
�>���G �A�/�, �i�2�H�@�y�j�R�8�8�d�y�k

�?�i�i�T�b�,�f�f�i�?�2�b�2�b�X�?���H�X�b�+�B�2�M�+�2�f�i�2�H�@�y�j�R�8�8�d�y�k�p�R

�a�m�#�K�B�i�i�2�/ �Q�M �k �J���` �k�y�k�R

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

���/�p���M�+�2�/ �a�B�K�m�H���i�B�Q�M �7�Q�` �_�2�b�Q�m�`�+�2 �J���M���;�2�K�2�M�i
���/�`�B�2�M �6���m�`�2

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

���/�`�B�2�M �6���m�`�2�X ���/�p���M�+�2�/ �a�B�K�m�H���i�B�Q�M �7�Q�` �_�2�b�Q�m�`�+�2 �J���M���;�2�K�2�M�i�X �*�Q�K�T�m�i�2�` ���`�B�i�?�K�2�i�B�+�X �l�M�B�p�2�`�b�B�i�û
�:�`�2�M�Q�#�H�2 ���H�T�2�b �(�k�y�k�y�@�X�X�)�- �k�y�k�y�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�k�y�:�_���G�J�y�8�e���X ���i�2�H�@�y�j�R�8�8�d�y�k��

https://theses.hal.science/tel-03155702v1
https://hal.archives-ouvertes.fr


THÈSE

Pour��obtenir��le��grade��de

DOCTEUR��DE��L�hUNIVERSITÉ��GRENOBLE��ALPES
Spécialité��:��Informatique

Arrêté��ministériel��:��25��mai��2016

Présentée��par

Adrien��Faure

Thèse��dirigée��par��Denis��TRYSTRAM

et��codirigée��par��Olivier��RICHARD

préparée��au��sein��du��Laboratoire�� d'Informatique�� de��Grenoble
dans��l'École�� Doctorale�� Mathématiques,�� Sciences�� et��technologies�� de��
l'information,�� Informatique

Simulation�� avancée��pour�� la��gestion�� de��ressources��
des��superordinateurs

Advanced��Simulation�� for��Resource��Management

Thèse��soutenue��publiquement��le��2��décembre��2020,
devant��le��jury��composé��de��:

Georges��DA��COSTA
Maître��de��conférence,��IRIT,��Université��de��Toulouse��III,��France,��Rapporteur

Frédéric��SUTER
Directeur��de��Recherche,��IN2P3,��France,��Rapporteur

Yves��DENNEULIN
Professeur��des��universités,��LIG,��Grenoble��INP,��France,��Examinateur,��Président

Adrien��LÈBRE
Professeur��à��IMT��Atlantique,��France,��Examinateur

Pascale��ROSSÉ-LAURENT
Architecte��Logiciel��à��Atos,��France,��Examinateur

Olivier��RICHARD
Maître��de��conférences,��LIG,��Univ.��Grenoble��Alpes,��France,��Co-Directeur��de��thèse

Denis��TRYSTRAM
Professeur��des��universités,��LIG,��Grenoble��INP,��France,��Directeur��de��thèse





„ Nothing takes the heart out of a man more than

the expectation of failure.

— Robin H OBB





Remerciements /

Acknowledgements

La réalisation de cette thèse s'est déroulée dans le cadre d'une convention CIFRE,

guidée par lAssociation Nationale Recherche Technologie (ANRT), entre le Labora-

toire d'Informatique de Grenoble (LIG) et la société Atos.

Je voudrais remercier, Frédéric Suter et Georges Da Costa pour leur relecture atten-

tive de mon mémoire. Écrire fut une tâche dif�cile et chaque remarque fut juste

et utile. Merci également à tous les membres du jury pour leur questions, et leur

regard critique sur mon travail.

Je souhaite remercier mes encadrants, Olivier Richard, Pascale Rossé-Laurent et

Denis Trystram qui, nonobstant un début mouvementé, ont réussi à m'aiguiller

grâce à leurs conseils scienti�que, mais également par leurs encouragements et leur

soutien. Merci à Millian et Michael pour leur patience et leurs conseils scienti�que

avec qui travailler pendant ces années fut un réel plaisir. Merci à Valentin pour toutes

ses idées folles et de m'avoir motivé à rependre le sport. Merci à Clément, Raphaël,

Salah, Stéphane, Théophile, Paul, Vincent, Sebastian, Mohammed, Danilo, Pedro,

Tristan, Achal, Léo, Saurabh pour toutes les discussions autour d'un café. Merci à

toute l'équipe Datamoris (DATAMOve et PolaRIS) où les portes des bureaux restent

ouvertes, témoignant de votre acceuil pendant ses trois années. Plus généralement,

merci à tous mes collègues du laboratoire : permanents, ingénieurs, doctorants

et stagiaires pour tous les moments conviviaux. Merci à Valérie, et Annie pour

votre aide et votre support au quotidien. Je tiens à remercier Marc, Guillaume et

Guillaume, Emmanuel, Piotr, Florent, Nicolas, Nadya et Pierre, chaque pause café

était accompagné de vos blagues et de votre bonne humeur. Merci à toute l'équipe

Slurm, et à l'équipe Runtime à Bull, pour tous les bons moments passé au café,

et à faire le tour. Finalement, merci à David Glesser, Yiannis Georgiou et Andry

Raza�njatovo avec qui tout à commencé.

iii



Merci à Nicolas (aka Jaja) pour son sens de l'humour et les grand moments de

Gaming. Merci à Antoine pour son intarissable source de gentillese et de bon-

sens. Merci à ma famille, et tout particulièrement à mes parents, mon frère et mes

grand-parents de m'avoir soutenu pendant toutes ses années. Un grand merci à

Calliane, qui n'a cessé de croire en moi et qui m'a soutenu et supporté, même dans

les moments dif�ciles.

The experiments presented in this paper were carried out using the Grid'5000

testbed, supported by a scienti�c interest group hosted by Inria and including CNRS,

RENATER and several Universities as well as other organizations1

The workload log from the CEA Curie system was graciously provided by Joseph

Emeras. The workload log from ANL Intrepid was graciously provided by Susan Cogh-

lan (smc@alcf.anl.gov) from ALCF at ANL and Narayan Desai (desai@mcs.anl.gov)

from MCS at ANL. It was converted to SWF and made available by Wei Tang

(wtang6@iit.edu) from Illinois Institute of Technology The workload log from the

RICC cluster was graciously provided by Motoyoshi Kurokawa (motoyosi@riken.jp).

1https://www.grid5000.fr.

iv



Abstract / Résumé

Abstract

High-Performance Computing (HPC) provides the computational power dedicated

to solving complex problems of our society. HPC computers are large scale and

distributed infrastructures composed of several thousands of computing cores. The

management of theses systems is left to unique software: the Resource and Job

Management System (RJMS). The objective of the RJMS is multiple: Managing the

physical infrastructure, and handling the user requests to access to the computing

power. The scheduling algorithm is the cornerstone of the RJMS, it decides where

and when the user's jobs will be executed. Scheduling is a dif�cult problem; to man-

age large scale platforms RJMS needs to dispose of ef�cient yet scalable scheduling

heuristics Evaluating and testing new scheduling algorithms is crucial before releas-

ing it in production. Any failure can have a dramatic impact on the HPC platform

leading to wasted time, energy, and resources. The lack of a platform dedicated

experiments and tests compels RJMS designers and HPC center's administrators to

use different tools and methodologies to evaluate new algorithms.

In the �rst part of this dissertation, we present and evaluate a new scheduling heuris-

tics with job redirection. The evaluation is done using a large simulation campaign,

it results that by redirecting jobs can improve the ef�ciency of the scheduling. In

the second part, we focus on and extend the tools and methodologies available to

experiment with RJMS. This part is twofold: Firstly, we propose to extend scheduling

simulations with job models to simulate network contention between jobs. Secondly,

we propose new tools that enable experiment with production RJMS without the

need for an HPC platform. This dissertation aims to broaden the experimental

landscape of tools and methodologies to experiment with RJMS and therefore help

the release in the production of new scheduling algorithms.
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Résumé

Les superordinateurs sont des systèmes mutualisant la puissance de milliers de

coeurs de calculs dédiés à la résolution des problèmes compliqués de notre société.

Le gestionnaire de ressources est un système distribué et complexe chargé de la

gestion de ses ressources de calculs. Son rôle est multiple : Gérer la plateforme

physique et traiter les requêtes d'accès des utilisateurs au superordinateur. La pierre

angulaire du gestionnaire de ressources est son algorithme d'ordonnancement des

requêtes des utilisateurs. L'ordonnancement est un problème dif�cile ; pour gérer

ef�cacement un superordinateur le gestionnaire de ressources doit disposer d'heuris-

tiques d'ordonnancement ef�caces permettant de prendre des décisions pertinentes

sur des milliers de ressources de calculs. Évaluer et tester de nouvelles heuristiques

est fondamental avant de pouvoir les utiliser dans un système en production. Toute

panne induite par une nouvelle politique peut avoir des conséquences importantes

sur la qualité de service du superordinateur. Il est ainsi nécessaire de disposer d'outils

et méthodes dédiés à l'évaluation des algorithmes d'ordonnancement.

La première partie de ce document présente un nouvel algorithm d'ordonnancement,

ainsi que son évaluation par le biais de la simulation. L'algorithme en question repose

sur la possibilité de rediriger les programmes des utilisateurs en cours d'exécution.

L'évaluation est réalisée par le biais d'une large campagne de simulation, et montre

que rediriger des programmes permet d'améliorer les performances de l'ordonnan-

cement. L'objectif principal de la seconde partie de ce document est de proposer et

développer de nouveaux outils et méthodes pour l'évaluation des gestionnaires de

ressources. Cette seconde partie est elle même divisée en deux arcs : Nous propo-

sons dans un premier temps d'étendre les techniques de simulations d'algorithmes

d'ordonnancement avec des modèles dédiés aux programmes permettant ainsi la

simulation d'interférences réseaux entre les différents programmes. Dans un second

temps, nous proposons deux nouvelles approches pour créer des expériences sur un

seul ordinateur, en se basant directement sur de vrais gestionnaires de ressources.

L'objectif de ces travaux est d'étendre le paysage expérimental des outils et métho-

dologies nécessaires à l'évaluation de nouveaux algorithmes d'ordonnancement.
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1Introduction

1.1 Background

The continuous need for computational power has stimulated a global effort to

build powerful High-Performance Computing (HPC) platforms, accommodating

thousands of cores, and this number still increases. In June 2020, the most powerful

super calculator, Fugaku, achieves its peak of performance with513; 854:7TF lop=s

— 513; 854:7 � 1016f lops with more than 7 millions of cores ( 7; 299; 072cores). HPC

is a �eld in constant evolution driven by the continuous need for performances,

leading manufacturers to incorporate always more processing cores. Traditionally,

the computing cores are distributed among independent computers referred to as

the computing nodes, connected with a dedicated high-performance network: the

interconnect. With the emergence of new hardware, such as graphics processing

unit (GPU) to accelerate the computations and IO accelerators, recent computing

platform becomes heterogeneous, in the sense that they incorporate various kinds

of resources. In the past decade, tremendous efforts have been made to, both have

ef�cient exploitation of the computing platforms and to cope with the issues induced

by the increasing size and complexity of platforms. More speci�cally these issues are

the resiliency, the energy consumption, and the data management [Don+11].

In practice, few applications use all the nodes of a cluster, instead, the resources

are shared among multiple applications. To access to the computing platform, the

end-users need to submit their applications to a Resource and Job Management

System (RJMS), which is in charge of matching the user's requests with the available

computing power. To deliver such computing power, RJMSs are complexes and

distributed software that need, on the one hand, to schedule user requests and

allocate the computing nodes to meet the demand, and on the other hand, to perform

all the necessary operations to manage the platform, such as node monitoring and

launching the user applications. With the increasing size of the HPC platforms,

RJMSs need to be scalable to deliver always more computing power. To cope with

this issue, RJMSs leverage the fact that common HPC application requirements can

be easily expressed by a simple number of required cores for a �xed amount of time,

to use ef�cient and yet simple scheduling heuristics.

The emerging of a diversity of new usages and practices of the HPC platforms, such

as the apparition of large scienti�c datasets that need to be processed, interactive

notebooks or the training of machine learning models, along with the aforemen-

tioned heterogeneity of the computing resources, impose RJMSs to deal with more

1



complex user demands as well as a wider number of applications [Asc+18; Mer19].

Additionally, other issues and challenges have been addressed at the level of the

RJMS — the platform management level — such as managing the energy of the

computing platform [Poq17; Kas19], allocating different kinds of resources such as

Input/Output (IO) accelerators and GPUs [Bea+20], or monitoring applications to

detect potential performance issues [Eme13]. To continue to provide a good quality

of service in respect of the aforementioned evolutions RJMS source code is enhanced

to integrate new resource types, and a wide variety of scheduling algorithms or

resources management algorithms to manage next-generation platforms.

Next-generation platforms will be heterogeneous, both in the resources available

for the users and in the kind of workloads that will be imposed on it. Due to the

price of the different parts of the cluster, such as the interconnect, the number of

cores, and the number (and type) of accelerators, building a platform tailored for

a speci�c company is puzzling. The RJMS in charge of resource management, can

help to evaluate the appropriate platform sizing for a speci�c workload. For instance,

the cost of the cluster's interconnect could be reduced for facilities that mainly use

the computing platform for data-intensive applications, the saving can be used for a

more performant data management. However, the platform performance is largely

impacted by the ability of the RJMS to ef�ciently allocate the resources, with poor

resources allocation, the applications of the platform can be interfering with each

other [Qia+17; Bha+13; Smi+18].

Current RJMSs need to dispose of fast and ef�cient heuristics to deal with a large

number of resources and user requests while dealing with more criteria. The

development of new heuristics for resources management is necessary to compel

with the production constraints of current and next-generation clusters. Releasing

new heuristics in production is complicated as any failure or performance loss may

harm the cluster's quality of service. Hence, cluster administrators need convincing

arguments about the bene�cial impact of new heuristics on their clusters.

During the evaluation of such heuristic, it appeared that proposing a convincing

evaluation is a dif�cult problem, it requires resources and methodologies not always

available. A part of this dissertation is dedicated to the resources and methodolo-

gies used for the evaluation of new RJMS heuristics for scheduling and resource

management.

1.2 Resource and Job Management Systems

The Resource and Job Management System (RJMS) is a middleware responsible

to manage the availability and the resource allocations of a supercomputer for the

execution of the applications. From a high-level point of view, the role of the RJMS
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is to act as an interface between the physical platform and the users to provide the

technical requirements to use the computing resources.

Users

Job submissions RJMS
Job Scheduler

Resources manager:
monitoring, app management 

User interface

} ...
Computing nodes

}

File system

Figure 1.1.: Overview of a Resource and Job Management System. The users submit their
applications, called the jobs, to the RJMS. The jobs scheduler �nds a number
of nodes available according to the job's requirements and attributes a starting
date at each one of them. The resources manager manages the platform,
monitors the nodes, and controls the job's executions

The RJMS presents the interface to use the computing resources of a cluster: the

users need to send a request to the RJMS. The request is referred to as a job and

contains information about the application requirements. In HPC, the most basic

requirements are the amount of computing power, expressed in cores, and an upper

bound on the job's execution time to prevent failing jobs to never release their

resources. This upper bound is called the job'swalltime and is speci�c to HPC

systems — in case of a job's execution exceeds itswalltime, the job is killed.

The RJMS matches the user demand's requirements to the available computing nodes,

it has to create an allocation for each job submitted. An allocation is the attribution

of a number of available resources, corresponding to the job requirements, and a

time at which the job starts its execution. Finding an allocation for each job is the

objective of the scheduling algorithm (or scheduling policy) of the RJMS described

in the next section.

The RJMS is also responsible for the successful execution of the decisions taken

by the scheduling policy on the physical platform. Thus, the RJMS is in charge

of launching the jobs on the selected nodes, killing them when it is necessary,

monitoring the computing nodes and tracking their status (availability, failures, on

use etc. ). Performing these tasks is technical, leading RJMSs to be distributed

and complex software composed of thousands of lines of code — for instance, the

last Slurm version (20:02), a well established RJMS, has more than four hundred

thousands lines of code.

1.2 Resource and Job Management Systems 3



1.2.1 Scheduling Heuristics for HPC

The RJMS of the platform handles the user submissions and is in charge to allocate

the computing resources to the user's job. The allocation is created by matching

both the user's demand, such as a number of computing nodes and the availability

of the platform's resources. If not enough resources are available on the computing

platform, the jobs are queued up into a waiting list until enough resources are

available. The role of the scheduling algorithm is to �nd a starting date for each –

valid – user's job matching the job's resources requirement.

All job are independents and requests a number of computing resourcesqj for a

certain duration called the walltime. In case thewalltime is not provided by the user

the system uses a default one (usually one hour). Any job exceeding its walltime

is killed by the RJMS, and its resources become available for other jobs to execute.

The scheduler is only aware of a job at is release timer j (i.e., its submission date,

the time at which the user sends the request). The scheduler is online, it means that

it doesn't know the future jobs and takes decisions only based on the jobs already

submitted. It is interesting to mention that the RJMS is (most of the time) not aware

of the underlying program that is executed by the user, the RJMS only provides the

required resources necessary for the job's execution.

job j

Time

Resources

r j start j Cj

wait j

pj

wall j

qj

Figure 1.2.: Exhaustive job de�nition.

Figure 1.2 shows an exhaustive vision of jobj . Because thewalltime is an upper

limit on the job execution time, it does not necessarily match its processing time.

The scheduler only knows the actual processing timepj when the job completes (at

Cj ). The grey part of the job depicts the fact that the job can complete (or crash)

before it reaches itswalltime. The waiting time wait j is the time between the release

time and the beginning of its execution start j . Finally, the �ow time Fj of job j is

the total time it spends on the system,Fj = wait j + pj .
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For a set of parallel jobs, the goal of the scheduling algorithm is to provide for each

submitted job j a starting date r j with the number of required resources qj . Different

metrics, detailed in the next section, can be used to evaluate the performances of

a scheduling policy (1.3). A two-axis chart can represent the result of scheduling

policy, �gure 1.3 provides such an example.
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Figure 1.3.: Example of a Gantt chart. It depicts the result a of scheduling policy. The jobs
are represented by the rectangles, thex-axisshows the time, while the y-axis
shows the set of allocated resources.

1.3 RJMSs Evaluation: Workloads and Metrics

Integrating recent work in a production RJMS is dif�cult, any failure or performance

loss has a high cost on the platform's quality of service and represents a loss of

money and energy. Therefore, it becomes necessary to evaluate a new development

or a new algorithm before releasing it in production. The lack of dedicated resources

for the experiments makes the evaluation of new algorithms and developments

dif�cult, and the adoption of works from the state of the art remains marginal.

Alternatively, creating scheduling algorithms and scalable resources management

techniques for next-generation platforms is complicated without the platforms at

issue. To cope with this, one needs to dispose of tools and methodologies able to

help the evaluations of next-generation RJMSs.

In production mode, the users share the resources. In this situation, the peak

performance of the computing cluster is not the only relevant factor to measure

the overall platform performance, as it doesn't re�ect how the users access the

computing platform. Therefore it becomes necessary to evaluate the performances

of the RJMS in charge of sharing the resources.
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1.3.1 Workloads and Metrics

On a production platform the users submissions create a set of jobs that needs to be

executed on the platform, this is the workload. In other words, the workload is the

list jobs that needs to be executed on a computing platform.

The ef�ciency of an RJMS can be evaluated according to its ability to handle the

workload in respect of different metrics — i.e., to schedule all the jobs of the

workload, and allocate them to the resources of the computing platform. Each

metric measures a different aspect of the RJMS. Two categories of metric exist.

The user level metrics evaluate the performances of the RJMS from the user per-

spective:

• The waiting time of a job is the time that a job spends in the system, from its

submission date to the beginning of its execution.

• The slowdown(or stretch) of a job is the total time it spends on the system

(waiting time plus execution time), divided by its execution time [Fei01a].

This metric is based on the observation that a long waiting time has not the

same impact on the user's satisfaction according to the job's execution time. If

a job should run for a long period, it is more acceptable to wait longer before

its execution.

• The throughput of the RJMS is the number of jobs that the RJMS can process

in a period (usually one sec). It represents the reactivity of the system during

peaks of activity.

The metrics are then aggregated to be representative of the RJMS performance in

respect of the entire workload (i.e., all the jobs). For instance, the average waiting

time is de�ned as the sum of all the job's waiting times divided by the number of

executed jobs.

The system-level metrics evaluate the performance of the RJMS from the platform

perspective. Theutilization de�nes the RJMS ability to ensure a low idle time

of the nodes of the computing platform, and therefore to �ll the cluster. One

can also compute different metrics, such as the total energy consumption of the

platform [Gle16].

1.3.2 Methodology for the Evaluation of RJMSs

Evaluating a new scheduling algorithm is done with experiment campaigns. An

experiment features the studied system (the RJMS), or a model of the studied system,

and reproduces the production environment in the experimental setup. However,

the evaluations of scheduling policies, using a real RJMS or a model of an RJMS,
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rely on a common methodology: The play — or replay, in case of one uses traces of

real RJMS — of workloads.

On a production cluster, the workload is directly generated by the user submis-

sions. The RJMS performances can be evaluated using the data available on the

cluster [Eme13]. However, during experiments, the standard methodology is to

provide a workload as input. The workload is read during the experiment and each

job is individually submitted to the studied system at the appropriate time. This

methodology has good properties suitable for experiments, it is reproducible, and it

enables to compare different scenarios according to a shared input (the workload).

The two principal ways to obtain a workload suitable for experimenting are by

either generating a workload thanks to a model [LF03; TEF05; Fei15b] or by

extracting workloads from logs of production RJMS. The contributions of this work

use methodologies and models from the state of the art. The website Parallel

Workload Archive (PWA)[Fei19] regroups a collection of both generative workload

models and extracted logs from diverse production clusters. Inquisitive readers

are encouraged to read Emeras's work [Eme13] detailing the methodologies and

implications of experiments using workload replay.

Experiment phase

Results

Data
Experiment's 
job submitter

Input 
workload

Studied RJMS
or

Simulator

Submit 
jobs

Evaluation
phase

Figure 1.4.: Experiment methodology for RJMS using workload replay. The experiment's
setup contains a module (or program) that submits jobs. The studied RJMS (or
simulator) receives the jobs as if they were submitted by the users. Once all
the jobs are submitted and scheduled, one can analyze the results in respect of
the desired metric(s).

Figure 1.4 shows an example of how to experiment with RJMS. In the �rst place, one

needs to have the studied target instantiated, such as an RJMS or a simulator (middle

square of the �gure). During the experiment, one module is in charge of reading a

workload and submitting the jobs to RJMS when the time of the experiment reaches

the job's submission date. Depending on the experiment's context, the time may be

handled by another module (not depicted in the �gure). In the case of the real time

is used, the time in the workload must be relative to the beginning of the experiment.
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When all the jobs are submitted to the RJMS and have been completed (or evicted),

the experiment ends. Finally, depending on the RJMS (or the simulator), the data

can be analyzed of�ine after the end of the experiment.

1.4 Contributions

In a �rst contribution, chapter 3, we proposes a new scheduling policy to schedule

parallel jobs with redirection. The objective of the study is to propose an ef�cient

scheduling algorithm for HPC jobs. Redirecting a job consists of stopping the

execution of a running job to execute it into another cluster, or a dedicated part of it.

The evaluation of the scheduling policy is conducted with an extensive simulation

campaign to assess the performances of the new scheduling policy.

In the second contribution of this work, we are interested to extend scheduling

simulations with models for the jobs. As explained in section 1.3.1, a standard

methodology is to use a workload composed of jobs that have been submitted

to a real platform. However, the workloads are often composed of high-level

information about the jobs, such as the submission date, their processing time,

and the walltime. More detailed information, such as the executed program or the

amount of bandwidth used, is dif�cult to obtain and is not available in the workloads.

This level of information available to experimenters has largely impacted the way we

simulate scheduling. During the simulation, the job as simulated as a �xed amount

of time that the scheduler has to wait before their completion [KSS19; Gal+20]. In

production clusters, various effects happen on the computing platform that is not

taking into account with this job model. The effects can be performance issues due

to bad resource allocation for a job, or performance issues due to different jobs using

the network and generating network interferences [Bha+13; Smi+18]. In chapter 4,

we propose to extend scheduling simulations with models for the job executions. We

present three different models and discuss their trade-offs in terms of performances

and simulated effects.

One of the evaluated models is called theptask model, this model has a reasonable

trade-off in terms of precision of the simulation and execution time. In chapter 5

we evaluate the interference model of the ptask model against an HPC application.

The evaluation compares the simulation of theptask with the execution of an HPC

application, in both simulation and reality we create synthetic network interferences

to evaluate different scenarios.

In chapters 4 and 5 we aims to extend scheduling simulation with job models,

however in some scenarios this approach is not always feasible. The major issue

with simulation is that by using a model of the RJMS, one loses the details of the

implementation of the software, which can lead to unadapted simulations. This is

the case for instance, when one need to �nd the best con�guration parameters for a

8 Chapter 1 Introduction



speci�c cluster. The third contribution, presented in chapter 6, tackles the problem

of experimenting directly with real RJMSs. We propose two new approaches to study

distributed systems in controlled environments without requiring a model. Chapter 7

details the technical tools supporting the two aforementioned approaches.

The reproducibility of science is a crucial factor to build reliable knowledge. One

factor playing against the reproducibility of computer science work is the software

collapse[Hin19]. Software collapse refers to software that stops working if it is

not actively maintained or developed, scienti�c software is also subject to this

phenomenon. In chapter 8, we show that Functional Package Managers can be

leveraged to achieve the reproducibility of the software stack (not the hardware) on

which a program depends. With this methodology we ensure the reproducibility of

the execution and build an environment of our scienti�c software can be preserved.

Reproducing the production environment allows us to share and execute scienti�c

programs, and with the build-environment to modify a scienti�c program (to �x bugs

or add new features). This is what we called the variation. The scienti�c experiments

and programs created for this dissertation follow the principle of variation.
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2Experimental Study of RJMS:

Methods and State of the Art

2.1 Introduction

HPC platforms are subject to numerous evolutions from diverse sources, the plat-

forms become heterogeneous in resources, but also in the diversity of scienti�c

applications1 using it. Hence, RJMSs need to evolve to integrate this heterogeneity

to ef�ciently manage the next generations of computing platforms.

The Resource and Job Management and Scheduling Systems (RJMS) are complex

software designed to manage HPC platforms where the main objective is to achieve

great performance and scalability. This particular context has two implications. First,

the RJMS of the platform must provide fast and adapted decisions to match the

user's demand in computing resources. Second, it is not possible to modify the RJMS

on a production platform without risking to hinder the system's performance or

worst generating downtimes of the entire system.

Therefore, it is necessary to have tools and methodologies to support the development

of RJMS through experiments and to provide ef�cient RJMSs matching the evolution

of HPC systems.

Application

Real Model

Platform
Real

in-vivo

(Testbeds or real platform)
benchmark

Model
in-vitro

Emulation

in-silico

Simulation

Table 2.1. Experiment classes depending on the application and the platform (real or
model) [GJQ09].

Traditionally, the study of computer science applications falls into three classes of

experiments (the terms are derived from biology): In-vivo is the study of a real

application into its targeted �nal environment. In-vitro (or emulation) is the study

of a real applications into a simulated environment. In-silico (or simulation) consists

1This section focuses on computer scienceapplicationsin the broad sens — An RJMS is an application.
To remove confusion, the scienti�c applications used by the end-users of an HPC center are referred
to as jobsor job's execution.
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to use a model of the targeted application in a simulated environment. In our speci�c

context, the studied applications are RJMSs.

Table 2.1 illustrates these methodologies adapted to computer science systems [GUSTEDT_2009].

The benchmarkingcategory is added to the experiment classes and corresponds to

using a model of an application on a real platform, in order to evaluate hardware's

performances or detect performance issues. However, to the best of our knowledge

benchmarkingis not used in our context due to the complexity of the RJMSs.

