
HAL Id: tel-03155785
https://theses.hal.science/tel-03155785

Submitted on 2 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling the 3D Milky Way using Machine Learning
with Gaia and infrared surveys

David Cornu

To cite this version:
David Cornu. Modeling the 3D Milky Way using Machine Learning with Gaia and infrared sur-
veys. Astrophysics [astro-ph]. Université Bourgogne Franche-Comté, 2020. English. �NNT :
2020UBFCD034�. �tel-03155785�

https://theses.hal.science/tel-03155785
https://hal.archives-ouvertes.fr

Thèse de Doctorat
préparée à l’Université de Franche-Comté
en vue de l’obtention du grade de

Docteur de l’Université Bourgogne Franche-Comté

Modeling the 3D Milky Way
using Machine Learning

with Gaia and infrared surveys

Modélisation 3D de la Voie Lactée
par Machine Learning

avec les données infrarouges et Gaia

Specialité : Astrophysique

soutenue par

David Cornu
à Besançon, le 29 September 2020

Thèse supervisée par: Annie Robin et JulienMontillaud

Composition du jury :
Rosine, Lallement Directrice de recherche - Université PSL (GEPI) Rapportrice
Luis M., Sarro Baro Professeur associé - UNED (AI Dept.) Rapporteur
Anne S.M., Buckner Chargée de recherche - Université de Exeter Examinatrice
Douglas J., Marshall Maître de conférences - Université Toulouse III, P. Sabatier Examinateur
Raphael, Couturier Professeur - IUT Belfort-Montbéliard President
Sylvain, Bontemps Directeur de recherche - Université de Bordeaux Examinateur
Annie, Robin Directrice de recherche - Université de Franche-Comté Directrice de thèse
Julien, Montillaud Maître de conférences - Université de Franche-Comté Codirecteur de thèse

Ecole Doctorale : Carnot-Pasteur, ED 553
Laboratoire : Institut UTINAM, Observatoire de Besançon

UMR CNRS 6213, Besançon, France

Remerciements formels
Cette thèse a été co-financée par le Centre National d’études Spatiales (CNES) et

par la région Bourgogne Franche-Comté. Le CNES, dans son rôle d’employeur, nous
a assuré son soutien administratif et financier à plusieurs reprises. Le laboratoire UTI-
NAM et l’Observatoire des Sciences de l’Univers THETA de l’université de Bourgogne
Franche-Comté ont été les lieux d’accueil quotidien pour nos travaux, et nous tenons
à remercier les différentes instances (laboratoire, équipe, OSU) qui nous ont soutenu
financièrement et administrativement à de nombreuses reprises. Nos remerciements
se portent également vers le Mésocentre de l’Université de Franche-Comté et le Mas-
ter CompuPhys qui nous ont permis d’accéder à d’importantes ressources de calculs
indispensables au travail réalisé. Enfin, nous remercions différents projets et collabo-
rations auxquels nous avons eu la chance de participer : le projet GALETTE financé
par PCMI, le projet Besançon-Budapest-Collaboration (BBC), le groupe Galactic Cold
Cores (GCC), et l’International Space Science Institute (ISSI) qui a hébergé un groupe
de travail autour du modèle de la Galaxie de Besançon.

Remerciements informels
Tout d’abord je tiens profondément à remercier Julien Montillaud, envers qui toute

ma gratitude ne saurait s’exprimer en seulement quelques lignes. Merci à Julien d’abord
pour sa disponibilité, sa bienveillance, et surtout son éternelle patience, dans l’encadrement
de cette thèse. Sa motivation débordante et communicative fut un véritable moteur pour
moi au quotidien. Merci aussi pour tout ce qu’il m’a appris, tant sur le plan scientifique
qu’humain. Merci de m’avoir aidé à donner le meilleur de moi-même et de m’avoir
poussé à élargir mes compétences et intérêts. Ce serait un immense plaisir pour moi que
nous puissions continuer à travailler ensemble dans les années à venir.

Merci également à Annie Robin pour son encadrement. Annie a su me faire profiter
de sa très grande expérience et a toujours été disponible pour m’aider à avancer dans
mes travaux. Merci notamment pour son regard critique très pertinent qui nous a per-
mis de souvent dépasser nos objectifs et d’étendre nos champs d’expertise. Je tiens à
chaleureusement remercier les autres collègues (passés ou actuels) du bâtiment des hor-
loges : Jean-Baptiste, Nadège, Céline et Guillaume. Merci à chacun d’entre eux pour
leur regard scientifique sur nos progrès, pour leurs suggestions de travaux, et pour tous
leurs conseils qui m’ont permis de progresser dans de nombreux domaines. J’espère
avoir la chance de pouvoir continuer à travailler avec eux, et que nous aurons l’occasion
de concrétiser beaucoup des idées que nous avons pu avoir ensemble. Merci également
à eux pour les moments de partages, au laboratoire ou en mission, et d’une manière plus
générale pour m’avoir intégré aussi chaleureusement à l’équipe.

Merci à tous les membres de l’observatoire et du laboratoire UTINAM pour leur ac-
cueil. Je pense en particulier à tous mes collègues avec qui j’ai partagé "journal club",
réunions, séminaires, mais aussi de nombreux moments de convivialité. J’adresse tous
mes voeux de réussite à mes collègues doctorants et jeunes docteurs qui ont été une
incroyable source de soutien et d’échange. Merci à tous mes collègues pour la place
qu’ils m’ont laissée prendre dans ce groupe; je ne crois pas retrouver facilement une
ambiance aussi bienveillante au sein d’une équipe.

Special thanks:
I want to warmly thank all the jury members for their clear interest in my work and

for all their comments and suggestions that helped me to improve the quality of the
present manuscript and to consider new research ideas. I also want to express a great
thank you to Anne Buckner for her help to improve the manuscript language quality.

Abstract
Large-scale structure in the Milky Way (MW) is, observationally, not well constrained.

Studying the morphology of other galaxies is straightforward but the observation of our home
galaxy is made difficult by our internal viewpoint. Stellar confusion and screening by interstel-
lar matter are strong observational limitations to assess the underlying 3D structure of the MW.
At the same time, very large-scale astronomical surveys are made available and are expected to
allow new studies to overcome the previous limitations. The Gaia survey that contains around
1.6 billion star distances is the new flagship of MW structure and stellar population analyses,
and can be combined with other large-scale infrared (IR) surveys to provide unprecedented long
distance measurements inside the Galactic Plane. Concurrently, the past two decades have seen
an explosion of the use of Machine Learning (ML) methods that are also increasingly employed
in astronomy. With these methods it is possible to automate complex problem solving and effi-
cient extraction of statistical information from very large datasets.

In the present work we first describe our construction of a ML classifier to improve a widely
adopted classification scheme for Young Stellar Object (YSO) candidates. Born in dense inter-
stellar environments, these young stars have not yet had time to significantly move away from
their formation site and therefore can be used as a probe of the densest structures in the interstel-
lar medium. The combination of YSO identification and Gaia distance measurements enables
the reconstruction of dense cloud structures in 3D. Our ML classifier is based on Artificial Neu-
ral Networks (ANN) and uses IR data from the Spitzer Space Telescope to reconstruct the YSO
classification automatically from given examples. We extensively explore dataset constructions
and the effect of imbalanced classes in order to optimize our ANN prediction and to provide
reliable estimates of its accuracy for each class. Our method is suitable for large-scale YSO can-
didate identification and provides a membership probability for each object. This probability
can be used to select the most reliable objects for subsequent applications like cloud structure
reconstruction.

In the second part, we present a new method for reconstructing the 3D extinction distribution
of the MW and that is based on Convolutional Neural Networks (CNN). With this approach it
is possible to efficiently predict individual line of sight extinction profiles using IR data from
the 2MASS survey. The CNN is trained using a large-scale Galactic model, the Besançon
Galaxy Model, and learns to infer the extinction distance distribution by comparing results of
the model with observed data. This method has been employed to reconstruct a large Galactic
Plane portion toward the Carina arm and has demonstrated competitive predictions with other
state-of-the-art 3D extinction maps. Our results are noticeably predicting spatially coherent
structures and significantly reduced artifacts that are frequent in maps using similar datasets. We
show that this method is able to resolve distant structures up to 10 kpc with a formal resolution
of 100 pc. Our CNN was found to be capable of combining 2MASS and Gaia datasets without
the necessity of a cross match. This allows the network to use relevant information from each
dataset depending on the distance in an automated fashion. The results from this combined
prediction are encouraging and open the possibility for future full Galactic Plane prediction
using a larger combination of various datasets.

Résumé en Français
Titre en français : Modélisation de la Voie Lactée en 3D par machine learn-
ing avec les données infrarouges et Gaia

La structure à grande échelle de la Voie-Lactée (VL) n’est actuellement toujours pas par-
faitement contrainte. Contrairement aux autres galaxies, il est difficile d’observer directement sa
structure du fait de notre appartenance à celle-ci. La confusion entre les étoiles et l’occultation
de la lumière par le milieu interstellaire (MIS) sont les principales sources de difficulté qui em-
pêchent la reconstruction de la structure sous-jacente de la VL. Par ailleurs, de plus en plus
de relevés astronomiques de grande ampleur sont disponibles et permettent de surmonter ces
difficultés. Le relevé Gaia et ses 1.6 milliards mesures de distances aux étoiles est le nouvel
outil de prédilection pour l’étude de la structure de la VL et l’analyse des populations stel-
laires. Ces nouvelles données peuvent être combinées avec d’autres grands relevés infrarouges
(IR) afin d’effectuer des mesures à des distances jusque-là inégalées. Par ailleurs, le nombre
d’applications reposant sur des méthodes d’apprentissage machine (AM) s’est envolé ces vingt
dernières années et celles-ci sont de plus en plus employées en astronomie. Ces méthodes sont
capables d’automatiser la résolution de problèmes complexes ou encore d’extraire efficacement
des statistiques sur de grands jeux de données.

Dans cette étude, nous commençons par décrire la construction d’un outil de classifica-
tion par AM utilisé pour améliorer les méthodes classiques de classification des Jeunes Objets
Stellaires (JOS). Comme les étoiles naissent dans un environnement interstellaire dense, il est
possible d’utiliser les plus jeunes d’entre elles, qui n’ont pas encore eu le temps de s’éloigner
de leur lieux de formation, afin d’identifier les structures denses du MIS. La combinaison des
JOS et des distances mesurées par Gaia permet alors de reconstruire la structure 3D des nuages
denses. Notre méthode de classification par AM est basée sur les réseaux de neurones artificiels
et se sert des données du télescope spatial Spitzer pour reconstruire automatiquement la classi-
fication des JOS sur la base d’une liste d’exemples. Nous détaillons la construction des jeux de
données associés ainsi que l’effet du déséquilibre entre les classes, ce qui permet d’optimiser les
prédictions du réseau et d’estimer la précision associée. Cette méthode est capable d’identifier
des JOS dans de très grands relevés tout en fournissant une probabilité d’appartenance pour
chacun des objets testés. Celle-ci peut alors être utilisée pour retenir les objets les plus fiables
afin de reconstruire la structure des nuages.

Dans une seconde partie, nous présentons une méthode permettant de reconstruire la dis-
tribution 3D de l’extinction dans la VL et reposant sur des réseaux de neurones convolutifs.
Cette approche permet de prédire des profils d’extinction sur la base de données IR provenant
du relevé 2MASS. Ce réseau est entraîné à l’aide du modèle de la Galaxie de Besançon afin
de reproduire la distribution en distance de l’extinction à grande échelle en s’appuyant sur la
comparaison entre le modèle et les données observées. Nous avons ainsi reconstruit une grande
portion du plan Galactique dans la région du bras de la Carène, et avons montré que notre pré-
diction est compétitive avec d’autres cartes d’extinction 3D qui font référence. Nos résultats
sont notamment capables de prédire des structures spatialement cohérentes, et parviennent à
réduire les artefacts fréquents dits “doigts de Dieu”. Cette méthode est parvenue à résoudre
des structures distantes jusqu’à 10 kpc avec une résolution formelle de 100 pc. Notre réseau
est également capable de combiner les données 2MASS et Gaia sans avoir recours à une iden-
tification croisée. Cela permet d’utiliser automatiquement le jeu de données le plus pertinent
en fonction de la distance. Les résultats de cette prédiction combinée sont encourageants et
ouvrent la voie à de nouvelles reconstructions du plan Galactique en combinant davantage de
jeux de données.

Acknowledgments

Abstract

Résumé en Français

I Context 1

1 Milky Way 3D structure 5
1.1 Review of useful properties of the Milky Way 5

1.1.1 The only galaxy that can be observed from the inside 5
1.1.2 Expected structural information . 8

1.2 The interstellar medium . 9
1.2.1 The bridge between stellar population and interstellar medium 9
1.2.2 Interstellar medium extinction and emission 10

1.3 Observational constraints on the Milky Way structure 14

2 The rise of AI in the current Big Data era 18
2.1 Proliferation of data and meta-data . 18
2.2 Artificial intelligence, a not-so-modern tool 19

2.2.1 Beginnings of AI . 19
2.2.2 End of 20th century difficulties and successes 19
2.2.3 The new golden age of AI . 20
2.2.4 Astronomical uses of AI . 20

2.3 Astronomical Big Data scale surveys . 21
2.3.1 Previous large surveys . 21
2.3.2 A new order of magnitude with PanSTARRS and Gaia 22
2.3.3 The historical challenge of SKA and following surveys 22

II Young Stellar Objects classification 25

3 Young Stellar Objects as a probe of the interstellar medium 28
3.1 YSO definition and use . 28
3.2 YSO candidates identification . 29
3.3 Machine Learning motivation and previous attempts 31
3.4 Objective and organization . 32

4 Classical Artificial Neural Networks 33
4.1 Attempt of ML definition . 34

4.1.1 "Animal" learning and "Machine" Learning 34
4.1.2 Types of artificial learning . 35
4.1.3 Broad application range and profusion of algorithms 36
4.1.4 Toolboxes against home-made code 36

4.2 Artificial Neuron . 40
4.2.1 Context and generalities . 40
4.2.2 Mathematical model . 41
4.2.3 Supervised learning of a neuron . 42

4.3 The bias node . 42

4.4 Perceptron algorithm: linear combination 44
4.5 Multi Layer Perceptron : universal approximation 46

4.5.1 Non linear activation function and neural layers stacking 46
4.5.2 Supervised network learning using backpropagation 48

4.6 Limits of the model . 50
4.7 Neural network parameters . 51

4.7.1 Network depth and dataset size . 51
4.7.2 Learning rate . 52
4.7.3 Weight initialization . 54
4.7.4 Input data normalization . 55
4.7.5 Weight decay . 55
4.7.6 Monitor overtraining . 56
4.7.7 Shuffle and gradient descent schemes 58
4.7.8 Momentum conservation . 59

4.8 Matrix formalism and GPU programming 60
4.8.1 Hardware considerations for matrix operations 60
4.8.2 Artificial Neural networks as matrix operations 61
4.8.3 GPUs variety . 62
4.8.4 Insights on GPU programming . 65

4.9 The specificities of classification . 67
4.9.1 Probabilistic class prediction . 67
4.9.2 The confusion matrix . 69
4.9.3 Class balancing and observational proportions 70

4.10 Simple examples . 73
4.10.1 Regression . 73
4.10.2 Classification . 76

5 Automatic identification of YSOs in infrared surveys 79
5.1 Problem description and class definition . 79
5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations 82
5.3 Construction of the test, valid and train dataset 87
5.4 Network architecture and parameters . 90
5.5 Convergence criteria . 93

6 Subsequent application to multiple star-forming regions 94
6.1 First training on one specific region: the Orion molecular cloud 95

6.1.1 Hyper-parameter and training proportion evaluation 95
6.1.2 Main result . 96
6.1.3 Test on a balanced dataset . 96
6.1.4 Prediction stability . 97
6.1.5 Detailed sub-classes distribution . 97
6.1.6 Full dataset result . 98

6.2 Effect of the selected region: training using NGC 2264 99
6.2.1 Main result . 99
6.2.2 Small dataset issues . 100
6.2.3 Prediction stability . 100
6.2.4 Full dataset result . 101

6.3 Generalization capacity: crossed application 102
6.3.1 Cross forward considerations . 102
6.3.2 O-N main result . 103
6.3.3 Detailed feature space analysis for O-N 104
6.3.4 N-O main result . 105
6.3.5 Detailed feature space analysis for N-O 106

6.4 Improving diversity: combined training . 107
6.4.1 Hyper-parameter and training proportion changes 108
6.4.2 Main result . 108
6.4.3 Generalization capacity evaluation 109
6.4.4 Full dataset result and analysis of rare sub-classes prediction 110

6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc) 111
6.5.1 Hyper-parameter and training proportion changes 111
6.5.2 Main result . 111
6.5.3 More detailed analysis . 112
6.5.4 Full dataset result . 113
6.5.5 Misclassified objects distribution . 113
6.5.6 Forward of the trained network on Orion and NGC 2264 114

6.6 Orion and NGC 2264 YSO candidates distribution maps 118

7 Probabilistic prediction contribution to the analysis 121
7.1 Interpretation of the membership probability 122
7.2 Graphical analysis of the membership probability 127

8 3D cloud reconstruction using cross-match with Gaia 134
8.1 Orion A distance and 3D information . 134
8.2 Distances to Orion B sub-regions . 139
8.3 NGC 2264 distance and 3D information . 141

9 Additional discussion and further improvements 143
9.1 Identified limitations to our results . 143
9.2 MIPS 24 micron band effect on the results 144
9.3 Usage of Spitzer colors instead of bands . 144
9.4 Method discussion . 145
9.5 Conclusion and perspectives . 146

III Reconstruction of the 3D interstellar extinction of the MW 149

10 Using interstellar extinction to infer the 3D Milky Way structure 152
10.1 Current state of 3D extinction maps . 152
10.2 Per line of sight approach . 155
10.3 The Besançon Galaxy Model . 158
10.4 Mesuring extinction using the BGM . 159
10.5 Using Machine Learning for this task . 160
10.6 Objective and organization . 161

11 Convolutional Neural Networks 162
11.1 The image processing impulse . 162

11.1.1 Spatially coherent information . 162
11.1.2 Information redundancy: pattern recognition 165
11.1.3 Convolution filter . 166
11.1.4 Convolutional layer . 168
11.1.5 A simpler activation function : the rectified linear unit 172
11.1.6 Stacking Convolutional layers . 174
11.1.7 Pooling layer . 175
11.1.8 Learning the convolutional filters . 176

11.2 Convolutional networks parameters . 181
11.2.1 Convolutional Neural Network architectures 181
11.2.2 Weight initialization and bias value 184
11.2.3 Additional regularization: Dropout and momentum 185
11.2.4 Implications for GPU formalism . 186
11.2.5 Example of a classical image classification 189

11.3 Use of the dropout to estimate the uncertainty in a regression case 191

12 Extinction profile reconstruction for one line of sight 193
12.1 Construction of a simulated 2MASS CMD using the BGM 193

12.1.1 Choice of BGM representation and observed quantity 193
12.1.2 Reproducing realistic observations: uncertainty and magnitude cuts . 196
12.1.3 Simple extinction effect on the diagram 198

12.2 Creating realistic extinction profiles for training 200
12.2.1 Gaussian Random Fields . 200
12.2.2 GRF generated profile . 201
12.2.3 Profile star count limit and magnitude cap 202

12.3 Tuning the method . 204
12.3.1 Input and output dimensions . 204
12.3.2 Network architecture . 205
12.3.3 Network hyperparameters . 206
12.3.4 Computational aspects . 208

13 2MASS only extinction maps 209
13.1 Training with one line of sight . 209

13.1.1 Network training and test set prediction 209
13.1.2 Generalizing over a Galactic Place portion 210
13.1.3 Integrated view of the plane of the sky 212
13.1.4 Face-on view . 214

13.2 Combination of several lines of sight in the same training 218
13.2.1 Sampling in galactic longitude . 218
13.2.2 Multiple line of sights in a single training 218
13.2.3 Dataset construction, architecture effect and training 219
13.2.4 Map results . 221
13.2.5 Effect of the galactic latitude . 226

13.3 Comparison with other 3D extinction maps 228
13.4 Addition of a second color-magnitude diagram 232

14 Combined Gaia-2MASS extinction maps 235
14.1 Realistic Gaia diagram construction from the BGM 235
14.2 Training with one line of sight . 238
14.3 Combined sampled training . 240

15 Method discussion and conclusion 244
15.1 Dataset construction limits and improvements 244

15.1.1 Magnitude cuts and uncertainty issues 244
15.1.2 Modular Zlim value . 244
15.1.3 Construction of realistic profiles . 245
15.1.4 The "perfect BGM model" assumption 246

15.2 CNN method discussion . 246
15.3 Conclusion and perspectives . 247

16 General conclusion 248

Appendix 250

A Detailed description of the CIANNA framework 251
A.1 Global description . 254
A.2 CIANNA objects . 255
A.3 Description of the layers . 256

A.3.1 Dense layer . 256
A.3.2 Pooling layer . 256
A.3.3 Convolutional layer . 257

A.4 Im2col function . 258
A.5 Other important functions . 260
A.6 Python and C interfaces . 260
A.7 Performance comparison . 264
A.8 Future improvements . 265

List of Figures 268

List of Tables 270

References 271

Part I

Context

Part I: Context

1 Milky Way 3D structure 5
1.1 Review of useful properties of the Milky Way 5

1.1.1 The only galaxy that can be observed from the inside 5
1.1.2 Expected structural information . 8

1.2 The interstellar medium . 9
1.2.1 The bridge between stellar population and interstellar medium 9
1.2.2 Interstellar medium extinction and emission 10

1.3 Observational constraints on the Milky Way structure 14

2 The rise of AI in the current Big Data era 18
2.1 Proliferation of data and meta-data . 18
2.2 Artificial intelligence, a not-so-modern tool 19

2.2.1 Beginnings of AI . 19
2.2.2 End of 20th century difficulties and successes 19
2.2.3 The new golden age of AI . 20
2.2.4 Astronomical uses of AI . 20

2.3 Astronomical Big Data scale surveys . 21
2.3.1 Previous large surveys . 21
2.3.2 A new order of magnitude with PanSTARRS and Gaia 22
2.3.3 The historical challenge of SKA and following surveys 22

3

1 Milky Way 3D structure

1 Milky Way 3D structure
In this section we introduce astronomical knowledge that is relevant to understand the context of
the present study. We noticeably describe the presently admitted view of our galaxy the Milky
Way along with a few order of magnitude for the useful astronomical objects and quantity.
We describe the expected structural information of the Milky Way and highlight its support
from observational constrains. In a second time we expose some properties of the interstellar
medium, summarizing its link with the stars in the galaxy. We end by describing the extinction
from the ISM and its link with the structural information of the Milky Way.

1.1 Review of useful properties of the Milky Way 5
1.1.1 The only galaxy that can be observed from the inside 5
1.1.2 Expected structural information . 8

1.2 The interstellar medium . 9
1.2.1 The bridge between stellar population and interstellar medium 9
1.2.2 Interstellar medium extinction and emission 10

1.3 Observational constraints on the Milky Way structure 14

1.1 Review of useful properties of the Milky Way
1.1.1 The only galaxy that can be observed from the inside

A natural beginning of a work on the Milky Way galaxy structure would be to define what a
galaxy exactly is. Still, the presently accepted definition is not that old. In the 1920’s, two
visions of our place in the universe was opposed in what was latter called the "Great debate".
The argument was mostly opposing the two astronomers Harlow Shapley and Heber D. Curtis.
The former defended the thesis that every astronomical object observed and especially what
they called distant spiral nebulae was part of our Milky Way, so these nebulae must be close
and small. The second one in contrast, argued that these objects were very distant and very
large and were likely to be external galaxies that look very alike our own Milky Way of billions
of stars. They published a common paper containing two parts where each of them exposed
their arguments and that was titled The Scale of the Universe Shapley & Curtis (1921). The
difference in physical scale between the two points of view was of several orders of magnitude,
illustrating how much was remaining to understand just 100 years ago.

A few years later another famous astronomer, Edwin Hubble, published a paper that esti-
mated the distance of these spiral nebulae based on the known absolute magnitude of Cepheid
variable stars (Hubble 1926). The distances he found are today known to be significantly un-
derestimated, still they were already large enough distances to support the thesis defended by
Curtis that these nebulae were very large, very massive, distant structures. Later, he published
the study that gave birth to the Hubble law and that correlates the distance and radial velocity of
other galaxies with their reddening (Hubble 1929), which is now understood as a cosmological
effect of the universe expansion. The known scale of the universe had drastically changed in a
few years.

