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Parabolic problems with non-standard growth

In the recent years, there has been an increasing interest in the study of equations with nonstandard growth conditions. On one hand, the interest in such equations is motivated by their applications in the mathematical modelling of various real-world processes, such as the flows of electrorheological or thermorheological fluids [START_REF] Antontsev | Asymptotic behavior of trembling fluids[END_REF][START_REF] Antontsev | On stationary thermo-rheological viscous flows[END_REF][START_REF] Giacomoni | A p(x)-Laplacian extension of the Diaz-Saa inequality and some applications[END_REF][START_REF] Ruzicka | Electrorheological fluids: modeling andmathematical theory[END_REF][START_REF] Ruzicka | Electrorheological fluids: modeling andmathematical theory[END_REF], the problem of thermistor [START_REF] Zhikov | Solvability of the three-dimensional thermistor problem[END_REF], processing of digital images [START_REF] Chen | Variable exponent, linear growth functionals in image restoration[END_REF], filtration process in complex media, stratigraphy problems [START_REF] Fragnelli | Positive periodic solutions for a system of anisotropic parabolic equations[END_REF] and heterogeneous biological interactions [START_REF] Bougherara | Existence of mild solutions for a singular parabolic equation and stabilization[END_REF]. On the other hand, their theoretical study is very interesting and challenging from a purely mathematical point of view.

The theme of this chapter is to study the qualitative properties of a class of parabolic problems with non-standard growth conditions. The main purpose of this chapter is threefold.

Firstly, we study the strong solution of the evolution equations with p(x, t)-Laplacian operator. For this, we establish new higher integrability interpolations and trace-interpolation inequalities. Using Galerkin method, we find the sufficient conditions on the initial data for existence and uniqueness of strong solution. The global higher integrability and second order regularity of the strong solution are the byproduct of interpolations inequalities and uniform estimates of Galerkin's approximations.

Secondly, we study the double phase parabolic problem with variable growth and nonlinear source term. Using the method of Galerkin and establishing new weighted trace-interpolation inequalities, we prove the existence of strong solution with better integrability and regularity properties promoted by the energy equality.

Thirdly, we study the doubly nonlinear diffusion parabolic equations (D.N.E. for short) involving p(x)-homogeneous operator with nonlinear time derivative and sub-homogeneous non-monotone forcing terms. For this, we develop a new version of Picone identity for p(x)homogeneous operators and as an application of this identity, we extend the well-known Díaz-Saá inequality for the non-standard growth operators. This inequality enables us to es-tablish several new results on the uniqueness of solution and comparison principles for some anisotropic quasilinear elliptic equations. Using semi-discretization in time and approximations methods, we prove the existence, uniqueness and regularity results for the weak solution of D.N.E. . In addition, we prove the continuous and monotone dependency of the solution with the respect to the initial data and potentials or coefficients in the forcing term. We also study the stabilization property of the weak solution using semigroup theory. This chapter includes the results of the following research articles:

(i) R. Arora, J. Giacomoni, G. Warnault, A Picone identity for variable exponent operators and applications, Adv. Nonlinear Anal. 9 (2020), no. 1, 327-360.

(ii) R. Arora, J. Giacomoni, G. Warnault, Doubly nonlinear equation involving p(x)-homogeneous operators: local existence, uniqueness and global behaviour, J. Math. Anal.

Appl. 487 (2020), no. 2, 124009, 27 pp. (iii) R. Arora, S. Shmarev, Strong solutions of evolution equations with p(x, t)-Laplacian: existence, global higher integrability of the gradients and second-order regularity, J. Math.

Anal. Appl., 493 (2021), 124506. (iv) R. Arora, S. Shmarev, Double phase parabolic problems with variable growth, submitted.

Turning to the layout of this chapter: In section 1.1, we discuss two physical process as a source of origin and motivation for non-standard growth operators, double phase functionals and doubly nonlinear equations. In section 1.2, we present our main problems. In section 1.3, we introduce the functions spaces and the comprehensive state of the art for evolution equations involving p(x, t)-Laplacian operator, Double phase parabolic equations, Doubly nonlinear equations involving constant and variable exponent operators, and Picone identity. In section 1.4, we develop the main tools and techniques, and state main results of this chapter with a glimpse of the proof.

Physical motivation

In this section, we discuss the origin of the interest to study the evolution equations with non-standard growth conditions and also with double source of nonlinearity.

First we discuss two physical processes of image recovery and non-Newtonian fluids whose mathematical modelling leads to the equations involving non-standard growth conditions. Let u be the true image and v be the input image defined on the domain Ω ⊂ R N , a result of a linear transformation A on the true image and corrupted by a random noise v = Au + η where η is a random variable with zero mean and u, v represent shades of gray. The effect of noise can be eliminated by smoothing the input which corresponds to minimizing the following energy functional

I(u) := ˆΩ |∇u| 2 + λ 2 |Au -v| 2 .
1.1. Physical motivation with a given Lagrange multiplier λ = const. This smoothing eliminates the noise effect , but unfortunately it destroys small details of the true image. A better approach, total variation smoothing method corresponds to minimizing the new energy functional

J (u) := ˆΩ |∇u| + λ 2 |Au -v| 2 .
This method preserves edges when |∇u| is high. However, the drawback of the method is that it may also create edges due to the presence of the random noise (called staircase effect).

A combination of the two methods consists in minimizing the following energy

V(u) := ˆΩ |∇u| p(x) + λ 2 |Au -v| 2
where the exponent p(x) close to 2 where there are likely no edges, and close to 1 where the edges are expected. The approximate location of the edges can be determined by smoothing the input and looking for the zones where |∇u| is high. The minimizer of the functional V is a solution of the p(x)-Laplace equation. A detailed discussion with more complicated models in the image restoration problems can be found in [START_REF] Chen | Variable exponent, linear growth functionals in image restoration[END_REF][START_REF] Levine | Image restoration via nonstandard diffusion[END_REF].

A second process is the modeling of electrorheological fluids where the perturbations of the variable exponents operators appear in a natural way. This kind of fluids is characterized by their ability to drastically change the mechanical properties under the influence of an external electromagnetic field. For example, many electrorheological fluids are suspensions consisting of solid particles and a carrier oil. These suspensions change their material properties radically if they are exposed to an electric field (see [START_REF] Ruzicka | Modeling, mathematical and numerical analysis of electrorheological fluids[END_REF]). The mathematical model for the motion of an electrorheological fluid is given by

u t + div P (u) + (u • ∇)u + ∇π = f,
where u : R 3 × R → R 3 is the velocity of the fluid at a point in space-time, ∇ = (∂ 1 , ∂ 2 , ∂ 3 ) is the gradient operator, π : R 3 → R is the pressure, f : R 3 → R 3 represents external forces, and the stress tensor P : W 1,1 loc → R 3×3 is of the form

P (u)(x) = µ(x)(ν + |Du(x)| 2 ) p(x)-2 2 )Du(x)
where Du is the symmetric part of the gradient of u. The above model for p = 2, reduces to the usual non-dimensionalized Navier-Stokes equation. The case ν = 0 and µ = 1 corresponds to the p(x)-Laplacian operator. For more details, we refer to [START_REF] Ruzicka | Modeling, mathematical and numerical analysis of electrorheological fluids[END_REF][START_REF] Ruzicka | Electrorheological fluids: modeling andmathematical theory[END_REF].

The study of the double phase problems started in the late 80th by the works of V. Zhikov [START_REF] Zhikov | On Lavrentiev's phenomenon[END_REF][START_REF] Zhikov | Averaging of functionals of the calculus of variations and elasticity theory[END_REF] where the models of strongly anisotropic materials were considered in the context of homogenization. Later on, the double phase functionals u → ˆΩ (|∇u| p + a(x)|∇u| q ) dx Chapter 1. Parabolic problems with non-standard growth attracted attention of many researchers. The significant case occurs when the modulating coefficient a(•) vanishes on a set of non-zero measure and p < q. The double phase functional changes the ellipticity/growth depending upon the support of the modulating coefficient a(•). Indeed, the energy density of functional exhibits a growth/ellipticity in the gradient of order q in those points x where a(x) is positive and of order p on the points x where a(x) = 0. Such double phase functionals provide an elementary model for describing the behaviour of strongly anisotropic materials whose hardening properties linked to the exponent of the gradient variables. The modulating coefficient a(•) serves to regulate the mixture between two different materials, with p and q hardening respectively. On the one hand, the study of these functionals is a challenging mathematical problem due to its most dramatic phase-transition and on the other hand, the double phase functionals appear in a variety of physical models.

We refer here to [START_REF] Ball | Convexity conditions and existence theorems in nonlinear elasticity[END_REF][START_REF] Zhikov | On variational problems and nonlinear elliptic equations with nonstandard growth conditions[END_REF] for applications in the elasticity theory, [START_REF] Bahrouni | Double phase transonic flow problems with variable growth:nonlinear patterns and stationary waves[END_REF] for transonic flows, [START_REF] Benci | Solitons in several space dimensions: Derrick's problem and infinitely many solutions[END_REF] for quantum physics and [START_REF] Cherfils | On the stationary solutions of generalized reaction diffusion equations with p -q-laplacian[END_REF] for reaction-diffusion systems.

The significant interest to study Doubly nonlinear equation (D.N.E. for short) comes from a wide spectrum of applications in real world phenomenons, for instance in fluid dynamics, soil science, combustion theory, reaction chemistry (see [START_REF] Aris | The mathematical theory of diffusion and reaction in permeable catalysts[END_REF][START_REF] Aronson | Regularity properties of flows through porous media: The interface[END_REF][START_REF] Barenblatt | On some unsteady motions of a liquid and gas in a porous medium (Russian)[END_REF][START_REF] Barenblatt | On self-similar solutions of the Cauchy problem for a nonlinear parabolic equation of unsteady filtration of a gas in a porous medium (Russian)[END_REF][START_REF] Bear | Dynamics of fluids in porous media[END_REF][START_REF] Childs | An introduction to the physical basis of soil water phenomena[END_REF][START_REF] Gilding | The Cauchy problem for an equation in the theory of infiltration[END_REF][START_REF] Ladyzȇnskaya | New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems (Russian)[END_REF][START_REF] Richards | Capillary conduction of liquids through porous mediums[END_REF][START_REF] Showalter | Diffusion of fluid in a fissured medium with microstructure[END_REF]). In literature, there are a variety of evolution equations involving double nonlinearity depending upon the positioning of nonlinear exponents. One of the basic model for D.N.E. is given by

∂ t u -∇. (|∇(u r )| p-2 ∇(u r )) = 0 in Ω × (0, T ). (1.1.1) 
For p = 2 and r > 1, (1.1.1) is well-known as the porous media equation. More generally, for p > 1 and r > 0, (1.1.1) is known as the Polytropic Filtration Equations (P.F.E.) (see [START_REF] Wu | Nonlinear Diffusion Equations[END_REF]).

The physical background of P.F.E. can be explained by considering the flow of compressible non-newtonian fluid in the homogeneous isotropic rigid medium which satisfies:

   ∂ t u = -∇(u - → V ) Mass balance P = P 0 u r State equation
where u is the particle density of the fluid, -→ V is the momentum velocity, P is the pressure, r is the polytropic constant and P 0 is the reference pressure and is the porosity of the medium. Due to the influence of molecular and ion effects in non-newtonian fluids, the linear Darcy's law ( -→ V is proportional to ∇P) is no longer valid. Instead, we have the nonlinear version of Darcy's law:

µ - → V = -λ|∇P| p-2 ∇P
where µ is the viscosity of the fluid and λ is the permeability of the medium. By combining the two last equations, we obtain an analogous form of (1.1.1).

Another equivalent form of D.N.E. is given by ∂ t u m -∇. (|∇u| p-2 ∇u) = 0 in Ω × (0, T ).

(1.1.2)

Presentation of the problems

Depending upon the value of m and p, (1.1.2) is called as Slow Diffusion Equation (S.D.E.) if p > 1 + m and Fast Diffusion Equation (F.D.E.) if p < 1 + m. A main difference between the two cases is the existence of solutions with compact support for the S.D.E whereas the occurrence of dead core type solutions can not occur for the F.D.E. due to the infinite speed of perturbations propagation (for more details see [START_REF] Bögelein | Doubly nonlinear equations of porous medium type[END_REF][START_REF] Wu | Nonlinear Diffusion Equations[END_REF]). In the framework of D.N.E., (1.1.2) is also referred in the literature (for instance see [START_REF] Bögelein | Doubly nonlinear equations of porous medium type[END_REF][START_REF] Ivanov | Regularity for doubly nonlinear parabolic equations[END_REF]) as: 

p ∈ (1, 2) p > 2 m ∈ (0,

Presentation of the problems

In this section, we present two different class of parabolic problems with variable nonlinearity depending upon time and space variable. For this, we start by introducing the suitable variable Lebesgue and Sobolev space for our study. We limit ourselves to collecting the most basic facts of the theory and refer to Chapter 4 and [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF] for a detailed insight, see also [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF][START_REF] Diening | Monotone operator theory for unsteady problems in variable exponent spaces[END_REF][START_REF] Kováčik | On spaces L p(x) and W k,p(x)[END_REF][START_REF] Rȃdulescu | Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis[END_REF].

Let Ω ⊂ R N , N ≥ 1 is a bounded domain with Lipschitz-continuous boundary ∂Ω. Let P(Ω) be the set of all measurable function p : Ω → [1, ∞[ in N -dimensional Lebesgue measure. The set

L p(•) (Ω) = {f : Ω → R : f is measurable on Ω, A p(•) (f ) = ˆΩ |f (x)| p(x) dx < ∞}
equipped with the Luxemburg norm

f L p(•) = inf λ > 0 : A p(•) f λ ≤ 1
is a reflexive and separable Banach space. Throughout the chapter, we assume that

1 < p -def = min Ω p(x) ≤ p(x) ≤ p + def = max Ω p(x) < ∞.
The variable exponent Sobolev space W 1,p(•) 0

(Ω) is defined as the set of functions

W 1,p(•) 0 (Ω) = {u : Ω → R | u ∈ L p(•) (Ω) ∩ W 1,1 0 (Ω), |∇u| ∈ L p(•) (Ω)} equipped with the norm u W 1,p(•) 0 (Ω) = u L p(•) + ∇u L p(•) . It is known that C ∞ c (Ω) is dense in W 1,p(•) 0
(Ω) and the Poincaré inequality holds if p ∈ C log (Ω), i.e., the exponent p is continuous in Ω with the logarithmic modulus of continuity: where ω is a non-negative function satisfying the condition lim sup

|p(x 1 ) -p(x 2 )| ≤ ω(|x 1 -x 2 |),
τ →0 + ω(τ ) ln 1 τ = C < ∞.
For the study of parabolic problem with p(x, t)-Laplacian and spaces of functions depending on (x, t) ∈ Q T , we define the following spaces:

V p(•,t) (Ω) = {u : Ω → R | u ∈ L 2 (Ω) ∩ W 1,1 0 (Ω), |∇u| p(•,t) ∈ L 1 (Ω)}, t ∈ (0, T ), W p(•) (Q T ) = {u : (0, T ) → V p(•,t) (Ω) | u ∈ L 2 (Q T ), |∇u| p(•,•) ∈ L 1 (Q T )}, z = (x, t).
The dual W (Q T ) of the space W p(•) (Q T ) is defined as follows: Φ ∈ W (Q T ) iff there exists

Φ 0 ∈ L 2 (Q T ), Φ i ∈ L p (•) (Q T ), i = 1, . . . , N , such that for all u ∈ W p(•) (Q T ) Φ, u = ˆQT uΦ 0 + N i=1 u x i Φ i dx dt.

Problem 1: Strong solution of evolution equations with p(x, t)-Laplacian

First, we study the Dirichlet problem for a class of parabolic equations with variable nonlinearity where Ω ⊂ R N , N ≥ 2, is a bounded domain with the boundary ∂Ω ∈ C 2 . The exponent p is a given function whose properties will be described in main results.

Concerning the problem (1.2.1), we are interested in the existence of strong solutions u and its global higher regularity and integrability properties. By the strong solution we mean a solution whose time derivative is not a distribution but an element of a Lebesgue space, and the flux has better integrability properties than the properties prompted by the energy equality (the rigorous formulation is given in Definition 1.3.1).

The local higher regularity and integrability properties for the problem (1.2.1) are intrinsic since their validity does not depend upon the problem data and geometry of the domain. So, a natural question arises "Does the regularity or integrability of a weak or strong solution improve if the initial data (u(•, 0), p(•, •), f (•, •), ∂Ω) are more regular?"

To answer the above question, we study the global higher integrability and second-order regularity properties of the strong solution when the initial data posses better regularity properties. Secondly, we study the following double phase parabolic problem with the homogeneous Dirichlet boundary conditions:

   u t -div |∇u| p(z)-2 ∇u + a(z)|∇u| q(z)-2 ∇u = F (z, u) in Q T , u = 0 on Γ T , u(x, 0) = u 0 (x) in Ω, (1.2.2) 
where z = (x, t) denotes the point in the cylinder Q T = Ω × (0, T ] and Γ T = ∂Ω × (0, T ) is the lateral boundary of the cylinder and Ω ⊂ R N be a smooth bounded domain, N ≥ 2 and 0 < T < ∞. The nonlinear source has the form F (z, v) = f 0 (z) + b(z)|v| σ(z)-2 v. Equations of the type (1.2.2) are often termed "the double phase equations" because the flux function (|∇u| p(z)-2 + a(z)|∇u| q(z)-2 )∇u includes two terms with different properties.

Concerning the problem (1.2.2), we are interested in the existence of strong solution u with "better integrability properties". By the better integrability properties here we mean the gradient of strong solution u has Lebesgue integrability with bigger exponent q(•) even if the modulating coefficient a(•) vanishes on a set of nonzero measure.

In this regard, we find conditions on the functions f 0 , a, b, σ and u 0 sufficient for the existence of a unique strong solution by studying global regularity and integrability properties of the regularized flux function.

Problem 3: Doubly nonlinear equation for p(x)-homogeneous operators

Thirdly, we investigate the following doubly nonlinear equation driven by a general class of Leray-Lions type operators

         ∂ t (β(u)) -div a(x, ∇u) = F(x, t, u), u > 0 in Q T ; u = 0 on Γ; u(., 0) = u 0 in Ω, (DNE) 
with the following nonlinear time derivative, and sub-homogeneous and non-monotone forcing terms β(u) = q 2q -1 u 2q-1 and F(x, t, u) = f (x, u) + h(x, t)u q-1 where q > 1, T > 0, with Ω ⊂ R N , N ≥ 1 a smooth bounded domain, and h belongs to

L ∞ (Q T ).
Problem (DNE) involves a class of variational operators a : Ω × R N → R defined as, for any (x, ξ) ∈ Ω × R N : a(x, ξ) = (a j (x, ξ))

j def = 1 p(x) ∂ ξ j A(x, ξ) j = 1 p(x) ∇ ξ A(x, ξ)
where p ∈ C 1 (Ω) and A : Ω × R N → R + is continuous, differentiable with respect to ξ and satisfies:

Chapter 1. Parabolic problems with non-standard growth (A 1 ) ξ → A(., ξ) is p(x)-homogeneous i.e. A(x, tξ) = t p(x) A(x, ξ), for any t ∈ R + , ξ ∈ R N and a.e. x ∈ Ω. (A 2 ) For j ∈ 1, N , a j (x, 0) = 0, a j ∈ C 1 (Ω × R N \{0}) ∩ C(Ω × R N ) and there exist two constants γ, Γ > 0 such that for all x ∈ Ω, ξ ∈ R N \{0} and η ∈ R N :

N i,j=1
∂a j ∂ξ i (x, ξ) η i η j ≥ γ|ξ| p(x)-2 |η| 2 ; N i,j=1

∂a j ∂ξ i (x, ξ) ≤ Γ|ξ| p(x)-2 .
The assumption (A 2 ) gives the convexity of ξ → A(x, ξ) and growth estimates, for any (x, ξ) ∈ Ω × R N :

γ p(x) -1 |ξ| p(x) ≤ A(x, ξ) ≤ Γ p(x) -1 |ξ| p(x) ; |a(x, ξ)| ≤ C|ξ| p(x)-1 ;
and the homogeneity assumption (A1) implies that A(x, ξ) = a(x, ξ).ξ for any (x, ξ) ∈ Ω×R N .

Next, we impose the condition below to insure qualitative properties as regularity and the validity of Hopf Lemma.

(A 3 ) There exists C > 0 such that for any (x, ξ) ∈ Ω × R N \{0}:

N i,j=1 ∂a i ∂x j (x, ξ) ≤ C|ξ| p(x)-1 (1 + | ln(|ξ|)|).
More precisely, from the condition (A 3 ) we derive the Strong Maximum Principle (see [START_REF] Zhang | A strong maximum principle for differential equations with nonstandard p(x)growth conditions[END_REF]) and the C 1,α -regularity of weak solutions (see Remark 5.3 in [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF] and Remark 3.1 in [146]).

Example:

Prototype examples of operators a satisfying (A 1 )-(A 3 ) are given below: for any (x, ξ) ∈ Ω × R N and p ∈ C 1,β (Ω) by:

A(x, ξ) = J j=1     g j (x)   i∈P j ξ 2 i   p(x) 2    
where (P j ) j∈J is a partition of 1, N , g j ∈ C 1 (Ω) ∩ C 0,β (Ω) and g j (x) ≥ c > 0 for any j ∈ J.

In particular for A(x, ξ) = |ξ| p(x) , (DNE) can be classified as S.D.E. if 2q < p -and F.D.E. if 2q > p + .

(A 4 ) A(x, ξ-η 2 ) ≤ ζ(x)(A(x, ξ) + A(x, η)) 1-s(x) A(x, ξ) + A(x, η) -2A(x, ξ+η 2 )

s(x)
where for any x ∈ Ω, s(x) = min{1, p(x)/2} and ζ(x) = 1 -2 1-p(x) -s(x) if p(x) < 2 or ζ(x) = 1 2 if p(x) ≥ 2. The condition (A 4 ) reformulates the local form of Morawetz-type inequality producing convergence properties.

Concerning the conditions on the functions f and h in forcing term, we assume:

1.3. State of the art (f 0 ) f : Ω × R + → R + is a continuous function such that f (x, 0) ≡ 0 and f is positive on Ω × R + \{0}. (f 1 ) For any x ∈ Ω, s → f (x,s) s q-1 is non-increasing in R + \{0}. (f 2 ) The mapping x → δ 1-q (x)f (x, δ(x)) belongs to L 2 (Ω ε ) for some ε > 0 where Ω ε def = {x ∈ Ω | δ(x) < ε}. and (H h ) there exists h ∈ L ∞ (Ω)\{0}, h ≥ 0 such that h(t, x) ≥ h(x) for a.e in Q T .

Example: Function f satisfying (f 0 )-(f 2 ) is given by for any (x, s) ∈ Ω × R + , f (x, s) = g(x)δ γ (x)s β where g ∈ L ∞ (Ω) is a non-negative function, β ∈ [0, q -1) and β + γ > q - 3 2 . Concerning the problem (DNE), we are interested in the existence of a unique weak solution and its stabilization properties. The notion of the weak solution u for the problem (DNE) is understood in the following sense:

∂ t (β(u)) ∈ L 2 (Q T ), u ∈ L ∞ (0, T ; W 1,p(•) 0 (Ω))
(a rigorous formulation is given by Definition 1.4.4).

To prove the existence of a weak solution, we alter our viewpoint towards our main problem (DNE). Precisely, we formulate an equivalent problem by replacing ∂ t (β(u)) to ∂ t (u q )u q-1 in our main problem (DNE) (see below (E)) such that

∂ t (u q ) ∈ L 2 (Q T ) and u ∈ L ∞ (Q T ) ⇒ ∂ t (β(u)) ∈ L 2 (Q T ) (weakly in L 2 (Q T )).
To study the new equivalent problem, we develop a new version of Picone identity for p(x)homogeneous operators. Using this and semi-discretization in time method, we settled the question of existence of unique weak solution of the equivalent problem (E).

To answer the second question of stabilization of weak solution, we seek help from semigroup theory by shifting the nonlinearity in the time derivative term to diffusion term (see (1.4.32)).

State of the art

Problem 1: : Strong solution of evolution equations with p(x, t)-Laplacian Equation (1.2.1) falls into the class of equations with variable nonlinearity or non-standard growth, which have been intensively studied in the last decades. If the variable exponent p ≡ 2, equation (1.2.1) becomes degenerate or singular at the points where |∇u| = 0, which prevents one from expecting the existence of classical solutions. The solution of problem (1.2.1) is understood in the weak sense. Before starting the state of the art for the problem (1.2.1), we distinguish the notion of weak and strong solutions as follows.

Definition 1.3.1. A function u is called weak solution of problem (1.2.1), if (iii) for every φ ∈ C 1 0 (Ω) ˆΩ(u(x, t) -u 0 (x))φ dx → 0 as t → 0, (iv) the weak solution u is called strong solution of problem (1.2.1) if

(i) u ∈ W p(•) (Q T ), u t ∈ W (Q T ),
u t ∈ L 2 (Q T ), |∇u| ∈ L ∞ (0, T ; L p(•) (Ω)).
The existence of a unique weak solution to problem (1.2.1) can be proven under the minimal requirements on the regularity of the data. We refer to [START_REF] Antontsev | Anisotropic parabolic equations with variable nonlinearity[END_REF][START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF] for the results on existence and uniqueness of weak solutions for a single equation of the type (1.2.1), to [START_REF] Diening | Monotone operator theory for unsteady problems in variable exponent spaces[END_REF] for systems of equations with the homogeneous Dirichlet boundary conditions, and to [START_REF] Erhardt | Compact embedding for p(x, t)-Sobolev spaces and existence theory to parabolic equations with p(x, t)-growth[END_REF] for the case of the non-homogeneous boundary conditions. Precisely, we have the following result:

Proposition 1.3.1 ([26, 34, 111]). Let Ω ⊂ R N , N ≥ 2, be a bounded domain with the Lipschitz-continuous boundary. Assume that p : Q T → R satisfies the conditions

2N N + 2 < p -≤ p(x, t) ≤ p + , p ∈ C log (Q T ).
Then for every f ∈ L 2 (Q T ) and u 0 ∈ L 2 (Ω) problem (1. with a constant C depending only on N , p ± , f 2,Q T and u 0 2,Ω .

Concerning the study of regularity of weak solution a lot of attention has been paid by researchers. Let Ω Ω, ∈ (0, T ), Q = Ω × ( , T ), and let u be a weak solution of equation (1.2.1). It is known that u possesses the property of higher integrability of the gradient: for every Ω and > 0 there exists a constant δ > 0 such that |∇u| p(•,•)+δ ∈ L 1 (Q ) and |∇u| p+δ 1,Q ≤ C with a constant C depending on and the distance between ∂Ω and ∂Ω -see [START_REF] Antontsev | Higher integrability for parabolic equations of p(x, t)-Laplacian type[END_REF][START_REF] Bögelein | Higher integrability for parabolic systems with non-standard growth and degenerate diffusions[END_REF][START_REF] Zhikov | On the property of higher integrability for parabolic systems of variable order of nonlinearity[END_REF] and [START_REF] Zhang | Global gradient estimates for the parabolic p(x, t)-laplacian equation[END_REF] for global estimates in Reifenberg domains. The weak solutions are locally Hölder-continuous, provided that the variable exponent p is logcontinuous [START_REF] Alkhutov | Hölder Continuity of solutions of parabolic equations with variable nonlinearity exponent[END_REF][START_REF] Bögelein | Hölder Estimates for parabolic p(x, t)-Laplacian systems[END_REF][START_REF] Xu | Hölder Continuity of weak solutions for parabolic equations with nonstandard growth conditions[END_REF]. Moreover, if the variable exponent p is Hölder-continuous, then ∇u is locally Hölder-continuous and u ∈ C 1,1/2

x,t (Q ) see [START_REF] Bögelein | Hölder Estimates for parabolic p(x, t)-Laplacian systems[END_REF][START_REF] Yao | Hölder Regularity for the general parabolic p(x, t)-Laplacian equations[END_REF]. These local regularity properties are intrinsic for every weak solution of equation (1.2.1) and are completely defined by the nonlinear structure of the equation.

State of the art

The issues of local higher regularity of solutions of systems of parabolic equations with nonstandard growth have been addressed for the first time in paper [START_REF] Acerbi | Regularity results for parabolic systems related to a class of non-newtonian fluids[END_REF]. Among other results, it was proven that the solutions of a system of equations with p(x, t)-growth conditions with the exponent p Hölder-continuous in t and Lipschitz-continuous in x possess the property of local higher integrability and Hölder-continuity of the spatial gradient, as well as the property of local higher differentiability of the solutions.

The existence of strong solutions of problem (1.2.1) and their global regularity properties have already been addressed in a number of works but all known results refer to the singular equation (1.2.1) with 2N N +2 ≤ p(x, t) ≤ 2, or to the equations with the exponent p nonincreasing in t. It is known [START_REF] Antontsev | Localization of solutions of anisotropic parabolic equations[END_REF][START_REF] Antontsev | Global higher regularity of solutions to singular p(x,t)-parabolic equations[END_REF][START_REF] Shmarev | On the continuity of solutions of the nonhomogeneous evolution p(x, t)-Laplace equation[END_REF] that the weak solution becomes a strong solution with x i x j u| p(x,t) ∈ L 1 (Q T ) [START_REF] Antontsev | Localization of solutions of anisotropic parabolic equations[END_REF][START_REF] Antontsev | Global higher regularity of solutions to singular p(x,t)-parabolic equations[END_REF], or D 2

u t ∈ L 2 (Q T ) and |∇u| p(•,•) ∈ L ∞ (0, T ; L 1 (Ω)), provided that |∇u 0 | p(•,0) ∈ L 1 (Ω), f ∈ L 2 (Q T ), p t ∈ L ∞ (Q T )
x i x j u ∈ L 2 (Ω × ( , T )) for every ∈ (0, T ) [START_REF] Antontsev | Localization of solutions of anisotropic parabolic equations[END_REF][START_REF] Antontsev | Higher regularity of solutions of singular parabolic equations with variable nonlinearity[END_REF]. The strong solution may be Hölder or even Lipschitz continuous in t in the cylinders Ω × ( , T ) with > 0, [START_REF] Shmarev | On the continuity of solutions of the nonhomogeneous evolution p(x, t)-Laplace equation[END_REF][START_REF] Tersenov | The one dimensional parabolic p(x)-Laplace equation[END_REF]. It is proven in [START_REF] Antontsev | Global estimates for solutions of singular parabolic and elliptic equations with variable nonlinearity[END_REF] that if the initial function possesses a second-order regularity with respect to x and satisfies certain compatibility conditions, |f | p (•,•) ∈ L 1 (Q T ) and f t ∈ L 2 (Q T ), then the singular equation with the Lipschitz-continuous exponent p ≤ 2 in a convex C 2 domain has a unique strong solution such that

|u t | p (•,•) ∈ L 1 (Q T ), |∇u t | p(•,•) ∈ L 1 (Q T ), |D 2 x i x j u| p(•,•) ∈ L 1 (Q T ), p = p p -1 .
Stronger global regularity properties are known in the case of constant p > 1. It is shown in [START_REF] Cianchi | Second-Order Regularity for Parabolic p-Laplace Problems[END_REF] that if f ∈ L 2 (Q T ), u 0 ∈ W 1,p 0 (Ω), and ∂Ω is subject to minimal regularity assumptions, then

u t ∈ L 2 (Q T ), |∇u| p-2 ∇u ∈ (L 2 (0, T ; W 1,2 (Ω))) N , u ∈ L ∞ (0, T ; W 1,p 0 (Ω))
and the corresponding norms are bounded through the norms of the data. The authors of [START_REF] Cianchi | Second-Order Regularity for Parabolic p-Laplace Problems[END_REF] show that problem (1.2.1) with p = const admits an approximable solution, i.e. a solution obtained as the limit of the sequence of smooth solutions of the same problem with smooth right-hand sides and initial data. The approximable solution inherits the regularity properties of the smooth approximations. We refer to [START_REF] Cianchi | Second-Order Regularity for Parabolic p-Laplace Problems[END_REF] for a review of the previous results on the global regularity in the case of constant p.

Problem 2: Double phase parabolic problem with variable growth Equations (1.2.2) with p = q are also referred to as the equations with the (p, q)-growth because of the gap between the coercivity and growth conditions: if p ≤ q and 0 ≤ a(x) ≤ L, then for every ξ ∈ R N |ξ| p ≤ (|ξ| p-2 + a(x)|ξ| q-2 )|ξ| 2 ≤ C(1 + |ξ| q ), C = const > 0.

Chapter 1. Parabolic problems with non-standard growth

These equations fall into the class of equations with nonstandard growth conditions which have been actively studied during the last decades in the cases of constant or variable exponents p and q. We refer to the recent works [START_REF] Alves | The Lane-Emden equation with variable double-phase and multiple regime[END_REF][START_REF] Chlebicka | A pocket guide to nonlinear differential equations in musielak-orlicz spaces[END_REF][START_REF] Colombo | Regularity for double phase variational problems[END_REF][START_REF] Colombo | Bounded minimisers of double phase variational integrals[END_REF][START_REF] Esposito | Sharp regularity for functionals with (p,q) growth[END_REF][START_REF] Gasiński | Existence and uniqueness results for double phase problems with convection term[END_REF][START_REF] Hästö | Maximal regularity for local minimizers of non-autonomous functionals[END_REF][START_REF] Marcellini | Regularity and existence of solutions of elliptic equations with p, q-growth conditions[END_REF][START_REF] Ok | Regularity for double phase problems under additional integrability assumptions[END_REF][START_REF] Rȃdulescu | Isotropic and anisotropic double-phase problems: old and new[END_REF][START_REF] Zhang | Double phase anisotropic variational problems and combined effects of reaction and absorption terms[END_REF] and references therein for a review of results on the solvability of stationary problems and the regularity properties of solutions.

Results on the existence of solutions to the evolution double phase equations can be found in papers [START_REF] Bögelein | Parabolic equations with p, q-growth[END_REF][START_REF] Singer | Parabolic equations with p,q-growth: the subquadratic case[END_REF][START_REF] Singer | Existence of weak solutions of parabolic systems with p,q-growth[END_REF]. These works deal with the Dirichlet problem for systems of parabolic equations of the form u t -div a(x, t, ∇u) = 0, (

where the flux a(x, t, ∇u) is assumed to satisfy the (p, q)-growth conditions and certain regularity assumptions. As a partial case, the class of equations (1.3.2) includes equation (1.2.2) with constant exponents p ≤ q and a nonnegative bounded coefficient a(x, t). It is shown in [START_REF] Bögelein | Parabolic equations with p, q-growth[END_REF]Th.1.6] that if

2 ≤ p ≤ q < p + 4 N + 2 ,
then problem (1.2.2) with F ≡ 0 has a very weak solution u ∈ L p (0, T ; W 1,p 0 (Ω)) ∩ L q loc (0, T ; W 1,q loc (Ω)) with u t ∈ L p q-1 (0, T ; W -1, p q-1 (Ω)), provided that u 0 ∈ W 1,r 0 (Ω), r = p(q-1) p-1 . Moreover, |∇u| is bounded on every strictly interior cylinder Q T Q T separated away from the parabolic boundary of Q T . In [START_REF] Singer | Parabolic equations with p,q-growth: the subquadratic case[END_REF] these results were extended to the case 2N N + 2 < p < 2, p ≤ q < p + 4 N + 2

.

Paper [START_REF] Singer | Existence of weak solutions of parabolic systems with p,q-growth[END_REF] deals with weak solutions of systems of equations of the type (1.3.2) with (p, q) growth conditions. When applied to problem (1.2.2) with constant p, q, b ≡ 0 and a(•, t) ∈ C α (Ω) with some α ∈ (0, 1) for a.e. t ∈ (0, T ), the result of [START_REF] Singer | Existence of weak solutions of parabolic systems with p,q-growth[END_REF] guarantees the existence of a weak solution u ∈ L p (0, T ; W 1,p 0 (Ω)) ∩ L q loc (0, T ; W 1,q loc (Ω)) ∩ L ∞ (0, T ; L 2 (Ω)), provided that the exponents p and q obey the inequalities

2N N + 2 < p < q < p + α min{2, p} N + 2 .
The proofs of the existence theorems in [START_REF] Bögelein | Parabolic equations with p, q-growth[END_REF][START_REF] Singer | Parabolic equations with p,q-growth: the subquadratic case[END_REF][START_REF] Singer | Existence of weak solutions of parabolic systems with p,q-growth[END_REF] rely on the property of local higher integrability of the gradient, |∇u| p+δ ∈ L 1 (Q T ) for every sub-cylinder Q T Q T . The maximal possible value of δ > 0 indicates the admissible gap between the exponents p and q and vary in dependence on the type of the solution.

Equation (1.2.2) with constant exponents p and q furnishes a prototype of the equations recently studied in papers [START_REF] Bögelein | Parabolic systems with p, q-growth: a variational approach[END_REF][START_REF] Filippis | Gradient bounds for solutions to irregular parabolic equations with (p, q)growth[END_REF][START_REF] Giannetti | On higher differentiability of solutions of parabolic systems with discontinuous coefficients and (p, q)-growth[END_REF][START_REF]A variational approach to parabolic equations under general and p, qgrowth conditions[END_REF] in the context of weak or variational solutions.

State of the art

The proofs of existence also use the local higher integrability of the gradient, but for the existence of variational solutions a weaker assumption on the gap q -p is required.

Problem 3: Doubly nonlinear equation for p(x)-homogeneous operators Equation (DNE) belongs to the class of Doubly nonlinear equations (D.N.E.) with variable nonlinearity of type (1.1.2). Depending upon the exponents in both nonlinear diffusion and nonlinear time derivative term, (DNE) is classified into several categories. For p = 2, q = 1 and F = 0 equation (DNE) is known as standard heat equation. For q = 1, p ∈ (1, ∞) and F = 0 equation (DNE) reduces to p-Laplace equation, while for p = 2, m := 2q -1 ∈ (0, ∞) and F = 0, (DNE) is called Porous media equation. A vast amount of results is available in the literature concerning the above types of equations, so to inhibit the vastness of section we limit ourselves to the class of equations where double nonlinearity is involved.

In literature, various types of tools and techniques are present to deal with the D.N.E. of type (1.1.2). Concerning the existence of solution to D.N.E. of type (1.1.2), we refer to the work [START_REF] Akagi | Doubly nonlinear parabolic equations involving variable exponents[END_REF][START_REF] Akagi | Doubly nonlinear equations as convex minimization[END_REF][START_REF] Bögelein | A variational approach to doubly nonlinear equations[END_REF][START_REF] Bögelein | Doubly nonlinear equations of porous medium type[END_REF][START_REF] Tsutsumi | On solutions of some doubly nonlinear degenerate parabolic equations with absorption[END_REF]. In [START_REF] Akagi | Doubly nonlinear equations as convex minimization[END_REF], Akagi and Stefanelli studied the following D.N.E.

∂ t b(u) -∇.(a(∇u)) f
where b ⊂ R × R and a ⊂ R N × R N are maximal monotone graphs satisfying the polynomial growth conditions for instance b(u) = u m and a(ξ) = |ξ| p-2 ξ. First, by using a nonlinear transformation v = b(u), they transformed the original equation into an equivalent dual problem which reads as -∇.(a(∇b -1 (v))) f -∂ t v and then by using the method of elliptic regularization (Weighted Energy Dissipation approach), they constructed the sequence of minimizers of suitable energy functionals (for more details see equation (1.2) in [START_REF] Akagi | Doubly nonlinear equations as convex minimization[END_REF]) whose limits converge to solution of the equivalent dual problem. For D.N.E. involving p-Laplacian operator, one only changes the viewpoint in the sense that the nonlinearity is shifted from

∂ t u m -div(|∇u| p-2 ∇u) = f to ∂ t v -div(|∇v 1 m | p-2 ∇v 1 m ) = f. (1.3.3)
In [START_REF] Bögelein | A variational approach to doubly nonlinear equations[END_REF][START_REF] Bögelein | Doubly nonlinear equations of porous medium type[END_REF], Bögelin et al. studied a more general D.N.E. of type (1.1.2)

∂ t b(u) -div f ξ (x, u, ∇u) = -f u (x, u, ∇u)
where f satisfies suitable convexity and coercivity conditions. By introducing a new notion of solution called variational solutions and nonlinear version of minimizing movement method (finite time discretization), they proved the existence of a variational solution u. Precisely, a function u is called a variational solution of (1.1.2), if the following inequality holds:

1 p ˆQT (|∇u| p -|∇v| p ) dz + B(u(T ), v(T )) ≤ ˆQT ∂ t v(v m -u m ) dz + B(u(0), v(0)) where B(u, v) = ˆΩ 1 m + 1 (v m+1 -u m+1 ) -u m (u -v) dx
Chapter 1. Parabolic problems with non-standard growth and v is a suitable positive test function. They also proved the existence of distributional and weak solution when f (x, u, ξ) grow naturally as a polynomial of order p as ξ → ∞. In [START_REF] Tsutsumi | On solutions of some doubly nonlinear degenerate parabolic equations with absorption[END_REF], Tsutsumi has studied the D.N.E. of type (1.1.2) in the presence of an absorption term and using approximation method he proved the existence of a mild/weak/strong solution depending upon the regularity of the initial data and nonlinearity exponents m and p.

For the study related to the D.N.E. of type (1.1.1), we refer to the work [START_REF] Akagi | Subdifferential calculus and doubly nonlinear evolution equations in Lp-spaces with variable exponents[END_REF][START_REF] Akagi | A variational principle for doubly nonlinear evolution[END_REF][START_REF] Akagi | Weighted energy-dissipation functionals for doubly nonlinear evolution[END_REF][START_REF] Ivanov | Existence and uniqueness of a regular solution of the Cauchy-Dirichlet problem for a class of doubly nonlinear parabolic equations[END_REF][START_REF] Sturm | Existence of weak solutions of doubly nonlinear parabolic equations[END_REF][START_REF] Sturm | Existence of very weak solutions of doubly nonlinear parabolic equations with measure data[END_REF] for existence results, [START_REF] Fornaro | Harnack type inequalities for some doubly nonlinear singular parabolic equations[END_REF][START_REF] Vespri | Harnack type inequalities for solutions of certain doubly nonlinear parabolic equations[END_REF] for Harnack type inequalities and [START_REF] Kalashnikov | Some problems of the qualitative theory of nonlinear degenerate second-order parabolic equations[END_REF][START_REF] Porzio | Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations[END_REF][START_REF] Siljander | Boundedness of the gradient for a doubly nonlinear parabolic equation[END_REF][START_REF] Vespri | On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations[END_REF] for local and global behavior of solutions. The non-homogeneous variant of the model (1.1.1) together with multi valued source/sink terms can also be interpreted as the limiting case (when m → 1) of the climate Energy Balance Models (see [START_REF] Bensid | On the exact number of monotone solutions of a simplified Budyko climate model and their different stability[END_REF][START_REF] Bermejo | Mathematical and numerical analysis of a nonlinear diffusive climate energy balance model[END_REF][START_REF] Díaz | Diffusive Energy Balance Models in Climatology[END_REF]).

Recently, the study of D.N.E. involving variable exponent growth are getting into substantial attention. To explore the questions of existence (local or global), regularity or behaviour of solutions for D.N.E. with variable exponent we refer to [START_REF] Akagi | Doubly nonlinear parabolic equations involving variable exponents[END_REF][START_REF] Akagi | Subdifferential calculus and doubly nonlinear evolution equations in Lp-spaces with variable exponents[END_REF][START_REF] Antontsev | Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions[END_REF][START_REF] Antontsev | On the localization of solutions of doubly nonlinear parabolic equations with nonstandard growth in filtration theory[END_REF][START_REF] Antontsev | Doubly degenerate parabolic equations with variable nonlinearity II: Blow-up and extinction in a finite time[END_REF][START_REF] Antontsev | Existence and uniqueness for doubly nonlinear parabolic equations with nonstandard growth conditions[END_REF][START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF]. The authors in [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF] have studied the following class of D.N.E. involving the p(x, t)-laplacian and lower order terms

∂ t u = N i=1 D i a i |D i (|u| m(x)-1 u)| p i (x,t)-2 D i (|u| m(x)-1 u) + b|u| σ(x,t)-2 u
with given exponents m, p i and σ. Using a nonlinear transformation v = |u| m(x)-1 u, they transformed the original equation into the D.N.E.

∂ t (|v| 1 m(x) sign(v)) = N i=1 D i a i |D i v)| p i (x,t)-2 D i v) + b|v| σ(x,t)-1 m(x) -1 v (1.3.4)
similar to (1.1.2) and by using the Galerkin method, they proved the existence of a weak solution. The authors in [START_REF] Akagi | Doubly nonlinear parabolic equations involving variable exponents[END_REF][START_REF] Akagi | Subdifferential calculus and doubly nonlinear evolution equations in Lp-spaces with variable exponents[END_REF] have also studied the D.N.E. involving p(x)-Laplacian operator and proved the existence of weak solution using Legendre-Fenchel transforms of convex functionals and an energy method. For uniqueness and comparison theorem for the solutions of D.N.E. with non-standard growth conditions we refer to [START_REF] Antontsev | Uniqueness and comparison theorems for solutions of doubly nonlinear parabolic equations with nonstandard growth conditions[END_REF][START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF]. For localization, blow up and extinction in finite time for the solutions of D.N.E. of type (1.3.4), we refer to [START_REF] Antontsev | On the localization of solutions of doubly nonlinear parabolic equations with nonstandard growth in filtration theory[END_REF][START_REF] Antontsev | Doubly degenerate parabolic equations with variable nonlinearity II: Blow-up and extinction in a finite time[END_REF].

We also recall the state of the art for Picone identity which is one of the main tool in studying Problem 3. Picone identity plays an important role for proving several qualitative properties of differential operators. In [START_REF] Picone | Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale lineare ordinaria del second'ordine[END_REF], M. Picone consider the following homogeneous second order linear differential system

   (a 1 (x)u ) + a 2 (x)u = 0 (b 1 (x)v ) + b 2 (x)v = 0
and proved for differentiable functions u, v = 0 the pointwise relation:

u v (a 1 u v -b 1 uv ) = (b 2 -a 2 )u 2 + (a 1 -b 1 )u 2 + b 1 u - v u v 2
(1.3.5)

New contributions

and in [START_REF] Picone | Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine[END_REF], extended (1.3.5) to the Laplace operator, i.e. for differentiable functions u ≥ 0, v > 0 one has 1

|∇u| 2 ≥ ∇ u 2 v , ∇v . (1.3.6)
Later in [START_REF] Allegretto | A Picone's identity for the p-Laplacian and applications[END_REF], Allegretto and Huang extended (1.3.6) to the p-Laplacian operator with 1 < p < ∞. Precisely, for differentiable functions v > 0 and u ≥ 0 we have

|∇u| p -|∇v| p-2 ∇v.∇ u p v p-1 ≥ 0. (1.3.7)
As an immediate consequence, they obtained a wide array of applications including the simplicity of the eigenvalues, Sturmian comparison principles, oscillation theorems, Hardy, Barta's inequalities and some profound results for p-Laplacian equations and systems. This work motivated a lot of generalization of the Picone's identity and in this regard, various attempts have been made to generalize Picone identity for different types of differential operators see [START_REF] Bognar | The application of Picone-type identity for some non-linear elliptic differential equations[END_REF][START_REF] Cui | Anisotropic Picone identities and anisotropic Hardy inequalities[END_REF] and the reference therein. In [109,[START_REF] Díaz | Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires[END_REF], Díaz and Saá proved the following inequality ˆΩ (-∆) p w (w 1 -w 2 ) ≥ 0 for w i ∈ L ∞ (Ω), w i ≥ 0 a.e. on Ω, w 1/p i ∈ W 1,p (Ω), (-∆) p w 1/p i ∈ L ∞ (Ω) for i = 1, 2, w 1 = w 2 over ∂Ω and w i /w j ∈ L ∞ (Ω) for i = j, i, j = 1, 2. This inequality turns out to be equivalent with the convexity of a p-power type energy functional, as suggested in [START_REF] Brézis | Remarks on sublinear elliptic equations[END_REF] for p = 2, and generalized in [START_REF] Fleckinger | Uniqueness and positivity for solutions of equations with the p-Laplacian[END_REF] to any constant p ∈ (1, ∞). In applications to quasilinear elliptic operators (with p constant, 1 < p < ∞), this equivalence played a decisive role in the works [START_REF] Girg | Bifurcations of positive and negative continua in quasilinear elliptic eigenvalue problems[END_REF] and [START_REF] Takáč | Variational problems with a p-homogeneous energy[END_REF]. In [START_REF] Chaib | Extension of Díaz-Saá's inequality in R N and application to a system of p-Laplacian[END_REF], Chaib proved the above inequality in R N , and pointed out the connection between the Díaz-Saá inequality and the generalized Picone inequality (1.3.7). Lator on, in [START_REF] Brasco | Convexity properties of Dirichlet integrals and Picone-type inequalities[END_REF], Brasco and Franzina extended the above Díaz-Saá inequality in p-q form. Precisely, for every pair u, v of positive differentiable functions the following holds:

1 p ∇A(∇u), ∇ v q u q-1 ≤ A(∇v) q p A(∇u) p-q p
where q ∈ (1, p], A : R N → [0, ∞) is a C 1 positively p-homogeneous convex function.

New contributions

In this section, we provide the details of new tools and techniques which are developed to tackle the Problems 1, 2 and 3 mentioned in Section 1.2 and main results with a glimpse of the proof.

1 Equation (1.3.6) is known as "identity", even if it is inequality, because of the two terms can be written as

∇u - u v ∇v 2 = |∇u| 2 + u 2 v 2 |∇v| 2 -2 u v ∇u.∇v = |∇u| 2 -∇ u 2 v .∇v
which is indeed positive.

Chapter 1. Parabolic problems with non-standard growth

Problem 1: Strong solution of evolution equations with p(x, t)-Laplacian

We study the following Dirichlet problem for a class of parabolic equations with variable nonlinearity

   ∂ t u -div |∇u| p(x,t)-2 ∇u = f (x, t) in Q T def
= Ω × (0, T ), u = 0 on Γ def = ∂Ω × (0, T ), u(x, 0) = u 0 (x) in Ω,

(1.4.1)

Main tools

First, we derive a special interpolation inequality that yields the global integrability of |∇u| p(x,t)+δ with some δ > 0 independent of u, and provides an estimate on the term with the logarithmic growth. The interpolation inequality is also used in the proof of W 1,2 (Q T )regularity of the flux in the degenerate problem (1. with an independent of u constant C.

The proof of above lemma is slightly technical. We will only highlight here the crucial point of the proof. Using uniform continuity of the exponent p in Q T , it is enough to prove the estimate (1.4.2) in Ω and for a fixed t ∈ (0, T ) i.e. for every δ ∈ (0, (∇u) dx (1.4.3) for some ν ∈ (0, 1) and it remains to estimate last terms of (1.4.3). For this, the continuity of p allows us to choose a special finite cover {Ω i } i so small such that for every i = 1, 2, . . . , K

p + i -p - i + r 1 + 2N p -(N + 2) < 4 N + 2 .
for any r between lower and upper exponent i.e. r ∈ (r * , r * ). Then, finally by using interpolation inequalities of Gagliardo-Nirenberg-Sobolev type with a suitable set of exponents, we get our final result. For a detailed proof, we refer to Theorem 4.2.3, Page 118, Chapter 4.

Secondly, we derive the trace-interpolation inequality used to estimate the traces of |∇u| p(z) on the lateral boundary of the cylinder Q T . These estimates turns out to be useful in the study of the non-convex domains also.

Theorem 1.4.2. Let us assume that p and u satisfy the conditions of Theorem 1.4.1. Then for every λ ∈ (0, 1) ˆ∂Ω×(0,T )

( 2 + |∇u| 2 ) p(z)-2 2 |∇u| 2 dSdt ≤ λ ˆQT ( 2 + |∇u| 2 ) p(z)-2 2 |u xx | 2 dz + C 1 + ˆQT |∇u| p(z) dz
with an independent of u constant C.

The proof of the above lemma follows by Lemma 1.5.1.9 in [START_REF] Grisvard | Elliptic Problems in nonsmooth domains[END_REF], Green formula and logarithmic inequalities depending upon the size of the gradient.

Main results

The main result of Problem 1 are given in the following theorems.

Theorem 1.4.3. Let Ω ⊂ R N , N ≥ 2, be a bounded domain with the boundary ∂Ω ∈ C 2 . Assume that the exponent p satisfies

2N N + 2 < p -≤ p(x, t) ≤ p + , p ∈ C log (Q T ).
ess sup

Q T |∇p| ≤ C * < ∞, ess sup Q T |p t | ≤ C *
with nonnegative finite constants C * , C * . Let f ∈ L 2 (0, T ; W 1,2 0 (Ω)), u 0 ∈ L 2 (Ω) ∩ W 1,q 0 (•) 0

(Ω) with q 0 (x) = max{2, p(x, 0)}. ˆΩ |∇u| q(x,t) dx ≤ C (1.4.4) with the exponent q(x, t) = max{2, p(x, t)} and a constant C depends upon N, ∂Ω, T, p ± , C * , C * , u 0 , f . Theorem 1.4.4. Under the conditions of Theorem 1.4.3, (i) The strong solution u possesses the property of higher integrability of the gradient: ˆQT |∇u| p(x,t)+δ dxdt ≤ C δ for every 0 < δ < 4p - p -(N + 2) + 2N

(1.4.5)

with a finite constant C δ depending on δ and the same quantities as the constant C in (1.4.4).

(ii) Moreover, ) is global in time and space, it is new even in the case of constant p. We refer to [START_REF] Duzaar | Parabolic systems with polynomial growth and regularity[END_REF] for a detailed insight into this issue, in particular, to [START_REF] Duzaar | Parabolic systems with polynomial growth and regularity[END_REF]Lemma 5.4].

D 2 x i x j u ∈ L p(•) loc (Q T ∩ {(x, t) : p(x, t) < 2}), if N ≥ 2, D x i |∇u| p(x,t)-2 2 D x j u ∈ L 2 (Q T ) if N ≥ 3,
The same existence and regularity results are obtained for the solution of problem (1.4.1) with the regularized flux function ( 2 + |∇u| 2 ) p(x,t)-2 2

∇u, > 0.

Let us give an outline of the proof of Theorem 1.4.3. The solution of problem (1.4.1) is constructed as the limit of the sequence of solutions of the following family of regularized non-degenerate parabolic problems

         ∂ t u -div(( 2 + |∇u| 2 ) p(z)-2 2 ∇u) = f (z) in Q T , u = 0 on Γ T = ∂Ω × (0, T ),
u(x, 0) = u 0 (x) in Ω.

( 1.4.6) for a given a parameter > 0 and new regularized flux given by ( 2 + |∇u| 2 ) p-2 2 ∇u, ∈ (0, 1).

For every fixed , a solution of problem (1.4.6) is constructed as the limit of the sequence of 

u (m) (x, t) = m j=1 u (m) j (t)φ j (x),
where φ j ∈ W 1,2 0 (Ω) and λ j > 0 are the eigenfunctions and the corresponding eigenvalues of the problem (∇φ j , ∇ψ) 2,Ω = λ(φ j , ψ) 2,Ω ∀ψ ∈ W 1,2 0 (Ω).

The coefficients u (m) j (t) are defined as the solutions of the Cauchy problem for the system of m ordinary differential equations (u

(m) j ) (t) = -ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2
∇u (m) • ∇φ j dx + ˆΩ f φ j dx, u (m) j (0) = (u 0 , φ j ) 2,Ω , j = 1, 2, . . . , m, (1.4.7) where the functions

u (m) 0 = m j=1 (u 0 , φ j ) 2,Ω φ j ∈ span{φ 1 , φ 2 , . . . , φ m },
are chosen so that u (m) 0

→ u 0 in W 1,q(x,0) 0

(Ω), q(x, 0) = max{2, p(x, 0)}.

Using Carathéodory Theorem, we prove the existence of a solution (u

(m) 1 , u (m) 2 , . . . , u (m)
m ) of the system of ODE (1.4.7) on an interval (0, T m ) and for every finite m system (1.4.7) and this solution can be continued on the arbitrary interval (0, T ) because of the uniform estimate in and m proved in coming results.

To pass limits in the sequence of finite dimensional approximations u (m) , we derive uniform a priori estimates in and m simultaneously. This is where the difference between the cases of constant and variable exponent p becomes obvious: in the latter case the estimates involve the expression |∇p|( 2 + |∇u| 2 ) p 2 | ln( 2 + |∇u| 2 )|, not included into the basic energy estimate (1.3.1). The integration by parts formula (see (4.1.7), Chapter 4) and the choice of eigen functions φ j reveal the following a priori estimates for u (m) :

sup (0,T ) u (m) (•, t) 2 2,Ω + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dz ≤ e T ( f 2 2,Q T + u 0 2 2,Ω ) := L 0 . ˆQT |∇u (m) | p(z) dz ≤ ˆQT 2 + |∇u (m) | 2 p(z) 2 dz ≤ L 1
where constants L 0 , L 1 independent of and m, and ∈ (0, 1). For a detailed proof, we refer to Lemma 4.2.1, Page 115, Chapter 4.

Let us denote n by the exterior normal vector to ∂Ω. Repetitive usage of Green formula via the elemental properties of the eigen functions φ j under suitable conditions on initial 

d dt ∇u (m) (t) 2 2,Ω + (min{p -, 2} -1 -δ) ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx ≤ C 0 ˆΩ |∇u (m) | 2 ( 2 + |∇u (m) | 2 ) p(z)-2 2 ln 2 ( 2 + |∇u (m) | 2 ) dx - ˆ∂Ω ( 2 + |∇u (m) | 2 ) p(z)-2 2
∆u (m) (∇u (m) • n) -∇u (m) • ∇(∇u (m) • n) dx

+ C 1 ∇u (m) (t) 2 2,Ω + C 2 f (t) 2
W 1,2 0 (Ω) (1.4.8) with constants C i , i = 0, 1, 2, depending on the data and δ, but independent of m and . For a detailed explanation, we refer to Lemma 4.2.2, Page 116, Chapter 4.

The study of higher regularity of solutions usually involves "differentiation" of the equation.

In the case of non-constant p this leads to appearance of the term |∇u| p(x,t) ln |∇u| (as in (1.4.8)), which can not be controlled through the usual energy estimates for the weak solution of equation (1.2.1) unless p(x, t) ≤ 2. The main issue is to get rid of the restriction p(x, t) ≤ 2 in the proof of existence of strong solutions and in the study of their higher regularity.

A priori estimates and existence of strong solution

To control the R.H.S. of (1.4.8), we use the interpolation inequalities proved in Section 1.4.1.1 which further entails the global higher integrability of the gradients of the finite-dimensional approximations: instead of the natural order of integrability p(z) prompted by the equation, the gradients are integrable in Q T with the power p(z) + δ (estimate (1.4.5)). By combining the interpolation inequality for global higher integrability of the gradients (Theorem 1.4.1) and trace interpolation inequality (Theorem 1.4.2) we obtain a complete derivation of the following uniform a priori estimates of the type (1.4.4) for Galerkin's approximations: sup (0,T ) Using the previous uniform estimates, the weak convergence of the sequence {∇u (m) }, and s in (1.4.6) implies the existence of unique weak solution of the regularized problem (1.4.6) with ∂ t u ∈ L 2 (Q T ) and the global higher regularity properties. However, these uniform estimates do not ensure that γ ((x, t), ∇u (m) )∇u (m) → γ ((x, t), ∇u )∇u a.e. in Q T , even in the case of constant p.

∇u (m) (•, t) 2 2,Ω + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 2 L 2 (0,T ;W 1,2 0 (Ω)) , ˆQT |∇u (m) | p(z)+r dz ≤ C for any 0 < r < 4p - p -(N + 2) + 2N and (u (m) ) t 2 2,Q T + sup (0,T ) ˆΩ( 2 + |∇u (m) | 2 ) p(z) 2 dx ≤ C 1 + ˆΩ |∇u 0 | p(x,0) dx + f 2
For this, we prove a.e. convergence of the sequence of ∇u (m) to ∇u , which yields a.e. convergence of fluxes. The proof relies on the convexity of the function γ ((x, t), s)|s| 2 with respect to s, the weak convergence of the sequence ∇u (m) to ∇u , and the convergence of the integrals of γ ((x, t), ∇u (m) )|∇u (m) | 2 to the integral of γ ((x, t), ∇u )|∇u | 2 . The pointwise convergence of fluxes of Galerkin's approximations and the uniform a priori estimates allow one to show that the limit of the sequence of regularized fluxes

( 2 + |∇u (m) | 2 ) p(x,t)-2 4 ∇u (m)
belongs to (L 2 (0, T ; W 1,2 (Ω))) N . The difference between the cases N ≥ 3 and N = 2 is explained by the convexity properties of the function γ ((x, t), s)|s| 2 with > 0. It is strictly convex with respect to s if p > 6 5 , which is true for N ≥ 3 because p -> 2N N +2 , but in the case N = 2 leads to the additional restriction. Precisely, we prove Theorem 1.4.5. Let the conditions of Theorem 1.4.3 be fulfilled.

(i) If N ≥ 3 or N = 2 and p -> 6 5 , then ∇u (m) → ∇u a.e. in Q T .

(ii) Under the conditions of item (i) γ The proof of stronger convergence properties of the sequence ∇u (m) stems from the Theorem 2.1 and Corollary 2.1, [START_REF] Ju | General theorems on semicontinuity and convergence with functionals, Sibirsk. Mat[END_REF] on the convergence of sequences of functionals. The proof of the main result (Theorem 1.4.3) is based on the same ideas as the proofs in the case of the regularized problems (1.4.6). The difference in the arguments is due to the necessity of passing to the limit with respect to , which changes the nonlinear structure of the equation. The second order regularity and global higher integrability in Theorem 1.4.4 are the byproduct of previous uniform estimates with respect to m and , and convexity and almost everywhere convergence of regularized flux.
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Problem 2: Doubly phase parabolic problem with variable growth

In this subsection, we study the following double phase parabolic problem with the homogeneous Dirichlet boundary conditions:

   u t -div |∇u| p(z)-2 ∇u + a(z)|∇u| q(z)-2 ∇u = F (z, u) in Q T , u = 0 on Γ T , u(x, 0) = u 0 (x) in Ω, (1.4.9) where the nonlinear source has the form

F (z, v) = f 0 (z) + b(z)|v| σ(z)-2 v.
(1.4.10)

Here a ≥ 0, b, p, q, σ and f 0 are given functions of the variables z ∈ Q T .

Main tools

In this part, we present estimates on the gradient trace on ∂Ω for the functions from variable Sobolev spaces. This property turns out to be the key element in the proof of the existence theorems for problem (1.4.9) and the regularized problem (1.4.19).

Until the end of this subsection, the notation p(•), q(•), a(•) is used for functions not related to the exponents and coefficient in (1.4.9) and (1.4.19). Let us accept the notation

β (s) = 2 + |s| 2 , ϕ (z, s) = ( 2 + |s| 2 ) p(z)-2 2 + a(z)( 2 + |s| 2 ) q(z)-2 2
, s ∈ R N , z ∈ Q T , ∈ (0, 1).

(1. 4.11) With certain abuse of notation, we will denote by ϕ (x, s) the same function but with the exponents p, q and the coefficient a depending on the variable x ∈ Ω.

Lemma 1.4.1. Let Ω ⊂ R N , N ≥ 2 be a bounded domain with the boundary ∂Ω ∈ C 2 , and a ∈ W 1,∞ (Ω) be a given nonnegative function. Assume that v ∈ W 3,2 (Ω) ∩ W 1,2 0 (Ω) and denote

K = ˆ∂Ω a(x)( 2 + |∇v| 2 ) p(x)-2 2 (∆v (∇v • n) -∇(∇v • n) • ∇v) dS,
where n stands for the exterior normal to ∂Ω. There exists a constant L = L(∂Ω) such that

K ≤ L ˆ∂Ω a(x)( 2 + |∇v| 2 ) p(x)-2 2 |∇v| 2 dS.
Proof of Lemma 1.4.1 follows from the well-known assertions, see, e.g., [START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow[END_REF]Ch.1,Sec.1.5] for the case a ≡ 1, N ≥ 2, or [START_REF] Antontsev | Global higher regularity of solutions to singular p(x,t)-parabolic equations[END_REF]Lemma A.1] for the case of an arbitrary dimension. For more details see Lemma 4.3.2, Chapter 4.

Main tools

Theorem 1.4.6. Let ∂Ω ∈ C 2 , u ∈ C 2 (Ω) and u = 0 on ∂Ω. Assume that p(•) satisfies the conditions of Lemma 1.4.1, a(•) be a non-negative function on Ω with a, q ∈ W 1,∞ (Ω) and

q : Ω → [q -, q + ] ⊂ 2N N + 2 , ∞ , ∇q ∞,Ω ≤ L < ∞, ∇a ∞,Ω ≤ L 0 < ∞.
If for a.e. x ∈ Ω q(x) < p(x) + r with

2 N + 2 < r < 4p - p -(N + 2) + 2N
, then for every λ ∈ (0, 1)

ˆ∂Ω ϕ (x, ∇u)|∇u| 2 dS ≤ λ ˆΩ ϕ (x, ∇u)|u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx
with a constant C depending on λ and the constants p ± , N , L, L 0 , but independent of u.

The proof of the this result follows from [162, Lemma 1.5.1.9], Cauchy inequality and Green Formula. For a detailed explanation see Theorem 1.4.6, Chapter 4. Now, we construct a sequence of finite-dimensional approximations for the initial function u 0 in the same basis {φ j } as in the Galerkin's approximations for the solution of the regularized problem (1.4.19). In the nondegenerate case, q(x, 0) ≤ 2 in Ω, this sequence is obtained in a standard way, while in the case sup Ω q(x, 0) > 2 the choice of the sequence becomes an independent problem. We construct it as a sequence of finite-dimensional approximations of the solution of the degenerate double phase elliptic equation (see (4.3.21)) with variable exponents r(x) = max{2, p(x, 0)} and s(x) = max{2, q(x, 0)}, and the right-hand side depending on u 0 . This problem is solved with the method of Galerkin in the framework of Musielak-Orlicz spaces. Let sup q(x, 0) > 2. We approximate the initial function u 0 by the sequence of finite-dimensional approximations for the solution of the elliptic problem

β(x, u)u -div (α(x, ∇u)∇u) = f -div Φ in Ω, u = 0 on ∂Ω (1.4.12)
where

β(x, u)u = |u| r(x)-2 u + a 0 (x)|u| s(x)-2 u, α(x, ∇u)∇u = |∇u| r(x)-2 ∇u + a 0 (x)|∇u| s(x)-2 ∇u, a 0 (x) = a(x, 0), r(x) = max{2, p(x, 0)} ≥ 2, s(x) = max{2, q(x, 0)}, and 
f = β(x, u 0 )u 0 , Φ = α(x, ∇u 0 )∇u 0 . (1.4.13)
For a detailed study of above elliptic problem, we refer to Section 4.3.4, Chapter 4.
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Main results

Let p, q : Q T → R be measurable functions satisfying the conditions

2N N + 2 < p -≤ p(z) ≤ p + in Q T , 2N N + 2 < q -≤ q(z) ≤ q + in Q T , p ± , q ± = const. (1.4.14)
Moreover, let us assume that p, q ∈ W 1,∞ (Q T ) as functions of variables z = (x, t): there exist positive constants C * , C * * , C * , C * * such that ess sup

Q T |∇p| ≤ C * < ∞, ess sup Q T |p t | ≤ C * , ess sup Q T |∇q| ≤ C * * < ∞, ess sup Q T |q t | ≤ C * * . (1.4.15)
The modulating coefficient a(•) is assumed to satisfy the following conditions:

a(z) ≥ 0 in Q T , a ∈ C([0, T ]; W 1,∞ (Ω)), ess sup Q T |a t | ≤ C a , C a = const. (1.4.16)
We do not impose any condition on the null set of the function a in Q T and do not distinguish between the cases of degenerate and singular equations. It is possible that p(z) < 2 and q(z) > 2 at the same point z ∈ Q T .

Definition 1.4.1. A function

u : Q T → R is called strong solution of problem (1.4.9) if (i) u ∈ W q(•) (Q T ), u t ∈ L 2 (Q T ), |∇u| ∈ L ∞ (0, T ; L s(•) (Ω)) with s(z) = max{2, p(z)}, (ii) for every ψ ∈ W q(•) (Q T ) with ψ t ∈ L 2 (Q T ) ˆQT u t ψ dz + ˆQT (|∇u| p(z)-2 + a(z)|∇u| q(z)-2 )∇u • ∇ψ dz = ˆQT F (z, u)ψ dz, (iii) for every φ ∈ C 1 0 (Ω) ˆΩ(u(x, t) -u 0 (x))φ dx → 0 as t → 0.
The main results are given in the following theorems.

Theorem 1.4.7. Let Ω ⊂ R N , N ≥ 2, be a bounded domain with the boundary ∂Ω ∈ C 2 . Assume that p(•), q(•) satisfy conditions (1.4.14), (1.4.15), and there exists a constant

r ∈ (0, r * ), r * = 4p - p -(N + 2) + 2N , such that p(z) ≤ q(z) ≤ p(z) + r 2 in Q T . 1.4.2.

Main results

If a(•) satisfies conditions (1.4.16) and b ≡ 0, then for every

f 0 ∈ L 2 (0, T ; W 1,2 0 (Ω)) and u 0 ∈ W 1,2 0 (Ω) with ˆΩ |∇u 0 | 2 + |∇u 0 | p(x,0) + a(x, 0)|∇u 0 | q(x,0) dx = K < ∞ (1.4.17)
problem (1.4.9) has a unique strong solution u. This solution satisfies the estimate

u t 2 2,Q T + ess sup (0,T ) ˆΩ |∇u| s(z) + a(z)|∇u| q(z) dx + ˆQT |∇u| p(z)+r dz ≤ C (1.4.18)
with the exponent s(z) = max{2, p(z)} and a constant C which depends on N, ∂Ω, T, p ± , q ± , r, the constants in conditions (1.4.15), (1.4.16), f 0 L 2 (0,T ;W 1,2 0 (Ω)) and K. (i) Assume that b, σ are measurable bounded functions defined on

Q T , ∇b ∞,Q T < ∞, ∇σ ∞,Q T < ∞, 2 ≤ σ -≤ σ + < 1 + p - 2 , σ -= ess inf Q T σ(z), σ + = ess sup Q T σ(z).
Then for every f 0 ∈ L 2 (0, T ; W 1,2 0 (Ω)) and u 0 ∈ W 1,2 0 (Ω) satisfying condition (1.4.17) problem (1.4.9) has at least one strong solution u. The solution u satisfies estimate (1.4.18) with the constant depending on the same quantities as in the case b ≡ 0 and on

∇b ∞,Q T , ∇σ ∞,Q T , σ ± , ess sup Q T |b|.
(ii) The strong solution is unique if p(•), q(•) satisfy the conditions of Theorem 1.4.7 and

either σ ≡ 2, or b(z) ≤ 0 in Q T .
A solution of problem (1.4.9) is obtained as the limit of the family of solutions of the nondegenerate problems with the regularized fluxes

( 2 + |∇u| 2 ) p(z)-2 2 + a(z)( 2 + |∇u| 2 ) q(z)-2 2 ∇u, > 0.
Given > 0, let us consider the following family of regularized double phase parabolic equations:

         ∂ t u -div(ϕ (z, ∇u)∇u) = F (z, u) in Q T , u = 0 on Γ T , u(0, .) = u 0 in Ω, ∈ (0, 1), (1.4.19)
where F (z, u) is defined in (1.4.10) and ϕ (z, ∇u)∇u is the regularized flux function defined in (1.4.11).
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Let > 0 be a fixed parameter. The sequence {u (m) } of finite-dimensional Galerkin's approximations for the solutions of the regularized problem (1.4.19) is sought in the form

u (m) (x, t) = m j=1 u (m) j (t)φ j (x)
where φ j ∈ W 1,2 0 (Ω) and λ j > 0 are the eigenfunctions and the corresponding eigenvalues of the problem (∇φ j , ∇ψ)

2,Ω = λ j (φ j , ψ) 2,Ω ∀ψ ∈ W 1,2 0 (Ω). (1.4.20)
The systems {φ j } and {λ -1 2 j φ j } are the orthogonal bases of L 2 (Ω) and W 1,2 0 (Ω). The coefficients u (m) j (t) are characterized as the solutions of the Cauchy problem for the system of m ordinary differential equations

     (u (m) j ) (t) = -ˆΩ ϕ (z, ∇u (m) )∇u (m) • ∇φ j dx + ˆΩ F (z, u (m) )φ j dx, u (m) j (0) = (u (m) 0 , φ j ) 2,Ω , j = 1, 2, . . . , m, (1.4.21)
where ϕ is defined in (1.4.11) and the functions u (m) 0 are chosen in such a way that

u (m) 0 = m j=1 (u 0 , φ j ) 2,Ω φ j ∈ span{φ 1 , φ 2 , . . . , φ m }, u (m) 0 u 0 in W 1,2 0 (Ω) if max Ω q(x, 0) ≤ 2, in W 1,r(•) 0
(Ω) if max Ω q(x, 0) > 2, where r(x) = max{2, q(x, 0)}.

(

By the Carathéodory existence theorem, for every finite m system (1.4.21) has a solution (u

(m) 1 , u (m) 2 , . . . , u (m)
m ) in the extended sense on an interval (0, T m ), the functions u (m) i (t) are absolutely continuous and differentiable a.e. in (0, T m ). The a priori estimates (1.4.23), (1.4.25) ,show that for every m the function u (m) (x, T m ) belongs to span{φ 1 , . . . , φ m } and satisfies the estimate

∇u (m) (•, T m ) 2 2,Ω + ˆΩ |∇u (m) (x, T m )| p(x,Tm) + a(x, T m )|∇u (m) (x, T m )| q(x,Tm) dx ≤ C + f 0 2 2,Q T + ∇u (m) 0 2 2,Ω + ˆΩ |∇u (m) 0 | p(x,0) + a(x, 0)|∇u (m) 0 | q(x,0) dx
with a constant C independent of m and . Since a(•, 0) is uniformly bounded in Ω, the sequence {u (m) 0 } according to (1.4.22) and |∇u 0 | satisfies inequality (1.4.17), this estimate allows one to continue each of u (m) to the maximal existence interval (0, T ). In the case sup q(x, 0) ≤ 2, the embedding W 1,2 0 (Ω) ⊂ W 1,q(•,0) 0

(Ω) allows us to take u

(m) 0 = m i=1 u (m)
i (0)φ i and in case of sup q(x, 0) > 2 we approximate the initial function u 0 by the sequence of finite-dimensional approximations for the solution of the elliptic problem (1.4.12). Now, we derive a priori estimates on the approximate solutions and their derivatives. For the convenience of presentation, we separate the cases when b ≡ 0 and the source function is independent of the solution, and b ≡ 0. Since no restriction on the sign of b is imposed, in the latter case derivation of the a priori estimates requires additional restrictions on the range of the exponent p.

For a.e. t ∈ (0, T ) u (m) satisfies the estimates:

sup t∈(0,T ) u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dz ≤ C 0 e T ( f 0 2 2,Q T + u 0 2 2,Ω ),
The above estimates is obtained by multiplying j th equation of (1.4.21) by u The next a priori estimates involve higher-order derivatives of the approximate solutions. This is where we make use of the interpolation inequalities to obtain the global higher integrability of the gradient which, in turn, yields uniform boundedness of the L q(•) (Q T )-norms of the gradients of the approximate solutions. sup

(0,T ) ∇u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 0 2 L 2 (0,T ;W 1,2 0 (Ω)) (1.4.23) 
and

ˆQT |∇u (m) | q(z) dz + ˆQT |∇u (m) | p(z)+r dz ≤ C for any 0 < r < 4p - p -(N + 2) + 2N
. These uniform in m and estimates enable one to extract a subsequence u (m) (for which we keep the same name), and functions u , η , χ such that

(u (m) ) t 2 2,Q T + sup (0,T ) ˆΩ ( 2 + |∇u (m) | 2 ) p(z) 2 + a(z)( 2 + |∇u (m) | 2 ) q(z) 2 dx ≤ C 00 1 + ˆΩ |∇u 0 | p(x,0) + a(x, 0)|∇u 0 | q(x,0) dx + f 0 2 2,Q T (1.
(m) | σ(z) , b|u (m) | σ(z)-2 u (m) ∆u (m) , b|u (m) | σ(z)-2 u (m)
u (m) → u -weakly in L ∞ (0, T ; L 2 (Ω)), (u (m) ) t (u ) t in L 2 (Q T ), ∇u (m) ∇u in (L p(•) (Q T )) N , ∇u (m) ∇u in (L q(•) (Q T )) N , ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) η in (L q (•) (Q T )) N , ( 2 + |∇u (m) | 2 ) q(z)-2 2 ∇u (m) χ in (L q (•) (Q T )) N .
In the third line we make use of the uniform estimate 

ˆQT ( 2 + |∇u (m) | 2 ) q(z)(p(z)-1) 2(q(z)-1) dz ≤ C 1 + ˆQT |∇u (m) | p(z)+r dz ≤ C. Now, by using the fact that if U m U in L q (•) (Q T ), then for every V ∈ L q(•) (Q T ) we have a(z)V ∈ L q(•) (Q T ) and ˆQT aU m V dz → ˆQT aU V dz
f 0 ∈ L 1 (0, T ; L ∞ (Ω)) and u 0 ∈ L ∞ (Ω)
, the strong solution of the problem (1.4.9) is bounded and satisfies the estimate

u(•, t) ∞,Ω ≤ e C 1 t u 0 ∞,Ω + e C 1 t ˆt 0 e -C 1 τ f 0 (•, τ ) ∞,Ω dτ
where [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF]Ch.4,Sec.4.3,Th.4.3]).

C 1 = 0 if b(z) ≤ 0 in Q T , or C 1 = b ∞,Q T if σ ≡ 2 (see

Problem 3: Doubly nonlinear equation for p(x)-homogeneous operators

The aim of this part is to study the following Doubly nonlinear parabolic problem mentioned in Problem 3

         ∂ t (β(u)) -div a(x, ∇u) = F(x, t, u), u > 0 in Q T ; u = 0 on Γ; u(., 0) = u 0 in Ω, (DNE)
with the following nonlinear time derivative, and sub-homogeneous and non-monotone forcing terms β(u) = q 2q -1 u 2q-1 and F(x, t, u) = f (x, u) + h(x, t)u q-1 .

Main tools

Denote weighted spaces with the notation δ(x)

def = dist(x, ∂Ω): L ∞ δ (Ω) def = {w : Ω → R | measurable, w δ(.) ∈ L ∞ (Ω)} endowed with the norm w δ = sup Ω w(x)
δ(x) and for r > 0:

M r δ (Ω) def = {w : Ω → R + | measurable, ∃ c > 0, 1 c ≤ w r δ(x) ≤ c}.

Main tools

First, we derive a new version of the Picone identity involving quasilinear elliptic operators with variable exponent with a glimpse of the proof. Precisely, we consider a continuous operator

A : Ω × R N → R such that (x, ξ) → A(x, ξ
) is differentiable with respect to variable ξ, and satisfies (A 1 ) and a weaker condition (than (A 2 ))

(A 0 ) ξ → A(x, ξ) is strictly convex for any x ∈ Ω.
Theorem 1.4.9 (Picone identity).

Let A : Ω × R N → R is a continuous and differentiable function satisfying (A 0 ) and (A 1 ). Let v 0 , v ∈ L ∞ (Ω) belonging to V r + def = {v : Ω → (0, +∞) | v 1 r ∈ W 1,p (x) 0 
(Ω)} for some r ≥ 1. Then

1 p(x) ∂ ξ A(x, ∇v 1/r 0 ), ∇ v v (r-1)/r 0 ≤ A r p(x) (x, ∇v 1/r ) A (p(x)-r) p(x) (x, ∇v 1/r 0 ) (1.4.26)
where ., . is the inner scalar product and the above inequality is strict if r > 1 or v v 0 ≡ Const > 0.

To prove the above identity, first we transform the variable homogeneity to constant homogeneity be defining a new class of operators

N r : Ω × R N → R + as N r (x, ξ) := A r p(x) (x, ξ) for any r ≥ 1
and the notion of strict ray-convexity: Definition 1.4.2. Let X be a real vector space. Let • V be a non empty cone in X. A function J :

• V → R is ray-strictly convex if for all v 1 , v 2 ∈ •
V and for all θ ∈ (0, 1)

J((1 -θ)v 1 + θv 2 ) ≤ (1 -θ)J(v 1 ) + θJ(v 2 )
where the inequality is always strict unless v 1 = Cv 2 for some C > 0.

Chapter 1. Parabolic problems with non-standard growth By using the convexity and p(x)-homogeneity of the operator A, we prove: for any x ∈ Ω the map ξ → N r (x, ξ) def = A(x, ξ) r/p(x) is positively r-homogeneous and ray-strictly convex. Moreover for r > 1, ξ → N r (•, •) is strictly convex (for a detailed proof see Proposition 4.4.1, Page 171, Chapter 4). Now, by exploiting the convexity of the function N r (x, ξ) with a multiple change of variables we get our Picone identity. As a first application of Picone identity, we extend the famous Díaz-Saá inequality to the class of variable exponent operators. This inequality is strongly linked to the strict convexity of some associated homogeneous energy type functional (see Proposition 4.4.2, Chapter 4 and [START_REF] Giacomoni | A p(x)-Laplacian extension of the Diaz-Saa inequality and some applications[END_REF]).

Theorem 1.4.10 (Díaz-Saá inequality). Let

A : Ω × R N → R is a continuous and differen- tiable function satisfying (A 0 ) and (A 1 ) and define a(x, ξ) = (a i (x, ξ)) i def = 1 p(x) ∂ ξ i A(x, ξ) i .
Assume in addition that there exists Λ > 0 such that

a ∈ C 1 (Ω × (R N \{0})) N and N i,j=1 ∂a i (x, ξ) ∂ξ j ≤ Λ|ξ| p(x)-2 for all (x, ξ) ∈ Ω × R N \{0}. Then, we have in the sense of distributions, for any r ∈ [1, p -] ˆΩ - div(a(x, ∇w 1 )) w r-1 1 + div(a(x, ∇w 2 )) w r-1 2 (w r 1 -w r 2 ) dx ≥ 0 (1.4.27) for any w 1 , w 2 ∈ W 1,p(x) 0 (Ω), positive in Ω such that w 1 w 2 , w 2 w 1 ∈ L ∞ (Ω). Moreover, if the equality occurs in (1.4.27), then w 1 /w 2 is constant in Ω. If p(x) ≡ r in Ω then even w 1 = w 2 holds in Ω.
The proof of the above inequality follows from the Young's inequality and the relation A(x, ξ) = a(x, ξ) • ξ in the Picone identity (1.4.26).

For more application of Picone identity in the study of various anisotropic quasilinear elliptic problems, we refer to Sections 4.4.4 and 4.4.6, Chapter 4.

We study the existence and regularity results for the elliptic problem associated to (DNE).

Precisely, we study the following problem

   v 2q-1 -λ∇. a(x, ∇v) = h 0 (x)v q-1 + λf (x, v), v > 0 in Ω ; v = 0 on ∂Ω . (1.4.28)
The notion of weak solution of (1.4.28) is defined as follows: (Ω) ∩ L 2q (Ω) such that for any φ ∈ W

1,p(x) 0 (Ω) ∩ L 2q (Ω) ˆΩ v 2q-1 φ dx + λ ˆΩ a(x, ∇v).∇φ dx = ˆΩ h 0 v q-1 φ dx + λ ˆΩ f (x, v)φ dx.
The next theorem gives the existence and the uniqueness of the weak solution of (1.4.28).

Main tools

Theorem 1.4.11. Assume that A satisfies (A 1 )-(A 3 ) and f satisfies (f 0 ) and (f 1 ). Then, for any q ∈ (1, p -), λ > 0 and h 0 ∈ L ∞ (Ω)\{0}, h 0 ≥ 0, there exists a weak solution (1.4.28). Moreover, let v 1 , v 2 be two weak solutions to (1.4.28) with h 1 , h 2 ∈ L ∞ (Ω)\{0}, h 1 , h 2 ≥ 0 respectively, we have with the notation t + def = max{0, t}:

v ∈ C 1 (Ω) ∩ M 1 δ (Ω) to
(v q 1 -v q 2 ) + L 2 ≤ (h 1 -h 2 ) + L 2 . (1.4.29)
To prove the existence of a weak solution in above result, we investigate the problem (1.4.28) via variational methods and prove the existence of global minimizer of the energy functional J : W 1,p(x) 0

(Ω) ∩ L 2q (Ω) → R defined by:

J (v) = 1 2q ˆΩ v 2q dx + λ ˆΩ A(x, ∇v) p(x) dx - 1 q ˆΩ h 0 (v + ) q dx -λ ˆΩ F (x, v) dx
where F (x, z) is the primitive of f (x, z) w.r.t variable z. By constructing a function w ∈ W 1,p(x) 0

(Ω) ∩ L 2q (Ω) satisfying J (w) < 0 together with the non-negativity of the potential h 0 implies the non-negativity and non-triviality of the global minimizer. Concerning the C 1,α regularity and M 1 δ (Ω) boundary behavior of the weak solution we seek assistance of preliminary Hölder regularity results (see Proposition 4.5.2, Chapter 4 and Theorem 1.2 in [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF]), Strong maximum Principle and Hopf lemma (see Lemma 4.5.2. Chapter 4). Furthermore, the Picone identity (Theorem 1.4.9) with the following choice of test functions

φ = v 1 - v q 2 v q-1 1 + and Ψ = v 2 - v q 1 v q-1 2 -
reveals the contraction properties and uniqueness of weak solution. The choice of test functions while applying Picone identity plays a significant role in the computations and their inclusion in the energy space W 1,p(x) 0

(Ω) ∩ L 2q (Ω) is justified by the boundary behavior of weak solution v 1 , v 2 . The contraction property (1.4.29) illustrate the continuous and monotone dependency of the weak solution of elliptic problem (1.4.28) with respect to the potentials (or coefficients). Now by exploiting the regularity or boundary behavior of the weak solution of (1.4.28), we study the following perturbed problem induced by the operator T q which is associated to the parabolic equation (1.4.32):

   u + λT q u = h 0 , u > 0 in Ω; u = 0 on ∂Ω.
(1.4.30)

We prove existence of weak solution, uniqueness and accretivity results for (1.4.30) (see Corollary 4.5.1, Page 212, Chapter 4). We observe that if u 0 is the weak solution of (E), then v 0 = u q 0 is the weak solution of (1.4.30). In addition to this, by using approximating method, we also extend the existence and regularity results for elliptic problems (1.4.28) and (1.4.30) for a larger class of potentials h 0 ∈ L 2 (Ω). For more details, we refer to Theorems 4.5.5 and Corollary 4.5.2 , Section 4.5.2.2, Chapter 4. The study of (DNE) is naturally concerned with the investigation of the following associated parabolic problem:

         v q-1 ∂ t (v q ) -∇. a(x, ∇v) = F(x, t, v), v > 0 in Q T ; v = 0 on Γ; v(0, .) = v 0 in Ω, (E) with F(x, t, u) = f (x, u) + h(x, t)u q-1
and then we further prove that a weak solution of associated parabolic problem (E) is also a weak solution of the main problem (DNE).

Using an identical approach based on nonlinear accretive operators theory as in [START_REF] Badra | A singular parabolic equation: Existence and stabilization[END_REF]146,[START_REF] Giacomoni | Quasilinear parabolic problem with p(x)-Laplacian: existence, uniqueness of weak solutions and stabilization[END_REF], we introduce T q := D(T q ) ⊂ L 2 (Ω) → L 2 (Ω) be the operator with the parameter q defined by

T q u = -u (1-q)/q ∇. a(x, ∇(u 1/q )) + f (x, u 1/q )
and the associated domain

D(T q ) = {w : Ω → R + | measurable, w 1/q ∈ W 1,p(x) 0 (Ω) ∩ L 2q (Ω), T q w ∈ L 2 (Ω)}.
For understanding the difficulties in solving the associated parabolic problem (E), we first study the problem (E) for p(x)-Laplacian operator and then later generalize it to a class of p(x)-homogeneous operator. Here we directly focused on generalized operator as mentioned in the problem (E) and for the study related to p(x)-Laplacian operator, we refer to Section 4.4.5, Chapter 4.

Before stating the main result for the problem (E), we introduce the notion of weak solution as follows:

Definition 1.4.4. Let T > 0, a weak solution to (E) is any positive function v ∈ L ∞ (0, T ; W 1,p(x) 0 (Ω))∩ L ∞ (Q T ) such that ∂ t (v q ) ∈ L 2 (Q T ) satisfying for any φ ∈ L 2 (Q T ) ∩ L 1 (0, T ; W 1,p(x) 0 (Ω)) and for any t ∈ (0, T ] ˆt 0 ˆΩ ∂ t (v q )v q-1 φ dxds+ ˆt 0 ˆΩ a(x, ∇v).∇φ dxds = ˆt 0 ˆΩ F(x, s, u)φ dxds and v(0, .) = v 0 a.e. in Ω.
We prove the following result for (E):

Theorem 1.4.12. Let T > 0 and q ∈ (1, p -).

Assume A satisfies (A 1 )-(A 3 ), f satisfies (f 0 )-(f 2 ) and Then, for any h ∈ L ∞ (Q T ) satisfying (H h ) and for any initial data v 0 ∈ M 1 δ (Ω) ∩ W 1,p(x) 0
(Ω), there exists a solution in sense of Definition 1.4.4. More precisely, we have:

1.4.3.2. Main results (i) there exists c > 0 such that for any t ∈ [0, T ], 1 c δ(x) ≤ u(t, x) ≤ cδ(x) a.e.

in Ω;

(ii) Assume in addition A satisfies (A 4 ) for any x ∈ Ω and for any ξ, η ∈ R N . Then, v ∈ C([0, T ]; W).

The monotone and continuous dependence of weak solution with respect to the initial data and potential (or coefficients) in forcing terms is obtained by the following theorem relaxing the assumptions on v 0 and h. More precisely, we show:

Theorem 1.4.13. Let v, w be two solutions of (E) in sense of Definition 1.4.4 with respect to the initial data v 0 , w 0 ∈ L 2q (Ω), v 0 , w 0 ≥ 0 and h, h ∈ L 2 (Q T ). Then, for any t ∈ [0, T ]:

v q (t) -w q (t) L 2 (Ω) ≤ v q 0 -w q 0 L 2 (Ω) + ˆt 0 h(s) -h(s) L 2 (Ω) ds. (1.4.31)
In Theorem 1.4.12, the uniqueness of weak solution is the consequence of Theorem1.4.13.In sense of Definition 1.4.4, a solution of (E) belongs to

L ∞ (Q T ), hence q 2q-1 ∂ t (v 2q-1 ) = v q-1 ∂ t (v q ) ∈ L 2 (Q T )
holds in weak sense and we deduce the existence of a solution of (DNE).

Another important result of this part is to study the convergence of the weak solution to a steady state. For this, we shift the nonlinearity in the time derivative term to the diffusion term (as in (1.3.3)) in the associated parabolic problem and we prove the following result: Theorem 1.4.14. Under the assumptions of Theorem 1.4.12, for any u 0 such that u

1/q 0 ∈ M 1 δ (Ω) ∩ W 1,p(x) 0 (Ω), there exists a unique weak solution u ∈ L ∞ (Q T ) of          ∂ t u + T q u = h, u > 0 in Q T ; u = 0 on Γ; u(0, .) = u 0 in Ω, (1.4.32)
in the sense that:

(i) u 1/q belongs to L ∞ (0, T ; W), ∂ t u ∈ L 2 (Q T ); (ii) there exists c > 0 such that for any t ∈ [0, T ], 1 c δ q (x) ≤ u(t, x) ≤ cδ q (x) a.e. in Ω; (iii) u satisfies, for any t ∈ [0, T ]: ˆt 0 ˆΩ ∂ t uψ dxds + ˆt 0 ˆΩ a(x, ∇u 1/q ).∇(u 1-q q ψ) dxds = ˆt 0 ˆΩ f (x, u 1/q )u 1-q q ψ dxds + ˆt 0 ˆΩ h(s, x)ψ dxds, (1.4.33)
for any ψ such that

|ψ| 1/q ∈ L ∞ (0, T ; L ∞ δ (Ω)) and |∇ψ| δ q-1 (•) ∈ L 1 (0, T ; L p(x) (Ω)).
Moreover, u belongs to C([0, T ]; L r (Ω)) for any r ∈ [1, +∞).

Chapter 1. Parabolic problems with non-standard growth Now, we start giving the main ingredients of the proof of the results stated above. To prove the main result Theorem 1.4.12 (and simultaneously Theorem 1.4.14), we use the technique of semi-discretization in time. We stress here that the general form of operators requires to sharply exploit the Picone's identity and demands new compelling estimates to prove the qualitative properties of the weak solution. In this regard, the integrability of the quotient in the choices of test functions forces conditions on the regularity or boundary behaviour of weak solution.

To apply the time-discretization method in our main result Theorem 1.4.12, we define the approximation of the potential h as: let n * ∈ N and set

∆ t = T /n * . For n ∈ {1, 2, . . . n * } := 1, n we define t n = n∆ t and for t ∈ [t n-1 , t n ) and x ∈ Ω h ∆t (t, x) = h n (x) def = 1 ∆ t ˆtn t n-1 h(s, x)ds (1.4.34) such that h ∆t → h in L 2 (Q T )
. Now, by using Theorem 1.4.11 , we define a sequence

{v n } such that v n ∈ C 1,α (Ω) ∩ M 1 d (Ω)
is the weak solution of the following implicit Euler scheme via a approximation of h defined in (1.4.34):

             v q n -v q n-1 ∆ t v q-1 n -∇. a(x, ∇v n ) = h n v q-1 n + f (x, v n ) in Ω ; v n > 0 in Ω ; v n = 0 on ∂Ω ,
and two sequences of approximate functions in t:

v ∆t (x, t) = v n (x) and ṽ∆t (x, t) = t -t n-1 ∆ t (v q n (x) -v q n-1 (x)) + v q n-1 (x) which satisfy v q-1 ∆t ∂ t ṽ∆t -∇. a(x, ∇v ∆t ) = f (x, v ∆t ) + h n v q-1 ∆t . (1.4.35)
To prove the boundary behavior of the parabolic problem (E), first we show there exists c > 0 such that .4.36) In this regard, we construct a subsolution w and supersolution w in C 1 (Ω) ∩ M 1 δ (Ω) of suitable quasilinear elliptic equations (for more details see Step 2, Page 216, Chapter 4) such that v n ∈ [w, w] for every n ∈ 0, n . The existence results (Theorems 1.4.11, 4.4.12 and 4.4.13) in the light of Picone identity facilitate the construction of subsolution w and supersolution w with C 1,α (Ω) ∩ M 1 δ (Ω) regularity. By choosing a suitable set of test functions in the Picone identity, and using interpolations inequalities and Arzela-Ascoli Theorem, we show the following uniform estimates for v ∆t and ṽ∆t 

1 c δ(x) ≤ v ∆t (x, t), ṽ1/q ∆t (x, t) ≤ cδ(x) for all (x, t) ∈ Ω × [0, T ]. ( 1 
               ∂ t ṽ∆t is bounded in L 2 (Q T ) uniformly in ∆ t , (v ∆t ), (ṽ 1/q ∆t ) is bounded in L ∞ (0, T ; W 1,p(x) 0 (Ω)) uniformly in ∆ t , ṽ∆t → v q in C([0, T ]; L r (Ω)) and v ∆t → v in L ∞ (0, T ; L r (Ω)), v ∆t , ṽ1/q ∆t * v in L ∞ (0, T ; W 1,p(x) 0 (Ω)) as ∆ t → 0 and ∂ t ṽ∆t → ∂ t (v q ) in L 2 (Q T ). ( 1 
φ = (v + ) q -(w + ) q (v + ) q-1 and Ψ = (w + ) q -(v + ) q (w + ) q-1
as a test functions in the Definition (1.4.4) and passing limits → 0 using Lebesgue dominated convergence Theorem and regularity of weak solution.

Remark 1.4.3. We observe that if v is the weak solution of (E) then w = v q is the weak solution of (1.4.32) in the sense of Definition 1.4.33 (see proof of Theorem 4.5.7 for a detailed explanation).

Based on the accretive property of T q in L 2 (Ω) (see Theorem 4.5.5 and Corollary 4.5.2, Page 213, Chapter 4) and additional regularity on initial data, we obtain the following stabilization result for the weak solutions to (E):

Theorem 1.4.15. Under the assumptions of Theorem 1.4.12, let v be the weak solution of (E) with the initial data 1) at infinity for some η > 0.

v 0 ∈ M 1 δ (Ω) ∩ W 1,p(x) 0 (Ω). Assume that h ∈ L ∞ ([0, +∞) × Ω) satisfying (H h ) on [0, +∞) × Ω and there exists h ∞ ∈ L ∞ (Ω) such that t 1+η h(t, .) -h ∞ L 2 = O(
(1.4.38)

Then, for any r ∈ [1, ∞) v q (t, .) -v q stat L r → 0 as t → ∞
where v stat is the unique solution of associated stationary problem with the potential h ∞ ∈ L ∞ (Ω). Now we study the convergence of weak solution of the D.N.E. to a steady state. To this goal, our approach is to use the semigroup theory. Due to the general class of operators, additional technical computations are needed and performed with the help of the above Picone's identity.

With both autonomous and non-autonomous terms and the large class of considered operators, Chapter 1. Parabolic problems with non-standard growth (DNE) covers a large spectrum of physical situations.

We start by proving the existence of unique weak solution v ∈ C 1 (Ω)∩M 1 δ (Ω) of the following stationary problems associated to the (E) and (1.4.32) via minimization method

         -∇. a(x, ∇v) = b(x)v q-1 + f (x, v) in Ω; v ≥ 0 in Ω; v = 0 on ∂Ω, (S)
In the same way, we obtain the existence of a unique solution

u in V q + ∩ M 1/q δ (Ω) of the following problem          T q u = b in Ω; u > 0 in Ω; u = 0 on ∂Ω. (1.4.39)
To prove the stabilization property, we divide the proof into two cases when the potential h is a function of x only and when the potential h is a function of both x and t.

For the Case 1, we introduce the family {S(t); t ≥ 0} defined on M 1/q δ (Ω) ∩ V q + such that w(t) = S(t)w 0 where w is the solution obtained by Theorem 1.4.14 for h = h ∞ . Uniqueness and regularity results of the weak solution w implies that {S(t); t ≥ 0} a semi group on

M 1/q δ (Ω) ∩ V q + .
In the light of Remark 1.4.3, we notice that v = (S(t)w 0 ) 1/q is the solution of (E) in the sense of Definition 1.4.4 with h = h ∞ and the initial data w 1/q 0 . Let T > 0 and v be the solution of (E) obtained by Theorem 1.4.12 with h ≡ h ∞ and the initial data v 0 , then u(t) = v(t) q = S(t)u 0 with u 0 = v q 0 is a weak solution of (1.4.32). Then we construct a subsolution w and a supersolution w of the stationary problem (S) with h ∞ such that w ≤ v 0 ≤ w. Define u(t) = S(t)w q and u(t) = S(t)w q the solutions to (1.4.32). Subsolution u and supersolution u are obtained by the iterative scheme defined in the proof of existence of weak solution (see (4.5.23)) with initial data v 0 = w and v 0 = w respectively. Hence, by using the monotonicity of the map t → u(t), and t → u(t), continuity property of semigroup in L 2 (Ω) and (1.4.31) insures for any t ≥ 0,

w q ≤ u(t) ≤ u(t) ≤ u(t) ≤ w q a. e. in Ω.
(1.4.40)

u ∞ = lim s→∞ S(t + s)(w q ) = S(t)( lim s→∞ S(s)(w q )) = S(t)u ∞
where u ∞ = lim t→∞ u(t) and u ∞ = lim t→∞ u(t). Analogously we have u ∞ = S(t)u ∞ . We deduce u ∞ and u ∞ are solutions of (1.4.39) with b = h ∞ and by uniqueness, we have

u stat def = u ∞ = u ∞
where u stat is the stationary solution of perturbed parabolic problem (1.4.39). Therefore from (1.4.40) and interpolation inequality . r ≤ . θ ∞ . 1-θ 2 , we conclude for any r ≥ 1.

u(t) -u stat L r → 0 as t → ∞.
For the case 2: From (1.4.38), for any ε and for some η ∈ (0, η), there exists t 0 > 0 large enough such that for any t ≥ t 0 :

t 1+η h(t, .) -h ∞ L 2 ≤ ε.
Let T > 0 and v be the solution of (E) obtained by Theorem 1.4.12 with potential h and the initial data v 0 = u 1/q 0 and we set u = v q . Since v ∈ M 1 δ (Ω), we can define ũ(t) = S(t + t 0 )u 0 = S(t)u(t 0 ). Then, by (1.4.31) and uniqueness, we have for any t > 0:

u(t + t 0 , .) -ũ(t, .) L 2 ≤ ˆt 0 h(s + t 0 , .) -h ∞ L 2 ds ≤ ε t η 0 ≤ ε.
By Case 1, we have ũ(t) → u stat in L 2 (Ω) as t → ∞. Therefore, we obtain

u(t) -u stat L 2 → 0 as t → ∞
and by using interpolation inequality we conclude the proof of Theorem 1.4.15.

C h a p t e r 2

Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity

In the last few years, nonlinear and nonlocal partial differential equations (PDEs) have attracted a lot of mathematicians due to their appearance in variety of real world phenomenon.

In particular, the study of nonlocal elliptic and parabolic PDEs play a vital role in the modelling of various natural processes. Out of many interesting research questions, the fundamental questions are the well posedness of the model, existence and multiplicity (versus uniqueness) of solutions, and in this direction, a considerable amount of results has been obtained in both nonlinear and nonlocal setting.

Recently, a lot of attention has been paid to the study of PDEs involving nonlinear operator like p-Laplacian and its higher order elliptic variants, in the presence of nonlocal terms (like Kirchhoff type non-linearity, Choquard type non-linearity), which give rise to the nonlocal effect in the equation. The importance of studying these type of PDEs provoked from various physical models such as Kirchhoff's model of studying transverse oscillation of the stretched string [177,[START_REF] Kirchhoff | Vorlesungenüber Mechanik[END_REF], Pekar's model for the quantum theory of the polaron at rest [START_REF] Pekar | Untersuchungüber die Elektronentheorie der Kristalle[END_REF], Choquard's model of an electron traped in its own hole [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard nonlinear equation[END_REF], plasma theory of electromagnetic waves [START_REF] Bergé | Nonlinear propagation of self-guided ultra-short pulses in ionized gases[END_REF], Bose-Einstein condensation [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF] and many more.

The main theme of this part of the thesis, is to study the existence and multiplicity results for the quasilinear elliptic problems involving the nonlocal Turning to the layout of this chapter: In section 2.1, we introduce a short description of nonlinear operator and related functions spaces. In Section 2.2, we discuss the source of interest and motivations to study the nonlocal problems and the state of the art. In this regard, we start by stating several inequalities of Adams, Moser, and Trudinger and then present a state of the art for Kirchhoff type problems, Choquard non-linearity and Nehari manifold method. In Section 2.3, we present our main problems. In section 2.4, we study Kirchhoff equations and systems with exponential non-linearity of Choquard type and singular weights. We state our main results and present the main ingredients of their proofs whose expository part of proofs are given in Chapter 5.

Nonlinear operators and Function spaces

For m ∈ N, 1 ≤ p < ∞ and u ∈ C m , the vectorial polyharmonic operator ∆ m p is defined by induction as

∆ m p u =    ∇.{∆ j-1 (|∇∆ j-1 u| p-2 ∇∆ j-1 u)} if m = 2j -1, ∆ j (|∆ j u| p-2 ∆ j u) if m = 2j.
The symbol ∇ m u denotes the m th -order gradient of u and is defined as

∇ m u =    ∇∆ (m-1)/2 u if m is odd, ∆ m/2 u if m is even
where ∆ and ∇ denotes the usual Laplacian and gradient operator respectively, and ∇ m u•∇ m v denotes the product of two vectors when m is odd and the product of two scalars when m is 2.2. Motivation and state of the art even.

Let Ω ⊂ R n be a bounded domain. The Sobolev space W m,p (Ω) defined as

W m,p (Ω) := {u ∈ L p (Ω) : |∇ α u| p ∈ L 1 (Ω) ∀ |α| ≤ m} endowed with the norm u W m,p (Ω) =   |α|≤m ˆΩ |∇ α u| p dx   1 p is a Banach space. For 1 ≤ p < ∞, we define W m,p 0 (Ω) as the closure of C ∞ c (Ω) in W m,p (Ω).
From Poincaré inequality, we can also define an equivalent norm on W m,p 0 (Ω) as

u W m,p 0 (Ω) = ˆΩ |∇ m u| p dx 1 p .
In the special case p = 2, W m,2 0 (Ω) (or H m 0 (Ω)) becomes a Hilbert space with the inner product

u, v = ˆΩ ∇ m u • ∇ m v dx.

Motivation and state of the art

Adams, Moser and Trudinger inequalities

The classical Sobolev space embedding says that

W m,p 0 (Ω) → L p * (Ω) if n > mp where p * = np n -mp or equivalently sup u W m,p 0 (Ω) ≤1 ˆΩ |u| r < ∞ for all 1 ≤ r ≤ p * and in the limiting case mp = n, W m, n m 0 (Ω) → L r (Ω) for all 1 ≤ r < ∞ but not embedded in L ∞ (Ω)
. The maximal exponent p * is called as Sobolev critical exponent. Hence, a natural question in connection with Orlicz space embeddings is to find a function φ : R → R + with maximal growth such that

sup u W m, n m 0 (Ω) ≤1 ˆΩ φ(u)dx < ∞.
In this connection, in 1960's, Pohozaev [START_REF] Pohozaev | The Sobolev embedding in the case pl = n[END_REF] and in 1967's, Trudinger [START_REF] Trudinger | On embedding into Orlicz space and some applications[END_REF] independently answered the question for m = 1 and p = n, using the maximal growth function

φ(t) = exp(|t| n n-1 ) -1.
Later on, in 1971, Moser [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF] and in 1984, Cherrier [START_REF] Cherrier | Meilleures constantes dans des inégalités relatives aux espaces de Sobolev[END_REF][START_REF] Cherrier | Problemes de Neumann non linéaires sur les varietes riemanniennes (French)[END_REF] improved the result by proving the inequality in W 1,n 0 (Ω) and W 1,n (Ω) respectively with sharp exponents in the maximal growth function and proved the following result: 

n ≥ 2, u ∈ W 1,n 0 (Ω) sup u W 1,n 0 (Ω) ≤1 ˆΩ exp(α|u| n n-1 ) dx < ∞ if and only if α ≤ α n and for u ∈ W 1,n (Ω) sup u W 1,n (Ω) ≤1
ˆΩ exp(α|u|

n n-1 ) dx < ∞ if and only if α ≤ α n 2 1 n-1 here α n = nω 1 n-1 n-1 ω n-1 = surface area of n-dimensional sphere S n-1 .
From Theorem 2.2.1, it is easy to see that the embedding

W 1,n 0 (Ω) u → exp(|u| β ) ∈ L 1 (Ω) is compact for all β ∈ 1, n n-1
and is continuous for

β = n n-1 . Consequently the map T : W 1,n 0 (Ω) → L q (Ω), for q ∈ [1, ∞), defined by T (u) := exp |u| n n-1
, is continuous with respect to the norm topology.

In a further extend, Adams [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF] generalized the Moser's inequality to higher order Sobolev spaces by proving the following inequality which is known as Adams-Moser-Trudinger inequality:

Theorem 2.2.2. Let Ω be a bounded domain in R n and n, m ∈ N satisfying m < n. Then for all 0 ≤ ζ ≤ ζ n,m and u ∈ W m, n m 0 (Ω) we have sup ∇ m u L n m (Ω) ≤1 ˆΩ exp(ζ|u| n n-m )dx < ∞,
where ζ n,m is sharp and given by

ζ n,m =                  n ω n-1   π n/2 2 m Γ m+1 2 Γ n-m+1 2   n n-m when m is odd, n ω n-1 π n/2 2 m Γ m 2 Γ n-m 2 n n-m
when m is even.

Using the interpolation of Hardy inequality and Moser-Trudinger inequality, Adimurthi-Sandeep [START_REF] Adimurthi | A singular Moser-Trudinger embedding and its applications[END_REF] established the singular Moser-Trudinger inequality for functions in W 1,n 0 (Ω). This was consequently extended by Lam-Lu [START_REF] Lam | Sharp singular Adams inequality in higher order Sobolev spaces[END_REF] for functions in W m, n m 0 (Ω) while proving the following singular Adams-Moser-Trudinger inequality:

Theorem 2.2.3. Let 0 ≤ α < n, Ω be a bounded domain in R n and n, m ∈ N satisfying m < n. Then for all 0 ≤ κ ≤ κ α,n,m = 1 -α n ζ n,m we have sup u∈W m, n m 0 (Ω), ∇ m u L n m (Ω) ≤1 ˆΩ exp(κ|u| n n-m ) |x| α dx < ∞.
If κ > κ α,n,m then the above supremum is infinite (i.e. κ α,n,m is sharp).

Kirchhoff problems

We recall two results from [START_REF] Lions | The concentration compactness principle in the calculus of variations part-I[END_REF] which are known as Lions's higher integrability Lemma.

Lemma 2.2.4. Let {v

k } be a sequence in W 1,n 0 (Ω) such that v k = 1 converging weakly to a non zero v ∈ W 1,n 0 (Ω). Then for every p ≤ (1 -v n ) -1 n-1 , sup k ˆΩ exp pα n |v k | n n-1 < +∞. Lemma 2.2.5. Let {v k } be a sequence in W m,2 0 (Ω) such that v k = 1 converging weakly to a non zero v ∈ W m,2 0 (Ω). Then for every p < (1 -v 2 ) -1 , sup k ˆΩ exp pζ m,2m |v k | 2 < +∞.
In recent years, numerous generalizations, extensions and applications of the Moser-Trudinger and Adams-Trudinger-Moser inequalities have been widely explored. A huge amount of literature is available which are devoted to study these kinds of inequalities. We refer readers to [START_REF] Adams | A sharp inequality of J. Moser for higher order derivatives[END_REF][START_REF] Adimurthi | A singular Moser-Trudinger embedding and its applications[END_REF][START_REF] Lam | Sharp singular Adams inequality in higher order Sobolev spaces[END_REF][START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF] for such topics and the survey article [START_REF] Lam | The Moser-Trudinger and Adams inequalities and elliptic and subelliptic equations with non-linearity of exponential growth[END_REF] including the references within. In the field of geometric analysis curvature for instance prescribed mean curvature problem, Yamabe's problem and partial differential equations where the nonlinear term behaves like exp |t| n n-m as t → ∞, these inequalities play a vital role to carry out the analysis.

Kirchhoff problems

The starting point of studying Kirchhoff problems goes back to 1883, when Kirchhoff established a model governed by the equation

(I) : ρu tt -M ˆL 0 |u x | 2 dx u xx = 0
for all x ∈ (0, L) and t ≥ 0 and M (s) = P 0 h + E 2L s with the following interpretation of the constants: u(x, t) is the lateral displacement at the coordinate x and time t, L is the length of the string, h is the area of the cross section, E is the Young's modulus of the material, ρ is the mass density and P 0 is the initial axial tension. The model (I) depicts that the transverse oscillations of stretched string with nonlocal flexural rigidity depend continuously on the Sobolev deflection norm of u via M. This model is an extension of classical D'Alembert wave equation, by considering the effects of change in the length of the string during the vibration. Further details and the physical phenomena described by the Kirchhoff's classical theory can be found in [177], [START_REF] Kirchhoff | Vorlesungenüber Mechanik[END_REF].

The degenerate Kirchhoff problems i.e. M (0) = 0 are also very interesting and challenging from a mathematical point of view. The degeneracy in the model (I) implies that the base tension of the string is zero and M measures the change of the tension on the string caused by the change by its length during the vibration. The presence of the nonlinear coefficient Chapter 2. Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity M is crucial and must be considered when the changes in the tension during the motion cannot be neglected. The early classical studies dedicated to Kirchhoff equations were given by Bernstein [START_REF] Bernstein | Sur une classe d'équations fonctionnelles aux dérivés partielles[END_REF] and Pohozaev [START_REF] Pohozaev | On a class of quasilinear hyperbolic equations[END_REF]. However, model (I) received much attention only after the paper by Lions [195], where an abstract framework to the problem was proposed.

After the appearance of (I), several physicists considered such equations for their research on nonlinear vibrations from both theoretical and experimental points of view. More general versions of these problems are also termed as the Kirchhoff equations and have been extensively studied by many researchers till date. Such equations also appear in biological systems where the function u describes a phenomenon which depends on the average of itself (such as a population density). Consider the following problem

(K) : -M ( ˆΩ |∇ m u| p dx) ∆ m p u = λf (x, u) + a(x)|u| p * -2 u in Ω u = 0 on ∂Ω
where the function f has a suitable growth. Due to the presence of the nonlocal term M , the equation (K) is no longer a pointwise identity which makes the study of such problems more tricky. For p = 2, m = 1, λ = 1 and a(x) = 0, Alves et. al in [START_REF] Alves | Positive solutions for a quasilinear elliptic equation of Kirchhoff type[END_REF] considered the nonlocal Kirchhoff Laplacian problem (K) with f satisfying sub-critical growth condition at ∞, and using the truncation arguments and variational method showed the existence of a weak solution. In [START_REF] Corrêa | On an elliptic equation of p-Kirchhoff-type via variational methods[END_REF], Corrêa and Figueiredo studied the existence of positive solutions for Kirchhoff equations involving p-laplacian operator with critical or super critical Sobolev type non-linearity and a(x) = 0. In [START_REF] Alves | On a class of non-local elliptic problems with critical growth[END_REF], Alves et. al considered the above nonlocal problem with a(x) ≡ 0 and using the Mountain-pass Lemma and the compactness analysis of local Palais-Smale sequences, showed the existence of solutions for large λ. Later on, in [START_REF] Figueiredo | Ground state solution for a Kirchhoff problem with exponential critical growth[END_REF] for Laplacian operator and in [START_REF] Goyal | n-Kirchhoff type equations with exponential nonlinearities[END_REF] for n-Laplacian operator authors have studied the Kirchhoff problem with critical exponential growth non-linearity. Problems involving polyharmonic operators and polynomial type critical growth non-linearities have been broadly studied by many researchers till now, see [START_REF] Gazzola | Critical growth problems for polyharmonic operators[END_REF][START_REF] Ge | A critical elliptic problem for polyharmonic operator[END_REF][START_REF] Goyal | The Nehari manifold for a quasilinear polyharmonic equation with exponential nonlinearities and a sign-changing weight function[END_REF]. We cite [START_REF] Goyal | Existence of nontrivial solutions to quasilinear polyharmonic Kirchhoff equations with critical exponential growth[END_REF][START_REF] Lam | Existence of nontrivial solutions to polyharmonic equtions with subcritical and critical exponential growth[END_REF][START_REF] Lakkis | Existence of solutions for a class of semilinear polyharmonic equations with critical exponential growth[END_REF] and references therein for existence results on polyharmonic equations with exponential type non-linearity. We cite [START_REF] Adimurthi | Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian[END_REF][START_REF] Alves | On existence of solutions for a class of problem involving a nonlinear operator[END_REF][START_REF] Alves | Positive solutions for a quasilinear elliptic equation of Kirchhoff type[END_REF][START_REF] Cheng | New existence and multiplicity of nontrivial solutions for nonlocal elliptic Kirchhoff type problems[END_REF][START_REF] Figueiredo | Existence of positive solution for a Kirchhoff problem type with critical growth via truncation argument[END_REF][START_REF] Figueiredo | Multiplicity of solutions for a Kirchhoff equation with subcritical or critical growth[END_REF][START_REF] Lei | Multiple positive solutions for a Kirchhoff type problem with a critical non-linearity[END_REF][START_REF] Mishra | Polyharmonic Kirchhoff type equations with singular exponential nonlinearities[END_REF][START_REF] Pucci | Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian[END_REF][START_REF] Wang | Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth[END_REF] as references where the Kirchhoff equations for different kind of operators and non-linearities have been treated with no attempt to provide the complete list.