The RJMS occupies a central place in the HPC system and has interdependencies

between the users, the platform, and the jobs. For instance, the user's behavior

is directly impacted by the system's reactivity [ZF14]. In the context of RJMS,

experimenters have to compose with all the complexity of the system and need to take

into account the users, the physical infrastructure, the jobs and their executions, and

the RJMS. Properly assemble all these elements to create, trustworthy, reproducible,

controllable, and scalable experiments is challenging.

Experimenters have found diverse ways to conduct experiments with RJMS, from

taking advantage of technical tools such as virtual machine to leveraging models

from the grid and HPC community. All methodologies broaden the landscape of

possible experimental setups to study RJMS. In this work, we propose the notion of

hybridization lying between real and model, for the platform and the RJMS. This

notion comes from the observation that with the methodologies used to study RJMS

in the state of the art, the separation between reality and model isn't well de�ned.

• In [Dut+16], the authors propose a new RJMS simulator: Batsim. Batsim

provides an RJMS model, but the scheduling is made by an external program

using a generic API. With this design, the authors were able to isolate the

scheduler of a real-world RJMS (OAR) and to create an interface between

Batsim and the OAR's scheduler. This methodology mixes part of a real RJMS

(OAR) with an RJMS model (Batsim), therefore it is nor completely simulation,

nor completely emulation.

• In the Slurm simulator [JDC18] the authors altered the Slurm RJMS to remove

limiting or irrelevant parts of the RJMS in order to extend its simulation

capabilities. More speci�cally, the modi�cations enable to accelerate the

simulation and increase the reproducibility of the results. In this case, the

authors modi�ed a real word RJMS, hence the RJMS is not totally emulated.

Even if a large part of the RJMS's source code is used, the modi�cations made

imply that the removed or modi�ed parts are modeled.

This chapter presents the different methodologies from the state of the art to support

the idea of hybridization. Figure 2.1 illustrates the hybridization and places the

different approaches detailed in this chapter.
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Figure 2.1.: Hybridization mixes approaches based on reality and model. The blue clouds
locate the contributions of this work according to the hybridization. The
approaches using a model of RJMS are detailed in section 2.2. The approaches
based on real or hybridized (left column) RJMS are detailed in section 2.3.
Simulators with platform model is the focus of chapters 4 and 5, RSG and
Batsky approaches are detailed in 6. Chapter 3 evaluates a new scheduling
policy with a Discrete Event Simulator.

The remaining of the chapter is organized into two parts corresponding to two main

approaches that have been used to conduct RJMS experiments.

• The �rst approach focuses on testing new ideas with an RJMS model, via

simulation.

• The second approach focuses on using a real-world RJMS, either to evaluate

its performances or as a starting point to evaluate new ideas. This approach is

related to emulation and in-vivo.
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2.2 Using RJMS Models

The �rst approach to study RJMS is to create a model of an RJMS and to run

simulations. This approach enables experimenters to run experiment campaigns

without requiring a real RJMS or a platform.

Creating an ef�cient scheduling algorithm for HPC clusters is an active �eld of

research. Evaluating new scheduling policies is a real challenge, and as stated

in 2.3.1 using a production cluster is not recommended.

The methodology presented in this section is to develop a simulator for RJMS

simulations. Simulation is a way to quickly design, prototype, and evaluate new

ideas for HPC clusters, such as new scheduling algorithms. A simulator has good

properties, it is fast, reproducible, and increases the number of available scenarios.

One common technique is to use Discrete Event Simulation, which models the

workload and the job's execution as a sequence of discrete events. This technique

has been used for the last decade to evaluate scheduling algorithm for HPC. However,

a new simulator was developed almost at each new idea, and the adoption of tools

from one experimenter to another was pretty low. As a consequence, many simulators

were not openly released or left unmaintained once the paper has been published,

or the original programmer stopped working on it. The author of [Poq17] describes

this phenomenon asPublish and Perish.

Finally, more stable simulators have started to emerge to propose a common

model and methodology for HPC RJMS simulation. The most notable projects

are Alea [KSS19], AccaSim [Gal+20], Batsim [Dut+16], and ScSF described in the

(more details about ScSF in the next section 2.3.2). Table 2.2 shows the differences

between the different simulators, according to four different properties.

From the presented simulator, has the particularity to ScSF rely on a real RJMS. Its

design and implementation have been already covered in section 2.3.2. Evaluating

new scheduling policies with ScSF is tedious as one needs to integrate it into the

Slurm code. The execution of the framework is complicated, as it involved several

technical aspects such as creating different virtual machines, with remote access

(ssh). Therefore, ScSF is not suitable for large experiment campaigns and requires

good technical knowledge hindering the ease to use and to reproduce. However, it

is an interesting tool for system administrators that wish to �nd suitable a Slurm

con�guration for their computing infrastructures.

More recently, the RJMS Flux provides a simulator to test the scheduler without

a particular setup. However, currently no documentation is available to run the
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Scheduling Workload Platform Model Job Model

Alea
Internal

(Customizable)

• SWF format

• Adaptive submissions

GridSim:

• Failures model

• Platform description

Static time period

AccaSim
Internal

(Customizable)

• SWF format

• Adaptive submissions

Ad hoc:

• Extendable

with external data

Static time period

Batsim Generic API

• Custom format

• Conversion scripts

from and to SWF

• Dynamic submission

SimGrid:

• Platform description

• Network model

• Host speed model

• Inter/Intra job interference

• Or, Static time period

Flux

Simulator
Flux scheduler • Custom format Ad hoc Static time period

ScSF Slurm • SWF Ad hoc Syscallsleep

Table 2.2. Comparison of �ve open source simulators for the simulation of RJMS.

scheduler or to change the scheduling policy. The current state of the simulator is

awaiting a merge request on a collaborative version control website2.

The three last simulators (Alea, AccaSim, and Batsim) share the idea to build an

ef�cient, reliable, and easy to use, scheduling simulator for HPC platforms. Using

such simulation tools is ef�cient to quickly prototype and evaluate scheduling policies.

Simulators have common properties:

• Scheduler (or scheduling algorithms): Determines how the scheduling al-

gorithm is simulated. Most simulators embed the scheduling process in the

simulation core, this is the case for AccaSim, Alea, and ScSF. Implementing

a new algorithm requires to develop inside the simulator, by extending pre-

de�ned scheduler classes. Batsim's authors made the choice to completely

separate the scheduling from the core of the simulator, and instead expose a

generic API to separately create new scheduling algorithms. The Flux simu-

lator uses a scheduler compatible with the Flux RJMS. Despite its early stage

of development Flux is a complex software, the lack of documentation and

tutorials about the simulator lower its usability. Creating a new scheduler in

Flux is a complex task.

• Workload : As explained in section 1.3.1, the workload is a crucial input for

every RJMS experiments. Thus, each simulator has its way to inject a workload

during the simulation, one common way is to describe the workload into a static

�le and provide it as an input of the simulation. The most used �le format to

describe HPC workloads is Standard Workload Format (SWF) [Cha+99]. Both

2https://github.com/�ux-framework/�ux-core/pull/2561
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AccaSim and Alea feature a way to directly read SWF formatted workloads.

Furthermore, AccaSim and Alea feature dynamic workloads [ZF14]. Dynamic

workloads are based on the observation that static workloads, composed with

�xed job arrival dates, do not adapt their behavior depending on the scheduler

performances which is the case in production. Dynamic workload adapts the

arrival dates of the jobs depending on the scheduler performances. Batsim has

its workload model and features different scripts to convert to and from SWF

format. Besides, during a Batsim's simulation, the scheduler can submit new

jobs not initially present in the input workload. On its side, the Flux simulator

has its dedicated workload format, close to SWF, but with information relative

to the Flux RJMS.

• Platform model is the modelization of the platform for the simulation. Two

different categories exist: Simulators with an integrated platform model, this

is the case for Accasim and the Flux simulator; and the simulators based on

a simulation toolkit, this is the case for Batsim and Alea. Alea is based on

GridSim [Sul+08], and Batsim is based on SimGrid [Cas+14]. The description

of the simulated computing platform is made using the simulation toolkit

(either SimGrid or GridSim). Alea leverages GridSim to simulate failures

during the experiment. Although the Accasim's platform model is not based

on a simulation toolkit, its platform model is extendable to simulate different

scenarios, such as nodes failures or energy consumption.

• Job model de�nes how the jobs are simulated. Flux Simulator, Alea, and

AccaSim consider jobs as discrete events, once a job starts its execution the sim-

ulator knows the job's ending time — the simulator may hide this information

to scheduler because HPC schedulers are online (1.2.1). Once the simulation

time has reached the job's completion time, the job naturally ends. This model

does not simulate the variability of the job's performances depending on its

execution context (the platform capacity and the other jobs running at the

same time). Batsim, on the other hand, provides different models for the

execution of the jobs. The models are based on SimGrid simulation toolkit.

These models enable the jobs to use the computing resources of the simulated

platform (such as the CPUs and the network). The execution time of the jobs

does not depend on a static time statically provided, but instead is computed

during the simulation, and depends on the platform's capacity (node speed,

network latency, network bandwidth) and the other jobs executing at the same

time.

This thesis focuses on the simulator Batsim, more speci�cally chapters 4 and 5 target

the validation of the aforementioned job model featured with Batsim.
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2.3 Experiment with Real RJMSs

The second approach to study RJMS is to directly use real-world RJMS, either to

evaluate it or to add new ideas. This approach enables experimenters to be close to

a real system and to increase the con�dence we have in experiments. Additionally,

in some cases, it is necessary to directly use real RJMS. For scalability evaluation or

to test new features during development for instance.

In-vivo and emulation are good candidates to deal with real RJMSs. Two approaches

exist to conduct experiments with a real RJMS. The �rst possibility is to have a

distributed platform to execute the RJMS code (section 2.3.1). One dif�culty is

to embrace the fact that RJMSs are distributed software and that to execute an

RJMS, one needs to have a platform with at least a few functional nodes. A node

is functional if it features all the prerequisites to execute the source code of the

RJMS, such as an operating system with network access. The second possibility is

to work directly with the code of the RJMS to extends its simulation capabilities

(section 2.3.2).

The �rst possibility enables to use a real RJMS without modi�cation at the cost of

increasing the experiment complexity because a functional platform is required. The

second possibility enables to reduce the complexity of the experiment but at the cost

of altering the RJMS to the point that it is not representative of the reality.

2.3.1 Real RJMS with a Functional Platform

Real Platform

Using a production platform is challenging because it is often not possible to modify

the RJMS of a production platform. Even in the case of a platform would be available

for experimenters the reproducibility of such an experiment is close to zero due to

the user submissions.

An alternative is to use a dedicated testbed such as Grid'5000 [Bal+13]. Grid'5000

has several clusters with different con�gurations. Grid'5000 enables experimenters

to access to a computing platform with root access on the nodes. It is therefore

possible to install a different RJMS on a platform, or a subset of nodes of the platform

to conduct experiments. Additionally, one can install a custom system's image on

the nodes, increasing the tuning capabilities and the reproducibility.

Platform testbeds are direct candidates to experiment with RJMS as it is possible

to completely customize the software on the platform. This is the approach used

in [Mer+17], Mercier et al.deployed on a Grid'5000's cluster two different real-

world RJMSs on the same platform to measure the feasibility of their approach. One
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RJMS comes from the HPC community (OAR), while the second RJMS comes from

the big data community (YARN).

Grid'5000 is also used in [GUSTEDT_2009] to compare their RJMS simulator with

reality. In both aforementioned cases, the authors use a workload composed of

application benchmarks ([Bai+91]). The benchmarks are executed on the ex-

periment platform. In the case of [Mer+17] also used benchmarks for big data

applications [Wan+14].

In [Ahn+20], they compare the throughput of their RJMS, Flux, to the throughput

of the Slurm RJMS. They use a cluster composed of 32 nodes and were able to install

both RJMSs to do a performance evaluation. This work focuses on RJMS throughput,

therefore each job immediately exists directly after it starts executing.

Using a real platform has good properties because it increases the practical feasibility

of new ideas and gives results close to a production system. However, the scope of

available studies is limited to platforms at hand. Any study involving an unavailable

platform is not directly feasible.

The high variability of real systems and the complexity of the installation hinders

the reproducibility of the experiments. Indeed it requires both the platform used to

support the experiment and knowledge in system administration and infrastructure

management.

Finally, experiments using a real platform are time-consuming because it is in real-

time. It is problematic to study RJMS behavior for long periods. To give an example,

with the usage policy of Grid'5000 the longest possible jobs are during the weekend

(from Friday 5 pm to Monday 9 am).

Hybridization: Mixing Reality and Model

Virtualization and containers enable to execute an operating system on virtual

hardware isolated from the actual computer's operating system, they enable to

execute several operating systems on top of single computer hardware. These

techniques fall into the hybridization category as they mix reality — the operating

system — and model — the virtualized hardware.

Virtualization or Containers. One solution is to leverage virtualization to create a

virtual platform on top of a physical platform. With this technique, one can simulate

a different platform than the physical platform used.

Despite the fact that the virtual nodes are less performant due to resource sharing,

an operating system can be installed on the virtual nodes. A virtual node shares all

the functionalities of a normal one, and are able to act as the computing nodes of a
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computing cluster. However, the virtual nodes are necessarily less performant are

they share the same hardware. One can install a real-world RJMS on the virtual

platform.

Virtualization is useful to increase the number of available nodes and to create

a larger platform with few physical resources. However, the virtual nodes are

signi�cantly slower than the original nodes, and it is often not possible to execute

the real jobs during the experiment.

This methodology has good control over the environment and increases the re-

producibility of the experiment; nevertheless reproducing experiments involving

thousands of virtual machines requires a setup that can be tedious to reproduce.

Using these techniques is also useful for developers because it enables to create

a (very) small platform on a single laptop for testing purpose. However, increas-

ing the number of virtual nodes per physical node decreases the performances of

each virtual node, and therefore the jobs of the simulation are slow and become

unrepresentative of a job's executions. A common technique is to use, instead of

a real job, a system-call sleep causing the virtual node to be idle, during the job's

execution. In [Geo+15] they developed their scheduling policy directly in Slurm.

For the evaluation, they managed to instantiate a platform with 5040 virtual nodes

and install Slurm with only 20 physical nodes. They replace all jobs with a sleep

command.

Altered Platforms. Virtualization (or containerization) is useful to test system scala-

bility and instantiates larger platforms that the available platform. Another approach

is platform alteration, it aims to model a different platform on top of a real platform,

and increase the number of available scenarios.

In [Sar+13], they propose Distem, a tool for experimenters to model a platform

from a set real platform (using Grid'5000 for instance). Leveraging virtualization

and containerization they create a modeled platform with reduced capacity. The

main difference, with the previous approach (containers and virtualization), is that

Distem aims at proposing a realistic platform, but with modi�ed characteristics.

Instead of creating a full-scale platform, Distem provides a way to explore different

controlled scenarios during experiments, such as changing the network topology of

the original platform or injecting nodes failures.

Platform Simulator

The last possibility is to use a platform simulator or a platform simulation toolkit.

Several platform simulator have been proposed, and feature platform models that can

run on a single node, or a personal laptop, GridSim [Sul+08], SimGrid [Cas+14].
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One dif�culty is to accurately simulate the network of the computing platform.

In [Leg15], the author describes three different approaches to simulate the network

at scale. Packet-level simulators, delay-based network model, and �ow-level of

TCP. While the packet-level simulators are the more realistic, as they simulate each

network packet navigating through the network layer, they fail to scale to a large

number of nodes because the quantity of packet to simulate drastically increases with

huge HPC cluster. The alternative, cost-ef�cient delay-based network model has good

scalability properties, but the proposed models do not include network contention.

Finally, the �ow-level network simulation proposes good simulation capabilities to

simulate network at scale, as it is both scalable and feature a contention model.

Although, even if several platform simulators have been proposed, such as SimGrid

or GridSim, using a real RJMS with this kind of simulator is challenging. This kind of

simulator is not directly usable with RJMS as it is not possible to install an operating

system capable to execute real code on the simulated nodes.

Chapters 6 and 7 of this dissertation focuses on extending the emulation capabilities

of the SimGrid simulation framework, in order to use an RJMS on the simulated

platform.

2.3.2 RJMS Hybridization

Another possibility to work with a real RJMS is to modify its source code to the

advantage of the experimenter. For instance, one can remove unnecessary (for the

experiment) synchronization threads to increase the execution speed.

The �rst way is to use the integrated simulation capabilities when they exist, Flux

RJMS for instance directly embeds a simulation mode. The second way is to make

modi�cations to the RJMS code to extend its simulation capabilities. Finally, the last

solution is to isolate a part of the RJMS to study it in simulation.

Integrated Simulation Capabilities

Slurm and Flux both offer simulation capabilities.

In [Pol+18], they use the �ux simulator embedded into the �ux source code to eval-

uate their scheduling policy. However, to the best of our knowledge, the simulation

models have not been published yet, so it is dif�cult to have a precise idea of its

simulation models.

In [GH12], Georgiou et al.use the Slurm's featuremultiple SlurmD to evaluate the

scalability of the Slurm RJMS by simulating a cluster up to 16; 384computing nodes

on few hundreds of real computing nodes. Slurm architecture is based on a single

controller (SlurmCtld) and several Slurm daemons (SlurmD). A Slurm installation
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has one controller for the entire cluster, and one SlurmD running on each node.

All the computing-intensive operations, such as the scheduling, are executed on

the controller. SlurmD daemons are used to control job execution and monitor the

computing nodes.

Multiple SlurmD is a Slurm's feature that enables to install multiple SlurmDs on a

single computing node. The different nodes are virtualized using processes, from

the SlrmCtld point of view one SlurmD equals one virtualized computing node. It

is worth mentioning that similarly than from using virtualization, the computing

nodes are not able to execute HPC jobs, and thus the jobs are reduced to a call to the

system callsleep. Additionally, the execution speed of the experiment is based on the

real-time, leading to long experiment time. In their publication, the authors measure

Slurm's ef�ciency to deal with both a large number of resources and large numbers

of jobs. Therefore, one instance of their experiment lasts around ten minutes, as the

workload is representative of jobs burst.

Altered RJMS

The Slurm Simulator. The Slurm simulator has been originally proposed in [Luc11].

The principal idea has been used in [Rod+17] from BSC lab, which has bene�ted

from an upgrade in [JDC18]. The simulator features a modi�ed Slurm's version

(17:11 in the latest upgrade), the changes that were made to the Slurm's source code

are:

• Original implementation [Luc11].

– They get rid of all unnecessary threads during the simulation to increase

the simulator scalability.

– They replace SlurmCtld main loop for a simulation loop, and to simulate

the SlurmD daemons, which is are no longer needed. Only the SlurmCtld

and the database daemon remain active during the simulation, no need

to use SlurmD daemons.

– The simulation is managed by a new component: sim_mng. Using

LD_PRELOAD(detailed in chapter 7), they managed to inject the simula-

tion time to increase the simulation speed.

• In [Rod+17], the authors modi�ed the SlurmD daemon to incorporate it into

the simulation. One SlurmD daemon is suf�cient for the whole simulation.

Additionally, they increase the simulation speed and �x various bugs. The

authors also integrate the simulator with various tools to help the workload

input generations and the analysis of the results.
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• Finally, in [JDC18], they managed to upgrade the Slurm version of the simula-

tor, they also made the simulator deterministic improving at the same time the

reproducibility of the results. Additionally, they propose the �rst comparison

to the Slurm Simulator compared to a real-life experiment.

The Slurm simulator is a good example of altered RJMS, as the authors of the

simulator managed to increase the simulation capabilities of the Slurm RJMS with

few modi�cations. They remove the unnecessary parts of the RJMS, either to increase

the scalability of the simulator or to speed up the simulation. The approach is

interesting as it enables to use a functional (yet modi�ed Slurm) for the experiments.

In [Álv+17], they implement a work�ow aware scheduling policy into Slurm and

they use the Slurm simulator to evaluate it.

This approach is useful to experiment with the Slurm RJMS, however, it is limited

to a unique Slurm's version. The simulator needs to be adapted and re-evaluated

for each new Slurm's release. Thus, this approach is not well suited to support

experiments for the evolutions of new Slurm features.

Additionally, the platform of the experiment has very low simulation capabilities.

The simulated jobs are reduced to a call to the system functionsleep. Therefore,

it is dif�cult to use this approach to experiment on a heterogeneous platform,

or to evaluate topology-aware job placement algorithms [Geo+17; Cru+19] for

instance.

Taking Advantage of Modularity

In [Dut+16], the authors managed to isolate the job scheduling part of the production-

ready scheduler OAR [Cap+05]. They plugged the scheduler on a simulator: Batsim.

Hence, all the scheduling decisions are left to the OAR scheduler, and Batsim man-

ages the simulated computing platform and the simulation of the workload and the

jobs.

This approach is convenient to evaluate the scheduling policies implemented in OAR,

and in the case of the original work to validate the simulator Batsim. However,

extending this methodology to other RJMS is not directly extendable to other RJMSs,

because it is not always possible to isolate the job scheduler of an RJMS.

2.4 Choosing the Adapted Methodology

All presented methodologies aim to experiment with RJMS and are separated into

two main approaches. One can either use and experiment with a real-world RJMS

or to build a model of the RJMS. This section aims to clarify the conditions that lead

experimenters to use one approach over another.
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One thing to consider is the dif�culty to implement a new idea or to test and validate

new hypothesizes. Using real RJMS is tedious because it requires having a good

understanding of every aspect of the RJMS to be able to add new features or new

algorithms. Whereas, the simulators presented in section 2.2 aims at reducing the

cost to prototype and evaluate new ideas. For example, with Batsim's generic API to

create schedulers, a scientist developing a new algorithm doesn't need to understand

Batsim's internal functioning but only the exposed API.

From a general perspective, using an RJMS model offers more stability in the results,

and are more reproducible. Furthermore, simulations are fast and can simulate

months of HPC activity in less than one hour, increasing the number of parameters

that can be explored during a single experiment campaign. The experimental setup

needed to use real RJMS is often more complex and requires technical manipulations.

Furthermore, the experiments are costly in time and one experiment campaign can

last several days, experimenters have to drastically limit the number of explored

parameters.

Finally, and most importantly, every presented methodology has a different way to

control reality, and thus the events that should be happening during an experiment.

The experiment classin-vivo, for instance, has the advantage to incorporate all the

complexity of the platform, from predictable behaviors such as network contention

to unpredictable events such as unwanted node failures. This complexity needs to

be carefully taken into account by the experimenters, at the risk to miss the target of

the study. On the opposite side,simulation heavily relies on models. Models are by

essence an abstraction of reality. Using too simple models may lead to simulations

that are too far from reality, and therefore are not suitable to construct reliable

knowledge. When using a model, one needs to consider two points. First, what part

of the reality is captured, and if it does apply to the experiment objectives. Secondly,

the accuracy and applicability of the model must be cautiously validated to increase

the con�dence in the results. In case these two points are not carefully veri�ed or

are not possible, using an approach based on reality can be a good alternative.

2.5 Conclusion

This chapter depicts the methodologies used for experimenting with RJMS. The

original statement based on table 2.1 present four experiment classes,in-vivo, in-

vitro, benchmarkand simulation. This statement assumes that experimenters have

the possibility to use either a model of the studied application (in our case the

studied application is RJMS) or to use a real application. And, that the studied

application needs an environment to carry the experiment that is also either a model

or real.
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Based on the observations of the methodologies used in the literature we introduced

the hybridization that mixes real components and modeled ones. Additionally,

the axis between reality and model is not discrete, instead, it gradually goes from

one reality to model. Figure 2.1 illustrates this idea and places the methodologies

described in this section in the two axes. This �gure enables to locate the different

works done in this thesis.

Next, chapter 3 presents the evaluation of a new scheduling policy for parallel

jobs. The scheduling policy has been evaluated using the Discrete Event Simulator

approach, with the Batsim simulator.

In chapters 4 and 5, we focus on extending current simulation capabilities, to be

able to simulate the jobs, and their induced resources activities, to increase the

con�dence we have in our simulations and broaden the scope of different scenarios

one can experiment with. This is the cloud located on the bottom-left side of the

�gure, entitled Simulator with platform model.

In chapter 6, we present a new approach to experiment with real RJMS on a platform

simulator, without prior modi�cation on the RJMS's source code or extensive use of

virtual machines.
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3On-line Scheduling with

Redirection for Independent Jobs

3.1 Introduction

The need for ef�cient automatic tools for managing the resources in large scale

modern parallel and distributed platforms become more important as their com-

plexity increases [Don+11; Ahn+20]. On the �rst hand, we need simple enough

mechanisms able to deliver an allocation of jobs to the processors at scale, but on

the other hand, such mechanisms should include all features needed to deal with

speci�c situations (like delay in delivering data associated with a job, big differences

in job size or the consequences of disturbances). The situation of actual resource

management systems is paradoxical in the sense that the processor allocation policies

remain very simple with a lot of additional specialized or generalized plugins which

make the whole system considerably hard to maintain [Gle16; Geo10].

The problem considered in this chapter is to determine an allocation of the jobs

submitted to the platform to the available distributed resources (1.2.1). This prob-

lem has been considered from two different perspectives. First, from the viewpoint

of the middleware community, many solutions have been provided which consist

of rather simple heuristics developed in simulations or actual systems. There is

not always an explicit objective to optimize and the main challenge is to design

robust strategies that are implemented in existing management systems like SLURM

or Torque. Second, from the viewpoint of combinatorial optimization, many ide-

alized problems have been solved for adequate and simpli�ed cases. Most of the

existing studies in this context consider restricted hypotheses (like sequential jobs,

precisely known processing times, no congestion in the interconnection network,

etc.). The challenge is to reconciliate both viewpoints and design algorithms with

good performances on realistic models of the platforms. This can be achieved by

theoretical analysis involving approximation or competitive algorithms and to assess

the proposed methods on well-targeted experiments.

We consider the problem of scheduling parallel jobs without preemption in multi-

processor clusters. More speci�cally, we consider the concept of job redirection,

where a job can be killed and restarted into another cluster — or another dedicated

set of processors. The idea of redirection comes fromresource augmentation[KP00],

a technique for analyzing the competitivity ratio of on-line algorithms under the

assumption that we compare the on-line algorithm to a weaker version of the
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corresponding off-line optimal. Scheduling with redirection has been previously

studied [LMT17] for sequential independent jobs where promising results have

been presented. As far as we know, this idea has never been presented in HPC.

However, actual management systems are built mainly to cope with parallel jobs,

which differs from existing redirection algorithms that consider sequential jobs. In

this work, we introduce a new algorithm to schedule parallel and independent jobs

with redirection. It is a step further to integrate the redirection into production man-

agement systems. The redirection operates by detectingheavyjobs and redirecting

them into a dedicated pool of processors, where no redirection is further possible.

Detecting such heavy jobs is done by keeping track of the set of jobs submitted

during the execution of a job. When a �xed threshold of arrivals is reached for a

particular running job, the job is characterized as heavy and it is redirected, leaving

room for queued jobs.

In this work we propose an algorithm to schedule parallel independent jobs with

redirection. We validate our approach through an extensive simulation campaign

based on the analysis of logs extracted from three production management system.

We compare this algorithm to a well-known and widely used scheduling policy, FCFS

with EASY back�lling, and we show that scheduling parallel jobs with redirection

improves the average bounded slowdown objective. The slowdown is a popular

metric that targets the time a job stays in the system from its release time to its

completion (normalized by its size). It re�ects the user satisfaction [Fei01b].

The work of this chapter has led to one publication [Fau+20]. It has been made in

collaboration with Geogio LUCARELLI, Olivier RICHARD and Denis TRYSTRAM.

3.2 De�nition and Notation

As de�ned in in 1.2.1, we consider in this work the problem of scheduling a set of

jobs into an HPC platform. That is to say, �nding an allocation of each job to a set

of free — or available — resources as well as assigning it a starting time. Note that

preempting the execution of a job is not allowed. Moreover, the parallel execution

of two or more jobs on the same resource is not permitted, and hence the assigned

resources to a job should be available during the whole interval of its execution.

To evaluate our scheduling algorithm, we use the bounded stretch also known as

the bounded slowdown (BSLD) metric [Fei01a], which is de�ned for a job j as

follows:

BSLD j = max

 
Fj

max (pj ; � )
; 1

!