We do not aim at making an historical overview of the astronomical knowledge about galax-
ies here, but this story illustrates the fact that knowing the physical scale and boundary of our
own galaxy was a tricky question at this time (e.g Kapteyn 1922). The currently accepted view
of a galaxy is a system of stars, dust, gas, and dark matter that is gravitationally bound. Their

5

1.1 Review of useful properties of the Milky Way

Figure 1.1: Examples of spiral galaxies that present different detailed morphology. From left to
right, NGC 628 (M74), a grand design spiral galaxy (SA(s)c) observed by the 8.1-meter North
Telescope of the Gemini Observatory , NGC 1300 a barred spiral galaxy (SB(s)bc) observed by
the Hubble space telescope, and NGC 7793 a flocculent galaxy (SA(s)d) observed by the ESO
Very Large Telescope (VLT).

size can vary from a few kpc to more than 100 kpc and their mass estimates are mostly between
105 and 1013 M� based on rotation curves. Galaxies have many different forms, as described
by Hubble (1936) and successively refined in De Vaucouleurs (1959); De Vaucouleurs et al.
(1991); Lintott et al. (2008, ,...), and the most noticeable ones for the present study are spiral
galaxies. Figure 1.1 shows three typical observed galaxies of this type (NGC 628 - M74, NGC
1300 and NGC 7793) with a face-on view of their plane spanned by spiral-shaped arms that
start from the bulge and coil out progressively. This figure also illustrates the large variety of
possible spiral structures, with a variable number of arms and a center that can be a roughly-
spherical bulge or in other cases an elongated bar. There is also an opposition between two
views of galaxy structures: (i) the grand-design view that corresponds to very well resolved
narrow spiral arms at large scale which could be the case of M74 in the left frame, and (ii)
the flocculent view of more sub-structured galaxies with sub-arms, arm discontinuities, bridges
between them, and that does not always follow the expected spiral shape as illustrated in the left
frame with NGC 7793. Most of the star formation is believed to occur in the arms (Solomon
& Rivolo 1989; Salim & Rich 2010) even if the galaxy mass is mostly evenly sprayed over the
whole disk (McMillan 2017). This disk is rotating around the central bulge or bar region that
hosts a supermassive black hole for most galaxies (Heckman & Best 2014) and concentrates an
important fraction of its mass. This global structure of a galaxy is expected to come from their
formation process that started quickly in the early stages of the universe and that is still going
on today (Freeman & Bland-Hawthorn 2002). While there are multiple views on which process
dominates the galaxies formation, it is mostly accepted that there is a gravitational collapse of
matter at large scale (Cooper et al. 2010) and that the rotating accreted matter speeds up with
the decrease in the structure size creating a flatten disk shape structure (Brook et al. 2004). In-
terestingly, there are still to this day a lot of unknowns about our home galaxy structure, size,
mass, detailed 3D distribution of star, etc (Bland-Hawthorn & Gerhard 2016). We are presently
in an uncomfortable situation, where we know more about other galaxies large-scale structures
that are far way from us, than about our own galaxy structure. This is due exactly to the fact
the we are part of this galaxy. While it is possible to see other galaxies face-on, our own galaxy
obscures itself since we are inside the galactic plane and relatively far away from the center.

6

https://www.gemini.edu/gallery/media/perfect-spiral-m74
https://apod.nasa.gov/apod/ap200611.html
http://annesastronomynews.com/annes-image-of-the-day-spiral-galaxy-ngc-7793/

1 Milky Way 3D structure

Figure 1.2: Most common artistic face-on view of the Milky Way that illustrates the expected
Milky Way bulge and arms. From Hurt (2008).

Figure 1.3: Gaia DR2 view of the Milky Way in the plane of the sky. The image is not a
photograph, but a map of the 1.6 billion star brightness in the survey. The image is encoded
using the Gaia magnitude bands following, Red: GRP, Green: G and Blue: GBP. From Gaia
Collaboration et al. (2018b)

7

1.1 Review of useful properties of the Milky Way

The most used Milky Way representation is the one presented in Figure 1.2 from Hurt
(2008). Despite the fact that this view was constructed based on some observations and on
strong theoretical knowledge from the observation of other galaxy structures, it remains mostly
an artistic representation that is strongly underconstrained. This view conveys the idea that this
is the present state-of-the-art astronomical knowledge of our galaxy structure, even though only
sparse and heterogeneous observational evidences are available to this day. What can truly be
observed from our standpoint looks like the Figure 1.3 that contains all the observed stars from
the Gaia DR2 mission that we will describe in Section 2.3.2. This view illustrates the difficulty
caused by our position inside the Milky Way. A great thought experiment that we got from
a colleague, is to picture the Milky Way as an expanded forest. Once inside, it is possible to
see through a tenth of meter depending on the tree density, but at some point the accumulation
of trees and vegetation with the distance makes the view opaque. It is therefore impossible to
properly assess the size of the forest from the inside. In this view the trees correspond to the
stars and the most diffuse vegetation to the gas and dust distributed in the Milky Way disk. From
this it is more clear why it is difficult to reconstruct the Milky Way large-scale structure. Still,
it remains a favored position to study the interstellar medium and the stars themselves.

1.1.2 Expected structural information

In the present section we summarize some of the Milky Way (hereafter MW) properties based
on the present knowledge (mostly following Bland-Hawthorn & Gerhard 2016) in order to con-
textualize the present study. The MW is a rather evolved galaxy that has a decreasing star
formation and does not present traces of important merger history. It is usually classified as
a Spiral Sb-Sbc galaxy, and most of the representations account for 4 spiral arms. Most mea-
surements predict a stellar mass around 5 × 1010 M� and total galactic mass from the large dark
matter halo around ∼ 1.5 × 1012 M�. The stellar disk radius is often estimated at 10 kpc and
is often separated in two stellar populations, one from a thin disk with a scale height estimated
around zt ' 300 pc and an older one from a thick disk with a scale height zT ' 900pc depending
on the study, both presenting a flaring, i.e. an increase in height scale with galactic radius. The
Sun position is estimated at around 8 kpc from the center of the MW and roughly positioned at
an elevation of z0 ' 25pc. At the center of the MW is a super massive black hole named Sagit-
tarius A∗ for which the mass is estimated at approximately 4 × 106 M�, around which a nuclear
star cluster is found. They are themselves embedded in an X-shaped (or peanut-shaped) bulge
structure that is ∼ 3 kpc long and with a scale height of ∼ 0.5 kpc (Robin et al. 2012b). There
is then a “long bar” or “thin bar” region that extend after the bulge up to a 5 kpc half-length
(Wegg et al. 2015) but with a quickly decreasing height profile with a mean 180 pc scale height.

The previous elements are considered to be the main components of the Milky Way and
provide an accurate global representation based on relatively well-constrained observations.
Then the arm structures are more difficult to constrain since they are mostly defined by their
higher luminosity or peculiar stellar population and do not represent strong star over-density in
stellar mass (Salim & Rich 2010; McMillan 2017). They are proposed to be self-propagated
compression waves created by the differential rotation of the galaxy. In this model an arm is a
spiral-shaped local compression that triggers star formation and propagates through the galactic
plane, which explains that the star velocities do not match those of the arms (Shu 2016). This
process triggers intense star formation episodes, where massive stars are more likely to form
than in other regions of the galaxy, highlighting the spiral arm shape. Since these massive stars
have a very short life-time, they are gone soon after the passage of the wave, inducing rela-
tively narrow spiral arm structures. As we will expose in Section 1.2.1, stars form from dense

8

1 Milky Way 3D structure

cloud compression, therefore the arm structures are also traced by dense interstellar environ-
ment which will be at the center of the present study. Overall, in contrast with what Figure 1.2
support, the MW arms are mostly under relatively weak observational constrains at these day
which is discussed in Section 1.3

1.2 The interstellar medium
1.2.1 The bridge between stellar population and interstellar medium

The main components of galaxies are stars, but they evolve in a more diffuse matter environ-
ment, the Inter Stellar Medium (ISM), to which they are bound through a complex interplay.
Mainly, the ISM is a mixture of gas and dust with a huge diversity of states and detailed compo-
sition. Overall the mass of the ISM is divided as 70.4% Hydrogen, 28.1% Helium, and 1.5% of
heavier atoms, almost all of it being in a gas state with less than 1% of the mass of this matter
being in the form of solid dust grains (Ferrière 2001). This matter is distributed very heteroge-
neously in the galactic environment, from very warm diffuse (TK > 105 K and n < 0.01 cm−3)
and almost transparent large-scale structures to very dense and cold structures (TK ∼ 10 K and
n > 103 cm−3) at much smaller scales with a continuum of structures between the two, including
for example interstellar molecular filaments.

The ISM evolution is determined by the complex interplay between the magneto-hydrodynamics
laws, which describe how the gas flows in the galaxy, gravity and self-gravity, which contribute
to shaping and compressing the gas at all scales, as well as a number of processes related to
stellar evolution, like the propagation of supernova shock waves, the gas heating by photoelec-
tric effect on dust grains or gas ionization by stellar ultra-violet (UV) flux. The ISM represents
a significant portion of the mass of the Milky way, equivalent to around 10 to 15% of the to-
tal stellar mass. This is known to be the matter from which stars form as explained in detail,
for example, by McKee & Ostriker (2007), Kennicutt & Evans (2012), and references therein,
and described briefly here. From the proportions reported above, it is visible that the MW has
already converted most of its gas into stars. Under the combined effects of dynamics and grav-
ity the interstellar medium will contract hierarchically creating dense clouds. At some point
they will become optically thick and their inside will get cooler by preventing the ambient UV
light from stars to penetrate the cloud deeply. The low temperatures enable a complex chem-
istry catalyzed by dust grains that allows the creation of larger molecules and lets dust grain
themselves grow in size, which changes the optical properties of the densest structures. The
definition threshold of a dense cloud is a tricky question that is often solved using a certain
amount of CO emission or by the dust reddening amount that is much higher in dense clouds.
If the cloud is massive enough so that gravity is stronger than the gas support (kinetic energy,
turbulence, magnetic field), it will collapse gravitationally, starting the formation of a protostar.
It ultimately leads to the formation of a star that is supported by nuclear fusion in its core, i.e.
a main-sequence star. The steps of star-formation, from the gravitational collapse to the main-
sequence star are described where they are useful in Section 3.1.

The important point here is that stars are formed through the collapse of the dense interstel-
lar medium. Once formed, the stars will progressively get away from their original structure, so
that identifying Young Stellar Objects (YSO) that did not have time to move too much is a suit-
able way to reconstruct large-scale dense-cloud structures that are massive enough to form stars
(Sect. 8). A large part of the present study, namely the part II, is dedicated to the construction
of a YSO identification method that is a prerequisite of the previous approach.

9

1.2 The interstellar medium

More generally the link between the stars and the ISM is not one-sided since there are a
lot of feedback from the stars on the ISM, of which we give some examples. First the star
light warms and ionizes the ISM but also breaks any complex molecule or even evaporate dust
grains. In addition, any element other than hydrogen and helium originate from the stellar nu-
cleosynthesis and are dispersed after the star end of life. The supernova explosions that ends
the life of massive stars (M > 8M�) play a major and ambiguous role in the ISM evolution.
This phenomenon is known to inject a very significant mechanical energy to the ISM, which
can blow away dense structures and enrich it with new elements that are only formed during
such energetic events. It can also have the opposite effect and induce compression waves on the
ISM, leading to triggered star formation (e.g Padoan et al. 2017).

At large scales, the ISM is shaped by the global dynamic of the Milky Way. Indeed larger
ISM structure have been observed to follow the spiral arms in other galaxies (e.g Elmegreen
et al. 2003) and in simulations (Bournaud & Combes 2002) with the more local structures
getting their energy mostly from gravitational instabilities from the spiral arms that drive the
turbulent regime and by inward mass accretion (Bournaud et al. 2010). This explains why the
large-scale structures of galaxies can be traced using the distribution of the dense ISM. Still,
smaller scales of the local ISM distribution are made more complex by various feedback effects
like supernovae (Hennebelle & Iffrig 2014) that are important to account for the flocculent
substructures in galaxies, as it is illustrated by the Figure 1.3 to explain higher latitude dense
clouds, or again in the right frame of Figure 1.1.

1.2.2 Interstellar medium extinction and emission

While the ISM can be studied through its several interactions with stars, it is possible to perform
more direct detection of the ISM structures. The first observable effect, even by the human eye,
is the screening effect of the background stars by the interstellar clouds as can be observed in
the Milky Way plane in Figure 1.3. This is due to an effect of the ISM called extinction and
that sums two physical effects: the absorption and the scattering of the light by the matter in
the light path. For astronomical considerations this effect induced predominantly by interstellar
dust grains (Draine 2003, and reference therein). This extinction is usually characterized by the
quantity Aλ:

Aλ = 2.5 log
(

F0
λ

Fλ

)
(1.1)

where F0 is the luminosity flux before the clouds, F is the flux after the cloud and Aλ is the
total extinction at the wavelength λ. An important point is that all these quantities depend of
the wavelength of the light. This is due to the dependence of scattering to the ratio between
the wavelength and the grain size, while the dust absorption spectrum also depends on the grain
composition. Therefore, the extinction strongly correlates with the dust grain size distribution in
the ISM defining what is called an extinction curve, or extinction law (Fig. 1.4). It was exposed
by Cardelli et al. (1989) and refined by Fitzpatrick (1999) that it is possible to parametrize this
law using a single dimensionless parameter RV that is expressed as:

RV =
AV

E(B − V)
(1.2)

where AV is the extinction in the V band (λ = 550 nm, ∆λ = 88 nm), and E(B − V) is the
reddening (or selective extinction) between the B (λ = 445 nm, ∆λ = 94 nm) and the V bands,
defined as E(B − V) = AB − AV .

10

1 Milky Way 3D structure

This reddening is an important aspect of the process since it corresponds to an effective shift
of the apparent color of the observed stars under the effect of extinction. We show the shape
of the typical extinction curves for different values of RV in Figure 1.4. In first approximation,
the dust grain composition and size distribution in the diffuse interstellar medium is globally
constant across the Milky Way. This leads to a rather constant extinction law in this medium,
although significant variations are observed, mostly toward dense molecular gas (e.g. Schirmer
et al. 2020, and references therein). These variations are generally well parameterized by a
single parameter (RV , Eq. 1.1, Fig. 1.4 Cardelli et al. 1989), although more complex variations
were reported toward the Galactic Center (Nataf et al. 2016), and RV appears to vary even on
large galactic scales for the diffuse ISM (Schlafly et al. 2016). From this observationally con-
strained law, we see that shorter wavelengths are much more affected by extinction than the
longer ones. This is the cause of the reddening of the observed light.

One of the most important aspects of extinction is that it is an integrated quantity over the
full light path from the emitting astronomical object down to the observer. However, since the
extinction quantity is characteristic of the amount of dust it can be used as a probe of the dense
regions of the Milky Way. There are noticeable relations between the extinction and the column
density of atomic or molecular gas. The main difficulty is then to reconstruct the distance dis-
tribution along a given line of sight, called an extinction profile. The reconstruction of the 3D
distribution of the extinction in the MW is a powerful approach as it would directly map the 3D
distribution of the dense ISM. This is theoretically a suitable method to provide constraints on
the spiral arms of the MW that we described as underconstrained in Section 1.1.2. The second
half of the present study, namely Part III, is devoted to a new approach to reconstruct large-scale
3D extinction maps with a large distance range based on multiple observational surveys. More
details on existing studies about this approach and their implications are given in the corre-
sponding part introduction section 10.

Finally, another ISM observable that is used in this work is dust emission. The heating of
dust grains via the absorption of star light is balanced, in average, by their cooling due to a
continuous thermal or stochastic emission at infrared (IR) wavelengths. We note that in very
dense environments, collisions can also become a heating process. The typical wavelength
range of dust emission is between 1 < λ < 103 µm with various contributions induced from the
diverse populations of dust grains. Figure 1.6 shows the typical dust emission as a function of
the wavelength, separating different grain population contributions as modeled by (Compiègne
et al. 2011) along with observational constraints. We illustrate the use of dust emission in Fig-
ure 1.7 that shows the reconstructed dust optical depth at 353 GHz based on a modified black
body fitting of the dust emission observed by the Planck space telescope (Planck Collaboration
I. 2016). This map will noticeably be used to perform morphology comparison of the dust dis-
tribution over the plane of the sky in Sections 13 and 14. The dust emission can also be used
to distinguish different early-protostar stages. Indeed, stars begin their formation embedded
into dense envelopes that are heated by the protostar that is then visible in the spectral energy
distribution (SED) of the object. In subsequent stages, the envelope is evaporated and a dusty
emitting disk remains. These emission properties are used in Section 3 as a tracer for YSO
classification in the infrared.

11

1.2 The interstellar medium

Figure 1.4: Extinction curves based on the prescriptions from Fitzpatrick (1999) for different
values of RV . From Draine (2003).

Figure 1.5: 2MASS view of the Milky Way in the plane of the sky. The image is encoded using
the 2MASS magnitude bands following, Red: J, Green: H and Blue: Ks. From Skrutskie et al.
(2006)

12

1 Milky Way 3D structure

Figure 1.6: Typical observed dust emission for the diffuse interstellar medium at high-galactic
latitude for a given NH = 1020H cm−2. The mid-IR (∼ 5− 15 µm) and far-IR (∼ 100− 1000 µm)
spectra are from ISOCAM/CVF (ISO satellite) and FIRAS (COBE satellite), respectively.
Squares are the photometric measurements from DIRBE (COBE). The continuous line is the
DustEm model prediction. From Compiègne et al. (2011).

Figure 1.7: Planck dust opacity at 353 GHz of the Milky Way in the plane of the sky, as fitted
from a modified black body based on dust emission. From Planck Collaboration XI (2014).

13

1.3 Observational constraints on the Milky Way structure

Figure 1.8: Artistic representation of the Milky Way annotated with compiled effective knowl-
edge from 2014 on the spiral arms based on observational constraints. Each structure is associ-
ated with a reference publication. This image is taken from Benjamin (2014) which adapted it
from Hurt (2008).

1.3 Observational constraints on the Milky Way structure

We show in Figure 1.8 a carefully annotated version of the artistic face-on view made by Ben-
jamin (2014) and that represents a census of the existing published constraints on each expected
spiral arm structure of the MW a few years ago. This figure puts the emphasis on the fact that
there is a significant portion of the Milky Way structure that is not constrained due to its position
behind the Galactic Center. Here we describe some of the present existing work that have added
constrains on the Milky Way structure. One of the oldest method to infer the galaxy spiral arms
existence and position has been to measure the atomic hydrogen HI emission (Van de Hulst
et al. 1954). Since HI is already mainly presents in ISM clouds that follows the global Milky
Way structure, it is possible to use it to reconstruct roughly the galactic structure (Kalberla &
Kerp 2009). HI is observed through its hyperfine transition that emits at a 21 cm wavelength
at which the interstellar medium is mostly transparent, granting the possibility of high distance
measurements. The main approach is then to use the Doppler frequency shifting to reconstruct
the velocity of coherent structures in the spectra. With some assumptions on the Milk Way
circular geometry it is noticeably possible to reconstruct the arms tangent position in order to
reconstruct the galactic rotation curve. HI data were also used to infer the position of some
galactic arms or substructure (McClure-Griffiths et al. 2004), but it remains too diffuse to high-
light very strongly a global spiral structures.

Another suitable tracer of much denser ISM environments and that can be used in the same
manner is the CO molecule. Its rotational transition line at 115 GHz is consider as easy to
observe and CO is present in every molecular clouds, allowing for very complete detection.
The study from Dame et al. (2001) has been a reference in the identification of the galactic
structures. From their observations they reconstructed a longitude velocity map of the Galactic
Plane integrated over a ±4◦ latitude range, which is presented in Figure 1.9. From this map they
identified what could correspond to the spiral arm structures as illustrate in the bottom frame of

14

1 Milky Way 3D structure

Figure 1.9: Longitude-velocity map of CO(J=1-0)) integrated for |b| < 4 and centered on the
galactic plane. The map resolution is 2 km.s−1 in velocity and 12′ in galactic longitude. The
bottom frame is a zoom on the annotated version of the map. From Dame et al. (2001).

the figure. With this approach it remains difficult to disentangle structures in the central region
and behind. It also relies on the assumption that it is effectively possible to separate the arms in
the velocity space, which might not always be the case especially if we consider the existence
of bridges, gaps, and overall less continuous structures in the Milky Way.

An other approach performed by (Benjamin et al. 2005; Churchwell et al. 2009) using the
Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE) performed with the
Spitzer Space Observatory (Werner et al. 2004), was to compare the observed star count in the
galactic plane with the expected exponential disk population. Higher star count, especially from
specific stellar population, can trace the tangent of the arms as illustrated in Figure 1.10. How-
ever, even if Spitzer uses infrared wavelength to observe through relatively dense environments,
the star count remains affected by the extinction in a complex manner. Therefore, it requires an
accurate extinction prescription or to choose carefully not too much extincted lines of sight.

More discrete objects can also be used to reconstruct the galactic structures like HII regions,
Giant Molecular Clouds (GMC) or masers. The latter are associated with young and massive
stars that will therefore be present in active dense star forming regions, likely following the
arms. They were used by Reid et al. (2014) in combination with parallax measurements in
order to add constraints of the portions of the arms that are relatively nearby as presented in
the left frame of Figure 1.11. From these results it is visible that for many arms the continuity
is not straightforward. Therefore, it is only used to constrain an expected model and not to
confirm its realism. In a similar fashion, a study from Hou & Han (2014) compiled more than
2500 HII regions and 1300 GMCs from the literature. They used the existing distance estimates

15

1.3 Observational constraints on the Milky Way structure

Figure 1.10: Number of sources per deg2 as a function of galactic longitude using the 4.5 µm
band of Spitzer, and the J, H, Ks bands from 2MASS. The vertical lines highlight the predicted
position of some galactic arms. From Churchwell et al. (2009).

Figure 1.11: Galactic structure from discrete object distribution using face-on views. On both
images the Galactic Center is at the X = 0,Y = 0 coordinates and the Sun is around X = 0,Y = 8.
Left: Maser with parallax observed using the VLBA, VERA and the EVN, from Reid et al.
(2014). The color groups were made from velocity-longitude association, then the continuous
lines are log-periodic spiral arms fitted using these groups. Right: HII regions collected by (Hou
& Han 2014), their best 6-arm model fit on these regions is added in gray and associated to the
usual arm names.

16

1 Milky Way 3D structure

Figure 1.12: Extinction distribution in the Milky Way using a face-on view of the Galactic
Plane in longitude-distance coordinates. The Sun is at the center left and the Galactic Center is
marked by the black cross. From Marshall et al. (2006).

when there was one and computed one from existing Milky Way rotation curves. This statistic
allows them to try to fit various structures at a galactic scale, testing arm counts, logarithmic
spiral arms, polynomial arms, influence of the rotation curves selection, etc. The right frame of
Figure 1.11 shows their HII regions distribution along with their best fitting model re-associated
to usual arm names. One drawback of this approach is that these types of regions are not always
expected to follow the arms very tightly. Additionally the distance estimates for most regions
still have an important uncertainty, and the one for which a rotation curve was used relies on its
quality and could be biased.

Finally, another approach relies on the reconstruction of the extinction distribution in 3D in
the Milky Way. This is the approach that will be explored in the Part III of the present study.
It mainly relies on the fact that the extinction (see Sect. 1.2.2) directly depend on the dust den-
sity. Therefore reconstruction the extinction as a function of the distance is directly equivalent
to map the dense structures of the ISM. Since it is one of our main application we delay the
detailed discussion on present state-of-the-art extinction maps and the associated difficulties to
Section 10.1 as an introduction to our own approach. Still for illustration the Figure 1.12 shows
the widely used map from Marshall et al. (2006).

We note that all the presented observational constraints does not allow to firmly state that the
Milky Way would correspond to the grand-design structure of galaxies. The present detection
would be very representative of a more flocculent design with a lit of inter-arm structures and
much less continuous large scale arms structures overall.

17

2 The rise of AI in the current Big Data era
In this section we describe some of the modern aspects about managing very large amounts of
data. We start by highlighting some orders of magnitude that are becoming common for Big
Tech companies. Then we draw a simple picture of the artificial intelligence usage and history
in order to explain their recent and quick widespread adoption over the past few years. We will
end by showing that the use of artificial intelligence has also grown in astronomy studies, and
why they are becoming a must-have for recent and future paradigm-breaking large surveys.

2.1 Proliferation of data and meta-data . 18
2.2 Artificial intelligence, a not-so-modern tool 19

2.2.1 Beginnings of AI . 19
2.2.2 End of 20th century difficulties and successes 19
2.2.3 The new golden age of AI . 20
2.2.4 Astronomical uses of AI . 20

2.3 Astronomical Big Data scale surveys . 21
2.3.1 Previous large surveys . 21
2.3.2 A new order of magnitude with PanSTARRS and Gaia 22
2.3.3 The historical challenge of SKA and following surveys 22

2.1 Proliferation of data and meta-data
Data is raw information, usually in a numerical form, and that are uninterpreted. Data are ac-
quired from an observation, or acquisition of some sort, or can sometimes be generated from
other data. A simple example of a dataset would be a collection of words arranged in a certain
way and stored. This data has intrinsic minimal information that is for example just a number
corresponding to a letter, but are usually assembled to create more complex information. Using
the same example, the order of the words in the dataset might form a sentence that has an asso-
ciated meaning. In addition, there is also meta-data, that are considered to be data about other
data. Again with the same example, a meta-data would be the time and date the sentence was
written, or the time it took to write it. This allows to build context about the initial dataset.