Exponential non-linearity of Choquard type

Let us consider the problem

(C) : -∆u + V (x)u = (|x| -µ * F (x, u))f (x, u) in R n
where µ ∈ (0, n), F is the primitive of f with respect to the second variable and V , f are continuous functions satisfying certain assumptions. The starting point of studying such problems was the work by S. Pekar (see [START_REF] Pekar | Untersuchungüber die Elektronentheorie der Kristalle[END_REF]) in 1954 where he used such equations to describe the quantum theory of a polaron at rest. Later, P. Choquard (see [START_REF] Lieb | Existence and uniqueness of the minimizing solution of Choquard nonlinear equation[END_REF]) in 1976 used it to model an electron trapped in its own hole. The problem (C) also appears when we look for standing waves of the nonlinear and nonlocal Schrödinger equation, which is known to influence the propagation of electromagnetic waves in plasma [START_REF] Bergé | Nonlinear propagation of self-guided ultra-short pulses in ionized gases[END_REF]. Moreover, such problems play a key role in the Bose-Einstein condensation ( [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]). To deal with the Choquard nonlinearity term, the following Hardy-Littlewood-Sobolev inequality [START_REF] Lieb | Analysis[END_REF] and doubly weighted Hardy-Littlewood-Sobolev [START_REF] Stein | Fractional integrals in n-dimensional Euclidean spaces[END_REF] inequality play a vital role:

Proposition 2.2.6. (Hardy-Littlewood-Sobolev inequality) Let t, r > 1 and 0 < µ < n with 1/t + µ/n + 1/r = 2, f ∈ L t (R n ) and h ∈ L r (R n ).
There exists a sharp constant

C(t, n, µ, r), independent of f, h such that ˆRn ˆRn f (x)h(y) |x -y| µ dxdy ≤ C(t, n, µ, r) f L t (R n ) h L r (R n ) .
(2.2.1)

If t = r = 2n 2n-µ then C(t, n, µ, r) = C(n, µ) = π µ 2 Γ n 2 -µ 2 Γ n -µ 2 Γ n 2 Γ(n) -1+ µ n .
In this case there is an equality in (2.2.1) if and only if f ≡ (constant)h and

h(x) = A(γ 2 + |x -a| 2 ) -(2n-µ) 2 for some A ∈ C, 0 = γ ∈ R and a ∈ R n .
Proposition 2.2.7. (Doubly weighted Hardy-Littlewood-Sobolev inequality) Let t, r > 1 and 0 < µ < n with α + β ≥ 0,

1 t + µ+α+β n + 1 r = 2, α < n t , β < n r f ∈ L t (R n ) and h ∈ L r (R n )
, where t and r denotes the Hölder conjugate of t and r respectively. Then there exists a constant C(α, β, t, n, µ, r) > 0 which is independent of f, h such that ˆRn ˆRn

f (x)h(y) |x -y| µ |y| α |x| β dxdy ≤ C(α, β, t, n, µ, r) f L t (R n ) h L r (R n ) .
For recent results involving different kinds of operators and growth conditions, we refer the readers to survey paper on Choquard equations by Moroz and Schaftingen [START_REF] Moroz | A guide to the Choquard equation[END_REF], and Tuhina and Sreenadh [START_REF] Mukherjee | Critical growth elliptic problems with Choquard type non-linearity: A survey[END_REF] which cover as extensively as possible the existing literature on this topic.

In the light of Hardy-Littlewood-Sobolev inequalities, Lü [START_REF] Lü | A note on Kirchhoff-type equations with Hartree-type nonlinearities[END_REF] studied the following Choquard equation involving Kirchhoff operator

-a + b ˆR3 |∇u| 2 dx ∆u + (1 + µg(x))u = |x| -α * |u| p |u| p-2 u in R 3
where a > 0, b ≥ 0 are constants, α ∈ (0, 3), p ∈ (2, 6 -α), µ > 0 is a parameter and g is a nonnegative continuous potential satisfying some conditions. By using the Nehari manifold Chapter 2. Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity method and the concentration compactness principle [START_REF] Lions | The concentration compactness principle in the calculus of variations part-I[END_REF], he established the existence of ground state solutions when µ is large enough and studied the concentration behavior of these solutions as µ → +∞. Recently, Li et al. [START_REF] Li | Existence and concentration of sign-changing solutions to Kirchhoff-type system with Hartree-type non-linearity[END_REF] studied the existence and the concentration of sign-changing solutions to a class of Kirchhoff-type systems with Choquard-type nonlinearity in R 3 using minimization argument on the sign-changing Nehari manifold. Pucci et al. [START_REF] Pucci | Existence results for Schrödinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian[END_REF] also studied the existence of nonnegative solutions of a Schrödinger-Choquard-Kirchhoff type fractional p-equation via variational methods.

An important question that arises now is the case of critical dimension n. But there is not much literature concerning problem (C) when n = 2 except the articles by Alves et al. [START_REF] Alves | Existence and concentration of ground state solutions for a critical non-local Schrödinger equation in R n[END_REF] where authors have studied a singularly perturbed nonlocal Schrödinger equation using variational methods in R 2 .

Nehari Manifold method

Let X be a Banach space and I : X → R be a C 1 functional. Let u be a non-trivial critical point of the energy function I i.e. I (u) = 0, then u is necessarily contained in the set

N := {u ∈ X \ {0} : I (u), u = 0}
where I is the Fréchet derivative of energy functional I. The set N is the natural constraint set for the problem to find non-trivial critical point of I. The set N is known as Nehari manifold named after the work of Z. Nehari. We refer to [START_REF] Nehari | Characteristic values associated with a class of non-linear second-order differential equations[END_REF] and [START_REF] Szulkin | The method of Nehari manifold[END_REF] for a more detailed study.

In [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibering method[END_REF], authors have studied the associated fiber maps Φ u : R + → R defined as Φ u (t) = I(tu) in order to study the geometry of Nehari manifold. We observed that u ∈ N if and only if Φ u (1) = 0. More generally, tu ∈ N if and only if Φ u (t) = 0 which means that the elements in N corresponds to critical point of the fiber maps. Thus, it is natural to split the Nehari manifold N intro three disjoint sets corresponding to local maxima, local minima and saddle points of Φ u and defined as

N ± := {u ∈ N : Φ u (1) ≶ 0} and N 0 := {u ∈ N : Φ u (1) = 0}.
The main idea is to minimize the associated energy functional I on the Nehari manifold and show that the minimizers are actually the critical points of the energy function I i.e the Lagrange multipliers is zero. In the last few decades, several authors such as in [START_REF] Alves | Nehari manifold and existence of positive solutions to a class of quasilinear problem[END_REF][START_REF] Ambrosetti | Combined effects of concave and convex nonlinearities in some elliptic problems[END_REF][START_REF] Brown | A fibering map approach to a semilinear elliptic boundary value problem[END_REF][START_REF] Brown | The Nehari manifold for a semilinear elliptic problem with a sign-changing weight function[END_REF][START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibering method[END_REF][START_REF] Hamidi | Multiple solutions with changing sign energy to a nonlinear elliptic equation[END_REF][START_REF] Wu | On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function[END_REF][START_REF] Wu | Multiplicity results for a semilinear elliptic equation involving sign-changing weight function[END_REF][START_REF] Wu | Multiple positive solutions for a class of concave-convex elliptic problems in Ω involving sign-changing weight[END_REF] used the Nehari manifold and associated fiber maps approach to study the multiplicity results for semilinear problems involving polynomial type nonlinearity and sign changing weight functions. In [START_REF] Wu | On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function[END_REF], Wu studied the multiplicity of weak solution semilinear elliptic equations

(K) -M ˆΩ |∇u| p dx ∆ p u = g(x)|u| p-1 u + λf (x)|u| q-1 u in Ω, q < 1, p < 2 *

Presentation of problems

with sign changing functions f, g and using the method of Nehari manifold proved the existence of at least two weak solution for M ≡ 1 ≡ g and p = 2, and in [START_REF] Brown | A fibering map approach to a semilinear elliptic boundary value problem[END_REF] for p = 2 and M ≡ 1.

In [START_REF] Chen | The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions[END_REF], authors have studied the Kirchhoff problem (K) for p = 2 involving sign changing non-linearities and proved the multiplicity of weak solution via Nehari manifold method and fibering map analysis.

In [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibering method[END_REF], authors studied the combined effects of convex-concave non-linearities in quasilinear elliptic problems involving p-Laplacian and established the multiplicity of weak solution for Dirichlet boundary conditions and in [START_REF] Alves | Nehari manifold and existence of positive solutions to a class of quasilinear problem[END_REF][START_REF] Hamidi | Multiple solutions with changing sign energy to a nonlinear elliptic equation[END_REF] for Dirichlet-Neumann or Neumann boundary conditions. Problem involving n-Laplace operator with exponential type nonlinearity has been addressed in [START_REF] Goyal | n-Kirchhoff type equations with exponential nonlinearities[END_REF][START_REF] Goyal | The Nehari manifold approach for N-Laplace equation with singular and exponential nonlinearities in R n[END_REF][START_REF] Goyal | Lack of coercivity for n-laplace equation with critical exponential nonlinearities in a bounded domain[END_REF]. For the systems of equations involving exponential nonlinearity, we refer to [START_REF] Megrez | Multiplicity of positive solutions for a gradient system with an exponential nonlinearity[END_REF] for Laplacian and [START_REF] Giacomoni | Critical growth problems for 1 2 -Laplacian in R[END_REF] for fractional laplacian operator. 

Presentation of problems

In this section, we present our main problems of Kirchhoff equations and systems involving exponential nonlinearity of Choquard type, singular weights and sign changing nonlinearity. 

     -M ( ˆΩ |∇u| n dx)∆ n u = ˆΩ F (y, u) |x -y| µ dy f (x, u), u > 0 in Ω, u = 0 on ∂Ω,
where µ ∈ (0, n), Ω is a smooth bounded domain in R n , n ≥ 2, the function F denotes the primitive of f with respect to the second variable (vanishing at 0) and M denotes the Kirchhoff term.

(b): Secondly, we study the higher order elliptic variant of Problem 1 (a). Precisely, we study the following Polyharmonic Kirchhoff type Choquard equation with exponential non-linearity and singular weights: 

(P KC)      -M ˆΩ |∇ m u| 2 dx ∆ m u = ˆΩ F (y, u) |y| α |x -y| µ dy f (x, u) |x| α dx, in Ω, u = ∇u = • • • = ∇ m-1 u = 0 on ∂Ω, where m ∈ N, n = 2m, µ ∈ (0, n), 0 < α < min{ n 2 , n -µ}, Ω
(P λ,M )          -M ( u n ) ∆ n u = (|x| -µ * F (u))f (u) + λh(x)|u| q-1 u in Ω, u = 0 on ∂Ω, u > 0 in Ω where µ ∈ (0, n), Ω is a smooth bounded domain in R n , f (s) = s|s| p exp(|s| β ), 0 < q < n -1 < 2n -1 < p + 1, β ∈ 1, n n-1
and F (t) = ´t 0 f (s) ds, M (t) = at + b where a, b > 0 and h ∈ L r (Ω), with r = p+2 p-q+1 , satisfying h + ≡ 0. (b) Secondly, we study the higher order elliptic variant of Problem 2 (a). Precisely, we investigate the existence of weak solutions of a Kirchhoff type Choquard equation for higher order elliptic operators with convex-concave sign changing non-linearity:

(P λ,M )      -M ˆΩ |∇ m u| 2 dx ∆ m u = λh(x)|u| q-1 u + ˆΩ F (u) |x -y| µ |y| α dy f (u) |x| α in Ω, u = ∇u = • • • = ∇ m-1 u = 0 on ∂Ω,
where Ω is a smooth bounded domain in

R n , n = 2m, m ∈ N, f (s) = s|s| p exp(|s| γ ), 0 < q < 1, 2 < p, γ ∈ (1, 2) and F (t) = ´t 0 f (s) ds.
In this case, we assume M (t) = at + b where a, b > 0 and h ∈ L r (Ω) where r = p+2 q+1 is such that h + ≡ 0. Due to the combination of sub homogeneous and super homogeneous term, and corresponding geometry of the energy functionals, we expect the existence of multiple solutions. With respect to the parameter λ, we are concerned to establish (i) multiplicity of solutions for subcritical case β ∈ (0, n n-1 ) and existence of a solution for critical case β = n n-1 in the problem (P λ,M ). (ii) existence of multiple solution for the subcritical case γ ∈ (1, 2) in the problem (P λ,M ). 

Problem 3: Kirchhoff systems involving exponential non-linearity of Choquard type

In the continuation of previous problems, we study the following doubly nonlocal system of n-Kirchhoff Choquard equations with exponential non-linearity (KCS)

               -m( (u, v) n )∆ n u = ˆΩ F (y, u, v) |x -y| µ dy f 1 (x, u, v), u > 0 in Ω, -m( (u, v) n )∆ n v = ˆΩ F (y, u, v) |x -y| µ dy f 2 (x, u, v), v > 0 in Ω, u, v = 0 on ∂Ω,
where Ω is a smooth bounded domain in 

R n , 0 < µ < n, function F : Ω × R 2 →

New contributions and extensions

In this section, we state the main existence and multiplicity results for the problems presented in Section 2.3 and highlight the main difficulties and ideas for the proof. First we study the existence and multiplicity results for Kirchhoff-Choquard problem involving n-Laplacian operator and by analyzing the crucial points, we extend our study to Kirchhoff-Choquard problem involving higher order elliptic operators. To study the Kirchhoff-Choquard problems, we investigate the variational framework and seek help of the following mountain pass lemma (see [START_REF] Ambrosetti | Dual variational methods in critical point theory and applications[END_REF] or Theorem 2, [START_REF] Marcos | Semilinear Dirichlet problems for the N-laplacian in R n with nonlinearities in critical growth range[END_REF]).

Theorem 2.4.1. Let E be a real Banach space and I ∈ C 1 (E, R). Suppose there exists a neighbourhood U of 0 in E and a positive constant α which satisfy the following conditions: there exists a sequence u n in E such that

I(u n ) → c, I (u n ) → 0 where Λ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.

n-Kirchhoff Choquard equation with exponential non-linearity

In this subsection, we study the existence results for Problem 1(a) and denote

u := ˆΩ |∇u| n dx 1/n .
We start by stating the assumptions on the Kirchhoff and Choquard term present in the Problem 1(a). The function M : R + → R + is a continuous function satisfying the following conditions:

(m1) There exists m 0 > 0 such that M (t) ≥ m 0 for all t ≥ 0 and M(t) = ˆt 0 M (s)ds satisfies

M(t + s) ≥ M(t) + M(s)
, for all t, s ≥ 0.

(m2) There exist constants b 1 , b 2 > 0 and t > 0 such that for some r ∈ R

M (t) ≤ b 1 + b 2 t r , for all t ≥ t.
(m3) The function M (t) t is non-increasing for t > 0.

The assumption (m1) implies the Kirchhoff term M is non-degenerate and its primitive satisfies the super additivity property.

Example 1: An example of a function M satisfying (m1) -(m3) is M (t) = d 0 + d 1 t β for β < 1 and d 0 , d 1 ≥ 0. The function f : Ω × R → R is given by f (x, t) = h(x, t) exp(|t| n n-1
). In the frame of problem (KC), h ∈ C( Ω × R) satisfies the following conditions: (h1) h(x, t) = 0 for t ≤ 0 and h(x, t) > 0 for t > 0.

(h2) For any > 0, lim

t→∞ sup x∈ Ω h(x, t) exp(-|t| n n-1 ) = 0 and lim t→∞ inf x∈ Ω h(x, t) exp( |t| n n-1 ) = ∞. (h3) There exists > max{n -1, n(r+1) 2 } such that t → f (x,t)
t is increasing on R + \ {0}, uniformly in x ∈ Ω where r is specified in (m2).

(h4) There exist T, T 0 > 0 and γ 0 > 0 such that 0 < t γ 0 F (x, t) ≤ T 0 f (x, t) for all |t| ≥ T and uniformly in x ∈ Ω.

New contributions and extensions

The condition (h2) implies that the function f has critical growth of exponential type in the sense of Theorem 2.2.1.

Example 2:

An example of a function f satisfying (h1)-(h4) is f (x, t) = t β 1 exp(t p ) exp(t n n-1 ) for t ≥ 0 and f (x, t) = 0 for t < 0 where 0 ≤ p < n n-1 and β 1 > l -1.

Definition 2.4.2. We call a function u ∈ W 1,n 0 (Ω) to be a solution of (KC) if 

M ( u n ) ˆΩ |∇u| n-2 ∇u.∇ϕ dx = ˆΩ ˆΩ F (y, u) |x -y| µ dy f (x, u)ϕ dx, for all ϕ ∈ W 1,n 0 (Ω). ( 2 
exp 2|s| n n-1 = ∞, uniformly in x ∈ Ω. (2.4.2)
Then the problem (KC) admits a positive weak solution.

The condition (2.4.2) is required to prove the existence of a strongly convergent subsequence of a Palais-Smale sequence if Palais-Smale sequence lies below a critical level. The assumption (2.4.2) depicts that "the perturbation term h(x, t)" should not be too small. For a detailed analysis on the perturbation term h(x, t), we refer to the seminal work of Adimurthi [START_REF] Adimurthi | Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian[END_REF].

We define the energy functional E : W 1,n 0 (Ω) → R associated to the problem (KC) as

E(u) = 1 n M( u n ) - 1 2 ˆΩ ˆΩ F (y, u) |x -y| µ dy F (x, u) dx.
Under the assumptions on f , Moser-Trudinger inequality (Theorem 2.2.1) and Hardy-Littlewood -Sobolev inequality (Proposition 2.2.6) imply that E is well defined in W 1,n 0 (Ω). For a detailed explanation, we refer to Page 231, Chapter 5. Also E ∈ C 1 (W 1,n 0 (Ω), R). Naturally, the critical points of E corresponds to weak solutions of (KC) and for any u ∈ W 1,n 0 (Ω) we have

E (u), ϕ = M ( u n ) ˆΩ |∇u| n-2 ∇u.∇ϕ dx - ˆΩ ˆΩ F (y, u) |x -y| µ dy f (x, u)ϕ dx for all ϕ ∈ W 1,n 0 (Ω).
To show, the energy functional E satisfies the conditions of mountain pass theorem, we first study the mountain pass geometry of the energy functional E: 

(i) there exists R 0 > 0, η > 0 such that E(u) ≥ η for all u ∈ W 1,n 0 (Ω) such that u = R 0 . (ii) there exists a v ∈ W 1,n 0 (Ω) with v > R 0 such that E(v) < 0.
The proof of the mountain pass geometry of E requires precise estimates of Kirchhoff and Choquard term with exponential non-linearities. The Choquard term is handled by choosing u = R 0 small enough with R 0 depending upon the sharp exponent α n in Moser-Trudinger and µ in Hardy-Littlewood-Sobolev inequalities, and Kirchhoff term by the non-degeneracy assumption (m1) and the growth condition (m2) (with a detailed proof we refer to Lemma 5.1.9, Page 233, Chapter 5). 1)) < 0} and define the Mountain Pass critical level as

Let Γ = {γ ∈ C([0, 1], W 1,n 0 (Ω)) : γ(0) = 0, E(γ(
l * = inf γ∈Γ max t∈[0,1]

E(γ(t)).

Then by using Ekeland principle and deformation lemma (Theorem 2.4.1), we have the existence of minimizing Palais-Smale sequence u n ∈ W 1,n 0 (Ω) such that

E(u n ) → l * , E (u n ) → 0.
Moreover, the non-degeneracy of the Kirchhoff term and suitable lower growth rate of the function f in the Choquard term (precisely (h3)) implies that every Palais-Smale sequence is bounded in W 1,n 0 (Ω) (for a detailed proof see Lemma 5.1.10, Page 234, Chapter 5)

To prove the existence of non-trivial weak solution, we need to identify the mountain pass critical level below which the Palais-Smale condition is satisfied. In this regard, we prove the following lemma identifying the first critical level:

Lemma 2.4.5. If (2.4.2) holds, then

0 < l * < 1 n M 2n -µ 2n α n n-1 .
To prove the above result, implicitly, we consider the sequence of Moser functions {w k } defined as dilations and truncations of the fundamental solution: 

w k (x) = 1 ω 1 n n-1                  (log k) n-1 n , 0 ≤ |x| ≤ ρ k , log ρ |x| (log k) 1 n , ρ k ≤ |x| ≤ ρ, 0, |x| ≥ ρ such that supp(w k ) ⊂ B ρ (0)
E(tw k ) < 1 n M 2n -µ 2n α n n-1
and which is sufficient to prove our claim (for a detailed explanation, we refer to Page 236, Chapter 5). Now, to study the compactness of Palais Smale sequences for the energy functional E, we prove a set of convergence lemmas which prevent concentration phenomenon of the Palais-Smale sequence to occur and imply the weak convergence of Choquard term involving exponential non-linearities. The following lemma is very crucial for the convergence of Palais-Smale sequences to a weak solution and appeals new estimates for the convergence of the Choquard term.

Lemma 2.4.6. If {u k } denotes a Palais Smale sequence then up to a subsequence, there exists u ∈ W 1,n 0 (Ω) such that

u k u weakly in W 1,n 0 (Ω), |∇u k | n-2 ∇u k |∇u| n-2 ∇u weakly in (L n n-1 (Ω)) n . (2.4.3) Moreover, for all φ ∈ C ∞ c (Ω) ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )φ dx → ˆΩ ˆΩ F (y, u) |x -y| µ dy f (x, u)φ dx, and ˆΩ F (y, u k ) |x -y| µ dy F (x, u k ) → ˆΩ F (y, u) |x -y| µ dy F (x, u) in L 1 (Ω).
Due to the nonlinear nature of the operator (-∆) n the proof of (2.4.3) involves a delicate analysis of the Palais-Smale sequence {u k } for the energy functional E over W 1,n 0 (Ω). Here, we sketch the main ingredient of the proof. Showing the boundedness property of the Palais-Smale sequence, there exists u ∈ W 1,n 0 (Ω) such that u k u weakly in W 1,n 0 (Ω) and a non-negative radon measure ν and v ∈ (L n n-1 (Ω)) n such that up to a subsequence

|u k | n + |∇u k | n * -ν in C(Ω) * and |∇u k | n-2 ∇u k → v weakly in (L n n-1 (Ω)) n as k → ∞.
Now to prove our claim, it is enough to show that ∇u k → ∇u a.e. in Ω and v = |∇u| n-2 ∇u. For this, we set σ > 0 and X σ = {x ∈ Ω : ν(B r (x) ∩ Ω) ≥ σ, for all r > 0} and in order to prevent energy concentration phenomenon we show the following:

(i) X σ must be a finite set i.e X σ = {x 1 , x 2 , . . . , x m } (ii) For any σ > 0 below the "first concentration energy level" i.e. σ < 1

(2n-µ)αn 2n

n-1

and for any K compact subset of Ω \ X σ we have To prove (i), we proceed by contradiction. Consider a sequence of distinct points {x k } in X σ such that for all r > 0, ν(B r (x k ) ∩ Ω) ≥ σ for all k. This implies that ν({x k }) ≥ σ for all k, hence ν(X σ ) = +∞. But this is a contradiction to

lim k→∞ ˆK ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k dx = ˆK ˆΩ F (y, u) |x -y| µ dy f (x, u)u dx. (iii) For δ > 0 fixed small enough such that B(x i , δ) ∩ B(x j , δ) = ∅ if i = j and Ω δ = {x ∈ Ω : |x -x j | ≥ δ, j = 1, 2, . . . , m} ˆΩδ (|∇u k | n-2 ∇u k -|∇u| n-2 ∇u)(∇u k -∇u) → 0 as k → ∞.
ν(X σ ) = lim k→∞ ˆXσ |u k | n + |∇u k | n dx ≤ C.
To show (ii), we choose a finite covering

{B r i (x i )} i∈I of K such that ˆB r i 2 (x i )∩Ω |u k | n + |∇u k | n ≤ σ(1 -). (2.4.4)
for large enough k ∈ N, > 0 small enough and I = {0, 1, . . . , l} is the index set. Using (2.4.4), Vitali convergence Theorem and asymptotic growth of f , we get

f (•, u k ) L q (Br 0 (x 0 )∩Ω) ≤ C 0 , ˆΩ F (y, u) |x -y| µ dy ∈ L ∞ (Ω) (2.4.5)
for some appropriate q > 1 and ˆB r 0 2

(x 0 )∩Ω ˆΩ F (y, u) |x -y| µ dy (f (x, u k )u k -f (x, u)u) dx → 0 as k → ∞.
To complete the proof of (ii), we vigorously exploit the semigroup property of the Riesz potential in the light of Moser-Trudinger inequality in W 1,n 0 (Ω) and W 1,n (Ω), and prove that ˆΩ ˆΩ F (y, u k ) -F (y, u)

|x -y| µ dy χ B r 0 2 ∩Ω (x)f (x, u k )u k dx ≤ ˆΩ ˆΩ |F (y, u k ) -F (y, u)|dy |x -y| µ |F (x, u k ) -F (x, u)| dx 1 2 × ˆΩ ˆΩ χ B r 0 2 ∩Ω (y) f (y, u k )u k |x -y| µ dy χ B r 0 2 ∩Ω (x)f (x, u k )u k dx 1 2
→ 0.

(2.4.6)

Precisely, boundedness property of Palais-Smale sequence u k and Lebesgue dominated convergence theorem implies the first integral in the R.H.S. of (2.4.6) tends to 0 and the second integral is uniformly bounded because σ lies below the first concentration energy level and (2.4.5).

To prove (iii) and weak convergence in Choquard terms, we choose special type of test functions φ 1 = ψ u k and φ 2 = ψ u in the following inequality

M ( u k n ) ˆΩ |∇u k | n-2 ∇u k ∇φ - ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )φ dx ≤ k φ where ψ ∈ C ∞ c (R n ), ψ = 0 in Ω \ Ω δ 2
, ψ = 1 in Ω δ and with the help of strict convexity of the function g(t) = |t| n and -Young inequality (the classical arguments of Lemma 4 in [START_REF] Marcos | Semilinear Dirichlet problems for the N-laplacian in R n with nonlinearities in critical growth range[END_REF]) we get in (ii), we get ∇u k → ∇u a.e. in Ω and hence the our claim (2.4.3) (for a detailed insight see Lemma 5.1.12, Lemma 5.1.13 and Lemma 5.1.14, Chapter 5). Now, we sketch the main ingredient of the proof of our main existence result Theorem 2.4.3: For a Palais Smale sequence {u k } at the level l * and using Lemma 2.4.6, there exists a u 0 ∈ W 1,n 0 (Ω) such that up to a subsequence u k u 0 weakly in W 1,n 0 (Ω) as k → ∞. Now, we divide the proof into two main steps:

lim k→∞ sup M ( u k n ) ˆΩ |∇u k | n-2 ∇u k • ∇ψ (u k -u) ≤ 0. ( 2 
Step 1: u 0 is the weak solution. The proof of this step is rather technical. First, we define the associated Nehari manifold as

N = {u ∈ W 1,n 0 (Ω) \ {0} : E (u), u = 0} and l * * = inf u∈N E(u).
Using the fact that l * ≤ l * * (see Lemma 5.1.15, Chapter 5), weak lower semi-continuity of the norm, by the monotonicity and continuity of Kirchhoff term and from convergence Lemma 2.4.6, we prove the following inequalities:

E (u 0 ), u 0 ≥ 0, E(u 0 ) ≤ l * .
(2.4.9)

Now to discard the case E(u 0 ) < l * we discover a contradiction. Precisely, if E(u 0 ) < l * holds then the monotonicity of Kirchhoff term gives

lim k→∞ M( u k n ) > M( u 0 n ) ⇒ τ n := lim k→∞ u k n > u 0 n .
Now we define the sequence v k = u k u k and v 0 = u 0 τ then v k v 0 weakly in W 1,n 0 (Ω) and v 0 < 1. From Lions higher integrability lemma (Lemma 2.2.4) and (2.4.9) we obtain

ˆΩ exp 2n 2n -µ q|u k | n n-1 ≤ C, ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )(u k -u 0 ) dx → 0.
for some constant C > 0. Using E (u k ), u k -u 0 → 0, M (t) ≥ m 0 and monotonicity of the operator, we get u k → u in W 1,n 0 (Ω) which further conclude that u k → u 0 and a contradiction to the fact v 0 < 1. Therefore

E(u 0 ) = l * and M(τ n ) = M( u 0 n ) which
shows that τ n = u 0 n and hence claim.

Step 2: Positivity of u 0

The upper bound of the mountain pass critical level (Lemma 2.4.5) and Choquard convergence estimates (Lemma 2.4.6) induces the uniform bound of u k and L q norm of f (x, u k ) for some q ≥ 2n 2n-µ , which further in the light of positivity of mountain pass critical level l * implies u 0 ≡ 0 and by testing equation (2.4.1) with φ = u - 0 , we get u 0 ≥ 0 in Ω. Finally, elliptic regularity results and strong maximum principle implies u 0 > 0. A detailed proof is given in Theorem 5.1.5, Chapter 5. 

Multiplicity of solutions via Nehari Manifold method

In this subsection, we state results and their main ideas of the proof for the problem (P λ,M ) mentioned as Problem 2(a) in Section 2.3. and denote

u := ˆΩ |∇u| n dx 1/n .
We start by defining the notion of solution for (P λ,M ) as:

Definition 2.4.7. A function u ∈ W 1,n 0 (Ω) is said to be weak solution of (P λ,M ) if ∀ φ ∈ W 1,n 0 (Ω) we have M ( u n ) ˆΩ |∇u| n-2 ∇u.∇φ dx = λ ˆΩ h(x)u q-1 uφ dx + ˆΩ(|x| -µ * F (u))f (u)φ dx.
The energy functional J λ,M : W 1,n 0 (Ω) -→ R associated to the problem (P λ,M ) is defined as

J λ,M (u) = 1 n M( u n ) - λ q + 1 ˆΩ h(x)|u| q+1 dx - 1 2 ˆΩ(|x| -µ * F (u))F (u) dx where |x| -µ * F (u) denotes ´Ω F (u(y))
|x-y| µ dy, and F , M are anti-derivatives of f , M (vanishing at 0) respectively. Using Hardy-Littlewood-Sobolev inequality (Proposition 2.2.6) and Moser-Trudinger inequality (Theorem 2.2.1), we can see that the energy functional J λ,M is well defined.

Using the Nehari manifold technique, we show existence and multiplicity of solutions of the problem (P λ,M ) with respect to the parameter λ. Precisely, we show the following main results in the subcritical case (local multiplicity):

Theorem 2.4.8. Let β ∈ 1, n n-1 .
Then there exists λ 0 such that (P λ,M ) admits at least two non-trivial solutions for λ ∈ (0, λ 0 ).

In the critical case, we show the following existence result: Theorem 2.4.9. Let β = n n-1 , then there exists λ 1 > 0 such that for λ ∈ (0, λ 1 ), (P λ,M ) admits a non-trivial solution.

In order to prove the existence of weak solutions to (P λ,M ), we establish the existence of minimizers of J λ,M under the natural constraint of the Nehari Manifold:

N λ,M := {u ∈ W 1,n 0 (Ω)| J λ,M (u), u = 0}
where . , . denotes the duality between W 1,n 0 (Ω) and W -1,n (Ω). Therefore, u ∈ N λ,M if and only if

u n M ( u n ) -λ ˆΩ h(x)u q+1 dx -ˆΩ(|x| -µ * F (u))f (u)u dx = 0.

New contributions and extensions

For u ∈ W 1,n 0 (Ω), we define the fiber map Φ u,M : R + → R as Φ u,M (t) = J λ,M (tu).

By observing the fact that, the Nehari Manifold is closely related to the the maps Φ u,M by the relation tu ∈ N λ,M iff Φ u,M (t) = 0, we study the geometry of the energy functional on the following components of the Nehari Manifold:

N ± λ,M := {u ∈ N λ,M : Φ u,M (1) ≶ 0} = {tu ∈ W 1,n 0 (Ω) : Φ u,M (t) = 0, Φ u,M (t) ≶ 0}, N 0 λ,M := {u ∈ N λ,M : Φ u,M (1) = 0} = {tu ∈ W 1,n 0 (Ω) : Φ u,M (t) = 0, Φ u,M (t) = 0}.
Due to the presence of the sign changing non-linearity, we define H(u) = ´Ω h|u| q+1 dx and study the behaviour of fibering maps Φ u,M according to the sign of H(u). We split the study into two different cases u ∈ H - 0 and u ∈ H + where

H + := {u ∈ W 1,n 0 (Ω) : H(u) > 0}, H - 0 := {u ∈ W 1,n 0 (Ω) : H(u) ≤ 0}.
We define the map ψ : R + → R such that Now to prove the existence of first solution, we extract a nearly minimizing sequence {u k } in N λ,M \{0} in the following sense:

ψ u (t) = t n-1-q M ( tu n ) u n -t -q ˆΩ(|x| -µ * F (tu))f (
       J λ,M (u k ) ≤ θ + 1 k , θ = inf u∈N λ,M J λ,M (u); J λ,M (v) ≥ J λ,M (u k ) - 1 k u k -v ∀v ∈ N λ,M .
For extraction of the sequence, we study the geometric structure of the energy functional J λ,M . Precisely, we prove J λ,M is bounded below with precise bounds of θ and then Ekeland variational principle implies the required sequence. Now to show that sequence {u k } obtained and for all w ∈ W 1,n 0 (Ω)

ξ (0), w = n(2a u n + b) ´Ω |∇(u)| n-2 ∇u.∇w dx -λ(q + 1) ´Ω h(x)|u| q-1 uw dx -S(u), w a(2n -1 -q) u 2n + b(n -1 -q) u n + R(u)
Moreover, for u ∈ N - λ,M \{0}, there exists > 0 and a differentiable function

ξ -: B(0, ) ⊂ W 1,n 0 (Ω) → R such that ξ -(0) = 1, and ξ -(w)(u -w) ∈ N - λ,M and for all w ∈ W 1,n 0 (Ω) (ξ -) (0), w = n(2a u n + b) ´Ω |∇(u)| n-2 ∇u.∇w dx -λ(q + 1) ´Ω h(x)|u| q-1 uw dx -S(u), w a(2n -1 -q) u 2n + b(n -1 -q) u n + R(u)
where

R(u) = ˆΩ(|x| -µ * F (u))(qf (u) -f (u).u).u dx -ˆΩ(|x| -µ * f (u).u)f (u)u dx and S(u), w = ˆΩ(|x| -µ * F (u))(f (u)u + f (u))w dx + ˆΩ(|x| -µ * f (u)u)f (u)w dx.
Using the assumption (m1) of the Kirchhoff term and the property J λ,M (u k ) * → 0 as k → ∞, we prove the existence of a positive solution in subcritical case in N + λ,M ∩ H + . For the second solution, we re-investigate the geometry of energy functional J λ,M over N - λ,M in the light of Lemmas 2.4.10-2.4.11 and extract a nearly minimizing sequence

{v k } in N - λ,M with θ -= min v∈N - λ,M
J λ,M (v) and J λ,M (v k ) * → 0 as k → ∞ using the fact that N - λ,M is closed. For a detailed explanation of the proof, we refer to Lemma 5.1.28, Page 259, Chapter 5.

In the critical case, we study the following compactness result for a Palais-Smale below a prescribed critical level: Lemma 2.4.12. There exists C = C(p, q, n) > 0 such that for any {u k } ⊂ W 1,n 0 (Ω) satisfying

J λ,M (u k ) → 0 and J λ,M (u k ) → c ≤ m 0 2n α n 2 1 n-1 2n -µ 2n n-1 -Cλ 2(p+2) 2p+3-q as k → ∞ is relatively compact in W 1,n 0 (Ω).
Here, we shortly sketch the main details of the proof: Using the boundedness of the Palais-Smale sequence {u k }, there exist two radon measures ν 1 , ν 2 and u ∈ W 1,n 0 (Ω) such that

u k u in W 1,n 0 (Ω), |∇u k | n → ν 1 and (|x| -µ * F (u k ))f (u k )u k → ν 2 .
Again, we prove that the concentration phenomenon cannot occur at level c: For this first we derive following relations between two measures and convergence in Choquard term

ν 2 (A) ≥ m 0 ν 1 (A) ≥ m 0 α n 2 1 n-1 2n -µ 2n n-1 , 1 2 ˆΩ(|x| -µ * F (u k ))f (u k )u k dx → 1 2 ˆΩ(|x| -µ * F (u))f (u)u dx + ν 2 (A) 2
where A = Ω \ B is a finite set with

B = {x ∈ Ω : ∃ r = r x > 0, ν 1 (B r ∩ Ω) < α n 2 1 n-1 2n -µ 2n n-1 }.
Then by using similar arguments as in Lemma 2.4.6, we get a necessary condition for the upper bound of critical level to get Palais Smale condition to hold. A detailed proof is presented in Lemma 5.1.29, Page 260, Chapter 5.

Extensions: Polyharmonic Kirchhoff Choquard equations with singular weights

In this subsection, we study the Problem 1(b) and Problem 2(b). We denote

u = ˆΩ |∇ m u| 2 dx 1 2
.

Problem 1(b)

We assume the following conditions on M and f for the Problem 1(b). The function M : R + → R + is a continuous function satisfying the conditions (m1)-(m3) and the function f : Ω × R → R which governs the Choquard term is given by f (x, t) = h(x, t) exp(t 2 ), where h ∈ C(Ω × R) satisfies (h1), (h4) and the following growth conditions:

(h5) For any > 0, lim t→∞ sup x∈ Ω h(x, t) exp(t 2 ) = 0 and lim

t→∞ inf x∈ Ω h(x, t) exp( t 2 ) = ∞.
(h6) There exists > max{1, r + 1} such that f (x,t) t is increasing for each t > 0 uniformly in x ∈ Ω, where r is specified in (m2).

Example 2.4.13. A typical example of f satisfying (h1), (h4)-(h6) is f (x, t) = t β+1 exp(t p ) exp(t 2 ) for t ≥ 0 and f (x, t) = 0 for t < 0 where 0 ≤ p < 2 and β > l -1.

The notion of weak solution for (P KC) is given as follows.

Definition 2.4.14. A weak solution of

(P KC) is a function u ∈ W m,2 0 (Ω) such that for all ϕ ∈ W m,2 0 (Ω), it satisfies M ( u 2 ) ˆΩ ∇ m u.∇ m ϕ dx = ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy f (x, u) |x| α ϕ dx.
The problem (P KC) has a variational structure and the energy functional J : W m,2 0 (Ω) → R associated to (P KC) is given by Then the problem (P KC) admits a non-trivial weak solution.

J (u) = 1 2 M( u 2 ) - 1 2 ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy F (x, u) |x| α dx.
We establish the existence of a nontrivial weak solution for the problem (P KC) using the same techniques introduced in section above. The presence of higher order derivatives and singular weights in Choquard term require a precise investigation of the mountain pass geometry of the energy functional J and mountain pass critical level in the light of Adams To study the compactness of Palais Smale sequences for J , identify the mountain pass first critical level with the help of Adams functions which play an equivalent role of Moser functions and establish the convergence of weighted Choquard term for Palais-Smale sequences whose energy level is strictly below the first critical level.

We define the mountain pass critical level as

l * = inf ϑ∈Γ max t∈[0,1] J (ϑ(t)),
where Γ = {ϑ ∈ C([0, 1], W m,2 0 (Ω)) : ϑ(0) = 0, J (ϑ(1)) < 0}. Using Adams functions and [182, Lemma 5, p. 895], we construct a sequence of test functions to analyze the first critical level. Let B denotes the unit ball and B l is the ball with center 0 and radius l in R n . Without loss of generality, we can assume that B l ⊂ Ω, then we have the following result: For l ∈ (0, 1), there exists Let σ > 0, k ∈ N, then we consider the Adams functions

U l ∈ {u ∈ W m,2 0 (Ω) : u| B l = 1} such that U l 2 = C m,2 (B l ; B) ≤ ζ m,2m n log 1 l where C m,2 (K, E) is the conductor capacity of K in E whenever E is an open set and K is relatively compact subset of E and C m,2 (K; E) def = inf{ u 2 : u ∈ C ∞ 0 (E), u| K = 1}.
A k (x) =          n log(k) ζ m,2m 1 2 U 1 k x σ if |x| < σ, 0 if |x| ≥ σ, with A k (0) = n log(k) ζ m,2m 1 2 and A k ≤ 1.
By using the geometric characteristics of the energy functional J , we identify the mountain pass critical level strictly below which Palais-Smale condition holds. In this regard, we prove the following result:

Theorem 2.4.16. Under the assumption (2.4.10), (m1) -(m3) and (h1), (h4) -(h6),

0 < l * < 1 2 M 2n -(2α + µ) 2n ζ m,2m .
We also prove two similar convergence lemma (as in the previous subsection) which are essential, while passing to the weak limits in the Choquard term. The presence of singular weights with exponential non-linearity make the proof a bit trickier and involving:

Lemma 2.4.17. Let {u k } ⊂ W m,2 0 (Ω) be a Palais Smale sequence for J at c ∈ R then there exists a u ∈ W m,2 0 (Ω) such that as k → ∞ (up to a subsequence) ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy f (x, u k ) |x| α φ dx → ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy f (x, u) |x| α φ dx for all φ ∈ C ∞ c (Ω) and ˆΩ F (y, u k ) |y| α |x -y| µ dy F (x, u k ) |x| α → ˆΩ F (y, u) |y| α |x -y| µ dy F (x, u) |x| α in L 1 (Ω).
Finally, the proof of the main result Theorem 2.4.15 follows from the Higher integrability lemma (Lemma 2.2.5), Lemma 2.4.17 and precise estimates of the mountain pass critical level (Theorem 2.4.16). For a detailed proof we refer to Section 5.2.2, Chapter 5.

Problem 2(b):

For the problem (P λ,M ), the energy functional J λ,M : W m,2 0 (Ω) → R associated to the problem (P λ,M ) is defined as

J λ,M (u) = 1 2 M( u 2 ) - λ q + 1 ˆΩ h(x)|u| q+1 dx - 1 2 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy F (u) |x| α dx
where F and M are primitive of f and M respectively vanishing at 0. Similarly as definition 2.4.14 0 (Ω) is said to be a weak solution of (P λ,M ) if for all φ ∈ W m,2 0 (Ω), it satisfies

M ( u 2 ) ˆΩ ∇ m u.∇ m φ dx = λ ˆΩ h(x)|u| q-1 uφ dx + ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u) |x| α φ dx.
For the problem (P λ,M ), we have the following result concerning the subcritical case: Theorem 2.4.19. There exists a λ 0 > 0 such that for γ ∈ (1, 2) and λ ∈ (0, λ 0 ), (P λ,M ) admits atleast two solutions.

To prove the existence and multiplicity result of the convex-concave problem, we follow the same approach of Nehari manifold method as we done above for n-Laplace operator. The singular weights in the Choquard term is handled by doubly weighted Hardy-Littlewood-Sobolev inequality (Proposition 2.2.7) and exponential non-linearity by Adams-Moser-Trudinger inequality (Lemma 2.2.4). The presence of singular weights with Choquard type exponential non-linearity demands careful analysis of the geometry of the energy functional and fiber maps. To avoid the recurrence of similar ideas and computations, we refer the precise results and their complete proofs in Section 5.2.3, Chapter 5.

Remark 2.4.1. We conjecture that for critical case, the multiplicity results holds by additional estimates on the level of minimizing sequence.

Adams-Moser-Trudinger inequalities for Cartesian product of Sobolev space

To study the Kirchhoff system with exponential non-linearity of Choquard type in Problem 3, Section 2.3, first we need to prove the non-singular version of Moser-Trudinger and Adams-Moser-Trudinger inequalities in higher dimensional product spaces. Let

Y := W m, n m 0 (Ω) × W m, n m 0 (Ω)
be the Banach space endowed with the norm 

(u, v) Y := u n m W m, n m 0 (Ω) + v n m W m, n m 0 (Ω)
For (u, v) ∈ Y, n, m ∈ N such that n ≥ 2m and Ω ⊂ R n is a bounded domain, we have ˆΩ exp Θ |u| n n-m + |v| n n-m dx < ∞ for any Θ > 0. Moreover, sup (u,v) Y =1 ˆΩ exp Θ |u| n n-m + |v| n n-m dx < ∞ if and only if Θ ≤ ζ n,m 2 n,m
where 2 n,m = 2 n-2m n-m and ξ n,m are defined in Theorem 2.2.2.

As an consequence the sharp Theorem 2.4.20, we prove the following version of Lions' Lemma [START_REF] Lions | The concentration compactness principle in the calculus of variations part-I[END_REF] in the product space Y.

Theorem 2.4.21.

Let (u k , v k ) ∈ Y such that (u k , v k ) Y = 1 for all k and (u k , v k ) (u, v) ≡ (0, 0) weakly in Y. Then for all p < ζ n,m 2 n,m (1 -(u, v) n m ) m n-m , sup k∈N ˆΩ exp p |u k | n n-m + |v k | n n-m dx < ∞.
Next, we prove the singular version of Moser-Trudinger inequality in the Cartesian product of Sobolov spaces when m = 1.

Theorem 2.4.22. For (u, v) ∈ Y = W 1,n 0 (Ω) × W 1,n 0 (Ω), n ≥ 2, λ ∈ [0, n) and Ω ⊂ R n is a smooth bounded domain, we have ˆΩ exp(β(|u| n n-1 + |v| n n-1 )) |x| λ dx < ∞ for any β > 0. Moreover, sup (u,v) Y =1
ˆΩ exp(β(|u|

n n-1 + |v| n n-1 )) |x| λ dx < ∞ if and only if 2 n β α n + λ n ≤ 1
where

2 n := 2 n,1 = 2 n-2
n-1 and α n is defined in Theorem 2.2.1.

Similarly we can prove singular and non-singular Moser-Trudinger inequalities in the product space Z := W 1,n (Ω) × W 1,n (Ω) where Ω ⊂ R n is a bounded domain endowed with the norm 

(u, v) Z := u n W 1,n (Ω) + v n W 1,n (Ω)

Kirchhoff systems with Choquard non-linearity

In this part, we study the system of Kirchhoff equations mentioned in Problem 3, Section 2.3. We start by stating the assumptions required for the existence of a solution.

Let m : R + → R + be a continuous function satisfying (m1), (m3) and (m4) There exist constants c 0 , c 1 , c 2 > 0 and t > 0 such that for some r, z ∈ R + m(t) ≥ c 0 or m(t) ≥ t z , for all t ≥ 0 and m(t) ≤ c 1 + c 2 t r , for all t ≥ t.

The assumption (m4) covers both degenerate and non-degenerate cases for the Kirchhoff term.

Let the function F : Ω × R 2 → R be continuously differentiable with respect to second and third variable and of the form F (x, t, s) = h(x, t, s) exp(|t|

n n-1 + |s| n n-1 ) such that f 1 (x, t, s) := ∂F ∂t (x, t, s) = h 1 (x, t, s) exp(|t| n n-1 + |s| n n-1 ), f 2 (x, t, s) := ∂F ∂s (x, t, s) = h 2 (x, t, s) exp(|t| n n-1 + |s| n n-1 ).
We assume h i 's for i = 1, 2 are continuous functions satisfying the following conditions-(f1) h i (x, t, s) = 0 when either t ≤ 0 or s ≤ 0 and h i (x, t, s) > 0 when t, s > 0, for all x ∈ Ω and i = 1, 2. (f2) For any > 0 and i = 1, 2 lim t,s→∞ such that the maps t → f 1 (x,t,s)

sup x∈Ω h i (x, t, s) exp(-(|t| n n-1 + |s| n n-1 )) = 0, lim t,s→∞ inf x∈Ω h i (x, t, s) exp( (|t| n n-1 + |s| n n-1 )) = ∞. (f3) There exists l >          max n -1, n(
|t| l , s → f 2 (x,t,s) |s| l
are increasing functions of t (uniformly in s and x) and s (uniformly in t and x) respectively. (f4) There exist q, s 0 , t 0 , M 0 > 0 such that s q F (x, t, s) ≤ M 0 f 2 (x, t, s) for all s ≥ s 0 and t q F (x, t, s) ≤ M 0 f 1 (x, t, s) for all t ≥ t 0 uniformly in x ∈ Ω. (f5) There exists a γ satisfying n-2

2 < γ such that lim (t,s)→(0,0)

f i (x,t,s) s γ +t γ = 0 holds for i = 1, 2.
The assumptions (f 1) -(f 5) for the problem (KCS) are the system analogue of the assumptions (h1) -(h4) for the problem (KC). The assumption (f 2) implies that functions f 1 and f 2 have critical growth.

Let P := W 1,n 0 (Ω) × W 1,n 0 (Ω) endowed with the graph norm

(u, v) := u n W 1,n 0 (Ω) + v n W 1,n 0 (Ω) 1 n
where u n W 1,n 0 (Ω) := ´Ω |∇u| n dx. Following is the notion of weak solution for (KCS). Definition 2.4.1. A function (u, v) ∈ P is said to be weak solution of (KCS) if for all (φ, ψ) ∈ P, it satisfies

m( u, v n ) ˆΩ |∇u| n-2 ∇u∇φdx + ˆΩ |∇v| n-2 ∇v∇ψdx = ˆΩ ˆΩ F (x, u, v) |x -y| µ dy (f 1 (x, u, v)φ + f 2 (x, u, v)ψ)dx.
We define the energy functional J on P as

J(u, v) = 1 n M ( u, v n ) - 1 2 ˆΩ ˆΩ F (y, u, v) |x -y| µ dy F (x, u, v)dx.
The 

(f 1 (x, t, s)t + f 2 (x, t, s)s)F (x, t, s) exp(q(|t| n n-1 + |s| n n-1 )) = ∞ uniformly in x ∈ Ω. (2.4.11)
for some q ≥ 2. Then there exists a positive weak solution of the problem (KCS).

We generalizes the approach of variational method used above for Kirchhoff-Choquard equation to system of Kirchhoff-Choquard equations. The results of this chapter can be extended in various directions. We have mentioned a few of them in Section 5.5, Chapter 5.
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Non-local singular problems

Non-local elliptic equations involving general integral differential operators as the fractional Laplacian have been studied for many years by an important number of researchers and a vast amount of work is present in the literature dealing with existence and regularity results. This kind of problems appears in several physical models like combustion, crystals, dislocations in mechanical systems and many other problems where anomalous diffusion or/and interaction with long range come into picture. The study of fractional and singular problems have been investigated more recently and have an intrinsic mathematical interest since in the local setting, it appears in several physical models like non Newtonian flows in porous media, heterogeneous catalysts.

The main course of this chapter is to study singular problems involving nonlocal operators. The investigation of singular problems are divided into two parts depending upon the nature of the operator. The main crux of this chapter is twofold.

Firstly, we investigate the 1 2 -Laplacian singular problem (P λ ) (see below) involving critical exponential non-linearity in one dimension. The study of the problem (P λ ) is motivated from the Moser-Trudinger inequality and specific representation of Green Formula in case of Half Laplacian operator. Using bifurcation theory in the framework of weighted spaces, subsupersolution method and barrier arguments, we show the existence of a connected unbounded branch of classical solution (see Definition 3.4.2) that admits an asymptotic bifurcation point (i.e. bifurcation from infinity). For that we need to establish Hölder regularity and asymptotic behavior of the solution. In order to characterize the blow up behavior of weak solution at an asymptotic bifurcation point, we study the isolated singularities for the singular semi linear elliptic equation, and symmetry and monotonicity of classical solution via moving plane method and the narrow maximum principle in the context of nonlocal operators. In a different extent, global multiplicity of weak solution is proved via Variational method. Furthermore, symmetry and monotonicity results are extended to a general class of nonlocal operators that is of independent interest. Secondly, we study the nonlinear fractional Laplacian elliptic problem (see (P ) below) involving purely singular nonlinearity and weights in a smooth bounded domain Ω ⊂ R N . Using approximation method and Hardy inequality, we prove the existence of minimal weak solution (see Definition 3.4.1). In order to investigate the asymptotic behavior of minimal weak solution, we exploit the C 1,1 regularity of the boundary via barrier arguments. In addition, we prove a new weak comparison principle adopted in the setting of very weak solution and as a consequence, we prove the uniqueness and non-existence results depending upon the singular exponent δ and γ.

This chapter includes the results of following research articles:

(i) R. Arora, J. Giacomoni Turning to the layout of this chapter: In section 3.1, we introduce non-local operators and a framework of functions spaces. In section 3.2, we present our main problems of this Chapter. In section 3.3, we present a state of art on singular problems. In section 3.4, we develop new tools to tackle the problem mentioned in Section 3.2 and state the main results with a short glimpse of a proof.

Function spaces

In this section, we introduce the non-local operator (-∆) s p known as p-fractional operator and a brief description of the function spaces. For u ∈ S the class of rapidly decaying C ∞ functions in R N , the p-fractional operator acting at u is defined as

(-∆) s p u = 2 lim →0 ˆBc (x) [u(x) -u(y)] p-1 |x -y| N +sp dy for s ∈ (0, 1) and p ∈ [1, ∞) with the notation [a -b] p-1 = |a -b| p-2 (a -b).
For p = 2, it reduces to the well known linear fractional Laplacian operator (-∆) s defined as

(-∆) s u(x) = P.V. ˆRn u(x) -u(y) |x -y| N +2s dy,
up to a normalising constant where P.V. denotes the Cauchy principal value. The fractional Laplacian operator has a long history in mathematics. In particular, it is known as the 3.1. Function spaces infinitesimal generator of Lévy stable diffusion process and has been a classic topic in Fourier analysis, and nonlinear partial differential equations due to its appearance in real life models in phase transitions, anomalous diffusion, material science, finance, optimization, etc (see [START_REF] Bucur | Nonlocal diffusion and applications[END_REF][START_REF]Recent developments in Nonlocal Theory[END_REF] and their references within).

Let Ω be bounded domain and for a measurable function u :

R N → R, denote [u] s,p := ¨R2N |u(x) -u(y)| p |x -y| N +sp dx dy 1 p . Define W s,p (R N ) := {u ∈ L p (R N ) : [u] s,p < ∞} endowed with the norm u s,p,R N = u L p (R N ) + [u] s,p .
We also define W s,p 0 (Ω) := {u ∈ W s,p (R N ) : u = 0 a.e. in R N \ Ω} endowed with the norm u s,p = [u] s,p .

We can equivalently define W s,p 0 (Ω) as the closure of C ∞ c (Ω) in the norm [.] s,p , with continuous boundary of the domain of Ω (see Theorem 6, [START_REF] Fiscella | Density properties for fractional Sobolev spaces[END_REF] and [START_REF] Grisvard | Elliptic Problems in nonsmooth domains[END_REF]) where

C ∞ c (Ω) := {f : R N → R : f ∈ C ∞ (R N ) and supp(f ) ⊂ ω Ω}.
We also define

W s,p loc (Ω) = {u : Ω → R | u ∈ L p (ω), [u] s,p,ω < ∞, for all ω Ω}
where the localized Gagliardo seminorm is defined as

[u] s,p,ω := ¨ω2 |u(x) -u(y)| p |x -y| N +sp dx dy 1/p .
The nonlinear operator (-∆) s p is the nonlocal analogue of p-Laplacian operator in the (weak

) sense that (1 -s)(-∆) s p → (-∆) p as s → 1 -i.e. for any u ∈ W 1,p 0 (Ω) lim s→1 - (1 -s)[u] p s,p = K(p, N ) ∇u p L p (Ω) .
where K(p, N ) is defined in Proposition 2.2, [START_REF] Brasco | Stability of variational eigenvalues for the fractional p-Laplacian[END_REF]. For p = 2, it is worth mentioning that W s,p (Ω) and W s,p 0 (Ω) turns out to be Hilbert spaces. For more details and motivations we refer to [START_REF] Caffarelli | Nonlocal equations, drifts and games[END_REF][START_REF] Di Nezza | Hitchhiker's guide to the fractional sobolev spaces[END_REF]. 

C + φ (Ω) = u ∈ C φ (Ω) : inf x∈Ω u(x) φ(x) > 0 .
We also define

X := u : R N → R | measurable, u| Ω ∈ L 2 (Ω) and (u(x) -u(y)) |x -y| N +2s ∈ L 2 (Q)
where

Q = R 2N \ Ω c × Ω c and Ω c = R N \ Ω endowed with the norm u X = u L 2 (Ω) + C s ˆQ |u(x) -u(y)| 2 |x -y| N +2s dxdy 1 2
.

Define the Hilbert space X 0 as

X 0 := {u ∈ X : u = 0 in R N \ Ω} equipped with the inner product u, v = C s ˆQ (u(x) -u(y))(v(x) -v(y))
|x -y| N +2s dxdy.

We also recall the Moser-Trudinger inequality in case of half-Laplacian operator which has been recently proved by Martinazzi [START_REF] Martinazzi | Fractional Adams-Moser-Trudinger type inequalities[END_REF] in Bessel potential spaces and by Takahashi [START_REF] Takahashi | Critical and subcritical fractional Trudinger Moser-type inequalities on R[END_REF] in Sobolev spaces using Green functions for fractional Laplacian operators . 

u X 0 ≤1 ˆΩ e cu 2 dx < ∞    .

Presentation of problems

In this section we present the main problems to be dealt in this chapter.

Problem 1: Half Laplacian singular problem

First, we study the following nonlocal singular problem in critical dimension N = 1:

(P λ )    (-∆) 1 2 u = λ 1 u δ + f (u) , u > 0 in (-1, 1), u = 0 in R \ (-1, 1)
where f (t) = h(t)e t α , 1 ≤ α ≤ 2, δ > 0, λ ≥ 0 and h(t) is the smooth perturbation of e t α of lower growth order. The study of above problem is motivated from the Moser inequality (see Theorem 3.1.3) and extended version of Green formula (see [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF]) in case of Half-Laplacian operator. In the continuation of the work in [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF] (where N > 2s and s ∈ (0, 1) is considered), we are interested in the detailed study of the nonlocal singular problems in 1-dimension involving exponential nonlinearity and with the following questions: To answer the above questions, we study the asymptotic behavior of the purely singular problems ((3.4.2), (P δ )) in terms of first normalized eigenfunction of (-∆) 1 2 and seek help from bifurcation theory and sub-supersolutions method. Concerning the symmetry and monotonicity of solution we use moving plane method and narrow maximum principles. Multiplicity of solution is also discussed by variational methods.

Problem 2: Nonlinear fractional singular problem with singular weights

Secondly, we study the following nonlinear fractional elliptic and singular problem (P )

     (-∆) s p u = K δ (x) u γ , u > 0 in Ω; u = 0 in R N \ Ω where Ω ⊂ R N is a smooth bounded domain with C 1,1 boundary, s ∈ (0, 1), p ∈ (1, +∞), γ > 0 and K δ satisfies K δ ∼ d -δ for some δ ∈ [0, sp), d(x) = dist(x, ∂Ω) for any x ∈ Ω.
Concerning the problem (P ), we are interested in the existence of a weak solution (we adopt a weaker notion of solution with respect to other contributions due to the nonlinearity of the operator and absence of integration by parts formula). By the weak solution here we mean a solution u such that u κ ∈ W s,p 0 (Ω) for some κ ≥ 1 and inf

K u > 0 for all K Ω (3.2.1)
and for φ ∈

Ω Ω W s,p 0 ( Ω), u satisfies ¨R2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy = ˆΩ K δ (x) u γ φ dx.
Having in mind the condition (3.2.1), a function u = 0 in R N \ Ω satisfies u ≤ 0 on ∂Ω in sense that for > 0, (u -) + ∈ W s,p 0 (Ω). This weak form of trace of solution emerged from the lack of regularity of solutions when γ is large (a rigorous formulation is given in Definition 3.4.1). Subsequently, a next question arises is to find the optimal range of constant θ = θ(δ, γ) ≥ 1 such that u θ ∈ W s,p 0 (Ω). We designate this problem as to show the optimal Sobolev regularity of the weak solution.

To deal with above problems, we investigate the boundary behavior of the weak solution in terms of distance function. The Hölder regularity of the weak solution and the non-existence results are the byproduct of this investigation and are of independent interest.

A brief literature on singular problems

The study and understanding of existence, multiplicity, and regularity of weak and classical solutions to elliptic singular equations have been a matter of intensive research. The pioneering work of Crandall et al. [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF] in local case (s = 1, p = 2) is the starting point of the study of singular problems. Later on, the perturbed equation of type

-∆u = λa(x)u -γ + M u r-1 , u > 0, in Ω, u = 0 on ∂Ω M ∈ {0, 1} (3.3.1) 
received much attention and studied by a large number of researchers in this field. The authors in [START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF] studied the purely singular problem (a = λ = 1 and M = 0) and proved the existence, uniqueness in C 2 (Ω) ∩ C(Ω) for γ > 0 and boundary behavior of classical solution in terms of the first normalized and positive eigenfunction of -∆. In [START_REF] Lazer | On a singular nonlinear elliptic boundary-value problem[END_REF], authors proved the existence of unique solution u in C 2+α (Ω) ∩ C(Ω) for purely singular problem with a ∈ C α (Ω), M = 0 and ∂Ω ∈ C 2,α . Moreover, they have also proved the u / ∈ C 1 (Ω) if γ > 1 and u ∈ W 1,2 0 (Ω) if and only if γ < 3.

In [START_REF] Coclite | On a singular nonlinear Dirichlet problem[END_REF], authors showed the existence and non-existence of classical solutions of (3.3.1) depending upon the parameter λ with Ω satisfying ∂Ω ∈ C 3 and a = M = 1. Using Nehari manifold method, Yijing et al. [START_REF] Yijing | Combined effects of singular and superlinear nonlinearities in some singular boundary value problems[END_REF] proved the existence of two solutions in the subcritical range i.e. 1 < r < 2 * for a ∈ L 2 (Ω) and λ = M = 1. Thereafter, problem (3.3.1) with critical exponent r = 2 * and a = 1, M = 1 is studied by Haitao [START_REF] Haitao | Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem[END_REF] and Hirano et al [START_REF] Hirano | Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities[END_REF] when 0 < γ < 1. In [START_REF] Haitao | Multiplicity and asymptotic behavior of positive solutions for a singular semilinear elliptic problem[END_REF], the author proved the global multiplicity of weak solutions by combining sub-supersolution and variational methods (Perron's method), whereas in [START_REF] Hirano | Existence of multiple positive solutions for singular elliptic problems with concave and convex nonlinearities[END_REF], authors used variational methods to prove the existence of two solutions. While in [START_REF] Hirano | Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem[END_REF], authors studied the problem for all γ > 0, a = 1 = M , and established a global multiplicity result with a deep use of non-smooth analysis. In case of critical exponential growth for N = 2, authors in [START_REF] Adimurthi | Multiplicity of positive solutions for a singular and critical elliptic problem in R 2[END_REF] and [START_REF] Dhanya | Global bifurcation and local multiplicity results for elliptic equations with singular nonlinearity of super exponential growth in R 2[END_REF] proved the multiplicity results of the following singular equation -∆u = λ a(x)u -γ + b(u)e u α , u > 0 in Ω, u = 0 on ∂Ω via shooting method combining with ODE analysis and global bifurcation theory due to P.

H. Rabinowitz for 1 ≤ α ≤ 2, 0 < γ < 3, a ∈ L ∞ (Ω) and b(t) is a smooth perturbation of e t α as t → ∞.
Pertaining to the case, when a has a singularity, Gomes [START_REF] Gomes | On a singular nonlinear elliptic problem[END_REF] studied the purely singular problem and proved the existence and uniqueness of C 1 (Ω) classical solution via Schauder fixed point Theorem and the required compactness is obtained by suitable estimates on the integral representation involving the Green function and in [START_REF] Diáz | On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms[END_REF], Diáz et al. considered the case where a behaves as some negative power of the distance function. Here, regularity of gradient of u in Lorentz spaces is established.

For the quasilinear case (p = 2), authors in [START_REF] Giacomoni | Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation[END_REF] studied

(-∆) p u = λu -γ + u r-1 , u > 0 in Ω, u = 0 on ∂Ω (3.3.2)

A brief literature on singular problems

for 0 < γ < 1 and 1 < r ≤ p * . By employing variational methods and depending upon the range of parameter λ, they proved existence of multiple solution in W 1,p 0 (Ω) ∩ C 1 (Ω) for all p > 1 in subcritical range and p ∈ ( 2N N +2 , 2] ∪ ( 3N N +3 , 3) in critical case range (where the behavior of Talenti functions is proved). Here the authors have also proved C 1,β (Ω) regularity of weak solution for the problem (3.3.2) for any p > 1. In [START_REF] Giacomoni | Multiplicity results for a singular and quasilinear equation[END_REF], authors proved the existence of a weak solution in W 1,p (Ω) ∩ C(Ω) if and only if 0 < γ < 2 + 1 p-1 using ODE techniques and shooting method for r > p. Thereafter, the authors in [START_REF] Bougherara | Some regularity results for a singular elliptic problem[END_REF] and [START_REF] Canino | Existence and uniqueness for p-Laplace equations involving singular nonlinearities[END_REF], studied the purely singular problem (by replacing λ to a function f in (3.3.2)) for p-Laplacian operator and proved existence, uniqueness and boundary behavior of weak solution (with different summability conditions on f ). In [START_REF] Saoudi | Existence of multiple solutions for a singular and quasilinear equation[END_REF], authors studied the quasilinear singular version in the presence of exponential non-linearity (limiting case of Sobolev embedding)

(-∆) N u = λ g(u) + b(u)e u N N -1 , u > 0 in Ω, u = 0 on ∂Ω
where g(u) ∼ u -γ for 0 < γ < 1 and b(t) is a smooth perturbation of e N N -1 of lower growth order. Using variational methods, they proved the existence of multiple solutions for λ ∈ (0, Λ) and one solution for λ = Λ (what we call global multiplicity result). For a more detailed analysis of semilinear and quasilinear elliptic equations with singular non-linearities involving different kind of non-linearities, we refer to [START_REF] Aranda | Existence and multiplicity of positive solutions for a singular problem associated to the p-Laplacian operator[END_REF][START_REF] Bal | Multiplicity of solution for a quasilinear equation with singular nonlinearity[END_REF][START_REF] Crandall | On a Dirichlet problem with a singular nonlinearity[END_REF][START_REF] Diáz | An elliptic equation with singular nonlinearity[END_REF][START_REF] Diáz | On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms[END_REF][START_REF] Fulks | A singular nonlinear equation[END_REF][START_REF] Gamba | Positive solutions to a singular second and third order differential equations for quantum fluids[END_REF][START_REF] Ghergu | Singular elliptic problems: bifurcation and asymptotic analysis[END_REF][START_REF] Giacomoni | Uniqueness and multiplicity results for N-Laplace equation with critical and singular nonlinearity in a ball[END_REF][START_REF] Goyal | The Nehari manifold approach for N-Laplace equation with singular and exponential nonlinearities in R n[END_REF][START_REF] Hernández | Nonlinear singular elliptic problems: recent results and open problems[END_REF][START_REF] Maagli | Existence of compact support solutions for a quasilinear and singular problem Differential Integral Equations[END_REF][START_REF] Mishra | Polyharmonic Kirchhoff type equations with singular exponential nonlinearities[END_REF] and surveys [START_REF] Ghergu | Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term[END_REF] and [START_REF] Hernández | Singular elliptic and parabolic equations[END_REF] with no intent to furnish an exhaustive list.

Recently, equations involving nonlocal operators attracted a large number of researchers, especially in the study of fractional powers of (-∆) and equivalent (-∆) p . This interest has been provoked and sustained by the applications of such results in mathematical physics and geometry (see [START_REF] Bisci | Variational methods for nonlocal fractional problems 162[END_REF][START_REF] Di Nezza | Hitchhiker's guide to the fractional sobolev spaces[END_REF]). The study of singular problems involving the fractional Laplacian operator started in [START_REF] Barrios | Semilinear problems for the fractional laplacian with a singular nonlinearity[END_REF]. Precisely, the authors studied the following singular problem

(-∆) s u = λ K(x) u γ + M f (x, u) , u > 0 in Ω, u = 0 in R N \ Ω (3.3.3)
and proved the existence of a weak solution for f (x, u) = u p and p > 1 via approximation method for M = 0 and Sattinger method for M = 1, and Sobolev regularity of the weak solution for the function K ∈ L q (Ω) where q depends upon the singular exponent γ > 0. In the recent times, Adimurthi et al. [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF] studied the problem (3.3.3) with M = 0, N > 2s and K(x) ∼ d -β (x) and complement the results of [START_REF] Barrios | Semilinear problems for the fractional laplacian with a singular nonlinearity[END_REF] by exploiting the integral formula with Green function. In particular, they obtained the boundary behaviour and deduce optimal Hölder regularity of the classical solution (in the sense of Definition 3.4.2). Using the asymptotic behavior near the boundary, authors obtained multiplicity of classical solutions for (3.3.3) with f satisfying subcritical growth conditions via global bifurcation method in weighted spaces.

Concerning the critical growth, authors in [START_REF] Giacomoni | Positive solutions of fractional elliptic equation with critical and singular nonlinearty[END_REF], studied the problem (3.3.3) for K(x) = 1, γ > 0, N > 2s, and f (x, u) = u 2 * s -1 and proved the existence and multiplicity of weak solutions in C α loc (Ω) ∩ L ∞ (Ω) using non-smooth analysis and linking theorems. In [START_REF] Giacomoni | A Global multiplicity result for a very singular critical nonlocal equation[END_REF], authors proved the multiplicity of energy solutions for the non-local singular problem (3.3.3) with Sobolev critical nonlinearity f (x, u) = u 2 * s -1 , N > 2s and γ satisfies γ(2s -1) < 2s + 1. For more results on nonlocal problems with singular non-linearity, interested readers can refer to [START_REF] Giacomoni | Existence of three positive solutions for a nonlocal singular Dirichlet boundary proble[END_REF][START_REF] Giacomoni | Regularity results on a class of doubly nonlocal problems[END_REF][START_REF] Giacomoni | Singular doubly nonlocal elliptic problems with Choquard type critical growth nonlinearities[END_REF][START_REF] Mukherjee | Critical growth elliptic problems with Choquard type non-linearity: A survey[END_REF][START_REF] Mukherjee | Sreenadh Fractional elliptic equations with critical growth and singular nonlinearities[END_REF]. For results regarding the symmetry and monotonicity of weak solution we refer to the latest work [START_REF] Chen | A direct method of moving planes for the fractional Laplacian[END_REF][START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF] where the moving plane method and maximum principle for narrow domains (in the spirit of Alexandrov-Bakelman-Pucci type estimates) are proved for nonlocal operators.

The study of regularity results in case of non-local operators started a long back and is now rather well understood for p = 2. Proving sufficiently good regularity estimates up to the boundary has useful applications in obtaining multiplicity results, apart from being relevant itself. Consider the following non-local problem

(-∆) s p u = f in Ω u = 0 in R N \ Ω.
For p = 2, the interior regularity of the solutions is primarily resolved by Caffarelli et al. [START_REF] Caffarelli | Regularity theory for fully nonlinear integrodifferential equations[END_REF][START_REF] Caffarelli | Regularity results for nonlocal equations by approximation[END_REF] and boundary regularity is settled by Ros-Oton et al. in [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF] for f ∈ L ∞ (Ω). For the general case p = 2, the situation is more delicate due to the nonlinear nature of the operator: the representation of Green formula and explicit tools to compute the (-∆) s p are not available. The local Hölder regularity for viscosity solution is proved in [START_REF] Castro | Local behavior of fractional p-minimizers[END_REF][START_REF] Lindgren | Hölder estimates for viscosity solutions of equations of fractional p-Laplace type[END_REF] without mentioning the dependence and optimality of Hölder exponent. In the degenerate case i.e. p ≥ 2, Brasco et al. in [START_REF] Brasco | Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case[END_REF] proved the existence of optimal Hölder exponent i.e. u ∈ C sp p-1 loc when f ∈ L ∞ (Ω) and sp p-1 < 1. The proof of boundary regularity is more involved. The first work regarding the nonlinear case is Iannizzotto et al. in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF]. They proved the global Hölder regularity result, with an unspecified Hölder exponent via barrier argument and by combining it with the optimal interior regularity of [START_REF] Brasco | Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case[END_REF] we have u ∈ C s (R N ) when p ≥ 2. The same is conjectured to hold in the case p ∈ (1, 2), but the optimal (at least C s ) interior regularity is still an open problem.

More recently, by extending the work of [START_REF] Barrios | Semilinear problems for the fractional laplacian with a singular nonlinearity[END_REF], Canino et al. in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF] studied the following purely singular problem

(-∆) s p u = K(x) u γ , u > 0 in Ω, u = 0 in R N \ Ω (3.3.4)
and by approximation method proved the existence and Sobolev regularity of the very weak solution depending upon the range of singular exponent γ. In [START_REF] Mukherjee | On Dirichlet problem for fractional p-Laplacian with singular non-linearity[END_REF], authors have studied the problem (3.3.4) perturbed with critical growth non-linearities

f (x, u) = u α , α ≤ p * s -1 for 0 < γ ≤ 1, K(x) = 1, N > sp
and proved the existence and multiplicity of very weak solution via the minimization method under the natural Nehari manifold constraint.

New contribution: Tools and main results

New contribution: Tools and main results

Problem 1: Half-Laplacian singular problem

In this part, first we introduce different notion of solutions (weak and classical) concerning the main problem (P λ ) and main tools required to study the qualitative properties of the weak or classical solutions and then we state the main results with a glimpse of a proof. We start by stating the assumption on the function h for 1 ≤ α ≤ 2 :

(H1) h : [0, ∞) → R is a positive function of class C 2 in (0, ∞) with h(0) = 0 and such that the map t → t -δ + h(t)e t α is convex for all t > 0. (H2) For any > 0, lim t→∞ h(t)e -t α = 0 and lim t→∞ h(t)e t α = ∞.
Motivating from the Definition 2.2 in [START_REF] Barrios | Semilinear problems for the fractional laplacian with a singular nonlinearity[END_REF], we define the following notion of (very) weak solution for the problem (P λ ):

Definition 3.4.1. A function u ∈ L 1 (R) with u ≡ 0 on R \ (-1, 1
) is said to be a weak solution of (P λ ) if inf K u > 0 for any compact set K ⊂ (-1, 1) and for any φ ∈ σ,

ˆ1 -1 u (-∆) 1 2 φ = C s ˆQ (u(x) -u(y))(φ(x) -φ(y)) |x -y| 2 dxdy = λ ˆ1 -1 1 u δ + h(u)e u α φ dx (3.4.1)
where

σ = { ψ : R → R : measurable, (-∆) 1 2 ψ ∈ L ∞ ((-1, 1)
) and φ has compact support in (-1, 1)}.

As in [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF], we define the notion of classical solutions of (P λ ) (adding continuity property):

Definition 3.4.2.
The set of classical solutions to (P λ ) is defined as

S = (λ, u) ∈ R + × C 0 ([-1, 1]) : u is a weak solution to (P λ ) in X 0 .
Remark 3.4.3. Regularity of a classical solution u (proved later in Theorem 3.4.9) for the problem

(P λ ) implies u ∈ C + φ δ ((-1, 1 

)) (defined below). Indeed with the continuity property, we can use some comparison principle for nonlocal operator. Then by using Hardy's inequality

(see [START_REF] Grisvard | Elliptic Problems in nonsmooth domains[END_REF]Corollary 1.4.4.10,p.23]) in (3.4.1) together with the fact that C ∞ c ((-1, 1)) is dense in X 0 , we obtain that 1 u δ belongs to dual space of X 0 for all δ > 0 and hence in case of classical solution (3.4.1) holds for all φ ∈ X 0 . Now, we recall the definition of an asymptotic bifurcation point and then state the result regarding existence of a global branch of classical solutions to (P λ ). 

Definition 3.4.4. A point Λ a ∈ [0, ∞) is said to be an asymptotic bifurcation point, if there exists a sequence (λ n , u n ) ∈ S such that λ n → Λ a and u n L ∞ ((-1,1)) → ∞ as n → ∞.

Preliminary results

This section is devoted to the development of preliminary results of independent interest for the study of the original problem (P λ ). The first result is the study of existence and regularity (Theorem 3.4.6) of solutions to the purely singular problem (P δ ) (see below) which is used to construct the sub and supersolutions of the main problem (P λ ). The second result is the study of behavior of isolated singularities in Brezis-Lions type problem for fractional Laplacian operator (see below (P s )) which is used to identify the blow up behavior of weak solution of original problem (P λ ) at an asymptotic bifurcation point.

To analyze the asymptotic behavior of solution for the problem (P λ ) near boundary, the first key ingredient is to construct the barrier function as a solution of the following problem:

       (-∆) 1 2 u = 1 d(x) α log β A d(x) in (-1, 1), u = 0 in R \ (-1, 1). (3.4.2)
For the operator (-∆) s with N > 2s, Abatangelo [START_REF] Abatangelo | Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian[END_REF] studied the boundary behavior of the corresponding problem like (3.4.2) with β = 0 and 0 < α < 1 + s. We provide the extension in case N = 1 and s = 1 2 in the following theorem:

Theorem 3.4.5. Let A be a positive constant such that A ≥ 2.
Then the weak solution of (3.4.2) satisfies

c 1 d(x) 1 2 ≤ u(x) ≤ c 2 d(x) 1 2 for 0 < α < 1 2 and β = 0, c 3 d(x) 1-α ≤ u(x) ≤ c 4 d(x) 1-α for 1 2 < α < 3 2 and β = 0, c 5 d(x) 1 2 log 1-β A d(x) ≤ u(x) ≤ c 6 d(x) 1 2 log 1-β A d(x)
for α = 1 2 and 0 ≤ β < 1.

(3.4.3)

where c i , i = 1, 2, • • • , 6 are constants.
The main essence in the proof of (3.4.3) is the use of following integral representation of weak solution u via Green function (see [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF]) given by

u(x) = ˆ1 -1 G(x, y) d(y) α log β (A/d(y)) dy where G(x, y) log 1 + d(x) 1 2 d(y) 1 2 |x -y| ∀(x, y) ∈ (-1, 1) 2 .
For a detailed proof we refer to Page 316, proof of Theorem 6.1.6, Chapter 6.

As in [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF], we define the function φ δ as

φ δ =          φ 1 if 0 < δ < 1, φ 1 log 2 φ 1 1 2 if δ = 1, φ 2 δ+1 1 if δ > 1 (3.4.4)
where φ 1 is the normalized ( φ 1 L ∞ (Ω) = 1) positive eigenfunction corresponding to the first eigenvalue of (-∆)

1 2 on X 0 . We recall that φ 1 ∈ C 1 2 (R) and φ 1 ∈ C + d 1 2
((-1, 1)) (See

Preliminary results

Proposition 1.1 and Theorem 1.2 of [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF]). Now, to construct appropriate sub and super solutions of the problem (P λ ), we start by studying the following singular problem (P δ ) with the help of barrier function φ δ

(P δ ) (-∆) 1 2 u = 1 u δ , u > 0, in (-1, 1), u = 0 in R \ (-1, 1).
In this regard we prove the following result:

Theorem 3.4.6. (i) For all δ > 0, there exists a unique u ∈ C 0 ([-1, 1]) classical solution of (P δ ). Moreover, u ∈ C + φ δ ((-1, 1)
) where φ δ is defined in (3.4.4). (ii) The classical solution u to (P δ ) belongs to C γ (R) where γ is defined in Theorem 3.4.9.

To prove the above result, first we investigate the existence of the solution u of approximated problem with the help of integral representation formula via Green function and secondly together with Theorem 3.4.5 and uniform estimates for the approximated solution u , we pass to the limit → 0. For a detailed proof we refer to Page 319, proof of Theorem 6.1.7, Chapter 6.

To characterize the blow up behavior of weak solutions at an asymptotic bifurcation point Λ a we study the behavior of solutions near isolated singularities as in Brezis-Lions problem (see [START_REF] Bréziz | A note on isolated singularities for linear elliptic equations[END_REF]) for the fractional Laplacian operator. Precisely, we consider the following problem:

(P s )          (-∆) s u = g(u), u ≥ 0 in Ω , u = 0 in R N \ Ω, u ∈ L 1 (Ω), g(u) ∈ L t loc (Ω ),
where 0 < s < 1, t > N 2s ≥ 1, Ω ⊂ R N be a bounded domain with 0 ∈ Ω and Ω = Ω \ {0}. The notion of distributional solution for (P s ) is defined as follows:

Definition 3.4.7. A function u is said to be a distributional solution of (P s ) if u ∈ L 1 (Ω) such that g(u) ∈ L 1 loc (Ω ) and ˆΩ u(x)(-∆) s φ dx = ˆΩ g(u)φ dx for all φ ∈ C ∞ c (Ω) with supp(φ) ⊂ Ω .
In [START_REF] Chen | Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results[END_REF], authors have studied the problem (P s ) for a power type nonlinearity function g(u) = u p by showing the L p integrability of the solution in Ω and scaling typical test functions. In the next theorem, we extend the result of Chen and Quaas ( [START_REF] Chen | Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results[END_REF]) for the problem (P s ) for N ≥ 2s by using the same approach with precise estimates but considering a weaker notion of solution and for a large class of nonlinearities (in particular exponential growth nonlinearities).

Theorem 3.4.8. For 0 < s < 1, let u be non-negative distributional solution of

(P s ) such that u ∈ L 1 (Ω), g(u) ∈ L t loc (Ω ) for t > N 2s ≥ 1. Then there exists k ≥ 0 such that u is distributional solution of (D s )          (-∆) s u = g(u) + kδ 0 , u ≥ 0, in Ω, u = 0 in R N \ Ω, g(u) ∈ L 1 (Ω), i.e. ˆΩ u(-∆) s φ -g(u)φ dx = kφ(0) for all φ ∈ C ∞ c (Ω).
This result asserts that the due to the effect of fundamental solution problem (P s ) extend to the distributional equation (D s ) containing dirac mass at the isolated singularity. To prove the above result, we follow the proof in [START_REF] Chen | Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results[END_REF] and define the distribution P :

C ∞ c (Ω) → R such that P (φ) = ˆΩ u(-∆) s φ -g(u)φ dx for all φ ∈ C ∞ c (Ω)
where u ∈ L 1 (Ω) is a non-negative distributional solution of (P s ) and g(u) ∈ L 1 (Ω) (see Theorem 6.1.19, Chapter 6) and then by using integration by parts formula and Theorem XXXV in [START_REF] Schwartz | Theorie des distributions[END_REF], we infer that (i) P (φ) = 0 for any φ ∈ C ∞ c (Ω) with supp(φ) ⊂ Ω \ {0}. (ii) There exists constants c a such that

P (φ) = |a|<1 c a D a φ(0) and c a = 0 if |a| ≥ 1 where a = (a 1 , a 2 , . . . , a N ) with a i ∈ N, |a| = N i=1 a i , D a = (∂ a 1 φ, ∂ a 2 φ, . . . , ∂ a N φ).

Main results with a glimpse of the proof

To study the existence, multiplicity of solutions to (P λ ), we seek assistance of global bifurcation theory due to P. H. Rabinowitz [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF], Theorem 1.6 of [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF] and Theorem 3.4.6. We establish the existence of an unbounded connected branch of solution to (P λ ) emanating from the trivial solution at λ = 0. Precisely, we prove the following result. Theorem 3.4.9. Let h satisfy the hypothesis (H1) and (H2) and δ > 0. Then the following holds: 

(i) There exists Λ ∈ [0, +∞) and γ > 0 such that S ⊂ [0, Λ]× X 0 ∩ C + φ δ ((-1, 1)) ∩ C γ (R)
, where γ is defined as

γ =        1 2 if δ < 1, 1 2 - if δ = 1, for all > 0 small enough, 1 δ+1 if δ > 1.
and φ δ is defined in (3.4

.4).

(ii) There exists a connected unbounded branch C of solutions to

(P λ ) in R + × C 0 ([-1, 1]),
emanating from (0, 0) such that for any λ ∈ (0, Λ), there exists (λ, u λ ) ∈ C with u λ being minimal solution to (P λ ). Furthermore, as λ → Λ -, u λ → u Λ in X 0 , where u Λ is a classical solution to (P Λ ).

(iii) The curve (0, Λ) λ → u λ ∈ C 0 ([-1, 1]) is of class C 2 .
(iv) (Bending and local multiplicity near

Λ) λ = Λ is a bifurcation point, that is, there exists a unique C 2 -curve (λ(s), u(s)) ∈ C
, where the parameter s varies in an open interval about the origin in R, such that

λ(0) = Λ, u(0) = u Λ , λ (0) = 0, λ (0) < 0. (v) (Asymptotic bifurcation point) C admits an asymptotic bifurcation point Λ a satisfying 0 ≤ Λ a ≤ Λ.
The above theorem assert the existence of a branch of solutions C containing the minimal solution branch and bending back at classical solution (Λ, u Λ ). According to assertion (v), First, we define u λ := λ 1 δ+1 u and u λ := u λ + M U where U > 0 is a weak solution of the problem (-∆)

1 2 U = 1 in (-1, 1), U = 0 in R \ (-1, 1
) and u is the weak solution of the problem (P δ ). Then there exists a λ 0 such that for all λ ∈ (0, λ 0 ) (P λ ) admits a solution u λ with u λ ≤ u ≤ u λ where u λ and u λ act as a strict subsolution and supersolution respectively for (P λ ). Indeed, we define the following iterative scheme, starting with u 0 = u λ and n ≥ 1

   (-∆) 1 2 u n + λCu n -λ u δ n = λCu n-1 + λf (u n-1 ), u > 0 in (-1, 1), u = 0 in R \ (-1, 1).

Main results with a glimpse of the proof

Now, by taking into account the monotonicity of the operator (-∆)

1 2 u -λu -δ , Comparison Principle ([150, Lemma 2.2]
) and Theorem 3.4.6, we prove the following uniform estimates

u n is increasing, {u n } ⊂ X 0 ∩ C + φ δ ((-1, 1)), u λ ≤ u n ≤ u λ , sup n∈N u n C γ (R) ≤ C 0
for some C 0 = C 0 (δ, λ 0 ) large enough and γ is defined in Theorem 3.4.9. Finally, by using asymptotic behavior of f (t) and passing as n → ∞, we get the desired result. For a detailed explanation see Theorem 6.1.9, Chapter 6.

In order to get the asymptotic behavior of the branch of solution, we study the qualitative properties of solutions for the problem (P λ ). In the light of narrow maximum principle (see Proposition 3.6, [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]) and the moving plane method, we derive the radial symmetry and monotonicity properties of the weak solutions with respect to |x|. More precisely, we prove the following result:

Theorem 3.4.10. For 1 ≤ α ≤ 2, δ > 0, let h satisfies (H1) -(H2), f is locally Lipschitz function.
Then every positive solution (λ, u) ∈ S of (P λ ) is symmetric and strictly decreasing in |x| i.e. u(x) > u(y) for all |x| < |y| and x, y ∈ (-1, 1).

To prove Theorem 3.4.10, we follow the approach of moving plane method in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. We start by defining the antisymmetric function

v h (x) := u h (x) -u(x) where u h (x) = u(R h (x)). in the sense that v h (R h (x)) = -v h (x) where R h (x) := (2h -x)
is the reflection of the point x about h. The proof of the above theorem emerge from the following observations:

(i) To claim positivity of the antisymmetric function v h in (-1, h) if h < 0 and in (h, 1) if h > 0 is equivalent to show that the positive solution (λ, u) of the problem (P λ ) is strictly decreasing in the neighbourhood of -1, 1 with respect to |x| i.e. u(x) > u(y) for all |h| < |x| < |y| and x, y ∈ (-1, 1). In this regard we divide the proof into two steps. In the first step, we prove the positivity of v h in the neighbourhood of -1, 1 i.e. f is Lipschitz, Poincaré inequality and noting that supp((-v h ) + ) ⊂ (-1, 2h + 1), we have ˆR (-∆)

(ii) If inf{|h| : v h ≥ 0 in (-1, h) if h < 0 and in (h, 1) if h > 0} =
v h (x) ≥ 0 in (-1, h) ∩ H - h if h ≤ 0 and in (h, 1) ∩ H + h if h > 0 where H ± h = {x ∈ R : x ≷ h} and h lies in the neighborhood of x 0 ∈ {-1, 1}. Clearly for |h| sufficiently large, v h (x) ≥ 0. Suppose that v h < 0 in K ⊂ (-1, h) ∩ H - h for some h ≤ 0. Using
1 4 (u -u h ) + 2 ≤ (-∆) 1/2 (-v h ), (-v h ) + = λ ˆ2h+1 -1 1 u δ - 1 (u h ) δ + f (u) -f (u h ) (-v h ) + dx ≤ C ˆK((u -u h ) + ) 2 dx. ≤ C(diam(K)) ˆR (-∆) 1 4 (u -u h ) + 2 .
Then by choosing h close enough to -1 we get, C(diam(K)) < 1 and then (-v h ) + = (uu h ) + = 0. Similarly in the case of (h, 1) ∩ H + h for h > 0. Now by moving the point in the neighborhood of -1 and 1 we obtain there exists T > 0 independent of u such that

   u(x -t) is non-increasing ∀(t, x) ∈ [0, T ] × (-1, h) if h ≤ 0, u(x -t) is non-decreasing ∀(t, x) ∈ [0, T ] × (h, 1) if h ≥ 0. (3.4.5)
Without loss of generality we can assume that h ≥ 0 be the smallest value such that v h ≥ 0 in (h, 1) and the mean value theorem implies v h satisfies the following for some θ ∈ (0, 1)

(-∆) 1 2 v h = c(x)v h in (h, 1). (3.4.6)
where

c(x) =    f (u h )-f (u) v h - δ (θu+(1-θ)u h ) δ+1 if v h = 0, 0 if v h = 0.
Now, in the second step, we prove the strict positivity of the function v h in the interior of (-1, 1). For this, we start by proving ess inf U 0 v h > 0 where U 0 := B r (x * ) (h, 1) via constructing a strictly positive subsolution ṽh of the problem (3.4.6) in U 0 (a detailed construction is given in the proof of Theorem 6.1.10 by adapting the tools of maximum principle 3.4.1.2. Main results with a glimpse of the proof for antisymmetric solution Proposition 3.5 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF] and narrow maximum principle Proposition 3.6 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]). To prove h = 0 we argue by contradiction and suppose h > 0. Since h is the smallest value such that v h ≥ 0 in (h, 1), so we claim that for a small > 0 we have v h-≥ 0 in (h -, 1) and thus get a contradiction that h is the smallest value. Fix γ (to be determined later) and let K (h, 1) such that |(h, 1) \ K| ≤ γ 2 . Then from above estimates, v h ≥ r > 0 in K and then by continuity v h-> 0 in K for small enough. Let λ 1 be the first eigenvalue of (-∆)

s in (h -, 1) \ K. Since v h-satisfies (3.4.6) in (h -, 1) \ K and by taking w := 1 H + h- v - h-such that supp(w) ⊂ (h -, 1) \ K as a test function, we obtain λ 1 ((h -, 1) \ K) ˆ(h-,1)\K |v - h-| 2 dx ≤ -(-∆) 1 2 v h-, w = ˆ(h-,1)\K δv h-1 (h-,1)\K v - h- (θu + (1 -θ)u h ) δ+1 dx + ˆ(h-,1)\K (-f (u h-) + f (u))1 (h-,1)\K v - h-dx ≤ C L ˆ(h-,1)\K |v - h-| 2 dx. Since λ 1 (Ω) → ∞ when |Ω| → 0 (see Lemma 2.1 in [175]) then by choosing γ small enough we get v h-≥ 0 in (h -, 1)
, which is a contradiction. Therefore h = 0 i.e. u(-x) ≥ u(x) and then by repeating the same proof for largest value of h over (-1, h) we obtain u(x) = u(-x) for all x ∈ (-1, 1). Since h = 0, therefore (3.4.5) and u is strictly decreasing in |x|. For a detailed proof see Theorem 6.1.10, Chapter 6.

Assertion (v) in Theorem 3.4.9 asserts that the connected branch admits at least one asymptotic bifurcation point. Then by using Theorem 3.4.8, we show that the sequence of large solution converge to a singular solution if Λ a = 0.

Theorem 3.4.11. For 1 < α ≤ 2, δ > 0, assume Λ a > 0 be an asymptotic bifurcation point as in the Definition 3.4.4. Then, for any sequence

(λ k , u k ) ∈ S ∩ ((0, Λ) × C 0 ([-1, 1])) such that λ k → Λ a and u k L ∞ ((-1,1
)) → ∞, the following assertions holds:

(i) 0 ∈ Ω is the only blow up point for a sequence u k . (ii) u k → u in C s loc ((-1, 1) \ {0}) where u is a weak (singular) solution to (P λ ). Moreover, u(0) = ∞, u ∈ L p ((-1, 1)) for any 1 ≤ p < ∞, u ∈ X 0 and 1 u δ + f (u) ∈ L 1 ((-1, 1)).
To prove the above result, we exploit the growth of the function f and monotonicity of the solution w.r.t. |x| (Theorem 3.4.10) to prove

sup k u k L ∞ ((-1,1)\[ , ]) ≤ c < ∞.
where c is independent of k and which further implies "0" is the blow up point for the sequence u k . By regularity of u k , compact embeddings, Fatou's lemma and Vitali's convergence Chapter 3. Non-local singular problems theorem we obtain u satisfies (in the sense of Definition 6.1.11):

         (-∆) 1 2 u = Λ a g(u) in (-1, 1) \ {0}, u ≥ 0 in (-1, 1), u = 0 in R \ (-1, 1), with g(u) := u -δ + f (u) ∈ L 1 (Ω).
Then by using Theorem 3.4.8 there exists µ ≥ 0 such that u satisfies (in the sense of Definition 6.1.1)

         (-∆) 1 2 u = Λ a g(u) + µδ 0 in (-1, 1), u ≥ 0 in (-1, 1), u = 0 in R \ (-1, 1). (3.4.7)
Suppose µ = 0 in (3.4.7). Then by using integral representation of solution u, we get u(x) ≥ log(|x| -µ/π ) -C and since α > 1,

f (u) ≥ h log(|x| -µ/π ) -C exp (log(|x| -µ/π )-C) α ≥ h log(|x| -µ/π ) -C |x| -µp/π for all p > 1, 0 < |x| ≤ |x ρ | and |x ρ | small. Then by integrating f (u) over a small ball B around 0, we obtain ´B f (u) = ∞ which contradicts f (u) ∈ L 1 ((-1, 1)
). Therefore µ = 0 and (ii) is proved.

Previous results do not imply the multiplicity of solutions for all λ ∈ (0, Λ). Via variational techniques, we next prove the global multiplicity result to the problem (P λ ) for all δ > 0, under the following assumptions on growth of the function f .

(K1) h ∈ C 1 (R + ), h(0) = 0, h(t) > 0 for t > 0 and f (t) = h(t)e t 2 is nondecreasing in t. (K2) For any > 0, lim t→∞ (h(t) + h (t))e -t 2 = 0 and lim t→∞ h(t)te t q = ∞ for some 0 ≤ q < 1. (K3) There exists M 1 , M 2 , K > 0 such that F (t) = ´t 0 h(s)e s 2 ds < M 1 (f (t) + 1) and f (t) ≥ Kf (t) -M 2 for all t > 0.

Example 1: An example of the function h satisfying the above conditions is

h(x) = x k e x γ , k > 0, 0 ≤ γ < 2.
We prove the following global multiplicity theorem.

Theorem 3.4.12. (a) If f satisfies the assumption (K1)-(K3)

. There exists a Λ > 0 such that (i) For every λ ∈ (0, Λ) the problem (P λ ) admits two solutions in

X 0 ∩ C + φ δ ((-1, 1)). (ii) For λ = Λ there exists a solution in X 0 ∩ C + φ δ ((-1, 1)
). (iii) For λ > Λ, there exists no solution.

(b) Let u ∈ X 0 be any positive solution to (P λ ) where λ ∈ (0, Λ], δ > 0. Then u ∈ C γ (R) where γ is defined (6.1.5).

Generalization of symmetry results and its application

To prove the Theorem 3.4.12, we followed the approach of [START_REF] Giacomoni | A Global multiplicity result for a very singular critical nonlocal equation[END_REF]: To obtain the first solution, we use the standard Perron's method (which is a variational version of sub and supersolution method) on the functional J λ (See (6.1.30)). To get a second solution, we use the assumption (K2) to guarantee that the energy level of the Palais Smale sequence is strictly below the first critical level. For that we seek help of Moser functions (See [START_REF] Takahashi | Critical and subcritical fractional Trudinger Moser-type inequalities on R[END_REF]) and then by using mountain-pass Lemma we prove the existence of a second solution. Notice that the Theorem 6.1.15 shows the existence of solutions in the energy space X 0 . We remark that the Hölder regularity proved in Theorem 3.4.12 is the optimal due to the behavior of the solution near the points -1 and 1. We also remark that the Theorem 3.4.12 holds for the subcritical nonlinearities like f (t) = h(t)e t α with 1 ≤ α < 2 as well. In this case, the proof is similar and Palais-Smale condition is satisfied.

Generalization of symmetry results and its application

In this part, we are interested to generalize Theorem 3.4.10. Precisely, we investigate the symmetry of positive solutions to a class of singular semilinear elliptic problem whose prototype is The proof of Theorem 3.4.13 involves the moving plane method adapted in the non local setting. In this regard, as in the local case, we need a maximum principle in narrow domains and a strong maximum principle to hold for equations of the type (P ). The extension of these key tools is not straighforward due to the non local nature of (-∆) s and the presence of a singular nonlinearity in the right hand side. Besides this, we will take advantage of monotonicity properties of the nonlinear operator (-∆) s u -1 u δ and borrow some "local" maximum principle shown in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF].

(P ) (-∆) s u = 1 u δ + f (u), u > 0 in Ω, u = 0 in R N \ Ω, where 0 < s < 1, N ≥ 2s, Ω = B r (0) ⊂ R N , δ > 0, f (u)
In this regard, we introduce the following definitions:

Let A λ := {x = (x 1 , x 2 , . . . , x N ) ∈ R N : x 1 = λ} and Σ λ := {x ∈ R N : x 1 < λ} if λ ≤ 0, {x ∈ R N : x 1 > λ} if λ > 0,
for some λ ∈ R and D λ (x) := (2λ -x 1 , x 2 , . . . , x N ) be the reflection of the point x about A λ and v λ (x) := u λ (x) -u(x) where u λ (x) = u(D λ (x)) and let u be a classical solution of (P ).

Chapter 3. Non-local singular problems

To prove radial symmetry and strict monotonicity of the solution u, it is enough to prove v λ (x) ≥ 0 for all x ∈ B r (0)∩Σ λ and λ ∈ (-r, r), by moving hyperplane A λ in a fixed direction. Since, if v λ (x) ≥ 0 for all λ ∈ (-r, r) and x ∈ B r (0) holds then we can rotate and move the hyperplane A λ in the direction close to fixed direction to get the desired result. Since λ is independent from the direction of movement of hyperplane A λ , so we fix ν(x 0 ) = (1, 0, . . . , 0) (without loss of generality) as the direction of movement of hyperplane A λ where ν denotes the unit outward normal vector at x 0 = (r, 0, . . . , 0) ∈ ∂B r (0). We divide the proof of above assertion into the following steps:

Step 1: r) for some r 1 > 0: By using the Poincaré inequality and Lipschitz property of the function f , we get v λ > 0 in a region Σ λ ∩ B r for some r -1 < |λ| < r and 1 > 0. Now by rotating and moving the hyperplane A λ in a direction close to the outward normal ν in any neighborhood of x 0 ∈ ∂Ω and repeating the above steps by taking into account that x 0 ∈ ∂B r (0), ν(x 0 ) is arbitrary and by using continuity of solution u we obtain,

v λ (x) ≥ 0 for all x ∈ B r (0) ∩ Σ λ and |λ| ∈ [r 1 ,
v λ (x) ≥ 0 for all x ∈ B r (0) \ B r 1 (0) and |λ| ∈ [r 1 , r) for some r 1 > 0.
From Step 1, we can assume that λ = r 1 be the smallest value such that 0

≤ r 1 < r , v r 1 ≥ 0 in B r \ B r 1 and satisfies (-∆) s v r 1 (x) - 1 u δ r 1 (x) + 1 u δ (x) = f (u r 1 ) -f (u) in B r \ B r 1 . (3.4.8)
Step 2: r 1 = 0.

To prove this, we adapt in our situation the maximum principles in nonlocal setting i.e. Proposition 3.5 (maximum principle in narrow domains) and Proposition 3.6 (strong maximum principle) in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. The main role of the above tools is to construct a strictly positive subsolution of the problem (3.4.8) in every compact subset of B r \ B r 1 so that ess inf R v r 1 > 0 for every compact subset R ⊂ B r \ B r 1 . For more details, we refer to the proof of Theorem 6.2.1, Page 340, Chapter 6. Now, by repeating the proof by moving hyperplane A λ as in Step 1 we obtain u is radially symmetric and the strict monotonicity property.

Next, we apply this main result in a different situation: Consider the problem

(Q)    (-∆) s u = µ 1 u δ + f (u) , u > 0 in Ω, u = 0 in R N \ Ω
where Ω is a bounded domain with C 2 boundary regularity. This concerns the existence of uniform a priori bound for classical solutions to (Q) when f has a subcritical growth. Similar type of result is also discussed in [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF]. In the spirit of the work [START_REF] De Figueiredo | Apriori estimates and existence of positive solutions of semilinear elliptic equations[END_REF], we combine the monotonicity property of solutions near the boundary of Ω and a blow up technique with the help of a Liouville theorem. Precisely we prove: 

f (u) = u p for 1 < p < N +2s N -2s and µ ≥ µ 0 Then u ∞ ≤ C 1 with C 1 depending only on δ, p, Ω, µ 0 .
The second application concerns the asymptotic behaviour of large solutions with respect to the parameter µ. Let s = 1 2 , n = 1, Ω = B r (0) and f (u) = h(u) exp(u α ) for some 1 < α ≤ 2 where h satisfies lim t→∞ h(t)e -t α = 0 and lim t→∞ h(t)e t α = ∞ for any > 0. Then we have the following result that complements Theorem 3.4.11: Theorem 3.4.15. Let µ 0 > 0 and u be the classical solution of (Q) for some µ ≥ µ 0 . Then for any > 0, the following holds

u L ∞ (Br\B ) ≤ C 2 (δ, n, , µ 0 ).
In addition, we have the following blow up profile: Let {u k } be a sequence of solutions for the problem

(Q) such that u k L ∞ (Br) → ∞, µ k → μ with μ > 0, (i) There exists a singular solution ũ in C s loc (B r \{0}) such that u k -ũ → 0 in L ∞ loc (B r \{0}). (ii) If (u k ) k∈N has uniform bounded energy and F (t) = O(f (t)) as t → ∞ where F (t) is the antiderivative of f , then μ = 0.
For more details, we refer to Theorem 6.2.2 and Theorem 6.2.3, Page 342, Chapter 6.

Problem 2: Non-linear fractional singular problem with singular weights

In this part, we study the following nonlinear fractional elliptic and singular problem (P )

     (-∆) s p u = K δ (x) u γ , u > 0 in Ω, u = 0 in R N \ Ω
where Ω ⊂ R N is a smooth bounded domain with C 1,1 boundary, s ∈ (0, 1), p ∈ (1, +∞), γ > 0 and K δ satisfies the growth condition: for any x ∈ Ω

C 1 d δ (x) ≤ K δ (x) ≤ C 2 d δ (x) (3.4.9)
for some δ ∈ [0, sp), where, for any

x ∈ Ω, d(x) = dist(x, ∂Ω) = inf y∈∂Ω |x -y|.
Due to the nonlinearity of the operator and absence of integration by parts formula, we define the following notion of weak solution:

Definition 3.4.1. A function u ∈ W s,p loc (Ω)
is said to be a weak subsolution (resp. supersolution) of (P ), if

u κ ∈ W s,p 0 (Ω), inf K u > 0 for all K Ω and for some κ ≥ 1 Chapter 3. Non-local singular problems and ¨R2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ (resp. ≥) ˆΩ K δ (x) u γ φ dx for all φ ∈ T = Ω Ω W s,p 0 ( Ω).
A function which is both sub and supersolution of (P ) is called a weak solution.

Having in mind Lemma 3.5, [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF], Lemma 3.3, [START_REF] Brasco | The second eigenvalue of the fractional p-Laplacian[END_REF] and the condition u κ ∈ W s,p 0 (Ω), κ ≥ 1 in definition 3.4.1, u satisfies the following definition of the boundary datum:

Definition 3.4.2. We say that a function u = 0 in R N \ Ω satisfies u ≤ 0 on ∂Ω in sense that for > 0, (u -) + ∈ W s,p 0 (Ω).

New Tools

This part is devoted to the development of new tools to deal with the singular problem (P ). In this regard, as a first preliminary tool we define the approximated problem (P γ ) (see below) and study the existence of an increasing sequence of weak solutions of approximated problem (P γ ) (see below Proposition 3.4.1).

To deal with the boundary behavior of the weak solution of the original problem (P ), we also study the purely singular weight problem (S δ 0 ) (see below). We define a new notion of weak energy solution and by using barrier arguments and exploiting the C 1,1 regularity of the boundary, we construct lower and super solutions of the purely singular weight problem near the boundary.

Tool 1:

For a fixed parameter > 0, we define a sequence of function K ,δ : R N → R + as

K ,δ (x) =    (K -1 δ δ (x) + γ+p-1 sp-δ ) -δ if x ∈ Ω, 0 else,
and K ,δ is an increasing function as ↓ 0, K ,δ → K δ a.e. in Ω and there exist two positive constants C 3 , C 4 such that, for any x ∈ Ω,

C 3 d(x) + γ+p-1 sp-δ δ ≤ K ,δ (x) ≤ C 4 d(x) + γ+p-1 sp-δ δ .
Define the approximated problem as 

(P γ )      (-∆) s p u = K ,δ (x) (u + ) γ in Ω, u = 0 in R N \ Ω.
∈ W s,p 0 (Ω) ∩ C 0, (Ω) of the problem (P γ ) i.e. ¨R2N [u (x) -u (y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy = ˆΩ K ,δ (x) (u + ) γ φ dx (3.4.10)
for all φ ∈ W s,p 0 (Ω) and for some ∈ (0, 1). Moreover, the sequence {u } >0 satisfies u > 0 in Ω,

u 1 (x) < u 2 (x) in Ω and 2 < 1
and for any Ω Ω, there exists σ = σ(Ω ) > 0 such that for any ∈ (0, 1):

σ ≤ u 1 (x) < u (x) in Ω .
The proof follows from the maximum principle having in mind that (-∆) [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF] and Theorem 1.1 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF].

s p • + 1 (• + ) δ is a monotone operator in W s,p 0 (Ω) (see also Proposition 2.3, Lemma 2.4 in

Tool 2:

As a second tool, we study the following problem:

(S δ 0 )    (-∆) s p u(x) = K δ (x) in Ω, u = 0 in R N \ Ω.
where 1) and introduce the new notion of weak energy solution and corresponding vector space. Let Ω ⊂ R N be bounded. We define

d δ (x)K δ (x) = O(
W s,p (Ω) := u ∈ L p loc (R N ) : ∃ K s.t. Ω K, u W s,p (K) + ˆRN |u(x)| p-1 (1 + |x|) N +sp dx < ∞ where u W s,p (Ω) = u L p (Ω) + [u] s,p,Ω . If Ω is unbounded, we define W s,p loc (Ω) := {u ∈ L p loc (R N ) : u ∈ W s,p ( Ω), for any bounded Ω ⊂ Ω}. Definition 3.4.3. (Weak energy Solution) Let f ∈ W -s,p (Ω)
and Ω be a bounded domain.

We

say that u ∈ W s,p (Ω) is a weak energy solution of (-∆) s p (u) = f in Ω, if ¨R2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy = ˆΩ f (x)φ(x) dx
for all φ ∈ W s,p 0 (Ω) and a function u is weak energy subsolution (resp. weak energy supersolution) of (-∆)

s p (u) = f in Ω, if (-∆) s p (u) ≤ (resp. ≥) f E-weakly in Ω i.e. ¨R2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ (resp. ≥) ˆΩ f (x)φ(x) dx Chapter 3. Non-local singular problems for all φ ∈ W s,p 0 (Ω), φ ≥ 0. If Ω is unbounded we say that u ∈ W s,p loc (Ω) is a energy solution or energy subsolution (or energy supersolution) of (-∆) s p (u) = f in Ω, if it does so in any open bounded set Ω ⊂ Ω.
In order to study the boundary behavior of minimal weak solution for purely singular weight problem (S δ 0 ), we construct explicitly lower and supersolutions of the weak solution to the approximated problem. For this, first we define the prototype of the barrier function in R + (and R N + ) as a power type function and compute upper and lower estimates of (-∆) s p acting on this function. Precisely, we have:

For any α ∈ (0, s), we begin by computing the upper and lower estimates in the half line

R + := {x ∈ R : x > 0} of (-∆) s p of the function U λ (x) := (x + λ 1 α ) + α , λ ≥ 0 defined in R. We recall the notation, for any t ∈ R, [t] p-1 = |t| p-2 t. Theorem 3.4.1. Let λ ≥ 0, α ∈ (0, s) and p > 1.
Then, there exist two positive constants C 1 , C 2 > 0 depending upon α, p and s such that

C 1 (x + λ 1 α ) -β ≤ (-∆) s p U λ (x) ≤ C 2 (x + λ 1 α ) -β pointwisely in R + . (3.4.11) Moreover, for λ > 0, U λ ∈ W s,p loc (R + ) and for λ = 0, U λ ∈ W s,p loc (R + ) if s -1 p < α < s.
To prove the estimate in (3.4.11), we explicitly estimate the (-∆ s p ) of barrier functions. The crucial point in the proof of estimates is the positivity of constant C 1 , which plays a decisive role in further computations. These types of estimates are motivated from the fact that (-∆) s p (x) s + = 0. The proof of above result is rather technical and tricky (for a detailed proof see Theorem 6.3.5, Chapter 6).

We then consider the case of flat boundary of R N . Precisely, by extending the functions U λ to V λ defined on R N , we study the behavior of (-∆)

s p V λ (x) on R N + := {x ∈ R N : x N > 0} where V λ (x) := U λ (x • e N ) = U λ (x N ). Let GL N be the set of N × N invertible matrices, we prove Corollary 3.4.1. Let λ ≥ 0, α ∈ (0, s), A ∈ GL N and p > 1. Let J ,A be the function defined on R N + by J ,A (x) = ˆB (0) c [V λ (x) -V λ (x + z)] p-1 |Az| N +sp dz
for some > 0.

Then, there exist two positive constants C 3 and C 4 depending on α, s, p, N, A 2 , A -1 2 such that

C 3 (x N + λ 1/α ) -β ≤ lim →0 J ,A (x) ≤ C 4 (x N + λ 1/α ) -β pointwisely in R N + × GL N .
In particular, for A = I, there exist two positive constants C3 and C4 independent of λ such that:

C3 (x N + λ 1/α ) -β ≤ (-∆) s p V λ (x) ≤ C4 (x N + λ 1/α ) -β pointwisely in R N + . 3.4.2.1. New Tools Moreover, for λ > 0, V λ ∈ W s,p loc (R N + ) and for λ = 0, V λ ∈ W s,p loc (R N + ) if s -1 p < α < s.
Next, in order to handle the case of smooth boundary portion we prove the above upper and lower estimates are preserved under a smooth change of variables via a C 1,1 diffeomorphism (close to identity) in the isomorphic image of a set close to the boundary of R N + :.