(3.1)
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where � is a constant that prevents small jobs to have a high impact on the overall

performances. In this work, we set � to 60 seconds. Accordingly, we de�ne the

average and max slowdown as follows:

BSLD avg = 1
n

P

j 2 [n]
BSLD j ;

BSLD max = max
j 2 [n]

(BSLD j ) :
(3.2)

3.3 Related Work

There exists a huge literature dealing with job scheduling and resource allocation.

We present below the most relevant studies related to this problem. Resource

allocation and job scheduling is a basic problem, which was studied at several levels.

In this work, we are mainly interested in the problem of scheduling at a wide level

such as HPC computing and cloud computing where the scheduler has to handle

a set of resources and responds to many requests submitted by the users of the

system. This problem is well known to be NP-complete for decades, even in several

restricted cases [Ull75]. The underlying complexity of the scheduling problem makes

it well studied and often simple solutions are in use in practical environments. Most

existing production schedulers use the FCFS policy in conjunction with a technique

called back-�lling to increase the utilization of the cluster [MF01]. In the past years,

the scheduling problem has become even more complicated with the increasing

complexity of the computation platforms. Job scheduling for this kind of platform

remains challenging. Scheduling with preemption has been shown useful, especially

in environments such as big data and cloud where jobs can be more �exible. In cloud

system, jobs can be migrated to another place thanks to machine virtualization. In

big data frameworks, the jobs are fault-tolerant and the scheduler can dynamically

adapt their number of resources[Mer19].

In this work, we are interested in scheduling parallel jobs, with the ability to redirect a

running job, but without allowing the preemption of its execution. That is to say, a job

can be killed and restarted (from the beginning) later. Scheduling with redirection

with preemption has been studied, to increase the resource usage[Ana+12], in the

cloud and big data environments where the jobs are more �exible. Studies show

that preemption can be leveraged to optimize the waiting time[BSS13], or to free

resources needed for a high priority job[Cho+13].

Our contribution differs in the way that we propose redirection for HPC jobs, where

the constraints imposed on the system do not allow preemption. However, we allow

the system to kill jobs to redirect them, thus approaching the idea of preemption.
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3.4 Scheduling Parallel Jobs in HPC

Environments

Given a set of jobs, a scheduling algorithm de�nes for every jobs a starting date, and

an allocation. In HPC environments, each job is known by the scheduler only at its

arrival time, and hence the scheduler has to take on-line decisions. At its arrival time,

a job may have to wait in the queue if there are not enough available resources on

the system. Depending on a priority function, the scheduling algorithm determines

the order to run the jobs in the waiting queue; this order de�nes the primary queue

policy. In this work we focus on the First Come First Served policy (FCFS) according

to which the jobs are sorted in non-decreasing order of their release time: a jobj

precedes a jobj 0 if r j < r j 0. In case of a tie (r j = r j 0), an arbitrary order is chosen.

When the �rst job in the queue is delayed due to the unavailability of a suf�cient

number of resources, processors can remain idle while some jobs are waiting to

be executed. To increase resource utilization of the platform, the actual job and

resource management systems use the mechanism ofback-�lling in conjunction with

the primary queue policy. Back-�lling takes bene�t from the idle waiting resources

and the walltime, by allowing the execution of one or several smaller jobs during the

period when bigger jobs are waiting for a suf�cient number of resources. Several

back-�lling mechanisms have been proposed, such as conservative back-�lling and

EASY back-�lling [FW98]. In this work, we consider the EASY back-�lling mechanism

introduced by Feitelson et al. [MF01], which is one of the most widely used among

HPC resources managers, such as SLURM [Gau+18]. It owes its popularity to its

ability to achieve high resource allocation thanks to a simple and scalable scheduling

policy.

Back-�lling a job means that a job with a lower priority is allowed to overtake a job

with a higher priority. The condition under which a job can be back-�lled is that it

should not delay the provisional execution of its preceding jobs that are not started

yet. Several variants of back-�lling exist, like conservative back-�lling and EASY

back-�lling. The conservative back-�lling mechanism satis�es this condition for all

jobs in the primary queue. EASY back-�lling satis�es this condition only for the �rst

job in the primary queue. In practice, EASY back-�lling is categorized as aggressive

because it causes most of the small jobs to be executed before the big jobs.

In this work, we focus on the EASY back-�lling mechanism, because of its small

complexity which makes it suitable for HPC clusters that have a high constraint on

response times.
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3.5 Scheduling Parallel Jobs with Redirection

3.5.1 General Description of the Redirection

The redirection is a generic mechanism, it can be used in conjunction with any other

HPC scheduling algorithm. This is mainly because the redirection does not directly

impact the scheduling decisions, instead it can independently choose to redirect

a job to improve later scheduling decisions. The redirection mechanism identi�es

jobs that are worth to be redirected and move them into a dedicated part of the

cluster — or another independent cluster. To set up the redirection, we propose

to split the resources of the platform into two independent groups as depicted in

Fig. 3.1: the principal group and the redirection group. The size of the redirection

group is determined by a parameter� , the percentage of allocation. Depending on the

total number of available resources and on the properties of the jobs targeting the

HPC platform, the size of the two groups needs to be adapted. Theprincipal group

contains (1 � � )m processors while the redirection group contains the remaining

�m processors of the platform, wherem is the total number of processors. Both

groups can be scheduled independently without interfering.

Identifying jobs that harm the overall cluster's performance is dif�cult, as it is not

easy to evaluate. The redirection mechanism identi�es such jobs by counting the

number of submitted jobs during the execution of another job. This method enables

the estimation of the induced pressure by a job. If a job has a counter higher than a

�xed threshold � , the system can choose to trigger a redirection. That is to say, each

job running into the principal group holds the number of jobs submitted during its

execution. When a job has been chosen to be redirected, it is killed by the system

and moved to the redirection group which is exclusively dedicated to these jobs

in order to not further delay the execution of redirected jobs. A job cannot be

redirected multiple times. Besides, as stated before, we focus on the case where no

preemption is allowed, as a result, a redirected job is terminated and restarted from

the beginning into the redirection group.

3.5.2 Dealing with Parallel Jobs

The idea of redirection comes from [LST16], where the authors introduced the

rejection as a resource augmentation technique: the scheduler is allowed to reject a

fraction of the jobs submitted to the system. Redirection is a practical adaptation

of the redirection where the system is not allowed to reject jobs. The idea of the

redirection has been studied for sequential and independent jobs in [LMT17]. It

also introduces the resource partitioning which is discussed in 3.8. However, recent

management systems are built to cope with parallel jobs, which is not possible with
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m
Redirection

No redirectionRedirection Group: size= �m

Principal Group:

size = (1 � � )m

Figure 3.1.: Division of the nodes of a cluster of m processors in respect of the input
parameter � , with 0 6 � 6 1. Both group are managed by an independent
scheduler.

the existing redirection algorithms. Extending the redirection to parallel jobs is

necessary to use it in a production management systems, but it is not an easy task.

The idea of counting jobs has been introduced by Lucarelli et al.[Luc+16]. One

challenge induced by extending the redirection to parallel jobs comes from the

resource allocation. The sequential algorithm allocates a processor to a jobj at the

time r j . Reproducing this allocation is not feasible for the parallel algorithm — or

too complicated. The direct cause of this difference is that the early allocation gives

an estimation on a load for each processor. More speci�cally it is possible to estimate

the impact of the execution of a speci�c job onto another set of jobs, i.e. the jobs

waiting for the same processor. In the case of parallel jobs, estimating the impact of

a speci�c job execution is harder since allocating a job to a set of processors is often

done at the last time.

This cannot be applied in the case of parallel jobs in HPC systems using FCFS with

back-�lling since the assignment of a job to a set of processors is in general decided

at the beginning of the execution of the job, while this assignment may implicate

several processors and hence several running jobs. For this reason, the counters of

all jobs running in the principal group are increased at the arrival of a new job.

The second challenge of extending the redirection to parallel jobs is the fact that the

redirection relies on a static separation of the resources of the cluster into two static

groups. The size of theredirection partition limits the size of the jobs that can be

redirected, and thus limits the capacity for the redirection to take the best decisions.

Parallel redirection needs to cope with this issue and determine the best partition

sizes that will enable to redirect heavy jobs, without allocating an unreasonable

number of resources for theredirection group.

3.5.3 Execution

At the initialization, the redirection needs to de�ne the scheduling policy for both

principal and redirection groups. We set FCFS with EASY back-�lling for both

principal and redirection groups, and we activate the redirection only for the principal

group.
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Algorithm 1 Scheduler using the redirection.
The scheduler manages two distinct groups of processors, with their corresponding
job queue.

1: procedure SCHEDULER(SP1,SP2, j ) . SP 1 and SP2 two scheduling policies and
j a newly submitted job

2: if NbAvail (Resources) � qj and j 1st in queue then
3: Start j
4: else
5: T  Redirection(j , � ) . c.f. in Algorithm 2
6: if T is not None then
7: Kill T
8: add T to the queue of the redirection group
9: end if

10: end if
11: Scheduleprincipal group with SP.
12: Scheduleredirection groupwith SP.
13: end procedure

Algorithm 2 Algorithm for the redirection mechanism.

1: procedure REDIRECTION( j , � , m0 = �m ) . j is a newly submitted job, � is the
threshold value, and m0 the size of the redirection group.

2: for k 2 Runningjobs do
3: if wj > = wk then . restricts impact of huge jobs
4: Counterk  Counterk + 1
5: end if
6: end for
7: T  f l 2 Runningjobs; Counter l > �; r j � m0g . Create the set of jobs

exceeding� and �tting in the redirection group size
8: if T 6= ; then
9: r  conf lictRedirectionPolicy (T) . conf lictRedirectionPolicy tunes

the selection of jobs in case of con�ict.
10: Reset everyCounter
11: return job r
12: end if
13: return None
14: end procedure
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The algorithm 1 describes how the redirection is integrated into a scheduling al-

gorithm, while the redirection mechanism itself is detailed in Algorithm 2. The

parameters of the latter one are the set ofm processors, the percentage of allocation

� , and the threshold � used for tuning the redirection.

When a job j enters the system for the �rst time ( r j ), it is assigned to the queue of

the principal group. If the queue is empty and there are enough available resources,

the job is directly started on the principal group. However, if the queue is not empty

or there are not enough resource available to start the job immediately, the job will

wait and will be assigned to the scheduling queue of theprincipal group. In addition,

the redirection increment the counters of the jobs running onto the platform. Once

all submitted jobs have proceeded, the redirection mechanism can decide to redirect

a job (Algorithm 2). The decision to redirected is taken when one of the job's

counter exceeds the input parameter� — the redirection threshold. Whenever a

job is redirected it is killed and submitted from the beginning to the scheduler of

the redirected group — in which no further redirection is possible. One important

restriction induced by parallel jobs is that a job can be redirected only if its number

of requested resources (qj ) is less or equal to the size of theredirected group. That is

to say, for a job j to be illegible for redirection, it needs to satisfy qj � �m . After one

redirection occurred, the counters of each running job are reinitialized to zero.

In some cases, several jobs can exceed the threshold at the same time, the redirection

mechanism determines which job will be redirected according to acon�ict resolution

policy (e.g., select the job with the greatestwalltime, or the max qj ).

Another effect that should be controlled is the impact of huge jobs on small jobs.

Our algorithm focuses on identifying big jobs hurting the cluster performance, if job

triggers the redirection of a small job then the redirection can negatively impact

smaller jobs. To avoid this issue, we set a �lter preventing jobs to trigger redirection

of smaller jobs. The �lter is con�gured such that if a job j is submitted, only the

counter of each job k satisfying wk � wj is increased.

3.6 Experimental Settings

3.6.1 Simulation and Inputs

The redirection algorithm has been integrated into the Batsim simulator [Poq17]

which is available as an open-source software. Section 4.2 provides a more detailed

description of Batsim. In our case, the scheduler is an external program implementing

the EASY-Back�lling policy with the redirection mechanisms. The model of job used

during the simulation is the delay pro�le (section 4.3), therefore the job's executions

are not impacted by their placement on the cluster.
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The performance of our algorithm depends on a set of input parameters, namely,

the size of the platform, the workload and the inputs related to the redirection

mechanism itself. The latter is the threshold of redirection (� ), the parameter �

specifying the proportion of processors used for redirected jobs. To understand the

behavior of the redirection, we ran thousands of simulations with several sets of

inputs for the redirection in order to determine the best possible combination of

parameters. The following of this section explains how each parameter impacts

the scheduling performance and presents the parameters used in the simulation

campaign.

3.6.2 The Workloads

The workload is a static set of jobs that need to be scheduled during a simulation,

and it is given as a simulation input. Batsim uses aJSONde�nition of the workload,

where each job is de�ned by a json object containing all the parameters introduced

in Section 3.2. As in a production cluster, the scheduler only knows thewalltime of

the jobs. During the simulation, at the release time of a job, Batsim sends to the

scheduler the givenwalltime of the job and the number of requested resources. The

actual processing time remains known only by Batsim, allowing Batsim to kill the

jobs exceeding their walltime (wj ). Since the users overestimate the execution times

of their jobs, we choose to give to the scheduler the exact job processing time. This

can be justi�ed by considering better estimations for the exact processing times of

jobs obtained for example by a learning algorithm [Gau+15] (this study is out of

the scope of this work).

The workload is a sensitive input of the simulation, as its impact on the schedul-

ing policy is unpredictable[LTZ19]. Choosing a workload for the simulations is

complicated. One common practice is to directly use logs from production clusters,

where we can get information about jobs — like processing time, time of arrival, etc.

The web siteparallel workload archive(PWA) [Fei19] hosts a consequent number

of workloads dedicated to this purpose. To evaluate our algorithm, we run an

extensive campaign of simulation on workloads extracted from logs of production

clusters — namely, Curie, Intrepid [Tan+11] and Ricc, all provided by PWA. For

each of the production cluster logs, we extract 20 weeks of jobs. The extraction

routine extract weeks (168 hours) with a mean utilization of at least 70%, ensur-

ing that the traces are loaded enough to bene�ts from the redirection — indeed

under-loaded traces do not represent any challenge and can be handled by any other

traditional schedulers. TABLE 3.1 summarizes the characteristics of the original

traces used for the extraction. Inquisitive readers are invited to read the section

dedicated to each log provided by PWA for an extensive description of the log used.

One limitation induced by the replay of static workloads is that the number of

processors of the cluster needs to be the same as for the original platform. If the
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Cluster Total processors Total jobs

Intrepid 163,840 68,936
Curie 93,312 773,138
RICC 8,192 47,794

Table 3.1. List of the clusters used for replay and their important characteristics.

simulation is con�gured to use fewer processors in the principal group than the

number of processors of the cluster the workload stem from, some jobs may be

unable to execute during the simulation. Enforcing the scheduler to forget such jobs

is not something that is allowed. In the case of the redirection, we split the cluster

resources into two independent groups — the greater the parameter� , the more

resources we need to reserve for the redirection. To cope with the above problem,

and still execute every job of the original trace, we instead increase the number

of resources based on the parameter� . Once the resource groups are created the

principal group holds the number of resources of the original cluster. Note that to

ensure the fairness of our study, we also give the extra resources to the algorithms

without redirection. One aspect of this choice is that a too large value of � decreases

the load of the schedule, as there is room for more jobs. To limit this effect, we

are interested in determine small � values for which the redirection improves the

performances.

3.6.3 Redirection Parameters: � and �

As stated before,� is the value of the redirection threshold and � determines the

size of the redirection group. Both parameters need to be wisely tuned to �nd the

best possible redirection performance. The threshold of redirection will impact the

sensitivity of the redirection. A high value will rarely be reached leading to idle time

for the redirection group, while setting � to a low value will trigger a large number of

redirections, leading to a redirection groupoverloaded. A large value of � allocates a

lot of processors for the redirected jobs, leaving room for a lot of redirected jobs at

the cost of reducing the size of theprincipal group. On the other hand, reducing the

� value increases the number of jobs that are not eligible for the redirection.

Both parameters need to be carefully con�gured, in order to obtain the best perfor-

mance for the redirection mechanism. To determine the best con�guration, we ran

simulations using all the combinations for � 2 f 1; 2; 5; 10; 15; 25; 50; 100; 125g and

� 2 f 0:1; 0:15; 0:20; 0:25g, for each of the 20 extracted weeks. The result and the

selection for the best parameters are described in the following section.

It is worth mentioning that the best parameter con�guration also depends on other

factors, such as the distribution of the size of the jobs of a particular workload. For

Instance, the minimum job size allowed for the Intrepid cluster is 256, meaning that
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a redirection groupof size smaller than 256 leads to a loss of resources without any

positive affect on the performance.

3.6.4 Reproducibility

The redirection mechanism implementation is available on-line and open-source

project, along with the data, the analysis source code and the visualisation tools1.

3.7 Experimental Results

In this section, we �rst present the impact of the parameters in the performance of

the proposed mechanism. Then, we compare the results of our algorithm to FCFS

with Back-�lling. In the following �gures, as we extracted a set of workloads from

the original logs, the results are presented as box plots.

3.7.1 Parameters Tuning

In Fig. 3.2 the y-axis corresponds to the considered objective. More speci�cally, we

study (a) BSLD avg, (b) BSLD max and (c) the average waiting time. For �gures at

the left, each column grid represents a different value of parameter � , the x-axis

represents the different threshold values� we used. Respectively, in the right �gures

each column grid represents a different value for the threshold � , so the x-axis

represents the different values for parameter� .

For � (looking at the right �gures), note �rst that small threshold values redirect a

lot of jobs, and as a result, increases the load of the set of processors allocated for

the redirected jobs. On the opposite side, high threshold values will never trigger

any redirection, letting the processors in the redirection group idle. Based on these

observations, we deduce that theaverage waiting timedecreases as the threshold

is increasing, for all workloads (Curie, Ricc and Intrepid). However for Ricc and

Intrepid, we see that the average waiting timeincreases if the redirection threshold

is too high ( � = > 26). This effect does not happens for Curie. On another hand,

redirection leads to an important improvement for BSLD avg when using small and

moderate values of� , which leads to a larger number of redirected jobs. Speci�cally,

we observe that there is an optimal threshold value for BSLD avg which is between

10 and 75 for the Curie instances, between 5 and 15 for Intrepid and between 5 and

25 for RICC.

For the percentage of allocation� (looking at the right sided �gures), we �rst note

that a small value may cause congestion in the redirection group, especially if there

are a lot of redirected jobs. On the second hand, a very big value would improve

the performance in the redirection group, but it is not realistic as we want to keep a

1https://gitlab.inria.fr/adfaure/evipar
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Figure 3.2.: Lower is better — For each of the 20 workloads extracted from Curie, we
computed BSLD avg on the upper side andBSLD max on the midel line, the
average waiting time (WAIT avg ) on the lower line. Each violin is created by
20 such workloads under a certain set of parameters. Each plot under the same
line shows the same objectives, with different perspectives. On the left plots,
the redirection threshold is in the x-axis and the y-axis represents the observed
metric. Each column of the grid represents a different allocation percentage� .
While on the right plots, the allocation percentage is in the x-axis, each column
grid represents a different threshold.
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reasonable total number of processors. We observe that the impact of the parameter

� to the average waiting timeobjective is very important due to the increased number

of processors used in the redirection group as we increase� . However, this effect

stops for large values of� (> = 100) where the � parameter does not impact the

performances anymore.

We can retain two messages from the results of Fig. 3.2. First, the choice of the

parameters is very important for the performance of our mechanism while the two

parameters are strongly related: in case of a small redirection threshold which

implies a lot of redirected jobs, the size of the redirection group should be larger in

order to execute them without important delays. Second, the different parameters

work well for different objectives. Thus, it is up to the system administrator to

choose how to con�gure the system with respect to the type of quality of service that

she/he wants to provide to the users.

3.7.2 Comparison to EASY Back-�lling

In this section, we perform a comparison of the performance of FCFS/EASY back-

�lling when using or not the proposed redirection mechanism. We focus only on

BSLD avg and BSLD max objectives as well as on the values of the parameters� and

� which show good performances for these objectives. The y-axis of Fig. 3.3 shows

the ratio of the corresponding objective function of FCFS with EASY back-�lling

policy (without redirection) over FCFS/EASY back-�lling and redirection. If this

ratio is smaller than 1, the redirection improves the performance.

Recall that the redirected jobs are restarted from the beginning to satisfy the non-

preemptive constraint, and hence the workload executed in the presence of the

redirection mechanism is larger. However, we observe in Fig. 3.3 that by appropri-

ately choosing the parameters� and � , the performance of FCFS/EASY back-�lling

can be improved by a factor of 10% for Curie, 20% for Intrepid and 40% for Ricc

when considering the BSLD avg objective. On another hand, the impact of redirec-

tion is not so bene�cial for BSLD max since the redirected jobs are restarted and

since the job with the maximum BSLD value tends to appear in the redirection

group. However, there is always a couple of parameters for which both objectives

are improved, e.g., � = 0 :15 and � = 10 for the Curie trace where the average

improvement for both BSLD avg and BSLD max is around 10%.

The last �gures 3.4 show the impact of the performances of the redirections in

respect of the average waiting time objective. The �gure shows both the previously

studied objective BSLD avg along with the average waiting time. We observe that

the redirection can improve the average waiting objectives for two of the three

used workloads. For the Curie, cluster the redirection has a negative impact of the

average waiting time, while still improving the BSLD objective. Intrepid on the
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Comparison of EASY back-�lling with redirection and without redirection for
the Average and Max BSLD objectives for

Curie, Intrepid and Ricc.

(a) Curie — BSLD avg (b) Curie — BSLD max

(c) Intrepid — Ratio of BSLD avg (d) Intrepid — Ratio of BSLD max

(e) Ricc — Ratio of BSLD avg (f) Ricc — Ratio of BSLD avg

Figure 3.3.: Lower is better, under horizontal line means that the redirection is more
effective — For each of the 20 workloads extracted from a cluster, we computed
the ratio of BSLD avg without redirection over BSLD avg with redirection, and
we did the same for the BSLD max . Each box is induced by 20 such ratios.
The black line is the median ratio and the red square the average ratio. The
horizontal lines represent the quartiles. The �gure presents the results for each
cluster, the two upper �gures deal with Curie, the middle one corresponds to
Intrepid while the bottom one concerns Ricc.

38 Chapter 3 On-line Scheduling with Redirection for Independent Jobs



Comparison of EASY back-�lling with redirection and without redirection for
the waiting time objective
Curie, Intrepid and Ricc.

(a) Curie (b) Intrepid

(c) Ricc

Figure 3.4.: Lower is better, under horizontal line means that the redirection is more
effective — For each of the 20 workloads extracted from a cluster, we computed
the ratio of BSLD avg and we did the same for the average waiting time. Each
violin is induced by 20 such ratios. These plots have the same structure than
Figure 3.3, but focus on thewaiting time objective. Ratio of the average waiting
time in blue (dark gray) BSLD avg in green (light gray)
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other hand, has the same behavior as for Curie, but the redirection does not arm the

average waiting time as much, and some workloads can bene�t from the redirection

in respect of the average waiting time. Interestingly, for the Ricc cluster we show

that certain set of parameters can improve both the average waiting time and the

BSLD avg, especially for the parameters� = 15 and � = 25.

3.8 Conclusion

We proposed a mechanism based on redirection of parallel jobs that can be used on

the top of other queuing scheduling and allocation policies. The selection of the jobs

that should be redirected is done with respect to their impact on the performance

of the other jobs in the queue. Although the redirection mechanism causes an

additional load due to the kill-restart policy applied to the redirected jobs, it can

improve the performance of the system especially for average objectives as shown

in the extensive simulation campaign. Interestingly, the experimental results show

that the redirection can exploit the bene�ts of preemption, even in cases where

this is not explicitly allowed. Redirection presents interesting results, especially

for BSLD avg, which is a metric based on the satisfaction of the user. We showed

that some workloads are more responsive than other to the redirection; further

investigations are needed to understand these variations.

A direct limitation of the redirection is the creation of two distinct groups of proces-

sors. Splitting the resources can have a strong impact on the utilization. In case of a

cluster �lled with jobs that cannot be redirected (because of a too small partition size

for instance), the resources of theredirection groupare lost. Moreover, new requests

need to constantly arrive into the cluster to trigger redirections. If no redirection

is triggered, the resource of the redirection group are also lost. As a future work,

we will consider using a dynamic partitioning of the resources, or no partitioning

at all. The second issue is that one job cannot bene�t from the whole cluster at the

time, leading to a loss in computing capacity. This can be solved buy adapting the

algorithm to allow huge jobs to use resources from both groups.

Tuning the parameters � and � is an important step to setup the redirection. It

challenges the ease to use the redirection in a production center without prior

con�guration. Simulating the redirection with past logs of the system can be used.

Another solution is to use online-learning, such as multi armed bandit, to �nd the

best parameters during production.

One important metric for system administrators is the resource utilization of the

cluster. Considering the principal group, the redirection can use any scheduling

algorithm. For instance, in our experiment we use FCFS-Easy back�lling, which is

known to generate high cluster utilization. The redirection groupalso uses a basic

scheduling algorithm (FCFS-easy in our case); the same reasoning can be applied.
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Another impact of the redirection on the utilization is the lost computations induced

by killing jobs. This lost computation aims at improving the user satisfaction as the

cluster will use the extra place for more user jobs. As explained in the following

paragraph, mechanism such as checkpoint restart could be leverage to lower lost

computations.

Another future work is to evaluate how the redirection can settle into a more realistic

environment. Redirecting a job brings new challenges to the job and resource

management system. Some jobs can have side effects such as appending data to

a dataset or holding active connections. Killing and restarting a job might require

extra work from the users to be effective. In addition, the link with mechanisms

such as checkpoint restart (C/R) should be studied, as it enables partial preemption

of a job.

This work shows that it is possible to adapt scheduling policies from theoretical work

to a more practical use case using simulation. However, the current simulations are

not fully representative of a real use case, as many effects happening on the platform

are not taken into account during the simulation. The following of this dissertation

proposes to extend the simulation capabilities of Batsim by incorporating models for

the job executions.
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4Scheduling Simulation with Job's

Models

4.1 Introduction

From the RJMS perspective the jobs are black boxes because the RJMS has only a

partial view of what is happening on the platform. For a job submission, the user

must provide the number of resources required (in recent system one may also need

to specify the kind of resources), a walltime (detailed in section 1.2.1), and a script

to start the job. The RJMS does no (or few) monitoring on the computing platform

during the execution of the jobs. Alone, these information lead to a partial view of

the computing cluster. However, to build a more accurate vision of the computing

platform it is necessary to obtain more information from the jobs, such as how they

use the resources of the computing platform. In [Eme13], the author shows that by

using more information about the computing platform, one can detect bottlenecks

and therefore improves the overall system performance.

In a production system the job executions are affected by various factors:

• Physical capacity of the computing platform, the speed of the nodes, the

interconnect capacity and the storage performance.

• The placement of the applications on the computing platform.

• The application itself, how it uses its allocated resources (network, IO and

CPU).

In this environment, the scheduling and placement decisions impact the perfor-

mances of the applications, and therefore impact the performance of the whole clus-

ter. For instance, the locality of MPI applications has an impact on their performances

and its optimization has received attention in the literature, as TreeMatch[JMT14]

or EagerMap[Cru+19] aim at improving locality of MPI application to reduce their

inter node communications.

Traditionally, HPC applications are parallel applications performing homogeneous

phases of communications and computations on an homogeneous computing plat-

form. However, recent platforms have become more and more heterogeneous, and

the applications evolved in such a way that the RJMS has to handle more complex

user demands — such as allocating diverse accelerators, BurstBuffers or General

Purpose Graphical Processing Units (GPGPU). To handle these requests, the RJMS
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has to increase its resource description de�nition to correctly manage the comput-

ing platform and answers the user demand. On the other hands, from the RJMS

perspective the jobs are black boxes that need to be executed onto the computing

platform. The lack of information about the applications and their usage of the

computing platforms can lead the RJMS to take decisions with undesirable side

effects. Indeed, the scheduler can make harmful decisions such as launching two

applications that will intensively use the network or the �le system leading to per-

formance reduction [Bha+13; Bro+18], or reach a power state too high for the

cluster.

