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The thesis is divided into two volumes.

In volume I, we present the comprehensive state of the art and main
results with a glimpse of the proof including framework of function

spaces, new mathematical tools and techniques.

In volume II, we explained the proof of our main results with complete

details and estimates.
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CHAPTER

Parabolic problems with non-standard growth

In the recent years, there has been an increasing interest in the study of equations with non-
standard growth conditions. On one hand, the interest in such equations is motivated by their
applications in the mathematical modelling of various real-world processes, such as the flows
of electrorheological or thermorheological fluids [24}25,151}[230L230], the problem of thermis-
tor [264], processing of digital images [86], filtration process in complex media, stratigraphy
problems [129] and heterogeneous biological interactions [62]. On the other hand, their theo-

retical study is very interesting and challenging from a purely mathematical point of view.

The theme of this chapter is to study the qualitative properties of a class of parabolic prob-

lems with non-standard growth conditions. The main purpose of this chapter is threefold.

Firstly, we study the strong solution of the evolution equations with p(z,t)-Laplacian oper-
ator. For this, we establish new higher integrability interpolations and trace-interpolation
inequalities. Using Galerkin method, we find the sufficient conditions on the initial data for
existence and uniqueness of strong solution. The global higher integrability and second order
regularity of the strong solution are the byproduct of interpolations inequalities and uniform

estimates of Galerkin’s approximations.

Secondly, we study the double phase parabolic problem with variable growth and nonlinear
source term. Using the method of Galerkin and establishing new weighted trace-interpolation
inequalities, we prove the existence of strong solution with better integrability and regularity

properties promoted by the energy equality.
Thirdly, we study the doubly nonlinear diffusion parabolic equations (D.N.E. for short)

involving p(x)-homogeneous operator with nonlinear time derivative and sub-homogeneous
non-monotone forcing terms. For this, we develop a new version of Picone identity for p(z)-
homogeneous operators and as an application of this identity, we extend the well-known

Diaz-Saa inequality for the non-standard growth operators. This inequality enables us to es-
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tablish several new results on the uniqueness of solution and comparison principles for some
anisotropic quasilinear elliptic equations. Using semi-discretization in time and approxima-
tions methods, we prove the existence, uniqueness and regularity results for the weak solution
of D.N.E. . In addition, we prove the continuous and monotone dependency of the solution
with the respect to the initial data and potentials or coefficients in the forcing term. We also

study the stabilization property of the weak solution using semigroup theory.

This chapter includes the results of the following research articles:

(i) R. Arora, J. Giacomoni, G. Warnault, A Picone identity for variable exponent operators
and applications, Adv. Nonlinear Anal. 9 (2020), no. 1, 327-360.

(ii) R. Arora, J. Giacomoni, G. Warnault, Doubly nonlinear equation involving p(x)- ho-
mogeneous operators: local existence, uniqueness and global behaviour, J. Math. Anal.
Appl. 487 (2020), no. 2, 124009, 27 pp.

(iii) R. Arora, S. Shmarev, Strong solutions of evolution equations with p(x,t)-Laplacian: ex-
istence, global higher integrability of the gradients and second-order reqularity, J. Math.
Anal. Appl., 493 (2021), 124506.

(iv) R. Arora, S. Shmarev, Double phase parabolic problems with variable growth, submitted.

Turning to the layout of this chapter: In section we discuss two physical process as a
source of origin and motivation for non-standard growth operators, double phase functionals
and doubly nonlinear equations. In section we present our main problems. In section
we introduce the functions spaces and the comprehensive state of the art for evolution
equations involving p(z,t)-Laplacian operator, Double phase parabolic equations, Doubly
nonlinear equations involving constant and variable exponent operators, and Picone identity.
In section[1.4] we develop the main tools and techniques, and state main results of this chapter

with a glimpse of the proof.

1.1 Physical motivation

In this section, we discuss the origin of the interest to study the evolution equations with

non-standard growth conditions and also with double source of nonlinearity.

First we discuss two physical processes of image recovery and non-Newtonian fluids whose
mathematical modelling leads to the equations involving non-standard growth conditions. Let
u be the true image and v be the input image defined on the domain  C RY, a result of a
linear transformation A on the true image and corrupted by a random noise v = Au+n where
7 is a random variable with zero mean and wu, v represent shades of gray. The effect of noise
can be eliminated by smoothing the input which corresponds to minimizing the following

energy functional

A
Z(u) ::/ |Vu|2—|—§|Au—v|2.
Q




1.1. Physical motivation

with a given Lagrange multiplier A = const. This smoothing eliminates the noise effect , but
unfortunately it destroys small details of the true image. A better approach, total variation

smoothing method corresponds to minimizing the new energy functional
A 2
J(u) = [ |Vul+ z|Au — v]*.
Q 2

This method preserves edges when |Vu| is high. However, the drawback of the method is
that it may also create edges due to the presence of the random noise (called staircase effect).

A combination of the two methods consists in minimizing the following energy
() 4 A 2
V(u) = [ |Vu|P'** + §\Au — v
Q

where the exponent p(x) close to 2 where there are likely no edges, and close to 1 where the
edges are expected. The approximate location of the edges can be determined by smoothing
the input and looking for the zones where |Vu| is high. The minimizer of the functional V is
a solution of the p(x)-Laplace equation. A detailed discussion with more complicated models

in the image restoration problems can be found in [86,(187].

A second process is the modeling of electrorheological fluids where the perturbations of the
variable exponents operators appear in a natural way. This kind of fluids is characterized by
their ability to drastically change the mechanical properties under the influence of an external
electromagnetic field. For example, many electrorheological fluids are suspensions consisting
of solid particles and a carrier oil. These suspensions change their material properties radically
if they are exposed to an electric field (see [229]). The mathematical model for the motion of

an electrorheological fluid is given by
ut +div P(u) + (u- V)u+ Vr = f,

where u : R? x R — R3 is the velocity of the fluid at a point in space-time, V = (91, 02, 03)
is the gradient operator, 7 : R? — R is the pressure, f : R® — R? represents external forces,

and the stress tensor P : V[/lloc1 — R3*%3 ig of the form

p(z)—2
P(u)(z) = p(z)(v + |Du(x)?) > ) Du(x)
where Du is the symmetric part of the gradient of u. The above model for p = 2, reduces to
the usual non-dimensionalized Navier-Stokes equation. The case v = 0 and u = 1 corresponds

to the p(z)-Laplacian operator. For more details, we refer to [229}230].
The study of the double phase problems started in the late 80th by the works of V. Zhikov

[266,]269] where the models of strongly anisotropic materials were considered in the context

of homogenization. Later on, the double phase functionals

u—)/Q(|Vu|p—|—a(x)|Vu|q) do
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attracted attention of many researchers. The significant case occurs when the modulating
coefficient a(-) vanishes on a set of non-zero measure and p < g. The double phase functional
changes the ellipticity /growth depending upon the support of the modulating coefficient a(-).
Indeed, the energy density of functional exhibits a growth/ellipticity in the gradient of order
q in those points & where a(z) is positive and of order p on the points x where a(z) = 0.
Such double phase functionals provide an elementary model for describing the behaviour
of strongly anisotropic materials whose hardening properties linked to the exponent of the
gradient variables. The modulating coefficient a(-) serves to regulate the mixture between two
different materials, with p and ¢ hardening respectively. On the one hand, the study of these
functionals is a challenging mathematical problem due to its most dramatic phase-transition
and on the other hand, the double phase functionals appear in a variety of physical models.
We refer here to [42,268] for applications in the elasticity theory, [40] for transonic flows, [48]

for quantum physics and [91] for reaction-diffusion systems.

The significant interest to study Doubly nonlinear equation (D.N.E. for short) comes from a
wide spectrum of applications in real world phenomenons, for instance in fluid dynamics, soil
science, combustion theory, reaction chemistry (see [37,38,44,45/47./94}15411901225/234]). In
literature, there are a variety of evolution equations involving double nonlinearity depending

upon the positioning of nonlinear exponents. One of the basic model for D.N.E. is given by
O — V. ([V@)P2V(u") =0 in Qx(0,T). (1.1.1)

For p =2 and r > 1, (1.1.1) is well-known as the porous media equation. More generally, for
p>1andr >0, (1.1.1) is known as the Polytropic Filtration Equations (P.F.E.) (see [258]).
The physical background of P.F.E. can be explained by considering the flow of compressible

non-newtonian fluid in the homogeneous isotropic rigid medium which satisfies:

ey = —V(u7) Mass balance
P = Pou” State equation

where u is the particle density of the fluid, 7 is the momentum velocity, P is the pressure, r is
the polytropic constant and Py is the reference pressure and e is the porosity of the medium.
Due to the influence of molecular and ion effects in non-newtonian fluids, the linear Darcy’s
law (7 is proportional to VP) is no longer valid. Instead, we have the nonlinear version of
Darcy’s law:

WV = AVPIP2VP

where g is the viscosity of the fluid and A is the permeability of the medium. By combining
the two last equations, we obtain an analogous form of ((1.1.1]).

Another equivalent form of D.N.E. is given by

o™ — V. (|VulP2Vu) =0 in Q x (0,T). (1.1.2)




1.2. Presentation of the problems

Depending upon the value of m and p, is called as Slow Diffusion Equation (S.D.E.)
if p > 14 m and Fast Diffusion Equation (F.D.E.) if p < 14 m. A main difference between
the two cases is the existence of solutions with compact support for the S.D.E whereas the
occurrence of dead core type solutions can not occur for the F.D.E. due to the infinite speed
of perturbations propagation (for more details see [60,258]). In the framework of D.N.E.,
is also referred in the literature (for instance see [60,|173]) as:

pe(L2) p>2
m € (0,1) | Singular-degenerate | Doubly degenerate

m>1 Doubly singular Degenerate-singular

1.2 Presentation of the problems

In this section, we present two different class of parabolic problems with variable nonlinearity
depending upon time and space variable. For this, we start by introducing the suitable
variable Lebesgue and Sobolev space for our study. We limit ourselves to collecting the most
basic facts of the theory and refer to Chapter {4 and [112] for a detailed insight, see also
[344|111},179L223].

Let Q@ ¢ RN, N > 1 is a bounded domain with Lipschitz-continuous boundary 9. Let P(Q)
be the set of all measurable function p : Q — [1, 00[ in N-dimensional Lebesgue measure. The

set
Lp(')(Q) ={f:Q — R: f is measurable on Q,Ap(,)(f) = / |f(x)‘l’(1) dz < oo}
Q

equipped with the Luxemburg norm

0 = inf {3 >0 ) (1) <1]

is a reflexive and separable Banach space. Throughout the chapter, we assume that

1< p~ © minp(z) < p) < p* € maxp(z) < co.
Q

The variable exponent Sobolev space VVO1 P (’)(Q) is defined as the set of functions

WoP Q) = {u: Q= R | ue LPO(Q) N Wy (Q), |Vu| € LPO(Q)}
equipped with the norm
lullyp0 ) = lull ooy + 1 Vull Lo -

It is known that C2°(£2) is dense in VVO1 #() (22) and the Poincaré inequality holds if p € Clog(€2),

i.e., the exponent p is continuous in Q with the logarithmic modulus of continuity:

Ip(z1) — p(z2)| < w(|z1 — 22|),
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where w is a non-negative function satisfying the condition

1
limsup w(7) In () =C < o0.
T

T—=0t

For the study of parabolic problem with p(z,t)-Laplacian and spaces of functions depending
on (z,t) € Qr, we define the following spaces:

Voo (@) = {u: Q= R | ue L*(Q) N Wy (Q),[Vulft) € LY(Q)}, ¢ € (0,T),

Wy (Qr) = {u: (0,T) —= Vo 1y(Q) | uw € L*(Qr), |[VulP™) € LY(Qr)}, 2= (2,1).

The dual W’(Qr) of the space W, (Qr) is defined as follows: & € W'(Qr) iff there exists
g e L2(Qr), ®; € L"O(Qr), i =1,...,N, such that for all u € W) (@)

N
T

i=1

1.2.1 Problem 1: Strong solution of evolution equations with p(x,t)-Laplacian

First, we study the Dirichlet problem for a class of parabolic equations with variable nonlin-

earity

{ Ou — div (|Vu|p(x7t)_2Vu) = f(z,t) inQr def () « (0,7), (1.2.1)

uw=0onT % 90 x (0,7), wu(x,0)=wup(x) in €,

where @ C RY, N > 2, is a bounded domain with the boundary 99 € C?. The exponent p is

a given function whose properties will be described in main results.

Concerning the problem , we are interested in the existence of strong solutions u
and its global higher regularity and integrability properties. By the strong solution we mean
a solution whose time derivative is not a distribution but an element of a Lebesgue space,
and the flux has better integrability properties than the properties prompted by the energy
equality (the rigorous formulation is given in Definition .

The local higher regularity and integrability properties for the problem are intrinsic
since their validity does not depend upon the problem data and geometry of the domain. So,
a natural question arises “Does the regularity or integrability of a weak or strong solution
improve if the initial data (u(-,0),p(-,-), f(-,-),08) are more regular?”

To answer the above question, we study the global higher integrability and second-order
regularity properties of the strong solution when the initial data posses better regularity

properties.
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1.2.2 Problem 2: Double phase parabolic problem with variable growth

Secondly, we study the following double phase parabolic problem with the homogeneous

Dirichlet boundary conditions:

{ wy — div (qu|p(Z)‘2Vu - a(Z)IVU\Q(Z)_2V“) =F(zu) nQr, (1.2.2)

u=0onTI7, u(z,0)=u(x) in Q,

where z = (x,t) denotes the point in the cylinder Q7 = Q x (0,7] and I'r = 9Q x (0,7T) is
the lateral boundary of the cylinder and Q C RY be a smooth bounded domain, N > 2 and
0 < T < oo. The nonlinear source has the form F(z,v) = fo(2) + b(2)|v|?*)~2v. Equations
of the type are often termed “the double phase equations” because the flux function
(|Vul[P®) =2 + a(2)|Vu|1®)=2)Vu includes two terms with different properties.

Concerning the problem (1.2.2]), we are interested in the existence of strong solution u
with “better integrability properties”. By the better integrability properties here we mean
the gradient of strong solution u has Lebesgue integrability with bigger exponent ¢(-) even if
the modulating coefficient a(-) vanishes on a set of nonzero measure.

In this regard, we find conditions on the functions fy, a, b, 0 and ug sufficient for the existence
of a unique strong solution by studying global regularity and integrability properties of the

regularized flux function.
1.2.3 Problem 3: Doubly nonlinear equation for p(x)-homogeneous operators

Thirdly, we investigate the following doubly nonlinear equation driven by a general class of

Leray-Lions type operators
O (B(u)) —diva(x, Vu) = F(x,t,u), uw>0 in Qr;
u=0 on I'; (DNE)
u(.,0) = up in €,

with the following nonlinear time derivative, and sub-homogeneous and non-monotone forcing

terms

Bu) = 2qq_ 1u2q*1 and F(z,t,u) = f(z,u) + h(z,t)u??

where ¢ > 1, T > 0, with Q@ ¢ RV, N > 1 a smooth bounded domain, and h belongs to
L>(Qr).

Problem involves a class of variational operators a : Q x RY — R defined as, for any
(z,8) € Q x RY:

def

@) = (ay(2. ), © (-506,A(.€) ) = ~5eA(,6)

p(z) i p)
where p € C1(Q) and A : Q x RY — R is continuous, differentiable with respect to ¢ and

satisfies:
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(A1) € = A(.,€) is p(x)-homogeneous i.e. A(x,t€) = tP@)A(z, ), for any t € RY, & € RN
and a.e. x € ().

(A2) For j € [1,N], aj(x,0) =0, a; € CHQ x RN\{0}) N C(2 x RY) and there exist two
constants v, I' > 0 such that for all z € 2, ¢ € RV\{0} and n € RY:

N Ha;

> 5 @8 mny = Al
ij=1 Ysi

N .

> |5, < Tige

The assumption (Ag) gives the convexity of & — A(z,€§) and growth estimates, for any
(z,8) € Q x RN:

C Y @ < Afp 6 < — @ iz )] < ClEP@1L.
and the homogeneity assumption (A1) implies that A(x,€¢) = a(x, £).€ for any (z,&) € QxRY.

Next, we impose the condition below to insure qualitative properties as regularity and the

validity of Hopf Lemma.
(A3) There exists C' > 0 such that for any (z,£) € Q x RN\{0}:

N

das _
3 |G e8| < I 1+ (e,
,7=1

More precisely, from the condition (As) we derive the Strong Maximum Principle (see [262])
and the C1®-regularity of weak solutions (see Remark 5.3 in [118] and Remark 3.1 in [146]).

Example: Prototype examples of operators a satisfying (A;)-(As3) are given below: for any
(z,6) € 2 x RY and p € C1P(Q) by:

J 2
A(z,€) = 2 g5() (Z 5?)

where (P;);jes is a partition of [1, N], g; € C1(Q) N C%F(Q) and g;(x) > ¢ > 0 for any j € J.
In particular for A(z, &) = |£[P(®), (DNE) can be classified as S.D.E. if 2¢ < p~ and F.D.E. if
29 >pT.
§-n 1—s(zx) &4 s(z)

(A1) Ale, 52) < (&) (Ale, ©) + ) =@ (A(e,€) + Ale,n) — 2A(x, S52)

where for any z € €, s(zr) = min{l,p(x)/2} and ((z) = (1 - 21_”(“”3))_ ® if p(zr) < 2

or ((z) = 3 if p(x) > 2.
The condition (A4) reformulates the local form of Morawetz-type inequality producing con-
vergence properties.

Concerning the conditions on the functions f and h in forcing term, we assume:

10



1.3. State of the art

(fo) f:Q xR — RT is a continuous function such that f(z,0) = 0 and f is positive on

Q x RT\{0}.
(f1) For any x € Q, s +— fes) g non-increasing in RT\{0}.

sa—1
(f2) The mapping x +— 679(z)f(z,d(x)) belongs to L*(Q.) for some ¢ > 0 where €. o

{zr e ]o(x) < e}.
and
(Hy) there exists h € L*(2)\{0}, h > 0 such that h(t,z) > h(z) for a.e in Q7.
Example: Function f satisfying (fo)-(f2) is given by for any (z,s) € Q x RT, f(z,s) =
9(2)87 (z)s” where g € L°(9) is a non-negative function, 8 € [0,¢ — 1) and 8+~ > ¢ — 3.
Concerning the problem (DNE]), we are interested in the existence of a unique weak solution
and its stabilization properties. The notion of the weak solution u for the problem (DNE) is

understood in the following sense:
(B(w) € L*(Qr), e LX(0,T: Wy ()

(a rigorous formulation is given by Definition |1.4.4]).

To prove the existence of a weak solution, we alter our viewpoint towards our main problem
(DNE)). Precisely, we formulate an equivalent problem by replacing 9;(8(u)) to 9;(u?)u?=! in
our main problem (DNE) (see below (E))) such that

dr(u?) € L*(Qr) and u € L®(Qr) = 9(B(u)) € L*(Qr) (weakly in L*(Qr)).

To study the new equivalent problem, we develop a new version of Picone identity for p(x)-
homogeneous operators. Using this and semi-discretization in time method, we settled the
question of existence of unique weak solution of the equivalent problem .

To answer the second question of stabilization of weak solution, we seek help from semigroup
theory by shifting the nonlinearity in the time derivative term to diffusion term (see ([1.4.32)).

1.3 State of the art

Problem 1: : Strong solution of evolution equations with p(x,t)-Laplacian

Equation falls into the class of equations with variable nonlinearity or non-standard
growth, which have been intensively studied in the last decades. If the variable exponent
p # 2, equation becomes degenerate or singular at the points where |Vu| = 0, which
prevents one from expecting the existence of classical solutions. The solution of problem
is understood in the weak sense. Before starting the state of the art for the problem
, we distinguish the notion of weak and strong solutions as follows.

Definition 1.3.1. A function u is called weak solution of problem , if
(i) u € Wp(.)(QT), ug € W(Qr),

11
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(i) for every v € Wy,y(Qr) with ¢y € W(Qr)

/ utp dz + / VulP@) 2V Vi dz = | fidz,
T T Qr

(iii) for every ¢ € CE(Q)
/(u(m,t) —up(z))p dr -0 ast—0,
Q
(iv) the weak solution u is called strong solution of problem (1.2.1)) if

u € L3(Qr), |Vu| € L0, T; LPO)(Q)).

The existence of a unique weak solution to problem can be proven under the minimal
requirements on the regularity of the data. We refer to [26,34] for the results on existence
and uniqueness of weak solutions for a single equation of the type (1.2.1)), to [111] for systems
of equations with the homogeneous Dirichlet boundary conditions, and to [116] for the case

of the non-homogeneous boundary conditions. Precisely, we have the following result:

Proposition 1.3.1 ([26,34,/111]). Let @ ¢ RN, N > 2, be a bounded domain with the

Lipschitz-continuous boundary. Assume that p : Qr — R satisfies the conditions

2N

Ni3 <P <p(z,t) <pt,  pE Cig(Qp).

Then for every f € L*(Qr) and ug € L*(Q) problem has a unique weak solution
u e CO[0,T]; L*() N Wy (Qr) with ug € W (Qr). The solution satisfies the estimate

ess sup Hqug-l-/ |VuP@) de dt < C (1.3.1)
te(0,T) Qr

with a constant C depending only on N, p*, || fllo.or and ||luo|l2.0-

Concerning the study of regularity of weak solution a lot of attention has been paid by
researchers. Let ' € Q, ¢ € (0,7), Q" = ' x (¢,T), and let u be a weak solution of
equation . It is known that u possesses the property of higher integrability of the
gradient: for every @ and ¢ > 0 there exists a constant § > 0 such that |Vu[P(:)+0 €
LYQ") and |||Vu[P*?||; o < C with a constant C' depending on € and the distance between
0 and 99 - see [35,[56,1267] and [265] for global estimates in Reifenberg domains. The
weak solutions are locally Holder-continuous, provided that the variable exponent p is log-
continuous [13},55,[259]. Moreover, if the variable exponent p is Holder-continuous, then Vu
is locally Holder-continuous and u € C’aljt1 / 2(Q’ ) see [55,260]. These local regularity properties
are intrinsic for every weak solution of equation and are completely defined by the

nonlinear structure of the equation.

12
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The issues of local higher regularity of solutions of systems of parabolic equations with non-
standard growth have been addressed for the first time in paper [2]. Among other results, it
was proven that the solutions of a system of equations with p(z, t)-growth conditions with the
exponent p Hoélder-continuous in ¢ and Lipschitz-continuous in x possess the property of local
higher integrability and Holder-continuity of the spatial gradient, as well as the property of
local higher differentiability of the solutions.

The existence of strong solutions of problem ([1.2.1) and their global regularity properties
have already been addressed in a number of works but all known results refer to the singular
equation with 1\2,—% < p(z,t) < 2, or to the equations with the exponent p non-
increasing in ¢. It is known [27,28]233] that the weak solution becomes a strong solution with
uy € L2(Qr) and |VulPt) e L®(0,T; L' (Q)), provided that |[Vug[P(9) € LY(Q), f € L*(Q7),
pr € L*°(Qr) and either p; < 0 a.e. in Qp, or |p| < C a.e. in Qr and p < 2. Further, if
IVp| + |pel < C ae. in Qp, up € Wy?(Q) and p < 2 in Qp, then \Dgixju]p(x’t) € LYQr)
[27.[28], or D?Eixju € L*(2 x (¢,T)) for every e € (0,T) [27,29]. The strong solution may be
Holder or even Lipschitz continuous in ¢ in the cylinders Q x (¢,T) with € > 0, [233,[247]. It
is proven in [32] that if the initial function possesses a second-order regularity with respect
to = and satisfies certain compatibility conditions, |f|?'() € LY(Qr) and f; € L*(Qr), then
the singular equation with the Lipschitz-continuous exponent p < 2 in a convex C? domain
has a unique strong solution such that

) € LXQr). [Vul) € LYQr). D3, up) e L@r). ¥ = Eo.
Stronger global regularity properties are known in the case of constant p > 1. It is shown in
95] that if f € L2(Qr), ug € WyP(€2), and 9 is subject to minimal regularity assumptions,
then

ur € L2(Qr), |VulP~2Vu e (L20,T; W)Y, we L=(0,T; W, P(Q))

and the corresponding norms are bounded through the norms of the data. The authors of [95]
show that problem ([1.2.1)) with p = const admits an approximable solution, i.e. a solution
obtained as the limit of the sequence of smooth solutions of the same problem with smooth
right-hand sides and initial data. The approximable solution inherits the regularity properties
of the smooth approximations. We refer to |95] for a review of the previous results on the

global regularity in the case of constant p.
Problem 2: Double phase parabolic problem with variable growth

Equations (1.2.2) with p # ¢ are also referred to as the equations with the (p,q)-growth
because of the gap between the coercivity and growth conditions: if p < ¢ and 0 < a(z) < L,
then for every £ € RV

€ < (6772 + a(@) €1 D)Ie2 < C(L+[€]7), € = const > 0.

13



Chapter 1. Parabolic problems with non-standard growth

These equations fall into the class of equations with nonstandard growth conditions which have
been actively studied during the last decades in the cases of constant or variable exponents
p and q. We refer to the recent works [20,82,97,98,|115,|133}|166} 202,213,222, 263] and
references therein for a review of results on the solvability of stationary problems and the

regularity properties of solutions.

Results on the existence of solutions to the evolution double phase equations can be found in
papers [57,236,237]. These works deal with the Dirichlet problem for systems of parabolic
equations of the form

ur — diva(zx,t,Vu) =0, (1.3.2)

where the flux a(x,t, Vu) is assumed to satisfy the (p, ¢)-growth conditions and certain regu-
larity assumptions. As a partial case, the class of equations (1.3.2]) includes equation (1.2.2)
with constant exponents p < ¢ and a nonnegative bounded coefficient a(z,t). It is shown in

[67, Th.1.6] that if

4
2<p<g< —
>P>q p+N+27

then problem (1.2.2]) with F' =0 has a very weak solution

w e LP(0, s Wy () N LE, (0, T Wibd(Q)) - with € LaT(0,T; W™ 171 (Q)),

loc

provided that ug € I/VO1 (), r= p(pq__ll). Moreover, |Vu| is bounded on every strictly interior
cylinder Q). € Qr separated away from the parabolic boundary of Q7. In [236] these results
were extended to the case

4
<p<2, <g<pt+ ——mr.
N+2 P PSa<P+ N

Paper [237] deals with weak solutions of systems of equations of the type (1.3.2)) with
(p,q) growth conditions. When applied to problem (1.2.2) with constant p, ¢, b = 0 and
a(-,t) € C*(Q) with some a € (0,1) for a.e. t € (0,7, the result of [237] guarantees the

existence of a weak solution

we LP(0,T; Wy P () N LY

1 (0, T5 Wi (€2)) 1 L (0, T35 L*(9)),
provided that the exponents p and ¢ obey the inequalities

< +ozmin{2,p}
Nz SPSIsPTNTS

The proofs of the existence theorems in 57,236,237 rely on the property of local higher
integrability of the gradient, |Vu|P*® € L*(Q%) for every sub-cylinder Q% € Q7. The maximal
possible value of § > 0 indicates the admissible gap between the exponents p and ¢ and vary

in dependence on the type of the solution.

Equation (|1.2.2)) with constant exponents p and ¢ furnishes a prototype of the equations

recently studied in papers [58,|125,/153,]201] in the context of weak or variational solutions.

14



1.3. State of the art

The proofs of existence also use the local higher integrability of the gradient, but for the

existence of variational solutions a weaker assumption on the gap ¢ — p is required.
Problem 3: Doubly nonlinear equation for p(x)-homogeneous operators

Equation belongs to the class of Doubly nonlinear equations (D.N.E.) with variable
nonlinearity of type . Depending upon the exponents in both nonlinear diffusion and
nonlinear time derivative term, is classified into several categories. For p =2, ¢ =1
and F = 0 equation is known as standard heat equation. For ¢ = 1, p € (1,00) and
F = 0 equation reduces to p-Laplace equation, while for p =2, m :=2¢ — 1 € (0,00)
and F =0, is called Porous media equation. A vast amount of results is available in
the literature concerning the above types of equations, so to inhibit the vastness of section

we limit ourselves to the class of equations where double nonlinearity is involved.

In literature, various types of tools and techniques are present to deal with the D.N.E. of type
(1.1.2]). Concerning the existence of solution to D.N.E. of type (L.1.2)), we refer to the work
[8,124[591|60,,250]. In |12], Akagi and Stefanelli studied the following D.N.E.

Ab(u) — V.(a(Vau)) > f

where b C R x R and a € RY x RY are maximal monotone graphs satisfying the polynomial
growth conditions for instance b(u) = u™ and a(¢) = |£[P72¢. First, by using a nonlinear
transformation v = b(u), they transformed the original equation into an equivalent dual
problem which reads as —V.(a(Vb~1(v))) 3 f — v and then by using the method of elliptic
regularization (Weighted Energy Dissipation approach), they constructed the sequence of
minimizers of suitable energy functionals (for more details see equation (1.2) in [12]) whose
limits converge to solution of the equivalent dual problem. For D.N.E. involving p-Laplacian

operator, one only changes the viewpoint in the sense that the nonlinearity is shifted from
O™ — div(|VulP2Vu) = f to O — div(|Vom [P-2Vom) = f. (1.3.3)
In [59,/60], Bogelin et al. studied a more general D.N.E. of type (1.1.2)
Oib(u) — div fe(x,u, Vu) = — fu(x,u, Vu)

where f satisfies suitable convexity and coercivity conditions. By introducing a new notion of
solution called variational solutions and nonlinear version of minimizing movement method
(finite time discretization), they proved the existence of a variational solution u. Precisely, a

function u is called a variational solution of (|1.1.2)), if the following inequality holds:
1

L[ vl = 19ep) de + B, o(T) < [ Bu(e™ — ™) ds 4+ Bu(0),0(0)

PJQr Qr

where

B(u,v) = /Q (mi—l(vmﬂ — ™) — ™ (u— v)) dx

15



Chapter 1. Parabolic problems with non-standard growth

and v is a suitable positive test function. They also proved the existence of distributional
and weak solution when f(z,u,{) grow naturally as a polynomial of order p as £ — co. In
[250], Tsutsumi has studied the D.N.E. of type ([1.1.2)) in the presence of an absorption term
and using approximation method he proved the existence of a mild/weak/strong solution

depending upon the regularity of the initial data and nonlinearity exponents m and p.

For the study related to the D.N.E. of type (1.1.1)), we refer to the work [9-11,[174}2401241] for
existence results, [128,252] for Harnack type inequalities and |1764219,238,253] for local and
global behavior of solutions. The non-homogeneous variant of the model together with
multi valued source/sink terms can also be interpreted as the limiting case (when m — 1) of
the climate Energy Balance Models (see [50,52,/107]).

Recently, the study of D.N.E. involving variable exponent growth are getting into substantial
attention. To explore the questions of existence (local or global), regularity or behaviour of
solutions for D.N.E. with variable exponent we refer to [8/9,[2330,31},33},34]. The authors in
[34] have studied the following class of D.N.E. involving the p(z, t)-laplacian and lower order

terms
N
du=Y D (ai|Di(|u\m(z)_1u)\pi(‘v’t)_QDi(\u|m(m)_1u)) + blu|7@D =2y
i=1
with given exponents m,p; and o. Using a nonlinear transformation v = \u|m(m)*1u, they

transformed the original equation into the D.N.E.

N
Ay([v] 7 sign(v)) = > Di (ai’Divﬂpi(x’t)_sz)) + b|v|
i=1

o(z,t)—1 1
m@y (1.3.4)

similar to and by using the Galerkin method, they proved the existence of a weak
solution. The authors in [8,9] have also studied the D.N.E. involving p(z)-Laplacian opera-
tor and proved the existence of weak solution using Legendre-Fenchel transforms of convex
functionals and an energy method. For uniqueness and comparison theorem for the solutions
of D.N.E. with non-standard growth conditions we refer to [23,34]. For localization, blow up
and extinction in finite time for the solutions of D.N.E. of type (1.3.4)), we refer to [30}31].
We also recall the state of the art for Picone identity which is one of the main tool in studying
Problem 3. Picone identity plays an important role for proving several qualitative properties
of differential operators. In [215], M. Picone consider the following homogeneous second order
linear differential system
(a1(z)u') + az(z)u =0
{ (b1 (z)v") + ba(z)v =0

and proved for differentiable functions u,v # 0 the pointwise relation:

/ / 2
(Z(alu'v - bwv’)) = (by — az)u® + (a1 — by)u'? + by (u' - U:) (1.3.5)
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and in [216], extended (1.3.5) to the Laplace operator, i.e. for differentiable functions u >

0,v > 0 one has [[]
2
Vuf? > <v(z>,w>. (1.3.6)

Later in [14], Allegretto and Huang extended (1.3.6) to the p-Laplacian operator with 1 <

p < 0o. Precisely, for differentiable functions v > 0 and v > 0 we have

p
IVl - wp—?w.v(;_l) > 0. (1.3.7)

As an immediate consequence, they obtained a wide array of applications including the
simplicity of the eigenvalues, Sturmian comparison principles, oscillation theorems, Hardy,
Barta’s inequalities and some profound results for p-Laplacian equations and systems. This
work motivated a lot of generalization of the Picone’s identity and in this regard, various
attempts have been made to generalize Picone identity for different types of differential oper-

ators see [61},100] and the reference therein. In [109,|110], Diaz and Sa&d proved the following

“A)awt? _ wl/P
/Q(( A)Pl _(A)PQ >(w1—w2)20

wgp—l)/p wép—l)/p

inequality

for w; € L™®(Q),w; > 0 a.e. on €, wil/p e Whr(Q), (—A)pwil/p € L>(Q) for i = 1,2,

wy = wy over 9N and w;/w; € L*(Q) for i # j, i,j = 1,2. This inequality turns out to be
equivalent with the convexity of a p-power type energy functional, as suggested in [71] for
p = 2, and generalized in [127] to any constant p € (1,00). In applications to quasilinear
elliptic operators (with p constant, 1 < p < 00), this equivalence played a decisive role in the
works [155] and [245]. In [81], Chaib proved the above inequality in RY, and pointed out
the connection between the Diaz-Sa4 inequality and the generalized Picone inequality (1.3.7).
Lator on, in [64], Brasco and Franzina extended the above Diaz-Sad inequality in p-¢q form.

Precisely, for every pair u, v of positive differentiable functions the following holds:
1 v q p=q
where ¢ € (1,p], A: RY — [0,00) is a C! positively p-homogeneous convex function.

1.4 New contributions

In this section, we provide the details of new tools and techniques which are developed to
tackle the Problems 1, 2 and 3 mentioned in Section and main results with a glimpse
of the proof.

"Equation (T.3.6) is known as “identity”, even if it is inequality, because of the two terms can be written
as

’Vu—EVv
v

2 2 2
= |Vu|2 + %|V’U|2 _ QEVU.V’U _ |Vu|2 _ V<U> Vo
v v )

which is indeed positive.
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Chapter 1. Parabolic problems with non-standard growth

1.4.1 Problem 1: Strong solution of evolution equations with p(x,t)-Laplacian

We study the following Dirichlet problem for a class of parabolic equations with variable

nonlinearity

Opu — div (]Vu\p(m’t)*QVu) = f(z,t) inQr 0« (0,7), (1.41)
u:Ooan:Ef(?Qx(O,T), u(z,0) = ug(x) in Q, h

1.4.1.1 Main tools

First, we derive a special interpolation inequality that yields the global integrability of
|Vu|P@D+0 with some § > 0 independent of u, and provides an estimate on the term with
the logarithmic growth. The interpolation inequality is also used in the proof of W2(Q7)-
regularity of the flux in the degenerate problem and the counterpart problems with

regularized fluxes. Define

p(z)—2 p(z)—2

Ye(z,8) = Be 2 (S)E(€2+|S|2) 2, >0, sc RV,

Theorem 1.4.1. Let 9Q € C1, u € CL([0,T];C%(Q)) and u =0 on 9Q x [0, T]. Assume that
p(:) : Qr > [p~,pT] such that p € C°(Qp) with the modulus of continuity w,

2N

<p, esssup |Vp| = L,
+2 QT

N
| eVl dz <o, sup [u(®lFe = Mo, [ [Vupt)dz =
Q

T 0,7 Qr

Then for every

2 cr <t 4p~
N+2 " S" T (Nyr2)+2N

and every § € (0,1) the function u satisfies the inequality

p(z)+r—2
Be 2 (vu)yvu|2dzg5/ Ye(z, Vu)|ugs|? dz + C <1+/ |Vu[P(?) dz>. (1.4.2)
Qr Qr T

with an independent of u constant C.

The proof of above lemma is slightly technical. We will only highlight here the crucial point
of the proof. Using uniform continuity of the exponent p in Qr, it is enough to prove the
estimate (1.4.2) in © and for a fixed ¢t € (0,7) i.e. for every ¢ € (0,1)

p(x)+r—2

85T (VI VuPds <6 [ e Vs do+C (14 [ Va0 o)
Q Q Q

with an independent of u constant C'. A straightforward computation via Green’s formula
and a set of logarithmic inequalities (for more details see (4.2.18)), Page Chapter {)) leads
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1.4.1.2. Main results

us to the following estimate

(z)+r—2
/ ﬂ: (V)| Vul* dz < Cy + 5/ Ye(z, V) g |* da
@ @ (1.4.3)

pla)+2r—2 p(x)+r—1+v

+C'5/Qu2ﬁe ? (Vu)dx—i—Cﬁ/Q\uWe > (Vu)dz

for some v € (0, 1) and it remains to estimate last terms of ([1.4.3)). For this, the continuity of

p allows us to choose a special finite cover {€2;}; so small such that for every i =1,2,..., K
;- + <1 T ) <1
L' r .
Pi =P p(N+2)) S N+2

for any r between lower and upper exponent i.e. r € (ry,r*). Then, finally by using interpo-
lation inequalities of Gagliardo-Nirenberg-Sobolev type with a suitable set of exponents, we
get our final result. For a detailed proof, we refer to Theorem Page Chapter [4]

Secondly, we derive the trace-interpolation inequality used to estimate the traces of \Vu|p(z)
on the lateral boundary of the cylinder Q7. These estimates turns out to be useful in the

study of the non-convex domains also.

Theorem 1.4.2. Let us assume that p and u satisfy the conditions of Theorem[1.4.1. Then
for every X € (0,1)

/ (€ + |[Vul?) 22|Vl dSdt < )\/ (€ + |Vul2) 5 uga|? d=
o0 x(0,T)

QT

+c<1+/ |V [P?) dz>
T

with an independent of u constant C.

The proof of the above lemma follows by Lemma 1.5.1.9 in [162], Green formula and loga-

rithmic inequalities depending upon the size of the gradient.
1.4.1.2 Main results

The main result of Problem 1 are given in the following theorems.

Theorem 1.4.3. Let @ € RN, N > 2, be a bounded domain with the boundary 0Q € C?.

Assume that the exponent p satisfies

2N
N+2

<p <p(xt) <p", p€ Cg(Qp)
esssup |Vp| < Oy < 00, esssup |p| < C*
T T

with nonnegative finite constants Cy, C*. Let

FeLX0,T;WHAQ),  uo € LA(Q) N We ™Y (Q) with qo(x) = max{2, p(z,0)}.
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Chapter 1. Parabolic problems with non-standard growth

Then the weak solution w of problem (1.4.1) is a strong solution. The function u satisfies

estimate (1.3.1)) and
JulB g +ess sup [ [Vuftet o< € (1.4.4)
’ (0.1) /9

with the exponent q(x,t) = max{2,p(z,t)} and a constant C depends upon N,0Q,T,pT,

Ci, €, Jluoll, [| £1]-

Theorem 1.4.4. Under the conditions of Theorem

(i) The strong solution u possesses the property of higher integrability of the gradient:

4p
p~ (N +2)+2N

/ IVuP@O+ dedt < Cg for every 0 < < (1.4.5)

T

with a finite constant Cs depending on & and the same quantities as the constant C' in

([44).
(ii) Moreover,

D2 we I Qrn{(z,t): pla,t) <2Y), ifN>2,

TiTj loc
pla,t)—2 9 . _ 6
Dy, | [Vul 2 Dyyu) € L5(Qr) if N>3,0or N=2andp™ > 5
i,7=1,2,..., N, and the corresponding norms are bounded by constants depending only
on the data.

Remark 1.4.1. Due to the fact that estimate (1.4.5) is global in time and space, it is new
even in the case of constant p. We refer to [114)] for a detailed insight into this issue, in

particular, to (114, Lemma 5.4).

The same existence and regularity results are obtained for the solution of problem ((1.4.1)
(z,t)—2
with the regularized flux function (e? + |Vu|2)p 2 Vu, € > 0.

Let us give an outline of the proof of Theorem The solution of problem (1.4.1) is
constructed as the limit of the sequence of solutions of the following family of regularized

non-degenerate parabolic problems

Bru — div((€ + [Vu) 2T V) = f(2) in Qr,
u=0onI'pr=00Qx(0,7T), (1.4.6)

u(x,0) = up(z) in Q.

for a given a parameter € > 0 and new regularized flux given by (e? + ]Vu\Q)pTigVu, e€ (0,1).

For every fixed €, a solution of problem ((1.4.6]) is constructed as the limit of the sequence of

20



1.4.1.2. Main results

finite-dimensional Galerkin’s approximations {ugm)} The functions u{™ (z,t) are sought in

the form

™ (1) = Y uf™ (1)65(x),
j=1
where ¢; € I/VO1 2(Q) and A; > 0 are the eigenfunctions and the corresponding eigenvalues of

the problem

(Voi, Voo = Néj,¥)an Vb € Wg2(Q).
(m)

J
m ordinary differential equations

The coefficients u; ’(t) are defined as the solutions of the Cauchy problem for the system of

(u;m))/(t) _ —/(62 + |vu£m)|2)?}(22)—2vugm) . VQZSJ dx _|_/ f¢J dl‘,
Q Q (1.4.7)

ugm)(o) - (’LL(),(Z%’)ZQ, j = 1727"')m)

where the functions
u(()m) = Z(u(h ¢j)2,9¢] € Span{gblv ¢27 o 7¢m}7
j=1

are chosen so that u(()m) — g in WOI’Q(QC’O)(Q), q(z,0) = max{2, p(x,0)}.
Using Carathéodory Theorem, we prove the existence of a solution (ugm),ugm), ... ,u%n )) of

the system of ODE on an interval (0,7),) and for every finite m system and
this solution can be continued on the arbitrary interval (0,7") because of the uniform estimate
in € and m proved in coming results.

To pass limits in the sequence of finite dimensional approximations ugm), we derive uniform
a priori estimates in € and m simultaneously. This is where the difference between the cases
of constant and variable exponent p becomes obvious: in the latter case the estimates involve
the expression |Vp|(e2 + |Vu|2)Z |In(e2 + |[Vu|?)|, not included into the basic energy estimate
(1.3.1). The integration by parts formula (see , Chapter [4)) and the choice of eigen

functions ¢; reveal the following a priori estimates for ugm):

m m p(z)=2 m
sup [[ul™ (-, )5 ¢ +/Q (€ + [Vu™ )2 [Val™)? dz < e (|| 113, + luoll3.0) = Lo.
T

(0,7)

p(2)
/ |vu£m)‘17(z) dzg/ (€2+‘Vu£m)’2) 2 dr < Iy
T Qr

where constants Lo, L1 independent of € and m, and € € (0, 1). For a detailed proof, we refer
to Lemma Page Chapter

Let us denote n by the exterior normal vector to 0€2. Repetitive usage of Green formula

via the elemental properties of the eigen functions ¢; under suitable conditions on initial
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Chapter 1. Parabolic problems with non-standard growth

data, boundary 0€) and variable exponent implies the following inequality relation: For a.e.
t € (0,7) and any § > 0

p(Z)

2wt ()||3,9+(min{p_,2}—1—5)/9(6 + VU™ ) 5T (0™ o d

2dt
<CO/|VU (2 + |Vul™ %)™

—/ (€ 1 [Vulm )
o0

+ GV @) B o+ Coll F O 10

7 In2( + [Vul™|?) do e

p(Z)A

(Au(m)(v (m) . n) — Vu™ . v(Vul™ . n)) dx

with constants C;, ¢ = 0, 1,2, depending on the data and §, but independent of m and e. For
a detailed explanation, we refer to Lemma Page Chapter

The study of higher regularity of solutions usually involves “differentiation” of the equation.
In the case of non-constant p this leads to appearance of the term |Vu[P(®!) In|Vu| (as in
(1.4.8)), which can not be controlled through the usual energy estimates for the weak solution
of equation unless p(x,t) < 2. The main issue is to get rid of the restriction p(x,t) < 2

in the proof of existence of strong solutions and in the study of their higher regularity.
1.4.1.3 A priori estimates and existence of strong solution

To control the R.H.S. of (1.4.8)), we use the interpolation inequalities proved in Section
which further entails the global higher integrability of the gradients of the finite-dimensional
approximations: instead of the natural order of integrability p(z) prompted by the equation,
the gradients are integrable in Q7 with the power p(z) + ¢ (estimate (1.4.5)). By combining
the interpolation inequality for global higher integrability of the gradients (Theorem
and trace interpolation inequality (Theorem we obtain a complete derivation of the
following uniform a priori estimates of the type for Galerkin’s approximations:

p(z ) 2

sup IIWEm)('>t)II§,Q+/Q (€ + IVa™ ) = (u™)go | d2
T

(0,1)

< e’ (1 +IVuolize + 111720 7wt 2(9») ’

4p~
p~ (N +2)+2N

/ IVuMPE+T 42 < ¢ for any 0 < r <

T

and

1(l™)il12 o, + sup / (€ + [Vul™ ) dr < (1+ / VPO dm)+||f|rQQT
0,1)J0

with constants C, C’, C” independent of m and e. For a complete derivation, we refer to

Lemma [4.2.3] Page [118] Chapter

Using the previous uniform estimates, the weak convergence of the sequence {Vu6 } and
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1.4.1.3. A priori estimates and existence of strong solution

the monotonicity of the flux v.((x,t),s)s = (¢ + ‘SP)WS in implies the existence
of unique weak solution of the regularized problem with diu, € LQ(QT) and the
global higher regularity properties. However, these uniform estimates do not ensure that
Ye((z, 1), Vugm))Vugm) — Ye((z,t), Vue)Vue a.e. in Qr, even in the case of constant p.

For this, we prove a.e. convergence of the sequence of Vugm) to Vue, which yields a.e.
convergence of fluxes. The proof relies on the convexity of the function v.((x,t),s)|s|? with

respect to s, the weak convergence of the sequence Vugm)

to Vu,, and the convergence of the
integrals of ~.((z,1), Vugm))|Vu£m)\2 to the integral of y.((z,t), Vue)|Vue|?. The pointwise
convergence of fluxes of Galerkin’s approximations and the uniform a priori estimates allow
one to show that the limit of the sequence of regularized fluxes (€2 + |Vu5m)|2)WVugm)
belongs to (L?(0,T;WhH2(2)))N. The difference between the cases N > 3 and N = 2 is
explained by the convexity properties of the function ~.((z,t),s)|s|? with € > 0. Tt is strictly
convex with respect to s if p > g, which is true for NV > 3 because p~ > 1\2,—12, but in the case

N = 2 leads to the additional restriction. Precisely, we prove

Theorem 1.4.5. Let the conditions of Theorem [1.4.3 be fulfilled.
(i) f N>3or N=2andp~ > g, then Vugm) — Vue a.e. in Q.

1
(ii) Under the conditions of item (i) ~&(z,Vue)Dyu. € L*(0,T; WH2(Q2)), i = 1,2,..., N,

and

1
||'752 (Zv qu)Diuﬁ||L2(0,T;W1’2(Q)) < M> @ = 17 2a ERR) Na

with an independent of € constant M.

2N :
(iii) If N > 2 and p~ > N2 then D?ju6 € Lfo(c)(QT N{z: p(z) <2}),i,j=1,2,...,N,
and
N

Y 103 uellpe),@rngz:piz)<2y < M
ij=1

with an independent of € constant M.
The proof of stronger convergence properties of the sequence Vugm) stems from the Theorem
2.1 and Corollary 2.1, [224] on the convergence of sequences of functionals. The proof of
the main result (Theorem is based on the same ideas as the proofs in the case of the
regularized problems . The difference in the arguments is due to the necessity of passing
to the limit with respect to €, which changes the nonlinear structure of the equation. The
second order regularity and global higher integrability in Theorem are the byproduct of
previous uniform estimates with respect to m and ¢, and convexity and almost everywhere

convergence of regularized flux.
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Chapter 1. Parabolic problems with non-standard growth

1.4.2 Problem 2: Doubly phase parabolic problem with variable growth

In this subsection, we study the following double phase parabolic problem with the homoge-

neous Dirichlet boundary conditions:

— div (|Vul[P*)=2Vu + a(2)|Vu|?®)2Vu) = F(z,u) i :
ug — div (| ul u+ a(z)|Vul u) (z,u) in Qp (1.4.9)
u=0onIr, u(z,0)=u(z)inQ,
where the nonlinear source has the form
F(z,0) = fo(z) 4 b(2)[v|]"® 20, (1.4.10)

Here a > 0, b, p, q, o0 and fy are given functions of the variables z € Q7.
1.4.2.1 Main tools

In this part, we present estimates on the gradient trace on 0f2 for the functions from variable
Sobolev spaces. This property turns out to be the key element in the proof of the existence

theorems for problem (1.4.9)) and the regularized problem (1.4.19)).

Until the end of this subsection, the notation p(-), q(+), a(+) is used for functions not related

to the exponents and coefficient in (1.4.9) and (1.4.19). Let us accept the notation

Be(s) = € + s,
p(x)—2 a(z)—2 (1.4.11)

e(z,8) = (62 + \5\2) 2+ a(z)(62 + |s\2) >, seRY, zeQp, ec (0,1).

With certain abuse of notation, we will denote by ¢.(x,s) the same function but with the

exponents p, ¢ and the coefficient @ depending on the variable = € €.

Lemma 1.4.1. Let @ ¢ RY, N > 2 be a bounded domain with the boundary 02 € C2,
and a € WH2(Q) be a given nonnegative function. Assume that v € W2(Q) N WOM(Q) and

denote

p(z)—2

K = / a(z) (e + |Vu*)" 2 (Av (Vv -n) — V(Vv-n) - Vo) dS,
o0N

where n stands for the exterior normal to 0. There exists a constant L = L(0)) such that

p(z

2 2, R(z) -2 2
K < L/ a(x)(e* + |Vul*) 2 |Vou|*dS.
o0N

Proof of Lemma follows from the well-known assertions, see, e.g., [180, Ch.1, Sec.1.5]
for the case a = 1, N > 2, or |28, Lemma A.1l] for the case of an arbitrary dimension. For
more details see Lemma Chapter [
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1.4.2.1. Main tools

Theorem 1.4.6. Let 0 € C?, u € C?(Q) and u = 0 on 9. Assume that p(-) satisfies the
conditions of Lemma a(+) be a non-negative function on Q with a,q € WH>(Q) and

2N

q:Q g ,q"] C <N+2700> o IVdllos,o £ L <00, |[Vallson < Lo < 0.

If for a.e. x € Q

4p
N+2<r<p—(N+2)+2N’

q(x) < p(x) +r with
then for every X € (0,1)

/ @c(x, Vu)|Vul> dS < )\/ O, V) [tige | dac—|—C'<1—|—/ V@) dm)
o0 Q Q

with a constant C depending on X and the constants p*, N, L, Ly, but independent of w.

The proof of the this result follows from [162, Lemma 1.5.1.9], Cauchy inequality and Green
Formula. For a detailed explanation see Theorem Chapter

Now, we construct a sequence of finite-dimensional approximations for the initial function ug
in the same basis {¢;} as in the Galerkin’s approximations for the solution of the regularized
problem . In the nondegenerate case, ¢(x,0) < 2 in €2, this sequence is obtained in
a standard way, while in the case supq ¢(x,0) > 2 the choice of the sequence becomes an
independent problem. We construct it as a sequence of finite-dimensional approximations
of the solution of the degenerate double phase elliptic equation (see (4.3.21))) with variable
exponents r(x) = max{2,p(x,0)} and s(z) = max{2,q(z,0)}, and the right-hand side de-
pending on wug. This problem is solved with the method of Galerkin in the framework of
Musielak-Orlicz spaces. Let sup ¢(z,0) > 2. We approximate the initial function uy by the

sequence of finite-dimensional approximations for the solution of the elliptic problem

Bz, u)u — div (a(x, Vu)Vu) = f —divd in Q, u =0 on 0N (1.4.12)
where
Ba, uyu = |uf" ™)~ %u + ag(x)u|*) 2,
oz, Vu)Vu = |[Vu"® 2V + ag ()| Vul* P 2Vu,  ag(z) = a(z,0),
r(z) = max{2,p(z,0)} > 2, s(z)=max{2,q(z,0)},
and

[ = B(x,uo)uo, @ = oz, Vug)Vug. (1.4.13)

For a detailed study of above elliptic problem, we refer to Section Chapter [4]
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Chapter 1. Parabolic problems with non-standard growth

1.4.2.2 Main results

Let p,q : Qr — R be measurable functions satisfying the conditions

2N R
N+2<P—§P(2)§P+IHQT7
(1.4.14)
2N <am) <a T pE o = const
Nz <¢-<d@) <qinQp, P, g7 = const.

Moreover, let us assume that p, ¢ € Wh°°(Qr) as functions of variables z = (x,t): there exist
positive constants C*, C**, C,, C\, such that

esssup |Vp| < C, < oo, esssup|p| < C¥,
Q

T or (1.4.15)
esssup |Vg| < Cus < 00, esssup |q| < C™.
Qr Qr

The modulating coefficient a(-) is assumed to satisfy the following conditions:

a(z) >0 in Qrp, a € C([0,T); Wh>(Q)), esssup |a;| < Cp, Cq = const. (1.4.16)

T

We do not impose any condition on the null set of the function a in Q, and do not distinguish
between the cases of degenerate and singular equations. It is possible that p(z) < 2 and

q(z) > 2 at the same point z € Q7.

Definition 1.4.1. A function u : Qr — R is called strong solution of problem (1.4.9) if
(i) uw € Wy)(Qr), uy € L*(Qr), |[Vu| € L>(0,T; L*0(Q)) with s(z) = max{2,p(2)},
(i) for every 1 € Wy (Qr) with ¢y € L*(Qr)

/ U dz+/ (IVuP® 72 1 a(2)|Vu|"D =)V - Vi dz—/ F(z,u)dz,
T T

T
(iii) for every ¢ € CE(Q)
/(u(x,t) —up(z))p de — 0 ast— 0.
Q
The main results are given in the following theorems.

Theorem 1.4.7. Let @ C RN, N > 2, be a bounded domain with the boundary 0 € C2.
Assume that p(-), q(-) satisfy conditions (1.4.14]), (1.4.15)), and there exists a constant

4p~
re(0,r"), "= ,
0,r7) p(N+2)+2N

such that
R
p() < a(=) < p(2) + 4 in Q.
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1.4.2.2. Main results

If a(-) satisfies conditions (1.4.16) and b = 0, then for every fo € L*(0,T; WOM(Q)) and
1,2 :
ug € Wy = () with

/ (\Vu0|2 + [Vauo[P@0) + a(z, 0)|vuo|q<%0>) dr = K < 0o (1.4.17)
Q
problem (1.4.9) has a unique strong solution u. This solution satisfies the estimate

uel3,0, + ess sup/ (\Vu|s(z)+a(z)|Vu|q(z)) d:c+/ VulPOtrdz <C (1.4.18)
o, Ja

T

with the exponent s(z) = max{2,p(z)} and a constant C' which depends on N,0Q, T, p*,q¢F,
r, the constants in conditions (1.4.15)), (1.4.16), Hf[)”L2(07T;W01,2(Q)) and K.

Theorem 1.4.8. Let in the conditions of Theorem[1.4.7, b # 0.

(i) Assume that b,o are measurable bounded functions defined on Qr,

IVblloo,@r <00, [[VOlloo,@r < 00,

2<0  <oT <1+ pf, o~ =essinfo(z), o =esssupo(z).
2 Qr Qr
Then for every fo € L?(0,T; WOM(Q)) and vy € W&’Q(Q) satisfying condition ((1.4.17)
problem (1.4.9) has at least one strong solution w. The solution u satisfies estimate
(1.4.18|) with the constant depending on the same quantities as in the case b =0 and on
I¥8ce0rs 19000z %, esssupg, 16

(ii) The strong solution is unique if p(-),q(-) satisfy the conditions of Theorem [1.4.7 and
either 0 =2, or b(z) <0 in Qr.

A solution of problem ([1.4.9)) is obtained as the limit of the family of solutions of the
nondegenerate problems with the regularized fluxes

p(z)—

((62 + | Vul?) 2 : +a(2)(e® + \Vu!Q)q(zgz) Vu, € > 0.

Given € > 0, let us consider the following family of regularized double phase parabolic equa-

tions:

Ou — div(pe(z, Vu)Vu) = F(z,u) in Qr,
u=20 on I'p, (1.4.19)
u(0,.) = ug in Q, e€(0,1),
where F'(z,u) is defined in and ¢¢(z, Vu)Vu is the regularized flux function defined
in .
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Chapter 1. Parabolic problems with non-standard growth

Let € > 0 be a fixed parameter. The sequence {ugm)} of finite-dimensional Galerkin’s approx-
imations for the solutions of the regularized problem is sought in the form
m
ul™ (1) = 3" uf™ (£)9; ()
j=1
where ¢; € Wol 2(Q) and A\; > 0 are the eigenfunctions and the corresponding eigenvalues of

the problem
(Vos, Vib)ag = (¢, )20 Vb € Wy(Q). (1.4.20)

_1
The systems {¢;} and {\; *¢;} are the orthogonal bases of L?() and Wol’2(Q). The coethi-
(

cients ujm) (t) are characterized as the solutions of the Cauchy problem for the system of m

ordinary differential equations

mﬁwm:A%@Nw%w&WV@W+AFww%@w,

(M 0) = (™, 6)2.0, G=1,2,...,m

(1.4.21)

where @, is defined in ((1.4.11)) and the functions u(()m) are chosen in such a way that

u((]m) = Z(UO, ¢])27Q¢] S Span{¢17 ¢27 ey ¢m}7
7=1

. (1.4.22)
(m) in Wy©(2)  if maxgq(z,0) < 2,

ug —u
0 ° i WOI’T(')(Q) if maxg q(z,0) > 2, where r(r) = max{2, ¢(,0)}.

By the Carathéodory existence theorem, for every finite m system has a solution
(ugm) , uém), . ,u%n )) in the extended sense on an interval (0,7),), the functions ugm) (t) are
absolutely continuous and differentiable a.e. in (0,7},). The a priori estimates ,
,show that for every m the function ugm) (z,T),) belongs to span{¢i,..., P} and

satisfies the estimate
IVa Tl + [ (196 0 T P20 + afe, T [Vl (0, T 157 ) i
Q
SC+WM@@AWVﬁMﬁQ+A(W%@p@m+M%®W%WWMUdx

with a constant C' independent of m and €. Since a(-,0) is uniformly bounded in €2, the se-

quence {ugm)} according to and |Vuo| satisfies inequality (1.4.17)), this estimate allows
one to continue each of u™ to the maximal existence interval (0, 7). In the case sup g(x,0) <
2, the embedding W, *(Q) C Wol’q("o)(Q) allows us to take u(()m) => ul(-m)(())gbi and in case
of sup g(z,0) > 2 we approximate the initial function ug by the sequence of finite-dimensional

approximations for the solution of the elliptic problem (|1.4.12]).

Now, we derive a priori estimates on the approximate solutions and their derivatives. For

the convenience of presentation, we separate the cases when b = 0 and the source function is
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1.4.2.2. Main results

independent of the solution, and b Z 0. Since no restriction on the sign of b is imposed, in the
latter case derivation of the a priori estimates requires additional restrictions on the range of

the exponent p.

For a.e. t € (0,7 ugm) satisfies the estimates:

sup [ 0Ba+ [ pdley Tulm)Tulm P dz < CoeT (I
te(0,T) Qr

20r + luol3.0).

The above estimates is obtained by multiplying j* equation of by u§m) (t) and then
by summing up the results for j = 1,2,...,m via Cauchy and Gronwall inequality. For a
detailed proof see Lemma Page Chapter [4

The next a priori estimates involve higher-order derivatives of the approximate solutions. This
is where we make use of the interpolation inequalities to obtain the global higher integrability
of the gradient which, in turn, yields uniform boundedness of the L)(Qr)-norms of the

gradients of the approximate solutions.

sup [Vul™ (-, £)3 + / ez, Vul™) (™ ) dz

0.7) Qr (1.4.23)
c'T 2 2
< G (14 Vol + 1ol ooy
and
-
(m)ja(2) ¢ () p()+7 gy < O 0 P . (1.4.24
/T\Vu€ | z—i—/QT]VuE | z < or any <T<p—(N—|—2)+2N ( )

The estimates (1.4.23]) and (|1.4.24]) are obtained by multiply each of equations in (|1.4.21]

by )\jugm) and sum up the results for j = 1,2,...,m using Green formula, Interpolation
inequalities (Theorem and Theorem [1.4.6)). For a detailed explanation see Lemma [4.3.5]

and Lemma Page Chapter
Finally, by multiplying (1.4.21)) with (ug-m))t and summing over j = 1,2,...,m using Cauchy

inequality we obtain

Wil + sup [ (€ +Vaf™P)E +a(z)(@ + [Vl ) ) do
on (1.4.25)
< Coo <1+ / (V200 + a(a, 0)| Vg |7 dx> + 1 folk o,
Q

with an independent of m and € constant Cyg, Cy, C, C’, C”. For a detailed proof see Lemma
[4:377] Page[I56, Chapter[d The similar kind of a priori estimates are derived in case when the
equation contains the nonlinear source i.e. b # 0. The difference in the arguments consists
in the necessity to estimate the integrals of the terms b|u£m)|"(z), b|u£m)|"(z)_2ugm)Au£m),
b|u£m)|0(z)_2u£m)u£?l). For more details see Lemma m Lemma and Lemma

Chapter [4
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Chapter 1. Parabolic problems with non-standard growth

(

. . . m .
These uniform in m and € estimates enable one to extract a subsequence ue ) (for which we

keep the same name), and functions ue, 7, x. such that

ul™ — u,  H-weakly in L®(0,T; L3(Q)), (uf™), = (ue); in L*(Q7),
Vul™ — Vu, in (Lp(‘)(QT))N, Vul™ — Vu, in (L1O(Qp))N

(€2 + [Vul™ )" 57 Tulm) =y in (L7O(Qn))Y,
(€ + [Vul™2)* %‘Qwémux in (L9O(Qr)N

In the third line we make use of the uniform estimate
9 (m) 2 4(2)(p(2)—1) 2)4r
(e + |Vu™|%) 2@ dz < C |1+ |Vul™ PE+ g, | < C.
T T
Now, by using the fact that if U,, — U in L) (Qr), then for every V € LI (Qr) we have

a(z)V € L%(Qr) and / aUpV dz — aUV dz
Qr Qr

and the same arguments in Theorem we show first that ugm) converges to a strong
solution u. of the regularized problem . The proof relies on the compactness and
monotonicity of the fluxes. Existence of a solution to problem is established in a
similar way. We show that the solutions of the regularized problem converge (up to
a subsequence) to a solution of the problem . For more details, we refer to the proof

in Theorem and Theorem Chapter [

Remark 1.4.2. Under the assumption of the Theorem or Theorem [1.4.8 and, in ad-
dition fo € LY(0,T; L>®(Q)) and ug € L>®(Q), the strong solution of the problem (1.4.9) is

bounded and satisfies the estimate

t
lu(-, )]s < € luolloc + eclt/ N fol s, dr
0

where C1 =0 if b(z) <0 in Qr, or C1 = ||b|so,@p if 0 =2 (see (34, Ch.4,Sec.4.3,Th.4.3]).

1.4.3 Problem 3: Doubly nonlinear equation for p(x)-homogeneous operators

The aim of this part is to study the following Doubly nonlinear parabolic problem mentioned
in Problem 3
O (B(u)) —diva(z, Vu) = F(z,t,u), uw>0 in Qr;
u=0 on I (DNE)
u(.,0) = up in €,
with the following nonlinear time derivative, and sub-homogeneous and non-monotone forcing

terms

5(11,) = 2qq_ 1u2q—l and f(x,t,u) = f(xvll') + h(xat)uq_l'
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1.4.3.1. Main tools

Denote weighted spaces with the notation () & dist(x, 09):

def w

L°(Q2) = {w: Q — R | measurable, 50 € L>=(Q)}
endowed with the norm ||w||s = supq ‘% and for r > 0:
r def + 1 w”
M5(Q) = {w: Q2 — RT | measurable, 3 ¢ > 0, - < ) <c}.

1.4.3.1 Main tools

First, we derive a new version of the Picone identity involving quasilinear elliptic operators
with variable exponent with a glimpse of the proof. Precisely, we consider a continuous
operator A: QxRY — R such that (z,£) — A(z,€) is differentiable with respect to variable
¢, and satisfies (A1) and a weaker condition (than (Asz))

(Ag) & — A(x,§) is strictly convex for any = € Q.

Theorem 1.4.9 (Picone identity). Let A : Q x RV — R is a continuous and differentiable
function satisfying (Ag) and (Ayr). Let vg,v € L>®(Q) belonging to

VI {0 Q5 (0,+00) | vr € WP (Q)}

for some r > 1. Then

1 , r (p()=r) .,
<35A(:v,Vvé/ )7V(U>> < A (2, VollT) AP (2, Vo) (1.4.26)
(@) 7
where (.,.) is the inner scalar product and the above inequality is strict if r > 1 or % e
Const > 0.

To prove the above identity, first we transform the variable homogeneity to constant homo-

geneity be defining a new class of operators N, : Q x RV — R™ as

T

Ny (z,§) := Ar@) (z,€) for any r > 1

and the notion of strict ray-convexity:

Definition 1.4.2. Let X be a real vector space. Let V be a non empty cone in X. A function
J : V. = R is ray-strictly convez if for all vi,va € V and for all 6 € (0,1)

J((l — 9)1)1 + 91)2) < (1 — H)J(vl) + HJ(’UQ)

where the inequality is always strict unless v1 = Cvg for some C > 0.
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Chapter 1. Parabolic problems with non-standard growth

By using the convexity and p(z)- homogeneity of the operator A, we prove: for any x €
the map & — N,(z,§) def A(z, €)"/P(®) is positively r-homogeneous and ray-strictly convex.
Moreover for r > 1, £ — N,(-,-) is strictly convex (for a detailed proof see Proposition
Page Chapter ). Now, by exploiting the convexity of the function N, (z,&) with
a multiple change of variables we get our Picone identity. As a first application of Picone
identity, we extend the famous Diaz-Sad inequality to the class of variable exponent operators.
This inequality is strongly linked to the strict convexity of some associated homogeneous

energy type functional (see Proposition Chapter 4| and [151]).

Theorem 1.4.10 (Diaz-Sad inequality). Let A : Q x RN — R is a continuous and differen-
1

tiable function satisfying (Ao) and (A1) and define a(x, &) = (a;(x,§)); def <p(x)a§ A(x,§)> .
Assume in addition that there exists A > 0 such that '
1 N da;(z,§) (2)—2
ac CHQ x RN and Z < AfgIP
i,j=1 0%
for all (x,€) € Q x RVM\{0}. Then, we have in the sense of distributions, for any r € [1,p7]
di di
/ (— iv(a (”f, le)) 4 div(e (f Yw2)))(w{ —wh) dz >0 (1.4.27)
(9] ’LUl W2

for any wi,wy € Wol’p(x)((l) positive in 0 such that ﬂ 12 ¢ € L>®(Q). Moreover, if the

UJQ w1
equality occurs in (1.4.27), then wi/we is constant in Q. If p(x) £ r in Q then even wi = wy

holds in Q.

The proof of the above inequality follows from the Young’s inequality and the relation
Az, &) = a(z,€) - € in the Picone identity (1.4.26).

For more application of Picone identity in the study of various anisotropic quasilinear elliptic
problems, we refer to Sections [4.4.4] and Chapter [

We study the existence and regularity results for the elliptic problem associated to (DNE]).
Precisely, we study the following problem

2g—1 \V4 \V4 — q—1 3 .
v A .alr, Vv ho(x)v + A r,v), v>0 m Q,

v=20 on 0f).
The notion of weak solution of (|1.4.28]) is defined as follows:

Definition 1.4.3. A weak solution of (1.4.28)) is any nonnegative and nontrivial function
v e Wol’p(w)(Q) N L?4(Q) such that for any ¢ € Wol’p(x) ()N L%(Q)

2q—1 — q—1
/Qv qﬁdx—l—)\/ﬂa(:r,Vv).Vcbdx /Qhov cbdx—l—)\/ﬂf(:r,v)qbdm.

The next theorem gives the existence and the uniqueness of the weak solution of (|1.4.28]).
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Theorem 1.4.11. Assume that A satisfies (A1)-(Asz) and f satisfies (fo) and (f1). Then,
for any ¢ € (1,p7), X > 0 and hy € L®(Q)\{0}, ho > 0, there exists a weak solution
v e CHQ) NMIQ) to (1.4.28).

Moreover, let v1,vy be two weak solutions to with hy, ha € L*(Q)\{0}, h1, ho >0

respectively, we have with the notation t* et max{0,t}:

(0] = v§) [l z2 < [I(h1 = ha) T |2 (1.4.29)

To prove the existence of a weak solution in above result, we investigate the problem
via variational methods and prove the existence of global minimizer of the energy functional
T WP (Q) 0 L2(0Q) — R defined by:
J(v) :1/ v2qd$—|—)\/ Mdm— 1/ ho(v+)qdac—)\/ F(x,v)dx
2q Jo o p) q.Ja Q

where F'(x,z) is the primitive of f(z,z) w.r.t variable z. By constructing a function w €
Wol’p(z)(Q) N L?1(Q) satisfying J (w) < 0 together with the non-negativity of the potential hg
implies the non-negativity and non-triviality of the global minimizer. Concerning the C'®
regularity and M3 () boundary behavior of the weak solution we seek assistance of prelim-
inary Holder regularity results (see Proposition Chapter 4| and Theorem 1.2 in [118§]),
Strong maximum Principle and Hopf lemma (see Lemma Chapter . Furthermore,
the Picone identity (Theorem with the following choice of test functions

+ J—
q q
v v
¢ = vl—% and ¥ =|wvy— qil
U1 U2

reveals the contraction properties and uniqueness of weak solution. The choice of test func-

tions while applying Picone identity plays a significant role in the computations and their
inclusion in the energy space VVO1 P (x)(Q) N L%4(Q) is justified by the boundary behavior of
weak solution vy, ve. The contraction property illustrate the continuous and mono-
tone dependency of the weak solution of elliptic problem with respect to the potentials

(or coefficients).

Now by exploiting the regularity or boundary behavior of the weak solution of ((1.4.28]), we
study the following perturbed problem induced by the operator 7, which is associated to the

parabolic equation (|1.4.32)):

u+ATgu=ho, ©w>0 in Q;
(1.4.30)
u=0 on Of).

We prove existence of weak solution, uniqueness and accretivity results for ([1.4.30]) (see Corol-
lary Page Chapter . We observe that if ug is the weak solution of , then
vy = ug is the weak solution of . In addition to this, by using approximating method,
we also extend the existence and regularity results for elliptic problems (|1.4.28]) and ((1.4.30))
for a larger class of potentials hg € L?(£2). For more details, we refer to Theorems and

Corollary [£.5.2], Section [£.5.2.2] Chapter [4]
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Chapter 1. Parabolic problems with non-standard growth

1.4.3.2 Main results

The study of (DNE]) is naturally concerned with the investigation of the following associated

parabolic problem:

vI719,(v1) = V. a(z, Vo) = Flx,t,v), v>0 in Qr;
v=>0 on T (E)
v(0,.) = vy in Q,

with F(z,t,u) = f(z,u) + h(z,t)u?"! and then we further prove that a weak solution of
associated parabolic problem is also a weak solution of the main problem (DNE]).

Using an identical approach based on nonlinear accretive operators theory as in [39,/146}147],
we introduce T, := D(T;) C L*(Q2) — L*(Q) be the operator with the parameter ¢ defined by

Tou = —u(t=0/4 (V. a(z, V(u/1)) + f(a:,ul/q))
and the associated domain
D(Ty) = {w: Q — RT | measurable, w'/4 € WoP'™)(Q) N L2(Q), Tow € LA(Q)}.

For understanding the difficulties in solving the associated parabolic problem , we first
study the problem for p(x)-Laplacian operator and then later generalize it to a class of
p(x)-homogeneous operator. Here we directly focused on generalized operator as mentioned

in the problem and for the study related to p(x)-Laplacian operator, we refer to Section
Chapter

Before stating the main result for the problem , we introduce the notion of weak solution

as follows:

Definition 1.4.4. Let T > 0, a weak solution to is any positive functionv € L (0, T} Wol’p(m)(Q))ﬁ
L>®(Qr) such that 0;(v9) € L*(Qr) satisfying for any ¢ € L*(Qr) N L(0, T} Wol’p(x)(Q)) and
for any t € (0,T]

/Ot/ﬂﬁt(vq)vCI—lqsdxds—i- /Ot/Qa(x,Vv).ngdxds:/Ot/g}"(:v,s,u)gbd:cds

and v(0,.) = vy a.e. in ).

We prove the following result for :

Theorem 1.4.12. Let T > 0 and q € (1,p~). Assume A satisfies (A1)-(As), f satisfies
(fo)-(f2) and Then, for any h € L*°(Qr) satisfying (Hy) and for any initial data vy €
M) N Wol’p(x)(ﬂ), there ezists a solution in sense of Definition . More precisely, we

have:
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1.4.3.2. Main results

(i) there exists ¢ > 0 such that for any t € [0,T], 16(z) < u(t,z) < c6(z) a.e. in Q;

(ii) Assume in addition A satisfies (A4) for any x € Q and for any &, n € RN. Then, v €
C([0,T];W).

The monotone and continuous dependence of weak solution with respect to the initial data
and potential (or coefficients) in forcing terms is obtained by the following theorem relaxing

the assumptions on vy and h. More precisely, we show:

Theorem 1.4.13. Let v, w be two solutions of in sense of Definition with respect
to the initial data vg, wo € L*(Q), vo,wo > 0 and h, h € L*(Qr). Then, for any t € [0,T):

t
[07(t) = w ()l 2y < ll0d — w12y + /0 1A(s) — Bls)l| 2(er ds. (14.31)

In Theorem [1.4.12] the uniqueness of weak solution is the consequence of Theorem(1.4.13/In

sense of Definition a solution of belongs to L*°(Qr), hence 2;%1875(1)%1_1) =

v9710;,(v?) € L3(Qr) holds in weak sense and we deduce the existence of a solution of (DNEJ).

Another important result of this part is to study the convergence of the weak solution to a
steady state. For this, we shift the nonlinearity in the time derivative term to the diffusion
term (as in ([1.3.3])) in the associated parabolic problem and we prove the following result:

Theorem 1.4.14. Under the assumptions of Theorem for any ug such that u(l)/q €
M) N Wol’p(x) (Q), there exists a unique weak solution u € L=°(Qr) of
ou+Tu=h, uw>0 in Qr;
u=0 on T} (1.4.32)
u(0,.) = up in Q,
in the sense that:

(i) u'/9 belongs to L>®(0,T; W), dyu € L*(Qr);
(ii) there exists ¢ > 0 such that for any t € [0,T], 16%(x) < u(t,z) < cd%(z) a.e. in Q;
(iii) w satisfies, for any t € [0,T):

/ot/gatwdf”ds+/Ot/ﬂa(waw”q)'v(u?zp)dxds
:/Ot/ﬂf(x’ul/q)Udede+At/§2h(8,$)¢dxds7

1|V e L0, T; LP(R)) and 5|qv1¢(|.) e L'(0,T; LP@)(Q)).

Moreover, u belongs to C([0,T]; L"(Q)) for any r € [1,4+00).

(1.4.33)

for any v such that
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Chapter 1. Parabolic problems with non-standard growth

Now, we start giving the main ingredients of the proof of the results stated above. To prove
the main result Theorem (and simultaneously Theorem , we use the technique
of semi-discretization in time. We stress here that the general form of operators requires
to sharply exploit the Picone’s identity and demands new compelling estimates to prove the
qualitative properties of the weak solution. In this regard, the integrability of the quotient
in the choices of test functions forces conditions on the regularity or boundary behaviour of

weak solution.

To apply the time-discretization method in our main result Theorem we define the
approximation of the potential h as: let n* € N and set A, = T'/n*. For n € {1,2,...n*} :=
[1,n*] we define t, = nA; and for ¢t € [t,,—1,t,) and x € Q

tn
ha, (£, ) = h" () défAlt /t h(s, z)ds (1.4.34)

n—1

such that ha, — h in L?(Qr). Now, by using Theorem [1.4.11|, we define a sequence {v;}
such that v, € CH*(Q) N ML(Q) is the weak solution of the following implicit Euler scheme

via a approximation of h defined in (|1.4.34):
vl —vhy 1 1
(W)vg —V.a(z,Vu,) = K"l + f(x,v,) in Q;
t
vy >0 in Q;
v, =0 on 0f),

and two sequences of approximate functions in ¢:

v (@8) = vnl@) and s, (@,6) = 3" (@) = ey (2) + 01 @)

which satisfy
UqA_tlatﬁAt —V.a(z,Vup,) = f(z,va,) + h"qu_tl. (1.4.35)

To prove the boundary behavior of the parabolic problem , first we show there exists ¢ > 0
such that

Lo(@) < vay(@,t), 0¥, t) < cb(z) for all (x,t) € 9 x [0,T). (1.4.36)
C

In this regard, we construct a subsolution w and supersolution w in C1(2) N M}(Q) of
suitable quasilinear elliptic equations (for more details see Step 2, Page Chapter [4))
such that v, € [w,w] for every n € [0,n*]. The existence results (Theorems
and in the light of Picone identity facilitate the construction of subsolution w and
supersolution @ with C1%(Q) ﬂM%(Q) regularity. By choosing a suitable set of test functions

in the Picone identity, and using interpolations inequalities and Arzela-Ascoli Theorem, we
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1.4.3.2. Main results

show the following uniform estimates for va, and v,

D40, is bounded in L?(Qr) uniformly in Ay,
(va,), (ﬁlA/tq) is bounded in L*°(0, T} Wol’p(w)(ﬂ)) uniformly in Ay,
oa, = v?in C([0,T]; L"(Q)) and va, — v in L>(0,T; L"(Q2)),
VA, f)lA/tq Sowin L%°(0, T Wol’p(w)(Q)) as Ay — 0 and dyia, — O(v?) in L2(Qr).
(1.4.37)
Finally by using (1.4.36)), classical compactness argument with [Step 4, Proof of Theorem 1.1,
[146]], convergence properties for va, and v, in (1.4.37) and ellipticity and growth conditions

(A1)-(As), we pass to the limits Ay — 0 in (1.4.35]) to get the existence of weak solution in
the sense of Definition [L.Z.4l

Theorem |1.4.13] is proved by taking

(v+€)7 — (w+ €)1 (wHe)?—(v+e)
(v+e)t and W = (w+ €)1t

o=

as a test functions in the Definition (1.4.4) and passing limits € — 0 using Lebesgue dominated

convergence Theorem and regularity of weak solution.

Remark 1.4.3. We observe that if v is the weak solution of then w = v9 is the weak

solution of (1.4.32) in the sense of Definition (see proof of Theorem[{.5.7 for a detailed

explanation).

Based on the accretive property of T, in L%(Q2) (see Theorem and Corollary Page
Chapter |4)) and additional regularity on initial data, we obtain the following stabilization
result for the weak solutions to (E):

Theorem 1.4.15. Under the assumptions of Theorem[1.4.19, let v be the weak solution of
with the initial data vo € ME(Q) N Wol’p(z)(Q). Assume that h € L*([0,+00) x Q)
satisfying (Hy) on [0,+00) x Q and there exists hoo € L*°(2) such that

| R(t,.) — hool|z2 = O(1) at infinity for some n > 0. (1.4.38)

Then, for any r € [1,00)
|lvi(t,.) —vdillor — 0 ast — oo

where vgqr 1S the unique solution of associated stationary problem with the potential hoo €

L=(Q).

Now we study the convergence of weak solution of the D.N.E. to a steady state. To this goal,
our approach is to use the semigroup theory. Due to the general class of operators, additional
technical computations are needed and performed with the help of the above Picone’s identity.

With both autonomous and non-autonomous terms and the large class of considered operators,
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Chapter 1. Parabolic problems with non-standard growth

(DNE)) covers a large spectrum of physical situations.

We start by proving the existence of unique weak solution v € C1(Q)NM} () of the following
stationary problems associated to the and (|1.4.32)) via minimization method

—V.a(z,Vv) = b(z)v? " + f(z,v) in Q;
v>0 in Q; (S)
v=20 on 01,

In the same way, we obtain the existence of a unique solution u in Vﬁ N M};/ Q) of the

following problem

Tau=1>b in €
u>0 in (1.4.39)
u=0 on Of.

To prove the stabilization property, we divide the proof into two cases when the potential h

is a function of x only and when the potential & is a function of both = and ¢.

For the Case 1, we introduce the family {S(¢);¢ > 0} defined on /\/l;/q(Q) N V{ such that
w(t) = S(t)wy where w is the solution obtained by Theorem for h = hoo. Uniqueness
and regularity results of the weak solution w implies that {S(¢);t > 0} a semi group on
M};/q(Q) N V. In the light of Remark we notice that v = (S(t)wg)'/9 is the solution of
in the sense of Definition with h = hs and the initial data wé/ 1,

Let T > 0 and v be the solution of obtained by Theorem with h = hs and the
initial data vo, then u(t) = v(t)? = S(t)up with up = v{ is a weak solution of (L.4.32). Then
we construct a subsolution w and a supersolution w of the stationary problem with Ao
such that w < v9 < w. Define u(t) = S(t)w? and u(t) = S(¢t)w? the solutions to ((1.4.32)).
Subsolution u and supersolution @ are obtained by the iterative scheme defined in the proof
of existence of weak solution (see (4.5.23)) with initial data vy = w and vy = @ respectively.
Hence, by using the monotonicity of the map ¢ — wu(t), and ¢t — u(t), continuity property of
semigroup in L?(2) and insures for any t > 0,

w! < wu(t) <wu(t) <u(t) <w?a.e.in Q. (1.4.40)

g = Jim S(t+ ) () = SO(lim S(s)(w) = SO

§—00
where u,, = limyoou(t) and Us = limyoo U(t). Analogously we have Us = S(t)Uno-
We deduce u,, and % are solutions of ((1.4.39) with b = ho and by uniqueness, we have
Ustat def Uso = Uoo Where ugesy is the stationary solution of perturbed parabolic problem

(1.4.39). Therefore from (T.4.40) and interpolation inequality |||l < ||.||%]|.|3~¢, we conclude

|u(t) — ustat||zr — 0 as t — 0.
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for any r > 1.
For the case 2: From ((1.4.38)), for any £ and for some 1’ € (0,7), there exists ¢ty > 0 large
enough such that for any ¢ > #g:

R, ) = hool 2 < e.

Let T' > 0 and v be the solution of obtained by Theorem |1.4.12[ with potential h and the

initial data vg = u(l)/q and we set u = v9. Since v € M}(2), we can define @(t) = S(t+to)ug =

S(t)u(tp). Then, by (1.4.31) and uniqueness, we have for any ¢ > 0:

t
. €
ut +to,.) — a(t, )| 2 < / (s + t0,.) = heollzz ds < 7 < e
0 0

By Case 1, we have i(t) — ugtar in L?(Q) as t — co. Therefore, we obtain
||u(t) — ustat||f2 — 0 as t — oo

and by using interpolation inequality we conclude the proof of Theorem [1.4.15
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CHAPTER

Quasilinear Elliptic problem involving Kirchhoff and

Choquard non-linearity

In the last few years, nonlinear and nonlocal partial differential equations (PDEs) have at-
tracted a lot of mathematicians due to their appearance in variety of real world phenomenon.
In particular, the study of nonlocal elliptic and parabolic PDEs play a vital role in the
modelling of various natural processes. Out of many interesting research questions, the fun-
damental questions are the well posedness of the model, existence and multiplicity (versus
uniqueness) of solutions, and in this direction, a considerable amount of results has been

obtained in both nonlinear and nonlocal setting.

Recently, a lot of attention has been paid to the study of PDEs involving nonlinear operator
like p-Laplacian and its higher order elliptic variants, in the presence of nonlocal terms (like
Kirchhoff type non-linearity, Choquard type non-linearity), which give rise to the nonlocal
effect in the equation. The importance of studying these type of PDEs provoked from various
physical models such as Kirchhoff’s model of studying transverse oscillation of the stretched
string [177,178], Pekar’s model for the quantum theory of the polaron at rest [214], Choquard’s
model of an electron traped in its own hole [192], plasma theory of electromagnetic waves

[51], Bose-Einstein condensation [103] and many more.

The main theme of this part of the thesis, is to study the existence and multiplicity results
for the quasilinear elliptic problems involving the nonlocal Kirchhoff term and exponential
non-linearity of Choquard type in the limiting case of Sobolev embedding (i.e. p = n). We
primarily focused on the n-Laplacian and Polyharmonic operators with subcritical and critical
exponential non-linearity, that arise out of several Orlicz type embeddings proved by Adams,
Trudinger and Moser. For the existence of solution for Kirchhoff problem with Choquard non-

linearity, we seek help of variational method in the light of Adams-Moser-Trudinger inequali-
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Chapter 2. Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity

ties, Hardy-Littlewood-Sobolev inequalities, compactness via higher integrability lemma and
Mountain pass lemma. To answer the question of multiplicity, we study the convex-concave
problem (involving an extra sublinear sign changing term) with nonlocal Kirchhoff term and
exponential non-linearity of Choquard type, by Nehari manifold technique. Finally, to study
the system of Kirchhoff equations with exponential nonlinearity of Choquard type, we prove
a new singular and non-singular version of Adams, Moser and Trudinger inequalities and via

variational method we prove the existence of a weak solution.

This chapter includes the results of the following research articles:

(i) R. Arora, J. Giacomoni, T. Mukherjee and K. Sreenadh, n-Kirchhoff-Choquard equations
with exponential nonlinearity, Nonlinear Analysis, 186 (2019), 113-144.

(ii) R. Arora, J. Giacomoni, T. Mukherjee, K. Sreenadh, Polyharmonic Kirchhoff type
Choquard equations involving exponential nonlinearity with singular weights, Nonlinear
Analysis, 196 (2020), 111779, 24 pp.

(iii) R. Arora, J. Giacomoni, T. Mukherjee K. Sreenadh, Adams-Moser-Trudinger inequality
in cartesian product of Sobolev space and its applications, Rev. R. Acad. Cienc. Exactas
Fis. Nat. Ser. A Mat. RACSAM, 114 (2020), no. 3, Paper No. 111, 26 pp.

Turning to the layout of this chapter: In section we introduce a short description of
nonlinear operator and related functions spaces. In Section we discuss the source of
interest and motivations to study the nonlocal problems and the state of the art. In this
regard, we start by stating several inequalities of Adams, Moser, and Trudinger and then
present a state of the art for Kirchhoff type problems, Choquard non-linearity and Nehari
manifold method. In Section we present our main problems. In section we study
Kirchhoff equations and systems with exponential non-linearity of Choquard type and singular
weights. We state our main results and present the main ingredients of their proofs whose

expository part of proofs are given in Chapter
2.1 Nonlinear operators and Function spaces

For m € N, 1 <p < oo and u € C™, the vectorial polyharmonic operator Aj" is defined by

induction as
A VAN TN (VAT P2V AT ) ) ifm =25 — 1,
u = o .
P A (|ATuP~2 A ) if m = 2j.

The symbol V™« denotes the m'-order gradient of u and is defined as

VAM=D/2 if m is odd,
V" =
A2y if m is even
where A and V denotes the usual Laplacian and gradient operator respectively, and V™u-V™v

denotes the product of two vectors when m is odd and the product of two scalars when m is
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2.2. Motivation and state of the art

even.

Let © C R™ be a bounded domain. The Sobolev space W™P(Q2) defined as
W™P(Q) = {u e LP(Q) : [VoulP € LY (Q) V |a| < m}
endowed with the norm

1
P
[ullwmr@) = ( > /QIVO‘UV’ dw)

laf<m

is a Banach space. For 1 < p < oo, we define Wy""(2) as the closure of C°(2) in W™P(Q).

From Poincaré inequality, we can also define an equivalent norm on W;"*(Q) as

1
m P
fulhgrioy = [ 197 dz)”.

In the special case p = 2, Wén’2(Q) (or Hy*(€2)) becomes a Hilbert space with the inner
product

(u,v) = / V™ - V™ da.
Q

2.2 Motivation and state of the art

2.2.1 Adams, Moser and Trudinger inequalities

The classical Sobolev space embedding says that

np

Wy (Q) — LP"(Q) if n > mp where p* = .

or equivalently
sup /|u|T<oof0ra111§r§p*
Hu”Wg"’P(Q)Sl Q
and in the limiting case mp = n, W?’%(Q) — L"(Q) for all 1 < r < oo but not embedded
in L*°(€2). The maximal exponent p* is called as Sobolev critical exponent. Hence, a natural
question in connection with Orlicz space embeddings is to find a function ¢ : R — R* with

maximal growth such that

m,
0

sup / ¢(u)dr < oo.
lull o <1JQ

m(Q)
In this connection, in 1960’s, Pohozaev [218] and in 1967’s, Trudinger [249] independently
answered the question for m = 1 and p = n, using the maximal growth function ¢(t) =
exp(Jt[TT1) — 1.

Later on, in 1971, Moser [207] and in 1984, Cherrier [92}93] improved the result by proving
the inequality in ng ™(Q) and WHn(Q) respectively with sharp exponents in the maximal

growth function and proved the following result:
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Theorem 2.2.1. Forn >2, ue W,"(Q)

sup / exp(a]u|ﬁ) dr < oo if and only if a < «,
IIUIIW&,n(Q)Sl Q
and for uw € WhHr(Q)

o

sup / exp(d\u!ﬁ) dx < oo if and only if & < —
Q

||u||W17TL(Q)S1

n—1

1
here oy, = nw,""] wn—1 = surface area of n-dimensional sphere S".

From Theorem it is easy to see that the embedding Wol’n(Q) > u s exp(jul?) € LY(Q)

is compact for all § € [1, %) and is continuous for f = 5. Consequently the map

T : Wy™(Q) — LY(Q), for ¢ € [1,00), defined by T'(u) := exp |u|ﬁ), is continuous with
respect to the norm topology.
In a further extend, Adams [3] generalized the Moser’s inequality to higher order Sobolev

spaces by proving the following inequality which is known as Adams-Moser-Trudinger in-

equality:

Theorem 2.2.2. Let 2 be a bounded domain in R™ and n,m € N satisfying m < n. Then
for all 0 < ¢ < Cum and u € W(;n’m(ﬂ) we have

sup / exp((|u|ﬁ)dm < 00,
Q

[Vrull o o <1
Lm(Q)

where Cpm s sharp and given by

n

n/22m1—\ m+1 n—m
T
n ( ( 2 )> when m is odd,

Wy n—m+1
Cn,m = " F ( ? ) n
n/29mp (m\\ n-m
i T n7m< 2 ) when m is even.
Wn—1 T ( 3 )

Using the interpolation of Hardy inequality and Moser-Trudinger inequality, Adimurthi-
Sandeep [7] established the singular Moser-Trudinger inequality for functions in VVO1 Q).
This was consequently extended by Lam-Lu [183] for functions in W, ™ (€2) while proving

the following singular Adams-Moser-Trudinger inequality:

Theorem 2.2.3. Let 0 < a < n, Q be a bounded domain in R™ and n,m € N satisfying

m < n. Then for all 0 < k < Kapm = (1 — ) Cum we have

e m
sup / }de < 0.
Q

If & > Kan,m then the above supremum is infinite (i.e. Kqnm 5 sharp).
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2.2.2. Kirchhoff problems

We recall two results from [196] which are known as Lions’s higher integrability Lemma.

Lemma 2.2.4. Let {v;} be a sequence in Woln(Q) such that ||vg|| = 1 converging weakly to
1
a non zero v € Wy (). Then for every p < (1 — |jo||") =1,

sup/ exp (pozn|vk|%) < +o00.
k Jo

Lemma 2.2.5. Let {vi} be a sequence in Wgn’2(Q) such that ||vg|| = 1 converging weakly to
a non zero v € Wén’z(Q). Then for every p < (1 — ||v]|?)~ %,

sup/ exp (PCm,Qm’kaz) < +o00.
k Q

In recent years, numerous generalizations, extensions and applications of the Moser-
Trudinger and Adams-Trudinger-Moser inequalities have been widely explored. A huge
amount of literature is available which are devoted to study these kinds of inequalities. We
refer readers to [3,7,183,207] for such topics and the survey article |184] including the ref-
erences within. In the field of geometric analysis curvature for instance prescribed mean
curvature problem, Yamabe’s problem and partial differential equations where the nonlinear
term behaves like exp (]t!ﬁ) as t — oo, these inequalities play a vital role to carry out the

analysis.

2.2.2 Kirchhoff problems

The starting point of studying Kirchhoff problems goes back to 1883, when Kirchhoff estab-
lished a model governed by the equation

L
(I) : putt—M</ || dx) Upy = 0
0

for all z € (0,L) and t > 0 and M(s) = 22 + %s with the following interpretation of the
constants: u(z,t) is the lateral displacement at the coordinate = and time ¢, L is the length
of the string, h is the area of the cross section, F is the Young’s modulus of the material, p
is the mass density and Py is the initial axial tension. The model (I) depicts that the trans-
verse oscillations of stretched string with nonlocal flexural rigidity depend continuously on
the Sobolev deflection norm of u via M. This model is an extension of classical D’Alembert
wave equation, by considering the effects of change in the length of the string during the
vibration. Further details and the physical phenomena described by the Kirchhoff’s classical
theory can be found in [177], [178].

The degenerate Kirchhoff problems i.e. M(0) = 0 are also very interesting and challenging
from a mathematical point of view. The degeneracy in the model (I) implies that the base
tension of the string is zero and M measures the change of the tension on the string caused

by the change by its length during the vibration. The presence of the nonlinear coefficient
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M is crucial and must be considered when the changes in the tension during the motion
cannot be neglected. The early classical studies dedicated to Kirchhoff equations were given
by Bernstein [53] and Pohozaev [217]. However, model (I) received much attention only after

the paper by Lions [195], where an abstract framework to the problem was proposed.

After the appearance of (I), several physicists considered such equations for their research
on nonlinear vibrations from both theoretical and experimental points of view. More general
versions of these problems are also termed as the Kirchhoff equations and have been exten-
sively studied by many researchers till date. Such equations also appear in biological systems
where the function u describes a phenomenon which depends on the average of itself (such as

a population density). Consider the following problem
/ (V" ulP dx) Aj'u = Af(z,u) +a(x NulP" 2uin @ u=0 on dQ

where the function f has a suitable growth. Due to the presence of the nonlocal term M,
the equation (K) is no longer a pointwise identity which makes the study of such problems
more tricky. For p = 2,m = 1,\ = 1 and a(x) = 0, Alves et. al in [18] considered the
nonlocal Kirchhoff Laplacian problem (K) with f satisfying sub-critical growth condition at
00, and using the truncation arguments and variational method showed the existence of a
weak solution. In [99], Corréa and Figueiredo studied the existence of positive solutions for
Kirchhoff equations involving p-laplacian operator with critical or super critical Sobolev type
non-linearity and a(x) = 0. In [17], Alves et. al considered the above nonlocal problem
with a(x) # 0 and using the Mountain-pass Lemma and the compactness analysis of local
Palais-Smale sequences, showed the existence of solutions for large A. Later on, in [124] for
Laplacian operator and in [159] for n-Laplacian operator authors have studied the Kirchhoff
problem with critical exponential growth non-linearity. Problems involving polyharmonic
operators and polynomial type critical growth non-linearities have been broadly studied by
many researchers till now, see [134}/135,/157]. We cite |158,|181,|182] and references therein
for existence results on polyharmonic equations with exponential type non-linearity. We
cite [4},/164/18,190,(122} 123,186,204} 220, 254] as references where the Kirchhoff equations for
different kind of operators and non-linearities have been treated with no attempt to provide

the complete list.
2.2.3 Exponential non-linearity of Choquard type
Let us consider the problem
(C): —Au+V(x)u= (lz| " F(z,u))f(zr,u) in R"

where p € (0,n), F is the primitive of f with respect to the second variable and V', f are
continuous functions satisfying certain assumptions. The starting point of studying such

problems was the work by S. Pekar (see [214]) in 1954 where he used such equations to
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2.2.3. Exponential non-linearity of Choquard type

describe the quantum theory of a polaron at rest. Later, P. Choquard (see [192]) in 1976 used
it to model an electron trapped in its own hole. The problem (C') also appears when we look
for standing waves of the nonlinear and nonlocal Schrédinger equation, which is known to
influence the propagation of electromagnetic waves in plasma [51]. Moreover, such problems
play a key role in the Bose-Einstein condensation ([103]). To deal with the Choquard non-
linearity term, the following Hardy-Littlewood-Sobolev inequality [193] and doubly weighted
Hardy-Littlewood-Sobolev [239] inequality play a vital role:

Proposition 2.2.6. (Hardy-Littlewood-Sobolev inequality) Let t,r > 1 and 0 < p < n
with 1/t + p/n+ 1/r = 2, f € LYR™) and h € L"(R"). There exists a sharp constant
C(t,n,u,r), independent of f,h such that

z)h
/ TOM) gy < C(t,m, )l Lo 12| () - (22.1)
n Jre | —ylH

Ift=r= 232# then

Ct,n,p,r)=C(n,pu) =mn2 Z

In this case there is an equality in (2.2.1)) if and only if f = (constant)h and

—(2n—p)
2

h(z) = A(Y* + |z —af)
for some A€ C,0#~v€R and a € R".

Proposition 2.2.7. (Doubly weighted Hardy-Littlewood-Sobolev inequality) Let t,r >
land 0 < p < n with a+ g > 0, %+’Hﬁ7—w+%:2,a< B < feLYR") and

h € L™ (R™), where t' and r' denotes the Holder conjugate of t and r respectively. Then there
exists a constant C(a, 8,t,n, u,r) > 0 which is independent of f,h such that

= (yfﬁﬁ?,ﬂﬁ dady < C(c Byt o ) Lty I ey
For recent results involving different kinds of operators and growth conditions, we refer

the readers to survey paper on Choquard equations by Moroz and Schaftingen [206], and

Tuhina and Sreenadh [208] which cover as extensively as possible the existing literature on

this topic.

