�nal,
(−)Pol
≤:,l �̄ : (−)Pol

≤:,lP
(−) ⇒ ΔP≤:

is a colimit cocone by Proposition 1.2.3.10. Since Poll is cocomplete by Proposition 1.3.3.15,
and (−)Pol

≤:,l preserves colimits by Proposition 1.3.3.12 for every : ∈ N, and the functors (−)Pol
≤l,;

are jointly conservative for ; ∈ N, the latters jointly re�ects colimits. Thus, �̄ : P(−) ⇒ ΔP is a
colimit cocone. Hence, P is a directed colimit of �nite l-polygraphs. �

Proposition 1.3.3.21. Given P ∈ Poll , P is �nitely presentable if and only if it is �nite.

Proof. The proof of the �rst implication is similar to the one of Proposition 1.3.3.18. So suppose
that P is �nite. Let

(� 8 : Q8 → Q)8∈�
be a directed colimit on a diagram Q (−) : � → Poll . Since P is �nite, P = P̄↑l for some : ∈ N and
:-polygraph P̄. Then, since there is an adjunction (−)Pol

↑l,: a (−)
Pol
≤:,l by Proposition 1.3.3.12, we

have an isomorphism
Poll (P,Q) ' Pol: (P̄,Q≤: )

Since (−)Pol
≤:,l is a left adjoint by Proposition 1.3.3.12,

(� 8≤: : Q8
≤: → Q≤: )8∈�

is a directed colimit on (−)Pol
≤:,l ◦ Q

(−) . By Proposition 1.3.3.18, since P̄ is �nite, we have an
isomorphism

Pol: (P̄,Q≤: ) ' colim
8∈�

Pol: (P̄,Q8
≤: )

and, by the properties of the adjunction (−)Pol
↑l,: a (−)

Pol
≤:,l , we have

colim
8∈�

Pol: (P̄,Q8
≤: ) ' colim

8∈�
Poll (P,Q8).

Hence, P is �nitely presentable. �

We can conclude that:

Theorem 1.3.3.22. The category Poll is locally �nitely presentable.

Proof. It has all colimits by Proposition 1.3.3.15. Moreover, every l-polygraph can be written
as a directed colimit of �nite l-polygraphs by Proposition 1.3.3.20, that are �nitely presentable
by Proposition 1.3.3.21. Finally, it is clear that the full subcategory of �nite l-polygraphs is
essentially small. Hence, Poll is locally �nitely presentable. �
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1.4 Strict categories and precategories

In this section, we introduce the de�nitions for the two principal notions of higher categories
that we will encounter in the following chapters: strict categories and precategories. Starting from
their equational de�nitions, we show that they �t in Batanin’s framework of “higher categories
as globular algebras” developed in the previous sections. More precisely, we prove that both
theories are associated with truncable monads on globular sets using the criterions proved in
the previous sections (Theorem 1.2.3.20 and Theorem 1.2.4.11). This allows us to derive a notion
of polygraph for both. Finally, we recall from Makkai [Mak05] the relation between the two
structures and show how strict categories can be described as precategories which satisfy some
exchange condition (Section 1.4.3).

1.4.1 Strict categories

Strict categories, as their name suggests, are a classical example of a theory for higher categories
that lies on the strict side of the strict/weak spectrum of higher categories. As such, they do not
represent faithfully the homotopical information of topological spaces (see [Sim98] or [Ber99]).
Nevertheless, they admit a relatively simpler axiomatization than weak higher categories, and
can be encountered in several situations of interest. Below, we recall their equational de�nition,
show that they are globular algebras associated with a truncable monad, and derive the associated
notion of polygraph for them.

1.4.1.1 — Equational de�nition. Given = ∈ N ∪ {l}, a strict =-category (�, m−, m+, id, ∗) (often
simply denoted �) is an =-globular set (�, m−, m+) together with, for : ∈ N with : < =, identity
operations

id:+1 : �: → �:+1

often writen id when there is no ambiguity on : , and, for 8, : ∈ N= with 8 < : , composition
operations

∗8,: : �: ×8 �: → �:

often denoted ∗8 when there is no ambiguity on : , which satisfy the axioms (S-i) to (S-vi) below.
Given :, ; ∈ N= such that : ≤ ; and D ∈ �: , we extend the notations for identity operations and
write id; (D) for

id; (D) = id; ◦ · · · ◦ id:+1(D)

and, for the sake of conciseness, we often write id;D for id; (D), or even idD when ; = : + 1. The
axioms are the following:

(S-i) for : ∈ N=−1 and D ∈ �: ,
m−
:
(id:+1D ) = m+: (id

:+1
D ) = D,

(S-ii) for 8, : ∈ N= with 8 < : , (D, E) ∈ �: ×8 �: and n ∈ {−, +},

mn
:−1(D ∗8 E) =


mn
:−1(D) ∗8 m

n
:−1(E) if 8 < : − 1,

m−
:−1(D) if 8 = : − 1 and n = −,
m+
:−1(E) if 8 = : − 1 and n = +,

(S-iii) for 8, : ∈ N= such that 8 < : , and D ∈ �: ,

id: (m−8 (D)) ∗8 D = D = D ∗8 id: (m+8 (D)),
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(S-iv) for 8, : ∈ N= such that 8 < : , and 8-composable D, E,F ∈ �: ,

(D ∗8 E) ∗8 F = D ∗8 (E ∗8 F),

(S-v) for 8, : ∈ N=−1 such that 8 < : , and (D, E) ∈ �: ×8 �: ,

id:+1(D ∗8 E) = id:+1D ∗8 id:+1E ,

(S-vi) for 8, 9, : ∈ N= such that 8 < 9 < : , and D,D ′, E, E ′ ∈ �: such that D, E are 8-composable,
and D,D ′ are 9-composable, and E, E ′ are 9-composable,

(D ∗8 E) ∗9 (D ′ ∗8 E ′) = (D ∗9 D ′) ∗8 (E ∗9 E ′) .

Note that the composition that appear in Axioms (S-iii), (S-iv), (S-v) and (S-vi) are well-de�ned
as a consequence of Axioms (S-i) and (S-ii) and the equations satis�ed by the source and target
operations of a globular set. The Axiom (S-vi) is frequently called the exchange law of strict
categories.
Example 1.4.1.2. Given a 2-category � and G,~, I ∈ �0, 51, 52, 53, 61, 62, 63 ∈ �1 and D,D ′, E, E ′ ∈ �2
in the following con�guration

G ~ I

51

52

53

61

62

63

⇓D

⇓D ′

⇓E

⇓E ′

we have (D ∗0 E) ∗1 (D ′ ∗0 E ′) = (D ∗1 D ′) ∗0 (E ∗1 E ′) by Axiom (S-vi).
Our de�nition of strict categories involves sets, but we could have written a similar de�nition
using classes to de�ne large strict categories. For such alternative de�nition, we have the following
classical example:
Example 1.4.1.3. There is a large strict 2-category Cat whose 0-cells are the small categories,
whose 1-cells are the functors between the 1-categories, and whose 2-cells are the natural trans-
formations between functors, and where the operations ∗0,1 is the composition of functors, and
the operations ∗0,2 and ∗1,2 are respectively the horizontal and vertical compositions of natural
transformations. Note that the exchange law Axiom (S-vi) in this setting corresponds to the usual
exchange law for natural transformations.
Given two strict =-categories� and � , a morphism � between� and � is the data of an =-globular
morphism � : � → � which moreover satis�es that

– � (id:+1D ) = id:+1
� (D) for every : ∈ N=−1 and D ∈ �: ,

– � (D ∗8 E) = � (D) ∗8 � (E) for every 8, : ∈ N= with 8 < : and 8-composable D, E ∈ �: .

We often call such morphisms =-functors. We write Cat= for the category of strict =-categories.

There is a functor
Ū= : Cat= → Glob=

which maps a strict =-category to its underlying =-globular set. The above de�nition of strict
=-categories directly translates into an essentially algebraic theory, so that the functor Ū= is
induced by a morphism between the essentially algebraic theory of =-globular sets (c.f. Re-
mark 1.2.2.2) and the one of strict =-categories. Thus, we get:
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Proposition 1.4.1.4. For every = ∈ N ∪ {l}, the category Cat= is locally �nitely presentable,
complete and cocomplete. Moreover, the functor Ū= is a right adjoint which preserves directed
colimits.

Proof. The category Cat= is locally �nitely presentable by Theorem 1.1.2.2 and in particular
cocomplete. It is moreover complete by Proposition 1.1.1.10. The required properties on Ū= are a
consequence of Theorem 1.1.2.7. �

1.4.1.5 — Monadicity. We prove here that the functors Ū= are monadic. For this purpose,
we use Beck’s monadicity theorem, that we �rst recall quickly. Given a category � and mor-
phisms 5 , 6 : - → . and ℎ : . → / in C, we say that ℎ is a split coequalizer of 5 and 6 when there
exist B : / → . and C : . → - as in

- . /
5

6

ℎ

C B

such that ℎ ◦ 5 = ℎ ◦ 6, ℎ ◦ B = id/ , 5 ◦ C = id. , and B ◦ ℎ = C ◦ 6. From this data, it can be shown
that ℎ is a coequalizer of 5 and 6. Beck’s monadicity theorem is then:

Theorem 1.4.1.6. Given a functor ' : � → � , the functor ' is monadic if and only if the following
conditions are satis�ed:

(i) ' is a right adjoint,

(ii) ' re�ects isomorphisms,

(iii) for every pair of morphisms 5 , 6 : - → . in� , if '(5 ), '(6) have a split coequalizer, then 5 , 6
have a coequalizer which is preserved by '.

Proof. See [Bor94b, Theorem 4.4.4] or the original work of Beck [Bec67]. �

We can then prove the following:

Proposition 1.4.1.7. Given = ∈ N ∪ {l}, the functor Ū= is monadic.

Proof. By Proposition 1.4.1.4, Ū= is a right adjoint. Moreover, given a morphism

� : � → � ∈ Cat= ,

if �: : �: → �: is a bijection for : ∈ N= , then there is a morphism

�−1 : � → � ∈ Cat=

de�ned by (�−1): = (�: )−1 for : ∈ N= , so that Ū= re�ects isomorphisms. Now, let �,� : - → .

be two morphisms of Cat= such that there exist / ∈ Glob= , and morphisms

� : Ū=. → /, ( : / → Ū=. and ) : Ū=. → Ū=-

of Glob= , as in

Ū=- Ū=. /
Ū= (� )

Ū= (�)

�

) (
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that witness that Ū= (� ), Ū= (�) is a split coequalizer. We prove that �,� has a coequalizer which
is preserved by Ū= . For this purpose, we shall equip / with a structure of a strict =-category.
For 8, : ∈ N= with 8 < : and (D, E) ∈ /: ×8 /: , we put

D ∗8 E = � (( (D) ∗8 ( (E))

and, given : ∈ N=−1 and D ∈ �: , we put

id:+1D = � (id:+1
( (D) )

We verify that the axioms of strict =-categories are veri�ed. Let : ∈ N=−1, D ∈ /: and n ∈ {−, +}.
We have

mn
:
(id:+1D ) = mn: (� (id

:+1
( (D) ))

= � (mn
:
(id:+1

( (D) ))
= � (( (D)) = D

so that Axiom (S-i) is satis�ed. Now, let 8, : ∈ N= such that 8 < : , (D, E) ∈ /: ×8 /: and n ∈ {−, +}.
We have

mn
:−1(D ∗8 E) = � (m

n
:−1(( (D) ∗8 ( (E)))

=


� (mn

:−1(( (D)) ∗8 m
n
:−1(( (E))) if 8 < : − 1,

� (m−
:−1(( (D))) if 8 = : − 1 and n = −,

� (m+
:−1(( (E))) if 8 = : − 1 and n = +,

so that, by reducing the last expressions, we see that Axiom (S-ii) is satis�ed. Now, let 8, : ∈ N=
such that 8 < : , and D ∈ /: . We have

id: (m−8 (D)) ∗8 D = � (( (� (id:
( (m−

8
(D)) )) ∗8 ( (D))

= � (( (� (id:
m−
8
(( (D)) )) ∗8 (�( (D))

= � (�) (id:
m−
8
(( (D)) ) ∗8 �)( (D))

= �� () (id:
m−
8
(( (D)) ) ∗8 )( (D))

= �� () (id:
m−
8
(( (D)) ) ∗8 )( (D))

= � (�) (id:
m−
8
(( (D)) ) ∗8 �)( (D))

= � (id:
m−
8
(( (D)) ∗8 ( (D))

= � (( (D)) = D

and, similarly, D ∗8 id: (m+8 (D)) = D, so that Axiom (S-iii) holds. Now, let 8, : ∈ N= such that 8 < : ,
and 8-composable D, E,F ∈ �: . We have

(D ∗8 E) ∗8 F = � (( (� (( (D) ∗8 ( (E))) ∗8 ( (F))
= � ((� (( (D) ∗8 ( (E)) ∗8 (�( (F))
= � (�) (( (D) ∗8 ( (E)) ∗8 �)( (F))
= �� () (( (D) ∗8 ( (E)) ∗8 )( (F))
= �� () (( (D) ∗8 ( (E)) ∗8 )( (F))
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= � (�) (( (D) ∗8 ( (E)) ∗8 �)( (F))
= � ((( (D) ∗8 ( (E)) ∗8 ( (F))
= � (( (D) ∗8 ( (E) ∗8 ( (F))

and, similarly,D ∗8 (E ∗8F) = � (( (D) ∗8 ( (E) ∗8 ( (F)). So that Axiom (S-iv) is satis�ed. Axioms (S-v)
and (S-vi) are proved similarly, so / is equipped with a structure of a strict =-category.

We now verify that � is a strict =-category morphism. Given : ∈ N=−1 and D ∈ .: , we have

id:
� (D) = � (id

:
(� (D) ) = � (id

:
D)

and, given 8, : ∈ N= with 8 < : , and (D, E) ∈ .: ×8 .: , we have

� (D) ∗8 � (E) = � ((� (D) ∗8 (� (E))
= � (�) (D) ∗8 �) (E))
= �� () (D) ∗8 ) (E))
= �� () (D) ∗8 ) (E))
= � (�) (D) ∗8 �) (E))
= � (D ∗8 E)

so that � is a strict =-category morphism.

We now prove that � is the coequalizer of � and � in Cat= . Let  : . →, be an =-functor such
that  � =  � . Then, since� is the coequalizer of Ū= (� ) and Ū= (�), there is a unique morphism

 ′ : Ū=/ → Ū=,

of Glob= such that  ′� =  . We are only left to prove that  ′ is an =-functor. First, note that we
have

 ′ =  ′�( =  ( and  (� =  �) =  �) =  .

Now, given : ∈ N=−1 and D ∈ �: , we have

 ( (id:+1D ) =  (� (id:+1( (D) )

=  (id:+1
( (D) )

= id:+1
 ( (D) .

Moreover, given 8, : ∈ N= with 8 < : , and (D, E) ∈ �: ×�: , we have

 ( (D ∗8 E) =  (� (( (D) ∗8 ( (E))
=  (( (D) ∗8 ( (E))
=  ( (D) ∗8  ( (E),

so that  ′ is an =-functor. Hence, � is the coequalizer in Cat= of � and � . We can conclude
with Theorem 1.4.1.6. �

1.4.1.8 — Truncation and inclusion functors. Let :, ; ∈ N ∪ {l} such that : < ; . There is a
truncation functor

(−)Cat
≤:,; : Cat; → Cat:

which maps a strict ;-category � to its evident underlying strict :-category, denoted �≤: , and
called the :-truncation of � .
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Conversely, there is an inclusion functor

(−)Cat
↑;,: : Cat: → Cat;

which maps a strict :-category� to the strict ;-category�↑; , called the ;-inclusion of� , and de�ned
by

(�↑; )≤: = � and (�↑; )< = �:

for< ∈ N; with : < <, and such that

– for< ∈ N;−1 with : ≤ < and D ∈ (�↑; )<+1, m−< (D) = m+< (D) = D,

– for< ∈ N;−1 with : ≤ < and D ∈ (�↑; )< , id<+1D = D,

– for 8,< ∈ N; with 8 < : < < and (D, E) ∈ (�↑; )< ×8 (�↑; )< , D ∗8,< E = D ∗8,: E ,

– for 8,< ∈ N; with : ≤ 8 < < and (D, E) ∈ (�↑; )< ×8 (�↑; )< , D ∗8,< E = D = E .

There is an adjunction (−)Cat
↑;,: a (−)

Cat
≤:,; whose unit is the identity and whose counit i:,; is such

that, given a strict ;-category � , the ;-functor i:,;
�

: (�≤: )↑; → � is de�ned by (i:,;
�
)≤: = id�≤: and,

for< ∈ N; with< > : , i:,;
�

maps D ∈ ((�≤: )↑; )< = �: to id<D .

1.4.1.9 — Globular algebras. By Proposition 1.4.1.4, each functor Ū= admits a left adjoint F̄=
for = ∈ N ∪ {l}. In particular, the adjunction F̄l a Ūl de�nes a monad (), [, `), which is
�nitary by Proposition 1.4.1.4, and it induces categories of algebras Alg= for = ∈ N ∪ {l} as
explained in Section 1.2.3. By Proposition 1.4.1.7, the comparison functor �l : Catl → Algl
is an equivalence of categories, that moreover satis�es that Ul�l = Ūl . Using the criterion
introduced in Paragraph 1.2.3.13, we prove that the other categories Cat= are, up to equivalence,
the categories of algebras Alg= :

Theorem 1.4.1.10. For every = ∈ N, there exists an equivalence

�= : Cat= → Alg=

making the following diagram commute

Catl Algl

Cat= Alg=

�l

(−)Cat
≤= (−)Alg

≤=

�=

and such thatU=�= = Ū= . Moreover, we have a commutative diagram

Cat=+1 Alg=+1

Cat= Alg=

�=+1

(−)Cat
≤= (−)Alg

≤=

�=
.
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Proof. For the �rst part, note that the unit of the adjunction (−)Cat
↑l,= a (−)

Cat
≤= is the identity, so

that (−)Cat
↑l,= is fully faithful and Theorem 1.2.3.20 applies. For the second part, we compute that

�= (−)Cat
≤=,=+1 = �= (−)Cat

≤=,=+1(−)Cat
≤=+1,l (−)Cat

↑l,=+1

= �= (−)Cat
≤=,l (−)Cat

↑l,=+1

= (−)Alg
≤=,l�l (−)Cat

↑l,=+1

= (−)Alg
≤=,=+1(−)

Alg
≤=+1,l�l (−)

Cat
↑l,=+1

= (−)Alg
≤=,=+1�=+1(−)

Cat
≤=+1,l (−)Cat

↑l,=+1

= (−)Alg
≤=,=+1�=+1

which concludes the proof. �

Finally, we prove the truncability of the monad of strict l-categories:

Theorem 1.4.1.11. The monad (), [, `) on Globl derived from F̄l a Ūl is weakly truncable.

Proof. By Theorem 1.2.4.11 and Theorem 1.4.1.10, it is enough to show that, for every : ∈ N,
the functors (−)Cat

≤:,l have right adjoints such that j:Ul (−)Cat
⇑l,: is an isomorphism, where j: is

the counit of (−)Glob
≤:,l a (−)

Glob
⇑l,: . So let : ∈ N. Given a strict :-category � , we de�ne a strict

l-category � ′ whose underlying globular set is the image the underlying :-globular set of �
by (−)Glob

⇑l,: , i.e.,

� ′≤: = � and � ′
;
= {(D, E) ∈ �2

:
| D, E are parallel} for ; > :,

and we equip � ′ with a structure of a strict l-category that extends the one on � by putting

id:+1D = (D,D) for D ∈ �: , id;+1(D,E) = (D, E) for ; ∈ N with ; > : and (D, E) ∈ � ′
;
,

and moreover, for 8, ; ∈ N with max(8, :) < ; and 8-composable (D, E), (D ′, E ′) ∈ � ′
;
,

(D, E) ∗8,; (D ′, E ′) =
{
(D ∗8,: D ′, E ∗8,: E ′) if 8 < : ,
(D, E ′) if 8 ≥ : .

One can show that the axioms of strict l-categories are veri�ed by � ′. Now, let � be a strict
l-category and � : �≤: → � be a :-functor. By the properties of the adjunction (−)Glob

≤:,l a (−)
Glob
⇑l,: ,

there is a unique l-globular morphism � ′ : � → � ′ such that � ′≤: = � , which is de�ned by

� ′(D) = (� (m−
:
(D)), � (m+

:
(D)))

for every ; ∈ N with : < ; and D ∈ �; . We verify that � ′ is an l-functor by checking the
compatibility with the id; and ∗8,; operations. Given ; ∈ N with ; ≥ : and D ∈ �; , we have

� ′(id;+1D ) = (� (m−: (D)), � (m
+
:
(D))) = id:+1

� ′ (D) .

Moreover, given 8, ; ∈ N with max(8, :) < ; and 8-composable D, E ∈ �; , we have

� ′(D ∗8 E) =
{
(� (m−

:
(D)) ∗8 � (m−: (E)), � (m

+
:
(D)) ∗8 � (m+: (E))) if 8 < :

(� (m−
:
(D)), � (m+

:
(E))) if 8 ≥ :

= � ′(D) ∗8 � ′(E).
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Thus, � ′ is an l-functor. Hence, the natural bijective correspondence

(−)Glob
≤:,l : Globl (�,� ′) → Glob: (�≤: ,�)

restricts to a bijective correspondence

(−)Cat
≤:,l : Catl (�,� ′) → Cat: (�≤: ,�)

so that the operation � ↦→ � ′ extends to a functor (−)Cat
⇑l,: which is right adjoint to (−)Cat

≤:,l .
Moreover, by the de�nition of � ′ above, the natural morphism j:Ul (−)Cat

⇑l,: is an isomorphism.
Hence, Theorem 1.2.4.11 applies and (), [, `) is a weakly truncable monad. �

Remark 1.4.1.12. We highlight that the criterions given by Theorem 1.2.3.20 and Theorem 1.2.4.11
enabled us to prove that the categories Cat= are globular algebras derived from a truncable monad
on Globl without giving an explicit description of this monad, which could have been a tedious
exercise [Pen99].

1.4.1.13 — Free constructions. Using Theorem 1.4.1.10 and Theorem 1.4.1.11, we can instantiate
the de�nitions and properties developed in Section 1.3 to de�ne free constructions on strict =-cate-
gories. In particular, for every = ∈ N, there is a notion of =-cellular extension, with associated
category Cat+= de�ned like Alg+= . Moreover, there is a canonical forgetful functor Cat=+1 → Cat+=
which has a left adjoint

−[−]= : Cat+= → Cat=+1

which can be chosen such that � [- ]≤= = � for (�,- ) ∈ Cat+= . As was shown in [Mét08], the
(=+1)-cells of a free extension admit a syntactical description consisting of “well-typed” terms
considered up to the axioms of strict categories (c.f. Paragraph 1.4.1.1). We shall give a more
precise de�nition of “well-typed” in Section 2.4 when we introduce the exact formulation of the
word problem for strict categories. Up to this de�nition, the result of Métayer is the following:

Proposition 1.4.1.14 ([Mét08]). Given (�,- ) ∈ Cat+= , the set� [- ]=+1 is the quotient by the axioms
of (=+1)-categories of the “well-typed” subset of terms de�ned inductively as follows:

– given 6 ∈ - , there is a term gen(6),

– given D ∈ �= , there is a term id=+1= (D),

– given 8 ∈ N= and two terms C1, C2, there is a term C1 ∗8 C2.

Remark 1.4.1.15. In the above property, id=+1= and ∗8 are syntactical symbols which represent the
operations id=+1= and ∗8 of a strict category.
Using the functors −[−]: , we can de�ne, for every = ∈ N ∪ {l}, a notion of =-polygraph with
associated category Pol= , and a functor

(−)∗,= : Pol= → Cat=

which maps an =-polygraph P to the free strict =-category P∗ induced by the generators contained
in P. Note that, when = > 0, as a consequence of the compatibility of −[−]=−1 with truncation, the
underlying strict (=−1)-category (P∗)≤=−1 of P∗ is exactly (P≤=−1)∗. Proposition 1.4.1.14 extends
to a syntactical description of the cells of free categories on polygraphs:

Proposition 1.4.1.16. Given an =-polygraph P and : ∈ N= , the set P∗: of :-cells of P
∗ is the quotient

by the axioms of :-categories of the “well-typed” subset of :-terms where
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– given : ∈ N= and 6 ∈ P: , there is a :-term gen: (6),

– given : ∈ N=−1 and a :-term C , there is a (:+1)-term id:+1
:
(D),

– given 8, : ∈ N= with 8 < : and two :-terms C1, C2, there is a :-term C1 ∗8 C2.

Remark 1.4.1.17. In particular, given an =-polygraph P, every cell of P∗ can be written as a �nite
expression involving identity and composition operations on generators of P.
Example 1.4.1.18. Given the 1-polygraph P with P0 = {G} and P1 = {5 : G → G}, the strict
1-category P∗ is the monoid of natural numbers (N, 0, +).
Example 1.4.1.19. We de�ne a 3-polygraph P that aims at encoding the structure of a pseudomonoid
in a 2-monoidal category as follows. We put

P0 = {G} P1 = {1̄ : G → G} P2 = {` : 2̄⇒ 1̄, [ : 0̄⇒ 1̄}

where, given = ∈ N, we write =̄ for the composite 1̄ ∗0 · · · ∗0 1̄ of = copies of 1̄, and we de�ne P3
as the set with the following three elements

L : ([ ∗0 id2
1̄) ∗1 ` V id2

1̄
R : (id2

1̄ ∗0 [) ∗1 ` V id2
1̄

A : (` ∗0 id2
1̄) ∗1 ` V (id2

1̄ ∗0 `) ∗1 ` .

It is convenient to represent the 2-cells of P∗ using string diagrams. In this representation, the
2-generators [ and ` are represented by and respectively, and the 2-cells of the form id2

=̄ are
represented by sequences of = wires for = ∈ N. Moreover, given D, E ∈ P∗2, when D, E are
0-composable (resp. 1-composable), a representation of the 2-cell D ∗0 E (resp. D ∗1 E) is obtained
by concatenating horizontally (resp. vertically) representations of D and E . For example, using
this representation, the 3-generators L, R and A, can be pictured by

L : V

R : V

A : V .

Note that, by Axiom (S-vi), a 2-cell can admit several representations as string diagrams. For
example, the 2-cell

` ∗0 id2
3̄ ∗0 ` = (` ∗0 id2

5̄) ∗1 (id
2
4̄ ∗0 `) = (id

2
5̄ ∗0 `) ∗1 (` ∗0 id2

4̄)

can be represented by the three string diagrams

and and .

1.4.2 Precategories

We now introduce precategories. They can be described, in a sense that will be made precise
in Section 1.4.3, as “strict categories without exchange law” and generalize in higher dimensions
the 2-dimensional theory of sesquicategories de�ned by Street in [Str96]. The absence of ex-
change makes precategories more amenable to computational treatment than strict categories, as
witnessed by their use as the underlying structure of the Globular proof assistant [BV17; BKV16].
Following this observation, in the coming chapters, we will use precategories as a better syntactic
representation of strict categories introduced Chapter 2, and as the underlying structure of an
extension of rewriting theory to Gray categories in Chapter 4. Below, like for strict categories,
we introduce their equational de�nition, show that they are the globular algebras of a truncable
monad on globular sets, and derive the associated notion of polygraph for them.



66 CHAPTER 1. HIGHER CATEGORIES

1.4.2.1 — Equational de�nition. Given = ∈ N ∪ {l}, an =-precategory � is an =-globular set
together with, for : ∈ N=−1, identity operations

id:+1 : �: → �:+1

for which we use the same notation conventions than the identity operations on strict categories,
and, for :, ; ∈ N∗= , composition operations

r
:,; : �: ×min(:,;)−1 �; → �max(:,;)

which satisfy the axioms below. Given 8, :, ; ∈ N= with 8 = min(:, ;), since the dimensions of the
cells determine the functions to be used, we often write r

8 for r
:,; . This way, we still display the

most important information which is the dimension 8 of composition. The axioms of =-precate-
gories are the following:

(P-i) for : ∈ N=−1 and D ∈ �: ,
m−
:
(id:+1D ) = D = m+

:
(id:+1D ),

(P-ii) for 8, :, ; ∈ N= such that 8 = min(:, ;) − 1, (D, E) ∈ �: ×8 �; , and n ∈ {−, +},

mn (D r
8 E) =


D r

8 m
n (E) if : < ; ,

m−(D) if : = ; and n = −,
m+(E) if : = ; and n = +,
mn (D) r8 E if : > ; ,

(P-iii) for 8, :, ; ∈ N= with 8 = min(:, ;) − 1, given (D, E) ∈ �:−1 ×8 �; ,

idD r
8 E =

{
E if : ≤ ; ,
idD q8E if : > ; ,

and, given (D, E) ∈ �: ×8 �;−1,

D r
8 idE =

{
D if ; ≤ : ,
idD q8E if ; > : ,

(P-iv) for 8, :, ;,< ∈ N= with 8 = min(:, ;) − 1 = min(;,<) − 1, and D ∈ �: , E ∈ �; and F ∈ �F
such that D, E,F are 8-composable,

(D r
8 E) r8 F = D r

8 (E r
8 F),

(P-v) for 8, 9, :, ;, ; ′ ∈ N= such that

8 = min(:,max(;, ; ′)) − 1, 9 = min(;, ; ′) − 1 and 8 < 9 ,

given D ∈ �: and (E, E ′) ∈ �; ×9 �; ′ such that D, E are 8-composable,

D r
8 (E r

9 E
′) = (D r

8 E) r9 (D r
8 E
′)

and, given (D,D ′) ∈ �; ×9 �; ′ and E ∈ �: such that D, E are 8-composable,

(D r
9 D
′) r8 E = (D r

8 E) r9 (D ′ r8 E).
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Remark 1.4.2.2. Provided that the Axioms (P-i) to (P-iv) are satis�ed, Axiom (P-v) can be shown
equivalent to the more symmetrical axiom

(P-v)’ for every 8, 9, : ∈ N= satisfying 8 < 9 < : , and cells D1, D2 ∈ �8+1, E1, E2 ∈ � 9+1 and F ∈ �:
such that D1,F,D2 are 8-composable and E1,F, E2 are 9-composable, we have

D1 r
8 (E1 r

9 F r
9 E2) r8 D2 = (D1 r

8 E1 r
8 D2) r9 (D1 r

8 F r
8 D2) r9 (D1 r

8 E2 r
8 D2).

Example 1.4.2.3. Given a 2-precategory � with two 2-cells q andk as in

G ~ I

5

5 ′

6

6′

⇓ q ⇓ k

there are two ways to compose q andk together, given by

(q r0 6) r1 (5 ′ r0 k ) and (5 r0 k ) r1 (q r0 6′)
that can be represented using string diagrams by

5 6

q

k

5 ′ 6′

and

5 6

q

k

5 ′ 6′

and these two composites are not expected to be equal in � . Moreover, by our de�nition of
precategories, there is no such thing as a valid cell q r0 k , and the string diagram

5 6

q k

5 ′ 6′

makes no sense in this setting.
Given two =-precategories � and � , a morphism of =-precategories between � and � (also called
=-prefunctor), is a morphism of =-globular sets � : � → � such that

– � (id:+1D ) = id:+1
� (D) for : ∈ N=−1 and D ∈ �: ,

– � (D r
8 E) = � (D) r8 � (E) for 8, :, ; ∈ N= with 8 = min(:, ;) − 1 and (D, E) ∈ �: ×8 �; .

We write PCat= for the category of =-precategories.

There is a functor
Ū= : PCat= → Glob=

which maps an =-precategory to its underlying =-globular set. Like for strict categories, the above
de�nition of =-precategories directly translates into an essentially algebraic theory, so that the
functor Ū= is induced by a morphism between the essentially algebraic theory of =-globular sets
(c.f. Remark 1.2.2.2) and the one of =-precategories. Thus:
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Proposition 1.4.2.4. The category PCat= is locally �nitely presentable, complete and cocomplete.
Moreover, the functor Ū= is a right adjoint which preserves directed colimits.

Proof. This is a consequence of Theorem 1.1.2.2, Proposition 1.1.1.10 and Theorem 1.1.2.7. �

Like for strict categories, the functor Ū= can be shown monadic using the monadicity theorem:

Proposition 1.4.2.5. For every = ∈ N ∪ {l}, the functor Ū= is monadic.

Proof. By a direct adaptation of Proposition 1.4.2.5. �

1.4.2.6 — Truncation and inclusion functors. Let :, ; ∈ N ∪ {l} such that : < ; . There is a
:-truncation functor

(−)PCat
≤:,; : PCat; → PCat:

which maps an ;-precategory � to its evident underlying :-precategory, denoted �≤: , called the
:-truncation of � .

Conversely, there is an ;-inclusion functor

(−)PCat
↑;,: : Cat: → Cat;

which maps a :-precategory� to the ;-precategory�↑; , called the ;-inclusion of� , and de�ned by

(�↑; )≤: = � and (�↑; )< = �:

for< ∈ N; with : < < and such that

– for< ∈ N;−1 with : ≤ < and D ∈ (�↑; )<+1, m−< (D) = m+< (D) = D,

– for< ∈ N;−1 with : ≤ < and D ∈ (�↑; )< , id<+1D = D,

– for 8,<,<′ ∈ N; with 8 = min(<,<′) − 1 < : and (D, E) ∈ (�↑; )< ×8 (�↑; )<′ ,

D r
<,<′ E = D rmin(<,:),min(<′,:) E ,

– for 8,<,<′ ∈ N; with : ≤ 8 = min(<,<′) − 1 and (D, E) ∈ �< ×8 �< ,

D r
<,<′ E = D = E .

There is an adjunction (−)PCat
↑;,: a (−)

PCat
≤:,; whose unit is the identity and whose counit i:,; is such

that, given an ;-precategory � , the ;-functor i:,;
�

: (�≤: )↑; → � is de�ned by (i:,;
�
)≤: = id�≤: and,

for< ∈ N; with< > : , i:,;
�

maps D ∈ ((�≤: )↑; )< = �: to id<D .

1.4.2.7 — Globular algebras. By Proposition 1.4.1.4, each functor Ū= admits a left adjoint F̄=
for = ∈ N ∪ {l}. In particular, the adjunction F̄l a Ūl de�nes a monad (), [, `), which is
�nitary by Proposition 1.4.1.4, and it induces categories of algebras Alg= for = ∈ N ∪ {l}. By
Proposition 1.4.1.7, the comparison functor �l : PCatl → Algl is an equivalence of categories,
that moreover satis�es thatUl�l = Ūl . By adapting the proof of Theorem 1.4.1.10, we obtain
an equivalent statement for precategories:
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Theorem 1.4.2.8. For every = ∈ N, there exists an equivalence

�= : PCat= → Alg=

making the following diagram commute

PCatl Algl

PCat= Alg=

�l

(−)PCat
≤= (−)Alg

≤=

�=

and such thatU=�= = Ū= . Moreover, we have a commutative diagram

PCat=+1 Alg=+1

PCat= Alg=

�=+1

(−)PCat
≤= (−)Alg

≤=

�=
.

Finally, by a direct adaptation of the proof of Theorem 1.4.1.11, we obtain the truncability of the
monad for precategories:

Theorem 1.4.2.9. The monad (), [, `) derived from F̄l a Ūl is weakly truncable.

1.4.2.10 — Free constructions. Like for strict categories, using Theorem 1.4.2.8 and Theo-
rem 1.4.2.9, we can instantiate the constructions and properties developed in Section 1.3 to de�ne
free constructions on =-precategories. In particular, for every = ∈ N, there is a notion of =-cellular
extension for strict =-precategories, with associated category PCat+= de�ned like Alg+= . Moreover,
the canonical forgetful functor PCat=+1 → PCat+= has a left adjoint

−[−]= : PCat+= → PCat=+1

which can be chosen such that � [- ]≤= = � for (�,- ) ∈ PCat+= .
Using the functors −[−]: , we can de�ne, for every = ∈ N ∪ {l}, a notion of =-polygraph for

precategories, called =-prepolygraph, with associated category PPol= , and a functor

(−)∗,= : PPol= → PCat=

which maps an=-prepolygraph P to the free=-precategory P∗ induced by the generators contained
in P. Note that, when = > 0, as a consequence of the compatibility of −[−]=−1 with truncation,
the underlying (=−1)-precategory (P∗)≤=−1 of P∗ is exactly (P≤=−1)∗.
Remark 1.4.2.11. By adapting the results of Métayer [Mét08], one can obtain analogues of Propo-
sition 1.4.1.14 and Proposition 1.4.1.16 for precategories, so that the cells of the free precategories
on cellular extensions and prepolygraphs can be described by “well-typed” terms considered up to
the axioms of precategories given in Paragraph 1.4.2.1. In the case of prepolygraphs, the de�nition
of these terms can be found in Paragraph 4.1.2.7.

Example 1.4.2.12. By adapting the 3-polygraph of Example 1.4.1.19, we de�ne a 3-prepolygraph P
that aims at encoding the structure of a pseudomonoid in a 2-monoidal precategory as follows.
We put

P0 = {G} P1 = {1̄ : G → G} P2 = {` : 2̄⇒ 1̄, [ : 0̄⇒ 1̄}
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where, given = ∈ N, we write =̄ for the composite 1̄ ∗0 · · · ∗0 1̄ of = copies of 1̄, and we de�ne P3
as the set with the following three elements

L : ([ r0 1̄) r1 ` V id2
1̄

R : (1̄ r0 [) r1 ` V id2
1̄

A : (` r0 1̄) r1 ` V (1̄ r0 `) r1 `.

Like for Example 1.4.1.19, we can represent the 2-cells of P∗ using string diagrams. In this repre-
sentation, the 2-generators [ and ` are represented by and respectively. Moreover, a 2-cell
of the form <̄ r0 D r0 =̄ for some <,= ∈ N and D ∈ P∗2 is represented by adding < wires on the
left and = wires on the right of a representation of D. Finally, given 1-composable D, E ∈ P∗2, a
representation of D r1 E is obtained by concatenating vertically representations of D and E . For
example, using this representation, the 3-generators L, R and A can be pictured by

L : V

R : V

A : V .

Since precategories do not satisfy any exchange law (unlike strict categories), it can be shown
that the 2-cells of P∗ admit a unique representation as string diagrams (see Theorem 4.1.2.4 and
Corollary 4.1.2.5 in Chapter 4). In particular, the two string diagrams

and

represent the di�erent 2-cells

(` r0 5̄) r1 (4̄ r0 `) and (5̄ r0 `) r1 (` r0 4̄)

of P∗. Note moreover that the diagram

makes no sense in the precategorical setting.

1.4.3 Categories as precategories

In this section, we justify the de�nition of precategories as “strict categories without the exchange
law” and recall from [Mak05] how strict categories can be expressed as precategories satisfying a
condition analogous to the exchange law. This equivalent de�nition will be used in particular in
the next chapterto give an e�ective description of the free extension on an =-cellular extension,
ultimately leading to an e�cient algorithm which solves the word problem on polygraphs of strict
categories.

1.4.3.1 — Categories as precategories. For = ∈ N ∪ {l} and � ∈ PCat= , we write (E) for the
following property on �:

(E) for 8, :, ; ∈ N= with 1 ≤ 8 = min(:, ;) − 1, D ∈ �: and E ∈ �; , if D, E are (8−1)-com-
posable, then

(D r
8−1 m

−
8 (E)) r8 (m+8 (D) r8−1 E) = (m−8 (D) r8−1 E) r8 (D r

8−1 m
+
8 (E)).
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Let PCat(E)= be the full subcategory of PCat= of those =-precategories � that satisfy (E). The
condition (E) can be thought as an equivalent for precategories of the exchange law (S-vi) of
strict categories. We now introduce a functor from strict =-categories to =-precategories which
satisfy (E) with the following proposition:

Proposition 1.4.3.2. Given = ∈ N ∪ {l}, there is a canonical functor Θ= : Cat= → PCat(E)= .

Proof. Given � ∈ Cat= , we de�ne a structure of =-precategory on the underlying =-globular
set of � . We keep the identities given by the strict =-category structure and de�ne the com-
position operations r(−) on � based on the composition operations ∗(−) . Given 8, :, ; ∈ N=
with 8 = min(:, ;) − 1, D ∈ �: and E ∈ �; such that D, E are 8-composable, we put

D r
8 E = id<D ∗8 id<E

where < = max(:, ;). Axioms (P-ii), (P-i), (P-iii), (P-iv) are then direct consequences of the
axioms of strict =-categories. We only prove the �rst part of (P-v) since the other is symmet-
rical. Let 8, 9, :, ;, ; ′ ∈ N= with 8 = min(:,max(;, ; ′)) − 1, 9 = min(;, ; ′) − 1 and 8 < 9 , D ∈ �: ,
and E ∈ �; , E ′ ∈ �; ′ such that D, E are 8-composable and E, E ′ are 9-composable. Writing <
for max(;, ; ′), we have

D r
8 (E r

9 E
′) = id<D ∗8 id< (id<E ∗9 id<E′ ) (by de�nition of r(−) )
= id<D ∗8 (id<E ∗9 id<E′ )
= (id<D ∗9 id<D ) ∗8 (id<E ∗9 id<E′ ) (by Axiom (S-iii))
= (id<D ∗8 id<E ) ∗9 (id<D ∗8 id<E′ ) (by Axiom (S-vi))

= id< (id9+1D ∗8 E) ∗9 id< (id9
′+1
D ∗8 E ′) (by Axiom (S-v))

= (D r
8 E) r9 (D r

8 E
′) (by de�nition of r(−) )

which concludes the proof of (P-v). Thus,� is an =-precategory. We now show that it satis�es the
condition (E) above. So let 8, :, ; ∈ N= with 1 ≤ 8 = min(:, ;) − 1, D ∈ �: and E ∈ �; such that D, E
are (8−1)-composable. Writing< for max(:, ;), we have

(D r
8−1 m

−
8 (E)) r8 (m+8 (D) r8−1 E) = id< (D ∗8−1 id:

m−
8
(E) ) ∗8 id< (id;

m+
8
(D) ∗8−1 E) (by de�nition of r(−) )

= (id<D ∗8−1 id<
m−
8
(E) ) ∗8 (id

<
m+
8
(D) ∗8−1 id<E ) (by Axiom (S-v))

= (id<D ∗8 id<
m+
8
(D) ) ∗8−1 (id<m−

8
(E) ∗8 id<E ) (by Axiom (S-vi))

= id<D ∗8−1 id<E (by Axiom (S-iii))
= (id<

m−
8
(D) ∗8 id<D ) ∗8−1 (id<E ∗8 id<

m+
8
(E) ) (by Axiom (S-iii))

= (id<
m−
8
(D) ∗8−1 id<E ) ∗8 (id<D ∗8−1 id<

m+
8
(E) ) (by Axiom (S-vi))

= id< (id;
m−
8
(D) ∗8−1 E) ∗8 id< (D ∗8−1 id:

m+
8
(E) ) (by Axiom (S-v))

= (m−8 (D) r8−1 E) r8 (D r
8−1 m

+
8 (E)) (by de�nition of r(−) )

which concludes the proof of (E).
Thus, for = ∈ N ∪ {l}, we have de�ned a mapping Θ= between the objects of Cat= and

the objects of PCat(E)= . We show that Θ= extends to a functor Θ= : Cat= → PCat(E)= . Given an
=-functor � : � → � ′ between two strict =-categories � and � ′, it is su�cient to show that � is
compatible with the composition operations r(−) . But this is a direct consequence of the de�nition
of D r

8 E as id<D ∗8 id<E for 8, :, ;,< ∈ N= with 8 = min(:, ;) − 1 and< = max(:, ;), and D ∈ �: , E ∈ �;
with D, E 8-composable, since � is compatible with id< and ∗8 . �



72 CHAPTER 1. HIGHER CATEGORIES

1.4.3.3 — Precategories as categories. In this section, we prove the converse property, i.e., that
precategories satisfying (E) are canonically strict categories. For this purpose, we introduce a
functor from PCat(E)= to Cat= with the following property:

Proposition 1.4.3.4. Given = ∈ N ∪ {l}, there is a canonical functor Θ̄= : PCat(E)= → Cat= .

Proof. Given � ∈ PCat(E)= , we de�ne a structure of strict =-category on the underlying =-globu-
lar set of � . We keep the identities given by the structure of =-precategory of � and de�ne the
multiple composition operations ∗(−) based on the precategorical composition operations r(−) .
For 8, : ∈ N= with 8 < : , we de�ne D ∗8 E for 8-composable D, E ∈ �: by induction on : − 8 . In the
cases where 8 > 0, we moreover prove that

(D̃ r
8−1 m

−
8 (Ẽ)) ∗8 (m+8 (D̃) r8−1 Ẽ) = (m−8 (D̃) r8−1 Ẽ) ∗8 (D̃ r

8−1 m
+
8 (Ẽ)) (1.14)

for (8−1)-composable D̃, Ẽ ∈ �: . If 8 = : − 1, we put D ∗8 E = D r
8 E , and the equation (1.14) is an

instance of (E). Otherwise, if 8 < : − 1, we de�ne D ∗8 E inductively by

D ∗8 E = (D r
8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E).

By induction hypothesis, using (1.14), the above de�nition is equivalent to

D ∗8 E = (m−8+1(D) r8 E) ∗8+1 (D r
8 m
+
8+1(E)).

Moreover, if 8 > 0, then given (8−1)-composable D̃, Ẽ ∈ �: , we have

(D̃ r
8−1 m

−
8 (Ẽ)) ∗8 (m+8 (D̃) r8−1 Ẽ)

= [(D̃ r
8−1 m

−
8 (Ẽ)) r8 m−8+1(m+8 (D̃) r8−1 Ẽ)] ∗8+1 [m+8+1(D̃ r

8−1 m
−
8 (Ẽ)) r8 (m+8 (D̃) r8−1 Ẽ)]

(by de�nition of ∗8 )
= [(D̃ r

8−1 m
−
8 (Ẽ)) r8 (m+8 (D̃) r8−1 m

−
8+1(Ẽ))] ∗8+1 [(m+8+1(D̃) r8−1 m

−
8 (Ẽ)) r8 (m+8 (D̃) r8−1 Ẽ)]

(by compatibility of mn8+1 with r
8−1)

= [(m−8 (D̃) r8−1 m
−
8+1(Ẽ)) r8 (D̃ r

8−1 m
+
8 (Ẽ))] ∗8+1 [(m−8 (D̃) r8−1 Ẽ) r8 (m+8+1(D̃) r8−1 m

+
8 (Ẽ))]

(by the condition (E))
= [m−8+1(m−8 (D̃) r8−1 Ẽ) r8 (D̃ r

8−1 m
+
8 (Ẽ))] ∗8+1 [(m−8 (D̃) r8−1 Ẽ) r8 m+8+1(D̃ r

8−1 m
+
8 (Ẽ))]

(by compatibility of mn8+1 with r
8−1)

= (m−8 (D̃) r8−1 Ẽ) ∗8 (D̃ r
8−1 m

+
8 (Ẽ))

(by the equivalent de�nition of ∗8 ).

We now prove that the axioms of strict categories are satis�ed (c.f. Paragraph 1.4.1.1). Axiom (S-i)
is a consequence of the precategory Axiom (P-i). Given 8, : ∈ N=−1 with 8 < : , n ∈ {−, +} and
8-composable D, E ∈ �: , if 8 = : − 1, then we have

mn
:−1(D ∗8 E) = m

n
:−1(D r

8 E) =
{
m−
:−1(D) if n = −,
m+
:−1(E) if n = +,

and otherwise, if 8 < : − 1, we have

mn
:−1(D ∗8 E) = m

n
:−1((D r

8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E))

so that, if 8 + 1 = : − 1, when n = − we have

mn
:−1(D ∗8 E) = m

−
:−1(D r

8 m
−
8+1(E)) = m−:−1(D) r8 m−:−1(E) = m

−
:−1(D) ∗8 m

−
:−1(E)
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and similarly mn
:−1(D ∗8 E) = m

+
:−1(D) ∗8 m

+
:−1(E) when n = +, and �nally, if 8 + 1 < : − 1, then

mn
:−1(D ∗8 E) = m

n
:−1(D r

8 m
−
8+1(E)) ∗8+1 mn:−1(m

+
8+1(D) r8 E))

= (mn
:−1(D) r8 m−8+1(E)) ∗8+1 (m+8+1(D) r8 mn:−1(E)))

= mn
:−1(D) ∗8 m

n
:−1(E).

Thus, Axiom (S-ii) holds.

We now prove Axiom (S-iii), i.e., that for 8, : ∈ N= with 8 < : and D ∈ �: , we have id:
m−
8
(D) ∗8 D = D,

by induction on : − 8 (the dual property can be shown similarly). If 8 = : − 1, then the equality is
a consequence of the unitality of r

8 , by the precategory Axiom (P-iii). Otherwise, if 8 < : − 1, we
have

id:
m−
8
(D) ∗8 D = (id:

m−
8
(D)

r
8 m
−
8+1(D)) ∗8+1 (id8+1m−

8
(D)

r
8 D) (by de�nition of ∗8 )

= id: (id8+1
m−
8
(D)

r
8 m
−
8+1(D)) ∗8+1 D (by Axiom (P-iii))

= id:
m−
8+1 (D)

∗8+1 D (by Axiom (P-iii))

= D (by induction hypothesis)

so that Axiom (S-iii) holds.

In order to show Axiom (S-iv), we �rst prove a distributivity property of r(−) over ∗(−) , i.e., that
for 8, 9, : ∈ N= with 8 < 9 < : , given 9-composable D, E ∈ �: , and F ∈ �8+1 such that D,F are
8-composable, then

(D ∗9 E) r8 F = (D r
8 F) ∗9 (E r

8 F) . (1.15)

We prove this property by induction on : − 9 . If 9 = : − 1, then

(D ∗9 E) r8 F = (D r
9 E) r8 F

= (D r
8 F) r9 (E r

8 F) (by Axiom (P-v))
= (D r

8 F) ∗9 (E r
8 F) .

Otherwise, if 9 < : − 1, then

(D ∗9 E) r8 F =
[
(D r

9 m
−
9+1(E)) ∗9+1 (m+9+1(D) r9 E)] r

8 F

(by de�nition of ∗9 )

=
[
(D r

9 m
−
9+1(E)) r8 F ]

∗9+1
[
(m+9+1(D) r9 E) r8 F ]

(by the induction hypothesis)

=
[
(D r

8 F) r9 (m−9+1(E) r8 F)] ∗9+1 [
(m+9+1(D) r8 F) r9 (E r

8 F)
]

(by distributivity of r
8 over r

9 )

= (D r
8 F) ∗9 (E r

8 F)

(by (1.15)).

We can now show that (D ∗8 E) ∗8F = D ∗8 (E ∗8F) for 8-composable D, E,F ∈ �: , for some 8, : ∈ N=
with 8 < : , by induction on : − 8 . If 8 = : − 1, then (D ∗8 E) ∗8 F = D ∗8 (E ∗8 F) by Axiom (P-iv).
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Otherwise, if 8 < : − 1, we have

(D ∗8 E) ∗8 F =
[
(D r

8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E)] ∗8 F

(by de�nition of ∗8 )
=

{[
(D r

8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E)] r

8 m
−
8+1(F)

}
∗8+1

[
(m+8+1(D) r8 m−8+1(E)) r8 F ]

(by de�nition of ∗8 )
=

[
(D r

8 m
−
8+1(E) r8 m−8+1(F)) ∗8+1 (m+8+1(D) r8 E r

8 m
−
8+1(F))

]
∗8+1 (m+8+1(D) r8 m−8+1(E) r8 F)

(by (1.15))
= (D r

8 m
−
8+1(E) r8 m−8+1(F))

∗8+1
[
(m+8+1(D) r8 E r

8 m
−
8+1(F)) ∗8+1 (m+8+1(D) r8 m−8+1(E) r8 F)]

(by associativity of ∗8+1 from induction hypothesis)
=

[
D r

8 (m−8+1(E) r8 m−8+1(F))]
∗8+1

{
m+8+1(D) r8 [

(E r
8 m
−
8+1(F)) ∗8+1 (m−8+1(E) r8 F)]}

(by (1.15))
= D ∗8

[
(E r

8 m
−
8+1(F)) ∗8+1 (m−8+1(E) r8 F)]

(by de�nition of ∗8 )
= D ∗8 (E ∗8 F)

(by de�nition of ∗8 )

which concludes the proof of Axiom (S-iv).

We now prove (S-v), i.e., that for 8, : ∈ N=−1 with 8 < : , and 8-composable D, E ∈ �: , we
have id:+1D ∗8 id:+1E = id:+1D∗8E , by induction on : − 8 . If 8 = : − 1, then

id:+1D ∗8 id:+1E = (id:+1D
r
8 E) ∗8+1 (D r

8 id:+1E ) (by de�nition of ∗8 )
= id:+1D q8E r

8+1 id:+1D q8E (by (P-iii))

= id:+1D q8E (by (P-iii)).

Otherwise, if 8 < : − 1, then

id:+1D ∗8 id:+1E = (id:+1D
r
8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 id:+1E ) (by de�nition of ∗8 )

= id:+1(D r
8 m
−
8+1(E)) ∗8+1 id:+1(m+8+1(D) r8 E) (by (P-iii))

= id:+1((D r
8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E)) (by induction hypothesis)

= id:+1D∗8E (by de�nition of ∗8 )

so that Axiom (S-v) holds.

Finally, we show Axiom (S-vi), i.e., that for 8, 9, : ∈ N= with 8 < 9 < : , 9-composable D,D ′ ∈ �:
and 9-composable E, E ′ ∈ �: such that D, E are 8-composable, we have

(D ∗9 D ′) ∗8 (E ∗9 E ′) = (D ∗8 E) ∗9 (D ′ ∗8 E ′)

by induction on 9 − 8 . If 8 = 9 − 1, then we have

(D ∗9 D ′) ∗8 (E ∗9 E ′) =
[
(D ∗8+1 D ′) r8 m−8+1(E)] ∗8+1 [

m+8+1(D ′) r8 (E ∗8+1 E ′)]
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(by de�nition of ∗8 )
= (D r

8 m
−
8+1(E)) ∗8+1 (D ′ r8 m−8+1(E)) ∗8+1 (m+8+1(D ′) r8 E) ∗8+1 (m+8+1(D ′) r8 E ′)

(by (1.15))

= (D r
8 m
−
8+1(E)) ∗8+1 (m−8+1(D ′) r8 E) ∗8+1 (D ′ r8 m+8+1(E)) ∗8+1 (m+8+1(D ′) r8 E ′)

(by (1.14))

= (D ∗8 E) ∗9 (D ′ ∗8 E ′)
(by de�nition of ∗8 ).

Otherwise, if 8 < 9 − 1, then we have

(D ∗9 D ′) ∗8 (E ∗9 E ′) =
[
(D ∗9 D ′) r8 m−8+1(E)] ∗8+1 [

m+8+1(D ′) r8 (E ∗9 E ′)]
(by de�nition of ∗8 )

=
[
(D r

8 m
−
8+1(E)) ∗9 (D ′ r8 m−8+1(E))] ∗8+1 [

(m+8+1(D ′) r8 E) ∗9 (m+8+1(D ′) r8 E ′)]
(by (1.15))

=
[
(D r

8 m
−
8+1(E)) ∗8+1 (m+8+1(D ′) r8 E)] ∗9 [

(D ′ r8 m−8+1(E)) ∗8+1 (m+8+1(D ′) r8 E ′)]
(by the induction hypothesis)

=
[
(D r

8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E)] ∗9 [

(D ′ r8 m−8+1(E ′)) ∗8+1 (m+8+1(D ′) r8 E ′)]
(by 9-composability of D,D ′ and E, E ′ and the globular structure)

= (D ∗8 E) ∗9 (D ′ ∗8 E ′)
(by de�nition of ∗8 )

which concludes the proof of Axiom (S-vi). Hence, � is equipped with a structure of strict =-cate-
gory.

Thus, for = ∈ N ∪ {l}, we have de�ned a mapping Θ̄= between the objects of PCat(E)= and
the objects of Cat= . We show that Θ̄= extends to a functor Θ̄= : PCat(E)= → Cat= . Given an =-pre-
functor � : � → � ′ between two =-precategories � and � ′ which satisfy (E), it is su�cient to
show that � is compatible with the ∗(−) operations. Given 8, : ∈ N= with 8 < : , and D, E ∈ �: such
that D, E are 8-composable, we prove that � (D ∗8 E) = � (D) ∗8 � (E) by induction on : − 8 . If 8 = : − 1,
we have

� (D ∗8 E) = � (D r
8 E) = � (D) r8 � (E) = � (D) ∗8 � (E).

Otherwise, if 8 < : − 1, we have

� (D ∗8 E) = � ((D r
8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E))

= (� (D) r8 � (m−8+1(E))) ∗8+1 (� (m+8+1(D))� ( r8E)) (by induction hypothesis)
= � (D) ∗8 � (E)

which concludes the proof that � induces an =-functor. �

1.4.3.5 — Equivalence of the de�nitions. In this section, we conclude that, for = ∈ N ∪ {l},
=-categories can be equivalently described as =-precategories satisfying (E). More precisely, we
show Θ= and Θ̄= witness that Cat= and PCat(E)= isomorphic to each other. We �rst show that:

Proposition 1.4.3.6. Given = ∈ N ∪ {l} and � ∈ Cat= , we have Θ̄=Θ=� = � .
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Proof. Let ∗(−) be the composition operations of � , r(−) be the composition operations of Θ=� ,
and ∗′(−) be the composition operations of Θ̄=Θ=� . Given 8, : ∈ N with 8 < : ≤ =, and D, E ∈ �:
such that D, E are 8-composable, we prove that D ∗′8 E = D ∗8 E by induction on : − 8 . If 8 = : − 1,
we have

D ∗′8 E = D r
8 E = D ∗8 E .

Otherwise, if 8 < : − 1, we have

D ∗′8 E = (D r
8 m
−
8+1(E) ∗′8+1 (m+8+1(D) r8 E))

= (D r
8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E) (by induction hypothesis)

= (D ∗8 id: (m−8+1(E))) ∗8+1 (id: (m+8+1(D)) ∗8 E)
= (D ∗8+1 id: (m+8+1(D))) ∗8 (id: (m−8+1(E)) ∗8+1 E) (by Axiom (S-vi))
= D ∗8 E .

Hence, ∗(−) = ∗′(−) . �

We now prove the converse property:

Proposition 1.4.3.7. Given = ∈ N ∪ {l} and � ∈ PCat(E)= , we have Θ=Θ̄=� = � .

Proof. Let r(−) be the composition operations of � , ∗(−) be the composition operations of Θ̄=� ,
and r′

(−) be the composition operations of Θ=Θ̄=� . We show that r(−) = r′
(−) . Given 8, :, ; ∈ N=

with 8 = min(:, ;) − 1 and max(:, ;) ≤ =, and D ∈ �: , E ∈ �; such that D, E are 8-composable, we
show that D r

8 E = D r′
8 E . We can suppose that : ≤ ; (the case : ≥ ; is symmetric). If : = ; , then

D r′
8 E = D ∗8 E = D r

8 E

Otherwise, if : < ; , then

D r′
8 E = id;D ∗8 E

= (id;D r
8 m
−
8+1(E)) ∗8+1 (m+8+1(D) r8 E)

= (id; (D r
8 m
−
8+1(E))) ∗8+1 (D r

8 E) (by Axiom (P-iii))
= D r

8 E (by Axiom (S-iii)).

Hence, r(−) = r′
(−) . �

By the two above properties, we can conclude that:

Theorem 1.4.3.8. For = ∈ N ∪ {l}, Θ= : Cat= → PCat(E)= is an isomorphism of categories, with
inverse given by Θ̄= .

Thus, for = ∈ N ∪ {l}, a strict =-category � is canonically an =-precategory satisfying (E) (and
vice versa). In the following, we will often use the precategorical compositions r(−) of � without
invoking Theorem 1.4.3.8.
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1.5 Higher categories as enriched categories

The setting of “higher categories as globular algebras” shall be enough for most of the concerns
of the next chapters. Still, an interesting perspective on notions of higher categories that we will
encounter is given by enriched de�nitions. In dimension 1, the motivation for enriched de�nitions
is to represent the additional structure that the morphisms of some particular categories might
have. For example, in the category Vect of vector spaces and linear functions on some �eld  ,
the set of morphisms Vect (�, �) between two vector spaces � and � has itself a structure of
vector space, i.e., Vect (�, �) ∈ Vect . In this situation, we say that Vect is enriched in Vect .
Enrichment can be used seamlessly in the context of higher categories, allowing to de�ne a theory
of (=+1)-categories as categories enriched in a particular notion of =-categories equipped with an
adequate tensor product. Below, we recall the de�nition of enrichment and how strict categories
�t in this setting. Moreover, after introducing the funny tensor product of precategories, we give
an enriched de�nition of the latter. For a more complete view of enriched categories, we refer the
reader to Kelly’s monograph [Kel82].

1.5.1 Enrichment

The notion of category enriched in some categoryV is derived from a monoidal category structure
onV , the latter we shall recall �rst.

1.5.1.1 — Monoidal categories. Amonoidal category (V, � , ⊗, _, d, U) is the data of a categoryV ,
an object � ∈ V , a bifunctor ⊗ : V ×V → V (often called tensor product) and natural isomor-
phisms

_ = (_- : � ⊗ - → - )- ∈V
d = (d- : - ⊗ � → - )- ∈V

U = (U-,.,/ : (- ⊗ . ) ⊗ / → - ⊗ (. ⊗ / ))-,.,/ ∈V

such that, given objects,,-,., / ∈ V , the diagrams

(- ⊗ � ) ⊗ . - ⊗ (� ⊗ . )

- ⊗ .
d- ⊗.

U-,� ,.

- ⊗_.
(1.16)

and

(, ⊗ - ) ⊗ (. ⊗ / )

((, ⊗ - ) ⊗ . ) ⊗ /

(, ⊗ (- ⊗ . )) ⊗ / , ⊗ ((- ⊗ . ) ⊗ / )

, ⊗ (- ⊗ (. ⊗ / ))
U, ⊗-,.,/ U,,-,.⊗/

U,,-,. ⊗/

U,,-⊗.,/

, ⊗U-,.,/
(1.17)

are commutative.

Example 1.5.1.2. The tensor product ⊗ on abelian groups equips the category Ab of abelian groups
and group morphisms with a structure of monoidal category.
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Given a category V , if V has all products, then it admits a canonical structure of monoidal
category (V, 1,×, _, d, U) called the cartesian monoidal structure, where 1 is the terminal object
ofV , × is the product operation and _, d and U are the canonical isomorphisms

_ = (_- : 1 × - → - )- ∈V
d = (d- : - × 1→ - )- ∈V

U = (U-,.,/ : (- × . ) × / → - × (. × / ))-,.,/ ∈V

and a similar statement holds ifV has all coproducts.

Example 1.5.1.3. The category Set admits the cartesian monoidal structure (Set, 1,×, U, _, d) de-
�ned as above.

1.5.1.4 — Enriched categories. Given a monoidal category (V, � , ⊗, _, d, U), a category enriched
in V is the data of a set �0 and, for all G,~ ∈ �0, an object � (G,~) ∈ V , together with, for
all G ∈ �0, a morphism

8G : � → � (G, G) ∈ V

and, for all G,~, I ∈ �0, a morphism

2G,~,I : � (G,~) ⊗ � (~, I) → � (G, I) ∈ V

such that, for allF, G,~, I ∈ �0, the diagrams

� ⊗ � (G,~) � (G, G) ⊗ � (G,~)

� (G,~)
_� (G,~)

8G ⊗� (G,~)

2G,G,~
(1.18)

and
� (G,~) ⊗ � � (G,~) ⊗ � (~,~)

� (G,~)
d� (G,~)

� (G,~) ⊗8~

2G,~,~
(1.19)

and

(� (F, G) ⊗ � (G,~)) ⊗ � (~, I)

� (F,~) ⊗ � (~, I)

� (F, G) ⊗ (� (G,~) ⊗ � (~, I)) � (F, G) ⊗ � (G, I)

� (F, I)

2F,G,~⊗� (~,I) 2F,~,I

U� (F,G ),� (G,~),� (~,I)

� (F,G) ⊗2G,~,I

2F,G,I

(1.20)

are commutative. Given two categories � and � enriched inV , a morphism between � and � is
the data of a function

�0 : �0 → �0

and, for every G,~ ∈ �0, a morphism

�G,~ : � (G,~) → � (�0(G), �0(~)) ∈ V
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such that the diagrams

�

� (G, G) � (�0(G), �0(G))

8G 8�0 (G )

�G,G

and

� (G,~) ⊗ � (~, I) � (G,~) ⊗ � (~, I)

� (G, I) � (G, I)

2G,~,I

� (G,~) ⊗� (~,I)

2�0 (G ),�0 (~),�0 (I)

� (G,I)

commute for all G,~, I ∈ �0. We write V-Cat for the category of categories enriched in V . An
elementary example of an enriched de�nition is given by the category Cat of small categories,
which is equivalent to Set-Cat where Set is equipped with its cartesian monoidal structure. More
generally, it is well-known that the category Cat=+1 of strict (=+1)-categories admits an enriched
de�nition based on the cartesian monoidal structure on Cat= :

Theorem 1.5.1.5. Given = ∈ N, considering the cartesian monoidal structure on Cat= , there is
an equivalence of categories between Cat=+1 and (Cat=)-Cat. Moreover, considering the cartesian
monoidal structure on Catl , there is an equivalence of categories between Catl and (Catl )-Cat.

Proof. We refer the reader to the existing literature, like [Lei04, Section 1.4]. �

An analogous result can be shown for precategories by considering a monoidal structure di�erent
from the cartesian one. This is the object of the remainder of this section.

1.5.2 The funny tensor product

Here, we introduce the funny tensor product that we will use as part of a monoidal structure to
give an enriched de�nition of precategories. We give a rather direct and concise de�nition, and we
refer the reader to the work of Weber [Web09] for a more theoretical de�nition. Let = ∈ N ∪ {l}.
Given two =-precategories � and � , the funny tensor product of � and � is the pushout in PCat=

� (0) × � (0) � (0) × �

� × � (0) � � �

i� ×� (0)

� (0)×i�

r�,�

l�,�

where (−)(0) denotes the functor

(−)PCat
↑=,0 (−)

PCat
≤0,= : PCat= → PCat=

and i = i0,= is the counit of (−)PCat
↑=,0 a (−)

PCat
≤0,= . Since i is a natural transformation, the funny tensor

product can be extended to a bifunctor

(−) � (−) : PCat= × PCat= → PCat= .

We show that it equips PCat= with a structure of monoidal category. First, we prove the two
properties of commutation with colimits below. In the following, we write (PCat=, 1=,×, _, d, U)
for the cartesian monoidal structure on PCat= (in particular, 1= is the terminal object of PCat=).

Lemma 1.5.2.1. Given =-precategories � and (�8)8∈� , the canonical morphism∐
8∈�
(� × �8) → � × (

∐
8∈�

�8)

of PCat= is an isomorphism.
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Proof. Write � for this morphism. Note that a morphism between =-precategories is an isomor-
phism if and only if the underlying morphism of globular sets is an isomorphism. Thus, it is
su�cient to show that � induces bijections between the :-cells, i.e., that the images of � under
the functors (−): : PCat= → Set are bijections for : ∈ N= . Products and coproducts are com-
puted dimensionwise in PCat= , so that the functors (−): preserve products and coproducts. Since
coproducts distribute over products in Set, �: is an isomorphism for : ∈ N= , and so is � . �

Lemma 1.5.2.2. Given an =-precategory � , the functor (−) × � (0) : PCat= → PCat= preserves
colimits and, dually, the functor � (0) × (−) : PCat= → PCat= preserves colimits.

Proof. Note that, by the de�nition of (−)PCat
↑=,0 , we have (10)↑= ' 1= . Since, by Proposition 1.2.3.7,

the functor (−)PCat
↑=,0 preserves colimits, we have

� (0) '
∐
G ∈�0

1= .

Thus, given a diagram � (−) : � → PCat= , by Lemma 1.5.2.1, we have

colim
8∈�

�8 × � (0) '
∐
G ∈�0

colim
8∈�

�8 ' colim
8∈�
(
∐
G ∈�0

�8) ' colim
8∈�
(�8 × � (0) ) .

The dual statement is shown similarly. �

We can now de�ne the rest of the monoidal structure for PCat= . Given an =-precategory� , there
are canonical morphisms

_f
� : 1= �� → � and d f

� : � � 1= → �

where _f
� is de�ned by

1=(0) ×� (0) 1=(0) ×�

1= ×� (0) 1= ��

�

i1= ×� (0)

1=(0)×i�

r1=,�
c2

l1=,�

i� ◦c2

_f
�

and d f
�

is de�ned similarly. Both are natural in � . Moreover, we have:

Lemma 1.5.2.3. Given � ∈ PCat= , _f
� and d f

�
are isomorphisms.

Proof. By symmetry, it is su�cient to prove that _f
� is an isomorphism. Note that i1= : 1=(0) → 1=

is an isomorphism, so that, by the pushout de�nition of 1= �� , r1=,� is an isomorphism. Moreover,
since 1=(0) ' 1= , we have that c2 : 1=(0) × � → � is an isomorphism. Thus, _f

� = r1=,� ◦c−1
2 is an

isomorphism. �

Furthermore, we introduce the associativity isomorphism with the following lemma:

Lemma 1.5.2.4. Given =-precategories �, �, �, there is an isomorphism

U f
�,�,� : (� � �) � � ∼−→ � � (� � �)

natural in �, �, �.
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Proof. The =-precategory (� � �) � � is de�ned by the pushout

(� (0) × � (0) ) × � (0) (� (0) × � (0) ) × �

(� � �) × � (0) (� � �) � �

(� (0)×� (0) )×i�

i��� ×� (0) r���,�

l���,�

.

Since, by Lemma 1.5.2.2, (−) × � (0) preserves colimits, the following diagram is also a pushout

(� (0) × � (0) ) × � (0) (� (0) × �) × � (0)

(� × � (0) ) × � (0) (� � �) × � (0)

(� (0)×i� )×� (0)

(i� ×� (0) )×� (0) r�,� ×� (0)

l�,� ×� (0)

.

So, by expanding the �rst pushout with the second, (� � �) � � can be expressed as the colimit

(� × � (0) ) × � (0)

(� (0) × � (0) ) × � (0) (� (0) × �) × � (0) (� � �) � �

(� (0) × � (0) ) × �

l���,� ◦(l�,� ×� (0) )

(� (0)×i� )×� (0)

(i� ×� (0) )×� (0)

(� (0)×� (0) )×i�

l���,� ◦(r�,� ×� (0) )

r���,�

(1.21)

and � � (� � �) admits a similar diagram. Thus, the isomorphisms

U-,.,/ : (- × . ) × / → - × (. × / ) ∈ PCat=
for -,., / ∈ PCat= induce a morphism U f

�,�,�
: (� � �) � � → � � (� � �), which is, by the

symmetry of the construction, an isomorphism. It is easily checked to be natural in �, �, �. �

We deduce a monoidal structure for PCat= based on the funny tensor product:

Proposition 1.5.2.5. (�,�, 1=, _f , d f , U f ) is a monoidal category.

Proof. Given �, �,�, � ∈ PCat= , the commutation of the diagram

(� ⊗ 1=) ⊗ � � ⊗ (1= ⊗ �)

� ⊗ �
d f
�
⊗�

U f
�,1=,�

�⊗_f
�

can be shown using the colimit de�nition of (� � 1=) � � given by (1.21). Moreover, note that
the object ((� � �) ��) � � admits a de�nition as colimit on a diagram analogous to (1.21) with
four branches. Using this colimit, one can show that the diagram

(� � �) � (� � �)

((� � �) ��) � �

(� � (� ��)) � � � � ((� ��) � �)

� � (� � (� � �))

U f
���,�,� U f

�,�,���

U f
�,�,�

��

U f
�,���,�

��U f
�,�,�

commutes. Thus, (�,�, 1=, _f , d f , U f ) is a monoidal category. �
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1.5.3 Enriched de�nition of precategories

We now give an enriched de�nition of precategories using the funny tensor product in the form
of the following theorem:

Theorem 1.5.3.1. Considering the monoidal structure on PCat= given by the funny tensor pro-
duct, there is an equivalence of categories between PCat=+1 and (PCat=)-Cat. Moreover, considering
the analogous monoidal structure on PCatl , there is an equivalence of categories between PCatl
and (PCatl )-Cat.

Proof. Given � ∈ PCat=+1, we de�ne an associated object � ∈ (PCat=)-Cat as follows. We put

�0 = �0 and � (G,~) = �↑(G,~)

where �↑(G,~) is the =-precategory such that

(�↑(G,~) )8 = {D ∈ �8+1 | m−0 (D) = G and m+0 (D) = ~}

for 8 ∈ N= and whose composition operation r
:,; is the operation r

:+1,;+1 on � for :, ; ∈ N∗= .
Given G ∈ �0, we de�ne the identity morphism

8G : 1= → � (G, G)

as the morphism which maps the unique 0-cell ∗ of 1= to id1
G ∈ �1. Given G,~, I ∈ �0, we de�ne

the composition morphism

2G,~,I : � (G,~) � � (~, I) → � (G, I) ∈ PCat=

as the unique morphism such that ;G,~,I = 2G,~,I ◦ l� (G,~),� (~,I) is the composite

� (G,~) × � (~, I)(0) '
∐

6∈� (~,I)0

� (G,~)
[ (−) q06]6∈� (~,I)0−−−−−−−−−−−−−→ � (G, I)

and AG,~,I = 2G,~,I ◦ r� (G,~),� (~,I) is the composite

� (G,~)(0) × � (~, I) '
∐

5 ∈� (G,~)0

� (~, I)
[5 q0 (−) ]5 ∈� (G,~)0−−−−−−−−−−−−−→ � (G, I).

We verify that the composition morphism is left unital, i.e., given G,~ ∈ �0, the diagram

1= � � (G,~) � (G, G) � � (G,~)

� (G,~)

8G�� (G,~)

_f
� (G,~)

2G,G,~

commutes. We compute that

2G,G,~ ◦ (8G � � (G,~)) ◦ l1=,� (G,~) = 2G,G,~ ◦ l� (G,G),� (G,~) ◦(8G × � (G,~)(0) )
(by de�nition of �)

= ;G,G,~ ◦ (8G × � (G,~)(0) )
= i� (G,~) ◦c2 (by unitality of idG )

= _f
� (G,~) ◦ l1=,� (G,~)
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and

2G,G,~ ◦ (8G � � (G,~)) ◦ r1=,� (G,~) = 2G,G,~ ◦ r� (G,G),� (G,~) ◦((8G )(0) × � (G,~))
(by de�nition of �)

= AG,G,~ ◦ ((8G )(0) × � (G,~))
= c2 (by unitality of idG )

= _f
� (G,~) ◦ r1=,� (G,~)

Thus, by the colimit de�nition of 1=�� (G,~), the above triangle commutes. Similarly, the triangle

� (G,~) � 1= � (G,~) � � (~,~)

� (G,~)

� (G,~)�8~

d f
� (G,~)

2G,~,~

commutes, so that the composition morphism is right unital. We now verify that it is associative,
i.e., givenF, G,~, I ∈ �0, that the diagram

(� (F, G) � � (G,~)) � � (~, I)

� (F,~) � � (~, I)

� (F, G) � (� (G,~) � � (~, I)) � (F, G) � � (G, I)

� (F, I)

2F,G,~�� (~,I) 2F,~,I

U f
� (F,G ),� (G,~),� (~,I)

� (F,G)�2G,~,I

2F,G,I

(1.22)

commutes. By a colimit de�nition analogous to (1.21), it is enough to show the commutation of
the diagram when precomposing with the morphisms ]1, ]2, ]3 where

]1 = l� (F,G)�� (G,~),� (~,I) ◦(l� (F,G),� (G,~) ×� (~, I)(0) ),
]2 = l� (F,G)�� (G,~),� (~,I) ◦(r� (F,G),� (G,~) ×� (~, I)(0) ),
]3 = r� (F,G)�� (G,~),� (~,I) .

Writing �1, �2, �3 for � (F, G), � (G,~), � (~, I), we compute that

2F,G,I ◦ (�1 � 2G,~,I) ◦ U f
�1,�2,�3 ◦]1

= 2F,G,I ◦ (�1 � 2G,~,I) ◦ U f
�1,�2,�3 ◦ l�1��2,�3 ◦(l�1,�2 ×�3

(0) )
= 2F,G,I ◦ (�1 � 2G,~,I) ◦ l�1,�2��3 ◦U�1,�2

(0) ,�
3
(0)

= 2F,G,I ◦ l�1,� (G,I) ◦(�1 × ((−) r0 (−))) ◦ U�1,�2
(0) ,�

3
(0)

= ((−) r0 (−)) ◦ (�1 × ((−) r0 (−))) ◦ U�1,�2
(0) ,�

3
(0)

= ((−) r0 (−)) ◦ (((−) r0 (−)) × �3
(0) ) (by associativity of r0)

= 2F,~,I ◦ l� (F,~),�3 ◦(((−) r0 (−)) × �3
(0) )

= 2F,~,I ◦ l� (F,~),�3 ◦(2F,G,~ × �3
(0) ) ◦ (l�1,�2 ×�3

(0) )
= 2F,~,I ◦ (2F,G,~ � �3) ◦ l�1��2,�3 ◦(l�1,�2 ×�3

(0) )
= 2F,~,I ◦ (2F,G,~ � �3) ◦ ]1
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so that the diagram (1.22) commutes when precomposed with ]1 and, similarly, it commutes when
precomposed with ]2 and ]3. Thus, (1.22) commutes. Hence, � is a category enriched in =-pre-
categories. The operation � ↦→ � can easily be extended to morphisms of (=+1)-precategories,
giving a functor

� : PCat=+1 → (PCat=)-Cat.

Conversely, given � ∈ (PCat=)-Cat, we de�ne an associated object � ∈ PCat=+1. We put

�0 = �0 and �8+1 =
∐
G,~∈�0

� (G,~)8

for 8 ∈ N= . Given : ∈ N= , ]G,~ (D) ∈ �:+1 and n ∈ {−, +}, we put

mn
:
(]G,~ (D)) =


G if : = 0 and n = −,
~ if : = 0 and n = +,
]G,~ (mn:−1(D)) if : > 0,

so that the operations m−, m+ equips � with a structure of (=+1)-globular set. Given G ∈ �0, we
put

id1
G = ]G,G (8G (∗))

and, given : ∈ N=−1 and ]G,~ (D) ∈ �:+1, we put

id:+2
]G,~ (D) = ]G,~ (id

:+1
D ).

Given 8, :1, :2 ∈ N= with 8 = min(:1, :2) − 1, and D = ]G,~ (D̃) ∈ �:1, E = ]G′,~′ (Ẽ) ∈ �:2 that are
8-composable, we put

D r
8 E =


]G,~ (D̃ r

8 Ẽ) if 8 > 0
]G,~′ (;G,~,~′ (D̃, id:1−1

Ẽ
)) if 8 = 0 and :2 = 1

]G,~′ (AG,~,~′ (id:2−1
D̃

, Ẽ)) if 8 = 0 and :1 = 1

where ;G,~,I is the composite

� (G,~) ×� (~, I)(0)
l� (G,~),� (~,I)−−−−−−−−−→ � (G,~) �� (~, I)

2G,~,I−−−−→ � (G, I)

and AG,~,I is the composite

� (G,~)(0) ×� (~, I)
r� (G,~),� (~,I)−−−−−−−−−−→ � (G,~) �� (~, I)

2G,~,I−−−−→ � (G, I) .

We now have to show that the axioms of (=+1)-precategories are satis�ed. Note that, by the
de�nition of � , it is enough to prove the axioms for the id1 and r0 operations. Given G ∈ �0
and n ∈ {−, +}, we have

mn0 (id1
G ) = mn0 (]G,G (8G (∗))) = G

so that Axiom (P-i) holds. For : ∈ N∗=+1, given D = ]G,~ (D̃) ∈ �: and E = ]~,I (Ẽ) ∈ �1 such that D, E
are 0-composable, if : = 1, then

m−0 (D r0 E) = m−0 (]G,I (;G,~,I (D̃, Ẽ))) = G,
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and, similarly, m+0 (D r0 E) = I. Otherwise, if : > 1, then, for n ∈ {−, +},

mn
:−1(D r0 E) = mn:−1(]G,I (;G,~,I (D̃, id

:−1
Ẽ )))

= ]G,I (mn:−2(;G,~,I (D̃, id
:−1
Ẽ )))

= ]G,I (;G,~,I (mn:−2(D̃), id
:−2
Ẽ ))

= ]G,~ (mn:−2(D̃)) r0 ]~,I (Ẽ)
= mn

:−1(D) r0 E .
Analogous equalities are satis�ed for 0-composable D ∈ �1 and E ∈ �: , so that Axiom (P-ii) holds.
Given : ∈ N∗=+1 and D = ]G,~ (D̃) ∈ �: , we have

D r0 id1
~ = ]G,~ (;G,~,~ (D̃, id:−1

8~ (∗) ))

= ]G,~ (2G,~,~ ◦ (� (G,~) � 8~) ◦ l� (G,~),1= (D̃, id:−1
∗ ))

= ]G,~ (d f
� (G,~) ◦ l� (G,~),1= (D̃, id:−1

∗ )) (by the axioms of enriched categories)

= ]G,~ (c1(D̃, id:−1
∗ )) (by de�nition of d f )

= D.

Moreover, given : ∈ N∗= and 0-composable D = ]G,~ (D̃) ∈ �1 and E = ]~,I (Ẽ) ∈ �: , we have

D r0 id:+1E = ]G,I (AG,~,I (id:D̃, id
:
Ẽ ))

= ]G,I (id: (AG,~,I (id:−1
D̃ , Ẽ)))

= id:+1(]G,I (AG,~,I (id:−1
D̃ , Ẽ)))

= id:+1D q0E .
Analogous equalities hold when composing with identities on the left, so that Axiom (P-iii) holds.
Given : ∈ N∗=+1 and 0-composable D1 = ]F,G (D̃1) ∈ �: , D2 = ]G,~ (D̃2) ∈ �1 and D3 = ]~,I (D̃3) ∈ �1,
we have

(D1 r0 D2) r0 D3 = ]F,I (;F,~,I (;F,G,~ (D̃1, id:−1
D̃2
), id:−1

D̃3
)).

Writing �1,�2,�3 for � (F, G),� (G,~),� (~, I), we compute that

;F,~,I ◦ (;F,G,~ ×�3
(0) )

= 2F,~,I ◦ l� (F,~),�3 ◦(2F,G,~ ×�3
(0) ) ◦ (l�1,�2 ×�3

(0) )
= 2F,~,I ◦ (2F,G,~ ��3) ◦ l�1��2,�3 ◦(l�1,�2 ×�3

(0) )
(by de�nition of �)

= 2F,G,I ◦ (�1 � 2G,~,I) ◦ U f
�1,�2,�3 ◦ l�1��2,�3 ◦(l�1,�2 ×�3

(0) )
(by the axioms of enriched categories)

= 2F,G,I ◦ (�1 � 2G,~,I) ◦ l�1,�2��3 ◦U�1,�2
(0) ,�

3
(0)

(by de�nition of U f )
= 2F,G,I ◦ l�1,� (G,I) ◦(�1 × (2G,~,I)(0) ) ◦ U�1,�2

(0) ,�
3
(0)

= ;F,G,I ◦ (�1 × (;G,~,I)(0) ) ◦ U�1,�2
(0) ,�

3
(0)

.
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Thus,

(D1 r0 D2) r0 D3 = ]F,I (;F,G,I (D̃1, (;G,~,I)(0) (id:−1
D̃2
, id:−1

D̃3
)))

= ]F,I (;F,G,I (D̃1, id:−1
(;G,~,I )(0) (D̃2,D̃3) ))

= D1 r0 ]G,I ((;G,~,I)(0) (D̃2, D̃3))
= D1 r0 ]G,I (;G,~,I (D̃2, D̃3))
= D1 r0 (D2 r0 D3)

and similar equalities can be shown for (D1, D2, D3) ∈ (�1 ×0�: ×0�1) t (�1 ×0�1 ×0�: ), so that
Axiom (P-iv) holds. Finally, for 8, :1, :2, : ∈ N∗=+1 such that 8 = min(:1, :2) − 1, : = max(:1, :2),
given D = ]G,~ (D̃) ∈ �1 and 8-composable E1 = ]~,I (Ẽ1) ∈ �:1, E2 = ]~,I (Ẽ2) ∈ �:2 , we have

D r0 (E1 r
8 E2) = D r0 ]~,I (Ẽ1 r

8−1 Ẽ2)
= ]G,I (AG,~,I (id:−1

D , Ẽ1 r
8−1 Ẽ2))

= ]G,I (AG,~,I (id:1−1
D

r
8−1 id:2−1

D , Ẽ1 r
8−1 Ẽ2))

= ]G,I (AG,~,I (id:1−1
D , Ẽ1) r8−1 AG,~,I (id:2−1

D , Ẽ2))
= ]G,I (AG,~,I (id:1−1

D , Ẽ1)) r8 ]G,I (AG,~,I (id:2−1
D , Ẽ2))

= (D r0 E1) r8 (D r0 E2)

and an analogous equality can be shown for ((D1, D2), E) ∈ ((�:1×8�:2)×0�1), so that Axiom (P-v)
holds. Hence, � is an (=+1)-precategory. The construction � ↦→ � extends naturally to enriched
functors, giving a functor � : (PCat=)-Cat→ PCat=+1.

Given� ∈ PCat=+1 and� ′ = � ◦ � (�), there is a morphism U� : � → � ′ which is the identity
between�0 and� ′0 and, for : ∈ N= , maps D ∈ �:+1 to ]G,~ (D) where G = m−0 (D) and ~ = m+0 (D), and
one can verify that it is an isomorphism which is natural in � .

Conversely, given� ∈ (PCat=)-Cat and� ′ = � ◦� (�), there is a morphism V : � → � ′ which
is the identity between �0 and � ′0, and, for G,~ ∈ �0, maps D ∈ � (G,~) to ]G,~ (D) ∈ � ′(G,~), and
one can verify that it is an isomorphism which is natural in � . Hence, � is an equivalence of
categories.

A similar proof gives an equivalence of categories between PCatl and (PCatl )-Cat. �



Chapter 2

The word problem on strict categories

Introduction

Given a polygraph of strict categories P, any cell of P∗ can be represented by an expression
involving generators of P, and identity id and composition ∗8 operations (c.f. Proposition 1.4.1.16).
Typically, several such expressions represent the same cells. For example, given a 1-polygraph
with four composable 1-generators 0, 1, 2, 3 as in

E F G ~ I
0 1 2 3

one can verify that the two words

(0 ∗0 (1 ∗0 id1
G )) ∗0 (2 ∗0 3) and 0 ∗0 (1 ∗0 (2 ∗0 1)) (2.1)

denote the same 1-cell in the free strict category associated to this polygraph, as a consequence of
the unitality and the associativity of the composition operation. More generally, the word problem
on a polygraph P consists in, given two words on P, deciding whether they evaluate to the same
cell of P∗. In order to provide a better understanding and computational treatment of strict higher
categories, having an e�cient procedure to solve this problem is important.

As suggested by (2.1), the word problem on strict 1-categories has a quite simple solution.
Starting from a word, one obtains a normal form by eliminating the identities and reparenthesizing
the word on the right, and this normal form is essentially a list of composable 1-generators of the
polygraph. One can then decide whether two words represent the same cell by computing and
comparing their normal forms. The word problem in higher dimensions is less simple, since there
is no known orientation of the axioms of strict categories that would allow to rewrite a word by
a �nite sequence of moves to a unique normal form.

Still, in [Mak05], Makkai gave a solution to the above word problem. For this purpose, he used
the equivalent description (recalled in Section 1.4.3) of strict categories as precategories satisfying
an exchange condition to show that words on strict categories admit a canonical form. More
precisely, given an =-polygraph P of strict categories, every =-cell D ∈ P∗ can be represented by a
word of the form

D1 r
=−1 · · · r=−1 D: (2.2)

87
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for some : ∈ N∗, where

D8 = ;8,= r
=−1 (;8,=−1 r

=−2 · · · r1 (;8,1 r0 68 r0 A8,1) r1 · · · r=−2 A8,=−1) r=−1 A8,=

for 8 ∈ N∗
:
, with ;8, 9 , A8, 9 ∈ P∗9 and 68 ∈ P= . Then, Makkai showed that a cell D as above admits

a �nite number of canonical forms (2.2) and he introduced a terminating procedure to compute
them. This is enough to solve the word problem, since one can then decide whether two words
have equivalent canonical forms. However, since a cell can admit a lot of canonical forms (2.2),
the resulting algorithm is quite ine�cient, which prevents using it to solve too sophisticated
instances of the word problem.

In his work on the word problem, Makkai introduced several important notions and properties
on polygraphs. Notably, for each polypgraph P, he de�ned a function, that we call Makkai’s
measure, which maps each cell D ∈ P∗ to some element of the free abelian group ZP and which
intuitively counts how many times each generator of P is involved inD. Using this measure, he was
able to prove that his procedure for the word problem terminates. Although Makkai’s measure has
several good properties, Makkai remarked that it has the defect of sometimes “double-counting”
the generators in the cells. He then raised the question of the existence of another measure on
polygraphs of strict categories which would not display this bad behavior. The existence of such
a measure would be interesting since it could help better characterize the words that represent
a given cell. It could also help with the study of a special class of polygraphs introduced by
Makkai, that he called computopes, and later studied by Henry [Hen17] under the names plexes
and polyplexes, following a terminology introduced by Burroni [Bur12]. Intuitively, they are
polygraphs whose generators are “as separated as possible”. Such polygraphs seem to play an
important role in the study of polygraphs. In particular, they can be used to show whether some
subcategories of polygraphs are presheaf categories, as witnessed by the works of Makkai and
Henry.

Outline. This chapter is mainly concerned with giving an e�cient and implementable solution
to the word problem on polygraphs of strict categories. It is organized as follows. First, we
recall the de�nition of Makkai’s measure and use it to prove several basic properties of free
strict categories on polygraphs (Section 2.1). Next, we introduce a description of the cells of free
categories which is better suited for solving the word problem than the canonical forms of Makkai
(Section 2.2), and, after introducing some computability formalism on higher categories, we show
that this description is amenable to computations (Section 2.3). We then deduce a procedure to
solve the word problem on �nite polygraphs and show how it can be used to solve the word
problem on general polygraphs (Section 2.4), and we moreover provide an implementation of it
in OCaml (Section 2.4.4). Our procedure strongly resembles the one given by Makkai but with
a stronger emphasis put on e�ciency, so that the resulting algorithm can be used to solve non-
trivial instances of the word problem. Finally, we answer the question raised by Makkai and show
that there is no such thing as a measure on polygraphs of strict categories which does not double
counts generators (Section 2.5).

2.1 Measures on polygraphs

Given = ∈ N, considering the number of axioms of strict =-categories, it is actually not trivial
to decide simple properties of the free =-category generated on some polygraph P. For example,
given two di�erent =-generators U and V of P, it is not immediate that they induce di�erent cells
in the =-category P∗. Indeed, it could be the case that a sequence of instances of the axioms of
l-categories leads to an identi�cation of U and V . Another example is that it is not immediate
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that generators of P induce undecomposable cells in P∗. Even though it is “well-known” that
these two properties hold in free =-categories, the precise argument can be hard to write down.
In order to solve quickly this kind of questions, Makkai [Mak05] introduced a function P∗ → ZP
that assesses the complexity of the cells of P∗; more precisely, this function gives some account
on how many times the generators of P are used to de�ne a speci�c cell of P∗, so that we call this
function a “measure”. It admits a simple inductive de�nition (c.f. Proposition 2.1.2.9) but the proof
of its correctness given by Makkai is quite involved. Later, Henry [Hen18] introduced another
measure on polygraphs which has a more natural de�nition, and from which Makkai’s measure
can be derived. The latter still display better properties, notably positivity, which make it more
convenient to work with in general than Henry’s measure.

In this section, we recall the de�nition of Makkai’s measure, by deriving it from Henry’s
measure, and use it to show several elementary properties of free categories. For this purpose,
we follow [Hen18] and introduce the notions of =-globular groups and of =-groups, together with
the equivalence between the two (Section 2.1.1). Henry’s measure is then de�ned as the universal
morphism of the free =-globular group on a polygraph, and one derives Makkai’s measure by
a change of base (Section 2.1.2). Finally, following [Mak05], we use Makkai’s measure to prove
several elementary properties of free =-categories (Section 2.1.3) that will need in the following
sections.

2.1.1 n-globular groups and n-groups

Here, we de�ne =-globular groups and =-groups and prove an equivalence between the two.
Moreover, we show that there is a free =-globular group on an =-category. These notions will
be used to de�ne Henry’s measure as the universal morphism of the free =-group on the strict
=-category generated by a polygraph. All the content here can be found in [Hen18].

2.1.1.1 — De�nitions. Let = ∈ N ∪ {l}. An =-globular group is the data of an abelian group �
together with group morphisms

m̄−8 , m̄
+
8 : � → �

for 8 ∈ N=−1 satisfying, for :, ; ∈ N=−1 and X, n ∈ {−, +},

m̄X
:
◦ m̄n

;
=

{
m̄X
:

if : < ; ,
m̄n
;

if : ≥ ; ,

and, when = = l , the following condition is moreover satis�ed:

for every D ∈ � , there exists 8 ∈ N such that m̄−8 (D) = D. (2.3)

Given =-globular groups � and � ′, an =-globular groups morphism between � and � ′ is a group
morphism 5 : � → � ′ such that m̄n8 ◦ 5 = 5 ◦ m̄n8 for 8 ∈ N=−1 and n ∈ {−, +}. We write gGrp= for
the category of =-globular groups.

An =-group is an =-category object in the category of abelian groups Ab, i.e., it is the data of
a sequence of abelian groups (�: ):∈N= together with

– group morphisms m−8 , m
+
8 : �8+1 → �8 for 8 ∈ N=−1,

– group morphisms id:+1 : �: → �:+1 for : ∈ N=−1,

– group morphisms ∗8,: : �: ×8 �: → �: for 8, : ∈ N= with 8 < : ,
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satisfying the axioms of strict =-categories (c.f. Paragraph 1.4.1.1). Given two =-groups (�: ):∈N=
and (�: ):∈N= , an =-group morphism from (�: ): to (�: ): is an =-functor � : (�: ): → (�: ): such
that �: is a group morphism for : ∈ N= . We write Grp= for the category of =-groups. The
=-groups have the property that composition operations can be derived from the rest:

Proposition 2.1.1.2. Given an =-group (�: ):∈N= , 8, 9 ∈ N= with 8 < 9 and 8-composable D, E ∈ � 9 ,
we have D ∗8 E = D + E − id9 (m+8 (D)).

Proof. Indeed, in the abelian group � 9 ×8 � 9 , we have

(D, E) = (D, id9 (m+8 (D))) + (id9 (m−8 (E)), E) − (id9 (m−8 (E)), id9 (m+8 (D)))
= (D, id9 (m+8 (D))) + (id9 (m−8 (E)), E) − (id9 (m+8 (E)), id9 (m+8 (D)))

so that D ∗8 E = D + E − id9D . �

2.1.1.3 — Equivalence. Let = ∈ N ∪ {l}. Given an =-group (�: ):∈N= , we de�ne an =-globular
group� such that� = �= and m̄n8 = id=8 ◦ mn8 for 8 ∈ N=−1 and n ∈ {−, +} by taking the convention
that, when = = l , the abelian group �l is de�ned as a colimit cocone (idl

:
: �: → �l ):∈N on the

diagram

�0 �1 · · · �: �:+1 · · ·
id1

0 id2
1 id:

:−1 id:+1
:

id:+2
:+1

and that the function mn8 : �l → �8 for 8 ∈ N and n ∈ {−, +} are de�ned as the unique functions
such that mn8 ◦ idl9 = mn8 for 9 ∈ N with 8 ≤ 9 . Indeed, given :, ; ∈ N=−1 and X, n ∈ {−, +}, if : < ; ,
then

m̄X
:
◦ m̄n

;
= id=

:
◦ mX

:
◦ id=

;
◦ mn

;

= id=
:
◦ mX

:
◦ mn

;

= id=
:
◦ mX

:

= m̄X
:

and, if otherwise : ≥ ; , then

m̄X
:
◦ m̄n

;
= id=

:
◦ mX

:
◦ id=

;
◦ mn

;

= id=
:
◦ id:

;
◦ mn

;

= id=
;
◦ mn

;

= m̄n
;

so that � is an =-globular group. The construction (�: ): ↦→ � extends to a functor

H : Grp= → gGrp= .

Conversely, given an =-globular group � , we de�ne an =-group (�: ):∈N= as follows. For : ∈ N= ,
we de�ne the abelian groups �: as the subgroups of � such that

�: � �
m̄−
:

1�
(2.4)

is an equalizer, taking the convention that m̄−= = 1� . When : ≤ = − 2, for D ∈ �: , we have

m̄−
:+1(D) = m̄

−
:+1 ◦ m̄

−
:
(D) = m̄−

:
(D) = D
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so that, by the universal property of the equalizer, there is a morphism id:+1
:

: �: → �:+1, and
we write id==−1 : �=−1 → �= for the embedding of �=−1 in � = �= . Moreover, for all n ∈ {−, +}
and : ∈ N=−1, we de�ne mn

:
: �:+1 → �: as the unique factorization map in the diagram

�:+1 � �

�: � �

mn
:

m̄−
:+1

1�
m̄n
:

m̄n
:

m̄−
:

1�

.

Finally, for 8, : ∈ N= with 8 < : , we de�ne a composition operation ∗8,: : �: ×8�: → �: by putting

D ∗8,: E = D + E − id:
m+
8
(D)

for (D, E) ∈ �: ×8 �: , which makes ∗8,: a group morphism. We verify that:

Proposition 2.1.1.4. The operations id8+18 , m−8 , m
+
8 for 8 ∈ N=−1, and ∗8,: for 8, : ∈ N= with 8 < : ,

equip (�: ):∈N= with a structure of an =-group.

Proof. For 8 ∈ N=−2 and n ∈ {−, +}, we have mn8 ◦ m−8+1 = mn8 ◦ m+8+1 from the fact that

m̄n8 ◦ m̄−8+1 = m̄n8 = m̄n8 ◦ m̄+8+1

so the operations m−8 , m
+
8 for 8 ∈ N=−1 equip (�8)8∈N= with a structure of globular set in Ab. We

now show that the axioms of =-category are satis�ed with the other operations.

Proof of Axiom (S-i): Let : ∈ N=−1, n ∈ {−, +} and D ∈ �: . We have

mn
:
(id:+1D ) = m̄n: (D) (by de�nition of id:+1

:
and mn

:
)

= D (by the equalizer de�nition of �: ).

Thus, Axiom (S-i) holds.

Proof of Axiom (S-ii): Let 8, : ∈ N= with 8 < : , (D, E) ∈ �: ×8 �: and n ∈ {−, +}. Then,

mn
:−1(D ∗8 E) = m

n
:−1(D + E − id:

m+
8
(D) )

= mn
:−1(D) + m

n
:−1(E) − m

n
:−1(id

:
m+
8
(D) )

so that, if 8 < : − 1, then

mn
:−1(D ∗8 E) = m

n
:−1(D) + m

n
:−1(E) − id:−1

m+
8
(D) (by Axiom (S-i))

= mn
:−1(D) ∗8 (m

n
:−1(E))

and otherwise if 8 = : − 1, then

mn
:−1(D ∗8 E) =

{
m−
:−1(D) + m

−
:−1(E) − m

+
:−1(D) = m

−
:−1(D) if n = − ,

m+
:−1(D) + m

+
:−1(E) − m

+
:−1(D) = m

+
:−1(E) if n = + .

Thus, Axiom (S-ii) holds.

Proof of Axiom (S-iii): Let 8, : ∈ N= with 8 < : and D ∈ �: . We have

id:
m−
8
(D) ∗8 D = id:

m−
8
(D) + D − id:

m−
8
(D) (by Axiom (S-i))

= D
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and, similarly, D ∗8 id:
m+
8
(D) = D. Thus, Axiom (S-iii) holds.

Proof of Axiom (S-iv): Let 8, : ∈ N= with 8 < : and 8-composable D1, D2, D3 ∈ �: . Then,

(D1 ∗8 D2) ∗8 D3 = (D1 ∗8 D2) + D3 − id:8 (m+8 (D1 ∗8 D2))
= (D1 ∗8 D2) + D3 − id:8 (m+8 (D2)) (by Axiom (S-ii))

= D1 + D2 + D3 − id:8 (m+8 (D1)) − id:8 (m+8 (D2)) (by Axiom (S-ii))

and, similarly,

D1 ∗8 (D2 ∗8 D3) = D1 + D2 + D3 − id:8 (m+8 (D1)) − id:8 (m+8 (D2))

so that (D1 ∗8 D2) ∗8 D3 = D1 ∗8 (D2 ∗8 D3). Thus, Axiom (S-iv) holds.

Proof of Axiom (S-v): Let 8, 9, : ∈ N= with 8 < 9 < : and (D1, D2) ∈ � 9 ×8 � 9 . Then,

id:D1 ∗8 id:D2 = id:D1 + id:D2 − id:
m+
8
(id:9 (D1))

= id:D1 + id:D2 − id:
m+
8
(D1) (by Axiom (S-i))

= D1 + D2 − id9
m+
8
(D1) (since id:9 is the embedding � 9 ⊆ �: )

= D1 ∗8 D2

= id:D1∗8D2 (since id:9 is the embedding � 9 ⊆ �: ).

Thus, Axiom (S-v) holds.

Proof of Axiom (S-vi): Let 8, 9, : ∈ N= with 8 < 9 < : , and D1, E1, D2, E2 ∈ �: such that D; , E; are
9-composable for ; ∈ {1, 2} and D1, D2 are 8-composable. We have

(D1 ∗9 E1) ∗8 (D2 ∗9 E2) = (D1 ∗9 E1) + (D2 ∗9 E2) − id:8 (m+8 (D1)) (by Axiom (S-ii))

= D1 + E1 − id:9 (m+9 (D1)) + D2 + E2 − id:9 (m+9 (D2)) − id:8 (m+8 (D1))
= D1 + D2 − id:8 (m+8 (D1)) + E1 + E2 − id:8 (m+8 (E1))
− id:9 (m+9 (D1)) − id:9 (m+9 (D2)) + id:8 (m+8 (D1))

= D1 ∗8 D2 + E1 ∗8 E2 − id:9 (m+9 (D1)) ∗8 id:9 (m+9 (D2))
= (D1 ∗8 D2) + (E1 ∗8 E2) − id:9 (m+9 (D1 ∗8 D2)) (by Axiom (S-v))
= (D1 ∗8 D2) ∗9 (E1 ∗8 E2).

Thus, Axiom (S-vi) is satis�ed. Hence, (�: ):∈N is equipped with a structure of an =-category. �

The construction � ↦→ (�: ):∈N= extends to a functor

K : gGrp= → Grp=

The two constructions witness that =-globular groups are equivalent to =-groups:

Proposition 2.1.1.5. The functorsH andK exhibit an equivalence of categories between =-groups
and =-globular groups.
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Proof. Let � = (�: ):∈N= be an =-group and � = H� . Given : ∈ N= , since � = �= , �: can be
recovered up to isomorphism as the equalizer

�: � �
id=
:

m̄−
:

1�

and, when : < =, since

m̄−
:+1 ◦ id=

:
= m̄−

:+1 ◦ m̄
−
:
◦ id=

:
= m̄−

:
◦ id=

:
= id=

:

the morphism id:+1
:

: �: → �:+1 is the unique morphism such that id=
:+1 ◦ id:+1

:
= id=

:
. Now,

given 8 ∈ N=−1 and n ∈ {−, +}, mn8 : �8+1 → �8 is the unique morphism which makes the left square
of

�8+1 � �

�8 � �

id=8+1

mn
8

m̄−8+1

1�
m̄n
8

m̄n
8

id=8

m̄−8

1�

commute. Finally, by Proposition 2.1.1.2, the composition operations ∗8,: for 8, : ∈ N= with 8 < :
can be recovered from mn8 and id:8 . Thus, we have an isomorphism � ' KH� which is natural
in � .

Conversely, given an =-globular group� and� = K� , we have� = �= (when = = l , we have
that � ' �l by the condition (2.3)). Moreover, for 8 ∈ N=−1 and n ∈ {−, +}, we have m̄n8 = id=8 ◦ mn8
Thus, we have an isomorphism � ' HK� which is natural in � . �

2.1.1.6 — Free n-groups. Given a set ( , we write Z(() for the free abelian group on ( . Let � be
an =-category � . We write |� | for the set

|� | =
⊔
8∈N=

�8 .

We de�ne the linearization of � as the abelian group Z� which is the quotient of Z( |� |) by the
subgroup generated by

(i) D − id:+1
:
(D) for : ∈ N=−1 and D ∈ �: ,

(ii) D ∗8 E − D − E + id: (m+8 (D)) for 8, : ∈ N= with 8 < : and 8-composable D, E ∈ �: .

Moreover, we write
È−É : Z( |� |) → Z�

for the canonical projection.

Proposition 2.1.1.7. There exist group morphisms m̄n8 : Z� → Z� for 8 ∈ N=−1 and n ∈ {−, +} that
are unique such that, for all : ∈ N= and D ∈ �: ,

m̄n8 (ÈDÉ) =
{
Èmn8 (D)É if 8 < : ,
ÈDÉ if 8 ≥ : ,

and these morphisms equip Z� with a structure of =-globular group.
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Proof. For 8 ∈ N=−1 and n ∈ {−, +}, by the universal property of the free abelian group, there is a
unique group morphism m̃n8 between Z|� | and Z� which satis�es that, for all : ∈ N= and D ∈ �: ,

m̃n8 (D) =
{
Èmn8 (D)É if 8 < : ,
ÈDÉ if 8 ≥ : .

We show that m̃n8 can be factored through Z� by verifying the quotient equations. Given : ∈ N=−1
and D ∈ �: , we have

m̃n8 (D − id:+1D ) = m̃n8 (D) − m̃n8 (id:+1D )

=

{
Èmn8 (D)É − Èmn8 (id

:+1
D )É = Èmn8 (D)É − Èmn8 (D)É if 8 ≤ : ,

ÈDÉ − Èid:+1D É if 8 > : ,

= 0

and, given 9, : ∈ N= with 9 < : and 9-composable D, E ∈ �: , we have

m̃n8 (D ∗9 E − D − E + id:9 (m+9 (D))) = m̃n8 (D ∗9 E) − m̃n8 (D) − m̃n8 (E) + m̃n8 (id:9 (m+9 (D))).