In this context, evaluating the scheduler performance is a real challenge. It becomes

crucial to integrate into the experiments the behavior of the jobs concerning their

usage of the computing resources.

One approach is to use simulation to study new scheduling algorithms. The simula-

tion instantiates a model of a computing platform managed by the studied scheduling

algorithm. A technique of workload replay can be used to evaluate the performance

of the algorithm (see section 1.3.1). However, these simulations often use simple

models for the jobs and the platform. The jobs can be modeled as �xed amount

of time to spend on a platform, while the platform itself is modeled as an array of

heterogeneous computing nodes, this is the approach made by the simulator Ac-

casim [Gal+20]. This model of simulations is used for its simplicity and its scalability.

One can simulate months of a computing platform in a few hours. Nevertheless, this

model fails to capture many effects occurring when a job is executed in a production

environment. For instance, jobs are not impacted by their placements on the platform

or by the other jobs running at the same time. These limitations limit the scope

of the feasible studies. For instance, evaluating the impact of different allocation

policies on heterogeneous cluster is not easily feasible.

To cope with these limitations, we need a job model that is able to capture the behav-

ior of real HPC jobs. In particular, we want to integrate the resources consumption

behavior of the applications in simulations, such as network usage or computation.

Moreover, looking at resources consumption enables to model applications inde-

pendently of their underlying technologies as we can focus on their activity on the

computing platform, and not their implementation.

One requirement is that simulations need to be scalable in time, as we want to

simulate different scheduling policies or platform con�gurations to compare them.

The simulation time of a single job should not drastically increase as one simulation

could embed thousand of different jobs representing days, months of a computing

platform usage. However, increasing the complexity of a simulation model necessar-

ily increases the computing time of the simulation. Depending on the requirement

of the simulation, one can trade performance for precision.
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In this chapter, we present how we leverage the Batsim [Poq17] simulator to create a

�rst step towards scheduling simulations with job models. The job models enable to

simulate slowdown effects based on the platform capacity and inter-job interferences.

Batsim is a batch scheduler simulator which internally uses SimGrid [Cas+14], a

generic distributed platform simulator, to simulate the applications running on a

computing platform (including network interference, and platform topology).

In section 4.2, we present Batsim and detail how it works, we then discuss why

it is a good candidate to support our work — in this �rst part we also presents

SimGrid (4.2.1) and its simulation models. In section 4.3, we present the different

job models available with Batsim (some are provided by SimGrid), and we compare

their overheads and the different phenomena that they are able to simulate.

The work presented in this chapter has been done in collaboration with Millian PO-

QUET and Olivier RICHARD, and has led to one publication [FPR18] (in french).

4.2 The Batsim Approach

Batsim [Poq17] is a scienti�c simulator to analyze batch schedulers and scheduling

policies. It leverages the simulator SimGrid and uses its simulation models. The

section �rst introduces SimGrid, and the remaining of the section presents Batsim

and its architecture.

4.2.1 SimGrid

Why SimGrid?

Three main classes of simulator exist for the simulation of large scale distributed

infrastructures. The classes are based on how the network is simulated: The packet-

level simulators, the delay simulators and the �ow level simulators [Leg15].

• Packet-level simulators are discrete event simulators where the events are

all the network packet needed for the communications. This approach has a

high level of realism, as every byte that is transiting through the network is

simulated. However, in the case of large scale computing systems, simulating

every packets is resources demanding and signi�cantly increases the time

of the simulations. The simulators NS2 [IH09] and CODES [Mub+17], for

instance, use this model. CODES accelerates the simulation using parallel

branching predictions, which is resources demanding.

• Delay-based simulators simulate the network traf�c as �xed amount of time

between the communications. This model is very effective and scalable as

no extra computation is required. However, it fails at simulating potential

network contentions.
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• Flow-level network model is a more scalable alternative of the packet-level

network model enabling to study network contentions. Instead of simulating all

the network packets, the communications are modelled as unique entity: �ows .

This level of abstraction enables to increase the scalability of the model, while

being able simulate network contentions for large scale systems. The simulators

SimGrid [Cam11] and GridSim [Sul+08] are such of these simulators.

SimGrid is a framework to design simulators of distributed applications [Cas+14].

It is a versatile simulator created not to be speci�c to one computing domain.

Instead, SimGrid provides network and computation models to be used across

different distributed computing domains, such as HPC, Grid, peer computing, cloud

computing and volunteer computing.

The SimGrid's network model is based on the �ow model, instead of simulating

all the packets of the network traf�c (packet-level simulator), it relies on a purely

analytical model [Cam11]. This level of abstraction on the network model makes

it possible for Batsim to simulate large scale platform along with the execution of

the applications. The soundness and the validity of the SimGrid's network model

has already been evaluated [FC07; VL09]. Besides the network model, the SimGrid

project actively developed, and the community is active and has been very helpful

regarding their users.

How does it works?

SimGrid provides models to simulate a distributed computing platform, and provide

ways to model the applications using it. The platform is de�ned by hosts, each

having a computing speed, and links connecting the hosts. Each link is associated

with a transfer speed, and a latency.

To model an application, one creates activities on the platform, each activity induces

an amount of work to the simulated platform. One activity can be an amount of

computations, or an amount of data to transfer between hosts, the activity is �nished

when this amount of work reaches zero. SimGrid transforms the different activities in

a set of linear constraints, in which each activity is represented by as many variables

as the number of resources it uses. Each used resources is represented by a constraint

in the system, and the capacity of the resource bounds the constraint.

Solving an optimization problem associated to the linear model enables to create

a resources attributions for each activities of the simulation. A more detailed and

precise version of the core of the simulation is described in [Leg15].
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4.2.2 SimGrid Provided Models

Additionally, SimGrid features different platform models to tune how SimGrid solves

the activities. The different models are described in the following subsections.

SimGrid MPI (SMPI), Online and O�ine

SMPI is a SimGrid implementation of MPI enabling to emulate an MPI application

directly with SimGrid, on a single computer [Deg+17]. Interestingly, SimGrid

leverages its MPI implementation by integrating trace replay mechanism. The trace

replay enables to simulate an MPI application execution using a trace of a previous

execution [Des+11]. Instead of executing the real application's code, the trace replay

executes the actions contained by the trace. The traces are called Time-Independent

Traces(TiT) because it contains only the action performed by the traced application

without the time at which the action occurred. More speci�cally, the TiT trace

contains the actions done by each process of the application during its execution

sorted par order at which they occurred. Relevant information are logged, if the

action is a communication the amount of data is logged as well as the processes

involved. SimGrid simulates the trace by unfolding the actions done by the processes

of the application.

Parallel Task ( ptask ) Model

Figure 4.1.: Ptaskcommunication matrix. The arrows show the direction of the communi-
cations.

The parallel task(Ptask) model de�nes a way to describe a parallel application by

specifying two information concerning its usage of the computing platform. The

objective of a Ptask is to simulate a parallel application running on a platform

without simulating its detailed behavior, it aims at simulating a parallel task that will

be executed on several hosts (or cores) of the computing platform.Ptaskfeatures a

way to bundle the usage of an application on a platform to create an homogeneous
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progress for the whole application. The model's running time — the time predicted

by SimGrid— depends both on the platform (its performance and topology) and on

the other activities that execute concurrently on the platform.

To compute this model SimGrid requires two information. The �rst information is an

amount of computation to perform on each host allocated fort the model. The second

information is the amount of communication from and to each host, it is represented

as a matrix. Figure 4.1 illustrates how the communications are represented.

SimGrid computes theptask progress by �rst �nding the bottleneck of the task, this

is the limiting factor of the ptask. From this limiting factor, the completion time

of the ptask (in the current state) can be computed. As the ptask (may) bundles

different activities on other resources and homogenizes the progress, SimGrid adapts

the load on the other resources to reduce the speed of theptask's activities.

Figure 4.2 unfolds an example with three ptaskson a platform with two hosts ( node-

1 and node-2) connected by one link. The speed of the hosts, is100f lops=sec, and

the link capacity is set to 100b=s— the values are simple to facilitate the example:

1. First, at t = 0 the platform has only one ptask, the purple present(plain

borders), using all the resources. Thisptaskis con�gured to perform 1000f lops

on each hosts, and a data transfer of600 b between node-1to node-2. The

bottlenecks are the CPUs, which are100 %loaded (using the 100f lops=sec),

and therefore the link is only loaded at 60 % (using 60 b=s) to �nish at the

same time.

2. The blue ptask (dashed borders) arrives on second late, att = 1 , and only

uses the link, for a total amount of 1000b=sto perform. After one second, the

purple ptask still has 900f lops on each hosts to compute, and540b to transfer.

SimGrid shares the link to both tasks to use 50% of the link's capacity each,

therefore the pink task has to decrease its load (to83:3 %) on the two hosts to

adapt the pace as the Link becomes the bottleneck.

3. Finally, 5 seconds later att = 6 , the yellow task (dotted borders) arrives and

has to perform 300f lops on node-1and 1000f lops on node-2. Node-2is the

bottleneck of the yellow task, and uses half of its total capacity, the second

half being allocated to the purple task. Then purple task adapts its load.Node-

2 becomes the new bottleneck and it uses50 %of its total capacity, the load of

the purple task on node-1is also adapted to50 %.
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Figure 4.2.: Example of how the application progress is computed using theptaskmodel. At
t = 0 , the purple task (plain borders) uses the two nodes at their full capacity,
while the link is used at 60 %. Then, at t = 1 , a new task arrives (dashed
borders) performing a data transfer on the link, taking half the of the link's
bandwidth. Hence, the link becomes the bottleneck of the purple task which
has to adapt its load on the two hosts. Finally, at t = 6 , the green task (dotted
borders) arrives with some work on the two nodes, taking 50 %of the host's
speed.
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4.2.3 Batsim: Infrastructure Simulator for Resource

Management

What is Batsim?

Batsim [Poq17] is a simulator to analyze batch schedulers, its is an open source

software and is actively developed. Batsim uses SimGrid to simulate the computing

platform and the jobs running on it, while the scheduling decision are left to an

external program called the scheduler.

Figure 4.3 depicts the architecture of Batsim. The scheduler communicates with

Batsim through the Batsim protocol, which is a network text-based protocol. All

the scheduling decisions, such as allocating a set of resources and deciding when

a job starts are left to the external scheduler. The jobs are known by Batsim and

are submitted to the scheduler using the protocol. This architecture following the

separation of concerns enables scientists or system administrators to focus on their

scheduling algorithm and their evaluations, while the simulation capabilities are

provided by Batsim. Figure 4.4 depicts a simpli�ed exchange between Batsim and the

scheduler. Batsim submits events to the scheduler, and waits for its response before

continuing the simulation. The basic events are the job submissions and job ending.

The scheduler controls the jobs of the simulation, it asks for their execution.

Batsim is built upon SimGrid: It enables to use the SimGrid simulation models,

such as the platform models and description to simulate the execution of the jobs

(described in chapter 4). Each input job of the simulation has an execution pro�le

attached to it, describing how the job should be simulated.

The separation of concerns between the scheduler and the simulation brings great

potential to quickly prototype and evaluate new scheduling algorithms. The internal

usage of SimGrid enables to bene�t from the SimGrid models for HPC applications

and infrastructures.
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Figure 4.3.: Batsim overview, the scheduler takes decisions from the network protocol. The
simulation inputs are a platform description and a workload of jobs handled
by Batsim. The simulated platform is handled by SimGrid. The results of
a simulation comprises data about the simulation, such as jobs resources
allocations and execution times.

Figure 4.4.: Example of a simpli�ed exchange between Batsim and the scheduler taking
the scheduling decisions. The protocol is based on request-answer, Batsim
waits for a response for each request (the grey, and white layers represent a
request-answer phase). Batsim sends events to the scheduler, such as new job
submissions, or job completions. The scheduler takes all scheduling decisions.
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4.3 Job Execution Pro�les

A job execution pro�le is an additional information specifying the model used

for the job simulation. Depending on the model, the jobs can adopt different

behavior during the simulation. Batsim provides different pro�les based on SimGrid

application models.

This section presents the pro�les available in Batsim and proposes a preliminary

evaluation of the different job models.

4.3.1 Pro�le Types

The considered pro�le types are:

• Delay pro�le.

• Parallel Task Pro�le ( Ptask).

• Time Independent Trace (TiT) pro�le.

• Sequence pro�le.

Delay Pro�le

The pro�le delay is the simplest one. Executing the job consists of considering the

execution of the job as a prede�ned amount of time during which the nodes of the

job will be occupied. This pro�le is commonly used in scheduling simulations for

its simplicity and its accessibility. It requires no information about the job resource

usage, only the time the job spent in the system. For instance, RJMS logs provided

by Parallel Workload Archive directly feature the running time of the job which can

be directly adapted into a pro�le delay. Job delay is also the most scalable Batsim

pro�le as it requires no extra computations.

The jobs simulated with this pro�le have a processing time independent of their

execution context. If multiple jobs share the same network, their running time will

remains the same as de�ned in the workload. This pro�le can be used in scenario

were the context of execution of the jobs does not impact their execution times, or

if the scalability of the simulation is a key objective. This is the case, for instance,

for homogeneous cluster with no network interference, or for workloads composed

of only sequential jobs (jobs using a single node) without co-location of jobs In a

broaden way, this is the case when jobs don't have access to shared resources, which

remains marginal as most cluster have a shared Parallel File System.
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Parallel Task Pro�le

This execution pro�le provide a way to use the parallel task model ( ptask) featured

by SimGrid for the jobs. The pro�le requires two inputs. A vector specifying the

amount of computation to perform on the allocated hosts. The second input is a

matrix of communication, the matrix declare the data quantity that needs to transit

between one host to another. The number situated at linei and the column j gives

the quantity of data to send from host i to host j , as shown in �gure 4.1.

This model is detailed in section 4.2.2 and gives a way to simulate parallel jobs.

However it relies on the hypothesis that all jobs behave the same way and that

the behavior of a job does not evolve during its execution. For instance, for an

application that have an iterative pattern, such as consecutively performing the

different phases of communications and then computations, this pro�le may smooth

the effect merging the different phases into a long phase. Hence, the iterative

behavior of this job is not captured with this model.

This pro�le bring interesting perspective for the simulation of scheduling algorithm.

The jobs of the simulation are responsive to their environment, and their simulation

times depends on the description of the platform and on the other jobs using the

platform at the same time. Using this model for scheduling simulation enables to

observe effects such as network interference.

Time Independent Trace (TiT) Replay with SMPI

Batsim provides an execution pro�le enabling to use TiT replay as job pro�le during

the simulation, this model is detailed in section 4.2.2. The trace must be provided

with the pro�le.

Sequence Pro�le

Lastly, the sequence model(or composed) enables to chain pro�les to execute them

in sequence. A number of repetition can also be speci�ed. This pro�le inherits the

properties of the pro�les it is composed of. The main purpose of this model is to

specify different job behaviors. For instance, as stated in section 4.3.1, theptask

model assumes that the application has the same behavior throughout its execution

and therefore can fail to capture bursty effects. Sequence pro�les have the ability to

render more complex application behavior by composing different models. However,

its computation time can increase as the number of pro�les of a pro�le increases

(especially with ptask and the TiT).
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4.3.2 Pro�les Evaluation

The multiple pro�les featured in Batsim enable to set up different experiments

depending on the effect(s) that the simulation should capture.

On the one hand, the delay is the simplest and fastest pro�le, however the number of

effects that we can observe with this pro�le is limited, observing network interference

for instance is not possible. On the other hand, the time independent trace replay is

an heavy models that enable to observe many effects on the executions of the jobs.

This model is precise and has been evaluated by the SimGrid community, however it

has been principally designed for study focusing on one application, and may not

be scalable to study thousands of applications as it is necessary for RJMS studies.

Alternatively, the Ptaskmodel proposes an higher abstraction that bundles all the

activities of an application (computations and data transfers) into an homogeneous

model that is more scalable.

To illustrate the different models and their trade-offs between performances and

the captured effects we set up an experimental setting with Batsim. We study two

scheduling algorithms using the same input workloads — same number of jobs,

same arrival date, same number of requested resources — with different execution

pro�les.

Experimental Setup

For the schedulers we use a simple scheduling algorithm, First Come First Serve

(FCFS) under two declinations. Note that keep the experiment simple, we don't

use back�lling, which is an improvement commonly used in production RJMS —

back�lling is detailed in chapter 3. The �rst declination restricts the resources

allocated for a jobs to a contiguous set of machines (forced contiguity) [Luc+15].

The contiguity of an allocation tends to decrease the number of switches used by the

job if the machines are numbered in increasing order by switch, at the cost to not

use all the free available resources if the allocation conditions are not ful�lled. The

second declination has no restriction on the allocated resources (free allocation).

FCFS is a simple scheduling algorithm that prioritizes all waiting jobs by order of

submission (more recent jobs have a lower priority). A job can be executed on the

allocated resources only if it is the �rst in the waiting queue and if enough resources

are available. Both algorithm are available in the batsched1 project, which is a

tunable scheduler made for Batsim.

The method used to generate the workloads is described in the 9th chapter of the

book [Fei15b]. The arrival times of the jobs follows the Weibull distribution. We

generate two workloads, the �rst is composed of 512 jobs and the second is composed

1https://gitlab.inria.fr/batsim/batsched
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of 1024 jobs. Each workload contains three different kinds of jobs using 8, 16 and

32 resources representing theft application available in the NAS parallel benchmark

suits (NPB) [Bai+91]. The ft application is available for different numbers of

resources, the jobs using 8 resources useft.C.8, ft.C.16 is used for the 16 resources

jobs and ft.C.32 for the 32 resources jobs.

This objective of this experiment is to illustrate the different pro�les with a concrete

example. Each workload contains the same number of identical jobs (same arrival

times, same number of requested resources), only the job execution pro�les are

different. The �rst version uses the TiT replay pro�le, the second workload version

uses theptask pro�le while the last version uses delay pro�les.

SimGrid can directly generate a TiT from a SMPI simulation, therefore the generation

of the Tit pro�les is made by executing the ft application with SMPI.

To generate theptask pro�les we need two information. The �rst information is the

total amount of computations (in f lops ) executed on each resources of the jobs. This

information can be extracted directly from the TiT(s). The second mandatory infor-

mation is the communication matrix (depicted in 4.1). The TiTs contain details about

the communications made by the application, however the precise communication

matrix cannot be directly extracted from the TiT(s). This is mainly due to the fact

that the TiT contains the high level operations made by the traced application such

as send and receive, or the collective name (broadcast, reduce etc). In the case of

the broadcast collective for instance, the precise communication matrix depends on

the underlying algorithm used to achieve these high level communication collectives.

To extract the communication matrix we replayed the TiT application using SMPI (in

SimGrid) with the tracing activated. The SimGrid tracing is able to generates a trace

of the execution of the TiT replay into a different format (paje [KOB00]) containing

the detailed point-to-point communications.

Finally, the only information needed to generate the delay pro�les is an execution

time. Similarly to the ptask pro�le generation, we execute the TiT application with

SimGrid and we use the time predicted by TiT the simulation as execution time for

the pro�le.

The platform used for the simulation is modeled from the Graphene cluster, which

was part of the Grid'5000 test-bed2. The calibration values are obtained from the

SimGrid project3. Figure 4.5 depicts the network topology of the platform. On

this platform we observe different network contention points. The �rst contention

point is at the machine level, if two nodes under the same cabinet sends data to

each other, max bandwidth capacity (of 1 G) can be reached. The second possible

2Unfortunately, the platform has been removed from Grid'5000
3More details can be found about the graphene calibration at https://simgrid.org/contrib/smpi-

saturation-doc.html
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contention point is inside a cabinet, if we group all machine in pair and each pair

communicates with each other, the switch of the cabinet can be overloaded. The last

contention point is located between cabinets, if all the machines from the cabinet 1

(for instance) communicate with a different machine of the 2nd cabinet, the capacity

of the top link of 10 G bit can be reached.

Figure 4.5.: Network topology of the Graphene platform. The platform is organized in 4
irregular cabinets, connected to a top switch with a 10 G Ethernet link.

Results

In the �rst place, we take a look at the simulation's performance. Figure 4.6

compares the time took to run the full workloads on a personal laptop with a

processorIntel(R) Core(TM) i7-7820HQ CPU @ 2.90GHz. The �rst thing to notice, is

that the SMPI model using the TiT traces is the slowest model (more than50 s for

the 512 jobs workloads and between 125 to 175 for the workload containing 1024

jobs). The delay andptask pro�les are faster to simulate, for the 512 jobs workloads

the simulation took less than 1 second, and less than 2 seconds for the 1024 jobs

workloads. Additionally, we observe that the simulation time also depends on the

scheduling algorithm used within the simulation. This is especially the case when

considering the TiT execution pro�les, the ptask are also impacted by the scheduling

algorithm used, whereas the pro�les delay are not impacted by this factor.

Secondly, we take a look at the results of the simulations. Figure 4.7 shows the

Gantt charts of the jobs scheduled during the simulations. Figure 4.8 shows the

distribution of the running times and waiting time of the jobs for each of the different

execution pro�les and scheduling and scheduling algorithms. From the Gantt charts

�gures we can see that both the ptask and the TiT pro�les we see that changing

the allocation policy has a visible impact on the resulting schedule. In particular,

the allocation policy seems to have a negative impact of the waiting time of the job
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Figure 4.6.: Mean (the error bar are the standard deviation) of the (real world) duration
for the simulation of the entire workload over 10 different executions. The
�gure on the right zooms over the delay and the ptask pro�les.

when the contiguity is not forced. This can be explain by the fact that the forcing

the contiguity provides a better jobs placement leading to lower execution time of

the jobs, this effect is visible when comparing the histogram of the execution time in

�gure 4.8.

On the other hand, the delay pro�les have similar results when comparing the two

scheduling algorithm. This is expected as the execution time of a job does not

depends on its placement on the platform nor on the other jobs executing at the

same time.
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Figure 4.7.: The �gure presents only the schedules for the workload containing 512 jobs.
Each Gantt chart depicts the scheduling decisions taken by the scheduler
process, the �rst two upper charts correspond to the pro�le of execution delay,
followed by the ptask execution pro�le. The last two charts on the bottom are
the Gantt charts obtained with the TiT pro�les.
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Figure 4.8.: Histogram of the waiting times and execution times for the different pro�les.
ft.C.8 takes 8 machines for its execution, ft.C.16 takes 16 machines, and
ft.C.32 takes 32 machines. The histogram on the left shows the distribution
of the running time per pro�le, the x-axis is the running time in seconds. The
histogram on the right shows the distribution of the waiting times. The color
shows the different scheduling algorithm used, forced contiguity in purple
(bottom) , not forced contiguity in blue (upper histogram).
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4.4 Conclusion

In this chapter, we state that scheduling simulation should be enhanced to capture

effects occurring in real platforms. For example, simulation taking into account the

platform topology in our simulation by simulating the network interference of the

jobs, the different host computation speed, the energy consumed by a platform, or

the IO contention.

We present Batsim and develop why it is a good candidate to create scheduling

simulations that can capture a wide range of effects depending on the jobs, or the

platform itself thanks to the SimGrid simulation capabilities. Batsim provides a way

to customize the models used to simulate the jobs of the simulation thanks to the

pro�les implemented in Batsim and leveraging SimGrid. The different pro�les are,

the pro�le delay, TiT, and ptask, and composed. Each pro�le has its own set of

advantages and limitations, for instance, the pro�le delay — which is the more simple

— can be used to achieve fast simulation, but lacks to capture effects such as network

interference. On the other hand, the TiT pro�le can render interference effects at

the price of higher simulation runtimes. Ptask is a good compromise, it shows better

computation times while capturing different effects such as interferences.

To compare each model, we created a synthetic workload and create a variant of

this workload for each of the three pro�les, delay, TiT, and ptask. Next, we use two

scheduling algorithms to compare the behavior of each model, one of the scheduling

algorithm used can provide better job allocation. We observe that with the ptask and

TiT models we observe a higher running time of the jobs — due to a bad allocation

on the cluster, the job durations increase — generating higher waiting times.

TiT pro�les present good simulation capabilities and has been the object of many

scienti�c publications from the community to validate it. However, it is a heavy model

and has high computation time hindering the scalability of scheduling simulations

— thousand of jobs in less than one hour if possible. One alternative is to use

the ptask model, which can capture different effects of a real platform (network

interference, CPU speed) but that presents lower computation times. Unlike TiT, the

ptask model has been featured by SimGrid without — to the best of our knowledge

— validation.

While the delay execution pro�le is fast to compute, the main limitation of this

pro�le is that it cannot render effects that appear on the computing platform, such

as network interferences. From this experiment, we can see that theptask model is

at least 100 times faster than the TiT pro�les while we can observe different effects

such as network interferences.

While the model ptask is interesting as it proposes a way to simulates different

applications it a high level of abstraction with reasonable computation time. However,
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the ptaskmodel the ability of the model to predict the behavior of an HPC application

has not been evaluated yet. This lack of evaluation hinders the trust we should put

in the results of the Batsim simulations using this model. Furthermore, the following

elements should be evaluated with theptask model.

• Can the ptask model accurately predicts the running time of the applications

on a platform, under perfect conditions (application alone on a cluster), and

with several applications on the platform (with resources con�icts)?

• It exists a wide range of different HPC applications. Which applications are

best represented with aptask?

4.4 Conclusion 61





5Ptask Model Validation

5.1 Introduction

The previous chapter introduced the different job pro�les available in Batsim. As

seen in section 4.3, theptask model is able to simulate different effects such as

network interferences, while providing reasonable simulation times. Therefore the

ptaskmodel is a good candidate to be used as a job model for scheduling simulations.

This chapter focuses on the validation of theptask model.

The ptask model has been used to simulate workload composed of data-intensive

applications, and simulate the inputs and the outputs of the cluster [Mer19]. How-

ever, to the best of our knowledge, this model has not been tested against real HPC

applications, and its soundness is yet to prove. In this work, we are interested in

evaluating the capacity of the ptask model to capture the behavior of HPC applica-

tions. This validation is important to increase the trust of our scheduling simulations.

We compare theptask model to an HPC application performing a matrix product in

parallel on a real cluster, implemented with MPI.

This model simulates a parallel task (such as an HPC application) at a high level.

It considers only the total of computations and communications made by the ap-

plications. A ptask performs work on a set of allocated resources of the simulated

platform. The work can be either an amount of data that needs to transit between

each host of the parallel task, or an amount of computation to perform on each

host. Computations and communications are combined by theptask model to be

computed together.

Ptask supposes that the advancement of the task is homogeneous between all

computations and communications and that the overall advancement of the task is

limited by the bottleneck of any of the resources used by theptask. The advancement

of a ptask depends on three different parameters. The input given to the model is

a number of computations and communications to execute on the platform. For

instance, if another activity (a ptask for instance) uses the same link, it may impact

the speed of theptask and slows its progress forward. A detailed explanation of the

ptask model is provided in chapter 4.
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5.2 Experiment Methodology

Our methodology aims at validating if the behavior of a ptask under a congested

network (on simulation) corresponds to the behavior of an HPC application with the

same congested network (on a real platform). In other words, we aim to validate

the interference model of the ptask model. To do this analysis, we execute an HPC

application on a real platform onto which we generate controlled network traf�c to

create network interference. Then the same conditions are reproduced in simulation

with a ptask.

In a production system, the application executions might be impacted by the network

interferences induced by the other jobs, however, the jobs do not start (or end)

necessarily at the same moment, and two different applications can have two

different network usage patterns. To reproduce these effects, during the experiments,

we generate different interference patterns by alternating between idle phases and

creating network interferences (interference phases). However, unlike a production

system, where the network interferences can be sporadic and unpredictable we

choose to use a regular pattern to increase the reproducibility of the experiments.

As explained in section 4.2.2, theptask model bundles the computation and the

communication and smoothes the advancement of the task. Thus, we compare a

ptask to an HPC application that shows a close behavior. We choose the application

PDGEMM [AGZ94; FOH87] because it has a regular pattern for its whole execution.