Theorem 3.4.2. Let α ∈ (0, s) and p > 1. Let ψ : R N → R N be a C 1,1 -diffeomorphism in R N such that ψ = Id in B R (0) c , for some R > 0. Then, considering W λ (x) = U λ (ψ -1 (x) • e N ), there exist ρ * = ρ * (ψ) > 0 and λ * = λ * (ψ) > 0 such that for any ρ ∈ (0, ρ * ), there exists a constant C > 0 independent of λ such that, for any λ ∈ [0, λ * ], 1 C W λ (x) -β α ≤ (-∆) s p W λ (x) ≤ CW λ (x) -β α E-weakly in ψ({X : 0 < X N < ρ}). (3.4.12)
The crucial step for proving estimate (3.4.12) is to split the integral of nonlocal terms is different sub regions in the light of Lemma 2.5 and Lemma 3.4 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] and observing that proving (3.4.12) is equivalent to show that there exists a constant C independent of

λ such that 1 C (X N + λ 1/α ) -β ≤ lim →0 H (x) ≤ C(X N + λ 1/α ) -β for all x ∈ ψ({X : 0 < X N < ρ})
where Due to nonlocal feature of (-∆) s p , we extend the definition of the distance function d in Ω c as follows

H (x) = ˆ(D (x)) c [W λ (x) -W λ (y)] p-1 |x -y| N +sp dy (3.
d e (x) =        dist(x, ∂Ω) if x ∈ Ω, -dist(x, ∂Ω) if x ∈ (Ω c ) λ 1 α , -λ 1/α otherwise, where (Ω c ) η = {x ∈ Ω c : dist(x, ∂Ω) < η}.
Hence we define, for some ρ > 0 and λ > 0:

w ρ (x) = (d e (x) + λ 1/α ) α + -λ if x ∈ Ω ∪ (Ω c ) ρ , -λ otherwise, (3.4.14) w ρ (x) = (d e (x) + λ 1/α ) α + if x ∈ Ω ∪ (Ω c ) ρ , 0 otherwise. (3.4.15)
Now, we state and prove our main result for establishing the boundary behavior:

Theorem 3.4.3.
Let Ω ⊂ R N be a smooth bounded domain with a C 1,1 boundary and α ∈ (0, s). Then, for some ρ > 0, there exist (λ * , η * ) ∈ R + * × R + * such that for any η < η * , there exist positive constants C 5 , C 6 such that for any λ ∈ [0, λ * ]:

(-∆) s p w ρ ≥ C 5 (d(x)+λ 1/α ) -β and (-∆) s p w ρ ≤ C 6 (d(x)+λ 1/α ) -β E-weakly in Ω η (3.4.16)
where

Ω η = {x ∈ Ω : d(x) < η}. Moreover, for λ > 0, w ρ , w ρ belong to W s,p (Ω η ).
We divide the proof into three main steps:

Step 1:

Covering of Ω η
In this step, we choose a special covering {B R i (x i )} i of Ω η and diffeomorphisms Φ i with some local inclusion properties. Precisely, by using the geometry of ∂Ω and arguing as in Lemma 3.5 and Theorem 3.6 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], there exist a finite covering

{B R i (x i )} i∈I of ∂Ω, η * = η * (R i ), i ∈ I and diffeomorphisms Φ i ∈ C 1,1 (R N , R N ) such that for any η ∈ (0, η * ), i ∈ I Ω η ∩ B R i (x i ) Φ i (B ρ ∩ R N + ), d e (Φ i (X)) = (X N + λ 1/α ) + -λ 1/α ∀ X ∈ B ρ Φ i (X) = X for X ∈ (B 4ρ (0)) c
with 0 < ρ < ρ < ρ * where ρ * is defined in Theorem 3.4.2 and for λ small enough λ 1/α < ρ,

Φ i (B ρ (0) ∩ {X N ≥ -λ 1/α }) ⊂ Ω ∪ (Ω c ) ρ .
Using the finite covering, it is sufficient to prove the (3.4.16) in any of set

Ω η ∩ B R i (x i ) with x i ∈ ∂Ω.
Step 2:

For x ∈ Ω η ∩ B R i (x i ) with x i ∈ ∂Ω the following holds: lim →0 g ,1 (x) ≤ c 3 (d(x) + λ 1/α ) -β and lim →0 g ,2 (x) ≥ c 4 (d(x) + λ 1/α ) -β E-weakly in Ω η ∩ B R i (x i )
where g ,1 and g ,2 be two functions defined by

g ,1 (x) = ˆD (x) [w ρ (x) -w ρ (y)] p-1 |x -y| N +sp dy and g ,2 (x) = ˆD (x) [w ρ (x) -w ρ (y)] p-1 |x -y| N +sp dy and D (x) = {y : |Φ -1 (x) -Φ -1 (y)| > }.
As above, it suffices to obtain suitable uniform bounds on compact sets of g ,1 and g ,2 . These uniform bounds are attained by the regularity and inclusion properties mentioned in Step 1, and using Theorem 3.4.2.

Step 3:

w ρ , w ρ ∈ W s,p (Ω η ) 3.4.2.1. New Tools It is sufficient to claim w ρ , w ρ ∈ W s,p (K) for K = Ω η 1 ∪ (Ω c ) η 2
where 0 < η < η 1 and η 2 > 0. For

x i ∈ ∂Ω, η 0 ∈ (η, η * ), let {B R i (x i )} i∈I be the finite covering of Ω η 0 and Ξ i ∈ C 1,1 (R N , R N ) such that B R i (x i ) Ξ i (B ξ 0 ), d e (Ξ i (X)) = (X N + λ 1/α ) + -λ 1/α , ∀ X ∈ B ξ 0 (3.4.17)
for some ξ 0 > 0. The existence of finite covering {B R i (x i )} i∈I and diffeomorphism Ξ i can be proved by using Step 1. For any i ∈ I, there exists a subset J i of I such that i ∈ J i and

B R i (x i ) ∩ B R j (x j ) = ∅ ∀ j ∈ J i . (3.4.18)
Now for any i ∈ I and j ∈ J i , define

K i := B τ i (x i ) ⊂ B R i (x i ) for τ i < R i such that K i ∩ K j = ∅ and min i∈I min j∈J i dist(K j \ B R i (x i ), K i ) > 0. (3.4.19) 
By using (3.4.18) and (3.4.19), we choose η 1 and η 2 small enough such that

K = Ω η 1 ∪ Ω c η 2 ⊂ i∈I K i
and using (3.4.17), we obtain

Ω η 1 ∩ K i ⊂ Ω η 1 ∩ B R i (x i ) Ξ i (B ξ 0 ∩ R N + ), Ω c η 2 ∩ K i ⊂ Ω c η 2 ∩ B R i (x i ) Ξ i (B ξ 1 ∩ R N -), d e (Ξ i (X)) = (X N + λ 1/α ) + -λ 1/α , ∀ X ∈ Ξ -1 i (K i ) ⊂ B ξ 0 (3.4.20) for some η 1 < η * and η 2 > 0 such that 0 < ξ 1 < λ 1/α 2 . Set K i = K i ∩ K. Then ˆK×K = i∈I i 1 ∈I ˆ K i ˆ K i 1 = i∈I i 1 ∈J i ˆ K i ˆ K i 1 ∩B c R i (x i ) + i =i 1 ∈I\J i ˆ K i ˆ K i 1 + i 1 ∈J i ˆ K i ˆ K i 1 ∩B R i (x i ) + ˆ K i ˆ K i ) := ˆQ1 + ˆQ2 + ˆQ3 + ˆQ4 . Now by estimating integrand over Q 1 , Q 2 we use (3.4.18)-(3.4.19
) and to estimate over Q 3 , Q 4 , we perform change of variables using the diffeomorphisms Ξ i , and (3.4.20) and by observing the fact that

X N , Y N > -min{ξ 0 , ξ 1 } > -λ 1/α 2 for all X, Y ∈ Ξ -1 i ( K i ), we obtain w ρ ∈ W s,p (Ω η ). Similarly, we can prove w ρ ∈ W s,p (Ω η ).
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Main results and glimpse of proof

Here we describe our results with main ingredients of the proof. First, we establish the following very weak comparison principle: Theorem 3.4.4. For 0 ≤ δ < 1 + s -1 p , γ ≥ 0, let u be a subsolution of (P ) and ṽ be a supersolution of (P ) in the sense of Definition 3.4.1. Then u ≤ ṽ a.e. in Ω.

We start by defining the energy functional J on W s,p 0 (Ω) as, for > 0

J (w) := 1 p ¨R2N |w(x) -w(y)| p |x -y| N +sp dx dy -ˆΩ K δ (x)G (w) dx
where G is the primitive such that G (1) = 0 of the function g defined by

g (t) =    min 1 t γ , 1 if t > 0, 1 if t ≤ 0.
Claim: There exists a minimizer of the energy functional J in

L := {φ ∈ W s,p 0 (Ω) : 0 ≤ φ ≤ ṽ a.e. in Ω}.
The restriction on δ ensure the weakly lower semicontinuity of the energy functional J in W s,p 0 (Ω) and 1 d δ (x) ∈ W -s,p (Ω) via Hardy inequality. Precisely, let {w n } ⊂ W s,p 0 (Ω) be such that w n w in W s,p 0 (Ω). Let ν ∈ (0, 1) small enough such that 1-ν p + ν q + 1 r = 1 where q < p * s : 

= N p N -sp if N > sp and (s(1 -ν) -δ)r > -1 (since δ < 1 + s -1 p ). Hence x → d s(1-ν)-δ (x) ∈ L r
ˆΩ |w n -w| d δ (x) dx = ˆΩ |w n -w| d s (x) 1-ν |w n -w| ν d s(1-ν)-δ (x) dx ≤ C w n -w 1-ν s,p w n -w ν L q (Ω)
for some constant C > 0 independent of w n and w. Since W s,p 0 (Ω) is compactly embedded in L q (Ω) for q < p * s , w n -w s,p is uniformly bounded in n and w n -w L q (Ω) → 0 as n → ∞. Finally, gathering the weakly lower semicontinuity of [.] s,p and G globally Lipschitz, we deduce that J is weakly lower semicontinuous in W s,p 0 (Ω) and admits a minimizer w 0 on L. By density results and Fatou's lemma, we have for any

φ ∈ W s,p 0 (Ω) with φ ≥ 0, ˆR2N [w 0 (x) -w 0 (y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≥ ˆΩ K δ (x)g (w 0 )φ dx. (3.4.21)
Now, by using w 0 ∈ W s,p 0 (Ω) and w 0 ≥ 0, we get for any 1 > 0 supp((u -w 0 -1 ) + ) ⊂ supp((u -1 ) + ) and (u -w 0 -1 ) + ∈ W s,p 0 (Ω).
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Since u is a subsolution of (P ) then for any φ ∈ T, we get 

ˆR2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ ˆΩ K δ (x) φ(x) u γ dx. ( 3 
(|a| p-2 a -|b| p-2 b)(a -b) ≥ C(|a| + |b|) p-2 |a -b| 2
and by choosing 1 such that γ 1 > and φ = (u -w 0 -1 ) as a test function, we obtain u ≤ w 0 + 1 ≤ ṽ + 1 in Ω and letting 1 → 0, we get our proof.

Next, we prove the existence result: Theorem 3.4.5. Let Ω be a bounded domain with Lipschitz boundary ∂Ω and δ ∈ (0, sp). Then, (i) for δ -s(1 -γ) ≤ 0, then there exists a minimal weak solution u to (P ) in W s,p 0 (Ω). (ii) for δ -s(1 -γ) > 0, there exist a minimal weak solution u to (P ) and a constant θ 0 such that

u θ ∈ W s,p 0 (Ω) if θ ≥ θ 0 and θ 0 > max 1, p + γ -1 p , Λ
where Λ := (sp-1)(p-1+γ)

p(sp-δ)

.

We describe the main ingredients of the existence results and Sobolev regularity depending upon s and singular exponents δ, γ.

Let u ∈ W s,p 0 (Ω) be the weak solution of (P γ ) satisfying (3.4.10) for all φ ∈ W s,p 0 (Ω). It suffices to verify the sequences {u } in the case δ -s(1 -γ) ≤ 0 and {u θ } for a suitable parameter θ > 1 in the case δ -s(1 -γ) > 0 are bounded in W s,p 0 (Ω) and the convergence of the right-hand side in (3.4.10). Precisely, The condition implies γ < 1 hence taking φ = u in (3.4.10) and applying Hölder and Hardy inequalities (see Theorem 1.4.4.4 and Corollary 1.4.4.10 in [START_REF] Grisvard | Elliptic Problems in nonsmooth domains[END_REF]), we obtain

[u ] p s,p ≤ C 2 ˆΩ d s(1-γ)-δ (x) u d s (x) 1-γ dx ≤ C u d s 1-γ L p (Ω) ≤ C [u ] 1-γ s,p (3.4.23) which implies u s,p ≤ C < ∞. Case 2: δ -s(1 -γ) > 0 Let Φ : R + → R + be the function defined as Φ(t) = t θ for some θ > max 1, p+γ-1 p , Λ .
Using the convexity of the function Φ and Lemma 3.3 in [START_REF] Brasco | The second eigenvalue of the fractional p-Laplacian[END_REF], we obtain: for any > 0

¨R2N [Φ(u )(x) -Φ(u )(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ ˆΩ K ,δ (x) (u + ) γ |Φ (u )| p-2 Φ (u )φ dx (3.4.24)
Chapter 3. Non-local singular problems for all nonnegative functions φ ∈ W s,p 0 (Ω). Since u ∈ W s,p 0 (Ω) ∩ L ∞ (Ω) and Φ is locally Lipschitz, therefore Φ(u ) ∈ W s,p 0 (Ω). Then by choosing φ = Φ(u ) as a test function in (3.4.24), we get

¨R2N |Φ(u )(x) -Φ(u )(y)| p |x -y| N +sp dx dy ≤ C 2 ˆΩ 1 d δ (x) |Φ (u )| p-2 Φ (u )Φ(u ) u γ dx. (3.4.25)
Now, for any > 0, there exists a constant C independent of such that

|Φ (u )| p-2 Φ (u )Φ(u ) u γ ≤ C(Φ(u )) θp-(p+γ-1) θ (3.4.26)
where θp-(p+γ-1)

θ > 0 since θ > p+γ-1 p
. By combining (3.4.25)-(3.4.26) and applying Hölder and Hardy inequalities, we conclude that {Φ(u )} >0 is bounded in W s,p 0 (Ω). Based on these uniform estimates, we pass to the limits → 0 to complete the rest of the proof. Finally, for any > 0, u ≤ v a.e. in Ω where v is another weak solution of (P ). Indeed, v is a weak supersolution in sense of Definition 3.4.1 of the problem (P γ ) hence weak comparison principle in Theorem 3.4.4 and passing limits → 0, we obtain that u is a minimal solution.

Remark 3.4.1. The proof of Case 1 holds assuming

Λ ≤ 1 and γ < 1. Indeed, d s(1-γ)-δ ∈ L p p-1+γ
(Ω) and we obtain (3.4.23). Now to study the boundary behavior of the main problem (P ) with respect to distance function, we state and prove existence and boundary behavior of weak minimal solution of purely singular weight problem. For that, we consider the sequence of function { Kλ,δ } λ≥0 where δ ∈ (0, sp), Kλ,δ :

R N → R + such that Kλ,δ (x) =    (K -1 δ δ (x) + λ p-1 sp-δ ) -δ if x ∈ Ω, 0 if x / ∈ Ω,
satisfying Kλ,δ K δ a.e. in Ω as λ → 0 + , and there exist two positive constants 

D 3 , D 4 such that D 3 d(x) + λ p-1 sp-δ δ ≤ Kλ,δ (x) ≤ D 4 d(x) + λ p-1 sp-δ δ . ( 3 
(S δ λ )    (-∆) s p u = Kλ,δ in Ω, u = 0 in R N \ Ω. Theorem 3.4.6.
Let Ω be a bounded domain with Lipschitz boundary.Then there exists a increasing sequence of weak solution

{u λ } λ>0 ⊂ W s,p 0 (Ω) ∩ L ∞ (Ω) of (S δ λ ) such that ¨R2N [u λ (x) -u λ (y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy = ˆΩ Kλ,δ (x)φ dx.
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for all φ ∈ W s,p 0 (Ω) and a minimal weak solution u of (S δ 0 ) such that

u θ 1 λ → u θ 1 in W s,p 0 (Ω) and ¨R2N [u(x) -u(y)] p-1 (ϕ(x) -ϕ(y)) |x -y| N +sp dx dy = ˆΩ K δ (x)ϕ dx for all ϕ ∈ T where θ 1 = 1 if 0 < δ < 1 + s -1 p , θ 2 otherwise,
and

θ 2 > max{ (p -1)(sp -1) p(sp -δ) , 1}.
Let λ s,p be the first eigenvalue and ϕ s,p be a positive eigenfunction for the operator (-∆) s p . Then, by using Proposition 2.10 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], we get, for any δ ∈ (0, sp), there exists a constant κ 1 such that for any λ ≥ 0

κ 1 d s (x) ≤ u λ (x) for any x ∈ Ω (3.4.28)
and from Theorem 3.2 and Remark 3.3 in [START_REF] Brasco | Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case[END_REF], we deduce that for any η > 0, there exists κ η > 0 independent of λ such that

u λ L ∞ (Ω\Ωη) ≤ κ η . (3.4.29)
Now, we prove the sharp estimates for both upper and lower boundary behavior of the minimal weak solution for problem (S δ 0 ) for different range of δ. In this regard, we prove the following result: Theorem 3.4.7. Let Ω be a bounded domain with C 1,1 boundary and u be minimal weak solution of the problem (S δ 0 ). Then, we have (i) For δ ∈ (s, sp), there exists a positive constant Υ 1 such that for any x ∈ Ω,

1 Υ 1 d sp-δ p-1 (x) ≤ u(x) ≤ Υ 1 d sp-δ p-1 (x).
(ii) For δ ∈ (0, s], for any > 0, there exist positive constants Υ 2 and Υ 3 = Υ 3 ( ) such that for any x ∈ Ω:

Υ 2 d s (x) ≤ u(x) ≤ Υ 3 d s-(x).
Here, we describe the main ingredients of the proof. Let u λ be the solution of (S δ λ ) for λ < λ * , η < η * and ρ > 0 given by Theorem 3.4.3.

To prove (i):

We define, for some η > 0,

u (λ) = min{κ 2 ( η 2 ) s-α , D 3 C 6 1 p-1 } w ρ = c η w ρ and u (λ) = max{( 2 η ) α κ η 2 , D 4 C 5 1 (p-1) } w ρ = c η w ρ
where w ρ and w ρ satisfies (3.4.16), 0 < κ 2 < κ 1 , C 5 , C 6 are defined in (3.4.16), κ 1 and κ η 

u (λ) (x) ≤ u λ (x) ≤ u (λ) (x) for x ∈ Ω \ Ω η 2 , and u (λ) (x) ≤ 0 = u λ (x) = u (λ) (x) for x ∈ Ω c .
(3.4.30) Then by applying weak comparison principle (Theorem 3.4.4) in Ω η implies u (λ) ≤ u λ ≤ u (λ) . Hence, from (3.4.30) and passing λ → 0, we deduce (i). Now we prove (ii) i.e. the case δ ≤ s. Since (6.3.44) holds, it remains to obtain the upper bound estimate. Let ũλ ∈ W s,p 0 (Ω) be the weak solution of (S δ λ ) with δ = s + (p -1) > s and for > 0. Then, choosing a suitable constant c > 0 independent of λ, ũ(λ) = c ũλ is a weak supersolution of (S δ λ ). Hence by Theorem 3.4.4, we have u λ ≤ ũ(λ) in Ω. We pass to the limit as λ → 0 and using (i) with ũ(x) = lim λ→0 ũ(λ) (x), we get, for > 0, u(x) ≤ c η, d s-(x) for x ∈ Ω.

Remark 3.4.2. The boundary behavior in Theorem 3.4.7 (ii) is not optimal. We conjecture that u ∼ d s .

Concerning the Hölder regularity of the weak solution of the problem (P ), we prove the follwing result:

Theorem 3.4.8.
Let Ω be a bounded domain with C 1,1 boundary and u be minimal weak solution of (P ). Then there exist constant

C 1 , C 2 > 0 and 0 < ω 1 < s, 0 < ω 2 ≤ sp-δ γ+p-1 such that (i) 0 < δ s + γ ≤ 1, then C 1 d s (x) ≤ u ≤ C 2 d s-(x) in Ω and for every > 0 u ∈ C s-(R N ) if 2 ≤ p < ∞, C ω 1 (R N ) if 1 < p < 2. (ii) δ s + γ > 1 then C 1 d (sp-δ) γ+p-1 (x) ≤ u ≤ C 2 d (sp-δ) γ+p-1 (x) in Ω and u ∈    C (sp-δ) (γ+p-1) (R N ) if 2 ≤ p < ∞, C ω 2 (R N ) if 1 < p < 2.
Remark 3.4.3. The Hölder regularity of the minimal weak solution in the case of p ≥ 2 and s ∈ (0, 1) is optimal.

Glimpse of the proof:

Let u be the minimal solution of the problem (P ) and {u λ } λ be its approximated sequence of solution for the approximated problem (P γ λ ). First, we prove the boundary behavior of the minimal weak solution by dividing the proof into two cases:

Case 1: δ s + γ ≤ 1 3.4.2.
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Let ũ and u are weak solution of the problem (S ζ 0 ) for ζ = δ + γs ≤ s and ζ = δ + γ(s -) respectively for ∈ (0, s) and then from Theorem 3.4.7 (ii) there exist constants

c i > 0 such that c 1 d s (x) ≤ ũ(x) ≤ c 2 d s-(x), c 3 d s (x) ≤ u(x) ≤ c 4 d s-(x) in Ω and u, ũ satisfies (-∆) s p (C * u) ≤ K δ (x) u γ and K δ (x) ũγ ≤ (-∆) s p (C * ũ)
where

C * = C 1 C 2 c γ 4 1 p-1 and C * = C 2 C 1 c γ 1 1
p-1 and C 1 , C 2 are defined in (3.4.9). Then by applying Theorem 3.4.4, we get

C 1 d s (x) ≤ u(x) ≤ C 2 d s-(x) in Ω for every > 0, C 1 = c 1 C * and C 2 = c 2 C * .
Case 2: δ s + γ > 1 Let λ > 0 and u λ ∈ W s,p 0 (Ω) be the solution of the problem (P γ λ ) for λ < λ * given in Theorem 3.4.3. Now by applying applying Theorem 3.2 and Remark 3.3 in [START_REF] Brasco | Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case[END_REF] and by repeating the same arguments as in (3.4.28), we obtain

κd s (x) ≤ u λ (x) in Ω (3.4.31)
for some κ independent of λ and for any η > 0, there exists ) and Theorem 3.4.3 respectively. We note that c η , ċη are independent of λ and for any λ > 0, u λ and u λ satisfy

κ η > 0 independent of λ such that u λ L ∞ (Ω\Ωη) ≤ κ η . ( 3 
u λ (x) ≤ u λ (x) ≤ u λ (x) for x ∈ Ω \ Ω η 2 and u λ (x) ≤ u λ (x) ≤ u λ (x) for x ∈ Ω c . (3.4.33)
Using the definition of w ρ and w ρ in (3.4.14) and (3.4.15) respectively and estimates in (3.4.16), we can choose η small enough (independent of λ) such that

(-∆) s p u λ ≥ K λ,δ (x) (u λ + λ) γ and (-∆) s p u λ ≤ K λ,δ (x) (u λ + λ) γ weakly in Ω η Since u λ , u λ ∈ W s,p (Ω η ) and u λ ∈ L ∞ (Ω) ∩ W s,p 0 (Ω) ⊂ W s,p (Ω η ), Proposition 2.
10 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] in Ω η implies u λ ≤ u λ ≤ u λ in Ω η . Hence, from (3.4.33) and passing λ → 0,

C 1 d sp-δ p+γ-1 ≤ u ≤ C 2 d sp-δ γ+p-1 in Ω.
where C 1 = c η and C 2 = ċη .

Interior and Boundary regularity:

To prove this, first we claim the following:

Claim: For all x 0 ∈ Ω and R 0 = d(x 0 ) 2 there exists universally C Ω > 0, 0 < ω 3 < s and 0 < ω 4 ≤ sp-δ p+γ-1 such that For 1 < p < 2 : u C ω 3 (B R 0 (x 0 )) ≤ C Ω for δ s + γ ≤ 1, u C ω 4 (B R 0 (x 0 )) ≤ C Ω for δ s + γ ≥ 1 and for 2 ≤ p < ∞ : u C s-(B R 0 (x 0 )) ≤ C Ω for δ s +γ ≤ 1, u C sp-δ p+γ-1 (B R 0 (x 0 )) ≤ C Ω for δ s +γ ≥ 1. Let x 0 ∈ Ω, R 0 = d(x 0 ) 2 such that B R 0 (x 0 ) ⊂ B 2R 0 (x 0 ) ⊂ Ω and u ∈ W s,p (B 2R 0 (x 0 )) ∩ L ∞ (B 2R 0 (x 0
)) be the weak solution of (P ), then it satisfies

(-∆) s p u ≤ C 2 C γ 1 1 R γs+δ 0 for 0 < δ s + γ ≤ 1, (-∆) s p u ≤ C 2 C γ 1 1 R γ sp-δ γ+p-1 +δ 0 for δ s + γ > 1 in B R 0 (x 0 )
where C 2 is defined in (3.4.9). Then, by using Corollary 5.5, [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] for 1 < p < 2 we obtain: there exist 0 < ω 3 < s and 0 < ω 4 ≤ sp-δ p+γ-1 such that

u C ω 3 (B R 0 (x 0 ) ) ≤ C 1 if 0 < δ s + γ ≤ 1 and u C ω 4 (B R 0 (x 0 ) ) ≤ C 2 if δ s + γ > 1 (3.4.34)
and by using Theorem 1.4, [START_REF] Brasco | Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case[END_REF] for 2 ≤ p < ∞ we get

u C s-(B R 0 (x 0 )) ≤ C 3 if 0 < δ s + γ ≤ 1 and u C sp-δ p+γ-1 (B R 0 (x 0 )) ≤ C 4 if δ s + γ > 1. (3.4.35)
where C i 's are independent of the choice of point x 0 (and R 0 ). Now, to prove the regularity estimate in Ω (and then the whole

R N ) since u = 0 in R N \ Ω, it is enough to extend (3.4.34) and (3.4.35) on ∪ x 0 ∈Ωη B 2R (x 0 ) \ B R 0 (x 0 ) where η > 0 small enough and Ω η = {x : d(x) < η}. In this regard, let x, y ∈ Ω η with |x -y| ≥ max d(x) 2 , d(y) 2 . Then for a constant C 1 > 0 large enough, we get |u(x) -u(y)| |x -y| s-≤ |u(x)| |x -y| s-+ |u(y)| |x -y| s-≤ 2 s u(x) d s-(x) + u(y) d s-(y) ≤ C 1 , (3.4.36) |u(x) -u(y)| |x -y| (sp-δ) (γ+p-1) ≤ |u(x)| |x -y| (sp-δ) (γ+p-1) + |u(y)| |x -y| (sp-δ) (γ+p-1) ≤ 2 (sp-δ) (γ+p-1)   u(x) d (sp-δ) (γ+p-1) (x) + u(y) d (sp-δ) (γ+p-1) (y)   ≤ C 1 .
(3.4.37)

Then, finally by combining (3.4.34)-(3.4.37), we get our claim and which completes the proof. 

u s,p = ˆΩ K ,δ (x)u 1-γ dx ≤ ˆΩ d (1-γ) (sp-δ) p+γ-1 -δ (x) dx ≤ C if (1 -γ)(sp -δ) > (δ -1)(p + γ -1) ⇔ sp(γ -1) + δp < (p + γ -1) ⇔ Λ < 1.
Similarly, by taking φ = u θ in (3.4.10) and using Proposition 3.4.1, we obtain for θ > Λ > 1

u θ s,p ≤ ˆΩ K ,δ (x)u (θ-1)(p-1)+θ-γ dx ≤ ˆΩ d (θp-(p-1+γ)) (sp-δ) p+γ-1 -δ (x) dx ≤ C.
Now, by passing limits → 0 in (3.4.10), we get the minimal solution

u ∈ W s,p 0 (Ω) if Λ < 1 and u θ ∈ W s,p 0 (Ω) if θ > Λ > 1.
The only if statement follows from the Hardy inequality and the boundary behavior of the weak solution. Precisely, if Λ ≥ 1, then u / ∈ W s,p 0 (Ω). Indeed, we have

u s,p ≥ C ˆΩ u(x) d s (x) p dx ≥ C ˆΩ d p(sp-δ) p+γ-1 -sp (x) dx = +∞.
In the same way, if θ ∈ [1, Λ], then

u θ s,p ≥ C ˆΩ u θ (x) d s (x) p dx ≥ C ˆΩ d θp(sp-δ) p+γ-1 -sp (x) dx = ∞
and we deduce u θ / ∈ W s,p 0 (Ω) . As a consequence of comparison principle, we have the following uniqueness and nonexistence result:

Corollary 3.4.3. For 0 < δ < 1 + s -1
p , the minimal weak solution u is a unique weak solution of the problem (P ). From above, the non-existence result is optimal and corresponds to the limitation of the use of Hardy inequality. The proof of the above results follows from the weak comparison principle, Hardy inequality and boundary behavior of approximated weak solution u of the approximated problem. For more details, we refer to proof of Theorem 6.3.3, Page 370, Chapter 6.
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Main results with detailed proof

Parabolic problems with nonstandard growth

This work is done jointly with Jacques Giacomoni, Guillaume Warnault and Sergey Shmarev.

Abstract :

In this chapter, we study the qualitative properties of the parabolic problems with non-standard growth conditions. The main purpose of this chapter is three fold. Firstly, we derive conditions on the initial data for the existence of strong solution of evolution equations with p(x, t)-Laplacian and prove the global higher integrability, higher differentiablity and second order regularity of the strong solution. Secondly, we study the double phase parabolic equation with variable growth and nonlinear source term. We prove the existence of strong solution with global higher integrability and regularity properties. Thirdly, we derive the Picone identity for the p(x)-homogeneous operators and as applications of this identity, we extend Díaz-Saá inequality for non-standard growth operators and study some boundary value problems comprising of variable exponent operators and non-standard growth conditions. Using this, we study the Doubly non-linear parabolic equations involving p(x)-Laplacian operator and prove the existence, uniqueness, regularity and contraction properties of the weak solution. By generalizing the above results to p(x)-homogeneous operator of Leray-Lions type, we study the stabilization property of the weak solution.

Functions spaces

Prior to formulating the results, we introduce the variable Lebesgue and Sobolev space. We limit ourselves to collecting the most basic facts of the theory and refer to [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF] for a detailed insight, see also [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF]Ch.1] and [START_REF] Diening | Monotone operator theory for unsteady problems in variable exponent spaces[END_REF]. Let Ω ⊂ R N , N ≥ 1 is a bounded domain with Lipschitzcontinuous boundary ∂Ω. Let P(Ω) be the set of all measurable function p :

Ω → [1, ∞[ in N -dimensional Lebesgue measure. Let us define the functional A p(•) (f ) = ˆΩ |f (x)| p(x) dx. (4.1.1)
The set

L p(•) (Ω) = {f : Ω → R : f is measurable on Ω, A p(•) (f ) < ∞} equipped with the Luxemburg norm f L p(x) = inf λ > 0 : A p(•) f λ ≤ 1
is a reflexive and separable Banach space and C ∞ 0 (Ω) is dense in L p(x) (Ω). The modular A p(•) (f ) is lower semicontinuous. We also recall some well-known properties on L p(x) spaces (see [START_REF] Rȃdulescu | Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis[END_REF]). Throughout the chapter, we assume that

1 < p -def = min Ω p(x) ≤ p(x) ≤ p + def = max Ω p(x) < ∞. Proposition 4.1.1. Let p ∈ L ∞ (Ω).
Then for any u ∈ L p(x) (Ω) we have:

(i) A p(•) (u/ u L p(x) ) = 1. (ii) u L p(x) → 0 if and only if A p(•) (u) → 0. (iii) L p (x) (Ω) is the dual space of L p(x) (Ω)
where we denote by p the conjugate exponent of p defined as

p (x) = p(x) p(x) -1 . Proposition 4.1.1 (i) implies that: if u L p(x) ≥ 1, u p - L p(x) ≤ A p(•) (u) ≤ u p + L p(x) (4.1.2) and if u L p(x) ≤ 1 u p + L p(x) ≤ A p(•) (u) ≤ u p - L p(x) . (4.1.3)
Moreover, we have also the generalized Hölder inequality: for p measurable function in Ω, there exists a constant

C = C(p + , p -) ≥ 1 such that for any f ∈ L p(x) (Ω) and g ∈ L pc(x) (Ω) ˆΩ |f g| ≤ 1 p -+ 1 (p ) -f p(•),Ω g p (•),Ω ≤ 2 f p(•),Ω g p (•),Ω , (4.1.4) Let p 1 , p 2 are two bounded measurable functions in Ω such that 1 < p 1 (x) ≤ p 2 (x) a.e. in Ω, then L p 1 (•) (Ω) is continuously embedded in L p 2 (•) (Ω) and ∀ u ∈ L p 2 (•) (Ω) u L p 1 (x) ≤ C(|Ω|, p ± 1 , p ± 2 ) u L p 2 (x) .
The variable exponent Sobolev space W 1,p(•) 0

(Ω) is defined as the set of functions 

W 1,p(•) 0 (Ω) = {u : Ω → R | u ∈ L p(•) (Ω) ∩ W 1,1 0 (Ω), |∇u| ∈ L p(•) (Ω)}
u W 1,p(•) 0 (Ω) = u L p(x) + ∇u L p(x) . It is known that C ∞ c (Ω) is dense in W 1,p(•) 0
(Ω) and the Poincaré inequality holds

u p(•),Ω ≤ C ∇u p(•),Ω . (4.1.5) if p ∈ C log (Ω), i.e.
, the exponent p is continuous in Ω with the logarithmic modulus of continuity:

|p(x 1 ) -p(x 2 )| ≤ ω(|x 1 -x 2 |), (4.1.6) 
where ω(τ ) is a nonnegative function satisfying the condition lim sup

τ →0 + ω(τ ) ln 1 τ = C < ∞.
By W (Ω) we denote the dual of W 1,p(•) 0

(Ω), which is the set of bounded linear functionals over W

1,p(•) 0 (Ω): Φ ∈ W (Ω) iff there exist Φ 0 ∈ L p (•) (Ω), Φ i ∈ L p (•) (Ω), i = 1, . . . , N , such that for all u ∈ W 1,p(•) 0 (Ω) Φ, u = ˆΩ uΦ 0 + N i=1 u x i • Φ i dx.
For the study of parabolic problem with spaces of functions depending on (x, t) ∈ Q T , we define the following spaces:

V p(•,t) (Ω) = {u : Ω → R | u ∈ L 2 (Ω) ∩ W 1,1 0 (Ω), |∇u| p(x,t) ∈ L 1 (Ω)}, t ∈ (0, T ), W p(•) (Q T ) = {u : (0, T ) → V p(•,t) (Ω) | u ∈ L 2 (Q T ), |∇u| p(x,t) ∈ L 1 (Q T )}. The dual W (Q T ) of the space W p(•) (Q T ) is defined as follows: Φ ∈ W (Q T ) iff there exists Φ 0 ∈ L 2 (Q T ), Φ i ∈ L p (x,t) (Ω), i = 1, . . . , N , such that for all u ∈ W p(•) (Q T ) Φ, u = ˆQT uΦ 0 + N i=1 u x i Φ i dx dt.
Let C log (Q T ) be the set of functions satisfying condition (4.1.6) in the closure of the cylinder

Q T . If u ∈ W p(•) (Q T ), u t ∈ W (Q T ) and p(x, t) ∈ C log (Q T ), then ˆQT uu t dz = 1 2 ˆΩ u 2 (x, t) dx t=T t=0 . (4.1.7)

Strong solution: Existence, global higher integrability and differentiability, second order regularity

In this part, we study the sufficient condition on f, u 0 for the existence of strong solution of the following Dirichlet problem for the class of parabolic equations with variable non-linearity

           ∂ t u -div |∇u| p(x,t)-2 ∇u = f (x, t) in Q T = Ω × (0, T ), u = 0 on ∂Ω × (0, T ), u(x, 0) = u 0 (x) in Ω, (4.2.1)
where Ω ⊂ R N , N ≥ 2, is a bounded domain with the boundary ∂Ω ∈ C 2 .

Statement of main results

We will distinguish between the weak and strong solutions of problem (4.2.1) defined as follows.

Definition 4.2.1. A function u is called weak solution of problem (4.2.1), if (i) u ∈ W p(•) (Q T ), u t ∈ W (Q T ), (ii) for every ψ ∈ W p(•) (Q T ) with ψ t ∈ W (Q T ) ˆQT u t ψ dx dt + ˆQT |∇u| p(x,t)-2 ∇u • ∇ψ dx dt = ˆQT f ψ dx dt, (4.2.2) (iii) for every φ ∈ C 1 0 (Ω) ˆΩ(u(x, t) -u 0 (x))φ dx → 0 as t → 0, (iv) the weak solution u is called strong solution of problem (4.2.1) if u t ∈ L 2 (Q T ), |∇u| ∈ L ∞ (0, T ; L p(•) (Ω)).
The existence of a unique weak solution to problem (4.2.1) can be proven under the minimal requirements on the regularity of the data. Proposition 4.2.1 ([26, 34, 111]). Let Ω ⊂ R N , N ≥ 2, be a bounded domain with the Lipschitz-continuous boundary. Assume that p :

Q T → R satisfies the conditions 2N N + 2 < p -≤ p(x, t) ≤ p + , p ∈ C log (Q T ), (4.2.3)
where p -:= min Q T p(x, t) and p We are interested in the global regularity of weak solutions in the case when the problem data, f , u 0 , p, Ω, possess better regularity properties. The main result of this section is given in the following theorem. 

+ := max Q T p(x, t). Then for every f ∈ L 2 (Q T ) and u 0 ∈ L 2 (Ω) problem (4.2.1) has a unique weak solution u ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ W p(•) (Q T ) with u t ∈ W (Q T ).
Theorem 4.2.1. Let Ω ⊂ R N , N ≥ 2,
Q T |∇p| ≤ C * < ∞, ess sup Q T |p t | ≤ C * with nonnegative finite constants C * , C * . Let f ∈ L 2 (0, T ; W 1,2 0 (Ω)), u 0 ∈ L 2 (Ω) ∩ W 1,q 0 (•) 0 (Ω) with q 0 (x) = max{2, p(x, 0)}. (i)
ˆΩ |∇u| q(x,t) dx ≤ C (4.2.5)
with the exponent q(x, t) = max{2, p(x, t)} and a constant C depends upon N, ∂Ω, T, p ± , C * , C * , u 0 , f .

(ii) The solution u(x, t) possesses the property of higher integrability of the gradient:

ˆQT |∇u| p(x,t)+δ dxdt ≤ C δ for every 0 < δ < 4p - p -(N + 2) + 2N
with a finite constant C δ depending on δ and the same quantities as the constant C in (4.2.5).

(iii) Moreover,

D 2 x i x j u ∈ L p(•) loc (Q T ∩ {(x, t) : p(x, t) < 2}), if N ≥ 2, D x i |∇u| p(x,t)-2 2 D x j u ∈ L 2 (Q T ) if N ≥ 3, or N = 2 and p -> 6 5 ,
i, j = 1, 2, . . . , N , and the corresponding norms are bounded by constants depending only on the data.

Notation. Throughout the section, the symbol C represents the constants which can be calculated or estimates using the known quantities, but whose exact value is not crucial for the argument and may change from line to line even inside the same formula. We use the notation z for the points of the cylinder

Q T : z = (x, t) ∈ Ω × (0, T ) = Q T .
The notation D i is used for the spatial derivative with respect to x i . We also use the shorthand notation

|u xx | 2 ≡ N i,j=1 |D 2 ij u| 2
and omit the arguments of the variable exponent p wherever it does not cause confusion.

Regularized problem

Given a parameter > 0, let us consider the family of regularized nondegenerate parabolic problems

         ∂ t u -div(( 2 + |∇u| 2 ) p(z)-2 2 ∇u) = f (z) in Q T , u = 0 on Γ T = ∂Ω × (0, T ), u(x, 0) = u 0 (x) in Ω. (4.2.6)

Galerkin's approximations

For every fixed , a solution of problem (4.2.6) can be constructed as the limit of the sequence of finite-dimensional Galerkin's approximations {u (m) }. The functions u (m) (x, t) are sought in the form

u (m) (x, t) = m j=1 u (m) j (t)φ j (x), (4.2.7) 
where φ j ∈ W 1,2 0 (Ω) and λ j > 0 are the eigenfunctions and the corresponding eigenvalues of the problem

(∇φ j , ∇ψ) 2,(Ω) = λ(φ j , ψ) 2,Ω ∀ψ ∈ W 1,2 0 (Ω).
The systems {φ j } and {λ -1 2 j φ j } form the orthogonal bases in L 2 (Ω) and W 1,2 0 (Ω). The coefficients u (m) j (t) are defined as the solutions of the Cauchy problem for the system of m ordinary differential equations (u

(m) j ) (t) = -ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) • ∇φ j dx + ˆΩ f φ j dx, u (m) j (0) = (u 0 , φ j ) 2,Ω , j = 1, 2, . . . , m, (4.2.8)
where the functions

4.2.2.2. Basic a priori estimates u (m) 0 = m j=1 (u 0 , φ j ) 2,Ω φ j ∈ span{φ 1 , φ 2 , . . . , φ m }, are chosen so that u (m) 0 → u 0 in W 1,q(x,0) 0 (Ω), q(x, 0) = max{2, p(x, 0)}.
By the Carathéodory Theorem, for every finite m system (4.2.8) has a solution (u

(m) 1 , u (m) 2 , . . . , u (m)
m ) on an interval (0, T m ). This solution can be continued on the arbitrary interval (0, T ) because of the uniform estimate sup (0,Tm) ∇u 

(m) (•, t) q(•),Ω ≤ M with q(x, t) = max{2, p(x,
u (m) (t) 2 2,Ω + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dz ≤ e T ( f 2 2,Q T + u 0 2 2,Ω ) := L 0 . (4.2.9)
Proof. Multiplying jth equation of (4.2.8) by u (m) j (t) and summing up the results for j = 1, 2, . . . , m, we obtain 1 2

d dt u (m) 2 2,Ω = m j=1 u (m) j (t)(u (m) j ) (t) = - m j=1 ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) • ∇φ j u (m) j (t) dx + m j=1 ˆΩ f φ j u (m) j (t) dx = -ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dx + ˆΩ f u (m) dx.
Applying the Cauchy inequality to the last term of the right-hand side we transform this inequality into the form

1 2 d dt u (m) 2 2,Ω + ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dx ≤ 1 2 f 0 2 2,Ω + 1 2 u (m) 2 2,Ω .
The last inequality can be written as

1 2 d dt e -t u (m) 2 L 2 (Ω) + e -t ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dx ≤ e -t 2 f 0 2 2,Ω .
Integration of the last inequality in t gives sup (0,T )

u (m) (t) 2 2,Ω + ˆQT 2 + |∇u (m) | 2 p(z)-2 2 |∇u (m) | 2 dx dt ≤ Ce T f 0 2 2,Q T + u 0 2 2,Ω
with a constant C which does not depend on u (m) .

Corollary 4.2.1. Let ∈ (0, 1). Under the conditions of Lemma 4.2.1

ˆQT |∇u (m) | p(z) dz ≤ ˆQT 2 + |∇u (m) | 2 p(z) 2 dz ≤ L 1 (4.2.10)
with a constant L 1 independent of and m.

Proof. The assertion immediately follows from (4.2.9) and the inequalities 

|∇u (m) | p(z) ≤ 2 + |∇u (m) | 2 p(z) 2 ≤      2 2 + |∇u (m) | 2 p(z)-2 2 |∇u (m) | 2 if |∇u (m) | ≥ , ( 2 
Q T |∇p| ≤ C * < ∞, u 0 ∈ W 1,2 0 (Ω), f ∈ L 2 (0, T ; W 1,2 0 (Ω)).
Then the following inequality holds: for a.e. t ∈ (0, T ) and any δ > 0 1 2

d dt ∇u (m) (t) 2 2,Ω + (min{p -, 2} -1 -δ) ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx ≤ C 0 ˆΩ |∇u (m) | 2 ( 2 + |∇u (m) | 2 ) p(z)-2 2 ln 2 ( 2 + |∇u (m) | 2 ) dx - ˆ∂Ω ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∆u (m) (∇u (m) • n) -∇u (m) • ∇(∇u (m) • n) dx + C 1 ∇u (m) (t) 2 2,Ω + C 2 f (t) 2 W 1,2 0 (Ω) (4.2.12)
with constants C i , i = 0, 1, 2, depending on the data and δ, but independent of m and .

Proof. Multiplying each of equations in (4.2.8) by λ j u (m) j , j = 1, 2, . . . , m, and summing up the results we obtain the equality

1 2 d dt ∇u (m) 2 2,Ω = m j=1 λ j (u (m) j ) (t)u (m) j (t) = m j=1 λ j u (m) j ˆΩ div(( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) ) φ j dx + m j=1 λ j u (m) j ˆΩ f (x, t)φ j dx = -ˆΩ div(( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) ) ∆u (m) dx + ˆΩ f ∆u (m) dx.
(4.2.13)

Basic a priori estimates

Since u (m) ∈ C 3 (Ω) and ∂Ω ∈ C 2 , the first term on the right-hand can be transformed by means of the Green formula:

-ˆΩdiv

( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) ∆u (m) dx = - ˆΩ N k=1 (u (m) ) x k x k N i=1 ( 2 + |∇u (m) | 2 ) p(z)-2 2 (u (m) ) x i x i dx = - ˆ∂Ω ∆u (m) ( 2 + |∇u (m) | 2 ) p(z)-2 2 (∇u (m) • n) dS + ˆΩ N k,i=1 (u (m) ) x k x k x i ( 2 + |∇u (m) | 2 ) p(z)-2 2 (u (m) ) x i dx = - ˆ∂Ω ( 2 + |∇u (m) | 2 ) p(z)-2 2 N k,i=1 (u (m) ) x k x k (u (m) ) x i n i -(u (m) ) x k x i (u (m) ) x i n k dS - ˆΩ N k,i=1 (u (m) ) x k x i ( 2 + |∇u (m) | 2 ) p(z)-2 2 (u (m) ) x i x k dx = -ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + J 1 + J 2 + J ∂Ω
where

J 1 := ˆΩ(2 -p(z))( 2 + |∇u (m) | 2 ) p(z)-2 2 -1 N k=1 ∇u (m) • ∇(u (m) ) x k 2 dx, J 2 = - ˆΩ N k,i=1 (u (m) ) x k x i (u (m) ) x i ( 2 + |∇u (m) | 2 ) p(z)-2 2 p x k 2 ln( 2 + |∇u (m) | 2 ) dx, J ∂Ω = - ˆ∂Ω ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∆u (m) (∇u (m) • n) -∇u (m) • ∇(∇u (m) • n) dS.
Substitution into (4.2.13) leads to the inequality 1 2

d dt ∇u (m) 2 2,Ω + ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx = J 1 + J 2 + J ∂Ω -ˆΩ ∇f • ∇u (m) dx ≤ J 1 + J 2 + J ∂Ω + 1 2 ∇u (m) (t) 2 2,Ω + 1 2 f (t) 2 W 1,2 0 (Ω) . The term J 1 is absorbed in the left-hand side because J 1 = ˆ{x∈Ω: p(z)≥2} (2 -p(z)) . . . + ˆ{x∈Ω: p(z)<2} (2 -p(z)) . . . ≤ ˆ{x∈Ω: p(z)<2} (2 -p(z))( 2 + |∇u (m) | 2 ) p(z)-2 2 -1 N k=1 ∇u (m) • ∇(u (m) ) x k 2 dx,
and

|J 1 | ≤ max{0, 2 -p -} ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx.
The term J 2 is estimated in the following way: by the Cauchy inequality, for every δ > 0

|J 2 | ≤ ∇p ∞,Q T ˆΩ   N i,k=1 |(u (m) ) x i x k |( 2 + |∇u (m) | 2 ) p(z)-2 4   × |∇u (m) |( 2 + |∇u (m) | 2 ) p(z)-2 4 | ln( 2 + |∇u (m) | 2 )| dx ≤ δ ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C ˆΩ |∇u (m) | 2 ( 2 + |∇u (m) | 2 ) p(z)-2 2 ln 2 ( 2 + |∇u (m) | 2 ) dx with a constant C = C(C * , N, δ).
Choosing δ ∈ (0, 1) so small that min{2, p -} > 1 + δ and collecting in the right-hand side all terms which contain (u (m) ) xx we obtain (4.2.12) because

1 -δ -max{0, 2 -p -} =    1 -δ if p -≥ 2, p --1 -δ if p -< 2 = min{p -, 2} -1 -δ.

Interpolation inequalities

In this section, we derive first the interpolation inequality which yields the property of higher integrability of the gradient of the finite-dimensional approximations u (m) of the solutions of problems (4.2.6). We prove next an estimate on the trace of ∇u (m) on ∂Ω, which turns out to be useful in the study of the nonconvex domains. Both estimates will be applied to obtain upper bounds for the terms on the right-hand side of (4.2.12).

With certain abuse of notation, throughout the section we denote by p(x) or p(x, t) given exponents defined on Ω or Q T and not related to the exponent in equation (4.2.1). Let us accept the notation

β (s) = 2 + |s| 2 , > 0, s ∈ R N , x ∈ Ω, γ (x, s) = β p(x)-2 2 (s) ≡ ( 2 + |s| 2 ) p(x)-2 2 . Lemma 4.2.3. Let ∂Ω ∈ C 1 , u ∈ C 2 (Ω) and u = 0 on ∂Ω. Assume that p : Ω → [p -, p + ], p ± = const, 2N N + 2 < p -, p(•) ∈ C 0 (Ω), ess sup Ω |∇p| = L, ˆΩ γ (x, ∇u)|u xx | 2 dx < ∞, ˆΩ u 2 dx = M 0 , ˆΩ |∇u| p(x) dx = M 1 . (4.2.14)
Then for every

2 N + 2 =: r * < r < r * := 4p - p -(N + 2) + 2N (4.2.15)
and every δ ∈ (0, 1)

ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx ≤ δ ˆΩ γ (x, ∇u)|u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx (4.2.16)
with an independent of u constant C = C(∂Ω, δ, p ± , N, r, M 0 , M 1 ).

Proof. Let us fix some r ∈ (r * , r * ). By the Green formula

ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx = ˆΩ β p(x)+r-2 2 (∇u) ∇u • ∇u dx = ˆ∂Ω uβ p(x)+r-2 2 (∇u) ∇u • n dS -ˆΩ u div(β p(x)+r-2 2 (∇u)∇u) dx = -ˆΩ u div(β p(x)+r-2 2 (∇u)∇u) dx =: -J,
where n stands for the outer normal to ∂Ω. A straightforward computation leads to the representation |D 2 ij u| 2 . For every constant 0 < ρ < min{1, p -+ r -1} and 0 < ν < 1, the integrand of the last term in (4.2.17) admits the estimate

J = ˆΩ uβ p(x)+r-2 2 (∇u)∆u dx + ˆΩ(p(x) + r -2)uβ p(x)+r-2 2 -1 (∇u) n i=1   u x i n j=1 u x j u x i x j   dx + ˆΩ uβ p(x)
β p(x)+r-1 2 (∇u)| ln β (∇u)| ≤        β p(x)+r-1-ρ 2 (∇u) β ρ 2 (∇u)| ln β (∇u)| if β (∇u) ≤ 1, β p(x)+r-1+ν 2 (∇u) β -ν 2 (∇u)| ln β (∇u)| if β (∇u) > 1, ≤ C(ρ) + C(ν)β p(x)+r-1+ν 2 (∇u), (4.2.18)
which allows one to continue (4.2.17) as follows: Using Young's inequality we finally estimate: for every δ ∈ (0, 1)

|J| ≤ C ˆΩ |u|β p(x)+r-2 2 (∇u)|u xx | dx + C ˆΩ |u| dx + ˆΩ |u|β p(x)+r-1+ν 2 (∇u) dx ≤ C ˆΩ |u|β p(x)+r-2 2 (∇u)|u xx | dx + C ˆΩ |u|β p(x)+r-1+ν 2 (∇u) dx + M 1/2 0 + C =: I.
|I| = C ˆΩ |u|β p(x)+r-1 2 - p(x) 4 (∇u) (β p(x)-2 4 (∇u)|u xx |) dx + C ˆΩ |u|β p(x)-1+r+ν 2 (∇u) dx + C ≤ δ ˆΩ γ (x, ∇u)|u xx | 2 dx + C δ ˆΩ u 2 β p(x)+2r-2 2 (∇u) dx + C ˆΩ |u|β p(x)+r-1+ν 2 (∇u) dx + C ≡ δI 0 + C δ I 1 + C I 2 + C. Let {Ω i } K i=1 be a finite cover of Ω such that Ω i ⊂ Ω, ∂Ω i ∈ C 2 , p + i = max Ω i p(x), p - i = min Ω i p(x).
For any r * < r < r * , the continuity of p(x) allows us to choose Ω i so small that for every i = 1, 2, . . . , K

p + i -p - i + r 1 + 2N p -(N + 2) < 4 N + 2 . ( 4 

.2.19)

To estimate the terms I 1 and I 2 we represent them in the form

I j = K i=1 I (i) j , I (i) 1 = ˆΩi u 2 β p(x)+2(r-1) 2 (∇u) dx, I (i) 2 = ˆΩi |u|β p(x)+r-1+ν 2 (∇u) dx.
Recall that ν ∈ (0, 1). By the Young inequality, for any λ > 0

I (i) 2 ≤ λ ˆΩi β p(x)+r 2 (∇u) dx + C λ ˆΩi |u| p(x)+r 1-ν dx ≤ λ ˆΩi β p(x)+r 2 (∇u) dx + C λ 1 + ˆΩi |u| p + i +r 1-ν dx = λ ˆΩi ∩{|∇u|>1} β p(x)+r 2 (∇u) dx + ˆΩi ∩{|∇u|≤1} . . . + C λ 1 + ˆΩi |u| p + i +r 1-ν dx .
For ∈ (0, 1)

β p(x)+r 2 (∇u) = β p(x)+r-2 2 (∇u)( 2 + |∇u| 2 ) ≤      2β p(x)+r-2 2 (∇u)|∇u| 2 if |∇u| > 1, (1 + 2 ) p + +r 2
otherwise, which entails the estimate

I (i) 2 ≤ 2λ ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx + C λ ˆΩi |u| p + i +r 1-ν dx + C.
The second integral on the right-hand side is estimated by the Gagliardo-Nirenberg inequality:

u σ σ,Ω i ≤ C 1 ∇u σθ p - i ,Ω i u σ(1-θ) 2,Ω i + C 2 u σ 2,Ω i ≤ C 1 ∇u σθ p - i ,Ω i + C 2 M σ 2 0 , C 1 = C 1 M σ 2 (1-θ) 0 , with σ = p + i + r 1 -ν > p + i + r > p - i , θ = p - i σ ∈ (0, 1), 1 σ = 1 p - i - 1 N θ + 1 -θ 2 .

Interpolation inequalities

Such a choice of the parameters σ, θ is possible if

ν = 1 - p + i + r p - i N N + 2 with r * < r < r * .
Gathering the estimates on

I (i)
2 and using the Young inequality we finally obtain: for every λ ∈ (0, 1)

I 2 ≤ 2λK ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx + C λ K i=1 ˆΩi |∇u| p - i dx + C ≤ 2λK ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx + C λ ˆΩ |∇u| p(x) dx + C = 2λK ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx + C , C = C (N, λ, p ± i , r, |Ω|, M 0 , M 1 ).
To estimate

I (i)
1 we first use the Young inequality: since 2N N +2 < p - i by assumption, then for every λ ∈ (0, 1)

I (i) 1 ≤ C λ ˆΩi |u| p - i N +2 N dx + λ ˆΩi β κ 2 (∇u) dx, κ = (p(x) + 2(r -1)) p - i N +2 2N p - i N +2 2N -1 . (4.2.20)
To estimate the second integral, let us claim that 0 < κ < p(x) + r on Ω i , i.e.,

0 < p(x) + 2(r -1) < p(x) + r p - i p - i - 2N N + 2 .
In this double inequality the first one is fulfilled by the choice of r:

0 = 2N N + 2 + 2(r * -1) < p -+ 2(r -1) ≤ p(x) + 2(r -1).
The second inequality is fulfilled if

p + i + 2(r -1) < p - i + r p - i p - i - 2N N + 2 ⇔ (p + i -p - i ) + r < 2 - p - i + r p - i 2N N + 2 ,
which is true because of (4.2.19) and the condition r < r * . By the Young inequality

β κ 2 (∇u) ≤ 1 + β p(x)+r 2 (∇u) ≤ 1 +      (2 2 ) p(x)+r 2 if |∇u| ≤ , 2β p(x)+r-2 2 (∇u)|∇u| 2 if |∇u| > ≤ C + 2β p(x)+r-2 2 (∇u)|∇u| 2 .
It remains to estimate the first integral in (4.2.20). By the Gagliardo-Nirenberg inequality

ˆΩi |u| p - i N +2 N dx ≤ C 1 (M 0 ) ∇u θp - i N +2 N p - i ,Ω i + C 2 (M 0 )
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with θ = 1 2 - N p - i (N +2) N +2 2N -1 p - i = N N + 2 ∈ (0, 1), whence I 1 ≤ 2 λ ˆΩ β p(x)+r-2 2 (∇u)|∇u| 2 dx + C ˆΩ |∇u| p(x) dx + C .
Gathering the estimates of I i for |I| and choosing λ, λ so small that 2λK + 2 λ < 1, we arrive at the desired estimate (4.2.16).

The assertion of Lemma 4.2.3 easily extends to functions defined on the cylinder Q T . Let us recall the notation z = (x, t) ∈ Q T = Ω × (0, T ) and re-define

γ (z, s) = β p(z)-2 2 (s) ≡ ( 2 + |s| 2 ) p(z)-2 2 , > 0, s ∈ R N . Theorem 4.2.2. Let ∂Ω ∈ C 1 , u ∈ C 1 ([0, T ]; C 2 (Ω)) and u = 0 on ∂Ω × [0, T ]. Assume that p(z) : Q T → [p -, p + ], p ± = const, p(•) ∈ C 0 (Q T ) with the modulus of continuity ω, 2N N + 2 < p -, ess sup Q T |∇p| = L, ˆQT γ (z, ∇u)|u xx | 2 dz < ∞, sup (0,T ) u(t) 2 2,Ω = M 0 , ˆQT |∇u| p(z) dz = M 1 . (4.2.21)
Then for every

2 N + 2 = r * < r < r * = 4p - p -(N + 2) + 2N
and every δ ∈ (0, 1) the function u satisfies the inequality

ˆQT β p(z)+r-2 2 (∇u)|∇u| 2 dz ≤ δ ˆQT γ (z, ∇u)|u xx | 2 dz + C 1 + ˆQT |∇u| p(z) dz . (4.2.22)
with an independent of u constant C = C(N, ∂Ω, T, δ, p ± , ω, r, M 0 , M 1 ).

Proof. Since the exponent p(z) is uniformly continuous in Q T , then for any r * < r < r * there exists a finite cover of Q T composed of the cylinders 

Q (i) = Ω i × (t i-1 , t i ), i = 1, 2, . . . , K, such that t 0 = 0, t K = T, t i -t i-1 = ρ, Q T ⊂ K i=1 Q (i) , ∂Ω i ∈ C 2 , p + i = max Q (i) p(z), p - i = min Q (i) p(z), p + i -p - i + r 1 + 2N p -(N + 2) < 4 N + 2 , i = 1,
u ∈ W 1,p(•) (Ω) δ ˆ∂Ω |u| p(x) dS ≤ C ˆΩ |u| p(x)-1 |∇u| + |u| p(x) | ln |u|| + |u| p(x) dx (4.2.23) with a constant C = C(p + , L, N, ∂Ω).
Proof. By [162, Lemma 1.5.1.9] there exists δ > 0 and µ

∈ (C ∞ (Ω)) N such that µ • n ≥ δ a.e.
on ∂Ω. By the Green formula

δ ˆ∂Ω |u| p(x) dS ≤ ˆ∂Ω |u| p(x) (µ • n) dS = ˆΩ div(|u| p(x) µ) dx = ˆΩ p(x)|u| p(x)-2 u(∇u • µ) + |u| p(x) ln |u|(∇p • µ) + |u| p(x) div µ dx ≤ p + max Ω |µ| ˆΩ |u| p(x)-1 |∇u| dx + ∇p ∞,Ω max Ω |µ| ˆΩ |u| p(x) | ln |u|| dx + max Ω | div µ| ˆΩ |u| p(x) dx ≤ C(p + , L, N, Ω) ˆΩ |u| p(x)-1 |∇u| + |u| p(x) | ln |u|| + |u| p(x) dx.
Lemma 4.2.5. Under the conditions of Lemma 4.2.4, for every λ ∈ (0, 1) and ∈ (0, 1)

ˆ∂Ω |u| p(x) dS ≤ λ ˆΩ( 2 + |u| 2 ) p(x)-2 2 |∇u| 2 + C 1 ˆΩ |u| p(x) dx + C 2 ˆΩ |u| p(x) | ln |u|| dx + C 3 (4.2.24) with constants C i , i = 1, 2, 3, depending on N, p ± , L, ∂Ω, λ, but independent of u.
Proof. By the Cauchy inequality, for every λ ∈ (0, 1) 

|u| p-1 |∇u| = λ( 2 + |u| 2 ) p-2 2 |∇u| 2 1 2 λ -1 ( 2 + |u| 2 ) 2-p 2 |u| 2(p-1) 1 2 ≤ λ( 2 + |u| 2 ) p-2 2 |∇u| 2 + 1 λ ( 2 + |u| 2 ) 1-p 2 |u| 2(p-1) ≤ λ( 2 + |u| 2 ) p-2 2 |∇u| 2 + 1 λ ( 2 + |u| 2 ) 1-p 2 +(p-1) = λ( 2 + |u| 2 ) p-2 2 |∇u| 2 + 1 λ ( 2 + |u| 2 ) p 2 ≤ λ( 2 + |u| 2 ) p-2 2 |∇u| 2 + C(1 + |u| p
ˆ∂Ω |∇u| p(x) dS ≤ λ ˆΩ( 2 + |∇u| 2 ) p(x)-2 2 |u xx | 2 dx + C 1 ˆΩ |∇u| p(x) dx + C 2 ˆΩ |∇u| p(x) ln |∇u|| dx + C 3 (4.2.26)
with independent of u constants M, L, K. For every 0 < θ < p -and r from inequality (4.2.16)

|∇u| p(x) | ln |∇u|| ≤    |∇u| p --θ |∇u| θ | ln |∇u|| ≤ C (p -, θ) if |∇u| ≤ 1, |∇u| p(x)+r (|∇u| -r | ln |∇u||) ≤ C (p -, r) |∇u| p(x)+r if |∇u| ≥ 1.
Thus, there exists a constant C such that Then for every λ ∈ (0, 1)

|∇u| p(x) | ln |∇u|| ≤ C(1 + |∇u| p(x)
ˆ∂Ω×(0,T ) |∇u| p(z) dSdt ≤ λ ˆQT ( 2 + |∇u| 2 ) p(z)-2 2 |u xx | 2 dz + C 1 + ˆQT |∇u| p(z) dz with an independent of u constant C = C(λ, N, p ± , ∂Ω, T, L, M 0 , M 1 ). Corollary 4.2.1. Under the conditions of Theorem 4.2.3 ˆ∂Ω×(0,T ) ( 2 +|∇u| 2 ) p(z)-2 2 |∇u| 2 dSdt ≤ λ ˆQT ( 2 +|∇u| 2 ) p(z)-2 2 |u xx | 2 dz+C 1 + ˆQT |∇u| p(z) dz with an independent of u constant C.
Proof. The inequality is an immediate byproduct of Theorem 4.2.3 and the inequality

( 2 + |∇u| 2 ) p(z)-2 2 |∇u| 2 ≤ ( 2 + |∇u| 2 ) p(z) 2 ≤ C(1 + |∇u| p(z) ).

A priori estimates

We are in position to estimate every term on the right-hand side of (4.2.12).

(a) By (4.2.18) and Lemma 4.

2.3 ˆΩ|∇u (m) | 2 γ (z, ∇u (m) ) ln 2 ( 2 + |∇u (m) | 2 ) dx ≤ C 1 + ˆΩ β p(z)+r-2 2 (∇u (m) )|∇u (m) | 2 dx ≤ δ 1 ˆΩ γ (z, ∇u (m) )|(u (m) ) xx | 2 dx + C 1 + ˆΩ |∇u (m) | p(z) dx (4.2.27)
with an arbitrary δ 1 > 0.

(b) The term

I ∂Ω = - ˆ∂Ω ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∆u (m) (∇u (m) • n) -∇u (m) • ∇(∇u (m) • n)
is estimated with the use of Lemma 4.2.5 and the following known assertion.

Lemma 4.2.7 (Lemma A.1, [START_REF] Antontsev | Global higher regularity of solutions to singular p(x,t)-parabolic equations[END_REF]).

If ∂Ω ∈ C 2 and u ∈ W 3,2 (Ω) ∩ W 1,2 0 (Ω), then |I ∂Ω | ≤ L ˆ∂Ω ( 2 + |∇u| 2 ) p(z)-2 2 |∇u| 2 dS with a constant L = L(∂Ω). Moreover, I ∂Ω ≥ 0 if ∂Ω is convex.
Gathering Lemmas 4.2.6 and 4.2.7 we arrive at the following estimate: for a.e. t ∈ (0, T ) 

ˆ∂Ω ( 2 +|∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dS ≤ δ 2 ˆΩ γ (z, ∇u (m) |)|u (m) xx | 2 dx+C 1 + ˆΩ |∇u (m) | p(z
∇u (m) (t) 2 2,Ω + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 2 L 2 (0,T ;W
d dt ∇u (m) (t) 2 2,Ω + (min{2, p -} -δ -δ 1 -δ 2 -1) ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 ≤ C 0 + C 1 ˆΩ |∇u (m) | p(z) dx + C 2 ∇u (m) (t) 2 2,Ω + C 3 f (t) 2 W 1,2 0 (Ω) (4.2.31)
with constants C i , i = 0, 1, 2, 3, depending on the data but independent of m and , and arbitrary positive δ 1 , δ 2 . Choosing δ i so small that min{2, p -} -

(1 + δ + δ 1 + δ 2 ) = µ > 0,
multiplying by e -2C 2 t and dropping the second term on the left-hand side, we transform (4.2.31) into the differential inequality for ∇u (m) (t) 2 2,Ω :

d dt e -2C 2 t ∇u (m) (t) 2 2,Ω ≤ Ce -2C 2 t 1 + ˆΩ |∇u (m) | p(z) dx + f (t) 2 W 1,2 0 (Ω) .
Integrating in t and using (4.2.9) and (4.2.10), we finally obtain: for every t ∈ (0, T )

∇u (m) (t) 2 2,Ω ≤ Ce 2C 2 T ∇u 0 2 2,Ω + e T 1 + u 0 2 2,Ω + f 2 2,Q T + ∇f 2 2,Q T ≤ Ce C T 1 + u 0 2 W 1,2 0 (Ω) + f 2 L 2 (0,T ;W 1,2 0 (Ω))
. Now we substitute this estimate into (4.2.31) and integrate the result in t. Plugging (4.2.10), we arrive at the inequality 

ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 2 L 2 (0,T ;W
Q + T = Q T ∩ {p(z) + r ≥ 2}, Q - T = Q T ∩ {p(z) + r < 2} and represent ˆQT |∇u (m) | p+r dz = ˆQ+ T |∇u (m) | p+r dz + ˆQ- T . . . ≡ I + + I -. Then I + ≤ ˆQ+ T β p+r-2 2 (∇u (m) )|∇u (m) | 2 dz ≤ ˆQT β p+r-2 2 (∇u (m) )|∇u (m) | 2 dz
and estimate on I + follows. To estimate 

I -, set B + = Q - T ∩ {z : |∇u (m) | ≥ }, B -= Q - T ∩ {z : |∇u (m) | < }. Then I -= ˆB+ ∪B - |∇u (m) | p+r dz = ˆB+ (|∇u (m) | 2 ) p+r-2 2 |∇u (m) | 2 dz + ˆB- p+r dz ≤ 2 2-r-p - 2 ˆB+ β p+r-2 2 (∇u (m) )|∇u (m) | 2 dz + p -+r T |Ω| ≤ C 1 + ˆQT β p+r-2 2 (∇u (m) )|∇u (m) | 2 dz .
Q T |p t | ≤ C * < ∞.
Then the following estimate holds:

(u (m) ) t 2 2,Q T + sup (0,T ) ˆΩ( 2 + |∇u (m) | 2 ) p(z) 2 dx ≤ C 1 + ˆΩ |∇u 0 | p(x,0) dx + f 2 2,Q T (4.2.33)
with an independent of m and constant C.

Proof. Multiplying (4.2.8) with (u (m) j ) t and summing over j = 1, 2, . . . , m we obtain the equality

ˆΩ(u (m) ) 2 t dx + ˆΩ( 2 + |∇u (m) | 2 ) p(x,t)-2 2 ∇u (m) • ∇(u (m) ) t dx = ˆΩ f (u (m) ) t dx. (4.2.34)
It is straightforward to check that

( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) • ∇(u (m) ) t = d dt   ( 2 + |∇u (m) | 2 ) p(z) 2 p(z)   + p t (z)( 2 + |∇u (m) | 2 ) p(z) 2 p 2 (z) 1 - p(z) 2 ln(( 2 + |∇u (m) | 2 )) .
With the use of this identity we rewrite (4.2.34) in the form

ˆΩ(u (m) ) 2 t dx + d dt ˆΩ( 2 + |∇u (m) | 2 ) p(z) 2 dx = - ˆΩ p t ( 2 + |∇u (m) | 2 ) p(z) 2 p 2 (z) 1 - p(z) 2 ln( 2 + |∇u (m) | 2 ) + ˆΩ f (u (m) ) t dx. (4.2.35)
The terms on the right-hand side of (4.2.35) are estimated separately. For the first term, we use (4.2.10) and (4.2.27):

ˆΩ p t ( 2 + |∇u (m) | 2 ) p(z) 2 p 2 1 - p 2 ln(( 2 + |∇u (m) | 2 )) ≤ C 1 1 + ˆΩ |∇u (m) | p(z) dx + C 2 ˆΩ( 2 + |∇u (m) | 2 ) p(z) 2 ln( 2 + |∇u (m) | 2 ) dx. (4.2.36)
The second term is estimated by the Cauchy inequality: 

ˆΩ f (u (m) ) t dx ≤ 1 2 (u (m) ) t 2 2,Ω + 1 2 f 2 2,Ω . ( 4 
(u (m) ) t 2 2,Qt + 2 ˆΩ( 2 + |∇u (m) | 2 ) p(z) 2 dx ≤ C 1 + ˆΩ( 2 + |∇u (m) 0 (x)| 2 ) p(x,0) 2 dx + f 2 2,Qt .

Strong solution of the regularized problem

In this section, we prove that the regularized problem (4.2.6) has a unique strong solution.

We show first the existence of a weak solution with u t ∈ L 2 (Q T ) and then prove that this solution possesses extra regularity properties and, thus, is the strong solution. 

u W p(•) (Q T ) ≤ C 0 , ess sup (0,T ) u (t) 2 2,Ω + u t 2 2,Q T ≤ C 0 ess sup (0,T ) ˆΩ |∇u | q(z) dx ≤ C 0 , q(z) = max{2, p(z)}, (4.2.38)
with a constant C 0 depending on the data but not on . Moreover, u possesses the property of global higher integrability of the gradient: for every These uniform in m and estimates allow one to choose a subsequence u (m) (for which we keep the same notation), and functions u , η such that

δ ∈ (0, r * ), r * = 4p - p -(N + 2) + 2N , there exists a constant C = C ∂Ω, N, p ± , δ, u 0 W 1,q(•,0) 0 (Ω) , f L 2 (0,T ;W 1,2 0 (Ω)) such that ˆQT |∇u | p(z)+δ dz ≤ C. ( 4 
u 0 ∈ W 1,2 0 (Ω), f ∈ L 2 ((0, T ); W 1,2 0 (Ω)), ∇p ∞,Q T ≤ C * , p t ∞,Q T ≤ C * the functions u (m) exist
u (m) → u -weakly in L ∞ (0, T ; L 2 (Ω)), u (m) t u t in L 2 (Q T ), ∇u (m) ∇u in (L p(•) (Q T )) N , ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) η in (L p (•) (Q T )) N (4.2.40)
The assumption p -> 2N N +2 yields the inclusions

W 1,p(•,t) 0 (Ω) ⊂ W 1,p - 0 (Ω) → L 2 (Ω).
Since u (m) and (u

(m) ) t are uniformly bounded in L ∞ (0, T ; W 1,p - 0 (Ω)) and L ∞ (0, T ; L 2 (Ω)), it follows from the compactness lemma [235, Sec.8, Corollary 4] that the sequence {u (m) } is relatively compact in C([0, T ]; L 2 (Ω)), i.e.
, there exists a subsequence {u (m k ) }, which we assume coinciding with {u (m) }, such that u (m) → u in C([0, T ]; L 2 (Ω)) and a.e. in Q T .

Let us define

P m = ψ : ψ = m i=1 ψ i (t)φ i (x), ψ i ∈ C 1 [0, T ] .
Fix some m ∈ N. By the method of construction u (m) ∈ P m . Since P k ⊂ P m for k < m, then for every

ξ k ∈ P k with k ≤ m ˆQT u (m) t ξ k dz + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) • ∇ξ k dz = ˆQT f ξ k dz. (4.2.41) Let ξ ∈ W p(•) (Q T ). Take a sequence {ξ k } such that ξ k ∈ P k and ξ k → ξ ∈ W p(•) (Q T ).
Passing to the limit as m → ∞ with a fixed k, and then letting k → ∞, from the above equality we infer that

ˆQT u t ξ dz + ˆQT η • ∇ξ dz = ˆQT f ξ dz (4.2.42)
for all ξ ∈ W p(•) (Q T ). To identify the limit vector η we use the classical argument based on monotonicity of the function γ (z, s)s

≡ ( 2 + |s| 2 ) p(z)-2 2 s : R N → R N . Lemma 4.2.10. For all z ∈ Q T , ξ, ζ ∈ R N , (ζ = ξ) and > 0 (γ (z, ζ)ζ -γ (z, ξ)ξ) • (ζ -ξ) ≥ 0. (4.2.43) Proof. Let ζ = ξ. The straightforward computation shows that (γ (z, ξ)ξ -γ (z, ζ)ζ) • (ξ -ζ) = ˆ1 0 d dθ ( 2 + |θξ + (1 -θ)ζ| 2 ) p(z)-2 2 (θξ + (1 -θ)ζ) dθ • (ξ -ζ) = ˆ1 0 ( 2 + |θξ + (1 -θ)ζ| 2 ) p(z)-2 2 (p(z) -2) cos 2 ( µ, ν) + 1 dθ|ξ -ζ| 2 ≥ |ξ -ζ| 2      p(z)-2 if p(z) ≥ 2, (p(z) -1) ˆ1 0 ( 2 + |θξ + (1 -θ)ζ| 2 ) p(z)-2 2 dθ if p(z) ∈ (1, 2),
where µ, ν are the unit vectors

µ = ξ -ζ |ξ -ζ| , ν = ζ + θ(ξ -ζ) |ζ + θ(ξ -ζ)| . Equality (4.2.41) is true for ξ k = u (m)
. By virtue of (4.2.43), for every

ψ ∈ P k with k ≤ m 0 = ˆQT (u (m) ) t u (m) dz + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 |∇u (m) | 2 dz - ˆQT f u (m) dz ≥ ˆQT (u (m) ) t u (m) dz + ˆQT ( 2 + |∇ψ| 2 ) p(z)-2 2 ∇ψ • ∇(u (m) -ψ) dz + ˆQT ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) • ∇ψ dz - ˆQT f u (m) dz.
Let us pass to the limit as m → ∞. Using the limit relations (4.2.40), the fact that u (m) (u (m) ) t u u t as the product of weakly and strongly convergent sequences, and substituting (4.2.42) into the resulting inequality, we find that for every

ψ ∈ P k 0 ≥ ˆQT u u t dz + ˆQT ( 2 + |∇ψ| 2 ) p(z)-2 2 ∇ψ • ∇(u -ψ) dz + ˆQT η • ∇ψ dz - ˆQT f u dz = ˆQT ( 2 + |∇ψ| 2 ) p(z)-2 2 ∇ψ -η • ∇(u -ψ) dz. Since ∞ k=1 P k is dense in W p(•) (Q T )
, the last inequality also holds for every

ψ ∈ W p(•) (Q T ). Let us take ψ = u + λξ with λ > 0 and an arbitrary ξ ∈ W p(•) (Q T ). Then λ ˆQT ˆQT ( 2 + |∇(u + λξ)| 2 ) p(z)-2 2 ∇(u + λξ) -η • ∇ξ dz ≤ 0.
Simplifying and letting λ → 0 we find that 

ˆQT ( 2 + |∇u | 2 ) p(z)-2 2 ∇u -η • ∇ξ dz ≤ 0 ∀ξ ∈ W p(•) (Q T ), which is possible only if ˆQT ( 2 + |∇u | 2 ) p(z)-2 2 ∇u -η • ∇ξ dz = 0 ∀ξ ∈ W p(•) (Q T ).
|∇u (m) | q(x,t) → |∇u | q(x,t) -weakly in L ∞ (0, T ; L 1 (Ω)), q(x, t) = max{p(x,
(s) = ˆΩ |s| r(x) dx with r(x) ∈ C 0 (Ω), r(x) ∈ [1, r + ], r + < ∞ (see [
F (τ ) = γ (z, τ ξ + (1 -τ )ζ)|τ ξ + (1 -τ )ζ| 2 , τ ∈ [0, 1]. Let us accept the notation σ = |τ ξ + (1 -τ )ζ| 2 and η = ξ -ζ |ξ -ζ| . The straightforward computation gives F (τ ) = |ξ -ζ| 2 ( 2 + σ) p-2 2 -2 (pσ + 2 2 )(σ + 2 ) + (p -2)(pσ + 4 2 )(τ ξ + (1 -τ )ζ, η) 2 .
Obviously,

F (τ ) > 0 if p(z) ≥ 2. Let 1 < p(z) < 2. Since (τ ξ + (1 -τ )ζ, η) 2 ≤ σ, we obtain: F (τ ) ≥ |ξ -ζ| 2 ( 2 + σ) p-2 2 -2 (pσ + 2 2 )(σ + 2 ) + (p -2)(pσ + 4 2 )σ = |ξ -ζ| 2 ( 2 + σ) p-2 2 -2 p(p -1)σ 2 + (5p -6)σ 2 + 2 4 ,
whence F > 0 for all ξ = ζ and ≥ 0, provided that p -≥ 6 5 .
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The proof of stronger convergence properties of the sequence ∇u (m) stems from the following general result on the convergence of sequences of functionals. For convenience, we formulate it in the form already adapted to our problem.

Proposition 4.2.1 (Theorem 2.1, Corollary 2.1, [START_REF] Ju | General theorems on semicontinuity and convergence with functionals, Sibirsk. Mat[END_REF]). Let F m (z, s) : Q T × R N → R be a sequence of nonnegative functions, convex with respect to s for every z ∈ Q T and locally uniformly convergent to a function F 0 (z, s) as m → ∞, which is essentially convex with respect to s for every z ∈ Q T . Assume that F m (z, s) ≥ a(|s| α + 1) with some constants a > 0,

α > 1. If v m ∈ (L s (Q T )) N , v m v 0 in (L s (Q T )) N , s > 1, and ˆQT F m (z, v m ) dz → ˆQT F 0 (z, v 0 ) dz < ∞, then ˆQT |v m -v 0 | α dz → 0 as m → ∞.
Theorem 4.2.5. Let the conditions of Theorem 4.2.4 be fulfilled. 

(i) If N ≥ 3 or N = 2 and p -> 6 5 , then ∇u (m) → ∇u a.e. in Q T . (ii) Under the conditions of item (i) γ 1 2 (z, ∇u )D i u ∈ L 2 (0, T ; W 1,2 (Ω)), i = 1, 2, . . .

, N , and

γ 1 2 (z, ∇u )D i u L 2 (0,T ;W 1,2 (Ω)) ≤ M, i = 1, 2, . . . , N, with an independent of constant M . (iii) If N ≥ 2 and p -> 2N N + 2 , then D 2 ij u ∈ L p(•) loc (Q T ∩ {z : p(z) < 2}), i, j = 1, 2, . . .

, N , and

N i,j=1 D 2 ij u p(•),Q T ∩{z: p(z)<2} ≤ M with an independent of constant M . Proof. (i) It is already shown that ∇u (m) ∇u in L p(•) (Q T ) as m → ∞.
ˆQT γ (z, ∇u (m) )|∇u (m) | 2 dz = - ˆQT u (m) t u (m) dz + ˆQT f u (m) dz → - ˆQT u t u dz + ˆQT f u dz = ˆQT γ (z, ∇u )|∇u | 2 dz as m → ∞.
D i γ 1 2 (z, ∇u (m) )D j u (m) 2 2,Q T ≤ C ˆQT γ (z, ∇u (m) )|u (m) xx | 2 dz + ˆQT ( 2 + |∇u (m) | 2 ) p(z) 2 | ln( 2 + |∇u (m) | 2 )| dz ≤ C 1 + ˆQT ( 2 + |∇u (m) | 2 ) p(z) 2 | ln( 2 + |∇u (m) | 2 )| dz ≤ C ˆQT γ (z, ∇u (m) )|u (m) xx | 2 dz + C 1 + ˆQT |∇u (m) | p(z)+µ dz ≤ M, M = M ( u 0 W 1,2 0 (Ω) , f L 2 (0,T ;W 1,2 0 (Ω)) , N, p ± , ω, ∂Ω),
whence the existence of a subsequence {u (m k ) } (we may assume that it coincides with the whole sequence) such that

D i γ 1 2 (z, ∇u (m) )D j u (m) η ij ∈ L 2 (Q T ) as m → ∞.
By (4.2.30) there exists δ > 0 such that

γ 1 2 (z, ∇u (m) )D j u (m) 2+δ,Q T ≤ ( 2 + |∇u (m) | 2 ) p(z) 4 2+δ,Q T ≤ C
with a constant C independent of m and . Since γ

1 2 (z, ∇u (m) )D j u (m) are uniformly bounded in L 2+δ (Q T )
and converge pointwise due to (4.2.45), it follows from the Vitali convergence theorem that γ

1 2 (z, ∇u (m) )D j u (m) → γ 1 2 (z, ∇u )D j u in L 2 (Q T ). For every φ ∈ C ∞ (Q T ) with supp φ Q T and i, j = 1, . . . , N D i γ 1 2 (z, ∇u (m) )D j u (m) , φ 2,Q T = -γ 1 2 (z, ∇u (m) )D j u (m) , D i φ 2,Q T → -γ 1 2 (z, ∇u )D j u , D i φ 2,Q T as m → ∞.
Thus, it is necessary that

η ij = D i ( 2 + |∇u | 2 ) p(z)-2 4 D j u ∈ L 2 (Q T ) and η ij
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ˆD |D 2 ij u (m) | p(z) dz = ˆD γ (z, ∇u (m) )|D 2 ij u (m) | 2 p(z) 2 γ - p(z) 2 (z, ∇u (m) ) dz ≤ ˆD γ (z, ∇u (m) )|D 2 ij u (m) | 2 dz + ˆD( 2 + |∇u (m) | 2 ) p(z) 2 dz ≤ C
with a constant C independent of , m and D. It follows that there exists χ 

∈ L p(•) (Q - T ) such that D 2 ij u (m) χ in L p(•) (D) (up to a subsequence). Since ∇u (m) ∇u in L p(•) (Q T ), for every φ ∈ C ∞ (Q - T ) with supp φ Q - T (χ, φ) 2,Q T = lim m→∞ (D 2 ij u (m) , φ) 2,Q T = -lim m→∞ (D i u (m) , D j φ) 2,Q T = (D i u , D j φ) 2,Q T . It is necessary that χ = D 2 ij u ,
D x j ( 2 + |∇u | 2 ) p(z)-2 4 D x i u ∈ L 2 (Q T )
leads to the local fractional differentiablity of ∇u, see [START_REF] Duzaar | Parabolic systems with polynomial growth and regularity[END_REF]Ch.6] for the case of constant p. 

(Q T ), u t ∈ L 2 (Q T ), η ∈ (L p (•) (Q T )
) N with the following properties:

u k → u -weakly in L ∞ (0, T ; L 2 (Ω)), u k t u t in L 2 (Q T ), ∇u k ∇u in (L p(•) (Q T )) N , γ k (z, ∇u k )∇u k η in (L p (•) (Q T )) N . Moreover, u ∈ C([0, T ]; L 2 (Ω)). Each of u k satisfies the identity ˆQT u k t ξ dz + ˆQT γ k (z, ∇u k )∇u k • ∇ξ dz = ˆQT f ξ dz ∀ξ ∈ W p(•) (Q T ), (4.2.46) which yields ˆQT u t ξ dz + ˆQT η • ∇ξ dz = ˆQT f ξ dz ∀ξ ∈ W p(•) (Q T ). ( 4 

.2.47)

To identify η, we use the monotonicity argument. Take ξ = u k in (4.2.46): 

ˆQT u k t u k dz + ˆQT γ k (z, ∇u k )∇u k • ∇u k dz = ˆQT f u k dz. ( 4 
∈ W p(•) (Q T ) ˆQT γ k (z, ∇u k )∇u k • ∇u k dz ≥ ˆQT γ k (z, ∇φ)∇φ • ∇(u k -φ) dz + ˆQT γ k (z, ∇u k )∇u k • ∇φ dz = ˆQT (γ k (z, ∇φ) -|∇φ| p-2 )∇φ • ∇(u k -φ) dz + ˆQT γ k (z, ∇u k )∇u k • ∇φ dz + ˆQT |∇φ| p-2 ∇φ • ∇(u k -φ) dz ≡ J 1 + J 2 + J 3 ,
where

J 2 → ˆQT η • ∇φ dz, J 3 → ˆQT |∇φ| p-2 ∇φ • ∇(u -φ) dz as k → ∞.
Since (γ k (z, ∇φ) -|∇φ| p-2 )∇φ → 0 a.e. in Q T as k → ∞, and the integrand of J 1 has the majorant 

(γ k (z, ∇φ) -|∇φ| p-2 )∇φ ≤ 2(1 + |∇φ| 2 ) p(z) 2 ≤ C 1 + |∇φ| p(z) , J 1 →
∈ W p(•) (Q T ) ˆQT |∇φ| p(z)-2 ∇φ -η • ∇(u -φ) dz ≥ 0.
Choosing φ = u + λζ with λ > 0 and ζ ∈ W p(•) (Q T ), simplifying and letting λ → 0 + , we obtain the inequality

ˆQT |∇u| p(z)-2 ∇u -η • ∇ζ dz ≥ 0 ∀ζ ∈ W p(•) (Q T ),
which means that in (4.2.47) η coincides with |∇u| p(z)-2 ∇u. Since u ∈ C([0, T ]; L 2 (Ω)), the initial condition is fulfilled by continuity.

By virtue of (4.2.38), (4.2.39), the subsequence convergent to the solution may be chosen so that |∇u k | q(x,t) → |∇u| q(x,t) -weakly in L ∞ (0, T ; L 1 (Ω)). Estimate (4.2.5) follows then from the lower semicontinuity of the modular exactly as in the proof of (4.2.38).

Uniqueness of the constructed strong solution of problem (4.2.1) stems from the monotonicity of the mapping γ 0 (z, s)s and the formula of integration by parts.

Higher integrability of the gradient

Let us fix δ ∈ (0, r * ). According to (4.2.39) ∇u k p(•)+δ,Q T ≤ C δ with an independent of k constant C, which allows one to choose a subsequence (for which we use the same notation), such that 

∇u k ∇u in L p(•)+δ (Q T ).
ˆQT F k (z, ∇u k ) dz → ˆQT F 0 (z, ∇u) dz as k → ∞
and F (z, s) → F 0 (z, s) = |s| p as → 0 locally uniformly with respect to (z, s) ∈ Q T × R N . Indeed:

( 2 + |s| 2 ) p-2 2 |s| 2 -|s| p = |s| 2 ˆ1 0 d dθ (θ 2 + |s| 2 ) p-2 2 dθ = |s| 2 2 |p -2| 2 ˆ1 0 (θ 2 + |s| 2 ) p-4 2 dθ ≤ |p -2| 2        2 (1 + |s| 2 ) p + -2 2 if p ≥ 2, 2 p - p - if 1 < p < 2.
By Proposition 4.2.1, ∇u k → ∇u a.e. in Q T .

Let us fix i, j ∈ {1, 2, . . . , N }. By Theorem 4.2.5

D j γ 1 2 k (z, ∇u k )D i u k 2,Q T ≤ C uniformly in k , therefore there exists η ij ∈ L 2 (Q T ) such that D j γ 1 2 k (z, ∇u k )D i u k η ij in L 2 (Q T ). The poitwise convergence ∇u k → ∇u yields the pointwise convergence γ 1 2 k (z, ∇u k )∇u k → |∇u| p(z)-2 2
∇u, by virtue of (4.2.39) γ

1 2 k (z, ∇u k )∇u k 2+δ,Q T are uni- formly bounded for some δ > 0. It follows from the Vitali convergence theorem that γ 1 2 k (z, ∇u k )∇u k → |∇u| p(z)-2 2 ∇u in L 2 (Q T ). It follows that η ij = D j |∇u| p(z)-2 2 D i u : for every φ ∈ C ∞ (Q T ), supp φ Q T , -(η ij , φ) 2,Q T = -lim k→∞ D j γ 1 2 k (z, ∇u k )D i u k , φ 2,Q T = lim k→∞ γ 1 2 k (z, ∇u k )D i u k , D j φ 2,Q T = |∇u| p(z)-2 2 D i u, D j φ 2,Q T .

Double phase parabolic problem with variable growth

Let N ≥ 2 and p -> 2N N +2 . Assume that p -< 2 and, thus,

Q - T = Q T ∩ {z : p(z) < 2} = ∅.
Arguing as in the proof of Theorem 4.2.5 we find that for every

D Q - T ˆD |D 2 ij u | p(z) dz = ˆD γ (z, ∇u )|D 2 ij u | 2 p(z) 2 γ - p(z) 2 (z, ∇u (m) ) dz ≤ ˆD γ (z, ∇u )|D 2 ij u | 2 dz + ˆD( 2 + |∇u | 2 ) p(z) 2 dz ≤ C with a constant C independent of and D. It follows that D 2 ij u k ζ ∈ L p(•) (D) (up to a subsequence). Because of the weak convergence ∇u k ∇u in L p(•) (Q T ), it is necessary that ζ = D 2 ij u. The estimate D 2 ij u p(•),D ≤ C follows from the uniform estimate on D 2 ij u .

Double phase parabolic problem with variable growth

In this section, we study the following parabolic problem with the homogeneous Dirichlet boundary conditions:

           u t -div |∇u| p(z)-2 ∇u + a(z)|∇u| q(z)-2 ∇u = F (z, u) in Q T , u = 0 on Γ T , u(x, 0) = u 0 (x) in Ω, (4.3.1) 
where z = (x, t) denotes the point in the cylinder Q T = Ω × (0, T ] and Γ T = ∂Ω × (0, T ) is the lateral boundary of the cylinder, Ω ⊂ R N be a smooth bounded domain, N ≥ 2 and 0 < T < ∞. The nonlinear source has the form

F (z, v) = f 0 (z) + b(z)|v| σ(z)-2 v. (4.3.2)
Here a ≥ 0, b, p, q, σ and f 0 are given functions of the variables z ∈ Q T .

Assumptions and main results

Let p, q : Q T → R be measurable functions satisfying the conditions

2N N + 2 < p -≤ p(z) ≤ p + in Q T , 2N N + 2 < q -≤ q(z) ≤ q + in Q T , p ± , q ± = const. (4.3.3)
Moreover, let us assume that p, q ∈ W 1,∞ (Q T ) as functions of variables z = (x, t): there exist positive constants C * , C * * , C * , C * * such that ess sup The modulating coefficient a(•) is assumed to satisfy the following conditions:

Q T |∇p| ≤ C * < ∞, ess sup Q T |p t | ≤ C * , ess sup Q T |∇q| ≤ C * * < ∞, ess sup Q T |q t | ≤ C * * . ( 4 
a(z) ≥ 0 in Q T , a ∈ C([0, T ]; W 1,∞ (Ω)), ess sup Q T |a t | ≤ C a , C a = const. (4.3.5)
We do not impose any condition on the null set of the function a in Q T and do not distinguish between the cases of degenerate and singular equations. It is possible that p(z) < 2 and q(z) > 2 at the same point z ∈ Q T .

Definition 4.3.1. A function u : Q T → R is called strong solution of problem (4.3.1) if (i) u ∈ W q(•) (Q T ), u t ∈ L 2 (Q T ), |∇u| ∈ L ∞ (0, T ; L s(•) (Ω)) with s(z) = max{2, p(z)}, (ii) for every ψ ∈ W q(•) (Q T ) with ψ t ∈ L 2 (Q T ) ˆQT u t ψ dz + ˆQT (|∇u| p(z)-2 + a(z)|∇u| q(z)-2 )∇u • ∇ψ dz = ˆQT F (z, u)ψ dz, (4.3.6) (iii) for every φ ∈ C 1 0 (Ω) ˆΩ(u(x, t) -u 0 (x))φ dx → 0 as t → 0.
The main results are given in the following theorems. ,

such that p(z) ≤ q(z) ≤ p(z) + r 2 in Q T . (4.3.7)
If a(•) satisfies conditions (4.3.5) and b ≡ 0, then for every

f 0 ∈ L 2 (0, T ; W 1,2 0 (Ω)) and u 0 ∈ W 1,2 0 (Ω) with ˆΩ |∇u 0 | 2 + |∇u 0 | p(x,0) + a(x, 0)|∇u 0 | q(x,0) dx = K < ∞ (4.3.8)
problem (4.3.1) has a unique strong solution u. This solution satisfies the estimate

u t 2 2,Q T + ess sup (0,T ) ˆΩ |∇u| s(z) + a(z)|∇u| q(z) dx + ˆQT |∇u| p(z)+r dz ≤ C (4.3.9)
with the exponent s(z) = max{2, p(z)} and a constant C which depends on N, ∂Ω, T, p ± , q ± , r, the constants in conditions (4.3.4), (4.3.5), f 0 L 2 (0,T ;W 1,2 0 (Ω)) and K. (i) Assume that b, σ are measurable bounded functions defined on Q T ,

∇b ∞,Q T < ∞, ∇σ ∞,Q T < ∞, 2 ≤ σ -≤ σ + < 1 + p - 2 , σ -= ess inf Q T σ(z), σ + = ess sup Q T σ(z).
Then for every f 0 ∈ L 2 (0, T ; W 1,2 0 (Ω)) and u 0 ∈ W 

∞,Q T , ∇σ ∞,Q T , σ ± , ess sup Q T |b|.
(ii) The strong solution is unique if p(•), q(•) satisfy the conditions of Theorem 4.3.1 and either σ ≡ 2, or b(z) ≤ 0 in Q T .

Auxiliary propositions

Until the end of this section, the notation p(•), q(•), a(•) is used for functions not related to the exponents and coefficient in (4.3.1) and (4.3.16).

Lemma 4.3.1 (Lemma 1.32, [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF]).

Let ∂Ω ∈ Lip and p ∈ C 0 (Q T ). Assume that u ∈ L ∞ (0, T ; L 2 (Ω)) ∩ W 1,p(•) 0 (Q T ) and ess sup (0,T ) u(•, t) 2 2,Ω + ˆQT |∇u| p(z) dz = M < ∞.
Then

u p(•),Q T ≤ C, C = C(M, p ± , N, ω),
where ω is the modulus of continuity of the exponent p(•).

The proof in [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF] is given for the case Ω = B R (x 0 ). To adapt it to the general case, it is sufficient to consider the zero continuation of u to a circular cylinder containing Q T .

Let us accept the notation

β (s) = 2 + |s| 2 , ϕ (z, s) = ( 2 + |s| 2 ) p(z)-2 2 + a(z)( 2 + |s| 2 ) q(z)-2 2 , s ∈ R N , z ∈ Q T , ∈ (0, 1). (4.3.10)
With certain abuse of notation, we will denote by ϕ (x, s) the same function but with the exponents p, q and the coefficient a depending on the variable x ∈ Ω. 

K = ˆ∂Ω a(x)( 2 + |∇v| 2 ) p(x)-2 2 (∆v (∇v • n) -∇(∇v • n) • ∇v) dS, (4.3.11)
where n stands for the exterior normal to ∂Ω. There exists a constant L = L(∂Ω) such that

K ≤ L ˆ∂Ω a(x)( 2 + |∇v| 2 ) p(x)-2 2 |∇v| 2 dS.
Lemma 4.3.2 follows from the well-known assertions, see, e.g., [180, Ch.1, Sec.1.5] for the case a ≡ 1, N ≥ 2, or [START_REF] Antontsev | Global higher regularity of solutions to singular p(x,t)-parabolic equations[END_REF]Lemma A.1] for the case of an arbitrary dimension. Fix an arbitrary point ξ ∈ ∂Ω and introduce the local coordinate system {y} with the origin ξ. The system is chosen so that y N coincides with the direction n. There is a neighborhood of ξ where ∂Ω is represented in the form y N = ω(y 1 , . . . , y N -1 ) with a twice differentiable function ω. In the local coordinates

I ∂Ω ≡ ∆v (∇v • n) -∇(∇v • n) • ∇v = N -1 i=1 D 2 y i y i wD y N w -D 2 y i y N wD y i w ,
where w(y) = v(x), and

I ∂Ω (ξ) = -(D y N w(0)) 2 N -1 i=1 D 2 y i y i ω(0) = -(∇v(ξ) • n) 2 N -1 i=1 D 2 y i y i ω(0).
Since 

Ω. Assume that a, q ∈ W 1,∞ (Ω), with ∇q ∞,Ω ≤ L < ∞, ∇a ∞,Ω ≤ L 0 < ∞.
There exists a constant δ = δ(∂Ω) such that for every u

∈ W 1,q(•) (Ω) δ ˆ∂Ω a(x)( 2 + |u| 2 ) q(x)-2 2 |u| 2 dS ≤ C ˆΩ a(x)|u| q(x)-1 |∇u| + a(z)|u| q(x) | ln |u|| + |u| q(x) + 1 dx (4.3.12)
with a constant C = C(q + , L, L 0 , N, Ω).

Auxiliary propositions

Proof. By [162, Lemma 1.5.1.9] there exists δ > 0 and µ ∈ (C ∞ (Ω)) N such that µ • n ≥ δ a.e.

on ∂Ω. By the Green formula

δ ˆ∂Ω a(x)|u| q(x) dS ≤ ˆ∂Ω a(x)|u| q(x) (µ • n) dS = ˆΩ div(a(x)|u| q(x) µ) dx = ˆΩ a(x) q(x)|u| q(x)-2 u(∇u • µ) + |u| q(x) ln |u|(∇q • µ) + |u| q(x) div µ + |u| q(x) (∇a • µ) dx ≤ q + max Ω |µ| ˆΩ a(x)|u| q(x)-1 |∇u| dx + ∇q ∞,Ω max Ω |µ| ˆΩ a(x)|u| q(x) | ln |u|| dx + max Ω | div µ| ˆΩ a(x)|u| q(x) dx + max Ω |µ| |∇a| L ∞ (Ω) ˆΩ |u| q(x) dx ≤ C ˆΩ a(x)|u| q(x)-1 |∇u| + a(x)|u| q(x) | ln |u|| + |u| q(x) dx
with C = C(N, q + , L, L 0 , Ω). This inequality implies (4.3.12) because

a(x)( 2 + |u| 2 ) q(x)-2 2 |u| 2 ≤ a(x)( 2 + |u| 2 ) q(x) 2 ≤ C + a(x)|u| q(x)
with an independent of u constant C. 

∈ (0, 1) ˆ∂Ω a(x)( 2 + |u| 2 ) q(x)-2 2 |u| 2 dS ≤ λ ˆΩ a(x)( 2 + |u| 2 ) q(x)-2 2 |∇u| 2 dx + L 0 ˆΩ |u| q(x) dx + L ˆΩ a(z)|u| q(x) | ln |u|| dx + K (4.3.13)
with independent of u constants K, L, L 0 .

Proof. We transform the first term on the right-hand side of (4.3.12) using the Cauchy inequality: then for every λ ∈ (0, 1)

a|u| q-1 |∇u| ≤ (a( 2 + |u| 2 ) q-2 2 |∇u| 2 ) 1 2 (a( 2 + |u| 2 ) q 2 ) 1 2 ≤ λa( 2 + |u| 2 ) q-2 2 |∇u| 2 + Ca( 2 + |u| 2 ) q 2 . Theorem 4.3.3. Let ∂Ω ∈ C 2 , u ∈ C 2 (
q : Ω → [q -, q + ] ⊂ 2N N + 2 , ∞ , q ∈ W 1,∞ (Ω), ess sup Ω |∇q| = L. If for a.e. x ∈ Ω q(x) < p(x) + r with 2 N + 2 < r < 4p - p -(N + 2) + 2N ,
ˆ∂Ω ϕ (x, ∇u)|∇u| 2 dS ≤ λ ˆΩ ϕ (x, ∇u)|u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx (4.3.14)
with a constant C depending on λ and the constants p ± , N , L, L 0 , but independent of u.

Proof. Applying (4.3.13) to |∇u| we obtain

ˆ∂Ω a(x)( 2 + |∇u| 2 ) q(x)-2 2 |∇u| 2 dS ≤ λ ˆΩ a(x)( 2 + |∇u| 2 ) q(x)-2 2 |u xx | 2 dx + L 0 ˆΩ |∇u| q(x) dx + L ˆΩ |∇u| q(x) ln |∇u|| dx + K (4.3.15)
with independent of u constants L, K, L 0 . Choose 0 < r 1 < r 2 < r * so small that q(x) + r 1 < p(x) + r 2 and

|∇u| q(x) | ln |∇u|| ≤    |∇u| q(x)+r 1 (|∇u| -r 1 | ln |∇u||) ≤ C(r 1 , q + )|∇u| q(x)+r 1 if |∇u| ≥ 1, |∇u| q -| ln |∇u|| ≤ C(q -) if |∇u| ∈ (0, 1). ≤ C 1 + |∇u| q(x)+r 1
with a constant C independent of u. Thus, there exists a constant C such that

|∇u| q(x) | ln |∇u|| ≤ C(1 + |∇u| q(x)+r 1 ) ≤ C(1 + |∇u| p(x)+r 2 ) in Ω.
Using this inequality and then applying Lemma 4.2.3 we continue (4.3.15) as follows:

ˆ∂Ω a(x)( 2 + |∇u| 2 ) q(x)-2 2 |∇u| 2 dS ≤ λ ˆΩ a(x)( 2 + |∇u| 2 ) q(x)-2 2 |u xx | 2 dx + C 1 + ˆΩ |∇u| p(x)+r 2 dx ≤ λ ˆΩ a(x)( 2 + |∇u| 2 ) q(x)-2 2 |u xx | 2 dx + λ ˆΩ( 2 + |∇u| 2 ) p(x)-2 2 |u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx = λ ˆΩ ϕ (x, ∇u)|u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx .
Adding to this inequality the inequality corresponding to q = p and a ≡ 1, we arrive at (4.3.14).

Regularized problem

Regularized problem

Given > 0, let us consider the following family of regularized double phase parabolic equations:

         ∂ t u -div(ϕ (z, ∇u)∇u) = F (z, u) in Q T , u = 0 on Γ T , u(0, .) = u 0 in Ω, ∈ (0, 1), (4.3.16) 
where F (z, u) is defined in (4.3.2) and ϕ (z, ∇u)∇u is the regularized flux function.

Let > 0 be a fixed parameter. The sequence {u (m) } of finite-dimensional Galerkin's approximations for the solutions of the regularized problem (4.3.16) is sought in the form

u (m) (x, t) = m j=1 u (m) j (t)φ j (x) (4.3.17)
where φ j ∈ W 1,2 0 (Ω) and λ j > 0 are the eigenfunctions and the corresponding eigenvalues of the problem (∇φ j , ∇ψ)

2,Ω = λ j (φ j , ψ) 2,Ω ∀ψ ∈ W 1,2 0 (Ω). (4.3.18) 
The systems {φ j } and {λ -1 2 j φ j } are the orthogonal bases of L 2 (Ω) and W 1,2 0 (Ω). The coefficients u (m) j (t) are characterized as the solutions of the Cauchy problem for the system of m ordinary differential equations

     (u (m) j ) (t) = -ˆΩ ϕ (z, ∇u (m) )∇u (m) • ∇φ j dx + ˆΩ F (z, u (m) )φ j dx, u (m) j (0) = (u (m) 0 , φ j ) 2,Ω , j = 1, 2, . . . , m, (4.3.19)
where ϕ is defined in (4.3.10) and the functions u (m) 0 are chosen in such a way that

u (m) 0 = m j=1 (u 0 , φ j ) 2,Ω φ j ∈ span{φ 1 , φ 2 , . . . , φ m }, u (m) 0 u 0 in W 1,2 0 (Ω) if max Ω q(x, 0) ≤ 2, in W 1,r(•) 0 (Ω) if max Ω q(x, 0) > 2,
where r(x) = max{2, q(x, 0)}. (m) to the maximal existence interval (0, T ).

∇u (m) (•, T m ) 2 2,Ω + ˆΩ |∇u (m) (x, T m )| p(x,Tm) + a(x, T m )|∇u (m) (x, T m )| q(x,Tm) dx ≤ C + f 0 2 2,Q T + ∇u (m) 0 2 2,Ω + ˆΩ |∇u (m) 0 | p(x,0) + a(x, 0)|∇u (m) 0 | q(x,

4.3.4

The choice of the sequence {u (m) 0 }

In the case sup q(x, 0) ≤ 2 the embedding W 1,2 0 (Ω) ⊂ W 1,q(•,0) 0

(Ω) allows us to take u

(m) 0 = m i=1 u (m) i (0)φ i . Let sup q(x, 0) > 2.
We approximate the initial function u 0 by the sequence of finite-dimensional approximations for the solution of the elliptic problem

β(x, u)u -div (α(x, ∇u)∇u) = f -div Φ in Ω, u = 0 on ∂Ω (4.3.21)
where

β(x, u)u = |u| r(x)-2 u + a 0 (x)|u| s(x)-2 u, α(x, ∇u)∇u = |∇u| r(x)-2 ∇u + a 0 (x)|∇u| s(x)-2 ∇u, a 0 (x) = a(x, 0), r(x) = max{2, p(x, 0)} ≥ 2, s(x) = max{2, q(x, 0)},
and

f = β(x, u 0 )u 0 , Φ = α(x, ∇u 0 )∇u 0 . (4.3.22)
It is assumed that the exponents p(x, 0), q(x, 0) and the coefficient a 0 (x) satisfy conditions (4.3.3), (4.3.4), (4.3.5), (4.2.19). Since u 0 ∈ W 1,2 0 (Ω) and satisfies condition (4.3.8), then u 0 ∈ L s(•) (Ω) by virtue of Sobolev type embedding and condition (4.2.19) on the gap between p(x, 0) and q(x, 0).

A natural analytic framework for the study of problem (4.3.21) is provided by the Musielak-Orlicz spaces. We introduce these spaces following [START_REF] Fan | Differential equations of divergence form in Musielak-Sobolev spaces and a subsupersolution method[END_REF]Sec.1], see also [START_REF] Chlebicka | A pocket guide to nonlinear differential equations in musielak-orlicz spaces[END_REF][START_REF] Chlebicka | Parabolic equation in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev's phenomenon[END_REF]. Let us define the function

H : Ω × [0, ∞) → [0, ∞) as H(x, t) = t r(x) + a 0 (x)t s(x) . (4.3.23)
The function H is a generalized N -function: for every t ≥ 0 H(•, t) is measurable in Ω, for a.e. x ∈ Ω the function H(x, •) is even and convex, H(x, 0) = 0, H(x, t) > 0 for t = 0 and

lim t→0 H(x, t) t = 0, lim t→∞ H(x, t) t = ∞.
The function H satisfies condition (∆ 2 ): there is a positive constant K such that

H(x, 2t) ≤ KH(x, t) for x ∈ Ω, t ≥ 0.
The set equipped with the Luxemburg norm

L H (Ω) = u : Ω → R | u is measurable, ρ H (u) = ˆΩ H(x, |u|) dx < ∞
u H = inf λ > 0 : ρ H u λ ≤ 1
becomes a Banach space. The function

H * (x, s) = sup t≥0 (st -H(x, t)), x ∈ Ω, s ≥ 0,
is called the complementary to H function in the sense of Young. For H defined by (4.3.23)

H * (x, t) = (r(x) -1)t r(x) + (s(x) -1)a 0 (x)t s(x) , x ∈ Ω, t ≥ 0.
The function H * also satisfies condition (∆ 2 ), and H is the complementary function to H * .

The following properties hold:

Proposition 4.3.1 (Propositions 1.1, 1.3, [119]). For every u ∈ L H (Ω), v ∈ L H * (Ω) (i) ˆΩ H(x, |u|) dx < 1 ⇔ u H < 1, (ii) u n → u in L H (Ω) ⇔ ˆΩ H(x, |u n |) dx → ˆΩ H(x, |u|) dx as n → ∞, (iii) | v, u H * ,H | = ˆΩ u v dx ≤ 2 u H v H * , (iv) H t (x, |t|) t=u := r(x)|u| r(x)-2 u + a 0 (x)s(x)|u| s(x)-2 u ∈ L H * (Ω), (v) st ≤ H(x, t) + C( )H * (x, s
) for all > 0, x ∈ Ω, s, t ≥ 0, and equality holds if s = H t (x, t) and = 1, (vi) H(x, t) ≤ H t (x, t)t ≤ H(x, 2t) for x ∈ Ω and t ≥ 0. By V(Ω) we denote the Musielak-Sobolev space

V(Ω) = u ∈ L H (Ω) : |∇u| ∈ L H (Ω) with the norm u V = u H + ∇u H .
Let us define the space V 0 (Ω) as the closure of C ∞ 0 (Ω) with respect to the norm u V . By [119, Propositions 1.7, 1.8] the space V 0 (Ω) is a separable and reflexive Banach space.

Definition 4.3.2. A function

u ∈ V 0 (Ω) is called weak solution of problem (4.3.21) if for every φ ∈ V 0 (Ω) ˆΩ (β(x, u)uφ + α(x, ∇u)∇u • ∇φ) dx = ˆΩ (f φ + Φ • ∇φ) dx.
We want to construct a solution of problem (4.3.21) as the limit of the sequence of finitedimensional approximations in the same basis we use to approximate the solution of the evolution problems. Let us define the operator

A(u), v = ˆΩ β(x, u)uv dx + ˆΩ α(x, ∇u)∇u • ∇v dx ∀ u, v ∈ V(Ω).
Solvability of problem (4.3.21) will follow from the following properties of the operator A.

(a) A : V 0 → V * ≡ v ∈ L H * (Ω)| |∇v| ∈ L H * (Ω) . By the properties of ρ H (•), for every u, v ∈ V 0 (Ω) we have β(x, u)u ∈ L H * (Ω), α(x, ∇u)∇u ∈ (L H * (Ω)) N and | A(u), v V * ,V | = ˆΩ β(x, u)uv dx + ˆΩ α(x, ∇u)∇u • ∇v dx ≤ 2 ( β(x, u)u H * v H + α(x, ∇u)∇u H * ∇v H ) ≤ C ( u H v H + ∇u H ∇v H ) ≤ C u V(Ω) v V(Ω) . (b) A is strictly monotone: for every ξ, ζ ∈ R N , y, z ∈ R, and x ∈ Ω (α(x, ξ)ξ -α(x, ζ)ζ, ξ -ζ) ≥ 2 -r(x) |ξ -ζ| r(x) + a(x)2 -s(x) |ξ -ζ| s(x) , (β(x, y)y -β(x, z)z, y -z) ≥ 2 -r(x) |y -z| r(x) + a(x)2 -s(x) |y -z| s(x) . (4.3.24) (c) A is hemicontinuous: for all u, v, w ∈ V 0 (Ω) the function λ → A(u + λv), w V * ,V is continuous.
We look for a solution of problem (4.3.21) as the limit of the sequence u m = m i=1 c i φ i ∈ P m , where φ i are the eigenfunction for the (-∆) operator normalized by the condition φ i 2,Ω = 1, P m = span{φ 1 , . . . , φ m }. The set P m ⊂ V 0 (Ω) is isomorphic to the space R m equipped with the usual scalar product (x, y) = m i=1 x i y i and the norm |x| 2 m = m i=1 x 2 i . The constant vector c = (c 1 , . . . , c m ) ∈ R m is the solution of the system of nonlinear algebraic equations G i (c) = 0, where Gathering these relations with δ = 1 2 and using Young's inequality once again (recall that r(x) ≥ 2) we have: for the sufficiently large 

G i (c) ≡ A(u m ), φ i V * ,V -f, φ i H * ,H -Φ, ∇φ i H * ,H , i = 1,
A(u m ), u m V * ,V = ρ H (u m ) + ρ H (|∇u m |), Φ, ∇u m H * ,H = ˆΩ |∇u 0 | r(x)-2 + a 0 |∇u 0 | s(x)-2 ∇u 0 • ∇u m dx ≤ ˆΩ |∇u 0 | r(x)-1 |∇u m | + a 1 s(x) 0 |∇u 0 | s(x)-1 a 1 s(x) 0 |∇u m | dx ≤ δρ H (|∇u m |) + C δ ρ H (|∇u 0 |), f, u m H * ,H ≤ δρ H (u m ) + C δ ρ H (u 0 )
|c| m = ρ ≡ ρ(f, Φ) (G(c), c) ≥ 1 2 (ρ H (u m ) + ρ H (|∇u m |)) -C (ρ H (|∇u 0 |) + ρ H (|∇u 0 |)) ≥ -C + 1 2 ∇u m 2 2,Ω -C (ρ H (u 0 ) + ρ H (|∇u 0 |)) ≥ -C + 1 2 C u m 2 2,Ω -C (ρ H (u 0 ) + ρ H (|∇u 0 |)) = |c| 2 m 2 C -C -C (ρ H (u 0 ) + ρ H (|∇u 0 |)) ≥ 0, ( 4 
ρ H (u m ) + ρ H (|∇u m |) ≤ C (ρ H (u 0 ) + ρ H (|∇u 0 |)) (4.3.28) 
with an independent of m constant C.