In the current all-numerical information exchange era, tremendous amounts of data and
meta-data are generated or exchanged continuously. Every click, message, image, etc, is stored
at some point, and more rarely deleted after its objective was achieved. This growing usage
of numerical data is also sped up by the Internet Of Things (IOT) trend that consists in adding
numerical elements in every objects, that acquire and share even more data than ever. In an
attempt to provide orders of magnitude, the global IP traffic in 2017 was estimated at 122 ex-
abytes (1018 bytes) per month, and projections predict a value of almost 400 exabytes a month
for 2022 (Cisco Annual Internet Report, 2018–2023). Also, as much of 60% of the global in-
ternet traffic is related to Video On Demand (Sandvine, Global Internet Report 2019). The data
seem to follow a continuous increase in dimensionality following the increasing bandwith of
all domestic and professional internet connection. More importantly, there are more and more
statistics that are performed on the huge amount of data produced daily, and these statistics are
in the form of new data as well. However, being able to interpret such a large amount of data is
a very difficult task that is very challenging for classical statistical analysis algorithms. Conse-
quently, more and more Big Tech companies like Google, Amazon or Microsoft are investing
in Artificial Intelligence (AI) methods that are able to perform data mining in a very efficient
way on large datasets and that scale well with their dimensionality.

18

https://www.cisco.com/c/dam/m/en_us/network-intelligence/service-provider/digital-transformation/knowledge-network-webinars/pdfs/1213-business-services-ckn.pdf
https://www.sandvine.com/hubfs/Sandvine_Redesign_2019/Downloads/Internet%20Phenomena/Internet%20Phenomena%20Report%20Q32019%2020190910.pdf

2 The rise of AI in the current Big Data era

2.2 Artificial intelligence, a not-so-modern tool

2.2.1 Beginnings of AI

Due to the explosion of AI applications and demonstrated use cases in the past two decades,
AI methods are often considered as modern methods that rely on very new technology. While
we will provide a detailed definition of AI in Section 4.1 we will state for now that it is a
category of methods that learn to solve a problem autonomously with no details given on the
way to find the solution other than examples with the expected answer. For now, it can be seen
as methods that learn from experience. The first research on what will progressively evolve to
become the modern AI methods started in the years 1940. One of the first element was the paper
from (McCulloch & Pitts 1943) that described a mathematical model of what will be called an
artificial neuron. For comparison, the first presentation of what will evolved as our modern
computer paradigm was presented just a few years ago by (Turing 1937), also a precursor of
modern AI concepts. From these basic elements, the research was mostly focused on artificial
neural networks at the time, but other methods that are today considered as a part of the AI
field was also designed around those years. The term AI was apparently adopted in 1956 from a
conference on the topic of “making machines behave intelligently” (McCorduck 2004). One big
step further was the publication from (Rosenblatt 1958) that described a model for connecting
binary neurons in the form of a rudimentary network based on the weighted sum of input signal
and that was named the Perceptron (see Sect.4.4). Interestingly, this publication was made in the
journal “Psychological Review”. All the basic elements were in place for already very capable
neural network predictions, and the following 20 years are known as the Golden Age of AI.
During this time there was large money investment into the new field and a profusion of ideas
about AI methods and techniques, but also dangerous claims about how these methods would
reach near human performance in a matter of years.

2.2.2 End of 20th century difficulties and successes

A few years latter the publication (Minsky & Papert 1969) raised strong limitations in the
present Perceptron formalism leading to a long rejection of all methods based on what was
called “connectionism”. Overall the difficulties mainly originate in the lack of computational
power at the time in order to build large enough models to perform properly. During this time
the AI research focused on other approaches. It is only in the early 1980 that the neural networks
started to have a new support, mostly base on the publication from Hopfield (1982) that defines
a new way of connecting and training a network architecture, that are now called Hopfield net-
works. Few years latter the publication from Rumelhart et al. (1986b) was a game changer
since it summarized recent advances on neural networks and described the backpropagation
algorithm for training neural network. This is still at this day one of the most used methods,
even if it has been improved with some refinements (see Sects. 4.2.3 and 4.5.2). Despite these
important steps, funding agencies and companies lost their interest in AI as the field was not yet
successful in providing industrial-scale applications that it had promised several years ago. The
lack of computational power remained an issue, and the methods themselves were requiring an
amount of training data that was not accessible at the time. Still, during the following years
many adjustments were made behind the scene by some researchers who pushed the methods
to the point where it could truly accomplish large-scale applications.

19

2.2 Artificial intelligence, a not-so-modern tool

2.2.3 The new golden age of AI

In the late 1990’s and early 2000’s, it was possible to begin to have large datasets and the
computational power of recent hardware started to reach a point that was compatible with AI
techniques. An important mindset shift occurred in 1997 when the AI-dedicated system Deep
Blue from IBM (described in Campbell et al. 2002) defeated a world-class champion at chess.
Compared to modern architectures, this machine was mainly performing a brute-force approach
of decision tree comparison. Still, it was sufficient to put new lights on AI and on what the last
two-decade improvements had led to. After that, large technology companies invested mas-
sively in AI, successfully applying it on problems that were predicted to be solvable with the
methods decades ago like speech recognition, industrial robotics, data mining, computer vision,
medical diagnosis, etc.

At this point there was a very strong mutual interest from technology companies and AI
researchers, that led to a very quick improvement of these method capacities supported by new
dedicated hardware technologies (see Sects. 4.8). The "Deep Learning" field (see definition
in Sect. 4.5.2 and 11.1.8) is the result of these recent advances by generalizing the approach
from the past decades and overcoming many of the exposed difficulties, and also improving
their numerical efficiency. We also note that it is easier than ever to use these methods from a
completely external standpoint. A large variety of state-of-the-art user-friendly frameworks and
pretrained models are freely accessible, even if it may occasionally imply some misuses (see
Sect. 4.1.4). At these day the AI field is still moving very fast and the corresponding methods
are progressively becoming the only suitable solution to work with ever growing datasets.

2.2.4 Astronomical uses of AI

Artificial Intelligence is becoming a common tool for other research fields for which it is able to
process large amount of data or learn complex correlations automatically from very high dimen-
sionality spaces. For research other that in the AI field itself we rather use Machine Learning
(ML) which is a subpart of the larger AI field that excludes many very specific tasks dedicated
to reproducing realistic intelligence and cognition. ML is more focused on practical methods
like regression, classification, clustering, etc, without aiming for high-level abstraction. This
does not mean in any way that ML methods are less powerful, since they mostly rely on the
same algorithms and architectures, but it is a switch in focus.

As many other research fields, Astronomy has begun to use ML methods as an analysis tool
a few years ago. Here we list a few works that had a significant impact in our community and
that were relying on ML methods. The specific field of external-galaxy analysis and classifica-
tion adopted ML methods earlier than others. The famous Galaxy Zoo study from (Lintott et al.
2008) provided an unprecedentedly large catalog of galaxies with morphological classification
performed by matching multiple human visual classification on SDSS images for each of them,
providing very accurate labels. This dataset became a widely adopted playground for ML ap-
plications that attempted to automate the classification in order to create a high performance
classifier that could be used on new galaxies. Various methods had been employed for this,
including support vector machine, convolutional neural networks, Bayesian networks and more
(e.g Banerji et al. 2010; Huertas-Company et al. 2011, 2015; Dieleman et al. 2015; Walmsley
et al. 2020, ...). On another topic, ML methods can sometimes be used to reproduce a very well
defined problem for which there is an analytical solution but that is slow to compute. This way

20

2 The rise of AI in the current Big Data era

an efficient ML algorithm like a light neural network can be used to significantly speed up the
prediction or can even be used as an accelerator for a larger computation (Grassi et al. 2011; De
Mijolla et al. 2019). By extending the previous approach it is possible to use ML methods to in-
terpolate between predictions that are timely to make in order to provide a full parameter space
predictor from a sample of examples (Shimabukuro & Semelin 2017). A few other examples
are, ISM structure classification with support vector machine (Beaumont et al. 2011), molecular
clouds clustering using the unsupervised Meanshift method (Bron et al. 2018), or even differ-
entiating ISM turbulence regimes using again neural networks (Peek & Burkhart 2019). This is
a very incomplete view, since ML methods have become very common in astronomical studies
the last few years.

2.3 Astronomical Big Data scale surveys
2.3.1 Previous large surveys

Astronomical surveys are known to be very large datasets. Telescopes can produce very high
resolution images, and point source catalog surveys are usually very large and present a high
dimensionality. For example the Apache Point Observatory Galactic Evolution Experiment
survey (APOGEE Majewski et al. 2017) contains ∼ 146000 stellar spectra of resolution R ∼
22, 500, which is a relatively small number of objects but with a very high dimensionality. At
higher orders of magnitude, we can cite the Wide-field Infrared Survey Explorer (WISE Wright
et al. 2010) that contains ∼ 5.6 × 108 point source objects and a few parameters (4 bands, 4
uncertainties, sky position, other meta data ...) for each object. This size of dataset begins to
be difficult to analyze on modest hardware infrastructures, and is clearly out of the scope of a
domestic computer for a full dataset analysis. The Two Micron All Sky Survey (2MASS Skrut-
skie et al. 2006) is an other widely used survey that presents a similar size. At an even higher
size scale there is the Spitzer space observatory (Werner et al. 2004) point source catalog that
contains almost 1.5 × 109 objects with barely fewer parameters than the previous two surveys.
In the same size category we can cite the U.S. Naval Observatory - B1 (USNO-B1 Monet et al.
2003) that contains also 1 × 109 objects.

Such dataset sizes become very difficult to handle even for more advanced hardware using
classical methods. Even for the smaller dataset we started with, Machine Learning methods
could provide significant treatment time improvement or provide new insights due to new ways
of exploring the parameter space. For the larger surveys, ML approaches really start to shine as
they provide new analysis possibilities that are not possible using more classical tools. Addi-
tionally, one of the additional advantage of ML methods is the automation. Even if some task
can be performed using carefully designed classical analysis tools, an ML method will either be
able to find the most optimum approach granting even better results by itself or at least it could
find a more efficient process to speed up the analysis. We discuss more deeply the advantages
an ML approach can provide, even on "relatively small" dataset, in Section 3.3.

21

2.3 Astronomical Big Data scale surveys

2.3.2 A new order of magnitude with PanSTARRS and Gaia

A recent very large scale survey is the Panoramic Survey Telescope and Rapid Response System
(Pan-STARRS Chambers et al. 2016) that is estimated to contains 1.6 PetaBytes of data in the
form of very high resolution images. Dealing with such a dataset is a true challenge, and
using methods that are able to work efficiently on image processing is absolutely necessary
to perform analysis on the full dataset (See 11.1). Another very popular survey right now is
the second data release of the Gaia mission (Gaia Collaboration et al. 2018a) that contains
more than 1.6 × 109 stars with astrometric parameters and a large variety of other acquired
quantities like magnitudes, kinematics, or post processed quantities. This dataset is not only
a challenge due to its size but also its raw data acquisition rate. Indeed, the spacecraft itself
sends around 30 GB of raw data per day and the end of mission catalog is estimated to be of
around 1 PetaByte. Additionally, Gaia data go though an advance processing of the data to
reconstruct most of the parameters form observed star movement over successive scans. This
process justified the creation of the Gaia Data Processing and Analysis Consortium (DPAC) that
shares the data treatment in terms of compute resources and manpower into several European
countries. The Gaia mission had justified the construction of large computer cluster totally
dedicated to the mission data analysis and end product storage. An interesting fact is that the
size of the intermediate results is so large and must be over so much storage nodes that the
Gaia DPAC has adopted the Hadoop file system tool that is otherwise mostly used by Big tech
companies for their country scale servers. Using Machine Learning to perform the analysis
of such a large dataset then appears as a fantastic opportunity to extract unmatched problem
complexity due the huge statistic in the dataset, and also as a necessity since many classical
methods would scale too badly on such dataset sizes. We note that due to the distribution of the
intermediate data over several storage clusters, using ML to perform intermediate computations
requires very tricky distributed model learning as exposed in Hsieh et al. (2017).

2.3.3 The historical challenge of SKA and following surveys

Finally, we discuss succinctly the case of incoming very large scale astronomical instruments.
The most illustrative example is what is expected to be produced by the Square Kilometer Array
radio telescope interferometer (Dewdney et al. 2009). This instrument will have such a wide
angle of view and spectral bandwidth that it would output a total of 15 TB/s and is expected
to produce 600 PetaByte per Year of at least partly pre-processed data. Currently, there is
no detailed plan on how the data processing will be managed since there is no existing analysis
method in the astronomical community that would have a sufficient computational performance.
On the other hand, by the time the instrument will be finished, in a few years, computer tech-
nologies are expected to have significantly improved. Still, Machine Learning methods are at
the middle of the attention of the SKA development teams since it appears that they have the
most suitable design for this upcoming challenge.

Presently several ML applications are being tested on SKA precursors to assess their capa-
bilities to replace some pre-processing steps or as a posterior analysis tool. Indeed, even if the
SKA data generation was tamed, methods must be spread to the astronomical community to
enable them to analyze the data as well. Finally, the SKA instrument will certainly not be the
only one of this scale to be built in the upcoming years, therefore these methods are likely to
become a necessary part of an astronomer regular toolkit.

22

Part II

Young Stellar Objects classification

Part II: Young Stellar Objects classification
3 Young Stellar Objects as a probe of the interstellar medium 28

3.1 YSO definition and use . 28
3.2 YSO candidates identification . 29
3.3 Machine Learning motivation and previous attempts 31
3.4 Objective and organization . 32

4 Classical Artificial Neural Networks 33
4.1 Attempt of ML definition . 34
4.2 Artificial Neuron . 40
4.3 The bias node . 42
4.4 Perceptron algorithm: linear combination . 44
4.5 Multi Layer Perceptron : universal approximation 46
4.6 Limits of the model . 50
4.7 Neural network parameters . 51
4.8 Matrix formalism and GPU programming . 60
4.9 The specificities of classification . 67
4.10 Simple examples . 73

5 Automatic identification of YSOs in infrared surveys 79
5.1 Problem description and class definition . 79
5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations 82
5.3 Construction of the test, valid and train dataset 87
5.4 Network architecture and parameters . 90
5.5 Convergence criteria . 93

6 Subsequent application to multiple star-forming regions 94
6.1 First training on one specific region: the Orion molecular cloud 95
6.2 Effect of the selected region: training using NGC 2264 99
6.3 Generalization capacity: crossed application 102
6.4 Improving diversity: combined training . 107
6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc) 111
6.6 Orion and NGC 2264 YSO candidates distribution maps 118

7 Probabilistic prediction contribution to the analysis 121
7.1 Interpretation of the membership probability 122
7.2 Graphical analysis of the membership probability 127

8 3D cloud reconstruction using cross-match with Gaia 134
8.1 Orion A distance and 3D information . 134
8.2 Distances to Orion B sub-regions . 139
8.3 NGC 2264 distance and 3D information . 141

9 Additional discussion and further improvements 143
9.1 Identified limitations to our results . 143
9.2 MIPS 24 micron band effect on the results . 144
9.3 Usage of Spitzer colors instead of bands . 144
9.4 Method discussion . 145
9.5 Conclusion and perspectives . 146

27

3 Young Stellar Objects as a probe of the interstellar medium
3.1 YSO definition and use . 28
3.2 YSO candidates identification . 29
3.3 Machine Learning motivation and previous attempts 31
3.4 Objective and organization . 32

3.1 YSO definition and use
Young Stellar Objects (YSOs) refer to a relatively wide range of protostars. As described in Sec-
tion 1.2.1, stars form in dense molecular clouds through gravitational collapse. In the presently
accepted view (for example, McKee & Ostriker 2007; Kennicutt & Evans 2012), a typical low-
to intermediate-mass YSO (< 8 M�) continuously accretes matter from its parent cloud through
a disk that is quickly formed and partly maintained by its rotation. The disk progressively dis-
appears due to its matter falling into the star because of friction, being photo-evaporate due to
the star becoming energetic enough to radiate more, or being used to form planets. Simultane-
ously, the star accumulates a sufficient amount of matter to lead to the start of the nuclear fusion
of hydrogen nuclei in its core. A star for which the nuclear fusion is inactive or non-dominant
in its energy production is a pre-main sequence star. YSOs correspond to all the steps from
the gravitational collapse to the advanced stages of pre-main sequence stars. The formation
sequence of massive stars is less well understood (Motte et al. 2018), but it does not impact our
study because the scarcity of those stars makes them less useful targets for the purpose of the
present work.

Observing YSOs in stellar clusters and molecular clouds is a common strategy to character-
ize star forming regions. Their presence attests star formation activity, their spatial distribution
within a molecular complex provides clues about its star formation history (Gutermuth et al.
2011), and their surface density can be used as a measure of the local star formation rate (Hei-
derman et al. 2010). The youngest YSOs are the most interesting ones since they are more
likely to be very close to their formation point, while more evolved ones had more time to drift
from their original location. This was demonstrated, for example, by Hacar et al. (2017) in the
case of the low-mass star forming region NGC 1333 (see their figures 9 and 10) or by Buckner
et al. (2020) in the case of the massive star forming region NGC 2264. This is due to various
ways of getting a different velocity than the one of the forming cloud, for example by interac-
tion with other stars. For example, Stutz & Gould (2016) observed in Orion that the velocity
of younger protostars is more coherent with their parent filament than that of more advanced
protostars. Interestingly they concluded that protostars might be ejected by a slingshot-like
mechanism from their oscillating original filament. This would also imply the interruption of
the accretion mechanism, impacting the stellar IMF (Initial Mass Function). Recently, YSOs
have also been combined with astrometric surveys like Gaia to recover the 3D structure and
motion of star-forming clouds (Großschedl et al. 2018). This proves that YSOs may indeed be
used to reconstruct more globally the Milky Way structure in 3D by the combination of large
YSO catalogs and large astrometric surveys. There are two main difficulties to this approach,
(i) the first being that YSOs are embedded in an envelope that progressively disappears during
the protostar evolution making them usually very faint in the bands that are used to perform as-
trometry, (ii) the second being that, even using more suitable infrared observations as described
bellow, it is still difficult to construct sufficiently large catalogs. Therefore, it is necessary to
find efficient identification methods that are able to work on large catalogs that are sensitive
enough to detect a large amount of them.

28

3 Young Stellar Objects as a probe of the interstellar medium

3.2 YSO candidates identification
YSO identification is often summarized as a classification problem. As they are cooler than
more evolved stars and due to their dusty environment, YSOs are much simpler to detect using
infrared wavelengths. Consequently, their classification relies mainly on their Spectral Energy
Distribution (SED) in the IR, which allows one to distinguish evolutionary steps that range from
the prestellar core phase to the main sequence. These steps were translated into classes ranging
from 0 to III by Lada (1987) and Allen et al. (2004), corresponding to the observed slope of the
IR SED, characterized by its spectral index. Objects that present a black body spectrum in the
far-IR, and that are quiet in the mid-IR are called Class 0 (C0) and correspond to dense cores
or deeply embedded protostars. Objects that present a black body emission in the mid-IR and
a strong excess in the far-IR are called Class I (CI) and correspond to protostars dominated by
the emission of an infalling envelope. Objects that present a black body emission in the mid-IR
but with a flattened emission in the far-IR are called Class II (CII) and correspond to pre-main
sequence stars with an emissive thick disk. Objects that present a black body emission in the
mid-IR and are devoid of far-IR emission are called Class III (CIII) and correspond to pre-main
sequence stars without disks or too faint ones to be detected. Figure 3.1 shows simplified typi-
cal SEDs for each class, along with an illustration of the corresponding star formation step. We
note that this classification is sometimes further refined to include other sub-classes like a flat-
spectrum class between CI and CII, a Transition Disk class between CII and CIII (Gutermuth
et al. 2009), or even add a fainter class for deeply embedded CI YSOs (Megeath et al. 2012).
Overall, it is an efficient classification but it can still lead to misinterpretation for specific ob-
jects, like when a CII or CIII YSO is observed behind a thick cloud leading to a confusion
with a CI. Similarly, when a CII YSO is observed edge-on, it is obscured by its disk and can
be confused with a CI object. More subtle effects have also been identified that increase the
confusion between pre-main sequence stars with a disk and flat spectrum objects (Crapsi et al.
2008). Still, this classification is very efficient for statistical studies, like when studying the 3D
ISM structure. This subclassification can then be used to provide additional information on the
structure and evolution of star-forming regions since youngest (up to class I) objects are more
likely to be close to their formation position than more evolved YSOs.

One of the most famous classification method that is based on the IR SED is the one de-
scribed by (Gutermuth et al. 2009) based on data from the Spitzer space observatory (Werner
et al. 2004) and from the 2 Micron All Sky Survey (2MASS, Skrutskie et al. 2006), which is
fully described in Section 5.1. The two papers that describe the first two versions of this clas-
sification (Gutermuth et al. 2008; Gutermuth et al. 2009) have inspired other widely adopted
methods on other surveys like the one by Koenig et al. (2012), for the use of data from the
Wide-field Infrared Survey Explorer (WISE, Wright et al. 2010). It is to be compared to other
similar methods, for example Allen et al. (2004) or (Robitaille et al. 2008) that both use Spitzer.

We note that despite the YSO classes being historically defined using infrared criteria, other
identification methods can be used. For example centimeter or (sub)milimeter interferometers
were used to assess the presence of the disk and its evolution state, like with the James Clerk
Maxwell Telescope (JCMT) (Brown et al. 2000), the SubMilimeter Array (SMA) (Jørgensen
et al. 2009), the Very Large Array (VLA) (Segura-Cox et al. 2018) or even more recently the
Atacama Large Milimeter/submilimeter Array (ALMA) (Yen et al. 2014; Ohashi et al. 2014),
etc. Many other similar studies are listed in Tobin et al. (2020). YSOs are also known to be
stronger X-ray emitter than more evolved stars. Such radiations are also capable of escaping
dusty environment and can therefore be identified using a high-resolution X-ray telescope like
the Chandra X-ray space Observatory (Feigelson et al. 2013).

29

3.2 YSO candidates identification

Figure 3.1: Simplified YSO SED for each class. Left: The spectral energy as a function of the
wavelength. The contribution of different elements of the system are shown colored. Right: Il-
lustration of the star forming step associated with each class, which shows the different elements
contributing to the SED. Adapted from Greene (2001) and Persson (2014).

30

https://doi.org/10.6084/m9.figshare.1121574.v2

3 Young Stellar Objects as a probe of the interstellar medium

3.3 Machine Learning motivation and previous attempts

As we already discussed in Section 2.3, the astronomical datasets are becoming too large for
traditional analysis methods, and more automated statistical approaches like ML are used. They
are able to both work efficiently on large datasets using many dimensions, and take advantage of
the increased statistics to often overcome limits of previously used methods. In this context, it
is timely to try and design a classification method for YSOs, relying on current and future large
surveys and taking advantage of ML tools. Such approaches have been attempted by Marton
et al. (2016), Marton et al. (2019), and Miettinen (2018). The study by Marton et al. (2016)
used a supervised ML algorithm called Support Vector Machine (SVM) applied to the mid-IR
(3 − 22 µm) all-sky data of WISE (Wright et al. 2010). The SVM used in this study offers
great performance on linearly separable data. However, it is not able to separate more than two
classes at the same time and has a less good scaling with the number of dimensions than other
methods. Besides, the full-sky approach produced large YSO candidate catalogs, but suffers
from the uncertainty and artifacts in star-forming regions of the WISE survey (Lang 2014).
Additionally, the YSO objects used for training were identified using SIMBAD, resulting in a
strong heterogeneity in the reliability of the training sample.

In their subsequent study, Marton et al. (2019) added Gaia magnitudes and parallaxes to the
study. Gaia is expected to add a large statistics and to complete the SED coverage (Gaia Col-
laboration et al. 2018a), but the necessary cross match between Gaia and WISE excludes most
of the youngest and embedded stars. The authors also compared the performances of several
ML algorithms (SVM, Neural Networks, Random Forest, ...) and reported the random forest
to be the most efficient with their training sample. This is a better solution as it overcomes
the exposed limitations of the SVM. However, as in their previous study, the training sample
compiles objects from different identification methods, including SIMBAD. This adds more
heterogeneity and is likely to increase the lack of reliability of the training sample, despite the
use of a larger training sample.