In the light of Hardy-Littlewood-Sobolev inequalities, Lii [197] studied the following Choquard

equation involving Kirchhoff operator
- ( o / |Vul? dw) Au+ (14 pg(x))u = (Jo]~ * [uf?) [u~*u in R?
R3

where a > 0, b > 0 are constants, a € (0,3),p € (2,6 — ), u > 0 is a parameter and g is a

nonnegative continuous potential satisfying some conditions. By using the Nehari manifold
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method and the concentration compactness principle [196], he established the existence of
ground state solutions when p is large enough and studied the concentration behavior of these
solutions as u — +o00. Recently, Li et al. [188] studied the existence and the concentration of
sign-changing solutions to a class of Kirchhoff-type systems with Choquard-type nonlinearity
in R? using minimization argument on the sign-changing Nehari manifold. Pucci et al. [220]
also studied the existence of nonnegative solutions of a Schréodinger-Choquard-Kirchhoff type

fractional p-equation via variational methods.

An important question that arises now is the case of critical dimension n. But there is
not much literature concerning problem (C) when n = 2 except the articles by Alves et al.
[15] where authors have studied a singularly perturbed nonlocal Schrodinger equation using

variational methods in R2.

2.2.4 Nehari Manifold method

Let X be a Banach space and 7 : X — R be a C! functional. Let u be a non-trivial critical

point of the energy function Z i.e. Z'(u) = 0, then wu is necessarily contained in the set
N:={ue X \{0}: (Z(u),u) =0}

where 7’ is the Fréchet derivative of energy functional Z. The set N is the natural constraint
set for the problem to find non-trivial critical point of Z. The set A is known as Nehari
manifold named after the work of Z. Nehari. We refer to [212] and [243] for a more detailed
study.

In [113], authors have studied the associated fiber maps ®, : R™ — R defined as ®,,(t) = Z(tu)
in order to study the geometry of Nehari manifold. We observed that v € N if and only if
®/ (1) = 0. More generally, tu € N if and only if @/ (t) = 0 which means that the elements
in \V corresponds to critical point of the fiber maps. Thus, it is natural to split the Nehari
manifold AV intro three disjoint sets corresponding to local maxima, local minima and saddle

points of @, and defined as
NE={ueN:90"1)<0} and N0 := {uc N : ®(1) = 0}.

The main idea is to minimize the associated energy functional Z on the Nehari manifold and
show that the minimizers are actually the critical points of the energy function Z i.e the
Lagrange multipliers is zero. In the last few decades, several authors such as in [19}22}(72.(73,
113,/164L255-257|] used the Nehari manifold and associated fiber maps approach to study the
multiplicity results for semilinear problems involving polynomial type nonlinearity and sign
changing weight functions. In [255], Wu studied the multiplicity of weak solution semilinear

elliptic equations

(K) —M (/ |Vul|P dx) Apu = g(x)|[uPu + Af(@)|ulf e inQ, g<1, p< 2
Q
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with sign changing functions f, g and using the method of Nehari manifold proved the exis-
tence of at least two weak solution for M =1 = g and p = 2, and in [72] for p = 2 and M = 1.
In [85], authors have studied the Kirchhoff problem (K) for p = 2 involving sign changing
non-linearities and proved the multiplicity of weak solution via Nehari manifold method and

fibering map analysis.

In [113], authors studied the combined effects of convex-concave non-linearities in quasilinear
elliptic problems involving p-Laplacian and established the multiplicity of weak solution for
Dirichlet boundary conditions and in [19,/164] for Dirichlet-Neumann or Neumann boundary
conditions. Problem involving n-Laplace operator with exponential type nonlinearity has
been addressed in [159-161]. For the systems of equations involving exponential nonlinearity,

we refer to [200] for Laplacian and [149] for fractional laplacian operator.

With extensive research interest for and abundant physical applications of mathematical
equations involving nonlocal Kirchhoff term and Choquard non-linearity, it is then natural
to investigate the Kirchhoff equation involving a Choquard non-linearity from both math-
ematical and physical points of view. Motivating from above works, we investigate a class
of Kirchhoff equations and systems in the limiting case of Sobolev embedding involving ex-
ponential nonlinearity of Choquard type and sign changing nonlinearity for different kind of

operators that has not investigated in former contributions.
2.3 Presentation of problems

In this section, we present our main problems of Kirchhoff equations and systems involving

exponential nonlinearity of Choquard type, singular weights and sign changing nonlinearity.
2.3.1 Problem 1: Kirchhoff Choquard equation with exponential non-linearity

(a): First, we study the following n-Kirchhoff equation with exponential non-linearity of

Choquard type

(KC) —M(/Q Vul™ dz)Apu = </Q mdy) flz,u), u>0 in Q,

u =0 on 0f),

where u € (0,n),  is a smooth bounded domain in R", n > 2, the function F' denotes
the primitive of f with respect to the second variable (vanishing at 0) and M denotes the
Kirchhoff term.

(b): Secondly, we study the higher order elliptic variant of Problem 1 (a). Precisely,
we study the following Polyharmonic Kirchhoff type Choquard equation with exponential

non-linearity and singular weights:
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ey M el as)are= ([ oot ta) fE an e

u=Vu=---=V"ly=0 on 0},

where m € N, n=2m, p € (0,n), 0 < o < min{§,n — pu}, Qis a bounded domain in R™ with
smooth boundary and the function F' denotes the primitive of f with respect to the second
variable and M denotes the Kirchhoff term.

Concerning both problems (KC) and (PKC), we are interested in the existence of a weak
solution (in a sense of Definition [2.4.2|and [2.4.14)) in the light of Adams, Moser and Trudinger

inequalities, and Hardy-Littlewood-Sobolev inequalities and variational techniques.

2.3.2 Problem 2: Kirchhoff Choquard equation with convex-concave type nonlinearity

(a): First, we study the following n-Kirchhoff-Choquard equation with a convex-concave type

non-linearity:

— M (Jlull™) Apu = (|| * F(u)) f(u) + Ab(z)|u|'u in Q,
(P)\,M) u=2~0 on 0f),
u>0 in Q

where p € (0,n), Q is a smooth bounded domain in R”, f(s) = s|s|Pexp(|s|?), 0 < ¢ <
n—1<2n-1<p+1,8¢ (1,2 and F(t) = [} f(s) ds, M(t) = at +b where a,b > 0 and

' n—1

h € L"(Q), with r = pf;il, satisfying h™ # 0.

(b) Secondly, we study the higher order elliptic variant of Problem 2 (a). Precisely, we

investigate the existence of weak solutions of a Kirchhoff type Choquard equation for higher

order elliptic operators with convex-concave sign changing non-linearity:

F
- M (/ V™2 dx) A"y = Mh(z)|u]? tu + (/ () dy) ) in
(Prrt) Q a |z —yl#y| ||
v=Vu=---=V"ly=0 on 0f),

where Q is a smooth bounded domain in R™, n = 2m, m € N, f(s) = s|s|Pexp(|s]?), 0 < ¢ <
1, 2 <p,ve(1,2) and F(t) = fg f(s) ds. In this case, we assume M(t) = at + b where

a,b>0and h € L"(2) where r = % is such that ™ # 0.

Due to the combination of sub homogeneous and super homogeneous term, and corresponding
geometry of the energy functionals, we expect the existence of multiple solutions. With respect
to the parameter )\, we are concerned to establish

n

—1=) and existence of a solution for

(i) multiplicity of solutions for subcritical case § € (0,

critical case = -5 in the problem (P ar).

(ii) existence of multiple solution for the subcritical case v € (1,2) in the problem (P aq).
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2.3.3 Problem 3: Kirchhoff systems involving exponential non-linearity of Choquard
type

In the continuation of previous problems, we study the following doubly nonlocal system of

n-Kirchhoff Choquard equations with exponential non-linearity

=l o) 8= ([ T ay) fiono), w0 oo

(KCS) (], ) [") Aw = (/Q Wdy) folwuv), v> 0 in O

u,v =0 on 012,

where €2 is a smooth bounded domain in R?, 0 < u < n, function F : Q x R? — R
be continuously differentiable with respect to second and third variable and of the form
F(z,t,s) = h(x,t,s)exp(|t|71 + |s|7-7) such that

oF oF
fl(xatas) B E('xvtﬂs)v fQ(.%',t,S) e g(xvta S)

and m denotes the Kirchhoff term.

Concerning the above system of Kirchhoff equations, we are interested in the Moser-Trudinger
type inequalities for systems and existence of a non-trivial weak solution under the minimal
assumptions on Kirchhoff and Choquard term, and cover both degenerate and non-degenerate

cases for the Kirchhoff term.
2.4 New contributions and extensions

In this section, we state the main existence and multiplicity results for the problems presented
in Section and highlight the main difficulties and ideas for the proof. First we study
the existence and multiplicity results for Kirchhoff-Choquard problem involving n-Laplacian
operator and by analyzing the crucial points, we extend our study to Kirchhoff-Choquard
problem involving higher order elliptic operators. To study the Kirchhoff-Choquard problems,
we investigate the variational framework and seek help of the following mountain pass lemma
(see |21] or Theorem 2, [203]).

Theorem 2.4.1. Let E be a real Banach space and I € C'(E,R). Suppose there exists a

neighbourhood U of 0 in E and a positive constant « which satisfy the following conditions:
(i) 1(0) =0,

(ii) I(u) > « on the boundary of U,

(iii) There exists an e ¢ U such that I(e) < a.

Then for the constant

¢ = inf maxI(u) > «
yEA u€y
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there exists a sequence u, in E such that
I(up) — ¢, I'(up) — 0

where A ={g € C([0,1], E) : g(0) =0, g(1) =e}.

2.4.1 n-Kirchhoff Choquard equation with exponential non-linearity

In this subsection, we study the existence results for Problem 1(a) and denote

1/n
| = (/ IVl dx) .
Q

We start by stating the assumptions on the Kirchhoff and Choquard term present in the
Problem 1(a). The function M : RT — R* is a continuous function satisfying the following

conditions:

t
(m1) There exists mg > 0 such that M (t) > mg for all £ > 0 and M(t) = / M (s)ds satisfies
0

M(t+s) > M(t) + M(s), for allt,s > 0.
(m2) There exist constants by, by > 0 and > 0 such that for some r € R

M(t) < by + bot", for all t > 1.

(m3) The function MT(t) is non-increasing for ¢ > 0.

The assumption (m1) implies the Kirchhoff term M is non-degenerate and its primitive sat-

isfies the super additivity property.

Example 1: An example of a function M satisfying (m1) — (m3) is M(t) = do + dit” for
B <1 and dg,d; > 0.

The function f: Q x R — R is given by f(x,t) = h(x,t) exp(\t\ﬁ). In the frame of problem
(KC), h € C(Q x R) satisfies the following conditions:

(h1) A(z,t) =0 for t <0 and h(z,t) > 0 for ¢ > 0.

(h2) Forany e > 0, tlim sup,cq h(z,t) exp(—e[ﬂﬁ) = 0and tlim inf g h(z,1) exp(e\t\ﬁ) =
0.

(h3) There exists ¢ > max{n — 1, %} such that ¢ — f(f;’t) is increasing on RT \ {0},

uniformly in = € Q where 7 is specified in (m2).

(h4) There exist T',Tp > 0 and vy > 0 such that 0 < ¢ F(x,t) < Ty f(z,t) for all |[t| > T and
uniformly in z € Q.
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The condition (h2) implies that the function f has critical growth of exponential type in the
sense of Theorem 2.2.11

Example 2: An example of a function f satisfying (h1)—(h4) is f(z,t) = t51 exp(tP) exp(tﬁ)
for t > 0 and f(z,t) =0 for t <0 where 0 <p < 7 and $; > 1 - 1.

Definition 2.4.2. We call a function u € Wol’n(Q) to be a solution of (KC) if

F
M(Hu””)/Q Vu|"2Vu.Ve dr = /Q (/Q |x(g’yu|ldy) f(z,u)p dx, for allp € Wol’"(Q).
(2.4.1)

Concerning the problem (KC'), we prove the following main result:

Theorem 2.4.3. Assume (m1)-(m3) and (h1)-(h4) holds. Assume in addition

F
(Compactness condition) lim sf 5)F (@, 5)

L = oo, uniformly inx € Q. (2.4.2)
s—+00 exp <2|S|ﬁ>

Then the problem (KC') admits a positive weak solution.

The condition ([2.4.2)) is required to prove the existence of a strongly convergent subsequence
of a Palais-Smale sequence if Palais-Smale sequence lies below a critical level. The assumption
(2.4.2) depicts that “the perturbation term h(z,t)” should not be too small. For a detailed

analysis on the perturbation term h(z,t), we refer to the seminal work of Adimurthi [4].

We define the energy functional F : Wol () — R associated to the problem (KC) as

Bw) = oMl = 5 [ ([ T2 dy) Fo) de

Under the assumptions on f, Moser-Trudinger inequality (Theorem and Hardy- Little-
wood -Sobolev inequality (Proposition imply that E is well defined in I/VO1 (). For a
detailed explanation, we refer to Page Chapter |5, Also F € C’l(WO1 ™(Q),R). Naturally,
the critical points of E corresponds to weak solutions of (KC') and for any u € Wol’n(Q) we

have

(B ) =Ml [ 19l 2vuvedo- [ ([ T80 4) 0 do

for all p € Wol’n(Q).

To show, the energy functional E satisfies the conditions of mountain pass theorem, we first

study the mountain pass geometry of the energy functional E:

Lemma 2.4.4. Assume (m1), (m2) and (h1)-(h4) holds. Then, E has the mountain pass

geometry around 0 i.e.
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(i) there exists Ry > 0,17 > 0 such that E(u) > n for all u € Wol’n(Q) such that ||u|| = Rp.
(ii) there exists a v € Wy (Q) with ||v|| > Ro such that E(v) < 0.

The proof of the mountain pass geometry of E requires precise estimates of Kirchhoff and
Choquard term with exponential non-linearities. The Choquard term is handled by choosing
|lu|| = Rp small enough with Ry depending upon the sharp exponent «;, in Moser-Trudinger
and p in Hardy-Littlewood-Sobolev inequalities, and Kirchhoff term by the non-degeneracy

assumption (ml) and the growth condition (m2) (with a detailed proof we refer to Lemma

Page Chapter .

Let T' = {~ € C(]0, 1],W01’"(Q)) : v(0) =0, E(v(1)) < 0} and define the Mountain Pass
critical level as

I* = inf E((1)).
inf max (v(t))

Then by using Ekeland principle and deformation lemma (Theorem [2.4.1]), we have the exis-

tence of minimizing Palais-Smale sequence u,, € Wol "(Q) such that
E(uy) — I*, E'(uy) — 0.

Moreover, the non-degeneracy of the Kirchhoff term and suitable lower growth rate of the

function f in the Choquard term (precisely (h3)) implies that every Palais-Smale sequence is
bounded in Wol’n(Q) (for a detailed proof see Lemma |5.1.10, Page Chapter

To prove the existence of non-trivial weak solution, we need to identify the mountain pass
critical level below which the Palais-Smale condition is satisfied. In this regard, we prove the

following lemma identifying the first critical level:

Lemma 2.4.5. If (2.4.2) holds, then

_ n—1
oo Lo (ra) )
n 2n

To prove the above result, implicitly, we consider the sequence of Moser functions {wy, } defined

as dilations and truncations of the fundamental solution:
(log k)", 0 < |2 < £,
1 L
wi(z) = —— {108 ('””1)
Wi—1 | (logk)n
0, [z| = p

14
=< <
’k—|x’—p7

such that supp(wy) C B,(0) and by using the geometric properties of the energy functional
E and (2.4.2)), we show that there exists a k € N large enough such that

_ n—1
max FE(twy) < l./\/l <(2n 'uan) )
n

t€[0,00) 2n
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and which is sufficient to prove our claim (for a detailed explanation, we refer to Page [236
Chapter [5)).

Now, to study the compactness of Palais Smale sequences for the energy functional F, we prove
a set of convergence lemmas which prevent concentration phenomenon of the Palais-Smale
sequence to occur and imply the weak convergence of Choquard term involving exponential
non-linearities. The following lemma is very crucial for the convergence of Palais-Smale
sequences to a weak solution and appeals new estimates for the convergence of the Choquard

term.

Lemma 2.4.6. If {uy} denotes a Palais Smale sequence then up to a subsequence, there
exists u € Wy ™ (Q) such that

up — u weakly in Wol’n(Q), |Vug "2V — |Vu|" " 2Vu weakly in (Lﬁ(ﬂ))” (2.4.3)

Moreover, for all ¢ € C°()

[ (L9 0) stero s [ ([ 2S5 0) o

(] E5200) i (] E5220)

Due to the nonlinear nature of the operator (—A),, the proof of (2.4.3) involves a delicate

analysis of the Palais-Smale sequence {uy} for the energy functional E over WO1 "(Q). Here,

and

we sketch the main ingredient of the proof. Showing the boundedness property of the Palais-
Smale sequence, there exists u € W&"(Q) such that up — wu weakly in WOI”(Q) and a

non-negative radon measure v and v € (Lﬁ(Q))" such that up to a subsequence
lug|™ + | Vg™ 2 v in C(Q)* and |Vug|" 2V, — v weakly in (L71(Q))" as k — .

Now to prove our claim, it is enough to show that Vuy, — Vu a.e. in Q and v = |Vu|""2Vu.
For this, we set 0 > 0 and X, = {z € Q: v(B.(z) N Q) > o, for all r > 0} and in order to
prevent energy concentration phenomenon we show the following:

(i) X, must be a finite set i.e X, = {x1,29,...,Tn}

21 )"

(ii) For any o > 0 below the “first concentration energy level” i.e. o < 3 (

and for any K compact subset of O\ X, we have

klglgo . (/Q Mdy) fx, uk)ug de :/ </Q ’Z(_ y|zdy> f(z,u)u dx.

(iii) For ¢ > 0 fixed small enough such that B(z;,d) N B(z;,6) =0 if i # j and Q5 = {x €
Qijz—z;| >4, j=1,2,...,m}

/ (|Vug|" " 2Vuy, — |[Vu|""2Vu)(Vug — Vu) — 0 as k — oo.
Qs
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To prove (i), we proceed by contradiction. Consider a sequence of distinct points {zx} in X,
such that for all r > 0, v(B,(x;) N Q) > o for all k. This implies that v({x}}) > o for all k,

hence v(X,) = +o00. But this is a contradiction to
v(X,) = lim / lug|™ + [Vug|™ de < C.
k—o00 Xo
To show (i7), we choose a finite covering { By, (x;) }icr of K such that

/ sl + |Veg]" < o1 — €. (2.4.4)
Br; T4 N

for large enough k£ € N, ¢ > 0 small enough and I = {0,1,...,[} is the index set. Using
(2.4.4), Vitali convergence Theorem and asymptotic growth of f, we get

F o0
£t sapry ey < O [ - @, &d e L%(Q) (2.4.5)

for some appropriate ¢ > 1 and

/BTO(ZO)HQ (/Q Ty dy) (f (z, up)ug — f(z,u)u)

|z — y|#
To complete the proof of (i7), we vigorously exploit the semigroup property of the Riesz
potential in the light of Moser-Trudinger inequality in VVO1 ™(Q) and WH™(Q2), and prove that

/( ol L U)dy> XB%Omﬁ(x)f(xvuk)Uk dz

|z — yl~

(/ </ - yuTx - y‘i )|dy> |F (@, up) — F(z, )] dwf (2.4.6)

<([(] XB?QQ@)W@) o) o) 0.

Precisely, boundedness property of Palais-Smale sequence u; and Lebesgue dominated con-
vergence theorem implies the first integral in the R.H.S. of (2.4.6]) tends to 0 and the second
integral is uniformly bounded because ¢ lies below the first concentration energy level and
(12.4.5]).

dz — 0 as k — oo.

To prove (iii) and weak convergence in Choquard terms, we choose special type of test func-

tions ¢1 = Yeug and g2 = Yeu in the following inequality

M) [ 192 uvo - [ ([ TESay) oo do

where ¢ € C°(R™), ¥ =01in 2\ Qs, ¥ = 1 in Qs and with the help of strict convexity of the
2

function g(t) = [t|™ and e-Young inequality (the classical arguments of Lemma 4 in [203]) we

< exlloll

get
lim sup M(|Jux||") / V|2V g - Vebe (g — w) < 0. (2.4.7)
k—oco Q
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Now, by using the the fact that M (||ug||™) is bounded and u; — w in Wol’"(Q), we get
klim M(||uk||”)/ V| 2Vu - (Vu — Vug)be — 0. (2.4.8)
— 00 [}

Finally, by combining the estimate (2.4.7), (2.4.8) and by taking K = Qs in (ii), we get
2
Vup — Vu a.e. in © and hence the our claim (2.4.3)) (for a detailed insight see Lemma|5.1.12

Lemma [5.1.13[ and Lemma [5.1.14] Chapter .

Now, we sketch the main ingredient of the proof of our main existence result Theorem [2.4.3
For a Palais Smale sequence {uy} at the level I* and using Lemma there exists a
ug € Wy () such that up to a subsequence uy, — ug weakly in Wy (€2) as k — oo. Now,

we divide the proof into two main steps:

Step 1: ug is the weak solution.

The proof of this step is rather technical. First, we define the associated Nehari manifold as
N ={ueWy™(Q)\ {0} : (E'(u),u) =0} and I"* = inf ().

Using the fact that I* < [** (see Lemma [5.1.15] Chapter , weak lower semi-continuity of the
norm, by the monotonicity and continuity of Kirchhoff term and from convergence Lemma

[2.4.6] we prove the following inequalities:
(E'(ug),uo) >0, E(ug) <I*. (2.4.9)

Now to discard the case E(ug) < I* we discover a contradiction. Precisely, if E(ug) < [* holds

then the monotonicity of Kirchhoff term gives
lim M([Juel|*) > M(JJuol") = 7" = lim [ugl|" > [luoll™.
k—o0 k—o0

Now we define the sequence v, = HZ—:H and vg = % then v, — vy weakly in Wol’"(Q) and

|lvo|| < 1. From Lions higher integrability lemma (Lemma [2.2.4) and (2.4.9) we obtain

2 n F
/ exp ( i q|uk|nl> <, / (/ (y’uk)dy) [z, ug) (ug — up) dz — 0.
Q 2n —p o \Jo |z —yl~

for some constant C' > 0. Using (E'(uy),ur — ug) — 0, M(t) > mg and monotonicity of

the operator, we get ur — u in W[)ln(Q) which further conclude that |ug|| — |luo|| and a
contradiction to the fact ||vg]] < 1. Therefore E(ug) = I* and M(7") = M(||uo||™) which
shows that 7" = ||ug||"™ and hence claim.

Step 2: Positivity of ug

The upper bound of the mountain pass critical level (Lemma and Choquard convergence

estimates (Lemma [2.4.6)) induces the uniform bound of ||u|| and L? norm of f(x,u) for some

q > 23:“ which further in the light of positivity of mountain pass critical level [* implies
up # 0 and by testing equation (2.4.1) with ¢ = uy, we get up > 0 in Q. Finally, elliptic
regularity results and strong maximum principle implies ug > 0. A detailed proof is given in

Theorem [5.1.5] Chapter [5]
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2.4.2 Multiplicity of solutions via Nehari Manifold method

In this subsection, we state results and their main ideas of the proof for the problem (P ar)
mentioned as Problem 2(a) in Section and denote

1/n
] == (/ V" dx) .
Q

We start by defining the notion of solution for (P as) as

Definition 2.4.7. A function u € Wy (Q) is said to be weak solution of (Pam) if ¥V ¢ €
W, ™ (Q) we have

M(JJu|™) /Q |Vu|"2Vu.Ve dr = )\/Qh(x)uqlu(é dx + /Q(]a;“ * F(u))f(u)g d.

The energy functional J) y : Y/VO1 "(Q) — R associated to the problem (P ) is defined as

A

Frarl) = ZM(Jul") = =

[ @it do =5 [ (a7« Fu) PG da

where |z|7# F'(u) denotes fQ ‘ )) dy, and F';, M are anti-derivatives of f , (Vanishing at
0) respectively. Using Hardy- thtlewood—SoboleV inequality (Proposition and Moser-
Trudinger inequality (Theorem , we can see that the energy functional j,\7 M is well
defined.

Using the Nehari manifold technique, we show existence and multiplicity of solutions of the
problem (Py pr) with respect to the parameter \. Precisely, we show the following main results

in the subcritical case (local multiplicity):

Theorem 2.4.8. Let 3 € (1, %) Then there exists Ao such that (P ) admits at least

two non-trivial solutions for A € (0, o).

In the critical case, we show the following existence result:

Theorem 2.4.9. Let = "5, then there exists A > 0 such that for X\ € (0,A1), (P um)

admits a non-trivial solution.

In order to prove the existence of weak solutions to (P ar), we establish the existence of

minimizers of J pr under the natural constraint of the Nehari Manifold:

Ny :={u € Wo ™ (Q)] <\-7)/\,M(u)au> =0}

where (. ,.) denotes the duality between W(}”(Q) and W—1(Q). Therefore, u € N, if and
only if

lul™ M(Jul™) - A /Q Byt do — /Q (2 « F(u)) f(u)u dz = 0.
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For u € Wy (), we define the fiber map ®, 5/ : RT — R as
(I)uyM(t) = .7,\7M(tu).

By observing the fact that, the Nehari Manifold is closely related to the the maps ®, i by
the relation tu € Ny pr iff <I>/u’ v (t) = 0, we study the geometry of the energy functional on
the following components of the Nehari Manifold:

/

Niar o= {u € Naar 0 @, (1) S 0} = {tu € Wy™ () : 0 () = 0,8, (1) S 0,

NS pp = {u € Naar: @y pp(1) = 0} = {tu € Wy™(Q) : @, (t) = 0,2, ,(t) = 0}.

Due to the presence of the sign changing non-linearity, we define H(u) = [, h|u|7™ dz and
study the behaviour of fibering maps ®,, »s according to the sign of H(u). We split the study

into two different cases u € Hy and v € H * where
HY = {ueW,™(Q): H(u) >0}, Hy :={ueW,"(Q): H(u) <0}
We define the map ¢ : R™ — R such that
Pu(t) = "M ([l [l — ¢ /ﬂ(!w\“ * F(tu)) f(tu)u dx

and observing the fact that tu € Ny if and only if ¢ > 0 is a solution of v¥,(t) =
A Jo h(2)|u|?t! dz. In this regard, we prove the following result which totally describes the
geometry of the fiber map:

Lemma 2.4.10. (i) For any v € Hy \ {0} and X\ > 0, there exists a unique t* > 0 such
that t*u € Ny ;. Moreover, @y n is increasing on (0,t*) and decreasing on (t*,00).
(it) For any A € (0,)\o) and uw € H™, there exist t,t1,ts > 0 such that tiu € NIM and
tou € N):M for any and t1 < t, < ts.

As an application of Lemma [2.4.10] we also prove the non-existence of non-trivial solutions

in the degenerate component N gj M e N)(l v = {0}. (For a detailed proof we refer to Lemma

Page Chapter

Now to prove the existence of first solution, we extract a nearly minimizing sequence {uy} in

Ny a\{0} in the following sense:

1
I (ug) <0+ o 6= inf Jym(u);

uEN M
1
I (v) = Ty (ug) — Ellwc -l Yv e Nyum.

For extraction of the sequence, we study the geometric structure of the energy functional
Jx,m- Precisely, we prove [J) s is bounded below with precise bounds of 6 and then Ekeland

variational principle implies the required sequence. Now to show that sequence {uy} obtained
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Yu(®)

1pu(t)

H(u)

Figure 2.1: Geometry of 1,,(¢) for u € Hy

Yu(®)

/‘ H(u)

Pu(t)

Figure 2.2: Geometry of 1, (t) foru e HT

above satisfies Hj;\M(uk)H* — 0 as k — oo in both subcritical and critical case, we prove
the following preliminary lemma that gives a local parameterization of Ny js via the Implicit

Function theorem:

Lemma 2.4.11. Let XA € (0,\g). Then given any v € Ny \{0}, there exists € > 0 and a
differentiable function & : B(0,¢€) C Wol”(ﬂ) — R such that {(0) =1, and {(w)(u—w) € Ny p
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and for all w € Wol’"(Q)
~ nallul™ +b) [q IV (u)|["2Vu.Vw dx — Xg+ 1) [, h(z)|ulf uw do — (S(u), w)

(€(0), w) a(2n — 1= q)[[ul+b(n — 1 — q)[jul[” + R(u)

Moreover, for u € N;M\{O}, there exists € > 0 and a differentiable function £~ : B(0,¢€) C
W, (Q) = R such that € (0) =1, and €~ (w)(u — w) € Ny and for allw € Wy ()

((€7)(0),w)
_ n(2allul™ +b) [ V(W) 2Vu.Vw dz — X(q+ 1) [o h(z)ult uw dz — (S(u), w)
a(2n — 1= q)|ull*" + b(n — 1 — q)|[ul|* + R(u)

where
R(u) = /Q (e[ % F(w) (af (w) — F'(w).u)u dex — /Q (e 5 f(u).w) f(w)u da
and

(S(u), w) = /Q (e * F(u)(f'(w)u + f(w))w de + /Q (e[ % £ (wyw) f(w)w do.

Using the assumption (ml) of the Kirchhoff term and the property ||j/{M(uk)\|* — 0 as
k — oo, we prove the existence of a positive solution in subcritical case in NI vaar:l *. For
the second solution, we re-investigate the geometry of energy functional 7y pr over N M in
the light of Lemmas and extract a nearly minimizing sequence {v;} in N M
with 6~ = minveN;M I v (v) and ||L7)/\M(vk)||* — 0 as k — oo using the fact that Ny, is
closed. For a detailed explanation of the proof, we refer to Lemma Page Chapter
[l

In the critical case, we study the following compactness result for a Palais-Smale below a

prescribed critical level:

Lemma 2.4.12. There ezists C = C(p,q,n) > 0 such that for any {uy} C WOLn(Q) satisfying

-1
/ on — " 2(p+2)
j}\ M(Uk) — 0 and j)\ M(Uk) — C S 77;10 ( a? < 7'L2 M)) — C’)\Qpiii—q as k — oo
) ) n 2»,,’,1 n

is relatively compact in Woln(Q)
Here, we shortly sketch the main details of the proof: Using the boundedness of the Palais-
Smale sequence {ug}, there exist two radon measures vy, 2 and u € Wol "™(€) such that

up, — u in Wy (Q), [Vug|™ = v1 and (2|7 % F(ug)) f (ug)ux — va.

Again, we prove that the concentration phenomenon cannot occur at level ¢: For this first we

derive following relations between two measures and convergence in Choquard term

n—1
I/Q(A) 2 moyl(A) 2 mo ( O‘i <2n2— M)) ’
27171 n
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1

[ el Pl de = 5 [ (ol ¢ Fpspu do+ 22
@ Q

2

2
where A = Q\ B is a finite set with

n—1
_ n [ 2n—
B-{acEQ:Elr—rm>0,1/1(B,4OQ)<(Oz1 (n M)) }.
97T 2n

Then by using similar arguments as in Lemma[2.4.6] we get a necessary condition for the upper

bound of critical level to get Palais Smale condition to hold. A detailed proof is presented in

Lemma [5.1.29, Page Chapter

2.4.3 Extensions: Polyharmonic Kirchhoff Choquard equations with singular weights

In this subsection, we study the Problem 1(b) and Problem 2(b). We denote
1
m,, |2 2
ul| = (/ v dx) |
Q

We assume the following conditions on M and f for the Problem 1(b). The function

Problem 1(b)

M :RT — R is a continuous function satisfying the conditions (m1)— (m3) and the function
f:Q xR — R which governs the Choquard term is given by f(z,t) = h(z,t)exp(t?), where
h € C(£2 x R) satisfies (h1), (h4) and the following growth conditions:

(h5) For any € > 0, tli>11010 sup,cq h(z, t) exp(—et?) = 0 and tliglo inf, . h(z,t) exp(et?) = oco.

(h6) There exists £ > max{1,7 + 1} such that % is increasing for each ¢ > 0 uniformly in

x € Q, where 7 is specified in (m2).

Example 2.4.13. A typical example of f satisfying (h1), (hd)—(h6) is f(z,t) = t3+1 exp(tP) exp(t?)
fort >0 and f(z,t) =0 fort <0 where 0 <p<2andp >1-1.

The notion of weak solution for (PKC) is given as follows.

Definition 2.4.14. A weak solution of (PKC) is a function u € W(;n’z(Q) such that for all
NS Wén’Z(Q), it satisfies

M(Hu||2)/QVmu.Vmgp dzx = /Q (/Q \y|§\(jftz/‘udy) f‘(i(si)gp dzx.

The problem (PKC) has a variational structure and the energy functional 7 : W;" 2(Q) - R
associated to (PKC) is given by

g =Ml -5 [ ([ e ra) T

ylofz —yl# Eds
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The energy functional J is well defined due to Doubly weighted Hardy-Littlewood-Sobolev
inequality (Proposition [2.2.7) and Adams-Moser-Trudinger inequality (Theorem [2.2.2]). We

prove the following main result concerning the problem (PKC).

Theorem 2.4.15. Let M satisfies (ml)-(m3) and f satisfies (hl), (h4)-(h6). Assume in
addition

F
(Compactness condition) lim M

s—+00 exp (282) = 00, Umformly mx € Q. (2410)

Then the problem (PKC') admits a non-trivial weak solution.

We establish the existence of a nontrivial weak solution for the problem (PKC) using the
same techniques introduced in section above. The presence of higher order derivatives and
singular weights in Choquard term require a precise investigation of the mountain pass ge-
ometry of the energy functional J and mountain pass critical level in the light of Adams
functions, Adams-Moser-Trudinger (Theorem and doubly weighted Hardy-Littlewood-
Sobolev (Proposition inequalities. First, we study the mountain pass geometry of the
energy functional J around 0 and using the properties of the nonlocal term M and the expo-

nential growth of f, we prove that every Palais Smale sequence is bounded. For more details,

we refer to Lemma Lemma Section [5.2.2.1] Chapter

To study the compactness of Palais Smale sequences for 7, identify the mountain pass first
critical level with the help of Adams functions which play an equivalent role of Moser func-
tions and establish the convergence of weighted Choquard term for Palais-Smale sequences

whose energy level is strictly below the first critical level.

We define the mountain pass critical level as

gE =V i
where T' = {9 € C([0,1], WJ*(Q)) : 9(0) = 0, J(¥(1)) < 0}. Using Adams functions and
[182, Lemma 5, p. 895], we construct a sequence of test functions to analyze the first critical
level. Let B denotes the unit ball and B; is the ball with center 0 and radius [ in R™. Without
loss of generality, we can assume that B; C €2, then we have the following result: For [ € (0, 1),
there exists

U, € {u S Wgn,2(9) : u|Bl = 1}

such that

[ = Coa (B B) < —m2m
nlog (7>

where Cy, 2(K, E) is the conductor capacity of K in E whenever E is an open set and K is

relatively compact subset of E and Cy, 2(K; E) def inf{||ul|? : u € C§°(E),u|x = 1}.
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Let o > 0, k € N, then we consider the Adams functions

nlog(k)\? , (z\
Ak(x) = ( Cm,2m > U% <U) it ’«73| <7

0 if |z| > o,

1
with A (0) = (%22%)* and [ Ay]| < 1.

C’QO
By using the geometric characteristics of the energy functional 7, we identify the mountain
pass critical level strictly below which Palais-Smale condition holds. In this regard, we prove

the following result:

Theorem 2.4.16. Under the assumption (2.4.10), (m1) — (m3) and (h1), (h4) — (h6),

1 2n — (2
0<l*< =M <n(a+lu)<.m2m> .
2 2n ’

We also prove two similar convergence lemma (as in the previous subsection) which are
essential, while passing to the weak limits in the Choquard term. The presence of singular

weights with exponential non-linearity make the proof a bit trickier and involving:

Lemma 2.4.17. Let {uy} C Wén’Q(Q) be a Palais Smale sequence for J at ¢ € R then there
exists a u € Wg”’z(Q) such that as k — oo (up to a subsequence)

Jo e ) Fee 2= [ (e =) i te @

for all ¢ € C°(Q) and

(f prisdnan) e o ([ o say) Do i)

Finally, the proof of the main result Theorem follows from the Higher integrability
lemma (Lemma , Lemma and precise estimates of the mountain pass critical level
(Theorem [2.4.16)). For a detailed proof we refer to Section Chapter

Problem 2(b):
For the problem (Pj aq), the energy functional Jy o : W?’Z(Q) — R associated to the

problem (P aq) is defined as

Froatw) = M) = 25wl ae— 3 [ ([ LW ay) P

where F' and M are primitive of f and M respectively vanishing at 0. Similarly as definition

2414
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Definition 2.4.18. A function u € Wgn’Q(Q) is said to be a weak solution of (Pxm) if for
all g € WJ™2(), it satisfies

M(HU\P)/QV%.V% dz :)\/Qh(ac)\u\q_lugb dac+/Q (/Q Fu) dy) S g

|z — yl#ly| ||

For the problem (Pj r(), we have the following result concerning the subcritical case:

Theorem 2.4.19. There exists a Ao > 0 such that for v € (1,2) and A € (0, o), (Paxm)

admits atleast two solutions.

To prove the existence and multiplicity result of the convex-concave problem, we follow the
same approach of Nehari manifold method as we done above for n-Laplace operator. The sin-
gular weights in the Choquard term is handled by doubly weighted Hardy-Littlewood-Sobolev
inequality (Proposition and exponential non-linearity by Adams-Moser-Trudinger in-
equality (Lemma . The presence of singular weights with Choquard type exponential
non-linearity demands careful analysis of the geometry of the energy functional and fiber
maps. To avoid the recurrence of similar ideas and computations, we refer the precise results
and their complete proofs in Section Chapter

Remark 2.4.1. We conjecture that for critical case, the multiplicity results holds by additional

estimates on the level of minimizing sequence.

2.4.4 Adams-Moser-Trudinger inequalities for Cartesian product of Sobolev space

To study the Kirchhoff system with exponential non-linearity of Choquard type in Problem
3, Section 2.3} first we need to prove the non-singular version of Moser-Trudinger and Adams-

Moser-Trudinger inequalities in higher dimensional product spaces. Let

V= Wy () x Wy (Q)

J”"*(m)

= [ |V™u|m dz. We prove the following result:

be the Banach space endowed with the norm

m
n

= 3

n
m, o=
0

SEE

I, 0)lly = <HU\

+ vl
Q)

n
where ||'LL|| mm,%

Wy ™)
Theorem 2.4.20. For (u,v) € Y, n,m € N such that n > 2m and Q C R" is a bounded

domain, we have
/Qexp (@ (|u]# + \v[ﬁ)) dx < o0

for any © > 0. Moreover,

)

n,m

sup /exp (@ (|u]#+\v]#))dx<oo if and only if © < 5
l(u,v)lly=1/Q n,m
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where 2y, = 27;:2*7: and &,y are defined in Theorem .

As an consequence the sharp Theorem [2.4.20], we prove the following version of Lions’ Lemma
[196] in the product space V.

Theorem 2.4.21. Let (ug,vi) € Y such that ||(ug, vi)||ly = 1 for all k and (ug,vi) = (u,v) #

. <nm
(0,0) weakly in Y. Then for all p < : T
2nm(1 = [[(u, v)[[7m) =

sup/exp (p <|uk|ﬁ+|vk|ﬁ))d$<oo.
keNJQ

Next, we prove the singular version of Moser-Trudinger inequality in the Cartesian product

of Sobolov spaces when m = 1.

Theorem 2.4.22. For (u,v) € Y = Wy () x Wy ™(Q), n>2, A€ [0,n) and Q C R" is a

smooth bounded domain, we have

[ PO L bIED)
Q |z
for any 8 > 0. Moreover,
i 2.8 A
sup / >p(A(Ju] /\+ i ))d:r < oo if and only if 2f +-<1
lwv)ly=1/¢ ] an | n

n—2
where 2, 1= 2,1 = 27=1 and «, is defined in Theorem .

Similarly we can prove singular and non-singular Moser-Trudinger inequalities in the product
space Z := Whn(Q) x WLn(Q) where Q C R" is a bounded domain endowed with the norm

1
n

1w, o)z = (Il + 1oline)
where HUWVLVL"(Q) = /Q(]u|” + |Vu|™) dz. Precisely we establish the following result.

Theorem 2.4.23. For (u,v) € Z,n >2, A € [0,n) and Q C R™ be a smooth bounded domain,

we have

[l P
0 ||
for any B > 0. Moreover,
e e Ul 26 A
sup / (Al )\+ il ))dzx < oo if and only if 25 +-<1
(o)l z=1J || o m

where oy, 1s defined in Theorem [2.2.1].
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The main ingredients in the proof of above results are Lemma Page[287] Chapter 5] gen-
eralized Holder inequality and existing Adams, Moser and Trudinger inequalities mentioned
in Section Moreover, to prove the sharpness of the exponent in various Theorem, we
construct the sequence of functions using Adams and Moser functions such that supremum

of the required integrals is not finite. For detailed proof the above inequalities, we refer to

Section Page Chapter
2.4.5 Kirchhoff systems with Choquard non-linearity

In this part, we study the system of Kirchhoff equations mentioned in Problem 3, Section

We start by stating the assumptions required for the existence of a solution.

Let m : RT — R™ be a continuous function satisfying (m1), (m3) and

(m4) There exist constants cg, c1,c2 > 0 and # > 0 such that for some 7,z € R*
m(t) > co or m(t) >t*, forallt >0

and
m(t) < cp + cat”, for all t > £

The assumption (m4) covers both degenerate and non-degenerate cases for the Kirchhoff

term.

Let the function F : Q x R? — R be continuously differentiable with respect to second and
third variable and of the form F(z,t,s) = h(z,t,s)exp(|t|7T + |s|71) such that

or _n_ _n_
fl(.f,t, 3) = E(xatvs) = hl(xﬂtvs) exp(’ﬂn_l + ’3‘71_1>7

aF n_ _n_
Fo(a,tys) 1= S (@t 8) = oo ) exp((t] 77 + [s| 7).

We assume h;’s for ¢ = 1,2 are continuous functions satisfying the following conditions-
(f1) hi(x,t,s) = 0 when either ¢ <0 or s <0 and h;(z,t,s) > 0 when t,s > 0, for all x € Q
and i =1, 2.
(f2) For any e >0 and i = 1,2
lim sup h;(z,t, s) exp(—e(\ﬂﬁ + \s|%)) =0,

t,s—00 2cq

lim inf hi(z,t, s) exp(e(|t|7T + |s|7°1)) = oo.

t,s—00 z€Q

(f3) There exists

max {n -1, M}

2
n(z+1) n(r+1)
2 ’ 2

when m is non-degenerate,
[ >

max {n -1, } when m is degenerate.

67



Chapter 2. Quasilinear Elliptic problem involving Kirchhoff and Choquard non-linearity

fi(z,t,s)
[¢[!

s and x) and s (uniformly in ¢ and z) respectively.
(f4) There exist g, so,to, Mo > 0 such that s7F(z,t,s) < Myfa(x,t,s) for all s > sp and
t1F (z,t,s) < Mpfi(z,t,s) for all ¢ > ¢y uniformly in x € Q.

(f5) There exists a 7 satisfying 252 < ~ such that « 8)121(10 0 f;gﬂif) = 0 holds for i =1, 2.

f2(z,t,s)

|s[!

such that the maps t —

, S > are increasing functions of ¢ (uniformly in

The assumptions (f1) — (f5) for the problem (K CS) are the system analogue of the assump-
tions (h1l) — (h4) for the problem (K C). The assumption (f2) implies that functions f; and

fo have critical growth.

Let P := Woln(Q) X Woln(Q) endowed with the graph norm

3=

I, )| := (HuH"wgum * ‘”“%”m))

where [[ul[? ... ) = Jo |Vu|"dz. Following is the notion of weak solution for (KC'S).
0

(

Definition 2.4.1. A function (u,v) € P is said to be weak solution of (KCS) if for all
(¢, ) € P, it satisfies

m(|ju, v]|™) (/ ]Vu\"2VuV¢dx+/ ]Vv|"2VvV¢dx>
Q Q

:/Q(/Q Wdy) (fi(z, u,v)p + fo(z, u,v)p)dz.

|z — y|~

We define the energy functional J on P as
1 1 F(y,u,v)
J(u,v) = =M(||lu,v||" —/(/”dy)Fx,u,vdw.
(nv) = oMol =5 [ ([ R ay)

The energy functional J is well defined because of Hardy-Littlewood-Sobolev inequality (see
Proposition [2.2.6)) and new version of Adams, Moser and Trudinger inequalities (see Theorem

B,

Concerning the problem (KCS), we prove the following existence result:

Theorem 2.4.24. Let m satisfies (m1), (m3), (m4) and f satisfies (f1)—(f5) and the Com-

pactness condition

lim (f1(z,t,8)t + fo(x,t,s8)s)F(x,t,s)
ts—o0 exp(q([t|"=T + [s]7-T))

= oo uniformly in x € Q. (2.4.11)
for some q > 2. Then there ezists a positive weak solution of the problem (KCS).

We generalizes the approach of variational method used above for Kirchhoff-Choquard equa-
tion to system of Kirchhoff-Choquard equations. To prove the existence of solution of the

problem (K C'S), first we study the mountain pass geometry of the energy functional J around
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(0,0) in which Choquard term is handled by new Adams-Moser-Trudinger inequality in the
Cartesian product of Sobolev space (Theorem and Hardy-Littlewood-Sobolev inequal-
ity (Proposition , and Kirchhoff term by non-degenerate or degenerate assumption and
growth condition (m4) (see Lemma Lemma Chapter [5). To analyze accurately
the compactness of Palais Smale sequences for J, we show a series of Lemmas consisting
of weak convergence of Palais-Smale sequence in appropriate energy space, convergence in
Choquard term involving exponential non-linearity and to identify the first critical level un-
der the Compactness condition (2.4.11) (see Theorem Theorem and Theorem
in Chapter . For a detailed insight, we refer to the results in Section Chapter
151

The results of this chapter can be extended in various directions. We have mentioned a few
of them in Section Chapter
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CHAPTER

Non-local singular problems

Non-local elliptic equations involving general integral differential operators as the fractional
Laplacian have been studied for many years by an important number of researchers and a
vast amount of work is present in the literature dealing with existence and regularity results.
This kind of problems appears in several physical models like combustion, crystals, dislo-
cations in mechanical systems and many other problems where anomalous diffusion or/and
interaction with long range come into picture. The study of fractional and singular problems
have been investigated more recently and have an intrinsic mathematical interest since in the
local setting, it appears in several physical models like non Newtonian flows in porous media,

heterogeneous catalysts.

The main course of this chapter is to study singular problems involving nonlocal operators.
The investigation of singular problems are divided into two parts depending upon the nature

of the operator. The main crux of this chapter is twofold.

Firstly, we investigate the %—Laplacian singular problem (P)) (see below) involving critical
exponential non-linearity in one dimension. The study of the problem (P)) is motivated
from the Moser-Trudinger inequality and specific representation of Green Formula in case of
Half Laplacian operator. Using bifurcation theory in the framework of weighted spaces, sub-
supersolution method and barrier arguments, we show the existence of a connected unbounded
branch of classical solution (see Definition that admits an asymptotic bifurcation point
(i.e. bifurcation from infinity). For that we need to establish Holder regularity and asymp-
totic behavior of the solution. In order to characterize the blow up behavior of weak solution
at an asymptotic bifurcation point, we study the isolated singularities for the singular semi
linear elliptic equation, and symmetry and monotonicity of classical solution via moving plane
method and the narrow maximum principle in the context of nonlocal operators. In a different

extent, global multiplicity of weak solution is proved via Variational method. Furthermore,
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Chapter 3. Non-local singular problems

symmetry and monotonicity results are extended to a general class of nonlocal operators that

is of independent interest.

Secondly, we study the nonlinear fractional Laplacian elliptic problem (see (P) below) involv-
ing purely singular nonlinearity and weights in a smooth bounded domain Q c RY. Using
approximation method and Hardy inequality, we prove the existence of minimal weak solution
(see Definition [3.4.1)). In order to investigate the asymptotic behavior of minimal weak solu-
tion, we exploit the C! regularity of the boundary via barrier arguments. In addition, we
prove a new weak comparison principle adopted in the setting of very weak solution and as a
consequence, we prove the uniqueness and non-existence results depending upon the singular

exponent ¢ and 7.

This chapter includes the results of following research articles:

(i) R. Arora, J. Giacomoni, D. Goel and K. Sreenadh, Positive solutions of 1-D Half-
Laplacian equation with singular exponential nonlinearity, Asymptot. Anal., 1 (2019)
1-34.

(ii) R. Arora, J. Giacomoni, D.Goel and K. Sreenadh, Symmetry of solutions to singular
fractional elliptic equations and applications, Comptes Rendus Mathématique, Volume
358, issue 2 (2020), p. 237-243.

(iii) R. Arora, J. Giacomoni and G. Warnault, Nonlinear fractional Laplacian problem with

singular nonlinearity and singular weights, (submitted).

Turning to the layout of this chapter: In section we introduce non-local operators and a
framework of functions spaces. In section we present our main problems of this Chapter.
In section we present a state of art on singular problems. In section we develop new
tools to tackle the problem mentioned in Section and state the main results with a short

glimpse of a proof.
3.1 Function spaces

In this section, we introduce the non-local operator (—A); known as p-fractional operator
and a brief description of the function spaces. For v € S the class of rapidly decaying C'*°

functions in RY, the p-fractional operator acting at u is defined as

, [u(z) — u(y)]P~"
“A)Su =21
( )pU 65% Be(a) ’:U _ y|N+sp

for s € (0,1) and p € [1,00) with the notation [a — b]P~! = |a — b[P~2(a — b).

For p = 2, it reduces to the well known linear fractional Laplacian operator (—A)* defined as

(~A)*u(z) = P.V. /R ua) —uw) g

" |37 _ y|N+25

up to a normalising constant where P.V. denotes the Cauchy principal value. The fractional

Laplacian operator has a long history in mathematics. In particular, it is known as the
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3.1. Function spaces

infinitesimal generator of Lévy stable diffusion process and has been a classic topic in Fourier
analysis, and nonlinear partial differential equations due to its appearance in real life models
in phase transitions, anomalous diffusion, material science, finance, optimization, etc (see
[74,[171] and their references within).

Let © be bounded domain and for a measurable function u : RY — R, denote

’P
(//Rw rx—er+sp e dy)

WeP(RY) := {u € LP(RY) : [u]sp < 00}

B =

Define

endowed with the norm
lulls pry = llull o@yy + [Usp-
We also define
WeP(Q) := {u € W (RY) : u =0 a.c. in RV \ Q}

endowed with the norm

| u sp — [u]s,p-

We can equivalently define W;*(£2) as the closure of C2°(€2) in the norm [.; », with continuous
boundary of the domain of © (see Theorem 6, [126] and [162]) where

C®(Q) :={f:RY - R: f e C®RY) and supp(f) C w € Q}.
We also define

WIPQ) ={u: Q=R |ue LP(w),[u]spw < oo, for all w € O}

loc

where the localized Gagliardo seminorm is defined as

‘p 1/p
Wapw = (// \x—y\Nw e dy) |

The nonlinear operator (—A)? is the nonlocal analogue of p-Laplacian operator in the (weak)

P
sense that (1 —s)(—A)) = (—=A)p as s — 17 d.e. for any u € Wol’p(Q)
i — p
Tim (1= )l = K(p, M)V}

where K (p, N) is defined in Proposition 2.2, [67]. For p = 2, it is worth mentioning that
WP(Q) and WyP(Q) turns out to be Hilbert spaces. For more details and motivations we
refer to [77,211].

Definition 3.1.1. For ¢ € Cy(Q) with ¢ > 0 in Q, the set Cy(SY) is defined as

Cy(Q) = {u € Co(Q) : there exists ¢ > 0 such that |u(z)| < cp(z), for all x € Q},

L)
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Chapter 3. Non-local singular problems

Definition 3.1.2. The positive cone of Cy(§2) is the open convex subset of Cy(S2) defined as

C;(Q) = {u € Cy(QY) - ;ggggg > O}.

We also define

X = {u : RY — R | measurable, u|q € L?(Q) and W € LZ(Q)}

where Q = R?V \ Q¢ x Q¢ and Q¢ = R \ Q endowed with the norm

1
Ju(z) — u(y)? ’
Jullx = HUHLz(Q) +Cs ( 0 W dedy | .

Define the Hilbert space X as
Xo={ueX : u=0inRY\Q}

equipped with the inner product

=, [ =ML —vl0)

‘.f _ y‘N-‘rQS

dxdy.

We also recall the Moser-Trudinger inequality in case of half-Laplacian operator which has
been recently proved by Martinazzi [199] in Bessel potential spaces and by Takahashi [244]

in Sobolev spaces using Green functions for fractional Laplacian operators .

Theorem 3.1.3. Let 2 be an open bounded interval in R. Then it holds

2
T=max<{c : sup /ecu dr < oo ).
lull x, <1/

3.2 Presentation of problems
In this section we present the main problems to be dealt in this chapter.
3.2.1 Problem 1: Half Laplacian singular problem

First, we study the following nonlocal singular problem in critical dimension N = 1:

) {(A)zu:)\<ul5+f(u)),u>0 in (-1,1),
u=0 in R\ (-1,1)

where f(t) = h(t)e!”, 1 <a <2, 6§ >0, A >0 and h(t) is the smooth perturbation of e of
lower growth order. The study of above problem is motivated from the Moser inequality (see
Theorem and extended version of Green formula (see [84]) in case of Half-Laplacian
operator. In the continuation of the work in [6] (where N > 2s and s € (0, 1) is considered), we
are interested in the detailed study of the nonlocal singular problems in 1-dimension involving

exponential nonlinearity and with the following questions:
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3.2.2. Problem 2: Nonlinear fractional singular problem with singular weights

(i) Does the solution of the problem (P,) exists, if yes, what is the notion of the solution?
Is it symmetric or monotonic w.r.t |z|?
(ii) If the solution exists, it is unique or there exist more than one solution?

(iii) What is the boundary behavior and Hoélder regularity of the solution?

To answer the above questions, we study the asymptotic behavior of the purely singular prob-
lems ((3.4.2), (Ps)) in terms of first normalized eigenfunction of (—A)% and seek help from
bifurcation theory and sub-supersolutions method. Concerning the symmetry and monotonic-
ity of solution we use moving plane method and narrow maximum principles. Multiplicity of

solution is also discussed by variational methods.
3.2.2 Problem 2: Nonlinear fractional singular problem with singular weights
Secondly, we study the following nonlinear fractional elliptic and singular problem

K
(—A)ju = Z(f), u>0 in

u=0 in RV\ Q

where Q € RY is a smooth bounded domain with C*! boundary, s € (0,1), p € (1, +00),
v >0 and K; satisfies K5 ~ d~° for some d € [0, sp), d(x) = dist(z, dQ) for any z € Q.

Concerning the problem (P), we are interested in the existence of a weak solution (we adopt
a weaker notion of solution with respect to other contributions due to the nonlinearity of the
operator and absence of integration by parts formula). By the weak solution here we mean a

solution u such that

u” € WiP(Q) for some £ > 1 and i%fu > 0 for all K € Q (3.2.1)
and for ¢ € U WP(Q), u satisfies
Qe

[ e v ) o) 4, [ K
R2N

|z — y[NEP o W

¢ dx.

Having in mind the condition (3.2.1]), a function u = 0 in RY \ Q satisfies u < 0 on 99 in
sense that for € > 0, (u — €)™ € WP (). This weak form of trace of solution emerged from

the lack of regularity of solutions when - is large (a rigorous formulation is given in Definition
3.4.1]).

Subsequently, a next question arises is to find the optimal range of constant 6 = 0(d,v) > 1
such that u? € WP (). We designate this problem as to show the optimal Sobolev regularity

of the weak solution.

To deal with above problems, we investigate the boundary behavior of the weak solution in
terms of distance function. The Holder regularity of the weak solution and the non-existence

results are the byproduct of this investigation and are of independent interest.
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Chapter 3. Non-local singular problems

3.3 A brief literature on singular problems

The study and understanding of existence, multiplicity, and regularity of weak and classical
solutions to elliptic singular equations have been a matter of intensive research. The pioneer-
ing work of Crandall et al. [101] in local case (s = 1,p = 2) is the starting point of the study

of singular problems. Later on, the perturbed equation of type
—Au=da(x)u "+ Mu""", ©>0,inQ, u=00nd0 M < {0,1} (3.3.1)

received much attention and studied by a large number of researchers in this field. The authors
in [101] studied the purely singular problem (¢ = A = 1 and M = 0) and proved the existence,
uniqueness in C2(2) N C(Q) for v > 0 and boundary behavior of classical solution in terms of
the first normalized and positive eigenfunction of —A. In [185], authors proved the existence
of unique solution u in C?*%(Q) N C(Q) for purely singular problem with a € C*(Q), M =0
and 02 € C**. Moreover, they have also proved the u ¢ C1(Q) if y > 1 and u € Wol’2(Q) if
and only if v < 3.

In [96], authors showed the existence and non-existence of classical solutions of de-
pending upon the parameter A\ with € satisfying 9Q € C? and a = M = 1. Using Nehari
manifold method, Yijing et al. [261] proved the existence of two solutions in the subcritical
range i.e. 1 <1 < 2* for a € L?(Q) and A = M = 1. Thereafter, problem with critical
exponent 7 = 2" and a = 1, M =1 is studied by Haitao [165] and Hirano et al [170] when
0 <~ < 1. In [165], the author proved the global multiplicity of weak solutions by combining
sub-supersolution and variational methods (Perron’s method), whereas in [170], authors used
variational methods to prove the existence of two solutions. While in [167], authors studied
the problem for all v > 0, a = 1 = M, and established a global multiplicity result with a
deep use of non-smooth analysis. In case of critical exponential growth for N = 2, authors in

[5] and [102] proved the multiplicity results of the following singular equation
—Au =\ (a(:r)u_“/ + b(u)e“a) , u>0in Q, u=0 on N

via shooting method combining with ODE analysis and global bifurcation theory due to P.
H. Rabinowitz for 1 < a < 2,0 <y < 3, a € L>(Q) and b(t) is a smooth perturbation of e

as t — o0.

Pertaining to the case, when a has a singularity, Gomes [156] studied the purely singular
problem and proved the existence and uniqueness of C1(2) classical solution via Schauder
fixed point Theorem and the required compactness is obtained by suitable estimates on the
integral representation involving the Green function and in [106], Didz et al. considered the
case where a behaves as some negative power of the distance function. Here, regularity of

gradient of u in Lorentz spaces is established.

For the quasilinear case (p # 2), authors in [142] studied

(=A)u= u""+u"1 u>0inQ, u=0on 9N (3.3.2)
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3.3. A brief literature on singular problems

for 0 < v <1and 1 < r < p*. By employing variational methods and depending upon
the range of parameter \, they proved existence of multiple solution in VVO1 P(Q) N CL(Q)
for all p > 1 in subcritical range and p € (]\2,—]}:2, 2] U (]\?;—fg, 3) in critical case range (where
the behavior of Talenti functions is proved). Here the authors have also proved C#(Q)
regularity of weak solution for the problem for any p > 1. In [143], authors proved
the existence of a weak solution in W1P(Q) N C(Q) if and only if 0 < v < 2 + z% using
ODE techniques and shooting method for r > p. Thereafter, the authors in [63] and [79],
studied the purely singular problem (by replacing A to a function f in (3.3.2))) for p-Laplacian
operator and proved existence, uniqueness and boundary behavior of weak solution (with
different summability conditions on f). In [231], authors studied the quasilinear singular
version in the presence of exponential non-linearity (limiting case of Sobolev embedding)

N

(—A)yu=A (g(u) + b(u)e“Nl> , u>0in Q, u=0 on

where g(u) ~ u™7 for 0 < v < 1 and b(t) is a smooth perturbation of eF=T of lower growth
order. Using variational methods, they proved the existence of multiple solutions for A € (0, A)
and one solution for A = A (what we call global multiplicity result). For a more detailed
analysis of semilinear and quasilinear elliptic equations with singular non-linearities involving
different kind of non-linearities, we refer to [36,41,/101},|105}[1064(130}132,/136,/141,/160,/169}[198],

204] and surveys |137] and [168] with no intent to furnish an exhaustive list.

Recently, equations involving nonlocal operators attracted a large number of researchers,
especially in the study of fractional powers of (—A) and equivalent (—A),. This interest has
been provoked and sustained by the applications of such results in mathematical physics and
geometry (see [54,211]). The study of singular problems involving the fractional Laplacian

operator started in [46]. Precisely, the authors studied the following singular problem

(—A)°u =\ (K(:E) + Mf(a:,u)) ,u>0in Q u=0 in RV\Q (3.3.3)

uY
and proved the existence of a weak solution for f(z,u) = u” and p > 1 via approximation
method for M = 0 and Sattinger method for M = 1, and Sobolev regularity of the weak
solution for the function K € L4(£2) where ¢ depends upon the singular exponent v > 0. In the
recent times, Adimurthi et al. |6] studied the problem with M =0, N > 2sand K(x) ~
d=P(x) and complement the results of [46] by exploiting the integral formula with Green
function. In particular, they obtained the boundary behaviour and deduce optimal Hoélder
regularity of the classical solution (in the sense of Definition . Using the asymptotic
behavior near the boundary, authors obtained multiplicity of classical solutions for ([3.3.3))
with f satisfying subcritical growth conditions via global bifurcation method in weighted

spaces.

Concerning the critical growth, authors in [139], studied the problem (3.3.3) for K(z) = 1,
v > 0, N > 2s, and f(z,u) = u?~! and proved the existence and multiplicity of weak
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Chapter 3. Non-local singular problems

solutions in Cf.(€2) N L*°(€)) using non-smooth analysis and linking theorems. In [150],
authors proved the multiplicity of energy solutions for the non-local singular problem
with Sobolev critical nonlinearity f(z,u) = u?~', N > 2s and v satisfies v(2s — 1) < 2s + 1.
For more results on nonlocal problems with singular non-linearity, interested readers can
refer to [140,144L[145208,209]. For results regarding the symmetry and monotonicity of weak
solution we refer to the latest work [87,/175] where the moving plane method and maximum
principle for narrow domains (in the spirit of Alexandrov-Bakelman-Pucci type estimates) are

proved for nonlocal operators.

The study of regularity results in case of non-local operators started a long back and is now
rather well understood for p = 2. Proving sufficiently good regularity estimates up to the
boundary has useful applications in obtaining multiplicity results, apart from being relevant

itself. Consider the following non-local problem

(=A)pu=fin Q w=0in RV \ Q.

For p = 2, the interior regularity of the solutions is primarily resolved by Caffarelli et al.
[75,76] and boundary regularity is settled by Ros-Oton et al. in [228| for f € L*°(Q2). For
the general case p # 2, the situation is more delicate due to the nonlinear nature of the

operator: the representation of Green formula and explicit tools to compute the (—A); are

not available. The local Holder regularity for viscosity solution is proved in [80,|189] without
mentioning the dependence and optimality of Holder exponent. In the degenerate case i.e.
sp

p > 2, Brasco et al. in [65] proved the existence of optimal Holder exponent i.e. u € CP7'

when f € L*() and ps_pl < 1. The proof of boundary regularity is more involved. The
first work regarding the nonlinear case is Iannizzotto et al. in [172]. They proved the global
Holder regularity result, with an unspecified Holder exponent via barrier argument and by
combining it with the optimal interior regularity of [65] we have u € C*(R™) when p > 2.
The same is conjectured to hold in the case p € (1,2), but the optimal (at least C*) interior

regularity is still an open problem.

More recently, by extending the work of [46], Canino et al. in |78] studied the following purely

singular problem

K
(—A)pu = (f), u>0 in Q u=0 in RV\Q (3.3.4)

u
and by approximation method proved the existence and Sobolev regularity of the very weak
solution depending upon the range of singular exponent v. In [210], authors have studied the
problem (3.3.4) perturbed with critical growth non-linearities f(z,u) = u®, o < p¥ — 1 for
0<vy<1,K(x) =1, N > spand proved the existence and multiplicity of very weak solution

via the minimization method under the natural Nehari manifold constraint.
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3.4 New contribution: Tools and main results
3.4.1 Problem 1: Half-Laplacian singular problem

In this part, first we introduce different notion of solutions (weak and classical) concerning
the main problem (P,) and main tools required to study the qualitative properties of the
weak or classical solutions and then we state the main results with a glimpse of a proof. We

start by stating the assumption on the function h for 1 < a < 2:
(H1) h:[0,00) — R is a positive function of class C? in (0, 00) with h(0) = 0 and such that
the map ¢t — t=9 + h(t)e!” is convex for all t > 0.
(H2) For any e >0, lim A(t)e™" =0 and lim h(t)e"" = oco.
t—o0 t—00

Motivating from the Definition 2.2 in [46], we define the following notion of (very) weak

solution for the problem (P ):

Definition 3.4.1. A function u € L'(R) with u = 0 on R\ (—1,1) is said to be a weak
solution of (Py) if infxu > 0 for any compact set K C (—1,1) and for any ¢ € o,

/11 eatsc, /Q (u(x) ~ w®)(O(x) = OW) 40 / 1 (;5 + h(u)eua> 6 du

|z — y|? -1

(3.4.1)

where

o={¢:R— R: measurable, (—A)%ﬂ) € L*((—1,1)) and ¢ has compact support in (—1,1)}.

As in [6], we define the notion of classical solutions of (Py) (adding continuity property):

Definition 3.4.2. The set of classical solutions to (Py) is defined as
S = {()\,u) € R x Co([~1,1]) : w is a weak solution to (Py) in XO}.

Remark 3.4.3. Regularity of a classical solution u (proved later in Theorem for the
problem (Py) implies u € C(;;((fl, 1)) (defined below). Indeed with the continuity property,
we can use some comparison principle for nonlocal operator. Then by using Hardy’s inequality
(see [162, Corollary 1.4.4.10, p.23]) in together with the fact that C2°((—1,1)) is dense

in Xg, we obtain that % belongs to dual space of Xy for all d > 0 and hence in case of classical

solution (3.4.1) holds for all ¢ € Xp.

Now, we recall the definition of an asymptotic bifurcation point and then state the result

regarding existence of a global branch of classical solutions to (Py).

Definition 3.4.4. A point A, € [0,00) is said to be an asymptotic bifurcation point, if there
exists a sequence (An,un) € S such that Ay — Ag and |[up||peo((—1,1)) — 00 as n — oo.
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3.4.1.1 Preliminary results

This section is devoted to the development of preliminary results of independent interest
for the study of the original problem (P)). The first result is the study of existence and
regularity (Theorem of solutions to the purely singular problem (Pj) (see below) which
is used to construct the sub and supersolutions of the main problem (P)). The second result
is the study of behavior of isolated singularities in Brezis-Lions type problem for fractional
Laplacian operator (see below (Ps)) which is used to identify the blow up behavior of weak

solution of original problem (Py) at an asymptotic bifurcation point.

To analyze the asymptotic behavior of solution for the problem (Py) near boundary, the first

key ingredient is to construct the barrier function as a solution of the following problem:

(—A)u = L i (—1,1),

d(x) log” (11%5) (3.4.2)
u = 0 inR\ (-1,1).

For the operator (—A)® with N > 2s, Abatangelo [1] studied the boundary behavior of the
corresponding problem like (3.4.2) with 5 =0 and 0 < o < 1+ s. We provide the extension
1

in case N = 1 and s = 5 in the following theorem:

Theorem 3.4.5. Let A be a positive constant such that A > 2. Then the weak solution of
(3.4.2) satisfies

cld(:r)% <uz) < czd(;z:)% for0<a <3 and B =0,
c3d(z) 7 < u(z) < eqd(z)t=2 for 3 <a <3 and B=0, (3.4.3)
C5d($)% log! =" (ﬁ) < u(x) < cgd(z)? log=" (ﬁ) fora=3%and0< B < 1.

where ¢;,1 =1,2,--- ,6 are constants.

The main essence in the proof of ([3.4.3) is the use of following integral representation of weak
solution u via Green function (see [84]) given by

1

_ (' Gl e Gl = 1og (12 4@2d@2N
u(x)—/l T eas iy M where Glry) <1 g<1+ r— ) V(z,y) € (~1,1)%.

For a detailed proof we refer to Page proof of Theorem Chapter [6]

As in [6], we define the function ¢s as

o1 if0<d<1,
1
_ 2\\2 s
b = ¢12(10g (a)) if5=1, (3.4.4)
o if § >1
where ¢; is the normalized (||¢1[/z() = 1) positive eigenfunction corresponding to the

first eigenvalue of (—A)% on Xg. We recall that ¢ € C%(R) and ¢1 € C’}((—l, 1)) (See
2
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3.4.1.1. Preliminary results

Proposition 1.1 and Theorem 1.2 of [226]).

Now, to construct appropriate sub and super solutions of the problem (Py), we start by

studying the following singular problem (Pjs) with the help of barrier function ¢

(~A)zu = L w>0, in(-1,1),
Gﬂ{ u = 0 in R\ (—1,1).

In this regard we prove the following result:

Theorem 3.4.6. (i) For all 6 > 0, there exists a unique u € Co([—1,1]) classical solution of

(Ps). Moreover, u € C;é((—l, 1)) where ¢s is defined in (3.4.4)).
(ii) The classical solution u to (P5) belongs to C7(R) where v is defined in Theorem[3.4.9

To prove the above result, first we investigate the existence of the solution u. of approximated
problem with the help of integral representation formula via Green function and secondly
together with Theorem and uniform estimates for the approximated solution u., we
pass to the limit e — 0. For a detailed proof we refer to Page proof of Theorem
Chapter [6]

To characterize the blow up behavior of weak solutions at an asymptotic bifurcation point A,
we study the behavior of solutions near isolated singularities as in Brezis-Lions problem (see

[70]) for the fractional Laplacian operator. Precisely, we consider the following problem:

(=A)u=g(u), u>0 i,
(Py) u=0 in RV \ Q,
ue LYQ), g(u) € L},.(9),

loc

where 0 < s < 1,¢ > 2L > 1, Q € RY be a bounded domain with 0 € Q and Q' = Q\ {0}.

s =

The notion of distributional solution for (Ps) is defined as follows:

Definition 3.4.7. A function u is said to be a distributional solution of (Ps) if u € L*(£2)
such that g(u) € L}, () and

[ w876 do = [ gu)o do
Q Q
for all ¢ € C(Q) with supp(¢) C Q.

In [89], authors have studied the problem (Ps) for a power type nonlinearity function g(u) = u?
by showing the LP integrability of the solution in {2 and scaling typical test functions. In the
next theorem, we extend the result of Chen and Quaas ([89]) for the problem (FP;) for N > 2s
by using the same approach with precise estimates but considering a weaker notion of solution

and for a large class of nonlinearities (in particular exponential growth nonlinearities).
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Chapter 3. Non-local singular problems

Theorem 3.4.8. For 0 < s < 1, let u be non-negative distributional solution of (Ps) such
that w € LY (Q), g(u) € Lt () for t > & > 1. Then there exists k > 0 such that u is

loc 2s —

distributional solution of

(=A)°u=g(u) + kdo, u>0, in Q,
(Ds) u=0 in RN\ Q,
g(u) € L),

i.e.

/Qu(—A)Sqﬁ —g(u)¢ dx = k¢(0) for all ¢ € C°().

This result asserts that the due to the effect of fundamental solution problem (P;) extend to
the distributional equation (D;) containing dirac mass at the isolated singularity. To prove
the above result, we follow the proof in [89] and define the distribution P : C2°(2) — R such
that

Plg) = /Qu(—A)Sqﬁ —g(u)é da for all 6 € C(Q)

where v € L'(f2) is a non-negative distributional solution of (P;) and g(u) € L'(Q) (see
Theorem [6.1.19, Chapter @ and then by using integration by parts formula and Theorem
XXXV in [232], we infer that

(i) P(¢) =0 for any ¢ € C(£2) with supp(¢) C Q\ {0}.

(ii) There exists constants ¢, such that

P(¢) = Z caD*$(0)

la]<1
and ¢, =0 if |a] > 1

N
where a = (a1, a9, ...,ay) with a; € N, |a| = Zai, D = (0%¢,0%¢,...,0"N ).
i=1

3.4.1.2 Main results with a glimpse of the proof

To study the existence, multiplicity of solutions to (P)), we seek assistance of global bifur-
cation theory due to P. H. Rabinowitz [221], Theorem 1.6 of [6] and Theorem We
establish the existence of an unbounded connected branch of solution to (Py) emanating from

the trivial solution at A = 0. Precisely, we prove the following result.

Theorem 3.4.9. Let h satisfy the hypothesis (H1) and (H2) and 6 > 0. Then the following
holds:
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3.4.1.2. Main results with a glimpse of the proof

4
<
[[allL=) <7
0,0 A, A A

Figure 3.1: Bifurcations Diagram |

(i) There exists A € [0, +00) and vy > 0 such that S C [0, A] x (Xo N C’;ﬁ((—l, 1))nN CWR)),

where vy is defined as

3 if 6 <1,
= % —e if 6 =1, for all e >0 small enough,
s o>

and ¢s is defined in (3.4.4)).

(ii) There exists a connected unbounded branch C of solutions to (Py) in RT x Co([—1,1]),
emanating from (0,0) such that for any A € (0,A), there exists (X, uy) € C with uy being
minimal solution to (Py). Furthermore, as A — A~, uy — up in Xo, where uy is a

classical solution to (Py).
(i4i) The curve (0,A) 3 X\ — uy € Co([—1,1]) is of class C2.

(iv) (Bending and local multiplicity near A) X = A is a bifurcation point, that is, there exists
a unique C?-curve (\(s),u(s)) € C, where the parameter s varies in an open interval

about the origin in R, such that

A(0) = A, u(0) = up, X'(0) = 0, \(0) < 0.

(v) (Asymptotic bifurcation point) C admits an asymptotic bifurcation point A, satisfying
0<A, <A

The above theorem assert the existence of a branch of solutions C containing the minimal

solution branch and bending back at classical solution (A, uy). According to assertion (v),
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[allz=()

(0,0) |A, A

Figure 3.2: Bifurcations Diagram Il

[eallz=()

(0,0 Aq A

Figure 3.3: Bifurcations Diagram Il

we have the possibility of different Bifurcation diagrams (see Figure 3.3). To prove
the main existence result Theorem we show

A € (0,00) where A :=sup{\ >0 : (P,) has a weak solution}.

First, we define u, := ATy and uy = uy + MU where U > 0 is a weak solution of the
problem (—A)%U =1in (-1,1), U = 0in R\ (—1,1) and u is the weak solution of the
problem (Pj). Then there exists a Ag such that for all A € (0, \g) (P») admits a solution uy
with uy, <wu < wuy where uy, and u) act as a strict subsolution and supersolution respectively

for (Py). Indeed, we define the following iterative scheme, starting with uy = uy and n > 1

(—A)Zuy + ACuy — A = ACup_1 + Af(up_1), u >0 in (—1,1),
w= 0inR\(-1,1).
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3.4.1.2. Main results with a glimpse of the proof

Now, by taking into account the monotonicity of the operator (—A)%u — Au~%, Comparison
Principle ([150, Lemma 2.2]) and Theorem we prove the following uniform estimates

uy, is increasing, {u,} C XoN C’Js((—l, 1), uy <wu, <y, sug [unller @y < Co
ne

for some Cy = Cy(0, \g) large enough and ~ is defined in Theorem Finally, by using
asymptotic behavior of f(¢) and passing as n — oo, we get the desired result. For a detailed
explanation see Theorem Chapter [6]

In order to get the asymptotic behavior of the branch of solution, we study the qualitative
properties of solutions for the problem (Py). In the light of narrow maximum principle (see
Proposition 3.6, [175]) and the moving plane method, we derive the radial symmetry and
monotonicity properties of the weak solutions with respect to |x|. More precisely, we prove

the following result:

Theorem 3.4.10. For 1 < a <2, >0, let h satisfies (H1) — (H2), f is locally Lipschitz
function. Then every positive solution (A\,u) € S of (Py) is symmetric and strictly decreasing
in x| d.e. u(x) > uly) for all x| < |y| and x,y € (—1,1).

To prove Theorem [3.4.10, we follow the approach of moving plane method in [175]. We start

by defining the antisymmetric function
vp(z) == up(z) —u(x) where up(x) = u(Rp(x)).

in the sense that v, (Rp(x)) = —vp(z) where Ry(x) := (2h — x) is the reflection of the point
x about h. The proof of the above theorem emerge from the following observations:

(i) To claim positivity of the antisymmetric function v;, in (=1, h) if h < Oand in (h,1)if h > 0
is equivalent to show that the positive solution (A, u) of the problem (P)) is strictly decreasing
in the neighbourhood of —1,1 with respect to |z| i.e. u(z) > u(y) for all |h| < |z| < |y| and
z,y € (—1,1).

(ii) If inf{|h| : v, > 0in (—1,h) if h < 0 and in (h,1) if h > 0} = 0 then u is symmetric and
strictly decreasing in |z| i.e. u(x) > u(y) for all |x| < |y| and z,y € (—1,1).

In this regard we divide the proof into two steps. In the first step, we prove the positivity of
vp, in the neighbourhood of —1,1 i.e.

vp(z) > 0in (—1,h) N H, if h<0andin (h,1)NH; if h >0

where Hi" = {x € R:x = h} and h lies in the neighborhood of 29 € {—1,1}. Clearly for |h|
sufficiently large, vj,(x) > 0. Suppose that v, < 0in K C (—1,h) N H, for some h < 0. Using
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u(x)

Hyperplane Hyperplane

Figure 3.4: Moving plane in the neighbourhood of -1 and 1.

f is Lipschitz, Poincaré inequality and noting that supp((—vs)*) C (=1,2h + 1), we have
1 2
[ (o))’ < (8) 2. (~0n))

[ (E - @ - s o) s

2

~1
<C [ (u=u)"? do. < C(diam(K))/ () u—un)?)’

R

Then by choosing h close enough to —1 we get, C(diam(K)) < 1 and then (—vp)" = (u —
up)™ = 0. Similarly in the case of (h,1) N H,f for h > 0. Now by moving the point in the
neighborhood of —1 and 1 we obtain there exists 7" > 0 independent of u such that

{ u(z — t) is non-increasing V(t,z) € [0,T] x (—=1,h) if h <0, (3.45)

u(z — t) is non-decreasing V(t,z) € [0,T] x (h,1) if h > 0.

Without loss of generality we can assume that A > 0 be the smallest value such that v, > 0

in (h,1) and the mean value theorem implies vy, satisfies the following for some 6 € (0,1)

(=A)zvp, = c(z)v, in (b, 1). (3.4.6)
where
flun)—f(u) 5 .
c(x) = hvh T (Gut(1—0)up)o 1 if vy #£0,
0 if vy, =0.

Now, in the second step, we prove the strict positivity of the function vy in the interior
of (—=1,1). For this, we start by proving essinfy, vy, > 0 where Uy := B,(z*) € (h,1) via
constructing a strictly positive subsolution ¥, of the problem in Uy (a detailed con-
struction is given in the proof of Theorem by adapting the tools of maximum principle

86



3.4.1.2. Main results with a glimpse of the proof

for antisymmetric solution Proposition 3.5 in [175] and narrow maximum principle Proposi-
tion 3.6 in [175]). To prove h = 0 we argue by contradiction and suppose h > 0. Since h
is the smallest value such that v, > 0 in (h, 1), so we claim that for a small € > 0 we have
Uh—e > 0in (h —¢,1) and thus get a contradiction that h is the smallest value. Fix v (to be
determined later) and let K € (h,1) such that [(h,1) \ K| < 4. Then from above estimates,
vp > r > 0in K and then by continuity v,_. > 0 in K for € small enough. Let A\; be the
first eigenvalue of (—A)* in (h —¢€,1) \ K. Since v, satisfies (3.4.6) in (h —¢,1) \ K and by
taking w := ]lH}ie v;,_. such that supp(w) C (h —€,1) \ K as a test function, we obtain

M= e DVE) [ o P de <= () o)
(h—e,)\K
_ / OUn—eL(h-c VK Vn-e g / (= flun_d) + f(w)L v da
(h—e Nk (Ou+ (1= O)uy, )+t (h—e,)\K - (h=eDNK Ph—e

< CL/ lu,_|? da.
(h—e, )\K

Since A1(2) — oo when | — 0 (see Lemma 2.1 in [175]) then by choosing v small enough
we get vp—e > 01in (h—¢,1), which is a contradiction. Therefore h = 0 i.e. u(—z) > u(z) and
then by repeating the same proof for largest value of h over (—1,h) we obtain u(z) = u(—x)
for all z € (—1,1). Since h = 0, therefore and w is strictly decreasing in |z|. For a
detailed proof see Theorem Chapter [6]

Assertion (v) in Theorem asserts that the connected branch admits at least one asymp-
totic bifurcation point. Then by using Theorem we show that the sequence of large

solution converge to a singular solution if A, # 0.

Theorem 3.4.11. For 1 < a <2,d > 0, assume Ay > 0 be an asymptotic bifurcation point
as in the Definition[3.4.4} Then, for any sequence (A, ux) € SN ((0,A) x Co([—1,1])) such
that \x — Ao and ||ug||peo((—1,1)) — o0, the following assertions holds:

(i) 0 € Q is the only blow up point for a sequence uy.

(ii) up — u in Cp ((=1,1) \ {0}) where u is a weak (singular) solution to (Py). Moreover,

loc

u(0) = o0, u € LP((—1,1)) for any 1 < p < oo, u & X and u—lé + f(u) € LY((—-1,1)).

To prove the above result, we exploit the growth of the function f and monotonicity of the
solution w.r.t. |z| (Theorem [3.4.10]) to prove

Sup Jukll oo (=1,10\[e,q) < €e < 00

where ¢, is independent of £ and which further implies ”0” is the blow up point for the se-

quence ug. By regularity of uy, compact embeddings, Fatou’s lemma and Vitali’s convergence
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Chapter 3. Non-local singular problems

theorem we obtain u satisfies (in the sense of Definition |6.1.11)):

(—4)3

U = Aag(u) in (_17 1) \ {O}a
u > 0 in (—17 1)7
u=0 in R\ (—1,1),

with g(u) := u™° + f(u) € L'(Q). Then by using Theorem there exists > 0 such that
u satisfies (in the sense of Definition [6.1.1])

(—A)2u = Aag(u) + pdo in (~1,1),
u>0 in (—1,1), (3.4.7)
uw=0 in R\ (—=1,1).

Suppose 1 # 0 in (3.4.7). Then by using integral representation of solution u, we get u(z) >
log(|z|~*/™) — C and since a > 1,

f(u) > h (log(|z| /™) — C') exple&lel ™M= > p (log(|z| /™) = C) [a] /™

for all p > 1, 0 < |z] < |z,| and |z,| small. Then by integrating f(u) over a small ball B
around 0, we obtain [ f(u) = co which contradicts f(u) € L*((—1,1)). Therefore = 0 and

(i) is proved.

Previous results do not imply the multiplicity of solutions for all A € (0,A). Via variational

techniques, we next prove the global multiplicity result to the problem (Py) for all § > 0,

under the following assumptions on growth of the function f.

(K1) h € CYR™T), h(0) =0, h(t) >0 for t >0 and f(t) = h(t)elt2 is nondecreasing in ¢.

(K2) For any € > 0, lim (h(t) + h’(t))e_et2 =0 and lim h(t)te?" = oo for some 0 < ¢ < 1.
t—o00 t—o00 )

(K3) There exists M, Ms, K > 0 such that F(t) = f(f h(s)e* ds < My(f(t) + 1) and

f(t) > Kf(t) — M for all t > 0.
Example 1: An example of the function h satisfying the above conditions is h(z) =
zF e k>0,0<y<2

We prove the following global multiplicity theorem.

Theorem 3.4.12. (o) If f satisfies the assumption (K1)-(K3). There exists a A > 0 such
that

(i) For every A € (0,A) the problem (Py) admits two solutions in Xo N Cdis((_l’ 1)).

(ii) For A = A there exists a solution in Xy N C(;:((—l, 1)).

(iii) For X\ > A, there exists no solution.

(b) Let uw € Xy be any positive solution to (Py) where A\ € (0,A], § > 0. Then u € C?(R)
where 7y is defined (6.1.5)).

88




3.4.1.3. Generalization of symmetry results and its application

To prove the Theorem we followed the approach of |150]: To obtain the first solution,
we use the standard Perron’s method (which is a variational version of sub and supersolution
method) on the functional Jy (See ) To get a second solution, we use the assumption
(K2) to guarantee that the energy level of the Palais Smale sequence is strictly below the
first critical level. For that we seek help of Moser functions (See [244]) and then by using
mountain-pass Lemma we prove the existence of a second solution. Notice that the Theorem
6.1.15| shows the existence of solutions in the energy space Xg. We remark that the Holder
regularity proved in Theorem is the optimal due to the behavior of the solution near
the points —1 and 1. We also remark that the Theorem holds for the subcritical non-

linearities like f(t) = h(t)e!” with 1 < a < 2 as well. In this case, the proof is similar and

Palais-Smale condition is satisfied.
3.4.1.3 Generalization of symmetry results and its application

In this part, we are interested to generalize Theorem[3.4.10] Precisely, we investigate the sym-
metry of positive solutions to a class of singular semilinear elliptic problem whose prototype

is

P) {(—_A)su:u{;—l—f(u),u>0 mQ;V
u=20 in RV \ Q,

where 0 < s < 1, N > 2s, Q = B.(0) ¢ RN, § > 0, f(u) is a locally Lipschitz function.

Precisely, we prove the following result:

Theorem 3.4.13. Let § > 0 and f be a locally Lipschitz function. Then a classical solution

u to (P) is radially symmetric and strictly decreasing in |z|.

The proof of Theorem involves the moving plane method adapted in the non local
setting. In this regard, as in the local case, we need a maximum principle in narrow domains
and a strong maximum principle to hold for equations of the type (P). The extension of
these key tools is not straighforward due to the non local nature of (—A)® and the presence
of a singular nonlinearity in the right hand side. Besides this, we will take advantage of
monotonicity properties of the nonlinear operator (—A)%u — # and borrow some “local”

maximum principle shown in [175].

In this regard, we introduce the following definitions:
Let Ay :={z = (z1,72,...,75) € RN : 21 = \} and

S o {reRYN 12y <A} if A <0,
YTl fweRN tap > A} i A >0,

for some A € R and D) (x) := (2A — 21, 22, ..., 2N) be the reflection of the point x about Ay
and vy () := uy(z) — u(x) where uy(x) = u(Dx(z)) and let u be a classical solution of (P).
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To prove radial symmetry and strict monotonicity of the solution u, it is enough to prove
va(z) > 0forall z € B.(0)NXy and A € (—r,r), by moving hyperplane Ay in a fixed direction.
Since, if vy(z) > 0 for all A € (—r,7) and = € B,(0) holds then we can rotate and move the
hyperplane A, in the direction close to fixed direction to get the desired result. Since A is
independent from the direction of movement of hyperplane Ay, so we fix v(xg) = (1,0,...,0)
(without loss of generality) as the direction of movement of hyperplane Ay where v denotes
the unit outward normal vector at xy = (r,0,...,0) € 9B,(0). We divide the proof of above
assertion into the following steps:

Step 1: vy(z) > 0 for all z € B,(0) N Xy and |A| € [r1,r) for some r1 > 0:

By using the Poincaré inequality and Lipschitz property of the function f, we get vy > 0 in
a region Xy N B, for some r —¢; < |A| < r and ¢; > 0. Now by rotating and moving the
hyperplane Ay in a direction close to the outward normal v in any neighborhood of zg € 92
and repeating the above steps by taking into account that z¢ € 9B,(0), v(zg) is arbitrary
and by using continuity of solution u we obtain, vy(x) > 0 for all x € B,(0) \ B, (0) and
|A| € [r1,7) for some r; > 0.

From Step 1, we can assume that A = r; be the smallest value such that 0 <r; <7, v,, >0
in B, \ B,, and satisfies

(~A)v, (z) -

= f(up,) — f(u) in B, \ By,. (3.4.8)

Step 2: r; = 0.

To prove this, we adapt in our situation the maximum principles in nonlocal setting i.e.
Proposition 3.5 (maximum principle in narrow domains) and Proposition 3.6 (strong maxi-
mum principle) in [175]. The main role of the above tools is to construct a strictly positive
subsolution of the problem in every compact subset of B, \ By, so that essinfp v,, >0
for every compact subset R C B, \ By,,. For more details, we refer to the proof of Theorem
[6.2.T] Page[340] Chapter[6] Now, by repeating the proof by moving hyperplane Ay as in Step

1 we obtain u is radially symmetric and the strict monotonicity property.

Next, we apply this main result in a different situation: Consider the problem

(—AYu=np (u% + f(u)) ,u>0 in€Q,

@ u=20 in RV \ Q

where Q is a bounded domain with C? boundary regularity. This concerns the existence
of uniform a priori bound for classical solutions to (@) when f has a subcritical growth.
Similar type of result is also discussed in [6]. In the spirit of the work [121], we combine the
monotonicity property of solutions near the boundary of Q and a blow up technique with the

help of a Liouville theorem. Precisely we prove:

Theorem 3.4.14. Let N > 2s and po > 0. Let u be the classical solution of (Q) with
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flu)=uP for1 <p< %f%i and > po Then ||ulleo < Cy with Cy depending only on 0, p, §2,
Ho-

The second application concerns the asymptotic behaviour of large solutions with respect to
the parameter p. Let s = 3, n =1, Q = B,(0) and f(u) = h(u) exp(u®) for some 1 < a < 2
where h satisfies lim;_,o0 2(t)e™ " = 0 and limy_,o0 h(t)ef” = oo for any € > 0. Then we have
the following result that complements Theorem

Theorem 3.4.15. Let pp > 0 and u be the classical solution of (Q) for some p > uo. Then
for any € > 0, the following holds

||u||L°°(BT\B€) < 02(5a n, e, IUO)

In addition, we have the following blow up profile: Let {uy} be a sequence of solutions for the
problem (Q) such that ||ug||pee(p,) — 00, g — fi with ji > 0,

(i) There exists a singular solution @ in C} (B, \{0}) such that up—a — 0 in L;S.(B,\{0}).

(7i) If (uk)ken has uniform bounded energy and F(t) = O(f(t)) as t — oo where F(t) is the
antiderivative of f, then i = 0.

For more details, we refer to Theorem and Theorem Page Chapter [6]
3.4.2 Problem 2: Non-linear fractional singular problem with singular weights

In this part, we study the following nonlinear fractional elliptic and singular problem

P) (—A)u= [(Z(f)? u>0 in Q,

u=0 in RV\ Q
where Q € RY is a smooth bounded domain with C*! boundary, s € (0,1), p € (1, +00),
~v > 0 and Kj satisfies the growth condition: for any x € €

C1
d°(x)

< Ks(r) < (3.4.9)

()

for some ¢ € [0, sp), where, for any x € Q, d(z) = dist(z, 0Q) = inf,coq | — y|.
Due to the nonlinearity of the operator and absence of integration by parts formula, we define

the following notion of weak solution:

Definition 3.4.1. A function u € WP () is said to be a weak subsolution (resp. supersolu-

tion) of (P), if

u® e WyP(Q), i%fu > 0 for all K € Q and for some k > 1
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and

[u(z) = u@)P~ ' (¢(z) — 6(y)) Ks(x)
//RQN | — y| N dw dy < (resp. 2) | = =0 dv
forallp € T = U Wg’p(ﬁ)_
Qe

A function which is both sub and supersolution of (P) is called a weak solution.

Having in mind Lemma 3.5, 78], Lemma 3.3, [66] and the condition u® € Wi*(Q2), x> 1 in
definition u satisfies the following definition of the boundary datum:

Definition 3.4.2. We say that a function v = 0 in RN \ Q satisfies u < 0 on 09 in sense
that for e > 0, (u — €)™ € WP (Q).

3.4.2.1 New Tools

This part is devoted to the development of new tools to deal with the singular problem (P). In
this regard, as a first preliminary tool we define the approximated problem (PY) (see below)

and study the existence of an increasing sequence of weak solutions of approximated problem

(PY) (see below Proposition [3.4.1)).

To deal with the boundary behavior of the weak solution of the original problem (P), we
also study the purely singular weight problem (S3) (see below). We define a new notion of
weak energy solution and by using barrier arguments and exploiting the C'! regularity of
the boundary, we construct lower and super solutions of the purely singular weight problem

near the boundary.
Tool 1:

For a fixed parameter € > 0, we define a sequence of function K s : RY 5 R, as

(K_%(av)—Fews-;p:él)_‘S if x € Q
Kes(x) = 0 o | ’
else,

and K s is an increasing function as € | 0, K. s — K;s a.e. in () and there exist two positive
constants C3, Cq such that, for any z € €Q,

Cs = < Keg(a) < G .
~y+p—1 ytp—1
(d(x) b ) (d(:):) b S )

Define the approximated problem as

() (=A)yu= it in §,

u = in RV \ Q.
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Proposition 3.4.1. For any ¢ > 0 and v > 0, there exists a unique weak solution u. €
WP (Q) N C%(Q) of the problem (PY) i.e.

// [ue(z) = uc @) ($(2) = 6W) 4 4 _ / Kes@) o g (3.4.10)
B A,

|z — y [N o (ute)

for all ¢ € WiP(Q) and for some £ € (0,1). Moreover, the sequence {uc}eso satisfies ue > 0
i €,
Ue, () < Uey () in Q and €2 < €1

and for any Q' € Q, there exists 0 = o(Q') > 0 such that for any e € (0,1):

o <u(x) < ue(x) in Q.

The proof follows from the maximum principle having in mind that (—A)f7 . —|—ﬁ is a
monotone operator in W3*(Q2) (see also Proposition 2.3, Lemma 2.4 in [78] and Theorem 1.1
in [172].
Tool 2:
As a second tool, we study the following problem:
() {(—mzu(x) = Ks(x) i Q,
u=0 in RV \ Q.

where d’(z)Ks(z) = O(1) and introduce the new notion of weak energy solution and corre-

sponding vector space. Let Q C RY be bounded. We define

W57P(Q) L p Ny . |u(l‘)|p_1
=1u€ L, (RY): 3K st. Q€ K, |lullwsrx) + ———w— dr < o0
R

N (1A |z )N
where [|ullysp) = l|ullrQ) + [U]spo- If ©Q is unbounded, we define
W) :={uec L} (RY):ue W (Q), for any bounded Q C Q}.

Definition 3.4.3. (Weak energy Solution) Let f € W= () and Q be a bounded domain.
We say that w € W™'(Q) is a weak energy solution of (=A)5(u) = fin Q, if

w7 (6@ = OW) [
//RQN |x_y|zv+sp dady = [ J@)ola) d

for all ¢ € WiP(Q) and a function u is weak energy subsolution (resp. weak energy superso-

lution) of (—A)y(u) = f in Q, if

(=A)p(u) < (resp. =) f E-weakly in

[u(z) —u(y)" ($(x) — 6(y))
//RzN |z — y|N+sp de dy < (resp- 2) /Q f(@)¢(z) dx

i.e.
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Chapter 3. Non-local singular problems

for all ¢ € WEP(Q), ¢ > 0.

If Q is unbounded we say that u € W, () is a energy solution or energy subsolution (or

s

u) = f in Q, if it does so in any open bounded set ' C Q.
P

energy supersolution) of (—A)

In order to study the boundary behavior of minimal weak solution for purely singular weight
problem (Sg), we construct explicitly lower and supersolutions of the weak solution to the
approximated problem. For this, first we define the prototype of the barrier function in R
(and ]Rf ) as a power type function and compute upper and lower estimates of (—A); acting

on this function. Precisely, we have:

For any a € (0,s), we begin by computing the upper and lower estimates in the half line
Ry :={z € R: 2 > 0} of (~A);, of the function Uy(z) := ((a: + )\é)’L)a, A > 0 defined in R.
We recall the notation, for any t € R, [t]P~! = [¢[P~2¢.

Theorem 3.4.1. Let A > 0, a € (0,s) and p > 1. Then, there exist two positive constants
C1, Cy > 0 depending upon o, p and s such that

Ci(r + )\é)_ﬂ < (—A),Ux(z) < Co(x + )\é)_ﬁ pointwisely in R. (3.4.11)

Moreover, for A >0, Uy € W H(R,) and for A\ =0, Uy € W h(R.) if s — %D <a<s.

To prove the estimate in (3.4.11)), we explicitly estimate the (—A7) of barrier functions. The
crucial point in the proof of estimates is the positivity of constant C7, which plays a decisive
role in further computations. These types of estimates are motivated from the fact that

(=A)7 ()% = 0. The proof of above result is rather technical and tricky (for a detailed proof

see Theorem Chapter [6]).

We then consider the case of flat boundary of RY. Precisely, by extending the functions Uy
to V) defined on RY, we study the behavior of (=A);Va(x) on RY := {z e RN : 2y > 0}
where V) (z) := Ux(z - en) = Ux(xn). Let GLN be the set of N x N invertible matrices, we

prove

Corollary 3.4.1. Let A >0, a € (0,s), A€ GLy andp > 1. Let J. 4 be the function defined
on Rf by
[Va(@) = Valz + 2)]P~!

Tealx :/ dz
’A( ) Bc(0)¢ |A2|N+SP

for some € > 0.
Then, there exist two positive constants C3 and Cy depending on o, s,p, N, || All2, | A7t ||2 such
that

Ca(an + A7 < lim T a(2) < Cylay + A7

pointwisely in Rf x GLy. In particular, for A = I, there exist two positive constants Cs and
Cy independent of \ such that:

Cy(zy + AP < (=A)Va(z) < Culzy + NP pointwisely in RY.
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Moreover, for A >0, Vy € Wb(RY) and for A\ =0, Vi € Wi (RY) if s — % <a<s.

Next, in order to handle the case of smooth boundary portion we prove the above upper and
lower estimates are preserved under a smooth change of variables via a C'! diffeomorphism

(close to identity) in the isomorphic image of a set close to the boundary of Rf .

Theorem 3.4.2. Let o € (0,5) and p > 1. Let ¢ : RV — RY be a CY1-diffeomorphism in
RN such that 1 = Id in Br(0)¢, for some R > 0.
Then, considering Wy(x) = Ux(¥"1(z) - en), there exist p* = p*(¢0) > 0 and \* = \*(p) > 0
such that for any p € (0, p*), there exists a constant C > 0 independent of \ such that, for
any A € [0, \*],
< (AW (z) < C‘WA(x)*g E-weakly in v({X : 0 < Xy < p}). (3.4.12)
The crucial step for proving estimate is to split the integral of nonlocal terms is
different sub regions in the light of Lemma 2.5 and Lemma 3.4 in [172] and observing that
proving ({3.4.12)) is equivalent to show that there exists a constant C independent of X\ such
that

é(XN + AV < lim He(z) < C(Xy +AV) 77

forall z € p({X : 0 < Xn < p}) where

_ [Wi(x) = Wa(y)P!
e = /(De(x))c ey (3419

and D (z) = {y € RV : [~ Y(z) — ¢~ (y)| < €} and € > 0. To estimate (3.4.13)), we exploit
the Cb! regularity of the diffeomorphism, Corollary and the fact that ¢ = I outside
Br(0) for some R > 0. (For precise details, we refer to Theorem [6.3.6] Page [355] Chapter [6).