If 8 < 9 , then

m̃n8 (D ∗9 E − D − E + id:9 (m+9 (D))) = Èmn8 (D)É − Èmn8 (D)É − Èmn8 (D)É + Èm−8 (D)É = 0

else, if 8 = 9 and n = −, then, since m+8 (D) = m−8 (E),

m̃n8 (D ∗9 E − D − E + id:9 (m+9 (D))) = Èm−8 (D)É − Èm−8 (D)É − Èm−8 (E)É + Èm+8 (D)É = 0

and similarly when n = +. Else, if 9 < 8 < : , then

m̃n8 (D ∗9 E − D − E + id:9 (m+9 (D))) = Èmn8 (D) ∗9 mn8 (D)É − Èmn8 (D)É − Èmn8 (E)É + Èid89 (m+9 (D))É = 0

and otherwise, if : < 8 , then

m̃n8 (D ∗9 E − D − E + id:9 (m+9 (D))) = ÈD ∗9 EÉ − ÈDÉ − ÈEÉ + Èid:9 (m+9 (D))É = 0

so m̃n8 factors through Z� , which gives m̄n8 : Z� → Z� . Moreover, for X, n ∈ {−, +} and 8, 9 ∈ N= ,
given : ∈ N= and D ∈ �: , if 8 < 9 , then

m̄X8 ◦ m̄n9 (ÈDÉ) =
{
m̄X
8
(ÈDÉ) if 8 < : ,
ÈDÉ = m̄X

8
(ÈDÉ) if 8 ≥ : ,

and else, if 8 ≥ 9 , then

m̄X8 ◦ m̄n9 (ÈDÉ) =
{
m̄n9 (ÈDÉ) if 9 < : ,
ÈDÉ = m̄n9 (ÈDÉ) if : ≤ 9 ,

so that, since ÈDÉ generates Z� for D ∈ |� |,

m̄X8 ◦ m̄n9 =
{
m̄X
8

if 8 < 9 ,
m̄n9 if 8 ≥ 9 .

Moreover, when = = l , we easily see from the de�nition of Z� and the functions m̄−8 , m̄
+
8 that

the condition (2.3) is satis�ed. Thus, the morphisms (m̄−8 )8∈N=−1 and (m̄+8 )8∈N=−1 equip Z� with a
structure of =-globular group. �
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Using the equivalence of Proposition 2.1.1.5, we write ((Z�): ):∈N= for the =-group associated to
the =-globular group Z� . Given : ∈ N= , let Z(�: ) be the quotient of the free abelian group Z(�: )
by the subgroup generated by the terms D ∗8 E − D − E + id:8 (m+8 (D)) for 8 ∈ N:−1 and 8-compo-
sable D, E ∈ �: and let

È−É: : Z(�: ) → Z(�: )

be the associated projection morphism. The restriction of È−É : Z( |� |) → Z� to Z(�: ) induces a
morphism

q: : Z(�: ) → Z�

which satis�es m̄−
:
◦ q: = q: since, for all D ∈ �: ,

m̄−
:
◦ q: (ÈDÉ: ) = m̄−: (ÈDÉ) = ÈDÉ = q: (ÈDÉ: ).

Thus, by the equalizer de�nition of (Z�): (c.f. (2.4)), this induces a morphismk: : Z(�: ) → (Z�): .

Proposition 2.1.1.8. For all : ∈ N= ,k: is an isomorphism.

Proof. We build a retraction q̄: : Z� → Z(�: ) to q: as follows. We �rst de�ne

q̃: : Z( |� |) → Z(�: )

as the unique morphism such that, for ; ∈ N= and D ∈ �; ,

q̃: (D) =


Èid:

;
(D)É: if ; < : ,

ÈDÉ: if ; = : ,
Èm−
:
(D)É: if ; > : .

We compute that, for ; ∈ N=−1 and D ∈ �; ,

q̃: (D − id;+1D ) =


id:D − id:D if ; < : ,
D − D if ; = : ,
m−
:
(D) − m−

:
(D) if ; > : ,

= 0

and, for 8, ; ∈ N= with 8 < ; and 8-composable D, E ∈ �; , if ; < : , then

q̃: (D ∗8 E − D − E + id;8 (m+8 (D))) = Èid:D ∗8 id:EÉ: − Èid:DÉ: − Èid:EÉ: + Èid:m+
8
(id:D )
É: = 0

else if 8 < : ≤ ; , then

q̃: (D ∗8 E − D − E + id;8 (m+8 (D))) = Èm−: (D) ∗8 m
−
:
(E)É − Èm−

:
(D)É − Èm−

:
(E)É + Èid:8 (m+8 (D))É = 0

and otherwise, if : ≤ 8 , then

q̃: (D ∗8 E − D − E + id;8 (m+8 (D))) = Èm−: (D)É − Èm
−
:
(D)É − Èm−

:
(E)É + Èm−

:
(E)É = 0.

Thus, q̃: induces a morphism q̄: : Z� → Z(�: ) and, for D ∈ �: , we have

q̄: ◦ q: (ÈDÉ: ) = q̄: (ÈDÉ) = ÈDÉ:



96 CHAPTER 2. THE WORD PROBLEM ON STRICT CATEGORIES

so that q̄: ◦ q: = 1Z(�: ) . Moreover, for ; ∈ N=−1 and D ∈ |� |, we compute that

q: ◦ q̄: ◦ m̄−: (ÈDÉ) =
{
Èm−
:
(D)É = m̄−

:
(ÈDÉ) if : < ; ,

Èid:
;
(D)É = ÈDÉ = m̄−

:
(ÈDÉ) if : ≥ ; ,

so that q: ◦ q̄: ◦ m̄−: = m̄−
:

. We then de�ne k̄: as the composite

(Z�): Z� Z(�: )
]: q̄:

where ]: : (Z�): → Z� is the embedding of the equalizer (2.4). We have

k̄: ◦k: = q̄: ◦ ]: ◦k:
= q̄: ◦ q:
= 1Z(�: ) .

Conversely, we have

]: ◦k: ◦ k̄: = q: ◦ q̄: ◦ ]:
= q: ◦ q̄: ◦ m̄−: ◦ ]: (by the de�nition of ]: )
= m̄−

:
◦ ]: (since q: ◦ q̄: ◦ m̄−: = m̄−

:
)

= ]:

so that, since ]: is a monomorphism, we havek: ◦ k̄: = 1(Z�): . Thus,k: : Z(�: ) → (Z�): is an
isomorphism. �

The above property allows us to implicitly identify (Z�): and Z(�: ), and denote both by Z�: .
We now write

(X� ): : �: → Z�:
for the function which maps D ∈ �: to ÈDÉ: ∈ Z�: . We have:

Proposition 2.1.1.9. The functions (X� ): for : ∈ N= de�ne a functor X� : � → Z� of =-categories,
which exhibit Z� as the free =-group on � .

Proof. We verify that X� is a functor. Given : ∈ N=−1, n ∈ {−, +} and D ∈ �:+1, we have

X� (m−: (D)) = Èm
−
:
(D)É = m−

:
(ÈDÉ) = m−

:
(X� (D))

so X� is a morphism of =-globular set. Moreover, given : ∈ N=−1 and D ∈ �: , we have

X� (id:+1:
(D)) = Èid:+1

:
(D)É = ÈDÉ = id:+1

:
(ÈDÉ) = id:+1

:
(X� (D))

and, given 8, : ∈ N= with 8 < : and 8-composable D, E ∈ �: ,

X� (D ∗8 E) = ÈD ∗8 EÉ = ÈDÉ + ÈEÉ − Èid:8 (m+8 (D))É = ÈDÉ ∗8 ÈEÉ = X� (D) ∗8 X� (E).
Hence, X� de�nes an =-functor X� : � → Z� .
Now let � : � → � be an =-functor where� is an =-category equipped with a structure of =-group.
For all : ∈ N=−1 and D ∈ �: , we have

� (id:+1D ) = id:+1
� (D)

and, for 8, : ∈ N= with 8 < : and 8-composable D, E ∈ �: , we have

� (D ∗8 E) = � (D) ∗8 � (E) = � (D) + � (E) − id: (m+8 (� (D))).
Thus � factor through X� , which gives a morphism of =-group � ′ : Z� → � satisfying � ′ ◦X� = �

and such an � ′ is uniquely de�ned by � ′ ◦ X� (6) = � (6) for 6 ∈ � . Thus, Z� is the free =-group
on � . �
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2.1.2 Measures on polygraphs

In this section, we introduce Henry’s and Makkai’s measures on polygraphs. Henry’s measure is
de�ned as the specialization of the linearization function seen in Paragraph 2.1.1.6 on polygraphs,
and Makkai’s measure will be derived from Henry’s with a change of basis.

2.1.2.1 — Henry’s measure. Let = ∈ N ∪ {l}. Given an =-polygraph P, we write |P| for

|P| =
⊔
:∈N=

P: .

We have the following other characterization of the free =-group in the case of a free =-category
on an =-polygraph:

Proposition 2.1.2.2. Let P be an =-polygraph. There exist functions

m̄n8 : Z( |P |) → Z( |P |)

for n ∈ {−, +} and 8 ∈ N=−1 that equip Z( |P |) with a structure of =-globular group (or, equivalently,
=-group) such that the embedding |P| ↩→ Z( |P |) induces an =-functor

XP : P∗ → Z( |P |)

which exhibits Z( |P |) as the free =-group on P∗.

Proof. We show this property by induction on=. When= = 0, the property holds sinceZP∗ = Z( |P |)
for all 0-polygraph P. So suppose that the property holds for some = ∈ N. We show that it holds
for = +1. Let P = (Q, P=+1) be an (=+1)-polygraph. By induction hypothesis, there are morphisms

m̄n8 : Z( |Q |) → Z( |Q |)

for n ∈ {−, +} and 8 ∈ N= that equip Z( |Q |) with a structure of =-globular group, and such that the
inclusion Q ↩→ Z( |Q |) induces an =-functor XQ : Q∗ → Z( |Q |) (where Z( |Q |) is equipped with the
structure of =-group coming from Proposition 2.1.1.5). For n ∈ {−, +}, let m̄n= : Z( |Q |) → Z( |Q |) be
the identity 1Z( |Q |) . For 8 ∈ N= and n ∈ {−, +}, we extend the group morphisms m̄n8 : Z( |Q |) → Z( |Q |)
to morphisms m̄n8 : Z( |P |) → Z( |P |) by putting

m̄n8 (6) = XQ (mn8 (6))

for 6 ∈ P=+1. We check that, given 8, 9 ∈ N= and X, n ∈ {−, +} and 6 ∈ P=+1, if 8 < 9 , then

m̄X8 ◦ m̄n9 (6) = m̄X8 (XQ (mn9 (6)))
= XQ (mX8 (mn9 (6)))
= XQ (mX8 (6))
= m̄X8 (6)

and otherwise, if 8 ≥ 9 , then

m̄X8 ◦ m̄n9 (6) = m̄X8 (XQ (mn9 (6)))
= XQ (mn9 (6)) (since XQ (mn9 (6)) ∈ (Z( |P |) )9 )
= m̄n9 (6).
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Thus, the functions m̄n8 : Z( |P |) → Z( |P |) for 8 ∈ N= and n ∈ {−, +} equip Z( |P |) with a structure of
(=+1)-globular group, from which we derive a structure of (=+1)-group using Proposition 2.1.1.5.
Since, for 6 ∈ P=+1 and n ∈ {−, +}, we have

mn= (XQ (6)) = m̄n= (XQ (6)) = XQ (mn= (6))

the =-functor XQ : Q∗ → Z( |Q |) can be extended to an (=+1)-functor XP : P∗ → Z( |P |) such
that XP(6) = 6 for every 6 ∈ P.

We now prove that Z( |P |) is the free (=+1)-group on P∗. Let � : P∗ → � be an (=+1)-functor
where � is an =-category equipped with a structure of (=+1)-group. By induction hypothesis,
there exists a unique =-functor � ′ : Z( |Q |) → �≤= such that �≤= = � ′ ◦ XQ . Seeing � ′ as a
morphism of gGrp= , we extend � ′ to a group morphism � : Z( |P |) → � by putting � (6) = � (6)
for 6 ∈ P=+1. For n ∈ {−, +} and 6 ∈ P=+1, we compute

� (m̄n= (6)) = � ′(XQ (mn= (6)))
= � (mn= (6))
= mn= (� (6))
= m̄n= (� (6))

so that � ◦ m̄n= = m̄n= ◦ � . Thus, � is an (=+1)-globular group morphism, or equivalently, an
(=+1)-group morphism. Moreover, since

� ◦ XP(6) = � (6) = � (6)

for all 6 ∈ P, we have� ◦ XP = � and� is uniquely determined by this condition. Hence, Z( |P |) is
the free (=+1)-group on P∗.

Finally, if = = l , then, since Z( |P |) ' ⋃
:∈N Z

( |P≤: |) , we derive a structure of l-globular
group on Z( |P |) from the structures of :-globular groups of Z( |P≤: |) for : ∈ N, for which we have
canonical isomorphisms

(Z( |P |) )≤: ' Z( |P≤: |)

as :-groups. By Proposition 1.2.3.12, the :-functors XP≤: induce an l-functor

XP : P∗ → Z( |P |) .

Moreover, we can verify that, for : ∈ N, the adjunctions (−)Cat
↑l,: a (−)

Cat
≤:,l : Catl → Cat: restrict

to adjunctions Grpl → Grp: , so that, given � ∈ Grpl ,

Catl (P∗,�) ' lim
:∈N

Cat: (P∗≤: ,�≤: )

' lim
:∈N

Grp: (Z( |P≤: |) ,�≤: )

' lim
:∈N

Grp: ((Z( |P |) )≤: ,�≤: )

' Grpl (Z( |P |) ,�)

which exhibits Z( |P |) as the free l-group on P∗, with XP as universal morphism. �

Thus, given an =-polygraph P, by Proposition 2.1.2.2, ZP∗ is the free abelian group on |P|, or
equivalently, the free/ -module on |P|, so that we prefer to write ZP for ZP∗. We equip ZP with the
basis (XP(6))6∈P and, in fact, we simply write 6 for XP(6). Moreover, given a morphism � : P→ Q



2.1. MEASURES ON POLYGRAPHS 99

in Pol= , we write Z� : ZP→ ZQ for the=-functor such that Z� (6) = � (6) for6 ∈ P. GivenD ∈ ZP,
we write (D6)6∈ |P | ∈ Z |P | for the family such that

D =
∑
6∈ |P |

D66 .

Moreover, given D, E ∈ ZP, we write D ≤ E when D6 ≤ E6 for every 6 ∈ P, and we say that D is
positive when 0 ≤ D.

We call the function XP : |P∗ | → ZP the Henry’s measure on the polygraph P. By the de�nition
of XP in Proposition 2.1.2.2 and Proposition 2.1.1.2, XP admits the following inductive de�nition:

– XP(6) = 6 for 6 ∈ P,

– XP(id:+1D ) = XP(D) for : ∈ N=−1 and D ∈ P∗
:
,

– XP(D ∗8 E) = XP(D) + XP(E) − XP(m+8 (D)) for 8, : ∈ N= with 8 < : and 8-composable D, E ∈ P∗
:
.

Moreover, Henry’s measure is natural in P:

Proposition 2.1.2.3. Given a morphism � : P→ Q in Pol= , we have

Z� ◦ XP = XQ ◦ |� ∗ |.

Proof. By functoriality, it is enough to check this equality for 6 ∈ P:

Z� ◦ XP(6) = Z� (6) = � (6) = XQ (� (6)). �

However, Henry’s measure is not positive in general, i.e., we do not have XP(D) ≥ 0 for all D ∈ P∗.
Example 2.1.2.4. Consider the 2-polygraph P with

P0 = {G,~, I}, P1 = {51, 52, 53 : G → ~, 6 : ~ → I}, and P2 = {U1 : 51 ⇒ 52, U2 : 52 ⇒ 53}

as in

G ~ I

51

52

53

6
⇓ U1

⇓ U2

.

Given the 2-cell D = (U1 ∗1 U2) ∗0 id2
6, we compute XP(D):

XP(D) = XP(U1 ∗1 U2) + XP(id2
6) − XP(m+0 (U1 ∗1 U2))

= XP(U1) + XP(U2) − XP(m+1 (U1)) + XP(6) − XP(~)
= U1 + U2 − 52 + 6 − ~.

2.1.2.5 — Makkai’s measure. As pointed out in [Hen18], one obtains the function de�ned by
Makkai in [Mak05] from Henry’s measure with a simple change of basis. Let = ∈ N ∪ {l} and P
be an =-polygraph. Given : ∈ N= and 6 ∈ P: , we de�ne m6 ∈ ZP as

m6 =

{
6 if : = 0,
6 − XP(m−:−1(6)) − XP(m

+
:−1(6)) if : > 0.

We then write \P : ZP→ ZP for the group morphism which maps 6 ∈ P to m6.
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Proposition 2.1.2.6. \P is an isomorphism which is natural in P.

Proof. The decomposition of the elements (m6)6∈P in the basis (6)6∈P of the Z-module ZP is
triangular with respect to the �ltration

Z( |P≤0 |) ⊆ Z( |P≤1 |) ⊆ · · · ⊆ Z( |P≤= |)

with 1’s on the diagonal, so that (m6)6∈P is a basis of ZP. Thus, \P is an isomorphism. Moreover,
given a morphism � : P→ Q in Pol= , for : ∈ N=−1 and 6 ∈ P:+1, we have

Z� (\P(6)) = Z� (6 − XP(m−: (6)) − XP(m
+
:
(6)))

= Z� (6) − Z� (XP(m−: (6))) − Z� (XP(m
+
:
(6)))

= � (6) − XQ (� ∗(m−: (6))) − XQ (�
∗(m+

:
(6))) (by Proposition 2.1.2.3)

= � (6) − XQ (m−: (� (6))) − XQ (m
+
:
(� (6)))

= \Q (� (6)) = \Q (Z� (6))

so that Z� ◦ \P = \Q ◦ Z� . �

We de�ne the Makkai’s measure on the polygraph P as the function XM
P : |P∗ | → ZP such that

XM
P = \−1

P ◦ XP.

Remark 2.1.2.7. By transporting the =-globular group structure of ZP through \P, we can equip
the group ZP with another =-globular group structure that makes in fact XM

P an =-category functor

XM
P : P∗ → ZP.

Like Henry’s measure, Makkai’s measure is natural:

Proposition 2.1.2.8. Given a morphism � : P→ Q in Pol= , we have

Z� ◦ XM
P = XM

Q ◦ �
∗.

Proof. This is a consequence of Proposition 2.1.2.3 and Proposition 2.1.2.6. �

Moreover, like XP, the function XM
P admits an inductive de�nition:

Proposition 2.1.2.9. The following hold:

(i) XM
P (G) = G for all G ∈ P0,

(ii) XM
P (6) = 6 + X

M
P (m

−
:
(6)) + XM

P (m
+
:
(6)) for : ∈ N=−1 and 6 ∈ P:+1,

(iii) XM
P (id

:+1
D ) = XM

P (D) for : ∈ N=−1 and D ∈ P∗: ,

(iv) XM
P (D ∗8 E) = X

M
P (D) + X

M
P (E) − X

M
P (m

+
8 (D)) for 8, : ∈ N= with 8 < : and 8-composable D, E ∈ P∗

:
.

Proof. For G ∈ P0, we have XM
P (G) = XP(G) = G . For : ∈ N=−1 and 6 ∈ P:+1, we have

XM
P (6) = \

−1
P ◦ XP(6)

= \−1
P (6)

= \−1
P ((6 − m−: (6) − m

+
:
(6)) + m−

:
(6) + m+

:
(6))

= 6 + \−1
P (m−: (6)) + \

−1
P (m+: (6))

= 6 + \−1
P ◦ XP(m−: (6)) + \

−1
P ◦ XP(m+: (6))

= 6 + XM
P (m

−
:
(6)) + XM

P (m
+
:
(6)).
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Given : ∈ N=−1 and D̃ ∈ P∗
:
, we have

XM
P (id

:+1
D̃ ) = \

−1
P ◦ XP(id8+1D̃)

= \−1
P ◦ XP(D̃)

= XM
P (D̃).

Finally, given 8, : ∈ N= with 8 < : and 8-composable D1, D2 ∈ P∗: , we have

XM
P (D1 ∗8 D2) = \−1

P ◦ XP(D1 ∗8 D2)
= \−1

P (D1 + D2 − m+8 (D1))
= \−1

P (D1) + \−1
P (D2) − \−1

P (m+8 (D1))
= \−1

P ◦ XP(D1) + \−1
P ◦ XP(D2) − \−1

P ◦ XP(m+8 (D1))
= XM

P (D1) + XM
P (D2) − XM

P (m
+
8 (D1)).

Thus, the properties of the statement hold. �

However, contrary to XP, the function XM
P is positive and, in this regard, admits several convenient

properties:

Proposition 2.1.2.10. For all : ∈ N= and D ∈ P∗: , we have

(i) XM
P (D) is positive,

(ii) for all 8 ∈ N:−1 and n ∈ {−, +}, XM
P (m

n
8 (D)) ≤ XM

P (D),

(iii) if D = D1 ∗8 D2 for some 8 ∈ N:−1 and 8-composable D1, D2 ∈ P∗
:
, then XM

P (D1) ≤ XM
P (D)

and XM
P (D2) ≤ XM

P (D),

(iv) if XM
P (D)6 > 0 for some 6 ∈ P, then XM

P (6) ≤ X
M
P (D).

Proof. We show the proposition by induction on : ∈ N= . The proposition holds for : = 0.
So suppose that it holds up to dimension : for some : ∈ N=−1. We show that it holds for
dimension : + 1. Let D ∈ P∗

:+1.

Proof of (i): We show this property by induction on an expression de�ning D from the generators
of P (c.f. Remark 1.4.1.17). If D = 6 for some 6 ∈ P:+1, then XM

P (D) = 6 + X
M
P (m

−
:
(6)) + XM

P (m
+
:
(6)),

which is positive by induction hypothesis. If D = idD̃ for some D̃ ∈ P∗
:
, then XM

P (D) = X
M
P (D̃), which

is positive by induction hypothesis. Otherwise, if D = D1 ∗8 D2 for some 8 ∈ N: and 8-compo-
sable D1, D2 ∈ P∗:+1, then XM

P (D) = X
M
P (D1) + XM

P (D2) − XM
P (m

+
8 (D1)), so that, by induction hypothesis

using (i) and (ii), we have XM
P (D) ≥ 0. So (i) holds.

Proof of (ii): It is su�cient to show that XM
P (m

n
:
(D)) is positive for n ∈ {−, +}, and we show this using

again an induction on an expression de�ning D. By symmetry, we only handle the case n = −.
If D = 6 for some 6 ∈ P:+1, then XM

P (m
−
:
(D)) ≤ XM

P (D) by de�nition of XM
P and (i). If D = idD̃

for some D̃ ∈ P∗
:
, then XM

P (m
−
:
(D)) = XM

P (D). Otherwise, if D = D1 ∗8 D2 for some 8 ∈ N: and
8-composable D1, D2 ∈ P∗:+1, then

XM
P (m

−
:
(D)) = XM

P (m
−
:
(D1))

≤ XM
P (D1) (by induction on D1)

≤ XM
P (D1) + XM

P (D2) − XM
P (m

−
:
(D2)) (by induction on D2)

= XM
P (D).



102 CHAPTER 2. THE WORD PROBLEM ON STRICT CATEGORIES

Thus, XM
P (m

n
:
(D)) ≤ XM

P (D) for all n ∈ {−, +} and D ∈ P∗
:+1.

Proof of (iii): If D = D1 ∗8 D2 for some 8 ∈ N: and 8-composable D1, D2 ∈ P∗:+1, then, by de�nition
of XM

P , we have XM
P (D) = X

M
P (D1) + XM

P (D2) − XM
P (m

+
8 (D1)). By (ii), we have XM

P (D2) − XM
P (m

+
8 (D1)) ≥ 0,

so that XM
P (D1) ≤ XM

P (D). Similarly, XM
P (D2) ≤ XM

P (D).

Proof of (iv): We show this by an induction on an expression de�ning D. If D = 6′ for some 6′ ∈ P: ,
then, we have XM

P (6) = XM
P (6

′), so that 6 = 6′ and XM
P (D) = XM

P (6). If D = idD̃ for some D̃ ∈ P∗
:
,

then XM
P (D̃) = XM

P (D), so that, by induction hypothesis, XM
P (6) ≤ XM

P (D̃) = XM
P (D). Otherwise,

if D = D1 ∗8 D2 for some 8 ∈ N: and 8-composable D1, D2 ∈ P∗
:
, then, by the de�nition of XM

P ,
there is 9 ∈ {1, 2}, such that XM

P (D 9 )6 > 0. By symmetry, we can suppose 9 = 1. So, we
have XM

P (6) ≤ X
M
P (D1), and thus XM

P (6) ≤ X
M
P (D) by (iii). �

Example 2.1.2.11. Recalling the polygraph P of Example 2.1.2.4, we do an example of calculation
of XM

P and compute XM
P for D = (U1 ∗1 U2) ∗0 id2

6:

XM
P (D) = X

M
P (U1 ∗1 U2) + XM

P (id
2
6) − XM

P (m
+
0 (U1 ∗1 U2))

= XM
P (U1) + XM

P (U2) − XM
P (m

+
1 (U1)) + XM

P (6) − X
M
P (~)

= U1 + 51 + 52 + 2G + 2~ + U2 + 52 + 53 + 2G + 2~ − 52 − G − ~ + 6 + ~ + I − ~
= U1 + U2 + 51 + 52 + 53 + 6 + 3G + 3~ + I.

2.1.3 Elementary properties of free categories

We can now show elementary properties of free =-categories on polygraphs using the above
de�ned Makkai’s measure, as was done in [Mak05]. Let = ∈ N ∪ {l} and P be an =-polygraph.
First, we prove that the generators of P are injectively embedded in the associated free =-cate-
gory P∗:

Proposition 2.1.3.1. For : ∈ N= , 61, 62 ∈ P: , if 61 ≠ 62 in P: , then 61 ≠ 62 in P∗
:
.

Proof. Let : ∈ N= and 61, 62 ∈ P: be such that 61 = 62 in P∗
:
. So XM

P (61) = XM
P (62). But,

for 8 ∈ {1, 2}, 68 is the only 6 ∈ P8 such that XM
P (68)6 > 0 by de�nition of XM

P . Thus, 61 = 62
in P: , which proves the statement. �

Moreover, we can characterize the identities using XM
P :

Proposition 2.1.3.2. Let : ∈ N=−1 and D ∈ P∗:+1. The following are equivalent:

(i) there exists D̃ ∈ P∗
:
such that D = id:+1D̃ ,

(ii) there exists n ∈ {−, +} such that XM
P (D) = X

M
P (m

n
:
(D)),

(iii) for all 6 ∈ P:+1, XM
P (D)6 = 0.

Proof. The facts that (i) implies (ii) and that (ii) implies (iii) are trivial. So suppose that (iii) holds.
We show that (i) by induction on an expression de�ning D:

– if D = 6 for some 6 ∈ P:+1, then XM
P (D)6 > 0, contradicting the hypothesis,

– if D = id:+1D̃ for some D̃ ∈ P∗
:
, then the conclusion of the statement holds,
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– if D = D1 ∗8 D2 for some 8 ≤ : and 8-composable D1, D2 ∈ P∗:+1, then, since XM
P (D 9 ) ≤ X

M
P (D)

for 9 ∈ {1, 2} by Proposition 2.1.2.10(iii), we can use the induction hypothesis on D1 and D2.
So there exists D̃1, D̃2 ∈ P∗: such that D 9 = id:+1D̃ 9

for 9 ∈ {1, 2}. Thus, if 8 = : , then D = id:+1D̃1

and if otherwise 8 < : , then D = id:+1D̃1∗8D̃2
. �

The embeddings of the generators in the free categories can also be characterized using XM:

Proposition 2.1.3.3. Let : ∈ N∗= and D ∈ P∗: . The following are equivalent:

(i) there exists 6 ∈ P: such that D = 6,

(ii) there exists 6 ∈ P: such that XM
P (D) = X

M
P (6),

(iii) there exists no D̃ ∈ P∗
:−1 such that D = id:D̃ , and if D = D1 ∗8 D2 for some 8 < : and 8-compo-

sable D1, D2 ∈ P∗: , then there exists 9 ∈ {1, 2} and D̃ 9 ∈ P∗8 such that D 9 = id:D̃ 9 .

Proof. Proof that (i) implies (ii): This is clear.

Proof that (ii) implies (iii): Let 6 ∈ P: be such that XM
P (D) = X

M
P (6). First, by Proposition 2.1.3.2, D

is not an identity. Moreover, if D = D1 ∗8 D2 for some 8 < : and 8-composable D1, D2 ∈ P∗: , then

XM
P (D) = X

M
P (D1) + XM

P (D2) − XM
P (m

−
8 (D2)).

Since XM
P (D)6 > 0, we have that there exists 9 ∈ {1, 2} such that XM

P (D 9 )6 > 0. By symmetry,
suppose that 9 = 1. Then, by Proposition 2.1.2.10(iv), we have XM

P (6) ≤ X
M
P (D1). Moreover, by

Proposition 2.1.2.10(ii), we have XM
P (D2) − XM

P (m
−
8 (D2)) ≥ 0, so that XM

P (D1) ≤ XM
P (6). Hence,

XM
P (D1) = XM

P (6) and XM
P (D2) − XM

P (m
−
8 (D2)) = 0.

Thus, by Proposition 2.1.3.2, D2 = id:
m−
8
(D2) , so (iii) holds.

Proof that (iii) implies (i): We show that (i) holds by induction on an expression de�ning D:

– if D = 6 for some 6 ∈ P: , then (i) holds;

– if D = id:D̃ for some D̃ ∈ P∗
:−1, then this contradicts the hypothesis given by (iii);

– if D = D1 ∗8 D2 for some 8 ∈ #:−1 and 8-composable D1, D2 ∈ P∗: , then, by hypothesis, there
is 9 ∈ {1, 2} such that D 9 = id:

m−
8
(D 9 ) . By symmetry, suppose that 9 = 1. Then, D = D2 and we

conclude by induction hypothesis. �

Finally, we prove that identities and generators can be lifted through functors between free
categories:

Proposition 2.1.3.4. Let � : P → Q be a morphism of =-polygraphs, : ∈ N= and D ∈ P∗
:
. The

following hold:

(i) when : > 0, there exists a cell D ′ ∈ P∗
:−1 such that D = id:D′ if and only if there exists a

cell D̃ ′ ∈ Q∗
:−1 such that � (D) = id:D̃′ ,

(ii) there exists a generator 6 ∈ P: such that D = 6 if and only if there exists a generator 6̃ ∈ Q:
such that � (D) = 6̃.
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Proof. The left-to-right implications are clear, so we only prove the right-to-left ones.

Proof of (i): Suppose that there exists D̃ ′ ∈ Q∗
:−1 such that � (D) = id:D̃′ . By Proposition 2.1.3.2, we

have that XM
Q (� (D))6 = 0 for all 6 ∈ Q: . By Proposition 2.1.2.8, we have XM

Q (� (D)) = Z� (X
M
P (D)),

thus XM
P (D)6 = 0 for all 6 ∈ P: . Hence, by Proposition 2.1.3.2, there exists D ′ ∈ P∗

:−1 such
that D = id:D′ .

Proof of (ii): Suppose that there exists 6̃ ∈ Q: such that � (D) = 6̃. We prove that there exists 6 ∈ P:
such that D = 6. When : = 0, this is clear. So suppose moreover that : > 0. It is su�cient to
prove that the characterization (iii) of Proposition 2.1.3.3 is veri�ed. By Proposition 2.1.3.3(iii),
the cell � (D) is not an identity, so that by (i), D is not an identity as well. Now if D = D1 ∗8 D2
for some 8 ∈ N:−1 and 8-composable D1, D2 ∈ P∗

:
, then � (D) = � (D1) ∗8 � (D2), so that, by Propo-

sition 2.1.3.3(iii), there is 9 ∈ {1, 2} such that � (D 9 ) = id:
� (m−

8
(D 9 )) . Using (i) : − 8 times, we have

that D 9 = id:
m−
8
(D 9 ) . Thus, by Proposition 2.1.3.3, there exists 6 ∈ P: such that D = 6. �

2.2 Free categories through categorical actions

Let = ∈ N. In this section, we give a more precise description of the functor −[−] : Cat+= → Cat=+1
introduced by Theorem 1.3.2.3, that maps an =-cellular extension to the associated free extension.
Concretely, we express the functor −[−] as the composite of functors

−[−]A : Cat+= → CatA= and − [−]≈ : CatA= → Cat=+1

where CatA= is the category of =-categorical actions. The latter encode the structure of the
“whiskered generators” of the free extensions � [- ] for (�,- ) ∈ Cat+= , i.e., the (=+1)-cells which
can be written as

;= r
=−1 (;=−1 r

=−2 · · · r1 (;1 r0 6 r0 A1) r1 · · · r=−2 A=−1) r=−1 A= (2.5)

for some suitably composable 6 ∈ - and ;8 , A8 ∈ �8 for 8 ∈ N∗= . By considering adequately
quotiented sequences of (=+1)-cells of such form, one recovers the whole set � [- ]=+1.

By the exchange condition (E) satis�ed by the canonical precategorical structure on � [- ],
a “whiskered generator” usually admits several decompositions as (2.5), and enumerating all of
them can be expensive. Another description of all the possible decompositions can be obtained
using context classes: the latter are structures which represent decompositions like (2.5) where 6 is
replaced by a hole. In such structures, the di�erent possible decompositions are then represented
e�ciently by quotienting with the equalities (E) dimensionwise.

We �rst introduce the de�nition of categorical actions (Section 2.2.1), and then of contexts and
context classes, together with some of their properties (Section 2.2.2). We then give descriptions
of the functor −[−]A using context classes (Section 2.2.3), and then of −[−]≈ by considering an
adequate quotient on sequences of cells of categorical actions (Section 2.2.4). We then conclude the
description of −[−] as the composite of the two above functors and use it to give some properties
of the cells of free extensions (Section 2.2.5). In the next section, this description will be used to
show that the functor −[−] is computable.

2.2.1 Categorical actions

Let = ∈ N. An =-categorical action is the data of an =-cellular extension (�,�=+1) together with,
for : ∈ N∗= , composition operations

r
:,=+1 : �: ×:−1 �=+1 → �=+1 and r

=+1,: : �=+1 ×:−1 �: → �=+1
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satisfying the axioms given below. We extend the convention used for precategories, meaning
that, for 8, :, ; ∈ N=+1 with

8 = min(:, ;) − 1 and max(:, ;) = = + 1,

given (D, E) ∈ �: ×8 �; , we write D r
8 E for D r

:,; E . The axioms satis�ed by =-categorical actions
are then the following:

(A-i) for 8, :, ; ∈ N=+1 satisfying

8 = min(:, ;) − 1 ≤ = − 1 and max(:, ;) = = + 1,

and (D, E) ∈ �: ×8 �; and n ∈ {−, +},

mn= (D r
8 E) =

{
D r

8 m
n
= (E) if : < ; ,

mn= (D) r8 E if : > ; ,

(A-ii) for 8, :, ;,< ∈ N=+1 satisfying

8 = min(:, ;) − 1 = min(;,<) − 1 ≤ = − 1 and max(:, ;,<) = = + 1,

and (D, E,F) ∈ �: ×8 �; ×8 �< ,

(D r
8 E) r8 F = D r

8 (E r
8 F),

(A-iii) for 8, 9 ∈ N=−1 with 8 < 9 ,D1, D2 ∈ �8+1, E1, E2 ∈ � 9+1 andF ∈ �=+1 such thatD1,F,D2
are 8-composable and E1,F, E2 are 9-composable,

D1 r
8 (E1 r

9 F r
9 E2) r8 D2 = (D1 r

8 E1 r
8 D2) r9 (D1 r

8 F r
8 D2) r9 (D1 r

8 E2 r
8 D2),

(A-iv) for 8, :, ; ∈ N∗=+1 satisfying

8 = min(:, ;) − 1 ≤ = − 1 and max(:, ;) = = + 1,

and (D, E) ∈ �: ×8−1 �; ,

(D r
8−1 m

−
8 (E)) r8 (m+8 (D) r8−1 E) = (m−8 (D) r8−1 E) r8 (D r

8−1 m
+
8 (E)) .

Axioms (A-i), (A-ii) and (A-iii) above closely match Axioms (P-ii), (P-iv) and (P-v) of precate-
gories (c.f. Remark 1.4.2.2). Axiom (A-iv) is analoguous to the condition (E) satis�ed by precat-
egories derived from strict categories (c.f. Paragraph 1.4.3.1). An =-categorical action morphism
between (�,�=+1) and (�, �=+1) is a morphism of =-cellular extension

(�, 5 ) : (�,�=+1) → (�,�=+1) ∈ Cat+=
which is moreover compatible with the r

:,=+1 and r
=+1,: operations for : ∈ N∗= , i.e.,

– for 8 ∈ N=−1, D ∈ �=+1, E ∈ �8+1 such that D, E are 8-composable,

5 (D r
8 E) = 5 (D) r8 � (E),

– for 8 ∈ N=−1, D ∈ �8+1, E ∈ �=+1 such that D, E are 8-composable,

5 (D r
8 E) = � (D) r8 5 (E) .

We write CatA= for the category of =-categorical actions. There is a forgetful functor

U : CatA= → Cat+=
which forgets the data of the r

:,=+1 and r
=+1,: operations, for : ∈ N∗= . Since this functor is obviously

derived from a morphism of essentially algebraic theories, by Theorem 1.1.2.7, it admits a left
adjoint that we describe below, after introducing contexts and context classes.
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2.2.2 Contexts and contexts classes

Here, we introduce contexts and context classes, that represent formal cells of strict categories with
“holes” in them. Our de�nitions are similar to the one of context given by Métayer in [Mét08], but
with a syntactical perspective that allows a computational implementation (c.f. Section 2.3.2). We
moreover give some structure to these objects, like sources, targets, identities and compositions,
and prove that these operations are compatible with =-functors.

2.2.2.1 — De�nition. Let = ∈ N ∪ {l} and � ∈ Glob= be an =-globular set. Given< ∈ N= , an
<-type is a pair (D,D ′) of parallel (<−1)-globes of� (we extend the convention of Paragraph 1.2.2.1
so that the unique (−1)-globe ∗ is parallel with itself). Given : ∈ N= with : ≥ < and E ∈ �: , the
<-type of E is the<-type (m−<−1(E), m+<−1(E)) so that every :-cell can be implicitly considered as
an<-type, and we say that the<-types of this form are instantiable.

Let � ∈ Cat= . For every< ∈ N= and<-type (D,D ′), we de�ne, by induction on<,

– the notion of<-context of type (D,D ′) of � ,

– the notion of<-context class of type (D,D ′) of � ,

– for : ∈ N= with : ≥ <, the evaluation of an <-context � (resp. <-context class � ) of
type (D,D ′) at a cellF ∈ �: of type (D,D ′) which is a :-cell denoted � [F] (resp. � [F]).

For< ∈ N= , an<-context class of type (D,D ′) of � will be an equivalence class of<-contexts of
type (D,D ′) under a relation denoted ≈< , so that we write È�É for the associated<-context class
of an<-context �. This relation witnesses that two contexts are equivalent up to the equalities (E)
considered in dimension<. Together with the above inductive de�nition, we prove the following:

Proposition 2.2.2.2. Given<, 8, : ∈ N= with< ≤ 8 ≤ : , a :-cell E , an<-context � (resp.<-context
class � ) of type E and n ∈ {−, +}, we have

mn8 (� [E]) = � [mn8 (E)] (resp. mn8 (� [E]) = � [mn8 (E)]).

We now start the de�nition. There is a unique 0-context, denoted [−], and the relation ≈0 is the
identity relation, so that a 0-context class is exactly a 0-context. Given : ∈ N= and :-cell E ∈ �: ,
the evaluation of the unique 0-context (class) [−] at E is E , and Proposition 2.2.2.2 holds directly
for< = 0.

Given< ∈ N=−1 and an (<+1)-type (D,D ′), an (<+1)-context of type (D,D ′) is a triple � = (;, � , A )
where

– � is an<-context class of type (m−<−1(D), m+<−1(D ′)),

– ; and A are (<+1)-cells of � such that m+< (;) = � [D] and m−< (A ) = � [D ′].

Moreover, given : ∈ N= with : ≥ < + 1 andF ∈ �: of type (D,D ′), the evaluation � [F] of � atF
is the :-cell

� [F] = ; r< � [F] r< A .
We de�ne the relation ≈<+1 on (<+1)-contexts of type (D,D ′). When< = 0, for all 1-contexts �1
and �2 of type (D,D ′), we put �1 ≈1 �2 if and only if �1 = �2. When< > 0, we de�ne ≈<+1 to be
the re�exive symmetric transitive closure of ≈1

<+1, where ≈1
<+1 is the relation such that, for all

(<+1)-contexts
�1 = (;1, �1, A1) and �2 = (;2, �2, A2)
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of type (D,D ′), we have �1 ≈1
<+1 �2 if there exist<-contexts

� ′1 = (; ′1, � ′1, A ′1) and � ′2 = (; ′2, � ′2, A ′2)

of type (m−<−1(D), m+<−1(D ′)) with �8 = È� ′8É for 8 ∈ {1, 2}, and ;, A ,F ∈ �<+1 such that at least one
of the two sets of conditions (≈-L) and (≈-R) is satis�ed, where the set of conditions (≈-L) is

(≈-L)

;1 = ; r< (F r
<−1 �

′
1 [D] r<−1 A

′
1) A1 = A

;2 = ; A2 = (F r
<−1 �

′
2 [D ′] r<−1 A

′
2) r< A

; ′1 = m
+
< (F) A ′1 = A

′
2

; ′2 = m
−
< (F) � ′1 = �

′
2

and the set of conditions (≈-R) is

(≈-R)

;1 = ; r< (; ′1 r
<−1 �

′
1 [D] r<−1 F) A1 = A

;2 = ; A2 = (; ′2 r
<−1 �

′
2 [D ′] r<−1 F) r< A

; ′1 = ;
′
2 A ′1 = m

+
< (F)

A ′2 = m
−
< (F) � ′1 = �

′
2.

An (<+1)-context class of type (D,D ′) is an equivalence class of (<+1)-contexts of type (D,D ′)
under ≈<+1. Note that if �1 ≈<+1 �2 andF is a :-cell of type (D,D ′), then �1 [F] = �2 [F], so that
we can de�ne the evaluation � [F] of an (<+1)-context class � by a :-cellF , both of type (D,D ′),
as � [F], where � is an (<+1)-context of type (D,D ′) such that � = È�É.

Finally, we check that Proposition 2.2.2.2 is satis�ed: given 8, : ∈ N= with< + 1 ≤ 8 ≤ : , an
(<+1)-context � = (;, � , A ) and a :-cell E , both of (<+1)-type (D,D ′), and n ∈ {−, +}, we have

mn8 (� [E]) = mn8 (; r< � [E] r< A )
= ; r< mn8 (� [E]) r< A (by Axiom (P-ii))
= ; r< � [mn8 (E)] r< A (by the induction hypothesis)
= � [mn8 (E)]

and the property also holds for (<+1)-context classes too, since we have

mn8 (È�É[E]) = mn8 (� [E]) = � [mn8 (E)] = È�É[mn8 (E)]

and this ends the de�nition of contexts and context classes of � .

Example 2.2.2.3. Let P be the 2-polygraph such that

P0 = {F, G,~, I}
P1 = {0 : F → I, 1, 1 ′ : F → G, 2, 2 ′ : G → ~, 3, 3 ′ : ~ → I, 4 : F → I}
P2 = {U : 0 ⇒ 1 ∗0 2 ∗0 3, V : 1 ⇒ 1 ′, X : 3 ⇒ 3 ′, n : 1 ′ ∗0 2 ′ ∗0 3 ′⇒ 4}.

There are several 1-contexts of type (G,~), like the following ones:

– (id1
G , [−], id1

~),

– (1, [−], id1
~),

– (id1
G , [−], 3),
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�1 = F G ~ I

0

4

1

1 ′

2

2 ′

3

3 ′
⇓V ⇓X

⇓U

⇓n

�2 = F G ~ I

0

4

1

1 ′

2

2 ′

3

3 ′
⇓V ⇓X

⇓U

⇓n

�3 = F G ~ I

0

4

1

1 ′

2

2 ′

3

3 ′
⇓V ⇓X

⇓U

⇓n

�4 = F G ~ I

0

4

1

1 ′

2

2 ′

3

3 ′
⇓V ⇓X

⇓U

⇓n

Figure 2.1 – The contexts �1, �2, �3 and �4

– �5 ,ℎ = (5 , [−], 6) for 5 ∈ {1,1 ′} and ℎ ∈ {3, 3 ′}.

By the de�nition of ≈1, a 1-context class is exactly a 1-context. Note that, for 5 ∈ {1, 1 ′}
and ℎ ∈ {2, 2 ′}, the evaluation of �5 ,ℎ at 6 ∈ {2, 2 ′} is 5 ∗0 6 ∗0 ℎ. There are several 2-contexts of
type (2, 2 ′), as the following ones:

– �1 = (U ∗1 (V ∗0 id2
2 ∗0 X), �1′,3′, n),

– �2 = (U ∗1 (id2
1∗02 ∗0 X), �1,3′, (V ∗0 id2

2′∗03′) ∗1 n),

– �3 = (U ∗1 (V ∗0 id2
2∗03 ), �1′,3 , (id

2
1′∗02′ ∗0 X) ∗1 n),

– �4 = (U, �1,3 , (V ∗0 id2
2′ ∗0 X) ∗1 n)

which can be represented as on Figure 2.1. Then, putting

; = U ∗1 (id2
1∗02 ∗0 X), F = V and A = n

and using (≈-L), we have �1 ≈1
2 �2. Similarly, putting

; = U ∗1 (V ∗0 id2
2∗03 ), F = X and A = n

and using (≈-R), we have �1 ≈1
< �3. Finally, putting

; = U, F = X and A = (V ∗0 id2
2′∗03′) ∗1 n

and using (≈-R), we have �2 ≈1
< �4. Thus, we have

È�1É = È�2É = È�3É = È�4É.

In fact, we can prove that the set of 2-contexts equivalent to �1 under ≈2 is {�1, �2, �3, �4}.
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Remark 2.2.2.4. Given< ∈ N= , the relation ≈−1
< on the<-contexts, which is de�ned by �1 ≈−1

< �2
when �2 ≈1

< �1 for all<-contexts �1, �2 of the same<-type, admits a de�nition by axioms (≈-L)’
and (≈-R)’ which are symmetrical to (≈-L) and (≈-R). Moreover, ≈< can be equivalently described
as the re�exive transitive closure of ≈1

<∪≈−1
< , so that, in the proofs, by symmetry of the de�nitions

of ≈1
< and ≈−1

< , we can often reduce a case analysis of �1 ≈< �2 to �1 ≈1
< �2.

Remark 2.2.2.5. Given <,: ∈ N=+1 with < ≤ = and < ≤ : ≤ = + 1, the notion of <-context,
<-context class and their respective evaluations at a :-cell can be de�ned similarly for an =-cate-
gorical action � . Note that the notion of (=+1)-context here makes little sense since there is no
composition operation r

= .

2.2.2.6 — Source and target of contexts. Let = ∈ N ∪ {l} and � ∈ Cat= . Given < ∈ N∗= , an
<-type (D,D ′) and an<-context � = (;, � , A ) of type (D,D ′) of� , the source and the target of � are
respectively the (<−1)-cells

m−<−1(�) = m−<−1(;) and m+<−1(�) = m+<−1(A ).

When< > 1, we moreover have

mn<−2 ◦ m−<−1(�) = mn<−2 ◦ m+<−1(�)

for n ∈ {−, +}. Indeed, given an (<−1)-context � ′ = (; ′, � ′, A ′) such that � = È� ′É, we have

m+(;) = ; ′ r<−2 �
′[D] r<−2 A

′ and m−(A ) = ; ′ r<−2 �
′[D ′] r<−2 A

′

so that

m−<−2 ◦ m−<−1(�) = m−<−2 ◦ m−<−1(;)
= m−<−2 ◦ m+<−1(;)
= m−<−2(; ′)
= m−<−2 ◦ m−<−1(A )
= m−<−2 ◦ m+<−1(A )
= m−<−2 ◦ m+<−1(�)

and similarly, m+<−2 ◦ m−<−1(�) = m+<−2 ◦ m+<−1(�). The operations m−, m+ on<-contexts extend to
<-context classes since they are compatible with the ≈< relation. Given 8 ∈ N<−1 and n ∈ {−, +}
and an<-context � (resp. an<-context class � ), we write mn8 (�) for mn8 ◦mn<−1(�) (resp. mn8 ◦mn<−1(� )).
Thus, for 8 ∈ N=−1, we can extend the notion of 8-composable sequences of globes of globular sets
to sequences -1, . . . , -; for some ; ∈ N∗ where -B is either an<-context, an<-context class, or a
cell of � for B ∈ N∗

;
, and say that -1, . . . , -; is 8-composable when m+8 (-B) = m−8 (-B+1) for B ∈ N∗

;−1.

It is immediate that the source and target operations are compatible with the evaluation of contexts
(resp. context classes):

Proposition 2.2.2.7. Given 8,<, : ∈ N= with 8 < < ≤ : , n ∈ {−, +}, D ∈ �: and an<-context � of
type D, we have

mn8 (� [D]) = mn8 (�) and mn8 (È�É[D]) = mn8 (È�É).
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2.2.2.8 — Identity contexts. Let = ∈ N∪{l} and� ∈ Cat= . Given< ∈ N= and an<-type (D,D ′)
of � , we de�ne an <-context � (D,D′) and an <-context class �̄ (D,D′) , called respectively identity
context and identity context class on (D,D ′), by induction on<. When< = 0, we put

� (∗,∗) = �̄ (∗,∗) = [−]

and, when< > 0, we put

� (D,D
′) = (id<D , �̄ (m

− (D),m+ (D′)) , id<D′) and �̄ (D,D
′) = È� (D,D′)É.

If � is part of an =-cellular extension (�,- ), given 6 ∈ - , we write �6 and �̄6 for

� (m
−
=−1 (6),m+=−1 (6)) and �̄ (m

−
=−1 (6),m+=−1 (6))

respectively. The identity contexts and identity context classes have trivial evaluation:

Proposition 2.2.2.9. For<,: ∈ N= with< ≤ : , an<-type (D,D ′) and E ∈ �: of type (D,D ′), we
have

� (D,D
′) [E] = E and �̄ (D,D

′) [E] = E

Proof. This is shown by a simple induction on<. �

2.2.2.10 — Composition operations. Let= ∈ N∪{l} and� ∈ Cat= . Given 8,< ∈ N= with 8 < <,
an<-context � = (;, � , A ) of some<-type (D,D ′) of � , and E ∈ �8+1, if (E, �) is 8-composable, we
de�ne an<-context E r

8 � by induction on< − 8 with

E r
8 � =

{
(E r

8 ;, � , A ) if 8 + 1 =<,
(E r

8 ;, E r
8 �, E r

8 A ) if 8 + 1 < <,

and, since it can be veri�ed that the r
8 operation is compatible with ≈< , we extend the operation

on<-context classes and put E r
8 È�É = ÈE r

8 �É. Similarly, if (�, E) is 8-composable, we de�ne an
<-context � r

8 E using an induction on< − 8 by

� r
8 E =

{
(;, � , A r

8 E) if 8 + 1 =<,
(; r8 E, � r

8 E, A r
8 E) if 8 + 1 < <,

and we put È�É r
8 E = È� r

8 EÉ. These composition operations satisfy properties similar to the
axioms of (=+1)-precategories:

Proposition 2.2.2.11. Given< ∈ N= , an<-type (D,D ′) and an<-context � of type (D,D ′) of � ,
we have

(i) for all 8 ∈ N<−1 and D1 = m
−
8 (�), D2 = m

+
8 (�),

id8+1D1
r
8 � = � = � r

8 id8+1D2 ,

(ii) for all 8 ∈ N<−1 and D1, D2 ∈ �8+1, if D1, D2, � are 8-composable or D1, �,D2 are 8-composable
or �,D1, D2 are 8-composable, then we respectively have

(D1 r
8 D2) r8 � = D1 r

8 (D2 r
8 �)

or

(D1 r
8 �) r8 D2 = D1 r

8 (� r
8 D2)

or

(� r
8 D1) r8 D2 = � r

8 (D1 r
8 D2),
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(iii) for all 8, 9 ∈ N<−1 such that 8 < 9 , and D1, D2 ∈ �8+1 and E1, E2 ∈ � 9+1 such that D1, �,D2 are
8-composable and E1, �, E2 are 9-composable, we have

D1 r
8 (E1 r

9 � r
9 E2) r8 D2 = (D1 r

8 E1 r
8 D2) r9 (D1 r

8 � r
8 D2) r9 (D1 r

8 E2 r
8 D2),

and similar properties hold when replacing � by È�É in the equations.

Proof. (i), (ii) are proved by a simple induction on � and � , so we move directly to the proof of (iii).
Let (;, � , A ) = �, 8, 9 ∈ N<−1 with 8 < 9 , and D1, D2 ∈ �8+1 and E1, E2 ∈ � 9+1 such that D1, �,D2
are 8-composable and E1, �, E2 are 9-composable. We show that (iii) holds by induction on< − 9 .
When< = 9 + 1, we have

D1 r
8 (E1 r

9 � r
9 E2) r8 D2 = (D1 r

8 (E1 r
9 ;) r8 D2, � ,D1 r

8 (A r
9 E2) r8 D2)

= ((D1 r
8 E1 r

8 D2) r9 (D1 r
8 ; r8 D2), � , (D1 r

8 A r
8 D2) (D1 r

8 E2 r
8 D2))

= (D1 r
8 E1 r

8 D2) r9 (D1 r
8 � r

8 D2) r9 (D1 r
8 E2 r

8 D2)
and moreover,

D1 r
8 (E1 r

9 È�É r
9 E2) r8 D2 = ÈD1 r

8 (E1 r
9 � r

9 E2) r8 D2É
= È(D1 r

8 E1 r
8 D2) r9 (D1 r

8 � r
8 D2) r9 (D1 r

8 E2 r
8 D2)É

= (D1 r
8 E1 r

8 D2) r9 (D1 r
8 È�É r

8 D2) r9 (D1 r
8 E2 r

8 D2)
so that the wanted equations hold. When< > 9 +1, by doing a similar computation and using the
induction hypothesis on � , we conclude that the wanted equations hold too. Thus, (iii) holds. �

Moreover, by the axioms de�ning the relations ≈< , the compositions of cells of � with context
classes satisfy an equality similar to the condition (E) that characterizes =-categories among
=-precategories:

Proposition 2.2.2.12. Given 8,< ∈ N= with 0 < 8 < <, an <-type (D,D ′), an <-context � of
type (D,D ′), and D1, D2 ∈ �8+1 such that D1, � are (8−1)-composable and �,D2 are (8−1)-composable,
we have

(D1 r
8−1 m

−
8 (È�É)) r8 (m+8 (D1) r8−1 È�É) = (m−8 (D1) r8−1 È�É) r8 (D1 r

8−1 m
+
8 (È�É))

and

(È�É r
8−1 m

−
8 (D2)) r8 (m+8 (È�É) r8−1 D2) = (m−8 (È�É) r8−1 D2) r8 (È�É r

8−1 m
+
8 (D2)) .

Moreover, if 8 + 1 < <, we have

(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 �) = (m−8 (D1) r8−1 �) r8 (D1 r

8−1 m
+
8 (�))

and

(� r
8−1 m

−
8 (D2)) r8 (m+8 (�) r8−1 D2) = (m−8 (�) r8−1 D2) r8 (� r

8−1 m
+
8 (D2)).

Proof. Let (;, � , A ) = �. We show this property by induction on< − 8 . If< = 8 + 1, then

(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 �)

= (D1 r
8−1 m

−
8 (;)) r8 (m+8 (D1) r8−1 �)

= ( [D1 r
8−1 m

−
8 (;)] r8 [m+8 (D1) r8−1 ;], m+8 (D1) r8−1 �, m

+
8 (D1) r8−1 A )

= ( [m−8 (D1) r8−1 ;] r8 [D1 r
8−1 m

+
8 (;)], m+8 (D1) r8−1 �, m

+
8 (D1) r8−1 A ) (by (E))

≈< ( [m−8 (D1) r8−1 ;], m−8 (D1) r8−1 �, [D1 r
8−1 m

−
8 (A )] r8 [m+8 (D1) r8−1 A ])

= ( [m−8 (D1) r8−1 ;], m−8 (D1) r8−1 �, [m−8 (D1) r8−1 A ] r8 [D1 r
8−1 m

+
8 (A )]) (by (E))

= (m−8 (D1) r8−1 �) r8 (D1 r
8 m
+
8 (A ))

= (m−8 (D1) r8−1 �) r8 (D1 r
8 m
+
8 (�))
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so that

(D1 r
8−1 m

−
8 (È�É)) r8 (m+8 (D1) r8−1 È�É)

= È(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 �)É

= È(m−8 (D1) r8−1 �) r8 (D1 r
8 m
+
8 (�))É

= (m−8 (D1) r8−1 È�É) r8 (D1 r
8 m
+
8 (È�É))

and similarly,

(È�É r
8−1 m

−
8 (D2)) r8 (m+8 (È�É) r8−1 D2) = (m−8 (È�É) r8−1 D2) r8 (È�É r

8−1 m
+
8 (D2)) .

Otherwise, if< > 8 + 1, then

(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 ;)

= (D1 r
8−1 m

−
8 (;)) r8 (m+8 (D1) r8−1 ;)

= (m−8 (D1) r8−1 ;) r8 (D1 r
8−1 m

+
8 (;))

= (m−8 (D1) r8−1 ;) r8 (D1 r
8−1 m

+
8 (�))

and similarly,

(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 A ) = (m−8 (D1) r8−1 A ) r8 (D1 r

8−1 m
+
8 (�))

and, by induction hypothesis,

(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 � )

= (D1 r
8−1 m

−
8 (� )) r8 (m+8 (D1) r8−1 � )

= (m−8 (D1) r8−1 � ) r8 (D1 r
8−1 m

+
8 (� ))

= (m−8 (D1) r8−1 � ) r8 (D1 r
8−1 m

+
8 (�))

so that

(D1 r
8−1 m

−
8 (�)) r8 (m+8 (D1) r8−1 �) = (m−8 (D1) r8−1 �) r8 (D1 r

8−1 m
+
8 (�))

which implies
(D1 r

8−1 m
−
8 (È�É)) r8 (m+8 (D1) r8−1 È�É) = (m−8 (D1) r8−1 È�É) r8 (D1 r

8−1 m
+
8 (È�É)).

Similarly, we have

(m−8 (�) r8−1 D2) r8 (� r
8−1 m

+
8 (D2)) = (� r

8−1 m
−
8 (D2)) r8 (m+8 (�) r8−1 D2)

and
(È�É r

8−1 m
−
8 (D2)) r8 (m+8 (È�É) r8−1 D2) = (m−8 (È�É) r8−1 D2) r8 (È�É r

8−1 m
+
8 (D2)) .

Hence, the proposition holds. �

Finally, we prove that the composition operations on contexts and context classes are compatible
with evaluation:

Proposition 2.2.2.13. Given 8,<, : ∈ N= with 8 < < ≤ : , D ∈ �8+1, E ∈ �: and an<-context � of
type E of � , if D, � are 8-composable, then

(D r
8 �) [E] = D r

8 (� [E])

and otherwise, if �,D are 8-composable, then

(� r
8 D) [E] = (� [E]) r8 D

and similar equalities hold for context classes.



2.2. FREE CATEGORIES THROUGH CATEGORICAL ACTIONS 113

Proof. By symmetry, we only prove the �rst equality, and we do so using an induction on< − 8 .
Let (;, � , A ) = �. When 8 + 1 =<, we have

(D r
8 �) [E] = D r

8 ; r8 � [E] r8 A = D r
8 � [E]

and

(D r
8 È�É)[E] = ÈD r

8 �É[E] = (D r
8 �) [E] = D r

8 (� [E]) = D r
8 (È�É[E]).

Otherwise, when 8 + 1 < <, we have

(D r
8 �) [E] = (D r

8 ;) r<−1 (D r
8 � ) [E] r<−1 (D r

8 A )
= (D r

8 ;) r<−1 (D r
8 (� [E])) r<−1 (D r

8 A ) (by induction hypothesis)
= D r

8 (� [E])

and, like above, we have (D r
8 È�É)[E] = D r

8 (È�É[E]). �

2.2.2.14 — Contexts and functoriality. Let = ∈ N ∪ {l}, �, � ∈ Cat= and � : � → � be an
=-functor. We extend � to<-contexts and<-context classes, by induction on<. More precisely,
given< ∈ N= , an<-type (D,D ′) of� and an<-context � of type (D,D ′) of� , we de�ne an<-con-
text� (�) and an<-context class� (È�É) of type (� (D), � (D ′)) of� by induction on< as follows.
If< = 0, we put

� ( [−]) = [−]

and otherwise, if< > 0, given (;, � , A ) = �, we put

� (�) = (� (;), � (� ), � (A )) and � (È�É) = È� (�)É

where � (È�É) is well-de�ned since, given two <-contexts �1, �2 such that �1 ≈< �2, we can
check that � (�1) ≈< � (�2). We verify that � is compatible with the di�erent operations on
contexts and context classes de�ned above:

Proposition 2.2.2.15. Given<,: ∈ N= with< ≤ : , D ∈ �: and an<-context � of type D of � , we
have

� (� [D]) = � (�) [� (D)] and � (È�É[D]) = � (È�É)[� (D)]

Proof. We prove this property by induction on<. When< = 0, the property holds, so assume
that< > 0. Let (;, � , A ) = �. We have

� (� [D]) = � (;) r<−1 � (� [D]) r<−1 � (A )
= � (;) r<−1 � (� ) [� (D)] r<−1 � (A ) (by induction hypothesis)
= � (�) [� (D)]

and we moreover deduce that

� (È�É[D]) = � (� [D]) = � (�) [� (D)] = È� (�)É[� (D)] = � (È�É)[� (D)]

which concludes the induction. �

Proposition 2.2.2.16. Given< ∈ N= and an<-type (D,D ′) of � , we have

� (� (D,D′) ) = � (� (D),� (D′)) and � (�̄ (D,D′) ) = �̄ (� (D),� (D′))
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Proof. By a simple induction on<. �

Proposition 2.2.2.17. Given 8,< ∈ N= with 8 < <, D ∈ �8+1 and an <-context � of � , if D, �
(resp. �,D) are 8-composable, then

� (D r
8 �) = � (D) r8 � (�) (resp. � (� r

8 D) = � (�) r8 � (D))
and

� (D r
8 È�É) = � (D) r8 � (È�É) (resp. � (È�É r

8 D) = � (È�É) r8 D).
Proof. Let (;, � , A ) = �. We prove this property by induction on< − 8 . If< = 8 + 1, we compute
that

� (D r
8 �) = � ((D r

8 ;, � , A ))
= (� (D r

8 ;), � (� ), � (A ))
= (� (D) r8 � (;), � (� ), � (A ))
= � (D) r8 (� (;), � (� ), � (A ))
= � (D) r8 � (�)

and
� (D r

8 È�É) = � (ÈD r
8 �É)

= È� (D r
8 �)É

= È� (D) r8 � (�)É
= � (D) r8 È� (�)É
= � (D) r8 � (È�É).

When < > 8 + 1, an analogous computation using the induction hypothesis shows the same
equalities. The case of composition on the right is similar. �

2.2.3 Free action on a cellular extension

In this section, we use the formalism of contexts and contexts classes to de�ne a left adjoint to
the functorU : CatA= → Cat+= . In the process, we give su�cient conditions for a monomorphism
to be preserved by the free action functor −[−]A : Cat+= → CatA= introduced above. Indeed, the
image of a monomorphism (�, 5 ) by −[−]A does not have to be a monomorphism since � is
not necessarily injective on contexts and contexts classes, because of the quotients with the
relations ≈< . As shown below, it is su�cient to require moreover that � is a Conduché functor :
those are the morphisms of Cat= that uniquely “lift compositions of cells”. Consequently, they are
better behaved regarding the relations ≈< on contexts. We refer the reader to [Gue20] for a more
extensive presentation of Conduché functors for strict=-categories. The resulting monomorphism
preservation result of −[−]A will be useful when showing that the word problem on general
polygraphs reduces to the one on �nite polygraphs (c.f. Section 2.4.3).

2.2.3.1 — (n+1)-categorical action structure. Let = ∈ N. Given an =-cellular extension (�,- ),
we de�ne an =-categorical action � [- ]A = (�,-A) as follows: -A is the set of pairs (6, � )
with 6 ∈ - and � an =-context class of type 6. The =-source and =-target of such a pair (6, � ) are
de�ned respectively as the =-cells

m−= ((6, � )) = � [d−= (6)] and m+= ((6, � )) = � [d+= (6)] .
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so that (�,-A) has a structure of =-cellular extension by Proposition 2.2.2.7. We extend the
operations r

8 de�ned for =-context classes to such pairs by putting

D r
8 (6, � ) = (6,D r

8 � ) and (6, � ) r8 E = (6, � r
8 E)

for 8 ∈ N=−1 and D, E ∈ �8+1 such that D, (6, � ) and (6, � ), E are 8-composable. We then have:

Proposition 2.2.3.2. The operations r
8 de�ned above equip � [- ]A with the structure of an =-cate-

gorical action.

Proof. This is a consequence of Proposition 2.2.2.11 and Proposition 2.2.2.12. �

Remember that, by Remark 2.2.2.5, there are analogous notions of contexts, context classes and
evaluations for categorical actions. We observe that:

Lemma 2.2.3.3. Given< ∈ N= , 6 ∈ - and an<-context class � of type 6 of � , we have

� [(6, �̄6)] = (6, �↑=)

where, for : ∈ N= with : ≥ <, �↑: is the :-context class of type 6 de�ned inductively by

�↑: =

{
� if : =<,
È(id:

�↑:−1 [m−:−1 (6) ]
, �↑:−1, id:�↑:−1 [m+:−1 (6) ]

)É if : > <.

In particular, if< = =, we have � [(6, �̄6)] = (6, � ).

Proof. By a simple induction on<. �

With the above lemma, we can deduce the freeness of � [- ]A:

Proposition 2.2.3.4. � [- ]A is the free categorical action relatively to the forgetful functorU.

Proof. Given an =-categorical action (�, � ′) and a morphism

(�,ℎ) : (�,- ) → U(�,� ′) ∈ Cat+=

we de�ne a function ℎ′ : -A → � ′ by putting ℎ′((6, � )) = � (� ) [ℎ(6)]. By Propositions 2.2.2.2,
2.2.2.13 and 2.2.2.17, we obtain a morphism

(�,ℎ′) : (�,-A) → (�,� ′) ∈ CatA= .

Note that ℎ can be recovered from ℎ′ since, for 6 ∈ - , we have

ℎ(6) = �̄6 [6] = ℎ′((6, �̄6)).

Thus, the above construction de�nes a function

Ψ(�,�′) : Cat+= ((�,- ),U(�, � ′)) → CatA= ((�,-A), (�, � ′))

which is injective. It is moreover surjective since, by Proposition 2.2.2.16 and Lemma 2.2.3.3, any
morphism

(�̄, ℎ̄) : (�,-A) → (�,� ′) ∈ CatA=
is uniquely determined by �̄ and the images of (6, �̄6) by ℎ̄. Finally, we observe that the func-
tion Ψ(�,�′) is natural in (�, � ′), so that � [- ]A is indeed the free =-categorical action on (�,- )
relatively to the forgetful functorU. �
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The construction (�,- ) ↦→ � [- ]A of the above proof uniquely extends to a functor

−[−]A : Cat+= → CatA=

which is left adjoint to U. Given (�,ℎ) : (�,- ) → (�,. ) in Cat+= , the =-categorical action
morphism

� [ℎ]A : � [- ]A → � [. ]A ∈ CatA=
is de�ned by

� [ℎ]A8 = �8 and � [ℎ]A=+1((6, � )) = (ℎ(6), � (� ))

for 8 ∈ N= and (6, � ) ∈ -A.

2.2.3.5 — Conduché functors. We now introduce Conduché functors, following the de�nition
given in [Gue20]. Let = ∈ N ∪ {l}, �, � ∈ Cat= and � : � → � be an =-functor. We say that � is
=-Conduché when it satis�es that, for all 8, : ∈ N= with 8 < : , D ∈ �: , 8-composable E1, E2 ∈ �:
such that � (D) = E1 ∗8 E2, there exist unique 8-composable D1, D2 ∈ �: such that

� (D1) = E1 and � (D2) = E2 and D1 ∗8 D2 = D.

The Conduché property implies a unique lifting of identities:

Proposition 2.2.3.6. If � : � → � is =-Conduché, then given 8, : ∈ N= with 8 < : , D ∈ �: ,
and E ∈ �8 such that � (D) = id:E , there exists a unique D ′ ∈ �8 such that

� (D ′) = E and D = id:D′

Proof. We have � (D) = id:E = id:E ∗8 id:E and D can be factorized as id:
m−
8
(D) ∗8 D and D ∗8 id:

m+
8
(D) .

Moreover,
� (id:

m−
8
(D) ) = id:

� (m−
8
(D)) = id:

m−
8
(� (D)) = id:E

and similarly,
� (id:

m+
8
(D) ) = id:E

so that, since � is =-Conduché, D = id:
m−
8
(D) . Finally, if D = id:D′ for some D ′ ∈ �8 , then D ′ = m−8 (D),

which shows unicity. �

We can moreover characterize � as an =-Conduché using the precategorical structure of� and � :

Proposition 2.2.3.7. The =-functor � is =-Conduché if and only if for all 8, :1, :2, : ∈ N= with

8 = min(:1, :2) − 1 and : = max(:1, :2),

and cells D ∈ �: , E1 ∈ �:1 , E2 ∈ �:2 such that E1, E2 are 8-composable and � (D) = E1 r
8 E2, there exist

unique D1 ∈ �:1 and D2 ∈ �:2 such that D1, D2 are 8-composable and

� (D1) = E1, � (D2) = E2 and D1 r
8 D2 = D.

Proof. Suppose that � is =-Conduché and let 8, :1, :2, : ∈ N= satisfying

8 = min(:1, :2) − 1 and : = max(:1, :2),
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and cells D ∈ �: , E1 ∈ �:1 , E2 ∈ �:2 such that E1, E2 are 8-composable and � (D) = E1 r
8 E2.

Then, E1 r
8 E2 = id:E1 ∗8 id:E2 , so, since � is =-Conduché and by Proposition 2.2.3.6, there exist

unique D1 ∈ �:1 and D2 ∈ �:2 such that D1, D2 are 8-composable and

� (D1) = E1, � (D2) = E2 and D = id:D1 ∗8 id:D2

where the latter equality is equivalent to D = D1 r
8 D2.

Conversely, suppose that � satis�es the unique lifting property of the statement. Let 8, : ∈ N=
with 8 < : , D ∈ �: and E1, E2 ∈ �: such that E1, E2 are 8-composable and � (D) = E1 ∗8 E2. We show
by induction on : − 8 that there are unique 8-composable D1, D2 ∈ �: such that

� (D1) = E1, � (D2) = E2 and D1 ∗8 D2 = D.

If 8 = :−1, then E1 ∗8 E2 = E1 r
8 E2, so there exist uniqueD1, D2 ∈ �: such thatD1, D2 are 8-composable

and � (D1) = E1, � (D2) = E2 and D = D1 r
8 D2, and the last equality is equivalent to D = D1 ∗8 D2.

Otherwise, if 8 < : − 1, then

E1 ∗8 E2 = (E1 r
8 m
−
8+1(E2)) ∗8+1 (m+8+1(E1) r8 E2)

so there exist unique 8-composableF1,F2 ∈ �: such that

� (F1) = (E1 r
8 m
−
8+1(E2)), � (F2) = (m+8+1(E1) r8 E2) and F1 ∗8+1 F2 = D.

By the hypothesis on � , there exist unique 8-composable cells D1 ∈ �: and D ′2 ∈ �8+1 such that

� (D1) = E1, � (D ′2) = m−8+1(E2) and D1 r
8 D
′
2 = F1

and similarly, there exist unique 8-composable D ′1 ∈ �8+1 and D2 ∈ �: such that

� (D ′1) = m+8+1(E1), � (D2) = E2 and D ′1 r
8 D2 = F2.

Moreover, we have

� (m+8+1(D1)) = m+8+1(E1) = � (D ′1)
� (D ′2) = m−8+1(E2) = � (m−8+1(D2))

and
m+8+1(D1) r8 D ′2 = m+8+1(F1) = m−8+1(F2) = D ′1 r

8 m
−
8+1(D2)

so that, by the hypothesis on � , m+8+1(D1) = D ′1 and D ′2 = m
−
8+1(D2). Thus,

D = (D1 r
8 m
−
8+1(D2)) ∗8+1 (m+8+1(D1) r8 D2) = D1 ∗8 D2

For unicity, if there exist 8-composable D̃1, D̃2 ∈ �: such that

� (D̃1) = E1, � (D̃2) = E2 and D = D̃1 ∗8 D̃2

then
� (D̃1 r

8 m
−
8+1(D̃2)) = E1 r

8 m
−
8+1(E2) = � (F1)

and
� (m+8+1(D̃1) r8 D̃2) = m+8+1(E1) r8 E2 = � (F2)

so that, by the hypothesis on � ,

F1 = D̃1 r
8 m
−
8+1(D̃2) and F2 = m

+
8+1(D̃1) r8 D̃2

and, using the hypothesis on � again, we deduce that D̃1 = D1 and D̃2 = D2, which concludes the
induction. Hence, � is =-Conduché. �
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2.2.3.8 — Conduché categorical action morphisms. Let = ∈ N. Anticipating the associated
monomorphism preservation result for the left adjoint CatA= → Cat=+1, we need to introduce
a notion of Conduché morphism between =-categorical actions, so that the Conduché prop-
erty will also be preserved by −[−]A. Following Proposition 2.2.3.7, given two =-categorical
actions (�,�=+1), (�,�=+1) ∈ CatA= and a morphism (�, 5 ) : (�,�=+1) → (�,�=+1) ∈ CatA= , we
say that the morphism (�, 5 ) is =-Conduché when � is =-Conduché and

(i) for all D ∈ �=+1, if 5 (D) = D̃ ′ r8 Ẽ for some 8 ∈ N=−1, D̃ ∈ �=+1 and Ẽ ∈ �8+1, then there exist
unique 8-composable D ′ ∈ �=+1 and E ∈ �8+1 such that

5 (D ′) = D̃ ′, � (E) = Ẽ and D = D ′ r8 E ,

(ii) for all E ∈ �=+1, if 5 (E) = D̃ r
8 Ẽ
′ for some 8 ∈ N=−1, D̃ ∈ �8+1 and Ẽ ′ ∈ �=+1, then there exist

unique 8-composable D ∈ �8+1 and E ∈ �=+1 such that

� (D) = D̃, 5 (E ′) = Ẽ ′ and E = D r
8 E
′.

2.2.3.9 — Conduché functors and contexts. Let = ∈ N ∪ {l}. We now show that Conduché
functors have several good properties regarding contexts and context classes. First, they lift the
relations ≈< that de�ne the<-context classes:

Proposition 2.2.3.10. Let � : � → � be a morphism in Cat= such that � is an =-Conduché
functor. Then, given< ∈ N= and an<-context �1 of � of type (D,D ′) and an<-context �̃2 of � of
type (� (D), � (D ′)) such that � (�1) ≈< �̃2, there exists an<-context �2 of � of type (D,D ′) such
that

� (�2) = �̃2 and �1 ≈< �2.

Proof. We prove this property using an induction on<. The property holds for< ≤ 1, so suppose
that< ≥ 2. Let

(;1, �1, A1) = �1 and (;̃2, �̃2, Ã2) = �̃2.

By Remark 2.2.2.4, it is su�cient to prove the case where � (�1) ≈1
< �̃2. By the symmetry in the

de�nition of≈1
< , we can suppose that (≈-L) is veri�ed, so that there exist ;̃ ′8 , Ã

′
8 ∈ �<−1 for 8 ∈ {1, 2}

and an (<−2)-context class �̃ ′ and ;̃ , F̃, Ã ∈ �< such that

� (�1) = È(;̃ ′1, �̃ ′, Ã ′1)É and �̃2 = È(;̃ ′2, �̃ ′, Ã ′2)É

satisfying

� (;1) = ;̃ r<−1 (F̃ r
<−2 �̃

′[� (D)] r<−2 Ã
′
1) � (A1) = Ã

;̃2 = ;̃ Ã2 = (F̃ r
<−2 �̃

′[� (D ′)] r<−2 Ã
′
2) r<−1 Ã

;̃ ′1 = m
+
< (F̃) Ã ′1 = Ã

′
2

;̃ ′2 = m
−
< (F̃).

By induction hypothesis, there is an (<−1)-context (; ′1, � ′1, A ′1) of � such that

� (; ′1) = ;̃ ′1, � (� ′1) = �̃ ′, � (A ′1) = Ã ′1 and �1 = È(; ′1, � ′1, A ′1)É.

Considering � (;1), since � is =-Conduché, there are unique ;,F ∈ �< and C, C ′ ∈ �<−1 such that

� (;) = ;̃ , � (F) = F̃, � (C) = �̃ ′[� (D)], � (C ′) = Ã ′1 and ;1 = ; r<−1 (F r
<−2 C r

<−2 C
′).
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By Proposition 2.2.2.15, we moreover have � (C) = � (� ′1 [D]). We compute that

m+<−1(F) r<−2 C r
<−2 C

′ = m+<−1(;1) = ; ′1 r
<−2 �

′
1 [D] r<−2 A

′
1

and
� (m+<−1(F)) = m+<−1(F̃) = ;̃ ′1

so that, since � is =-Conduché,

m+<−1(F) = ; ′1, C = � ′1 [D] and C ′ = A ′1.

By putting

A = A1, ;2 = ;, ; ′2 = m
−
< (F), A ′2 = A

′
1 and A2 = (F r

<−1 �
′[D ′] r<−1 A

′
2) r< A

we have
� (A ) = Ã , � (;2) = ;̃2, � (; ′2) = ;̃ ′2, � (A ′2) = Ã ′2 and � (A2) = Ã2.

Hence, by de�ning �2 = (; ′2, � ′, A ′2) and �2 = (;2, �2, A2), considering (≈-L), we have � (�2) = �̃2
and �1 ≈< �2. �

Moreover, the unique lifting property of Conduché functors can be extended to context and
context class evaluations, as in:

Proposition 2.2.3.11. Let� : � → � be a morphism in Cat= such that� is an =-Conduché functor.
Given<,: ∈ N= with< ≤ : , D ∈ �: , Ẽ ∈ �: and an<-context �̃ of type Ẽ of � ,

(i) if � (D) = �̃ [Ẽ], then there exist unique E ∈ �: and<-context � of type E of � such that

� (E) = Ẽ, � (�) = �̃ and D = � [E],

(ii) if � (D) = È�̃É[Ẽ], then there exist unique E ∈ �: and<-context class � of type E of � such
that

� (E) = Ẽ, � (� ) = È�̃É and D = � [E].

Proof. We show this property by induction on <. If < = 0, the property holds. So suppose
that< > 0. Let (;̃ , �̃ ′, Ã ) = �̃. Assume �rst that � (D) = �̃ [Ẽ]. Thus, � (D) = ;̃ r<−1 �̃

′[Ẽ] r<−1 Ã , so
that, since � is =-Conduché, there exist unique ;, A ∈ �< andF ∈ �: such that

� (;) = ;̃ , � (F) = �̃ ′[Ẽ], � (A ) = Ã and D = ; r<−1 F r
<−1 A .

By induction hypothesis, there are unique E ∈ �: and<-context class � ′ such that

� (E) = Ẽ, � (� ′) = �̃ ′ and F = � ′[E]

thus, by putting � = (;, � ′, A ), we have � (�) = �̃ and D = � [E], and the unicity of � and E follows
from the unicity properties above, showing (i).

Now suppose that � (D) = È�̃É[Ẽ]. In particular, we have � (D) = �̃ [Ẽ], and, by the �rst part,
there exist E ∈ �: and an<-context � such that

� (E) = Ẽ, � (�) = �̃ and D = � [E]

and we moreover have � (È�É) = È�̃É and D = È�É[E], which concludes existence. For unicity,
suppose that there is E ′ ∈ �: and an<-context class � of type E ′ such that

� (E ′) = Ẽ, � (� ) = È�̃É and D = � [E ′].
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Let � ′ be an<-context such that � = È� ′É. So �̃ ≈< � (� ′), and, by Proposition 2.2.3.10, there
exist an<-context �̄ such that

� ≈< �̄ and � (�̄) = � (� ′)

so we moreover have D = �̄ [E]. Since D = � ′[E ′], by the unicity property of the �rst part, we
have E = E ′ and �̄ = � ′, which implies È�É = � . Hence, (ii) holds. �

In order for monomorphisms to be preserved by the functor −[−]A, one needs the injectiveness on
cells of such morphisms to extend to contexts and context classes. This is the case for Conduché
monomorphisms:

Proposition 2.2.3.12. Let � : � → � be a monomorphism in Cat= which is moreover =-Conduché.
Given< ∈ N= and an<-type (D,D ′),� induces an injective function between<-contexts (resp.<-con-
text classes) of type (D,D ′) of � and<-contexts (resp.<-context classes) of type (� (D), � (D ′)) of � .

Proof. We prove this property by induction on<. When< = 0, the property holds. So suppose
that < > 0. Let �1 = (;1, � ′1, A1) and �2 = (;2, � ′2, A2) be two <-contexts of type (D,D ′) such
that � (�1) = � (�2), i.e.,

� (;1) = � (;2), � (� ′1) = � (� ′2) and � (A1) = � (A2).

Thus, since � is a monomorphism, ;1 = ;2 and A1 = A2, and, by induction hypothesis, � ′1 = �
′
2.

Now let �1 and �2 be two <-context classes of type (D,D ′) of � such that � (�1) = � (�2).
Let �1, �2 be <-contexts of type (D,D ′) such that �1 = È�1É and �2 = È�2É. Thus, we have
that � (�1) ≈< � (�2) and, by Proposition 2.2.3.10, there exists an<-context �̄1 such that

� (�̄1) = � (�2) and �1 ≈< �̄1

By the �rst part, �̄1 = �2, so that �1 ≈< �2, which implies �1 = �2. �

Finally, since we aim at showing that monomorphic Conduché functors are preserved by −[−]A,
we prove that Conduché morphisms have a property of lifting of factorization of contexts and
context classes analogous to the one on cells:

Proposition 2.2.3.13. Let� : � → � be a morphism in Cat= which is =-Conduché,< ∈ N= , (D,D ′)
be an<-type of � , and � be an<-context of type (D,D ′). Suppose that either � is a monomorphism
or (D,D ′) is an instantiable type. We then have:

(i) if � (�) = Ẽ r
8 �̃
′ for some 8 ∈ N<−1, Ẽ ∈ �8+1 and<-context �̃ ′ of type (� (D), � (D ′)), then

there exist unique E ∈ �8+1 and<-context � ′ of type (D,D ′) such that

� (E) = Ẽ, � (� ′) = �̃ ′ and � = E r
8 �
′,

(ii) if � (È�É) = Ẽ r
8 �̃ for some 8 ∈ N<−1, Ẽ ∈ �8+1 and<-context class �̃ of type (� (D), � (D ′)),

then there exist unique E ∈ �8+1 and<-context � of type (D,D ′) such that

� (E) = Ẽ, � (� ) = �̃ and È�É = E r
8 � .

and similarly for compositions on the right of contexts and context classes by cells.
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Proof. We show the property by induction on <. The property holds for < ≤ 1 so assume
that < > 1. Let � = (;, � , A ) be an <-context of type (D,D ′) such that � (�) = Ẽ r

8 �̃
′ for

some 8 ∈ N<−1, Ẽ ∈ �8+1 and<-context �̃ ′ = (;̃ ′, �̃ ′, Ã ′). If 8 + 1 =<, we then have

� (;) = Ẽ r
<−1 ;̃

′, � (� ) = �̃ ′ and � (A ) = Ã ′

thus, since � is =-Conduché, there are unique E ∈ �8+1 and ; ′ ∈ �< such that

� (E) = Ẽ, � (;) = ;̃ ′ and ; = E r
8 ;
′

so that � = E r
8 �
′ with � ′ = (; ′, � , A ), and one easily check that the unicity property is veri�ed.

Otherwise, if 8 + 1 < <, we then have

� (;) = Ẽ r
8 ;̃
′, � (� ) = Ẽ r

8 �̃
′, and � (A ) = Ẽ r

8 Ã
′.

By induction hypothesis and since � is =-Conduché, there are unique E1, E2, E3 ∈ �8+1, ; ′, A ′ ∈ �<
and (<−1)-context class � ′ such that

Ẽ = � (E1) Ẽ = � (E2) Ẽ = � (E3)
;̃ ′ = � (; ′) �̃ ′ = � (� ′) Ã ′ = � (A ′)
; = E1 r

8 ;
′ � = E2 r

8 �
′ A = E3 r

8 A
′.

Moreover,
E1 r

8 m
+
<−1(; ′) = m+<−1(;) = � [D] = E2 r

8 �
′[D]

and
� (m+<−1(; ′)) = m+<−1(;̃ ′) = �̃ ′[� (D)] = � (� ′[D])

so that, since � is =-Conduché,

E1 = E2 and m+<−1(; ′) = � ′[D]

Similarly,
E2 = E3 and � ′[D ′] = m−<−1(A ′)

so that � = E1 r
8 �
′ where � ′ = (; ′, � ′, A ′), and the unicity of such a factorization is easily deduced

from the unicity of E1, ; ′, A ′ and � ′. Thus (i) holds.
Now, suppose that � (È�É) = Ẽ r

8 �̃ for some 8 ∈ N<−1, Ẽ ∈ �8+1 and (<−1)-context class �̃ .
Let �̃ ′ be an<-context such that �̃ = È�̃ ′É. Then, � (�) ≈< E r

8 �̃
′, so that, by Proposition 2.2.3.10,

there exists an<-context �̄ of type (D,D ′) such that

� (�̄) = Ẽ r
8 �̃
′ and � ≈< �̄.

Then, by the �rst part, there exist E ∈ �8+1 and an<-context � ′ of type (D,D ′) such that

� (E) = Ẽ, � (� ′) = �̃ ′ and �̄ = E r
8 �
′.

Thus, by putting � = È� ′É, we have È�É = E r
8 � . Suppose now that

� (Ē) = Ẽ, � (�̄ ) = � and È�É = Ē r
8 �̄

for some Ē ∈ �8+1 and <-context class �̄ of type (D,D ′). If � is a monomorphism, then, by
Proposition 2.2.3.12, we have Ē = E and �̄ = � . Otherwise, if (D,D ′) = (m−<−1(F), m+<−1(F)) for
someF ∈ �< , then, by Proposition 2.2.2.13 and Proposition 2.2.2.15, we have

Ē r
8 �̄ [F] = � [F] = E r

8 � [F] and � (�̄ [F]) = �̃ [� (F)] = � (� [F])

so that, since � is =-Conduché, we have Ē = E and �̄ [F] = � [F]. Moreover, since

� (�̄ ) = �̃ = � (� )

we have �̄ = � by Proposition 2.2.3.11. Hence, (ii) holds. �
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2.2.3.14 — Monomorphism preservation. Let = ∈ N. From the above properties on contexts
and context classes, we �nally deduce a preservation property of monomorphisms of cellular
extension by the free action functor:

Proposition 2.2.3.15. Let (�,ℎ) : (�,- ) → (�,. ) be a monomorphism in Cat+= , such that � is
=-Conduché. The =-categorical action morphism � [ℎ]A is a monomorphism and an =-Conduché
morphism of CatA= .

Proof. Since (�,ℎ) is a monomorphism, both

� : � → � ∈ Cat= and ℎ : - → . ∈ Set

are monomorphisms. Since � [ℎ]A=+1((6, � )) = (ℎ(6), � (� )) for (6, � ) ∈ -A, we have that � [ℎ]A
is a monomorphism by Proposition 2.2.3.12. And it is =-Conduché as a consequence of Proposi-
tion 2.2.3.13. �

2.2.4 Free (n+1)-categories on n-categorical actions

There is a forgetful functor
U ′ : Cat=+1 → CatA=

which maps an (=+1)-category� to an =-categorical action (�≤=,�=+1) by forgetting the r
= opera-

tion (where we consider the (=+1)-precategory structure of�). SinceU ′ is obviously derived from
an essentially algebraic theory morphism, this functor has a left adjoint −[−]≈ : CatA= → Cat=+1
by Theorem 1.1.2.7. In this section, given (�,�) ∈ CatA= , we show that the (=+1)-cells of � [�]≈
can be described as sequences of composable elements of� that are adequately quotiented. More-
over, we prove preservation properties of monomorphisms and Conduché functors for −[−]≈
that are analogous to the ones proved in the previous section for −[−]A.

2.2.4.1 — Sequences. Let = ∈ N and (�,�) ∈ CatA= . We de�ne the set �★ of =-composable
sequences (or simply, =-sequences) of (�,�) as the set of terms of the form

(D1, . . . , D: )s

for some : ∈ N and D1, . . . , D: ∈ � such that D1, . . . , D: are =-composable. When : = 0, by
convention, there is an empty sequence ( )sD for each D ∈ �= . Given E = (E1, . . . , E: )s ∈ �★, we
say that : is the length of E and we write |E | for : . Moreover, we de�ne a source m−= (E) and a
target m+= (E) for E by putting

m−= (E) = m−= (E1) and m+= (E) = m+= (E: )

where, by convention, if E = ( )sD for some D ∈ �= , then m−= (E) = m+= (E) = D. Thus, we obtain an
=-cellular extension whose set of (=+1)-globes is �★ and whose underlying =-category is � . We
now de�ne composition operations for the =-sequences. Given 8 ∈ N=−1, a cell D ∈ �8+1 and an
=-sequence E = (E1, . . . , E; )s ∈ �★ such that D, E are 8-composable, we put

D r
8 E = (D r

8 E1, . . . , D r
8 E; )s

where, by convention, if E = ( )s
Ẽ

for some Ẽ ∈ �= , then D r
8 E = ( )s

D q8 Ẽ . Given =-composable
=-sequences D = (D1, · · · , D: )s and E = (E1, · · · , E; )s in �★, we put

D r
= E = (D1, . . . , D: , E1, . . . , E; )s.
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; = G ~ I

5

5 ′

6
⇓ D A = G ~ I

5

6

6′

⇓ E

; ′ = G ~ I
5 ′

6

6′

⇓ E A ′ = G ~ I

5

5 ′

6′

⇓ D

Figure 2.2 – A con�guration of 2-cells ;, ; ′, A , A ′, D, E such that X(;, ; ′, A , A ′, D, E)

In order to obtain a strict (=+1)-category from � and �★, we need to quotient �★ so that the
exchange condition (E) on precategories holds (c.f. Theorem 1.4.3.8). For this purpose, we de�ne
a relation

X ⊆ �6

such that, given ;, ; ′, A , A ′, D, E ∈ �, X(;, ; ′, A , A ′, D, E) holds when D, E are (=−1)-composable and the
following equalities hold in �

; = D r
=−1 m

−
= (E) A = m−= (D) r=−1 E

; ′ = m+= (D) r=−1 E A ′ = D r
=−1 m

+
= (E).

In Figure 2.2, we illustrate this condition in the case of a 1-categorical action. Given ;, ; ′, A , A ′ ∈ �,
we write X(;, ; ′, A , A ′) when there exist D, E ∈ � such that we have X(;, ; ′, A , A ′, D, E). We de-
�ne an equivalence relation ≈ on �★ as the re�exive symmetric transitive closure of ≈1, where,
for ; = (;1, . . . , ;: )s and A = (A1, . . . , A: )s in �★, ; ≈1 A when there is 8 ∈ N∗

:−1 such that

X(;8 , ;8+1, A8 , A8+1) and ; 9 = A 9 for 9 ∈ N∗
:
\ {8, 8 + 1}.

We write �≈ for the quotient set �★/≈ of =-sequence classes and write

È−É : �★→ �≈

for the associated projection. We remark that, ifD, E ∈ �★ are such thatD ≈ E , then |D | = |E |. Thus,
the length given for the members of �★ induces a length for the members of �≈.

Remark 2.2.4.2. The relation ≈−1 on�★, which is de�ned by D ≈−1 E when E ≈1 D for all D, E ∈ �★,
admits a de�nition which is symmetrical to the one of ≈1. Moreover, ≈ can be equivalently
described as the re�exive transitive closure of ≈1 ∪ ≈−1, so that, in the proofs, by symmetry of
the de�nitions of ≈1 and ≈−1, we can often reduce a case analysis of D ≈ E to D ≈1 E .

Note that the operations mn= for n ∈ {−, +} on �★ are compatible with the relation ≈, so that they
are well-de�ned on �≈ as well. Thus, we obtain an =-cellular extension � [�]≈ by extending the
strict =-category � with �≈. The operations r

8 for 8 ∈ N=−1 and r
= de�ned for �★ are compatible

with the relation ≈, so that they are well-de�ned on � [�]≈=+1 = �≈ as well. We add an identity
operation by putting id=+1D = È( )sDÉ for D ∈ �= . We then have:

Proposition 2.2.4.3. The operations id=+1 and r
8 for 8 ∈ N= de�ned above equip � [�]≈ with a

structure of an (=+1)-precategory.
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Proof. The axioms of (=+1)-precategories are then easily veri�ed from the de�nition of �★ and
since � [�]≈≤= = � is an =-precategory. �

More importantly, we have

Proposition 2.2.4.4. � [�]≈ has a structure of (=+1)-category.

Proof. We prove the criterion (E) that characterizes (=+1)-categories among (=+1)-precategories
by Theorem 1.4.3.8. This criterion is already satis�ed by � , so that it is enough to verify it on
(=+1)-cells. Given D ∈ � [�]≈=+1 (resp. E ∈ � [�]≈=+1), we write PL(D) (resp. PR(E)) when we have

(D r
8−1 m

−
8 (E)) r8 (m+8 (D) r8−1 E) = (m−8 (D) r8−1 E) r8 (D r

8−1 m
+
8 (E)) (2.6)

for all 8 ∈ N∗= and E ∈ � [�]≈8+1 (resp. D ∈ � [�]≈8+1) such that D, E are 8-composable. Note that (E) is
satis�ed if and only if PL(D) and PR(D) for allD ∈ � [�]≈=+1. By symmetry, we only prove that PL(D)
for all D ∈ � [�]≈=+1. We �rst show that, given D ∈ �= ,

PL(id=+1D ) holds. (2.7)

Indeed, for all 8 ∈ N∗=−1 and E ∈ �8+1 such that D, E are (8−1)-composable, we have

(id=+1D
r
8−1 m

−
8 (E)) r8 (m+8 (id=+1D ) r8−1 E)

= id=+1(D r
8−1 m

−
8 (E)) r8 (m+8 (D) r8−1 E)

= id=+1((D r
8−1 m

−
8 (E)) r8 (m+8 (D) r8−1 E))

= id=+1((m−8 (D) r8−1 E) r8 (D r
8−1 m

+
8 (E))) (by (E) in �)

= (m−8 (D) r8−1 E) r8 id=+1(D r
8−1 m

+
8 (E))

= (m−8 (D) r8−1 E) r8 (id=+1(D) r8−1 m
+
8 (E))

and, for all E ∈ �=+1 such that D, E are (=−1)-composable, we have

(id=+1D
r
=−1 m

−
= (E)) r= (m+= (id=+1D ) r=−1 E)

= id=+1(D r
=−1 m

−
= (E)) r= (m+= (id=+1D ) r=−1 E)

= D r
=−1 (E)

= (m−= (id=+1D ) r=−1 (E)) r= id=+1(D r
=−1 m

+
= (E))

= (m−= (id=+1D ) r=−1 (E)) r= (id=+1D
r
=−1 m

+
= (E))

thus (2.7) holds. Now, we show that, given =-composable D1, D2 ∈ � [�]≈=+1,

PL(D1) and PL(D2) implies PL(D1 r
= D2). (2.8)

Indeed, if PL(D1) and PL(D2) hold, then, for 8 ∈ N∗=−1 and E ∈ �8+1 such that D1, E is (8−1)-compo-
sable, we have

[(D1 r
= D2) r8−1 m

−
8 (E)] r8 (m+8 (D1 r

= D2) r8−1 E)
= [(D1 r

8−1 m
−
8 (E)) r= (D2 r

8−1 m
−
8 (E))] r8 (m+8 (D1 r

= D2) r8−1 E)
= [(D1 r

8−1 m
−
8 (E)) r8 (m+8 (D1 r

= D2) r8−1 E)] r= [(D2 r
8−1 m

−
8 (E)) r8 (m+8 (D1 r

= D2) r8−1 E)]
= [(D1 r

8−1 m
−
8 (E)) r8 (m+8 (D1) r8−1 E)] r= [(D2 r

8−1 m
−
8 (E)) r8 (m+8 (D2) r8−1 E)]

= [(m−8 (D1 r
= D2) r8−1 E) r8 (D1 r

8−1 m
+
8 (E))] r= [(m−8 (D1 r

= D2) r8−1 E) r8 (D2 r
8−1 m

+
8 (E))]

(by PL(D1) and PL(D2))
= (m−8 (D1 r

= D2) r8−1 E) r8 [(D1 r
8−1 m

+
8 (E)) r= (D2 r

8−1 m
+
8 (E))]
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= (m−8 (D1 r
= D2) r8−1 E) r8 [(D1 r

= D2) r8−1 m
+
8 (E)]

and, for E ∈ � [�]≈=+1 such that D1 and E are (=−1)-composable, we have

[(D1 r
= D2) r=−1 m

−
= (E)] r= (m+= (D1 r

= D2) r=−1 E)
= [(D1 r

=−1 m
−
= (E)) r= (D2 r

=−1 m
−
= (E))] r= (m+= (D1 r

= D2) r=−1 E)
= [(D1 r

=−1 m
−
= (E)) r= (D2 r

=−1 m
−
= (E))] r= (m+= (D2) r=−1 E)

= (D1 r
=−1 m

−
= (E)) r= [(D2 r

=−1 m
−
= (E)) r= (m+= (D2) r=−1 E)]

= (D1 r
=−1 m

−
= (E)) r= [(m−= (D2) r=−1 E) r= (D2 r

=−1 m
+
= (E))] (by PL(D2))

= [(D1 r
=−1 m

−
= (E)) r= (m+= (D1) r=−1 E)] r= (D2 r

=−1 m
+
= (E))

= [(m−= (D1) r=−1 E) r= (D1 r
=−1 m

+
= (E))] r= (D2 r

=−1 m
+
= (E)) (by PL(D1))

= (m−= (D1 r
= D2) r=−1 E) r= [(D1 r

=−1 m
+
= (E)) r= (D2 r

=−1 m
+
= (E))]

= (m−= (D1 r
= D2) r=−1 E) r= [(D1 r

= D2) r=−1 m
+
= (E)]

thus, (2.8) holds.

Hence, it is enough to show PL(D) for D = È(D ′)sÉ with D ′ ∈ �. Given 8 ∈ N∗=−1 and E ∈ �8+1 such
that D, E are (8−1)-composable, the equality (2.6) holds since we have

(D ′ r8−1 m
−
8 (E)) r8 (m+8 (D ′) r8−1 E) = (m−8 (D ′) r8−1 E) r8 (D ′ r8 m+8+1(E))

by Axiom (A-iv). We show that (2.6) holds for E = È(E1, . . . , E: )sÉ ∈ � [�]≈=+1 such that D, E are
(=−1)-composable, using an induction on : ∈ N. The case : = 0 corresponds to E = id=+1Ẽ for
some cell Ẽ ∈ �= , and, by a similar argument than the one used to show (2.7), we have that (2.6)
holds. When : > 0, given E ′ = È(E2, . . . , E: )sÉ, we have

(D r
=−1 m

−
= (E)) r= (m+= (D) r=−1 E)

= (È(D ′)sÉ r
=−1 m

−
= (E1)) r= (m+= (D ′) r=−1 È(E1)sÉ) r= (m+= (D) r=−1 E

′) (since E = È(E1)sÉ r
= E
′)

= È(D ′ r=−1 m
−
= (E1), m+= (D ′) r=−1 E1)sÉ r

= (m+= (D) r=−1 E
′)

= È(m−= (D ′) r=−1 E1, D
′ r
=−1 m

+
= (E1))sÉ r

= (m+= (D) r=−1 E
′) (by the de�nition of ≈)

= (m−= (D) r=−1 È(E1)sÉ) r= (D r
=−1 m

+
= (E1)) r= (m+= (D) r=−1 E

′)
= (m−= (D) r=−1 È(E1)sÉ) r= (D r

=−1 m
−
= (E ′)) r= (m+= (D) r=−1 E

′)
= (m−= (D) r=−1 È(E1)sÉ) r= (m−= (D) r=−1 E

′) r= (D r
=−1 m

+
= (E ′)) (by induction hypothesis)

= (m−= (D) r=−1 E) r= (D r
=−1 m

+
= (E)) (since E = È(E1)sÉ r

= E
′)

thus (2.6) holds, which concludes the proof of PL(D). Hence, � [�]≈ is an (=+1)-precategory
satisfying (E), so it is an (=+1)-category by Theorem 1.4.3.8. �

Finally, we show that this construction is universal:

Proposition 2.2.4.5. � [�]≈ is the free (=+1)-category on the action (�,�) relatively to the forgetful
functorU ′.

Proof. Let � be an (=+1)-category and (�, 5 ) : (�,�) → (�≤=, �=+1) be a morphism of =-catego-
rical action. We de�ne an (=+1)-functor � : � [�]≈ → � such that �≤= = � . We �rst de�ne �
on �★ by putting

� (( )sD) = id=+1
� (D) � ((E1, . . . , E: )s) = 5 (E1) r= · · · r= 5 (E: )
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for D ∈ �= and =-composable E1, . . . , E: for some : ∈ N∗. Now, given D,D ′ ∈ � that are (=−1)-com-
posable, we have [

5 (D) r=−1 � (m−= (D ′))
] r
=

[
� (m+= (D)) r=−1 5 (D ′)

]
=

[
� (m−= (D)) r=−1 5 (D ′)

] r
=

[
5 (D) r=−1 � (m+= (D ′))

]
by (E) on � . Thus, given D = (D1, . . . , D: )s and E = (E1, . . . , E; )s in �★ such that D ≈ E , we
have � (D) = � (E), so that � is well-de�ned on � [�]≈=+1 = �★/≈, and it is easily shown to be an
(=+1)-functor. The operation (�, 5 ) ↦→ � de�ned above induces a function

\� : CatA= ((�,�), (�≤=, �=+1)) → Cat=+1(� [�]≈, �)

which is natural in � . Note that \� is injective, since 5 (D) = � (È(D)sÉ) for every D ∈ �. It
is moreover surjective since a (=+1)-functor � : � [�]≈ → � is uniquely determined by �≤=
and (� (È(D)sÉ))D∈�. So � [�]≈ is the free (=+1)-category on the =-categorical action (�,�). �

In the following, for all =-categorical action (�,�), we write � [�]≈ for � [�]≈ as above. The
construction (�,�) ↦→ � [�]≈ uniquely extends to a functor

−[−]≈ : CatA= → Cat=+1

which is left adjoint toU ′. Given (�,ℎ) : (�,�) → (�, �) in Cat+= , the (=+1)-functor

� [ℎ]≈ : � [�]≈ → � [�]≈ ∈ Cat=+1

is de�ned by

� [ℎ]≈8 = �8 and � [ℎ]≈=+1(È(D1, . . . , D: )sÉ) = È(ℎ(D1), . . . , ℎ(D: ))sÉ

for 8 ∈ N= and (D1, . . . , D: )s ∈ �★.

2.2.4.6 — Monomorphism preservation. In this section, we complete the monomorphism
preservation result for −[−]A given in Proposition 2.2.3.15 with a similar one for −[−]≈. Like
for −[−]A, the functor −[−]≈ does not have to preserve monomorphisms in general because of
the quotient with ≈ of the (=+1)-cells. However, as we will prove, it preserves monomorphisms
that are moreover Conduché. Indeed, the latters are well-behaved regarding the relation ≈ since
they can “lift” it.

Let = ∈ N and (�, 5 ) : (�,�) → (�, �) be a morphism in CatA= . We write

5 ★ : �★→ �★

for the function which maps (D1, . . . , D: )s ∈ �★ to (5 (D1), . . . , 5 (D: ))s ∈ �★. Moreover, we write

5 ≈ : �≈ → �≈

for � [5 ]≈=+1. We �rst prove a lifting property for ≈:

Proposition 2.2.4.7. If (�, 5 ) is a monomorphism and =-Conduché, we then have

(i) for all ;, ; ′ ∈ � and Ã , Ã ′ ∈ � such that that X(5 (;), 5 (; ′), Ã , Ã ′), there exist unique A, A ′ ∈ �
such that 5 (A ) = Ã , 5 (A ′) = Ã ′ and X(;, ; ′, A , A ′),

(ii) for all C ∈ �★ and C̃ ′ ∈ �★ such that 5 ★(C) ≈ C̃ ′, there is a unique C ′ ∈ �★ such that 5 ★(C ′) = C̃ ′
and C ≈ C ′.



2.2. FREE CATEGORIES THROUGH CATEGORICAL ACTIONS 127

Proof. Let ;, ; ′ ∈ � and Ã , Ã ′ ∈ � such that X(5 (;), 5 (; ′), Ã , Ã ′). So there exist D̃, Ẽ ∈ � satisfying

5 (;) = D̃ r
=−1 m

−
= (Ẽ) Ã = m−= (D̃) r=−1 Ẽ

5 (; ′) = m+= (D̃) r=−1 Ẽ Ã ′ = D̃ r
=−1 m

+
= (Ẽ).

Since (�, 5 ) is =-Conduché and a monomorphism, there exist D, E ∈ � such that

D̃ = 5 (D) ; = D r
=−1 m

−
= (E)

Ẽ = 5 (E) ; ′ = m+= (D) r=−1 E .

By putting A = m−= (D) r=−1E and A ′ = D r
=−1m

+
=−1(E), we have 5 (A ) = Ã and 5 (A ′) = Ã ′ andX(;, ; ′, A , A ′).