Miettinen (2018) adopted a different approach by compiling a large amount of ML methods
applied to reliably identified YSOs using 10 photometric bands ranging from 3.6 to 870 µm. For
this, he used the Herschel Orion Protostar Survey (Stutz et al. 2013), resulting in just less than
300 objects. Such a large number of input dimensions combined with a small learning sample
is often highly problematic for most ML methods (Sect. 4.7.1). Moreover, this study focuses on
the subclass distinction of YSOs and does not attempt to extract them from a larger catalog that
contains other types of objects. In consequence, it cannot be generalized to currently available
large surveys and relies on a prior YSO candidate selection.

31

3.4 Objective and organization

3.4 Objective and organization

The aim of this first part of the manuscript (Part I) is to propose a methodology to achieve
YSO identification and classification, based on ML, and capable of taking advantage of
present and future large surveys. We describe some properties of the ML methods in gen-
eral and explain our choice of method and our choice of building our own framework. We
extensively detail the functioning of the selected ML method along with some basic application
examples. We then describe how this method can be used to perform YSO classification using
the Spitzer space observatory IR data, based on the widely used classification method developed
by Gutermuth et al. (2009). We detail the data preparation phase and our choice of represen-
tations for the results along with their analysis, therefore exposing the encountered limitations.
Finally, we discuss the caveats and potential improvements of our methodology, and propose a
probabilistic characterization of our results. This Part ends with a reconstruction of the results
from Großschedl et al. (2018) using our own YSO catalog to infer the 3D structure of the Orion
molecular cloud.

We emphasize that these results are to be published in A&A Cornu & Montillaud (2020,
accepted) and that the present manuscript reproduces many sections of the published version,
while also providing a large amount of additional material and a deeper analysis of the study.
Also, this publication is associated with our catalog of YSO candidates that is described in the
present manuscript in Section 7 and that will be publicly available at the CDS.

32

4 Classical Artificial Neural Networks

4 Classical Artificial Neural Networks
In this section we describe the theoretical and technical aspects of Artificial Neural Networks
(ANN) in detail. For this, we present ML in general along with the corresponding categories
of algorithms. We will then describe a classical mathematical model to construct ANN and
improve it until it is able to approximate any function. Finally, this section will describe a wide
variety of in depth tuning of such network with common examples.

4.1 Attempt of ML definition . 34
4.1.1 "Animal" learning and "Machine" Learning 34
4.1.2 Types of artificial learning . 35
4.1.3 Broad application range and profusion of algorithms 36
4.1.4 Toolboxes against home-made code 36

4.2 Artificial Neuron . 40
4.2.1 Context and generalities . 40
4.2.2 Mathematical model . 41
4.2.3 Supervised learning of a neuron . 42

4.3 The bias node . 42
4.4 Perceptron algorithm: linear combination . 44
4.5 Multi Layer Perceptron : universal approximation 46

4.5.1 Non linear activation function and neural layers stacking 46
4.5.2 Supervised network learning using backpropagation 48

4.6 Limits of the model . 50
4.7 Neural network parameters . 51

4.7.1 Network depth and dataset size . 51
4.7.2 Learning rate . 52
4.7.3 Weight initialization . 54
4.7.4 Input data normalization . 55
4.7.5 Weight decay . 55
4.7.6 Monitor overtraining . 56
4.7.7 Shuffle and gradient descent schemes 58
4.7.8 Momentum conservation . 59

4.8 Matrix formalism and GPU programming . 60
4.8.1 Hardware considerations for matrix operations 60
4.8.2 Artificial Neural networks as matrix operations 61
4.8.3 GPUs variety . 62
4.8.4 Insights on GPU programming . 65

4.9 The specificities of classification . 67
4.9.1 Probabilistic class prediction . 67
4.9.2 The confusion matrix . 69
4.9.3 Class balancing and observational proportions 70

4.10 Simple examples . 73
4.10.1 Regression . 73
4.10.2 Classification . 76

33

4.1 Attempt of ML definition

4.1 Attempt of ML definition
4.1.1 "Animal" learning and "Machine" Learning

In order to define what ML means we need to find a definition of "Learning", which is often
difficult as there are plenty of definitions depending on the field it is apply to (Psychology, Biol-
ogy, Pedagogy, ...) or on the person you ask in a given field. The online Cambridge Dictionary
holds the following definition:

“The process of getting an understanding of something by experience”1

while the Tresor de la langue Française informatisé defines it with :

“Acquérir la connaissance d’une chose par l’exercice de l’intelligence, de la mé-
moire, des mécanismes gestuels appropriés, etc.”2

that can be translated as :

“Acquire the knowledge of something through the practice of intelligence, memory,
appropriate gestures, etc. ”

The two definitions appear somewhat different, but both contain elements that are used to com-
monly define "Animal" learning. Both definitions contain the idea of experience, or practice,
meaning that in order to learn, an animal must face the appropriate situation, ideally several
times. The second main element is the memory, which is necessary in order to retain infor-
mation about the experience. Then there is the understanding and correction, that is usually
referenced to as the adaptability. It means that the animal must be able to change its behavior
in regard of the experience outcome. And finally the last point is the generalization ability, that
allows the animal to adapt its behavior based on non-identical but similar experience and dress
a continuity of behaviors between them.

Animal learning and intelligence are based on this elemental abilities but are obviously more
complex and require many other complex faculties. We would need to define, for example,
the reasoning or the logical deduction before starting to talk about intelligence. However, the
previous basic capacities are enough to perform a lot of tasks, and this already justifies the
attempt to reproduce them artificially. Here comes the ML (or Artificial Learning), for which
there is, as well, no easy definition. Our personal definition, which merges many of other
definitions, is the following :

“Make a computer extract a statistical information and adapt to it through an iter-
ative process.”

This definition is vast in order to include all the common algorithms that are granted the ML
label. It echoes the previously defined learning ability, as the machine will need :

• Memory to remember either the previous situations, or a reduced version of them.

• A way to estimate if its behavior (output) is appropriate.

• A way to adapt its behavior during the learning process.

• A way to generalize its behavior to new outputs.

We acknowledge again that this is a very global view, and that it might not fit every algorithms
that are considered as ML but it should correspond to most of them.

1https://dictionary.cambridge.org/
2http://stella.atilf.fr

34

https://dictionary.cambridge.org/us/dictionary/english/learning?q=Learning
http://stella.atilf.fr/Dendien/scripts/tlfiv5/advanced.exe?8;s=250699680;

4 Classical Artificial Neural Networks

4.1.2 Types of artificial learning

All ML methods do not work the same way. Therefore, it is necessary to identify what is
the objective of the application in order to select a suitable method or algorithm. Usually ML
methods are separated into two main families, supervised or unsupervised. It is however also
common to add three other families, semi-supervised, reinforced and evolutionary learning.

• The supervised methods use a training dataset that contains the expected output of each ex-
ample. The algorithm attempts to reproduce the target. It learns by comparing its current
output with the target and correcting itself based on this comparison. After training, such al-
gorithms are able to generalize to objects that are similar to those that were used for training.
This is the most common type of algorithms because they are often simpler than the ones in
other categories, and because it is easier to assess their prediction performance. They usually
have a broad range of applications.

• The unsupervised methods use a training dataset with no information on the expected out-
put. The algorithm will then attempt to create categories in the dataset by itself based on
some pre-defined proximity estimator. Most of these methods are clustering ones, that can
either be used for classification or dimensionality reduction. Despite their reduced applica-
tion range they are commonly used as well. Interestingly, many clustering methods that are
widely used since decades have recently been rebranded as ML methods to follow the trend
of this domain, which is legitimate considering the previous definition of ML.

• The hybrid semi-supervised methods are often a combination of an unsupervised algorithm
that does the first part of the work, either to simplify the problem or to remove some bias
in target definitions, and of a supervised part to benefit of the application range of these
methods. They are fairly common as they often merge qualities of the two categories. Still,
they are often more computationally heavy than purely supervised ones, and can be more
difficult to constrain properly.

• Instead of a labeled dataset, the reinforcement methods use a reward function to measure
how appropriate the output of the algorithm is. Usually, there is a distinction between an
agent part that acts on an environment, and an interpreter part that provides the reward re-
garding the action that was performed. One key difference with other methods is that it often
has a delayed reward since an action is often a series of interdependent actions, and its per-
formance can only be assessed based on the final result. These methods are mostly used in
robotics or to reproduce human tasks. It allows one to find a solution to a problem where
one only knows some basics rules, and whether a specific output is better than another. For
example, it was successfully used to make a robot learn how to walk without programming
each motor, but just by encouraging the robot to test all possibilities to increase its velocity,
in both simulation and real world applications (Heess et al. 2017; Haarnoja et al. 2018).

• The evolutionary methods are similar to the reinforced one. They work with a dataset, no
target and only a global performance measurement. However, they explore the possibility
space in a different way that mostly mimics biological evolution. The algorithm prediction
is described as a population that starts with random properties. Then it learns by selecting
the individuals that provide the best proximity with the solution and create a new population
from them and repeat this process until convergence. It also often uses some kind of mutation
to ensure exploration of new solutions.

35

4.1 Attempt of ML definition

In addition to these families, the methods can be categorized either as discriminative or
generative. This is a vast topic but it can be summarized as: discriminative models learn bound-
aries between cases, (i.e., they learn the probability distribution of the output given an input
information), while generative models learn the actual distribution of the examples, (i.e., they
learn the probability distribution of the input that corresponds to the output). It means that gen-
erative models can be used to create new mock objects or predict the output from an specific
input, while discriminative models can only perform prediction tasks. However, generative al-
gorithms are often more difficult to train, computationally more demanding, and are suitable to
a relatively narrow range of problems.

4.1.3 Broad application range and profusion of algorithms

ML methods are recognized for their vast application range. It is one of their strengths that
is currently driving their global adoption in many computational and scientific fields. They
can perform classical tasks like classification, regression and clustering. But they can also be
applied to dimension reduction with unexpected results as an alternative to usual compression
algorithms. There is a strong interest in there capacity in time series prediction, noticeably
for economical markets (Berat Sezer et al. 2019) or climate change predictions (e.g Feng et al.
2016; Ise & Oba 2019). The loudest application is obviously the image recognition with the
strong appeal around autonomous vehicles (Bojarski et al. 2016) or facial recognition (Wang &
Deng 2018), but with many other scientific applications in a lot of fields (See for Astronomy in
Sect. 2.2.4). There is also more and more high performance generative algorithms that allow
to see deceased actors in new movies, to simulate aging of highly researched criminals, or to
create realistic numerical instruments (e.g Zhu et al. 2017; Sawant & Bhurchandi 2019; Engel
et al. 2017). We can also cite ease-of-life applications like new spell checkers, real time vocal
translators, real time media upscaling (e.g Bahdanau et al. 2014; Ghosh & Kristensson 2017;
Shi et al. 2016), or for scientists the IArxiv application that sorts papers by probable interest for
the reader (Alvarez et al. 2020). Convinced or not by these applications, ML is becoming a part
of the scientific landscape and understanding how its work is becoming an essential knowledge.
We already highlighted some typical ML applications in astronomy in Section 2.2.4.

As well as there are many application possibilities, there is also a profusion of algorithms.
Among the famous ones are Artificial Neural networks, Random Forests, K-means, and many
others. But there are also less known ones like Radial Basis Function Networks, Self Organiz-
ing Maps, Neural Gas, Deep Belief Networks, etc. Moreover, algorithms are more and more
likely to be combined to achieve either better performance or new capabilities, like Reinforced
Generative Adversarial Networks. Unfortunately, all those methods do not perform equally on
each application, and are even unable to perform certain tasks at all. In Figure 4.1 we list some
well-known algorithms arranged by family and linked to their usual application cases.

4.1.4 Toolboxes against home-made code

When searching how to use ML one faces an elemental dilemma that is the choice of the tool or
library. There are many possible answers to this question, that we will address here, with some
partiality. First of all one could choose to use none of the available frameworks and be tempted
to program his/her own algorithm from scratch. This is not a common choice for many reasons
including time efficiency, computational performance, ease of modifications, etc. Therefore we
will first discuss the scenario of the use of a pre-existing framework.

36

4 Classical Artificial Neural Networks

SupervisedSupervised

Discriminative

Generative

Rare application

Usual application

RegressionRegressionRegressionRegression

ClusteringClusteringClusteringClustering

Dimension reductionDimension reductionDimension reductionDimension reduction

Image recognitionImage recognitionImage recognitionImage recognition

Time series predictionTime series predictionTime series predictionTime series prediction

...

ClassificationClassificationClassificationClassification

Neural Networks

SVM

Random Forest

Nearest Neighbor

Adversarial Networks

Gaussian Process

Self Organized Maps

K-means

Q-Learning

Genetic Algorithm

Naive Bayes

...

Semi-SupervisedSemi-Supervised

...

UnsupervisedUnsupervised

...

ReinforcedReinforced

...

EvolutionaryEvolutionary

...

Figure 4.1: List of common ML algorithms packed by type and linked to their usual applica-
tion cases. We note that neither the list of methods, nor the list of applications, nor the links
themselves are exhaustive.

Nowadays, knowing a limited number of programming languages is not a problem to start
using a ML framework since there are implementations in almost any common language. More-
over, most of the frameworks are very user friendly with a really small number of high-level
functions to call in order to train a highly-efficient modern algorithm. Consequently, most peo-
ple stick to the most common framework in their preferred language. For more experienced
users, the question of the framework performance is more important. Even if most frameworks
are equivalent in terms of application capability, some of them are more frequently upgraded

37

4.1 Attempt of ML definition

with the latest innovations in the AI field. Additionally, they are not equivalent in terms of raw
computational performance. Many ML algorithms can benefit a lot from Graphics Processing
Unit (GPU) acceleration, which is not included in all the frameworks, as well as the capability
to run in a scalable hardware environment like computer clusters. Among the most popular
frameworks we can cite:

• TensorFlow (Abadi et al. 2015): certainly the most popular framework, with native API
in Python, C++, Java, etc. and many community supported APIs. Its popularity is mainly
due to the fact that it is completely free and open source while being developed and
maintained by Google. The updates are really frequent and the developers actively work
with other software and hardware companies to include new capabilities concurrently to
their official releases. See more capabilities in Abadi et al. (2016).

• Keras(Chollet et al. 2015): A strong "addition" to TensorFlow, it is known for its very
high level API that allows one to code complex ML algorithms with a minimal number of
lines. It is also open source and developed by a large community. However, Keras being
mainly included in TensorFlow as a higher level interface, many developers are employed
by Google.

• PyTorch (Paszke et al. 2017): is an open source library with mainly Python and C++

APIs, but is more independent from Big-Tech companies than most of the other frame-
works cited here, and has its own low-level computational algorithms. Like the previous
one it remains computationally very efficient with most of the very modern hardware
capabilities integrated.

• CNTK: The Microsoft Cognitive Toolkit is also an open source framework that is sup-
ported by a big company. It is highly comparable to the previous ones with APIs in
Python, C/C++ and Java. The choice of this framework is often motivated by very spe-
cific use case optimizations that are not included in other frameworks.

• R frameworks: R is not as widespread as Python or C/C++ but it is widely used among
statisticians. It contains some integrated functions that can be used to perform ML, but
also contains various open source libraries that are mostly algorithm specifics. Addition-
ally, as time is going it contains an increasing number of interfaces to more widely used
APIs like Keras.

• cuDNN: The Nvidia cuda Deep Neural Network library is somewhat different to the pre-
vious examples. It is neither open source nor applicable to many algorithms. It is also
the only one to require a specific hardware with an Nvidia GPU and the specific pro-
gramming language CUDA derived from C++ (also seen as an API but that requires a
dedicated compiler), that is not very user friendly. However, it is worth noticing that,
up to this day, it is the most computationally efficient way of building neural networks
that make use of cutting edge modern hardware technologies. Many previously cited
frameworks contain specific calls to this library in order to provide the best performance.

There are obviously plenty of other frameworks that we did not describe here like Caffe,
Theano, MXNET, scikit-learn (very suitable for teaching), etc.

In contrast to the use of a pre-existing framework, one can develop a home made ML ap-
plication using any programming language. One drawback of the use of a framework or library
is the induced dependency to it. In software communities the choice of a library is sometimes

38

https://www.tensorflow.org/
https://keras.io/
https://pytorch.org/
https://github.com/Microsoft/CNTK
https://www.r-project.org/
https://developer.nvidia.com/cudnn
https://caffe.berkeleyvision.org/
http://deeplearning.net/software/theano/
https://mxnet.apache.org/
https://scikit-learn.org/stable/

4 Classical Artificial Neural Networks

compared to a wedding. One will invest time to understand practices that are framework spe-
cific, and develop specific applications. In the "relatively rare" case where the framework stops
being developed, it can be very harmful for one’s productivity as it will force one to completely
re-develop many applications. For many of the previously cited frameworks, their open source
characteristics strongly mitigates this issue. For the widespread frameworks that are supported
by Big-Tech companies, this scenario seems very unlikely. Still, there are examples of widely
adopted programmable solutions that stopped their activity. This is the case of the Adobe Flash
platform that progressively stopped being supported, despite the fact that it had been a dominat-
ing development platform for web-based content between 2000 and 2010. Home-made codes,
on the other hand, often rely only on the programming language or low-level libraries that can
often be easily replaced if needed.

Another general difference concerns the performance. It is commonly presumed that a
framework developed by big-tech companies will be much more efficient than a home-made
code, but it is not always the case. Particularly in the field of ML, the framework development
is often more focused on ease-of-access and on widening the application range. It is true that
many frameworks include automatic scalability or GPU acceleration which induces more com-
putational power. However, a specific low-level implementation that makes use of the same
hardware is often able to achieve better raw performance. One example would be the complex
type conversion: when using a permissive framework one is able to plug almost any datatype.
It eases the use of the framework, but will hamper the performance as the framework will have
to assess datatypes and perform the appropriate conversion. This might add overhead at many
steps of the computation. This example can be generalized to many small aspects of the algo-
rithms. We emphasize here that such effects are stronger in highly iterative algorithms where
each iteration can be dominated by such overhead, which is the case with most ML approaches.

Finally, a more subjective argument, is that fully programming the algorithm is an efficient
way to learn the underlying theory. The time investment is significant, but this is a much more
transferable knowledge that can then be used with any framework that are mostly used as "black
boxes". The final decision is mostly a matter of individual sensibility to all these aspects. In
our case, we chose to develop our own home-made framework due to our will of building
a strong theoretical knowledge on ML applications and because we already had a solid High
Performance Computing (HPC) experience. We still kept an interested eye toward the most
used frameworks in order to compete in term of computational performance and capabilities.
We implemented several algorithms, but we mainly focused on Artificial Neural Networks.

Our framework, called CIANNA (Convolutional Interactive Artificial Neural Network for/by
Astrophysicists), is a general purpose ANN framework that we started to develop indepen-
dently to the present research but whose development was then driven by the present study.
To date, our framework is capable of creating arbitrarily deep, arbitrarily thick, convolutional
neural networks and is CUDA GPU accelerated, but it also support multi-threaded CPU com-
putation through OpenBLAS and OpenMP. It is provided with Python and C high level APIs,
and has been successfully applied to many applications: Classification, regression, clustering,
computation acceleration, image recognition, detection in images, image generation, ... and
is suitable for any ANN application. Its development is currently motivated by its ability to
solve astrophysical problems. New elements are added as they are identified as useful for
specific case studies. CIANNA is freely accessible on GitHub as open-source (ApacheV2)
at github.com/Deyht/CIANNA. An in-depth presentation of the framework programming strat-
egy and capabilities is given in the dedicated Appendix A. Additionally, some details of our
implementation will also be discussed in various sections when it seems appropriate.

39

https://github.com/Deyht/CIANNA

4.2 Artificial Neuron

4.2 Artificial Neuron
4.2.1 Context and generalities

Artificial Neural Networks are one of the most famous Machine Learning algorithms. They be-
long to the supervised ML category and they have a really broad variety of applications. Their
popularity might be explained by their intuitive definition and construction. They are also truly
computationally efficient when applying an already trained network, which allows them to work
on really light systems, or even on small embedded devices. Anyhow, they are perfectly suitable
for really complex tasks with increasingly large networks. These days, despite other algorithms
achieving better performance on specific tasks, there is a strong momentum toward the use of
these methods. Many ML frameworks are even only dedicated to ANN. Their vast adoption by
the machine learning community also makes them better documented and more optimized with
many big-tech companies constantly breaking the limits of their performance.

As already described in Section 2.2.1, ANN are not new, despite the strong recent appeal
about them, and about the AI field in general. While it is difficult to accurately date the ap-
pearance of ANN, one fundamental reference is McCulloch & Pitts (1943) where the authors
attempt to summarize the behavior of biological neurons with a mathematical model. This re-
veals the obvious inspiration of the biological brain to try to reproduce intelligence artificially.
The brain is a wonderful biological machine that performs really interesting tasks. It computes
predictions based on a census of biological sensors and using many context information (so-
cial environment, time, previous topics and knowledge, ...). This means that the brain is able
to compile highly dimensional data in an impressive small amount of time, which allows one
to react within a quarter of second. It is also able to work with heavily noised data, like in a
noisy bar where it is able to filter out irrelevant discussions to focus on a specific one. It also
presents a high capacity of generalization, like when one is able to properly walk on previously
unseen ground just by efficiently compiling previous walking knowledge. One final impressive
capability is its resiliency to the loss of neurons with aging, with up to 10% loss estimate be-
tween the age of 25 and 60 in certain specific brain areas (Wickelgren 1996). However, the
brain maintains unchanged cognitive function in most cases, which demonstrates its ability to
rearrange information in an efficient way.

More technically, the brain can be seen as a massively parallel computer with up to 1011

neurons, mostly binary compute units, and 1014 synaptic connections that retain information.
With all these advantages and the apparent simplicity of the basic neuron behavior many at-
tempts were made to reproduce it artificially. As stated in Section 2.2.1, despite the growing
interest of ANN between 1940 and 1970, the lack of computational power refrained its adoption
by a larger communities. It is between 1980 and 1990 that the interest started to rise again with
new application outbreak due the increased computational power, while the real ANN boom
started with the 21th century. In this section we describe the most common approach to con-
struct ANN and subsequently increase its complexity up to modern architectures that are able to
efficiently solve concrete problems. An extensive introduction can be found in Bishop (2006) or
Marsland (2014) that relies on several reference papers including Rosenblatt (1958); Rumelhart
et al. (1986b,a); Widrow & Lehr (1990).

40

4 Classical Artificial Neural Networks

X1

X2

Σ
h

Update weights
Xm

a

0 or 1

t

θXm−1

w m−1

w m

w
2

w
1

Figure 4.2: Schematic view of a binary neuron. X[1,...,m] are the input features for one object in
the training dataset, w[1,...,m] are the weights associated with each feature.

∑
is the sum function

and h its result. θ is the threshold of the step function, and a is the final neuron activation state
that is compared to the target t of the current object.

4.2.2 Mathematical model

The following mathematical model is derived from McCulloch & Pitts (1943). It consist of an
input vector Xi containing the m dimensions of a specific object. In ML the input dimensions
are called features, and the corresponding input dimension space is named the feature space.
Each feature is associated with a weight ωi, to perform a weighted sum h:

h =

m∑
i=1

Xiωi, (4.1)

where the weights can take any positive or negative value. We note that there are many Xi

vectors while the m weights are unique and shared for all the possible inputs. The neuron is
associated to an activation function g(h) which provides the activation a = g(h) of the neuron,
as a function of h. In very simple models a step function is often used:

a = g(h) =

1 if h > θ,
0 if h ≤ θ,

(4.2)

where θ is the threshold value and is set by the user, generally to zero. The weights quantify the
correlations and anti-correlations of each input dimension with the current neuron. Figure 4.2
illustrates this model. This model mimics the behavior of a simple biological neuron which
transforms an input signal into a binary response (often referred to as "firing" or "not-firing").
This action of computing the activation of a neuron, or more generally a network, for a given
input vector is called a "forward" step.

Such simple neuron can already be used as a binary classifier with any number of input
dimensions. It can be seen as a simple linear separator in the feature space with weights corre-
sponding to the slope of the separation along each dimension.

41

4.3 The bias node

4.2.3 Supervised learning of a neuron

Training such a neuron consists in finding a suitable set of weight values that minimizes a
given error function. Since it belongs to the supervised ML family it uses a training dataset of
examples with pre-established solution. This is achieved in an iterative fashion: the neuron is
activated for an input vector of the training dataset, and the result a of the activation is compared
to the expected result, the so-called target t. An error is computed by comparing the activation
and the target, that is used to correct the weights, generally by a small amount. This step is
called an update. The two steps, forward and update, are repeated for all the input vectors of
the training dataset, making the weights converge toward suitable values. A learning phase
performed on the complete dataset is called an "epoch". Many epochs are necessary to fully
train such a neuron. In practice, the correction of the weights depends on the derivative of the
chosen error function and is proportional to the relative input for each weight. For a binary
neuron and a usual square error E = 0.5 × (a − t)2 it can be computed using:

ωi ← ωi − η (a − t) Xi (4.3)

where η is a learning rate that can be defined according to the problem to solve, or adjusted
automatically (Sect. 4.7.2). Considering that learning with this neuron is an iterative process
that searches for the optimal weight values one must define a starting state. Usually best perfor-
mances are achieved when initializing the weights to small random values, which is discussed
in Section 4.7.3.