S

Due to nonlocal feature of (—A)S, we extend the definition of the distance function d in ¢

p’
as follows
dist(z, 002) it xeQ,
de(x) = ¢ —dist(z,00) if z€ (QC)/\é,
—\/e otherwise,

where (2°), = {z € Q° : dist(x,00) < n}. Hence we define, for some p > 0 and A > 0:

. 1/aya _ if 0 Qc
w,(z) = (defe) + X793 =4 1 =€ QU (3.4.14)
A otherwise,
de AVeye if z e QU (Q°
Wy(z) = (dele) + XTE)T i € ,U( Jo: (3.4.15)
0 otherwise.

Now, we state and prove our main result for establishing the boundary behavior:
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Theorem 3.4.3. Let Q C RY be a smooth bounded domain with a C*' boundary and o €
(0,8). Then, for some p > 0, there exist (A«,n:) € R x RS such that for any n < ns., there
exist positive constants Cy,Cg such that for any X € [0, \]:

(=A)yw, > Cs(d(z)+AY*)F and (-A)pw, < Co(d(z)+\Y*) 8 E-weakly in Q, (3.4.16)

where Q) = {z € Q : d(x) <n}. Moreover, for A >0, w,, W, belong to WoP(Q,).

We divide the proof into three main steps:
Step 1: Covering of 2,

In this step, we choose a special covering { Bg, (x;) }; of 2, and diffeomorphisms ®; with some
local inclusion properties. Precisely, by using the geometry of 92 and arguing as in Lemma
3.5 and Theorem 3.6 in [172], there exist a finite covering { Bg, (z;)}icr of 0Q, n* = n*(R;),
i € I and diffeomorphisms ®; € C1(RY,RY) such that for any n € (0,7%), i € I

O, N Bg,(z;) € ®;(B;NRY),  do(®:(X)) = (Xy + AV, —AV* v X eB,
®;(X) = X for X € (By,(0))°
with 0 < p < p < p* where p* is defined in Theorem and for A small enough \'/® < p,
®;(B,(0) N {Xy > -AV}) c QU (Q°),.

Using the finite covering, it is sufficient to prove the (3.4.16) in any of set €, N B, (x;) with
x; € 0N.

Step 2: For x € Q, N Bp,(x;) with z; € 02 the following holds:
liH(l) ge1(x) < e3(d(x) + A= and hH(l)ge,g(I‘) > ey(d(z) + AV 7P E-weakly in Q,NBpg,(x;)
€ e—

where g1 and ge2 be two functions defined by

_ [w,(z) — w,(y)P~?
gen () = /D . d

|z — y| NP

and
1

oty = [ IBAD =T

|z — y|Ntsp

and D.(z) = {y: |® 1 (z) — @~ (y)| > €}.

As above, it suffices to obtain suitable uniform bounds on compact sets of g¢ 1 and g 2. These
uniform bounds are attained by the regularity and inclusion properties mentioned in Step 1,
and using Theorem [3.4.2]

Step 3: w,, W, € WP ()
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It is sufficient to claim

w,, @, € W(K) for K = Qy U (Q°),,

where 0 < n < n; and 12 > 0. For z; € 9Q, no € (n,n*), let {Bg, (z;) }icr be the finite covering
of Q, and Z; € CHL(RY,RY) such that

B, () € Ei(Bg,), de(Zi(X)) = (Xn +A/*)y =AY,V X € B, (3.4.17)

for some &y > 0. The existence of finite covering { Bg, (=) }ier and diffeomorphism =; can be

proved by using Step 1. For any i € I, there exists a subset J? of I such that i ¢ J? and
B, (xi) N Bg,(z;) #0 ¥V je J. (3.4.18)
Now for any i € I and j € J, define K; := B, (x;) C Bg,(z;) for 7; < R; such that

K;NK;#(0 and ml}nm{]ndlst(K \ Bg,(z;), K;) > 0. (3.4.19)
jedr

By using (3.4.18]) and (3.4.19)), we choose 7; and 1y small enough such that

K=0,uQ, clJK
el

and using (3.4.17)), we obtain
QN K; C Quy, N Bg, () € Zi(Bg, NRY),

O, N K; € Q% N Bg,(z;) € Zi(Bg, NRY), (3.4.20)
de(Z4(X)) = (Xn + AV = 2Ve v X e 274(K;) C By,

for some 71 < n* and 7, > 0 such that 0 < & < 22>, Se t K; = K; N K. Then
/KXK i€l i€l / / el (z GJZ/ / xl) 141 EI\J’/ /

S b Ll L
K mBRi(.Ti) K7 Kz) Ql QQ QS Q4

Now by estimating integrand over Q1, Qs we use - and to estimate over Qjs,
94, we perform change of variables using the diffeomorphisms =;, and and by ob-
serving the fact that Xy, Yn > —min{p, &} > _/\12/(1 for all X,Y € Ei_l([?i), we obtain
w, € W*>P(Q,). Similarly, we can prove w, € W ().

i1€J?
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3.4.2.2 Main results and glimpse of proof

Here we describe our results with main ingredients of the proof. First, we establish the

following very weak comparison principle:

Theorem 3.4.4. For 0 < 4§ <1+ s — ;1), v >0, let u be a subsolution of (P) and v be a
supersolution of (P) in the sense of Definition|3.4.1. Then u < ¥ a.e. in €.

We start by defining the energy functional J. on W;*(2) as, for € > 0

//RQN Iz — \Nm)a'p dx dy—/QKa(w)Ge(w) dz

where G, is the primitive such that G.(1) = 0 of the function g. defined by

ae(t) = { min{t%,%} ift >0,

1 ift <o0.

€

Claim: There exists a minimizer of the energy functional J¢ in
L:={peWiP(Q): 0<¢ <7 ae inQ}

The restriction on § ensure the weakly lower semicontinuity of the energy functional J, in
WyP(Q) and cﬁ%(ac) e W= (Q) via Hardy inequality. Precisely, let {w,} C WSP(Q) be
such that w, — w in Wyt (). Let v € (0,1) small enough such that 1;% +2+ 1=
where ¢ < p} = N sp if N > spand (s(1 —v)—0)r > —1 (since d < 1+s— %) Hence
z = d*0=Y)79(z) € L"(Q) and by using Hoélder and Hardy inequalities (see Theorem 1.4.4.4
and Corollary 1.4.4.10 in [162]), we obtain

|wn — w| / <|wn - w|>1_y (1—v)—8
——— dz = —_— wy, — w|’d* Y70 (2) dx
0 &) o\ @ ) v )

< Cllun = wlls” llwn — ][y

for some constant C' > 0 independent of w, and w. Since W;?(Q2) is compactly embedded
in LY(Q) for ¢ < p§, |wn — w||sp is uniformly bounded in n and [jw, — w||peq) — 0 as
n — oo. Finally, gathering the weakly lower semicontinuity of [.]s, and G globally Lipschitz,
we deduce that J. is weakly lower semicontinuous in Wy (Q2) and admits a minimizer wp on
L. By density results and Fatou’s lemma, we have for any ¢ € W;*(Q2) with ¢ > 0,

/ [wo() — wo)I" (é() — H(y))
R2N

|z — y|Ntsp

dz dy > / Ks5(z)ge(wo)¢ dx. (3.4.21)
Q
Now, by using wy € W3 () and wy > 0, we get for any ¢ > 0

supp((u —wo — €1)") C supp((u — €1)™) and (u —wo — 1)t € WP(Q).
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Since u is a subsolution of (P) then for any ¢ € T, we get

[u(z) — u(y)P~L(é(z) — d(y)) é(z)
/RZN |z — y|NFep dz dy < /QKa(l‘) o de (3.4.22)

Then, by subtracting (3.4.21) and (3.4.22)), using the following inequality, for a, b € R with
lal + [o] > 0,

(laf"~2a = [bP=2b)(a = b) > C(Jal + [b)P2|a — b]?

and by choosing €; such that €] > € and ¢ = (u — wy — €1) as a test function, we obtain

u<wy+e <V+e in Q and letting e — 0, we get our proof.

Next, we prove the existence result:

Theorem 3.4.5. Let Q be a bounded domain with Lipschitz boundary 02 and ¢ € (0, sp).
Then,

(i) for § —s(1 —~) <0, then there exists a minimal weak solution u to (P) in WP (Q).
(it) for 6 — s(1 —~) > 0, there exist a minimal weak solution u to (P) and a constant 6y

such that
1
u? € WEP(Q) if 0 > 0y and 0y > max {1, W,A}
p

(sp=1)(p=147)

where A := 2(5p—=9)

We describe the main ingredients of the existence results and Sobolev regularity depending

upon s and singular exponents §, .

Let ue € WiP(2) be the weak solution of (PJ) satisfying for all ¢ € WyP(Q). It
suffices to verify the sequences {u}. in the case § — s(1 — ) < 0 and {uf} for a suitable
parameter 6 > 1 in the case 6 — s(1 —v) > 0 are bounded in W;*(£2) and the convergence of
the right-hand side in . Precisely,

The condition implies v < 1 hence taking ¢ = u, in and applying Holder and Hardy
inequalities (see Theorem 1.4.4.4 and Corollary 1.4.4.10 in [162]), we obtain

I—y
s(1—y)—6 Ue Ue 11— 1—
[ucJ?, < CQ/QCN N0 () (dS(x)) dz < C[| £l gy < C ludsy” (3.4.23)
which implies |[ue||sp < C < 0.
Case 2: 6 —s(1—~) >0
Let ® : R, — R, be the function defined as ®(t) = ¥ for some 6 > max {1, W;%, A} . Using

the convexity of the function ® and Lemma 3.3 in [66], we obtain: for any € > 0

Ue)(x) — P (ue P=l(g(z) — 6,0\ / —2y
//Rw [®(ue) () q)|i_)(yy|3\]f+sp(¢( ) — 8(y)) da dyg/Qm@ (ue) [P2® (ue) ¢ da

(3.4.24)
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for all nonnegative functions ¢ € WP (). Since ue € Wy (2) N L>°(Q) and @ is locally
Lipschitz, therefore ®(uc) € WyP(Q). Then by choosing ¢ = ®(ue) as a test function in

(13.4.24), we get

[B(u)(@) ~ ()W) L ()20 () B0
//RQN |z — y[Nsp dx dy < Cz/Q () i dx. (3.4.25)

Now, for any € > 0, there exists a constant C' independent of € such that

D (ue) P20 (ue) P (ue
L2l (B R

Op— - . _ .. . .
where %71) > 0 since 6§ > p*’f#. By combining ([3.4.25])-(3.4.26)) and applying Hélder
and Hardy inequalities, we conclude that {®(ue)}, is bounded in W3"*(Q). Based on these

Op—(p+y—1)
]

(3.4.26)

uniform estimates, we pass to the limits ¢ — 0 to complete the rest of the proof. Finally,
for any € > 0, ue < v a.e. in Q where v is another weak solution of (P). Indeed, v is a
weak supersolution in sense of Definition of the problem (P)) hence weak comparison
principle in Theorem and passing limits € — 0, we obtain that v is a minimal solution.

Remark 3.4.1. The proof of Case 1 holds assuming A < 1 and v < 1. Indeed, d*1=7)=9 ¢
L () and we obtain (3.4.23)).

Now to study the boundary behavior of the main problem (P) with respect to distance
function, we state and prove existence and boundary behavior of weak minimal solution of
purely singular weight problem. For that, we consider the sequence of function {f( A FAS0
where 6 € (0, sp), Kys: RY — R, such that

1 p—1
- K ° Aep=3)70if e Q,
K)\’é(x):{é 0 (SL’)—I— P ) lfx¢Q
if x ,

satisfying IN(M; S Ks ae. in Qas XA — 07, and there exist two positive constants D3, Dy
such that
Ps s < Kys(z) < D 3
(d(m) + )\5> (d(x) + )\5>
Gathering Proposition Theorem and Remark we have the following result
for the following approximated problem (noting v = 0 in Proposition :

(59) (=A)pu = Kys in Q,
u=0 in RV \ Q.

(3.4.27)

Theorem 3.4.6. Let 2 be a bounded domain with Lipschitz boundary. Then there exists a
increasing sequence of weak solution {uy}xso C W§P(Q) N L®(Q) of (S3) such that

// [ua(@) —ur ()P~ (6(x) — 6(y))
R2N

|z — y|N+sp

dx dy = /Qf()\(;(a:)gb dzx.
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for all ¢ € W3P(Q) and a minimal weak solution u of (S5) such that u§' — u® in W3P()

and
[u(z) = u@)"~" (@) — ¢(y)) _
//R?N |z — y|N+sp dr dy = /QK6(95)<P dx

1 ifo<d<l+s—1 —1)(sp—1
if ST and 0y > max{@=HEP=D
0> otherwise, p(sp —9)

for all p € T where 6; = { ,1}.

Let A be the first eigenvalue and ¢, be a positive eigenfunction for the operator (—A);.

Then, by using Proposition 2.10 in [172], we get, for any § € (0, sp), there exists a constant
k1 such that for any A >0

k1d®(z) < uy(x) for any x € Q (3.4.28)

and from Theorem 3.2 and Remark 3.3 in [65], we deduce that for any n > 0, there exists
ky > 0 independent of A such that
lurllzos @\, < Fn- (3.4.29)

Now, we prove the sharp estimates for both upper and lower boundary behavior of the minimal
weak solution for problem (Sg ) for different range of 6. In this regard, we prove the following

result:

Theorem 3.4.7. Let Q be a bounded domain with CY' boundary and v be minimal weak

solution of the problem (S3). Then, we have

(i) For § € (s, sp), there exists a positive constant Y1 such that for any x € Q,

1 sp=s sp=§
— dr 71 (z) <u(z) < YTid» T (x).
T1
(i) For ¢ € (0,s], for any € > 0, there exist positive constants Yo and Y3 = Y3(€) such that
for any x € Q:

Tod®(z) < u(x) < Y3d* (z).

Here, we describe the main ingredients of the proof. Let uy be the solution of (S9) for A < A*,
n < n* and p > 0 given by Theorem |3.4.3

To prove (i): We define, for some n > 0,
1
D —1
Q(A) — min{ﬁg(g)sia’ (C,Z> P 1} w, = cw,
and

1
2 Dy\ -0
—(\) _ “Na ( 4) =
u = Imax Ko, | —= w, = Chw
{(7’) 05 } P n=pe

where w, and w, satisfies (3.4.16), 0 < k2 < K1, C5, Cp are defined in (3.4.16)), k1 and Ky are
defined in (3.4.28)) and ([3.4.29) respectively and D3, D4 are defined in (3.4.27). Note ¢, and

(SIS
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¢, are independent of .

Hence for any A > 0, u) satisfies

uMN(2) < up(z) <aWV(z) for z € O\ Qy, and uMN(2) <0 = up(z) =aM(z) for z € Q°.

(3.4.30)

Then by applying weak comparison principle (Theorem in €, implies u <y <aW,

Hence, from and passing A — 0, we deduce (7).

Now we prove (i) i.e. the case § < s. Since holds, it remains to obtain the upper

bound estimate.

Let @) € W5P(Q) be the weak solution of (Si) with 6 = s+€(p—1) > s and for € > 0. Then,

choosing a suitable constant ¢, > 0 independent of A\, @) = ¢y is a weak supersolution of

(Sf\). Hence by Theorem we have uy < @™ in Q. We pass to the limit as A — 0 and

using (i) with @(x) = limy_o @™ (z), we get, for € > 0, u(x) < ¢, d* “(z) for z € Q.

Remark 3.4.2. The boundary behavior in Theorem (ii) is not optimal. We conjecture
that u ~ d°.

Concerning the Holder regularity of the weak solution of the problem (P), we prove the

follwing result:

Theorem 3.4.8. Let Q be a bounded domain with CY' boundary and u be minimal weak

solution of (P). Then there exist constant C1,C2 > 0 and 0 < w; < s, 0 < wy < ,ff;sl such
that

(i) 0 < g + v <1, then C1d*(z) < u < Cod® () in Q and for every e >0

] OTRY) i 2<p <o,
u
C' (RY)  if 1<p<2.

(sp—9)

(sp—5)
(i) g +7v > 1 then C’ldwfp—l (x) < u < Cod*»=1(x) in Q and

(sp=9)
wed COD (RNY  if 2<p< oo,
C«2(RV) if 1<p<2.
Remark 3.4.3. The Holder regularity of the minimal weak solution in the case of p > 2 and
s € (0,1) is optimal.

Glimpse of the proof:

Let u be the minimal solution of the problem (P) and {u)}, be its approximated sequence
of solution for the approximated problem (P; ). First, we prove the boundary behavior of the

minimal weak solution by dividing the proof into two cases:

.0
Case 1: {+7<1
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Let @ and u are weak solution of the problem (Sé) for(=d0+ys<sand ( =+ (s —¢)
respectively for e € (0, s) and then from Theorem (79) there exist constants ¢; > 0 such
that

ad’®(z) < a(x) < cod® “(z), c3d®(z) < a(x) < eqd® () in Q

and w, 4 satisfies

Ks(x) o Ks(2)

ol 2L < (-a); ()

1 1
where C, = ( ! )p “and C* = ( Co )p ~" and Cy, Cy are defined in (3.4.9). Then by applying

CQCZ Clc’lY
Theorem we get
C1d*(z) < u(z) < Cod® ¢(z) in Q2

for every € > 0, 'y = ¢1Cy and Cy = coC*.
.0
Case 2: ¢ +7>1

Let A > 0 and uy € W;*(2) be the solution of the problem (P)) for A < A* given in Theorem
Now by applying applying Theorem 3.2 and Remark 3.3 in [65] and by repeating the
same arguments as in (3.4.28)), we obtain

»2d®(x) < uy(x) in (3.4.31)

for some sz independent of A and for any n > 0, there exists s;, > 0 independent of A such
that

lurll e @\, < 24 (3.4.32)
For a = pip;fl and 0 < n < n*, define
77 S—Q 4 «
QLAJ = cpuw, and 7N = ¢yw, such that ¢, < (2> »x and ¢, > () »
Ui
where w,, Wy, >, >3 and 7" are defined in (3.4.14)), (3.4.15)), (3.4.31)), (3.4.32) and Theorem

3.4.3| respectively. We note that ¢;, ¢, are independent of A and for any A > 0, u M and @M
satisfy

uM (@) <uy(z) <aM(z) forz € Q\Qg and ulM (2) < uy(z) <M (2) for z € Q°. (3.4.33)

Using the definition of w, and w, in (3.4.14) and (3.4.15) respectively and estimates in
(3.4.16)), we can choose 7 small enough (independent of \) such that

(_A)SH\_/\J > K&g(l‘) and (—A);QD‘J < KA:(S(H;)

P - (ﬁp‘J + )\)’y (QL)‘J T )\)7 Weakly in Q"I

Since ulM @M € WP(Q,) and uy, € L®°(Q)nWP(Q) € WP(€,), Proposition 2.10 in [172]
in €2, implies uM <uy <@ in ;. Hence, from (3.4.33) and passing A — 0,

sp—3§ sp—4
Chrdrt=1 <y < Cod~+r=T in Q.
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Chapter 3. Non-local singular problems

where C1 = ¢; and Cy = ¢;,.
Interior and Boundary regularity: To prove this, first we claim the following:
Claim: For all xg € ©Q and Ry = @ there exists universally Co > 0, 0 < w3 < s and

0<wy < psfv__él such that

) 4]
Forl<p<?2: ||u||C“3(BRO(r0)) < Cgq for g +v<1, Hu||C'W4(BRO(x0)) < Cgq for ; +v2>1

and

J J
for 2 <p <oo: ||ullgs—eBy (20) < Cafor —+7 <1, Jlul| s < Cq for —+~ > 1.
0 s CPHT (Bg, (z0)) s

Let 79 € ©, Ry = 229 such that Bg,(z0) C Bag,(z0) C Q and u € WP(Bag,(z0)) N
L>*(Bapr,(x0)) be the weak solution of (P), then it satisfies

C 1 1) Co 1 ) .
Ay < = f - <1, (-A)Pu< ——=—r—+— for — l1in B
(—A)ju < C¥R35+5 or 0 < S—i—'y_ , (A)u < C?Rv(;‘f;fl)w ors+’y> in Br, (o)
0

where Cy is defined in (3.4.9). Then, by using Corollary 5.5, [172] for 1 < p < 2 we obtain:

there exist 0 < wg < sand 0 < wy < ?;51 such that

p

. d .0
<Cy 1f0<g—|—’y§1and HuHCM(BR < Cq 1fg—|—"y>1 (3.4.34)

lll s (B ) By (o))

and by using Theorem 1.4, [65] for 2 < p < 0o we get

1) 1)
e, < C3 if0< — <1 and sp— < Cy4 if - 1. (3.4.35
HuHCS_G(BRO(.TO)) ~0L3 1 < s +v<Tlan HUHCH&%(W) > 0Lag 1 s +7 > ( )

where C;j’s are independent of the choice of point xy (and Ry).

Now, to prove the regularity estimate in € (and then the whole RY) since u = 0 in RV \ Q,

it is enough to extend (3.4.34)) and (3.4.35) on Uy,eq, B2r(%0) \ Br, (7o) where n > 0 small

enough and 2, = {x : d(z) < n}. In this regard, let =,y € Q, with |z —y| > max {@, @} .

Then for a constant C7 > 0 large enough, we get

) uly)l ) BN () )Y o gy
[z =yl T le—yPe |z -yl ds=<(x) ~ d*=(y)
u(z) = u(y)] |u(z)] |u(y)]

(sp=9) S (sp=9) + (sp=9)

‘gp — y‘ (v+p-1) |x — y| (v+p-1) ‘;p — y’ (y+p-1)
o . (3.4.37)

_(sp=8) u(x uly
< 2G+rD =y + s < Cy.
d+r=D) (;(;) dG+r=1) (y)

Then, finally by combining (3.4.34))-(3.4.37)), we get our claim and which completes the proof.
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3.4.2.2. Main results and glimpse of proof

Remark 3.4.4. In case of local operator, i.e. p-Laplacian operator, the optimal condition of

Sobolev regularity in Theorem 1.4, [138] coincide with the our condition for s = 1.

Corollary 3.4.2. For ¢ S+ >1 and Q be a bounded domain with CYl boundary. Then the

minimal weak solution u of the problem (P) has the optimal Sobolev regularity:
u € WP (Q) if and only if A <1

and
u? € WP (Q) if and only if 1 < A < p.

The proof of above result follows from testing the equation (3.4.10) with the approximated
solution of the problem (P7). Precisely, by taking ¢ = u. in (3.4.10)), we obtain

‘s,p—/KG(; 1 7dl’</d(1 )p+’Y T ((L‘) de < C

if(l—v)(sp=98)>0O0—-1p+y—-1)<spy—1)+dp<(p+yv—-1) <A<
Similarly, by taking ¢ = v? in (3.4.10)) and using Proposition we obtain for § > A > 1
(sp—9)

o8l < [ Realohuld D000 o < [ 00 EA S ) ar <
Q

Now, by passing limits e — 0 in (3.4.10)), we get the minimal solution v € WP(Q) if A < 1
and u? € W3P(Q) if § > A > 1. The only if statement follows from the Hardy inequality and
the boundary behavior of the weak solution. Precisely, if A > 1, then u ¢ W;?(Q). Indeed,

we have

[[use

I

S,p 2

P plsp=8) _
dx > C’/ drt=1"P(x) dz = +oc0.
Q

In the same way, if 6 € [1, then

[¥]lap > C /

and we deduce u? ¢ W3*(Q)

.Z'

p(sp 5)_8
d>C/dP+W— P(z) dx = oo

As a consequence of comparison principle, we have the following uniqueness and nonexistence

result:

Corollary 3.4.3. For 0 < d < 1+ s — %, the minimal weak solution u is a unique weak
solution of the problem (P).

Theorem 3.4.9. Let § > sp. Then there doesn’t exists any weak solution of the problem (P)
in the sense of definition [3.4.1]

From above, the non-existence result is optimal and corresponds to the limitation of the
use of Hardy inequality. The proof of the above results follows from the weak comparison
principle, Hardy inequality and boundary behavior of approximated weak solution u. of the
approximated problem. For more details, we refer to proof of Theorem [6.3.3] Page [B70
Chapter [6]
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CHAPTER

Parabolic problems with nonstandard growth

This work is done jointly with Jacques Giacomoni, Guillaume Warnault and Sergey Shmarev.

Abstract : In this chapter, we study the qualitative properties of the parabolic problems
with non-standard growth conditions. The main purpose of this chapter is three fold. Firstly,
we derive conditions on the initial data for the existence of strong solution of evolution equa-
tions with p(zx,t)-Laplacian and prove the global higher integrability, higher differentiablity
and second order regularity of the strong solution. Secondly, we study the double phase
parabolic equation with variable growth and nonlinear source term. We prove the existence
of strong solution with global higher integrability and regularity properties. Thirdly, we
derive the Picone identity for the p(x)-homogeneous operators and as applications of this
identity, we extend Diaz-Saé inequality for non-standard growth operators and study some
boundary value problems comprising of variable exponent operators and non-standard growth
conditions. Using this, we study the Doubly non-linear parabolic equations involving p(z)-
Laplacian operator and prove the existence, uniqueness, regularity and contraction properties
of the weak solution. By generalizing the above results to p(z)-homogeneous operator of

Leray-Lions type, we study the stabilization property of the weak solution.

4.1 Functions spaces

Prior to formulating the results, we introduce the variable Lebesgue and Sobolev space. We
limit ourselves to collecting the most basic facts of the theory and refer to [112] for a detailed
insight, see also [34, Ch.1] and [111]. Let @ ¢ RY, N > 1 is a bounded domain with Lipschitz-
continuous boundary 0f). Let P(Q2) be the set of all measurable function p : Q@ — [1,00[ in

N-dimensional Lebesgue measure. Let us define the functional

Ao = [ 1£@P) da. (411)
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Chapter 4. Parabolic problems with nonstandard growth

The set

LPO(Q) = {f : Q = R: f is measurable on €, Apy(f) < oo}

equipped with the Luxemburg norm

11l o) = inf{A >0 Ay <§> < 1}

is a reflexive and separable Banach space and C§°(Q) is dense in LP(®)(Q). The modular
Ap
(see |223]). Throughout the chapter, we assume that

(.)( f) is lower semicontinuous. We also recall some well-known properties on LP(®) gpaces

1<p~ € minp(e) < pe) < p* < maxp(z) < co.
Q

Proposition 4.1.1. Let p € L>(Q). Then for any u € LP®)(Q) we have:

(i) Apy(u/llullppe) = 1.
(i) lull o) — 0 if and only if Ap.y(u) — 0.
(iii) LY ®)(Q) is the dual space of LP™)(Q) where we denote by p' the conjugate exponent of
p defined as

Proposition (i) implies that: if ||ul|;p@) > 1,

- +
‘|u||ip(x) < Ap(-)(u) < ||U”I£p(x) (4.1.2)
and if HuHLp(x) S 1
+ —
”u”lzp(z) < Ap(.)(u) < HuHip(zr (4.1.3)

Moreover, we have also the generalized Holder inequality: for p measurable function in €2,
there exists a constant C' = C(p*,p~) > 1 such that for any f € LP(*)(Q) and g € LP<(*)(Q)

1 1
/ |fg| < < + — > £ lpey.llgllpere < 20F pe).llglly o). (4.1.4)
0 p~ ()

Let p1,p2 are two bounded measurable functions in © such that 1 < p;(x) < pa(x) a.e. in
then LP1()(Q) is continuously embedded in LP2()() and

Vue 1720(Q)  ull e < GRS p2)l[ull raor-

The variable exponent Sobolev space VVO1 P (')(Q) is defined as the set of functions

WEPO(Q) = {u: Q > R | ue LPOQ) nWEH(Q), [Vul € L2O(Q)}
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4.1. Functions spaces

equipped with the norm

HUHWOLM-)(Q) = [lull pp@) + VUl o)

It is known that C2°(Q2) is dense in VVO1 P (')(Q) and the Poincaré inequality holds
[ullpey,0 < ClVullpe),0- (4.1.5)

if p e C’log(ﬁ), i.e., the exponent p is continuous in Q with the logarithmic modulus of

continuity:

p(z1) — p(2)| < w(|z1 — ), (4.1.6)

where w(7) is a nonnegative function satisfying the condition

1
limsupw(7) In <> =(C < oo.
T

T—0t
By W/(Q) we denote the dual of I/VO1 P (')(Q), which is the set of bounded linear functionals
over WOLP(')(Q): ® € W'(Q) iff there exist ®g € LF')(Q), ®; € LP()(Q), i =1,..., N, such
that for all u € Wol’p(')(Q)

N
(P, u) = /Q (u@o + Zuml : <I>Z-> dzx.

i=1
For the study of parabolic problem with spaces of functions depending on (z,t) € Qr, we

define the following spaces:

Vo () = {u: Q=R | ue LX(Q)n Wy (Q), [Vuf@ e LY(Q)}, te(0,T),
Wy (Qr) = {u: (0,T) = Vo 1y(Q) | u € L*(Qr), [VulP™ € LY(Qr)}.

The dual W'(Qr) of the space W,)(Qr) is defined as follows: & € W'(Qr) iff there exists
D € L2(Qr), ®; € LP@D(Q), i = 1,..., N, such that for all u € W,,(Qr)

N
<CI>,u>:/ (u@o—i-z:uxiq)i) dz dt.
T

i=1
Let Clog(Q7) be the set of functions satisfying condition (4.1.6) in the closure of the cylinder
Qr. If u € W,y (Qr), uy € W'(Qr) and p(z,t) € Clog(Qr), then

1 ) t=T
/ uuy dz = / u”(x,t) dx‘ . (4.1.7)
Qr 2 Jo

t=0

111



Chapter 4. Parabolic problems with nonstandard growth

4.2 Strong solution: Existence, global higher integrability and

differentiability, second order regularity

In this part, we study the sufficient condition on f,ug for the existence of strong solution of

the following Dirichlet problem for the class of parabolic equations with variable non-linearity

Opu — div (\Vu|p(x’t)_2Vu) = f(z,t) inQr=02x(0,7),
u=0on 0 x (0,7), (4.2.1)
u(z,0) = up(z) in Q,

where Q@ C RN, N > 2, is a bounded domain with the boundary 99 € C2.

4.2.1 Statement of main results

We will distinguish between the weak and strong solutions of problem (4.2.1) defined as

follows.
Definition 4.2.1. A function u is called weak solution of problem (4.2.1)), if

(i) uw € Wyy(Qr), ur € W (Qr),
(i) for every v € Wy\(Qr) with ¢y € W(Qr)

/ ugp dx dit —I—/ |Vu\p(x’t)_2Vu -V dx dt = fdx dt, (4.2.2)
T T Qr

(iii) for every ¢ € CE(Q)

/Q(u(ac,t) —up(z))p dr -0 ast—0,

(iv) the weak solution u is called strong solution of problem (4.2.1)) if
w € L3(Qr), |Vu| € L=(0,T; LPO(Q)).

The existence of a unique weak solution to problem (4.2.1)) can be proven under the

minimal requirements on the regularity of the data.

Proposition 4.2.1 (]26,34,/111]). Let @ ¢ RY, N > 2, be a bounded domain with the
Lipschitz-continuous boundary. Assume that p : Qr — R satisfies the conditions

2N
N+2
where p~ := ming, p(z,t) and p* := maxg, p(x,t). Then for every f € L*(Qr) and ug €
L?(Q2) problem has a unique weak solution v € C°([0,T]; L*(Q)) N Wy)(Qr) with
u € W'(Qr). The solution satisfies the estimate

<p” <pz,t) <p*,  pe (@), (4.2.3)
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4.2.1. Statement of main results

ess sup |lull2,0 +/ \VulP@) de dt < C (4.2.4)

te(0,T) Qr

with a constant C depending only on N, p*, || fll2.or and ||luoll2.0-

We are interested in the global regularity of weak solutions in the case when the problem
data, f, ug, p, €2, possess better regularity properties. The main result of this section is given

in the following theorem.

Theorem 4.2.1. Let @ C RN, N > 2, be a bounded domain with the boundary 02 € C?.
Assume that p(x,t) satisfies conditions (4.2.3)) and

esssup |Vp| < Oy < 00, esssup |p| < C*
Qr Qr

with nonnegative finite constants Cy, C*. Let

FeLX0,T;WHHQ),  uo € LA(Q) N W™D (Q) with qo(x) = max{2, p(z,0)}.

(i) The weak solution u(x,t) of problem (4.2.1) is a strong solution. The function u(x,t)
satisfies estimate (4.2.4) and

HutH%QT + ess sup / (Vu|?®D dg < C (4.2.5)
010

with the exponent q(x,t) = max{2, p(z,t)} and a constant C' depends upon N,0Q,T,p*,
C, C*, [Juoll, Lf]-

(ii) The solution u(x,t) possesses the property of higher integrability of the gradient:

4p~
p~ (N +2)+2N
with a finite constant Cs depending on 6 and the same quantities as the constant C in

[T2.5).

/ IVuP@O+ dedt < Cg for every 0 < 9 <

T

(iii) Moreover,
D%, uwe L)(Qrn{(z.t):plz,t) <2}), ifN>2,

p(z,t)—

D,, <|Vu 2 2Dgcju) cL*(Qr) ifN>3, orN=2andp > g,

1,7 =1,2,..., N, and the corresponding norms are bounded by constants depending only

on the data.
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Chapter 4. Parabolic problems with nonstandard growth

Notation. Throughout the section, the symbol C' represents the constants which can be
calculated or estimates using the known quantities, but whose exact value is not crucial for
the argument and may change from line to line even inside the same formula. We use the
notation z for the points of the cylinder Qr: z = (x,t) € Q x (0,7) = Q. The notation D;

is used for the spatial derivative with respect to x;. We also use the shorthand notation

N
|Um’2 = Z |Dz‘2ju|2
ij=1

and omit the arguments of the variable exponent p wherever it does not cause confusion.

4.2.2 Regularized problem

Given a parameter € > 0, let us consider the family of regularized nondegenerate parabolic

problems

p(z)—2

O — div((€ + V)" 5 Vu) = £(z) in Qr,
u=0onI'r=00Qx(0,7T), (4.2.6)
u(z,0) = up(z) in Q.

4.2.2.1 Galerkin's approximations

For every fixed e, a solution of problem (4.2.6)) can be constructed as the limit of the sequence
of finite-dimensional Galerkin’s approximations {ué’”)} The functions u{™ (x,t) are sought
in the form

ul™ (z, 1) = S ul™ () ds(2), (4.2.7)

m
j=1
where ¢; € Wol 2(9) and \; > 0 are the eigenfunctions and the corresponding eigenvalues of

the problem

(Vo ViP)a ) = Mo )an Vo € WP (Q).

_1
The systems {¢;} and {); *¢;} form the orthogonal bases in L?(Q) and Wol’2((2). The
(m)
J
ordinary differential equations

coefficients u; ' (t) are defined as the solutions of the Cauchy problem for the system of m

(™)' (1) = - /9(62 +Vu™ P s de + /Q Jor de.

ugm)(o) = (’U,(),(Z)j)lg, ] = 1727 cee, MM,

where the functions

(4.2.8)
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4.2.2.2. Basic a priori estimates

Z U0,¢] ZQ¢] € Span{¢17¢27"' 7¢m}7
J=1

are chosen so that

™ = ug in Wy '"(Q),  g(,0) = max{2, p(z,0)}.

By the Carathéodory Theorem, for every finite m system has a solution (ug ™) ugm), ceey uﬁ,’? ))
on an interval (0,7},). This solution can be continued on the arbitrary interval (0,7") because

of the uniform estimate sup(q 7,,) HVugm)(-, llg),0 < M with g(x,t) = max{2, p(z,t)}, which
follows from (4.2.29) and (4.2.33).

4.2.2.2 Basic a priori estimates

Lemma 4.2.1. Let Q2 and p satisfy the conditions of Theorem |4.2.1. If f € L*(Qr) and
ug € L*(Q), then u™ satisfy the estimates

p(z)
sup [[ul™ (t)|5.¢ +/Q (€ + [Vul™?) P dz < eT(If13.0p + luoll3g) = Lo-
T

(07)
(4.2.9)

Proof. Multiplying jth equation of (4.2.8)) by ugm) (t) and summing up the results for j =
1,2,...,m, we obtain

1d
(m)12 m)
LAWEIER Zu ()

/e + | Vul™| )

- - / (€ + [Vl )3
Q

Applying the Cauchy inequality to the last term of the right-hand side we transform this

Q

The last inequality can be written as

Ld 40 (myy2 t/ 2 (m) |2y 2
—— (e "||u; +e €+ |Vug
yai (TN e +e7" [ (€ [Vul™P)

Integration of the last inequality in ¢ gives

= Vul™ Vo™ (1) do + Y /Q Foul™(t) do
j=1

M2 gy 1 / Ful™ da.
Q

inequality into the form

€

1 1
M dr < Sl foll3e + 5 ™11 o

e

p(z)—

: ]Vu ]2d$dt<Ce(

-+ luwol3e)

sup [|lu{™ (1)[3.0 +/ (62 + !VU§m)’2)
(0.7) Qr
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Chapter 4. Parabolic problems with nonstandard growth

(m)

with a constant C' which does not depend on ue . O

Corollary 4.2.1. Let € € (0,1). Under the conditions of Lemma

p(2)
/ IVul™ PG 4z < / (& +[Vul™ ) * dz < Ly (4.2.10)
T Qr

with a constant Ly independent of € and m.

Proof. The assertion immediately follows from (4.2.9) and the inequalities

p(z)—2
Va{ P < (& + [vul™?) < 2(c QIZJW(mi'Q) TveP i Va2 e
(2¢2)72 <27 otherwise.
(4.2.11)
O

Let us denote n by the exterior normal vector to 9f).

Lemma 4.2.2. Let 0 € C?, p(z) satisfies (4.2.3) and

esssup |Vp| < Cy < o0, ug € W01’2(Q), f e L*0,T; W012(Q))
T

Then the following inequality holds: for a.e. t € (0,T) and any § >0

p(z)—2

5 dtuw "D+ (min{p~,2} —1-9) /Q (€ + V™ 2) 72 | (u™ oo | da

<00/ VU™ (2 4 |Vu™ 252 102 (2 4 |Vu™ ) da

p(z)

- / (€ + |Vulm|2) 25— (Auf™(Vul™ - n) = ul™ - V(Vul™ - n)) da
o0

+C1[[Vul™ ()30 + CollFOI12 0

(4.2.12)

with constants C;, i = 0,1,2, depending on the data and &, but independent of m and e.

Proof. Multiplying each of equations in (4.2.8) by /\jug.m), j=1,2,...,m, and summing up

the results we obtain the equality

S IVuE o = ZAj<u§m>>’<t>u§m><t>

=3 Au /dw(e+|wm>\ =2 Vu(m)(ﬁjda:—i-Z)\um)/fxtqﬁ]dx

=1

M

div((e2 + |Vul™? )p( - Vu(m)) Aul™ dx —i—/ FAu™ dz.
Q

(4.2.13)
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4.2.2.2. Basic a priori estimates

Since u™ € C3(Q) and 9Q € C?, the first term on the right-hand can be transformed by

means of the Green formula:

—/div ((62 + [ Va2 )p(> Vu(m)) Aul™ dx
Q

() (S s o) Yo

p(z

=— Au(m)(e + [ Va™ 2) 25 (Vul™ . n) dS

p(2)—2

/ ™€+ Va5 (W), da
ka 1

N

m) 2y 2()=2 m m
== [ @RI S (i () = () (7)) 05

k,i=1

p(z)—2

3 ) (@ R ), o
Q= 1 Tk

- / (€ + |VUEM)\2)W2>72 (™) |2 dz + J1 + Jo + Jaq
Q

where

N
Tii= 2@ + Va7 (Z (vulm -wu&m))m)z) dr,

k=1

/ o (U™ ) (€2 + [ Vul™ [2) 257 22 1y (2 4 1970 2) di,
Qk:z 1 2

Joq = —/ (2 + \Vugm)IQ)# (Augm)(Vugm) ‘n) — Vul™ . V(Vul™ . n)) ds.
o0

Substitution into (4.2.13)) leads to the inequality

p(z)—2
2

,(u(m)

€ )MP dx

2 (m)|2
3V o+ [ (@4 19um)
:J1+J2+Jag—/Vf-Vu£m)dm
Q
. 1
< Ji+ o+ Joo + §\|Vu£ B30+ §Hf(t)||[2/v0172(g)'
The term J; is absorbed in the left-hand side because

J1:/ (2—p(z))...—|—/ 2—p(2))...
{ze: p(z)>2} {zeQ: p(2)<2}

N
</ (2 - p()(E + [Vufm) ) 22 (Z (Vulm v<u£m>>xk)2> da.
{ze: p(2)<2}

k=1

and
p(Z) 2

1| < max{0,2 — p }/ & 4+ |V Y2 | ()12 da
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Chapter 4. Parabolic problems with nonstandard growth

The term Js is estimated in the following way: by the Cauchy inequality, for every § > 0

N
m m p(2)—2
| 2| < HVp!oo,QT/Q (Z (™) g | (€2 + [Vl )3 )

i,k=1

p(z)—2

X <|Vu£m)\(62+wu£’"”) 1 lln(62+\Vu£’”)!2>!) da

= 6/ (62 + ‘vugm)P)p@Q)iz ’(ugm))rz‘z dx
Q

p(z

e n%(e + |Vul™|?) dz

+ c/ VU™ (€2 4 [Vulm )
Q

with a constant C' = C(C*, N, ¢). Choosing ¢ € (0,1) so small that min{2,p~} > 1+ J and
collecting in the right-hand side all terms which contain (u(m))m we obtain (4.2.12)) because

1-4 if p= > 2,
1—90—max{0,2—p } = =min{p—,2} —1—4.
p-—1—-4§ ifp <2

4.2.3 Interpolation inequalities

In this section, we derive first the interpolation inequality which yields the property of higher
integrability of the gradient of the finite-dimensional approximations ugm) of the solutions of
problems . We prove next an estimate on the trace of Vugm) on 0f), which turns out
to be useful in the study of the nonconvex domains. Both estimates will be applied to obtain

upper bounds for the terms on the right-hand side of (4.2.12)).

With certain abuse of notation, throughout the section we denote by p(z) or p(z,t) given
exponents defined on © or Qr and not related to the exponent in equation (4.2.1)). Let us

accept the notation

Be(s) =2+ s|?, e>0, seRY, zeQ,

p@)=2 pla)=2

Ve(z,8) =B > (s) = (2 +[s]) 2.
Lemma 4.2.3. Let 00 € C', u € C?(Q) and u = 0 on 9. Assume that

p:Qe [p7,pt], pt = const,
2N
N +2

/ ’ye(:):,Vu)|um\2dm < 00, / u? do = My, / \Vu|p(x) der = M;.
Q Q Q

<p, p()eC @),  ess sup|Vp| =L, (4.2.14)

Then for every
2 <r<r i
=r.<r<rt=
N+2 °F p~ (N +2)+2N

(4.2.15)
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4.2.3. Interpolation inequalities

and every § € (0,1)

p(z)+r—2

Be 2 (Vu)|Vul|?dz < 5/ ve(x,Vu)|um|2d:U—|—C(l—|—/ | V[P d,a:) (4.2.16)
Q Q Q

with an independent of u constant C = C(0, 8, p*, N,r, My, M1).

Proof. Let us fix some r € (r,,r*). By the Green formula

p(z)+r—2 p(z)4+r—2

Be 2 (Vw)|Vul*dz= [ Be > (Vu)Vu-Vudzr
Q Q

p(z)+r—2 px)+r—2
:/ ufe *  (Vu) Vu-ndS — /udlv 2 (Vu)Vu)dz
o0

p(z)+r—2
= —/ udiv(Be ? (Vu)Vu)dzr = —J,
Q

where n stands for the outer normal to 9€2. A straightforward computation leads to the

representation
p(x)+r—2
:/uﬁe 2 (Vu)Audz
Q
p@)+r=2 4 n n
b [ ) =205 V0D 03wy, | da
Q i=1 j=1
(z)+r—2
/uﬂ6 2 (Vu)In(Be(Vu))Vu - Vpdez,
whence

D J:')+T‘ 1

|J|<C/|u]ﬁ€ S (V) g | d + L g T (Vlm AVl de (4217)

n
with C' = C(n, p*,7) and |ugze|? = Z \ijuyz. For every constant 0 < p < min{1l,p~ +r—1}
ij=1
and 0 < v < 1, the integrand of the last term in (4.2.17)) admits the estimate

p(z)+r—1—p P
- BT (V) (53 (Va)|In ﬁe(Vu)]) if 8. (Vu) < 1
Be * (VU)| In 5e(vu)| < p(z)+r—14v v
BT (V) (/35 F (Vu)|In ﬁE(Vu)|> if B.(Vu) > 1

p(z)+r—14v

<Clp)+Cw)pe  *  (Vu),

(4.2.18)
which allows one to continue (4.2.17) as follows:

p(x)+r—2 p(x)+r—14v
<0 [ g T (Ve dz+ € (/ |u|d1:+/ g2 (Vu)da:)
Q Q

p(x)+r—2 p(x)+r—14v

<c \Ulﬁe : (Vu)|um|dx+0,/ ulBe  * (Vu) de"‘M(}/Q-i-C” =: 1.
Q
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Chapter 4. Parabolic problems with nonstandard growth

Using Young’s inequality we finally estimate: for every ¢ € (0,1)

p(x)+r—1 p(z) - p(z)—1+r+v R
’”:C/ (\ulﬂe Py >) Bt (V)utge ) dz + C s (Vuyde+ €

p(z)+2r—2 p(a)+r—1+v

< 5/ Ye(, V) [t |* dx+C'5/ 28 2 (Vu)de +C' | |u|Be 2 (Vu)dz + C
Q

5510+05[1+012+C.
Let {€;}5, be a finite cover of Q such that

0, CcQ, 99;,€C? pf= Irbaxp(x), p; = rrglzinp(a:).
For any r, < r < r*, the continuity of p(x) allows us to choose €; so small that for every
i=1,2,... . K

2N 4
T 1 < ) 4.2.19
o= () < e (42.19)

To estimate the terms I; and I we represent them in the form

K (74) z) 9 p(x)+2(r—1) (’L) p(z)+r—14v
i :/ 280 (V) de, IS :/ Wl T (V) da,

Recall that v € (0,1). By the Young inequality, for any A > 0

p(x +r

I <x| B ? (Vu)da+Cy
Q;

p(z T ++’r
ﬁg (Vu)dx + Cy, 1+/ lu| =7 da
Q;

p(x)+r p;"-&-r
= / Be ? (Vu)dm—l—/ )+ O 1+/ lu| = da | .

p(
1—v daj

For € € (0,1)
p(z)-z‘,-r—Q 9 .
5:(2% (V) = ﬁ:(z);r& (V) + [Vuf?) < 203 +(+TVu)|Vu] if |[Vu| > 1,
(14€e) = otherwise,

which entails the estimate

p(z)+r—2 pF4r

I <on [ g ? (Vu)\Vu|2d;v—|—C>\/ lu| T dz + C.
Q Q;

The second integral on the right-hand side is estimated by the Gagliardo-Nirenberg inequality:

o0 o0 g 5(1-0)
[ullg.0, = CullVullP= o llu IIm ? + Callullg g, < CUIVullPZ o, +CoMg,  Cr=CiMg 7,
with
_l’_ —
= pi +r + - 0 = Pi 1 1 — i _ l 6 1;9
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4.2.3. Interpolation inequalities

Such a choice of the parameters o, 6 is possible if

+
T4+r N
pi v N with r. <r <r*.

v=1-
p; N+2

(4)

Gathering the estimates on I
Ae(0,1)

and using the Young inequality we finally obtain: for every

p(z)+r—2

I, < 20K 56 > (V)| Vul? dx—i—CAZ/ |Vul|Pi dx+ C

P z)+'r 2

<o [ (Vu)Vu|2dac+C§\/\Vu]p(x)dx—i—(}"
Q

p(z)+r—2

=2\K [ B 2 (Vu)|Vu|*dz+C", C"=C"(N,\pf,r|Q|, My, My).
Q

(4)

To estimate I we first use the Young inequality: since ]\%—JL < p; by assumption, then for
every A € (0,1)

(0 N P S
n" < CS\/ lulPi "N dx + )\/ pé (Vu)dx, k= (p(z)+2(r— 1));\,71 (4.2.20)
Qi Qi

i 2N
To estimate the second integral, let us claim that 0 < k < p(x) + 7 on €, i.e.,

0<p(93)+2(7“—1)<p(x)+r( 2N>'

In this double inequality the first one is fulfilled by the choice of r:

0= N2+N2+2( -1 <p +2(r—1)<p(z)+2(r—-1).

The second inequality is fulfilled if

S+ 2N _ p; +r 2N
Fyor—1) <l (—) s (pf —p; <o PiTT 2N
pi20r=1) Pi TN T2 W =pi)tr by N+2

b;
which is true because of (4.2.19)) and the condition r < r*. By the Young inequality

5 pz)tr (262)p(z2)+r if [Vu| <,
BE(Vu) <1460 7 (Vu) <14 piwrrs
28 2 (Vu)|Vul? if |[Vul > €

p(x)+r—2

<C+23 2  (Vu)|Vul.

It remains to estimate the first integral in (4.2.20). By the Gagliardo-Nirenberg inequality

+
\u|p Ea d$<C’1(M0)HVu|| ' N + Ca(Mp)
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Chapter 4. Parabolic problems with nonstandard growth

with .
2 po(N+2) N
f =t = €(0,1)
Ni2 1 )
o o VA2
whence

p(z)+r—2
e (

I < 2X/ Be 2 (Vu)|Vul? da:—i—C’/ IVulP@® da 4 C".
Q Q

Gathering the estimates of I; for |I]| and choosing A, X so small that 2A\K + 2X < 1, we arrive
at the desired estimate (4.2.16|). 0

The assertion of Lemma [4.2.3| easily extends to functions defined on the cylinder Q7. Let
us recall the notation z = (z,t) € Q7 = Q x (0,T") and re-define

p(z)=2 p(z)=2

)
Ye(z,8) = 2 (s)=(+1s)" 2z, e€>0 secRY.
Theorem 4.2.2. Let 9Q € C, u € C([0,T];C%(Q)) and v =0 on 0Q x [0, T]. Assume that

p(2):Qr—[p,p"], pT = const,
p(-) € C%(Qq) with the modulus of continuity w,

2N
<p, esssup |Vp| = L, (4.2.21)
N+z P up [Vp)
| eVl iz <o sup fu(®lfe = Mo, [ [Vuptdz = .
T (0,T7) T
Then for every
2 P 4p~

—— =< r<rf=
N +2 p~ (N +2)+2N

and every ¢ € (0,1) the function u satisfies the inequality

p(z)+r—2

Be * (Vu)\VuFszé/ fyg(z,Vu)|um2dz+C<1+/
Qr

QT

|Vu[P(?) dz) . (4.2.22)
QT

with an independent of u constant C = C(N,0Q, T, 8, p*,w,r, My, My).

Proof. Since the exponent p(z) is uniformly continuous in Q, then for any r, < r < r* there
exists a finite cover of Q7 composed of the cylinders Q) = Q; x (t;_1,t;), i =1,2,..., K,
such that

K
to = 07 tg = T» ti—ti1 = P QT C U Q(z)a aQZ € 027

i=1
pi = maxp(2),  p; =minp(2),
2N 4
- 1 < =1,2,..., K.
p; Pz—i-r( +p_(N+2)> N2 1 22,
For a.e. t € (0,T) the function u(z,t) satisfies inequality (4.2.16]). Integrating this inequality
over the interval (¢;_1,%;) and summing the results gives (4.2.22)). O
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4.2.3. Interpolation inequalities

2N
Remark 4.2.1. Ifp = const > N2 and u(z) satisfies conditions (4.2.21)), then inequalities

(14.2.19) and (4.2.22) hold for every r, < r < r*.

Lemma 4.2.4. Let 0Q be a Lipschitz-continuous surface and ||Vp|looo = L. There exists a
constant § = §(9) such that for every u € WP (Q)

5/ @ 4 < c/ (1= 1] + )] ]| + ") da (4.2.23)
o0 Q
with a constant C = C(p™, L, N,00).

Proof. By [162, Lemma 1.5.1.9] there exists § > 0 and p € (C*(Q))" such that - -n > § a.e.
on Jf). By the Green formula

5 / @ g < / uP@ (4 - 1) dS = / div(|u[P® 1) da
o2 15)9) Q

— [ (Pl 2u(Tu ) + P b ful (T )+ ) div ) da
Q

< p*mgx || | [P Fuld + | Vplocmgxlil | ful1nful|do

Q Q Q Q
—i—max\div,u/ uP® dg
Q Q

SC(er’L,N,Q)/Q(|u’p(:c)—1|vu|+|u|p(x)“nu||+|u|p(x)) da

Lemma 4.2.5. Under the conditions of Lemma for every X € (0,1) and € € (0,1)

/ @ ds < A / (@ + [u2) 2T Va2 + Oy / @ d + C / [l 1n [u]| dz + C
o0 Q Q

(4.2.24)
with constants C;, i = 1,2, 3, depending on N,p*, L, 00, X\, but independent of .
Proof. By the Cauchy inequality, for every A\ € (0, 1)
1 1
[P~V = (A + [ul) T * |Vl 2) ()\ (e o+ |uf?) 28 |uf2lo- D)?
<M+ [u?)" T [Vul? + (6 +[ul?)' IU\“ Y
1
<A+ [u]?)" T |Vul? + (6 + [uf?)! et el
1
= NE + [u)'7 [Vul + (& + [uf?)?
<A+ [u?)’2 [Vul2 + C(1 + |u).
Inequality (4.2.24) follows now from (4.2.23]). O
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Chapter 4. Parabolic problems with nonstandard growth

Lemma 4.2.6. Let 002 € C?. Assume that the functions p(z) and u(x) satisfy the conditions
of Lemmal4.2.3. Then for every X € (0,1)

p(z)—2

/ V) ds < )\/(62+|Vu\2) ) |um2dx+6’(1—|—/ VP dac) (4.2.95)
o0 Q Q

with a constant C' depending on X and the constants p*, L, My, My in ([(£.2.14) and 09, but

independent of u.

Proof. Applying (4.2.24) to u,, we obtain

p(z)—2

/ ]Vu\p(x) ds < )\/(62+ \Vu\z) 2 ]um\z dz
o2 Q

(4.2.26)
e / VP dz + C / IVl In [Val| dz + C
Q Q

with independent of v constants M, L, K. For every 0 < # < p~ and r from inequality (4.2.16))

Vulp™ = (|Vul|In [Vul]) < C'(p,0) if [Vu| <1,

[VulP@)| In V|| <
|Vu\p(x)” (|Vul7"|In |[Vul|) <C"(p~,r) |Vu]p(x)+’” if [Vu| > 1.

Thus, there exists a constant C such that

IVulP@|In [Vu|| < C(1 4 |[Vu/P™+7) in Q

and (4.2.25]) follows from (4.2.26)), (4.2.11)) and (4.2.16]). O

Theorem 4.2.3. Let us assume that p(z) and u(z) satisfy the conditions of Theorem[4.2.3
Then for every X € (0,1)

/ V[P dSdt < A / (€ 4 [Vu) 25 uga |2 dz + C (1 + / |Vu[P(?) dz>
0 x(0,T) Qr

Qr

with an independent of u constant C = C(\, N, p*,0Q, T, L, My, My).
Corollary 4.2.1. Under the conditions of Theorem[{.2.3
p(z)—2

/ (24+|Vul?) 2 |Vu|2d8dt§)\/ (4 Vul?) T juge |2 dot-C <1+/ |Vu[P(?) dz)
0% (0,T) Qr Qr

with an independent of u constant C'.

Proof. The inequality is an immediate byproduct of Theorem and the inequality

<O+ [VuP).

p(2)—2

(2 + \Vu]z) 2 |Vu]2 < (62 + ]Vu\Q)
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4.2.4. A priori estimates

4.2.4 A priori estimates

We are in position to estimate every term on the right-hand side of (4.2.12]).

a) By (4.2.18) and Lemma

p(z)+r—2

/ V™ 2 (2, Vi) (€ + [Vul™ ) de < © (1+ Bl (vugm)\vugm)\?dx)
Q Q

< o / ez, VUl )| (™) da + C (1 + / V) pe) dl»)
Q
(4.2.27)

with an arbitrary d; > 0.
(b) The term
Tog = — /8 Q(e2 + Va2 (Auf™ (Tul™ - n) — V™ -V (Vul™ )
is estimated with the use of Lemma and the following known assertion.

Lemma 4.2.7 (Lemma A.1, [28]). If 9Q € C? and u € W32(Q) N WDI’2(Q), then

p()

Toa| < L/ (€ + |[Vul2) "5 |Vul? s
o
with a constant L = L(0Y). Moreover, Iyq > 0 if 0) is convex.

Gathering Lemmas and we arrive at the following estimate: for a.e. t € (0,7))

/(e2+\vugm>y2)”<32 (m)|2dS§62/%(z ™)) ulm)| da:—i—C’( /|vum>\p da:)
o0

(4.2.28)
with an arbitrary d2 > 0 and a constant C' independent of € and m.
Lemma 4.2.8. Under the conditions of Lemma[{.2.3
p(z)—2
sup [ Va{™ (1)[3¢ +/ (€ + [Vul™ )72 (™) | dz
1) T (4.2.29)
< CeT (14 [Vuola + 17 g o )
and
-
(m) ()47 g, < O P 4.2.
/ |Vu™ | dz < C forany0<r<p_(N+2)+2N (4.2.30)

T

with constants C, C', C" independent of m and e.
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Chapter 4. Parabolic problems with nonstandard growth

Proof. Substitution of estimates (4.2.27)), (4.2.28) into (4.2.12)) leads to the differential in-
equality

2

: — m p(z)=2 m
3V Ol (min{2p7) =6 =61 =82 1) [ (4 [Vl )5 (uf) o

Wy (Q)
(4.2.31)

< Co+Ch /Q [Vul™PE dx + Co| Vul™ (#)]I3.0 + Csll £ ()]}

with constants Cj, ¢ = 0,1,2,3, depending on the data but independent of m and €, and

arbitrary positive d1, d2. Choosing J; so small that min{2,p~} — (1 + 6 + 01 + d2) = pu > 0,

multiplying by e~2¢2* and dropping the second term on the left-hand side, we transform

(4.2.31)) into the differential inequality for HVuem) ®13.0:

d ooyt (m) (41112 —2(Jt< / (m)p(2) 2 )
m t < 2 1 m)|p(2 d t .
i (e [Vu™ ( )||2,Q) < Ce + o [Vu™ | z+ || f( )HWOm(Q)

Integrating in ¢ and using (4.2.9) and (4.2.10]), we finally obtain: for every ¢ € (0,7)

) +1VF13.0,)

[Vu™ )30 < €27 (|Vuol3q + 7 (

< e (1 + lluolgyae gy + 11720 s 2(ﬂ)>> ‘

Now we substitute this estimate into (4.2.31]) and integrate the result in ¢. Plugging (4.2.10)),
we arrive at the inequality

(2)—2

p
/;&”HVQWF)2 Ke>m|w<u%CTQ+vabQ+nﬂBmTWu@J

Estimate ) follows then from Theorem It is sufficient to prove ) for r €

(re, ) Wlth T+, 7 defined in (4.2.15)). Fix some r € (7“*, *), define QF = Tﬂ{p( )—i—r > 2},
Qr = Qr N{p(z) +r < 2} and represent

/ (Vul™ [P gy = / |Vu{m) [ptr dz—l—/ =1+ 1.
T QF Qr
Then
ptr—2 ptr—2
o< [ B (Vul™)Vul™Pdz< | e (Val™)|Vul™ dz
QF Qr

and estimate on I follows. To estimate I_, set By = Q. N{z: ]Vu€ | >eb, BL=Q N{z:
|Vu5m | < €}. Then

L:/ WUVWM—/(meWi2 TW@+/eﬁwz
B+ UB_ B+ _

@ wummmm|w+&+wm|

gc<1+ 56 (vwmﬂvwm|d%.
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4.2.4. A priori estimates

Gathering these estimates and applying Theorem we obtain (4.2.30) with r € (ry,r*).
The case r € (0, r,] follows then by the Young inequality. O

Remark 4.2.2. Inequality (4.2.30) entails the inequality

/ (@4 Va2 e <, e (0,1), te (0, (4.2.32)

T

with an independent of € constant C.

Lemma 4.2.9. Let the conditions of Lemma[4.2.2 be fulfilled and

esssup |pt| < C* < 0.
T

Then the following estimate holds:

1f™)el13,0, + sup / (€ + Va2 de < © (1 + / [VuglP(=) dx) +1F1B o, (4:2:33)
01 Ja Q

with an independent of m and € constant C'.

Proof. Multiplying (4.2.8) with (ug-m))t and summing over j = 1,2,...,m we obtain the
equality
(@,t) =
/ (ul™)2 dx + / (€ + [Vul™ 1) 2= val™ . v (™), dz = / Fl™) de.  (4.2.34)
Q Q Q
It is straightforward to check that

p(z)—=2 ) 2

(¢ + [Vul™?) ¢

(2)
€ + [Vl 2) "5 )

d
(m) . (m)), = =
Vul™ -V (ul™) = o ( e

z)
pe(2)(€ —;2’(21;6 | ) * (1— (2)111((6 —HVugm)]?))).

With the use of this identity we rewrite (4.2.34)) in the form

_l’_

/( (m)y2 do+ 4 (62+|vugm>|2)@ dx
Q dt
p(z)

- pt<e2+ Va0 p(z) (m) 2 (m)
- /Q 20 (1 5 In(e* + |Vu ™| )) +/Qf(u
(4.2.35)

The terms on the right-hand side of (4.2.35]) are estimated separately. For the first term, we

use (4.2.10) and (4.2.27)):
p(z)
<y (1 +/ V() |p() dm)
Q

2 (m) 2
/pt(6 t+[Vue ) (1—p1n((62+\Vu£m)\2)))
N 2
(4.2.36)

172

+C / (€2 + [Vul™ )25 In(e + [Vul™|?) da
Q
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Chapter 4. Parabolic problems with nonstandard growth

The second term is estimated by the Cauchy inequality:

1 1
< SN ll50 + 511/ 1B 0 (4.2.37)

/ ™), da
Q

Estimate (4.2.33) follows after substitution of (4.2.36)), (4.2.37)) into (4.2.35)) and integration
of the resulting inequality in t: for every ¢ € (0,7)

p(z)

W™l +2 [ (@4 [Fum RS do <0 (14 [ (@496 @)
Q Q

p(z,0)
o) + 13 .

O

4.2.5 Strong solution of the regularized problem

In this section, we prove that the regularized problem (4.2.6)) has a unique strong solution.
We show first the existence of a weak solution with ue € L?(Q7) and then prove that this

solution possesses extra regularity properties and, thus, is the strong solution.
4.2.5.1 Existence and uniqueness of weak solution

Theorem 4.2.4. Let ug, f, p and 0Q satisfy the conditions of Theorem [{.2.1. Then for
every € € (0,1) problem (4.2.6) has a unique solution u. which satisfies the estimates

[wellw, ) @) < Co,  ess sup lue@®3 0 + luell3 o, < Co

(4.2.38)

esssup [ [Vul™@do < Co. g(e) = max{2p(),
01)Ja

with a constant Cy depending on the data but not on €. Moreover, u. possesses the property

of global higher integrability of the gradient: for every

4p~
0e(0,7%), r* = ,
(0.7%) p(N+2)+2N

there exists a constant C = C (OQ, N, p*, o, l[woll yr1.ac.0 such that
0

@ I/ ‘LQ(o,T;W&’2m>>>
/ VP& dz < C. (4.2.39)
T

Remark 4.2.3. Due to the fact that estimate (4.2.39)) is global in time and space, it is new
even in the case of constant p. We refer to [114|] for a detailed insight into this issue, in

particular, to (114, Lemma 5.4].

Let € > 0 be a fixed parameter, Q be a bounded domain with the boundary 09 € C?
boundary, and let u™ be the sequence of Galerkin approximations defined in (4.2.7). Under

the assumptions
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4.2.5.1. Existence and uniqueness of weak solution

w € W (), f e LX(0,T):We™(Q), [Vploor < C IIpilloogr < C°

the functions u{™ exist and satisfy estimates (4.2.9), (4.2.10), (4.2.29)), (4.2.30) and (4.2.33).
(m)

These uniform in m and e estimates allow one to choose a subsequence ue * (for which we

keep the same notation), and functions ue, ne such that

ul™ — ue  *-weakly in L=(0,T; L?(12)),
Ugen) — ug in L*(Qr)

’ 4.2.40
Vul™ — Vu, in (LPO(Qr))V, ( )

p(z)—2
2

(€ +[Vul™ )27 Vul™ = e in (2PO(Qr)Y

The assumption p~ > ]\27—12 yields the inclusions

Wy PO (Q) c Wyt () < LA(9).

Since u™ and (ugm))t are uniformly bounded in L*°(0, T} Wol’f (€2)) and L*°(0,T; L?(%2)),
it follows from the compactness lemma [235, Sec.8, Corollary 4] that the sequence {u&’”)}
is relatively compact in C([0,T]; L?(Q)), i.e., there exists a subsequence {ugm’“)}, which we
assume coinciding with {ugm)}, such that u{™ — v, in C([0,T); L*(©2)) and a.e. in Q.

Let us define
Pm = {w : 1/} = sz(t)(bz(w)? 1/% € 01[07T]} .
i=1

Fix some m € N. By the method of construction ugm) € Pm. Since Py, C Py, for k < m, then
for every &, € P, with kK <m

/ WM dz + / (@ + [Vu™ PR P v Ve de = [ fede (4.2.41)

T T Qr

Let £ € Wy (Qr). Take a sequence {{} such that § € Py and § — £ € W,y (Q1). Passing

to the limit as m — oo with a fixed k, and then letting k — oo, from the above equality we

infer that
/ ua€ dz —|—/ Ne- VEdz = / fédz (4.2.42)
T Qr Qr
for all £ € Wy,y(Qr). To identify the limit vector 7. we use the classical argument based on
p(z)—2

monotonicity of the function v.(z,8)s = (2 + |s|>) 2 s: RN — RV,

Lemma 4.2.10. For all z € Qp, &, €RYN, (( #¢) and € > 0

(7e(2, Q)¢ = 7e(2,€)€) - (( =€) = 0. (4.2.43)
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Proof. Let ¢ # £. The straightforward computation shows that

(362, )6 =32, 000) - (€~ O
1
= | g5 +16g+ = o))

p()

S0+ (1-0)0)do - (€~ )

p()2

1
= [ (@105 (=000 [(0(2) ~ 2 cost79) + 1] dble — (I
eP(2)—2 if p(z) > 2,
1 p(z)—2
(v(z) - 1) /0 (@ 1106+ (1— 0T do i p(z) € (1,2),

E=C _ C+0E=Q)
g=c T I+ -0l

> ¢ —¢)?

O]

where p, v are the unit vectors p =

Equality (4.2.41)) is true for & = ugm). By virtue of (4.2.43)), for every ¥ € Py with k <m

= / (ul™)ul™ dz + / (2 + ]Vugm)|2)% (Vul™|?dz — ful™ dz
T T Qr
¥)dz

P() V1/} v( m)

> [ [ @)
T T

+/ (@ + VU™ P25 v g de — | ful™ de
Qr Qr

Let us pass to the limit as m — oo. Using the limit relations (4.2.40), the fact that
(m)(, (m)

Ue )(uE )t — ucue as the product of weakly and strongly convergent sequences, and substi-
tuting (4.2.42) into the resulting inequality, we find that for every ¢ € Py

02/ ueugtdz—i-/ (& 1 Vo) (e — ) dz+/ e - Vodz — | fuedz
T QT T

Qr

=/QT <<e2+|w 2552 vy — 7,6) V(e — ) dz.

Since UpZ; Py is dense in W,y (Qr), the last inequality also holds for every ¢ € W) (Qr).
Let us take v = ue + A§ with )\ > 0 and an arbitrary £ € W,()(Qr). Then

’ /QT /QT ((62 V(e + 262

Simplifying and letting A — 0 we find that

V(ue + X)) — 77€> -VEdz <0.

/T<(€ +\Vu|) Vu6 ) VEdz <0 V&€ Wy, (Qr),

which is possible only if

/ <(€2+\Vu€| V2, — ) Vedz =0 VE € Wy, (Qr).
Qr
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p(z)—2

Thus, the limit function u, satisfies identity (4.2.2)) with the regularized flux (¢>4|Vu|?)~ 2 Vu,.
The initial condition for w. is fulfilled by continuity because u. € C°([0, T]; L*(Q2)).

Uniqueness of the weak solution is an immediate byproduct of monotonicity of the function
Ye(z,8)s. Let uy, ug be two different strong solutions of problem (4.2.6). Combining equalities
(4.2.2)) for u; with the test-function u; — wue, using (4.2.43)) and the formula of integration by

parts (4.1.7) we find that

[ur — ug|3.(t) <0 for ae. t € (0,7),

whence u; = ug a.e. in Qp.

Let us prove estimates (4.2.38), (4.2.39). The uniform with respect to € estimates (4.2.29)
and allow us to choose a subsequence of {ugm)} which satisfies and also
\Vugm)\Q(w’t) — | V2@ x-weakly in L>®(0,T; LY(Q)), q(z,t) = max{p(z,t),2}. Estimate
follows now from the lower semicontinuity of the norm and the modular p,.(s) =

|s|"®) dz with r(z) € CO(Q), r(z) € [1,71], rT < oo (see [112, Th. 3.2.9]). For every
o QE (0,7*), inequality follows in the same way from the uniform estimate (4.2.30]).

4.2.5.2 Second-order regularity

2N 6
Lemma 4.2.11. If p~ > max {]\H—Q’ 5}, the function h(s) = v(z,s)[s|? is strictly convex
with respect to s.

Proof. Fix two points &, € RN, € # ¢, and consider the function

F(r) = 7ye(z,m€+ (1= 1)Q)re + (1= 7)), 7€ 0,1].

Let us accept the notation o = |76 + (1 — 7)¢|? and n = é_g’ The straightforward

computation gives
F'(1) = |6 = (P +0)"F 2 [(po +26) (0 + &) + (0 — 2)(po + 42)(7€ + (1 = 7)¢,m)?] -
Obviously, F"(7) > 0if p(z) > 2. Let 1 < p(z) < 2. Since (7¢ + (1 — 7)¢,1)? < o, we obtain:

FY(7) 2 1€ = G +0)% 2 [(po + 230 + )+ (p = 20 + 4]

= 6= (e +0)T 2 p(p — 1)o? + (5p — 6)oe® + 2¢]

whence F” > 0 for all £ # ¢ and € > 0, provided that p~ >

ot O
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The proof of stronger convergence properties of the sequence Vugm) stems from the fol-

lowing general result on the convergence of sequences of functionals. For convenience, we

formulate it in the form already adapted to our problem.

Proposition 4.2.1 (Theorem 2.1, Corollary 2.1, [224]). Let F(z,8) : Qr x RN — R be
a sequence of nonnegative functions, conver with respect to s for every z € Qr and locally
uniformly convergent to a function Fo(z,s) as m — oo, which is essentially convex with

respect to s for every z € Qr. Assume that Fp(z,s) > a(|s|* + 1) with some constants a > 0,
a>1. If vy € (L(Q7)N, vm — vo in (L*(Qr))N, s > 1, and

Fm(z,vm)dz — Fo(z,v0) dz < o0,
Qr Qr
then

/ |Um — v9|“dz — 0 as m — oo.
T
Theorem 4.2.5. Let the conditions of Theorem be fulfilled.

(i) IfN23orN:2andp*>g, then

Vugm) — Vue a.e. in Qp.

1
(ii) Under the conditions of item (i) ~+&(z, Vue)Dyu. € L*(0,T;W2(Q)), i = 1,2,..., N,
and

1
H"}/g (Z, vue)DiUeHL2(0’T;W1,2(Q)) < M, 7= 17 27 e 7]\7,

with an independent of € constant M.

2N .
(iii) If N > 2 and p~ > N2 then D%u6 € LZEC)(QTQ{Z :p(z) <2}),4,57=1,2,...,N,
and

N
> 1D ucllp(y,@rngzpzy<2y < M
ij=1

with an independent of € constant M’'.

Proof. (i) It is already shown that vul™ = Vu, in LPO)(Qr) as m — co. By Lemma [4.2.11

the function 7.(z,s)|s|? is strictly convex with respect to s. According to (4.2.11)

+ _
(1 + 2”2) +9e(z,8)|s]> > 1+ [s[P®) > |s|P. (4.2.44)

By virtue of the energy equalities (4.2.41)), (4.2.42)) and the limit relations (4.2.40)

/ Ye(z, Vul™) | Vul™|? dz = —/ u(;n)ugm) dz + ful™ dz

T Qr ‘ Qr

— — UeUe A2 + fucdz = / Ye(z, Vue)\Vu€|2 dz as m — oo.
Qr Qr Qr
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4.2.5.2. Second-order regularity

Now we apply Proposition with Fpn(2,8) = 7e(2,8)[s|*> + M and a sufficiently large

positive constant M. It follows that Vugm) — Vue a.e. in Q7, whence

[SIE

1
12 (2, Vul™ ) Vul™ = 72 (2, Vu)Vue  ae. in Q. (4.2.45)

(ii) According to (4.2.29) and (4.2.32)), for every i,j =1,2,...,N

1 2
D: (5 . Vuf) Dl
2,Qr
sc(/ e, Va4 [ <e2+|w£m>\2>”%”|ln<e?+|Vu£m>|2>|dz>
Qr Qr

<c <1+/ (€ + [Vul™ )™ | In(e2 + |V“5m)‘2)‘dz>
Qr

IN

C / Ye(z, Vul™) ul) | dz + C" <1+ / V) P2 +0 dz>
T T

M, M= M(Jluolly1z

IN

Q) HfHLQ(Q,T;WOLQ(Q))v va:t’wv 082,

whence the existence of a subsequence {ugmk)} (we may assume that it coincides with the

whole sequence) such that
1
D; (%2 (z, Vugm))Djugm)) —ni; € L*(Qr) asm — 0.
By (4.2.30]) there exists é > 0 such that

1 p()
17 (2, Vul™ ) Djul™ |l215.0r < (€ + [Val™ )5 o157 < C

1
with a constant C' independent of m and €. Since & (z, Vugm))Djugm) are uniformly bounded

in L?>T9(Qr) and converge pointwise due to (4.2.45)), it follows from the Vitali convergence
theorem that ) )
7é (z, Vugm))Djugm) — 22 (2, Vue)Dju, in L*(Qr).

For every ¢ € C*°(Qr) with supp¢ € Qr and i,5=1,..., N

1 1
(Di <’y§ (z, Vugm))Djugm)> ,gi)) = — (72 (2, Vugm))Djugm), quﬁ)

2,Qr 2,Qr

1
- = (’73 (2, vue)Dju67Di¢> as m — oo.
2}CQT

Thus, it is necessary that

p(z)—2

nij = Dj ((62 + \Vue\z) 4 Djue) € LZ(QT) and ||17in%7QT < M.

(iii) Let us denote Q7 = QrN{z : p(z) < 2}. By Young’s inequality, (4.2.10)) and (4.2.29),
for every D € Q
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_p(®)

p(2)
[ D3 az = [ (e Vu“”MD%uE”F) P vl s

/’ye(z Vaul™ )|D ™)|2 dz+/(e + |Vul™? ) 3 dz<C

with a constant C' independent of e, m and D. It follows that there exists x € LP( (QT) such
that ijug m x in LPO)(D) (up to a subsequence). Since Vul™ — Vu, in L )(Qr), for

every ¢ € C*°(Q) with supp ¢ € Q.

(X, ®)2.0r = lim (DZul™, ¢)2.0, = — lim (D;ul™, D)0, = (Ditte, Djd)2,0s-

m—0o0 m—r00

It is necessary that y = D% U, and HD Ue|lp.y,p < C by the lower semicontinuity of the

modular. O

Remark 4.2.4. Let uc be a solution of problem (4.2.6). The regularity of the reqularized flux

D, (€ + V)5 Dy ) € 12(@r)

leads to the local fractional differentiablity of Vu, see (114, Ch.6] for the case of constant p.

4.2.6 Strong solution of the degenerate problem

4.2.6.1 Existence and uniqueness of strong solutions

Let {uc} be the family of strong solutions of the regularized problems (4.2.6). The uniform
in € estimates 1l allow us to choose a sequence {u, } and functlons u € Wy (Qr),
ug € L*(Qr), n € (LP (QT)) with the following properties:

U, — u  x-weakly in L>(0,T; L*(Q2)),

Uet — Ut IN L2(QT)

Vue, — Vu in (LPOQr))N

Ve (2, Vg, )Vug, — 1 in (L7 (Qr))"
Moreover, u € C([0,T]; L?(2)). Each of u,, satisfies the identity

/ Ue, +€ dz —i—/ Yer (2, Ve, )Vue, - VEdz = fédz VE € Wy (QT) (4.2.46)
T T Qr

which yields

/ u€ dz + / n-Védz = fédz VE € Wy (Qr). (4.2.47)
T T Qr
To identify 7, we use the monotonicity argument. Take & = u,, in (4.2.46)):
/ Uey tle, Az + / Ve (2, Vg, ) Ve, - Vue, dz = fue, dz. (4.2.48)
Qr Qr Qr
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4.2.6.2. Higher integrability of the gradient

By virtue of monotonicity, for every ¢ € W,y (Qr)

/ Yer (2, Ve, )Vue, - Vue, dz > / Yer (2, V)V - V(ue, — ¢) dz + Yer (2, Ve, )Vue, - Vo dz

T T Qr

= /Q (Ve (2, V@) — \V¢|p*2)v¢ - V(ue, — @) dz +/ Yer (2, Ve, )Vue, - Vo dz
T T
+ / |ng§]p72v¢ . V(ue,c —¢)dz = J1 + Jy + J3,
Qr
where

Jy — n-Vodz, J3 — |Vo[P2Vep-V(u—¢)dz as k — oo.
Qr Qr

Since |(7e, (2, V@) — |VoP~2)V¢| — 0 a.e. in Qr as k — oo, and the integrand of J; has the
majorant

(e (2, V) = [VOP2) V9| < 2(1 + [V4[2) 5

<O (1+|VeP),
J1 — 0 by the dominated convergence theorem. Combining (4.2.47) with (4.2.48)) and letting
k — oo we find that for every ¢ € W) (Qr)

/ (Vo296 —n) - V(u - ¢) dz > 0.
Qr

Choosing ¢ = u + A¢ with A > 0 and ¢ € Wj,(Qr), simplifying and letting A\ — 0F, we
obtain the inequality

/ (qu\P(Z>—2vu - n) VCdz >0 V¢ e W,,y(Qr),

T

which means that in ([#.2.47) 1 coincides with |Vu[P*)=2Vu. Since u € C([0,T]; L*()), the

initial condition is fulfilled by continuity.

By virtue of (4.2.38)), (4.2.39), the subsequence convergent to the solution may be chosen
so that |V, |71®D — |Vu|?® sweakly in L(0,T; LY()). Estimate ([#.2.5) follows then
from the lower semicontinuity of the modular exactly as in the proof of ((4.2.38)).

Uniqueness of the constructed strong solution of problem (4.2.1) stems from the mono-
tonicity of the mapping o(z,s)s and the formula of integration by parts.

4.2.6.2 Higher integrability of the gradient

Let us fix § € (0,7*). According to Ve, llp()+s,0, < Cs with an independent of e
constant C, which allows one to choose a subsequence (for which we use the same notation),
such that

Vi, — Vu in LPOT(Qr).
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Chapter 4. Parabolic problems with nonstandard growth

By the property of lower semicontinuity of the modular

/ [VuPG)H0 4z < liminf/ Ve, |[PA) 0 dz < Cs
T k—o0 Qr

with the constant Cj from (4.2.39).

4.2.6.3 Second-order regularity of strong solutions

Let us assume that p~ > max {]\2,—_1;72, g} and show that Vu, — Vu a.e. in Q7. Consider the

sequence of nonnegative functions
FEk (Z, S) = Ve, (Zv S)’S‘2.

F(x,s) are strictly convex with respect to s (by Lemma[4.2.11)) and satisfy inequality (4.2.44]).
It is already shown that Vu., — Vu in LP0)(Qr). According to (£2.46), ([@.2.47)

/ F, (2,Vue,)dz — Fo(z,Vu)dz as k — oo
Qr Qr

and F.(z,s) — Fy(z,8) = |s|P as € — 0 locally uniformly with respect to (z,8) € Qr x R¥.
Indeed:

—2
(€ +1s) T Isf* — |sf?| = IsP?

1 B B . 7
/ $(962+\s‘2)’722d0‘:ls\262’p22‘/ (0 + |s]*) "7 do
0 0

pt—2
|p_2| 62(1+|S|2) 2 lprQ,
< 5 2P

p
By Proposition Vue, — Vu a.e. in Qr.
Let us fix 4,5 € {1,2,...,N}. By Theorem [4.2.5]

ifl<p<2.

1
||Dj (’)/6211C (Z,quk)Diu€k> ||27QT <C

1
uniformly in ¢, therefore there exists 7;; € L?(Qr) such that D <'y€2k (z,VuEk)Diu%) —

75 in L*(Qr). The poitwise convergence Vu,, — Vu yields the pointwise convergence
1 (2)—2 1
& (2, Vue, )Vue, — \Vu|p 2~ Vu, by virtue of (4.2.39)) ||vé, (2, Vue, )Vue, ||2450, are uni-
formly bounded for some § > 0. It follows from the Vitali convergence theorem that
p(z)—2

1 o
Ye (2, Ve, )Vue, — |Vul” 2 Vu in L*(Qr). It follows that n;; = D; <|Vu|p(2> 2Diu>:
for every ¢ € C*°(Qr), supp ¢ € Qr,

1
_(772]7 ¢)2,QT - - kli)m (D] (762]@ (Zy vuek)Dluek> 7¢>
o0 Q?Q
p(z

T
1 )—
=1l <’y£k(z,Vuek)Diuek,Dj¢> = (]Vu\ 2 2Diu, Dj¢>
27QT

k—o0

27QT
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4.3. Double phase parabolic problem with variable growth

Let N > 2and p~ > ]\2,—]}:2 Assume that p~ < 2 and, thus, Q7 = QrN{z: p(z) < 2} # 0.
Arguing as in the proof of Theorem we find that for every D @ Q

p(z)  p(z)
/|D,~2jue|p(z) dz:/ (ye(z,Vu€)|Di2jue|2) 7007 (5, Vul™) dz
D D

p(2)

g/ 'ye(z,VuE)|Di2ju€|2dz+/(62—|—|Vu6|2) 2 dz<C
D D

with a constant C' independent of e and D. It follows that D}uc, — ¢ € LPO)(D) (up to a
subsequence). Because of the weak convergence Vu,, — Vu in LPO)(Qr), it is necessary that

(= Dizju. The estimate ||Dz‘2jqu(~),D < C follows from the uniform estimate on D?jue.
4.3 Double phase parabolic problem with variable growth

In this section, we study the following parabolic problem with the homogeneous Dirichlet

boundary conditions:

up — div (\Vu\p(z)*QVu + a(z)]Vu\Q(z)*QVu) = F(z,u) in Qp,
u=0onTIp, (4.3.1)
u(z,0) = up(x) in Q,

where z = (x,t) denotes the point in the cylinder Q7 = Q x (0,7] and I'r = 9Q x (0,7
is the lateral boundary of the cylinder, @ € RY be a smooth bounded domain, N > 2 and

0 < T < oo. The nonlinear source has the form

F(z,0) = fo(2) + b(2)|v]”*) 2. (4.3.2)
Here a > 0, b, p, q, 0 and fjy are given functions of the variables z € Q7.
4.3.1 Assumptions and main results

Let p,q : Q7 — R be measurable functions satisfying the conditions

2N L=
N+2<p_5p(Z)§p+mQT,
(4.3.3)
2N i <G pE gF = const
Nig - Sax)<ginQp,  pT g = const.

Moreover, let us assume that p, ¢ € W5h*(Qr) as functions of variables z = (x,t): there exist
positive constants C*, C**, C,, C,, such that

esssup |[Vp| < Cy < 00, esssup |p] < C¥,
Q

r or (4.3.4)
esssup |Vg| < Cuy < 00, esssup |q] < C*.
T T
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Chapter 4. Parabolic problems with nonstandard growth

The modulating coefficient a(-) is assumed to satisfy the following conditions:

a(z) >0 in Qrp, a € C([0,T); Wh>(Q)), esssup |a;| < C,, C, = const. (4.3.5)

T

We do not impose any condition on the null set of the function a in Q, and do not distinguish
between the cases of degenerate and singular equations. It is possible that p(z) < 2 and

q(z) > 2 at the same point z € Q7.

Definition 4.3.1. A function u: Qr — R is called strong solution of problem (4.3.1) if
(i) w € Wy)(Qr), u € L*(Qr), |[Vul € L®(0,T; L*(Q)) with s(z) = max{2,p(2)},
(i) for every i € Wy (Qr) with ¢y € L*(Qr)

/ g dz + / (VD2 4 o(2)| Va1 -2)Vy . Vi dz = / Pz, u)pdz, (4.3.6)

T

(iii) for every ¢ € CE(Q)
/(u(w,t) —up(z))p dr — 0 ast— 0.
Q

The main results are given in the following theorems.

Theorem 4.3.1. Let Q € RN, N > 2, be a bounded domain with the boundary 0Q € C2.
Assume that p(-), q(-) satisfy conditions (4.3.3)), (4.3.4), and there exists a constant
* 4p~

re(0,r"), r*= ,
(0,7) p(N+2)+2N

such that

p(=) < a(z) < p() + 5 in Qp. (4.3.7)

If a(-) satisfies conditions ([4.3.5) and b = 0, then for every fo € L*(0,T; WolQ(Q)) and
1,2 .
ug € Wy *(Q2) with

/ (1Vu0f? + [Vuo " + a(z, 0)| Va2 dr = K < o (4.3.8)
Q

problem (4.3.1) has a unique strong solution w. This solution satisfies the estimate

||ut\|§7QT + ess sup / (\Vu|s(z) + a(z)|Vu|q(Z)) dx +/ IVulPOHr dz < ¢ (4.3.9)
0,7)JQ Qr

with the exponent s(z) = max{2,p(z)} and a constant C' which depends on N,09, T, p*,q*,
r, the constants in conditions (4.3.4)), (4.3.5)), Hf0||L2(O,T;W01’2(Q)) and K.
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Theorem 4.3.2. Let in the conditions of Theorem[{.3.1], b # 0.

(i) Assume that b,o are measurable bounded functions defined on Qr,

”Vb|’007QT < 00, HVU”OOQT < o9,

2<o0 <ot <1+ pf, o~ =essinfo(z), ot =esssupo(z).
2 Qr Qr
Then for every fo € L?(0,T; W(}’Z(Q)) and ug € Wol’Q(Q) satisfying condition (4.3.8)
problem (4.3.1)) has at least one strong solution w. The solution u satisfies estimate
(4.3.9) with the constant depending on the same quantities as in the case b =0 and on
IVbloo,@rs IVO|lo0,Qr 5 ot, esssupq,. [b].

(ii) The strong solution is unique if p(-),q(-) satisfy the conditions of Theorem and
either 0 =2, or b(z) <0 in Qr.

4.3.2 Auxiliary propositions

Until the end of this section, the notation p(-), ¢(-), a(-) is used for functions not related to
the exponents and coefficient in (4.3.1) and (4.3.16).

Lemma 4.3.1 (Lemma 1.32, [34]). Let 9Q € Lip and p € C%(Qp). Assume that u €
L(0,T; L () N Wy " (Qr) and
ess sup ||u(,t)\|§Q +/ IVulP®) dz = M < cc.
(OvT) QT

Then
HUHP()uQT S C’ C= C(M,p:t,N,UJ),

where w is the modulus of continuity of the exponent p(-).

The proof in [34] is given for the case 2 = Bgr(x¢). To adapt it to the general case, it is

sufficient to consider the zero continuation of u to a circular cylinder containing Q7.

Let us accept the notation

Be(s) = e+ \5]2,
p(z)—2 q(z)—2

L, . N (4.3.10)
ve(z,8) = (e + [s]?) 2 +alz)(e+1s[) 2, seR”, ze€Qr, e€(0,1).

With certain abuse of notation, we will denote by ¢(z,s) the same function but with the

exponents p, ¢ and the coeflicient a depending on the variable z € ().

Lemma 4.3.2. Let Q € RY, N > 2 be a bounded domain with the boundary 0 € C2,
and a € WH(Q) be a given nonnegative function. Assume that v € W32(Q) N W&’Z(Q) and

denote
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Chapter 4. Parabolic problems with nonstandard growth

K= a@)(@+ Vo) 3 (Av (Vo -n) — V(Vo-n)- Vo) dS, (4.3.11)
onN

where n stands for the exterior normal to O2. There exists a constant L = L(9Y) such that

p(=z

2 2, R(z) -2 2
K < L/ a(z)(e” +|Vo|*) 2 |Vv|~dS.
o0

Lemma follows from the well-known assertions, see, e.g., [180, Ch.1, Sec.1.5] for the
case a = 1, N > 2, or |28, Lemma A.1] for the case of an arbitrary dimension. Fix an arbitrary
point £ € 99 and introduce the local coordinate system {y} with the origin £. The system is
chosen so that yn coincides with the direction n. There is a neighborhood of £ where 0f2 is
represented in the form yx = w(y1,...,yn—1) with a twice differentiable function w. In the

local coordinates
N-1
Ipo =Av(Vv-n)—V(Vu-n) - Vo= Y (D;iyiwDyNw - D;inwDyiw) ,
i=1

where w(y) = v(x), and

N-1 N-1
I90(€) = — (Dyyw(0))? > D;iww(O) =—(Vo(&)-n)* > D;yiw(O).
=1 =1

Since w is two times differentiable, then |I5o(¢)| < C|Vu(€)|? with a constant C' depending
only on N and sup ]Dgiij(y)]. Estimate (4.3.11]) follows because ¢ € 91 is arbitrary.

Lemma 4.3.3. Let 0X2 be a Lipschitz-continuous surface and a(-) be a nonnegative function
on Q. Assume that a,q € W (Q), with

||Vquo,Q < L < o0, ||Va||oo7g < Lo < 0.

There exists a constant § = 6(0Q) such that for every u € WH10)(Q)

a(z

5/ a(@)( + [u2) 7 [ul>dS
o0

(4.3.12)
< c/ (a(@)[ul"@ = [Vul + a(2) [ul"®)| n [ul] + [u*®) +1) do
Q

with a constant C = C(q*, L, Lo, N, Q).
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Proof. By [162, Lemma 1.5.1.9] there exists § > 0 and p € (C*=(Q))" such that y-n > § a.e.

on 0f2. By the Green formula

5 | a(x)|u?™ds < / a(z)|u)?@ (1 - n) dS = / div(a(z)|u|® ) d
o0 o0 Q

= [ o) (ata)luf"2u(a )+ ") ul (Vg )+ ) i ) + a1 (V- )] do

< gt mgxlul [ a(o)|al ! |Vuldo + [Vl gl | ato)lul’®
+maxdlvu|/ |u\qx)dx+max|u|\|\Va|||Loo /|qu>dx
Q

= C/ 2)ul 1@V + al@)]ul”) I ful| + [u]"®)) d

)| In |ul| d

with C = C(N,q", L, Ly, ). This inequality implies (4.3.12)) because

Q(m)

a(@) (€ + [uf2) 7 uf? < (@) (E + [uf?)F <

O]

with an independent of u constant C.

Corollary 4.3.1. Under the conditions of Lemma for every X € (0,1) and € € (0,1)

/ a(z)(€ + [uf2) |u2d5‘<)\/ a(2)(€ + [u2) 5 |V u|? da
o0 (4.3.13)

+L0/ |u|1®) d:1:+L/a(z)u|q(m)|ln|u||dm+K
Q Q

with independent of u constants K, L, L.
Proof. We transform the first term on the right-hand side of (4.3.12)) using the Cauchy in-

equality:
alul™ [Vl < (a(e + [u®) T [Vul?)2 (a(e + |uf?)?)?
< a(€? + [uf?) T Vul? + Ca(e? + [ul?)$.
O

Theorem 4.3.3. Let 9Q € C2%, u € C?(Q) and u = 0 on 9. Assume that a(-) satisfies the
conditions of Lemma p(-) satisfies the conditions of Lemma[{.2.5, and

2N
q: g, g% C <N+2’OO> ) S WI’OO(Q)» esssgp\Vq| =

If for a.e. x € Q)

2 4p
ith
q(z) < plx)+r wi N2 <r<p*(N—|—2)+2N’
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Chapter 4. Parabolic problems with nonstandard growth

then for every A € (0,1)
/ Oc(x, Vu)|Vul> dS < )\/ Oc(x, V) [tz |* dx + C (1 +/ |V [P(®) dm) (4.3.14)
o0N Q Q

with a constant C depending on A and the constants p*, N, L, Lo, but independent of .

Proof. Applying (4.3.13)) to |Vu| we obtain

VRS <A [ @)+ [VaP) S s da
Q

/ o) (€ + [Vuf?)
o0

—|—L0/ V] 9®) dx+L/ V@) 1n [Val| do + K
Q Q
(4.3.15)

with independent of u constants L, K, Ly. Choose 0 < 71 < 9 < r* so small that ¢(z) +r; <
p(x) + ro and

V|1 (V4] 7 | In [Vl |) < C(r1, ¢7)[Vu| 1@ if [Vl > 1,
[Vu|? |In|Vul] < C(q7) if |Vu| € (0,1).
< C (14 |Vu[retm)

V) In [V < {

with a constant C' independent of w. Thus, there exists a constant C' such that

IVul?@) | In |Vu|| < C(1 + |Vu|T@F) < C(1 4 [VulP®H72) in Q.

Using this inequality and then applying Lemma we continue (4.3.15)) as follows:

q(z)—2

/a(x)(e2+\Vu|2) > |Vul? dS
o

q(z)—2

gA/ a(x)(e + |Vul®) " 2 |uge|* do +C(1—|—/ |V [P@) 472 d:c)
0 Q

a(z)—2 p(z)—2

g)\/ a(@)(E + |Vul?) ™3 ]um\zdx—l-)\/(EQ—i—]Vu\z)? |2 d
Q Q

+C <1 +/ VP dm)
Q

= )\/ 0z, V) |tgs|* dz + C (1 +/ |Vu[P®) dx) _
Q Q

Adding to this inequality the inequality corresponding to ¢ = p and a = 1, we arrive at

(3 T). =
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4.3.3 Regularized problem

Given € > 0, let us consider the following family of regularized double phase parabolic equa-
tions:
Ou — div(pe(z, Vu)Vu) = F(z,u) in Qr,
u=20 on I'p, (4.3.16)
u(0,.) = ug in Q, e€(0,1),
where F(z,u) is defined in and ¢¢(z, Vu)Vu is the regularized flux function.

Let € > 0 be a fixed parameter. The sequence {ugm)} of finite-dimensional Galerkin’s approx-
imations for the solutions of the regularized problem (4.3.16)) is sought in the form

m

ul™ (1) = 3 ul™ ()b (x) (4.3.17)

J=1

where ¢; € Wol 2(Q) and A; > 0 are the eigenfunctions and the corresponding eigenvalues of

the problem
(Vo5, Vib)oo = Aj(5, )20 Vb € Wy (9). (4.3.18)

_1
The systems {¢;} and {); *¢;} are the orthogonal bases of L?(Q) and W(}’Q(Q). The coeffi-
(m)
J
ordinary differential equations

cients u; ’(t) are characterized as the solutions of the Cauchy problem for the system of m

aﬁW@=—A%@vwmw&WV@W+AFwwW@m7

ugm)(o) = (uém)a¢j)2,ﬂ) .] = 1727"'7m7

(4.3.19)

where ¢, is defined in (4.3.10) and the functions u(()m) are chosen in such a way that

m

ug™ = Y (u0, é5)2.00; € span{é1, da, .. b},
= ) (4.3.20)
m) in Wy*(Q)  if maxgq(z,0) <2,
Uy = — UQ

in Wol’r(')(Q) if maxg q(z,0) > 2, where r(z) = max{2, ¢(z,0)}.

By the Carathéodory existence theorem, for every finite m system (4.3.19)) has a solution
( (m)  (m) (M))

uy Uy ,...,Um ) in the extended sense on an interval (0,7),), the functions u{™ (t) are

i
absolutely continuous and differentiable a.e. in (0,7,,). The a priori estimates (4.3.47),

(4.2.33)) in the case b =0, and (4.3.56)), (4.3.57) in the case b # 0, show that for every m the

function ugm) (z,T,,) belongs to span{¢1,..., ¢, } and satisfies the estimate

IVal Tl + [ (19080 D) P2+ ale, 1) |90 (2, T, 107 ) i
Q

< C+ ol g, + IVug™ 3.0 + /Q (IVug™ P + a(z, 0)|Vug™ 20 da
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Chapter 4. Parabolic problems with nonstandard growth

with a constant C' independent of m and e. Since a(-,0) is uniformly bounded in €, the

sequence {u(()m)} according to (4.3.20) and |Vug| satisfies inequality (4.3.8), this estimate
allows one to continue each of ugm) to the maximal existence interval (0,7).

4.3.4 The choice of the sequence {uém)}

In the case sup ¢(x,0) < 2 the embedding Wol’Q(Q) C WOI’Q("O)(Q) allows us to take u(()m) =
m (m)

iziu; (0)¢;. Let supg(z,0) > 2. We approximate the initial function ug by the sequence

of finite-dimensional approximations for the solution of the elliptic problem

Bz, u)u —div (a(xz, Vu)Vu) = f —divd in Q, u =0 on I (4.3.21)
where
Bla,u)u = [u]" " %u 4 ag(z) [uf*©~2u,
oz, Vu)Vu = |Vu|" D 72Vu + ag(z)|[Vu|* @D 2Vu,  ag(z) = a(z,0),
r(z) = max{2,p(z,0)} > 2, s(z)=max{2,q(z,0)},
and

f = B(x,up)uo, & = a(x, Vug)Vug. (4.3.22)

It is assumed that the exponents p(z,0), ¢(x,0) and the coefficient ag(z) satisfy conditions
@33), @34), @33), @2.19). Since ug € Wy*(Q) and satisfies condition ([.3.8), then
ug € LS(')(Q) by virtue of Sobolev type embedding and condition on the gap between
p(z,0) and ¢(z,0).