The unicity of A, A ′ comes from the fact that 5 is a monomorphism. Thus (i) holds.
Now let C ∈ �★ and C̃ ′ ∈ �★ such that 5 ★(C) ≈ C̃ ′. By Remark 2.2.4.2, it is enough handle the

case where 5 ★(C) ≈1 C̃ ′. So suppose that 5 ★(C) ≈1 C̃ ′. By (i), there is C ′ ∈ �★ such that 5 ★(C ′) = C̃ ′
and C ≈ C ′. The unicity of C ′ comes from the fact that 5 ★ is a monomorphism. Thus (ii) holds. �

We then deduce a monomorphism preservation result for −[−]≈:

Proposition 2.2.4.8. If (�, 5 ) is a monomorphism and =-Conduché, then the (=+1)-functor � [5 ]≈
is a monomorphism.

Proof. Let D,D ′ ∈ �≈ such that 5 ≈(D) = 5 ≈(D ′), and C, C ′ ∈ �★ such that ÈCÉ = D and ÈC ′É = D ′.
Note that 5 ★(C) ≈ 5 ★(C ′). By Proposition 2.2.4.7(ii), there exists C̄ ∈ �★ such that

5 ★(C̄) = 5 ★(C ′) and C ≈ C̄ .
Since 5 is injective, 5 ★ is too. Thus, we have C̄ = C ′, so that D = D ′. �

Moreover, Conduché functors are also preserved:

Proposition 2.2.4.9. If (�, 5 ) is a monomorphism and =-Conduché, then the (=+1)-functor � [5 ]≈
is (=+1)-Conduché.

Proof. We use the characterization of (=+1)-Conduché functor given by Proposition 2.2.3.7. First,
let D ∈ �≈ such that 5 ≈(D) = Ẽ r

8 D̃
′ for some 8 ∈ N=−1, Ẽ ∈ �8+1 and D̃ ′ ∈ �≈. Given C ∈ �★

and C̃ ′ ∈ �★ such that ÈCÉ = D and ÈC̃ ′É = D̃ ′, we have

5 ★(C) ≈ Ẽ r
8 C̃
′

so that, by Proposition 2.2.4.7(ii), there exists C̄ ∈ �★ such that

5 ★(C̄) = Ẽ r
8 C̃
′ and C ≈ C̄ .

Since (�, 5 ) is monomorphic and =-Conduché, there exist E ∈ �8+1 and C ′ ∈ �★ such that

� (E) = Ẽ, 5 ★(C ′) = C̃ ′ and C̄ = E r
8 C
′.

Hence, putting D ′ = ÈC ′É, we have 5 ≈(D ′) = D̃ ′ and D = E r
8 D
′. The unicity of E and D ′ is a

consequence of Proposition 2.2.4.8.
Now, let D ∈ �≈ such that 5 ≈(D) = D̃1 r

= D̃2 for some D̃1, D̃2 ∈ �≈. Given C ∈ �★ and C̃1, C̃2 ∈ �★
such that ÈCÉ = D, ÈC̃1É = D̃1 and ÈC̃2É = D̃2, we have

5 ★(C) ≈ C̃1 r
= C̃2

so that, by Proposition 2.2.4.7(ii), there exists C̄ ∈ �★ such that 5 ★(C̄) = C̃1 r
= C̃2. Since r

= is de�ned
as concatenation of lists on �★, there are C1, C2 ∈ �★ such that

5 ★(C1) = C̃1, 5 ★(C2) = C̃2 and C̄ = C1 rC2.

By putting D1 = ÈC1É and D2 = ÈC2É, we have 5 ≈(D1) = D̃1, 5 ≈(D2) = D̃2 and D = D1 r
= D2. The

unicity ofD1, D2 is a consequence of Proposition 2.2.4.8. We conclude using Proposition 2.2.3.7. �
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2.2.5 Another description of free categories on cellular extensions

Let = ∈ N. We can sum up the content of the previous sections to give another description of the
functor

−[−] : Cat+= → Cat=+1.

Indeed, since its right adjointV= : Cat=+1 → Cat+= is the composite of the right adjoints

U ′ : Cat=+1 → CatA= and U : CatA= → Cat=

we have, by Propositions 2.2.3.4, 2.2.4.5, 1.2.3.14 and 1.2.3.15, that there exists a canonical natural
isomorphism

Φ : −[−] ⇒ (−[−]≈) ◦ (−[−]A) (2.9)

and, writing [ and [ ′ for the units associated to the respective adjunctions

−[−] a V= and (−[−]≈) ◦ (−[−]A) a U ◦ U ′

we moreover have [ ′ = Φ ◦ [.

2.2.5.1 — Some properties of free extensions. This description allows us to prove several
properties of the functor −[−]. First, we show that (=+1)-generators of an =-cellular extension
are injectively embedded in the associated free (=+1)-category:

Proposition 2.2.5.2. Given an =-cellular extension (�,- ), [ (�,- ) is a monomorphism.

Proof. Since [ ′ = Φ ◦ [, it is enough to prove that [ ′ is a monomorphism. By de�nition of the
functors −[−]A and −[−]≈, [ ′(�,- ) : (�,- ) → � [-A]≈ is the identity on the 8-cells for 8 ∈ N= .
Moreover, given 6 ∈ - , [ ′(�,- ) maps 6 to

[ ′(�,- ) (6) = È((6, �̄
6))sÉ.

By the de�nition of ≈, the restriction of ≈ to sequences of length 1 is the identity relation. So,
given generators 6,6′ ∈ - such that [ ′(�,- ) (6) = [

′
(�,- ) (6

′), we have ((6, �̄6))s = ((6′, �̄6′))s, and
in particular 6 = 6′. Thus, [ ′(�,- ) is a monomorphism and so is [ (�,- ) . �

Given an =-cellular extension (�,- ), the above proposition justi�es that, given 6 ∈ - , we di-
rectly write 6 for [ (�,- ) . Our description of −[−] also induces a decomposition property for the
(=+1)-cells of free extensions:

Proposition 2.2.5.3. Given an =-cellular extension (�,- ) and D ∈ � [- ]=+1, D can be written

�1 [61] ∗= · · · ∗= �: [6: ]

where : ∈ N, 68 ∈ - and �8 is an =-context class of type 68 for 8 ∈ N∗: . Moreover, : is unique for D.

Proof. By the isomorphism (2.9), it is su�cient to prove this property in (-A)≈. First note that,
given 6 ∈ - and an =-context class � of type 6, by Lemma 2.2.3.3, we have the following equalities
in (-A)≈:

È((6, � ))sÉ = � [È((6, �̄6))sÉ] = � [[ ′(�,- ) (6)].

By de�nition of (-A)≈, D ∈ (-A)≈ is of the form

D = È(D1, . . . , D: )sÉ
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for some D8 ∈ -A for 8 ∈ N∗
:
. Moreover, each D8 is of the form

D8 = (68 , �8)

for some 68 ∈ - and =-context class �8 of type 68 . Thus, we have

D = È(D1)sÉ ∗= · · · ∗= È(D: )sÉ
= �1 [[ ′(�,- ) (61)] ∗= · · · ∗= �: [[ ′(�,- ) (6: )]

which is the wanted form. Moreover, since the length of an =-sequence is preserved by ≈, : is
unique for D. �

Finally, we can combine the monomorphism preservation results given for the functors −[−]A
and −[−]≈ to deduce a monomorphism preservation property for −[−]:

Proposition 2.2.5.4. Given a morphism (�, 5 ) : (�,- ) → (�,. ) ∈ Cat+= such that (�, 5 ) is
a monomorphism and � is =-Conduché, we have that � [5 ] is a monomorphism and (=+1)-Conduché.

Proof. This is a consequence of Propositions 2.2.4.8, 2.2.4.9 and 2.2.3.15. �

2.2.5.5 — Monomorphisms of polygraphs. We conclude this section with a criterion for mono-
morphisms of polygraphs which will be useful to prove that the word problem instance on a
polygraph reduces to a word problem instance on a �nite subpolygraph. First, we adapt Proposi-
tion 2.2.5.4 to polygraphs:

Proposition 2.2.5.6. Given = ∈ N∪{l} and a morphism � : P→ Q ∈ Pol= such that �8 : P8 → Q8
is injective for 8 ∈ N= , then � ∗ : P∗ → Q∗ is a monomorphism and =-Conduché.

Proof. By a simple induction on = ∈ N, using Proposition 2.2.5.4. The property moreover holds
for = = l since, given an l-functor � : � → � , � is a monomorphism (resp. l-Conduché) if and
only if �≤: is a monomorphism (resp. :-Conduché) for : ∈ N. �

We can now deduce the following criterion for monomorphisms of polygraphs, which already
appears in the work of Makkai:

Proposition 2.2.5.7 ([Mak05, Lemma 5.(9)(ii)]). Given = ∈ N ∪ {l} and a morphism � : P→ Q
in Pol= , the following are equivalent:

(i) � is a monomorphism in Pol= ,

(ii) for 8 ∈ N= , �8 : P8 → Q8 is a monomorphism in Set,

(iii) � ∗ is a monomorphism in Cat= ,

(iv) for 8 ∈ N= , � ∗8 : P∗8 → Q∗8 is a monomorphism of Set.

Proof. We prove this property using an induction on = ∈ N. We can observe that the property
holds for = = 0. So suppose that the property holds for some = ∈ N. We show that it holds
for = + 1. So let (�, 5 ) : (P, - ) → (Q, . ) be a morphism of Pol=+1 with � : P → Q ∈ Pol=
and 5 : - → . ∈ Set.

Proof that (i) implies (ii): Since (−)Pol
≤= is a right adjoint, � is a monomorphism, so that, by induction

hypothesis, � ∗= is injective. Let 61, 62 ∈ - such that 5 (61) = 5 (62). Then, for n ∈ {−, +},

� ∗(dn= (61)) = � ∗(dn= (62)).
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Since � ∗= is injective, we have dn= (61) = dn= (62). Let . = {∗} and (%,. ) be the (=+1)-polygraph
such that

d−= (∗) = d−= (61) and d+= (∗) = d+= (61).

Denoting 5 8 : . → - for the functions such that 5 8 (∗) = 68 for 8 ∈ {1, 2}, 5 1 and 5 2 induces
morphisms of polygraphs (idP, 5 1), (idP, 5 2) : (P, . ) → (P, - ) and we have

(�, 5 ) ◦ (idP, 5 1) = (�, 5 ) ◦ (idP, 5 2).

Since (�, 5 ) is a monomorphism, it implies 5 1 = 5 2, i.e., 61 = 62. Thus, 5 is an injective function.

Proof that (ii) implies (i): This is trivial.

Proof that (iii) implies (iv): For 8 ∈ N=+1, the functor (−)8 : Cat=+1 → Set is derived from a
morphism of essentially algebraic theories. Thus, by Theorem 1.1.2.7, it is a right adjoint, and
as such, it preserves monomorphisms. Hence, if � ∗ [5 ] is a monomorphism, then � ∗ [5 ]8 is a
monomorphism for 8 ∈ N=+1.

Proof that (iv) implies (iii): A morphism � : � → � ∈ Cat=+1 is completely determined by
the �8 : �8 → �8 for 8 ∈ N=+1. Thus, if � ∗ [5 ]8 is a monomorphism for 8 ∈ N=+1, then � ∗ [5 ]
is a monomorphism.

Proof that (ii) implies (iv): This is a consequence of Proposition 2.2.5.6.

Proof that (iv) implies (ii): By the induction hypothesis, �8 : P8 → Q8 is a monomorphism of set
for 8 ∈ N= . Moreover, we have the commutative diagram

- .

P∗ [- ]=+1 Q∗ [. ]=+1

5

[ (P∗,- ) [ (Q∗,. )

� ∗ [5 ]=+1

where [ (P∗,- ) is injective by Proposition 2.2.5.2, and � [5 ]=+1 is injective. Thus, 5 is injective.

For the extension to = = l , note that the functors (−)Pol
≤:,l : Poll → Pol: for : ∈ N preserves

monomorphisms (since they are right adjoints by Proposition 1.3.3.12) and jointly re�ect them
(since Poll is a limit cone on the categories Pol: ). Thus, � is a monomorphism in Poll if and
only if �≤: is a monomorphism in Pol: for : ∈ N. We then conclude using the same remark as
the one in the proof of Proposition 2.2.5.6. �

2.3 Computable free extensions

In order to consider decidability problems on strict categories, like the word problem, we must �rst
clarify the notion of computability on these structures and, in particular, how to represent them
computationally. In classical computable model theory [Har98; AK00], computable models are
structures whose sets are subsets ofN and whose operations are recursive functions between those
subsets. However, this approach would be inadequate for our purposes since the constructions
we introduced for strict categories, like the functor −[−] : Cat+= → Cat=+1, do not produce strict
(=+1)-categories whose sets of cells are subsets of N. Instead, we use encodings to witness that
these sets can be represented as subsets of N and the structural operations (sources, targets,
identities, compositions) as recursive functions between these subsets.

After recalling the de�nition of recursive functions, we introduce the setting of computability
with encodings that will then allow to de�ne computational descriptions of strict =-categories
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(Section 2.3.1). Using this formalism, we give su�cient conditions for the free extension on a
cellular extension to be computable (Section 2.3.2). The constructive content of the proofs will
ultimately lead to a concrete computational implementation, as we will see in Section 2.4. We
then consider the special case of polygraphs and give a more e�cient procedure to compute the
free strict category on a polygraph (Section 2.3.3).

2.3.1 Computability with encodings

In this section, we introduce the formalism of computability with encodings, after recalling
some elementary de�nitions and facts about recursive functions. The latter are essentially the
functionsN→ Nwhose values can be computed by a program or an algorithm. We then introduce
computational descriptions for the higher categorical objects that we will manipulate (=-globular
sets, =-categories, =-precategories and =-cellular extensions, etc.). These descriptions will consist
in encodings and recursive functions that represent the structural operations of these objects by
the mean of the encodings. Using such descriptions, higher categorical objects can then be inputs
and outputs of programs.

2.3.1.1 — Recursive functions. We recall the de�nition and several elementary properties of
recursive functions. We refer the reader to existing monographs (like [Rog87]) for a more complete
presentation.

Given two sets -,. , we write Part(-,. ) for the set of partial functions between - and . .
A function 5 ∈ Part(-,. ) is total when it is de�ned on all - . There are several operations which
can be de�ned between the partial functions in the sets Part(N: ,N).
For : ∈ N and (;8)8∈N∗

:
∈ N: , there is a composition operation

◦:,(;8 )8 : Part(N: ,N) ×
∏
8∈N∗

:

Part(N;8 ,N) → Part(N;1+···+;: ,N)

so that, given partial functions 6 ∈ Part(N: ,N) and 58 ∈ Part(N;8 ,N) for 8 ∈ N∗
:
, the partial

function ℎ = ◦:,(;8 )8 (6, (58)8) is such that, for Ḡ1 ∈ N;1, . . . , Ḡ: ∈ N;: , ℎ(Ḡ1, . . . , Ḡ: ) is de�ned if and
only if 58 (Ḡ8) is de�ned for 8 ∈ N∗

:
and 6(51(Ḡ1), . . . , 5: (Ḡ: )) is de�ned, and in this case,

ℎ(Ḡ1, . . . , Ḡ: ) = 6(51(Ḡ1), . . . , 5: (Ḡ: )).

For : ∈ N, there is a recursion operation

d: : Part(N: ,N) × Part(N:+2,N) → Part(N:+1,N)

so that, given 5 ∈ Part(N: ,N) and 6 ∈ Part(N:+2,N), the partial function ℎ = d: (5 , 6) is such
that, for all G1, . . . , G: ∈ N,

– ℎ(G1, . . . , G: , 0) is de�ned if and only if 5 (G1, . . . , G: ) is de�ned, and, in this case,

ℎ(G1, . . . , G: , 0) = 5 (G1, . . . , G: ),

– for = ∈ N, ℎ(G1, . . . , G: , = + 1) is de�ned if and only if both

ℎ(G1, . . . , G: , =) and 6(G1, . . . , G: , =, ℎ(G1, . . . , G=))

are de�ned and, in this case,

ℎ(G1, . . . , G: , = + 1) = 6(G1, . . . , G: , =, ℎ(G1, . . . , G=)).
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For : ∈ N, there is a minimization operation

`: : Part(N:+1,N) → Part(N: ,N)

such that, given 5 ∈ Part(N:+1,N), the partial function 6 = `: (5 ) is so that, for all G1, . . . , G: ∈ N,

– if there exists a smallest number = ∈ N such that 5 (G1, . . . , G: , =) is non-zero or unde�ned,
then

6(G1, . . . , G: ) = 5 (G1, . . . , G: , =)

(if 5 (G1, . . . , G: , =) is unde�ned, then 6(G1, . . . , G: ) is unde�ned),

– otherwise, 6(G1, . . . , G: ) is unde�ned.

We de�ne subsets Rec: ⊆ Part(N: ,N) for : ∈ N as the smallest family of subsets of Part(N: ,N)
such that

– for all : ∈ N and 2 ∈ N, the total function (G1, . . . , G: ) ↦→ 2 is in Rec: ,

– for all : ∈ N∗ and 8 ∈ N∗
:
, the total function (G1, . . . , G: ) ↦→ G8 is in Rec: ,

– the total function G ↦→ G + 1 is in Rec1,

– given : ∈ N and (;8)8∈N∗
:
∈ N: , 6 ∈ Rec: , 58 ∈ Rec;8 for 8 ∈ N∗

:
, the partial func-

tion ◦:,(;8 )8 (6, (58)8) is in Rec;1+···+;: ,

– given : ∈ N, 5 ∈ Rec: , 6 ∈ Rec:+2, the partial function d: (5 , 6) is in Rec:+1,

– given : ∈ N and 5 ∈ Rec:+1, the partial function `: (5 ) is in Rec: .

Given : ∈ N, a partial function 5 : N: → N is said to be recursive when 5 ∈ Rec: . It is well-
known [Tur37] that 5 is recursive when one of the following equivalent conditions hold:

– there exists a Turing machingM such that 5 is de�ned on (G1, . . . , G: ) ∈ N: if and only
ifM halts on input (G1, . . . , G: ) and, in this case, 5 (G1, . . . , G: ) is the output ofM on this
input;

– there exists a lambda-term C such that 5 (G1, . . . , G: ) is de�ned if and only if there existsG ∈ N
such that C [G1] . . . [G: ] is beta-equivalent to [G] and, in this case, 5 (G1, . . . , G: ) = G (where,
for 8 ∈ N, [8] denotes Church-encoding of 8).

So, intuitively, recursive functions are the partial functions that can be computed by a program.
In particular, functions like addition, multiplication, division are recursive. For every : ∈ N, there
exists a recursive function

h: : N:+1 → N

which is universal for recursive functions with : arguments, i.e., for every function 5 ∈ Rec: ,
there exists 2 ∈ N, such that, for all Ḡ ∈ N: , h: (2, Ḡ) is de�ned if and only if 5 (Ḡ) is de�ned, and,
in this case, h: (2, Ḡ) = 5 (Ḡ). We say that such 2 is a code for 5 . Moreover, the recursive function h:
can be chosen such that there are recursive functions

◦̄:,(;8 )8 : N:+1 → N and d̄: : N2 → N and ¯̀: : N→ N

for : ∈ N and (;8)8 ∈ N: satisfying
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– for 5 ∈ Rec: , 5 # ∈ N, 68 ∈ Rec;8 and 6#
8 ∈ N for 8 ∈ N∗

:
, if 5 # is a code for 5 and 6#

8 is a code
for 68 , then ◦̄:,(;8 )8 (5 #, (6#

8 )8) is a code for ◦:,(;8 )8 (5 , (68)8),

– for 5 ∈ Rec: , 5 # ∈ N, 6 ∈ Rec:+2, 6# ∈ N if 5 # is a code for 5 and 6# is a code for 6,
then d̄: (5 #, 6#) is a code for d: (5 , 6),

– for 5 ∈ Rec:+1 and 5 # ∈ N, if 5 # is a code for 5 , then ¯̀(5 #) is a code for ` (5 ).

In the following, we suppose �xed a sequence of such universal function h: for : ∈ N. Finally, we
recall that a subset ( ⊆ N: is said recursive or decidable when the characteristic function

1( : N: → {0, 1} ⊂ N

is recursive.

2.3.1.2 — Bijections on integers. In order to represent tuples of elements of N as one element
ofN so that these tuples can be manipulated by recursive functions, one needs bijectionsN: → N
for : ∈ N that have good properties regarding computability. We de�ne such bijections below.

Let \2 : N × N→ N be the function such that, for (21, 22) ∈ N2,

\2(21, 22) = 21 +
(21 + 22) (21 + 22 + 1)

2
.

We have that:

Proposition 2.3.1.3. \2 is bijective and both \2 and \−1
2 are recursive.

Proof. We de�ne a function \̄2 : N → N2 as follows: for every 2 ∈ N, we put \̄2(2) = (21, 22)
where 21, 22 ∈ N are unique such that

(i) there is a unique : ∈ N which is the smallest integer such that 2 < : (:+1)
2 ,

(ii) 21 = 2 − (:−1):
2 ,

(iii) 22 =
: (:+1)

2 − 2 − 1.

The function \̄2 is injective since, for 2, 21, 22, : as above, we have

: = 21 + 22 + 1 and 2 = 21 +
(: − 1):

2
.

Moreover, for (21, 22) ∈ N2 and : = 21 + 22 + 1, we have

(: − 1):
2

≤ \2(21, 22) < 21 + 22 + 1 + (: − 1):
2

=
: (: + 1)

2

so that \̄2(\2(21, 22)) = (21, 22). Thus, \2 is a section of \̄2, so \̄2 is bijective and \̄−1
2 = \2. Moreover,

by their respective de�nitions, both \2 and \−1
2 are recursive. �

The following property will be useful for showing that an algorithm that takes tuples as inputs
and involving recursion (i.e., the algorithm calls itself) is terminating:

Proposition 2.3.1.4. For all 21, 22 ∈ N, max(21, 22) ≤ \2(21, 22).

Proof. For all 21, 22 ∈ N, it is clear that 21 ≤ \2(21, 22) by de�nition of \2. Moreover, if 22 ∈ N∗,
then we have 21 + 22 + 1 ≥ 2 so that 221 + 22 ≤ \2(21, 22), and the conclusion follows. �
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We de�ne functions \= : N= → N for = ≥ 2. The function \2 was de�ned above and we put

\=+1 = \2 ◦ (1N × \=)
for = ≥ 2. We easily verify by induction that

Proposition 2.3.1.5. For every = ∈ N with = ≥ 2, \= is bijective and both \= and \−1
= are recursive.

Moreover, for all (21, . . . , 2=) ∈ N= , we have max(21, . . . , 2=) ≤ \= (21, . . . , 2=).

2.3.1.6 — Encodings. Given a set - , an encoding for - is the data of a relation E- ⊆ N ×- such
that

(i) for all G ∈ - , there exists G# ∈ N such that G# E- G ,

(ii) for all G, G ′ ∈ - and 2 ∈ N such that 2 E- G and 2 E G ′, we have G = G ′.

The G# ∈ N such that G# E- G for some G ∈ - are called codes of G and the set

{2 ∈ N | there exists G ∈ - such that 2 E- G}
is called the support of E- . The encoding - is said

– injective when, for all G ∈ - , there is a unique 2 ∈ N such that 2 E G ,

– decidable when the set
{2 ∈ N | ∃G ∈ -, 2 E G}

is decidable,

– equality-decidable when the set

{(2, 2 ′) ∈ N × N | ∃G ∈ -, 2 E G and 2 ′ E G} (2.10)

is decidable.

We note that:

Proposition 2.3.1.7. Given a set - and an encoding E- of - , we have:

(i) if E- is equality-decidable, then it is decidable,

(ii) if E- is injective and decidable, then it is equality-decidable.

Proof. For (i), given 2 ∈ N, deciding whether “there exists G ∈ - such that 2 E- G” is equivalent
to deciding whether “(G, G) belongs to the set (2.10)”. For (ii), given 21, 22 ∈ N, deciding whether
“(21, 22) belongs to the set (2.10)” is equivalent to, since E- in injective, deciding whether “21 = 22
and there exists G ∈ - such that 21 E- G”. �

Example 2.3.1.8. The set N admits a trivial encoding EN which is the identity relation. This
encoding is injective, decidable and equality-decidable.
Given two sets - and . equipped with respective encodings E- and E. , and a partial function

5 : - → .

we say that 5 is computable when there exists a recursive function 5̄ : N → N such that, for
all G ∈ - and G# ∈ N with G# E- G , we have that if 5 (G) is de�ned, then 5̄ (G#) is de�ned, and, in
this case,

5̄ (G#) E. 5 (G).
Such a function 5̄ is called a recursive model of 5 . Moreover, a code for 5 is a code of such a
function 5̄ . We easily verify that the sets equipped with encodings and the computable functions
between them form a category.
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2.3.1.9 — Datatypes. As we will see in Section 2.3.2, the formalism of encodings allows stating
in a precise sense how di�erent constructions on higher categories are computable. However,
it is a rather low-level perspective which would likely di�er from the one taken by an actual
implementation of these constructions. Indeed, in common programming languages, a set is
usually not encoded as a subset of N but as a subset of the inhabitants of some datatype. The
two approaches are essentially equivalent since a datatype t induces an encoding for the set
of inhabitants of t (in a way we will not explain, since it is technical and depends on how the
considered programming language is compiled). We shall mention this more concrete perspective
on computability in parallel to the one with encodings by provinding hints on how to encode the
di�erent encountered sets with datatypes of OCaml. In the following, given a set ( , we say that (
is encoded by a datatype t when ( is equipped with an inclusion from ( to the inhabitants of t .
In this case, the restriction of the encoding on t induces an encoding on ( .

Remark 2.3.1.10. In the current implementation of OCaml, the int datatype can only encode
natural numbers up to 262 − 1. For simplicity, we shall assume in the following that int can
represent all the natural numbers, so that N is encoded by int . This approximation should have
no practical consequences since the code for the word problem introduced in the next section is
not expected to be used on examples that require integers beyond 262 − 1.

Example 2.3.1.11. Under the assumption of Remark 2.3.1.10, the set of �nite increasing sequences
on N is naturally encoded by the datatype int list .

2.3.1.12 — Standard derivations of encodings. In order not to spend too much time de�ning
encodings, we de�ne several derivations of encodings for several “data structures” that we consider
as standard. These derived encodings will equip implicitly the sets associated with the “data
structures”: subset of a set, product of sets, coproduct of sets, set of �nite sequences over a set,
set of �nite subsets of a set, dependent sum and functions with �nite domains.

Let- be a set and- ′ be a subset of- and E- be an encoding of- . We derive an encoding E- ′
of - ′ by putting 2 E- ′ B when 2 E- B for 2 ∈ N and B ∈ - ′. We easily verify that:

Proposition 2.3.1.13. The following holds:

(i) if E- is injective, then E- ′ is injective,

(ii) if E- ′ is decidable and E- is equality-decidable, then E- ′ is equality-decidable.

Remark 2.3.1.14. If - is encoded by the datatype t , then - ′ is naturally encoded by t as well.

Let -1 and -2 be two sets together with encodings E-1 and E-2 . We derive an encoding E-1×-2

of -1 × -2 from E-1 and E-2 : for all 2 ∈ N and (G,~) ∈ -1 × -2, we put

2 E-1×-2 (G,~)

when, for 21, 22 ∈ N such that (21, 22) = \−1
2 (2), we have 21 E-1 G and 22 E-2 ~. We easily verify

the following property:

Proposition 2.3.1.15. If the encodings E-1 and E-2 are decidable (resp. equality-decidable, injec-
tive), then E-1×-2 is decidable (resp. equality-decidable, injective).

Note that, given sets -1, . . . , -= for = ≥ 3 with encodings E-8 for 8 ∈ N∗= , we can derive similarly
an encoding E-1×···×-= for the product set -1 × · · · × -= , and this encoding satis�es a property
similar to Proposition 2.3.1.15.
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Remark 2.3.1.16. If-1, . . . , -= are encoded by datatypes t1 , . . . , tn , then-1×· · ·×-= is naturally
encoded by the datatype type t = Tuple of t1 * ... * tn .

We also derive an encoding E-1t-2 of -1 t -2 from E-1 and E-2 : for 2 ∈ N, given G ∈ -1, we put

2 E-1t-2 ]-1 (G)

when 2 = \2(1, G#) for some G# ∈ N such that G# E-1 G ; given ~ ∈ -2, we put

2 E-1t-2 ]-2 (~)

when 2 = \2(2, ~#) for some ~# ∈ N such that ~# E-2 ~. We easily verify that

Proposition 2.3.1.17. If the encodings E-1 and E-2 are decidable (resp. equality-decidable, injec-
tive), then E-1t-2 is decidable (resp. equality-decidable, injective).

Note that this de�nition adapts naturally to derive an encoding E-1t···t-= of a coproduct of
sets -1 t · · · t -= , and this encoding satis�es a property similar to Proposition 2.3.1.17.

Remark 2.3.1.18. If-1, . . . , -= are encoded by datatypes t1 , . . . , tn , then-1t· · ·t-= is naturally
encoded by the datatype type t = Inj1 of t1 | ... | Injn of tn .

We derive an encoding E-<l of the set -<l of �nite sequences of elements of - : for 2 ∈ N,
given : ∈ N and (G1, . . . , G: ) ∈ -<l , we put

2 E-<l (G1, . . . , G: )

when 2 = \2(:, 2̄) with 2̄ = \: (21, . . . , 2: ) for some 2̄, 21, . . . , 2: ∈ N such that 28 E- G8 for 8 ∈ N∗
:

(by convention, \2(0, 0) is the code of the empty sequence). We easily verify that E-<l is indeed
an encoding and that:

Proposition 2.3.1.19. If the encoding E- is injective (resp. decidable, equality-decidable), then the
encoding E-<l is injective (resp. decidable, equality-decidable).

Remark 2.3.1.20. If- is encoded by the datatype t , then-<l is naturally encoded by the datatype
t list .

We derive an encoding EPf (- ) of the set Pf (- ) of �nite subsets of - : for 2 ∈ N, given : ∈ N
and G1, . . . , G: ∈ - with G8 ≠ G 9 for 8 ≠ 9 , we put

2 EPf (- ) {G1, . . . , G: }

when 2 = \2(:, 2̄) with 2̄ = \: (21, . . . , 2: ) for some 2̄, 21, . . . , 2: ∈ N satisfying

21 < · · · < 2:

and such that there exists a permutation f of N∗
:

with 28 E- Gf (8) (by convention, \2(0, 0) is the
code for the empty set). The codes of the elements are required to be sorted in order to preserve
the injectiveness. We verify:

Proposition 2.3.1.21. If the encoding E- is injective (resp. equality-decidable), then EPf (- ) is
injective (resp. equality-decidable).
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Proof. The preservation of injectiveness is trivial. So suppose that E- is equality-decidable.
Let 21, 22 ∈ N. We exhibit a procedure to decide whether there exists ( ∈ Pf (- ) such that

21 EPf (- ) ( and 22 EPf (- ) (

First, we verify that, for 8 ∈ {1, 2}, 28 EPf (- ) (
8 for some (8 ∈ Pf (- ). We compute

(:8 , 2̄8) = \−1
2 (28)

If :8 = 0, then 28 is a code if and only if 2̄8 = 0 and, in this case, it is the code for the empty subset.
Otherwise, if :8 > 0, we compute

(281, . . . , 28: ) = \
−1
:
(2̄8)

If the 281, . . . , 2
8
:

are not sorted, then 28 is not the code of a �nite subset. So suppose that 281, . . . , 2
8
:

are sorted. Then, 28 is the code of an element of Pf (- ) if and only if each 289 is the code of an
element of- for 9 ∈ N∗

:
and, for 91, 92 ∈ N∗: with 91 ≠ 92, 2891 and 2892 encodes di�erent elements of- .

These two conditions can be veri�ed computationally since E- is supposed equality-decidable.
So suppose that, for 8 ∈ {1, 2}, 28 EPf (- ) (

8 for some (8 ∈ Pf (- ). Then, (1 = (2 if and only
if :1 = :2 and there exists a bijection f : N∗

:1
→ N∗

:1
such that 21

9 and 22
f ( 9) encode the same

element of - for 9 ∈ N∗
:1

. Once again, since E- is equality-decidable, this condition can be
veri�ed computationally. Thus, EPf (- ) is equality-decidable. �

Remark 2.3.1.22. Our choice for the encoding of �nite subsets does not preserve decidability in
general. Indeed, to decide if 2 ∈ N is the code of a �nite subset of- , where 2 = \2(:, 2̄) with : ∈ N∗
and 2̄ = \: (21, . . . , 2: ), we need to verify that the 2 9 encode di�erent elements of - , and we can
not do so computationally if we only know that E- is decidable. In fact, it can be easily shown
that if EPf (- ) is decidable, then E- is equality-decidable. However, other choices for EPf (- ) were
possible and, among them, ones that preserve decidability. But the one we proposed preserves
injectivity and that is our main concern for what is following.
Remark 2.3.1.23. If - is encoded by the datatype t such that the set of inhabitants of t is
equipped with a total order, then Pf (- ) is naturally encoded by the datatype t list . In practice,
we can suppose all the datatypes we will consider to be equipped with total orders since OCaml
can automatically derive particular ones for us.
Given moreover a �nite set ( and an encoding E( , we derive an encoding EF((,- ) of the setF ((, - )
of functions ( → - : for 2 ∈ N and 5 : ( → - , we put

2 EF((,- ) 5

when 2 EPf ((×- ) {(B, 5 (B)) | B ∈ (}, i.e., 2 is the code of the graph of 5 , encoded as a �nite subset
of ( × - . From Proposition 2.3.1.15 and Proposition 2.3.1.21, we deduce that:

Proposition 2.3.1.24. If both E( and E- are injective (resp. equality-decidable), then EF((,- ) is
injective (resp. equality-decidable).

Remark 2.3.1.25. If ( and - are encoded by datatypes s and t respectively, then F ((, - ) is
naturally encoded by the datatype (s * t) list .
Finally, given a function S : - → Set (i.e., for G ∈ - , S(G) is a set), and, for each G in - , an
encoding ES(G) of S(G), we derive an encoding E∑

G S(G) of the dependent sum∑
G ∈-
S(G)
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as follows: for all 2 ∈ N, G ∈ - and ~ ∈ S(G), we put

2 E∑
G S(G) (G,~)

when 2 = \2(G#, ~#) for some G#, ~# ∈ N such that G# E- G and ~# ES(G) ~. We easily verify that:

Proposition 2.3.1.26. If E- is injective and ES(G) is injective for G ∈ - , then E∑
G S(G) is injective.

Remark 2.3.1.27. If - is encoded by the datatype t , and, for G ∈ - , S(G) is encoded by the
datatype u , then

∑
G ∈- S(G) is naturally encoded by the datatype t * u .

2.3.1.28 — Encodings for quotient sets. Under speci�c conditions, we can also derive encod-
ings for quotients sets, and they will play an important role in the algorithm that solves the
word problem. Given a set ( and a relation R on ( , R is right-�nite when, for all B ∈ ( , the
set {B ′ ∈ ( | B R B ′} is �nite; given an encoding E( of ( , R is e�ectively right-�nite when there
is a computable function ' : ( → Pf (() such that, for all B, B ′ ∈ ( , B R B ′ if and only if B ′ ∈ '(B).
Dually, there are notions of left-�nite and e�ectively left-�nite relations. The relationR is decidable
when the characteristic function

1R : ( × ( → {0, 1} ⊂ N

is computable (where ( × ( is equipped with the encoding for product set given above and N
equipped with the trivial encoding on N).

Let - be a set and ∼ be an equivalence relation on - . Given G ∈ - , we write ÈGÉ ⊆ - for the
equivalence class of G with regards to ∼. Let -/∼ be the set {ÈGÉ | G ∈ - }, i.e., the quotient of -
by ∼. We say that ∼ has �nite classes when ÈGÉ is �nite for all G ∈ - . Equivalently, ∼ has �nite
classes if and only if ∼ is right-�nite (resp. left-�nite). Given an encoding E- of - , if ∼ has �nite
classes, we can derive an encoding E-/∼ of -/∼ by putting, for all 2 ∈ N and G ∈ - ,

2 E-/∼ ÈGÉ when 2 EPf (- ) ÈGÉ.

We then have:

Proposition 2.3.1.29. Suppose that ∼ has �nite classes. Then, the following hold:

(i) the function which maps an element B ∈ -/∼ to the �nite set of G ∈ - such that ÈGÉ = B is
computable,

(ii) if E- is injective, then E-/∼ is injective,

(iii) if E- is equality-decidable and the relation ∼ is e�ectively right-�nite, then E-/∼ equality-
decidable (and so, decidable) and the function È−É : - → -/∼ is computable.

Proof. Proof of (i): Since the code of B ∈ -/∼ is a code for the equivalence class of - de�ned by B ,
the identity function N → N is a recursive model of the function which maps B ∈ -/∼ to the
equivalence class de�ned by B .

Proof of (ii): This is a consequence of the fact that EPf (- ) is injective when E- is by Proposi-
tion 2.3.1.21.

Proof of (iii): Suppose that E- is equality-decidable and ∼ is e�ectively right-�nite. Then, by
Proposition 2.3.1.21, EPf (- ) is equality-decidable. Since ∼ is e�ectively right-�nite, the func-
tion ' : - → Pf (- ) which maps G ∈ - to its equivalence class is computable, relatively to the
encodings E- and EPf (- ) . So, let 21, 22 ∈ N. We give a procedure to decide if there is G ∈ -
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such that 21 E-/∼ ÈGÉ and 22 E-/∼ ÈGÉ. Let (:, 2̄1) = \−1
2 (21). If : = 0, then 21 is not a code

for an element of -/∼. So suppose that : > 0. We compute (21
1, . . . , 2

1
:
) = \−1

:
(2̄). Since E-

is equality-decidable, we verify that 21
1 is the code for an element G ∈ - . If it is not the case,

then 21 is not a code for an element of -/∼. Otherwise, since ' is computable, we compute the
equivalence class - ′ = '(G) of G . Then, by our de�nition of E-/∼, 21 and 22 encode the same
element of-/∼ if and only if 21 EPf (- ) -

′ and 22 EPf (- ) -
′, which can be decided since EPf (- ) is

equality-decidable by Proposition 2.3.1.21. Moreover, the function È−É : - → -/∼ is computable
since, for G ∈ - , a code of ÈGÉ is given by a code of '(G), which can be computed since ' is
computable. �

Remark 2.3.1.30. If- is encoded by a datatype t and ∼ has �nite classes, then, by Remark 2.3.1.23,
the set -/∼ is naturally encoded by the datatype t list .

We often do not have a direct description of the equivalence relation ∼, and instead have a
relation ∼1 such that ∼ is the re�exive transitive closure of ∼1. In such a situation, we will use
the following property:

Proposition 2.3.1.31. Given a set ( with an encoding E( , a relation ∼1 on ( and an equivalence
relation ∼ on ( , such that E( is equality-decidable, ∼1 is e�ectively right-�nite and ∼ has �nite
classes on ( and is the re�exive transitive closure of ∼1, we have that ∼ is e�ectively right-�nite, E(/∼
is equality-decidable and the function È−É : ( → (/∼ is computable.

Proof. Let ' : ( → Pf (() be the computable function such that, for all B, B ′ ∈ ( , B ∼1 B ′ if and only
if B ′ ∈ '(B). Using ', we can compute the equivalence class of B ∈ ( by the following procedure,
which is essentially a breadth-�rst search algorithm:

function ComputeClass(B)
# ← {B}
� ← ∅
while # ≠ ∅ do

choose B ′ ∈ #
# ← # \{B ′}
if B ′ ∉ � then

� ← � ∪ {B ′}
# ← # ∪ '(B ′)

end if

end while

return �

end function

Note that this procedure terminates on any B ∈ ( since � contains elements B ′ such that B ∼ B ′
and ∼ has �nite classes, and, at each loop turn, either one element is removed from # or one
element is added to � , so that it gives a function ComputeClass : ( → Pf ((). Moreover, this
function is computable since E( is equality-decidable. So ∼ is e�ectively right-�nite and Proposi-
tion 2.3.1.29(iii) applies. �

2.3.1.32 — Encodings for recursive functions. For : ∈ N, by our choice of the universal func-
tions h: , there are encodings ERec: of Rec: de�ned as follows: for all 5 ∈ Rec: and 5 # ∈ N, 5 # E 5
if and only if

h: (5 #,−) = 5 (−).

By standard undecidability theorems on recursive functions, like Rice’s theorem, these encodings
are neither injective, nor equality-decidable. Decidability depends on the choice for h: . However,
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the restrictions of the functions ◦:,(;8 )8 , d: and `: for : ∈ N and (;8)8 ∈ N: to recursive functions
are computable: recursive models are given by the function ◦̄:,(;8 )8 , d̄: and ¯̀: . This enables to
write algorithms that take as inputs computable functions and outputs computable functions.

Remark 2.3.1.33. In particular, and this will be important in the following, any constructive proof
of a property that concludes that some function 5 is computable under some hypothesis leads to
an algorithm which computes a code for 5 from a code for this hypothesis.

2.3.1.34 — Computational categorical descriptions. In this paragraph, we introduce computa-
tional descriptions, or codes, for several higher categorical structures: =-globular set, =-categories,
=-precategories and =-cellular extensions. Such descriptions are the data of codes of recursive
functions that are recursive models for the di�erent structural operations that appear in the de�-
nition of each structure. These descriptions will enable such higher categorical structures to be
inputs and outputs of computable functions.

Let = ∈ N. Given an =-globular set � , an encoding E� of � is the data of encodings E8 of
the sets �8 for 8 ∈ N=; it is injective (resp. decidable, equality-decidable) when E8 is injective
(resp. decidable, equality-decidable) for 8 ∈ N= . Given such an encoding E� , the =-globular set �
is computable when the functions m−8 , m

+
8 : �8+1 → �8 are computable for 8 ∈ N=−1. A recursive

model of � is the data of recursive models m̄−8 , m̄
+
8 : N→ N of m−8 and m+8 respectively for 8 ∈ N=−1.

A code for� is the data of m−,#
8
, m
+,#
8
∈ N for 8 ∈ N=−1 such that m−,#

8
and m+,#

8
are codes for m−8 and m+8

respectively.
Given a strict=-category� and an encoding E� of� (seen as an=-globular set),� is computable

when the underlying =-globular set of � is computable and

– for : ∈ N=−1, the function id:+1 : �: → �:+1 is encodable,

– for 8, : ∈ N= with 8 < : , the functions ∗8,: : �: ×8 �: → �: (seen as a partial function of
type �: ×�: → �: ) is computable.

A recursive model of � is the data of a recursive model of the underlying =-globular set of �
together with

– for : ∈ N=−1, a recursive model īd:+1 : N→ N of id:+1,

– for 8, : ∈ N with 8 < : , a recursive model ∗̄8,: : N→ N of ∗8,: .

A code of � is the data of a code of the underlying =-globular set of � , together with codes id:+1,#

of id:+1 for : ∈ N=−1, and codes ∗#
8,:

of ∗8,: for 8, : ∈ N= with 8 < : . Using \< for the correct value
of< ∈ N, a code of � can be represented as one element of N.

Remark 2.3.1.35. If�0 t · · · t�= is encoded by a datatype cell , then a recursive model of� can
be represented by OCaml functions

– csrc, ctgt : int -> cell -> cell ,

– identity : int -> cell -> cell ,

– comp : int -> int -> cell -> cell -> cell .

Given an =-precategory � and an encoding E� of � (seen as an =-globular set), � is computable
when the underlying =-globular set of � is computable and

– for : ∈ N=−1, the function id:+1 : �: → �:+1 is computable,
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– for 8, :, ; ∈ N= with 8 = min(:, ;) −1, the function r
:,; : �: ×8 �; → �max(:,;) (seen as a partial

function of type �: ×�; → �max(:,;) ) is computable.

We de�ne the notions of recursive model and code of � as expected.
Remark 2.3.1.36. If�0 t · · · t�= is encoded by a datatype cell , then a recursive model of� can
be represented by means of OCaml functions in a way analogous to Remark 2.3.1.35.
We verify that the de�nition of “computable” is coherent between =-categories and =-precate-
gories:

Proposition 2.3.1.37. Given an =-category � and an encoding E� of � , the =-category � is com-
putable if and only if the =-precategory � is computable.

Proof. By Remark 2.3.1.33, the constructive content of the proof of Proposition 1.4.3.2 induces
an algorithm which computes a code of the =-precategory � from a code of the =-category � .
Conversely, the proof of Proposition 1.4.3.4 induces an algorithm which computes a code of the
=-category � from a code of the =-precategory � . Thus, the proposition holds. �

Given an =-cellular extension (�,- ) ∈ Cat+= , an encoding E (�,- ) of (�,- ) is the data of an
encoding E�= (E8)8∈N= of � (seen as an =-globular set) together with an encoding E- of - . It
is injective (resp. decidable, equality-decidable) when both E� and E- are. Given such an encod-
ing E (�,- ) , the =-cellular extension (�,- ) is computable when the =-category � is computable
and the functions d−= , d

+
= : - → �= are computable. A recursive model of (�,- ) is the data of a

recursive model of the =-category � together with recursive models d̄−= , d̄
+
= of the functions d−=

and d+= respectively. A code of (�,- ) is the data of a code of the =-category � together with
codes d−,#= , d+,#= of d−= and d+= respectively.

Finally, given an =-categorical action (�,�) and an encoding E (�,�) of (�,�) (seen as an
=-cellular extension), (�,�) is computable when the underlying =-cellular extension of (�,�) is
computable and, for 8 ∈ N=−1, the functions

r
8+1,=+1 : �8+1 ×8 �→ � and r

=+1,8+1 : � ×8 �8+1 → �

are computable (as partial functions on domains �8+1 ×� and � ×�8+1 respectively). The notions
of recursive model and of code of (�,�) are de�ned as expected.

2.3.2 Computable free cellular extensions

In this section, we give conditions for which we can compute codes for free (=+1)-categories from
codes of =-cellular extensions. Using the decomposition of the functor −[−] : Cat+= → Cat=+1
given in Section 2.2, this amounts to give conditions for which we can compute codes for the
images of the functors

−[−]A : Cat+= → CatA= and − [−]≈ : CatA= → Cat=+1

The main obstacle for computability of the images of these functors are respectively the quotients
of <-contexts by the equivalence relations ≈< , and the quotient of sequences using the equiv-
alence relations ≈. Indeed, in each case, we must ensure that we can compute the equivalence
classes associated with each equivalence relations. Our plan is to use Proposition 2.3.1.31 on ≈1

<

and ≈1, so that we need to �nd conditions for which ≈1
< and ≈1 have �nite classes and are ef-

fectively right-�nite. The conditions we propose are some �nite factorization properties on cells
of =-cellular extension and =-categorical actions, so that there are a �nite number of possible
instances of the axioms de�ning ≈1

< and ≈1 for each equivalence classes.
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2.3.2.1 — Finitely factorizable precategories. Let = ∈ N. Given an =-precategory � , � is
�nitely factorizable when we have that

– for all 8 ∈ N=−2 and D ∈ �8+2, there is a �nite number of pairs

(D1, D2) ∈ �8+2 ×8 �8+1 t�8+1 ×8 �8+2 (2.11)

such that D = D1 r
8 D2,

– for all 8 ∈ N=−1 and D ∈ �8+1, there is a �nite number of pairs

(D1, D2) ∈ �8+1 ×8 �8+1 (2.12)

such that D = D1 r
8 D2.

When � is equipped with an encoding E� , we say that � is e�ectively factorizable when it is
�nitely factorizable and moreover

– for 8 ∈ N=−2, there is a computable function

�8+2 → Pf (�8+2 ×�8+1 t�8+1 ×�8+2)

which takes as input D ∈ �8+2 and outputs the �nite set of pairs (D1, D2) as in (2.11) such
that D = D1 r

8 D2,

– for 8 ∈ N=−1, there is a computable function

�8+1 → Pf (�8+1 ×�8+1)

which takes as input D ∈ �8+1 and outputs the �nite set of pairs (D1, D2) as in (2.12) such
that D = D1 r

8 D2.

Remark 2.3.2.2. If �0 t · · · t �= is encoded by a datatype cell , then the above computable
functions can be represented by OCaml functions

– cfact_het_l : int -> cell -> (cell * cell) list ,

– cfact_het_r : int -> cell -> (cell * cell) list ,

– cfact_hom : int -> cell -> (cell * cell) list ,

where, for 8 ∈ N=−2, we identify �nite subsets of �8+2 × �8+1 t �8+1 × �8+2 with pairs of �nite
subsets of �8+2 ×�8+1 and �8+1 ×�8+2.

Since strict categories are canonically precategories by Theorem 1.4.3.8, the notions of �nite
factorizability and e�ective factorizability for precategories directly translate to strict categories.
We then verify that the �nite factorizability property on cells induces a �nite factorizability
property with regard to contexts and context classes:

Proposition 2.3.2.3. Given a �nitely factorizable� ∈ Cat= and< ∈ N∗= , for allD, E ∈ �< , there is a
�nite number of<-contexts � (resp.<-context class � ) of type (m−<−1(D), m+<−1(D)) such that � [D] = E
(resp. � [D] = E).
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Proof. We prove this property by an induction on<. If< = 0, then the property is trivial. So sup-
pose that< ≥ 1. Let D, E ∈ �< and consider the set ( of<-contexts � of type (m−<−1(D), m+<−1(D))
such that � [D] = E . By de�nition, the elements of ( are the triples (;, � ′, A ) where ;, A ∈ �< and � ′
is an (<−1)-context class of type (m−<−2(D), m+<−2(D)) such that

m+<−1(;) = � ′[m−<−1(D)], � ′[m+<−1(D)] = A and ; r<−1 �
′[D] r<−1 A = E .

By the �nite factorization property, the number of triples (;, � ′[D], A ) obtained by iterating on the
elements (;, � ′, A ) of ( is �nite. In particular, by Proposition 2.2.2.2, the number of (<−1)-cells

� ′[m−<−1(D)] = m−<−1(� ′[D])

for (;, � ′, A ) ∈ ( is �nite. Thus, by induction hypothesis, there is a �nite number of possible
(<−1)-context classes � ′ in the triples (;, � ′, A ) of ( . Hence, ( is �nite. Since<-context classes are
quotient of<-contexts, we deduce moreover that there is a �nite number of<-context classes �
such that � [D] = E . �

2.3.2.4 — Finitely factorizable actions. Let = ∈ N. An =-categorical action (�,�) is �nitely
factorizable when the underlying strict =-category � is �nitely factorizable and, in the case
where = > 0, for every D ∈ �, there is a �nite number of pairs

(D1, D2) ∈ � ×=−1 �= t�= ×=−1 � (2.13)

such that D = D1 r
=−1 D2. When (�,�) is equipped with an encoding E (�,�) , we say that (�,�) is

e�ectively factorizable when it is �nitely factorizable, and moreover � is e�ectively factorizable,
and there exists a computable function

�→ Pf (� ×=−1 �= t�= ×=−1 �)

which, on input D ∈ �, outputs the �nite set of pairs (D1, D2) as in (2.13) such that D = D1 r
=−1 D2.

Remark 2.3.2.5. If �0 t · · · t�= and � are encoded by datatypes cell and cell_top respec-
tively, then the computable functions which witness that (�,�) is e�ectively factorizable can be
represented by means of OCaml functions in a way analogous to Remark 2.3.2.2.

2.3.2.6 — Contexts and computability. Let = ∈ N and � be an =-category equipped with
an encoding E� which is injective and decidable and such that � is computable and e�ectively
factorizable. We prove below several computational properties on the contexts of � . First, the
contexts and contexts classes of � on instantiable types admit encodings derived from E� for
which several elementary operations on contexts and contexts classes are derivable:

Proposition 2.3.2.7. For< ∈ N= , D ∈ �< and D ′ = (m−<−1(D), m+<−1(D)), the following holds:

(i) there are canonical injective encodings of the<-contexts and<-context classes of type D ′,

(ii) the equivalence classes of<-contexts of type D ′ under ≈< are �nite, and the function mapping
an<-context class � of type D ′ to the �nite set of<-context � of type D ′ such that È�É = � is
computable,

(iii) for 8 ∈ N<−1 and n ∈ {−, +}, the function which takes as input an <-context � (resp. an
<-context class � ) of type D ′ and outputs mn8 (�) (resp. mn8 (� )) is computable,

(iv) for : ∈ {<, . . . , =}, the function which takes as input an<-context � (resp.<-context class � )
of type D ′ and a cell E ∈ �: of <-type D ′ and outputs the cell � [E] (resp. � [E]) of �: is
computable.
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Proof. We show this property by induction on <. There is a unique 0-context (resp. 0-context
class) of type D ′ which can be encoded by 0 ∈ N. Thus, the case< = 0 holds. So suppose< ≥ 1.

Proof of (i): We de�ne an encoding for<-contexts (;, � , A ) of type D ′ using the standard derivation
of encodings for triples based on the encodings of �< and of (<−1)-context classes obtained by
induction hypothesis, so that we get an encoding which is injective. By Proposition 2.3.2.3, the
restriction of the equivalence relation ≈< to<-contexts of type D ′ has �nite classes, so that we
obtain an encoding of<-context classes of type D ′ using the standard derivation of encodings for
quotient sets based on the encoding of (<−1)-contexts of type D ′, and this encoding is injective
by Proposition 2.3.1.29(ii).

Proof of (ii): Note that, given two <-contexts �1, �2 of type D ′ such that �1 ≈< �2, we have
that �1 [D] = �2 [D]. Thus, by Proposition 2.3.2.3, the equivalence classes of<-contexts of type D ′
under ≈< are �nite. By our choice of encodings in (i), the identity function is a recursive model
of the function which maps an (<−1)-context class � of type D ′ to the �nite list of codes of
(<−1)-contexts � of type D ′ such that È�É = � , so that the latter function is computable.

Proof of (iii): Let 8 ∈ N<−1. For all <-context � = (;, � ′, A ), m−8 (�) is de�ned as m−8 (;). Since the
operations m−8 on<-cells of� is computable by hypothesis on� and E� , the function which maps
an <-context � of type D ′ to m−8 (�) is computable. For all <-context class � , m−8 (� ) is de�ned
as m−8 (�) where � is an <-context such that È�É = � . Since, by (ii), we have a computable
function which maps an<-context class � of type D ′ to the (non-empty) set of<-context � such
that � = È�É, the function which maps an<-context � of type D ′ to m−8 (� ) is computable. And
similarly for the target operations.

Proof of (iv): Let : ∈ {<, . . . , =}. Recall that, for an<-context � = (;, � , A ) of type D ′ and E ∈ �:+1
of<-type D ′, � [E] is de�ned by

� [E] = ; r<−1 � [E] r<−1 A

so that, by the induction hypothesis, and since � is supposed computable, the function which
takes as inputs � and E as above, and outputs the cell � [E], is computable. For context classes,
recall that, for an<-context class � of type D ′ and E ∈ �:+1 of<-type D ′, � [E] is de�ned by

� [E] = � [E]

where � is some<-context such that È�É = � . Hence, by (ii), the function which takes as inputs �
and E as above, and outputs the cell � [E], is computable. �

Remark 2.3.2.8. Note that the proof of Proposition 2.3.2.7 only used the fact that � was �nitely
factorizable and not e�ectively factorizable.

Remark 2.3.2.9. If �0 t · · · t �= is encoded by a datatype cell , then, by the proof of Proposi-
tion 2.3.2.7(i),<-contexts and<-contexts classes on some type D ′ ∈ �= are naturally encoded by
the datatypes

type ctxt =
| CtxtZ (* constructor for the 0-context *)
| CtxtS of cell * ctxtcl * cell (* constructor for the (m+1)-contexts *)
and ctxtcl = ctxt list

as a consequence of Remarks 2.3.1.16 and 2.3.1.30.
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We now aim at showing that the function which maps an <-context � of instantiable type to
its <-context class È�É is computable. By Proposition 2.3.1.31, it is su�cient to show that the
restriction of the relations ≈1

< and ≈−1
< to<-contexts of instantiable types is e�ectively right-�nite,

and, by Remark 2.2.2.4, it is enough to it for ≈1
< . So we prove:

Proposition 2.3.2.10. For every< ∈ N= , D ∈ �< and D ′ = (m−<−1(D), m+<−1(D)), the function which
maps an<-context � of typeD ′ and outputs the �nite set of<-contexts � ′ of typeD ′ such that � ≈1

< � ′

is computable.

Proof. We show this property by induction on <. If < = 0 or < = 1, the property holds. Now
suppose that < ≥ 2. Remember that, for all <-contexts �1 = (;1, �1, A1) and �2 = (;2, �2, A2) of
type D ′, we have �1 ≈1

< �2 if there exists (<−1)-contexts � ′8 = (; ′8 , � ′8 , A ′8 ) of type D ′ with È� ′8É = �8
for 8 ∈ {1, 2} and ;, A ,F ∈ �< such that one of the sets of conditions (≈-L) and (≈-R) are satis�ed.
By symmetry, it is enough to show that we can compute the<-contexts �2 such that �1 ≈1

< �2
by (≈-L). We recall the set of conditions (≈-L) below:

;1 = ; r< (F r
<−1 �

′
1 [D] r<−1 A

′
1) A1 = A

;2 = ; A2 = (F r
<−1 �

′
2 [D ′] r<−1 A

′
2) r< A

; ′1 = m
+
< (F) A ′1 = A

′
2

; ′2 = m
−
< (F) � ′1 = �

′
2.

By Proposition 2.3.2.7(ii), there is a �nite number of (<−1)-contexts � ′1 such that È� ′1É = �1,
and we can compute them. So let � ′1 = (; ′1, � ′1, A ′1) be such that È� ′1É = �1. Since � is e�ectively
factorizable, there is a �nite number of pairs (;,F) ∈ �2

< such that

;1 = ; r<−1 (F r
<−2 �

′
1 [m−<−1(D)] r<−2 A

′
1)

with m+<−1(F) = ; ′1, and we can compute them. So let (;,F) be such a pair. We de�ne an<-con-
text �2 = (;2, �2, A2) by putting �2 = È� ′2É with � ′2 = (; ′2, � ′2, A ′2) and

; ′2 = m
−
<−1(F) � ′2 = �

′
1 A ′2 = A

′
1

;2 = ; A2 = (F r
<−2 �

′
2 [m+<−1(D)] r<−2 A

′
2) r<−1 A1.

The<-context �2 satis�es the set of conditions (≈-L) and we can compute it since� is computable.
So, by iterating on all � ′1, ;,F as above, we compute all the<-contexts �2 such that �1 ≈1

< �2 by
the set of conditions (≈-L). �

We can then deduce:

Proposition 2.3.2.11. For every < ∈ N= , D ∈ �< and D ′ = (m−<−1(D), m+<−1(D)), the restriction
of ≈< to<-contexts of instantiable types is e�ectively right-�nite, and the function which maps an
<-context � of type D ′ to È�É is computable.

Proof. Note that E� is equality-decidable by Proposition 2.3.1.7(ii). The property is then a conse-
quence of Propositions 2.3.2.10 and 2.3.1.31 and Remark 2.2.2.4 since ≈< is the re�exive transitive
closure of ≈1

< ∪ ≈−1
< . �

Remark 2.3.2.12. Using the datatypes from Remark 2.3.2.9, the proof of Proposition 2.3.2.11 trans-
lates into an OCaml function ctxt_to_ctxtcl : ctxt -> ctxtcl .

From the above property, we deduce that the encodings of contexts and context classes of � are
decidable:
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Proposition 2.3.2.13. Given< ∈ N= , D ∈ �< and D ′ = (m−<−1(D), m+<−1(D)), the encoding of the
<-contexts (resp.<-contexts classes) of type D ′ given by Proposition 2.3.2.7(i) is decidable.

Proof. We prove this property by induction on<. If< = 0, then the property holds. So suppose
that< ≥ 1. Recall that the<-contexts of type D ′ are the triples � = (;, � , A ) where ;, A ∈ �< and �
is an (<−1)-context of type (m−<−2(D), m+<−2(D)) such that

m+<−1(;) = � [m−<−1(D)] and � [m+<−1(D)] = m−<−1(A ).

Since E� is injective and decidable, and � is computable, the subset of codes of such triples
is decidable by induction hypothesis and Proposition 2.3.2.7(iv). By Proposition 2.3.1.7(ii), the
encoding of<-contexts of type D ′ is moreover equality-decidable, since injective and decidable.
Hence, the encoding of <-context classes of type D ′ is decidable since equality-decidable by
Propositions 2.3.2.11 and 2.3.1.29. �

Remark 2.3.2.14. Using the datatypes from Remark 2.3.2.9, the proof of Proposition 2.3.2.13 trans-
lates into OCaml functions

check_ctxt : ctxt -> bool
check_ctxtcl : ctxtcl -> bool

which witness that the encodings for contexts and context classes are decidable.

We now prove that the composition operations for contexts and context classes are computable:

Proposition 2.3.2.15. Given< ∈ N∗= , 8 ∈ N<−1,D ∈ �< andD ′ = (m−<−1(D), m+<−1(D)), the function
which takes as inputs an (8+1)-cell E ∈ �8+1 and an<-context � (resp.<-context class � ) of type D ′

such that E, � (resp. E, � ) are 8-composable, and outputs E r
8 � (resp. E r

8 � ), is computable, and
similarly for the right composition of<-contexts (resp.<-context classes).

Proof. We prove this by induction on<. The property holds when< = 1. So suppose that< ≥ 2.
Given E ∈ �8+1 and an <-context � = (;, � , A ) of type D ′ such that E, � are 8-composable, recall
that E r

8 � is de�ned by

E r
8 � =

{
(E r

8 ;, � , A ) if 8 =< − 1,
(E r

8 ;, E r
8 �, E r

8 A ) if 8 < < − 1.

Thus, by the induction hypothesis and since � is computable, we can compute E r
8 �. Now, given

an <-context � of type D ′ and E ∈ �8+1 such that E, � are 8-composable, recall that E r
8 � is

de�ned by ÈE r
8 �É where � is an<-context such that È�É = � . Given the code of an<-context

class � of type D ′, using Proposition 2.3.2.7(ii) we can compute the code of some � of type D ′
such that È�É = � . Then, using the �rst part, we can compute the code of E r

8 �. Finally, using
Proposition 2.3.2.11, we can compute ÈE r

8 �É = E r
8 � . �

Finally, we show that contexts and context classes have some e�ective factorization property:

Proposition 2.3.2.16. Given D ∈ �= and D ′ = (m−=−1(D), m+=−1(D)),

(i) the function which takes as input an =-context � of type D ′, and outputs the �nite set of
pairs (E, �̃) where E ∈ �= and �̃ is an =-context of type D ′ such that E, �̃ are (=−1)-composable
and � = E r

=−1 �̃, is computable,
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(ii) the function which takes as input an =-context class � of type D ′, and outputs the �nite set of
pairs (E, �̃ ) where E ∈ �= and �̃ is an =-context class of type D ′ such that E, �̃ are (=−1)-com-
posable and � = E r

=−1 �̃ , is computable,

and similarly for right composition of =-contexts and =-context classes.

Proof. Given an =-context � = (;, � ′, A ) and a pair (E, �̃) such that � = E r
=−1 �̃, we have

that �̃ = (;̃ , � ′, A ) for some ;̃ ∈ �= such that E r
=−1 ;̃ = ; . Since � is e�ectively factorizable,

we can compute the possible cells ;̃ . Thus, (i) holds.
Now let � be an =-context class and (E, �̃ ) be a pair such that � = E r

=−1 �̃ . There exists an
=-context �̃ such that È�̃É = �̃ . So, ÈE r

=−1 �̃É = � . We deduce the following procedure for (ii). By
Proposition 2.3.2.7(ii), we can compute the �nite set of =-contexts � such that È�É = � . Moreover,
by (i), we can compute the pairs (E ′, �̃) such that � = E ′ r=−1 �̃. By Proposition 2.3.2.11, we
can compute the value of È�̃É for such a pair, and the computed pairs (E ′, È�̃É) are then all the
pairs (E, �̃ ) such that � = E r

=−1 �̃ . Thus, (ii) holds. �

2.3.2.17 — Computability of free actions. By the preceding properties and the description of
the functor −[−]A given in Section 2.2.3, we can conclude a computability preservation property
of free categorical actions on a cellular extension. Let = ∈ N and (�,- ) be an =-cellular exten-
sion equipped with an encoding E (�,- ) which is injective and decidable and such that (�,- ) is
computable and � e�ectively factorizable. First, we have:

Proposition 2.3.2.18. There exists an injective and decidable encoding E-A such that the =-cate-
gorical action � [- ]A is computable.

Proof. Recall that -A is the set of pairs (6, � ) where 6 ∈ - and � is an =-context class of
type (m−=−1(6), m+=−1(6)), the latter being instantiable since mn=−1(6) = mn=−1(d

−
= (6)) for n ∈ {−, +}.

By Proposition 2.3.2.7(i) and Proposition 2.3.1.26, since E- is injective, the set -A admits an in-
jective encoding E-A obtained using the standard derivation of encodings for dependent sums,
and this encoding is moreover decidable since E- is decidable and since the procedure given by
Proposition 2.3.2.13 can be e�ectively parametrized by (m−=−1(6), m+=−1(6)) for 6 ∈ - . By Proposi-
tion 2.3.2.7(iii) and Proposition 2.3.2.15, the operations m−= , m+= , r8,=+1 and r

=+1,8 for 8 ∈ N∗= on -A are
computable too. Thus, the encodings E� and E-A induce an encoding E� [- ]A of the =-categorical
action � [- ]A which is injective and decidable, and such that � [- ]A is computable. �

Remark 2.3.2.19. If �0 t · · · t �= and - are encoded by datatypes cell and gen , then, by
Remark 2.3.1.27 and using the datatype for context classes from Remark 2.3.2.9, the set -A is
naturally encoded by the datatype

type act_cell = gen * ctxtcl

We verify that the embedding of generators is computable for the above encoding:

Proposition 2.3.2.20. Under the encoding E-A of Proposition 2.3.2.18, the embedding - → -A is
computable.

Proof. Given 6 ∈ - , since � is computable, id8+1
m−
8
(6) and id8+1

m+
8
(6) can be computed for 8 ∈ N=−1, so

that we can compute the code of the =-context class �̄6 using Proposition 2.3.2.11 and the code of
the pair (6, �̄6) ∈ -A. Hence, the embedding - → -A is computable. �

Finally, we check the e�ective factorizability of the free action:

Proposition 2.3.2.21. � [- ]A is e�ectively factorizable.

Proof. Since � is e�ectively factorizable, this is a consequence of Proposition 2.3.2.16(ii). �
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2.3.2.22 — Source-�nite actions. In order to obtain a computability result analogous to Propo-
sition 2.3.2.18 for free categories on a computable categorical actions, e�ective factorizability is
not enough. Indeed, the problem is that the relation ≈ has not necessarily �nite classes, even
for a categorical action which is �nitely factorizable. A su�cient additional condition, called
source-�nitess, is introduced below.

Let = ∈ N. Given a set - , there is an =-categorical action ⇑=A(- ) uniquely de�ned by

(⇑=A(- ))=+1 = - and (⇑=A(- ))8 = {∗} for 8 ∈ N= .

Note that the operations are trivial on the elements of (⇑=A(- ))=+1, i.e.,

∗ r
8 6 r

8 ∗ = 6

for 8 ∈ N=−1 and 6 ∈ - .

Remark 2.3.2.23. The operation - ↦→ ⇑=A(- ) extends to a functor Set → CatA= which is right
adjoint to the functor CatA= → Set which maps an =-categorical action (�,�) to �/∼ where ∼ is
the smallest equivalence relation on� such that D ∼ ; r8 D r

8 A for all 8 ∈ N=−1, ;, A ∈ �8+1 and D ∈ �
such that ;, D, A are 8-composable.

Given an =-categorical action (�,�) and a set - , a labelling of (�,�) over - is an =-categorical
action morphism (∗̄, ℎ) : (�,�) → ⇑=A(- ). Suppose that (�,�) is equipped with such a labelling.
We then say that (�,�) is source-�nite over - when, for every E ∈ �= and 6 ∈ - , there is a �nite
number of D ∈ � such that m−= (D) = E and ℎ(D) = 6.

Remark 2.3.2.24. In the following, the=-categorical actions (�,�)we will consider do not generally
satisfy that {D ∈ � | m−= (D) = E} is �nite for every E ∈ �= . Instead, the weaker source-�nitess
property relatively to a labelling will be su�cient for our purposes. Notably, as we will see in
Paragraph 2.3.2.33, the free =-categorical action� [- ]A on an =-cellular extension (�,- ) where�
is �nitely factorizable is canonically source-�nite.

Writing N- for the free commutative monoid on - , there is a function

m(�,�),ℎ
-

: �★→ N-

often simply denoted m- such that

m- ((C1, . . . , C: )s) = ℎ(C1) + · · · + ℎ(C: )

for C = (C1, . . . , C: )s ∈ �★. The function m- is compatible with the relation ≈, so that it induces
a function �≈ → N- , still denoted m- . This latter satis�es that m- (D r

= E) = m- (D) + m- (E)
for =-composable D, E ∈ �≈. Note that we can identify N- canonically to the subset of func-
tions 5 : - → N such that {6 ∈ - | 5 (6) ≠ 0} is �nite, so that we consider m- (D) as a function of
type - → N and write m- (D)6 for the value of m- (D) at 6. The source-�nitess property implies
several �niteness properties on the free category on a categorical action:

Proposition 2.3.2.25. Let - be a set and (�,�) be an =-categorical action which is labeled over -
through (∗̄, ℎ) : (�,�) → ⇑=A(- ) and source-�nite over - . The following hold:

(i) for all : ∈ N, 61, . . . , 6: ∈ - and D ∈ �= , there is a �nite number of C = (C1, . . . , C: )s ∈ �★

such that m−= (C) = D and ℎ(C8) = 68 for 8 ∈ N∗: ,

(ii) the relation ≈ on � has �nite classes,
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(iii) if (�,�) is �nitely factorizable, then � [�]≈ is �nitely factorizable.

Proof. Proof of (i): We do an induction on the length : . There is only one C of length 0 such
that m−= (C) = D. Now, suppose that the property holds for some : ∈ N. We prove that it holds
for : + 1. Let 61, . . . , 6:+1 ∈ - , D ∈ �= and C = (C1, . . . , C:+1)s ∈ �★ be such that m−= (C) = D

and ℎ(C8) = 68 for 8 ∈ N∗
:+1. Since m−= (C1) = D and ℎ(C1) = 61 and (�,�) is source-�nite, there is a �-

nite number of possible C1. For each of these, by putting C ′ = (C2, . . . , C:+1)s, we have m−= (C ′) = m+= (C1),
thus, by induction hypothesis, there is a �nite number of possible C ′, which concludes (i).

Proof of (ii): Let D ∈ �≈, and : ∈ N and C = (C1, . . . , C: )s ∈ �★ be such that ÈCÉ = D. We have
that m- (D) = ℎ(C1) + · · · + ℎ(C: ), so there is a �nite number of possible tuples (ℎ(C1), . . . , ℎ(C: ))
relatively to D. Hence, by (i), there is a �nite number of possible C .

Proof of (iii): Let D ∈ �≈. Consider E ∈ �= and F ∈ �≈ such that D = E r
=−1 F . Let : ∈ N

and C1, . . . , C: ∈ � such thatF = È(C1, . . . , C: )sÉ. Then,

D = È(E r
=−1 C1, . . . , E r

=−1 C: )sÉ.

By (ii), there is a �nite number of possible values for (E r=−1C1, . . . , E r=−1C: )s ∈ �★, and, since (�,�)
is �nitely factorizable, there is a �nite number of possible pairs (E, (C1, . . . , C: )). Hence, there is
a �nite number of pairs (E,F) ∈ �= × �≈ such that D = E r

=−1 F , and, similarly, there are a
�nite number of pairs (E,F) ∈ �≈ × �= such that D = E r

=−1 F . Now consider E,F ∈ �≈ such
that D = E r

= F . Let :, ; ∈ N and B1, . . . , B: and C1, . . . , C; in � be such that E = È(B1, . . . , B: )sÉ
andF = È(C1, . . . , C; )sÉ. Then,

D = È(B1, . . . , B: , C1, . . . , C; )sÉ.

Using (ii), we conclude similarly that there is a �nite number of pairs (E,F) ∈ �≈ × �≈ such
that D = E r

= F . Hence, � [�]≈ is �nitely factorizable. �

2.3.2.26 — Computability of free categories on actions. With source-�niteness, we can de-
duce computability properties for free categories on categorical actions. Let = ∈ N, - be a set
and (�,�) be an =-categorical action labeled over - through (∗̄, ℎ) : (�,�) → ⇑=A(- ) and source-
�nite over - , and E (�,�) be an injective and decidable encoding of (�,�) such that (�,�) is
computable and e�ectively factorizable. We introduce �rst an encoding for�★ with the following
property:

Proposition 2.3.2.27. The following hold:

(i) there is an injective and decidable encoding E�★ of �★,

(ii) the function which maps D ∈ � to (D)s ∈ �★ is computable,

(iii) the function which maps D ∈ �= to ( )sD ∈ �★ is computable,

(iv) for 8 ∈ N=−1, the function which maps

(D, E) ∈ �★ ×8 �8+1 t�8+1 ×8 �★

to D r
8 E is computable,

(v) the function which maps
(D, E) ∈ �★ ×= �★

to D r
= E is computable.
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Proof. The set�★ is canonically isomorphic to�= t�′ where�= is in bijection with the identities
of �★, and �′ is the subset of �<l consisting of non-empty sequences of =-composable elements
of �. Thus, we derive an encoding E�★ of �★ using the standard derivations of encodings for
�nite sequences, subsets and disjoint union, and E�★ is injective since E�= and E� are. Moreover,
since (�,�) is computable and E (�,�) is injective and decidable, �′ is a decidable subset of �<l ,
so that E�★ is moreover decidable. Thus, (i) holds. By the de�nition of E�★ , (ii) holds. Moreover,
by the de�nitions of id=+1(−) and the compositions r

8 and r
= on �★ given in Section 2.2.4, (iii), (iv)

and (v) hold. �

Remark 2.3.2.28. If�0t· · ·t�= and� are encoded by datatypes cell and top_cell respectively,
then, by the proof of Proposition 2.3.2.27(i) the set �★ is naturally encoded by the datatype

type seq =
| SeqZ of cell (* constructor for zero-length sequences *)
| SeqP of top_cell list (* constructor for positive-length sequences *)

and the computable function which witnesses that the encoding�★ is decidable can be represented
by an OCaml function check_seq : seq -> bool .
We now show that �≈ admits an injective and decidable encoding, using the method given by
Proposition 2.3.1.31. For this purpose, we �rst prove:

Proposition 2.3.2.29. The relation ≈1 on �★ is e�ectively right-�nite.

Proof. By the de�nition of ≈1, it is enough to show that the function which takes an input an
=-composable pair (;, ; ′) ∈ �2 and outputs the �nite set of pairs (A, A ′) ∈ �2 such thatX(;, ; ′, A , A ′),
is computable. The latter set is indeed �nite by Proposition 2.3.2.25(ii) since (;, ; ′)s ≈ (A, A ′)s.
So let (;, ; ′) ∈ � be a pair of =-composable elements. Since (�,�) ∈ CatA= is computable and
e�ectively factorizable, and E (�,�) is injective, we can compute all the pairs (D, E) ∈ �2 such
that D, E are (=−1)-composable and satisfy

; = D r
=−1 m

−
= (E) and ; ′ = m+= (D) r=−1 E

and, for each such pair, we can compute the pair (A, A ′) where

A = m−= (D) r=−1 E and A ′ = D r
=−1 m

+
=−1(E).

Hence, we can compute all the pairs (A, A ′) such that X(;, ; ′, A , A ′) which concludes the proof. �

We can now deduce the computability of � [�]≈:

Proposition 2.3.2.30. The following hold:

(i) there is an injective and decidable encoding E�≈ of �≈,

(ii) the function È−É : �★→ �≈ is computable,

(iii) the function which maps D ∈ � to È(D)sÉ ∈ �≈ is computable,

(iv) the function which maps D ∈ �= to id=+1D ∈ �≈ is computable,

(v) for 8 ∈ N=−1, the function which maps

(D, E) ∈ �≈ ×8 �8+1 t�8+1 ×8 �≈

to D r
8 E is computable,
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(vi) the function which maps
(D, E) ∈ �≈ ×= �≈

to D r
= E is computable.

Proof. Since the relation ≈ has �nite classes by Proposition 2.3.2.25(ii), we can de�ne the en-
coding E�≈ of �≈ = �★/≈ using the standard derivation of encodings for quotient sets. By
Proposition 2.3.2.29, ≈1 is e�ectively right-�nite and, by Remark 2.2.4.2, so is ≈−1. Thus, by Propo-
sitions 2.3.2.27 and 2.3.1.31, E�≈ is injective and decidable, and the function È−É : �★ → �≈ is
computable, thus (i) and (ii) holds, and (iii) holds by Proposition 2.3.2.27(ii). By (ii) and Proposi-
tion 2.3.2.30(ii), (iv) holds. Given 8 ∈ N=−1 and (D, E) ∈ �≈ ×8 �8+1, by Proposition 2.3.1.29(i), we
can compute some D ′ ∈ �★ such that ÈD ′É = D. Then, by (ii) and Proposition 2.3.2.27(iv), we can
compute the cell ÈD ′ r8 EÉ = D r

8 E , thus (v) holds and, by a similar argument, (vi) holds. �

Remark 2.3.2.31. By the proof of Proposition 2.3.2.30(i), using the datatype for =-sequences from
Remark 2.3.2.28, the set �≈ is naturally encoded by the datatype type seqcl = seq list as a
consequence of Remark 2.3.1.30, and the computable function which witnesses that the encoding
of �≈ is decidable can be represented by an OCaml function check_seqcl : seqcl -> bool .
Moreover, an OCaml function seq_to_seqcl : seq -> seqcl can be derived from the proof
of Proposition 2.3.2.30(ii).

By Proposition 2.3.2.30, E� can be extended by E�≈ to an injective and decidable encoding E� [�]≈
of the free (=+1)-category � [�]≈ on (�,�). For this encoding, we have:

Proposition 2.3.2.32. The (=+1)-category � [�]≈ is e�ectively factorizable.

Proof. Given D ∈ �≈, by Proposition 2.3.1.29(i), we can compute the �nite set of all

C = (C1, . . . , C: )s ∈ �★

such that ÈCÉ = D. Using that (�,�) is e�ectively factorizable, we can compute the set of
pairs (E, C ′) ∈ �= ×�★ with C ′ = (C ′1, . . . , C ′: )

s such that E r
=−1 C

′ = C . So, by Proposition 2.3.2.30(ii),
we can compute the �nite set of the pairs (E,F) ∈ �= ×=−1 �

≈ such that D = E r
= F .

Moreover, for each C as above, we can compute the set of all=-composable pairs C1, C2 ∈ �★ such
that C1 r

= C2 = C . Thus, by Proposition 2.3.2.30(ii), we can compute the �nite set of =-composable
pairs (D1, D2) ∈ �≈ ×�≈ such that D = D1 r

= D2. Hence, � [�]≈ is e�ectively factorizable. �

2.3.2.33 — Computability of free extensions. We now combine the properties of previous
paragraphs to deduce a computability property for free extensions.

Let = ∈ N. Given (�,- ) ∈ Cat+= , there is a canonical labelling of� [- ]A over - which maps (6, � )
to 6 for (6, � ) ∈ -A. For this labelling, we have:

Proposition 2.3.2.34. Given (�,- ) ∈ Cat+= where � is �nitely factorizable, the =-categorical
action � [- ]A is source-�nite over - .

Proof. Given E ∈ �= and 6 ∈ - , an element D ∈ -A above 6 such that m−= (D) = E is the data of
an =-context class � of type (m−=−1(6), m+=−1(6)) such that � [m−= (6)] = E . By Proposition 2.3.2.3,
there is a �nite number of those. �

We then obtain the following computability result for free extensions:
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Proposition 2.3.2.35. Let = ∈ N, (�,- ) ∈ Cat+= and E (�,- ) be an injective and decidable encoding
of (�,- ) such that (�,- ) is computable and� e�ectively factorizable. Then, there is an injective and
decidable encoding E� [- ] of the (=+1)-category� [- ] that extends E� such that� [- ] is computable
and e�ectively factorizable. Moreover, the canonical embedding - → � [- ]=+1 is computable.

Proof. The encoding E� [- ]=+1 of � [- ]=+1 is constructed using Propositions 2.3.2.18, 2.3.2.21,
2.3.2.30 and 2.3.2.34, so that, by extending E� with E� [- ]=+1 , we obtain an encoding of � [- ]
which makes� [- ] computable and moreover comptationally factorizable by Proposition 2.3.2.32.
Moreover, the embedding - → � [- ]=+1 is computable by Proposition 2.3.2.20 and Proposi-
tion 2.3.2.30(iii). �

Remark 2.3.2.36. By inspecting the constructive content of the proof of Proposition 2.3.2.35 and
of the propositions it uses, we have in fact proved a stronger statement: for = ∈ N, there is a
computable function which takes as inputs

– a code for a computable =-cellular extension (�,- ) that is equipped with an injective and
decidable encoding E (�,- ) ,

– codes of the computable functions that witness that � is e�ectively factorizable,

and which outputs

– a code for the (=+1)-category � [- ], which is equpipped with the injective and decidable
encoding E� [- ] given by Proposition 2.3.2.35 that extends E� ,

– a code for the embedding - → � [- ]=+1.

Thus, we can consider that Proposition 2.3.2.35 is “e�ectively parametrized” by (�,- ) and the
computable functions that witness that � is e�ectively factorizable.

2.3.3 The case of polygraphs

We now consider the special case of polygraphs and show that, when provided with an adequate
computational description of those, the associated free strict categories are computable. Moreover,
we introduce in this case an alternative procedure to compute the context class associated to a
context than the one provided by Proposition 2.3.2.7(ii), enabling faster recursive models for those
free categories.

2.3.3.1 — Computable polygraphs. For = ∈ N and an =-polygraph P equipped with injective
and decidable encodings EP8 of P8 for 8 ∈ N= , we de�ne by induction on = the property that P is
a computable polygraph, together with a decidable and injective encoding EP∗ of the free =-cate-
gory P∗, such that P∗ is computable and e�ectively factorizable for this encoding. A 0-polygraph P
is always computable and we take EP∗ = EP0 . Given = ∈ N, an (=+1)-polygraph P′ = (P, - ) is
computable when P is and when the functions d−= , d

+
= : - → P∗= are computable, relatively to the

encoding EP∗= of P∗= coming with the encoding EP∗ given by the induction. Moreover, we take
for E (P′)∗ the encoding given by Proposition 2.3.2.35. For these encodings, we have the following
computability property for free strict categories on computable polygraphs:

Proposition 2.3.3.2. Given = ∈ N and an =-polygraph P equipped with injective and decidable
encodings EP8 of P8 for 8 ∈ N= such that P is computable, the =-category P∗ is computable and the
embeddings P8 → P∗8 are computable for 8 ∈ N= .

Proof. By induction on =, using Proposition 2.3.2.35. �
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2.3.3.3 — More e�cient computation of the equivalences classes. Let = ∈ N with = ≥ 2
and � be an =-category equipped with an injective and decidable encoding E (�,- ) , such that �
is computable and e�ectively factorizable for this encoding. Recall that we de�ned in the proof
of Proposition 2.3.2.11 an algorithm which, given an<-context � of � for some< ∈ N= as input,
and output È�É. This algorithm is derived by Proposition 2.3.1.31 using the de�nition of ≈1

< , but
other algorithms are possible. For concrete applications like the word problem below, it is impor-
tant that the algorithm that executes this operation is fast, since it is part of the implementations
of the composition operations r

8 (c.f. Proposition 2.3.2.18). One way to obtain a faster algorithm
is to use a more suitable relation ≈̂1

< that generates ≈< as a re�exive transitive closure, so that
the algorithm derived by Proposition 2.3.1.31 is more e�cient (when � allows it). We give such
an alternative generating relation in the case where � = P∗ for some computable =-polygraph P
by re�ning a bit the axioms used to de�ne ≈1

< .
So let P be an =-polygraph and< ∈ N= . We de�ne a relation ≈̂< between<-contexts of the

same type of P∗. Given an<-type (D,D ′) and two<-contexts of type (D,D ′)

�1 = (;1, �1, A1) and �2 = (;2, �2, A2)

we write �1 ≈̂< �2 when there exists (<−1)-contexts (; ′8 , � ′8 , A ′8 ) such that È(; ′8 , � ′8 , A ′8 )É = �8
for 8 ∈ {1, 2}, and ;,F, A ∈ P∗< with |F | = 1 (recall the notion of length de�ned in Paragraph 2.2.4.1)
and such that either the set of conditions (≈-L) or (≈-R) (the ones de�ning ≈1

<) is satis�ed. Note
that the only di�erence between the de�nitions of ≈̂1

< and≈1
< is that we requireF to be of length 1.

We verify that:

Proposition 2.3.3.4. The re�exive symmetric transitive closure of ≈̂1
< is ≈< .

Proof. Let ≈̂< be the re�exive symmetric transitive closure of ≈̂1
< . Since we have ≈̂1

< ⊆ ≈1
< , it is

enough to show that ≈1
< ⊆ ≈̂< . Let (D,D ′) be an<-type and

�1 = (;1, �1, A1) and �2 = (;2, �2, A2)

be two <-contexts of type (D,D ′) of P∗ such that �1 ≈1
< �2. By de�nition of ≈1

< , there exist
(<−1)-contexts (; ′8 , � ′8 , A ′8 ) such that È(; ′8 , � ′8 , A ′8 )É = �8 for 8 ∈ {1, 2}, and ;,F, A ∈ P∗< such that ei-
ther (≈-L) or (≈-R) is satis�ed. By symmetry, suppose that (≈-L) is satis�ed. We prove that �1 ≈̂ �2
by induction on the length |F | ofF . If |F | = 0, thenF = idF̃ for some F̃ ∈ P∗<−1, so that �1 = �2,
thus �1 ≈̂< �2. If |F | = 1, then �1 ≈̂1

< �2 by de�nition of ≈̂1
< . Otherwise, suppose that |F | = : + 1

for some : ∈ N∗. Then, by the de�nition of the functor −[−]≈, we have that F = F ′ r= F ′′ for
someF ′,F ′′ ∈ P∗< such that |F ′ | = 1 and |F ′′ | = : . Note that

(F ′ r<−1 F
′′) r<−2 �

′
1 [D] r<−2 A

′
1 = (F ′ r<−2 �

′
1 [D] r<−2 A

′
1) r<−1 (F ′′ r<−2 �

′
1 [D] r<−2 A

′
1)

so that, by induction hypothesis, we have �1 ≈̂< �3 where �3 = (;3, �3, A3) is an <-context of
type (D,D ′) with �3 = È(; ′3, � ′3, A ′3)É for some (<−1)-context (; ′3, � ′3, A ′3) de�ned by � ′3 = �

′
1 and

; ′3 = m
−
<−1(F ′′) A ′3 = A

′
1

;3 = ; r<−1 (F ′ r<−2 �
′
1 [D] r<−2) A3 = (F ′′ r<−2 �

′
1 [D ′] r<−2 A

′
1) r<−1 A .

Thus, we also have �3 ≈̂1
< �2, so that �1 ≈̂< �2. Hence, ≈̂< = ≈< . �

Remark 2.3.3.5. We can do a remark similar to Remark 2.2.2.4. Given< ∈ N= , the relation ≈̂−1
<

on the<-context, which is de�ned by �1 ≈̂−1
< �2 if and only if �2 ≈̂1

< �1 for all<-contexts �1, �2
of the same <-type, admits a de�nition by axioms (≈-L)’ and (≈-R)’ which are symmetrical
to (≈-L) and (≈-R). Moreover, ≈̂< can be equivalently described as the re�exive transitive closure
of ≈̂1

< ∪ ≈̂−1
< , so that, in the proofs, by symmetry of the de�nitions of ≈̂1

< and ≈̂−1
< , we can often

reduce a case analysis of �1 ≈̂< �2 to �1 ≈̂1
< �2.
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Now, suppose that P is equipped with injective and decidable encodings EP8 of P8 for 8 ∈ N= and
that P is computable for these encodings, so that, by the de�nition of “computable” for polygraphs,
we derive an injective and decidable encoding EP∗ of P∗ for which P∗ is computable and e�ectively
factorizable. For this encoding, we have:

Proposition 2.3.3.6. Given< ∈ N= with< ≥ 2, the function which takes as input an<-cellD ∈ P∗< ,
and outputs the �nite set of (<−1)-composable pairs (E,F) ∈ (P∗<)2 such that D = E r

<−1 F

and |F | = 1, is computable.

Proof. Let D ∈ P∗< . Consider E,F ∈ P∗< such that D = E r
<−1 F . Then, by putting � = P∗<−1

and � = (P<)A, we have E = ÈBÉ andF = ÈCÉ for some :, ; ∈ N and

B = (B1, . . . , B: )s and C = (C1, . . . , C; )s

in �★. Since |F | = 1, we have ; = 1. Moreover, we deduce that D = È(B1, . . . , B: , C1)sÉ. By
Proposition 2.3.1.29(i), we can compute the set of possible representants (B1, . . . , B: , C1)s ∈ �★ of D.
For each possible value, by Proposition 2.3.2.30(ii), we can compute the codes of E = È(B1, . . . , B: )sÉ
andF = È(C1)sÉ, which concludes the proof. �

Hence, we get another proof of Proposition 2.3.2.11:

Proposition 2.3.3.7. For every < ∈ N= , D ∈ �< and D ′ = (m−<−1(D), m+<−1(D)), the restriction
of ≈< to<-contexts of instantiable types is e�ectively right-�nite, and the function which maps an
<-context � of type D ′ to È�É is computable.

Proof. By Proposition 2.3.1.31, it is su�cient to prove that the restriction of ≈̂1
< ∪ ≈̂1

< to<-con-
texts of instantiable type is e�ectively right-�nite. By Remark 2.3.3.5, it is enough to show that
the restriction of ≈̂1 is e�ectively right-�nite. Using Proposition 2.3.3.6, the proof of the latter
property is similar to the one of Proposition 2.3.2.10. �

However, the instance of the algorithm of Proposition 2.3.1.31 using the e�ectively right-�nite ≈̂1
<

will be more e�cient than the one using ≈1
< . Indeed, given< ∈ N= and an<-context �, we have

{� ′ | � ′<-context such that � ≈̂1
< � ′} ⊆ {� ′ | � ′<-context such that � ≈1

< � ′}

by de�nition of ≈1
< and ≈̂1

< . Thus, intuitively, we iterate on less<-context � ′ per<-context � in
the algorithm of Proposition 2.3.1.31 when using ≈̂1

< than when using ≈1
< .

2.4 Word problem on polygraphs

We now use the computability results of the previous sections to give a solution to the word
problem on polygraphs of strict categories. Our solution is strongly inspired from the one given
by Makkai in [Mak05]. However, whereas Makkai deemed his procedure “infeasible” in practice,
the one we propose admits a relatively fast implementation, that solves rapidly most instances of
the word problem.

We �rst give a precise statement to this problem after introducing terms on polygraphs (Sec-
tion 2.4.1). Then, we give a solution to the word problem on the special case of �nite polygraphs
(Section 2.4.2). By Proposition 2.3.3.2, we can already compute recursive models with injective
encodings for the free strict categories on computable polygraphs and, in particular, �nite poly-
graphs, so that the word problem is already essentially solved since one can compare two terms
by comparing the codes of their evaluations in the recursive models. But one hardly writes down
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a code for a computable polygraph, because of its intrinsically inductive de�nition. Thus, most of
our concerns will be to de�ne a user-friendly way to use polygraphs as inputs of programs. Next,
we show how to extend our method to more general polygraphs (possible in�nite, possibly not
computable). Finally, we illustrate the discussion of this section by providing an implementation
in OCaml (Section 2.4.4).

2.4.1 Terms and word problem

Here, we de�ne the terms on polygraphs and give a precise statement to the word problem on
polygraphs.

2.4.1.1 — Terms on polygraphs. Let = ∈ N ∪ {l}. Given an =-polygraph P, for : ∈ N= , we
de�ne the sets of :-terms T P

:
of P inductively as follows:

– given : ∈ N= and 6 ∈ P: , there is a :-term gen: (6) ∈ T P
:
,

– given : ∈ N=−1 and a :-term C ∈ T P
:
, there is a (:+1)-term id:+1

:
(C) ∈ T P

:+1,

– given 8, : ∈ N= with 8 < : and :-terms C1, C2 ∈ T P
:
, there is a :-term C1 ∗8,: C2 ∈ T P

:
.

We write T P = t:∈N= T P
:

for the set of all terms of P. Given a morphism � : P→ Q ∈ Pol= , there
is a function

T � : T P → TQ

de�ned on C ∈ T P by induction on C :

– for : ∈ N= and 6 ∈ P: , T � (gen: (6)) = gen: (� (6)),

– for : ∈ N=−1 and a :-term C , T � (id:+1
:
(C)) = id:+1

:
(T � (C)),

– for 8, : ∈ N= with 8 < : and :-terms C1, C2, T � (C1 ∗8,: C2) = T � (C1) ∗8,: T � (C2).

We now de�ne subsetsWP
:

of T P
:

consisting of the :-terms that are well-typed, together with an
evaluation function

È−ÉP
:

: WP
:
→ P∗

:

by induction on : ∈ N= . All 0-terms are well-typed and are of the form gen0(6) for some 6 ∈ P0
and we put Ègen0(6)ÉP: = 6. For : ∈ N∗= , a :-term is well-typed when there exist D, E ∈ P∗

:−1 such
that there is a derivation `P

:
C : D → E , with `P

:
de�ned below:

– given 6 ∈ P: , we have `P
:

gen: (6) : d−
:−1(6) → d+

:−1(6),

– given a well-typed (:−1)-term C , we have `P
:

id:
:−1(C) : ÈCÉ

P
:−1 → ÈCÉ

P
:−1,

– given 8 ∈ N:−2 and :-terms C1, C2 such that `P
:
C1 : D1 → D ′1 and `P

:
C2 : D2 → D ′2 for

some D1, D
′
1, D2, D

′
2 ∈ P∗:−1 with m+8 (D1) = m−8 (D2), we have `P

:
C1 ∗8,: C2 : D1 ∗8 D2 → D ′1 ∗8 D ′2,

– given :-terms C1, C2 such that `P
:
C1 : D1 → D2 and `P

:
C2 : D2 → D3 for some D1, D2, D3 ∈ P∗:−1,

we have `P
:
C1 ∗:−1,: C2 : D1 → D3.

We then easily verify the following property by induction on C :

Proposition 2.4.1.2. Given C ∈ WP
:
, the following hold:

(i) there are unique D,D ′ ∈ P∗
:−1 such that `P

:
C : D → D ′ is derivable,
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(ii) the derivation `P
:
C : D → D ′ is unique,

(iii) mn
:−2(D) = m

n
:−2(D

′) for n ∈ {−, +}.

Given a well-typed :-term C with associated derivation `P
:
C : D → D ′, we de�ne a cell ÈCÉP

:
∈ P∗

:

such that m−
:−1(ÈCÉ

P
:
) = D and m+

:−1(ÈCÉ
P
:
) = D ′ by induction on the derivation of C :

– if C = gen: (6) for some 6 ∈ P: , then ÈCÉP
:
= 6,

– if C = id:
:−1(C̃) for some C̃ ∈ T P

:−1, then ÈCÉP
:
= id:ÈC̃ÉP

:

,

– if C = C1 ∗8,: C2 for some 8 ∈ N:−1 and C1, C2 ∈ T P
:
, then ÈCÉP

:
= ÈC1ÉP: ∗8 ÈC2É

P
:
.

Note that the well-typedness of C ensures that È−ÉP
:

is well-de�ned, which concludes the inductive
de�nition ofWP

:
and È−ÉP

:
. We writeWP for t:∈N=WP

:
. The above evaluation functions of well-

typed :-terms de�ne a function
È−ÉP : WP → P∗.

Given a morphism � : P→ Q in Pol= , the function T � restricts to a functionW� : WP →WQ .
We then have the following naturality property:

Proposition 2.4.1.3. Given a morphism � : P→ Q in Pol= ,

È−ÉQ ◦W� = � ∗ ◦ È−ÉP.

Proof. Given C ∈ WP, we prove by induction on C that ÈW� (C)ÉQ = � ∗(ÈCÉP):

– if C = gen: (6) for some : ∈ N= and 6 ∈ P: ,

ÈW� (C)ÉQ = � (6) = � ∗ ◦ ÈCÉP,

– if C = id:+1
:
(C̃) for some : ∈ N=−1 and C̃ ∈ T P

:
, then,

ÈW� (C)ÉQ = Èid:+1
:
(W� (C̃))ÉQ

= id:+1
:
(ÈW� (C̃)ÉQ)

= id:+1
:
(� ∗(ÈC̃ÉQ)) (by induction hypothesis)

= � ∗(id:+1
:
(ÈC̃ÉQ))

= � ∗(ÈCÉQ),

– if C = C1 ∗8,: C2 for some 8, : ∈ N= with 8 < : and C1, C2 ∈ WP
:

, then,

ÈW� (C)ÉQ = ÈW� (C1) ∗8,:W� (C2)ÉQ

= ÈW� (C1)ÉQ ∗8 ÈW� (C2)ÉQ

= � ∗(ÈC1ÉP) ∗8 � ∗(ÈC2ÉP) (by induction hypothesis)
= � ∗(ÈC1ÉP ∗8 ÈC2ÉP)
= � ∗(ÈCÉP). �

2.4.1.4 —Word problem statement. For = ∈ N ∪ {l} an =-polygraph P, the word problem on P
consists, given : ∈ N= and C1, C2 ∈ WP

:
, in deciding whether ÈC1ÉP = ÈC2ÉP. By “deciding”, we

mean exhibiting a procedure parametrized by P, =, :, C1 and C2 that terminates in a �nite number
of steps and such that this procedure returns “yes” if and only if ÈC1ÉP = ÈC2ÉP and returns “no”
otherwise. It is desirable that most of the steps of this procedure be implementable on a computer.
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2.4.2 Solution to the word problem on �nite polygraphs

In this section, we show how to derive an algorithm for the word problem on �nite polygraphs
from the results of Section 2.3. This algorithm takes as inputs a polygraph P and two well-typed
terms C1, C2 ∈ WP and decides whether ÈC1ÉP = ÈC2ÉP. Before deriving the algorithm, we must
describe the computational representation of polygraphs and terms that we use. We �rst de�ne
set-encoded polygraphs that are polygraphs equipped with a choice of encodings of their sets of
generators. Then, we show that well-typed terms of set-encoded polygraphs admit a canonical
computational representation, by deriving an encoding for the set of well-typed terms. We then
show how to represent polygraphs computationally. Finally, we give the algorithm that solves
the word problem based on these computational representations.

2.4.2.1 — Set-encoded polygraphs. Given = ∈ N, a set-encoded =-polygraph is a �nite =-poly-
graph P equipped with encodings EP: of P: for : ∈ N= that are injective and decidable. Given
two set-encoded =-polygraphs P and Q , a morphism of set-encoded =-polygraphs between P and Q
is a morphism � : P → Q ∈ Pol= such that, for every : ∈ N= and 6 ∈ P: , there is < ∈ N
satisfying < EP: 6 and < EQ: � (6). We write sePol= for the category of set-encoded =-poly-
graphs.

Given = ∈ N and a set-encoded =-polygraph P, we de�ne an encoding ETP of T P. We �rst
de�ne a function 4P : T P → N inductively on its argument C ∈ T P:

– if C = gen: (6) for some : ∈ N= and 6 ∈ P: , then

4P(C) = \2(0, 1 + \2(:,6#))

where 6# ∈ N is unique such that 6# EP: 6,

– if C = id:+1
:
(C̃) for some : ∈ N=−1 and C̃ ∈ T P

:
, then

4P(C) = \2(1, 1 + \2(:, 4P(C̃))),

– if C = C1 ∗8,: C2 for some :, 8 ∈ N= with 8 < : and C1, C2 ∈ T P
:
, then

4P(C) = \2(2, 1 + \4(:, 8, 4P(C1), 4P(C2))).

We then put 2 ETP C for 2 ∈ N and C ∈ T P when 2 = 4P(C). We then have:

Proposition 2.4.2.2. Given = ∈ N and a set-encoded =-polygraph P, ETP is an injective and
decidable encoding of T P.

Proof. Given 2 ∈ N and C1, C2 ∈ T P such that 2 ETP C1 and 2 ETP C2, we verify that C1 = C2,
by induction on 2 . Let (21, 22) ∈ N2 such that 2 = \2(21, 22). Then, by the de�nition of 4P, we
have 21 ∈ {0, 1, 2}. Suppose that 21 = 0. Thus, by the de�nition of 4P, we have 22 > 0. So
let (:,6#) = \−1

2 (22 − 1). We then have C1 = C2 = gen: (6) where 6 ∈ P: is such that 6# EP: 6.
Now suppose that 21 = 1. Again, by the de�nition of 4P, we have 22 > 0 and we write (:, 2̃)
for \−1

2 (22 − 1). By the de�nition of 4P, for 8 ∈ {1, 2}, the term C8 is of the form id:+1
:
(C̃8) for

some C̃8 ∈ T P such that 2̃ ETP C̃8 . By Proposition 2.3.1.5, we have 2̃ < 2 so that, by induction
hypothesis, C̃1 = C̃2 and thus C1 = C2. The case 2 = 2 is similar. Thus, ETP is an encoding which is
injective by de�nition. Moreover, by doing a case analysis similar to the one above and using the
decidability of the encodings EP: , we get a decidability procedure for the support of ETP , which
terminates by Proposition 2.3.1.5. �
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Remark 2.4.2.3. Given= ∈ N and an=-polygraph P, if P0t· · ·tP= is encoded by the datatype gen ,
then the set T P is naturally encoded by the datatype

type term =
| TermGen of int * gen
| TermId of int * term
| TermComp of (int * int * term * term)

We verify that the functions on terms derived from morphisms of set-encoded polygraphs are
compatible with the encodings on terms:

Proposition 2.4.2.4. Given = ∈ N, two set-encoded =-polygraphs P and Q and a morphism of
set-encoded =-polygraphs � : P → Q , for all 2 ∈ N and C ∈ T P, we have 2 ETP C if and only
if 2 ETQ T � (C).

Proof. This is proved by induction on C . The only non-trivial case is when C = gen: (6) for
some : ∈ N= and 6 ∈ P: . By the de�nition of set-encoded =-polygraph morphism, we have
that, for all 2 ′ ∈ N, 2 ′ EP: 6 if and only if 2 ′ EQ: � (6). Hence, 2 ETP gen: (6) if and only
if 2 ETQ gen: (� (6)). �

SinceWP is a subset of T P, we derive an injective encoding EWP forWP (but we do not know
that it is decidable at the moment). We then have:

Proposition 2.4.2.5. Given = ∈ N and a set-encoded =-polygraph P, if P is computable, then

(i) the function È−ÉP is computable,

(ii) the encoding EWP is decidable.

Proof. Proof of (i): Remember that the encoding of P∗ is the one given by Proposition 2.3.3.2.
The latter properties also states that P∗ is computable for these encodings and so are the em-
beddings P: → P∗

:
for : ∈ N= . Thus, the operations ∗8,: and id: are computable for 8, : ∈ N=

with 8 < : , so that the inductive de�nition of È−ÉP witnesses the fact that È−ÉP is computable.

Proof of (ii): Using (i), we give a procedure that decides, given 2 ∈ N, whether 2 EWP C for
some C ∈ WP. By Proposition 2.4.2.2, we can �rst decide whether 2 ETP C for some C ∈ T P. Then,
we verify by induction on C that C ∈ WP using the following inductive veri�cation procedure:

– if C = gen: (6) for some : ∈ N= and 6 ∈ P: , then C ∈ WP,

– if C = id:+1
:
(C̃) for some : ∈ N=−1 and C̃ ∈ T P

:
, then C ∈ WP if and only if C̃ ∈ WP,

– if C = C1 ∗8,: C2 for some 8, : ∈ N= with 8 < : , then C ∈ WP if and only if C1, C2 ∈ WP

and m+8 (ÈC1ÉP) = m−8 (ÈC2ÉP).

Note that the last condition “m+8 (ÈC1ÉP) = m−8 (ÈC2ÉP)” can be computationally veri�ed since È−ÉP
is computable by (i), and P∗ is computable by Proposition 2.3.3.2 (thus so are the functions m−8 , m

+
8 ),

and EP∗
:

is injective. �

Remark 2.4.2.6. In the same spirit as Remark 2.3.2.36, we in fact proved the stronger statement
that Proposition 2.4.2.5 is “e�ectively parametrized” by P, i.e., there is a computable function
which takes as inputs

– the codes of the computable functions that decide the support of EP: for : ∈ N= ,
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– the codes of the computable functions that witness that P is computable,

and which outputs

– a code for the computable function È−ÉP,

– a code for the function that decides the support ofWP.

2.4.2.7 — Term de�nitions for polygraphs. In order to de�ne algorithms parametrized by
�nite polygraphs, we need to de�ne an encodable structure that represents such polygraphs.
The di�culty here lies in the fact that the de�nition of (=+1)-polygraphs depends on the free
=-category construction to de�ne the source and target of the (=+1)-generators. An encoding
for such free =-category can be de�ned inductively using Proposition 2.3.2.35, but this encoding
would be terrible for practical purposes, since it would require a user to manipulate by hand
the complicated internal encodings of Proposition 2.3.2.35. Instead, we de�ne a more natural
structure that uses well-typed terms to de�ne the source and target of (=+1)-generators.

For = ∈ N, we de�ne the notion of =-term de�nition together with the set-encoded =-polygraph
associated to an =-term de�nition. A 0-term de�nition is a �nite subset �0 ⊂ N and the 0-poly-
graph associated to �0 is �̄ with �̄0 = �0 and E�0 induced by EN. For = ∈ N, an (=+1)-term
de�nition is a dependent pair

� = ((� ′, (), (dt,−
= , d

t,+
= ))

where � ′ is an =-term de�nition, ( is a �nite subset of N, and dt,−
= , d

t,+
= are functions ( →W�̄′

=

such that
mn=−1(Èdt,−

= (6)É�̄
′) = mn=−1(Èdt,+

= (6)É�̄
′)

for n ∈ {−, +} and 6 ∈ ( . The set-encoded (=+1)-polygraph �̄ associated to � is de�ned by

�̄≤= = �̄ ′, �̄=+1 = ( and dn= (6) = Èdt,n
= (6)É�̄

′

for n ∈ {−, +} and 6 ∈ �̄=+1. Finally, E�=+1 is the encoding induced by EN. For = ∈ N, we
write D= for the set of =-term de�nitions. By induction on =, we de�ne an injective encoding
on D= . We de�ne the encoding ED0 for D0 from the encoding EN using the standard derivation
of encodings for �nite subsets. Given = ∈ N, we de�ne the encoding ED=+1 for D=+1 using the
standard derivation of encodings for dependent pairs where

– the encoding for the pairs (� ′, () is de�ned with the standard derivation of encodings for
pairs using ED= and EPf (N) ,

– given a pair (� ′, (), the encoding for the pairs (dt,−
= , d

t,+
= ) is de�ned with the standard

derivations of encodings for pairs and functions with �nite domains, using, for domain and
codomain of dt,−

= and dt,+
= , the encodings E( (induced by EN) and EW�′ respectively.