4.3 The bias node
Equations 4.1 and 4.3 show that the particular vector Xi = 0 for all i is a pathological point:
its weighted sum h is independent of the weights, and the weight correction is always null,
regardless of the error function a − t. To circumvent this peculiarity, one approach consists in
adding an m + 1 value to the input vector, fixed to Xm+1 = −1, and connected to the neuron by
an additional weight ωm+1, which behaves as any other weight. This addition is equivalent to
allow an adaptive value for the threshold θ. Moreover, since the neuron acts as a linear sepa-
ration, this additional weight on a fixed input allows a non-zero origin. We acknowledge that
there are other possible implementations of this effect. For example, one can add a constant to
the result of the weighted sum and share the responsibility for the additional activation over all
inputs during the weight update process. This way the additional weight is shared by all input
weights. Both approaches aim at minimizing the impact on the neuron formalism. Our choice
for the first implementation can be justified by performance concerns, as exposed in Section 4.8.

Because the input values Xi are often called input nodes, this additional input dimension is
generally referred to as "the bias node". The additional degree of freedom provided by the bias
node enables the neuron to behave normally when Xi = 0 for 1 ≤ i ≤ m.

Figure 4.3 illustrates the addition of the bias node to the neuron schematic view and Fig-
ure 4.4 provides two examples where the use of a bias node is necessary. The first one is a
simple binary classification, but with the best separation not being aligned with the origin of the
frame axis, while the second attempts to reproduce the "AND" logical gate.

42

4 Classical Artificial Neural Networks

X1

a

Xm

wm

w1

−1

wm+1

Figure 4.3: Schematic view of a binary neuron with the addition of the bias node. X[1,...,m] are
the input features with the additional constant −1 bias input node, w[1,...,m,m+1] are the weights
associated with each feature with the extra wm+1 weight for the bias node. a is the final neuron
activation state.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
With bias node
No bias node
Class A
Class B

0.0 1.0
0.0

1.0

With bias node
No bias node
Target 0
Target 1

Figure 4.4: Illustration of the effect of adding a bias input node to a single neuron binary
separation. Left: two classes in blue and orange are separated by a trained binary neuron with
or without a bias node in red and green, respectively. Right: reproduction of an AND logical
gate using a trained binary neuron with or without a bias node in red and green, respectively.

43

4.4 Perceptron algorithm: linear combination

4.4 Perceptron algorithm: linear combination

As we exposed (Sect. 4.2.2), a single neuron is only able to perform a linear separation. To deal
with complex problems more neurons are necessary. A simple way to combine neurons consists
in adding them in the same layer. Each neuron is then fully connected to the input layer, but
is not connected to the other neurons. They are thus fully independent and each of them has
the exact same behavior as in the previous sections and are trained similarly as in the previous
sections, except that the equations of the weighted sum and of the activation become matrix
equations:

h j =

m+1∑
i=1

Xiωi j (4.4)

and

a j = g(h j) =

1 if h j > θ

0 if h j ≤ θ
(4.5)

where j is the index of a neuron in the layer, and the sum runs from 1 to m + 1 to account for
the bias node. Similarly, the correction of the weights becomes:

ωi j ← ωi j − η
(
a j − t j

)
× Xi (4.6)

where a j and t j are the activation and target of neuron j, respectively. This network and its
training procedure altogether are called the Perceptron algorithm (Rosenblatt 1958).

This architecture is illustrated in Figure 4.5. Again, in this model, neurons are equivalent
to hyperplanes in the weight space, each hyperplane performing a linear splitting between two
classes. As before a slow training across multiple epochs is needed to let the weights of the
network converge. In this structure, each neuron can learn a different part of the generalization
(Rumelhart et al. 1986a). One difficulty though, is to find a proper way to encode a global
information into a set of binary neurons. When doing classification, one can set one neuron
per output class and encode the target in the form of only one specific neuron being activated
and the others set to 0. With a three-class example the possible outputs would be: A: (1-0-0),
B: (0-1-0) and C: (0-0-1). This classification case is illustrated in Figure 4.6 that shows how
the three neurons share the classification task. However, in order to work with the previous
Perceptron algorithm, each class must be linearly separable from all the others. If it is not the
case this encoding strategy must be refined in order to allow more than one neuron to represent
each class. Another approach for a regression example would be to use binary value encoding,
with for example 4 neurons as bits to encode a range of 16 values. One can also perform image
processing by using one neuron per pixel.

44

4 Classical Artificial Neural Networks

..
.

X1

X2

X i−1

X i

a1

a j

W ij

..
.

−1

Figure 4.5: Schematic view of a simple Perceptron neural network. The light dots are input
dimensions for one object of the training dataset. The black dots are neurons with the linking
weights represented as continuous lines. Learning with this network relies on Eqs. (4.4), (4.5)
and (4.6). X[1,...,i] are the dimensions for one input vector with an additional bias node, a[1,..., j] are
the activations of the neurons, while Wi j represents the weight matrices that connect the input
vector to the neurons.

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Neurons separation
Class A
Class B
Class C

Figure 4.6: Illustration of a three-class separation using a trained Perceptron with 3 neurons.
Each red line corresponds to one binary neuron separation.

45

4.5 Multi Layer Perceptron : universal approximation

−8 −4 0 4 8

0.5

1.0

Sigmoid β = 1

Sigmoid β = 0.5

Derivative β = 1

Derivative β = 0.5

Figure 4.7: Illustration of sigmoid activations with β = 1 and β = 0.5 and their derivatives.

4.5 Multi Layer Perceptron : universal approximation
4.5.1 Non linear activation function and neural layers stacking

The Perceptron network remains too simple to learn complex problems. Firstly, it is restricted
to linear combinations. Secondly, the neurons are limited to two states (0 and 1), and it can be a
difficulty to encode physical values. Deep artificial neural networks can solve these two points.
One major modification is to change the activation function to one which is continuous and
differentiable, with the constraint that it must keep the global behavior of the neuron with two
well distinct states. In a first step, we describe the sigmoid function (Rumelhart et al. 1986a):

g(h) =
1

1 + exp(−βh)
(4.7)

where β is a positive hyperparameter that defines the steepness of the curve. This function has
a S shape with results between 0 and 1 and has a simple derivative form, which is illustrated
in Figure 4.7. This addition noticeably allows easier regression with the Perceptron network,
where each continuous variable can be represented with a single neuron.

This addition is complemented by a second major modification: adding more layers. Neu-
rons are added behind the previous layer, where they take as input the result of the activation
of the neurons from the previous layer, as illustrated in Figure 4.8. Like in the Perceptron net-
work, the neurons within one layer are independent one from the other, and their activation is
computed following similar equations as Eqs. (4.4) and (4.7). A bias node needs to be added
to the previous layer to avoid any pathological behavior from the next one. This architecture is
illustrated in Figure 4.8.

This procedure can be repeated to add multiple layers, constructing a "deep" network. The
last layer is the output layer and the other neuron layers are the "hidden" layers. The input nodes
are generally considered to form a first layer, dubbed input layer, although they are not neurons.
While the input and output layers are mostly constrained by the problem to solve, the number
and size of the hidden layers directly represent the computational strength of the network and
must be adapted to the difficulty of the task. This kind of networks is called a Multi Layer
Perceptron (MLP).

46

4 Classical Artificial Neural Networks

Input
layer ..

.

X1

X2

X3

X i−1

X i

X i−2

a1

a2

a j−1

a j

a1

ak

V ij W jk

Hidden Layer

Output
layer..

.

..
.

Figure 4.8: Schematic view of a simple "deep" neural network with only one hidden layer. The
light dots are input dimensions. The black dots are neurons with the linking weights represented
as continuous lines. Learning with this network relies on Eqs. (4.7) to (4.17). X[1,...,i] are the
dimensions for one input vector, a[1,..., j] are the activations of the hidden neurons, a[1,...,k] are the
activations of the output neurons, while Vi j and W jk represent the weight matrices between the
input and hidden layers, and between the hidden and output layers, respectively.

(A) (B) (C) (D) 0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.9: Example of sigmoid combinations. (A): one sigmoid alone, (B): two sigmoid
combined into a hill shape, (C): two hill shape combined at 90 deg to form a "bump", (D):
several rotated bump combined to obtain a localized pic function.

This multilayer architecture allows the network to combine sigmoid functions in a non-linear
way, each layer increasing the complexity of the achievable generalization. The combination of
sigmoid functions can be used to represent any function, which means that this new network is
a "Universal Function Approximator" as demonstrated by Cybenko (1989). The combination of
sigmoid is illustrated in Figure 4.9. It shows that sigmoid can be combined into hill shapes, that
can be combined to get bumps, and that these bumps can be combined to create any arbitrary
point-like function. They also define the Universal Approximation Theorem. It demonstrates
that only one hidden layer with enough neurons is able to approximate any function as accu-
rately as an arbitrarily deep network. Therefore, it can be used to solve a very wide variety of
problems as discussed in Section 4.1.3. We illustrate the capacity of such a network in Fig-
ure 4.10, where a network with two input dimensions learns non linear splittings between three
classes. This network uses one output neuron per class similarly to Section 4.4, and only one
hidden layer containing 6 sigmoid neurons.

47

4.5 Multi Layer Perceptron : universal approximation

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
Class A
Class B
Class C

Figure 4.10: Illustration of a three-class separation in a two dimensional feature space using
a trained MLP with 3 output neurons and 8 hidden neurons, all with sigmoid activations. The
light background colors indicate the regions of the feature space that the network has attributed
to each class.

4.5.2 Supervised network learning using backpropagation

Adding new layers introduces a difficulty to update the weights, since the targets are only avail-
able for the output layer. The "Backpropagation" algorithm (Rumelhart et al. 1986a) allows
one to compute an error gradient descent, starting from the output layer, that can be propagated
through the entire network. This gradient calculation depends on the error function, which is
often the simple sum-of-squares error:

E(a, t) =
1
2

N∑
k=1

(ak − tk)2 (4.8)

where k runs through the number N of output neurons, ak is the activation of the k-th output
neuron and tk the corresponding target. The weight corrections for a given layer l are computed
as follows:

ωi j ← ωi j − η
∂E
∂ωi j

(4.9)

where the gradient ∂E
∂ωi j

can be expanded as:

∂E
∂ωi j

= δl(j)
∂h j

∂ωi j
with δl(j) ≡

∂E
∂h j

=
∂E
∂a j

∂a j

∂h j
=
∂a j

∂h j

∑
j

ωk jδl+1(k). (4.10)

In these equations, the indices i and j run through the number of input dimensions of the
current layer, and its number of neurons, respectively. These equations are the same for each
layer. δl defines a local error term that can be defined for each layer of neurons, so that, for
a hidden layer l, the error E in eqs. (4.9) and (4.10) is replaced by the multiplication of the

48

4 Classical Artificial Neural Networks

following weight matrix and the next layer error δl+1 with k that runs through the number of
neurons of the next layer. It also depends on the activation function a = g(h) at each layer
through the derivative ∂a j

∂h j
. Thus, this kind of gradient can be evaluated for an arbitrary number

of layers. These terms can be further simplified by considering the previous error, and a sigmoid
activation for all neurons:

∂h j

∂ωi j
= ai, (4.11)

the activation of the current layer,
∂E
∂a j

= (a j − t j), (4.12)

the derivative of the error to replace δl at the output layer,

∂a j

∂h j
= βa j(1 − a j), (4.13)

the derivative form of the sigmoid activation. Further details on the equations can be found in
Bishop (2006) or Marsland (2014).

While the definition of "deep learning" is often fuzzy and varies from a user to another,
some consider the MLP to be sufficient to fit in this category of ANN (see Sect 11.1.8 for a
more advanced definition). However, constructing a many-layer network is often challenging.
The main difficulty is the so-called "vanishing gradient". When using the above equations to
propagate the error through the network, each layer multiply the δl value received from the pre-
vious layer by the derivative of the activation function, in this case a sigmoid. The issue is that
this factor is most of the time less than 1, and therefore the error information is smaller and
smaller for the layers that are the closest to the inputs, up to the point where the corresponding
weights are enable to be updated anymore. This issue, combined with the fact that one hidden
layer is enough to approximate any function, induces that the most common MLP architecture
only contains one hidden layer. However, such architectures are less employed these days, be-
cause most of the recent architectures overcome this limitation by adopting a different kind of
activation function to remove the "vanishing gradient" issue, and therefore construct very deep
networks. This point, along with a less disputed definition of "deep learning", will be covered
later in the second part, Section 11.1.8, of the present manuscript.

For the sake of simplicity, and due to the previous point, we detail here the upgrade pro-
cedure for a network with only one hidden layer like in Figure 4.8. The network is therefore
composed of an input layer constrained by the input dimensions m of the problem to solve, a
hidden layer with a tunable number of neurons n, and an output layer with o neurons. All the
neurons use sigmoid activations in this example. The gradient descent is computed from the
backpropagation equations (Eqs. (4.8) to (4.13)) as follows. The local error δo(k) of the k-th
output neuron is computed using:

δo(k) = βak(1 − ak)(ak − tk). (4.14)

The obtained values are combined with the weights between the hidden and output layers to
derive the local error for neurons in the hidden layer, multiplied as before by the derivative of
the sigmoid activation:

δh(j) = βa j(1 − a j)
o∑

k=1

δo(k)ω jk (4.15)

49

4.6 Limits of the model

where j is the index of a hidden neuron. Once the local errors are computed, the weights of
both layers are updated:

ω jk ← ω jk − ηδo(k)a j (4.16)
vi j ← vi j − ηδh(j)xi (4.17)

where ω jk and vi j denote the weights between the hidden and output layers, and between the
input and hidden layers, respectively, a j is the activation value of the j-th hidden neuron, and xi

is the i-th input value.

4.6 Limits of the model

Before diving into some more advanced details, we discuss here some of the intrinsic limita-
tions of the current model to reproduce the biological brain. There is a lot of unknowns that
remain about the biological neurons and the brain, and it is not our subject here, but a first order
comparison remains a good illustration of how simplified the ANN model is.

First of all, the mathematical neuron model itself is far less complex than a biological one.
It is well established that a biological neuron does not fire a single impulsion, but rather a series
of complex impulsions that can encode way more information. However, it conserves a "global"
activated or non-activated state, but with an additional recovering time that adds an even more
complex inhibition effect to its behavior. While in our model the activation function is fixed and
only the weights can change, in the biological neuron the activation might change depending
on environmental effects and even be function of time or of the number of activations. Another
difference is that the model permits weights to change sign, while it is not possible for the bio-
logical neuron.

In a more global view, the biological neuron activations are also non-sequential (asyn-
chronous), while our model is designed to activate each layer in a specific order. Moreover, the
biological neurons are not nicely arranged in independent layers. Each neuron can be connected
to many others in a complex architecture that creates many neural "paths", and connections can
actively be remapped, which strongly contributes to the brain plasticity. Biological neurons can
even reconnect to themselves (feedback). All of these aspects being only the tip of the iceberg,
even regarding our partial understanding of the biological brain.

Yet, the simplicity of the model is not only a matter of difficulty to write algorithms that
fulfill the brain capabilities. For example, feedback is a common feature of recent Recurrent
Neural Networks (RNN) architectures (already described by Rumelhart et al. 1986a). We can
also cite Neural Gas Networks (Fritzke 1995) that help to construct complex non-layered archi-
tectures. The main objective of all the ANN models (and ML models in general) is to find an
appropriate balance between computing performance and capabilities. While RNN has proven
to be efficient for specific tasks like speech recognition (Robinson et al. 1996; Waibel et al.
1989), it does not improve the generalization potential in all cases, although the computational
cost excess of this method is substantial. It is, therefore, often advised to start by trying simple
algorithms and properly assess if a more complex one would really improve the results. The
exposed ANN model has proven its great efficiency in a vast variety of cases, which explains its
popularity in many communities. We adopt this progressive strategy in the current manuscript
with many advanced ANN capabilities being postponed to Part 2 where they are useful.

50

4 Classical Artificial Neural Networks

4.7 Neural network parameters

4.7.1 Network depth and dataset size

All ML methods have in common that the quality of the prediction is directly linked to the num-
ber of examples provided. Most of the time it is useful to start by estimating the difficulty of the
task to perform. For ANN, since individual neurons can be compared to linear separators, one
can roughly estimate how many of such separations would be necessary to isolate all the groups
of objects identified in the feature space. Most of the time it only provides a starting point,
from which it is necessary to search the optimal number of neurons. Considering a network
with a single hidden layer, only the number of neurons in this layer can be changed, therefore
only this value has to be explored. Most commonly, the minimum error that can be achieved on
the output layer is directly linked to the number of neurons. Increasing the number of neurons
tends to improve the results (lower the minimum error), but the gain provided by a new neuron
decreases with the total number of neurons in the layer. Beyond a certain amount of neurons, an
error plateau is reached where adding more neurons only adds noise to the minimal error value.

However, increasing the number of neurons also increases the number of weights (or de-
grees of freedom) and, therefore, requires more data to be trained. A widely used empirical rule
prescribes that the number of objects for each class in the training sample must be an order of
magnitude larger than the number of weights in the network. As an example, for a network with
m features, n hidden neurons in only one hidden layer, and o output neurons, the number of
weights in the network is (m+1)×n+ (n+1)×o. It corresponds to the number of element of the
weight matrices Vi j and W jk of the example network in Figure 4.2. We note that this estimate
also depends on the type of neuron, i.e. their activation function. Binary or linear neurons being
simpler than sigmoid ones they could be constrained with less examples. In order to reduce the
number of weights needed, a deeper architecture with more but smaller hidden layer is often
a successful strategy. However, such a network would be less stable even if capable of better
absolute generalization capabilities and is more prone to the "vanishing gradient" issue. We also
note that a network with several hidden layers will learn complex boundaries with less epochs
than a single hidden layer one.

We used the same network as in the example in Section 4.5 illustrated in Figure 4.10, where
we separates three classes in a two dimensional feature space using one hidden layer. Fig-
ure 4.11 shows the search of the optimal number of neurons in the hidden layer by looking at
the output-layer error-average for the corresponding dataset. Each point in this figure is the
average of 5 independent training with the same network size in order to mitigate the effect of
the random weight initialization and random example selection from the same distribution. We
see that, when having few objects (∼ 100) in the training datasets, increasing the number of
neurons fails to improve the results. This is due to the number of weights in the network being
quickly of the same order as the number of examples. In this regime the network prediction is
highly unstable, the weight updates being greatly underconstrained. The case with ∼ 400 ob-
jects is more satisfying with a quick reduction of the error up to 4 neurons. It stabilizes itself to
a constant value with small variations when adding more neurons. The last case is with ∼ 1000
objects. With only three neurons it is already more efficient than the previous cases and is near
its optimum value with five neurons. It is the case that also shows the less fluctuations when
increasing the number of neurons, which indicates that they are properly constrained thanks to
the larger training dataset.

51

4.7 Neural network parameters

10 20 30 40 50 60
Nw

2 4 6 8 10
n

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

E

~100 examples
~400 examples
~1000 examples

Figure 4.11: Evolution of the error as a function of the number of neurons in the network, for
various numbers of examples. This figure uses the same network as for Figure 4.10 with only
one hidden layer. n is the number of neurons in the hidden layer, Nw is the total number of
weights in the network depending on n, E is the sum-of-square error of the output layer (equa-
tion 4.8) averaged over all the given examples. Each error point is the average of 5 independent
training with different weight initialization and training selection from the same distribution.

We note here that these results are highly dependent on the other network parameters that
are discussed on the following sections, such as the learning rate, activation function, number
of layers, weight initialization, etc., and is very problem specific. Moreover, as we did in
the simple example of Figure 4.11, it is often necessary to perform several times the same
training with the exact same parameters to see if the random selection of weights affects the
result, and to compute an average, and ideally a dispersion. However, a strong limitation of
this approach is that, as the number of hyper-parameters increases, the time required to train
the network becomes very large, and it can become completely unrealistic to fully explore the
impact of each hyperparameter on the results. This is why it is very common to find widespread
architectures that are known to work nicely on many problems and that are reused blindly for
other applications, with an exploration of parameters reduced to the learning rate and few other
parameters. This also implies that the used network architectures are often over-sized for the
considered problem which could lead to other difficulties as discussed in Section 4.7.6, and
require special care to still work properly on too simple problems.

4.7.2 Learning rate

The learning rate η allows one to scale the weight updates in equations (4.6) and (4.9). This
is useful to adapt the weight updates to the granularity of the feature space and of the various
weight spaces. Lower values of η increase the stability of the learning process, at the cost of a
lower speed, and a higher chance for the system to get stuck in a local minimum. Conversely,
larger values increase the speed of the learning process and its ability to roam from one min-
imum to another, but too large values might prevent it from converging to a good but narrow
minimum. It should be noted that the correction also scales with the input value Xi, correcting
more the weights of the inputs that are more responsible for the neuron activation.

52

4 Classical Artificial Neural Networks

w1

w
2

= 0.1
= 0.32

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

lo
g(

E)

w1

w
2

0.246

0.254

0.262

0.270

0.278

0.286

0.294

0.302

0.310

E

Figure 4.12: Error value in the weight space. Left: Simple binary separation between two
classes, from the example in Figure 4.4. The background color represents the logarithm of
the error of the neuron, averaged over all objects in the dataset, as a function of the 2D weight
space of the neuron (excluding the bias node). Red and purple lines represent the first 20 weight
values of the neuron during learning, with η = 0.1 and η = 0.32 respectively. Right: Example
of the 2D weight space of a neuron in the hidden layer used for Figure 4.10, separating three
classes in a two dimensional feature space.

The effect of the learning rate value is illustrated in the left frame of Figure 4.12, which
shows the error of a neuron performing a linear separation between two classes in the two-
dimensional weight space of that neuron. Two learning rates are compared. A small one at
η = 0.1 leads to an efficient path in the weight space, illustrated by the red arrows, down to
the minimum value. The second case with η = 0.32 leads to a zigzag path with very inefficient
updates that overpass the optimal value. In the best case scenario, a too-large learning rate will
only delay the convergence, but in most of the cases with a complex weight space it will not
find the best minimum value. We note that values of η larger than 0.32 most of the time induce
divergence in this example, preventing the neuron to learn anything useful.

The right frame of Figure 4.12 shows a more complex error distribution within a dimen-
sional weight space that corresponds to one of the neuron in the hidden layer of the example
given in Section 4.5 and Figure 4.10. In this case the hidden neuron activation is recombined
with many other sigmoid neurons, which produces a complex error function. It is important to
note that is a very partial visualization. In order to obtain this error in the weight space, we had
to freeze all the network weights except those of the focused neuron. Indeed, this is a "snap-
shot" representation of the optimal error. During the full network training all the weights vary
toward the optimal error, which produces a significantly different optimal error distribution in
the weight space for the next iteration. It is then expected that the weights will converge and
reach the optimum value. At this stage, the error distribution within the weight space is stable.

These examples show the importance of carefully choosing the learning rate value. How-
ever, a fixed learning rate is also a strong limitation. One easy addition consists of setting a
large initial learning rate and a lower final learning rate with a progressive decrease between
the two during training. This allows the network to go quickly to a part of the weight space
that is near the optimum value, and then to have a smaller learning rate to properly resolve the
optimal values. It is common to adopt an exponential learning rate decay (for details, see Hsueh

53

4.7 Neural network parameters

et al. 2018), which is the approach implemented in our framework CIANNA (see Sect. 12.3.3,
Eq.12.4). Following the same idea, advanced learning rate algorithms are getting more and
more common. The aim is to dynamically change the learning rate to follow the evolution of
weight update scale. Such a method aims at always providing the optimal learning rate regard-
ing the current state of the network (Kingma & Ba 2014).

It should be noted here that there is no such thing as a perfect set of weight values. There
are many sets of weights that could achieve the a similarly good prediction. It does not prevent
any of these weight set solutions to be completely stable when the network has converged. This
is a classic criticism against ANN methods, that are accused to be non-physical and impossi-
ble to interpret. However, there are many tools and techniques to link the input features to the
predicted output by following the weights through the network. For example, assessing if there
is a continuous path of large weight values between the inputs and outputs might help deter-
mining which inputs are useful to the network and which are not. Another common heuristic
is to remove some input features to see if it impacts the prediction quality and infer the relative
importance of each feature. Some applications also use an auto-encoder network to find the
smallest number of dimensions necessary to represent all the input features, and draw insightful
representations of the feature space into this reduced space (Bengio et al. 2012).