Since V 0 (Ω) is separable, V 0 (Ω) ⊂ W 1,r(•) 0 (Ω), the embedding W 1,r(•) 0 (Ω) ⊂ L s(•) (Ω) is compact and L s(•) (Ω) ⊂ L H (Ω)
, there is a subsequence (we assume that it coincides with the whole sequence) and functions η ∈ (L For every m ∈ N and

H * (Ω)) N , u ∈ L H (Ω) such that (i) u m → u in L H (Ω), ∇u m ∇u in L H (Ω), (ii) β(•, u m )u m → β(•, u)u in L H * (Ω), (iii) α(•, ∇u m )∇u m η in (L H * (Ω)) N . ( 4 
0 ≤ H * (x, |β(x, u m )u m -β(x, u)u|) ≤ C (H * (x, |β(x, u m )u m )|) + H * (x, |β(x, u)u)|)) ≤ C H * (x, |H t (x, |t|)|) t=um + H * (x, |H t (x, |t|)|) t=u = C (H t (x, |t|)| t=um u m -H(x, |u m |) + H t (x, |t|)| t=u u -H(x, |u|)) ≤ C(K -1) (H(x, |u m |) + H(x, |u|)) . ( 4 
φ k ∈ P k with k ≤ m A(u m ), φ k V * ,V = f, φ k H * ,H + Φ, ∇φ k H * ,H .
Letting m → ∞ we obtain

β(x, u)u, φ k H * ,H + η, ∇φ k H * ,H = f, φ k H * ,H + Φ, ∇φ k H * ,H .
By the monotonicity of α(•, ∇u m )∇u m , for every

ψ ∈ P m α(x, ∇u m )∇u m , ∇u m H * ,H ≥ α(x, ∇u m )∇u m , ∇ψ H * ,H + α(x, ∇ψ)∇ψ, ∇u m -∇ψ H * ,H , thence α(x, ∇u m )∇u m , ∇ψ H * ,H + α(x, ∇ψ)∇ψ, ∇u m -∇ψ H * ,H ≤ α(x, ∇u m )∇u m , ∇u m H * ,H = f, u m H * ,H + Φ, ∇u m H * ,H -β(x, u m )u m , u m H * ,H .
The right-hand side and both terms on the left-hand side of this inequality have limits as m → ∞, whence α(x, ∇ψ)∇ψ -η, ∇u -∇ψ H * ,H ≤ 0 for every ψ ∈ P l with any finite l. It follows that the same is true for every ψ ∈ V 0 (Ω). To identify η we take ψ = u + λζ with λ > 0 and ζ ∈ V 0 (Ω). Simplifying the resulting inequality, sending λ → 0 + and using hemicontinuity of α(x, ξ)ξ we find that α(x, ∇u)∇u -η, ∇ζ H * ,H ≤ 0, which is impossible unless this relation is the equality. Uniqueness of the weak solution follows from (4.3.24).

The constructed solution u of problem (4.3.21) is unique and P m u m u in V 0 (Ω). On the other hand, u 0 is another solution of the same problem, therefore u = u 0 a.e. in Ω. By (4.3.28) and due to the choice of the exponents r, s, for every ∈ (0, 1)

∇u m 2 2,Ω + ˆΩ ( 2 + |∇u m | 2 ) p(x,0)-2 2 |∇u m | 2 + a(x, 0)( 2 + |∇u m | 2 ) q(x,0)-2 2 |∇u m | 2 dx ≤ C 1 + ∇u 0 2 2,Ω + F(u 0 , 0) ≤ C (4.3.32)
with an independent of m and constants C, C . 

u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dz ≤ C 1 e T ( f 0 2 2,Q T + u 0 2 2,Ω ) (4.3.33) and ˆQT |∇u (m) | p(z) + a(z)|∇u (m) | q(z) dz ≤ C 2 ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dz + C 3 (4.3.34)
where the constants C i are independent of and m.

Proof. By multiplying j th equation of (4. 

d dt u (m) (•, t) 2 2,Ω = m j=1 u (m) j (t)(u (m) j ) (t) = - m j=1 u (m) j (t) ˆΩ ϕ (z, ∇u (m) )∇u (m) .∇φ j dx + m j=1 ˆΩ f 0 (x, t)φ j (x)u (m) j (t) dx = -ˆΩ ϕ (z, ∇u (m) )|∇u (m) | 2 dx + ˆΩ f 0 (x, t)u (m) dx. (4.3.35)
Using the Cauchy inequality, we obtain 1 2

d dt u (m) (•, t) 2 2,Ω + ˆΩ ϕ (z, ∇u (m) )|∇u (m) | 2 dx ≤ 1 2 f 0 (•, t) 2 2,Ω + 1 2 u (m) (•, t) 2 2,Ω . (4.3.36)
Now, rewriting the last inequality in the equivalent form

1 2 d dt e -t u (m) (•, t) 2 L 2 (Ω) + e -t ˆΩ ϕ (z, ∇u (m) )|∇u (m) | 2 dx ≤ e -t 2 f 0 (•, t) 2 2,Ω
and integrating with respect to t, we arrive at the inequality sup t∈(0,T )

u (m) (•, t) 2 L 2 (Ω) + ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dx dt ≤ Ce T f 0 2 2,Q T + u 0 2 2,Ω (4.3.37) 
where the constant C is independent of and m. Since a(•) is a nonnegative bounded function, the second assertion follows from (4.3.37) and the inequality

a(z)|∇u (m) | q(z) ≤ a(z) 2 + |∇u (m) | 2 q(z) 2 ≤      2a(z) 2 + |∇u (m) | 2 q(z)-2 2 |∇u (m) | 2 if |∇u (m) | ≥ , ( 2 2 
) 

q(z) 2 a(z) ≤ 2 q + 2 a(z) otherwise. ( 4 
If u 0 ∈ W 1,2 0 (Ω), f 0 ∈ L 2 ((0, T ); W 1,2 0 (Ω)
) and b ≡ 0, then for a.e. t ∈ (0, T ) the following inequality holds:

1 2 d dt ∇u (m) (•, t) 2 2,Ω + C 0 ˆΩ ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dx ≤ C 1 1 + ˆΩ |∇u (m) | p(z) dx + ∇u (m) (•, t) 2 2,Ω + f 0 (•, t) 2 W 1,2 0 (Ω) (4.3.39)
with independent of m and constants 0 < C 0 < min{p --1, 1} and C 1 > 0.

Proof. Let us multiply each of equations in (4.3.19) by λ j u (m) j and sum up the results for j = 1, 2, . . . , m: -ˆΩdiv ϕ (z, ∇u (m) )∇u (m) ∆u (m) dx = -

1 2 d dt ∇u (m) (•, t) 2 2,Ω = m j=1 λ j (u (m) j ) (t)u (m) j (t) = m j=1 λ j u (m) j ˆΩ div(ϕ (z, ∇u (m) )∇u (m) ) φ j dx + m j=1 λ j u (m) j ˆΩ f 0 (x, t)φ j dx = -ˆΩ div(ϕ (z, ∇u (m) )∇u (m) ) ∆u (m) dx + ˆΩ f 0 (x, t)∆u (m) dx. (4.3.40) Since ∂Ω ∈ C 2 , then u (m) (•, t) ∈ C 3 (Ω) ∩ C 1 (Ω)
ˆΩ N k=1 (u (m) ) x k x k N i=1 ϕ (z, ∇u (m) )(u (m) ) x i x i dx = - ˆ∂Ω ∆u (m) ϕ (z, ∇u (m) )(∇u (m) • n) dS + ˆΩ N k,i=1 (u (m) ) x k x k x i ϕ (z, ∇u (m) )(u (m) ) x i dx = - ˆ∂Ω ϕ (z, ∇u (m) ) N k,i=1 (u (m) ) x k x k (u (m) ) x i n i -(u (m) ) x k x i (u (m) ) x i n k dS - ˆΩ N k,i=1 (u (m) ) x k x i ϕ (z, ∇u (m) )(u (m) ) x i x k dx = -ˆΩ ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dx + J 1 + J 2 + J ∂Ω + J a ,
where n = (n 1 , . . . , n N ) is the outer normal vector to ∂Ω,

J 1 : = ˆΩ(2 -p(z))( 2 + |∇u (m) | 2 ) p(z)-2 2 -1 N k=1 ∇u (m) • ∇(u (m) ) x k 2 dx + ˆΩ(2 -q(z))a(z)( 2 + |∇u (m) | 2 ) q(z)-2 2 -1 N k=1 ∇u (m) • ∇(u (m) ) x k 2 dx, J 2 = - ˆΩ N k,i=1 (u (m) ) x k x i (u (m) ) x i ( 2 + |∇u (m) | 2 ) p(z)-2 2 p x k 2 ln( 2 + |∇u (m) | 2 ) dx - ˆΩ N k,i=1 (u (m) ) x k x i (u (m) ) x i a(z)( 2 + |∇u (m) | 2 ) q(z)-2 2 q x k 2 ln( 2 + |∇u (m) | 2 ) dx, J ∂Ω = - ˆ∂Ω ϕ (z, ∇u (m) ) ∆u (m) (∇u (m) • n) -∇u (m) • ∇(∇u (m) • n) dS, J a = - ˆΩ N i,k=1 a x k (u (m) ) x i ( 2 + |∇u (m) | 2 ) q(z)-2 2 (u (m) ) x k x i .
Substitution into (4.3.40) leads to the inequality 1 2

d dt ∇u (m) (•, t) 2 2,Ω + ˆΩ ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dx = J 1 + J 2 + J ∂Ω + J a -ˆΩ ∇f 0 • ∇u (m) dx ≤ J 1 + J 2 + J ∂Ω + J a + 1 2 ∇u (m) (•, t) 2 2,Ω + 1 2 f 0 (•, t) 2 W 1,2 0 (Ω) . (4.3.41)
The terms on the right-hand side of (4.3.41) are estimated in three steps.

Step 1: estimate on J 1 . Since a(z) ≥ 0 and p(z) < q(z) in Q T , the term J 1 is merged in the left-hand side. Indeed:

J 1 = ˆ{x∈Ω: p(z)≥2} (2 -p(z)) . . . + ˆ{x∈Ω: p(z)<2}
(2 -p(z)) . . .

+ ˆ{x∈Ω: q(z)≥2}
(2 -q(z)) . . . + ˆ{x∈Ω: q(z)<2}

(2 -q(z)) . . .

≤ ˆ{x∈Ω: p(z)<2} (2 -p(z))( 2 + |∇u (m) | 2 ) p(z)-2 2 -1 N k=1 ∇u (m) • ∇(u (m) ) x k 2 dx + ˆ{x∈Ω: q(z)<2} (2 -q(z))a(z)( 2 + |∇u (m) | 2 ) q(z)-2 2 -1 N k=1 ∇u (m) • ∇(u (m) ) x k 2 dx,
whence

|J 1 | ≤ max{0, 2 -p -} ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + max{0, 2 -q -} ˆΩ a(z)( 2 + |∇u (m) | 2 ) q(z)-2 2 |(u (m) ) xx | 2 dx.
Step 2: estimate on J 2 . By the Cauchy inequality, for every δ 0 > 0

|J 2 | ≤ 1 2 ∇p ∞,Ω ˆΩ   ( 2 + |∇u (m) | 2 ) p(z)-2 4 N k,i=1 |(u (m) ) x k x i |   × |(u (m) ) x i || ln( 2 + |∇u (m) | 2 )|( 2 + |∇u (m) | 2 ) p(z)-2 4 dx + 1 2 ∇q ∞,Ω ˆΩ   (a(z)) 1 2 ( 2 + |∇u (m) | 2 ) q(z)-2 4 N k,i=1 |(u (m) ) x k x i |   × (a(z)) 1 2 |(u (m) ) x i || ln( 2 + |∇u (m) | 2 )|( 2 + |∇u (m) | 2 ) q(z)-2 4 dx ≤ δ 0 ˆΩ ϕ (z, ∇u (m) ) N k,i=1 |(u (m) ) x k x i | 2 dx + C 1 ˆΩ ln 2 ( 2 + |∇u (m) | 2 )ϕ (z, ∇u (m) )|∇u (m) | 2 dx (4.3.42) with a constant C 1 = C 1 (C * , C * * , N, δ 0 ). Let us denote M = C 1 ˆΩ ln 2 ( 2 + |∇u (m) | 2 )ϕ (z, ∇u (m) )|∇u (m) | 2 dx.
For µ 1 ∈ (0, 1) and y > 0 the following inequality holds: Take the numbers r 1 , r 2 such that

y p 2 ln 2 y ≤      y p+µ 1 2 (y -µ 1 2 ln 2 (y)) ≤ C(µ 1 , p + )(y p+µ 1 2 ) if y ≥ 1, y p - 2 ln 2 (y) ≤ C(p -) if y ∈ (0, 1
r 1 ∈ (r * , r * ), r 2 ∈ (0, 1), q(z) + r 2 ≤ p(z) + r 1 < p(z) + r *
and estimate M applying (4.3.43):

M ≤ C 1 + ˆΩ( 2 + |∇u (m) | 2 ) p(z)+r 1 -2 2 |∇u (m) | 2 dx + ˆΩ a(z)( 2 + |∇u (m) | 2 ) q(z)+r 2 -2 2 |∇u (m) | 2 dx with a constant C = C(C 1 , r 1 , r 2 ).
Let us transform the integrand of the second integral using the following inequality: 

( 2 + |∇u (m) | 2 ) q(z)+r 2 -2 2 |∇u (m) | 2 ≤ ( 2 + |∇u (m) | 2 ) q(z)+r 2 2 ≤ 1 + ( 2 + |∇u (m) | 2 ) p(z)+r 1 2 ≤ 1 +    (2 2 ) p(z)+r 1 2 if |∇u (m) | < , 2( 2 + |∇u (m) | 2 ) p(z)+r 1 -2 2 |∇u (m) | 2 if |∇u (m) | ≥ . ( 4 
M ≤ C 1+ ˆΩ( 2 + |∇u (m) | 2 ) p(z)+r 1 -2 2 |∇u (m) | 2 dx ≤ δ 1 ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C 1 + ˆΩ |∇u (m) | p(z) dx (4.3.46)
with any δ 1 ∈ (0, 1) and C = C(δ 1 ). Gathering (4.3.42) and (4.3.46), we finally obtain:

|J 2 | ≤ (δ 0 + δ 1 ) ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C 1 + ˆΩ |∇u (m) | p(z) dx
with a constant C depending on δ i and a(•, t) ∞,Ω , but independent of and m.

Step 3: estimates on J a and J ∂Ω . Let ρ ∈ (r * , r * ) be such that 2q(z) -p(z) < p(z) + ρ < p(z) + r * . Applying Young's inequality and (4.3.45) we obtain the estimate

|J a | ≤ ˆΩ N i,k=1 |a x k ||(u (m) ) x i |( 2 + |∇u (m) | 2 ) q(z)-2 2 |(u (m) ) x k x i | dx ≤ ∇a ∞,Ω ˆΩ( 2 + |∇u (m) | 2 ) 2q(z)-p(z) 4 ( 2 + |∇u (m) | 2 ) p(z)-2 4 |(u (m) ) xx | dx ≤ δ ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C( δ) ˆΩ( 2 + |∇u (m) | 2 ) 2q(z)-p(z) 2 dx ≤ δ ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C 1 + ˆΩ( 2 + |∇u (m) | 2 ) p(z)+ρ 2 dx ≤ δ ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C 1 + ˆΩ( 2 + |∇u (m) | 2 ) p(z)+ρ-2 2 |∇u (m) | 2 dx
where C = C ( ∇a ∞,Ω , N, q) is independent of and m. By Lemma 4.2.3 we obtain

|J a | ≤ δ 2 ˆΩ( 2 + |∇u (m) | 2 ) p(z)-2 2 |(u (m) ) xx | 2 dx + C 1 + ˆΩ |∇u (m) | p(z) dx
for any δ 2 ∈ (0, 1) and a constant C independent of and m.

To estimate J ∂Ω we use Lemma 4.3.2 and Theorem 4.3.3:

|J ∂Ω | ≤ ˆ∂Ω ϕ (z, ∇u (m) ) ∆u (m) (∇u (m) • n) -∇u (m) • ∇(∇u (m) • n) dS ≤ C ˆ∂Ω ϕ (z, ∇u (m) )|∇u (m) | 2 dS ≤ δ 3 ˆΩ ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dx + C 1 + ˆΩ |∇u (m) | p(z) dx
with an arbitrary δ 3 ∈ (0, 1) and C depending upon δ 3 , p, q, a, ∂Ω and their differential properties, but not on and m. To complete the proof and obtain (4.3.39), we gather the estimates of J 1 , J 2 , J a , J ∂Ω and choose δ i so small that min{1, p --1} - 

3 i=0 δ i = η > 0.
∇u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 0 2 L 2 (0,T ;W 1,2 0 (Ω)) (4.3.47) and ˆQT |∇u (m) | q(z) dz + ˆQT |∇u (m) | p(z)+r dz ≤ C for any 0 < r < 4p - p -(N + 2) + 2N (4.3.48)
with constants C, C , C independent of m and .

Proof. Multiplying (4.3.39) by e -2C 1 t and simplifying, we obtain the following differential inequality:

d dt e -2C 1 t ∇u (m) (•, t) 2 2,Ω ≤ Ce -2C 1 t 1 + ˆΩ |∇u (m) | p(z) dx + f 0 (•, t) 2 W 1,2 0 (Ω) .
Integrating it with respect to t and taking into account (4.3.33), (4.3.34) we arrive at the following estimate: for every t ∈ [0, T ]

∇u (m) (•, t) 2 2,Ω ≤ Ce 2C 1 T ∇u 0 2 2,Ω + e T 1 + u 0 2 2,Ω + f 0 2 2,Q T + ∇f 2 2,Q T ≤ Ce C T 1 + u 0 2 W 1,2 0 (Ω) + f 0 2 L 2 (0,T ;W 1,2 0 (Ω)) .

A priori estimates

Substitution of the above estimate into (4.3.39) gives 1 2

d dt ∇u (m) (•, t) 2 2,Ω + C 0 ˆΩ ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dx ≤ C 1 1 + ˆΩ |∇u (m) | p(z) dx + ∇u 0 2 2,Ω + f 0 (•, t) 2 W 1,2 0 (Ω) .
Integrating it with respect to t and using (4.3.34) to estimate the integral of |∇u (m) | p(z) on the right-hand side, we obtain

ˆQT ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 0 2 L 2 (0,T ;W 1,2 0 (Ω)) .
To 

Q + T = Q T ∩ {p(z) + r ≥ 2}, Q - T = Q T ∩ {p(z) + r < 2} and represent ˆQT |∇u (m) | p(z)+r dz = ˆQ+ T |∇u (m) | p(z)+r dz + ˆQ- T |∇u (m) | p(z)+r dz ≡ I + + I -.
Since 

I + ≤ ˆQ+ T ( 2 + |∇u (m) | 2 ) p(z)+r-2 2 |∇u (m) | 2 dz ≤ ˆQT ( 2 + |∇u (m) | 2 ) p(z)+r-2 2 |∇u (m) | 2 dz
B + = Q - T ∩ {z : |∇u (m) | ≥ }, B -= Q - T ∩ {z : |∇u (m) | < }.
I -= ˆB+ ∪B - |∇u (m) | p(z)+r dz = ˆB+ (|∇u (m) | 2 ) p(z)+r-2 2 |∇u (m) | 2 dz + ˆB- p(z)+r dz ≤ 2 2-r-p - 2 ˆB+ ( 2 + |∇u (m) | 2 ) p(z)+r-2 2 |∇u (m) | 2 dz + p -+r T |Ω| ≤ C 1 + ˆQT ( 2 + |∇u (m) | 2 ) p(z)+r-2 2 |∇u (m) | 2 dz .
By combining the above estimates, using the Young inequality, and applying (4. 

ˆQT |∇u (m) | q(z) dz + ˆQT |∇u (m) | p(z)+r dz ≤ 1 + ˆQT |∇u (m) | p(z)+r dz ≤ C 1 + ˆQT ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dz + ˆQT |∇u (m) | p(z) dz ≤ C.
If r ∈ (0, r * ], the required inequality follows from Young's inequality. 

( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) q (•),Q T ≤ C (4.3.50)
with a constant C independent of m and .

Proof. Condition (4.3.7) entails the inequality

q(z)(p(z) -1) q(z) -1 ≤ q(z) ≤ p(z) + r.
By Young's inequality, the assertion follows then from (4.3.49):

ˆQT ( 2 + |∇u (m) | 2 ) q(z)(p(z)-1) 2(q(z)-1) dz ≤ C 1 + ˆQT |∇u (m) | p(z)+r dz ≤ C. Lemma 4.3.7. Assume that in the conditions of Lemma 4.3.5 u 0 ∈ W 1,2 0 (Ω) ∩ W 1,q(•,0) 0 (Ω). Then (u (m) ) t 2 2,Q T + sup (0,T ) ˆΩ ( 2 + |∇u (m) | 2 ) p(z) 2 + a(z)( 2 + |∇u (m) | 2 ) q(z) 2 dx ≤ C 1 + ˆΩ |∇u 0 | p(x,0) + a(x, 0)|∇u 0 | q(x,0) dx + f 0 2 2,Q T (4.3.51)
with an independent of m and constant C, which depends on the constants in conditions 

ˆΩ(u (m) ) 2 t dx + ˆΩ ϕ (z, ∇u (m) )∇u (m) • ∇(u (m) ) t dx = ˆΩ f 0 (u (m) ) t dx. (4.3.52)
Using the identity

a(z)( 2 + |∇u (m) | 2 ) q(z)-2 2 ∇u (m) • ∇(u (m) ) t = d dt   a(z)( 2 + |∇u (m) | 2 ) q(z) 2 q(z)   + a(z)q t (z)( 2 + |∇u (m) | 2 ) q(z) 2 q 2 (z) 1 - q(z) 2 ln(( 2 + |∇u (m) | 2 )) - a t ( 2 + |∇u (m) | 2 ) q(z) 2 q(z)
we rewrite (4.3.52) as

(u (m) ) t (•, t) 2 2,Ω + d dt ˆΩ ( 2 + |∇u (m) | 2 ) p(z) 2 + a(z)( 2 + |∇u (m) | 2 ) q(z) 2 dx = ˆΩ f 0 (u (m) ) t dx - ˆΩ p t ( 2 + |∇u (m) | 2 ) p(z) 2 p 2 (z) 1 - p(z) 2 ln( 2 + |∇u (m) | 2 ) dx - ˆΩ a(z)q t (z)( 2 + |∇u (m) | 2 ) q(z) 2 p 2 (z) 1 - q(z) 2 ln(( 2 + |∇u (m) | 2 )) dx + ˆΩ a t ( 2 + |∇u (m) | 2 ) q(z) 2 q(z) dx ≡ ˆΩ f 0 (u (m) ) t dx + J 1 + J 2 + J 3 . (4.3.53)
The first term on the right-hand side of (4.3.53) is estimated by the Cauchy inequality:

ˆΩ f 0 (u (m) ) t dx ≤ 1 2 (u (m) ) t (•, t) 2 2,Ω + 1 2 f 0 (•, t) 2 2,Ω .
To 

q(z) + r 2 < p(z) + r 1 < p(z) + r * .
Then

3 i=1 |J i | ≤ C 1 1 + ˆΩ |∇u (m) | p(z) dx + ˆΩ |∇u (m) | q(z) dx + C 2 ˆΩ( 2 + |∇u (m) | 2 ) p(z) 2 ln( 2 + |∇u (m) | 2 ) dx + C 3 ˆΩ( 2 + |∇u (m) | 2 ) q(z) 2 ln( 2 + |∇u (m) | 2 ) dx ≤ C 4 1 + ˆΩ( 2 + |∇u (m) | 2 ) p(z)+r 1 2
dx .

The required inequality (4.3.51) follows after gathering the above estimates, integrating the result in t and applying (4.3.32).

(ii) A priori estimates II: the case b ≡ 0

We proceed to derive a priori estimates in the case when the equation contains the nonlinear source. The difference in the arguments consists in the necessity to estimate the integrals of the terms b|u

(m) | σ(z) , b|u (m) | σ(z)-2 u (m) ∆u (m) , b|u (m) | σ(z)-2 u (m) u (m) t .
1) Let us multiply j th equation of (4. 

I 0 ≡ ˆΩ b(z)|u (m) | σ(z) dx.
Let 2(σ + -1) < p -. Using the inequalities of Young and Poincaré we find that for every t ∈ (0, T )

|I 0 | ≤ B 1 + ˆΩ |u (m) | 2(σ + -1) dx + ˆΩ |u (m) | 2 dx ≤ C δ + δ ˆΩ |u (m) | p -dx + ˆΩ |u (m) | 2 dx ≤ C δ + Cδ ˆΩ |∇u (m) | p -dx + C ˆΩ |u (m) | 2 dx ≤ C δ + Cδ ˆΩ |∇u (m) | p(z) dx + C ˆΩ |u (m) | 2 dx
where δ ∈ (0, 1) is an arbitrary constant and C is the constant from inequality (4.1.5) with r = p -. We plug this estimate into (4.3.36) and use (4.3.38) with a ≡ 1 and q substituted by p. Chosing δ sufficiently small, we transform (4.3.36) to the form

1 2 d dt u (m) (•, t) 2 2,Ω +(1-Cδ) ˆΩ ϕ (z, ∇u (m) )|∇u (m) | 2 dx ≤ C 1 + f 0 (•, t) 2 2,Ω + u (m) (•, t) 2 2,Ω .
Integrating this inequality in t we obtain the following counterpart of Lemma 4.3.4. 

Q T and 1 < σ -≤ σ + < 1 + p - 2 , then sup t∈(0,T ) u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dz ≤ C 1 e T ( f 0 2 2,Q T + u 0 2 2,Ω ) + C 0 (4.3.54) and ˆQT |∇u (m) | p(z) + a(z)|∇u (m) | q(z) dx dt ≤ C 2 ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dz + C 3 (4.3.55)
with independent of and m constants C i .

2) Estimate on ∇u (m) (t) and summing the results we arrive at equality (4.3.40) with the additional term in the right-hand side. The new term can be transformed by means of integration by parts in Ω:

I 1 = ˆΩ b(z)|u (m) | σ(z)-2 u (m) ∆u (m) dx ≤ ˆΩ(σ(z) -1)|b(z)||u (m) | σ(z)-2 |∇u (m) | 2 dx + ˆΩ |u (m) | σ(z)-1 |∇b||∇u (m) | dx + ˆΩ |b(z)||u (m) | σ(z)-1 | ln ||u (m) |||∇u (m) ||∇σ| dx ≡ K 1 + K 2 + K 3 .
To estimate K 3 we assume that the functions |b| and |∇σ| are bounded a.e. in Q T and then apply the Cauchy inequality, (4.3.43), and the Poincaré inequality: if 2(σ + -1) < p -, there exists a constant µ > 0 such that 2(σ + -1) + µ ≤ p -

K 3 ≤ C 1 + ∇u (m) (•, t) 2 2,Ω + ˆΩ |u (m) | 2(σ(z)-1+µ) dx ≤ C 1 + ∇u (m) (•, t) 2 2,Ω + ˆΩ |u (m) | 2(σ + -1)+µ dx ≤ C 1 + ∇u (m) (•, t) 2 2,Ω + ˆΩ |∇u (m) | 2(σ + -1)+µ dx ≤ C 1 + ∇u (m) (•, t) 2 2,Ω + ˆΩ |∇u (m) | p(z) dx .
K 2 is estimated likewise: if |∇b| is bounded a.e. in Q T and 2(σ + -1) < p -, then

K 2 ≤ C 1 + ∇u (m) (•, t) 2 2,Ω + ˆΩ |u (m) | 2(σ(z)-1) dx ≤ C 1 + ∇u (m) (•, t) 2 2,Ω + ˆΩ |∇u (m) | p(z) dx .
To estimate K 1 we assume that σ -≥ 2 and notice that the restriction on p -and σ + imposed to estimate K 2 and K 3 yields

4 ≤ 2σ -≤ 2σ + < 2 + p -⇒ p -> 2 ⇒ σ + < 1 + p - 2 < p -.
Using this observation and the Young inequality we estimate K 1 as follows:

K 1 ≤ C ˆΩ |∇u (m) | p(z) dx + ˆΩ |u (m) | p(z) σ(z)-2 p(z)-2 dx ≤ C 1 + ˆΩ |∇u (m) | p(z) dx + ˆΩ |u (m) | p(z) σ + -2 p --2 dx ≤ C 1 + ˆΩ |∇u (m) | p(z) dx + ˆΩ |u (m) | p(z) dx .
Following the proof of Lemma 4.3.6 and taking into account the estimates on K i we arrive at the inequality sup 

(0,T ) ∇u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dz ≤ Ce C T 1 + ∇u 0 2 2,Ω + f 0 2 L 2 (0,T ;W 1,2 0 (Ω)) + C e C T ˆQT |∇u (m) | p(z) dz + ˆQT |u (m) | p(z
-≤ σ + < 1 + p - 2 holds. If ∇b ∞,Q T < ∞ and ∇σ ∞,Q T < ∞, then sup (0,T ) ∇u (m) (•, t) 2 2,Ω + ˆQT ϕ (z, ∇u (m) )|(u (m) ) xx | 2 dz ≤ Ce C T C + u 0 2 W 1,2 0 (Ω) + f 0 2 L 2 (0,T ;W
M 0 ≡ ˆΩ b(z)|u (m) | σ(z)-2 u (m) (u (m) ) t dx.
By Young's inequality

M 0 ≤ C ˆΩ |u (m) | 2(σ(z)-1) dx + 1 2 ˆΩ(u (m) ) 2 t dx.
Combining this inequality with (4.3.51) and taking into account the inequality 2(σ(z) -1) < p(z) following from the inequality 2(σ + -1) < p -, we obtain

1 2 (u (m) ) t 2 2,Q T + sup (0,T ) ˆΩ ( 2 + |∇u (m) | 2 ) p(z) 2 + a(z)( 2 + |∇u (m) | 2 ) q(z) 2 dx ≤ C 1 + ˆΩ |∇u 0 | p(x,0) + a(x, 0)|∇u 0 | q(x,0) dx + f 0 2 2,Q T + C 1 + ˆQT |u | p(z) dz .
The last integral on the right-hand side is estimated by virtue of Lemma 4.3.1 and the estimates of Lemma 4.3.8.

Lemma 4.3.10. Let the conditions of Lemma 4.3.9 be fulfilled. Then

1 2 (u (m) ) t 2 2,Q T + sup (0,T ) ˆΩ ( 2 + |∇u (m) | 2 ) p(z) 2 + a(z)( 2 + |∇u (m) | 2 ) q(z) 2 dx ≤ C 1 + ˆΩ |∇u 0 | p(x,0) + a(x, 0)|∇u 0 | q(x,0) dx + f 0 2 2,Q T + C (4.3.57)
with constants C, C independent of and m.

Existence and uniqueness of strong solution

In this section, we prove that the regularized problem (4.3.16) and the degenerate problem (4.3.1) have strong solutions and derive conditions of uniqueness of these solutions. 

u W q(•) (Q T ) ≤ C 0 , ess sup (0,T ) u (•, t) 2 2,Ω + u t 2 2,Q T + ess sup (0,T ) ∇u (•, t) 2 2,Ω + ess sup (0,T ) ˆΩ ( 2 + |∇u (m) | 2 ) p(z) 2 + a(z)( 2 + |∇u (m) | 2 ) q(z) 2 dx ≤ C 0 (4.3.58)
with a constant C 0 depending on the data but not on . Moreover, u possesses the property of global higher integrability of the gradient: for every

δ ∈ (0, r * ), r * = 4p - p -(N + 2) + 2N
, 

there exists a constant C = C ∂Ω, N, p ± , δ, u 0 W 1,2 0 (Ω) , f L 2 (0,T ;W 1,2 0 (Ω)) such that ˆQT |∇u | p(z)+δ dz ≤ C. ( 4 
u (m) → u -weakly in L ∞ (0, T ; L 2 (Ω)), (u (m) ) t (u ) t in L 2 (Q T ), ∇u (m) ∇u in (L p(•) (Q T )) N , ∇u (m) ∇u in (L q(•) (Q T )) N , ( 2 + |∇u (m) | 2 ) p(z)-2 2 ∇u (m) η in (L q (•) (Q T )) N , ( 2 + |∇u (m) | 2 ) q(z)-2 2 ∇u (m) χ in (L q (•) (Q T )) N . (4.3.60)
In the third line we make use of the uniform estimate (Ω)) and L 2 (0, T ; L 2 (Ω)) respectively, and W

ˆQT ( 2 + |∇u (m) | 2 ) q(z)(p(z)-1) 2(q(z)-1) dz ≤ C 1 + ˆQT |∇u (m) | p(z)
1,q(•,t) 0 (Ω) ⊆ W 1,q - 0 (Ω) → L 2 (Ω). By [235, Sec.8, Corollary 4] the sequence {u (m) } is relatively compact in C([0, T ]; L 2 (Ω)),
i.e., there exists a subsequence {u (m k ) }, which we assume coinciding with {u (m) }, such that

u (m) → u in C([0, T ]; L 2 (Ω)
) and a.e. in Q T . Let us define

P m = φ : φ = m i=1 ψ i (t)φ i (x), ψ i are absolutely continuous in [0, T ] .
Fix some m ∈ N. By the method of construction u (m) ∈ P m . Since P k ⊂ P m for k < m, then for every

ξ k ∈ P k with k ≤ m ˆQT u (m) t ξ k dz + ˆQT ϕ (z, ∇u (m) )∇u (m) • ∇ξ k dz = ˆQT f 0 ξ k dz. (4.3.61) Let ξ ∈ W q(•) (Q T ). The space C ∞ ([0, T ]; C ∞ 0 (Ω)) is dense in W q(•) (Q T ), therefore there exists a sequence {ξ k } such that ξ k ∈ P k and ξ k → ξ ∈ W q(•) (Q T ). If U m U in L q (•) (Q T ), then for every V ∈ L q(•) (Q T ) we have a(z)V ∈ L q(•) (Q T ) and ˆQT aU m V dz → ˆQT aU V dz.
Using this fact we pass to the limit as m → ∞ in (4.3.61) with a fixed k, and then letting k → ∞, we conclude that

ˆQT u t ξ dz + ˆQT η • ∇ξ dz + ˆQT a(z) χ • ∇ξ dz = ˆQT f 0 ξ dz (4.3.62)
for all ξ ∈ W q(•) (Q T ). To identify the limit vectors η and χ we use the classical argument based on monotonicity. The flux function ϕ (z, ∇u (m) )∇u (m) is monotone: 

(ϕ (z, ξ)ξ -ϕ (z, ζ)ζ, ξ -ζ) ≥ 0 for all ξ, ζ ∈ R N , z ∈ Q T , > 0, ( 4 
ϕ (z, ∇u (m) )|∇u (m) | 2 = ϕ (z, ∇u (m) )∇u (m) • (∇u (m) -∇ψ) + ϕ (z, ∇u (m) )∇u (m) • ∇ψ = (ϕ (z, ∇u (m) )∇u (m) -ϕ (z, ∇ψ)∇ψ) • (∇u (m) -∇ψ) + ϕ (z, ∇ψ)∇ψ • (∇u (m) -∇ψ) + ϕ (z, ∇u (m) )∇u (m) • ∇ψ ≥ ϕ (z, ∇ψ)∇ψ • (∇u (m) -∇ψ) + ϕ (z, ∇u (m) )∇u (m) • ∇ψ. (4.3.64)
By taking ξ k = u (m) in (4.3.61) we obtain: for every

ψ ∈ P k with k ≤ m 0 = ˆQT (u (m) ) t u (m) dz + ˆQT ϕ (z, ∇u (m) )|∇u (m) | 2 dz - ˆQT f 0 u (m) dz ≥ ˆQT (u (m) ) t u (m) dz + ˆQT ϕ (z, ∇ψ)∇ψ • ∇(u (m) -ψ) dz + ˆQT ϕ (z, ∇u (m) )∇u (m) • ∇ψ dz - ˆQT f 0 u (m) dz.
Notice that (u (m) , (u 

(m) ) t ) 2,Q T → (u t , u ) 2,Q T as m → ∞
0 ≥ ˆQT u u t dz + ˆQT ϕ (z, ∇ψ)∇ψ • ∇(u -ψ) dz + ˆQT (η + a(z)χ ) • ∇ψ dz - ˆQT f 0 u dz = ˆQT ( 2 + |∇ψ| 2 ) p(z)-2 2 ∇ψ -η • ∇(u -ψ) dz + ˆQT a(z) ( 2 + |∇ψ| 2 ) q(z)-2 2 ∇ψ -χ • ∇(u -ψ) dz.
By the density of ∞ k=1 P k in W q(•) (Q T ), the last inequality also holds for every ψ ∈ W q(•) (Q T ). Take ψ = u + λξ with a constant λ > 0 and an arbitrary ξ

∈ W q(•) (Q T ). Then λ ˆQT ( 2 + |∇(u + λξ)| 2 ) p(z)-2 2 ∇(u + λξ) -η • ∇ξ dz + ˆQT a(z) ( 2 + |∇(u + λξ)| 2 ) q(z)-2 2 ∇(u + λξ) -χ • ∇ξ dz ≤ 0.
Simplifying and letting λ → 0 we find that

ˆQT (ϕ (z, ∇u )∇u -(η + a(z)χ )) • ∇ξ dz ≤ 0 ∀ξ ∈ W q(•) (Q T ), which is possible only if ˆQT (ϕ (z, ∇u )∇u -(η + a(z)χ )) • ∇ξ dz = 0 ∀ξ ∈ W q(•) (Q T ),
The initial condition for u is fulfilled by continuity because u ∈ C([0, T ]; L 2 (Ω)).

Uniqueness of the weak solution is an immediate byproduct of monotonicity. Let u, v are two solutions of problem (4.3.16). Take an arbitrary τ ∈ (0, T ]. Choosing u -v for the test function in equalities (4.3.6) for u and v in the cylinder Q τ = Ω × (0, τ ), subtracting the results and applying (4.3.63) we arrive at the inequality (i) Assume that b, σ are measurable and bounded functions in

1 2 u -v 2 2,Ω (τ ) = ˆQτ (u -v)(u -v) t dz ≤ 0. It follows that u(x, τ ) = v(x,
Q T ∇b ∞,Q T < ∞, ∇σ ∞,Q T < ∞, 2 ≤ σ -≤ σ + < 1 + p - 2 .
Then for every ∈ (0, 1) problem (4. 

every φ ∈ L 2 (Q T ) ˆQT |u (m k ) | σ(z)-2 u (m k ) φ dz → ˆQT |u | σ(z)-2 u φ dz. The sequence v m k = |u (m k ) | σ(z)-2 u (m k ) converges a.e. in Q T to |u | σ(z)-2 u and is uniformly bounded in L 2 (Q T ) because ˆQT v 2 m k dz = ˆQT |u (m k ) | 2(σ(z)-1) dz ≤ C 1 + ˆQT |u (m k ) | p -dz ≤ C 1 + ˆQT |∇u (m k ) | p -dz ≤ C 1 + ˆQT |u (m k ) | p(z) dz ≤ C . It follows that there is v ∈ L 2 (Q T ) such that v m k v in L 2 (Q T )

and by virtue of pointwise convergence it is necessary that

v = |u | σ(z)-2 u a.e. in Q T .
Assume that u 1 , u 2 ∈ W q(•) (Q T ) are two strong solutions of problem (4.3.16). The function u 1 -u 2 is an admissible test-function in the integral identities (4.3.6) for u i . Combining these identities and using (4.3.63) we arrive at the inequality

1 2 u 1 -u 2 2 2,Ω (t) ≤ 1 2 u 1 -u 2 2 2,Ω (t) + ˆt 0 ˆΩ(ϕ (z, ∇u 1 )∇u 1 -ϕ (z, ∇u 2 )∇u 2 ) • ∇(u 1 -u 2 ) dz = ˆt 0 ˆΩ b(z) |u 1 | σ(z)-2 u 1 -|u 2 | σ(z)-2 u 2 (u 1 -u 2 ) dz.
If σ ≡ 2, this inequality takes the form

1 2 u 1 -u 2 2 2,Ω (t) ≤ B ˆt 0 u 1 -u 2 2 2,Ω (τ ) dτ, t ∈ (0, T ), B = ess sup Q T b(z),
whence u 1 -u 2 2,Ω (t) = 0 in (0, T ) by Grönwall's inequality. Let b(z) ≤ 0 in Q T . For σ(z) ≥ 1 the function |s| σ(z)-2 s is monotone increasing as a function of s, therefore 

|u 1 | σ(z)-2 u 1 -|u 2 | σ(z)-2 u 2 (u 1 -u 2 ) ≥ 0 a.
∈ W q(•) (Q T ), η, χ ∈ (L q (•) (Q T )
) N with the following properties:

u k → u -weakly in L ∞ (0, T ; L 2 (Ω)), u k t u t in L 2 (Q T ), ∇u k ∇u in (L q(•) (Q T )) N , ( 2 k + |∇u k | 2 ) p(z)-2 2 ∇u k η in (L q (•) (Q T )) N , ( 2 k + |∇u k | 2 ) q(z)-2 2 ∇u k χ in (L q (•) (Q T )) N .
In the third line we make use of the uniform estimate

ˆQT ( 2 + |∇u | 2 ) q(z)(p(z)-1) 2(q(z)-1) dz ≤ C 1 + ˆQT |∇u | p(z)+r dz ≤ C,
which follows from (4.3.7) and (4.3.59). Moreover,

u ∈ C([0, T ]; L 2 (Ω)). Each of u k satisfies the identity ˆQT u k t ξ dz + ˆQT ϕ k (z, ∇u k )∇u k • ∇ξ dz = ˆQT f 0 ξ dz ∀ξ ∈ W q(•) (Q T ), (4.3.65) which yields ˆQT u t ξ dz + ˆQT (η + a(z)χ) • ∇ξ dz = ˆQT f 0 ξ dz ∀ξ ∈ W q(•) (Q T ). ( 4 

.3.66)

To identify η and χ we use the monotonicity argument. Take ξ = u k in (4.3.65):

ˆQT u k t u k dz + ˆQT ϕ k (z, ∇u k )∇u k • ∇u k dz = ˆQT f 0 u k dz. (4.3.67)
According to (4.3.64), for every

φ ∈ W q(•) (Q T ) ˆQT ϕ k (z, ∇u k )∇u k • ∇u k dz ≥ ˆQT (ϕ k (z, ∇φ) -(|∇φ| p-2 + a(z)|∇φ| q-2 )∇φ • ∇(u k -φ) dz + ˆQT ϕ k (z, ∇u k )∇u k • ∇φ dz + ˆQT (|∇φ| p-2 + a(z)|∇φ| q-2 )∇φ • ∇(u k -φ) dz ≡ J 1,k + J 2,k + J 3,k ,
where

J 2,k → ˆQT (η + a(z)χ) • ∇φ dz, J 3,k → ˆQT (|∇φ| p-2 + a(z)|∇φ| q-2 )∇φ • ∇(u -φ) dz as k → ∞.
Since (ϕ k (z, ∇φ)∇φ -(|∇φ| p-2 + a q-1 q (z)|∇φ| q-2 )∇φ → 0 a.e. in Q T as k → ∞, and because the integrand of J 1,k has the majorant

(( 2 k + |∇φ| 2 ) p-2 2 -|∇φ| p-2 )∇φ p + a q-1 q (z)(( 2 k + |∇φ| 2 ) q-2 2 -|∇φ| q-2 )∇φ) q ≤ C ((1 + |∇φ| 2 ) p(z) 2 + a(z)(1 + |∇φ| 2 ) q(z) 2 ≤ C 1 + |∇φ| p(z) + a(z)|∇φ| q(z) ,
then J 1,k → 0 by the dominated convergence theorem. Combining (4.3.66) with (4.3.67) and letting k → ∞ we find that for every

φ ∈ W q(•) (Q T ) ˆQT (|∇φ| p(z)-2 + a(z)|∇φ| q(z)-2 )∇φ -(η + a(z)χ) • ∇(u -φ) dz ≥ 0.
Choosing φ = u + λζ with λ > 0 and ζ ∈ W q(•) (Q T ), simplifying, and then letting λ → 0 + , we obtain the inequality

ˆQT (|∇u| p(z)-2 ∇u + a(z)|∇u| q(z)-2 ∇u) -(η + a(z)χ) • ∇ζ dz ≥ 0 ∀ζ ∈ W q(•) (Q T ).
Since the sign of ζ is arbitrary, the previous relation is the equality. It follows that in (4.3.66) η + a(z)χ can be substituted by |∇u| p(z)-2 ∇u + a(z)|∇u| q(z)-2 ∇u. Since u ∈ C([0, T ]; L 2 (Ω)), the initial condition is fulfilled by continuity. Estimates (4.3.9) follow from the uniform in estimates of Theorem 4.3.5 and the lower semicontinuity of the modular exactly as in the proof of Theorem 4.3.5. Uniqueness of a strong solution is an immediate consequence of the monotonicity. Theorem 4.3.1 is proven.

To prove Theorem 4.3.2 we only have to check that |u k | σ(z)-2 u k |u| σ(z)-2 u in L 2 (Q T ) (up to a subsequence). This is done as in the case of the regularized problem. 

u(•, t) ∞,Ω ≤ e C 1 t u 0 ∞,Ω + e C 1 t ˆt 0 e -C 1 τ f 0 (•, τ ) ∞,Ω dτ
where [START_REF] Antontsev | Evolution PDEs with nonstandard growth conditions[END_REF]Ch.4,Sec.4.3,Th.4.3]).

C 1 = 0 if b(z) ≤ 0 in Q T , or C 1 = b ∞,Q T if σ ≡ 2 (see

A Picone identity for variable exponent operators and its applications

In this section, we prove the Picone identity for a general class of nonlinear operator and derive some of its applications by studying the qualitative properties of elliptic and parabolic equations. Precisely, we consider a continuous operator A : Ω × R N → R such that (x, ξ) → A(x, ξ) is differentiable with respect to variable ξ and satisfies: (A0) ξ → A(x, ξ) is strictly convex for any x ∈ Ω.

(A1) ξ → A(x, ξ) is positively p(x)-homogeneous i.e. A(x, tξ) = t p(x) A(x, ξ), ∀ t ∈ R + , ξ ∈ R N and a.e. x ∈ Ω.

Remark 4.4.1. From the assumptions of A, we deduce A(x, ξ) > 0 for ξ = 0 and for any x ∈ Ω.

Main results

By using the convexity and the p(x)-homogeneity of the operator A, we prove the following extension of the Picone identity:

Theorem 4.4.1 (Picone identity). Let A : Ω × R N → R is a continuous and differen- tiable function satisfying (A0) and (A1). Let v 0 , v ∈ L ∞ (Ω) belonging to V r + def = {v : Ω → (0, +∞) | v 1 r ∈ W 1,p(x) 0
(Ω)} for some r ≥ 1. Then

1 p(x) ∂ ξ A(x, ∇v 1/r 0 ), ∇ v v (r-1)/r 0 ≤ A r p(x) (x, ∇v 1/r ) A (p(x)-r) p(x) (x, ∇v 1/r 0 )
where ., . is the inner scalar product and the above inequality is strict if r > 1 or v v 0 ≡ Const > 0.

From the above Picone identity, we can show an extension of the famous Diaz-Saa inequality to the class of variable exponent operators as a first application. This inequality is strongly linked to the strict convexity of some associated homogeneous energy type functional. Theorem 4.4.2 (Diaz-Saa inequality). Let A : Ω × R N → R is a continuous and differentiable function satisfying (A0) and (A1) and define a(x, ξ) = (a i (x, ξ))

i def = 1 p(x) ∂ ξ i A(x, ξ) i .
Assume in addition that there exists Λ > 0 such that

a ∈ C 1 (Ω × (R N \{0})) N and N i,j=1 ∂a i (x, ξ) ∂ξ j ≤ Λ|ξ| p(x)-2
for all (x, ξ) ∈ Ω × R N \{0}. Then, we have in the sense of distributions, for any r

∈ [1, p -] ˆΩ - div(a(x, ∇w 1 )) w r-1 1 + div(a(x, ∇w 2 )) w r-1 2 (w r 1 -w r 2 ) dx ≥ 0 (4.4.1) for any w 1 , w 2 ∈ W 1,p(x) 0 (Ω), positive in Ω such that w 1 w 2 , w 2 w 1 ∈ L ∞ (Ω). Moreover, if the equality occurs in (4.4.1), then w 1 /w 2 is constant in Ω. If p(x) ≡ r in Ω then even w 1 = w 2 holds in Ω.
As a second application, we investigate the solvability of the following boundary problems involving quasilinear elliptic operators with variable exponent:

         -∆ p(x) u + g(x, u) = f (x, u) in Ω; u > 0 in Ω; u = 0 on ∂Ω. (4.4.2)
The extended Picone identity can be reformulated as in Lemma 4.4.1 below. Together with the strong maximum principle and elliptic regularity, this identity can be used to prove the uniqueness of weak solutions to elliptic equations as (4.4.2). In particular, we establish the following result:

Theorem 4.4.3. Let f, g : Ω × [0, ∞) → R + be defined as f (x, t) = h(x)t q(x)-1 and g(x, t) = l(x)t s(x)-1 with 1 ≤ q, s ∈ C(Ω) such that • q + < p -< s -and q -≥ 1; • h, l ∈ L ∞ (Ω), positive functions such that x → h(x) l(x) ∈ L ∞ (Ω).
Then, there exists a weak solution u to (4.4.2), i.e. u belongs to W 1,p(x) 0

(Ω) ∩ L s(x) (Ω) and satisfies for any φ ∈ W 1,p(x) 0

(Ω) ∩ L s(x) (Ω): ˆΩ |∇u| p(x)-2 ∇u.∇φ dx = ˆΩ(f (x, u) -g(x, u))φ dx.

Furthermore u ∈ C 1,α (Ω) for some α ∈ (0, 1) and 0 ≤ u s --q + ≤ max{ h l L ∞ , 1} a.e. in Ω.

Assume in addition that

x → l(x) h(x) belongs to L ∞ (Ω), then u ∈ C 0 d (Ω) + def = {v ∈ C 0 (Ω) | ∃ c 1 , c 2 ∈ R + * : c 1 ≤ v dist(x, ∂Ω)
≤ c 2 } and is the unique weak solution to (4.4.2).

We remark that Theorem 4.4.3 does not require any subcritical growth condition for g to establish existence and uniqueness of the weak solution to (4.4.2). As a third application of Picone identity, we study the following Doubly nonlinear equation (D.N.E. for short) driven by p(x)-Laplacian:

                 q 2q -1 ∂ t (u 2q-1 ) -∆ p(x) u = f (x, u) + h(t, x)u q-1 in Q T ; u > 0 in Q T ; u = 0 on Γ; u(0, .) = u 0 in Ω (4.4.3)
where q ∈ (1, p -), Q T = (0, T ) × Ω and Γ = (0, T ) × ∂Ω for some T > 0. We suppose that h ∈ L ∞ (Q T ) and nonnegative. The assumptions on f are given by (f 0) f : Ω × R + → R + is a function such that f (x, 0) = 0 for all x ∈ Ω and f is positive on Ω × R + \ {0}.

(f 1) for any x ∈ Ω, s → f (x, s) s q-1 is nonincreasing in R + \{0}.

Remark 4.4.2. Conditions (f 0) and (f 1) imply there exist positive constant C 1 , C 2 such that for any (x, s) ∈ Ω × R + :

0 ≤ f (x, s) ≤ C 1 + C 2 s q-1 ,
i.e. f has a strict subhomogeneous growth.

We set R the operator defined by Rv = -∆ p(x) (v 1/q ) v (q-1)/q -f (x, v 1/q ) v (q-1)/q and the associated domain

D(R) = {v : Ω → (0, ∞) : v 1/q ∈ W 1,p(x) 0 (Ω), v ∈ L 2 (Ω), Rv ∈ L 2 (Ω)}.
Note that D(R) contains for instance solutions to (4.4.28). One can also easily check that solutions to (4.4.29) belong to D(R) L 2 (Ω) . In the sequel, we denote X + def = {x ∈ X | x ≥ 0} the associated positive cone of a given real vector space X. In order to establish existence and properties of weak solutions to (4.4.3), we investigate the following related parabolic problem: (Ω). In addition, there exists h 0 ∈ L ∞ (Ω), h 0 ≡ 0 and h(t, x) ≥ h 0 (x) ≥ 0 for a.e x ∈ Ω, for a.e. t ≥ 0. Assume in addition q ∈ (1, p -) and f satisfies (f 0)-(f 1) and

               v q-1 ∂ t (v q ) -∆ p(x) v = h(t, x)v q-1 + f (x, v) in Q T ; v > 0 in Q T ; v = 0 on Γ ; v(0, .) = v 0 (x) > 0 in Ω .
v ∈ L ∞ (0, T ; W 1,p(x) 0 (Ω)) ∩ L ∞ (Q T ) ∩ C(0, T ; L r (Ω)) for any r ≥ 1 such that ∂ t (v q ) ∈ L 2 (Q T ) and for any φ ∈ C ∞ 0 (Q T ) satisfies ˆT 0 ˆΩ ∂ t (v q )v q-1 φ dxdt + ˆT 0 ˆΩ |∇v| p(x)-2 ∇v.∇φ dxdt = ˆT 0 ˆΩ h(t, x)v q-1 φ dxdt + ˆT 0 ˆΩ f (x, v)φ dxdt. ( 4 
(f 2) The mapping x → δ 1-q (x)f (x, δ(x)) belongs to L 2 (Ω ε ) for some ε > 0 where Ω ε def = {x ∈ Ω | δ(x) < ε}.
Then there exists a weak solution to (4.4.4).

Based on the accretivity of R with domain D(R), we show the following result providing a contraction property for weak solutions to (4.4.4) under suitable conditions on initial data: (Ω) and such that u q 0 , v q 0 ∈ D(R) L 2 (Ω) and h, g ∈ L ∞ (Q T ), such that h ≥ h 0 , g ≥ g 0 with h 0 , g 0 as in Theorem 4.4.4. Then, for any 0 ≤ t ≤ T ,

(v q 1 (t) -v q 2 (t)) + L 2 ≤ (u q 0 -v q 0 ) + L 2 + ˆt 0 (h(s) -g(s)) + L 2 ds. (4.4.6)
Furthermore, using a similar approach as in [START_REF] Bougherara | Existence of mild solutions for a singular parabolic equation and stabilization[END_REF], we consider for > 0 the perturbed operator R v = -∆ p(x) (v 1/q ) (v + ) (q-1)/q -f (x, v 1/q ) (v + ) (q-1)/q . If p -≥ 2, we can prove (as in Proposition 2.6 in [START_REF] Bougherara | Existence of mild solutions for a singular parabolic equation and stabilization[END_REF]) that

D(R ) L 2 (Ω) ⊃ V q + ∩ C 0 d q (Ω) + .
Arguing as in Theorem 4.4.5 with the operator R instead of R and passing to the limit as → 0 + , we get: 

u 0 ≤ v 0 and h, g ∈ L ∞ (Q T ), h 0 ∈ L ∞ (Ω) such that and 0 < h 0 ≤ h ≤ g. Then u ≤ v. Remark 4.4.3. If v ∈ L ∞ (Q T ) + then from Proposition 9.5 in [69] we obtain q 2q-1 ∂ t (v 2q-1 ) = v q-1 ∂ t (v q ) = qv 2q-2 ∂ t v in weak sense.
From the above remark, under assumptions given in Theorem 4.4.4, we obtain the existence of weak solutions to (4.4.3) satisfying the monotonicity properties in Theorem 4.4.5 and Corollaries 4.4.1, 4.4.2. In the previous applications, the condition (A1) plays a crucial role to get suitable convexity property of energy functionals. We also study a quasilinear elliptic problem where this condition is not satisfied. Precisely, given > 0, we study the following nonhomogeneous quasilinear elliptic problem:

         -div((|∇u| 2 + u 2 ) p(x)-2 2 ∇u) -(|∇u| 2 + u 2 ) p(x)-2 2 u = g(x, u) in Ω ; u = 0 on ∂Ω ; u > 0 in Ω (4.4.7)
where g satisfies (f 0) and (g) for some m ∈ [1, p -]:

4.4.2. Picone identity (g) For any x ∈ Ω, s → g(x, s) s m-1 is decreasing in R + \{0} and a.e. in Ω. Then we prove the following result: Theorem 4.4.6. Assume that g satisfies (f 0) and (g). Then for any , (4.4.7) admits one and only one positive weak solution. Furthermore, u ∈ C 1 (Ω), u > 0 in Ω and ∂u ∂ n < 0 on ∂Ω.

To get the uniqueness result contained in Theorem 4.4.6, we exploit the hidden convexity property of the associated energy functional in the interior of positive cone of C 1 (Ω).

Picone identity

First we recall the notion of strict ray-convexity. Definition 4.4.2. Let X be a real vector space. Let • V be a non empty cone in X. A function J :

• V → R is ray-strictly convex if for all v 1 , v 2 ∈ •
V and for all θ ∈ (0, 1)

J((1 -θ)v 1 + θv 2 ) ≤ (1 -θ)J(v 1 ) + θJ(v 2 )
where the inequality is always strict unless v 1 = Cv 2 for some C > 0.

Then we have the following result: Proposition 4.4.1. Let A satisfying (A0) and (A1) and let r ≥ 1. Then, for any x ∈ Ω the map ξ → N r (x, ξ) def = A(x, ξ) r/p(x) is positively r-homogeneous and ray-strictly convex. For r > 1, ξ → N r (x, ξ) is even strictly convex.

Proof. We begin by the case r = 1. For any t ∈ R + , we have N 1 (x, tξ) = tN 1 (x, ξ). Furthermore,

A(x, (1 -t)ξ 1 + tξ 2 ) ≤ (1 -t)A(x, ξ 1 ) + tA(x, ξ 2 ) ≤ max{A(x, ξ 1 ), A(x, ξ 2 )} for any x ∈ Ω, ξ 1 , ξ 2 ∈ R N and t ∈ [0, 1]. Therefore N 1 (x, (1 -t)ξ 1 + tξ 2 ) ≤ max{N 1 (x, ξ 1 ), N 1 (x, ξ 2 )} (4.4.8)
and this inequality is always strict unless ξ 1 = λξ 2 , for some λ > 0. Now we prove that N 1 is subadditive. Without loss of generality, we can assume that ξ 1 = 0 and ξ 2 = 0. Then we have N 1 (x, ξ 1 ) > 0 and N 1 (x, ξ 2 ) > 0. Therefore, from (4.4.8) and 1-homogeneity of N 1 (x, ξ) we obtain for any t ∈ (0, 1): We now fix t such that

N 1 x, (1 -t) ξ 1 N 1 (x, ξ 1 ) + t ξ 2 N 1 (x, ξ 2 ) ≤ 1.
1 -t N 1 (x, ξ 1 ) = t N 1 (x, ξ 2 ) i.e. t = N 1 (x, ξ 2 ) N 1 (x, ξ 1 ) + N 1 (x, ξ 2 ) ≤ 1.
Then we get

N 1 x, ξ 1 + ξ 2 N 1 (x, ξ 1 ) + N 1 (x, ξ 2 ) ≤ 1
and by 1-homogeneity of N 1 , we obtain

N 1 (x, ξ 1 + ξ 2 ) ≤ N 1 (x, ξ 1 ) + N 1 (x, ξ 2 ), i.e. N 1 is subadditive.
Finally for t ∈ (0, 1), ξ 1 = λξ 2 , ∀λ > 0

N 1 (x, (1 -t)ξ 1 + tξ 2 ) < N 1 (x, (1 -t)ξ 1 ) + N 1 (x, tξ 2 ) = (1 -t)N 1 (x, ξ 1 ) + tN 1 (x, ξ 2 ).
This proves that ξ → N 1 (x, ξ) is ray-strictly convex. Now consider the case r > 1. Since for

any x ∈ Ω, ξ → N 1/r r (x, ξ) = N 1 (x, ξ
) is ray-strictly convex and thanks to the strict convexity of t → t r on R + , we deduce that ξ → N r (x, ξ) = N r 1 (x, ξ) is strictly convex when r > 1.

From Proposition 4.4.1 and from the r-homogeneity of N r , we easily deduce the following convexity property of the energy functional:

Proposition 4.4.2. Under hypothesis of Proposition 4.4.1 and assume in addition

A is con- tinuous on Ω × R N . Then, for 1 ≤ r < p -: V r + ∩ L ∞ (Ω) v → ˆΩ A(x, ∇(v 1/r )) dx is ray-strictly convex (if r > 1, it is even strictly convex).
Proof. We know that ξ → N r (x, ξ) = A r/p(x) (x, ξ) is r-positively homogeneous and strictly convex if r > 1 and for r = 1 this function is ray-strictly convex. For v 1 , v 2 ∈ V r + and θ ∈ (0, 1) define v = (1 -θ)v 1 + θv 2 and we get

N r x, ∇v v ≤ (1 -θ) v 1 v N r x, ∇v 1 v 1 + θ v 2 v N r x, ∇v 2 v 2 .
By homogeneity,

N r (x, ∇(v 1/r )) ≤ (1 -θ)N r (x, ∇(v 1/r 1 )) + θN r (x, ∇(v 1/r 2 ))
and equality holds if and only if v 1 = λv 2 for some λ > 0. Using the convexity of t → t p(x)/r for 1 ≤ r < p -we obtain ˆΩ A(x, ∇v 1/r ) dx ≤ (1 -θ) ˆΩ A(x, ∇v 

→ N r (x, ξ) = A(x, ξ) r/p(x) is strictly convex. Let ξ, ξ 0 ∈ R N \{0} such that ξ = ξ 0 then N r (x, ξ) -N r (x, ξ 0 ) > ∂ ξ N r (x, ξ 0 ), ξ -ξ 0 . Setting ã(x, ξ) = 1 r ∂ ξ N r (x, ξ), we obtain: N r (x, ξ) -ã(x, ξ 0 ), ξ 0 > r ã(x, ξ 0 ), ξ -ξ 0 .
Let v, v 0 > 0 and replacing ξ, ξ 0 by ξ/v and ξ 0 /v 0 respectively in the above expression, we get

N r x, ξ v > r ã x, ξ 0 v 0 , ξ v - r -1 r ξ 0 v 0 .
Taking ξ = ∇v and ξ 0 = ∇v 0 and using (r -1)-homogeneity of ã(x, .),

N x, ∇v rv (r-1)/r > 1 v (r-1)/r 0 ã x, ∇v 0 rv (r-1)/r 0 , ∇v - r -1 r ∇v 0 v 0 v
where the inequality is strict unless

∇v v = ∇v 0 v 0 . Since v 1/r , v 1/r 0 ∈ W 1,p(x) (Ω) ∩ L ∞ (Ω), we can write ∇(v 1/r ) = ∇v rv (r-1)/r and ∇ v v (r-1)/r 0 = 1 v (r-1)/r 0 ∇v - r -1 r ∇v 0 v 0 v
and we obtain

N (x, ∇v 1/r ) > ã(x, ∇v 1/r 0 ), ∇ v v (r-1)/r 0 . (4.4.9)
We have ã(x, ∇v

1/r 0 ) = 1 r ∂ ξ N (x, ∇v 1/r 0 ) = 1 r ∂ ξ A r/p(x) (x, ∇v 1/r 0 ) = 1 p(x) ∂ ξ A(x, ∇v 1/r 0 )A r-p(x) p(x) (x, ∇v 1/r 0 )
and by replacing in (4.4.9) we obtain

A r p(x) (x, ∇v 1/r ) A p(x)-r p(x) (x, ∇v 1/r 0 ) > 1 p(x) ∂ ξ A(x, ∇v 1/r 0 ), ∇ v v (r-1)/r 0 .
Now we deal with the case r = 1. Let ξ, ξ 0 ∈ R N \{0} such that for any λ > 0, ξ = λξ 0 . Then, from Proposition 4.4.1, we have that

N (x, ξ) -N (x, ξ 0 ) ≥ ∂ ξ N (x, ξ 0 ), ξ -ξ 0 .
Taking ξ = ∇v and ξ 0 = ∇v 0 , we deduce

N (x, ∇v) -N (x, ∇v 0 ) ≥ ∂ ξ N (x, ∇v 0 ), ∇(v -v 0 )
and

A 1 p(x) (x, ∇v)A p(x)-1 p(x) (x, ∇v 0 ) ≥ 1 p(x) ∂ ξ A(x, ∇v 0 ), ∇v
for any x ∈ Ω and the inequality is strict unless v = λv 0 for some λ > 0.

The Picone identity also holds for anisotropic operators of the following type:

N i=1 ∇ i (b i (x, ∇ i u)) = N i=1 ∂ ∂x i b i x, ∂u ∂x i .
Precisely we have: 

Corollary 4.4.3. Let B : Ω × R → R N is
- i ≤ p i (•) ≤ p + i < ∞. For any i, we define b i (x, s) = 1 p i (x) ∂ s B i (x, s). Then, for v, v 0 ∈ V r + ∩ L ∞ (Ω), we have N i=1 b i (x, ∂ x i (v 1/r 0 ))∂ x i   v v r-1 r 0   ≤ N i=1 B r p i (x) i x, ∂ x i (v 1/r ) B p i (x)-r p i (x) i x, ∂ x i (v 1/r 0 ) .
Proof. By taking A(x, s) = B i (x, s) in Theorem 4.4.1, we obtain ∀i ∈ {1, 2, . . . , N }

1 p i (x) ∂ s B i (x, ∂ x i (v 1/r 0 )).∂ x i   v v r-1 r 0   ≤ B r p i (x) i (x, ∂ x i (v 1/r )).B p i (x)-r p i (x) i (x, ∂ x i (v 1/r 0 ))
for all v, v 0 ∈ V r + ∩ L ∞ (Ω) and i = 1, 2, . . . , N . Then by summing the expression over i = 1, 2, . . . , N , we obtain

N i=1 b i (x, ∂ x i (v 1/r 0 )).∂ x i   v v r-1 r 0   ≤ N i=1 B r p i (x) i (x, ∂ x i (v 1/r )).B p i (x)-r p i (x) i (x, ∂ x i (v 1/r 0 )).

An extension of the Diaz-Saa inequality

We prove the first application of Picone identity.

Proof of Theorem 4.4.2: The Picone identity implies

A r/p(x) (x, ∇w 1 )A (p(x)-r)/p(x) (x, ∇w 2 ) ≥ a(x, ∇w 2 ).∇ w r 1 w r-1 2 .

Application of Picone identity to quasilinear elliptic equations

Using the Young inequality for r ∈ [1, p -], we get

r p(x) (A(x, ∇w 1 ) -A(x, ∇w 2 )) + A(x, ∇w 2 ) ≥ a(x, ∇w 2 ).∇ w r 1 w r-1 2 .
Noting that for any ξ ∈ R N , A(x, ξ) = a(x, ξ).ξ, we deduce 

a(x, ∇w 2 ).∇ w 2 - w r 1 w r-1 2 dx ≥ r p(x) (A(x, ∇w 2 ) -A(x,
).∇ w r 1 -w r 2 w r-1 1 dx + ˆΩ a(x, ∇w 2 ).∇ w r 2 -w r 1 w r-1 2 ≥ 0.
The rest of the proof is the consequence of Proposition 4.4.2.

Diaz-Saa inequality also holds for anisotropic operators. Here we require that ξ → B i (x, ξ) is p i (x)-homogeneous and strictly convex and Λ > 0 such that for each i, ∂b i ∂s (x, s) ≤ Λ|s| p(x)-2 . Then we have in the sense of distributions,

b i (x, ξ) = 1 p i (x) ∂ i B i (x, ξ) where r ∈ R, 1 ≤ r ≤ min i=1,2,...,N {(p i ) -}.
for r ∈ [1, min i {(p i ) -}] and v, v 0 ∈ V r + ∩ L ∞ (Ω): N i=1 ˆΩ - ∂ x i (b i (x, ∂ x i v)) v r-1 (x) + ∂ x i (b i (x, ∂ x i v 0 )) v r-1 0 (x) (v r -v r 0 ) dx ≥ 0
Proof. We apply Theorem 4.4.2. For A = B i : Ω × R → R and by replacing ∇ by ∂ x i .

Application of Picone identity to quasilinear elliptic equations

The aim of this section is to establish Theorem 4.4.3.

Preliminary results

The first lemma is the Picone identity in the context of the p(x)-Laplacian operator. (Ω) ∩ L ∞ (Ω) two positive functions. Then for any x ∈ Ω

|∇u| p(x) + |∇v| p(x) ≥ |∇v| p(x)-2 ∇v.∇ u r v r-1 + |∇u| p(x)-2 ∇u.∇ v r u r-1 .
Following the proof of Theorem 1.1 in [START_REF] Zhang | A strong maximum principle for differential equations with nonstandard p(x)growth conditions[END_REF], we first prove the following comparison principle: (Ω) ∩ L α(x) (Ω) two nonnegative functions for some function α ∈ P(Ω) satisfying 1 < α -≤ α + < ∞. Assume for any φ ∈ W 1,p(x) 0

(Ω), φ ≥ 0: ˆΩ |∇u| p(x)-2 ∇u.∇φ + u α(x)-1 χ u≥λ φ dx ≥ ˆΩ |∇v| p(x)-2 ∇v.∇φ + v α(x)-1 χ v≥λ φ dx where

χ v≥λ (x) =    1 if λ ≤ v < ∞ ; 0 if 0 ≤ v < λ ,
and u ≥ v a.e. in ∂Ω. Then u ≥ v a.e. in Ω.

Proof. Let φ = (v -u) + ∈ W 1,p(x) 0 (Ω) and Ω 1 = {x ∈ Ω : u(x) < v(x)}. Then 0 ≤ - ˆΩ1 (|∇u| p(x)-2 ∇u -|∇v| p(x)-2 ∇v).∇(u -v) dx - ˆΩ1 (u α(x)-1 χ u≥λ -v α(x)-1 χ v≥λ )(u -v) dx ≤ 0
from which we obtain u ≥ v a.e. in Ω.

Using lemma 4.4.2, we show the following strong maximum principle:

Lemma 4.4.3. Let h, l ∈ L ∞ (Ω) be nonnegative functions, h > 0 and k : Ω × R + → R + . Let α, β ∈ P(Ω) be two functions such that 1 < β -≤ β + < α -≤ α + < ∞. Let u ∈ C 1 (Ω) be nonnegative and a nontrivial solution to

   -∆ p(x) u + l(x)u α(x)-1 = h(x)u β(x)-1 + k(x, u) in Ω ; u = 0 on ∂Ω . (4.4.12)
Assume in addition either

(c1) l h ∈ L ∞ (Ω) or (c2) k : Ω × R + → R + satisfying lim inf t→0 + k(x, t) t α(x)-1 > l L ∞ uniformly in x. Then u is positive in Ω.
Proof. We follow the idea of the proof of Theorem 1.1 in [START_REF] Zhang | A strong maximum principle for differential equations with nonstandard p(x)growth conditions[END_REF]. For the reader's convenience we have included the detailed proof. We rewrite our equation (4.4.12) under condition (c1) as follows:

-∆ p(x) u + l(x)u α(x)-1 χ u≥λ ≥ h(x)u β(x)-1 (1 -χ u≥λ ) 1 - l(x) h(x) u α(x)-β(x) ,
since l h ∈ L ∞ (Ω), we choose λ ∈ (0, 1) small enough such that for any u(x) ≤ λ, we have 1

-l(x) h(x) u α(x)-β(x) ≥ 1 -l h L ∞ (Ω) λ α --β + ≥ 0. Assuming condition (c2), we have -∆ p(x) u + l(x)u α(x)-1 χ u≥λ ≥ k(x, u) -(1 -χ u≥λ )l(x)u α(x)-1 .
We choose λ small enough such that for any u(x) ≤ λ, we have k(x, u) -l(x)u α(x)-1 ≥ 0. Hence under both conditions, we get for any x ∈ Ω,

-∆ p(x) u + l(x)u α(x)-1 χ u≥λ ≥ 0.
Suppose that there exists x 1 such that u(x 1 ) = 0 then using the fact that u is nontrivial, we can find x 2 ∈ Ω and a ball B(x 2 , 2C) in Ω such that x 1 ∈ ∂B(x 2 , 2C) and u > 0 in B(x 2 , 2C). Let a = inf{u(x) : |x -x 2 | = C} then a > 0 and choosing x 2 close enough to x 1 such that 0 < a < λ and ∇u(x 1 ) = 0 since u(x 1 ) = 0. Denote the annulus P = {x ∈ Ω :

C < |x -x 2 | < 2C}. We define p 1 = p(x 1 ), M = sup{|∇p(x)| : x ∈ P }, b = 8M + 2, l 1 = -b ln a C + 2(N -1) C and j(t) = a e l 1 C p 1 -1 -1 e l 1 t p 1 -1 -1 ∀ t ∈ [0, C].
We have a C e

-l 1 C p 1 -1 < j (0) ≤ j (t) ≤ j (C) < a C e l 1 C p 1 -1
and then

a C 3 ≤ j (t) ≤ 1 ∀ t ∈ [0, C]. (4.4.13)
We choose C < 1 and using ∇u(x 1 ) = 0, a C < 1 small enough such that for any

x ∈ P p(x) -1 p 1 -1 ≥ 1 2 . (4.4.14)
Without loss of generality we can take x 2 = 0 and we set r = |x -

x 2 | = |x|, t = 2C -r. For t ∈ [0, C] and r ∈ [C, 2C], denote w(r) = j(2C -r) = j(t), then w (r) = -j (t), w (t) = j (t).
From (4.4.13) and (4.4.14), we obtain

div(|∇w| p(x)-2 ∇w) = (p(x) -1))(j (t)) p(x)-2 j (t) - N -1 r (j (t)) p(x)-1 -(j (t)) p(x)-1 ln(j (t)) n i=1 ∂p ∂x i . x i r ≥ (j (t)) p(x)-1 1 2 l 1 + M ln(j (t)) - N -1 r
Chapter 4. Parabolic problems with nonstandard growth ≥ -ln a C (j (t)) p(x)-1 ≥ 0.

Since j(t) < a < λ, we deduce div(|∇w| p(x)-2 ∇w) + w α(x)-1 χ w≥λ ≤ 0.

On ∂P , w(C) = j(C) = a ≤ u(x) and w(2C) = j(0) = 0 ≤ u(x). Then by Lemma 4.4.2, we obtain w ≤ u on P . Finally,

lim s→0 + u(x 1 + s(x 2 -x 1 )) -u(x 1 ) s ≥ lim s→0 + w(x 1 + s(x 2 -x 1 )) -w(x 1 ) s = j (0) > 0
which contradicts ∇u(x 1 ) = 0. Therefore, u > 0 in Ω.

Remark 4.4.4. Conditions (c1) and (c2) can be replaced by the condition that there exists t 0 such that h(x)t β(x)-1 + k(x, t) -l(x)t α(x)-1 ≥ 0 for all 0 < t < t 0 and x ∈ Ω. Proof. Choose C > 0 small enough such that B(x 2 , 2C) ⊂ Ω, x 1 ∈ ∂B(x 2 , 2C). Then

x 2 = x 1 +2C n,
where n is the outward normal at x 1 . Denote P = {x ∈ Ω : C < |x-x 2 | < 2C} and by choosing a such that 0 < a < λ, then by Lemma 4.4.3, there exist a subsolution w ∈ C 1 (P ) ∩ C 2 (P ) of (4.4.12) in P and w satisfies w ≤ u in P with w(x 1 ) = 0, ∂w ∂ n (x 1 ) < 0. Hence, we get ∂u ∂ n (x 1 ) ≤ ∂w ∂ n (x 1 ) < 0. 

F (x, t) =      h(x) q(x) t q(x) if 0 ≤ t < ∞ ; 0 if -∞ < t < 0 ,
and

G(x, t) =      l(x) s(x) t s(x) if 0 ≤ t < ∞ ; 0 if -∞ < t < 0 .
We also extend the domain of f and g to all Ω × R by setting (Ω) ∩ L s(x) (Ω) → R by

f (x, t) = ∂F ∂t (x, t) = 0 and g(x, t) = ∂G ∂t (x, t) = 0 for (x, t) ∈ Ω × (-∞, 0).
E(u) = ˆΩ |∇u| p(x) p(x) dx + ˆΩ G(x, u(x)) dx -ˆΩ F (x, u(x)) dx. (4.4.15)
Step 1 : Existence of a global minimizer Since W 1,p(x) 0

(Ω) → L q(x) (Ω) (see Theorem 3.3.1 and Theorem 8.2.4 in [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF]), the functional E is well-defined for every function u ∈ W 1,p(x) 0

(Ω) ∩ L s(x) (Ω). For u W 1,p(x) 0 large enough: by (4.1.2) or (4.1.3)

E(u) ≥ ˆΩ |∇u| p(x) p(x) - ˆΩ h(x) q(x) |u| q(x) ≥ 1 p -∇u p - L p(x) -Cρ q (u) ≥ 1 p -u p - W 1,p(x) 0 -C u q W 1,p(x) 0 where q = q -if u L p(x) ≤ 1 q + if u L p(x) > 1 . Since p -> q + , this implies E(u) → ∞ as u W 1,p(x) 0 → +∞.
We argue similarly when u L s(x) → ∞ and we deduce E is coercive. The continuity of E on W 1,p(x) 0

(Ω) ∩ L s(x) (Ω) is given by Theorem 3.2.8 and 3.2.9 of [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF]. Hence we get the existence of at least one global minimizer, say u 0 , to (4.4.15).

Step 2: Claim: u 0 ≥ 0 and u 0 ≡ 0 Since u 0 is a global minimizer of E then E(u + 0 ) ≥ E(u 0 ) where u + 0 = max{u 0 , 0} ∈ W 1,p(x) 0

(Ω). Set Ω -= {x ∈ Ω : u 0 (x) < 0}. We have

E(u 0 ) = ˆΩ |∇u 0 | p(x) p(x) dx + ˆΩ G(x, u 0 (x)) dx -ˆΩ F (x, u 0 (x)) dx = E(u + 0 ) + ˆΩ- |∇u 0 | p(x) p(x) dx which implies ˆΩ- |∇u 0 | p(x)
p(x) = 0 i.e. ∇u 0 (x) = 0 a.e. in Ω -then by (4.1.2) and (4.1.3) we have u 0 = 0 a.e in Ω -. This implies that u 0 ≥ 0. In order to show that u 0 ≡ 0 in Ω, we construct a function v in W 1,p(x) 0

(Ω) ∩ L ∞ (Ω) such that E(v) < 0 = E(0). Precisely, consider v = tφ where φ ∈ C 1 c (Ω), φ ≥ 0, φ ≡ 0 in Ω and for 0 < t ≤ 1 small enough, we have

E(v) ≤ t q + (c 1 t p --q + + c 2 t s --q + -c 3 )
where for any i ∈ {1, 2, 3}, c i are suitable constants independent of t. Hence, choosing t small enough the right-hand side is negative and we conclude that E(tφ) < 0 = E(0) which implies (Ω) ∩ L s(x) (Ω), then for any φ ∈ W 1,p(x) 0

(Ω) ∩ L s(x) (Ω), we have

E (u 0 ), φ = ˆΩ |∇u 0 | p(x)-2 ∇u 0 .∇φ dx -ˆΩ f (x, u 0 )φ dx + ˆΩ g(x, u 0 )φ dx = 0.
Step 4: Regularity and positivity of weak solutions First we prove that all nonnegative weak solutions of (4.4.2) belongs to L ∞ (Ω) which yields C 1,α (Ω) regularity.

Let K(x, t) = h(x)t q(x)-1 -l(x)t s(x)-1 and Λ def = max h l L ∞ , 1 1/(s --q + )
Then it is not difficult to show that for any t ≥ Λ, K(x, t) ≤ 0. Let u be a nonnegative function satisfying weakly the equation in (4.4.2). Then for any φ ∈ W

1,p(x) 0 (Ω) ∩ L s(x) (Ω), ˆΩ |∇u| p(x)-2 ∇u.∇φ dx = ˆΩ(h(x)u q(x)-1 -l(x)u s(x)-1 )φ(x) dx.
Taking the testing function φ(x) = (u -Λ) + , we get ˆΩ |∇(u -Λ) + | p(x) ≤ 0.

By using (4.1.3), we deduce (u -Λ) + W 1,p(x) 0 = 0 which implies u(x) ≤ Λ. From Theorem 1.2 in [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF], we get u ∈ C 1,α (Ω) for some α ∈ (0, 1). Furthermore assuming x → l(x) h(x) belongs to L ∞ (Ω), Lemma 4.4.3 yields u > 0 in Ω.

Step 5: Uniqueness of the positive solution of (4.4.2) Let u, v be two positive solutions of (4.4.2). Thus for any φ, φ ∈ W

1,p(x) 0 (Ω) ∩ L s(x) (Ω), ˆΩ |∇u| p(x)-2 ∇u.∇φ dx = ˆΩ(h(x)u q(x)-1 -l(x)u s(x)-1 )φ(x) dx and ˆΩ |∇v| p(x)-2 ∇v.∇ φ dx = ˆΩ(h(x)v q(x)-1 -l(x)v s(x)-1 ) φ(x) dx.
By the previous steps, u and v belong to C 1 (Ω) and Lemma 4.4.

4 implies u, v ∈ C 0 d (Ω) + .
Hence taking the testing functions as φ =

(u p --v p -) + u p --1 and φ = (v p --u p -) - v p --1 ∈ W 1,p(x) 0
(Ω) (with the following notation t -def = max{0, -t}) and from Lemma 4.4.1 we obtain 

0 ≤ ˆ{u>v} (|∇u| p(x)-2 ∇u -|∇v| p(x)-2 ∇v).∇(u -v)dx = ˆ{u>v} h(x)(u q(x)-p --v q(x)-p -)(u p --v p -) dx
+ ˆ{u>v} l(x)(v s(x)-p --u s(x)-p -)(u p --v p -) dx.
Since q + ≤ p -≤ s -, the both terms in right-hand side are nonpositive. This implies v(x) ≥ u(x) a.e in Ω.

Finally reversing the role of u and v, we get u = v.

Remark 4.4.5. Theorem 4.4.3 still holds when the condition l h ∈ L ∞ (Ω) is replaced by p + < s -and using strong maximum principle in [START_REF] Zhang | A strong maximum principle for differential equations with nonstandard p(x)growth conditions[END_REF].

Application to Doubly nonlinear equation

In this section, we establish Theorems 4.4.4 and 4.4.5. To this aim, we use a time semidiscretization method associated to (4.4.4). With the help of accurate energy estimates about the related quasilinear elliptic equation and passing to the limit as the discretization parameter goes to 0, we prove the existence and the properties of weak solutions to (4.4.3). In the subsection below, we study the associated elliptic problem. Consider the following problem

         v 2q-1 -λ∆ p(x) v = h 0 (x)v q-1 + λf (x, v) in Ω ; v > 0 in Ω ; v = 0 on ∂Ω . ( 4 

.4.16)

Assume h 0 ∈ L ∞ (Ω) + and f satisfies (f 0)-(f 1). Then from (f 1), we have (f 3) lim s→+∞ f (x, s) s p --1 = 0 uniformly in x ∈ Ω. Therefore, for any > 0, there exists a positive constant C such that for any (x, s)

∈ Ω × R + : 0 ≤ f (x, s) ≤ C + s p --1 .
(4.4.17)

We have the following preliminary result about (4.4.16):

Theorem 4.4.7. Let λ > 0, q ∈ (1, p -], f : Ω × R + → R + satisfying (f 0) and (f 3) and h 0 ∈ L ∞ (Ω) + .
Then there exists a weak solution v ∈ C 1 (Ω) to (4.4.16), i.e. for any φ ∈ W

def = W 1,p(x) 0 (Ω) ∩ L 2q (Ω) ˆΩ v 2q-1 φ dx + λ ˆΩ |∇v| p(x)-2 ∇v.∇φ dx = ˆΩ h 0 v q-1 φ dx + λ ˆΩ f (x, v)φ dx. (4.4.18) In addition, if (f 1) holds then v ∈ C 0 d (Ω) + . Moreover if v 1 , v 2 ∈ C 0 d (Ω)
+ are two weak solutions to (4.4.16) corresponding to h 0 = h 1 , h 2 ∈ L ∞ (Ω) + respectively, then we have Proof. We perform the proof into several steps.

(v q 1 -v q 2 ) + L 2 ≤ (h 1 -h 2 ) + L 2 . ( 4 
Step 1: Existence of a weak solution Consider the energy functional J defined on W equipped with . W = . W 1,p(x) 0

+ . L 2q J (v) = 1 2q ˆΩ v 2q dx + λ ˆΩ |∇v| p(x) p(x) dx - 1 q ˆΩ h 0 D(v) dx -λ ˆΩ F (x, v) dx (4.4.20)
where

D(t) =    t q if 0 ≤ t < ∞ ; 0 if -∞ < t < 0 , and F (x, t) =        ˆt 0 f (x, s)ds if 0 ≤ t < ∞ ; 0 if -∞ < t < 0 .
We also extend the domain of f to all of Ω × R by setting f (x, t) = ∂F ∂t (x, t) = 0 for (x, t) ∈ Ω × (-∞, 0). From (4.4.17), Hölder inequality (4.1.4) and since W

1,p(x) 0 → L p -(Ω), we obtain J (v) ≥ 1 2q v 2q L 2q + λ v p - W 1,p(x) 0 - 1 q h 0 L 2 v q L 2q -λC ˆΩ |v|dx -λ p -ˆΩ |v| p -dx ≥ 1 q v q L 2q 1 2 v q L 2q -h 0 L 2 + λ v W 1,p(x) 0 ((1 -) v p --1 W 1,p(x) 0 -C).
Then by choosing small enough we conclude the coercivity of J on W and J is also continuous on W therefore we deduce the existence of a global minimizer v 0 to J . Furthermore we note

J (v 0 ) ≥ J (v + 0 ) + 1 2q ˆΩ(v - 0 ) 2q dx + λ ˆΩ |∇v - 0 | p(x) p(x) dx
which implies v 0 ≥ 0. Now we claim that v 0 ≡ 0 in Ω. Since J (0) = 0, it is sufficient to prove the existence of ṽ ∈ W such that J (ṽ) < 0. For that take ṽ = tφ where φ ∈ C 1 c (Ω) is nonnegative function such that φ ≡ 0 and t > 0 small enough.

Since v 0 is a global minimizer for the differentiable functional J , we have that v 0 satisfies (4.4.18) i.e. v 0 is a weak solution to (4.4.16). From Corollary 4.4.7 we infer that v 0 ∈ L ∞ (Ω). Then by using Theorem 4.4.12, we obtain, v 0 ∈ C 1,α (Ω) for some α ∈ (0, 1). From (f 1) and Lemma 4.4.3 (with condition (c2)), we obtain v 0 > 0 and by Lemma 4.4.4 we get ∂v 0 ∂ n < 0 on ∂Ω. Therefore, v 0 belongs to C 0 d (Ω) + .

Step 2: Contraction property (4.4.19) Let v 1 and v 2 two positive weak solutions of (4.4.16 

) such that v 1 , v 2 ∈ C 0 d (Ω) + . For any φ, Ψ ∈ W: ˆΩ v 2q-1 1 φ dx + λ ˆΩ |∇v 1 | p(x)-2 ∇v 1 .∇φ dx = ˆΩ h 1 v q-1 1 φ dx + λ ˆΩ f (x, v 1 )φ dx
Ψ dx + λ ˆΩ |∇v 2 | p(x)-2 ∇v 2 .∇Ψ dx = ˆΩ h 2 v q-1 2 Ψ dx + λ ˆΩ f (x, v 2 )Ψ dx. Since v 1 , v 2 ∈ C 0 d (Ω) + , φ = v 1 - v q 2 v q-1 1 + and Ψ = v 2 - v q 1 v q-1 2 -
are well-defined and belong to W. Subtracting the two above expressions and using (f 1) together with Lemma 4.4.1 we obtain ˆΩ((v q

1 -v q 2 ) + ) 2 dx ≤ ˆΩ(h 1 -h 2 )(v q 1 -v q 2 ) + dx.
Finally, applying the Hölder inequality we get (4.4.19).

From Theorem 4.4.7, we deduce the accretivity of R:

Corollary 4.4.5. Let λ > 0, q ∈ (1, p -], f : Ω × R + → R + satisfying (f 0)-(f 1) and h 0 ∈ L ∞ (Ω) + . Consider the following problem          u + λRu = h 0 (x) in Ω; u > 0 in Ω; u = 0 on ∂Ω. (4.4.21)
Then there exists a unique distributional solution u ∈ D(R) ∩ C 1 (Ω) of (4.4.21) i.e. ∀φ ∈

C 1 c (Ω) ˆΩ u 0 φ dx + λ ˆΩ |∇u 1/q 0 | p(x)-2 ∇u 1/q 0 .∇ φ u (q-1)/q 0 dx = ˆΩ h 0 φ dx + λ ˆΩ f (x, u 1/q 0 ) u (q-1)/q 0 φ dx.
Moreover, if u 1 and u 2 are two distributional solutions of (4.4.21) in D(R)∩C 1 (Ω) associated to h 1 and h 2 respectively, then the operator R satisfies

(u 1 -u 2 ) + L 2 ≤ (u 1 -u 2 + λ(Ru 1 -Ru 2 )) + L 2 . (4.4.22)
Proof. Define the energy functional E on V q + ∩ L 2 (Ω) as E(u) = J (u 1/q ) where J is defined in (4.4.20). Let φ ∈ C 1 c (Ω) and v 0 is the global minimizer of (4.4.20) which is also the weak solution of (4.4.16) and u 0 = v q 0 then there exists t 0 = t 0 (φ) > 0 such that for t ∈ (-t 0 , t 0 ), u 0 + tφ > 0. Hence we have

0 ≤ E(u 0 + tφ) -E(u 0 ) = 1 2q ˆΩ(tφ) 2 dx + ˆΩ 2tu 0 φ dx - 1 q ˆΩ htφ dx + λ ˆΩ |∇(u 0 + tφ) 1/q | p(x) p(x) dx - ˆΩ |∇u 1/q 0 | p(x) p(

x) dx

Chapter 4. Parabolic problems with nonstandard growth -λ ˆΩ F (x, (u 0 + tφ) 1/q ) dx -ˆΩ F (x, u 1/q 0 ) dx .

Then divide by t and passing to the limits t → 0 we obtain u 0 = v q 0 is the distributional solution of (4.4.21). Finally (4.4.22) and uniqueness follow from (4.4.19).

We now generalize some above results for a larger class of potentials h 0 : 

Ω × R + → R + satisfying (f 0)-(f 1) and h 0 ∈ L 2 (Ω) + and q ∈ (1, p -].
Then there exists a positive weak solution v ∈ W of (4.4.16) in the sense of (4.4.18). Moreover assuming that h 0 belongs to

L ν (Ω) for some ν > max 1, N p -, v ∈ L ∞ (Ω). Proof. Let h n ∈ C 1 c (Ω) such that h n ≥ 0 and h n → h in L 2 (Ω). Define (v n ) ⊂ C 1,α (Ω) ∩ C 0 d (Ω)
+ as for a fixed n, v n is the unique positive weak solution of (4.4.16) with

h 0 = h n i.e. v n satisfies: for φ ∈ W ˆΩ v 2q-1 n φ dx + λ ˆΩ |∇v n | p(x)-2 ∇v n .∇φ dx = ˆΩ h n v q-1 n φ dx + λ ˆΩ f (x, v n )φ dx. (4.4.23) Since (a -b) 2q ≤ (a q -b q ) 2 for any q ≥ 1, (4.4.19) implies for any n, p ∈ IN * (v n -v p ) + L 2q ≤ (h n -h p ) + q L 2
thus we deduce that (v n ) converges to v ∈ L 2q (Ω). We infer that the limit v does not depend on the choice of the sequence (h n ). Indeed, consider hn = h n such that hn → h 0 in L 2 (Ω) and ṽn the positive solution of (4.4.16) corresponding to hn which converges to ṽ. Then, for any n ∈ IN , (4.4.19) implies

(v q n -ṽq n ) + L 2 ≤ (h n -hn ) + L 2
and passing to the limit we get ṽ ≥ v and then by reversing the role of v and ṽ we obtain v = ṽ. So define, for any n ∈ N * , h n = min{h, n}. Thus (v n ) is nondecreasing and for any n

∈ N * , v n ≤ v a.e. in Ω which implies v ≥ v 1 > 0 in Ω.
We choose φ = v n in (4.4.23). Applying the Hölder inequality and (4.4.17), we obtain

λ ˆΩ |∇v n | p(x) dx ≤ h n L 2 v n q L 2q + λC v n L 1 + λ v n p - L p - ≤ C + λ v n p - L p -. Assume ∇v n L p(x) ≥ 1. Since W 1,p(x) 0
(Ω) → L p -(Ω) and by (4.1.2) we deduce for some positive constant C > 0: Choosing small enough and gathering with the case ∇v n L p(x) ≤ 1, we conclude (v n ) is uniformly bounded in W 1,p(x) 0

λ ˆΩ |∇v n | p(x) dx ≤ C + λ C ˆΩ |∇v n | p(x) dx.
(Ω) and L p -(Ω). Hence v n converges weakly to v in W 1,p(x) 0

(Ω) and by monotonicity of (v n ) strongly in L p -(Ω) and in L 2q (Ω). Taking now φ = v n -v in (4.4.23), from (4.4.17) with = 1 and by Hölder inequality

ˆΩ f (x, v n )(v n -v) dx ≤ C v n -v L 2q + v n p --1 L p -v n -v L p -→ 0 and ˆΩ h n v q-1 n (v n -v) dx → 0 and ˆΩ v 2q-1 n (v n -v) dx → 0. Finally (4.4.23) becomes ˆΩ |∇v n | p(x)-2 ∇v n .∇(v n -v) dx → 0. Then, since v n v in W 1,p(x) 0 (Ω) ˆΩ(|∇v n | p(x)-2 ∇v n -|∇v| p(x)-2 ∇v).∇(v n -v) dx → 0.
Lemma A.2 and Remark A.3 of [START_REF] Giacomoni | Quasilinear parabolic problem with p(x)-Laplacian: existence, uniqueness of weak solutions and stabilization[END_REF] give the strong convergence of

v n to v in W 1,p(x) 0 (Ω). Since (v 2q-1 n
) and (h n v q-1 n ) are uniformly bounded in L 2q/(2q-1) (Ω) and by (4.4.17), f (x, v n ) is uniformly bounded in L 2q/q-1 (Ω) and f (x, v n ) → f (x, v) a.e. in Ω. Then by Lebesgue dominated convergence theorem we have (up to a subsequence), for φ ∈ W ˆΩ v 2q-1

n φ dx → ˆΩ v 2q-1 φ dx, ˆΩ h n v q-1 n φ dx → ˆΩ hv q-1 φ dx and ˆΩ f (x, v n )φ dx → ˆΩ f (x, v)φ dx.
Finally we pass to the limit in (4.4.23) and we obtain v is a weak solution of (4.4.16). To conclude corollary 4.4.7 implies v ∈ L ∞ (Ω). 

corresponding to h

1 , h 2 ∈ L 2 (Ω) + , h 1 ≡ h 2 respectively. Then (v q 1 -v q 2 ) + L 2 ≤ (h 1 -h 2 ) + L 2 .

Remark 4.4.8. As in Step 1 of the proof of Theorem 4.4.7, we can alternatively prove the existence of a weak solution by global minimization method.

Under the hypothesis of Theorem 4.4.8 and with the help of Picone identity, the following theorem gives the uniqueness of the solution to (4.4.16).

Theorem 4.4.9. Let v, ṽ be respectively a subsolution and supersolution to (4.4.16) for h ∈ L p 0 (Ω), p 0 ≥ 2, h ≥ 0 and f satisfies (f 0) and (f 1). Then v ≤ ṽ.

Proof. We have for any nonnegative φ, Ψ ∈ W ˆΩ v 2q-1 φ dx + λ ˆΩ |∇v| p(x)-2 ∇v.∇φ dx ≤ ˆΩ hv q-1 φ dx + λ ˆΩ f (x, v)φ dx and ˆΩ ṽ2q-1 Ψ dx + λ ˆΩ |∇ṽ| p(x)-2 ∇ṽ.∇Ψ dx ≥ ˆΩ hṽ q-1 Ψ dx + λ ˆΩ f (x, ṽ)Ψ dx.

Subtracting the above inequalities with test functions φ = (v+ ) q -(ṽ+ ) q (v+ ) q-1 + and Ψ = (ṽ+ ) q -(v+ ) q (ṽ+ ) q-1 -∈ W for ∈ (0, 1), we obtain

ˆ{v>ṽ} v 2q-1 (v + ) q-1 - ṽ2q-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) dx + λ ˆ{v>ṽ} |∇(v + )| p(x)-2 ∇(v + ).∇ (v + ) q -(ṽ + ) q (v + ) q-1 dx + λ ˆ{v>ṽ} |∇(ṽ + )| p(x)-2 ∇(ṽ + ).∇ (ṽ + ) q -(v + ) q (ṽ + ) q-1 dx ≤ ˆ{v>ṽ} h v q-1 (v + ) q-1 - ṽq-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) dx + λ ˆ{v>ṽ} f (x, v) (v + ) q-1 - f (x,
ṽ) (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) dx. Since ṽ ṽ+ ≤ v v+ < 1 in {v > ṽ}, then we obtain

v 2q-1 (v + ) q-1 - ṽ2q-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) = v q v v + q-1 -ṽq ṽ ṽ + q-1 ((v + ) q -(ṽ + ) q ) ≤ v q ((v + ) q -(ṽ + ) q ) ≤ v q (v + ) q ≤ v q (v + 1) q .
In the same fashion, we have

0 ≤ h v q-1 (v + ) q-1 - ṽq-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) ≤ h(v + ) q ≤ h(v + 1) q .
Moreover, as → 0 v 2q-1 (v + ) q-1 -ṽ2q-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) → (v qṽq ) 2 and h v q-1 (v + ) q-1 -ṽq-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) → 0 4.4.5.2. Further results for (4.4.16) and uniqueness a.e. in Ω. Then by Lebesgue dominated convergence theorem we have

ˆ{v>ṽ} v 2q-1 (v + ) q-1 - ṽ2q-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) dx → ˆ{v>ṽ} (v q -ṽq ) 2 dx and ˆ{v>ṽ} h v q-1 (v + ) q-1 - ṽq-1 (ṽ + ) q-1 ((v + ) q -(ṽ + ) q ) dx → 0.
Then by using Fatou's Lemma and (f 0), we have

-lim inf →0 ˆ{v>ṽ} f (x, v) (v + ) q-1 (ṽ + ) q dx ≤ - ˆ{v>ṽ} f (x, v) v q-1 ṽq dx, -lim inf →0 ˆ{v>ṽ} f (x, ṽ) (ṽ + ) q-1 (v + ) q dx ≤ - ˆ{v>ṽ} f (x, ṽ) ṽq-1 v q dx and ˆ{v>ṽ} f (x, v)(v + ) dx → ˆ{v>ṽ} f (x, v)v dx, ˆ{v>ṽ} f (x, ṽ)(ṽ + ) dx → ˆ{v>ṽ} f (x, ṽ)ṽ dx.
By Lemma 4.4.1 we have, ˆ{v>ṽ} |∇(v + )| p(x)-2 ∇(v + ).∇ (v + ) q -(ṽ + ) q (v + ) q-1 dx + ˆ{v>ṽ} |∇(ṽ + )| p(x)-2 ∇(ṽ + ).∇ (ṽ + ) q -(v + ) q (ṽ + ) q-1 dx ≥ 0.

Then by combining above estimates and taking lim sup →0 in (4.4.24), we get by (f 1)

0 ≤ ˆ{v>ṽ} (v q -ṽq ) 2 dx ≤ λ ˆ{v>ṽ} f (x, v) v q-1 - f (x, ṽ) ṽq-1 (v q -ṽq ) dx ≤ 0. It implies ṽ ≥ v. Corollary 4.4.6. Let λ > 0, f : Ω × R + → R + satisfying (f 0)-(f 1) and h 0 ∈ L 2 (Ω) + ∩ L γ (Ω)
where γ > max{1, N p -}. Then there exists a unique positive distributional solution u ∈ D(R) ∩ L ∞ (Ω) of (4.4.21) in the same sense as in Corollary 4.4.5. Moreover if u 1 and u 2 are two positive distributional solutions of (4.4.21) Proof. Define the functional energy E on V q + ∩ L 2 (Ω) as E(u) = J (u 1/q ) where J is given by (4.4.20). By Theorem 4.4.8, Remark 4.4.8 and Theorem 4.4.9, v 0 is the unique positive solution of (4.4.16) and then unique global minimizer of J . We take u 0 = v q 0 and proceed as the proof of Corollary 4.4.5 and we obtain u 0 = v q 0 is a distributional solution of (4. (Ω). 

for h 1 , h 2 ∈ L 2 (Ω) + then R satisfies (u 1 -u 2 ) + L 2 ≤ (u 1 -u 2 + λ(Ru 1 -Ru 2 )) + L 2 . ( 4 

Proof of

h ∆t (t, x) = h n (x) def = 1 ∆ t ˆtn t n-1 h(s, x)ds.
Then by Jensen inequality,

h ∆t 2 L 2 (Q T ) = ∆ t N n=1 h n 2 L 2 (Ω) = ∆ t N n=1 1 ∆ t ˆtn t n-1 h(s, x)ds 2 L 2 (Ω) ≤ N n=1 ˆtn t n-1 h(s, .) 2 L 2 (Ω) ds ≤ h 2 L 2 (Q T ) .
Hence h ∆t ∈ L 2 (Q T ) and h n ∈ L 2 (Ω) and let > 0, then there exists a function h

∈ C 1 0 (Q T ) such that h -h L 2 (Q T ) < 3 . Hence, (h ) ∆t -h ∆t L 2 (Q T ) → 0. Since h -(h ) ∆t L 2 (Q T ) → 0 as ∆ t → 0 then for small enough ∆ t we have h ∆t -h L 2 (Q T ) ≤ (h ) ∆t -h ∆t L 2 (Q T ) + h -(h ) ∆t L 2 (Q T ) + h -h L 2 (Q T ) < .
Hence

h ∆t → h in L 2 (Q T ).
Step 2: Time discretization of (4.4.4) Define the following implicit Euler scheme and for n ≥ 1, v n is the weak solution of

             v q n -v q n-1 ∆ t v q-1 n -∆ p(x) v n = h n v q-1 n + f (x, v n ) in Ω ; v n > 0 in Ω ;
v n = 0 on ∂Ω . (Ω). By Theorem 4.4.9, we obtain, w ≤ v 1 and then by induction a subsolution w such that 0 < w ≤ v n for all n = 0, 1, 2, . . . , n * . Now we construct a supersolution. For that, we consider the following problem:

         -∆ p(x) w = h L ∞ w q-1 + f (x, w) + K in Ω ; w > 0 in Ω ; w = 0 on ∂Ω . (4.4.29)
As above, there exists a unique weak solution to (4.4.29),

w K ∈ C 1 (Ω) ∩ C 0 d (Ω) + . Let w K be the unique weak solution of    -∆ p(x) w K = K in Ω ; w K = 0 on ∂Ω . (4.4.30)
From Theorem 4.4.13, w K ≥ CK 1/(p + -1+ν) dist(x, ∂Ω) where ν ∈ (0, 1) and

w K L ∞ (Ω) → ∞ as K → ∞.
Then by weak comparison principle we can choose K large enough such that there exists such that v 0 ≤ w K < w def = w K . We easily check that w is the supersolution of (4.4.27) for n = 1 i.e.

ˆΩ w 2q-1 φ dx + ∆ t ˆΩ |∇w| p(x)-2 ∇w).∇φ dx ≥ ∆ t ˆΩ(h 1 w q-1 + K + f (x, w)φ dx + ˆΩ v q 0 w q-1 φ dx for all φ ∈ W 1,p(x) 0

(Ω) and φ ≥ 0. From Theorem 4.4.9, we get w ≥ v 1 and then by induction we have w ≥ v n for all n ∈ {1, 2, . . . n * }.

Step 4: Energy estimates Define the function for n = 1, . . . , n * and t ∈

[t n-1 , t n ) v ∆t (t) = v n and ṽ∆t (t) = t -t n-1 ∆ t (v q n -v q n-1 ) + v q n-1 which satisfies v q-1 ∆t ∂ṽ ∆t ∂t -∆ p(x) v ∆t = f (x, v ∆t ) + h n v q-1 ∆t . (4.4.31)
Multiplying the equation (4.4.26) by v q n -v q n-1 v q-1 n and summing from n = 1 to n ≤ n * , we get Then from Young inequality we have,

n n=1 ˆΩ∆ t v q n -v q n-1 ∆ t 2 dx + n n=1 ˆΩ |∇v n | p(x)-2 ∇v n .∇ v q n -v q n-1 v q-1 n dx = n n=1 ˆΩ h n (v q n -v q n-1 ) dx + n n=1 ˆΩ f (x, v n ) v q-1 n (v q n -v q n-1 ) dx.
n n=1 ˆΩ∆ t v q n -v q n-1 ∆ t 2 dx + n n=1 ˆΩ |∇v n | p(x)-2 ∇v n .∇ v q n -v q n-1 v q-1 n dx ≤ n n=1 ∆ t h n 2 L 2 + 1 4 n n=1 ˆΩ ∆ t v q n -v q n-1 ∆ t 2 dx + n n=1 ∆ t f (x, v n ) v q-1 n 2 L 2 + 1 4 n n=1 ˆΩ ∆ t v q n -v q n-1 ∆ t 2 dx i.e. 1 2 n n=1 ˆΩ ∆ t v q n -v q n-1 ∆ t 2 dx + n n=1 ˆΩ |∇v n | p(x)-2 ∇v n .∇ v q n -v q n-1 v q-1 n dx ≤ n n=1 ∆ t h n 2 L 2 + n n=1 ∆ t f (x, v n ) v q-1 n 2 L 2 .
Using w ≤ v n ≤ w and (f 1)-(f 2), we obtain f (x,vn)

v q-1 n in uniformly bounded in L 2 (

Ω). Then by

Step 1, we obtain

∂ṽ ∆t ∂t is bounded in L 2 (Q T ) uniformly in ∆ t . ( 4.4.32) 
Now from Lemma 4.4.1, we have

|∇v n | p(x)-2 ∇v n .∇ v q n-1 v q-1 n ≤ |∇v n-1 | q |∇v n | p(x)-q ≤ q p(x) |∇v n-1 | p(x) + (p(x) -q) p(x) |∇v n | p(x) .
Then we obtain for any n ≥ 1

n n=1 ∆ t h n 2 L 2 + n n=1 ∆ t f (x, v n ) v q-1 n 2 L 2 ≥ n n=1 ˆΩ |∇v n | p(x)-2 ∇v n .∇ v q n -v q n-1 v q-1 n dx ≥ n n=1 ˆΩ |∇v n | p(x) dx - ˆΩ q p(x) |∇v n-1 | p(x) dx - ˆΩ (p(x) -q) p(x) |∇v n | p(x) dx ≥ q ˆΩ |∇v n | p(x) p(x) dx -q ˆΩ |∇v 0 | p(x) p(x) dx which implies that (v ∆t ) is bounded in L ∞ (0, T ; W 1,p(x) 0 (Ω)) uniformly in ∆ t . (4.4.33) Since ∇(ṽ 1/q ∆t ) = 1 q ζ∇v n ζ + (1 -ζ) v n-1 v n q (1-q)/q + (1 -ζ)∇v n-1 (1 -ζ) + ζ v n v n-1 q (1-q)/q where ζ = t -t n-1 ∆ t
, then we conclude that (ṽ

1/q ∆t ) is bounded in L ∞ (0, T ; W 1,p(x) 0 (Ω)) uniformly in ∆ t . (4.4.34) Since v n v n-1 is uniformly bounded in L ∞ (Ω), v ∆t * v and ṽ1/q ∆t * ṽ in L ∞ (0, T ; W 1,p(x) 0
(Ω)).

Furthermore using (4.4.32), we have sup

t∈(0,T ) ṽ1/q ∆t -v ∆t 2q L 2q (Ω) ≤ sup t∈(0,T ) ṽ∆t -v q ∆t 2 L 2 (Ω) ≤ ∆ t → 0 as ∆ t → 0. (4.4.35)
It follows from (4.4.35) that v = ṽ. By mean value theorem and (4.4.32), we get that (ṽ ∆t ) ∆t is equicontinuous in C(0, T ; L r (Ω)) for 1 < r ≤ 2. Thus using w q ≤ ṽ∆t ≤ w q together with the interpolation inequality .

r ≤ . α ∞ . 1-α 2 , with 1 r = α ∞ + 1 -α 2
, we obtain that (ṽ ∆t ) ∆t and (ṽ 1/q ∆t ) ∆t is equicontinuous in C(0, T ; L r (Ω)) for any 1 < r < +∞. Again using interpolation inequality and Sobolev embedding, we get as ∆ t → 0 + and up to a subsequence that for all r > 1 ṽ∆t → v q in C(0, T ; L r (Ω)), (4.4.36) and 

v ∆t → v in L ∞ (0, T ; L r (Ω)). ( 4 
∂ṽ ∆t ∂t → ∂v q ∂t in L 2 (Q T ). ( 4 

.4.38)

Step 5 : v satisfies (4.4.5) Multiplying (4.4.31) by (v ∆t -v) and integrating by parts, we get

ˆT 0 ˆΩ v q-1 ∆t ∂ṽ ∆t ∂t (v ∆t -v) dxdt + ˆT 0 ˆΩ |∇v ∆t | p(x)-2 ∇v ∆t .∇(v ∆t -v) dxdt = ˆT 0 ˆΩ f (x, v ∆t )(v ∆t -v) dxdt + ˆT 0 ˆΩ h n v q-1 ∆t (v ∆t -v) dxdt.
From (4.4.37) and (4.4.38) , we have 

ˆT 0 ˆΩ v q-1 ∆t ∂ṽ ∆t ∂t (v ∆t -v) dxdt + ˆT 0 ˆΩ h n v q-1 ∆t (v ∆t -v) dxdt = o ∆t (1)
ˆT 0 ˆΩ f (x, v ∆t )(v ∆t -v) dx = o ∆t (1).
Then we obtain

ˆT 0 ˆΩ |∇v ∆t | p(x)-2 ∇v ∆t .∇(v ∆t -v) dx → 0 as ∆ t → 0 + .
Then from [Step 4, Proof of Theorem 1.1, [146]] and from classical compactness argument we get 

|∇v ∆t | p(x)-2 ∇v ∆t → |∇v| p(x)-2 ∇v in (L p(x)/(p(x)-1) (Q T )) N . ( 4 
v q-1 ∆t -v q-1 L 2 (Q T ) ≤ v q-1 ∆t -v q-1 L ∞ (0,T ;L 2 ) ≤ v q-1 ∆t -v q-1 L ∞ (0,T ;L 2q q-1 ) ≤ v q ∆t -v q L ∞ (0,T ;L 2 ) ≤ v q ∆t -ṽ∆t L ∞ (0,T ;L 2 ) + ṽ∆t -v q L ∞ (0,T ;L 2 ) → 0 (4.4.40)
as ∆ t → 0. By Hölder inequality we have for φ

∈ C ∞ c (Q T ) ˆT 0 ˆΩ v q-1 ∆t ∂ṽ ∆t ∂t - ∂v q ∂t v q-1 φ dx = ˆT 0 ˆΩ v q-1 ∆t ∂ṽ ∆t ∂t - ∂v q ∂t φ dx + ˆT 0 ˆΩ ∂v q ∂t (v q-1 ∆t -v q-1 )φ dx ≤ v q-1 ∆t φ L 2 (Q T ) ∂ṽ ∆t ∂t - ∂v q ∂t L 2 (Q T ) + v q-1 ∆t -v q-1 L 2 (Q T ) φ ∂ṽ ∆t ∂t L 2 (Q T ) and ˆT 0 ˆΩ(h n v q-1 ∆t -hv q-1 )φ dx = ˆT 0 ˆΩ h n (v q-1 ∆t -v q-1 )φ dx + ˆT 0 ˆΩ(h n -h)v q-1 φ dx ≤ h n φ L 2 (Q T ) v q-1 ∆t -v q-1 L 2 (Q T ) + v q-1 φ L 2 (Q T ) h n -h L 2 (Q T ) .
Then from (4.4.32), (4.4.37), (4.4.38), (4.4.40) and Step 1 we obtain 

ˆT 0 ˆΩ v q-1 ∆t ∂ṽ ∆t ∂t - ∂v q ∂t v q-1 φ dx → 0, ˆT 0 ˆΩ(h n v q-1 ∆t -hv q-1 )φ dx → 0 as ∆ t → 0. ( 4 
= [g] + L 2 (Ω) . For z ∈ D(R) and r, k ∈ L ∞ (Q T ) + satisfying assumptions in Theorem 4.4.5, set φ(t, s) = r(t) -k(s) 2 + ∀ (t, s) ∈ [0, T ] × [0, T ], for t ∈ [-T, T ] b(t, r, k) = u q 0 -z 2 + + v q 0 -z 2 + + |t| Rz 2 + + ˆt+ 0 r(τ ) 2 + dτ + ˆt- 0 k(τ ) 2 + dτ and ψ(t, s) = b(t -s, r, k) +    ´s 0 φ(t -s + τ, τ )dτ if 0 ≤ s ≤ t ≤ T ´t 0 φ(τ, s -t + τ )dτ if 0 ≤ t ≤ s ≤ T is a solution of            ∂ψ ∂t (t, s) + ∂ψ ∂s (t, s) = φ(t, s) on (t, s) ∈ [0, T ] × [0, T ] ; ψ(t, 0) = b(t, r, k) on t ∈ [0, T ] ; ψ(0, s) = b(-s, r, k) on s ∈ [0, T ] . (4.4.43)
Define the following iterative scheme, u 0 = u q 0 and for n ≥ 1, u n is the solution of

     u n -u n-1 ∆ t + Ru n = h n in Ω ;
u n = 0 on ∂Ω . and (u m η ) the solution of (4.4.44) with 

∆ t = η, h = k, k m = 1 η ´mη (m-1)η k(τ, .)dτ respectively i.e we have          u n -u n-1 + Ru n = r n ; u m η -u m-1 η η + Ru m η = k m .
η η + (u n -u n-1 ) + η η + (Ru n -Ru m η ) - η + (u m η -u m-1 η ) = η η + (r n -k m ).
Then we infer that

u n -u m η + η + η (Ru n -Ru m η ) = η + η (r n -k m ) + η + η (u n-1 -u m η ) + + η (u n -u m-1 η ).
Let Φ ,η n,m = u n -u m η 2 + and since R satisfies (4.4.25) and setting λ =

η + η , we get Φ ,η n,m = u n -u m η 2 + ≤ u n -u m η + η + η (Ru n -Ru m η ) 2 + ≤ η + η r n -k m 2 + + η + η u n-1 -u m η 2 + + + η u n -u m-1 η 2 + .
Then by elementary calculations, we get

Φ ,η n,0 = u n -u η 2+ ≤ b(t n , r , k η ) and Φ ,η 0,m ≤ b(-s m , r , k η ).
Then by using above computations we get , Φ ,η n,m ≤ ψ ,η n,m where ψ ,η n,m satisfies

ψ η n,m = η + η (r n -k m ) 2 + + η + η ψ ,η n-1,m 2 + + + η ψ ,η n,m-1 2 + and ψ ,η n,0 = b(t n , r , k η ) and ψ ,η 0,m = b(-s m , r , k η ). For (t, s) ∈ (t n-1 , t n ) × (s m-1 , s m ), set φ ,η (t, s) = r (t) -k η (s) 2 + , ψ ,η = ψ ,η n,m , b ,η (t, r, k) = b(t n , r , k η ), b ,η (-s, r, k) = b(-s m , r , k η ).
Then by elementary calculations ψ ,η satisfies the following discrete version of (4.4.43), 

           ψ ,η (t, s) -ψ ,η (t -, s) + ψ ,η (t, s) -ψ ,η (t, s -η) η = φ ,η (t, s); ψ , η(t, 0) = b ,η (t, r, k); ψ ,η (0, s) = b ,η (s, r, k). Since r → r in L 2 (Q T ) then b ,η (., r, k) → b(., r, k) in L ∞ ([0, T ]) and φ ,η → φ in L ∞ ([0, T ] × [0, T ]) and we deduce that ρ ,η = ψ ,η -ψ L ∞ ([0,T ]×[0,T ]) → 0 (
u (t) -u η (s) 2 + = Φ ,η (t, s) ≤ ψ ,η (t, s) ≤ ψ(t, s) + ρ ,η .
Since u (t) = v q (t) and u η (t) = v q η (t), we obtain

v q (t) -v q η (s) 2 + = Φ ,η (t, s) ≤ ψ ,η (t, s) ≤ ψ(t, s) + ρ ,η . (4.4.46)
From Theorem 4.4.4, v q and v q η satisfies 0 < w < v , v η < w where w, w are subsolution and supersolution defined in (4.4.28) and (4.4.29) and v q → v q 1 and v q η → v q 2 a.e. in Ω where v 1 and v 2 are weak solutions of (4.4.4) with initial data u 0 , v 0 respectively. Since v q → v q 1 and v q η → v q 2 in L ∞ (0, T ; L 2 (Ω)) and passing to the limit in (4.4.46) as , η → 0 with t = s we get

v q 1 (t) -v q 2 (t) 2 + ≤ v q 1 (t) -v q (t) 2 + + v q η (t) -v q 2 (t) 2 + + v q (t) -v q η (t) 2 + ≤ u q 0 -z 2 + + v q 0 -z 2 + + ˆt 0 r(γ) -k(γ) 2 + dγ.
Then (4.4.6) follows since we can choose z arbitrary close to v q 0 and with r = h, k = g.