PDGEMM performs successive phases of communications (broadcast) and compu-

tations until it �nishes. Additionally, PDGEMM is a real HPC application which is

simple enough to be modeled properly with the ptask.

The next section details the PDGEMM application. Section 5.4 details the experi-

mental setup to create controlled interferences and execute PDGEMM on two real

clusters. Section 5.5 details the results of the real experiments on two real clusters.

Section 5.6 describes how we simulate PDGEMM with theptask model. Finally,

sections 5.7 and 5.8 evaluate theptask model by comparing the real executions with

simulations. The remaining chapter opens a discussion (section 5.9) about theptask

model for scheduling simulation before concluding in section 5.10.

5.3 Parallel Matrix Multiplication (PDGEMM)

PDGEMM computes a product of two matrices (A and B of sizen � n) in parallel (on

different processes) and stores the result into a third matrix (C). PDGEMM has two

modes, blocking broadcast and nonblocking broadcasts:
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• The �rst mode, detailed in section 5.3.1, performs sequentially: 1) blocking

communications, and 2) then blocking computations. These two actions are

repeated until the application completes.

• The second mode (detailed in appendix A.1.1), performs the communications

(i.e., data transfers) in background of the computations. All the data transfers

needed for the next computation phase occur during the current computation

phase — except for the �rst data transfer required for the �rst computation

which is necessarily blocking.

The last parameter is the number of subdivisions, it adds the possibility to create

subdivisions of the matrices block managed by each process. This parameter is

detailed in section 5.3.2.

5.3.1 PDGEMM Algorithm

The PDGEMM algorithm is depicted in algorithm 3. Each process holds a different

block of the matrices A and B (none of the processes disposes of the whole matrix).

The resulting matrix C also is distributed among the different processes. ForP

processes, the matrices are divided into
p

P blocks of sizen2=P. The processp holds

the blocks situated on the block line p=
p

P and the block column p mod
p

P of the

matrix A, B, and C.

Each process belongs to three groups. The �rst group corresponds to the id of the

line of its block in the matrix A, and the second group corresponds to the id of the

column of its block in matrix B. Separating the processes into groups enables to use

of MPI's collectives on the member of the groups, for instance, one can perform a

broadcast only between the group members. Inside each group, the processes are

identi�ed by a unique id. Process number p (the world group) belongs to the groups

p=
p

P for the lines and to the group p mod
p

P for the columns.

The algorithm performs
p

P iterations, in which each processp computes a partial

sum of its result blockp
C . At the iteration k, each process with the idk in its group

line broadcasts itsblockA , the process with the id k in its group column broadcasts

its matrix blockB . Figure 5.1 depicts the communications made at iterationk. Each

process then computes the partial sum of the block matrix C with the broadcasted

blocks. At the end of all iterations, the matrix C blocks correspond to the product

between A and B.
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Algorithm 3 Parallel Matrix Multiplication (PDGEMM). Each process of the applica-
tion executes this function.

1: procedure PDGEMM(id_ranks ,world_size,matrix _blockA , matrix _blockB )
2: q  

p
world_size

3: row_group  id_rank=q . Row group of the process
4: col_group  id_rank mod q . Column group of the process
5: group_row_id  get_id(row_group) . Process unique id in its row group
6: group_col_id  get_id(col_group) . Process unique id in its col group
7: resC  [block_length � block_length]
8: buf fer A  [block_length � block_length]
9: buf fer B  [block_length � block_length]

10: for i  0; i <
p

world_size; i + + do
11: root_col  k mod q; . Determines the broadcast source forblockA

12: root_row  k mod q; . Determines the broadcast source forblockB

13: if group_row_id == root_row then
14: broadcast_on_lines(matrix _blockA , source = T rue)
15: else
16: broadcast_on_lines(buf fer A , source = False)
17: end if
18: if group_col_id == root_col then
19: broadcast_on_cols(matrix _blockB , source = T rue)
20: else
21: broadcast_on_cols(buf fer B , source = False)
22: end if
23: if group_row_id == root_col & group_col_id = root_row then
24: resC  resC + matrix _blockA � matrix _blockB

25: else if group_col_id == root_col then
26: resC  resC + buf fer A � matrix _blockB

27: else if group_row_id == root_row then
28: resC  resC + matrix _blockA � buf fer B

29: else
30: resC  resC + buf fer A � buf fer B

31: end if
32: end for
33: end procedure
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Figure 5.1.: At iteration k, the processes on thekth line broadcast their block to the other
processes of their line for the matrix A. Once the �st broadcast is done, the
processes on thekth column broadcast their block to the other process of their
column.

5.3.2 Matrix Block Subdivision

The last modi�cation of the PDGEMM algorithm is to add the possibility to divide

the block of the matrix managed by each process into several sub-blocks.

Creating sub-blocks has the advantage of reducing the memory amount consumed

by each process because the buffers used for receiving the matrices A and B only

need to store the sub-block instead of the whole block. Increasing the number of

matrix blocks sub-division increases the total number of iterations, but decreases the

number of size of the computation and communications done at each iteration.

However, the application will perform more — but smaller — iterations. The number

of iterations is
p

P � S, with P the number of the process involved and S the number

of subdivisions of a block. At each iteration, the processes send (or receive) a subpart

of the whole block and perform the multiplication on this subpart.

5.3.3 PDGEMM Resources Consumption Behavior

In summary, PDGEMM is a regular application executing the same actions until

completion. Two modes are available for the communications: Blocking broadcasts

and nonblocking broadcasts. The last parameter enables to change the number of

subdivisions of the block managed by each process.

All these parameters affect the resource consumption of PDGEMM during its exe-

cution. For instance, with the number of sub-divisions set to 1 with nonblocking

broadcast PDGEMM application have a chaotic network consumption because of the

large data sizes send over the network. Thus, such behavior is dif�cult to predict

with a ptask which models a homogeneous behavior
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5.4 Real Experimental Setup

This section presents the experimental setup necessary to study the PDGEMM on two

real clusters. First we present the experimental setup created for the experiments.

This setup enables to control the network, generate network interferences during

the execution of PDGEMM and to gather data about the execution.

5.4.1 Platform and Nodes Con�guration

To run the application, we have access to the Grid'5000 infrastructure. However,

Grid'5000 does not provide a platform with a network that can easily be saturated,

which is required if we want to observe network interferences. To cope with this

problem, we create an experimental setup on two available clusters from Grid'5000:

Paravance, and Grisou. The setup is common to the two platforms. In this setup, we

force communications between two sets of nodes to pass through a unique node.

This setup enables to study our application under a congested network. The different

processes of the MPI application are distributed among the two sets of nodes. During

the execution, we create network traf�c from one node set to the other to saturate

the routing node.

This setup requires that all the nodes are located under the same network switch.

The nodes are divided into three groups of machines, the �rst group is composed

of a single node that will act as a router. The remaining nodes are allocated in

one of the two other groups, that will be used as computing nodes for the MPI

application. We create one subnetwork per computing group, and we attribute an

address to every node in the group, the routing node has two network interfaces, on

per group. Figure 5.3 shows an example of this con�guration with 6 nodes and two

subnetworks.

The last con�guration is to force the communications from one subnetwork to

another to pass through the routing node. This is done by con�guring the routing

table of each node of the two groups.

5.4.2 PDGEMM and MPI Con�guration

One switch has 35 connected nodes. Each node ofParavanceis equipped with two

Intel Xeon E5-2630 v3 (Haswell, 2.40GHz, 8 cores).

256 cores con�guration The PDGEMM application is executed on the set of com-

puting nodes (split into the two sub-networks as described in the previous section).

With 35 nodes, we use 8 nodes per subnetwork for a total of 16 nodes for the

PDGEMM application. On each node, we run 16 processes, 1 process per physical

core for a total of 256 cores for the whole application.
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(a) Physical view of the installation. All 6 nodes are connected to the same switch. Nodes are
distributed across two subnetworks: 10.0.0.0/22 and 10.0.4.0/22 . The ef0 interfaces of
the computing nodes are disabled. Each link from a node to the switch has a bandwidth of
1.25 Gigabytes/s

(b) Logical view of the installation. The nodes in the same subnetworks communicates using the
switch, while the communication between the subnetwork are forced to pass through the routing
node. The routing node has two addresses, each into a different subnetwork so it can join nodes
from both subnetwork. Activating ip forwarding enable the routing nodes to transfer packets from
one subnetwork to the other.

Figure 5.2.: Final con�guration for the experiment. Figure 5.2a depicts the physical setup
of the nodes, while the �g. 5.2b shows the logical view we achieve.

The matrix size is 6:4 � 108 (with n = 8 � 104). Every process of the application

has in its memory 5 matrix blocks (blockb, blockA , blockC , and two buffers for

the communications). Each process uses 1GB of memory, for a total of 16GB per

computing nodes.

The last parameter we need to tune is the placement of the matrix blocks over the

cluster. For our use case, we want to measure the impact of network interference

on our application, so we choose to spread the matrix blocks over the nodes with

a random policy, in this way we create a placement that should be bad enough to

saturate the routing node.

5.4.3 Controlled Interferences

To create interferences, we use a load generator software namedTcpkali1. Tcpkali is

an application that implements a client and a server that is able to generate a load

on a network.

1https://github.com/satori-com/tcpkali
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The load is generated by the client by repeatedly sending the same message during

the activity. The server can be con�gured to have the same behavior. When a client

is connected to a server, it can be con�gured to create a number of TCP connections

and will create as many connections between the server and the client.Tcpkali is

multi-threaded and uses all the threads of the nodes to increase the generated load.

With a single client and server, Tcpkali is able to reach the max bandwidth of the

network link (�g. 5.3a).

(a) Traf�c monitored on the routing node with one client and one server Tcpkali (100 tcp con-
nections) for 30 seconds. The client is executed on a node of the �rst subnetwork, and the client
on a node of the other subnetwork. All the traf�c passes through the routing node. Tcpkali is able
to reach max link capacity (1:25 Gigabytes=s) during the whole execution.

(b) Monitored network activity on the routing node with two different interference patterns.
The upper line of the grid shows a pattern alternating between 30s of idle times and 30s of
interference. The lower line shows the same pattern, but with 10 seconds.

Figure 5.3.: Tcpkali evaluation (upper �gure). Interference pattern examples (lower �gure).
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During the experiment, we create different interference patterns by generating peri-

ods in which we alternate between idle time and network interference. Figure 5.3b

shows the network traf�c on the routing nodes under two interference patterns. One

server is started on a node of the group 1 and remains active the whole experiment,

when there is not client the server waits. The pattern is created by starting and

stopping repeatedly a client on a node of group 2. The client �rst connects to the

server and generates load for a period of time, when the time is over the client is

then stopped leaving the server is a state where it is waiting for new connections.

One script, executed on group 2 is in charge of starting, and stopping the client, and

during idle phases, sleeping.

5.4.4 Monitoring

On each node of the experiment we use MojitO/S2, an open-source monitoring

software which can poll a wide range of metrics from different sources of the node it

is executed on. In our case, we use MojitO/S to poll information about the network

interfaces on the experiment's nodes.

5.5 Results and Data Analysis of the Real

Executions

This section details the results of the experiment onParavanceand Grisou. In the

�rst place, we present a detailed view of the Paravanceexperiments to explicit the

resource consumption of PDGEMM. Secondly, we show the results obtained for the

Grisouplatform. Finally, we illustrate the difference between the two clusters.

5.5.1 Results Analysis for Paravance

Figure 5.4 plots the running times for each con�guration on Paravance, note that

each con�guration is executed 5 times on G5K to cope with system variability. In

the �rst place, we notice the running time of the application is sensitive to network

interference, and all con�gurations have the same behavior — more interference

means higher running time. On the other hand, we observe that jumping from no

subdivisions to 50 block subdivisions (block subdivision is detailed in section 5.3.2),

the nonblocking broadcasts become less ef�cient and the blocking broadcasts bring

better running time.

Table 5.1 presents the mean runtime for each con�guration (along with the standard

deviation). Both the �gure and the table show that the application execution is

slowed with interferences. From the results table, we can observe that constant

2https://sourcesup.renater.fr/www/mojitos
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interference slows the execution in the same way for every broadcast and subdivision

con�guration — around 15 %, the max is 16 %and the min 14 %.

Broadcast Subdivision Interference Mean runtime(s) Standard dev Increase %

Blocking

No subdivision

No interference 450.42 0.76
15s interference / 45s idle 469.19 0.41 4.17
15s interference / 15s idle 484.57 1.37 7.58
30s interference / 30s idle 480.31 1.05 6.64
45s interference / 15s idle 492.76 2.35 9.40

Constant interference 513.93 0.93 14.10

50 subdivision

No interference 346.08 1.33
15s interference / 45s idle 360.37 0.64 4.13
15s interference / 15s idle 373.85 0.98 8.02
30s interference / 30s idle 374.13 1.43 8.11
45s interference / 15s idle 388.59 1.23 12.28

Constant interference 402.69 1.20 16.36

Non blocking

No subdivision

No interference 384.06 4.11
15s interference / 45s idle 395.39 3.04 2.95
15s interference / 15s idle 409.19 5.16 6.54
30s interference / 30s idle 407.61 2.37 6.13
45s interference / 15s idle 421.66 4.12 9.79

Constant interference 434.65 2.10 13.17

50 subdivision

No interference 374.29 1.59
15s interference / 45s idle 389.57 0.84 4.08
15s interference / 15s idle 403.58 1.63 7.83
30s interference / 30s idle 403.35 0.97 7.76
45s interference / 15s idle 416.79 1.90 11.35

Constant interference 430.49 1.10 15.01

Table 5.1. Mean runtime of all PDGEMM executions for each con�guration (number of
subdivisions, interference patterns and broadcast types) onParavance. The last
column is the percentage of increase compared to the execution of the same
category without interference.

Between blocking and nonblocking broadcasts, we observe that the subdivisions

impact more the blocking broadcast (up to a difference of 2 %), more subdivisions

increase the slowdown. Whereas for nonblocking broadcast the number of divisions

has a lower impact. Moreover, the con�guration with blocking broadcast and no sub-

division is globally less impacted by the interferences than the other con�gurations.

This is because no subdivisions imply longer phases of calculation and communica-

tion, and during a computation phase, no transfer is performed. Figure 5.5 shows

the network traf�c recorded for the blocking broadcast, as each con�guration has

been run 5 times, the �gure only shows one of the �ve runs for each con�guration

(interference pattern and subdivisions). The upper �gure shows that periodically,

the network is not used by the application, the periods of inactivity correspond

to the computation phases. On the other hand, the lower �gure shows that when

subdividing the matrix the application performs more (but smaller) phases, that

homogenize the network usage. Hence, with 50 subdivisions the application is

sensitive to the network interference during its whole execution.

As �gure 5.5 for blocking broadcast, �gure 5.6 shows the network traf�c for non-

blocking broadcasts. One can observe that, for both blocking and nonblocking

broadcasts, using a number of 50 subdivisions increases the homogeneity of the net-
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Figure 5.4.: Mean runtime of PDGEMM under different interference patterns and
broadcasts (blocking or nonblocking).

work traf�c, leading to more stable executions. In the case of nonblocking broadcast

the network is always used but chaotically (this can also explain the higher standard

deviation visible in table 5.1).

Blocking and nonblocking broadcast using the con�guration with 50 subdivisions

presents a better �t for the ptask model. With these con�gurations, the application

network usage is homogeneous, which corresponds to theptask model. Indeed,

the ptask model assumes that the application's progress during the execution is

homogeneous.
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(a) Network traf�c monitored with blocking broadcast and no subdivisions .

(b) Network traf�c monitored with blocking broadcast with 50 subdivisions .

Figure 5.5.: Paravance. Network traf�c monitored on one MPI host, and on tcpkali server's
host for blocking broadcast . The upper �gure plots one instance for each
interference pattern without subdivision, whereas the lower �gure plots it with
50 subdivisions.
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(a) Network traf�c monitored with nonblocking broadcast with no subdivisions .

(b) Network traf�c monitored with nonblocking broadcast with 50 subdivisions .

Figure 5.6.: Paravance. Network traf�c monitored on one MPI host, and on tcpkali server's
host for nonblocking broadcast . The upper �gure plots one instance for each
interference pattern without subdivision, whereas the lower �gure plots it with
50 subdivisions.
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5.5.2 Results Analysis for Grisou

Broadcast Subdivision Interference Mean runtime(s) Standard dev Increase %

Blocking

No subdivision

No interference 452.28 0.99
15s interference / 45s idle 583.11 0.49 28.93
15s interference / 15s idle 806.33 1.72 78.28
30s interference / 30s idle 820.04 2.23 81.31
45s interference / 15s idle 1243.07 18.45 174.85

Constant interference Reached Timeout

50 subdivision

No interference 349.30 0.86
15s interference / 45s idle 442.71 1.00 26.74
15s interference / 15s idle 568.50 0.60 62.76
30s interference / 30s idle 574.34 1.19 64.43
45s interference / 15s idle 796.79 3.76 128.11

Constant interference 1415.59 28.52 305.27

Non blocking

No subdivision

No interference 372.83 2.34
15s interference / 45s idle 475.88 4.67 27.64
15s interference / 15s idle 624.58 1.96 67.52
30s interference / 30s idle 599.13 1.97 60.70
45s interference / 15s idle 860.33 25.32 130.75

Constant interference 1490.47 21.72 299.77

50 subdivision

No interference 379.14 1.29
15s interference / 45s idle 469.59 0.92 23.86
15s interference / 15s idle 599.06 0.59 58.01
30s interference / 30s idle 595.54 0.35 57.08
45s interference / 15s idle 832.91 1.80 119.69

Constant interference 1455.86 17.55 284.00

Table 5.2. Mean runtime of all PDGEMM executions for each con�gurations (number of
subdivisions, interference patterns and broadcast types) onGrisou. The last
column is the percentage of increase compared to the execution of the same
category without interference.

The experiment on Grisou shows the same behavior as the experiment onPar-

avance. However, in Grisou the PDGEMM application is more impacted by the

interferences.

Table 5.1 presents the mean runtime for each con�gurations on Grisou(along with

the standard deviation). As for the experiment on Paravance, the table shows that

the application execution is slowed when there is interferences. The major difference

is that the application is slowed at maximum by 305 %with Blocking broadcasts and

50 subdivisions (all instance of the blocking con�gurations with no subdivisions have

been killed because they reached the timeout, so the maximum is probably more),

and the minimum is 283 %for non-blocking broadcasts with 50 subdivisions.

5.5.3 Di�erence Between Grisou and Paravance

Figure 5.7 shows the monitoring traces ofGrisouand Paravanceside by side for three

con�gurations. Looking at the con�guration without interferences (upper plots),

we notice that both executions are similar: The execution took in average349:30 s

(table 5.2) on Grisouand 346:08 s (table 5.1) on Paravance. It also appears that the

network activity generated by MPI is similar.
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The main difference can be observed when looking at the phase with interferences.

The lower plots show the monitoring traces with the con�guration doing constant

interferences. The green line depicts theTcpkali network activity, while the (dark-

)purple shows the MPI activity. In Paravance, the PDGEMM application is less

impacted by the interferences onGrisou, up to 16 % for Paravanceagainst 300 %

on Grisou. During interferences phases the MPI application doesn't use the same

bandwidth on Grisouand Paravance: Tcpkali manages to get more bandwidth on

Grisou. This can explain why the application on Paravanceis less sensitive to network

interferences generated with Tcpkali.

Paravanceand Grisouare similar clusters, they both featuresDell PowerEdge R630

with two Intel Xeon E5-2630 v3 (Haswell, 2.40GHz, 8 cores)per nodes. The main

difference is the network switch connecting the nodes of each cluster, theParavance

nodes are connected with aCisco Nexus 9508and the Grisounodes are connected

with a Nexus 56128P. Both switch might have a different behavior or they might

have different con�gurations.
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Figure 5.7.: Comparison of monitoring traces of Grisou and Paravance. The plots show
the con�guration of PDGEMM with blocking broadcasts and 50 subdivisions. It
appears that without interferences, Paravanceand Grisouhave similar execu-
tions, the network activities are alike and have the same execution times. How-
ever, under constant interferences (bottom line), the bandwidth of PDGEMM is
signi�cantly lower on Paravancethan on Grisouand have a different execution
time.
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5.6 PDGEMM in Simulation

The second part of the experiment consists of creating aptask corresponding to

PDGEMM. To evaluate the model's capacity to predict the application running time

under interferences the ptask is executed in the same simulated conditions: the same

platform and the same controlled network interferences. That is to say, we need to

create the SimGrid platform corresponding to the setup depicted in �gure 5.2b, to

simulate the same interferences, and aptask representation of PDGEMM.

5.6.1 SimGrid Platform, Calibration and Interference

The created platform uses the SimGridxml API. The platform needs several attributes,

the hosts performing the calculation, and how they are connected (SimGrid is

detailed in section 4.2.1). In the simulation, we create the platform depicted in 5.2b,

which consists of two distinct homogeneous clusters connected to two switches (one

per cluster) and one link connecting the two clusters (our routing node).

One important part of SimGrid simulations is the platform calibration, the speeds

of the hosts and links need to be carefully studied to create a SimGrid platform

accurately representing the reality. To calibrate the network links, we use the

SimGrid default TCP policy, which has already been evaluated several times[Vel+13;

Béd+13]. However, to accurately represent the computation speed of the hosts

we use the calibration made by Tom Cornebize to accurately predict HPL running

time at large scale [CLH19]. This is possible because, both the application HPL and

PDGEMM use theDgemmfunction from the openblas3 library. The Dgemmfunction

perform the following operation:

C := � � A � B + � � C

For matrices C, A and B , and the two scalars� and � . Dgemmis the function used

to do the matrix product in the actual implementation of algorithm 3.

The whole experiment is created with a unique SimGrid program, that both execute

a ptask and generates the same interference used in the real platform. To simulate

the interferences we use two methods, the �rst method is to create aptask with no

computation that will transfer data between one node of the �rst group and another

node in the second group. The second method is to use the SimGrid API:s4uenables

to program actors to take part in the simulation. To mimic the behavior of Tcpkali,

we create two SimGrid actors that will periodically initiate data transfer to match

with the different con�gurations used in the real platform.

3https://www.op10nblas.net/
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5.6.2 Ptask Generation

One dif�culty of the ptask model is to be able to generate aptask corresponding

to the real application. As a reminder, to compute a ptask SimGrid needs two

information: the communication matrix and a vector of computation amount to

complete.

The number of elements in the vector of computation corresponds to the number of

SimGrid actors in the simulation. In our case, we use one actor per MPI rank. The

computation amount, in the case of PDGEMM, is easy to obtain as we consider that

one matrix product generates approximatively m � n � k number of operation, for

matrix Um;k and matrix Vk;n , m, n, and k are the dimension of the matricesU and V ,

the �rst letter being the number of lines, and the second the number of columns. On

each MPI rank, we have one matrix block of sizen � n (with in our case n = 8 � 104 as

described in 5.4.2). Thus each rank has locally a block of sizeb� b with b = n=
p

(P)

(P is the number of ranks). Thus each rank will executeb3 operations
p

(P) times

(loop at line 10 of algorithm 3).

The second parameter is the number of block subdivisions, in our experiment we

use a subdivision of 50 sub-block. However, the total amount of computation made

by each rank is not impacted by the number of divisions of the blocks. The number

of iteration is consequently increased.

Obtaining the communication matrix of the application is more tedious for two main

reasons. The �rst reason is that the exact communication depends on the underlying

broadcast algorithm used during the application. The second reason is that we

lack monitoring tools permitting us to know the point to point communication

destinations. MojitO/S only provides the data that a node receives and sends. To

cope with this issue, as in section 4.3.2, we use SMPI with the tracing options

enabled in order to get the point-to-point communication. This enables to compute

the exact communication matrix. Next, we force the broadcast algorithm to the

binary tree algorithm in simulation, and in reality, both MPI and SMPI enable to tune

this parameter at execution time.

It is worth mentioning that the ptask model has not the possibility to model the

different parameters of PDGEMM. Thus, the different combinations of PDGEMM,

number of subdivisions, and broadcast types are represented with the sameptasks.

The only parameters impacting the ptask generation are the number of processes

used and the size of the input matrices.
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Ptask Interference runtime increase %

Tcpkali is s4u::Actor

No interference 312.00
15s interference / 45s idle 382.00 22.44
15s interference / 15s idle 472.00 51.28
30s interference / 30s idle 472.00 51.28
45s interference / 15s idle 635.00 103.53

Constant interference 935.00 199.68

Tcpkali is ptask

No interference 312.00
15s interference / 45s idle 382.00 22.44
15s interference / 15s idle 472.00 51.28
30s interference / 30s idle 472.00 51.28
45s interference / 15s idle 635.00 103.53

Constant interference 935.00 199.68

Table 5.3. Predicted runtime for the ptask model under each interference pattern, and two
methods for simulating tcpkali. The obtained results are identical for the two
methods: Using aptask or the SimGrid's s4u API doesn't impact the simulation's
results. The last column is the percentage of increase compared to the execution
of the same category without interference.

5.7 Comparison between the Ptask Model and

Reality

In this section, we compare the results obtained with the ptask model in simulation

to the real execution of PDGEMM. Table 5.3 shows the prediction obtained with

the ptask model. The �rst thing to notice is that without interference the model

predicts a runtime of 312 seconds, as a reminder the mean runtime of PDGEMM

application' execution without interference was, for 50 subdivisions, 346s (error of

10 %) for blocking broadcasts, and 373s (error of 18 %) for nonblocking broadcasts

on Paravance. On Grisouthe mean runtime is 349s and 379s respectively.

Figure 5.8 compares theptask prediction with the executions on Paravanceand

Grisou. As already stated, the runtime prediction without interferences remains

close, however,ptask fails to accurately predict the runtime with interferences. The

predictions are less accurate when the number of interferences increases, to the �nal

point with constant interferences. However, it appears that the model is a better �t

for Grisouthan Paravance. For PDGEMM, the running time is increased at max16 %

for Paravance, and 300 %for Grisou. The ptask model predicted time increases to

199:68 %.

We observe that theptaskmodel reacts to interferences in the same way as PDGEMM

does, the application execution is slowed during interference phases, and longer

interference time (in totality) means slower executions, therefore 10s interference /

10s idleand 30s interference / 30s idlehave the same running time for ptask.
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Figure 5.8.: Comparison of the ptask with Paravance and Grisou for con�gurations
with 50 subdivisions . The error bar are only present for Paravanceand Grisou,
they show the con�dence intervals (95 %) of the mean runtime. The 15s
interference / 15s idlepattern has been removed to increase readability.
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5.8 Interference Analysis

The current experiment's results show that theptask model keeps the tendencies of

PDGEMM while failing to accurately predict the running time with interferences.

More speci�cally, the ptask model tends to either under predict the runtime for

Grisou, or over predict the runtime for Paravance. However, the ptask seems to

adopt the same behavior as the PDGEMM application when we simulate aptaskwith

interferences.

Figure 5.9.: Progress of PDGEMM andptask over the simulated time until its completion
(progress = 100).

Figure 5.9 depicts the progression through time of PDGEMM andptasks. For

PDGEMM, the progress lines are obtained by logging during PDGEMM execution the

time at which the application enters a loop and the loop's index for each process.

The provided information is aggregated, and the percentage corresponds to the

current number of loop done divided by the total of loops required. For ptask, the

progression lines are obtained by periodically logging during the simulation the

remaining of work to perform before the ptask's completion. This �gure gives a

vision of the impact of the interference on the progress of PDGEMM andptasks.

We can note behaviors of PDGEMM common toGrisou, Paravance, and the ptask

model:
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1. The application has two progress rates: The progress rates during interference

phases, and the progress rate corresponding to the phases without interfer-

ences. This phenomenon is more visible, for instance, onGrisou, and for the

ptask model.

2. The two progress rates remain identical regardless of the time of the interfer-

ence made. This suggests that PDGEMM is sensitive to the total quantity of

interference (in time) independently of when the interferences occur. This is il-

lustrated with the con�gurations 15s interference / 15s idleand 30s interference

/ 30s idle that have a close running times (table 5.1 and table 5.2).