A natural analytic framework for the study of problem (4.3.21)) is provided by the Musielak-
Orlicz spaces. We introduce these spaces following [119, Sec.1], see also [82,83]. Let us define
the function H : Q x [0,00) — [0, 00) as

H(z,t) = " + ag(z)t*®). (4.3.23)
The function #H is a generalized N-function: for every ¢t > 0 H(-,¢) is measurable in Q, for
a.e. = € ) the function H(z,-) is even and convex, H(z,0) = 0, H(x,t) > 0 for t # 0 and

lim H(@,t) =0, lim H(@,?) =00

t—0 t t—00 t

The function H satisfies condition (Ag): there is a positive constant K such that
H(z,2t) < KH(xz,t) forxzeQ,t>0.
The set

LHQ) = {u : Q+— R|u is measurable, py(u) = / H(z,|ul) dx < oo}
Q
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43.4. The choice of the sequence {u{™}

equipped with the Luxemburg norm

s = inf{)\ S0 py (1;) < 1}

becomes a Banach space. The function

H*(x,s) = sup(st — H(z,t)), x€Q, s>0,
>0

is called the complementary to H function in the sense of Young. For H defined by (4.3.23))
H*(x,t) = (r(z) — D" + (s(x) — Dao(x)t*®, zeQ, t>0.

The function H* also satisfies condition (Asz), and H is the complementary function to H*.

The following properties hold:
Proposition 4.3.1 (Propositions 1.1, 1.3, [119]). For every u € L*(Q), v € L' (Q)
(0 /QH(x,my)dx <1 e Juln<t,
(ii) up — u in L(Q) < /Q”;’-l(ac, |un|) de — /QH(Q:, lul) dz as n — oo,
(iii) [(v,w)y= H| = ‘/ uvdx
(iv) He(x, ]t!)]t:u = 2(w)\u]r(‘”)*2u + ao(x)s(x)\u]s(z)*zu c L™ (Q),
(v) st < eH(x,t) + Cle)H*(x,s) for all e > 0, x € Q, s,t > 0, and equality holds if

s =H(z,t) and e =1,
(vi) H(z,t) < He(z,t)t < H(x,2t) forz € Q and t > 0.

< 2|\l l|v ]|,

By V(£2) we denote the Musielak-Sobolev space
V(Q) = {ue L¥Q) : [Vl € L¥(©)}
with the norm
[ully = llulls + [Vl

Let us define the space V(§2) as the closure of C§°(Q2) with respect to the norm |ju|ly. By
[119, Propositions 1.7, 1.8] the space Vy(2) is a separable and reflexive Banach space.

Definition 4.3.2. A function u € Vo(Q) is called weak solution of problem (4.3.21) if for
every ¢ € Vo(2)

/ (B(z,u)up + a(x, Vu)Vu - Vo) dz = / (fo+ P Vo) dz.
Q Q

We want to construct a solution of problem (4.3.21)) as the limit of the sequence of finite-
dimensional approximations in the same basis we use to approximate the solution of the

evolution problems. Let us define the operator
(A(u),v) = / B(x,u)uv dx +/ a(z, Vu)Vu - Vodzr Y u,v € V(Q).
Q Q

Solvability of problem (4.3.21]) will follow from the following properties of the operator A.
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Chapter 4. Parabolic problems with nonstandard growth

(a) A: Vy = V" = {v e L (Q)] |V € LH(Q)} By the properties of py(-), for every
u,v € Vo(Q) we have B(x,u)u € L* (), a(x, Vu)Vu € (L*(2))V and
[{(A(u), v)p=p| = ’/ Bz, u)uv dx + / a(z, Vu)Vu - Vo dz
Q Q

< 2([18(x, wullnvlln + [z, Vu) Vull- [ Volla)
< C([lullnlvlle + IVullalVolla) < Cllullyellvive

H*

(b) A is strictly monotone: for every &, € RY, ¢,z € R, and = €

> r(x) 2—8(:6) _18(x)
(00,6 ~ 0,0, § = 227l = (0 a2 e,
(B(a,y)y — Bla,2)z,y — 2) > 27" @]y — 2" m) +a(x)27° |y — 2@,
(c) A is hemicontinuous: for all u,v,w € Vp(€2) the function A — (A(u + Av),w)p-y is

continuous.

We look for a solution of problem (4.3.21)) as the limit of the sequence u,, = > i, c;p; €
Pm, where ¢; are the eigenfunction for the (—A) operator normalized by the condition
lpillz.o = 1, Py = span{¢i,...,¢m}. The set P, C Vo(2) is isomorphic to the space

R™ equipped with the usual scalar product (z,y) = >""; z;9; and the norm |z|2, = Y7, 2.
The constant vector ¢ = (cy, ..., ¢y) € R™ is the solution of the system of nonlinear algebraic
equations G;(c) = 0, where

Gi(c) = (Alum), dihv=y = (f, didrr ot — (2, Vi)pr e,  i=12,...,m. (4.3.25)

Solvability of the system G;(c) = 0, i = 1,2,...,m, follows from the Brouwer fixed point
principle in the form [196, Ch.1, Lemma 4.3]. Relations define the mapping ¢ — G(c)
from R™ into itself. The mapping G is continuous and (G(c), ) > 0, provided |¢|,, = p with a
sufficiently large p > 0. Multiplying each of equations by ¢;, summing up and using

Young’s inequality we obtain:
<A(um)a um)V*,V = p’H(um) + p’H(‘VUmD,

(D, V)1 n = ]VUOV(x)_Z + a0|Vuo\s(x)_2) Vuo - Vu,, dz

s(xz)—1 1
<|Vu @ 1|Vum|+< (”\Vuo|> (GS(Z)IWm!D dr (4 3.96)

H(Wum\) + Cspn(|Vuol),
(fs um)rx 1 < 0pr(um) + Cspa(uo)

IN

s\s\

| /\

146



43.4. The choice of the sequence {u{™}

1
Gathering these relations with 6 = - and using Young’s inequality once again (recall that

r(x) > 2) we have: for the sufficiently large |c|,, = p = p(f, @)
1
(G(e), ) = 5 (pu(um) + pu(|Vuml)) = € (pu(|Vuol) + pr(|Vuo))

1
> =C"+ §HVUmH§,g — C" (pr(uo) + pr(|Vuol))

0 ] , (4.3.27)
>~ + llumlBo —  (pu(uo) + pu(|Vuo))
2
Cc
= o ¢ o) + Vel 2 0.

where C is the constant from the Poincaré inequality (4.1.5) with » = 2. Thus, if f, ® are

defined by ([#.3.22) and f, |®| € L™ (Q2), then problem (4.3.25) has a unique solution u,, € P,
in a ball [lupm 3o = |c[2,< p*.

Theorem 4.3.4. Assume that the exponents p(-,0), q(-,0) and the coefficient ay(-) satisfy
conditions (4.3.3), (4.3.4), (4.3.5), (4.2.19). If up € Vo(R2), then problem (4.3.21) has a

unique weak solution u € Vo ().

Proof. Let {umn} C Vo(€2) be the sequence of the approximate solutions. By (4.3.25]), (4.3.26])

pr(tm) + pr([Vum|) < C (pr(uo) + pr(|Vuol)) (4.3.28)
with an independent of m constant C. Since Vy(2) is separable, Vy(2) C Wol’r(')(Q), the
embedding Wol’r(')(Q) c L*O)(Q) is compact and L*0)(Q) ¢ L*(Q), there is a subsequence (we
assume that it coincides with the whole sequence) and functions n € (L*" (Q))N, u € L*(Q)
such that

(i) um — uin L*(Q), Vu,, — Vu in L7(Q),
(i) B, tm)tm — B, u)u in L (Q), (4.3.29)
(iit)  a(-, Vi) Vi, — nin (L Q).
The claim (4.3.29)) (ii) follows from the generalized Lebesgue dominated convergence the-

orem. Since u,, — u in L™(Q) and B(,-) is a Carathéordory function, then
H* (z, |B(x, um)um — B(x,u)u|) — 0 for a.e. z € Q (4.3.30)

(up to a subsequence). Using the convexity, (Ag) property of the generalized N-functions H
and H*, and Proposition we obtain

0 < H (2, |8, tm Yt — B, w)ul) < C (M (2,182, tm ) ) + H (2, B, w)u) )
< O (W, [He(a, D), +H (2 [He(as DD, )
= C (Ma(, t]) et — H (@, [t ]) + Hal, [H) =t — H(, [u]))

< O(K — 1) (H(z, [um|) + H(z, |u]).
(4.3.31)
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Chapter 4. Parabolic problems with nonstandard growth

According to Proposition (ii) and (4.3.29) (i) we have py(upm) — pu(u) and H(z,|ul) €
LY(Q). The claim (4.3.29) follows now from (4.3.30) and (4.3.31]).

For every m € N and ¢, € P, with k£ <m

(A(um), dr)vey = (f br)rs 1 + (P, Vi) n.

Letting m — oo we obtain

(B, w)u, dr)rs 3 + (0, Vo) = (f, d)ar 1 + (2, Vi) g m-
By the monotonicity of a(-, Vi, )Vuy,, for every ¢ € Py,
(a(z, Vum) Vg, Vum) e i 2 (0@, Vi ) Vi, V) g a0 + (o2, V) Vi, Vg, — Vi)gee 4,
thence
(a(x, V) Vi, V)= 20 + (o, V)V, Vg, — V)i 10 < (0@, Vi) Vi, V)1 2
= (fs um)rs 3+ (L, Vum)re 1 — (B(, wn) Ui U )p= 1

The right-hand side and both terms on the left-hand side of this inequality have limits as

m — oo, whence

(a(z, Vi)V =0, Vu = Vi)ge 30 < 0

for every ¢ € P, with any finite [. It follows that the same is true for every 1 € Vy(2). To
identify n we take » = u+ A with A > 0 and ¢ € V(). Simplifying the resulting inequality,
sending A — 0" and using hemicontinuity of a(z, £)¢ we find that

(a(x, VU)VU -1, VC>'H*,'H < Oa

which is impossible unless this relation is the equality. Uniqueness of the weak solution follows

from (4.3.24). O

The constructed solution u of problem (4.3.21)) is unique and P, 3 uy, — u in Vp(2). On
the other hand, ug is another solution of the same problem, therefore u = ug a.e. in 2. By
(4.3.28) and due to the choice of the exponents r, s, for every € € (0,1)

p(z az

,0)— ,0)—=
IVl + [ (€ +Van) 2 [T + ala,0)(E + [V )57 V| da
Q

< C (14 |[Vuol3.a + Fluo, 0)) < '
(4.3.32)

with an independent of m and e constants C, C".
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435 A priori estimates

(i) A priori estimates I: the case b =0

Lemma 4.3.4. Let Q be a bounded domain with the boundary 02 € Lip, p(-),q(:) satisfy
[4.3.3), a(-) satisfies (£.3.5), ug € L*(Q) and fo € L*(Qr). If b =0, then u™ satisfies the

estimates

sup [ 0Ba+ [ gue, Tulm)Tulm P dz < CreT (|
te(0,T) Qr

) (4.3.33)

and

/ (VPO + a(=)|Vulm 99)) dz < ¢, / ez, Vul™)|Vul™ 2 dz 4 Cs (4.3.34)
T

T

where the constants C; are independent of € and m.
Proof. By multiplying j* equation of (4.3.19) by ugm) (t) and then by summing up the results
for j =1,2,...,m, we obtain

1d (m) o~ (m m)yo, (m
§£Hu H3a = Zu ! = > W™ /«pe 2, Vul™)Vul™ Vi da

J=1

/foa:t% ™ (1) da

‘/ ez, Vul™) | Vul™ 2 da + / folz, tyul™ da.
Q Q
(4.3.35)

Using the Cauchy inequality, we obtain

1d, . . 1 1. o
==l )('7t)”%,9+/ pe(z, Vul™) [ Val™ > do < || fo(, )50 + 5 [ul™ ()13 0-
2 dt 0 2 2
(4.3.36)

Now, rewriting the last inequality in the equivalent form
Ld 40 m) 2 —t (M) |, (m) (2 e’ 2
2t (I ey + e [ pele, Vam)ITU do < 1ol Bl
and integrating with respect to ¢, we arrive at the inequality

sup [[ul™ ()32 + / ez, Vul™)|[Vul™ 2 da dt < Ce™ (|| fol3,0p + Iluoll3 )
te(0,T) Qr

(4.3.37)
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where the constant C' is independent of € and m. Since a(-) is a nonnegative bounded function,
the second assertion follows from (4.3.37)) and the inequality

(z)

a(2)|Vul™|13) < a(2) (e +|vum>\)

a(z)—=2
(e +|Vue B) v i vl 2., 4359

+
) <27 a(z) otherwise.

Lemma 4.3.5. Let Q be a bounded domain with C? boundary. Assume that p(-),q(-) satisfies
(“.3.3), (@:3.4), (3.7 and and a(-) satisfy (4.3.5). Ifug € T/VO1 2(Q), fo € L2((0,T); WOM(Q))
and b =0, then for a.e. t € (0,T) the following inequality holds:

HVU (7t)H§Q+CO/ ez, Vul™)|(ul™) 10| da
th ’ Q

<01 (1 [ [DuPE de ot [T 010 + 1Ol
(4.3.39)

with independent of m and € constants 0 < Cp < min{p~ — 1,1} and C; > 0.

Proof. Let us multiply each of equations in (4.3.19)) by )\jugm) and sum up the results for
j=12,...,m

2Vl = 3 X (0™ (1)

:Z)\]u

—1

oL~

mn /le ©e(z, Vu( ) u§m>) oF d:v—{—Z)\jug»m)/ fo(z,t)p; dx (4.3.40)
=1 @

<

= — | div(pe(z, Vul™)Vul™) Aul™ d$+/f0(9:7t)Au£m) dz.
@ Q

Since 9Q € C?, then ugm)(-,t) € C3(Q) N CH(Q) as a combination of solutions of problem
(4.3.18). Therefore the first term on the right-hand of (4.3.40)) can be transformed by means
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of the Green formula:

—/div ((ps(z,Vugm))Vugm)) Aul™ dg
Q

N

() (z e gm»x,.)%) .

k=1

= Augm)%(% Vugm))(v n)ds + / mkzkzi@e(zv vugm))(ugm))ﬂh dx
o0 Q gi= 1

N

= _/ 4,05(2 vu(m)) Z ((ugm))wkwk (ugm))wini - (Ugm))xk% (ugm))rznk) as

k,i=1

/ Jaya: (‘Pe(zavugm))(UEm))“) dz

ka 1 Tk

- _/ we(z, Vul™) | (ul™) > da + J1 + Jo + Joq + Ja,
0

where n = (nq,...,ny) is the outer normal vector to 012,

le—/ﬂ(z—p(z))(e [Vl 2) <Z (vulm v (m))xk)2> da

om) 202202 1 (g (m) (m)y )
+ [ 2= a@)al)( + V) > (Vul™ - v, ) ) de,

k=1

N
To == [ 3 )y (W) (4 [V ) B2 4 [ d
Qki=1

N
S U (0 ()@ [T L (4 [Vl
Q

Substitution into leads to the inequality
3V OB+ [ e V) l) o d
=Ji+J2+ Joa + Jo — /QVfo - Vul™ da (4.3.41)
< S+ o+ Jdsa+ Jo+ 1Hvu(m)('a 30 + 1||f0(',15)|’2 120"
2 ¢ ’ 2 Wy ()
The terms on the right-hand side of are estimated in three steps.
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Step 1: estimate on J;. Since a(z) > 0 and p(z) < ¢(2) in Qr, the term J; is merged in the
left-hand side. Indeed:

J1=/ (2—p(z))...+/ (2-p(2)...
{z€Q: p(2)>2} {ze: p(2)<2}

—|—/ (2—q(z))...—|—/ (2—-4q(2))...
{ze: q(2)>2} {ze: q(2)<2}
N

z)— 2
</ (2= p()) (& + [Vl 51 ( (Vul™) (i), ) d”““
{zeQ: p(z)<2}

q(z)—2 N 2
+ / (2 - g(2))a2) (€ + [Vul™ 2) 57 (Z (Vul™ - V(™)) ) dz,
{ze: q(2)<2}

whence

p(z)—2
2

|(u£m))x:c‘2 dx

‘J1| < maX{072 —p}/(62 + ‘vugm)’2)
Q
q(z)—2

+max{0,2 — ¢} / a()(€ + VU™ ) 32 (a2
Q

Step 2: estimate on Jy. By the Cauchy inequality, for every dg > 0
1 -2
5] < 51Vpl /Q (& + [Tl Y 0l

6

1 z) 2
*HVQHooQ ( )2 (& + [Vul™ Z |(u :vw)

ris (4.3.42)
(@)@ |10 + [Tu (€ + Va5 ) da
< (50/ ez, Vu(m Z |(u wkmi’2 dx
k=1
+01/ m2(e + [Vul™ 2) g (2, Vul™) | Vul™ | da
Q
with a constant C; = C1(C*,C**, N, §p). Let us denote
M = Cl/ In%(e2 + |Vul™ ) o (z, Vul™) |[Vul™)? da.
Q
For uy € (0,1) and y > 0 the following inequality holds:
ptupy ”1 + ptHuy .
y 2 (y WP(y) <Clm,p")y > ) ify>1,
(4.3.43)

|y miy) <cp) ity e (0,1).
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4.3.5. A priori estimates

Let
2 and r* = A
N +2  p (N +2)+2N°

Take the numbers 71, ro such that

ro = (4.3.44)

r1 € (ror’), r2€(0,1), q(2) +r2 <p(2) +r <p(z) +7°
and estimate M applying (4.3.43)):

M<C <1 +/(62 [Vl )
Q

(z)+7r1-2 (2)+7r2
TR VU™ da / a(2)(€2 + [Vulm ) = | u§m>2d:c)
Q
with a constant C' = C(C1,r1,72). Let us transform the integrand of the second integral using
the following inequality:

q<Z)+T2 2

(€2 + [ Vul™?) [Vul™ [P < (& + [Vul™ )

(z)+ry
2¢2) 7z if |[Vul™| < e,
g1+{( ) [Vui™)|

2(62 + |vu£ ’ )P(Z)+T1 |qu |2 if ‘vu€ ’ > e
(4.3.45)

a(z)+r2 p(z)+ry
2 2

<1+ (4 |Vul™?)

Using (4.3.45)) and the interpolation inequality of Lemma we finally obtain

p(Z>+7"1 2

M gc<1+/(62+|vug 2) Vulm ]2dw>
Q

(4.3.46)
<& / (€2 + [Vulm 2)"5=
(9]

(™) g d + C (1 + / V) () dx)
Q

with any ¢; € (0,1) and C' = C(61). Gathering (4.3.42)) and (4.3.46)), we finally obtain:

9 < Go 80 [ (4 [Vl 5 0o da (14 [ 9000 o)
Q Q
with a constant C' depending on §; and ||a(-,t)||sc,0, but independent of € and m.

Step 3: estimates on J, and Jyo. Let p € (r.,r*) be such that 2¢(z) — p(z) < p(z) +p <
p(2) + r*. Applying Young’s inequality and (4.3.45) we obtain the estimate

m q() m
1S [ 3 Jan )+ (D 2 )
zk 1

2

< [Valn [ &+ [Tulm )55 (@ + [Vl 47 wl),01) o
Q

29(2)—p(2)

(z)— ~
) 2|(U£m))m!2d9«“+0(5)/g(62+!Vugm)lz) > da

<5 / (€ 4 [Tul™)|?
Q

< [ (@ 1V ) )P+ € (1 / (@ + Va3 dr
Q Q

<9 / (€2 + [Vul™ [2) "5 | (u™) o 2 da + € (1
(9]

D\

(€2 + | Vulm[2) 25 |l 2 dx)
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Chapter 4. Parabolic problems with nonstandard growth

where C" = C"(||Val|x,0, N, q) is independent of € and m. By Lemma we obtain

\Ja!s%/(e?ﬂvt&&mn ) (™) demw( /\vugm”(Z)dx)
Q Q

for any 62 € (0,1) and a constant C' independent of € and m.

To estimate Jyq we use Lemma and Theorem
| Jaq| < ‘/ 0e(z, Vul™) (Augm)(Vugm) ‘n) — Vul™ . v (V™ . n)) dS‘
o0
< c/ ez, Vul™)|Vul™* dS
o0N

< 53/ goe(z,Vugm))\(ugm))mFdx+C<1+/ Tulmp(e) dx)
Q

with an arbitrary d3 € (0,1) and C depending upon 43, p, ¢, a, 9 and their differential
properties, but not on € and m. To complete the proof and obtain (4.3.39)), we gather the
estimates of Jy, Jo, Ju, Jyo and choose §; so small that

3
min{l,p~ — 1} — 25" =n>0.
i=0
O
Lemma 4.3.6. Under the conditions of Lemma
sup [Vul™ (O30 + [ e, Tul) |0l d
(0.7) Qr (4.3.47)
< 0T (14 [Vuol o + 101 o rans 2y
and
4p~
|V (™)](z) dz+/ IVul™ PO 2 < O for any 0 < r < — (4.3.48)
/ r . p~(N+2)+2N

with constants C, C', C" independent of m and e.
Proof. Multiplying (4.3.39) by e 2¢1* and simplifying, we obtain the following differential

inequality:

d / _ m _
= (e QCltHvug )(7t)H§Q) < Ce 201t( /\Vu yP d:c—i-Hfo( )Hng(Q)).

Integrating it with respect to ¢ and taking into account (4.3.33), (4.3.34) we arrive at the

following estimate: for every ¢ € [0, 7]
IV 0)[B 0 < €T ([Vuol3 + " (1+ uolBo + 1 fol3ar) + 1V 1B 0r)

< CeC'T <1 + lluolfyi2 ) + 1ol 2o 2(9)))
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4.3.5. A priori estimates

Substitution of the above estimate into (4.3.39)) gives
GVl + Co [ e, Tul (@) o d
(m) |p(z) K
<C; (1 + /Q |Vu™ P ( ,t)HWOLQ(Q)) .

Integrating it with respect to ¢ and using (4.3.34) to estimate the integral of |Vu£m)|p(z) on
the right-hand side, we obtain

2dt

/ soe<z,w£m>>r<u£m>>m|2dzSCeC’T( +HwonmwfonmOTme»)'

T

To prove estimate (4.3.48)]), we make use of Theorem Let us fix a number r € (r,, r*) with
7w, * defined in (£.3.44)). Split the cylinder Qr into the two parts Q7 = Qr N{p(z) +r > 2},
Qr = Qr N {p(z) +r < 2} and represent

/ Tl P g / Tl P s / TP g = 1 T
T QT T

T
Since

p(zx)+r—2 )+r 2

Lo< [ (@4 [P S as < [ (@ [vulm ) v P

T Qr

the estimate on I follows immediately from Theorem [4.2.2/and (4.3.47). To estimate I_, we
set By =QrN{z: \Vugm)\ >et, B=QrN{z: \Vugm)] < €}. The estimate on I_ follows
from Theorem |4.2.2{ and (4.3.47) because

[ = / Vulm P g — / (V™ 2) 2252 [y 2 g + / T g
B+UB_ B+ —

p(z)+r—2 )-H" 2

< (& 4+ |Vu™ )"z |Vul™ |2 dz + & TT|Q

By

§C<1+/ (€ + [Val™ 1) 2252 v (m|dz>.
T

By combining the above estimates, using the Young inequality, and applying (4.3.47)), (4.3.34)

and Theorem we obtain (4.3.48) with r € (r,,r*):

/ |Vu£m)\‘1(z)dz+/ |Vul™|PE +sz§1+/ |Vulm [PEET g
T Qr Qr

§C’<1+/ @E(Z,Vugm))|(u£m))m|2dz+/ |Vu(m)|pz) z) <C.
Qr Qr

If r € (0,74, the required inequality follows from Young’s inequality. O
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Chapter 4. Parabolic problems with nonstandard growth

Remark 4.3.1. Under the conditions of Lemma[{.3.0

/ (€ +|Vu™MP) " TT dz < 0, ee(0,1), (4.3.49)

T

with an independent of € and m constant C.

Corollary 4.3.2. Let condition (4.3.7) be fulfilled. Under the conditions of Lemma[4.3.0
p(z)—2

(€ + |Vul™ ) "2 Vul™ | yy.0r < C (4.3.50)

with a constant C' independent of m and e.

Proof. Condition (4.3.7) entails the inequality

q(2)(p(z) — 1)
q(z)——l <q(z) <p(z) +r.

By Young’s inequality, the assertion follows then from (4.3.49)):
a(x)(p(x)—1)
/ (€ + |[Vul™ ) 26D dz < C (1 +/ V() P+ dz) <C.
T T

O]

Lemma 4.3.7. Assume that in the conditions of Lemma ug € Wol’z(Q) N Wol’q("o)(Q).
Then

1@lm™),12 0, + Sup/ ((62 + Va2 4 a(z)( + IWE’”)I?)Q(?Z)) da
(0.1) /6 (4.3.51)
<C (1 +/ (Wu()’p(x,o) +a(a:,0)]Vu0|q(‘”’0)) da:) + HfngyQT
Q

with an independent of m and € constant C, which depends on the constants in conditions
(14.3.4).

Proof. By multiplying (4.3.19]) with (u§m))t and summing over j = 1,2,...,m we obtain the
equality

/ (™2 dx + / 0e(z, Vul™Vu™ . v (u™), dz = / fo(ul™), dz. (4.3.52)
Q Q Q

Using the identity

2 (m) |2y 22
2 (m) 2902 0 (m) o, (m)y, _ & [ a(2)(€ 4+ [Vue 7|7)
CL(Z)(G + |VUE ‘ ) 2 vue V(UE )t dt q(z)

(2)
B as(e? + |Vu5m)|2)qz

q(z)

a(2)q(2) (€2 ugm) 2) 15 z
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4.3.5. A priori estimates

we rewrite (4.3.52)) as

W lBa+ 5 [ (2 + Va4 a()@ + [Tl B ) do
Q
2 (m)|2) 22
_ (m)d_/pt(GHVue)?(_P(z)l 2+V(m)2>d
Ug x n(e Ug x
Qfo( )t . 20) 5 n(e” +| )
(m) |2y 22
a(2)q(2)(€ +[Vu™ [*) > ( q(z) 2 (m) 2 >
- 1-— In((e” + |[Vu™ dx
/ e (@ + [vuimp)
m a(z)
+/ ar(e2 + [Vul™2) "z i
Q q(2)
= [ fo(w™)idz + T + To + T
Q
(4.3.53)
The first term on the right-hand side of (4.3.53) is estimated by the Cauchy inequality:
1 1
[ (e < SIEC DI 0+ 514D,

To estimate J; we use (4.3.33), (4.3.34)), (4.3.43)), (4.3.46) and (4.3.48). Fix two numbers
r1 € (re,7*), 72 € (0,1) such that

*

q(z) +re <p(z)+r1 < p(z)+r"

Then
3

ST <O <1+/ V) daz+/ IVl |4() d:c>
Q Q

=1

+C / (€ + [Vul™[?) "5 In(é + [Vul™ ) da
Q

a(z

+03/(e2+yvugm>|2) 7 In(e + |Vul™|?) dx
Q

< C4 <1+/(62+yvu§m)|2)P(z)2+r1 da:) '
Q

The required inequality (4.3.51)) follows after gathering the above estimates, integrating the
result in ¢ and applying (4.3.32)). O

(ii) A priori estimates II: the case b # 0

We proceed to derive a priori estimates in the case when the equation contains the nonlinear
source. The difference in the arguments consists in the necessity to estimate the integrals of

the terms b|u£m)|"(z), b]ugm)|"(z)_2u£m)Augm)7 b|ugm)‘g(z)_2ugm)Ugn)'

: th : (m) :
1) Let us multiply j** equation of (4.3.19) by u; * and sum up. In the result we arrive at
equality (4.3.35)) with the right-hand side containing the additional term

Zoz/b(z)\ugm)r’(z) dz.
Q
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Chapter 4. Parabolic problems with nonstandard growth

Let 2(c™ — 1) < p~. Using the inequalities of Young and Poincaré we find that for every
te (0,7)

7o §B<1+/ ju(m)[2(0* =) dm+/ |u£m)]2d:c)
Q Q
§05+5/ |um) P d:c—i—/ [u{™)|2 do
Q Q
SC’:;%—CA’(S/ |Vum) P dx+C/ [ul™)|? do
Q Q
gC{;’+C‘5/ |V ulm)|p2) da:+C’/ lu{™)|? da
Q Q

where § € (0,1) is an arbitrary constant and C is the constant from inequality (&.1.5) with

r = p~. We plug this estimate into (4.3.36) and use (4.3.38) with a = 1 and q substituted by
p. Chosing ¢ sufficiently small, we transform (4.3.36f) to the form

310 OB (1-C8) [ e, Vul™)IVal™ P do < € (14 1A, + 1™ OlB.0)

Integrating this inequality in ¢ we obtain the following counterpart of Lemma [4.3.4]

Lemma 4.3.8. Assume that a(-), p(-), q(-), wo, fo satisfy the conditions of Lemma|4.3.4} If

o,b are measurable and bounded functions in Qr and 1 <o~ < o™ <1+ %, then

sup [lu{™(-,t)
te(0,T)

20+ /Q ez, Vul™) VUl 2 dz < Cre™ ([l foll gy + luol30) + Co
T
(4.3.54)

and

/ (V™) + a()| Vulm 10 de dt < Oy / ez, Tul™) [ Vul™ |2 dz + Cs (4.3.55)

T T

with independent of € and m constants Cj.

2) Estimate on HVuEm) (t)||2,0. We follow the proof of Lemma multiplying each of

equations in (4.3.19)) by )\jug-m) and summing the results we arrive at equality (4.3.40) with
the additional term in the right-hand side. The new term can be transformed by means of

integration by parts in :

(m) da

€

7 - / b(2)|ul™ "2 () A
Q
< / (0(2) = Db [ul™ 72 Tul™ 2 da
Q

+/ \u§m>|“(z)—1|Vb||vu§m)|dg;+/ [b(2) [ul™17 = | [ul™)][|Vul™||Vo| dx
Q Q

=K1+ Ko+ Ks.
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4.3.5. A priori estimates

To estimate K3 we assume that the functions |b| and |Vo| are bounded a.e. in Q7 and then
apply the Cauchy inequality, (4.3.43)), and the Poincaré¢ inequality: if 2(c™ — 1) < p~, there
exists a constant p > 0 such that 2(c™ — 1) + pu < p~

Ko < O (1+ IVl (Ol + [ P10 o)
§0(1+||Vu |ym+/ |u{™) 2" = 1+“dac>
<c <1+uvu6m (-,t)u279+/ﬂvu€my U*lwdx)
<0 (14 IV o+ [ 90 ds )

Ko is estimated likewise: if [Vb] is bounded a.e. in Q7 and 2(ct — 1) < p~, then

220 (14 IV OlBa + [ W PO dn) <0 (14 [Tul (L OlBg + [ [Vl P da)
Q Q

To estimate K1 we assume that o~ > 2 and notice that the restriction on p~ and o imposed

to estimate Ko and K3 yields
4<207 <20t <24p = p >2 = 0‘+<1+% <p .

Using this observation and the Young inequality we estimate K; as follows:

) <0( [ 1y e [ pumpo3E d:n)
<1+/ [Vl ) d:r+/ () P& == da:)
< <1+/ |vu£m)|p(2) d:n—{—/ |u£m)|p(z) d$>‘
Q Q

Following the proof of Lemma and taking into account the estimates on K; we arrive at
the inequality

sup HVUE’”)(-J)H%,QJr/ ez, Vul™) | (ul™ ) o dz
(O,T) QT

< Cel'T <1 + ||VuoH2 o+ HfOHLz 0,T;W,’ 2@)))

+ " (/ (Vu{mPE) g, —I—/ |u{™) P2) dz)
T Qr

with new constants C', C’, C” which do not depend on € and m. The last term on the right-
hand side of this inequality is estimated by virtue of Lemma and estimates (4.3.54),

[@-355).
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Chapter 4. Parabolic problems with nonstandard growth

Lemma 4.3.9. Let in the conditions of Lemma [{.3.8, 2 < o~ < ot < 1+ % holds. If
Vbl so,0r < 00 and ||Vollee,0p < 00, then

sup [[Vul™ (- 1)|2q + / ez, Tul™) | (™) 5o 2 dz
(0.1 Qr (4.3.56)

c'T ~ 2 2
< G (- ol gy + 10l sz o)

with an independent of € and m constants C', C’, and a constant C depending only on T, and
the quantities on the right-hand sides of (4.3.33)), (4.3.34]).

3) Estimate on Hugn)HZQT. We follow the proof of Lemma Multiplying (4.3.19)) by
(ugm))t and summing the results we obtain equality (4.3.53)) with the additional term on the
right-hand side:

Mo = / b(2)[ul™ 7724, (™)), d.
Q
By Young’s inequality
My < C’/ (M) 2@ =1 gy 4 E / (u™)2 du.
Q 2 Ja

Combining this inequality with (4.3.51)) and taking into account the inequality 2(o(z) — 1) <
p(z) following from the inequality 2(c™ — 1) < p~, we obtain

1
TGO

Ug + sup /
2||( )t||2,QT o)

<<62 + V™)’ + a(2)(€ + |w£"”l2>q(5)> de

)

<C <1 +/ (’vuO’p(az,o) +a(w,0)]Vuo|‘I(x’0)) da:) + Hf(ﬂ\%QT
Q

+C' <1+/ |ue[P) dz).
T

The last integral on the right-hand side is estimated by virtue of Lemma [4.3.1] and the
estimates of Lemma 3.8

Lemma 4.3.10. Let the conditions of Lemma[{.3.9 be fulfilled. Then

1 2 z
SNl g, + sup [ (€4 V™ P)E +a(a)(@ + [Tum 'S ) da
(0.T) /6 (4.3.57)
<c(i+ / (760l + a(a,0)[Tuol=9) di) + ol g, + €
Q

with constants C, C' independent of € and m.

4.3.6 Existence and uniqueness of strong solution

In this section, we prove that the regularized problem (4.3.16)) and the degenerate problem
(4.3.1) have strong solutions and derive conditions of uniqueness of these solutions.
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4.3.6.1 Regularized problem

Theorem 4.3.5. Let ug, f, p, ¢, a and 9 satisfy the conditions of Theorem [{.3.1. Then
for every € € (0,1) problem (4.3.16) has a unique solution u. which satisfies the estimates

HUEHWQ(.)(QT) S 007

)

2 2 2
ess sup |[ue(-,t + || wet + ess sup ||Vue(-,t
0T) H e( )||2,Q H € H2,QT T ” 6( )H2,Q (4.3.58)

+ ess sup / ((62 + |Vu£m)\2)@ + a(z) (2 + qu§”>|2)“5>) dz < Cy
0,7)/Q

with a constant Cy depending on the data but not on €. Moreover, ue possesses the property

of global higher integrability of the gradient: for every

4p
5 O ES *:
€O, v (N +2) 12N’

there exists a constant C = C (89, N, p*, 9, Hu0||W1,2(Q), Hf||L2(0 T,W1,2(Q))) such that
0 L5 Wo

/ |V [P+ dz < C. (4.3.59)
T

Proof. Let € € (0,1) be a fixed parameter. Under the assumptions of Theorem there
exists a sequence of Galerkin approximations ugm) defined by formulas (4.3.17)) which satisfies
estimates (4.3.33)), (4.3.34), (4.3.47), (4.3.48]), (4.3.50)) and (4.3.51)). These uniform in m and

€ estimates enable one to extract a subsequence ugm) (for which we keep the same name), and

functions ue, 7, Xe such that

ul™ — ue  x-weakly in L0, T; L2(Q),  (ul™); — (ue)s in L2(Qr),

Vul™ — Vu, in (LPO(Qr))N,  Vul™ — Vu, in (L1O(Qr))",

p(z)—2

M)‘Q) 3 vugm) — 7 in (Lq/(')(QT))N,

a(z)—2

(€ +[Vul™ )27 Vul™ — x in (270(@Qr))".

(4.3.60)

(€ + |Vu

(
€
(
€
In the third line we make use of the uniform estimate

(=) (p(z)—1)
/ (62 + |Vu£m)|2)% dz < C (1 +/ |vu£m)|p(z)+r dz) <0,
T T

which follows from (4.3.7) and (4.3.48). The functions u™ and (ugm))t are uniformly bounded
in L°(0,T; W, (Q)) and L2(0,T; L2(2)) respectively, and W(]l’q("t)(Q) C Wy (Q) —
L?(9). By [235, Sec.8, Corollary 4] the sequence {ugm)} is relatively compact in C([0, T]; L?()),
i.e., there exists a subsequence {ugm’“)}, which we assume coinciding with {ugm)}, such that
™ 5 u in C([0,T); L*(©2)) and a.e. in Q7. Let us define

Pm = {qﬁ o= iwi(t)gbi(:c), 1; are absolutely continuous in [0, T]} .
i=1
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Chapter 4. Parabolic problems with nonstandard growth

Fix some m € N. By the method of construction ugm) € Pp,. Since Py C Py, for k < m, then

for every &, € Py with k <m
/ WM dz + / 0c(z, Vul™)Vul™ . Ve, dz = / Foby dz. (4.3.61)
Qr Qr Qr

Let £ € Wy (Qr). The space C>°([0,T]; C5°(2)) is dense in Wy(.(Qr), therefore there exists
a sequence {{} such that § € Py and & — § € Wy()(Qr). If Up, — U in Lq/(')(QT), then
for every V € L90)(Qr) we have

a(z)V e L1(Qr) and /aUdez—> aUV dz.
T Qr

Using this fact we pass to the limit as m — oo in (4.3.61)) with a fixed k, and then letting

k — oo, we conclude that

/Tuetfdz—i—/QTne-V{dz—i—/QTa(z) Xe-V{dz:/QT fo€dz (4.3.62)

for all £ € Wy()(Qr). To identify the limit vectors 7. and x. we use the classical argument

based on monotonicity. The flux function p.(z, Vugm))Vugm) is monotone:
(Pe(2,6)€ — pe(2,0)¢, €= ¢) >0 forall €,¢ €eRYN, 2 € Qr, e >0, (4.3.63)

see, e.g., Lemma [4.2.10| for the proof. By virtue of (4.3.63|), for every ¢ € Py,

0c(z, Vul™) [ Vul™ ? = oo (z, Vul™ ) Vul™ - (Vul™ — V) + oo (z, Val™)Vul™ . Vi
= (pe(z, Vul™)Vul™ — o (2, V) V) - (Vul™ — Vip)
+ ez, V)V - (Vul™ — V) + (2, Vul™)Tul™ . Vi
> (2, V)V - (Vul™ — V) + @c(z, Vul™)Vul™ . V.
(4.3.64)

By taking &, = ugm) in (4.3.61) we obtain: for every ¥ € Py with k < m

0 :/ (ugm))tugm) dz —I—/ @E(Z,Vugm))|Vu£m)|2dz — fougm) dz
T T Qr

> / (ul™)ul™ dz + / (2, V)V - V(ul™ — o) dz

T

" / ez, Vugm))vugm) -Vidz — fouﬁ’”) dz.
Qr Qr

Notice that (ugm), (ugm))t)ngT — (Uet, Uc)2,Qp a8 m — 00 as the product of weakly and
strongly convergent sequences. This fact together with (4.3.60) means that each term of the
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4.3.6.1. Regularized problem

last inequality has a limit as m — oco. Letting m — oo and using (4.3.62), we find that for
every ¢ € Py,

0> / Ueler dz + / 806(27 V¢)V¢ ) V(UE - 1/]) dz + / (776 + G’(Z)Xe) -Vipdz — fouedz
T T T Qr

- /Q T ((@+190P)" 57 V0~ n.) - Vi, - v)ds

a(z)—2

+/Ta(z) ((62+ V)2 er) - V(ue — ) d.

By the density of UpZ; Pr. in Wy(.)(Qr), the last inequality also holds for every 1) € Wy()(Qr).
Take 1) = uc + A\§ with a constant A > 0 and an arbitrary £ € Wy (Qr). Then

p(z)

AUQT ((e2+ IV (e + A1) 53V (e + AE) —776> - Veédz

q(z)—2

+ /T a(z) <(62 + |V (ue + XA 2 V(e + M) — Xe) -V¢ dz} <0.

Simplifying and letting A — 0 we find that

/ (el Vo) Ve — (e + al2)xe)) - VEdz <0 VE € Wiy (Qr),

T

which is possible only if
/ (QOS(Z, vue)vue - (776 + a(z)Xe)) -VEdz=0 VEe€ Wq(-)(QT)v
T

The initial condition for u, is fulfilled by continuity because u. € C([0,T]; L?(£2)).

Uniqueness of the weak solution is an immediate byproduct of monotonicity. Let u, v are
two solutions of problem (4.3.16]). Take an arbitrary 7 € (0,7]. Choosing u — v for the test
function in equalities (4.3.6) for u and v in the cylinder @, = Q x (0,7), subtracting the

results and applying (4.3.63|) we arrive at the inequality

slu—vlBam = [ (u=v)w=vydz <o

T

It follows that u(z,7) = v(x,7) a.e. in  for every 7 € [0, 7.

Estimates follow from the uniform in m estimates on the functions ugm) and
their derivatives, the properties of weak convergence and lower semicontinuity of the
modular. Inequality yields that for every ¢ € (0,7*) the sequence {Vugm)} contains
a subsequence which converges to Vu, weakly in (LPO+9(Q7))N, whence . O

Theorem 4.3.6. Let in the conditions of Theorem[{.3.5, b # 0.
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Chapter 4. Parabolic problems with nonstandard growth

(i) Assume that b, o are measurable and bounded functions in Qr
IVblooar <00, IVollcor <00, 2507 <ot <145

Then for every € € (0,1) problem (4.3.16) has at least one strong solution w, which
satisfies estimates (4.3.58)), (4.3.59)).

(ii) The solution is unique if either o =2, or b(z) <0 in Qr and o~ > 1.

Proof. The proof is an imitation of the proof of Theorem The estimates of Lemmas
|4.3.8|7 |4.3.9|, |4.3.10| allows one to extract a subsequence {uemk)} with the convergence properties
(4.3.60). Let u. be the pointwise limit of the sequence {ugm’“)} We have to show that for

every ¢ € L*(Qr)

/ MO 7 @2 g gz s [ 72y .
T QT

(mg)

mg) ‘0(2)72u€

The sequence v, = \ug converges a.e. in Q7 to \ue\"(z)”ue and is uniformly

bounded in L?(Qr) because

/ U?nk dz = / |U£mk)‘2(a(z)*1) dz <C <1 -|-/ ‘ugmk)’}f dz>
Qr T Or
<C (1 -l-/ \Vugmk)’p_ dz) <C (1 _|_/ ‘ugmk)|p(z) dz) <.
T T

It follows that there is v € L?(Qr) such that v, — v in L?(Qr) and by virtue of pointwise

convergence it is necessary that v = |ue|”*)~2u, a.e. in Q7.

Assume that u, uz € Wy()(Qr) are two strong solutions of problem (4.3.16)). The function
w1 —ug is an admissible test-function in the integral identities (4.3.6)) for u;. Combining these
identities and using (4.3.63)) we arrive at the inequality

1 1 ¢
i = o) < S lu —walBo®) + [ [ (o ) Vi = eu(a, Via) Vi) - ¥ = ) d
0 JQ

t
= / / b(z) (|u1\g(z)_2u1 — |uQ\U(z)_2uQ) (u1 — u2) dz.
0 Jo

If 0 = 2, this inequality takes the form

1 t
§Hu1 — qu%Q(t) < B/ |lur — ’U,QH%Q(T) dr, t€(0,T), B= eSSSélp b(z),
0 T
whence |u; — uzll20(t) = 0 in (0,7) by Gronwall’s inequality. Let b(z) < 0 in Qp. For
o(z) > 1 the function |s|”(*)=2s is monotone increasing as a function of s, therefore

(]u1|a(z)_2u1 — ]uﬂa<z)_2u2) (u1 —uz) >0 a.e. in Qr
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4.3.6.2. Degenerate problem. Proof of Theorems 4.3.11, 4.3.2

and )
g llur = usll5o(t) <0 in (0,7).

4.3.6.2 Degenerate problem. Proof of Theorems ,

Let {uc} be the family of strong solutions of the regularized problems (4.3.16) satisfying
estimates (4.3.58). These uniform in € estimates enable one to extract a sequence {u., } and
find functions u € W, (Qr), n, x € (LYO(Q7))N with the following properties:

e, — u  *weakly in L>(0,T; L*(Q2)), Uet — ug in L2(Qr),
Ve, = Vu in (Lq N(Qr)Y
= in (LYO@Qr)Y,

— x in (L7O(Qq))N

In the third line we make use of the uniform estimate

9 a(z)(p(2)=1) (2)4r
(2 + |Vu?) -1 dz < C |Vu|P dz | <C,
T T

which follows from (4.3.7) and (4.3.59)). Moreover, u € C([0,T]; L*(Q)). Each of u,, satisfies
the identity

/ Ueyt§ d2 +/ e, (2, Ve, )Vue, - VEdz = fo€dz VE € Wy (QT) (4.3.65)
T T Qr

(6 + Vg, [

(6 + |Vug )™

which yields

/ wédz + / (n+a(z)x) V&dz = fo€dz VE € Wy (Qr). (4.3.66)
T T Qr
To identify n and x we use the monotonicity argument. Take { = u,, in (4.3.65):
/ Ue, tUe, Az + / Ve (2, Ve, )Vue, - Vue, dz = foue, dz. (4.3.67)
T T Qr

According to , for every ¢ € W,y (Qr)

/ P, (2, Vg, ) Vg, - Ve, dz > / (e, (2, V9) = (IVO[P% + a(2)|[V|T*)V - V(ug, — ¢) dz

T Qr

+/ e (2, Vg, )Vue, - Vo dz +/ IVl +a(2)| Vel )V - V(ue, — ¢) dz

QT

=Jig+ Jok + 3k,

where

Jor— [ (n+a(z)x) Vodz,
QT

Jar = [ (VP2 +a(2)|[VO|T™5)Ve-V(u—p)dz as k — oo.
Qr
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Chapter 4. Parabolic problems with nonstandard growth

—1
Since ’(cpek(z,V@V(b— (|Vo|P—2 —i—aqq(z)|V¢|q2)V¢’ — 0 a.e. in Qr as k — oo, and
because the integrand of J; ;, has the majorant

/

q

(€ + Vo) T = [V 2V +|a'T (2)((¢ + Vo) T — [Vol=2)Vo)

<0 ((@+]96P)E +al2)1 + Vo))
<O (14|V9P? +a(2)|Ve*?))

then Ji ; — 0 by the dominated convergence theorem. Combining (4.3.66)) with (4.3.67) and
letting k — oo we find that for every ¢ € W,()(Qr)

/ (196272 4 a(2)| V6" =)V — (n+ a(2)x)) - V(u— 6) dz > 0,

T

Choosing ¢ = u + A with A > 0 and ¢ € W,.y(Qr), simplifying, and then letting A — 0%,

we obtain the inequality
/ (VPO 20+ a(2)| Vul 1 "2Vu) — (n+ a(2)x)) - Vdz > 0 V¢ € Wy (Qr).
T

Since the sign of ( is arbitrary, the previous relation is the equality. It follows that in
n+a(z)x can be substituted by |Vu[P*)"2Vu+a(z)|Vu|?*)~2Vu. Since u € C([0,T]; L*(R2)),
the initial condition is fulfilled by continuity. Estimates follow from the uniform in
€ estimates of Theorem and the lower semicontinuity of the modular exactly as in the
proof of Theorem Uniqueness of a strong solution is an immediate consequence of the
monotonicity. Theorem is proven.

To prove Theorem we only have to check that |u, |7*)2u,, — |u[”®)~2u in L*(Qr)

(up to a subsequence). This is done as in the case of the regularized problem.

Remark 4.3.2. Under the assumption of the Theorem or Theorem [{.3.9 and, in ad-
dition fo € LY(0,T;L>®(Q)) and ug € L®(), the strong solution of the problem ([£.3.1]) is

bounded and satisfies the estimate

t
lu-,B)llcg < € Jluolloog + eclt/ TN fols oo dr
0

where C1 =0 if b(z) <0 in Qr, or C1 = ||blloc,@, if 0 =2 (see [34, Ch.4,Sec.4.3,Th.4.5]).

4.4 A Picone identity for variable exponent operators and its applications

In this section, we prove the Picone identity for a general class of nonlinear operator and
derive some of its applications by studying the qualitative properties of elliptic and parabolic
equations. Precisely, we consider a continuous operator A4 : € x RY — R such that (z,£) —

A(z, €) is differentiable with respect to variable £ and satisfies:
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4.4.1. Main results

(A0) & — A(x,€&) is strictly convex for any = € €.

(A1) &€ — A(x,€) is positively p(z)-homogeneous i.e. A(z,tf) = P& A(x, €), V
eRT, ¢ RN and ae. x € Q.

Remark 4.4.1. From the assumptions of A, we deduce A(x,§) > 0 for & # 0 and for any
x € Q.

4.4.1 Main results

By using the convexity and the p(z)-homogeneity of the operator A, we prove the following

extension of the Picone identity:

Theorem 4.4.1 (Picone identity). Let A : Q@ x RV — R is a continuous and differen-
tiable function satisfying (A0) and (A1). Let vo,v € L>®(Q) belonging to VI e {v:Q—
(0, 400) | v € Wol’p(m)(Q)} for some r > 1. Then

(z)—7)

L )> < AW (2, Vol/7) A" (z, Vo)

p(x)

v
U(()rfl)/r

<8§A(a: Vvl/r), V(

where (.,.) is the inner scalar product and the above inequality is strict if r > 1 or % e
Const > 0.

From the above Picone identity, we can show an extension of the famous Diaz-Saa inequality
to the class of variable exponent operators as a first application. This inequality is strongly

linked to the strict convexity of some associated homogeneous energy type functional.

Theorem 4.4.2 (Diaz-Saa inequality). Let A : Q x RV — R is a continuous and differen-

tiable function satisfying (A0) and (A1) and define a(z, &) = (a;(z,§)); def (p(lx)a&A(x, f)) -

Assume in addition that there exists A > 0 such that

da;(z,§)

a € CHQ x ®RN\{0))Y and Z 2,

3,j=1

< Amp(ﬂﬁ)—2

for all (z,€) € Q x RN\{0}. Then, we have in the sense of distributions, for any r € [1,p7]

/ <— div(a(z, Vo)) | diviale, Yw2)))(w; —wh) dz >0 (4.4.1)

Q wy Wy

for any wi,wy € WO Lp( )(Q) positive in 1 such that —1 2 ¢ € L>®(Q). Moreover, if the
wo w1

equality occurs in , then wy /we is constant in ). If p(x) Z 1 in Q then even wy = wo
holds in €.
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Chapter 4. Parabolic problems with nonstandard growth

As a second application, we investigate the solvability of the following boundary problems

involving quasilinear elliptic operators with variable exponent:

— Apyu+ g(z,u) = f(z,u)  in
u>0 in Q; (4.4.2)
u=0 on 09.

The extended Picone identity can be reformulated as in Lemma below. Together with
the strong maximum principle and elliptic regularity, this identity can be used to prove the
uniqueness of weak solutions to elliptic equations as (4.4.2)). In particular, we establish the

following result:

Theorem 4.4.3. Let f,g: Q% [0,00) — Rt be defined as f(z,t) = h(z)t4®) =1 and g(x,t) =
Wx)t5@ =1 with 1 < q,s € C(Q) such that

o g <p <s_andq->1;

h(x)

e h,l € L*(Q), positive functions such that x — —— € L*>(2).

I(z)

Then, there exists a weak solution u to (4.4.2)), i.e. u belongs to Wol’p(x)(Q) N L*®(Q) and
satisfies for any ¢ € Wg’p(x)(Q) N L*®)(Q):

/ IVulP® 2wV de = /(f(a;,u) — g(z,u))¢ da.
Q Q

Furthermore u € C%(Q) for some a € (0,1) and 0 < u’~~9% < maX{H%HLoo, 1} a.e. in Q.

l e .
Assume in addition that v — h((ac;)) belongs to L°°(Q), thenu € CY(Q)T e {veCo(N)|Ter, e €

R : < co} and is the unique weak solution to (4.4.2)).

g <

* L= dist(z, 09)

We remark that Theorem does not require any subcritical growth condition for g to

establish existence and uniqueness of the weak solution to (4.4.2)). As a third application of

Picone identity, we study the following Doubly nonlinear equation (D.N.E. for short) driven
by p(z)-Laplacian:

3o SO = Ay = f(e,w) + b2t Qr
u>0 in Qr; (4.4.3)
u=0 on I
u(0,.) = ug in

where ¢ € (1,p7), Qr = (0,T7) x Q and I = (0,7 x 02 for some T' > 0. We suppose that

h € L*>(Qr) and nonnegative. The assumptions on f are given by
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4.4.1. Main results

(f0) f:Q xRt = RT is a function such that f(z,0) =0 for all x € Q and f is positive on
Q x R+ {0}.
(f1) for any = € Q,s —

f(z,s)

' is nonincreasing in R*\{0}.

Remark 4.4.2. Conditions (f0) and (f1) imply there exist positive constant Cy,Co such that

for any (x,s) € 2 x RT:
0< f(z,8) < C1+ Cas !,

i.e. f has a strict subhomogeneous growth.

—Apw) (0 f(a, 0t . .
We set R the operator defined by Rv = - and the associated domain
pla—1)/q pla—1)/q

D(R) = {v:Q — (0,00) : v/7 € We"™(Q), v € L(Q), Rv € L2(Q)}.

Note that D(R) contains for instance solutions to (4.4.28). One can also easily check that
solutions to belong to WLQ(Q). In the sequel, we denote X def {zr e X|z >0}
the associated positive cone of a given real vector space X.

In order to establish existence and properties of weak solutions to , we investigate the

following related parabolic problem:

V719 (0%) — Ay = hit, 20" 4 fla,v) i Qr

v >0 in ;
Ur (4.4.4)
v=20 on I';
v(0,.) =vo(x) >0 in Q2.

The notion of weak solution for (4.4.4)) is given as follows:

Definition 4.4.1. A weak solution to (4.4.4)) is any positive function
v e L>®(0,T; Wol’p(m)(Q)) NL®(Q7)NC(0,T; L" () for any r > 1 such that 0;(v?) € L*(Qr)
and for any ¢ € C§°(Qr) satisfies

T T
/ / (v p drdt + / / Vol =2T0.V ¢ dadt
0 Q 0 Q
T T
:/ /h(t,x)vq1¢ dxdt+/ /f(a;,v)¢ dadt.
0 Q 0 Q

Concerning (4.4.4), we prove the following results:

(4.4.5)

Theorem 4.4.4. Let T > 0,v9 € CY(Q)F ﬂW()l’p(x) (Q). In addition, there exists hg € L>°(Q),
ho 0 and h(t,z) > ho(z) > 0 for a.e x € Q, for a.e. t > 0. Assume in addition q € (1,p™)
and f satisfies (f0)-(f1) and

(f2) The mapping x + §'~9(x) f(z,0(x)) belongs to L*() for some e > 0 where Q. of {z €
Q](z) < e}
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Chapter 4. Parabolic problems with nonstandard growth

Then there exists a weak solution to (4.4.4]).

Based on the accretivity of R with domain D(R), we show the following result providing a

contraction property for weak solutions to under suitable conditions on initial data:

Theorem 4.4.5. Let vi and vy are weak solutions of (| with initial data ug,vy €
CU)T N, Lp(@ )(Q) and such that ud, vd € D(R)L @ and h ,g € LOO(QT) such that h > hy,
g > go with ho,go as in Theorem[{.4.4 Then, for any 0 <t <T,

1(vf (8) = w3 () " llpe < [l (uf — vE) L2 +/0 I(h(s) = g()) "2 ds. (4.4.6)

Furthermore, using a similar approach as in [62], we consider for ¢ > 0 the perturbed
Dy (W) f(a,0V/9)
(v+e)aD/a (v +e)a=D/a

operator R.v = . If p~ > 2, we can prove (as in Proposition 2.6

in [62]) that

DRI 5 VN % @)
Arguing as in Theorem with the operator R, instead of R and passing to the limit as
e — 0T, we get:

Corollary 4.4.1. Assume p~ > 2. Let v and vy are weak solutions of (4.4.4)) with initial
data ug,vo € C(Q)*T N Wé’p(x)(Q). Then Theorem holds.

From Theorem we derive the following comparison principle from which uniqueness of

the weak solution to problem (4.4.4)) follows:

Corollary 4.4.2. Let u and v are the weak solutions of (4.4.4)) with initial data ug, vy satis-

fying conditions in Theorem or Corollary|4.4.1. Assume ug < vy and h, g € L*°(Qr),
ho € L*(Q) such that and 0 < hg < h < g. Then u < wv.

Remark 4.4.3. Ifv € L>(Qr)" then from Proposition 9.5 in |69] we obtain 2;%1025(1)2‘1_1) =

09710 (v9) = qu?9=29; v in weak sense.

From the above remark, under assumptions given in Theorem [£.4.4] we obtain the exis-
tence of weak solutions to 3)) satisfying the monotonicity properties in Theorem and
Corollaries |4.4.1] - - In the previous applications, the condition (A1) plays a crucial role
to get suitable convexity property of energy functionals. We also study a quasilinear elliptic
problem where this condition is not satisfied. Precisely, given ¢ > 0, we study the following

nonhomogeneous quasilinear elliptic problem:

— div((|Vul2 + eu?) T V) — ([Vuf? + eu?) T eu = g(z,u)  in Q;
u=0 on 99 ; (4.4.7)
u>0 in

where g satisfies (f0) and (g) for some m € [1,p~]:
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4.4.2. Picone identity

g(z, s)

(g) Forany z € Q, s — e

is decreasing in RT\{0} and a.e. in .

Then we prove the following result:

Theorem 4.4.6. Assume that g satisfies (f0) and (§). Then for any e, (4.4.7) admits one

— u
and only one positive weak solution. Furthermore, u € C*(Q), u > 0 in Q and — < 0 on

on
on.

To get the uniqueness result contained in Theorem we exploit the hidden convexity

property of the associated energy functional in the interior of positive cone of C'1(Q).
4.4.2 Picone identity
First we recall the notion of strict ray-convexity.

Definition 4.4.2. Let X be a real vector space. Let V' be a non empty cone in X. A function
J : V. = R is ray-strictly convez if for all vi,vy € V and for all 6 € (0,1)

J((l — 0)2)1 + 91)2) < (1 — H)J(’Ul) + QJ(UQ)
where the inequality is always strict unless v = Cvy for some C > 0.

Then we have the following result:

Proposition 4.4.1. Let A satisfying (A0) and (A1) and let r > 1. Then, for any x € Q) the
map & — Np(z,€) def Az, €)/P®) s positively r-homogeneous and ray-strictly convex. For

r>1,&— Ny(x,€) is even strictly convex.

Proof. We begin by the case r = 1. For any t € RT, we have Ni(z,t£) = tNy(z,&). Further-

more,
Az, (1= t)61 +1&2) < (1 =) Az, &1) + tA(z,&2) < max{A(z, &), A(z, &2)}
for any z € Q, &, & € RY and ¢ € [0, 1]. Therefore
Ni(z, (1 = )& + t&2) < max{Ny(z,&1), Ni1(z,£2)} (4.4.8)

and this inequality is always strict unless £; = Ay, for some A > 0.

Now we prove that N7 is subadditive.

Without loss of generality, we can assume that £ # 0 and & # 0. Then we have Ny (x,&1) > 0
and Nj(x,&) > 0. Therefore, from and 1-homogeneity of Np(z,&) we obtain for any
te(0,1):

&1 &
N1 (.%', (1 — t)Nl(.%',§1> +tN1(.ZC,fQ)> <1.
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Chapter 4. Parabolic problems with nonstandard growth

We now fix t such that

-t ot S Ni(,&2)
N@6) M@ ¢ T M) + M) S

Then we get
§1+ &

N (:z, ) <1
U Nz, &) + Mi(z, &)
and by 1-homogeneity of N7, we obtain

Ni(z, & + &) < Ni(x, &) + Ni(x, &), i.e. Ny is subadditive.
Finally for ¢t € (0,1), & # A2, YA >0
Ni(z, (1 = 1)&1 +t&2) < Ni(z, (1 —t)&1) + Ni(w,t&2) = (1 — t)Ni(z,&1) + tN1(z, &2).

This proves that £ — Nj(z,&) is ray-strictly convex. Now consider the case r > 1. Since for
any x € Q, £ — N (2,€) = Ni(z,§) is ray-strictly convex and thanks to the strict convexity
of t — t" on R, we deduce that & — N,(z,£) = N7 (x,€) is strictly convex when r > 1. [J

From Proposition and from the r-homogeneity of IV,., we easily deduce the following

convexity property of the energy functional:

Proposition 4.4.2. Under hypothesis of Proposition[{.4.1) and assume in addition A is con-
tinuous on Q x RNV, Then, for 1 <r <p~:

VINL®(Q)3>v— / Az, V(")) da
Q
is ray-strictly convex (if r > 1, it is even strictly convez).

Proof. We know that & — N,(z,£) = A"™/P(®)(z,€) is r-positively homogeneous and strictly
convex if > 1 and for r = 1 this function is ray-strictly convex. For v, vy € V+’” and 6 € (0,1)
define v = (1 — 6)v; + Gvg and we get

N, (1:, VU) <(1- H)U—INT <$, Vvl) + HU—2NT (m, VUQ)
v v v v

1 V2

By homogeneity,
N, (2, V(7)) < (1 = )Ny (2, V(")) + ON, (2, V (vy/"))

and equality holds if and only if v; = Avy for some A > 0. Using the convexity of ¢t — tP(*)/7
for 1 <r < p~ we obtain

/ Az, Vol/m) dz < (1 — 0)/ A(a;,Vvi/r) dx + 0/ A(x,Vv;/r) dx.
Q Q Q

Moreover, if p(z) # r equality holds if and only if v; = vs. O
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4.4.2. Picone identity

From Proposition we deduce the proof of Picone identity.

Proof of Theorem Firstly, we deal with the case r > 1. Then from Proposition [£.4.1]
for any = € Q the function £ — N,.(z,€) = A(xz, £)"/P®) is strictly convex. Let &, & € RV\{0}
such that £ # &y then

NT(J;?g) - Nr(x,fo) > <a£Nr(x7§0)7§ - §0>
Setting a(x, &) = %85]\7,,(30,5), we obtain:
NT(xvg) - <d(x7€0)7€0> > T<C~L($,§O),€ - §0>

Let v,v9 > 0 and replacing &, & by /v and &y /v respectively in the above expression, we get

Do) (e ) 7518)

Taking £ = Vv and &y = Vv and using (r — 1)-homogeneity of a(z,.),

Vv 1 - Vg r—1Vug
N<x7 ’[”U(Tl)/r> > /U(()Tfl)/T <a<l’, (Tl)/r)’vv - , UO’U>

LA/

v Vo
where the inequality is strict unless — = -0
(% Vo

Since v!/7, vé/r e Whr)(Q) N L>®(Q), we can write

Vv v 1 r— 1V
V) = —° and v( ) - (w - v)
rolr=1)/r U(()rfl)/r U(()rfl)/r r Vo
and we obtain
N(m,Vvl/T) > <d(ﬂf7 V'Ué/r),v<(rj}1)/7)> (449)

Yo

We have

r 1 r 1 r

d(x,VUé/ )= ;85N(x,Vvé/ )= ;8§Ar/p(x)(x,V’Ué/ )
1

p(x)

and by replacing in (4.4.9)) we obtain

r—p(x)
O Az, Vvé/T)A 5o) (z, Vvé/r)

_r_ (@)—r 1 v
AP 1y A% o < A o ()>
2@ (z, Vo'/") A 7@ (2, V") > (@) O¢A(x, V'),V U(()T_l)/r

Now we deal with the case r = 1. Let &, & € RV\{0} such that for any A > 0, £ # \&. Then,
from Proposition we have that

N(z,&) = N(z,80) 2 (9N (2,£0), ¢ = &o)-
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Taking £ = Vv and &y = Vg, we deduce

N(z,Vv) — N(z,Vvg) > (9N (x, Vvg), V(v — vp))

and
1 (z)—1 1
Ar@ (z, VU)APPW (x,Vvg) > ﬁ@gA(x,Vvo), Vo)
p(z
for any = € 2 and the inequality is strict unless v = Avg for some A > 0. ]

The Picone identity also holds for anisotropic operators of the following type:

N

Zvi(bi(x,viu)) = g:l aii (bi (l’, g;i)) .

=1

Precisely we have:

Corollary 4.4.3. Let B: Q x R — RY is a continuous and differentiable function such that
B(z,s) = (Bi(x,s))i=1,2,.N satisfying for any i, for any x € Q, the map s — Bj(x,s) is
pi(x)-homogeneous and strictly convex with 1 < p; < p;(-) < p;L < 00. For any i, we define

bi(z,s) = ngc)ﬁsBi(x,s). Then, for v,vy € VI N L®(Q), we have
N 1 v N o p;(x)—r 1
> bi(, 0,05/ ks | —=r | <20 BIY (2,00,077) BT (,00,(057)) -
i=1 vy i=1

Proof. By taking A(x,s) = B;(z,s) in Theorem we obtain Vi € {1,2,...,N}

1 1/r v ﬁ 1 pi(-x()zgr 1/r
78831’(%7 aﬂcz (UO ))aﬂvz r—1 < Bipz (:U, axz (U /T))Bz " (x’axz (UO ))
pi(z) ot

0
for all v,vy € Vl NL>®(Q)and i =1,2,...,N.
Then by summing the expression over ¢ = 1,2,..., N, we obtain
N 1 v N _r Pi(z)_'r 1
> bile, 0r, (0 ) Ox, | —=r | < D BI (2,00, (017). B, (1,04, (w”")).
i=1 vy " i=1

4.4.3 An extension of the Diaz-Saa inequality

We prove the first application of Picone identity.
Proof of Theorem The Picone identity implies

Ar/p(;r) (."L‘, vwl)A(p(iU)—T)/P(m) (l‘, Vw2) > a(l’, VwQ).V <1i}11) .
Wy
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4.4.4. Application of Picone identity to quasilinear elliptic equations

Using the Young inequality for r € [1,p~], we get

Zﬁ(z‘l(az, Vuwi) — A(z, Vws)) + A(z, Vws) > a(z, Vw2).v<w1gil).

Noting that for any ¢ € RV, A(x, €) = a(x, £).£, we deduce

alz, ng).v<w2 - wlgi) do > p(;) (A(z, Vws) — A(z, Vwy)). (4.4.10)

Commuting w; and wsy, we have

S N o T ) — Al Y
a(a:,le).V<w1 w;—l) > S (A Vi) - Az, Tus)). (4.4.11)

Summing (4.4.10) and (4.4.11)) and integrating over 2 yield

/a(w,Vwﬂ.V(wlrujQ) dm+/ a(m,ng).V<erlel> > 0.
Q wy Q Wao

The rest of the proof is the consequence of Proposition O

Diaz-Saa inequality also holds for anisotropic operators. Here we require that £ — B;(z, &)
1
is p;(z)-homogeneous and strictly convex and b;(z, &) = T)&-Bi(x, §) wherer e Rj1 <r <
pilT
mini=1 2. nN{(pi)_}-
Corollary 4.4.4. Under the assumptions of Corollary[{.4.5 and in addition that there exist
. |Ob;
A > 0 such that for each i, a—(:c, s)
S
for v € [1,min;{(p;)_}] and v,vo € VI N L=(Q):

;/ < UT xl 8) ) N Oz, (bi T(xl((?;)ivo)))(vr ) de >0

Yo

< A|s[P®)=2. Then we have in the sense of distributions,

Proof. We apply Theorem For A= B;: Q2 xR — R and by replacing V by 0,,. O

4.4.4 Application of Picone identity to quasilinear elliptic equations
The aim of this section is to establish Theorem [4.4.3
4.4.4.1 Preliminary results

The first lemma is the Picone identity in the context of the p(z)-Laplacian operator.

Lemma 4.4.1. Letr € [1,p~] and u,v € Wol’p(w)(Q) N L>°(Q) two positive functions. Then
for any x € Q

T'

|VulP@®) 4+ |VoP@) > vy p@)= 2%v( )+|wpx> 2VuV< )
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Chapter 4. Parabolic problems with nonstandard growth

Following the proof of Theorem 1.1 in [262], we first prove the following comparison principle:

Lemma 4.4.2. Let A > 0 and u,v € Wol’p(x)(Q) N L¥®)(Q) two nonnegative functions for
some function o € P(Q) satisfying 1 < a— < ay < oco. Assume for any ¢ € Wol’p(x)(Q),
¢ >0:

/ Va2V Ve + u*® Iy sn¢ do > / Vo) V0.V + 00y 206 da
Q Q

where

1 if A<v<oo;
Xoza(T) =
0 f0<v<A,

and u > v a.e. in 0. Then u > v a.e. in Q.
Proof. Let ¢ = (v—u)t € Wol’p(x)(Q) and O = {z € Q: u(r) < v(z)}. Then
0< —/Q (V[P 2Ty — |[VoP®)=2T0).V (u — v) d
1
- /Q (ua(m)_lxuz,\ — Uo‘(x)_lxvz)\)(u —v)dx <0
1

from which we obtain v > v a.e. in €. O

Using lemma we show the following strong maximum principle:

Lemma 4.4.3. Let h, | € L*(Q) be nonnegative functions, h > 0 and k : Q@ x RT — R*.
Let o, B € P(Q) be two functions such that 1 < B_ < B4 < a_ < ay < o0o. Let u € C1(Q) be

nonnegative and a nontrivial solution to

(4.4.12)

- Ap(x)u + l(sz:)ua(gﬁ)_1 — h(m)uﬂ(fﬂ)—l +h(z,u)  in Q;
u=20 on 0N).

Assume in addition either

(c1) % € L>®(Q)

or

(c2) k: Q xRt — R" satisfying hm 1nf ((

Then u is positive in §2.

; )1 > |[l]|pee uniformly in x.

Proof. We follow the idea of the proof of Theorem 1.1 in [262]. For the reader’s convenience
we have included the detailed proof. We rewrite our equation (4.4.12) under condition (c1)

as follows:

- T)— I(x olz)—B(z
Ay + 1@y > b1 = yusn) (1 _ h((x))“ (2)—B( >> ,
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4.4.4.1. Preliminary results

since % € L>(Q2), we choose A € (0,1) small enough such that for any u(z) < A, we have

I(z a(x)—B(x a_—
1 — §Bue@=A@) > 1 — || L] oo Ao~ > 0.

Assuming condition (¢2), we have
_Ap(a:)u + l(l‘)ua(a:)—lxuz)\ > Kz, u) — (1 — XuZA)l(l’)Ua(x)_l-

We choose A small enough such that for any u(z) < X\, we have k(z,u) — I(z)u®®-1 > 0.

Hence under both conditions, we get for any z € 2,
—Ap(x)u + l(l‘)ua(z)_lquA > 0.

Suppose that there exists 21 such that u(z;) = 0 then using the fact that u is nontrivial, we
can find 9 € Q and a ball B(x2,2C) in Q such that x; € 0B(z2,2C) and u > 0 in B(x2,2C).
Let a = inf{u(z) : |z — 22| = C} then a > 0 and choosing x2 close enough to z; such that
0 <a < Aand Vu(z;) = 0 since u(zy) = 0.

Denote the annulus P = {x € Q : C < |z — z2| < 2C}. We define p; = p(z1), M =

sup{|Vp(z)|:z € P}, b=8M+2, Iy =—b In(&)+ 2(1\2;_1) and

a It
i) = —e— (em—l - 1) Vtelo,C).
er1-1 — 1]
We have
a —uc , , , a _uc
—er—T < j(0) < j(t) < j(C) < zer!
and then
a 3
(C) <j () <1 Vtelo,CO]. (4.4.13)

We choose C' < 1 and using Vu(z1) = 0, & < 1 small enough such that for any z € P

-1 _1
pa)=1 1 (4.4.14)
p1—1 2
Without loss of generality we can take xo = 0 and we set r = |z — z2| = |z|, t = 2C — r. For

t € [0,C] and r € [C,2C], denote w(r) = j(2C' — r) = j(t), then
w'(r) = —j'(t), w'(t)=j5"(t).

From (4.4.13) and (4.4.14])), we obtain

([T -2¥w) = (p(a) - 1) 07 25"(1) - L (ot
PO )y 2
i=1 """
> (o (2w anmg ) - Y

177



Chapter 4. Parabolic problems with nonstandard growth

a

>—In( =)' @)P®1>o0.
>~ (£) G @)r " 20
Since j(t) < a < A, we deduce
— div(|VwP®2Vw) + w* @1y, o\ < 0.

On 0P, w(C) = j(C) = a < u(z) and w(2C) = j(0) =0 < u(x). Then by Lemma [4.4.2 we
obtain w < w on P. Finally,

u(zy + s(ze — x1)) — u(x) w(z + s(ze — x1)) — w(xy)

lim > lim
s—0+ S s—0+ S
= j/(0) >0
which contradicts Vu(z1) = 0. Therefore, u > 0 in Q. O

Remark 4.4.4. Conditions (c¢1) and (c2) can be replaced by the condition that there exists
to such that h(z)t?@ =1 4 k(z,t) — I(2)t*®) =1 >0 for all 0 < t < ty and x € Q.

Lemma 4.4.4. Under the same conditions of h,l,k as in Lemma let u € C1(Q) be
the nonnegative and nontrivial solution of (4.4.12)), x1 € 0Q, u(x1) = 0 and Q satisfies the

u
interior ball condition at x1, then ?(xl) < 0 where 7t is the outward unit normal vector at
n

xI1.

Proof. Choose C > 0 small enough such that B(z2,2C) C Q, 21 € 9B(x2,2C). Then
x9 = x1+2CT, where 7 is the outward normal at z1. Denote P = {x € Q: C < |[x—x2| < 2C'}
and by choosing a such that 0 < a < A, then by Lemma there exist a subsolution
w € CY(P)N C?(P) of (#.4.12)) in P and w satisfies w < u in P with w(z1) = 0, %(ml) < 0.

Hence, we get %(ml) < g—%}(ml) < 0. O

4.4.42 Proof of Theorem [4.4.3

Proof of Theorem We perform the proof along five steps. First we introduce
notations. Define F, G :  x R — R as follows:

h(®) yqw) if 0<t<o0;
0 if —co<t<O,
and l
Uo) @) 55 <t <oo;
Gz, t) = { s(x)
0 if —oco<t<O.

We also extend the domain of f and g to all 2 x R by setting

faty = (e ) =0 and gz, ) = 28

5 5 (x,t) =0 for (z,t) € Q x (—00,0).
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4.4.42. Proof of Theorem |4.4.3

Define the energy functional & : Wol’p(w)(Q) N L*®)(Q) - R by

B |Vu[p(®) B
E(u) —/Q @) dw—i—/QG(x,u(;r)) dx /QF(x,u(x)) dz. (4.4.15)

p

Step 1 : Existence of a global minimizer

Since Wé’p(x)(ﬁ) < LI®)(Q) (see Theorem 3.3.1 and Theorem 8.2.4 in [112]), the functional
€ is well-defined for every function u € I/VO1 P (m)(Q) N L*@)(Q).

For ||u||W01,p(z) large enough: by (4.1.2)) or (4.1.3)

\Vu|P(ac) / h(z) o 1 )
) q px) Q q(x)| | p- | HLP( ) pq(u)

1 _ _
> 7 f|yllP _ q
= - ‘“Hwol,p(z) CHUHWOLW)

q- if [Jlullppe) <1

] . Since p~ > ¢4, this implies
gt if |ull e > 1

where ¢ = {

E(u) = oo as |lully1p@ — +oo.
0

We argue similarly when |||/« — oo and we deduce £ is coercive. The continuity of £ on
Wol’p(m)(Q) NL*®)(Q) is given by Theorem 3.2.8 and 3.2.9 of [112]. Hence we get the existence

of at least one global minimizer, say ug, to (4.4.15).

Step 2: Claim: ug > 0 and ug # 0
Since ug is a global minimizer of £ then &(ug) > &(ug) where ud = max{up,0} € Wol’p(x) ().
Set O~ = {z € Q:up(z) < 0}. We have

== 7|Vu0 |p(w) — z,ug(x)) dx
5@@_A (5] M+AG@WQDM LF@O(»d

Vuo|P®)
:5@3%5/‘;gﬁdx

p(z)
Vu(0|) =0 ie Vup(x) =0 ae. in Q then by (4.1.2) and (4.1.3) we

have ug = 0 a.e in Q7. This implies that ug > 0.

In order to show that uy # 0 in 2, we construct a function v in W(}’p(x)(Q) N L*>(Q) such
that £(v) < 0 = £(0). Precisely, consider v = t¢ where ¢ € C1(2), ¢ >0, ¢ # 0 in Q and for
0 <t <1 small enough, we have

which implies /

E(w) <8 (ert? T 4 cot® T — ¢3)

where for any i € {1, 2,3}, ¢; are suitable constants independent of ¢t. Hence, choosing ¢ small

enough the right-hand side is negative and we conclude that £(t¢) < 0 = £(0) which implies
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Chapter 4. Parabolic problems with nonstandard growth

ug Z 0.

Step 3: wug satisfies the equation in (4.4.2)
Since ug is a global minimizer and £ is C! on Wol’p(w)(Q) N L*@)(Q), then for any ¢ €
W™ (Q) N L@ (Q), we have

(€' (u0), 6) = /Q Vol 2V Vb der — /Q F (o) da + /Q 9, o) da = 0.

Step 4: Regularity and positivity of weak solutions
First we prove that all nonnegative weak solutions of (4.4.2)) belongs to L>(€2) which yields
C1(Q) regularity.

det A 1/(s——aqy)
Let K (z,t) = h(z)td®=1 — [(2)t*®)~1 and A = max{ Hl , }

LOO

Then it is not difficult to show that for any ¢ > A, K(z,t) < 0. Let u be a nonnegative
function satisfying weakly the equation in (4.4.2)). Then for any ¢ € VVO1 P (x)(Q) N L*®)(Q),

/ \VuP®2Vu.Veo de = /(h(m)uq(”")_1 — () u* @ N p(z) de.
Q Q

Taking the testing function ¢(x) = (u — A)™, we get
/ IV (u— A)FP@) <.
Q

By using (4.1.3), we deduce [|(u — A)*||  1.0) = 0 which implies u(z) < A. From Theorem
0

1.2 in [118], we get u € CH*(Q) for some « € (0,1). Furthermore assuming x — % belongs

to L*°(Q), Lemma yields v > 0 in €.
Step 5: Uniqueness of the positive solution of (4.4.2)
Let u, v be two positive solutions of (4.4.2). Thus for any ¢, ¢ € W&’p(x)(Q) N L@ (),

/ |VulP®) =20V do = / (W(z)ud® =1 — (&)@ N p(z) da
Q Q

and

/ IVolP@ 20V do = / (h(z)v? @1 — 1(2)v*@ ) g(z) da.
Q Q

By the previous steps, u and v belong to C!(Q) and Lemma implies u,v € CY(Q)*.
(up7 — Up7)+ (Up7 — upi)_

Hence taking the testing functions as ¢ = and ¢ = € Wol P (m)(Q)

wp~—1 p——1
(with the following notation ¢~ e max{0, —t}) and from Lemma we obtain

0< / (IVulP®=2Vu — |VoP®=2V0).V(u — v)dz
{u>v}

:/ h(z)(uI® =P — 1@ =P7Y (T — P da
{u>v}
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4.4.5. Application to Doubly nonlinear equation

+/ l(a:)(vs(x)_p_ —S@)-p YuP —oP ) da.
{u>v}

Since g4+ < p~ < s_, the both terms in right-hand side are nonpositive. This implies v(x) >
u(x) a.e in Q.

Finally reversing the role of u and v, we get u = v. O

l
Remark 4.4.5. Theorem |4.4.3) still holds when the condition 7 € L>(Q) is replaced by

pT < s_ and using strong mazimum principle in [262).

4.45 Application to Doubly nonlinear equation

In this section, we establish Theorems [4.4.4] and [4.4.5] To this aim, we use a time semi-
discretization method associated to . With the help of accurate energy estimates about
the related quasilinear elliptic equation and passing to the limit as the discretization parameter
goes to 0, we prove the existence and the properties of weak solutions to . In the

subsection below, we study the associated elliptic problem.

4.45.1 Study of the quasilinear elliptic problem associated to D.N.E.

Consider the following problem

v2at ALV = ho(z)v?™t + Af(z,v) in Q;
v>0 in Q; (4.4.16)
v=20 on 0f).
Assume hg € L>®(Q)" and f satisfies (f0)-(f1). Then from (f1), we have
(f3) lims—s oo @ = 0 uniformly in x € Q.
o
Therefore, for any € > 0, there exists a positive constant C such that for any (z,s) € Q x R*:
0< f(zx,s) <O, +es? L (4.4.17)
We have the following preliminary result about (4.4.16|):

Theorem 4.4.7. Let A > 0, ¢ € (1,p7], f : Q@ x RT — RT satisfying (f0) and (f3) and

ho € L®(Q)*. Then there exists a weak solution v € C1(Q) to (4.4.16)), i.e. for any ¢ €

W w70y n (o)

/ 0291 dr + )\/ IVo|P @20V do = / hov? 1o dx + )\/ flz,v)p dx. (4.4.18)
Q Q Q Q

In addition, if (f1) holds then v € CY(Q)T. Moreover if v, va € CI()T are two weak
solutions to (4.4.16)) corresponding to hg = hy, hy € L®(Q)" respectively, then we have

(o] = v8) L2 < [[(ha — o) ¥ |l 2 (4.4.19)
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Chapter 4. Parabolic problems with nonstandard growth

Remark 4.4.6. ([£.4.19) implies the uniqueness of the weak solution to ([£4.16) in CY(Q)*.

Proof. We perform the proof into several steps.
Step 1: Existence of a weak solution

Consider the energy functional J defined on W equipped with ||.|lw = [|.|;,, 1a@) I|1l .24

(z)
J(v) = 21(]/91)2(1 dx + )\/Q ’quzf) dx — Clj/QhOD(v) dx — )\/QF(:C,U) dx (4.4.20)

9 if 0<t<oo; /fxs s if0<t<oo;
D(t) = and F(x,t)

0 if —co<t<O, if —co<t<O.

F
We also extend the domain of f to all of Q x R by setting f(z,t) = 8875(%15) = 0 for
(x,t) € Q x (—00,0). From (4.4.17), Holder inequality (4.1.4])) and since Wol’p(x) — LP (Q),

we obtain

J(v)

1
A R HhoHLszHquq AC, / olds ~ A= / o™ dz

qnvn;q(znw;q—||ho||Lz)+A|rv|| oo (L= el ey =€)

Then by choosing € small enough we conclude the coercivity of J on W and J is also
continuous on W therefore we deduce the existence of a global minimizer vg to J.

Furthermore we note

Two) > T(wd) + ;q /Q (v)% di + A /Q

which implies vy > 0.

[Vog [
p(z)

Now we claim that vg #Z 0 in . Since J(0) = 0, it is sufficient to prove the existence of
o € W such that J () < 0. For that take & = t¢ where ¢ € C}(Q) is nonnegative function
such that ¢ #Z 0 and ¢ > 0 small enough.

Since vy is a global minimizer for the differentiable functional 7, we have that vg satisfies
i.e. vy is a weak solution to (4.4.16]). From Corollary [4.4.7 we infer that vy € L>().
Then by using Theorem we obtain, vg € C1*(Q) for some « € (0, 1).

From (f 1) and Lemma [4.4.3] (with condition (€2)), we obtain vy > 0 and by Lemma [4.4.4]

we get < 0 on 99Q. Therefore, vy belongs to CY(2)T.

8*
Step 2: Contraction property (4.4.19))

Let v; and ve two positive weak solutions of (4.4.16)) such that vy,vy € Cg(§)+. For any
o, Ve W:

/ 2a=14 dx—ir)\/WmP”(x) V.V dx—/hlvl_ <bdw+)\/f:v v1)¢ da
Q

182



4.4.5.1. Study of the quasilinear elliptic problem associated to D.N.E.

and

/Qvgql\ll dx + )\/Q [V [P®) =20y VU da = /thvgllll dx + )\/Qf(m,vg)\lf dx.

_ + -
Since v1, v € C’g(Q)*, ¢ = (v1 — ;31) and ¥ = (1)2 — U;’i) are well-defined and belong
1 2

to W. Subtracting the two above expressions and using (f1) together with Lemma we

obtain

[t =) do< [ (=)ot - o)
Q Q
Finally, applying the Holder inequality we get (4.4.19)). O

From Theorem we deduce the accretivity of R:

Corollary 4.4.5. Let A > 0, g € (1,p7], f: Q@ x RT — R satisfying (f0)-(f1) and hy €
L>®(Q)*. Consider the following problem
u+ ARu = ho(z) in
u>0 in Q; (4.4.21)
u=0 on 0N.

Then there exists a unique distributional solution u € D(R) N CY(Q) of (A.4.21)) i.e. V¢ €
Ce(Q)

/Wp dm+)\/ Vg |P) QVuO/qV((q(ﬁl)/q> da
Q Q Uy
1/q
T, U
_/h0¢d:r+/\/ f(q 10/q)¢d :
Q U

Moreover, if u1 and uy are two distributional solutions of (4.4.21)) in D(R)NC(Q) associated
to h1 and ho respectively, then the operator R satisfies

H(u1 — U2)+HL2 < H(u1 — U9 + )\(Rul — RU2>)+HL2. (4.4.22)

Proof. Define the energy functional £ on V{ N L*(Q) as £(u) = J(u'/?) where J is defined

n (E4.20).
Let ¢ € C1(Q) and vy is the global minimizer of (4.4.20) which is also the weak solution of

(4.4.16) and up = vd then there exists tg = to(¢) > 0 such that for t € (—tg, to), ug + t¢ > 0.
Hence we have

0 < E(up +t¢) — E(ug) = qu</(t¢)2 dx +/ 2ty d:c> _ 1/ hts di

HI
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Chapter 4. Parabolic problems with nonstandard growth

)\</QF(9E, (uo + o)) d:p/QF(ac,u(l)/q) dm).

Then divide by ¢ and passing to the limits ¢ — 0 we obtain ug = v is the distributional

solution of (4.4.21)). Finally (4.4.22) and uniqueness follow from (4.4.19)). O

We now generalize some above results for a larger class of potentials hg:
4.45.2 Further results for (4.4.16)) and uniqueness

Theorem 4.4.8. Let A > 0, f : Q x RT — RT satisfying (f0)-(f1) and hg € L*(Q)"
and q € (1,p~]. Then there exists a positive weak solution v € W of (4.4.16)) in the sense of
(4.4.18). Moreover assuming that hy belongs to L” () for some v > max {1, pﬂ,}, v e L™(Q).

Proof. Let h, € CX(Q) such that h,, > 0 and h, — h in L?(Q). Define (v,) C C1*(Q) N
CY(Q)* as for a fixed n, vy, is the unique positive weak solution of (4.4.16) with hg = h,, ..
vy, satisfies: for ¢ € W

/ 029G da + )\/ Vo |P@ 2V, Vo dr = / hovd ™ ¢ da + )\/ flx,v,)¢ dz. (4.4.23)
Q Q Q Q
Since (a — )¢ < (a? — b?)? for any ¢ > 1, (4.4.19)) implies for any n, p € IN*

1(vn = vp) T llz20 < [[(hn = Pp) (172

thus we deduce that (v,) converges to v € L?4(2).

We infer that the limit v does not depend on the choice of the sequence (h,,). Indeed, consider
By # hy such that h, — ho in L?(Q) and @, the positive solution of (&.4.16) corresponding

to hy, which converges to @.

Then, for any n € IN, (4.4.19)) implies
(v = 2) * |2 < 1 (ho = Tn) ¥l 2

and passing to the limit we get ¥ > v and then by reversing the role of v and ¥ we obtain
v =17.

So define, for any n € N*, h,, = min{h,n}. Thus (v,) is nondecreasing and for any n € N*,
Uy, < v a.e. in © which implies v > v1; > 0 in €.

We choose ¢ = v, in . Applying the Holder inequality and , we obtain

A/ Vo P dx < || 2 [on]§20 + ACcl[vall 21 + Aellonl? -
Q
< C A+ Ael[vnl? -

Assume ||Vup||zpe > 1. Since Wol’p@(Q) — LP (Q) and by (4.1.2) we deduce for some

positive constant C' > 0:

A / Vo [P da < C + AeC / V0, [P@ da.
Q Q
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4.45.2. Further results for (4.4.16]) and uniqueness

Choosing € small enough and gathering with the case |Vu,|/;p@) < 1, we conclude (vy,) is
uniformly bounded in VVO1 P (x)(Q) and LP (). Hence v, converges weakly to v in WD1 P (x)(Q)
and by monotonicity of (v,) strongly in LP™ () and in L?%(Q2). Taking now ¢ = v, — v in

(4.4.23), from (4.4.17) with e = 1 and by Holder inequality
/ f(z,vp)(vy, — ) dz
Q

-—1
< Cllon = vllz2a + lvall?, = llvn — vl - — 0

and
/ hpvi (v, —v) dz — 0 and / 020 (v, —v) dx — 0.
Q

Q
Finally (4.4.23) becomes
/ Vo |P® =2V 0,.V (v, — v) dz — 0.
Q

Then, since v, — v in Wol’p(x)(Q)

/ (V0 |P® =20, — |VoP@)2T0).V (v, — v) dz — 0.
Q

Lemma A.2 and Remark A.3 of [147] give the strong convergence of v, to v in W&’p(x)(ﬂ).
Since (v2971) and (h,v?~') are uniformly bounded in L?/(2¢=1)(Q) and by (&.4.17), f(z,v,)
is uniformly bounded in L?¥/9-1(Q) and f(z,v,) — f(z,v) a.e. in Q. Then by Lebesgue

dominated convergence theorem we have (up to a subsequence), for ¢ € W

/vzﬂ—lqﬁ d$—>/v2q_1¢ dw,/ ) dm—>/th_1¢ dx
Q Q Q Q

/f(fﬁ,vnﬁﬁ d$—>/f(:r,v)¢ dx.
Q Q

Finally we pass to the limit in (4.4.23) and we obtain v is a weak solution of (4.4.16). To
conclude corollary implies v € L*(Q). O

and

Remark 4.4.7. Let vy, vo are the weak solutions of (4.4.16|) obtained by Theorem
corresponding to hy, ho € L?(Q)", hy # ho respectively. Then

(v = v3) "2 < [[(ha — ha) ¥l 2.

Remark 4.4.8. As in Step 1 of the proof of Theorem [{.4.7], we can alternatively prove the

existence of a weak solution by global minimization method.

Under the hypothesis of Theorem and with the help of Picone identity, the following
theorem gives the uniqueness of the solution to (|4.4.16)).

Theorem 4.4.9. Let v,0 be respectively a subsolution and supersolution to (4.4.16|) for h €
LPo(Q2), po > 2, h >0 and f satisfies (f0) and (f1). Then v <.
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Chapter 4. Parabolic problems with nonstandard growth

Proof. We have for any nonnegative ¢, ¥ €¢ W

/ v¥ g da + )\/ [VolP®) 2TV do < / hi e dx + )‘/ [z, v)¢ dx
Q Q @ ¢

and

Q Q Q 0

i +
Subtracting the above inequalities with test functions ¢ = (W) and

v ((+(v>+—)g+1>> € W for ¢ € (0,1), we obtain

o (@~ a0t s

v+ ) |PE 2V (y + ¢ (vt €)= (0+e)f x
! {v>0} Vit v+ ).V( (v+ €)1 >d
s p(z)—2 P4e (’l~)+€)q—<1)_|-€)q .
+ A - V(3 + ) V(o +e). ( o 7o >d (4.4.24)

pi—1

v
: /{v>@} h<(v +ee (0 ;)1“)((” +e)T = (0+¢)) do
)

f(xv U) f(l’, ’[}) B
" )\/{v>ﬁ} <(U +e)1 1 (54e)! (v +e)? = (0 +€)?) du.

Since f)iﬁ < 5 < lin {v > 0}, then we obtain

vt 5241
((v + L B+ ) (wte)?=(0+€)7)

— (m(v i E)ql . m(@ i 6)q1>((v o) — (54 €)9)

<v((v+€T—(0+¢€)) <vi(v+e€)? <vi(v+1)9.

In the same fashion, we have

q—1 ~q—1
0< h( : S
(’U + 6)’1_1 (fU + e)q—l

)((’U +e)—(0+e)?) <h(v+e)?<h(v+1)~

Moreover, as € — 0

( p2a—1 52q—1

(v+e)a=1  (0+e)1 > (v+ )9 — (04 €)) = (v —39)?

and

- o 4 _ (54 )
h((v+e)q—1 B (@+€>q—1>((v+€) —(0+6)1) =0
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4.45.2. Further results for (4.4.16]) and uniqueness

a.e. in ). Then by Lebesgue dominated convergence theorem we have

o (Fam - Fram) o= Groa

— (v1 —59)? dx
{v>v}

and

/{v>ﬁ} h((v iq;)lq‘l @ iq;)lq—1>((” +e)? = (0+6)7) dr — 0.

Then by using Fatou’s Lemma and (f0), we have

— lim inf /{v>ﬁ} (f(x’v)(@ + E)Q dr < _/ f(w, U)@q dz,

e—0 v+ E)q_l {v>5} pi—1

— lim inf M(v +e)? dr < — qu dx
=0 Jipsoy (0 + €)1 sy 0971

and

/ flz,v)(v+e€) de — f(z,v)v dx,
{v>v}

{v>v}

/ f(x,0)(0+€) dz — f(z,9)v dz.
{v>v}

{v>v}

By Lemma we have,
/ ]V(v+6)|p(z)2V(v+6).v<(v+€)q — (@+€)q> dx
{v>v} (U + e)qil

(04 ¢€)9— (v+¢€)?
@+ e)al > e

+/ yv<a+e)|p<f>2vw+e).v<
{v>v}
> 0.

Then by combining above estimates and taking lim sup in (4.4.24)), we get by (f1)
e—0

oy faw)  F@o)N, .
0§/{U>6}(v 07) d:zzg)\/{wﬁ}( >(v 07) dx < 0.

vi—1 091
It implies © > v. O

Corollary 4.4.6. Let A > 0, f : Q xRt — RY satisfying (f0)-(f1) and ho € L2(Q)TNLY(Q)
where v > max{1, %} Then there exists a unique positive distributional solution u € D(R)N

L>®(Q) of (4.4.21) in the same sense as in Corollary[4.4.5.
Moreover if uy and ug are two positive distributional solutions of ([£.4.21)) for hy, ho € L?(Q)*

then R satisfies
(w1 — u2) "2 < |[(u1 — ug + AM(Rus — Rug)) ™| 2. (4.4.25)
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Chapter 4. Parabolic problems with nonstandard growth

Proof. Define the functional energy € on VN L%(Q) as &(u) = J (u!/9) where J is given by

@EA20).
By Theorem Remark and Theorem [4.4.9 v is the unique positive solution of

(4.4.16) and then unique global minimizer of 7. We take ug = vd and proceed as the proof of
Corollary and we obtain ug = v{ is a distributional solution of (4.4.21). Finally Remark

[ ives (L125). 0

4.45.3 Existence of a weak solution to (4.4.3))

In light of Remark we consider the problem and establish the existence of weak
solution when vy € C(Q)* N Wol’p(x)(Q).

Proof of Theorem Let n* € N* and set Ay = T'/n*. For 0 < n < n*, we define
tn = nl\;.

Step 1 : Approximation of h

For n € {1,2,...n*}, we define for ¢ € [t,,—1,t,) and = € Q

o 1 [t
ha, (£ 7) = b7 (2) 2 L / h(s, z)ds.
At tn—1

Then by Jensen inequality,

N N t 2
n L[
Hh‘AtH%Q(QT) =A E | H%z(g) = Ay E A/ h(s, z)ds
n=1 n=1 b Jtn—1 L2(Q)

N tn
2> / e, ) 3aqyds < IAl22 gy,
= n—1

Hence ha, € L?(Qr) and h™ € L?(Q2) and let € > 0, then there exists a function h. € C3(Qr)
such that [|h — hellp2(gp) < 5-
Hence,

[(he)a, = ha,llL2@p) — 0

Since ||he = (he)a,llr2(p) — 0 as Ay — 0 then for small enough A; we have

Iha, = hllz2@r) < I(he)a, — hallzz@qr) + 1he = (R)a,llL2(0p) + 1P = Rellz2(0r) < €

Hence ha, — h in L2(Q7).
Step 2: Time discretization of (4.4.4))

Define the following implicit Euler scheme and for n > 1, v, is the weak solution of

q _ 4
(W)”gl — Dpayvn = R0l f(z,00)  in Q;
t
vp >0 in Q; (4.4.26)
v, =0 on 0fF2.
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4.45.3. Existence of a weak solution to (4.4.3))

Note that the sequence (vp)p—12,. n+ is well-defined. Indeed for n = 1 the existence and
the uniqueness of v; € C1*(Q) N CY(Q)* follows from Theorems [4.4.7| and [4.4.9| with h =
Aht 4+ vd € L=®(Q)*. Hence by induction we obtain in the same way the existence and the

uniqueness of the solution v, for any n = 2,3,...,n* where v,, € C1¥(Q) N CY(Q)T.

Step 3: Existence of a subsolution and supersolution

Now we construct a subsolution and a supersolution w and w of such that for each
n€{0,1,2,...,n*}, v, satisfies 0 < w < v, < w.

Rewrite (4.4.26) as

vt — AtAp(w)Un = (Athn + UZ—l) Ugil + Aef(x,vn). (4.4.27)

n

Then following arguments in the proof of Theorems [4.4.7] and from Theorem and
from Lemma for any p1 > 0 there exists a unique weak solution, w, € C Le(Q) ﬁCg o),

to
— Ap(z)w = u(ho’wqil + f(JI, w)) in Q;

w >0 in Q; (4.4.28)
w=70 on 0f2.
Let p1 < p2 and wy, ,w,, be weak solutions of (4.4.28)). Then,

/Q IV, P92V, Ve da = o /Q (howT) + f(z,wp))é da,

[ 190200, 90 de = g [ (ho 4 S 10,0))0 da

_?1 )~ c WOLP(JE) (Q)

- ons wi (uh —uty)* (wf
Subtracting the last two equations with ¢ = 1072 and ¢ = 2

q—1 q
I Wpg
we obtain, by Lemma and (f1), wy, < wy,.
Then by using Theorems |4.4.12| and |4.4.13|, we can choose p small enough such that [|wy || 1.« @ <

Cyp for all p < po and [Jwyl[zeo) — 0 as p — 0. Therefore {w, : u < po} is uniformly
bounded and equicontinuous in C1(Q) and by Arzela Ascoli theorem [|w,|| co@ —0asp—0
up to a subsequence. Then by mean value theorem we can choose p small enough such that
there exists w € C1*(Q) N CY(Q)T such that 0 < w e w,, < vg. Also w is the subsolution of

(4.4.27) for n =1 i.e.
/ w? e dx + At/ Vw|[P@2Vw. Ve de < A, / (W'w?™! + f(x,w))¢ dx
Q Q Q
-I-/ vgw! ¢ dx
Q
for all ¢ € VVO1 P (w)(Q) and ¢ > 0. We also recall vy satisfies
/ v}y dr + At/ (Vo [P®) =20, . Vo do = At/(hlvif‘l + f(z,01) d
Q Q Q

+/ vl da
0
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Chapter 4. Parabolic problems with nonstandard growth

for all 1 € W™ (Q).
By Theorem we obtain, w < vy and then by induction a subsolution w such that
O<w<wv, foralln=0,1,2,...,n"

Now we construct a supersolution. For that, we consider the following problem:
— Apyw = [|BllLew?™ + f(z,w) + K in Q;
w >0 in Q; (4.4.29)
w=0 on 0.