An application to nonhomogeneous operators

In this section, we prove Theorem 4.4.6. To this aim, we first study the properties of a related energy functional. Let m ≥ 1 and K : Ω × R N → R + be a continuous differentiable function which satisfies the following conditions:

(k1) K ∈ C 1 (Ω × R N ) ∩ C 2 (Ω × R N \{0}). (k2) Ellipticity condition: ∃ k 1 ≥ 0 and γ ∈ (0, ∞) such that N i,j=1 ∂ 2 K ∂ξ i ∂ξ j (x, ξ)η i η j ≥ γ(k 1 + |ξ|) m-2 |η| 2 . (k3) Growth condition: ∃ k 2 ≥ 0 and Γ ∈ (0, ∞) such that N i,j=1 ∂ 2 K ∂ξ i ∂ξ j (x, ξ) ≤ Γ(k 2 + |ξ|) m-2
for all ξ ∈ R N \{0} and η ∈ R N .

An application to nonhomogeneous operators

Remark 4.4.10. From the assumption (k2), it follows that K is strictly convex and from (k1)-(k3) there exists some positive constant γ 1 and γ 2 with 0 < γ 1 ≤ γ 2 < +∞ and some nonnegative constants Γ 1 and Γ 2 such that

γ 1 |ξ| m -Γ 1 ≤ K(x, ξ) ≤ γ 2 |ξ| m + Γ 2 for x ∈ Ω and ξ ∈ R N \{0}.
Consider the associated functional J m defined by

J m (u) def = ˆΩ |u| p(x) p(x) K x, ∇u u p(x) m dx.
for any positive function u ∈ W 1,p(x) 0

(Ω). Now we extend Lemma 2.4 in [START_REF] Takáč | Variational Problems with a p-homogeneous energy[END_REF] as follows:

Theorem 4.4.10.

Let K : Ω × R N → R + satisfying (k1)-(k3) for some m ∈ [1, p -]. Then, the function E : V m + ∩ L ∞ (Ω) → R + , defined by E(u) def = J m (u 1/m ), is ray-strictly convex (even strictly convex if p(•) ≡ m). Proof. We observe that for u ∈ V m + ∩ L ∞ (Ω) E(u) = ˆΩ 1 p(x) uK x, ∇u mu p(x) m dx.
Therefore, since for 1 ≤ m ≤ p -, t → t p(x)/m is convex in R + (even strictly convex if p(x) > m) it is enough to prove that

V m + u → uK x, ∇u mu
is ray-strictly convex. To achieve this goal, let θ ∈ (0, 1) and u 1 , u 2 ∈ V m + then by using the strict convexity of K we obtain, for

x ∈ Ω ((1 -θ)u 1 + θu 2 )K x, (1 -θ)∇u 1 + θ∇u 2 m((1 -θ)u 1 + θu 2 ) = ((1 -θ)u 1 + θu 2 )K x, (1 -θ)u 1 ((1 -θ)u 1 + θu 2 ) ∇u 1 mu 1 + θu 2 ((1 -θ)u 1 + θu 2 ) ∇u 2 mu 2 ≤ ((1 -θ)u 1 + θu 2 ) (1 -θ)u 1 ((1 -θ)u 1 + θu 2 ) K x, ∇u 1 mu 1 + θu 2 ((1 -θ)u 1 + θu 2 ) K x, ∇u 2 mu 2 = (1 -θ)u 1 K x, ∇u 1 mu 1 + θu 2 K x, ∇u 2 mu 2 .
The above inequality is always strict unless

∇u 1 u 1 = ∇u 2 u 2 , i.e. u 1 /u 2 ≡ Const.
Proof of Theorem 4.4.6: Consider the functional J : W 1,p(x) 0

(Ω) → R , defined by

J (u) = ˆΩ (|∇u| 2 + u 2 ) p(x)/2 p(x) dx -ˆΩ G(x, u) dx
where the potential G(x, t) defined as

G(x, t) =        ˆt 0 g(x, s)ds if 0 ≤ t < ∞ ; 0 if -∞ < t < 0 .
Assumptions (f 0), (g) and Remark 4.4.10 ensure that J is well defined, coercive and continuous. Then there exists at least one global minimizer of J on W 1,p(x) 0

(Ω), say u 0 . We can easily prove that u 0 is nonnegative and nontrivial. Since J is differentiable, we deduce that u 0 is a weak solution of (4.4.7). Now from Theorems 4.4.11 and 4.4.12 in Appendix A, we obtain that any weak solution u to (4.4.7) belongs to C 1,α (Ω) for some α ∈ (0, 1) and u > 0 in Ω and ∂u ∂ n < 0 on ∂Ω. Therefore any weak solution belongs to C 0 d (Ω) + . Now we prove that u 0 is the unique weak solution to (4.4.7). Let W : V m + → R defined by

W (u) = J (u 1/m ) = ˆΩ (|∇(u 1/m )| 2 + (u 1/m ) 2 ) p(x)/2 p(x) dx -ˆΩ G(x, u 1/m ) dx.
The assumption (g) together with Theorem 4.4.10 with K(x, ξ) = ( + |ξ| 2 ) m/2 imply that W is strictly convex. Let u 1 a weak solution to (4.4.7). Then setting

v 0 def = u m 0 , v 1 def = u m 1 ∈ V m + and t ∈ [0, 1], we define ξ(t) def = J (((1 -t)v 0 + tv 1 ) 1/m ). Since u 0 and u 1 belong to C 0 d (Ω) + , ξ is differentiable in [0, 1]
. From the convexity of E, we have for any t ∈ [0, 1] ξ (0) ≤ ξ (t) ≤ ξ (1).

(4.4.47)

Since u 0 and u 1 are weak solutions to (4.4.7), ξ (0) = ξ (1) = 0 and from (4.4.47) we get that ξ is constant which contradicts the strict convexity of E unless u 0 ≡ u 1 .

Additional results

In this section, we recall the following regularity of weak solutions of quasilinear elliptic differential equation

   div A(x, u, Du) + B(x, u, Du) = 0 on Ω ; u = 0 on ∂Ω . (4.4.48)
Now we recall the boundedness and C 0,α (Ω) regularity results of weak solutions of (4.4.48) satisfying the following growth conditions:

A(x, u, z)z ≥ a 0 |z| p(x) -b|u| r(x) -c; |A(x, u, z)| ≤ a 1 |z| p(x)-1 + b|u| σ(x) + c; |B(x, u, z)| ≤ a 2 |z| α(x) + b|u| r(x)-1 + c (4.4.49)
where a 0 , a 1 , a 2 , b, c are positive constants and p * is the Sobolev embedding exponent of p and Theorem 4.4.12 below ensures C 1,α (Ω) regularity to weak solutions of (4.4.48) under the additional assumptions on p, A and B:

p(x) ≤ r(x) < p * (x), σ(x) = p(x) -1 p(x) r(x) and α(x) = r(x) -1 r(x) p(x). ( 4 
Assumptions (A k ) : A = (A 1 , A 2 , . . . , A n ) ∈ C(Ω × R × R N , R N ). For every (x, u) ∈ Ω × R, A(x, u, .) ∈ C 1 (R N \{0}, R N ), there exist a nonnegative constants k 1 , k 2 , k 3 ≥ 0, a nonin- creasing continuous function λ : [0, ∞) → (0, ∞) and a nondecreasing continuous func- tion Λ : [0, ∞) → (0, ∞) such that for all x, x 1 , x 2 ∈ Ω, u, u 1 , u 2 ∈ R, η ∈ R N \{0} and ξ = (ξ 1 , ξ 2 , . . . , ξ n ) ∈ R N , the following conditions are satisfied A(x, u, 0) = 0, i,j ∂A j (x, u, η) ∂η i (x, u, η)ξ i ξ j ≥ λ(|u|)(k 1 + |η| 2 ) (p(x)-2)/2 |ξ| 2 , i,j ∂A j (x, u, η) ∂η i (x, u, η) ≤ Λ(|u|)(k 2 + |η| 2 ) (p(x)-2)/2 and |A(x 1 , u 1 , η) -A(x 2 , u 2 , η)| ≤ Λ(max{|u 1 |, |u 2 |})(|x 1 -x 2 | β 1 + |u 1 -u 2 | β 2 ) × [(k + |η| 2 ) (p(x 1 )-2)/2 + (k + |η| 2 ) (p(x 2 )-2)/2 ]|η|(1 + | log(k 3 + |η| 2 )|).
Assumption (B) : B : Ω × R × R N → R, the function B(x, u, η) is measurable in x and is continuous in (u, η), and

|B(x, u, η)| ≤ Λ(|u|)(1 + |η| p(x) ), ∀(x, u, η) ∈ Ω × R × R N .
Theorem 4.4.12. ( [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF], Theorem 1.2) Let assumptions (A k ), (B) hold. Assume p belongs to C 0,β (Ω), for some β ∈ (0, 1). Suppose that Ω satisfy (Ω).

If u ∈ W 1,p(x) 0 (Ω) ∩ L ∞ (Ω) is a weak solution of (4.4.48), then u ∈ C 1,α (Ω) where α ∈ (0, 1) and u C 1,α (Ω) depends upon p -, p + , λ(M ), Λ(M ), β 1 , β 2 , M, Ω where M def = u L ∞ (Ω) .
In the next theorem, we recall some results contained in Lemma 2.1 of [START_REF] Fan | On the sub-supersolution method for p(x)-Laplacian equations[END_REF] and Lemma 3. (Ω)∩C 1,α (Ω) be the weak solution of (4.4.30). 1) where C 1 , C 2 and C 3 depends upon p + , p -, N, Ω. Moreover if 

2 of [146]. Set = p - 2|Ω| 1/N C 0 where C 0 is the best embedding constant of W 1,1 0 (Ω) ⊂ L N N -1 (Ω).
Then for K ≥ , w K L ∞ (Ω) ≤ C 1 K 1/(p --1) , w K (x) ≥ C 2 K 1/(p + -1+ς) dist(x, ∂Ω) where ς ∈ (0, 1) and for K < , w K L ∞ (Ω) ≤ C 3 K 1/(p + -
K 1 < K 2 then w K 1 ≤ w K 2 .
where h ∈ L 2 (Ω) ∩ L r (Ω) with r > max{1, N p -}. Then u ∈ L ∞ (Ω).
First we prove a regularity lemma.

Lemma 4.4.5. Let u ∈ W 1,p 0 (Ω) satisfying for any B R , R < R 0 , and for all σ ∈ (0, 1), and

any k ≥ k 0 > 0 ˆAk,σR |∇u| p dx ≤ C ˆAk,R u -k R(1 -σ) p * dx + k α |A k,R | + |A k,R | p p * +ε +k β |A k,R | p p * +ε + ˆAk,R u -k R(1 -σ) p * dx p p * |A k,R | δ   where A k,R = {x ∈ B R ∩ Ω | u(x) > k}, 0 < α < p * = N p N -p , β ∈ (1, p] and ε, δ > 0. Then u ∈ L ∞ (Ω).
Proof. A similar result exists in [START_REF] Fusco | Some remarks on the regularity of minima of anisotropic integrals[END_REF] or in [START_REF] Giacomoni | Quasilinear parabolic problem with p(x)-Laplacian: existence, uniqueness of weak solutions and stabilization[END_REF] without the term k β |A k,R | p p * +ε . For the reader's convenience, we include the complete proof. Let x 0 ∈ Ω, B R the ball centred in x 0 . We define K R def = B R ∩ Ω and we set

r j = R 2 + R 2 j+1 , rj = r j + r j+1 2 and k j = k 1 - 1 2 j+1
for any j ∈ IN .

Define also

I j = ˆAk j ,r j |u(x) -k j | p * dx and ϕ(t) = 1 if 0 ≤ t ≤ 1 2 , 0 if t ≥ 3 4 satisfying ϕ ∈ C 1 ([0, +∞)) and 0 ≤ ϕ ≤ 1. We set ϕ j (x) = ϕ 2 j+1 R (|x| -R 2 )
. Hence ϕ j = 1 on B r j+1 and ϕ j = 0 on R N \B rj+1 . We have

I j+1 = ˆAk j+1 ,r j+1 |u(x) -k j+1 | p * dx = ˆAk j+1 ,r j+1 |u(x) -k j+1 | p * ϕ j (x) p * dx ≤ ˆKR (u(x) -k j+1 ) + ϕ j (x)) p * dx. Since u ∈ W 1,p 0 (Ω), (u -k j+1 ) + ϕ j ∈ W 1,p 0 (K R ), I j+1 ˆKR |∇((u -k j+1 ) + ϕ j )| p dx p * p   ˆAk j+1 ,r j |∇u| p dx + ˆAk j+1 ,r j (u -k j+1 ) p dx   p * p
where we use the notation f g in the sense there exists a constant c > 0 such that f ≤ cg. Since rj < r j , we have

I j+1   2 jp * ˆAk j+1 ,r j |u -k j+1 | p * dx + k α j+1 |A k j+1 ,r j | + |A k j+1 ,r j | p p * +ε +k β j+1 |A k j+1 ,r j | p p * +ε + 2 jp   ˆAk j+1 ,r j |u -k j+1 | p * dx   p p * |A k j+1 ,r j | δ + ˆAk j+1 ,r j |u -k j+1 | p * dx   p * p . (4.4.52)
Moreover, for any j, k j ≤ k j+1 , this implies

I j ≥ ˆAk j+1 ,r j |u -k j | p * dx ≥ ˆAk j+1 ,r j |k j -k j+1 | p * dx = |A k j+1 ,r j k j+1 -k j | p * .
Then, for any k > k 0 and j ∈ IN

|A k j+1 ,r j | + k p * j+1 |A k j+1 ,r j | 2 jp * I j
where the constant in the notation depends only on k 0 , p and α. From the previous inequality, we deduce 

k β j+1 |A k j+1 ,r j | p p * +ε ≤ k p+εp * j+1 |A k j+1 ,
I j ≤ ˆKR (|u -k j | + ) p * dx ≤ ˆKR |u| p * ≤ u p * W 1,p 0 , ( 4 
.4.53) becomes

I j+1 2 jM I 1+ θp * p j
where the constant depends on u W 1,p 0 , k 0 , α and p. We conclude with Lemma 4.7 in Chapter 2 of [START_REF] Ladyzhenskaya | tseva, Linear and quasilinear elliptic equations[END_REF]. For this it suffices to prove that I 0 is small enough. Indeed u ∈ L p * (Ω) implies

I 0 = ˆA k 2 ,R |u - k 2 | p * dx → 0 as k → ∞.
Hence for k large enough,

I 0 ≤ C -1 η (2 M ) -1
η 2 with η = θp * p . Thus I j converges to 0 as j → +∞ and ˆAk, R 2 |u -k| p * dx = 0.

We deduce that u ≤ k on K R 2 . In the same way, we prove that -u ≤ k on K R 2 . Since Ω is compact, we conclude that u ∈ L ∞ (Ω).

Proof of Proposition 4.4.3:

We follow the idea of the proof of Theorem 4.1 in [START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF].

Let x 0 ∈ Ω, B R the ball of radius R centered in x 0 and K R def = Ω ∩ B R . We define p + def = max K R p(x) and p -def = min K R p(x)
and we choose R small enough such that p + < (p -) * where Hence by Young inequality, for > 0, we have

(p -) * def =    N p - N -p - if p -< N, p + + 1 if p -≥ N. Fix (s, t) ∈ (R * + ) 2 , t < s < R then K t ⊂ K s ⊂ K R . Define ϕ ∈ C ∞ (Ω), 0 ≤ ϕ ≤ 1 such that ϕ = 1 in B t , 0 in R N \B s satisfying |∇ϕ| 1/(s -t). Let k ≥ 1, using the same notations as previously A k,λ = {y ∈ K λ | u(y) > k} and taking Ψ = ϕ p + (u -k) + ∈ W 1,p(x) 0 (Ω) in (4.4.51), we obtain ˆAk,s |∇u| p(x) ϕ p + dx + p + ˆAk,s |∇u| p(x)-2 ∇u • ∇ϕϕ p + -1 (u -k) + dx = ˆAk,s hu q-1 ϕ p + (u -k) dx.
p + ˆAk,s |∇u| p(x)-2 ∇u • ∇ϕϕ p + -1 (u -k) dx ≤ ε ˆAk,s |∇u| p(x) ϕ (p + -1) p(x) p(x)-1 dx + cε -1 ˆAk,s (u -k) p(x) |∇ϕ| p(x) dx.
Since |∇ϕ| ≤ c/(s -t) and for any x ∈ K R , p + ≤ (p + -1) p(x) p(x)-1 , we have ϕ

(p + -1) p(x) p(x)-1 ≤ ϕ p + . This implies p + ˆAk,s |∇u| p(x)-2 ∇u.∇ϕϕ p + -1 (u -k) dx ≤ ε ˆAk,s |∇u| p(x) ϕ p + dx + cε -1 ˆAk,s u -k s -t p(x)
dx.

(4.4.55)

Using Hölder inequality, we estimate the right-hand side of (4.4.54) as follows:

ˆAk,s hu q-1 ϕ p + (u -k) dx ≤ h L r ˆAk,s u r(q-1) r-1 (u -k) r r-1 dx r-1 r . Since r > N p -, we have (p -) * p - r-1
r > 1, applying once again the Hölder inequality and the Young inequality, we obtain

ˆAk,s hu q-1 ϕ p + (u -k) dx ˆAk,s u q(p -) * p - dx + ˆAk,s (u -k) q(p -) * p - dx p - (p -) * |A k,s | δ where δ = r-1 r -p - (p -) * > 0. Set A k,s,t = {x ∈ A k,s | u(x) -k > s -t} and its complement as A c
k,s,t . Now we split the integrals in the right-hand side of (4.4.56) as follows:

ˆAk,s,t u -k s -t q(p -) * p - (s -t) q(p -) * p - dx + ˆAc k,s,t u -k s -t q(p -) * p - (s -t) q(p -) * p - dx ˆAk,s u -k s -t (p -) * dx + |A k,s | def = I (4.4.56)
since q < p -and we also have ˆAk,s u

q(p -) * p - dx ˆAk,s (u -k) q(p -) * p - + k q(p -) * p - dx I + k q(p -) * p - |A k,s |.
In the same way, the second term in the right-hand side of ( 4 

ϕ p + dx I + |A k,s | δ (I + k q(p -) * p - |A k,s |) p - (p -) *
where the constant depends on p, R and ε. Moreover we have

(I + k q(p -) * p - |A k,s |) p - (p -) * ˆAk,s u -k s -t (p -) * dx p - (p -) * + |A k,s | p - (p -) * + k q |A k,s | p - (p -) * .
To conclude, using the Young inequality, we obtain the following estimate: 

ˆAk,t |∇u| p -dx ≤ ˆAk,s |∇u| p(x) ϕ p + dx ˆAk,s u -k s -t (p -) * dx + 2|A k,s | + (1 + k q )|A k,s | p - (p -) * +δ + |A k,s | δ ˆAk,s u -k s -t (p -) *
ˆΩ u 2q-1 Ψ dx + ˆΩ |∇u| p(x)-2 ∇u • ∇Ψ dx ≤ ˆΩ(f (x, u) + hu q-1 )Ψ dx where f verifies for any (x, t) ∈ Ω × R + , |f (x, t)| ≤ c 1 + c 2 |t| s(x)-1 with s ∈ C(Ω) such that for any x ∈ Ω, 1 < s(x) < p * (x) and h ∈ L 2 (Ω) ∩ L r (Ω) with r > max{1, N p -}. Then u ∈ L ∞ (Ω).

Generalized doubly nonlinear equation: Local existence, uniqueness, regularity and stabilization

In the section, we study the existence, uniqueness and qualitative properties of the weak solutions of the following D.N.E. driven by a general quasilinear operator of Leray-Lions type:

           q 2q -1 ∂ t (u 2q-1 ) -∇. a(x, ∇u) = f (x, u) + h(t, x)u q-1 , u > 0 in Q T ; u = 0 on Γ; u(0, .) = u 0 in Ω, (DNE) 
where T > 0, q > 1, Q T def = (0, T ) × Ω with Ω ⊂ R N , N ≥ 1 a smooth bounded domain, Γ def = (0, T ) × ∂Ω and h belongs to L ∞ (Q T ). The main difference of this work with the previous sections is the doubly nonlinear feature together combined to the broad class of considered Leray-Lions type operators a. More precisely, problem (DNE) involves a class of variational operators a : Ω × R N → R defined as, for any (x, ξ)

∈ Ω × R N : a(x, ξ) = (a j (x, ξ)) j def = 1 p(x) ∂ ξ j A(x, ξ) j = 1 p(x) ∇ ξ A(x, ξ)
where A : Ω × R N → R + is continuous, differentiable with respect to ξ and satisfies:

(A 1 ) ξ → A(., ξ) is p(x)-homogeneous i.e. A(x, tξ) = t p(x) A(x, ξ), for any t ∈ R + , ξ ∈ R N and a.e. x ∈ Ω with p ∈ C 1 (Ω) satisfying 1 < p -def = min x∈Ω p(x) ≤ p(x) ≤ p + def = max x∈Ω p(x) < ∞.
This class of operators a also satisfies ellipticity and growth conditions: 

(A 2 ) For j ∈ 1, N , a j (x, 0) = 0, a j ∈ C 1 (Ω × R N \{0}) ∩ C(Ω × R N
) and there exist two constants γ, Γ > 0 such that for all x ∈ Ω, ξ ∈ R N \{0} and η ∈ R N :

N i,j=1 ∂a j ∂ξ i (x, ξ) η i η j ≥ γ|ξ| p(x)-2 |η| 2 ; N i,j=1 ∂a j ∂ξ i (x, ξ) ≤ Γ|ξ| p(x)-2 .
Remark 4.5.1. The assumption (A 2 ) gives the convexity of ξ → A(x, ξ) and growth estimates, for any

(x, ξ) ∈ Ω × R N : γ p(x) -1 |ξ| p(x) ≤ A(x, ξ) ≤ Γ p(x) -1 |ξ| p(x) ; |a(x, ξ)| ≤ C|ξ| p(x)-1 ; (4.5.1)
and, see [START_REF] Tolksdorf | Regularity for a more general class of quasilinear elliptic equations[END_REF], for any ξ, η ∈ R N and x ∈ Ω, there exists a constant γ 0 > 0 depending on γ and p such that

a(x, ξ) -a(x, η), ξ -η ≥ γ 0      |ξ -η| p(x) if p(x) > 2; |ξ -η| 2 (1 + |ξ| + |η|) 2-p(x) if p(x) ≤ 2. (4.5.2)

Moreover, the homogeneity assumption implies that

A(x, ξ) = a(x, ξ).ξ for any (x, ξ) ∈ Ω × R N .
Next, we impose the condition below to insure qualitative properties as regularity and the validity of Hopf Lemma.

(A 3 ) There exists C > 0 such that for any (x, ξ) ∈ Ω × R N \{0}:

N i,j=1 ∂a i ∂x j (x, ξ) ≤ C|ξ| p(x)-1 (1 + | ln(|ξ|)|).
Remark 4.5.2. More precisely, from the condition (A 3 ) we derive the Strong Maximum Principle (see [START_REF] Zhang | A strong maximum principle for differential equations with nonstandard p(x)growth conditions[END_REF]) and the C 1,α -regularity of weak solutions (see Remark 5.3 in [118] and Remark 3.1 in [146]).

Concerning the conditions on the functions f and h, we assume:

(f 0 ) f : Ω × R + → R + is a continuous function such that f (x, 0) ≡ 0 and f is positive on Ω × R + \{0}. (f 1 ) For any x ∈ Ω, s → f (x,s) s q-1 is nonincreasing in R + \{0}. and (H h ) there exists h ∈ L ∞ (Ω)\{0}, h ≥ 0 such that h(t, x) ≥ h(x) for a.e in Q T .
The study of (DNE) is naturally concerned with the investigation of the following associated parabolic problem:

               v q-1 ∂ t (v q ) -∇. a(x, ∇v) = h(t, x)v q-1 + f (x, v) in Q T ; v ≥ 0 in Q T ; v = 0 on Γ; v(0, .) = v 0 in Ω. (E)
We further prove that a weak solution of (E) is also a weak solution of (DNE). By denoting

W def = W 1,p(x) 0
(Ω) (we refer to [START_REF] Diening | Lebesgue and Sobolev spaces with variable exponents[END_REF][START_REF] Rȃdulescu | Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis[END_REF] for the definitions and properties of variables exponent Lebesgue and Sobolev spaces) and introducing weighted spaces with the notation δ(x)

def = dist(x, ∂Ω): L ∞ δ (Ω) def = {w : Ω → R | measurable, w δ(.) ∈ L ∞ (Ω)} endowed with the norm w δ = sup Ω w(x)
δ(x) and for r > 0:

M r δ (Ω) def = {w : Ω → R + | measurable, ∃ c > 0, 1 c ≤ w r δ(x) ≤ c},
we introduce the notion of weak solution of (E) as follows:

Definition 4.5.1. Let T > 0, a weak solution to (E) is any positive function v ∈ L ∞ (0, T ; W)∩ L ∞ (Q T ) such that ∂ t (v q ) ∈ L 2 (Q T ) satisfying for any φ ∈ L 2 (Q T ) ∩ L 1 (0, T ; W) and for any t ∈ (0, T ] ˆt 0 ˆΩ ∂ t (v q )v q-1 φ dxds+ ˆt 0 ˆΩ a(x, ∇v).∇φ dxds = ˆt 0 ˆΩ(h(s, x)v q-1 + f (x, v))φ dxds (4.5.3)
and v(0, .) = v 0 a.e. in Ω.

Remark 4.5.3. In sense of Definition 4.5.1, a solution of (E) belongs to

L ∞ (Q T ), hence q 2q-1 ∂ t (v 2q-1 ) = v q-1 ∂ t (v q ) ∈ L 2 (Q T )
holds in weak sense and we deduce the existence of a solution of (DNE). 

A(x, ξ) = J j=1     g j (x)   i∈P j ξ 2 i   p(x) 2    
where (P j ) j∈J is a partition of 1, N , g j ∈ C 1 (Ω) ∩ C 0,β (Ω) and g j (x) ≥ c > 0 for any j ∈ J.

In particular for A(x, ξ) = |ξ| p(x) , (DNE) can be classified as S.D.E. if 2q < p -and F.D.E. if 2q > p + .

Main results

Main results

About the existence and properties of solutions of (E), we prove the following result:

Theorem 4.5.1. Let T > 0 and q ∈ (1, p -). Assume A satisfies (A 1 )-(A 3 ), f satisfies (f 0 ), (f 1 ) and

(f 2 ) The mapping x → δ 1-q (x)f (x, δ(x)) belongs to L 2 (Ω ε ) for some ε > 0 where Ω ε def = {x ∈ Ω | δ(x) < ε}.
Then, for any h ∈ L ∞ (Q T ) satisfying (H h ) and for any initial data v 0 ∈ M 1 δ (Ω) ∩ W, there exists a unique solution in sense of Definition 4.5.1. More precisely, we have: (i) Let v, w be two weak solutions of (E) with respect to the initial data v 0 , w 0 ∈ M 1 δ (Ω) ∩ W and h, g ∈ L ∞ (Q T ) satisfying (H h ). Then, for any t ∈ [0, T ]:

(v q (t) -w q (t)) + L 2 ≤ (v q 0 -w q 0 ) + L 2 + ˆt 0 (h(s) -g(s)) + L 2 ds. (4.5.4)
(ii) Assume in addition A satisfies, for any x ∈ Ω and for any ξ, η ∈ R N :

(A 4 ) A(x, ξ-η 2 ) ≤ ζ(x)(A(x, ξ) + A(x, η)) 1-s(x) A(x, ξ) + A(x, η) -2A(x, ξ+η 2 ) s(x)
where for any x ∈ Ω, s(x) = min{1, p(x)/2} and

ζ(x) = 1 -2 1-p(x) -s(x) if p(x) < 2 or ζ(x) = 1 2 if p(x) ≥ 2. Then, v ∈ C([0, T ]; W).
Remark 4.5.5. The above result can be generalized in case f (x, s) def = f (x, s) + f (x, s) where f satisfies (f 1 ) and s → f (x,s) s q-1 is Lipschitz with respect to the second variable, uniformly in x ∈ Ω with constant ω > 0. Then if f satisfies additionally (f 0 ), (f 2 ) and under same conditions for A and q, Theorem 4.5.1 still holds, (4.5.4) being replaced by

(v q (t) -w q (t)) + L 2 ≤ e ωt (v q 0 -w q 0 ) + L 2 + ˆt 0 e ω(t-s) (h(s) -g(s)) + L 2 ds.
Similar results have been obtained in [START_REF] Díaz | New applications of monotonicity methods to a class of non-monotone parabolic quasilinear sub-homogeneous problems[END_REF] in the case of the p-laplacian operator.

Remark 4.5.6. Prototype example of functions f satisfying (f 0 )-(f 2 ) is given by for any

(x, s) ∈ Ω × R + , f (x, s) = g(x)δ γ (x)s β where g ∈ L ∞ (Ω) is a nonnegative function, β ∈ [0, q -1) and β + γ > q -3 2 .
Remark 4.5.7. The condition (A 4 ) reformulates the local form of Morawetz-type inequality producing convergence properties.

In Theorem 4.5.1, the uniqueness of the solution in sense of Definition 4.5.1 is obtained by the following theorem relaxing the assumptions on v 0 and h. More precisely, we show: Theorem 4.5.2. Let v, w be two solutions of (E) in sense of Definition 4.5.1 with respect to the initial data v 0 , w 0 ∈ L 2q (Ω), v 0 , w 0 ≥ 0 and h, h ∈ L 2 (Q T ). Then, for any t ∈ [0, T ]:

v q (t) -w q (t) L 2 (Ω) ≤ v q 0 -w q 0 L 2 (Ω) + ˆt 0 h(s) -h(s) L 2 (Ω) ds. (4.5.5)
Using a similar approach based on nonlinear accretive operators theory as in [START_REF] Badra | A singular parabolic equation: Existence and stabilization[END_REF]146,[START_REF] Giacomoni | Quasilinear parabolic problem with p(x)-Laplacian: existence, uniqueness of weak solutions and stabilization[END_REF], we introduce T q : D(T q ) ⊂ L 2 (Ω) → L 2 (Ω) be the operator with the parameter q defined by

T q u = -u (1-q)/q ∇. a(x, ∇(u 1/q )) + f (x, u 1/q )
and the associated domain

D(T q ) = {w : Ω → R + | measurable, w 1/q ∈ W ∩ L 2q (Ω), T q w ∈ L 2 (Ω)}.
Based on the accretive property of T q in L 2 (Ω) (see Theorem 4.5.5 and Corollary 4.5.2) and additional regularity on initial data, we obtain the following stabilization result for the weak solutions to (E):

Theorem 4.5.3. Under the assumptions of Theorem 4.5.1, let v be the weak solution of (E) with the initial data 1) at infinity for some η > 0.

v 0 ∈ M 1 δ (Ω) ∩ W. Assume that h ∈ L ∞ ([0, +∞) × Ω) satisfying (H h ) on [0, +∞) × Ω and there exists h ∞ ∈ L ∞ (Ω) such that t 1+η h(t, .) -h ∞ L 2 = O(
(4.5.6)

Then, for any r ∈ [1, ∞)

v q (t, .) -v q stat L r → 0 as t → ∞
where v stat is the unique solution of associated stationary problem with the potential h ∞ ∈ L ∞ (Ω).

Remark 4.5.8. The stabilization in L ∞ -norm appeals new estimates linked to the T -accretivity of the operator T q in L ∞ and in L 1 (see Remark 1.6 and Theorem 2.1 in [START_REF] Benilan | Quelques aspects non linéaires du principe du maximum Séminaire de Théorie du Potentiel[END_REF] and Theorem 1.18 in [START_REF] Ha | Sur les semi-groupes non linéaires dans les espaces L ∞ (Ω)[END_REF]).

Remark 4.5.9. In Theorem 4.5.3, we noticed that

v 0 ∈ M 1 δ (Ω) ∩ W implies v q 0 ∈ D(T q ) L 2
(see Proposition 2.11 in [68]).

Elliptic problem related to D.N.E.

In this section, we study a class of elliptic problem related to D.N.E. in order to prove Theorem 4.5.1. First we start with a direct application of Theorem 4.4.1 which provides a comparison principle, uniform estimates and uniqueness. If the equality occurs in (4.5.7), then w 1 ≡ w 2 in Ω.

Proof. Let w 1 , w 2 ∈ W ∩ L ∞ (Ω) such that w 1 , w 2 > 0 in Ω. Then Theorem 4.4.1 yields A r/p(x) (x, ∇w 1 )A (p(x)-r)/p(x) (x, ∇w 2 ) ≥ a(x, ∇w 2 ).∇ w r 1 w r-1 2 .
Then, by using Young inequality and the equality A(x, ξ) = a(x, ξ).ξ, we obtain

a(x, ∇w 2 ).∇ w 2 - w r 1 w r-1 2 ≥ r p(x) (A(x, ∇w 2 ) -A(x, ∇w 1 )). (4.5.8)
Reversing the role of w 1 and w 2 :

a(x, ∇w 1 ).∇ w 1 - w r 2 w r-1 1 ≥ r p(x) (A(x, ∇w 1 ) -A(x, ∇w 2 ))
and adding the above inequalities we obtain (4.5.7) and the rest of the proof follows from Theorem 5.2 in [146].

L ∞ -potential

In this subsection, we study the following associated elliptic problem:

         v 2q-1 -λ∇. a(x, ∇v) = h 0 v q-1 + λf (x, v) in Ω ; v ≥ 0 in Ω ; v = 0 on ∂Ω , (4.5.9)
where h 0 ∈ L ∞ (Ω) and λ is a positive parameter. The notion of weak solution of (4.5.9) is defined as follows:

Definition 4.5.2. A weak solution of (4.5.9) is any nonnegative and nontrivial function

v ∈ X def = W ∩ L 2q (Ω) such that for any φ ∈ X ˆΩ v 2q-1 φ dx + λ ˆΩ a(x, ∇v).∇φ dx = ˆΩ h 0 v q-1 φ dx + λ ˆΩ f (x, v)φ dx. (4.5.10)
The first theorem gives the existence and the uniqueness of the weak solution of (4.5.9). Theorem 4.5.4. Assume that A satisfies (A 1 )-(A 3 ) and f satisfies (f 0 ) and (f 1 ). Then, for any q ∈ (1, p -), λ > 0 and h 0 ∈ L ∞ (Ω)\{0}, h 0 ≥ 0, there exists a weak solution v ∈ C 1 (Ω) ∩ M 1 δ (Ω) to (4.5.9). Moreover, let v 1 , v 2 be two weak solutions to (4.5.9) with h 1 , h 2 ∈ L ∞ (Ω)\{0}, h 1 , h 2 ≥ 0 respectively, we have with the notation t + def = max{0, t}:

(v q 1 -v q 2 ) + L 2 ≤ (h 1 -h 2 ) + L 2 . (4.5.11)
Proof. Define the energy functional J on X:

J (v) = 1 2q ˆΩ v 2q dx + λ ˆΩ A(x, ∇v) p(x) dx - 1 q ˆΩ h 0 (v + ) q dx -λ ˆΩ F (x, v) dx (4.5.12)
where

F (x, t) = ˆt+ 0 f (x, s)ds.
Note from (f 0 )-(f 1 ) that there exists C > 0 large enough such that for any (x, s)

∈ Ω × R + 0 ≤ f (x, s) ≤ C(1 + s q-1
). (4.5.13) By (4.5.1) and (4.5.13), J is well defined, continuous on X and we have

J (v) ≥ v q L 2q c 1 v q L 2q -c 2 + v W c 3 v p --1 W -c 4
where the constants do not depend on u. Thus we deduce that J is coercive on X. Therefore we affirm that there exists v 0 ∈ X a global minimizer of J . Noting that, with the notation t -= t + -t,

J (v 0 ) ≥ J (v + 0 ) + 1 2q ˆΩ(v - 0 ) 2q dx + λ ˆΩ A(x, ∇v - 0 ) p(x) dx ≥ J (v + 0 )
we deduce v 0 ≥ 0. Let φ ∈ C 1 c (Ω) be a nonnegative and nontrivial function, thus for any t > 0

J (tφ) ≤ t q (c 1 t q + c 2 t p --q -c 3 )
where the constants are independent of t and c 3 > 0 since h 0 ≡ 0. Hence for t small enough, J (tφ) < 0 and since J (0) = 0, we deduce v 0 ≡ 0. The Gâteaux differentiability of J insures that v 0 satisfies (4.5.10). From Proposition 4.5.2, we deduce v 0 ∈ L ∞ (Ω) and Theorem 1.2 in [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF] provides the C 1,α (Ω)regularity of v 0 for some α ∈ (0, 1). By (f 0 ) and (f 1 ), f satisfies lim s→0 + f (x, s)s 1-2q = ∞ uniformly in x ∈ Ω, hence Lemma 4.5.2 implies v 0 ∈ M 1 δ (Ω).

L ∞ -potential

Finally, let v 1 , v 2 ∈ M 1 δ (Ω) be two weak solutions of (4.5.9) with respect to h 1 and h 2 respectively. Namely, for any φ, Ψ ∈ X, we have

ˆΩ v 2q-1 1 φ dx + λ ˆΩ a(x, ∇v 1 ).∇φ dx = ˆΩ h 1 v q-1 1 φ dx + λ ˆΩ f (x, v 1 )φ dx and ˆΩ v 2q-1 2 Ψ dx + λ ˆΩ a(x, ∇v 2 ).∇Ψ dx = ˆΩ h 2 v q-1 2 Ψ dx + λ ˆΩ f (x, v 2 )Ψ dx.

Subtracting above expressions by taking

φ = v 1 - v q 2 v q-1 1 + and Ψ = v 2 - v q 1 v q-1 2 -
then by (f 1 ) and Lemma 4.5.1, we obtain ˆΩ((v q

1 -v q 2 ) + ) 2 dx ≤ ˆΩ(h 1 -h 2 )(v q 1 -v q 2 ) + dx ≤ (h 1 -h 2 ) + L 2 (Ω) (v q 1 -v q 2 ) + L 2
from which (4.5.11) follows.

Remark 4.5.10. In the proof of Theorem 4.5.4, condition (f 1 ) is not optimal to obtain the existence of a minimizer and to apply Lemma 4.5.2. Indeed define a more general condition on f

(f 1 ) lim sup s→+∞ f (x,s) s p --1 < γΛp ± uniformly in x ∈ Ω where p ± := p - p + (p + -1) and Λ -1 def = (sup u W =1 ( u L p -(Ω) )) p -, condition (f 1
) is a sufficient condition to obtain the existence of a weak solution of (4.5.9). Moreover, to apply Lemma 4.5.2 we assume in addition that f satisfies: Remark 4.5.12. For q = 1, (4.5.9) becomes

(f 1 ) lim inf s→0 + f (x,s) s 2q-1 > 1 uniformly in x ∈ Ω.
   v + λT 1 = h 0 in Ω ; v = 0 on ∂Ω. ( 4 

.5.14)

For any h 0 ∈ L ∞ (Ω) and for any f ∈ L ∞ (Ω × R) satisfying (f 1 ) with q = 1, following the proof of Theorem 4.5.4, we get the existence of a unique weak solution v 0 ∈ W ∩ L 2 (Ω) (not necessary nonnegative) in sense of Definition 4.5.2 with φ ∈ W ∩ L 2 (Ω).

Moreover, choosing as test function

φ = (v 0 ± M ) + where M = h 0 L ∞ + f L ∞ , we deduce v 0 ∈ L ∞ (Ω)
and hence for any λ > 0, R(I

+ λT 1 ) = L ∞ (Ω).
Moreover, let v 1 and v 2 be two solutions to (4.5.14) with h 1 , h 2 ∈ L ∞ (Ω) respectively, we get from (4.5.2) and (f 1 ): for any : R → R Lipschitz and nondecreasing function such that

(0) = 0: ˆΩ (T 1 v 1 -T 1 v 2 ) (v 1 -v 2 ) dx ≥ 0.
Thus, by section I. [START_REF] Adimurthi | Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian[END_REF]. in [START_REF] Ha | Sur les semi-groupes non linéaires dans les espaces L ∞ (Ω)[END_REF],

T 1 is T -accretive in L 1 (Ω) namely for any h 1 , h 2 ∈ L ∞ (Ω)
and respectively v 1 , v 2 the solutions to (4.5.14), we have

(v 1 -v 2 ) + L 1 ≤ (h 1 -h 2 ) + L 1 .
Finally, using Remark 1.6 in [START_REF] Benilan | Quelques aspects non linéaires du principe du maximum Séminaire de Théorie du Potentiel[END_REF],

T 1 is T -accretive in L m (Ω), for any m ∈ [1, ∞] i.e (v 1 -v 2 ) + L m ≤ (h 1 -h 2 ) + L m , m ∈ [1, ∞].
We point out that T -accretivity of T q , for q > 1, in L 2 (Ω) is equivalent to

ˆΩ (T q v 1 -T q v 2 ) (v 1 -v 2 ) dx ≥ 0 with the fixed choice (t) = t + .
In the way of Remark 4.5.12, Theorem 4.5.4 implies existence, uniqueness and accretivity results for the perturbed problem induced by the operator T q :

Corollary 4.5.1. Assume A satisfies (A 1 )-(A 3 ) and f verifies (f 0 ) and (f 1 ). Then, for any q ∈ (1, p -), λ > 0 and h 0 ∈ L ∞ (Ω)\{0}, h 0 ≥ 0, there exists a unique solution u ∈ C 1 (Ω) of

         u + λT q u = h 0 in Ω; u > 0 in Ω; u = 0 on ∂Ω. (4.5.15)
Namely, u belongs to V q + ∩ M 1/q δ (Ω) and satisfies:

ˆΩ uψ dx + λ ˆΩ a(x, ∇(u 1 q )).∇(u 1-q q ψ) -f (x, u 1 q )u 1-q q ψ dx = ˆΩ h 0 ψ dx (4.5.16)
for any ψ such that

|ψ| 1/q ∈ L ∞ δ (Ω) and |∇ψ| δ q-1 (.) ∈ L p(x) (Ω). ( 4 

.5.17)

Moreover, if u 1 and u 2 be two solutions of (4.5.15) corresponding to h 1 and h 2 respectively, then Proof. Define the energy functional E on V q + ∩ L 2 (Ω) as E(u) = J (u 1/q ) where J is defined in (4.5.12). Let v 0 is the weak solution of (4.5.9) and the global minimizer of (4.5.12). We set u 0 = v q 0 . Then, u 0 belongs to V q + ∩ M 1/q δ (Ω). Let ψ satisfying (4.5.17). Then there exists t 0 > 0 such that for t ∈ (-t 0 , t 0 ), u 0 + tψ > 0. Hence we have E(u 0 + tψ) ≥ E(u 0 ) for any t ∈ (-t 0 , t 0 ). Using Taylor expansion, dividing by t and passing to the limit as t → 0 we deduce that u 0 verifies (4.5.16). Consider ũ ∈ V q + ∩ M 1/q δ (Ω) another solution satisfying (4.5.16). Thus ṽ = ũ1/q verifies (4.5.10) for φ ∈ L ∞ δ (Ω) ∩ W. By Remark 4.5.11, we deduce ṽ = v 0 and the uniqueness of the solution of (4.5.15). Finally (4.5.18) follows from (4.5.11).

(u 1 -u 2 ) + L 2 ≤ (u 1 -u 2 + λ(T q u 1 -T q u 2 )) + L 2 . ( 4 

Extensions for L 2 -potential

We now generalize existence results of subsection 4.5.2.1 for h 0 ∈ L 2 (Ω) by approximation method.

Theorem 4.5.5. Assume A satisfies (A 1 )-(A 3 ) and f verifies (f 0 ) and (f 1 ). Then, for any q ∈ (1, p -), λ > 0 and h 0 ∈ L 2 (Ω)\{0}, h 0 ≥ 0, there exists a positive weak solution v ∈ X of (4.5.9) in the sense of Definition 4. [START_REF] Adimurthi | Multiplicity of positive solutions for a singular and critical elliptic problem in R 2[END_REF]

.2. Moreover, if h

0 ∈ L r (Ω) for some r > max 1, N p -, v ∈ L ∞ (Ω) and v is unique. Proof. Consider h n ∈ C 1 c (Ω), h n ≥ 0 which converges to h in L 2 (Ω)
. By Theorem 4.5.4, for any n ≥ 1, define v n ∈ C 1,α (Ω) ∩ M 1 δ (Ω) as the unique positive weak solution of (4.5.9) with h 0 = h n . For any s > 1 and a, b ≥ 0, observe that 

|a -b| 2s ≤ (a s -b s ) 2 . ( 4 
(v n -v p ) + L 2q ≤ (v q n -v q p ) + q L 2 ≤ (h n -h p ) + q L 2 .
Thus we deduce that (v n ) converges to v in L 2q (Ω) and (v q n ) converges to v q in L 2 (Ω). Note that the limit v does not depend to the choice of the sequence (h n ) by (4.5.11). So define in particular, for any n ∈ N * , h n = min{h, n}. By (4.5.11), we deduce that (v n ) is nondecreasing and for any n

∈ N * , v(x) ≥ v n (x) ≥ v 1 (x) ≥ cδ(x) > 0 a.e.
in Ω, (4.5.20) for some c independent of n. From (4.5.1), (4.5.13) and using Hölder inequality, equation (4.5.10) with φ = v n becomes

λγ p + -1 ˆΩ |∇v n | p(x) dx ≤ ˆΩ a(x, ∇v n ).∇v n dx ≤ c ( v n q L 2q ( h n L 2 + 1) + v n L 2q ) ≤ c ( v q L 2q (sup n∈N h n L 2 + 1) + v L 2q )
for some c independent on n. Hence we deduce that (v n ) is uniformly bounded in W and v n converges weakly to v in W (up to a subsequence). Now taking φ = v n -v in (4.5.10), we obtain as

n → ∞ ˆΩ f (x, v n )(v n -v) dx + ˆΩ h n v q-1 n (v n -v) dx + ˆΩ v 2q-1 n (v n -v) dx → 0 which infers ˆΩ a(x, ∇v n ).∇(v n -v) dx → 0. Since v n v in W, we deduce that: ˆΩ(a(x, ∇v n ) -a(x, ∇v)).∇(v n -v) dx → 0.
Thus we infer that ˆΩ |∇(v n -v)| p(x) dx → 0 as n → ∞. Since γ 0 > 0, (4.5.2) implies (4.5.21) directly on Ω u . On Ω l , we get from the Hölder inequality and

(v n ) bounded in W: ˆΩl |∇(v n -v)| p(x) dx ≤ c |∇(v n -v)| p(x) (|∇v| + |∇v n |) r(x) L 2 p(x) (Ω l ) (|∇v| + |∇v n |) r(x) L 2 2-p(x) (Ω l ) ≤ c 1 |∇(v n -v)| p(x) (|∇v| + |∇v n |) r(x) L 2 p(x) (Ω l ) def = c 1 N ≤ c 1 ˆΩl |∇(v n -v)| 2 dx (|∇v| + |∇v n |) 2-p(x) dx p where r(x) = p(x)(2-p(x)) 2 , p = min{1, p +
2 } if N ≤ 1 and p = p - 2 otherwise. Hence from (4.5.2), we conclude (4.5.21) in Ω l and the convergence of (v n ) to v in W. Then by using dominated convergence Theorem and classical compactness arguments, we obtain

a(x, ∇v n ) → a(x, ∇v) in L p(x) p(x)-1 (Ω) N .
Step 1: Semi-discretization in time of (E) Let n ∈ N * and set ∆ t = T /n . For n ∈ 0, n , we define t n = n∆ t and for (t, x) ∈ [t n-1 , t n ) × Ω :

h ∆t (t, x) = h n (x) def = 1 ∆ t ˆtn t n-1 h(s, x)ds. Thus h ∆t L ∞ (Q T ) ≤ h L ∞ (Q T )
and let > 0, then there exists a function h

∈ C 1 0 (Q T ) such that h → h in L 2 (Q T ). Since h is uniformly continuous then (h ) ∆t → h in L 2 (Q T ) and by observing that (h ) ∆t -h ∆t L 2 (Q T ) ≤ h -h L 2 (Q T ) , then as ∆ t → 0, h ∆t -h L 2 (Q T ) ≤ (h ) ∆t -h ∆t L 2 (Q T ) + (h ) ∆t -h L 2 (Q T ) + h -h L 2 (Q T ) → 0.
Applying Theorem 4.5.4 with λ = ∆ t , h 0 = ∆ t h n +v q n-1 , we define the implicit Euler scheme,

             v q n -v q n-1 ∆ t v q-1 n -∇. a(x, ∇v n ) = h n v q-1 n + f (x, v n ) in Ω ; v n ≥ 0 in Ω ; v n = 0 on ∂Ω , (4.5.23)
where, for all n ∈ 1, n ,

v n ∈ C 1 (Ω) ∩ M 1 δ (Ω)
is the weak solution in sense of Definition 4.5.2 .

Step 2: Sub-and supersolution In this step, we establish the existence of a subsolution w and a supersolution w of a suitable equations such that v n ∈ [w, w] for all n ∈ 0, n . As in Theorem 4.5.4, we prove, for any µ > 0, there exists a unique weak solution,

w µ ∈ C 1 (Ω) ∩ M 1 δ (Ω), to          -∇. a(x, ∇w) = µ(hw q-1 + f (x, w)) in Ω ; w ≥ 0 in Ω ; w = 0 on ∂Ω, (4.5.24)
where h is defined in (H h ). Let µ 1 < µ 2 and w µ 1 , w µ 2 be weak solutions of (4.5.24). Then, ˆΩ a(x, ∇w µ 1 ).∇φ dx = µ 1 ˆΩ(h w q-1

µ 1 + f (x, w µ 1 ))φ dx ˆΩ a(x, ∇w µ 2 ).∇ψ dx = µ 2 ˆΩ(h w q-1 µ 2 + f (x, w µ 2 ))ψ dx.
Summing the above equations with φ = (w q µ 1 -w q µ 2 ) + w q-1 µ 1 and ψ = (w q µ 2 -w q µ 1 ) - w q-1 µ 2

, then from (4.5.1) and (f 1 ), we deduce (w µ ) µ is nondecreasing. From Theorem 1.2 of [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF] and Theorem 4.5.11 we obtain, for µ 0 > 0 small enough, α ∈ (0, 1) and C µ 0 is independent of w µ and α. Therefore, (4.5.25) implies {w µ : µ ≤ µ 0 } is uniformly bounded and equicontinuous in C 1 (Ω). Applying Arzela-Ascoli Theorem, we obtain, up to a subsequence, w µ → 0 in C 1 (Ω) as µ → 0. Then by Mean

w µ C 1 (Ω) ≤ w µ C 1,α (Ω) ≤ C µ 0 , w µ L ∞ → 0 µ → 0 ( 4 
Value Theorem, we choose µ small enough such that

w def = w µ ∈ C 1 (Ω) ∩ M 1 δ (Ω) satisfies 0 < w ≤ v 0 .
Similarly, there exists w κ ∈ C 1 (Ω) ∩ M 1 δ (Ω) the weak solution of the following problem: 

         -∇. a(x, ∇w) = h L ∞ (Q T ) w q-1 + f (x, w) + κ in Ω ; w ≥ 0 in Ω ; w = 0 on ∂Ω .
v 2q-1 n -∆ t ∇. a(x, ∇v n ) = ∆ t h n v q-1 n + f (x, v n ) + v q n-1 v q-1 n .
Since w ≤ v 0 ≤ w and w, w are respectively a sub-and supersolution of the above equation for n = 1, Theorem 4.5.10 yields v 1 belongs to [w, w] and by induction v n ∈ [w, w] for any n ∈ 1, n .

Step 3: A priori estimates Define the functions for n ∈ 1, n and t

∈ [t n-1 , t n ) v ∆t (t) = v n and ṽ∆t (t) = t -t n-1 ∆ t (v q n -v q n-1 ) + v q n-1 which satisfy v q-1 ∆t ∂ t ṽ∆t -∇. a(x, ∇v ∆t ) = f (x, v ∆t ) + h n v q-1 ∆t (4.5.27)
and by Step 2, there exists c > 0 independent of ∆ t such that for any (t,

x) ∈ Q T 1 c δ(x) ≤ v ∆t , ṽ1/q ∆t ≤ cδ(x). (4.5.28)
In (4.5.23), summing from 1 to n ∈ 1, n and multiplying (4.5.13) and (f 2 ) insure that f (x,vn) v q-1 n is uniformly bounded in L 2 (Ω) in ∆ t . Hence, combining (4.5.1), (4.5.8) and (4.5.29), we deduce, for any n ≥ 1:

v q n -v q n-1 v q-1 n ∈ X, Young's inequality implies 1 2 n n=1 ˆΩ ∆ t v q n -v q n-1 ∆ t 2 dx + n n=1 ˆΩ a(x, ∇v n ).∇ v q n -v q n-1 v q-1 n dx ≤ 2 n n=1 ∆ t h n 2 L 2 + 2 n n=1 ∆ t f (x, v n ) v q-1 n 2 L 2 . (4.5.29) Since v n ∈ [w, w] ⊂ M 1 δ (Ω),
ˆΩ c 1 |∇v n | p(x) -c 2 |∇v 0 | p(x) p(x) dx ≤ ˆΩ q p(x) (A(x, ∇v n ) -A(x, ∇v 0 )) dx ≤ n n=1 ˆΩ q p(x) (A(x, ∇v n ) -A(x, ∇v n-1 )) dx ≤ n n=1 ˆΩ a(x, ∇v n ).∇ v q n -v q n-1 v q-1 n dx ≤ c 3
where the constants c 1 = qγ p + -1 and c 2 = qΓ p --1 . The above inequality implies that

(v ∆t ) is bounded in L ∞ (0, T ; W) uniformly in ∆ t (4.5.30)
and from (4.5.29), we deduce

(∂ t ṽ∆t ) is bounded in L 2 (Q T ) uniformly in ∆ t . (4.5.31)
Moreover, for t = t -t n-1 ∆ t , we have ∇(ṽ

1 q ∆t ) = t + (1 -t) v n-1 v n q 1-q q t∇v n + (1 -t) v n-1 v n q-1 ∇v n-1 .
Hence we deduce from (4.5.30) and Step 2 that (ṽ

1/q ∆t ) is bounded in L ∞ (0, T ; W) uniformly in ∆ t .
Furthermore using (4.5.19), (4.5.31) implies sup

[0,T ] ṽ1/q ∆t -v ∆t 2q L 2q (Ω) ≤ sup [0,T ] ṽ∆t -v q ∆t 2 L 2 (Ω) ≤ o ∆t (1). (4.5.32)
Gathering (4.5.30)-(4.5.32), up to a subsequence, v ∆t , ṽ1/q

∆t * v in L ∞ (0, T ; W) as ∆ t → 0.
From (4.5.28) and (4.5.31) we deduce that (ṽ ∆t ) ∆t is equicontinuous in C([0, T ]; L r (Ω)) for any r ∈ [1, +∞). Moreover, from (4.5.19), we also deduce that (ṽ 1/q ∆t ) ∆t is uniformly equicontinuous in C([0, T ]; L r (Ω)) for any r ∈ [1, +∞). Thus, by Arzela Theorem, we get up to a subsequence that for any r ∈ [1, +∞) Step 4: v satisfies (4.5.3) From (4.5.33) and (4.5.34), we have as

ṽ∆t → v q in C([0, T ]; L r (Ω)) and v ∆t → v in L ∞ (0, T ; L r (Ω)), ( 4 
∂ t ṽ∆t → ∂ t (v q ) in L 2 (Q T ). ( 4 
∆ t → 0 + ˆQT v q-1 ∆t (v ∆t -v)∂ t ṽ∆t dxdt + ˆQT h n v q-1 ∆t (v ∆t -v) dxdt → 0
and from (f 0 ), (4.5.28) and (4.5.33), we obtain

ˆQT f (x, v ∆t )(v ∆t -v) dxdt → 0 as ∆ t → 0 + .
Then, multiplying (4.5.27) to (v ∆t -v) and passing to the limit, we obtain

ˆQT a(x, ∇v ∆t ).∇(v ∆t -v) dxdt → 0 as ∆ t → 0 + .
Since v ∆t * v in L ∞ (0, T ; W) and from the above limit, we conclude ˆQT (a(x, ∇v ∆t ) -a(x, ∇v)).∇(v ∆t -v) dxdt → 0 as ∆ t → 0 + . By (4.5.2) and classical compactness arguments, we get

a(x, ∇v ∆t ) → a(x, ∇v) in (L p(x)/(p(x)-1) (Q T )) N . (4.5.35)
Now, we pass to the limit in (4.5.27). First we remark that (v q-1 ∆t ) converges to v q-1 in L 2 (Q T ). Indeed (4.5.19) and (4.5.32)-(4.5.33) imply as ∆ t → 0:

v q-1 ∆t -v q-1 2q q-1 L 2 (Q T ) ≤ C ˆQT |v q-1 ∆t -v q-1 | 2q q-1 dxdt ≤ C ˆQT |v q ∆t -v q | 2 dxdt ≤ C sup [0,T ] v q ∆t -ṽ∆t 2 L 2 + ṽ∆t -v q 2 L 2 → 0.
Hence plugging (4.5.31) and Step 1, we have in L 2 (Q T ):

v q-1 ∆t ∂ t ṽ∆t → v q-1 ∂ t (v q ) and h ∆t v q-1 ∆t → hv q-1 .
Thus, we deduce, for any

φ ∈ L 2 (Q T ) as ∆ t → 0 + : ˆQT v q-1 ∆t ∂ t ṽ∆t -v q-1 ∂ t (v q ) φ dxdt + ˆQT h ∆t v q-1 ∆t -hv q-1 φ dxdt → 0.
Furthermore from (4.5.13) and (4.5.28), (f (x, v ∆t )φ) is uniformly bounded in L 2 (Q T ) in ∆ t and by (4.5.33) we have f (x, v ∆t )φ → f (x, v)φ a.e in Q T (up to a subsequence). Then, by dominated convergence Theorem we obtain Proof of Theorem 4.5.2. Let ∈ (0, 1), we take φ = (v + ) q -(w + ) q (v + ) q-1 and Ψ = (w + ) q -(v + ) q (w + ) q-1 (4.5.37)

ˆQT f (x, v ∆t )φ dxdt → ˆQT f (x, v)φ dxdt as ∆ t → 0. ( 4 
both belonging to L 2 (Q T ) ∩ L 1 (0, T ; W), in ˆt 0 ˆΩ ∂ t (v q )v q-1 φ dxds + ˆt 0 ˆΩ a(x, ∇v).∇φ dxds = ˆt 0 ˆΩ h(s, x)v q-1 φ dxds + ˆt 0 ˆΩ f (x, v)φ dxds, ˆt 0 ˆΩ ∂ t (w q )w q-1 ψ dxds + ˆt 0 ˆΩ a(x, ∇w).∇ψ dxds = ˆt 0 ˆΩ h(s, x)w q-1 ψ dxds + ˆt 0 ˆΩ f (x, w)ψ dxds
and summing the above equalities, we obtain I = J where

I = ˆt 0 ˆΩ ∂ t (v q )v q-1 (v + ) q-1 - ∂ t (w q )w q-1 (w + ) q-1 ((v + ) q -(w + ) q ) dxds + ˆt 0 ˆΩ a(x, ∇(v + )).∇ (v + ) q -(w + ) q (v + ) q-1 dxds + ˆt 0 ˆΩ a(x, ∇(w + )).∇ (w + ) q -(v + ) q (w + ) q-1 dxds and J = ˆt 0 ˆΩ hv q-1 (v + ) q-1 - hw q-1 (w + ) q-1 ((v + ) q -(w + ) q ) dxds + ˆt 0 ˆΩ f (x, v) (v + ) q-1 - f (x, w) (w + ) q-1 ((v + ) q -(w + ) q ) dxds.
First we consider I . Since w w+ , v v+ ≤ 1 and v, w ∈ L ∞ (Q T ), we have

∂ t (v q )v q-1 (v + ) q-1 - ∂ t (w q )w q-1 (w + ) q-1 |(v + ) q -(w + ) q | ≤ C(|∂ t (v q )| + |∂ t (w q )|)
where C depends on the L ∞ norm of v and w. Moreover, as → 0

∂ t (v q )v q-1 (v + ) q-1 - ∂ t (w q )w q-1 (w + ) q-1 ((v + ) q -(w + ) q ) → 1 2 ∂ t (v q -w q ) 2
a.e. in Q T . Then dominated convergence Theorem and Lemma 4.5.1 give lim →0 I ≥ 1 2 ˆt 0 ˆΩ ∂ t (v q -w q ) 2 dxds.

Uniqueness

In the same way for J , dominated convergence Theorem implies ˆt 0 ˆΩ hv q-1 (v + ) q-1 -

hw q-1 (w + ) q-1 ((v + ) q -(w + ) q ) dxds → ˆt 0 ˆΩ(h -h)(v q -w q ) dxds. Moreover Fatou's Lemma gives lim inf →0 ˆt 0 ˆΩ f (x, v) (v + ) q-1 (w + ) q dxds ≥ ˆt 0 ˆΩ f (x, v) v q-1 w q dxds, lim inf →0 ˆt 0 ˆΩ f (x, w) (w + ) q-1 (v + ) q dxds ≥ ˆt 0 ˆΩ f (x, w) w q-1 v q dxds.
Hence gathering the three last limits and from (f 1 ), we obtain lim inf

→0 J ≤ ˆt 0 ˆΩ(h -h)(v q -w q ) dxds.
Since I = J , we conclude using Hölder inequality that for any t ∈ [0, T ]

1 2 ˆt 0 ˆΩ ∂ t (v q -w q ) 2 dxds ≤ ˆt 0 h -h L 2 (Ω) v q -w q L 2 (Ω) ds
and by Grönwall Lemma (Lemma A.4 in [START_REF] Brézis | Operateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert[END_REF]) we deduce (4.5.5).

Hence we conclude the uniqueness of the solution in sense of Definition 4. 

v 0 ∈ L 2q (Ω), v 0 ≥ 0 and h ∈ L 2 (Q T ). Then, v is unique.
From Theorem 4.5.6 and Corollary 4.5.3, we deduce the existence result for the parabolic problem involving the operator T q :

Theorem 4.5.7. Under the assumptions of Theorem 4.5.1, for any u 0 such that u

1/q 0 ∈ M 1 δ (Ω) ∩ W, there exists a unique weak solution u ∈ L ∞ (Q T ) of                ∂ t u + T q u = h in Q T ; u > 0 in Q T ; u = 0 on Γ; u(0, .) = u 0 in Ω, (4.5.38)
in the sense that:

• u 1/q belongs to L ∞ (0, T ; W), ∂ t u ∈ L 2 (Q T );
• there exists c > 0 such that for any t ∈ [0, T ], 1 c δ q (x) ≤ u(t, x) ≤ cδ q (x) a.e. in Ω;

• u satisfies, for any t ∈ [0, T ]:

ˆt 0 ˆΩ ∂ t uψ dxds + ˆt 0 ˆΩ a(x, ∇u 1/q ).∇(u 1-q q ψ) dxds = ˆt 0 ˆΩ f (x, u 1/q )u 1-q q ψ dxds + ˆt 0 ˆΩ h(s, x)ψ dxds, (4.5.39)
for any ψ such that Proof. Let v be the weak solution of (E) in sense of Definition 4.5.1 obtained by Theorem 4.5.6. Then, setting in (4.5.3) u = v q and choosing φ = ψ v q-1 with ψ satisfying (4.5.40), we get the existence of a solution of (4.5.38). Let us consider the uniqueness issue: let ũ be another solution of (4.5.38). We set ṽ = ũ1/q and taking ψ = v q-1 φ with φ ∈ L ∞ (0, T ; L ∞ δ (Ω)) ∩ L 1 (0, T ; W) in (4.5.39), we obtain that ṽ verifies (4.5.3) with the additional condition φ ∈ L ∞ (0, T ; L ∞ δ (Ω)). Since v, ṽ verify (4.5.22), the test functions defined in (4.5.37) with v and ṽ belong to L ∞ (0, T ; L ∞ δ (Ω)). Hence (4.5.5) holds and we conclude the uniqueness.

|ψ| 1/q ∈ L ∞ (0, T ; L ∞ δ (Ω)) and |∇ψ| δ q-1 (•) ∈ L 1 (0, T ; L p(x) (Ω)). ( 4 

Regularity of weak solution

Theorem 4.5.8. Under the assumptions of Theorem 4.5.1, assume in addition A satisfies (A 4 ). Then, v the weak solution of (E) obtained by Theorem 4.5.6 

belongs to C([0, T ]; W).

Proof. The proof is similar as the proof of Theorem 1.1, Step 4 in [146]. However, the nonlinear term in time implies a specific approach in the computations. Hence for the reader's convenience, we include the complete proof. We

have v ∈ L ∞ (0, T ; W) ∩ C([0, T ]; L p -(Ω)) and p ∈ C 1 (Ω), Theorem 8.4.2 in [112] yields W ⊂ L p -(Ω) with compact embedding. So we deduce t → v(t) is weakly continuous in W.
Moreover, we consider the mapping K(v) = ´Ω A(x,∇v) p(x) dx defined in W. The convexity of A implies that K is weakly lower semicontinuous. Thus for any t 0 ∈ [0, T ], we have

K(v(t 0 )) ≤ lim inf t→t 0 K(v(t)).
(4.5.41)

In (4.5.23), summing from n to n and multiplying by

v q n -v q n-1 v q-1 n ∈ X, we obtain n n=n ˆΩ∆ t v q n -v q n-1 ∆ t 2 dx + n n=n ˆΩ a(x, ∇v n ).∇ v q n -v q n-1 v q-1 n dx 4.5.3.3. Regularity of weak solution = n n=n ˆΩ h n (v q n -v q n-1 ) dx + n n=n ˆΩ f (x, v n ) v q-1 n (v q n -v q n-1 )dx.
As in Step 4 of the proof of Theorem 4.5.6, after using Lemma 4.5.1 we pass to the limit as n → ∞ and we get: for t ∈ [t 0 , T ]

ˆt t 0 ˆΩ ∂ t (v q ) 2 dxds + qK(v(t)) ≤ ˆt t 0 ˆΩ h∂ t (v q ) dxds + qK(v(t 0 )) + ˆt t 0 ˆΩ f (x, v) v q-1 ∂ t (v q ) dxds. (4.5.42)
Taking lim sup in (4.5.42) as t → t + 0 and by (4.5.41) we deduce lim

t→t + 0 K(v(t)) = K(v(t 0 ))
and hence we get the right-continuity of K.

Now, for t > t 0 , let η ∈ (0, t -t 0 ). We multiply (E) by

τ η v = v q (. + η, .) -v q ηv q-1 ∈ L 2 (Q T ) ∩
L 1 (0, T ; W) and integrate over (t 0 , t) × Ω and hence by using Theorem 4.4.1 and Young inequality, we obtain:

ˆt t 0 ˆΩ v q-1 ∂ t (v q )τ η v dxds + q η ˆt t 0 K(v(s + η)) -K(v(s)) ds ≥ ˆt t 0 ˆΩ hv q-1 τ η v dxds + ˆt t 0 ˆΩ f (x, v)τ η v dxds. (4.5.43)
Since v ∈ L ∞ (0, T ; W) and K is right-continuous in W, by dominated convergence Theorem, we have as

η → 0 + 1 η ˆt0 +η t 0 K(v(s)) ds → K(v(t 0 )) and 1 η ˆt+η t K(v(s)) ds → K(v(t)).
Then (4.5.43) yields,

ˆt t 0 ˆΩ ∂ t (v q ) 2 dxds + qK(v(t)) ≥ ˆt t 0 ˆΩ h∂ t (v q ) dxds + qK(v(t 0 )) + ˆt t 0 ˆΩ f (x, v) v q-1 ∂ t (v q ) dxds.
From (4.5.42), we have the equality for any t, t 0 ∈ [0, T ] in the above inequality and we deduce the left-continuity of K. By (A 4 ), the proof of corollary A.3 in [START_REF] Giacomoni | Some results about an anisotropic p(x)-Laplace-Barenblatt equation[END_REF] holds by considering K as the semimodular.

Then, we deduce that ∇v(t) converges to ∇v(t 0 ) in L p(x) (Ω) N as t → t 0 and hence v ∈ C([0, T ]; W).

Stabilization

Stationary problem related to (E)

In the aim of studying the behaviour of global solution of the problem (E) as t → ∞, we consider the following problem

         -∇. a(x, ∇v) = b(x)v q-1 + f (x, v) in Ω; v ≥ 0 in Ω; v = 0 on ∂Ω, (S)
where b ∈ L ∞ (Ω). The notion of weak solution of (S) is defined as follows:

Definition 4.5.3. A weak solution to (S) is any nonnegative function v ∈ W ∩ L ∞ (Ω), v ≡ 0 such that for any φ ∈ W, v satisfies ˆΩ a(x, ∇v).∇φ dx = ˆΩ bv q-1 φ dx + ˆΩ f (x, v)φ dx. ( 4.5.44) 
Theorem 4.5.9. Assume that A satisfies (A 1 )-(A 3 ) and (f 0 ) and (f 1 ) hold. Then, for any

q ∈ (1, p -), b ∈ L ∞ (Ω)\{0}, b ≥ 0, there exists a unique weak solution v ∈ C 1 (Ω) ∩ M 1 δ (Ω) to (S).
Proof. Consider the energy functional L defined on W such that

L(v) = ˆΩ A(x, ∇v) p(x) dx - 1 q ˆΩ b(v + ) q dx -ˆΩ F (x, v) dx
where F is defined as in (4.5.12). By following the same arguments as in Theorem 4.5.4, we deduce the existence of nonnegative global minimizer v 0 to L and the Gâteaux differentiability of L implies v 0 satisfies (4.5.44). Combining Proposition 4.5.1 and Theorem 4.1 in [START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF] , we deduce v 0 ∈ L ∞ (Ω). Then by Theorem 1.2 of [START_REF] Fan | Global C 1,α regularity for variable exponent elliptic equations in divergence form[END_REF], we obtain, v 0 ∈ C 1,α (Ω) for some α ∈ (0, 1). From Lemma 4.5.2, we deduce v 0 > 0 and v 0 belongs to M 1 δ (Ω). Let ṽ0 another solution of (S). As previously, we deduce that ṽ0

∈ C 1,α (Ω) ∩ M 1 δ (Ω). We choose v q 0 -ṽq 0 v q-1 0 and ṽq 0 -v q 0 ṽq-1 0
as test functions in (4.5.44) satisfied by v 0 respectively ṽ0 , then adding the both equations we deduce from Lemma 4.5.1 and (f 1 ):

ˆΩ a(x, ∇v 0 ).∇ v q 0 -ṽq 0 v q-1 0 + a(x, ∇ṽ 0 ).∇ ṽq 0 -v q 0 ṽq-1 0 dx ≤ 0.
Applying once again Lemma 4.5.1, we obtain v 0 = ṽ0 .

Hence we obtain using the same way of the proof of Corollary 4.5.1: 

         T q u = b in Ω; u > 0 in Ω; u = 0 on ∂Ω. (4.5.45)
Namely, u belongs to V q + ∩ M 1/q δ (Ω) and satisfies, for any ψ such that (4.5.17): ˆΩ a(x, ∇u 1/q ).∇(u

1-q q ψ) dx - ˆΩ f (x, u 1/q )
u (q-1)/q ψ dx = ˆΩ bψ dx. Proof of Theorem 4.5.3. We consider two cases:

Case 1: h ≡ h ∞ .
We introduce the family {S(t); t ≥ 0} on M 1/q δ (Ω) ∩ V q + defined as w(t) = S(t)w 0 where w is the solution obtained by Theorem 4.5.7 (and Theorem 4.5.6) of

             ∂ t w + T q w = h ∞ in Q T ; w > 0 in Q T ; w = 0 on Γ; w(0, .) = w 0 in Ω. (4.5.46) 
Thus {S(t); t ≥ 0} defines a semigroup on M 1/q δ (Ω)∩ V q + . Indeed the uniqueness and properties of solution of (4.5.38) imply for any w 0 , S(t + s)w 0 = S(t)S(s)w 0 , S(0)w 0 = w 0 (4.5.47)

and from (4.5.33) the map t → S(t)w 0 is continuous from [0, ∞) to L 2 (Ω). Note that v = (S(t)w 0 ) 1/q is the solution of (E) in the sense of Definition 4.5.1 with h = h ∞ and the initial data w 1/q 0 . Let T > 0 and v be the solution of (E) obtained by Theorem 4.5.6 with h ≡ h ∞ and the initial data v 0 , hence we get u(t) = v(t) q = S(t)u 0 with u 0 = v q 0 . Let w = w µ be the solution of (4.5.24) and w = w κ be the solution of (4.5.26). Then, w, w ∈ M 1 δ (Ω) and for µ small enough and κ large enough, w is a subsolution and w a supersolution of (S) with b = h ∞ such that w ≤ v 0 ≤ w. We define u(t) = S(t)w q and u(t) = S(t)w q the solutions to (4.5.46). So u and u are obtained by the iterative scheme (4.5.23) with v 0 = w and v 0 = w. Hence, by construction the map t → u(t) is nondecreasing, the map t → u(t) is nonincreasing and (4.5.4) insures for any t ≥ 0,

w q ≤ u(t) ≤ u(t) ≤ u(t) ≤ w q a. e. in Ω. ( 4.5.48) 
We set u ∞ = lim t→∞ u(t) and u ∞ = lim t→∞ u(t). Then from (4.5.47), the continuity in L 2 (Ω) and monotone convergence theorem, we get in L 2 (Ω):

u ∞ = lim s→∞ S(t + s)(w q ) = S(t)( lim s→∞ S(s)(w q )) = S(t)u ∞
and analogously we have u ∞ = S(t)u ∞ . We deduce u ∞ and u ∞ are solutions of (4.5.45) with b = h ∞ and by uniqueness, we have u stat def = u ∞ = u ∞ where u stat is the stationary solution of perturbed parabolic problem (4.5.45). Therefore from (4.5.48) and dominated convergence Theorem, we obtain

u(t) -u stat L 2 → 0 as t → ∞.
Finally, using (4.5.48) and interpolation inequality . r ≤ . θ ∞ . 1-θ 2 , we conclude the above convergence for any r ≥ 1. Case 2: h ≡ h ∞ . From (4.5.6), for any ε and for some η ∈ (0, η), there exists t 0 > 0 large enough such that for any t ≥ t 0 :

t 1+η h(t, .) -h ∞ L 2 ≤ ε.
Let T > 0 and v be the solution of (E) obtained by Theorem 4.5.6 with h and the initial data

v 0 = u 1/q 0
and we set u = v q . Since v satisfies (4.5.22), we can define ũ(t) = S(t + t 0 )u 0 = S(t)u(t 0 ). Then, by (4.5.4) and uniqueness, we have for any t > 0:

u(t + t 0 , .) -ũ(t, .) L 2 ≤ ˆt 0 h(s + t 0 , .) -h ∞ L 2 ds ≤ ε t η 0 ≤ ε.
By Case 1, we have ũ(t) → u stat in L 2 (Ω) as t → ∞. Therefore, we obtain

u(t) -u stat L 2 → 0 as t → ∞
and by using interpolation inequality we conclude the proof of Theorem 4.5.3.

Additional results

In this section, we give extensions of technical results for the class of operator A or for some boundary value problems. We begin by extending Theorem 4.4.9 using Lemma 4.4.1. Then, we obtain the comparison principle:

Theorem 4.5.10. Assume A satisfies (A 1 )-(A 3 ) and f satisfies (f 0 ) and (f 2 ). Let v, v ∈ X ∩ L ∞ (Ω) be nonnegative functions respectively subsolution and supersolution to (4.5.9) for some h

∈ L r (Ω), r ≥ 2, h ≥ 0. Then v ≤ v.
The proof is similar as the proof of Theorem 4.5.2 where the sub-and supersolution do not need to belong to M 1 δ (Ω). The proof is very similar and we omit it. In the next theorem, we extend Lemma 2.1 of [START_REF] Fan | On the sub-supersolution method for p(x)-Laplacian equations[END_REF] and Lemma 3.2 of [146] for p(x)-homogeneous operators.

Secondly, we study the existence and multiplicity for the problem with an extra sublinear sign changing term by using the Nehari manifold technique. By analyzing the Fibering maps and extracting the Palais-Smale sequence in the natural decomposition of the Nehari manifold, we prove the multiplicity of the weak solutions with respect to an unknown parameter in the subcritical case. In the critical case (for the second order operator), we again use the concentration compactness together with the accurate analysis of the energy levels on the Nehari maniflod to determine potential concentration phenomenon for associated Palais-Smale sequence. Based on this analysis we show the existence of a relatively compact Palais-Smale sequence which yields atleast one solution.

Thirdly, we prove new singular and non-singular version of Adams, Moser and Trudinger inequalities in the Cartesian product of Sobolev space. As an application of these inequalities, we further study the system of Kirchhoff equation with exponential non-linearity of Choquard type for both non-dengenerate and degenerate case.
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n-Kirchhoff Choquard equation with exponential non-linearity

In this section, we study the following Kirchhoff equation with exponential non-linearity of Choquard type (KC)

     -M ( ˆΩ |∇u| n dx)∆ n u = ˆΩ F (y, u) |x -y| µ dy f (x, u), u > 0 in Ω, u = 0 on ∂Ω,
where µ ∈ (0, n), Ω is a smooth bounded domain in R n , n ≥ 2, the function F denotes the primitive of f with respect to the second variable (vanishing at 0). The function M : R + → R + is a continuous function satisfying the following conditions:

(m1) There exists m 0 > 0 such that m(t) ≥ m 0 for all t ≥ 0 and M(t) = ˆt 0 M (s)ds satisfies

M(t + s) ≥ M(t) + M(s)
, for all t, s ≥ 0.

(m2) There exist constants b 1 , b 2 > 0 and t > 0 such that for some r ∈ R

M (t) ≤ b 1 + b 2 t r , for all t ≥ t. (m3) The function M (t)
t is non-increasing for t > 0. Using (m3), one can easily deduce that the function

(m3) 1 n M(t) - 1 θ M (t)
t is non-negative and non-decreasing for t ≥ 0 and θ ≥ 2n.

The function

f : Ω × R → R is given by f (x, t) = h(x, t) exp(|t| n n-1
). In the frame of problem (KC), h ∈ C( Ω × R) satisfies the following conditions: (h1) h(x, t) = 0 for t ≤ 0 and h(x, t) > 0 for t > 0.

(h2) For any > 0, lim

t→∞ sup x∈ Ω h(x, t) exp(-|t| n n-1 ) = 0 and lim t→∞ inf x∈ Ω h(x, t) exp( |t| n n-1 ) = ∞. (h3) There exists > max{n -1, n(r+1) 2 } such that t → f (x,t) t is increasing on R + \ {0}, uniformly in x ∈ Ω where r is specified in (m2).
(h4) There exist T, T 0 > 0 and γ 0 > 0 such that 0 < t γ 0 F (x, t) ≤ T 0 f (x, t) for all |t| ≥ T and uniformly in x ∈ Ω.

The condition (h3) implies that f (x,t) t n-1 is increasing for each t > 0 and lim

t→0 + f (x, t) t n-1 = 0 uniformly in x ∈ Ω. Example 5.1.2. An example of functions satisfying (h1) -(h4) is f (x, t) = t β 0 +(n-1) exp(t p ) exp(|t| n n-1 )
for t ≥ 0 and f (x, t) = 0 for t < 0 where 0 ≤ p < n n-1 and β 0 > 0.

We also study the existence and multiplicity of solutions to the following Kirchhoff equation with a convex-concave type non-linearity:

(P λ,M )            -M ˆΩ |∇u| n dx ∆ n u = (|x| -µ * F (u))f (u) + λh(x)|u| q-1 u in Ω, u = 0 on ∂Ω, u > 0 in Ω where µ ∈ (0, n), Ω is a smooth bounded domain in R n , f (u) = u|u| p exp(|u| β ), 0 < q < n -1 < 2n -1 < p + 1 = β 0 + (n -1), β ∈ 1, n n-1
and F (t) = ´t 0 f (s) ds. We assume M (t) = at + b where a, b > 0 and h ∈ L r (Ω), with r = p+2 p-q+1 , satisfying h + ≡ 0. Throughout this section, we denote

u := ˆΩ |∇u| n dx 1/n . Definition 5.1.3. We call a function u ∈ W 1,n 0 (Ω) to be a solution of (KC) if M ( u n ) ˆΩ |∇u| n-2 ∇u.∇ϕ dx = ˆΩ ˆΩ F (y, u)
|x -y| µ dy f (x, u)ϕ dx, for all ϕ ∈ W 1,n 0 (Ω).

The energy functional E : W 1,n 0 (Ω) → R associated to (KC) is given by

E(u) = 1 n M( u n ) - 1 2 ˆΩ ˆΩ F (y, u) |x -y| µ dy F (x, u) dx.
Under the assumptions on f , we get that for any > 0, p ≥ 1 and 0 ≤ β 0 < , there exists C( , n, µ) > 0 such that for each

x ∈ Ω |F (x, t)| ≤ |t| β 0 +1 + C( , n, µ)|t| p exp((1 + )|t| n n-1
), for all t ∈ R.

(

For any u ∈ W 1,n 0 (Ω), by virtue of Sobolev embedding we get that u ∈ L q (Ω) for all q ∈ [1, ∞). This also implies that F (x, u) ∈ L q (Ω) for any q ≥ 1.

(5.1.2)

Taking t = r = 2n 2n-µ in Proposition 2.2.6 and using (5.1.2), we get that E is well defined. Also E ∈ C 1 (W 1,n 0 (Ω), R). Naturally, the critical points of E corresponds to weak solutions of (KC) and for any u ∈ W 1,n 0 (Ω) we have

E (u), ϕ = M ( u n ) ˆΩ |∇u| n-2 ∇u.∇ϕ dx - ˆΩ ˆΩ F (y, u) |x -y| µ dy f (x, u)ϕ dx 5.1.2.
Existence of a positive weak solution Lemma 5.1.9. Assume the assumptions (m1), ( m2) and ( h1)-(h4). Then, E has the mountain pass geometry around 0 i.e.

(i) there exists

R 0 > 0, η > 0 such that E(u) ≥ η for all u ∈ W 1,n 0 (Ω) such that u = R 0 . (ii) there exists a v ∈ W 1,n 0 (Ω) with v > R 0 such that E(v) < 0.
Proof. Let u ∈ W 1,n 0 (Ω) such that u small enough. Let 0 < β 0 < . Then from Proposition 2.2.6, (h3) and (5.1.1), for any > 0 and p > 1 we know that there exists a C(

) > 0 such that ˆΩ ˆΩ F (y, u) |x -y| µ dy F (x, u) dx ≤ C(n, µ) F (x, u) 2 L 2n 2n-µ (Ω) ≤ C(n, µ)2 2n 2n-µ ˆΩ |u| 2n(β 0 +1) 2n-µ + C( ) ˆΩ |u| 2pn 2n-µ exp 2n(1 + ) 2n -µ |u| n n-1 2n-µ n ≤ C 1   ˆΩ |u| 2n(β 0 +1) 2n-µ + C 2 ( ) u 2pn 2n-µ ˆΩ exp 4n(1 + ) u n n-1 2n -µ |u| u n n-1 1 2   2n-µ n ( 5.1.4) 
where we used Sobolev and Hölder inequality. So if we choose > 0 small enough and u such that 4n(1 + )

u n n-1 2n -µ ≤ α n then using Theorem 2.2.1, Chapter 1, in (5.1.4) we get 
ˆΩ ˆΩ F (y, u) |x -y| µ dy F (x, u) dx ≤ C 3 u 2n(β 0 +1) 2n-µ + C( ) u 2pn 2n-µ 2n-µ n ≤ C 4 u 2(β 0 +1) + C( ) u 2p .
Hence from (m1) and above estimate, we deduce that for u = ρ where ρ < αn(2n-µ)

4n(1+ ) n-1 n E(u) ≥ m 0 u n n -C 4 u 2(β 0 +1) + C( ) u 2p .
Taking β 0 > 0 such that 2(β 0 + 1) > n and 2p > n, we can choose ρ small enough so that E(u) ≥ σ for some σ > 0 (depending on ρ) when u = ρ. Furthermore, under the assumption (m2), for some a 1 , a 2 > 0 and t 0 > 0 we have M (t) ≤ a 1 + a 2 t r and

M(t) ≤      a 0 + a 1 t + a 2 t r+1 r + 1 , r = -1 a 0 + a 1 t + a 2 ln t, r = -1
when t ≥ t and where

a 0 =      M(t 0 ) -a 1 t 0 -a 2 t r+1 0 r + 1 , r = -1 M(t 0 ) -a 1 t 0 -a 2 ln t 0 , r = -1.
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Let u 0 ∈ W 1,n 0 (Ω) such that u 0 ≥ 0 and u 0 = 1. Then (h3) implies that there exists

K 1 ≥ max{ n 2 , n(r+1) 2 } such that F (x, s) ≥ C 1 s K 1 -C 2 for all (x, s) ∈ Ω × [0, ∞)
and for some positive constants C 1 and C 2 . Using this, we obtain ˆΩ ˆΩ F (y, tu 0 )

|x -y| µ dy F (x, tu 0 ) dx ≥ ˆΩ ˆΩ (C 1 (tu 0 ) K 1 (y) -C 2 )(C 1 (tu 0 ) K 1 (x) -C 2 ) |x -y| µ dxdy = C 2 1 t 2K 1 ˆΩ ˆΩ u K 1 0 (y)u K 1 0 (x) |x -y| µ dxdy -2C 1 C 2 t K 1 ˆΩ ˆΩ u K 1 0 (y) |x -y| µ dxdy + C 2 2 ˆΩ ˆΩ |x -y| -µ dxdy.
Therefore from above we obtain

E(tu 0 ) ≤ M( tu 0 n ) n - ˆΩ ˆΩ F (y, tu 0 ) |x -y| µ dy F (x, tu 0 ) dx ≤ C 3 + C 4 t n + C 5 t n(r+1) -C 4 t 2K 1 + C 6 t K 1
where C i s are positive constants for i = 4, 5, 6. This implies that E(tu 0 ) → -∞ as t → ∞.

Thus there exists a 1)) < 0} and define the Mountain Pass critical level as

v 0 ∈ W 1,n 0 (Ω) with v 0 > σ such that E(v 0 ) < 0. Let Γ = {γ ∈ C([0, 1], W 1,n 0 (Ω)) : γ(0) = 0, E(γ(
l * = inf γ∈Γ max t∈[0,1]

E(γ(t)).

(5.1.5)

Then by using Ekeland principle and deformation lemma (Theorem 2.4.1), we have the existence of minimizing Palais-Smale sequence u n ∈ W 1,n 0 (Ω) such that

E(u n ) → l * , E (u n ) → 0.
Lemma 5.1.10. Every Palais Smale sequence is bounded in W 1,n 0 (Ω).

Proof. Let {u k } ⊂ W 1,n 0 (Ω) denotes a (P S) c sequence of E that is E(u k ) → c and E (u k ) → 0 as k → ∞
for some c ∈ R. This implies

M( u k n ) n - 1 2 ˆΩ ˆΩ F (y, u k ) |x -y| µ dy F (x, u k ) dx → c as k → ∞, M ( u k n ) ˆΩ |∇u k | n-2 ∇u k ∇φ - ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )φ dx ≤ k φ (5.1.6)
where k → 0 as k → ∞. In particular, taking φ = u k we get

M ( u k n ) ˆΩ |∇u k | n - ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (u k )u k dx ≤ k u k . (5.1.7)
From the assumption (h3), there exists α > n such that αF (x, t) ≤ tf (x, t) for any t > 0 and x ∈ Ω which yields

α ˆΩ ˆΩ F (y, u k ) |x -y| µ dy F (u k ) dx ≤ ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (u k )u k dx. ( 5.1.8) 
Using (5.1.6), (5.1.7) along with above inequality and (m3) , we get

E(u k ) - 1 2α E (u k ), u k = M( u k n ) n - M ( u k n ) u k n 2α - 1 2 ˆΩ ˆΩ F (y, u k ) |x -y| µ dy F (x, u k ) dx - 1 α ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k dx ≥ M( u k n ) n - M ( u k n ) u k n 2α ≥ 1 2n - 1 2α M ( u k n ) u k n ≥ 1 2n - 1 2α m 0 u k n .
(5.1.9) Also from (5.1.6) and (5.1.7) it follows that

E(u k ) - 1 2α E (u k ), u k ≤ C 1 + k u k 2α (5.1.10) 
for some constant C > 0. Therefore from (5.1.9) and (5.1.10) we get that

1 2n - 1 2α m 0 u k n ≤ C 1 + k u k 2α .
This implies that {u k } must be bounded in W 1,n 0 (Ω).

To prove the existence of non-trivial weak solution, we need an essential upper bound on the mountain pass critical level which is given by following lemma:

Lemma 5.1.11. If (5.1.3) holds, then

0 < l * < 1 n M 2n -µ 2n α n n-1 .
Proof. It is easy to verify that w k = 1 for all k. So we claim that there exists a k

∈ N such that max t∈[0,∞) E(tw k ) < 1 n M 2n -µ 2n α n n-1 .
Suppose this is not true then for all k ∈ N there exists a

t k > 0 such that max t∈[0,∞) E(tw k ) = E(t k w k ) ≥ 1 n M 2n -µ 2n α n n-1 and d dt (E(tw k ))| t=t k = 0.
(5.1.11)
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From the proof of Lemma 5.1.10, E(tw k ) → -∞ as t → ∞ uniformly in k. Then we infer that {t k } must be a bounded sequence in R. From (5.1.11) and definition of E(t k w k ) we obtain

1 n M 2n -µ 2n α n n-1 < M(t n k ) n .
(5.1.12)

Since M is monotone increasing, from (5.1.12) we get that

t n k ≥ 2n -µ 2n α n n-1
.

(5.1.13) From (5.1.13), we get

t k ω 1 n n-1 (log k) n-1 n → ∞ as k → ∞. (5.1.14) 
Furthermore from (5.1.11), we have

M (t n k )t n k = ˆΩ ˆΩ F (y, t k w k ) |x -y| µ dy f (x, t k w k )t k w k dx ≥ ˆBρ/k f (x, t k w k )t k w k ˆBρ/k F (y, t k w k ) |x -y| µ dy dx.
(5.1.15)

In addition, as in equation (2.11) p. 1943 in [START_REF] Alves | Existence and concentration of ground state solutions for a critical non-local Schrödinger equation in R n[END_REF], it is easy to get that ˆBρ/k ˆBρ/k

dxdy |x -y| µ ≥ C µ,n ρ k 2n-µ
where C µ,n is a positive constant depending on µ and n. From (5.1.3), we know that for each d > 0 there exists a s d such that

sf (x, s)F (x, s) ≥ d exp 2|s| n n-1
, whenever s ≥ s d . Since (5.1.14) holds, we can choose a r d ∈ N such that

t k ω 1 n n-1 (log k) n-1 n ≥ s d , for all k ≥ r d .
Using these estimates in (5.1.15) and from (5.1.13), for d large enough we get that

M (t n k )t n k ≥ d exp   (log k)    2t n n-1 k ω 1 n-1 n-1       C µ,n ρ k 2n-µ ≥ dC µ,n ρ 2n-µ .
Taking d large enough and since t n k is bounded, we arrive at a contradiction. This establishes our claim and we conclude the proof of the result. Now, to prove the weak limit of the Palais-Smale sequence is the solution our problem (KC), we prove a set of convergence lemmas: Lemma 5.1.12. If {u k } denotes a Palais Smale sequence then up to a subsequence, there exists u ∈ W 1,n 0 (Ω) such that

|∇u k | n-2 ∇u k |∇u| n-2 ∇u weakly in (L n n-1 (Ω)) n .
(5.1.16)

Proof. From Lemma 5.1.10, we know that the sequence must be bounded in W 1 0 (Ω). Consequently, up to a subsequence there exists u ∈ W 1,n 0 (Ω) such that u k u weakly in W 1,n 0 (Ω) and strongly in L q (Ω) for any q ∈ [1, ∞) as k → ∞. Also still upto a subsequence we can assume u k (x) → u(x) pointwise a.e. for x ∈ Ω. Therefore the sequence

|∇u k | n-2 ∇u k must be bounded in L n n-1 (Ω) n where |∇u k | n is bounded in L 1 (Ω).
So there exists a non-negative radon measure ν such that up to a subsequence

|u k | n + |∇u k | n → ν in (C(Ω)) * as k → ∞. Moreover there exists v ∈ (L n n-1 (Ω)) n such that, |∇u k | n-2 ∇u k → v weakly in (L n n-1 (Ω)) n as k → ∞. Claim : v = |∇u| n-2 ∇u.
To prove this, we set σ > 0 and X σ = {x ∈ Ω : ν(B r (x) ∩ Ω) ≥ σ, for all r > 0} and divide the proof in two steps:

Step 1: X σ must be a finite set. Because if not, then there exists a sequence of distinct points {x k } in X σ such that for all r > 0, ν(B r (x k )∩Ω) ≥ σ for all k. This implies that ν({x k }) ≥ σ for all k, hence ν(X σ ) = +∞. But this is a contradiction to

ν(X σ ) = lim k→∞ ˆXσ |u k | n + |∇u k | n dx ≤ C. So let X σ = {x 1 , x 2 , . . . , x m }.
Step 2: For σ > 0 such that σ

1 n-1 < αn 2 1 n-1 2n-µ 2n
, the for any K compact subset of Ω \ X σ we have

lim k→∞ ˆK ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k dx = ˆK ˆΩ F (y, u) |x -y| µ dy f (x, u)u dx. (5.1.17)
To show this, let x 0 ∈ K and r 0 > 0 be such that ν(B r 0

(x 0 ) ∩ Ω) < σ that is x 0 / ∈ X σ . Also we consider a ψ ∈ C ∞ (Ω) satisfying 0 ≤ ψ(x) ≤ 1 for x ∈ Ω, ψ ≡ 1 in B r 0 2 (x 0 ) ∩ Ω and ψ ≡ 0 in Ω \ (B r 0 (x 0 ) ∩ Ω). Then lim k→∞ ˆB r 0 2 (x 0 )∩Ω |u k | n + |∇u k | n ≤ lim k→∞ ˆBr 0 (x 0 )∩Ω |u k | n + |∇u k | n ψ ≤ ν(B r 0 (x 0 ) ∩ Ω) < σ.
Therefore for large enough k ∈ N and > 0 small enough, it must be ˆB r 0 2 

(x 0 )∩Ω |u k | n + |∇u k | n ≤ σ(1 -). ( 5 
(x 0 )∩Ω |f (x, u k )| q dx = ˆB r 0 2 (x 0 )∩Ω |h(x, u k )| q exp q|u k | n n-1 dx ≤ C δ ˆB r 0 2 (x 0 )∩Ω exp (1 + )q|u k | n n-1 dx ≤ C δ ˆB r 0 2 (x 0 )∩Ω exp     (1 + )qσ 1 n-1 (1 -) 1 n-1    |u k | n ´B r 0 2 (x 0 )∩Ω |u k | n + |∇u k | n    1 n-1     dx ≤ C 0 (5.1.19)
for some constant C 0 > 0 while choosing q > 1 such that (1 + )qσ

1 n-1 ≤ αn 2 1 n-1 . Consider ˆB r 0 2 (x 0 )∩Ω ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k - ˆΩ F (y, u) |x -y| µ dy f (x, u)u dx ≤ ˆB r 0 2 (x 0 )∩Ω ˆΩ F (y, u) |x -y| µ dy (f (x, u k )u k -f (x, u)u) dx + ˆB r 0 2 (x 0 )∩Ω ˆΩ F (y, u k ) -F (y, u) |x -y| µ dy f (x, u k )u k dx := I 1 + I 2 (say).
From (5.1.2), we know that F (u) ∈ L r (Ω) for any r ∈ [1, ∞). Since µ ∈ (0, n), y → |x-y| -µ ∈ L r 0 (Ω) for all r 0 ∈ (1, n µ ) uniformly in x ∈ Ω (since Ω is bounded). So using Hölder's inequality we get that ˆΩ F (y, u)

|x -y| µ dy ∈ L ∞ (Ω). (5.1.20) 
From the asymptotic growth of f (x, t), it is easy to get that lim t→∞ f (x, t)t (f (x, t)) r = 0 uniformly in x ∈ Ω, for all r > 1.

(5.1.21) Using (5.1.20) we get

I 1 ≤ C ˆB r 0 2 (x 0 )∩Ω |f (x, u k )u k -f (x, u)u| dx
where C > 0 is a constant. Because of (5.1.21) and (5.1.19), the family {f

(x, u k )u k } is equi-integrable over B r 0 2 (x 0 ) ∩ Ω. Also continuity of f (x, t) gives that f (x, u k )u k → f (x, u)u pointwise a.e.
in Ω as k → ∞ and thus using Vitali's convergence theorem, it follows that

I 1 → 0 as k → ∞. Next we show I 2 → 0 as k → ∞.
First by using the semigroup property of the Riesz potential we get that for some constant 

C > 0 independent of k ˆΩ ˆΩ F (y, u k ) -F (y, u) |x -y| µ dy χ B r 0 2 ∩Ω (x)f (x, u k )u k dx ≤ ˆΩ ˆΩ |F (y, u k ) -F (y, u)|dy |x -y| µ |F (x, u k ) -F (x, u)| dx 1 2 × ˆΩ ˆΩ χ B r 0 2 ∩Ω (y) f (y, u k )u k |x -y| µ dy χ B r 0 2 ∩Ω (x)f (x, u k )u k dx 1 2
.

From (5.1.19) and since σ

1 n-1 < αn 2 1 n-1 2n-µ 2n
we obtain

ˆΩ ˆΩ χ B r 0 2 ∩Ω (y) f (y, u k )u k |x -y| µ dy χ B r 0 2 ∩Ω (x)f (x, u k )u k dx 1 2 ≤ χ B r 0 2 ∩Ω f (x, u k )u k L 2n 2n-µ (Ω) ≤ C. Now we claim that lim k→∞ ˆΩ ˆΩ |F (y, u k ) -F (y, u)| |x -y| µ dy |F (x, u k ) -F (x, u)| dx = 0. ( 5.1.22) From (5.1.6), (5.1.7) and (5.1.8) 
we get that there exists a constant C > 0 such that

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy F (x, u k ) dx ≤ C, ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k dx ≤ C.
(

We argue as along equation (2.20) in Lemma 2.4 in [START_REF] Alves | Existence and concentration of ground state solutions for a critical non-local Schrödinger equation in R n[END_REF]. Now using (5.1.23), (h4) and the semigroup property of the Riesz Potential we obtain, ˆΩ ˆ|u|≥T

F (y, u) |x -y| µ F (x, u)dy dx = o(T ), ˆΩ ˆ|u k |≥T F (y, u k ) |x -y| µ F (x, u k )dy dx = o(T ), (5.1.24) ˆΩ ˆ|u|≥T F (y, u k ) |x -y| µ F (x, u)dy dx = o(T ), (5.1.25) 
and

ˆΩ ˆ|u k |≥T F (y, u k ) |x -y| µ F (x, u)dy dx = o(T ) as T → ∞. (5.1.26) So, ˆΩ ˆΩ |F (y, u k ) -F (y, u)| |x -y| µ dy |F (x, u k ) -F (x, u)| dx ≤ 2 ˆΩ ˆΩ χ u k ≥T (y)F (y, u k ) |x -y| µ dy F (x, u k ) dx + 4 ˆΩ ˆΩ F (y, u k )χ u≥T (x)F (x, u) |x -y| µ dy dx + 4 ˆΩ ˆΩ χ u k ≥T (y)F (y, u k )F (x, u) |x -y| µ dy dx + 2 ˆΩ ˆΩ χ u≥T (y)F (y, u) |x -y| µ dy F (x, u) dx + ˆΩ ˆΩ |F (y, u k )χ u k ≤T -F (y, u)χ u≤T | |x -y| µ dy |F (x, u k )χ u k ≤T -F (x, u)χ u≤T | dx.
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Then from Lebesgue dominated convergence theorem the above integrand tends to 0 as k → ∞. Hence using (5.1.24), (5.1.25) and (5.1.26), it is easy to conclude (5.1.22) and I 2 → 0 as k → ∞. This implies that

lim k→∞ ˆB r 0 2 (x 0 )∩Ω ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k - ˆΩ F (y, u) |x -y| µ dy f (x, u)u dx = 0.
To conclude (5.1.17), we repeat this procedure over a finite covering of balls using the fact that K is compact. Lastly, the proof of (5.1.16) can be achieved by classical arguments as in the proof of Lemma 4 in [START_REF] Marcos | Semilinear Dirichlet problems for the N-laplacian in R n with nonlinearities in critical growth range[END_REF].

Lemma 5.1.13. Let {u k } ⊂ W 1,n 0 (Ω) be a Palais Smale sequence for E at level l * then there exists a u 0 ∈ W 1,n 0 (Ω) such that as k → ∞ (up to a subsequence)

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )φ dx → ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy f (x, u 0 )φ dx, for all φ ∈ C ∞ c (Ω).
Proof. If {u k } is a Palais Smale sequence at l * for E then it must satisfy (5.1.6) and (5.1.7).

We remark that E(u + ) ≤ E(u) for each u ∈ W 1,n 0 (Ω), then we can assume u k ≥ 0 for each k ∈ N. From Lemma 5.1.10 we know that {u k } must be bounded in W 1,n 0 (Ω) so there exists a C 0 > 0 such that u k ≤ C 0 . Also there exists a u 0 ∈ W 1,n 0 (Ω) such that up to a subsequence u k u 0 in W 1,n 0 (Ω), strongly in L q (Ω) for all q ∈ [1, ∞) and pointwise a.e. in Ω as k → ∞. Let Ω ⊂⊂ Ω and ϕ ∈ C ∞ c (Ω) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in Ω . With easy computations, we get that

ϕ 1 + u k n = ˆΩ ∇ϕ 1 + u k -ϕ ∇u k (1 + u k ) 2 n dx ≤ 2 n-1 ( ϕ n + u k n ).
This implies that ϕ 1+u k ∈ W 1,n 0 (Ω). So using ϕ 1+u k as a test function (5.1.6), we get the following estimate

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k ) 1 + u k dx ≤ ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )ϕ 1 + u k dx ≤ k ϕ 1 + u k + ˆΩ M ( u k n )|∇u k | n-2 ∇u k ∇ ϕ 1 + u k dx ≤ k 2 n-1 n ( ϕ + u k ) + M ( u k n ) ˆΩ |∇u k | n-2 ∇u k ∇ϕ 1 + u k -ϕ ∇u k (1 + u k ) 2 dx ≤ k 2 n-1 n ( ϕ + u k ) + M ( u k n ) ˆΩ |∇u k | n-1 (|∇ϕ| + |∇u k |) dx ≤ k 2 n-1 n ( ϕ + u k ) + M ( u k n )[ ϕ u k n-1 + u k n ].
But using u k ≤ C 0 for all k and (m2), we infer that there must exists a

C 1 > 0 such that ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k ) 1 + u k dx ≤ C 1 .
(5.1.27) Also for the same reason, (5.1.7) gives that

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k dx ≤ C 2 (5.1.28)
for some C 2 > 0. Gathering (5.1.27) and (5.1.28) we obtain

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k ) dx ≤ 2 ˆΩ ∩{u k <1} ˆΩ F (y, u k ) |x -y| µ dy f (x, u k ) 1 + u k dx + ˆΩ ∩{u k ≥1} ˆΩ F (y, u k ) |x -y| µ dy u k f (x, u k ) dx ≤ 2 ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k ) 1 + u k dx + ˆΩ ˆΩ F (y, u k ) |x -y| µ dy u k f (x, u k ) dx ≤ 2C 1 + C 2 := C 3 .
Thus the sequence

{w k } := ´Ω F (y,u k ) |x-y| µ dy f (x, u k ) is bounded in L 1 loc (Ω)
which implies that up to a subsequence, w k w in the weak * -topology as k → ∞, where w denotes a Radon measure. So for any φ ∈ C ∞ c (Ω) we get

lim k→∞ ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )φ dx = ˆΩ φ dw, ∀φ ∈ C ∞ c (Ω).
Since u k satisfies (5.1.6), we get that

ˆE φdw = lim k→∞ M ( u k ) ˆE |∇u k | n-2 ∇u k ∇φ dx, ∀E ⊂ Ω.
Together with Lemma 5.1.12, this implies that w is absolutely continuous with respect to the Lebesgue measure. Thus, Radon-Nikodym theorem asserts that there exists a function

g ∈ L 1 loc (Ω) such that for any φ ∈ C ∞ c (Ω), ´Ω φ dw = ´Ω φg dx. Therefore for any φ ∈ C ∞ c (Ω) we get lim k→∞ ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )φ dx = ˆΩ φg dx = ˆΩ ˆΩ F (y, u 0 )
|x -y| µ dy f (x, u 0 )φ dx which completes the proof.

Lemma 5.1.14. Let {u k } ⊂ W 1,n 0 (Ω) be a Palais Smale sequence of E. Then there exists a u ∈ W 1,n 0 (Ω) such that, up to a subsequence,

u k u weakly in W 1,n 0 (Ω) and ˆΩ F (y, u k ) |x -y| µ dy F (x, u k ) → ˆΩ F (y, u) |x -y| µ dy F (x, u) in L 1 (Ω) as k → ∞. Proof. Let {u k } ⊂ W 1,n
0 (Ω) be a Palais Smale sequence of E at level c. From Lemma 5.1.10 we know that {u k } must be bounded in W 1,n 0 (Ω). Thus there exists a u ∈ W 1,n 0 (Ω) such that u k u weakly in W 1,n 0 (Ω), u k → u pointwise a.e. in R n and u k → u strongly in L q (Ω), q ∈ [1, ∞) as k → ∞. Also from (5.1.6), (5.1.7) and (5.1.8) we get that there exists a constant C > 0 such that (5.1.23) holds. Now the proof of main claim follows similarly the proof of (5.1.22) (see also equation (2.20) of Lemma 2.4 in [START_REF] Alves | Existence and concentration of ground state solutions for a critical non-local Schrödinger equation in R n[END_REF]). Now we define the associated Nehari manifold as

N = {u ∈ W 1,n 0 (Ω) \ {0} : E (u), u = 0} and l * * = inf u∈N E(u)
and we show the mountain pass critical level lies below every local minimum value of the energy functional at the point of local minimum. Proof. Let u ∈ N and h : (0, +∞) → R be defined as h(t) = E(tu). Then

h (t) = M ( tu n ) u n t n-1 - ˆΩ ˆΩ F (y, tu) |x -y| µ dy f (x, tu)u dx.
Since u satisfies E (u), u = 0, we get

h (t) = u 2n t 2n-1 M ( tu n ) t n u n - M ( u n ) u n + t 2n-1   ˆΩ   ˆΩ F (y,u)f (x,u) u n-1 (x)
|x -y| µ dy -

ˆΩ F (y,tu)f (x,tu) (tu(x)) n-1 t n |x -y| µ dy   u n (x) dx   . Claim: For any x ∈ Ω t → tf (x, t) -nF (x, t) is increasing on R + . (5.1.29)
Indeed, from (h3), for 0 < t 1 < t 2 , we have

t 1 f (x, t 1 ) -nF (x, t 1 ) ≤ t 1 f (x, t 1 ) -nF (x, t 2 ) + f (x, t 2 ) t n-1 2 (t n 2 -t n 1 ) ≤ t 2 f (x, t 2 ) -nF (x, t 2 ).
Using this we get that tf (x, t) -nF (x, t) ≥ 0 for t ≥ 0 which implies that t → F (x,tu)

t n is non-decreasing for t > 0. Therefore for 0 < t < 1 and x ∈ Ω, we get F (x,tu)

t n ≤ F (x, u) and this implies h (t) ≥ u 2n t 2n-1 M ( tu n ) tu n - M ( u n ) u n + t 2n-1 ˆΩ ˆΩ F (y, u) - F (y, tu) t n dy |x -y| µ f (x, tu) (tu(x)) n-1 u n (x) dx .
This gives that h (t) ≥ 0 for 0 < t ≤ 1 and h (t) < 0 for t > 1. Hence E(u) = max t≥0 E(tu). Now we define g : [0, 1] → W 1,n 0 (Ω) as g(t) = (t 0 u)t where t 0 > 1 is such that E(t 0 u) < 0. So g ∈ Γ, where Γ is as defined in the definition of l * . Therefore we obtain

l * ≤ max t∈[0,1] E(g(t)) ≤ max t≥0 E(tu) = E(u).
Since u ∈ N is arbitrary, we get l * ≤ l * * . we can similarly get that ´Ω F (y,u 0 ) |x-y| µ dy ∈ L ∞ (Ω). Hence ´Ω F (y,u 0 ) |x-y| µ dy f (x, u 0 ) ∈ L q (Ω) for 1 ≤ q < ∞. By elliptic regularity results, we finally get that u 0 ∈ L ∞ (Ω) and u 0 ∈ C 1,γ (Ω) for some γ ∈ (0, 1). Therefore, u 0 > 0 in Ω follows from the strong maximum principle and u 0 ≡ 0.

Step 2:

M ( u 0 n ) u 0 n ≥ ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy f (x, u 0 )u 0 dx. ( 5.1.30) 
Arguing by contradiction, suppose that

M ( u 0 n ) u 0 n < ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy f (x, u 0 )u 0 dx
which implies that E (u 0 ), u 0 < 0. For t > 0, using (5.1.29) we have that

E (tu 0 ), u 0 ≥ M (t n u 0 n )t n-1 u 0 n - 1 n ˆΩ ˆΩ f (y, tu 0 )tu 0 (y) |x -y| µ dy f (x, tu 0 )u 0 dx ≥ m 0 t n-1 u 0 n - 1 n ˆΩ ˆΩ f (y, tu 0 )tu 0 (y) |x -y| µ dy f (x, tu 0 )u 0 dx. Since (h3) gives that lim t→0 + f (x, t) t γ = 0 uniformly in x ∈ Ω, for all γ ∈ [0, n -1],
we can choose t > 0 sufficiently small so that E (tu 0 ), u 0 > 0. Thus there exists a t * ∈ (0, 1) such that E (t * u 0 ), u 0 = 0 that is t * u 0 ∈ N . So using Lemma 5.1.15, (m3) and (5.1.29) we get

l * ≤ l * * ≤ E(t * u 0 ) = E(t * u 0 ) - 1 2n E (t * u 0 ), u 0 = M( t * u 0 n ) n - 1 2 ˆΩ ˆΩ F (y, t * u 0 ) |x -y| µ dy F (x, t * u 0 ) dx - 1 2n M ( t * u 0 n ) t * u 0 n + 1 2n ˆΩ ˆΩ F (y, t * u 0 ) |x -y| µ dy f (x, t * u 0 )t * u 0 dx < M( u 0 n ) n - 1 2n M ( u 0 n ) u 0 n + 1 2n ˆΩ ˆΩ F (y, t * u 0 ) |x -y| µ dy (f (x, t * u 0 )t * u 0 -nF (x, t * u 0 )) dx ≤ M( u 0 n ) n - 1 2n M ( u 0 n ) u 0 n + 1 2n ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy (f (x, u 0 )u 0 -nF (x, u 0 )) ≤ lim inf k→∞ M( u k n ) n - 1 2n M ( u k n ) u k n + 1 2n ˆΩ ˆΩ F (y, u k ) |x -y| µ dy (f (x, u k )u k -nF (x, u k )) dx = lim inf k→∞ E(u k ) - 1 2n E (u k ), u k = l * .
This gives a contradiction, that is (5.1.30) holds true.