From the different observations of the experiments, we deduce a theoretical interme-

diate model to predict the runtime of both the ptasksand the PDGEMM application

with the different interference patterns.

5.8.1 Theoretical Interference Model

The model works as follows. For a time periodT (in our experiments T = 60 s) the

application progress for this time period can be calculated by the formula:

T(� � c1 + (1 � � ) � c2) (5.1)

The parametersc1 and c2 correspond to the progress rate of the application during

the different phases: c1 corresponds to the progress rate with interferences (the slow

rate) and c2 correspond to the progress rate without interference (the fast rate). The

parameter � corresponds to the percentage of the time period with interferences

(the slow rate) and 1 � � corresponds to the percentage of the time period (T) that

doesn't have interference (the fast rate).

The model predictions can be computed with the procedure 4. The procedures

compute the different periods until the application completes (i.e., the remaining

variable reaches 1). During a period, the procedure �rst computes the progress for

the slow rate and the progress of the fast rate (the same order as in the experiments).

In case of the application remaining exceeds the completion value (line7 and line

11), the procedure rollbacks the predicted times. The procedure returns the predicted

time.

5.8.2 Theoretical Model Calibration and Results

To use the model on the different experiment one need to �nd the proper values of

T, c1, c2 and � . From the experiment con�gurations used, the time period T equals

to 60 s, and � depends on the interference pattern. Table 5.10a shows the calibrated

values for � .
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Algorithm 4 Theoretical model prediction procedure
1: procedure PREDICT(� , c1, c2, T)
2: remaining  0 . Completed when remaining is at 1
3: time  0 . Initializes the prediction to 0
4: while remaining < 1 do
5: remaining  remaining + T � � � c1 . Updates progress of slow rate
6: time  time + T � � . Increases time
7: if remaining > 1 then . Rollbacks if progress exceed 1
8: time  time � (remaining � 1) � c1

9: Break . Exits while loop
10: end if
11: remaining  remaining + T � (1 � � ) � c2 . Updates progress of fast rate
12: time  time + T � (1 � � ) . Increases time
13: if remaining > 1 then
14: time  time � (remaining � 1) � c2

15: end if
16: end while
17: Return time
18: end procedure

The values for c1 and c2 are directly calculated from the experiment results. The

slow rate c1 corresponds to the slope of the progress line of PDGEMM with constant

interferences, while the value for the fast rate (c2) corresponds to the slope of the

progress line without interferences. The easiest way to take these values is to use

the values of the run with constant interferences and without interference. For

the Paravanceand Grisouclusters, we take the mean runtime of the corresponding

con�guration, for the ptaskwe have only one value so we directly take the prediction.

For more readability, we choose one con�guration for the real executions, the

con�guration with Nonblocking broadcasts, and 50 subdivisions. The obtained

progress rates are presented in table 5.10b.

Interference pattern �

No interference 0

15s interference / 45s idle 0.25

30s interference / 30s idle 0.5

45s interference / 15s idle 0.75

Constant interference 1

(a) Values for � corresponding to the different in-
terference pattern used in the experiments.

Experiment c1 c2

Grisou 1 � 1455:86 1 � 379:14

Paravance 1 � 430:49 1 � 374:29

Ptask 1 � 935:00 1 � 312:00

(b) Values ofc1 and c2 calculated from the exper-
iment's result (Grisou, Paravanceand ptask).

Figure 5.10.: Model parameters.

Figure 5.11 shows the obtained results for each different calibration. We observe

that with the proper calibration of the theoretical model is able to predict, for

each interference pattern, the runtime of both Grisou and Paravance, and for the
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Ptask. This result suggests that theptask has the potential to accurately simulate

PDGEMM application provided that one modi�es or calibrates the model to increase

its accuracy.

Figure 5.11.: Theoretical model's results for the different calibrations. The x-axis shows the
different values of � , corresponding to the different interference patterns.

5.9 Discussion

In Figure 5.5a, we observe that PDGEMM alternates between phases in which

the network is used (around 27s) and phases in which it is not used (around 5s).

However, the ptaskaggregates the whole network activity into homogeneous network

activity.

In the case of periodic network activity or bursty network activity, the ptask loses

information about these behaviors. Figure 5.12 illustrates this effect: the ptask

loses the periodic effects of the real activity, and the network is always solicited but

with a lower intensity. The ptask model is not able to simulate this effect with only

one ptask, and therefore, in this case, theptask might fail to soundly simulate the

interferences. For instance, if another application uses the network (only) during the

computation phases, the observed application should not be impacted. In contrast,

if the application has only one network burst during its execution, the ptask might

generate a low network activity that doesn't represent the burst.
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Time

Network activity

Figure 5.12.: Illustration of how the ptask simulates a periodic application. The dotted blue
line represent an example of a real activity. The solid purple line shows the
activity of ptask's simulating the blue line.

One solution is to use different ptasksto simulate a single application, eachptask

simulates different phases. For instance, for a periodic application, one can alternate

between aptask for the communications and a ptask for the computations.

A typical scheduling simulation features a lot of (different) jobs. Jobs that last days

can be simulated along with jobs that only last hours or a few minutes. In this context,

for one application alternating between phases of 27 seconds of communications

and 5 seconds of computations during one day, it would require more than two

thousand of ptask executions. The same reasoning applies to short applications: An

application of ten minutes alternating between two phases of 1 second requires 600

ptasks.

Although this solution of using several ptasksto simulate the temporality of an appli-

cation is interesting, it raises a more fundamental important question: What tempo-

rality one has to consider to create application models suitable for scheduling

simulations? In other words, what is the time scale that we need to consider for

creating application models?

• A small time scale increases the level of details of the simulation and potentially

the total time of the simulation. It simulates short jobs with several ptasks

extending the number of ptasksrequired for very long jobs.

• A large time scale exacerbates the smoothing effect and decreases the level

details of the simulation. It simulates both small and long jobs with a single

ptask.

Finding the proper time scale should be a trade-off between the level of details

required for the study, and the simulation time. Another possible solution is to run

preliminary simulations with a large time scale to detect situations that are worth to

study with a small time scale.
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5.10 Conclusion

The chapter evaluates theptask model by comparing it to a real MPI application

(PDGEMM) under different network interference patterns. The experimental setup

bene�ts from the Grid'5000 infrastructure to execute a real application and to create

controlled network interference with a real HPC cluster — on a TCP network. The

evaluation uses two different clusters: Paravanceand Grisou.

5.10.1 Ptask calibration

The results obtained show that the ptask model provides acceptable predictions

for PDGEMM applications when there are no network interferences (error around

10 %), however, the accuracy of the model decreases as the quantity of interferences

increases.

Despite the accuracy issue under interferences, we show that theptask has the

potential to soundly simulate PDGEMM application. Indeed, the ptask model shows

the same behavior under interferences, both PDGEMM, and theptaskhas two modes:

a slow mode during interferences, and a fast mode when there are no interferences.

This behavior has been veri�ed with a theoretical interference model that accurately

predicts the running time of the ptaskmodel and the PDGEMM application, provided

that the theoretical model is calibrated. This suggests that theptask model can

accurately predict the running time of PDGEMM with proper calibration.

Calibrating the ptask model is not yet possible as it doesn't currently expose pa-

rameters to be calibrated. Modifying the model might be necessary to incorporate

different parameters for the calibration. First, one needs to identify the parts of the

model that need to be calibrated. Theptaskmodel is implemented into the simulator

SimGrid, which is a complex piece of software. Identifying the part of the model

that needs calibration is not immediate and requires further investigations.

SimGrid tracing is equivalent to monitoring in reality but in the simulation. With

this feature, it is possible to trace the activity of ptask during the simulation: The

quantity and time of the bandwidth used on the different links or the computation

activity of the hosts, etc. Using tracing is a good way to compare the real network

activity with the network activity in simulation, and to identify differences that could

lead to a calibration point. However, the tracing of SimGrid is currently broken 4: a

�rst step toward ptask calibration is to �x the tracing.

4https://framagit.org/simgrid/simgrid/-/issues/40
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5.10.2 Scheduling Simulations

As stated in the previous chapter, theptask has reasonable simulation time for

scheduling simulation, while being able to simulate the resource consumption of an

application. The results obtained in this chapter show that the ptask model has the

potential to simulate an HPC application with interferences. Particularly, the model

has been evaluated for an application with a homogeneous activity for the network

and the computation, for which the ptask is well suited.

Nevertheless, our �nal objective is to create a model of application suitable for

the simulation of next generation platforms and applications. Currently, the ptask

has been tested only for one application with synthetic interferences. Further

investigations are necessary to understand the capability of the model. For instance,

what is the accuracy of theptask in a scenario where the interferences are replaced

by another application?

Additionally, if PDGEMM is a real application, it is not a production application

and it has been developed for this evaluation. Comparing theptask model to real

production applications is needed to increase our con�dence in the model. Real

HPC application can be complex and requires experts to understand their resources

consumption. However, leveraging monitoring techniques used in this chapter one

can pinpoint phases in the application that show homogeneous patterns. Identifying

these phases is the entry point to simulate complex production applications.
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6Study RJMS with the Emulation

Approach

6.1 Introduction

There are two families of methods to study a distributed application: the ones that

work on the implementation of the target application, and the ones that work on a

model of the target application (using simulation). Resource and Job Management

Systems (RJMS) are distributed software in charge to manage the job and the

resources of a computing platform. In chapter 3 we evaluate a new scheduling policy

in simulation, and in chapters 4 and 5 we propose to extend scheduling simulations

with a dedicated model for the simulated jobs. In this chapter, we are interested in

techniques and methodologies that enable to study real RJMS, instead of using a

model of it.

RJMSs are complex and con�gurable software, the scheduling policy of real RJMSs

often incorporates a large part of real cluster constraints, such as different queues

depending on the project to handle different priorities, or to con�gure the queue

of the back�lling, etc. One common methodology to study RJMS is to rely on

Simulation. Simulation, by essence, uses a model of the targeted systems. Creating

a model able to capture the whole complexity of a system is a complicated issue,

and needs to be validated (or invalidated) before using it (chapters 4 and 5).

Furthermore, RJMSs are subject to evolutions, and therefore one RJMS model needs

to be updated (and validated) with the evolution of the RJMS. These aforementioned

approaches use a model of an RJMS, and therefore these studies do not directly

target a speci�c RJMS implementation.

Some scenarios impose to use a speci�c RJMS implementation. For instance, exper-

imenting with real RJMS is a good option to conduct preliminary experiments, to

help system administrators to tune the RJMS con�guration for their cluster. Or to

enable developers to test new features during the development phase.

As detailed in chapter 2, the methodologies used to experiment with real RJMS

either rely on emulation or in-vivo. in-vivo consists of executing a real RJMS on

a real platform. in-vivo is close to a production system, but this approach can be

time-consuming, complex, and dif�cult to reproduce. In-vivo experiments also have

the drawback of being limited to the platforms at hand. Emulation, on the other

hand, consists of studying a real RJMS on a platform model. This approach is a good

alternative to in-vivo, as it enables to study an RJMS in a controlled environment
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and permits the study of what-if scenarios, such as « What if my platform has more

computing nodes? » or « What if my platform has a smaller network? ».

State of the art emulation techniques (detailed in chapter 2) mostly relies on con-

tainers and virtual machines to set up a platform during the experiments. This

methodology is useful to create larger platforms than the platforms at-hand. How-

ever, we refer to this approach ashybridization because the platform is partially

modeled: the physical resources are virtual, and enable to execute a real operating

system (such as Linux). One drawback of the virtualization (or using containers)

is that the modeled platform is limited to the capacity and the architecture of the

platform at hand. Distem [Sar+13] enables a different platform on top of a real

platform, with the limitation that the modeled platform is less performant than the

real platform.

These tools and methodologies are a good start to study RJMS in a controlled

environment, and study scenarios involving platforms that are not available to

experimenters: larger platform using a large number of containers on a single node,

or platform with degraded network performances for instance with Distem. However,

even if it enables to broaden the scope of study than one can do with RJMS, these

methodologies still require a computing platform to carry them.

The Slurm simulator [Luc11; Rod+17; JDC18] and the Flux simulator [Pol+18] on

the other hand, enables to study and execute a complete RJMS on a single computer.

This feature is convenient for testing new innovations or evaluate new scheduling

algorithms. However, the Slurm simulator is tightly coupled to its implementation

(and to a particular Slurm version), at each new version of Slurm the simulator

needs to be updated and evaluated. Additionally, the simulator implementations are

dependant on a particular RJMS. Reproducing the approach for other RJMSs needs

to deal which each RJMS's idiosyncrasy (programming language, architecture, etc).

For the Slurm simulator, and the Flux simulator the description of the simulated

platform is limited and is not able to simulate a realistic platform with different

network topologies for instance.

Current approaches designed to experiment with real RJMS, are limited either in the

number of scenarios one can study, or because they are tightly coupled to a particular

RJMS implementation, or worse a particular RJMS version. Our motivation is to

propose new tools and methodologies to experiment with RJMS that, �rst don't

depend on a particular RJMS implementation, and second that can bring the full

potential of a platform simulator such as SimGrid or Batsim.

The contribution of this chapter is the presentation of two new approaches to execute

a real RJMS on a simulated platform, both enable to execute an RJMS on a single

computer. The two approaches are based on a (different) mechanism that enables

to use of a platform simulator, the former uses SimGrid while the later uses Batsim.
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This chapter details the presented approaches from a high-level point of view and

doesn't detail the different tools and pieces of software used to carry outSimunix and

Batsky. This separation enables us to focus on the approaches and their utility, and

facilitate their comparison. The focus of the chapter 7, on the other hand, �lls the

gap and details the different tools and software used and developed to implement

these approaches.

6.2 The Simunix Approach

Simunix initial objective is to execute, on a single computer, the RJMS Slurm on a

simulated platform. The simulated platform is managed by the simulation toolkit

SimGrid. Despite the main objective of Simunix which is to emulate Slurm, the

approach doesn't depend on the Slurm source code.Simunix can be seen as a

sandbox which executes a program, and changes (some of) the functions called by

the program to modify or replace their original behavior. In other words, Simunix is

able to change the function called by a program to replace them with a simulated

version of the function. Simunix is not coupled with Slurm (or another RJMS)

because the replaced functions are from the C library (libc), which makes this

approach usable with all programs that rely on the libc.

An RJMS is by essence a distributed software that runs programs (daemons) on

the computing nodes of a cluster and uses a program on another node to manage

the cluster. To execute an RJMS on a single computer,Simunix creates a SimGrid

platform that simulates a cluster and executes all the RJMS program on a sandbox.

The programs are executed on isolated sandboxes and only a subset of thelibc

functions are intercepted. This subset comprises all the communication functions

(the BSD socket API), all the process management functions (such as fork, or thread),

and the functions to manage and request the time.

SimGrid features a programming interface to create actors that interact with the

simulated platform. This model enables Simunix to simulate the program running in

the sandbox with actors; an actor is executing on a simulated node of the SimGrid

platform. Simunix project implements the libc functions with the Remote SimGrid

API, which creates a wrapper around SimGrid to isolate the different actors of the

simulation into a single process. With Simunix an actor can either be a process

(in case of a fork) or a thread. For instance, when the process calls the function

gettimeofday, Simunix intercepts this call and use the actor corresponding to the

current process to get the simulation time from SimGrid. The RSG API enables actors

to communicates with each other. The RSG's actor model is detailed in section 7.3.

Figure 6.1 illustrates how Simunix works for a single execution with two different

processes from a high-level perspective.
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Figure 6.1.: High-level illustration of a Simunix simulation involving two programs. The
execution of the two programs are on the same computer, and therefore the
SimGrid execution and the two programs share the same operating system.
Each process is executed into a different sandbox, and the black arrows depict
the function replacing the original libc function and interacting with SimGrid.
The sandbox is permeable: the function that is not intercepted by the sandbox
are executed normally by the OS, on the other hand, the intercepted functions
use the SimGrid simulation. Note that to provide process isolation for each
separated actors, the sandbox accesses the SimGrid simulation using the RSG
project.

6.2.1 Project Historic

Simunix's �rst idea has been originally created by David GLESSER with SimGrid,

which developed the �rst Simunix version. The �rst version presented several

limitations: the global variables were shared among the different processes breaking

the consistency of each individual process. To code this architectural issue, the

second version uses RSG. The development of the second version is a contribution

of this dissertation [Gle16; GF15]. The original version of RSG has also been

developed, and many features have been incorporated into the project to support

the development of Simunix.

The secondSimunix version uses theELF poisoning(detailed in section 7.2) approach

to intercept the relevant functions of the libc. The �rst proof of concept was able to

simulate a cluster up to 10 nodes [GF15], and worked on different Slurm version

without requiring any modi�cations. Unfortunately, recent changes in the libc made

the use of ELF poisoningfailing to intercept the fork function. The issue comes from

changes in thelibc impacting the ELF structure to the point where the fork function

doesn't appear in the ELF�le. More investigations are necessary to pinpoint the

origin of this behavior.

Simunix project is not maintained anymore. However, the sgwrapproject can be

seen as the third version ofSimunix. It aims to generalize the Simunix approach

and extend the idea for other programs. sgwrapis similar to Simunix: It models
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the libc using the RSG project. The current implementation is at an early stage of

development and doesn't support yet the execution of Slurm.

The tools and mechanisms used to build the different versions ofSimunix are

explained in section chapter 7.

• The �rst tool is the interception mechanism that enables to replace the function

called by the program and therefore creates the sandbox.

• The second tool is called Remote SimGrid, it creates a wrapper around SimGrid

to isolate the different program of Slurm to system processes (which is not

possible with SimGrid only).

• Finally, sgwrapmodels the functions of the libc using the RSG API. Although

sgwrap is more recent than Simunix, both sgwrapand Simunix use RSG to

model the libc. Therefore the libc modelization stands for both projects.

6.2.2 Simunix Use Case: Slurm Emulation

The initial objective of Simunix is to be able to execute the Slurm RJMS on a single

computer, using the SimGrid simulation toolkit. A typical Slurm installation features

a Slurm controller ( SlurmCtld) and Slurm daemon (SlurmD) per node. The SlurmCtld

is responsible for the scheduling and handling the job submissions. TheSlurmD

are responsible for the node it is running to, including the management of the job's

execution. The controller controls the SlurmD processes with a remote procedure

call protocol. To submit a new job to the Slurm installation, the srun program can be

used.

The �gure 6.2 depicts how to execute Slurm with Simunix on a simulated platform.

The different programs necessary for the Slurm execution are executed on their

dedicated sandboxes. As explained in the previous section, each sandbox handles

the set of actors necessary for the execution of the program. An actor can be either

a process or a thread. Slurm uses thelibc socket API to communicate between

the different processes of the installation. The functions are intercepted (with the

sandbox) to use the SimGrid simulation instead.

As explain in chapter 1, to experiment with RJMS, on common input is the workload.

The workload is the list of jobs that needs to be scheduled during the experiment.

To inject the different jobs, during the execution of Slurm with Simunix, another

program is executing in Simunix. Its sole objective is to execute thesrun program

(inside a sandbox) to submit new jobs.

The jobs of the experiment are a simple call program calling the system callsleep.

When the SlurmD daemons execute jobs, it uses thefork function to create a new
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process.Simunix intercept the call to the fork, and create a dedicated actor for the

jobs, therefore the sleepfunction called is also intercepted.

Figure 6.2.: Example of usage ofSimunix with Slurm.

6.3 Batsky

Batsky is an approach to plug a real RJMS on a simulator such as Batsim. Batsky

leverages the fact that RJMSs, at some point, need to launch an external job — a

user's program. Using a special job, Batsky can inject a program to take the control

from the RJMS and gather information about the RJMS decisions. The current state

of the project is a proof a concept that aims at executing Slurm.

The main principle is based on two main components:

• A simulation controller, that handles the time of the simulation, the job execu-

tions, and the job submissions. All requests concerning the time emitted by

the RJMS are intercepted and transmitted to the controller. These requests

involve, among other, the call to functions such assleepor gettimeofday.

• The second component isBatJob: A program that is started when the RJMS

launches a job.BatJobconnects to the simulation controller and sends infor-

mation about its allocation. The controller noti�es the BatJobwhen it shall

exit.

With this design, Batsky is able to launch the RJMS in a controlled environment,

controlling the time and jobs. Batsky aims at using Batsim as a simulation controller,

giving a way to plug any RJMS on the Batsim project to bene�ts form the job

models(chapters 4 and 5). Figure 6.3 depicts an overview of Batsky.

Batsky works with an RJMS setup, in our case we target the RJMS Slurm. More

details about Slurm is provided in previous section (6.2.2). Batsky starts a Slurm
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Figure 6.3.: Batsky overview. TheBatsky-Apdateris the bridge between the simulation and
the reality, it controls the time provided to SlurmCtld, and gathers information
from the BatJob. The white arrows represent network traf�c between the
different components.

controller daemon (SlurmCtld) with a time interception mechanism. The intercep-

tion mechanism is based on linking a modi�ed C library to the target application

(Slurm). Unlike Simunix, the network communications are not intercepted by Batsky,

hence the communications betweenSlurmCtld and the SlurmD daemons are not

simulated.

Figure 6.4 shows the sequence diagram of the execution of one job with Batsky (The

circled numbers identify a phase in the sequence diagram):

1. A Batsim simulation is executed. Batsim is in charge of providing the simula-

tion time, handling the workload, and the job executions 1 .

2. Batsky-Adatper is the scheduler of the Batsim simulation. Its role is to be

the intermediary between the Batsim simulation and the Slurm installation.

The adapter receives the job submission from Batsim, and create the adapted

Slurm request (using the srun utility) 2 . The intercepted time requests of

SlurmCtld are redirected to the adapter, which interacts with Batsim to provide

the current simulation time.

3. A Slurm installation . A SlurmCtld is executed with a time interception mech-

anism, at each time-related functions,SlurmCtld calls a modi�ed time function.

A number of SlurmD are executed in different containers and are in charge of
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executing the BatJobon the containers. WhenSlurmCtld takes the decision

to launch a job (after a scheduling phase for instance), it noti�es the SlurmD

in charge of the nodes allocated for the new jobs and sends the job execution

requests 3 .

4. BatJob. BatJob is the program executed for all the jobs of the simulation.

When SlurmD starts a job, it starts aBatJoband sets an environment variable

specifying the node allocated for this job 4 . BatJobsends the content of the

variable to Batsky-Adapter. When the job is terminated, Batsim noti�es the

adapter, which in turn noti�es the corresponding BatJobfor its termination.

5. When the job �nishes, in 6 , Batsim noti�es the adapter the termination of

the job 1, which in turn noti�es the corresponding BatJob 7 . Batjob naturally

exits when it receives the exit message from the adapter. Finally,SlurmD

noti�es the SlurmCtld that the job is complete 8 .

Figure 6.4.: Sequence diagram of the simulation of a job with Batsky and Slurm.

Time Synchronisation

The time interception enables to control the time of the simulation and therefore to

speed up the execution time.

The simulation time is lead by the events of the simulation. If the next event of the

simulation is in one hour, the simulation jumps directly to the next event, increasing

the simulation time by one hour. When Slurm polls the system time it is intercepted
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and Batsky sends the time of the simulation. Therefore, between two consecutive

Slurm's calls to poll the system time, the simulation could have advanced of one

hour.

One challenge of Batsky is to keep the RJMS in a consistent environment regarding

the time of the simulation. For instance, at the beginning of the simulation, the

Slurm's setup routine performs an initialization phase, in which the SlurmCtld

connects to everySlurmD daemons. These phases are often de�ned by a number of

communications that are not relevant to the simulation. For instance, when executing

or terminating a job, Slurm does numerous control checks with the daemons. If

during these phases, the simulation time jumps are too high, Slurm detects than an

issue.

In order to keep the simulation time consistent, Batsky de�nes a number of phases

where the time �ows normally. During these phases, Batsky uses the real system

time — The calls to the time functions are still intercepted, but Batsky provides the

system time instead of the simulation time. From Batsky point of view, it is dif�cult

to detect when the real system time phases must end. Therefore, we use a �xed

amount of time during which Batsky the times �ows normally.

Using the real time increases the simulation time because, during this period of time,

the time is not accelerated. Using a long time period for the slow phases increases

the simulation time but ensures the consistency of the system. On the other hand, a

short time period dedicated to these phases enables speeding up the simulation, at

the cost of risking to break the system consistency.

A calibration of Batsky is necessary to �nd the parameters giving the proper balance

between consistency and simulation time.

6.4 Discussion

Simunix and Batsky are two different approaches toemulateRJMS. Even if both

approaches take a similar methodology: modifying the behavior of a program

without requiring modi�cation of its source code. Simunix takes a complete approach

and intercepts every class of functions necessary to have complete control over its

execution. Batsky on the other hand intercepts only the function related to time to

be able to control it, and therefore speed up the execution of the targeted RJMS.

Simunix's approach strongly relies on the simulation capabilities of RSG. The second

version of Simunix enabled to emulate Slurm with few nodes. Furthermore, the

approach requires no modi�cations of the source code of the target program, as a

proof of concept three different versions of Slurm were simulated without modi�-

cations [GF15]. Recently, the sgwrapproject takes a similar approach to reproduce

the concept of Simunix. Intercepting every function necessary to have complete
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control over the execution of a distributed program is complex. Any failure in

the implementation can lock the whole simulation, and render the whole project

unusable until a �x is provided.

On the other, Batsky leverages the fact that RJMSs, at some point, executes a

user-provided job, to inject a Batsky related job. This job enables Batsky to, �rst

get information about the scheduling decisions (such as the allocated node for a

job), and second get control over the RJMS execution. The approach seems to be

applicable for others RJMS, in [Lar20] a similar approach has been used for the

kubernetes[@kubernetes] scheduler.

Simunix global approach has the advantage to be extendable to other programs

(written in C, and using the libc). Additionally, Simunix relies on RSG which is a

more generic tool designed to be used on diverse distributed software. Batsky, takes

a hybrid approach and is tailored to be speci�cally used with RJMS. Batsky presents

a better compromise to study RJMS for two (connected) reasons: it brings a way to

plug a real RJMS on Batsim to bene�ts from the Batsim job models, and the approach

seems usable with other RJMSs. Indeed, although both RSG and Batsim are based

on SimGrid, the level of abstraction proposed by Batsim is more appropriate to

study RJMSs. Batsim's ecosystem is dedicated to the study of RJMS, it provides tools

and practical features dedicated to RJMS study: it handles the workload (1.3), and

proposes evaluation tool such asevalys[@evalys].

6.5 Conclusion

Simulation is a good option to experiment with RJMS, the approach has been

widely used for scheduling algorithms. One of the major issues with simulation is

that the abstraction used to design the simulation doesn't always incorporate all

the complexity of a real RJMS execution. Nevertheless, some scenarios require to

experiment with a real RJMS: testing, tuning the con�gurations.

A promising approach is to rely on simulation, which involves using a real RJMS

on a model (or an abstraction of the platform). Current emulation methodologies

strongly rely on containers or virtual machines to create a platform different from

the platform at hand. However, using containers or virtual machines has limitations:

the experiments are complex and often require a bootstrap platform with few nodes

to simulate an RJMS at scale.

In this chapter, we propose two approaches to emulate a real RJMS on a single

computer. Simunix and Batsky: Simunix aims at simulating a whole distributed

application on a single computer by controlling every function related to communi-

cations, processes, threads, and time. Batsky leverage the design of RJMS to take
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control over its execution. We believe that the two approaches are promising for the

following reasons:

• Both approaches rely on SimGrid which enables to simulate a large number of

different platforms with different network topologies for instance.

• Both approaches enable to study RJMS independently of a speci�c RJMS

implementation, or version.

Batsky seems to be a promising approach for simulating RJMS, besides the approach

has been shown useful for the scheduler ofkubernetes. As future research, concerning

Batsky, we outline two directions. In the �rst place, a more complete use case is

necessary to understand the potential of Batsky— using Batsky on a larger workload

and with a larger platform. The second direction is to evaluate the accuracy of the

simulation, by comparing a Batsky execution to a real use case, or a real Slurm

installation (on Grid'5000 for instance).