Remark 2.4.2.8. By Remarks 2.3.1.23 and 2.3.1.27, using the datatype for terms from Remark 2.4.2.3
with gen = int , the set t=∈N D= is naturally encoded by the datatype

type term_def =
| TermDefZ of int list
| TermDefS of term_def * int list * (int * term) list * (int * term) list

Up to isomorphism, term de�nitions encode all �nite set-encoded polygraphs:
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Proposition 2.4.2.9. Given = ∈ N and a �nite set-encoded =-polygraph P, there exists an =-term
de�nition � ∈ D= and an isomorphism P → �̄ in sePol= . Moreover, �̄ and the isomorphism does
not depend on � .

Proof. We prove this property by induction on=. If= = 0, then there is a unique� ∈ D0 such that P
is isomorphic to �̄ in sePol= , which is such that�0 is the support of EP0 . So suppose that the prop-
erty holds for some = ∈ N. We show that it holds for =+1. Let P be a �nite set-encoded (=+1)-poly-
graph. By induction, there is � ′ ∈ D= and an isomorphism � : P≤= → �̄ ′ in sePol= . We now
de�ne the (=+1)-term � = ((� ′, (), (dt,−

= , d
t,+
= )) ∈ D=+1 and 5 : P=+1 → ( such that (�, 5 ) : P→ �̄

is an isomorphism in sePol=+1. By the constraints imposed on the morphisms of sePol=+1 and
since E( is the canonical encoding of the subset ( ⊂ N, we necessarily have that ( is the support
of EP=+1 and 5 maps 6 ∈ P=+1 to the unique 6# ∈ ( such that 6# EP=+1 6. For such ( and 5 , we de-
�ne dt,n

= for n ∈ {−, +} by choosing =-terms C−6 , C+6 ∈ W%≤= such that ÈCn6É%≤= = dn= (6) for 6 ∈ P=+1
(that exist by Proposition 1.4.1.16), and we put dt,n

= (5 (6)) =W� (Cn6 ). Thus, for 6 ∈ P=+1, we have

dn= (5 (6)) = ÈW� (Cn6 )É�̄
′

= � ∗(ÈCn6É%≤= ) (by Proposition 2.4.1.3)

= � ∗(dn= (6))

so that (�, 5 ) is a morphism of sePol=+1 which is moreover an isomorphism. By induction hypoth-
esis, �̄ ′ and the isomorphism � does not depend on � ′, and ( and the bijection 5 : P=+1 → ( are
uniquely de�ned from P=+1 and EP=+1 . Moreover, the functions d−= , d

+
= : �̄=+1 → �̄∗= are uniquely

de�ned from P, � and 5 since
dn= (5 (6)) = � ∗(dn= (6))

so that neither �̄ nor (�, 5 ) : P=+1 → �̄ depends on � . �

Moreover, the polygraphs associated to term de�nitions have the required computability proper-
ties to solve the word problem:

Proposition 2.4.2.10. Given = ∈ N and � ∈ D= ,

(i) �̄ is computable,

(ii) the function È−É�̄ : W�̄ → �̄∗ is computable,

(iii) the encoding EW�̄ is decidable.

Proof. We prove the property by induction on =. When = = 0, the property holds. So suppose
that the property holds for some = ∈ N. We show that it holds for = + 1.

Proof of (i): Let � = (� ′, (, dt,−
= , d

t,+
= ) be an (=+1)-term de�nition. By induction hypothesis,

the =-polygraph �̄ ′ is computable. Moreover, note that the functions dt,−
= , d

t,+
= are computable:

for n ∈ {−, +}, the value of dt,n
= at some 6 ∈ ( can be computed by searching for the unique

pair (6, C) with C ∈ W�̄′ in the graph of dt,n
= (which is part of the code of �). By the induction

hypothesis, È−É�̄′ : W�̄′ → (�̄ ′)∗ is computable, so that dn= = È−É�̄′ ◦ dt,n
= : �̄=+1 → �̄∗= is

computable for n ∈ {−, +}.

Proof of (ii) and (iii): This is a consequence of (i) and Proposition 2.4.2.5. �

Remark 2.4.2.11. In the same spirit as Remark 2.4.2.6, we have in fact proved the stronger statement
that Proposition 2.4.2.10 is “e�ectively parametrized” by � , i.e., there is a computable function
which takes � as input and outputs:
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– codes for functions that witness that �̄ is a computable =-polygraph,

– a code for È−É�̄ : W�̄ → �̄∗,

– a code for the computable function that decides the support of EW�̄ .

Finally, we prove that the codes for term de�nitions of polygraphs are decidable:

Proposition 2.4.2.12. For all = ∈ N, the encoding ED= is decidable.

Proof. We show this property by induction on =. When = = 0, ED0 = EPf (N) is decidable. Sup-
pose now that the property holds for = ∈ N. We show that it holds for = + 1. So let 2 ∈ N.
We give a procedure to decide whether 2 ED=+1 � for some � ∈ D=+1. First, we can decide
whether 2 EN4 (23 , 2B , 2−, 2+) for some 23 , 2B , 2−, 2+ ∈ N. Then, by induction hypothesis, we can
decide whether there exists � ∈ D= such that 23 ED= � . By Proposition 2.3.1.21, we can de-
cide whether there exists ( ∈ Pf (N) such that 2B EPf (N) ( . By Remark 2.4.2.11, using 23 , we
can compute codes for computable functions that witness that �̄ is a computable =-polygraph,
a code for È−É�̄ and a code for a computable function that decides the support of EW�̄ . More-
over, using Remark 2.3.2.36, we can compute a code for the =-category �̄∗. Thus, we can decide
whether 2− and 2+ are codes for functions with �nite domains dt,−

= , d
t,+
= : ( → W�̄

= . Moreover,
since �̄∗ and È−É�̄ are computable, and E�̄∗

=−1
is injective, we can verify computationally that

mn=−1(Èdt,−
= (B)É�̄ ) = mn=−1(Èdt,+

= (B)É�̄ )

for every B ∈ ( and n ∈ {−, +}. If the above equality holds, we have that � ′ = ((�, (), (dt,−
= , d

t,+
= ))

is a member of D=+1 and 2 ED=+1 �
′. Thus, the encoding ED=+1 is decidable. �

2.4.2.13 — Solution to the word problem on �nite polygraphs. Given = ∈ N, an =-word
problem instance is a dependent pairs (�, (C1, C2)) where � ∈ D= and C1, C2 ∈ W�̄ . We write W=

for the set of =-word problem instances, and we de�ne an injective encoding EW=
using the

standard derivation of encodings for dependent pairs, using ED= and EW�̄ for � ∈ D= . There is
an algorithm which decides the word problem for word problem instances:

Proposition 2.4.2.14. The function which takes as input an =-word problem instance (�, (C1, C2))
and outputs 0 if ÈC1É�̄ ≠ ÈC2É�̄ , and 1 if ÈC1É�̄ = ÈC2É�̄ , is computable.

Proof. By Proposition 2.4.2.10(ii) and Remark 2.4.2.11, we can compute a code of the evalua-
tion function È−É�̄ : W�̄ → �̄∗ from a code of � . Since the encoding of �̄∗ is injective,
given C1, C2 ∈ W�̄ , we can compute ÈC1É�̄ and ÈC2É�̄ and compare the resulting codes. Thus,
the property holds. �

Moreover, we can decide the correct inputs for the computable function of Proposition 2.4.2.14:

Proposition 2.4.2.15. For = ∈ N, the encodings EW=
are decidable.

Proof. Let = ∈ N and 2 ∈ N. We can decide whether 2 EN3 (23 , 21, 22) for some 23 , 21, 22 ∈ N.
By Proposition 2.4.2.12, we can decide whether there exists � ∈ D= such that 23 ED= � . By
Remark 2.4.2.11, we can compute the code of a computable function that decides the support
of EW�̄ from 23 . Thus, we can decide whether there exist C1, C2 ∈ W�̄ such that 2: EW�̄ C:
for : ∈ {1, 2}. Hence, EW=

is decidable. �

Thus, given= ∈ N, the following method can be used to decide whether two well-typed terms C1, C2
of a �nite =-polygraph P are such that ÈC1ÉP = ÈC2ÉP:
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(1) pick injective and decidable encodings EP: of P: for : ∈ N= , making P set-encoded,

(2) using the constructive proof of Proposition 2.4.2.9, build � ∈ D= so that there is an isomor-
phism � : P→ �̄ ∈ sePol= ,

(3) decide the=-word problem instance (�,W� (C1),W� (C2)) using the algorithm derived from
Proposition 2.4.2.14.

Remark 2.4.2.16. For step (3), the codes ofW� (C1) andW� (C2) that must be transmitted to the
algorithm are exactly the codes of C1 and C2 under the encoding ETP by Proposition 2.4.2.4.

2.4.3 Solution to the word problem on general polygraphs

We now consider the word problem on general polygraphs (i.e., not necessarily �nite) and give
a solution that reduces to the case of �nite polygraphs: given two well-typed terms C1, C2 of a
polygraph P, we decide the word problem (C1, C2) on a �nite subpolygraph of P that contains C1
and C2. In order to prove the correctness of the method, we need to justify that the word problem
behaves similarly on this subpolygraph. We �rst de�ne the support function of a polygraph P,
that maps a cell D of the associated free category P∗ to the �nite subset of generators of P that
are “present” in D. This function will help us �nd a �nite subpolygraph of P whose free category
contains D. Then, we justify that the above method is correct.

2.4.3.1 — The support function. Given = ∈ N ∪ {l} and an =-polygraph P, we de�ne the
support function

suppP : P∗ → Pf (t8∈N=P8)
or simply, supp, such that, for6 ∈ P, we have6 ∈ supp(D) if and only if XM

P (D)6 > 0 (by convention,
we put supp(∗) = ∅ for the unique (−1)-cell ∗ ∈ P∗−1). The following property gives an inductive
de�nition of supp:

Proposition 2.4.3.2. Given = ∈ N ∪ {l} and an =-polygraph P, the following hold:

(i) supp(6) = {6} ∪ supp(m−= (6)) ∪ supp(m+= (6)) for 6 ∈ P,

(ii) supp(id:+1D ) = supp(D) for : ∈ N=−1 and D ∈ P∗: ,

(iii) supp(D1 ∗8 D2) = supp(D1) ∪ supp(D2) for 8, : ∈ N= with 8 < : and 8-composable D1, D2 ∈ P∗: .

Proof. Proof of (i): This holds since XM
P (6) = 6 + X

M
P (m

−
:−1(6)) + X

M
P (m

+
:−1(6)) for : ∈ N= and 6 ∈ P: .

Proof of (ii): This holds since XM
P (id

:+1
D ) = XM

P (D) for : ∈ N=−1 and D ∈ P∗
:
.

Proof of (iii): Given 8, : ∈ N= and 8-composable D1, D2 ∈ P∗: , we have

XM
P (D1 ∗8 D2) ≤ XM

P (D1) + XM
P (D2)

thus supp(D1 ∗8 D2) ⊆ supp(D1) ∪ supp(D2). Moreover, by Proposition 2.1.2.10(iii), we have

XM
P (D 9 ) ≤ X

M
P (D1 ∗8 D2)

for 9 ∈ {1, 2}, thus supp(D1) ∪ supp(D2) ⊆ supp(D1 ∗8 D2). �

Given = ∈ N ∪ {l}, we write
|−| : Pol= → Set

for the canonical functor mapping P ∈ Pol= to |P| = t:∈N=P: . The function suppP is then natural
in P:
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Proposition 2.4.3.3. Given= ∈ N∪{l} and amorphism � : P→ Q ∈ Pol= , for: ∈ N= andD ∈ P∗: ,
we have

suppQ (� (D)) = |� | (suppP(D)) .

Proof. We prove this property by induction : and on an expression de�ning D (c.f. Proposi-
tion 1.4.1.16):

– if D = 6 for some 6 ∈ P: , then

suppQ (� (6)) = {� (6)} ∪ suppQ (m−
:−1(� (6))) ∪ suppQ (m+

:−1(� (6)))
(by Proposition 2.4.3.2)

= |� | ({6}) ∪ suppQ (� (m−
:−1(6))) ∪ suppQ (� (m+

:−1(6)))
= |� | ({6}) ∪ |� | (suppP(m−

:−1(6))) ∪ |� | (suppQ (m+
:−1(6)))
(by induction on :)

= |� | ({6} ∪ suppP(m−
:−1(6)) ∪ suppQ (m+

:−1(6)))
= |� | (supp(6)) (by Proposition 2.4.3.2),

– if D = id:D̃ for some D̃ ∈ P∗
:−1, then,

suppQ (� (id:D̃)) = suppQ (id:
� (D̃) )

= suppQ (� (D̃)) (by Proposition 2.4.3.2)
= |� | (suppP(D̃)) (by induction on :)

= |� | (suppP(id:D̃)) (by Proposition 2.4.3.2),

– if D = D1 ∗8 D2 for some 8 ∈ N:−1 and D1, D2 ∈ P∗: , then

suppQ (� (D1 ∗8 D2)) = suppQ (� (D1) ∗8 � (D2))
= suppQ (� (D1)) ∪ suppQ (� (D2)) (by Proposition 2.4.3.2)
= |� | (suppP(D1)) ∪ |� | (suppP(D2)) (by induction on D)
= |� | (suppP(D1) ∪ suppP(D2))
= |� | (suppP(D1 ∗8 D2)) (by Proposition 2.4.3.2). �

Moreover, the supp function can be used to characterize the image of a free functor � ∗ in the case
where � is a monomorphism:

Proposition 2.4.3.4. Given = ∈ N∪{l}, a monomorphism � : P→ Q ∈ Pol= , : ∈ N= and D̃ ∈ Q∗: ,
there exists D ∈ P∗

:
such that � (D) = D̃ if and only if suppQ (D̃) ⊆ |� | ( |P|).

Proof. If there exists D ∈ P∗
:

such that � (D) = D̃, then, by Proposition 2.4.3.3,

suppQ (D̃) = |� | (suppP(D)) ⊆ |� | ( |P|)

which proves one implication. We prove the converse one by induction on an expression de�ning D̃.
So suppose that suppQ (D̃) ⊆ |� | ( |P|). Then,

– if D̃ = 6̃ for some 6̃ ∈ Q: , since 6̃ ∈ suppQ (D̃), there exists 6 ∈ P: such that � (6) = � (6̃);
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– if D̃ = id:D̃′ for some D̃ ′ ∈ Q∗
:−1, since suppQ (id:D̃′) = suppQ (D̃ ′), by induction hypothesis,

there exists D ′ ∈ P∗
:−1 such that � (D ′) = D̃ ′, thus � (id:D′) = D̃;

– if D̃ = D̃1 ∗8 D̃2 for some 8 ∈ N:−1 and 8-composable D1, D2 ∈ P∗: , since

suppQ (D̃1) ∪ suppQ (D̃2) = suppQ (D̃1 ∗8 D̃2),

by induction hypothesis, there exist D1, D2 ∈ P∗
:

such that � (D 9 ) = D̃ 9 for 9 ∈ {1, 2}.
Moreover, since � ∗ is a monomorphism by Proposition 2.2.5.7 and m+8 (D̃1) = m−8 (D̃2), we
have m+8 (D1) = m−8 (D2). Thus, � (D1 ∗8 D2) = D̃. �

2.4.3.5 — Stability. As explained earlier, in order to solve the word problem for a general poly-
graph P, given a cell D ∈ P∗, we need to de�ne a �nite “subpolygraph” of P that contains D. The
restriction of P to the generators of supp(D) is a good candidate, but is it a polygraph? More
generally, given ( ⊆ |P|, this raise the question of knowing whether the restriction of P to ( is
still a polygraph. Below, we de�ne a property of stability on subsets of |P| and show that it is a
su�cient condition for the restriction of P to such subsets to be a polygraph.

Given = ∈ N ∪ {l} and an =-polygraph P, a subset ( ⊆ |P| is stable when, for every : ∈ N∗=
and 6 ∈ ( ∩ P: , we have

supp(m−
:−1(6)) ∪ supp(m+

:−1(6)) ⊆ (.

As one can expect, supports of cells are stable:

Proposition 2.4.3.6. Given = ∈ N ∪ {l}, an =-polygraph P, : ∈ N= and D ∈ P∗: , supp(D) is stable.

Proof. This is proved by induction on : and on an expression de�ning D. If : = 0, then the
property holds. So suppose that : ≥ 1. If D = 6 for some 6 ∈ P: , then, by de�nition,

supp(D) = {6} ∪ supp(m−
:−1(6)) ∪ supp(m+

:−1(6)).

By induction hypothesis, supp(m−
:−1(6)) and supp(m+

:−1(6)) are stable. Moreover, we have

supp(m−
:−1(6)) ∪ supp(m+

:−1(6)) ⊆ supp(D)

so that supp(D) is stable. Otherwise, the cases where D = id:D̃ for some D̃ ∈ P∗
:−1 or D = D1 ∗8 D2

for some 8 ∈ N:−1 and 8-composable D1, D2 ∈ P∗: are simple and left to the reader. �

Moreover, polygraphs can be restricted to stable subsets:

Proposition 2.4.3.7. Given = ∈ N ∪ {l}, an =-polygraph P and a stable subset ( ⊆ |P|, there
are unique =-polygraph Q and morphism � : Q → P such that Q: = ( ∩ P: for : ∈ N= and such
that �: : Q: → P: is the embedding of ( ∩ P: in P: .

Proof. We show this property by induction on =. When = = 0, this property holds. So suppose
that it holds for some = ∈ N. We show that it holds for =+1. So let P = (P′, P=+1) be an (=+1)-poly-
graph and ( be a stable subset ( ⊆ |P|. By induction hypothesis, there are unique =-polygraph Q ′

and morphism � ′ : Q ′→ P′ such that Q ′
:
= ( ∩ P: for : ∈ N= and such that � ′

:
is the embedding

of ( ∩ P: in P: . Let Q=+1 = ( ∩ P=+1 and 5 : Q=+1 → P=+1 be the embedding of ( ∩ P=+1 into P=+1.
We now show that there exist unique d−= , d

+
= : Q=+1 → Q∗= that equip Q = (Q ′,Q=+1) with a

structure of (=+1)-polygraph and such that (�, 5 ) is a morphism of polygraphs P→ Q . We start
with existence. Given 6 ∈ Q=+1 and n ∈ {−, +}, since 6 ∈ (=+1 and ( is stable, we have

suppP
′ (dn= (5 (6))) ⊆ ( ∩ |P′ | = |� ′ | (Q ′).
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Then, by Proposition 2.4.3.4, for n ∈ {−, +}, there exists dn= (6) ∈ (Q ′)∗= such that

(� ′)∗(dn= (6)) = dn= (5 (6)).

Moreover, for X ∈ {−, +}, we have

(� ′)∗(mX=−1(d−= (6))) = mX=−1((� ′)∗(d−= (6)))
= mX=−1(d−= (5 (6)))
= mX=−1(d+= (5 (6)))
= mX=−1((� ′)∗(d+= (6)))
= (� ′)∗(mX=−1(d+= (6)))

so that, since (� ′)∗ is a monomorphism by Proposition 2.2.5.7, we have

mX=−1(d−= (6)) = mX=−1(d+= (6)).

Thus, d−= , d
+
= : Q=+1 → (Q ′)∗= as above equip (Q ′,Q=+1) with a structure of (=+1)-polygraph. For

unicity, note that, since (� ′)∗= : (Q ′)∗= → (P′)∗= is a monomorphism by Proposition 2.2.5.7, the
functions d−= , d

+
= : Q=+1 → (Q ′)∗= are uniquely de�ned by (� ′)∗(dn= (6)) = dn= (5 (6)) for n ∈ {−, +}

and 6 ∈ Q=+1.

The case = = l follows from the �nite cases since Poll is a limit cone on the Pol: for : ∈ N by
de�nition. �

Up to isomorphism, the subobjects of a polygraph P obtained using Proposition 2.4.3.7 are exactly
the subobjects of P, as a consequence of the following property:

Proposition 2.4.3.8. Given = ∈ N ∪ {l} and a morphism � : P → Q in Pol= , the set |� | ( |P|) is
stable.

Proof. Let : ∈ N∗= and 6̃ ∈ |� | ( |P|) ∩ Q: . Write 6 ∈ P: for a :-generator such that � (6) = 6̃.
For n ∈ {−, +}, we have

supp(dn
:−1(6̃)) = supp(� ∗(dn

:−1(6)))
= |� | (supp(dn

:−1(6))) (by Proposition 2.4.3.3)

thus supp(dn
:−1(6̃)) ⊆ |� | ( |P|). �

Finally, we conclude that we can use the supp functions to �nd �nite subpolygraphs whose free
categories contain a particular cell:

Proposition 2.4.3.9. Given = ∈ N ∪ {l}, an =-polygraph P and D̃ ∈ P∗, there exist a �nite =-poly-
graph Q , a monomorphism � : Q → P and D ∈ Q∗ such that � ∗(D) = D̃ and |� | ( |Q |) = supp(D).

Proof. By Proposition 2.4.3.6, ( = suppP(D̃) is stable. By Proposition 2.4.3.7, there exist an =-poly-
graph Q and a monomorphism � : Q → P such that Q: = (∩P: and �: is the embedding of (∩P:
in P: for : ∈ N= . Thus, |� | ( |Q |) = suppP(D̃), and, by Proposition 2.4.3.4, there exists D ∈ Q∗ such
that � (D) = D̃. �
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2.4.3.10 — Support of terms. As suggested by Proposition 2.4.3.2, the support function can be
directly de�ned on terms of a polygraph, without evaluation. Given= ∈ N∪{l}, an=-polygraph P
and C ∈ T P, we de�ne supp(C) ⊆ |P| by induction on C :

– if C = gen: (6) for some : ∈ N= and 6 ∈ P: , then,

supp(6) = {6} ∪ supp(d−
:−1(6)) ∪ supp(d+

:−1(6)),

– if C = id:+1
:
(C̃) for some : ∈ N=−1 and C̃ ∈ T P

:
, then,

supp(C) = supp(C̃),

– if C = C1 ∗8,: C2 for some 8, : ∈ N= with 8 < : and C1, C2 ∈ T P
:
, then,

supp(C) = supp(C1) ∪ supp(C2).

By a simple induction on C ∈ WP, we have:

Proposition 2.4.3.11. Given C ∈ WP, supp(C) = supp(ÈCÉP).

Thus, we can compute the support of a cell D ∈ P∗ directly from a well-typed term C ∈ WP such
that ÈCÉP = D.

2.4.3.12 — Monomorphisms and terms. Finally, before concluding the correctness of the
method exposed earlier for solving the word problem on general polygraphs by reducing it on
�nite polygraphs, we need to justify that the word problem behaves in the same manner (with
regard to well-typed terms and their evaluation) on a polygraph Q and on its subpolygraphs. First,
we prove that the subpolygraphs P of Q do not miss any well-typed term of Q that evaluates
to D ∈ P∗:

Proposition 2.4.3.13. Given = ∈ N ∪ {l} and a monomorphism � : P → Q ∈ Pol= , for : ∈ N=
and D ∈ P∗

:
, the functionW� induces a bijection between the subset of well-typed :-terms C ∈ WP

:

such that ÈCÉP = D, and the subset of well-typed :-terms C̃ ∈ WQ
:

such that ÈC̃ÉQ = � ∗(D).

Proof. By Proposition 2.2.5.7, �: : P: → Q: is injective for : ∈ N= , soW� is injective, so that we
only have to prove the surjectivity part of the statement. Given : ∈ N= , D ∈ P∗

:
and C̃ ∈ WQ

:
such

that ÈC̃ÉQ = � ∗(D), we prove by induction on C̃ that there is C ∈ WP such thatW� (C) = C̃ :

– if C̃ = gen: (6̃) for some 6̃ ∈ Q: , then, ÈC̃ÉQ = 6̃ = � ∗(D), so that, by Proposition 2.1.3.4(ii),
there exists 6 ∈ P: such that D = 6. Thus,W� (gen: (6)) = C̃ ;

– if C̃ = id:
:−1(C̃

′) for some C̃ ′ ∈ WQ
:−1, then � ∗(D) = id:ÈC̃ ′ÉQ . By Proposition 2.1.3.4(i), there

exists D ′ ∈ P∗
:−1 such that D = id:D′ , so that � ∗(D ′) = ÈC̃ ′ÉQ . By induction hypothesis, there

exists C ′ ∈ WP such thatW� (C ′) = C̃ ′, so thatW� (id:
:−1(C

′)) = C̃ ;

– if C̃ = C̃1 ∗8,: C̃2 for some 8 ∈ N:−1 and C̃1, C̃2 ∈ WQ
:

, then � ∗(D) = ÈC̃1ÉQ ∗8 ÈC̃2ÉQ . Since � ∗ is
=-Conduché by Proposition 2.2.5.6, there exist 8-composableD1, D2 ∈ P∗: such thatD = D1∗8D2
and � ∗(D 9 ) = ÈC̃ 9ÉQ for 9 ∈ {1, 2}. Then, by induction hypothesis, for 9 ∈ {1, 2}, there
exists C 9 ∈ WP

:
such thatW� (C 9 ) = C̃ 9 , and, by Proposition 2.4.1.3, we have moreover

� ∗(ÈC 9ÉP) = ÈW� (C 9 )ÉQ = ÈC̃ 9ÉQ = � ∗(D 9 )

so that ÈC 9ÉP = D 9 by Proposition 2.2.5.6. Since m+8 (D1) = m−8 (D2), we have C = C1 ∗8,: C2 ∈ WP

and moreoverW� (C) = C̃ . �
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Moreover, we verify that the evaluation of well-typed terms is the same for Q as for its subpoly-
graphs:

Proposition 2.4.3.14. Given = ∈ N ∪ {l} and a monomorphism � : P → Q ∈ Pol= , for : ∈ N=
and C1, C2 ∈ WP

:
, we have ÈC1ÉP = ÈC2ÉP if and only if ÈW� (C1)ÉQ = ÈW� (C2)ÉQ .

Proof. This is a consequence of the facts that, by Proposition 2.4.1.3, we have

È−ÉQ ◦W� = � ∗ ◦ È−ÉP

and, by Proposition 2.2.5.7, � ∗ is a monomorphism. �

2.4.3.15 — Solution to the word problem on general polygraphs. Given = ∈ N ∪ {l}, an
=-polygraph P, : ∈ N= and C1, C2 ∈ WP

:
, we combine the properties of the section to describe a

method to decide whether ÈC1ÉP = ÈC2ÉP.

First, let Q = P≤: . By the de�nition ofWQ , we have C1, C2 ∈ WQ and, by the de�nition of È−ÉP,

ÈC1ÉP = ÈC2ÉP if and only if ÈC1ÉQ = ÈC2ÉQ .

Thus, it is su�cient to decide whether ÈC1ÉQ = ÈC2ÉQ . If ÈC1ÉQ = ÈC2ÉQ , then, by Proposi-
tion 2.4.3.11, we have supp(C1) = supp(C2). We can easily calculate both supp(C1) and supp(C2)
using the inductive de�nition of supp on terms and verify that supp(C1) = supp(C2) by Proposi-
tion 2.4.3.11 (otherwise, we conclude that ÈC1ÉP ≠ ÈC2ÉP). Thus, suppose that supp(C1) = supp(C2).

Using the constructive content of the proof of Proposition 2.4.3.9, the subpolygraph R of Q
induced by the stable subset supp(C1) satis�es that, by Proposition 2.4.3.4, there exist D1, D2 ∈ R∗:
such that � (D8) = ÈC8ÉQ for 8 ∈ {1, 2}. By Proposition 2.4.3.13 and by considering the canonical
embedding � : R ↩→ Q , we have that C1, C2 ∈ WR

:
and, by Proposition 2.4.3.14, we have

ÈC1ÉQ = ÈC2ÉQ if and only if ÈC1ÉR = ÈC2ÉR.

Since R is a �nite :-polygraph, we can use the computational method for �nite polygraphs from
Paragraph 2.4.2.13 to decide whether ÈC1ÉR = ÈC2ÉR, which is equivalent to ÈC1ÉP = ÈC2ÉP as we
have shown.

2.4.4 An implementation in OCaml

In this section, we present the cateq program, which implements the solution to the word problem
for �nite polygraphs given in Section 2.4.2 in OCaml. One uses cateq by �rst describing a
polygraph P, and then by querying the solution to several word problem instances on P. We �rst
describe the implementation of cateq and then illustrate how to use it on some examples.

2.4.4.1 — Implementation. The implementation of cateq is obtained from the constructive
content of the proofs of this section and the already introduced datatypes, together with additional
performance enhancements that we shall describe below. Our presentation di�ers from the actual
implementation, but it should nevertheless convey the main ideas.

In order to represent the terms of the polygraph we are considering, we use the datatype intro-
duced by Remark 2.4.2.3 that we recall below:
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(* The type of generators *)
type gen = int

(* The datatype of terms *)
type term =
| TermGen of int * gen
| TermId of int * term
| TermComp of int * int * term * term

A polygraph P is then described to the program using a term de�nition (c.f. Paragraph 2.4.2.7)
which is introduced generator by generator. Concretely, the user creates a new :-generator by
specifying a source (:−1)-term and a target (:−1)-term. A dictionary mapping generators to
these informations is maintained globally, and the following functions are available to retrieve
them:

val g_dim : gen -> int (* The dimension of a generator *)
val g_src : gen -> term (* The source of a generator *)
val g_tgt : gen -> term (* The target of a generator *)

By the description of the functor −[−]= : Cat+= → Cat=+1 we gave in Section 2.2.5, the cells of P∗
are classes of sequences of classes of contexts (as de�ned in Paragraphs 2.2.2.1 and 2.2.4.1). We
encode these objects using datatypes adapted from the ones of Remarks 2.3.2.9, 2.3.2.19, 2.3.2.28
and 2.3.2.31. The datatypes for contexts and sequences are de�ned as follows:

(* The datatype of contexts of generator type *)
type ctxt =
| CtxtZ of gen (* a 0-context of the type of a generator *)
| CtxtS of seqcl * ctxtcl * seqcl (* an (m+1)-context *)

(* The datatype of m-sequences *)
type seq =
| SeqZ of seqcl (* a zero-length m-sequence *)
| SeqP of ctxtcl list (* a positive-length m-sequence *)

The associated context classes (quotients of contexts under the relations≈<) and sequences classes
(quotients of sequences under the relation ≈) are then represented by simple integer identi�ers:

type seqcl = SeqCl of int
type ctxtcl = CtxtCl of int

Note that, contrary to the datatypes of Remarks 2.3.2.9 and 2.3.2.31, we did not de�ne ctxtcl and
seqcl as lists of ctxt and seq respectively. The above de�nition allows for quicker comparison

of two classes: one just compares the two identi�ers. In order to retrieve the sets of representatives
of context classes, a dictionary between the known context class identi�ers and their context
representatives is maintained and can be queried with

val find_ctxtcl_reps : ctxtcl -> ctxt list option

Conversely, a dictionary between<-contexts and the known<-context class identi�ers is main-
tained and can be queried with

val find_ctxt_cl : ctxt -> ctxtcl option

Moreover, a map between a context class identi�er and a set of representatives can be added to
the global dictionary with
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val set_ctxt_cl : ctxt list -> ctxtcl -> unit

There are similar functions for sequences and sequence class identi�ers:

val find_seqcl_reps : seqcl -> seq list option
val find_seq_cl : seq -> seqcl option
val set_seq_cl : seq list -> seqcl -> unit

We now present the implementation of the function which computes the set of representatives of
the class of a particular<-context under the relation ≈< , and then returns the associated context
class identi�er. First, we introduce the structures that allows to manipulate sets of contexts.
In OCaml, this is done with:

(* Module which equips 'ctxt' with a total order *)
module Context =

struct
type t = ctxt
let compare = compare (* comparison function for 'ctxt' generated by OCaml *)

end

(* Module that defines the types and operations on sets of 'ctxt' *)
module ContextSet = Set.Make (Context)

(* The actual type of sets of 'ctxt' *)
type ctxt_set = ContextSet.t

Then, the context class identi�er associated to a context is computed with the function

val get_ctxtcl : ctxt -> ctxtcl
let get_ctxtcl ctxt =

match find_ctxt_cl ctxt with
| Some cl -> cl
| None -> let cl = get_ctxtcl' ctxt in cl

It �rst checks with find_ctxt_cl whether the class identi�er has already been computed, and
returns the saved value if it is the case (this is a classical dynamic programming technique, which
is nevertheless critical for e�ciency here). Otherwise, it calls get_ctxtcl' to do the actual
computation:

val get_ctxtcl' : ctxt -> ctxtcl
let get_ctxtcl' ctxt =

match ctxt with
(* the case of 0-contexts, which is trivial *)
| CtxtZ g ->

(* 0-context classes have only one representative *)
let reps = [ctxt] in
(* we obtain a fresh identifier for this class *)
let cl = fresh_ctxtclid () in
(* we associate 'cl' with the singleton set of representatives *)
set_ctxt_cl reps cl;
(* we return the class identifier *)
cl

(* the case of (m{+}1)-contexts *)
| CtxtS _ ->

(* BFS that computes the other context of the class *)
let rec aux already_done_set = function

(* if there is no other context to handle, we return *)
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| [] -> already_done_set
(* otherwise, we handle the top context *)
| curr :: nexts ->

if ContextSet.mem curr already_done_set then
(* if 'curr' already handled, we continue *)
aux already_done_set nexts

else
(* otherwise, we compute the neighbors of 'curr' and add them

to the list of contexts to explore *)
let ngbrs = ContextSet.elements (ctxt_rel_ngbrs curr) in
aux (ContextSet.add curr already_done_set) (List.append ngbrs nexts)

in
(* the above BFS returns the set of representatives for the class of 'ctxt' *)
let reps = ContextSet.elements (aux (ContextSet.empty) [ctxt]) in
(* we then get a fresh identifier, set the class and return *)
let cl = fresh_ctxtclid () in
set_ctxt_cl reps cl;
cl

The code of the case CtxtS in get_ctxtcl' is exactly the breadth-�rst search algorithm given in
the proof of Proposition 2.3.1.31, where

val ctxt_rel_ngbrs : ctxt -> ctxt_set

is the function which witnesses that the relations ≈1
< ∪ ≈−1

< are e�ectively right �nite for< ∈ N,
and which is derived from the proof of Proposition 2.3.2.10. We skip the code of this function
since it is quite technical.

The computation of the set of representatives of a class of a particular<-sequence is done
similarly. First, we introduce the structures that allow manipulating sets of sequences:

module Sequence =
struct

type t = seq
let compare = compare

end

module SequenceSet = Set.Make (Sequence)

type seq_set = SequenceSet.t

Then, the retrieval of an<-sequence class identi�er associated with a particular<-sequence is
done with the two functions:

val get_seqcl : seq -> seqcl
val get_seqcl' : seq -> seqcl

let get_seqcl seq =
match find_seq_cl seq with
| Some cl -> cl
| None -> let cl = get_seqcl' seq in cl

let get_seqcl' seq =
match seq with
| SeqZ _ ->

let reps = [seq] in
let cl = fresh_cid () in
set_seq_cl reps cl;
cl
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| SeqP _ ->
let rec aux already_done_set = function

| [] -> already_done_set
| curr :: nexts ->

if SequenceSet.mem curr already_done_set then
aux already_done_set nexts

else
let ngbrs = SequenceSet.elements (seq_rel_ngbrs curr) in
aux (SequenceSet.add curr already_done_set) (List.append ngbrs nexts)

in
let reps = SequenceSet.elements (aux (ContextSet.empty) [seq]) in
let cl = fresh_cid () in
set_seq_cl reps cl;
cl

Like for CtxtS , the code of the case of SeqP in get_seqcl' is the procedure given in the proof
of Proposition 2.3.1.31, where

val seq_rel_ngbrs : seq -> seq_set

is the function which witnesses that the relation ≈1 ∪ ≈−1 is e�ectively right �nite, and which is
derived from the proof of Proposition 2.3.2.29. We also skip the code of this function since it is
quite technical.

We then implement the source m−, target m+, identity id and composition ∗ operations for P∗,
by unfolding the constructive proofs of Proposition 2.4.2.10(i) and Proposition 2.3.3.2, that jointly
implies that the strict category P∗ is computable. As a result, we obtain functions

val csrc : int -> seqcl -> seqcl
val ctgt : int -> seqcl -> seqcl
val identity : int -> seqcl -> seqcl
val comp : int -> int -> seqcl -> seqcl -> seqcl

which describe a recursive model of P∗ (c.f. Remark 2.3.1.35). Moreover, unfolding the proof of
Proposition 2.3.3.2 again, we obtain an implementation of the embedding function P→ P∗:

val gen_embed : gen -> seqcl

We then code the evaluation function È−ÉP : WP → P∗, following the constructive proof of
Proposition 2.4.2.10(ii):

val eval_wtterm : term -> seqcl
let rec eval_wtterm term =

match term with
| TermGen k gen -> gen_embed gen
| TermId k term' ->

let seqcl = eval_wtterm term' in
identity k seqcl

| TermComp (k,i,term_l,term_r) ->
let seqcl_l = eval_wtterm term_l in
let seqcl_r = eval_wtterm term_r in
comp i k seqcl_l seqcl_r

The function which solves the word problem, given by Proposition 2.4.2.14, is then simply imple-
mented as follows:
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val solve_word_problem : term -> term -> bool
let solve_word_problem term_l term_r =

eval_wtterm term_l = eval_wtterm term_r

Concretely, solve_word_problem computes the seqcl identi�ers of the evaluations of term_l

and term_r and compares them.

2.4.4.2 — Examples. We now show how to use cateq on several examples starting with a simple
one. Consider the 1-polygraph P with P0 = {G} and P1 = {5 , 6 : G → G}. Let’s see how to query
cateq whether the cells 5 ∗0 6 and 6 ∗0 5 are equal. We �rst populate the current polygraph with
the following commands:

# x := gen *
# f,g := gen x -> x

A command of the form [name] := gen * creates a 0-generator which is called [name] . The
syntax [name] := gen [src] -> [tgt] creates an (:+1)-generator called [name] of source and
target the :-cells [src] and [tgt] respectively. Several generators with the same source and
target can be de�ned by separating their names with commas, like was done for f and g . We
then formulate our query with the command

# f *0 g = g *0 f

and cateq replies

false

The cells are composed in the query using the composition operation *0 for 0-composable cells.
For composing cells in dimension 1, 2, etc. one then uses the operations *1 , *2 , etc. For identities,
one uses the syntax id1 , id2 , etc. For example, we can query

# f *0 id1 x = f

and cateq answers true .

Now consider the 2-polygraph P with P0 = {G}, P1 = ∅ and P2 = {U, V,W, X : id1
G ⇒ id1

G }. We
de�ne it in cateq with the commands

# x := gen *
# alpha,beta,gamma,delta := gen id1 x -> id1 x

We then verify with cateq that U ∗0 V ∗0 W ∗0 X can be expressed with two other expressions:

# alpha *0 beta *0 gamma *0 delta = (alpha *1 beta) *0 (delta *0 gamma)
# alpha *0 beta *0 gamma *0 delta = beta *1 alpha *1 gamma *1 delta

And cateq answers true to both queries. We see that alpha *0 beta *0 gamma *0 delta is quite
long to write. To solve this problem, we introduce a variable using the syntax [name] := [expr] :

# X := alpha *0 beta *0 gamma *0 delta

We can then make other queries using X :
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# X = gamma *1 (alpha *0 beta) *1 delta
# X = alpha *1 beta *1 gamma *1 gamma
# alpha *0 X = X *1 alpha

to which cateq answers true , false and true respectively.

Remark 2.4.4.3. The representatives of the 2-sequence class of X are in correspondence with the to-
tal orders on {U, V,W, X}. Thus, there are 4! representative 2-sequences of X that cateq has to com-
pute in order to decide a word problem instance involving X . More generally, in order to decide an
equality involving the cell U1 ∗0 · · · ∗0U: for some distinct 2-generators U1, . . . , U: : id1

G ⇒ id1
G ∈ P2

of a polygraph P, cateq has to consider all the representative :! 2-sequences of this expression for
computing the associated 2-sequence class. Thus, the worst-case complexity of cateq is pretty
bad: at least factorial in the size of the queried expressions. But cateq handles well queries
on expressions that do not have too many “bubble” generators like U, V,W or X , so that it is still
e�cient on a large class of word problem instances.

In Chapter 3, we will use cateq to justify the correctness of an important counter-example for two
pasting diagram formalisms, motivating the rest of that chapter (c.f. Paragraph 3.1.2.13). Moreover,
the results the latter will enable writing an extension to cateq which enables a simpler de�nition
of word problem instances (c.f. Paragraph 3.4.1.32).

2.5 Non-existence of some measure on polygraphs

Recall the de�nition of Makkai’s measure given in Paragraph 2.1.2.5. As we have shown there,
Makkai’s measure has good properties: it is natural, it is positive, and it admits an inductive
de�nition. But, it was remarked by Makkai [Mak05] that his measure has one defect: it double-
counts some generators. To some extent, such double-counting is sensible in particular situations.
For example, consider a polygraph P with a generator 5 : G → G ∈ P1. Then, XM

P (5 ) = 2G + 5 , so G
is counted twice, but it seems logical since G “appears twice” in 5 as is illustrated in its graphical
representation:

G G
5

.

However, in other situations, double-counting does not seem adequate. For example, consider
the polygraph Q with two 0-generators ~, I, two 1-generators 6, ℎ : ~ → I and one 2-gene-
rator U : 6⇒ ℎ. Then,

XM
Q (U) = 2G + 2~ + 6 + ℎ + U

so that ~ and I get counted twice by XM
Q , which does not seem natural since ~ and I “appear once”

in the graphical representation of U :

~ I

6

ℎ

⇓ U .

We call polyplex a cell D ∈ P∗ for some polygraph P such that the generators of P “appear exactly
once” in D. Intuitively, polyplexes are cells which are “as separated as possible”, i.e., without
non-necessary identi�cations between the sources and targets of the generators involved in these
cells. On the one hand, 5 is not a polyplex, since one can conceive a polygraph P′ with a 1-gene-
rator 5 ′ : G ′1 → G ′2 with G ′1 ≠ G

′
2, so that 5 is a specialization of 5 ′. On the other hand,U is a polyplex,

since all the identi�cations between the sources and targets of the generators seem necessary.
Polyplexes were �rst studied by Makkai [Mak05] through the related notion of computope, and
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then by Burroni [Bur12] (who introduced the name polyplex) and Henry [Hen18]. It was asked
by Makkai [Mak05] whether there exists another measure c on polygraphs with good properties
like the ones satis�ed by Makkai’s measure and such that generators in polyplexes get counted
only once, i.e., given a polyplex D of a polygraph P,

cP(D) =
∑
6∈P

6.

Of course, there exist several measures that satisfy the latter property. Among them, we can
even �nd measures with several additional properties, like being positive. The really interesting
question that is left unanswered is whether there exists a measure c as above that would moreover
be natural in P. The existence of such a measure would be useful, since it could help characterize
polyplexes in particular.

In this section, we give a negative answer to this question. First, we introduce the de�nitions
of plexes and polyplexes (where plexes are, intuitively, polyplexes of length one), together with
some of their properties (Section 2.5.1). In the process, we answer another open question raised
by Makkai [Mak05] and show that a cell D ∈ P∗ of the free strict category on a polygraph P can be
the specialization of several non-isomorphic polyplexes, and we do so by providing an example.
Then, by adapting the latter, we show that there is no natural measure on polygraphs that counts
exactly once the generators of polyplexes (Section 2.5.2).

2.5.1 Plexes and polyplexes

In [Mak05], Makkai de�ned the notion of plexes (calling them computopes) using the formalism
of concrete categories. We recall this formalism, and show that it can be used to derive both the
notion of plexes and polyplexes.

2.5.1.1 — Concrete categories. A concrete category a category C endowed with a functor

|−|C : C → Set.

In the setting of [Mak05], the above concretization functor should be understood as a candidate
set representation of C in order to express C as a presheaf category, in the way suggested by the
following canonical example:

Example 2.5.1.2. Let � be a small category. �̂ has a canonical structure of concrete category,
where |−|�̂ is de�ned on preasheaves % ∈ �̂ by

|% |�̂ =
⊔
2∈�0

% (2)

and extended naturally to morphisms between presheaves.

An equivalence of concrete categories between concrete categories (C, |−|C) and (D, |−|D) is the
data of an equivalence of categories E : C → D and a natural isomorphism

Φ : |−|D ◦ E ⇒ |−|C .

If such an equivalence exists, (C, |−|C) and (D, |−|D) are said concretely equivalent. One might
then consider the following natural question:

When is some concrete category (C, |−|C) concretely equivalent
to a presheaf category (�̂, |−|�̂ ) for some small category �?
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When it is the case, we say that (C, |−|C) is a concrete presheaf category. In [Mak05], Makkai
gave a criterion, that we shall introduce in the coming paragraphs, to answer the above question.
He then used this criterion to show that Poll is not a concrete presheaf category, when Poll is
equipped with the concretization functor given by the below example:

Example 2.5.1.3. The functor |−| : Poll → Set (already de�ned in Paragraph 2.4.3.1) which
maps P ∈ Poll to

|P| =
⊔
:∈N

P:

equips Poll with a structure of concrete category.

Later, we will study the properties of Poll equipped with the above concretization functor. An-
other concretization functor on Poll that will be of interest for us is given by the below example:

Example 2.5.1.4. There is a functor | (−)∗ | : Poll → Set which maps P ∈ Poll to

|P∗ | =
⊔
:∈N

P∗
:

and which is extended naturally to morphisms of Poll . This functor also equips Poll with a
structure of concrete category.

In order to distinguish with the preceding concrete category structures on Poll , we use the
convention that we write Poll when considering the concrete category structure on Poll given
by |−| and Pol∗l when considering the concrete category structure on Poll given by | (−)∗ |.

2.5.1.5 — Category of elements. Before presenting the criterion of Makkai, we shall �rst in-
troduce the category of elements associated with a concrete category. Given a concrete cate-
gory (C, |−|C), the category of elements Elt(C) of C is the category

– whose objects are the pairs (-, G) where - ∈ C0 and G ∈ |- |C ,

– and whose morphisms from (-, G) to (.,~) are the morphisms 5 : - → . ∈ C such
that |5 |C (G) = ~. Given such a morphism 5 : (-, G) → (.,~), we say that ~ is a specializa-
tion of G .

An object (-, G) ∈ Elt(C) is principal when, for all morphism 5 : (.,~) → (-, G) ∈ Elt(C) such
that 5 is a monomorphism in C, we have that 5 is an isomorphism; it is primitive when it is
principal and, for all 5 : (.,~) → (-, G) ∈ Elt(C) where (.,~) is principal, 5 is an isomorphism.

Example 2.5.1.6. Let� be a small category and consider the canonical concrete category structure
on �̂ given by Example 2.5.1.2. The category Elt(�̂) has

– as objects the pairs (%, ]2 (G)) where % ∈ �̂ and G ∈ % (2),

– and as morphisms from (%, ]2 (G)) to (&, ]3 (~)) the natural transformations U : % ⇒ & such
that 2 = 3 and U2 (G) = ~.

Given (%, ]2 (G)) ∈ Elt(�̂), we have that:

– (%, ]2 (G)) is principal when % is the smallest subpresheaf % ′ of % such that G ∈ % ′(2). In
particular, for all 2 ∈ � , (� (−, 2), ]2 (id2)) ∈ Elt(�̂) is principal;

– (%, ]2 (G)) is primitive when the natural transformation \ : � (−, 2) → % which maps id2 to G
is an isomorphism.
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2.5.1.7 — Characterization of concrete presheaves. The criterion given by Makkai for char-
acterizing the concrete categories that are concretely equivalent to presheaf categories is the
following:

Theorem 2.5.1.8 ([Mak05, Theorem 4]). Let (C, |−|C) be a concrete category. C is concretely
equivalent to a presheaf category if and only the following conditions are all satis�ed:

(i) |−|C re�ects isomorphisms,

(ii) C is cocomplete and |−|C preserves all small colimits,

(iii) the collection of isomorphism classes of primitive elements of Elt(C) is small,

(iv) for every element (-, G) ∈ Elt(�), there is a morphism (* ,D) → (-, G) for some primitive
element (* ,D),

(v) given two morphisms 5 , 6 : (* ,D) → (-, G) ∈ Elt(C) where (* ,D) is primitive, we have 5 = 6,

(vi) given two morphisms 5 : (* ,D) → (-, G) and 6 : (+ , E) → (-, G) of Elt(C) where both (* ,D)
and (+ , E) are primitive, there is an isomorphism \ : (* ,D) → (+ , E) such that 6 ◦ \ = 5 .

Makkai showed that Poll was not concretely equivalent to a presheaf category by proving
that (v) was not satis�ed in Poll , using the standard Eckmann-Hilton argument in strict cat-
egories [Sim11]. However, he did not know whether (vi) was true in Poll . In the following, we
will show that Poll does not satisfy (vi).

2.5.1.9 — Plexes. Consider the category Elt(Poll ). An object of Elt(Poll ) is a pair (P, 6) where P
is an l-polygraph and 6 is a generator of P. By Proposition 2.4.3.9, such an object is principal
when P is the smallest subpolygraph of P that contains 6 or, equivalently, supp(6) = P. In this
case, P is �nite and 6 is uniquely determined as the generator of maximal dimension of P. We
denote by 6P this generator. So “being principal” reduces, in the case of Elt(Poll ), to a property
on polygraphs: we say that an l-polygraph Q is principal when Q is �nite and Q has a unique
maximal generator, denoted 6Q , such that Q is the smallest subpolygraph of Q that contains 6Q .
We then have directly:

Proposition 2.5.1.10. Given (P, 6) ∈ Elt(Poll ), the following are equivalent:

(i) (P, 6) is principal,

(ii) P is principal and 6 = 6P,

(iii) supp(6) = P.

Following the terminology of [Hen17], a plex is an l-polygraph P such that P is principal and
which satis�es that (P, 6P) ∈ Elt(Poll ) is primitive. As far as we know, there is no easy character-
ization of plexes as there is for principal polygraphs. Intuitively, a plex is a principal l-polygraph
which is “as separated as possible”.

Example 2.5.1.11. Let P be an l-polygraph such that

P0 = {G,~} P1 = {5 : G → G, 6 : G → ~} P2 = {U : 5 ⇒ 5 }
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and P: = ∅ for : ≥ 3. P can be pictured by

G G ~

5

5

⇓ U 6
.

The l-polygraph P is not principal since it is not the smallest subpolygraph which contains U .
However, U is the specialization of the generator U ′ ∈ P′, where P′ is the l-polygraph such that

P′0 = {G ′}, P′1 = {5 ′ : G ′→ G ′}, P′2 = {U ′ : 5 ′⇒ 6′},

and P′
:
= ∅ for : ≥ 3, and which can be pictured by

G ′ G ′

5 ′

6′

⇓ U ′ .

P′ is principal but it is not a plex since U ′ is the specialization of U ′′ ∈ P′′, where P′′ is the
l-polygraph such that

P′′0 = {G ′′, ~ ′′} P′′1 = {5 ′′, 6′′ : G ′′→ ~ ′′} P′′2 = {U ′′ : 5 ′′⇒ 6′′}

and P′′
:
= ∅ for : ≥ 3, so that the cell U ′′ can be pictured as

G ′′ ~ ′′

5 ′′

6′′

⇓ U ′′

and it can be veri�ed that P′′ is a plex.

2.5.1.12 — Polyplexes. Consider now the category Elt(Pol∗l ) (where, by the convention we intro-
duced, Pol∗l denotes Poll equipped with the concretization functor of Example 2.5.1.4). An object
of Elt(Pol∗l ) is a pair (P, D) where P is an l-polygraph and D is a cell of P∗. Such an element is
principal when P is the smallest subpolygraph Q such that D ∈ Q∗. By Proposition 2.4.3.9, we
have directly:

Proposition 2.5.1.13. Given (P, D) ∈ Elt(Pol∗l ), (P, D) is principal if and only if P = supp(D).

Following again the terminology of [Hen17], a polyplex is an element (P, D) such that (P, D) is
both principal and primitive. Like for plexes, there is no simple characterization of polyplexes we
are aware of. Intuitively, they are the elements (P, D) ∈ Elt(Pol∗l ) with P = supp(D) such that the
generators de�ning D are “as separated as possible”.
Example 2.5.1.14. Let P be the l-polygraph such that

P0 = {G}, P1 = {5 : G → G}, P2 = {U : 5 ⇒ 5 },

and P: = ∅ for : ≥ 3, and D = U ∗1 U , which can be pictured by

G G

5

5

5

⇓ U
⇓ U

.
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The element (P, D) is principal, but it is not a polyplex, since D is the specialization of D ′ ∈ P′∗,
where P′ is the l-polygraph such that

P′0 = {G ′, ~ ′} P′1 = {5 ′, 6′, ℎ′ : G ′→ ~ ′} P′2 = {U ′ : 5 ′⇒ 6′, V ′ : 6′⇒ ℎ′}

and P′
:
= ∅ for : ≥ 3, and D ′ = U ′ ∗1 V ′, which can be pictured by

G ′ ~ ′

5 ′

6′

ℎ′

⇓ U ′

⇓ V ′

and it can be veri�ed that (P, D) is a polyplex.

We writeU : Elt(Poll ) → Elt(Pol∗l ) for the canonical embedding. We then have:

Proposition 2.5.1.15. Let (P, 6) ∈ Elt(Poll ). Then

(i) (P, 6) is principal if and only ifU(P, 6) is principal,

(ii) (P, 6) is a plex if and only ifU(P, 6) is a polyplex.

Proof. By Propositions 2.5.1.10 and 2.5.1.13, (i) holds. Suppose now that both (P, 6) andU(P, 6)
are principal. By Proposition 2.1.3.4(ii),U is fully faithful, so that it re�ects isomorphisms. Thus,
ifU(P, 6) is a polyplex, then (P, 6) is a plex. For the converse, note that if 5 : (Q, E) → U(P, 6)
is a morphism of Elt(Pol∗l ), then, by Proposition 2.1.3.4(ii), E ∈ Q , so that

(Q, E) = U(Q, E) and 5 = U(5 ).

Hence, if (P, 6) is a plex, thenU(P, 6) is a polyplex. �

Conversely, there is a functor

V : Elt(Pol∗l ) → Elt(Poll )

which is described as follows. Given anl-polygraph P andD ∈ P∗
:

for some: ∈ N, the image of the
element (P, D) ∈ Elt(Pol∗l ) byV is the element (PD+, 6D), where PD+ is the l-polygraph obtained
from P by adding a :-generator ℎD : m−

:−1(D) → m+
:−1(D) and an (:+1)-generator 6D : D → ℎD .

Given a morphism � : (P, D) → (Q, E) of Elt(Pol∗l ), V(� ) is the morphism of l-polygraphs
which maps 6 ∈ P to � (6), ℎD to ℎE , and 6D to 6E .

Proposition 2.5.1.16. Given (P, D) ∈ Elt(Pol∗l ), we have that:

(i) (P, D) is principal if and only ifV(P, D) is principal,

(ii) (P, D) is a polyplex if and only ifV(P, D) is a plex.

Proof. We have suppPD+ (6D) = suppP(D) ∪ {ℎD, 6D}, so that, by Propositions 2.5.1.10 and 2.5.1.13,
the property (i) holds. Suppose now that both (P, D) and (PD+, 6D) are principal. If (PD+, 6D)
is a plex, then, given a morphism � : (Q, E) → (P, D) of Elt(Pol∗l ) with (Q, E) principal, we
have that V(� ) is an isomorphism by (i), which maps ℎE to ℎD and 6E to 6D , so that � is an
isomorphism. Conversely, suppose that (P, D) is a polyplex and let � : (Q, 6) → (PD+, 6D) be
a morphism of Elt(Poll ) with (Q, 6) principal. Then, we have � ∗(d+(6)) = ℎD , so that, by
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Proposition 2.1.3.4, d+(6) = ℎ for some ℎ ∈ Q . Let E = d−(6) and Q̃ be the smallest subpolygraph
of Q that contains E (given by Proposition 2.4.3.9). We then have:

|� | ( |Q̃ |) = |� | (supp(E)) (since |Q̃ | = supp(E))
= supp(� ∗(E)) (by Proposition 2.4.3.3)
= supp(D)
= |P| (since (P, D) is principal).

Thus, the generators of Q̃ are mapped to the generators of P. Hence, ℎ ∉ Q̃ . Moreover, since Q
is principal, Q = Q̃ ∪ {ℎ,6}, so that there are an isomorphism Θ : (Q̃E+, 6E) → (Q, 6) and a
morphism � ′ : (Q̃, E) → (P, D) of Elt(Pol∗l ) such that � ◦ Θ = V(� ′). By (i), (Q̃, E) is principal
and, since (P, D) is a polyplex, � ′ is an isomorphism and so is � . Hence, (ii) holds. �

We now answer the question raised by Makkai and prove that Poll does not satisfy the point (vi)
of the characterization of concrete presheaf categories (Theorem 2.5.1.8), giving another proof
that Poll is not a concrete presheaf category. First, we give a counter-example to (vi) for Pol∗l ,
proving by the way that it is also not concretely equivalent to a presheaf category:

Proposition 2.5.1.17. There exist (Q, E) ∈ Elt(Pol∗l ) and morphisms

� : (P, D) → (Q, E) and � ′ : (P′, D ′) → (Q, E)

of Elt(Pol∗l ) where (P, D) and (P′, D ′) are polyplexes such that P and P′ are not isomorphic in Poll .

Proof. Consider the l-polygraph Q with

Q0 = {G} Q1 = ∅ Q2 = {U : id1
G ⇒ id1

G } Q3 = {� : id2
G V U, � : U V id2

G }

and Q: = ∅ for : ≥ 4 together with the 3-cell E = (� ∗0 U) ∗2 (� ∗0 U) : U V U , which can be
represented by

G G

id1
G

id1
G

⇓ U
�∗0U≡≡≡≡V G G G

id1
G

id1
G

id1
G

id1
G

⇓ U ⇓ U
�∗0U≡≡≡≡V G G

id1
G

id1
G

⇓ U .

The element (Q, E) is a specialization of the element (P, D) where

P0 = {~} P1 = ∅ P2 = {V,W : id1
~ ⇒ id1

~} P3 = {� : id2
~ V V, � : V V id2

~}

and D = (� ∗0 W) ∗2 (� ∗0 W), which can be represented by

~ ~

id1
~

id1
~

⇓ W
�∗0W
≡≡≡V ~ ~ ~

id1
~

id1
~

id1
~

id1
~

⇓ V ⇓ W
�∗0W
≡≡≡≡V ~ ~

id1
~

id1
~

⇓ W .

Moreover, (Q, E) is the specialization of the element (P′, D ′) where

P′0 = {~ ′} P′1 = ∅ P′2 = {V ′, W ′ : id1
~′ ⇒ id1

~′} P′3 = {� ′ : id2
~′ V V ′, � ′ : W ′ V id2

~′}
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and D ′ = (� ′ ∗0 W ′) ∗2 (V ′ ∗0 � ′), which can be represented by

~ ′ ~ ′

id1
~′

id1
~′

⇓ W ′
�′∗0W ′
≡≡≡≡V ~ ′ ~ ′ ~ ′

id1
~′

id1
~′

id1
~′

id1
~′

⇓ V ′ ⇓ W ′
V′∗0�′
≡≡≡≡≡V ~ ′ ~ ′

id1
~′

id1
~′

⇓ V ′ .

We verify that (P, D) is a polyplex. By Proposition 2.5.1.13, it is principal. Now let

� : (R,F) → (P, D) ∈ Elt(Pol∗l )

where (R,F) is principal. Then, by Proposition 2.1.2.8, Z� (XM
R (F)) = X

M
P (D) and we compute that

Z� (XM
R (F)) = X

M
P (D) = 5~ + V + W +� + � .

Thus, R has exactly two 3-generators �̃ and �̃ and exactly two 2-generators Ṽ and W̃ that are
mapped to respectively to � , � , V and W by � . By Proposition 2.1.3.4, we can deduce the sources
and targets of Ṽ and W̃ from the ones of V and W :

Ṽ : id1(~̃1) ⇒ id1(~̃1) and W̃ : id1(~̃2) ⇒ id1(~̃2)

for some ~̃1, ~̃2 ∈ R0. We can moreover deduce the sources and targets of �̃ and �̃ :

�̃ : id2(~̃1) V Ṽ and �̃ : Ṽ V id2(~̃1).

By computing XM
R (�̃) and XM

R (�̃) and using Proposition 2.1.2.10(iv), we have

3~̃1 ≤ XM
R (�̃) ≤ X

M
R (F) and 3~̃2 ≤ XM

R (�̃) ≤ X
M
R (F)

so that, if ~̃1 ≠ ~̃2, then 6~ ≤ XM
P (D), contradicting XM

P (D)~ = 5. Thus ~̃1 = ~̃2, and, since (R,F) is
principal, R0 = {~̃1}. Hence, � is an isomorphism. We conclude that (P, D) is a polyplex. Using
similar techniques, we can prove that (P′, D ′) is a polyplex.

We now verify that P and P′ are not isomorphic. Suppose by contradiction that there is an
isomorphism Θ : P→ P′ ∈ Poll . Then, either Θ(�) = � ′ or Θ(�) = � ′. Since

d−2 (Θ(�)) = Θ∗(d−2 (�)) = id2
~′ ≠ W

′ = d−2 (� ′)

we necessarily have Θ(�) = � ′, and thus, Θ(�) = � ′. But then,

V ′ = d+2 (� ′) = Θ∗(d+2 (�)) = Θ∗(d−2 (�)) = d−2 (� ′) = W ′

contradicting V ′ ≠ W ′. So P and P′ are not isomorphic. �

Finally, we answer the question of Makkai and conclude that Poll does not verify the condition (vi)
of Theorem 2.5.1.8:

Proposition 2.5.1.18. There exist (Q̄, 6) ∈ Elt(Poll ) and morphisms

� : (P̄, 6P̄) → (Q̄, 6) and � ′ : (P̄′, 6P̄′) → (Q̄, 6)

of Elt(Poll ) where (P̄, 6P̄) and (P̄′, 6P̄′) are plexes such that P̄ and P̄′ are not isomorphic in Poll .
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Proof. By Proposition 2.5.1.17, there are polyplexes (P, D) and (P′, D ′) and morphisms

� : (P, D) → (Q, E) and � ′ : (P′, D ′) → (Q, E)

for some (Q, E) ∈ Elt(Pol∗l ) such that P and P′ are not isomorphic. By applying V , we obtain
morphisms

V(� ) : (PD+, 6D) → (QE+, 6E) and V(� ′) : (P′D′+, 6D′) → (QE+, 6E)

of Elt(Poll ), where (PD+, 6D) and (P′D′+, 6D′) are plexes by Proposition 2.5.1.16. We now show
that PD+ and P′D

′+ are not isomorphic. So suppose by contradiction that there exists an isomor-
phism Θ : PD+ → P′D

′+. Since D and D ′ are of the same dimension, 6D and 6D′ are the unique
maximal generators of PD+ and P′D

′+ respectively, so Θ maps 6D on 6D′ . Thus, Θ maps ℎD = d+(6D)
to ℎD′ = d+(6D′). So Θ induces an isomorphism between P and P′ seen as subpolygraphs of PD+
and P′D

′+ respectively, which is a contradiction. �

2.5.2 Inexistence of the measure

In this section, we prove that there is no measure on polygraphs which is natural and which does
not double-counts generators of polyplexes. More precisely, we show that there exists no family
of functions c = (cP : |P∗ | → ZP)P∈Poll such that

(PP-i) for all morphism � : P→ Q in Poll , Z� ◦ cP = cQ ◦ |� ∗ |,

(PP-ii) for every polyplex (P, D) ∈ Elt(Pol∗l ), c (D)6 = 1 for all 6 ∈ P.

2.5.2.1 — Unicity. We �rst prove that the properties (PP-i) and (PP-ii) completely determine
the family c , if it exists. This comes from the fact that every cell of the free l-category on an
l-polygraph can be “lifted” by a polyplex.

Let P be an l-polygraph. Given 6 ∈ P, a plex lifting of 6 is a morphism

� : (Q, 6Q) → (P, 6)

in Elt(Poll ) where (Q, 6Q) is a plex. Given D ∈ P∗, a polyplex lifting of D is a morphism

� : (Q, E) → (P, D)

in Elt(Pol∗l ) where (Q, E) is a polyplex. In this situation, we say that (Q, E) lifts D. In [Mak05], it
is shown that “there is enough plexes”, i.e.,

Proposition 2.5.2.2 ([Mak05, Theorem 3]). Given an l-polygraph P and 6 ∈ P, there exists a plex
lifting of 6.

We deduce the same property for polyplexes:

Proposition 2.5.2.3. Given an l-polygraph P and D ∈ P∗, there exists a polyplex lifting of D.

Proof. By Proposition 2.5.2.2, there exist a plex (Q, 6) and a morphism � : (Q, 6) → (PD+, 6D)
in Elt(Poll ). We have � ∗(d+(6)) = ℎD , so d+(6) = ℎ for some ℎ ∈ Q . Let E = d−(6) and Q̃
be the smallest subpolygraph of Q that contains E . Since � ∗(E) = D, � maps the generators
of Q̃ to generators of P. Since (Q, 6) is principal, we have Q = Q̃ ∪ {ℎ,6}. So there exists an
isomorphism Θ : Q̃E+ → Q and � ′ : Q̃ → P such that � ◦ Θ = V(� ′). By Proposition 2.5.1.16(ii),
the element (Q̃, E) is a polyplex and � ′ : (Q̃, E) → (P, D) is a morphism of Elt(Pol∗l ). �
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We then have the following unicity result:

Proposition 2.5.2.4. There is at most one family of functions c = (cP : |P∗ | → ZP)P∈Poll which
satis�es (PP-i) and (PP-ii).

Proof. Let P be an l-polygraph and D ∈ P∗. Then, by Proposition 2.5.2.3, there exists a mor-
phism � : (Q, E) → (P, D) where (Q, E) is a polyplex. Since c is natural and satis�es (PP-ii), we
have

cP(D) = Z� (cQ (E)) = Z� (
∑
6∈Q

6)

so (cP)P∈Poll is uniquely determined. �

2.5.2.5 — Designing a counter-example. So a family c that satis�es (PP-i) and (PP-ii) is unique,
but does it exist at all? By looking at the proof of Proposition 2.5.2.3, it would require some sort
of compatibility between the polyplex liftings of a cell D ∈ P∗ of an l-polygraph P. Proposi-
tion 2.5.1.17 is already a bad sign for the existence of c but does not necessarily prevent the exis-
tence of c : it could be the case that, for all P,D ∈ P∗, and polyplexes liftings (� 8 : (Q8 , E8) → (P, D))
of D for 8 ∈ {1, 2}, we have

Z� 1(
∑
6∈Q1

6) = Z� 2(
∑
6∈Q2

6)

even though Q1 and Q2 are not necessarily isomorphic. We show below that it is not the case by
exhibiting a counter-example, which re�nes the one of the proof of Proposition 2.5.1.17.

The idea to build such a counter-example is the following. Given an l-polygraph P with
3-generators � and � of the form

G G

5

5

⇓U
�
≡V G G

5

5

⇓U
�
≡V G G

5

5

⇓U

a polyplex lifting of � ∗2 � is given by the polyplex (P′, �′ ∗2 �′), where �′ and �′ are of the form

G ′ ~ ′

5 ′

6′

⇓U ′
�′

≡V G ′ ~ ′

5 ′

6′

⇓V ′
�′

≡V G ′ ~ ′

5 ′

6′

⇓W ′

so that 5 has two pre-images in P′ and, if the family c exists, c (� ∗2 �)5 = 2. Now, if P has a
2-generator � of the form

G G

5

5

⇓U
�
≡V G G

5

5

⇓ id
5

then, a polyplex lifting of � ∗2 � is given by (P′′, �′′ ∗2 � ′′) where �′′ and � ′′ are of the form

G ′′ ~ ′′

5 ′′

5 ′′

⇓U ′′
�′′

≡≡V G ′′ ~ ′′

5 ′′

5 ′′

⇓V ′′
�′′

≡≡V G ′′ ~ ′′

5 ′′

5 ′′

⇓ id
5 ′′
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so that 5 has only one pre-image in P′′ and c (� ∗2 �)5 = 1. So, we can control the number of
preimages of 5 in a polyplex lifting of� ∗2- by choosing the right 3-generator - ∈ P3. From this
remark, we build an l-polygraph P with 3-cells �,� ′,  ,  ′ ∈ P∗3 satisfying

(� ∗2  ) ∗0 (� ′ ∗2  ′) = (� ∗2  ′) ∗0 (� ′ ∗2  )

and such that there are less preimages for some 1-generator 5 ∈ P in the polyplex lifting associated
to the left hand-side than in the one associated to the right hand-side. Thus, this incoherence will
contradict the existence of c .

Consider the l-polygraph P where

P0 = {G} P1 = {5 : G → G}
P2 = {_ : idG ⇒ 5 , d : 5 ⇒ idG , U : 5 ⇒ 5 }

P3 = {� : U V U,�′ : id
5
V U, � : U V U, �′ : U V id

5
}

together with the 3-cell

D = (� ∗2  ) ∗0 (� ′ ∗2  ′) = (� ∗0 � ′) ∗2 ( ∗0  ′)

where

� = _ ∗1 � ∗1 d � ′ = _ ∗1 �′ ∗1 d
 = _ ∗1 � ∗1 d  ′ = _ ∗1 �′ ∗1 d

so that D can be represented by

G G G

id1
G

5

5

id1
G

⇓ _

⇓ d
⇓ U

id1
G

5

id1
G

⇓ _

⇓ d

�∗0� ′≡≡≡≡≡V G G G

id1
G

5

5

id1
G

⇓ _

⇓ d
⇓ U

id1
G

5

5

id1
G

⇓ _

⇓ d
⇓ U

 ∗0 ′≡≡≡≡V G G G

id1
G

5

5

id1
G

⇓ _

⇓ d
⇓ U

id1
G

5

id1
G

⇓ _

⇓ d
.

In the following, we describe two polyplexes that lift D. First, we prove some technical lemmas
relating Makkai’s measure and decomposition of cells with contexts:

Lemma 2.5.2.6. Let Q be an l-polygraph, : ∈ N and 6 ∈ Q: . Given< ∈ N:−1 and an<-context �
of type 6, we have

XM
Q (m

+
:−1(� [6])) = X

M
Q (m

−
:−1(� [6])) + X

M
Q (d

+
:−1(6)) − X

M
Q (d

−
:−1(6))

and, given an<-context class � of type 6, we have

XM
Q (m

+
:−1(� [6])) = X

M
Q (m

−
:−1(� [6])) + X

M
Q (d

+
:−1(6)) − X

M
Q (d

−
:−1(6)).
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Proof. We prove this by induction on<. If< = 0, then the property holds. So suppose that< > 0
and let (;, � ′, A ) = �. We have, using Proposition 2.1.2.9,

XM
Q (m

+
:−1(� [6])) = X

M
Q (; r<−1 m

+
:−1(�

′[6]) r<−1 A )
= XM

Q (id
:−1
;
∗<−1 m

+
:−1(�

′[6]) ∗<−1 id:−1
A )

= XM
Q (;) + X

M
Q (m

+
:−1(�

′[6])) + XM
Q (A ) − X

M
Q (m

+
<−1(;)) − XM

Q (m
−
<−1(A )))

= XM
Q (;) + X

M
Q (m

−
:−1(�

′[6])) + XM
Q (A ) − X

M
Q (m

+
<−1(;)) − XM

Q (m
−
<−1(A )))

+ XM
Q (d

+
:−1(6)) − X

M
Q (d

−
:−1(6)) (by induction hypothesis)

= XM
Q (id

:−1
;
∗<−1 m

−
:−1(�

′[6]) ∗<−1 id:−1
A )

+ XM
Q (d

+
:−1(6)) − X

M
Q (d

−
:−1(6))

= XM
Q (; r<−1 m

−
:−1(�

′[6]) r<−1 A ) + XM
Q (d

+
:−1(6)) − X

M
Q (d

−
:−1(6))

= XM
Q (m

−
:−1(� [6])) + X

M
Q (d

+
:−1(6)) − X

M
Q (d

−
:−1(6)).

Moreover, given the fact that � = È� ′É for some<-context � ′, a similar equality holds for � . �

Lemma 2.5.2.7. Given an l-polygraph Q , : ∈ N and D ∈ Q∗
:
, if

D = �1 [61] ∗:−1 · · · ∗:−1 �; [6; ]

for some ; ∈ N and 68 ∈ Q: and (:−1)-context classes �8 for 8 ∈ N∗; , then∑
6∈Q:

XM
Q (D)6 = 61 + · · · + 6; .

Proof. Given 6 ∈ Q: ,< ∈ N:−1 and an<-context � of type 6, a simple induction on< shows that∑
6′∈Q:

XM
Q (� [6])6′ =

∑
6′∈Q:

XM
Q (È�É[6])6′ = 6.

Moreover, given (:−1)-composable D1, D2 ∈ Q∗: , by Proposition 2.1.2.9, we have

XM
Q (D1 ∗:−1 D2) = XM

Q (D1) + XM
Q (D2) − XM

Q (m
+
:−1(D1))

so that, for all 6′ ∈ Q: ,
XM
Q (D1 ∗:−1 D2)6′ = XM

Q (D1)6′ + XM
Q (D2)6′ .

Thus, the statement holds. �

2.5.2.8 — The �rst polyplex. We now introduce a �rst polyplex of which the element (P, D) is
the specialization. Consider the l-polygraph P1 where

P1
0 = {G1} P1

1 = {51, 61, ℎ1 : G1 → G1}
P1

2 = { _1 : id1
G1 ⇒ 51, _′1 : id1

G1 ⇒ ℎ1,

d1 : 61 ⇒ id1
G1, d ′1 : ℎ1 ⇒ id1

G1,

U1, U
′
1, U
′′
1 : 51 ⇒ 61, V1 : ℎ1 ⇒ ℎ1 }

P1
3 = {�1 : U1 V U ′1, �

′
1 : id

ℎ1
V V1, �1 : U ′1 V U ′′1 , �

′
1 : V1 V id

ℎ1
}

and the 3-cell

D1 = (�1 ∗2  1) ∗0 (� ′1 ∗2  ′1) = (�1 ∗0 � ′1) ∗2 ( 1 ∗0  ′1) ∈ (P1)∗3
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where

�1 = _1 ∗1 �1 ∗1 d1 � ′1 = _
′
1 ∗1 �′1 ∗1 d ′1

 1 = _1 ∗1 �1 ∗1 d1  ′1 = _
′
1 ∗1 �′1 ∗1 d1

which can be represented by

G1 G1 G1

id1
G1

51

61

id1
G1

⇓ _1

⇓ d1

⇓ U1

id1
G1

ℎ1

id1
G1

⇓ _′1

⇓ d ′1

�1∗0� ′1≡≡≡≡≡V G1 G1 G1

id1
G1

51

61

id1
G1

⇓ _1

⇓ d1

⇓ U ′1

id1
G1

ℎ1

ℎ1

id1
G1

⇓ _′1

⇓ d ′1

⇓ V1
 1∗0 ′1≡≡≡≡≡V G1 G1 G1

id1
G1

51

61

id1
G1

⇓ _1

⇓ d1

⇓ U ′′1

id1
G1

ℎ1

id1
G1

⇓ _′1

⇓ d ′1
.

Given the morphism � 1 : P1 → P ∈ Poll de�ned by the mappings

G1 ↦→ G 51, 61, ℎ1 ↦→ 5

_1, _
′
1 ↦→ _ d1, d

′
1 ↦→ d

U1, U
′
1, U
′′
1 ↦→ U V1 ↦→ U

�1 ↦→ � �′1 ↦→ �′

�1 ↦→ � �′1 ↦→ �′

we have that (� 1)∗(D1) = D. We moreover verify that:

Proposition 2.5.2.9. (P1, D1) is a polyplex.

Proof. We compute

XM
P1 (D1) = 23G1 + 351 + 361 + 4ℎ1 + _1 + _′1 + d1 + d ′1 + U1 + U ′1 + U ′′1 + V1 +�1 +�′1 + �1 + �′1 (2.14)

so that (P1, D1) is principal by Proposition 2.5.1.13. Let � : (Q, E) → (P1, D1) be a morphism
in Elt(Pol∗l ) where (Q, E) is principal. Since Z� (XM

Q (E)) = X
M
P1 (D1) (by Proposition 2.1.2.8), Q3 has

exactly four generators,
�̄, �̄′, �̄, �̄′

respectively mapped to �1, �′1, �1, �′1 by � , and Q2 has exactly eight generators

_̄, _̄′, d̄, d̄ ′, Ū, Ū ′, Ū ′′, V̄

respectively mapped to _1, _′1, d1, d ′1, U1, U ′1, U ′′1 , V1 by � . Since � is an l-polygraph morphism,
by Proposition 2.1.3.4, we deduce that

�̄ : Ū V Ū ′ �̄ : Ū ′ V Ū ′′ (2.15)
�̄′ : id2

ℎ̄
V V̄ �̄′ : V̄ V id2

ℎ̄
(2.16)

for some preimage ℎ̄ ∈ Q1 of ℎ1. From (2.15) and (2.16), we deduce that

Ū, Ū ′, Ū ′′ : 5̄ ⇒ 6̄

for some preimages 5̄ , 6̄ of 5 and 6 respectively, and that V̄ : ℎ̄ ⇒ ℎ̄. We have

�∗(m−2 (E)) = m−2 (D1) = (_1 ∗1 U1 ∗1 d1) ∗0 (_′1 ∗1 d ′1)
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and we compute

Z� (XM
Q (m

−
2 (E))) = XM

P1 (m−2 (D1)) = 9G1 + 51 + 61 + ℎ1 + _1 + _′1 + d1 + d ′1 + U1. (2.17)

By Proposition 2.1.2.10(iv), we deduce that

_̄ : id2
Ḡ ⇒ 5̄ , d̄ : 6̄⇒ id2

Ḡ , _̄′ : id2
Ḡ′ ⇒ ℎ̄′, d̄ ′ : ℎ̄′⇒ id2

Ḡ′,

for some preimages ℎ̄′, Ḡ, Ḡ ′ ∈ Q of the generators ℎ, G, G respectively.

We now verify that ℎ̄ = ℎ̄′. By Proposition 2.2.5.3 and Lemma 2.5.2.7, the cell E can be written

E = �1 [�1] ∗2 �2 [�2] ∗2 �3 [�3] ∗2 �4 [�4]

for some 2-context classes �1, �2, �3, �4 and {�1,�2,�3,�4} = {�̄, �̄′, �̄, �̄′}. By Lemma 2.5.2.6, we
have

XM
Q (m

−
2 (�8 [�8])) = XM

Q (m
−
2 (E)) +

∑
1≤ 9<8

[
XM
Q (d

+
2 (� 9 )) − XM

Q (d
−
2 (� 9 ))

]
(2.18)

for 8 ∈ {1, 2, 3, 4}. Let ?, @ ∈ {1, 2, 3, 4} be such that �? = �̄′ and �@ = �̄′. Since

XM
Q (d

−
2 (�̄′))V̄ = 1

we have XM
Q (m

−
2 (�@ [�@]))V̄ ≥ 1. Moreover, by (2.15) and (2.17),

XM
Q (m

−
2 (E))V̄ = XM

Q (d
+
2 (�̄))V̄ = XM

Q (d
+
2 (�̄))V̄ = 0

so that, by (2.18), we have ? < @. Then, since

1 = XM
Q (d

−
2 (�̄′))ℎ̄ ≤ XM

Q (m
−
2 (�? [�?]))ℎ̄ and XM

Q (d
+
2 (�̄))ℎ̄ = XM

Q (d
+
2 (�̄))ℎ̄ = 0

we have 1 ≤ XM
Q (m

−
2 (E))ℎ̄ by (2.18) again. Moreover,

1 ≤ XM
Q (_̄

′)ℎ̄′ ≤ XM
Q (m

−
2 (E))ℎ̄′

thus 1 ≤ XM
Q (m

−
2 (E))ℎ̄′ . Since both ℎ̄ and ℎ̄′ are preimages of ℎ and

(Z� (XM
Q (m

−
2 (E))))ℎ = XM

P1 (m−2 (D1))ℎ = 1

we have ℎ̄ = ℎ̄′.

We now prove that 5̄ , 6̄, ℎ̄ are the only 1-generators of Q . Suppose by contradiction that there
is another preimage 5̄ ′ ∈ Q1 of 51. Then, since (Q, E) is principal, we have XM

Q (E)5̄ ′ ≥ 1 so there
exists A ∈ {1, 2, 3, 4} such that XM

Q (�A [�A ])5̄ ′ ≥ 1. By de�nition of �̄, �̄′, �̄, �̄′, we have XM
Q (�8)5̄ ′ = 0

for 8 ∈ {1, 2, 3, 4}. We deduce that XM
Q (m

−
2 (�A [�A ]))5̄ ′ ≥ 1, and, by (2.18), that XM

Q (m
−
2 (E))5̄ ′ ≥ 1. But

XM
Q (m

−
2 (E))5̄ = 1, Z� (XM

Q (m
−
2 (E))) = XM

P1 (m−2 (D)) and XM
P1 (m−2 (D))51 = 1

so 5̄ = 5̄ ′, contradicting 5̄ ≠ 5̄ ′. Thus, 5̄ is the unique preimage of 5 . The same argument gives
that 6̄ and ℎ̄ are the unique preimages of 6 and ℎ respectively.

Finally, we have Ḡ = Ḡ ′ since, otherwise, it would not be possible to compose the 1-, 2- and
3-generators of Q together, and, since (Q, E) is principal, there are no other 0-cells. So � is an
isomorphism. Hence, (Q, E) is a polyplex. �



2.5. NON-EXISTENCE OF SOME MEASURE ON POLYGRAPHS 187

2.5.2.10 — The second polyplex. We now introduce another polyplex of which can be special-
ized to (P, D). Consider the l-polygraph P2 where

P2
0 = {G2} P2

1 = {52, 62}
P2

2 = { _2 : idG2 ⇒ 52, _′2 : idG2 ⇒ 62,

d2 : 52 ⇒ idG2, d ′2 : 62 ⇒ idG2,

U2, U
′
2 : 52 ⇒ 52, V2, V

′
2 : 62 ⇒ 62 }

P2
3 = {�2 : U2 V U ′2, �

′
2 : id2

62 V V2, �2 : V2 V V ′2, �
′
2 : U ′2 V id2

52
}

and the 3-cell

D2 = (�2 ∗2  ′2) ∗0 (� ′2 ∗2  2) = (�2 ∗0 � ′2) ∗2 ( ′2 ∗0  2) ∈ (P2)∗3

where

�2 = _2 ∗1 �2 ∗1 d2 � ′2 = _
′
2 ∗1 �′2 ∗1 d ′2

 ′2 = _2 ∗1 �′2 ∗1 d2  2 = _
′
2 ∗1 �2 ∗1 d ′2

which can be represented by

G2 G2 G2

id1
G2

52

52

id1
G2

⇓ _2

⇓ d2

⇓ U2

id1
G2

62

id1
G2

⇓ _′2

⇓ d ′2

�2∗0� ′2≡≡≡≡≡V G2 G2 G2

id1
G2

52

52

id1
G2

⇓ _2

⇓ d2

⇓ U ′2

id1
G2

62

62

id1
G2

⇓ _′2

⇓ d ′2

⇓ V2
 ′2∗0 2
≡≡≡≡≡V G2 G2 G2

id1
G2

52

id1
G2

⇓ _2

⇓ d2

id1
G2

62

62

id1
G2

⇓ _′2

⇓ d ′2

⇓ V ′2 .

Given the morphism � 2 : P2 → P ∈ Poll de�ned by the mappings

G2 ↦→ G 52, 62 ↦→ 5

_2, _
′
2 ↦→ _ d2, d

′
2 ↦→ d

U2, U
′
2 ↦→ U V2, V

′
2 ↦→ U

�2 ↦→ � �′2 ↦→ �′

�2 ↦→ � �′2 ↦→ �′

we have

(� 2)∗(D2) = (� ∗0 � ′) ∗2 ( ′ ∗0  )
= (� ∗0 � ′) ∗2 [( ′ ∗0 id3

m−1 ( )
) ∗1 (id3

m+1 ( ′)
∗0  )] (by Axioms (S-iii) and (S-vi))

= (� ∗0 � ′) ∗2 ( ′ ∗1  ) (by Axiom (S-iii))
= (� ∗0 � ′) ∗2 [(id3

m−1 ( )
∗0  ′) ∗1 ( ∗0 id3

m+1 ( ′)
)] (by Axiom (S-iii))

= (� ∗0 � ′) ∗2 ( ∗0  ′) (by Axioms (S-iii) and (S-vi))
= (� ∗2  ) ∗0 (� ′ ∗2  ′)
= D

We then verify that:

Proposition 2.5.2.11. (P2, D2) is a polyplex.
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Proof. We compute

XM
P2 (D2) = 23G2 + 552 + 562 + _2 + _′2 + d2 + d ′2 + U2 + U ′2 + V2 + V ′2 +�2 +�′2 + �2 + �′2

so that (P2, D2) is principal by Proposition 2.5.1.13. Let � : (Q, E) → (P2, D2) be a morphism
of Elt(Pol∗l ) where (Q, E) is principal. Since Z� (XM

Q (E)) = XM
P2 (D2) (by Proposition 2.1.2.8), we

deduce that Q has exactly four 3-generators

�̄, �̄′, �̄, �̄′

mapped to �2, �
′
2, �2, �

′
2 respectively by � , and eight 2-generators

_̄, _̄′, d̄, d̄ ′, Ū, Ū ′, V̄, V̄ ′

mapped to _2, _′2, d2, d ′2, U2, U ′2, V2, V ′2 respectively by� . Since� is an l-polygraph morphism, by
Proposition 2.1.3.4, we deduce that

�̄ : Ū V Ū ′ �̄ : V̄ V V̄ ′ (2.19)
�̄′ : id6̄ V V̄ �̄′ : Ū ′ V id

5̄
(2.20)

for some preimages 5̄ , 6̄ ∈ Q1 of 5 and 6 respectively. By (2.19) and (2.20), we have

Ū, Ū ′ : 5̄ ⇒ 5̄ and V̄, V̄ ′ : 6̄⇒ 6̄.

Moreover,
�∗(m−2 (E)) = m−2 (D2) = (_2 ∗1 d2) ∗0 (_′2 ∗1 V2 ∗1 d ′2)

so that
Z� (XM

Q (m
−
2 (E))) = XM

P2 (m−2 (D2)) = 9G2 + 252 + 62 + _2 + _′2 + d2 + d ′2 + U2.

By Proposition 2.1.2.10(iv), 2 5̄ ≤ XM
Q (Ū) ≤ X

M
Q (m

−
2 (E)) thus

_̄ : idḠ ⇒ 5̄ and d̄ : 5̄ ⇒ idḠ

for some Ḡ ∈ Q0. Similarly, by considering m+2 (E) and XM
P2 (m+2 (D2)), we have

_̄′ : idḠ′ ⇒ 6̄ and d̄ ′ : 6̄⇒ idḠ′

for some Ḡ ∈ Q0. By the same arguments as for (P1, D1), we have that 5̄ , 6̄ are the only 1-gene-
rators of Q , Ḡ = Ḡ ′ and Ḡ is the only 0-generator of Q . Thus,� is an isomorphism. Hence, (P2, E2)
is a polyplex. �

2.5.2.12 — Inexistence of a polyplex-compatible measure. Now that we have built the poly-
plex liftings

(P1, D1) and (P2, D2)
of (P, D), we can conclude the inexistence of a natural measure c on polygraphs that does not
double-counts, since c would not be consistently de�ned on D:

Proposition 2.5.2.13. A family of functions c = (cP : |P∗ | → ZP)P∈Poll can not satisfy both (PP-i)
and (PP-ii).

Proof. By contradiction, suppose that there exists a family c satisfying both (PP-i) and (PP-ii). We
compute cP(D) in two di�erent ways. First, note that there are exactly three preimages 51, 61, ℎ1
of 5 by � 1, whereas there are two preimages 52, 62 of 5 by � 2. Then, on the one hand, we
have cP(D) = Z� 1(cP1 (D1)), thus cP(D)5 = 3. On the other hand, we have cP(D) = Z� 2(cP2 (D2)),
so that cP(D)5 = 2, which is a contradiction. �



Chapter 3

Pasting diagrams

Introduction

Originally, the motivation behind pasting diagrams was to give a simpler description of cells of free
strict categories on polygraphs, and thus, of strict categories in general: the standard description
of the cells as classes of well-typed expressions given by Proposition 1.4.1.16, or even the one as
classes of sequences of context classes given in Section 2.2, are quite heavy and di�cult to use
without computer assistance. Those descriptions seem necessary to handle the full complexity
that general polygraphs can induce, but appear excessive for most simple instances. Indeed, it
has now become common practice in the literature about strict categories (and, in particular,
this manuscript) to represent cells of strict categories simply by diagrams of generators, named
pasting diagrams. For example, one can consider the pasting diagram

D E F G ~
0

2

1

3

⇓ U

⇓ V
5

4

6

ℎ
⇓ W

⇓ X
(3.1)

in any 2-category� that has 0-cells D, E,F, G,~, 1-cells 0, 1, 2, 3, 4, 5 , 6, ℎ and 2-cells U, V,W, X whose
sources and targets satisfy the equalities suggested by the diagram:

m+0 (0) = E = m−0 (1) m+1 (U) = 2 = m−1 (V) m+1 (V) = 3 etc.

From this diagram, one easily �nds expressions that compose “all the cells together” like

id2
0 ∗0 (U ∗1 V) ∗0 ((W ∗0 id2

ℎ
) ∗1 (X ∗0 id2

ℎ
))

or
(id2

0 ∗0 U ∗0 id2
4 ∗0 id2

ℎ
) ∗1 (id2

0 ∗0 id2
2 ∗0 W ∗0 id2

ℎ
) ∗1 (id2

0 ∗0 V ∗0 X ∗0 id2
ℎ
).

A remarkable property of (3.1), and of pasting diagrams in general, is that all such expressions
are equivalent modulo the axioms of strict categories (c.f. Paragraph 1.4.1.1), so that the 2-cell
obtained by composing “all the cells of the diagram together” is well-de�ned. Moreover, there are

189
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subdiagrams of (3.1) that are also pasting diagrams, and they can moreover be composed together
by simply taking their set union. For example,

E F2

1

3

⇓ U

⇓ V
and F G ~

5

4

ℎ
⇓ W

are subdiagrams of (3.1) that are pasting diagrams and that can be composed in dimension 0
alongF to produce the subdiagram of (3.1)

E F G ~2

1

3

⇓ U

⇓ V 5

4

ℎ
⇓ W

which is also a pasting diagram. However, not all subdiagrams of (3.1) are pasting diagrams. For
example, the subdiagram

D E F G ~
0

2

1

3

⇓ U

⇓ V
ℎ (3.2)

is not a pasting diagram, since it is not possible to �nd an expression which composes the gener-
ators on the left-hand side with the ones on the right-hand side.

As suggested by the above example, a pasting diagram induces an l-category of the subdia-
grams that are pasting diagrams. In fact, this l-category is the free l-category on the canonical
l-polygraph associated with the diagram. For instance, the l-category of sub-pasting diagrams
of (3.1) is the free l-category on the l-polygraph P where

P0 = {D, E,F, G,~}
P1 = {0 : D → E, 1, 2, 3 : E → F, 4, 5 , 6 : F → G, ℎ : G → ~}

P2 = {U : 1 ⇒ 2, V : 2 ⇒ 3, W : 4 ⇒ 5 , X : 5 ⇒ 6}

and P: = ∅ for : ≥ 3. Then, every cell D ∈ P∗ can be faithfully represented by the sub-pasting
diagram of (3.1) associated with the subset supp(D) ⊆ |P|. Thus, the cells of the free l-category
on an l-polygraph Q associated with a pasting diagram admit a simple description as particular
subsets of |Q |, which contrasts with the complex descriptions as classes of well-typed expressions
or sequences of context classes.

In order for this description to be complete, one needs to be able to characterize the pasting
diagrams among general diagrams. A �rst issue which can prevent a diagram to be a pasting
diagram is that the cells of the diagrams can be composed in several non-equivalent ways. For
example, the diagram

G

~ I

0

1

2
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is not a pasting diagram, since the loop there allows for several non-equivalent expressions which
compose all the generators of the diagram, like

0 ∗0 1 ∗0 2, 1 ∗0 2 ∗0 0, 0 ∗0 1 ∗0 2 ∗0 0 ∗0 1 ∗0 2, etc.

Another possible issue is that it might not be possible to compose the generators of the diagram
at all. Such problem is exhibited by non-connected diagrams, like (3.2). Another example is given
by the diagram

~

G

I

0

1

where the “fork” prevents the existence of an expression which composes all the generators of the
diagram together. In dimension one, the absence of loops and forks, together with connectedness
and �niteness, completely characterize pasting diagrams: they are the diagrams of the form

G0 G1 G2 · · · G=
01 02 03 0= .

However, in higher dimensions, more subtle problems arise, making generalizations of the condi-
tions for dimension one insu�cient, and one hardly �nds sets of conditions that correctly �lter
out all non-pasting diagrams.

The di�erent pasting diagram formalisms that were introduced until now gave several propos-
als for such sets of conditions. The three main formalisms are Johnson’s pasting schemes [Joh89],
Street’s parity complexes [Str91; Str94] and Steiner’s augmented directed complexes [Ste04]. Even
though the ideas underlying the de�nitions of those formalisms are quite similar, they di�er on
many points and comparing them precisely is uneasy. In particular, each of the three formalisms
has a speci�c notion of cell which represents a sub-pasting diagram. The most natural de�nition
of cell is the one adopted by pasting schemes, where cells are simply sets of generators, and, for
example, the pasting diagram (3.1) corresponds to the cell

{D, E,F, G,~, 0, 1, 2, 3, 4, 5 , 6, ℎ, U, V,W, X}.

In the formalism of parity complexes, the cells are constituted of several sets that keep the gen-
erators organized by dimension and by status of source or target. For example, the pasting
diagram (3.1) is represented by the cell consisting of �ve sets

-2 = {U, V,W, X},
-1,− = {0, 1, 4, ℎ}, -1,+ = {0, 3, 6, ℎ},
-0,− = {D}, -0,+ = {~}

where -8,− represents the 8-source, -8,+ the 8-target, and -2 the 2-dimensional part of the diagram.
Finally, in the formalism of augmented directed complexes, the de�nition of cell is similar to the
one of parity complexes, but the elements that appear in diagrams are seen there as generators of
free abelian groups, so that a cell consists of elements of free groups instead of sets. For example,
the pasting diagram (3.1) is represented there as the cell

-2 = U + V + W + X,
-1,− = 0 + 1 + 4 + ℎ, -1,+ = 0 + 3 + 6 + ℎ,
-0,− = D, -0,+ = ~.
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The latter de�nition of cell, even though it is less natural at �rst, has the advantage of allowing
the use of tools from group theory and linear algebra in the proofs.

To the best of our knowledge, no formal account of the di�erences between the above three
formalisms was ever made. In particular, it was not known whether one of these formalisms is
more expressive than another. In this chapter, we carry out the task of formally relating them.
It turns out that the three notions are incomparable in terms of expressive power (each of the
three allows a pasting diagram which is not allowed by others). In the process, it appeared
that the formalisms of parity complexes and pasting schemes are �awed, in the sense that the
sets of conditions provided by the two formalisms are inadequate to �lter out all non-pasting
diagrams, refuting the related freeness properties of these structures claimed in the respective
articles [Str91; Joh89]. We illustrate this problem by giving an example of a diagram which is not
a pasting diagram but still accepted by both formalisms.

This motivated the introduction of a new formalism, called torsion-free complexes, whose
axiomatic corrects and generalizes the one of parity complexes, and which are able to encompass
augmented directed complexes and �xed versions of parity complexes and pasting schemes. More-
over, the good properties of their axiomatic allows for an e�cient computational implementation
of torsion-free complexes, so that they can be used as part of a library for manipulating strict
categories.

We shall mention several recent works related to pasting diagrams and their formalisms.
In [Buc15], Buckley gave a mechanized Coq proof of several results of [Str91] but stops before
handling the freeness property of parity complexes, so that the de�ciency we point out in this
chapter was missed. In [Cam16], Campbell isolates a common structure behind parity complexes
and pasting schemes, called parity structure, and introduces another formalism with stronger
axioms than the ones of parity complexes and pasting schemes, taking an opposite path from this
chapter where we introduce a more general formalism. In [Ngu17], Nguyen studies pre-polytopes
with labeled structures and shows that they induce a parity structure that satis�es a variant of
Campbell’s axioms that are enough to obtain another formalism for pasting diagrams.

Outline. This chapter is organized as follows. We �rst recall the de�nitions and the axioms of
each of the existing formalisms: parity complexes (Section 3.1.2), pasting schemes (Section 3.1.3)
and augmented directed complexes (Section 3.1.4). Then, by reusing the de�nitions used in parity
complexes, we introduce the formalism of torsion-free complexes (Section 3.1.5). We provide
general axioms for them (Paragraph 3.1.5.1) and also stronger ones that are more amenable to
computations (Paragraph 3.1.5.5). We relate each of the four formalisms to the unifying notion of
l-hypergraph (Section 3.1.1), so that each formalism can be described as a class ofl-hypergraphs
(the ones that satisfy the axioms of the formalism) together with a notion of cell (which represents
a pasting diagram) and operations on these cells. We also discuss the counter-example to the
freeness property of parity complexes and pasting schemes (Paragraph 3.1.2.13).

Then, we prove that torsion-free complexes satisfy the properties expected from a pasting
diagram formalism. We �rst show that cells of a torsion-free complex have a structure of an
l-category by adapting the results of Street [Str91] (Section 3.2, c.f. Theorem 3.2.3.3), and then
prove that this l-category is the free l-category on a canonical l-polygraph associated with this
torsion-free complex (Section 3.3, c.f. Corollary 3.3.3.5).

Next, we give other possible de�nitions of cells for torsion-free complexes (Section 3.4). Indeed,
whereas we reused the de�nition of cells of parity complexes for torsion-free complexes, we
show that the l-category of cells can be equivalently obtained using other de�nitions for cells:
maximal-well-formed sets (Theorem 3.4.1.24) and closed-well-formed sets (Theorem 3.4.1.27). The
latter are similar to the cells of pasting schemes, and allow a more user-friendly approach of
torsion-free complexes. We illustrate this by providing an extension of cateq which enables
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to specify cells of free categories on polygraphs using closed-well-formed sets of torsion-free
complexes (Paragraph 3.4.1.32), after characterizing when a polygraph can be represented by a
torsion-free complex (Theorem 3.4.1.29).

Finally, we relate the torsion-free complexes to the three other formalisms (Section 3.4). We
show that the parity complexes, pasting schemes (after �xing their common de�ciency), and
augmented directed complexes are special cases of torsion-free complexes (Theorem 3.4.2.3, The-
orem 3.4.3.9 and Theorem 3.4.4.22). Those are the only embeddings that exist between the four
formalisms and we provide counter-examples to the others (Section 3.4.5).

3.1 The formalisms of pasting diagrams

In this section, we introduce the de�nitions of the formalisms of pasting diagrams that we will
consider in this chapter. We present them through the common perspective of l-hypergraphs,
that are structures which encode the information in diagrams of generators like (3.1). Then, the
de�nition of each formalism roughly follows the same pattern. First, a de�nition for cells that
represent pasting diagrams is introduced, together with an identity and composition operations
that aim at equipping those cells with a structure of l-category. Then, a class of l-hypergraphs
that are correctly handled by the considered formalism is de�ned by the mean of axioms or
conditions.

We �rst introduce l-hypergraphs (Section 3.1.1) and then recall the de�nitions of the three
main existing formalisms for pasting diagrams: parity complexes (Section 3.1.2), pasting schemes
(Section 3.1.3) and augmented directed complexes (Section 3.1.4). Then, we introduce the new
formalism of torsion-free complexes that share the de�nitions of parity complexes but have di�erent
axioms on l-hypergraphs (Section 3.1.5).

3.1.1 Hypergraphs

In this section, we introduce the structure of l-hypergraph that we will use as a common basis
in order to de�ne the pasting diagram formalisms. This notion is essentially the same as the one
of parity structure introduced by Campbell in [Cam16] when de�ning a new formalism whose
instances are both parity complexes and pasting schemes. It is also similar to the notion of
oriented graded poset that, in a related context, Hadzihasanovic used to de�ne presentations of
polygraphs [Had18].

3.1.1.1 — De�nition. A graded set is a set % together with a partition

% =
⊔
=∈N

%=

the elements of %= being of dimension =. An l-hypergraph is a graded set % , the elements of
dimension = being called =-generators, together with, for = ∈ N and for each generator D ∈ %=+1,
two �nite subsetsD−, D+ ⊆ %= called the source and target ofD. Given a subset* ⊆ % and n ∈ {−, +},
we write* n for

* n =
⋃
D∈*

Dn .

Simple l-hypergraphs can be represented graphically using diagrams, where 0-generators are
represented by their names, and higher generators by arrows→,⇒, V, etc. that represent re-
spectively 1-generators, 2-generators, 3-generators etc.
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Example 3.1.1.2. The diagram
~

G ⇓ U I

~ ′

20

1 3

(3.3)

represents the l-hypergraph % with

%0 = {G,~,~ ′, I}, %1 = {0, 1, 2, 3}, %2 = {U},

and %= = ∅ for = ≥ 3, sources and targets being

0− = {G}, 0+ = {~}, U− = {0, 2}, U+ = {1, 3},

and so on.

3.1.1.3 — Fork-freeness. Given an l-hypergraph % and = ∈ N, a subset* ⊆ %= is fork-free (also
called well-formed in [Str91]) when:

– either = = 0 and |* | = 1,

– or = > 0 and for all D, E ∈ * and n ∈ {−, +}, we have Dn ∩ En = ∅.

For example, the subset {0, 1} of (3.3) is not fork-free since 0− ∩ 1− = {G}, but {0, 2} is.

Remark 3.1.1.4. Note that the de�nition of fork-freeness depends on the intended dimension =.
This subtlety is important in the case of the empty set: ∅ is not well-formed as a subset of %0 but
it is as a subset of %= when = > 0.

3.1.1.5 — The relation ⊳. Given an l-hypergraph % , = ∈ N∗ and * ⊆ %= , for D, E ∈ * , we
write D ⊳1

*
E when D+ ∩ E− ≠ ∅ and we de�ne the relation ⊳* on * as the transitive closure of ⊳1

*
.

Given subsets+ ,, ⊆ * , we write+ ⊳*, when there existD ∈ + and E ∈, such thatD ⊳* E . We
de�ne the relation ⊳ on % by putting D ⊳ E when there exists = ∈ N∗ such that D, E ∈ %= and D ⊳%= E .
The l-hypergraph % is then said acyclic when ⊳ is irre�exive.

Example 3.1.1.6. The l-hypergraph represented by

G ~

0

1

(3.4)

is not acyclic since 0 ⊳ 1 ⊳ 0. On the contrary, the l-hypergraph represented by (3.1) is acyclic.

Given a subset + ⊆ * , we say that + is a segment for ⊳* when for all D1, D2, D3 ∈ * such that

D1, D3 ∈ + and D1 ⊳* D2 ⊳* D3,

it holds that D2 ∈ + . For + ⊆ * , we say that + is initial (resp. terminal) in * when, for all D ∈ * ,
if there exists E ∈ + such that D ⊳* E (resp. E ⊳* D), then D ∈ + .

Remark 3.1.1.7. In [Str91], ⊳ is de�ned as a transitive and re�exive relation whereas in [Joh89], it
is only de�ned as a transitive relation. Here, we prefer the transitive (and not re�exive) de�nition,
since it carries more information than the transitive and re�exive de�nition.
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3.1.1.8 — Other source and target operations. Given an l-hypergraph % , for = ≥ 2, D ∈ %=
and n, [ ∈ {−, +}, we write Dn[ for (Dn )[ . We extend the notation to subsets* ⊆ %= and write* n[
for (* n )[ . Moreover, we write D∓ and D± for

D∓ = D− \ D+ and D± = D+ \ D−.

We also extend the notation to subsets* ⊆ %= and write* ∓ and* ± for

* ∓ = * − \* + and * ± = * + \* − .

Example 3.1.1.9. Consider the l-hypergraph represented by the diagram

F

E G

C D F ′ ~ I

E ′ G ′

F ′′

3

⇓ V
2

2′′

⇓ U
4

⇓ X0

1

1′

3′′

3′′′

⇓ W

5

2′′′

2′

4′

3′

. (3.5)

For this l-hypergraph, we have

U−− = {D, E}, U+− = {D, E ′}, U−∓ = {D}, U+± = {F ′}

and, writting* for the set {0, 1, 2, 3, 4, 5 },

* − = {C,D, E,F, G,~}, * + = {D, E,F, G,~, I},
* ∓ = {C}, * ± = {I}

and, writting + for the set {U, V,W, X},

+ − = {1, 2, 2 ′′, 2 ′′′, 3, 3 ′′, 3 ′′′, 4}, + + = {1 ′, 2 ′, 2 ′′, 2 ′′′, 3 ′, 3 ′′, 3 ′′′, 4 ′},
+ ∓ = {1, 2, 3, 4}, + ± = {1 ′, 2 ′, 3 ′, 4 ′}.

From the above examples, one can intuitively describe the operations (−)− and (−)+ as computing
the “inner” sources and targets of a set of generators, whereas the operations (−)∓ and (−)±
compute the source and target “borders” of a set of generators.

3.1.2 Parity complexes

In this subsection, we recall the formalism of parity complexes developed by Street in [Str91].
Most of the content will be reused when de�ning torsion-free complexes. The idea behind the
formalism is to represent an (=+1)-cell as a pair of source and target =-cells together with a subset
of %=+1 which “moves” the source =-cell to the target =-cell. Under the axioms of parity complexes,
these cells will have a structure of l-category.
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3.1.2.1 — Pre-cells. Let % be an l-hypergraph. For = ∈ N, an =-pre-cell of % is a tuple

- = (-0,−, -0,+, . . . , -=−1,−, -=−1,+, -=)

of �nite subsets of % , such that -8,n ⊆ %8 for 8 ∈ N=−1 and n ∈ {−, +}, and -= ⊆ %= . By convention,
we often denote -= by -=,− or -=,+. We write PCell(%) for the graded set of pre-cells of % .