As above, there exists a unique weak solution to ([4.4.29), wx € C1(Q) N CY(Q)T. Let wk be

the unique weak solution of

—Aypywrg =K  in Q;
{ ple) =R (4.4.30)

wr =0 on 0f).

From Theorem [4.4.13 wx > CKY® =14 dist(x, 9Q) where v € (0,1) and lwil| oo () — o0

as K — oo. Then by weak comparison principle we can choose K large enough such that

there exists such that vy < wg < W def Wg. We easily check that w is the supersolution of

(4.4.27) for n =1 d.e.

/ w4 da + At/ V[P —2Vw).Ve de > A, / (W@t + K + f(z,w)¢ dx
Q Q Q
+ / it g dx
Q

for all ¢ € VVO1 p(@) (©) and ¢ > 0. From Theorem we get w > v; and then by induction
we have W > v, for all n € {1,2,...n"}.

Step 4: Energy estimates

Define the function for n =1,...,n* and t € [t,,—1,tn)

o t—1tn—1

va,(t) =vn and O, (t) = Tt(”% —vp_1) T U
which satisfies

_100 _

100A 1
’Uth ot £ — Ap(z)UAt = f(:E, UAt) + hnqut . (4431)

vl —oul
Multiplying the equation (4.4.26) by T{L and summing from n =1 to n’ < n*, we get
Un

n’ U?L o Ug_ 2 n/ U?L _ Ug_
n=1 n=1

Un

o 2l fa
= zjl/ﬂh (v —vl ) dx—l—zjl 0 (%_1 )(’Ug—vg_l) dz.

(%
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4.45.3. Existence of a weak solution to (4.4.3))

Then from Young inequality we have,

- Z 1 a (z)—2 vl — vy
/At( ) dx + Zl/g |V oy, [P an.V(q—1> dx
n' 1 n' v — 4 . 2
< hn _ ANV LS Lot d
_Z Al HL2+4nZ—:1/Q t( A, > T

2 n q 2
1 q _
41 / At(”" ”nl) da
2 4 1/Q At

i vl — vl N vl —vl |
5 /QAt< A >d1:+Z/!Vv P@=2g7y,,. ( — >
SWNTETES i Ll

f(ﬂ?ﬂ)n)

i.e.

L2

Using w < v, <w and (f1)-(f2), we obtain ff}if’?) in uniformly bounded in L?(£2). Then by

Step 1, we obtain

<ag?t) is bounded in L?*(Qr) uniformly in Ay. (4.4.32)

Now from Lemma [4.4.1] we have

q

\an\p(“)Qan.V(vq

Un

> < V1] Vo, [P@)

< L’vvn_ﬂp(m) + (p(a:) - Q) |an‘p
p(x) p(x)
Then we obtain for any n’ > 1
n' n’ 2
T, Uy,
> A+ 30 A, [ L)
TL:1 TL:1 L2

' o) vl — vl
n=17% Un

> Yo, p(x) dx—/ 4 Yo, @) dop
L[ v - [ 25190

N /Q (p(;v()m; q)|wn|p(z> dx]

p(@) p(z)
Zq/ ‘an‘ dm—q/ ‘V’Uo’ da
o p) o plx)

(va,) is bounded in L*°(0, T} Wol’p(x)(Q)) uniformly in Ay. (4.4.33)

which implies that

191



Chapter 4. Parabolic problems with nonstandard growth

Since
) v\ 4 (1-a)/q
V() = ovea(c+ -0 (2))
v, \ 7\ 9/
+a=OVen (-0 +¢(2))
—tn—1
where ( = , then we conclude that
t
(ﬁlA/tq) is bounded in L*°(0, T} Wol’p(m)(Q)) uniformly in Ay. (4.4.34)
Since (vvn ) is uniformly bounded in L>°(Q2), va, — v and 171A/tq X 5in L(0, T Wol’p(x)(Q)).
n—1
Furthermore using (4.4.32), we have
sup H@lA - UAtHqu @ S sup 1A, — V4, HLQ <Ay —0as Ay — 0. (4.4.35)
te(0,T) te(0,T)

It follows from (4.4.35)) that v = 0. By mean value theorem and (4.4.32)), we get that (0a,)a,

is equicontinuous in C(0,7;L"(2)) for 1 < r < 2. Thus using w? < 9p, < wW? together
1

with the interpolation inequality |||, < ||.|%].[37%, with = = =4 Ta, we obtain that

r 00

(0a,)A, and (D /q)At is equicontinuous in C(0,7; L"(2)) for any 1 < r < +o00. Again using

interpolation inequality and Sobolev embedding, we get as A; — 07 and up to a subsequence
that for all » > 1

ia, — o7 in C(0,T; L"(Q)), (4.4.36)
and

va, — v in L*°(0,T5 L"(§2)). (4.4.37)
From (4.4.32)) and (4.4.36)), we obtain

Step 5 : v satisfies (4.4.5))

Multiplying (4.4.31)) by (va, — v) and integrating by parts, we get

T
/ / AtlavAt (va, — ) dxdt+/ / [Voa, P®=2Vo,,.V(va, —v) dedt
0 Q

T
:/ /f(x,vAt)(vAt —0) da:dt—i—/ /h”qu_tl(vAt —v) dzdt.
0 Q 0 Q

From (4.4.37)) and (4.4.38]) , we have
T
+ / /h"qu_l(vAt — ) dxdt
0o Ja !

18UA,5

VA, (va, —v) dzdt = oa,(1)

192



4.45.3. Existence of a weak solution to (4.4.3))

and from (4.4.33)), (4.4.34), (4.4.37)) and Lebesgue Dominated convergence theorem,

[ [ s, -0 = os )

Then we obtain
T
/ / [Vua,P@2Vua, . V(va, —v) dz— 0 as Ay — 07
0o Ja

Then from [Step 4, Proof of Theorem 1.1, [146]] and from classical compactness argument

we get
IVua,[P@ 2V, — [VolP@ 20y in (LP@/P@=D Q)N (4.4.39)

From (4.4.35)) and (4.4.36)) we have,

-1 — -1 _
W&t = v 2@ < I0& " — v i oriz2)
< ot — et
=l HLoc(o,T;L%> (4.4.40)

< ”Uth - ”qHLoo(o,T;L?)

< |va, = 9acllzee 0,522y + 19a, — v oo 0,102) — 0

as Ay — 0. By Holder inequality we have for ¢ € C°(Qr)

1(%At o ql)
//( 8tv ¢ dx
q q
[ /vg—l(%—%)w 2o
0 Q t ot At

0o, OvY
< ot ‘m) ‘¢

O,

—1
< vk, ol L2 (@r) + ||UA =" 12000

L2(Qr) L2(Qr)

and

/OT/(h%A — i )¢ dx
//h"vA vq1¢dx+// hv? ¢ dx

< W6l 2@ Iv&, " = " lz2igr) + 109 Sl 2@ IB™ = Bll 2 -

Then from (4.4.32)), (4.4.37)), (4.4.38)), (4.4.40) and Step 1 we obtain

q
/ / ( Atla%t - %vtvq_l)qb dr — 0,

/ /(h"qu_t1 — i Y der —0 as A — 0.
0o Ja

(4.4.41)
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Chapter 4. Parabolic problems with nonstandard growth

From (4.4.37) we have f(z,va,) — f(z,v) pointwise and from (4.4.33)) together with (4.4.34)

we have [, f(z,va,)¢ dz is bounded uniformly in A;. Then by Lebesgue dominated conver-

gence theorem we have

T
/0 /Q(f(m,vAt) — f(z,v))p dr — 0 as Ay — 0. (4.4.42)

Then finally gathering (4.4.39)), (4.4.41)) and (4.4.42), we conclude by passing to the limits in
equation (4.4.31]) that v is weak solution of (4.4.4)). O

Remark 4.4.9. All the results in Section Section [4.4.9 and Theorem [{.4.4] hold if
we replace the assumption (f1) by h > ¢ > 0.

Proof of Theorem |4.4.5: For a given function g, let ||g|ly+ 1[9]* | 2(q)- For z € D(R)

and 7, k € L®(Qr)" satisfying assumptions in Theorem set

o(t,s) = [[r(t) = k(s)lla+ ¥ (t,5) €[0,7] x [0, 7],
fort € [-T,T]

tt+

.
b(t, 7, k) = ud — zllas + [0 — 2lla+ + [ Rzlla+ + / (7 o+ d + / V() lg+ dr

and
f(jstb(t—erT,T)dr if 0<s<t<T

f5¢(778—t+r)d7 if 0<t<s<T

W(t,s) =b(t —s,r k) + {

a solution of

%—f(t,s)%—g—w(, s) = ¢(t,s) on (t,s)€[0,7] x[0,T7];
W(t,0) = b(t,r,k)  on te[0,T]; (4.4.43)
¥(0,8) = b(—s,m, k) on se€0,7T].

0

Define the following iterative scheme, u’ = ud and for n > 1,u™ is the solution of

n _ ,n—1
YT LRy =h" in Q;
Ay (4.4.44)

u" =0 on 0f).

Note that the sequence {u"}n=1.2.. ~ is well defined. Indeed for n = 1 the existence and the

uniqueness of u! € D(R) follows from Corollary with h = Ash! +u® € L®(Q)T and
A = A;. Hence by induction we obtain in the same way the existence of the solution u™ for
any n = 2,3,..., N where u" € D(R).

Moreover let denote by (ul) the solution of (4.4.44)) with Ay = e, h = r,r" = f(n 1e (T - dr
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4.45.3. Existence of a weak solution to (4.4.3))

and (ugl) the solution of (4.4.44)) with Ay =n,h =k, k™ = fm l)n .)dT respectively i.e

we have

n__ ,n—1
i + Ru,
€
P (4.4.45)
4 T+ Ruy" = k™.

For (n,m) € N*, multiplying the equation in (4.4.45)) by i] and then subtracting the two
€T

expressions we get,

€ _ ne
RTL_Rm o m m—1 n—k‘m.
77+€ Ue Ue 77+€( Ue uﬂ) n+€(un u77 ) 77+6(T )

Then we infer that

€n e n 1

ul 4 SRl = Ra) = L7 k) + )
€ _
AT

Let @7, = [Jug — up'|lo+ and since R satisfies (4.4.25) and setting A = %, we get

€1
Wi =l = ylae <l =+ S (R = R s

€7) n m Ui n—1 m € n m—1
—k — - — - .
€—|-77HT HQ* + E—i-’r]Hue Uy HQ+ + 6_|_77”u6 U ||2+

Then by elementary calculations, we get
30 = llud — uplla+ < bltn, e, k)

and
DG < b(—=5m; T, k).

Then by using above computations we get , @37, < 457 where ¢p7, satisfies

€ €n
mom = o 1 = ) e +7Hwn Lmll2+ + 1|2+

and 1/12% = b(tn, e, ky) and wen = b(—Sm, Te, kn).
For (t,5) € (tn—1,tn) X (Sm—1,5m), set ¢"(t,s) = |[rc(t) — ky(s)][2+,

POl = nm, bey(t,r k) = b(tn, e, ky)s bey(—s,1,k) = b(=Sm,Te, ky).
Then by elementary calculations ¢ satisfies the following discrete version of (4.4.43)),

Yt s) gt — e s) | Yt s) — YOIt s — )
€ n

= ¢ (t, 5);

e, n(t,0) = bey(t, 7, k);
¢€777(0’ 5) = be,n(57 Ta k)
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Chapter 4. Parabolic problems with nonstandard growth

Since re — 7 in L?(Qr) then b, (., 7, k) — b(.,7, k) in L>=([0,T]) and ¢ — ¢ in L>°([0,T] x
[0,T]) and we deduce that pe, = |[1)" —wHLm([O,T]X 1) — 0 (for more details see for instance
[[43], Chapter 4, Lemma 4.3, page 136] and [[43], Chapter 4, Proof of Theorem 4.1, page 138]).
Therefore,

[ue(t) = un(s)lla+ = @"(E, ) < Yt s) S P(E,8) + pey-

Since ue(t) = vd(t) and u,(t) = v}(t), we obtain

[vE(t) — vl(s)llo+ = ®(t, 8) < (L, 8) < (t,8) + pey- (4.4.46)

From Theorem vd and ’U% satisfies 0 < w < v, v, < W where w,w are subsolution and
supersolution defined in (4.4.28) and ([4.4.29) and v — v and v{ — v§ a.e. in Q where v

and vy are weak solutions of (4.4.4) with initial data ug, vy respectively. Since v — v{ and
vh — vd in L°°(0,T; L*(2)) and passing to the limit in (4.4.46]) as ¢, — 0 with t = s we get

[09(8) — 030)llas < [09(8) — 8(8) s + 1e(E) — 03(E) e + [[09(2) — w(8) -
t
<l = 2l + 10§ = 2l + [ 1r2) = KOs
Then ({.4.6]) follows since we can choose z arbitrary close to v¢ and with r =h, k=g. O

4.4.6 An application to nonhomogeneous operators

In this section, we prove Theorem [£.4.6] To this aim, we first study the properties of a related
energy functional. Let m > 1 and K :  x RN — R* be a continuous differentiable function

which satisfies the following conditions:
(k1) K € CH(Q x RY) N C? (2 x RV\{0}).

(k2) Ellipticity condition: 3 k; > 0 and v € (0, 00) such that

N 2
8 K
(x,&)nin; > ~v(k1 + m=21p|2,

(k3) Growth condition: 3 k2 > 0 and T' € (0, 00) such that

K
| | 0&9¢;

<m,£>‘ < T(ko + €)™ 2

for all ¢ € RN¥\{0} and € RY.
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4.4.6. An application to nonhomogeneous operators

Remark 4.4.10. From the assumption (k2), it follows that K is strictly convex and from
(k1)-(k3) there exists some positive constant v1 and o with 0 < 1 < 72 < 400 and some

nonnegative constants I'y and I'y such that

Nl =T < K(2,8) < 7™ + T

for x € Q and ¢ € RN\{0}.

Consider the associated functional 7, defined by

det [ |ulP® Yu n
o pz) u

for any positive function u € I/VO1 P (gc)(Q). Now we extend Lemma 2.4 in [246] as follows:

Theorem 4.4.10. Let K : Q x RY — R satisfying (k1)-(k3) for some m € [1,p~]. Then,
the function € : V" 1 L®(Q) — R*, defined by &(u) <
(even strictly convex if p(-) Z m).

T (u 1/m), is ray-strictly convex

Proof. We observe that for u € V™ N L=(Q)

%
e = [ o (w8 (o)) T

Therefore, since for 1 < m < p~, t — tP@/™ ig convex in RT (even strictly convex if

p(x) > m) it is enough to prove that

Vmau—>uK<:L‘ Vu)
mu

is ray-strictly convex. To achieve this goal, let § € (0,1) and uy,uz € Vf” then by using the

strict convexity of K we obtain, for x € Q

(B

(1-0)u; Vuy Ous Vu2>
=((1-¢6 Ous) K
(1= B)us + 6uz) ( ((1 - 9)u1 T uz) muy (1= B)ur + Bup) muz
Vul
< ((1—- K
< (1= O)ur + bug) ( 0)uq + Guz) (x’ mul)
Ous Vug))
Kz 222
+ ((1 = O)uy + Ous) <x, mus
=(1- 9)u1K(3: V) + HugK(:v Vu2>
mauy mus
The above inequality is always strict unless % = @7 i.e. uy/ug = Const. O
1 U2
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Chapter 4. Parabolic problems with nonstandard growth

Proof of Theorem Consider the functional J : VVO1 P (w)(Q) — R, defined by

U2 o 2 )2
;ﬂ(u):/g(‘v | ;_(;13) ) dx—/QG(m,u) dx

where the potential G(x,t) defined as

t
/ g(z,s)ds if 0 <t < oo;
G(z,t) =< Jo
0 if —oco<t<O.
Assumptions (f0), (§) and Remark [4.4.10|ensure that J, is well defined, coercive and contin-

uous. Then there exists at least one global minimizer of J. on WO1 P (T’)(Q), say ug. We can
easily prove that ug is nonnegative and nontrivial.

Since J. is differentiable, we deduce that wug is a weak solution of . Now from Theorems
[4.4.11) and 4.4.12 in Appendix A, we obtain that any weak solution u to belongs to

Ch(Q) for some o € (0,1) and u > 0 in Q and % < 0 on 0f). Therefore any weak solution
belongs to C9(Q2)*. !
Now we prove that ug is the unique weak solution to . Let W Vf — R defined by
W) = gty = [ RTORE TR o Gty e
Q p(x) Q
The assumption (g) together with Theorem with K (z,€) = (e+]¢[%)™? imply that W

is strictly convex.

Let u; a weak solution to (4.4.7). Then setting v e ug’, v o uP € V" and t € [0,1], we

define &(t) e Jo(((1 — t)vg + tvy)/™). Since up and u; belong to CY(Q)*, ¢ is differentiable
in [0, 1]. From the convexity of £, we have for any ¢ € [0, 1]

£(0) < €(1) < £(1). (4.4.47)
Since ug and uy are weak solutions to (4.4.7), £'(0) = £'(1) = 0 and from (4.4.47)) we get that
¢ is constant which contradicts the strict convexity of £ unless ug = ;. 0

4.4.7 Additional results

In this section, we recall the following regularity of weak solutions of quasilinear elliptic

differential equation

(4.4.48)
u=0 on 0.

Now we recall the boundedness and C%%(Q) regularity results of weak solutions of (4.4.48))

satisfying the following growth conditions:
Az, u, 2)z > ag|z|P™® — blu|" @ — ¢
Az, u, 2)| < an] 2P+ bl + ¢; (4.4.49)
|B(z,u,2)| < ag]2*® + blu|" ™~ 4 ¢

{ div A(z,u, Du) + B(x,u, Du) =0 on Q;
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4.4.7. Additional results

where ag, a1, az, b, c are positive constants and p* is the Sobolev embedding exponent of p and

p(z) < r(x) <p*(z), o(r) = ————r(x) and a(x) = %p(w) (4.4.50)

Theorem 4.4.11. ([120/, Theorem 4.1 and Theorem 4.4) Let (4.4.49)-(4.4.50) hold and
p € Pl9(Q). If u € WP)(Q) is a weak solution of ([£.4.48), then u € CO*(Q).

Theorem (4.4.12 below ensures C'1%(€2) regularity to weak solutions of (#.4.48) under the
additional assumptions on p, A and B:
Assumptions (Ay) : A= (A1, Ag,..., A,) € C(Q x R x RN RY). For every (z,u) € Q x R,
A(z,u,.) € CHRN\{0},RY), there exist a nonnegative constants ki, ko, k3 > 0, a nonin-
creasing continuous function A : [0,00) — (0,00) and a nondecreasing continuous func-
tion A : [0,00) — (0,00) such that for all z,z1,20 € Q, u,u1,us € R,n € R¥\{0} and
€= (&1,6,...,&) € RY, the following conditions are satisfied
A(z,u,0) =0,
0A;(z,u,n _
2 J(an,)u,u,n)asj > A(Jul)(ky -+ [n2) @272 ¢,
/1:7]' ¢
Z 0A;(z,u
o

04i@ ) | < Alul) (ke + [n?)P@ 272 and
%,J

|A(ar, u1,m) — Alws, uz,n)| < Amax{|ur], [ua]})(Jor — 22| + Jur — uz|™)
X [k + [?)PED=D2 4 (k4 [ P22 ) (1 + [ Log (ks + [n]*)]).

Assumption (B) : B : Q x R x RY — R, the function B(z,u,7) is measurable in x and is

continuous in (u,7), and
Bz, u,m)| < Alul) (1 +[9[P®),  V(z,um) € xR x RY.

Theorem 4.4.12. ([118], Theorem 1.2) Let assumptions (Ay), (B) hold. Assume p belongs

to CO%(Q), for some B € (0,1). Suppose that Q satisfy (). If u € Wol’p(gg)(Q) N L>®(Q) is

a weak solution of ([4.4.48), then u € C1¥(Q) where a € (0,1) and Hu||Cm(§) depends upon
ef

p~,pT  AN(M), A(M), 51, B2, M, where M dof 1wl oo ()

In the next theorem, we recall some results contained in Lemma 2.1 of |117] and Lemma 3.2

of |146]. Set p = MQ’W where Cp is the best embedding constant of WOLI(Q) C L%(Q)

Theorem 4.4.13. Let K > 0 and wg € Wol’p(x)(Q)ﬂCl’o‘(ﬁ) be the weak solution of (4.4.30)).

Then for K > o, ||wk||p=@) < CLKY @D e (z) > CoKY P =149 dist(z, 09) where
s € (0,1) and for K < o, [[wkl[re@) < CsKY@ =1 where C1,Cy and Cs depends upon
pt,p™, N, Q. Moreover if K1 < K3 then wg, < wg,.
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Chapter 4. Parabolic problems with nonstandard growth

Next we prove a slight extension of Proposition A.2 in [146].

Proposition 4.4.3. Letp € C(Q) and q € (1,p~]. Assume u € W satisfying for any ¥ € W :
/vauv’(x)—Qvu.w dx = /Qhuq_l\I/ dz (4.4.51)

where h € L*(Q) N L™(Q) with r > max{1, %} Then u € L*(9).

First we prove a regularity lemma.

Lemma 4.4.5. Let u € Wol’p(Q) satisfying for any Br, R < Ry, and for all o € (0,1), and

any k > ko >0
/Ak,R

/ |VulP de < C
Ak,oR
p%-f—a + (/
Ag,R

+h7 Ak g
where Ay p = {x € BRNQ | u(z) >k}, 0 <a<p* = NN—%, B € (1,p] and e, § > 0. Then
u € L>(Q).

*

u—k
R(1—-o0)

B +e

dz + k®|Ag,r| + |Ag,R|?

P

—k p* p*
- dx) | Ag.rl°

R(1—o0)

Proof. A similar result exists in |131] or in [147] without the term k5|Ak,R\PL*+€. For the
reader’s convenience, we include the complete proof.
Let zg € Q, Bg the ball centred in zg. We define Kg def Br N Q and we set

R R . T +Tj+1 1 .
7’]:54_%, T]:T and k]:k 1_2jﬁ fOl“anijﬂV
Define also
. 1 ifo<t<i,
I; = / lu(z) — k;j|P dr and () = 1 T,
Akj,rj 0 if ¢ 2 1

satisfying ¢ € C1([0,+00)) and 0 < p < 1. We set ;(z) = ¢ (2];1 (|| — g)) Hence ¢; =1
on B, and ¢; =0 on RV\B
We have

WISES /
Akj i

< /K ()~ ko) @) d

Tj+1

p*apj(a:)p* dz

uw) ~ ksl do = [ u(@) — Ky

Akj 1

Since u € Wol’p(ﬂ), (u—kjr1)Tpj € Wol’p(KR)v

p*
P
A ( / V(1 — 1) T o))P dx>
Kpg

(L.

p*
p

|[VulP dx + /

Apg

(u—kjy1)? d$>

JHLT JHLT
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4.4.7. Additional results

where we use the notation f < g in the sense there exists a constant ¢ > 0 such that f < cg.

Since 7; < rj, we have

ip* * L+
Ij+1 S 27P / |u - kj+1‘p dx + k;l+1|Akj+1ﬂ”j| + ‘Akj+177’j|p :
kjt1m;
%
p
&+ j * 5
+I<:f+1|Aij7rj|p 20 ju—kjpl” do | Ak, (4.4.52)
kjt1ry

p*

P
+/ |u—kj+1\p* dx .
Akj1oms

Moreover, for any j, k; < kj;1, this implies

Iy = / u— k| da > / by — kjal” do = A, ki — kP
Ag

1T Akjgrr

Then, for any k > kg and j € IN

|Ak | + k§+1‘Akj+17Tj‘ S 27P Ij

J+15T5
where the constant in the notation depends only on kg, p and «. From the previous inequality,
we deduce

8 L te p+ep*
ijrl‘Aijrth‘p < kj+1 |Ak’

Replacing in (4.4.52)), we obtain

P
pte < oilpter”) I i

G175

.
Y
L te

L S <2jp* I+ 2J(ﬁ+sp*)]jp + 2j(p+5p*)]];*+5> B ) (4.4.53)

Setting M = z% max{p*, p + ep*, p+ dp*} and § = min{1 — z%’ g, 0} and noting

B[ Quekly do< [Pt < ulf,.
Kgr 0

Kgr

(4.4.53)) becomes
S
Lipn S2770I 07
where the constant depends on HUHWLP, ko, o and p. We conclude with Lemma 4.7 in Chapter
0
2 of [191].
For this it suffices to prove that Iy is small enough. Indeed u € LP"(£2) implies

k *
I(]:/ |u—§|p dr -0 as k— oo.
%,R

1 _ *
Hence for k large enough, Iy < C~ 7 (2M) " »? with n = 9%. Thus I; converges to 0 as j — 400

/ lu — k[P" de = 0.
A n

and
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Chapter 4. Parabolic problems with nonstandard growth

We deduce that u < k on KR In the same way, we prove that —u < k on KR
Since (2 is compact, we Conclude that u € L>(). O

Proof of Proposition [4.4.3; We follow the idea of the proof of Theorem 4.1 in [120].

Let zo € Q, Bg the ball of radius R centered in zg and Kg “onnB r. We define

+ d:f d _ d:ef .
p Hll(axp( z) and p r}l(glp(fv)

and we choose R small enough such that p™ < (p~)* where

(p)- & vE=  ifpT <N,
pt+1 ifp~ > N.

Fix (s,t) € (R%)? t < s < R then K; C K; C Kg. Define p € C*(9), 0 < ¢ < 1 such that
1 in Bt,
p= N
0 in RY\B,
satisfying V| < 1/(s —t). Let k > 1, using the same notations as previously Ay \ = {y €

Ky | u(y) > k} and taking ¥ = o? (u— k)t € Wol’p(x)(Q) in (4.4.51]), we obtain

/ [VulP@ P’ do + pt / (V[P @2y - VP ~Hu— k)t da

Ao Ao (4.4.54)

= / hud~pP" (u—k) dx.
Ak: s

Hence by Young inequality, for € > 0, we have

(=)
p+/ VulP®) =2V - Vgl " (u— k) da < 6/ V@ P R0 dg
Aks A

k,s

+ ca_l/ (u — k)P@|VpP®) dg
Ak',s

(=)
Since |V¢| < ¢/(s—t) and for any z € Kg, p™ < (pT—1) gj() )1, we have (p(p D1 < '
This implies
p+/ VulP® 20 Vol (u— k) do < 5/ VulP@er” da
Ak s Ak,s
(4.4.55)

_ 1\ P(@)
+ csl/ <u k) dz.
Ak,s s—1

Using Hoélder inequality, we estimate the right-hand side of (4.4.54]) as follows:

r—1

—1 ot r(g—1) . r
hul™ P (u— k) dx < ||h||Lr u T (u—k)™1 dx
Ak Ap s

;S
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Since r > pﬂ,, we have (1;%)*’";—1 > 1, applying once again the Holder inequality and the Young

inequality, we obtain

p—— a(p)* a(p)* (pp_)* 5
/ hul™ P (u— k) dx < / u » dx+ / (u—k) »~ dx | A s|
Ak,s Ak,s Ak,s

—r=1_ _p—
where 6 = Ik > 0.

Set Apst = {ox € Ay | u(x) — k > s —t} and its complement as Af o+ Now we split the
integrals in the right-hand side of (4.4.56|) as follows:

a(p)* a(p )" -

—k = a(p)* —k = a(p”)
/ (u ) To(s—t) v de+ / (u ) To(s—t) » da
Apop NS A

s—t
NP .
g/ (“ ) do + |Ap,| ¥ T
Ak,s s—t

s (4.4.56)

since ¢ < p~ and we also have

*

a(p ) a®”) a(®7)
/ u P dz:§/ (u—Fk) »= +k » de<T+k
Ak,s Ak,s

a(p )™
=

| A sl

In the same way, the second term in the right-hand side of (4.4.55) can be estimated as

follows:
— k\P®@) — k\P@)
/ (“ ) dr +/ (“ ) de < T. (4.4.57)
Ak,smAk,s,t s—1t AkasmA(I;,s,t 8=t

Finally plugging (4.4.55)-(4.4.57)), we obtain for € small enough

*

q(p”) p_
/ VuPO de ST+ |Apsl (T k7 |Aps) T
Ak,s

where the constant depends on p, R and €. Moreover we have

P

a(p™)* P u—k\®) »)*
R N L e
Ak,s s—t

P P
+ |Ak75| (P)* + kq|Ak75| ()*,

To conclude, using the Young inequality, we obtain the following estimate:

_ _ 1\ @)
/ VulP da < / VuP@r dr < / <“ k) da + 2| Ay |
At Ap.s Aps NS t 7

p

- _ (p)* (»)*

+(1+k‘1)lAk,5|<Pp>*+‘5+Ak,s|5</ (u k) dx) '
Ak,s

s—t

By Lemma we deduce that v bounded in 2. O

Combining Theorem 4.1 of [120] and Proposition we have the following corollary:
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Chapter 4. Parabolic problems with nonstandard growth

Corollary 4.4.7. Let p € C(2) and q € (1,p~]. Assume u € W and nonnegative satisfying
forany Ve W, ¥ >0,

/ W2 da +/ |VuP®) 2Ty . VI dz < /(f(a:,u) + hu® ) dx
Q Q Q

where f verifies for any (z,t) € QxRY, |f(z,t)| < ¢1 +eolt|* @~ with s € C(Q) such that for
any x € Q, 1 < s(x) < p*(x) and h € L*(Q) N L" () with r > max{1, pﬂ_} Then u € L*(Q).

4.5 Generalized doubly nonlinear equation: Local existence, uniqueness,

regularity and stabilization

In the section, we study the existence, uniqueness and qualitative properties of the weak

solutions of the following D.N.E. driven by a general quasilinear operator of Leray-Lions

type:

2qq_ Ot = Vea(w, Vu) = f(a,u) + h(t2)u’™!, w>0 in Qr;
u =0 on I’ (DNE)
u(0,.) = ug in 0,

where T > 0, ¢ > 1, Qr def (0,7) x Q with @ ¢ RV, N > 1 a smooth bounded domain,

r ¢ (0,T) x 092 and h belongs to L>*°(Q7). The main difference of this work with the

previous sections is the doubly nonlinear feature together combined to the broad class of
considered Leray-Lions type operators a. More precisely, problem (DNE)) involves a class of
variational operators a : Q x RY — R defined as, for any (x,¢) € Q x RV:

ofe.6) = (o5(0.); ! (-500,400.8)) = —Ve(w.©

where 4 : Q x RV — R is continuous, differentiable with respect to ¢ and satisfies:

(A)) € — A(.,€) is p(x)-homogeneous i.e. A(x,tf) = tP®A(x, &), for any t € RT, ¢ € RN
and a.e. x € ()

with p € C1(Q) satisfying

1<p min p(z) < p(z) < p* o max p(z) < oo.
z€eQ €N

This class of operators a also satisfies ellipticity and growth conditions:
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(A3) For j € [1,N], aj(x,0) = 0, a; € CHQ x RM\{0}) N C(2 x RY) and there exist two
constants 7, I' > 0 such that for all x € Q, £ € RV\{0} and n € RV:

al 8aj p(x)—21,,12
> (@, 8) nimj > ¢ In|?;

ij=1 43
N
aaj _
< p(z)=2
> [Ge@e)| <

ij=1

Remark 4.5.1. The assumption (Az) gives the convexity of & — A(x,§) and growth esti-
mates, for any (z,&) € Q x RN :

g () T ). p()-1,
7517 SACC,& Sif ) aa;f SC& ) 4.5.1
T < Ao < kel a(z,6)| < Cle (45.1)
and, see [248], for any &,n € RN and x € Q, there exists a constant vo > 0 depending on
and p such that

&) metna e €= i () > 2 (45.2)
a(x,§) —alx,n), & —n) = ¥ ¢ ' .
O (1+ ‘§|| + \7777|)2—p(x) if p(x) < 2.

Moreover, the homogeneity assumption implies that A(z,€) = a(x,£).§ for any (z,§) € Q x
RV,

Next, we impose the condition below to insure qualitative properties as regularity and the

validity of Hopf Lemma.

(A3) There exists C' > 0 such that for any (z,¢) € Q x RN\{0}:

N

>

4,j=1

8@1-

J

(z,€)] < ClEPT A+ | In(I€])]).

Remark 4.5.2. More precisely, from the condition (As) we derive the Strong Mazimum
Principle (see [262]) and the CY-regularity of weak solutions (see Remark 5.3 in [118] and
Remark 3.1 in [146]).

Concerning the conditions on the functions f and h, we assume:

(fo) f:Q xR* — RT is a continuous function such that f(x,0) = 0 and f is positive on
Q x RT\{0}.

(f1) Forany z € Q, s — % is nonincreasing in R*\{0}.

and

(Hyp) there exists h € L>®(2)\{0}, A > 0 such that h(t,x) > h(z) for a.e in Qr.
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Chapter 4. Parabolic problems with nonstandard growth

The study of (DNEJ]) is naturally concerned with the investigation of the following associated

parabolic problem:

01710, (v?) — V. a(z, Vo) = h(t,z)v? !t + f(z,v) in Qr;

v>0 in Qr;
(E)
v=20 on I
v(0,.) = vo in Q.

We further prove that a weak solution of is also a weak solution of .
By denoting W & Wol’p(x) (Q) (we refer to |112,/223] for the definitions and properties of
variables exponent Lebesgue and Sobolev spaces) and introducing weighted spaces with the
notation 0(x) def dist(z, 09):

L§e(9) o {w: Q — R | measurable, % e L>*(Q)}

endowed with the norm ||wl||s = supq ’73)((;)) and for r > 0:
M def . + 1 w”
5(Q) = {w: Q2 — R | measurable, 3 ¢ >0, p < 5) <c},

we introduce the notion of weak solution of as follows:

Definition 4.5.1. LetT > 0, a weak solution to is any positive functionv € L*(0,T;W)N
L>®(Qr) such that 0;(v?) € L?(Q7) satisfying for any ¢ € L*>(Q7) N LY(0,T; W) and for any
t € (0,T]

/Ot/glét(vq)vq—l¢dxds+ /Ot/ga(%Vv).ngdxds

; (4.5.3)
:/ /(h(s,x)vq_1 + f(z,v))pdxds
0 JQ

and v(0,.) = vy a.e. in .

Remark 4.5.3. In sense of Definition a solution of belongs to L (Qr), hence
2;%1875(1)2‘1_1) = 09719, (v?) € L*(Q7) holds in weak sense and we deduce the existence of a

solution of (DNE).
Remark 4.5.4. Prototype examples of operators a satisfying (A1)-(As) are given below: for
any (z,€) € A x RN and p € CHP(Q) by:
p(z)
J 2
A, &) = | gix) [ D&
j=1 i€P;
where (P})jes is a partition of [1, N], g; € C*(Q)NC%P(Q) and g;(z) > ¢ >0 for any j € J.
In particular for A(z,€) = |€|P®), (DNE) can be classified as S.D.E. if 2¢ < p~ and F.D.E.
if 2¢ > p™.

206



4.5.1. Main results

4.5.1 Main results

About the existence and properties of solutions of (E), we prove the following result:

Theorem 4.5.1. Let T > 0 and q € (1,p). Assume A satisfies (A1)-(As), [ satisfies (fo),
(f1) and

(fo) The mapping x — 6*=9(z) f(x,8(z)) belongs to L2(S) for some & > 0 where ). def {z €
Q|o(x) < e}.

Then, for any h € L>(Qr) satisfying (Hy) and for any initial data vg € ME(Q) NW, there
exists a unique solution in sense of Definition [{.5.1]

More precisely, we have:

(i) Let v, w be two weak solutions of with respect to the initial data vy, wo € ME(Q)NW
and h, g € L*(Qr) satisfying (Hy). Then, for any t € [0,T]:

1w (#) = w? ()"l 2 < [1(vf — wg) |2 +/ (P () "Il 2 ds. (4.5.4)

(ii) Assume in addition A satisfies, for any x € Q and for any &, n € RV:

(A1) A, 557) < (@) (A, €) + Alw,m) =@ (A, €) + Ala,m) — 24(z, 1))
where for any x € Q, s(x) = min{1,p(x)/2} and ((x) = ( —21= p(l’)) *@ if p(z) < 2
or ((z) =5 if p(x) = 2.

Then, v € C([0,T]; W).

s(x)

Remark 4.5.5. The above result can be generalized in case f(x,s) def f(x,s)+ f(x,s) where

f satisfies (f1) and s — % is Lipschitz with respect to the second wvariable, uniformly

in x € Q with constant w > 0. Then if f satisfies additionally (fo), (f2) and under same
conditions for A and q, Theorem still holds, (4.5.4)) being replaced by

t
1 (t) = w?(t)) "Il 2 < e[I(vf — w§) " |2 +/O “U|(h(s) = g(s)" |2 ds.
Similar results have been obtained in [108] in the case of the p—laplacian operator.

Remark 4.5.6. Prototype example of functions f satisfying (fo)-(f2) is given by for any
(z,5) € Q x RY, f(x,5) = g(x)d7(x)s” where g € L>®(Q) is a nonnegative function, B €
[0,g—1) andﬁ+7>q—%.

Remark 4.5.7. The condition (A4) reformulates the local form of Morawetz-type inequality

producing convergence properties.

207



Chapter 4. Parabolic problems with nonstandard growth

In Theorem the uniqueness of the solution in sense of Definition is obtained by

the following theorem relaxing the assumptions on vy and h. More precisely, we show:

Theorem 4.5.2. Let v, w be two solutions of in sense of Definition with respect
to the initial data vy, wo € L*(Q), vo,wo > 0 and h, h € L>(Qr). Then, for any t € [0,T):

t
J07(t) = w? ()l 2y < ll0f — w2 + /0 Ih(s) = h(s)llzoyds.  (45.5)

Using a similar approach based on nonlinear accretive operators theory as in [39[146,(147], we
introduce T, : D(T;) C L*(Q) — L*(Q) be the operator with the parameter ¢ defined by

Tou = —u=0/1 (V. a(z, V(') + f(z,u!/7))
and the associated domain
D(T,) = {w: Q — RT | measurable, wt? e Wn L¥(Q), Taw € LA(Q)}.

Based on the accretive property of 7, in L%(Q2) (see Theorem and Corollary [4.5.2) and

additional regularity on initial data, we obtain the following stabilization result for the weak

solutions to :

Theorem 4.5.3. Under the assumptions of Theorem let v be the weak solution of
with the initial data vo € M}(Q)NW. Assume that h € L°°([0,4+00) x Q) satisfying (Hy) on
[0, +00) X Q and there exists ho € L>(Q2) such that

| h(t,.) = hoollz2 = O(1) at infinity for some n > 0. (4.5.6)
Then, for any r € [1,00)
|lv9(t,.) — vLullLr — 0 ast — oo
where vgqr 98 the unique solution of associated stationary problem with the potential heo, €

L™(9).

Remark 4.5.8. The stabilization in L°°-norm appeals new estimates linked to the T-accretivity
of the operator T, in L™ and in L' (see Remark 1.6 and Theorem 2.1 in [49] and Theorem
1.18 in [163)).

- 72
Remark 4.5.9. In Theorem |4.5.5, we noticed that vog € M(Q) NW implies vi € D(’];)L

(see Proposition 2.11 in [068]).

4.5.2 Elliptic problem related to D.N.E.

In this section, we study a class of elliptic problem related to D.N.E. in order to prove Theorem
First we start with a direct application of Theorem which provides a comparison

principle, uniform estimates and uniqueness.
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45.2.1. L°-potential

Lemma 4.5.1. Let A : Q x RV — R be a continuous and differentiable function satisfying

(A1) with a(z,§) = %ngﬁl(w,ﬁ) such that & — A(z,€) is strictly convex for any x € Q.

Then, forr € [1,p™), for any w1, ws € W N L>®(Q) two positive functions and for any x €

a(z, Vwy).V (wlr__IwQ> + a(xz, Vws).V (w2r—_1wl> > 0. (4.5.7)
wy Wy

If the equality occurs in (4.5.7), then wi = wy in Q.

Proof. Let wy,wy € W N L>®(Q) such that wy,wy > 0 in Q. Then Theorem yields

r—1

AP (2 Ty ) AP@ /2@ (1 Two) > alx, V).V < et ) .
Wy

Then, by using Young inequality and the equality A(z,§) = a(x,§).€, we obtain

a(z, Vws).V (wg — lf%) > L(A(ac,sz) — A(z, Vuwy)). (4.5.8)
() p l’)

Reversing the role of wy and ws:

w

a(z,Vwy).V (wl — w;’:_1> > ]ﬁ(A(x,le) — Az, Vwy))

and adding the above inequalities we obtain (4.5.7) and the rest of the proof follows from
Theorem 5.2 in [146]. O

4521 L*-potential
In this subsection, we study the following associated elliptic problem:

02771 —A\V.a(z, Vo) = hov!™' + \f(z,v) in Q;
v>0 in Q; (4.5.9)
v=20 on 0,

where hg € L*>(2) and \ is a positive parameter. The notion of weak solution of (4.5.9) is

defined as follows:

Definition 4.5.2. A weak solution of (4.5.9) is any nonnegative and nontrivial function

veX¥wn L?9(Q) such that for any ¢ € X

/ V2116 dg 4 ) / a(x, V).V de = / hov ¢ d + A / f@,v)dde.  (45.10)
Q Q Q Q

The first theorem gives the existence and the uniqueness of the weak solution of (4.5.9)).
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Chapter 4. Parabolic problems with nonstandard growth

Theorem 4.5.4. Assume that A satisfies (A1)-(As) and f satisfies (fo) and (f1). Then,
for any g € (L,p~), A > 0 and hg € L®¥(Q)\{0}, hg > 0, there exists a weak solution

ve CH@) N MY(Q) to (E53).
Moreover, let v1,vy be two weak solutions to (4.5.9) with hy, he € L®(Q)\{0}, hi, ha > 0

respectively, we have with the notation t* & max{0,t}:

(o] = v§) ¥l L2 < [I(ha = h2) || 2 (4.5.11)
Proof. Define the energy functional J on X:

1 2% /A(JJ,VU) 1/ n
=— d AN ———2de—— | h 7d
T Zq/nv v o p@ T ala o) de

(4.5.12)
- A /Q F(z,v)dz

tt+

where F(x,t) = / f(z, s)ds.
0
Note from (fo)-(f1) that there exists C' > 0 large enough such that for any (z,s) € Q x Rt

0< flz,s) <C(A+s77h). (4.5.13)
By (4.5.1) and (4.5.13)), J is well defined, continuous on X and we have
-1
T0) 2 [0l (ol = c2) + ol (calolfy ™ = 1)

where the constants do not depend on u. Thus we deduce that J is coercive on X. Therefore
we affirm that there exists vg € X a global minimizer of 7.
Noting that, with the notation t~ = t* — ¢,

1 _ Az, Vuy)
T (vo) > T (vg —I—/v 2qd:n—|—)\/’0dm2jv+
(0) (O) 2 Q(O) a p($) (O)
we deduce vg > 0. Let ¢ € C(Q) be a nonnegative and nontrivial function, thus for any
t>0

J(tp) < t9(cit? + cotP 9 — c3)

where the constants are independent of ¢t and ¢3 > 0 since hg Z 0. Hence for ¢ small enough,
J(t¢) < 0 and since J(0) = 0, we deduce vy # 0. The Gateaux differentiability of J insures
that vy satisfies .

From Proposition we deduce vy € L>°(Q2) and Theorem 1.2 in [118] provides the C1:%(€2)-
regularity of vy for some a € (0,1).

By (fo) and (f1), f satisfies lim,_,g+ f(z,5)s' 724 = oo uniformly in z € , hence Lemma
m implies vy € M}(Q).
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45.2.1. L°-potential

Finally, let vi,v2 € M}(Q) be two weak solutions of (4.5.9) with respect to h; and hs
respectively. Namely, for any ¢, ¥ € X, we have

2q—1 _ -1
/Qvl gbd:v%—)\/ga(az,Vvl).qudx—/thvl gbdw%—)\/gf(:v,vl)qﬁd:c

and
/USQ‘lxl/derA/a(m,vm.vwx—/hgvé"l\lfdw+k/f(%v2)‘1’dﬂf-
Q Q @ “

q + q -
Subtracting above expressions by taking ¢ = (Ul — UZZ%) and ¥ = (’1)2 — vfjll) then by
1 2
(f1) and Lemma we obtain

/((vif —vg) ") da < /(m — ho)(v] —v§) T dx
Q

Q
< [[(h1 = ha) "l 2 (0] — v) ¥l 2

from which (4.5.11]) follows. O

Remark 4.5.10. In the proof of Theorem condition (f1) is not optimal to obtain the
existence of a minimizer and to apply Lemma[{.5.3. Indeed define a more general condition

on f

f(=,5)

sp—1

(f1) limsup,_, o < yAp+ uniformly in x €

- _1 def - iy . .
where py = % and A7 = (supHun:l(HuHLf(Q)))p , condition (f]) is a sufficient
condition to obtain the existence of a weak solution of (4.5.9). Moreover, to apply Lemma
we assume in addition that f satisfies:

(f1) liminf,_ g+ J;gif’fl) > 1 uniformly in x € Q.

Remark 4.5.11. Inequality (4.5.11)) implies the uniqueness of the solution in the sense of

Definition . Moreover to obtain (4.5.11)), we use more precisely ¢, 1 belong to L (€2) N
W. The uniqueness can be also obtained by using Theorem |4.5.10,

Remark 4.5.12. For ¢ =1, (4.5.9) becomes

v+ ATy =hg in Q;
(4.5.14)

v=20 on OS1.

For any hg € L*(Q) and for any f € L¥(Q x R) satisfying (f1) with ¢ = 1, following the
proof of Theorem we get the existence of a unique weak solution vg € W N L3() (not
necessary nonnegative) in sense of Definition with ¢ € WN L2(Q).

Moreover, choosing as test function ¢ = (vo = M)™ where M = ||ho||p~ + || f|| 1=, we deduce
vg € L*®(Q) and hence for any A > 0, R(I + AT1) = L*>®(Q).
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Chapter 4. Parabolic problems with nonstandard growth

Moreover, let v1 and vy be two solutions to (4.5.14)) with hy, ha € L () respectively, we get
from (4.5.2)) and (f1): for any £ : R — R Lipschitz and nondecreasing function such that
£(0) =0:

/ (Tivr — Tive)l(v1 — v2) dx > 0.
Q

Thus, by section I.4. in [165], T1 is T-accretive in L'(2) namely for any hi, hy € L®(Q)
and respectively vi, ve the solutions to (4.5.14)), we have

(o1 = v2) Tl < (1 = h2) |1
Finally, using Remark 1.6 in [49], T1 is T-accretive in L™(Q), for any m € [1,00] i.e
|(v1 —v2) |l pm < ||(h1 — h2)T|lpm, m € [1,00].
We point out that T-accretivity of Ty, for ¢ > 1, in L*(Q) is equivalent to
/Q (Tqu1 — Tqu2)l(v1 — v2)dx >0
with the fized choice £(t) = t+.
In the way of Remark Theorem implies existence, uniqueness and accretivity

results for the perturbed problem induced by the operator 7:

Corollary 4.5.1. Assume A satisfies (A1)-(As) and f verifies (fo) and (f1). Then, for any
g€ (1,p7), A >0 and hg € L= (Q)\{0}, ho > 0, there exists a unique solution u € C1(Q) of

u+ ATqu=hy in
u>0 in (4.5.15)
u=20 on 0.

Namely, u belongs to V_ﬁ N M};/q(Q) and satisfies:

/uwdx—l—)\/ a(w,V(u%)).V(u%w) — f(x,u%)u%w dr = / hot dz (4.5.16)
Q Q Q
for any ¢ such that
\%
W[V e LF(Q) and 5'(1_11”(") e LP7)(9). (4.5.17)

Moreover, if uy and ug be two solutions of (4.5.19)) corresponding to hy and ho respectively,
then

1(ur —u2) T2 < [[(ur — w2 + MTqur — Tquz)) " e (4.5.18)
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45.2.2. Extensions for L-potential

Proof. Define the energy functional & on V{ N L*(Q) as £(u) = J(u'/9) where J is defined
in .

Let vg is the weak solution of and the global minimizer of . We set ug = vg.
Then, ug belongs to V{ N Mé/q(ﬂ).

Let ¢ satisfying (4.5.17). Then there exists ¢y > 0 such that for ¢ € (—to, to), uo + tb > 0.
Hence we have &(ug + ty) > E(ug) for any ¢ € (—tp,tp). Using Taylor expansion, dividing by
t and passing to the limit as ¢ — 0 we deduce that ug verifies .

Consider @ € Vf N ./\/li/ (Q2) another solution satisfying (4.5.16). Thus ¢ = a!/? verifies
for ¢ € L§°(2) NWW. By Remark we deduce ¥ = vg and the uniqueness of the
solution of . Finally follows from . O

4522 Extensions for L?-potential

We now generalize existence results of subsection 4.5.2.1| for hg € L?(2) by approximation
method.

Theorem 4.5.5. Assume A satisfies (A1)-(As3) and f verifies (fo) and (f1). Then, for any
q € (1,p7), A >0 and hy € L*(Q)\{0}, ho > 0, there exists a positive weak solution v € X of
(4.5.9) in the sense of Definition|4.5.4. Moreover, if hg € L"(Q2) for some r > max{l, pﬂ_},

v € L*®(Q) and v is unique.

Proof. Consider h,, € CL(Q), h,, > 0 which converges to h in L?(Q2). By Theorem for
any n > 1, define v,, € C1*(Q) N M}(Q) as the unique positive weak solution of with
ho = hay.

For any s > 1 and a,b > 0, observe that

la —b|* < (a® —b%)2. (4.5.19)
Hence (4.5.11)) implies, for any n, p € IN*:
(v = vp) Fllz2a < 10 — o) T (172 < N[(hn = hp) 1o
Thus we deduce that (v,) converges to v in L?¢(Q) and (v?) converges to v? in L?(2).
Note that the limit v does not depend to the choice of the sequence (h,) by (4.5.11). So
define in particular, for any n € N*; h,, = min{h,n}. By (4.5.11]), we deduce that (v,) is

nondecreasing and for any n € N*,

v(x) > vp(z) > vi(x) > cd(x) >0 a.e. in (4.5.20)
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Chapter 4. Parabolic problems with nonstandard growth

for some ¢ independent of n.

From (4.5.1), (4.5.13) and using Hoélder inequality, equation (4.5.10) with ¢ = v,, becomes

Ay
pt—1

/]an]p(x)dxS/a(w,an).andx
Q Q

< ¢ ([onll72q (Nemllz2 + 1) + llvnll £2a)

< ¢ ([vll72q (sup [[2n] 22 + 1) + [[v]| z24)
neN

for some ¢ independent on n. Hence we deduce that (vy,) is uniformly bounded in W and v,
converges weakly to v in W (up to a subsequence).
Now taking ¢ = v,, — v in (4.5.10]), we obtain as n — oo

‘/Qf(x,vn)(vn —v)dz

_l’_

/ hpvd (v, —v) da
Q

_l’_

/ 020 (v, —v)dz| — 0
Q

which infers / a(x,Vu,).V(v, —v)dzr — 0.

Since v, — v in W, we deduce that:
/ (a(z, Vvy) — a(z, Vv)).V (v, —v)dx — 0.
Q
Thus we infer that

/ IV (v, —0)P® dz — 0 as n — . (4.5.21)
Q

Indeed we split 2 into two parts: Q' = {z € Q: p(x) <2} and Q% = {z € Q: p(x) > 2}.
Since yo > 0, ([&.5.2)) implies (#.5.21)) directly on Q*. On !, we get from the Holder inequality
and (vy,) bounded in W:
/ IV (v, — v)[P@®) da
Ol
— )P
<of e

(V0] + Vo)

2
(|Vo] + |V, |)r@) Lﬁx)(gl) LT (Q)
|V (0n — 0)[P) def
=~ C = ClN
(‘VU’ + ’vvn’)r(x) Lp(2$) (Ql)

— )2 P
<o / |V (vy, —v)|* dx i
o (Vo] + [V, |)2-P@)
— p@)2=p@) 5 _ iy h D :
where 7(z) > , p=min{l, 5} if V' < 1 and p = &- otherwise.

Hence from (4.5.2), we conclude (#.5.21)) in ! and the convergence of (v,) to v in W. Then

by using dominated convergence Theorem and classical compactness arguments, we obtain

. M(Q) N
a(z,Vu,) = a(z, Vo) in (Lp<z>1 > .
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4.5.3. Parabolic problem related to D.N.E.

Finally passing to the limit in (4.5.10|) satisfied by v,, and applying the dominated convergence
Theorem, we obtain v is a weak solution of (4.5.9). The regularity arises from Proposition
4.5.2) O

Next result is the extension of Corollary for L2-potential.

Corollary 4.5.2. Assume A satisfies (A1)-(As) and f verifies (fo) and (f1). Then, for any
g€ (1,p7), A >0 and hg € L2(Q)NL"(2)\{0} for some r > max{1, pﬂ_}, ho > 0, there exists

a solution u of (4.5.15)). Namely, u belongs to V_E N L () and satisfies (4.5.16)) for any i
verifying (4.5.17)) and there exists ¢ > 0 such that u(x) > c¢d¥(z) a.e. in Q.

Proof. Noting that the existence of a weak solution vy € L>°(Q2) of for h € L?(Q2), can
be obtained by global minimization method as in Theorem [£.5.4] we deduce from Theorem
[4.5.10] that the solution obtained by Theorem [£.5.5]is a global minimizer.

Then we follow the same scheme as the proof of Corollary We consider the functional
energy € defined on VI N L%(2). We set ug = v§. Then, ug belongs to Vi N L> and
implies ug(z) > ¢d4(x) a.e. in Q.

Take ¢ satisfying (4.5.17)), then for ¢ small enough, &(up + t¥) > E(up). From classical
arguments, we deduce that ug verifies . O

4.5.3 Parabolic problem related to D.N.E.

In this section, we prove Theorems by dividing the proof into three main steps: existence,
uniqueness and regularity of weak solution. The proof of Theorem (i) follows from the
proof of Theorem [4.4.5] and using Lemma [£.5.1] Theorem [£.5.5] and Corollary [£.5.2] Thus we

omit the proof.
4.5.3.1 Existence of a weak solution

In light of Remark and improving Theorem to p(x)-homogeneous operator, we
consider the problem with vg € MA(Q)NW.

Theorem 4.5.6. Under the assumptions of Theorem there exists a solution v to in
sense of Definition |4.5.1. Furthermore v belongs to C([0,T]; L"(2)) for any r > 1 and there
exists C > 0 such that, for any t € [0,T]:

1

65(3}) <wo(t,x) < Cé(z) a.e. in Q. (4.5.22)
Proof. The sketch of the proof is classical and in particular we follow the proof of Theorem
[4.4.4l However, for the convenience of the readers, we give the entire proof due to the general
form setting of the operator a which requires technical computations. We proceed in several

steps:
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Chapter 4. Parabolic problems with nonstandard growth

Step 1: Semi-discretization in time of
Let n* € N* and set A, = T/n*. For n € [0,n*], we define ¢, = nA; and for (t,z) €
[tnfl,tn) x Q

I
ha,(t,z) = h"(z) & At/ h(s,z)ds.
n—1

Thus [|ha, [l @p) < IAllL(@r) and let € > 0, then there exists a function he € Cj(Qr) such
that he — h in L?(Q7). Since h, is uniformly continuous then (h¢)a, — he in L?(Qr) and by
observing that ||(he)a, — ha,llz2(Qr) < ke = hllL2(@yp), then as Ay — 0,

lha, = Pllz2@r) < I(he)a, = ballzz@r) + 1(he)a, — hellz2@r) + 1he — hllL2(@p) — O

Applying Theorem with A = Ay, hg = AR +v!_ |, we define the implicit Euler scheme,

vl — Up 1 1

(”A"_)vz_ —V.a(z,Vv,) = K"l + f(x,v,) in Q;
t

v >0 in Q; (4.5.23)

v, =0 on 082,

where, for all n € [1,n*], v, € C*(Q) N M}(Q) is the weak solution in sense of Definition
4.0.2] .

Step 2: Sub- and supersolution

In this step, we establish the existence of a subsolution w and a supersolution w of a suitable
equations such that v, € [w, @] for all n € [0,n*].

As in Theorem we prove, for any p > 0, there exists a unique weak solution, w,, €

CHQ) N M(Q), to
—V.a(z, Vw) = p(hw?™ + f(z,w)) in Q;
w>0 in Q; (4.5.24)
w=70 on 052,

where h is defined in (Hy).

Let p1 < po and w,, ,w,, be weak solutions of (4.5.24). Then,

1

/Qa(x,Vwm).ngdx:,ul /Q(hwzll—kf(x w,,))¢ dx

[ .V T de = p [ (gt + (o) do
Q Q

q—1
=K1

Wiy
and (f1), we deduce (w,,), is nondecreasing. From Theorem 1.2 of [118] and Theorem

we obtain,

. . : (w;}u 7222 )+ (MZQ 7231 )~
Summing the above equations with ¢ = T and ¢ = S S then from

lwullor @ < lwullora) < Cuor e =0 5= 0 (4.5.25)
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4.5.3.1. Existence of a weak solution

for pip > 0 small enough, o € (0,1) and Cy, is independent of w, and «. Therefore,
implies {w,, : ¢ < po} is uniformly bounded and equicontinuous in C L(Q). Applying Arzela-
Ascoli Theorem, we obtain, up to a subsequence, w, — 0 in C1(Q) as p — 0. Then by Mean
Value Theorem, we choose p small enough such that w dff w, € C1(Q) N M§(Q) satisfies
0 <w < .

Similarly, there exists w, € C*(Q) N M}(£2) the weak solution of the following problem:

—V.a(z,Vw) = HhHLoc(QT)wqfl + f(z,w) + K in Q;
w >0 in Q; (4.5.26)
w=0 on 0f).

By Theorem 4.5.11)and by comparison principle, we have for « large enough that w def Wy =
wy > vo where wy is the weak solution of (4.5.49)).

Rewrite (4.5.23]) as follows
— _ n,q—1 q qg—1
— A¢V.a(z,Vu,) = Ay (h vdTH + f(ac,vn)) + ol ol

Since w < vy < w and w, W are respectively a sub- and supersolution of the above equation
for n = 1, Theorem yields v; belongs to [w,w] and by induction v, € [w,w] for any
n € [1,n*].

Step 3: A priori estimates

Define the functions for n € [1,n*] and ¢ € [t,—1,t,)

t— tn—l
q _ .4 q
v 'Unfl) +vnfl

vp, (t) = v, and va,(t) = A, (vl

which satisfy
vk, 0ia, — V.a(z, Voa,) = f(z,va,) + B0k (4.5.27)
and by Step 2, there exists ¢ > 0 independent of A; such that for any (¢,z) € Qr

%5( ) < vay, TR0 < ed(x). (4.5.28)

. e vp—vd
In (4.5.23)), summing from 1 to n’ € [1, n*] and multiplying —=t !

implies
_ q _ o4
/At( ) daj+2/ a(a:,Vv”.V(vnqﬁll) dx
Un

2
Un
<22At|h”||L2+ZZAt £, on)
Un

€ X, Young’s inequality

(4.5.29)

L2
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Since v, € [w,w] C M;(Q), 1) and ( fg) insure that £ ("z n) i uniformly bounded in
L%(Q) in A;. Hence, combining (4.5.1), (4.5.8) and (4.5.29)), we deduce for any n’ > 1:

Cﬂan/’p(w) — CQ’V’UO’p(w) / q
dr < ——(A(z, Vv, ) — Az, Vig)) dx
/, »(@) o p(a) A1 Vew) = Al Vo))

e q
< g /Q @(A(as,an) — A(z,Vu,_1))dx

q

Z/ a(x, Vo). ( _f )dm<03

where the constants ¢; = pi”_

7 and ¢ =
(va,) is bounded in L°(0,7; W) uniformly in A (4.5.30)
and from (4.5.29)), we deduce

(D40a,) is bounded in L*(Qr) uniformly in Ay. (4.5.31)

t—1tn1
Ay

V(L) = <f+ (1 —t)<”’;n1> ) <fwn+ (1-19) (”z:)q_l an1> .

Hence we deduce from (4.5.30) and Step 2 that

Moreover, for t = , we have

(~1A/q) is bounded in L°°(0,7; W) uniformly in A,.

Furthermore using (4.5.19)), (4.5.31]) implies

~1 2 ~
sup ([0 — 08, k(@) < sup 198, — A, l72(0) < 0,(1). (45.32)
(0,71 [0,7]

Gathering (4.5.30) m, up to a subsequence, va,, ¥ /q — v in L*(0,T;W) as A; — 0.

From 1’ and ( we deduce that (0a,)a, is equlcontlnuous in C([0,T]; L"(Q2)) for
any r € [1,400). Moreover, from (4.5.19)), we also deduce that (0 1/ q) A, is uniformly equicon-

tinuous in C([0,T]; L"(f2)) for any r € [1,400). Thus, by Arzela Theorem, we get up to a
subsequence that for any r € [1, +00)

oa, — v?in C([0,T]; L"(Q)) and va, — v in L>(0,T; L"(Q2)), (4.5.33)

hence (4.5.28)) implies (4.5.22)). From (4.5.31) and (4.5.33|), we obtain

Oia, — Op(v?) in L*(Qr). (4.5.34)

218



4.5.3.1. Existence of a weak solution

Step 4: v satisfies (4.5.3))
From (4.5.33)) and (4.5.34), we have as A; — 0T

/ quzl(vAt —0)0 0, dxdt

T

+ h”quzl(vAt —v)dxdt| — 0

Qr

and from (fp), (4.5.28]) and (4.5.33), we obtain

f(z,va,)(va, —v)dodt — 0 as Ay — 0T
Qr

Then, multiplying (4.5.27) to (va, — v) and passing to the limit, we obtain

/ a(z, Vua,).V(va, —v)dzdt — 0 as Ay — 07
T
Since v, X pin L®(0,T; W) and from the above limit, we conclude

/ (a(x,Vp,) — a(z, Vv)).V(va, — v)dodt — 0 as Ay — 0T

T

By (4.5.2)) and classical compactness arguments, we get
a(z, Vua,) — a(z, Vo) in (LPE/E@-D@Qm)N, (4.5.35)

Now, we pass to the limit in (4.5.27). First we remark that (qu_tl) converges to v?~! in
L?*(Qr). Indeed ([4.5.19) and (4.5.32)-(4.5.33)) imply as A; — 0:

2q

— _ — _ .24
[0 — 0"l < C /Q W — ot
T

< C/ vk, — v?|* dadt
Qr

< Coup (44, =l + 158, —132) = 0
0,1

Hence plugging (4.5.31)) and Step 1, we have in L?(Qr):
UqA_tl(?t’f)At — Uq—lﬁt(vq) and hAtqu_tl — oL

Thus, we deduce, for any ¢ € L?2(Qr) as Ay — 07

+ — 0.

/ (UqA:latﬁAt - Uq_lat(vq)) ¢ dxdt
Qr

/ (hAtqu_tl - th—l) o dedt
Qr

Furthermore from (4.5.13)) and (4.5.28)), (f(x,va,)¢) is uniformly bounded in L?(Qr) in A,
and by (4.5.33)) we have f(z,va,)¢ — f(x,v)¢ a.e in Qr (up to a subsequence). Then, by
dominated convergence Theorem we obtain

f(z,va,)p dedt — f(z,v)pdxdt as Ay — 0. (4.5.36)

Qr Qr
Finally gathering (4.5.35))-(4.5.36)), we conclude that v satisfies (4.5.3)) by passing to the limit
in (4.5.27) for any ¢ € L?(Qr) N L*(0,T; W). O
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Chapter 4. Parabolic problems with nonstandard growth

4.5.3.2 Uniqueness

Proof of Theorem Let € € (0,1), we take

b= (v+e)?— (w+e€) and U — (w+e)?— (v+e)?

(v+ et (w+e)a1

(4.5.37)

both belonging to L?(Qr) N L*(0,T; W), in

t t
/O/Qﬁt(vq)vq_1¢dxds+/0 /Qa(:v,Vv).V¢d:rds
t t
_ -1
—/0 /Qh(s,x)vq <Z>dxds+/0 /Qf(zv,v)qﬁd:cds,
t t
/0 /Qat(wq)wq_lwdxds—i—/o /Qa(:n,Vw).dexds
t t
_ 7 -1
—/0 /Qh(s,x)wq wdacds—i—/o /Qf(:v,w)wdxds
and summing the above equalities, we obtain I, = J. where
B 8,5 v?) vq L gy (w)wi =t
+6) — (w+e€)?
+/0 /Sza(a:,V(v—i-e)).V((v (61))—1—6)(‘11{1 2 )dxds
t
+/ /a(a:,V(w4—6)).V((w+€)q_(U_+ e)q) dxds
0 JQ

(w4 €)1-1

Ie _/ / ( U}fi ; 1 (wﬁiﬂgi_l>((v+ﬁ)q — (w+¢€)?) dzds
/ / ( U—l—e - 1 B (Jf;;l;)_l)((vﬂ)q— (w + €)?) dxds.

orer vre S land v, w € L®(Qr), we have

and

First we consider I.. Since

O (vt Gy (wh)wi!

(v+er 1 (w+e)al

[(v+ )T = (w+ €)1 < C(19:(v")] + [0 (w?)])

where C depends on the L* norm of v and w. Moreover, as € — 0

LAY ) (w?) w1
(5 S oo son - s

a.e. in Q7. Then dominated convergence Theorem and Lemma give

limI, > = //&g 2 dads.
e—0
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4.5.3.2. Uniqueness

In the same way for J., dominated convergence Theorem implies

G T P

—>/Ot/ﬂ(h—l~z)(vq—wq)dxds.

Moreover Fatou’s Lemma gives

t
lim inf/ / 1 (w+e€)?dxds > / qu dzds,
e—0 (v + €)= 0o Jo vi1

t
liminf// U+e)qdazd52/ /f(x’w)quxds.
e—0 w—{—e (1 (w + €)4—1 o Ja w9 1

Hence gathering the three last limits and from (f1), we obtain

hmlan </ / (h — h)(v? — w?) dzds.

Since I, = J., we conclude using Hoélder inequality that for any ¢t € [0, 7

//at ) d:rds</||h ll oy 07 — w2y ds

and by Gronwall Lemma (Lemma A.4 in [68]) we deduce (4.5.5).

Hence we conclude the uniqueness of the solution in sense of Definition in Theorem

451k

Corollary 4.5.3. Let v be a solution of in sense of Definition with the initial data

vo € L?4(Q), vo > 0 and h € L*(Qr). Then, v is unique.

From Theorem 6] and Corollary [4.5.3] we deduce the existence result for the parabolic

problem 1nvolv1ng the operator 7:

Theorem 4.5.7. Under the assumptions of Theorem for any ug such that u(l)/q €

ML) NW, there exists a unique weak solution uw € L>®(Qr) of

Ou+Tqu=nh n Qr;
u>0 n Qr;
u=20 on T

u(0,.) =ug in Q,

in the sense that:

e ul? belongs to L=°(0,T; W), du € L*(Qr);

(4.5.38)

221



Chapter 4. Parabolic problems with nonstandard growth

o there exists ¢ > 0 such that for any t € [0,T], 26%(z) < u(t,z) < cd%(x) a.e. in Q;

o u satisfies, for any t € [0,T]:

/ot/gatwdm* /Ot /Q alr, Vull®).V (a7 ) dads
:/Ot/Qf(“”’ul/q)“TdeH/Ot/ﬂh(s,x)zpda:ds,

|9 € L0, T; Lg(9)) and 5LY1w<‘.> € L'(0,T; LP(9)). (4.5.40)

(4.5.39)

for any ¢ such that

Moreover, u belongs to C([0,T7; L"(R2)) for any r € [1,+00).

Proof. Let v be the weak solution of in sense of Definition obtained by Theorem
4.5.60 Then, setting in u = v? and choosing ¢ = Uqw—,l with 1) satisfying , we
get the existence of a solution of (4.5.38).

Let us consider the uniqueness issue: let % be another solution of . We set o = at/4
and taking ¢ = v771¢ with ¢ € L>(0,T; L§(Q)) N L*(0,T; W) in ([4.5.39)), we obtain that ©
verifies with the additional condition ¢ € L>(0,T; L§(R)). Since v, ¥ verify ([4.5.22),
the test functions defined in with v and ¢ belong to L>(0,T; L3°(€2)). Hence

holds and we conclude the uniqueness. ]

4.5.3.3 Regularity of weak solution

Theorem 4.5.8. Under the assumptions of Theorem [{.5.1], assume in addition A satisfies
(A4). Then, v the weak solution of obtained by Theorem[§.5.6] belongs to C([0,T]); W).

Proof. The proof is similar as the proof of Theorem 1.1, Step 4 in [146]. However, the
nonlinear term in time implies a specific approach in the computations. Hence for the reader’s
convenience, we include the complete proof.

We have v € L>®(0,T; W) N C([0,T]; LP~ (Q)) and p € C'(Q), Theorem 8.4.2 in [112] yields
W C LP (Q) with compact embedding. So we deduce ¢ — v(t) is weakly continuous in W.

Moreover, we consider the mapping K(v) = fQ A(pw(’g”) dx defined in W. The convexity of A

implies that K is weakly lower semicontinuous. Thus for any to € [0,7], we have
K(v(to)) < liminf IC(v(2)). (4.5.41)
t—to

vh

_a
In (4.5.23), summing from n’ to n” and multiplying by U,;i”fl € X, we obtain

q

n// Uq _ U 2 n// Uq N Uq
A (" "_1> dr + /a x, Vo, .V(n "_1>dac
nz;ﬂ/ﬂ ' Ay ,;, 0 ( ) vt
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4.5.3.3. Regularity of weak solution

As in Step 4 of the proof of Theorem [4.5.6] after using Lemma [4.5.1] we pass to the limit as
n — oo and we get: for ¢ € [tg, T

/ /8t (v1)? dads 4 gKC(v / /h&t (v?) dxds + qgK(v(to))
to to

(4.5.42)
/ f(, i) (v?) dzds.
to v~

Taking limsup in (4.5.42)) as t — tar and by (4.5.41]) we deduce

lim KC(v(t)) = K(v(to))

t—td
and hence we get the right-continuity of C.
Now, for t > tg, let n € (0,t — tp). We multipl by Tv = oAl £, ) =t e L*(Qr) N

) 0, n ’ 0)- ply Y ThU = T]’Uq_l T

LY(0,T;W) and integrate over (tp,t) x © and hence by using Theorem and Young

inequality, we obtain:

/t /vq 10, ( ’Uq)TndeClS—f— t IC( (s+mn))—K(v(s)) ds

//th Tnvdxds+/ /f:z: V)T dxds.
to to

Since v € L>=(0,T; W) and K is right-continuous in W, by dominated convergence Theorem,

(4.5.43)

we have as n — 07

;KW%MW%%KMm)md;twmmw@%umn

Then (4.5.43)) yields,

/ /@ (v1)? dads 4 gK (v / /h@t (v?) dzds + gKC(v(to))
to to
/ f z,0) >0y (v?) dads.

to
From , we have the equality for any t, ¢y € [0,7] in the above inequality and we
deduce the left-continuity of K.
By (A4), the proof of corollary A.3 in [152] holds by considering K as the semimodular.
Then, we deduce that Vu(t) converges to Vu(ty) in LP®)(Q)N as t — to and hence v €
([0, T); W). O
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Chapter 4. Parabolic problems with nonstandard growth

4.5.4 Stabilization

4.5.4.1 Stationary problem related to (E)

In the aim of studying the behaviour of global solution of the problem as t — oo, we

consider the following problem

—V.a(z,Vv) = b(z)v? " + f(z,v) in Q;
v>0 in €2 (S)
v=20 on 01,

where b € L*°(€2). The notion of weak solution of is defined as follows:

Definition 4.5.3. A weak solution to is any nonnegative function v € WNL*(Q), v 0
such that for any ¢ € W, v satisfies

/a(x,Vv).Vqﬁdx:/bvq1q5da:+/f(a:,v)¢d:c. (4.5.44)
Q Q Q

Theorem 4.5.9. Assume that A satisfies (A1)-(As) and (fo) and (f1) hold. Then, for any
€ (1,p7), b € L=®(Q)\{0}, b > 0, there ezists a unique weak solution v € C*(Q) N M}(Q)

to (9).

Proof. Consider the energy functional £ defined on W such that

E(v)—/ﬂwdm—1/Qb(v+)qu—/QF(x,v)dx

p(z) q
where F' is defined as in (4.5.12)). By following the same arguments as in Theorem we

deduce the existence of nonnegative global minimizer vy to £ and the Gateaux differentiability
of £ implies vy satisfies .

Combining Proposition and Theorem 4.1 in [120] , we deduce vy € L*°(Q2). Then by
Theorem 1.2 of [118], we obtain, vy € C1*(Q2) for some a € (0,1). From Lemma we
deduce vy > 0 and vy belongs to M}(Q).

Let 7y another solution of ([S). As previously, we deduce that gy € C**(Q) N M}(Q).
We choose | e

Uq _ @‘1 @q _ ’Uq
0 9 and 0 as test functions in (4.5.44) satisfied by vy respectively ¥,
Yo 0
then adding the both equations we deduce from Lemma and (f1):

q _ ~q ~q .
/ a(x,Vvy).V ke 711)0 +a(x,V1y).V UON 7;}0 dx < 0.
0 vl od
Applying once again Lemma we obtain vy = . O

Hence we obtain using the same way of the proof of Corollary
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45.4.2. Proof of Theorem|4.5.3

Corollary 4.5.4. Under the conditions of Theorem[4.5.9, there exists a unique solution u of
the following problem

Tou=">b in €
u>0 in Q (4.5.45)
u=0 on ON.

Namely, u belongs to Vq N ./\/ll/q( Q) and satisfies, for any ¢ such that (4.5.17)):

120 £, u)

1/q 2
/Qa(:r,Vu ).V(u a ¢)dx — L w@ Dl Ydx /de)dm.

4.5.4.2 Proof of Theorem [4.5.3

Proof of Theorem [4.5.3] We consider two cases:

Case 1: h = hy

We introduce the family {S(¢);¢ > 0} on Mé/q(Q) NV{ defined as w(t) = S(t)wy where w is
the solution obtained by Theorem [4.5.7] (and Theorem of

(%UJ + 7:1?1} = hoo in QT;

>0 i ;
v in Qr (4.5.46)
w=0 on I';
w(0,.) = wo in Q.

Thus {S(t);t > 0} defines a semigroup on M 5/ 1(Q)NV{. Indeed the uniqueness and properties
of solution of (4.5.38) imply for any wy,

S(t+ s)wg = S(t)S(s)wo, S(0)wy = wo (4.5.47)

and from the map t — S(t)wp is continuous from [0, 00) to L?(Q).

Note that v = (S(t)wp)'/? is the solution of in the sense of Definition with h = hs

and the initial data wé/ 1,

Let T > 0 and v be the solution of obtained by Theorem with h = ho and the

initial data vg, hence we get u(t) = v(t)? = S(t)up with vy = vg.

Let w = w, be the solution of and w = w, be the solution of . Then,

w, W € M}(Q) and for p small enough and s large enough, w is a subsolution and W a

supersolution of with b = hy such that w < vy < w.

We define u(t) = S(t)w? and u(t) = S(t)w? the solutions to (4.5.46). So u and u are obtained

by the iterative scheme with vg = w and vg = w. Hence, by construction the map

t — w(t) is nondecreasing, the map ¢ — @(t) is nonincreasing and insures for any ¢ > 0,
w? <u(t) <wu(t) <u(t) <w?!a.e. in Q. (4.5.48)
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Chapter 4. Parabolic problems with nonstandard growth

We set uo, = limy o0 u(t) and Uy = limy_y00 U(t). Then from (4.5.47)), the continuity in L?(Q)

and monotone convergence theorem, we get in L?(Q):
Upo = lim S(t+5)(w?) = S(t)( lim S(s)(w!) = S()us

and analogously we have To, = S(t)Us. We deduce u,, and T, are solutions of (4.5.45)) with

. def _ . . .
b = ho and by uniqueness, we have ustat = U, = Uoo Where ugas is the stationary solution

of perturbed parabolic problem (4.5.45)). Therefore from (4.5.48]) and dominated convergence
Theorem, we obtain

|lu(t) — ustat|lr2 — 0 as t — oc.

Finally, using (#.5.48)) and interpolation inequality ||.||, < |.|%-]37, we conclude the above
convergence for any r > 1.
Case 2: h # ho.
From , for any € and for some 7' € (0,n), there exists ¢y > 0 large enough such that
for any t > to:

47 () = ool 12 < <.

Let T'> 0 and v be the solution of obtained by Theorem with h and the initial data

1
vy = uo/q and we set © = v?.

Since v satisfies (4.5.22)), we can define @(t) = S(t + to)ug = S(t)u(to). Then, by (4.5.4) and

uniqueness, we have for any t > 0:

t
~ 9
lult +to,.) — a(t, )2 < / s+ to,) = hcllpads < 5 <.
0 0

By Case 1, we have i(t) — ugtas in L?(Q) as t — co. Therefore, we obtain
|u(t) — ustat||p2 — 0 as t — oo

and by using interpolation inequality we conclude the proof of Theorem O
4.5.5 Additional results

In this section, we give extensions of technical results for the class of operator A or for some
boundary value problems.
We begin by extending Theorem [4.4.9] using Lemma Then, we obtain the comparison

principle:

Theorem 4.5.10. Assume A satisfies (A1)-(As) and f satisfies (fo) and (f2). Let v, v €
X N L*®(Q) be nonnegative functions respectively subsolution and supersolution to (4.5.9) for
some h € L"(Q), r>2, h>0. Then v <7.

The proof is similar as the proof of Theorem where the sub- and supersolution do not
need to belong to M}(2). The proof is very similar and we omit it. In the next theorem, we

extend Lemma 2.1 of [117] and Lemma 3.2 of |146] for p(x)-homogeneous operators.
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Theorem 4.5.11. Assume A satisfies (A1)-(A3). Let A > 0 and wy € W N CL%(Q) be the

positive weak solution of

—V.a(z,wy) =X in
{ () (4.5.49)

wy=0 on 0.
Then, there exists A\* > 0 such that wy satisfies

1
e for any X > X, [wa||pec () < CIAY ™= and wy(x) > Co\rT=1+24(x) for some € €
(07 ]‘)7’

o for A < A\¥, Hw)\HLoo(Q) < Cg)\l/(p+71)
where the constants depend upon p™,p~, N, Q and . Moreover if Ay < Ay then wy, < w),.

Now we state a Strong and Hopf maximum principle for variable exponent p(x)-homogeneous
operators and theirs proof follows from Lemma and Lemma [4.4.4]

Lemma 4.5.2. Let o, 8 be two measurable functions such that 1 < f_ < By < a_- < ay <
oo. Let h, 1 € L®(Q) be nonnegative functions, h > 0 and k : Q@ x Rt — R* and A satisfies

(A1)-(A2). Consider u € C1(Q) a nonnegative and nontrivial solution to

— V.a(z, Vu) + [(2)u®@ 7 = ()@ ¢ k(z,u)  in Q;
u=20 on 0N).

If lim igfk(x,t)tlfa(x) > ||| Lo uniformly in x € Q, then u is positive in Q.
t—0

Furthermore, if Q satisfies the interior ball condition for any x € 050, then %(m) < 0 where

7 15 the outward unit normal vector at x.

We state a slight extension of Proposition 4.4.11and Proposition [4.4.12

Proposition 4.5.1. Let g € [1,p~). Assume A satisfies (A1)-(As) and u € X satisfying for
any ¥ € X:

/a(x,Vu).V\Ildx:/huq_l‘I/d;r
Q Q

where h € L?(2) N L™(Q) with r > max{1, pﬂ,} Then v € L*(Q).

Proposition 4.5.2. Under the assumptions of Proposition consider u € X a nonneg-
ative function satisfying, for any ¥ € X, ¥ > 0:

/u2q—1\1/dm+/a(x,vu)-vwxg/(f(x,u)+huq—1)qzdx
Q Q Q

where f verifies for any (z,t) € QxR |f(z,t)| < ¢1 +calt|* @~ with s € C(Q) such that for
any x € Q, 1 < s(x) < p*(x) and h € L*(Q) N L7 () with r > max{1, pﬂ_} Then u € L>®(Q).

The proofs of above results follow the proofs of Theorem 4.1 in [120] and Proposition 4.4.11
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CHAPTER

Kirchhoff equations and systems involving exponential

non-linearity of Choquard type and singular weights

This work is done jointly with Jacques Giacomoni, Tuhina Mukherjee and Konijeti Sreenadh.

Abstract : In this chapter, we focus on Kirchhoff type Choquard equations and systems
involving exponential non-linearity and singular weights. The main feature of this chapter is
three fold. Firstly, we prove the existence of solution using the variational method in light of

Adams, Moser and Trudinger inequalities and the mountain pass Lemma.

Secondly, we study the existence and multiplicity for the problem with an extra sublinear sign
changing term by using the Nehari manifold technique. By analyzing the Fibering maps and
extracting the Palais-Smale sequence in the natural decomposition of the Nehari manifold,
we prove the multiplicity of the weak solutions with respect to an unknown parameter in
the subcritical case. In the critical case (for the second order operator), we again use the
concentration compactness together with the accurate analysis of the energy levels on the Ne-
hari maniflod to determine potential concentration phenomenon for associated Palais-Smale
sequence. Based on this analysis we show the existence of a relatively compact Palais-Smale

sequence which yields atleast one solution.

Thirdly, we prove new singular and non-singular version of Adams, Moser and Trudinger in-
equalities in the Cartesian product of Sobolev space. As an application of these inequalities,
we further study the system of Kirchhoff equation with exponential non-linearity of Choquard

type for both non-dengenerate and degenerate case.
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Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and
singular weights

5.1 n-Kirchhoff Choquard equation with exponential non-linearity

In this section, we study the following Kirchhoff equation with exponential non-linearity of
Choquard type

(KC) — M(/Q |Vu|" de)A,u = (/Q é(j/’?jldy) f(z,u), u>0 in Q,

u=20 on 012,

where p € (0,n),  is a smooth bounded domain in R", n > 2, the function F' denotes the
primitive of f with respect to the second variable (vanishing at 0). The function M : RT — R*

is a continuous function satisfying the following conditions:

¢
(m1) There exists mg > 0 such that m(t) > mg for all t > 0 and M(t) = / M (s)ds satisfies
0

M(t+s) > M(t) + M(s), for allt,s > 0.
(m2) There exist constants by, by > 0 and £ > 0 such that for some r € R

M(t) < by + bot", for all t > .

(m3) The function Mt(t) is non-increasing for ¢ > 0.

Example 5.1.1. An ezample of a function satisfying (m1), (m2) and (m3) is M(t) = mo+bt?
where mg >0, <1 and b > 0.

Using (m3), one can easily deduce that the function

1 1
(m3)’ ﬁ./\/l(t) - EM(t)t is non-negative and non-decreasing for t > 0 and 6§ > 2n.

The function f: Q x R — R is given by f(z,t) = h(z,t) exp(\t\%). In the frame of problem
(KC), h € C(Q x R) satisfies the following conditions:

(h1) A(z,t) =0 for t <0 and h(z,t) > 0 for ¢ > 0.

(h2) Forany e > 0, tlim sup,cq h(z,t) exp(—e|t|#) = 0and tlim inf g h(z,1) exp(e\t\ﬁ) =
0.

(h3) There exists ¢ > max{n — 1, %} such that t — f(ﬁ’t) is increasing on RT \ {0},

uniformly in = € €2 where r is specified in (m2).

(h4) There exist T, Ty > 0 and o > 0 such that 0 < " F(x,t) < Ty f(z,t) for all [¢| > T and
uniformly in x € Q.

t
The condition (h3) implies that Jiﬁj’i? is increasing for each t > 0 and lim+ ft(f_’ 1) =
t—0
uniformly in z € €.
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5.1. n-Kirchhoff Choquard equation with exponential non-linearity

Example 5.1.2. An ezample of functions satisfying (hl) — (h4) is
Fla,t) = 500D exp () exp(|t7T)

fort >0 and f(x,t) =0 fort <0 where 0 < p < "5 and Fo > 0.

We also study the existence and multiplicity of solutions to the following Kirchhoff equation
with a convex-concave type non-linearity:
=M ([ 19U de) Ay = (jal ¢ F@)f(0) + MbGa)luft ' in 9
Q
(Pau) u=20 on 0f),
u >0 in Q
where y € (0,n), Q is a smooth bounded domain in R", f(u) = u|ulPexp(|ul?), 0 < ¢ <
n—1<2n—-1<p+1=p06+((n—-1),p5¢€ (l,nfl) and F(t) = fgf(s) ds. We assume

M (t) = at + b where a,b > 0 and h € L"(Q2), with r = pfjﬁl, satisfying h™ # 0.

Throughout this section, we denote

1/n
] = (/ K dm) .
Q

Definition 5.1.3. We call a function u € WOI”(Q) to be a solution of (KC) if

M(HUH")/Q |Vu|"2Vu.Vy dr = /Q (/Q Fly,u) dy) flx,u)p dx, for all p € ngn(Q)

|z =yl
The energy functional F : I/VO1 "™(Q) — R associated to (KC) is given by

B = (™ -5 [ ([ T ) Pl de

Under the assumptions on f, we get that for any € > 0, p > 1 and 0 < By < ¢, there exists
C(e,n, ) > 0 such that for each = € Q2

|F(x,t)] < €|t]®! + Cle, n, p)|t]P exp((1 + e)|t|ﬁ), for all t € R. (5.1.1)

For any u € W, (€2), by virtue of Sobolev embedding we get that u € LI(Q) for all ¢ € [1, 00).
This also implies that
F(z,u) € LY Q) for any ¢ > 1. (5.1.2)

Taking t = r = 273?# in Proposition and using (5.1.2), we get that E is well defined.
Also E € CY(W;™(Q),R). Naturally, the critical points of E corresponds to weak solutions

of (KC) and for any u € Wol’n(Q) we have

(E' ) = () [ (92 90Tp do = [ ([ T 0y) o do

231



Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and
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for all ¢ € Wy (Q).

The energy functional Jy s : Wol "(2) — R associated to the problem (Pj p) is defined as

Tnar(w) = L M(Jull") = 2 [ h@)ul™ de = 5 [ (ol < F) ) do
n Q Q

where |27  F(u) denotes [, Euy) gy F, M are anti-derivatives of f, M (vanishing at 0)

|z —yl#

respectively and f(s) = s|s|Pexp(|s|?).

Definition 5.1.4. A function u € Woln(ﬂ) is said to be weak solution of (Pxm) if V ¢ €
1,n

Wy (Q) we have

M(JJu)™) /Q |Vu|"2Vu.Ve dr = )\/Qh(a:)uqlu(;ﬁ dx + /Q(|:c“ « F(u))f(u)g de.

5.1.1 Main results

The following theorem is the main result concerning (KC):
Theorem 5.1.5. Assume (m1)-(m3) and (h1)-(h4) holds. Assume in addition

lim sf(x,s)F(x,s)

- = 00, uniformly in x € Q. (5.1.3)
s—+0o0 exp (2‘S‘ﬁ)

Then the problem (KC') admits a weak solution.

Example 5.1.6. f defined by f(x,t) = g(z)t* exp(t#) fort >0,z € Qwith0 # g € L*(Q)
non-negative and p > n — 1 satisfy (h1)-(h4) and (5.1.3)).

Using the Nehari manifold technique, we show existence and multiplicity of solutions of the
problem (Py as) with respect to the parameter . Precisely, we show the following main results

in the subcritical and critical case:

Theorem 5.1.7. Let 8 € (1, %) Then there exists Ao such that (Px ) admits at least
two solutions for X € (0, \g).

In the critical case, we show the following existence result.

Theorem 5.1.8. Let B = "5, then there exists \1 > 0 such that for X\ € (0,A1), (P )

admits a solution.

5.1.2 Existence of a positive weak solution

In this section, we study the problem (KC') and for that we use the mountain pass theorem
and analyze accurately the compactness of Palais-Smale sequences for E. First we prove the

energy functional F possesses the mountain pass geometry.
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Lemma 5.1.9. Assume the assumptions (m1), (m2) and (h1)-(h4). Then, E has the moun-
tain pass geometry around 0 i.e

(i) there exists Ry > 0,m > 0 such that E(u) > n for all u € Wol’n(ﬂ) such that ||u|| = Ro
(ii) there exists a v € Wy™(Q) with |[v|| > Ry such that E(v) <0

Proof. Let u € VVO1 "(€2) such that |lu|| small enough. Let 0 < 8y < £. Then from Proposition
(h3) and (5.1.1)), for any € > 0 and p > 1 we know that there exists a C(e) > 0 such
that

/ </Q |x_y|u dy) Fla.w) do < Clnp) [P0 s

@)
2n(Bo+1) 2pn 2n(1 +€) n O
< C(n,p) 2% z ( / |u| 2w —i—C’(e)/ |u|2n=r exp(
Q

2n —p WH))
1 2n—p
n(By+1) 2pn_ An(1 T =r\\2\ "
o s [ (2887 (1))

2n—p il
(5.1.4)
where we used Sobolev and Holder inequality. So if we choose € > 0 small enough and u such
An(1 T
that n( ;e)||u|| < @, then using Theorem [2.2.1} Chapter 1, in (5.1.4) we get
n—p

n

2n—p
F 2n(Bg+1) _2pn_
L (B ay) Py de < 0 (el "5 + o)l #5)
o \Ja |z —yl"

< Cy (eljul @D + C(e)|ul|>) -

Hence from (m1l) and above estimate, we deduce that for ||u|| = p where p < (

an(2n—p) ) nTil
4n(1+e€)

[[ul _ 2(Bo+1) 2p
E(u) 2 mo= = — Ca (el|ul] + C(e)[ul ).
Taking By > 0 such that 2(Sy + 1) > n and 2p > n, we can choose p small enough so that
u) =

E(u) > o for some o > 0 (depending on p) when ||u|| = p. Furthermore, under the assumption
(m2), for some aj, az > 0 and to > 0 we have M(t) < a; + ast” and

a2r+1
ap + ait + , T+ —1
Mo < 4O at T

ao+ art +aslnt, r=-1

when ¢ > and where

r—l—l
M(to)—alto—ag 7“75 -1
ap =

./\/l(to) - a1t0 — ag lnto, r=—1
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Let uy € Woln(Q) such that ugp > 0 and |jug|| = 1. Then (h3) implies that there exists
Ky > max{§, = (z,8) > C1s%1 — Cs for all (z,5) € 2 x [0,00) and for some

positive Constants C1 and (5. Using this, we obtain

/(/F@w%q mw0m>//canlp@MQWWW@—@uMy
Q Q

|z — y|# !w—M“

_CWM// to_ Wio (@)
M—yw

—2C1Cy tKl/ / dxdy + Cg/ / |z — y| ™" dxdy.
|z — Z/|“ oo
Therefore from above we obtain

E(tug) < M(Jltuol™) —/Q (/Q F(y’tuo)dy) F(z,tup) dx

n |z —y|#

< Oy 4 Oyt + Cst™ D) _ 0 2E1 4 ot

where C!s are positive constants for ¢ = 4,5,6. This implies that E(tuy) — —oo as t — .
Thus there exists a v € W, ™(€) with |lvg|| > o such that E(vg) < 0. O

Let I' = {v € C(]0, 1],W01’"(Q)) : v(0) =0, E(y(1)) < 0} and define the Mountain Pass
critical level as

Ir = ;glﬂtrél[(@]ai(]E(fy(t)). (5.1.5)

Then by using Ekeland principle and deformation lemma (Theorem [2.4.1)), we have the exis-

tence of minimizing Palais-Smale sequence u, € Wy () such that
E(up) = 1%, E'(u,) — 0.
Lemma 5.1.10. Every Palais Smale sequence is bounded in Woln(Q)
Proof. Let {ur} € Wy (Q) denotes a (PS). sequence of E that is
E(u) — cand E'(ug) — 0as k — oo

for some ¢ € R. This implies

M 1/(/F(y’uk)dy) F(z,ux) de — cas k — oo,

|z — yl|~

(5.1.6)
U
M / V"2V V) / ([ % (9, dy) £ u)é da| < exllo
o lr—yl*
where €, — 0 as k — oo. In particular, taking ¢ = u; we get
n 7u
(el [ v = [ ([ T2 ay) s do] < aful. (5.1.7)
ol —yl*
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5.1.2. Existence of a positive weak solution

From the assumption (h3), there exists a > n such that aF'(z,t) < tf(z,t) for any ¢ > 0 and
x €  which yields

o[ (] mdy) P do< [ ([ mdy) F () da. (5.1.)

Using (5.1.6), (5.1.7) along with above inequality and (m3)’, we get

B(ug) — %(El(uzg%uw _ Mfu][*) - MJlug]|"™) Jur]"

n 2a
(]2 L (22
M([[ug ]

Ml (1 1 11

> — > (— — =) M(fug|™)Jul? > (— — — n

> > (5= 50 ) MUl = (5 = 50 ) molul
(5.1.9)

o)

n 2cy 2n 2«

Also from (5.1.6) and (5.1.7)) it follows that

E(ug) — i(E’(uk),uw <C <1 + ekH;ZH) (5.1.10)

for some constant C' > 0. Therefore from ((5.1.9) and (5.1.10) we get that

R < 14+ e — ).
<2n 2a) mOHukH =C < k 2a

This implies that {u;,} must be bounded in W™ (). O

To prove the existence of non-trivial weak solution, we need an essential upper bound on the

mountain pass critical level which is given by following lemma:;:

Lemma 5.1.11. If (5.1.3)) holds, then

- n—1
0<l*<1M<(2n ,uan) )
n 2n

Proof. 1t is easy to verify that ||wg| = 1 for all k. So we claim that there exists a k € N such

that
1 m — n—1
max FE(twy) < EM <( n Mom) ) .

te[0,00) 2n

Suppose this is not true then for all k¥ € N there exists a t; > 0 such that

max FE(twyg) = E(tpwy) > %M ((Qn - uan)N—1>

t€[0,00) 2n

(5.1.11)

d
and %(E(twk))h:tk =0.
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From the proof of Lemma|5.1.10} E(twy) — —oo as t — oo uniformly in k. Then we infer that
{tx} must be a bounded sequence in R. From ({5.1.11)) and definition of E(t;wy) we obtain

1 m — n—1 tn
-M <( n “an) ) < M) (5.1.12)
n 2n n
Since M is monotone increasing, from (5.1.12f) we get that
o — n—1
> ( - “an) . (5.1.13)
From (5.1.13f), we get
t
*_(logk) " o0 as k — oo, (5.1.14)
wn—l

Furthermore from (5.1.11]), we have
F(y,t
e = [ ([ FEE dy) s do
Q Q

|z — y|+

F(y,t
Z/ f(l‘,tk;wk)tkwk/ Fly, twwe) dy dx.
Bk B,k

|z — y|~

(5.1.15)

In addition, as in equation (2.11) p. 1943 in [15], it is easy to get that

/ / dxdy s (p)zn‘“
p/k ‘N_ " k

where C), 5, is a positive constant depending on p and n. From ({5.1.3), we know that for each
d > 0 there exists a sg such that

sf(x,s)F(x,s) > dexp (2|s|%> , whenever s > sg.

Since (5.1.14]) holds, we can choose a r4 € N such that

t
—F (logk) " > sq, for all k > 4.
w’n

n—1

Using these estimates in ((5.1.15) and from ([5.1.13]), for d large enough we get that

. 205" AN 2n—
M(tp)ty > dexp | (logk) | —"— Cun = > dCynp™

n—1
Wp—1

Taking d large enough and since ¢} is bounded, we arrive at a contradiction. This establishes

our claim and we conclude the proof of the result. ]

Now, to prove the weak limit of the Palais-Smale sequence is the solution our problem (KC),

we prove a set of convergence lemmas:
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Lemma 5.1.12. If {ux} denotes a Palais Smale sequence then up to a subsequence, there
exists u € Wy (Q) such that

V|2 Vuy, = |Vu|" "2V weakly in (L7 (2))". (5.1.16)

Proof. From Lemma we know that the sequence must be bounded in W (). Conse-
quently, up to a subsequence there exists u € T/VO1 () such that uy — u weakly in Wol Q)
and strongly in L4(2) for any g € [1,00) as k — oo. Also still upto a subsequence we can
assume u(r) — u(r) pointwise a.e. for x € Q. Therefore the sequence |Vuy|"~2Vu,, must be
bounded in (L%(Q))n where |Vuy|™ is bounded in L'(Q). So there exists a non-negative

radon measure v such that up to a subsequence
lug|™ + |Vug|™ — v in (C(Q))* as k — oo.
Moreover there exists v € (L%(Q))” such that,
|Vug|"2Vuy, — v weakly in (L#(Q))” as k — oo.

Claim : v = |Vu|" 2Vu.

To prove this, we set ¢ > 0 and X, = {z € Q: v(B,(z) N Q) > o, for all r > 0} and divide
the proof in two steps:

Step 1: X, must be a finite set.

Because if not, then there exists a sequence of distinct points {z;} in X, such that for all
r > 0, v(B,(z;)NQ) > o for all k. This implies that v({zy}) > o for all k, hence v(X,) = +oo.

But this is a contradiction to
v(Xy,) = lim / lug|™ + |Vug|™ de < C.
k—o0 ‘XU

So let X, = {z1,22,...,2m}.
Step 2: For o > 0 such that ol < Qo (2"_“), the for any K compact subset of Q\ X,

2n

2n—1
we have

leIEO . (/Q mdy> [z, up)ug doe = /K (/Q |Z(_y’;|ldy> f(z,w)u da. (5.1.17)

To show this, let zop € K and ry > 0 be such that v(B,,(z0) N Q) < o that is 9 ¢ X,. Also

we consider a 1) € C°°(Q) satisfying 0 < ¢(z) < 1forx € Q, ¢ =1 in Bro(29)NQ and ¢ =0
— —_ 2

in Q\ (Byy(xo) N Q). Then

lim lug|™ + |[Vug™ < lim lug|™ + |Vug|" Y < v(Bry(x0) NQ) < 0.
k—o0 Bry (zo)ﬂﬁ k—o0 By, ($0)ﬂ§
2

Therefore for large enough & € N and ¢ > 0 small enough, it must be

/ sl + |Veg]" < o1 — o). (5.1.18)
BTTO(

xo)ﬂﬂ
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Now we estimate the following using ([5.1.18) and Theorem Chapter
[ ialrde= [ b texp (gl #T) do
Bm (wo)ﬂﬂ Bm (xo)ﬂQ
2 2

<Gy [ e (4 aulT) ds
Brg (z0)N2

2
=
< C(S/ exp (]_ + 5)qo‘ﬁ(1 _ E)ﬁ ’uk"n
 IByeonn B2y oy [ukl™ + [V |
2

dr < Cy

(5.1.19)

1
for some constant Cy > 0 while choosing ¢ > 1 such that (1 4 €)go»—1 < —2—. Consider

2n—1
/BTO (z0)NQ
2

dzx

([ Ty s~ ([ T2 dy) s

F(y,u) B

= /Bgo(aco)rm </Q |z — y|udy> (f(z,up)ur — f(x,u)u)| dx
F(y,u) — F(y,u)

! /Brzo(:vo)ﬂfl (/Q |z — y|# dy) J(z, up)ug| da

=1 + I (say).