In this chapter, the two approaches are presented from a high-level point of view,

to keep the description simple and encourage a better comparison between both

approaches. The implementation of the two approaches rely on technicals tools and

software that are presented in chapter 7.
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7Tools for Emulation: Interception,

Remote SimGrid and sgwrap

7.1 Introduction

This chapter focuses on the technical tools supporting the projectsSimunix and

Batsky presented in the previous chapter (chapter 6). All the tools and projects are

available online (appendix A.2).

The �rst presented tools are the different mechanisms used to create a sandbox to

change the behavior of a program without modifying its source code. BothSimunix

and Batsky use one of these mechanisms. To the best of our knowledge, three

different mechanisms exist and are detailed in this chapter.

The second tool is called RSG, which is a simulation toolbox build upon the SimGrid

simulation toolkit.

Finally, the third tool is a library named sgwrapthat implements the function of the

libc using RSG. The section details the modelization of thelibc function with the

simulation concepts provided by RSG. The two former tools are solely used for the

Simunix project.

7.2 Interception Methods

This section regroups the different mechanism existing that enable to change the

behavior of a function (or a set of functions) called by a program without changing

its source code.

LD_PRELOAD

LD_PRELOAD[Pul09] is an environment variable recognized by the loader that

enables to load a shared object in priority. The loaded objects (such as functions) will

override the original functions, that should have been loaded without LD_PRELOAD.

Once loaded, the program will call the function de�ned in the shared object pointed

by the LD_PRELOADvariable instead of the original one. To take advantage of this

feature, one needs to create a shared object with the implementation of the function

one wishes to intercept. This variable is usually used to override a function, for

pro�ling purposes for instance.
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In the case ofsgwrap, we use this variable to force the program to load function that,

have the same behavior of the original ones, but instead of using thelibc, we use

RSG. Concretely, when a program calls the function, for instance,gettimeofdaywhich

polls the system time, we replace this function with a similar name which calls the

simulation time instead (using RSG's API for instance).

One disadvantage of this method is that all the original functions remain unreachable,

that is to say, inside the overridden function it is not possible to use the original

function without starting an in�nite recursion loop. However, sgwrap needs to

use the real network to communicate with the SimGrid simulation, therefore it is

necessary to be able to access the originallibc functions. To cope with this issue, we

need to set up two things:

• Because the original function's names have been overridden, we need to be

able to access to the original function. We use thedlopenfunction that enables

to load, at execution time, a shared object to call its function.

• We use a global variable that enables to detect if a function is being intercepted

(and is waiting to return). In this case, the variable should be set to true to tell

sgwrapthat it needs to call the real system function.

ELF hooking

The Executable and Linkable Format (ELF) is a common �le standard use by the UNIX

family of OS. It is a format de�ning an executable �le. The ELF hooking [@elfhook;

@LIEF] methods works by, at execution time, rewriting the binary �le of the exe-

cutable to change some function of the executable with the function one wishes to

execute instead. As for theLD_PRELOADmechanism, the user of this method needs

to provide a shared object �le containing the functions to change — This is can be

done by writing a shared library for instance. However, it is not necessary that the

function to replace holds the same name as the replaced function (as it is the case

for LD_PRELOAD). This enables to directly call if needed, the original libc function

within the shared object containing the functions replacing the original.

This method is used in the second version ofSimunix. The direct advantage of using

this method is that, unlike the LD_PRELOADmethod, there is no risk of in�nite

loop recursion. However, this approach is more complicated, as it directly relies on

manipulating the ELF �le of the executable that is intercepted. If the ELF �le doesn't

respect some constraints, the method can fail to intercept some functions. The ELF

�le generation depends on a lot of parameters, such as compilation �ags. If an error

occurs (for instance, the wrong �ag is set), it can be dif�cult to track.
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Libc linking

It consists to directly change thelibc of the program by providing a custom libc with

the modi�cations necessary. The customlibc keeps the same structure apart from

the function that one wishes to change the implementation. In order to access to

the unwritten function, the libc provide for each function a similar function pre�xed

with two underscores — sleepcan also be called with__sleep.

This is the method used in the Batsky (6.3) project. The dif�culty of this approach is

to be able to change thelibc of a program without changing the libc of the whole

system. Indeed, thelibc is generally installed on the system and dynamically linked

to the programs. The Batsky approach to change thelibc of Slurm is to use the

package manager Nix, which enables to have different versions of the same package

(in our the libc) without side effect.

7.3 Remote SimGrid

Remote SimGrid (RSG) contribution is twofold:

• First, it de�nes a set of high-level simulation concepts that should ease the

modeling of most distributed applications.

• Second, it provides a toolbox implementing these concepts using a well-known

simulation framework: SimGrid [Cas+14].

RSG has been originally written by Martin QUINSON. To fully support Simunix,

many features of RSG has been developed during this work. The project has been

rewritten to increase its maintainability, the basic architecture of the last version has

been developed by Millian POQUET and Adrien FAURE.

This section is organized as follows. We �rst present the simulation concepts to

describe distributed applications. And we �nally details explains how our prototypal

SimGrid-based toolbox called (RSG) works.

7.3.1 RSG Simulation Concepts

A simulation is composed of severalactors that execute user-provided functions.

The actors have to explicitly use the provided API to express their computation,

communication, disk usage, and otheractivities , so that they get re�ected within

the simulator. These activities take place onresources such ashosts, links and

storageunits. The simulator predicts the time taken by each activity and orchestrates

the actors accordingly, waiting for the completion of these activities.

When communicating, data is not directly sent to other actors but posted to a

mailbox that serves as arendez-vouspoint between communicating actors. Actors

7.3 Remote SimGrid 105



issueput requests in a mailbox, that are matched with complementary get requests.

The concept of mailboxes can be paralleled with many others. The phone number,

which allows the caller to �nd the receiver. In TCP, the pair (hostname, host port) to

which you can connect to �nd your peer. Finally, in HTTP, URLs through which the

clients can connect to the servers. One big difference with most of these systems is

that no actor is the exclusive owner of a mailbox, neither in sending nor in receiving.

Many actors can send it into and receive from the same mailbox. TCP socket ports

for example are shared on the sender side but usually exclusive on the receiver side

(only one process can receive from a given socket at a given point of time).

Distributed applications are composed of multiple processes that can be distributed

over several machines while SimGrid is implemented as a single, centralized process.

This makes it impossible to directly use SimGrid to study the independent processes

of a distributed application. Remote SimGrid (RSG) is a technical solution designed

to allow the study of actual distributed applications with SimGrid. RSG is free

(licensed under GNU AGPL-3.0) and available online [@rsg].

Figure 7.1 illustrates the core architecture of Remote SimGrid. RSG provides a

rsg_server program in which the SimGrid simulation takes place, and a librsg

library used by the processes of the distributed application under study. The SimGrid

actors de�ned in rsg_serverincorporate a Remote Procedure Call (RPC)server, which

offers clients to remotely perform an action on the server or to access some data

on it. Here, rsg_servercreates and attaches a uniqueRPCserver to every actor of

the simulation. As a result, each actor is remotely controllable by the attachedRPC

client. The RPCclient is implemented in the librsg library, which exposes SimGrid

concepts (de�ned in section 7.3.1) through its own API.

7.3.2 Implementation Details

The API of RSG allows to issueput/ get requests on a mailbox synchronously or

asynchronously.

SimGrid predicts the time taken by each activity and orchestrates the actors accord-

ingly. To do so, SimGrid must know which activities every actor wants to do, so

that it can compute what activity will �nish next (and when). As a consequence,

user-provided functions used as actors must not fall into a pattern where they do

not call the provided API anymore — aka fall into an in�nite loop. While this may

sound trivial, we have observed that forgetting about this is a common pitfall when

using RSG for the �rst time. As a rule of thumb, we advise that the inter-process

synchronizations of the studied application should either be fully simulated (via

mailboxes), or that synchronization loops should contain API calls that advance the

simulation time (typically, let the actor sleepfor a while) — as this will pass the

control to another actor, that will hopefully unlock the situation.
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Figure 7.1.: Overview of a simulation with Remote SimGrid. The simulation consists
of 3 hosts and 4 actors. Actors are bound to hosts, representingwhere the
actors' actions take place. Each actor is controllable remotely thanks to an
RPC mechanism. A single actor is automatically spawned per user process by
default. This is not limiting, as actors can spawn other actors — e.g., here,
actors 1 and 2 are part of the same system process.

7.3.3 Related Work

To the best of our knowledge, only a few solutions exist to sandbox existing appli-

cations in simulation. Most works in the literature mandate the use of a model of

the application. These models are usually manually built, as in [New+15] where

the authors maintain a model of the twitter infrastructure to formally verify that

sough properties are met. However, maintaining such models up-to-date with their

implementations requires a lot of work.

Other works propose to automatically build the application model. For example,

MPISE [Fu+15] couples static analysis and symbolic execution to build a model that

can then be used to verify some properties. This approach is very promising, but the

obtained models are so far limited to qualitative studies while our goal is to also

conduct quantitative what-if studies on the simulator. It is also unclear how this

approach could be generalized to non-MPI applications.
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DCE [Taz+13] aims at studying slightly modi�ed arbitrary applications with the ns-

3 [RH10] network simulator, and is therefore close to sgwrappresented in section 7.4.

DCE focuses on real network protocol implementations and thus allows the study of

kernel code. To that extent, the network protocols implementations of the kernel are

provided as a shared library, that is also in charge of the synchronization with ns-3.

Speci�c code is injected (using LD_PRELOAD) at the libc level to call the DCE kernel

instead of the usual one.

In DCE, the authors chose to group all emulated processes under study in a single

system process. This reduces context switching overhead during the simulation

and arguably eases the application debugging with a single process debugger. We

took the opposite design decision for sake of simplicity and robustness. Indeed, this

process folding requires to privatize the global variables in the application but also

in all libraries. This requires some OS-level tricks that are dif�cult to automatize

and often interact badly with other tools that can be used when debugging the

application (e.g., the DMTCP [AAC09] checkpointer). Besides, the ease of debugging

implied by grouping a distributed application into a single process is debatable, as

both have the same overall number of threads and can be fully deterministic.

7.4 C Standard Library Interceptions

wide part of the distributed RJMSs is programmed using the C library. This is also

the case for most RJMS: Slurm, Flux, and Torque to cite a few.

In this work, we propose to model with RSG the concepts featured by the library

C (libc) that helps the development of most distributed applications, namely the

processes API (POSIX), the threads and the synchronizations, the function to poll

the system time, and �nally, the socket API enabling to communicate through the

network (and the processes on the same machine). Coupling this modelization of

the libc functionalities with a method for intercepting the libc function, we are able

to run real-world applications without modifying the source code.

We propose an implementation of this modelization into a project called sgwrap.

The implementation is inspired by the Simunix project. sgwrapis a collection of

four C++ libraries dedicated to model libc functions with RSG. Each library features

the interception of one of the features provided by the C library. Namely, time

management (sleeping or getting system time), the threads and synchronizations,

the network sockets, and the system processes (forking for instance). The libraries

are designed to be executed together, however, this architecture enables to select the

intercepted features by activating only the required libraries.

We built the network interception part of sgwrapupon an existing C library called

socket_wrapper[@cwrap], which redirects the network traf�c of a distributed ap-
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plication through inter-process communication (IPC). The redirection is made by

using library preloading, as described previously. To summarize,socket_wrapperuses

LD_PRELOADto redirect all sockets into IPC sockets.

7.4.1 Choosing the Intercepted Functions

The �rst class of functions to intercept are the functions related to the time. One

objective of the simulation is to test new scenarios, during an experiment the

time is important information. RSG (thanks to SimGrid) predicts the time that

communications will take on the simulated platform. Therefore, the time of the

simulation needs to be injected in the emulated program.

The second class of functions that need to be intercepted areblocking functions.

Indeed, with RSG one actor of the simulation is executed at the time until it gives

the control back to RSG. RSG decides which actor is running, and at each call to RSG

(such as sending on a mailbox, or sleeping) the process gives the control back to RSG.

If the simulated process initiates a blocking function, such as waiting for a signal

or a Mutexes, the process never gives the control back to RSG which hard-locks the

simulation. To satisfy this constraint sgwrapmust implement every blocking function

of the libc used by the program. This includes the communication functions (such as

the sockets), the synchronization functions (Mutexes), the signals, etc.

The third class of functions contains the functions related to processes and threads

management. Thelibc provides a wide API to manage, and control processes and

threads. It is a common pattern to use thefork function to create new processes (a

child). Furthermore, the libc provides a function to permit the parent and the child

to communicate using dedicated channels. To keep the simulation consistent,sgwrap

needs to keep track of the new processes, and include them in the simulation — each

new process (forking) or thread needs to have a dedicated RSG actor. Otherwise, if a

child's process is not integrated into the simulation, a parent may try to communicate

with it and locks the whole simulation.

7.4.2 System Time Interception

The libc features different functions to, either retrieve the current time of the system

or to wait for a speci�c duration (sleeping). RSG provides both possibilities, from

any actor it is possible to ask the current time of the simulation or to sleep for a

speci�c duration. Modeling the time is directly made by RSG, and doesn't present any

dif�culty as it is a direct match between the libc and RSG's simulation concepts.

7.4.3 BSD Socket Interception

Sockets are the core part of the application programming interface (API) provided

by the operating system (OS) to interact with the network. A socketis an abstract
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Figure 7.2.: Representation of the usage ofsgwrapon a simple application composed of
two processes. The left side shows how processes communicate usually —
without sgwrap. On the right side, communications are simulated using Remote
SimGrid. This is done bysgwrap, which intercepts calls to the BSD socket API
and calls Remote SimGrid accordingly.

representation of an endpoint of one communication across a network or the Internet.

Almost all distributed applications are programmed with sockets — unless they

are executed without an operating system. Usually, applications do not manage

sockets by communicating directly with the OS (via system calls) but prefer to rely

on the standard library of their programming language. The C standard library

(libc) typically encapsulates such communications with the OS in functions such

as listen or send. Interestingly, most high-level programming languages decide not

to reimplement such functions but to wrap their API around calls to libc functions.

This means that almost all distributed applications, regardless of their programming

language, use the same limited set of functions from thelibc to interact with the

network.

In this section, we present a methodology to study using simulation any distributed

application that uses libc functions to interact with the network. This methodology

is implemented in sgwrap[@simtercept], which is a free library based on Remote

SimGrid.

sgwrapworks by rerouting the network traf�c of the target application into a SimGrid

simulation. This is done by providing a custom implementation of the libc functions

related to sockets that use Remote SimGrid internally. The application to study is

executed in such a way that itslibc functions are overridden by ours. Technically, this

is done by executing the application with an adequateLD_PRELOADenvironment

variable, which changes how the system loads the program in memory. Figure 7.2

illustrates the general idea of sgwrap.

The remaining of this section describes how we used the generic concepts of Remote

SimGrid to implement the OS behavior behind the socketAPI of the libc. The
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following paragraphs mention the different stages of a socket life-cycle and explain

how each one of them is simulated.

Socket Initialization. When an application wishes to create a socket, it calls the

socketfunction that asks the OS to create an internal representation of the desired

socket. Once the socket is created, the system returns a unique socket identi�er to

the caller. This identi�er will be used in every subsequent function call to identify

the connection. sgwrapintercepts the creation of the socket and creates and stores

a virtual socket instead. The virtual socket is a structure containing metadata and

information on the socket, such as its type or connection state. It allowssgwrapto

keep track of the sockets. When a process desires to create a server (i.e., a socket

willing to start multiple connections), it needs to assign an address to the socket,

and then to set the state of the socket tolistening. The functions bind and listen serve

this purpose. sgwrapintercepts these calls, registers the socket binding address, and

creates apairing mailbox corresponding to the address — that is used during the

connection stage.

Connection. Communicating sockets from two processes go in pairs. One socket

needs to be identi�ed as the client and the other as the server. A server socket, after

having been assigned to an address, and after having been put into thelistening

state, canacceptnew connections. For this to take place, the client socket needs to

know the address on which the server socket is listening. The client can then ask the

server socket to engage a new end-to-end connection. The functions in charge of

setting up the connection are connect(on the client side) and accept(on the server

side).

sgwrapmodels this connection mechanism thanks to different mailboxes. First, a

pairing mailbox is used so that the server detects the connection from the client. The

pairing mailbox name is based on the listening address of the server. The servergets

on the pairing mailbox, while the client puts a pairing message on it. This pairing

message contains a unique identi�er generated by the client, that is used right away

so that the server can acknowledge information to the client. This is done on an

acknowledgementmailbox, whose name exactly corresponds to the unique identi�er

generated by the client. Finally, the information acknowledged by the server allows

to create two �nal transfer mailboxes, that will be used to do the actual data transfers

between the two sockets — one mailbox per direction of the connection.

Data transfer. Once a connection is established between a client and a server, the

two sockets can exchange data with the complementarysendand recvfunctions.

Both functions take a buffer and a sizeas parameters. Usually, the system is in charge

of caching the received data on a socket, so that successive calls to therecvfunction

�ll the user buffer with the remaining data. sgwrapintercepts these two functions

and exchange data through thetransfer mailboxes created in the connection stage.
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As message transfers on mailboxes are based onmessagesrather than bytes, sgwrap

stores the received message in a buffer to comply with the expectedrecvbehavior.

Other functions Many other functions exist, poll, formerly select, and addsockopt

that enables to tune the behavior of the communications. The function poll waits

for one of the descriptors provided as a function parameter. sgwrapcan model this

behavior thanks to the function wait_any provided by Remote SimGrid. wait_any

allows waiting for communications on an ensemble of mailboxes.

Accessing the real network. sgwrapintercepts all functions related to the network,

it includes the function used by RSG that should not be intercepted to access the

RPC servers (7.1). To cope with this issue, we bene�t from the fact that when a

network function is called with a socket unknown to sgwrap, the original function

is called. The key is to deactivatesgwrap(this is done by removing environment

variables con�guring sgwrap) during the connections between the RSG client and

RPC servers. Once the connection is up (one socket exists and is connected) and is

unknown by sgwrap, we can activatesgwrapagain to continue the interception and

the simulation.

7.4.4 System Process Interception

This section describes how we use the RSG's simulation concepts to model the system

process, and therefore being able to simulate them.

The libc features a set of functions to create, kill, and synchronize processes. New

processes can be created by cloning an old process through the functionfork [NL16].

A new process is creating and has the same — but isolated — state. When the system

clones a process, the resources allocated to the process are not duplicated, instead,

the resources are shared. This is true for the process's �les, the signals handler, and

for the virtual memory. However, the virtual memory is set into a copy-on-write

state, which means that the memory is copied once a process tries to write it.

As the only way to create a new process is to clone an old one, thelibc also features

a set of functions to override the current process to start a new executable �le — or

a script �le —, the execfamily of functions. At the call of one of these functions, the

process state is replaced by a new state corresponding to the new program, note that

the shared resources, such as �le descriptors, for instance, are not necessarily freed.

One of the execvfamily functions is commonly used in conjunction with fork, to

create a new process and then start a new program in the newly created process.

The function pipecreates a unidirectional data channel for communication between

two processes. This function creates two �le descriptors, one to send data, the

second one dedicated to the reception.

112 Chapter 7 Tools for Emulation: Interception, Remote SimGrid and sgwrap



Lastly, the libc provides a unique identi�er to each process, called the pid. This infor-

mation can be accessed from inside the process with the functiongetpid. Additionally,

the function getppidenable a process to access its parentpid.

Modelling fork . With the simulation's concepts proposed by RSG, forking is similar

to the creation of a new actor. However, to fully respect the forking process, the new

actors need to have an isolated state. In order to be able to model thefork system

call, RSG provides a function to create an actor into a newly forked process.

The function works as follows, �rst the current actor sends a message to the RSG

server to create a new actor (using its RPC server.). When the RSG server receives

this request, it creates a new SimGrid actor (containing an RPC server as depicted in

Figure 7.1), and returns to the caller the id of the newly created actor. At this step,

the RPC server of the new SimGrid actor is waiting for the remote actor to initiate

the connection. Once the �rst request to create a new actor has returned, the remote

original actor calls the real fork system's call. The initial process (also called the

parent) send an acknowledgment to its RPC server, and returns from the function.

The child process (the new remote actor), inherits the environment of its parent,

and thus, is still connected to the RPC server of its parent actor. To cope with this

issue, the child remote actor deletes the connection with its RPC server, and then

initiate the connection with the new waiting RPC server. Note that, the child process

does not close its parent connection because the RPC server would interpret that as

the completion of the parent actor, and shut the connection down.

From sgwrappoint of view, the fork is intercepted and has to handle two issues.

1. The �rst issue is as explained in section 7.2, that the LD_PRELOADvariable

prevents RSG from using the reallibc fork function, and instead the function

will be recursively called inde�nitely.

2. The second issue is related to the socket interception described in the previous

section. During the RSG fork (described previously), the RSG client needs to

use the network to establish a connection with its RPC server. As explained, at

the end of the section 7.4.3, we disable the socket interception during the fork

function. Once the remote actor is connected to the RSG server, we activate

the network interception.

Modelling Exec Functions. On a call to execvfunction, the process will switch into

a new state instantiating a new program. The current environment variables of the

process remain untouched, and all active �le descriptors stay open. However, after

using execv, the RSG client of the actor will be destroyed (but the connection will

remain active). sgwrapde�nes a constructorfunction ( __attribute__((constructor))),

which is a special function that is called when a shared library is loaded (during

program startup). By setting the appropriate environment variables, sgwrapis able to

connect back to the RSG connection of the actor during the call to theconstructor.
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Modelling PID and PPID. Within the RSG simulation, each actor has a unique ID.

When sgwrapintercepts a call to getpid, the id of the actor is provided as PID. The

PPID, is unde�ned by default (set to -1) if the actor is directly created by RSG. When

a process uses the functionfork, and therefore creates a child process, the PID of the

parent is stored into an environment variable. Enabling a way for sgwrapto provide

the PPID, when it intercepts a call to getppid.

Data transfer. The pipe interception (described earlier) is coupled with the socket

interception (described in the previous section). This is mainly due to the fact that,

once it is created, the functions used to transfer data within the pipe are the same as

the function used for the sockets (write/send and read/recv).

At the interception of a call to the pipefunction, sgwrapcreates two new identi�ers for

the �le descriptors and creates one mailbox associated with the two �le descriptors.

Once the pipe is created, when the process initiates a data transfer (withsendor

receivefor instance), sgwrapintercept these calls and transfer the data through the

RSG mailbox associated to the �le descriptors.

7.4.5 Threads Interception

Threads can be seen as lightweight processes. A thread can be created by a process

and is also scheduled by the system. Unlike the processes, all the threads of the same

process share the same fundamental parts (same program, same virtual memory,

same �le descriptors, and same stack). Thus, using threads facilitates communication

as everything is shared. However, the order of the execution of each thread is not

controlled by the process and is subject to race conditions — two threads using the

same variable at the same time.

To deal with the race conditions, the system provides different synchronization

mechanisms accessible using the C library. One can cite, the mutexes and the

condition variables, which are both intercepted by sgwrap.

• A mutex can be seen as a barrier used to protect the critical part of a program.

• A condition variable (CV) is another synchronization mechanism that enables

a thread to wait for new events to happen.

Modelling Threads. sgwrapintercepts the calls to the function pthread_createto,

instead of creating a thread, create a new RSG actor. At the creation of a new thread,

the caller gives a function that will be executed by the new thread, sgwrapprovides

the thread function to RSG to be the actor main function. From sgwrap's point of

view, a thread is a new RSG actor. However, the creation of a new actor in RSG

triggers the creation of a new thread, in this case, RSG needs to be able to use the

original system's function pthread_create. Similarly, the fork function, this is done by

using a global variable in sgwrap, to detect cases where the original function must
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be called without being intercepted. Additionally, for the creation of a new remote

actor, RSG needs to create a new socket without being intercepted, as for thefork

function it is done by temporally removing the environment variable enabling the

network interception.

Modelling Mutexes and Condition Variables. Modeling mutexes and condition

variables are directly done using the RSG API. Indeed, as SimGrid directly features

both synchronization mechanisms into its API to synchronize actors. The functions

de�ned by SimGrid are thus implemented into RSG. This direct match enablessgwrap

to call the appropriate function when a function call to the mutex or condition

variable is intercepted.

7.5 Conclusion

The objective of this chapter is to separate the tools and mechanisms from the

methodology developed and used to simulate RJMS. This separation enables to

provide an in-depth description of the technical projects developed for this disserta-

tion.
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8Reproducibility of Experiments

with Variations

Reproducibility in computer science should be a main concern for the credibility of

every scienti�c contributions.

But, what is the real purpose of reproducibility? It is the capitalisation on the work

of all the people of the scienti�c community, to move forward scienti�c knowledge;

so the science is not restarting from scratch every time that a scientist disappear. It

is common that a project dies, because the only people that have essential unwritten

knowledge are hit by a truck; or because it has been left unmaintained for too

long [Hin19]. Because computer science is based on software, it is possible to avoid

this issue with good practices in software engineering, like composability and good

documentation. But, while the science evolves, simulations become more accurate,

and the scienti�c software stack becomes more complex. Thus, even if the project

is documented, going from source code to runnable experiment, i.e. the building

process, can be tedious. Moreover, good software engineering is not recognized as it

should in computer science research community. Thus, there is no incentive to take

the time to do it right. So, reproducibility in computer science needs to be backed

with new methodologies, good practices, and appropriate tools, to be able to build

and transmit scienti�c knowledge more ef�ciently.

Reproducibility is a wide notion that needs to be speci�ed. Feitelson [Fei15a] has

de�ned a taxonomy of the different way to reproduce scienti�c results. In this

taxonomy, The �rst level of reproduction is the Repetition , i.e. do exactly the same

experimental process to obtain the same results. The second level,Replication is

similar but the experience's input is changed.

Currently, most of the reproducibility tools only support these two levels by capturing

the software environment. Indeed, software environment is hard to reproduce,

and without it, it is impossible to run the experiment. Also, experiment software

environment tightly depends on the Operating System (OS) distribution it was built

on. It is sometimes impossible to install it on an other distribution because of inter

dependency issues. One approach to solve this problem is to snapshot the software

environment into an image. But, even if an image of the experiment runtime

environment is provided by the original author, continuing his work requires more

than just repeating the experiment; to be able to corroborate someone's approach,

we not only need to rerun experiments, but we also need to modify them: test new
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variations, add more parameters, and develop new features. This is the next level of

reproducibility in the aforementioned taxonomy, called Variation .

Enabling scientists to reproduce an experiment with variation requires that the

reproducer is able to rebuild experiment software with some modi�cations (even if

the software is unmaintained and the tools necessary for building it, are long gone).

It means that the reproducibility with variation can be achieved if the reproducer is

able to reproduce not only the experiment “production” environment, but also the

“development” environment which is necessary to modify the software. Moreover,

when a variation of previous experiment produces new results, this experiment

should also be reproducible.

In this context, we are proposing a new way of seeing reproducibility through

the scienti�c software development lifecycle. Each step in this lifecycle requires a

software environment. We de�ne a software environment by a set of applications

and libraries, with all their dependencies, and their con�gurations, required to

achieve a step in a scienti�c work�ow.

All the experiments of this dissertation have been designed with a special attention

to their reproducibility. All software have been made publicly available. A.2 lists

of the different repositories used for the work of this dissertation, which has been

made following the methodology presented in this chapter.

This chapter has been made in collaboration with Michael MERCIER and Olivier

RICHARD, and led to one publication [MFR18]. This work has also led to one

tutorial 1 about creating reproducible experiment with Nix, the tutorial has been

written in collaboration with Millian POQUET, and presented at Inria Rennes in

2019.

8.1 Software Development Work�ow and

Reproducibility

In computer science, a scienti�c work�ow contains a software development lifecycle

that starts by setting up a development environment with build tools and dependen-

cies. Then, this environment is used to build a production environment that will, in

turn, be used to run the actual experiment. But, software development is an iterative

process: one can produce different versions of the production environment, or even

modify the development environment to update or to add tools. This process is in

the middle of the scienti�c work�ow and all the software environments produced,

for development and production should be captured to enable reproducibility. The

Figure 8.1, exhibits that the �rst two levels of reproducibility can be achieved with

1https://nix-tutorial.gitlabpages.inria.fr/nix-tutorial/
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Figure 8.1.: The different level of reproducibility in regard to the development lifecycle:
Variation requires to enclose the development environment and to provide a
way to modify it while keeping reproducibility.
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only one environment, but reproducibility with variation requires taking into

account the whole development process.