Given = ∈ N, n ∈ {−, +} and an (=+1)-pre-cell - of % , we de�ne the =-pre-cell mn= (- ) as

mn= (- ) = (-0,−, -0,+, . . . , -=−1,−, -=−1,+, -=,n ) .

The globular conditions mn= ◦ m−=+1 = mn= ◦ m+=+1 are then trivially satis�ed, so that the functions m−, m+
equip PCell(%) with a structure of an l-globular set.

3.1.2.2 — Movement and orthogonality. Let % be an l-hypergraph. Given = ∈ N and �nite
sets

" ⊆ %=+1, * ⊆ %= and + ⊆ %= ,

we say that " moves * to + when

* = (+ ∪"−) \"+ and + = (* ∪"+) \"−.

Intuitively, the �rst equation means that* is the subset obtained from + by replacing the target
of " by its source, and the second equation has a dual meaning.

Example 3.1.2.3. In the l-hypergraph (3.5), the set {U, V,W, X} moves the set {0, 1, 2, 3, 4, 5 } to the
set {0, 1 ′, 2 ′, 3 ′, 4 ′, 5 }.

3.1.2.4 — Cells. Let % be an l-hypergraph. Given = ∈ N, an =-cell of % is an =-pre-cell of % , such
that

(i) -8+1,n moves -8,− to -8,+ for 8 ∈ N=−1 and n ∈ {−, +},

(ii) -8,n is fork-free for 8 ∈ N= and n ∈ {−, +}.

We denote by Cell(%) the graded set of cells of % , which inherits the structure of globular set
from PCell(%). An =-cell - can be represented as on Figure 3.1 where each arrow

* +

"

means that " moves* to + .

Example 3.1.2.5. The l-hypergraph represented by (3.5) has, among others,

– a 0-cell ({C}),

– a 1-cell ({C}, {F ′}, {0, 1, 2 ′′}, {0, 1, 2 ′′′}, {U}),

– a 2-cell ({C}, {I}, {0, 1, 2, 3, 4, 5 }, {0, 1 ′, 2 ′, 3 ′, 4 ′, 5 }, {U, V,W, X}), etc.

Remark 3.1.2.6. In [Str91], cells are de�ned as pairs (", # ) with ", # ⊆ % satisfying conditions
similar to the fork-freeness and movement conditions. This de�nition is equivalent to the above
one: given an =-cell (in the sense of Street) (", # ), one obtains an =-cell - (in our sense), by
setting -= = "= and, for 8 ∈ N=−1, -8,− = "8 and -8,+ = #8 , and an inverse translation is de�ned
easily.
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-=

-=−1,− -=−1,+

-=−2,− -=−2,+

...
...

...

-1,− -1,+

-0,− -0,+

Figure 3.1 – Movements in a cell

3.1.2.7 — Identity and composition of operations. Let % be an l-hypergraph. Given = ∈ N
and an =-cell - , the identity of - is the (=+1)-cell

id=+1(- ) = (-0,−, -0,+, . . . , -=−1,−, -=−1,+, -=, -=, ∅) .

Given 8, = ∈ N with 8 < =, and 8-composable =-cells -,. ∈ Cell(%)= , the 8-composition - ∗8 . of -
and . is de�ned as the =-pre-cell / such that, for 9 ∈ N= and n ∈ {−, +},

/ 9,n =


- 9,n if 9 < 8 ,
-8,− if 9 = 8 and n = −,
.8,+ if 9 = 8 and n = +,
- 9,n ∪ .9,n if 9 > 8 .

It will be shown in Section 3.2 that, under suitable assumptions, the composite of two =-cells is
actually an =-cell.

3.1.2.8 — Atoms and relevance. Let % be an l-hypergraph. Given = ∈ N and D ∈ %= , we de�ne
sets 〈D〉8,n ⊆ %8 for 8 ∈ N= and n ∈ {−, +} with a downward induction by

〈D〉=,− = 〈D〉=,+ = {D}
and

〈D〉9,− = 〈D〉∓9+1,− 〈D〉9,+ = 〈D〉±9+1,+
for 9 ∈ N=−1. We often write 〈D〉= for both 〈D〉=,− and 〈D〉=,+. The atom associated to D is then the
=-pre-cell of %

〈D〉 = (〈D〉0,−, 〈D〉0,+, . . . , 〈D〉=−1,−, 〈D〉=−1,+, 〈D〉=).
A generatorD is said relevant when the atom 〈D〉 is a cell. When % is a parity complex, the relevant
generators of % will have the role of generating cells in the l-category Cell(%).
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Example 3.1.2.9. The atom associated to U in (3.3) is 〈U〉 with

〈U〉0,− = {D}, 〈U〉1,− = {0, 2}, 〈U〉2 = {U},
〈U〉0,+ = {I}, 〈U〉1,+ = {1, 3},

and, since it is a cell, U is relevant.

3.1.2.10 — Tightness. Some defects were found in the �rst de�nition of parity complexes given
in [Str91], so that Street �xed his de�nition in [Str94]. His correction involves the notion of
tightness de�ned as follows. Given = ∈ N, a subset* ⊆ %= is said to be tight when, for allD, E ∈ %=
such that D ⊳ E and E ∈ * , we have D− ∩* ± = ∅.
Example 3.1.2.11. In (3.5), * = {V,W} is not tight since U ⊳W and 2 ′′ ∈ U− ∩ * ±. Howeover, the
set* ′ = {U, V,W, X} is tight.

3.1.2.12 — Parity complexes. We can now state the de�nition of a parity complex, reformulating
the one given in [Str91] by taking into account the corrections introduced in [Str94]. A parity
complex is an l-hypergraph % satisfying the axioms (C0) to (C5) below:

(C0) for = ∈ N∗ and D ∈ %= , D− ≠ ∅ and D+ ≠ ∅;

(C1) for = ∈ N with = ≥ 2 and D ∈ %= , D−− ∪ D++ = D−+ ∪ D+−;

(C2) for = ∈ N∗ and D ∈ %= , D− and D+ are fork-free;

(C3) % is acyclic;

(C4) for = ∈ N∗, D, E ∈ %= , F ∈ %=+1, if D ⊳ E , D ∈ Fn and E ∈ F[ for some n, [ ∈ {−, +},
then n = [;

(C5) for 8, = ∈ N with 8 < = and D ∈ %= , 〈D〉8,− is tight.

Axiom (C0) ensures that each generator has de�ned source and target. Axiom (C1) enforces basic
globular properties on generators. For example, it forbids the l-hypergraph

F G ~ I

0

1

⇓ U (3.6)

since U−− ∪ U++ = {F,~} and U+− ∪ U−+ = {G, I}. Axiom (C2) forbids generators with parallel
elements in their sources or targets. For example, the l-hypergraph

G

~
I

0 (3.7)

does not satisfy Axiom (C2) since 0− = {G,~} is not fork-free. Axiom (C3) forbids l-hypergraphs
with some loops like (3.4). Axiom (C4) can be informally described as forbidding “bridges”. For
instance, the l-hypergraph

~

G ⇓ U I

~ ′

1

2

0

0′ 1′

(3.8)
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does not satisfy Axiom (C4). Indeed, 0 ⊳ 2 ⊳1 ′ and 0 ∈ U− and 1 ′ ∈ U+. Axiom (C5) prevents more
subtle problems, like the one exposed by (3.13) discussed in Paragraph 3.1.5.3 (even though (3.13)
does not satisfy Axiom (C3) in the �rst place). It entails that the sources and targets of each
generator are segments (as de�ned in Paragraph 3.1.1.5), which is a condition that we will motivate
in Paragraph 3.1.5.3 when discussing Axiom (T3) of torsion-free complexes.

3.1.2.13 — A counter-example to the freeness property. Given a parity complex % , the main
result claimed in [Str91] is that the globular set Cell(%) together with the source, target, identity
and composition operations, has the structure of an l-category, which is freely generated by
the atoms 〈D〉 for D ∈ % ([Str91, Theorem 4.2]). More precisely, this result states that there is an
l-polygraph Q and an l-functor � : Q∗ → Cell(%) such that

– Q: = %: for : ∈ N,

– � (D) = 〈D〉 for D ∈ Q ,

– � is an isomorphism.

Intuitively, this property says that parity complexes are adequate structures for representing
pasting diagrams, since then a cell - of Cell(%) corresponds to a unique class of expressions
that compose together the generators which appear in - by Proposition 1.4.1.16. Howeover, this
property does not hold as we illustrate with a counter-example.

Consider the l-hypergraph % de�ned by the diagram given by

G ~ I1

0

2

U ⇓ ⇓U ′

V ⇓ ⇓V ′
4

3

5

W ⇓ ⇓W ′

X ⇓ ⇓X ′
(3.9)

together with two 3-generators

G ~ I1

0

⇓ U
4

5

⇓ X

�
V G ~ I1

0

⇓ U ′
4

5

⇓ X ′
,

G ~ I1

2

⇓ V
4

3

⇓ W
�
V G ~ I

1

2

⇓ V ′
4

3

⇓ W ′
.

By carefully checking Axioms (C0) to (C5), it can be shown that % is a parity complex. The
diagram (3.9) moreover de�nes a polygraph Q , whose induced l-category Q∗ is supposed to be
isomorphic to Cell(%), as a consequence of [Str91, Theorem 4.2], but it is not the case here. Indeed,
we can �nd two expressions that compose together the 3-generators � and � in Q∗, inducing two
3-cells �1 and �2 with

�1 = ((0 r0 W) r1 � r1 (V r0 5 )) r2 ((U ′ r0 3) r1 � r1 (2 r0 X ′))
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and
�2 = ((U r0 3) r1 � r1 (2 r0 X)) r2 ((0 r0 W ′) r1 � r1 (V ′ r0 5 ))

that share the same source and target

m−2 (�1) = m−2 (�2) = G ~ I1

0

2

⇓U

⇓V
4

3

5

⇓W

⇓X

m+2 (�1) = m+2 (�2) = G ~ I1

0

2

⇓U ′

⇓V ′
4

3

5

⇓W ′

⇓X ′
.

Note that we used a precategorical syntax for �1 and �2 in order to avoid putting too many id3

so that we get more readable expressions. The canonical morphism � : Q∗ → Cell(%) maps �1
and �2 to the same 3-cell - de�ned by:

-3 = {�, �},
-2,− = {U, V,W, X}, -2,+ = {U ′, V ′, W ′, X ′},
-1,− = {0, 3}, -1,+ = {2, 5 },
-0,− = {G}, -0,− = {I}.

However, �1 and �2 are di�erent cells in Q∗. Let’s verify this fact with cateq (c.f. Section 2.4.4).
First, we de�ne the polygraph Q and the cells �1 and �2 in cateq:

# x,y,z := gen *
# a,b,c := gen x -> y
# d,e,f := gen y -> z
# alpha,alpha' := gen a -> b
# beta,beta' := gen b -> c
# gamma,gamma' := gen d -> e
# delta,delta' := gen e -> f
# A := gen alpha *0 delta -> alpha' *0 delta'
# B := gen beta *0 gamma -> beta' *0 gamma'
# H1 := ((id3 a *0 id3 gamma) *1 A *1 (id3 beta *0 id3 f))

*2 ((id3 alpha' *0 id3 d) *1 B *1 (id3 c *0 id3 delta'))
# H2 := ((id3 alpha *0 id3 d) *1 B *1 (id3 c *0 id3 delta))

*2 ((id3 a *0 id3 gamma') *1 A *1 (id3 beta' *0 id3 f))

We then query whether �1 is equal to �2 with the command

# H1 = H2

to which cateq answers false , so that �1 ≠ �2 by Proposition 2.4.2.14 (before cateq was
implemented, a proof in Agda that �1 ≠ �2 was given in [FM19]).

Hence, the distinct cells �1 and �2 of Q∗ are sent to the same cell of Cell(%) by � as one
could have expected, since the information that makes�1 and�2 di�erent is the order in which�
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and � are composed, which can not be expressed by a cell of a parity complex. This refutes [Str91,
Theorem 4.2] which asserts that � is an isomorphism. Thus, parity complexes do not necessarily
induce free l-categories in general.

3.1.3 Pasting schemes

Johnson’s loop-free pasting schemes [Joh89] is another proposed formalism for pasting diagrams.
Like parity complexes, they are based on l-hypergraphs, but the cells will now be represented
as single subsets of generators instead of tuples like for parity complexes (which is arguably a
more natural representation of pasting diagrams compared to the cells of parity complexes). As
a consequence, one will rely on set relations, namely B and E, on the l-hypergraph to de�ne
the globular operations on the cells. Concretely, B and E encode which generators to remove to
obtain respectively the target and the source of a cell. We introduce the formalism in detail below.

3.1.3.1 — Conventions for relations. First, we set some elementary de�nitions and notations
for relations. A relation between two sets - and . is a subset L ⊆ - × . . For (G,~) ∈ - × . ,
we write G L~ when (G,~) ∈ L. The identity relation on a set - is the relation L ⊆ - × - such
that G L~ i� G = ~. Given a binary relation L between - and . , and G ∈ - , we write L(G) for the
set

L(G) = {~ ∈ . | G L~}.

More generally, given a subset - ′ ⊆ - , we denote by L(- ′) the set

{~ ∈ . | ∃G ∈ - ′, G L~}.

The relation L is said �nitary when, for all G ∈ - , L(G) is a �nite set. If L is a relation on a
graded set % = t=∈N%= , given :, ; ∈ N, we write L;

:
for the relation between %; and %: de�ned

as L∩(%; × %: ). Similarly, we write L; for the relation between %; and % de�ned as L∩(%; × %).
Given relations L between - and . and L′ between . and / , we write LL′ for the relation

between - and / which is the composite relation de�ned as

LL′ = {(G, I) ∈ - × / | ∃~ ∈ ., G L~ and ~ L′ I}.

3.1.3.2 — Pre-pasting schemes. A pre-pasting scheme (%,B, E) is given by a graded set % and
two relations B, E (for “beginning” and “end”) on % such that

(i) B and E are �nitary,

(ii) for :, ; ∈ N with ; < : , B;
:
= E;

:
= ∅,

(iii) B:
:

(resp. E:
:
) is the identity relation on %: ,

(iv) for :, ; ∈ N with : < ; , L ∈ {B, E}, D ∈ %;+1 and E ∈ %: , D L;+1
:
E if and only if

D L;+1
;

B;
:
E and D L;+1

;
E;
:
E .

Example 3.1.3.3. The diagram (3.3) can be encoded as a pre-pasting scheme

B2
1(U) = {0, 2}, E2

1(U) = {1, 3},
B2

0(U) = {~}, E2
0(U) = {~ ′},

B1
0(0) = {G}, E1

0(0) = {~} . . .
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Note that the relations B and E of a pre-pasting scheme % are completely determined by the data
of B:+1

:
(D) and E:+1

:
(D) for : ∈ N and D ∈ %: . As a consequence, the data of a pre-pasting scheme

structure on % is equivalent to the data of an l-hypergraph structure on % : the correspondence
is given by

D− = B:+1
:
(D) and D+ = E:+1

:
(D)

for : ∈ N∗ and D ∈ %:+1. In particular, the relation ⊳ on a pasting scheme is de�ned as the one on
the associated l-hypergraph.

3.1.3.4 — Direct loops. Given an l-hypergraph % , % has a direct loop when

(i) either there exist = ∈ N∗ and D, E ∈ %= such that D ⊳ E and E(E) ∩ B(D) ≠ ∅,

(ii) or there existsF ∈ % such that E(F) ∩ B(F) ≠ {F}.

Example 3.1.3.5. The l-hypergraph

~

G I

~

02

1

01

21 22

⇓ U

⇓ V
(3.10)

has a direct loop by the �rst criterion, because U ⊳ V and ~ ∈ B(U) ∩ E(V). Examples of direct
loops by the second condition are given by the l-hypergraphs

%1 = E F

0

0

⇓ U and %2 =

~

G ⇓ V I

~

21

1′ 2′

. (3.11)

Indeed, in %1, we have 0 ∈ B(U) ∩ E(U), and, in %2, we have ~ ∈ B(V) ∩ E(V).

3.1.3.6 — Finite graded subsets. Let % be a pre-pasting scheme. We de�ne the relation R ⊆ %×%
as the smallest re�exive transitive relation on % such that, for all : ∈ N and G ∈ %:+1, we have

B(G) ∪ E(G) ⊆ R(G).

Example 3.1.3.7. In the case of the l-hypergraph (3.10), we have

R(U) = {G,~, I, 01, 02, 1, U} and R(V) = {G,~, I, 1, 21, 22, V}.

A �nite graded subset of dimension = of % (abbreviated =-fgs) is an (=+1)-tuple - = (-0, . . . , -=)
such that -: ⊆ %: and -: is �nite for : ∈ N= . We often identify the =-fgs - with the set ∪:∈N=-: ,
but one should keep in mind that the =-fgs - and the (=+1)-fgs (-0, . . . , -=, ∅) are two di�erent
objects. We say that - is closed when R(- ) = - . Given = ∈ N and an (=+1)-fgs - of % , we de�ne
the source and the target of - as the =-fgs’s m−= (- ) and m+= (- ) of % such that

m−= (- ) = - \ E= (- ) and m+= (- ) = - \ B= (. ) .

Example 3.1.3.8. Considering the l-hypergraph (3.10), we have

m−= (R(U)) = R(U) \ {1, U} = {G,~, I, 01, 02} and m+= (R(U)) = R(U) \ {~, 01, 02} = {G, I, 1}.

Remark 3.1.3.9. The fgs’s of the form R(D) for D ∈ % are the analogue of the atoms de�ned for
parity complexes.
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3.1.3.10 —Well-formed sets. Given a pre-pasting scheme % , we de�ne by induction on = the
notion of well-formed =-fgs (abbreviated =-wfs): given = ∈ N, an =-fgs - of % is well-formed when

(i) - is closed,

(ii) -= is fork-free,

(iii) when = > 0, m−= (- ) and m+= (- ) are well-formed (=−1)-fgs.

We denote by WF(%) the graded set of =-wfs’s of % for = ∈ N. By [Joh89, Theorem 3], for = ∈ N,
the operations m−= and m+= on (=+1)-fgs’s restrict to functions

m−= : WF(%)=+1 →WF(%)= and m+= : WF(%)=+1 →WF(%)=

and they equip WF(%) with a structure of l-globular set. In the following, the wfs’s will be the
“cells” of the pasting diagram formalism of pasting schemes.
Example 3.1.3.11. The pre-pasting scheme

~1

G I

~2

02

1

01

21 22

⇓ U

⇓ V
(3.12)

has, among others,

– the 0-wfs {G} and {I},

– the 1-wfs {G,~1, I, 01, 02} and {G,~2, I, 21, 22},

– the 2-wfs {G,~1, ~2, I, 01, 02, 1, 21, 22, U, V}.

3.1.3.12 — Identity and composition operations. We can introduce identity and composition
operations like we did for the cells of parity complexes. Let % be a pre-pasting scheme. Given= ∈ N
and an =-wfs - = (-0, . . . , -=) of % , the identity of - is the (=+1)-wfs id=+1(- ) de�ned by

id=+1(- ) = (-0, . . . , -=, ∅) .

Given 8, = ∈ N with 8 < = and -,. two =-wfs such that m+8 (- ) = m−8 (. ), the 8-composition of -
and . is the =-fgs - ∗8 . such that

- ∗8 . = - ∪ . .

Under the conditions of a pre-pasting scheme, it is not necessarily the case that the composite of
two =-wfs’s is an =-wfs, but it will under the axioms of a pasting scheme introduced below.

3.1.3.13 — Loop-free pasting schemes. We now state the full de�nition of loop-free pasting
schemes, reformulating the one of [Joh89]. A pasting scheme is a pre-pasting scheme % satisfying
the following two axioms:

(S0) for : ∈ N and D ∈ %:+1, B:+1
:
(D) ≠ ∅ and E:+1

:
(D) ≠ ∅;

(S1) for :, ; ∈ N with : ≤ ; , L ∈ {B, E}, D ∈ %;+1 and E ∈ %: ,

– if D E;+1
;

L;
:
E then D E;+1

:
E or D B;+1

:
L;
:
E ,
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– if D B;+1
;

L;
:
E then D B;+1

:
E or D E;+1

;
L;
:
E .

The pasting scheme % is a loop-free pasting scheme when it moreover satis�es the following
axioms:

(S2) % has no direct loops;

(S3) for D ∈ % , R(D) ∈ WF(%);

(S4) for :, = ∈ N with : < =, - ∈ WF(%): and D ∈ %= ,

– if m−
:
(R(D)) ⊆ - , then 〈D〉:,− is a segment for ⊳-: ,

– if m+
:
(R(D)) ⊆ - , then 〈D〉:,+ is a segment for ⊳-: ;

(S5) for = ∈ N, - ∈ WF(%)= and D ∈ %=+1 with m−= (R(D)) ⊆ - , the following hold:

(a) - ∩ E(D) = ∅,
(b) for ~ ∈ - , if B(D) ∩ R(~) ≠ ∅, then ~ ∈ B(D).

Axiom (S1) enforces basic globular properties on generators and forbids, for example, thel-hyper-
graph (3.6). Axiom (S2) forbids l-hypergraphs with loops like (3.4), (3.10) and (3.11). Axiom (S3)
enforces fork-freeness on the iterated sources and targets of a generator (for example, it forbids the
l-hypergraph (3.7)). Axiom (S4) relates to Axiom (C5) of parity complexes and prevent situations
in the spirit of (3.13) discussed in Paragraph 3.1.5.3 (even though (3.13) does not satisfy Axiom (S2)
in the �rst place). We motivate this axiom in Paragraph 3.1.5.3 when we discuss a similar axiom for
torsion-free complexes. Axiom (S5) can be deduced from the other axioms (c.f. [Joh87, Theorem
3.7]) but it simpli�es the proofs of [Joh89]. An example of a sensible pre-pasting scheme that
satisfy Axioms (S0) to (S3), but neither Axiom (S4) nor Axiom (S5), exists in dimension four
(see [Pow91, Example 3.11]).

3.1.3.14 — A counter-example to the freeness property. The main result claimed in [Joh89] is
similar to the one of [Str91]: given a loop-free pasting scheme % , the globular set WF(%) together
with the source, target, identity and composition operations has the structure of an l-category,
which is freely generated by the wfs’s R(D) for D ∈ % ([Joh89, Theorem 13]), i.e., there exist an
l-polygraph Q and an l-functor � : Q∗ →WF(%) such that

– Q: = %: for : ∈ N,

– � (D) = R(D) for D ∈ Q ,

– � is an isomorphism.

But the same �aw as for parity complexes is present here too, which makes the freeness result
wrong. In fact, the counter-example to the freeness property of parity complexes, introduced in
Paragraph 3.1.2.13, is also a counter-example to the freeness property of pasting schemes: the
l-hypergraph % is a loop-free pasting scheme and the canonical morphism � : Q∗ → WF(%)
sends �1 and �2 to the same 3-wfs - where

- = {G,~, I, U, V,W, X, U ′, V ′, W ′, X ′, �, �}

refuting the freeness property [Joh89, Theorem 13].
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3.1.4 Augmented directed complexes

Augmented directed complexes, designed by Steiner in [Ste04], are not directly based on l-hyper-
graphs, but on chain complexes. Under the conditions required by Steiner, it happens that the
data of a chain complex is equivalent to the data of an l-hypergraph. The de�nition of cells for
this formalism strongly resembles the one of parity complexes. The only di�erence is that the
cells are tuples of group elements instead of subsets of an l-hypergraph. We recall the formalism
in detail below.

3.1.4.1 — Augmented directed complex. A pre-augmented directed complexes ( , d, e) (abbre-
viated pre-adc) is the data of

– for = ∈ N, an abelian group  = together with a distinguished submonoid  ∗= ⊆  = ,

– for = ∈ N, group morphisms called boundary operators

d= :  =+1 →  =,

– an augmentation, that is, a group morphism

e :  0 → Z.

An augmented directed complex, abbreviated adc, is a pre-adc ( , d, e) such that

e ◦ d0 = 0 and d= ◦ d=+1 = 0 for = ∈ N.

3.1.4.2 — Bases for pre-adc’s. Given a pre-adc ( , d, e), a basis of ( , d, e) is the data of a graded
set % ⊆ ⊔

=∈N  = such that each  ∗= is the free commutative monoid on %= and each  = is the free
abelian group on  ∗= . Given a basis % of ( , d, e), every element D ∈  = can be uniquely written as

D =
∑
6∈%=

D66,

with D6 ∈ Z such that D6 ≠ 0 for a �nite number of 6 ∈ %= . This representation induces a partial
order ≤ where, for = ∈ N and D, E ∈  = , D ≤ E when D6 ≤ E6 for all 6 ∈ %= . Given = ∈ N
and D, E ∈  = we can de�ne a greatest lower bound D ∧ E of D and E by

D ∧ E =
∑
6∈%=

min(D6, E6)6.

Given = ∈ N and D ∈  =+1, we write D∓, D± ∈  ∗= for the unique elements satisfying

d= (D) = D± − D∓ and D∓ ∧ D± = 0.

Moreover, we write D−, D+ for

D− =
∑
6∈%=+1

D66
∓ and D+ =

∑
6∈%=+1

D66
±.

Remark 3.1.4.3. The elements D∓ and D± are respectively denoted by m−(D) and m+(D) in [Ste04].
We adopt the former notation for consistency with those of Section 3.1.2.
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3.1.4.4 — From 8-hypergraphs to pre-adc’s with basis. Given an l-hypergraph % , we de�ne
the pre-adc ( , d, e) associated to % as follows. For = ∈ N,  ∗= is de�ned as the free commutative
monoid on %= and  = as the free abelian group on  ∗= . The augmentation e :  0 → Z is de�ned as
the unique morphism such that e(G) = 1 for G ∈ %0. Given = ∈ N and a �nite subset * ⊆ %= , we
write Σ= (* ) for

∑
D∈* D ∈  = . Then, d= :  =+1 →  = is de�ned as the unique morphism such that

d= (D) = Σ= (D+) − Σ= (D−)

for D ∈ %=+1. Then,  canonically admits % as a basis. We say that % is an adc when  is an adc.
Example 3.1.4.5. We explicitly describe the pre-adc associated to the l-hypergraph (3.12) as
follows. Writting (∗ for the free commutative monoid on a set ( , we put

 ∗0 = {G,~1, ~2, I}∗,  ∗1 = {01, 02, 1, 21, 22}∗,  ∗2 = {U, V}∗

and  ∗= = {0} for = ≥ 3.  0,  1,  2 and  = for = ≥ 3 are then the induced free abelian groups
on these monoids. The operations e and d are de�ned by universal property to be the unique
morphisms such that

e(G) = e(~1) = e(~2) = e(I) = 1
and

d0(01) = ~1 − G , d0(02) = I − ~1, d0(1) = I − G ,
d0(21) = ~2 − G , d0(22) = I − ~2,
d1(U) = 1 − (01 + 02), d1(V) = (21 + 22) − 1.

We can now give some examples for the operations (−)∓ and (−)± operations de�ned above:

(01 + 02)∓ = G, (01 + 02)± = I,
(U + V)∓ = 01 + 02, (U + V)± = 21 + 22.

We moreover illustrate the operations (−)− and (−)+:

(01 + 02)− = G + ~1 (01 + 02)+ = ~1 + I
(U + V)− = 01 + 02 + 1 (U + V)+ = 1 + 21 + 22.

Thus, the operations (−)∓ and (−)± compute the source and target “borders” of an element of  = ,
whereas the operations (−)− and (−)+ compute the sum of the “inner” sources and targets of
an element of  = . They are the analogues of the operations de�ned for l-hypergraph in Para-
graph 3.1.1.8.

3.1.4.6 — Cells. Let  be a pre-adc. Given = ∈ N, an =-pre-cell of  is given by an (2=+1)-tuple

- = (-0,−, -0,+, . . . , -=−1,−, -=−1,+, -=)

with -= ∈  ∗= and -8,−, -8,+ ∈  ∗8 for 8 ∈ N=−1. For the sake of conciseness, we often refer
to -= by -=,− or -=,+. We write PCell∗( ) for the graded set of pre-cells of  . When = > 0,
given n ∈ {−, +}, we de�ne the =-pre-cell mn= (- ) as

mn= (- ) = (-0,−, -0,+, . . . , -=−1,−, -=−1,+, -=,n ) .

The globular conditions mn= ◦ m−=+1 = mn= ◦ m+=+1 are then trivially satis�ed and the functions m−, m+
equip PCell∗( ) with a structure of l-globular set.

Given = ∈ N, an =-cell of  is an =-pre-cell - of  such that
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(i) for 8 ∈ N=−1, d8 (-8+1,−) = d8 (-8+1,+) = -8,+ − -8,−,

(ii) e(-0,−) = e(-0,+) = 1.

We denote by Cell∗( ) the graded set of cells of  , which inherits the l-globular structure
from PCell∗( ).

Remark 3.1.4.7. The condition (i) is analogous to the moving condition (i) of parity complex
cells, and the condition (ii) is related to the fork-freeness condition (ii) of parity complex cells
instantiated in dimension 0.

3.1.4.8 — Identity and composition operations. Let  be a pre-adc. We de�ne the identity
and composition operations that will equip Cell∗( ) with a structure of l-category. Given = ∈ N
and an =-pre-cell - of  , we de�ne the identity of - as the (=+1)-pre-cell id=+1(- ) of  such that

id=+1(- ) = (-0,−, -0,+, . . . , -=−1,−, -=−1,+, -=, -=, 0).

Given 8, = ∈ N with 8 < = and 8-composable =-cells -,. , we de�ne the 8-composition - ∗8 . of -
and . as the =-pre-cell / such that, for 9 ∈ N= and n ∈ {−, +},

/ 9,n =


- 9,n + .9,n when 9 > 8 ,
-8,− when 9 = 8 and n = −,
.8,+ when 9 = 8 and n = +,
- 9,n (or equivalently .9,n ) when 9 < 8 .

We then easily verify that / ∈ Cell∗( ).

3.1.4.9 — Atoms. Let  be a pre-adc equipped with a basis % . We de�ne here the analogue
for adc’s of the notion of atoms for parity complexes, that will have the role of generating cells
in Cell∗( ). Given = ∈ N and D ∈ %= , we de�ne [D]8,n ⊆ %8 for 8 ∈ N= and n ∈ {−, +} using a
downward induction by

[D]=,− = [D]=,+ = D

and

[D]9,− = [D]∓9+1,− [D]9,+ = [D]±9+1,+

for 9 ∈ N=−1. For simplicity, we sometimes write [D]=,− or [D]=,+ for [D]= . The atom associated
to D is then the =-pre-cell of  

[D] = ( [D]0,−, [D]0,+, . . . , [D]=−1,−, [D]=−1,+, [D]=).

Example 3.1.4.10. In the pre-adc associated to the l-hypergraph (3.12), the atom [U] associated
to U is de�ned by

[U]2 = U,
[U]1,− = 01 + 02, [U]1,+ = 1,
[U]0,− = G, [U]0,+ = I.
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3.1.4.11 — Unital loop-free basis. Let  be a pre-adc equipped with a basis �. Given 8 ∈ N, we
de�ne a relation <8 on � as the smallest transitive relation such that, for :, ; ∈ Nwith 8 < min(:, ;),
and D ∈ �: , E ∈ �; with [D]8,+ ∧ [E]8,− ≠ 0, we have D <8 E . The basis � is then said

– unital when for all D ∈ �, e( [D]0,−) = e( [D]0,+) = 1,

– loop-free when, for all 8 ∈ N, <8 is irre�exive.

Example 3.1.4.12. Consider the pre-adc  with basis � derived from the hypergraph (3.4). The
basis � is then unital but not loop-free since 0 <0 1 <0 0. Now, consider the pre-adc with basis �
derived from the hypergraph (3.7). The basis � is then not unital since e( [0]0,−) = e(G + ~) = 2,
but it is loop-free. Now consider the pre-adc  with basis � derived from the hypergraph (3.5).
We have, among others, the relations

0 <0 1 <0 2 <0 3 <0 4 <0 5 ,
0 <0 U <0 X <0 5 ,

V <1 U <1 W and V <1 X <1 W .

It can be veri�ed that � is unital and loop-free.

3.1.4.13 — The freeness property. In [Ste04], the author shows that, given an adc with a loop-
free unital basis �, the globular set Cell∗( ), together with identity and composition operations,
has a structure of an l-category which is freely generated by the atoms [D] for D ∈ �, i.e., there
exist an l-polygraph Q and an l-functor � : Q∗ → Cell∗( ) such that

– Q: = �: for : ∈ N,

– � (D) = [D] for D ∈ Q ,

– � is an isomorphism.

Contrary to parity complexes and pasting schemes, the pre-adc with basis associated to the
l-hypergraph (3.9) is not a loop-free adc. Indeed, it is an adc with unital basis, but the basis
is not loop-free since � <1 � <1 �. Thus, augmented directed complexes are, to the best of
our knowledge, the only formalism of pasting diagrams among the three that we have already
introduced for which the freeness property holds.

3.1.5 Torsion-free complexes

In this section, we introduce torsion-free complexes. They are a new formalism for pasting diagrams
based on parity complexes. More precisely, torsion-free complexes rely on the same notion of cell
than parity complexes, but satisfy di�erent axioms, namely the axioms (T0) to (T4) introduced in
Paragraph 3.1.5.1. Whereas the axioms (T0) to (T2) were already present in [Str91], Axiom (T3)
generalizes Axiom (C4) and Axiom (C5) of parity complexes, and can be thought as an equivalent
of Axiom (S4) of pasting schemes. Axiom (T4) prevents diagrams with “torsion” as exhibited by
the counter-example to the freeness property provided for parity complexes and pasting schemes
(c.f. Paragraph 3.1.2.13). Under these new axioms, the category of cells (as de�ned in Section 3.1.2)
is freely generated by the atoms, as proved in Section 3.3. The proofs will be the object of the
following sections.
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3.1.5.1 — De�nitions. Here, we give the axiomatics of torsion-free complexes, after giving a
concise reformulation of Axiom (S4), and introducing the notion of torsion, the consideration of
which solves the issue of parity complexes and pasting schemes illustrated by the example given
in Paragraph 3.1.2.13.

Let % be an l-hypergraph. Given : ∈ N and D ∈ %: , we say that D satis�es the segment
condition when, for all = ∈ N:−1 and every =-cell- such that 〈D〉=,− ⊆ -= , it holds that both 〈D〉=,−
and 〈D〉=,+ are segments for ⊳-= .

Given =, :, ; ∈ N with 0 < = < min(:, ;), D ∈ %: , E ∈ %; and an =-cell - , D and E are said to be
in torsion with respect to - when

〈D〉=,+ ⊆ -=, 〈E〉=,− ⊆ -=, 〈D〉=,+ ∩ 〈E〉=,− = ∅ and 〈D〉=,+ ⊳-= 〈E〉=,− ⊳-= 〈D〉=,+.

We will give some intuition on these de�nitions in the following paragraphs after we gave the
de�nition of torsion-free complexes. The l-hypergraph % is then a torsion-free complex when it
satis�es the following axioms:

(T0) (non-emptiness) for all D ∈ % , D− ≠ ∅ and D+ ≠ ∅;

(T1) (acyclicity) % is acyclic;

(T2) (relevance) for all D ∈ % , D is relevant;

(T3) (segment condition) for D ∈ % , D satis�es the segment condition;

(T4) (torsion-freeness) for all =, :, ; ∈ N∗ with = < min(:, ;), D ∈ %: , E ∈ %; and every
=-cell - , D and E are not in torsion with respect to - .

We shall now give some intuition about these axioms.

3.1.5.2 — Axioms (T1) and (T2). Axiom (T1) enforces the same notion of acyclicity than for
parity complexes, forbidding loops like

G ⇓ U ~

5

5

and
G ~

I

5

6ℎ
.

Axiom (T2) requires that the generators of the l-hypergraph induce cells, forbidding l-hyper-
graphs like (3.6) and (3.7). It can be shown that Axiom (T2) entails Axioms (C1) and (C2) of parity
complexes.

3.1.5.3 — The segment Axiom (T3). Recall that our goal is to �nd conditions on l-hyper-
graphs P so that the l-category of cells Cell(%) is freely generated by the atoms. In particular,
every cell should be decomposable as a composite of context classes applied to atoms (c.f. Propo-
sition 2.2.5.3). But there are cells of l-hypergraphs satisfying Axioms (T0) to (T2) that can not
be decomposed this way. The problem comes from an incompatibility between two concurrent
phenomena:

(i) on the one side, the decomposition property that we want requires that some orders of
compositions be allowed;

(ii) on the other side, the relation ⊳ imposes restrictions on the orders in which the generators
can be composed.
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I

~

G
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�
V

I

~

G
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0′0 U ′1⇒

U ′4⇒
(3.13)

Figure 3.2 – A problematic l-hypergraph

We illustrate this incompatibility in an example. Consider the l-hypergraph % represented on
Figure 3.2 where, more precisely,

�− = {U1, U4}, �+ = {U ′1, U ′4},
U−1 = U ′1

−
= {0}, U+1 = U ′1

+
= {0′},

U−4 = U ′4
−
= {3}, U+4 = U ′4

+
= {3 ′}, etc.

One can verify that % satis�es Axioms (T0), (T1) and (T2). In thisl-hypergraph, there is a 2-cell-
given by

-2 = {U1, U2, U3, U4},
-1,− = {0, 1}, -1,+ = {2, 3 ′, 4},
-0,− = {G}, -0,+ = {I},

and a 3-cell . given by

.3 = {�},
.2,− = {U1, U2, U3, U4}, .2,+ = {U1, U

′
2, U
′
3, U4},

.1,− = {0, 1}, .1,+ = {2, 3 ′, 4},

.0,− = {G}, .0,+ = {I}

so that - = m−2 (. ). Suppose by contradiction that Cell(%) is an l-category which is freely
generated by the atoms. Then, by the decomposition property of cells of free extensions (Propo-
sition 2.2.5.3), and by the value of .3, . can be written

. = �1 [〈�〉] ∗2 · · · ∗2 �: [〈�〉]

for some 2-context classes �1, . . . , �: of type 〈�〉 (it can moreover be shown that : = 1 but it is
not important at the moment). Since - = m−2 (. ), it implies that - can be written

- = q ∗1 - ′ ∗1 k (3.14)

where - ′ = id2
5
∗0 m−2 (〈�〉) ∗0 id2

6 for some 2-cells q,k and 1-cells 5 , 6 in Cell(%), illustrating (i).
Since Cell(%)≤2 ' Cell(% \ {�})≤2 and % \ {�} is a torsion-free complex, using Lemma 3.2.3.1
introduced later, the existence of the composite (3.14) implies that

the sets q2, - ′2 andk2 form a partition of -2 = {U1, U2, U3, U4}, (3.15)
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and, using Lemma 3.3.3.3 introduced later, that

for (V,W) ∈ (q2 × (- ′2 ∪k2)) ∪ ((k2 ∪ - ′2) ×k2), we have ¬(W ⊳-2 V), (3.16)

or, more simply put, the partition q2, -
′
2,k2 respects the relation ⊳-2 , illustrating (ii). We show

that (3.15) and (3.16) entails a contradiction. Consider U2 ∈ -2. Since we have

- ′2 = �− = {U1, U4},

by (3.15), either U2 ∈ q2 or U2 ∈ k2. By (3.16), since U1 ⊳
1
-2
U2, we have U2 ∈ k2. Now con-

sider U3 ∈ -2. By (3.15), either U3 ∈ q2 or U3 ∈ k2. By (3.16), since U3 ⊳
1
-2
U4, we have U3 ∈ q2. But

then,
U3 ∈ q2, U2 ∈ k2 and U2 ⊳

1
-2
U3,

contradicting (3.16). Hence, Cell(%) is not an l-category freely generated by the atoms.

Axiom (T3) prevents this kind of problems and, in particular, forbids the l-hypergraph % . Indeed,
we have

〈�〉2,− = {U1, U4} ⊆ -2, U1 ⊳-2 U2 ⊳-2 U3 ⊳-2 U4 and U2, U3 ∉ 〈�〉2,−
so that 〈�〉2,− is not a segment for ⊳-2 , and � does not satisfy the segment condition.

3.1.5.4 — The torsion-freeness Axiom (T4). The notion of torsion captures the essence of the
counter-example to the freeness property of parity complexes and pasting schemes presented
in Paragraph 3.1.2.13. Indeed, considering the l-hypergraph % represented by (3.9), there is a
2-cell - de�ned by

-2 = {U ′, V, W, X ′},
-1,− = {0, 3}, -1,+ = {2, 5 },
-0,− = {G}, -0,+ = {I},

which is induced by the pasting diagram

G ~ I1

0

2

⇓U ′

⇓V
4

3

5

⇓W

⇓X ′
.

Then, one can verify that � and � are in torsion with respect to - , so that % does not satisfy
Axiom (T4) (on the other hand, it satis�es Axioms (T0) to (T3)).

Intuitively, the situations with torsion are the minimal cases where the freeness property fails
for a parity complex % (and similarly for a pasting scheme % ). When D, E ∈ % are in torsion with
respect to a cell - of % , there are two possible order to compose D and E : �rst D then E , or �rst E
then D. And both composites produce equal cells in Cell(%). However, this equality can not be
deduced from an exchange law, since the torsion says basically that D and E cross each other,
preventing to obtain the left-hand side of Axiom (S-vi) of l-categories (c.f. Paragraph 1.4.1.1).

3.1.5.5 — More computable axioms. Axioms (T3) and (T4) happen to be hard to check in prac-
tice. Indeed, both involve a quanti�cation on all the cells of an l-hypergraph, and enumerating
them can be tough since their number is exponential in the number of elements of the l-hyper-
graph in the worst case. Here, we give stronger axioms that are simpler to verify, in the sense
that they can be checked using an algorithm with polynomial complexity.
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Given an l-hypergraph % , for = ∈ N, D, E ∈ %= , we write D y E when there exists F ∈ %=+1
such that D ∈ F− and E ∈ F+ and we write y∗ for the re�exive transitive closure of y.
For * ,+ ⊆ %= , we write * y∗ + when there exist D ∈ * and E ∈ + such that D y∗ E .
Consider the following axiom on an l-hypergraph % :

(T3’) for :, = ∈ N∗ with : < = and D ∈ %= , we do not have 〈D〉:,+ y∗ 〈D〉:,−.

Then, Axiom (T3) can be replaced by Axiom (T3’) in the axioms of torsion-free complexes:

Lemma 3.1.5.6. Let % be an l-hypergraph satisfying Axioms (T0), (T1) and (T2). If % satis�es
Axiom (T3’), then it satis�es Axiom (T3).

Proof. Suppose that % satis�es Axiom (T3’). Let=, : ∈ Nwith= < : ,- be an=-cell andD ∈ %: such
that 〈D〉=,− ⊆ -= . If = = 0, there is nothing to prove, so we can assume = > 0. By contradiction,
suppose that 〈D〉=,− is not a segment for ⊳-= . So there are A ∈ N with A > 2 and D1, . . . , DA ∈ -=
such that

D1, DA ∈ 〈D〉=,−, D2, . . . , DA−1 ∉ 〈D〉=,− and D8 ⊳
1
-=
D8+1

for 8 ∈ N∗A−1. In particular, there are E1, . . . , EA−1 ∈ %=−1 such that E8 ∈ D+8 ∩ D−8+1 for 8 ∈ N∗A−1.
GivenF ∈ -= such that E1 ∈ F−, since -= is fork-free, we haveF = D2 ∉ 〈D〉=,−. Thus, since D is
relevant by Axiom (T2), E1 ∈ 〈D〉±=,− = 〈D〉=−1,+. Similarly, EA−1 ∈ 〈D〉=−1,−. So 〈D〉=−1,+ y∗ 〈D〉=−1,−,
contradicting Axiom (T3’). Hence, % satis�es Axiom (T3). �

Now, consider the following axiom on an l-hypergraph % :

(T4’) for =, :, ; ∈ N∗ with = < min(:, ;), D ∈ %: and E ∈ %; , if 〈D〉=,+ ∩ 〈E〉=,− = ∅, then at
most one of the following holds:

– 〈D〉=−1,+ y∗ 〈E〉=−1,−,

– 〈E〉=−1,+ y∗ 〈D〉=−1,−.

Then, Axiom (T4) can be replaced by Axiom (T4’) in the axioms of torsion-free complexes:

Lemma 3.1.5.7. Let % be an l-hypergraph satisfying Axioms (T0), (T1) and (T2). If % satis�es
Axiom (T4’), then it satis�es Axiom (T4).

Proof. Suppose that % satis�es Axiom (T4’). By contradiction, assume that % does not satisfy
Axiom (T4). So there are =, :, ; ∈ N∗ with = < min(:, ;), D ∈ %: , E ∈ %; and an =-cell - such that D
and E are in torsion with respect to - . That is,

〈D〉=,+ ⊆ -=, 〈E〉=,− ⊆ -=, 〈D〉=,+ ∩ 〈E〉=,− = ∅ and 〈D〉=,+ ⊳-= 〈E〉=,− ⊳-= 〈D〉=,+.

By the last condition, there are A ∈ N with A > 1, andF1, . . . ,FA ∈ -= such that

F1 ∈ 〈D〉=,+, FA ∈ 〈E〉=,−, F2, . . . ,FA−1 ∉ 〈D〉=,+ ∪ 〈E〉=,−, and F8 ⊳
1
-=
F8+1

for 8 ∈ N∗A−1. Thus, there are F̄1, . . . , F̄A−1 ∈ %=−1 such that F̄8 ∈ F+8 ∩ F−8+1 for 8 ∈ N∗A−1.
GivenF ∈ -= with F̄1 ∈ F−, we haveF = F2 ∉ 〈D〉=,+ since -= is fork-free. Thus,

F̄1 ∈ 〈D〉±=,+ = 〈D〉=−1,+.

Similarly, F̄A−1 ∈ 〈E〉=−1,−, so 〈D〉=−1,+ y∗ 〈E〉=−1,−. Likewise, we have 〈E〉=−1,+ y∗ 〈D〉=−1,−, which
contradicts Axiom (T4’). Hence, % satis�es Axiom (T4). �
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3.2 The category of cells

In this section, we show that, given a torsion-free complex % ,the l-globular set Cell(%) has a
structure of an l-category. Indeed, even though we de�ned identity and composition operations
in Paragraph 3.1.2.7, we do not know for now that the composition of two cells is a cell. In
order to show this, we adapt the proofs of [Str91] and take the opportunity to simplify them. In
particular, we give a detailed proof of the “gluing theorem” (Theorem 3.2.2.3, adapted from [Str91,
Lemma 3.2]), which enables to build an (=+1)-cell from an =-cell by gluing a set of (=+1)-gene-
rators.

3.2.1 Movement properties

Before being able to show the gluing theorem, we need some technical results about movement
(notion which appears in the de�nition of cells). We state and prove here several such properties,
some of which coming from [Str91].

In the following, we suppose given an l-hypergraph % . We �rst state a criterion for movement:

Lemma 3.2.1.1 ([Str91, Proposition 2.1]). For = ∈ N, �nite subsets * ⊆ %= and ( ⊆ %=+1, there
exists + ⊆ %= such that ( moves* to + if and only if (∓ ⊆ * and* ∩ (+ = ∅.

Proof. If ( moves* to + , then, by de�nition,

(∓ ⊆ (+ ∪ (−) \ (+ = *

and
* ∩ (+ = ((+ ∪ (−) \ (+) ∩ (+ = ∅.

Conversely, if (∓ ⊆ * and* ∩ (+ = ∅, let + = (* ∪ (+) \ (−. Then

(+ ∪ (−) \ (+ = (* ∪ (+ ∪ (−) \ (+

= (* \ (+) ∪ ((− \ (+)
= * ∪ (∓ (since* ∩ (+ = ∅)
= * (since (∓ ⊆ * )

and ( moves* to + . �

The next property states that it is possible to modify a movement by adding or removing “inde-
pendent” elements.

Lemma 3.2.1.2 ([Str91, Proposition 2.2]). Let = ∈ N,* ,+ ⊆ %= and ( ⊆ %=+1 be �nite subsets such
that ( moves* to + . Then, given -,. ⊆ %= such that

- ⊆ * , - ∩ (∓ = ∅ and . ∩ ((− ∪ (+) = ∅,

we have that ( moves (* ∪ . ) \ - to (+ ∪ . ) \ - .

Proof. By Lemma 3.2.1.1, we have (∓ ⊆ * and * ∩ (+ = ∅. Using the hypothesis, we can re�ne
both equalities to

(∓ ⊆ (* ∪ . ) \ - and ((* ∪ . ) \ - ) ∩ (+ = ∅.
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Using Lemma 3.2.1.1 again, ( moves (* ∪ . ) \ - to, where

, = (((* ∪ . ) \ - ) ∪ (+) \ (−

= ((* ∪ (+ ∪ . ) \ - ) \ (− (since - ∩ (+ ⊆ * ∩ (+ = ∅)
= (((* ∪ (+) \ (−) ∪ . ) \ - (since . ∩ (− = ∅)
= (+ ∪ . ) \ - . �

The following property gives su�cient conditions for composing movements.

Lemma 3.2.1.3 ([Str91, Proposition 2.3]). Let = ∈ N, and * ,+ ,, ⊆ %= , (,) ⊆ %=+1 be �nite
subsets such that ( moves* to + and ) moves + to, , if (− ∩) + = ∅ then ( ∪) moves* to, .

Proof. We compute (* ∪ (( ∪) )+) \ (( ∪) )−:

(* ∪ (+ ∪) +) \ ((− ∪) −) = (((* ∪ (+) \ (−) ∪) +) \) −

= (+ ∪) +) \) −

=, .

Similarly, (, ∪ (( ∪) )−) \ (( ∪) )+ = * and ( ∪) moves* to, . �

Conversely, the next property enables to decompose movements, under a condition of orthogo-
nality: given = ∈ N and �nite sets (,) ⊆ %= , we say that ( and ) are orthogonal, written ( ⊥ ) ,
when ((− ∩) −) ∪ ((+ ∩) +) = ∅. We then have:

Lemma 3.2.1.4 ([Str91, Proposition 2.4]). Given = ∈ N, �nite subsets* ,, ⊆ %= , (,) ⊆ %=+1 such
that ( ∪) moves* to, and (∓ ⊆ * , if ( ⊥ ) then there exists + such that ( moves* to + and )
moves + to, .

Proof. Let ' = ( ∪ ) . By Lemma 3.2.1.1, '∓ ⊆ * and * ∩ (+ ⊆ * ∩ '+ = ∅. By Lemma 3.2.1.1
again, ( moves* to + = (* ∪ (+) \ (−. Moreover,

(− ∩) + = (∓ ∩) + (since (+ ∩) + = ∅, by ( ⊥ ) )
⊆ * ∩) + (since (∓ ⊆ * , by hypothesis)
⊆ * ∩ (( ∪) )+

= ∅ (by Lemma 3.2.1.1).

so that

'∓ ⊆ *
⇔ (((− ∪) −) \) +) \ (+ ⊆ *
⇔ (() − \) +) ∪ (−) \ (+ ⊆ * (since (− ∩) + = ∅)
⇔ ) ∓ ∪ (− ⊆ * ∪ (+

⇔ ) ∓ ⊆ (* ∪ (+) \ (− (since ) ∓ ∩ (− = ∅, by ( ⊥ ) ).

Hence, ) ∓ ⊆ (* ∪ (+) \ (− = + and

+ ∩) + ⊆ (* ∪ (+) ∩) + ⊆ (* ∩ '+) ∪ ((+ ∩) +) = ∅.
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By Lemma 3.2.1.1, ) moves + to (+ ∪) +) \) −. Moreover,

(− ∩) + = (∓ ∩) + (since ( ⊥ ) )
⊆ * ∩ '+ (since (∓ ⊆ * by hypothesis)
= ∅.

Therefore,

(+ ∪) +) \) − = (((* ∪ (+) \ (−) ∪) +) \) −

= (* ∪ (+ ∪) +) \ ((− ∪) −) (since (− ∩) + = ∅)
=, .

Hence, ) moves + to, . �

The next three properties (not in [Str91]) describe which elements are touched or left untouched
by movement.

Lemma 3.2.1.5. Given = ∈ N, �nite subsets* ,+ ⊆ %= and ( ⊆ %=+1, if ( moves* to + , then

(∓ = * \+ and (± = + \* .

In particular, if ) moves* to + , then (∓ = ) ∓ and (± = ) ±.

Proof. By the de�nition of movement, we have

+ = (* ∪ (+) \ (− and * = (+ ∪ (−) \ (+

and therefore

* ∩+ = * ∩ ((* \ (−) ∪ (±)
= * \ (∓ (since* ∩ (+ = ∅).

Similarly,* ∩+ = + \ (±. Hence, (∓ = * \+ and (± = + \* . �

Lemma 3.2.1.6. Given = ∈ N, �nite subsets* ,+ ⊆ %= and ( ⊆ %=+1, if ( moves* to + , then

* \ (− = * \ (∓ = * ∩+ = + \ (± = + \ (+.

Proof.

* \ (− = * \ (∓ (since* ∩ (+ = ∅, by de�nition of movement)
= * ∩+ (by Lemma 3.2.1.5)
= + \ (±

= + \ (+ (since + ∩ (− = ∅, by de�nition of movement)�

Lemma 3.2.1.7. For = ∈ N, �nite subsets* ,+ ⊆ %= and ( ⊆ %=+1, if ( moves* to + , then

* = (* ∩+ ) t (∓ and + = (* ∩+ ) t (±.
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Proof. We have

* = (+ ∪ (−) \ (+

= (+ \ (+) ∪ ((− \ (+)
= (* ∩+ ) ∪ (∓ (by Lemma 3.2.1.6)

and

(* ∩+ ) ∩ (∓ ⊆ + ∩ (−

= ((* ∪ (−) \ (−) ∩ (−

= ∅.

Hence,* = (* ∩+ ) t (∓. Similarly + = (* ∩+ ) t (±. �

Finally, the last lemma enables to decompose a moving set starting from a subset which is a
segment:

Lemma 3.2.1.8. For = ∈ N, �nite subsets * ,+ ⊆ %= , ( ⊆ %=+1 and ) ⊆ ( such that ( is fork-free
and moves* to + , and ) is a segment in ( for ⊳( , there exist !, ' ⊆ ( and �, � ⊆ %= such that

– !,) , ' is a partition of ( ,

– ! is initial in ( for ⊳( and ' is �nal in ( for ⊳( ,

– ! moves* to �, ) moves � to � and ' moves � to + .

Proof. Let
! = {G ∈ ( | G ⊳( ) } and ' = ( \ (! ∪) ).

Thus, !,) , ' is a partition of ( , and since ( is fork-free, we have

! ⊥ ) ! ⊥ ' ) ⊥ '.

Since) is a segment for ⊳( , we have that !−∩) + = ∅, and, by de�nition of ! and ', !−∩'+ = ∅ so
that ! is initial in ( . In particular, !∓ ⊆ * . Thus, by Lemma 3.2.1.3, writing� for (* ∪!+) \!−, we
have that ! moves* to�. Furthermore, since !∩' = ∅, we have) −∩'+ = ∅ so that ' is terminal
in ( . In particular, '± ⊆ + . Thus, by the dual of Lemma 3.2.1.3, writing � for (+ ∪ '−) \ '+, we
have that ' moves � to + . �

3.2.2 Gluing sets on cells

In this section, we state and prove a property similar to [Str91, Lemma 3.2] which enables to build
(=+1)-cells from =-cells by gluing sets of generators. We adapt the proof given by Street to the
new set of axioms and simplify it (notably, we remove the need for the notion of receptivity).

3.2.2.1 — Gluings and activations. Let % be an l-hypergraph. Given = ∈ N, an =-pre-cell -
of % and a �nite set� ⊆ %=+1, we say that� is glueable on - if�∓ ⊆ -= . If so, we call gluing of�
on - the (=+1)-pre-cell . of % de�ned by

.=+1 = �, .=,− = -=, .=,+ = (-= ∪�+) \�− and .8,n = -8,n

for 8 ∈ N= and n ∈ {−, +}. We denote . by Glue(-,�). Moreover, we call activation of� on - the
=-pre-cell Act(-,�) de�ned by

Act(-,�) = m+= (Glue(-,�))
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�

-= (-= ∪�+) \�−

-=−1,− -=−1,+

...

-1,− -1,+

-0,− -0,+

- Act(-,�)

Glue(-,�)

Figure 3.3 – Cells involved and their movements in Theorem 3.2.2.3

We say that� is dually gluable on- when�± ⊆ -= and we de�ne the dual gluing Glue(-,�) and
the dual activation Act(-,�) in a similar fashion. For example, consider the l-hypergraph (3.13)
from Paragraph 3.1.5.3 and recall there the de�nitions of - and . . Then {�} is glueable on -
and Glue(-, {�}) = . , and Act(-, {�}) is the 2-pre-cell -̄ with

-̄2 = {U1, U
′
2, U
′
3, U4},

-̄1,− = {0, 1}, -̄1,+ = {2, 3 ′, 4},
-̄0,− = {G}, -̄0,+ = {I}.

Conversely, {�} is dually gluable on -̄ , and we have Glue(-̄ , {�}) = . , and Act(-̄ , {�}) = - .

3.2.2.2 — The gluing theorem. We now prove the “gluing theorem”. It is an adaptation of [Str91,
Lemma 3.2] which enables to build new cells using the gluing and activation operations. The
theorem moreover gives additional results concerning intersections with the source and the
target sets of gluing sets, that will have as consequence that the composition in the category of
cell Cell(%) respects the relation ⊳ (see Proposition 3.3.1.10).

Theorem 3.2.2.3. Let % be an l-hypergraph which satis�es Axioms (T0), (T1), (T2) and (T3).
Given = ∈ N, an =-cell - of % and a �nite fork-free set � ⊆ %=+1 such that � is glueable on - , we
have that

(a) Act(-,�) is a cell and �+ ∩ -= = ∅,

(b) Glue(-,�) is a cell,

(c) given a �nite, fork-free subset � ′ ⊆ %=+1 which is dually glueable on - , � ′− ∩�+ = ∅.

and dual properties hold when � is dually gluable on - .

Proof. See Figure 3.3 for a representation of the cells in the statement of the theorem. In the
following, write ( for

( = Act(-,�)= = (-= ∪�+) \�−.
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� �

•

•

•

•

-=−1,− -=−1,+

-=−2,−

-=−2,+

G−
⇒

*
⇒

+
⇒

Figure 3.4 – The decomposition of -=

We prove the di�erent subproperties (and their duals) of the theorem by induction on =.

Proof of (a): We prove (a) in two steps: �rst, in the case where |� | = 1, then, in the general case.

Step 1: (a) holds when |� | = 1. Let G ∈ %=+1 be such that {G} = � . If = = 0, then there
exists ~ ∈ %0 such that -0 = {~}. By Axioms (T1) and (T2), there exists I ∈ %0 with ~ ≠ I such
that G− = {~} and G+ = {I}. So Act(-,�) = {I} is a cell. So suppose that = > 0. Then, we
have ( = (-= ∪ G+) \ G− and, in order to prove that Act(-,�) is a cell, we are required to show
that

– ( moves -=−1,− to -=−1,+;

– ( is fork-free.

Using Axiom (T3), we get that G− is a segment in-= for ⊳-= . By Lemma 3.2.1.8, we can decompose
the set -= as a partition

-= = * ∪ G− ∪+

with* initial and + �nal in -= and, writing �, � ⊆ %=−1 for

� = (-=−1,− ∪* +) \* − and � = (-=−1,+ ∪+ −) \+ +

we have that

* moves -=−1,− to �, G− moves � to �, + moves � to -=−1,+

as pictured on Figure 3.4. In the following, for / ⊆ %=−1, we write � (/ ) for the (=−1)-pre-cell
of % de�ned by

� (/ )=−1 = /,

� (/ )8,n = -8,n for 8 ∈ N=−2 and n ∈ {−, +}.

Since
� (�) = Act(� (-=−1,−),* ), � (�) = Act(� (�), G−),

and � (-=−1,−) = m−=−1(- ) is an (=−1)-cell and both * and G− are fork-free, by using two times
the induction hypothesis of Theorem 3.2.2.3, �rst on � (-=−1,−), then on � (�), we get that

� (�) and � (�) are cells. (3.17)
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By Axiom (T2), we have that
G+ is fork-free. (3.18)

Since G− moves � to �, by Lemma 3.2.1.1, we get

� ∩ G−+ = ∅. (3.19)

By Axiom (T2), it holds that G+∓ = G−∓ ⊆ �. By (3.17) and (3.18), using the induction hypothesis
of Theorem 3.2.2.3 on � (�), we get

� ∩ G++ = ∅. (3.20)
By Lemma 3.2.1.1, there exists �′ such that G+ moves � to �′, and

�′ = (� ∪ G++) \ G+−

= (� \ G+−) ∪ (G++ \ G+−)
= (� \ G+∓) ∪ G+± (by (3.20))
= (� \ G−∓) ∪ G−± (since G+∓ = G−∓, by Axiom (T2))
= (� \ G−−) ∪ (G−+ \ G−−) (by (3.19))
= (� ∪ G−+) \ G−−

= � (since G− moves � to �).

Hence,
G+ moves � to �. (3.21)

Since G+∓ ⊆ � (�)=−1 and* ± ⊆ � (�)=−1, using the induction hypothesis of Theorem 3.2.2.3, by (c)
we get

* − ∩ G++ = ∅. (3.22)
Similarly, with � (�), we get

G+− ∩+ + = ∅. (3.23)
By de�nition,* moves-=−1,− to�, andG+moves� to� by (3.21). Moreover, by (3.22),* −∩G++ = ∅.
Using Lemma 3.2.1.3, we deduce that

* ∪ G+ moves -=−1,− to �. (3.24)

Since* and + are disjoint and respectively initial and terminal in -= , we have that* − ∩+ + = ∅.
Also, by (3.23), we have (G+− ∩+ +) = ∅, therefore

(* ∪ G+)− ∩+ + ⊆ (* − ∩+ +) ∪ (G+− ∩+ +)
= ∅.

Using (3.24) and Lemma 3.2.1.3, knowing that ( = * ∪ G+ ∪+ , we deduce that

( moves -=−1,− to -=−1,+. (3.25)

The set * ∪+ is fork-free as a subset of the fork-free -= , and G+ is fork-free since G is relevant
by Axiom (T2). Moreover,

* − ∩ G+− = * − ∩ G+∓ (by (3.22))
⊆ * − ∩� (by (3.21) and Lemma 3.2.1.1)
= ∅ (since* moves -=−1,− to �),

* + ∩ G++ = * ± ∩ G++ (by (3.22))
⊆ � ∩ G++ (by Lemma 3.2.1.1 since* moves -=−1,− to �)
= ∅ (by (3.21) and Lemma 3.2.1.1).
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So* ⊥ G+. Similarly, G+ ⊥ + . Hence, since ( = * ∪ G+ ∪+ ,

( is fork-free. (3.26)

Then, by (3.25) and (3.26),
Act(-,�) is a cell.

Finally, we prove the second part of (a). By Axiom (T1), G− ∩ G+ = ∅ . Since * ⊥ G+ and G+ ⊥ +
(by (3.26)), using Axiom (T0), we deduce that

* ∩ G+ = G+ ∩+ = ∅

so that
-= ∩ G+ = (* ∪ G− ∪+ ) ∩ G+ = ∅

which concludes the proof of the Step 1.

Step 2: (a) holds. We prove this by induction on |� |. If |� | = 0, then the result is trivial.
Moreover, the case |� | = 1 was proved in Step 1. So suppose that |� | ≥ 2. Since the relation ⊳ is
acyclic by Axiom (T1), we can consider a minimal G ∈ � for ⊳� . Let

�̃ = � \ {G}, * = (-= ∪ G+) \ G−, + = (* ∪ �̃+) \ �̃−

and recall that we de�ned ( as (-= ∪�+) \�−. In order to show that Act(-,�) is a cell, we are
required to prove that:

– ( moves -=−1,− to -=−1,+;

– ( is fork-free.

For this purpose, we will �rst move -= with {G} to* and use Step 1, then move* by �̃ to+ and
use the induction of Step 2. Finally, we will prove that+ = ( . So, using Step 1 with - and {G}, we
get that

– Act(-, {G}) is a cell;

– in particular,* is fork-free and, when = > 0,* moves -=−1,− to -=−1,+;

– -= ∩ G+ = ∅.

By Lemma 3.2.1.1, we deduce that {G } moves -= to* . Moreover,

�̃∓ = �̃− \ �̃+

= (�− \ G−) \ (�+ \ G+) (since fork-freeness implies that �n = tD∈�Dn )
⊆ ((�− \ G−) \�+) ∪ G+

= ((�− \�+) \ G−) ∪ G+

⊆ (-= \ G−) ∪ G+ (since �∓ ⊆ -= by Lemma 3.2.1.1)
⊆ (-= ∪ G+) \ G− (since G− ∩ G+ = ∅ by Axiom (T1))
= * .

Also, �̃ is fork-free as a subset of the fork-free set � . Using the induction hypothesis of Step 2
for �̃ , we get that

– Act(Act(-, {G}), �̃) is a cell;
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– In particular, + = (* ∪ �̃+) \ �̃− is fork-free, and, when = > 0, + moves -=−1,− to -=−1,+;

– * ∩ �̃+ = ∅.

By Lemma 3.2.1.1, we deduce that �̃ moves * to + . Also, note that G− ∩ �̃+ = ∅ since G
was taken minimal in � . Using Lemma 3.2.1.3, we deduce that � = {G} ∪ �̃ moves -= to + .
But ( = (-= ∪�+) \�− so that ( = + .

The second part of (a) is left to show, that is, -= ∩�+ = ∅. We compute that

-= ∩�+ = (* ∪ G− \ G+) ∩�+ (by Lemma 3.2.1.1, since {G } moves -= to* )
= ((* ∪ G−) ∩�+) \ G+

= (* ∩�+) \ G+ (since G− ∩� = G− ∩ (G+ ∪ �̃) = ∅)
= (* ∩ �̃+)
= ∅

which concludes the proofs of Step 2 and (a).

Proof of (b): By (a), Act(-,�) is a cell. To conclude, we need to show that � moves -= to ( . By
de�nition of ( , we have that ( = (-= ∪�+) \�−. Moreover,

(( ∪�−) \�+ = (((-= ∪�+) \�−) ∪�−) \�+

= (-= ∪�+ ∪�−) \�+

= (-= \�+) ∪�∓

= -= ∪�∓ (since -= ∩�+ = ∅ by (a))
= -= (since � is glueable on - ).

Hence, Glue(-,�) is a cell.

Proof of (c): By contradiction, suppose that � ′− ∩ �+ ≠ ∅. Then, there are G ∈ � ′, ~ ∈ �
and I ∈ G− ∩ ~+. Consider

* = {G ′ ∈ � ′ | G ⊳�′ G ′} ∪ {G},
+ = {~ ′ ∈ � | ~ ′ ⊳� ~} ∪ {~}.

By the acyclicity Axiom (T1), we have

* + ∩+ − = ∅.

Since* is a terminal set for ⊳�′ , we have in particular* + ∩� ′− ⊆ * −. So,

* + = (* + \� ′−) ∪ (* + ∩� ′−) ⊆ � ′± ∪* −.

Hence, * ± ⊆ � ′± ⊆ -= (since � ′ is dually glueable on - ). Similarly, + ∓ ⊆ -= . Using the
dual version of (a), the =-pre-cell . = Act(-,* ) is an =-cell such that .= = (-= ∪* −) \* + (see
Figure 3.5) and we have

+ ∓ = + ∓ \* + (since + − ∩* + = ∅)
⊆ -= \* + (since + ∓ ⊆ -=)
⊆ (-= ∪* −) \* +

= .= .
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-=

I~
⇒

I G
⇒

� ′
⇒

�
⇒

*
⇒

+
⇒

Theorem 3.2.2.3−−−−−−−−−−−−−−−−−−−→ .=

I~
⇒

I

+
⇒

Figure 3.5 – + ,* and .=

Using Theorem 3.2.2.3(a) with . and + , we get

.= ∩+ + = ∅.

But, since I ∈ * ∓ ⊆ .= (by Axiom (T1)) and * ∓ ⊆ .= , I ∈ .= ∩ + +, which is a contradiction.
Hence,

� ′− ∩�+ = ∅

which ends the proof of (c). �

3.2.3 Cell(V) is an 8-category

Here, we prove that Cell(%) has a structure of an l-category. For this purpose, we �rst prove
that the composite of two cells is a cell using Theorem 3.2.2.3 shown above. Then, we quickly
verify that the axioms of l-categories are satis�ed by Cell(%) (which is almost immediate by the
de�nitions of the operations of Cell(%)).

We �rst show that the (=−1)-composition of two =-cells is a cell, together with several in-
tersection results, that we will need for the general case and later for the proof of the freeness
property.

Lemma 3.2.3.1. Let % be anl-hypergraph satisfying Axioms (T0), (T1), (T2) and (T3). Given= ∈ N∗
and two =-cells -,. of % that are (=−1)-composable, the following hold:

(a) -−= ∩ . += = ∅,

(b) -= ∩ .= = ∅,

(c) - ∗=−1 . is an =-cell of % .

Proof. Using Theorem 3.2.2.3(c) with m+=−1(- ), -= and .= , we get

-−= ∩ . += = ∅.

Moreover,

- += ∩ . += = -±= ∩ . += (since -−= ∩ . += = ∅)
⊆ -=−1,+ ∩ . +=
= .=−1,− ∩ . +=
= ∅ (by Theorem 3.2.2.3(a)).
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By Axiom (T0), it implies that -= ∩ .= = ∅. Similarly,

-−= ∩ .−= = ∅

So -= ∪ .= is fork-free. For - ∗=−1 . to be a cell, -= ∪ .= must move -=−1,− to .=−1,+. But,
since - and . are cells and are (=−1)-composable, we know that -= moves -=−1,− to -=−1,+, .=
moves.=−1,− to.=−1,+ and-=−1,+ = .=−1,−. Since-−= ∩. += , using Lemma 3.2.1.3, we get that-=∪.=
moves -=−1,− to .=−1,+. Hence, - ∗=−1 . is a cell. �

We now prove the general case of composition of two cells, together with an intersection result,
that will also be useful later in the proof of the freeness property.

Lemma 3.2.3.2. Let % be an l-hypergraph satisfying Axioms (T0), (T1), (T2) and (T3). Let 8, = ∈ N
with 8 < = and -,. be two =-cells of % that are 8-composable. Then,

(i) for 9 ∈ N with 8 < 9 ≤ =, (-−9,− ∪ -−9,+) ∩ (. +9,− ∪ . +9,+) = ∅,

(ii) - ∗8 . is a cell.

Proof. By induction on = − 8 . If = − 8 = 1, the properties follow from Lemma 3.2.3.1. So suppose
that = − 8 > 1. For n, [ ∈ {−, +}, by induction hypothesis with mn=−1(- ) and m[

=−1(. ), we get

-−=−1,n ∩ . +=−1,[ = ∅.

Therefore,
(-−=−1,− ∪ -−=−1,+) ∩ (. +=−1,− ∪ . +=−1,+) = ∅.

We moreover obtain

(-−9,− ∪ -−9,+) ∩ (. +9,− ∪ . +9,+) = ∅ for 9 ∈ N with 8 < 9 < = − 1.

Let / = m+=−1(- ) ∗8 m−=−1(. ). By induction, / is a (=−1)-cell and

/=−1 = -=−1,+ ∪ .=−1,−.

Using Theorem 3.2.2.3(c), we get
-−= ∩ . += = ∅

which concludes the proof of (i).
For (ii), we already know that m−=−1(- ) ∗8 m−=−1(. ) and m+=−1(- ) ∗8 m+=−1(. ) are cells by induction.

So, in order to prove that - ∗8 . is a cell, we just need to show that -= ∪ .= is fork-free and
moves -=−1,− ∪ .=−1,− to -=−1,+ ∪ .=−1,+. But

- += ∩ . += = -±= ∩ . += (by (i))
⊆ /=−1 ∩ . +=
= ∅ (by Theorem 3.2.2.3(a)).

Similarly,
-−= ∩ .−= = ∅

so -= ∪ .= is fork-free. Using the dual of Theorem 3.2.2.3(a) with / and -= , we get

-−= ∩ (-=−1,+ ∪ .=−1,−) = -−= ∩ .=−1,− = ∅.
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Similarly, if / ′ = m−=−1(- ) ∗8 m−=−1(. ) then / ′=−1 = -=−1,−∪.=−1,−. Using Theorem 3.2.2.3(a) with / ′
and -= , we have

- += ∩ (-=−1,− ∪ .=−1,−) = - += ∩ .=−1,− = ∅.

Since -= moves -=−1,− to -=−1,+, using Lemma 3.2.1.2, we deduce that

-= moves -=−1,− ∪ .=−1,− to -=−1,+ ∪ .=−1,−.

Similarly,
.= moves -=−1,+ ∪ .=−1,− to -=−1,+ ∪ .=−1,+.

Since -−= ∩ . += = ∅, by Lemma 3.2.1.3, we have

-= ∪ .= moves -=−1,− ∪ .=−1,− to -=−1,+ ∪ .=−1,+.

Hence, - ∗8 . is a cell. �

We can �nally conclude that Cell(%) has a structure of l-category given by the identity and
composition operations on cells:

Theorem 3.2.3.3. (Cell(%), m−, m+, id, ∗) is an l-category.

Proof. We already know that Cell(%) is a l-globular set. By Lemma 3.2.3.2, the composition
operation ∗ is well-de�ned on composable cells. Moreover, all the axioms of l-categories (given
in Section 1.4.1), follow readily from the de�nitions of m−, m+, id and ∗. For example, consider the
exchange law Axiom (S-v). Given 8, 9, = ∈ N with 8 < 9 ≤ = and -,- ′, . , . ′ ∈ Cell(%)= such
that -,. are 8-composable, -,- ′ are 9-composable and .,. ′ are 9-composable, let

/ = (- ∗9 . ) ∗8 (- ′ ∗9 . ′) and / ′ = (- ∗8 - ′) ∗9 (. ∗8 . ′).

For : ≤ = and n ∈ {−, +}, we have

/:,n = /
′
:,n

=



-:,n ∪ - ′:,n ∪ .:,n ∪ .
′
:,n

when : > 9 ,
- 9,− ∪ .9,− when : = 9 and n = −,
- ′9,+ ∪ . ′9,+ when : = 9 and n = +,
-:,n ∪ .:,n when 8 < : < 9 ,
-8,− when : = 8 and n = −,
.8,+ when : = 8 and n = +,
-:,n when : < 8 ,

so / = / ′. Thus, Cell(%) satis�es Axiom (S-v), and the other axioms are shown as easily. Hence,
the identity and composition operations equip Cell(%) with a structure of l-category. �

Remark 3.2.3.4. For the proof of Theorem 3.2.3.3, we did not use Axiom (T4), so that the same
property holds for an l-hypergraph which only satis�es Axioms (T0), (T1), (T2), (T3).
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3.3 The freeness property

In this section, we prove that, given a torsion-free complex % , Cell(%) is freely generated by the
atoms, under the form of Corollary 3.3.3.5. More precisely, for = ∈ N, we prove that Cell(%)≤=+1
is the free (=+1)-category on the canonical =-cellular extension (Cell(%)≤=, %=+1). For this pur-
pose, we will use the characterization of the functor −[−] : Cat+= → Cat=+1 given in Section 2.2.
Concretely, we will prove that every (=+1)-cell of Cell(%) can be written as a composite

�1 [G1] r= · · · r= �? [G?]
and that this composition is essentially unique, relatively to the relation ≈ de�ned in Section 2.2.
We �rst prove that cells of Cell(%) admit such decompositions. Then, we prove the unicity of the
decomposition, �rst handling the case ? = 1 and the general case afterwards.
In this section, we write % for a torsion-free complex.

3.3.1 Cell decompositions

Here, we prove that the =-cells of Cell(%) can be written as composites of applied (=−1)-context
classes. Actually, we prove the stronger statement that such a composite exists for any total
ordering, called linear extensions, of the top-level =-generators that respects the relation ⊳.

3.3.1.1 — Linear extensions. Given a �nite poset ((, <), a linear extension of ((, <) is the data
of a bijection f : N∗|( | → ( such that, for 8, 9 ∈ N∗|( | , if f (8) < f ( 9), then 8 < 9 . Given two
linear extensions f, f ′ : N |( | → ( , a morphism of linear extensions of ((, <) between f and f ′ is a
function d : N∗|( | → N

∗
|( | such that the triangle

N∗|( | N∗|( |

(

d

f f′

is commutative (in particular, d is a bijection). We write LinExt(() for the category of linear
extensions of ( . Given = ∈ N and a bijection d : N∗= → N∗= , we write Inv(d) ∈ N for the number
of inversions of d , i.e.,

Inv(d) = |{(8, 9) ∈ N∗= × N∗= | 8 < 9 and d (8) > d ( 9)}|

Moreover, given 8, 9 ∈ N∗= such that 8 ≠ 9 , we write g8, 9 for the bijection N∗= → N∗= which is the
transposition of 8 and 9 . We show that the morphisms of linear extensions are generated by the
transpositions:

Lemma 3.3.1.2. Given a poset ((, <) and f, f ′ ∈ LinExt(() and d : f → f ′ ∈ LinExt(()1, there
exist ? ∈ N and f0, . . . , f? ∈ LinExt(() with f = f0 and f? = f ′, and d8 : f8−1 → f8 ∈ LinExt(()
for 8 ∈ N∗? such that

d = d1 ∗0 · · · ∗0 d? and d8 is a transposition for 8 ∈ N∗? .

Proof. We prove the result by induction on the number Inv(d) of inversions of the bijection d .
If Inv(d) = 0, then

d = 1N∗|( | = id1
f .
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So suppose that Inv(d) > 0. Thus, there exists : ∈ N∗|( |−1 such that d (:) > d (: + 1). The
bijection f̄ = f ◦ g:,:+1 is then a linear extension of ((, <) as in

N∗|( | N∗|( | N∗|( |

(

g:,:+1

f f̄

d◦g:,:+1

f′
.

Indeed, for 8, 9 ∈ N∗|( | such that 8 ≠ 9 and f̄ (8) < f̄ ( 9),

– if {8, 9} ∩ {:, : + 1} = ∅, then f (8) < f ( 9) and 8 < 9 ;

– if 8 = : and 9 ≠ : + 1, then f (8 + 1) < f ( 9) and 8 + 1 < 9 , so 8 < 9 ;

– if 8 = : and 9 = : + 1, then 8 < 9 ;

– if 8 = : + 1 and 9 ≠ : , then f (8 − 1) < f ( 9), so 8 − 1 < 9 , and, since 9 ≠ 8 , 8 < 9 ;

– if 8 = : + 1 and 9 = : , then f (:) < f (: + 1), so f ′(d (:)) < f ′(d (: + 1)) and d (:) < d (: + 1),
contradicting the hypothesis;

– if 8 ∉ {:, : + 1} and 9 ∈ {:, : + 1}, then 8 < 9 like when 8 ∈ {:, : + 1} and 9 ∉ {:, : + 1}.

Moreover, the number of inversions of d ◦ g:,:+1 is Inv(d) − 1. By induction hypothesis, d ◦ g:,:+1
can be written as

d ◦ g:,:+1 = d2 ∗0 · · · ∗0 d?
for some ? ∈ N and transpositions d8 : f8−1 → f8 ∈ LinExt(()1 for 8 ∈ N∗?−1, so that

d = g:,:+1 ∗0 d2 ∗0 · · · ∗0 d?

is of the wanted form. �

3.3.1.3 — Decomposition theorem. In this paragraph, we show that cells can be decomposed as
composites of applied context classes that respect the relation ⊳. First, we state a simple criterion
for the equality of two cells in Cell(%):

Lemma 3.3.1.4. Given :, = ∈ N with : < =, n ∈ {−, +} and -,. ∈ Cell(%)= such that

mn
:
(- ) = mn

:
(. ) and -8,n = .8,n

for 8 ∈ {: + 1, . . . , =}, we have - = . .

Proof. It is enough to prove the case n = −. Moreover, by induction on = − : , it is su�cient to
prove the case : = = − 1. But, since - and . are =-cells, we have

-:,+ = (-:,− ∪ - += ) \ -−= = (.:,− ∪ . += ) \ .−= = .=−1,+

so that - = . . �

Next, we show that we can write a cell as a composition by extracting a minimal element for ⊳:

Lemma 3.3.1.5. Let = ∈ N∗ and - be an =-cell and 6 be a minimal element of -= for ⊳-= . Then,
there exist =-cells . and / that are (=−1)-composable such that

.= = {6} /= = -= \ {6} - = . ∗=−1 / .
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Proof. Since 6 is minimal for ⊳-= , we have {6}∓ ⊆ -=−1,−. Moreover, since - is an =-cell, -= is
fork-free so that {6} ⊥ (-= \ {6}). Thus, by Lemma 3.2.1.4, writing + for (-=−1,− ∪ 6+) \ 6−, we
have that

{6} moves -=−1,− to + and -= \ {6} moves + to -=−1,+.

By Theorem 3.2.2.3, the cell . = Glue(m−=−1(- ), {6}) is an =-cell which satis�es that

.= = {6}, m−=−1(. ) = m−=−1(- ) and .=−1,+ = + .

By Theorem 3.2.2.3 again, / = Glue(m+=−1(. ), -= \ {6}) is an =-cell such that

/= = -= \ {6}, m−=−1(/ ) = m+=−1(. ) and /=−1,+ = -=−1,+,

so that m+=−1(/ ) = m+=−1(- ). Then, by the de�nition of ∗=−1, we have - = . ∗=−1 / . �

The previous lemma implies that we can write a cell as a composite of cells with a single top-level
generator, that are moreover ordered by a given linear extension:

Lemma 3.3.1.6. Let = ∈ N∗ and - be an =-cell of % , ? = |-= | and f : N∗? → (-=, ⊳-= ) be a linear
extension. There exist =-cells - 1, . . . , -? that are (=−1)-composable and such that

- 8= = {f (8)} for 8 ∈ N∗? and - = - 1 ∗=−1 · · · ∗=−1 -
? .

Proof. We prove this property by induction on ? . When ? = 0 or ? = 1, then the property is
trivial. So suppose that ? > 1. Note that f (1) is minimal in -= for ⊳-= . By Lemma 3.3.1.5, we
can write - = - 1 ∗=−1 -

′ where - 1 and - ′ are (=−1)-composable =-cells such that - 1
= = {f (1)}

and - ′= = -= \ {f (1)}. By induction hypothesis, we have that - ′ = - 2 ∗=−1 · · · ∗=−1 -
? for some

(=−1)-composable =-cells - 2, . . . , -? such that - 8= = {f (8)} for 8 ∈ {2, . . . , ?}, which concludes
the proof. �

Next, we give a su�cient criterion for a cell to be written as an applied context class:

Lemma 3.3.1.7. Let :, = ∈ N with : < =, 6 ∈ %= and - be an =-cell such that

-8,n = 〈6〉8,n for 8 ∈ {: + 1, . . . , =} and n ∈ {−, +}.

There exists a :-context class � of type 〈6〉 such that - = � [〈6〉].

Proof. We show this property by induction on : . When : = 0, we have that-8,n = 〈6〉8,n for 8 ∈ N∗=
and n ∈ {−, +}. Moreover, since - is an =-cell, we have that 〈6〉1,− moves -0,− to -0,+, so that

〈6〉∓1,− = 〈6〉0,− ⊆ -0,−

Since -0,− is fork-free, we have |-0,− | = 1. Thus, -0,− = 〈6〉0,− and, similarly, -0,+ = 〈6〉0,+. Hence,
we have - = 〈6〉 and the property of the statement is veri�ed with the unique 0-context class.

So suppose that : > 0. We have that -:+1,n = 〈6〉:+1,n moves -:,− to -:,+, so 〈6〉:,− ⊆ -:,−.
By Axiom (T3), 〈6〉:,− is a segment for ⊳-:,− and, by Lemma 3.2.1.8, there exist * ,+ ⊆ -:,−
and �, � ⊆ %:−1 such that

– * , 〈6〉:,−,+ is a partition of -:,−,

– * moves -:−1,− to �, 〈6〉:,− moves � to � and + moves � to -:−1,+.
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Writing

! = Glue(m−
:−1(- ),* ) -: = Glue(m+

:−1(!), 〈6〉:,−) ' = Glue(m+
:−1(-

: ),+ )

by Theorem 3.2.2.3, we have that !,-: , ' are :-cells that are (:−1)-composable and such that

m−
:
(- ) = ! r

:−1 -
: r
:−1 '

By induction on 8 ∈ {: + 1, =}, we de�ne 8-cells - 8 such that m−8−1(- 8) = - 8−1 and - 88 = 〈6〉8,− by
putting

- 8 = Glue(- 8−1, 〈6〉8,−)
which is indeed a cell by Theorem 3.2.2.3. Then, -= is an =-cell such that

m−
:
(-=) = -: and -=8,n = 〈6〉8,n for 8 ∈ {:, . . . , =}.

Moreover, since m−
:
(-=) = -: ,

!,-=, ' are (:−1)-composable and m−
:
(! r

:−1 -
= r
:−1 ') = m−: (- ).

Furthermore, we have that

-8,− = 〈6〉8,− = -=8,− = (! r
:−1 -

= r
:−1 ')8,−

for 8 ∈ {: + 1, =} so that, by Lemma 3.3.1.4, we have that

- = ! r
:−1 -

= r
:−1 '.

By induction hypothesis, there exists a (:−1)-context class � ′ such that -= = � ′[〈6〉]. Writting �
for the :-context class È(!, � ′, ')É, we have that - = � [〈6〉] as wanted. �

We can now prove the decomposition theorem, which states that every cell of Cell(%) can be
written as a composite of applied context classes that respects a given linear extension:

Theorem 3.3.1.8. Given = ∈ N∗, an =-cell - , ? = |-= | and a linear extension f : N∗? → (-=, ⊳-= ),
there exist (=−1)-context classes �1, . . . , �? of Cell(%) respectively of type 〈f (1)〉, . . . , 〈f (?)〉 such
that

- = �1 [〈f (1)〉] r=−1 · · · r=−1 �? [〈f (?)〉].

Remark 3.3.1.9. By Axiom (T1), given = ∈ N∗ and a �nite subset ( ⊆ %= , there always exists a
linear extension f : N∗|% | → ((, ⊳( ), so that an =-cell - of % has at least one decomposition of the
form given by Theorem 3.3.1.8.

Proof. By Lemma 3.3.1.6, - can be written

- = - 1 r
=−1 · · · r=−1 -

?

for some=-cells- 1, . . . , -? such that- 8= = {f (8)} for 8 ∈ N∗? . We conclude with Lemma 3.3.1.7. �

We verify with the following property that Theorem 3.3.1.8 does not miss other possible decom-
positions:

Proposition 3.3.1.10. Given = ∈ N∗ and - ∈ Cell(%)= such that

- = �1 [〈G1〉] r=−1 · · · r=−1 �: [〈G:〉]

for some : ∈ N, G1, . . . , G: ∈ %= and (=−1)-context classes �1, . . . , �: of Cell(%), we have
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(i) -= = {G1, . . . , G: },

(ii) for 8, 9 ∈ N∗
:
with 8 ≠ 9 , we have G8 ≠ G 9 ,

(iii) the function ? ↦→ G? of type N∗: → -= is a linear extension of (-=, ⊳-= ).

In particular, if - satis�es moreover that

- = � ′1 [〈~1〉] r=−1 · · · r=−1 �
′
;
[〈~; 〉]

for some ; ∈ N, ~1, . . . , ~; ∈ %= and (=−1)-context classes � ′1, . . . , � ′; , then : = ; and

{G1, . . . , G: } = {~1, . . . , ~; }.

Proof. Given < < =, G ∈ %= and an <-context class � of type 〈G〉, by a simple induction on <,
one can prove that (� [〈G〉])= = {G}. Thus, by de�nition of ∗=−1, we have -= = {G1, . . . , G: }, so (i)
holds. Let 8, 9 ∈ N∗

:
with 8 < 9 , and ., / be the =-cells de�ned by

. = �1 [〈G1〉] r=−1 · · · r=−1 �8 [〈G8〉] and / = �8+1 [〈G8+1〉] r=−1 · · · r=−1 �: [〈G:〉] .

Then G8 ∈ .= , G 9 ∈ /= and . ,/ are (=−1)-composable. By Lemma 3.2.3.1, we have .= ∩ /= = ∅.
Hence, G8 ≠ G 9 , thus (ii) holds. Moreover, by Lemma 3.2.3.1 again, we have (.=)− ∩ (/=)+ = ∅,
so that ¬(G 9 ⊳1

-=
G8). Thus, by contrapositive, given 8, 9 ∈ N∗

:
such that G8 ⊳1

-=
G 9 , we have 8 ≤ 9 ,

and in fact 8 < 9 by Axiom (T1). Since ⊳-= is the transitive closure of ⊳1
-=

, given 8, 9 ∈ N∗
:
, we

have that G8 ⊳-= G 9 implies 8 < 9 , so the function ? ↦→ G? is a linear extension of (-=, ⊳-= ), which
concludes the proof of (iii). �

3.3.2 Freeness of decompositions of length one

In this section, we show the unicity of decomposition of cells of Cell(%) as an applied context
class, that is, given :, = ∈ N with : < =, 6 ∈ %= and :-context classes �1, �2 of type 〈6〉 of Cell(%),
then �1 [〈6〉] = �2 [〈6〉] implies that �1 = �2. In order to show this, we �rst prove two technical
lemmas on the manipulation of contexts by mutual induction. The �rst states that, as long as we
respect the relation ⊳, we can modify the whiskers of the contexts:

Lemma 3.3.2.1. Let :, = ∈ N∗ with : < =, n ∈ {−, +}, 6 ∈ %= and � = (!, �, ') be a :-context of
type 〈6〉 of Cell(%). Consider the following subsets of %: :

( = !: ∪ ': , ( ′ = ( ∪ 〈6〉:,n ,
* = {~ ∈ ( | ~ ⊳(′ 〈6〉:,n }, + = {~ ∈ ( | 〈6〉:,n ⊳(′ ~}.

Then, for every partition * ′ ∪+ ′ of ( such that * ⊆ * ′, + ⊆ + ′, * ′ is initial in ( and + ′ is �nal
in ( , there exists a :-context � ′ = (!′, � ′, '′) of type - such that

!′
:
= * ′, '′

:
= + ′, � ≈: � ′.

For : = 2, Lemma 3.3.2.1 states that, given 6 ∈ %= for some = > 2 and a 2-context � = (!, �, ') of
type 〈6〉 Figure 3.6, � is equivalent through ≈2 to a 2-context � ′ = (!′, � ′, '′) as on the right of
Figure 3.6. The second lemma gives su�cient conditions under which two composable context
classes can be decomposed in a way that allows them to be exchanged by the relations ≈: or ≈
de�ned in Section 2.2:
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!2

'2

. .. .6

⇓ +

⇓ *

≈2

!′2

'′2

. .. .6

⇓ +

⇓ *

Figure 3.6 – Illustration of Lemma 3.3.2.1

Lemma 3.3.2.2. Let :, =1, =2 ∈ N∗ with : < min(=1, =2), 61 ∈ %=1 , 62 ∈ %=2 , and �1, �2 be :-context
classes of Cell(%), of type 〈61〉 and 〈62〉 respectively, such that

�1 [m+: (〈61〉)] = �2 [m−: (〈62〉)] and 〈61〉:,+ ∩ 〈62〉:,− = ∅.

There exist :-context classes �̄1, �̄2 of type 〈61〉 and 〈62〉 respectively, such that

– either �̄1, �̄2 are (:−1)-composable and

�1 = �̄1 r
:−1 �̄2 [m−: (〈62〉)] �2 = �̄1 [m+: (〈61〉)] r:−1 �̄2,

– or �̄2, �̄1 are (:−1)-composable and

�1 = �̄2 [m−: (〈62〉)] r:−1 �̄1 �2 = �̄2 r
:−1 �̄1 [m+: (〈61〉)].

Proof. We prove the two lemmas by induction on : .

Proof of Lemma 3.3.2.1. Let ? = |!: |. Since* ′ is initial in ( ,* ′∩!: is initial for ⊳!: , so there exists
a linear extension

f : N∗? → (!: , ⊳!: )

such that {8 ∈ N∗? | f (8) ∈ * ′} = {1, . . . , 80} for some 80 ∈ N? . Writting G8 for f (8) for 8 ∈ N∗? , by
Theorem 3.3.1.8, ! can be decomposed as

! = �1 [〈G1〉] r:−1 · · · r:−1 �? [〈G?〉]

for some (:−1)-context classes �1, . . . , �? . For 8 ∈ {80 + 1, . . . , ?}, we aim at transferring �8 [G8]
from ! to ' using the relation ≈: on :-contexts. If : = 1, then 〈G1〉, . . . , 〈G?〉, mn1 (〈6〉) are 0-com-
posable, so that

G1 ⊳(′ · · · ⊳(′ G? ⊳(′ 〈6〉1,n
which implies that G1, . . . , G? ∈ * ′ and 80 = ? . Thus, we can suppose that : > 1. Assume moreover
that 80 < ? . To transfer the �8 [G8]’s, our plan is to use Lemma 3.3.2.2. We only need to show how
to do this for 8 = ? , and then iterate this procedure for 8 ∈ {80 + 1, . . . , ? − 1}.

Note that �? [m+:−1(〈G?〉)] = � [m
−
:−1(〈6〉)]. Moreover, since G? ∉ * ′, we have G? ∉ * , so that

〈G?〉:−1,+ ∩ 〈6〉:−1,− = ∅.

Thus, using Lemma 3.3.2.2 inductively, we get (:−1)-context classes �̄? and �̄ of type 〈G?〉 and 〈6〉
such that
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– either �̄? , �̄ are (:−2)-composable and

�? = �̄? r
:−2 �̄ [m−:−1(〈6〉)] � = �̄? [m+:−1(〈G?〉)] r:−2 �̄

– or �̄ , �̄? are (:−2)-composable and

�? = �̄ [m−
:−1(〈6〉)] r:−2 �̄? � = �̄ r

:−2 �̄? [m+:−1(〈G?〉)]

By symmetry, we can suppose that we are in the �rst situation. Then, by axiom (≈-L) of ≈: , we
get that � ≈: �̃ where �̃ = (!̃, �̃ , '̃) is such that

!̃ = �1 [〈G1〉] r:−1 · · · r:−1 �?−1 [〈G?−1〉]
�̃ = �̄? [m−:−1(〈G?〉)] r:−2 �̄

'̃ = (�̄? [〈G?〉] r:−2 �̄ [m+:−1(〈6〉)]) r:−1 '

By iterating the above procedure for 8 ∈ {80 + 1, . . . , ? − 1}, we obtain a :-context � ′ = (!′, � ′, '′)
of type 〈6〉 such that

� ≈: � ′ !′
:
= !: ∩* ′ '′

:
= ': ∪ (!: \* ′)

Using a similar method to transfer elements from '′ to !′, we get a :-context � ′′ = (!′′, � ′′, '′′)
of type 〈6〉 such that

� ′ ≈: � ′′ !′′
:
= !′

:
∪ ('′

:
\+ ′) '′′

:
= '′

:
∩+ ′

Then, we have � ≈: � ′′ and we compute that

!′′
:
= !′

:
∪ ('′

:
\+ ′)

= (!: ∩* ′) ∪ (': \+ ′) ∪ (!: \ (* ′ ∪+ ′))
= (!: ∩* ′) ∪ (': ∩* ′) (since !: ∪ ': = * ′ ∪+ ′)
= * ′

and, similarly, '′′
:
= + ′. Thus, � ′′ satis�es the wanted properties.

Proof of Lemma 3.3.2.2. Let �: = (!: , � ′
:
, ': ) be such that È�:É = �: for : ∈ {1, 2}. Consider

" = �1 [m+: (〈61〉)] (or, equivalently, �2 [m−: (〈62〉)]),
(8 = !

8
:
∪ '8

:
for 8 ∈ {1, 2},

( ′ = ": ,

*1 = {G ∈ (1 | G ⊳(′ 〈61〉:,+} +1 = {G ∈ (1 | 〈61〉:,+ ⊳(′ G}
*2 = {G ∈ (2 | G ⊳(′ 〈62〉:,−} +2 = {G ∈ (2 | 〈62〉:,− ⊳(′ G}

Since, by Axiom (T4), 61 and 62 are not in torsion with respect to �1 [m+: (〈61〉)], we have

either ¬(〈61〉:,+ ⊳(′ 〈62〉:,−) or ¬(〈62〉:,− ⊳(′ 〈61〉:,+).

By symmetry, we can suppose that ¬(〈62〉:,− ⊳(′ 〈61〉:,+). Since we can use Lemma 3.3.2.1 (which
is proved for the current value of :) to change �1 and �2, we can suppose that

!1
:
= *1, '1

:
= (1 \*1,

!2
:
= (2 \+2, '2

:
= +2.
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"1

"2

"3

"4

"5

Figure 3.7 – The decomposition of "

Then,
(*1 ∪ 〈61〉:,+) ∩ (〈62〉:,− ∪+2) = ∅

since, otherwise, it would contradict the condition ¬(〈62〉:,− ⊳(′ 〈61〉:,+). Consider the following
sets:

&1 = *1, &2 = 〈61〉:,+,
&3 = (

′ \ (*1 ∪ 〈61〉:,+ ∪ 〈62〉:,− ∪+2),
&4 = 〈62〉:,−, &5 = +2.

Then &1, &2, &3, &4, &5 form a partition of ( ′. Moreover, this partition is compatible with ⊳(′ .
Indeed, given G,~ ∈ ( ′ such that G ⊳(′ ~,

– if G ∈ &2, then we can not have ~ ∈ &1 since, by Axiom (T3), 〈61〉:,+ is a segment for ⊳(′ ,

– if G ∈ &3, then we can not have ~ ∈ &1 ∪&2 (otherwise, we would have G ∈ *1 ∪ 〈61〉:,+),

– if G ∈ &4, then either ~ ∈ &4 or ~ ∈ &5 by de�nition of &5,

– if G ∈ &5, then ~ ∈ &5 since, by Axiom (T3), 〈62〉:,− is a segment for ⊳(′ .

Thus, there exists a linear extension for (( ′, ⊳(′)

f : N(′ → ( ′

such that, for 8, 9 ∈ N |(′ | and A, B ∈ N∗5, if f (8) ∈ &A and f ( 9) ∈ &B with A < B , then 8 < 9 .
Since ( ′ = ": , using Theorem 3.3.1.8, " can be written

" =

|(′ |∏
8=1

�8 [〈f (8)〉]

for some (:−1)-context classes �1, . . . , � |(′ | . By gathering the terms corresponding to &1, . . . , &5
respectively, we obtain �ve :-cells "1, "2, "3, "4, "5 ∈ Cell(%): where

" 9 =
∏

8∈f−1 (& 9 )
�8 [〈f (8)〉]

as in Figure 3.7 and such that

" = "1 r
:−1 "

2 r
:−1 "

3 r
:−1 "

4 r
:−1 "

5.
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Since
m−
:−1(!

1) = m−
:−1(") = m

−
:−1("

1) and !1
:
= *1 = "

1
:
,

by Lemma 3.3.1.4, we have !1 = "1. Moreover, since

m−
:−1(�

′
1 [〈61〉]) = m+:−1(!

1) = m+
:−1("

1) = m−
:−1("

2) and (� ′1 [m+: (〈61〉)]): = 〈61〉:,+ = "2
:
,

by Lemma 3.3.1.4, it implies that
� ′1 [m+: (〈61〉)] = "2

Similarly, we can show that

� ′2 [m−: (〈62〉)] = "4 and '2 = "5.

Moreover, since
m−
:−1(!

2) = m−
:−1(") = m

−
:−1("

1 r
:−1 "

2 r
:−1 "

3),

and

!2
:
= (2 \+2

= ( ′ \ (〈62〉:,− ∪+2)
= &1 ∪&2 ∪&3,

by Lemma 3.3.1.4, we have
!2 = "1 r

:−1 "
2 r
:−1 "

3.

Similarly, we have
'1 = "3 r

:−1 "
4 r
:−1 "

5.

Hence, writting

�̄1 = È(!1, � ′1, id
:
� ′1 [m+:−1 ( 〈61 〉) ])É and �̄2 = È("3, � ′2, '

2)É

we have
�1 = �̄1 r

:−1 �̄2 [m−: (62)] and �2 = �̄1 [m+: (61)] r:−1 �̄2

as wanted. �

From these two lemmas, we deduce that applied context classes are completely determined by
their sources (or targets):

Theorem 3.3.2.3. Given :, = ∈ N with : < =, 6 ∈ %= and :-context classes �1, �2 of type 〈6〉 such
that

m−
:
(�1 [〈6〉]) = m−: (�2 [〈6〉]) or m+

:
(�1 [〈6〉]) = m+: (�2 [〈6〉]),

we have �1 = �2.

Proof. By symmetry, it is enough to prove the case where m−
:
(�1 [〈6〉]) = m−: (�2 [〈6〉]). We prove

this property by an induction on : . If : = 0, the result is trivial. So suppose that : > 0. Let

�1 = (!1, � ′1, '
1) and �2 = (!2, � ′2, '

2)

be :-contexts such that �8 = È�8É for 8 ∈ {1, 2}. Thus,

!1 r
:−1 �

′[m−
:
(〈6〉)] r:−1 '

1 = !2 r
:−1 �

′[m−
:
(〈6〉)] r:−1 '

2
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In particular, !1
:
∪ 〈6〉:,− ∪ '1

:
= !2

:
∪ 〈6〉:,− ∪ '2 and, by Lemma 3.2.3.1, both sides are partitions,

so that we have !1
:
∪ '1

:
= !2

:
∪ '2

:
. Consider the following subsets of %: :

( = !1
:
∪ '1

:
, ( ′ = ( ∪ 〈6〉:,−,

* = {G ∈ ( | G ⊳(′ 〈6〉:,−}, + = ( \* .

By Lemma 3.3.2.1, we can suppose that

!1
:
= !2

:
= * and '1

:
= '2

:
= + .

For 8 ∈ {1, 2}, we have

m−
:−1(!

8) = m−
:−1(�8 [〈6〉]) = m

−
:−1 ◦ m

−
:
(�8 [〈6〉])

so that m−
:−1(!

1) = m−
:−1(!

2). Thus, by Lemma 3.3.1.4, we have

!1 = !2

and, by a similar argument, '1 = '2. Moreover, for 8 ∈ {1, 2}, m+
:−1(!

8) = m−
:−1(�

′
8 [〈6〉]), so

m−
:−1(�

′
1 [〈6〉]) = m−:−1(�

′
2 [〈6〉]).

By induction hypothesis, we have � ′1 = �
′
2. Hence, �1 = �2. �

In particular, we can conclude a unique decomposition of cells as applied context classes:

Corollary 3.3.2.4. Given :, = ∈ N with : < =, 6 ∈ %= and :-context classes �1, �2, both of type 〈6〉
such that �1 [〈6〉] = �2 [〈6〉], we have �1 = �2.

Proof. In particular, we have m−
:
(�1 [〈6〉]) = m−: (�2 [〈6〉]) so Theorem 3.3.2.3 applies. �

3.3.3 Freeness of general decompositions

We now consider the general case and prove the unicity, up to the relation ≈ of formal se-
quences of applied context classes, of the decompositions of cells as composites of several applied
context classes of Cell(%). By the characterization of −[−]= given in Section 2.2, it will entail
that Cell(%)≤=+1 is the free (=+1)-category on the canonical =-cellular extension (Cell(%)≤=, %=+1)
introduced below and, more generally, that Cell(%) is freely generated by the atoms 〈G〉 for G ∈ P.

3.3.3.1 — The canonical cellular extension. Given = ∈ N, there is an =-cellular extension

Cell(%)≤= %=+1
m−=◦〈−〉

m+=◦〈−〉

where, for G ∈ %=+1 and n ∈ {−, +}, mn= ◦ 〈−〉(G) = mn= (〈G〉), which is an =-cell by Axiom (T2). We
write Cell(%)=+ for the (=+1)-category

Cell(%)=+ = Cell(%)≤= [%=+1]

i.e., the image of (Cell(%)≤=, %=+1) ∈ Cat+= by the functor −[−]= : Cat+= → Cat=+1. Remember from
Section 2.2 that the (=+1)-cells of Cell(%)=+ are the quotients under ≈ of =-sequences

((61, �1), . . . , (6: , �: ))s
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where 68 ∈ %=+1 and �8 is an =-context class of type m−= (〈6〉) for 8 ∈ N∗
:
. For conciseness,

given 6 ∈ %=+1 and an =-context class of type m−= (〈6〉), we write � [6] for

� [6] = È((6, � ))sÉ ∈ (Cell(%)=+)=+1.

There is a morphism of =-cellular extension

(Cell(%)≤=, %=+1)
(idCell(% )≤= , 〈−〉)−−−−−−−−−−−−→ (Cell(%)≤=,Cell(%)=+1)

which maps G ∈ %=+1 to 〈−〉(G) = 〈G〉. By the universal property of Cell(%)=+ discussed in
Section 1.3.2, it induces a unique (=+1)-functor

eval= : Cell(%)=+ → Cell(%)≤=+1

often written eval for conciseness, such that

eval=≤= = idCell(% )≤= and eval(� [6]) = � [〈6〉]

for all 6 ∈ %=+1 and =-context class � of type m−= (〈6〉).