4.7.3 Weight initialization

We mentioned in Section 4.2.3 that the weights must be initialized to "small random values",
but we did not explained why. Considering a network where all weights would be equal, for
example to zero, then all the neuron activations would be identical, and so would be the weight
updates and their propagation to the previous layers. This means that the corresponding network
would only be able to solve problems that work with all the weights being equal. This is a
symmetry issue. To break such a behavior the weights are randomly initialized. However,
all initializations are not equal. It must guarantee that the weights are large enough to learn,
and small enough to avoid divergence of the weights when the error of the neuron is large.
Additionally, layers with many neurons will sum many individual errors. This could lead layers
to learning at different pace, which increases the chances that network weights get stuck into a
local minima, or at least slow down the network convergence. In the worst scenario, layers can
even be stuck for many epochs in a saturated state where all neurons remain active, which is
identical for all inputs, stopping the learning of all subsequent layers (Glorot & Bengio 2010).
Therefore, it is often a good practice to scale the weight matrix between two layers accordingly
to the size of the upward one. A common weight initialization is then a random uniform value
in the range:

− 1/
√

N < ω < 1/
√

N (4.18)

where N is the number of neurons of in the "input" layer. This way, the weight matrix keeps a
zero mean with a dispersion that is properly scaled to the expected error on this layer.

On the other hand, the efficiency of a specific weight initialization is highly dependent on the
chosen activation function. This is mainly due to the differences in mean value of the activation.
For example a sigmoid activation has a 0.5 mean value, as well as a binary activation, while a
linear activation will have a zero mean, as well as a hyperbolic-tangent activation. Additionally,
it depends on the depth of the network, correlated with the activation function in a non trivial
way. More informations about the effect of specific weight initialization regarding all those
parameters can be found in Glorot & Bengio (2010) and He et al. (2015), along the much more

54

4 Classical Artificial Neural Networks

modern and widespread Xavier and He-et-al initialization methods. It is worth noting that the
weight initialization is not just a small improvement and can make the difference between a
network that is able to learn something interesting and another that will not learn anything and
diverge. A vast part of the improvement of the ANN methods over the last two decades came
from changes in favor of newer combination of weight initialization and activation function.

4.7.4 Input data normalization

The size of the weight updates is not only shaped by the weights themselves but also by the
previous layer activation value and at some point by the value of the input features. This is vis-
ible in equations (4.3) and (4.17) and is implicit in equation (4.10). Therefore, it is important to
scale the features to be of the same order as a typical layer activation. Otherwise, it could cause
saturation or too large weight updates to converge smoothly, similarly to what can be observed
with a too large learning rate (Sect. 4.7.2). Additionally, all the features do not necessarily have
the same range of values. For example, a feature that represents the age of a star will have a
range of values between few millions and billion years, while a stellar apparent magnitude will
be in the range of few tens. This will result in meaningless dominance of the numerically-larger
features over the activation of the neurons and weight updates.

A widespread solution is to normalize each feature individually, for example in an interval of
−1 to +1 with a zero mean. This can be done by subtracting the mean value of a feature and then
dividing by the new absolute maximum value. The network can then start with an equivalent
importance of each feature, which we observed to be an efficient solution. Additionally this
allows the weights to be of same order of magnitude for each feature, which tends to strongly
stabilize the weight updates. It is usual to scale the inputs in a similar range than that achieved
by the typical activation function used in the corresponding network, which leads to the same
weight initialization for all the layers. We note that the normalization solutions we presented
here are mostly suited for sigmoid activated neurons with β = 1 and a −1 bias value as described
in the previous sections.

4.7.5 Weight decay

We already established that the weights should be non-equal to break symmetries, should have
a zero mean to avoid initial direction bias, and should be small enough to prevent saturation.
However, there is an additional benefit of having very small weights in some cases, because
small weights are more likely to induce sigmoid neurons to be in their middle linear phase,
since g(0) = 0.5. It is interesting to keep as much neurons in a linear state as possible to ease
the error propagation as it is also where the sigmoid derivative reaches its maximum and where
the "vanishing gradient" effects are the lowest. Ultimately, the network should use as few non-
linear neurons as possible to represent the necessary non-linearity of the problem.

To achieve such a behavior, it is common to add a weight decay (Hanson & Pratt 1989)
in the network algorithm. The most simple one consists in multiplying all the weights of the
network by a decay factor 0 < dc < 1, generally very close to 1, after each epoch. This way
the network will only keep large weights where it is absolutely necessary. Here, the natural
dependency to the activation function is obvious, meaning that such improvement would not
be necessary when using an activation function that behaves more like a linear activation. As
before, very advanced weight decay methods can be found in some modern ANN architectures
(Kingma & Ba 2014). It is worth noting that this technique can be used as a regularization (see
Sect. 11.2.3) that helps to prevent overtraining on noisy data (Gupta & Lam 1998).

55

4.7 Neural network parameters

4.7.6 Monitor overtraining

As we began to expose with the previous section, tuning a network to make it learn can be
tedious. But there can be difficulties even with a perfectly tuned network, a noticeable one
being the overtraining of the network. In the most common scheme, the network weights start
at a random inappropriate position and slowly converge to an optimal value. After this point,
the learning process starts to over-fit the training data. It means that it is starting to learn the
specificities of the dataset. In principle, it would not be an issue with a infinite dataset that
perfectly suits the appropriate feature space. In a real case, the data distribution will always
have gaps in the feature space that the network might try to fit, making it necessary to monitor
the learning phase. A widely adopted solution consists in monitoring the overtraining using
additional datasets. Most commonly the original dataset with labels is split in several parts:

• A training dataset that contains the vast majority of the objects and that is used to effec-
tively train the algorithm.

• A validation set that is used regularly during the training phase to compute an error, but
without updating the weights, and enables one to monitor the training process.

• A test dataset that is used after the training phase to assess the quality of the generaliza-
tion on data that were not seen during the training phase or the validation phase.

In practice, during the training, both the errors of the training and validation datasets are
computed. Overall, the error on the training dataset tends to decrease down to an asymptotic
value, around which it may fluctuate, regardless of whether the network is over-trained or not.
In contrast, the error on the validation datasets generally varies in two phases. In a first phase,
the error decreases, similarly to what is observed for the training set. In a second phase, when
the network starts over-training, the error on the validation set starts to rise. Therefore, the
training of the network must be stopped close to this point, which is often done by monitoring
the error on the validation set on several consecutive steps.

This behavior is illustrated in Figure 4.13 on a simple one dimensional regression example.
In order to ease the reading, by exaggerating the effect, we deliberately used a very oversized
network composed of two hidden layer of 32 sigmoid neurons each. Furthermore, we added
a Gaussian noise to the original function to increase the disparity regarding the data selection.
Half of the data are used as training set, and the other half as validation set. The bottom frame
frame shows the the final network prediction at epoch ne = 192000. The strong over-training
is visible since the prediction follows almost each point in the training dataset, loosing track of
the general shape of the function. If the network is trained for a very large number of epochs,
the prediction will end up being only linear links between the training data, using the sigmoid
neurons only in their linear regime. The top frame illustrates the evolution of the errors of both
the training and validation sets. It shows the specific point where the two errors start to diverge,
and where the training should have been stopped, represented in the middle frame, despite the
error of the training set being far from its minimum value. Several breaking steps in the error
curve are due to the high granularity of this specific problem and to new sets of neurons reach-
ing their linear state to fit an outlier point.

Usual distribution proportions between the subsets are 50:25:25, or 60:20:20. However, it
strongly depends on the original size of the labeled dataset. For very large dataset, the training
set is usually reduced to prevent the algorithms to use too much memory with little to no effect
on the prediction quality. Large datasets can also be split into many subdatasets and training,

56

4 Classical Artificial Neural Networks

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Nb. Epochs [in 105]

0.00

0.02

0.04

0.06

0.08

0.10

Ou
tp

ut
 e

rro
r

Validation set error
Training set error

4 2 0 2 4
Input

-2

-1

-1

0

0

0

1

1

Ou
tp

ut

ne = 40000

Original function
Network prediction
Training set
Validation set

4 2 0 2 4
Input

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Ou
tp

ut

ne = 192000

Original function
Network prediction
Training set
Validation set

Figure 4.13: Effect of overtraining on a one dimensional regression problem using an oversized
network. Top: Evolution of the output error, averaged over the corresponding dataset, as a func-
tion of the number of epochs. Middle: Network prediction for the optimal epoch ne = 40000.
The points represents the training and validation datasets in blue and orange, respectively. The
original function is the black dashed line, while the network prediction is the continuous black
line. Bottom: Network prediction for the last epoch ne = 192000.

57

4.7 Neural network parameters

validation and test are randomly picked into them. This allows one to repeat several trainings
with different datasets and select the most efficient one which is the base of Bootstrap and
Boosting methods (Efron & Tibshirani 1986; Freund & Schapire 1997), or even allows one to
combine several networks to make a decision by committee (Xu et al. 1992).

Since very complex problems require a lot of neurons and weights, and therefore a lot of
training data, it is more common that the limitation of the generalization capacity is induced by
having too few examples. In such conditions, it is preferable to have most of the data in the
training set. Then, precautions must be taken, to avoid too small test and validation sets that are
not representative of the feature space coverage of the problem or even suffer of small-number
effects. In very stretched cases, test and validation sets can be merged into only one dataset that
fulfill both roles (e.g LeCun et al. 1998a; Bishop 2006). However, additional precautions should
be taken to ensure that the network does not stop training at a point that is overly favorable to
this dataset, for example by verifying that the predictions on the training and test sets are similar
(see Sect. 5.3).

4.7.7 Shuffle and gradient descent schemes

Since the training set must be shown numerous times, the order of the objects and the frequency
of the weight updates are two important parameters. In the previous section we assumed, fol-
lowing equations (4.6) and (4.9), that the network training process uses one object of the training
sample at a time, computes the corresponding activation and corrects the weights accordingly,
before switching to the next object. This is a usual approach called "on-line", however it can
greatly suffer from ordering effects. Considering a simple one dimensional regression example,
if data are given sorted, many of the first update steps will be biased toward the first part of the
feature space area. Because the first steps are usually larger, it can trap the network weights in a
local minimum for a long time, only fitting part of the problem. Such ordering effects can have
non-desirable effects on a vast variety of applications. Therefore, it is advised to periodically
shuffle the training dataset, up to after each epoch.

An additional difficulty raised by this effect is that each object pulls the weights toward its
own current minimum. It might happen that objects push the network weights in opposite ways
and slow the training process down. It is also very sensitive to other network aspects like the
weight initialization and it often produces a noisy convergence toward the optimum value. For
that reason, a widespread approach is to perform a so-called "Batch training". It consists in per-
forming a forward step, therefore a prediction, for all the objects in the dataset, then summing
or averaging the individual errors to perform a single weight update. It allows the network to
better follow the general trend and often converges faster in the direction of the global error
with much less noise in the prediction than the on-line approach. It is also less sensitive to ini-
tialization and normalization effects. It also removes all ordering effects, and can be written in
a much more computationally-efficient way (Sect. 4.8). However, it was demonstrated that the
on-line approach can be more safely used with larger learning rates, and that it better resolves
the error surface, leading to a much faster global convergence (Wilson & Martinez 2003). This
implies that the batch learning often takes much more epochs to learn, and is therefore inef-
ficient in terms of the number of required computations to converge, despite being quicker to
perform them. This is the reason why on-line training is still very common, especially when
using lighter hardware.

58

4 Classical Artificial Neural Networks

An approach related to the on-line scheme is the Stochastic Gradient Descent (SGD) that
randomly picks a training element in the dataset and uses it to perform one weight update, and
then repeats the process until convergence. This is a drawing with replacement, which removes
the necessity to shuffle and obsoletes the notion of batch. It has proven to be very efficient on
large datasets and on light hardware. It usually minimizes the number of computation opera-
tions to be performed to reach convergence.

Considering this information, a recent and broadly adopted hybrid-scheme is the "mini-
batch" scheme. It merges the best of both worlds by splitting the training dataset into several
small groups that are used together to perform a weight update. It allows one to keep many
small updates as in the on-line approach, and it reduces noise in the convergence by doing the
average of a few errors. It can be implemented in two different ways: (i) either by selecting few
random objects to construct the next mini-batch, in a SGD fashion or (ii) by splitting the whole
dataset into groups that are used subsequently, then shuffling the complete dataset at each epoch
to compose different groups. This scheme is implemented in most of the popular frameworks
as it proved to have a good efficiency, both in terms of the number of required computations,
and in terms of computational performance. In our framework CIANNA, the mini-batch is the
default scheme and the size of the batches is a tunable parameter. The framework is also able
to perform batch and SGD trainings if specified, using specific arguments.

4.7.8 Momentum conservation

Another optimization, still to avoid local minima, consists in adding a "momentum". This is a
classic speeding up method for various iterative problems (Polyak 1964), that has been updated
for modern problems (Qian 1999). It consists in adding a fraction of the previous weight update
to the next one, during the training phase. This memory of the previous steps helps keeping
a global direction during the training especially in the first steps. This additional inertia also
prevents the network from staying stuck in local minima without resorting to a higher learning
rate (Section 4.7.2), and usually allows much faster convergence.

Moreover, it can be seen as another form of adaptive learning rate. Indeed, it usually in-
creases the weight updates in the first training steps when the weights are the farthest away
from their optimum values. Once closer to the global minimum error, the inertia will reduce,
going back to smaller updates. Therefore, it allows a faster training even when taking a smaller
learning rate. It also helps reducing the spread between repeated trainings. Again, there are
many different implementations, but a simple one is to add an inertia term to the update equa-
tion (4.9), which can then be expressed as:

ωt
i j ← ωt−1

i j − ∆ωt
i j, (4.19)

S where ωi j is the weight matrix between two layers, t marks the value for the current epoch
update, and ∆ωi j is the computed weight update. The latter is expressed with the momentum
term as:

∆ωt
i j = η

∂E
∂ωt−1

i j

+ α∆ωt−1
i j , (4.20)

with E the propagated error at the current layer, and where the hyperparameter 0 < α < 1 scales
the momentum. Usual values are often between 0.6 and 0.9.

59

4.8 Matrix formalism and GPU programming

4.8 Matrix formalism and GPU programming
4.8.1 Hardware considerations for matrix operations

We mentioned in Section 4.7.7 that the batch, and consequently the mini-batch, gradient descent
scheme is computationally more efficient. This is mainly due to the fact that batch methods can
very efficiently be converted to matrix operations, and mostly to matrix multiplications. Indeed,
matrix operations are extremely quick to compute, compared to scalar operations, regarding
the raw number of computations to be performed. Indeed, matrix operations have been in the
landscape of numerical computing for decades, and have been identified, especially by data and
computer scientists, as computationally intensive while being necessary for a very wide range
of workflows. Additionally, many computing operations, even if not explicitly written this way,
can be and are computed as matrix operations. The very nature of computer hardware opti-
mization (memory layout, batched operations, several operation per cycle, ...) works using the
scheme of vector and matrix operations. Therefore, an enormous quantity of work and expe-
rience has been accumulated toward the optimization of matrix operations through the years.
And at some point, it began to reversely influence hardware technology to make a better use of
matrix operations and to express more applications into this formalism (Du et al. 2012; Cook
2013).

The very expression of these optimizations is how matrix operations can be described as
highly parallel operations, taking advantage of vector co-processors in Central Processing Units
(CPU) and of the rising core count on the same processor chip (or multiple CPU chip on a sin-
gle motherboard). Indeed matrix computations can be efficiently expressed as Single Instruc-
tion Multiple Data (SIMD) operations. It also takes a strong advantage of very quick low-level
memory in CPUs as the same data are used several times subsequently. In summary, matrix
operations influence and take advantage of many hardware novelty and optimizations.

The most extreme example of this situation is the Graphical Processing Units (GPU) that
are almost dedicated to SIMD operations. As their name indicates, these chips are designed
for graphical applications that rely on a pixel formalism. Therefore, dealing with images is
intrinsically a matter of tables, or matrices, of pixels. For examples: dimming an image is
equivalent to applying a factor to all pixel values, which is a pure SIMD operation; smoothing
an image consists in the application of a filter to many zones of pixels in the image, which are
made of many small matrix multiplications; the rotation of an image is also a SIMD operation
to transform input coordinates into others; etc. For this purpose, GPUs are built in the form
of a very large amount of very light compute units or cores with much more layered cache
levels than CPUs. These cores are slow in terms of clock speed, which is around a GHz for
high-end GPUs while it can be as high as above 5 GHz for modern CPUs, and in terms of
instructions per clock cycle and of general purpose capabilities. Noticeably, the GPU cores
cannot perform or have very poor performance with double precision real numbers (excluding
most advanced professional or science dedicated ones) and are limited to single precision float
and integer operations. Such cores are simple and small enough to be stacked in large numbers
in a single chip along with large amounts of very fast dedicated memory, allowing GPUs to
reach accumulated performances that are orders of magnitude above regular CPUs. However, it
makes such chips very application specific, while regular CPUs are able to handle much more
diverse tasks, like handling an Operating System. This is why GPUs rely on a CPU to handle
the general programming and are plugged as accelerators in more classical computer systems.
For all these reasons, they are the most efficient way to speed up matrix operations to this date.

60

4 Classical Artificial Neural Networks

4.8.2 Artificial Neural networks as matrix operations

All the equations of Section 4 can be expressed as matrix operations relatively easily. Assuming
a batch or mini-batch approach, the input vector is replaced by an input matrix Xbm with m input
dimensions and b training objects. Then, following equations (4.4), it is multiplied with the
weight matrix, which produces a matrix of all the sums hbn for n neurons, where each element
has to go through the activation function to produce all the activations of the first layer, cor-
responding to all the inputs in the current batch. This operation can then be repeated for each
layer up to the end of the network where an output matrix abn is produced. Following the same
approach it can be compared to a target matrix using the selected error function, to produce an
error matrix. Following the exact same approach, the back propagation can be done in a similar
matrix formalism. However, it must be noted that during the back propagation either the current
weight matrix or the produced δbn must be transposed to respect the ordering in equation (4.10)
when propagating the error. As well, either the current δbn or the current activation abn must be
transposed to respect the ordering when computing the weight updates.

One specific point in this formalism is the inclusion of the bias node. In many methods that
use the matrix formalism it was decided to include it as a subsequent addition to the neuron
weighted sum as evoked in Section 4.3. However, this implementation induces performance
penalties when using GPUs, as explained in the following Section 4.8.4. Then, the difficulty
using our approach of an extra node that acts as a supplementary constant feature is that, even if
it works on the input layer by having a column of bias values, the multiplication of this extended
input matrix by the weight matrix creates a hidden layer activation without bias node. One could
solve this by appending a bias node column to the hidden activations, but this would result in
even more performance penalties than the one we are trying to avoid. A possible solution, is
then to also add an extra column in each weight matrix that is full of zeros except for on value
defined to 1. Then the weighted sum of input automatically produces an extra column of bias
with the same value as the input column.

The full procedure including the forward pass, the error back-propagation, and the weight
update, is illustrated in Figure 11.21 that shows the successive operations performed on the in-
put data and the intermediate network results. We note that matrix operations are symbolized
with the symbol × while the dot multiplication is denoted by ◦. This figure also illustrates the
addition of the bias value using the previously described methodology in the input X and weight
matrix V , but not on the output layer for which it is unnecessary. In the back-propagation part,
the red column in δhid is the echo of the extra bias column in hhid that comes from matrix size
conservation of the process, but it does not contain meaningful information. This vector is then
manually set to 0 to preserve the extra column values in ∆V that enables the bias propagation.
This solution to include the bias directly in the matrix could be seen as an unnecessary sub-
sequent complexity and increase in memory usage. In practice, the difference in time needed
for matrix multiplications, with or without the added bias, is completely negligible, and the
memory usage increase is very marginal on a common application. But when considering the
operation launch time overhead on a GPU, our solution is much more efficient since it requires
significantly less operation launches than a subsequent bias addition, resulting in a very signif-
icant computation time reduction when using small batch sizes. Ultimately, this approach can
be implemented using efficient Basic Linear Algebra Library (BLAS) which performs efficient
multi-threaded matrix operations, like OpenBlas, or similar GPUs library like cuBLAS.

61

4.8 Matrix formalism and GPU programming

4.8.3 GPUs variety

It is important to note that historically the GPUs were not a programmable hardware. They were
completely closed, with given APIs that only allows a limited number of tasks. The first uses of
GPU for computation were then some sort of "hacks" where a problem was reformulated into
operations on images so that the GPU could work on it. While ancestors of the GPUs originate
in the 70s, it is only in the early 2000s that General-Purpose computing on Graphical Processing
Units (GPGPU) began (Du et al. 2012). They noticeably became more efficient than CPUs on
some matrix operations in 2005 (Galoppo et al. 2005).

At the moment, there are several manufacturers of GPUs, which leads to important varia-
tions in hardware architectures and software development tools. We list here the three major
GPU manufacturers along with some of their specificities:

Intel
Mostly known for their CPUs, they are in fact the company that sells the largest number of

GPUs, in the form of integrated GPUs (iGPU) in their CPUs. However, despite this position
they do not permit GPGPU! Indeed, the iGPU format is not the most adapted one for this ap-
proach as it shares resources with the CPU. However, Intel has recently made large investments
in dedicated GPU solutions in order to deliver them to the market probably in the next years,
and that would be suitable for GPGPU. We still note that the manufacturer has already made
such attempts in the past that were not successful enough to be released. We also note that Intel
has led some part of the research on "many cores" CPUs like their Xeon Phi lineup, but that are
slowly being discarded in profit of GPUs.

AMD
This manufacturer is mostly known in GPU technology due to its sub-brand Radeon. AMD

is also a very well-known brand for its CPUs, however, unlike Intel, it produces both iGPUs and
dedicated GPUs. Regarding GPGPU, the company is strongly invested in the development of
OpenCL (or Open Computing Language), which is an open source framework mostly written
in C that allows a very specific way of parallel computing. Indeed, the aim of OpenCL is to be
usable on any device taking advantage of many various hardware: CPUs (even ARM CPUs),
GPUs, Digital Signal Processors (DGS), Field-Programmable Gate Arrays (FPGA), ... It aims at
unifying the programming to automatically use all these hardware. While this specificity along
with the open source aspect of this solution is appealing, it suffers several caveats. Firstly, the
OpenCL framework is known to be laborious to use. Secondly, this very general approach does
not enable optimum performance for each hardware. For AMD GPUs, OpenCL is the only
usable approach and still does not permit to use them at their maximum performance. Good
performances are reachable, though, but at the cost of a very verbose OpenCL programming
instead of the common approach. A last point is that AMD does not have much economical
leverage as other companies, and therefore is often behind in terms of modern GPU techniques,
despite being currently one of the most innovative brand regarding CPU.

62

4 Classical Artificial Neural Networks

b

a o
u
t

o

b

δ
ou
t

o

t o
ut

b

o

-
∘

∂ ∂
h

W
T

n
+
1

o

X
∘

∂ ∂
h

b

δ
h
id

X
−
1

m
+
1

b

V

1

n
+
1

m+1

0
X

h
h
id

−
1

n
+
1

b

a
hi
d

g
(h

)
X

Wo

n+1

h
ou
t

b

a o
u
t

g
(h

)o

b

a
ou
t

o

−
1

n
+
1

b

a
h
id

n
+
1

0

Δ
Vn
+
1

m+1

0

b

δ
h
id

n
+
1

0

−
1

n+1

b a h
id
T

X

−
1

m+1

b

X

b

δ
ou
t

o

X
Δ
Wo

n+1

E
rr

o
r

b
ac

kp
ro

p
ag

at
io

n
E

rr
o

r
b

ac
kp

ro
p

ag
at

io
n

F
o

rw
ar

d
 p

as
s

F
o

rw
ar

d
 p

as
s

W
ei

g
h

t
u

p
d

at
es

W
ei

g
h

t
u

p
d

at
es

X V

a h
id

W

a
ou
t

t o
u
t

δ
ou
t

δ
h
id

B
at

ch
ed

 I
np

ut
s

F
irs

t
la

ye
r

w
e

ig
ht

s
S

ec
on

d
la

ye
r

w
ei

gh
ts

H
id

de
n

la
ye

r
ac

tiv
at

io
ns

O
ut

pu
t

la
ye

r
ac

tiv
at

io
n

s

B
at

ch
ed

 T
ar

g
et

s

O
ut

pu
t

la
ye

r
er

ro
rs

H
id

de
n

la
ye

r
er

ro
rs

Fi
gu

re
4.

14
:

G
ra

ph
ic

al
re

pr
es

en
ta

tio
n

of
th

e
m

at
ri

x
op

er
at

io
ns

in
vo

lv
ed

in
th

e
(m

in
i-

)b
at

ch
tr

ai
ni

ng
of

a
si

ng
le

hi
dd

en
la

ye
r

ne
tw

or
k.