To contribute to the scienti�c work�ow, it has to be reproducible by itself: Thus,

internal (e.g. colleague, intern) and external (e.g. scientist from other laboratory,

reviewer) contributors have the capability to reproduce this work�ow.

So, to provide this capability the development environment should be de�ned

entirely, and every changes should be tracked. This statement also holds for others

software environments involved in the authors' work�ow, like the ones use for input

data generation, or output data analysis.

8.2 Reproducible Software Environments with Nix

Courtès et al. [CW15] emphasize that functional package managers (FPM), like Guix

and Nix, are good candidates to share complex and upgradable environment. In the

following of this paper, we will focus on Nix, but most of the assertions also hold

for Guix. The FPM are applying the concept of mathematical function to software

packaging. Each software building process is described through a function. The

dependencies are also functions that are given as inputs. This function, or package

de�nition, allows to precisely describe a package: where and how to gather the

source code, which commit to use, the dependencies and their versions, and �nally

how to build the package. When a package is built, the dependency graph is resolved

by a lazy evaluation of the function parameters, and all the necessary piece of

software are also built. The result of the evaluation of a package de�nition is called

a derivation. A derivation is concretely a set of �les that contains the results of the

building process of the software, which placed on the special place that contains

all the derivations: the store. Finally installing a software is simply exposing a

derivation from the store through symbolic links. Nix packages are written in a

functional Domain Speci�c Language (DSL). This ensures that each build is pure, i.e.

it only depends on its inputs, and the same inputs give the exact same package even

on a different machine.

To implement the work�ow described in Section 8.1 with Nix, the critical feature is

the capacity to create a software environment without virtualization. This feature

is used to create an isolated environment for the package building process. An

environment can be seen as a set of derivations and relies on the fact that an FPM

can infer all the dependencies of a derivation, and only expose these dependencies

on the speci�ed environment. Installing the environment will expose to the user the

packages described in the environment. Archiving an environment will extract the

whole dependency tree of the environment and create a self-contained archive. The

resulting tarball, also called a closure, contains every binary and �le necessary to
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run the packaged applications. Thus, the environment can be installed on another

machine without any external download or building process.

To achieve each level of reproducibility with Nix, the �rst requirement is to create a

package de�nition for each application and its dependencies. Thankfully, Nix is a

very active community and more than 40000 applications are already packaged in

the main repository called “nixpkgs”. It is also possible to maintain a private set of

packages that import dependencies from “nixpkgs”.

The �rst level of reproducibility, the Repetition, can be achieved by providing to

an external scientist the production closure, that can be installed to repeat the

experiment. The environment could also contain all scripts to deploy and run the

experiment.

The second level of reproducibility, the Replication, that consists of replaying an

experiment while changing its input, have the same requirement as the repetition:

Only the production environment is needed.

The third level of reproducibility, the Variation, is where using Nix is the most

advantageous. Nix provides the interesting feature, called the “nix-shell”, permitting

to enter the package build environment. Hence, packaging a software with Nix have

the side effect to provide also the build environment for the users. Nix capacity to

de�ne software environment and software package in a uni�ed way gives the scientist

the ability to share a reproducible production environment, and the associated

development environment, with a single de�nition.

8.3 Related Work

The Popper method, proposed by Jimenez et al. [Jim+17], describes a structural

framework for dependencies and artifacts. They identi�ed a generic work�ow

describing an experimental methodology, from source code to the �nal manuscript

of a contribution. Our contribution is compatible with this approach, the popper

method proposes a structural organization of the experiment, whereas our approach

proposes to implements a part of this work�ow using Nix.

Repeatability has been the focus of previous works on reproducibility. The platform

presented in [Ric+15], has the ability to instantiate an experiment environment

in their infrastructure from a previously captured environment. The approach is

interesting as it provides a way for a scientist to repeat experiments that requires

speci�c hardware. Our approaches could be complementary to cover both hardware

and software to provide a higher level of reproducibility. Boettiger et al. [Boe15]

survey how to use docker to do reproducibility, and also introduce the development

environment. From our implementation with Nix, the docker approach shows

similarities. However, Nix closure is more adapted than the Docker images for
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application packaging because Docker provides an inappropriate level of abstraction:

Docker is about constructing and con�guring a complete OS, instead of declaring

application dependencies.

Constructing reproducible experiment and work�ow with an FPM has already been

explored. In [Wur+18], they build a toolset upon the GUIX FPM, to facilitate the

usage of bioinformatics common pipelines. They argue that using an FPM is a good

foundation for reproducible computational experiment work�ow.

The Blue Brain project [DDS15], is a big project, with a complex software stack, that

aims to build a mammalian brain with a computer. In addition to a structured devel-

opment work�ow (using git, agile methodologies, code reviewing), they decided to

package their work�ow with Nix. They identi�ed nine properties that are facilitated

with Nix, from reproducibility to deployment and cross compilation. Their approach

is based on internal needs and speci�c use case, whereas our contribution focuses

on the role of the development lifecycle in the reproducibility, with Nix as a possible

implementation.

8.4 Discussion

The proposed work�ow does not consider input and output data of the experiment.

One approach is to package the experiment data inside the production environment,

i.e., the environment containing all the software and tools necessary during the

experiment phase (the production phase). It is a viable solution for a small amount

of data, but most of the experiments manage data separately with other tools.

The data related to the experiment is not only input and output data, the different

piece software that are used to develop and run the experiment also have external

inputs, like the source code of the experiment, the dependencies, the build tool

binaries, and the con�guration �les, i.e., all the other artifacts necessary to build the

pieces of software of an experiment. With Nix, it is easy to extract these artifacts for

the software necessary during the experiment (the production environment). Nix is

capable to export all the dependencies of an environment in a closure that can be

imported on any machine where Nix is installed. This feature of Nix is very hard to

achieve with other kinds of tools because of the lack of a clear dependency de�nition.

However, even if it is straightforward for the production environment, how to extract

this closure for the development environment (the environment containing the build

tools) is unclear for now.

Capturing and archiving the environment closures is necessary for the Variation,

for instance, the lifespan of Internet links is only a few months [Law+01]. Even if

Nix is capable to rebuild everything from source, the source code repository can be

unavailable, breaking the environment reproducibility. The problem that emerges is
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that closures also have to be safely archived, versioned, and accessible for a long

time period. A mid-term solution would be to store those closures using trusted

centralized archives like Internet Archive2 and Software Heritage3.

Nix itself has limitations, his usage requires to understand the concepts behind the

FPM and to learn the Nix language. Also, even if the Nix build system provides

the framework to achieve reproducible build of packages, the bit-wise reproducibil-

ity [Lam+] depends on the way the software itself is built, i.e., patching the Make�le

may be required.

In the case where the experiment results depend on the OS Kernel (e.g., performance

evaluation) this approach is not suf�cient. Indeed, Nix packaging handles the whole

application software but not the OS Kernel. So, the proposed work�ow needs to be

supplemented with a building process de�nition of the entire OS — and not just the

application layer — to be able to reconstruct a complete OS image with a variation.

A Linux distribution based on Nix, called NixOS, is a good candidate.

When speci�c hardware is necessary to achieve reproducibility, an additional layer

of control is needed. Testbeds like Grid'5000 [Bal+13], Chameleon [Kea+19], and

Emulab [PSM10], are giving this level of control with the capability to create and

deploy OS image on the �y on different hardware. Additionally, one also need to

provide a description of the hardware used during the experiment, or the allocated

resources.

8.5 Conclusion

The reproducibility with variations is the next level of reproducibility that the

Computer Science community should aim at. The variations require to take into

account the software development work�ow, including the capability to modify

and rebuild environments. The use of functional package managers is a promising

approach. This kind of tool permits to achieve this next step to the reproducibility

with variations, with a uni�ed way to describe environments and packages, and a

simple method to backup and to restore them.

2https://archive.org
3https://www.softwareheritage.org/
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9Conclusion

The role of the Resource andJob ManagementSystem (RJMS) is central to a cluster:

It manages the resources and the jobs. Current RJMS needs to embrace both the

evolution of the clusters and the jobs. The scheduling policy is the cornerstone of

the RJMS, it decides when and where a job will be executed on the cluster. The

production constraints of a computing cluster impose the scheduling policy to take

ef�cient decisions in a short amount of time. Finding a good policy is challenging

and has been the subject of numerous works during the past decade. Evaluating

the relevance to use a scheduling policy in production from the previous study is

challenging, it outlines the difference between the real world between the ideal

world of the studies.

Chapter 2 presents the state of the art of this dissertation focusing on the tools

and methodologies to conduct experiments with RJMS. It exists four different

methodologies, the emulation, in-vivo, the benchmarkingand the simulation. Each

methodology illustrates if the experiment uses a model or the reality regarding the

RJMS, and the platform. However, these four categories alone are not suf�cient

to categorize all the experiments done in the literature, because the limit between

model and reality is not always well determined. Instead, several experiments mix

approaches that rely on model and reality, for instance, simulating a cluster with

virtual machines is both reality (the operating system) and model (the physical

resources are virtual). For this reason we introduce the idea of Hybridization

(�g. 2.1) mixing approaches based on reality and model.

9.1 Contributions and Future Work

The contribution of this dissertation is twofold: We present a new scheduling policy

for HPC jobs, and through two different works we improve the tools used for

experimenting with RJMS. More speci�cally, the �rst work focuses on creating a

model for job scheduling simulation, and the second work proposes a new tool to

emulatea distributed system, and therefore an RJMS.

9.1.1 Scheduling with Job Redirection

Chapter 3 introduces a new scheduling policy to schedule jobs with redirection.

Redirected jobs are killed and restarted on a dedicated resources pool. The objective

of this policy is to improve the slowdown metric, which is a measure of the system's

reactivity form the user's perspective. Through a large experiment campaign of
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simulations, the policy has been shown ef�cient for the slowdown metric, at the cost

of increasing the waiting time.

Redirection is a practical extension of a former theoretical work studying rejection

as a way to increase the scheduling performances [LST16]. This work aims to bridge

the gap between theoretical and practical works, and shows that a theoretical idea

can be adapted in a more practical environment using recent simulation techniques,

and simulation models closer to a production system (parallel jobs on multicore

clusters).

Despite the current evaluation, it is dif�cult to adapt the redirection in a production

cluster as the simulations are not fully representative of a real cluster. For instance,

the migration time of a redirected job is not simulated. Therefore it is dif�cult

to evaluate the relevance of the redirection in a real setup. The remaining of this

dissertation presents two different, yet complementary approaches for the evaluation

of scheduling policies and RJMS. The �rst approach proposes to increase the realism

of the scheduling simulation, and the second approach proposes new tools and

methodologies to study real RJMSs.

Additionally to the future works presented in chapter 3's conclusion, the methodology

developed in this work can be leveraged to conduct experiments more representative

of a production cluster.

9.1.2 Simulation Model with Job Resources Consumption

Simulation has many advantages it is fast to execute on a single computer, it can

represent a lot of different scenarios and it is easily reproducible. Simulation, by

essence, strongly relies on models. Therefore, the ability of a simulation to accurately

predict a scenario is dependant of the soundness of the underlying models. Current

simulators for HPC scheduling use simple model, the model simulates the jobs as

a �xed amount of time regarding their context of execution (the behavior of the

job, the capacity of the underlying platform and the other jobs executing at the

same time). However in production, the execution time of the jobs is dependant

of external factors, such as their placement on the cluster or the other jobs using

the same shared resources at the time (such as the interconnect or the parallel �le

system etc. ). In this work, we propose to extend the scheduling simulation with job

models that depends on their context of execution.

The �rst part of this work introduces and demonstrates the simulation capability of

the Batsim simulator (chapter 4). Based on the SimGrid simulation toolkit, Batsim

has the ability to simulate a platform and workloads containing models for the jobs.

Batsim currently features three job models, thedelay, the Time Independent Traces

(TiT) and the ptask model. One dif�culty to �nd model for scheduling simulation is
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that a single simulation can embed million of jobs. The model must be simultaneously

representative of a real job, and fast enough to keep reasonable simulation time.

Chapter 5 presents the second part of this work, it focuses on the evaluation of the

ptask model. Among the presented models, theptask model present two advantages:

It is reasonably fast and has been created to represent parallel jobs. However, the

model has not been evaluated for HPC jobs. The evaluation methodology used aims

at evaluating the ability of the model to accurately predict the running time of an

HPC application under (periodic) network interference. The methodology used

compares the execution of the model (in simulation) with a real application (in a

real cluster) under different network interferences. The results shows that the ptask

model is able to reproduce the network interference of the HPC application without

being reliably accurate regarding the predicted run time of the application.

As future works, we outline two research directions:

• Model calibration. In its current state, the ptaskmodel shows lack of accuracy.

Identifying the causes of the model's inaccuracy is dif�cult because SimGrid is a

complicated software. One promising approach is to use the tracing capability

of SimGrid— that enables to trace the network activity of the platform's

network links during the simulation — in order to pinpoint the inaccuracy's

cause. Unfortunately, this tracing capability is currently broken. With more

insight on the model activity on the platform, it would be possible to add

parameters to adjust the behavior of the model and increase its accuracy.

Additionally, the ptaskmodel makes the assumption that the application always

uses 100 % of the most limited resource. In practice, this behavior is not

necessarily true (or needs to be veri�ed). One possible parameter to limit this

effect could be to add the possibility to limit the resources the application can

use, for instance, using 80 % of the total host speed instead of 100 %).

• Extending the model's validation. The next proposed direction is to extend

the model's validation. In the presented evaluation, we generate synthetic

interferences to stress the network during the application's execution. However,

scheduling simulation involves the execution of multiple applications. The

model's validation can be extended in three ways:

1. Evaluating the model's accuracy with, instead of the synthetic network

interferences, use another application. Future works in this direction

replace the network interferences with other PDGEMM executions, to

validate that the behavior of the model is consistent when multiple appli-

cations are involved.

2. Secondly, it exists a large number of HPC applications. The in this

work, we validate the ptask model against a single, simple, application.
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PDGEMM is not fully representative of a real production application. More

investigation with different HPC application is necessary to understand

which applications can be simulated with a ptask. One lead, is to compare

the ptask to the different application from the Nasa Parallel Benchmarks

(NPB) [Bai+91], or to proxy applications.

3. Finally, with the emergence of data-intensive workloads, data manage-

ment is an overgrowing concern for HPC centers [Asc+18]. In [Mer19]

the author uses Batsim to simulate data-intensive jobs (Big Data jobs)

along with HPC jobs. The main limitation of this work, is that the HPC

jobs use a delay model (section 4.3), and therefore the impact of the

data movements on HPC workloads is not observable. However, [Mer19]

results on Big Data jobs show that Batsim's approach is promising to

simulate data-intensive scenarios. Further validation on the data transfer

models is necessary to increase our con�dence in simulation regarding

this aspect.

9.1.3 Experimenting with Real RJMS: Simunix and Batsky

Experimenting with real RJMS has the advantage of being closer to a production

system than simulation. System administrators, for instance, can leverage these

work to tune the con�gurations of a system, or developers can test new features.

However, the tools and methodology used to set up an experiment with a real RJMS

are expensive in time, and often complex.

In this work, we propose two approaches to use a real RJMS on a single computer.

• The �rst approach, Simunix (detailed in section 6.2), aims at reproducing the

behavior of the operating system by intercepting the libc's functions dedicated

to communications and time control. Simunix leverages the Remote SimGrid

(RSG) simulation toolbox to model the behavior of the computing platform.

Simunix project has been rewritten as a generic library, calledsgwrap(sec-

tion 7.4). Hence, we propose sgwrapa library designed to simulate the C

library features related to distributed applications (BSD sockets, threads and

synchronization, and processes) and the functions related to time management.

sgwrapuses a different approach: cut into several libraries,sgwrapcan be

used to intercept a subpart of the proposed features by only activating libraries

handling a speci�ed feature, for instance intercepting only time and threads.

To support Simunix's approach, we propose Remote SimGrid (detailed in sec-

tion 7.3) that is a simulation toolbox presenting simulation concepts suitable

for distributed applications. RSG is not dedicated to simulating RJMSs, instead,
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it is intended to works for any distributed software. For instance, ongoing work

from Millian POQUET focuses on the simulation of the OpenMPI runtime1.

• The second approach detailed in section 6.3, called Batsky, takes a transversal

approach: what if we only simulate the time during the experiments? The

main idea of Batsky is to be able to execute the RJMS Slurm on an environment

where the jobs and the time of the experiment are managed by a simulator.

The main dif�culty of Batsky is to be able to control the simulation time to

accelerate the simulation, but to keep the system consistency. With its speci�c

design, Batsky is able to dedicate control of the time and the execution of

the jobs to an external simulator (Batsim), while executing a real RJMS. The

current prototype is able to execute a workload of 4 jobs, on 10 simulated

nodes in less than a minute.

As future works, we outline two research directions.

• Remote SimGrid is a promising tool to simulate real distributed applications.

With the actor model featured by RSG, SimGrid has the necessary functionali-

ties to simulate a distributed application. However, RSG lacks a terminated

proof of concept. Currently, two projects have a signi�cant advancement, the

Simunix project that was able to simulate the RJMS Slurm with few nodes;

and an OpenMPI plugin to perform the network communications of OpenMPI

with RSG. Additionally, one distributed software could be a good candidate to

be simulated with RSG: the CEPH storage system [@ceph].

In the context of RJMS, the �rst project Simunix showed good promising

results to simulate Slurm on a single computer. As future works, reproducing

the approach with sgwrapis good to simulate Slurm with RSG. However, new

development is necessary to complete the project.

• Batsky: scalability, reproducibility and accuracy evaluation. The approach

taken by Batsky is new, and the current state of the project shows a proof a

concept. However, studying the scalability of the approach is a key point to

understand the scope of the studies that will be possible with Batsky. This can

be done by using larger workloads and more simulated nodes. In a second time,

evaluating (and improving) the accuracy and the reproducibility of Batsky is a

necessary step to be able to use it as a reliable scienti�c tool.

9.1.4 Reproducibility of Experiments with Variation

Most computer science research relies on software, as it is the case for the different

works in this dissertation. Some software has been designed and programmed for

the occasion, others are their dependencies. Special attention was given to the

1https://framagit.org/simgrid/openmpi-rsg-plugins
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reproducibility of the experiments done for this works. A general methodology has

been extracted from the different works; leveraging the functional package manager

(FPM) approach, we were able to extract a general methodology to package and

design experiments involving computing programs. The methodology is based on

packaging a program, but also the whole set of software needed by the different

environments, such as its development environment or its execution environment.

Furthermore, we identi�ed that, with this methodology, we were able to propose the

reproducibility with variations. Variation is the idea that experimenters can easily

replay past experiments, but also modify either the inputs to conduct complementary

experiments, or modify the code of the experiment to add new features or �x bugs.

As future works, we want to propose the software environment transposition.

The variation is an interesting idea, and it is easy to implement with the functional

package managerNix. Reproducible software environments is a real asset for de-

velopers and experimenters. However, it doesn't provide information regarding the

execution's environment, that is to say, the place in which the programs are exe-

cuted. Nowadays, it is common to switch between different execution environments.

More especially, to have a different environment for the development, the tests, and

production. Each environment has different requirements: Development is often

carried on a laptop, testing can be done a dedicated infrastructure, and �nally, the

�nal release is made in a dedicated platform (such as a Cloud or Fog computing).

Furthermore, with the evolution of deployment methodologies, one execution envi-

ronment can use containers, while others may use bare metal or traditional virtual

machines. Future research in this area would involve the transpositions of one

software environment from one execution environment to another.
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AAppendix

A.1 PDGEMM

A.1.1 Nonblocking Broadcast

The parallel task model makes strong assumption about the progress of the parallel

applications, as it bundles the communication and the computations and adapts

their speed so that every activity �nish at the same time. This supposes that the real

application has a communication and computation overlapping (the communications

occur during the computation phases). The proposed PDGEMM algorithm uses the

broadcast MPI collective which is a blocking call, the application stops until the

broadcast is completed.

However, MPI features the collective IBroadcast (nonblocking broadcast) which

is non blocking. Instead, this MPI function should starts the communication in

background and return immediately providing a request object. The request object

can be used to wait the end of the communication when it is needed.

Algorithm 5 shows a version of PDGEMM using nonblocking broadcast. First, at the

iteration k the only requirement is that the data transfers needed for matrix products

(line 23 to 31 of the Algorithm 3) need to be completed. Therefore it is possible at

iteration k to initiate the transfer for the data needed at iteration k + 1 . In that way,

the data transfers for iteration k + 1 can occur during the computation phase of the

kth iteration. This is possible at one condition, the data for the �rst iteration needs

to be already present on each node, so that we can compute the �rst iteration.
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Algorithm 5 PDGEMM using nonblocking broadcast
1: procedure PDGEMM(id_ranks ,world_size,matrix _blockA , matrix _blockB )
2: q  

p
world_size

3: row_group  id_rank=q . Row group of the process
4: col_group  id_rank mod q . Column group of the process
5: group_row_id  get_id(row_group) . Process unique id in its row group
6: group_col_id  get_id(col_group) . Process unique id in its col group
7: resC  [block_length � block_length]
8: buf fA product  [block_length � block_length]
9: buf fB product  [block_length � block_length]

10: buf fA bcast  [block_length � block_length]
11: buf fB bcast  [block_length � block_length]
12: if group_row_id == root_row then
13: broadcast_on_lines(matrix _blockA , source = T rue)
14: else
15: broadcast_on_lines(buf fA product , source = False)
16: end if
17: if group_col_id == root_col then
18: broadcast_on_cols(matrix _blockB , source = T rue)
19: else
20: broadcast_on_cols(buf fB product , source = False)
21: end if
22: for i  1; i <

p
world_size + 1 ; i + + do

23: req  Request[ 2 ] . Table of two empty requests
24: root_col_prod  root_col;
25: root_row_prod  root_row;
26: root_col  k mod q;
27: root_row  k mod q;
28: if group_row_id == root_row then
29: req[0]  nonblocking_bcast_on_lines(matrix _blockA , source = T rue)
30: else
31: req[0]  nonblocking_bcast_on_lines(buf fA bcast , source = False)
32: end if
33: if group_col_id == root_col then
34: req[1]  nonblocking_bcast_on_cols(matrix _blockB , source = T rue)
35: else
36: req[1]  nonblocking_bcast_on_cols(buf fB bcast , source = False)
37: end if
38: if group_row_id == root_col_prod & group_col_id = root_row_prod then
39: resC  resC + matrix _blockA � matrix _blockB

40: else if group_col_id == root_col_prod then
41: resC  resC + buf fA product � matrix _blockB

42: else if group_row_id == root_row_prod then
43: resC  resC + matrix _blockA � buf fB product

44: else
45: resC  resC + buf fA product � buf fB product

46: end if
47: wait_all_requests(req)
48: swap_buffers(buf fA gemm , buf fA bcast )
49: swap_buffers(buf fA gemm , buf fA bcast )
50: end for
51: end procedure
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A.2 Reproduce Experiments

The experiments done for this dissertation are available online. The software

used are packaged using the Nix package manager, as for the software execution

environments.

• Chapter on Redirection 3: https://gitlab.inria.fr/adfaure/evipar. The exper-

iments have been conducted thanks to the Grid'5000 infrastructures. The

repository contains the sources to replay the experiments, and the data to

analyze without replaying all the simulations.

• Chapter on Job pro�les 4: https://gitlab.inria.fr/adfaure/ptask_tit_eval The

repository contains the necessary source code, and Nix environments to replay

all the simulations (including generating the Time Independent Traces with

SimGrid) and the data analysis.

• Chapter on Ptask evaluation 5: https://gitlab.inria.fr/batsim/ptask-eval The

experiments of this chapter contains two independent parts: The real exe-

cutions and the simulation, and therefore several software environment are

necessary. The environment for the real execution (that is deployed on the

computing nodes of Grid'5000), the simulation environment containing the

SimGrid simulation source code, and the data analysis environments.

• Presented in chapter 6, the Batsky project is available at: https://github.com/oar-

team/arion-batsky The repository contains the necessary nix �les to replay the

experiments, and simulate Slurm (on 10 nodes) with Batsky.

• Chapter on tools for emulations 7 presentssgwrap, the source code can be

found online at https://framagit.org/simgrid/sgwrap
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Abstract
High-Performance Computing (HPC) provides the computational power dedicated to solving complex problems

of our society. HPC computers are large scale and distributed infrastructures composed of several thousands

of computing cores. The management of theses systems is left to unique software: the Resource and Job

Management System (RJMS). The objective of the RJMS is multiple: Managing the physical infrastructure,

and handling the user requests to access to the computing power. The scheduling algorithm is the cornerstone

of the RJMS, it decides where and when the user's jobs will be executed. Scheduling is a dif�cult problem; to

manage large scale platforms RJMS needs to dispose of ef�cient yet scalable scheduling heuristics Evaluating

and testing new scheduling algorithms is crucial before releasing it in production. Any failure can have a

dramatic impact on the HPC platform leading to wasted time, energy, and resources. The lack of a platform

dedicated experiments and tests compels RJMS designers and HPC center's administrators to use different

tools and methodologies to evaluate new algorithms.

In the �rst part of this dissertation, we present and evaluate a new scheduling heuristics with job redirection.

The evaluation is done using a large simulation campaign, it results that by redirecting jobs can improve

the ef�ciency of the scheduling. In the second part, we focus on and extend the tools and methodologies

available to experiment with RJMS. This part is twofold: Firstly, we propose to extend scheduling simulations

with job models to simulate network contention between jobs. Secondly, we propose new tools that enable

experiment with production RJMS without the need for an HPC platform. This dissertation aims to broaden

the experimental landscape of tools and methodologies to experiment with RJMS and therefore help the

release in the production of new scheduling algorithms.

Résumé
Les superordinateurs sont des systèmes mutualisant la puissance de milliers de coeurs de calculs dédiés à la

résolution des problèmes compliqués de notre société. Le gestionnaire de ressources est un système distribué

et complexe chargé de la gestion de ses ressources de calculs. Son rôle est multiple : Gérer la plateforme

physique et traiter les requêtes d'accès des utilisateurs au superordinateur. La pierre angulaire du gestionnaire

de ressources est son algorithme d'ordonnancement des requêtes des utilisateurs. L'ordonnancement est un

problème dif�cile ; pour gérer ef�cacement un superordinateur le gestionnaire de ressources doit disposer

d'heuristiques d'ordonnancement ef�caces permettant de prendre des décisions pertinentes sur des milliers de

ressources de calculs. Évaluer et tester de nouvelles heuristiques est fondamental avant de pouvoir les utiliser

dans un système en production. Toute panne induite par une nouvelle politique peut avoir des conséquences

importantes sur la qualité de service du superordinateur. Il est ainsi nécessaire de disposer d'outils et méthodes

dédiés à l'évaluation des algorithmes d'ordonnancement.

La première partie de ce document présente un nouvel algorithm d'ordonnancement, ainsi que son évaluation

par le biais de la simulation. L'algorithme en question repose sur la possibilité de rediriger les programmes des

utilisateurs en cours d'exécution. L'évaluation est réalisée par le biais d'une large campagne de simulation, et

montre que rediriger des programmes permet d'améliorer les performances de l'ordonnancement. L'objectif

principal de la seconde partie de ce document est de proposer et développer de nouveaux outils et méthodes

pour l'évaluation des gestionnaires de ressources. Cette seconde partie est elle même divisée en deux arcs : Nous

proposons dans un premier temps d'étendre les techniques de simulations d'algorithmes d'ordonnancement

avec des modèles dédiés aux programmes permettant ainsi la simulation d'interférences réseaux entre les

différents programmes. Dans un second temps, nous proposons deux nouvelles approches pour créer des

expériences sur un seul ordinateur, en se basant directement sur de vrais gestionnaires de ressources. L'objectif

de ces travaux est d'étendre le paysage expérimental des outils et méthodologies nécessaires à l'évaluation de

nouveaux algorithmes d'ordonnancement.
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