3.3.3.2 — Freeness of Cell(V). We now show the freeness of Cell(%) by proving the unicity of
decomposition of cells as sequences of applied context classes up to the relation ≈. First, we show
an analogous of Theorem 3.3.1.8, i.e., that the decompositions in Cell(%)=+ can also be reordered
by linear extensions:

Lemma 3.3.3.3. Let = ∈ N and - be an (=+1)-cell of Cell(%)=+ such that

- = �1 [G1] r= · · · r= �? [G?]
for some ? ∈ N, G1, . . . , G? ∈ %=+1 and =-context classes �1, . . . , �? of Cell(%). Then, we have
that the function @ ↦→ G@ of type N∗@ → -=+1 is a linear extension of (-=+1, ⊳-=+1). Moreover,
if f is a linear extension of (-=+1, ⊳-=+1), then there exist =-context classes �̄1, . . . , �̄? of respective
types 〈f (1)〉, . . . , 〈f (?)〉 such that

- = �̄1 [f (1)] r= · · · r= �̄? [f (?)] .
Proof. Write d : N? → -=+1 for the function such that

d (8) = G8

for 8 ∈ N∗? . By the functoriality of eval, we have

eval(- ) = �1 [〈G1〉] r= · · · r= �? [〈G?〉]
so that d is a linear extension by Proposition 3.3.1.10. We are left to prove the second part of the
statement. We have a morphism of linear extensions

5 = f−1 ◦ d

between f and d . By Lemma 3.3.1.2, we can suppose that 5 = g8,8+1 for some 8 ∈ N∗?−1. To
conclude, we only need to show that G8 and G8+1 can be swapped in the decomposition of -
as �1 [G1] r= · · · r= �? [G?]. By contradiction, suppose that 〈G8〉=,+ ∩ 〈G8+1〉=,− ≠ ∅. In particular,
we have d (8) ⊳-=+1 d (8 + 1). Since d = f ◦ g8,8+1, it implies f (8 + 1) ⊳-=+1 f (8). Thus, since f is a
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linear extension, we deduce that 8 + 1 < 8 , which is a contradiction. So 〈G8〉=,+ ∩ 〈G8+1〉=,− = ∅.
By Lemma 3.3.2.2, there exist =-context classes �̄8 and �̄8+1 such that, in Cell(%)≤= [%=+1]≈,

((G8 , �8), (G8+1, �8+1))s ≈ ((G8+1, �̄8), (G8 , �̄8+1))s

so that

((G1, �1), . . . , (G? , �?))s

≈ ((G1, �1), . . . , (G8−1, �8−1), (G8+1, �̄8), (G8 , �̄8+1), (G8+2, �8+2), . . . , (G? , �?))s

i.e., in Cell(%)=+,

- = �1 [G1] r= · · · r= �8−1 [G8−1] r= �̄8 [G8+1] r= �̄8+1 [G8] r= �8+2 [G8+2] r= · · · r= �? [G?]
which concludes the proof. �

We can now deduce that Cell(%)≤=+1 is canonically a free extension on Cell(%)≤= :

Theorem 3.3.3.4. For = ∈ N, eval= : Cell(%)=+ → Cell(%)≤=+1 is an isomorphism.

Proof. Since eval≤= = idCell(% )≤= , it is enough to prove that eval induces a bijection on the
(=+1)-cells. By Theorem 3.3.1.8, it is surjective, so we are left to prove injectivity. Let - 1 and - 2

be (=+1)-cells of Cell(%)=+, such that eval(- 1) = eval(- 2) and

- 8 = � 81 [G81] r= · · · r= � 8?8 [G8?8 ]
for some ?8 ∈ N, G81, . . . , G

8
?8
∈ %=+1 and =-context classes � 81, . . . , �

8
?8

for 8 ∈ {1, 2}. By functoriality
of eval, we have

eval(- 8) = � 81 [〈G81〉] r= · · · r= � 8?8 [〈G8?8 〉]
for 8 ∈ {1, 2}, so that, by Proposition 3.3.1.10, we have ?1 = ?2, and we write ? for the common
value. Moreover,

{G1
1, . . . , G

1
? } = {G2

1, . . . , G
2
? }.

By Lemma 3.3.3.3, we can suppose that G1
9 = G

2
9 for 9 ∈ N∗? , and we write G 9 for the common value.

Since m−= (- 8) = m−= (� 81 [G1]) for 8 ∈ {1, 2}, we have

m−= (� 1
1 [G1]) = m−= (� 2

1 [G1])

so that, by Theorem 3.3.2.3, � 1
1 = � 2

1 . In particular, m+= (� 1
1 [G1]) = m+= (� 2

1 [G1]), so that

m−= (� 1
2 [G2] r= · · · r= � 1

? [G?]) = m−= (� 2
2 [G2] r= · · · r= � 2

? [G?])

Thus, we can iterate the above procedure to show that � 1
9 = �

2
9 for 9 ∈ {1, . . . , ?}, so that - 1 = - 2.

Hence, the (=+1)-functor eval is an isomorphism. �

By an inductive argument, we conclude that Cell(%) is freely generated by the atoms:

Corollary 3.3.3.5. There are unique polygraphQ ∈ Poll andl-functor � : Q∗ → Cell(%) ∈ Catl
such that Q= = %= for = ∈ N and � (6) = 〈6〉 for 6 ∈ % . Moreover, � is an isomorphism.
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Proof. We show by induction on = ∈ N that there are unique =-polygraph Q= and morphism

�= : (Q=)∗ → Cell(%)≤=

such that Q=
:
= %: for : ∈ N and �= (6) = 〈6〉 for 6 ∈ Q= , and that �= is moreover an isomorphism.

This is clear for = = 0. So suppose that = > 0. If Q= and �= as above exist, then, by the
unicity property of the induction hypothesis, we have Q=

≤=−1 = Q=−1 and �=≤=−1 = �=−1. The
=-functor �= is then uniquely de�ned by the universal property of (Q=)∗ = (Q=−1)∗ [Q=] given
by Theorem 1.3.2.3 knowing that �= (6) = 〈6〉 for 6 ∈ Q=

= . Moreover, the =-polygraph structure
on Q= is unique since

dn=−1(6) = (�=−1)−1 ◦ mn=−1(〈6〉) (3.27)

for6 ∈ Q=
= and n ∈ {−, +}. Finally, �= is an isomorphism since, by Theorem 3.3.3.4, (eval=−1)−1◦�=

is the image by −[−]=−1 of the isomorphism

(�=−1, 1%= ) : ((Q=−1)∗,Q=
= ) → (Cell(%)≤=−1, %=) ∈ Cat+=−1

so that the unicity of Q= and �= , and the fact that �= is an isomorphism are proved. For existence,
one de�nes the =-polygraph structure on Q= from the one on Q=−1 and with (3.27), and the
=-functor �= is then de�ned by extending �=−1, using the universal property of (Q=)∗.

Thus, by the de�nition of Poll and Proposition 1.2.3.12, we obtain unique l-polygraph Q
and l-functor � : Q∗ → Cell(%), such that Q= = %= for = ∈ N and � (6) = 〈6〉, and � is moreover
an isomorphism. �

3.4 Relating formalisms

This section aims at relating all the introduced formalisms together. In particular, we show that
the formalism of torsion-free complexes is a Rosetta stone that can express the other ones (after
correcting the defect of parity complexes and pasting schemes). Embedding parity complexes
into torsion-free complexes is almost direct, since they share the same de�nition of cells and
several axioms. However, additional developments are needed for translating pasting schemes
and augmented directed complexes into torsion-free complexes. Indeed, in the �rst case, one
needs to show that a de�nition of cells analogous to the ones of pasting schemes can be used
for torsion-free complexes before being able to relate the axioms of the two formalisms. In the
second case, one needs to link the abelian group setting of augmented directed complexes to the
set setting of torsion-free complexes.

We �rst introduce two other set-based de�nitions of cells for torsion-free complexes: closed-
well-formed fgs’s and maximal-well-formed fgs’s (Section 3.4.1). The former is similar to the
well-formed fgs of pasting schemes, while the latter is a convenient intermediate between the
cells of torsion-free complexes and closed-well-formed fgs’s. The l-categories of cells induced
by these two other de�nitions is then isomorphic to the one obtained with the initial de�nition
(Theorems 3.4.1.24 and 3.4.1.27). Using the more natural de�nition of cells as closed-well-formed
fgs’s, we give a characterization of polygraphs that can be represented by torsion-free complex
(Theorem 3.4.1.29) and illustrate the use of torsion-free complexes with an extension of cateq
that enables to specify cells more easily (Paragraph 3.4.1.32). Next, we show the embeddings of
parity complexes (Section 3.4.2) and pasting schemes (Section 3.4.3) into torsion-free complexes.
Then, we develop the relation between the set-based and group-based de�nitions of cells before
showing the embedding augmented directed complexes into torsion-free complexes (Section 3.4.4).
Finally, we illustrate that those are the only embeddings between the formalisms by providing
counter-examples to the other ones (Section 3.4.5).
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3.4.1 Closed and maximal cells

In this section, we introduce two other set-based de�nitions of cells for torsion-free complexes,
namely closed-well-formed fgs’s and maximal-well-formed fgs’s, together with identity and com-
positions operations for them. We moreover provide translation functions between the di�erent
de�nitions of cells, and show that thel-categories of cells with the new de�nitions are isomorphic
to the one with the original de�nition of cells (Theorems 3.4.1.24 and 3.4.1.27). Using this di�erent
representation, we characterize the polygraphs that can be represented by torsion-free complexes
(Theorem 3.4.1.29). Finally, we illustrate the use of torsion-free complexes by introducing an
extension of cateq based on closed-well-formed fgs’s (Paragraph 3.4.1.32).

3.4.1.1 — De�nitions. Let P be an l-hypergraph. Recall the de�nitions of fgs and closed fgs
from Paragraph 3.1.3.6. We write

Closed(%)
for the graded set of closed fgs’s of % . Given an =-fgs - of % , G ∈ - is said to be maximal in
- when for all ~ ∈ % such that G R~ and G ≠ ~, it holds that ~ ∉ - . We write max(- ) for the
=-fgs of % made of the maximal elements of - . The =-fgs - is then said to be maximal when
max(- ) = - . We write

Max(%)
for the gradet set of maximal fgs. Given = ∈ N and - an =-pre-cell of % , we write ∪- for the =-fgs
of % given by

∪- =
⋃
8∈N=
(-8,− ∪ -8,+).

3.4.1.2 — Maximality lemma. Let P be an l-hypergraph. In order to relate the cells of Cell(%)
with the fgs’s of Max(%), we give here a simple criterion to characterize the maximal elements in
a cell of Cell(%):

Lemma 3.4.1.3 (Maximality lemma). Suppose that % satis�es Axioms (T0), (T1), (T2) and (T3).
Let :, = ∈ N with : < = and - ∈ Cell(%)= . For G ∈ -:,− (resp. G ∈ -:,+) with G not maximal in ∪- ,
we have G ∈ -∓

:+1,− (resp. G ∈ -
±
:+1,+).

Proof. We prove this property by induction on ; = = − : . By symmetry, we only prove the case
where G ∈ -:,−. Since G is not maximal, by de�nition of R, there exist

? ∈ N∗, [ ∈ {−, +}, G0, G1, . . . , G? ∈ % and n1, . . . , n? ∈ {−, +}

such that
G0 = G, G? ∈ -:+?,[ and G8 ∈ Gn8+18+1 for 8 ∈ N?−1.

Suppose that ? = 1. By Lemma 3.2.1.1, we have

-:,− ∩ - +:+1,[ = ∅.

Since G ∈ Gn1
1 and G1 ∈ -:+1,[ , we have

n1 = − and G ∈ -∓
:+1,[ .

so that, by Lemma 3.2.1.5, G ∈ -∓
:+1,−.

Otherwise, suppose that ? > 1. Let~ ∈ -:+?,[ be the smallest of-:+?,[ for ⊳-:+?,[ such that~ RG?−1.
If G?−1 ∈ ~−, then, by minimality of ~, there is no ~̄ ∈ -:+?,[ such that G?−1 ∈ ~̄+. Therefore,

G?−1 ∈ -∓:+?,[ ⊆ -:+?−1,−.
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Hence, G is not minimal in m−
:+?−1(- ) and we conclude by induction. We now consider the

case G?−1 ∈ ~+. Let

� = {I ∈ -:+?,[ | I ⊳-:+?,[ ~} ∪ {~} and . = Act(m−
:+?−1(- ),�).

We have G ∈ .:,− and G?−1 ∈ .:+?−1. Moreover, by Theorem 3.2.2.3, . is a cell. By induction
hypothesis, we have G ∈ .∓

:+1,−. Since -:+1,− and .:+1,− both move -:,− to -:,+, by Lemma 3.2.1.5,
we have G ∈ -∓

:+1,− which concludes the proof. �

The above criterion gives a simple description of the set of maximal elements of a cell of Cell(%).

Lemma 3.4.1.4. Suppose that % satis�es Axioms (T0), (T1), (T2) and (T3). Let :, = ∈ N with : < =,
an =-cell - ∈ Cell(%)= and n ∈ {−, +}. Then,

max(∪- ) ∩ %: = -:,− ∩ -:,+.

Proof. By Lemma 3.4.1.3,

max(∪- ) ∩ %: = (-:,− \ -∓:+1,−) ∪ (-:,+ \ -
±
:+1,+) .

By Lemma 3.2.1.6, it can be simpli�ed to

max(∪- ) ∩ %: = -:,− ∩ -:,+. �

3.4.1.5 — The translation functions. We now provide translation functions between the graded
sets Cell(%), Max(%) and Closed(%) and introduce several properties on them. The functions we
introduce are the ones represented on the diagram

Max(%)

PCell(%) Closed(%)

TM
PC

TM
Cl

TPC
Cl

TPC
M

TCl
M

TCl
PC

and are de�ned as follows:

– TPC
M : PCell(%) → Max(%) is de�ned by

TPC
M (- ) = max(∪- ) for - an =-pre-cell of % ,

– TM
PC : Max(%) → PCell(%) is such that, for - an =-fgs of % , TM

PC(- ) is the =-pre-cell . of %
de�ned by

.= = -=

and
.8,− = -8 ∪ .∓8+1,− .8,+ = -8 ∪ .±8+1,+

for 8 ∈ N=−1,

– TM
Cl : Max(%) → Closed(%) is de�ned by

TM
Cl(- ) = R(- ) for - a maximal =-fgs of % ,
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– TCl
M : Closed(%) → Max(%) is de�ned by

TCl
M (- ) = max(- ) for - a closed =-fgs,

– TPC
Cl : PCell(%) → Closed(%) is de�ned by

TPC
Cl (- ) = R(∪- ) for - an =-pre-cell of % ,

– TCl
PC : Closed(%) → PCell(%) is de�ned by

TCl
PC = TM

PC ◦TCl
M .

These operations can be related to each other, as state the following lemmas.

Proposition 3.4.1.6. We have TM
Cl ◦TCl

M = 1Closed(% ) and TCl
M ◦TM

Cl = 1Max(% ) .

Proof. Let - be a closed =-fgs of % and G ∈ - . We have TCl
M (- ) ⊆ - so

TM
Cl ◦TCl

M (- ) ⊆ - .

Moreover, for G ∈ - , since - is �nite, there is ~ ∈ max(- ) with ~ RG . It implies that ~ ∈ TCl
M (- )

and G ∈ TM
Cl ◦TCl

M (- ). Therefore,
- ⊆ TM

Cl ◦TCl
M (- ),

which shows that
TM

Cl ◦TCl
M = 1Closed(% ) .

For the other equality, note that, for all =-fgs - of % , R(- ) has the same maximal elements as - .
It implies that

TCl
M ◦TM

Cl = 1Max(% ) . �

Lemma 3.4.1.7. Suppose that % satis�es Axioms (T0), (T1), (T2) and (T3). Let = ∈ N, - ∈ Cell(%)=
and . = TPC

M (- ). Then,

.= = -= and .8 = -8,− ∩ -8,+ for 8 ∈ N=−1.

Proof. This is a direct consequence of Lemma 3.4.1.4. �

Proposition 3.4.1.8. Suppose that % satis�es Axioms (T0), (T1), (T2) and (T3). Then, given a
cell - ∈ Cell(%), we have TM

PC ◦TPC
M (- ) = - .

Proof. Let = ∈ N, - ∈ Cell(%)= , . = TPC
M (- ) and / = TM

PC(. ). For 8 ∈ N= and n ∈ {−, +}, we show
that -8,n = /8,n by a decreasing induction on 8 . By Lemma 3.4.1.7, we have

/= = .= = -=

and, for 8 ∈ N=−1, we have

/8,− = .8 ∪ /∓8+1,−
= (-8,− ∩ -8,+) ∪ -∓8+1,−
= -8,− (by Lemma 3.2.1.7).

Similarly,
/8,+ = -8,+,

so - = / . Hence, TM
PC ◦TPC

M (- ) = - . �
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Proposition 3.4.1.9. We have TM
Cl ◦TPC

M = TPC
Cl .

Proof. Let = ∈ N and - ∈ PCell(%)= . Then,

TM
Cl ◦TPC

M (- ) = R(max(∪- ))
= R(∪- )
= TPC

Cl (- ) .

Hence, TM
Cl ◦TPC

M = TPC
Cl . �

3.4.1.10 — Sources and targets. Here, we de�ne source and target operations for the graded
sets Closed(%) and Max(%). Later, we will show that they respectively equip the subsets of well-
formed closed fgs and well-formed maximal fgs with a structure of l-globular set. For now, we
prove that these operations are compatible with the translation operations.

Given = ∈ N∗ and a closed =-fgs - , we de�ne the source m̄−=−1(- ) (resp. target m̄+=−1(- )) of -
as the closed (=−1)-fgs . de�ned by

. = R(- \ (-= ∪ R(- += ))) (resp. R(- \ (-= ∪ R(-−= )))).

Respectively, given = ∈ N∗ and a maximal =-fgs - , we de�ne the source m̃−=−1(- ) (resp. tar-
get m̃+=−1(- )) of - as the maximal (=−1)-fgs . such that

.=−1 = -=−1 ∪ -∓= (resp. .=−1 = -=−1 ∪ -±= ) and .8 = -8 for 8 ∈ N=−2.

When % satis�es enough axioms of torsion-free complexes, we can prove several compatibility
results between these source and target operations and the translation functions, in the form of
the following propositions.

Proposition 3.4.1.11. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, for = ∈ N∗, n ∈ {−, +}
and - ∈ Cell(%)= , we have

TPC
M (m

n
=−1(- )) = m̃n=−1(TPC

M (- )) .

Proof. Let . = TPC
M (m

n
=−1(- )), - ′ = TPC

M (- ) and / = m̃n=−1(- ′). By Lemma 3.4.1.7, we have

.=−1 = -=−1,n and .8 = -8,− ∩ -8,+ for 8 ∈ N=−1.

Moreover,
- ′= = -= and - ′8 = -8,− ∩ -8,+ for 8 ∈ N=−1.

If n = −, then, by Lemma 3.2.1.7,

/=−1 = (-=−1,− ∩ -=−1,+) ∪ -∓= = -=−1,−

and /8 = - ′8 = -8,− ∩ -8,+ for 8 ∈ N=−1, so . = / . Similarly, if n = +, we have . = / . �

Proposition 3.4.1.12. For = ∈ N∗, n ∈ {−, +} and - ∈ Max(%)= , we have

TM
Cl(m̃

n
=−1(- )) = m̄n=−1(TM

Cl(- )) .

Proof. By symmetry, it is su�cient to handle the case n = −. Let

. = TM
Cl(m̃

−
=−1(- )) and / = m̄−=−1(TM

Cl(- )).
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By unfolding the de�nitions, we have

. = R((- \ -=) ∪ -∓= ) and / = R(R(- ) \ (-= ∪ R(- += ))).

In order to show that . ⊆ / , we only need to prove that . ′ ⊆ / where

. ′ = (- \ -=) ∪ -∓= .

First, we have that . ′ ⊆ R(- ). Moreover,

. ′ ∩ (-= ∪ R(- += ))
= ((- \ -=) ∪ -∓= ) ∩ (-= ∪ R(- += ))
= ((- \ -=) ∪ -∓= ) ∩ R(- += )
= (- \ -=) ∩ R(- += )
= - ∩ R(- += )
= ∅ (since - is maximal).

So . ′ ⊆ / , which implies that . ⊆ / .

Similarly, in order to show that / ⊆ . , we only need to prove that / ′ ⊆ . where

/ ′ = R(- ) \ (-= ∪ R(- += )).

But
/ ′ ⊆ . ⇔ R(- ) ⊆ . ∪ -= ∪ R(- += )

and

. ∪ -= ∪ R(- += ) = R((- \ -=) ∪ -∓= ) ∪ -= ∪ R(- += )
= R((- \ -=) ∪ -∓= ∪ - += ) ∪ -=
= R((- \ -=) ∪ -−= ∪ - += ) ∪ -=
= R((- \ -=) ∪ -−= ∪ - += ∪ -=)
= R(- ) .

So / ′ ⊆ . , which implies that / ⊆ . . Hence, . = / , which concludes the proof. �

Proposition 3.4.1.13. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, for = ∈ N∗, n ∈ {−, +}
and - ∈ Cell(%)= ,

TPC
Cl (m

n
=−1(- )) = m̄n=−1(TPC

Cl (- )) .

Proof. We have

TPC
Cl (m

n
=−1(- )) = TM

Cl ◦TPC
M (m

n
=−1(- )) (by Proposition 3.4.1.9)

= TM
Cl(m̃

n
=−1(TPC

M (- ))) (by Proposition 3.4.1.11)
= m̄n=−1(TM

Cl ◦TPC
M (- )) (by Proposition 3.4.1.12)

= m̄n=−1(TPC
Cl (- ))

which concludes the proof. �
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3.4.1.14 — Identities and compositions. Here, we de�ne identity and composition operations
for the graded sets Max(%) and Closed(%), and prove some compatibility results with the transla-
tions functions.

Given = ∈ N and a closed (resp. maximal) =-fgs - , we de�ne the identity of - as the closed
(resp. maximal) (=+1)-fgs id=+1(- ) de�ned by

id=+1(- ) = (-0, . . . , -=, ∅) .

Given 8, = ∈ N with 8 < = and two maximal =-fgs -,. , we de�ne the maximal 8-composition of -
and . as the maximal =-fgs - ∗M8 . de�ned by

- ∗M8 . = max(R(- ) ∪ R(. )).

Respectively, given 8, = ∈ Nwith 8 < = and two closed=-fgs-,. , we de�ne the closed 8-composition
of - and . as the closed =-fgs - ∗Cl

8 . de�ned by

- ∗Cl
8 . = - ∪ . .

For simplicity, we sometimes write ∗Cl (resp. ∗M) for ∗Cl
8 (resp. ∗M8 ). We now prove several com-

patibility results of the identity and composition operations with the translation functions.

Proposition 3.4.1.15. For = ∈ N and an =-cell - ∈ Cell(%),

TPC
Cl (id

=+1(- )) = id=+1(TPC
Cl (- )) .

Proof. It readily follows from the de�nitions. �

Proposition 3.4.1.16. For = ∈ N and an =-cell - ∈ Cell(%),

TPC
M (id

=+1(- )) = id=+1(TPC
M (- )) .

Proof. It readily follows from the de�nitions. �

Proposition 3.4.1.17. For 8, = ∈ N with 8 < =, and 8-composable =-cells - and . in Cell(%),

TPC
Cl (- ∗8 . ) = TPC

Cl (- ) ∗
Cl
8 TPC

Cl (. ) .

Proof. Let / = - ∗8 . . We have
TPC

Cl (- ∗8 . ) = R(∪/ )

and
TPC

Cl (- ) ∗
Cl
8 TPC

Cl (. ) = R(∪- ) ∪ R(∪. ) = R((∪- ) ∪ (∪. )) .

By de�nition of composition, ∪/ ⊆ (∪- ) ∪ (∪. ), so

TPC
Cl (- ∗8 . ) ⊆ TPC

Cl (- ) ∗
Cl
8 TPC

Cl (. ) .

For the other inclusion, note that - 9,n ⊆ / 9,n for 9 ∈ N= and n ∈ {−, +} with ( 9, n) ≠ (8, +), and

-8,+ = (-8,− ∪ - +8+1,−) \ -−8+1,−
⊆ /8,− ∪ /+8+1,−
⊆ R(∪/ )
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so ∪- ⊆ R(∪/ ). Similarly, ∪. ⊆ R(∪/ ), thus

(∪- ) ∪ (∪. ) ⊆ R(∪/ ),

which implies that
TPC

Cl (- ) ∗
Cl
8 TPC

Cl (. ) ⊆ TPC
Cl (- ∗8 . ) .

Hence,
TPC

Cl (- ) ∗
Cl
8 TPC

Cl (. ) = TPC
Cl (- ∗8 . ) . �

Proposition 3.4.1.18. For 8, = ∈ N with 8 < =, and -,. ∈ Closed(%)= ,

TCl
M (- ∗

Cl
8 . ) = TCl

M (- ) ∗
M
8 TCl

M (. ) .

Proof. We have

TCl
M (- ) ∗

M
8 TCl

M (. ) = max(R(TCl
M (- )) ∪ R(TCl

M (. )))
= max(- ∪ . ) (by Proposition 3.4.1.6)

= TCl
M (- ∗

Cl
8 . )

which concludes the proof. �

Proposition 3.4.1.19. For 8, = ∈ N with 8 < =, and 8-composable =-cells - and . of % ,

TPC
M (- ∗8 . ) = TPC

M (- ) ∗
M
8 TPC

M (. ) .

Proof. We have

TPC
M (- ∗8 . ) = TCl

M ◦TPC
Cl (- ∗8 . ) (by Propositions 3.4.1.6 and 3.4.1.9)

= TCl
M (T

PC
Cl (- ) ∗

Cl
8 TPC

Cl (. )) (by Proposition 3.4.1.13)

= TCl
M ◦TPC

Cl (- ) ∗
M
8 TCl

M ◦TPC
Cl (. ) (by Proposition 3.4.1.18)

= TPC
M (- ) ∗

M
8 TPC

M (. ) (by Propositions 3.4.1.6 and 3.4.1.9)

which concludes the proof. �

3.4.1.20 —Well-formed cells. We de�ned above source, target, identity and composition oper-
ations for both Closed(%) and Max(%). However, these operations are not expected to equip the
graded sets Closed(%) and Max(%) with a structure of l-category (in fact, not even a structure of
l-globular set). In order to obtain an l-category, we need to restrict to subsets of “well-formed”
elements of Closed(%) and Max(%). Then, we can show that the two induced l-category of cells
are isomorphic to Cell(%).

Let % be an l-hypergraph. Given = ∈ N and - ∈ Closed(%)= , we say that - is closed-well-formed
when

– -= is fork-free,

– m̄−=−1(- ) and m̄+=−1(- ) are closed-well-formed,

– if = ≥ 2, m̄−=−2 ◦ m̄−=−1(- ) = m̄−=−2 ◦ m̄+=−1(- ) and m̄+=−2 ◦ m̄−=−1(- ) = m̄+=−2 ◦ m̄+=−1(- ).

We write ClosedWF(%) for the graded set of closed-well-formed fgs of % . Respectively, given = ∈ N
and - ∈ Max(%)= , we say that - is maximal-well-formed when
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– -= is fork-free,

– m̃−=−1(- ) and m̃+=−1(- ) are maximal-well-formed,

– if = ≥ 2, m̃−=−2 ◦ m̃−=−1(- ) = m̃−=−2 ◦ m̃+=−1(- ) and m̃+=−2 ◦ m̃−=−1(- ) = m̃+=−2 ◦ m̃+=−1(- ).

We write MaxWF(%) for the graded set of maximal-well-formed fgs of % . We now aim at proving
that both ClosedWF(%) and MaxWF(%) are l-categories isomorphic to Cell(%) when % satis�es
enough axioms of torsion-free complexes. We �rst show this property for MaxWF(%) after intro-
ducing several technical results.

Lemma 3.4.1.21. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, for = ∈ N and - ∈ Cell(%)= ,
we have TPC

M (- ) ∈ MaxWF(%)= .

Proof. We proceed by induction on =. If = = 0, the result is trivial. So suppose that = > 0 and
let . = TPC

M (- ). Since .= = -= , .= is fork-free. Moreover, by Proposition 3.4.1.11, we have

m̃n=−1(. ) = TPC
M (m

n
=−1(- )) for n ∈ {−, +}.

By the induction hypothesis, m̃n=−1(. ) is maximal-well-formed. And, when = ≥ 2, for [ ∈ {−, +},
we have

m̃
[

=−2 ◦ m̃
−
=−1(. ) = TPC

M (m
[

=−2 ◦ m
−
=−1(- )) (by Proposition 3.4.1.11)

= TPC
M (m

[

=−2 ◦ m
+
=−1(- ))

= m̃
[

=−2 ◦ m̃
+
=−1(. ) .

Hence, . is maximal-well-formed. �

Lemma 3.4.1.22. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, for= ∈ N and- ∈ MaxWF(%)= ,
there exists an =-cell . ∈ Cell(%)= such that TPC

M (. ) = - .

Proof. We proceed by induction on =. If = = 0, the result is trivial. So suppose that = > 0. By
induction, let (,) ∈ Cell(%)=−1 be such that TPC

M (() = m̃−=−1(- ) and TPC
M () ) = m̃+=−1(- ). When

= ≥ 2, for n ∈ {−, +}, we have

mn=−2(() = TM
PC ◦TPC

M (m
n
=−2(()) (by Proposition 3.4.1.8)

= TM
PC(m̃

n
=−2(TPC

M (())) (by Proposition 3.4.1.11)
= TM

PC(m̃
n
=−2 ◦ m̃−=−1(- ))

= TM
PC(m̃

n
=−2 ◦ m̃+=−1(- )) (because - is maximal-well-formed)

= TM
PC(m̃

n
=−2(TPC

M () )))
= TM

PC ◦TPC
M (m

n
=−2() ))

= mn=−2() ) .

Moreover,

((=−1 ∪ - += ) \ -−= = (-=−1 ∪ -∓= ∪ - += ) \ -−=
= -=−1 ∪ -±=
= )=−1.

Similarly, ()=−1 ∪ -−= ) \ - += = (=−1 so -= moves (=−1 to )=−1. Hence, the =-pre-cell . de�ned by

.= = -=, .=−1,− = (=−1, .=−1,+ = )=−1 and .8,X = (8,X for 8 ∈ N=−2 and X ∈ {−, +}
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is an =-cell. Let / = TPC
M (. ). We have /= = -= and

m̃−=−1(/ ) = m̃−=−1(TPC
M (. ))

= TPC
M (m

−
=−1(. )) (by Proposition 3.4.1.11)

= TPC
M (()

= m̃−=−1(- ).

So, by de�nition of m̃−, we have

/=−1 ∪ -∓= = -=−1 ∪ -∓= and /8 = -8 for 8 ∈ N=−2.

Since - and / are maximal, we have

-=−1 ∩ -∓= = /=−1 ∩ -∓= = ∅.

Hence, -=−1 = /=−1 and - = / = TPC
M (. ) which concludes the proof. �

Lemma 3.4.1.23. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, TPC
M induces a bijection

between Cell(%) and MaxWF(%).

Proof. By Lemma 3.4.1.22, TPC
M : Cell(%) → MaxWF(%) is surjective and, by Proposition 3.4.1.8, it

is injective, so it is bijective. �

We can now deduce that maximal-well-formed fgs’s are an adequate alternative de�nition of cells
for torsion-free complexes:

Theorem 3.4.1.24. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, MaxWF(%) is an l-category
and TPC

M induces an isomorphism between Cell(%) and MaxWF(%).

Proof. By de�nition of MaxWF(%), the functions m̃−
:
, m̃+
:

for : ∈ N equip MaxWF(%) with a struc-
ture of l-globular set. We �rst prove that the composition operation ∗M restricts to MaxWF(%).
Let 8, = ∈ N with 8 < =, and -,. ∈ MaxWF(%)= be such that m̃+8 (- ) = m̃−8 (. ). By Lemma 3.4.1.23,
there exist - ′, . ′ ∈ Cell(%)= such that TPC

M (-
′) = - and TPC

M (.
′) = . . By Proposition 3.4.1.11, we

have
TPC

M (m
+
8 (- ′)) = m̃+8 (- ) = m̃−8 (. ) = TPC

M (m
−
8 (. ′)),

and, by Lemma 3.4.1.23, m+8 (- ′) = m−8 (. ′) so - ′ and . ′ are 8-composable. By Lemma 3.4.1.23, we
have TPC

M (-
′ ∗8 . ′) ∈ MaxWF(%) and, by Proposition 3.4.1.19, - ∗M8 . ∈ MaxWF(%).

By Propositions 3.4.1.11, 3.4.1.16 and 3.4.1.19, TPC
M commutes with the source, target, identity

and composition operations and is a bijection when restricted to MaxWF(%), so that MaxWF(%)
is an l-category since Cell(%) is (by Theorem 3.2.3.3 and Remark 3.2.3.4), and TPC

M induces an
isomorphism of l-categories. �

We prove a similar property for closed-well-formed fgs’s after showing some technical results.

Lemma 3.4.1.25. TM
Cl induces a bijection between MaxWF(%) and ClosedWF(%).

Proof. We already know that TM
Cl is a bijection by Proposition 3.4.1.6. For = ∈ N, we show that TM

Cl
sends a maximal-well-formed =-fgs - to a closed-well-formed =-fgs by induction on =. If = = 0,
the result is trivial. So suppose that = > 0. Let . = TM

Cl(- ). Then, .= = -= is fork-free and,
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for n ∈ {−, +}, we have m̄n=−1(. ) = TM
Cl(m̃

n
=−1(- )) by Proposition 3.4.1.12, and it is closed-well-

formed by induction. Moreover, when = ≥ 2,

m̄n=−2 ◦ m̄−=−1(. ) = TM
Cl(m̃

n
=−2 ◦ m̃−=−1(- )) (by Proposition 3.4.1.12)

= TM
Cl(m̃

n
=−2 ◦ m̃+=−1(- ))

= m̄n=−2 ◦ m̄+=−1(. )

so . is closed-well-formed. Similarly, TCl
M sends closed-well-formed fgs to maximal-well-formed

fgs, which concludes the proof. �

Lemma 3.4.1.26. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, TPC
Cl induces a bijection

between Cell(%) and ClosedWF(%).

Proof. The result is a consequence of Proposition 3.4.1.9 and Lemmas 3.4.1.23 and 3.4.1.25. �

We can now conclude that closed-well-formed fgs’s are an adequate alternative de�nition of cells
for torsion-free complexes:

Theorem 3.4.1.27. If % satis�es Axioms (T0), (T1), (T2) and (T3), then, ClosedWF(%) is an l-cate-
gory and TPC

Cl induces an isomorphism between Cell(%) and ClosedWF(%).

Proof. By a proof similar to the one of Theorem 3.4.1.24, using Propositions 3.4.1.13, 3.4.1.15
and 3.4.1.17 and Lemma 3.4.1.26. �

3.4.1.28 — From polygraphs to torsion-free complexes. We saw earlier (Corollary 3.3.3.5)
that torsion-free complexes induce free l-categories on a canonical l-polygraph. However, in
practice, we are often interested in the inverse operation, i.e., representing the cells of an l-cate-
gory freely generated on an l-polygraph by the cells of a torsion-free complex. Here, we de�ne
the l-hypergraph PH associated to an l-polygraph P and, in the case where PH is a torsion-free
complex, give conditions under which the l-category ClosedWF(PH) is isomorphic to the free
l-category P∗.

Recall the de�nition of the support function supp given in Paragraph 2.4.3.1. Given P ∈ Poll ,
we de�ne an l-hypergraph PH by putting PH

= = P= for = ∈ N and, when = > 0,

6− = suppP(d−=−1(6)) ∩ P=−1 6+ = suppP(d+=−1(6)) ∩ P=−1

for 6 ∈ PH
= . Under this de�nition, suppP can be seen as a function P∗ → Closed(PH). We then

have the following criterion to know whether P∗ can be faithfully represented by the closed-well-
formed fgs’s of PH:

Theorem 3.4.1.29. Let P ∈ Poll such that PH is a torsion-free complex. Then, suppP is the un-
derlying function of an l-functor � : P∗ → ClosedWF(PH) if and only if, for = ∈ N∗, 6 ∈ P=
and n ∈ {−, +}, we have

suppP(dn=−1(6)) = R(6n ).

In this case, � is moreover an isomorphism.

Remark 3.4.1.30. If the condition of Theorem 3.4.1.29 is satis�ed, then TCl
PC ◦� : P∗ → Cell(PH) is

the unique isomorphism given by Corollary 3.3.3.5 which maps 6 ∈ P to 〈6〉 ∈ Cell(PH).
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Proof. If suppP induces an l-functor � : P∗ → ClosedWF(PH), then we have

suppP(dn=−1(6)) = � (dn=−1(6))
= m̄n=−1(� (6))
= m̄n=−1(R(6))
= R(6n ) (by de�nition of m̄n=−1)

which proves the necessity. For su�ciency, we prove by induction on = ∈ N that suppP is the
underlying function of an =-functor �= : (P∗)≤= → ClosedWF(PH)≤= . This is clear for = = 0, and,
when= > 0, we de�ne �= by extending �=−1 and so that �= (6) = R(6) using the universal property
of (P∗)≤= = (P∗)≤=−1 [P=]. This is possible since the condition of the statement implies that

�=−1(dn=−1(6)) = m̄n=−1(R(6))

for 6 ∈ P= and n ∈ {−, +}. We then obtain an l-functor � : P∗ → ClosedWF(PH) using Proposi-
tion 1.2.3.12, which satis�es that � (6) = R(6) for 6 ∈ P. Then, by Theorem 3.4.1.27, TCl

PC ◦� is an
l-functor P∗ → Cell(%) which maps 6 to 〈6〉. It is then an isomorphism by Corollary 3.3.3.5, so
that � is an isomorphism too. �

Example 3.4.1.31. Let P be the l-polygraph with

P0 = {G,~, I} P1 = {5 : G → ~ 6,6′ : ~ → I} P2 = {U, U ′ : 6⇒ 6′}
P3 = {� : id2

5
∗0 U ⇒ id2

5
U ′}

and P: = ∅ for : ∈ N with : ≥ 4 as in

G ~ I
5

6

6′

U ⇓ ⇓U ′ and G I

5 ∗06

5 ∗06′

⇓ id2
5
∗0U

�
≡V G I

5 ∗06

5 ∗06′

⇓ id2
5
∗0U ′ .

We can verify that PH is a torsion-free complex. But, by Theorem 3.4.1.29, the function suppP
does not induce an l-functor P∗ → ClosedWF(PH) since

suppP(d−2 (�)) = {G,~, I, 5 , 6, 6′, U} ≠ {~, I, 6, 6′, U} = R(�−).

However, by considering a modi�ed version of P where

P3 = {� : U ⇒ U ′}

it can be veri�ed that PH is still a torsion-free complex and that, by Theorem 3.4.1.29, the func-
tion suppP induces an l-functor P∗ → ClosedWF(PH) which is an isomorphism.

3.4.1.32 — A pasting diagram extension for cateq. We illustrate the use of pasting diagrams
by describing an extension of cateq that allows specifying cells using pasting diagrams or, more
precisely, closed-well-formed fgs’s of torsion-free complexes.

For example, consider the l-hypergraph (3.1) on page 189. It can be veri�ed that it is a
torsion-free complex. The associated l-polygraph is then described in cateq by the following
commands:
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# u,v,w,x,y := gen *
# a := gen u -> v
# b,c,d := gen v -> w
# e,f,g := gen w -> x
# h := gen x -> y
# alpha := gen b -> c
# beta := gen c -> d
# gamma := gen e -> f
# delta := gen f -> g

Then, as suggested back there, the cell composing “all the generators together” can be de�ned
with the expressions

# X1 := id2 a *0 (alpha *1 beta)
*0 ((gamma *0 id2 h) *1 (delta *0 id2 h))

and

# X2 := (id2 a *0 alpha *0 id2 e *0 id2 h)
*1 (id2 a *0 id2 c *0 gamma *0 id2 h)
*1 (id2 a *0 beta *0 delta *0 id2 h)

and one can verify that the answer of cateq on the query

# X1 = X2

is true . We can de�ne this cell using pasting diagrams with the syntax {[gen1],[gen2],...}
as in

# X3 := {u,v,w,x,y,a,b,c,d,e,f,g,h,alpha,beta,gamma,delta}

and one veri�es that cateq answers true on the query X2 = X3 . In fact, cateq applies the
closure operator R on a pasting diagram input, so that it is su�cient to specify the maximum
elements. Thus, we can de�ne

# X4 := {a,alpha,beta,gamma,delta,h}

and verify that X3 = X4 evaluates to true . We are allowed to mix the pasting diagram syntax
with the usual syntax and write a query like

# id2 a *0 {alpha,beta,gamma,delta} *0 id2 h = X4

which cateq evaluates to true .

Let’s now look at another example and see how to specify the cells �1 and �2 associated with
the l-hypergraph % of Paragraph 3.1.2.13 using pasting diagram syntax. We can already use this
syntax to specify the generators, as in

# x,y,z := gen *
# a,b,c := gen x -> y
# d,e,f := gen y -> z
# alpha,alpha' := gen a -> b
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# beta,beta' := gen b -> c
# gamma,gamma' := gen d -> e
# delta,delta' := gen e -> f
# A := gen {alpha,delta} -> {alpha',delta'}
# B := gen {beta,gamma} -> {beta',gamma'}

Then, �1 and �2 can be de�ned with

# H1 := {beta,A,gamma} *2 {alpha',B,delta'}
# H2 := {alpha,B,delta} *2 {gamma',A,beta'}

which is more economical than the expression used in Paragraph 3.1.2.13. Note that, even though %
is not a torsion-free complex, the de�nition of H1 is accepted. Indeed, cateq allows the use of
the pasting diagram syntax for a local expression when the sub-l-hypergraph induced by the ex-
pression is a torsion-free complex. For example, the two sets of generators {V,�,W} and {U ′, �, X ′}
induce two sub-l-hypergraphs (by applying the R operation) of P that are torsion-free complexes,
so that the de�nition of H1 is accepted by cateq. However, cateq refuses the de�nition of H
done by command

# H := {A,B}

since the sub-l-hypergraph induced by {�, �} (which is % ) is not a torsion-free complex.
Remark 3.4.1.33. In fact, cateq checks that an l-hypergraph is a torsion-free complex using the
stronger Axioms (T3’) and (T4’), since they are more e�ciently computed. As a consequence,
it might miss some torsion-free complexes that only satisfy Axioms (T3) and (T4) but not the
stronger ones.
Remark 3.4.1.34. When provided with a command involving a pasting diagram syntax, cateq
veri�es that the condition given by Theorem 3.4.1.29 is satis�ed with regard to the current poly-
graph, and otherwise refuses the command and alerts the user, so that the use of pasting diagram
syntax in cateq is always safe.

3.4.2 Embedding parity complexes

In this section, we show that parity complexes are a particular case of torsion-free complexes,
under two reasonable caveats. Firstly, since parity complexes do not require all the generators
to be relevant, there are parity complexes that are not torsion-free complexes. But, by [Str91,
Theorem 4.2], irrelevant generators of a parity complex % do not play any role in the generated
l-category Cell(%), so that, by restraining % to the l-hypergraph %̄ of relevant generators, we
have Cell(%) = Cell(%̄). Thus, it is reasonable to assume that all the parity complexes we are con-
sidering for embedding in torsion-free complexes have relevant generators, i.e., satisfy Axiom (T2).
Secondly, as discussed in Paragraph 3.1.5.4, general parity complexes are not freely generated by
their atoms and, since the latter property is supposed to be the raison d’être of such structures,
it is reasonable to only consider the parity complexes that satisfy this property. We believe that
Axiom (T4) is the minimal additional condition to require for the l-category of cells of a parity
complex to be freely generated, so we will only consider parity complexes that moreover satisfy
Axiom (T4).

Under the assumptions given above, we are only left to derive Axiom (T3) from the axioms of a
parity complex. We show below that it is essentially a consequence of the tightness requirements
stated by Axiom (C5). First, we recall from [Str94] the link between tightness and the segment
property:
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Proposition 3.4.2.1 ([Str94, Proposition 1.4]). Let % be an l-hypergraph. For = ∈ N∗, subsets
* ,+ ⊆ %= with* tight, + fork-free and* ⊆ + , we have that* is a segment for ⊳+ .

Proof. Let G,~, I ∈ + such that G, I ∈ * and G ⊳1
+
~ ⊳+ I. Then, there isF ∈ G+ ∩ ~−. By de�nition

of tightness, since ~ ⊳+ I, we have ~− ∩* ± = ∅. So there is ~̄ ∈ * such that F ∈ ~̄−. Since + is
fork-free, ~ = ~̄. Hence,* is a segment for ⊳+ . �

Then, we show how to derive the segment property from the axioms of parity complexes:

Lemma 3.4.2.2. Let % be a parity complex which satis�es Axiom (T2). Given = ∈ N and G ∈ %= , G
satis�es the segment condition.

Proof. Let :, = ∈ N with : < =, G ∈ %= and - be a :-cell. Suppose �rst that 〈G〉:,− ⊆ -: . By
Axiom (C5), the set 〈G〉:,− is tight, so that, by Proposition 3.4.2.1, 〈G〉:,− is a segment for ⊳-: .

Now suppose that 〈G〉:,+ ⊆ -: . By contradiction, assume that 〈G〉:,+ is not a segment for ⊳-: .
By de�nition of ⊳-: , there exist ? > 1 and D0, . . . , D? ∈ -: such that

D0, D? ∈ 〈G〉:,+, D1, . . . , D?−1 ∉ 〈G〉:,+ and D8 ⊳
1
-:
D8+1.

By de�nition of ⊳1
-:

, there exist I0, . . . , I?−1 such that I8 ∈ D+8 ∩D−8+1. Note that I0 ∈ 〈G〉±:,+. Indeed,
if I0 ∈ E− for some E ∈ -: , then, since -: is fork-free, E = D1, so E ∉ 〈G〉:,+. Similarly, we
have I?−1 ∈ 〈G〉∓:,+. Since G is relevant by Axiom (T2), we have

〈G〉±
:+1,+ = 〈G〉:,+ ⊆ -:

By [Str91, Lemma 3.2] (which is the analogous for parity complexes of Theorem 3.2.2.3) and
Axiom (T2), we have that

〈G〉:,− ∩ -= ⊆ 〈G〉−:+1,+ ∩ -= = ∅

and the :-pre-cell . = Act(-, 〈G〉:+1,+) is a :-cell. Moreover, by Lemma 3.2.1.6,

.: = (-: ∪ 〈G〉−:+1,+) \ 〈G〉
+
:+1,+ = (-: \ 〈G〉:,+) ∪ 〈G〉:,−.

Thus, 〈G〉:,− ⊆ .: and, as shown by the �rst part, 〈G〉:,− is a segment for ⊳.: . Since

〈G〉∓
:,− = 〈G〉

∓
:,+ and 〈G〉±

:,− = 〈G〉
±
:,+,

there exist D̃0, D̃? ∈ 〈G〉:,− such that I0 ∈ D̃+0 and I?−1 ∈ D̃−? . So

D̃0 ⊳
1
-:
D1 ⊳

1
-:
· · · ⊳1

-:
D?−1 ⊳

1
-:
D̃?

with D1, . . . , D?−1 ∉ 〈G〉:,− (since 〈G〉−
:+1,+ ∩-= = ∅), contradicting the fact that 〈G〉:,− is a segment

for ⊳.: . Thus, 〈G〉:,+ is a segment for ⊳-: . Hence, G satis�es the segment condition. �

We can conclude that parity complexes are embedded into torsion-free complexes:

Theorem 3.4.2.3. Given a parity complex % which satis�es Axiom (T2) and Axiom (T4), % is a
torsion-free complex.

Proof. Axiom (T0) is a consequence of Axiom (C0). Axiom (T1) is a consequence of Axiom (C3).
And Axiom (T3) is a consequence of Lemma 3.4.2.2. �

Remark 3.4.2.4. Given % as in Theorem 3.4.2.3, the category Cell(%) of cells of the parity complex %
is, of course, exactly the category Cell(%) of cells of the torsion-free complex % .
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3.4.3 Embedding pasting schemes

In this section, we show that loop-free pasting schemes are a particular case of torsion-free com-
plexes, under the caveat that we only consider loop-free pasting schemes that satisfy Axiom (T4)
since, like for parity complexes, loop-free pasting schemes do not induce free l-categories in
general. We think that it is a reasonable requirement since we also believe that Axiom (T4) is the
minimal additional condition to add to the axioms of loop-free pasting schemes for this property
to hold.

In order to embed pasting schemes into torsion-free complexes, our main concerns will be
to derive Axioms (T2) and (T3) from Axioms (S3) and (S4). For this purpose, we will need to
relate the cells of torsion-free complexes with the wfs’s (as de�ned in Paragraph 3.1.3.10), using
closed-well-formed fgs’s (as de�ned in Paragraph 3.4.1.1) as an intermediate. In fact, we will prove
that the latter are exactly the wfs’s. First, we prove a technical result about the relations B and E:

Lemma 3.4.3.1. Let % be a pasting scheme, :, = ∈ N with : < =, G ∈ %= and ~ ∈ %: . If GB==−1R=−1
:
~

then
~ ∈ B=

:
(G) or GE==−1R=−1

:
~.

Dually, if G E==−1R=−1
:

~ then
~ ∈ E=

:
(G) or G B==−1R=−1

:
~.

Proof. We do an induction on = − : . If : = = − 1, the result is trivial. If : = = − 2, the result is a
consequence of Axiom (S1). So suppose that : < = − 2. We will only prove the �rst part, since
the second is dual. So assume that ~ ∉ B=

:
(G). By the de�nition of B, we have

¬(G B==−1B=−1
:

~) or ¬(G B==−1E=−1
:

~).

By symmetry, we can suppose that ¬(G B==−1E=−1
:

~). Let D ∈ %=−1 be minimal for ⊳ such that

G B==−1D R=−1
:

~.

Then, there are two possible cases: either D B=−1
=−2R=−2

:
~ or D E=−1

=−2R=−2
:

~.

In the �rst case, let E ∈ %=−2 be such that D B=−1
=−2 E R=−2

:
~. By the minimality of D, we have

¬(G B==−1E=−1
=−2 E),

so ¬(G B==−2 E) by de�nition of B. By Axiom (S1), we have G E==−1E=−1
=−2 E . So G E==−1R=−1

:
~.

In the second case, since we supposed ¬(G B==−1E=−1
:

~), we have ¬(D E=−1
:

~). By induction hy-
pothesis, we deduce D B=−1

=−2R=−2
:

~ and we can conclude using the �rst case. �

Then, we prove that the source and target of wfs’s computed by the operations de�ned for pasting
schemes in Paragraph 3.1.3.6 are the same as the ones computed with the operations de�ned for
closed fgs’s in Paragraph 3.4.1.10:

Lemma 3.4.3.2. Let % be a loop-free pasting scheme. Given = ∈ N∗, n ∈ {−, +} and an =-wfs - of % ,
we have mn=−1(- ) = m̄n=−1(- ).

Proof. We only prove the case n = −. Recall that

m−=−1(- ) = - \ E(- ) and m̄−=−1(- ) = R(- \ (-= ∪ R(- += ))).

We �rst prove m̄−=−1(- ) ⊆ m−=−1(- ), that is,

R(- \ (-= ∪ R(- += ))) ⊆ - \ E(- ) .
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Since - \ E(- ) is closed (by [Joh89, Theorem 12]), it is equivalent to

- \ (-= ∪ R(- += )) ⊆ - \ E(- )

which is itself equivalent to
E(- ) ⊆ (-= ∪ R(- += ))

which holds. We now prove m−=−1(- ) ⊆ m̄−=−1(- ), that is,

- \ E(- ) ⊆ R(- \ (-= ∪ R(- += ))) = m̄−=−1(- ).

Let : ∈ N=−1 and G ∈ (- \ E(- )): . If G ∉ R(- += ) then G ∈ m̄−=−1(- ). So suppose that G ∈ R(- += ).
Since E(- )=−1 = - += , it implies that : < = − 1. By de�nition of R(- += ), there exists ~ ∈ -= such
that ~E==−1R=−1

:
G and, by Axiom (S2), we can take ~ minimal for ⊳ satisfying this property. By

Lemma 3.4.3.1, it holds that ~ B==−1R=−1
:

G . Let I ∈ %=−1 be such that ~ B==−1 I R=−1
:

G . Then, there is
no ~̄ ∈ -= such that ~̄ E==−1 I: otherwise, ~̄ E==−1R=−1

:
G and ~̄ ⊳~, contradicting the minimality of ~.

So I ∉ R(- += ) and I RG . It implies that I ∈ - \ (-= ∪ R(- += )) and G ∈ m̄−=−1(- ). �

We can then prove the inclusion of wfs’s into closed-well-formed fgs’s:

Proposition 3.4.3.3. Let % be a loop-free pasting scheme. Given = ∈ N and an =-wfs - ∈ WF(%)= ,
we have - ∈ ClosedWF(%)= .

Proof. We prove this lemma by induction on =. If = = 0, the result is trivial. So suppose = > 0.
Since - is well-formed, -= is fork-free. Moreover, by Lemma 3.4.3.2, for n ∈ {−, +}, we have
that m̄n=−1(- ) = mn=−1(- ) is a well-formed (=−1)-fgs. By induction, m̄n=−1(- ) ∈ ClosedWF(%)=−1.
Moreover, when = ≥ 2, since mn=−2 ◦ m−=−1(- ) = mn=−2 ◦ m+=−1(- ), by Lemma 3.4.3.2,

m̄n=−2 ◦ m̄−=−1(- ) = m̄n=−2 ◦ m̄+=−1(- ).

Hence, - ∈ ClosedWF(%)= . �

Next, we prove an analogue of the gluing Theorem 3.2.2.3 for wfs’s:

Lemma 3.4.3.4. Let % be a loop-free pasting scheme, = ∈ N, - be an =-wfs, ( ⊆ %=+1 be a �nite
subset with ( fork-free and (∓ ⊆ - , and . = - ∪R((). Then, . is an (=+1)-wfs of % and m−= (. ) = - .

Proof. We show this lemma by induction on : = |( |. If : = 0, the result is trivial. If : = 1, the
result is a consequence of [Joh89, Proposition 8]. So suppose that : > 1. By Axiom (S2), take
G ∈ ( minimal for ⊳. By minimality, we have

G− ⊆ (∓ ⊆ - .

Using [Joh89, Proposition 8], - ∪ R(G) is well-formed. By Axiom (S5), - ∩ E(G) = ∅, so we have
that m−= (- ∪ R(G)) = - . Let

-̄ = m+= (- ∪ R(G)) and (̄ = ( \ {G}.

We have

(̄∓ ⊆ -̄= ⇔ (̄− ⊆ -̄= ∪ (̄+

⇔ (− ⊆ -̄= ∪ (̄+ ∪ G−

⇔ (− ⊆ (-= \ G−) ∪ G+ ∪ (̄+ ∪ G−

⇔ (− ⊆ -= ∪ (+

⇔ (∓ ⊆ -=
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so (̄∓ ⊆ -̄ . By induction, -̄ ∪ R((̄) is well-formed and m−= (-̄ ∪ R((̄)) = -̄ . Since WF(%) has the
structure of an l-category by [Joh89, Theorem 12], we can compose - ∪ R(G) and -̄ ∪ R((̄). So

- ∪ R(() = - ∪ R(G) ∪ -̄ ∪ R((̄)

is well-formed and m−= (- ∪ R(()) = - . �

We can now prove the converse inclusion of closed-well-formed fgs’s into wfs’s:

Proposition 3.4.3.5. Let % be a loop-free pasting scheme. Given = ∈ N and - ∈ ClosedWF(%)= , we
have - ∈ WF(%)= .

Proof. We prove this lemma by induction on =. If = = 0, the result is trivial. So suppose = > 0.
Let . = m̄−=−1(- ). By de�nition of ClosedWF(%), . ∈ ClosedWF(%) and, by induction, . ∈ WF(%).
By de�nition of m̄−, we have -∓= ⊆ . . Moreover, by Lemma 3.4.3.4, . ∪ R(-=) is well-formed.
But . = R(- \ (-= ∪ R(- += ))), so that - = . ∪ R(-=) is well-formed. �

We now give a simple form for the sources and targets of atomic wfs’s:

Lemma 3.4.3.6. Let % be a loop-free pasting scheme. Given 8, = ∈ N such that 8 < =, n ∈ {−, +}
and G ∈ %= , we have

mn8 (R(G)) = R(〈G〉8,n ) .

Proof. By symmetry, we can suppose that n = −. We have

m−8 (R(G)) = m−8 (TM
Cl({G}))

= TM
Cl(m̃

−
8 ({G})) (by Proposition 3.4.1.12 and Lemma 3.4.3.2)

= TM
Cl(〈G〉8,−)

= R(〈G〉8,−) .

Hence, m−8 (R(G)) = R(〈G〉8,−). �

Using the above lemma, we deduce the relevance of the generators:

Lemma 3.4.3.7. Let % be a loop-free pasting scheme. Given = ∈ N and G ∈ %= , G is relevant.

Proof. By Axiom (S3), R(G) is well-formed. So, for 8 ∈ N=−1 and n ∈ {−, +}, mn8 (R(G)) is well-
formed. Then, by Lemma 3.4.3.6, 〈G〉8,− and 〈G〉8,+ are fork-free. We show that 〈G〉±8+1,− = 〈G〉8,+
and 〈G〉∓8+1,+ = 〈G〉8,−. We have

〈G〉±=,− = 〈G〉± = G+ = 〈G〉=−1,+

and, similarly, 〈G〉∓=,+ = 〈G〉=−1,−. For 8 ∈ N=−1, we have

〈G〉±8+1,− = (m+8 (R(〈G〉8+1,−)))8 (by de�nition of m+8 )
= (m+8 ◦ m−8+1(R(G)))8 (by Lemma 3.4.3.6)
= (m+8 (R(G)))8 (by globularity)
= (R(〈G〉8,+))8 (by Lemma 3.4.3.6)
= 〈G〉8,+
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and similarly, 〈G〉∓8+1,+ = 〈G〉8,−. Moreover, we have

(〈G〉8,− ∪ 〈G〉+8+1,−) \ 〈G〉−8+1,− = ((〈G〉−8+1,− \ 〈G〉+8+1,−) ∪ 〈G〉+8+1,−) \ 〈G〉−8+1,−
= 〈G〉+8+1,− \ 〈G〉−8+1,− = 〈G〉8,+

and
(〈G〉8,+ ∪ 〈G〉−8+1,−) \ 〈G〉+8+1,− = ((〈G〉+8+1,− \ 〈G〉−8+1,−) ∪ 〈G〉−8+1,−) \ 〈G〉+8+1,−

= 〈G〉−8+1,− \ 〈G〉+8+1,− = 〈G〉8,−
so 〈G〉8+1,− moves 〈G〉8,− to 〈G〉8,+ and, similarly, so does 〈G〉8+1,+. Hence, 〈G〉 is a cell. �

We now prove that the cells (in the sense of Paragraph 3.1.2.4) of pasting schemes are sent to
wfs’s by TPC

Cl , and that all the generators satisfy the segement condition:

Lemma 3.4.3.8. Let % be a loop-free pasting scheme and = ∈ N. The following hold:

(i) for G ∈ %= , G satis�es the segment condition,

(ii) for - ∈ Cell(%)= , TPC
Cl (- ) ∈ WF(%)= .

Proof. We prove this lemma by an induction on =. If = = 0, the result is trivial. So suppose
that = > 0.

We �rst prove (i). Let : ∈ N=−1, G ∈ %= , - be a :-cell such that 〈G〉:,− ⊆ -: , and . = TPC
Cl (- ).

By induction, . ∈ WF(%). Moreover, by Lemma 3.4.3.6,

m−
:
(R(G)) = R(〈G〉:,−) ⊆ . .

So, by Axiom (S4), 〈G〉:,− is a segment for ⊳.: = ⊳-: . Hence, G satis�es the segment condition.
We now prove (ii). Let - ∈ Cell(%)= . By Proposition 3.4.3.5, it is enough to show that TPC

Cl (- )
is closed-well-formed. This latter property can be obtained from Theorem 3.4.1.27 which requires
the full segment axiom. But we can consider the restriction of % to an l-hypergraph %̄ where

%̄8 = %8 for 8 ≤ = and %̄8 = ∅ for 8 > =.

By (i), %̄ satis�es Axiom (T3). Then, using Theorem 3.4.1.27, TPC
Cl (- ) is closed-well-formed and is

still closed-well-formed in % . Hence, by Proposition 3.4.3.5, TPC
Cl (- ) ∈ WF(%). �

We can conclude the embedding of pasting schemes into torsion-free complexes:

Theorem 3.4.3.9. Let % be a loop-free pasting scheme. Then, % satis�es Axioms (T0), (T1), (T2)
and (T3). In particular, if % satis�es Axiom (T4), then % is a torsion-free complex.

Proof. The di�erent axioms of torsion-free complexes can be deduced as follows: Axiom (T0)
is a consequence of Axiom (S0), Axiom (T1) is a consequence of Axiom (S2), Axiom (T2) is a
consequence of Lemma 3.4.3.7 and Axiom (T3) is a consequence of Lemma 3.4.3.8. �

Moreover, one translates the cells of the pasting scheme to the wfs’s using the operation TPC
Cl :

Theorem 3.4.3.10. Let % be a loop-free pasting scheme. TPC
Cl is an isomorphism between the l-cate-

gories Cell(%) and WF(%). Moreover, for all G ∈ % , TPC
Cl (〈G〉) = R(G).

Proof. By Propositions 3.4.3.3 and 3.4.3.5, we have

ClosedWF(%) = WF(%)
as graded sets and, by Lemma 3.4.3.2 and the de�nition of id, ∗Cl and ∗, the two have the same
structure of l-category. Thus, by Theorems 3.4.3.9 and 3.4.1.27, TPC

Cl : Cell(%) → WF(%) is an
isomorphism. Moreover, by Proposition 3.4.1.9, for G ∈ % , we have

TPC
Cl (〈G〉) = TM

Cl ◦TPC
M (〈G〉) = TM

Cl({G}) = R(G). �
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3.4.4 Embedding augmented directed complexes

In this section, we relate the set-based approach of torsion-free complexes to the group-based
approach of augmented directed complexes with loop-free unital basis and show an embedding
of the latter into torsion-free complexes. More precisely, given an adc with a loop-free unital
basis, we prove that the basis induces an l-hypergraph which is a torsion-free complex such
that the l-category of cells of the adc is isomorphic to the l-category of cells of this torsion-free
complex. For this purpose, we relate properties de�ned for l-hypergraphs, like fork-freeness
(Paragraph 3.1.1.3) and movement (Paragraph 3.1.2.2), to analogous properties in augmented
directed complexes, and de�ne translation functions between the cells of augmented directed
complexes and the ones of the associated l-hypergraphs.

3.4.4.1 — Adc’s as 8-hypergraphs. Here, dually to the translation given in Paragraph 3.1.4.4,
we associate a canonical l-hypergraph to an adc with basis, and we will prove in the following
paragraphs that it is a torsion-free complex when the adc is loop-free unital.

Let ( , d, e) be an adc with a basis % . Note that % is canonically a graded set and, in the
following, given = ∈ N and G ∈ %= , we write Ḡ to refer to G as an element of the graded set %
whereas G alone refers to G as an element of the monoid  ∗= . Given = ∈ N,

– for B ∈  ∗= , we write S= (B) for {Ḡ ∈ %= | G ≤ B},

– for a �nite subset ( ⊆ %= , we write Σ̄= (() for
∑
G ∈( G .

From these de�nitions, we readily have:

Lemma 3.4.4.2. For all = ∈ N, S= ◦ Σ̄= = 1Pf (%=) .

For = ∈ N∗ and Ḡ ∈ %=+1, we de�ne subsets Ḡ−, Ḡ+ ⊆ %= such that

Ḡ− = S= (G−) and Ḡ+ = S= (G+)

where G−, G+ are the elements of  =−1 de�ned in Paragraph 3.1.4.2. We thus obtain an l-hyper-
graph (%, (−)−, (−)+) that we call the l-hypergraph associated to  . In the following, we prove
that, when % is a unital loop-free basis of  , % is a torsion-free complex. We already have:

Lemma 3.4.4.3. If % is a unital basis of  , given = ∈ N∗ and Ḡ ∈ %= , we have Ḡ− ≠ ∅ and Ḡ+ ≠ ∅.
That is, % satis�es Axiom (T0).

Proof. By contradiction, if Ḡ− = ∅, it implies that [G]=−1,− = 0. Hence, [G]8,− = 0 for 8 ∈ N=−1.
In particular, e( [G]0,−) = 0, contradicting the fact that the basis is unital. Hence, Ḡ− ≠ ∅ and,
similarly, Ḡ+ ≠ ∅. �

3.4.4.4 — Fork-freeness and radicality. We now de�ne an analogue for adc’s of the notion of
fork-freeness de�ned for l-hypergraphs, and relate the notions between the two settings.

Let ( , d, e) be an adc with a loop-free unital basis % . Given = ∈ N∗, an element B ∈  ∗= is said
fork-free when for all G,~ ∈ %= such that G + ~ ≤ B , it holds that

Ḡn ∩ ~̄n = ∅ for n ∈ {−, +}.

Moreover, in dimension 0, B ∈  ∗0 is said to be fork-free when e(B) = 1. We extend the notion
of fork-freeness to cells: given = ∈ N and - ∈ Cell∗( ), - is said fork-free when, for 8 ∈ N=
and n ∈ {−, +}, -8,n is fork-free.

Contrary to subsets of the l-hypergraph % , an element of % can appear in an element of  ∗=
with a multiplicity greater than one (since  ∗= is the free monoid on %=). It is then useful to
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distinguish the elements of ∗= where generators appear with multiplicity at most one: given= ∈ N
and B ∈  ∗= , B is said radical when for all I ∈  ∗= such that 2I ≤ B , we have I = 0. We then readily
have:

Lemma 3.4.4.5. For all = ∈ N and B ∈  ∗= radical, Σ̄= ◦ S= (B) = B

Moreover, fork-freeness implies radicality:

Lemma 3.4.4.6. Given = ∈ N and B ∈  ∗= , if B is fork-free, then B is radical.

Proof. If = = 0, B ∈  ∗= can be written B =
∑

1≤8≤: G8 for some : ∈ N and G8 ∈ %0 for 8 ∈ N∗
:
.

So e(B) = : , and, by fork-freeness, : = 1. Hence, B is radical.
Otherwise, assume that = > 0. By contradiction, suppose that there is Ḡ ∈ %= such that 2G ≤ B .

By Lemma 3.4.4.3, it means that Ḡ− ∩ Ḡ− ≠ ∅, contradicting the fact that B is fork-free. Hence, B is
radical. �

Like for cells of torsion-free complexes, cells of adc’s with loop-free basis are fork-free:

Lemma 3.4.4.7. Given = ∈ N and - ∈ Cell∗( )= , - is fork-free.

Proof. We prove this lemma using an induction on =. If = = 0, since e(-0) = 1, - is fork-free by
de�nition.

Otherwise, suppose that = > 0. By induction, m−=−1(- ) and m+=−1(- ) are fork-free, so -8,n is
fork-free for 8 ∈ N=−1 and n ∈ {−, +}. Let Ḡ, ~̄ ∈ %= be such that G + ~ ≤ -= . By contradiction,
suppose that there is Ī ∈ %=−1 such that Ī ∈ Ḡ− ∩ ~̄−. By [Ste04, Proposition 5.4], there are

: ≥ 1, Ḡ1, . . . , Ḡ: ∈ %= and - 1, . . . , -: ∈ Cell∗( )

with - 8= = Ḡ8 for 8 ∈ N∗
:

and such that

- = - 1 ∗=−1 · · · ∗=−1 -
:

so -= = G1 + · · · + G: . Hence, there are 1 ≤ 81, 82 ≤ : with 81 ≠ 82 such that G81 = G and G82 = ~. By
symmetry, we can suppose that 81 < 82. If there is some 8 such that Ī ∈ Ḡ+8 , by [Ste04, Proposition
5.4], we have 8 < 81. So, for 81 ≤ 8 ≤ 82, it holds that Ī ∉ Ḡ+8 . Let . = - 81 ∗=−1-

81+1 ∗=−1 · · · ∗=−1-
82 .

We have that . ∈ Cell∗( ) and

.=−1,− =
∑

81≤8≤82
[G8]=−1,− −

∑
81≤8≤82

[G8]=−1,+ + .=−1,+

with
2I ≤

∑
81≤8≤82

[G8]=−1,− and ¬(I ≤
∑

81≤8≤82
[G8]=−1,+) and .=−1,+ ≥ 0

so 2I ≤ .=−1,−, contradicting the fact that m−=−1(. ) is radical by Lemma 3.4.4.6. Thus Ḡ− ∩ ~̄− = ∅
and, similarly, Ḡ+ ∩ ~̄+ = ∅. Hence, - is fork-free. �

We now give several compatibility results for the operations Σ̄= with sets and the structure of
l-hypergraph on % :

Lemma 3.4.4.8. Let = ∈ N,* ,+ ⊆ %= be �nite subsets and G ∈ %= . The following hold:

(i) if* ∩+ = ∅, then Σ̄= (* ) ∧ Σ̄= (+ ) = 0 and Σ̄= (* ∪+ ) = Σ̄= (* ) + Σ̄= (+ ),

(ii) if* ⊆ + , then Σ̄= (* ) ≤ Σ̄= (+ ) and Σ̄= (+ \* ) = Σ̄= (+ ) − Σ̄= (* ),
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(iii) if = > 0, then Σ̄=−1(Ḡn ) = Gn ,

(iv) Suppose that * is fork-free. Then Σ̄= (* ) is fork-free. Moreover, in the case where = > 0, we
have Σ̄=−1(* n ) = (Σ̄= (* ))n .

Proof. (i) and (ii) are direct consequences of the de�nitions. For (iii), note that Ḡn = S=−1(Gn ). By
Lemma 3.4.4.7, [G]=−1,n is fork-free and, by Lemma 3.4.4.6, it is radical. So, by Lemma 3.4.4.5, we
have Σ̄=−1(Ḡn ) = Gn .

For (iv), suppose that* ⊆ %= is fork-free. If = = 0, the result is trivial. So suppose that = > 0.
Given G,~ ∈ %= with G ≤ Σ̄= (* ) and ~ ≤ Σ̄= (* ), Ī ∈ %=−1 and n ∈ {−, +} such that I ≤ Gn
and I ≤ ~n , we have Ī ∈ Ḡn and Ī ∈ ~̄n . Since * is fork-free, G = ~. Also, Σ̄= (* ) is radical by
de�nition of Σ̄= , so that ¬(G + ~ ≤ Σ̄= (* )). Hence, Σ̄= (* ) is fork-free. For the second part, note
that, for G,~ ∈ * with G ≠ ~, we have Ḡn ∩ ~̄n = ∅. Hence,

Σ̄=−1(* n ) = Σ̄=−1(∪Ḡ ∈* Ḡn )
=

∑̄
G ∈*

Σ̄=−1(Ḡn ) (by (i))

=
∑̄
G ∈*

Gn (by (iii))

= (Σ̄= (* ))n . �

We give analogous compatibility results for the operations S= with the group structure of  = and
the operations (−)− and (−)+ de�ned on  = :

Lemma 3.4.4.9. Let = ∈ N, D, E ∈  ∗= be such that D, E are radical and I ∈ %= . The following hold:

(i) if D ∧ E = 0, then S= (D) ∩ S= (E) = ∅ and S= (D + E) = S= (D) ∪ S= (E),

(ii) if D ≤ E , then S= (D) ⊆ S= (E) and S= (E − D) = (S= (E)) \ (S= (D)),

(iii) if = > 0, then S=−1(In ) = Īn ,

(iv) Suppose that D is fork-free. Then, S= (D) is fork-free. Moreover, in the case where = > 0, we
have S=−1(Dn ) = (S= (D))n .

Proof. (i), (ii) and (iii) are direct consequences of the de�nitions. For (iv), suppose that D is fork-
free. If= = 0, the result is trivial, so suppose that= > 0. Given Ḡ, ~̄ ∈ S= (D), Ī ∈ P=−1 and n ∈ {−, +}
such that Ī ∈ Ḡn ∩ ~̄n , we have I ≤ Gn and I ≤ ~n . By fork-freeness, ¬(G + ~ ≤ D). But G ≤ D
and ~ ≤ D, so that G = ~. Thus, S= (D) is fork-free. For the second part, note that, for G,~ ∈ %=
with G ≠ ~, G ≤ D and ~ ≤ D, we have Gn ∧ ~n = 0. Hence,

S=−1(Dn ) = S=−1(
∑

G ∈%=,G≤D
Gn )

=
⋃

G ∈%=,G≤D
S=−1(Gn ) (by (i))

=
⋃

G ∈%=,G≤D
Ḡn (by (iii))

= (S= (D))n . �
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3.4.4.10 — Movement properties. We now relate the movement properties of l-hypergraphs
(Paragraph 3.1.2.2) to properties of augmented directed complexes. Such results will be required
for proving the correspondence between the cells of l-hypergraphs and the cells of augmented
directed complexes.

Let ( , d, e) be an adc with a loop-free unital basis % . We �rst prove a compatibility result of
the functions Σ̄= with the operations (−)∓ and (−)± on l-hypergraphs and adc’s:

Lemma 3.4.4.11. Let = ∈ N∗, D ∈  ∗= fork-free and* = S= (D). We have

D∓ = Σ̄=−1(* ∓) and D± = Σ̄=−1(* ±) .

Proof. We have

d(D) = D± − D∓

= D+ − D−

= Σ̄=−1(* +) − Σ̄=−1(* −) (by Lemma 3.4.4.8)
= (Σ̄=−1(* ±)+ Σ̄=−1(* + ∩* −))
− (Σ̄=−1(* ∓) + Σ̄=−1(* + ∩* −)) (by Lemma 3.4.4.8)

= Σ̄=−1(* ±) − Σ̄=−1(* ∓) .

Since* ± ∩* ∓ = ∅, we have Σ̄=−1(* ±) ∧ Σ̄=−1(* ∓) = ∅. By uniqueness of the decomposition,

D∓ = Σ̄=−1(* ∓) and D± = Σ̄=−1(* ±) . �

Now, we show a compatibility of the operations Σ̄= with movement:

Lemma 3.4.4.12. Let = ∈ N, ( ⊆ %=+1 be a �nite and fork-free set and* ,+ ⊆ %= be �nite sets such
that ( moves* to + . Then, d(Σ̄=+1(()) = Σ̄= (+ ) − Σ̄= (* ).

Proof. By de�nition of movement, + = (* ∪ (+) \ (−. Hence,

Σ̄= (+ ) = Σ̄= ((* ∪ (+) \ (−)
= Σ̄= (* ∪ (+) − Σ̄= ((−) (by Lemma 3.4.4.8, since (− ⊆ * ∪ (+)
= Σ̄= (* ) + Σ̄= ((+) − Σ̄= ((−) (since* ∩ (+ = ∅ by Lemma 3.2.1.1)
= Σ̄= (* ) + (Σ̄=+1(())+ − (Σ̄=+1(())− (by Lemma 3.4.4.8)
= Σ̄= (* ) + d(Σ̄=+1(()) . �

Conversely, we prove su�cient conditions for the operations S= to induce movement:

Lemma 3.4.4.13. Let = ∈ N, B ∈  ∗=+1 fork-free, D, E ∈  ∗= with D, E radical, such that

d(B) = E − D, D ∧ B+ = 0 and B− ∧ E = 0.

Then, S=+1(B) moves S= (D) to S= (E).

Proof. Let ( = S=+1(B),* = S= (D) and + = S= (E). Since d(B) = E − D, we have

B− ≤ B− + E = D + B+

so
(− = S= (B−) ⊆ S= (D + B+) = * ∪ (+.
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Thus,

Σ̄= ((* ∪ (+) \ (−) = Σ̄= (* ∪ (+) − Σ̄= ((−)
= Σ̄= ◦ S= (D + B+) − B− (by Lemma 3.4.4.8)
= D + B+ − B−

= D + d(B)
= E

= Σ̄= (+ )

so, by Lemma 3.4.4.2,+ = (* ∪(+) \(− . Similarly,* = (+ ∪(−) \(+. Hence, ( moves* to+ . �

Finally, we show empty intersection results for cells of Cell∗( ), whose analogous for Cell(%)
hold:

Lemma 3.4.4.14. Let = ∈ N∗ and - ∈ Cell∗( )= . Then, for 8 ∈ N=−1 and n ∈ {−, +}, we have

-8,− ∧ - +8+1,n = 0 and -−8+1,n ∧ -8,+ = 0.

Proof. By contradiction, suppose given = ∈ N∗, - ∈ Cell∗( )= , 8 ∈ N=−1 and n ∈ {−, +} that give
a counter-example for this property. By applying m−, m+ su�ciently, we can suppose that 8 = =− 1.
Also, by symmetry, we only need to handle the �rst case, that is, when there is I ∈ %=−1 such
that I ≤ -=−1,− ∧ - += . So there is G ∈ %= such that G ≤ -= and I ≤ G+. By the de�nition of a cell,
we have d(-=) = -=−1,+ − -=−1,−, thus

-=−1,+ +
∑

D∈%=,D≤-=
D− = -=−1,− +

∑
D∈%=,D≤-=

D+

≥ 2I

and, since -=−1,+ is radical, there is ~ ∈ %= with ~ ≤ -= such that I ≤ ~−. By [Ste04, Proposi-
tion 5.1], there are : ∈ N∗, G1, . . . , G: ∈ %= with G1 + · · · + G: = -= , 81, 82 ∈ N∗: with 81 < 82, G81 = G
and G82 = ~, and - 1, . . . , -: ∈ Cell∗( ) with - 8= = G8 for 8 ∈ N∗

:
such that - = - 1 ∗=−1 · · · ∗=−1 -

: .
Let . = - 1 ∗=−1 · · · ∗=−1 -

81 . Since . is a cell, we have

.=−1,+ +
∑

1≤8≤:
G−8 = .=−1,− +

∑
1≤8≤:

G+8

= -=−1,− +
∑

1≤8≤:
G+8

≥ 2I.

Moreover, since - is fork-free and I ≤ G−82 , we have ¬(I ≤ G−8 ) for 8 ∈ N81 . So 2I ≤ .=−1,+,
contradicting the fact that.=−1,+ is radical by Lemmas 3.4.4.7 and 3.4.4.6. Hence,-8,− ∧ - += = 0. �

3.4.4.15 — The translation operations. We now introduce translation functions between the
cells of augmented directed complexes and the cells of their associated l-hypergraphs, and show
that these translations are bijective.

Let ( , d, e) be an adc with a loop-free unital basis % . We extend the operations Σ̄= and S=
to translation functions between the pre-cells of % and the pre-cells of  . Given = ∈ N and
an =-pre-cell - ∈ PCell(%)= , we de�ne Σ̄(- ) ∈ Cell∗( ) as the =-pre-cell . such that

.8,n = Σ̄8 (-8,n ) for 8 ∈ N= and n ∈ {−, +}.
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Similarly, given an =-pre-cell - ∈ PCell∗( ), we de�ne S(- ) ∈ PCell(%) as the =-pre-cell . such
that

.8,n = S8 (-8,n ) for 8 ∈ N= and n ∈ {−, +}.

We then have:

Proposition 3.4.4.16. Σ̄ induces a bijection with inverse S from Cell(%) to Cell∗( ). Moreover,
given G ∈ % , we have S( [G]) = 〈Ḡ〉.

Proof. Let = ∈ N and - ∈ Cell(%)= . Then, by Lemma 3.4.4.8, given 8 ∈ #= and n ∈ {−, +}, Σ̄8 (-8,n )
is fork-free. Moreover, when 8 < =, by Lemma 3.4.4.12, we have

d(Σ̄8+1(-8+1,n )) = Σ̄8 (-8,+) − Σ̄8 (-8,−)

so Σ̄(- ) ∈ Cell∗( ). Conversely, let = ∈ N and - ∈ Cell∗( )= . By Lemma 3.4.4.9, given 8 ∈ N=
and n ∈ {−, +}, S8 (-8,n ) is fork-free. Moreover, when 8 < =, by Lemmas 3.4.4.13 and 3.4.4.14, we
have

S8+1(-8+1,n ) moves S8 (-8,−) to S8 (-8,+)

so S(- ) ∈ Cell(%). By Lemma 3.4.4.2, for - ∈ Cell(%),

S ◦ Σ̄(- ) = -,

and, by Lemmas 3.4.4.7, 3.4.4.6 and 3.4.4.5, for - ∈ Cell∗( ),

Σ̄ ◦ S(- ) = - .

Hence, Σ̄ and S induce bijections between Cell(%) and Cell∗( ) and are inverse of each other.
Now let = ∈ N, G ∈ %= and - = S( [G]). We have -= = S= ( [G]=) = {G}. We show by a

decreasing induction on 8 that -8,n = 〈G〉8,n for 8 ∈ N=−1 and n ∈ {−, +}. We have [G]8,− = [G]∓8+1,−
so, by Lemmas 3.4.4.7 and 3.4.4.11,

-8,− = S8 ( [G]∓8+1,−) = -∓8+1,−.

Thus, -8,− = 〈G〉8,−. Similarly, -8,+ = 〈G〉8,+. Hence, S( [G]) = 〈Ḡ〉. �

3.4.4.17 — Adc’s are torsion-free complexes. We have now enough material to prove that the
l-hypergraphs associated to adc’s equipped with loop-free unital bases are torsion-free complexes.
In fact, we will show that they moreover satisfy the stronger Axioms (T3’) and (T4’).

Let ( , d, e) be an adc with a loop-free unital basis % . We have already shown how to derive
Axiom (T0) for % in Lemma 3.4.4.3, and we now derive the other ones in the following lemmas.

Lemma 3.4.4.18. % satis�es Axiom (T1).

Proof. Note that, for = ∈ N∗ and Ḡ, ~̄ ∈ %= , Ḡ ⊳1
%=
~̄ implies Ḡ <=−1 ~̄. So, by transitivity, we

have ⊳%= ⊆ <=−1. Since the basis % is loop-free, <=−1 is irre�exive and so is ⊳%= . Hence, ⊳ is
irre�exive. �

Lemma 3.4.4.19. % satis�es Axiom (T2).

Proof. Given Ḡ ∈ % , we have S( [G]) = 〈Ḡ〉 By Proposition 3.4.4.16. Moreover, by Proposi-
tion 3.4.4.16, we have S( [G]) ∈ Cell(%). Hence, Ḡ is relevant. �

Lemma 3.4.4.20. % satis�es Axiom (T3’).
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Proof. By contradiction, suppose that there are = ∈ N∗, 8 ∈ N=−1 and Ḡ ∈ %= with 〈Ḡ〉8,+ y∗ 〈Ḡ〉8,−.
So there are : ≥ 1, ~̄1, . . . , ~̄: ∈ %8 such that

~̄1 ∈ 〈Ḡ〉8,+, ~̄: ∈ 〈Ḡ〉8,− and ~̄ 9 y ~̄ 9+1 for 1 ≤ 9 < : .

By de�nition ofy, it gives Ī1, . . . , Ī:−1 ∈ %8+1 with ~̄ 9 ∈ Ī−9 and ~̄ 9+1 ∈ Ī+9 for 1 ≤ 9 < : . So we
have

G <8 I1 <8 · · · <8 I:−1 <8 G,

contradicting the loop-freeness of the basis % . Hence, % satis�es Axiom (T3’). �

Lemma 3.4.4.21. % satis�es Axiom (T4’).

Proof. By contradiction, suppose that there are 8 ∈ N∗,<,= ∈ N with< > 8 and = > 8 , Ḡ ∈ %<
and ~̄ ∈ %= such that

〈Ḡ〉8,+ ∩ 〈~̄〉8,− = ∅, 〈Ḡ〉8−1,+ y
∗ 〈~̄〉8−1,− and 〈~̄〉8−1,+ y

∗ 〈Ḡ〉8−1,−.

By the same method as for Lemma 3.4.4.20, we get A, B ∈ N, D1, . . . , DA ∈ %8 , E1, . . . , EB ∈ %8 such
that

G <8 D1 <8 · · · <8 DA <8 ~ <8 E1 <8 · · · <8 EB <8 G,
contradicting the loop-freeness of the basis % . Hence, % satis�es Axiom (T4’). �

We can conclude that:

Theorem 3.4.4.22. The l-hypergraph % associated to  is a torsion-free complex.

Proof. This follows from Lemmas 3.4.4.3, 3.4.4.18, 3.4.4.19, 3.4.4.20, 3.1.5.6, 3.4.4.21 and 3.1.5.7. �

Finally, we show that Σ̄ exhibits an isomorphism between the two l-categories of cells:

Theorem 3.4.4.23. Σ̄ induces an isomorphism ofl-categories between Cell(%) and Cell∗( ). More-
over, for Ḡ ∈ % , we have Σ̄(〈Ḡ〉) = [G].

Proof. By de�nition, Σ̄ commutes with the source, target and identity operations de�ned on the
l-categories Cell(%) and Cell∗( ). We show that it commutes with the composition operations.
Given 8, = ∈ N with 8 < =, 8-composable cells -,. ∈ Cell(%)= , by Lemma 3.2.3.2, we have

- 9,n ∩ .9,n = ∅ for 9 ∈ N with 8 < 9 ≤ = and n ∈ {−, +}.

Thus, by Lemma 3.4.4.8, it follows readily that Σ̄= (- ∗8. ) = Σ̄= (- ) ∗8 Σ̄= (. ). Thus, Σ̄ is a morphism
of l-categories. We conclude with Proposition 3.4.4.16. �

3.4.5 Absence of other embeddings

We conclude our comparison of the pasting diagram formalisms by showing that there are no
embeddings between the four formalisms except the ones already proved, that is, that parity
complexes, pasting scheme and augmented directed complexes are particular cases of torsion-free
complexes (under the caveats stated for parity complexes and pasting schemes). We show these
inexistence results by simply exhibiting counter-examples to the other embeddings.

Since adc’s are not exactly l-hypergraphs, we should make the following precisions. When
we say that “there is no embedding of adc’s with loop-free unital bases into the formalism X”,
we mean that, in general, the l-hypergraph obtained from an adc with loop-free unital basis (as
described in Paragraph 3.4.4.1) is not an instance of X. Conversely, when we say that “there is no
embedding of the formalism X into adc’s with loop-free unital bases”, we mean that, in general,
the pre-adc with basis obtained from an l-hypergraph which is an instance of X (as described in
Paragraph 3.1.4.4) is not an adc with loop-free unital basis.
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3.4.5.1 — No embedding in parity complexes. We show that there are no embeddings into
parity complexes of the other formalisms. Considering the axioms of parity complexes, Axiom (C4)
is relatively strong, and it has no real equivalent in the other formalisms, so it can be used to
build a counter-example to embeddings. The l-hypergraph (3.8) is a pasting scheme satisfying
Axiom (T4) (and thus is a torsion-free complex) and is an adc with loop-free unital basis. But it is
not a parity complex as we have seen in Paragraph 3.1.2.12, because it does not satisfy Axiom (C4).
So pasting schemes, augmented directed complexes and torsion-free complexes are not parity
complexes in general.

3.4.5.2 — No embedding in pasting schemes. We now show that there are no embeddings
into pasting schemes of the other formalisms. We use the relatively strong Axiom (S2) to build a
counter-example to the embeddings. The following l-hypergraph is a parity complex satisfying
Axiom (T4) (and thus it is a torsion-free complex) and is an adc with loop-free unital basis but it
is not a pasting scheme:

I

~

G

F

3 ′

3

0′02

1

1 ′

4

U1⇒

U4⇒

U2⇒

U3⇐

. (3.28)

Indeed, Axiom (S2) is not satis�ed because U2 ⊳U3 and ~ ∈ �(U2) ∩ � (U3) ≠ ∅. Note that (3.28) is
essentially the l-hypergraph (3.13) without the 3-generator � and the 2-generators U ′1 and U ′4.

3.4.5.3 — No embedding in augmented directed complexes. Finally, we prove that there
are no embeddings into augmented directed complexes with loop-free unital basis of the other
formalisms. As shown in Section 3.4.4, such adc’s satisfy Axiom (T4’), which is a stronger version
of Axiom (T4). Thus, we can �nd a counter-example to embedding into adc’s with loop-free unital
basis by considering an adequate l-hypergraph which satis�es Axiom (T4) but not Axiom (T4’).
Consider the l-hypergraph % from Figure 3.8 where the 3-generators %3{�, �,�} are such that

�− = {V,W}, �+ = {V ′, W ′},
�− = {X, n}, �+ = {X ′, n ′},
�− = {U,W ′, X ′, Z }, �+ = {U ′, W ′′, Z ′}.

It can be shown that it is a parity complex and a pasting scheme. It moreover satis�es Axiom (T4)
so that it is a torsion-free complex by Theorem 3.4.3.9. But its associated pre-adc is an adc with a
basis which is not loop-free unital. Indeed, we have

4 ≤ [�]1,+ ∧ [�]1,−, ℎ ≤ [�]1,+ ∧ [�]1,− and 1 ≤ [�]1,− ∧ [�]1,+,

so that
� <1 � <1 � <1 �.

Hence, the basis of the associated augmented directed complex is not loop-free.
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F G ~ I
1

0

2

U ⇓

V ⇓
4

3

5

W ⇓

X ⇓

6

ℎ

8

n ⇓

Z ⇓

�

V

F G ~ I
1

0

2

U ⇓

V ′ ⇓
4

3

5

W ′ ⇓

X ⇓

6

ℎ

8

n ⇓

Z ⇓

�

V

F G ~ I
1

0

2

U ⇓

V ′ ⇓
4

3

5

W ′ ⇓

X ′ ⇓

6

ℎ

8

n ′ ⇓

Z ⇓

�

V

F G ~ I
1

0

2

U ′ ⇓

V ′ ⇓

3

5

W ′′ ⇓

6

ℎ

8

n ′ ⇓

Z ′ ⇓

Figure 3.8 – The l-hypergraph %



Chapter 4

Coherence for Gray categories

Introduction

Algebraic structures, such as monoids, can be de�ned inside arbitrary categories. In order to
generalize their de�nition to higher categories, the general principle is that one should look for
a coherent version of the corresponding algebraic theory: this roughly means that we should
add enough higher cells to our algebraic theory so that “all diagrams commute”. For instance,
when generalizing the notion of monoid from monoidal categories to monoidal 2-categories,
associativity and unitality are now witnessed by 2-cells, and one should add new axioms in
order to ensure their coherence: in this case, those are MacLane’s unit (1.16) and pentagon (1.17)
equations, thus resulting in the notion of pseudomonoid. The fact that these are indeed enough
to make the structure coherent constitutes a reformulation of MacLane’s celebrated coherence
theorem for monoidal categories [Mac63]. In this context, a natural question is: how can we
systematically �nd those higher coherence cells?

Rewriting theory provides a satisfactory answer to this question. Namely, if we orient the
axioms of the algebraic structures of interest in order to obtain a rewriting system which is
suitably behaved (con�uent and terminating), the con�uence diagrams for critical branchings
precisely provide us with such coherence cells. This was �rst observed by Squier for monoids,
�rst formulated in homological language [Squ87] and then generalized as a homotopical condi-
tion [SOK94; Laf95]. These results were then extended to strict higher categories by Guiraud and
Malbos [GM09; GM12; GM18] based on a notion of rewriting system adapted to this setting, which
is provided by the polygraphs for strict categories (as introduced in Section 1.4.1). In particular,
their work allow to recover the coherence laws for pseudomonoids in this way.

Our aim is to generalize those techniques in order to be able to de�ne coherent algebraic
structures inweak higher categories. We actually handle here the �rst non-trivial case, which is the
one of dimension 3. Namely, it is well-known that tricategories are not equivalent to strict 3-cate-
gories: the “best” one can do is to show that they are equivalent to Gray categories [GPS95; Gur13],
which is an intermediate structure between weak and strict 3-categories, roughly consisting in
3-categories in which the exchange law is not required to hold strictly. This means that classical
rewriting techniques cannot be used out of the shelf in this context and one has to adapt those
to Gray categories, which is the object of this chapter. It turns out that precategories o�er a
nice setting for rewriting, as could already be intuited from Chapters 2 and 3. Their 2-dimen-

265
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sional instances, namely sesquicategories, were already advocated by Street in the context of
rewriting [Str96]. Precategories have gained quite some interest recently, by being at the core of
the graphical proof-assistant Globular [BKV16; BV17], which allows working with several kinds
of semi-strict higher categories expressed as precategories. In particular, Gray categories are
3-precategories equipped with exchange 3-cells satisfying suitable axioms.

Outline. We �rst give additional results on precategories (Section 4.1), that justify their use as
a computational framework for semi-strict higher categories. In particular, we show that the
cells of free precategories admit a simple description as sequences of applied whiskers (that are
analogous to contexts and context classes for strict categories), which allows a simple solution to
the word problem on prepolygraphs. Then, we show how Gray categories can be presented by
the mean of precategories after recalling the de�nition of Gray categories as categories enriched
with strict 2-categories enriched with the Gray tensor product (Section 4.2). Next, we extend
the theory of rewriting to prepolygraphs and, more speci�cally, presentations of Gray categories
and show that the resulting theory has good properties similar to the ones of term rewriting
systems (Section 4.3). In particular, a �nite presentation of a Gray category always has a �nite
number of critical branchings, which contrasts with the case of strict categories [Laf03; GM09;
Mim14], and the computational properties of precategories enable a mechanized computation of
those critical branchings. Then, we derive a Squier-type coherence theorem (Theorem 4.3.4.8)
and show that, given a presentation where the con�uence diagrams of the critical branchings are
“�lled” by coherence cells, the presented Gray category is coherent. Finally, we apply our results
to several algebraic structures (Section 4.4), which allows us to recover known coherence results
and �nd new ones, such as for pseudomonoids (Section 4.4.1), pseudoadjunctions (Section 4.4.2),
self-dualities (Section 4.4.4) and Frobenius pseudomonoids (Section 4.4.3).

4.1 Precategories for computations and presentations

In Chapter 2, we showed that strict categories could be seen as precategories satisfying additional
equations. This fact allowed us to give a syntactical description of cells of free strict =-cate-
gories in the form of sequences of applied context classes, and which is moreover amenable to
computation. This motivates using precategories as a more general computational framework
for studying other semi-strict higher categories, as we will do in the following sections. In the
present section, we give additional properties and constructions on precategories that will make
them suitable for computations and for presenting other higher categories, like Gray categories.

We �rst give a syntactic description of free precategories by adapting the description of free
strict categories given in Section 2.2. In particular, we de�ne the notion of whisker (Section 4.1.1),
which is the analogue of contexts and context classes for prepolygraphs and show that the cells of
free precategories can be described as sequences of applied whiskers, which implies that free pre-
categories admit a simple computational representation and the word problem on prepolygraphs
has a trivial solution (Section 4.1.2). Then, we introduce several notions and constructions that
will allow us to present precategories by the mean of prepolygraphs (Section 4.1.3).

4.1.1 Whiskers

Here, we de�ne an analogue of contexts and context classes for precategories, called whiskers,
and study their properties by closely following what we did in Section 2.2.2.

4.1.1.1 — De�nition. Let = ∈ N∪ {l} and� be an =-precategory. Recall the notion of type from
Section 2.2.2. For every< ∈ N= and<-type (D,D ′), we de�ne by induction on<
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– the notion of<-whisker of type (D,D ′) of � ,

– for : ∈ N= with : ≥ <, the evaluation of an<-whisker � of type (D,D ′) at a cell E ∈ �: of
type (D,D ′), which is a :-cell of � denoted � [E].

Together with the above inductive de�nition, we prove the following:

Proposition 4.1.1.2. Given <, 8, : ∈ N= with < ≤ 8 ≤ : , E ∈ �: , an <-whisker � of type E
and n ∈ {−, +}, we have

mn8 (� [E]) = � [mn8 (E)].

There is a unique 0-whisker, denoted [−] and, given : ∈ N= and E ∈ �: , the evaluation of the
0-whisker [−] at E is E , so that Proposition 4.1.1.2 holds directly for< = 0. Given< ∈ N=−1 and
an (<+1)-type (D,D ′), an (<+1)-whisker of type (D,D ′) is a triple � = (;, � ′, A ) where

– � ′ is an<-whisker of type (m−<−1(D), m+<−1(D ′)),

– ; and A are (<+1)-cells of � such that m+< (;) = � ′[D] and m−< (A ) = � ′[D ′].

Given : ∈ N= with : ≥ < + 1 and E ∈ �: of type (D,D ′), the evaluation � [E] of � at E is the :-cell

� [E] = ; r< � ′[E] r< A .
Moreover, given 8 ∈ N= with< + 1 ≤ 8 and n ∈ {−, +}, we have

mn8 (� [E]) = mn8 (; r< � ′[E] r< A )
= ; r< mn8 (� ′[E]) r< A
= ; r< � ′[mn8 (E)] r< A (by the induction hypothesis)
= � [mn8 (E)]

so that Proposition 4.1.1.2 holds, which ends the de�nition of whiskers.

Example 4.1.1.3. Let P be the 2-prepolygraph such that

P0 = {F, G,~, I}
P1 = {0 : F → I, 1, 1 ′ : F → G, 2, 2 ′ : G → ~, 3, 3 ′ : ~ → I, 4 : F → I}
P2 = {U : 0 ⇒ 1 r0 2 r0 3, V : 1 ⇒ 1 ′, X : 3 ⇒ 3 ′, n : 1 ′ r0 2 ′ r0 3 ′⇒ 4}

which can be represented by

F G ~ I

0

4

1

1 ′

2

2 ′

3

3 ′
⇓V ⇓X

⇓U

⇓n

.

There are several 1-whiskers of type (G,~), such as the following ones:

– (id1
G , [−], id1

~),
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– (1, [−], id1
~),

– (id1
G , [−], 3),

– �5 ,ℎ = (5 , [−], 6) for 5 ∈ {1,1 ′} and ℎ ∈ {3, 3 ′}.

Note that, for 5 ∈ {1,1 ′} and ℎ ∈ {2, 2 ′}, the evaluation of �5 ,ℎ at 6 ∈ {2, 2 ′} is 5 r0 6 r0 ℎ. There
are several 2-whiskers of type (2, 2 ′), as the following ones:

– �1 = (U r1 (V r0 2 r0 3) r1 (1 ′ r0 2 r0 X), �1′,3′, n),
– �̄1 = (U r1 (1 r0 2 r0 X) r1 (V r0 2 r0 3 ′), �1′,3′, n),
– �2 = (U r1 (1 r0 2 r0 X), �1,3′, (V r0 2 ′ r0 3 ′) r1 n),
– �3 = (U r1 (V r0 2 r0 3), �1′,3 , (1 ′ r0 2 ′ r0 X) r1 n),
– �4 = (U, �1,3 , (V r0 2 ′ r0 3) r1 (1 ′ r0 2 ′ r0 X) r1 n),
– �̄4 = (U, �1,3 , (1 r0 2 ′ r0 X) r1 (V r0 2 ′ r0 3 ′) r1 n).

The reader is invited to compare the above whiskers with the contexts of Example 2.2.2.3.

4.1.1.4 — Source and target of whiskers. Let = ∈ N ∪ {l} and � be an =-precategory. Given
an integer< ∈ N∗= , an<-type (D,D ′) of� and an<-whisker � = (;, � , A ) of type (D,D ′), the source
and the target of � are respectively the (<−1)-cells

m−<−1(�) = m−<−1(;) and m+<−1(�) = m+<−1(A ).
When< > 1, we moreover have

mn<−2 ◦ m−<−1(�) = mn<−2 ◦ m+<−1(�)
for n ∈ {−, +}. Indeed, given (; ′, � ′′, A ′) = � ′,

m+<−1(;) = ; ′ r<−2 �
′′[D] r<−2 A

′ and m−<−1(A ) = ; ′ r<−2 �
′′[D ′] r<−2 A

′

so that

m−<−2 ◦ m−<−1(�) = m−<−2 ◦ m−<−1(;)
= m−<−2 ◦ m+<−1(;)
= m−<−2(; ′)
= m−<−2 ◦ m−<−1(A )
= m−<−2 ◦ m+<−1(A )
= m−<−2 ◦ m+<−1(�)

and similarly, m+<−2 ◦ m−<−1(�) = m+<−2 ◦ m+<−1(�). Given 8 ∈ N<−1, n ∈ {−, +}, we write mn8 (�)
for mn8 ◦ mn<−1(�). With these notations, for 8 ∈ N=−1, we can extend the notion of 8-composable
sequences of globes of globular sets to sequences -1, . . . , -; for some ; ∈ N∗ where -B is either a
whisker or a cell of � for B ∈ N∗

;
, and say that -1, . . . , -; is 8-composable when

m+8 (-B) = m−8 (-B+1) for B ∈ N∗
;−1.

It is immediate that the source and target operations are compatible with the evaluation of
whiskers:

Proposition 4.1.1.5. Given 8,<, : ∈ N= with 8 < < ≤ : , n ∈ {−, +}, a :-cell D ∈ � and an
<-whisker � of type D, we have

mn8 (� [D]) = mn8 (�).
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4.1.1.6 — Identity whiskers. Let = ∈ N ∪ {l} and � be an =-precategory. Given< ∈ N= and
an<-type (D,D ′) of � , we de�ne an<-whisker � (D,D′) , called the identity whisker on (D,D ′), by
induction on<. When< = 0, we put

� (∗,∗) = [−]
and, when< > 0, we put

� (D,D
′) = (id<D , � (m

−
<−2 (D),m+<−2 (D′)) , id<D′)

If � is part of an =-cellular extension (�,- ) ∈ PCat+= , given 6 ∈ - , we write �6 for

� (m
−
=−1 (6),m+=−1 (6)) .

The identity whiskers have then trivial evaluations:

Proposition 4.1.1.7. For<,: ∈ N= with< ≤ : , an<-type (D,D ′) and E ∈ �: of type (D,D ′), we
have

� (D,D
′) [E] = E .

Proof. This is shown by a simple induction on<. �

4.1.1.8 — Composition operations. Let = ∈ N ∪ {l} and � be an =-precategory. Let 8,< ∈ N=
with 8 < <, (D,D ′) be an <-type and � = (;, � ′, A ) be an <-whisker of type (D,D ′). Given a
cell E ∈ �8+1 such that (E, �) is 8-composable, we de�ne an<-whisker E r

8 � using an induction
on< − 8 by

E r
8 � =

{
(E r

8 ;, �
′, A ) if 8 + 1 =<,

(E r
8 ;, E r

8 �
′, E r

8 A ) if 8 + 1 < <.

Similarly, when (�, E) is 8-composable, we de�ne an<-whisker � r
8 E using an induction on< − 8

by

� r
8 E =

{
(;, � ′, A r

8 E) if 8 + 1 =<,
(; r8 E, � ′ r8 E, A r

8 E) if 8 + 1 < <.

These composition operations satisfy properties similar to the axioms of (=+1)-precategories:

Proposition 4.1.1.9. Given< ∈ N= , an<-type (D,D ′) of� and an<-whisker � of type (D,D ′), we
have

(i) for all 8 ∈ N<−1 and D1 = m
−
8 (�), D2 = m

+
8 (�),

id8+1D1
r
8 � = � = � r

8 id8+1D2 ,

(ii) for all 8 ∈ N<−1 and D1, D2 ∈ �8+1, if D1, D2, � are 8-composable or D1, �,D2 are 8-composable
or �,D1, D2 are 8-composable, then we respectively have

(D1 r
8 D2) r8 � = D1 r

8 (D2 r
8 �)

or

(D1 r
8 �) r8 D2 = D1 r

8 (� r
8 D2)

or

(� r
8 D1) r8 D2 = � r

8 (D1 r
8 D2),

(iii) for all 8, 9 ∈ N<−1 such that 8 < 9 , and D1, D2 ∈ �8+1 and E1, E2 ∈ � 9+1 such that D1, �,D2 are
8-composable and E1, �, E2 are 9-composable, we have

D1 r
8 (E1 r

9 � r
9 E2) r8 D2 = (D1 r

8 E1 r
8 D2) r9 (D1 r

8 � r
8 D2) r9 (D1 r

8 E2 r
8 D2).
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Proof. By a direct adaptation of the proof of Proposition 2.2.2.11. �

Finally, we prove that the composition operations on whiskers are compatible with evaluation:

Proposition 4.1.1.10. Given 8,<, : ∈ N= with 8 < < ≤ : , D ∈ �8+1, E ∈ �: and an<-whisker � of
type E , if D, � are 8-composable, then

(D r
8 �) [E] = D r

8 (� [E])

and otherwise, if �,D are 8-composable, then

(� r
8 D) [E] = (� [E]) r8 D.

Proof. By a direct adaptation of the proof of Proposition 2.2.2.13. �

4.1.1.11 —Whiskers and functoriality. Let = ∈ N ∪ {l} and �, � be two =-precategories.
Given an =-prefunctor � : � → � , we extend � to <-whiskers. More precisely, given < ∈ N= ,
an <-type (D,D ′) of � and an <-whisker � of type (D,D ′), we de�ne an <-whisker � (�) of
type (� (D), � (D ′)) by induction on< as follows. If< = 0, we put

� ( [−]) = [−]

Otherwise, if< > 0, given (;, � ′, A ) = �, we put

� (�) = (� (;), � (� ′), � (A )).

We then have compatibility results between � and the operations on whiskers, analogous to the
ones shown for contexts and context classes:

Proposition 4.1.1.12. Given<,: ∈ N= with< ≤ : , D ∈ �: and an<-whisker � of type D, we have

� (� [D]) = � (�) [� (D)].

Proof. By a simple induction on<. �

Proposition 4.1.1.13. Given< ∈ N= and an<-type (D,D ′), we have � (� (D,D′) ) = � (� (D),� (D′)) .

Proof. By a simple induction on<. �

Proposition 4.1.1.14. Given 8,< ∈ N= with 8 < <,D ∈ �8+1 and an<-whisker �, ifD, � (resp. �,D)
are 8-composable, then

� (D r
8 �) = � (D) r8 � (�) (resp. � (� r

8 D) = � (�) r8 � (D)).
Proof. By a direct adaptation of the proof of Proposition 2.2.2.17. �

4.1.2 Free precategories

Let = ∈ N. Following what was done in Section 2.2.3 and Section 2.2.4, we give a concrete
description of the functor

−[−]= : PCat+= → PCat=+1

based on whiskers. By adapting the content of Sections 2.3 and 2.4, this description allows a
simple computational representation of cells of free precategories, providing a trivial solution
to the word problem. The results of this section thus advocate the use of precategories for the
computational treatment of semi-strict higher categories like Gray categories.
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4.1.2.1 — Free extensions with whiskers. Let (�,- ) ∈ PCat+= be an =-cellular extension. We
write � [- ] for the (=+1)-globular set such that � [- ]≤= = � and � [- ]=+1 is the set of sequences
of the form

B = ((61, �1), . . . , (6: , �: ))

for some : ∈ N, called the length of B , and where68 ∈ - and �8 is an=-whisker of type68 for 8 ∈ N∗
:

(when : = 0, by convention, there is an empty sequence ( )D for each D ∈ �=). The source and
target of B as above are de�ned by

m−= (B) = �1 [d−= (61)] and m+= (B) = �: [d+= (6: )]

so that � [- ] is an (=+1)-globular set by Proposition 4.1.1.5.

We now equip � [- ] with a structure of (=+1)-precategory that extends the one of � . Given an
=-cell D ∈ �= , we put

id=+1D = ( )D .

Given B = ((61, �1), . . . , (6: , �: )) ∈ � [- ]=+1 and 8 ∈ N=−1, for D ∈ �8+1 such that D, B are 8-compo-
sable, we put

D r
8 B = ((61, D r

8 �1), . . . , (6: , D r
8 �: ))

and, similarly, for E ∈ �8+1 such that B, E are 8-composable, we put

B r
8 E = ((61, �1 r

8 E), . . . , (6: , �: r
8 E))

and, �nally, for B ′ = ((6′1, � ′1), . . . , (6′; , �
′
;
)) ∈ � [- ]=+1 such that B, B ′ are =-composable, we put

B r
= B
′ = ((61, �1), . . . , (6: , �: ), (6′1, � ′1), . . . , (6′; , �

′
;
)).