T
he

la
rg

e
re

d
ar

ro
w

s
in

di
ca

te
th

e
or

de
r

in
w

hi
ch

th
e

op
er

at
io

ns
ar

e
pe

rf
or

m
ed

.
T

he
re

su
lt

of
a

m
at

ri
x

m
ul

tip
lic

at
io

n
is

th
en

us
ed

di
re

ct
ly

to
pe

rf
or

m
th

e
ne

xt
op

er
at

io
n.

R
ed

ar
ro

w
s

in
si

de
m

at
ri

x
in

di
ca

te
ac

tiv
at

io
n

fu
nc

tio
n

an
d

ar
e

pe
rf

or
m

ed
be

fo
re

th
e

ne
xt

op
er

at
io

n.
L

ar
ge
×

sy
m

bo
ls

ar
e

m
at

ri
x

m
ul

tip
lic

at
io

ns
,w

hi
le
◦

sy
m

bo
ls

st
an

d
fo

r
el

em
en

tw
is

e
m

ul
tip

lic
at

io
n.

T
he

m
at

ri
x

si
ze

s
ar

e
as

fo
llo

w
s:

b
is

th
e

ba
tc

h
si

ze
,m

is
nu

m
be

r
of

in
pu

t
di

m
en

si
on

s,
n

is
th

e
nu

m
be

ro
fn

eu
ro

ns
in

th
e

hi
dd

en
la

ye
r,

an
d

o
is

th
e

nu
m

be
ro

fo
ut

pu
tn

eu
ro

ns
.

63

4.8 Matrix formalism and GPU programming

Nvidia
This brand is the biggest one to be dedicated to GPU solutions (excluding some chips like

the Tegra that are more close to full System on a Chip (SoC)). They are comparable to AMD in
terms of volume of dedicated GPU sells, though usually slightly ahead. They also provide the
most commonly adopted GPUs in professional environment and science with dedicated lineups.
They are the main provider of GPU solutions for super computers, being included in 5 of the
top 10 world supercomputers, including the first two positions. This very specialized expertise
allows them to be on the edge of many GPU technologies. However, their GPGPU aspects
is done by using a dedicated programming language slightly derived from C++ that is called
CUDA (Compute Unified Device Architecture, that stands both for the hardware architecture
and the associated language), which also contains a dedicated compiler based on gcc. How-
ever, it is only supported by Nvidia GPGPU, and therefore is much less general than OpenCL.
Additionally this solution is not open source (with the induced dependency effect argued in
Section 4.1.4), still, allowing for a very low level programming capacity. Many higher level
functionalities are also proposed through not-open dedicated CUDA libraries even if they can
be mostly reproduced using the low level CUDA language. It is worth noting that one can also
use OpenCL for Nvidia GPUs, which often results in much lower performance considering the
same time investment, but allows widespread OpenCL applications to work on such GPUs. Fi-
nally, Nvidia has a fairly aggressive approach on the professional market where some CUDA
“Pro” accelerated applications can only be used with their professional GPU lineup that is often
much more expensive.

We note that there are a few other software solutions for GPGPU on Nvidia or AMD hard-
ware, namely the Microsoft Direct Compute that relies on their graphical library DirectX only
available on the Windows OS; the latest versions of OpenMP that also support GPU acceler-
ation; and the OpenACC solution that is very promising and progressively adopted by many
recent super-computing infrastructures, and that rely on compiler directives to convert regular
loops into GPU accelerated equivalent automatically with very efficient performance.

Regarding the specificity of each solution, we opted for Nvidia CUDA. First, we note that
it was not motivated by the material at our disposal, since we had access to reasonable hard-
ware from both AMD and Nvidia. The choice toward Nvidia was mostly motivated by the
greater potential of Nvidia hardware for GPGPU. Additionally they are deeply involved in the
field of AI, and more specifically in ANN, with many dedicated optimizations for these specific
workflows. Moreover, they are currently adding more and more dedicated computing sub-units
in their CUDA cores that are even more dedicated to small and light (lower bit-size numbers)
matrix operations aiming at further improving neural network training speeds. These specific
sub-units, namely the Tensor Cores, are present in the last two generations of Nvidia GPUs, and
have been further improved in their upcoming Ampere architecture. Concurrently, the choice of
the CUDA language has been made over OpenCL again for performance efficiency, and because
CUDA is necessary to make use of all the dedicated AI materials we just presented. With most
of the large computing clusters having modern Nvidia GPU, this appears as a strategic choice
in anticipation of a potential future proposal to use large scale GPU facilities with dedicated
access to AI research for example on the new Jean Zay supercomputer at GENCI (14 PFLOPS
peak performance).

64

http://www.idris.fr/annonces/annonce-jean-zay-eng.html

4 Classical Artificial Neural Networks

4.8.4 Insights on GPU programming

We describe here a few aspects that are particularly important in our implementation in CIANNA
(see Appendix A), but also for any GPU accelerated ANN. Our framework is able to handle CPU
matrix operations though OpenBLAS, but its CUDA BLAS (cuBLAS) implementation drives
most of its development. First, matrix operations are very nicely handled in cuBLAS, with a
huge amount of small optimizations that make use of the accumulated knowledge on matrix
computation and of the dedicated hardware. It is important to note that using these GPUs for
matrix computation strongly drives the hardware development of Nvidia. The Tensor Cores are
the best examples, but it works the same for cache optimization, choice of precision capabili-
ties, memory bandwidth, memory-core layouts, etc. The general CUDA programming is used to
construct extremely parallel kernels (i.e. individual functions that are executed simultaneously
by many individual CUDA cores on the GPU corresponding to the SIMD formalism) for all the
operations that are not matrix multiplications described in the previous section and illustrated in
Figure 11.21. For example, we wrote kernels for activation functions, element wise derivative
multiplication, etc. In practice cuBLAS operations also rely on underlying kernels but that are
launched using the dedicated cuBLAS API, so we will most of the time refer as kernels for any
function that executes on the GPU including matrix operations.

Overall, the programming scheme of a CUDA application consists in declaring all the useful
variables on the CPU and on what is called the "host" RAM memory. Then all the useful data
are moved on the GPU (also called the "device") RAM memory. Even if modern GPUs have
very quick memory interface with the CPU, these data transfer operations still have an impor-
tant time cost, therefore one must aim at minimizing them. For a neural network it is easy to
create the weights and let them on the GPU memory. This is the same for many other network
data like the layer activations and the layer errors. Even when computing the error, it is com-
mon to send back to the host as little data as necessary to monitor the error evolution. The input
data is more tricky to manage because the size of the dataset can be large. With modern GPU
that have a very large dedicated memory, the dataset can be fully loaded in the GPU and all the
training epochs can be performed there. When the dataset is too large, chunck of data must be
sent to the GPU regularly. There is a nice property of GPUs which is that memory transfer and
computations can be launched concurrently without performance penalty. Therefore, one must
aim at maximizing the overlap between the two, which can be easily done in this case. We note
that this is considered as basic GPU programming knowledge and optimization by the CUDA
programming guide.

It is now the appropriate place to detail why the computation of the bias node can lead to a
performance penalty (Sect. 4.8.2). When using GPU to perform the matrix operations of a neu-
ral network, the computation themselves are very efficient, and this is the same for the kernel
operation. However, due to the fact that the CPU leads the execution of the program and orders
the GPU to execute the various kernels, there is a launch latency of the order of few tens of µs.
In most workflows that were used for years it was not much of an issue since GPUs were used
with very large kernels or to perform very large matrix operations, for example in numerical
simulations. However, regarding ANNs, an epoch cannot be expressed efficiently as a single
very large kernel because the activations of a layer depend on the activations of the previous
one. Therefore, ANN implementations are a succession of many smaller matrix or kernel oper-
ations, and it is even worsen by the fact that they often require many epochs to learn. Obviously,
this effect is additionally scaled when using a small mini-batch size since an epoch is splitted
into several small forward and back propagation passes on the network, vastly increasing the

65

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

4.8 Matrix formalism and GPU programming

number of overheads. In this context it has become very common for ANN frameworks to be
fully bottle-necked by the kernel launch latency rather than by the compute performance of the
GPU. Despite that, it has been much more efficient to use GPUs than CPUs for neural networks
for several years now. But it remains a good idea to try to minimize this effect to get closer to the
full performance of the GPU. Nvidia has invested a lot of efforts recently in the last versions of
CUDA (starting with 10.0) to reduce kernel launch latency and to provide solutions that allows
the program to become independent of the CPU by having groups of kernels executed several
times (CUDA Graphs). In this case the latency is reduced to the equivalent of only one kernel
launch. However, reducing the number of kernels needed remains a good practice in order to
obtain the best possible performance. This is what motivated our implementation of the bias
node, which removes a kernel launch at each layer.

We also highlight, that we could have used the cuDNN toolkit or cuFFT, that were designed
exactly for such cases. They include many optimizations of this kind for many modern ANN
practices. But in contrast with cuBLAS, they usually impose constraints on the data format or
the general approach. We therefore preferred to use cuBLAS to keep the freedom to try any
unconventional method that could be appropriate for a future application of CIANNA.

Finally, we give here some details about the Tensor Cores that are present on the latest
Nvidia GPUs architectures (Volta, Turing and Ampere). They are dedicated computing units
that are able to perform a size-specific matrix multiplication per GPU clock cycle. The Tensor
Cores even incorporate a subsequent addition to the result in the same clock cycle to account
for the bias addition. These cores work on numbers with lower precision (FP16, INT8 or even
INT4, and more recently TF32, BF16, ...) because they are dedicated to ANN workflows where
the precision is far less important. We remind that many early models of ANNs used binary
neurons! Therefore, most of the network parameters and results can be safely expressed using
lower precision numbers. However, the matrix operation itself makes a lot of sums, exposing
the user to the accumulation of rounding errors more dangerously than with higher precision
variables. This is why Tensor Cores are "Mixed Precision" compute units, meaning that they
include an internal sum accumulator that uses at least twice the number of bits than the input
data. They can even store the results of the multiplication of two half-precision matrices into
a full precision one. It is then possible to construct very efficient "mixed precision" networks
by using these new hardware cores wisely, which is described nicely by Nvidia in Micikevicius
et al. (2018). Unfortunately, we did not have access to such modern GPU early enough for these
capabilities to be present in CIANNA. However, we since had experience with them and it will
be include in a near future.

66

4 Classical Artificial Neural Networks

4.9 The specificities of classification

In this section we discuss some specificities of a classification application of ANNs, along with
some necessary precautions, that will be useful for the classification of Young Stellar Objects
in Section 5. We finish this subsection with an illustration of a few common classification
examples using ANNs.

4.9.1 Probabilistic class prediction

While it is possible to do a classification that has a "binary" behavior using neural networks, it
is much more common to represent the membership of a class using a continuous value. It has
the nice property that it can measure the degree of certainty of the network in its prediction. As
exposed in Section 4.4, a common approach is to define the output layer to have one sigmoid
neuron per class and a target with only the neuron of the expected class having a value of one,
the other being set to zero. Then, after the training of the network, a prediction of 0.9 for one
neuron can lead us to consider the corresponding object as a reliable member of the correspond-
ing class. Indeed, the neuron is far off the linear regime of the sigmoid, which indicates that
it has accumulated a significant signal toward its activation. In contrast, such a neuron with
an activation value close to 0.6 would not be considered as a very reliable classification result,
even if it is the highest activation of all output neurons. We note that the 1.0 and 0.0 target are
asymptotic values of the sigmoid meaning that these perfect predictions are very unlikely to be
reached. To obtain a probability it additionally needs a normalization over all the outputs, so
that the sum of the output values for one object is always 1 and each neuron provides a mem-
bership probability. This would give the network attributes of a Probabilistic Neural Network
(PNN; Specht 1990; Stinchcombe & White 1989). However, using sigmoid activation func-
tions without normalization, there are no rules that prevent several output neurons from having
simultaneously a value close to one, which might happen even if only one element of the tar-
get vector is set to one due to random weight initialization. Such prediction should naturally
disappear during the training process but there is no strong condition that prevent such case to
happen after the training for an underconstrained input.

A more suitable activation function to perform a probabilistic classification is the so-called
Softmax activation, also know as normalized exponential (Bridle 1990). It is expressed as:

ak = g(hk) =
exp(hk)∑o

k′=1 exp(hk′)
, (4.21)

where k is the neuron index in the output layer. Thanks to the normalization over all the output
neurons, the k-th output neuron provides a real value between zero and one, which acts as a
proxy for the membership probability of the input object in the k-th class. The global behavior
of this activation is also considerably less prone to saturation effects (Sect. 4.7.3), and therefore
should be able to get excellent predictions with reasonably small weights. But this function
is not without caveats. If used with an inappropriate error function, (as discussed in the next
paragraph), it can push the weighted sum too high and therefore reach the overflow limit of the
variables. It is specifically problematic for GPU implementation as it often uses low precision
variables (e.g. FP32, FP16, or smaller, see Sect. 4.8.4). A simple modification to the function
is to subtract the maximum hk value to all the output values :

ak = g(hk) =
exp(hk −max{h1, . . . , ho})∑o

k′=1 exp(hk′ −max{h1, . . . , ho})
(4.22)

67

4.9 The specificities of classification

This allows us to shift the number comparison in a less numerically problematic part of the
exponential, and almost always prevents the overflow.

On the other hand, the sum-of-square error is less suitable for a probability output, especially
with Softmax. It is most of the time replaced by the so-called Cross-Entropy error (or loss) that
is much more efficient for probabilistic outputs and that produces a nice error propagation term
when combined to the Softmax (Bridle 1990). It is expressed as:

E = −

o∑
k=1

tk log(ak), (4.23)

where ak are the activations of the output layer that count o neurons and tk the corresponding
targets, both of which are probability values. It can then be combined with the derivative of the
Softmax activation function:

∂ak

∂hK
= ak(δkK − aK) (4.24)

where δkK is the Kronecker symbol (δkK = 1 if k = K and 0 otherwise). Following the equa-
tion 4.10 the corresponding output error term is written as:

δo(k) = ak − tk. (4.25)

Figure 4.15 shows the difference between the cross-entropy and the sum-of-square errors on
a probabilistic output for which the target is 1. It demonstrates that the cross-entropy quickly
corrects the outputs that predict 0 when they should be 1. It also induces that the output error
term δo is linear, which allows a better error propagation and balance between the various output
during the weight updates. This avoids attributing to much importance to specific output neuron
regimes.

Finally, a probability per class does not directly define what is the predicted output class.
The easiest method consists in selecting the highest probability, but more advanced methods
also exist. For example, one can require that the maximum value must be higher than the sum
of the others, or that it is higher than the second maximum by a certain amount. The most
selective one would be to require that the output probability is above a defined threshold. All
these methods exclude objects that are too "confused" to be considered as reliable in order to
improve the overall reliability of the selected objects.

However, it is important to emphasize again that this probability prediction only charac-
terizes the network estimated probability regarding how it succeeded in fitting the presented
distribution of objects in the feature space. Then, it must not be used as a genuine probability,
and selecting all objects with a neuron activation probability above 0.9 does not necessarily
mean that these objects have a 90% probability of being of the corresponding class. In Sec-
tion 7, we will use these activation probabilities as a criteria to disentangle the confused and
reliable objects, but the actual probabilities will be estimated using the tools presented in the
next section.

68

4 Classical Artificial Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
P(o)

0.0

0.5

1.0

1.5

2.0

E

Sum-of-square
Cross entropy

Figure 4.15: Comparison between the behavior of the sum-of-square and cross-entropy error
functions for a probabilistic output with target to 1.

Table 4.1: Confusion matrix example for a cats and dogs example.

Predicted

A
ct

ua
l

Class Cat Dog Recall

Cat 93 7 93.0%
dog 14 86 86.0%

Precision 86.9% 92.5% 89.5%

4.9.2 The confusion matrix

We define here the concepts necessary to present results statistically, and to characterize their
quality. For this it is common to use the so-called "confusion" matrix. It is defined as a two
dimensional table where the rows correspond to the targets, and the columns correspond to the
classes predicted for the same objects by the classifier, in our context an ANN. A usual example
is a classification between cats and dogs, as presented in Table 4.1 using made-up plausible
results. It shows the corresponding 2 × 2 confusion matrix, where the number 14 that appears
in the second row, first column is the number of labeled dogs that were mistakenly classified as
cats by the classifier. In this scheme, a 100% "correct" classification gives a diagonal matrix,
while the off-diagonal numbers count the misclassified objects. This representation directly
provides a visual indication of the quality of the network classification. The confusion matrix
allows us to define quality estimators for each class:

Recall =
T P

T P + FN
Precision =

T P
T P + FP

(4.26)

Accuracy =
T P + T N

T P + T N + FP + FN
(4.27)

where :

T P ≡ True Positive T N ≡ True Negative
FP ≡ False Positive FN ≡ False Negative

69

4.9 The specificities of classification

The "recall" represents the proportion of objects from a given target class that were correctly
classified. The "precision" is a purity indicator of an output class. It represents the fraction of
correctly classified objects in a predicted class, as predicted by the network. And finally, the
"accuracy" is a global quantity that gives the proportion of objects that are correctly classified
with respect to the total number of objects. In our confusion matrix representation, we show
the accuracy at the intersection of the recall column and the precision row. Limiting the result
analysis to this latter quantity may be misleading, because it would hide the class-specific qual-
ity and would be strongly impacted by the possible imbalance between the output classes. The
matrix format is particularly well-suited to reveal the weaknesses of a classification. It could,
for example, reveal that the vast majority of a subclass is misidentified as a specific other sub-
class, which is also informative about some degeneracy between the two classes.

In our example with cats and dogs (Table 4.1), the global accuracy is 89.5% while the recall
of cats is much better with 93%, and the recall of dogs is 86%, therefore there is a significant
additional difficulty in fitting the distribution of dog examples in the feature space. This also
has incidence on the precision values: the dogs being less well identified, the misclassified
dogs induce a drop in the precision of cats, increasing the false positive rate of cat predictions.
The differences between the two classes could even be exaggerated with the exact same global
accuracy, which illustrates to what extent it is a bad indicator when doing classification. Inter-
estingly, it also highlights a structural weakness in the way we defined our ANNs. Even if the
error propagation is made by using each individual output error, one usually just monitors the
average error over the output neurons, while it is possible that some are better fitted than oth-
ers. It is possible that, during the training phase, some objects are overtraining a subset of the
neurons, while others are still in the process of improving another subset of the neurons, with
an average error that still decreases. This is why more elaborated error monitoring methods are
sometimes used in some ANN implementations.

4.9.3 Class balancing and observational proportions

Machine Learning methods are known to work better on balanced dataset (e.g Anand et al.
1993; Sun et al. 2009). In a classification case it means that it works better if all classes have the
same number of examples in the training dataset. The main reason is that when more data of a
specific class are used, they lead to proportionally more weight updates. The network therefore
uses more weights and neurons to reconstruct this class in disadvantage of the others. However,
this reasoning in based on the assumption that each class has the same intrinsic complexity in
the feature space, which is a strong assumption for which we will a give counter example in Sec-
tion 6. In cases where this assumption is valid, a common approach consists in rebalancing the
training dataset to have equal class proportions despite the proportions of the original dataset.
One should however be careful, because this can lead to several bad practices, the first being
that the classification performance are also evaluated using a balanced dataset as validation and
test datasets, while the true underlying proportions are strongly imbalanced. The study of the
impact of imbalance in ML algorithm is a dedicated field of study called "imbalanced learning"
which is known to be much more complicated than learning on classical balanced dataset and
that is studied for more than two decades (Anand et al. 1993; He & Garcia 2009).

70

4 Classical Artificial Neural Networks

Table 4.2: Imbalanced classification for a medical example using balanced proportions.

Predicted

A
ct

ua
l

Class Positive Negative Recall

Positive 93 7 93.0%
Negative 5 95 95.0%

Precision 94.9% 93.1% 94.0%

Table 4.3: Imbalances classification for a medical example using imbalance proportion with
similar recall for the two classes

Predicted

A
ct

ua
l

Class Positive Negative Recall

Positive 93 7 93.0%
Negative 46 954 95.4%

Precision 66.9% 99.27% 95.18%

To illustrate the effects of an imbalanced dataset, we selected a standard example of a spe-
cific virus immunity detection. Assuming that one wants to build a serological test for that
purpose, it can be seen as a simple two-category classification with positive and negative test
results. For the purpose of this example we assumed that only 1 out of 10 persons are truly
infected. We did not make any assumption on how the classifier was built and just assumed a
recall of 93% for positive cases and 95.4% for negative cases. Table 4.2 shows the confusion
matrix using balanced proportions, that are likely to be used when tuning the method, for ex-
ample when training the network. This gives apparently satisfying results with a 94% global
accuracy and a reasonable precision above 94.9% to avoid false positive. However, as we said,
only 10% of people are truly positive in this example, therefore using the true proportions,
which we will refer to as "observational proportions", it gives the confusion matrix in Table
4.3. This table shows that despite the 95% recall of negative cases, it leads to a large contami-
nation of the predicted positive cases whose precision drops to 66.9%, and therefore leads to a
high false-positive rate. Such misleading results can have important consequences, like giving
immunity passports to non-immune persons, or in similar medical studies, giving a high-risk
treatment to healthy persons.

We also note a communication caveat that can happen even when using observational pro-
portions. Some authors choose to normalize the confusion matrix and even to colorize it accord-
ingly (Richards et al. 2011; Miettinen 2018; Walmsley et al. 2020, ...). It may help making the
results more attractive and emphasizing some aspects of the results that are apparently easy to
read. However, it implies to choose to normalize either on the lines or on the rows, respectively
highlighting the recall or the precision value. This can subsequently hide the imbalance effect
on either precision or recall. In the present work, we prefer to show the complete confusion
matrix without color or arbitrary normalization to preserve their objectivity.

71

4.9 The specificities of classification

Table 4.4: Imbalanced classification for a medical example using imbalanced proportions with
a better recall for the dominant class.

Predicted

A
ct

ua
l

Class Positive Negative Recall

Positive 87 13 87.0%
Negative 10 990 99.0%

Precision 89.7% 98.7% 97.9%

This example also highlights an interesting aspect of imbalanced classification, which is that
to improve the overall quality of a rare class it can be necessary to further improve the recall of
the dominant class. Using ANNs it implies that one might deliberately increase the proportion
of negative cases in the training set in order to give the opportunity to the network to better con-
strain this case, increasing its recall. It does not have to be observational proportions because
it depends on many factors, noticeably the expected results. We illustrate such a case with a
classifier achieving a lesser recall of 87% on the positive case and a much better recall of 99%
on the negative case. It results in the confusion matrix in Table 4.4 where the precision of the
positive cases has increased to 89.7% which is much closer to the positive recall of 87%.

This example raises an important point, which is the absence of a global quality estimator,
since it depends on the end objective. As for any classification problem, one must choose the
appropriate balance between reliability and completeness. Thus, in the last example we traded
a recall drop by about 8% for an improvement of 23% in precision for the positive case. There-
fore, acting on the training set proportions allows one to put the emphasis on certain quality
indicators, while it remains necessary to test the results on observational proportions. We note
that there are many tools that play on the balance of the datasets. For example, the so called
"augmentation methods" can be used to artificially change the balance of the dataset by creating
mock example that follows the same feature space distribution. Though, it would not improve
the coverage of the class in the parameter space which is a strongly related issue. Also, there
are often cases where all the classes do not have equivalent feature space coverage. In conse-
quence some might be intrinsically more difficult to classify than others, which is completely
overlooked when using balanced training proportions. These aspects are examined in detail in
our main application of YSO classification in the dataset and result analyses in Sections 5 to 9.

72

4 Classical Artificial Neural Networks

4.10 Simple examples
In this section we present a few simple real examples. We pursue mainly two objectives: (i)
provide additional insights in how a concrete problem can be expressed with the ANN formal-
ism we described, using freely accessible data to ensure reproducibility, and (ii) to illustrate a
few of the advanced effects we have described in the previous sections, like the use of some
hyper-parameters. While numerous astrophysical examples could have been used, they usually
employ large sets of parameters that need a careful preparation and would have required too
much context introduction to be suitable as quick and simple examples.

4.10.1 Regression

We chose a regression that takes two inputs and also produces two outputs. The selected relation
is fairly simple and expressed as:

o1 = 0.7 sin(x1) + 0.6 cos(0.6 x2) + (0.15 x1 + 0.1 x2)2, (4.28)

o2 = sin(x1) + cos(0.8 x2) + 0.3(0.3 x1 + 0.6 x2), (4.29)

where x1 and x2 are the two input dimensions, and o1 and o2 the output target.

In this example, we constructed a grid of x values ranging from −5 to 5 with 60 × 60 ele-
ments for each input. This is our full dataset. For the training set we selected only a grid of
20×20 elements, which means that we have a training point for each 5 points of the original axis
subdivision, for each axis. This translates into a training set size of 400 couples of coordinates.