Step 3: E(u 0 ) = l * . From Lemma 5.1.14 we know that

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy F (x, u k ) dx → ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy F (x, u 0 ) dx.
Using this and the weakly lower semicontinuity of norms in lim k→∞ E(u k ) = l * , we obtain

E(u 0 ) ≤ l * . If E(u 0 ) < l * then it must be lim k→∞ M( u k n ) > M( u 0 n )
which implies that lim k→∞ u k n > u 0 n , since M is continuous and increasing. From this we get

τ n > u 0 n .
Moreover we get

M(τ n ) = n l * + 1 2 ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy F (x, u 0 ) dx . (5.1.31)
Now we define the sequence

v k = u k u k and v 0 = u 0 τ then v k v 0 weakly in W 1,n 0 (Ω) and v 0 < 1. From Lemma 2.2.4 we have that sup k∈N ˆΩ exp p|v k | n n-1 < +∞, for 1 < p < α n (1 -v 0 n ) 1 n-1 .
(

Also from (m3) , Step 1 and Lemma 5.1.15 we obtain

E(u 0 ) ≥ M( u 0 n ) n - M ( u 0 n ) u 0 n 2n + 1 2n ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy (f (x, u 0 )u 0 -nF (x, u 0 )) dx ≥ 0.
Using this with (5.1.31) we get that

M(τ n ) = nl * -nE(u 0 ) + M( u 0 n ) < M 2n -µ 2n α n n-1 + M( u 0 n )
which implies together with (m1) that

τ n < α n-1 n 2n-µ 2n n-1 1 -v 0 n .
Thus it is possible to find a τ * > 0 such that for k ∈ N large enough

u k n n-1 < τ * < α n 2n-µ 2n (1 -v 0 n ) 1 n-1 .
Then we choose a q > 1 but close to 1 such that

2n 2n -µ q u k n n-1 ≤ 2n 2n -µ τ * < α n (1 -v 0 n ) 1 n-1 .
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Therefore from (5.1.32) we conclude that

ˆΩ exp 2n 2n -µ q|u k | n n-1 ≤ C (5.1.33)
for some constant C > 0. Using (5.1.33)

ˆΩ ˆΩ F (y, u k ) |x -y| µ dy f (x, u k )u k dx → ˆΩ ˆΩ F (y, u 0 ) |x -y| µ dy f (x, u 0 )u 0 dx.
We conclude that u k → u 0 and we get a contradiction and claim in Step 3 is proved. Now, by combining claims of the proof of Step 1, 2 and 3, the proof of Theorem 5.1.5 follows.

The Nehari Manifold method for Kirchhoff-Choquard equations

We observe that J λ,M is only bounded below on suitable subsets of W 1,n 0 (Ω). In order to prove the existence of weak solutions to (P λ,M ), we establish the existence of minimizers of J λ,M under the natural constraint of the Nehari Manifold:

N λ,M := {u ∈ W 1,n 0 (Ω)| J λ,M (u), u = 0}
where . , . denotes the duality between W 1,n 0 (Ω) and W -1,n (Ω). Therefore, u ∈ N λ,M if and only if

u n M ( u n ) -λ ˆΩ h(x)u q+1 dx -ˆΩ(|x| -µ * F (u))f (u)u dx = 0.
Remark 5.1.16. We notice that N λ,M contains every solution of (P λ,M ).

For u ∈ W 1,n 0 (Ω), we define the fiber map Φ u,M : R + → R as

Φ u,M (t) = J λ,M (tu) = M( tu n ) n - λ q + 1 ˆΩ h(x)|tu| q+1 dx - 1 2 ˆΩ(|x| -µ * F (tu))F (tu) dx, Φ u,M (t) = t n-1 u n M ( tu n ) -λt q ˆΩ h(x)|u| q+1 dx -ˆΩ(|x| -µ * F (tu))f (tu)u dx and Φ u,M (t) = nt 2n-2 u 2n M ( tu n ) + (n -1)t n-2 u n M ( tu n ) -λqt q-1 ˆΩ h(x)|u| q+1 dx -ˆΩ(|x| -µ * f (tu).u)f (tu)u dx -ˆΩ(|x| -µ * F (tu))f (tu)u 2 dx.
The Nehari Manifold is closely related to the the maps Φ u,M by the relation tu

∈ N λ,M iff Φ u,M (t) = 0. In particular, u ∈ N λ,M iff Φ u,M (1) 
= 0. So we study the geometry of the energy functional on the following components of the Nehari Manifold: Therefore ψ u (t 1 ) < 0 which yields a contradiction. Therefore there exists a unique t * such that

N ± λ,M := {u ∈ N λ,M : Φ u,M (1) ≶ 0} = {tu ∈ W 1,n 0 (Ω) : Φ u,M (t) = 0, Φ u,M (t) ≶ 0},
ψ u (t * ) = λ ´Ω h(x)|u| q+1 dx. Also for 0 < t < t * , Φ u,M (t) = t q (ψ u (t)-λ ´Ω h(x)|u| q+1 dx) > 0.
Consequently, Φ u,M is increasing in (0, t * ) and decreasing on (t * , ∞). Therefore there exists a unique critical point of Φ u,M which is also a global maximum point. Furthermore, since

ψ u (t) = tΦ u,M (t) -qΦ u,M (t) t q , we get t * u ∈ N - λ,M .
For the second case, first we need the following result which characterizes the local minimum value of the function ψ u at the local minimum point t * is strictly greater than λH(u).

Lemma 5.1.18. Let

Γ := u ∈ W 1,n 0 (Ω) : u 3n/2 ≤ B(u) 2 (2n -1 -q)(n -1 -q)ab where B(u) = ´Ω(|x| -µ * F (u))f (u)(u) 2 + ´Ω(|x| -µ * f (u)u)f (u)u dx.
Then there exists a λ 0 > 0 such that for every λ ∈ (0, λ 0 ), Γ 0 > 0 holds where

Γ 0 := inf u∈Γ\{0}∩H + B(u) -(2n -1) ˆΩ(|x| -µ * F (u))f (u).u dx + nb u n -λ(2n -1 -q)H(u) .
(

Proof.

Step 1: Claim: inf u∈Γ\{0}∩H + u > 0.

Let us suppose that it doesn't hold then there exists a sequence

{u k } ⊂ Γ\{0} ∩ H + such that u k → 0 and u k 3n/2 ≤ B(u k ) 2 √ (2n-1-q)(n-1-q)ab
, ∀ k. Then by the Hardy-Littlewood-Sobolev inequality, we have

B(u k ) = ˆΩ(|x| -µ * F (u k ))f (u k )u 2 k dx + ˆΩ(|x| -µ * f (u k )u k )f (u k )u k dx ≤ C(n, µ) f (u k )u k 2 L 2n/(2n-µ) (Ω) + F (u k ) L 2n/(2n-µ) (Ω) f (u k )(u k ) 2 L 2n/(2n-µ) (Ω) .
Since f (u) = u|u| p exp(|u| β ) and f (u) = ((p + 1) + β|u| β )|u| p exp(|u| β ), then we have

|B(u k )| ≤ C(n, µ) ˆΩ(|u k | p+2 exp(|u k | β )) 2n 2n-µ dx 2n-µ n + C(n, µ) ˆΩ(F (u k )) 2n 2n-µ dx 2n-µ 2n × ˆΩ(((p + 1) + β|u k | β )|u k | p+2 exp(|u k | β )) 2n 2n-µ dx 2n-µ 2n
.

Then using F (t) ≤ tf (t) and by the Hölder's inequality, we obtain

|B(u k )| ≤ C 1 ˆΩ |u k | 2nα (p+2) 2n-µ dx 2n-µ nα . ˆΩ exp |u k | β 2nα 2n -µ dx 2n-µ nα + C 2 ˆΩ |u k | 2nα (p+2) 2n-µ dx 2n-µ 2nα . ˆΩ exp |u k | β 2nα 2n -µ dx 2n-µ 2nα × 5.1.4. Analysis of Fiber Maps   ˆΩ |u k | 2nα (p+2) 2n-µ dx 2n-µ 2nα . ˆΩ exp |u k | β 2nα 2n -µ dx 2n-µ 2nα + ˆΩ |u k | 2nα (p+β+2) 2n-µ dx 2n-µ 2nα . ˆΩ exp |u k | β 2nα 2n -µ dx 2n-µ 2nα   .
Let α be such that 2nα/(2n -µ)) u k β ≤ α n and v k = u k ||u k || , then by the Trudinger-Moser inequality we obtain

|B(u k )| ≤ C 1 ˆΩ |u k | 2nα (p+2) 2n-µ dx 2n-µ nα . sup v k ≤1 ˆΩ exp(|v k | β α n ) dx 2n-µ nα + C 2 ˆΩ |u k | 2nα (p+2) 2n-µ dx 2n-µ 2nα
. sup

v k ≤1 ˆΩ exp(|v k | β α n ) dx 2n-µ nα ×   ˆΩ |u k | 2nα (p+2) 2n-µ dx 2n-µ 2nα + ˆΩ |u k | 2nα (p+β+2) 2n-µ dx 2n-µ 2nα   .
Using the Sobolev embedding, it implies that

|B(u k )| ≤ C 1 (n, k, β, µ)( u k 2(p+2) + u k (p+2) ( u k (p+2) + u k (p+β+2) )) ≤ C u k (2p+4) + u k (2p+β+4) .
Hence using u k ∈ Γ\{0} and by the Sobolev embedding theorem, we get 1

≤ C( u k (2p+4-3n 2 ) + u k (2p+β+4- 3n 
2 ) and 2p + 4 -3n 2 > 0 which is a contradiction as u k → 0 as k → ∞. Therefore we have inf u∈Γ\{0}∩H + u > 0.

Step 2: Claim: 0

< inf u∈Γ\{0}∩H + ˆΩ(|x| -µ * f (u)u)(p + 2 -2n + β|u| β )exp(|u| β )|u| p+2 dx . Since F (s) ≤ f (s)s
p+2 then by the definition of Γ and from Step 1, we obtain 0

< inf u∈Γ\{0}∩H + B(u) i.e. 0 < inf u∈Γ\{0}∩H + ˆΩ(|x| -µ * F (u))f (u)u 2 + ˆΩ(|x| -µ * f (u)u)f (u)u ≤ inf u∈Γ\{0}∩H + ˆΩ(|x| -µ * f (u)u) f (u).u + f (u) u 2 p + 2 = inf u∈Γ\{0}∩H + ˆΩ(|x| -µ * f (u)u)|u| p+2 exp(|u| β ) 1 + (p + 1) + β|u| β p + 2 . Since p + 2 -2n > 0, we infer 0 < inf u∈Γ\{0}∩H + { ˆΩ(|x| -µ * f (u)u)(p + 2 -2n + β|u| β )exp(|u| β )|u| p+2 dx}.
Step 3:

Claim: Γ 0 > 0. First, ˆΩ h(x)|u| q+1 ≤ ˆΩ |h(x)| γ 1/γ |u| (1+q)γ 1/γ ≤ l u q+1
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where l = h L γ (Ω) . Choosing

λ < bn (2n -1 -q)l M 0 := λ 0
where M 0 = inf u∈Γ\{0}∩H + u n-1-q > 0, we get that λl(2n -1 -q) u 1+q < nb u n for any u ∈ Γ\{0} ∩ H + . Then for u ∈ Γ\{0} ∩ H + and p + 1 > 2n -1,

B(u) + nb u n -(2n -1) ˆΩ(|x| -µ * F (u))f (u).u -λ(2n -1 -q)H(u) ≥ ˆΩ(|x| -µ * F (u))(f (u)u 2 -(2n -1)f (u).u) + ˆΩ(|x| -µ * f (u).u)f (u).u dx + nb u n -(2n -1 -q)λH(u) > 0.
Therefore Γ 0 > 0.

Lemma 5.1.19. For any u ∈ H + , there exist t * , t 1 , t 2 > 0 and λ 0 such that

t 1 u ∈ N + λ,M and t 2 u ∈ N - λ,M for any λ ∈ (0, λ 0 ) and t 1 < t * < t 2 .
Proof. For 0 ≡ u ∈ H + , we have that ψ u (t) → -∞ as t → ∞ and for small t > 0, ψ u (t) > 0.

Then there exists at least a point of maximum of ψ u (t), say t * , and ψ u (t * ) = 0, i.e.

(2n -1 -q)t 2n-2-q * a u 2n + (n -1 -q)t n-2-q * b u n + q t q+1 * ˆΩ(|x| -µ * F (t * u))f (t * u)u dx = t -q * ˆΩ(|x| -µ * F (t * u))f (t * u)u 2 dx + ˆΩ(|x| -µ * f (t * u)u)f (t * u).u dx .
This implies that

(2n -1 -q)a t * u 2n + (n -1 -q)b t * u n + q ˆΩ(|x| -µ * F (t * u))f (t * u)t * u dx = ˆΩ(|x| -µ * F (t * u))f (t * u)(t * u) 2 dx + ˆΩ(|x| -µ * f (t * u)t * u)f (t * u)t * u dx.
Then we have

2 (2n -1 -q)a t * u 2n b(n -1 -q) t * u n ≤ B(t * u) from which it follows t * u 3n/2 ≤ B(t * u) 2 (2n -1 -q)(n -1 -q)ab where B(u) = ´Ω(|x| -µ * F (u))f (u)u 2 + ´Ω(|x| -µ * f (u)u)f (u)u dx.
Using ψ u (t * ) = 0, we replace the value of a tu 2n in the definition of ψ u (t) to obtain

ψ u (t * ) = 1 (2n -1 -q)t q+1 * B(t * u) -(2n -1) ˆΩ(|x| -µ * F (t * u))f (t * u)t * u dx + nb t * u n .
(5.1.37)
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Proof. Let u ∈ N λ,M . Then,

J λ,M (u) = 1 n a 2 u 2n + b u n - λ q + 1 H(u) - 1 2 ˆΩ(|x| -µ * F (u))F (u) dx = 1 n a 2 u 2n + b u n - λ q + 1 H(u) - 1 2 ˆΩ(|x| -µ * F (u))F (u) dx - 1 p + 2 a u 2n + b u n -λH(u) -ˆΩ(|x| -µ * F (u))f (u)u dx = a u 2n p + 2 -2n 2n(p + 2) + b u n p + 2 -n n(p + 2) -λ p + 1 -q (1 + q)(p + 2) H(u) - 1 2 ˆΩ(|x| -µ * F (u)) F (u) - 2f (u)u p + 2 dx.
Since 0 ≤ F (u) ≤ 2 p+2 f (u).u and H(u) ≤ l u q+1 . Then by the Sobolev inequality we obtain

J λ,M (u) ≥ a u 2n p + 2 -2n 2n(p + 2) + b u n p + 2 -n n(p + 2) -λl p + 1 -q (1 + q)(p + 2) u q+1 . Therefore since q < n -1, J λ,M is coercive on N λ,M , i.e. J λ,M (u) → ∞ as u → ∞.
For u ∈ N λ,M we have also,

J λ,M (u) = b n u n - λ q + 1 H(u) - 1 2 ˆΩ(|x| -µ * F (u))F (u) dx + 1 2n λH(u) + ˆΩ(|x| -µ * F (u))f (u)u dx -b u n = 1 2n b u n -λ 1 q + 1 - 1 2n H(u) + 1 2 ˆΩ(|x| -µ * F (u)) f (u)u n -F (u) dx ≥ 1 2n b u n -λ 1 q + 1 - 1 2n H(u) since f (u)u n -F (u) ≥ 0. Then for u ∈ H - 0 , we get J λ,M (u) ≥ 0. Now for u ∈ H + , setting r = n
1+q and by the Sobolev embedding we obtain

J λ,M (u) ≥ b 2n u n - λ(2n -1 -q) 2n(q + 1) H(u) ≥ b 2n u n - λ(2n -1 -q) 2n(q + 1) l ˆΩ |u| n dx 1/r = c 1 u n -c 2 u q+1
where c 1 = b 2n and c 2 = c 2 (λ). We observe that the minimum of the function g

(x) = c 1 x n -c 2 x q+1 is achieved at x = c 2 (q+1) c 1 n 1 n-q-1 . Therefore, inf u∈N λ,M J λ,M (u) ≥ g c 2 (q + 1) c 1 n 1 n-q-1 = c n 2 c q+1 1 1 n-1-q q + 1 n n n-1-q - q + 1 n q+1 n-1-q . From this it follows that θ ≥ -C(q, n, b)λ n n-q-1
where C(q, n, b) > 0.

Existence and multiplicity of weak solutions

Now since J λ,M is bounded below on N λ,M , by the Ekeland variational principle we get a sequence

{u k } k∈N ⊂ N λ,M \{0} such that        J λ,M (u k ) ≤ θ + 1 k ; J λ,M (v) ≥ J λ,M (u k ) - 1 k u k -v , ∀v ∈ N λ,M .
(

The following result shows that minimizers for J λ,M in any of the subsets of N λ,M are critical points for J λ,M .

Lemma 5.1.22. Let u be a local minimizer for J λ,M on any subsets of

N λ,M such that u ∈ N 0 λ,M . Then u is a critical point of J λ,M .
Proof. Let u be a local minimizer for J λ,M . Then, in any case u is a minimizer for J λ,M under the constraint I λ,M (u) := J λ,M (u), u = 0. Hence , by the theory of Lagrange multipliers , there exists a µ ∈ R such that J λ,M = µI λ,M (u). Thus J λ,M (u), u = µ I λ,M (u), u = µΦ λ,M (1) = 0, but u ∈ N 0 λ,M and so Φ λ,M (1) = 0. Hence µ = 0. Now, we prove a set of lemmas which are necessary to study the (P S) θ condition and compactness of the minimizing sequence {u k } k∈N , whose proof are totally based on the geometry of the energy functional J λ,M on the Nehari manifold.

Lemma 5.1.23.

There exists a constant C 0 > 0 such that θ ≤ -C 0 .

Proof. Let u ∈ H + , then ∃ t 1 (u) > 0 such that t 1 u ∈ N + λ,M and ψ u,M (t 1 ) = λH(u). In that case,

J λ,M (t 1 u) = 1 n a 2 t 1 u 2n + b t 1 u n - 1 2 ˆΩ(|x| -µ * F (t 1 u))F (t 1 u) dx - λ q + 1 ˆΩ h(x)|t 1 u| q+1 dx = 1 n a 2 t 1 u 2n + b t 1 u n - 1 2 ˆΩ(|x| -µ * F (t 1 u))F (t 1 u) dx - 1 q + 1 a t 1 u 2n + b t 1 u n -ˆΩ(|x| -µ * F (t 1 u))f (t 1 u)t 1 u dx .
Since Φ u,M (t 1 ) = 0, Φ u,M (t 1 ) > 0 and from (5.1.34) we obtain

J λ,M (t 1 u) = -(n -1 -q) 2n(q + 1) b t 1 u n + ˆΩ(|x| -µ * F (t 1 u)) 2n + q 2n(q + 1) f (t 1 u)t 1 u - 1 2 F (t 1 u) - f (t 1 u)(tu) 2 2n(q + 1) dx - 1 2n(q + 1) ˆΩ(|x| -µ * f (t 1 u)t 1 u)f (t 1 u)t 1 u dx ≤ -(n -1 -q) 2n(q + 1) b t 1 u n + ˆΩ(|x| -µ * F (t 1 u))
2n + q 2n(q + 1) -p + 2 2n(q + 1) Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

- p + 1 2n(q + 1) f (t 1 u)t 1 u dx - 1 2 ˆΩ(|x| -µ * F (t 1 u))F (t 1 u) dx.
Since q < n -1 and p + 1 > 2n -1 we set 2n + q -(2p + 3) ≤ 3n -1 -(4n -1) < 0 and then

θ ≤ inf u∈N + λ,M ∩H + J λ,M (u) ≤ -C 0 < 0.
Then by (5.1.40) and Lemma 5.1.23, we have for large k,

J λ,M (u k ) ≤ - C 0 2 . (5.1.41) Also since u k ∈ N λ,M \{0} we have J λ,M (u k ) = a u k 2n p + 2 -2n 2n(p + 2) + b u k n p + 2 -n n(p + 2) -λ p + 1 -q (1 + q)(p + 2) H(u k ) - 1 2 ˆΩ(|x| -µ * F (u k )) F (u k ) - 2f (u k )u k p + 2 dx.
then together with (5.1.41), we have

-λ p + 1 -q (1 + q)(p + 2) H(u k ) ≤ - C 0 2 =⇒ H(u k ) ≥ C 0 (p + 2)(1 + q) 2λ(p + 1 -q) C 0 > 0 i.e. H(u k ) > C > 0 and u k ∈ N λ,M ∩ H + for k large enough. (5.1.42) 
Lemma 5.1.24. Let λ ∈ (0, λ 0 ) where λ 0 = bn (2n-1-q)l M 0 . Then given any u ∈ N λ,M \{0}, then there exists > 0 and a differentiable function ξ : B(0, ) ⊂ W 1,n 0 (Ω) → R such that ξ(0) = 1, and ξ(w)(u -w) ∈ N λ,M and for all w ∈ W 1,n 0 (Ω)

ξ (0), w = n(2a u n + b) ´Ω |∇(u)| n-2 ∇u.∇w dx -λ(q + 1) ´Ω h(x)|u| q-1 uw dx -S(u), w a(2n -1 -q) u 2n + b(n -1 -q) u n + R(u) (5.1.43)
where

R(u) = ˆΩ(|x| -µ * F (u))(qf (u) -f (u).u).u dx -ˆΩ(|x| -µ * f (u).u)f (u)u dx and S(u), w = ˆΩ(|x| -µ * F (u))(f (u)u + f (u))w dx + ˆΩ(|x| -µ * f (u)u)f (u)w dx. Proof. Fix u ∈ N λ,M \{0}, define a function G u : R × W 1,n 0 (Ω) → R as G u (t, v) = at 2n-1-q u -v 2n + bt n-1-q u -v n - 1 t q ˆΩ(|x| -µ * F (t(u -v)))f (t(u -v)).(u -v) dx -λ ˆΩ h|u -v| q+1 dx.

Existence and multiplicity of weak solutions

Then

G u ∈ C 1 (R × W 1,n 0 (Ω), R) and G u (1, 0) = a u 2n + b u n -ˆΩ(|x| -µ * F (u))f (u).u dx -λ ˆΩ h|u| q+1 dx = Φ u,M (1) = 0 and ∂ ∂t G u (1, 0) = a(2n -1 -q) u 2n + b(n -1 -q) u n + q ˆΩ(|x| -µ * F (u))f (u).u -B(u) = Φ u,M (1) = 0.
Then by the implicit function theorem, there exists > 0 and a differentiable function ξ :

B(0, ) ⊂ W 1,n 0 (Ω) → R such that ξ(0) = 1 and G u (ξ(w), w) = 0 ∀w ∈ B(0, ) which is equivalent to J λ,M (ξ(w)(u -w), ξ(w)(u -w)) = 0 ∀w ∈ B(0, ). Thus, ξ(w)(u -w) ∈ N λ,M and differentiating G u (ξ(w), w) = a(ξ(w)) 2n-1-q u -w 2n + b(ξ(w)) n-1-q u -w n - 1 (ξ(w)) q ˆΩ(|x| -µ * F (ξ(w))(u -w))f (ξ(w)(u -w))(u -w) -λ ˆΩ h(x)|u -w| q+1 = 0
with respect to w, we obtain (5.1.43).

Similarly we have: Lemma 5.1.25. Let λ ∈ (0, λ 0 ) where λ 0 = bn (2n-1-q)l M 0 . Then there exists u ∈ N - λ,M \{0}, then there exists > 0 and a differentiable function ξ -: B(0, ) ⊂ W 1,n 0 (Ω) → R such that ξ -(0) = 1, and ξ -(w)(u -w) ∈ N - λ,M and for all w ∈ W 1,n 0 (Ω)

(ξ -) (0), w = n(2a u n + b) ´Ω |∇(u)| n-2 ∇u.∇w dx -λ(q + 1) ´Ω h(x)|u| q-1 uw dx -S(u), w a(2n -1 -q) u 2n + b(n -1 -q) u n + R(u)
where R(u) and S(u) are as in Lemma 5.1.24.

Proof. For any u ∈ N - λ,M , Φ u,M (1) = 0 and Φ u,M (1) < 0. This implies u ∈ Γ\{0}. Then by Lemma 5.1.24 there exists > 0 and a differentiable function

ξ -: B(0, ) ⊂ W 1,n 0 (Ω) → R such that ξ -(0) = 1, and ξ -(w)(u -w) ∈ N λ,M
for all w ∈ B(0, ). Then by the continuity of J λ,M and ξ -and by choosing small enough we have

Φ ξ -(u)(u-w),M (1) = n ξ -(u)(u -w) 2n M ( ξ -(u)(u -w) n ) + (n -1) ξ -(u)(u -w) n M ( tu n ) -λq ˆΩ h(x)|ξ -(u)(u -w)| q+1 dx -ˆΩ(|x| -µ * f (ξ -(u)(u -w)).ξ -(u)(u -w))f (ξ -(u)(u -w))ξ -(u)(u -w) dx -ˆΩ(|x| -µ * F (ξ -(u)(u -w)))f (ξ -(u)(u -w))(ξ -(u)(u -w)) 2 dx < 0 that implies ξ -(w)(u -w) ∈ N - λ,M .
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As an application of above lemmas, we prove that our minimizing sequence {u k } k∈N satisfy the (P S) θ condition and using this, we prove the multiplicity result in the subcritical case.

Proposition 5.1.26. Let λ ∈ (0, λ 0 ) where

λ 0 = bn (2n-1-q)l M 0 . Assume u k ∈ N λ,M is satisfy- ing (5.1.40). Then J λ,M (u k ) * → 0 as k → ∞.
Proof. We divide the proof into three steps:

Step 1: lim inf k→∞ u k > 0. We know that from (5.1.42) that for large k, H(u k ) ≥ C > 0, so by using Hölder inequality we obtain

C < H(u k ) ≤ C 1 u k q+1 .
Step 2: We claim that lim inf

k→∞ (2n -1 -q)a u k 2n + b(n -1 -q) u k n + q ˆΩ(|x| -µ * F (u k ))f (u k )u k dx -B(u k ) > 0.
Without loss of generality, we can assume that

u k ∈ N + λ,M (if not replace u k by t 1 (u k )u k ).
Arguing by contradiction, suppose that there exists a subsequence of {u k }, still denoted by

{u k }, such that 0 ≤ (2n -1 -q)a u k 2n + b(n -1 -q) u k n + q ˆΩ(|x| -µ * F (u k ))f (u k )u k dx -B(u k ) = o k (1).
From

Step 1 and the above equation we obtain that lim inf k→∞ B(u k ) > 0 and (2n -

1 - q)a u k 2n + b(n -1 -q) u k n ≤ B(u k ) i.e. u k ∈ Γ\{0} for all large k. Since u k ∈ N + λ,M \{0} -nb u k n + λ(2n -1 -q)H(u k ) + (2n -1) ˆΩ(|x| -µ * F (u k ))f (u k )u k dx -B(u k ) = o k (1)
which is a contradiction since Γ 0 > 0.

Step 3: J λ,M (u k ) * → 0 as k → ∞. By using Lemma 5.1.24, there exists a differentiable function

ξ k : B(0, k ) → R for some k > 0 such that ξ k (0) = 1 and ξ k (w)(u k -w) ∈ N λ,M ∀w ∈ B(0, k ). Choose 0 < ρ < k and f ∈ W 1,n 0 (Ω) such that f = 1. Let w ρ = ρf. Then w ρ = ρ < k and define η ρ = ξ k (w ρ )(u k -w ρ ).
Then from the Taylor expansion and (5.1.40), we obtain

1 k η ρ -u k ≥ J λ,M (u k ) -J λ,M (η ρ ) = J λ,M (η ρ ), u k -η ρ + o( u k -η ρ ) = (1 -ξ k (w ρ )) J λ,M (η ρ ), u k + ρξ k (w ρ ) J λ,M (η ρ ), f + o( u k -η ρ ).
(5.1.44)

We also infer

1 ρ η ρ -u k = (ξ k (w ρ ) -1) ρ u k -ξ k (w ρ )f → u k ξ k (0), f -f as ρ → 0.
Since u k ∈ N λ,M , we have also

1-ξ k (wρ) ρ
J λ,M (η ρ ), u k → 0 as ρ → 0. Thus, dividing the expression in (5.1.44) by ρ and doing ρ → 0 + , we get

J λ,M (u k ), f ≤ f k ( u k ξ k (0) * + O(1))
5.1.5. Existence and multiplicity of weak solutions principle (see for instance [START_REF] Vázquez | A strong maximum principle for some quasilinear elliptic equations[END_REF]), we get u λ > 0 in Ω. Since u λ ∈ N + λ,M ∩ H + then we have a t * (u λ ) such that 1 = t 1 (u λ ) < t * (u λ ). Hence by the continuity of u → t * (u), given > 0 there exists δ > 0 such that (1 + ) < t * (u λ -w) for all w < δ and from Lemma 5.1.24 we have, for δ > 0 small enough, a continuously differentiable map t : B(0, δ) → R + such that t(w)(u λ -w) ∈ N λ,M , t(0) = 1. Then we have

t 1 (u λ -w) = t(w) < 1 + < t * (u λ -w)
for δ small enough. Since t * (u λ -w) > 1 for all w < δ, we obtain

J λ,M (u λ ) ≤ J λ,M (t 1 (u λ -w)(u λ -w)) ≤ J λ,M (u λ -w), if w < δ which implies that u λ is a local minimizer for J λ,M . Theorem 5.1.28. Let β < n n-1 and let λ ∈ (0, λ 0 ) where λ 0 = bn (2n-1-q)l M 0 . Then J λ,M achieve its minimizers on N - λ,M . Proof. Let u ∈ N - λ,M . Then (2n -1)a u 2n + (n -1)b u n -λqH(u) -ˆΩ(|x| -µ * f (u)u)f (u).u- ˆΩ(|x| -µ * F (u))f (u)u 2 < 0. Then (5.1.38) implies that (2n -1 -q)a u 2n +(n -1 -q)b u n + q ˆΩ(|x| -µ * F (u))f (u).u -ˆΩ(|x| -µ * f (u)u)f (u).u + ˆΩ(|x| -µ * F (u))f (u)u 2 < 0. (5.1.49) 
Using p+1 > 2n it is easy to deduce from (5.1.49

) that ∃ c > 0, u ≥ c > 0 for any u ∈ N - λ,M
from which it follows that N - λ,M is a closed set. Also as in Lemma 5.1.18 we can prove that

N - λ,M ⊂ Γ and then inf u∈N - λ,M B(u) ≥ c > 0. Therefore, for λ < λ 0 small enough, inf u∈N - λ,M \{0} B(u) + nb u n -(2n -1 -q)λH(u) -(2n -1) ˆΩ |x| -µ * F (u)f (u)u > 0. (5.1.50) Now taking θ -= min u∈N - λ,M J λ,M (u) > -∞.
From Ekeland variational principle, there exist {v k } k∈N a non-negative minimizing sequence such that

J λ,M (v k ) ≤ inf u∈N - λ,M J λ,M (u) + 1 k and J λ,M (u) ≥ J λ,M (v k ) - 1 k v k -u ∀ u ∈ N - λ,M .
5.1.5. Existence and multiplicity of weak solutions 

0 = lim k→∞ J λ,M (u k ), uφ = lim k→∞ M ( u k n ) ˆΩ(|∇u k | n-2 ∇u k .∇φu + |∇u k | n-2 ∇u k .∇uφ) dx -ˆΩ(|x| -µ * F (u k ))f (u k )uφ dx -λ ˆΩ h(x)|u| q φ dx.
∀ φ ∈ C ∞ c (Ω) lim k→∞ ˆΩ(|x| -µ * F (u k ))f (u k )u k φ = lim k→∞ M ( u k n ) ˆΩ |∇u k | n φ -|∇u k | n-2 ∇u k .∇uφ dx + ˆΩ(|x| -µ * F (u))f (u)uφ dx + o k (1).
(5.1.54)

Now we take the cut-off function

ψ δ ∈ C ∞ c (Ω) such that ψ δ = 1 in B δ (x j ) ∀ j = {1, . . . , t} and ψ δ (x) = 0 in B c 2δ (x j ) with |ψ δ | ≤ 1.
Then by taking φ = ψ δ in (5.1.54) and since as δ → 0

0 ≤ ˆΩ(|∇u k | n-2 ∇u k .∇u)ψ δ dx ≤ ˆΩ |∇u k | n-1 |∇u||ψ δ | dx ≤ ˆ∪j B 2δ(x j ) |∇u k | n-1 |∇u| dx ≤ ˆΩ |∇u k | n dx n/(n-1) ˆ∪j B 2δ (x j ) |∇u| n dx 1/n → 0,
we deduce after letting δ → 0 that

ν 2 (A) ≥ m 0 ν 1 (A) ≥ m 0 α n 2 1 n-1 2n -µ 2n n-1 .
(5.1.55)

On the other hand, by using the same argument as in Lemma 5.1.12 (in particular see (5.1.16)) we can prove that for any compact set

K ⊂ Ω δ = Ω\ ∪ t i=1 B 2δ (x i ) lim k→∞ ˆK(|x| -µ * F (u k ))f (u k )u k dx = ˆK(|x| -µ * F (u))f (u)u dx.
Thus, we obtain

nc = lim k→∞ n J λ,M (u k ) - 1 2 J λ,M (u k ), u k = lim k→∞ M( u k n ) - 1 2 M ( u k n ) u k n + lim k→∞ 1 2 ˆΩ(|x| -µ * F (u k ))(f (u k )u k -nF (u k )) dx + λ 1 2 - n q + 1 ˆΩ h(x)|u k | q+1 dx. Since ˆΩ(|x| -µ * F (u k ))F (u k ) dx → ˆΩ(|x| -µ * F (u))F (u) dx, 1 2 ˆΩ(|x| -µ * F (u k ))f (u k )u k dx → 1 2 ˆΩ(|x| -µ * F (u))f (u)u dx + ν 2 (A) 2 ,
together with (5.1.55) it follows that Consequently,

nc ≥ m 0 2 α n 2 1 n-1 2n -µ 2n n-1 + λ 1 2 - n q + 1 ˆΩ h(x)u q+1 dx - n 2 ˆΩ(|x| -µ * F (u))F (u) dx
c ≥ m 0 2n α n 2 1 n-1 2n -µ 2n n-1 + λ 1 2n - 1 (q + 1) ˆΩ hu q+1 dx + 1 2n - 1 2(p + 1) ˆΩ(|x| -µ * F (u))f (u)u dx ≥ m 0 2n α n 2 1 n-1 2n -µ 2n n-1 -h L r (Ω) λ 2n -1 -q 2n(q + 1) ˆΩ u p+2 dx q+1 p+2 + c 1 2p + 2 -2n 2n(2p + 2)(p + 2) ˆΩ u p+2 dx 2 ≥ m 0 2n α n 2 1 n-1 2n -µ 2n n-1 -inf t∈R + ρ(t) with r = 1 -q+1 p+2 -1 , c 1 = c 1 (Ω) > 0 and ρ(t) = h L r (Ω) λ 2n-1-q 2n(q+1) t q+1 2(p+2) -(2p+2-2n)c 1 2n(2p+2)(p+2) t. Thus c ≥ m 0 2n αn 2 1 n-1 2n-µ 2n n-1 -Cλ 2(p+2)
2p+3-q which completes the proof. 2p+3-q . Taking λ small enough, using Lemma 5.1.23 and Lemma 5.1.29, {u k } admits a strongly convergent subsequence. Let u ∈ W 1,n 0 (Ω) be the limit of this subsequence. Then arguing as in the proof of Theorems 5.1.27 and 5.1.28, we prove that u is a non-trivial weak solution of (P λ,M ) and J λ,M (u) = θ. By elliptic regularity and strong maximum principle, we infer that u > 0 in Ω. This completes the proof of Theorem 5.1.8.

Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular weights

In this section, we prove the existence of a non-trivial weak solution to the following Kirchhoff type Choquard equation with exponential non-linearity and singular weights:

(P KC)      -M ˆΩ |∇ m u| 2 dx ∆ m u = ˆΩ F (y, u) |y| α |x -y| µ dy f (x, u) |x| α dx, in Ω, u = ∇u = • • • = ∇ m-1 u = 0 on ∂Ω,
where m ∈ N, n = 2m, µ ∈ (0, n), 0 < α < min{ n 2 , n -µ}, Ω is a bounded domain in R n with smooth boundary and the function F denotes the primitive of f with respect to the second variable. Throughout this section, we assume the following conditions on M and f . The function M : R + → R + is a continuous function satisfying the following conditions:

Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular weights

(m1) There exists M 0 > 0 such that M (t) ≥ M 0 and M(t+s) ≥ M(t)+M(s), for all t, s ≥ 0 where M(t) = ´t 0 M (s) ds is the primitive of the function M vanishing at 0. (m2) There exist constants b 1 , b 2 > 0 and t > 0 such that for some k ∈ R 

M (t) ≤ b 1 + b 2 t k ,
M (t) = M 0 +bt β where M 0 , > 0, β < 1 and b ≥ 0. Also M (t) = M 0 +log(1+t) with M 0 ≥ 1 verifies (m1)-(m3).
The function f : Ω × R → R which governs the Choquard term is given by f (x, t) = h(x, t) exp(t 2 ), where h ∈ C(Ω × R) satisfies the following growth conditions:

(h1) h(x, t) = 0 for all t ≤ 0 and h(x, t) > 0 for t > 0.

(h2) For any > 0, lim

t→∞ sup x∈ Ω h(x, t) exp(-t 2 ) = 0 and lim t→∞ inf x∈ Ω h(x, t) exp( t 2 ) = ∞.
(h3) There exists > max{1, k + 1} such that f (x,t) t is increasing for each t > 0 uniformly in x ∈ Ω, where k is specified in (m2).

(h4) There exist T, T 0 > 0 and γ 0 > 0 such that 0 < t γ 0 F (x, t) ≤ T 0 f (x, t) for all |t| ≥ T and uniformly in x ∈ Ω.

The condition (h3) implies that f (x,t) t is increasing in t > 0 and lim

t→0 + f (x, t) t = 0 uniformly in x ∈ Ω. Example 5.2.2. A typical example of f satisfying (h1)-(h4) is f (x, t) = t β+1 exp(t p ) exp(t 2 )
for t ≥ 0 and f (x, t) = 0 for t < 0 where 0 ≤ p < 2 and β > l -1.

Furthermore, using (h1) -(h3) we obtain that for any > 0, r > β 0 + 1 where 0 ≤ β 0 < , there exist constants C 1 , C 2 > 0 (depending upon , n, m) such that for each

x ∈ Ω 0 ≤ F (x, t) ≤ C 1 |t| β 0 +1 + C 2 |t| r exp((1 + )t 2
), for all t ∈ R.

(5.2.1)

We also study the existence of weak solutions of a Kirchhoff type Choquard equation with convex-concave sign changing non-linearity:

(P λ,M )      -M ˆΩ |∇ m u| 2 dx ∆ m u = λh(x)|u| q-1 u + ˆΩ F (u) |x -y| µ |y| α dy f (u) |x| α in Ω, u = ∇u = • • • = ∇ m-1 u = 0 on ∂Ω,
where f (u) = u|u| p exp(|u| γ ), 0 < q < 1, 2 < p, γ ∈ (1, 2) and F (t) = ´t 0 f (s) ds. In this case, we assume M (t) = at + b where a, b > 0 and h ∈ L r (Ω) where r = p+2 q+1 is such that h + ≡ 0. For any u ∈ W m,2 0 (Ω), by virtue of Sobolev embedding we get that u ∈ L q (Ω) for all q ∈ [1, ∞). This also implies that F (x, u) ∈ L q (Ω) for any q ≥ 1.

Throughout this section, we denote

u = ˆΩ |∇ m u| 2 dx 1 2
.

The problem (P KC) has a variational structure and the energy functional J : W m,2 0 (Ω) → R associated to (P KC) is given by

J (u) = 1 2 M( u 2 ) - 1 2 ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy F (x, u) |x| α dx. (5.2.2)
The notion of weak solution for (P KC) is given as follows.

Definition 5.2.3. A weak solution of (P KC) is a function u ∈ W m,2 0 (Ω) such that for all ϕ ∈ W m,2 0 (Ω), it satisfies

M ( u 2 ) ˆΩ ∇ m u.∇ m ϕ dx = ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy f (x, u) |x| α ϕ dx. ( 5.2.3) 
For the problem (P λ,M ), the energy functional J λ,M : W m,2 0 (Ω) → R associated to the problem (P λ,M ) is defined as

J λ,M (u) = 1 2 M( u 2 ) - λ q + 1 ˆΩ h(x)|u| q+1 dx - 1 2 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy F (u) |x| α dx
where F and M are primitive of f and M respectively vanishing at 0 and f (s) = s|s| p exp(|s| γ ). Definition 5.2.4. A function u ∈ W m,2 0 (Ω) is said to be a weak solution of (P λ,M ) if for all φ ∈ W m,2 0 (Ω), it satisfies

M ( u 2 ) ˆΩ ∇ m u.∇ m φ dx = λ ˆΩ h(x)|u| q-1 uφ dx + ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u) |x| α φ dx.

Main results

We prove the following main result concerning the problem (P KC). Then the problem (P KC) admits a non-trivial weak solution.

For the problem (P λ,M ), we have the following result:

Theorem 5.2.6. There exists a λ 0 > 0 such that for γ ∈ (1, 2) and λ ∈ (0, λ 0 ), (P λ,M ) admits atleast two solutions.

Existence result for weak solution

In this subsection, we establish the existence of a nontrivial weak solution for the problem (P KC). To prove this we study the mountain pass geometry of the energy functional J and using the properties of the non-local term M and the exponential growth of f , we prove that every Palais Smale sequence is bounded. To study the compactness of Palais Smale sequences for J , we obtain a bound for the mountain pass critical level with the help of Adams functions and establish the convergence of weighted Choquard term for Palais-Smale sequences.

Mountain pass geometry

In the following result, we show that the energy functional J possesses the mountain pass geometry around 0 in the light of Adams-Moser and doubly weighted Hardy-Littlewood-Sobolev inequalities.

Lemma 5.2.7. Under the assumptions (m1), ( m2) and ( h1)-(h3) the following assertions hold:

(i) there exists R 0 > 0, η > 0 such that J (u) ≥ η for all u ∈ W m,2 0 (Ω) such that u = R 0 . (ii) there exists a v ∈ W m,2 0 (Ω) with v > R 0 such that J (v) < 0.
Proof. Using Proposition 2.2.7 with t = r and β = α and (5.2.1), we obtain that for any > 0 and u ∈ W m,2 0 (Ω), there exist constants C i > 0 depending upon such that ˆΩ ˆΩ F (y, u)

|y| α |x -y| µ dy F (x, u) |x| α dx ≤ C(m, µ, α) F (x, u) 2 L 2n 2n-(2α+µ) ≤ C 1 ˆΩ |u| 2n(β 0 +1) 2n-(2α+µ) + C 2 ˆΩ |u| 2rn 2n-(2α+µ) exp 2n(1 + ) 2n -(2α + µ) |u| 2 2n-(2α+µ) n ≤   C 1 ˆΩ |u| 2n(β 0 +1) 2n-(2α+µ) + C 2 u 2rn 2n-(2α+µ) ˆΩ exp 4n(1 + ) u 2 2n -(2α + µ) |u| u 2 1 2   2n-(2α+µ) n
For small > 0 and u such that 4n(1 + ) 

u 2 2n -(2α + µ) ≤ ζ m,
|y| α |x -y| µ dy F (x, u) |x| α dx ≤ C 3 u 2n(β 0 +1) 2n-(2α+µ) + u 2rn 2n-(2α+µ) 2n-(2α+µ) n ≤ C 4 ( u 2(β 0 +1) + u 2r ).
(5.2.5)

Then for u < ρ = ζ m,2m (2n-(2α+µ)) 4n(1+ ) 1 
2 , (m1) and (5.2.5) gives

J (u) ≥ M 0 u 2 2 -C 4 u 2(β 0 +1) -C 4 u 2r .
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So we choose u = R 0 small enough so that J (u) ≥ η for some η > 0 (depending on R 0 ) and hence (i) follows. Furthermore (m2) implies that

M(t) ≤      b 0 + b 1 t + b 2 t k+1 k + 1 , k = -1 b 0 + b 1 t + b 2 ln t, k = -1 for t ≥ t where b 0 =      M( t) -b 1 t -b 2 tk+1 k + 1 , k = -1, M( t) -b 1 t -b 2 ln t, k = -1.
Under the assumption (h3), there exists

K 1 ≥ max{1, k + 1}, c 1 , c 2 > 0 such that F (x, s) ≥ c 1 s K 1 -c 2 for all (x, s) ∈ Ω × [0, ∞). Therefore for v ∈ W m,2 0 (Ω) such that v ≥ 0 and v = 1 we get ˆΩ ˆΩ F (y, tv) |y| α |x -y| µ dy F (x, tv) |x| α dx ≥ ˆΩ ˆΩ (c 1 (tv) K 1 (y) -c 2 )(c 1 (tv) K 1 (x) -c 2 ) |y| α |x| α |x -y| µ dxdy = c 2 1 t 2K 1 ˆΩ ˆΩ v K 1 (y)v K 1 (x) |y| α |x| α |x -y| µ dxdy -2c 1 c 2 t K 1 ˆΩ ˆΩ v K 1 (y) |y| α |x| α |x -y| µ dxdy + c 2 2 ˆΩ ˆΩ 1 |y| α |x| α |x -y| µ dxdy.
Then using above estimates in (5.2.2) for k = -1, we obtain

J (tv)≤ c 3 + c 4 t 2 + c 5 t 2(k+1) -c 4 t 2K 1 + c 6 t K 1 and for k = -1 J (tv) ≤ c 3 + c 4 t 2 + c 5 ln(t 2 ) -c 4 t 2K 1 + c 6 t K 1
where c i s are positive constants for i = 3, . . . , 6. Now by choosing t large enough, we obtain that there exists a v ∈ W m,2 0 (Ω) with v > R 0 such that J (v) < 0.

Lemma 5.2.8. Every Palais Smale sequence of J is bounded in W m,2 0 (Ω).

Proof. Let {u k } ⊂ W m,2 0 (Ω) be a Palais Smale sequence for J at level c (denoted by (P S) c for some c ∈ R) i.e.

J (u k ) → c and J (u k ) → 0 as k → ∞.
Then from (5.2.2) and (5.2.3), we obtain

1 2 M( u k 2 ) - 1 2 ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy F (x, u k ) |x| α dx → c as k → ∞, M ( u k 2 ) ˆΩ ∇ m u k .∇ m φ - ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy f (x, u k ) |x| α φ dx ≤ k φ
(5.2.6)

Mountain pass critical level

for any φ ∈ W m,2 0 (Ω), where k → 0 as k → ∞. By substituting φ = u k we get

M ( u k 2 ) ˆΩ |∇ m u k | 2 - ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy f (x, u k )u k |x| α dx ≤ k u k . (5.2.7)
Using assumption (h3), we get that there exists a θ > 2 such that θF (x, t) ≤ tf (x, t) for any t > 0 and x ∈ Ω which implies

θ ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy F (x, u k ) |x| α dx ≤ ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy f (x, u k )u k |x| α dx.
(5.2.8)

Now using (5.2.6), (5.2.7), (5.2.8) and (m3) , we get

J (u k ) - 1 2θ J (u k ), u k = 1 2 M( u k 2 ) - 1 2θ M ( u k 2 ) u k 2 - 1 2 ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy F (x, u k ) |x| α dx + 1 2θ ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy f (x, u k )u k |x| α dx ≥ 1 2 M( u k 2 ) - 1 2θ M ( u k 2 ) u k 2 ≥ 1 2 - 1 2θ M 0 u k 2 .
(5.2.9) Also (5.2.6) and (5.2.7) yields

J (u k ) - 1 2θ J (u k ), u k ≤ C 1 + k u k 2θ (5.2.10) 
for some C > 0. Therefore (5.2.9) and (5.2.10) gives us the desired result.

Mountain pass critical level

To obtain bound for the mountain pass critical level in this subsection, we use Adams functions to construct a sequence of test functions. Let B denotes the unit ball and B l is the ball with center 0 and radius l in R n . Without loss of generality, we can assume that B l ⊂ Ω, then from [182, Lemma 5, p. 895], we have the following result-For l ∈ (0, 1), there exists

U l ∈ {u ∈ W m,2 0 (Ω) : u| B l = 1} (5.2.11) such that U l 2 = C m,2 (B l ; B) ≤ ζ m,2m n log 1 l where C m,2 (K, E) is the conductor capacity of K in E whenever E is an open set and K is relatively compact subset of E and C m,2 (K; E) def = inf{ u 2 : u ∈ C ∞ 0 (E), u| K = 1}. Let x ∈ Ω and R ≤ R 0 = dist(x, ∂Ω).
Then the Adams function Ãr is defined as where 0 < r < R, U l= r R is as in (5.2.11) and Ãr ≤ 1. Let σ > 0 (to be chosen later), x = 0, R = σ and r = σ k for k ∈ N, then we define

Ãr (x) =              n log R r ζ m,2m   1 2 U r R x - x R if |x -x| < R, 0 if |x -x| ≥ R
A k (x) def = Ã σ k (x) =          n log(k) ζ m,2m 1 2 U 1 k x σ if |x| < σ, 0 if |x| ≥ σ. Then A k (0) = n log(k) ζ m,2m 1 2 and A k ≤ 1.
We define the mountain pass critical level as

l * = inf ϑ∈Γ max t∈[0,1]
J (ϑ(t)).

(5.2.12)

where Γ = {ϑ ∈ C([0, 1], W m,2 0 (Ω)) : ϑ(0) = 0, J (ϑ(1)) < 0}. Now we analyze the first critical level and study the convergence of Palais-Smale sequence below this level. Theorem 5.2.9. Under the assumption (5.2.4),

0 < l * < 1 2 M 2n -(2α + µ) 2n ζ m,2m .
Proof. We have observed in Lemma 5.2.7 for u ∈ W m,2 0 (Ω) \ {0}, J (tu) → -∞ as t → ∞ and l * ≤ max t∈[0,1] J (tu) for u ∈ W m,2 0 (Ω)\{0} satisfying J (u) < 0. So it is enough to prove that there exists a k ∈ N such that max t∈[0,∞)

J (tA k ) < 1 2 M 2n -(2α + µ) 2n ζ m,2m .
We establish the above claim by contradiction. Suppose this is not true, then for all k ∈ N there exists a t k > 0 such that max t∈[0,∞)

J (tA k ) = J (t k A k ) ≥ 1 2 M 2n -(2α + µ) 2n ζ m,2m and d dt (J (tA k ))| t=t k = 0.
(5.2.13) From Lemma 5.2.7 and (5.2.13), we obtain {t k } must be a bounded sequence in R and

1 2 M 2n -(2α + µ) 2n ζ m,2m < 1 2 M(t 2 k )
Then monotonicity of M implies that

t 2 k > 2n -(2α + µ) 2n ζ m,2m . (5.2.14)
Consequently, by using (5.2.13) and choosing σ, k such that B σ/k ⊂ Ω, we obtain

M (( t k A k ) 2 ) t k A k 2 = ˆΩ ˆΩ F (y, t k A k ) |y| α |x -y| µ dy f (x, t k A k )t k A k |x| α dx ≥ ˆB σ k   ˆB σ k F (y, t k A k ) |y| α |x -y| µ dy   f (x, t k A k )t k A k |x| α dx.
(5.2.15)

Mountain pass critical level

For a positive constant C µ,n depending on µ and n, we obtain (see equation (2.11), page.

1943, [START_REF] Alves | Existence and concentration of ground state solutions for a critical non-local Schrödinger equation in R n[END_REF])

ˆB σ k ˆB σ k dxdy |y| α |x| α |x -y| µ ≥ C µ,n σ k 2n-(2α+µ)
. From (5.2.4), we know that for each ρ > 0 there exists a s ρ > 0 such that sf (x, s)F (x, s) ≥ ρ exp 2s 2 , whenever s ≥ s ρ .

Using this in (5.2.15), we obtain, for some C > 0

M ( t k A k 2 )t 2 k ≥ ρ exp 2|t k A k (0)| 2 C µ,n σ k 2n-(2α+µ) ≥ C k 2nt 2 k ξ m,2m
-(2n-(2α+µ)) . Now from (5.2.14), it follows that taking k large enough, we arrive at a contradiction. This completes the proof of the result. Lemma 5.2.10. Let {u k } ⊂ W m,2 0 (Ω) be a Palais Smale sequence for J at c ∈ R then there exists a u 0 ∈ W m,2 0 (Ω) such that as k → ∞ (up to a subsequence) ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy f (x, u k ) |x| α φ dx → ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy f (x, u 0 ) |x| α φ dx for all φ ∈ C ∞ c (Ω).
Proof. If {u k } is a Palais Smale sequence at l * for J satisfying (5.2.6) and (5.2.7). From Lemma 5.2.8, we obtain that {u k } is bounded in W m,2 0 (Ω) so there exists a u 0 ∈ W m,2 0 (Ω) such that up to a subsequence u k u 0 weakly in W m,2 0 (Ω), strongly in L q (Ω) for all q ∈ [1, ∞) and pointwise a.e. in Ω as k → ∞. Let Ω ⊂⊂ Ω and ϕ ∈ C ∞ c (Ω) such that 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in Ω then by taking ϕ as a test function in (5.2.6), we get the following estimate ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy f (x, u k ) |x| α dx ≤ ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy f (x, u k )ϕ |x| α dx ≤ k ϕ + M ( u k 2 ) ˆΩ ∇ m u k .∇ m ϕ dx ≤ k ϕ + C u k ϕ .
By using u k ≤ C 0 for all k, we obtain the sequence 

{w k } := ´Ω F (y,u k ) |y| α |x-y| µ dy f (x,u k ) |x| α is bounded in L 1 loc ( 
|y| α |x -y| µ dy f (x, u k ) |x| α φ dx = ˆΩ φ dw, ∀ φ ∈ C ∞ c (Ω).
Since u k satisfies (5.2.6), for any measurable set E ⊂ Ω and φ ∈ C ∞ c (Ω) such that supp φ ⊂ E we get that 

w(E) = ˆE φ dw = lim k→∞ ˆE ˆΩ F (y, u k ) |y| α |x -y| µ dy f (x, u k ) |x| α φ dx
(y, u k ) |y| α |x -y| µ dy f (x, u k ) |x| α φ dx = lim k→∞ M ( u k 2 ) ˆΩ ∇ m u k .∇ m φ dx ≤ C 1 ˆE ∇ m u.∇ m φ dx
where we used (m2) in the last inequality and weak convergence of u k to u in W m,2 0 (Ω). This implies that w is absolutely continuous with respect to the Lebesgue measure. Thus, Radon-Nikodym theorem establishes that there exists a function g ∈ L 

|y| α |x -y| µ dy F (x, u k ) |x| α → ˆΩ F (y, u) |y| α |x -y| µ dy F (x, u) |x| α in L 1 (Ω) (5.2.16)
as k → ∞.

Proof. Let {u k } ⊂ W m,2 0 (Ω) be a Palais Smale sequence of J at level c then from Lemma 5.2.8 we know that {u k } must be bounded in W m,2 0 (Ω). Thus there exists a u ∈ W m,2 0 (Ω) such that u k u weakly in W m,2 0 (Ω), u k → u pointwise a.e. in Ω and u k → u strongly in L q (Ω), for each q ∈ [1, ∞) as k → ∞. Also from (5.2.6), (5.2.7) and (5.2.8) we get that there exists a constant C > 0 such that ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy F (x, u k ) |x| α dx ≤ C and ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dx f (x, u k )u k |x| α ≤ C.
(5.2.17)

Consider ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy F (x, u k ) |x| α dx - ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy F (x, u) |x| α dx ≤ ˆΩ ˆΩ F (y, u k ) -F (y, u) |y| α |x -y| µ dy F (x, u k ) |y| α dx + ˆΩ ˆΩ F (y, u) |y| α |x -y| µ dy F (x, u k ) -F (x, u) |x| α dx def = I 1 + I 2 .
Using the semigroup property of the Riesz potential we can write

I 1 ≤ ˆΩ ˆΩ F (y, u k ) -F (y, u) |y| α |x -y| µ dy F (x, u k ) -F (x, u) |x| α dx 1 2 × ˆΩ ˆΩ F (y, u k ) |y| α |x -y| µ dy F (x, u k ) |x| α dx 1 2
. (5.2.18) 

I 1 + I 2 ≤ 2C ˆΩ ˆΩ F (y, u k ) -F (y, u) |y| α |x -y| µ dy F (x, u k ) -F (x, u) |x| α dx 1 2
where we used (5.2.17) to get the last inequality. Now the proof of (5.2.16) follows similarly as the proof of (5.1.22) of Lemma 5.1.12). Now we define the associated Nehari manifold as

N = {u ∈ W m,2 0 (Ω) \ {0} : J (u), u = 0}, l * * = inf u∈N J (u)
and we show the mountain pass critical level lies below every local minimum value of the energy functional at the point of local minimum.

Lemma 5.2.12. If (m3) and (h3) holds then l * ≤ l * * .

Proof. For u ∈ N , we define a map h : (0, +∞) → R such that h(t) = J (tu). Then

h (t) = M ( tu 2 ) u 2 t - ˆΩ ˆΩ F (y, tu) |y| α |x -y| µ dy f (x, tu)u |x| α dx.
and since u ∈ N , therefore

h (t) = u 4 t 3 M ( tu 2 ) t 2 u 2 - M ( u 2 ) u 2 + t 3   ˆΩ ˆΩ   F (y,u)f (x,u) u(x)
|y| α |x -y| µ dy -ˆΩ F (y,tu)f (x,tu)

t 3 u(x) |y| α |x -y| µ dy   u 2 (x) |x| α dx   .
From (h3), we get

t 1 f (x, t 1 ) -2F (x, t 1 ) ≤ t 1 f (x, t 1 ) -2F (x, t 2 ) + 2 f (x, t 2 ) t 2 (t 2 2 -t 2 1 ) ≤ t 2 f (x, t 2 ) -2F (x, t 2 ).
for 0 < t 1 < t 2 . Using this we get that tf (x, t) -2F (x, t) ≥ 0 for t ≥ 0 and for any x ∈ Ω, t → tf (x, t) -2F (x, t) is increasing on R + , which further implies that t → F (x,tu)

t 2
is nondecreasing for t > 0. Therefore for 0 < t < 1 and x ∈ Ω, we get F (x,tu)

t 2 ≤ F (x, u) and (h3) gives that f (x,u) u ≥ f (x,tu) tu then h (t) ≥ u 4 t 3 M ( tu 2 ) tu 2 - M ( u 2 ) u 2
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+ t 3 ˆΩ ˆΩ F (y, u) - F (y, tu) t 2 dy |y| α |x -y| µ f (x, tu)u 2 (x) |x| α tu(x) dx .
This gives that h (t) ≥ 0 for 0 < t ≤ 1 and similarly we can show that h (t) < 0 for t > 1.

Hence J (u) = max t≥0 J (tu). Now we define g : [0, 1] → W m,2 0 (Ω) as g(t) = (t 0 u)t where t 0 > 1 is such that J (t 0 u) < 0. So g ∈ Γ, where Γ is as defined in the definition of l * . Therefore,

l * ≤ max t∈[0,1] J (g(t)) ≤ max t≥0 J (tu) = J (u).
and since u ∈ N is arbitrary, so we get l * ≤ l * * . Now, we give the proof of our main result:

Proof of Theorem 5.2.5: Let {u k } be a (P S) l * sequence at the critical level l * and hence considered as a minimizing sequence associated to the variational problem (5.2.12). Then by Lemma 5.2.11, there exists a u 0 ∈ W m,2 0 (Ω) such that up to a subsequence u k u 0 weakly in W m,2 0 (Ω) as k → ∞.

Step 1: u 0 is non-trivial and u 0 ≥ 0. If u 0 ≡ 0 then using Lemma 5.2.11, we infer that ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy F (x, u k ) |x| α dx → 0 as k → ∞.
Therefore lim k→∞ J (u k ) = 1 2 lim k→∞ M( u k 2 ) = l * and then for large enough k Theorem 5.2.9 gives

M( u k 2 ) < M 2n -(2α + µ) 2n ζ m,2m .
Then by monotonicity of M, we obtain

2n 2n -(2α + µ) u k 2 < ζ m,2m .
Now, this implies that we can choose a q > 2n 2n-(2α+µ) such that sup k ´Ω |f (x, u k )| q dx < +∞. Using Proposition 2.2.7, Theorem 2.2.2, Chapter 1 and the Vitali's convergence theorem we conclude that ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy f (x, u k )u k |x| α dx → 0 as k → ∞.
Hence lim k→∞ J (u k ), u k = 0 which gives lim k→∞ M ( u k 2 ) u k 2 = 0. From (m1) we then obtain lim k→∞ u k 2 = 0. Thus using Lemma 5.2.11, it must be that lim k→∞ J (u k ) = 0 = l * which contradicts l * > 0. Thus u 0 ≡ 0. Now we show that u 0 ≥ 0 in Ω. From Lemma 5.2.8 we know that {u k } must be bounded. Therefore there exists a constant ρ > 0 such that up to a subsequence u k → ρ as k → ∞. Let ϕ ∈ W m,2 0 (Ω) then by Lemma 5.2.10 we have ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy f (x, u k ) |x| α ϕ dx → ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy f (x, u 0 ) |x| α ϕ dx as k → ∞.
Since J (u k ) → 0 and u k u 0 weakly in W m,2 0 (Ω), we get

M (ρ 2 ) ˆΩ ∇ m u 0 .∇ m ϕ dx = ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy f (x, u 0 ) |x| α ϕ dx,
as k → ∞. In particular, taking ϕ = u - 0 in the above equation we get M (ρ 2 ) u - 0 2 = 0 which implies together with assumption (m1) that u - 0 = 0 a.e. in Ω. Therefore u 0 ≥ 0 a.e. in Ω.

Step 2: J λ,M = l * . To prove this, first we claim

M ( u 0 2 ) u 0 2 ≥ ´Ω ´Ω F (y,u 0 ) |y| α |x-y| µ dy f (x,u 0 )u 0 |x| α dx.
Arguing by contradiction, suppose that

M ( u 0 2 ) u 0 2 < ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy f (x, u 0 )u 0 |x| α dx
which implies that J (u 0 ), u 0 < 0. For t > 0, using the map t → tf (x, t) -2F (x, t) is increasing on R + , we have

J (tu 0 ), u 0 ≥ M ( tu 0 2 )t u 0 2 - 1 2
ˆΩ ˆΩ f (y, tu 0 )tu 0 (y)

|y| α |x -y| µ dy f (x, tu 0 )u 0 |x| α dx ≥ M 0 t u 0 2 - 1 2 ˆΩ ˆΩ f (y, tu 0 )tu 0 (y) |y| α |x -y| µ dy f (x, tu 0 )u 0 |x| α dx.
Since (h3) gives that lim

t→0 + f (x, t) t γ = 0 uniformly in x ∈ Ω, for all γ ∈ [0, 1],
we can choose t > 0 sufficiently small so that J (tu 0 ), u 0 > 0. Thus there exists a t * ∈ (0, 1) such that J (t * u 0 ), u 0 = 0 i.e. t * u 0 ∈ N . So using Lemma 5.2.12 and (m3) we get

l * ≤ l * * ≤ J (t * u 0 ) = J (t * u 0 ) - 1 4 J (t * u 0 ), t * u 0 = M( t * u 0 2 ) 2 - 1 2 ˆΩ ˆΩ F (y, t * u 0 ) |y| α |x -y| µ dy F (x, t * u 0 ) |x| α dx - 1 4 M ( t * u 0 2 ) t * u 0 2 + 1 4 ˆΩ ˆΩ F (y, t * u 0 ) |y| α |x -y| µ dy f (x, t * u 0 )t * u 0 |x| α dx < M( u 0 2 ) 2 - 1 4 M ( u 0 2 ) u 0 2 + 1 4 ˆΩ ˆΩ F (y, u 0 ) |y α ||x -y| µ dy f (x, u 0 )u 0 -2F (x, u 0 ) |x| α dx = lim inf k→∞ J (u k ) - 1 4 J (u k ), u k = l * .
This gives a contradiction and hence Claim holds. From Lemma 5.2.11 we know that ˆΩ ˆΩ F (y, u k )

|y| α |x -y| µ dy F (x, u k ) |x| α dx → ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy F (x, u 0 ) |x| α dx
and by using the weakly lower semicontinuity of norms in lim k→∞ J (u k ) = l * , we obtain J (u 0 ) ≤ l * . If J (u 0 ) < l * then it must be lim k→∞ M( u k 2 ) > M( u 0 2 ) which implies that Also from (m3) , Claim (1) and proof of Lemma 5.2.12 we obtain

J (u 0 ) = 1 2 M( u 0 2 ) - 1 4 M ( u 0 2 ) u 0 2 + 1 4 ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy (f (x, u 0 )u 0 -2F (x, u 0 )) |x| α dx ≥ 0.
Using this with (5.2.20) and Theorem 5.2.9 we get that

M(ρ 2 ) = 2l * -2J (u 0 ) + M( u 0 2 ) < M 2n -(2α + µ) 2n ζ m,2m + M( u 0 2 )
which implies together with (m1) that

ρ 2 < ζ m,2m 2n-(2α+µ) 2n 1 -v 0 2 .
Thus it is possible to find a ρ * > 0 such that for k ∈ N large enough

u k 2 < ρ * < ζ m,2m (2n -(2α + µ)) 2n(1 -v 0 2
) .

Then we choose a q > 1 but close to 1 such that 

2n 2n -(2α + µ) q u k 2 ≤ 2n 2n -(2α + µ) ρ * < ζ m,2m (1 -v 0 2
|y| α |x -y| µ dy f (x, u k )u k |x| α dx → ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy f (x, u 0 )u 0 |x| α dx.
We conclude that u k → u 0 and we get a contradiction to the fact that J (u 0 ) < l * . Hence J (u 0 ) = l * = lim k→∞ J (u k ) and u k → ρ implies ρ = u 0 . Then finally we have,

M ( u 0 2 ) ˆΩ ∇ m u 0 .∇ m ϕ dx = ˆΩ ˆΩ F (y, u 0 ) |y| α |x -y| µ dy f (x, u 0 ) |x| α ϕ dx.
for all ϕ ∈ W m,2 0 (Ω) and which completes the proof of Theorem 5.2.5. In this subsection, we consider the problem (P λ,M ) with Kirchhoff non-linearity of the form M (t) = at + b where a, b > 0. We observe that J λ,M is unbounded on W m,2 0 (Ω) but bounded below on suitable subsets of W m,2 0 (Ω). To show the existence of weak solutions to (P λ,M ), we establish the existence of minimizers of J λ,M under the natural constraint of the Nehari Manifold which contains every solution of (P λ,M ). So we define the Nehari manifold as

N λ,M := {u ∈ W m,2 0 (Ω) \ {0}| J λ,M (u), u = 0}
where . , . denotes the duality between W m,2 0 (Ω) and W -m,2 (Ω) i.e. u ∈ N λ,M if and only if

u 2 M ( u 2 ) -λ ˆΩ h(x)|u| q+1 dx - ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u |x| α dx = 0. (5.2.23)
For u ∈ W m,2 0 (Ω), we define the fiber map Φ u,M introduced by Drabek and Pohozaev in [START_REF] Drábek | Positive solutions for the p-Laplacian: application of the fibering method[END_REF] as Φ u,M : R + → R such that Φ u,M (t) = J λ,M (tu). Thus we get

Φ u,M (t) = t u 2 M ( tu 2 ) -λt q ˆΩ h(x)|u| q+1 dx - ˆΩ ˆΩ F (tu) |x -y| µ |y| α dy f (tu)u |x| α dx and Φ u,M (t) = 2t 2 u 4 M ( tu 2 ) + u 2 M ( tu 2 ) -λqt q-1 ˆΩ h(x)|u| q+1 dx - ˆΩ ˆΩ f (tu)u |x -y| µ |y| α dy f (tu)u |x| α dx - ˆΩ ˆΩ F (tu) |x -y| µ |y| α dy f (tu)u 2 |x| α dx.
Since the fiber map introduced above are closely related to Nehari manifold by the relation tu ∈ N λ,M iff Φ u,M (t) = 0, so we analyze the geometry of the energy functional on the following components of the Nehari Manifold:

N ± λ,M := {u ∈ N λ,M : Φ u,M (1) ≶ 0} = {tu ∈ W m,2 0 (Ω) \ {0} : Φ u,M (t) = 0, Φ u,M (t) ≶ 0}, N 0 λ,M := {u ∈ N λ,M : Φ u,M (1) = 0} = {tu ∈ W m,2 0 (Ω) \ {0} : Φ u,M (t) = 0, Φ u,M (t) = 0}.
Due to presence of sign changing non-linearity in (P λ,M ), we also decompose W m,2 0 (Ω) into the following sets to study the behavior of fibering maps Φ u,M . We define H(u) = ´Ω h(x)|u| q+1 dx and

H + := {u ∈ W m,2 0 (Ω) : H(u) > 0}, H - 0 := {u ∈ W m,2 0 (Ω) : H(u) ≤ 0}.

Fiber Map Analysis

In this section, we study the geometry of J λ,M on the Nehari manifold. We split the study according to the decomposition of N λ,M and the sign of H(u). Define ψ : R + → R such that 

ψ u (t) = t 1-q M ( tu 2 ) u 2 -t -q ˆΩ ˆΩ F (tu) |x -y| µ |y| α dy f (tu)u |x| α dx.
:= u ∈ W m,2 0 (Ω) : u 3 ≤ B(u) 2 (3 -q) ab (1 -q) .
Then there exists a λ 0 > 0 such that for every λ ∈ (0, λ 0 ), Γ 0 > 0 holds where

Γ 0 := inf u∈Γ\{0}∩H + B(u) -3 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u |x| α dx + 2b u 2 -λ (3 -q) H(u) .
Proof. We establish the proof through various steps.

Step 1: Claim: inf u∈Γ\{0}∩H + u > 0.

We argue with contradiction, suppose there exists a sequence {u k } ⊂ Γ\{0} ∩ H + such that u k → 0. Then using Proposition 2.2.7 and putting the value of f (u) = u|u| p exp(|u| γ ) as well as f (u) = ((p + 1) + γ|u| γ )|u| p exp(|u| γ ) we obtain , where C 1 , C 2 are positive constants independent of u k . Now (p + 2)F (t) ≤ tf (t) and Hölder's inequality implies that

|B(u k )| = ˆΩ ˆΩ F (u k ) |x -y| µ |y| α dy f (u k )u 2 k |x| α dx + ˆΩ ˆΩ f (u k )u k |x -y| µ |y| α dy f (u k )u k |x| α dx ≤ C 1 ˆΩ(|u k | p+2 exp(|u k | γ ))
|B(u k )| ≤ C 1 ˆΩ |u k | 2nδ (p+2) 2n-(2α+µ) dx 2n-(2α+µ) nδ × ˆΩ exp |u k | γ 2nδ 2n -(2α + µ) dx 2n-(2α+µ) nδ + C 2 ˆΩ |u k | 2nδ (p+2) 2n-(2α+µ) dx 2n-(2α+µ) 2nδ × ˆΩ exp |u k | γ 2nδ 2n -(2α + µ) dx 2n-(2α+µ) 2nδ ×   ˆΩ |u k | 2nδ (p+2) 2n-(2α+µ) dx 2n-(2α+µ) 2nδ × ˆΩ exp |u k | γ 2nδ 2n -(2α + µ) dx 2n-(2α+µ) 2nδ + ˆΩ |u k | 2nδ (p+γ+2) 2n-(2α+µ) dx 2n-(2α+µ) 2nδ × ˆΩ exp |u k | γ 2nδ 2n -(2α + µ) dx 2n-(2α+µ) 2nδ   ,
where δ > 1 (which depends on k) and δ denotes its Hölder conjugate. Using Moser-Trudinger inequality for u k with large enough k such that

2nδ (2n-(2α+µ)) u k γ ≤ ζ m,2m (such k can be chosen because u k → 0 as k → ∞) and v k = u k ||u k || , we obtain |B(u k )| ≤ C 1 ˆΩ |u k | 2nδ (p+2) 2n-(2α+µ) dx 2n-(2α+µ) nδ × sup v k ≤1 ˆΩ exp(|v k | γ ζ m,2m ) dx 2n-(2α+µ) nδ + C 2 ˆΩ |u k | 2nδ (p+2) 2n-(2α+µ) dx 2n-(2α+µ) 2nδ × sup v k ≤1 ˆΩ exp(|v k | γ ζ m,2m ) dx 2n-(2α+µ) nδ ×   ˆΩ |u k | 2nδ (p+2) 2n-(2α+µ) dx 2n-(2α+µ) 2nδ + ˆΩ |u k | 2nδ (p+γ+2) 2n-(2α+µ) dx 2n-(2α+µ) 2nδ   .
Finally the Sobolev embedding gives the following upper bound.

|B(u k )| ≤ C 3 ( u k 2(p+2) + u k (p+2) ( u k (p+2) + u k (p+γ+2) )) ≤ C u k (2p+4) + u k (2p+ γ 2 +4) .
Using

u k ∈ Γ\{0} we get 1 ≤ C( u k (2p+1) + u k (2p+ γ 2 +1
) , which is a contradiction as u k → 0 as k → ∞. Therefore we have inf u∈Γ\{0}∩H + u > 0.

Step 2: Claim: 0

< inf u∈Γ\{0}∩H + ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy (p -2 + γ|u| γ ) exp(|u| γ )|u| p+2 |x| α dx .
Since F (s) ≤ f (s)s p+2 , then by the definition of Γ and from Step 1, we obtain 0

< inf u∈Γ\{0}∩H + B(u) i.e. 0 < inf u∈Γ\{0}∩H + ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u 2 |x| α dx + ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u)u |x| α dx ≤ inf u∈Γ\{0}∩H +    ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u)u + f (u) u 2 p+2 |x| α dx    = inf u∈Γ\{0}∩H + ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy |u| p+2 exp(|u| γ ) |x| α 1 + (p + 1) + γ|u| γ p + 2 .
Since p > 2, we infer

0 < inf u∈Γ\{0}∩H + ˆΩ ˆΩ f (u)u |x -y| µ |y| α (p -2 + γ|u| γ ) exp(|u| γ )|u| p+2
|x| α dx .

Step 3: Claim: Γ 0 > 0. Firstly, we have

H(u) = ˆΩ h(x)|u| q+1 ≤ ˆΩ |h(x)| ρ 1/ρ ˆΩ |u| (1+q)ρ 1/ρ ≤ l u q+1 . (5.2.24)
where l = h L ρ (Ω) and ρ > 1 will be specified later. Choosing

λ < 2b (3 -q) l M 0 := λ 0 (5.2.25)
where M 0 = inf u∈Γ\{0}∩H + u 1-q > 0, we get that λl (3 -q) u 1+q < 2b u 2 for any u ∈ Γ\{0} ∩ H + . Then for u ∈ Γ\{0} ∩ H + and p > 2,

B(u) + 2b u 2 -3 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u |x| α dx -λ (3 -q) H(u)
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≥ ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u 2 -3f (u)u |x| α dx + ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u)u |x| α dx + 2b u 2 -(3 -q) λH(u) > 0.
Therefore Γ 0 > 0. for any λ ∈ (0, λ 0 ) and t 1 < t * < t 2 .

Proof.

(i) For u ∈ H - 0 \ {0} Since Φ u,M (t) = t q (ψ u (t) -λ ˆΩ h(x)|u| q+1 dx), so tu ∈ N λ,M iff t > 0 is a solution of ψ u (t) = λ ´Ω h(x)|u| q+1 dx. We have ψ u (t) = (1 -q) t -q M ( tu 2 ) u 2 + 2t 2-q M ( tu 2 ) u 4 + q t q+1 ˆΩ ˆΩ F (tu) |x -y| µ |y| α dy f (tu)u |x| α dx -t -q ˆΩ ˆΩ f (tu)u |x -y| µ |y| α dy f (tu)u |x| α dx + ˆΩ ˆΩ F (tu) |x -y| µ |y| α dy f (tu)u 2
|x| α dx .

(5.2.26)

Due to the presence of exponential non-linearity, for large t we have ψ u (t) < 0 and since u ∈ H - 0 , there exists a unique t * > 0 such that ψ u (t * ) = λ ´Ω h(x)|u| q+1 dx, i.e. t * u ∈ N λ,M . Suppose there exists an another point t 1 (t * < t 1 ) such that ψ u (t 1 ) = λ ´Ω h(x)|u| q+1 ≤ 0, i.e.

t 1-q 1 (at 2 1 u 2 + b) u 2 ≤ t -q 1 ˆΩ ˆΩ F (t 1 u) |x -y| µ |y| α dy f (t 1 u)u |x| α dx (5.2.27)
and ψ u (t 1 ) ≥ 0. Then from (5.2.27) and by using f (t 1 u)t 1 u > (p + 1)f (t 1 u), f (t)t ≥ (p + 2)F (t) we obtain,

ψ u (t 1 ) < (3 -q) t -q 1 (at 2 1 u 2 + b) u 2 -t -q-1 1 ˆΩ ˆΩ F (t 1 u) |x -y| µ |y| α dy f (t 1 u)u |x| α dx ≤ 0.
which is a contradiction. Also for 0 < t < t * , Φ u,M (t) = t q (ψ u (t) -λ ´Ω h(x)|u| q+1 dx) > 0. Consequently, Φ u,M is increasing in (0, t * ) and also decreasing on (t * , ∞). Therefore t * is unique critical point of Φ u,M which is also a point of global maximum. Furthermore, since

ψ u (t) = tΦ u,M (t) -qΦ u,M (t) t q , therefore t * u ∈ N - λ,M .
(ii) For small t > 0, ψ u (t) > 0 and ψ u (t) → -∞ as t → ∞ for u ∈ H + . Then there exists at least one point t * such that ψ u (t * ) = 0, i.e.

(3 -q) t 2-q * a u 4 + (1 -q) t -q * b u 2 + q t q+1 * ˆΩ ˆΩ F (t * u) |x -y| µ |y| α dy f (t * u)u |x| α dx = t -q * ˆΩ ˆΩ F (t * u) |x -y| µ |y| α dy f (t * u)u 2 |x| α dx + ˆΩ ˆΩ f (t * u)u |x -y| µ |y| α dy f (t * u)u |x| α dx .
So by AM-GM inequality we obtain 2 (3 -q) ab (1 -q) t * u 3 ≤ B(t * u) where

B(u) = ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u 2 |x| α dx + ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u)u |x| α dx.
Using ψ u (t * ) = 0, we replace the value of a t * u 4 in the definition of ψ u (t) to obtain 

ψ u (t * ) = 1 (3 -q) t
(t * ) -λH(u) > 0 since t * u ∈ Γ \ {0} ∩ H + . From ψ u (0) = 0, ψ u (t * ) > λH(u) > 0 and lim t→∞ ψ u (t) = -∞, there exists t 1 = t 1 (u) < t * < t 2 (u) = t 2 such that ψ u (t 1 ) = λ ´Ω h(x)|u| q+1 dx = ψ u (t 2 ) with ψ u (t 1 ) > 0, ψ u (t 2 ) < 0. Therefore, t 1 u ∈ N + λ,M
and t 2 u ∈ N - λ,M . Now we show that t 1 u ∈ N + λ,M and t 2 u ∈ N - λ,M are unique. Suppose not, then there exists t 3 > 0 such that t 3 u ∈ N + λ,M and t * * such that t 2 < t * * < t 3 , ψ u (t * * ) = 0 and ψ u (t * * ) < λH(u). Our Lemma 5.2.13 then induces that if ψ u (t * * ) = 0 then ψ u (t * * ) > λH(u) which is a contradiction.

We will denote t * as the smallest critical point of ψ u in the sequel. As a consequence of Lemma 5.2.13 and geometry of the energy functional J λ,M on Nehari manifold, we also prove that 0 is the only inflection point of the map Φ u,M i.e. N 0 λ,M = {0}.

Lemma 5.2.15. 

If λ ∈ (0, λ 0 ) then N 0 λ,M = ∅. Proof. Let u ∈ N 0 λ,M then u satisfies a u 4 + b u 2 = λH(u) + ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u |x| α dx
B(u) -3 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u).u |x| α dx + 2b u 2 -λ (3 -q) H(u) = 0
which contradicts Lemma 5.2.13. If u ∈ H - 0 ∩ N 0 λ,M then Case 1 implies that "1" is the only critical point of Φ u,M and Φ u,M (1) < 0 which is a contradiction to the fact that u ∈ N 0 λ,M .

Existence and multiplicity of weak solution

In this section, we first study the geometric structure of the energy functional J λ,M over N λ,M and achieves its minimum, with the help of lower and upper bound estimates on θ, where θ = inf u∈N λ,M J λ,M (u).

Theorem 5.2.16. J λ,M is bounded below and coercive on N λ,M . Moreover θ ≥ -Cλ where C depends on q, b.

Proof. Let u ∈ N λ,M i.e. Φ u,M (1) = 0. Then, J λ,M (u) = a u 4 p -2 4(p + 2) + b u 2 p 2(p + 2) -λ p + 1 -q (1 + q)(p + 2) H(u) - 1 2 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy F (u) -2f (u)u p+2 |x| α dx.
Since 0 ≤ F (u) ≤ 2 p+2 f (u)u and q < 1, (5.2.24) and Sobolev embedding implies that J λ,M is coercive on N λ,M that is as u → ∞,

J λ,M (u) ≥ a u 4 p -2 4(p + 2) + b u 2 p 2(p + 2) -λl p + 1 -q (1 + q)(p + 2) u q+1 → ∞.
Similarly, we have

J λ,M (u) = b 2 u 2 - λ q + 1 H(u) - 1 2 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy F (u) |x| α dx + 1 4 λH(u) + ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u |x| α dx -b u 2 ≥ 1 4 b u 2 -λ 1 q + 1 - 1 4 H(u).
Then for u ∈ H - 0 , we get J λ,M (u) ≥ 0 and for u ∈ H + , the Sobolev embedding implies

J λ,M (u) ≥ b 4 u 2 - λ(3 -q) 4(q + 1) H(u) ≥ b 4 u 2 - λ(3 -q)l 4(q + 1) ˆΩ |u| (1+q)ρ dx 1/ρ = b 3 u 2 -b 4 u q+1
where b 3 = b 4 and b 4 = λ(3-q) 4(q+1) . So by finding the minimum of function g(x) = b 3 x 2 -b 4 x q+1 , we can conclude that J λ,M is bounded below on N λ,M . Lemma 5.2.17. There exists a constant C 0 > 0 such that θ ≤ -C 0 .

Proof. Let u ∈ H + , then from the fibering map analysis we know that there exists a t 1 (u) > 0 such that t 1 u ∈ N + λ,M ∩ H + and ψ u,M (t 1 ) = λH(u). Since Φ u,M (t 1 ) > 0, from (5.2.26) we obtain

q -3 m a t 1 u 4 < (1 -q) b t 1 u 2 -B(t 1 u) + q ˆΩ ˆΩ F (t 1 u) |x -y| µ |y| α dy f (t 1 u)t 1 u |x| α dx.
(5.2.31)

Using Φ u,M (t 1 ) = 0, we get that

J λ,M (t 1 u) = 1 2 a 2 t 1 u 4 + b t 1 u 2 - 1 2 ˆΩ ˆΩ F (t 1 u) |x -y| µ |y| α dy F (t 1 u) |x| α dx - 1 q + 1 a t 1 u 4 + b t 1 u 2 - ˆΩ ˆΩ F (t 1 u) |x -y| µ |y| α dy f (t 1 u)t 1 u |x| α dx .
In that case, by (5.2.31) we obtain,

J λ,M (t 1 u) = -(1 -q) 4(q + 1) b t 1 u 2 + ˆΩ ˆΩ F (t 1 u)
|x -y| µ |y| α dy 4 + q 4(q + 1)

f (t 1 u)t 1 u |x| α - 1 2 
F (t 1 u) |x| α - f (t 1 u)(tu) 2 4(q + 1)|x| α dx - 1 4(q + 1) ˆΩ ˆΩ f (t 1 u)t 1 u |x -y| µ |y| α dy f (t 1 u)t 1 u |x| α dx ≤ -(1 -q) 4(q + 1) b t 1 u 2 + ˆΩ ˆΩ F (t 1 u)
|x -y| µ |y| α dy 4 + q 4(q + 1) -(p + 2) 4(q + 1) -(p + 1) 4(q + 1)

f (t 1 u)t 1 u |x| α dx - 1 2 ˆΩ ˆΩ F (t 1 u) |x -y| µ |y| α dy F (t 1 u) |x| α dx. Since 1 + q -2p < 0 therefore θ ≤ inf u∈N + λ,M ∩H + J λ,M (u) ≤ -C 0 < 0.
Using Theorem 5.2.16 and Ekeland variational principle, we know that there exists a sequence

{u k } k∈N ⊂ N λ,M such that        J λ,M (u k ) ≤ θ + 1 k ; J λ,M (v) ≥ J λ,M (u k ) - 1 k u k -v , ∀v ∈ N λ,M .
(5.2.32)

Then by (5.2.32) and Lemma 5.2.17, we have for large k,

J λ,M (u k ) ≤ - C 0 2 . (5.2.33) Also since u k ∈ N λ,M we have J λ,M (u k ) = a u k 4 p -2 4(p + 2) + b u k 2 p 2(p + 2) -λ p + 1 -q (1 + q)(p + 2) H(u k ) - 1 2 ˆΩ ˆΩ F (u k ) |x -y| µ |y| α dy F (u k ) -2f (u k )u k p+2 |x| α dx.
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This together with (5.2.33) gives

-λ p + 1 -q (1 + q)(p + 2) H(u k ) ≤ - C 0 2 =⇒ H(u k ) ≥ C 0 (p + 2)(1 + q) 2λ(p + 1 -q) > 0 i.e.
H(u k ) > C > 0, for large k and u k ∈ N λ,M ∩ H + .

(5.2.34)

The following result shows that minimizers for J λ,M in any subset of the decomposition of N λ,M are critical points of J λ,M and the proof follows from the Lagrange multipliers rule (see Lemma 5.1.22).

Lemma 5.2.18. Let u be a local minimizer for J λ,M on any subsets of N λ,M such that u ∈ N 0 λ,M . Then u is a critical point of J λ,M . Now, we prove a set of lemmas which are necessary to study the (P S) θ condition and compactness of the minimizing sequence {u k } k∈N and whose proof are totally based on the geometry of the energy functional J λ,M on the Nehari manifold.

Lemma 5.2.19. Let λ > 0 such that λ ∈ (0, λ 0 ). Then for any u ∈ N λ,M \{0}, there exists a > 0 and a differentiable function ξ :

B(0, ) ⊂ W m,2 0 (Ω) → R such that ξ(0) = 1 and ξ(w)(u -w) ∈ N λ,M
for all w ∈ W m,2 0 (Ω). Moreover

ξ (0), w = 2(2a u 2 + b) ´Ω ∇ m u.∇ m w dx -λ(q + 1) ´Ω h(x)|u| q-1 uw dx -S(u), w a (3 -q) u 4 + b (1 -q) u 2 + R(u)
where

R(u) = ˆΩ ˆΩ F (u) |x -y| µ |y| α qf (u) -f (u)u)u |x| α dx - ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u)u |x| α dx and S(u), w = ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u + f (u) |x| α w dx+ ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u) |x| α w dx. Proof. For u ∈ N λ,M , we define a continuous differentiable function G u : R × W m,2 0 (Ω) → R such that G u (t, v) = at 3-q u -v 4 + bt 1-q u -v 2 - 1 t q ˆΩ ˆΩ F (t(u -v)) |x -y| µ |y| α dy f (t(u -v))(u -v) |x| α dx -λ ˆΩ h(x)|u -v| q+1 dx.
Then G u (1, 0) = Φ u (1) = 0 and ∂ ∂t G u (1, 0) = φ u (1) = 0. Hence by the implicit function theorem, there exists > 0 and a differentiable function ξ : B(0, ) ⊂ W m,2 0 (Ω) → R such that ξ(0) = 1 and G u (ξ(w), w) = 0 ∀w ∈ B(0, ) which is equivalent to J λ,M (ξ(w)(uw)), ξ(w)(u -w) = 0 ∀ w ∈ B(0, ). Thus, ξ(w)(u -w) ∈ N λ,M and differentiating G u (ξ(w), w) = 0 with respect to w, we obtain the required claim.

Similarly, by following the proof of Lemma 5.1.25 and using Lemma 5.2.19, we have the following result.

Lemma 5.2.20. Let λ > 0 satisfies (5.2.25) then given any u ∈ N - λ,M \{0}, then there exists > 0 and a differentiable function

ξ -: B(0, ) ⊂ W m,2 0 (Ω) → R such that ξ -(0) = 1 and ξ -(w)(u -w) ∈ N - λ,M
and for all w ∈ W m,2 0 (Ω)

(ξ -) (0), w = 2(2a u 2 + b) ´Ω ∇ m u.∇ m w dx -λ(q + 1) ´Ω h(x)|u| q-1 uw dx -S(u), w a (3 -q) u 4 + b (1 -q) u 2 + R(u)
where R(u) and S(u) are as in Lemma 5.2.19.

Concerning the (P S) θ condition, we have the following result.

Proposition 5.2.21. Let λ > 0 such that λ ∈ (0.λ 0 ) and u k ∈ N λ,M satisfies (5.2.32). Then J λ,M (u k ) * → 0 as k → ∞.

Proof.

Step 1: lim inf k→∞ u k > 0.

We know that {u k } satisfies (5.2.34) for large k, thus H(u k ) ≥ C > 0 for large k. So by using Hölder inequality we obtain C < H(u k ) ≤ C 1 u k q+1 .

Step 2: We claim that lim inf

k→∞ (3 -q) a u k 4 + b (1 -q) u k 2 + q ˆΩ ˆΩ F (u k ) |x -y| µ |y| α f (u k )u k |x| α dx -B(u k ) > 0.
Without loss of generality, we can assume that u k ∈ N + λ,M (if not replace u k by t 1 (u k )u k ). Arguing by contradiction, suppose that there exists a subsequence of {u k }, still denoted by

{u k }, such that 0 ≤ (3 -q) a u k 4 + b (1 -q) u k 2 + q ˆΩ ˆΩ F (u k ) |x -y| µ |y| α f (u k )u k |x| α dx -B(u k ) = o k (1).
From Step 1 and the above equation we obtain that lim inf k→∞ B(u k ) > 0 and

(3 -q) a u k 4 + b (1 -q) u k 2 ≤ B(u k )
i.e. u k ∈ Γ\{0} for all large k.

Since u k ∈ N + λ,M , we get

-2b u k 2 + λ (3 -q) H(u k ) + 3 ˆΩ ˆΩ F (u k ) |x -y| µ |y| α f (u k )u k |x| α dx -B(u k ) = o k (1)
which is a contradiction since Γ 0 > 0. The remaining proof follows similarly as the proof of Proposition 5.1.26. 

∈ N + λ,M ∩ H + to (P λ,M ) such that J λ,M (u λ ) = inf u∈N λ,M \{0} J λ,M (u) and u λ ∈ N + λ,M ∩ H + is a local minimum for J λ,M in W m,2 0 (Ω).
Proof. Let {u k } ⊂ N λ,M be a minimizing sequence satisfying (5.2.32)). Then by Theorem 5.2.16 we obtain {u k } is a bounded sequence in W m,2 0 (Ω). Also there exists a subsequence of {u k } (denoted by same sequence) and u λ such that u k u λ weakly in W m,2 0 (Ω), u k → u λ strongly in L r (Ω) for r ≥ 1 and u k → u λ a.e. in Ω as k → ∞. Then using f (t) ≤ C ,γ exp( t 2 ) for > 0 small enough and Theorem 2.2.2, Chapter 1 with n = 2m, we obtain that f (u k ) and F (u k ) are uniformly bounded in L q (Ω) for all q > 1. Then by Proposition 2.2.7 and Vitali's convergence theorem, we obtain

J λ,M (u k ) → θ as k → ∞ and J λ,M (v) ≥ J λ,M (u k ) -1 k u k -v , ∀v ∈ N λ (as in
ˆΩ ˆΩ F (u k ) |x -y| µ |y| α dy f (u k )(u k -u λ ) |x| α dx → 0 as k → ∞.
Thus by Proposition 5.2.21, we have J λ,M (u k ), (u k -u λ ) → 0. Then we conclude that

M ( u k 2 ) ˆΩ ∇ m u k .∇ m (u k -u λ ) dx → 0 as k → ∞. (5.2.35) 
On the other hand, using u k u λ weakly and by boundedness of M ( u k 2 ) we have 

M ( u k 2 ) ˆΩ ∇ m u λ .∇ m (u k -u λ ) dx → 0 as k → ∞. ( 5 
M ( u k 2 ) ˆΩ(∇ m u k -∇ m u λ ).∇ m (u k -u λ ) dx → 0 as k → ∞.
which gives

M ( u k 2 ) ˆΩ |∇ m u k -∇ m u λ | 2 dx → 0 as k → ∞.
Since M (t) ≥ M 0 , we obtain u k → u λ strongly in W m,2 0 (Ω). By Lemma 5.2.10

ˆΩ ˆΩ F (u k ) |x -y| µ |y| α dy f (u k ) |x| α φ dx → ˆΩ ˆΩ F (u λ ) |x -y| µ |y| α dy f (u λ ) |x| α φ dx and also ˆΩ h(x)|u k | q-1 u k φ dx → ˆΩ h(x)|u| q-1 λ u λ φ dx
for all φ ∈ W m,2 0 (Ω). Therefore, u λ satisfies (P λ,M ) in weak sense and hence u λ ∈ N λ,M . Moreover, θ ≤ J λ,M (u λ ) ≤ lim inf k→∞ J λ,M (u k ) = θ. Hence u λ is a minimizer for J λ,M in N λ,M . 5.2.5.1. Existence of local minimum of J λ,M in N λ,M Using (5.2.34), we have ´Ω h(x)|u λ | q+1 > 0. Then there exists a t 1 (u λ ) > 0 such that t 1 (u λ )u λ ∈ N + λ,M . We now claim that t 1 (u λ ) = 1 i.e. u λ ∈ N + λ,M . Suppose not then t 2 (u λ ) = 1 and u λ ∈ N - λ,M . Now J λ,M (t 1 (u λ )u λ ) < J λ,M (u λ ) ≤ θ which yields a contradiction, since t 1 (u λ )u λ ∈ N λ,M . The proof for u λ being a local minimum for J λ,M in W m,2 0 (Ω) follows exactly as the proof of Theorem 5.1.27. Theorem 5.2.23. Let 1 < γ < 2 and λ > 0 satisfies (5.2.25). Then J λ,M achieves its minimizer on N - λ,M .

Proof. Let u ∈ N - λ,M . Then 3a u 4 + b u 2 -λqH(u) - ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u).u |x| α dx - ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u 2 |x| α dx < 0.
This along with (5.2.23) gives us

(3 -q)a u 4 + (1 -q) b u 2 + q ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u.u |x| α dx - ˆΩ ˆΩ f (u)u |x -y| µ |y| α dy f (u)u |x| α dx - ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u 2 |x| α dx < 0.
This implies that N - λ,M ⊂ Γ and then following step 1 of Lemma 5.2.13 we get that ∃ c > 0, u ≥ c > 0 for any u ∈ N - λ,M from which it follows that N - λ,M is a closed set. Also this gives inf u∈N - λ,M \{0} B(u) ≥ c > 0. Therefore, for λ < λ 0 small enough, inf

u∈N - λ,M \{0} B(u) + 2b u 2 -(3 -q) λH(u) -3 ˆΩ ˆΩ F (u) |x -y| µ |y| α dy f (u)u |x| α dx > 0.
Now let θ -= min u∈N - λ,M \{0} J λ,M (u) > -∞ then from Ekeland variational principle, we know that there exist {v k } k∈N a minimizing sequence such that

J λ,M (v k ) ≤ inf u∈N - λ,M J λ,M (u) + 1 k and J λ,M (u) ≥ J λ,M (v k ) - 1 k v k -u ∀ u ∈ N - λ,M . From J λ,M (v k ) → θ -as k → ∞ and v k ∈ N λ,M
, it is easy to prove that v k ≤ C (as in Lemma 5.2.8). Indeed,

a v k 4 + b v k 2 -λH(v k ) - ˆΩ ˆΩ F (v k ) |x -y| µ |y| α dy f (v k )v k |x| α dx = o( v k )
and As an consequence of Theorem 5.3.1, we prove the following version of Lions' Lemma [START_REF] Lions | The concentration compactness principle in the calculus of variations part-I[END_REF] in the product space Y.

C + o( v k ) ≥ J λ,M (v k ) - 1 4 J λ,M (v k ), v k ≥ b 4 v k 2n -C(λ) v k q+1 implies that v k ≤ C.
Theorem 5.3.2. Let (u k , v k ) ∈ Y such that (u k , v k ) Y = 1 for all k and (u k , v k ) (u, v) ≡ (0, 0) weakly in Y. Then for all p < ζ n,m 2 n,m (1 -(u, v) n m ) m n-m , sup k∈N ˆΩ exp p |u k | n n-m + |v k | n n-m dx < ∞.
Next, we prove the singular version of Moser-Trudinger inequality in the Cartesian product of Sobolov spaces when m = 1.

Theorem 5.3.3. For (u, v) ∈ Y = W 1,n 0 (Ω) × W 1,n 0 (Ω), n ≥ 2, λ ∈ [0, n) and Ω ⊂ R n is a smooth bounded domain, we have ˆΩ exp(β(|u| n n-1 + |v| n n-1 )) |x| λ dx < ∞ for any β > 0. Moreover, sup (u,v) Y =1 ˆΩ exp(β(|u| n n-1 + |v| n n-1 )) |x| λ dx < ∞ if and only if 2 n β α n + λ n ≤ 1 
where

2 n := 2 n,1 = 2 n-2 n-1 .
Similarly we can prove singular and non-singular Moser-Trudinger inequalities in the product space Z := W 1,n (Ω) × W 1,n (Ω) where Ω ⊂ R n is a bounded domain endowed with the norm

(u, v) Z := u n W 1,n (Ω) + v n W 1,n (Ω) 1 n where u n W 1,n (Ω) := ˆΩ(|u| n + |∇u| n ) dx.
Precisely we establish the following result.

Theorem 5.3.4. For (u, v) ∈ Z, n ≥ 2, λ ∈ [0, n) and Ω ⊂ R n be a smooth bounded domain, we have ˆΩ exp( β(|u| n n-1 + |v| n n-1 )) |x| λ dx < ∞ for any β > 0. Moreover, sup (u,v) Z =1 ˆΩ exp( β(|u| n n-1 + |v| n n-1 )) |x| λ dx < ∞ if and only if 2 β α n + λ n ≤ 1.

Proof of the main results

Lemma 

5.3.1. If a, b > 0 such that a + b = 1 then a α + b α ≤ 2 1-α for all 0 < α < 1. Proof. Let r : (0, 1] × (0, 1] → R such that r(a, b) = a α + b α and a + b = 1 then r(a) := r(a, 1 -a) = a α + (1 -a) α
u n n-m 2 n,m + v n n-m 2 n,m ≤ 1 where 2 n,m = 2 n-2m n-m . Case 1: Let u n n-m 2n,m + v n n-m 2n,m < 1. Then there exists 1 < c := c(u, v) < ∞ such that u n n-m 2 n,m + v n n-m 2 n,m + 1 c = 1.
Using the generalized Hölder's inequality and Θ ≤ ζn,m 2n,m we obtain ˆΩ exp(Θ(|u|

n n-m + |v| n n-m )) ≤ |Ω| 1 c ˆΩ exp(Θ2 n,m |u| u n n-m ) u n n-m 2n,m ˆΩ exp(Θ2 n,m |v| v n n-m ) v n n-m 2n,m ≤ C ˆΩ exp(ζ n,m |u| u n n-m ) u n n-m 2n,m ˆΩ exp(ζ n,m |v| v n n-m ) v n n-m 2n,m (5.3.2)
where C is a positive constant depending on |Ω| but independent of u, v.

Case 2: u

n n-m 2n,m + v n n-m 2n,m = 1.
Applying the Hölder's inequality and Θ ≤ ζn,m 2n,m we obtain ˆΩ exp(Θ(|u|

n n-m + |v| n n-m )) ≤ ˆΩ exp(Θ2 n,m |u| u n n-m ) u n n-m 2n,m ˆΩ exp(Θ2 n,m |v| v n n-m ) v n n-m 2n,m ≤ ˆΩ exp(ζ n,m |u| u n n-m ) u n n-m 2n,m ˆΩ exp(ζ n,m |v| v n n-m ) v n n-m 2n,m . (5.3.3)
Now by combining (5.3.2), (5.3.3) and taking supremum over (u, v) Y = 1, we obtain the desired inequality (5.3.1). For the remaining part of the proof, we assume that 0 ∈ Ω and 5.3.2. Proof of the main results seek use of the Adams function to construct a sequence of test functions. Let us denote B(0, l) def = B l as a ball with center 0 and radius l in R n then without loss of generality, we can assume that B(0, l) ⊂ Ω for ∈ (0, 1). We recall the following result (see [START_REF] Lakkis | Existence of solutions for a class of semilinear polyharmonic equations with critical exponential growth[END_REF]): For l ∈ (0, 1), there exists

U l ∈ {u ∈ W m, n m 0 (Ω) : u| B l = 1} such that U l n m = C m, n m (B l ; B 1 ) ≤   ζ n,m n log 1 l   n-m m where C m, n m (K, E) is the conductor capacity of K in E whenever E is an open set and K is relatively compact subset of E and C m, n m (K; E) def = inf{ u n m : u ∈ C ∞ 0 (E), u| K = 1}. Let us set σ > 0 and l = 1 k , for k ∈ N. Also we define A k (x) =          n log(k) ζ n,m n-m n U 1 k x σ if |x| < σ; 0 if |x| ≥ σ.
Then we have A k (x)

B σ k = n log(k) ζn,m n-m n and A k ≤ 1, Now we consider Z k = c 1 w k and V k = c 2 w k where w k (x) = A k A k and c 1 , c 2 ∈ R + verifies c n m 1 + c n m 2 = 1 and c n n-m 1 + c n n-m 2 = 2 n,m
which implies that supp(w k ) ⊂ B σ (0) and w k = 1 for all k. The existence of c 1 , c 2 can be proved using Lemma 5.3.1. Thus we obtain

Z k , V k Y = Z k n m + V k n m m n = c n m 1 w k n m + c n m 2 w k n m m n = w k (c n m 1 + c n m 2 ) m n = 1. So if Θ > ζn,m 2n,m , then for some > 0, Θ = (1 + ) ζn,m 2n,m which gives that ˆΩ exp(Θ(|U k | n n-m + |V k | n n-m )) ≥ ˆB σ k exp (1 + ) ζ n,m 2 n,m (|w k | n n-m (c n n-m 1 + c n n-m 2 )) = ˆB σ k k n(1+ ) ≥ C 3 k → ∞ as k → ∞.
This completes the proof. 

(u k -u), (v k -v) n m Y = 1 -(u, v) n m Y and |u k | n n-m ≤ |u k -u| n n-m + |u| n n-m + C(|u k -u| m n-m |u| + |u| m n-m |u k -u|)
where C def = C(n, m) > 0. Now for any > 0, from Young's inequality we have that

ab ≤ m n ( a) n m + n -m n b n n-m . This gives us |u k | n n-m ≤ (1 + C 1 n m + C 1 n n-m )|u k -u| n n-m + (1 + C 1 -n m + C 1 -n n-m )|u| n n-m := C 1, |u k -u| n n-m + C 1, |u| n n-m (say).
Similarly we also have

|v k | n n-m ≤ C 1, |v k -v| n n-m + C 1, |v| n n-m .
Therefore by using Hölder inequality and above estimates we obtain,

ˆΩ exp p(|u k | n n-m + |v k | n n-m ) dx ≤ ˆΩ exp pC 1, r 1 |u k -u| n n-m + |v k -v| n n-m dx 1 r 1 . ˆΩ exp pC 1, r 2 |u| n n-m + |v| n n-m dx 1 r 2 ≤ C(n, m, u, v, r 2 ) ˆΩ exp pC 1, r 1 ( (u k -u), (v k -v) Y ) n n-m |u k -u| (u k -u), (v k -v) Y n n-m + |v k -v| (u k -u), (v k -v) Y n n-m dx 1 r 1
where r 1 and r 2 are Hölder conjugate to each other and C(n, m, u, v, r 2 ) is a positive constant independent of k. Now since C 1, → 1 as → 0, by choosing > 0 small enough and r 1 > 1 very close to 1 such that

pr 1 C 1, (1 -(u, v) n m Y ) m n-m < ζ n,m 2 n,m
we get the desired result, by using Theorem 5.3.1.

To prove the following Singular Moser-Trudinger inequality in cartesian product of Sobolev space taking m = 1 and using the idea of Theorem 2.1 in [START_REF] Adimurthi | A singular Moser-Trudinger embedding and its applications[END_REF].

Proof of Theorem 5.3.3:

We denote 

• := • W 1,n 0 (Ω) in this proof. Let (u, v) ∈ Y be such that (u, v) Y = 1,
n n-1 + |v| n n-1 )) |x| λ ≤ ˆΩ exp α n 2 n |u| n n-1 + |v| n n-1 β2n αn . ˆΩ 1 |x| n t λt n ≤ C
where C is a constant independent of u, v.

Case 2: Let β2n αn + λ n = 1. Then from standard symmetrization and density arguments we can reduce to the case Ω being a ball B(0, R) with centre origin and radius R and u, v being positive smooth and radial functions. Therefore ˆB(0,R)

(|∇u| n + |∇v| n )dx = ω n-1 ˆR 0 ((u (r)) n + (v (r)) n )r n-1 dr (5.3.4) and ˆB(0,R) exp sαn 2n (|u| n n-1 + |v| n n-1 ) |x| (1-s)n dx = ˆR 0 exp sα n 2 n (|u| n n-1 + |v| n n-1 ) r sn-1 dr where s = β2n αn so that λ = (1 -s)n. Now we set ũ(r) = s n-1 n u(r 1 s ) and ṽ(r) = s n-1 n v(r 1 s ) for r ∈ [0, R s ]. Therefore ˆR 0 ((u (r)) n + (v (r)) n )r n-1 dr = ˆRs 0 ((ũ (r)) n + (ṽ (r)) n )r n-1 dr, ˆR 0 exp sα n 2 n (|u| n n-1 + |v| n n-1 ) r sn-1 dr = 1 s ˆRs 0 exp α n 2 n (|ũ| n n-1 + |ṽ| n n-1 ) r n-1 dr.
(5.3.5) Now by combining (5.3.4)-(5.3.5) and taking supremum, we obtain

sup (u,v) Y =1 ˆB(0,R) exp sαn 2n (|u| n n-1 + |v| n n-1 ) |x| (1-s)n dx ≤ sup (ũ,ṽ) Y =1 R s(n-1) s ˆRs 0 exp α n 2 n (|ũ| n n-1 + |ṽ| n n-1 ) dr < ∞
which is the desired inequality. For the remaining part of the proof, we assume 0 ∈ Ω and define 

w k (x) = 1 ω 1 n n-1                  (log k) n-1 n , 0 ≤ |x| ≤ ρ k , log ρ |x| (log k) 1 n , ρ k ≤ |x| ≤ ρ, 0, |x| ≥ ρ
k. Let c 1 , c 2 ∈ R + such that c n 1 + c n 2 = 1 and c n n-1 1 + c n n-1 2 = 2 n-2
n-1 (The existence of c 1 , c 2 can be proved by taking the maximum of function mentioned in Lemma 5.3.1). Also we define

U k = c 1 w k and V k = c 2 w k such that U k , V k Y = ( U k n + V k n ) 1 n = (c n 1 w k n + c n 2 w k n ) 1 n = w k (c n 1 + c n 2 ) 1 n = 1. Now let β > 1 -λ n αn 2n , then for some > 0, β = (1 + ) 1 -λ n αn 2n and 
ˆΩ exp β(|U k | n n-1 + |V k | n n-1 ) |x| λ ≥ ˆB ρ k exp (1 + ) 1 -λ n αn 2n |w k | n n-1 (c n n-1 1 + c n n-1 2 ) |x| λ ≥ ˆB ρ k k n(1+ )(1-λ n )+λ ≥ C 3 k (n-λ) → ∞ as k → ∞.
Proof of Theorem 5.3.4: The proof can be done by following the same steps as in Theorems 5.3.1 and 5.3.3.

Kirchhoff systems with Choquard non-linearity

In this section, we study the following system of n-Kirchhoff Choquard equations with exponential non-linearity (KCS)

               -m( (u, v) n )∆ n u = ˆΩ F (y, u, v) |x -y| µ dy f 1 (x, u, v), u > 0 in Ω, -m( (u, v) n )∆ n v = ˆΩ F (y, u, v) |x -y| µ dy f 2 (x, u, v), v > 0 in Ω, u, v = 0 on ∂Ω,
where Ω is a smooth bounded domain in R n , 0 < µ < n. Let m : R + → R + be a continuous function satisfying the following conditions:

(m1) M (t + s) ≥ M (t) + M (s) for all t, s ≥ 0 where M (t) is the primitive of the function m. (m2) There exist constants c 0 , c 1 , c 2 > 0 and t > 0 such that for some r, z ∈ R + m(t) ≥ c 0 or m(t) ≥ t z , for all t ≥ 0 and m(t) ≤ c 1 + c 2 t r , for all t ≥ t.

(m3) The map t → m(t) t is non-increasing for t > 0.

Kirchhoff systems with Choquard non-linearity

We remark that the assumption (m2) covers both degenerate as well as non-degenerate case of the Kirchhoff term. Let the function F : Ω × R 2 → R be continuously differentiable with respect to second and third variable and of the form F (x, t, s) = h(x, t, s) exp(|t|

n n-1 + |s| n n-1 ) such that f 1 (x, t, s) := ∂F ∂t (x, t, s) = h 1 (x, t, s) exp(|t| n n-1 + |s| n n-1 ), f 2 (x, t, s) := ∂F ∂s (x, t, s) = h 2 (x, t, s) exp(|t| n n-1 + |s| n n-1 ).
We assume h i 's for i = 1, 2 are continuous functions satisfying the following conditions-(f1) h i (x, t, s) = 0 when either t ≤ 0 or s ≤ 0 and h i (x, t, s) > 0 when t, s > 0, for all x ∈ Ω and i = 1, 2. (f2) For any > 0 and i

= 1, 2 lim t,s→∞ sup x∈Ω h i (x, t, s) exp(-(|t| n n-1 + |s| n n-1 )) = 0, lim t,s→∞ inf x∈Ω h i (x, t, s) exp( (|t| n n-1 + |s| n n-1 )) = ∞. (f3) There exists l >          max n -1, n(r + 1) 2 when m is non-degenerate, max n -1, n(z + 1) 2 , n(r + 1) 2 when m is degenerate. such that the maps t → f 1 (x,t,s) |t| l , s → f 2 (x,t,s) |s| l
are increasing functions of t (uniformly in s and x) and s (uniformly in t and x) respectively. (f4) There exist q, s 0 , t 0 , M 0 > 0 such that s q F (x, t, s) ≤ M 0 f 2 (x, t, s) for all s ≥ s 0 and t q F (x, t, s) ≤ M 0 f 1 (x, t, s) for all t ≥ t 0 uniformly in x ∈ Ω. (f5) There exists a γ satisfying n-2

2 < γ such that lim (t,s)→(0,0)

f i (x,t,s) s γ +t γ = 0 holds for i = 1, 2. Let P := W 1,n 0 (Ω) × W 1,n 0 (Ω) endowed with the graph norm (u, v) := u n W 1,n 0 (Ω) + v n W 1,n 0 (Ω) 1 n
where u n W 1,n 0 (Ω) := ´Ω |∇u| n dx. The study of the elliptic system (KCS) is motivated by Theorems 5.3.1 and 5.3.2. Following is the notion of weak solution for (KCS).