From (55.1.2]), we know that F(u) € L"(2) for any r € [1,00). Since p € (0,n), y — |[z—y| ™" €
L (Q) for all rg € (1, %) uniformly in x € Q (since €2 is bounded). So using Holder’s inequality
we get that

F(y,u) -
/Q i y‘udy € L>®(Q). (5.1.20)

From the asymptotic growth of f(x,t), it is easy to get that

t)t
lim RICUIS = 0 uniformly in z € Q, for all r > 1. (5.1.21)
tooe (f(z,1))"
Using ((5.1.20]) we get

L<c / () — £z w)ul da
BTTO (l‘o)ﬂﬂ

where C' > 0 is a constant. Because of and (5.1.19)), the family {f(z,ug)ui} is
equi-integrable over B%o (0) N Q. Also continuity of f(x,t) gives that f(z,ug)ur — f(z,u)u
pointwise a.e. in €2 as k — oo and thus using Vitali’s convergence theorem, it follows that
I; — 0 as k — o0o. Next we show I, — 0 as k — oo.

First by using the semigroup property of the Riesz potential we get that for some constant
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C' > 0 independent of k

/Q </ e dy) XB%oﬂﬁ(x)f(x,uk)uk dz

Ix - yl“

([ (] 1)1 e )

x (/ﬂ (/ﬂ XB?OQ(y)Wdy> XB%Omﬁ(x)f(Luk)uk dg;)é_

1
From ([5.1.19)) and since o7-1T < —%3— (27;;“) we obtain

2n—1
1
f(yauk)uk ) 3
Xrydyxrfﬁfiﬁ,ukukdq;) <
Q n < (.
||X3%0mszf(x7uk)ukllmgﬁ(m <C
Now we claim that
F(

From (/5.1.6)), (]5.1.7]) and (5.1.8)) we get that there exists a constant C' > 0 such that

/Q (/Q md?J) F(x,up) dz < C,
/Q (/Q md?J) fl@, up)ug do < C.

We argue as along equation (2.20) in Lemma 2.4 in [15]. Now using (5.1.23), (h4) and the

semigroup property of the Riesz Potential we obtain,

y7 k
- =o(T 1.24
/; /M r:c—yr Py ds = ofT), | /mw 7 g T @y dw=o(T), (5.124)

(5.1.23)

y7 k
z,u)dy dr = o(T), 5.1.25
//|u>T |z —y|~ Fa,u) (T) ( )
and
/ / Fly, u) F(z,u)dy de = o(T) as T — oc. (5.1.26)
\uk|>7"x _-y’

/ ( |F(y,ux) — F(y, U)|dy) Pz, u) — Fla,u)| do <

|z — yl“

2/Q </Q X“kzﬁy_)f;(f’“’“)dy) F(z,u) da
+4/Q (/Q F(yaUk)f;uiTy(ﬁ)F(wau)dy) dx+4/ﬂ (/Q xusz(y?f(_y,yus)F(%U)dy) s

()

F(y,u — F(y,u
/(/| s kXUk;T_yyu(y )Xugﬂd?/) |E' (2, uk) Xug <1 = (2, u) xu<r| d.
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Then from Lebesgue dominated convergence theorem the above integrand tends to 0 as k —

oo. Hence using ((5.1.24)), (5.1.25)) and (5.1.26)), it is easy to conclude (5.1.22]) and I — 0 as
k — co. This implies that

([ 22y s ueue —

o lr—yl»

lim dx = 0.
k=00 JBry (z0)nQ2
2

F(y, u)
o y,udy> [z, u)u

Q|
To conclude (5.1.17)), we repeat this procedure over a finite covering of balls using the fact
that K is compact. Lastly, the proof of (5.1.16]) can be achieved by classical arguments as in
the proof of Lemma 4 in [203]. O

Lemma 5.1.13. Let {up} C W™ () be a Palais Smale sequence for E at level I* then there
exists a ug € Wol"(Q) such that as k — oo (up to a subsequence)

/Q</Q F(y,uk)dy> f(@, ) dxﬁ/ (/Q Wdy) Fa o) da, for all g € C2(Q).

|z —y|# |z —y|#

Proof. If {uy} is a Palais Smale sequence at [* for E then it must satisfy (5.1.6) and (5.1.7).
We remark that E(u™) < E(u) for each u € Wo "(Q), then we can assume ug > 0 for each
k € N. From Lemmawe know that {ux} must be bounded in Woln(Q) so there exists a
Cy > 0 such that |Jug|| < Cp. Also there exists a ug € Woln(Q) such that up to a subsequence
up, — ug in Wy (Q), strongly in LI(€2) for all ¢ € [1,00) and pointwise a.e. in Q as k — oo.
Let Q' cC Qand ¢ € C(Q) such that 0 < ¢ <1 and p =1 in Q'. With easy computations,
we get that

n n

VQD _ Vuk
all+uyg ¢(1+uk)2

< 2" llell™ + Nlurl™.-

I
1+ ug

This implies that

following estimate

[y () St o< [ ([ £tday) Fle o

1+u € W&"(Q) So using 1;_”% as a test function (5.1.6), we get the

- ¥
< M ([|ug | e d
<o 2]+ [ Ml wnr Ve (1) do
< 2" (ol + ) + M(lal™) | [Vl 29w, (o - o) do
S €k ¥ k k o k k 1+ uy 90(1+uk)2

n—1 n n—
<e2 ([l + luell) + M(flul )/Q\VUM LIVl + [Vug|) do
< 2" (looll + lurll) + M (url™) el el + flug ™).

But using ||ug|| < Cp for all k and (m2), we infer that there must exists a C7 > 0 such that

F(Z/?“k) f(x,uk)
o o) T, o= o120
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Also for the same reason, (5.1.7)) gives that
F
/ (/ (y’uk)dy> [z, up)ug de < Co (5.1.28)
Q' \Jo

|z — y|~

for some Cy > 0. Gathering (5.1.27]) and ([5.1.28]) we obtain

—=2d T, u) dx
/Q’ </Q @ —y Y (e ue)
Q' N{up<1} \JQ |z —y|# 1+ g Q' n{up>1} \JQ |z —y|#

<2 [, (L) S o [ ([ i) mitem
<201+ Cy = Oy,

Thus the sequence {wy} := {(fQ ‘xy’;j"; )f(x,uk)} is bounded in Li (2) which implies
that up to a subsequence, wp — w in the weak*-topology as k — 0o, where w denotes a

Radon measure. So for any ¢ € C2°(Q2) we get

. yauk o 00
klggo/ / (|x — > f(z,up)o doe = /Q¢ dw, Vo € C°(Q).
Since uy satisfies , we get that
/ ¢pdw = lim M(]ukH)/ \Vug|"2VupVeo dz, VE C Q.
E k—o0 E

Together with Lemma [5.1.12] this implies that w is absolutely continuous with respect to
the Lebesgue measure. Thus, Radon-Nikodym theorem asserts that there exists a function
g € Li,,(Q) such that for any ¢ € C°(2), [, ¢ dw = [, g dx. Therefore for any ¢ € C°(Q)

we get

i [ ) s = = ([ 200

which completes the proof. O

Lemma 5.1.14. Let {u;} C W)™ () be a Palais Smale sequence of E. Then there exists a
u € Woln(Q) such that, up to a subsequence, u,, — u weakly in Woln(Q) and

(/Q Mdﬂ) F(z,uk) — (/Q Ay, ) dy) F(z,u) in L'(Q)

|z — y|+ |z — y|+

as k — oo.

Proof. Let {ux} C Wol () be a Palais Smale sequence of E at level c¢. From Lemma
we know that {uy} must be bounded in Wol’"(Q). Thus there exists a u € W(}”(Q) such
that u, — u weakly in Wy (Q), up — u pointwise a.e. in R™ and wy — wu strongly in L(Q2),

q € [1,00) as k — oo. Also from (/5.1.6] - 5.1.7) and (5.1.8]) we get that there exists a constant
C > 0 such that ( m ) holds. Now the proof of main clalm follows similarly the proof of
(5.1.22) (see also equation (2.20) of Lemma 2.4 in [15]). O
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Now we define the associated Nehari manifold as
N=A{uce Woln(Q) \ {0} : (E'(u),u) =0} and I"* = 1gjf\’[E(u)

and we show the mountain pass critical level lies below every local minimum value of the

energy functional at the point of local minimum.

Lemma 5.1.15. If (m8) holds then I* < [**.

Proof. Let u € N and h : (0,4+00) — R be defined as h(t) = E(tu). Then

F(y,tu)

o lr—yl»

(o = (el e - [ dy) flatu)u do.

Since u satisfies (E'(u),u) = 0, we get

() = =t (ML) M)

|l [l

F (yﬂi)lf((x;u) I‘E iy,(tu)))f (jcfiU)
L gl / /U”wd /M""d W) doe|
o\Jo Tl Y Sy g )

Claim: For any x € Q)
t — tf(x,t) —nF(x,t) is increasing on R*. (5.1.29)

Indeed, from (h3), for 0 < t; < t3, we have

f(x7t2)

tlf(xvtl) - nF(xvtl) < tlf(xvtl) - nF('rth) + tn_l
2

(tg - t?) S tgf(ﬂf,tg) - nF($>t2)

Using this we get that tf(z,t) — nF(x,t) > 0 for ¢ > 0 which implies that ¢t — % is

non-decreasing for ¢t > 0. Therefore for 0 < ¢t < 1 and = € Q, we get w < F(x,u) and

this implies

(0> gt (M) M)

[[tw]™ ™

et [ (P = S55) ) Gagi @) ao]

This gives that h/(t) > 0 for 0 < ¢ <1 and h'(t) < 0 for ¢t > 1. Hence E(u) = max;>o E(tu).
Now we define ¢ : [0,1] — W™ () as g(t) = (tou)t where to > 1 is such that E(tou) < 0. So

g € I', where I is as defined in the definition of [*. Therefore we obtain

* <L < = .
! _tgl[gff]E(g(t))_rglggE(tU) E(u)

Since u € N is arbitrary, we get [* < [**. O
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Now, we give the proof of our main result:

Proof of Theorem Let {ux} denotes a Palais Smale sequence at the level [*. Then
(uk)kemv can be obtained as a minimizing sequence associated to the variational problem

(5.1.5). Then by Lemma [5.1.14) we know that there exists a ug € W, (Q) such that up to a
subsequence uy — ug weakly in Wy () as k — oo.
Step 1: u# 0 and u > 0.

Suppose ug = 0 then using Lemma [5.1.14] we infer that
F
/ (/ (y’uk)dy) F(z,u) de — 0 as k — oo.
Q Q

|z —y|#

This gives that limg_eo E(ug) = 2 limy_yo M(||lug|®) = I* which implies in the light of
Lemma [5.1.11] that for large enough k

M) < M ((2”2; ”an)nl> .

Therefore since M is non decreasing, we get

2n
2n —

][ " < .

Now, this implies that supy, [q, f(x,ux)? do < +oco for some ¢ > 232,1 and along with Propo-
sition Theorem and the Vitali’s convergence theorem, we get

/Q(/Q Mdy) f(z,up)ug, de — 0 as k — oo.

|z —y|~

Hence limy_, o0 (E' (ug), ux) = 0 gives limg_, o0 M (JJug]|™)||ug|™ = 0. From (m1) we then obtain
limy o0 ||ug]|™ = 0. Thus using Lemma it must be that limg_,o, E(ux) = 0 = I* which
contradicts {* > 0. Thus ug Z 0. Now, we show that ug > 0 in Q. From Lemma [5.1.10
we know that {ur} must be bounded. Therefore there exists a constant 7 > 0 such that
up to a subsequence |lug|| = 7 as k — oo. Since E'(u;) — 0, again up to a subsequence
|Vug|"2Vuy, — [Vuo|"2Vug weakly in (Lﬁ(ﬂ))” Furthermore, by Lemmaand by
Lemma we get as k — 00,

/Q (/Q Mdy> f(x,ug)p do — /Q (/Q mdy> F(z,u0)p dz

F
M(T”)/ |Vug|" 2VuoVe dz = / (/ (y’uo)dy) f(x,up)p dz, for all p € Woln(ﬂ)
Q o \Ja lz—yl*

and

In particular, taking ¢ = uy in the above equation we get M (7")||ug || = 0 which implies
together with assumption (ml) that u, = 0 a.e. in Q. Therefore ug > 0 a.e. in €.
From Theorem Chapter 1, we have f(-,up) € L1(Q2) for 1 < ¢ < co. Also as in (5.1.20)),

243



Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and
singular weights

we can similarly get that [, Ty ) gy € 1°°(Q). Hence (fQ (y.uo) dy) f(x,up) € LI(Q) for

yln lz—yl[#

1 < ¢ < co. By elliptic regularity results, we finally get that ug € L*(Q) and ug € C17(Q)

for some v € (0,1). Therefore, ug > 0 in € follows from the strong maximum principle and
uo 7_é 0.

Step 2:

M (||uo||™) |Juol|™ > /Q (/ Fly, o) dy) f(z,up)ug dx. (5.1.30)

olr—yl"

Arguing by contradiction, suppose that

Mool < [ ([ T2 dy) fouopuo do

which implies that (E’(ug), uo) < 0. For ¢ > 0, using (5.1.29) we have that

_ n , tug ) tuo(
(B 1), o) = Mol ool =3 [ ([ fymfwf)d@fwiwwow

t t
> mot”_lﬂuoH" — / ( 1y tuo)tuo( ) dy) f(x, tug)ug dx.

|z =yl
Since (h3) gives that

@

t—ot t7

= 0 uniformly in z € Q, for all v € [0,n — 1],

we can choose ¢t > 0 sufficiently small so that (E’(tug), ug) > 0. Thus there exists a ¢, € (0,1)
such that (E'(tsup),up) = 0 that is t,ug € N. So using Lemma [5.1.15 (m3)’ and (5.1.29) we
get

1
" < I < B(taug) = Eltauo) — 5 (E' (o), o)

M(|[teug||™ 1 F(y,tiu 1 " n
= MUewlB) 2 ([ T4y P o) e — M (el o]
Q

n 2 |z —yl#
+ % ) (/Q Wdy) [z, tyug)teug dz
< Pl L pt gl
+ % (/Q Wdy (f(, teug)taug — nF (z, tyug)) dx
sWﬁ”—;ﬂMWWMWW+;/(Qﬁ%ﬁh@uwwmwwﬂaw»
< timing DL g ) g
e (A;ﬁﬁf;fmo<fmﬂ%ﬁ%—4u%auw>dw

_ lim inf (E(uk) - %(E/(uk), uk>> —

k—o00
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This gives a contradiction, that is (5.1.30) holds true.
Step 3: E(ug) = I*.
From Lemma [5.1.14] we know that

/Q</Q Md@ F(x,uy) de — /Q (/Q mdy> Fle, uo) dz.

Using this and the weakly lower semicontinuity of norms in limy_,o, E(ux) = I*, we obtain
E(up) < U*. If E(ug) < I* then it must be

Tim M ([ |") > M([uo|")

which implies that limy_,o0 ||ugl|™ > ||uol|”, since M is continuous and increasing. From this
we get

7 > ||uo|™.

M(T") =n (l* + ;/ﬂ (/Q Mdy> F(z,up) d:c) . (5.1.31)

Now we define the sequence vy = HZ—:H and vg = % then v, — vy weakly in Wol Q) and
|lvo|| < 1. From Lemma we have that

Moreover we get

Qn

— (5.1.32)
(1 = [Jwo[™) =T

sup/ exp (p]vk]%) < +oo, forl <p<
keN JQ

Also from (m3)’, Step 1 and Lemma [5.1.15| we obtain
B(ug) > MUloll™) _ Mol Juol™ /(/ (Y, uo)
o \Jo

- |z — yl

— —nF > 0.
k - o dy) (F(auo)uo-nF (z, w0)) do > 0
Using this with (5.1.31]) we get that

n — n—1
M) = ot = n(as) + Mol < M ( (2 20,) ™) + MGl

which implies together with (m1) that

n 2n

1 — Jwol™

Q-1 <2n—u>n_1
™ <

Thus it is possible to find a 7, > 0 such that for £ € N large enough

_n_ Qn (222“)
(1 = [lwol|™) ==
Then we choose a ¢ > 1 but close to 1 such that

2n n_
5 q|lug)| =T < 5 Ty < —-
noH noH (1 = [Jwo|[™)»=T

2n O,
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Therefore from (5.1.32) we conclude that

2 n
/exp( n q|uk|"1) <C (5.1.33)
Q 2n—p
for some constant C' > 0. Using ({5.1.33])

[ (]2t s o [ ([ E2200) o

We conclude that ||ug|| — ||uo|| and we get a contradiction and claim in Step 3 is proved.
Now, by combining claims of the proof of Step 1, 2 and 3, the proof of Theorem follows.
O

5.1.3 The Nehari Manifold method for Kirchhoff-Choquard equations

We observe that Jy s is only bounded below on suitable subsets of Wol ™(Q). In order to
prove the existence of weak solutions to (P ar), we establish the existence of minimizers of

Jx,m under the natural constraint of the Nehari Manifold:
Ny o= {u € W™ (Q)] (T r(w), u) = 0}

where (. ,.) denotes the duality between Woln(Q) and W~1(Q). Therefore, u € Ny if and
only if

Jull” M(lul) = A [ Byttt do [ (ol < F)f(wu do =
Q Q
Remark 5.1.16. We notice that Ny as contains every solution of (Px ar)-

For u € Wy (), we define the fiber map Qv : RT — R as

Bus(t) = Frar(t) = U =2 [ ettt do = 5 [ (ol # 4 Pt Ftw) do,

n qg+1

!/

@, 0 (t) = "l " M([[tul|") — At /Q h()|ul* da — /Q(ISCI_“ * F(tu)) f(tu)u de

and
a0 (8) = 0t 2|2 M (|[tu]] ) + (0 = 18" fu "M ([ tu]") ~ /\qtq_l/ h()|ul** da
Q
- / (|| * f(tu).u) f(tu)u dx — / (|| 7# % F(tw)) f' (tu)u? dz.
Q Q

The Nehari Manifold is closely related to the the maps ®, s by the relation tu € N pr iff

@, p(t) = 0. In particular, u € Ny p iff @;’M(l) = 0. So we study the geometry of the

energy functional on the following components of the Nehari Manifold:

N/\i,M = {u € Ny : (I)lul,M(l) s0}={tue Wol’n(Q) : (I);,M(t) = Oa‘I’Z,M(t) s 0},
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!/

N up = {u € Naar: @y 5 (1) = 0} = {tu € Wy™(Q) : @, 1 (t) = 0,8, ,(t) = 0}.

We also define H (u) = [, h|u|?*! dz and study the behaviour of fibering maps ®,, s according
to the sign of H(u ) Let

H :={ue W™ (Q): Hu) >0}, Hy :={ueW;"™(Q): H(u) <0}

5.1.4 Analysis of Fiber Maps

Here we analyze accurately the geometry of the energy functional on the Nehari manifold. We
split the study into two different cases u € H; and v € H". We define the map ¢ : Rt — R
such that

hu(t) Zt"_l_qM(HtUII”)HUH"t_q/ﬂ(lsvl_“*F(tU))f(tU)u dx

and observing the fact that tu € Ny if and only if ¢ > 0 is a solution of v¥,(t) =
A fQ x)|u|9! dx. For the first case, we have the following result:

Lemma 5.1.17. For any u € Hy \ {0} and A\ > 0, there exists a unique t* such that

t*u € Ny ;- Moreover, ®, ar is increasing on (0,t*) and decreasing on (t*,c0).

Proof. Since

’

B 0 (8) = £l "D ([fu]") — A0 / h(a@) ||t da— / (2™ * F(tu) f(tu)u da
Q (9]
— (4 (1) — A / h(a) |t de),
Q
therefore tu € Ny iff t > 0 is a solution of ¥, (t) = A [, h(z)|ul7T.

Yu(t) = (n =1 = @t" 2 IM ([t ") ful| "+ nt® 27O ([[tul") |ul*"

+ o [l Pl () da = 0] [ (i flon)a feujwde (55

Q

+/Q(m|—u*F(tu))f’(tu>.u2 dx}

Due to the exponential growth of f, for large ¢ we have @ZJ/ (t) < 0 and since v € Hj, there
exists ¢* > 0 such that ¢, (t*) = X [ h(2)[u|1t?, ie. t*u € Ny .
If there exists an another point ¢; such that t* < ¢; and ¥, (t1) = A [ h( x)|ulitt <0, ie.

Tl + Wl <6 [ (ol P < Pl St de (5,039
Q

and ¢}, (t1) > 0. Then by using f'(tiu)tiu > (p+ 1) f(t1u) and p > 2n — 2 — ¢ we obtain from
(51.35),

Yult) < (20— 1 —q) |87 (at]||u]" + b)Ju]" ~ tfq_l/g($|_“*F(t1U))f(t1U)u dx| <0.
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Therefore ¢, (1) < 0 which yields a contradiction. Therefore there exists a unique ¢t* such that
Pu(t*) = X fo h(@)u|tt da. Also for 0 < ¢ < t*, @,/ (t) = t9(1hu(t) =\ [ h(x)[u|?H! dz) > 0.
Consequently, ®,, s is increasing in (0,¢*) and decreasmg on (t*,00). Therefore there exists
a unique critical point of ®, 5 which is also a global maximum point. Furthermore, since
(@2 0/ (1) — 4@, (1))

vilt) = g

, we get t*u € Ny . O

For the second case, first we need the following result which characterizes the local minimum

value of the function 1, at the local minimum point ¢, is strictly greater than \H (u).

Lemma 5.1.18. Let

o LY - [l ]137/2 B(u)

r: {UEWO (Q) : [Jull §2\/(2n—1—q)(n—1—q)ab}

where B(u) = [o,(|z]™" « F(u NS (w)(u)? + Jo(z|7* % f(u)u) f(u)u dx. Then there exists a

Ao >0 such that for every A € (0, \o), T'o > 0 holds where

Ty := uel"\i{%{ﬂHJr {B(u) —(2n—-1) /ﬂ(|x!” « F'(u)) f(u).u de+nblju||” = X(2n—1— q)H(u)}
(5.1.36)

Proof. Step 1: Claim: inf,cp\ foynp+ [lull > 0.
Let us suppose that it doesn’t hold then there exists a sequence {u;} C T'\{0}NH™ such that

3n/2 B(uk) _Li -
[lug|l — 0 and ||ug] < 2\/(2n717q)(n717q)ab,v k. Then by the Hardy-Littlewood-Sobolev

inequality, we have

Bluy) = /Q (e« F(ug)) f (ug)s? de + /Q (e~ % (Y f (g Y
< C(n,p) (”f(uk)uk:”%Qn/(%—u)(g) + HF(Uk)HL2n/(2nw>(Q)Hf/ (Uk:)(uk)2||L2n/<2nw>(9)) ‘

Since f(u) = ulu|Pexp(|ul?) and f'(u) = ((p + 1) + Blul?)|ulPexp(|ul?), then we have

| B(ug)| < C(n"u)(/Q(’uk’p+2€l‘p(|uk;|ﬂ))23nu d:):)%ﬂ + O ) (/Q(F(uk,))m?”u dx) 2

2n—p
2n

Then using F'(t) < tf(t) and by the Hélder’s inequality, we obtain

2n—p 2n—p
2na’ (p+2) “nal 2 “na
Bl < ([ 55 a) ([ (ol 5 ) o)
Q 2n—p

2n—p u
2na’ (p+2) 2na’ 2 2no
+Cz</ |ug] “onu :U) (/e:vp(\uk\ﬁ na ) dx) X
9) 2n—p
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2n—pup 2 2n—p
Qna (p+2) 2na’ no 2na
Q 2n—p
2n—p 2 2n—p
2na’ (p+542) 2na’ no 2na
+ (/ ||~ 2nr d:v) (/ exp<|uk|ﬁ ) daj)
Q Q 2n—p

|

Let a be such that 2na/(2n — p))|juk||® < o, and vy, = HZ:H’ then by the Trudinger-Moser
inequality we obtain
2n—p 2n—p
2na’ 2na’ (p+2) na’ 8 na
| B(uy)] <C’1</ lug| 2n—n ) ( sup /exp(vk an) dx)
[vell<1/Q

2n—,u 2n—p

2na’ (p+2) 2na’ “na
+Cz</ || 2n—n ) ( sup /exp(\vk\ﬁan) dx) X
loell<1
2n—p
2na’ (p+2) 2na’ (p+[3+2) 2nal
([ ) ([ ).

Using the Sobolev embedding, it implies that

|Blug)| < Crln, b, B, ) (el P72 4 fuag | P72 (| P72 + g | 7742
< Cllug| PP - [fug | PO+

Hence using u;, € I'\{0} and by the Sobolev embedding theorem, we get 1 < C'(||ug| (2pa—5) 4
|| wge|| (PP HA+A= %) and 2p+4—32 > 0 which is a contradiction as [juy|| — 0 as k — co. There-
fore we have inf e\ foynm+ [lull > 0.

Step 2: Claim: 0 < inf,cp\ (oynm+ {/ (||~ * fuw)u)(p + 2 — 2n + Blul®)exp(|ul®)|ulP? dx}.
Q

Since F(s) < f(s)s then by the definition of I and from Step 1, we obtain 0 < inf,,cp\ (oynp+ B(u)
i.e.

o< nt A [ el e P+ [ (ol ¢ fl) )

wel\{0}NH+

2
Suer\%{mm {/Q(\x!‘u*f(u)u)(f( o+ f(u) +2>}
ulB
=t { /| (|95!”*f(u)u)\ulp”ea:p(lulﬁ)(l+(p+1)+5’|)}.

wel\{0}nNH+ p+2

Since p + 2 — 2n > 0, we infer

0 inf —h 22 B By ulPt2 dad.
<u€F\1{%}mH+{/ﬂ(!wl * f(u)u)(p + n+ Blul”)exp(|u|”)|ul r}

Step 3: Claim: I'g > 0. First,

/

1/y , 1/
/ h(a)u] ! < ( / \h(xw) (mr“*qw) < Ifjufo+!
Q Q
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where | = |||/ (q). Choosing

where Mo = infy,ep oynm+ [[ul]" 7179 > 0, we get that Al(2n—1—q)[ul'"9 < nbl|ul|* for any
uwel\{0} N H* . Then for u e T\{0}NH" and p+ 1> 2n — 1,

Bmwwwmw;@n—mlﬁwﬂme»ﬂwu—A@n—1—@Hm>z
/"OwT*‘*FYUD(f%uMP<—(2n-—1)f@040-%j/OwT*‘*f(u)U)fQOJLdw
Q Q
+ nb||lu||” = (2n — 1 — ¢)AH (u) > 0.
Therefore I'g > 0. L]

Lemma 5.1.19. For any u € HY, there exist ty,t1,to > 0 and \g such that tiu € N;M and
tou € N/;M for any X € (0, o) and t; < t, < to.

Proof. For 0 # u € H', we have that 1, (t) — —oo as t — oo and for small ¢ > 0, 1, (t) > 0.

Then there exists at least a point of maximum of 1, (t), say t., and ¥, (t,) = 0, i.e.

(2n — 1 — @)£2" > aljul* + (n — 1 — q)t} > "9b||u|" + t;” Q(|93|_“ * F(tu)) f(tsu)u dz
:t;q[/g(|x|‘“*F(t*u))f/(t*u)iﬂ d:c+/Q(|x|_“*f(t*u)u)f(t*u).u dx].
This implies that
(2n — 1 — @)al/teul®™ + (n — 1 — @)b||tau|™ + q/g(|x]” * F(tew)) f(teu)tsu do

_ / (2]~ + F(tu))f (bun) (bu)? dar + / (2] F (b)) f (butt) bt da.
Q Q

Then we have

2y/(2n — 1= q)alfteu]2b(n — 1 — g)|[tuul|" < Bt.u)

from which it follows

||t*u||3n/2 < B(t* )
2\/(2n —1—¢q)(n—1—q)ab
where B(u) = [o,(|z|7* * F(w)) f (w)u? + [o(|z| 7" = f(w)u) f(u)u dz. Using ¢, (t.) = 0, we
replace the value of a||tu||?*™ in the definition of 1/, (t) to obtain
1
u(ts) = B(tiu) — (2n -1 z|7H * F(t.u tyw)tsu dx + nb||tiu||™ .
lte) = e Ba) = (n 1) [ (o7 (a0 () It

(5.1.37)
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We notice from Lemma and Equation that for u € HT\{0}, there exists a
t. > 0, local maximum of v, verifying ¢, (t,) — AH (u) > 0 since t,u € T'\ {0} N HT. From
¥ (0) = 0, ¥y (ts) > AH(u) > 0 and limy_,o 1y (t) = —o0, there exists t1 = t1(u) < tyx <
ta(u) = t2 such that ¢y(t1) = A [, h(z)|ul?™ dz = ¥y (t2) with ¢ (t1) > 0,4/ (t2) < 0.
Therefore, t1u € N;M and tou € N):M. We now prove that tju € N;M and tou € N/\_,M are
unique. If not then there exists t3u € N/QL,M and t,. such that to <t < t3 and ¢, (tw) =0
and 1y (te) < AH(u). But Lemma induces that if ¥/, () = 0 then 1)y, (te) > AH (u)

which is a contradiction. O

In the sequel, we will denote ¢, the smallest critical point of ¢,. As an application of Lemma
0.1.18 and using the geometry of energy functional J) ps on the Nehari manifold, we prove

the non-existence of non-trivial solutions in Nf\) M-

Lemma 5.1.20. If A € (0, \o) then N}, = {0}.
Proof. Suppose u # 0 and u € NRM. Then CIJ;J’M(l) =0 and @:,M(l) =0, ie.

allul®™ 4 bllu||™ = NH (u) + /Q(]a:|_“ * F(u))f(u)u dz and (5.1.38)

(2n — Dalju|®™ + (n — Dblju|™ = AgH (u) + B(uw). (5.1.39)

Letue HT ﬂNg,M, then from ([5.1.38)) and (5.1.39) (by replacing the value AH (u)), we obtain

2/(2n — 1 — q)(n — 1 — q)abjul®" < B(u)

which implies v € T\{0} N HT. Again from (5.1.38), (5.1.39) and substituting the value of
‘Qn

allu||*", we obtain

B(u) — (2n—1) /Q(]x|“ « F(u)) f(u)u+ nb|lul|* —A(2n—1—-q)H(u) =0

which contradicts Lemma [5.1.18, If v € Hy N NQ,M and from Lemma [5.1.17, 7”17 is the

only critical point of ®, s and <I>;;M(1) = 0. But v € H; implies that ¢},(1) < 0 and then

(1) <0 which is a contradiction and the lemma is proved. O

5.1.5 Existence and multiplicity of weak solutions

We start this section, by studying the geometric structure of the energy functional J /.
Define
0= inf Jym(u).

UENX’M

Theorem 5.1.21. J) () is bounded below and coercive on Ny pr such that§ > —C(q, n, b))\nf;,l .
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Proof. Let u € Ny p. Then,

W) = |l + blul”| = =) = 5 [ (2l Pla) Fw) da
= Gl bl | = S H @ = 5 [ (e P PG da

— [auuuzn bl = M) = [ (a5 Fu) e da

—1/Q(ya;w*F(u)) (F(u) - Zf(“)“) da.

2 p+2
Since 0 < F(u) < Jr2f( u).u and H(u) < I||u/|9"t. Then by the Sobolev inequality we obtain
+2 p+2—n p+1—gq
o () i (5258) (o
Fan) = alfal™ (B2 ) ol (B2 ) — (B

Therefore since ¢ < n — 1, Jx a is coercive on Ny ar, i.e. Jym(u) — 0o as ||u| — oo.

For u € Ny pr we have also,

b A

W) = 2l = 21w =5 [ (a7 Fu) P(w) do

q+

= ol = Mg — o )@+ 3 ([ et e (12— p) ar)
> 5ol = A= — 50 ) H@

since (@—F( ))>0 ThenforueHO_,wegetjAM( u) > 0.

Now for u € H™, setting r = and by the Sobolev embedding we obtain
A2n —1—q> b A2n—1-gq) (/ )1”
n AT D7D gy > L ly|n - 229 nd

= CllIUII” — caful|"*t
where ¢; = £ and ¢y = c2()).
We observe that the minimum of the function g(z) = c12™ — coxdt! is achieved at z =

1
(M) "=t Therefore,

cin

1 n—;q—l n n—1—q
inf  Tm(u) =g (CQ(H)> = (&)

UENA M

From this it follows that

where C'(q,n,b) > 0. O
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Now since Jy ar is bounded below on Ny s, by the Ekeland variational principle we get a
sequence {uy }ren C Nxar\{0} such that

1
I (ug) < 0+ 7
(5.1.40)

1
I (v) > T (ug) — %Huk —v|l, Yv € Nxum.

The following result shows that minimizers for J »s in any of the subsets of Ny js are critical

points for Jx .

Lemma 5.1.22. Let u be a local minimizer for Jyn on any subsets of Ny such that
u ¢ N;\{M. Then u is a critical point of Ty -

Proof. Let u be a local minimizer for J ;. Then, in any case v is a minimizer for 7 ps under
the constraint Iy pr(u) := (Jy 5/(u),u) = 0. Hence , by the theory of Lagrange multipliers
, there exists a p € R such that J5 5, = pl} 5, (uw). Thus (T} p(u),u) = (I} pr(u),u) =
p®@y (1) =0, but u & N)(\)’M and so @Y /(1) # 0. Hence p = 0. O

Now, we prove a set of lemmas which are necessary to study the (PS)y condition and com-
pactness of the minimizing sequence {ug }ren, whose proof are totally based on the geometry

of the energy functional [J) s on the Nehari manifold.

Lemma 5.1.23. There exists a constant Cy > 0 such that 0 < —Cj.

Proof. Let w € HT, then 3 t1(u) > 0 such that tju € N;F,M and 1y, a(t1) = AH(u). In that

case,

1/7a 1 _
Fuar(tr) = 3 (el + bl ) = 5 [ (ol # < Fltr)) Pt do
Q

A
— ——— [ h(@)|tiu|?! dz
qg+1 /g
1/a om n 1 —u
= —( = |ltiu|*" + 0||t1u]|™ ) — = [ (Jz| ™" * F(t1u))F(tiu) dz
1 _
— <a|]t1u|]2n + bl[t1ul|™ — / (|x| ™" % F(tiu)) f (t1u)t1u dx).
qg+1 Q

Since ¢;7M(t1) =0, @;M(tl) > 0 and from (5.1.34) we obtain

Farttrn) = = + [ (el (o) (5 e
1 f(t1u)(tu)? 1 _
— §F(t1u) — W) dx — gD /Q(|x] o f(tiuw)tiu) f(tu)tiu do
—(n—1-9q) 2n+q p+2

bl + [ (i Pler)

2n(qg+1) n(g+1) B 2n(qg +1)
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p+1

1 —p
_ 2n(q+1))f(t1u)t1u dzr — 3 /Q(|93| * F(tyu))F(tiu) do.

Sinceg<n—1landp+1>2n—1weset2n+¢q— (2p+3) <3n—1—(4n—1) < 0 and then
o< infueNjMﬂH+ jA,M(u) < -Cy<O. O

Then by (5.1.40) and Lemma [5.1.23] we have for large k,

C
T (ur) < === (5.1.41)

Also since ug, € Ny p\{0} we have

2-2 2 - 1-—
Funa ) = alful (B2 ol (B2 ) = A (g ) )

2n(p + 2) n(p + 2) 1+q)(p+2)
_ ;/Q(le‘ﬂ * F(ug)) <F(uk) _ W) .

then together with (5.1.41]), we have

p+l—g Co Co(p+2)(1+4)
N g Hw < -3 = Hw) 2 5000 >0

i.e.
H(ug) >C >0 and u, € Nxpy NH' for k large enough. (5.1.42)

Lemma 5.1.24. Let A € (0, \g) where \g = ﬁMg. Then given any u € Ny pr\{0},
then there exists € > 0 and a differentiable function & : B(0,¢€) C W&"(Q) R such that
£(0) =1, and &(w)(u — w) € Ny s and for all w € Wy (Q)

~ nallul™ +b) [q IV (u)["2Vu.Vw dz — Xg+ 1) [ h(@)|ult uw dz — (S(u), w)

(€(0), w) = a(2n —1— q)[ul? + b(n — 1 — q)[u]l* + R(u)
(5.1.43)

where

and
(S (), w) = /Q (e« P(u))(f'(w)u + f(u))w de + /Q (e[ % f(w)u) f (wyw do.

Proof. Fix u € Ny 3/\{0}, define a function G, : R x W, ™(€) — R as

Gy(t,v) = at2"71*q|]u — UHQ" + bt"il*qHu —v||"—
1

1 Q(‘x"“*F(t(u—v)))f(t(u—v)).(u—v) dﬂf—/\/gh\u—v\‘ﬁl do.
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Then G, € C'(R x W,"(Q),R) and
Gu(1,0) = allul]™ + bljul” - / (2|  F(w))f(u)-u dz — A / Bt de = &), (1) = 0
Q Q

and

gGu(la 0) = a(2n —1 = q)|[ull*" +b(n — 1 - q) |Jull" + Q/Q(Iml“ « F(u)) f(u).u— B(u)

ot
= @y p(1) #0.
Then by the implicit function theorem, there exists ¢ > 0 and a differentiable function ¢ :
B(0,€) € W™ (Q) — R such that £(0) = 1 and G, (£(w),w) = 0 Yw € B(0,€) which is
equivalent to (J5 5/ (§(w)(u—w),{(w)(u—w))) =0 Yw € B(0,¢). Thus, {(w)(u—w) € Nx m
and differentiating

Gu(é(w),w) = a(€(w))*" ™~ lu — w|[*" + b(§(w))" ™ ||u — w||"

_; x| T ox w))(u —w w)(u—w))(u—w) — 2 — wldt! =
(g(w))q/g(! [T F(E(w))( ) f(E(w)( )( ) A/Qh( )| 7+ = @

with respect to w, we obtain (|5.1.43)). ]

Similarly we have:

Lemma 5.1.25. Let A € (0, \g) where \g = (271—1)%(1)1]\40' Then there exists u € Ny ,\{0},
then there exists € > 0 and a differentiable function &~ : B(0,¢) C WOI"(Q) R such that
§(0) =1, and & (w)(u —w) € Ny, and for all w € Wy ™()

((€7)'(0), w)
_ n(2allul|™ +b) [ |V(W)|"?*Vu.Vw dz — Mg+ 1) [ h(z)u|? vw do — (S(u), w)
a(2n — 1 = q)|ull*" +b(n — 1 — g)[ul|* + R(u)

where R(u) and S(u) are as in Lemma|5.1.24,

/

Proof. For any u € Ny, ®, /(1) = 0 and @;J\/‘,(l) < 0. This implies v € T'\{0}. Then by
Lemma there exists e > 0 and a differentiable function £~ : B(0,¢) € Wy ™() — R
such that {7(0) =1, and £ (w)(u —w) € Ny s for all w € B(0,¢€). Then by the continuity of
J ),\ » and & and by choosing € small enough we have

P () umwar (1) = 1€ () (u = w) [P M€ (w) (u = w) ") + (n = D)€ (u) (u = w)|*M(|[tu]]")

Y /Q h(a))€ (u)(u — w)| T de
- /Q (e~ % F(6 () (0 — w)) £ () (u — ) F(E () (1t — w) )~ (1) (u — w) dx
- /ﬂ (e P(E ()t — w0))) (€ () — w)) (€~ () (s — w))? iz < 0

that implies ™ (w)(u —w) € Ny . O
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As an application of above lemmas, we prove that our minimizing sequence {uy}ren satisfy

the (PS)g condition and using this, we prove the multiplicity result in the subcritical case.

Proposition 5.1.26. Let A € (0, \g) where \g =
ing (5.1.40). Then HJ)/\’M(uk)H* — 0 as k — oo.

mM@ Assume u, € Ny s satisfy-

Proof. We divide the proof into three steps:

Step 1: liminfg_, o ||ug| > 0.

We know that from that for large k, H(ur) > C > 0, so by using Holder inequality
we obtain C' < H (ug) < Cy|lug]/9T!.

Step 2: We claim that

lggﬂmww—qmmu%+wm—1—mWMW+qAUx“*mevwwwdx—Bmw>a

Without loss of generality, we can assume that u; € IV ;“ v (if not replace uy by ti(ur)ug).
Arguing by contradiction, suppose that there exists a subsequence of {uy}, still denoted by
{ug}, such that

0 < (2n—1—q)allug|* +b(n—1 —q)HukH"—i—q/ﬂ(kc“*F(uk))f(uk)uk dx — B(uy) = og(1).

From Step 1 and the above equation we obtain that liminfy ,. B(ur) > 0 and (2n — 1 —
Qallug|]*™ +b(n — 1 — q)|Jug||™ < B(ug) i.e. u, € T\{0} for all large k.
Since uy, € NIM\{O}

—nbl|ug||" + AX(2n — 1 — ¢)H (ug) + (2n — 1) /Q(\ac]_“ « F'(ug)) f (ug)ug, doe — B(ug) = o(1)

which is a contradiction since I'g > 0.

Step 3: HJ/{M(uk)H* — 0as k — oo.

By using Lemma there exists a differentiable function & : B(0,€x) — R for some
€, > 0 such that £,(0) = 1 and &, (w)(ur — w) € Nyxy VYw € B(0,¢€;). Choose 0 < p < ¢
and f € Woln(Q) such that ||f|| = 1. Let w, = pf. Then |w|, = p < € and define 7, =
&k (wp)(u, — wp). Then from the Taylor expansion and (5.1.40]), we obtain

1
%Hﬁp —ug|l = Inm(ur) — Tam(np) = <«7,\ Mm(Mp)s uk — 1mp) + o[lug — mp|l)

= (1= &(wp)(Tnaa (1), k) + pék(wp)Ui,M(np), f) +o(llur = npl))-

We also infer

(5.1.44)

S =20y — 4w = unl€6l0) 1) — 11 s 90,

1
e =l =

Since uy € Ny a7, we have also 15’“7%(;7)\ v (Mp),ug) =0 as p— 0.
Thus, dividing the expression in m by p and doing p — 07, we get

HfH

(Tan (un), £) < =2 (lug[1€:0)]1« + O(1))
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which implies that
Hj)/\,M(Uk)H* —0 as k—

if [|€,,(0)||« is bounded uniformly in k. To prove that, using and the boundedness of
the sequence {ug} in W, ™(€2), we only need to show that for any f € Wy"(Q), (S(ug), f)
is uniformly bounded in k. For the subcritical case, i.e. 8 € (0, "), it holds since for any
€ > 0 and ¢ > 1, there exists C, 43 > 0 such that

exp(qlt|”) < Ceqpexplelt|i—1), VteR.

Then by Theorem Chapter 1, we obtain (S(ux), f) < C||f|| with C > 0 independent
of k. Consider now the critical case, i.e. = 5. From the boundedness of R(uy) (see the
statement of Lemma [5.1.24)), it follows that

sup / (| ™+ % F(ug)) f (g g dax < oo,
k Q

sup / (™ % F () £ (uryud dr < oo
k Q

and

sup / (™ % f (g f (g de < oo.
k Q

Then for any ¢ € C°(€2), we have by Vitali’s convergence theorem and up to a subsequence

(S(ug), ¢) — (S(uo), #) (5.1.45)

where ug is the weak limit of (ug)gen in Woln(Q) From ([5.1.45)), we have that there exists
C > 0 independent of k£ such that

(S (uk), @) < Cllo]. (5.1.46)

Using a density argument, we conclude that (5.1.46) holds for any ¢ € Wol ™(Q). This

completes the proof in the critical case. O

The existence result for first positive solution in subcritical case in Ny N HT is given by

the following Theorem:

Theorem 5.1.27. Let 3 < "5 and let A € (0, A\g) where Ao = ﬁMg. Then there exists
a positive weak solution to (Pxar) ux € Ny ,NHT such that Ty a(uy) = infuen, \\foy Iam(u).

Moreover uy € N;M N H™T is a non-negative local minimum for I in Woln(Q)

Proof. Let uj, be a minimizing sequence satisfying Jx ar(ux) — 6 as k — oo and Jy a(v) >
I (ug) — +llug — v, Yo € Ny. Using Ty ar(Ju]) < Txar(u) for any u € WOML(Q) and from
the proof of the Ekeland principle (see [242, p. 51-53]), we can assume that wuy is non-negative.
By using Proposition we obtain {ux} is (PS)s sequence. Then from Lemma we
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get {uy} is a bounded sequence in I/VO1 "™(Q). Also there exists a subsequence of {uy} (denoted
by same sequence) and a non-negative uy such that u; — u) weakly in WO1 Q) and ug — uy
strongly in L"(§2) for r > 1 and u, — uy a.e. in Q2. Then using f(t) < Cc exp(etm1) for e > 0
small enough and from Theorem Chapter 1, we obtain that f(uy) and (Jz|™* * F'(ug))
are uniformly bounded in L4(Q2) for all ¢ > 1. Then again by Vitali’s convergence theorem,

we obtain

/Q(|x_“ « F(ug)) f(ug)(ur —uy) de| — 0 as k — oc.

and by Proposition we have <J/{7M(uk), ug — uy) — 0. Then we conclude that
M(HukH")/ﬂ Vg "2V (g — 1y) da — 0. (5.1.47)

On the other hand, using uy — u) weakly and by boundedness of M (||lug||™) we have

M (|Jug|™) /Q |Vur|""2Vuy.V(ug — uy) dz — 0. (5.1.48)

Substracting from , we get,
Ml | (9l = Va9 05).¥ e = 3) da =0,
Now by using this and following inequality,
lar — as|™ < 2"_2(|a|?72a1 — |a2|”_2a2)(a1 —ag) for all aj,as € R"
with a1 = Vu; and as = Vuy, we obtain

M(Huk\")/ |Vug — Vuy|™ de — 0 as k — oc.
Q
Since M (t) > b, then we obtain u; — u) strongly in Wol’n(Q) and by Lemma[5.1.13

/ (| 5 F(ug)) f ()b ez — / (le]# % F(ur)) f(un)é da
Q Q

and also

/h(x)uz_lukgb dx — / h(x)u‘f\_luAd> dx
Q Q

for all ¢ € WOI"(Q) Therefore, uy satisfies (Py ) in weak sense and hence uy € N p.
Moreover, 0 < Ty ar(uy) < liminfy_o Txar(ux) = 6. Hence uy is a minimizer for Jy s in
N)\,M.

Using (5.1.42)), we have [, h(z)|uy|?"" > 0, then there exists t1(uy) such that ¢1(uy)uy €
N;F,M' We now claim that t1(uy) = 1 i.e. uy € N;M. Suppose that ¢1(uy) < 1 and then
to(ux) = Land uy € N, 5. Now Ty ar(t1(ua)un) < Iy m(uyn) < 6 which yields a contradiction,

since t1(ux)uy € Ny a. Thus, uy is non-negative and nontrivial. From the strong comparison
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principle (see for instance [251]), we get uy > 0 in €. Since uy € Ny ,, N H' then we have a
t«(uy) such that 1 =t (uy) < t«(uy). Hence by the continuity of u — t,(u), given € > 0 there
exists 4, > 0 such that

(14 ¢€) < tu(un —w) for all [|w| < d¢

and from Lemma we have, for 6 > 0 small enough, a continuously differentiable map
t: B(0,6) — RT such that t(w)(uy — w) € Ny ar,t(0) = 1. Then we have

ti(uy —w) =t(w) <1+e<ty(uy—w)
for ¢ small enough. Since t.(uy —w) > 1 for all ||w|| < J, we obtain
I (uy) < Dp(tr(uy —w)(uy —w)) < Typ(uy —w), if [w]| <0
which implies that ) is a local minimizer for Jy . ]

Theorem 5.1.28. Let § < ;7 and let A € (0,)9) where Ao = gli=ayyMo. Then Ty

achieve its minimizers on N;M.
b

Proof. Let u € Ny ;. Then

(20 = allal™ -+ (0 = V¥l = N (w) ~ [ (el 5 ) f(w)u-
/(|x]“ * F(u) f'(u)u? < 0.
Q
Then implies that
(2= 1= aljul"+n = 1= blul + ¢ [ (o] ¥ F(w)f )
@ (5.1.49)
= ([ et s s [ (o s F@)f@ad) <o,
Q Q

Using p+1 > 2n it is easy to deduce from (5.1.49) that 3¢ > 0, [[ul| > ¢ > 0 for any u € Ny ,,
from which it follows that Ny ,, is a closed set. Also as in Lemma [5.1.18 we can prove that

Ny €T and then infueN;N[ B(u) > é > 0. Therefore, for A < )\¢ small enough,

inf  B(u)+nb|u|"—2n—1—-g¢)AH(u) — (2n—1) / |z|7# * F(u) f(u)u > 0. (5.1.50)
ueN; ,,\{0} 0

Now taking 6~ = min__,- Jyar(u) > —oo. From Ekeland variational principle, there exist
uEN )
A, M

{vr }ren a non-negative minimizing sequence such that

. 1 1 _
I (vg) < eljl\f{lf I (u) + 7 and I (u) > I (v) — EHUI@ —ul| YueNy,,.
weNN M
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From Jy ap(vx) — 07 as k — oo and vy € Ny, it is easy to prove that |lvg|| < C (as in

Lemma [5.1.10)). Indeed,
allvg[|*" + bl|vg[|" — AH (vy,) — /Q(!fvl_“ * F(vk)) f (i) vk dz| = o(]|vgl])
and

1 b o
C+o(||lvell) = Tnm(vr) — %UA,M(%),%) > %HkaQ — C(A\) vkl o*

imply ||vg]| < C. Thus we get ||S(vg)||« < Ci and from (5.1.50) we have || (0)]« < Co.
Now the rest of the proof can be done as in the proof of Theorem [5.1.27| with the help of
Lemma [5.1.25] [

Proof of Theorem|5.1.7 for 8 € (1, nfl) : The proof follows from Theorem|5.1.27|and [5.1.28

Now we establish the following compactness result in the critical case.

Lemma 5.1.29. There exists C = C(p,q,n) > 0 such that for any {uy} C Wol’n(Q) satisfying

~1
/ 2n — " 2(p+2)
T (ur) =0 and Jyar(ug) — ¢ < o ( a? ( n2 M)) —OABFT gs k — 0o
’ o n

is relatively compact in Wy (Q).

Proof. As in Lemma [5.1.10| we can prove that {uy} is bounded in Wol’"(Q) and up to a
subsequence uy — w in L*(Q2) for all @ > 1, ug(x) — u a.e in Q and Vuy — Vu a.e. in 2 and
weakly in L"(€2). Also still up to a subsequence, there exist radon measures v; and vy such

that |Vug|™ — v1 and (|z|7* % F(ug)) f(ug)ur, — v2 weakly as k — oo.

n—1
Let B={ze€Q:3r=r,>0,1n(B,NNQ) < ( s (2"“>> } and let A = Q\B. Then
2n—1

2n

by Lemma |5.1.12| we can infer that A is a finite set, say {x1,x2,...,2¢}. Since j/{’M(uk) —0
and since {ug} is bounded in W&’"(Q), we have that V ¢ € C2°(Q),

0= lim (j)/\M(uk.),qb) = lim [M(HukH")/ \Vuk\”_2Vuk.V¢ dr — /\/ h(x)]uk]q_luk¢ dx
k—oo ' M k—o0 Q Q

- / (™ % F (i) f () dx],
Q
(5.1.51)

0= Jim (o). ) = lim_ 21" / (IVur "2V Vouy dz + [Vug|"6)
k—o0 k—o0 Q

.\ /Q () |ug| 71 dex — /Q (| * F(ui)) f (ugyugs e,
(5.1.52)

260



5.1.5. Existence and multiplicity of weak solutions

0= Jim (75 ps (), ug) = Jim M (Jaal") [ (Ve 2V + Vo>V Vo) do
oo 0 Q

- [l Pl o da] =2 [ hia)fufts do.
(5.1.53)
Substituting (5.1.53)) in ((5.1.52)) and taking into account (5.1.51)), we get V ¢ € C°(12)

k—00

lim Q(\xr“ « F(ug)) f(ug)urep = klgxolo M (J|ug]]™) /Q |Vug|" ¢ — ]Vuk]”quk.Vugt dx

4 / (e * F ) f (w)us do + oy(1).
Q
(5.1.54)

Now we take the cut-off function ¢5s € C2°(€2) such that ¢s = 1 in Bs(z;) V j = {1,...,t}
and ¥s(x) = 0 in BSs(x;) with 15| < 1. Then by taking ¢ = 15 in (5.1.54)) and since as § — 0

0<

/(Vuk\”2Vuk.Vu)w5 dx
Q

n/(n—1) 1/n
< / |Vug | Vu| do < (/ |Vug|® d:z) (/ |Vul™ da;) — 0,
Uj Bas(a ) Q Uj Bas (25)

we deduce after letting § — 0 that

< /Q V" |Vl da

an [(2n—p e
VQ(A)>m0y1(A)>mO<2$1< - )) . (5.1.55)

On the other hand, by using the same argument as in Lemmal5.1.12| (in particular see (5.1.16)))
we can prove that for any compact set K C Qs = Q\ UL, Bas(x;)

Jimn [ (ol « () fwyun do = [ (a5 () da.

Thus, we obtain
. 1 / . n 1 n n
ne = i ar(ue) = 3 (pr e = Jim (M) = 53 o] )

+ Jim 5 [ (el s« P (e = nPlauc)) do 3 (5= =27 ) [ h@luft! do.

Since

[ el P () da = [ (ol 5 F) ) da
Q Q

1

. I
3 (el Pt fwu do = 5 [ (el s F)f(u)u do +

together with (5.1.55)) it follows that

n—1
mo [ an [(2n—p 1 n )/ 11 n/ _
> AM = — h 7 dy — — Px F F d
nez <2n11< o )) + (2 1) /s (x)u v Q(\;z7| x F'(u))F(u) dz
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+;/Q(|x|—u « F(u))f (u)u da.

Consequently,
n—1
n [ 2n — 1 1
c>0 (2 <n H) +)\< >/huq+1dx
2n \ 9ntt 2n 2n (g+1)/) Jo
1 1
- - —Hy B
(37— 3557) el Pl do
> (e (75 ) " MBS ([ d:p)
= on \ oL L' @7\ 2n(q+1) Q
n—1
2 2—-2 n [ 2n —
P+ n (/ p+2dx> > Mo [ @ <” “) — inf p(t)
2n(2p+2 (p+2) \Jq 2n 2n I 2n teR+

-1
with 7’ = (1= Z3) ", e1 = e1(Q) > 0 and p(t) = A v o) (M) $20m _ (pi2-2mer

_l’_

p+2 2n(g+1) 2n(2p+2)(p+2)
mo an 2n—p nt =\ 2e+2) .
Thus ¢ > 52 g ( S ) — C'\2r3=4 which completes the proof. O

Now we prove Theorem which concerns the critical case § = 5.
Proof of Theorem : Let uy, be a nonnegative minimizing sequence for Jy pr on Ny a7 \{0}
satisfying (5.1.40) then uy is bounded in Wol’"(Q). Using Proposition [5.1.26] we get uy is a

n= ~  2(p+2)
Palais Smale sequence at level § < T2 237’51 (%‘)) )V ===} Taking A small enough,
using Lemma [5.1.23[and Lemma [5.1.29| {uy} admits a strongly convergent subsequence. Let

u € VVO1 () be the limit of this subsequence. Then arguing as in the proof of Theorems
and we prove that w is a non-trivial weak solution of (Py ) and Jy v (u) = 6. By
elliptic regularity and strong maximum principle, we infer that v > 0 in Q. This completes
the proof of Theorem O

5.2 Polyharmonic Kirchhoff problems involving exponential non-linearity

of Choquard type with singular weights

In this section, we prove the existence of a non-trivial weak solution to the following Kirchhoff

type Choquard equation with exponential non-linearity and singular weights:

ey | A (L9 ) avu= ([ Gt ) B e

w=Vu=---=V"ly=0 on 0f,

where m € N, n=2m, p € (0,n), 0 < o < min{§,n — u}, Qis a bounded domain in R™ with
smooth boundary and the function F' denotes the primitive of f with respect to the second
variable.

Throughout this section, we assume the following conditions on M and f. The function

M :R* — RT is a continuous function satisfying the following conditions:

262



5.2. Polyharmonic Kirchhoff problems involving exponential non-linearity of Choquard type with singular
weights

(m1) There exists My > 0 such that M(t) > My and M(t+s) > M(t)+M(s), for allt,s > 0
where M(t) = fot M((s) ds is the primitive of the function M vanishing at 0.
(m2) There exist constants by, by > 0 and £ > 0 such that for some k € R

M (t) < by + byt®, for all t > .

(m3) The function MT(t) is non-increasing for ¢ > 0.

Using (m3), one can easily deduce that the function

1 1
(m3)’ 5./\/1(75) - gM(t)t is non-negative and non-decreasing for ¢t > 0 and 6 > 4.

Example 5.2.1. An example of a function satisfying (m1), (m2) and (m3) is M(t) = Mo+bt?
where My, > 0, 8 <1 andb > 0. Also M(t) = My+log(1+t) with My > 1 verifies (m1)-(ms3).

The function f : © x R — R which governs the Choquard term is given by f(z,t) =
h(z,t) exp(t?), where h € C(2 x R) satisfies the following growth conditions:

(h1) h(z,t) =0 for all ¢ <0 and h(z,t) > 0 for ¢t > 0.
. ~ 2y . . ~ 2\
(h2) For any € > 0, tllglo Sup,cq h(z,t) exp(—et”) = 0 and tllglo inf_ g h(z,t) exp(et®) = oo.

(h3) There exists £ > max{1l, k + 1} such that % is increasing for each ¢ > 0 uniformly in

x € Q, where k is specified in (m2).
(h4) There exist T, Ty > 0 and 7o > 0 such that 0 < £ F(x,t) < Ty f(z,t) for all |t| > T and

uniformly in x € €.

)

The condition (h3) implies that f(%t is increasing in ¢ > 0 and hr())n+
t—

f(ﬁ’t) = 0 uniformly
inz e Q.

Example 5.2.2. A typical example of f satisfying (h1)—(h4) is f(x,t) = 1 exp(tP) exp(t?)
fort >0 and f(x,t) =0 fort <0 where 0 <p <2 and  >1—1.

Furthermore, using (h1) — (h3) we obtain that for any € > 0, r > 5y + 1 where 0< gy < ¢,
there exist constants C7,Cy > 0 (depending upon €,n,m) such that for each = € Q

0 < F(x,t) < C1[t|Por + Cylt|" exp((1 + €)t?), for all t € R. (5.2.1)

We also study the existence of weak solutions of a Kirchhoff type Choquard equation with

convex-concave sign changing non-linearity:

- M (/ |V 2 d(L‘) A"y = Mh(z)|u|?tu + (/ Fu) dy) J() in Q,
(Pam) Q a lz =yl lyl ||
u=Vu=---=V"1lu=0 on 0},
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where f(u) = u|ulPexp(Jul?),0< ¢ <1, 2<p,v€(1,2) and F(t fo ) ds. In this case,
we assume M (t) = at + b where a,b > 0 and h € L"(2) where r = % is such that ht # 0.
For any u € Wén’Z(Q), by virtue of Sobolev embedding we get that u € LI(Q) for all ¢ € [1, 00).

This also implies that F(x,u) € L9(f2) for any ¢ > 1.

Throughout this section, we denote

%
Jull = ([ (97 )
Q

The problem (PKC) has a variational structure and the energy functional 7 : WJ™*(Q) — R
associated to (PKC) is given by
1 1 F(y,u) F(z,u)
TJ(u) = =M u2/</ dy) da. 5.2.2
() 2 (el 2 Jo \Ja ly|*x —y|~ ||« ( )

The notion of weak solution for (PKC') is given as follows.

Definition 5.2.3. A weak solution of (PKC) is a function u € WJ"*(Q) such that for all
€ Wgn’2(Q), it satisfies

M(HUH2)/QVmu.Vm<p dx-/g(/g \yrf&fb;wdy) f‘(i”;‘)w dz. (5.2.3)

For the problem (Pj aq), the energy functional Jy aq : W(T’Z(Q) — R associated to the

problem (Pj, M) is defined as

) = M)~ 5 |, @)'“qﬂdx‘ifg(/guiﬁw ) Txﬂu) &

where F' and M are primitive of f and M respectively vanishing at 0 and f(s) = s|s|? exp(|s|?).

Definition 5.2.4. A function u € Wgn’Q(Q) is said to be a weak solution of (Pam) if for all
¢ € W2 (Q), it satisfies

M(||u||2)/QVmu.Vmgb dx = )\/Qh(:c)|u]q_1u¢ dx+/Q (/Q% dy) {ﬁqus dz.

5.2.1 Main results

We prove the following main result concerning the problem (PKC).

Theorem 5.2.5. Let (m1)-(m3) and (h1)-(h4) holds. Assume in addition

lim sf(x,s)F(x,s)

S xp (259 = 00, uniformly in x € Q. (5.2.4)

Then the problem (PKC') admits a non-trivial weak solution.

For the problem (P a(), we have the following result:

Theorem 5.2.6. There exists a Ao > 0 such that for v € (1,2) and X € (0,X), (Px.m)

admits atleast two solutions.
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5.2.2 Existence result for weak solution

In this subsection, we establish the existence of a nontrivial weak solution for the problem
(PKC(C). To prove this we study the mountain pass geometry of the energy functional J and
using the properties of the non-local term M and the exponential growth of f, we prove that
every Palais Smale sequence is bounded. To study the compactness of Palais Smale sequences
for J, we obtain a bound for the mountain pass critical level with the help of Adams functions

and establish the convergence of weighted Choquard term for Palais-Smale sequences.
5.2.2.1 Mountain pass geometry

In the following result, we show that the energy functional J possesses the mountain pass
geometry around 0 in the light of Adams-Moser and doubly weighted Hardy-Littlewood-

Sobolev inequalities.

Lemma 5.2.7. Under the assumptions (ml1), (m2) and (h1)-(h3) the following assertions
hold:

(i) there exists Ry > 0,m > 0 such that J(u) > n for all u € W6n’2(ﬂ) such that ||u|| = Ro.
(ii) there exists a v € Wén’2(Q) with ||v]| > Ro such that J(v) < 0.

Proof. Using Proposition with ¢ = r and 8 = « and (5.2.1]), we obtain that for any € > 0
and u € W" ’2((2), there exist constants C; > 0 depending upon € such that

/Q(/Q i dy) P01 4o < ctm | F@)l?_y,

ly|*|z — y|# || L7 Gatm
2n-(2atp)

2n(Bo+1) ™
< (6’1/ MEz=cz=nin Cg/ [u| = GoT i exp (22”(1+6)‘u|2>)
0 0

n— (2a+ p)

1 2n—(2a+p)
2n(Bg+1) 2rn 4An(1 2 2\ 2
S Cl/ ‘u|2n—(20a+#) + C2HuH2n—(2a+,u) / exp 77/("_—6)”714” <|u’)
0 Q 2n — (2a+ p) \[|ul|

An(1+¢)|ul?
2n — 2a+ p)

For small € > 0 and u such that < Gm,2m, using Theorem [2.2.2) Chapter 1, we

obtain

2n—(2a+p)

2n(By+1) rn T n
/ (/ F(y,u) dy> Flz,u) e <||u”2n<z°a+m i ”qunQ(zam)
0 o [ylofz — y[# || (5.2.5)
< Cy(fJuf P 4 JJuf?r).

1
Then for |lul| < p = (Qm,zmﬁ?l—jfz)oﬂru))) . (ml) and (5.2.5) gives

2
u
) 2 MV P —
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So we choose ||u|| = Ry small enough so that J(u) > n for some n > 0 (depending on Ry)

and hence (i) follows. Furthermore (m2) implies that

thk—l-l
bo + bit + , k#£ -1
My < Jo Tt R
bo +bit +boyInt, k= -1
for t >t where
tAk+1
£y —bit—b , k
by — M(E) — by 21 # =

Aﬂﬂ—bﬁ—bﬂnmk:—-.

Under the assumption (h3), there exists K; > max{l,k + 1}, ¢1,c2 > 0 such that F(z,s) >

1851 — ¢y for all (,5) € 2 x [0,00). Therefore for v € Wgn’2(§2) such that v > 0 and |jv]| =1

we get

/‘(/ Z@nmﬁ p ) xjv " >t/b/ (1 (t0) K1 (y) — e2)(e1(tv) K1 () — ¢3) dndy
QM\M—M“ M! WIMHm—w“
t2K1// x) dxdy — 26162tK1// dxdy
oyl \wl \ﬂf—y\” o lyl® !wl \w—y!“

+c // dxdy.
? Ja Q’y|a’$|a’$—y”“‘

Then using above estimates in (5.2.2)) for £ # —1, we obtain

J(tv)< es+ cat? + cpt2 D _ o 2K 4 g

and for k = —1

T (tv) < e3 + eat? + 5 In(t?) — egt?51 4 ¢t
where ¢s are positive constants for i = 3,...,6. Now by choosing ¢ large enough, we obtain
that there exists a v € W*(Q) with [|v|| > Ro such that J(v) < 0. O

Lemma 5.2.8. Every Palais Smale sequence of J is bounded in Wgn’Q(Q).

Proof. Let {u;} C Wéﬂ’Z(Q) be a Palais Smale sequence for J at level ¢ (denoted by (PS).
for some ¢ € R) i.e.

J(ug) = cand J'(uy) — 0 as k — oo.

Then from (5.2.2)) and (5.2.3)), we obtain

“M(J|Jug)?) - 1/ (/Q Fly, ur) dy> Flo, u) dr — cas k — oo,

2 ly|*|z —y|* ks

2
pathad®y [ o= [ ([ i) Sthe d

(5.2.6)

< ex|9||
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for any ¢ € Wg"’Q(Q), where €, — 0 as kK — co. By substituting ¢ = uy we get

MQhuel?) [ 17l = [ ([ gy ) Sl g,

Using assumption (h3), we get that there exists a 6 > 2 such that 0F(x,t) < tf(x,t) for any
t > 0 and x € ) which implies

) S (] ) s

Now using (5.2.6)), (5.2.7), (5.2-8) and (m3)’, we get

< Ek”ukn (5.2.7)

1, 1 2y 1 2 2
T (ur) = 5 (T (ur), we) = 5 MJurll®) = 55 M (llwel|) ull
2 \Ja \Ua ly|*|z —y[* |z|* 20 Jo \Ja ly|*|z — y|* |z|*
1 2 1 2 2 <1 1 ) 2
> - > (- — .
z Mlurll®) = 5 MJluelDlluell”™ = { 5 = 55 | Mollux]
(5.2.9)
Also (5.2.6]) and (5.2.7)) yields
1, HukH)
—— < lkdl 2.
T (ur) = 5 (T (uk), ue) < € <1 +erTog (5.2.10)
for some C' > 0. Therefore (5.2.9) and ([5.2.10)) gives us the desired result. O

5.2.2.2 Mountain pass critical level

To obtain bound for the mountain pass critical level in this subsection, we use Adams functions
to construct a sequence of test functions. Let B denotes the unit ball and B; is the ball with
center 0 and radius [ in R™. Without loss of generality, we can assume that B; C €2, then

from [182, Lemma 5, p. 895], we have the following result- For [ € (0,1), there exists
Uy € {ue W (Q) : ulp, =1} (5.2.11)

such that
2 _ . Cm,Zm
VI = Cra(Bis B) < —m2m
nlog <7>
where Cy, 2(K, E) is the conductor capacity of K in E whenever E is an open set and K is
relatively compact subset of E and Cy, 2(K; E) def inf{||ul|? : u € C°(E),u|x = 1}.
Let # € Q and R < Ry = dist(#,dQ). Then the Adams function A, is defined as

1
nlog (£)) x— 7 i

0 if o — % >R
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where 0 < r < R, Ul:% is as in ([5.2.11)) and H/lTH <1.
Let 0 > 0 (to be chosen later), # =0, R = ¢ and r = ¢ for k € N, then we define

nlog(k) : x :
Ay(e) ™ Ay (2) = (cmm> 0y (5) el <o

0 if |x| > o.

1
Then Ay(0) = (H248)* and || Ay]| < 1.

We define the mountain pass critical level as

* = inf . 2.12
l 1192“33313\7 (9(¢)) (5.2.12)

where T' = {9 € C([0,1], WJ™*(Q)) : 9(0) = 0, J(¥(1)) < 0}. Now we analyze the first

critical level and study the convergence of Palais-Smale sequence below this level.

Theorem 5.2.9. Under the assumption (5.2.4),

1 2n — (2
0<i*< =M <n(a+lu)<.m2m) .
2 2n '
Proof. We have observed in Lemma for u € WS”’Q(Q) \ {0}, J(tu) - —o0 as t — oo
and I* < max;¢(o 1) J (tu) for u € Wéﬂ2(ﬂ)\{0} satisfying J(u) < 0. So it is enough to prove
that there exists a k € N such that
1 2n — 2a+ p) )
tA = ————Cmom | -
tér[%)?o)g)j( k) < ZM( 2n Gn.2
We establish the above claim by contradiction. Suppose this is not true, then for all £k € N
there exists a t; > 0 such that
1 2n — 2o +
max J(tAr) = J (trAr) > iM ((M)szm>

t€[0,00) 2n

d
and (T (tA) 1=, = 0.

From Lemma and (5.2.13]), we obtain {f;} must be a bounded sequence in R and

1 2n — (2a+ )
§M ( 2n

Then monotonicity of M implies that

2> (ng,zm> . (5.2.14)

Consequently, by using (5.2.13)) and choosing o, k such that B, C 2, we obtain
F(y, tiA Tt At A
M Pl = [ ([ Sy ) Hen b o

ly|*|z — y|» ||

Z/ / F(y, txAg) dy fla teAr) Ay,
By \/Bg ly|*|z — y|~ ||

(5.2.13)

Gmam) < M)

(5.2.15)
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For a positive constant C),, depending on x and n, we obtain (see equation (2.11), page.

1943, [15
’ D dzdy o 2n—(2a+p)
o 2 (7)
. J, W o ;

From (5.2.4]), we know that for each p > 0 there exists a s, > 0 such that

sf(xz,s)F(x,s) > pexp (232) , whenever s > s,.

Using this in ([5.2.15]), we obtain, for some C > 0

2nt2

2n—(2a+p)
Mt AP = pesp (26 A (O)P) Crun (k) > C kEnan

—(2n—(2a+u))

Now from ([5.2.14]), it follows that taking k large enough, we arrive at a contradiction. This
completes the proof of the result. O

Lemma 5.2.10. Let {ug} C Wén’Q(Q) be a Palais Smale sequence for J at ¢ € R then there
exists a ug € Wgn’2(Q) such that as k — oo (up to a subsequence)

Jo U ) See e [ (e ) S

for all p € CX(Q).

Proof. If {uy} is a Palais Smale sequence at I* for J satisfying (5.2.6|) and ( - From
Lemma we obtain that {ug} is bounded in W{™?(Q) so there exists a ug € WJ"?(2)
such that up to a subsequence u; — ug weakly in Wom’2(Q), strongly in L2(Q) for all ¢ € [1, 00)
and pointwise a.e. in Q as k — oco. Let ' CC Q and gp € C(Q) such that 0 < ¢ <1 and
¢ =11in Q' then by taking ¢ as a test function in , we get the following estimate

fo () S an< |, (/Q e ) T

<ellell + M(I!UkIIQ)/QVmuk-Vmcp dr < egll@ll + Cllullllell-

F(y,uk) flzup) ) -
iy L s
bounded in L%OC(Q) which implies that up to a subsequence, wy — w in the weak*-topology

By using |lug|| < Cp for all k, we obtain the sequence {wy} := {(fQ |

as k — oo, where w denotes a Radon measure. So for any ¢ € C2°(Q2) we get
F
lim (/ (v, ug) @)f@””¢dx_/}mm%v¢603my
koo Jo \Ja [y|*|z — y[# || Q

Since uy, satisfies (5.2.6)), for any measurable set F C  and ¢ € C2°(Q) such that supp ¢ C E
we get that

= foww=pm [ (5 |Z’Uky|ﬂdy> f(ffc]:k)m
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= lim // ( Wu) ) @) o~ i M(Huk|2)/ V™, V¢ da
k=00 y|*|z — yl# || k=00 0

< Cl/ V"u.N"¢ dx
E

where we used (m2) in the last inequality and weak convergence of uy to w in W)" 2(Q).
This implies that w is absolutely continuous with respect to the Lebesgue measure. Thus,
Radon-Nikodym theorem establishes that there exists a function g € L () such that for
any ¢ € C(Q), [ ¢ dw = [, ¢g dx. Therefore for any ¢ € C°(Q2) we get

s [ (] e n) Ce de = [ ogae= [ ([ it ma) T

which completes the proof. O

Lemma 5.2.11. Let {u} € WJ*(Q) be a Palais Smale sequence of J at ¢ € R and (h4)
holds. Then there exists a u € W[?”Q(Q) such that, up to a subsequence, up — u weakly in
Wy (9) and

(L tytn) et = (e yts) "o @) G210

as k — oo.

Proof. Let {u} € WJ™(Q2) be a Palais Smale sequence of J at level ¢ then from Lemma
we know that {u;} must be bounded in Wéﬂ’z(Q). Thus there exists a u € Wgn’2((2)
such that u; — u weakly in W(TQ(Q), ur — u pointwise a.e. in Q and ug — u strongly in
L4(Q), for each ¢ € [1,00) as k — co. Also from (5.2.6)), (5.2.7) and (5.2.8) we get that there

exists a constant C > 0 such that

s o) o m [ (] his o) g <o

Consider
a \Ja ly|*|lz —yl* || o \Ja lyl*z —y|» ||
a\a o |y[*z -yl ly|*
o \Jo

lylofz =yl [

<

def

+ —Il—I—IQ.

Using the semigroup property of the Riesz potential we can write

Iy < ( /Q ( /Q E (?1;7‘;6')%—_2 T/@{u) dy) F(x,uk|)x—a F(x,u) dm>2

<, Ui 2 ) et ) 0219
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e (] S ) e

(g ) 3 =) o2

Therefore, by using (5.2.18]) and (5.2.19]) we obtain,
1
F( F —F 2
L +1; <2C (/ ( (v, ux) = Fly, u) dy) (=, ur) (z,u) dx) i

[yl \w—y\“ [

where we used (5.2.17) to get the last inequality. Now the proof of (5.2.16|) follows similarly

as the proof of ([5.1.22)) of Lemma [5.1.12]). O

Now we define the associated Nehari manifold as
N = {u e Wi @)\ {0} : (J'(w),u) =0}, 1" = inf T (u)

and we show the mountain pass critical level lies below every local minimum value of the

energy functional at the point of local minimum.

Lemma 5.2.12. If (m3) and (h3) holds then I* < [**.

Proof. For u € N, we define a map h : (0,400) — R such that h(t) = J(tu). Then
F
w0 = Ml - [ ([ o) Aot g,
o \Ja

ly|*|z — y|» ||

and since u € N, therefore

o s M<|rtu||2>_M<uu||2>>
P = el ( Pz Jul?

y u)f l‘ u) F(y,t{u)f(m,tu) 2
+ 3 / / / Pulz) dy u(z) dx| .
[yl — y|» !rv—y!“ a lyl*z —y|# ||
From (h3), we get
. flxta) 0 o
1f(x, 1) = 2F (x,t1) <t f(x, 1) — 2F (2, t2) + 2 % (tz —t7) < taf(z,t2) — 2F(z,t2).

for 0 < t; < t9. Using this we get that tf(z,t) — 2F(x,t) > 0 for t > 0 and for any = € ,
t — tf(z,t) — 2F(z,t) is increasing on R*, which further implies that ¢ —» T

decreasing for ¢ > 0. Therefore for 0 < t < 1 and = € €, we get w < F(z,u) and (h3)
(r u > f(fr ) then

is non-

gives that

o s M(Htullz)_M(lluIIQ)>
Pe) 2 full ( Jeul? Tl
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o l/g (f (o= £652) i) Sy dm] |

This gives that h/(t) > 0 for 0 < ¢ < 1 and similarly we can show that h'(t) < 0 for ¢ > 1.
Hence J(u) = max;>o J (tu). Now we define ¢ : [0,1] — W0m’2(Q) as ¢g(t) = (tou)t where
to > 1 is such that J(tou) < 0. So g € I', where I' is as defined in the definition of [*.

Therefore,

I* < tren[%i(} J(g(t)) < max J (tu) = T (u).

and since u € N is arbitrary, so we get [* < [**. O

Now, we give the proof of our main result:

Proof of Theorem Let {ur} be a (PS);- sequence at the critical level {* and hence
considered as a minimizing sequence associated to the variational problem . Then by
Lemma there exists a ug € Wén 2(Q) such that up to a subsequence u; — ug weakly
in WJ™2(Q) as k — oo.

Step 1: wug is non-trivial and ug > 0.
If ugp = 0 then using Lemma [5.2.11] we infer that

F F
/ (/ (y, ur) dy) (@, u) dr — 0 as k — oo.
a \Ja ly|*z —yl* ||

*

Therefore limy_,o0 J (ug) = & limg_o0 M(||ug|®) = I* and then for large enough k Theorem

B2 gives

MJuelP?) < M (22050,

Then by monotonicity of M, we obtain

2n

2
—_— < .

Now, this implies that we can choose a g > m such that supy, [o, | f(z,ur)|? de < +oo.

Using Proposition Theorem Chapter 1 and the Vitali’s convergence theorem we

conclude that ”
/ </ (y, ) dy> F (2, uk)ux dr = 0as k — oo.
o \Jo [y|*z —yl#

Hence limy o0 (7" (ug), ug) = 0 which gives limy_oo M (|Jug]|?)|lug||* = 0. From (m1) we then
obtain limy_,s ||ux/|? = 0. Thus using Lemma [5.2.11} it must be that limy ;. J(ug) = 0 = [*
which contradicts {* > 0. Thus ug Z 0. Now we show that ug > 0 in 2. From Lemma [5.2.8

we know that {u;} must be bounded. Therefore there exists a constant p > 0 such that up
to a subsequence ||ug| — p as k — oo. Let ¢ € Wénz(Q) then by Lemma [5.2.10] we have

/Q (/Q |y1’z(|z7ﬁky)|#dy> f(rZ':k)@ dz — /Q (/Q |yfz(|?;»iloy)|udy> f(ﬁ’,ZO)so P
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Since J'(uz) — 0 and ug — ug weakly in Wj"?(Q), we get

2)/ V™ug.V™p dx :/ (/ F(y, uo) dy) f(x,uo)(p dz,
Q o \Jo [y|*x —yl# ||

as k — oo. In particular, taking ¢ = u; in the above equation we get M (p?)||uq ||? = 0 which

implies together with assumption (ml) that ug; = 0 a.e. in 2. Therefore ug > 0 a.e. in .

Step 2: J\m =1".
To prove this, first we claim M (||luol|?)|Juoll* > [, (fQ |yl|z(y’u°) dy) [@.uo)uo oy

lz—y[~ ||

Arguing by contradiction, suppose that

F
< (2 ) 2522

which implies that (J'(ug),uo) < 0. For ¢ > 0, using the map ¢ — ¢f(x,t) — 2F (z,t) is

increasing on R*, we have

<j/(tu0),uo> > M(||tuo||2)tHu0||2 / ( f y,tUO tUO ) dy) f(ﬂ?,tU())UO do

ly|*|z —yl* ||
t t t
> MOtHUO||2_ - f Y, UO uO ) dy f(xa UU)UO dz.
ly|*|z — yl* ||

Since (h3) gives that

T
t—0+  tY

= 0 uniformly in x € Q, for all v € [0, 1],

we can choose ¢t > 0 sufficiently small so that (J'(tug), uo) > 0. Thus there exists a t, € (0, 1)
such that (J'(t.up),uo) = 0 i.e. tyug € N. So using Lemma [5.2.12{ and (m3) we get

1

_ Mltuol®) 1 / ( / F(y, tuo) dy) Fla,tao)
2 2 Jo \Ja ly[*|z —y[# ||
1 1 F 7t*u x,t*u t*u
- Mol tuol + § [ ([ gy ) Gt g

1 [ylolz — yl7 =17
M(||uo ) 1
B (\\2!!) — M (Jfo %) o
+ 1/ (/ F(y,uo) dy> flz,uo)uo — 2F (. u0)
4 Jo \Ja ly*[lz —y|» =l

1
= lim inf <j(uk) - <J'(uk),uk>> =1
k—o0 4
This gives a contradiction and hence Claim holds. From Lemma [5.2.11] we know that

(L paetdzan) S e [ ([ E ) FE o

and by using the weakly lower semicontinuity of norms in limy_,. J(ur) = I*, we obtain
T (up) < 1*. If T (up) < I* then it must be limg oo M(|lug||?) > M(|Jup|/?) which implies that
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limg o0 ||| > ||uol|?, since M is continuous and increasing. From this we get p? > |jugl|?.

Mt = (205 [ ([, preeyets) e ). (5:2.20)

Now we define the sequence v, = m and vy = “—po such that vy — vg weakly in W" 2(Q)
and ||vg|| < 1. Then from Lemma we obtain

Moreover we have

2 Cm,2m
sup/ exp (plug|”) < +oo, for p < ——"——.
keN Jo ( ) ’ (L= [Jvol?)

Also from (m3)’, Claim (1) and proof of Lemma [5.2.12| we obtain

(5.2.21)

1 1
J (o) = 5 M([luoll*) = 5 M(Jluol*)[[uo]

+ 1/ </ I o) dy) Ul o)t = 2@ )y, »
Q Q

4 [ylofz —yl# [

Using this with (5.2.20)) and Theorem we get that

2n — (2a + p)
2n

M(p?) = 21° = 27 (uo) + M(Juol) < M ( Gmam) + M(Juo]?)

which implies together with (m1) that

2

2o Cm2m (2n7(22:+u))

1 —{wol?

Thus it is possible to find a p, > 0 such that for k£ € N large enough

Cm 2m (2n — (20[ + M))
lug]> < pe < 22 :
2n(1 = [|vo|l?)
Then we choose a ¢ > 1 but close to 1 such that
2n 2 2n Cm 2m
—_— < < : .
P T T T L (e T
Therefore from (5.2.21)) we conclude that
2n 2)
exp | ———— q|u <C 5.2.22
| o0 (r—ggayell) < (5222)

for some constant C' > 0. Using ([5.2.22)) and ideas similar as in Lemma [5.2.11| we obtain

F(y,u) [z, ug)ug F(y,uo) £z, up)uo
d d d dzx.
/Q(/Q [yl — gl y) e ﬁ/g< oyl — gl y) B

We conclude that ||ug|| — |lug|| and we get a contradiction to the fact that J(ug) < I* .

Hence J(up) = I* = limy_,00 J (ug) and ||ug|| — p implies p = ||ug||. Then finally we have,

M(HuoHZ)/QVmuo.Vmgo dx = /Q (/Q Fly, uo) dy) f(m’uo)go dx.

ly|®|z — y|» ||

for all p € W" 2(Q) and which completes the proof of Theorem O
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5.2.3 Nehari manifold method for Kirchhoff-Choquard equation with singular weights

In this subsection, we consider the problem (Pj »s) with Kirchhoff non-linearity of the form
M(t) = at 4 b where a,b > 0. We observe that Jy _u is unbounded on Wy™*(22) but bounded
below on suitable subsets of W" 2(Q). To show the existence of weak solutions to (Pam)s
we establish the existence of minimizers of J) o4 under the natural constraint of the Nehari

Manifold which contains every solution of (P a(). So we define the Nehari manifold as
m,2 /
Ny = {u € Wo () \ {0} (T (), w) = 0}

where (. ,.) denotes the duality between WSR’Q(Q) and W~™2(Q) i.e. u € Ny if and only if

lall2 M(|Jull?) —)\/Qh(a;)\u]q“ dm—/ (/Q Flu) dy) Ju 0. (5.2.23)

o o Te—ylilyle ) Talo

For u € W(;T"Q(Q), we define the fiber map ®,, ) introduced by Drabek and Pohozaev in |113]
as @, : RT — R such that @, a(t) = Ty m(tu). Thus we get

) = P ead®) et [ nolul do - [ ([ EU ) HE 4

e —yPrlyl ) TJafe

and

01 () = 262l "M ([[tu]|*) + [lul*M(|[t]®) - Afﬁt"l/gh(ﬂc)luq+1 dx

-1, ra:i(ty%a ) ffatcuczu A=) fl(riuc)vuz "

Since the fiber map introduced above are closely related to Nehari manifold by the relation

tu € Ny iff <I>;L’M(t) = 0, so we analyze the geometry of the energy functional on the

following components of the Nehari Manifold:
N3ty o= {u € Nar: @, 00(1) S 0} = {tu € W5™(Q) \ {0} : @, (1) = 0,P,, 5 (£) S 0},

N/(\],M ={u€ Nyu: ‘I):,M(l) =0} ={tu € Wénz(ﬂ) \ {0} : (I);,M(t) =0, (I)Z,M(t) = 0}.

Due to presence of sign changing non-linearity in (P as), we also decompose W" 2(Q) into the
following sets to study the behavior of fibering maps ®,, y;. We define H(u) = [ h(x)[u|i! dx
and

H = {ue WJ"*(Q) : H(u) >0}, Hy :={ue W) : H(u) < 0}.

5.2.4 Fiber Map Analysis

In this section, we study the geometry of Jy s on the Nehari manifold. We split the study
according to the decomposition of Ny js and the sign of H(u). Define ¢ : Rt — R such that

wult) =l - o0 [ ([ ) FE
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and observing the fact that tu € Ny if and only if ¢ > 0 is a solution of ¥,(t) =
A o h(z)|u?™ dz.

First, we need a priori estimates, which indicate the local minimum value of the function v,

at the local minimum point ¢, is strictly greater than AH (u).

Lemma 5.2.13. Let

r.— {ueWgﬂ( )+ flull® < 2/(3 B(Zl 1—Q)}

Then there exists a A\g > 0 such that for every A € (0, ), I'o > 0 holds where

o= inf [B(u)?;/ﬂ(/ﬂ Flu) dy) f’( |?1 de + 2b]ul|> = A (3 — q) H(w)) .

uel\{0}nH+ |z — y[#|y|®

Proof. We establish the proof through various steps.

Step 1: Claim: inf,cp\ o3+ [ull > 0.

We argue with contradiction, suppose there exists a sequence {ug} C T'\{0} N H" such that
|lug|]| — 0. Then using Proposition and putting the value of f(u) = u|u|P exp(|u|?) as
well as f'(u) = ((p+ 1) + ~|u|")|[ul? exp(|u|?) we obtain

F !

Bu)| = / (/ (ur) dy) flu)eg +/ (/ S (ur)up dy) flup)ur

o \Ja |z —yl*y|* || o \Ja |z —yl#y| ||
) 2n—(2a+p) ) 2n—(2a+p)

__zan n _2n 2n

< ([ (a2 exp(lug) 755 do ) + o ([ (Plu) 7= do)
Q Q
2n—(2a+p)

2n

2n
< ([ (o D+ 2Dl exp(an ) 7 o) |
Q

where C, Cy are positive constants independent of ux. Now (p+2)F(t) < tf(t) and Holder’s
inequality implies that

2n—(2a+p) 2n—(2a+p)
oz [ ) [l )0y
ug)| < Oy | 2n—Ca T exp | lup|"———— | dx
Q Q 2n — (2o + p)
2n—(2a+p) 2n—(2a+p)
2nd’ (p+2) 2o’ Mo 218
—1—02(/ |ug | 2n=(atw) dx) X (/ exp (\uk\v) d:r) X
Q Q 2n — (2a + p)

—(2a+pu) 2n—(2a+p)

2n +u
2n8’ (p+2) T 2ne’ Mo 2n3
( |ug| 2= Gt d(L‘) X (/ exp (]ukl'yn> dx)

2n—(2a+p) 2n—(2a+p)
2n8’ (p+y+2) 2nd’ 2nd 2né
</ |ug,| 27— ot dac) X </ exp (]uk]'y) d:1:> ,
Q 2n — (200 + )

where § > 1 (which depends on k) and §’ denotes its Holder conjugate. Using Moser-Trudinger

inequality for uj with large enough k such that m”ukﬂ < (m,2m (such k can be
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chosen because ||ug|| — 0 as k — 00) and v, = IIZtII’ we obtain

2n—(2a+p) 2n—(2a+p)

2ns’ (p+2) né’ néd

|B(ug)| < Cl</ |ug | 2n=atw) da:) X ( sup /eXp(\UkWCQO) dx)
logll<1 /6

, 2n—(2a+p) 2n—(2a+p)

2nd’ (p+2) 2nés’ né

—I—C’z(/ |ug|2=Ca+w) dx X < sup /exp(\vk\'yfmgm) dx) X
Q floelI<1

, 2n—(20+p)
2nd’ (p+2) 2né8’ (pv+2) 2ns’
</ |uk?| 2n—(2a+p) d$> (/ ’uk}’ 2n—(2a+p) dm) .
Q
Finally the Sobolev embedding gives the following upper bound.

[B(ur)| < Calurl*P2) 4 gl P2 (fug]| P2 + ug|F+742)) < Cllugl| B 4 [lug | GPH2 4.

Using uj, € T\{0} we get 1 < C(Jlug) @D + |Jug]|®+2+Y), which is a contradiction as
|ur|l — 0 as k& — oo. Therefore we have inf,cp\ oynp+ [[ul > 0.

uu exp(|ul)[ufP*?
Step 2: Claim: 0 < inf,, / / (dy) p—2+4+7u|") ———=———— dx ;.
e\{0}nH+ { ’.T — y|#’y|a ( 7| | ) ’.I"a

Since F(s) < £ $)5 then by the definition of T and from Step 1, we obtain 0 < inf,ep foynm+ B(uw)
in {
uel'\{0}nH+

Ptz
e U UL ) 2 o [ (L b o) S d‘T}
< m { [ ([ 2, fwu J‘rx{( )i dm}

f
o fu)u JulP*2eap(lul) (| (+1) +ylu
= er By {/Q </Q @ — ylTyl dy) ER (1 R >}

Since p > 2, we infer

V)|u|p+2
0< inf //( ) 2+ v exp(u| dx b .
uer\{o}mm{ Ty |ﬂ|y|a =29kl =

Step 3: Claim: I'g > 0. Firstly, we have

H(u) = /Qh(fc)!mq“ = (/Q |h(w)\p>1/p</ﬂ !UI(M)'))W < Uull ™. (5.2.24)

where | = ||h[| (o) and p > 1 will be specified later. Choosing

1.

€.
0<
<

2b
A< ———=My:= A 5.2.25
< B-q) 0 0 ( )

where Mo = inf,er\ (oynm+ lul|'=7 > 0, we get that A (3 —q) ||lul**? < 2b|lul|? for any
weT\{0} N H* . Then for w € T\{0} N H* and p > 2,

B(u)+2b||u|2—3/ </QF(“)dy> Ju N3 H)

0 |z — ylr|y|> ||
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= [ (i ) P e [ (i o) T e

+ 2b|Ju||* = (3 — ¢) AH (u) > 0.

Therefore I'y > 0. ]

Lemma 5.2.14. Let A\ > 0. Then

(i) For any u € Hy \ {0}, there exists a unique t* such that t*u € Ny ;. Moreover, @y,
is increasing on (0,t*) and decreasing on (t*, 00).

(ii) For anyw € H™T, there exists \o and t.,t1,ts > 0 such that tyu € N;M and tou € N/\_,M
for any X € (0, o) and t; < ty < ta.

Proof. (i) For v e H; \ {0}

Since

@ 0r (1) = 9(u(t) — A /Q h(a) |t da),

so tu € Ny a iff t > 0 is a solution of ¥, (t) = A [, h(z)|u|?™ dz. We have

/

Yo (t) = (1= q) t M ([tull®)|[ul® + 2627900 ([t ]|?) |u]|*

i f, i ) ao - o[ f (L 2 ) fo

*/Q (/Q B - ;ﬁﬁfwa ) f,iiTC)MUQ )

Due to the presence of exponential non-linearity, for large ¢ we have 1, (t) < 0 and since

(5.2.26)

u € Hy , there exists a unique t* > 0 such that 1, (t*) = X [, h(x)|u|?  da, i.e. t*u € Ny p.
Suppose there exists an another point ¢1 (t* < t1) such that ¢, (t1) = A [, h( z)|ulitt <0, de.
_ F(t t
A et + o)l <7 [ ([ () a)! (tu (5.2.27)
o \Ja [z —yl"y| ]

and /(1) > 0. Then from (227) and by using f'(trutru > (p+ 1)f(tru), f(0)t >
(p + 2)F(t) we obtain,

i) < - ) [ lul? o)l - ot [ () A0t g <o

a |z —yltlyl* ||

which is a contradiction. Also for 0 < t < t*, @l () =ty (t) = X [ h(z)|u|?tt dz) > 0.
Consequently, ®,, )s is increasing in (0,t*) and also decreasing on (t*,00). Therefore t* is
unique critical point of ®, ps which is also a point of global maximum. Furthermore, since
() = (“bu Mm(t) t—qqq’L,M(t))

, therefore t*u € N/\_7M.
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(i1) For small ¢ > 0, ¥y, (t) > 0 and 1, (t) — —oco as t — oo for u € HT. Then there exists at
least one point ¢t* such that w;(t*) =0, i.e.

_ _ q F(tu) f(tau)u
3 —q) 2 aljul|* + (1 — q) t;9b||u|® + == (/dy) dz
3= o)l + (=g vl + s [ (] SR ay) S

/ 2
;q{/ </ F(teu) dy) f'(tu)u d$+/ (/ f(teu)u dy> f(teu)u d:c]
o \Ja [z —ylly|® || o \Ja [z —yly|* ||
So by AM-GM inequality we obtain 21/(3 — ¢) ab (1 — q)||t«u||* < B(t.u) where

s = [ ([ i ) T e [ (2 o) f o

Using ., (t.) = 0, we replace the value of a||t,u|[* in the definition of 1, (t) to obtain

B(t*u)—s/ﬂ</Q Ftu) dy> ftu)tu dx+2b||t*u||2} (5.2.28)

[yl ]

=t

1
(38— gyt
From Lemma [5.2.13|and (5.2.28)), we notice that for u € HT\{0}, there exists a t. > 0, local
maximum of i, verifying ¢, (t.) — AH (u) > 0 since t,u € T'\ {0} N H". From 1,(0) = 0,
Yy (te) > AH(u) > 0 and limy_,o0 1y, (t) = —o0, there exists t1 = t1(u) < t. < to(u) =t such
that 1y (1) = X [ h(@)|u|Th do = 1y (t2) with ¢, (t1) > 0,4, (t2) < 0. Therefore, t1u € N;,M
and tou € Ny - Now we show that t1u € N;M and tou € N, 5y are unique. Suppose not,
then there exists ¢35 > 0 such that tsu € NIM and t,, such that to < t,, < t3, zp;(t**) =0 and
Yu(tex) < AH(u). Our Lemma then induces that if ¢, (t.) = 0 then 1y, (tx) > AH ()

which is a contradiction. O

wu (t*) =

We will denote t, as the smallest critical point of 1, in the sequel. As a consequence of
Lemma [5.2.13| and geometry of the energy functional Jy ps on Nehari manifold, we also prove
that 0 is the only inflection point of the map ®,, s i.e. N/(\),M = {0}.

Lemma 5.2.15. If A € (0, \g) then NRM = 0.

Proof. Let u € Nf\{ s then u satisfies

1 2 _ F(u) fuu
allul|* + bllu||® = A\H (u) + /Q/Q (]a: — ywmady) PE dr and (5.2.29)
3al|ul|* + blju|?* = A\gH (u) + B(u). (5.2.30)

Letue HT N NRM, then substituting the value AH (u) from ([5.2.29) into (5.2.30)), we obtain

2/3 — @) (1 — g) ab]lul]® < B(u)
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which implies v € T'\{0} N HT. Again substituting the value of allu|* from (5.2.29) into
(5.2.30)), we obtain
F(u) f(u).u 2
B(u)—B// ( dy) dx +2bllul|* = A(B3—¢q¢) H(u) =0
aJa \|lz —yly|* |z
which contradicts Lemma [5.2.13| If u € H, N Nf\{ o then Case 1 implies that ”1” is the only
critical point of ®,, »s and @Z,M(l) < 0 which is a contradiction to the fact that u € N§7M. O

5.2.5 Existence and multiplicity of weak solution

In this section, we first study the geometric structure of the energy functional J s over Ny ar

and achieves its minimum, with the help of lower and upper bound estimates on #, where

9 = infUEN)\,I\/] \7>\7M(u)‘

Theorem 5.2.16. J) ar is bounded below and coercive on Ny . Moreover 6 > —C)\l%q

where C' depends on ¢, b.

Proof. Let u € Ny s i.e. @;71\/{(1) = 0. Then,

Fano) = all (375755 ) + el (52 ) =M (s gy ) H O

F(u) — 2f(w)u
1//( F(u) dy) -
2 Jo Jo \|z —yltly[* ||

Since 0 < F(u) < ﬁf(u)u and ¢ < 1, (5.2.24) and Sobolev embedding implies that 7 s is

coercive on N) ps that is as ||u|| — oo,

p—2 p p+l—gq q
T (u) > GHUHA‘(M) + b||UHQ<2(p+2)> - /\l<(1+q)(p+2))HUH 1 o0,

Similarly, we have

B b A 1 F(u) F(u)
I (u) = 5”“\\2 - ﬁjﬂu) - 2/9/9 <|$ —ylHyl* dy> || &

Ao [ (5 ) 2 -
1

1

bllull? - A(qﬂ _ 4)H(u).

>

ANy

Then for u € Hy , we get Jy pm(u) > 0 and for u € H, the Sobolev embedding implies

b on AB—q) b 2_A<3q>Z</ (L4a) )”
Faar(w) 2 gllell = G0 ) 2 glul - e ([ 1ol dx

= byllull® — byluf*™!

/

where b3 = % and by = %. So by finding the minimum of function g(z) = bsz? — byt
we can conclude that 7 ps is bounded below on N /. ]
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Lemma 5.2.17. There exists a constant Cy > 0 such that 0 < —Cj.