We check that:

Proposition 4.1.2.2. The operations id=+1 and r
8 de�ned above equip � [- ] with a structure of an

(=+1)-precategory.

Proof. The axioms of precategories are easily veri�ed using Proposition 4.1.1.9 and the fact that�
is an =-precategory. �

In particular, we can use whiskers and whisker evaluations in � [- ]. We then observe that:

Lemma 4.1.2.3. Given< ∈ N= , 6 ∈ - and an<-whisker � of type 6, we have

� [(6, �6)] = (6, �↑=)

where, for : ∈ N= with : ≥ <, �↑: is the :-whisker of type 6 de�ned inductively by

�↑: =

{
� if : =<,
(id:

�↑:−1 [m−:−1 (6) ]
, �↑:−1, id:�↑:−1 [m+:−1 (6) ]

) if : > <.

In particular, if< = =, we have � [(6, �6)] = (6, �).

Proof. By a simple induction on<. �

With the above lemma, we can deduce the freeness of � [- ]:

Theorem 4.1.2.4. The (=+1)-precategory � [- ] is the free (=+1)-precategory relatively to the for-
getful functorV: : PCat=+1 → PCat+= .
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Proof. Let � ∈ PCat=+1 and (�, 5 ) : (�,- ) → (�≤=, �=+1) ∈ PCat+= . We de�ne a function

5 ′ : � [- ]=+1 → �=+1

by putting, for D ∈ �= ,
5 ′(( )D) = id=+1

� (D)

and, for B = ((61, �1), . . . , (6: , �: )) ∈ � [- ]=+1,

5 ′(B) = � (�1) [5 (61)] r= · · · r= � (�: ) [5 (6: )]
which is well-de�ned since, for 8 ∈ N∗

:−1,

m+= (� (�8) [5 (68)]) = � (�8) [m+= (5 (68))] (by Proposition 4.1.1.2)
= � (�8) [� (d+= (68))]
= � (�8 [d+= (68)]) (by Proposition 4.1.1.12)
= � (�8+1 [d−= (68+1)])
= � (�8+1) [� (d−= (68+1))] (by Proposition 4.1.1.12)
= � (�8+1) [m−= (5 (68+1))]
= m−= (� (�8+1) [5 (68+1)]) (by Proposition 4.1.1.2).

Moreover, a similar computation shows that, for n ∈ {−, +},

mn= (5 ′(B)) = � (�1 [d−= (61)]) = � (m−= (B))

so that (�, 5 ′) : � [- ] → � is a morphism of (=+1)-globular set. We verify that it is an (=+1)-pre-
functor. By de�nition, (�, 5 ′) commutes with the identity operations. Let 8 ∈ N=−1, a cell D ∈ �8+1
and B = ((61, �1), . . . , (6: , �: )) ∈ � [- ]=+1. If D, B are 8-composable, we compute that

5 ′(D r
8 B) = � (D r

8 �1) [5 (61)] r= · · · r= � (D r
8 �: ) [5 (6: )]

= (� (D) r8 � (�1)) [5 (61)] r= · · · r= (� (D) r8 � (�: )) [5 (6: )]
(by Proposition 4.1.1.14)

= (� (D) r8 � (�1) [5 (61)]) r= · · · r= (� (D) r8 � (�: ) [5 (6: )])
(by Proposition 4.1.1.10)

= � (D) r8 (� (�1) [5 (61)] r= · · · r= � (�: ) [5 (6: )])
= � (D) r8 5 ′(B)

and, similarly, if B,D are 8-composable, we have 5 ′(B r
8 D) = 5 ′(B) r8 � (D). Thus, (�, 5 ′) is an

(=+1)-prefunctor.

The operation (�, 5 ) ↦→ (�, 5 ′) de�nes a function

Φ� : PCat+= ((�,- ), (�≤: , �=+1)) → PCat=+1(� [- ], �)

which is natural in � . It is injective since, by Propositions 4.1.1.7 and 4.1.1.13, we have

5 ′(((6, �6))) = 5 (6)

for all 6 ∈ - , and it is surjective since, by Lemma 4.1.2.3 and Proposition 4.1.1.12, a morphism

(�̄ , 5̄ ) : � [- ] → � ∈ PCat=+1

is completely determined by �̄ and the images of ((6, �6)) ∈ � [- ]=+1 by 5̄ for 6 ∈ - . Thus, � [- ]
is the free (=+1)-precategory on (�,- ). �
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The above theorem gives a unique normal form property for the cells of � [- ]:

Corollary 4.1.2.5. Given D ∈ � [- ]=+1, D can be uniquely written as

D = D1 r
= · · · r= D:

for some : ∈ N and D1, . . . , D: ∈ � [- ]=+1 such that, for 8 ∈ N∗
:
,

D8 = ;8,= r
=−1 (;8,=−1 r

=−2 · · · r1 (;8,1 r0 68 r0 A8,1) r1 · · · r=−2 A8,=−1) r=−1 A8,= (4.1)

for some 68 ∈ - and ;8, 9 , A8, 9 ∈ � 9 for 9 ∈ N∗= , and the decomposition (4.1) of each D8 is moreover
unique.

Proof. By Theorem 4.1.2.4, D can be uniquely written as

D = �1 [61] r= · · · r= �: [6: ]
for some : ∈ N, (=+1)-generators 61, . . . , 6: ∈ - and whiskers �1, . . . , �: . Putting D8 = �8 [68], one
obtains the decomposition (4.1) of D8 by expanding the de�nition of �8 [68]. This decomposition
of D8 is unique since �8 is unique relatively to D. �

Anticipating the use of precategories for rewriting in Section 4.3, we call rewriting step an
(=+1)-cell of � [- ] of the form (4.1). In the case = = 2 that will mostly concern us in the fol-
lowing, a rewriting step of � [- ] is then a 3-cell ( of the form

( = _ r1 (; r0 � r0 A ) r1 d
for some ;, A ∈ �1, _, d ∈ �2 and � ∈ - .
Remark 4.1.2.6. By adapting the terminology of Section 2.3.1, if the =-cellular extension (�,- )
is equipped with an injective and decidable encoding E (�,- ) , one can de�ne an injective and
decidable encodings for the <-whiskers of � , by taking inspiration from Proposition 2.3.2.7(i).
Then, using the standard derivation of encodings for �nite sequences (c.f. Paragraph 2.3.1.12), one
obtains an encoding of the (=+1)-cells of � [- ], and thus, an encoding E� [- ] of the (=+1)-pre-
category � [- ] that extends E� . Moreover, our description of � [- ]=+1 turns into a computable
function which takes as input a code for the =-cellular extension (�,- ), and outputs a code for
the (=+1)-precategory� [- ] and a code for the function which maps 6 ∈ - to ((6, �6)) ∈ � [- ]=+1.

4.1.2.7 — The word problem on prepolygraphs. One can consider an analogue of the word
problem on strict polygraphs for prepolygraphs, that we shall explicitly describe. Let = ∈ N∪ {l}
and P be an =-prepolygraph. For : ∈ N= , we de�ne the sets of :-terms T P

:
of P inductively as

follows:

– for : ∈ N= and 6 ∈ P: , there is a :-term gen: (6) ∈ T P
:
,

– for : ∈ N=−1 and a :-term C ∈ T P
:
, there is a (:+1)-term id:+1

:
(C) ∈ T P

:+1,

– for :, ;,< ∈ N∗= with< = max(:, ;), a :-term C1 ∈ T P
:

and an ;-term C2 ∈ T P
;
, there is an

<-term C1 r
:,; C2 ∈ T P

< .

Following Section 2.4, one then de�nes the set WP =
⊔
:∈N=WP

:
of well-typed terms and an

evaluation function
È−ÉP : WP → P∗.

The word problem consists in, given C1, C2 ∈ WP, deciding whether ÈC1ÉP = ÈC2ÉP or not.
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Remember that the key step in our description of a solution to the word problem on polygraphs
of strict categories was to show that one can compute the codes of the free (=+1)-categories
on =-cellular extensions (Remark 2.3.2.36). This is rather trivial for precategories, as stated by
Remark 4.1.2.6. Thus, by adapting the formalism given in Section 2.4.2, we get an implementable
solution to the word problem on prepolygraphs. More precisely, by directly adapting the no-
tions of set-encoded polygraph, term de�nition of polygraphs, and of word problem instance to
prepolygraphs, we get a decidable property analogous to Proposition 2.4.2.14:

Proposition 4.1.2.8. The function which takes as input an =-word problem instance (�, (C1, C2))
(of prepolygraphs) and outputs 0 if ÈC1É ≠ ÈC2É, and 1 if ÈC1É = ÈC2É, is computable.

Proof. By adapting the content of Section 2.4.2 to prepolygraphs, using Remark 4.1.2.6. �

4.1.3 Presentations of precategories

In this section, we introduce the tools that we will use to present precategories, like Gray cate-
gories, by the mean of prepolygraphs. First, we specify in which sense an (=+1)-prepolygraph
present an =-precategory. Basically, the (=+1)-generators of such prepolygraph induce a relation
on the =-cells of the free =-precategory that one can use to quotient those cells, and the quoti-
enting operation can be simply de�ned as a left adjoint to (−)PCat

↑=+1,= . Then, since the techniques
we develop in the next sections will target (3, 2)-Gray categories, i.e., a subset of 3-precategories
where each 3-cell is invertible, we moreover recall the classical localization construction in the
case of precategories. Such construction will allow us later to consider the free (3, 2)-precategory
associated to a 3-precategory presented by the mean of a 4-prepolygraph.

4.1.3.1 — Quotienting top-level cells. Given = ∈ N∗ and an =-precategory � , a congruence
for � is an equivalence relation ∼ on �= such that, for all D,D ′ ∈ �= satisfying D ∼ D ′,

– mn=−1(D) = mn=−1(D ′) for n ∈ {−, +},

– for 8 ∈ N=−1 and E,F ∈ �8+1 such that E,D,F are 8-composable, we have

E r
8 D r

8 F ∼ E r
8 D
′ r
8 F.

Given such a congruence for� , there is an =-precategory�/∼ which is the =-precategory � such
that �8 = �8 for 8 ∈ N=−1 and �= = �=/∼ and where the identities and compositions are induced
by the ones on � . If � = �̄≤= for some (=+1)-precategory �̄ , there is a canonical congruence ∼�̄
on � which is induced by the (=+1)-cells �̄=+1, i.e., ∼�̄ is the smallest congruence on � such
that m−= (D) ∼�̄ m+= (D) for D ∈ �̄=+1. Writing �̄//= for �̄≤=/∼�̄ , there is a quotient functor

È−É� : �≤= → �̄//=

often simply denoted È−É, which is the identity on �8 for 8 ∈ N=−1, and which maps D ∈ �= to its
class ÈDÉ under ∼� . The operation �̄ ↦→ �̄//= extends to a functor

(−)PCat
//=,=+1 : PCat=+1 → PCat=

often simply denoted (−)PCat
//= , which satis�es that:

Proposition 4.1.3.2. (−)PCat
//=,=+1 is a left adjoint to (−)

PCat
↑=+1,= .
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Proof. Let � ∈ PCat=+1 and � ∈ PCat= . Given an (=+1)-prefunctor

� : � → �↑=+1 ∈ PCat=+1,

we build an =-prefunctor � ′ : �//= → � by putting

� ′≤=−1 = �≤=−1 and � ′(ÈDÉ) = � (D) for D ∈ �= ,

and this is well-de�ned since, for E ∈ �=+1, we have

� (m−= (E)) = m−= (� (E)) = m−= (id=+1� (m−= (E)) ) = m
+
= (id=+1� (m−= (E)) ) = m

+
= (� (E)) = � (m+= (E))

so that �= is compatible with ∼� . Moreover, � ′ is easily shown to be compatible with the structure
of =-precategory, so that it is indeed an =-prefunctor.

Conversely, given an =-prefunctor

� : �//= → � ∈ PCat= ,

we build an (=+1)-prefunctor � ′ : � → �↑=+1 by putting

� ′≤= = � ◦ È−É� and � ′(E) = id=+1
� (Èm−= (E)É) for E ∈ �=+1.

We now show that this de�nition is compatible with the structures of (=+1)-precategories of �
and �↑=+1. Given E ∈ �=+1 and n ∈ {−, +}, we have

� ′(mn= (E)) = � (Èmn= (E)É) = � (Èm−= (E)É) = mn= (id=+1� (Èm−= (E)É) ) = m
n
= (� ′(E)),

and, given D ∈ �= , we have

� ′(id=+1D ) = id=+1
� (Èm−= (id=+1D )É)

= id=+1
� (ÈDÉ) .

Moreover, given 8 ∈ N= , E1 ∈ �8+1 and E2 ∈ �=+1 such that E1, E2 are 8-composable, if 8 < =, then

� ′(E1 r
8 E2) = id=+1

� (Èm−= (E1 q8E2)É) = E1 r
8 id=+1

� (Èm−= (E2)É) = E1 r
8 �
′(E2)

and, if 8 = =, then

� ′(E1 r
= E2) = id=+1

� (Èm−= (E1 q=E2)É)

= id=+1
� (Èm−= (E1)É)

= id=+1
� (Èm−= (E1)É)

r
= id=+1

� (Èm−= (E1)É)

= id=+1
� (Èm−= (E1)É)

r
= id=+1

� (Èm+= (E1)É) (by de�nition of ∼� )

= id=+1
� (Èm−= (E1)É)

r
= id=+1

� (Èm−= (E2)É)

= � ′(E1) r= � ′(E2)

and similarly for 8-composable E1 ∈ �=+1 and E2 ∈ �8+1. Thus, � ′ is an (=+1)-prefunctor.

The operations � ↦→ � ′ and � ↦→ � ′ are easily proved to be inverse of each other, so that we get
a bijection

Ψ�,� : PCat=+1(�, �↑=+1) → PCat= (�//=, �)

which is natural in � and � . Thus, (−)PCat
//=,=+1 is a left adjoint to (−)PCat

↑=+1,= . �
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4.1.3.3 — Presenting with prepolygraphs. Given = ∈ N, the quotienting operation de�ned is
the previous paragraph naturally de�nes a notion of presentation of =-categories by (=+1)-pre-
polygraphs. Consider the functor (−) : Pol=+1 → PCat= de�ned as the composite

Pol=+1 PCat=+1 PCat=
(−)∗,=+1 (−)PCat

//=

which, to an (=+1)-prepolygraph P, associates the =-precategory P = P∗/∼P∗ . By the de�nition
of ∼P∗ and the description of −[−]= given in Section 4.1.2, we have that ∼P∗ is the smallest
congruence on P∗ such that d−= (6) ∼P

∗ d+= (6) for 6 ∈ P=+1, so that we often simply write ∼P for ∼P∗ .
In the following, we say that an (=+1)-prepolygraph P is a presentation of an =-precategory �
when � is isomorphic to P.

4.1.3.4 — (3, 2)-precategories. We now recall the classical localization construction in the case
of precategories, that will allow us later to consider (3, 2)-precategories presented by 4-prepoly-
graphs.

Given a 3-precategory � , a 3-cell � : q V q ′ ∈ �3 is invertible when there exists � : q ′ V q such
that � r2 � = id

q
and � r2 � = id

q′ . In this case, � is unique and we write �−1 for � . A (3, 2)-pre-
category is a 3-precategory where every 3-cell is invertible. The (3, 2)-precategories form a full
subcategory of PCat3 denoted PCat(3,2) . There is a forgetful functor

U : PCat(3,2) → PCat3

which admits a left adjoint (−)> also called localization functor described as follows. Given a
3-precategory � , for every � : q ⇒ q ′ ∈ �3, we write �+ for a formal element of source q and
target q ′, and �− for a formal element of source q ′ and target q . A zigzag of � is a list

(�n1
1 , . . . , �

n:
:
) (4.2)

for some : ∈ N, �1, . . . , �: ∈ �3 and n1, . . . , n: ∈ {−, +} such that

m+2 (�
n8
8
) = m−2 (�

n8+1
8+1 ) for 8 ∈ N∗

:−1

where we use the convention that there is one empty list ( )q for each q ∈ P∗2. The source and the
target of a zigzag as in (4.2) are m−2 (�

n1
1 ) and m+2 (�

n:
:
) respectively. Then, we de�ne a 3-globular

set�> such that (�>)≤2 = �≤2 and�>3 is the quotient of the zigzags de�ned above by the following
equalities: for every zigzag (�n1

1 , . . . , �
n:
:
),

– if �8 = id3
k

for some 8 ∈ N∗
:

andk ∈ �2, then

(�n1
1 , . . . , �

n:
:
) = (�n1

1 , . . . , �
n8−1
8−1 , �

n8+1
8+1 , . . . , �

n:
:
),

– if n8 = n8+1 = + for some 8 ∈ N∗
:−1, then

(�n1
1 , . . . , �

n:
:
) = (�n1

1 , . . . , �
n8−1
8−1 , (�8 r2 �8+1)+, �n8+28+2 , . . . , �

n:
:
),

– if n8 = n8+1 = − for some 8 ∈ N∗
:−1, then

(�n1
1 , . . . , �

n:
:
) = (�n1

1 , . . . , �
n8−1
8−1 , (�8+1 r2 �8)−, �n8+28+2 , . . . , �

n:
:
),

– if {n8 , n8+1} = {−, +} and �8 = �8+1 for some 8 ∈ N∗
:−1, then

(�n1
1 , . . . , �

n:
:
) = (�n1

1 , . . . , �
n8−1
8−1 , �

n8+2
8+2 , . . . , �

n:
:
) .
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We write È−É for the function which maps a zigzag to its class in �>3 . Since the de�nitions of
source and target of zigzags are compatible with the above equalities, they induce source and
target operations m−2 , m

+
2 : �>3 → �>2 . Given q ∈ �2, we put

id3
q
= È( )qÉ.

Moreover, given 8 ∈ {0, 1}, D ∈ �8+1 and � = È(�n1
1 , . . . , �

n:
:
)É ∈ �>3 with m+8 (D) = m−8 (� ), we put

D r
8 � = È((D r

8 �1)n1, . . . , (D r
8 �: )n: )É

and, given � = È(�X1
1 , . . . ,�

X;
;
)É ∈ (�>)3, we put

� r2 � = È(�n1
1 , . . . , �

n:
:
,�

X1
1 , . . . ,�

X;
;
)É.

All these operations are well-de�ned since they are compatible with the above quotient equalities,
and they equip �> with a structure of 3-precategory.

There is a canonical 3-prefunctor [ : � → �> sending � ∈ �3 to È(�+)É ∈ �>3 . Moreover,
given a (3, 2)-precategory � and a 3-prefunctor � : � → � , we can de�ne � ′ : �> → � by
putting � ′≤2 = � and

� ′(È(�n1
1 , . . . , �

n:
:
)É) = � ′(�n1

1 ) r2 . . . r2 � ′(�n:: )
for È(�n1

1 , . . . , �
n:
:
)É ∈ (�>)3, where we use the convention that

� ′(�n ) =
{
� (� ) if n = +,
� (� )−1 if n = −,

for � ∈ �3 and n ∈ {−, +}. The de�nition of � ′ is compatible with the quotient equalities above
so that � ′ is well-de�ned, and � ′ can be shown to uniquely factorize � through [. The opera-
tion � ↦→ �> naturally extends to a functor (−)> : PCat3 → PCat(3,2) and the above discussion
shows that:

Proposition 4.1.3.5. (−)> is a left adjoint forU.

In the following, given a 3-precategory � and � ∈ �3, we simply write � for [ (� ) ∈ �>3 .

4.2 Gray categories

Strict 3-categories are categories enriched in (Cat2,×). Similarly, Gray categories are categories
enriched in Cat2 together with the Gray tensor product. The latter can be described as an “asyn-
chronous” variant of the cartesian product where two interleavings of the same morphisms are
related by “exchange” cells. Typically, consider the 1-categories � and � below

� = G G ′
5

� = ~ ~ ′
6

their cartesian and Gray tensor products are respectively

� × � =
(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)

(5 ,~)

(G,6) = (G′,6)

(5 ,~′)

� � � =
(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)

(5 ,~)

(G,6) ⇓ j (G′,6)

(5 ,~′)



278 CHAPTER 4. COHERENCE FOR GRAY CATEGORIES

where the exchange 2-cell j can be invertible or not, depending on whether we consider the
pseudo or lax variant of the Gray tensor product. We �rst recall those two variants of the Gray
tensor product (Section 4.2.1). We then give a more explicit description of Gray categories in terms
of generators and relations (Section 4.2.2). Then, we introduce an economical way to describe
the structure of a Gray category with Gray presentations (Section 4.2.3), and show that the latter
correctly present Gray categories (Section 4.2.4).

4.2.1 The Gray tensor products

We recall here the de�nitions of the lax and pseudo variants of the Gray tensor products, that are
both tensor products on the category of strict 2-categories Cat2. We refer the reader to [Gra06,
Section I, 4] for details.

4.2.1.1 — The lax Gray tensor product. In the following, we consider the 2-precategorical
syntax for strict 2-categories, as given by Theorem 1.4.3.8. By the condition (E), a strict 2-category
is then simply a 2-precategory � such that, for all 0-composable q,k ∈ �2,

(q r0 m−1 (k )) r0 (m+1 (q) r0 k ) = (m−1 (q) r0 k ) r0 (q r0 m+1 (k )) .
Given two strict 2-categories �, � ∈ Cat2, we de�ne another strict 2-category � �lax � which is
presented as follows:

– the 0-cells of � �lax � are the pairs (G,~) where G ∈ �0 and ~ ∈ �0,

– the 1-cells of � �lax � are generated by the 1-cells

(5 , ~) : (G,~) → (G ′, ~) and (G, 6) : (G,~) → (G,~ ′),

for 5 : G → G ′ ∈ �1 and 6 : ~ → ~ ′ ∈ �2,

– the 2-cells of � �lax � are generated by the 2-cells

(q,~) : (5 , ~) → (5 ′, ~) and (G,k ) : (G, 6) → (G, 6′)

for G,~ ∈ �0, q : 5 ⇒ 5 ′ ∈ �2 andk : 6⇒ 6′ ∈ �2, and by the 2-cells

(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)

(G,6)

(5 ,~)

⇓ (5 , 6) (G′,6)

(5 ,~′)

for 5 : G → G ′ ∈ �1 and 6 : ~ → ~ ′ ∈ �1,

under the conditions that

(i) the 1-generators are compatible with 0-composition, meaning that

(id1
G , ~) = (G, id1

~) = id1
(G,~)

(5 r0 5 ′, ~) = (5 , ~) r0 (5 ′, ~)
(G,6 r0 6′) = (G, 6) r0 (G,6′)

for all G ∈ �0, ~ ∈ �0, 0-composable 5 , 5 ′ ∈ �1 and 0-composable 6,6′ ∈ �1,
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(ii) the 2-generators are compatible with 0-composition, meaning that

(id2
G , ~) = (G, id2

~) = id2
(G,~)

(q1 r0 q2, ~) = (q1, ~) r0 (q2, ~)
(G,k1 r0 k2) = (G,k1) r0 (G,k2)

for all G ∈ �0,~ ∈ �0, 0-composableq, q ′ ∈ �2 and 0-composablek,k ′ ∈ �2, i.e., graphically,

(G,~) (G,~)

(id1
G ,~)

(id1
G ,~)

⇓ (id2
G , ~) = (G,~) (G,~)

(G,id1
~ )

(G,id1
~ )

⇓ (G, id2
~) = (G,~) (G,~)

id1
(G,~)

id1
(G,~)

⇓ id2
(G,~)

(G0, ~) (G2, ~)

(51 q0 52,~)
(5 ′1 q0 5 ′2 ,~)
⇓(q1 r0q2, ~) = (G0, ~) (G1, ~) (G2, ~)

(51,~)

(5 ′1 ,~)

⇓(q1, ~)

(52,~)

(5 ′2 ,~)

⇓(q2, ~)

(G,~0) (G,~2)

(G,61 q062)

(G,6′1 q06′2)
⇓(G,k1 r0k2) = (G,~0) (G,~1) (G,~2)

(G,61)

(G,6′1)

⇓(G,k1)

(G,62)

(G,6′2)

⇓(G,k2) ,

(iii) the 2-generators are compatible with 1-composition, meaning that

(id2
5
, ~) = id2

(5 ,~)

(q1 r1 q2, ~) = (q1, ~) r1 (q2, ~)
(G, id2

6) = id2
(G,6)

(G,k1 r1 k2) = (G,k1) r1 (G,k2)

for parallel 50, 51, 52 ∈ �1 and parallel 60, 61, 62 ∈ �1 and 2-cells

q8 : 58−1 ⇒ 58 : G → G ′ ∈ �2 and k8 : 68−1 ⇒ 68 : ~ → ~ ′ ∈ �2

for 8 ∈ {1, 2}, and 1-cells 5 : G → G ′ ∈ �1 and 6 : ~ → ~ ′ ∈ �1, i.e., graphically,

(G,~) (G ′, ~)

(5 ,~)

(5 ,~)

⇓ (id2
5
, ~) = (G,~) (G ′, ~)

(5 ,~)

(5 ,~)

⇓ id2
(5 ,~)

(G,~) (G ′, ~)

(50,~)

(52,~)

⇓ (q1 r1q2, ~) = (G,~) (G ′, ~)(51,~)

(50,~)

(52,~)

⇓ (q1, ~)

⇓ (q2, ~)
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(G,~) (G,~ ′)

(G,6)

(G,6)

⇓ (G, id2
6) = (G,~) (G,~ ′)

(G,6)

(G,6)

⇓ id2
(G,6)

(G,~) (G,~ ′)

(G,60)

(G,62)

⇓ (G,k1 r1k2) = (G,~) (G ′, ~)(G,61)

(G,60)

(G,62)

⇓ (G,k1)

⇓ (G,k2)
,

(iv) the interchangers are compatible with 0-composition, meaning that

(id1
G , 6) = id2

(G,6)

(51 r0 52, 6) = ((51, ~) r0 (52, 6)) r1 ((51, 6) r0 (52, ~ ′))
(5 , id1

~) = id2
(5 ,~)

(5 , 61 r0 62) = ((5 , 61) r0 (G ′, 62)) r1 ((G, 61) r0 (5 , 62))

for all 58 : G8−1 → G8 and 68 : ~8−1 → ~8 for 8 ∈ {1, 2} and 5 : G → G ′ and 6 : ~ → ~ ′, i.e.,
graphically,

(G,~) (G,~)

(G,~ ′) (G,~ ′)

(id1
G , 6)⇐(G,6)

(id1
G ,~)

(G,6)

(id1
G ,~)

=

(G,~)

(G,~ ′)

(G,6)id2
(G,6)
⇐

(G,6)

(G0, ~) (G2, ~)

(G0, ~
′) (G2, ~

′)
⇓ (51 r0 52, 6)
(51 q0 52,~)

(G0,6) (G2,6)

(51 q0 52,~′)
=

(G0, ~) (G1, ~) (G2, ~)

(G0, ~
′) (G1, ~

′) (G2, ~
′)

(G0,6)

(51,~)

⇓ (51, 6) (G1,6)

(52,~)

⇓ (52, 6) (G2,6)

(51,~′) (52,~′)

(G,~) (G ′, ~)

(G,~) (G ′, ~)
⇓ (5 , id1

~)(G,id1
~)

(5 ,~)

(G′,id1
~)

(5 ,~)

= (G,~) (G ′, ~)

(5 ,~)

⇓ id2
(5 ,~)

(5 ,~)

(G,~0) (G ′, ~0)

(G,~2) (G ′, ~2)
(G,61 q062)

(5 ,~0)

⇓ (5 , 61 r062) (G′,61 q062)

(5 ,~2)

=

(G,~0) (G ′, ~0)

(G,~1) (G ′, ~1)

(G,~2) (G ′, ~2)

(5 ,~0)

(G,61) ⇓ (5 , 61) (G′,61)

(5 ,~1)

(G,62) ⇓ (5 , 62) (G′,62)

(5 ,~2)

,

(v) the interchangers commute with the 2-generators, meaning that

((5 , 6) r1 ((G, 6) r0 (q,~ ′))) = (((q,~) r0 (G ′, 6)) r1 (5 ′, 6))
((5 , 6) r1 ((G,k ) r0 (5 , ~ ′))) = (((5 , ~) r0 (G ′,k )) r1 (5 , 6′))
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for q : 5 ⇒ 5 ′ : G → G ′ andk : 6⇒ 6′ : ~ → ~ ′, i.e., graphically,

(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)
(G,6)

(5 ,~)

(G′,6)(5 ,~′)

⇓ (q,~ ′)

(5 ′,~′)

⇓ (5 , 6)
=

(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)

⇓ (q,~)
(G,6)

(5 ,~)

(5 ′,~) (G′,6)

(5 ′,~′)

⇓ (5 ′, 6)

(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)

(G,k )
⇐(G,6′)

(5 ,~)

(G,6) (G′,6)

(5 ,~′)

(5 , 6)
⇐

=

(G,~) (G ′, ~)

(G,~ ′) (G ′, ~ ′)

(G,6′)

(5 ,~)

(G′,6)(G′,6′) (G ′,k )⇐

(5 ,~′)

(5 , 6′)
⇐

.

Remark 4.2.1.2. More formally, the construction of � �lax � is done by considering the adequate
quotient of the free 2-category P∗ on a 2-polygraph P of strict categories, where

P0 = {(G,~) | G ∈ �0, ~ ∈ �0}
P1 = {(5 , ~) : (G,~) → (G ′, ~) | 5 : G → G ′ ∈ �1, ~ ∈ �0}

∪ {(G, 6) : (G,~) → (G,~ ′) | G ∈ �0, 6 : ~ → ~ ′ ∈ �1}
P2 = {(q,~) : (5 , ~) ⇒ (5 ′, ~) | q : 5 ⇒ 5 ′ ∈ �2, ~ ∈ �0}

∪ {(G,k ) : (G, 6) ⇒ (G,6′) | G ∈ �0, k : 6⇒ 6′ ∈ �2}
∪ {(5 , 6) : (5 , ~) r0 (G ′, 6) ⇒ (G, 6) r0 (5 , ~ ′) | 5 : G → G ′ ∈ �1, 6 : ~ → ~ ′ ∈ �1}.

The quotient is constructed as a coequalizer

� P∗ � �lax �
;

A

where � is a coproduct based on the above equations, and ;, A are 2-functors that respectively
correspond to the left-hand side and right-hand side of these equations. Such a coequalizer exists
since Cat2 is cocomplete by Proposition 1.4.1.4.

The construction (�, �) ↦→ � �lax � naturally extends to a bifunctor

(−) �lax (−) : Cat2 × Cat2 → Cat2

that sends a pair of 2-functors

� : � → � ′ and � : � → � ′

to the 2-functor � �lax � uniquely de�ned by the following mappings of generators:

(q,~) ↦→ (� (q),� (~))
(G,k ) ↦→ (� (G),� (k ))
(5 , 6) ↦→ (� (5 ),� (6))

for all G ∈ �0, ~ ∈ �0, q ∈ �2,k ∈ �2, 5 ∈ �1 and 6 ∈ �1.
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Writting 1 for the terminal strict 2-category whose only 0-cell is denoted ∗, for � ∈ Cat2, there
are a 2-functors

_lax
� : 1 �lax � → � and d lax

� : � �lax 1→ �

uniquely de�ned by the mappings

_lax
� ((∗,k )) = k and d lax

� ((k, ∗)) = k

fork ∈ �2, and both are isomorphisms natural in � .

For �, �, � ∈ Cat2, there is a 2-functor

U lax
�,�,� : (� �lax �) �lax � → � �lax (� �lax �)

uniquely de�ned by the following mappings on generators

((q,~), I) ↦→ (q, (~, I)) ((5 , 6), I) ↦→ (5 , (6, I))
((G, j), I) ↦→ (G, (j, I)) ((5 , ~), ℎ) ↦→ (G, (6, ℎ))
((G,~),k ) ↦→ (G, (~,k )) ((G, 6), ℎ) ↦→ (G, (6, ℎ))

for G ∈ �0, ~ ∈ �0, I ∈ �0, 5 ∈ �1, 6 ∈ �1, ℎ ∈ �1, q ∈ �2, j ∈ �2,k ∈ �2, and U lax
�,�,�

is moreover
an isomorphism natural in �, �, �.

By checking coherence conditions (1.16) and (1.17) of monoidal categories (c.f. Paragraph 1.5.1.1),
one can verify that:

Proposition 4.2.1.3. (Cat2, 1,�lax, _lax, d lax, U lax) is a monoidal category.

The monoidal structure (Cat2, 1,�lax, _lax, d lax, U lax) is called the lax Gray tensor product.

4.2.1.4 — The pseudo Gray tensor product. The other variant of Gray tensor is called the
pseudo Gray tensor product and is the monoidal structure (Cat2, 1,�, _, d, U) such that, given two
2-categories �, � ∈ Cat2, � � � is de�ned the same way as � �lax � , except that we moreover
require that, for 5 : G → G ′ ∈ �1 and 6 : ~ → ~ ′ ∈ �1, the 2-cell (5 , 6) of � � � be invertible
for r1. The natural isomorphisms _, d, U are then uniquely de�ned by similar mappings than
those de�ning _lax, d lax, U lax. By checking the coherence conditions (1.16) and (1.17) of monoidal
categories, one can verify that:

Proposition 4.2.1.5. (Cat2, 1,�, _, d, U) is a monoidal category.

Remark 4.2.1.6. More formally, given �, � ∈ Cat2, � � � is built by adapting the construction of
Remark 4.2.1.2: the strict 2-category � � � is the quotient of the free 2-category Q∗ where Q is
the 2-polygraph of strict categories such that

Q0 = P0 Q1 = P1

Q2 = P2 ∪ {(5 , 6)−1 : (G, 6) r0 (5 , ~ ′) ⇒ (5 , ~) r0 (G ′, 6) | 5 : G → G ′ ∈ �1, 6 : ~ → ~ ′ ∈ �1}

Like for� �lax � , the strict 2-category� �� is then obtained by quotienting Q∗ by the mean of a
coequalizer derived from the equations (i) to (v) and moreover the ones of the following additional
condition:

(vi) for 5 : G → G ′ ∈ �1 and 6 : ~ → ~ ′ ∈ �1,

(5 , 6) r1 (5 , 6)−1 = id2((5 , ~) r0 (G ′, 6)) and (5 , 6)−1 r1 (5 , 6) = id2((G, 6) r0 (5 , ~ ′)).
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4.2.2 Gray categories

To each of the two Gray tensor products that we de�ned in the previous section, there is an
associated notion of 3-category, that is a category enriched in Cat2 equipped with one of the two
tensor products (c.f. Paragraph 1.5.1.4 for the de�nition of enriched categories). We describe the
two notions of 3-categories, namely lax Gray categories and pseudo Gray categories. We moreover
introduce (3, 2)-Gray categories, which are lax Gray categories where every 3-cell is invertible,
that we will study in the following sections.

4.2.2.1 — Lax Gray categories. A lax Gray category (as in [Gra06, Section I, 4.25]) is a category
enriched in the category Cat2 of strict 2-categories equipped with the lax Gray tensor product.
Alternatively, we give a more explicit de�nition using generators and relations: a Gray category
is a 3-precategory � together with, for every pair of 0-composable 2-cells

q : 5 ⇒ 5 ′ : G → ~ and k : 6⇒ 6′ : ~ → I

of � , a 3-cell

-q,k : (q r0 6) r1 (5 ′ r0 k ) V (5 r0 k ) r1 (q r0 6′)
called interchanger, which can be represented using string diagrams by

5 6

q

k

5 ′ 6′

V

5 6

q

k

5 ′ 6′

and satisfying the following sets of axioms

(G-i) (compatibility with compositions and identities) given 2-cells

q : 5 ⇒ 5 ′ q ′ : 5 ′⇒ 5 ′′ k : 6⇒ 6′ k ′ : 6′⇒ 6′′

of � and 1-cells 4, ℎ of � such that 4, q,k, ℎ are 0-composable, we have

-id2
5
,k = id3

5 q0k -q q1q′,k = ((q r0 6) r1 -q′,k ) r2 (-q,k r1 (q ′ r0 6′))
-q,id2

6
= id3

q q06 -q,k q1k ′ = (-q,k r1 (5 ′ r0 k ′)) r2 ((5 r0 k ) r1 -q,k ′)
and

-4 q0q,k = 4 r0 -q,k -q,k q0ℎ = -q,k r0 ℎ.
Moreover, given q,k ∈ �2 and 5 ∈ �1 such that q, 5 ,k are 0-composable, we have

-q q0 5 ,k = -q,5 q0k ,

(G-ii) (exchange law for 3-cells) given 3-cells

� : q V k ∈ �3 � : k V k ′ ∈ �3

of � such that �, � are 1-composable, we have

(� r1 k ) r2 (q ′ r1 �) = (q r1 �) r2 (� r1 k ′),
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(G-iii) (compatibility between interchangers and 3-cells) given 3-cells

� : q V q ′ : D ⇒ D ′ and � : k ⇒ k ′ : E ⇒ E ′

of � such that �, � are 0-composable, we have

((� r0 E) r1 (D ′ r0 k )) r2 -q′,k = -q,k r2 ((D r0 k ) r1 (� r0 E ′))
((q r0 E) r1 (D ′ r0 �)) r2 -q,k ′ = -q,k r2 ((D r0 �) r1 (q r0 E ′)) .

A morphism between two lax Gray categories � and � is a 3-prefunctor � : � → � such that

� (-q,k ) = -� (q),� (k )

for 0-composable q,k ∈ �2.

4.2.2.2 — Pseudo Gray categories. We similarly have a notion of pseudo Gray category which is
a category enriched in the category of 2-categories equipped with the pseudo Gray tensor product.
In terms of generators and relations, a pseudo Gray category is a lax Gray category� where -q,k
is invertible for 0-composable q,k ∈ �2. A morphism between two pseudo Gray categories �, �
is a morphism of lax Gray categories between � and � .

4.2.2.3 — (3, 2)-Gray category. A (3, 2)-Gray category is a lax Gray category whose underlying
3-precategory is a (3, 2)-precategory. Note that it is then also a pseudo Gray category. As one
can expect, a localization of a lax Gray category gives a (3, 2)-Gray category:

Proposition 4.2.2.4. If � is a lax Gray category, then �> is a (3, 2)-Gray category.

Proof. Given 1-composable � : q V q ′,� : k V k ′ ∈ �3, by the exchange law for 3-cells, we have,
in �>3 ,

(� r1 k ) r2 (q ′ r1 �) = (q r1 �) r2 (� r1 k ′) .
By inverting � r1 k and � r1 k ′, we obtain

(q ′ r1 �) r2 (�−1 r1 k ′) = (�−1 r1 k ) r2 (q r1 �) .
Similarly,

(q r1 �−1) r2 (� r1 k ) = (� r1 k ′) r2 (q ′ r1 �−1)

and
(�−1 r1 k ′) r2 (q r1 �−1) = (q ′ r1 �−1) r2 (�−1 r1 k ).

Now, given general 1-composable � : q V q ′,� : k V k ′ ∈ �>3 , we have that

� = �1 r2 �−1
2

r2 · · · r2 �2:−1 r2 �−1
2:

and
� = �1 r2 �−1

2
r2 · · · r2 �2;−1 r2 �−1

2;

for some :, ; ∈ N∗ and �8 ,� 9 ∈ �3 for 8 ∈ N∗2: and 9 ∈ N∗2; . By applying the formulas above 4:;
times to exchange the �8 ’s with the � 9 ’s, we get

(� r1 k ) r2 (q ′ r1 �) = (q r1 �) r2 (� r1 k ′) .
A similar argument gives the compatibility between interchangers and 3-cells of �>. Thus, �> is
a (3, 2)-Gray category. �
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4.2.3 Gray presentations

Starting from a 3-prepolygraph P such as the one of Example 1.4.2.12 on page 69, we want to
add 3-generators to P and relations on the 3-cells of P∗3 so that we obtain a presentation of a
lax Gray category. This can of course be achieved naively by adding, for each pair of 0-compo-
sable 2-cells q,k in P∗2, a 3-generator corresponding to the interchanger “-q,k ”, together with
the relevant relations, but the resulting presentation has numerous generators. We detail below
a more economical way of proceeding in order to present lax Gray categories. The proof that
our notion of presentation of Gray category really induces a Gray category is given in the next
section.

4.2.3.1 — High-level de�nition. We give here the high-level de�nition of Gray presentations
and defer some technicalities to the next paragraph. A Gray presentation is a 4-prepolygraph P
containing the following distinguished generators:

(i) for 0-composable U,6, V with U, V ∈ P2, 6 ∈ P∗1, a 3-generator -U,6,V ∈ P3 called interchange
generator, which is of type

-U,6,V : (U r0 6 r0 ℎ) r1 (5 ′ r0 6 r0 V) V (5 r0 6 r0 V) r1 (U r0 6 r0 ℎ′)
which can be represented using string diagrams by

U

V

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

5

5 ′

6

6

ℎ

ℎ′

V

U

V

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

5

5 ′

6

6

ℎ

ℎ′

,

(ii) for every pair of 3-generators �, � ∈ P3 and 4, 4 ′, ℎ, ℎ′ ∈ P∗1 and j ∈ P∗2 as in

G ~

F I

G ′ ~ ′

5

q ⇓
�
V⇓q ′

6 ℎ4

⇓ j
4′

5 ′

k ⇓
�
V⇓k ′

6′

ℎ′

(4.3)

a 4-generator of type Γ Δ, called independence generator, where

Γ = ((4 r0 � r0 ℎ) r1 j r1 (4 ′ r0 k r0 ℎ′)) r2 ((4 r0 q ′ r0 ℎ) r1 j r1 (4 ′ r0 � r0 ℎ′))
and

Δ = ((4 r0 q r0 ℎ) r1 j r1 (4 ′ r0 � r0 ℎ′)) r2 ((4 r0 � r0 ℎ) r1 j r1 (4 ′ r0 k ′ r0 ℎ′)),
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(iii) for all 0-composable �,6, V with � ∈ P3, 6 ∈ P∗1 and V ∈ P2, and respectively, 0-compo-
sable U,6′, � with U ∈ P2, 6′ ∈ P∗1 and � ∈ P3 as on the �rst or the second line below

G G ′ ~ ′ ~q ⇓
�
V⇓q ′

5

5 ′

6 ⇓V

ℎ

ℎ′

G G ′ ~ ′ ~⇓U

5

5 ′

6′
k ⇓

�
V⇓k ′
ℎ

ℎ′

(4.4)

a 4-generator, called interchange naturality generator, respectively of type

((� r0 6 r0 ℎ) r1 (5 ′ r0 6 r0 V)) r2 -q′,6 q0V -q,6 q0V r2 ((5 r0 ℎ r0 V) r1 (� r0 6 r0 ℎ′))
and
((U r0 6′ r0 ℎ) r1 (5 ′ r0 6′ r0 �)) r2 -U q06′,k ′ -U q06′,k r2 ((5 r0 6′ r0 �) r1 (U r0 6′ r0 ℎ′))

where -j1,j2 ∈ P∗3 for 0-composable j1, j2 ∈ P∗2 is de�ned in the following paragraph.

4.2.3.2 — Presentation of interchangers. The 3-cells -q,k ∈ P∗3, which appear in the above
de�nition, generalize interchange generators to any pair of 0-composable 2-cells q andk . Their
de�nition consists in a suitable composition of the generators -U,D,V . For example, consider a
Gray presentation Q with

Q0 = {G}, Q1 = {1̄ : G → G} and Q2 = {g : 1̄⇒ 1̄}

where g is pictured by . Then, the following sequence of “moves” is an admissible de�nition
for -g q1g,g q1g :

V V V V . (4.5)

Each “move” above is a 3-cell of the form q r1 -g,id1
G ,g

r1 k for some q,k ∈ Q∗2 and where -g,id1
G ,g

is an interchange generator provided by the de�nition of Gray presentation. Another admissible
sequence of moves is the following:

V V V V .

We see that there are multiple ways one can de�ne the 3-cells -q,k based on the interchange
generators of a Gray presentation P. We will show in Proposition 4.2.4.8 that, in the end, the
choice does not matter, because all the possible de�nitions give rise to the same 3-cell in P. Still,
we need to introduce a particular structure that allows to represent all the possible de�nitions
of the 3-cells -q,k and reason about them. This structure consists in a graph q �k associated
to each pair of 0-composable q,k in P∗2: intuitively, a vertex in this graph will correspond to an
interleaving of the 2-generators of q and k , and an edge will correspond to a “move” as above,
i.e., an interchange generator -U,6,V in context that exchanges two 2-generators U from q and V
fromk , which appear consecutively in an interleaving of q andk . Given 2-cells

q = q1 r1 · · · r1 q: ∈ P∗2 and k = k1 r1 · · · r1 k:′ ∈ P∗2
with q8 = 58 r0 U8 r0 68 and k 9 = 5 ′9

r0 U ′9 r0 6′9 for some 58 , 68 , 5 ′9 , 6
′
9 ∈ P∗1 and U8 , U ′9 ∈ P2, we de�ne

the graph q �k
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– whose vertices are the shu�es of the words l1 . . . l: and r1 . . . r:′ on the alphabet

Σq,k = {l1, . . . , l: , r1, . . . , r:′},

– whose edges are of the form XF,F′ : F l8r9F ′→ Fr9 l8F ′ for some 8 ∈ N∗
:
, 9 ∈ N∗

:′ and some
wordsF,F ′ ∈ Σ∗

q,k
such thatF l8r9F ′ ∈ (q �k )0.

Given 8 ∈ N: , 9 ∈ N:′ , ? ∈ N:−8+1, @ ∈ N:′−9+1 and a shu�e D of the words

l8 . . . l8+?−1 and r9 . . . r9+@−1,

we de�ne [D]8, 9
q,k
∈ P∗2 (or simply [D]8, 9 ) by induction on ? and @:

[D]8, 9 =


(q8 r0 m+1 (k 9 )) r1 [D ′]8+1, 9 if D = l8D ′,
(m+1 (q8) r0 k 9 ) r1 [D ′]8, 9+1 if D = r9D ′,
m+1 (q8) r0 m+1 (k 9 ) if D is the empty word,

where, by convention, m+1 (q0) = m−1 (q1) and m+1 (k0) = m−1 (k1). Note that the indices of [D]8, 9 are
uniquely determined if D has at least an l letter and an r letter. Intuitively, the letters l8 and r9
correspond to the 2-cells q8 r0 (−) and (−) r0k 9 where the 1-cells (−) are most of the time uniquely
determined by the context, so that [D]1,1 for D ∈ (q � k )0 is an interleaving of the q8 r0 (−)
and (−) r0 k 9 . Now, given XD,E : Dl8r9E → Dr9 l8E ∈ (q �k )1, we de�ne the 3-cell

[XD,E]q,k : [Dl8r9E]1,1q,k V [Dr9 l8E]
1,1
q,k
∈ P∗3

by
[XD,E]q,k = [D]1,1

q,k
r1 (58 r0 -U8 ,68 q0 5 ′9 ,U′9 r0 6′9 ) r1 [E]8+1, 9+1q,k

.

We thus obtain a functor

[−]q,k : (q �k )∗ → P∗(m−1 (q) r0 m−1 (k ), m+1 (q) r0 m+1 (k ))
where (q �k )∗ is the free 1-category on q �k considered as a 1-polygraph, and where [−]q,k is
de�ned by the mappings

D ∈ (q �k )0 ↦→ [D]1,1q,k ∈ P
∗
2

XD,E ∈ (q �k )1 ↦→ [XD,E]q,k ∈ P∗3.

For example, forQ de�ned as above andq = k = g r1g , [l1l2r1r2]q,k and [l1r1l2r2]q,k are respectively
the 2-cells of Q∗2

and

and [Xl1,r2]q,k and [Xl1r1,n ]q,k are respectively the 3-cells of Q∗3

V and V .

We write Xq,k for the path

XD1,E1
r1 · · · r1 XD::′ ,E::′ ∈ (q �k )∗(l1 . . . l:r1 . . . r:′, A1 . . . r:′l1 . . . l: )
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de�ned by induction by

D1 = l1 . . . l:−1 and E1 = r2 . . . r:′

and where D8+1, E8+1 are the unique words of Σ∗
q,k

such that

m+0 (XD8 ,E8 ) = D8+1l?r@E8+1 with E8+1 = r@+1 . . . r:′l?+1 . . . l:

for some ?, @ ∈ N. We can �nally end the de�nition of Gray presentations by putting

-q,k = [Xq,k ]q,k .

For example, for Q de�ned as above, -g q1g,g q1g is the composite of 3-cells of Q∗3 given by (4.5).
Example 4.2.3.3. We de�ne the Gray presentation of pseudomonoids as the 4-prepolygraph obtained
by extending the 3-prepolygraph for pseudomonoids P introduced in Example 1.4.2.12 on page 69.
First, we add to P3 the 3-generators

-`,=̄,` : V -`,=̄,[ : V

-[,=̄,` : V -[,=̄,[ : V

for = ∈ N. Second, we de�ne P4 as a minimal set of 4-generators such that, given a con�guration
of cells of (P≤3)∗ as in (4.3), there is a corresponding independence generator in P4, and given a
con�guration of cells of (P≤3)∗ as in the �rst or the second line of (4.4), there is a corresponding
interchange naturality generator in P4.

4.2.4 Correctness of Gray presentations

Until the end of this section, we suppose given a Gray presentation P. The aim of this section is to
prove that our de�nition of Gray presentation is correct, i.e., that P has a structure of a lax Gray
category (Theorem 4.2.4.14). This will moreover implies that the localization of P has a structure
of (3, 2)-Gray category (Corollary 4.2.4.15).
Recall the de�nition of rewriting steps given in Paragraph 4.1.2.1. We start by showing the ex-
change law for the 3-cells of P that we �rst prove on rewriting steps:

Lemma 4.2.4.1. Given rewriting steps '8 : q8 V q ′8 ∈ P∗3 for 8 ∈ {1, 2}, such that '1, '2 are 1-com-
posable, we have, in P3,

('1 r1 q2) r2 (q ′1 r1 '2) = (q1 r1 '2) r2 ('1 r1 q ′2) .
Proof. Let ;8 , A8 ∈ P1, _8 , d8 ∈ P2, �8 ∈ P3 such that '8 = _8 r0 (;8 r0 �8 r0 A8) r8 d8 for 8 ∈ {1, 2},
and `8 , ` ′8 ∈ P2 such that �8 : `8 V ` ′8 for 8 ∈ {1, 2}. In P3, we have

('1 r1 q2) r2 (q ′1 r1 '2)
= _1r1 [((;1 r0 �1 r0 A1) r1 d1 r1 _2 r1 (;2 r0 `2 r0 A2))r2 ((;1 r0 ` ′1 r0 A1) r1 d1 r1 _2 r1 (;2 r0 �2 r0 A2))]r1 d2 (by precategories axioms)
= _1r1 [((;1 r0 `1 r0 A1) r1 d1 r1 _2 r1 (;2 r0 �2 r0 A2))r2 ((;1 r0 �1 r0 A1) r1 d1 r1 _2 r1 (;2 r0 ` ′2 r0 A2))]r1 d2 (by independence generator)

= (q1 r1 '2) r2 ('1 r1 q ′2). �
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We can now conclude the exchange law for 3-cells:

Lemma 4.2.4.2. Given �8 : q8 V q ′8 ∈ P3 for 8 ∈ {1, 2} such that �1, �2 are 1-composable, we have,
in P3,

(�1 r1 q2) r2 (q ′1 r1 �2) = (q1 r1 �2) r2 (�1 r1 q ′2) .
Proof. For 8 ∈ {1, 2}, as an element of P3, �8 can be written �8 = '8,1 r2 · · · r2 '8,:8 where

'8, 9 = _8, 9 r1 (;8, 9 r0 �8, 9 r0 A8, 9 ) r1 d8, 9
for some :8 ∈ N and _8, 9 , d8, 9 ∈ P2, ;8, 9 , A8, 9 ∈ P1, �8, 9 ∈ P3 for 9 ∈ N∗

:8
. Note that

�1 r1 q2 = ('1,1 r1 q2) r2 · · · r2 ('1,:1
r1 q2)

and
q ′1 r1 �2 = (q ′1 r1 '2,1) r2 · · · r2 (q ′1 r1 '2,:2) .

Then, by using Lemma 4.2.4.1 :1:2 times to reorder the '1, 91 ’s after the '2, 92 ’s for 8 ∈ {1, 2}
and 98 ∈ N∗:8 , we obtain that

(�1 r1 q2) r2 (q ′1 r1 �2) = (q1 r1 �2) r2 (�1 r1 q ′2). �

We now prove the various conditions on -−,−. First, a technical lemma:

Proposition 4.2.4.3. Given 5 ∈ P∗1, q,k ∈ P∗2 with 5 , q,k 0-composable, there is a canonical
isomorphism (5 r0 q) �k ' q �k and for all ? ∈ (q �k )∗1 , we have

[?]5 q0q,k = 5 r0 [?]q,k .
Similarly, given q,k ∈ P∗2 and ℎ ∈ P∗1 with q,k, ℎ 0-composable, we have a canonical isomor-
phism q � (k r0 ℎ) ' q �k and for all ? ∈ (q � (k r0 ℎ))∗1 , we have

[?]q,k q0ℎ = [?]q,k r0 ℎ.
Finally, given q,k ∈ P∗2 and 6 ∈ P∗1 with q,6,k 0-composable, we have a canonical isomor-
phism (q r0 6) �k ' q � (6 r0 k ) and for all ? ∈ ((q r0 6) �k )∗1 , we have

[?]q q06,k = [?]q,6 q0k .
Proof. Let 5 ∈ P∗1, q,k ∈ P∗2 with 5 , q,k 0-composable, A, B ∈ N, 58 , 68 ∈ P∗1 and U8 ∈ P2 for 8 ∈ N∗A ,
and 5 ′9 , 6

′
9 ∈ P∗1 and U ′9 ∈ P2 for 9 ∈ N∗B such that

q = (51 r0 U1 r0 61) r1 · · · r1 (5A r0 UA r0 6A ) and k = (5 ′1 r0 U ′1 r0 6′1) r1 · · · r1 (5 ′A r0 U ′A r0 6′A ).
By contemplating the de�nitions of (5 r0 q)�k and q �k , we deduce a canonical isomorphism
between them. Under this isomorphism, we easily verify that we have [F]5 q0q,k = 5 r0 [F]q,k
forF ∈ ((5 r0 q) �k )0. Now, given Dl8r9E ∈ ((5 r0 q) �k )0, we have

[XD,E]5 q0q,k = [D]5 q0q,k r1 (5 r0 58 r0 -U8 ,68 q0 59 ,U′9 r0 6 9 ) r1 [E]5 q0q,k
= 5 r0 ( [D]q,k r1 (58 r0 -U8 ,68 q0 59 ,U′9 r0 6 9 ) r1 [E]q,k )
= 5 r0 [XD,E]q,k .

By functoriality of [−]5 q0q,k and [−]q,k , we deduce that, for all ? ∈ (5 r0 q) �k ∗,

[?]5 q0q,k = 5 r0 [?]q,k .
The two other properties are shown similarly. �
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We can now conclude the most simple properties of -−,−:

Lemma 4.2.4.4. Given q : 5 ⇒ 5 ′ ∈ P2 and k : 6 ⇒ 6′ ∈ P2, we have the following equalities
in P3:

(i) -id2
5
,k = id3

5 q0k and -q,id2
6
= id3

q q06 when q,k are 0-composable,

(ii) -; q0q,k = ; r0 -q,k for ; ∈ P∗1 such that ;, q,k are 0-composable,

(iii) -q q0<,k = -q,< q0k for< ∈ P∗1 such that q,<,k are 0-composable,

(iv) -q,k q0A = -q,k r0 A for A ∈ P∗1 such that q,k, A are 0-composable.

Proof. The point (i) is clear, since both Xid2
5
,k and Xq,id2

6
are the identity paths on the unique 0-cells

of (id2
5
�k )∗ and (q� id2

6)∗ respectively. (ii) is a consequence of Proposition 4.2.4.3, since X5 q0q,k
is sent to Xq,k by the canonical isomorphism (5 r0q)�k ' q�k . (iii) and (iv) follow similarly. �

The last required properties on-−,− are more di�cult to prove. In fact, we need a proper coherence
theorem stating that, for 0-composableq,k ∈ P2,-q,k = [?]q,k for all ? ∈ (q�k )∗1 parallel to Xq,k .
We progressively introduce the necessary material to prove this fact below.

Given a wordF ∈ (q �k )0, there is a function

l-indexF : N∗|q | → N
∗
|q |+ |k |

de�ned such that, for 8 ∈ N∗|q | , if F = F ′l8F ′′, then l-indexF (8) = |F ′ | + 1. The function l-index
characterizes the existence of paths in (q �k )∗:

Lemma 4.2.4.5. Given 0-composable q,k ∈ P∗2 andF,F ′ ∈ (q �k )0, there is a path

? : F → F ′ ∈ (q �k )∗1

if and only if l-indexF (8) ≤ l-indexF′ (8) for 8 ∈ N∗|q | .

Proof. Given XD,E : DlA rBE → DrB lAE ∈ (q�k )1, it is clear that l-indexDlA rBE (8) ≤ l-indexDrB lA E (8) for
all 8 ∈ N∗|q | , so that, given a path ? : F → F ′ ∈ (q �k )∗1 , by induction on ? , we have

l-indexF (8) ≤ l-indexF′ (8)

for 8 ∈ N∗|q | . Conversely, given F,F ′ ∈ (q � k )0 such that l-indexF ≤ l-indexF′ , we show by
induction on # (F,F ′) de�ned by

# (F,F ′) =
∑

1≤8≤ |q |
l-indexF′ (8) − l-indexF (8)

that there is a path ? : F → F ′ ∈ (q �k )∗1 . If # (F,F ′) = 0, then F = F ′ and 1F : F → F ′ is
a suitable path. Otherwise, let 8max be the largest 8 ∈ N |q | such that l-indexF′ (8) > l-indexF (8).
Then, either 8max = |q | or l-indexF (8max) + 1 < l-indexF (8max + 1) since

l-indexF (8max) + 1 ≤ l-indexF′ (8max)
< l-indexF′ (8max + 1)
= l-indexF (8max + 1).
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So we can write F = Dl8maxr9E for some words D, E and 9 ∈ N∗|k | . Thus, there exists a path
generator XD,E : F → F̃ ∈ (q �k )1 where F̃ = Dr9 l8maxE . Then,

l-indexF̃ (8) =
{
l-indexF (8) if 8 ≠ 8max,
l-indexF (8max) + 1 if 8 = 8max,

so l-index F̃ ≤ l-indexF ′ and # (F̃,F ′) < # (F,F ′). Thus, by induction, we get

? ′ : F̃ → F ′ ∈ (q �k )∗1

and we build a path XD,E r0 ? ′ : F → F ′ ∈ (q �k )∗1 as wanted. �

Given 0-composable q,k ∈ P∗2 andF = F1 . . .F |q |+ |k | ∈ (q �k )0, we de�ne Inv(F) as

Inv(F) = |{(8, 9) ∈ (N∗|q |+ |k |)
2 | 8 < 9 andF8 = r8′ andF 9 = l9 ′

for some 8 ′ ∈ N∗|k | and 9 ′ ∈ N∗|q |}|.

The function Inv characterizes the length of the paths of (q �k )∗:

Lemma 4.2.4.6. Given 0-composable q,k ∈ P∗2 and ? : F → F ′ ∈ (q �k )∗1 , we have

|? | = Inv(F ′) − Inv(F) .

In particular, givenF,F ′ ∈ (q �k )0, all the paths ? : F → F ′ ∈ (q �k )∗1 have the same length.

Proof. We show this by induction on the length of ? . If ? = id1
F , then the conclusion holds.

Otherwise, ? = XD,D′ r0 A for some D,D ′ ∈ Σq,k and A : F̃ → F ′ ∈ (q �k )∗1 . Then, by induction
hypothesis, |A | = Inv(F ′)− Inv(F̃). Note that, by the de�nition of XD,D′ ,F = Dl8r9D ′ and F̃ = Dr9 l8A
for some 8 ∈ N∗|q | and 9 ∈ N∗|k | . Hence,

|? | = |A | + 1 = Inv(F ′) − Inv(F̃) + Inv(F̃) − Inv(F) = Inv(F ′) − Inv(F) . �

Given 0-composable q,k ∈ P∗2, we now prove the following coherence property for (q �k )∗:

Lemma 4.2.4.7. Let ≈ be a congruence on (q �k )∗. Suppose that, for all words D1, D2, D3 ∈ Σq,k ,
and 8, 8 ′ ∈ N∗|q | , 9, 9

′ ∈ N∗|k | such that D1l8r9D2l8′r9 ′D3 ∈ (q �k )0, we have

D1l8r9D2l8′r9 ′D3

D1r9 l8D2l8′r9 ′D3 ≈ D1l8r9D2r9 ′l8′D3

D1r9 l8D2r9 ′l8′D3

XD1,D2 l8′ r9′D3 XD1 l8 r9D2,D3

XD1r9 l8D2,D3 XD1,D2r9′ l8′D3

then, for all ?1, ?2 : E → F ∈ (q �k )∗1 , we have ?1 ≈ ?2.

Proof. We prove this by induction on |?1 |. By Lemma 4.2.4.6, we have |?1 | = |?2 |. In particular,
if ?1 = id1

E , then ?2 = id1
E . Otherwise, ?8 = @8 r0 A8 with @8 : E → E8 and A8 : E8 → F and |@8 | = 1

for 8 ∈ {1, 2}. If @1 = @2, then we conclude with the induction hypothesis on A1 and A2. Otherwise,
up to symmetry, we have @1 = XD1,D2l8′r9′D3 and @2 = XD1l8 r9D2,D3 for someD1, D2, D3 ∈ Σ∗q,k , 8, 8 ′ ∈ N∗|q |
and 9, 9 ′ ∈ N∗|k | . Let

@′1 = XD1r9 l8D2,D3 @′2 = XD1,D2r9′ l8′D3 E ′ = D1r9 l8D2r9 ′l8′D3.
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Since we have a path E
@1−→ E1

A1−→ F , by Lemma 4.2.4.5, we have l-indexE (B) ≤ l-indexF (B)
for B ∈ N∗|q | . Moreover,

l-indexE (8) < l-indexE1 (8) ≤ l-indexF (8) and l-indexE (8 ′) < l-indexE2 (8 ′) ≤ l-indexF (8 ′) .

Also, for B ∈ N∗|q | ,

l-indexE′ (B) =
{
l-indexE (B) + 1 if B ∈ {8, 8 ′},
l-indexE (B) otherwise.

From the preceding properties, we deduce that l-indexE′ (B) ≤ l-indexF (B) for B ∈ N∗|q | . Thus, by
Lemma 4.2.4.5, there is a path A ′ : E ′→ F ∈ (q �k )∗1 as in

E1

E E ′ F

E2

@′1
A1@1

@2

A ′

@′2 A2

.

Since |A8 | = |?8 | − 1 for 8 ∈ {1, 2}, by induction hypothesis, we have A8 ≈ @′8 r0 A ′ for 8 ∈ {1, 2},
which can be extended to @8 r0 A8 ≈ @8 r0 @′8 r0 A ′, since ≈ is a congruence. By hypothesis, we
have @1 r0 @′1 ≈ @2 r0 @′2, which can be extended to @1 r0 @′1 r0 A ′ ≈ @2 r0 @′2 r0 A ′. By transitivity of ≈,
we get that @1 r0 A1 ≈ @2 r0 A2, that is, ?1 ≈ ?2. �

We then apply this coherence property to [−]−,− and get that “all exchange methods are equiva-
lent”, as in:

Proposition 4.2.4.8. Given 0-composable q,k ∈ P2, for all ?1, ?2 : D → E ∈ (q � k )∗1 , we have,
in P3,

[?1]q,k = [?2]q,k .

Proof. By Lemma 4.2.4.2, for all words D1, D2, D3 ∈ Σq,k , 8, 8 ′ ∈ N∗|q | and 9, 9 ′ ∈ N∗|k | such that

D1l8r9D2l8′r9 ′D3 ∈ (q �k )0,

we have
[D1l8r9D2l8′r9 ′D3]q,k

[D1r9 l8D2l8′r9 ′D3]q,k = [D1l8r9D2r9 ′l8′D3]q,k

[D1r9 l8D2r9 ′l8′D3]q,k

[XD1,D2 l8′ r9′D3 ]q,k [XD1 l8 r9D2,D3 ]q,k

[XD1r9 l8D2,D3 ]q,k [XD1,D2r9′ l8′D3 ]q,k

.

Moreover, the relation ≈ de�ned on parallel ?1, ?2 ∈ (q �k )∗1 by

?1 ≈ ?2 when [?1]q,k = [?2]q,k

is clearly a congruence. Hence, by Lemma 4.2.4.7, we have that [?1]q,k = [?2]q,k for all parallel
paths ?1, ?2 ∈ (q �k )∗1 . �
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The preceding property says in particular that -q,k = [?]q,k for all 0-composable q,k ∈ P∗2 and
paths ? ∈ (q �k )∗1 parallel to Xq,k .

Let q,k ∈ P∗2 be 0-composable 2-cells, and q ′,k ′ ∈ P∗2 be 0-composable 2-cells such that q, q ′
andk,k ′ are 1-composable. To obtain the last required properties on-−,−, we need to relate q�k
and q ′�k ′ to (q r1 q ′) � (k r1 k ′). GivenF ∈ (q �k )0, there is a functor

F ·(−) : (q ′�k ′)∗ → ((q r1 q ′) � (k r1 k ′))∗
which is uniquely de�ned by the mappings

D ↦→ F↑(D)
XD1,D2 ↦→ -F↑(D1),↑(D2)

for D ∈ (q ′�k ′)0 and XD1,D2 ∈ (q ′�k ′)1 and where, for E = E1 . . . E: ∈ Σ∗q′,k ′ , the word

↑(E) ∈ Σ∗
q q1q′,k q1k ′

is de�ned by

↑(E)A =
{
l |q |+8 if EA = l8 for some 8 ∈ N∗|q′ | ,
r |k |+9 if EA = r9 for some 9 ∈ N∗|k ′ | ,

for A ∈ N∗
:
. Similarly, givenF ∈ (q ′�k ′)0, there is a functor

(−)·F : (q �k )∗ → ((q r1 q ′) � (k r1 k ′))∗
which is uniquely de�ned by the mappings

D ↦→ D↑(F)
XD1,D2 ↦→ XD1,D2↑(F)

for D ∈ (q �k )0 and XD1,D2 ∈ (q �k )1 and where ↑(−) is de�ned as above. The functors F ·(−)
and (−)·F satisfy the following compatibility property:

Lemma 4.2.4.9. Let q,k ∈ P∗2 be 0-composable 2-cells, and q ′,k ′ ∈ P∗2 be 0-composable 2-cells such
that q, q ′ andk,k ′ are 1-composable. GivenF ∈ (q �k )0, we have the following equalities in P∗3:

(i) [F ·(D)]q q1q′,k q1k ′ = [F]q,k r1 [D]q′,k ′ for D ∈ (q ′�k ′)0,

(ii) [F ·(?)]q q1q′,k q1k ′ = [F]q,k r1 [?]q′,k ′ for ? ∈ (q ′�k ′)∗1 .

Similarly, givenF ∈ (q ′�k ′)0, we have:

(i) [(D)·F]q q1q′,k q1k ′ = [D]q,k r1 [F]q′,k ′ for D ∈ (q �k )0,

(ii) [(?)·F]q q1q′,k q1k ′ = [?]q,k r1 [F]q′,k ′ for ? ∈ (q �k )∗1 .

Proof. We only prove the �rst part, since the second part is similar. We start by (i). We have

[F ·(D)]q q1q′,k q1k ′ = [F↑(D)]1,1q q1q′,k q1k ′ .
By a simple induction onF , we obtain

[F↑(D)]1,1
q q1q′,k q1k ′ = [F]1,1q q1q′,k q1k ′ r1 [↑(D)] |q |, |k |q q1q′,k q1k ′
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and, by other simple inductions onF and D, we get

[F]1,1
q q1q′,k q1k ′ = [F]1,1q,k = [F]q,k [↑(D)] |q |, |k |

q q1q′,k q1k ′ = [D]1,1q′,k ′ = [D]q,k
so that (i) holds.

For (ii), by induction on ? , it is su�cient to prove the equality for ? = XD1,D2 ∈ (q � k )1.
Let< = |q |, = = |k |, and

(41 r0 U1 r0 51) r1 · · · r1 (4< r0 U< r0 5<) (61 r0 V1 r0 ℎ1) r1 · · · r1 (6< r0 V< r0 ℎ<)
be the unique decomposition as sequences of rewriting steps of q andk respectively (c.f. Corol-
lary 4.1.2.5), for some 48 , 58 , 6 9 , ℎ 9 ∈ P∗1 and U8 , V 9 ∈ P2 for 8 ∈ N∗< and 9 ∈ N∗= . We then have

[F ·(XD1,D2)]q q1q′,k q1k ′ = [XF↑(D1),↑(D2) ]q q1q′,k q1k ′
= [F↑(D1)]1,1q q1q′,k q1k ′ r1 (48 r0 -U8 ,58 q069 ,V 9 r0 ℎ 9 ) r1 [↑(D2)]:; ,:Aq q1q′,k q1k ′

where 8, 9 are such that D1l8r9D2 ∈ (q ′�k ′)0 and

:; = |q | + 8 + 1 :A = |k | + 9 + 1.

By simple inductions, we obtain

[F↑(D1)]1,1q q1q′,k q1k ′ = [F]1,1q q1q′,k q1k ′ r1 [↑(D1)] |q |, |k |q q1q′,k q1k ′
= [F]1,1

q,k
r1 [D1]1,1q′,k ′

= [F]q,k r1 [D1]1,1q′,k ′
and

[↑(D2)]:; ,:Aq q1q′,k q1k ′ = [D2]8+1, 9+1q′,k ′

so that

[F ·(XD1,D2)]q q1q′,k q1k ′ = [F]q,k r1 [D1]1,1q′,k ′ r1 (48 r0 -U8 ,58 q069 ,V 9 r0 ℎ 9 ) r1 [D2]8+1, 9+1q′,k ′

= [F]q,k r1 [XD1,D2]q′,k ′ . �

We can now conclude the last required properties on -−,−:

Lemma 4.2.4.10. Given 1-composable q, q ′ ∈ P2, 1-composable k,k ′ ∈ P2 such that q,k are
0-composable, we have the following equalities in P3:

-q q1q′,k = ((q r0 m−1 (k )) r1 -q′,k ) r2 (-q,k r1 (q ′ r0 m+1 (k )))
and

-q,k q1k ′ = (-q,k r1 (m+1 (q) r0 k ′)) r2 ((m−1 (q) r0 k ) r1 -q,k ′) .
Proof. We only prove the �rst equality, since the second one is similar. By de�nition of -q q1q′,k ,
we have -q q1q′,k = [Xq q1q′,k ]q q1q′,k . Moreover, by Proposition 4.2.4.8, we have

[Xq q1q′,k ]q q1q′,k = [?]q q1q′,k
in P3 for all path ? ∈ ((q r1 q ′) �k )1 parallel to Xq q1q′,k . In particular,

[Xq q1q′,k ]q q1q′,k = [(F ·(Xq′,k )) r0 ((Xq,k )·F ′)]q q1q′,k
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where
F = l1 . . . l |q | F ′ = l1 . . . l |q′ |

are the only 0-cells of q ′� id2
m−1 (q)

and q � id2
m+1 (k )

respectively. Thus,

[Xq q1q′,k ]q q1q′,k = [(F ·(Xq′,k )) r0 ((Xq,k )·F ′)]q q1q′,k
= [(F ·(Xq′,k ))]q q1q′,k r2 [((Xq,k )·F ′)]q q1q′,k

(by functoriality of [−]q q1q′,k )
= ( [F]q,id2

m−1 (k )
r1 [Xq′,k ]q′,k ) r2 ( [Xq,k ]q,k r1 [F ′]q′,id2

m+1 (k )
)

(by Lemma 4.2.4.9)
= ((q r0 m−1 (k )) r1 -q′,k ) r2 (-q,k r1 (q ′ r0 m+1 (k ))

(by de�nition of [−]−,− and -−,−).

Hence,
-q q1q′,k = ((q r0 m−1 (k )) r1 -q′,k ) r2 (-q,k r1 (q ′ r0 m+1 (k )). �

We now prove the compatibility between 3-cells and interchangers. We start by proving the
compatibility with 3-generators:

Lemma 4.2.4.11. Given � : q V q ′ : 5 ⇒ 5 ′ ∈ P3 and k : 6 ⇒ 6′ ∈ P2 such that �,k are
0-composable, we have, in P3,

((� r0 6) r1 (5 ′ r0 k )) r2 -q′,k = -q,k r2 ((5 r0 k ) r1 (� r0 6′)) .
Similarly, given q : 5 ⇒ 5 ′ ∈ P2 and � : k V k ′ : 6⇒ 6′ such that q, � are 0-composable, we have,
in P,

-q,k r2 ((6 r0 �) r1 (q r0 5 ′)) = ((q r0 6) r1 (5 r0 �)) r2 -q,k ′ .
Proof. We only prove the �rst part of the property, since the other one is symmetric, and we do
so by an induction on |k |. If |k | = 0,k is an identity and the result follows. Otherwise,k = F r1 k̃
whereF = (; r0 U r0 A ) with ;, A ∈ P1, U : ℎ ⇒ ℎ′ ∈ P2 and k̃ ∈ P2 with |k̃ | = |k | − 1. Let 6̃ = m+1 (F).
By Lemma 4.2.4.10, we have

-q,k = (-q,F r1 (5 ′ r0 k̃ )) r2 ((5 r0 F) r1 -q,k̃ ) (4.6)

-q′,k = (-q′,F r1 (5 ′ r0 k̃ )) r2 ((5 r0 F) r1 -q′,k̃ ). (4.7)

Also, by Lemma 4.2.4.4(iv), we have

-q,F = -q,; q0U r0 A -q′,F = -q′,; q0U r0 A (4.8)

so that

((� r0 6) r1 (5 ′ r0 F)) r2 -q′,F
=

[
((� r0 ; r0 ℎ) r1 (5 ′ r0 ; r0 U)) r2 -q′,; q0U ] r0 A

=
[
-q,; q0U r2 ((5 r0 ; r0 U) r1 (� r0 ; r0 ℎ′))] r0 A

(by interchange naturality generator)
= -q,F r2 ((5 r0 F) r1 (� r0 6′)) .

(4.9)
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Thus,

((� r0 6) r1 (5 ′ r0 k )) r2 -q′,k
= ((� r0 6) r1 (5 ′ r0 F) r1 (5 ′ r0 k̃ ))r2 (-q′,F r1 (5 ′ r0 k̃ )) r2 ((5 r0 F) r1 -q′,k̃ ) (by (4.7))

=

[
(((� r0 6) r1 (5 ′ r0 F)) r2 -q′,F) r1 (5 ′ r0 k̃ )]r2 ((5 r0 F) r1 -q′,k̃ )

=

[
(-q,F r2 ((5 r0 F) r1 (� r0 6̃))) r1 (5 ′ r0 k̃ )]r2 ((5 r0 F) r1 -q′,k̃ ) (by (4.9))

= (-q,F r1 (5 ′ r0 k̃ ))r2 ((5 r0 F) r1 (� r0 6̃) r1 (5 ′ r0 k̃ )) r2 ((5 r0 F) r1 -q′,k̃ )
= (-q,F r1 (5 ′ r0 k̃ ))r2 [

(5 r0 F) r1 (((� r0 6̃) r1 (5 ′ r0 k̃ )) r2 -q′,k̃ )]
= (-q,F r1 (5 ′ r0 k̃ ))r2 [

(5 r0 F) r1 (-q′,k̃ r2 ((5 r0 k̃ ) r1 (� r0 6′)))] (by induction)

= (-q,F r1 (5 ′ r0 k̃ )) r2 ((5 r0 F) r1 (-q′,k̃ ))r2 ((5 r0 F) r1 (5 r0 k̃ ) r1 (� r0 6′))
= -q,k r2 ((5 r0 k ) r1 (� r0 6′)) (by (4.6)). �

Next, we prove the compatibility between interchangers and rewriting steps:

Lemma 4.2.4.12. Given a rewriting step ' : q V q ′ : 5 ⇒ 5 ′ ∈ P∗3 with ' = _ r1 (; r0 � r0 A ) r1 d
for some ;, A ∈ P∗1, _, d ∈ P∗2, � : ` V ` ′ ∈ P3, andk : 6⇒ 6′ ∈ P∗2 such that ',k are 0-composable,
we have, in P3,

((' r0 6) r1 (5 ′ r0 k )) r2 -q′,k = -q,k r2 ((5 r0 k ) r1 (' r0 6′)) . (4.10)

Similarly, given q ∈ P∗2 and a rewriting step ( : k V k ′ : 6⇒ 6′ ∈ P∗3 with ( = _ r1 (; r0 � r0 A ) r1 d
for some _, d ∈ P∗2, ;, A ∈ P∗1, � : a V a ′ ∈ P3 such that q, ( are 0-composable, we have, in P3,

-q,k r2 ((5 r0 �) r1 (q r0 6′)) = ((q r0 6) r1 (5 ′ r0 �)) r2 -q,k ′ .
Proof. By symmetry, we only prove the �rst part. Let

˜̀ = ; r0 ` r0 A ℎ = m−1 (`) ℎ̃ = m−1 ( ˜̀)
˜̀ ′ = ; r0 ` ′ r0 A ℎ′ = m+1 (` ′) ℎ̃′ = m+1 ( ˜̀).

We have

' r0 6 = (_ r0 6) r1 (; r0 � r0 A r0 6) r1 (d r0 6)
and, by Lemma 4.2.4.10,

-q,k = (((_ r1 ˜̀) r0 6) r1 -d,k )r2 (((_ r0 6) r1 - ˜̀,k r1 (d r0 6′)))r2 ((-_,k r1 (( ˜̀ r1 d) r0 6′))) (4.11)
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and
-q′,k = (((_ r1 ˜̀ ′) r0 6) r1 -d,k )r2 (((_ r0 6) r1 - ˜̀′,k r1 (d r0 6′)))r2 ((-_,k r1 (( ˜̀ ′ r1 d) r0 6′))). (4.12)

We start the calculation of the left-hand side of (4.10), using (4.12). We get

((' r0 6) r1 (5 ′ r0 k )) r2 (((_ r1 ˜̀ ′) r0 6) r1 -d,k )
= (_ r0 6)r1 [

((; r0 � r0 A r0 6) r1 (d r0 6) r1 (5 ′ r0 k )) r2 ((` ′ r0 6) r1 -d,k )]
= (_ r0 6)r1 [

((` r0 6) r1 -d,k ) r2 ((; r0 � r0 A r0 6) r1 (ℎ̃′ r0 k ) r1 (d r0 6′))] (by Lemma 4.2.4.2)

= ((_ r0 6) r1 ( ˜̀ r0 6) r1 -d,k )r2 ((_ r0 6) r1 (; r0 � r0 A r0 6) r1 (ℎ̃′ r0 k ) r1 (d r0 6′)).
Also, we do a step of calculation for the right-hand side of (4.10), using (4.11). We get

(-_,k r1 (( ˜̀ r1 d) r0 6′)) r2 ((5 r0 k ) r1 (' r0 6′))
= ((_ r0 6) r1 (ℎ̃ r0 k ) r1 (; r0 � r0 A r0 6′) r1 (d r0 6′))r2 (-_,k r1 ( ˜̀ ′ r0 6′) r1 (d r0 6′)) .

Finally, we do the last step of calculation between the left-hand side and the right-hand side
of (4.10). Note that

((; r0 � r0 A r0 6) r1 (ℎ̃′ r0 k )) r2 - ˜̀′,k

= ; r0 (((� r0 A r0 6) r1 (ℎ′ r0 A r0 k )) r2 -`′ q0A,k ) (by Lemma 4.2.4.4(ii))
= ; r0 (((� r0 A r0 6) r1 (ℎ′ r0 A r0 k )) r2 -`′,A q0k ) (by Lemma 4.2.4.4(iii))
= ; r0 (-`,A q0k r2 ((ℎ r0 A r0 k ) r1 (� r0 A r0 6′))) (by Lemma 4.2.4.11)
= ; r0 (-` q0A,k r2 ((ℎ r0 A r0 k ) r1 (� r0 A r0 6′))) (by Lemma 4.2.4.4(iii))

= - ˜̀,k r2 ((ℎ̃ r0 k ) r1 (; r0 � r0 A r0 6′)) (by Lemma 4.2.4.4(ii))

so that

((_ r0 6) r1 (; r0 � r0 A r0 6) r1 (ℎ̃′ r0 k ) r1 (d r0 6′)) r2 ((_ r0 6) r1 - ˜̀′,k r1 (d r0 6′))
= (_ r0 6) r1 [

((; r0 � r0 A r0 6) r1 (ℎ̃′ r0 k )) r2 - ˜̀′,k

] r1 (d r0 6′)
= (_ r0 6) r1 [

- ˜̀,k r2 ((ℎ̃ r0 k ) r1 (; r0 � r0 A r0 6′))] r1 (d r0 6′)
= ((_ r0 6) r1 - ˜̀,k r1 (d r0 6′)) r2 ((_ r0 6) r1 (ℎ̃ r0 k ) r1 (; r0 � r0 A r0 6′) r1 (d r0 6′)) .

By combining the previous equations, we obtain

((' r0 6) r1 (5 ′ r0 k )) r2 -q′,k
= ((_ r0 6) r1 (; r0 � r0 A r0 6) r1 (d r0 6) r1 (5 ′ r0 k ))r2 (((_ r1 ˜̀ ′) r0 6) r1 -d,k )r2 (((_ r0 6) r1 - ˜̀′,k r1 (d r0 6′)))
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r2 ((-_,k r1 (( ˜̀ ′ r1 d) r0 6′)))
= (((_ r1 ˜̀) r0 6) r1 -d,k )r2 (((_ r0 6) r1 - ˜̀,k r1 (d r0 6′)))r2 ((-_,k r1 (( ˜̀ r1 d) r0 6′)))r2 ((5 r0 k ) r1 (_ r0 6) r1 (; r0 � r0 A r0 6) r1 (d r0 6))
= -q,k r2 ((5 r0 k ) r1 (' r0 6′))

which is what we wanted. �

We can deduce the complete compatibility between interchangers and 3-cells:

Lemma 4.2.4.13. Given � : q V q ′ : 5 ⇒ 5 ′ ∈ P3 and k : 6 ⇒ 6′ ∈ P2 such that �,k are
0-composable, we have

((� r0 6) r1 (5 ′ r0 k )) r2 -q′,k = -q,k r2 ((5 r0 k ) r1 (� r0 6′)).
Similarly, given q : 5 ⇒ 5 ′ ∈ P2 and� : k V k ′ : 6⇒ 6′ ∈ P3 such that q,� are 0-composable, we
have

-q,k r2 ((5 r0 �) r1 (q r0 6′)) = ((q r0 6) r1 (5 ′ r0 �)) r2 -q,k ′ .
Proof. Remember that each 3-cell P can be written as a sequence of rewriting steps of P. By
induction on the length of such a sequence de�ning � or� as in the statement, we conclude using
Lemma 4.2.4.12. �

We can conclude the correctness of our de�nition of Gray presentations:

Theorem 4.2.4.14. Given a Gray presentation P, the presented precategory P is canonically a lax
Gray category.

Proof. The axioms of lax Gray category follow from Lemmas 4.2.4.2, 4.2.4.4, 4.2.4.10 and 4.2.4.13.
�

Moreover, when applying a localization operation, we obtain a (3, 2)-Gray category:

Corollary 4.2.4.15. Given a Gray presentation P, P
>
is canonically a (3, 2)-Gray category.

Proof. By Theorem 4.2.4.14 and Proposition 4.2.2.4. �

4.3 Rewriting

In this section, we introduce rewriting techniques to show coherence results (“all diagrams com-
mute”) for presented Gray categories. These techniques are obtained as generalizations of the
ones from classical rewriting theory to the setting of free precategories, where we moreover have
a relation == on pairs of parallel rewriting paths which plays the role of a witness for con�uence of
the branchings. The coherence of the Gray presentations will then be implied by the con�uence
of the “critical branchings” from the rewriting systems associated to these presentations.

We �rst de�ne the coherence property for Gray presentations (Section 4.3.1) and show how
it can be obtained from a property of con�uence on 3-precategories. Then, we adapt the elemen-
tary notions of rewriting to the setting of 3-prepolygraphs (Section 4.3.2) together with classical
results: a criterion for termination based on reduction orders (Section 4.3.3), a critical pair lemma
(Section 4.3.4) together with a �niteness property on the number of critical branchings (Sec-
tion 4.3.5). From the critical pair lemma, we deduce a coherence theorem for Gray presentations
(Theorem 4.3.4.8) that will be our main tool for the treatment of the examples of the next section.
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4.3.1 Coherence in Gray categories

Recall that the aim of this chapter is to provide tools to study the coherence of presented Gray
categories. Below, we de�ne this notion and give a �rst criterion to obtain the coherence of
(3, 2)-precategories obtained by the localization functor.

4.3.1.1 — De�nition. A 3-precategory � is coherent when, for every pair of parallel 3-cells

�1, �2 : q V k ∈ �3

we have �1 = �2. A Gray presentation P is then coherent when the underlying (3, 2)-preca-
tegory of the (3, 2)-Gray category P

> is coherent (remember that P is a lax Gray category by
Theorem 4.2.4.14, which implies that P> is a (3, 2)-Gray category by Proposition 4.2.2.4). Gray
presentations P with no other 4-generators than the independence generators and the interchange
naturality generators are usually not coherent. For example, in the Gray presentation P of pseu-
domonoids given in Example 4.2.3.3, we do not expect the following parallel 3-cells

to be equal in P
>. For coherence, we need to add “tiles” in P4 to �ll the “holes” created by parallel

3-cells as the ones above. A trivial way to do this is to add a 4-generator ' : �1 �2 for every pair
of parallel 3-cells �1 and �2 of P∗. However, this method gives quite big presentations, whereas
we aim at small ones, so that the number of axioms to verify in concrete instances is as little as
possible. We expose a better method in Section 4.3.4, in the form of Theorem 4.3.4.8: we will see
that it is enough to add a tile of the form

q

q1 == q2

k

(1 (1

�1 �2

for every critical branching ((1, (2) of P for which we chose rewriting paths �1, �2 that make the
branching ((1, (2) joinable (de�nitions are introduced below).

4.3.1.2 — Coherence from con�uence. We now show how the coherence property can be
obtained starting from 3-precategory whose 3-cells satisfy a property of con�uence, motivating
the adaptation of rewriting theory to 3-prepolygraphs in order to study the coherence of Gray
presentations. In fact, we can already prove an analogue of the Church-Rosser property coming
from rewriting theory in the context of con�uent categories.

A 3-precategory � is con�uent when, for 2-cells q, q1, q2 ∈ �2 and 3-cells

�1 : q V q1 and �2 : q V q2

of � , there exist a 2-cellk ∈ �2 and 3-cells

�1 : q1 V k ∈ �3 and �2 : q2 V k ∈ �3



300 CHAPTER 4. COHERENCE FOR GRAY CATEGORIES

of � such that �1 r2 �1 = �2 r2 �2. The 3-cells of a (3, 2)-precategory associated to a con�uent
3-precategory admits a simple form, as in:

Proposition 4.3.1.3. Given a con�uent 3-precategory � , all � : q V q ′ ∈ �>3 can be writ-
ten � = � r2 �−1 for somek ∈ �2, � : q V k ∈ �3 and � : q ′ V k ∈ �3.

The above property says that con�uent categories satisfy a “Church-Rosser property” ([BN99,
De�nition 2.1.3], for example), and is analogous to the classical result stating that con�uent
rewriting systems are Church-Rosser ([BN99, Theorem 2.1.5], for example).

Proof. By the de�nition of �>, all 3-cell � : q V q ′ ∈ �>3 can be written

� = �−1
1

r2 �1 r2 · · · r2 �−1
:

r2 �:
for some : ∈ N and 3-cells�8 : j8 V q8−1 and�8 : j8 V q8 of� for 8 ∈ N∗

:
withq0 = q andq: = q ′,

as in
j1 · · · j:

q0 q1 · · · q:−1 q:

�1 �1 �2 �:−1 �: �: .

We prove the property by induction on : . If : = 0, then � is an identity and the result follows.
Otherwise, since� is con�uent, there existsk: ∈ �2,� ′

:
: q:−1 V k: ∈ �3 and � ′

:
: q: V k: ∈ �3

with
j:

q:−1 = q:

k:

�: �:

�′
:

� ′
:

.

By induction, the morphism

�−1
1

r2 �1 r2 · · · r2 �−1
:−2

r2 �:−2 r2 �−1
:−1

r2 (�:−1 r2 � ′: )
can be written � r2 �−1 for some 2-cellk and 3-cells � : q0 V k and � : k: V k of � . Since

�: r2 � ′: = �: r2 � ′: ,

we have �−1
:

r2 �: = � ′
:
r2 � ′−1

:
. Hence,

� = � r2 �−1 r2 � ′−1
:

= � r2 (� ′: r2 � )−1

which is of the wanted form. �

Starting from a con�uent 3-precategory, we have the following simple criterion to deduce the
coherence of the associated (3, 2)-precategory:

Proposition 4.3.1.4. Let � be a con�uent 3-precategory which moreover satis�es that, for every
pair of parallel 3-cells �1, �2 : q V q ′ of � , we have �1 = �2 in the localization �>. Then, �>

is coherent. In particular, if � is a con�uent 3-precategory satisfying that, for all pair of parallel
3-cells �1, �2 : q V q ′ of � , there exists� : q ′ V q ′′ ∈ �3 such that �1 r2 � = �2 r2 � in �3, then �>

is coherent.
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Proof. Let �1, �2 : q V q ′ ∈ �>3 . By Proposition 4.3.1.3, for 8 ∈ {1, 2}, we have �8 = �8 r2 �−1
8 for

some 2-cellk8 and 3-cells �8 : q V k8 and �8 : q ′ V k8 of � , as in

k1

q q ′

k2

�1

�2

�1

�2

.

By con�uence, there are a 2-cellk and a 3-cell  8 : k8 V k of � for 8 ∈ {1, 2}, such that, in � ,

�1 r2  1 = �2 r2  2.

By the hypothesis of the statement, we have �1 r2  1 = �2 r2  2 in �> so that

�1 r2 �−1
1 = �1 r2  1 r2 (�1 r2  1)−1

= �2 r2  2 r2 (�2 r2  2)−1

= �2 r2 �−1
2 .

Hence, �1 = �2. For the last part, given parallel 3-cells �1, �2 of� , note that if �1 r2� = �2 r2� in�
for some 3-cell � , then [ (�1) = [ (�2) (where [ is the canonical 3-prefunctor � → �>). �

4.3.2 Rewriting on 3-prepolygraphs

As we have seen in the previous section, coherence can be deduced from a con�uence property
on the 3-cells of 3-precategories. Since con�uence of classical rewriting systems is usually shown
using rewriting theory, it motivates an adaptation of rewriting theory to the context of 3-prepo-
lygraphs for the purpose of studying the coherence of Gray presentations. Here, we translate the
elementary terminology and properties of rewriting theory to this context.

4.3.2.1 — Paths. Given a 3-prepolygraph P, recall from Paragraph 4.1.2.1 that a rewriting step
of P is a cell ( ∈ P∗3 of the form

( = _ r1 (; r0 � r0 A ) r1 d
for some ;, A ∈ P∗1, _, d ∈ P∗2 and � ∈ P3. For such ( , we say that � is the inner 3-generator
of ( . A rewriting path of P is a 3-cell � : q V q ′ in P∗3. Remember that, by Corollary 4.1.2.5,
such a rewriting path can be uniquely written as a composite of rewriting steps (1 r2 · · · r2 (: .
Given q,k ∈ P∗2, we say that q rewrites to k when there exists a rewriting path � : q V k .
A normal form is a 2-cell q ∈ P∗2 such that for all k ∈ P∗2 and � : q V k , we have � = id3

q
. The

3-prepolygraph P is said terminating when there does not exist an in�nite sequence of rewriting
steps �8 : q8 V q8+1 for 8 ∈ N;

4.3.2.2 — Branchings. Given a 3-prepolygraph P, a branching is a pair of rewriting paths

�1 : q V q1 and �2 : q V q2

of P; the symmetric branching of (�1, �2) is (�2, �1). The branching (�1, �2) is local when both �1
and �2 are rewriting steps; it is joinable when there exist a 2-cellk ∈ P∗2 and rewriting paths

�1 : q1 V k and �2 : q2 V k
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of P; given a congruence == on P∗, if we moreover have that �1 r2 �1 == �2 r2 �2, as in

q

q1 == q2

k

�1 �2

�1 �2

we say that the branching is con�uent for ==.

4.3.2.3 — Rewriting systems. A rewriting system (P,==) is the data of a 3-prepolygraph P to-
gether with a congruence == on P∗. (P,==) is (locally) con�uent when every (local) branching is
con�uent for ==; it is convergent when it is locally con�uent and P is terminating.

Given a 4-prepolygraph P, the rewriting system associated to P is (P≤3,∼P) (recall the de�nition
of ∼P given in Section 4.1.3) where ∼P intuitively witnesses that the “space” between two parallel
3-cells can be �lled with elementary tiles that are the elements of P4. In the following, most of
the concrete rewriting systems that we study are of this form.

4.3.2.4 — Newman’s lemma. Our de�nition of rewriting system contrasts with the classical
de�nitions of abstract or term rewriting systems, in which all pairs of parallel paths are equal.
Nevertheless, the analogues of several well-known properties of abstract rewriting systems can
be proved in our context. In particular, the classical proof by well-founded induction of Newman’s
lemma ([BN99, Lemma 2.7.2], for example), can be directly adapted in order to show that:

Theorem 4.3.2.5. A convergent rewriting system is con�uent.

Proof. Let (P,==) be a rewriting system which is convergent. LetV+ ⊆ P∗2×P∗2 be the partial order
such thatq V+ k if there exists a rewriting path � : q V k ∈ P∗3 with |� | > 0. Since the underlying
rewriting system is terminating,V+ is well-founded. Thus, we can prove the theorem by induction
onV+. So suppose given a branching �1 : q V q1 ∈ P∗3 and �2 : q V q2 ∈ P∗3. If |�1 | = 0 or |�2 | = 0,
then the branching is con�uent. Otherwise, for 8 ∈ {1, 2}, �8 = (8 r2 � ′8 for some rewriting
step (8 : q V q ′8 and rewriting path � ′8 : q ′8 V q8 . Since the rewriting system is locally con�uent,
there arek ∈ P∗2 and rewriting paths �8 : q ′8 V k for 8 ∈ {1, 2} such that (1 r2 �1 == (2 r2 �2. Since
the rewriting system is terminating and == is stable by composition, by composing the�8 ’s with a
path� : k V k ′ wherek ′ is a normal form, we can suppose thatk is a normal form. By induction
on q ′1 and q ′2, there are rewriting paths �8 : q8 V k ′8 and � ′′8 : k V k ′8 such that � ′8 r2 �8 == �8 r2 � ′′8
for 8 ∈ {1, 2}. Sincek is in normal form, � ′′8 = id3

k
and we have �8 : q8 V k for 8 ∈ {1, 2} as in

q

q ′1 q ′2

q1 k q2

==

(1 (2

� ′1 �1 �2 � ′2

�1 �2

== ==

.

Moreover,

�1 r2 �1 == (1 r2 (� ′1 r2 �1)
== (1 r2 �1
== (2 r2 �2
== (2 r2 (� ′2 r2 �2)
== �2 r2 �2. �
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Theorem 4.3.2.5 implies that, up to post-composition, all the parallel paths of a convergent rewrit-
ing system are equivalent. Later, this will allow us to apply Proposition 4.3.1.4 for showing the
coherence of Gray presentations.

Lemma 4.3.2.6. Given a convergent rewriting system (P,==) and two rewriting paths

�1, �2 : q V q ′ ∈ P∗3

of P as in
q

q ′

�1 �2

there exists � : q ′ V k ∈ P∗3 such that �1 r2 � == �2 r2 � , i.e.,
q

q ′ == q ′

k

�1 �2

� �

.

Proof. Given �1, �2 as above, since the rewriting system is terminating, there is a rewriting
path � : q ′ V k where k is a normal form. By Theorem 4.3.2.5, there exist �1 : k V k ′

and �2 : k V k ′ such that �1 r2 � r2 �1 == �2 r2 � r2 �2. Sincek is a normal form, we have

�1 = �2 = id3
k

.

Hence, �1 r2 � == �2 r2 � . �

Note that, in Lemma 4.3.2.6, we do not necessarily have

q

q ′

�1 �2==

which explains why the method we develop in this section for showing coherence will only apply
to (3, 2)-precategories, but not to general 3-precategories.

4.3.3 Termination

In this section, we give a termination criterion 3-prepolygraphs (and thus, rewriting systems)
based on a generalization of the notion of reduction order from classical rewriting theory where
we require a compatibility between the order and the composition operations of cells. We more-
over consider the speci�c case of Gray presentations and show how to handle the interchange
generators.

4.3.3.1 — Reduction orders. A reduction order for a 3-prepolygraph P is a well-founded partial
order < on P∗2 such that:

– if q > q ′ for some q, q ′ ∈ P∗2, then mn1 (q) = mn1 (q ′) for n ∈ {−, +},

– given � : q V q ′ ∈ P3, we have q > q ′,
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– given ;, A ∈ P∗1 and q, q ′ ∈ P∗2 such that ;, q, A are 0-composable and q > q ′, we have

; r0 q r0 A > ; r0 q ′ r0 A ,
– given 1-composable _, q, d ∈ P∗2, and q ′ ∈ P∗2 such that q > q ′, we have

_ r1 q r1 d > _ r1 q ′ r1 d .

One has then the following criterion to show the termination of a 3-prepolygraph:

Proposition 4.3.3.2. Given a 3-prepolygraph P, if there exists a reduction order for P, then P is
terminating.

Proof. The de�nition of a reduction order implies that, given a rewriting step _ r1 (; r0 � r0 A ) r1 d
with ;, A ∈ P∗1, _, d ∈ P∗2 and � : q V q ′ ∈ P3 suitably composable, we have

_ r1 (; r0 q r0 A ) r1 d > _ r1 (; r0 q ′ r0 A ) r1 d.
So, given a sequence of 2-composable rewriting steps (�8)8∈N: , where : ∈ N ∪ {l} and

�8 : q8 V q8+1 ∈ P∗3

for some q8 ∈ P∗2 for 8 ∈ N:+1, we have q 9 > q 9+1 for 9 ∈ N: . Since > is well-founded, it implies
that : ∈ N. Hence, P is terminating. �

4.3.3.3 — The case of Gray presentations. In order to build a reduction order for a Gray presen-
tation P, we have to build in particular a reduction order for the subset of P3 made of interchange
generators. We introduce below a su�cient criterion for the existence of such a reduction order.
The idea is to consider the lengths of the 1-cells of the whiskers in the decompositions of 2-cells
and show that they are decreasing in some way when an interchange generator is applied.

Let N<l be the set of �nite sequences of elements of N. We order N<l by <l where

(01, . . . , 0: ) <l (11, . . . , 1; )

when : = ; and there exists 8 ∈ N∗
:

such that 0 9 = 1 9 for 9 ∈ N∗8−1 and 08 < 18 . Note that <l is well-
founded. Given a 2-prepolygraph P, there is a function Int : P∗2 → N<l such that, given q ∈ P∗2,
decomposed uniquely (using Corollary 4.1.2.5) as

q = (;1 r0 U1 r0 A1) r1 · · · r1 (;: r0 U: r0 A: )
for some : ∈ N, ;8 , A8 ∈ P∗1 and U8 ∈ P2 for 8 ∈ N∗

:
, Int(q) is de�ned by

Int(q) = ( |;: |, |;:−1 |, . . . , |;1 |).

Then, Int induces a partial order <int on P∗2 by putting q <int k when mn1 (q) = mn1 (k ) for n ∈ {−, +}
and Int(q) <l Int(k ) for q,k ∈ P∗2.

Given a Gray presentation P, we say that P is positive when |m+1 (U) | > 0 for all U ∈ P2. Under
positiveness, the order <int can be considered as a reduction order for the subset of 3-generators
of a Gray presentation made of interchangers:

Proposition 4.3.3.4. Let P be a positive Gray presentation. The partial order <int has the following
properties:
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(i) for every U, V ∈ P2 and 5 ∈ P∗1 such that U, 5 , V are 0-composable,

m−2 (-U,5 ,V ) >int m
+
2 (-U,5 ,V ),

(ii) for q, q ′ ∈ P∗2 and ;, A ∈ P∗1 such that ;, q, A are 0-composable, if q >int q
′, then

; r0 q r0 A >int ; r0 q ′ r0 A ,
(iii) for q, q ′, _, d ∈ P∗2 such that _, q, d are 1-composable, if q >int q

′, then

_ r1 q r1 d >int _ r1 q ′ r1 d .
Proof. Given U, V ∈ P2 and 5 ∈ P∗1 with U, 5 , V are 0-composable, recall that -U,5 ,V is such that

-U,5 ,V : (U r0 5 r0 m−1 (V)) r1 (m+1 (U) r0 5 r0 V) V (m−1 (U) r0 5 r0 V) r1 (U r0 5 r0 m+1 (V)).
Thus, we have

Int(m−2 (- )) = ( |m+1 (U) | + |5 |, 0) and Int(m+2 (- )) = (0, |m−1 (U) | + |5 |) .

Since P is positive, we have |m+1 (U) | > 0 so that Int(m−2 (- )) >int Int(m+2 (- )). Now, (ii) and (iii) can
readily be obtained by considering the whisker representations of q and q ′ and observing the
action of ; r0 − r0 A and _ r1 − r1 d on these representations and the de�nition of Int. �

The positiveness condition is required to prevent 2-cells with “�oating components”, since Gray
presentations with such 2-cells might not terminate. For example, given a Gray presentation P
where P0 and P1 have one element and P2 has two 2-generators and , there are 2-cells of P∗
with “�oating bubbles” which induce in�nite reduction sequence with interchange generators as
the following one:

V V V V V · · ·

4.3.4 Critical branchings

In term rewriting systems, a classical result called the “critical pair lemma” states that local con�u-
ence is a consequence of the con�uence of a subset of local branchings, called critical branchings.
The latter can be described as pairs of rewrite rules that are minimally overlapping (see [BN99,
Section 6.2] for details). Here, we show a similar result for rewriting on Gray presentations. For
this purpose, we �rst give a de�nition of critical branchings similar to the one of term rewrit-
ing systems, i.e., as minimally overlapping local branchings, where we moreover �lter out some
branchings that involve interchange generators and that are readily con�uent by our de�nition
of Gray presentation. We then use this adapted critical pair lemma to prove coherence results for
Gray presentations.

4.3.4.1 — Classi�cation of branchings. Let P be a 3-prepolygraph. Given a local branching

((1 : q V q1, (2 : q V q2)

of P, we say that the branching ((1, (2) is

– trivial when (1 = (2,
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– minimal when for all other local branching (( ′1, ( ′2) such that

(8 = _ r1 (; r0 ( ′8 r0 A ) r1 d
for 8 ∈ {1, 2} for some 1-cells ;, A and 2-cells _, d , we have that ;, A , _, d are all identities,

– independent when

(1 = ((;1 r0 �1 r0 A1) r1 j r1 (;2 r0 q2 r0 A2)) (2 = ((;1 r0 q1 r0 A1) r1 j r1 (;2 r0 �2 r0 A2))

for some ;8 , A8 ∈ P∗1 and �8 : q8 V q ′8 ∈ P3 for 8 ∈ {1, 2} and j ∈ P∗2.

If moreover P = Q≤3 where Q is a Gray presentation, we say that the branching ((1, (2) is

– natural when either
(1 = (� r0 6 r0 ℎ) r1 (5 ′ r0 6 r0 V)

for some � : q V q ′ : 5 ⇒ 5 ′ ∈ P3, 6 ∈ P∗1 and V : ℎ ⇒ ℎ′ ∈ P2, and

(2 = [XD,n ]q,6 q0V with D = l1 . . . l |q |−1

or
(1 = (U r0 6′ r0 ℎ) r1 (5 ′ r0 6′ r0 �)

for some U : 5 ⇒ 5 ′ ∈ P2, 6′ ∈ P∗1 and � : k V k ′ : ℎ ⇒ ℎ′ ∈ P3, and

(2 = [Xn,E]U,6′ q0k with E = r2 . . . r |k | ,

– critical when it is minimal, and both its symmetrical branching and it are neither trivial
nor independent nor natural.

4.3.4.2 — Critical pair lemma. Let Q be a Gray presentation and write (P,==) for the rewriting
system (Q≤3,∼Q). Our next goal is to show an adapted version of the classical critical pair lemma
to our context. We start by two technical lemmas:

Lemma 4.3.4.3. For all local branching ((1, (2) of P, there is a minimal branching (( ′1, ( ′2) and
1-cells ;, A ∈ P∗1 and 2-cells _, d ∈ P∗2 such that (8 = _ r1 (; r0 ( ′8 r0 A ) r1 d for 8 ∈ {1, 2}.

Proof. We show this by induction on # ((1) where # ((1) = |m−2 ((1) | + |m−1 ((1) |. Suppose that the
property is true for all local branchings (( ′1, ( ′2) with # (( ′1) < # ((1). If ((1, (2) is not minimal,
then there are rewriting steps ( ′1, (

′
2 ∈ P∗3, ;, A ∈ P∗1 and _, d ∈ P∗2 such that (8 = _ r1 (; r0 ( ′8 r0 A ) r1 d

for 8 ∈ {1, 2}, such that ;, A , _, d are not all identities. Since

|m−1 ((1) | = |; | + |m−1 (( ′1) | + |A | and |m−2 ((1) | = |_ | + |m−2 (( ′1) | + |d |,

we have # (( ′1) < # ((1) so there is a minimal branching (( ′′1 , ( ′′2 ) and ; ′, A ′ ∈ P∗1, _′, d ′ ∈ P∗2 such
that ( ′8 = _

′ r1 (; ′ r0( ′′8 r0A ′) r1 d ′ for 8 ∈ {1, 2}. By composing with _, d, ;, A , we obtain the conclusion
of the lemma. �

Lemma 4.3.4.4. A local branching of P which is either trivial or independent or natural is con�uent.

Proof. A trivial branching is, of course, con�uent. Independent and natural branching are con�u-
ent thanks respectively to the independence generators and interchange naturality generators of
a Gray presentation. �
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The critical pair lemma adapted to our context is then:

Theorem 4.3.4.5 (Adapted critical pair lemma). The rewriting system (P,==) is locally con�uent if
and only if every critical branching is con�uent.