Mountain Pass geometry and Analysis of Palais

-Smale sequence 1 ≤ k < l + 1 we have ˆΩ ˆΩ F (y, u, v) |x -y| µ dy F (x, u, v)dx ≤ C(n, µ) F (x, u, v) 2 L 2n 2n-µ (Ω) ≤ C 1 ˆΩ |u| k + |v| k 2n 2n-µ + C 2 ˆΩ(|u| p + |v| p ) 2n 2n-µ exp (1 + )2n 2n -µ (|u| n n-1 + |v| n n-1 ) 2n-µ n ≤ C 1 ( (u, v) ) 2nk 2n-µ + C 2 ( (u, v) ) 2np 2n-µ ˆΩ exp (1 + )4n (u, v) n n-1 2n -µ |u| n n-1 + |v| n n-1 (u, v) n n-1 1 2 2n-µ n .
If we choose > 0 and ρ such that 4n(1+ )ρ n n-1 2n-µ ≤ αn 2n , then by using Theorem 5.3.1 in above we obtain,

ˆΩ ˆΩ F (y, u, v) |x -y| µ dy F (x, u, v)dx ≤ C 3 (u, v) 2k + C 4 (u, v) 2p . (5.4.3)
Niw by using (5.4.3) and (m2) (for non-degenerate Kirchhoff term), we get

J(u, v) ≥ c 0 (u, v) n n -C 3 (u, v) 2k -C 4 (u, v) 2p .
So choosing k > n/2, p > n/2 and ρ small enough such that J(u, v) ≥ σ when (u, v) = ρ for some σ > 0 depending on ρ. Similarly for degenerate Kirchhoff term we get,

J(u, v) ≥ (u, v) n(z+1) n -C 3 (u, v) 2k -C 4 (u, v) 2p
and we can choose 2k > n(z + 1), 2p > n(z + 1) and ρ small enough such that (u, v) = ρ and J(u, v) ≥ σ for some σ depending upon ρ. Furthermore, again by using (m2), there exist constant c i , i = 1, 2, 3 such that

M ( (u, v) n ) ≤      c 1 (r + 1) (u, v) n(r+1) + c 2 (u, v) n + c 3 , r = 1, c 1 ln( (u, v) n ) + c 2 (u, v) n + c 3 r = 1, (5.4.4) 
for (u, v) ≥ t where

c 3 =      M ( t) -c 2 t - c 1 (r + 1) tr+1 , r = 1, M ( t) -c 2 t -c 1 ln( t) r = 1.
Let (u 0 , v 0 ) ∈ P such that u 0 ≥ 0, v 0 ≥ 0 and (u 0 , v 0 ) = 1. Then by using (f 3), there exists 

p i ≥ 0, i = 1, 2, 3 and K > n(r+1) 2 such that F (x, t, s) ≥ p 1 |t| K + p 2 |s| K -p 3 and ˆΩ ˆΩ F (y, ξu 0 , ξv 0 ) |x -y| µ dy F (x, ξu 0 , ξv 0 )dx ≥ C 5 ξ 2K -C 6 ξ K + C 7 . ( 5 
K of Ω \ (X σ 1 ∪ X σ 2 ) lim k→∞ ˆK ˆΩ F (y, u k , v k ) |x -y| µ dy f 1 (x, u k , v k )u k → lim k→∞ ˆK ˆΩ F (y, u, v) |x -y| µ dy f 1 (x, u, v)u (5.4.10) and lim k→∞ ˆK ˆΩ F (y, u k , v k ) |x -y| µ dy f 2 (x, u k , v k )v k → lim k→∞ ˆK ˆΩ F (y, u, v) |x -y| µ dy f 2 (x, u, v)v. (5.4.11) Let x 0 ∈ K and r i > 0 be such that µ i (B r i (x 0 ) ∩ Ω) < σ i and consider ψ i ∈ C ∞ (Ω) satisfying 0 ≤ ψ i ≤ 1 for x ∈ Ω, ψ i = 1 in B r i 2 (x 0 ) ∩ Ω and ψ i = 0 in Ω \ B r i (x 0 ) for i = 1, 2. Then lim k→∞ ˆB r 1 2 (x 0 )∩Ω |u k | n +|∇u k | n dx ≤ lim k→∞ ˆBr 1 (x 0 )∩Ω (|u k | n +|∇u k | n )ψ 1 dx = µ 1 (B r 1 (x 0 )∩Ω) < σ 1 and lim k→∞ ˆB r 2 2 (x 0 )∩Ω |v k | n +|∇v k | n dx ≤ lim k→∞ ˆBr 2 (x 0 )∩Ω (|v k | n +|∇v k | n )ψ 2 dx = µ 2 (B r 2 (x 0 )∩Ω) < σ 2 .
Then by choosing k ∈ N large enough and r 0 := min{r 1 , r 2 } we get

(u k , v k ) n Z(B r 0 2 (x 0 )∩Ω) := ˆB r 0 2 (x 0 )∩Ω (|u k | n + |∇u k | n + |v k | n + |∇v k | n ) < (σ 1 + σ 2 ).
(5.4.12)

Now by using (5.4.12), Theorem 5.3.4 with λ = 0 and choosing > 0 small enough and q > 1 such that 2nq 2n-µ (1 + )(σ 1 + σ 2 )

1 n-1 ≤ αn 2 we get the following estimates for i = 1, 2 

ˆB r 0 2 (x 0 )∩Ω |f i (x, u k , v k )| 2nq 2n-µ dx = ˆB r 0 2 (x 0 )∩Ω |h i (x, u k , v k )| 2nq 2n-µ exp 2nq 2n -µ (|u k | n n-1 + |v k | n n-1 ) dx ≤ C ˆB r 0 2 (x 0 )∩Ω exp 2nq(1 + ) 2n -µ (|u k | n n-1 + |v k | n n-1 ) dx ≤ C ˆB r 0 2 (x 0 )∩Ω exp     2nq 2n -µ (1 + )(σ 1 + σ 2 ) 1 n-1     |u k | n n-1 + |v k | n n-1 (u k , v k ) n n-1 Z(B r 0 2 (x 0 )∩Ω)         dx ≤ C (5.
(x 0 )∩Ω ˆΩ F (y, u k , v k ) |x -y| µ dy f 1 (x, u k , v k )u k - ˆΩ F (y, u, v) |x -y| µ dy f 1 (x, u, v)u dx ≤ ˆB r 0 2 (x 0 )∩Ω ˆΩ F (y, u, v) |x -y| µ dy (f 1 (x, u k , v k )u k -f 1 (x, u, v)u) dx + ˆB r 0 2 (x 0 )∩Ω ˆΩ F (y, u k , v k ) -F (y, u, v) |x -y| µ dy f 1 (x, u k , v k )u k dx := I 1 + I 2 (say).
From (5.4.2), (5.4.13), Hölder's inequality and asymptotic growth of f i we obtain that families

{f 1 (x, u k , v k )u k } and {f 2 (x, u k , v k )v k } are equi-integrable over B r 0 2 (x 0 )∩Ω and µ ∈ (0, n) gives ˆΩ F (y, u, v) |x -y| µ dy ∈ L ∞ (Ω).
(5.4.14)

Then (5.4.14) and Vitali's convergence theorem combined with pointwise convergence of

f 1 (x, u k , v k )u k → f 1 (x, u, v)u implies I 1 → 0. Now we show that I 2 → 0 as k → ∞.
Then by using semigroup property of the Riesz potential (see [START_REF] Moroz | Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics[END_REF]) and (5.4.13) we get that for some constant C > 0 independent of k 

ˆΩ ˆΩ F (y, u k , v k ) -F (y, u, v) |x -y| µ dy χ B r 0 2 ∩Ω (x)f 1 (x, u k , v k )u k dx ≤ ˆΩ ˆΩ |F (y, u k , v k ) -F (y, u, v)|dy |x -y| µ |F (x, u k , v k ) -F (x, u, v)|dx 1 2 × ˆΩ ˆΩ χ B r 0 2 ∩Ω (y) f 1 (y, u k , v k )u k |x -y| µ dy χ B r 0 2 ∩Ω (x)f 1 (x, u k , v k )u k dx 1 2 ≤ C ˆΩ ˆΩ |F (y, u k , v k ) -F (y, u, v)|dy |x -y| µ |F (x, u k , v k ) -F (x, u, v)|dx 1 2 . Now we claim that lim k→∞ ˆΩ ˆΩ |F (y, u k , v k ) -F (y, u, v)| |x -y| µ dy |F (x, u k , v k ) -F (x, u, v)|dx = 0. ( 5 
, C 2 > 0 (independent of k) such that ˆΩ ˆΩ F (y, u k , v k ) |x -y| µ dy F (x, u k , v k )dx ≤ C 1 , ˆΩ ˆΩ F (y, u k , v k ) |x -y| µ dy (f 1 (x, u k , v k )u k + f 2 (x, u k , v k )v k )dx ≤ C 2 .
( 

, v k ) -F (y, u, v)| |x -y| µ dy |F (x, u k , v k ) -F (x, u, v)|dx ≤ ˆΩ ˆΩ |F (y, u k , v k )χ A (y) -F (y, u, v)χ B (y) |x -y| µ dy |F (x, u k , v k )χ A (x) -F (x, u, v)χ B (x)|dx + 2 ˆΩ ˆΩ (F (y, u k , v k )χ A (y) + F (y, u, v)χ B (y) + F (y, u, v)χ D (y)) |x -y| µ dy F (x, u k , v k )χ C (x)dx + 2 ˆΩ ˆΩ (F (y, u k , v k )χ A (y) + F (y, u, v)χ B (y)) |x -y| µ dy F (x, u, v)χ D (x)dx + ˆΩ ˆΩ F (y, u k , v k )χ C (y) |x -y| µ dy F (x, u k , v k )χ C (x)dx + ˆΩ ˆΩ F (y, u, v)χ D (y) |x -y| µ dy F (x, u, v)χ D (x)dx := I 3 + I 4 + I 5 + I 6 + I 7 .
where for a fixed M > 0 ), we repeat this procedure over a finite covering of balls using the fact that K is compact. Now the remaining proof can be done by using the same arguments as in Lemma 5.1.12.

A = {x ∈ Ω : |u k | ≤ M and |v k | ≤ M }, B = {x ∈ Ω : |u| ≤ M and |v| ≤ M }, C = {x ∈ Ω : |u k | ≥ M or |v k | ≥ M } and D = {x ∈ Ω : |u| ≥ M or |v| ≥ M }.
Lemma 5.4.4. Let {(u k , v k )} be a Palais-Smale sequence for the energy functional J. Then there exists (u, v) ∈ P such that upto a subsequence

ˆΩ ˆΩ F (x, u k , v k ) |x -y| µ dy f i (x, u k , v k )φdx → ˆΩ ˆΩ F (x, u, v) |x -y| µ dy f i (x, u, v)φdx for all φ ∈ C ∞ c (Ω) and i = 1, 2 and ˆΩ F (x, u k , v k ) |x -y| µ dy F (x, u k , v k ) → ˆΩ F (x, u, v) |x -y| µ dy F (x, u, v)dx in L 1 (Ω).
The proof of the above Lemma follows from similar arguments as in Lemma 5.1.13 and Lemma 5.1.14.

Now we define the associated Nehari Manifold as

N = {(u, v) ∈ (W 1,n 0 (Ω) \ {0}) 2 : J (u, v), (u, v) = 0}
and we show that the mountain pass critical lies below every local minimum value of the energy functional at the point of local minimum and to prove the existence of non-trivial solution, we prove the essential upper bound on the critical level depending upon α n , n, µ.

Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights J(u, v) < 0. So, it is enough to prove that there exists a (w 1 , w 2 ) ∈ P such that (w 1 , w 2 ) = 1 and .4.18) To prove this, we consider the sequence of functions {(U k , V k )} as defined in the proof of Theorem 5.3.3 such that supp(U k ), supp(V k ) ⊂ B ρ (0) and (U k , V k ) = 1 for all k. So we claim that there exists a k ∈ N such that (5.4.18) is satisfied for w 1 = U k and w 2 = V k . We proceed by contradiction, suppose this is not true then for all k ∈ N there exists a t k > 0 such that (5.4.18) does not holds i.e. 

max t∈[0,∞) J(tw 1 , tw 2 ) < 1 n M 2n -µ 2n α n 2 n n-1 . ( 5 
max t∈[0,∞) J(tU k , tV k ) = J(t k U k , t k V k ) ≥ 1 n M 2n -µ 2n α n 2 n n-1 . Since J((tU k , tV k ) → -∞
m(t n k )t n k = ˆΩ ˆΩ F (y, t k U k , t k V k ) |x -y| µ dy (f 1 (x, t k U k , t k V k )t k U k + f 2 (x, t k U k , t k V k )t k V k )dx ≥ ˆBρ/k ˆBρ/k F (y, t k U k , t k V k ) |x -y| µ dy (f 1 (x, t k U k , t k V k )t k U k + f 2 (x, t k U k , t k V k )t k V k )dx. ≥ exp   q(c n n-1 1 + c n n-1 2 )    t n n-1 k (log k) ω 1 n-1 n-1       ˆBρ/k ˆBρ/k dxdy |x -y| µ ≥ Cµ,n k   q c n n-1 1 +c n n-1 2 t n n-1 k ω 1 n-1 n-1 -(2n-µ)   .
Hence by using the fact that (c 

n n-1 1 + c n n-1 2 ) = 2 n , t n k is bounded, q > 2
, v 0 ∈ W 1,n 0 (Ω) such that up to a subsequence u k u 0 , v k v 0 weakly in W 1,n 0 (Ω) as k → ∞.
We prove our main result in several steps.

Step 1: Positivity of u 0 , v 0 . If u 0 = v 0 ≡ 0 (or either one of them) then using Lemma 5.4.4, we infer that

ˆΩ ˆΩ F (y, u k , v k ) |x -y| µ dy F (x, u k , v k )dx → 0 as k → ∞
Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights which implies that J (u 0 , v 0 ), (u 0 , v 0 ) < 0. For t > 0 small enough, using (f 3) and (f 5) we have that

J (tu 0 , tv 0 ), (u 0 , v 0 ) ≥ m 0 t n-1 u 0 , v 0 n - 1 2n ˆΩ ˆΩ f 1 (y, tu 0 , tv 0 )tu 0 + f 2 (x, tu 0 , v 0 )tv 0 |x -y| µ dy (f 1 (x, tu 0 , tv 0 )u 0 + f 2 (x, u 0 , v 0 )v 0 ) dx ≥ m 0 t n-1 u 0 , v 0 n - t 2γ+1 2n ˆΩ ˆΩ ((u γ 0 + v γ 0 )u 0 + (u γ 0 + v γ 0 )v 0 ) |x -y| µ dy ((u γ 0 + v γ 0 )u 0 + (u γ 0 + v γ 0 )v 0 ) dx ≥ 0.
Thus there exists a t * ∈ (0, 1) such that J (t * u 0 , t * v 0 ), (u 0 , v 0 ) = 0 i.e. (t * u 0 , t * v 0 ) ∈ N . So using Lemma 5.4.5, (m3) and (f 3) we get

l * ≤ l * * ≤ J((t * u 0 , t * v 0 )) = J(t * u 0 , t * v 0 ) - 1 2n J (t * u 0 , t * v 0 ), (u 0 , v 0 ) = M ( t * u 0 , t * v 0 n ) n - 1 2 ˆΩ ˆΩ F (y, t * u 0 , t * v 0 ) |x -y| µ dy F (x, t * u 0 , t * v 0 )dx - 1 2n m( t * u 0 , t * v 0 n ) (t * u 0 , t * v 0 ) n + 1 2n ˆΩ ˆΩ F (y, t * u 0 , t * v 0 ) |x -y| µ dy (f 1 (x, t * u 0 , t * v 0 )t * u 0 + f 2 (x, t * u 0 , t * v 0 )dx < M ( u 0 , v 0 n ) n - 1 2n m( (u 0 , v 0 ) n ) (u 0 , v 0 ) n + 1 2n ˆΩ ˆΩ F (y, t * u 0 , t * v 0 ) |x -y| µ dy (f 1 (x, t * u 0 , t 0 v 0 )t * u 0 + f 2 (x, t * u 0 , t * v 0 ) -nF (x, t * u 0 , t * v 0 ))dx ≤ M ( u 0 , v 0 n ) n - 1 2n m( u 0 , v 0 n ) u 0 , v 0 n + 1 2n ˆΩ ˆΩ F (y, u 0 , v 0 ) |x -y| µ dy (f 1 (x, u 0 , v 0 )u 0 + f 2 (x, u 0 , v 0 ) -nF (x, u 0 , v 0 ))dx ≤ lim inf k→∞ M ( u k , v k n ) n - 1 2n m( (u k , v k ) n ) (u k , v k ) n + 1 2n ˆΩ ˆΩ F (y, u k , v k ) |x -y| µ dy (f 1 (x, u k , v k )u k + f 2 (x, u k , v k ) -nF (x, u k , v k ))dx = lim inf k→∞ J(u k , v k ) - 1 2n J (u k , v k ), (u k , v k ) = l * .
This gives a contradiction and completes the proof of Step 2. Similar arguments follows for the degenerate case also using (m3).

Step 3: J(u 0 , v 0 ) = l * . Using the weakly lower semicontinuity of norms in lim k→∞ J(u k , v k ) = l * and Lemma 5.4.4 we obtain

J(u 0 , v 0 ) ≤ l * . If J(u 0 , v 0 ) < l * then it must be lim k→∞ M ( u k , v k n ) > M ( u 0 , v 0 n ).
Then continuity and monotonicity of M implies Υ n > u 0 , v 0 n and

M (Υ n ) = n l * + 1 2 ˆΩ ˆΩ F (y, u 0 , v 0 )
|x -y| µ dy F (x, u 0 , v 0 )dx .

(5.4.21)

Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

Extensions and related problems

The results of this chapter can be extended in various directions. Let us mention here some obvious generalizations:

1: The class of system (KCS) can be extended to the following fractional Kirchhoff-Choquard system involving singular weights:

(F )                -m (u, v) n s L ∆ s n/s u = ˆΩ F (y, u, v) |y| α |x -y| µ dy f 1 (x, u, v) |x| α in Ω, -m (u, v) n s L ∆ s n/s v = ˆΩ F (y, u, v) |y| α |x -y| µ dy f 2 (x, u, v) |x| α in Ω, u, v = 0 in R n \ Ω, where (-∆) s n/s is the n/s fractional Laplace operator, s ∈ (0, 1), n ≥ 1, µ ∈ (0, n), 0 < α < min{ n 2 , n -µ}, Ω ⊂ R n is a smooth bounded domain, m : R + → R + and F : Ω × R 2 → R is a continous functions where F behaves like exp(|u| n n-s + |v| n n-s ) as |u|, |v| → ∞.
We conjecture that the following Moser-Trudinger inequality holds in case fractional Sobolev space (counterpart of Theorem 5.3.1): Define L := X 0 × X 0 endowed with the norm

(u, v) L := u n/s X 0 + u n/s X 0 s n where X 0 := {u ∈ W s,n/s (R n ) : u = 0 in R n \ Ω} endowed with the norm u X 0 = ˆR2n \(Ω c ×Ω c ) |u(x) -u(y)| n s |x -y| 2n dxdy s/n Theorem 5.5.1. For (u, v) ∈ L, n/s > 2 and Ω ⊂ R n is a smooth bounded domain, we have ˆΩ exp Π |u| n n-s + |v| n n-s dx < ∞ for any Π > 0. Moreover, sup (u,v) L =1 ˆΩ exp Π |u| n n-s + |v| n n-s dx < ∞, provided Π ≤ α n,s 2 n,s (5.5.1)
where

α n,s = n ω n-1 Γ( n-s 2 ) Γ( s 2 )2 s π n/2 -n n-s , 2 n,s = 2 n-2s n-s . Furthermore if Π > α * n,s
2n,s , then there exists a pair (u, v) ∈ L with (u, v) L = 1 such that the supremum in (5.5.1) is infinite. Using Theorem 5.5.1, doubly weighted Hardy-Littlewood-Sobolev inequality, we can prove the existence and multiplicity of solutions for the problem (F ). 

Non-local singular problems with exponential non-linearities

In this section, we answer the questions of existence, local multiplicity and regularity of classical solution to the following problem:

(P λ )    (-∆) 1 2 u = λ 1 u δ + f (u) , u > 0 in (-1, 1), u = 0 in R \ (-1, 1)
where f (u) = h(u)e u α , 1 ≤ α ≤ 2, δ > 0, λ ≥ 0 and h(t) is assumed to be a smooth perturbation of e t α as t → ∞. We remark that in contrast to higher dimensions, there is no restriction on δ is required in dimension one.

Function spaces and main results

The fractional Laplacian (-∆) s is defined as

(-∆) s u(x) = 2 P.V. C s ˆRN u(x) -u(y) |x -y| N +2s dy,
where P.V. denotes the Cauchy principal value, s ∈ (0, 1), N ≥ 2s and

C s = π -N 2 2 2s-1 s Γ( N +2s 2 )
Γ(1-s) , Γ being the Gamma function. When N = 1, s = 1 2 , C s = 1 2π . Before stating the results and outline of the main proofs, let us recall some definitions of function spaces from the work of [START_REF] Bisci | Variational methods for nonlocal fractional problems 162[END_REF] and define the notion of (very) weak solutions. Define

X := u : R → R | measurable, u| (-1,1) ∈ L 2 ((-1, 1)) and (u(x) -u(y)) |x -y| ∈ L 2 (Q) where Q = R 2 \ (-1, 1) c × (-1, 1) c and (-1, 1) c = R \ (-1, 1) endowed with the norm u X = u L 2 ((-1,1)) + C s ˆQ |u(x) -u(y)| 2 |x -y| 2 dxdy 1 2
.

Define the Hilbert space X 0 as

X 0 := {u ∈ X : u = 0 in R \ (-1, 1)} equipped with the inner product u, v = C s ˆQ (u(x) -u(y))(v(x) -v(y)) |x -y| 2 dxdy
As in [START_REF] Barrios | Semilinear problems for the fractional laplacian with a singular nonlinearity[END_REF] we have the following definition of weak solutions to problem (P λ ). 

) ∈ S such that λ n → Λ a and u n L ∞ ((-1,1)) → ∞ as n → ∞.
To study the existence, multiplicity of solutions to (P λ ), we seek assistance of global bifurcation theory due to P. H. Rabinowitz [START_REF] Rabinowitz | Some global results for nonlinear eigenvalue problems[END_REF] and proved the following result. Theorem 6.1.9. Let h satisfy the hypothesis (H1) and (H2) and δ > 0. Then the following holds:

(i) There exists Λ ∈ (0, +∞) and γ > 0 such that S ⊂ [0

, Λ]× X 0 ∩ C + φ δ ((-1, 1)) ∩ C γ (R)
, where γ is defined in Theorem 6.1.7 and φ δ is defined in (6.1.4).

(ii) There exists a connected unbounded branch C of solutions to

(P λ ) in R + × C 0 ([-1, 1]),
emanating from (0, 0) such that for any λ ∈ (0, Λ), there exists (λ, u λ ) ∈ C with u λ being minimal solution to (P λ ). Furthermore, as λ → Λ -, u λ → u Λ in X 0 , where u Λ is a classical solution to (P Λ ).

(iii) The curve (0, Λ) λ → u λ ∈ C 0 ([-1, 1]) is of class C 2 .
(iv) (Bending and local multiplicity near λ) λ = Λ is a bifurcation point, that is, there exists a unique C 2 -curve (λ(s), u(s)) ∈ C, where the parameter s varies in an open interval about the origin in R, such that

λ(0) = Λ, u(0) = u Λ , λ (0) = 0, λ (0) < 0. (v) (Asymptotic bifurcation point) C admits an asymptotic bifurcation point Λ a satisfying 0 ≤ Λ a ≤ Λ.
Now we study the qualitative properties of solutions for the problem (P λ ). In light of the maximum principle (see [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]) and the moving plane method, we derive the radial symmetry and monotonicity properties of the weak solutions with respect to |x|. More precisely, we prove the following result: Theorem 6.1.10. For 1 ≤ α ≤ 2, δ > 0, let h satisfies (H1) -(H2), f is Lipschitz function. Then every positive solution (λ, u) ∈ S of (P λ ) is symmetric and strictly decreasing in |x| i.e. u(x) > u(y) for all |x| < |y| and x, y ∈ (-1, 1). Theorem 6.1.13. For 1 < α ≤ 2, δ > 0, assume Λ a > 0 be an asymptotic bifurcation point as in the Definition 6.1.8. Then, for any sequence (λ k , u k ) ∈ S ∩ ((0, Λ) × C 0 ([-1, 1])) such that λ k → Λ a and u k L ∞ ((-1,1)) → ∞, the following assertions holds:

(i) 0 ∈ Ω is the only blow up point for a sequence u k . (ii) u k → u in C s loc ((-1, 1) \ {0})
where u is a weak (singular) solution to (P λ ). Moreover,

u(0) = ∞, u ∈ L p ((-1, 1)) for any 1 ≤ p < ∞, u ∈ X 0 and 1 u δ + f (u) ∈ L 1 ((-1, 1)).
We have the following remark about the above theorem. 

J(u

k ) = 1 2 u k 2 X 0 - ˆ1 -1 G(u k ) dx < C
where C is independent of k, then assertion (ii) cannot hold.

Due to the absence of the knowledge of the positioning of the bifurcation point, we may not have multiplicity of solution near λ = 0. So to prove the global multiplicity results, we approach to variational methods. Precisely, we proved the global multiplicity result to the problem (P λ ) for all δ > 0, under the following assumptions on the function f . (K1) h ∈ C 1 (R + ), h(0) = 0, h(t) > 0 for t > 0 and f (t) = h(t)e t 2 is nondecreasing in t. (K2) For any > 0, lim t→∞ (h(t) + h (t))e -t 2 = 0 and lim t→∞ h(t)te t q = ∞ for some 0 ≤ q < 1.

(K3) There exists M 1 , M 2 , K > 0 such that F (t) = ´t 0 h(s)e s 2 ds < M 1 (f (t) + 1) and f (t) ≥ Kf (t) -M 2 for all t > 0.

Example 1: An example of the function h satisfying the above conditions is h(x) =

x k e x γ , k > 0, 0 ≤ γ < 2. We prove the following multiplicity theorem.

Theorem 6.1.15. (a) If f satisfies the assumption (K1)-(K5)

. There exists a Λ > 0 such that (i) For every λ ∈ (0, Λ) the problem (P λ ) admits two solutions in X 0 ∩ C + φ δ ((-1, 1)). (ii) For λ = Λ there exists a solution in X 0 ∩ C + φ δ ((-1, 1)). (iii) For λ > Λ, there exists no solution.

(b) Let u ∈ X 0 be any positive solution to (P λ ) where λ ∈ (0, Λ], δ > 0. Then u ∈ C γ (R) where γ is defined (6.1.5).

To prove the Theorem 6.1.15, we followed the approach of [START_REF] Giacomoni | A Global multiplicity result for a very singular critical nonlocal equation[END_REF]. To obtain the first solution, we use the standard Perron's method on the functional J λ (See (6.1.30)). To get a second solution, we use the assumption (K2) to guarantee that the energy level of the Palais Smale sequence is below the first critical level. For that we seek help of Moser functions (See [START_REF] Takahashi | Critical and subcritical fractional Trudinger Moser-type inequalities on R[END_REF]) and then by using mountain-pass Lemma we prove the existence of a second solution. Notice that the Theorem 6.1.15 shows the existence of solution in the energy space X 0 . We remark that the Hölder regularity proved in theorem 6.1.15 is the optimal due to the behavior of the solution near the points -1 and 1.

Global bifurcation result

In this section we first study the boundary behavior of the weak solution of (6.1.2). We further studied the pure singular problem (P δ ) and prove the Theorem 6.1.7 which deals with the existence and regularity of solutions of (P δ ). In a same flow, we establish a global branch of classical solutions to (P λ ). Proposition 6.1.16. [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF] The Green function G(x, y) associated to (-∆) 1 2 is the following:

G(x, y) log 1 + d(x) 1 2 d(y) 1 2
|x -y| for all (x, y) ∈ (-1, 1) × (-1, 1).

Proof of Theorem 6.1.6: Using the fact that

1 d(y) α log β (A/d(y)) ∈ L 1 (dx, d 1 
2 ), we have the following integral representation formula for the solution u to (6.1.2)

u(x) = ˆ1 -1 G B (x, y) d(y) α log β (A/d(y))
dy.

Therefore, from Proposition 6.1.16, up to multiplicative constants, Observe that the integral in (6.1.6) is symmetric around 0. Thus it is enough to consider the case y ∈ [0, 1], from above transformations, we have y = 1 -r. To prove (6.1.3) we divide the proof in several steps.

u(x) d(x) 1 2 ≤ ˆ1 -1 log 1 + d(x)d(y) |x -y| dy d(x) 1 2 d(y) α log β (A/d(y)) . ( 6 
Step 1: When α < 1 2 and β = 0. We rewrite

u(x) d(x) 1 2 ≤ ˆ1 0 log 1 + √ εr |r -ε| dr ε 1 2 r α = ˆ1 ε 0 ε 1 2 -α t α log 1 + √ t |t -1| dt = ˆ1 2 0 + ˆ3 2 1 2 + ˆ1 ε 3 2 ε 1 2 -α t α log 1 + √ t |t -1|
dt.

(6.1.7) For the first integral we have

ˆ1 2 0 ε 1 2 -α t α log 1 + √ t |t -1| dt ≤ C ˆ1 2 0 1 t α log 1 + √ t |t -1| dt ≤ C,
for some positive constant c 2 . For the second integral we have

ˆ3 2 1 2 ε 1 2 -α t α log 1 + √ t |t -1| dt ≤ C ˆ3 2 1 2 log 1 + √ t |t -1| dt < 2C.
For the third integral we have

ˆ1 ε 3 2 ε 1 2 -α t α log 1 + √ t |t -1| dt ≤ C ˆ1 ε 3 2 ε 1 2 -α t α+ 1 2 dt ≤ C.
It implies that there exists a positive constant c 2 (large enough) such that u(x) ≤ c 2 d(x) 1 2 . This affirms an upper bound of the solutions. For lower bound of the solutions, notice that the integrals in (6.1.7) works as a lower bound of u(x) d(x) (up to constants). Now we divide the proof in two cases:

Case 1: If ε ≥ 1 3 then u(x) d(x) 1 2 ≥ ˆ1 3 0 ε 1 2 -α t α log 1 + √ t |t -1| dt ≥ 1 3 1 2 -α C ˆ1 3 0 t 1 2 -α dt = C 3 2 -α 1 3 2-2α > 2C 27 . Case 2: If ε < 1 3 then u(x) d(x) 1 2 ≥ ˆ1 ε 3 2 ε 1 2 -α t α log 1 + √ t |t -1| dt ≥ C ˆ1 ε 1 2ε ε 1 2 √ t dt = 2(1 -1/ √ 2).
It implies that there exists a positive constants c 1 (small enough) such that c 1 d(x)

1 2 ≤ u(x).
Step 2: When α > 1 2 and β = 0. We rewrite

u(x) d(x) 1-α ≤ ˆ1 ε 0 1 t α log 1 + √ t |t -1| dt = ˆ1 2 0 + ˆ3 2 1 2 + ˆ1 ε 3 2 1 t α log 1 + √ t |t -1| dt. (6.1.8) For the first integral, ˆ1 2 0 1 t α log 1 + √ t |t -1| dt ≤ ˆ1 2 0 t 1 2 -α dt < C.
By using the same estimation as in step 1, ˆ3

1 2 1 t α log 1 + √ t |t -1| dt ≤ C. For the third integral ˆ1 ε 3 2 1 t α log 1 + √ t |t -1| dt ≤ ˆ∞ 3 2 1 t α log 1 + √ t |t -1| dt ≤ C ˆ∞ 3 2 1 t 1 2 +α dt < C. 2 
Observe that from the estimation of first and third integral is valid only when 1 2 < α < 3 2 . For the lower bound, notice that integrals in (6.1.8) serve as lower bound as well. Hence Thus we can choose appropriate positive constant c 3 and c 4 such that

u(x) d(x) 1-α ≥ ˆ1 2 0 1 t α log 1 + √ t |t -1| dt ≥ ˆ1 2 0 t 1 2 -α dt > C.
c 3 d(x) 1-α ≤ u(x) ≤ c 4 d(x) 1-α .
Step 3: When α = 1 2 and 0 ≤ β < 1. Clearly we can take A = 2. Then

u(x) d(x) 1 2 log 1-β 2 d(x) ≤ ˆ1 2 0 + ˆ3 2 1 2 + ˆ1 ε 3 2 log 1 + √ t |t-1| t 1 2 log 1-β 2 ε log β 2 εt dt.
The first integral

ˆ1 2 0 log 1 + √ t |t-1| t 1 2 log 1-β 2 ε log β 2 εt dt ≤ C log 2 ˆ1 2 0 dt log 1 ε + log 2 t β ≤ C ˆ1 2 0 dt log 2 t β ≤ C ˆ1 2 0 dt log 4 β ≤ C log 4 .
For the second integral

ˆ3 2 1 2 log 1 + √ t |t-1| t 1 2 log 1-β 2 ε log β 2 εt dtC ˆ3 2 1 2 log 1 + √ t |t-1| log β 2 t dt ≤ C ˆ3 2 1 2 log 1 + √ t |t -1| dt < 2C.
For the third integral,

ˆ1 ε 3 2 log 1 + √ t |t-1| t 1 2 log 1-β 2 ε log β 2 εt dt ≤ C log 1-β 2 ε ˆ1 ε 3 2 dt t -log εt 2 β ≤ C log 1-β 2 ε log 4 3ε 1-β < C.
For the lower bound, we again divide it in two cases:

Case 1: If ε > 1 3 then u(x) d(x) 1 2 log 1-β 2 d(x) ≥ ˆ3 2 1 2 log 1 + √ t |t-1| t 1 2 log 1-β 2 ε log β 2 εt dt ≥ C ˆ3 2 1 2 log 1 + √ t |t -1| dt > C. Case 2: If ε < 1 3 then u(x) d(x) 1 2 log 1-β 2 d(x) ≥ ˆ1 ε 3 2 log 1 + √ t |t-1| t 1 2 log 1-β 2 ε log β 2 εt dt ≥ C log 1-β 2 ε ˆlog 1 2 log 3ε 4 dz (-z) β > C > 0.
It implies there exists suitable positive constant c 5 and c 6 such that

c 5 d(x) 1 2 log 1-β A d(x) ≤ u(x) ≤ c 6 d(x) 1 2 log 1-β A d(x) .

Study of isolated singularities and qualitative properties

In this section, we study the qualitative properties as symmetry, monotonicity of solutions to the problem (P λ ) and asymptotic behavior of the connected branch C. In order to describe the asymptotic behavior of large solutions, we first study Brezis-Lions problem in the setting of fractional Laplacian operator. In the spirit of Brezis and Lions work (see [START_REF] Bréziz | A note on isolated singularities for linear elliptic equations[END_REF]), we classify the singularities of non-negative distributional solutions of fractional semilinear elliptic equation (P s ) for N ≥ 2s. We assume that g : R + → R + is continuous function with g(0) = 0 and Ω be a smooth bounded domain in R n . Theorem 6.1.19. Let u be nonnegative distributional solution of (P s ) in the sense of Definition 6.1.11 and g(u

) ∈ L t loc (Ω ) for t > N 2s ≥ 1. Then g(u) ∈ L 1 (Ω).
Proof. Suppose by contradiction that g(u) ∈ L 1 (Ω). Since g(u) ∈ L t loc (Ω ) then for any small r > 0 there exists a sequence {R m } m∈N ∈ (0, r) such that R m → 0 and ˆBr(0)\BR m (0) g(u) dx = m. (6.1.9)

Consider the problem

   (-∆) s u m = χ Ω\B Rm (0) g(u), u ≥ 0 in Ω, u m = 0 in R N \ Ω. (6.1.10) 
Since χ Ω\B Rm (0) g(u) ∈ L t (Ω) for t > N 2s , then there exists a sequence of classical solutions {u m } solving (6.1.10) such that u m ∈ L ∞ (Ω) ∩ C β (Ω) for some β ∈ (0, 1) (see Proposition 1.4 in [START_REF] Ros-Oton | The extremal solution for the fractional Laplacian[END_REF]). Let Φ be the fundamental solution of (-∆) s . i.e. (-∆) s Φ = δ 0 in D (R N ), where

Φ(x) =        Γ N 2 -s 2 2s π N/2 Γ(s) 1 |x| N -2s if N = 2s -1 π log(|x|) if N = 2s.
Since u ≥ 0 and u m is bounded in L ∞ (Ω) therefore lim x→0 (u + Φ)(x) = +∞ and for each m ∈ N, there exists r m > 0 such that u + Φ ≥ u m in B rm (0) \ {0}. Then by the weak comparison principle we obtain u + Φ ≥ u m in R N \ {0}. Since lim y→x G(x, y) = +∞, there exists r 1 > 0 such that G(x, y) ≥ 1 in x, y ∈ B r 1 (0). Now by using (6.1.9) we obtain that, Let ξ : R N → [0, 1] be radially symmetric increasing function such that ξ ∈ C ∞ (R N ) and

u m (x) = ˆΩ G(x, y)χ Ω\B Rm (0) g(u) dy = ˆΩ\B Rm (0) G(x, y)g(u) dy ≥ ˆBr 1 (0)\B Rm (0) g(u) = m → ∞ which implies u + Φ = +∞ in K B r 1 (0) \ {0}, which is not possible. Therefore g(u) ∈ L 1 (Ω).
ξ(x) =    1 if x ∈ R N \ B 2 (0), 0 if x ∈ B 1 (0).
Define u = uξ where ξ (x) = ξ x for all x ∈ R N . Then for any x ∈ Ω \ {0}, 

(-∆) s u (x) = C N,s ˆRN u (x) -u (y) |x -y| N +2s dy = C N,s P.V. ˆRN u(x)ξ (x) -u(y)ξ (y) |x -y| N +2s dy = ξ (x)(-∆) s u(x) + u(x)(-∆) s ξ (x) -C N,s P.V. ˆRN (u(x) -u(y))(ξ (x) -ξ (y)) |x -y| N +2s dy. ( 6 
P (φ) = ˆΩ u(-∆) s φ -g(u)φ dx for all φ ∈ C ∞ c (Ω)
where u ∈ L 1 (Ω) is a non-negative distributional solution of (P s ) and g(u) ∈ L 1 (Ω). Then Proof. Let us prove assertion 1 and consider > 0 small enough then we have

ˆΩ(u(-∆) s φ -g(u)φ) dx ≤ ˆΩ |(u (-∆) s φ -g(u)φ) dx| + ˆΩ u(1 -ξ (x))(-∆) s φ dx . Since φ ∈ C ∞ c (Ω) with supp(φ) ⊂ Ω \ {0}
, then there exists r > 0 such that φ = 0 in B r (0). Then by using integration by parts formula with (-∆) s u ∈ L ∞ (Ω) (Lemma 2.2 in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF]) and (6.1.11) we obtain,

ˆΩ(u(-∆) s φ -g(u)φ) dx ≤ ˆΩ φ(-∆) s u -g(u)φ) dx + ˆB2 (0) u(-∆) s φ dx ≤ ˆB2 (0) u(-∆) s φ dx + ˆΩ\Br(0) (ξ (x)(-∆) s u(x) + u(x)(-∆) s ξ (x) -g(u))φ dx + C n,s ˆΩ\Br(0) φ(x) ˆRN (u(x) -u(y))(ξ (x) -ξ (y))
|x -y| N +2s dy dx .

Study of isolated singularities and qualitative properties

For x ∈ Ω \ B r (0), y ∈ B (0) and < r 4 , we have

|(-∆) s ξ (x)| = C N,s ˆB2 (0) 1 -ξ (y) |x -y| N +2s dy ≤ C |B 2 (0)| (r -) N +2s . Therefore, lim →0 ˆΩ\Br(0) u(x)|φ| |(-∆) s ξ (x)| = 0. (6.1.12) Also, ˆΩ\Br(0) φ(x) ˆRN (u(x) -u(y))(ξ (x) -ξ (y) |x -y| N +2s dy dx ≤ φ L ∞ (Ω) ˆΩ\Br(0) u(x) ˆB2 (0) |1 -ξ (y)| |x -y| N +2s dy dx - ˆΩ\Br(0) ˆB2 (0) u(y)|1 -ξ (y)| |x -y| N +2s dy dx ≤ φ L ∞ (Ω) (r -) N +2s C N ˆΩ\Br(0) u(x) dx + |Ω \ B r (0)| ˆB2 (0) u(y) dy → 0 as → 0. (6.1.13) 
Since ξ (x) = 1 in Ω \ B r (0) and u is distributional solution of (P s ) we obtain, ˆΩ\Br

(ξ (x)(-∆) s u(x) -g(u))φ dx = 0. ( (0) 
Therefore, by combining (6.1.12), (6.1.13) and (6.1.14) we obtain P (φ) = 0 for all φ ∈ C ∞ c (Ω) with supp(φ) ⊂ Ω \ {0}. Since u ∈ L 1 (Ω) and g(u) ∈ L 1 (Ω), then P is a bounded linear functional on C ∞ c (Ω). Therefore by using Theorem XXXV in [START_REF] Schwartz | Theorie des distributions[END_REF], we obtain

P = |a|≤m c a D a δ 0
where c a ∈ R and δ 0 denotes the Dirac mass at origin. i.e. for all φ ∈ C ∞ c (Ω) Proof. Let η ∈ C ∞ (R N ) with supp(η) ⊂ B 1 (0) and |a| ≥ 1 such that D a η(0) = c a for every |a| ≤ m (see [START_REF] Bréziz | A note on isolated singularities for linear elliptic equations[END_REF]). Define η (x) = η x for x ∈ R N , then from (6.1.15) we obtain,

P (φ) = |a|≤m c a D a φ(0). ( 6 
P (η ) = |a|≤m c a D a η (0) = C c 2 a |a| = ˆΩ(u(-∆) s η -g(u)η ) dx. (6.1.16)
Let r > 0 and divide the integral in (6.1.16) into two parts:

ˆΩ u(x)(-∆) s η (x) ≤ ˆΩ\Br(0) u(x) |(-∆) s η (x)| dx + ˆBr(0) u(x) |(-∆) s η (x)| dx.
For x ∈ Ω \ B r (0) with small enough, we obtain

|(-∆) s η (x)| = P.V. ˆB (0) η( x ) -η( y ) |x -y| N +2s dy ≤ 2 η L ∞ (B 1 (0)) |B (0)| (r -) N +2s
→ 0 as → 0. (6.1.17)

and for x ∈ B r (0) we obtain, Proof of Theorem 6.1.12 : Follows from combining Theorem 6.1.20 and Theorem 6.1.21. Now we prove Theorems 6.1.10 and 6.1.13 concerning the qualitative properties of classical solution and asymptotic behavior of large solution for half Laplacian operator and n = 1:

ˆBr(0) u(x)(-∆) s η x dx ≤ (-∆) s η L ∞ (Br(0)) ˆBr(0) u(x) dx → 0 as r → 0. ( 6 
Proof of Theorem 6.1.10: With the assistance of maximum principle in narrow domains (see [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]) and moving plane method, we prove the monotonicity and radial symmetry of classical solutions in Ω. Without loss of generality, we assume Ω = (-1, 1) and (λ, u) be classical solution of (P λ ) for λ ≤ λ 0 (obtained from Theorem 6.1.9). Define R h (x) := (2h -x) be the reflection of the point x about h and

v h (x) := u h (x) -u(x) where u h (x) = u(R h (x)).
Step 1: Positivity of v h near -1 and 1: Clearly for |h| sufficiently large, v h (x) ≥ 0. Now we prove that v

h (x) ≥ 0 in (-1, h) ∩ H - h if h ≤ 0 and in (h, 1) ∩ H + h if h > 0 where H ± h = {x ∈ R : x ≷ h} and h lies in the neighborhood of x 0 ∈ ∂Ω = {-1, 1}. Suppose that v h < 0 in K ⊂ (-1, h) ∩ H - h for some h ≤ 0. Since f is Lipschitz and noting that supp((-v h ) + ) ⊂ (-1, 2h + 1), we have (-∆) 1/2 (-v h ), (-v h ) + = λ ˆ2h+1 -1 1 u δ - 1 (u h ) δ + f (u) -f (u h ) (-v h ) + dx ≤ C ˆK((u -u h ) + ) 2 dx.
Then by Poincaré inequality, we obtain ˆR (-∆)

1 4 (u -u h ) + 2 ≤ C ˆ2h+1 -1 ((-v h ) + ) 2 dx ≤ C(diam(K)) ˆR (-∆) 1 4 (u -u h ) + 2 .
Then by choosing h close enough to -1 we get, C(diam(K)) < 1 and then (-v h ) + = (uu h ) + = 0. Similarly in the case of (h, 1) ∩ H + h for h > 0. Now by moving the point in the neighborhood of -1 and 1 we obtain there exists T > 0 independent of u such that

   u(x -t) is non-increasing ∀(t, x) ∈ [0, T ] × (-1, h) if h ≤ 0, u(x -t) is non-decreasing ∀(t, x) ∈ [0, T ] × (h, 1) if h ≥ 0. (6.1.21)
Step 2: Positivity of v h in interior of (-1, 1): In Step 1, we have proved that v h ≥ 0 in the neighborhood of -1 and 1. So, without loss of generality we can assume that h ≥ 0 be the smallest value such that v h ≥ 0 in (h, 1). Then the mean value Theorem implies v h satisfies the following for some θ ∈ (0, 1) (-∆)

1 2 v h + δv h (θu + (1 -θ)u h ) δ+1 = f (u h ) -f (u) in (h, 1). ( 6 

.1.22)

Claim 1: For every compact subset K ⊂ (h, 1), ess inf K v h > 0.

To establish our claim, we follow the proof of Proposition 3.6 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. Since v h ≡ 0 in (h, 1) then for x * ∈ (h, 1), it is enough to prove that ess inf Br(x * ) v h > 0 for r sufficiently small. 

From Step 1, v h ≥ 0 and v h (x) = -v h (R h (x)) in H + h ,
< r < 1 4 dist(x * , B ∪ (R \ H + h )) and λ 1 (U ) ≥ C L (f ) (6.1.24)
where C L (f ) is the Lipschitz constant of f and λ 1 (U ) is the first eigenvalue of (-∆) s in U. Now, in order to apply Proposition 3.5 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF], we construct a subsolution of (-∆)

1 2 ṽ = c(x)ṽ in U where c(x) =    f (u h )-f (u) v h - δ (θu+(1-θ)u h ) δ+1 if v h = 0, 0 if v h = 0. Chapter 6. Non-local singular problem Define k : R → R, k(x) = m(x) -m(R h (x)) + a[1 B (x) -1 B (R h (x))]
where a will be determined later and m ∈ C 2 c (R) such that 0 ≤ m ≤ 1 on R and

m(x) = 1 if |x -x * | ≤ r, 0 if |x -x * | ≥ 2r, and satisfies k(R h (x)) = -k(x) on H + h , k = 0 in H + h \ (U ∪ B) and k = a on B. Then by Proposition 2.3 in [175] we obtain, ˆR ˆR (m(x) -m(y))(φ(x) -φ(y)) |x -y| 2 dx dy ≤ C ˆU φ(x) dx for φ ∈ τ , φ ≥ 0 and C = C(m) independent of φ. Since φ = 0 in R\U , (U ∩B)∪(U ∩R h (B)) = ∅ and m(R h (x))φ(x) = 1 B (x)φ(x) = 1 R h (B) (x)φ(x) = 0 in R. Then we have ˆR ˆR (k(x) -k(y))(φ(x) -φ(y)) |x -y| 2 dx dy ≤ C a ˆU φ(x) dx
where

C a := C + sup x∈U ˆRh (U ) 1 |x -y| 2 dy -a inf x∈U ˆB 1 |x -y| 2 - 1 |x -R h (y)| 2 dy. Since |x -y| ≤ |x -R h (y)| for all x, y ∈ H + h , U ⊂ H + h and continuity of the function x → ´B 1 |x-y| 2 - 1 |x-R h (y)| 2 dy implies inf U ˆB 1 |x -y| 2 - 1 |x -R h (y)| 2 dy > 0.
Now by taking a sufficiently large enough such that C a ≤ -C L (f ) and using

v h ≥ 0 in U , we obtain ˆR ˆR (k(x) -k(y))(φ(x) -φ(y)) |x -y| 2 dx dy ≤ -C L (f ) ˆU φ(x) dx ≤ ˆU λ f (u h ) -f (u) v h - δ (θu + (1 -θ)u h ) δ+1 k(x)φ(x) dx.
Then by using (6.1.23), (6.1.24) and Proposition 3.5 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF], we obtain ṽh (x) :

= v h (x) - μ a k(x) ≥ 0 a.e. in U so that v h (x) ≥ μ a k(x) = μ a > 0 a.e. in B r (x *
) and which completes the Claim 1. Claim 2: h = 0. We argue by contradiction and suppose h > 0. Since h is the smallest value such that v h ≥ 0 in (h, 1), so we claim that for a small > 0 we have v h-≥ 0 in (h -, 1) and thus get a contradiction that h is the smallest value. For this claim we follow the proof of Proposition 3.5 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. Fix γ (to be determined later) and let K (h, 1) such that |(h, 1) \ K| ≤ γ 2 . Then by using Claim 1, v h ≥ r > 0 in K and then by continuity v h-> 0 in K for small enough. Since v h-satisfies (6.1.22) in (h -, 1) \ K and by taking w :

= 1 H + h- v - h-such that supp(w) ⊂ (h -, 1) \ K as a test function, we obtain (-∆) 1 2 v h-, w = ˆ(h-,1)\K -δv h- (θu + (1 -θ)u h-) δ+1 + f (u h-) -f (u) w dx. (6.1.25)
We observe that

[w + v h-]w = [1 H + h- v + h-+ 1 R\H + h- v h-]1 H + h- v - h-= 0 in R and therefore [w(x) -w(y)] 2 + [v h-(x) -v h-(y)][w(x) -w(y)] = -(w(x)[w(x) + v h-(y)] + w(y)[w(x) + v h-(x)]) . (6.1.26) Now using |x -y| ≤ |x -R h-(y)| for all x, y ∈ H + h-, R h-(R \ H + h-) = H + h-and from (6.1.26), we obtain (-∆) 1 2 w, w + (-∆) 1 2 v h-, w = -2 ˆH+ h- ˆR w(x)[w(y) + v h-(y)] |x -y| 2 dy dx = -2 ˆH+ h- ˆR w(x)[1 H + h- v + h-(y) + 1 R\H + h- v h-(y)] |x -y| 2 dy dx = -2 ˆH+ h- ˆH+ h- w(x) v + h-(y) |x -y| 2 - v h-(y) |x -R h-| 2 dy dx ≤ 0. (6.1.27)
Let λ 1 be the first eigenvalue of (-∆) s in (h -, 1) \ K and then by combining (6.1.25) and (6.1.27) we obtain,

λ 1 ((h -, 1) \ K) ˆ(h-,1)\K |v - h-| 2 dx ≤ (-∆) 1 2 w, w ≤ -(-∆) 1 2 v h-, w = ˆ(h-,1)\K δv h-1 (h-,1)\K v - h- (θu + (1 -θ)u h ) δ+1 dx + ˆ(h-,1)\K (-f (u h-) + f (u))1 (h-,1)\K v - h-dx ≤ C L ˆ(h-,1)\K |v - h-| 2 dx.
Since λ 1 (Ω) → ∞ when |Ω| → 0 (see Lemma 2.1 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]) then by choosing γ small enough we get v h-≥ 0 in (h -, 1), which is a contradiction. Therefore h = 0 i.e. u(-x) ≥ u(x) and then by repeating the same proof for largest value of h over (-1, h) we obtain u(x) = u(-x) for all x ∈ (-1, 1). Since h = 0, therefore (6.1.21) and Claim 1 imply u is strictly decreasing in |x|.

Now we prove result describing the asymptotic behavior of connected branch C : From the remark 6.1.25, we deduce that for any z ∈ A,

u λ + v n , z -v n -λ ˆ1 -1 (u λ + v n ) -δ (z -v n ) dx -λ ˆ1 -1 f (u λ + v n )(z -v n ) dx ≥ - 1 n z -v n . (6.1.32)
Since v n is a bounded sequence in X 0 therefore, there exists v λ ∈ X 0 such that v n v λ weakly in X 0 as well as almost everywhere in (-1, 1). We claim that v λ is a weak solution of ( Pλ ). For any ψ ∈ C ∞ c ((-1, 1)), set

ψ n,ε = (v n + εψ) -and z = v n + εψ + ψ n,ε = (v n + εψ) + ∈ T.
Hence as a result of (6.1.32) and the choice of z, we have

u λ + v n , z -v n -λ ˆ1 -1 (u λ + v n ) -δ (εψ + ψ n,ε ) dx -λ ˆ1 -1 f (u λ + v n )(εψ + ψ n,ε ) dx ≥ - 1 n εψ + ψ n,ε .
Observe that ψ n,ε → ψ ε = (v λ + εψ) -a.e in (-1, 1), |ψ n,ε | ≤ ε|ψ| in (-1, 1) and by using dominated convergence theorem one can easily show that ψ n,ε → ψ ε in L m ((-1, 1)) for all m > 1. Moreover, ψ n,ε ψ ε weakly in X 0 . Using the same arguments as in [ 

f (u λ + v n )ψ dx → ˆ1 -1 f (u λ + v λ )ψ dx.
Using the mean value Theorem, definition of ψ n,ε and the fact that f > 0, we deduce that

f (u λ + v n )ψ n,ε ≤ (f (u λ -εψ) + f (ξ n )(v n + εψ))ψ n,ε f (u λ -εψ)ψ n,ε ≤ f (u λ -εψ)ε|ψ| ∈ L 1 ((-1, 1)).
This on using dominated convergence theorem gives 

ˆ1 -1 f (u λ + v n )(εψ + ψ n,ε ) dx → ˆ1 -1 f (u λ + v λ )(εψ + ψ ε ) dx. ( 6 
u λ + v λ , εψ + ψ ε - ˆ1 -1 (u λ + v λ ) -δ (εψ + ψ ε ) dx - ˆ1 -1 f (u λ + v λ )(εψ + ψ ε ) dx ≥ 0.
Employing the fact that u λ is a weak solution of (P λ ), we get

u λ + v λ , ψ - ˆ1 -1 (u λ + v λ ) -δ ψ dx - ˆ1 -1 f (u λ + v λ )ψ dx ≥ - 1 ε v λ , ψ ε + 1 ε ˆ1 -1 ((u λ + v λ ) -δ -(u λ ) -δ )ψ ε dx + 1 ε ˆ1 -1 (f (u λ + v λ ) -f (u λ ))ψ ε dx ≥ - 1 ε v λ , ψ ε + 1 ε ˆΩε ((u λ + v λ ) -δ -(u λ ) -δ
)ψ ε dx (6.1.36) where the last inequality follows using the fact that f is an increasing function and v λ ≥ 0 and supp(ψ ε ) =: Ω ε ⊂ (-1, 1). Keeping in mind that u -δ λ φ ∈ L 1 ((-1, 1)),

1 ε ˆΩε ((u λ + v λ ) -δ -(u λ ) -δ )ψ ε dx ≤ 2 ε ˆ1 -1 u -δ λ ψ = o(1).
Furthermore, trivial calculations gives Letting ε → 0 in (6.1.36), we deduce that, for all ψ ∈ C ∞ c ((-1, 1)),

u λ + v λ , ψ - ˆ1 -1 (u λ + v λ ) -δ ψ dx - ˆ1 -1 f (u λ + v λ )ψ dx ≥ 0.
It implies that v λ is a generalized critical point. Now we will show that v λ ≡ 0. Note that v n ≥ max{2ρ -ρ 0 , 0} ≥ 0, so it enough to show that v n → v λ strongly in X 0 . Let z = v λ in (6.1.32),

v λ -v n 2 ≤ u λ + v λ , v λ -v n + 1 n v λ -v n -λ ˆ1 -1 (u λ + v n ) -δ (v λ -v n ) dx -λ ˆ1 -1 f (u λ + v n )(v λ -v n ) dx.
Observe that (u λ + v n ) -δ (v λ -v n ) → 0 as n → ∞ a.e on (-1, 1), u λ ∼ φ δ in the neighborhood of -1 and 1. In consequence of Hardy's inequality and Hölder inequality, for any measurable set E ⊂ (-1, 1) and δ > 1, we have

ˆE(u λ + v n ) -δ (v λ -v n ) dx ≤ ˆE u -δ λ |v λ -v n | dx ≤ C ˆE φ -2δ δ+1 δ |v λ -v n | dx ≤ C ˆE d 1-δ 2(δ+1) |v λ -v n | d 1 2 dx ≤ C v λ -v n X 0 d 1-δ 2(δ+1) L 2 (E) .
Thus in a consequence of Vitali's convergence theorem ´1 -1 (u λ + v n ) -δ (v λ -v n ) dx → 0. Rewrite

f (u λ + v n )(v λ -v n ) = f (u λ + v n )(u λ + v λ ) -f (u λ + v n )(u λ + v n ).
Using the same arguments used for (6.1.35), one can easily show that

ˆ1 -1 f (u λ + v n )(u λ + v λ ) dx → ˆ1 -1 f (u λ + v λ )(u λ + v λ ) dx.
Let z n = u λ + v n and z λ = u λ + v λ then f (z n )z n → f (z λ )z λ a.e in (-1, 1 Now for ρ 0 small enough, we can choose p > 1 such that 6p v n ≤ 12p ρ 0 < π. With the help of Trudinger-Moser inequality and (6.1.37), we have ´{zn≥k} f (z n )z n dx ≤ Ce -k 2 where C is independent of n. Hence for k large enough,

ˆ1 -1 f (z n )z n dx ≤ ˆ{zn≤k} f (z n )z n dx + Ce -k 2 .
Letting n → ∞ and k → ∞, lim sup n→∞ ˆ1 -1 f (z n )z n dx ≤ ˆ1 -1 f (z λ )z λ dx. Using the fact that v n v λ weakly in X 0 , we get u λ + v λ , v λ -v n → 0 as n → ∞. Therefore, from all the calculations, we obtain that v λ -v n → 0 as n → ∞. Now we will prove the existence of second solution if (MP) holds. Before this we will prove some preliminary results. We recall the definition of Moser function ω n for half-Laplacian, which is recently given by Takahashi [START_REF] Takahashi | Critical and subcritical fractional Trudinger Moser-type inequalities on R[END_REF].

ω n (x) = 1 √ π        (log n) 1 2 if |x| ≤ 1 n , -log(n) -1 2 log |x| if 1 n ≤ |x| ≤ 1, 0 if |x| ≥ 1.
Fix x 0 ∈ R and r > 0 such that ω r n (x) = ω n ( x-x 0 r ) has support in (-1, 1). Note that ω r n = 1. Fix ε > 0, using (K4), then there exists C ε > 0 such that

F (x, v k ) ≤ ˆuλ +v k 0 f (s) ds -f (u λ )v k ≤ M (f (u λ + v k ) + 1) -f (u λ )v k ≤ εf (u λ + v k )(u λ + v k ) + C ε -f (u λ )v k .
Now using the fact that G(x, v k ) ≤ 0, we have From (6.1.41) and (6.1.42), we have

1 2 v k 2 -λεf (u λ + v k )(u λ + v k ) -C ε + f (u λ )v k ≤ γ 0 + o k (1). ( 6 
1 2 -ε v k 2 < C + λ ˆ1 -1 u -δ λ v k dx + u λ 2 + ε k max{1, u + λ + v k }.
With the help of Hardy's inequality, we obtain that {v k } is a bounded sequence in T . Therefore, there exists a v λ ∈ T such that v k v λ in X 0 . From (i), we have

J0 λ (v k ; w -v k ) ≥ - 1 k
(1 + w ), (6.1.43) for all w ∈ T . Using the same assertions and arguments as in proof of Lemma 6.1.26, one can easily prove that v λ is a generalized critical point of ( Pλ ). From (6.1.41), lim sup k→∞ ˆ1 -1

f (u λ + v k )(u λ + v k ) < ∞.
Hence by Vitali's convergence theorem,

ˆ1 -1 f (u λ + v k ) dx → ˆ1 -1 f (u λ +
v λ ) dx. Now using (K4) and genralized dominated convergence theorem ˆ1 -1 F (x, v k ) dx → ˆ1 -1 F (x, v λ ) dx. Using the fact that u λ ∼ φ δ , Hardy's inequality and similar arguments used above we can easily prove that

ˆ1 -1 G(x, v k ) dx → ˆ1 -1 G(x, v λ ) dx. Since v k v λ weakly in X 0 , J(v λ ) ≤ lim inf k→∞ Jλ (v k ) = γ 0 .
Since lim k→∞ Jλ (v k ) = γ 0 and if v k → v λ strongly in X 0 then 0 < γ 0 = Jλ (v λ ) implies v λ = 0. Therefore, to show v λ = 0, it is enough to show that v k → v λ strongly in X 0 . Let if possible then v k v λ in X 0 then Jλ (v λ ) < γ 0 , we can assume Jλ (v λ ) = 0 otherwise v λ = 0. From Remark 6.1.25, we have J λ (u λ + v λ ) = J λ (u λ ). We can choose ε > 0 small enough so that Taking into account (6.1.44), (6.1.45) and the fact that J λ (u λ + v λ ) = 1 2 u λ + v λ 2 -Θ, we deduce that

(γ 0 + J λ (u λ + v λ ) -J λ (u λ )) = γ 0 (1 + ε) < π 2 . ( 6 
(1 + ε) u λ + v k 2 < π(γ 0 + Θ + J λ (u λ )) γ 0 + Θ + J λ (u λ ) + 1 2 u λ + v λ 2 = π 1 - u λ + v λ 2 2(γ 0 + Θ + J λ (u λ )) -1
. Now taking into mind (6.1.45), we can choose p > 1 such that

(1 + ε) u λ + v k 2 p ≤ p < 1 - u λ + v λ 2 2(γ 0 + Θ + J λ (u λ )) -1
.

Therefore, from Lemma 6.1.28, lim sup k→∞ ˆ1 -1 e (1+ε)(u λ +v k ) 2 dx ≤ lim sup k→∞ ˆ1 -1 e πp(u λ +v k ) 2 u λ +v k 2 dx < ∞.

We write

ˆ1 -1 f (u λ + v k )v k dx = ˆ1 -1 f (u λ + v k )(u λ + v k ) dx - ˆ1 -1 f (u λ + v k )u λ dx.
From (K2), given ε 1 < ε and N ∈ N, for some C > 0, we have

ˆ1 -1 f (u λ + v k )(u λ + v k ) dx = ˆvk ≤N + ˆvk >N f (u λ + v k )(u λ + v k ) dx ≤ ˆvk ≤N f (u λ + v k )(u λ + v k ) dx + C ˆvk >N e (1+ε 1 )(u λ +v k ) 2 dx ≤ ˆvk ≤N f (u λ + v k )(u λ + v k ) dx + Ce (ε 1 -ε)N .
Now letting k → ∞ and then N → ∞, we obtain, lim sup k→∞ ˆ1 -1

f (u λ + v k )(u λ + v k ) dx ≤ ˆ1 -1 f (u λ + v λ )(u λ + v λ ) dx.
Hence lim sup k→∞ ˆ1 -1 .1.46) On the other hand, since we assume v k v λ then by using Remark 6.1.25, (6.1.43) with w = v λ and the fact that v k v λ , we have Since lim x→0 (u k + Φ)(x) = +∞ then for each k there exists a sequence {r k } such that r k → 0 as k → ∞ and u k + Φ ≥ v k in B r k (0) \ {0}. Then by weak comparison principle we obtain u k + Φ ≥ v k in R n \ {0}. Since lim y→x G(x, y) = +∞ then there exists r 0 > 0 such that G(x, y) ≥ 1 in x, y ∈ B r 0 (0). Now by using (6.1.48) we obtain that,

f (u λ + v k )(v k -v λ ) dx ≤ 0. ( 6 
0 < ν ≤ v λ -v k 2 ≤ o(1) -λ ˆ1 -1 f (u λ + v k )(v λ -v k ) dx. ( 6 
v k (x) =
ˆ1 -1 G(x, y)χ (-1,1)\B k (0) g(u) dy = ˆ(-1,1)\B k (0) G(x, y)g(u) dy ≥ ˆBr 0 (0)\B k (0) g(u) = n → ∞ and then it implies u k + Φ = +∞ in B r 0 (0) which is not possible. Therefore ´1 -1 g(u k ) ≤ C where C is independent of k. Then combining with the fact that u k have bounded energy and G(t) ≤ g(t) for large t, we obtain u k X 0 ≤ C 2 where C 2 is independent of k. Then there exists ũ1 such that u k ũ1 in X 0 and by compact embedding X 0 → L q ((-1, 1)), we obtain ũ1 = u ∈ X 0 where u is the singular solution of (6.1.29) with µ = 0. Then by theorem 3.1.3 and Remark 1.5 in [START_REF] Ros-Oton | The extremal solution for the fractional Laplacian[END_REF], we obtain g(u) ∈ L p ((-1, 1)) and u ∈ L ∞ ((-1, 1)), which is absurd. This completes the proof of Remark 6.1.14.

Generalization of symmetry results to fractional Laplacian operator

In this section, we are interested in the study of symmetry of positive solutions to a class of singular semilinear elliptic problem whose prototype is (P ) (-∆) s u = 1 u δ + f (u), u > 0 in Ω; u = 0 in R N \ Ω, where 0 < s < 1, N ≥ 2s, Ω = B r (0) ⊂ R N , δ > 0, f (u) is a locally Lipschitz function.

Main results

Theorem 6.2.1. Let δ > 0 and f be a locally Lipschitz function. Then a classical solution u to (P ) is radially symmetric and strictly decreasing in |x|.

The proof of Theorem 6.2.1 involves the moving plane method adapted in the non local setting. In this regard, as in the local case, we need a maximum principle in narrow domains and a strong maximum principle to hold for equations of the type (P ). The extension of these key tools is not straighforward due to the non local nature of (-∆) s and the presence of a singular nonlinearity in the right hand side. Besides this, we will take advantage of monotonicity properties of the nonlinear operator (-∆) s u -1 u δ and borrow some "local" maximum principle shown in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. In this regard, we introduce the following definitions: Let A λ := {x = (x 1 , x 2 , . . . , x N ) ∈ R N : x 1 = λ} and

Σ λ := {x ∈ R N : x 1 < λ} if λ ≤ 0, {x ∈ R N : x 1 > λ} if λ > 0
for some λ ∈ R and D λ (x) := (2λ -x 1 , x 2 , . . . , x N ) be the reflection of the point x about A λ and v λ (x) := u λ (x) -u(x) where u λ (x) = u(D λ (x)).

Proof. Let u be a classical solution of (P ). To prove radial symmetry and strict monotonicity of the solution u, it is enough to prove v λ (x) ≥ 0 for all x ∈ B r (0) ∩ Σ λ and λ ∈ (-r, r), by moving hyperplane A λ in a fixed direction. Since, if v λ (x) ≥ 0 for all λ ∈ (-r, r) and x ∈ B r (0) holds then we can rotate and move the hyperplane A λ in the direction close to fixed direction to get the desired result. Since λ is independent from the direction of movement of hyperplane A λ , so we fix ν(x 0 ) = (1, 0, . . . , 0) (without loss of generality) as the direction of movement of hyperplane A λ where ν denotes the unit outward normal vector at x 0 = (r, 0, . . . , 0) ∈ ∂B r (0). We divide the proof of above assertion into the following claims:

Claim 1: v λ (x) ≥ 0 for all x ∈ B r (0) ∩ Σ λ and |λ| ∈ [r 1 , r) for some r 1 > 0: Suppose that v λ < 0 in a region P ⊂ Σ λ ∩ B r for some r -1 < |λ| < r and 1 > 0. Then by using Poincaré inequality and since f is a Lipschitz function with Lipschitz constant C L in the neighborhood of x 0 , we obtain ˆRn (-∆)

s 2 (u -u λ ) + 2 ≤ (-∆) s (-v λ ), (-v λ ) + = ˆBr 1 u δ - 1 (u λ ) δ + f (u) -f (u λ ) (-v λ ) + dx < C L ˆP ((u -u λ ) + ) 2 dx ≤ C(diam(P )) ˆRn (-∆) s 2 (u -u λ ) + 2 dx.
Then by choosing 1 > 0 small enough such that C(diam(P )) ≤ 1, one has (-v λ ) + = (u -u λ ) + = 0. Now by rotating and moving the hyperplane A λ in a direction close to the outward normal ν in any neighborhood of x 0 ∈ ∂Ω and repeating the above steps by taking into account that x 0 ∈ ∂B r (0), ν(x 0 ) is arbitrary and by using continuity of solution u we obtain, v λ (x) ≥ 0 for all x ∈ B r (0) \ B r 1 (0) and |λ| ∈ [r 1 , r) for some r 1 > 0.

Claim 2: v λ ≥ 0 for all x ∈ B r (0) ∩ Σ λ and |λ| ∈ [0, r 1 ):

From Claim 1, we can assume that λ = r 1 be the smallest value such that 0 ≤ r 1 < r , v r 1 ≥ 0 in B r \ B r 1 and satisfies

(-∆) s v r 1 (x) - 1 u δ r 1 (x) + 1 u δ (x)
= f (u r 1 ) -f (u) in B r \ B r 1 . (6.2.1)

Step 1: ess inf R v r 1 > 0 for every compact subset R ⊂ B r \ B r 1 .

To prove this, we adapt in our situation the maximum principles in non-local setting i.e. Proposition 3.5 (maximum principle in narrow domains) and Proposition 3.6 (strong maximum principle) in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. Since v r 1 is non-trivial in B r \ B r 1 , then it is enough to prove that ess inf Br 0 (x * ) v r 1 > 0 for all x * ∈ B r \ B r 1 and r 0 sufficiently small. From Claim 1, v r 1 ≥ 0 and v r 1 (x) = -v r 1 (D r 1 (x)) in Σ r 1 then there exists a bounded set Q ⊂ Σ r 1 with x * ∈ Q and μ := inf Q v r 1 > 0. In the spirit of Lemma 2.1 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF], we fix r 0 such that U = B 2r 0 (x * ) and 0 < r 0 < 1 4 dist(x * , Q ∪ (R N \ Σ r 1 )) and λ 1 (U ) ≥ C L (f ) where C L (f ) is the Lipschitz constant of f and λ 1 (U ) is the first eigenvalue of (-∆) s in U. Now, we construct a subsolution of (-∆) s ũ = c(x)ũ in U where dy implies C a ≤ -C L (f ), by taking a sufficiently large. Since v r 1 ≥ 0 in U , we obtain k is the required subsolution in U. Then Proposition 3.5 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF], implies ṽr 1 (x) := v r 1 (x) -μ a k(x) ≥ 0 a.e. in U which further gives v r 1 (x) ≥ μ a k(x) = μ a > 0 a.e. in B r 0 (x * ) and completes the proof of Step 1.

Step 2: r 1 = 0. To prove this, we proceed by contradiction by assuming r 1 > 0. Since r 1 is the smallest value such that v r 1 ≥ 0 in Σ r 1 , so we will prove that for a small > 0 we have v r 1 -≥ 0 in Σ r 1 -. This will provide the required contradiction that r 1 is the smallest value. Fix γ (to be determined later) and let S Σ r 1 such that |Σ r 1 \ S| ≤ γ 2 . Then by using Claim 1 and continuity of solution we get v r 1 -> 0 in S for small enough. Since v r 1 -satisfies (6. 1, be the first eigenvalue of (-∆) s in Σ r 1 -\ S and by mean value theorem together with (6.2.2) we get, for some θ ∈ (0, 1)

λ r 1 1, (Σ r 1 -\ S) ˆΣr 1 -\S |v - r 1 -| 2 dx ≤ (-∆) s w, w ≤ -(-∆) s v r 1 -, w = ˆΣr 1 -\S δv r 1 -1 Σ r 1 -\S v - r 1 - (θu + (1 -θ)u r 1 -) δ+1 dx + ˆΣr 1 -\S (-f (u r 1 -) + f (u))1 Σ r 1 -\S v - r 1 -dx ≤ C L ˆΣr 1 -\S |v - r 1 -| 2 dx.
Then by Lemma 2.1 in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]) and choosing γ small enough, we obtain v r 1 -≥ 0 in Σ r 1 -.

Then r 1 = 0 and repeating the proof by moving hyperplane A λ as in Claim 1 we obtain u is radially symmetric. Now Claim 1 gives further the strict monotonicity property. The proof is now complete.

Next, we apply this main result in a different situation: Consider the problem

(Q)    (-∆) s u = µ 1 u δ + f (u) , u > 0 in Ω, u = 0 in R N \ Ω
where Ω is a bounded domain with C 2 boundary regularity. This concerns the existence of uniform a priori bound for classical solutions to (Q) when f has a subcritical growth. In the spirit of the work [START_REF] De Figueiredo | Apriori estimates and existence of positive solutions of semilinear elliptic equations[END_REF], we combine the monotonicity property of solutions near the boundary of Ω and a blow up technique with the help of a Liouville theorem. Precisely we prove: Theorem 6.2.2. Let N > 2s and µ 0 > 0. Let u be the classical solution of (Q) with f (u) = u p for 1 < p < N +2s N -2s and µ ≥ µ 0 Then u ∞ ≤ C 1 with C 1 depending only on δ, p, Ω, µ 0 .

Proof. First we suppose that Ω is strictly convex then Claim 1 in Theorem 6.2.1 combined with moving plane method gives boundary estimates and when Ω is not strictly convex, we perform Kelvin transform near any boundary point (see [START_REF] Chen | A direct method of moving planes for the fractional Laplacian[END_REF], [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF]). While, for interior estimates, we proceed by blow-up analysis. Precisely, assume there exists a sequence of bounded solution (u k ) k∈N and a sequence of points (x k ) k∈N such that M k = sup y∈Ω u k (y) = u k (x k ) → ∞ as k → ∞. Let λ k is the sequence of positive numbers (to be determined later) and y = x-x k λ k ∈ Ω k . From boundary estimates, notice that dist(x k , ∂Ω) ≥ c > 0 uniformly in k. Define the blow up function v k (y) = λ Now passing to the limits we obtain, v k → v in C s loc (R N ) and satisfies (-∆) s v = v p in R N , v(0) = 1 and by using Liouville Theorem (see [START_REF] Chen | A direct method of moving planes for the fractional Laplacian[END_REF]Theorem 4]), we get a contradiction.

The second application concerns the asymptotic behaviour of large solutions with respect to the parameter µ. Let s = 1 2 , n = 1, Ω = B r (0) and f (u) = h(u) exp(u α ) for some 1 < α ≤ 2 where h satisfies lim t→∞ h(t)e -t α = 0 and lim t→∞ h(t)e t α = ∞ for any > 0. Then we have the following result: Theorem 6.2.3. Let µ 0 > 0 and u be the classical solution of (Q) for some µ ≥ µ 0 . Then for any > 0, the following holds u L ∞ (Br\B ) ≤ C 2 (δ, n, , µ 0 ).

In addition, we have the following blow up profile: Let {u k } be a sequence of solutions for the problem (Q) such that u k L ∞ (Br) → ∞, µ k → μ with μ > 0, (i) There exists a singular solution ũ in C s loc (B r \{0}) such that u k -ũ → 0 in L ∞ loc (B r \{0}). (ii) If (u k ) k∈N has uniform bounded energy and F (t) = O(f (t)) as t → ∞ where F (t) is the antiderivative of f , then μ = 0.

From Theorem 6.2.1 we know that the solutions are radial and radially decreasing, from this we only need to study the behavior near an isolated singularity. For that we exploit the Theorem 6.1.12.

Proof. Using Theorem 6.2.1, we obtain every classical solution of u of (Q) is radially symmetric and decreasing with respect to |x|. Then for every > 0 there exists α 1 > 0 such that for any x ∈ B r \ B , we have a measurable set Z satisfying |Z | ≥ α 1 , Z ⊂ B r \ B and u(y) ≥ u(x), ∀ y ∈ B . Then by multipying ψ 1 (eigenfunction with respect to first eigenvalue and for any m ≥ µ 1 µ , there exists a C > 0, mt -C ≤ 1 t δ + exp(t α ), t ∈ R + . Then by using u(y) ≥ u(x), ∀ y ∈ B and |Z | ≥ α 1 it implies that u(x) ≤ C 2 for all x ∈ B r \ B where C 2 is independent of u. Now we prove the blow up profile. From Theorem 6.2.1 and above estimates, we know that (u k ) k blows up only at 0. We deduce by regularity theory (see [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF]) that the sequence (u k ) k converge to a singular solution u uniformly in B r \ {0}. From Theorem 6.1.12 and the asymptotic growth of f , we prove that u is a singular solution of (Q). Finally assume that (u k ) k has uniform bounded energy. Then we easily get that u belongs to the energy space and from Moser-Trudinger inequality (see [START_REF] Tersenov | The one dimensional parabolic p(x)-Laplace equation[END_REF] or [START_REF] Giacomoni | Fractional elliptic equations with critical exponential nonlinearities[END_REF]Lemma 2.1]) and Remark 1.5 in [START_REF] Ros-Oton | The extremal solution for the fractional Laplacian[END_REF] we obtain u is bounded which provides a contradiction and completes the proof.

Non-local fractional Laplacian singular problem with singular weights

In this part, we study the following nonlinear fractional elliptic and singular problem (P )

     (-∆) s p u = K δ (x) u γ , u > 0 in Ω; u = 0 in R N \ Ω
where Ω ⊂ R N is a smooth bounded domain with C 1,1 boundary, s ∈ (0, 1), p ∈ (1, +∞), γ > 0 and K δ satisfies the growth condition: for any x ∈ Ω In the case p = 2, the problem (P ) is a non-linear and non-local one. The operator (-∆) s p is degenerate if p > 2 and singular if p < 2. The operator (-∆) s p is the nonlocal analogue of p-Laplacian operator in the sense that (1-s)(-∆) s p → (-∆) p as s → 1 -and for p = 2, it reduces to fractional Laplacian operator which has a long history in mathematics. In particular, it is known as an infintesimal generator of Lévy stable diffusion process in probability and has several appearance in real life models in phase transitions, crystal dislocations, anamalous diffusion, material science, water ets, etc (see [START_REF] Bucur | Nonlocal diffusion and applications[END_REF][START_REF]Recent developments in Nonlocal Theory[END_REF] and their reference within). 

Function spaces and main results

Let Ω be bounded domain and for a measurable function u : R N → R, denote A function which is both sub and supersolution of (P ) is called a weak solution to (P ).

By virtue of the nonlinearity of the operator and the absence of integration by parts formula, such a notion of solution is considered. Before, stating our main results, we state some preliminary results proved in [START_REF] Brasco | The second eigenvalue of the fractional p-Laplacian[END_REF][START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF]: Proposition 6.3.1. (Lemma 3.5, [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF]) For > 0 and q > 1. Set S x := {(x, y) : x ≥ , y ≥ 0}, S y := {(x, y) : x ≥ 0, y ≥ }.

Then |x q -y q | ≥ q-1 |x -y| for all (x, y) ∈ S x ∪ S y . Proposition 6.3.2. (Lemma 3.3, [START_REF] Brasco | The second eigenvalue of the fractional p-Laplacian[END_REF]) Let g ∈ L q (Ω) with q > N sp and u ∈ W for all nonnegative functions φ ∈ W s,p 0 (Ω).

Having in mind Proposition 6.3.1 and the condition u κ ∈ W s,p 0 (Ω), κ ≥ 1 in definition 6.3.1, u satisfies the following definition of the boundary datum (see Proposition 1.5 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF]): Definition 6.3.2. We say that a function u = 0 in R N \ Ω satisfies u ≤ 0 on ∂Ω in sense that for > 0, (u -) + ∈ W s,p 0 (Ω).

For a fixed parameter > 0, we define a sequence of function K ,δ : R N → R + as 

K ,δ (x) =    (K -1 δ δ (x) + γ+p-1 sp-δ ) -δ if x ∈ Ω,

Comparison principle and existence result

Let {w n } ⊂ W s,p 0 (Ω) be such that w n w in W s,p 0 (Ω). Let ν ∈ (0, 1) small enough such that 1-ν p + ν q + 1 r = 1 where q < p * s := N p N -sp if N > sp and (s(1 -ν) -δ)r > -1 (since δ < 1 + s -1 p ). Hence x → d s(1-ν)-δ (x) ∈ L r (Ω) and by using Hölder and Hardy inequalities (see Theorem 1 for some constant C > 0 independent of w n and w. Since W s,p 0 (Ω) is compactly embedded in L q (Ω) for q < p * s , w n -w s,p is uniformly bounded in n and w n -w L q (Ω) → 0 as n → ∞. Finally, gathering the lower semicontinuity of [.] s,p and G globally Lipschitz, we deduce that J is weakly lower semicontinuous in W s,p 0 (Ω) and admits a minimizer w 0 on L. The rest of the proof follows exactly the proofs of Lemma 4.1 and Theorem 4.2 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF] and we obtain u ≤ w 0 ≤ ṽ in Ω.

By following the same idea of proof, we can prove it for γ = 0. Now we prove our existence and uniqueness result:

Proof of Theorem 6.3.2: Let u ∈ W s,p 0 (Ω) be the weak solution of (P γ ). Adapting the proofs of Theorem 3.2 and 3.6 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF], it is sufficient to verify the sequences {u } in the case δ -s(1 -γ) ≤ 0 and {u θ } for a suitable parameter θ > 1 in the case δ -s(1 -γ) > 0 are bounded in W s,p 0 (Ω) and the convergence of the right-hand side in (6.3.3). Case 1: δ -s(1 -γ) ≤ 0. The condition implies γ < 1 hence taking φ = u in (6. for all nonnegative functions φ ∈ W s,p 0 (Ω). Since u ∈ W s,p 0 (Ω) ∩ L ∞ (Ω) and Φ is locally Lipschitz, therefore Φ(u ) ∈ W s,p 0 (Ω). Then by choosing φ = Φ(u ) as a test function in (6. where u := lim →0 u . The rest of the proof follows exactly the end of the proofs of Theorem 3.2 and 3.6 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF]. Finally, for any > 0, u ≤ v a.e. in Ω where v is another weak solution of (P ). Indeed, v is a weak supersolution in sense of Definition 6.3.1 of the problem (P γ ) hence Theorem 4.2 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF] implies the inequality. Passing to the limit → 0 give u is a minimal solution.

Remark 6.3.2. The proof of Case 1 holds assuming Λ ≤ 1 and γ < 1. Indeed, d s(1-γ)-δ ∈ L p p-1+γ (Ω) and we obtain (6.3.4).

For any α ∈ (0, s), we define β := sp -α(p -1).

We start by computing the upper and lower estimates in the half line R + := {x ∈ R : x > 0} of (-∆) s p of the function U λ (x) := (x + λ 1 α ) + α , λ ≥ 0 defined in R. We recall the notation, for any t ∈ R, [t] p-1 = |t| p-2 t. To conclude (6.3.8), it suffices to obtain a uniform estimate of P in R + . First we note We consider two cases to estimate P 2,3 : Case 1: β < 1.

First, note in this case, P 2,3 (x, ) ≤ 0, it suffices to estimate P 2,3 from below. There exists s ∈ (s, 1) such that β > s hence for any y ∈ (0, 1):

y β-1 -1 ≤ y s-1 -1, (1 -y α ) ≤ (1 -y s) and 1 (1 -y) 1+sp ≤ 1 (1 -y) 1+sp .
Then by using the above estimates in (6.3.10), we obtain, In the same way, we note that P 2,3 (x, ) ≥ 0. Now, for the upper bound, using 1 -y κ ≤ max{1, κ}(1 -y) for any y ∈ (0, 1) and κ > 0 we get: Noting ξ (x) → 0 a.e. in x ∈ R + , we deduce, combining (6.3.9)-(6.3.13), that there exist two constants C 1 and C 2 independent of x such that, for any x ∈ R + :

C 1 ≤ lim →0 P (x) ≤ C 2 .
Hence we deduce (6.3.8). More precisely, the constant C 1 and C 2 are given by x αp-sp ˆ1 0 (1 -t) p (1 -t) 1+sp dt dx < ∞ (6. 3.14) for any α ∈ (0, s) if λ > 0 and α ∈ (s -1 p , s) if λ = 0.

C 1 =    1 p s-s ss if β < 1,
Next, we study the behavior of (-∆) s p V λ (x) on R N + := {x ∈ R N : x N > 0} where V λ (x) := U λ (x • e N ) = U λ (x N ). Let GL N be the set of N × N invertible matrices, we have for some > 0.

Then, there exist two positive constants C 3 and C 4 depending on α, s, p, N, A 2 , A -1 2 such that C 3 (x N + λ 1/α ) -β ≤ lim →0 J ,A (x) ≤ C 4 (x N + λ 1/α ) -β (6. 3.15) pointwisely in R N + × GL N . In particular, for A = I, there exist two positive constants C3 and C4 independent of λ such that:

C3 (x N + λ 1/α ) -β ≤ (-∆) s p V λ (x) ≤ C4 (x N + λ 1/α ) -β pointwisely in R N + .
Moreover, for λ > 0, V λ ∈ W s,p loc (R N + ) and for λ = 0,

V λ ∈ W s,p loc (R N + ) if s -1 p < α < s.
Proof. As in the proof of Lemma 3.2 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], we define the elliptic coordinates for any y ∈ R N \ {0} as y = ρw where ρ > 0 and w ∈ E := AS N -1 . Hence we have dy = ρ N -1 dρdw where dw is the surface of E. We also define e A = t (A -1 )e N and E A = {x ∈ R N : x • e A > 0} then we have e A • w = (A -1 w) N , ∀ w ∈ E.

Estimates of distance functions

Let x ∈ R N + , by the change of variable z = ρA -1 w:

J ,A (x) = | det A| -1 ˆE 1 |w| N +sp ˆ∞ [U λ (x N ) -U λ (x N + ρ(e A • w))] p-1 |ρ| 1+sp dρ dw = | det A| -1 ˆE∩E A ˆ∞ + ˆE∩(E A ) c ˆ∞ .
Replacing ρ and w by -ρ and -w in the second integral in the right-hand side and noting -w ∈ E ∩ E A , we get we obtain (6.3.15) passing to the limit → 0 and using Theorem 6.3.5. Finally, the assertion V λ ∈ W s,p loc (R N + ) follows showing V λ ∈ W s,p (K) for any bounded set K R N + and using the computations in (6.3.14).

J ,A (x) = | det A| -1 ˆE∩E A 1 |w| N +sp ˆ(-, ) c [U λ (x N ) -U λ (x N + ρ(e A • w))] p-
The next result gives the corresponding estimates of (-∆) s p (x N + λ 1/α ) α + under the smooth change of coordinates. Theorem 6.3.6. Let α ∈ (0, s) and p > 1. Let ψ : R N → R N be a C 1,1 -diffeomorphism in R N such that ψ = Id in B R (0) c , for some R > 0. Then, considering W λ (x) = U λ (ψ -1 (x) • e N ), there exist ρ * = ρ * (ψ) > 0 and λ * = λ * (ψ) > 0 such that for any ρ ∈ (0, ρ * ), there exists a constant C > 0 independent of λ such that, for any λ ∈ [0, λ * ], By change of variable, with the notations x = ψ(X) and A X = Dψ(X), we have: In order to apply Lemma 2.5 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], first we prove uniform estimates of H on compact set of ψ(R N + ). Since ψ is a C 1,1 -diffeomorphism such that ψ = Id in B R (0) c for some R > 0 therefore the mappings X → | det Dψ(X))| and X → Dψ(X)) ∞ are bounded on R N . More precisely, there exists a constant c ψ > 0 such that for any X ∈ R N Hence plugging (6.3.16) and (6.3.19), we obtain H ,1 is bounded in R N . Now, we give an estimate of H ,2 in {X ∈ R N + : 0 < X N < 1}: For the first term, using polar coordinates Y = X + σw for w ∈ S N -1 , σ > 0, X ∈ R N + and by choosing < X N , we obtain from (6.3.19)

H (x) = | det A X |J ,A X (X) + ˆ(B (X)) c [U λ (X N ) -U λ (Y N )] p-1 |A X (X -Y )| N +ps h(X, Y ) dY = H ,1 (X) + H ,2 (X)
|H ,2 (X)| ≤ C ψ ˆB1 (X)\B (X) |U λ (X N ) -U λ (Y N )| p-1 |X -Y | |A X (X -Y )| N +sp dY + ˆ(B 1 (X)) c |U λ (X N ) -U λ (Y N )| p-1 |A X (X -Y )| N +sp dY = C ψ H ,2 (X) + H ,2 (X) .
H ,2 (X) ≤ c ψ ˆSN-1 1 |w| N +sp-1 ˆ1 |U λ (X N ) -U λ (X N + σw N )| p-1 |σ| sp dσ dw = c ψ ˆSN-1 ∩{w N >0} |w| -N ˆ(-w N , w N ) c ∩(-w N ,w N ) |U λ (X N ) -U λ (X N + t)| p-1 |t| sp dt dw ≤ c ψ ˆSN-1 ∩{w N >0} ˆ(-w N , w N ) c ∩(-1,1) |U λ (X N ) -U λ (X N + t)| p-1 |t| sp dt dw = c ψ ˆSN-1 ∩{w N >0}
H w N (X N ) dw (6.3.22) where for any r ∈ R + and for ϑ ∈ (0, min{1, r})

H ϑ (r) = ˆ(-ϑ,ϑ) c ∩(-1,1) |U λ (r) -U λ (r + t)| p-1 |t| sp dt.

As previously, to estimate H ϑ , we split the integral as follows Hence the first term in the right-hand side is bounded by Using a change of variable in the second term of the right-hand side and for any t ∈ (0, 1), 1 -t α ≤ 1 -t s ≤ (1 -t) s , we get In the same way for H ϑ,2 , since for any t ≥ 1, t α -1 ≤ t s -1 ≤ (t -1) s , we get:

(r + λ 1/α ) 1-β ˆ1-ϑ r+λ 1/α 0 (1 -t α ) p-1 (1 -t) sp dt ≤ (r + λ 1/α ) 1-β ˆ1-ϑ r+λ 1/α 0 (1 -t) -s dt ≤ 1 1 -s (r + λ 1/α ) 1-β .
H ϑ,2 (r) ≤ (r + λ 1/α ) 1-β ˆ1+ 1 r+λ 1/α 1+ ϑ r+λ 1/α (t α -1) p-1 (t -1) sp dt ≤ (r + λ 1/α ) 1-β ˆ1+ 1 r+λ 1/α 1+ ϑ r+λ 1/α (t -1) -s dt ≤ 1 1 -s (r + λ 1/α ) s-β . (6.3.26)
Then, by collecting the estimates (6.3.24)-(6.3.26), we obtain for any r > 0 and ϑ ∈ (0, min{1, r})

H ϑ (r) ≤ M (r + λ 1/α ) -β ((r + λ 1/α ) s + (r + λ 1/α ) + (r + λ 1/α ) β ) (6.3.27) where M is positive constant depending upon α, s and p. From (6.3.27), we deduce that H ,2 and thus H ,2 are bounded on compact sets of R N + . Hence, H converges to 1 2 H in L 1 loc (ψ(R N + )) and we apply Lemma 2.5 of [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] which implies that W λ satisfies (-∆) s p W λ = H E-weakly in ψ(R N + ). Since (6.3.27) is independent of ϑ, then gathering (6.3.21), (6.3.22), (6.3.27) in (6.3.20), there

Estimates of distance functions

By using (6.3.38) and (6.3.39), we choose η 1 and η 2 small enough such that

K = Ω η 1 ∪ (Ω c ) η 2 ⊂ i∈I K i .
Now by using (6.3.36), we obtain, for any i ∈ I

Ω η 1 ∩ K i ⊂ Ω η 1 ∩ B R i (x i ) Ξ i (B ξ 0 ∩ R N + ), (Ω c ) η 2 ∩ K i ⊂ (Ω c ) η 2 ∩ B R i (x i ) Ξ i (B ξ 1 ∩ R N -) and d e (Ξ i (X)) = (X N + λ 1/α ) + -λ 1/α , ∀ X ∈ Ξ -1 i (K i ) ⊂ B ξ 0 (6.3.40)
for some η 1 < η * and η 2 > 0 such that 0 < ξ 1 < λ 1/α 2 . Set K i = K i ∩ K. Then, splitting

K × K = Q ∩ (K × K \ Q) where Q = i∈I   K i × j / ∈J i K j   ∪ i∈I   K i × j∈J i K j ∩ (B R i (x i )) c   ,
we obtain from (6.3.37)-( 6 

i ( K i )×Ξ -1 i ( K i ) |(d(Φ(X)) + λ 1 α ) α -(d(Φ(Y )) + λ 1 α ) α | p |Φ i (X) -Φ i (Y )| 1+sp J Ξ i (X)J Ξ i (Y ) dX dY + i∈I j∈J i ˆΞ-1 i ( K i ) ˆΞ-1 i ( K j ∩B R i (x i )) |(d(Φ(X)) + λ 1 α ) α -(d(Φ(Y )) + λ 1 α ) α | p |Φ i (X) -Φ i (Y )| 1+sp J Ξ i (X)J Ξ i (Y ) dX dY ≤C Φ i ˆΞ-1 i ( K i )×Ξ -1 i ( K i ) |(X N + λ 1 α ) α + -(Y N + λ 1 α ) α + | p |X N -Y N | N +sp dX dY + i∈I j∈J i ˆΞ-1 i ( K i ) ˆΞ-1 i ( K j ∩B R i (x i )) |(X N + λ 1 α ) α + -(Y N + λ 1 α ) α + | p |X N -Y N | N +sp
dX dY . (6.3.42) Hence by observing that X N , Y N > -min{ξ 0 , ξ 1 } > -λ 1/α 2 for all X, Y ∈ Ξ -1 i ( K i ) and by using the same argument as in Theorem 6.3.5 and by combining (6.3.41) and (6.3.42), we obtain w ρ ∈ W s,p (Ω η ). Similarly, we can prove w ρ ∈ W s,p (Ω η ).

Sobolev and Hölder regularity

Now we prove (ii) i.e. the case δ ≤ s. Since (6.3.44) holds, it remains to obtain the upper bound estimate. Let ũλ ∈ W s,p 0 (Ω) be the weak solution of (S δ λ ) with δ = s + (p -1) > s and for > 0. Then, choosing a suitable constant c > 0 independent of λ, ũ(λ) = c ũλ is a weak supersolution of (S δ λ ). Hence by Proposition 2.10 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], we have u λ ≤ ũ(λ) in Ω. We pass to the limit as λ → 0 and using (i) with ũ(x) = lim λ→0 ũ(λ) (x), we get, for > 0, u(x) ≤ c η, d s-(x) for x ∈ Ω.

Concerning the Hölder regularity of the weak solution of the problem (P ), we prove Theorem 6.3.4: Proof of Theorem 6.3.4 Let u be the minimal solution of the problem (P ). First, we prove the boundary behavior of the minimal weak solution by dividing the proof into two cases: Case 2: δ s + γ > 1 Let λ > 0 and u λ ∈ W s,p 0 (Ω) be the solution of the problem (P γ λ ) for λ < λ * given in Theorem 6.3.7. By considering the same cover of Ω \ Ω η as in (6.3.45) and applying Theorem 3.2 and Remark 3.3 in [START_REF] Brasco | Higher Hölder regularity for the fractional p-Laplacian in the superquadratic case[END_REF], we obtain, (6.3.52) for any i ∈ {1, 2, . . . , m} where C depends upon N, p and s. By repeating the same arguments as in (6.3.44), (6.3.47) and (6.3.48) we get that the first two terms in the right hand-side of (6.3.52) are bounded with bounds independent of λ and κd s (x) ≤ u λ (x) in Ω (6.3.53) for some κ > 0 independent of λ. Now, by using above inequality, we estimate the last term in the right hand-side of (6. where w ρ , w ρ , κ, κ η 2 and η * are defined in (6.3.30), (6.3.31), (6.3.53), (6.3.54) and Theorem 6.3.7 respectively. We note that c η , ċη are independent of λ and for any λ > 0, u λ and u λ satisfy 

u λ L ∞ (B η 4 (x i )) ≤ C   B η 2 (x i ) |u λ (x)| p dx   1 p +   η sp ˆRN \B η 4 (x i ) |u λ (x)| p-1 |x -x i | N +sp dx   1 p-1 +   η sp K λ,δ (u λ + λ) γ L ∞ (B η 2 (x i ))   1 p-1
u λ (x) ≤ u λ (x) ≤ u λ (x) for x ∈ Ω \ Ω η
C 6 C 3 K λ,δ (x) (u λ + λ) γ ≤ K λ,δ (x) (u λ + λ) γ .
Case (ii): c η (d(x) + λ 1/α ) α ≤ λ (1 -c η ) In this case, we have (u λ + λ) -γ ≥ (2λ) -γ (1 -c η ) -γ and by choosing η small enough such that c η ≤ 1 and C 6 c p-1 η ≤ C 3 (2λ * ) -γ (1 -c η ) -γ , (6.3.56) reduced to,

(-∆) s p u λ ≤ c p-1 η C 6 C 3 K λ,δ (x) (u λ + λ) γ (2λ) γ (1 -c η ) γ ≤ K λ,δ (x) (u λ + λ) γ .
Therefore, in each case, we can choose η small enough (independent of λ) such that (-∆) s p u λ ≤ K λ,δ (x) (u λ + λ) γ weakly in Ω η .

Since u λ , u λ ∈ W s,p (Ω η ) and u λ ∈ L ∞ (Ω) ∩ W s,p 0 (Ω) ⊂ W s,p (Ω η ), Proposition 2.10 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] in Ω η implies u λ ≤ u λ ≤ u λ in Ω η . Hence, from (6. such that B R 0 (x 0 ) ⊂ B 2R 0 (x 0 ) ⊂ Ω and u ∈ W s,p (B 2R 0 (x 0 )) ∩ L ∞ (B 2R 0 (x 0 )) be the minimal weak solution of (P ), then it satisfies

(-∆) s p u = K δ (x) u γ ≤ C 2 C γ 1 1 d γs+δ ≤ C 2 C γ 1 1 R γs+δ 0 in B R 0 (x 0 ) for 0 < δ s + γ ≤ 1 and (-∆) s p u = K δ (x) u γ ≤ C 2 C γ 1 1 d γ sp-δ γ+p-1 +δ ≤ C 2 C γ 1 1 R γ sp-δ γ+p-1 +δ 0 in B R 0 (x 0 ) for δ s + γ > 1
where C 2 is defined in (6.3.1). Then, by using Corollary 6.3.4 for p ∈ (1, 2), (6.3.51) and (6.3.58) we obtain: there exist ω 1 ∈ (0, s) and ω 2 ∈ (0, sp-δ p+γ-1 ] such that if 0 < δ s + γ ≤ 1 :

[u] C ω 1 (B R 0 (x 0 )) ≤CR - The constants C i are independent of the choice of point x 0 (and R 0 ) and since u ∈ L ∞ (Ω) we deduce (6.3.59) and (6. Now, to prove the regularity estimate in Ω (and then the whole R N ) since u = 0 in R N \ Ω, it is sufficient from interior regularity that follows from (6.3.61), (6.3.62), to prove (6.3.61) 
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 1 Parabolic problems with non-standard growth

∂

  t u -div |∇u| p(x,t)-2 ∇u = f (x, t) in Q T def = Ω × (0, T ), u = 0 on Γ def = ∂Ω × (0, T ), u(x, 0) = u 0 (x) in Ω, (1.2.1)

Chapter 1 .

 1 Parabolic problems with non-standard growth(ii) for every ψ ∈ W p(•) (Q T ) with ψ t ∈ W (Q T ) ˆQT u t ψ dz + ˆQT |∇u| p(x,t)-2 ∇u • ∇ψ dz = ˆQT f ψ dz,

2 . 1 )

 21 has a unique weak solutionu ∈ C 0 ([0, T ]; L 2 (Ω)) ∩ W p(•) (Q T ) with u t ∈ W (Q T ).The solution satisfies the estimate ess sup t∈(0,T ) u 2,Ω + ˆQT |∇u| p(x,t) dx dt ≤ C (1.3.1)

2 (s) ≡ ( 2 + 2 ,Theorem 1 . 4 . 1 . 1 . 2 (

 22214112 4.1) and the counterpart problems with regularized fluxes. Defineγ (z, s) = β p(z)-2 |s| 2 ) p(z)-2 > 0, s ∈ R N . Let ∂Ω ∈ C 1 , u ∈ C 1 ([0, T ]; C 2 (Ω)) and u = 0 on ∂Ω × [0, T ]. Assume that p(•) : Q T → [p -, p + ] such that p ∈ C 0 (Q T ) with the modulus of continuity ω, 2N N + 2 < p -, ess sup Q T |∇p| = L, ˆQT γ (z, ∇u)|u xx | 2 dz < ∞, sup (0,T ) u(t) 2 2,Ω = M 0 , ˆQT |∇u| p(z) dz = M Then for every 2 N + 2 = r * < r < r * = 4p - p -(N + 2) + 2Nand every δ ∈ (0, 1) the function u satisfies the inequality ˆQT β p(z)+r-2 ∇u)|∇u| 2 dz ≤ δ ˆQT γ (z, ∇u)|u xx | 2 dz + C 1 + ˆQT |∇u| p(z) dz . (1.4.2)

Chapter 1 . 1

 11 Parabolic problems with non-standard growth Then the weak solution u of problem (1.4.1) is a strong solution. The function u satisfies estimate (

Remark 1 . 4 . 1 .

 141 or N = 2 and p -> 6 5 , i, j = 1, 2, . . . , N , and the corresponding norms are bounded by constants depending only on the data. Due to the fact that estimate (1.4.5

Chapter 1 .

 1 Parabolic problems with non-standard growth data, boundary ∂Ω and variable exponent implies the following inequality relation: For a.e. t ∈ (0, T ) and any δ > 0 1 2

  2,Q T with constants C, C , C independent of m and . For a complete derivation, we refer to Lemma 4.2.3, Page 118, Chapter 4.

1 2 1 2

 11 (z, ∇u )D i u ∈ L 2 (0, T ; W 1,2 (Ω)), i = 1, 2, . . ., N , andγ (z, ∇u )D i u L 2 (0,T ;W 1,2 (Ω)) ≤ M, i = 1, 2, . . . , N, with an independent of constant M . (iii) If N ≥ 2 and p -> 2N N + 2 , then D 2 ij u ∈ L p(•) loc (Q T ∩ {z : p(z) < 2}), i, j = 1, 2, . . ., N , andN i,j=1 D 2 ij u p(•),Q T ∩{z: p(z)<2} ≤ Mwith an independent of constant M .

Theorem 1 . 4 . 8 .

 148 Let in the conditions of Theorem 1.4.7, b ≡ 0.

j

  (t) and then by summing up the results for j = 1, 2, . . . , m via Cauchy and Grönwall inequality. For a detailed proof see Lemma 4.3.4, Page 149, Chapter 4.

( 1 . 4 . 24 )

 1424 The estimates(1.4.23) and(1.4.24) are obtained by multiply each of equations in (1.4.21) by λ j u (m) j and sum up the results for j = 1, 2, . . . , m using Green formula, Interpolation inequalities (Theorem 1.4.1 and Theorem 1.4.6). For a detailed explanation see Lemma 4.3.5 and Lemma 4.3.6, Page 150, Chapter 4. Finally, by multiplying (1.4.21) with (u (m) j ) t and summing over j = 1, 2, . . . , m using Cauchy inequality we obtain

4 . 25 )

 425 with an independent of m and constant C 00 , C 0 , C, C , C . For a detailed proof see Lemma 4.3.7, Page 156, Chapter 4. The similar kind of a priori estimates are derived in case when the equation contains the nonlinear source i.e. b ≡ 0. The difference in the arguments consists in the necessity to estimate the integrals of the terms b|u
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 1 Parabolic problems with non-standard growth 1.4.3.2 Main results

.4. 37 )

 37 Finally by using (1.4.36), classical compactness argument with [Step 4, Proof of Theorem 1.1, [146]], convergence properties for v ∆t and ṽ∆t in (1.4.37) and ellipticity and growth conditions (A 1 )-(A 3 ), we pass to the limits ∆ t → 0 in (1.4.35) to get the existence of weak solution in the sense of Definition 1.4.4. Theorem 1.4.13, is proved by taking

Chapter 2 .

 2 Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity Theorem 2.2.1. For

2. 3 . 1 1 :

 311 Problem Kirchhoff Choquard equation with exponential non-linearity (a): First, we study the following n-Kirchhoff equation with exponential non-linearity of Choquard type (KC)

  is a bounded domain in R n with smooth boundary and the function F denotes the primitive of f with respect to the second variable and M denotes the Kirchhoff term. Concerning both problems (KC) and (P KC), we are interested in the existence of a weak solution (in a sense of Definition 2.4.2 and 2.4.14) in the light of Adams, Moser and Trudinger inequalities, and Hardy-Littlewood-Sobolev inequalities and variational techniques.

2. 3 . 2

 32 Problem 2: Kirchhoff Choquard equation with convex-concave type nonlinearity (a): First, we study the following n-Kirchhoff-Choquard equation with a convex-concave type non-linearity:

2. 3 . 3 . 3 :

 333 Problem Kirchhoff systems involving exponential non-linearity of Choquard type

  (i) I(0) = 0, (ii) I(u) ≥ α on the boundary of U, (iii) There exists an e / ∈ U such that I(e) < α. Then for the constant c = inf γ∈Λ max u∈γ I(u) ≥ α Chapter 2. Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity
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 2 Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity
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 2 Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity

Chapter 2 .Figure 2 . 1 :Figure 2 . 2 :Lemma 2 . 4 . 11 . 2 . 4 .

 22122241124 Figure 2.1: Geometry of ψ u (t) for u ∈ H - 0
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 2 Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity

2. 4 .

 4 New contributions and extensions Definition 2.4.18. A function u ∈ W m,2

  |∇ m u| n m dx. We prove the following result: Theorem 2.4.20.

Definition 3 . 1 . 1 .Definition 3 . 1 . 2 .

 311312 For φ ∈ C 0 (Ω) with φ > 0 in Ω, the set C φ (Ω) is defined asC φ (Ω) = {u ∈ C 0 (Ω) : there exists c ≥ 0 such that |u(x)| ≤ cφ(x), for all x ∈ Ω}, endowed with the natural norm u φ L ∞ (Ω). The positive cone of C φ (Ω) is the open convex subset of C φ (Ω) defined as

Theorem 3 . 1 . 3 .

 313 Let Ω be an open bounded interval in R. Then it holds

Chapter 3 .

 3 Non-local singular problems

Chapter 3 .

 3 Non-local singular problems 3.4.1.

Figure 3 . 1 :

 31 Figure 3.1: Bifurcations Diagram I

Figure 3 . 2 :Figure 3 . 3 :

 3233 Figure 3.2: Bifurcations Diagram II

  0 then u is symmetric and strictly decreasing in |x| i.e. u(x) > u(y) for all |x| < |y| and x, y ∈ (-1, 1).

Figure 3 . 4 :

 34 Figure 3.4: Moving plane in the neighbourhood of -1 and 1.

Theorem 3 . 4 . 13 .

 3413 is a locally Lipschitz function. Precisely, we prove the following result: Let δ > 0 and f be a locally Lipschitz function. Then a classical solution u to (P ) is radially symmetric and strictly decreasing in |x|.

Theorem 3 . 4 . 14 . 3 . 4 . 2 . 2 :

 34143422 Let N > 2s and µ 0 > 0. Let u be the classical solution of (Q) with Problem Non-linear fractional singular problem with singular weights

Proposition 3 . 4 . 1 .

 341 For any > 0 and γ ≥ 0, there exists a unique weak solution u

4 . 13 )

 413 and D (x) = {y ∈ R N : |ψ -1 (x) -ψ -1 (y)| ≤ } and > 0. To estimate (3.4.13), we exploit the C 1,1 regularity of the diffeomorphism, Corollary 3.4.1 and the fact that ψ = I outside B R (0) for some R > 0. (For precise details, we refer to Theorem 6.3.6, Page 355, Chapter 6).

  (Ω) and by using Hölder and Hardy inequalities (see Theorem 1.4.4.4 and Corollary 1.4.4.10 in [162]), we obtain

.4. 22 )

 22 Then, by subtracting (3.4.21) and (3.4.22), using the following inequality, for a, b ∈ R with |a| + |b| > 0,

.4. 27 )Gathering Proposition 3 . 4 . 1 ,

 27341 Theorem 3.4.5 and Remark 3.4.1, we have the following result for the following approximated problem (noting γ = 0 in Proposition 3.4.1):

2

 2 are defined in (3.4.28) and (3.4.29) respectively and D 3 , D 4 are defined in (3.4.27). Note c η and Chapter 3. Non-local singular problems c η are independent of λ. Hence for any λ > 0, u λ satisfies

2 s-α κ and ċη ≥ 4 η α κ η 2 where

 22 .4.32) For α = sp-δ p+γ-1 and 0 < η < η * , define u λ = c η w ρ and u λ = ċη w ρ such that c η ≤ η w ρ , w ρ , κ, κ η 2 and η * are defined in (3.4.14), (3.4.15), (3.4.31), (3.4.32

Theorem 3 . 4 . 9 .

 349 Let δ ≥ sp. Then there doesn't exists any weak solution of the problem (P ) in the sense of definition3.4.1. 
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 1 Functions spaces equipped with the norm
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 4 Parabolic problems with nonstandard growth
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 44 Chapter Parabolic problems with nonstandard growth

Theorem 4 . 3 . 1 .

 431 Let Ω ⊂ R N , N ≥ 2, be a bounded domain with the boundary ∂Ω ∈ C 2 . Assume that p(•), q(•) satisfy conditions (4.3.3),(4.3.4), and there exists a constant r ∈ (0, r * ), r * = 4p - p -(N + 2) + 2N

Theorem 4 . 3 . 2 .

 432 Let in the conditions of Theorem 4.3.1, b ≡ 0.

Lemma 4 . 3 . 2 .

 432 Let Ω ⊂ R N , N ≥ 2 be a bounded domain with the boundary ∂Ω ∈ C 2 , and a ∈ W 1,∞ (Ω) be a given nonnegative function. Assume that v ∈ W3,2 (Ω) ∩ W 1,2 0 (Ω) and denote Chapter 4. Parabolic problems with nonstandard growth

Corollary 4 . 3 . 1 .

 431 Under the conditions of Lemma 4.3.3, for every λ ∈ (0, 1) and

Chapter 4 .

 4 Parabolic problems with nonstandard growth

( 4 . 3 . 20 )m

 4320 By the Carathéodory existence theorem, for every finite m system (4.3.19) has a solution (u ) in the extended sense on an interval (0, T m ), the functions u (m) i (t) are absolutely continuous and differentiable a.e. in (0, T m ). The a priori estimates (4.3.47), (4.2.33) in the case b ≡ 0, and (4.3.56), (4.3.57) in the case b ≡ 0, show that for every m the function u (m) (x, T m ) belongs to span{φ 1 , . . . , φ m } and satisfies the estimate

4. 3 . 4 .

 34 The choice of the sequence {u

2 ,

 2 . . . , m. (4.3.25) Solvability of the system G i (c) = 0, i = 1, 2, . . . , m, follows from the Brouwer fixed point principle in the form [196, Ch.1, Lemma 4.3]. Relations (4.3.25) define the mapping c → G(c) from R m into itself. The mapping G is continuous and (G(c), c) ≥ 0, provided |c| m = ρ with a sufficiently large ρ > 0. Multiplying each of equations (4.3.25) by c i , summing up and using Young's inequality we obtain:

( 4 . 3 . 26 ) 4 . 3 . 4 .

 4326434 The choice of the sequence {u

.3. 29 )

 29 The claim (4.3.29) (ii) follows from the generalized Lebesgue dominated convergence theorem. Sinceu m → u in L H (Ω) and β(•, •) is a Carathéordory function, then H * (x, |β(x, u m )u m -β(x, u)u|) → 0for a.e. x ∈ Ω (4.3.30) (up to a subsequence). Using the convexity, (∆ 2 ) property of the generalized N -functions H and H * , and Proposition 4.3.1, we obtain

4. 3 . 5 .Lemma 4 . 3 . 4 .

 35434 A priori estimates 4.3.5 A priori estimates (i) A priori estimates I: the case b ≡ 0 Let Ω be a bounded domain with the boundary ∂Ω ∈ Lip, p(•), q(•) satisfy (4.3.3), a(•) satisfies (4.3.5), u 0 ∈ L 2 (Ω) and f 0 ∈ L 2 (Q T ). If b ≡ 0, then u (m) satisfies the estimates sup t∈(0,T )

  3.19) by u(m) j (t) and then by summing up the results for j = 1, 2, . . . , m, we obtain 1 2

  as a combination of solutions of problem(4.3.18). Therefore the first term on the right-hand of (4.3.40) can be transformed by means 4.3.5. A priori estimates of the Green formula:

Lemma 4 . 3 . 6 . 5 sup

 4365 Under the conditions ofLemma 4.3.

( 4 .

 4 3.4). Proof. By multiplying (4.3.19) with (u (m) j ) t and summing over j = 1, 2, . . . , m we obtain the equality

  3.19) by u (m) j and sum up. In the result we arrive at equality (4.3.35) with the right-hand side containing the additional term

Lemma 4 . 3 . 8 .

 438 Assume that a(•), p(•), q(•), u 0 , f 0 satisfy the conditions of Lemma 4.3.4. If σ, b are measurable and bounded functions in

Theorem 4 . 3 . 6 .

 436 τ ) a.e. in Ω for every τ ∈ [0, T ]. Estimates (4.3.58) follow from the uniform in m estimates on the functions u (m) and their derivatives, the properties of weak convergence (4.3.60) and lower semicontinuity of the modular. Inequality (4.3.49) yields that for every δ ∈ (0, r * ) the sequence {∇u (m) } contains a subsequence which converges to ∇u weakly in (L p(•)+δ (Q T )) N , whence (4.3.59). Let in the conditions of Theorem 4.3.5, b ≡ 0.

Remark 4 . 3 . 2 .

 432 Under the assumption of the Theorem 4.3.1 or Theorem 4.3.2 and, in addition f 0 ∈ L 1 (0, T ; L ∞ (Ω)) and u 0 ∈ L ∞ (Ω), the strong solution of the problem (4.3.1) is bounded and satisfies the estimate
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 41 Main results
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 41 Main results

( 4 . 4 . 4 )Definition 4 . 4 . 1 .

 444441 The notion of weak solution for (4.4.4) is given as follows: A weak solution to (4.4.4) is any positive function

.4. 5 )Theorem 4 . 4 . 4 .

 5444 Concerning (4.4.4), we prove the following results:Let T > 0, v 0 ∈ C 0 d (Ω) + ∩W 1,p(x) 0

Theorem 4 . 4 . 5 .

 445 Let v 1 and v 2 are weak solutions of (4.4.4) with initial data u 0 , v 0 ∈ C 0 d (Ω) + ∩ W 1,p(x) 0

Corollary 4 . 4 . 1 .Corollary 4 . 4 . 2 .

 441442 Assume p -≥ 2. Let v 1 and v 2 are weak solutions of(4.4.4) with initial data u 0 , v 0 ∈ C 0 d (Ω) + ∩ W 1,p(x) 0(Ω). Then Theorem 4.4.5 holds. From Theorem 4.4.5, we derive the following comparison principle from which uniqueness of the weak solution to problem (4.4.4) follows: Let u and v are the weak solutions of (4.4.4) with initial data u 0 , v 0 satisfying conditions in Theorem 4.4.5 or Corollary 4.4.1. Assume

Chapter 4 .

 4 Parabolic problems with nonstandard growth

Corollary 4 . 4 . 4 .

 444 Under the assumptions of Corollary 4.4.3 and in addition that there exist

Lemma 4 . 4 . 1 .

 441 Let r ∈ [1, p -] and u, v ∈ W 1,p(x) 0

Lemma 4 . 4 . 2 .

 442 Let λ ≥ 0 and u, v ∈ W 1,p(x) 0

Lemma 4 . 4 . 4 .

 444 Under the same conditions of h, l, k as in Lemma 4.4.3, let u ∈ C 1 (Ω) be the nonnegative and nontrivial solution of (4.4.12), x 1 ∈ ∂Ω, u(x 1 ) = 0 and Ω satisfies the interior ball condition at x 1 , then ∂u ∂ n (x 1 ) < 0 where n is the outward unit normal vector at x 1 .

4. 4 . 4 . 2 3 Proof of Theorem 4 . 4 . 3 :

 4423443 Proof of Theorem 4.4.We perform the proof along five steps. First we introduce notations. Define F, G : Ω × R → R + as follows:

4. 4 . 4 . 2 . 3

 4423 Proof of Theorem 4.4.Define the energy functional E : W 1,p(x) 0

Chapter 4 .

 4 Parabolic problems with nonstandard growth u 0 ≡ 0.Step 3: u 0 satisfies the equation in (4.4.2) Since u 0 is a global minimizer and E is C 1 on W 1,p(x) 0

4. 4 . 5 .

 45 Application to Doubly nonlinear equation

4. 4 . 5 . 1

 451 Study of the quasilinear elliptic problem associated to D.N.E.

4. 4 . 5 . 1 .

 451 Study of the quasilinear elliptic problem associated to D.N.E. and ˆΩ v 2q-1 2

4. 4 . 5 . 2 4 . 4 . 8 .

 452448 Further results for (4.4.16) and uniqueness Theorem Let λ > 0, f :

4. 4 . 5 . 2 .

 452 Further results for (4.4.16) and uniqueness

Remark 4 . 4 . 7 .

 447 Let v 1 , v 2 are the weak solutions of (4.4.16) obtained byTheorem 4.4.

.4. 25 ) 4 .