Proof. Let v € H™, then from the fibering map analysis we know that there exists a t1(u) > 0
such that tyu € Ny, N H* and ¢y ar(t1) = AH(u). Since @, 3/(t1) > 0, from (5.2.26) we
obtain

-3 F(tiu tiu)tiu
L2 itul< (1 —q)b||t1u||2—B(t1u)+q/ (/ “u) . dy> f(t il dz.
m o \a |z —y[*yl |z|
(5.2.31)

Using <I>;L7M(t1) = 0, we get that

= (L) bt _Z d d
i) = 5 (Gl +vitel®) = 5 [ (| —Zo ay) SR e
F(t tiu)t
(attrad? +olsa? = [ ([ 2 gy) Ll 4,
1 a \Ja |z —yl"y| |z|

In that case, by ([6.2.31)) we obtain,

Tt = g+ [ ([ s a) (T e
C1F(tu)  f(tu)(tu)? ) PR /</ f(thu)tiu dy) fhuwta
Q)

2 |zl 4(g+ 1)z 4(g+1) |z — y|#|y|®

—(1—-19q) ull? 4 F(tiu) d+q  (p+2)
< Tarntiod®+ | (L e=ymr @) (ssn w60
(1) fwtiu oL F(t1u) F(tiu) .
4(q + 1)) || g /Q (/Q |z — y[]y| dy) || o

Since 1 + ¢ — 2p < 0 therefore § <inf _y+ -yt Inm(u) < —Ch < 0. ]
M

Using Theorem [5.2.16[and Ekeland variational principle, we know that there exists a sequence
{ug }ren C Ny such that

1
I (ug) <0+ 7
(5.2.32)

1
I (v) = Toom(ug) — EHUk —vll, Yv € Nyum.

Then by (5.2.32) and Lemma [5.2.17] we have for large k,

C
I (ug) < —?0- (5.2.33)

Also since uy, € Ny pr we have

p—2 P p+l—gq
Fuant) =l (=) + Whal? (g 55) = A .27 7

2f (ug)ug

_ 1/ </ F(ug) dy) Flur) = =51 I
2 Jo \Ja |z —y[+|y|* ||
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This together with (5.2.33)) gives

p+1—gq ) Co Co(p+2)(1 +q)
AN ——7——|H < -—=H > >0
Q1+@@+2) () < =5 (i) 2 2A\p+1—¢q)
i.e.
H(uy) > C >0, for large k and u, € Ny NHT. (5.2.34)

The following result shows that minimizers for J) ps in any subset of the decomposition of

Ny, m are critical points of Jy »s and the proof follows from the Lagrange multipliers rule (see

Lemma [5.1.22)).

Lemma 5.2.18. Let u be a local minimizer for Jxar on any subsets of Ny ar such that
u ¢ NQ,M' Then w is a critical point of Jx -

Now, we prove a set of lemmas which are necessary to study the (PS)y condition and compact-
ness of the minimizing sequence {uy}reny and whose proof are totally based on the geometry

of the energy functional [J) ys on the Nehari manifold.

Lemma 5.2.19. Let A > 0 such that A € (0, o). Then for any u € Ny \{0}, there ezists a
e > 0 and a differentiable function & : B(0,¢€) C W(;n’z(ﬂ) — R such that

£(0) =1 and {(w)(u —w) € Ny m
Jor all w € WJ"*(Q). Moreover

_2(2allull® +b) [o V.V w dz — Xq + 1) [o h(x)|ul!  uw de — (S(u), w)

(0, w) = aB— Q) Tl +b(1 —q) [ul? + R(a)
where
B F) \ af) — fwuu f(u)u fp
re= [ () |x—y|~|y|a> we ¢ A Tyl ) e *
and

s = [ (f i ) e [, (L ) e

Proof. For u € N) jr, we define a continuous differentiable function G,, : R x W(" 2(Q) — R
such that

Gt v) = at* 1w — v+ + b~ u — w2 - 1/Q (/Q Fliu—v)) ay) AU G Chul) N

t |z —y[#|y|* [

- )\/ h(z)|u — v]9t da.
Q

Then G,(1,0) = ®/,(1) = 0 and thu(l,O) = ¢!'(1) # 0. Hence by the implicit function

theorem, there exists € > 0 and a differentiable function £ : B(0,e) C W)" 2(Q) — R such
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that £(0) = 1 and Gy({(w),w) = 0 Vw € B(0,€) which is equivalent to (J (§(w)(u —
w)),&(w)(u —w)) = 0 VY w € B(0,e). Thus, {(w)(u — w) € Nyp and differentiating

Gy(&(w),w) = 0 with respect to w, we obtain the required claim. O

Similarly, by following the proof of Lemma [5.1.25| and using Lemma [5.2.19] we have the

following result.

Lemma 5.2.20. Let A > 0 satisfies (5.2.25) then given any u € N/{M\{O}, then there exists
€ > 0 and a differentiable function £~ : B(0,¢€) C Wén’z(ﬂ) — R such that

§7(0) =1 and £ (w)(u —w) € Ny,
and for all w € W(?M(Q)

., ~2(2al|ull® +0) [o V™.V w dz — Xq +1) [q h(z)|u|?  vw de — (S(u), w)
(e 0w = G- T b (T g [ulP + B
where R(u) and S(u) are as in Lemma[5.2.19

Concerning the (PS)g condition, we have the following result.

Proposition 5.2.21. Let A > 0 such that A € (0.\g) and uj, € Ny pr satisfies (5.2.32). Then
HJ)I\M(uk)H* — 0 as k — oo.

Proof. Step 1: liminfy_, . |Jug| > 0.
We know that {uy} satisfies ([5.2.34) for large k, thus H(uy) > C > 0 for large k. So by using
Holder inequality we obtain C' < H(uy) < Oy |lug||7H.

Step 2: We claim that
F(ug) > S (ug)ug,

liminf [(3 — q)aljuk||* +b(1 — ¢ Uk2+9/ (/
int [ = )]+ 01— ) P+ [ ([ Tl T00)

Without loss of generality, we can assume that u, € N ;r s (if not replace uy by ti(ug)u).

dx — B(ug)| > 0.

Arguing by contradiction, suppose that there exists a subsequence of {uy}, still denoted by
{ug}, such that

0< G- aful +b0 -9 ful+a | ([ Fu) )f(“’“)“’“ dz — Bluy) = ox(1).

[z —yltfyle/) zf®

From Step 1 and the above equation we obtain that liminfy_,, B(ug) > 0 and

(3 —q) allug]* + b (1 = q) ur]|* < B(uy)

i.e. up € T\{0} for all large k.
Since uy, € N;M, we get

_2bHukH2+)\(3—q)H(uk)+3/ (/Q F(ur) ) SO 30 Blug) = op(1)

0 @ —yltlyl*) ]
which is a contradiction since I'g > 0. The remaining proof follows similarly as the proof of
Proposition [5.1.26 O
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5.2.5.1 Existence of local minimum of Jy ¢ in Ny as

Theorem 5.2.22. Let 1 < v < 2 and A > 0 satisfies (5.2.25). Then there exists a weak
solution uy € N;M NHT to (Pxm) such that Ty pm(uy) = infuen, a1\ {0} Iam(u) and uy €
Ny N HY is a local minimum for Ty m in Wgn’Z(Q).

Proof. Let {ux} C Ny be a minimizing sequence satisfying Jy pm(ur) — 6 as k — oo
and Ty m(v) > Tam(ug) — £llug — vl, Yo € Ny (as in (5.2.32)). Then by Theorem
we obtain {uy} is a bounded sequence in W" 2(€2). Also there exists a subsequence of {uy}
(denoted by same sequence) and uy such that up — uy weakly in Wy" ’Q(Q), ug — u) strongly
in L"(Q) for r > 1 and ug — uy a.e. in Q as k — oo. Then using f(t) < Ce exp(et?) for
€ > 0 small enough and Theorem Chapter 1 with n = 2m, we obtain that f(uy) and
F(uy) are uniformly bounded in L9(2) for all ¢ > 1. Then by Proposition and Vitali’s

convergence theorem, we obtain

/Q (/Q F(uk) dy) f ) (= un) dr| =+ 0as k — oo.

|z — y|#ly|*

Thus by Proposition we have <k7),\’M(uk)) (ug —uy)) — 0. Then we conclude that
M (|Jug]|*) /Q V"up. V™ (u, — uy) de — 0 as k — . (5.2.35)
On the other hand, using uy, — uy weakly and by boundedness of M (||uy||?) we have
M(||lug ) /Q V™ux.V™(up, — uy) de — 0 as k — oo. (5.2.36)
Substracting from (5.2.35), we get,
M (||ug)®) /Q(Vmuk — V™uy).V™(up, —uy) de — 0 as k — oo.

which gives
M(||uk||2)/ V™ uy, — V™uy|> dz — 0 as k — oo.
Q

Since M(t) > My, we obtain uj, — uy strongly in W*(Q). By Lemma
F F
/ (/ (ur) dy) f(Uk)¢ A _>/ (/ (ux) dy) f(UA)¢ g
o \Ja [z —yly|* Ed o \Ja |z =yl ly|* k4

[ bl s de > [ bl o do
Q Q

and also

for all ¢ € WS"”Z(Q). Therefore, uy satisfies (Py ) in weak sense and hence uy € Ny p.
Moreover, 6 < Ty m(uy) < liminfy_oo I m(ug) = 6. Hence uy is a minimizer for Jy o in

N)\,M.
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5.2.5.1. Existence of local minimum of J a¢ in Ny as

Using (5.2.34), we have [, h(z)|us|7™' > 0. Then there exists a ¢1(uy) > 0 such that
ti(uy)uy € N;M. We now claim that t1(uy) = 1 ie. uy € NIM. Suppose not then
ta(un) = 1 and uy € Ny . Now Ty ar(ti(un)un) < Taam(un) < 60 which yields a contra-
diction, since t;(uy)ux € Ny pr. The proof for uy being a local minimum for J js in Wén’Q(Q)
follows exactly as the proof of Theorem O

Theorem 5.2.23. Let 1 < v < 2 and X > 0 satisfies (5.2.25). Then Jy am achieves its

minimizer on NA’M.

Proof. Let u € Ny ;. Then

e B f(u)u f(w)-u
3allu||® + bf|u||* — AgH (u) /g(/g |z — y|H|y|o dy> || e

AR —Féﬁ)rw ) f/\(;)aug <

This along with (5.2.23)) gives us
F(u u.U
3= aelul+ 1 - vl +a [ ([ L0 ay) Tt

|z — yltlyl ||

gAY % ) f|(u|)u w [ (5 —F;fi)w ) f/|(§|)52 de <l

This implies that N, ,, C I' and then following step 1 of Lemma |5.2.13| we get that 3 ¢ >
0, [Jul| > ¢ > 0 for any u € N, ,, from which it follows that N, ,, is a closed set. Also this

gives infueN;M\{o} B(u) > ¢ > 0. Therefore, for A < \¢ small enough,

inf zxm+ammW-43—@AHmy—;L(l; Flu) <@>fwwdx>Q

wENT , \{0} |z — y|+ |yl

Now let 67 = min - \{0} Ixm(u) > —oo then from Ekeland variational principle, we
A\, M
know that there exist {vg}reny @ minimizing sequence such that

) 1 1 _
Inm(vg) < elj{flf T (w) + 2 and Dm(w) 2 Dom(r) = Lok —ul ¥ u € Ny,
UENN M

From Jy ap(vr) — 67 as k — oo and vy € Ny, it is easy to prove that |lvgx|| < C (as in

Lemma |5.2.8)). Indeed,
F(vk) S (vi)vr
4 2
+ bllog]2 — AH —/</d> d‘:
allog]|” + bl ug | (vk) o o r el z| = o([|uxll)

and

1, b n
= 2D (on),vk) = Lokl = O Juxl|**
implies that |lvg|| < C. Thus we get |S(vg)|l« < Ci and from (5.2.5.1) we have [|&; (0)]« <
C5. Now the rest of the proof follows as in the proof of Theorem [5.2.22] with the help of

Lemma [5.2.201 O

C+o(||lvkl) = Txm(vg)
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Proof of Theorem : The proof follows from Theorem [5.2.22] and Theorem [5.2.23
O

5.3 Adams-Moser-Trudinger inequalities for Cartesian product of

Sobolev space

5.3.1 Main results

In this subsection, we first establish the non-singular version of Moser-Trudinger and Adams-

Moser-Trudinger inequalities in higher dimensional product spaces. Let
Y = Wy () x Wy (Q)

be the Banach space endowed with the norm

1(w, v)ly = (\IUII’” a el )

n n
Wy ™ () Wy ()

where ||u m n = V| da.
g, oy 2= Jo 197

We prove thoe following result:

Theorem 5.3.1. For (u,v) € Y, n,m € N such that n > 2m and Q C R™ is a bounded

domain, we have
/Qexp (@ <|u\ﬁ + |v\ﬁ)) dr < 0o

for any © > 0. Moreover,

sup / exp (@ <’u‘# =+ ‘U‘ﬁ)) dm < oo, pro’l)'l.ded @ S gnﬂn (531)
[ (w,v)lly=1/0 n,m
where 2,y = 27;:277?. Furthermore if © > S then there exists a pair (u,v) € Y with

|(u,v)|ly =1 such that the supremum in (5.3.1) is infinite.

As an consequence of Theorem we prove the following version of Lions’ Lemma [196]
in the product space ).

Theorem 5.3.2. Let (ug,vr) € Y such that ||(uk, vi)|ly =1 for all k and (ug,vi) — (u,v) #

(0,0) weakly in Y. Then for all p < Snm T
2n,m (1 = [[(u, )| ) 7=

sup/exp (p <|uk|ﬁ+|vk|ﬁ))d:c<oo
keN JQ

Next, we prove the singular version of Moser-Trudinger inequality in the Cartesian product

of Sobolov spaces when m = 1.
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5.3.2. Proof of the main results

Theorem 5.3.3. For (u,v) € Y = Wy ™ (Q) x W™ (), n > 2, A € [0,n) and Q C R" is a

smooth bounded domain, we have

dr < 0o

/ exp(B(|ul 7T + [v|7-T))
Q

|

for any B > 0. Moreover,

x dr < oo if and only if — 4+ — <1
2] o, n

e e 2,
sup /eXp(ﬁ(M + [v[*T)) B A
(o) ly=1/0

n—2

where 2, 1= 2,1 = 2n-1,

Similarly we can prove singular and non-singular Moser-Trudinger inequalities in the product
space Z := W1m(Q) x W1(Q) where Q C R" is a bounded domain endowed with the norm

1
n

1,01z 2= (Iellfrn gy + 0 lfyngey )
where ||u||%17n(m = /Q(|u]” + |Vu|™) dz. Precisely we establish the following result.

Theorem 5.3.4. For (u,v) € Z,n>2, A€ [0,n) and Q C R" be a smooth bounded domain,

we have

dr < oo

/ exp(B([ulT + [v]5-T))
Q

|z A

for any B > 0. Moreover,

sup 2—3 + i <1
Il (w,v)[|z=1 ap, N

dr < oo if and only if

/ exp(B(|ul 7T + |v]7T))
Q

A

5.3.2 Proof of the main results

Lemma 5.3.1. If a,b > 0 such that a +b =1 then a® 4+ b* < 2'=% for all 0 < a < 1.

Proof. Let r: (0,1] x (0,1] — R such that r(a,b) = a® + b* and a + b = 1 then

77(a) = T(a, 1-— a) =a® + (1 o a)a

and p
%F(a) —a(@® -1 -a)*1H=0
gives @ = 3, which is the point of maximum (since % (%f) (a)|,_1 < 0). Therefore the
2
maximum value of 7 in (0,1] is 2172. O
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Proof of Theorem [5.3.1k
We denote || - || := || - H ) Without loss of generality, let (u,v) € Y\ {(0,0)} be such

that ||(u,v)||y = 1. If elther u =0 or v = 0, the result follows from Theorem [2.2.2] Chapter
1.

We set a = - a = |u||= and b= ||v|]|= then Lemma [5.3.1] gives us that
[ |
2n,m 2n,m

n—2m

where 2,, ,, = 2 "

Case 1: Let ”uH - =4 ”U”n i < 1.

TLTVL

Then there ex1sts 1 < ¢:= ¢(u,v) < oo such that

[ ] e Y

2n,m 2n,m c

Using the generalized Holder’s inequality and © < % we obtain

/Q exp(©(|ul 77 + [v] 7))

[lw][ ™= [lv]| =™

el ) ()

-_n__ —-_n__
n—m
Case 2: “"2”nm + lo

Cn,m

Applying the Holder’s inequality and © < 3™ we obtain

/ exp(O(|u| 7 + [v]757))
Q

n n
lul| P—™ o] n—m

)) o (5.3.3)

< feomomnn (7)) 7 (femenn (1)

_n_ _n_
[[ulf 2= [lv] =™

(o (7)o (1))

Now by combining ((5.3.2), (5.3.3) and taking supremum over ||(u,v)||y = 1, we obtain the
desired inequality (5.3.1). For the remaining part of the proof, we assume that 0 €  and
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5.3.2. Proof of the main results

seek use of the Adams function to construct a sequence of test functions. Let us denote
B(0,1) 3 B; as a ball with center 0 and radius [ in R" then without loss of generality, we can
assume that B(0,1) C Q for € (0,1). We recall the following result (see [182]): For I € (0,1),
there exists

Uye{ueW, ™(Q):ulg =1}

such that -
[U1F = G (B By) < [ 2o
nlog <7>
where C,, » (K, E) is the conductor capacity of K in E whenever E is an open set and K is
relatively compact subset of £ and C,, » (K; E) def inf{||ul|7 : v € C°(E), u|x = 1}. Let us
set 0 >0and [ = %, for k € N. Also we define
nlog(k) = <x> .
_— Ui |—) if |z] < oy
A(a) = < Corn o)
0 if |z| > o.

Then we have Ay (z)|

B

= (né:igﬁ))T and [|Ag|| < 1, Now we consider

g
k
Z = crwg  and Vi = cowg

where wy(x) = Hi:H and c1,co € RT verifies

n n n n

cf + CQE =land ¢/ ™™ +¢c3 " =2,

which implies that supp(wy) C B,(0) and ||wg|| = 1 for all k. The existence of ¢1,c2 can be
proved using Lemma Thus we obtain

m
n

123 Velly = (1200 + 1VeI5) ™ = (ef ol + o e # )

I3

So if © > gZZ’ then for some € > 0, © = (1 + e)g:—: which gives that

[ exp (U™ + W=7 = [ exp ((1 SB[y 55 (e +c;-m>>>
% n,m
= / M0+ > Ok — 0o as k — oo.
B

k

This completes the proof. O
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Proof of Theorem : Using Brezis-Lieb lemma, it is easy to see that

li - )T =1— w
Jim (= ), (0 = )3 I, 0) 13

and

gl 7 <l = ul 7+ Juf )+ O — ul 7 ] + 7 g, = ul)

where ¢ % ¢ (n,m) > 0. Now for any € > 0, from Young’s inequality we have that

n

(ca)i + — <b>n_m

n €

ab <

s|3

This gives us
g, | 7o < ((1 + Crem + Cremm)|uy, — u|mm + (1 + Crem + cleﬁ)m\ﬁ)
= O eup — u[m + O] Jul7™m (say).
Similarly we also have
[orl =7 < Crelor, = v| ™= + Cf Jo] 7.

Therefore by using Holder inequality and above estimates we obtain,

1

/Qexp (P(’wc!# + \vk\ﬁ)) dx < (/ﬂ exp (pCLEm (|u/1~C — uy# + |vg — v[ﬁ)) da;)”
1
. </Q exp (PCLJQ (|u|# + Mﬁ)) dl‘) s

< Cnmouvyro) ([ exp (pCrar (s = ).~ 0) )77
Q

<<H(Uk |Zl)izv: U)Hy>n_m - (”(Uk |Z’;’zv:’ v)||y>n_m>> da:) E

where 71 and r9 are Holder conjugate to each other and C(n, m,u, v, r2) is a positive constant

independent of k. Now since C1 — 1 as € — 0, by choosing € > 0 small enough and r; > 1
very close to 1 such that

m Cn,m

priCue(l = [[(w,v)[I5) = <

2n,m
we get the desired result, by using Theorem [5.3.1 O

To prove the following Singular Moser-Trudinger inequality in cartesian product of Sobolev

space taking m = 1 and using the idea of Theorem 2.1 in |7].

Proof of Theorem [5.3.3k

We denote || - || := || - ”Wl,n(Q) in this proof. Let (u,v) € Y be such that [|(u,v)||y = 1,
0
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5.3.2. Proof of the main results

A € (0,n) and 5 > 0. Then following two cases arise:
Case 1: Let % + % < 1 then we choose ¢ > 1 such that
B2 M _

o, n

1.

Now by using Cauchy-Schwarz inequality and Theorem [5.3.1} we obtain

At

_n_ _n_ 520 At
exp(ﬁ(‘u|n—1 + ’v|n—1)) (/ (an _n_ _n_ ))an / 1 n
< — n—1 n—1 . _ <C
/Q |=[* - QeXp 2, Ou' o ) Q x|t =

where C' is a constant independent of u, v.

Case 2: Let % + % = 1. Then from standard symmetrization and density arguments we
can reduce to the case ) being a ball B(0, R) with centre origin and radius R and u, v being

positive smooth and radial functions. Therefore

R
/ (|IVul™ + |Vo|")dz = wp—1 / (' (r))™ + (v’(r))”)r”fldr (5.3.4)
B(O,R) 0

and

exp (222 (ju|7T + |v|7T R n n
/ P ( 2 (Ju i )) dr = / exp (wénﬂu]"l + \v]nl)> Ly
B(0,R) 0

|x|(1—s)n 2n
where s = % so that A = (1 — s)n. Now we set
n—1 n—1

a(r) = sTu(r%) and 0(r) = STU(T’%) for r € [0, R®].

Therefore

R R®
| @+ @enetar= [T @y + @ eyt
0 0

R Re
n n 1 " n
/ exp (SO&n (|u|4"*1 + ‘U|"*1 )> TSH—ldr — / exp (an(|a’n1 + w‘f,l )) T"_ldr.
0 2” s Jo 2n
(5.3.5)
Now by combining (5.3.4))-(5.3.5) and taking supremum, we obtain

/ exp (g2 (jul 7T + o] 7))
B(0,R)

sup T

[[(u,0)[ly=1

Rs(n—l) R? n n
< swp / exp (0‘"(|a|n1+w|n1)> dr < o
lao)ly=1 5 Jo 2n

‘x|(1—s)n

which is the desired inequality. For the remaining part of the proof, we assume 0 €  and

define

(logh) "=, 0 < Jo| < 7.

g
ES
8
S~—
Il
[=] =
5}
o
—
Sk
~—
EN e
IN
8
IN
>
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such that supp(wk) C B »(0) and ||wg|| = 1 for all k. Let ¢1,co € RT such that ¢f +c§ =1
and c Yl P = o i (The existence of ¢1,ca2 can be proved by taking the maximum of
function mentioned in Lemma |5.3.1)).

Also we define

Uk = C1Wg and Vk = CQWy

such that

S
Sl
S
—

10k, Velly = (NN + [Vill™) ™ = (e llwnll™ + e lwl*)™ = [lwkl[(e] + ¢3)
Now let 8 > (1—%) 5%, then for some € >0, 8 = (1+¢) (1—%)‘;—2 and

71/

4y 1))

o (BOUT + Vi) L exp ((1+0) (1= 3) g lund 77 (]
Q ~JB

A A

=

> / A+ (1=3) 42 > k=2 o6 as k — oo,
Bp

O
Proof of Theorem The proof can be done by following the same steps as in Theorems
(.31 and £33 O

5.4 Kirchhoff systems with Choquard non-linearity

In this section, we study the following system of n-Kirchhoff Choquard equations with expo-

nential non-linearity

(y, u,v) _
(H(u v ” = (/ !Jf—y!“ y> f1(33,U,U), u>0 in Q,
(KCS) _ ( F(y,u,v) > _
(H(u v H !Jf—y!“ dy fQ(JI,U,U), v>0 in Q,
v=0 on 0},

where (2 is a smooth bounded domain in R, 0 < g < n. Let m : Rt — RT be a continuous

function satisfying the following conditions:

(ml) M(t+s) > M(t)+ M(s) for all ¢t,s > 0 where M (t) is the primitive of the function m.
(m2) There exist constants co, c1,co > 0 and £ > 0 such that for some r,z € RT

m(t) > cop or m(t) >t*, forallt>0

and
m(t) < ep + cat”, for all t > 1.

m(t)

(m3) The map t — is non-increasing for ¢ > 0.
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5.4. Kirchhoff systems with Choquard non-linearity

We remark that the assumption (m2) covers both degenerate as well as non-degenerate case
of the Kirchhoff term.

Example 1: An example of a function m satisfying (m1) — (m3) is m(t) = do + dqt? for
6 < 1and dy,d; > 0.

Let the function F : © x R? — R be continuously differentiable with respect to second and
third variable and of the form F(z,t,s) = h(z,t,s) exp(\t\ﬁ + |s|ﬁ) such that

oF _n_ _n_
fl(.T,t, 3) = E(xatas) = hl(xvtvs) exp(]t|n*1 + ’3‘7171)7

Fo(a,tys) 1= S (@t ) = oo, b, 5) exp((t]77 + [s| 7).

We assume h;’s for ¢ = 1,2 are continuous functions satisfying the following conditions-

(f1) hi(x,t,s) = 0 when either t <0 or s <0 and h;(x,t,s) > 0 when ¢t,s > 0, for all z € Q
and ¢ =1, 2.
(f2) For any e >0 and i = 1,2

lim sup h;(z,t,s) exp(fe(\t\ﬁ + |s|ﬁ)) =0,

t,s—00 el

lim inf hi(z,t, s) exp(e(t|7T + |s|71)) = 0.

t,5—00 zeQ

(f3) There exists

5 when m is non-degenerate,

n(z+1) n(r+1)
2 ’ 2

max {n -1, M}

>

max {n -1, } when m is degenerate.

fi(z,t,s) fa(z,t,s)
e 5T T

s and z) and s (uniformly in ¢ and z) respectively.
(f4) There exist q, so,tg, Mo > 0 such that s9F(xz,t,s) < Myfa(x,t,s) for all s > sy and
t1F (x,t,s) < Mofi(x,t,s) for all t > ty uniformly in = € Q.

(f5) There exists a 7 satisfying 252 < v such that « S)11_13(10 0 % = 0 holds for ¢ =1, 2.

Let P := Wy (Q) x W, () endowed with the graph norm

such that the maps ¢t — are increasing functions of ¢ (uniformly in

3=

sl = (g + ol oy

where HUH;LV,L(Q) = [o |Vu|"dz. The study of the elliptic system (KCS) is motivated by

Theorems and Following is the notion of weak solution for (KC'S).
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Definition 5.4.1. A function (u,v) € P is said to be weak solution of (KCS) if for all
(p,9) € P, it satisfies

(ol ([ 19um29uTodo + [ 1Vor2vivsds)
- /Q (/Q WC@) (fi(z,u,v) + fa(m,u,v)¢)dx.

|z —y|#

We define the energy functional J on P as

J(u,v) = %M(Hu,v””) — ;/Q (/Q Wdy) F(z,u,v)dz. (5.4.1)

|z — y|~

Using assumption (f1) — (f3), we get that for any e > 0,p > 1 and 1 < k <[+ 1 there exist
constant C7, Co such that for any (x,t,s) €  x R?

|[F(a,t,5)] < Calls]* + 1)) + Ca(|s” + |t[P) exp((1 + €)(|s| 7T + [¢]7°1)). (5.4.2)

Then by using Sobolev embedding and Hardy-Littlewood Sobolev inequality, we obtain F'(u,v) €
L1(Q x Q) for any ¢ > 1 and the energy functional J is well defined in P.

5.4.1 Main result
Theorem 5.4.1. Let m satisfies (ml) — (m3) and f satisfies (f1) — (f5) and

(f1(z,t,s)t + fa(x,t,s)s)F(x,t,s)

im = - = oo uniformly in x € Q.
e explal(tl T + 7))

for some q > 2. Then there exists a positive weak solution of the problem (KCS).

5.4.2 Mountain Pass geometry and Analysis of Palais-Smale sequence

In this section we show that the energy functional J satisfies the mountain pass geometry
and derive the integral estimates of Choquard term by exploiting the weak convergence of

Palais-Smale squence in appropriate spaces.

Lemma 5.4.1. Assume m and f satisfies (m2) and (f1) — (f3) respectively then

(i) There exists p > 0 such that J(u,v) > o when ||(u,v)| = p, for some o > 0.
(ii) There exists a (4,0) € P such that J(u,0) <0 and ||(,0)| > p.

Proof. Let (u,v) € P such that |(u,v)| = p (to be determined later). Then from (5.4.2)),
Proposition Sobolev embedding, Holder inequality, we have for any € > 0, p > 1 and
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5.4.2. Mountain Pass geometry and Analysis of Palais-Smale sequence

1<k <l+1 we have

2n
2n—

F(yauav) > 2
—> " dy | F(x,u,v)dr < C(n, F(z,u,v
/Q( S reeyall] ( ) (n, ) [|E'( i
2n

<Jon ([l + o)™
Q
2n—p

w0 ([ (a4 1075 exp (L2 quf 4l 20) )|

= ()

< [Ouuwmﬂ

N R P [ el A e kA N A HA s
+ G (0 (/Q p< ol <H<u,v>un”1 ))H .

If we choose € > 0 and p such that % < ‘2“—:, then by using Theorem [5.3.1|in above
we obtain,
F(y,u,v
[ ([ ay) e wods < Collu P+ Grllwa)l. (543)
a\Ja |z —yl

Niw by using (5.4.3) and (m2) (for non-degenerate Kirchhoff term), we get
u,v)||"™
7)) — G, )2

So choosing k > n/2, p > n/2 and p small enough such that J(u,v) > o when ||(u,v)|| = p

for some o > 0 depending on p. Similarly for degenerate Kirchhoff term we get,

I Cut, w) [

J(u,v) > — G (u, v)[I* — Cal (u, v) |

and we can choose 2k > n(z + 1), 2p > n(z + 1) and p small enough such that |[(u,v)|| = p
and J(u,v) > ¢ for some & depending upon p.

Furthermore, again by using (m2), there exist constant ¢;, i = 1,2, 3 such that

c n(r n
@+l ol + e, r# L
M(fl(w0)") < 4 (5.4.4)
er (|, o)) + e (u 0)|I" + 3 r=1,

for ||(u,v)|| > £ where

~ ~ C1 ~
M (%) — cof — fr+i 1

M (t) — cat — c1 In(?) r=1.

C3 =

Let (ug,vp) € P such that ug > 0,v9 > 0 and |[(ug,v)|| = 1. Then by using (f3), there exists
p;>0,9=1,2,3 and K > w such that F(z,t,s) > p1[t|X + pa|s|® — p3 and

/ </ F(y,&uo,&m)dy) F(x, Eug, Evg)dx > Cs& — Ceel + 4. (5.4.5)
Q Q

|z —y|#
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Finally by combining (5.4.4) and (5.4.5), we obtain J(§ug,&vg) — —o0 as & — oo. Hence
there exists (@, 0) € P such that J(@,0) < 0 and ||(@,0)] > p. O

Define the Mountain Pass critical level as

I* = 1n1t: max J(y(t)) where I' = {y € C([0,1],P) : v(0) =0, J(~(1)) < 0}
~veT t€[0,1]

and then by using Ekeland principle and deformation lemma (Theorem [2.4.1)), we have the

existence of minimizing Palais-Smale sequence (uy,v,) € P such that
I (U vp) = U5, T (up, vy) — 0.

To analyze accurately the compactness of Palais Smale sequences for J, we show a series of

Lemmas, starting with every Palais-Smale sequence is bounded in energy space.

Lemma 5.4.2. FEvery Palais-Smale sequence is bounded in P.

Proof. Let (ug,vy) be a Palais-Smale sequence such that J(ug,vg) — ¢ and J'(ug, vg) — 0 as

k — oo for some ¢ € R. Therefore we have:

Ml 1 [ ([ P00 ) iy ] e a0
and

’m(”(uk,vk)ﬂn) < / Vur" "2V Vdz + /Q |Vvk”—2wkwdw> i

/( Féi“;ﬂk >(fl(:z,uk,vk)¢—l—fg(x,uk,vk)w)dar < exll(¢, )]l o

Now by using (f3) and (m3), there exists n > 5,60 > 2n such that
nF(x,t,s) <tfi(x,t,s) and nF(x,t,8) < sfa(x,t,s) for all (z,t,s) € Q x R?

and

1 1
—M(t) — Em(t)t in nonnegative and nondecreasing for ¢ > 0.
n

296



5.4.2. Mountain Pass geometry and Analysis of Palais-Smale sequence

Then by taking ¢ = uy and ¢ = vy in (5.4.7) along with (m2) (for both degenerate and

non-degenerate Kirchhoff terms) and above inequalities, we obtain

(" (uk, i), (Ui, vr)) M Cug, 00) ") (][ (s or)[™)

J (uk, i) = I = - - p (e, vi) |
1 F(y,ug, v
b () (s v+ o o — 207 o, )
an Jo \Ja |z —yl*
M (|| Cur, o)) m(]] (ug, vr) 1) n
> - 1 [ (we, vr) |
n n
> (55— 3 ) mlll e )l s )"
=\ 2~ ) Uk o Uk, U,
11 .
o (57 = 30 ) Nww ol
> or
1 1 n+z
(35— 37 ) o1
(5.4.8)
Also, from (5.4.6) and (5.4.7)), we get for some constant C' > 0
<J’(Uk,Uk), (ukavk‘)) < ||(Uk,’[)k)||)
— < 1 —_ . 4.
J (g, vg) 1 sC{ltae——p (5.4.9)
Therefore, by combining (5.4.8)) and (5.4.9), we obtain {(ug,vg)} is bounded in P. O

Lemma 5.4.3. Let {(ug,vi)} be a Palais-Smale sequence then up to a subsequence

\Vuk|"_2Vuk — ‘Vu|n_2Vu

. 1n
Vo |" Vo, = [Vo[* 2V } weakly in Wo™ ().

Proof. From Lemma we know that every Palais-Smale sequence is bounded in P. So
there exist u,v € Wol "™(€) such that up to a subsequence

up, — u, vp — v weakly in Wy (Q).
up — u, v, — v strongly in LY(Q2) Vg > 1 and a.e. in Q.

Since |ug|"+|Vug|™ and |vg|™ +|Vvg|™ is bounded in L!(f2), so there exist two radon measures

11, p2 and two functions uq,v; € (L#(Q))” such that upto a subsequence
lug|™ + [Vug|™ — p1 and |vg|™ 4+ |Vog|™ — pg in the sense of measure and

(V"2 Vug — uy, |Vog|" 2V, — vy weakly in (L7 (€2))" as k — oo.

We set 01,02 > 0 such that 23fu(01 + 0'2)ﬁ <% and X,, = {z € Q: pi(Br(z)NQ)) >

oi), forall = > 0} for ¢ = 1,2. Then X,, must be finite sets. Now, by using the same

arguments as in Lemma [5.1.12] it is sufficient to prove the following:
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Claim: For any open and relatively compact subset K of Q\ (X,, U X,,)

lim . (/Q Mc[y) fi(x, ug, vg)up — lim . (/Q F(y,u,v)dy> fi(z,u,v)u

k—o0 |z — y|# k—o00 |z — y|#
(5.4.10)
and
F F
lim (/ wmdy) fo(x, ug, vg)vp — lim (/ (y,u,v)dy> fa(z,u,v)v.
k=oo Jg \Ja |z —yl* k=oo Jig \Jao |z —y#

(5.4.11)
Let 29 € K and r; > 0 be such that p;(B;,(z0) N Q) < o; and consider 1; € C°°() satisfying
0<y;<lforzef, ¥, =1in B%i(xo) NQand ¢; =0 in Q\ By, () for i = 1,2. Then

lim lug|"+|Vug|"dx < lim (Jug| +|Vug|")rdz = p1(Br, (0)NQ) < o1
k—o0 Bﬂ (xo)ﬂQ k—o0 Brl (xO)mQ

2
and
lim |vg|"+| Vo |"dr < lim (o "+ |V |" ) podr = po(Byy (20)NQ) < o2.
k—o0 Bry (20)NQ k=00 JB,, (z0)n2

Then by choosing k € N large enough and ry := min{ry,ro} we get

[Curs )2 (B, (2o)ne) = / (lugl™ + Vg™ + |op]" + [Vvg|*) < (01 + 02). (5.4.12)
2 Bm(xo)ﬂg
2

Now by using (5.4.12)), Theorem with A = 0 and choosing € > 0 small enough and ¢ > 1

such that Zirfu(l +e€)(o1 + 02)ﬁ < G we get the following estimates for i = 1,2

2ngq
/ | fi(, wp, vg )| 2r—r da
Bm (Io)ﬂQ
2

2nq 2n n_ _n_
= [ e )l exp (2l 7)) o
Brg (z0)NQ n—H
2
2 1 _n_ _n__
< 06/ exp (W(|uk|n1 + ’ka’nl)) dx
Bm (CC())QQ 2n — 2
2
9 et et ~
< C. XP 15 = (1+e€)(or + (72)ﬁ i EUM dr < C
n — n—
Brg (20)2 H ||(Ukavk)||z(]13%0(xo)mn)
(5.4.13)
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5.4.2. Mountain Pass geometry and Analysis of Palais-Smale sequence

for some constant C. > 0. First we prove (5.4.10)), a similar proof provides (5.4.11]). Consider

/Br (/Q Mdg) Fu(@, ux, ve)uy, = ( Wdl/) fi(z,u,v)u

0 |z — y[~ Q lz—yl»
2

< /BT - (/ F(y’u’v)dy> (f1(z, up, vi)ug — f1(z, u,v)u)

o o |z —yl*
2

F(y,ug,vp) — Fy,u,v
+/ </ (v, e, o) y )dy> J1(z, ug, vi)uy,
Bm(aﬁo)ﬁﬂ Q
2

|z —y|#
=1 + I (say).

dz

(zo)NQ2

dx

dzx

From (j5.4.2)), (5.4.13), Holder’s inequality and asymptotic growth of f; we obtain that families
{f1(z, ug, vg)ug} and { fo(z, ug, vi)vk } are equi-integrable over Bro (r9)NQ and p € (0,n) gives

/ Fly,w0) 4 e 1220, (5.4.14)
o lz—yl»

Then ([5.4.14)) and Vitali’s convergence theorem combined with pointwise convergence of
fi(z, ug, vg)ug — f1(z,u,v)u implies I; — 0. Now we show that I — 0 as k — oco. Then by

using semigroup property of the Riesz potential (see [205]) and (5.4.13|) we get that for some
constant C' > 0 independent of k

/(/ Pt ) = F(y’u’v)d?J) X By i (@) f1 (2, ug, v Jupde
o 7

|z —y|#

(/ (/ F (Y, e, vk) F(y,u,v)|dy> |F (2, ug, vg) — I*ﬁ(as,u,v)]das)é

|z —y|#

g </ (/ XBTO mQ(Z/)fl(y’WWCdy) XB%omﬁ(x)fl(fU, Uk, Uk)Uk-dx) :

|z — y|~

(/ (/ [F (Y, ey ) F(y,u,v)dy) |F (2, ug, vg) — F(z,u, v)|da;>é

|z —y|~

Now we claim that

F( —F
lim (/ | F (Y, e, vk) . u’v)|dy> |F(z, ug, vg) — F(x,u,v)|dx = 0. (5.4.15)
k—>00 |z — y|#

From ([5.4.6)) and , (5.4.7) we get that there exists a constant C1,Cy > 0 (independent of k)

such that
F
/ ( / (y’“’“’”‘“)dy) P, ug, vp)de < C,
a\Ja |z—yl*

/ (/ F(y’uk’vk)dy> (fr(m, up, vi)ug + fo(x, ug, vg)vg)de < Co.
o \Ja

|z — y|~

(5.4.16)
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We argue as along equation (3.19) in Lemma |5.1.12) Consider
F( —F
/ (/ ‘ yvuk)vk (y7uvv)dy> |F(Z‘,Uk,’l)k)—F(Jl‘,’U,,U)|d$§

|z —y|#
(et = F Wy ) (e, (o) ~ Pl o)ao)lds

(F(y, uk, ve)xa(y) + Fy,u,v)xs(y) + F(y,u,v)xp(y))
- 2/9 </Q |z —y|»
(F'(y, ug, vi)xa(y) + F(y, u,v)x5(Y))
—1—2/Q (/Q P dy) F(z,u,v)xp(x)dx

+/ﬂ (/Q F(y,uk,vk)XC(y)dy> F(z, ug, ve)xo(z)dz

|z —y|~

F M M
+/ (/ (y, u U)XD(y)dy> F(x,u,v)xp(x)dx == I3+ Iy + Is + Is + Ir.
o \Ja |z — y|#

dy) F(x,uk,vi)xc(z)dx

where for a fixed M > 0
A={z € Q:|u| <M and |vg| < M}, B={zxe€Q:|ul <M and |v|] < M},
C={zeQ:|ug|>Mor |vg| >M} and D={zx € Q:|ul > M or |v| > M}.

Now using , (f4), semigroup property of the Riesz Potential we obtain I; = o(M) for

j=4,...,7, when M is large enough and from Lebesgue dominated convergence theorem
we obtain I3 — 0 as & — oo. Hence (5.4.15|) holds and Is — 0 as £ — oco. Now to conclude
(5.4.10) and (5.4.11]), we repeat this procedure over a finite covering of balls using the fact

that K is compact. Now the remaining proof can be done by using the same arguments as in

Lemma [5.1.121 O

Lemma 5.4.4. Let {(ug,vg)} be a Palais-Smale sequence for the energy functional J. Then

there exists (u,v) € P such that upto a subsequence

[ ([ Fre i) g e vigoe [ ([ P05 0) 10,0010
for all p € C*(Q) and i = 1,2 and

quk,vk ) (/ F(x,u,v) ) S
F(x,ug,vp) — ————=dy | F(xz,u,v)dx in L ().
() Famw) = ([ 250 ) Feuw D

The proof of the above Lemma follows from similar arguments as in Lemma [5.1.13|and Lemma

L.IT4

Now we define the associated Nehari Manifold as

N = {(u,v) € Wy Q) \{0}) : (J'(u, ), (u,v)) = 0}

and we show that the mountain pass critical lies below every local minimum value of the
energy functional at the point of local minimum and to prove the existence of non-trivial

solution, we prove the essential upper bound on the critical level depending upon «,,,n, u.
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5.4.2. Mountain Pass geometry and Analysis of Palais-Smale sequence

Lemma 5.4.5. Let I** = inf,en J(u). Assume (m3), (f3) and for some q > 2

lim (fl(J:?ta S)t + f2(3§',t, S)S)F(Lf,t, 8)
t,s—00 exp(q(|t|m + ’S‘ﬁ))

_ n—1
< and0<l*<1M<<<2n “) a”) )
n 2n 2

Proof. Let (u,v) € N and h : (0,00) — R such that h(t) = J((tu,tv)). Then

= oo uniformly in x € Q (5.4.17)

holds then

B(#) = m(]| (tu, £0) )| (e, 0) [ — /(/ Fy’t“yﬁ” )(fl(x,tu,tv)u—l-fQ(:c,tu,tv)v)da:.

Since (u,v) € N, we get

h/(t) — h/(t) - t2”_1(J'(u, U), (u’v)> — t2n—1 (m(|(tu,tv)\|") . ’I’)’L(H(U, U)Hn)) H(uav)‘|2n

| (u, )™ s )™

+t2”_1{/9( F(y’“’”)dy> (fi(z,u,v)u+ fa(z,u,v)v)de

o lz—yl»

—/ﬂ </Q F(y,tu,tv)dy) (f1(z, tu, tv)tu + fa(z, tu, tv)tv) d:v].

2|z —yl

Now (f3) implies, for any (x,s) € Q x RT, the map r — rfi(z,r,s) —nF(x,r,s) and for any

(z,7) € Q x RT, the map s+ sfo(x,7,8) — nF(x,r,s) is increasing on RT. Using this we get

rfi(z,r,8) — nF(z,r,s) > 0 and sfa(z,r,s) — nF(z,r,s) > 0 for all (z,7,s) € Q x R? which

implies

F(z,tu,tv)
tn

Then for 0 < ¢t < 1, z € Q and by using (m3) and (f3), we obtain

iy o e () w0
) 2 e ool o) )l o

e[ (LR (R - 2o v
- (Beon _ plamie) o))

un (tv)m

t— is non-decreasing for ¢ > 0.

This gives that h'(t) > 0 for 0 < ¢t < 1 and h'(t) < 0 for t > 1. Hence J(u,v) =
max;>o J (tu, tv). Now we define ¢g : [0,1] — P as g(t) = (tou,tov)t where top > 1 is such
that J((tou,tov)) < 0. So, g € I which gives

< < =
I tgl[gwlc]J(g( )) < max J(tu, tv) = J(u, v).

Since u € N is arbitrary, we get {* < I**. For w,v # 0, J(tu,tv) - —o0 as t — oo (from
Lemma D and by definition I* < max¢[g 1) J(tu, tv) for (u,v) € (VVO”L(Q)\{O})2 satisfying
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J(u,v) < 0. So, it is enough to prove that there exists a (wy,ws) € P such that ||(w1, ws2)|| =1

max J(twy, tws) < M <(<2n — M) 0‘n>n_1> ) (5.4.18)

t€[0,00) 2n 2,

and

To prove this, we consider the sequence of functions {(Uj,Vj)} as defined in the proof of
Theorem such that supp(Uy), supp(Vi) C B,(0) and |[(Ug, Vi)|| = 1 for all k. So we
claim that there exists a k£ € N such that is satisfied for wy = Uy and wy = V.

We proceed by contradiction, suppose this is not true then for all £ € N there exists a ¢, > 0
such that does not holds i.e.

1 2n — p\ an\" !

Since J((tUy, tVj) — —o0 as t — oo uniformly in k therefore {t;} must be a bounded sequence
in R. Then from (5.4.1)), [|Ug, Vk|| = 1 and monotonicity of M, we obtain

2n — p\ ap P
— <t 5.4.19
( 2n >2n -k ( )

Since & (J((tUg, tVi))|¢=¢, = 0 and pr/k ‘pr/k % > Cun (%)%_“ then by using (5.4.17)),
for k € N large enough we obtain

/( Fy,tkUk,thk)

—yl#

m(ty) y> (f1(z, t,Ups, tp Vi)t Uy + fo(x, tiUs, t Vi) ti Vi) da

Uk, V)
2/ </ T “k k)dy> (f1(z, Uk, te Vi ) tiUr + fo(x, Uk, 6 Vi) 11 Vi ) d.
p/k Bk ’:U - y|

o gt ' (log k) dxdy
> €xXp q(cl ' +CQ 1) k= - 1 / / |IE* |;U'
Bo/k Yy

Hence by using the fact that (¢; " +¢5~ ') = 2,, ty is bounded, ¢ > 2 and ([5.4.19)), we arrive
at a contradiction by taking k large enough. O

Proof of Theorem Let {(ug,vg)} denotes a Palais Smale sequence at the mountain
pass critical level [*. Then by Lemma there exists a ug, vo € Wol "(2) such that up to a
subsequence ug — ug, vy — vo weakly in VVO1 ™(Q) as k — oo. We prove our main result in

several steps.

Step 1: Positivity of wug, vg.
If ug = vo = 0 (or either one of them) then using Lemma we infer that
F
/ (/ (y’uk’vk)dy) F(x,ug,vgp)dx — 0as k — o0
o \Ja

|z — y|#
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and which further gives that limy_o J (ug, vi) = £ limy_ye0 M (|| (uk, ve)||™) = I*. Now in the
light of Lemma and monotonicity of M, we obtain

2n
, n— 1 < _
5 ||(uk vg) || =T 2n

for large enough k. Now, this implies that supy, [q, fi(z, ug, vg)?da < 400 for some ¢ > 232#’
i =1,2. Along with (5.4.2)), Theorem the Hardy-Littlewood-Sobolev inequality and the

Vitali’s convergence theorem, we also obtain

F
/ (/ (y’uk’vk)dy> (f1(z, ug, vi)ug + fo(x, ug, vp)vg)de — 0 as k — oo.
ala |z—y/*

Hence limy o0 (J'((uk, vk)), (ug, vk)) = 0 gives limy 0o m(|(ug, vi) ™) (uk, vi)[[* = 0. Now
from (m2), we obtain limy o ||(ug, vx)||™ = 0. Thus using Lemma it must be that
limy o0 J(ug,vg) = 0 = I* which contradicts I* > 0. Thus ug,v9 Z 0 and there exists a
constant T > 0 such that up to a subsequence |ug||™ + [|vk||* — T™ as k — oo. Then from
Lemma [5.4.3] and Lemma [5.4.4] we get as k — oo,

/ </ Fy’u];quk ) (s v) + fala i o))
/( F|i/,_u2;‘zo >(fl(x7u0aUO)80+f2(l’,’LL0,’UO)1]Z))d;L'

and

m(Y") / ([Vuo|"2VugVe + |Vuo|" Vg Vipda
Q

:/ (/ F(y,uo,vo)dy> (f1(x,ug,v0)p + falx,ug, vo)1p)dz, for all 1) € W(}”(Q)
o \Ja

|z —y|*
(5.4.20)
In particular, taking ¢ = uy and ¢ = 0 (similarly ¢ = 0 and ¢ = vy) in (5.4.20) we get
m(Y")||ug || = 0 (similarly m(Y")|lvy || = 0) and together with assumption (m2) implies

uy =0 (v, =0)a.e. in Q. Therefore ug,vp > 0 a.e. in €.
From Theorem [5.3.1] and Holder inequality we get,

( F Z/aUO7’U0

Tz —ylr ) (fi(z,uo,v0) + faw, ug,vo))dx € LI(Q2)

for 1 < ¢ < co. By elliptic regularity results and strong maximum principle, we finally get
that ug,vo > 0 in Q.

F(y,ug,v
step 2:m(luo, ") (un,o0)" = [ ([ FE00dy ) (oo, vt ot o)) o
Q Q -
Suppose by contradiction

m (o, vol|™) (o, vo) | < /Q ( /Q Wdy) (1 (2 0, v0) 0 + fa(e, w0, vo)vo)de

|z —y|#
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which implies that (J'(ug,vo), (uo,v)) < 0. For ¢t > 0 small enough, using (f3) and (f5) we
have that

(J (tuO,t’Uo ’LLQ,’U(])> > mot” 1||’LL0,’U(]””

(/ f1(y, tug, tvo)tug + fo(x, tuo,vo)tvo
|z — y|~

) (f1(z, tug, tvo)ug + fa(, uo, vo)vo) dx

2+l / (/ ((ug + vg)uo + (ug + vg)vo)
Q Q

> mot" " ||uo, vo||" — 5 ==yl

dy) ((ug + vg)uo + (ud + vg)vo) dx
> 0.

Thus there exists a ¢, € (0,1) such that (J'(t.ug, t+v0), (ug,vo)) = 0 d.e. (tiug,tivg) € N. So
using Lemma [5.4.5] (m3) and (f3) we get

1
* < " < J((t*uO,t*’Uo)) J t*U,o,t*Uo) — 7<J (t*uO,t*’Uo), (UO,U0)>

_ M(|[tsuo, tawo|™) / ( F(y, tyuo, Lvo)
n |z — y|#

dy) F(x, tiug, tyvg)dz

1
= 5o m([tuo, tevo|[*) || (Leuo, Levo) [

2n
1 F(y, tiug, tv
4+ — (/ (yoo)dy> (f1(z, tyug, tvg)tsug + fa(z, tyug, tivg)dx
2n Jo \Jo  |z—yl*
M ([Jug, vol") 1
< ———— — —m([(uo, vo)||")|(u0, vo)[|"

n 2n

1 F(y, teug, tyv
b [ ([ P00 ) ottt + ol et beve) = 0 ot )
2n Jo \Ja |z — y|~

M ([[ug, vol") 1 n n
< ——— — —m((luo, vol|")[|uo, vol|
n 2n
1 F(y, ug, v
+ mn (/ (yOO)dYJ) (f1(z,ug, vo)ug + fa(z,ug,vo) — nF(x,ug,vo))dx
n o |r—yl»
<MM(“W“W—1MWMMWWWW
T k—oo n nm ’ ’
1 F(y,up,v
+— (/ (ykk)dy> (f1(m, ug, v )ug + fo(z, ug, vg) — nF(:c,uk,vk))da:>
2n Jo \Jo |z —yl*

: : 1 / %
= hkrglolgf (J(uk,vk) — %<J (ug, vg), (uk,vk») ="

This gives a contradiction and completes the proof of Step 2. Similar arguments follows for

the degenerate case also using (m3).

Step 3: J(ugp,vo) = I*.
Using the weakly lower semicontinuity of norms in limy_, J(ug, vx) = I* and Lemma we
obtain J(ug,vo) < I*. If J(up,vo) < I* then it must be limg_,o0 M (||ug, vg||™) > M (||uo, vol|™)-

Then continuity and monotonicity of M implies T" > ||ug, vo||™ and

M(T™) = n (z* + ;/Q (/Q W@) F(:p,uo,vo)dx) | (5.4.21)
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Define the sequence of functions

(%ﬁk)‘( LA )

g, viell ™ Mg, viel|

such that |G, 0| = 1 and g, 0, — (to, Tg) = (42, %) weakly in P and |lug, vo|| < Y. From
Theorem we have that

keNJQ

2n(1 — [[tio, Do) =T

Then from (m3), Claim (1) and Lemma we obtain

M(Jlug, voll™) — m(|[uo, vol[™)[|uo, vol["
n 2n

1 F
+ o (/Q Wdy) (fi(z,uo,v0)uo + fa(z,uo, vo)vo — nkF(z,ug,vo))dx > 0.

and from (5.4.21)) we get

n— an\" !
M(T") = nl* = nJ (up, vo) + M(|luo, vo ") < M <(<2 ) o) ) + M([juo, vol")

J(ug,vo) =

which further implies together with (m1) that

e (52
1-— HUO,U()H” 2n 2,

Thus for k£ € N large enough it is possible b > 1 but close to 1 such that

2n n_ o
b [lug, vg||»T < =

< —.
2n e
Therefore from ([5.4.22)) we conclude that

2 n_ _n_
e (52 bl ™5+ 1) <
Q 2n—p

/(/ Md?J)(fl(%ukvvk)uk+f2($7“k’“k)vkdx_>
o \Jo

|z — y|~
/ (/ F‘(y,UO,’UO)dy> (f1($7 up, ’UO)U() + fQ(xa uop, UO)UOd‘T'
Q Q

|z —y|#

and

This implies (ug, vx) — (ug, vo) strongly in P and hence J(ug, v9) = I* which is a contradiction.
Hence, J(ug,vp) = I* = limy_,00 J (ug, vg) and ||(ug, vg)| — T implies T = ||(up,vo)||. Then

finally we have
m(|[uo, vo|™) < / Vo™ 2V Veda + / |VUO\"_2vavwdx)
Q
F( ,
/ (/ (= UZ‘ZO > (fi(z,uo,v0)¢ + fa(z,uo,vo)Y)dx

for all ¢, € VVO1 "™(€). This completes the proof. O
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Chapter 5. Kirchhoff equations and systems involving exponential non-linearity of Choquard type and
singular weights

5.5 Extensions and related problems

The results of this chapter can be extended in various directions. Let us mention here some

obvious generalizations:

1: The class of system (KCS) can be extended to the following fractional Kirchhoff-Choquard

system involving singular weights:

z Y, Uy v fi(z,u,v)
—m<H(U,U)’£) n/s (L |y’ |x—y|#dy> |l’|a m Qv

o Y, U, U folz,u,v) .
(F)4 —m <||(u,v)||ﬁ> 550 (/Q e |x—y|#dy> 2(|x|a ) i 0,
=0 in R"\ Q,

where (—A)7,is the n/s fractional Laplace operator, s € (0,1), n > 1, u € (0,n),0 < a <
min{%,n — p}, @ C R" is a smooth bounded domain, m : RT — R and F : @ x R? - R is

a continous functions where F' behaves like exp(\u]ﬁ + ]v|ﬁ) as |ul, |v| — oo.

We conjecture that the following Moser-Trudinger inequality holds in case fractional Sobolev
space (counterpart of Theorem [5.3.1]): Define £ := Xy x Xy endowed with the norm

|(u,v)||z = (||u””/3 + |lu HH/S)R

where

Xo:={uec W*(R") : u=0in R\ Q}

endowed with the norm

s/n
u\r) —u
Jullx, = { [ luw) —u)I* 5.,
R27\ (e xQe) |z -yl

Theorem 5.5.1. For (u,v) € L, n/s > 2 and Q C R"™ is a smooth bounded domain, we have

/ﬂexp (H (|u\# + \v[ﬁ» dr < oo

for any II > 0. Moreover,

sup / exp (H (\u]ﬁ + ]v|ﬁ)) dx < oo, provided II < In,s (5.5.1)
l(w,0)]| =1/ 2n,s
where oy, s = (252 nis, 2ns = 2'n=s , then there exists

wn—1 \ T(§)2577/2

a pair (u,v) € L with ||(u,v)||z =1 such that the supremum in is mﬁmte.

Using Theorem doubly weighted Hardy-Littlewood-Sobolev inequality, we can prove

the existence and multiplicity of solutions for the problem (F').
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5.5. Extensions and related problems

2: We infer that similiar methods can be used to the following Kirchhoff-Choquard system

for the Polyharmonic operator:

- M (/ [(V™ul? + [V ™o]? d:v) Ay = / dy
QW\M—M“

u=Vu=-

v=Vv=-

where n = 2m, p € (0,n),0 < a < min{§,n

] M (/ (Tl + V™) dx) A™y

( y7u U >f1<m7uﬂv)7 U>0 ln Q’
||
:</ b, wv) @)ﬁwwwxv>01ng
a lyl*lz —y| ||
=yl =0 on 0,
=Vl =0 on 09,

— u}, Q C R™ is a smooth bounded domain,

M :RT - R and F : @xR2 — R is a continous functions where F behaves like exp(|u|7= +

lu|7=m) as |ul,|v] — oco. Using Theorems and extension of Theorems and

(which is an open question), we can study the system of Kirchhoff-Choquard equation

for the Polyharmonic operator.

3: Another important open question is the Adams-Moser-Trundinger inequalities in Cartesian

product of Sobolev space with unbounded domain (or in R"™).
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CHAPTER

Non-local singular problem

This is a joint work with Jacques Giacomoni, Divya Goel, Konijeti Sreenadh and Guillaume
Warnault.

Abstract : In this chapter, we study the non-local singular problems in the presence of
exponential non-linearities and singular weights. The investigation of singular problems are

divided into two parts depending upon the nature of the operator.

In the first part, we study the singular problems involving fractional Laplacian operator,
precisely %—Laplaeian operator and exponential non-linearity. We establish the existence,
multiplicity, regularity and asymptotic behavior of the positive solution in one dimension.
We prove two results regarding the existence and multiplicity of solutions to the problem
(Py) (see below). In the first result, existence and multiplicity (local) have been proved for
classical solutions via bifurcation theory while in the latter global multiplicity result has been
proved for critical exponential non-linearity by variational methods. An independent question
of symmetry and monotonicity properties of classical solution has been answered using mov-
ing plane method and narrow maximum principle for %—Laplaeian operator and then extend
it in the more general framework of (—A)® operator and for all 0 < s < 1. To characterize
the behavior of large solutions, we further study isolated singularities for the singular semi

linear elliptic equation in Q € RY involving exponential growth non-linearity.

In the second part, we investigate the existence, uniqueness, nonexistence, and optimal
Sobolev and Hoélder regularity of weak solution to the nonlinear fractional elliptic problem
involving singular nonlinearity and singular weights in smooth bounded domain Q C RV (see
(P) below). We prove the existence of weak solution in W;”() via approximation method
and as an application of new comparison principle, we prove the uniqueness of weak solution
for0<d<1l+4+s— % and also nonexistence of weak solution for § > sp. Moreover, by virtue

of barrier arguments we study the behavior of minimal weak solution in terms of dist(x, 92)
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Chapter 6. Non-local singular problem

function. Consequently, we prove Hoélder regularity up to the boundary for minimal weak

solution.
6.1 Non-local singular problems with exponential non-linearities

In this section, we answer the questions of existence, local multiplicity and regularity of

classical solution to the following problem:

) {(—A)2u:)\<ul§+f(u)),u>0 @(-1,1),
u=0 in R\ (-1,1)

where f(u) = h(u)e*, 1 < a <2, § >0, A\ > 0 and h(t) is assumed to be a smooth
perturbation of e!” as t — oo. We remark that in contrast to higher dimensions, there is no

restriction on ¢ is required in dimension one.

6.1.1 Function spaces and main results
The fractional Laplacian (—A)® is defined as

(=A)*u(z) =2 P.V. Cy W Y,

RN |T —

1—\( N«;Zs)
I'(1-s)

where P.V. denotes the Cauchy principal value, s € (0,1), N > 2sand Cs = e
being the Gamma function. When N =1, s = %, Cs = %

, I

Before stating the results and outline of the main proofs, let us recall some definitions of

function spaces from the work of [54] and define the notion of (very) weak solutions. Define

X = {u : R — R | measurable, u|_; 1) € L*((—1,1)) and W € LQ(Q)}

where Q = R?\ (—1,1)¢ x (=1,1)¢ and (—1,1) =R\ (~1,1) endowed with the norm

1
_ [u(z) —u(y) ’
Jullx = ey +Co ( [ O )

Define the Hilbert space X as
Xo:={ueX : u=0inR\ (-1,1)}

equipped with the inner product

wo=c. [ (ua) ~u(@)(elx) ~ o)

|z —yl?

As in [46] we have the following definition of weak solutions to problem (Py).
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6.1.1. Function spaces and main results

Definition 6.1.1. A function u € L'(R) with u = 0 on R\ (=1,1) is said to be a weak
solution of (Py) if infxu > 0 for any compact set K C (—1,1) and for any ¢ € o,

/11 At /Q () ) (6() = 6) o / 11 (; N h(u)euﬂ> $ da.

|z —yl?

(6.1.1)

where
o={¢|¢¥:R =R, measurable, (—A)%@Z) € L*((—1,1)) and ¢ has compact support in (—1,1)}.
Using the regularity theory of fractional Laplacian we define the set of classical solutions of
(Py) :
Definition 6.1.2. The set of classical solutions to (Py) is defined as

S = {()\,u) € R x Co([~1,1]) : u is a weak solution to (Py) in Xo}.

Remark 6.1.3. Regularity of a classical solution u (proved later in Theorem for the
problem (Py) implies u € C’;;((—l, 1)) (defined below). Then by using Hardy’s inequality (see
1162, Corollary 1.4.4.10, p.23]) in together with the fact that C2°((—1,1)) is dense in
Xo, we obtain that % belongs to dual space of Xg for all § > 0 and hence holds for
all ¢ € Xp.

Definition 6.1.4. For ¢ € Cy([—1,1]) with ¢ > 0 in (—1,1), the set Cy((—1,1)) is defined

as

Cy((—1,1)) = {u € Co([—1,1]) : there exists ¢ > 0 such that |u(z)| < cp(z), for all z € (—1,1)},

Leo((=1,1))

endowed with the natural norm HZ

Definition 6.1.5. The positive cone of Cy((—1,1)) is the open convex subset of Cy((—1,1))
defined as

_ou(x)
CH((=1,1)) = u € Cy((—-1,1)) : f >0p.
o) (( ) )) {u ¢(( ’ )) xe%l—ll,l) ¢(I) }
To analyze the existence and regularity of solutions of (Py), the key ingredient is to study

the boundary behavior of the weak solution of the following problem:

(—A)zu = ! in (-1,1),

(P) d(z)*log” (5t5) (6.1.2)
w = 0 n R\ (-1,1).

For the operator (—A)® with N > 2s, Abatangelo [1] studied the boundary behavior of the
corresponding problem like (6.1.2)) with f =0and 0 < a <1+ s. The case N =1 and s = %
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Chapter 6. Non-local singular problem

has been left open as the Green function for the Half-Laplacian in one dimension is different
(see [84]) from that of (—A)® with N > 2s. In this regard, we explore this case and prove the

following theorem.

Theorem 6.1.6. Let A be a positive constant such that A > 2. Then the weak solution of

(6.1.2)) satisfies

cld(x)% <wu(z) < czd(x)% for0<a<3and B=0,
c3d(z)7 < u(z) < cqd(x)t2 fori<a<3and =0, (6.1.3)
C5d(:v)% log!=# (ﬁ) <u(x) < c6d(33)% log!—# (ﬁ) fora=1%1and0<pB<1.

where ¢;,1 =1,2,--- 5 are constants.

To get appropriate sub and supersolutions of the problem (P)), we now turn our attention

to the following pure singular problem (Fy).

(—A)zu = L, w>0, in(-1,1),
(Fs) { u in R\ (-1,1).

S e

The barrier function ¢; is defined as follows:

o1 if0<d<1,

_ 2 : _

b5 = ¢12(10g (E)) if §=1, (6.1.4)
o if 6 > 1,

NI

where ¢; is the normalized (||¢1]| Lo (o) = 1) eigen function corresponding to the smallest eigen
value of (—A)% on Xo. We recall that ¢, € C%(R) and ¢1 € C™, ((—1,1)) (See Proposition 1.1
and Theorem 1.2 of [226]). For the problem (Ps), we are conc(l:érned about the existence, the
asymptotic behavior and the regularity of the solution. In this regard we have the following

result:

Theorem 6.1.7. (i) For all § > 0, there exists a unique u € Cy([—1,1]) classical solution of
(Ps). Moreover, u € Xy N C’(;:((—l, 1)) where ¢g is defined in (6.1.4)).
(ii) The classical solution u to (Ps) belongs to CY(R) with

i if 6 <1,
v = % —¢e ifd=1, for all e > 0 small enough, (6.1.5)
s o>

Now we will state some assumptions on the function h:

(H1) h:[0,00) — R is a positive function of class C? in (0, 00) with h(0) = 0 and such that
the map t — t~° 4 h(t)e!” is convex for all ¢ > 0.
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6.1.1. Function spaces and main results

. —et® __ . ety
(H2) For any € > 0, tlgglo h(t)e =0 and tlg(x)lo h(t)e® = oo.

First, we recall the definition of an asymptotic bifurcation point and then state the result

regarding existence of a global branch of classical solutions to (Py) for 1 < a < 2.

Definition 6.1.8. A point A, € [0,00) is said to be an asymptotic bifurcation point, if there
exists a sequence (A, un) € S such that A, — Aq and |[up || peo((~1,1)) — 00 as n — oo,

To study the existence, multiplicity of solutions to (Py), we seek assistance of global

bifurcation theory due to P. H. Rabinowitz [221] and proved the following result.

Theorem 6.1.9. Let h satisfy the hypothesis (H1) and (H2) and 6 > 0. Then the following
holds:

(i) There exists A € (0,+00) and~y > 0 such that S C [0, A] x (XO N C;;((—l, 1))nN C’WR)),
where v is defined in Theorem and ¢s is defined in ((6.1.4]).

(ii) There exists a connected unbounded branch C of solutions to (Py) in Rt x Co([—1,1]),
emanating from (0,0) such that for any A € (0,A), there exists (A, uy) € C with uy being
minimal solution to (Py). Furthermore, as A\ — A™, uy — up in X, where up is a

classical solution to (Py).
(iii) The curve (0,A) > X\ — uy € Co([—1,1]) is of class C2.

(iv) (Bending and local multiplicity near A\) X = A is a bifurcation point, that is, there exists
a unique C?-curve (A(s),u(s)) € C, where the parameter s varies in an open interval

about the origin in R, such that

A(0) = A, u(0) = uy, N(0) = 0,1"(0) < 0.

(v) (Asymptotic bifurcation point) C admits an asymptotic bifurcation point A, satisfying
0< A, <A

Now we study the qualitative properties of solutions for the problem (Py). In light of the
maximum principle (see |[175]) and the moving plane method, we derive the radial symmetry
and monotonicity properties of the weak solutions with respect to |z|. More precisely, we

prove the following result:

Theorem 6.1.10. For 1 < a <2, >0, let h satisfies (H1) — (H2), f is Lipschitz function.
Then every positive solution (X\,u) € S of (Py) is symmetric and strictly decreasing in |x| i.e.

u(z) > u(y) for all |z| < |y| and z,y € (—1,1).
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Chapter 6. Non-local singular problem

To prove Theorem [6.1.10, we have used tools of maximum principle proved in [175]. In
particular we have used Lemma 3.2, Proposition 3.5 and a combination of both gives rise to

a small volume maximum principle Proposition 3.6 of [175].

Assertion (v) in Theorem conclude that the connected branch admits at least one
asymptotic bifurcation point. To characterize the blow up behavior at A = A, we study
the behavior of isolated singularities as in Brezis-Lions problem (see [70]) for the fractional
Laplacian operator.

We consider the following problem:

(=A)Yu=g(u), u>0 i,
(P;) u=0 in RV \ Q,
u € LYQ), g(u) € L},.(Q),

loc

where 0 < s < 1,¢t> X >1, QO c RN be a bounded domain with 0 € Q and & = Q\ {0}.
2s

The notion of distributional solution for (Ps) is defined as follows:

Definition 6.1.11. A function u is said to be a distributional solution of (Ps) if u € L*(Q)
such that g(u) € L}, (V) and

[ ute)-ay6 do = [ guo da
Q Q
for all ¢ € C(Q) with supp(¢) C Q.

In [89], authors have studied the problem (Ps) by assuming the existence of classical
solution u of (Ps) with polynomial type nonlinearity. In the next theorem, we extend the result
of Chen and Quaas ([89]) for the problem (Ps) satisfying weaker assumption of distributional

solution and for a larger class of nonlinearities (in particular exponential growth nonlinearity).

Theorem 6.1.12. For 0 < s < 1, let u be non-negative distributional solution of (Ps) such
that uw € LY(Q), g(u) € Lt (Q) for t > 2—]\; > 1. Then there exists k > 0 such that u is

loc

distributional solution of
(—A)°u = g(u) + kdo, u >0, in Q,
g(u) € LY(Q),

i.e.

/Qu(—A)Sqﬁ — g(u)¢ dx = k¢(0) for all ¢ € C°(Q).

As an application of Theorem [6.1.12] we characterize the asymptotic behavior of large

solutions and prove the following result:

314
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Theorem 6.1.13. For 1 < a <2, 0 >0, assume A, > 0 be an asymptotic bifurcation point
as in the Definition[6.1.8 Then, for any sequence (A, ux) € SN ((0,A) x Co([—1,1])) such
that \x — Ao and ||ug||poo((—1,1)) — o0, the following assertions holds:

(i) 0 € Q is the only blow up point for a sequence uy.
(ii) up — w in C; ((—1,1) \ {0}) where u is a weak (singular) solution to (Py). Moreover,

loc

u(0) = o0, u € LP((—1,1)) for any 1 < p < oo, u &€ Xo and u—l(; + f(u) € LY((—1,1)).

We have the following remark about the above theorem.

Remark 6.1.14. (a) Under the conditions of Theorem in assertion (i), we expect
concentration phenomena to hold for large solutions as A — 0.
(b) Let G be the primitive of g defined as g(t) = t% + f(t) and assume that G(t) = O(g(t))

as t — oo. If the sequence of large solutions, say uy, have bounded energy i.e.

1 1
Tuw) = g lull, ~ [ Gl de <
~1
where C' is independent of k, then assertion (ii) cannot hold.

Due to the absence of the knowledge of the positioning of the bifurcation point, we may
not have multiplicity of solution near A = 0. So to prove the global multiplicity results, we
approach to variational methods. Precisely, we proved the global multiplicity result to the

problem (Py) for all § > 0, under the following assumptions on the function f.
(K1) h e CY(RT), h(0) =0, h(t) >0 for t >0 and f(t) = h(t)e!” is nondecreasing in ¢.
(K2) For any € > 0, tl_i)m (h(t) + h'(t))e_EtQ =0 and tli)m h(t)te = oo for some 0 < ¢ < 1.
(K3) There exists My, Ma, K > 0 such that F(t) = f(f h(s)es” ds < My(f(t) + 1) and

f'(t) > Kf(t) — Mj for all t > 0.
Example 1: An example of the function h satisfying the above conditions is h(xz) =
ke kE>0,0<y<2.
We prove the following multiplicity theorem.

Theorem 6.1.15. (a) If f satisfies the assumption (K1)-(K5). There exists a A > 0 such
that

(i) For every X € (0,A) the problem (Py) admits two solutions in XN C’;ﬁ((—l, 1)).
(i) For A = A there exists a solution in Xo N C'dfa((—l, 1)).

(iii) For A > A, there exists no solution.

(b) Let u € Xo be any positive solution to (Py) where A € (0,A], 6 > 0. Then u € C7(R)

where v is defined (6.1.5)).

To prove the Theorem [6.1.15, we followed the approach of [150]. To obtain the first
solution, we use the standard Perron’s method on the functional Jy (See (6.1.30))). To get a
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Chapter 6. Non-local singular problem

second solution, we use the assumption (K2) to guarantee that the energy level of the Palais
Smale sequence is below the first critical level. For that we seek help of Moser functions (See
[244]) and then by using mountain-pass Lemma we prove the existence of a second solution.
Notice that the Theorem shows the existence of solution in the energy space Xg3. We
remark that the Holder regularity proved in theorem [6.1.15]is the optimal due to the behavior

of the solution near the points —1 and 1.
6.1.2 Global bifurcation result

In this section we first study the boundary behavior of the weak solution of (6.1.2]). We
further studied the pure singular problem (Pj) and prove the Theorem which deals with
the existence and regularity of solutions of (Ps). In a same flow, we establish a global branch

of classical solutions to (Py).

Proposition 6.1.16. [84] The Green function G(x,y) associated to (—A)% is the following:

1 1
d(x)2d(y)2
G(x,y) = log (1 + M) for all (z,y) € (~1,1) x (~1,1).
=Yy
A . S S 1 1
Proof of Theorem |6.1.6: Using the fact that i) Toa? U © L*(dz, d2), we have the

following integral representation formula for the solution u to (6.1.2))

w(x) = 1 Gp(,y)
=, a) 108" (A/d(y)

Therefore, from Proposition [6.1.16} up to multiplicative constants,

@) _ [ d(x)d(y) dy
S/ lg<l+ |z =] )d(z)éd@)alogﬂm/d(y))'

Without loss of generality, we can assume x € [0,1]. Set ¢ = d(x), r =d(y) and z = (1 —¢).
Observe that the integral in (6.1.6]) is symmetric around 0. Thus it is enough to consider the
case y € [0,1], from above transformations, we have y = 1 —r. To prove (6.1.3]) we divide the

proof in several steps.
Step 1: When a < % and 8 = 0. We rewrite

(6.1.6)

1
€

1 d lfa t
u(@) g/ log<1+ V”) il z/ = _log(1+ VI
d(x)2 0 r—el) eapa o t |t —1]

1 3 1IN 1,
= /2+/2+/E e log |1+ vi dt.
0 1o Js ) oo it —1]

(6.1.7)

For the first integral we have

1 1 1
2 g2 @ Vit 2 1 Vit
—1 1 dt < C —1 1 dt <
[ e ) e [ (1 Ly s
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for some positive constant co. For the second integral we have

3 1, 3
/252 log 1+i dth/Qlog 1+ Y <oc
Lote |t —1] 1 |t —1]

For the third integral we have

1 1 1 1
T ez @ Vit s ez @

log (1 dt < - dt < C.
JAE I (BTN Py

It implies that there exists a positive constant cp (large enough) such that u(z) < czd(a:)%.

This affirms an upper bound of the solutions. For lower bound of the solutions, notice that
the integrals in (6.1.7) works as a lower bound of ﬁ(up to constants). Now we divide the
x)2

proof in two cases:
Case 1: If ¢ > % then

1 1 1 1

= =— 1 =—Q = 1 2—2«x 2
u(‘r)lz/d“ log (14 YL dt2(>2 C/dté_adtzgc <) > 2
d(z)z 0 1@ |t — 1] 3 0 S—a\3 27

Case 2: If e < % then

u(z) ene t %j i
d(x)%z/g i 1g<1+’_1|> dt > C/ ﬁdt_2(1 1/V2).

It implies that there exists a positive constants ¢;(small enough) such that cld(:r)% < u(x).
Step 2: When o > % and 8 = 0. We rewrite

1

e [ o) e ([ of o) el ) o

(6.1.8)

For the first integral,

1

1
- : 1
/Qalog L dtg/Qt%—adKC.
o 1 [t =1 0

3
2 1 t
By using the same estimation as in step 1, / o log (1 + ]t\[1|> dt < C. For the third
1 _
2

integral

Vi > 1 Vi
1 1+ —— ) dt < — 1 1+ —— ) dt<C dt < C.
/g 2 Og( Tl _/g o B ] / I

Observe that from the estimation of first and third integral is valid only when % <a< %
For the lower bound, notice that integrals in (6.1.8) serve as lower bound as well. Hence

1 1
u(z) 2 1 Vit 2 1
— > — 1 > @ C.
d(z) o _/0 talog( +|t—1|> dt_/o t27% dt >

317



Chapter 6. Non-local singular problem

Thus we can choose appropriate positive constant c3 and ¢4 such that
c3d(x) < u(z) < eqd(z)'™

Step 3: When o = % and 0 < 8 < 1. Clearly we can take A = 2. Then

u(:z: log 1+ |t‘/1|>
d(z )zlog % : (/ / / >t2log1 B )log ( )dt.

The first integral

/; log (1+ 447) (ﬁ<c7/%
0 tilogf (2)log” (2) T log2Jy Oog(g)-+log(%))ﬁ
1 1
2

For the second integral

3 ]Og 1+i élog 1_‘_# 3 7

/ﬁ 1( “1)2 ﬁ0/2(§10ﬁ§0 ﬁ%<u-vr>duﬂa
1 t3 log *B( )log ( ) 1 log” (1) 1 [t —1]

For the third integral,

1 log (1+ Vit ) c 1 J
€ [t—1] € t
/g it < /

b otlogt 7 (2 10g” (5) T lor'7(2) Syt (-hox ()]

For the lower bound, we again divide it in two cases:
Case 1: If € > % then

u(z) 3 log (1 + ﬁ 5 < Vit )
d(x)% log!=# (%) - /§ ts log!=# (%) log? (%) w=c 1 e {1 |t =1 =c
Case 2: If e < % then
u(z) : log ( \t\/il|> C /log 2 dz
d(a:)% log!=# (%) Zﬁ’ 12 log!~ 5( )1 ( ) = log! =4 (%) log 3¢ (—2)8 >0

It implies there exists suitable positive constant cs and cg such that

C5d(m)% log! =" (dé)> <u(z) < Cﬁd(l‘)% log! =" <dé)> .
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O
We now study the pure singular problem.
Proof of Theorem (i) The proof goes along the lines of [6, Theorem 1.2] for s = 3.

For the sake of completeness, we will give a short brief of the proof. Let us first consider the

case § < 1. We introduce the following approximated problem:

(pey] R = e >0 i (1),
g u = in R\ (—1,1).

Following the same arguments and assertions as in proof of |6, Theorem 1.2], there exists
a unique weak solution u. € Xo N C%(R) to (P5), ue is a monotone increasing sequence as

€ — 07 and there exists a constant ¢ > 0 such that u. > c¢1. Moreover,
Sup/((—A)l/‘luE)2 dx < oo.
e0 JR

To get an upper bound on u., we will use the integral representation and the the Green’s

function G(z,y). Clearly,
' Gy)
Ue(x) = —— dy.
=/ Tt

Then for a suitable positive constant C' independent of €, we have

1 1 1 1
() 2d(y)? d(x) 3 d(y)}
(H =] > 1 log <1+ = )
dy < C/

d@): @Ry +ot T S d(a)hd(y)?
Utilizing the fact that § < 1 and the proof of Theorem Step 1, we obtain that

dy.

ue(x)/d(x)% < oo, forall z € (—1,1).

Thus, we infer that u = lim+ ue < c¢p and w is the unique weak solution to (Ps). Also,
e—0

cp1 <u<C¢y

for some suitable constants ¢, C. This completes the proof of the theorem in case of § < 1.
In a similar manner, for the case § > 1, we will follow the proof of Theorem 1.2 of [6] coupled
with Theorem Precisely, we will get unique solution of (Pj5) such that

=

1 2 1/ 2
—a¢1 lo ()g <C lo2<>,'f5:1,
o ¢1log ™ u 161 log . i

1 2 2
F(;sf“ <u< Oyt if 6> 1,
2

for some appropriate positive constant C7 and Cs. For the Part (ii), the proof follows from

Theorem 1.4 of [6]. We remark that all classical solutions belong to space X, as well. O

Define A :=sup{\ >0 : (Py) has a weak solution}.
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Lemma 6.1.17. It holds 0 < A < oo.

Proof. Let u be the solution of (Pj) given by Theorem then uy = ATy is a solution of

(~A)7u =2, u>0 in(-1,1),
u =0inR\(-1,1).

Moreover, uy is a strict subsolution of (Py). Also, let @y = uy + MU for some M > 1, where

U is a solution of

(~A)2u =1, u>0, in(—1,1),
u =0inR\ (-1,1).

There exists Ag > 0 such that @) is a supersolution of (Py) for all A < A\g. Now we define the

following iterative scheme for all A < A, starting with ug = u, and (n > 1)

= ACup—1+ Af(up—1), u>0 in (—1,1),

(=A)2uy + ACuyp —
= 0inR\ (=1,1),

A
ug,
u

where C = C(X\g) > 0 1is large enough such that t — Ct+ f(t) is non decreasing in (0, ||z, || )-
Taking into account monotonicity of the operator (—A)%u — A%, using the Comparison
Principle (|150, Lemma 2.2]) and the proof of Theorem we have that {u,} is increasing
and {u,} C C%(R) N C’;;((—l,l)). Furthermore, for all A < A\, uy < u, < wy. Using

Theorem [6.1.7, we have sup |[u,[|cv@®) < Co for some Co = Cy(d, o) large enough and 7 is
neN
defined in Theorem [6.1.7, Hence u, — u in C(R) and u satisfies

in the sense of distributions. Hence from the above arguments we get A > 0. From the

superlinear behavior of f(t¢) at infinity, we obtain that A < co. O

Proof of Theorem The proof follows from Theorem 1.6 of [6] (See also [102]). O

Remark 6.1.18. Consider the problem

(PK) { (~A)7u= (K2 + fw)), u>0 m (—1,1),
u=0 in R\ (—1,1)

where K € C}.((—1,1)), v € (0,1) such that inf )K(l‘) > 0 and satisfies for some 0 <

)

B8 < 1 and c1,¢0 > 0 such that cld(av)*ﬁ < K(z) < CQd(x)*B, for all x € (—1,1). By
modifying our barrier function ¢s (see (6.1.4]) ) with respect to the growth of K (x), we can prove

Theorem . Subsequently, we can also prove Theorem for the problem (P){{)(same
as [0, Theorem 1.6]).
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6.1.3. Study of isolated singularities and qualitative properties

6.1.3 Study of isolated singularities and qualitative properties

In this section, we study the qualitative properties as symmetry, monotonicity of solutions to
the problem (Py) and asymptotic behavior of the connected branch C. In order to describe the
asymptotic behavior of large solutions, we first study Brezis-Lions problem in the setting of
fractional Laplacian operator. In the spirit of Brezis and Lions work (see [70]), we classify the
singularities of non-negative distributional solutions of fractional semilinear elliptic equation
(Ps) for N > 2s. We assume that g : Rt — RT is continuous function with ¢g(0) = 0 and

be a smooth bounded domain in R".

Theorem 6.1.19. Let u be nonnegative distributional solution of (Ps) in the sense of Defi-
nition [6.1.11 and g(u) € L} (') fort > & > 1. Then g(u) € L*(Q).

Proof. Suppose by contradiction that g(u) & L*(). Since g(u) € L! (') then for any small

loc

r > 0 there exists a sequence { Ry, }men € (0,7) such that R,,, — 0 and

/ g(u) de =m. (6.1.9)
Br(0)\Bgy, (0)

Consider the problem

{(—A)Sum = XQ\Bg,, (0)9(u), u >0 in Q,

(6.1.10)
U =0 in RV \ Q.

Since Xo\B, (0) g(u) € LY(Q) for t > % , then there exists a sequence of classical solutions
{tm} solving such that u,, € L>®(Q)NCA(Q) for some 3 € (0,1) (see Proposition 1.4
in [227]).

Let ® be the fundamental solution of (—A)*. d.e. (—A)*® = §y in D'(RY), where

Ly -s)
if N #2
®(x) = { 2257N/20(s) x|V -2 if V#2s
=L log(|z|) if N =2s.

Since u > 0 and u,, is bounded in L>°()) therefore al:ig[})(u—i— ®)(x) = +oo and for each m € N,
there exists r,, > 0 such that v + ® > u,, in B, (0) \ {0}. Then by the weak comparison
principle we obtain u + ® > u,, in RV \ {0}.

Since Z}l_r}rgc G(z,y) = 400, there exists r; > 0 such that G(z,y) > 1 in z,y € B,,(0). Now by

using (6.1.9) we obtain that,

() = / G, 9)xn 5, 9() dy = / Gz, y)g(u) dy
0 Q\BRm (O)

>

g(u) =m — oo

/Bn (O\BRr,, (0)

which implies v + ® = 400 in K € B,,(0) \ {0}, which is not possible. Therefore g(u) €
LY(9). O
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Chapter 6. Non-local singular problem

Let £ : RY — [0,1] be radially symmetric increasing function such that £ € C*°(R"™) and

(o) - {1 %f z € RV \ By(0),
0 if z € B;(0).

Define ue = ué. where & (z) = £ (£) for all z € RY. Then for any z € Q\ {0},
(-8 ule) = [ =S g
RN |z — y[NH2s W (6.1.11)
= &e(@)(=A) u(x) + u(z)(=A)"E(x)
oy [, O s,

RN |z — y|N+2s

— O PV.

Now we prove the following result:

Theorem 6.1.20. Let P : C°(2) — R be the operator such that
PO) = [ u(-2)0 - g(wo du for all 6 € C2(@)
Q

where u € LY (Q) is a non-negative distributional solution of (Ps) and g(u) € L'(Q). Then
(i) P(¢) =0 for any ¢ € C(2) with supp(¢) C 2\ {0}.

(i) There exists constants ¢, such that

o0

P(‘b) - Z CaDa¢(0)

la|=0

N
where a = (a1, a9, ...,an) with a; € N, |a| = Zai, D = (0" ¢,0%¢,...,0"N ).
i=1

Proof. Let us prove assertion 1 and consider € > 0 small enough then we have
[ u-ayo =g d < [ ul-ay0 - gu)o) dal
[ ut = &en-aye ds

Since ¢ € C°(Q) with supp(¢) C 2\ {0}, then there exists r > 0 such that ¢ = 0 in B,(0).
Then by using integration by parts formula with (—A)%u, € L>(£2) (Lemma 2.2 in [88]) and
(6.1.11)) we obtain,

+

<

_l’_

/ (=AY — g(u)d) de / u(—A)' da
Q Ba¢(0)

[ uareds v [ (e @A u) + u@)(-A) ) - gw)s do
B3¢ (0) O\B-(0)

[ o [ M 60,
O\ B, (0) RN

/ O(—A)*u, — g(u)¢) da
Q

<

_l’_

+ Cn,s .

|$ _ y|N+25
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6.1.3. Study of isolated singularities and qualitative properties

For x € Q\ B,(0), y € B.(0) and € < , we have

s 1_56 B € 0
[(=A)°¢c(z)| = Cns /B2 o ’x_yv\(fgi)gs dy < C(J_Ze)(]v)_izs-

Therefore,

lim u(@)]6]|(~A)e(a)| = 0. (6.1.12)
=0 Jo\ B, (0)

Also,

[ o[ e 0 g
Q\ B, (0) RN

|$ _ y|N+23

1= &(y)]
u(x —=—=" dy dx
/Q\BT(O) ( )/Bze(o) |z — y|NF2s

u(y)|l — & (y)l
_/ (/ ——— dy | dx
B, (0) \JBa(0) 17—l

< Al ()

191l oo () ( N/ / )
< —Fo— | Ce u(z) dx + |Q\ By(0 u(y) dy | - 0 ase— 0.
oot (O [ w@ a0\ BO) [ )
(6.1.13)
Since &(x) =1 1in Q \ B;(0) and w is distributional solution of (Ps) we obtain,
| (6@ ) - g))s dz =0, (6.1.14)
Q\B:(0)

Therefore, by combining (6.1.12]), (6.1.13)) and (6.1.14]) we obtain P(¢) = 0 for all ¢ € C°(Q)
with supp(¢) € Q\ {0}. Since u € L'(Q) and g(u) € L'(Q), then P is a bounded linear
functional on C2°(£2). Therefore by using Theorem XXXV in [232], we obtain

P= > ¢D%

la|<m
where ¢, € R and §p denotes the Dirac mass at origin. i.e. for all ¢ € C2°(Q)

P(¢)= > caD(0). (6.1.15)

|a|<m

Theorem 6.1.21. Let P be a bounded linear functional satisfying (6.1.15). Then

cqo =0 for any |a| > 1.
Proof. Let n € C*®°(RY) with supp(n) C B1(0) and |a| > 1 such that D%y(0) = ¢, for every
la] < m (see [70]). Define n(z) = n (%) for z € RY, then from (6.1.15) we obtain,

62
Pl) = Y caDne(0) = O = /Q (u(=A) 5. — glu)n.) da. (6.1.16)
i
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Chapter 6. Non-local singular problem

Let » > 0 and divide the integral in (6.1.16]) into two parts:

JRICICINEAE

S/Q\B,,.(O) u(z) |(—A)*ne(z)] dx—i—/ w(@) (=AY (z)] da.

B (0)

For z € Q\ B,(0) with € small enough, we obtain

—0ase—0. (6.1.17)

(=A)*ne(x)] = |P.V./B M | < 2(nl oo (B, (0y) | Be(0)]

(0) |z —yN+> (r — )N+

and for x € B,(0) we obtain,

/T(O)u(x)(—A)sn <::> dz

independently of €. Therefore by combining (6.1.17) and (6.1.18) with € < r, we obtain

< [(=A)*nll oo (B, (0)) /B o u(x) de — 0asr—0. (6.1.18)

‘/ u(z)(—A)ne(x) dz| < o(1) as € — 0. (6.1.19)
Q
Also, the second integral in (6.1.16)) satisfies
/ g(u)ne dz < |0l (o) / 9(u) dx — 0 as € — 0. (6.1.20)
Q B.(0)

From (6.1.16), (6.1.19) and (6.1.20), ¢2 < C1€l®lo(1) as € — 0. Therefore we have ¢, = 0, for

all |a| > 1 since € is arbitrary. O

Proof of Theorem [6.1.12: Follows from combining Theorem [6.1.20] and Theorem [6.1.21
O

Now we prove Theorems [6.1.10] and [6.1.13] concerning the qualitative properties of classi-

cal solution and asymptotic behavior of large solution for half Laplacian operator and n = 1:

Proof of Theorem With the assistance of maximum principle in narrow domains
(see [175]) and moving plane method, we prove the monotonicity and radial symmetry of
classical solutions in €. Without loss of generality, we assume = (—1,1) and (A, u) be
classical solution of (Py) for A < Ao (obtained from Theorem [6.1.9)).

Define Ry (x) := (2h — x) be the reflection of the point z about h and

vp(z) := up(r) —u(x) where up(z) = u(Rp(x)).

Step 1: Positivity of vy, near —1 and 1:
Clearly for |h| sufficiently large, vy (x) > 0. Now we prove that vy(xz) > 0 in (—=1,h) N H, if
h <0and in (h,1)NH," if h > 0 where H;f = {z € R: 2 = h} and h lies in the neighborhood
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6.1.3. Study of isolated singularities and qualitative properties

of g € 00 = {—1,1}. Suppose that v, < 0in K C (—1,h) N H, for some h < 0. Since f is
Lipschitz and noting that supp((—wvp)") C (—1,2h + 1), we have

2h+1
()2 o) (o)) = [ (= s fw) = ) ) (o) da

ud (up)

-1
<C [ ((u—up)™)? d.
K

Then by Poincaré inequality, we obtain

/R () —w)*t) < c/ihﬂ((—uhm? dx < C(diam(K)) /IR (2w — ).

Then by choosing h close enough to —1 we get, C'(diam(K)) < 1 and then (—vp)t = (u —
up)™ = 0. Similarly in the case of (h,1) N H,' for h > 0. Now by moving the point in the
neighborhood of —1 and 1 we obtain there exists 7' > 0 independent of u such that

u(x — t) is non-increasing V(¢,x) € [0,7T] x (—=1,h) if h <0,
{() g V() € [0,7] x (=1,h) 6.1.2)

u(z — t) is non-decreasing V(t,x) € [0,T] x (h,1) if h > 0.

Step 2: Positivity of vy, in interior of (—1,1):
In Step 1, we have proved that v, > 0 in the neighborhood of —1 and 1. So, without loss of
generality we can assume that A > 0 be the smallest value such that v, > 0 in (h,1). Then

the mean value Theorem implies vy, satisfies the following for some 6 € (0, 1)

vy,
(Ou + (1 — O)uy)+t

= f(up) — f(u) in (h,1). (6.1.22)

Claim 1: For every compact subset K C (h,1), essinfg v > 0.
To establish our claim, we follow the proof of Proposition 3.6 in [175]. Since vy, # 0 in (h, 1)
then for z* € (h,1), it is enough to prove that essinfg (;+)vy > 0 for r sufficiently small.
From Step 1, v;, > 0 and vy,(z) = —vp(Ry(w)) in H,', there exists a bounded set B C H;"
with z* ¢ B and

ji:=inf oy > 0. (6.1.23)

Using Lemma 2.1 in [175], we fix 7 such that U = Ba,(z*) and
1
0<r< 1 dist(z*, BU (R\ H;")) and A\ (U) > CL(f) (6.1.24)

where Cp(f) is the Lipschitz constant of f and A;(U) is the first eigenvalue of (—A)® in U.
Now, in order to apply Proposition 3.5 in [175], we construct a subsolution of (—A)%f) = ¢(z)v

in U where

flun)—fw) 5 )
c(r) = hvh (Out(1—0)up )1 if v, #0,
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Chapter 6. Non-local singular problem

Define
E:R—=R, k(x) =m(z) — m(Rp(x)) + a[lp(x) — Lp(Ru(z))]

where a will be determined later and m € C?(R) such that 0 < m < 1 on R and
m(a?):{ 1 if |z —a* <

0 if |z —a* > 2r,

and satisfies k(Ry(z)) = —k(z) on H; , k = 0 in H;” \ (UU B) and k = a on B. Then by
Proposition 2.3 in [175] we obtain,

// (m(z) —m(y)(¢(z) — 6(y))
RJR

2 —y|?

dx dy < C’/ o(z) dz
U

for ¢ € 7, ¢ > 0 and C = C(m) independent of ¢. Since ¢ = 0in R\U, (UNB)U(UNRy(B)) =
0 and
m(Rp(z))d(z) = 1p(z)p(x) = ]th(B)($)¢(x) =0in R.

Then we have

// (k(x) — k(y))(¢(z) — 6(y))
RJR

dr d §C’a/ x) dx
EETE v=Caf, o)

where

1 1 1
Ca::C'—l-sup/ dy—ainf/( — )dy.
veU J Ry (U) 17— YI? weU Jp \|lz —yl* |z — Ra(y)[?

Since |z — y| < |z — Ry(y)| for all z,y € H;", U C H," and continuity of the function

T fB (|$_1y|2 - ‘x_Ri(y)‘g) dy implies

1 1
inf/ ( — ) dy > 0.
U Jp\lz—yl?> |z —Ru(y)P

Now by taking a sufficiently large enough such that C, < —Cpr(f) and using v, > 0 in U, we

obtain

// (k(x) = k() (¢(z) = ¢(y))
RJR

|z —y?

dz dy < —Cu(f) /U o() da

fup) — f(u) Y
= /UA ( o (Gur(io 9>uh>6+l> k@)9(e) dz.

Then by using (6.1.23]), (6.1.24) and Proposition 3.5 in [175], we obtain op(z) := vp(z) —
%k(m) > 0 a.e. in U so that v (z) > %k(x) = % > 0 a.e. in B,(z*) and which completes the
Claim 1.

Claim 2: h =0.

We argue by contradiction and suppose h > 0. Since h is the smallest value such that v, > 0

in (h,1), so we claim that for a small € > 0 we have vj_ > 0 in (h —€,1) and thus get a
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contradiction that h is the smallest value. For this claim we follow the proof of Proposition
3.5 in [175]. Fix v (to be determined later) and let K € (h,1) such that |(h,1) \ K| < 3
Then by using Claim 1, vy > 7 > 0 in K and then by continuity v,_. > 0 in K for ¢ small
enough. Since vy_. satisfies in (h—¢,1)\ K and by taking w := ]lH,T,E v}, such that
supp(w) C (h —€,1) \ K as a test function, we obtain

_5Uh—e

(8o = /(he,l)\K ((9U = Oup ! Flotn-e) = ﬂu)) wde.(6:1.25)

We observe that
[w + vp—Jw = []lH’iév,f_e + HR\H’iévh_é]ﬂH;EUff_E =0 inR
and therefore
[w(@) — w)]* + [vh—c(2) — vh—e(y)][w(z) — w(y)]
= — (w(@)[w(z) + vi-e(¥)] + w(Y)[w(z) + vr-e(2)]) -

Now using |z — y| < |z — Rp—(y)| for all z,y € H} _, R, (R\ H;" ) = H;" _ and from
(16.1.26)), we obtain

(6.1.26)

y) + vn—c(y)]
Ifr:—yl2

(8w, w) + {(~A) 2oy w) = 2 /H . / dy ds

H* Uh e(y) =+ RR\H}T_Evh*G(y)]

. dy dx (6.1.27)

h—e

|z —yl?

/Uh e(y) Uh—E(y)
— dy dx < 0.
/H+ <|x P e—R?) Y=

)
:_Q/H+

Let A1 be the first eigenvalue of (—A)® in (h —¢,1) \ K and then by combining (6.1.25]) and
(16.1.27)) we obtain,

M((h =€)\ K) /(h g e S () < (A )

00—l (h—e1)\K Vh_ / )
= € dx+ —f(up—e) + f(u) 1, vy, dx
/(h—e,l)\K (Ou+ (1 — O)up)>+1 (,HJNJ (un—c) + f(W)Lihc i\ vy

< CL/ lv,_|? da.
(h—e, )\K

Since A1(§2) — oo when [ — 0 (see Lemma 2.1 in [175]) then by choosing v small enough

we get vp_e > 01in (h—e¢, 1), which is a contradiction. Therefore h = 0 i.e. u(—z) > u(z) and
then by repeating the same proof for largest value of h over (—1,h) we obtain u(x) = u(—x)
for all z € (—1,1). Since h = 0, therefore (6.1.21)) and Claim 1 imply u is strictly decreasing
in |x|. O

Now we prove result describing the asymptotic behavior of connected branch C :
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Proof of Theorem Let (\,u) € SN ((0,A) x Cp(]—1,1])) be the solution of the
problem (Py). Then from Theorem we obtain, u is decreasing with respect to |z| then
for every € > 0 there exists #; > 0 such that for any x € (—1, —€)U(e, 1), we have a measurable
set M. satisfying

(i) | M| > 1 and M C (—1+4+¢€,1—¢).

(i) u(y) > u(x), Yy € M.