Proof. The �rst implication is trivial. For the converse, note that, by Lemma 4.3.4.3, in order
to check that all local branchings are con�uent, it is enough to check that all minimal local
branchings are con�uent. Among them, by Lemma 4.3.4.4, it is enough to check the con�uence
of the critical branchings. �

4.3.4.6 — Coherence results. We now state the main result of this section, namely a coherence
theorem for Gray presentations based on the analysis of the critical branchings:

Theorem 4.3.4.7 (Coherence). Let Q be a Gray presentation and (P,==) = (Q≤3,∼Q) be the asso-
ciated rewriting system. If P is terminating and all the critical branchings of (P,==) are con�uent,
then Q is a coherent Gray presentation.

Proof. By Theorem 4.3.4.5, the rewriting system (P,==) is locally con�uent, and by Theorem 4.3.2.5
it is con�uent. Since Q = P∗/==, it implies that Q is a con�uent 3-precategory. To conclude, it is
su�cient to show that the criterion in the last part of Proposition 4.3.1.4 is satis�ed. But the latter
is a consequence of Lemma 4.3.2.6. �

Note that Theorem 4.3.4.7 requires the rewriting system (P,==) to be con�uent. If it is not the
case, one can still try to apply an analogue of the Knuth-Bendix completion algorithm ([BN99,
Section 7], for example) and add 3-generators together with 4-generators to obtain a con�uent
Gray presentation, and then apply Theorem 4.3.4.7.

Our coherence theorem implies a coherence criterion similar to the ones shown by Squier et
al. [SOK94, Theorem 5.2] and Guiraud et al. [GM09, Proposition 4.3.4], which states that adding
a tile for each critical branching is enough to ensure coherence:

Theorem 4.3.4.8. LetQ be a Gray presentation and (P,==) = (Q≤3,∼Q) be the associated rewriting
system. Suppose that, for every critical branching ((1 : q V q1, (2 : q V q2) of (P,==), there exist
cells k ∈ P∗2 and �8 : q8 V k ∈ P∗3 for 8 ∈ {1, 2}, and a 4-generator � : (1 r2 �1 (2 r2 �2 ∈ Q4.
Then, Q is a coherent Gray presentation.

Proof. The de�nition of Q4 ensures that all the critical branchings are con�uent, so that Theo-
rem 4.3.4.7 applies. �

Remark 4.3.4.9. In fact, for the conclusion of Theorem 4.3.4.8 to hold, for every critical branch-
ing ((1, (2) of (P,==), it is enough to have a 4-generator� as in the statement for either ((1, (2) or
the symmetrical critical branching ((2, (1), so that a stronger statement holds.

4.3.5 Finiteness of critical branchings

In this section, we prove that Gray presentations, under some reasonable conditions, have a �nite
number of critical branchings (Theorem 4.3.5.8). This property contrasts with the case of strict
categories, where �nite presentations can have an in�nite number of critical branchings [Laf03;
GM09]. Our proof is moreover constructive, so that one can derive an algorithm to compute the
critical branchings of such Gray presentations.
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4.3.5.1 — Interchange-interchange branchings. First, we aim at showing that there is no
critical branching ((1, (2) of a Gray presentation P where both inner 3-generators of (1 and (2
are interchange generators. We begin with a technical lemma for minimal and independent
branchings:

Lemma 4.3.5.2. Given a minimal local branching ((1, (2) of a Gray presentation P, with

(8 = _8 r1 (;8 r0 �8 r0 A8) r1 d8
and ;8 , A8 ∈ P∗1, _8 , d8 ∈ P∗2, �8 ∈ P3 for 8 ∈ {1, 2}, the following hold:

(i) either _1 or _2 is an identity,

(ii) either d1 or d2 is an identity,

(iii) ((1, (2) is independent if and only if

|m−2 (�1) | + |m−2 (�2) | ≤ |m−2 ((1) | and |_1 | |d1 | = |_2 | |d2 | = 0.

If ((1, (2) is moreover not independent:

(iv) either ;1 or ;2 is an identity,

(v) either A1 or A2 is an identity.

Proof. Suppose that neither _1 nor _2 are identities. Then, since

_1 r1 (;1 r0 m−2 (�1) r0 A1) r1 d1 = _2 r1 (;2 r0 m−2 (�2) r0 A2) r1 d2,

we have _8 = F r1 _′8 for someF ∈ P∗2 and _′8 ∈ P∗2 for 8 ∈ {1, 2}, such that |F | ≥ 1, contradicting
the minimality of ((1, (2). So either _1 or _2 is an identity and similarly for d1 and d2, which
concludes (i) and (ii).

By the de�nition of independent branching, the �rst implication of (iii) is trivial. For the
converse, suppose that ((1, (2) is such that

|m−2 (�1) | + |m−2 (�2) | ≤ |m−2 ((1) | and |_1 | |d1 | = |_2 | |d2 | = 0.

We can suppose by symmetry that _1 is a unit. Since |m−2 ((1) | = |_1 | + |m−2 (�1) | + |d1 |, we have
that |m−2 (�2) | ≤ |d1 |. If |d1 | = 0, then

(1 = ;1 r0 �1 r0 A1 and |m−2 (�2) | = 0,

thus, since |_2 | |d2 | = 0, we have

either (2 = m
−
2 ((1) r1 (;2 r2 �2 r2 A2) or (2 = (;2 r2 �2 r2 A2) r1 m−2 ((1) .

In both cases, ((1, (2) is independent. Otherwise, |d1 | > 0 and, by (ii), we have |d2 | = 0 so that

(1 = (;1 r0 �1 r0 A1) r1 d1 and (2 = _2 r1 (;2 r0 �2 r0 A2) .

Since |m−2 (�2) | ≤ |d1 |, we have

d1 = j r1 (;2 r0 m−2 (�2) r0 A2)
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for some j ∈ P∗2 and, since m−2 ((1) = m−2 ((2), we get

(;1 r0 m−2 (�1) r0 A1) r1 j r1 (;2 r0 m−2 (�2) r0 A2) = _2 r1 (;2 r0 m−2 (�2) r0 A2) .

So _2 = (;1 r0 m−2 (�1) r0 A1) r1 j and hence ((1, (2) is an independent branching, which concludes
the proof of (iii).

Finally, suppose that ((1, (2) is not independent. By (iii), it implies that

either |m−2 (�1) | + |m−2 (�2) | > |m−2 ((1) | or |_1 | |d1 | > 0 or |_2 | |d2 | > 0.

If |_1 | |d1 | > 0, then |_2 | = |d2 | = 0 by (i) and (ii), so that

_1 r1 (;1 r0 �1 r0 A1) r1 d1 = ;2 r0 �2 r0 A2

thus there exists _′1, d
′
1 ∈ P∗2 such that

_1 = ;2 r0 _′1 r0 A2 and d1 = ;2 r0 d ′1 r0 A2,

and we have
;2 r0 m+1 (_′1) r0 A2 = m

+
1 (_1) = ;1 r0 m−1 (�1) r0 A1.

Thus, ;1 and ;2 have the same pre�x ; of size : = min( |;1 |, |;2 |) and we can write

(1 = ; r0 ( ′1 (2 = ; r0 ( ′2
for some rewriting steps (1, (2 ∈ P∗3. Since ((1, (2) is minimal, we have : = 0, so |;1 | |;2 | = 0. We
show similarly that |A1 | |A2 | = 0. The case where |_2 | |d2 | > 0 is handled similarly. So suppose that

|_1 | |d1 | = 0 and |_2 | |d2 | = 0 and |m−1 (�1) | + |m−1 (�2) | > |m−2 ((1) |. (4.13)

In particular, we get that |m−2 (�8) | > 0 for 8 ∈ {1, 2}. Let D8 , E8 ∈ P∗1 and U8 ∈ P2 for 8 ∈ N∗A
with A = |m−2 ((1) | such that

m−2 ((1) = (D1 r0 U1 r0 E1) r1 · · · r1 (DA r0 UA r0 EA ) .
The condition last part of (4.13) implies that there is 80 ∈ {1, 2} such that ;1 and ;2 are both pre�x
of D80 . So, ;1 and ;2 have the same pre�x ; of length : = min( |;1 |, |;2 |).
We now prove that _1 = ; r0 _′1 for some _′1 ∈ P∗2. If |_1 | = 0, then

_1 = ;1 r0 m−1 ((1) r0 A1,

so _ = ; r0 _′1 for some _′ ∈ P∗2. Otherwise, if |_1 | > 0, since |_1 | |d1 | = 0, we have |d1 | = 0 and,
by (i), |_2 | = 0. Also, by the last part of (4.13), we have |_1 | < |m−2 (�2) |. Thus,

_1 is a pre�x of ;2 r0 m−2 (�2) r0 A2,

so _1 = ; r0 _′1 for some _1 ∈ P∗2. Similarly, there are d ′1, _
′
2, d
′
2 ∈ P∗2 such that

d1 = ; r0 d ′1 and _2 = ; r0 _′2 and d2 = ; r0 _′2.
Hence (1 = ; r0 ( ′1 and (2 = ; r0 ( ′2 for some rewriting steps ( ′1, (

′
2 ∈ P∗3. Since ((1, (2) is minimal,

we have |;1 | |;2 | = |; | = 0, which proves (iv). The proof of (v) is similar. �

We now have enough material to show that:
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Proposition 4.3.5.3. Given a Gray presentation P, there are no critical branching ((1, (2) of P such
that both the inner 3-generators of (1 and (2 are interchange generators.

Proof. Let ((1, (2) be a local minimal branching such that, for 8 ∈ {1, 2},

(8 = _8 r1 (;8 r0 -U8 ,68 ,V8 r0 A8) r1 d8
for some ;8 , A8 , 68 ∈ P∗1, _8 , d8 ∈ P∗2 and U8 , V8 ∈ P2, and let q be m−2 ((1). Since |m−2 (-U1,61,V1) | = 2, we
have |q | ≥ 2.

If |q | = 2, then |_8 | = |d8 | = 0 for 8 ∈ {1, 2}. Thus, since m−2 ((1) = m−2 ((2), we get

(;1 r0 U1 r0 61 r0 m−1 (V1) r0 A1) r1 (;1 r0 m+1 (U1) r0 61 r0 V1 r0 A1)
= (;2 r0 U2 r0 62 r0 m−1 (V2) r0 A2) r1 (;2 r0 m+1 (U2) r0 62 r0 V2 r0 A2) .

By the unique decomposition property given by Theorem 4.1.2.4 and corollary 4.1.2.5, we obtain

;1 = ;2, A1 = A2, U1 = U2, V1 = V2 and 61 r0 m−1 (V1) r0 A1 = 62 r0 m−1 (V2) r0 A2.

So 61 r0 m−1 (V1) r0 A1 = 62 r0 m−1 (V1) r0 A1, which implies that 61 = 62. Hence, ((1, (2) is trivial.

If |q | = 3, then |_8 | + |d8 | = 1 for 8 ∈ {1, 2}, and, by Lemma 4.3.5.2,

either |d1 | = |_2 | = 1 or |_1 | = |d2 | = 1.

By symmetry, we can suppose that |d1 | = |_2 | = 1, which implies that |_1 | = |d2 | = 0. By unique
decomposition of whiskers (Corollary 4.1.2.5), since m−2 ((1) = m−2 ((2), we have

;1 r0 U1 r0 61 r0 m−1 (V1) r0 A1 = _2

;1 r0 m+1 (U1) r0 61 r0 V1 r0 A1 = ;2 r0 U2 r0 62 r0 m−1 (V2) r0 A2

d1 = ;2 r0 m+1 (U2) r0 62 r0 V2 r0 A2

and the second line implies that ;1 r0 m+1 (U1) r061 = ;2, V1 = U2 and A1 = 62 r0 m−1 (V2) r0A2. Since ((1, (2)
is minimal, we have |;1 | = |A2 | = 0. So

(1 = (-U1,61,V1
r0 62 r0 m−1 (V2)) r1 (m+1 (-U1,61,V1) r0 62 r0 V2)

(2 = (U1 r0 61 r0 m−1 (V1) r0 62 r0 m−1 (V2)) r1 (m+1 (U1) r0 61 r0 -V1,62,V2)

thus ((1, (2) is a natural branching, hence not a critical one.

Finally, if |q | ≥ 4, then, since |_8 | + |d8 | = |q | − 2 ≥ 2 for 8 ∈ {1, 2}, by Lemma 4.3.5.2, we have that

either |_1 | = |d2 | = |q | − 2 or |d1 | = |_2 | = |q | − 2.

In either case,

|_1 | |d1 | = |_2 | |d2 | = 0 and |m−2 (-U1,61,V1) | + |m−2 (-U2,62,V2) | = 4 ≤ |q |

so, by Lemma 4.3.5.2(iii), ((1, (2) is independent, hence not critical. �
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4.3.5.4 — Other branchings. We now consider the branchings where not both inner generators
are interchange generators. The number of critical branchings among them will be �nite given
some conditions on the Gray presentation. In the following, we denote by P a Gray presentation
such that P2 and P3 are �nite sets and |m−2 (�) | > 0 for every � ∈ P3. The �rst result we prove is a
characterization of independent branchings among minimal ones:

Lemma 4.3.5.5. Given a minimal branching ((1, (2) of P with

(8 = _8 r1 (;8 r0 �8 r0 A8) r1 d8
for some ;8 , A8 ∈ P∗1, _8 , d8 ∈ P∗2 and �8 ∈ P3 for 8 ∈ {1, 2}, we have that ((1, (2) is independent if and
only if

either |_1 | ≥ |m−2 (�2) | or |d1 | ≥ |m−2 (�2) |
(resp. either |_2 | ≥ |m−2 (�1) | or |d2 | ≥ |m−2 (�1) |).

Proof. If ((1, (2) is independent, then, by Lemma 4.3.5.2(iii),

|m−2 (�1) | + |m−2 (�2) | ≤ |_1 | + |m−2 (�1) | + |d1 | = |_2 | + |m−2 (�2) | + |d2 |,

that is,
|m−2 (�1) | ≤ |_2 | + |d2 | and |m−2 (�2) | ≤ |_1 | + |d1 |.

By hypothesis, we have |m−2 (�1) | > 0, so that |_2 | + |d2 | > 0. If |_2 | > 0, then, by Lemma 4.3.5.2(i),
we have |_1 | = 0 so that |m−2 (�2) | ≤ |d1 |. Similarly, if |d2 | > 0, then |m−2 (�2) | ≤ |_1 |, which proves
the �rst implication.

Conversely, if |_1 | ≥ |m−2 (�2) |, then, since m−2 (�2) > 0 by our hypothesis on P, we have |_1 | > 0.
By Lemma 4.3.5.2(i), we get that |_2 | = 0. Also,

|_1 | + |m−2 (�1) | + |d1 | = |m−2 (�2) | + |d2 | ≤ |_1 | + |d2 |,

so |d2 | ≥ |m−2 (�1) | + |d1 |, thus |d1 | < |d2 |. By Lemma 4.3.5.2(ii), we have |d1 | = 0. Moreover,

|m−2 (�1) | + |m−2 (�2) | ≤ |m−2 (�1) | + |_1 | = |m−2 ((1) |

hence, by Lemma 4.3.5.2(iii), ((1, (2) is independent. �

Then, we prove that minimal non-independent branchings are uniquely characterized by a small
amount of information:

Lemma 4.3.5.6. Given a minimal non-independent branching ((1, (2) of P with

(8 = _8 r1 (;8 r0 �8 r0 A8) r1 d8
for some ;8 , A8 ∈ P∗1, _8 , d8 ∈ P∗2 and�8 ∈ P3 for 8 ∈ {1, 2}, we have that ((1, (2) is uniquely determined
by �1, �2, |_1 | and |_2 |.

Proof. By Corollary 4.1.2.5, let :1, :2 ∈ N∗, D8 , D ′8 , E8 , E ′8 ∈ P∗1 and U8 , V8 ∈ P2 be unique such that

m−2 (�1) = (D1 r0 U1 r0 D ′1) r1 · · · r1 (D:1
r0 U:1

r0 D ′:1
)

and
m−2 (�2) = (E1 r0 V1 r0 E ′1) r1 · · · r1 (E:2

r0 V:2
r0 E ′:2
).
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Let 81 = 1 + |_1 | and 82 = 1 + |_2 |. Since

_1 r1 (;1 r0 m−2 (�1) r0 A1) r1 d1 = _2 r1 (;2 r0 m−2 (�2) r0 A2) r1 d2, (4.14)

and, by Lemma 4.3.5.5, |_1 | < |m−2 (�2) | and |_2 | < |m−2 (�1) |, we get

;1 r0 D82 r0 U82 r0 D ′82 r0 A1 = ;2 r0 E81 r0 V81 r0 E ′81 r0 A2

so that
;1 r0 D82 = ;2 r0 E81 and D ′82

r0 A1 = E
′
81

r0 A2.

By Lemma 4.3.5.2(iv), either ;1 or ;2 is an identity. Thus, if |D82 | ≤ |E81 |, then |;1 | ≥ |;2 | so ;2 is a
unit and ;2 is the pre�x of D82 of size |D82 | − |E81 |. Otherwise, if |D82 | ≤ |E81 |, we obtain similarly
that ;1 is the pre�x of E81 of size |E81 | − |D82 | and ;2 is a unit. In both cases, ;1 and ;2 are completely
determined by �1, �2, |_1 | and |_2 |. A similar argument holds for A1 and A2.

Now, if |_1 | > 0, by Lemma 4.3.5.2(i), |_2 | = 0. By (4.14) and since |_1 | < |m−2 (�2) |, _1 is the
pre�x of ;2 r0 m−2 (�2) r0 A2 of length |_1 |. Otherwise, if |_1 | = 0, then _1 = id2

;1 q0m−1 (�1) q0A1
. In both

cases, _1 is completely determined by �1, �2, |_1 |. A similar argument holds for _2. Note that, if
we prove that |d1 | and |d2 | are completely determined by�1,�2, |_1 | and |_2 |, the above argument
also applies to d1 and d2 and the lemma is proved. But

|_1 | + |m−2 (�1) | + |d1 | = |_2 | + |m−2 (�2) | + |d2 |,

so that if |_1 | + |m−2 (�1) | ≥ |_2 | + |m−2 (�2) |, then, by Lemma 4.3.5.2(ii), |d1 | = 0 and

|d2 | = |_1 | + |m−2 (�1) | − |_2 | − |m−2 (�2) |.

Otherwise, if |_1 | + |m−2 (�1) | ≤ |_2 | + |m−2 (�2) |, we get similarly that

|d1 | = |_2 | + |m−2 (�2) | − |_1 | − |m−2 (�1) |

and |d2 | = 0. In both cases, |d1 | and |d2 | are completely determined by�1,�2, |_1 | and |_2 |, which
concludes the proof. �

Given � ∈ P3, we say that � ∈ P3 is an operational generator if it is not an interchange generator.
We now prove that an operational generator can form a critical branching with a �nite number
of interchange generators:

Lemma 4.3.5.7. Given an operational generator �1 ∈ P3, there are a �nite number interchange
generators �2 ∈ %3 such that there is a critical branching ((1, (2) of P with

(8 = _8 r1 (;8 r0 �8 r0 A8) r1 d8
for some ;8 , A8 ∈ P∗1 and _8 , d8 ∈ P∗2 for 8 ∈ {1, 2}.

Proof. Let U, V ∈ P2, D ∈ P∗1, �2 = -U,D,V , ;8 , A8 ∈ P∗1, _8 , d8 ∈ P∗2 for 8 ∈ {1, 2}, so that ((1, (2) is a
critical branching of P with

(8 = _8 r1 (;8 r0 �8 r0 A8) r1 d8
for 8 ∈ {1, 2}. By Corollary 4.1.2.5, let : ∈ N with : ≥ 2, E8 , E ′8 ∈ P∗1, W8 ∈ P2 for 8 ∈ N∗

:
be unique

such that
m−2 (�1) = (E1 r0 W1 r0 E ′1) r1 · · · r1 (E: r0 W: r0 E ′: ).
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By Lemma 4.3.5.5, since ((1, (2) is non-independent,

2 = |m−2 (-U,D,V ) | > max( |_1 |, |d1 |).

Note that we can not have |_1 | = |d1 | = 1. Indeed, otherwise, by Lemma 4.3.5.2, we would
have |_2 | = |d2 | = 0, so that

2 = |m−2 (-U,D,V ) | = |_1 | + |m−2 (�1) | + |d1 |

and thus |m−2 (�1) | = 0, contradicting our hypothesis on the 3-generators of P. That leaves three
cases to handle.

Suppose �rst that |_1 | = |d1 | = 0. Then,

;1 r0 m−2 (�1) r0 A1 = _2 r0 (;2 r0 m−2 (-U,D,V ) r0 A2) r1 d2.

Thus,

;1 r0 E1+|_2 | r0 W1+|_2 | r0 E ′1+|_2 |
r0 A1 = ;2 r0 U r0 D r0 m−1 (V) r0 A2

;1 r0 E2+|_2 | r0 W2+|_2 | r0 E ′2+|_2 |
r0 A1 = ;2 r0 m+1 (U) r0 D r0 V r0 A2

so
W1+|_2 | = U,W2+|_2 | = V, ;2 = ;1 r0 E1+|_2 |, A2 = E

′
2+|_2 |

r0 A1

andD is the su�x of ;1 r0E2+|_2 | of length |;1 r0E2+|_2 | |− |;2 r0 m+1 (U) |. In particular,-U,D,V is completely
determined by �1 and |_2 |. And since

|_2 | = |m−2 (�1) | − |m−2 (-U,D,V ) | − |d2 | ∈ {0, . . . , |m−2 (�1) | − 2},

there is a �nite number of possible -U,D,V which induce a critical branching ((1, (2).

Suppose now that |_1 | = 1 and |d1 | = 0. Then, by Lemma 4.3.5.2, |_2 | = 0. So

_1 = ;2 r0 U r0 D r0 m−1 (V) r0 A2

and
;1 r0 E1 r0 W1 r0 E ′1 r0 A1 = ;2 r0 m+1 (U) r0 D r0 V r0 A2.

In particular, we have V = W1 and A2 = E
′
1
r0 A1, so |A1 | ≤ |A2 |. By Lemma 4.3.5.2(v), we have |A1 | = 0

and A2 = E
′
1. Note that we have |D | < |E1 |. Indeed, otherwise D = D ′ r0 E1 for some D ′ and, since

|;1 | + |E1 | = |;2 | + |m+1 (U) | + |D |,

we get that |;2 | ≤ |;1 |. By Lemma 4.3.5.2(iv), it implies that |;2 | = 0 and ;1 = m+1 (U) r0 D ′, which
gives

(1 = (U r0 D ′ r0 m−1 (�1)) r1 (m+1 (U) r0 D ′ r0 �1)

and
(2 = (-U,D′ q0E1,W1

r0 E ′1) r0 ((m+1 (U) r0 D ′) r0 ((E2 r0 W2 r0 E ′2) r1 · · · r1 (E: r0 W: r0 E ′: )))
so that ((1, (2) is a natural branching, contradicting the fact that ((1, (2) is a critical branching.
Hence, |D | < |E1 | and D is a strict su�x of E1, thus there are |E1 | such possible D. Moreover,
since P2 is �nite, there are a �nite number of possible U ∈ P2. Thus, there are a �nite number of
possible -U,D,V ∈ P2 that induces a critical branching ((1, (2) such that |_1 | = 1 and |d1 | = 0. The
case where |_1 | = 0 and |d1 | = 1 is similarly handled, which concludes the proof. �
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With the above results, we can conclude the following �niteness property for critical branchings
of Gray presentations:

Theorem 4.3.5.8. Given a Gray presentation P where P2 and P3 are �nite and |m−2 (�) | > 0 for
every � ∈ P3, there is a �nite number of critical branchings of P.

Proof. Let (8 = _8 r1 (;8 r0 �8 r0 A8) r1 d8 with ;8 , A8 ∈ P∗1, _8 , d8 ∈ P∗2 and �8 ∈ P3 for 8 ∈ {1, 2}
such that ((1, (2) is a critical branching of P. By Lemma 4.3.5.6, such a branching is uniquely
determined by �1, �2, |_1 | and |_2 |. By Lemma 4.3.5.5,

|_1 | < |m−2 (�2) | and |_2 | < |m−2 (�1) |.

Hence, for a given pair (�1, �2), there are a �nite number of tuples (;1, ;2, A1, A2, _1, _2, d1, d2)
such that ((1, (2) is a critical branching. Moreover, by Proposition 4.3.5.3, either �1 or �2 is an
operational generator. By symmetry, we can suppose that �1 is operational. Since P3 is �nite,
there is a �nite number of such�1. Moreover, there are a �nite number of pairs (�1, �2) where�2
is operational too. If �2 is an interchange generator, then, by Lemma 4.3.5.7, there are a �nite
number of possible �2 for a given �1 such that ((1, (2) is a critical branching, which concludes
the �niteness analysis. �

Remark 4.3.5.9. The proof of Theorem 4.3.5.8 happens to be constructive, so that we can extract
an algorithm to compute the critical branchings for such Gray presentations. An implementation
of this algorithm was used to compute the critical branchings of the examples of the next section.

4.4 Applications

We now illustrate the techniques of the previous section and show the coherence of Gray pre-
sentations related to several well-known algebraic structures. For each structure, we introduce a
Gray presentation and study the con�uence of the critical branchings of the associated rewriting
system. Then, when the rewriting system is terminating, we can directly apply Theorem 4.3.4.8 to
deduce the coherence of the presentation. This will be the case for pseudomonoids (Section 4.4.1),
pseudoadjunctions (Section 4.4.2) and Frobenius pseudomonoids (Section 4.4.3) even though, in
the latter example, the termination of the rewriting system is assumed. We moreover study the
example of self-dualities, where the associated rewriting system is not terminating, for which we
use speci�c techniques in order to prove a weak coherence result.

4.4.1 Pseudomonoids

In Example 4.2.3.3, we introduced a Gray presentation P for the theory of pseudomonoids. The
set P4 of 4-generators contains only the required ones in a Gray presentation, so that we do not
expect P to be coherent. Below, we compute the critical branchings of the associated rewriting
system and show that the latter is terminating. Thus, by Theorem 4.3.4.8, adding a 4-generator
corresponding to each critical branching will turn the presentation into a coherent one. Our
method thus allows recovering a coherent de�nition for pseudomonoids in Gray categories, even
though in a less compact form than the existing ones [SD97; Mar97; Lac00].

4.4.1.1 — Critical branchings. The critical branching of P can be computed by following the
proof of Theorem 4.3.5.8, which is constructive. We obtain, up to symmetrical branchings, �ve
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critical branchings:

.

We observe that each of these branchings is joinable, and we de�ne �ve formal new 4-generators
that �ll the holes:

'1 '2 '3

'4 '5 .

We then de�ne PMon as the Gray presentation obtained from P de�ned in Example 4.2.3.3 by
adding the 4-generators '1, . . . , '5 to P4.

4.4.1.2 — Termination. In order to use our coherence criterion on PMon, we need to show the
termination of the associated rewriting system. For this purpose, we use the tools of Section 4.3
and build a reduction order. We �rst de�ne an order that handles the termination of the L,R,A
generators, and then combine it with the order from Paragraph 4.3.3.3 to obtain a reduction order.
For the �rst task, we use a similar technique than the one used in [Laf92]. Given = ∈ N, we
write <∃ for the partial order on N= such that, given G,~ ∈ N= , G <∃ ~ when G8 ≤ ~8 for all 8 ∈ N∗=
and there exists 9 ∈ N∗= such that G 9 < ~ 9 . Let N-Fun be the 2-precategory

– which has only one 0-cell, denoted ∗,

– whose 1-cells ∗ → ∗ are the natural numbers = ∈ N,

– whose 2-cells< ⇒ = for<,= ∈ N are the strictly monotone functions

q : (N<, <∃) → (N=, <∃),

and whose structural operations are such that
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– id1
∗ = 0,

– composition of 1-cells is given by addition,

– given< ∈ N-Fun1, id2
< is the identity function on N< ,

– given<,=, :, : ′ ∈ N and j : : → : ′ ∈ N-Fun2, the 2-cell

< r0 j r0 = : < + : + = ⇒< + : ′ + =

is the function j ′ : N<+:+= → N<+:′+= such that, for G ∈ N<+:+= and 8 ∈ N∗
<+:′+= ,

j ′(G)8 =


G8 if 8 ≤ <,
j (G<+1, . . . , G<+: )8−< if< < 8 ≤ < + : ′,
G8−:′+: if 8 > < + : ′,

– given<,=, ? ∈ N, and 2-cells q : < ⇒ = andk : = ⇒ ? of N-Fun, q r1 k is de�ned ask ◦ q .

By checking the condition (E), one easily veri�es that N-Fun is in fact a strict 2-category. Given
natural numbers<,<′, =, =′ ∈ N, and 2-cells q : < ⇒ =,k : <′ ⇒ =′ of N-Fun, we write q <∃ k
when< =<′, = = =′ and q (G) <∃ k (G) for all G ∈ N< . We then have that:

Proposition 4.4.1.3. <∃ is well-founded on N-Fun2.

Proof. We de�ne a function # : N-Fun2 → N by

# (q) = q (I)1 + · · · + q (I)= for q : < ⇒ = ∈ N-Fun2,

where I is the =-tuple (0, . . . , 0). Now, given a 2-cell k : < ⇒ = of N-Fun2 such that k <∃ q ,
we have k (I) <∃ q (I) so that # (k ) < # (k ). Thus, the partial order <∃ on N-Fun2 is well-
founded. �

We moreover observe that the partial order <∃ is compatible with the structure of N-Fun:

Proposition 4.4.1.4. Given<,=,<′, =′, :, : ′ ∈ N, and 2-cells

` : <′⇒< a : = ⇒ =′ q, q ′ : : ⇒ : ′

of N-Fun2 such that q >∃ q ′, we have

(i) < r0 q r0 = >∃ < r0 q ′ r0 =,
(ii) ` r1 q r1 a >∃ ` r1 q ′ r1 a .

Proof. Given G ∈ N<+:+= , we have q (G<+1, . . . , G<+: ) >∃ q ′(G<+1, . . . , G<+: ) so

(< r0 q r0 =) (G) >∃ (< r0 q ′ r0 =) (G).
Thus, (i) holds. Moreover, given ~ ∈ N<′ , we have q (` (~)) >∃ q ′(` (~)). Since a is monotone, we
have a (q (` (~))) >∃ a (q ′(` (~))). Thus, (ii) holds. �
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We de�ne a 2-prefunctor
� : PMon∗2 → N-Fun

by the universal property of the 2-prepolygraph PMon≤2: � is the unique 2-prefunctor such
that � (∗) = ∗, � (1̄) = 1, � ([) = 5[ and � (`) = 5` where

5[ : N0 → N1 5` : N2 → N1

are de�ned by 5[ (()) = 1 and 5` ((G,~)) = 2G +~ + 1 for all G,~ ∈ N. The prefunctor � exhibits the
3-generators L, R and A of PMon as decreasing operations for N-Fun:

Proposition 4.4.1.5. The following hold:

(i) � (m−2 (L)) >∃ � (m+2 (L)),

(ii) � (m−2 (R)) >∃ � (m+2 (R)),

(iii) � (m−2 (A)) >∃ � (m+2 (A)),

(iv) � (m−2 (-U,<,V )) = � (m+2 (-U,<,V )) for U, V ∈ PMon2 and< ∈ N.

Proof. Let q = � (m−2 (L)) andk = � (m+2 (L)). We compute that

q (G) = (G + 3) and k (G) = (G)

for G ∈ N, so q >∃ k and (i) holds. By a similar computation, (ii) holds. Let q = � (m−2 (A))
andk = � (m+2 (A)). We compute that

q (G,~, I) = (4G + 2~ + I + 3) and k (G,~, I) = (2G + 2~ + I + 1)

for G,~, I ∈ N, so q (G,~, I) >∃ k (G,~, I) for all G,~, I ∈ N, so (iii) holds. The point (iv) is a
consequence of the fact that N-Fun is a strict 2-category. �

Recall the de�nition of Int from Paragraph 4.3.3.3. We de�ne a partial order < on PMon∗2 by
putting, for q,k ∈ PMon∗2,

q < k when � (q) <∃ � (k ) or [� (q) = � (k ) and Int(q) <l Int(k )] .

We then have that:

Proposition 4.4.1.6. The partial order < on PMon∗2 is a reduction order for PMon. In particular,
the rewriting system induced by PMon is terminating.

Proof. Let � ∈ PMon3. If � ∈ {L,R,A}, then, by Proposition 4.4.1.5, m−2 (�) > m+2 (�). Otherwise,
if � = -U,D,V for some U, V ∈ PMon2 and D ∈ PMon∗1, then, by Proposition 4.4.1.5(iv),

� (m−2 (�)) = � (m+2 (�)) and Int(m+2 (�)) <l Int(m−2 (�)) .

So m−2 (�) > m+2 (�). The other requirements for < to be a reduction order are consequences of
Proposition 4.4.1.4 and Proposition 4.3.3.4(ii)(iii). The rewriting system induced by PMon is then
terminating by Proposition 4.3.3.2. �
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4.4.1.7 — Coherence. Since the rewriting system is terminating, we can conclude using our
coherence criterion:

Theorem 4.4.1.8. PMon is a coherent Gray presentation.

Proof. By Proposition 4.4.1.6, the rewriting system induced by PMon is terminating. By Theo-
rem 4.3.4.8, since '1, . . . , '5 ∈ PMon4, PMon is a coherent Gray presentation. �

Remark 4.4.1.9. The original de�nition of pseudomonoids of [SD97] uses a smaller set of 4-gene-
rators for the presentation, namely {'1, '4}. Thus, the coherent presentations obtained using
Theorem 4.3.4.8 are not necessarily the smallest ones. The same situation happens in the setting
of strict categories [GM09], where the presentation of pseudomonoids obtained through rewriting
has �ve 4-generators, whereas the common de�nition of pseudomonoids in strict 3-categories
only requires two 4-generators: MacLane’s pentagon, which is an analogue of '1 in strict cat-
egories, and '4 (c.f. the de�nition of monoidal categories in Paragraph 1.5.1.1). Guiraud and
Malbos shows that the equalities on the 3-cells associated with '2, '3, '5 can be recovered from
the ones associated with '1 and '4. Their proof relies on the invertibility of the 3-cells, which
suggests that '1 and '4 might not be su�cient for a coherent presentation of lax pseudomonoid
expressed in lax Gray categories, where the 3-cells L,R,A are not required to be invertible. In
this lax context, it would be interesting to know whether the 4-generators '1, '2, '3, '4, '5 still
provides su�cient equalities for a coherent presentation of lax pseudomonoids and, more gener-
ally, whether rewriting techniques can be used to �nd coherent presentations in the context of
lax Gray categories.

4.4.2 Pseudoadjunctions

We now show the coherence of the Gray presentation of pseudoadjunctions introduced below.
The way we do this is again by using Theorem 4.3.4.8. However, we need a speci�c argument to
show the termination of the interchange generators on the associated rewriting system. For this
purpose, we introduce a notion of “connected” diagrams and use a result of [DV18] saying that
interchange generators terminate on such connected diagrams.

4.4.2.1 — Gray presentation. We de�ne the 3-prepolygraph for pseudoadjunctions as the 3-pre-
polygraph P such that

P0 = {x, y} P1 = {f : x→ y, g : y→ x} P2 = {[ : id1
x ⇒ f r0 g, n : g r0 f ⇒ id1

y}

where [ and n are pictured as and respectively, and P3 is de�ned by P3 = {N, N}, where

N : ([ r0 f) r1 (f r0 n) V id2
f and N: (g r0 [) r1 (n r0 b) V id2

g

which can be represented by

N : V and N: V .

We then extend P to a Gray presentation by adding 3-generators corresponding to interchange
generators and 4-generators corresponding to independence generators and interchange natural-
ity generators like we did for pseudomonoids in Example 4.2.3.3, following the de�nition of Gray
presentation given in Paragraph 4.2.3.1. For coherence, we need to add other 4-generators to P4.
Provided that P is terminating, by Theorem 4.3.4.8, it is enough to add 4-generators corresponding
to the critical branchings.
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4.4.2.2 — Critical branchings. Using the constructive proof of Theorem 4.3.5.8, we compute all
the critical branchings of P. We then obtain, up to symmetrical branchings, two critical branchings

and .

We observe that each of these branchings is joinable, and we de�ne formal new 4-generators that
�ll the holes:

'1 '2 .

We then de�ne PAdj as the Gray presentation obtained from P by adding '1 and '2 to P4.

4.4.2.3 — Connectedness. We now aim at showing that the associated rewriting system is
terminating. However, we can not build a reduction order using Proposition 4.3.3.4 to handle
interchange generators, like for the case of pseudomonoids, since P is not positive. Instead, we
invoke the result of [DV18] that states the termination of interchange generators on “connected di-
agrams”. Given a 2-prepolygraphQ , a 2-cell ofQ∗2 is connected when, intuitively, each 2-generator
on its graphical representation is accessible by a path starting from a top or bottom wire. For exam-
ple, given the 3-prepolygraph Q such that Q0 = {∗}, Q1 = {1̄} and Q2 = { : 0̄⇒ 2̄, : 2̄⇒ 0̄},
we can build the following two 2-cells of Q∗2

and

where the one on the left is connected whereas the one on the right is not, since the two 2-gene-
rators of the “bubble” can not be accessed from the top or bottom border.

A more formal de�nition of connectedness can be obtained by computing the “connected
components” of the diagram, together with a map between the top and bottom wires of the
diagram to the associated connected components. This is adequatly represented by cospans of Set.
Based on this idea, we de�ne a 2-precategory that allows to compute the connected components
of the 2-cells of Q∗, for a 2-prepolygraph Q .

We de�ne the 2-precategory CoSpan as the 2-precategory

– which has a unique 0-cell, denoted ∗,

– whose 1-cells are the natural numbers, with 0 as identity and addition as composition,

– whose 2-cells< ⇒ = are the classes of equivalent cospans N∗< ( N∗=
5 6

in Set,

where two cospans � ( �
5 6

and � ( ′ �
5 ′ 6′

are said equivalent when there
exists an isomorphism ℎ : ( → ( ′ ∈ Set such that 5 ′ = ℎ ◦ 5 and 6′ = ℎ ◦ 6. Given< ∈ CoSpan1,
the identity id2

< ∈ CoSpan2 is the cospan

N∗< N∗< N∗<
1N∗< 1N∗<
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and, given 2-cells q : <1 ⇒<2 andk : <2 ⇒<3 of CoSpan, represented by the cospans

N∗<1 ( N∗<2

5 6
and N∗<2 ( ′ N∗<3

5 ′ 6′

respectively, their composite is represented by the cospan

( ′′

( ( ′

N∗<1 N∗<2 N∗<3

ℎ ℎ′

5 6 5 ′ 6′

where the middle square is a pushout. Given q : < ⇒ = ∈ CoSpan2 represented by

N∗< ( N∗=
5 6

and ?, @ ∈ CoSpan1, the 2-cell ? r0 q r0 @ is represented by the cospan

N∗? t ( t N∗@

N∗?+<+@ N∗?+=+@

(1N∗?t5 t1N∗@ )◦\?,<,@ (1N∗?t6t1N∗@ )◦\?,=,@

where \?,A,@ : N∗?+A+@ → N∗? t N∗A t N∗@ , for A ∈ N, is the evident bijection. By checking the
condition (E), one easily veri�es that CoSpan is in fact a strict 2-category.

Given a 2-prepolygraph Q , by the universal property of 2-prepolygraph, we de�ne a 2-prefunctor

ConQ : Q∗ → CoSpan

such that

– the image of G ∈ Q0 by ConQ is ∗,

– the image of 0 ∈ Q1 by ConQ is 1,

– the image of U : 5 ⇒ 6 ∈ Q2 by ConQ is represented by the unique cospan

N∗|5 | {∗} N∗|6 |
∗ ∗ .

We can now give a formal de�nition for connectedness: a cell q ∈ Q∗2 is connected when ConQ (q)
is represented by a cospan

N∗< ( N∗=
5 6

with< = |m−1 (q) | and = = |m+1 (q) | such that 5 , 6 are jointly epimorphic. Since the latter property
is invariant by equivalences of cospan, if q is connected, then for all representant

N∗< ( N∗=
5 ′ 6′

of ConQ (q), 5 ′, 6′ are jointly epimorphic.

Connectedness is not changed by 3-generators that are similar to interchange generators, as a
consequence of the following property:
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Lemma 4.4.2.4. Let P be a 2-prepolygraph, U, V ∈ P2 and 6 ∈ P∗1 such that U,6, V are 0-composable.
Then,

ConP((U r0 6 r0 m−1 (V)) r1 (m+1 (U) r0 6 r0 V)) = ConP((m−1 (U) r0 6 r0 V) r1 (U r0 6 r0 m+1 (V))).
Proof. This is a direct consequence of the fact that CoSpan is a 2-category. �

Moreover, in the case of PAdj, the 3-generators N and Ndo not change connectedness:

Lemma 4.4.2.5. We have

ConPAdj(([ r0 f) r1 (f r0 n)) = ConPAdj(id2
f )

and

ConPAdj((g r0 [) r1 (n r0 g)) = ConPAdj(id2
g).

Proof. By calculations, we verify that

{∗}

N∗1 N∗1

∗ ∗

is a representant of both ConPAdj(([ r0 f) r1 (f r0 n)) and ConPAdj(id2
f ), so that

ConPAdj(([ r0 f) r1 (f r0 n)) = ConPAdj(id2
f )

and similarly,
ConPAdj((g r0 [) r1 (n r0 g)) = ConPAdj(id2

g). �

We now prove a technical lemma that we will use to show the connectedness of the 2-cells
in PAdj∗2:

Lemma 4.4.2.6. Let P be a 2-prepolygraph and q, q ′ ∈ P∗2 and N∗=1 ( N∗=2

5 6
be a representant

of ConP(q) for some =1, =2 ∈ N such that q, q ′ are 1-composable and 5 is surjective. Then, q r1 q ′ is
connected if and only if q ′ is connected.

Proof. Let N∗=2 ( ′ N∗=3

5 ′ 6′
be a representant of ConP(q ′) for some =2, =3 ∈ N. Then, ConP(q ′)

is represented by

N∗=1 ( ′′ N∗=3

5 ′′◦5 6′′◦6′

where ( ′′, 5 ′′ and 6′′ are de�ned by the pushout of 6 and 5 ′ as in

( ′′

( ( ′

N∗=1 N∗=2 N∗=3

5 ′′ 6′′

5 6 5 ′ 6′
.

Suppose that q ′ is connected, i.e., 5 ′ and 6′ are jointly surjective. Since 5 is surjective by hy-
pothesis and 5 ′′ and 6′′ are jointly surjective (by the universal property of pushout), we have
that 5 ′′ ◦ 5 , 6′′ ◦ 5 ′ and 6′′ ◦ 6′ are jointly surjective. Moreover,

6′′ ◦ 5 ′ = 5 ′′ ◦ 6 = 5 ′′ ◦ 5 ◦ ℎ
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where ℎ is a factorization of 6 through 5 (that exists, since 5 is supposed surjective). Thus, we
conclude that 5 ′′ ◦ 5 and 6′′ ◦ 6 are jointly surjective.

Conversely, suppose that q r1 q ′ is connected, i.e., 5 ′′ ◦ 5 and 6′′ ◦ 6 are jointly surjective and
let ~ ∈ ( ′. We have to show that ~ is in the image of 5 ′ or 6′. Recall that

( ′′ ' ((
∐

( ′)/∼

where ∼ is the equivalence relation induced by 6(G) ∼ 5 ′(G) for G ∈ N∗=2 so either~ is in the image
of 5 ′ or [~ is the only preimage of 6′′(~) by 6′′ and 6′′(~) is not in the image of 5 ′′]. In the former
case, we conclude directly, and in the latter, since 5 ′′ ◦ 5 and 6′′ ◦ 6′ are jointly surjective, there
is G ∈ N∗=3 such that 6′′ ◦ 6′(G) = 6′′(~), so that 6′(G) = ~, which is what we wanted. Thus, 5 ′
and 6′ are jointly surjective, i.e., q ′ is connected. �

We can now prove our connectedness result for pseudoadjunctions:

Proposition 4.4.2.7. For every q ∈ PAdj∗2, q is connected.

Proof. Suppose by contradiction that it is not true and let # ∈ N be the smallest such that the
set ( = {q ∈ PAdj∗2 | |q | = # and q is not connected} is not empty. Given q ∈ ( , let

(51 r0 U1 r0 ℎ1) r1 · · · r1 (5# r0 U# r0 ℎ# )
be a decomposition of q .

Note that there is at least one 8 ∈ N∗
#

such that U8 = n . Indeed, given 5 , ℎ ∈ PAdj∗1 such that 5 , [, ℎ
are 0-composable, a representant

N∗< ) N∗=
D E

of ConQ (5 r0 [ r0 ℎ) has the property that E is an epimorphism. Since epimorphisms are stable by
pushouts, given q ′ ∈ PAdj∗2 such that q ′ = (5 ′1 r0 [ r0 ℎ′1) r1 · · · r1 (5 ′: r0 [ r0 ℎ′: ) with 5 ′8 , ℎ

′
8 ∈ PAdj

∗
1

for 8 ∈ N∗
:
, a representant

N∗
<′ ) ′ N∗

=′
D′ E′

of ConPAdj(q ′) has the property that E ′ is an epimorphism (by induction on :), and in particular,q ′
is connected. So let 80 be minimal such that there is q ∈ ( with U80 = n .

Suppose �rst that 80 = 1. Then, given a representant

N∗<1 )1 N∗<2

D1 E1

of ConPAdj(51 r0 U1 r0 ℎ1), we easily check that D1 is an epimorphism. By Lemma 4.4.2.6, we deduce
that

(52 r0 U2 r0 ℎ2) r1 · · · r1 (5: r0 U: r0 ℎ: )
is not connected, contradicting the minimality of # .

Thus 80 > 1. By the de�nition of 80, we have U80−1 = [. There are then di�erent cases depending
on |580−1 |:

– if |580−1 | ≤ |580 | − 2, then, since m+1 (580−1 r0 U80−1 r0 ℎ80−1) = m−1 (580 r0 U80 r0 ℎ80), we have

580 = 580−1 r0 m+1 ([) r0 6 and ℎ80−1 = 6 r0 m−1 (n) r0 ℎ80
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for some 6 ∈ PAdj∗1. By Lemma 4.4.2.4, we have

ConPAdj(([ r0 6 r0 m−1 (n)) r1 (m+1 ([) r0 6 r0 n)) = ConPAdj((m−1 ([) r0 6 r0 n) r1 ([ r0 6 r0 m+1 (n)))
thus, by functoriality of ConPAdj, the morphism q ′ de�ned by

q ′ = (51 r0 U1 r0 ℎ1) r1 · · · r1 (580−2 r0 U80−2 r0 ℎ80−2)r1 (580−1 r0 6 r0 n r0 ℎ80) r1 (580−1 r0 [ r0 6 r0 ℎ80)r1 (580+1 r0 U80+1 r0 ℎ80+1) r1 · · · r1 (5: r0 U: r0 ℎ: )
satis�es that ConPAdj(q) = ConPAdj(q ′). So q ′ is not connected, and the (80−1)-th 2-gene-
rator in the decomposition of q ′ is n , contradicting the minimality of 80;

– if |580−1 | ≥ |580 | + 2, then the case is similar to the previous one;

– if |580−1 | = |580 | − 1, then, since ConPAdj(([ r0 f) r1 (f r0 n)) = ConPAdj(id2
f ) by Lemma 4.4.2.5,

the 2-cell q ′ de�ned by

q ′ = (51 r0 U1 r0 ℎ1) r1 · · · r1 (580−2 r0 U80−2 r0 ℎ80−2)r1 (580+1 r0 U80+1 r0 ℎ80+1) r1 · · · r1 (5: r0 U: r0 ℎ: )
satis�es ConPAdj(q) = ConPAdj(q ′) (by functoriality of ConPAdj), so that q ′ is not connected,
contradicting the minimality of # ;

– if |580−1 | = |580 | + 1, then the situation is similar to the previous one, since, by Lemma 4.4.2.5,

ConPAdj((g r0 [) r1 (n r0 g)) = ConPAdj(id2
g);

– �nally, the case |580−1 | = |580 | is impossible since

580−1 r0 m+1 (U80−1) r0 ℎ80−1 = 580
r0 m−1 (U80) r0 ℎ80

and
m+1 (U80−1) = f r0 g ≠ g r0 f = m−1 (U80) . �

4.4.2.8 — Termination. We are now able to prove the termination of the rewriting system:

Proposition 4.4.2.9. The rewriting system associated to PAdj is terminating.

Proof. Suppose by contradiction that there is a sequence (8 : q8 V q8+1 for 8 ∈ Nwith (8 rewriting
step in PAdj∗3. Since

|m−2 (N) | = |m−2 ( N) | = 2 and |m+2 (N) | = |m+2 ( N) | = 0,

if the inner 3-generator of (8 is N or N, for some 8 ∈ N, then |q8+1 | = |q8 | − 2. Since

m−2 (-U,5 ,V ) = m+2 (-U,5 ,V ) = 2

for 0-composable U ∈ PAdj2, 5 ∈ PAdj∗1, V ∈ PAdj2, it means that there is 80 ∈ N such that for 8 ∈ N
with 8 ≥ 80, the inner generator of (8 is an interchanger. By [DV18, Theorem 16], there is no
in�nite sequence of rewriting steps made of interchangers. Thus, by Proposition 4.4.2.7, there
is no in�nite sequence of rewriting steps whose inner 3-generator is an interchanger of PAdj,
contradicting the existence of ((8)8∈N. Thus, PAdj is terminating. �
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4.4.2.10 — Coherence. Finally, we can apply our coherence criterion and show that:

Theorem 4.4.2.11. PAdj is a coherent Gray presentation.

Proof. By Proposition 4.4.2.9, the rewriting system associated to PAdj is terminating. By Theo-
rem 4.3.4.8, since '1, '2 ∈ PAdj4, the conclusion follows. �

4.4.3 Frobenius pseudomonoid

We now consider the example of Frobenius pseudomonoids [Str04] that categorify the classical
notion of Frobenius algebras. Sadly, our methods do not apply to show the coherence of the
full structure since the units induce non-joinable critical branchings, so that we only consider
non-unitary Frobenius pseudomonoids. Moreover, we were not able to show termination of the
associated rewriting system, so that our coherence result is assuming termination. We still present
this partial example, hoping it might motivate the developments of termination arguments as
future works. We refer to [DV16] for a more complete treatment of the coherence of Frobenius
pseudomonoids.

4.4.3.1 — Gray presentation. We de�ne the 3-prepolygraph P of non-unitary Frobenius pseu-
domonoids as follows. We put

P0 = {∗} P1 = {1̄} P2 = {` : 2̄→ 1̄, n : 1̄→ 2̄}

where we write =̄ for the composite 1̄ r0 · · · r0 1̄ of = copies of 1̄ for = ∈ N. We picture ` and n
by and respectively, and we de�ne P3 by P3 = {N, N,A,Aco,M,Mco} where

N : V A : V M : V

N: V Aco : V Mco : V

As before, we then extend P to a Gray presentation by adding 3-generators corresponding to inter-
change generators and 4-generators corresponding to independence generators and interchange
naturality generators.

4.4.3.2 — Critical branchings and coherence. Using the constructive proof of Theorem 4.3.5.8,
we �nd nineteen critical branchings for the above Gray presentation, which induce nineteen
associated formal 4-generators '1, . . . , '19 shown on Figure 4.1. We then de�ne PFrob as the Gray
presentation obtained from P by adding to P4 the above 4-generators '1, . . . , '19. Since we were
not able to show termination, we only conclude that:

Proposition 4.4.3.3. If the rewriting system associated to PFrob is terminating, then PFrob is a
coherent Gray presentation.

Proof. This is a consequence of Theorem 4.3.4.8. �

4.4.4 Self-dualities

We now consider the last example of self-dualities, which is an untyped variant of the one of
Section 4.4.2. This example requires a special treatment since the underlying rewriting system is
not terminating, and, more fundamentally, the induces (3, 2)-Gray category is not expected to be
fully coherent. We show instead a partial coherence result by adapting the general methods of
Section 4.3.
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'1 '2 '3 '4

'5 '6

'7 '8

'9 '10

'11 '12

Figure 4.1a – The critical branchings for Frobenius pseudomonoids
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'13

'14 '15

'16 '17

'18 '19 .

Figure 4.1b – The critical branchings for Frobenius pseudomonoids
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4.4.4.1 — Gray presentation. We de�ne the 3-prepolygraph of self-dualities as the 3-prepoly-
graph P such that

P0 = {∗} P1 = {1̄ : ∗ → ∗} P2 = {[ : id∗ ⇒ 2̄, n : 2̄⇒ id∗}

where we write =̄ for the composite 1̄ r0 · · · r0 1̄ of = copies of 1̄ for = ∈ N. The 2-generators [
and n are pictured as and respectively, and P3 is de�ned by P3 = {N, N} where

N : ([ r0 1̄) r1 (1̄ r0 n) V id2
1̄ and N: (1̄ r0 [) r1 (n r0 1̄) V id2

1̄

which are pictured by
N : N and N: N .

As usual, we then extend P to a Gray presentation by adding 3-generators corresponding to inter-
change generators and 4-generators corresponding to independence generators and interchange
naturality generators. We also add the same 4-generators that we added for pseudoadjunctions

'1 '2

to P and we denote SD the resulting Gray presentation. We would like to apply Theorem 4.3.4.8
to obtain a coherence result, but it is not possible here. Indeed, SD is not terminating, since we
have the reduction

V V V V .

Moreover, this endomorphism 3-cell is not expected to be an identity, discarding hopes for the
presentation to be coherent. Following [DV16], we can still aim at showing a partial coherence
result by restricting to 2-cells which are connected (in the sense of Section 4.4.2). In this case,
termination can be shown by using the same arguments as for pseudoadjunctions. However, there
is still the problem that some critical branchings are not joinable since, for instance, we have

W V

for which there is little hope that a Knuth-Bendix completion will provide a reasonably small
presentation. However, one can obtain a rewriting system, introduced below, which is terminating
on connected 2-cells and con�uent by orienting the interchangers. Using this rewriting system,
we are able to show a partial coherence result.

4.4.4.2 — A better rewriting system. We de�ne an alternate 3-prepolygraph Q such that

Q8 = P8 for 8 ∈ {0, 1, 2} and Q3 = {N, N} t Q int
3

where Q int
3 contains, for = ∈ N, the following 3-generators, called Q-interchange generators:

- ′[,=̄,[ : V - ′[,=̄,n : V

- ′n,=̄,[ : V - ′n,=̄,n : V .
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There is a 3-prefunctor Γ : Q∗ → P
> uniquely de�ned by Γ(D) = D for 8 ∈ {0, 1, 2} and D ∈ Q∗8

and, for = ∈ N, mapping the 3-generators as follows:

N ↦→ N N↦→ N

- ′[,=̄,[ ↦→ -−1
[,=̄,[ - ′[,=̄,n ↦→ -[,=̄,n

- ′n,=̄,[ ↦→ -−1
n,=̄,n - ′n,=̄,n ↦→ -n,=̄,n .

We get a rewriting system (Q,==) by putting � == � ′ if and only if Γ(� ) = Γ(� ′) for parallel
3-cells �, � ′ ∈ Q∗3 . Note that, given � : q V q ′ ∈ Q∗3 , the 2-cell q is connected if and only if q ′ is
connected. Indeed, one easily checks that for every � ∈ Q3, we have

ConQ (m−2 (�)) = ConQ (m+2 (�))

so that ConQ (q) = ConQ (q ′).

4.4.4.3 — Termination. We �rst show a weak termination property for Q , stating that it is
terminating on connected 2-cells:

Proposition 4.4.4.4. Given a connected 2-cell q in Q∗2 , there is no in�nite sequence �8 : q8 V q8+1
where q0 = q and �8 is a rewriting step for 8 ∈ N.

Proof. Since a rewriting step whose inner 3-generator is N or Ndecrease by two the number of
2-generators in a diagram, it is enough to show that there is no in�nite sequence of composable
rewriting steps made of elements of Q int

3 . Given a 2-cell q = (<̄1 r0 U1 r0 =̄1) r1 · · · r1 (<̄:
r0 U: r0 =̄: )

of Q∗2 , with U8 ∈ Q2 and<8 , =8 ∈ N for 8 ∈ N∗
:
, we de�ne #1(q) ∈ N by

#1(q) = |{(8, 9) ∈ (N∗: )
2 | 8 < 9 and U8 = [ and U 9 = n}|.

Moreover, if we write ?, @ ∈ N: and 81, . . . , 8? , 91, . . . , 9@ ∈ N∗: for the unique integers such that

81 < · · · < 8? 91 < · · · < 9@ {81, . . . , 8? , 91, . . . , 9@} = N∗:
and U8A = [ and U 9B = n for A ∈ N∗? and B ∈ N∗@ , we de�ne #[2 (q) ∈ N? and # n

2 (q) ∈ N@ by

#
[

2 (q) = (<8? , . . . ,<81) and # n
2 (q) = (= 91, . . . , = 9@ ) .

Finally, we de�ne # (q) ∈ N1+?+@ by

# (q) = (#1(q), #[2 (q), #
n
2 (q))

and we equip N? , N@ and N1+?+@ with the lexicographical ordering <lex. Now, keeping q as above,
let

_ r1 (; r0 � r0 A ) r1 d : q ⇒ q ′ ∈ Q∗3
be a rewriting step for some ;, A ∈ Q∗1 , _, d, q ′ ∈ Q∗2 and � ∈ Q3 with

q ′ = (<̄′1 r0 U ′1 r0 =̄′1) r1 · · · r1 (<̄′: r0 U ′: r0 =̄′: )
for some U ′8 ∈ Q2 and <′8 , =

′
8 ∈ N for 8 ∈ N∗

:
. If � = - ′[,D̄,n or � = - ′n,D̄,[ for some D ∈ N,

then #1(q ′) = #1(q) − 1.
Otherwise, if � = -[,D̄,[ for some D ∈ N, then we have #1(q) = #1(q ′) and, writing A

for |_ | + 1, we have <B = <̄′B for B ∈ N∗
:
\ {A, A + 1}. Moreover, we have <′A+1 ≤ <A+1 − 2, so

that #[2 (q ′) <lex #
[

2 (q).
Otherwise, � = - ′n,D̄,n for some D ∈ N. Then #[2 (q) = #

[

2 (q ′) and, by a similar argument as
before, # n

2 (q ′) <lex #
n
2 (q). In any case, we get that # (q) <lex # (q ′). Since <lex is well-founded,

we conclude that there is no in�nite sequence of rewriting steps '8 : q8 V q8+1 for 8 ∈ N with q0
connected. �
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4.4.4.5 — Con�uence. We now aim at showing the con�uence of the branchings of Q . The idea
is to use a critical pair lemma (Theorem 4.3.4.5) and a Newman’s lemma (Theorem 4.3.2.5) adapted
to the speci�c setting of Q where the notion of critical branching is di�erent and where we only
consider connected 2-cells as sources.

We say that a branching ((1, (2) of Q is connected when m−2 ((1) is connected. We say that
it is Q-critical when it is local, minimal, not trivial and not independent. We �rst state adapted
versions of the critical pair lemma and Newman’s lemma to the setting of Q:

Lemma 4.4.4.6. If all connected Q-critical branchings ((1, (2) of (Q,==) are con�uent, then all
connected local branchings of (Q,==) are con�uent.

Proof. By a direct adaptation of the proof of Theorem 4.3.4.5 to connected 2-cells and rewriting
steps between connected 2-cells. �

Lemma 4.4.4.7. If all connected local branchings of (Q,==) are con�uent, then all connected branch-
ings of (Q,==) are con�uent.

Proof. By a direct adaptation of Theorem 4.3.2.5 to connected 2-cells and rewriting steps between
connected 2-cells, using Proposition 4.4.4.4. �

By the above properties, in order to deduce the con�uence of the branchings of Q , it is enough to
check that the critical branchings of Q are con�uent, fact that we verify in the following property:

Lemma 4.4.4.8. The connected Q-critical branchings of (Q,==) are con�uent.

Proof. We �rst consider the Q-critical branchings ((1, (2) that are structural-structural, i.e., such
that the inner 3-generators of (1 and (2 are Q-interchange generators. We classify them as
separated, half-separated and not separated. There are eight kinds of separated structural-structural
Q-critical branchings listed below:

(1) W V

(2) W V

(3) W V

(4) W V

(5) W V

(6) W V

(7) W V

(8) W V .
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Each one can be shown con�uent for == by considering the con�uence of a natural branching in
the rewriting system (SD≤3,∼SD). For example, (5) is joinable as follows:

.

Up to inverses, it corresponds to the following con�uent natural branching of (SD,∼SD):

∼SD .

By the de�nition of ==, (5) is then con�uent for ==. The other kinds of separated structural-structural
Q-critical branchings are con�uent by similar arguments.

There are four kinds of half-separated structural-structural Q-critical branchings listed here

(1) W V

(2) W V

(3) W V

(4) W V .

Each one can be shown con�uent for == by considering the con�uence of a natural branching
in (SD≤3,∼SD). For example, (1) is joinable as follows

.
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Up to inverses, it corresponds to the following con�uent natural branching of (SD≤3,∼SD):

∼SD .

By de�nition of ==, it implies that (1) is con�uent for ==.

There are two kinds of not separated structural-structural Q-critical branchings listed below:

(1) W V

(2) W V

.

They are not con�uent but they are not connected branchings.
We now consider structural-operational Q-critical branchings, i.e., those Q-critical branch-

ings ((1, (2) such that the inner 3-generator of (1 is a Q-interchange generator and the inner
3-generator of (2 is N or N. We classify them as separated and half-separated. There are four
kinds of separated structural-operational Q-critical branchings listed below:

(1) W V

(2) W V

(3) W V

(4) W V .

Each one can be shown con�uent by considering a natural branching of (SD≤3,∼SD), like was
done above.

There are two kinds of half-separated structural-operational Q-critical branchings listed below:

(1) W V

(2) W V .

As above, each one of them can be proved con�uent by considering the associated critical branch-
ing in (SD≤3,∼SD).

Note that there are no operational-operational Q-critical branching, i.e., Q-critical branch-
ings ((1, (2) where the inner 3-generators of both (1 and (1 are in {N, N}. Hence, all connected
Q-critical branchings are con�uent. �
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We can conclude the following weak con�uence property:

Proposition 4.4.4.9. All the connected branchings of (Q,==) are con�uent.

Proof. By Lemmas 4.4.4.6 to 4.4.4.8. �

4.4.4.10 — Coherence. In order to obtain a weak coherence property for SD, we �rst state several
adapted versions of the properties of Section 4.3.1 to the setting of connected 2-cells:

Lemma 4.4.4.11. Given � : q V q ′ ∈ Q>3 where either q or q ′ is connected, we have � = � r2 �−1

for some � : q V k and � : q ′ V k .

Proof. By a direct adaptation of Proposition 4.3.1.3 involving connected 2-cells only, and using
Proposition 4.4.4.9. �

Lemma 4.4.4.12. Given �1, �2 : q V q ′ ∈ Q3, if q is connected, then �1 = �2 in Q
>
3 .

Proof. Since q is connected, q ′ is connected. By Proposition 4.4.4.4, there is � : q ′ V k ∈ Q3
such that k is a normal form for Q . By Proposition 4.4.4.9, there is �1, �2 : k V k ′ ∈ Q3 such
that �1 r2 � r2 �1 = �1 r2 � r2 �2. Since k is a normal form, �1 = �2 = id

k
. So �1 r2 � = �2 r2 � ,

thus �1 = �2 in Q
>
3 . �

Lemma 4.4.4.13. Given �1, �2 : q V q ′ ∈ Q>3 , if q is connected, then �1 = �2 in Q
>
3 .

Proof. By directly adapting the proof of Proposition 4.3.1.4, using Lemmas 4.4.4.11 and 4.4.4.12. �

We can now conclude with a weak coherence property for SD:

Theorem 4.4.4.14. Given �1, �2 : q V q ′ ∈ SD>3 with q or q ′ connected, we have �1 = �2.

Proof. Let Γ′ : Q> → SD
> be the 3-prefunctor which is the factorization of Γ through the canoni-

cal 3-prefunctor (Q≤3)∗ → Q
>. By de�nition of SD>, for 8 ∈ {1, 2}, we have

�8 = �8,1 r2 �−1
8,1

r2 · · · r2 �8,:8 r2 �−1
8,:8

for some :8 ∈ N, 2-cells q8,0, . . . , q8,:8 ,k8,1, . . . ,k8,:8 ∈ Q∗2 such that q8,0 = q and q8,:8 = q ′, and,
for 9 ∈ N∗

:8
, 3-cells

�8, 9 : q8, 9−1 V k8, 9 and �8, 9 : q8, 9 V k8, 9

of SD3. Since either q or q ′ is connected, we have that all the q8, 9 ’s and thek8, 9 ’s are connected.
Moreover, all the �8, 9 ’s and the �8, 9 ’s are in the image of Γ′. So, for 8 ∈ {1, 2}, �8 = Γ′(� ′8 ) for
some � ′8 : q V q ′ ∈ Q>. By Lemma 4.4.4.13, we have � ′1 = �

′
2, so that �1 = �2. �



Bibliography

[AR94] Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories. London
Mathematical Society Lecture Notes Series 189. Cambridge University Press, 1994.

[ABS00] Fahd A. Al-Agl, Ronald Brown, and Richard Steiner. Multiple categories: the equiva-
lence of a globular and a cubical approach. 2000. arXiv: math/0007009.

[AM16] Dimitri Ara and Georges Maltsiniotis. Joint et tranches pour les l-catégories strictes.
2016. arXiv: 1607.00668.

[AM18] Dimitri Ara and Georges Maltsiniotis. “Un théorème A de Quillen pour les∞-catégo-
ries strictes I : la preuve simpliciale”. In: Advances in Mathematics 328 (2018), pp. 446–
500.

[AK00] Chris J. Ash and Julia Knight. Computable Structures and the Hyperarithmetical Hier-
archy. Studies in Logic and the Foundations of Mathematics 144. Elsevier, 2000.

[BN99] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University
Press, 1999.

[BS10] John Baez and Mike Stay. “Physics, topology, logic and computation: a Rosetta Stone”.
In: New structures for physics. 2010, pp. 95–172.

[BKV16] Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. “Globular: an online proof assistant
for higher-dimensional rewriting”. In: Leibniz International Proceedings in Informatics
(LIPIcs). Vol. 52. 2016, 34:1–34:11. arXiv: 1612.01093.

[BV17] Krzysztof Bar and Jamie Vicary. “Data structures for quasistrict higher categories”.
In: 32nd Annual Symposium on Logic in Computer Science (LICS). 2017, pp. 1–12. arXiv:
1610.06908.

[Bat98a] Michael A. Batanin. “Computads for �nitary monads on globular sets”. In: Contem-
porary Mathematics 230 (1998), pp. 37–58.

[Bat98b] Michael A. Batanin. “Monoidal globular categories as a natural environment for the
theory of weak =-categories”. In: Advances in Mathematics 136.1 (1998), pp. 39–103.

[Bec67] Jonathan M. Beck. “Triples, algebras and cohomology”. PhD thesis. Columbia Univer-
sity, United States of America, 1967.

[Bén67] Jean Bénabou. “Introduction to bicategories”. In: Reports of the midwest category sem-
inar. 1967, pp. 1–77.

333

https://arxiv.org/abs/math/0007009
https://arxiv.org/abs/1607.00668
https://arxiv.org/abs/1612.01093
https://arxiv.org/abs/1610.06908


334 BIBLIOGRAPHY

[Ber99] Clemens Berger. “Double loop spaces, braided monoidal categories and algebraic
3-type of space”. In: Contemporary Mathematics 227 (1999), pp. 49–66.

[Bir84] Greg J. Bird. “Limits in 2-categories of locally-presented categories”. PhD thesis. Uni-
versity of Sydney, Australia, 1984.

[Bor94a] Francis Borceux. Handbook of Categorical Algebra. Vol. 1: Basic Category Theory. En-
cyclopedia of Mathematics and its Applications 50. Cambridge University Press, 1994.

[Bor94b] Francis Borceux. Handbook of Categorical Algebra. Vol. 2: Categories and Structures.
Encyclopedia of Mathematics and its Applications 51. Cambridge University Press,
1994.

[Bou07] Nicolas Bourbaki. Algèbre. Chapitres 1 à 3. Éléments de mathématique. Springer, 2007.
[Buc15] Mitchell Buckley. “A formal veri�cation of the theory of parity complexes”. In: Journal

of Formalized Reasoning 8.1 (2015), pp. 25–48.
[Bur93] Albert Burroni. “Higher-dimensional word problems with applications to equational

logic”. In: Theoretical Computer Science 115.1 (1993), pp. 43–62.
[Bur12] Albert Burroni. “Automates et grammaires polygraphiques”. In:Diagrammes 67 (2012),

pp. 9–32.
[Cam16] Alexander Campbell. “A higher categorical approach to Giraud’s non-abelian coho-

mology”. PhD thesis. Macquarie University, Australia, 2016.
[Chu36] Alonzo Church. “An unsolvable problem of elementary number theory”. In: American

journal of mathematics 58.2 (1936), pp. 345–363.
[CM17] Pierre-Louis Curien and Samuel Mimram. Coherent presentations of monoidal cate-

gories. 2017. arXiv: 1705.03553.
[Deh11] Max Dehn. “Über unendliche diskontinuierliche Gruppen”. In: Mathematische An-

nalen 71 (1911), pp. 116–144.
[DV18] Antonin Delpeuch and Jamie Vicary. Normalization for planar string diagrams and a

quadratic equivalence algorithm. 2018. arXiv: 1804.07832.
[Dos18] Matěj Dostál. “Two-dimensional universal algebra”. PhD thesis. Czech Technical Uni-

versity in Prague, Czech Republic, 2018.
[DV16] Lawrence Dunn and Jamie Vicary. Coherence for Frobenius pseudomonoids and the

geometry of linear proofs. 2016. arXiv: 1601.05372.
[Ehr65] Charles Ehresmann. Catégories et structures. Dunod, 1965.
[EM42] Samuel Eilenberg and Saunders MacLane. “Natural isomorphisms in group theory”.

In: Proceedings of the National Academy of Sciences of the United States of America
28.12 (1942), p. 537.

[EM45] Samuel Eilenberg and Saunders MacLane. “General theory of natural equivalences”.
In: Transactions of the American Mathematical Society 58.2 (1945), pp. 231–294.

[FM19] Simon Forest and Samuel Mimram. “Describing free l-categories”. In: 34th Annual
Symposium on Logic in Computer Science (LICS). 2019, pp. 1–13.

[GU06] Peter Gabriel and Friedrich Ulmer. Lokal präsentierbare Kategorien. Lecture Notes in
Mathematics 221. Springer, 2006.

[GGM15] Stéphane Gaussent, Yves Guiraud, and Philippe Malbos. “Coherent presentations of
Artin monoids”. In: Compositio Mathematica 151.5 (2015), pp. 957–998. arXiv: 1203.
5358.

https://arxiv.org/abs/1705.03553
https://arxiv.org/abs/1804.07832
https://arxiv.org/abs/1601.05372
https://arxiv.org/abs/1203.5358
https://arxiv.org/abs/1203.5358


BIBLIOGRAPHY 335

[Göd34] Kurt Gödel. On undecidable propositions of formal mathematical systems. Notes by
Stephen C. Kleene and Barkely Rosser of lectures given at the Institute for Advanced
Study. 1934.

[GPS95] Robert Gordon, A. John Power, and Ross Street. Coherence for Tricategories. Memoirs
of the American Mathematical Society 558. American Mathematical Society, 1995.

[Gra06] John W. Gray. Formal Category Theory: Adjointness for 2-Categories. Lecture Notes in
Mathematics 391. Springer, 2006.

[Gue20] Léonard Guetta. “Polygraphs and discrete Conduchél-functors”. In:Higher Structures
4.2 (2020).

[GM09] Yves Guiraud and Philippe Malbos. “Higher-dimensional categories with �nite deriva-
tion type”. In: Theory and Applications of Categories 22.18 (2009), pp. 420–478.

[GM12] Yves Guiraud and Philippe Malbos. “Coherence in monoidal track categories”. In:
Mathematical Structures in Computer Science 22.6 (2012), pp. 931–969.

[GM18] Yves Guiraud and Philippe Malbos. “Polygraphs of �nite derivation type”. In: Mathe-
matical Structures in Computer Science 28.2 (2018), pp. 155–201. arXiv: 1402.2587.

[GMM13] Yves Guiraud, Philippe Malbos, and Samuel Mimram. “A homotopical completion pro-
cedure with applications to coherence of monoids”. In: 24th International Conference
on Rewriting Techniques and Applications (RTA). Vol. 21. 2013, pp. 223–238.

[Gur06] M. Nick Gurski. “An algebraic theory of tricategories”. PhD thesis. University of
Chicago, United States of America, 2006.

[Gur13] M. Nick Gurski. Coherence in Three-Dimensional Category Theory. Cambridge Tracts
in Mathematics 201. Cambridge University Press, 2013.

[Had18] Amar Hadzihasanovic.A combinatorial-topological shape category for polygraphs. 2018.
arXiv: 1806.10353.

[Har98] Valentina S. Harizanov. “Pure computable model theory”. In: Studies in Logic and the
Foundations of Mathematics 138. Elsevier, 1998, pp. 3–114.

[Hen17] Simon Henry. Non-unital polygraphs form a presheaf category. 2017. arXiv: 1711.
00744.

[Hen18] Simon Henry. Regular polygraphs and the Simpson conjecture. 2018. arXiv: 1807 .
02627.

[Jan84] Matthias Jantzen. “Thue systems and the Church-Rosser property”. In: International
Symposium on Mathematical Foundations of Computer Science. 1984, pp. 80–95.

[Joh87] Michael S. J. Johnson. “Pasting diagrams in =-categories with applications to coher-
ence theorems and categories of paths”. PhD thesis. University of Sydney, Australia,
1987.

[Joh89] Michael S. J. Johnson. “The combinatorics of =-categorical pasting”. In: Journal of
Pure and Applied Algebra 62.3 (1989), pp. 211–225.

[Joy02] André Joyal. “Quasi-categories and Kan complexes”. In: Journal of Pure and Applied
Algebra 175.1-3 (2002), pp. 207–222.

[JK06] André Joyal and Joachim Kock. Weak units and homotopy 3-types. 2006. arXiv: math/
0602084.

[JS93] André Joyal and Ross Street. “Braided tensor categories”. In: Advances in Mathematics
102.1 (1993), pp. 20–78.

https://arxiv.org/abs/1402.2587
https://arxiv.org/abs/1806.10353
https://arxiv.org/abs/1711.00744
https://arxiv.org/abs/1711.00744
https://arxiv.org/abs/1807.02627
https://arxiv.org/abs/1807.02627
https://arxiv.org/abs/math/0602084
https://arxiv.org/abs/math/0602084


336 BIBLIOGRAPHY

[KV91a] Mikhail Kapranov and Vladimir Voevodsky. “∞-groupoids and homotopy types”. In:
Cahiers de Topologie et Géométrie Di�érentielle Catégoriques 32.1 (1991), pp. 29–46.

[KV91b] Mikhail Kapranov and Vladimir Voevodsky. “Combinatorial-geometric aspects of
polycategory theory: pasting schemes and higher Bruhat orders (list of results)”. In:
Cahiers de Topologie et Géométrie Di�érentielle Catégoriques 32.1 (1991), pp. 11–27.

[KS06] Masaki Kashiwara and Pierre Schapira.Categories and Sheaves. Grundlehren der math-
ematischen Wissenschaften 332. Springer, 2006.

[Kel82] G. Max Kelly. Basic Concepts of Enriched Category Theory. London Mathematical
Society Lecture Notes Series 64. Cambridge University Press, 1982.

[Knu72] Donald E. Knuth. “Ancient babylonian algorithms”. In: Communications of the ACM
15.7 (1972), pp. 671–677.

[Lac00] Stephen Lack. “A coherent approach to pseudomonads”. In: Advances in Mathematics
152.2 (2000), pp. 179–202.

[Laf92] Yves Lafont. “Penrose diagrams and 2-dimensional rewriting”. In: Applications of
Categories in Computer Science 177 (1992), pp. 191–201.

[Laf95] Yves Lafont. “A new �niteness condition for monoids presented by complete rewriting
systems”. In: Journal of Pure and Applied Algebra 98.3 (1995), pp. 229–244.

[Laf03] Yves Lafont. “Towards an algebraic theory of boolean circuits”. In: Journal of Pure
and Applied Algebra 184.2 (2003), pp. 257–310.

[Lei98] Tom Leinster. General operads and multicategories. 1998. arXiv: math/9810053.

[Lei04] Tom Leinster. Higher Operads, Higher Categories. London Mathematical Society Lec-
ture Notes Series 298. Cambridge University Press, 2004.

[Mac63] Saunders MacLane. “Natural associativity and commutativity”. In: Rice University
Studies 49.4 (1963).

[Mac13] Saunders MacLane. Categories for the Working Mathematician. Graduate Texts in
Mathematics 5. Springer, 2013.

[MP85] Saunders MacLane and Robert Paré. “Coherence for bicategories and indexed cate-
gories”. In: Journal of Pure and Applied Algebra 37 (1985), pp. 59–80.

[Mak05] Michael Makkai. The word problem for computads. 2005.

[MP89] Michael Makkai and Robert Paré. Accessible Categories: The Foundations of Categorical
Model Theory. Vol. 104. American Mathematical Society, 1989.

[Mar47] Andreï A. Markov. “Невозможность некоторых алгорифмов в теории ассоци-
ативных систем (Impossibility of certain algorithms in the theory of associative
systems)”. In: Доклады Академии наук СССР 55 (1947), pp. 587–590.

[Mar97] Francisco Marmolejo. “Doctrines whose structure forms a fully faithful adjoint string”.
In: Theory and Applications of Categories 3.2 (1997), pp. 24–44.

[Mét08] François Métayer. “Co�brant objects among higher-dimensional categories”. In: Ho-
mology, Homotopy and Applications 10.1 (2008), pp. 181–203.

[Mim14] Samuel Mimram. “Towards 3-dimensional rewriting theory”. In: Logical Methods in
Computer Science (LMCS) 10.1 (2014), pp. 1–47. arXiv: 1403.4094.

[Ngu17] Christopher Nguyen. “Parity structure on associahedra and other polytopes”. PhD
thesis. Macquarie University, Australia, 2017.

https://arxiv.org/abs/math/9810053
https://arxiv.org/abs/1403.4094


BIBLIOGRAPHY 337

[Nov55] Pyotr S. Novikov. “Об алгоритмической неразрешимости проблемы тождества
слов в теории групп (On the algorithmic unsolvability of the word problem in group
theory)”. In: Труды Математического института имени В.А. Стеклова СССР 44
(1955), pp. 3–143.

[PV07] Erik Palmgren and Steven J. Vickers. “Partial Horn logic and cartesian categories”. In:
Annals of Pure and Applied Logic 145.3 (2007), pp. 314–353.

[Pen99] Jacques Penon. “Approche polygraphique des∞-catégories non strictes”. In: Cahiers
de Topologie et Géométrie Di�érentielle Catégoriques 40.1 (1999), pp. 31–80.

[Pos47] Emil L. Post. “Recursive unsolvability of a problem of Thue”. In: The Journal of Sym-
bolic Logic 12.1 (1947), pp. 1–11.

[Pow91] A. John Power. “An=-categorical pasting theorem”. In: Category theory. 1991, pp. 326–
358.

[Rog87] Hartley Rogers Jr. Theory of Recursive Functions and E�ective Computability. MIT
Press, 1987.

[Sim98] Carlos Simpson. Homotopy types of strict 3-groupoids. 1998. arXiv: math/9810059.
[Sim11] Carlos Simpson. Homotopy Theory of Higher Categories. From Segal Categories to =-Ca-

tegories and Beyond. New Mathematical Monographs 19. Cambridge University Press,
2011.

[Sko23] Thoralf Skolem. Begründung der elementaren Arithmetik durch die rekurrierende Denk-
weise ohne Anwendung scheinbarer Veränderlichen mit unendlichem Ausdehnungsbere-
ich. Dybusach, 1923.

[Squ87] Craig C. Squier. “Word problems and a homological �niteness condition for monoids”.
In: Journal of Pure and Applied Algebra 49.1-2 (1987), pp. 201–217.

[SOK94] Craig C. Squier, Friedrich Otto, and Yuji Kobayashi. “A �niteness condition for rewrit-
ing systems”. In: Theoretical Computer Science 131.2 (1994), pp. 271–294.

[Ste04] Richard Steiner. “Omega-categories and chain complexes”. In: Homology, Homotopy
and Applications 6.1 (2004), pp. 175–200.

[Str72] Ross Street. “The formal theory of monads”. In: Journal of Pure and Applied Algebra
2.2 (1972), pp. 149–168.

[Str76] Ross Street. “Limits indexed by category-valued 2-functors”. In: Journal of Pure and
Applied Algebra 8.2 (1976), pp. 149–181.

[Str87] Ross Street. “The algebra of oriented simplexes”. In: Journal of Pure and Applied
Algebra 49.3 (1987), pp. 283–335.

[Str91] Ross Street. “Parity complexes”. In: Cahiers de Topologie et Géométrie Di�érentielle
Catégoriques 32.4 (1991), pp. 315–343.

[Str94] Ross Street. “Parity complexes: corrigenda”. In: Cahiers de Topologie et Géométrie
Di�érentielle Catégoriques 35.4 (1994), pp. 359–361.

[Str96] Ross Street. “Categorical structures”. In: Handbook of Algebra. Vol. 1. 1996, pp. 529–
577.

[Str04] Ross Street. “Frobenius monads and pseudomonoids”. In: Journal of Mathematical
Physics 45.10 (2004), pp. 3930–3948.

[SD97] Ross Street and Brian Day. “Monoidal bicategories and Hopf algebroids”. In: Advances
in Mathematics 129 (1997), pp. 99–157.

https://arxiv.org/abs/math/9810059


338 BIBLIOGRAPHY

[Ter03] Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science
55. Cambridge University Press, 2003.

[Thu14] Axel Thue. “Probleme über Veränderungen von Zeichenreihen nach gegebenen Re-
geln”. In: Christiana Videnskabs-Selskabs Skrifter: Mathematisk-naturwidenskabelig
klasse. 10. 1914.

[Tur36] Alan M. Turing. “On computable numbers, with an application to the Entschei-
dungsproblem”. In: Proceedings of the London Mathematical Society (2) 42.1 (1936),
pp. 230–265.

[Tur37] Alan M. Turing. “Computability and _-de�nability”. In: The Journal of Symbolic Logic
2.4 (1937), pp. 153–163.

[Web09] Mark Weber. Free products of higher operad algebras. 2009. arXiv: 0909.4722.

https://arxiv.org/abs/0909.4722


Index

activation, 216
acyclic, 194
adjunction, 20
algebra over a monad, 10
algebraic higher category, 2
arity of a symbol, 5
atom

of a pre-adc, 207
of a pre-pasting scheme, 202
of an l-hypergraph, 197

augmentation, 205
augmented directed complex (adc), 205

basis of an adc, 205
bicategory, 2
boundary operator, 205
branching, 301

cartesian monoidal structure, 78
categorical action, 104
:-category, 14
category of elements, 175
cell

of a :-category, 14
of a (pre-)adc, 206
of an l-hypergraph, 196

:-cellular extension, 40
closed fgs, 202
closed-well-formed, 244
code

of a categorical action, 141
of a cellular extension, 141
of a function, 132

of a function w.r.t. encodings, 134
of a globular set, 140
of a precategory, 141
of a strict category, 140
relatively to an encoding, 134

co�nal functor, 17
coherence cell, 2
coherent

3-precategory, 299
Gray presentation, 299

comparison functor, 11
composable, 13, 268
composition operation

for (pre-)adc cells, 207
for l-hypergraph cells, 197
for closed fgs’s, 243
for maximal fgs’s, 243
for pre-pasting scheme fgs’s, 203

computable
categorical action, 141
cellular extension, 141
globular set, 140
polygraph, 152
precategory, 140
strict category, 140

computable function, 134
concrete category, 174
concrete presheaf category, 175
concretely equivalent categories, 174
concretization functor, 174
Conduché functor, 116
con�uent

339



340 INDEX

3-precategory, 299
branching, 302
rewriting system, 302

congruence, 274
connected

2-cell, 320
branching, 329
category, 17

context (class), 106
context (for a theory), 5
convergent rewriting system, 302
critical branching, 306
Q-critical branching, 329

datatype, 135
decidable

encoding, 134
relation, 138
subset, 133

diagram, 3
direct loop, 202
directed, 3

e�ectively factorizable
categorical action, 143
precategory, 142
strict category, 142

e�ectively right-�nite relation, 138
Eilenberg-Moore category, 10
encoded by a datatype, 135
encoding, 134

of a cellular extension, 141
of a globular set, 140

enriched category, 78
equality-decidable encoding, 134
equivalence of concrete categories, 174
equivalent cospans, 319
essentially algebraic

category, 7
theory, 6

essentially unique factorization, 4
evaluation

of a context (class), 106
of a whisker, 267

evaluation of terms
of precategories, 273
strict categories, 155

exchange law, 58

�nitary

functor, 5
monad, 5
relation, 201

�nite
classes, 138
polygraph, 51

�nite graded subset (fgs), 202
�nitely factorizable

categorical action, 143
precategory, 142
strict category, 142

�nitely presentable
monoid, 4
object, 4

fork-free
for an l-hypergraph, 194
for an adc, 256
for an adc cell, 256

free category
on a cellular extension, 43
on a polygraph, 47

free extension, 43
Frobenius pseudomonoid, 324
=-functor, 58
funny tensor product, 79

generator
of a cellular extension, 40
of a polygraph, 47
of an l-hypergraph, 193

globe, 12
globular algebra, 14
=-globular group, 89
globular set, 12
glueable, 216
gluing, 216
graded set, 193
Gray category, 283
(3, 2)-Gray category, 284
Gray presentation, 285
greatest lower bound, 205
=-group, 89

Henry’s measure, 99
l-hypergraph, 193

identity context (class), 110
identity operation

for (pre-)adc cells, 207
for l-hypergraph cells, 197



INDEX 341

for closed or maximal fgs’s, 243
for pre-pasting scheme fgs’s, 203

identity whisker, 269
inclusion

of a globular algebra, 16
of a globular set, 13
of a strict category, 62
of precategory, 68

independence generator, 285
independent branching, 306
initial set, 194
injective encoding, 134
inner generator, 301
instantiable type, 106
interchange generator, 285
Q-interchange generator, 327
interchange naturality generator, 286
interchanger, 283
iso�bration, 38

joinable branching, 301

labelling of a categorical action, 148
lax Gray category, 283
lax Gray tensor product, 282
length

for a free precategory, 271
for a free strict category, 123
of an =-sequence, 122

linear extension, 225
linearization of a category, 93
local branching, 301
localization functor, 276
locally �nitely presentable category, 4
loop-free basis, 208
loop-free pasting scheme, 204

Makkai’s measure, 100
maximal

fgs, 238
generator, 238

maximal-well-formed, 244
minimal branching, 306
model of an essentially algebraic theory, 6
monadic functor, 11
monoidal category, 77
morphism

of =-globular groups, 89
of =-groups, 90
of algebras, 10

of categorical actions, 105
of enriched categories, 78
of essentially algebraic theories, 8
of globular sets, 12
of lax Gray categories, 284
of linear extensions, 225
of models, 7
of monads, 11
of precategories, 67
of set-encoded polygraphs, 157
of strict categories, 58

movement, 196

natural branching, 306
normal form, 301

operational generator, 312
orthogonal, 214

parallel, 13
parity complex, 198
pasting scheme, 203
plex, 176
plex lifting, 181
polygraph, 47

of precategories, 69
of strict categories, 64

polyplex, 177
polyplex lifting, 181
positive

for a free abelian group, 99
Gray presentation, 304

pre-augmented directed complex, 205
pre-cell

of a (pre-)adc, 206
of an l-hypergraph, 196

pre-pasting scheme, 201
precategory, 66
(3, 2)-precategory, 276
=-prefunctor, 67
prepolygraph, 69
presentation (of precategories), 276
primitive element, 175
principal

element, 175
polygraph, 176

pseudo Gray category, 284
pseudo Gray tensor product, 282

radical, 257



342 INDEX

recursive function, 132
recursive model

of a categorical action, 141
of a cellular extension, 141
of a function, 134
of a globular set, 140
of a precategory, 141
of a strict category, 140

recursive subset, 133
relevant, 197
rewrite, 301
rewriting path, 301
rewriting step, 273
rewriting system, 302
right-�nite relation, 138

segment, 194
self-duality, 324
=-sequence, 122
=-sequence class, 123
set-encoded polygraph, 157
signature, 5
sort, 6
source

for an l-hypergraph, 193
iterated, 13
of a closed fgs, 241
of a context (class), 109
of a globe, 12
of a maximal fgs, 241
of a pre-pasting scheme fgs, 202
of a whisker, 268

source-�nite, 148
specialization, 175
split coequalizer, 59
stable subset of a polygraph, 164
strict category, 57
structural-operational branching, 331
structural-structural branching, 329
support function, 162
support of an encoding, 134
symbol, 5
symmetric branching, 301

target
for an l-hypergraph, 193
iterated, 13
of a closed fgs, 241
of a context (class), 109

of a globe, 12
of a maximal fgs, 241
of a pre-pasting fgs, 202
of a symbol, 5
of a whisker, 268

tensor product, 77
term de�nition of a polygraph, 159
term on a polygraph

of precategories, 273
of strict categories, 155

term on a signature, 5
terminal set, 194
terminating, 301
tight, 198
torsion, 209
torsion-free complex, 209
total function, 131
translation function, 239
trivial branching, 305
(weakly) truncable monad, 31
truncation

of a globular algebra, 16
of a globular set, 13
of a strict category, 61
of precategory, 68

type, 106

unital basis, 208

weird 2-category, 15
well-formed fgs (wfs), 203
well-typed term

of precategories, 273
of strict categories, 155

whisker, 267
word problem instance, 161
word problem on polygraphs

of precategories, 273
of strict categories, 156

zigzag (localization), 276
zigzag equations (adjunctions), 20



Glossary

C) the Eilenberg-Moore category w.r.t. the monad ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Cq the functor derived from a morphism of monad q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
-: ×8 -; the set of pairs of 8-composable :- and ;-globes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
-−1 by convention, the singleton set of (−1)-globes of a globular set . . . . . . . . . . . . . . . . . . . 13
→,⇒,V, arrows which indicate the source and target of globes of a globular set . . . . 13
(): , [: , `: ) the :-truncation of a monad ) on globular sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
∼� the equivalence relation which describes how connected a category � is . . . . . . . . . . . . 17
−[−]: , � [- ] the free functor which maps a :-cellular extension to a (:+1)-category . . . . 43
(−)∗,: , P∗ the functor which maps a :-polygraph to the associated free :-category . . . . . . . 47
(−):8 , P8 the functor which maps a :-polygraph to its set of 8-generators . . . . . . . . . . . . . . . . 48
∗8 the composition operation for strict categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57r
8 the composition operation for precategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
� the funny tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
|−|, |� | the functor which maps an =-category to the disjoint union of the sets of cells . . . 93
|−|, |P| the functor which maps a polygraph to the disjoint union of the sets of genera-

tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
≈< the relation which witnesses that two<-contexts are equivalent . . . . . . . . . . . . . . . . . . . 106
−[−]A, � [�]A the functor which maps an =-cellular extension to the associated free

=-categorical action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
�★ the set of =-sequences over � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
|D | the length of the cell D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
≈ the relation which witnesses that two =-sequences are equivalent . . . . . . . . . . . . . . . . . . . . 123
�≈ the set of =-sequence classes over � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
−[−]≈, � [�]≈ the functor which maps an =-categorical action to the associated free

strict (=+1)-category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
◦:,(;8 )8 the composition operation on partial functions on natural numbers . . . . . . . . . . . . . . 131
-<l the set of �nite sequences of elements of - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
⇑=A(- ) the trivial =-categorical action whose set of top cells is - . . . . . . . . . . . . . . . . . . . . . . . 148
≈̂< a relation equivalent to ≈< but with a more e�cient de�nition . . . . . . . . . . . . . . . . . . . . . 153
C1 ∗8,: C2 a term representing the 8-composition of C1 and C2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
È−ÉP the evaluation function from well-typed terms on P to cells of P∗ . . . . . . . . . . . . . . . . . 156
�̄ the polygraph induced by a term de�nition � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
PD+ the polygraph obtained from P by adding a formal generator of source D . . . . . . . . . . . . 178

343



344 GLOSSARY

(−)−, (−)+ the source and target operations of an l-hypergraph . . . . . . . . . . . . . . . . . . . . . . . 193
⊳* , ⊳ a pre-order on the generators of an l-hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
(−)∓, (−)± the border operations for sets of generators of an l-hypergraph . . . . . . . . . . . . . 195
〈D〉 the atom associated to the generator D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
(−)∓, (−)± the border operations on a pre-adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
D ∧ E the greatest lower bound of D and E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
[D] the atom associated to the basis generator D of a pre-adc . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
<8 a pre-order on the basis of a pre-adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
y a pre-order on the generators of an l-hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
( ⊥ ) the property that ( and ) are orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
∗M8 the composition operation on maximal fgs’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
∗Cl
8 the composition operation on closed fgs’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
PH the l-hypergraph associated to the polygraph P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
∼� the canonical congruence on �≤= derived from the (=+1)-precategory � . . . . . . . . . . . . 274
(−) the functor which maps an (=+1)-prepolygraph to the presented =-precategory . . . . . 276
∼P the equivalence relation ∼P∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
(−)> the localization functor of 3-precategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
�lax the lax Gray tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
� the pseudo Gray tensor product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
q �k the graph of the shu�es of words on q andk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
[−]q,k the interpretation functor for shu�es of words on q andk . . . . . . . . . . . . . . . . . . . . . . 287

Act(-,�) the activation of � on - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
adc “augmented directed complex” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A: the functor which maps a :-cellular extension to its underlying :-algebra . . . . . . . . . . . 40
Alg: the category of :-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
(−)Alg
≤:,; , �≤: the truncation functor for globular algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

(−)Alg
↑;,: , �↑; the inclusion functor for globular algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

(−)Alg
⇑=,: , �⇑= the right adjoint to the truncation functor (−)Alg

≤:,= . . . . . . . . . . . . . . . . . . . . . . . . . 35
Alg+

:
the category of :-cellular extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

B the source relation of a pasting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

CatA= the category of =-categorical actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
(−)Cat
≤:,; , �≤: the truncation functor for strict categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

(−)Cat
↑;,: , �↑; the inclusion functor for strict categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Cat= the category of strict =-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Cat+= the category of =-cellular extension for strict categories . . . . . . . . . . . . . . . . . . . . . . . . . . 64
V-Cat the category of categories enriched inV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Cell∗( ) the set of cells of the pre-adc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Cell(%) the graded set of cells of the l-hypergraph % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Cell(%)=+ the strict (=+1)-category Cell(%)≤= [%=+1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Closed(%) the graded set of closed fgs’s of % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
ClosedWF(%) the graded set of closed-well-formed fgs’s of the l-hypergraph % . . . . . . . . . 244
ConP the evaluation prefunctor from P∗ to CoSpan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
CoSpan the strict 2-category of cospans on sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

X� the linearization functor for a strict category � . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
XP Henry’s measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



GLOSSARY 345

XM
P Makkai’s measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

D= the set of =-term de�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
m−8 , m

+
8 the source and target operations of a globular set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

m̄−8 , m̄
+
8 the source and target operations on closed fgs’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

m̃−8 , m̃
+
8 the source and target operations on maximal fgs’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

d−
:
, d+
:

the source and target operations for generators of cellular extensions or poly-
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

E the target relation of a pasting scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
E:+1 the canonical functor which maps a (:+1)-polygraph to a :-cellular extension . . . . . 47
Elt(C) the category of elements of the concrete category C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
n) the counit of the adjunction F) a U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
n: the counit of the adjunction F: a U: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
eval= , eval the evaluation (=+1)-functor from Cell(%)=+ to Cell(%)≤=+1 . . . . . . . . . . . . . . . . . 235
� [F] (� [F]) the evaluation of a context � (class � ) at a cellF . . . . . . . . . . . . . . . . . . . . . . . . . . 106
E- an encoding for the set - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

fgs “�nite graded subset” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
F: the canonical free functor associated to the Eilenberg-Moore category Alg: . . . . . . . . . . 14
F) the canonical free functor of an Eilenberg-Moore category . . . . . . . . . . . . . . . . . . . . . . . . . 10
F (-,. ) the set of functions from - to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

gen: (6) a term representing the :-generator 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
gGrp= the category of =-globular groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
G: the functor which maps a (:−1)-cellular extension to its underlying :-globular set . . . 40
Glob= the category of =-globular sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
(−)Glob
≤<,= , -≤< the truncation functor on globular sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

(−)Glob
↑=,< , -↑= the inclusion functor on globular sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

(−)Glob
⇑<,= , -⇑= the right adjoint to the truncation functor (−)Glob

≤=,< . . . . . . . . . . . . . . . . . . . . . . . . 14
Glue(-,�) the gluing of � on - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Grp= the category of =-groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

[A the unit of the adjunction (−)Alg
↑:+1 a (−)

Alg
≤: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i<,= , i< the counit of the adjunction (−)Glob
↑=,< a (−)

Glob
≤<,= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

� (D,D
′) (�̄ (D,D′) ) the identity context (class) on (D,D ′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

id: the identity operation for strict categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
id: the identity operation for precategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
id:+1
:
(C) a term representing an identity cell on C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

j:,= the unit of the adjunction (−)Glob
≤:,= a (−)

Glob
⇑=,: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

LinExt(() the category of linear extensions of ((, <) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

Max(%) the graded set of maximal fgs’s of the l-hypergraph % . . . . . . . . . . . . . . . . . . . . . . . . 238
MaxWF(%) the graded set of maximal-well-formed fgs’s of the l-hypergraph % . . . . . . . . . 245
`: the minimization operation on partial functions on natural numbers . . . . . . . . . . . . . . . . 132

N∗,N=,N∗=,Nl di�erent standard subsets of N ∪ {l} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

PAdj the Gray presentation of pseudoadjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319



346 GLOSSARY

Part(-,. ) the set of partial functions from - to . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
(−)PCat
≤:,; , �≤: the truncation functor for precategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

(−)PCat
↑;,: , �↑; the inclusion functor for precategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

(−)PCat
//=,=+1, �//= the left adjoint to the inclusion functor (−)PCat

↑=+1,= . . . . . . . . . . . . . . . . . . . . . . . 274
PCat(E)= the category of precategories which satisfy the exchange condition (E) . . . . . . . . . 71
PCat= the category of =-precategories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
PCell∗( ) the set of pre-cells of the pre-adc  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
PCell(%) the graded set of pre-cells of % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
PFrob the Gray presentation of non-unitary Frobenius pseudomonoids . . . . . . . . . . . . . . . . . 324
Pf (- ) the set of �nite subsets of - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
PMon the Gray presentation of pseudomonoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Pol: the category of :-polygraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Poll the category of l-polygraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Pol∗l the category Poll equipped with the concretization functor | (−)∗ | . . . . . . . . . . . . . . . . 175
(−)Pol
≤: , P≤: the truncation functor for polygraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

pre-adc “pre-augmented directed complex” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

R the closure relation for a pasting scheme or, more generally, an l-hypergraph . . . . . . . . 202
Rec: the set of recursive functions with : arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
d: the recursion operation on partial functions on natural numbers . . . . . . . . . . . . . . . . . . . . 131

S(- ) the l-hypergraph pre-cell associated to the adc pre-cell - . . . . . . . . . . . . . . . . . . . . . . . 261
SD the Gray presentation of self-dualities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
sePol= the category of set-encoded =-polygraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Σ̄(- ) the adc pre-cell associated to the l-hypergraph pre-cell - . . . . . . . . . . . . . . . . . . . . . . . 260
Σ̄= (() the adc element associated to a subset ( of the basis of the adc . . . . . . . . . . . . . . . . . . . 256
S= (B) the set associated to an element of an adc with basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
suppP the support function for the polygraph P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

TPC
M ,TM

PC,T
M
Cl,T

Cl
M ,T

PC
Cl ,T

Cl
PC translation functions between PCell(%), Max(%) and Max(%) . . 239

\= the recursive bijection from N= to N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
t: the natural transformation which describes the truncability of a monad on globular

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
T P the set of terms on the polygraph P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

U: the forgetful functor associated to the Eilenberg-Moore category Alg: . . . . . . . . . . . . . . 14
h: the universal function for recursive functions with : arguments . . . . . . . . . . . . . . . . . . . . . 132
U) the canonical forgetful functor of an Eilenberg-Moore category . . . . . . . . . . . . . . . . . . . . 10

V: the forgetful functor from a (:+1)-algebra to a :-cellular extension . . . . . . . . . . . . . . . . . 40

Weird the category of weird 2-categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
WF(%) the graded set of well-formed =-fgs’s (or =-wfs’s) on % . . . . . . . . . . . . . . . . . . . . . . . . . 203
wfs “well-formed fgs” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
W= the set of =-word problem instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
WP the set of well-typed terms on the polygraph P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

X the exchange relation for the top cells of categorical actions . . . . . . . . . . . . . . . . . . . . . . . . . 123
-U,6,V the interchange generator associated to U,6, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
-q,k the interchanger of q andk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283



GLOSSARY 347

XF,F′ the arrow between the wordsF andF ′ in a shu�e graph . . . . . . . . . . . . . . . . . . . . . . . . 287

Z(−), Z� the linearization functor for strict categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93







Titre : Descriptions calculatoires de catégories supérieures

Mots clés : catégories supérieures, catégories strictes, catégories de Gray, réécriture, problème du mot, diagrammes de
recollement

Résumé : Les catégories supérieures sont des structures
algébriques constituées de cellules de différentes dimen-
sions et équipées d’opérations de composition. Elles ont
trouvé plusieurs applications en mathématiques (en parti-
culier, dans le domaine de la topologie algébrique) et en
informatique théorique. Ce sont des structures notoirement
complexes, dont la manipulation est technique et sujette aux
erreurs. Le but de cette thèse est d’introduire plusieurs ou-
tils informatiques pour les variantes strictes et semi-strictes
des catégories supérieures qui facilitent l’étude de ces ob-
jets. Afin de répresenter les catégories supérieures par des
données finies, de sorte que ces dernières puissent être
transmises comme entrée à un programme, on utilise la
structure de polygraphe, initialement introduite par Street
et Burroni pour les catégories strictes, et généralisée par
Batanin à toute théorie algébrique de catégorie supérieure,
qui permet de présenter des catégories supérieures par des
systèmes de générateurs. Le premier problème abordé par
cette thèse est celui du problème du mot sur les catégo-
ries strictes, qui consiste à déterminer si deux composées
formelles de cellules d’une catégorie stricte représentent la
même cellule. On donne une solution implémentable et rela-
tivement efficace pour ce problème en améliorant la procé-
dure de décision initialement donnée par Makkai. Ensuite,
nous traitons les formalismes pour les diagrammes de re-
collement. Ces derniers permettent de représenter effica-

cement les cellules de catégories strictes en utilisant des
structures ensemblistes et pour lesquels une implémenta-
tion efficace est désirable. On étudie en particulier les trois
principaux formalismes qui ont été introduits jusqu’ici : les
complexes de parité de Street, les schémas de recollement
de Johnson et les complexes dirigés augmentés de Stei-
ner. Notre étude révèle que les axiomatiques des deux pre-
miers est défectueuse, ce qui motive l’introduction d’une
nouvelle structure, appelée complexe sans torsion, dont les
axiomes ont de bonnes propriétés et généralisent ceux des
autres formalismes. On montre que cette nouvelle structure
est adéquate pour représenter informatiquement les caté-
gories strictes en en donnant une implémentation. Pour fi-
nir, on considère le problème des présentations cohérentes
de structures algébriques exprimées dans les catégories
faibles de dimension 3, ces dernières étant connues pour
être équivalentes aux catégories de Gray. En s’inspirant
d’un résultat important de Squier dans le context des mo-
noïdes, on adapte les résultats classiques de la théorie de
la réécriture au contexte des catégories de Gray et relions
la cohérence de présentations de catégories de Gray à la
confluence de branchements critiques d’un système de ré-
écriture associé. Avec ce résultat, nous déduisons une pro-
cédure semi-automatique pour produire des présentations
cohérentes de catégories de Gray, et nous l’appliquons sur
plusieurs exemples.

Title: Computational Descriptions of Higher Categories

Keywords: higher categories, strict categories, Gray categories, rewriting, word problem, pasting diagrams

Abstract: Higher categories are algebraic structures con-
sisting of cells of various dimensions equipped with no-
tions of composition, which have found many applications in
mathematics (algebraic topology in particular) and theoreti-
cal computer science. They are notably complicated struc-
tures whose manipulation is technical and error-prone. The
purpose of this thesis is to introduce several computational
tools for strict and semi-strict variants of higher categories
that ease the study of these objects. In order to represent
higher categories as finite data, so that they can be given
as input to a program, we use the structure of polygraph,
initially introduced by Street and Burroni for strict categories
and then generalized by Batanin to any algebraic theory of
higher category, which allows presenting higher categories
by means of systems of generators. The first problem tack-
led by this thesis is then the one of the word problem on
strict categories, which consists in deciding whether two for-
mal composites of cells of strict categories represent the
same cell. We give an implementable and relatively effi-
cient solution for it by improving the decidability procedure
initially given by Makkai. Then, we turn to pasting diagram
formalisms for strict categories, that enable to efficiently

represent cells of strict categories using set-like structures
and for which a reliable implementation is desirable. We
consider the three main formalisms that have been intro-
duced until now, namely Street’s parity complexes, John-
son’s pasting schemes and Steiner’s augmented directed
complexes. Our study reveals that the axiomatics of the first
two ones are defective, which motivates the introduction of a
new structure, called torsion-free complexes, whose axioms
have nice properties and generalize those of the three other
formalisms. We also show that they are amenable to con-
crete computation, by providing an implementation of those.
Finally, we consider the problem of coherence of presen-
tations of algebraic structures expressed in 3-dimensional
weak categories, the latter being known to be equivalent to
Gray categories. Taking inspiration from a celebrated result
given by Squier in the context of monoids, we adapt the clas-
sical tools from rewriting theory to the setting of Gray cate-
gories and relate the coherence of presentations of Gray
categories to the confluence of the critical branchings of an
associated rewriting system. From this result, we deduce
a semi-automated procedure to find coherent presentations
of Gray categories that we apply on several examples.
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