 254 Chapter Parabolic problems with nonstandard growth

  4.21). Finally Remark 4.4.7 gives (4.4.25). 4.4.5.3 Existence of a weak solution to (4.4.3) In light of Remark 4.4.3, we consider the problem (4.4.4) and establish the existence of weak solution when v 0 ∈ C 0 d (Ω) + ∩ W 1,p(x) 0

( 4 . 4 . 26 ) 4 .

 44264 Chapter Parabolic problems with nonstandard growth for all ψ ∈ W 1,p(x) 0

4. 4 . 5 . 3 .

 453 Existence of a weak solution to(4.4.3) 

( 4 . 4 . 44 )

 4444 Note that the sequence {u n } n=1,2,...,N is well defined. Indeed for n = 1 the existence and the uniqueness of u 1 ∈ D(R) follows from Corollary 4.4.5 with h = ∆ t h 1 + u 0 ∈ L ∞ (Ω) + and λ = ∆ t . Hence by induction we obtain in the same way the existence of the solution u n for any n = 2, 3, . . . , N where u n ∈ D(R).Moreover let denote by (u n ) the solution of (4.4.44) with ∆ t = , h = r, r n = 1 ´n (n-1) r(τ, .)dτ 4.4.5.3. Existence of a weak solution to (4.4.3)

( 4 . 4 . 45 )

 4445 For (n, m) ∈ N * , multiplying the equation in (4.4.45) by η + η and then subtracting the two expressions we get,

.4. 50 ) 4 . 4 . 11 .

 504411 Theorem([120], Theorem 4.1 and Theorem 4.4) Let (4.4.49)-(4.4.50) hold and p ∈ P log (Ω). If u ∈ W 1,p(x) (Ω) is a weak solution of(4.4.48), then u ∈ C 0,α (Ω).

Theorem 4 . 4 . 13 .

 4413 Let K > 0 and w K ∈ W 1,p(x) 0

Chapter 4 .Proposition 4 . 4 . 3 .

 4443 Parabolic problems with nonstandard growth Next we prove a slight extension of Proposition A.2 in [146]. Let p ∈ C( Ω) and q ∈ (1, p -]. Assume u ∈ W satisfying for any Ψ ∈ W: ˆΩ |∇u| p(x)-2 ∇u.∇Ψ dx = ˆΩ hu q-1 Ψ dx (4.4.51)

.Corollary 4 . 4 . 7 .

 447 By Lemma 4.4.5, we deduce that u bounded in Ω.Combining Theorem 4.1 of[START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF] and Proposition 4.4.3, we have the following corollary: Let p ∈ C( Ω) and q ∈ (1, p -]. Assume u ∈ W and nonnegative satisfying for any Ψ ∈ W, Ψ ≥ 0,

4. 5 .

 5 Generalized doubly nonlinear equation: Local existence, uniqueness, regularity and stabilization

Remark 4 . 5 . 4 .

 454 Prototype examples of operators a satisfying (A 1 )-(A 3 ) are given below: for any (x, ξ) ∈ Ω × R N and p ∈ C 1,β (Ω) by:

4. 5 . 2 . 1 .Lemma 4 . 5 . 1 . 1 -w r 2 w r-1 1 + 2 -w r 1 w

 52145112121 L ∞ -potential Let A : Ω × R N → R be a continuous and differentiable function satisfying(A 1 ) with a(x, ξ) = 1 p(x) ∇ ξ A(x, ξ) such that ξ → A(x, ξ) is strictly convex for any x ∈ Ω. Then, for r ∈ [1, p -), for any w 1 , w 2 ∈ W ∩ L ∞ (Ω) two positive functions and for any x ∈ Ω a(x, ∇w 1 ).∇ w r a(x, ∇w 2 ).∇ w r

Remark 4 . 5 . 11 .

 4511 Inequality (4.5.11) implies the uniqueness of the solution in the sense of Definition 4.5.2. Moreover to obtain (4.5.11), we use more precisely φ, ψ belong to L ∞ δ (Ω) ∩ W. The uniqueness can be also obtained by using Theorem 4.5.10.

( 4 . 5 . 21 )

 4521 Indeed we split Ω into two parts: Ω l = {x ∈ Ω : p(x) ≤ 2} and Ω u = {x ∈ Ω : p(x) > 2}.

.5. 25 ) 4 . 5 . 3 . 1 .

 254531 Existence of a weak solution

( 4 . 5 . 26 )

 4526 By Theorem 4.5.11 and by comparison principle, we have for κ large enough that w def = w κ ≥ w κ ≥ v 0 where w κ is the weak solution of (4.5.49). Rewrite (4.5.23) as follows

  .5.33) hence (4.5.28) implies (4.5.22). From (4.5.31) and (4.5.33), we obtain

.5. 34 ) 4 . 5 . 3 . 1 .

 344531 Existence of a weak solution

.5. 36 )

 36 Finally gathering (4.5.35)-(4.5.36), we conclude that v satisfies (4.5.3) by passing to the limit in (4.5.27) for any φ ∈ L 2 (Q T ) ∩ L 1 (0, T ; W).
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 453 Let v be a solution of (E) in sense of Definition 4.5.1 with the initial data

.5. 40 )

 40 Moreover, u belongs to C([0, T ]; L r (Ω)) for any r ∈ [1, +∞).
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 5423454 Proof of Theorem 4.5.Under the conditions of Theorem 4.5.9, there exists a unique solution u of the following problem

4. 5 . 4 . 2

 542 Proof of Theorem 4.5.3

Example 5 . 1 . 1 .

 511 An example of a function satisfying (m1), (m2) and (m3) is M (t) = m 0 +bt β where m 0 > 0, β < 1 and b ≥ 0.

5. 1 . 2 .

 12 Existence of a positive weak solution
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 5 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

Lemma 5 . 1 . 15 .

 5115 If (m3) holds then l * ≤ l * * .
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 5 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights
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 5 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

( 5 . 1 . 53 )

 5153 Substituting (5.1.53) in (5.1.52) and taking into account (5.1.51), we get

Chapter 5 . 2

 52 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights + 1 ˆΩ(|x| -µ * F (u))f (u)u dx.

Now we prove Theorem 5 . 1 .

 51 8 which concerns the critical case β = n n-1 . Proof of Theorem 5.1.8: Let u k be a nonnegative minimizing sequence for J λ,M on N λ,M \{0} satisfying (5.1.40) then u k is bounded in W 1,n 0 (Ω). Using Proposition 5.1.26 we get u k is a Palais Smale sequence at level θ < m 0

Theorem 5 . 2 . 5 .

 525 Let (m1)-(m3) and (h1)-(h4) holds. Assume in additionlim s→+∞ sf (x, s)F (x, s) exp (2s 2 ) = ∞, uniformly in x ∈ Ω.(5.2.4)
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 5 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

  Ω) which implies that up to a subsequence, w k → w in the weak * -topology as k → ∞, where w denotes a Radon measure. So for any φ ∈ C ∞ c (Ω) we get lim k→∞ ˆΩ ˆΩ F (y, u k )

Chapter 5 .

 5 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

×

  ˆΩ(((p + 1) + γ|uk | γ )|u k | p+2 exp(|u k | γ ))

  Thus we get S(v k ) * ≤ C 1 and from (5.2.5.1) we have ξ - k (0) * ≤ C 2 . Now the rest of the proof follows as in the proof of Theorem 5.2.22 with the help of Lemma 5.2.20.

Chapter 5 .Proof of Theorem 5 . 2 . 6 : 1 Theorem 5 . 3 . 1 .

 55261531 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights The proof follows from Theorem 5.2.22 and Theorem 5.2.23.Main resultsIn this subsection, we first establish the non-singular version of Moser-Trudinger and Adams-Moser-Trudinger inequalities in higher dimensional product spaces. Let Y := W space endowed with the norm(u, v) Y := u For (u, v) ∈ Y, n, m ∈ N such that n ≥ 2m and Ω ⊂ R n is a bounded domain, we have ˆΩ exp Θ |u| n n-m + |v| n n-m dx < ∞ for any Θ > 0. Moreover, sup (u,v) Y =1 ˆΩ exp Θ |u| n n-m + |v| n n-m dx < ∞, provided Θ ≤ ζ n,m 2 n,m (5.3.1)where2 n,m = 2 n-2m n-m . Furthermore if Θ > ζn,m2n,m , then there exists a pair (u, v) ∈ Y with (u, v) Y = 1 such that the supremum in (5.3.1) is infinite.

2 <.

 2 ) = α(a α-1 -(1 -a) α-1 ) = 0 gives a = 1 2 , which is the point of maximum (since d da d da r (a) a= 1 0 ). Therefore the maximum value of r in (0, 1] is 2 1-α . Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights Without loss of generality, let (u, v) ∈ Y \ {(0, 0)} be such that (u, v) Y = 1. If either u ≡ 0 or v ≡ 0, the result follows from Theorem 2.2.2, Chapter 1. We set α = m n-m , a = u n m and b = v n m then Lemma 5.3.1 gives us that
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 5 Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights such that supp(w k ) ⊂ B ρ (0) and w k = 1 for all

Example 1 :

 1 An example of a function m satisfying (m1) -(m3) is m(t) = d 0 + d 1 t β for β < 1 and d 0 , d 1 ≥ 0.

.4. 5 ) 5 .

 55 Chapter Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weightsClaim: For any open and relatively compact subset

  4.13) 5.4.2. Mountain Pass geometry and Analysis of Palais-Smale sequence for some constant C > 0. First we prove (5.4.10), a similar proof provides (5.4.11). Consider ˆB r 0 2

Now using ( 5 . 4 .

 54 [START_REF] Alves | On existence of solutions for a class of problem involving a nonlinear operator[END_REF]), (f 4), semigroup property of the Riesz Potential we obtain I j = o(M ) for j = 4, . . . , 7, when M is large enough and from Lebesgue dominated convergence theorem we obtain I 3 → 0 as k → ∞. Hence (5.4.15) holds and I 2 → 0 as k → ∞. Now to conclude (5.4.10) and(5.4.11

  and (5.4.19), we arrive at a contradiction by taking k large enough. Proof of Theorem 5.4.1: Let {(u k , v k )} denotes a Palais Smale sequence at the mountain pass critical level l * . Then by Lemma 5.4.2 there exists a u 0

Chapter 6 .

 6 Non-local singular problem function. Consequently, we prove Hölder regularity up to the boundary for minimal weak solution.

.1. 6 )

 6 Without loss of generality, we can assume x ∈ [0, 1]. Set ε = d(x), r = d(y) and x = (1 -ε).

Chapter 6 .

 6 Non-local singular problem

Chapter 6 .

 6 Non-local singular problem

.1. 11 )

 11 Now we prove the following result: Theorem 6.1.20. Let P : C ∞ c (Ω) → R be the operator such that

  (i) P (φ) = 0 for any φ ∈ C ∞ c (Ω) with supp(φ) ⊂ Ω \ {0}. (ii) There exists constants c a such that P (φ) = ∞ |a|=0 c a D a φ(0) where a = (a 1 , a 2 , . . . , a N ) with a i ∈ N, |a| = N i=1 a i , D a = (∂ a 1 φ, ∂ a 2 φ, . . . , ∂ a N φ).

.1. 15 ) 6 . 1 . 21 .

 156121 Theorem Let P be a bounded linear functional satisfying(6.1.15). Then c a = 0 for any |a| ≥ 1.

Chapter 6 .

 6 Non-local singular problem

  ψ ε ≥ ˆΩε ˆΩε (v λ (x) -v λ (y))(ψ(x) -ψ(y)) |xx) -ψ(y))(v λ + ψ)(y) |x -y| 2 dxdy + 2 ˆΩε ˆΩc ε v λ (x)ψ(x)|x -y| 2 dxdy.

. 6 . 1 . 4 .

 614 Global multiplicity result via variational method

  .1.42) 

.1. 44 )

 44 Define Θ = λ ´1 -1 F (u λ + v λ ) + G(u λ + v λ ) dx. Using the Remark 6.1.25, we have Jλ (v k ) = J λ (u l a + v k ) -J -λ(u λ ). Therefore, 2(γ 0 + Θ + J λ (u λ )) = lim k→∞ u λ + v k 2 . Since Jλ (v λ ) < γ 0 then u λ + v λ 2 < lim k→∞ u λ + v k 2 . It gives that 0 < u λ + v λ 2 < 2(γ 0 + Θ + J λ (u λ )). (6.1.45) 

.1. 47 )From ( 6 . 1 .Proof of Theorem 6 . 1 . 15 :

 47616115 [START_REF] Barrios | Semilinear problems for the fractional laplacian with a singular nonlinearity[END_REF]) and (6.1.47), we obtain contradiction. Therefore, v λ = 0. The proof follows from 6.1.22, Lemma 6.1.24, Lemma 6.1.26 along with Lemma 6.1.29. The proof of Hölder regularity follows straightaway from Lemma 6.1.24 and [6, Theorem 1.2] with β = 0.

6. 2 . 1 . 14 : 1 2

 21141 Generalization of symmetry results to fractional Laplacian operatorProof of Remark 6.Suppose there exists a sequence (λ k , u k ) of solutions in S ∩ ((0, Λ)× C 0 ([-1, 1])) such that λ k → Λ a and u k L ∞ ((-1,1)) → ∞ as k → ∞. Now we claim that ´1 -1 g(u k ) ≤ C where C is independent of k. Suppose by contradiction that C depends upon k such that C(k) → ∞ as k → ∞. Since g(u k ) ∈ L ∞ loc ((-1, 1) \ {0}) uniformly in k, then for each k ∈ N there exists a sequence { k } such that k → 0, ˆBr(0)\B k (0) g(u k ) dx = n → ∞ as k → ∞. (6.1.48)and a sequence of classical solutions{v k } such that v k ∈ L ∞ ((-1, 1))∩C s (R) (see Proposition 1v k = χ (-1,1)\B k (0) g(u k ), v k ≥ 0 in (-1, 1), v k = 0 in R \ (-1, 1).

6. 2 . 1 .

 21 Main results

´Q 1 |x-y| 2 - 1

 11 θ)ur 1 ) δ+1 if v r 1 = 0, 0 if v r 1 = 0for some θ ∈ (0, 1). Define k :R N → R, k(x) = m(x) -m(D r 1 (x)) + a[1 Q (x) -1 Q (D r 1 (x))] with m ∈ C 2 c (R N ), 0 ≤ m ≤ 1 on R n , m(x) = 1 in B r 0 (x * ), m(x) = 0 in R N \ B 2r 0 (x * ) and satisfies k(D r 1 (x)) = -k(x) on Σ r 1 , k = 0 in Σ r 1 \ (U ∪ Q)and k = a on Q where the choice of a will be fixed later. Then by Proposition 2.3 in[START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF] we obtain, (-∆) s m, ψ ≤ C 1 ψ L 1 (U ) for ψ ∈ τ , ψ ≥ 0 and C 1 = C 1 (m) independent of ψ. Since ψ = 0 in R n N \ U , (U ∩ Q) ∪ (U ∩ D r 1 (Q)) = ∅ and m(D r 1 (x))ψ(x) = 1 Q (x)ψ(x) = 1 Dr 1 (U ) (x)ψ(x) = 0 in R N . Then we have (-∆) s k, ψ ≤ C a ψ L 1 (U )whereC a := C + sup x∈U ˆDr 1 (U ) 1 |x -y| 2 dy -a inf x∈U ˆQ 1 |x -y| 2 -1 |x -D r 1 (y)| 2 dy. Since |x -y| ≤ |x -D r 1 (y)| for all x, y ∈ Σ r 1 , U ⊂ Σr 1 and then continuity of the function x → |x-Dr 1 (y)| 2

  2.1) in Σ r 1 -\ S then by using |x -y| ≤ |x -D r 1 -(y)| for all x, y ∈ Σ r 1 -, D r 1 -(R \ Σ r 1 -) = Σ r 1 -and taking w := 1 Σ r 1 -v -

r 1 -

 1 such that supp(w) ⊂ Σ r 1 -\ S as a test function, then after some straightforward computations we obtain(-∆) s w, w + (-∆) s v r 1 -, w = -2 ˆΣr 1 -ˆRn w(x)[w(y) + v r 1 -(y)] |x -y| N +2s dy dx = -2 ˆΣr 1 -ˆΣr 1 - w(x) v + r 1 -(y) |x -y| N +2s -v r 1 -(y) |x -D r 1 -(y)| N +2s dy dx ≤ 0. (6.2.2) Let λ r 1

2s p- 1 k 1 k

 11 u k (x) where λ 2s p-M k = 1. We noticed that λ k → 0 as k → ∞ (since M k → ∞) and for large k, v k (y) is well defined in B m λ k (0) and sup y∈B m λ k (0) v k (y) = v k (0) = 1 where 0 < 2m ≤ inf k dist(x k , ∂Ω). Accordingly, v k satisfies (-∆) s v k = µ k

Chapter 6 .

 6 Non-local singular problem µ 1 of (-∆) s in B r ) to the equation satisfied by u, we obtain µ ˆBr ψ 1 u δ dx + ˆBr exp(u α )ψ 1 dx = µ 1 ˆBr uψ 1

C 1 d

 1 δ (x) ≤ K δ (x) ≤ C 2 d δ (x) (6.3.1)for some δ ∈ [0, sp), where, for any x ∈ Ω, d(x) = dist(x, ∂Ω) = inf y∈∂Ω |x -y|. The operator (-∆) s p is known as fractional p-Laplacian operator and defined as(-∆) s p u = 2 lim →0 ˆBc (x) [u(x) -u(y)] p-1 |x -y| N +sp dy with the notation [a -b] p-1 = |a -b| p-2 (a -b).

6. 3 . 1 .

 31 Function spaces and main results

.Definition 6 . 3 . 1 .

 631 [u] s,p := ¨R2N |u(x) -u(y)| p |x -y| N +sp dx dy 1 p . Define W s,p (R N ) := {u ∈ L p (R N ) : [u] s,p < ∞} endowed with the normu s,p,R N = u L p (R N ) + [u] s,pwhere . p denote the L p norm. We also defineW s,p 0 (Ω) := {u ∈ W s,p (R N ) : u = 0 a.e. in R N \ Ω} endowed with the norm u s,p = [u] s,p .We can equivalently define W s,p 0 as the closure of C ∞ c (Ω) in the norm [.] s,p , with continuous boundary of the domain of Ω (see Theorem 6,[START_REF] Fiscella | Density properties for fractional Sobolev spaces[END_REF]) whereC ∞ c (Ω) := {f : R N → R : f ∈ C ∞ (R N ) and supp(f ) ⊂ ω Ω}.We also defineW s,p loc (Ω) = {u : Ω → R | u ∈ L p (ω)}, [u] s,p,ω < ∞, for all ω Ω}where the localized Gagliardo seminorm is defined as[u] s,p,ω := ¨ω2 |u(x) -u(y)| p |x -y| N +sp dx dy 1/p A function u ∈ W s,p loc (Ω)is said to be a weak subsolution (resp. supersolution) of (P ), ifu κ ∈ W s,p 0 (Ω) for some κ ≥ 1 and inf K u > 0 for all K Ω and ¨R2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ (resp. ≥) ˆΩ K δ (x)u γ φ dx for all φ ∈ T = Ω Ω W s,p 0 ( Ω).

  s,p 0 (Ω) ∩ L ∞ (Ω) satisfying ¨R2N [u(x) -u(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy = ˆΩ gφ dx for all φ ∈ W s,p 0 (Ω). Then, for every C 1 convex function Φ : R → R, the composition w = Φ•u satisfies ¨R2N [w(x) -w(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ ˆΩ g|Φ (u)| p-2 Φ (u)φ dx.

  K ,δ is an increasing function as ↓ 0, K ,δ → K δ a.e. in Ω and there exist two positive constants C 3 , C 4 such that, for any x ∈ Ω, )s p u = K ,δ (x) (u + ) γ in Ω, u = 0 in R N \ Ω.

  .4.4.4 and Corollary 1.4.4.10 in [162]), we obtain ˆΩ |w n -w|d δ (x) dx = ˆΩ |w n -w| d s (x) 1-ν |w n -w| ν d s(1-ν)-δ (x) dx ≤ C w n -w 1-ν s,p w n -w ν L q (Ω)

  3.3) and applying Hölder and Hardy inequalities (see Theorem 1.4.4.4 and Corollary 1.4.4.10 in[START_REF] Grisvard | Elliptic Problems in nonsmooth domains[END_REF]) , we obtain[u ] p s,p ≤ C 2 ˆΩ d s(1-γ)-δ (x) u s,p ≤ C < ∞. Case 2: δ -s(1 -γ) > 0 Let Φ : R + → R + be the function defined as Φ(t) = t θ for some θ > max 1, p + γ -1 p , Λ For any > 0, choosing g = K ,δ (u + ) γ ∈ L ∞ (Ω) and w = Φ • u in Proposition 6.3.2, we obtain ¨R2N [Φ(u )(x) -Φ(u )(y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy ≤ ˆΩ K ,δ (x) (u + ) γ |Φ (u )| p-2 Φ (u )φ dx (6.3.5) Chapter 6. Non-local singular problem

  3.5), we get ¨R2N |Φ(u )(x) -Φ(u )(y)| p |x -y| N +sp dx dy ≤ ˆΩ K ,δ (x) (u + ) γ |Φ (u )| p-2 Φ (u )Φ(u ) dx ≤ C 2 ˆΩ 1 d δ (x)|Φ (u )| p-2 Φ (u )Φ(u ) any > 0, there exists a constant C independent of such that|Φ (u )| p-2 Φ (u )Φ(u ) u γ ≤ C(Φ(u )) θp-(p+γ-1) θ . (6.3.7)where θp-(p+γ-1)θ > 0 since θ > p+γ-1 p. By combining (6.3.6)-(6.3.7), we obtain applying Hölder and Hardy inequalities:[Φ(u )] p s,p ≤ C ˆΩ d s(θp-(p+γ-1)) θ -δ (x) Φ(u ) d s (x)and we conclude {Φ(u )} >0 is bounded in W s,p 0 (Ω). Finally, let Ω Ω, and φ ∈ W s,p 0 ( Ω). By Proposition 6.3.3, there exists a constant η Ω such that for any > 0, u (x) ≥ η Ω, for a.e. in Ω.By the previous inequality, we haveK ,δ (x)φ (u + ) γ ≤ η γ ΩM |φ|where M = 1 dist δ ( Ω,Ω) , hence we get by Dominated convergence theorem: ˆΩ K ,δ (x)(u + ) γ φ dx → ˆΩ K δ (x) u γ φ dx

Theorem 6 . 3 . 5 . 1 α 1 α[ 1 -[ 1 -[ 1 -

 63511111 Let λ ≥ 0, α ∈ (0, s) and p > 1. Then, there exist two positive constants C 1 , C 2 > 0 depending upon α, p and s such thatC 1 (x + λ ) -β ≤ (-∆) s p U λ (x) ≤ C 2 (x + λ ) -β pointwisely in R + . (6.3.8) Moreover, for λ > 0, U λ ∈ W s,p loc (R + ) and for λ = 0, U λ ∈ W s,p loc (R + ) if s -1 p < α < s. Proof. Let x ∈ R + and let ∈ R such that | | < x. We have ˆR\(x-| |,x+| |) [U λ (x) -U λ (z)] p-1 |x -z| 1+sp dz = + λ 1/α ) -β P (x)where, by the change of variable y = z+λ 1/α x+λ 1/α :P (x) :=(x + λ 1/α ) sp y α ] p-1 |1 -y| 1+sp dy y α ] p-1 |1 -y| 1+sp dy + y α ] p-1|1 -y| 1+sp dy := P 1 (x) + P 2 (x, ) + P 3 (x, ) + P 4 (x, ).

P 1 ˆ1-| | x+λ 1/α 0 ( 1 -HenceP 2 , 3 ˆ1-| | x+λ 1 /α 0 ( 1 -

 10123101 (x) = (x + λ 1/α ) sp ˆ-λ 1/α change of variable y → 1 y in P 3 yields:P 3 (x, ) = -y α ) p-1 y β-1 |1 -y| 1+sp dy. (x, ) := P 2 (x, ) + P 3 (x, ) = y α ) p-1 (1 -y β-1 ) |1 -y| 1+spdy.(6.3.10) 

P 2 , 3 (( 1 - 1 -Case 2 :

 23112 y s) p-1 (1 -y s-1 ) (λ 1/α ) s -(x + λ 1/α -| |) β ≥ 1

P 2 , 3 ˆ1-| | x+λ 1 /α 0 ( 1 -

 23101 (x, ) ≤ max{1, β -1} y) p(1-s)-1 dy ≤ max{1, β -1} p(1 -s) . (6.3.12)Finally we estimate the last term P 4 :|P 4 (x, )| ≤ |y -1| s(p-1) |y -1| 1+sp dy = 1 s (x + λ 1/α ) s -(x + λ 1/α -| |) s

1 sp

 1 + max{1,β-1} p(1-s) if β ≥ 1.

Chapter 6 . 2 ˆb+λ 1 /α a+λ 1 / 2 ˆb+λ 1 ( 1 - 2 ˆb+λ 1

 621121121 Non-local singular problemFinally the assertion, U λ ∈ W s,p loc (R + ) follows by showing U λ ∈ W s,p (a, b) for all -λ 1/α < a < b < ∞. Indeed, using the symmetry of the integrand and changes of variable, we obtain¨[a,b] 2 |U λ (x) -U λ (y)| p |x -y| 1+sp dx dy = ˆb+λ 1/α a+λ 1/α ˆb+λ 1/α a+λ 1/α |x α -y α | p |x -y| 1+sp dx dy = α ˆx a+λ 1/α |x α -y α | p |x -y| 1+sp dy dx = t α ) p (1 -t) 1+sp dt dx <

Corollary 6 . 3 . 3 .

 633 Let λ ≥ 0, α ∈ (0, s), A ∈ GL N and p > 1. Let J ,A be the function defined on R N + by J ,A (x) = ˆB (0) c [V λ (x) -V λ (x + z)] p-1 |Az| N +sp dz

1 C

 1 W λ (x) -β α ≤ (-∆) s p W λ (x) ≤ CW λ (x) -β α E-weakly in ψ({X : 0 < X N < ρ}). (6.3.17) Proof. Define, for any x ∈ ψ(R N + ), H(x) = 2 lim →0 H (x)where for > 0,H (x) = ˆ(D (x)) c [W λ (x) -W λ (y)] p-1 |x -y| N +sp dy (6.3.18)and D (x) = {y ∈ R N : |ψ -1 (x) -ψ -1 (y)| ≤ }.

Chapter 6 .

 6 Non-local singular problemwhere, by Lemma 3.4 in[START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], there exists a constant C ψ such that|h(X, Y )| = |A X (X -Y )| N +ps |ψ(X) -ψ(Y )| N +sp | det A Y | -| det A X | ≤ C ψ min{|X -Y |, 1}.

  X)| ≤ c ψ and 1 c ψ ≤ Dψ(X)) ∞ ≤ c ψ . (6.3.19)

( 6 . 3 . 20 )

 6320 First, by Hölder regularity of the mapping x → x α , we have for any X ∈ R N + :H ,2 (X) ≤ C ψ ˆ∞ 1 1 t 1+β dt ≤ C ψ . (6.3.21) 

1 |U

 1 λ (r) -U λ (t)| p-1 |r -t| sp dt + ˆr+1 r+ϑ |U λ (r) -U λ (t)| p-1 |r -t| sp dt = H ϑ,1 (r) + H ϑ,2 (r).

( 6 . 3 . 23 )

 6323 For H ϑ,1 , we consider two cases: for r ≤ 1 -λ 1/α , we haveH ϑ,1 (r) = ˆ-λ 1/α r-1 |U λ (r)| p-1 |r -t| sp dt + ˆr-ϑ -λ 1/α |U λ (r) -U λ (t)| p-1|r -t| sp dt.

( 6 . 3 . 25 )

 6325 For r > 1 -λ 1/α , we haveH ϑ,1 (r) ≤ ˆr-ϑ -λ 1/α |U λ (r) -U λ (t)| p-1 |r -t| sp dt ≤ 1 1 -s (r + λ 1/α ) 1-β .

.3. 39 ) 1 α 1 α

 3911 ˆQ |w ρ (x) -w ρ (y)| p |x -y| N +sp dx dy = ˆQ |(d(x) + λ ) α -(d(y) + λ ) α | p |x -y| N +sp dx dy ≤ C Ω,η(6.3.41)and for the second part, we perform change of variables using (6.3.40) and diffeomorphisms Ξ i ˆK×K\Q |w ρ (x) -w ρ (y)| p |x -y| N +sp dx dy = ˆΞ-1

Case 1 : 1 C 2 c γ 4 K 2 C 1 c γ 1 K 1 C 2 c γ 4 1 p- 1 and C * = C 2 C 1 c γ 1 1 p- 1

 11421111211 δ s + γ ≤ 1 Let ũ and u are weak solution of the problem (S ζ 0 ) for ζ = δ + γs ≤ s and ζ = δ + γ(s -) < s respectively for ∈ (0, s). Then, from Theorem 6.3.9 (ii) there exist constants c i > 0 such thatc 1 d s (x) ≤ ũ(x) ≤ c 2 d s-(x), c 3 d s (x) ≤ u(x) ≤ c 4 d s-(x) in Ω and u, ũ satisfies (-∆) s p (C * u) = C δ+γ(s-) (x) ≤ C 1 d δ (x)(c 2 d s-(x)) γ ≤ C 1 d δ (x) uγ ≤ K δ (x) uγ and K δ (x) ũγ ≤ C 2 d δ (x)ũ γ ≤ C 2 d δ (x)(c 1 d s (x)) γ ≤ C δ+γs (x) = (-∆) s p (C * ũ)where C * = C and C 1 , C 2 are defined in (6.3.1). Then by applying Theorem 6.3.1, we getC 1 d s (x) ≤ u(x) ≤ C 2 d s-(x) in Ω (6.3.51) for every > 0, C 1 = c 1 C * and C 2 = c 4 C * .

4 d(

 4 3.52): for anyx ∈ Ω \ Ω η 2 , we have K λ,δ (x) (u λ + λ) γ ≤ D κd s (x)) γ ≤ cη -(δ+γs) ≤ c.Finally, we deduce that for any η > 0, there exists κ η > 0 independent of λ such thatu λ L ∞ (Ω\Ωη) ≤ κ η . (6.3.54)For α = sp-δ p+γ-1 and 0 < η < η * , define u λ = c η w ρ and u λ = ċη w ρ such that 0 < c η ≤ η 2

2 1 αC 5 , 1 α 1 η≥ C 4

 15114 and u λ (x) ≤ u λ (x) ≤ u λ (x) for x ∈ Ω c .(6.3.55) Using the definition of w ρ and w ρ in (6.3.30) and (6.3.31) respectively and estimates in(6.3.32), we obtain(u λ + λ) = c η (d(x) + λ 1/α ) α + λ (1 -c η ) and (u λ + λ) = ċη (d(x) + λ ) α + λ in Ω and (-∆) s p u λ ≤ c p-1 η C 6 (d(x) + λ 1 α ) δ+αγ ≤ c p-1 η C 6 K λ,δ (x) C 3 (d(x) + λ 1 α ) αγweakly in Ω η , (6.3.56) C 6 and C 3 , C 4 are defined in (6.3.32) and (6.3.2) respectively. Since ċη → ∞ as η → 0 and (u λ + λ) ≥ ċη (d(x) + λ ) α , we can choose η small enough (independent of λ) such that C 5 ċγ+pand (6.3.57) reduced to(-∆) s p u λ ≥ K λ,δ (x) (u λ + λ) γ weakly in Ω η .Now to prove similar estimate for u λ , we divide the proof into two cases; for x ∈ Ω η :Case (i): c η (d(x) + λ 1/α ) α ≥ λ (1 -c η ) In this case, we have (u λ + λ) -γ ≥ (2c η ) -γ (d(x) + λ 1/α ) -αγ and by choosing η small enough such that 2 γ c γ+p-1 η ≤ C 3 C 6 , (6.3.56) reduced to (-∆) s p u λ ≤ 2 γ c γ+p-1 η

  3.55) and passing λ → 0,C 1 d sp-δ p+γ-1 ≤ u ≤ C 2 d sp-δ γ+p-1 in Ω. (6.3.58) whereC 1 = c η and C 2 = ċη .Interior and boundary regularity: First we claim the following:Claim: For all x 0 ∈ Ω and R 0 = d(x 0 ) 2 there exists universally C Ω > 0, 0 < ω 1 < s and 0 < ω 2 ≤ sp-δ p+γ-1 such that if 1 < p < 2 : u C ω 1 (B R 0 (x 0 )) ≤ C Ω for δ s + γ ≤ 1, u C ω 2 (B R 0 (x 0 )) ≤ C Ω for δ s + γ ≥ 1 (6.3.59) and if 2 ≤ p < ∞ : u C s-(B R 0 (x 0 )) ≤ C Ω for δ s + γ ≤ 1, u C sp-δ p+γ-1 (B R 0 (x 0 )) ≤ C Ω for δ s + γ ≥ 1. (6.3.60) Chapter 6. Non-local singular problem Let x 0 ∈ Ω, R 0 = d(x 0 ) 2

ω 1 0 R 1 0 1 ≤C 1 +- 1 ≤ C 2 .

 011112 (sp-δ-γs) p-+ u L ∞ (B 2R 0 (x 0 )) + (2R 0 ) sp ˆ(B 2R 0 (x 0 )) c |u(y)| p-1 |x 0 -y| N +sp dy 1 pand if δ s + γ > 1: [u] C ω 2 (B R 0 (x 0 )) ≤ CR -ω 2 u L ∞ (B 2R 0 (x 0 )) + (2R 0 ) sp ˆ(B 2R 0 (x 0 )) c |u(y)| p-1 |x 0 -y| N +sp dy 1 pFurthermore, using Proposition 6.3.4 for p ∈ [2, +∞), we get for any > 0[u] C s-(B R 0 /32 (x 0 )) ≤ C 3 if 0 < δ s + γ ≤ 1 and [u] C sp-δ p+γ-1 (B R 0 /32 (x 0 )) ≤ C 4 if δ s + γ > 1.

  3.60) and by a covering argument for any Ω Ω, we concludeif 1 < p < 2 : u C ω 1 (Ω ) ≤ C Ω for δ s + γ ≤ 1, u C ω 2 (Ω ) ≤ C Ω for δ s + γ ≥ 1 (6.3.61) and if 2 ≤ p < ∞ : u C s-(Ω ) ≤ C Ω for δ

  and either p t ≤ 0 a.e. in Q T , or|p t | ≤ C a.e. in Q T and p ≤ 2. Further, if |∇p| + |p t | ≤ C a.e. in Q T , u 0 ∈ W 1,2 0 (Ω) and p ≤ 2 in Q T , then |D 2

  (∇u)|∇u| 2 dx ≤ C 0 + δ ˆΩ γ (x, ∇u)|u xx | 2 dx + C δ ˆΩ u 2 β

			1.4.1.2. Main results
	us to the following estimate
		ˆΩ β	p(x)+r-2 2
			p(x)+2r-2 2	(∇u) dx + C 1 ˆΩ |u|β	p(x)+r-1+ν 2
				1)
	ˆΩ β	p(x)+r-2 2	

(∇u)|∇u| 2 dx ≤ δ ˆΩ γ (x, ∇u)|u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx

with an independent of u constant C. A straightforward computation via Green's formula and a set of logarithmic inequalities (for more details see (4.2.18), Page 119, Chapter 4) leads

  1.4.1.3. A priori estimates and existence of strong solution the monotonicity of the flux γ ((x, t), s)s = ( 2 + |s| 2 )

	p(x,t)-2
	2

  Kirchhoff term and exponential non-linearity of Choquard type in the limiting case of Sobolev embedding (i.e. p = n). We primarily focused on the n-Laplacian and Polyharmonic operators with subcritical and critical exponential non-linearity, that arise out of several Orlicz type embeddings proved by Adams, Trudinger and Moser. For the existence of solution for Kirchhoff problem with Choquard non-Chapter 2. Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity ties, Hardy-Littlewood-Sobolev inequalities, compactness via higher integrability lemma and Mountain pass lemma. To answer the question of multiplicity, we study the convex-concave problem (involving an extra sublinear sign changing term) with nonlocal Kirchhoff term and exponential non-linearity of Choquard type, by Nehari manifold technique. Finally, to study the system of Kirchhoff equations with exponential nonlinearity of Choquard type, we prove a new singular and non-singular version of Adams, Moser and Trudinger inequalities and via variational method we prove the existence of a weak solution.

	This chapter includes the results of the following research articles:
	(i) R. Arora, J. Giacomoni, T. Mukherjee and K. Sreenadh, n-Kirchhoff-Choquard equations
	with exponential nonlinearity, Nonlinear Analysis, 186 (2019), 113-144.

linearity, we seek help of variational method in the light of Adams-Moser-Trudinger inequali-(ii) R. Arora, J. Giacomoni, T. Mukherjee, K. Sreenadh, Polyharmonic Kirchhoff type Choquard equations involving exponential nonlinearity with singular weights, Nonlinear Analysis, 196 (2020), 111779, 24 pp. (iii) R. Arora, J. Giacomoni, T. Mukherjee K. Sreenadh, Adams-Moser-Trudinger inequality in cartesian product of Sobolev space and its applications, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 114 (2020), no. 3, Paper No. 111, 26 pp.

λ 0 ) and u ∈ H + , there exist t * , t 1 , t 2 > 0 such that t 1 u ∈ N +

  

	tu)u dx
	and observing the fact that tu ∈ N λ,M if and only if t > 0 is a solution of ψ u (t) = λ ´Ω h(x)|u| q+1 dx. In this regard, we prove the following result which totally describes the
	geometry of the fiber map:
	Lemma 2.4.10. (i) For any u ∈ H -0 \ {0} and λ > 0, there exists a unique t * > 0 such
	that t * u ∈ N -λ,M . Moreover, Φ u,M is increasing on (0, t * ) and decreasing on (t * , ∞).
	(ii) For any λ ∈ (0, λ,M and
	t 2 u ∈ N -λ,M for any and t 1 < t * < t 2 .
	As an application of Lemma 2.4.10, we also prove the non-existence of non-trivial solutions
	in the degenerate component N 0 λ,M i.e. N 0 λ,M = {0}. (For a detailed proof we refer to Lemma
	5.1.20, Page 251, Chapter 5)

  ˆΩ(|u| n + |∇u| n ) dx. Precisely we establish the following result.

	The main ingredients in the proof of above results are Lemma 5.3.1, Page 287, Chapter 5, gen-
	eralized Hölder inequality and existing Adams, Moser and Trudinger inequalities mentioned
	in Section 2.2.1. Moreover, to prove the sharpness of the exponent in various Theorem, we
	construct the sequence of functions using Adams and Moser functions such that supremum
	of the required integrals is not finite. For detailed proof the above inequalities, we refer to
	Section 5.3, Page 286, Chapter 5.						
								1	
								n	
	where u n W 1,n (Ω) := Theorem 2.4.23. For (u, v) ∈ Z, n ≥ 2, λ ∈ [0, n) and Ω ⊂ R n be a smooth bounded domain,
	we have	ˆΩ exp( β(|u|	n n-1 + |v| |x| λ	n n-1 ))	dx < ∞	
	for any β > 0. Moreover,							
	sup (u,v) Z =1	ˆΩ exp( β(|u|	n n-1 + |v| |x| λ	n n-1 ))	dx < ∞ if and only if	2 α n β	+	λ n	≤ 1
	where α n is defined in Theorem 2.2.1.						

  In case of local operator, i.e. p-Laplacian operator, the optimal condition of Sobolev regularity in Theorem 1.4,[START_REF] Giacomoni | Sobolev and Hölder regularity results for some Singular double phase problems[END_REF] coincide with the our condition for s = 1.The proof of above result follows from testing the equation (3.4.10) with the approximated solution of the problem (P γ ). Precisely, by taking φ = u in (3.4.10), we obtain

	Corollary 3.4.2. For δ s + γ > 1 and Ω be a bounded domain with C 1,1 boundary. Then the
	minimal weak solution u of the problem (P ) has the optimal Sobolev regularity:
	u ∈ W s,p 0 (Ω) if and only if Λ < 1
	and
	u ρ ∈ W s,p 0 (Ω) if and only if 1 ≤ Λ < ρ.

3.4.2.2. Main results and glimpse of proof Remark 3.4.4.

  The solution satisfies the estimate

	4.2.1. Statement of main results	
		ˆQT		
	ess sup	u 2,Ω +	|∇u| p(x,t) dx dt ≤ C	(4.2.4)
	t∈(0,T )			

with a constant C depending only on N , p ± , f 2,Q T and u 0 2,Ω .

  be a bounded domain with the boundary ∂Ω ∈ C 2 . Assume that p(x, t) satisfies conditions (4.2.3) and

	ess sup

  Proof. Applying (4.2.24) to u x i we obtain

). Inequality (4.2.24) follows now from (4.2.23). 123 Chapter 4. Parabolic problems with nonstandard growth Lemma 4.2.6. Let ∂Ω ∈ C 2 . Assume that the functions p(x) and u(x) satisfy the conditions of Lemma 4.2.3. Then for every λ ∈ (0, 1) ˆ∂Ω |∇u| p(x) dS ≤ λ ˆΩ( 2 + |∇u| 2 ) p(x)-2 2 |u xx | 2 dx + C 1 + ˆΩ |∇u| p(x) dx (4.2.25) with a constant C depending on λ and the constants p ± , L, M 0 , M 1 in (4.2.14) and ∂Ω, but independent of u.

  ) dx (4.2.28) with an arbitrary δ 2 > 0 and a constant C independent of and m.

	Lemma 4.2.8. Under the conditions of Lemma 4.2.2
	sup
	(0,T )

  Gathering these estimates and applying Theorem 4.2.2 we obtain (4.2.30) with r ∈ (r * , r * ). The case r ∈ (0, r * ] follows then by the Young inequality.

	Remark 4.2.2. Inequality (4.2.30) entails the inequality ˆQT ( 2 + |∇u (m) | 2 ) p(z)+r 2 dz ≤ C, ∈ (0, 1), t ∈ (0, r * ),	(4.2.32)
	with an independent of constant C.	
	Lemma 4.2.9. Let the conditions of Lemma 4.2.2 be fulfilled and	
	ess sup	

  .2.39) 

	Remark 4.2.3. Due to the fact that estimate (4.2.39) is global in time and space, it is new
	even in the case of constant p. We refer to [114] for a detailed insight into this issue, in
	particular, to [114, Lemma 5.4].
	Let > 0 be a fixed parameter, Ω be a bounded domain with the boundary ∂Ω ∈ C 2
	boundary, and let u

(m) 

be the sequence of Galerkin approximations defined in (4.2.7). Under the assumptions 4.2.5.1. Existence and uniqueness of weak solution

  Thus, the limit function u satisfies identity (4.2.2) with the regularized flux ( 2 +|∇u | 2 ) The initial condition for u is fulfilled by continuity because u ∈ C 0 ([0, T ]; L 2 (Ω)).Uniqueness of the weak solution is an immediate byproduct of monotonicity of the function γ (z, s)s. Let u 1 , u 2 be two different strong solutions of problem (4.2.6). Combining equalities (4.2.2) for u i with the test-function u 1 -u 2 , using (4.2.43) and the formula of integration by parts (4.1.7) we find that (t) ≤ 0 for a.e. t ∈ (0, T ),whence u 1 = u 2 a.e. in Q T . Let us prove estimates (4.2.38), (4.2.39). The uniform with respect to estimates (4.2.29) and (4.2.33) allow us to choose a subsequence of {u

	4.2.5.2. Second-order regularity
		p(z)-2 2	∇u .
	u 1 -u 2	2 2,Ω

(m) 

} which satisfies (4.2.40) and also

  By Lemma 4.2.11 the function γ (z, s)|s| 2 is strictly convex with respect to s. According to (4.2.11)

	1 + 2	p + 2	+ γ (z, s)|s| 2 ≥ 1 + |s| p(z) ≥ |s| p -.	(4.2.44)
	By virtue of the energy equalities (4.2.41), (4.2.42) and the limit relations (4.2.40)	

  Now we apply Proposition 4.2.1 with F m (z, s) = γ (z, s)|s|2 + M and a sufficiently large positive constant M . It follows that ∇u (m) → ∇u a.e. in Q T , whence

		4.2.5.2. Second-order regularity	
	γ	1 2 (z, ∇u (m) )∇u (m) → γ	1 2 (z, ∇u )∇u a.e. in Q T .	(4.2.45)
	(ii) According to (4.2.29) and (4.2.32), for every i, j = 1, 2, . . . , N	

  and D 2 ij u p(•),D ≤ C by the lower semicontinuity of the modular. Let u be a solution of problem (4.2.6). The regularity of the regularized flux

	Remark 4.2.4.

  .2.48) 4.2.6.2. Higher integrability of the gradient By virtue of monotonicity, for every φ

  By the property of lower semicontinuity of the modular ˆQT |∇u| p(z)+δ dz ≤ lim inf k→∞ ˆQT |∇u k | p(z)+δ dz ≤ C δ with the constant C δ from (4.2.39). Let us assume that p -> max 2N N +2 , 6 5 and show that ∇u → ∇u a.e. in Q T . Consider the sequence of nonnegative functions F k (z, s) = γ k (z, s)|s| 2 . F (x, s) are strictly convex with respect to s (by Lemma 4.2.11) and satisfy inequality (4.2.44). It is already shown that ∇u k ∇u in L p(•) (Q T ). According to (4.2.46), (4.2.47)

	4.2.6.3 Second-order regularity of strong solutions

  1,2 0 (Ω) satisfying condition (4.3.8) problem (4.3.1) has at least one strong solution u. The solution u satisfies estimate (4.3.9) with the constant depending on the same quantities as in the case b ≡ 0 and on ∇b

  0) dx with a constant C independent of m and . Since a(•, 0) is uniformly bounded in Ω, the sequence {u } according to (4.3.20) and |∇u 0 | satisfies inequality(4.3.8), this estimate allows one to continue each of u

	(m)
	0

  .3.27) where C is the constant from the Poincaré inequality (4.1.5) with r = 2. Thus, if f, Φ are defined by (4.3.22) and f, |Φ| ∈ L H * (Ω), then problem (4.3.25) has a unique solution u m ∈ P

m in a ball u m 2 2,Ω = |c| 2 m ≤ ρ 2 . Theorem 4.3.4. Assume that the exponents p(•, 0), q(•, 0) and the coefficient a 0 (•) satisfy conditions (4.3.3), (4.3.4), (4.3.5), (4.2.19). If u 0 ∈ V 0 (Ω), then problem (4.3.21) has a unique weak solution u ∈ V 0 (Ω). Proof. Let {u m } ⊂ V 0 (Ω) be the sequence of the approximate solutions. By (4.3.25), (4.3.26)

  .3.31) According to Proposition 4.3.1 (ii) and (4.3.29) (i) we have ρ H (u m ) → ρ H (u) and H(x, |u|) ∈ L 1 (Ω). The claim (4.3.29) follows now from (4.3.30) and (4.3.31).

  ).

	Let	r * =	2 N + 2	and r * =	4p -p -(N + 2) + 2N	.	(4.3.44)
						(4.3.43)	

  prove estimate (4.3.48), we make use of Theorem 4.2.2. Let us fix a number r ∈ (r

* , r * ) with r * , r * defined in

(4.3.44)

. Split the cylinder Q T into the two parts

  3.47), (4.3.34) and Theorem 4.2.2 we obtain (4.3.48) with r ∈ (r

* , r * ):

  Remark 4.3.1. Under the conditions of Lemma 4.3.6 ˆQT ( 2 + |∇u (m) | 2 )

	p(z)+r 2	dz ≤ C,	∈ (0, 1),	(4.3.49)
	with an independent of and m constant C.			
	Corollary 4.3.2. Let condition (4.3.7) be fulfilled. Under the conditions of Lemma 4.3.6

  2,Ω . We follow the proof of Lemma 4.3.5: multiplying each of equations in (4.3.19) by λ j u

	(m)
	j

  Let in the conditions of Lemma 4.3.8, 2 ≤ σ

) dz with new constants C, C , C which do not depend on and m. The last term on the righthand side of this inequality is estimated by virtue of Lemma 4.3.1 and estimates (4.3.54), (4.3.55).

Lemma 4.3.9.

  Let u 0 , f , p, q, a and ∂Ω satisfy the conditions of Theorem 4.3.1. Then for every ∈ (0, 1) problem (4.3.16) has a unique solution u which satisfies the estimates

	4.3.6.1. Regularized problem
	4.3.6.1 Regularized problem
	Theorem 4.3.5.

  +r dz ≤ C,

	which follows from (4.3.7) and (4.3.48). The functions u (m) and (u	(m) ) t are uniformly bounded
	in L ∞ (0, T ; W 1,p -0	

  .3.6.1. Regularized problem last inequality has a limit as m → ∞. Letting m → ∞ and using (4.3.62), we find that for every ψ ∈ P k

as the product of weakly and strongly convergent sequences. This fact together with (4.3.60) means that each term of the 4

  Proof. The proof is an imitation of the proof of Theorem 4.3.5. The estimates of Lemmas 4.3.8, 4.3.9, 4.3.10 allows one to extract a subsequence {u (m k ) } with the convergence properties (4.3.60). Let u be the pointwise limit of the sequence {u (m k ) }. We have to show that for

	3.16) has at least one strong solution u, which
	satisfies estimates (4.3.58), (4.3.59).

(ii) The solution is unique if either σ ≡ 2, or b(z) ≤ 0 in Q T and σ -≥ 1.

  e. in Q T 4.3.6.2. Degenerate problem. Proof of Theorems 4.3.1, 4.3.2 Let {u } be the family of strong solutions of the regularized problems (4.3.16) satisfying estimates (4.3.58). These uniform in estimates enable one to extract a sequence {u k } and find functions u

	and	1 2	u 1 -u 2	2 2,Ω (t) ≤ 0 in (0, T ).
	4.3.6.2 Degenerate problem. Proof of Theorems 4.3.1, 4.3.2

  .4.41) From(4.4.37) we have f (x, v ∆t ) → f (x, v) pointwise and from (4.4.33) together with (4.4.34) we have ´Ω f (x, v ∆t )φ dx is bounded uniformly in ∆ t . Then by Lebesgue dominated conver-

	gence theorem we have		
	ˆT 0	ˆΩ(f (x, v ∆t ) -f (x, v))φ dx → 0 as ∆ t → 0.	(4.4.42)
	Then finally gathering (4.4.39), (4.4.41) and (4.4.42), we conclude by passing to the limits in
	equation (4.4.31) that v is weak solution of (4.4.4).	
	Remark 4.4.9. All the results in Section 4.4.5.1, Section 4.4.2 and Theorem 4.4.4 hold if
	we replace the assumption (f 1) by h ≥ c > 0.	

Proof of Theorem 4.4.5: For a given function g, let g 2 + def

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weightsNow we estimate the following using (5.1.18) and Theorem 2.2.1, Chapter 2,

	ˆB r 0 2

.

1.18) 

  for all t ≥ t.

	(m3) The function M (t) t	is non-increasing for t > 0.
	Using (m3), one can easily deduce that the function
	(m3)	1 2	M(t) -	1 θ	M (t)t is non-negative and non-decreasing for t ≥ 0 and θ ≥ 4.
	Example 5.2.1. An example of a function satisfying (m1), (m2) and (m3) is

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights lim k→∞ u k 2 > u 0 2 , since M is continuous and increasing. From this we get ρ 2 > u 0 2 .

	Moreover we have	M(ρ 2 ) = 2l * +	ˆΩ	ˆΩ F (y, u 0 ) |y| α |x -y| µ dy	F (x, u 0 ) |x| α dx .	(5.2.20)
	Now we define the sequence v k = u k u k and v 0 = u 0 ρ such that v k	v 0 weakly in W m,2 0 (Ω)
	and v 0 < 1. Then from Lemma 2.2.5 we obtain	
		sup k∈N	ˆΩ exp p|v k | 2 < +∞, for p <	ζ m,2m (1 -v 0 2 )	.	(5.2.21)

  ) .

	Therefore from (5.2.21) we conclude that	
		ˆΩ exp	2n 2n -(2α + µ)	q|u k | 2 ≤ C	(5.2.22)
	for some constant C > 0. Using (5.2.22) and ideas similar as in Lemma 5.2.11 we obtain
	ˆΩ	ˆΩ F (y, u k )		

  5.2.3. Nehari manifold method for Kirchhoff-Choquard equation with singular weights 5.2.3 Nehari manifold method for Kirchhoff-Choquard equation with singular weights

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights and observing the fact that tu ∈ N λ,M if and only if t > 0 is a solution of ψ u (t) = λ ´Ω h(x)|u| q+1 dx. First, we need a priori estimates, which indicate the local minimum value of the function ψ u at the local minimum point t * is strictly greater than λH(u).

	Lemma 5.2.13. Let
	Γ

  there exists a unique t * such that t * u ∈ N - λ,M . Moreover, Φ u,M is increasing on (0, t * ) and decreasing on (t * , ∞). (ii) For any u ∈ H + , there exists λ 0 and t * , t 1 , t 2 > 0 such that t 1 u ∈ N + λ,M and t 2 u ∈ N -

	Lemma 5.2.14. Let λ > 0. Then
	(i) For any u ∈ H -0 \ {0}, λ,M

  From Lemma 5.2.13 and (5.2.28), we notice that for u ∈ H + \{0}, there exists a t * > 0, local maximum of ψ u verifying ψ u

	q+1 *	B(t * u)-3	ˆΩ	ˆΩ F (t * u) |x -y| µ |y| α dy	f (t * u)t * u |x| α	dx+2b t * u 2 . (5.2.28)

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights which implies u ∈ Γ\{0} ∩ H + . Again substituting the value of a u 4 from (5.2.29) into (5.2.30), we obtain

	and	(5.2.29)
	3a u 4 + b u 2 = λqH(u) + B(u).	(5.2.30)
	Let u ∈ H + ∩ N 0 λ,M , then substituting the value λH(u) from (5.2.29) into (5.2.30), we obtain
	2 (3 -q) (1 -q) ab u 3 ≤ B(u)	

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights 5.2.5.1 Existence of local minimum of J λ,M in N λ,M Theorem 5.2.22. Let 1 < γ < 2 and λ > 0 satisfies (5.2.25). Then there exists a weak solution u λ

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

	Proof of Theorem 5.3.2 : Using Brezis-Lieb lemma, it is easy to see that
	lim k→∞

  5.3.2. Proof of the main resultsλ ∈ (0, n) and β > 0. Then following two cases arise:

	Case 1: Let β2n αn + λ n < 1 then we choose t > 1 such that
	β2 n α n	+	λt n	= 1.
	Now by using Cauchy-Schwarz inequality and Theorem 5.3.1, we obtain
	ˆΩ exp(β(|u|			

  Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weightsWe argue as along equation(3.19) in Lemma 5.1.12. Consider ˆΩ ˆΩ |F (y, u k

.

4.16) 

  as t → ∞ uniformly in k therefore {t k } must be a bounded sequence in R. Then from (5.4.1), U k , V k = 1 and monotonicity of M , we obtain

	2n -µ 2n	α n 2 n	≤ t	n n-1 k	.	(5.4.19)
	Since d dt (J((tU					

k , tV k ))| t=t k = 0 and ´Bρ/k ´Bρ/k dxdy |x-y| µ ≥ C µ,n ρ k

2n-µ then by using (5.4.17), for k ∈ N large enough we obtain

  First, we recall the definition of an asymptotic bifurcation point and then state the result regarding existence of a global branch of classical solutions to (P λ ) for 1 < α ≤ 2.

		6.1.1. Function spaces and main results
	(H2) For any > 0, lim t→∞	h(t)e -t α = 0 and lim
	Definition 6.1.8. A point Λ a ∈ [0, ∞) is said to be an asymptotic bifurcation point, if there
	exists a sequence (λ n , u n	

t→∞ h(t)e t α = ∞.

  If the sequence of large solutions, say u k , have bounded energy i.e.

	Remark 6.1.14. (a) Under the conditions of Theorem 6.1.13 in assertion (i), we expect
	concentration phenomena to hold for large solutions as λ → 0.
	(b) Let G be the primitive of g defined as g(t) = 1 t δ + f (t) and assume that G(t) = O(g(t))
	as t → ∞.

  150, Lemma 4.2], we haveu λ + v n , εψ + ψ n,ε ≤ u λ + v λ , εψ + ψ ε + o n (1). (6.1.33) By Hardy's Inequality (See [162, Corollary 1.4.4.10, p.23]) and dominated convergence theorem, ˆ1 -1(u λ + v n ) -δ (εψ + ψ n,ε ) dx → ˆ1 -1 (u λ + v λ ) -δ (εψ + ψ ε ) dx.

	(6.1.34)
	Taking into account the hypothesis (K2), Theorem 3.1.3 and Vitali's convergence theorem,
	we get
	ˆ1 -1

  .1.35) 6.1.4. Global multiplicity result via variational method Using (6.1.33), (6.1.34) and (6.1.35), we obtain that

  ). Let k be anyinteger such that k > u λ ∞ . Using (K2), ˆ{zn≥k} f (z n )z n dx ≤ CBy means of the Hölder inequality and the relationz 2 n ≤ 2(u 2 λ + (z n -u λ ) 2 ), we deduce that ˆ{zn≥k} f (z n )z n dx ≤ Ce -k 2 ˆ1 -1 e 6u 2 λ e 6v 2 n dx ≤ Ce -k 2 e 6u 2 λ L p ((-1,1)) e 6v 2

	ˆ{zn≥k}	e	3z 2 n 2 z n dx ≤ C	ˆ{zn≥k}	e 2z 2 n z n dx ≤ Ce -k 2	ˆ1 -1	e 3z 2 n dx.

n L p ((-1,1)) .

(6.1.37) 

  Lemma 6.1.27. Assume (K1)-(K3). Then the following holds.(i) Jλ (tω r n ) → -∞ as t → ∞. (ii) For a suitable x 0 ∈ (-1, 1) and r > 0 small enough, sup Proof. (i) Using (K2), there exist positive constants C 1 and C 2 such thatF (x, t) ≥ C 1 e 1 2 (u λ +t) 2 -C 2 -f (u λ )t for t ≥ 0.On the contrary, suppose that there exists a subsequence of N such that sup t>0 Jλ (tωr n ) ≥ ´1 -1 G(x, t n ω n ) dx -λ ´1 -1 F (x, t n ω n ) dx ≥ π 2 .Using (K1), we have t 2 Again using the fact that |g(x, s)| ≤ Cs, we haveˆ1 -1 f (x, t n ω r n )t n ω r n dx ≤ t 2 n [1 + O((log n) -1 )].(6.1.39)By definition of f and the fact thatω r n L 1 ((-1,1)) = O((log n) -1 2 ), we have ˆ1 -1 f (x, t n ω r n )t n ω r n dx = ˆ1 -1 f (u λ + t n ω r n )t n ω r n dx -t n O((log n) -12 ). Now we will estimate ´1 -1 f (u λ + t n ω r n )t n ω r n dx from below. Let µ = min

														t>0	Jλ (tω r n ) <	π 2	.
	Hence for some C > 0, Jλ (tω r n ) ≤ t 2 2 -Cλ	ˆB r n	(x 0 )	e	t 2 2 |ω r n | 2 dx =	t 2 2	-	Cλr n	e	t 2 log n π	→ -∞ as t → ∞.
	(ii) n 2	-λ	ˆ1 -1	
	As a result, we get										
									t 2 n ≥ π -O((log n) -1 ).	(6.1.38)
	Since d dt J(tω r n )| Br(x 0 )	u λ . Taking into
	account (K1), (K2), definition of ω r n and (6.1.38), we have f (u λ + t n ω r n )t n ω r n dx ≥ ˆBr(x0) h(u λ + t n ω r n )e (u λ +tnω r n ) 2 t n ω r n dx ˆ1 -1 ≥ Ch µ + t n √ π (log n) 1 2 e (µ+ tn √ π (log n) 1 2 ) 2 t n (log n) 1 2 n (x 0 ) ˆB r dx
	≥	Cr n	e -µ+ tn √ π (log n)	1 2	q	e	2(µ+ tn √ π (log n)	1 2 ) e t 2 n	log n π t n (log n)	1 2	µ +	t n √ π	(log n)

π 2 . That is, t 2 n 2 -λ G(x, t n ω n ) dx ≥ π 2 .

Clearly, g(x, s) ≤ 0 for x ∈ (-1, 1) and s > 0. For and x ∈ B r (x 0 ), applying Taylor's expansion, g(x, s) = δs

u δ+1 λ + o(s 2 ). It implies that ˆ1 -1 G(x, t n ω n ) dx = ˆBr(x0) G(x, t n ω n ) dx ≤ ˆBr(x0) ˆtnωn 0 Cs dsdx ≤ Ct 2 n O((log n) -1

). t=tn = 0, we get t 2 n -λ ´1 -1 g(x, t n ω r n )t n ω r n dx = λ ´1 -1 f (x, t n ω r n )t n ω r n dx.

  Now, the new change of variable t = x N + ρ(e A • w) yields in J ,A :J ,A (x) = (x N + λ 1/α ) -β | det A| -1 ˆE∩E A |e A • w| sp |w| N +sp P (e A •w) (x N ) dw.

						1
						|ρ| 1+sp	dρ dw.
	Noting that	| det A| -1	ˆE∩E A	|e A • w| sp |w| N +sp dw =	1 2 ˆSN-1	|e

N • v| sp |Av| N +sp dv < ∞ (6.3.16)

2,Q T ≤ M. (iii) Let us denote Q - T = Q T ∩{z : p(z) < 2}. By Young's inequality, (4.2.10) and (4.2.29), for every D Q - T

Chapter 4. Parabolic problems with nonstandard growth
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4.4.5.3. Existence of a weak solution to (4.4.3) Note that the sequence (v n ) n=1,2,...,n * is well-defined. Indeed for n = 1 the existence and the uniqueness of v 1 ∈ C 1,α (Ω) ∩ C 0 d (Ω) + follows from Theorems 4.4.7 and 4.4.9 with h = ∆ t h 1 + v q 0 ∈ L ∞ (Ω) + . Hence by induction we obtain in the same way the existence and the uniqueness of the solution v n for any n = 2, 3, . . . , n * where v n ∈ C 1,α (Ω) ∩ C 0 d (Ω) + .

Step 3: Existence of a subsolution and supersolution Now we construct a subsolution and a supersolution w and w of (4. 4.26) such that for each n ∈ {0, 1, 2, . . . , n * }, v n satisfies 0 < w ≤ v n ≤ w. Rewrite (4.4.26) as

.4.27)

Then following arguments in the proof of Theorems 4.4.7 and 4.4.9, from Theorem 4.4.12 and from Lemma 4.4.4, for any µ > 0 there exists a unique weak solution, w µ ∈ C 1,α (Ω)∩C 0 d (Ω) + , to

in Ω ; w = 0 on ∂Ω .

(4.4.28)

Let µ 1 < µ 2 and w µ 1 , w µ 2 be weak solutions of (4.4.28). Then, ˆΩ |∇w µ 1 | p(x)-2 ∇w µ 1 .∇φ dx = µ 1 ˆΩ(h 0 w q-1 µ 1 + f (x, w µ 1 ))φ dx, ˆΩ |∇w µ 2 | p(x)-2 ∇w µ 1 .∇ψ dx = µ 2 ˆΩ(h 0 w q-1 µ 2 + f (x, w µ 2 ))ψ dx.

Subtracting the last two equations with φ = (w q µ 1 -w q µ 2 ) + w q-1 µ 1 and ψ = (w q µ 2 -w q µ 1 ) - w q-1 µ 2 ∈ W 1,p(x) 0

(Ω) we obtain, by Lemma 4.4.1 and (f 1), w µ 1 ≤ w µ 2 . Then by using Theorems 4.4.12 and 4.4.13, we can choose µ small enough such that w µ C 1,α (Ω) ≤ C µ 0 for all µ ≤ µ 0 and w µ L ∞ (Ω) → 0 as µ → 0. Therefore {w µ : µ ≤ µ 0 } is uniformly bounded and equicontinuous in C 1 (Ω) and by Arzela Ascoli theorem w µ C 1 (Ω) → 0 as µ → 0 up to a subsequence. Then by mean value theorem we can choose µ small enough such that there exists w ∈ C 1,α (Ω) ∩ C 0 d (Ω) + such that 0 < w def = w µ ≤ v 0 . Also w is the subsolution of (4.4.27) for n = 1 i.e.

ˆΩ w 2q-1 φ dx + ∆ t ˆΩ |∇w| p(x)-2 ∇w.∇φ dx ≤ ∆ t ˆΩ(h 1 w q-1 + f (x, w))φ dx + ˆΩ v q 0 w q-1 φ dx for all φ ∈ W 1,p(x) 0

(Ω) and φ ≥ 0. We also recall v 1 satisfies ˆΩ v 2q-1 1 ψ dx + ∆ t ˆΩ |∇v 1 | p(x)-2 ∇v 1 .∇ψ dx = ∆ t ˆΩ(h 1 v q-1 1 + f (x, v 1 ))ψ dx + ˆΩ v q 0 v q-1 1 ψ dx 4.5.3. Parabolic problem related to D.N.E.

Finally passing to the limit in (4.5.10) satisfied by v n and applying the dominated convergence Theorem, we obtain v is a weak solution of (4.5.9). The regularity arises from Proposition 4.5.2.

Next result is the extension of Corollary 4.4.5 for L 2 -potential.

Corollary 4.5.2. Assume A satisfies (A 1 )-(A 3 ) and f verifies (f 0 ) and (f 1 ). Then, for any q ∈ (1, p -), λ > 0 and h 0 ∈ L 2 (Ω) ∩ L r (Ω)\{0} for some r > max{1, N p -}, h 0 ≥ 0, there exists a solution u of (4.5.15). Namely, u belongs to V q + ∩ L ∞ (Ω) and satisfies (4.5.16) for any ψ verifying (4.5.17) and there exists c > 0 such that u(x) ≥ cδ q (x) a.e. in Ω.

Proof. Noting that the existence of a weak solution v 0 ∈ L ∞ (Ω) of (4.5.9) for h ∈ L 2 (Ω), can be obtained by global minimization method as in Theorem 4.5.4, we deduce from Theorem 4.5.10 that the solution obtained by Theorem 4.5.5 is a global minimizer. Then we follow the same scheme as the proof of Corollary 4.5.1. We consider the functional energy E defined on V q + ∩ L 2 (Ω). We set u 0 = v q 0 . Then, u 0 belongs to V q + ∩ L ∞ and (4.5.20) implies u 0 (x) ≥ cδ q (x) a.e. in Ω. Take ψ satisfying (4.5.17), then for t small enough, E(u 0 + tψ) ≥ E(u 0 ). From classical arguments, we deduce that u 0 verifies (4.5.16).

Parabolic problem related to D.N.E.

In this section, we prove Theorems 4.5.1 by dividing the proof into three main steps: existence, uniqueness and regularity of weak solution. The proof of Theorem 4.5.1 (i) follows from the proof of Theorem 4.4.5 and using Lemma 4.5.1, Theorem 4.5.5 and Corollary 4.5.2. Thus we omit the proof.

Existence of a weak solution

In light of Remark 4.5.3 and improving Theorem 4.4.4 to p(x)-homogeneous operator, we consider the problem (E) with v 0 ∈ M 1 δ (Ω) ∩ W. Proof. The sketch of the proof is classical and in particular we follow the proof of Theorem 4.4.4. However, for the convenience of the readers, we give the entire proof due to the general form setting of the operator a which requires technical computations. We proceed in several steps: Then, there exists λ * > 0 such that w λ satisfies

• for any λ ≥ λ * , w λ L ∞ (Ω) ≤ C 1 λ 1/(p --1) and w λ (x) ≥ C 2 λ 1 p + -1+ε δ(x) for some ε ∈ (0, 1);

where the constants depend upon p + , p -, N, Ω and α. Moreover if λ 1 < λ 2 then w λ 1 ≤ w λ 2 . Now we state a Strong and Hopf maximum principle for variable exponent p(x)-homogeneous operators and theirs proof follows from Lemma 4.5.2 and Lemma 4.4.4. Lemma 4.5.2. Let α, β be two measurable functions such that 1 < β -≤ β + < α -≤ α + < ∞. Let h, l ∈ L ∞ (Ω) be nonnegative functions, h > 0 and k : Ω × R + → R + and A satisfies (A 1 )-(A 2 ). Consider u ∈ C 1 (Ω) a nonnegative and nontrivial solution to

If lim inf t→0 + k(x, t)t 1-α(x) > l L ∞ uniformly in x ∈ Ω, then u is positive in Ω.

Furthermore, if Ω satisfies the interior ball condition for any x ∈ ∂Ω, then ∂u ∂ n (x) < 0 where n is the outward unit normal vector at x.

We state a slight extension of Proposition 4.4.11and Proposition 4.4.12. Proposition 4.5.1. Let q ∈ [1, p -). Assume A satisfies (A 1 )-(A 3 ) and u ∈ X satisfying for any Ψ ∈ X:

ˆΩ a(x, ∇u).∇Ψ dx = ˆΩ hu q-1 Ψ dx where h ∈ L 2 (Ω) ∩ L r (Ω) with r > max{1, N p -}. Then u ∈ L ∞ (Ω).

Proposition 4.5.2. Under the assumptions of Proposition 4.5.1, consider u ∈ X a nonnegative function satisfying, for any Ψ ∈ X, Ψ ≥ 0: ˆΩ u 2q-1 Ψ dx + ˆΩ a(x, ∇u) • ∇Ψ dx ≤ ˆΩ(f (x, u) + hu q-1 )Ψ dx where f verifies for any (x, t)

The proofs of above results follow the proofs of Theorem 4.1 in [START_REF] Fan | A class of De Giorgi type and Hölder continuity[END_REF] and Proposition 4.4.11.

Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights for all ϕ ∈ W 1,n 0 (Ω).

The energy functional J λ,M : W 1,n 0 (Ω) -→ R associated to the problem (P λ,M ) is defined as

where |x| -µ * F (u) denotes ´Ω F (u(y)) |x-y| µ dy, F , M are anti-derivatives of f , M (vanishing at 0) respectively and f (s) = s|s| p exp(|s| β ).

Definition 5.1.4. A function

Main results

The following theorem is the main result concerning (KC):

Theorem 5.1.5. Assume (m1)-( m3) and ( h1)-(h4) holds. Assume in addition

(5.1.3)

Then the problem (KC) admits a weak solution.

Example 5.1.6. f defined by f (x, t) = g(x)t p exp(t n n-1 ) for t ≥ 0, x ∈ Ω with 0 ≡ g ∈ L ∞ (Ω) non-negative and p > n -1 satisfy (h1)-(h4) and (5.1.3).

Using the Nehari manifold technique, we show existence and multiplicity of solutions of the problem (P λ,M ) with respect to the parameter λ. Precisely, we show the following main results in the subcritical and critical case:

Then there exists λ 0 such that (P λ,M ) admits at least two solutions for λ ∈ (0, λ 0 ).

In the critical case, we show the following existence result. Theorem 5.1.8. Let β = n n-1 , then there exists λ 1 > 0 such that for λ ∈ (0, λ 1 ), (P λ,M ) admits a solution.

Existence of a positive weak solution

In this section, we study the problem (KC) and for that we use the mountain pass theorem and analyze accurately the compactness of Palais-Smale sequences for E. First we prove the energy functional E possesses the mountain pass geometry. Now, we give the proof of our main result: Proof of Theorem 5.1.5: Let {u k } denotes a Palais Smale sequence at the level l * . Then (u k ) k∈IN can be obtained as a minimizing sequence associated to the variational problem (5.1.5). Then by Lemma 5.1.14 we know that there exists a u 0 ∈ W 1,n 0 (Ω) such that up to a subsequence u k u 0 weakly in W 1,n 0 (Ω) as k → ∞.

Step 1: u ≡ 0 and u > 0.

Suppose u 0 ≡ 0 then using Lemma 5.1.14, we infer that

This gives that lim k→∞ E(u k ) = 1 n lim k→∞ M( u k n ) = l * which implies in the light of Lemma 5.1.11 that for large enough k

.

Therefore since M is non decreasing, we get

Now, this implies that sup k ´Ω f (x, u k ) q dx < +∞ for some q > 2n 2n-µ and along with Proposition 2.2.6, Theorem 2.2.1 and the Vitali's convergence theorem, we get

Hence lim k→∞ E (u k ), u k = 0 gives lim k→∞ M ( u k n ) u k n = 0. From (m1) we then obtain lim k→∞ u k n = 0. Thus using Lemma 5.1.14, it must be that lim k→∞ E(u k ) = 0 = l * which contradicts l * > 0. Thus u 0 ≡ 0. Now, we show that u 0 > 0 in Ω. From Lemma 5.1.10 we know that {u k } must be bounded. Therefore there exists a constant τ > 0 such that up to a subsequence

. Furthermore, by Lemma 5.1.12 and by Lemma 5.1.13, we get as k → ∞,

In particular, taking ϕ = u - 0 in the above equation we get M (τ n ) u - 0 = 0 which implies together with assumption (m1) that u - 0 = 0 a.e. in Ω. Therefore u 0 ≥ 0 a.e. in Ω. From Theorem 2.2.1, Chapter 1, we have f (•, u 0 ) ∈ L q (Ω) for 1 ≤ q < ∞. Also as in (5.1.20),

We also define H(u) = ´Ω h|u| q+1 dx and study the behaviour of fibering maps Φ u,M according to the sign of H(u). Let

Analysis of Fiber Maps

Here we analyze accurately the geometry of the energy functional on the Nehari manifold. We split the study into two different cases u ∈ H - 0 and u ∈ H + . We define the map ψ :

and observing the fact that tu ∈ N λ,M if and only if t > 0 is a solution of ψ u (t) = λ ´Ω h(x)|u| q+1 dx. For the first case, we have the following result:

Lemma 5.1.17. For any u ∈ H - 0 \ {0} and λ > 0, there exists a unique t * such that t * u ∈ N - λ,M . Moreover, Φ u,M is increasing on (0, t * ) and decreasing on (t * , ∞).

(5. 1.34) Due to the exponential growth of f , for large t we have ψ u (t) < 0 and since u ∈ H - 0 , there exists

If there exists an another point t 1 such that t * < t 1 and

and ψ u (t 1 ) ≥ 0. Then by using f (t 1 u)t 1 u > (p + 1)f (t 1 u) and p > 2n -2 -q we obtain from (5.1.35),

Existence and multiplicity of weak solutions

We notice from Lemma 5.1.18 and Equation (5.1.37) that for u ∈ H + \{0}, there exists a

. We now prove that t 1 u ∈ N + λ,M and t 2 u ∈ N - λ,M are unique. If not then there exists t 3 u ∈ N + λ,M and t * * such that t 2 < t * * < t 3 and ψ u (t * * ) = 0 and ψ u (t * * ) < λH(u). But Lemma 5.1.18 induces that if ψ u (t * * ) = 0 then ψ u (t * * ) > λH(u) which is a contradiction.

In the sequel, we will denote t * the smallest critical point of ψ u . As an application of Lemma 5.1.18 and using the geometry of energy functional J λ,M on the Nehari manifold, we prove the non-existence of non-trivial solutions in N 0 λ,M .

Lemma 5.1.20.

Proof. Suppose u ≡ 0 and u ∈ N 0 λ,M . Then Φ u,M (1) = 0 and Φ u,M (1) = 0, i.e.

Let u ∈ H + ∩N 0 λ,M , then from (5.1.38) and (5.1.39) (by replacing the value λH(u)), we obtain

which implies u ∈ Γ\{0} ∩ H + . Again from (5.1.38), (5.1.39) and substituting the value of a u 2n , we obtain

and from Lemma 5.1.17, "1" is the only critical point of Φ u,M and Φ u,M (1) = 0. But u ∈ H - 0 implies that ψ u (1) < 0 and then φ u,M (1) < 0 which is a contradiction and the lemma is proved.

Existence and multiplicity of weak solutions

We start this section, by studying the geometric structure of the energy functional J λ,M . Define

To prove that, using (5.1.36) and the boundedness of the sequence {u k } in W 1,n 0 (Ω), we only need to show that for any f ∈ W 1,n 0 (Ω), S(u k ), f is uniformly bounded in k. For the subcritical case, i.e. β ∈ (0, n n-1 ), it holds since for any > 0 and q > 1, there exists C ,q,β > 0 such that exp(q|t| β ) ≤ C ,q,β exp(

Then by Theorem 2.2.1, Chapter 1, we obtain S(u k ), f ≤ C f with C > 0 independent of k. Consider now the critical case, i.e. β = n n-1 . From the boundedness of R(u k ) (see the statement of Lemma 5.1.24), it follows that

Then for any φ ∈ C ∞ c (Ω), we have by Vitali's convergence theorem and up to a subsequence

where u 0 is the weak limit of (u k ) k∈IN in W 1,n 0 (Ω). From (5.1.45), we have that there exists C > 0 independent of k such that

(5.1.46)

Using a density argument, we conclude that (5.1.46) holds for any φ ∈ W 1,n 0 (Ω). This completes the proof in the critical case.

The existence result for first positive solution in subcritical case in N λ,M ∩ H + is given by the following Theorem: Theorem 5.1.27. Let β < n n-1 and let λ ∈ (0, λ 0 ) where λ 0 = bn (2n-1-q)l M 0 . Then there exists a positive weak solution to

Proof. Let u k be a minimizing sequence satisfying

for any u ∈ W 1,n 0 (Ω) and from the proof of the Ekeland principle (see [242, p. 51-53]), we can assume that u k is non-negative. By using Proposition 5.1.26 we obtain {u k } is (PS) θ sequence. Then from Lemma 5.1.10 we Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights get {u k } is a bounded sequence in W 1,n 0 (Ω). Also there exists a subsequence of {u k } (denoted by same sequence) and a non-negative u λ such that u k u λ weakly in W 1,n 0 (Ω) and u k → u λ strongly in L r (Ω) for r ≥ 1 and u k → u λ a.e. in Ω. Then using f (t) ≤ C ,β exp( t n n-1 ) for > 0 small enough and from Theorem 2.2.1, Chapter 1, we obtain that f (u k ) and (|x| -µ * F (u k )) are uniformly bounded in L q (Ω) for all q > 1. Then again by Vitali's convergence theorem, we obtain

and by Proposition 5.1.26, we have J λ,M (u k ), u k -u λ → 0. Then we conclude that

On the other hand, using u k → u λ weakly and by boundedness of M ( u k n ) we have 

Now by using this and following inequality,

with a 1 = ∇u k and a 2 = ∇u λ , we obtain

Since M (t) ≥ b, then we obtain u k → u λ strongly in W 1,n 0 (Ω) and by Lemma 5.1.13

for all φ ∈ W 1,n 0 (Ω). Therefore, u λ satisfies (P λ,M ) in weak sense and hence u λ ∈ N λ,M . Moreover, θ ≤ J λ,M (u λ ) ≤ lim inf k→∞ J λ,M (u k ) = θ. Hence u λ is a minimizer for J λ,M in N λ,M . Using (5.1.42), we have ´Ω h(x)|u λ | q+1 > 0, then there exists t 1 (u λ ) such that t 1 (u λ )u λ ∈ N + λ,M . We now claim that t 1 (u λ ) = 1 i.e. u λ ∈ N + λ,M . Suppose that t 1 (u λ ) < 1 and then t 2 (u λ ) = 1 and u λ ∈ N - λ,M . Now J λ,M (t 1 (u λ )u λ ) < J λ,M (u λ ) ≤ θ which yields a contradiction, since t 1 (u λ )u λ ∈ N λ,M . Thus, u λ is non-negative and nontrivial. From the strong comparison Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and singular weights

, it is easy to prove that v k ≤ C (as in Lemma 5.1.10). Indeed,

and Now we establish the following compactness result in the critical case.

Lemma 5.1.29. There exists

Proof. As in Lemma 5.1.10 we can prove that {u k } is bounded in W 1,n 0 (Ω) and up to a subsequence u k → u in L α (Ω) for all α ≥ 1, u k (x) → u a.e in Ω and ∇u k → ∇u a.e. in Ω and weakly in L n (Ω). Also still up to a subsequence, there exist radon measures ν 1 and

} and let A = Ω\B. Then by Lemma 5.1.12 we can infer that A is a finite set, say

We define the energy functional J on P as

Using assumption (f 1) -(f 3), we get that for any > 0, p ≥ 1 and 1

Then by using Sobolev embedding and Hardy-Littlewood Sobolev inequality, we obtain F (u, v) ∈ L q (Ω × Ω) for any q ≥ 1 and the energy functional J is well defined in P. 

Main result

for some q > 2. Then there exists a positive weak solution of the problem (KCS).

Mountain Pass geometry and Analysis of Palais-Smale sequence

In this section we show that the energy functional J satisfies the mountain pass geometry and derive the integral estimates of Choquard term by exploiting the weak convergence of Palais-Smale squence in appropriate spaces.

Lemma 5.4.1. Assume m and f satisfies (m2) and (f 1) -(f 3) respectively then (i) There exists ρ > 0 such that J(u, v) ≥ σ when (u, v) = ρ, for some σ > 0.

(ii) There exists a (ũ, ṽ) ∈ P such that J(ũ, ṽ) < 0 and (ũ, ṽ) > ρ.

Proof. Let (u, v) ∈ P such that (u, v) = ρ (to be determined later). Then from (5.4.2), Proposition 2.2.6, Sobolev embedding, Hölder inequality, we have for any > 0, p ≥ 1 and Finally by combining (5.4.4) and (5.4.5), we obtain J(ξu 0 , ξv 0 ) → -∞ as ξ → ∞. Hence there exists (ũ, ṽ) ∈ P such that J(ũ, ṽ) < 0 and (ũ, ṽ) > ρ.

Define the Mountain Pass critical level as

and then by using Ekeland principle and deformation lemma (Theorem 2.4.1), we have the existence of minimizing Palais-Smale sequence (u n , v n ) ∈ P such that

To analyze accurately the compactness of Palais Smale sequences for J, we show a series of Lemmas, starting with every Palais-Smale sequence is bounded in energy space.

Lemma 5.4.2. Every Palais-Smale sequence is bounded in P.

k → ∞ for some c ∈ R. Therefore we have:

(5.4.7)

Now by using (f 3) and (m3), there exists

t in nonnegative and nondecreasing for t ≥ 0.

Mountain Pass geometry and Analysis of Palais-Smale sequence

Then by taking φ = u k and ψ = v k in (5.4.7) along with (m2) (for both degenerate and non-degenerate Kirchhoff terms) and above inequalities, we obtain

(5.4.8) Also, from (5.4.6) and (5.4.7), we get for some constant C > 0

Therefore, by combining (5.4.8) and (5.4.9), we obtain {(u k , v k )} is bounded in P.

Lemma 5.4.3. Let {(u k , v k )} be a Palais-Smale sequence then up to a subsequence

Proof. From Lemma 5.4.2, we know that every Palais-Smale sequence is bounded in P. So there exist u, v ∈ W 1,n 0 (Ω) such that up to a subsequence

for all r > 0} for i = 1, 2. Then X σ i must be finite sets. Now, by using the same arguments as in Lemma 5.1.12, it is sufficient to prove the following: 

holds then

Then

Since (u, v) ∈ N , we get

Now (f 3) implies, for any (x, s) ∈ Ω × R + , the map r → rf 1 (x, r, s) -nF (x, r, s) and for any (x, r) ∈ Ω × R + , the map s → sf 2 (x, r, s) -nF (x, r, s) is increasing on R + . Using this we get rf 1 (x, r, s) -nF (x, r, s) ≥ 0 and sf 2 (x, r, s) -nF (x, r, s) ≥ 0 for all (x, r, s) ∈ Ω × R 2 which implies t → F (x, tu, tv) t n is non-decreasing for t > 0.

Then for 0 < t ≤ 1, x ∈ Ω and by using (m3) and (f 3), we obtain

This gives that h (t) ≥ 0 for 0 < t ≤ 1 and h (t) < 0 for t > 1. Hence J(u, v) = max t≥0 J(tu, tv). Now we define g : [0, 1] → P as g(t) = (t 0 u, t 0 v)t where t 0 > 1 is such that J((t 0 u, t 0 v)) < 0. So, g ∈ Γ which gives

Since u ∈ N is arbitrary, we get l * ≤ l * * . For u, v ≡ 0, J(tu, tv) → -∞ as t → ∞ (from Lemma 5.4.1) and by definition l * ≤ max t∈[0,1] J(tu, tv) for (u, v) ∈ (W 

. Now in the light of Lemma 5.4.5 and monotonicity of M , we obtain

for large enough k. Now, this implies that sup k ´Ω f i (x, u k , v k ) q dx < +∞ for some q > 2n 2n-µ , i = 1, 2. Along with (5.4.2), Theorem 5.3.1, the Hardy-Littlewood-Sobolev inequality and the Vitali's convergence theorem, we also obtain

, we obtain lim k→∞ (u k , v k ) n = 0. Thus using Lemma 5.4.4, it must be that lim k→∞ J(u k , v k ) = 0 = l * which contradicts l * > 0. Thus u 0 , v 0 ≡ 0 and there exists a constant Υ > 0 such that up to a subsequence 

(5.4.20)

In particular, taking ϕ = u - 0 and ψ = 0 (similarly ϕ = 0 and

) and together with assumption (m2) implies u - 0 = 0 ( v - 0 = 0) a.e. in Ω. Therefore u 0 , v 0 ≥ 0 a.e. in Ω. From Theorem 5.3.1 and Hölder inequality we get,

for 1 ≤ q < ∞. By elliptic regularity results and strong maximum principle, we finally get that u 0 , v 0 > 0 in Ω.

Step 2:

Mountain Pass geometry and Analysis of Palais-Smale sequence

Define the sequence of functions

such that ũk , ṽk = 1 and ũk , ṽk (ũ 0 , ṽ0 ) = u 0 Υ , v 0 Υ weakly in P and u 0 , v 0 < Υ. From Theorem 5.3.2, we have that

Then from (m3), Claim (1) and Lemma 5.4.5 we obtain

and from (5.4.21) we get

which further implies together with (m1) that

.

Therefore from (5.4.22) we conclude that

for all φ, ψ ∈ W 1,n 0 (Ω). This completes the proof.

Extensions and related problems

2:

We infer that similiar methods can be used to the following Kirchhoff-Choquard system for the Polyharmonic operator:
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Non-local singular problem

This is a joint work with Jacques Giacomoni, Divya Goel, Konijeti Sreenadh and Guillaume Warnault.

Abstract :

In this chapter, we study the non-local singular problems in the presence of exponential non-linearities and singular weights. The investigation of singular problems are divided into two parts depending upon the nature of the operator.

In the first part, we study the singular problems involving fractional Laplacian operator, precisely 1 2 -Laplacian operator and exponential non-linearity. We establish the existence, multiplicity, regularity and asymptotic behavior of the positive solution in one dimension. We prove two results regarding the existence and multiplicity of solutions to the problem (P λ ) (see below). In the first result, existence and multiplicity (local) have been proved for classical solutions via bifurcation theory while in the latter global multiplicity result has been proved for critical exponential non-linearity by variational methods. An independent question of symmetry and monotonicity properties of classical solution has been answered using moving plane method and narrow maximum principle for 1 2 -Laplacian operator and then extend it in the more general framework of (-∆) s operator and for all 0 < s < 1. To characterize the behavior of large solutions, we further study isolated singularities for the singular semi linear elliptic equation in Ω ⊂ R N involving exponential growth non-linearity.

In the second part, we investigate the existence, uniqueness, nonexistence, and optimal Sobolev and Hölder regularity of weak solution to the nonlinear fractional elliptic problem involving singular nonlinearity and singular weights in smooth bounded domain Ω ⊂ R N (see (P ) below). We prove the existence of weak solution in W s,p loc (Ω) via approximation method and as an application of new comparison principle, we prove the uniqueness of weak solution for 0 ≤ δ < 1 + s -1 p and also nonexistence of weak solution for δ ≥ sp. Moreover, by virtue of barrier arguments we study the behavior of minimal weak solution in terms of dist(x, ∂Ω) Definition 6.1.1. A function u ∈ L 1 (R) with u ≡ 0 on R \ (-1, 1) is said to be a weak solution of (P λ ) if inf K u > 0 for any compact set K ⊂ (-1, 1) and for any φ ∈ σ, ˆ1 -1 u (-∆)

where

) and φ has compact support in (-1, 1)}.

Using the regularity theory of fractional Laplacian we define the set of classical solutions of (P λ ) : Definition 6.1.2. The set of classical solutions to (P λ ) is defined as

Remark 6.1.3. Regularity of a classical solution u (proved later in Theorem 6.1.9) for the problem

)) (defined below). Then by using Hardy's inequality (see [START_REF] Grisvard | Elliptic Problems in nonsmooth domains[END_REF]Corollary 1.4.4.10,p.23]) in (6.1.1) together with the fact that C ∞ c ((-1, 1)) is dense in X 0 , we obtain that 1 u δ belongs to dual space of X 0 for all δ > 0 and hence (6.1.1) holds for all φ ∈ X 0 . 

To analyze the existence and regularity of solutions of (P λ ), the key ingredient is to study the boundary behavior of the weak solution of the following problem:

For the operator (-∆) s with N > 2s, Abatangelo [START_REF] Abatangelo | Large s-harmonic functions and boundary blow-up solutions for the fractional Laplacian[END_REF] studied the boundary behavior of the corresponding problem like (6.1.2) with β = 0 and 0 < α < 1 + s. The case N = 1 and s = 1 Chapter 6. Non-local singular problem

has been left open as the Green function for the Half-Laplacian in one dimension is different (see [START_REF] Chen | Heat kernel estimates for the Dirichlet fractional Laplacian[END_REF]) from that of (-∆) s with N > 2s. In this regard, we explore this case and prove the following theorem.

Theorem 6.1.6. Let A be a positive constant such that A ≥ 2. Then the weak solution of (6.1.2)satisfies

for 0 < α < 1 2 and β = 0,

for α = 1 2 and 0 ≤ β < 1.

(6.1.3)

To get appropriate sub and supersolutions of the problem (P λ ), we now turn our attention to the following pure singular problem (P δ ).

The barrier function φ δ is defined as follows:

where φ 1 is the normalized ( φ 1 L ∞ (Ω) = 1) eigen function corresponding to the smallest eigen value of (-∆)

((-1, 1)) (See Proposition 1.1 and Theorem 1.2 of [START_REF] Ros-Oton | The Dirichlet problem for the fractional Laplacian: regularity up to the boundary[END_REF]). For the problem (P δ ), we are concerned about the existence, the asymptotic behavior and the regularity of the solution. In this regard we have the following result: Theorem 6.1.7. (i) For all δ > 0, there exists a unique u

) where φ δ is defined in (6.1.

4). (ii) The classical solution u to

(6.1.5) Now we will state some assumptions on the function h:

(0, ∞) with h(0) = 0 and such that the map t → t -δ + h(t)e t α is convex for all t > 0.

To prove Theorem 6.1.10, we have used tools of maximum principle proved in [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF]. In particular we have used Lemma 3.2, Proposition 3.5 and a combination of both gives rise to a small volume maximum principle Proposition 3.6 of [START_REF] Jarohs | Symmetry via antisymmetric maximum principles in nonlocal problems of variable order[END_REF].

Assertion (v) in Theorem 6.1.9 conclude that the connected branch admits at least one asymptotic bifurcation point. To characterize the blow up behavior at λ = Λ a we study the behavior of isolated singularities as in Brezis-Lions problem (see [START_REF] Bréziz | A note on isolated singularities for linear elliptic equations[END_REF]) for the fractional Laplacian operator. We consider the following problem:

where 0 < s < 1, t > N 2s ≥ 1, Ω ⊂ R N be a bounded domain with 0 ∈ Ω and Ω = Ω \ {0}. The notion of distributional solution for (P s ) is defined as follows: Definition 6.1.11. A function u is said to be a distributional solution of

In [START_REF] Chen | Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results[END_REF], authors have studied the problem (P s ) by assuming the existence of classical solution u of (P s ) with polynomial type nonlinearity. In the next theorem, we extend the result of Chen and Quaas ( [START_REF] Chen | Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results[END_REF]) for the problem (P s ) satisfying weaker assumption of distributional solution and for a larger class of nonlinearities (in particular exponential growth nonlinearity). Theorem 6.1.12. For 0 < s < 1, let u be non-negative distributional solution of

As an application of Theorem 6.1.12, we characterize the asymptotic behavior of large solutions and prove the following result:

We now study the pure singular problem.

Proof of Theorem 6.1.7 (i) The proof goes along the lines of [6, Theorem 1.2] for s = 1 2 . For the sake of completeness, we will give a short brief of the proof. Let us first consider the case δ < 1. We introduce the following approximated problem:

Following the same arguments and assertions as in proof of [6, Theorem 1.2], there exists a unique weak solution u ∈ X 0 ∩ C 1 2 (R) to (P δ ), u is a monotone increasing sequence as → 0 + and there exists a constant c > 0 such that u ≥ cφ 1 . Moreover,

To get an upper bound on u , we will use the integral representation and the the Green's function G(x, y). Clearly,

Then for a suitable positive constant C independent of , we have

dy.

Utilizing the fact that δ < 1 and the proof of Theorem 6.1. [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF] Step 1, we obtain that

Thus, we infer that u = lim →0 + u ≤ cφ 1 and u is the unique weak solution to (P δ ). Also,

for some suitable constants c, C. This completes the proof of the theorem in case of δ < 1.

In a similar manner, for the case δ ≥ 1, we will follow the proof of Theorem 1.2 of [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF] coupled with Theorem 6.1.6. Precisely, we will get unique solution of (P δ ) such that

for some appropriate positive constant C 1 and C 2 . For the Part (ii), the proof follows from Theorem 1.4 of [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF]. We remark that all classical solutions belong to space X 0 as well.

Define Λ := sup{λ > 0 : (P λ ) has a weak solution}. Proof. Let u be the solution of (P δ ) given by Theorem 6.1.7 then u λ = λ 1 δ+1 u is a solution of (-∆)

Moreover, u λ is a strict subsolution of (P λ ). Also, let u λ = u λ + M U for some M > 1, where U is a solution of (-∆)

There exists λ 0 > 0 such that u λ is a supersolution of (P λ ) for all λ ≤ λ 0 . Now we define the following iterative scheme for all λ ≤ λ 0 , starting with u 0 = u λ and (n ≥ 1)

Taking into account monotonicity of the operator (-∆) 1 2 u -λu -δ , using the Comparison Principle ([150, Lemma 2.2]) and the proof of Theorem 6.1.7, we have that {u n } is increasing and

)). Furthermore, for all λ ≤ λ 0 , u λ ≤ u n ≤ u λ . Using Theorem 6.1.7, we have sup n∈N u n C γ (R) ≤ C 0 for some C 0 = C 0 (δ, λ 0 ) large enough and γ is defined in Theorem 6.1.7. Hence u n → u in C(R) and u satisfies (-∆)

in the sense of distributions. Hence from the above arguments we get Λ > 0. From the superlinear behavior of f (t) at infinity, we obtain that Λ < ∞.

Proof of Theorem 6.1.9 The proof follows from Theorem 1.6 of [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF] (See also [START_REF] Dhanya | Global bifurcation and local multiplicity results for elliptic equations with singular nonlinearity of super exponential growth in R 2[END_REF]).

Remark 6.1.18. Consider the problem

where

K(x) > 0 and satisfies for some 0 ≤

. By modifying our barrier function φ δ (see (6.1.4)) with respect to the growth of K(x), we can prove Theorem 6.1.7. Subsequently, we can also prove Theorem 6.1.9 for the problem (P K λ )(same as [START_REF] Adimurthi | Positive solutions to a fractional equation with singular nonlinearity[END_REF]Theorem 1.6]).

Chapter 6. Non-local singular problem

Proof of Theorem 6.1.13: Let (λ, u) ∈ S ∩ ((0, Λ) × C 0 ([-1, 1])) be the solution of the problem (P λ ). Then from Theorem 6.1.10 we obtain, u is decreasing with respect to |x| then for every > 0 there exists β 1 > 0 such that for any x ∈ (-1, -)∪( , 1), we have a measurable set M satisfying

Then by multipying φ 1 to the equation satisfied by u, we obtain

and for any m ≥ 2λ 1 Λa , there exists a C > 0,

Then by using u(y) ≥ u(x), ∀y ∈ M we obtain for

Together with

Suppose there exists a sequence (λ k , u k ) of solutions in S ∩ ((0, Λ) × C 0 ([-1, 1])) such that λ k → Λ a and u k L ∞ → ∞ as k → ∞, then (6.1.28) implies "0" is the blow up point. Hence by regularity of u k and compact embedding we obtain u k → u uniformly on compact subsets of (-1, 1) \ {0}. Since u k satisfies (6.1.1), then from the proof of Remark 6.1.14, we obtain g(u k ) L 1 ≤ C 2 , where C 2 is independent of k. Then Fatou's lemma and Vitali's convergence theorem give u ∈ L p ((-1, 1)) and u k -u L p ((-1,1)) → 0 for any 1 ≤ p < ∞. Now, by passing to the limit as k → ∞ we obtain u satisfies (in the sense of Definition 6.1.11):

with g(u) ∈ L 1 (Ω). Then by Theorems 6.1.19 and 6.1.12 there exists µ ≥ 0 such that u satisfies (in the sense of Definition 6.1.1)

(6.1.29)

Global multiplicity result via variational method

Suppose µ = 0. Hence we have u(x) = Λ a g(u) * Φ(x) + µΦ(x) + l(x) where l is a s-harmonic function in (-1, 1) and Φ(x) = -1 π log(|x|). Therefore u(x) ≥ log(|x| -µ/π )-C and since α > 1,

for all p > 1, 0 < |x| ≤ |x ρ | and |x ρ | small. Then by integrating f (u) over a small ball B around 0, we obtain ´B f (u) = ∞ which contradicts f (u) ∈ L 1 ((-1, 1)). Therefore µ = 0. This completes the proof of Theorem 6.1.13.

Global multiplicity result via variational method

In this section, we will show the existence and multiplicity of solutions of (P λ ) by using variational methods. The energy functional corresponds to problem (P λ ) is defined as

where

Using the above theorem one can see that the functional J λ is well defined. Lemma 6.1.22. For each λ ∈ (0, Λ], (P λ ) admits a weak solution provided (K1) and (K2) holds.

Proof. We use the classical Perron's method to proof the existence of a solution. Let u = u λ where u λ is defined in Lemma 6.1.17. Then u is a strict subsolution of (P λ ). Let λ ∈ (0, Λ) then it is easy to see that u λ is a solution of (P λ ) and forms a supersolution of (P λ ). Note that such a λ exists because of definition of Λ. Let u = u λ and M

Then M is closed, convex and J λ is coercive and weakly semi lower continuous on

Then there exists u λ ∈ M such that (up to a subsequence) u n u λ weakly in X 0 . Claim: u λ is weak solution of (P λ ). For φ ∈ X 0 and ε > 0 small enough, define Proof. The proof follows by using the same arguments as in [START_REF] Giacomoni | A Global multiplicity result for a very singular critical nonlocal equation[END_REF]Lemma 3.3](see [START_REF] Dhanya | Critical growth elliptic problem in R 2 with singular discontinuous nonlinearities[END_REF]), one can proof that u λ is local minimum of the functional J λ in X 0 topology.

Lemma 6.1.24.

There exists a positive weak solution of (P Λ ) and any weak solution of (P λ ) for λ ∈ (0, Λ], belongs to L ∞ ((-1, 1)) ∩ C + φ δ ((-1, 1)) where φ δ is defined in (6.1.4). The concern of this section is to prove the existence of a second solution for (P λ ). Let u λ is the first weak solution of (P λ ) in X 0 topology obtained in 6.1.22. Now, consider the following problem, which is (P λ ) translated by u λ :

Proof

Let Jλ : X 0 → R be the energy functional associated with ( Pλ ) defined as

Remark 6.1.25. (i) By Theorem 3.1.3, it can be easily shown that the map

R is locally Lipschitz. Therefore, Jλ is a sum of a C 1 and a Lipschitz functional. Hence, the generalized derivative of Jλ exist for all u ∈ X 0 and given by

We say u is a generalized critical point if J0 λ (u, φ) ≥ 0 for all φ ∈ X 0 .

(ii) For any u ∈ X 0 ,

Since u λ is a local minimum of J λ , it follows that 0 is a local minimum of Jλ in X 0topology. (iii) One can easily prove that if u ≥ 0 then

Now we will use the machinery of mountain pass Lemma and Ekeland variational principle to prove the existence of second solution. We will show the existence of solution in the following cone:

Since 0 is local minimum of Jλ in X 0 topology, there exists a ρ 0 > 0 such that Jλ (0) ≤ Jλ (u) provided u < ρ 0 . We distinguish two cases:

Lemma 6.1.26. Let (ZA) holds for some λ ∈ (0, Λ). Then there exists a non-trivial generalized critical point v λ ∈ T for Jλ .

Proof. Fix ρ ∈ (0, ρ 0 ). By using the definition of infimum of there exist {u n } ⊆ T with u n = ρ and Jλ (u n ) ≤ 1/n. Let 0 < σ < 1 2 min{ρ 0 -ρ, ρ} and define the set

which is closed in X 0 and Jλ is continuous on A. Now using the Ekeland Variational principle, we obtain the existence of a sequence Thus we obtain

Since (log n) → ∞ and t n is bounded away from 0 as n → ∞, we obtain a contradiction from (6.1.39) and (6.1.40).

Lemma 6.1.28. Let {u k : u k = 1} be a sequence of X 0 functions converging weakly to a nonzero function u. Then for all p < (1 -u ) -1 ,

Proof. See [START_REF] Giacomoni | Critical growth problems for 1 2 -Laplacian in R[END_REF]Lemma 4.4].

Lemma 6.1.29. Assume (K1)-(K3) and fix λ ∈ (0, Λ).Let (MP) holds then there exists a nontrivial generalized critical point v λ of Jλ .

Proof. Define the complete metric space

and r > 0 such that Lemma 6.1.27 (ii) holds. Now choose t 0 > 1 such that Jλ (t 0 ω r n ) < 0. Note that existence of t 0 holds by Lemma 6.1.27 (i). Let η(t) = tt 0 ω r n , t > 0. Then η ∈ Y . Define the mountain-pass critical level

Jλ (η(t)).

From Lemma 6.1.27, we have 0

Applying the Ekeland's variational principle, we get a sequence

Jλ (η k (s))}. Now using the arguments and assertions as in [START_REF] Giacomoni | A Global multiplicity result for a very singular critical nonlocal equation[END_REF]Lemma 4.4], there exist

(6.1.41) Proposition 6.3.3. For any > 0 and γ ≥ 0, there exists a unique weak solution u ∈ W s,p 0 (Ω) ∩ C 0, (Ω) of the problem

for all φ ∈ W s,p 0 (Ω) and for some γ 1 ∈ (0, 1). Moreover, the sequence {u } >0 satisfies u > 0 in Ω,

and for any Ω Ω, there exists σ = σ(Ω ) > 0 such that for any ∈ (0, 1):

Proof. The proof follows from Proposition 2.3, Lemma 2.4 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF] and Theorem 1.1 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF].

Now we describe our main results. To prove the uniqueness and nonexistence result, we establish the following comparison principle: Theorem 6.3.1. For 0 ≤ δ < 1 + s -1 p , γ ≥ 0, let u be a subsolution of (P ) and ṽ be a supersolution of (P ) in the sense of definition 6.3.1. Then u ≤ ṽ a.e. in Ω.

Next, we state the existence result: Theorem 6.3.2. Let Ω be a bounded domain with Lipschitz boundary ∂Ω and δ ∈ (0, sp). Then, (i) for δ -s(1 -γ) ≤ 0, then there exists a minimal weak solution u ∈ W s,p 0 (Ω) of the problem (P ); (ii) for δ -s(1 -γ) > 0, there exist a minimal weak solution u and a constant θ 0 such that

where Λ := (sp-1)(p-1+γ)

p(sp-δ)

.

As a consequence of comparison principle, we have the following uniqueness and nonexistence result:

Corollary 6.3.1. For 0 < δ < 1 + s -1 p , the minimal weak solution u is a unique weak solution of the problem (P ). Theorem 6.3.3. Let δ ≥ sp. Then there doesn't exist any weak solution of the problem (P ) in the sense of definition 6.3.1. Now, we state the Hölder and optimal Sobolev regularity results: Theorem 6.3.4. Let Ω be a bounded domain with C 1,1 boundary and u be the minimal weak solution of (P ). Then there exist constant

Corollary 6.3.2. For δ s + γ > 1 and Ω be a bounded domain with C 1,1 boundary. Then the minimal weak solution u of the problem (P ) has the optimal Sobolev regularity:

Remark 6.3.1. In case of δ = 0 and γ > 0, we extend the Sobolev regularity of minimal weak solution as compared to the Sobolev regularity in Theorem 3.6 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF]. Precisely, u ∈ W s,p 0 (Ω) when γ ≤ 1 or γ > 1 and Λ < 1, and u ρ ∈ W s,p 0 (Ω) for ρ > Λ when γ > 1 and Λ ≥ 1

Comparison principle and existence result

In this section, we prove the weak comparison principle and existence result concerning the problem (P ).

Proof of Theorem 6.3.1: The proof is almost identical as the proofs of Lemma 4.1 and Theorem 4.2 in [START_REF] Canino | Nonlocal problems with singular nonlinearity[END_REF]. For the reader's convenience, we precise some details to explain the restriction on δ. More precisely, we need a minimizer belonging to L := {φ ∈ W s,p 0 (Ω) : 0 ≤ φ ≤ ṽ a.e. in Ω} of the following energy functional defined on W s,p 0 (Ω) as, for > 0

where G is the primitive such that G (1) = 0 of the function g defined by Let u 1 , u 2 are two solution of the problem (P ). Then by considering u 1 and u 2 as a subsolution and supersolution respectively in Theorem 6.3.1, we get u 1 ≤ u 2 in Ω for 0 < δ < 1 + s -1 p . Now, by reversing the role of u 1 and u 2 , we obtain u 1 = u 2 .

Estimates of distance functions

In this section, we construct explicit sub and supersolutions for the following problem

Before that, we introduce the new notion of weak solution and corresponding vector space:

Let Ω ⊂ R N be bounded. We define 

for all φ ∈ W s,p 0 (Ω) and a function u is a weak energy subsolution (resp. weak energy supersolution) of (-∆) exist λ * and ρ * small enough, for any λ ≤ λ * and ρ ≤ ρ * , there exists a constant C independent of λ and such that for any X ∈ {X : 0 < X N < ρ}:

where C 3 is defined in (6.3.15). Finally, by combining (6.3.15), (6.3.19) and (6.3.28), there exists a constant C independent of λ such that

and we deduce (6.3.17).

We extend the definition of the function d in Ω c as follows

where (Ω c ) η = {x ∈ Ω c : dist(x, ∂Ω) < η}. Hence we define, for some ρ > 0 and λ > 0:

otherwise, (6.3.30) where Ω η = {x ∈ Ω : d(x) < η}. Moreover, for λ > 0, w ρ , w ρ belong to W s,p (Ω η ).

Proof. Since ∂Ω ∈ C 1,1 , then for every x ∈ ∂Ω, there exist a neighbourhood N x of x and a bijective map

For any x ∈ ∂Ω, 0 < ρ < ρ < ρ * where ρ * is defined in Theorem 6.3.6 and using the fact that ∂Ω is compact, there exist a finite covering {B R i (x i )} i∈I of ∂Ω and η * = η * (R i ), i ∈ I such that for any η ∈ (0, η * )

Now by using the geometry of ∂Ω and arguing as in Lemma 3.5 and Theorem 3.6 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], there exist diffeomorphisms

and for λ small enough λ 1/α < ρ,

Using the finite covering, it is sufficient to prove the statement in any of set Ω η ∩ B R i (x i ) with x i ∈ ∂Ω and for the sake of simplicity we can suppose x i = 0, Φ i = Φ and Φ(0) = 0. Let g ,1 and g ,2 be two functions defined by

As in the proof of Theorem 6.3.6, it suffices to obtain suitable uniform bounds on compact sets of g ,1 and g ,2 . Hence Lemma 2.5 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] gives estimates (6.3.32). Let x ∈ B R i (0) ∩ Ω η , there exists X ∈ B ρ(0) ∩ R N + such that Φ(X) = x and hence by change of variables and arguing as in Theorem 3.6 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], we obtain

and similarly, From the Lipschitz continuity of Φ -1 , the α-Hölder continuity of U λ , w ρ and w ρ , we obtain by using (6.3.19) for w = w ρ or w = w ρ :

where C is a constant independent of X, λ and . Now we deal with M performing change of variables. We note M coincides with H in (6.3.18). Hence, using the estimate in (6.3.29), we get 

Finally, we deduce the estimates (6.3.32) taking η and λ small enough.

To prove w ρ , w ρ ∈ W s,p (Ω η ) for λ > 0, it is sufficient to claim

for some 0 < η < η 1 and η 2 > 0.

For x i ∈ ∂Ω, for η 0 ∈ (0, η * ), let {B R i (x i )} i∈I be the finite covering of Ω η 0 and Ξ

for some ξ 0 ∈ (0, λ 1/α 2 ). The existence of finite covering {B R i (x i )} i∈I and diffeomorphisms Ξ i are obtained as above by using (6.3.33) . For any i ∈ I, there exists a subset J i of I such that

The collection of sets {B R j (x j )} j∈J i satisfying (6.3.37) are called adjacent sets to B R i (x i ). Now for any i ∈ I and j ∈ J i , define for some τ i < R i
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Sobolev and Hölder regularity

We consider the sequence of function { Kλ,δ } λ≥0 where δ ∈ (0, sp), Kλ,δ : 

for all φ ∈ W s,p 0 (Ω) and a minimal weak solution u of (S δ 0 ) such that u

Let λ s,p be the first eigenvalue and ϕ s,p be a positive eigenfunction for the operator (-∆) s p . There exists a constant c > 0 such that 1 c d s (x) ≤ ϕ s,p (x) ≤ cd s (x) for any x ∈ Ω. Hence, from (6.3.43), for any δ > 0, choosing a constant a > 0 small enough, the following inequality holds for any x ∈ Ω and λ ≥ 0:

Then, by using Proposition 2.10 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF], we get, for any δ ∈ (0, sp), there exists a constant κ 1 such that for any λ ≥ 0 (6.3.46) where C depends upon N, p and s. From the proof of Theorem 6.3.2, {u θ 1 λ } λ is uniformly bounded in W s,p 0 (Ω) and Sobolev embedding implies

In the same way, the second term of the right hand-side is controlled, up to a constant independent of λ, by

For the last term, for any x ∈ Ω \ Ω η 2 , we have

Each constant in the previous estimates are independent of λ but depends on η. Finally, plugging the three previous estimates into (6.3.46) we deduce that for any η > 0, there exists κ η > 0 independent of λ such that

Now, we prove the sharp estimates for both upper and lower boundary behavior of the minimal weak solution for problem (S δ 0 ) for different range of δ. In this regard, we prove the following results with the help of comparison principle: Theorem 6.3.9. Let Ω be a bounded domain with C 1,1 boundary and u be minimal weak solution of the problem (S δ 0 ). Then, we have Chapter 6. Non-local singular problem (i) For δ ∈ (s, sp), there exists a positive constant Υ 1 such that for any x ∈ Ω,

(ii) For δ ∈ (0, s), for any > 0, there exist positive constants Υ 2 and Υ 3 = Υ 3 ( ) such that for any x ∈ Ω:

Proof. Let u λ be the solution of (S δ λ ) for λ < λ * , η < η * and ρ > 0 given by Theorem 6.3.7. We begin to prove (i). Take α = sp-δ p-1 < s implying sp -α(p -1) = δ and we define, for some η > 0,

where w ρ and w ρ satisfies (6.3.32), 0 < κ 2 < κ 1 , C 5 , C 6 are defined in (6.3.32), κ 1 and κ η 2 are defined in (6.3.44) and (6.3.49) respectively and D 3 , D 4 are defined in (6.3.43). Note c η and c η are independent of λ. Hence for any λ > 0, u λ satisfies

(6.3.50) Precisely, from (6.3.44), (6.3.49) and the definitions of w ρ , w ρ given by (6.3.30) and (6.3.31), we get for

Moreover, from (6.3.32) and (6.3.43) and the choice of constants, we get (-∆) s p u (λ) ≤ (-∆) s p u λ ≤ (-∆) s p u (λ) weakly in Ω η Since w ρ , w ρ ∈ W s,p (Ω η ) and u λ ∈ W s,p 0 (Ω) ∩ L ∞ (Ω) ⊂ W s,p (Ω η ), Proposition 2.10 in [START_REF] Iannizzotto | Global Hölder regularity for the fractional p-Laplacsian[END_REF] in Ω η implies u (λ) ≤ u λ ≤ u (λ) in Ω η . Hence, from (6.3.50) and passing λ → 0, we deduce (i). Remark 6.3.4. In case of local operator, i.e. p-Laplacian operator, the optimal condition of Sobolev regularity in Theorem 1.4, [START_REF] Giacomoni | Sobolev and Hölder regularity results for some Singular double phase problems[END_REF] coincide with the our condition for s = 1.

Chapter 6. Non-local singular problem

Non-existence result

Proof of Theorem 6.3.3: Let δ ≥ sp. We proceed by contradiction assuming there exist a weak solution u 0 ∈ W s,p loc (Ω) of the problem (P ) and κ 0 ≥ 1 such that u κ 0 0 ∈ W s,p 0 (Ω). We choose Γ ∈ (0, 1) and δ 0 < sp such that ΓK δ 0 (x) ≤ K δ (x) and the constant Γ is independent of δ 0 for δ 0 ≥ δ * 0 with δ * 0 > 0. For > 0, let u ∈ W s,p 0 (Ω) ∩ C 0, (Ω) be the unique weak solution of ¨R2N

[u (x) -u (y)] p-1 (φ(x) -φ(y)) |x -y| N +sp dx dy = ˆΩ ΓK ,δ 0 (x) (u + ) γ φ dx (6.3.65) for any φ ∈ W s,p 0 (Ω). By the continuity of u , for given θ > 0, there exists a η= η( , θ) > 0 such that u ≤ θ 2 in Ω η . Since u 0 ≥ 0, then w := u -u 0 -θ ≤ -θ 2 < 0 in Ω η and supp(w + ) ⊂ supp((u -θ) + ) ⊂ Ω \ Ω η .

We have w + ∈ W s,p 0 ( Ω) ⊂ W s,p 0 (Ω) for some Ω such that Ω \ Ω η ⊂ Ω Ω. Hence, choosing w + as a test function in (6. Now, by choosing δ 0 close enough to sp and by taking → 0, we obtain that the left hand side is not finite, which is a contradiction and hence claim.