Then by multipying ¢; to the equation satisfied by u, we obtain

Al/iu@::A< d—+/ f(u ¢1@J

and for any m > %, there exists a C > 0,

1
—Cgt—5+f(t), teRT.

Then by using u(y) > u(x), Yy € M, we obtain for C; > 0 large enough,

1
(m_Z)‘l> u(z) ¢1 dx < (m_ZM)/ ugy drx < C1.
A, M. Ao ) 4

Together with |M,| > (1 it implies that u(x) < Cs for all x € (—1,—¢€) U (¢,1). So,

sup 1wl Loo ((=1,1)\[e,) < Ce < 00 (6.1.28)
weSN({A>Ao} xCo([=1,1]))

Suppose there exists a sequence (Ag,ug) of solutions in & N ((0,A) x Cy([—1,1])) such that
A — Aq and ||ug||pee — o0 as k — oo, then implies ”0” is the blow up point. Hence
by regularity of u; and compact embedding we obtain uj; — u uniformly on compact subsets
of (—1,1) \ {0}. Since wy, satisfies (6.1.1)), then from the proof of Remark we obtain
llg(ug)|| 1 < Co, where Co is independent of k. Then Fatou’s lemma and Vitali’s convergence
theorem give u € LP((—1,1)) and [Jug — ul|Lp((=1,1)) — 0 for any 1 < p < co. Now, by passing
to the limit as k — co we obtain u satisfies (in the sense of Definition [6.1.11)):

(—A)2u=Agg(u) in (~1,1)\ {0},
u>0 in (-1,1),
uw=0 in R\ (—1,1),

with g(u) € LY(Q)). Then by Theorems [6.1.19 and [6.1.12| there exists g > 0 such that u
satisfies (in the sense of Definition [6.1.1))

(—A)2u = Agg(u) + pdy  in (—1,1),
u>0 in (—1,1), (6.1.29)
u=0 in R\ (—1,1).

328



6.1.4. Global multiplicity result via variational method

Suppose p # 0. Hence we have u(x) = Ayg(u) * ®(x) + u®(x) 4+ I(z) where [ is a s-harmonic
function in (—1,1) and ®(z) = L log(|z|). Therefore u(x) > log(|z|~*/™)—C and since a > 1,

F(u) > h (log(|2] /™) — C) explle&ll™ M=% > 1 (log(|a| /™) - C) |a| 2/

for all p > 1, 0 < |z| < |z,| and |z,| small. Then by integrating f(u) over a small ball B
around 0, we obtain [, f(u) = oo which contradicts f(u) € L'((—1,1)). Therefore p = 0.
This completes the proof of Theorem [6.1.13 0

6.1.4 Global multiplicity result via variational method

In this section, we will show the existence and multiplicity of solutions of (P)) by using

variational methods. The energy functional corresponds to problem (P)) is defined as

1
Jn(u) = %HUHQ - )\/ (G(u) + F(u)) dz, (6.1.30)

-1
where
0 ifu<0andd >0,
T ifu>0andd#1,
Inu ifu>0andd=1.

G(u) =

Using the above theorem one can see that the functional Jy is well defined.

Lemma 6.1.22. For each X € (0,A], (Py\) admits a weak solution provided (K1) and (K2)
holds.

Proof. We use the classical Perron’s method to proof the existence of a solution. Let u = u,
where u, is defined in Lemma Then w is a strict subsolution of (Py). Let X € (0,A)
then it is easy to see that wy/ is a solution of (Py/) and forms a supersolution of (Py). Note
that such a )\ exists because of definition of A. Let w = uy and M := {u € X¢ | u < u < u}.
Then M is closed, convex and Jy is coercive and weakly semi lower continuous on M. It
implies that w, is a sequence in M such that Jy(u,) — ulél{/[ Jx(u) > —oo when n — oo and
up < w. It implies {u,} is bounded in Xy. Then there exists uy € M such that (up to a
subsequence) u, — uy weakly in X.

Claim: u) is weak solution of (Py).

For ¢ € Xy and ¢ > 0 small enough, define v. = uy + ¢ — ¢ + ¢ € M, where

¢° = (uy +e¢—u)" and ¢. = (uy +e¢ —u)~

By construction ¢°, ¢. € Xog N L*((—1,1)) and uy + t(v- — uy) € M for each ¢t € (0,1), we

have

0 < lim Ia(uy + t(ve —up)) — Ja(uy)
t—0t t
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Chapter 6. Non-local singular problem

S

1 1
= / (ve —up)(—=A)2uy do — / u;‘s(vE —uy) dr — flupn)(ve —uy) do.
Q -1 -1

Now using the same arguments as in proof of [150, Proposition 3.2] coupled with Lemma
6.1.23| and for the case A = A using the same assertions as in [150, Theorem 3.4], we have
desired result. O

Lemma 6.1.23. Let A € (0,A) and uy denotes the weak solution of (Py) obtained in Lemma
6.1.29. Then uy is a local minimum of the functional J).

Proof. The proof follows by using the same arguments as in [150, Lemma 3.3](see [104]), one

can proof that u) is local minimum of the functional Jy in Xy topology. ]

Lemma 6.1.24. There exists a positive weak solution of (Py) and any weak solution of (Py)

for XA € (0,A], belongs to L*((—1,1)) N C’gg((—l, 1)) where ¢s is defined in (6.1.4)).
Proof. See 150, Theorem 3.4, Proposition 4.1]. O

The concern of this section is to prove the existence of a second solution for (Py). Let
uy is the first weak solution of (P)) in Xy topology obtained in [6.1.22] Now, consider the
following problem, which is (P)) translated by uy:

(ﬁ)\) { (—A)%u :A((U+UA)5_('1,L)\)5—|—f(u—‘rU)\)—f(u/\)),u>0 in (_1’1),
u =0inR\ (-1,1).

For z € (—1,1), define

t

Flx,5) = (f(s +ur@)) = f(u(@))) xar (s), Fla,t) = | flz,s) ds.

Let Jy : Xo — R be the energy functional associated with (Py) defined as

7 _M— 1~ajuz r — 1~xux x
=" A/_1G<,<>>d 3 [ Pl de

~1
Remark 6.1.25. (i) By Theorem it can be easily shown that the map Xo > u —
1
2Hu\2—)\/ F(z,u(z)) dr € R is a C' map. The map X Bu%)\/ G(x,u(z)) dr €
1

R is locally Lipschitz. Therefore, Jy is a sum of a C* and a Lipschitz functional. Hence,
the generalized derivative of Jy exist for all u € Xy and given by

J3(u, ¢) = lim sup Ja(u+h+t¢) — Ja(u+h)

, o € Xp.
h—0¢—0 t ¢ 0

We say u is a generalized critical point if jg(u, ¢) >0 for all ¢ € Xy.
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6.1.4. Global multiplicity result via variational method

(7i) For any u € Xy,

Ia(ut +uy) = Ja(uy) + Jx(u) — ||u;|2 - 4/R/RW dady.

Since uy is a local minimum of Jy, it follows that 0 is a local minimum of Jy in Xo-
topology.
(iii) One can easily prove that if u > 0 then

1

N 1
Rlwo) < o+ uo) =2 [ rw ode=x [ flun+ o do

-1
Now we will use the machinery of mountain pass Lemma and Ekeland variational principle
to prove the existence of second solution. We will show the existence of solution in the

following cone:
T={ueXp:u>0aein (—1,1)}.

Since 0 is local minimum of Jy in X topology, there exists a pg > 0 such that Jy(0) < J)(u)
provided ||u|| < pp. We distinguish two cases:

(ZA) (Zero Altitude): inf{Jy(u) : u e T, |jul|=p}=Jx(0)=0 forall p € (0, po).
(MP) (Mountain Pass) : There exists p; € (0, po) such that inf{Jy(u) : ue T |lul| = p1} >
12(0).

Lemma 6.1.26. Let (ZA) holds for some A € (0,A). Then there exists a non-trivial gener-
alized critical point vy € T for Jy.

Proof. Fix p € (0,po). By using the definition of infimum of there exist {u,} C T with
|un|l = p and Jy(un) < 1/n. Let 0 < 0 < $min{py — p, p} and define the set

A={ueT : p—o<|ul|<p+o}

which is closed in Xj and Jy is continuous on A. Now using the Ekeland Variational principle,
we obtain the existence of a sequence {v,} € A such that
j < la - < l7

A(un) = un = enll < 5 (6.1.31)
A(2) + |z — vy for all z € A.
For a given z € T, we can choose € > 0 such that v, + (v — v,) € A. From (6.1.31)), we
obtain that

In(vn +e(z —vp)) — Ja(vn)
€

1
ST
n
Taking € — 07 we get

~ 1
TN, 2 —vp) > ——||z — v,]| for all z € A.
n
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Chapter 6. Non-local singular problem

From the remark [6.1.25] we deduce that for any z € A,

1 1
1
(UA + Un)_6(z - vn) dx — )‘/ f(u)\ + Un)(z - Un) dx > **HZ - vn”
~1 n

(6.1.32)

(uA+Un,zvn>)\/

-1

Since v, is a bounded sequence in Xy therefore, there exists vy € Xy such that v, — wv)
weakly in X as well as almost everywhere in (—1,1). We claim that vy is a weak solution of
(Py). For any ¢ € C°((—1,1)), set

Yne = (vp+e¥)” and 2z = v, + e + Ype = (vy + )" €T,

Hence as a result of (6.1.32]) and the choice of z, we have

1 1
(uy + vn, 2 — vp) —)\/ (u,\+vn)_‘5(5w+wn,€) dx — )\/ flux 4+ vn) (€Y + ) da
—1 -1

1
> —*HEw + ¢n76||'
n

Observe that ¢, . — . = (A + €)™ a.ein (—1,1), || < ely| in (—1,1) and by using
dominated convergence theorem one can easily show that ¢, . — 9. in L™((—1,1)) for all
m > 1. Moreover, 9, . — 1. weakly in X(. Using the same arguments as in [150, Lemma

4.2], we have
(ux + v, e + Une) < (ux +vr, e + ) + on(1). (6.1.33)

By Hardy’s Inequality (See |[162, Corollary 1.4.4.10, p.23]) and dominated convergence theo-

rem,

1 1
/ (ur + 00) (et + ) da — / (- 02) (et ) (6.1.34)

-1

Taking into account the hypothesis (K2), Theorem and Vitali’s convergence theorem,

we get

1 1
/ fluy + o) doe — / fluy + o))t da.
1 —1
Using the mean value Theorem, definition of ¢, . and the fact that f’ > 0, we deduce that

f(u)\ + Un)wn,e < (f(u/\ - 5¢) + f/(gn)(vn + 5¢))wn,6
f(u)\ - 5¢)¢n75 < f(u)\ - 5¢)5W]| € Ll((_L 1))

This on using dominated convergence theorem gives

1 1
[ st udev+ e do o [+ )+ ) da (6.1.35)
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6.1.4. Global multiplicity result via variational method

Using (6.1.33)), (6.1.34) and (6.1.35)), we obtain that

1 1
(ux + v, e + ) — /1(u)\ —i—v,\)*‘s(azp + ) dx — /1 flux 4+ vx) (e + ¢e) dz > 0.

Employing the fact that u) is a weak solution of (Py), we get

1 1
{tr + V2, 1) — /1(% un) 0 de— /1 Flur+ o) da

1

1
~onw) £ [ (o)™ = @) e do 2 [ (Flan o) = ) da

-1

| V

m\)—t m\»—n

~Hon )+ 1 [ (Gt o) = ) D o

’ (6.1.36)
where the last inequality follows using the fact that f is an increasing function and vy > 0
and supp(¢:) =: Q. C (—1,1). Keeping in mind that u;5¢ € LY((-1,1)),

1
2 o) =)t <2 [ e = o).

-1

Furthermore, trivial calculations gives

Lz [ [ @EZ00I0 00

M—MZ

+2// ))(UQ)‘—i_w dmdy+2// " da:dy
¢ Ja. m—m - Joe m—m

Letting £ — 0 in (6.1.36)), we deduce that, for all ¢ € C°((—1,1))

1

1
(ur + vr, ) — / (ux + )% do — / S+ )y do >0

-1

It implies that vy is a generalized critical point. Now we will show that vy #Z 0. Note that
|vnll > max{2p — pp,0} > 0, so it enough to show that v, — vy strongly in Xy. Let z = vy

n (6.1.32),

1 ! _
Jon = o < (an -+ o0 = w0+ lon = vull =X [ (ua - 00) 01 =) d
-1

— )\/11 flun 4+ vp)(vy — vy) dx.

Observe that (uy +v,) % (vy—vp) — 0 as n — 0o a.e on (—1,1), uy ~ ¢s in the neighborhood
of —1 and 1. In consequence of Hardy’s inequality and Holder inequality, for any measurable
set £ C (—1,1) and § > 1, we have

—25

/(u)\ +Un)_6(v/\ - Un) dr < / Uy |U)\ - Un‘ dr <C ¢ o "U)\ - Un| dx
E E

333



Chapter 6. Non-local singular problem

<c / a7 35 =0l g Gy — v 107

Thus in a consequence of Vitali’s convergence theorem f_ll(u)\ + ) 0 (vy — vy) dz — 0.

Rewrite

fux +vp)(ox —vn) = fux +vp)(us +vx) — f(ux +vn)(ux +vn).

Using the same arguments used for (6.1.35)), one can easily show that

1 1
/_1 flun 4+ vp)(upy +vy) doe — /_1 flun +vx)(ux + vy) de.

Let z, = uy + v, and z) = uy + vy then f(z,)z, — f(z\)2zx a.e in (—1,1). Let k be any
integer such that k > ||uy|lec. Using (K2),

z% 1
/ f(zn)zn dx < C 637Zn de <C eQZ%zn dx < C’e_k2/ 632721 dz.
{Zn>k3} {Z,LZkJ} {ank'} 1

By means of the Holder inequality and the relation 22 < 2(u3 + (2, — uy)?), we deduce that

1
12 w2 6v2 12 02 v2
/{ - f(zn)zn do < Ce™® /166 2O dw < Ce ™ [|e%N || o ((—1,1)) Il €° "Nz (-1

(6.1.37)

Now for po small enough, we can choose p’ > 1 such that 6p/||v,] < 12p'pp < m. With the
help of Trudinger-Moser inequality and (6.1.37)), we have |, (on>k) f(zn)zn dox < Ce=* where
C is independent of n. Hence for k large enough,

1
/ f(zn)zn dx < / f(zn)2n dz + Ce™"
-1 {zn<k}

Letting n — oo and k — oo, lim sup/ f(zn)zn dx < / f(zx)zx dx. Using the fact that

n—oo
v, — vy weakly in Xy, we get (uy + vy,vn — vp) — 0 as n — oo. Therefore, from all the

calculations, we obtain that ||vy — v,| — 0 as n — oc. O

Now we will prove the existence of second solution if (MP) holds. Before this we will prove
some preliminary results. We recall the definition of Moser function w, for half-Laplacian,

which is recently given by Takahashi [244].

) (logn)% if |z < %,
1
wn(z) = N —log(n)"zlogl|z| if L <z <1,
0 if x| > 1.

Fix zo € R and r > 0 such that w), (z) = w,(*5*2) has support in (-1, 1). Note that |jw;,[| = 1.
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6.1.4. Global multiplicity result via variational method

Lemma 6.1.27. Assume (K1)-(K3). Then the following holds.

(i) Jr(tw!) — —o0 ast — oo.

(ii) For a suitable o € (—1,1) and r > 0 small enough, sup Jy(tw!) <
t>0

]

Proof. (i) Using (K2), there exist positive constants C; and Cy such that
F’(w,t) > C’le%(uﬂrt)2 — Cy — f(uy)t for t > 0.
Hence for some C' > 0,
I(twh) < £ —CA eéle;IQ r = £ _Chr e
2 B (xo) 2 n

(ii) On the contrary, suppose that there exists a subsequence of N such that sup, o Jj(twl) >
T. That is, % — )\f_ll G(x, tpwn) dz — /\f_l1 F(z,tywy,) dz > . Using (K1), we have

il
5"
Clearly, g(z,s) < 0 for x € (-1,1) and s > 0. For and = € B,(xo), applying Taylor’s

12 1
2 — )\/ G(z,tpwy) dx >
2 M

expansion, §(z,s) = ug% + o(s?). It implies that
A

1 tnwn
/ é(az,tnwn) dx = / G(x,tnwn) do < / / Cs dsdz < Ct%O((logn)_l).
-1 By (o) r(z0) 4O
As a result, we get
t2 > 71— O((logn)™1). (6.1.38)

Since L .J(twh)|i=t, = 0, we get t2 — f_ll gz, tpw! taw! do = A f_ll f(z, tyw! taw! dz. Again
using the fact that |g(z, s)| < Cs, we have

1
/ fx, tpwh)tawr de < t2[1 + O((logn) ™). (6.1.39)
-1
By definition of f and the fact that lwnllzt((=1,1)) = O((log n)_%), we have
1 1
/ [z, thwy tpw, de = / f(uy + tpwy ) tpwy, dz —t,0((log n)fé)
-1 -1

Now we will estimate fil fux + tohw) ) tpw), dx from below. Let p = min)uA. Taking into

B, (zo
account (K1), (K2), definition of w] and (6.1.38)), we have

=

129 in (logn 3
> Ch <,u+ (logn)%> it (los )Q)Qtn(logn)
T

NG

1
/ fux + thwy ) trw, dx > / h(uy + tnw;”t)e(“*“"%ﬁtnwg dx
—1 By (z0)
/ dz
Bz (x0)
q
S Cr —(u+t7";(1ogn)%) 2(u+%(1ogn)%) 42 logn

logn 1 t
2 —~e e e t,(logn)2 (u—i—\/n;r(logn)

[N

.

> 12t (log ) ) —(ut-L2= log m) )t
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Chapter 6. Non-local singular problem

Thus we obtain
1 1 n 1 q
/ Fla, tawl ) tnw!, da = C2W oM —(ut g m)! 4 6166 )=5).  (6.1.40)
—1

Since (logn) — oo and ¢, is bounded away from 0 as n — oo, we obtain a contradiction from
(6.1.39) and (6.1.40). O

Lemma 6.1.28. Let {uy : ||uk|| = 1} be a sequence of Xo functions converging weakly to a

nonzero function u. Then for all p < (1 — |jul|)~!,

1
2
sup/ ™l dr < 0.
keNJ -1

Proof. See [149, Lemma 4.4]. m

Lemma 6.1.29. Assume (K1)-(K3) and fit X € (0,A).Let (MP) holds then there exists a

nontrivial generalized critical point vy of Jy.

Proof. Define the complete metric space

Y ={ne(C0,1, T) : n(0) =0, [n(W)] > pr, Ja(n(1)) < Jr(0) = 0},

with metric space defined as d(n,n,) = tm[éa}l(]{Hn(t) —n/'(t)} for all p,n € Y. Fix zg € (—1,1)
€10,
and 7 > 0 such that Lemma [6.1.27| (ii) holds. Now choose o > 1 such that Jy(tow]) < 0.

Note that existence of ¢y holds by Lemma [6.1.27| (i). Let n(t) = ttow], t > 0. Thenn € Y.
Define the mountain-pass critical level

Yo = nf i IA(n(t)).

From Lemma|6.1.27, we have 0 < 79 < 5. Define ¥ : X — R as ¥(n) = In[ax} I(n(t), ney.
t€f0,1
Applying the Ekeland’s variational principle, we get a sequence {n;} C Y such that

1 1
V() <o+ and W) < W(n) + 2 lln —nell, for alln €Y.
Denote Z = {t € (0,1) : Jx(n(t)) = maXe|o,1] Jrn(mk(s))}. Now using the arguments and
assertions as in [150, Lemma 4.4], there exist t;, € Zj such that if vy = ng(tx), then

(ii) Ja(vg) = 70 as k — oo.

Taking w = uy + 2v, in (i), we obtain,

1 ! _
—pmax{1, fluy + v} < |u>\—|—vk||2—)\/ (x4 0)' =" + Flun +vk)(ur + vg)) da
-1

(6.1.41)
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6.1.4. Global multiplicity result via variational method

Fix ¢ > 0, using (K4), then there exists C. > 0 such that

_ ux+vk
Fa,u) < /0 £(s) ds — F(ux)or < M(f(ux +vg) + 1) — F(un)ug
<ef(ux+vg)(ur +vk) + Ce — fun)vg

Now using the fact that G(z,v;) < 0, we have

1

5“%\\2 = Aef(un + o) (ur + o) = Ce + f(ur)vr < 70 + ox(1). (6.1.42)
From (6.1.41)) and (6.1.42)), we have

1 1 €
(2 _ a) loll? < C + /\/ o da+ a2+ 5 ma(L, ut A+ g}
—1

With the help of Hardy’s inequality, we obtain that {v;} is a bounded sequence in T'. There-

fore, there exists a vy € T such that vy — vy in Xy. From (i), we have
5 1
TR (w0 —v) = (1 o), (6.1.43)

for all w € T. Using the same assertions and arguments as in proof of Lemma[6.1.26] one can

easily prove that vy is a generalized critical point of PA From m hm sup / flux +
vg)(ux + vg) < oo. Hence by Vitali’s convergence theorem, /1 flux +vg) do — /1 fluy +
vy) dz. Now using (K4) and genralized dominated convergence theorem / 11 F(z,v) do —
/ 11 F (x,vy) dz. Using the fact that uy ~ ¢5, Hardy’s inequality and similar arguments used

1 1
above we can easily prove that / G(z,v) dx — / G(z,vy) dz. Since v, — vy weakly in
-1 -1
X07

J(vy) < liminf Jy(vg) = 7.
k—o0

Since klgrolo jA(vk) = = and if vy — vy strongly in Xy then 0 < vg = J}\(v,\) implies vy # 0.
Therefore, to show vy # 0, it is enough to show that vy — vy strongly in Xg. Let if possible
then vy, - vy in Xg then Jy(vy) < 70, we can assume Jy(vy) = 0 otherwise vy # 0. From
Remark we have Jy(uy 4+ vy) = Ja(uy). We can choose € > 0 small enough so that

(0 + Ia(ux + ) = Ja(un)) =01 +¢) < (6.1.44)

T
5
Define © = /\f_l1 F(uy +v)) + G(uy + vy) dz. Using the Remark [6.1.25, we havia I (vg) =
In(wa+vg) —J — Auy). Therefore, 2(y0+ 0O + Jx(uy)) = klim l|ux + vk ||%. Since Jy(vy) < 70
—00
then |juy 4 va]|?> < lim |juy 4 vg]/?. Tt gives that
k—o00

0 < [luy +vall? < 2(y0 + © + Jx(uy)). (6.1.45)
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Taking into account (6.1.44]), (6.1.45) and the fact that Jy(uy + vy) = %HU)\ +uy|]2 — O, we
deduce that

(1 + E)Hu,\ + UkHZ <

~1
m(70 + O + Ja(un)) Y PR (%0
’YO‘F@—FJ)\(U)\)-F%HU)\—}—U)\”Q 2(’YO+@+J)\(U>\))

Now taking into mind (|6.1.45]), we can choose p > 1 such that

1 2 2 -1
Gtelmtul? _(, mrwl )
P 2(v0 +© + Jx(un))

1 1 Trp(U)\Jrv;c)2
Therefore, from Lemma|6.1.28] lim sup/ (o) (uatv)® gp < lim Sup/ e lutul® dy < oo.
k—oo -1 k—o0 -1

We write
1 1 1

/ fluy + vg)vg d$:/ flun + i) (uy + vg) daz—/ flun 4+ vg)uy de.
-1 -1 -1

From (K2), given €1 < ¢ and N € N, for some C' > 0, we have

1
/_lf(u/\ + vg) (ux + vy) do = </yng+/yk>N> flux + vi)(ux + vg) do

< / fluy +v)(uy + vg) de + C e(ten)(ua+ve)® 7.
Uk:SN Uk;>N

< / flun 4+ vg)(uy + vg) do + Cele1—eN.
v <N

Now letting £k — oo and then N — oo, we obtain,
1 1
limsup/ flux +vg)(uy +vg) de < / flux 4+ va)(ux +vy) de.
k—o0 -1 -1

Hence

1
lim sup/ fux +vg)(vk — vy) do < 0. (6.1.46)
-1

k—oo

On the other hand, since we assume v — vy then by using Remark [6.1.25| (6.1.43]) with

w = vy and the fact that v, — vy, we have

1
0<v<|uy—wi]? <o(1) — /\/ f(uy + vg)(va — vg) dz. (6.1.47)
-1
From (6.1.46)) and (6.1.47)), we obtain contradiction. Therefore, vy # 0. O

Proof of Theorem [6.1.15¢ The proof follows from [6.1.22] Lemma [6.1.24] Lemma [6.1.26
along with Lemma [6.1.29] The proof of Holder regularity follows straightaway from Lemma

.1.24) an A eorem 1.2| wit =0.
6.1.24] and [6, Th 1.2] hpg=0 O
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6.2. Generalization of symmetry results to fractional Laplacian operator

Proof of Remark [6.1.14; Suppose there exists a sequence (Ag,uy) of solutions in S N
((0,A) x Co([~1,1])) such that A\, — Ay and |lug||pe((—1,1)) — o0 as k — 0o. Now we claim
that f_ll g(u) < C where C' is independent of k. Suppose by contradiction that C' depends
upon k such that C'(k) — oo as k — oo. Since g(uy) € LiS.((—1,1)\ {0}) uniformly in &, then

for each k € N there exists a sequence {¢} such that e, — 0,
/ g(ug) de =n — o0 as k — oo. (6.1.48)
Br(0)\Be;, (0)

and a sequence of classical solutions {vy} such that vy € L>((—1,1))NC*(R) (see Proposition
1.1 in [226]) satisfying

1 .
(=A)Zvp = X(—11)\B., ()9(Ukr), ve 20 in (=1,1),
ve =0 in R\ (=1,1).

Since limg_o(ug + ®)(x) = +oo then for each k there exists a sequence {ry} such that
rr, — 0 as k — oo and up + ¢ > vy, in By, (0) \ {0}. Then by weak comparison principle we
obtain uy + ® > vy in R™\ {0}.

Since limy_,, G(x,y) = 400 then there exists 79 > 0 such that G(z,y) > 1 in z,y € B,,(0).
Now by using we obtain that,

1
v(z) = /1G(l’,y)X(_Ln\Bek(O)g(u) dy :/( - G(z,y)g(u) dy

\Bc,, (0)
> / g(u) =n — oo
Brg (0)\Be, (0)

and then it implies uy + ® = 400 in By, (0) which is not possible. Therefore f_ll g(ug) < C
where C' is independent of k. Then combining with the fact that u; have bounded energy
and G(t) < g(t) for large t, we obtain [Jug||x, < C2 where C5 is independent of k. Then there
exists @; such that ux — @; in Xy and by compact embedding X¢ < L%((—1,1)), we obtain
i1 = u € Xo where u is the singular solution of with p = 0. Then by theorem
and Remark 1.5 in |227], we obtain g(u) € LP((—1,1)) and v € L*>°((—1, 1)), which is absurd.
This completes the proof of Remark O

6.2 Generalization of symmetry results to fractional Laplacian operator

In this section, we are interested in the study of symmetry of positive solutions to a class of

singular semilinear elliptic problem whose prototype is

) {(—_A)Su=ulg+f(u),u>o in %
u=0 in R\ €,

where 0 < s <1, N > 2s, Q = B.(0) C RN, § > 0, f(u) is a locally Lipschitz function.
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Chapter 6. Non-local singular problem

6.2.1 Main results

Theorem 6.2.1. Let § > 0 and f be a locally Lipschitz function. Then a classical solution u

to (P) is radially symmetric and strictly decreasing in |z|.

The proof of Theorem involves the moving plane method adapted in the non local
setting. In this regard, as in the local case, we need a maximum principle in narrow domains
and a strong maximum principle to hold for equations of the type (P). The extension of
these key tools is not straighforward due to the non local nature of (—A)® and the presence
of a singular nonlinearity in the right hand side. Besides this, we will take advantage of
monotonicity properties of the nonlinear operator (—A)%u — % and borrow some "local”
maximum principle shown in [175]. In this regard, we introduce the following definitions:
Let Ay = {z = (z1,22,...,75) € RN : 21 = \} and

s {reRN 12y <A} if A <0,
ATl eRY iz > A} if A0

for some A € R and Dy (x) := (2A — 21,22, ...,2nN) be the reflection of the point z about Ay
and vy (z) := ux(x) — u(x) where uy(x) = u(Dy(z)).

Proof. Let u be a classical solution of (P). To prove radial symmetry and strict monotonicity
of the solution w, it is enough to prove vy(x) > 0 for all x € B,(0) N Xy and A € (—r,7), by
moving hyperplane Ay in a fixed direction. Since, if vy(z) > 0 forall A € (—r,r) and = € B,(0)
holds then we can rotate and move the hyperplane A in the direction close to fixed direction
to get the desired result. Since A is independent from the direction of movement of hyperplane
Ay, so we fix v(zg) = (1,0,...,0) (without loss of generality) as the direction of movement of
hyperplane Ay where v denotes the unit outward normal vector at g = (r,0,...,0) € dB,(0).
We divide the proof of above assertion into the following claims:

Claim 1: vy(z) > 0 for all x € B,(0) N Xy and |A| € [r1,7) for some 1 > 0:

Suppose that vy < 0 in a region P C X\ N B, for some r — ¢; < |\| < r and ¢; > 0. Then
by using Poincaré inequality and since f is a Lipschitz function with Lipschitz constant Cf,

in the neighborhood of zy , we obtain

L= u)) < (areu o = [ (4= s + 70 - fa) (o)* do

ST NG

< Cu [ (fu=w)")? do < Claiamn(P)) |

(MY

s 2
((—A)i(u - uA)Jr) dx.
Then by choosing €; > 0 small enough such that C(diam(P)) < 1, one has (—v))T =
(u —uy)*t = 0. Now by rotating and moving the hyperplane A, in a direction close to the

outward normal v in any neighborhood of xg € 92 and repeating the above steps by taking
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into account that z¢ € 9B,(0), v(

obtain, vy(x) > 0 for all x € B,(0) \ By, (0) and |A| € [r1,r) for some r; > 0.

Claim 2: vy >0 for all z € B,(0) N X, and |A| € [0,71):

From Claim 1, we can assume that A = r; be the smallest value such that 0 < r; < r |,
vy, > 01in B, \ By, and satisfies

xo) is arbitrary and by using continuity of solution u we

1 1 )
o u16”1 (.T}) ’U,é(x) = f(uﬁ) - f(u) in B, \ B,,. (6.2.1)

(=A) v, (2)

Step 1: essinfrv,, > 0 for every compact subset R C B, \ B,,.

To prove this, we adapt in our situation the maximum principles in non-local setting i.e.
Proposition 3.5 (maximum principle in narrow domains) and Proposition 3.6 (strong maxi-
mum principle) in [175]. Since vy, is non-trivial in B, \ B, then it is enough to prove that
ess inf Brg () Ury > 0 for all z* € B, \ B,, and rg sufficiently small. From Claim 1, v,, > 0
and vy, () = —vp, (Dy,(x)) in X, then there exists a bounded set Q C ¥,, with z* ¢ @ and
fi := infguv,, > 0. In the spirit of Lemma 2.1 in [175], we fix 79 such that U = By, (z*)
and 0 < rg < 1 dist(z*,Q U (RY \ £,))) and A (U) > CL(f) where CL(f) is the Lipschitz
constant of f and A\ (U) is the first eigenvalue of (—A)® in U. Now, we construct a subsolution
of (—A)*a = ¢(x)u in U where

S (ury)—f(w) s .
c(x) _ 1W1 - (Out(1—0)ur, )31 if Ury 75 0,
0 it v, =0
for some 6 € (0,1). Define k : RN — R, k(z) = m(z) — m(Dy, (2)) + a[lg(z) — 1o(Dr, (2))]
with m € C2(RM), 0 < m < 1 on R?, m(x) = 1 in B,,(z*), m(x) = 0 in RN \ By, (z*)
and satisfies k(D,,(z)) = —k(z) on £,,, k =01in 3, \ (UUQ) and k = a on @ where the
choice of a will be fixed later. Then by Proposition 2.3 in [175] we obtain, ((—A)*m, ) <
Cil¥ll iy for ¢ € 7, 9 > 0 and C1 = C1(m) independent of 9. Since ¢ = 0 in R"N \ U,
(UNQ)U (UMD (Q) = 0 and m(Dy, (2))(x) = To(e)b(x) = Lp, @(@)(z) = 0 in BV,
Then we have ((=A)%k,¢) < Coll9Y|| 11y where

1 1 1
Ca::C+sup/ dy—ainf/( — )dy.
weu Jp, ) |2 — yI? ecU Jo \|z —y|* |z —Dr(y)?

Since |z — y| < |v — Dy, (y)| for all z,y € X,,, U C ¥, and then continuity of the function

T~ fQ <|zfy|2 - \foil (y)|2) dy implies C, < —CL(f), by taking a sufficiently large. Since
vp, > 0 in U, we obtain k is the required subsolution in U. Then Proposition 3.5 in [175],
implies 0y, () := vy, () — %k(a}) > 0 a.e. in U which further gives v,, (z) > %k(m) = % >0
a.e. in By, (z*) and completes the proof of Step 1.

Step 2: r; =0.

To prove this, we proceed by contradiction by assuming r; > 0. Since r; is the smallest

value such that v,, > 0 in ¥, , so we will prove that for a small ¢ > 0 we have v,,_ > 0 in
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Y —e. This will provide the required contradiction that 71 is the smallest value. Fix v (to
be determined later) and let S € X,, such that |3, \ S| < 7. Then by using Claim 1 and
continuity of solution we get v,,_ > 0 in S for e small enough. Since v, . satisfies in
Yri—e \ S then by using |z —y| < |x — Dy, —c(y)| for all z,y € 3y, ¢, Dy —(R\ Xy, —¢) = X, —¢
such that supp(w) C ¥,,_¢ \ S as a test function, then after

and taking w := 1y, . v, _,

some straightforward computations we obtain

—AYw,w) + ((—A)°vp, —,w) = =2 Y) + v —e(y)] dv dx
(=) w,w0) + (=) vy e W),
Sy JRP y\ s
<w Ory—e(y)
:_2/ / S : dy dz < 0.
Er—e VEr —c < |N+28 ‘x*Dr1fe(y)|N+25

(6.2.2)

Let A7, be the first eigenvalue of (—=A)* in ¥,, .\ S and by mean value theorem together
with (6.2.2)) we get, for some 6 € (0,1)

NL(S e\ 9) /E e e S (A W) = (A v
T]—€

61}7‘176127-1,5\5 ’U;,e —
- \s (Ou+ (1= 0)uy, )2t dz + \s(_f(u”_ﬁ) + fu)ls, a5 U do
7‘1 € Tl €

< CL/ jor 2 do
Sri_\S

T]1—€

Then by Lemma 2.1 in [175]) and choosing 7 small enough, we obtain v,,_ > 0 in 3, _.
Then r; = 0 and repeating the proof by moving hyperplane Ay as in Claim 1 we obtain u is
radially symmetric. Now Claim 1 gives further the strict monotonicity property. The proof

is now complete. ]

Next, we apply this main result in a different situation: Consider the problem

(~Ayu=p(k+fw), u>0 nQ
@ {u—O in RV \ O

where € is a bounded domain with C? boundary regularity. This concerns the existence of
uniform a priori bound for classical solutions to (@) when f has a subcritical growth. In the
spirit of the work [121], we combine the monotonicity property of solutions near the boundary

of Q and a blow up technique with the help of a Liouville theorem. Precisely we prove:

Theorem 6.2.2. Let N > 2s and po > 0. Let u be the classical solution of (Q) with f(u) = uP

forl<p< N+2§ and > pp Then ||ulls < Cy with Cy depending only on 0, p, 2, uo.

Proof. First we suppose that 2 is strictly convex then Claim 1 in Theorem combined

with moving plane method gives boundary estimates and when € is not strictly convex, we
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perform Kelvin transform near any boundary point (see [87], [6]). While, for interior estimates,
we proceed by blow-up analysis. Precisely, assume there exists a sequence of bounded solution
(ur)ken and a sequence of points (zy)ren such that My = sup,cq uk(y) = ug(rg) — oo as k —
oo. Let \g is the sequence of positive numbers (to be determined later) and y = m € Q.

From boundary estlmates notice that dlSt(:L’k, 0€2) > ¢ > 0 uniformly in k. Deﬁne the blow

up function v (y) = )\p ug () where /\” 1Mk = 1. We noticed that Ay — 0 as k — oo (since
Mj; — o0) and for large k, vg(y) is well defined in B (0) and supyep ., (o) vk(y) = v k0)=1
k s

where 0 < 2m < i%f dist(x, 0€2). Accordingly, v, satisfies

2s(p+d)

p—1
Ak

Uk

(—A) v = py

+vk in Bm

Now passing to the limits we obtain, vy — v in Cj (RY) and satisfies (—A)%v = vP in RY,v(0)

1 and by using Liouville Theorem (see [87, Theorem 4]), we get a contradiction. O

The second application concerns the asymptotic behaviour of large solutions with respect to
the parameter p. Let s = 3, n =1, Q@ = B,(0) and f(u) = h(u) exp(u®) for some 1 < o < 2
where h satisfies lim; o0 2(t)e™" = 0 and lim;_,o0 h(t)ef’” = oo for any € > 0. Then we have

the following result:

Theorem 6.2.3. Let o > 0 and u be the classical solution of (Q) for some p > ug. Then
for any € > 0, the following holds

lull oo B\ B < C2(0,m, €, 10).

In addition, we have the following blow up profile: Let {ur} be a sequence of solutions for the

problem (Q) such that ||ug||peo(p,) — 00, pg — fi with ji > 0,

(i) There exists a singular solution @ in C} (B, \{0}) such that up,—a — 0 in L;S.(B,\{0}).
(ii) If (ug)ren has uniform bounded energy and F(t) = O(f(t)) ast — oo where F(t) is the
antiderivative of f, then i = 0.

From Theorem we know that the solutions are radial and radially decreasing, from

this we only need to study the behavior near an isolated singularity. For that we exploit the

Theorem [6.1.121

Proof. Using Theorem[6.2.1] we obtain every classical solution of u of (Q) is radially symmetric
and decreasing with respect to |x|. Then for every € > 0 there exists a; > 0 such that for
any * € B, \ Be, we have a measurable set Z. satisfying |Z > a1, Z. C B, \ Bc and
u(y) > u(x), ¥y € Be. Then by multipying 11 (eigenfunction with respect to first eigenvalue
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w1 of (—A)® in B,) to the equation satisfied by u, we obtain

% da +/ exp(u®)Yy dx = m/ uy

and for any m > %, there exists a C' > 0, mt — C < t% + exp(t*), t € RT. Then by
using u(y) > u(z), Vy € Be and |Z,| > «y it implies that u(z) < Cy for all z € B, \ Be
where C5 is independent of u. Now we prove the blow up profile. From Theorem and
above estimates, we know that (uy)x blows up only at 0. We deduce by regularity theory (see
[6]) that the sequence (ug)r converge to a singular solution u uniformly in B, \ {0}. From
Theorem and the asymptotic growth of f, we prove that u is a singular solution of (Q).
Finally assume that (ug)x has uniform bounded energy. Then we easily get that u belongs
to the energy space and from Moser-Trudinger inequality (see [247] or [148, Lemma 2.1]) and
Remark 1.5 in [227] we obtain u is bounded which provides a contradiction and completes
the proof. O

6.3 Non-local fractional Laplacian singular problem with singular weights

In this part, we study the following nonlinear fractional elliptic and singular problem
_ Ki(z)

(P) g ul
u=20 in RV \ Q

,u>0  in €

where Q C R¥ is a smooth bounded domain with C*! boundary, s € (0,1), p € (1, +00),
v > 0 and Kj satisfies the growth condition: for any x € 2

C1
()

< Ks(z) <

6.3.1
for some 0 € [0, sp), where, for any = € Q, d(x) = dist(x, 0Q) = inf coq |r — y|. The operator

(—A)f7 is known as fractional p-Laplacian operator and defined as

s o [u(z) —u(y)P~?
(FA)pu =2y Be() lr—y|NTep a

with the notation [a — b]P~! = |a — bP~2(a — b).

In the case p # 2, the problem (P) is a non-linear and non-local one. The operator (—A)‘;} is
degenerate if p > 2 and singular if p < 2. The operator (—A); is the nonlocal analogue of p-
Laplacian operator in the sense that (1—s)(—=A); — (=A), as s — 17 and for p = 2, it reduces
to fractional Laplacian operator which has a long history in mathematics. In particular, it
is known as an infintesimal generator of Lévy stable diffusion process in probability and has
several appearance in real life models in phase transitions, crystal dislocations, anamalous

diffusion, material science, water ets, etc (see [74,171] and their reference within).
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6.3.1 Function spaces and main results

Let © be bounded domain and for a measurable function u : RY — R, denote

W, .\
(//Rw |x—y|N+sp v y)

WeP(RY) := {u € LP(RY) : [u]sp < 00}

Define

endowed with the norm

[ullspry = llull Lo@yy + [ulsp

where |||, denote the LP norm. We also define
WeP(Q) = {u € W([RN) : u =0 ae. in RN\ Q}

endowed with the norm

[l

sp = [u]s,zr

We can equivalently define W;* as the closure of C°(Q) in the norm [.]5,, with continuous
boundary of the domain of €2 (see Theorem 6, [126]) where

C(Q) :={f:RY = R: f e C®°RY) and supp(f) C w € Q}.
We also define
WoPQ) ={u: Q=R |ue LP(w)}, [ulspw < 00, for all w €@ N}

where the localized Gagliardo seminorm is defined as

)P 1/p
5,pw +— (// |l’— ‘NJrsp dl‘dy) .

Definition 6.3.1. A function u € WP (Q) is said to be a weak subsolution (resp. supersolu-

tion) of (P), if
u® € WiP(Q) for some k> 1 and i%fu >0 for all K € )

and

u(y)P~ (6(x) - o(y)) Ks(x)
//sz |x T V) 4z dy < (resp. >) ) iivqﬁ dx
forallg € T= ) WyP(Q).
Qe

A function which is both sub and supersolution of (P) is called a weak solution to (P).
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By virtue of the nonlinearity of the operator and the absence of integration by parts formula,
such a notion of solution is considered. Before, stating our main results, we state some

preliminary results proved in [66L(78]:
Proposition 6.3.1. (Lemma 3.5, [78]) For e >0 and ¢ > 1. Set
SEi={(z,y) :x > e,y >0}, SY:={(x,y) :2 >0,y > €}

Then
|29 — 9| > 17z — y| for all (z,y) € STUSY.

Proposition 6.3.2. (Lemma 3.3, [66]) Let g € LY(2) with g > % and u € W5P(Q)NL>®()

satisfying
u(y)]P(d(x) — o(y))
//RQN |x—y|N+5P Y dxdy:/g(;ﬁdx

for all g € WP (). Then, for every C* convex function ® : R — R, the composition w = ®ou

satisfies

W) ($(e) — o(3) o
//R2N ’ZE — |N+sp dr dy < /Qg\q) (u)|p () (u)qb dzx.

for all nonnegative functions ¢ € WP (Q).

Having in mind Proposition and the condition u® € W3*(Q2), k > 1 in definition

u satisfies the following definition of the boundary datum (see Proposition 1.5 in [78]):

Definition 6.3.2. We say that a function v = 0 in RN \ Q satisfies u < 0 on 98 in sense
that for e >0, (u—€e)t € WiP(Q).

For a fixed parameter € > 0, we define a sequence of function K s : RY 5 R, as

K s(z) =

)

_1 -1
(K 5(%)4—61?:5 )70 ifzeQ,
0 else,

and K ; is an increasing function as € | 0, K. 5 — K5 a.e. in () and there exist two positive

constants C3, C4 such that, for any = € €Q,

Cg C4
ytp—1 0 = K ( ) ytp—1 A
(d(x) + e =3 ) (d(;v) + € =3 )

Define the approximated problem as

(6.3.2)

() (=A)yu= m in §,

u = in RV \ Q.
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Proposition 6.3.3. For any ¢ > 0 and v > 0, there exists a unique weak solution u. €
WP (Q) N C%U Q) of the problem (P7) i.e.

ﬂ=mw»wwWﬂwwwm»M@:/Kw@¢m (6.3.3)
3 [ 3

o — gl (ute

for all ¢ € W5P(Q) and for some y1 € (0,1). Moreover, the sequence {uc}eso satisfies ue > 0
in €,

Ue, () S uey () a.e. € Q and €3 < €1

and for any Q' € Q, there exists 0 = o(Q') > 0 such that for any e € (0,1):

o <ui(z) <u(z) ae. €.

Proof. The proof follows from Proposition 2.3, Lemma 2.4 in [78] and Theorem 1.1 in [172].
O

Now we describe our main results. To prove the uniqueness and nonexistence result, we

establish the following comparison principle:

Theorem 6.3.1. For 0 < 4§ <1+ s— %D, v >0, let u be a subsolution of (P) and v be a
supersolution of (P) in the sense of definition[6.5.1 Then u < ¥ a.e. in .

Next, we state the existence result:

Theorem 6.3.2. Let Q be a bounded domain with Lipschitz boundary 02 and & € (0, sp).
Then,

(i) for § — s(1 —~) < 0, then there exists a minimal weak solution u € Wy' () of the
problem (P);

(ii) for 6 —s(1 —=) > 0, there exist a minimal weak solution w and a constant 6y such that
—1
u? € WEP(Q) if 0 > 0y and 6y > max {1, W,A}
p

.— (sp=D(p=1+7)
’U}h@'f’@ A = W

As a consequence of comparison principle, we have the following uniqueness and nonexistence

result:

Corollary 6.3.1. For 0 < § < 1+ s — %, the minimal weak solution u is a unique weak

solution of the problem (P).

Theorem 6.3.3. Let § > sp. Then there doesn’t exist any weak solution of the problem (P)
in the sense of definition [6.3.1]
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Now, we state the Holder and optimal Sobolev regularity results:

Theorem 6.3.4. Let Q be a bounded domain with C*' boundary and u be the minimal weak
solution of (P). Then there exist constant C1,C2 >0 and 0 < wy; < s, 0 < wy < S_f 51
that

such

(i) if 0 < g + v <1, then C1d°* < u < Cod®€ in Q and for every e > 0

C*“(RN) if 2<p <o,
C' (RYN)  if 1<p<2.

Ly e S (sp=9) (sp=6)
(i) if S+ > 1 then Crd =1 < u < Cod7+p=1 in Q and

e (WWPWRM if 2<p< oo,
Cw2(RY) if 1<p<2.

Corollary 6.3.2. For g +~ > 1 and Q be a bounded domain with CY' boundary. Then the

minimal weak solution u of the problem (P) has the optimal Sobolev regularity:
uw € WP (Q) if and only if A <1

and

u? € WP(Q) if and only if 0> A > 1.

Remark 6.3.1. In case of 6 = 0 and v > 0, we extend the Sobolev reqularity of minimal weak
solution as compared to the Sobolev regularity in Theorem 3.6 in [78]. Precisely, u € WP (Q)
when v <1 ory>1and A <1, and v’ € Wi*(Q) for p> A wheny > 1 and A > 1

6.3.2 Comparison principle and existence result

In this section, we prove the weak comparison principle and existence result concerning the
problem (P).

Proof of Theorem The proof is almost identical as the proofs of Lemma 4.1 and
Theorem 4.2 in [78]. For the reader’s convenience, we precise some details to explain the
restriction on d. More precisely, we need a minimizer belonging to £ := {¢ € W5*(Q2) : 0 <
¢ < v a.e. in Q} of the following energy functional defined on W5 (Q) as, for € > 0

‘P
//sz \x— ‘N+5p dx dy — Kg ) dx

where G, is the primitive such that G.(1) = 0 of the function g. defined by

ge(t) = { min{tlw%} if t >0,

1 if t <0.

€
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Let {w,} C WyP () be such that w, — w in WJ*(Q). Let v € (0,1) small enough such
that 1;% +4 + 1 =1 where ¢ < p! = NA_[’;p if N > spand (s(1 —v) —0)r > —1 (since
d0<1+s— %)
Hence z + d*1=")=%(z) € L"(R) and by using Holder and Hardy inequalities (see Theorem
1.4.4.4 and Corollary 1.4.4.10 in [162]), we obtain
1-v
i ’wéti(a;)w’ dr — /Q (w;(x)w) oy, — w]?d* 0= () d

< Cllwn = wlls3” llwn = w][ oy

for some constant C' > 0 independent of w,, and w.

Since WP(Q) is compactly embedded in L(Q) for ¢ < p%, ||wy, — w]|sp is uniformly bounded
in n and [Jw, — w||paq) — 0 as n — oco.

Finally, gathering the lower semicontinuity of [.]s, and G, globally Lipschitz, we deduce that
Je is weakly lower semicontinuous in W’ (Q2) and admits a minimizer wg on L.

The rest of the proof follows exactly the proofs of Lemma 4.1 and Theorem 4.2 in [78] and

we obtain

u < wy < in Q.

By following the same idea of proof, we can prove it for v = 0. O

Now we prove our existence and uniqueness result:

Proof of Theorem Let ue € WyP(Q) be the weak solution of (PY). Adapting the
proofs of Theorem 3.2 and 3.6 in 78], it is sufficient to verify the sequences {uc}. in the case
§ —s(1 —v) <0 and {uf} for a suitable parameter § > 1 in the case § — s(1 — ) > 0 are
bounded in W;”(£2) and the convergence of the right-hand side in (6.3.3).

Case 1: § —s(1 —) <0.

The condition implies v < 1 hence taking ¢ = u, in and applying Holder and Hardy
inequalities (see Theorem 1.4.4.4 and Corollary 1.4.4.10 in [162]) , we obtain

Ue

1=y Ue 11— _
iy <G [ 0 0 (Z5) AT <O 63

which implies ||ue||sp < C < o0.
Case 2: 0 —s(1—7) >0
Let ® : R, — R, be the function defined as ®(t) = t? for some

-1
0 >max{1,W,A}
p
€,0

For any € > 0, choosing g = Hes ¢ L>(Q) and w = ® o u, in Proposition [6.3.2), we obtain

(uete)?
Ue)(x) — P (ue P=l(g(z) — 6,0\ / —2y
//Rw [P(ue) () q)|i_)(yy|3\]f+sp(¢( ) — d(y)) da dyg/Qm@ (ue)|P 2% (ue)¢ dx

(6.3.5)
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for all nonnegative functions ¢ € WP (). Since ue € Wy (2) N L>°(Q) and @ is locally
Lipschitz, therefore ®(uc) € WyP(Q). Then by choosing ¢ = ®(ue) as a test function in

(6.3.5), we get

| (ue) () — @(ud)(y) P K s5(z) 210 VDl d
//]Rmv |z — y|N+sp dz dy < / ﬁ@( ue) [P0 (ue) P (uc) d

6.3.6)
! p 2&/ (
<o [ i WO
d5
Now, for any € > 0, there exists a constant C' independent of € such that
]<I>’(u )‘p—2q)/<u )<IJ(u ) Op—(pty=1)
< o < CL<O@(u))” 0. (6.3.7)

where w > 0 since 6 > p++fl. By combining (6.3.6)-(6.3.7]), we obtain applying
Holder and Hardy inequalities:

Op—(p+y—1)

B, <€ [ 00 (Hdw) T
i1 O (ptr=1)
o[ ([ (5 o
<C @y T

and we conclude {®(uc)} . is bounded in W;* ().
Finally, let Q € Q, and ¢ € Wyt (Q) By Proposition m there exists a constant 7g such
that for any € > 0,

ue(w) > ng, for a.e. in (.

By the previous inequality, we have

K€7(5(x)¢ <
(ue +€)7| —

ngM|¢|

where M = hence we get by Dominated convergence theorem:

/(ue+e P do %/

where u := lim¢_,g ue. The rest of the proof follows exactly the end of the proofs of Theorem
3.2 and 3.6 in [7§].

Finally, for any € > 0, ue < v a.e. in  where v is another weak solution of (P). Indeed, v is
a weak supersolution in sense of Definition of the problem (P) hence Theorem 4.2 in

[78] implies the inequality. Passing to the limit € — 0 give u is a minimal solution. O

1
dist® (Q,Q)°

Remark 6.3.2. The proof of Case 1 holds assuming A < 1 and v < 1. Indeed, d*1=7)=9 ¢

L (Q) and we obtain (6.3.4)).
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Remark 6.3.3. In case of 6 = 0, the Sobolev regularity of the minimal weak solution in
Theorem coincides with the Sobolev regularity in Theorem 3.2 for v < 1 and Theorem
3.6 in [78] for v > 1 by taking 0 = Iﬂ%.

Proof of Corollary
Let uq, ug are two solution of the problem (P). Then by considering u; and us as a subsolution

and supersolution respectively in Theorem we get up <ugin Qfor0<d<1+s— %.

Now, by reversing the role of u; and us, we obtain u; = us. O
6.3.3 Estimates of distance functions

In this section, we construct explicit sub and supersolutions for the following problem

s | (FA)pu(z) = Ks(z)  in Q,
(SO){ w=0 in RV \ Q.

Before that, we introduce the new notion of weak solution and corresponding vector space:
Let Q ¢ RY be bounded. We define

Ju(z) P~
(1+ |z[)¥+ep

W&p(Q) = {u G L?OC(RN) . El K S.t. Q @ K, HUHWs,p(K) + /RLN dl‘ < OO}

where ||ullys.p) = [[ullLr@) + [ulspo- If 2 is unbounded, we define

WiPQ) :={ue L (RY):ue W™ (Q), for any bounded Q C Q}.

loc

Definition 6.3.3. (Weak energy Solution) Let f € L¥' (Q) where p' is the conjugate expo-

nent of p and  be a bounded domain. We say that u € Ws’p(Q) is a weak energy solution of
(=A)su=finQ, if

[u(2) — @ @) = 6W) [
//RZN i dy—/ﬂf( Jo(x) d

|z — y| NP

for all ¢ € W3P(Q) and a function u is a weak energy subsolution (resp. weak energy super-

solution) of (—=A),u = f in Q, if
(=A)pu < (resp. >) f E-weakly in

that is

/ [u(z) —u(y)" (6(x) — 6(y))
R2N

|z — y|N+sp

dz dy < (resp. Z)/ f(@)o(x) dx
Q
for all p € WiP(2),¢ > 0.
If Q is unbounded we say that u € WISOIZ(Q) is a weak energy solution (weak energy subso-

lution/weak energy supersolution) of (=A)j(u) = (< / >) f in Q, if it does so in any open
bounded set ' C €.
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Chapter 6. Non-local singular problem

For any « € (0, s), we define
Bi=sp—alp-1).

We start by computing the upper and lower estimates in the half line R, := {x € R: z > 0}
of (—A)j; of the function Uy(z) = ((x + )\i)Jr)a, A > 0 defined in R.
We recall the notation, for any t € R, [t]P~! = [¢t[P~2¢.

Theorem 6.3.5. Let A > 0, o € (0,s) and p > 1. Then, there exist two positive constants
C1, Co > 0 depending upon o, p and s such that

Ci(x + )\é)*ﬁ < (=A)Ux(z) < Co(x + )\5)75 pointwisely in R . (6.3.8)
Moreover, for A > 0, Uy € WiN(R,) and for A\=0, Uy € W P(R,) if s — % <a<s.

Proof. Let z € Ry and let € € R such that |¢] < z. We have

_ p—1 —)\é z—|e] 00
[ CYGRIIC PR s L
R\ (z—|e|,z+]e|) ’.’E - Z| P —oc0 Ao z+|e]

= (z + \V/) PP (z)

where, by the change of variable y = ;‘5\\1?2
—\/e 1——ll alp—1
L 1/a\sp N [1 -y ]

Pe(z) :=(x + \/) /OO [P dz—l—/o =y d

_ el _
+ /OO [1—yop! dy + /1+m+xl/a—e| [1—yopt dy

b Lyt Y e Ty

T+ — el T4+

= Pi(x) + Pa(x, €) + P3(z,€) + Pa(x, €).

To conclude (6.3.8)), it suffices to obtain a uniform estimate of P in R,. First we note

—Ae 1
Prla) =G+ AV [ e (6.3.9)

B P
Moreover, the change of variable y — % in P3 yields:
lel

1—71/& (1 _ yoa)p—lyﬁ—l
Py(z,e)=— [ dy.
d(x 6) /0 |1 _ y|1+sp Y

Hence

le]

l—z 7o (1 — y© p—1 1— £S—1
P2,3(:U7 6) = P2(x7 6) + 733(:E7 6) = / - ( y‘l) y|(1+spy )
0 _

dy. (6.3.10)

We consider two cases to estimate Po 3:
Case 1: < 1.
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6.3.3. Estimates of distance functions

First, note in this case, Pa 3(z,€) < 0, it suffices to estimate P 3 from below.

There exists § € (s,1) such that 8 > § hence for any y € (0,1):
Al 1<yt —1, 11—y <(1—-9°) and L < 1

Y =Y ’ vy = Yy (1— )t = (1 y)ltor’

Then by using the above estimates in ((6.3.10]), we obtain,

1——ld s\p—1 i-1
eoat7e (1=y? )P (1—y°)
Paala,€) > /0 e

N _ el _ _
I N R S B A ) Ml G Ve ) S R
sp(L—y)* |, 5p €l®
1
> ——.
sp
(6.3.11)

Case 2: §>1
In the same way, we note that Pa3(z,€¢) > 0. Now, for the upper bound, using 1 — y"* <

max{1,k}(1 —y) for any y € (0,1) and £ > 0 we get:

el
PN 1,B—1
o g WIN

1—
732,3(1‘,6) < maX{Lﬂ - 1}/
0

Finally we estimate the last term Py:

el _ €] _
e Jye = 1! dy < eyt -1t d
14 ‘y_1|1+sp Yy

Piwol < [
le] — y|1+sp le|
s 11—yl L
e Jy — D 1@ AV - (@ AV ) Ela)
- |y — 1|1Fsp s l€]® s
z4+Al/a
(6.3.13)

Noting &(z) — 0 a.e. in z € Ry, we deduce, combining (6.3.9)-(6.3.13), that there exist two

constants C; and Cy independent of x such that, for any z € R

C1 < lim P(x) < Cb.

Hence we deduce (6.3.8]). More precisely, the constant C; and Cy are given by

1 (5=s if 5 <1, 1 if B <1,
Cy = pl() o and  Ch =13 T ax(is-1) o
- if 8> 1, w T e AL
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Chapter 6. Non-local singular problem

Finally the assertion, Uy € W,A(R) follows by showing Uy € W*"(a,b) for all -\ < a <

b < co. Indeed, using the symmetry of the integrand and changes of variable, we obtain

U A/ apypl/e p
[7‘ O3@) = WF dy-—l/n o =57 g ay
[a,b]? |(E - | P a+Al/a Jatal/e ‘1’ - ‘ °p

bA/e — 2P
=2 T iTen dy dx
at+\l/e Ja4Al/e |‘T - y| P

N o (6.3.14)
:2/ 2P~ SP/ R el iy VP
e R
bAL/ L1t
<2/ map_SP/ %dtdm<oo
a-+Al/e o (I—t)t+sp
foranyoze(0,5)if)\>0anda€(s—%,s)if)\:0. O

Next, we study the behavior of (—A)5Vi(x) on RY := {z € RY : 2y > 0} where Vj(z) :=
U)\<l‘ . eN) = U,\(.%N).
Let GLy be the set of N x N invertible matrices, we have

Corollary 6.3.3. Let A\ >0, a € (0,s), A€ GLy andp > 1. Let J. 4 be the function defined
on ]Rf by

_ [Va(z) = V(@ + )]
Jeale) = /Be(o)c | Az|N+sp dz

for some € > 0.

Then, there exist two positive constants C3 and Cy depending on v, s,p, N, || Al|2, ||A7Y|2 such
that

Cy(zy 4+ AP < lim T a(x) < Ca(ay + Al/ay=h (6.3.15)

pointwisely in Rf x GLy. In particular, for A = I, there exist two positive constants Cs and
04 independent of A such that:

Ca(zy + AP < (=A)pWa(z) < Culzn + NP pointwisely in RY.

Moreover, for A >0, Vi € Wio(RY) and for A =0, Vi € W o(RY) if s — % <a<s.

Proof. As in the proof of Lemma 3.2 in [172], we define the elliptic coordinates for any
y € RN\ {0} as y = pw where p > 0 and w € £ := ASN~L. Hence we have dy = p"¥~ldpdw
where dw is the surface of £&. We also define e =/(A~!)ey and Eq = {z € RN : x-e4 > 0}
then we have

ea-w= (A" w)y, Yweé.
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Let z € RJX, by the change of variable z = pA~ w:

1 > [Un(zn) — Ur(zn + plea - w))]P!
jw|N+sp ] |p|tTsp

Te.a(z) = | det A|1/ dp dw

£

—ydetAyl</ / +/ / )
ENEA Je EN(EA)C Je

Replacing p and w by —p and —w in the second integral in the right-hand side and noting
—w € EN Ey, we get

1 — . p—1
\76714('%) _ \det A‘_l/ = / [UA(xN) UA(x1¥++ p(eA w))] dp dw.
ENEA ’w| P (—e€)° ‘p‘ P
Now, the new change of variable ¢t =z + p(e - w) yields in J¢ a:
_ 1/a\—p -1 lea - w|*?
Jea(x) = (N + A /)78 det A /ngA WP(eA-w)e(xN) dw.
Noting that
| det A_l/ de = 1/ Mdv < 0o (6.3.16)
enpy WINPT 2 Jon o |Av[NHep -

we obtain (6.3.15)) passing to the limit ¢ — 0 and using Theorem [6.3.5]
Finally, the assertion V) € Wls’p(]Rf ) follows showing Vi € W*P(K) for any bounded set

oc

Ke Rf and using the computations in ((6.3.14]). O

The next result gives the corresponding estimates of (—A)3(zn + A/@)% under the smooth

change of coordinates.

Theorem 6.3.6. Let o € (0,5) and p > 1. Let v : RV — RN be a CV1-diffeomorphism in
RN such that ¢ = Id in Br(0)¢, for some R > 0.

Then, considering Wy(x) = Ux(v"1(x) - en), there exist p* = p*(1) > 0 and \* = \*()) > 0
such that for any p € (0, p*), there exists a constant C > 0 independent of X such that, for
any A € [0, \*],

< (“APEWr(z) < CWi ()= E-weakly in v({X : 0 < Xy < p}).  (6.3.17)

Proof. Define, for any z € ¥(RY), H(x) = 2lim,o He(x) where for € > 0,

_ [Wa(z) — Wa(y)P!
el = /(De(x))c |z — y[N+ep W (6:3.18)

and De(z) = {y €RY : [y~ (z) =9~ (y)| < €}
By change of variable, with the notations z = ¢(X) and Ax = Dy (X), we have:

H.(z) = | det Ax|Teay (X) +/ UAXny) = UA(YN)]p_Ih(X, Y) dY

(B.(x)e  |Ax(X = Y)[N*ps
=H1(X)+ He2(X)
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Chapter 6. Non-local singular problem

where, by Lemma 3.4 in [172], there exists a constant Cy, such that

[Ax (X = Y)|¥es
V(X)) = (V)N Fsp
< Cymin{|X - Y|, 1}.

‘h(X,Y)|: |detAy‘—‘detAx‘

In order to apply Lemma 2.5 in [172], first we prove uniform estimates of H, on compact set
of (RY). Since ¢ is a C1'— diffeomorphism such that ¢ = Id in Bg(0)¢ for some R > 0
therefore the mappings X ~ | det Dt(X))| and X + ||D¢(X))||so are bounded on R, More
precisely, there exists a constant ¢, > 0 such that for any X € RN

1 1
— < |detDY(X)| e and  — < [DY(X))l < e (6.3.19)
P )

Hence plugging (6.3.16|) and (6.3.19)), we obtain H.; is bounded in RY. Now, we give an
estimate of Heo in {X € ]Rf 0< Xy <1}

[UMXn) — Ux(YN)[PHX - Y|
H.o(X)| < C (/ dy
[Heal X))l = Cy Bi(X)\B.(X) [Ax (X = Y)[NV+ep

+/ |UNXN) — Ux(Yn)|P? dY) (6.3.20)
(Bix)e  Ax(X = Y)[Ntsp

= Cy (HEo(X) + HE5(X))

First, by Holder regularity of the mapping = — z¢, we have for any X € ]Rf :

€,

>~ 1

For the first term, using polar coordinates Y = X + ow for w € SN=1, 6 >0, X € ]Rﬂy and
by choosing € < X, we obtain from (|6.3.19))

1 /1 |U)\(XN)—U)\(XN+O'IUN)V)71

vt TN T o] do dw

H2(0X) < o |

S
XN) — X p—1

Cw/ w|—N/ |Ux(XN) U,\S( N+ 1) it dw

SN=1INn{wn>0} (—ewpn,ewn )N(—w N, wN ) ‘t‘ P

Xy) = Un(Xy + )Pt
Cw/ / U\ (X N) UAS( N +1)] &t dw
SN-1Afwn >0} J (—ewn ewn )N (—1,1) |t[5P

= c¢/ Hewy (XN) dw
SN=1N{wxn>0}

IN

(6.3.22)
where for any r € Ry and for ¢ € (0, min{1,7})

_ p—1
- [ Imovesort,
(=9,9)en(=1,1) |t]*P
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As previously, to estimate Hy, we split the integral as follows
Ho(r) = /rt9 Ux(r) = Oa@) P! dt+/r+1 UA(r) =@t
r—1 | —t]*P r0 | — 2P (6.3.23)
=Ho,1(r) + Hy2(r).

For Hy,1, we consider two cases: for r <1 — AV @ we have

—\l/a p—1 r—19 . p—1
Moty = [ IO [ U0

—1 ‘T—t|8p _A\l/a |7’—t‘5p

Hence the first term in the right-hand side is bounded by

sp—1

1 AV/eyl=6if op > 1
(rb AR ifep > 1, (6.3.24)
C(ays,p) if sp<1.

Using a change of variable in the second term of the right-hand side and for any ¢ € (0, 1),
1—t*<1—t<(1—-1t)% we get

9

1-—2 ayp—1 1-—2
” a (11—t p ” «
(T+A1/Q)1—5A +A1/ W dt S (T+)\1/a)1—5/0 +)\1/ (1 _t)—S dt

1 (6.3.25)
< Aay1=8,
< T A
For 7 > 1 — A2 we have
T |UA(r) = U ()P 1
< dt < ——(r+ AV/)1=5,
Hoa(r) < /_)\1/04 |r — t|sP —1 —s(r—i_ )
In the same way for Hy 9, since for any ¢ > 1, t* —1 <t — 1 < (t — 1)%, we get:
1+%/a (o _ 1)p-1
Hoo(r) < (r + Al/“)15/ A ((tlip dt
EENC (6.3.26)

1/ay1 e 1 1
< (r 4 AV —ﬁ/ (1) dt < (4 AV,

9 _
I+ 'r+)\1/o‘

Then, by collecting the estimates ((6.3.24])-(6.3.26)), we obtain for any » > 0 and ¢ € (0, min{1,7})

Ho(r) < M(r+ M) ((r + AV 4+ (r+ AV + (r + AY*)P) (6.3.27)

where M is positive constant depending upon «, s and p.
From (6.3.27), we deduce that H, and thus He are bounded on compact sets of RY. Hence,
H, converges to $H in L}, (¢(RY)) and we apply Lemma 2.5 of [172] which implies that Wy

satisfies (—A); Wy = H E-weakly in Y(RY).
Since (6.3.27)) is independent of ¥, then gathering (6.3.21)), (6.3.22)), (6.3.27) in (6.3.20)), there
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Chapter 6. Non-local singular problem

exist \* and p* small enough, for any A < X\* and p < p*, there exists a constant C' independent
of A and € such that for any X € {X : 0 < Xy < p}:

[Hea(X)| < C(1+ (Xn + A7) < %(XN + Al/a)=6 (6.3.28)
v

where Cjs is defined in ([6.3.15]).
Finally, by combining (6.3.15)), (6.3.19) and (6.3.28), there exists a constant C' independent
of A such that

é(XN + A8 < lim He () < CXy+ AP Veeyp({X:0<Xy<p}) (6.3.29)

and we deduce (6.3.17)). O

We extend the definition of the function d in Q¢ as follows

dist(x, 09Q) it xe
de(z) = —dist(z,0Q) if z€ (QC))\ ;

1;
«
A\l otherwise.

where (Q°), = {z € Q¢ : dist(z,0) < n}. Hence we define, for some p > 0 and A > 0:

de Ay _ X if Qu(Q°
—A otherwise,
. ayo if O Qc
w,(x) = (de(w) + A7) ifw € _U( ) (6.3.31)
0 otherwise.

Theorem 6.3.7. Let Q C RY be a smooth bounded domain with a CY' boundary and o €
(0,5). Then, for some p > 0, there exist (A, nx) € R x RY such that for any n < n., there
exist positive constants Cs, Cg such that for any A € [0, \]:

(—A)5w, > Cs(d(x)+AY*) P and (—A)jw, < Co(d(z)+A\/*)™? E-weakly in Q, (6.3.32)
where Q) = {x € Q : d(x) <n}. Moreover, for X >0, w,, W, belong to WP ().
Proof. Since 9Q € CY1, then for every x € 052, there exist a neighbourhood N, of = and a
bijective map ¥, : Q — N, such that
v, € CV(Q), Ut € CYY(N,), a(Qr) =NaNQ and W, (Qo) = Ny NN

where @ == {X = (X', Xn) : | X'| <1, |[Xn| <1}, Q4 :=QNRY, Qo:=QN{Xn =0}
For any x € 092, 0 < p < p < p* where p* is defined in Theorem and using the fact that
0 is compact, there exist a finite covering { Bg, (z;)}icr of 0Q and n* = n*(R;), i € I such
that for any n € (0,7*)

Q, C |JBr,(z;) and Viel, U, '(Bg,(z;)) C Bs(0) C B,(0). (6.3.33)
el
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Now by using the geometry of 92 and arguing as in Lemma 3.5 and Theorem 3.6 in [172],
there exist diffeomorphisms ®; € CLHRN RY) for any i € I satisfying ®; = ¥, in B,(0)
and ®; = Id in (By,(0))¢,

Q, N Bg, () € ®;(B; NRY),  do(®:(X)) = (Xy + AV, AV v XeB,
and for A small enough A/ < p,
®;(B,(0) N {Xy > —AY}) c QU (Q°),.

Using the finite covering, it is sufficient to prove the statement in any of set Q, N Bg,(z;)
with z; € 09 and for the sake of simplicity we can suppose z; = 0, ®; = & and ®(0) = 0.
Let g1 and gc 2 be two functions defined by

w, (r) —w p—1
i~ [ ()[,,<> w, P

| — y[ NP

and

W,(z) —w,(y)]P~"
95,2(95)_/])( )[ p( ) p(y)] dy

|z — y|N+sp

where D (x) = {y: |® 1 (z) — 7 1(y)| > €}.
As in the proof of Theorem [6.3.0] it suffices to obtain suitable uniform bounds on compact
sets of ge1 and gc2. Hence Lemma 2.5 in [172] gives estimates .
Let z € Bg,(0) N, there exists X € B;(0) NRY such that ®(X) = z and hence by change
of variables and arguing as in Theorem 3.6 in [172], we obtain

g (@) _/ [w, (2(X)) —w,(2(Y))PP~"
’ (Box)e (X)) — @(Y)[VHsp

Jnionsns™ |
Bp(0\Be(X)  J(By(0))°

[(Xn + AV — (Y + AV)g ]!
- det D®(Y)|dY
/(BE(X))C |®(X) — ®(Y)|Ntsp | (Y

N / [w,(2(X) —w,(2(Y))]P~" — [Ux(Xn) — Ux(Yn)P™
(B, (0))°)

| det DB(Y)| dY

0K — BT | det DB(Y)|dY

=M(X) + wa (X)
and similarly,
2 = [@,(B(X)) — Wp(R(Y))]P™
9672( ) - /(BE(X))C |(I)(X) _ (I)(Y)‘NJrsp

-/ [(Xy + AV2)3 — (Viy + AV)q ]!
Be(x) [B(X) — 2 (¥)[NF

[@p(2(X)) = Wy (@)~ = [UN(Xn) = Un(YW)PP~!
" /(Bp(o»c [D(X) — ©(Y)[VHsp et DEIY

1
| det DO(Y)| dY

| det DB(Y)|dY

= M.(X) + Mg, (X).
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From the Lipschitz continuity of ®~1, the a-Holder continuity of Uy, w, and W,, we obtain
by using (6.3.19)) for w = w, or w = wp:

2 1
My (X §c/ dYchb,p,ﬁ/ -
Mu()] < co (B,(0)) | X — YN8 ( ) gy (14 [Y)NH5

where % is a constant independent of X, A and e.

dY <€ (6.3.34)

Now we deal with M, performing change of variables. We note M. coincides with H. in

(6.3.18]). Hence, using the estimate in ((6.3.29)), we get

e3(d(z) + AP < lim M (@71 (z)) < ca(d(z)+AY*)™? BE-weakly in 2, N Bg,(0). (6.3.35)

e—0

where c3 and ¢4 are positive constant depending upon «, N, s, p and ®. By combining ((6.3.34))
and ([6.3.35)) for any ¢ € I, we obtain for all z € €,

(=A)yw,(x) < c3(d(x) + /\1/0‘)76 + ¢ E-weakly in Q,

¥
and

ca(d(z) + AN/ — @ < (=A)3w,(x) E-weakly in Q.

Finally, we deduce the estimates (6.3.32)) taking n and A small enough.
To prove w,,w, € wP (€2,) for A > 0, it is sufficient to claim

w,, Wy € WP(K), K :=Qpy U(Q%)y,

for some 0 < n < n and 12 > 0.
For z; € 09, for ny € (0,n*), let {Bg,(z:)}icr be the finite covering of Q,, and =; €
CHHRN RY) such that

Br,(z:) € Zi(Bg,), de(Ei(X)) = (Xn + AV =AY ¥ X € By, (6.3.36)

for some &y € (0, #) The existence of finite covering { Bg,(x;) }icr and diffeomorphisms =;

are obtained as above by using (6.3.33]) .
For any i € I, there exists a subset J? of I such that

Bp,(zi) N Bg,(z;) #0 ¥V j € J. (6.3.37)
The collection of sets {Bg,(z;)};c i satisfying (6.3.37) are called adjacent sets to Br,(;).

Now for any i € I and j € J, define for some 7; < R;

K; = B'Ti (CITZ) C BRi (a;z) (6338)

such that

foranyie I, K;NK;#0 VjeJ; and mi}l (m{}n dist(K; \ Brg,(z;), K;)) > 0. (6.3.39)
1€ jeJ*
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By using (6.3.38) and (6.3.39)), we choose 71 and 72 small enough such that

K =, U(Q),, c | J K.
el

Now by using (6.3.36)), we obtain, for any ¢ €

in NK,; C 9771 N BRZ.(QZZ') S Ei(B§0 ﬂRﬁ),
(), N K; C (29, N Br,(z;) € Z(Be, NRY) (6.3.40)
and do(Z;(X)) = (Xn + AV —AVe v X e 57 1(K;) C B,

for some 11 < n* and 72 > 0 such that 0 < & < # Set I?Z = K; N K. Then, splitting
KxK=09nN (K x K\ Q) where

Qzu(f@-x U;@)UU(;@X Uf?jrw(BRi(xi))C),

iel jgJt iel jEJ?!

we obtain from (6.3.37)- (6.3.39))

|w,(z) — w,(y)” d(z) + Aa )™ — (d(y) + A= )P
/Q Iﬂc‘—yIN“lfj d dy:/QK = S ) Al de dy < Cq, (6.3.41)

|z — y|N+sp

and for the second part, we perform change of variables using (6.3.40) and diffeomorphisms

KxK\Q ’x - y’N+sp
1 1
B [(d(D(X)) + A=)® = (d(B(Y)) + A=)
/Eiumxail@) [@:(X) — @ (Y)[IF7 a0 )
1ia Lia
+ZZ/ / (APRX)) +A)" — (OO + AP - 3y 2 vy ax ay
il jey /= RS2 (R0 B, (20) |@i(X) — @ (Y)[ o B
1 1
(XN +Ae)g — (Vv + Ae)g P
<C (/ dX dY
P\ R R (X = Y|V
1 1
X A2)Y — (Y + Aa)¢|P
Sy [ i Xy + 42)3 = Uw + Ao )3 dXdY).
iel jeyi B (K JET K NBR, (2:) Ky — Yo

(6.3.42)

Hence by observing that Xy, Yy > —min{&y, &1} > —’\12/a for all X,Y € E;l(l/(\i) and by

using the same argument as in Theorem and by combining (6.3.41)) and (6.3.42), we
obtain w, € W*P(€,). Similarly, we can prove @, € W " (1,)). O
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Chapter 6. Non-local singular problem

6.3.4 Sobolev and Holder regularity

We consider the sequence of function {f(/\,(s}/\zo where § € (0, sp), KA,& : RN — R, such that

_1 p—1
~ 5 =5 )—0 :
Ky s(x) = { E)Ka (z) + Aer=9) iz;ga

satisfying f()\’(; S Ks a.e. in Qas XA — 07, and there exist two positive constants D3, Dy
such that

D - D
5 —0 < Kys(x) < . 3
(dcr)+-AWF5> <dtr)+—AwH5>

Gathering Proposition Theorem [6.3.2] and Remark we have the following result
for the following approximated problem (noting v = 0 in Proposition [6.3.3)):

(6.3.43)

(89) (=A)ju = Kys in O
u=0 in RV \ Q.

Theorem 6.3.8. Let 2 be a bounded domain with Lipschitz boundary. Then there exists a
increasing sequence of weak solution {uy}xso C WgP(Q) N L>®(Q) of (S3) such that

17’ [ur(z) —ur ()P~ (6(2) — ¢(y))
R2N

dr dy= | K dz.

for all ¢ € W3P(Q) and a minimal weak solution w of (S) such that u§' — u® in WP ()

and

[u(z) = u(@)]P~ (p(2) — () _ Do di
L&N Mdy—lyﬁ(wd

|z — y[NEP
1 if0<é<l+s—1, —1)(sp—1
for all p € T where 0; = if T and 6y > max{w, 1}.
0> otherwise, p(sp —6)

S
o
There exists a constant ¢ > 0 such that 2d*(z) < ¢,,(2) < cd®(z) for any = € Q. Hence,
from ((6.3.43), for any § > 0, choosing a constant a > 0 small enough, the following inequality

holds for any = € Q and A > 0:

Let Asp be the first eigenvalue and ¢, be a positive eigenfunction for the operator (—A)

(—A)s(apsp) < Kas(z) < (—A)5un.

Then, by using Proposition 2.10 in [172], we get, for any § € (0, sp), there exists a constant
k1 such that for any A > 0

k1d®(x) < uy(x) for any z € Q. (6.3.44)
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6.3.4. Sobolev and Hoélder regularity

Moreover, we have the upper bound of uy in ©\ €,. For n > 0 small enough, we consider

{Bg (z:) }ief1,2,..m} @ finite covering of Q2\ Q, such that

s

Q\Qn C Bg(xz) C Q\Qg (6.3.45)

=1

Then, from Theorem 3.2 and Remark 3.3 in [65], we deduce for any i € {1,2,...,m}

1
v - r
ur(z) P~
o< (£ ) o (o[

1
s % Pt
+ (77 p”K)w(SHLOO(Bg(l‘i))) }

(6.3.46)

where C' depends upon N, p and s. From the proof of Theorem {uil} A is uniformly
bounded in W;*(2) and Sobolev embedding implies

P
(]{9 o w) < e(1+ 6§ lze()) < e(1+ [[uflsp) < c. (6.3.47)
n(Zq
2

In the same way, the second term of the right hand-side is controlled, up to a constant
independent of A, by

1

nsp/ % dx o < n_%”uAHLP*l(Q) <c (6.3.48)
Q\B%(Z‘L) n P

For the last term, for any x € Q \ Qg, we have
D,
p=l 0
(d@ + A)
Fach constant in the previous estimates are independent of A but depends on 7. Finally,

plugging the three previous estimates into ((6.3.46)) we deduce that for any n > 0, there exists
ky > 0 independent of A such that

K 5(7)| < <enl<e

ualloe (@0,) < Fn- (6.3.49)

Now, we prove the sharp estimates for both upper and lower boundary behavior of the minimal
weak solution for problem (S3) for different range of §. In this regard, we prove the following

results with the help of comparison principle:

Theorem 6.3.9. Let Q be a bounded domain with CY' boundary and v be minimal weak

solution of the problem (S3). Then, we have
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Chapter 6. Non-local singular problem

(i) For § € (s, sp), there exists a positive constant Y1 such that for any x € 2,

1 sp—4 sp—4§

Yld =1 () <wu(z) < TidrT (x).

(ii) Ford € (0,s), for any € > 0, there exist positive constants Yo and Ts = Y3(e) such that

for any x € Q:
Tod®(z) < u(x) < Y3d* ().

Proof. Let uy be the solution of (Sf\) for A < A", n < n* and p > 0 given by Theorem m
We begin to prove (7). Take a = ‘Z’__l(s < s implying sp — a(p—1) = § and we define, for some
n >0,

1
D3\ 51
Q(A) = min{lig(g)s_a, (CY;S) ! } Mp — Q'/]wp

and
1

2 Dy\ @D
7(A) = )« 74 W~ = Co W
u max{(n) K, <C5) } w, =¢w,

where W, and w, satisfies (6.3.32), 0 < k2 < 1, C5, Cp are defined in (6.3.32), 1 and Ky are
defined in ([6.3.44)) and ([6.3.49) respectively and D3, D4 are defined in (6.3.43). Note ¢, and

¢, are independent of .

Hence for any A > 0, u) satisfies

,and uMN(2) <0 = uy(z) =aM(z) for 2 € Q°.
(6.3.50)

Precisely, from (6.3.44), (6.3.49) and the definitions of w,, W, given by (6.3.30)) and (6.3.31)),
we get forxGQ\Qg

uMN(z) < up(z) <aWM(z) for z € O\ Qs

(SIS

uY = eyw, < ko(9) 0w, < k1 (5) @) < mid (@) < ua(2),
2
(@) < ry < ry(2)"d% (@) <2, =T

Moreover, from (6.3.32)) and (6.3.43)) and the choice of constants, we get (—A);g()‘) <
(=A)juy < (—A);ﬂo‘) weakly in Qu i.e. for any ¢ € W5(Qy), ¢ > 0:

I uV@) —u VP Gl) 6w
R2N

|z — y|N+sp
[ua(z) — ux()]P~(P(x) — d(y))
= //Rw |z — y|NFep o dy
[@™ () —a™ ()P~ (p(z) — d(y))
= //]R2N |z — y[NFep e by

Since w,, W, € W*P(Q,) and uy € WP(Q) N L>®(Q) € WP(Q,), Proposition 2.10 in [172]
in ,, implies uM <y <aW in 2,,. Hence, from ([6.3.50) and passing A — 0, we deduce (7).
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6.3.4. Sobolev and Hoélder regularity

Now we prove (ii) i.e. the case 6 < s. Since holds, it remains to obtain the upper
bound estimate.

Let @y € W5P(Q) be the weak solution of (Sf;) with § = s+ €e(p—1) > s and for € > 0. Then,
choosing a suitable constant ¢, > 0 independent of \, @M = ¢ iy is a weak supersolution of
(Si). Hence by Proposition 2.10 in [172], we have uy < @) in Q. We pass to the limit as
A — 0 and using (3) with @(z) = limy_o @™ (z), we get, for € > 0, u(z) < ¢, .d*(z) for
x € Q. O

Concerning the Holder regularity of the weak solution of the problem (P), we prove Theorem

6.3.4
Proof of Theorem Let u be the minimal solution of the problem (P). First, we prove

the boundary behavior of the minimal weak solution by dividing the proof into two cases:
.0
Case 1: ¢+ <1

Let @ and u are weak solution of the problem (Sg) for(=d+vs<sand (=d+~(s—¢€) <s
respectively for € € (0, s). Then, from Theorem [6.3.9] (i) there exist constants ¢; > 0 such
that

ad’®(z) < a(x) < cod® (z), c3d®(z) < a(x) < eqd® () in Q

and u, & satisfies

C C C Ks(z
(=A) (C-t) UZKM(H)(””) d5(:v)(0261l18—6(x))’7 = dé(xl)m - ffw )
and
Ks(x) Co Ca Co _ s (i
S do(z)av = do(z)(c1ds(x))7 = Cicf Kotysl) = (=), (C70)

1 1
where C, = ( G )P ' and C* = ( C%)” ~' and Cy,Cy are defined in (6.3.1)). Then by applying
1

Czcz Cic

Theorem we get
C1d*(z) < u(z) < Cod® ¢(z) in Q2 (6.3.51)

for every € > 0, C1 = ¢1Cy and Cy = ¢4C*.
.0
Case 2: ¢ +v>1

Let A > 0 and uy € WP (2) be the solution of the problem (P)) for A < A* given in Theorem
6.3.7
By considering the same cover of €2\ Q,, as in (6.3.45]) and applying Theorem 3.2 and Remark
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Chapter 6. Non-local singular problem

3.3 in [65], we obtain,

1

i 1

P p—1 Pt
" _ N <C|:][ N + sp/ de
lluallz (By (:) ( Bg(w)’ M) ) (77 RN\By (z:) | — | NP

=1
e ]
LOO(Bg(xi))

forany i € {1,2,...,m} where C depends upon N, p and s. By repeating the same arguments
as in (6.3.44)), (6.3.47) and (6.3.48)) we get that the first two terms in the right hand-side of
(6.3.52) are bounded with bounds independent of A and

Ky
(ur + A)7

(6.3.52)

7d®(x) < uy(x) in Q (6.3.53)

for some s > 0 independent of A. Now, by using above inequality, we estimate the last term
in the right hand-side of (6.3.52)): for any = € Q \ Qg, we have

K/\’g(w)
(ux + A)7

< D < enm O < ¢

(@ + A)é (sed* ()7

Finally, we deduce that for any 1 > 0, there exists s, > 0 independent of A such that

[ull Lo\, < 24- (6.3.54)

For a = pff,y__él and 0 < n < n*, define

7,] S—x 2 (07
gw = chw, and 7N = ¢y, such that 0 < ¢, < (2) » and ¢, > <> 7

n
where w,, Wy, 5, 1 and 7" are defined in (6.3.30), (6.3.31), (6.3.53), (6.3.54) and Theorem
m respectively. We note that ¢;, ¢, are independent of A and for any A > 0, ulM and @l

satisfy

uM(z) <un(z) <aM(z) for z e Q\Qg and uM (2) < uy(z) < T (2) for z € Q°. (6.3.55)

Using the definition of w, and w, in (6.3.30) and (6.3.31)) respectively and estimates in
(16.3.32]), we obtain

@ + X) = ey (d(@) + AY*)* £ A (1 = ¢y) and (@M + \) = ¢, (d(x) + Aa)* + X in Q
and

szflcﬁ < Cp_l C6K>\75($)
(d(z) + Aa)ter = T Cy(d(x) 4 A )y

(—A);gw < weakly in £, (6.3.56)
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6.3.4. Sobolev and Hoélder regularity

(—A)ZUP‘J > 0562—: . c‘ffl O5K)\’6(l;)
(d(z) 4+ \a)otar Ca(d(z) + Xa)>
where (5, Cg and C3, C4 are defined in and respectively. Since ¢, — oo as
n — 0 and (@M +X) > é,(d(z) + )\é)a, we can choose 1 small enough (independent of \)
such that C’5c'g+p_1 > C4 and reduced to

K)\’g(l’)
(@M + A
Now to prove similar estimate for ul*, we divide the proof into two cases; for z € Q,:

Case (i): ¢,(d(x) + A\Y/*)* > X (1 —¢,)
In this case, we have (ul* +X)=7 > (2¢,)77(d(x) + A/*)~®" and by choosing 7 small enough
such that 2%%”‘1 < %’é, (6.3.56)) reduced to

weakly in €2, (6.3.57)

(—A)EHL’\J > weakly in .

+p—1
(—Apul < 267G _Kos(x) o Kas(r)
P Cs (M + )7 = (ulM + A

Case (ii): c,(d(z) + A\Y/*)* <X (1—¢,)
In this case, we have (ul*) + )™ > (2A)77 (1 — ¢;)™” and by choosing 7 small enough such
that ¢, <1 and Cech™! < C3(20*)77(1 — ¢;) 77, (6.3.56) reduced to,

Ky s(2)
(ulh + )

sy A < 06 Ky s5(x)

(FApu™ < Cs  (ulM + )

AT (1 —cy)” <

Therefore, in each case, we can choose 7 small enough (independent of \) such that

Ky 5(z)

AN« TPA\YT
(=A)pu < @ Ay

weakly in €.

Since ulM @M € WP(Q,) and uy, € L®(Q) nWP(Q) € WP(9,), Proposition 2.10 in [172]
in €2, implies ulM <y <@ in 2. Hence, from ([6.3.55) and passing A — 0,

sp—§ sp—§
Chdrti T <u < Codvir T in Q. (6.3.58)

where C1 = ¢, and Cs = ¢,,.

Interior and boundary regularity: First we claim the following;:

Claim: For all zp € Q and Ry = @ there exists universally Cqo > 0, 0 < wy; < s and
0<wy < p‘ff;_‘sl such that

. 4] )
if1<p<2: |ullowi(Br, o) < Ca for —+7 <1, |lullows (Bry @) < Ca for —+721

(6.3.59)
and
if2<p<oo: |ullgs—<(By (z0) < Ca for é—i—’y <1, ||lul| sp-s < Cgq for §+’y > 1.
0 s CPH=T (BRq (20)) s
(6.3.60)
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Chapter 6. Non-local singular problem

Let g € Q, Ry = d(go) such that Bg,(z9) C Bag,(x0) C Q and u € W*P(Bag, (o)) N
L*>°(Bsg,(z0)) be the minimal weak solution of (P), then it satisfies

s Ks(z) C 1 C 1 S
(-Ajpu=—5"< Cl s+ = C] gt in B, (wo) for 0 < —+7 <1
and
Ké(x) Co 1 Co 1 . 5
Ay = G 1 5 o0 .
=R uy _'CH o G2+ "CQ Rg(;f;i)+a in Bro(2o) or —+7

where Cy is defined in (6.3.1). Then, by using Corollary for p € (1,2), (6.3.51) and
(6.3.58) we obtain: there exist w; € (0,s) and wy € (0, =2=2-] such that

P pty—1
if0<2+4+y<1:

(sp—d—7s)
[ulcer (Bgy (o)) SCRG™ (Ro Pl Lo (Bagy (20))

1

u(y) P! o
+ | (2Ro SP/ TN W )
< ) (Bary (z0))¢ |20 — y|NHeP

<Cy

andifg—l—7>1:

(sp—9)

[U]CWQ(BRO(CEO)) < CRO w2 (R’Y+p 14 ||u||L°°(BQRO(J»‘O))

_1
)\
e[
( (B2Rrq (w0))° ‘iL‘o - |N+sp
< Cs.

Furthermore, using Proposition for p € [2,400), we get for any € > 0

0 )
Ss—€ < C ‘f 0 - < ]. d Sp— < C ‘f - 1.
[ue (Bry/aa(wo)) = 3 LU < s +7 s an [U}CWEI(BRO/gz(xo)) O p +>

The constants C; are independent of the choice of point zy (and Ry) and since u € L*(£2)
we deduce ((6.3.59) and (6.3.60) and by a covering argument for any €' € €2, we conclude

0 0
ifl< p < 2: ||UHCWI(Q/) < CQ/ for g + v < 1, HUHCwQ(Q/) < CQ/ for g +v 2> 1 (6361)
and

) )
if2<p<oo: |lullgs—c) < Co for f—i—'y <1, ||u|| pos < Cq for =+~ > 1. (6.3.62)
—T(@) 5

Now, to prove the regularity estimate in € (and then the whole RY) since u = 0 in RV \ Q,
it is sufficient from interior regularity that follows from (6.3.61)), (6.3.62)), to prove (6.3.61)
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6.3.4. Sobolev and Hoélder regularity

and (6.3.62)) on €2, where n > 0 small enough.

In this regard, let x,y € Q, and suppose without loss of generality d(z) > d(y). Now two
cases occur:

(I) either |z —y| < @, in which case set 2Ry = d(z) and y € Bp,(z). Hence we apply
(6.3.59) or (6.3.60) in Bg,(x) and we obtain the regularity.

(II) or |z —y| > @ > @ in which case (6.3.51)) and (6.3.58) ensures for a constant C' > 0

large enough, we get

u(z) —u(y)| _ |u(z)| lu(y)| (M@ u@))
< + < 28 + < C, 6.3.63
Ty STyl eyl =2 \dea) T () (6.3.63)
Ju(z) — u(y)| ju(z)| u(y)|
(sp—=9) S (sp—96) + (sp—9)
|z —y[0FD o —y| TR0 e -y G
(6.3.64)
sp—4
<ot [ M)y ) g
dG+r=1) (SL‘) d(erp 1) (y)

Then, finally by combining ((6.3.61))-(6.3.64)), we get our claim and the proof is complete. [

Proof of Corollary
For 6 > s(1 — ), let ue be the weak solution of the problem (P7). Then, using the boundary
behavior of the approximating sequence u. and taking ¢ = u. in (6.3.3)), we obtain

[|ue

(sp=5)
lsp = / Ke(x)yul™ do < / AT (g) de < ©
Q Q

if(1—v)(sp—0) > —-1)(p+y—1) espy—1)+p<(p+y-1) =A<l
Similarly, by taking ¢ = u? in (6.3.3)) and using Proposition we obtain for > A > 1

160l < /Kﬂ; D040 gy < / == EEB =5 ) g < o
Q

Now, by passing limits € — 0 in (6.3.3)), we get the minimal solution u € W3*(Q) if A < 1
and uf € WP(Q) if > A > 1.

The only if statement follows from the Hardy inequality and the boundary behavior of the
weak solution. Precisely, if A > 1, then u ¢ W;*(Q2). Indeed, we have

e > € [ | 555

In the same way, if 6 € [1, A], then

dx>0/dp+v1‘sp( ) dx = 4o0.

[%
[u”l]sp >

Op(sp=4) _
dx>C'/dP+7 T %(z) dr = o0

and we deduce u? ¢ W5 () . O

Remark 6.3.4. In case of local operator, i.e. p-Laplacian operator, the optimal condition of

Sobolev regularity in Theorem 1.4, [138] coincide with the our condition for s = 1.
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6.3.5 Non-existence result

Proof of Theorem [6.3.3; Let 6 > sp. We proceed by contradiction assuming there exist a
weak solution ug € WP(Q) of the problem (P) and ko > 1 such that uj® € W3 ().

We choose I" € (0,1) and &y < sp such that 'K, (x) < Ks5(z) and the constant I' is indepen-
dent of oy for dp > 0§ with d5 > 0.

For € > 0, let ue € WP (Q2) N C%(Q) be the unique weak solution of

/‘pM@W@VWM@Mde@:/FK%(@d (6.3.65)
R2N

|z — y[NHep (ue + €)7

for any ¢ € Wi*(Q).
By the continuity of w., for given 6 > 0, there exists a n=n(e, 8) > 0 such that u, < g in Q).
Since ug > 0, then w :=ue —ug — 0 < —g < 01in €, and

supp(w™) C supp((ue — 0)T) C 2\ Q.

We have wt € W5P(Q) € W;P(Q) for some Q such that Q\ Q, € Q € Q. Hence, choosing

wt as a test function in (6.3.65)), we get
// [UE(x) - ue(y)}pil(er(x) - w+(y)) dx dy :/ FKe,&o(x) wt dr < / FKG,?(m) wt dr.
R2N Q Q

|z — y|N+sp (ue + €)Y Ue
(6.3.66)

Moreover, ug is a weak solution of (P) and taking w™ € W;P(Q) as test function in Definition
with ug, we have

uo(z) — uo(y)P~H(wT (z) — w™ K, 'K, 5, (x
[ )= )= M) gy [ ) [ i) e

|z —y|NHsp Q U Ug
(6.3.67)
By subtracting and , we get
ue(r) —u bV ug(z) —u D(wt(z) —wt
] ) )~ k) P ) ) o
R Fea(e) T (6.3.68)
%0 % wt dz )
. /Q < ul ug ) =0
Applying the following identity
1
B = = =D a) [ okt - )P
0
with a = up(x) — up(y) and b = uc(z) — uc(y), we get
[ue(@) = ue)P~! = [uo(z) —uo ()PP~ = (p — 1)Q(z, y) (w(z) — w(y)) (6.3.69)

where

Qr,y) = /O lug(x) — uo(y) + tw(x) —w(y))|P~2 dt > 0.
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Now by multiplying (6.3.69) with (w™(z) — w™(y)), we obtain

([ue(x) = uc(y)P~" = [uo(2) — uo(y)"~ ) (w* (2) — w(y))
= (p = 1)Q(z, y)(w(z) — w(y))(w (z) —w(y)) = 0
since the mapping x — 2™ is nondecreasing.

From ([6.3.68), we get w™ = (ue —up — 6)* = 0 a.e. in Q. Since 6 is arbitrary, we deduce
ue < ug in €. Using the estimates in Case 2 of the proof of Theorem we have

y+p—1 sp—dg

nep(d(x) + €% )7 #r=1 — e < ue < ug in Q.

Now, by using Hardy inequality and uj® € W' (£2), we obtain

+p—1 sp—94 Ko |P
((d(x) e )ﬂpﬂ - 6) uo P
Kop < 0 .
(ney) /Q () dr < /Q () dr < oo

Now, by choosing Jy close enough to sp and by taking ¢ — 0, we obtain that the left hand

side is not finite, which is a contradiction and hence claim.
6.3.6  Appendix: Holder regularity

In this section, we recall the local regularity results for the p-fractional Laplacian operator.
We set for R > 0 and y € RV

Ju(z) P~ o
Qu;y, R) = ||ull oo (Br(y)) + (Rsp/ TNy -
(Br(y)) (Br@)e 1T — y[VFP
Corollary 6.3.4. (Corollary 5.5, [172]) Ifu € W"(Bagr, (y))NL>(Bar,(v)) satisfies [(=A)ul <
K weakly in Bag,(y) for some Ry > 0, then there exists universal constants w € (0,1) and
C > 0 with the following property:

[u(z) —u(y)|
|z —y|v

L —Ww
[ulow (Bry(@o)) = sup < Cl(KRy") 7T + Q(u; wo, 2Ro)| Ry .

z,y€BR,(z0)
Proposition 6.3.4. (Theorem 1.4, [65]) Let p € [2,00) and u € W P(Q)NLS,(Q)NLP~HRY)
be a local weak solution of (—A)ju = f in Q with f € L§; (). Then u € Cp () for every 0 <
psfl, 1}. More precisely, for every 0 < w < min{psfp, 1} and every ball Byr(zo) € €,

I
there exists a constant C = C(N, s,p,w) such that

w < min{

L —w
[U]CW(Bg(xo)) < ClUf lpoe (Brao) BP)P~T + Q(u; 20, R)|R™.
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