The corresponding network is inevitably constructed with 2 input nodes with the associated
bias, one or several hidden layers, and 2 output neurons that are set to a linear activation, which
is often much simpler for regression. We first decided to stick to a one hidden layer network
with sigmoid-activated neurons. Regarding the fact that we have 400 examples we first tried to
be close to 40 weights in the network, which is closely matched using 8 neurons in the hidden
layer since 3 × 8 + 9 × 2 = 42 weights, accounting for the bias node in the input and hidden
layers. In this example we used many of the previously described network optimizations. We
chose to have a constant learning rate but with a momentum and the input dataset is normalized
as we described in Section 4.7.4. The output is only divided by the maximum absolute value
in the full dataset forcing it to be in the −1 to 1 range, which works well for linearly activated
output neurons. Finally the selected gradient descent scheme we used is the mini-batch one.
Therefore, it gave us a list of hyperparameters to set. A quick manual exploration of these pa-
rameters made us choose η = 0.004 (considering that our updates are summed and not averaged
in a minibatch), α = 0.8 and a mini-batch size bs = 20. We then trained the network for 4 × 105

epochs while monitoring the error on the full 60 × 60 grid.

Figure 4.16 shows the results of this training. Because it is difficult to represent the evolu-
tion of the two outputs as a function of the two inputs in a single graph, we separated them into
two rows. Three columns are used to represent the original function result, the prediction of
the network and the last one shows 10 times the difference between the first two. The gray dots
on the figures represent the training points. At first glance the prediction seems almost perfect,
it requires a moment to spot the differences. The error frames strongly highlight that there is
an edge effect, either with a stronger positive or negative difference that mostly depends on the
surface slope at the edge. This is certainly due to the fact that it lacks constraints where there is

73

4.10 Simple examples

O
ut

pu
t

A

Target Prediction Error x10

O
ut

pu
t

B

1.0

0.5

0.0

0.5

1.0

1.5

Figure 4.16: Two dimensional regression training results. Each frame represents the evolution
of a quantity in the two dimension input space. Rows represent the two outputs of the network
respectively. Columns are the target, prediction and the difference between the first two scaled
by a factor of 10.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Nb. Epochs 1e4

10 3

10 2

lo
g1

0(
E)

Validation set error

Figure 4.17: Evolution of the output layer error on the validation dataset during training as a
function of the number of epochs.

less nearby learning points. Moreover, these error frames also show that the highest errors are
in places where the surface curve dynamic is higher, and that it does not directly correlate with
the places that have highest absolute values. Despite this, the error without the ×10 factor looks
really flat and the network reproduces nicely the shape of the function even with training points
significantly distant from each other.

74

4 Classical Artificial Neural Networks

2 4 6 8 10 12 14
nh / layer

0.00

0.02

0.04

0.06

0.08

E

One hidden layer
Two hidden layers

Figure 4.18: Evolution of the final output layer error on the validation dataset as a function of
the number of neurons per layer. The orange and blue curves represent a one and two hidden
layer network, respectively. The added uncertainty of each point is the standard deviation over
few runs.

Figure 4.17 illustrates the output error value as a function of the number of epochs which
shows that we are not overtraining. Nevertheless, we tested the effect of the number of neurons
in this example as a complementary example of Section 4.7.1. Figure 4.18 shows that, for one
hidden layer, the optimal error is reached around 8 neurons and additional neurons do not pro-
vide substantial improvement. We also tested a 2 hidden layer case, with this time the error as
a function of the number of neurons per layer. It shows that, for this specific case, two hidden
layers with 4 neurons are already very close to one hidden layer case with 8 neurons. We also
note that, the two hidden layer solutions converged with less epochs. However, the comparison
is very limited here since the limit of the number of examples is quickly reached.

This simple example illustrates how regression can be performed using the described model
of ANNs. True useful problems can be more complicated, but they can usually be expressed in
a very similar fashion as this example. One connected application is the modern use of ANNs as
computation accelerators. If we imagine a heavy function that is used in a numerical application
several times, there is a chance that this function could be reproduced up to a satisfying enough
precision using ANN. Now, considering that modern ANNs use very simple activation functions
and that they make use of powerful dedicated hardware, there is a strong chance that a pre-
trained ANN could compute this approximated function much faster than it used to be done in
the original application. This way ANNs can be used as computation accelerators even on well-
known functions (Baymani et al. 2010; Tompson et al. 2016) or potential (for example to replace
a numerical solver for 3 body problems in Breen et al. 2020). This can be extended to training
a network on a set of simulations that uses basic physics, from which it will extract higher level
correlations, that can then be used to do new simulations quicker. The global application in
Part III is a regression problem, still it requires more advance networks that are described in
Section 11.

75

4.10 Simple examples

Table 4.5: Iris classification, confusion matrix of the test set.

Predicted

A
ct

ua
l

Class Setosa Versicolour Virginica Recall

Setosa 15 0 0 100%
Versicolor 0 14 1 93.3%
Virgninica 0 1 14 93.3%

Precision 100% 93.3% 93.3% 95.6%

4.10.2 Classification

Prior to the YSO classification, we present simple examples to illustrate some effects that are
important in the analysis of YSO classification. For this reason we present here two very simple
common classification examples in order to focus on the technical aspects, both of which have
their dataset freely accessible at the online UCI Machine Learning repository.

A - Iris

The first one is the Iris dataset, which is the most popular on the UCI repository. It consists
of 3 types of Iris flowers, Setosa, Versicolour, and Virginica, based on 4 petal properties: sepal
length, sepal width, petal length, petal width. The dataset contains 150 examples of these, per-
fectly balanced with 50 examples of each.

To perform the example in a proper way, we selected 35 examples of each class randomly
to construct our training dataset (105), while keeping the rest, 15 examples of each class, to
construct a merged validation-test dataset (45) due to the very small number of objects. The
adopted network consists of 4 input nodes, one hidden layer with sigmoid activated neurons,
and an output layer with 3 Softmax activated neurons. We identified that 6 hidden neurons were
enough, corresponding to 51 weights, which is already above the standard recommendation.
Less neurons provided less good results, while more neurons tended to strongly increase the
instability of the network, and often led to a strong overtraining. The learning rate was set to
η = 5×10−4, the momentum to α = 0.8, and we used mini-batches of size bs = 10. This network
was trained on 3200 epochs several times in order to characterize the result stability. Table 4.5
shows the results of the network prediction for our test set. The very small number of objects in
the test set makes it harder to interpret, because one misclassified object leads to a variation by
several percents in the quality indicators. However, the network often succeeded in reaching a
100% accuracy with this setting, and only misclassified three objects in two different classes in
the worse case. Even if it is not a proper practice to look at the prediction for objects that were
in the training sample, we still used the full dataset to ensure that the observed accuracy was
not just a small number effect.

It is noted by the authors of this dataset that one class is linearly separable from the two
others which are not linearly separable from each other. This can be observed by using a very
simple network with linear neurons as output and with no hidden layer. In this case, the degree
of confusion between Versicolor and Virginica increased, while the Setosa remained well sepa-
rated from the two others.

76

https://archive.ics.uci.edu/ml/index.php

4 Classical Artificial Neural Networks

This example is also the occasion to illustrate the effect of probability membership. Looking
at the maximum output probability distribution shows that almost all objects have a probability
greater than 0.9, and that there are only a few of them that are under this limit. As expected
the objects that are properly classified (147) show a higher mean membership value, around
0.978 ± 0.06, than the mean value for misclassified objects (3), around 0.741 ± 0.08. How-
ever, one properly classified object has only a 0.52 probability, while a misclassified one has a
probability of 0.85, which is also highlighted by the dispersion around the mean values. The un-
derlying issue is that, even if an object is properly classified it can fall in a region of the feature
space that is poorly constrained, and therefore less reliable. With applications that contain more
objects, it is often a good choice to exclude less reliable ones by using a membership threshold,
which often significantly improves the classification results (Sect. 7).

B - Wines

The second example is the Wine dataset, which is the third most popular from the UCI
repository. It also consists in the separation of three classes that represent different unnamed
vineyards. For this it provides a set of 13 features that correspond to many concentration mea-
surements in the wine: Alcohol, Malic Acid, Ash, Magnesium, etc. The dataset contains 178
examples with classes being imbalanced with 59, 71, and 48 examples, respectively.

This example being imbalanced, we first extracted ∼ 28% of objects in each class to con-
struct our test/validation dataset. The purpose of such classifier being unclear, we assumed that
it could be used to distinguish between the three vineyard on sold bottled and that the given
proportions correspond to the true actual production proportion of each vineyard. Then, consid-
ering that they are in observational proportions, we tried to conserve them as much as possible
in the test set. The adopted number of objects from each class in our test set are 16, 20, and 13,
respectively, for a total of 49 objects. For the training dataset, we adopted the opposite approach
by selecting the largest possible balanced dataset in the remaining data, which gave us 35 ob-
jects of each class for a training dataset with 105 objects. The adopted network is very close to
the one of the previous example, with 13 input nodes, one hidden layer with sigmoid activated
neurons, and an output layer with 3 Softmax activated neurons. We identified that 8 neurons are
sufficient for this problem to reach its optimal prediction. Less neurons predicted less good re-
sults and more was not doing anything better since 8 neurons already led to an overtraining that
must be monitored. As for the previous example, the learning rate was set to η = 5 × 10−4, the
momentum to α = 0.8, and we used mini-batches of size bs = 10. This time, the network was
trained several time on 4800 epochs. We observed that the network predictions were always
above 93% of global accuracy (3 objects misclassified) but that the results mostly depended
on the random object selection for the training and test datasets. With the most appropriate
selection the network reached 100% prediction, which is maintained when forwarding the full
dataset in the same network. Still, we present in Table 4.6 an imperfect example for illustration
purposes. Additionally, since the minimum error value depends on the data random selection
in either the training or test dataset, we repeated 20 trainings and computed a mean minimum
error averaged on the test dataset, of 0.086±0.062. It illustrates the strong variability depending
on the random selection of the training data over the dataset, and also that each individual neu-
ron that contributes to this error is usually ∼ 0.03 off the target value. This indicates that most
objects will have a maximum prediction around 0.97 which is guideline before the application
of a threshold.

77

4.10 Simple examples

Table 4.6: Wines classification, confusion matrix of the test set.

Predicted

A
ct

ua
l

Class A B C Recall

A 16 0 0 100%
B 1 18 1 90.0%
C 0 1 12 92.3%

Precision 94.7% 94.7% 93.3% 93.9%

Just like the previous example, it is very simple to reach 100% each time with the exact
same network when using the full dataset in just 1000 epochs. It only means that the classes are
separable regardless of the complexity of their separation. However, as in the previous example,
it means that the feature space is poorly sampled, which is expected using 13 dimensions with
only < 200 objects. One approach to obtain better results out of less objects, would be to test if
some input features are unnecessary to separate the classes. On the other hand, these imperfect
results are another occasion to illustrate the membership probability. In this example, it is more
visible that the misclassified objects are indeed predicted with a lesser probability. Taking an
example with 3 misclassified objects in the full dataset, they have a mean membership value
around 0.52 ± 0.02 while the properly classified ones have a mean of 0.97 ± 0.06. Using a
threshold value of 0.9 excludes 6 objects out of the 178 objects in the dataset, including all the
misclassified ones. It is also interesting to note that some objects are more often misclassified
than others, and also have a low probability when properly classified, making them probable
outliers of the main distribution. The predicted output class of these objects, and therefore their
membership probability, mostly depend on their random association to either the training or
test dataset. Like in the previous example applying a membership threshold here would not
significantly improve the results because they are already very good, but we efficiently used this
approach on the YSO classification application with a clear success (Section 7).

78

5 Automatic identification of YSOs in infrared surveys

5 Automatic identification of Young Stellar Objects in infrared
surveys

In this section, we detail how we connected the general network presented in the previous
sections with the YSO classification problem. We show how we arranged the data in a usable
form for the network and describe the needed precautions for this process. We also explain how
we defined the various datasets used to train our network.

5.1 Problem description and class definition . 79
5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations 82
5.3 Construction of the test, valid and train dataset 87
5.4 Network architecture and parameters . 90
5.5 Convergence criteria . 93

5.1 Problem description and class definition
As we exposed in Section 3, our objective in this Part II is to design a methodology to perform
YSO classification using ANN. A new classification scheme could be created using ML by
mostly two approaches, (i) using a supervised ML algorithm that is trained on observed objects
labeled without any ambiguity, for example YSOs for which the disk is directly observed, or by
using simulated data (both discussed in Sect. 9.4), and (ii) using unsupervised learning to con-
struct new, possibly more efficient, underlying classes (also in Sect. 9.4). These two approaches
present major difficulties, due to the very small number of indisputably identified YSOs to train
a ML algorithm for the first approach, and due to underlying feature space distribution proper-
ties of YSOs using infrared data for the second approach.

While these difficulties could be overcome, it would require a lot of work without guaran-
tee of success. For this reason, as a first step, we set ourselves the objective to reproduce the
classification by Gutermuth et al. (2009) that makes use of Spitzer data, to evaluate the capacity
of ML methods to perform such a task. It allowed us to assess the numerous elements reported
here like the optimal number of data (Sects. 5.3, 6.2), the minimal architecture requirement for
an ANN method (Sect. 5.4), the needed hardware resources (Sect. 5.4), the degree of confusion
between classes (Sects. 6, 7), the effect of class imbalance (Sect. 5.3), etc. But more importantly
it can provide significant additions to the classification that is reproduced like identifying un-
derconstrained feature space areas (Sects. 6.4.4, 7), generalizing the classification scheme to be
used on very large catalogs efficiently (Sect. 9), or more importantly predicting a membership
probability for the YSO candidates (Sect. 7).

Our choice of the Gutermuth et al. (2009, hereafter G09) classification scheme to train from,
is motivated by two main considerations: (i) the fact that we needed a method that works on
large datasets in order to be used with a ML method, and (ii) our will to use a survey that is able
to distinguish class I from class II YSOs.

79

5.1 Problem description and class definition

In the following section, we summarize the construction of the training sample using sim-
plified version of this classification scheme. The G09 method combines data in the J, H, and
Ks bands from the Two Micron All Sky Survey (2MASS, Skrutskie et al. 2006) and data be-
tween 3 and 24 µm from the Spitzer Space Telescope (Werner et al. 2004). In our approach
we did not use the 2MASS data and solely used Spitzer data in order to have a more homo-
geneous classification, which is discussed latter in the present section. We note that by using
Spitzer data for YSO classification, rather than WISE data (e.g Koenig et al. 2012), we expect
to cover only specific regions on the sky, but with a better sensitivity (≈ 1.6 to 27 µJ for the
The Infrared Array Camera (IRAC) instrument) and spatial resolution (1.2′′) than with WISE
(≈ 80 to 6000 µJ and 6.1′′ to 12′′), the latter being used in Marton et al. (2016) and Marton
et al. (2019). In the original G09 method, they performed the classification in several steps. In
addition to Spitzer, they used 2MASS data as an additional step to refine the classification of
some objects or to classify objects for which Spitzer bands are missing. Therefore, restricting
our analysis to Spitzer data still allowed a reasonable classification. In our adapted method, we
started with the four IRAC bands, at 3.6, 4.5, 5.8 and 8 µm, applying a preselection that kept
only the sources with a detection in the four bands and with uncertainties σ < 0.2 mag, like in
the original classification. Then this first classification is refined using the Multiband Imaging
Photometer (MIPS) 24 µm band. With this classification, it is possible to identify candidate
contaminants and to recover YSO candidates at the end. Similarly to G09, we used the YSO
classes described in Section 3.

Using mainly IRAC data prevented us from identifying class 0 objects, since they do not
emit in the IRAC wavelength range (Fig. 3.1). Similarly, because of Spitzer uncertainties, the
class III objects are too similar to main sequence stars to be distinguished. For these reasons,
we limited our objectives to the identification of CI and CII YSOs. We then proceeded to the
so-called "phase 1" from G09 (their Appendix A) to successively extract different contaminants
using specified straight cuts into color-color and color-magnitude diagrams (CMDs) along with
their respective uncertainties. This step enabled us to exclude star-forming galaxies, active
galactic nuclei (AGN), shock emission, and resolved PAH emission. It ends by extracting the
class I YSO candidates from the leftovers, and then again extracting the remaining class II YSO
candidates, from more evolved stars. The cuts used on these steps are shown in Fig. 5.1, with
the final CI and CII YSO candidates from the Orion region (Sect. 5.2).

For the sake of simplicity, we adopted only 3 categories: CI YSOs, CII YSOs, and con-
taminants, which we also refer to as "others" in our tables. Doing so forced the network to
focus on the separation of the contaminant class from the YSOs, rather than between different
contamination classes. It can be seen as a simplification of the underlying classification if some
subclasses of contaminants are close to each other in the feature space, reducing the required
number of weights in the network. Therefore, we defined the output layer of our network with
3 neurons using a Softmax activation function, meaning that there was one neuron per class that
returned a membership probability as described in Section 4.9.1.

We chose not to use 2MASS, and therefore skipped the so-called "phase 2" of the G09
classification scheme. This is mainly motivated by the fact that it creates an artificial difference
in degree of refinement between objects that have a 2MASS detection and objects that does
not. Additionally, it creates several more classification paths that only contain very few objects,
which is much more difficult to constrain (highlited at several places in Sects. 6 and 9).
However, G09 also proposed a "phase 3" that uses the MIPS 24 µm band, and which might

80

5 Automatic identification of YSOs in infrared surveys

Figure 5.1: Selection of color-color and color-magnitude diagrams from our simplified multi-
step G09 classification. The data used in this figure correspond to the Orion labeled dataset
in Table 5.1. The contaminants, CII YSOs, and CI YSOs are shown in blue, green, and red,
respectively. They were plotted in that order and partly screen one another, as revealed by the
histograms in the side frames. The area of each histogram is normalized to one. In frame A,
some PAH galaxies are excluded. In frame B, leftover PAH galaxies are excluded based on
another criteria. It also shows the criteria of class II extraction that is in a later step. In frame C,
AGN are excluded. In frame D, Shocks and PAH aperture contaminants are excluded. It also
show the last criteria of class I extraction. In frame E, one of the criteria from the MIPS 24 µm
band is shown, that identifies reddened Class II in the previously classified Class I.

81

5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations

be useful for our classification. In this last phase, some objects that were misclassified in the
previous two phases are rebranded. Although this can raise difficulties, as discussed in Section
9.2, we used it in our analysis because it relies only on Spitzer data. Since MIPS 24 µm data
are only used to refine the classification, we did not exclude objects without detection in this
band. We only used it in phase 3 when it had an uncertainty σ24 < 0.2 mag. This additional
phase ensured that the features identified in the SED with the four IRAC bands were consistent
with longer wavelength data. It allowed: (i) to test the presence of a transition disk emission
in objects classified as field stars, rebranding them as class II, (ii) to test the presence of a
strong excess in this longer wavelength that is characteristic of deeply embedded class I objects,
potentially misclassified as AGNs or Shocks, (iii) to refine the distinction between class I and
II by testing whether the SED still rises at wavelengths longer than 8 µm for class I, otherwise
rebranding them as reddened class II. Those refinements explain the presence of objects beyond
the boundaries in almost all frames in Fig. 5.1. For example in frame B, some class II objects,
shown in green, are located behind the boundary at the bottom-left part in a region dominated
by more evolved field stars. In this figure, all the steps of this refinement are not shown, only the
criterion on reddened class II identification is illustrated in frame E. Our adapted classification
scheme was therefore composed of five bands (4 IRAC, 1 MIPS).

Finally, we stress that the G09 classification uses all the band uncertainties ([σ3.6], [σ4.5],
[σ5.8], [σ8], [σ24]) to construct complementary conditions on the separation between stellar
classes in all the phases. As an example, objects that satisfy the CI YSO condition but that have
a high uncertainty in the bands used in this condition will be classified as CII YSOs. These
uncertainties are therefore to be considered as direct input features of the classification. While
such measurements could be used in a more complex way with modern ANN architectures, the
present study focuses on using solely the G09 method as training object construction, forcing
us to use band uncertainties as required input features. In summary, our labeled dataset was
structured as a list of (input, target) pairs, one per point source, where the input was a vector
with 10 values ([3.6], [σ3.6], [4.5], [σ4.5], [5.8], [σ5.8], [8], [σ8], [24], [σ24]), and the target was
a vector of 3 values (P(CI), P(CII), P(Contaminant)). The input features are normalized over
the considered labeled dataset as described in Section 4.7.4. Here P() denotes the membership
probability normalized over the three neurons of the output layer. An alternative choice of input
space is discussed in Sect. 9.3.

5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations

We chose to use well-known and well constrained star forming regions, where YSO classifica-
tion was already performed using Spitzer data. Although we employed an approach made of
progressive steps by firstly drawing conclusions on one case before going to the next one, we
summarize here all the datasets that were used. Therefore, in the following section we detail
how we created the corresponding labeled dataset and what was the optimal proportions along
with the network parameters. Additional information on how these parameters were found for
each individual case are discussed in Section 6. This organization allows us to group infor-
mation to ease the comparison and to better reflect the global approach while summarizing the
dataset construction in one place.

The main idea was to test the learning process on individual regions, and then compare it
with various combinations of these regions. It is expected that, due to the increased diversity
in the training set, the combination of regions should improve the generalization capacity of
trained network and allows predictions on new regions. We selected regions analyzed in three

82

5 Automatic identification of YSOs in infrared surveys

Table 5.1: Results of our simplified G09 method for our various datasets.

Dataset Pre-selection Detailed contaminants Labeled classes

Total Selected Gal. AGNs Shocks PAHs Stars CI YSOs CII YSOs Others

Orion 298405 19114 407 1141 28 87 14903 324 2224 16566

NGC 2264 10454 7789 114 250 6 1 6893 90 435 7264

Combined 308859 26903 521 1391 34 88 21796 414 2659 23830

1 kpc* 2548 2171 1 57 0 1 3 370 1735 67

Full 1 kpc 311407 29074 522 1448 34 89 21799 784 4396 23897

Notes. The third group of columns gives the labels used in the learning phase. The last column
is the sum of the columns in the "Detailed contaminants" group. *The 1 kpc sample contains
only pre-identified YSOs candidates. Still, we classified some of them as contaminants because
of the simplifications in our method.

studies, all using the original G09 method. However, some differences remain between the
parameters adopted by the authors (e.g. the uncertainty cuts). Using our simplified G09 method,
as presented in Section 5.1, allowed us not only to base our study solely on Spitzer data, but
also to build a homogeneous dataset with the exact same criteria for all regions. We present
here the three selected regions and the corresponding catalogs:

• Orion: The first region we used was the Orion molecular cloud with the dataset from
Megeath et al. (2012) (Figs. 5.2 and 5.4). This is the most studied star forming region, due to
its relative proximity (∼ 420 pc), and because of its large mass (above 105M�) and size (more
than ∼ 50deg2 on the sky plane). The presence of several young stellar clusters, including the
massive Trapezium cluster, makes it a bright target across the whole electromagnetic spectra
and therefore an ideal target for most interstellar medium topics (for example, in massive star
formation: Rivilla et al. (2013), in low-mass star formation: Nutter & Ward-Thompson (2007),
in filament dynamics: Stutz & Gould (2016), in photodissociation regions: Goicoechea et al.
(2016), in astrochemistry: Crockett et al. (2014), etc.). It is composed of several parts in diverse
evolutionary stages: Orion A is the most actively star forming part with a complex star forma-
tion history with various episodes from 12 Myr ago to this day (Brown et al. 1994); Orion B is
in an earlier evolutionary stage, and is mostly quiescent in spite of a few well-known reflection
nebulea (Pety et al. 2017); and the Λ Orionis shell is a spherical or toroidal structure shaped
by the massive O-type star Λ Orionis and a past supernova explosion (Dolan & Mathieu 2001),
where the net effect of star formation feedback is debated (Yi et al. 2018, and reference therein).
The corresponding catalog covers only Orion A and B and contains all the elements we needed
with the four IRAC bands and the MIPS 24 µm band and relies on the G09 method. The authors
provide the full point source catalog they used to perform their YSO candidate extraction. This
is one of the most important element in our study, since the network needs to see both the YSOs
and the other types of objects to be able to learn the differences between them.

• NGC 2264: For the second dataset, we used the catalog by Rapson et al. (2014) (Figs. 5.3
and 5.4), who analyzed Spitzer observations of NGC 2264 in the Mon OB1 region using the
same classification scheme. This is also one of the largest star-forming region in the solar
neighborhood (∼ 4×104 M�, with an extent of ∼ 50 pc, Montillaud et al. 2019b, and references
therein) while being a bit more distant from us ∼ 723 pc (Cantat-Gaudin et al. 2018). This region

83

5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations

has sustained an active star formation for at least the last 5 Myr near the center of NGC 2264
(Dahm & Simon 2005) that has occurred sequentially (Buckner et al. 2020), and a secondary
convergence center seems to be currently forming in the northern edge of the cluster (around
δ = 10◦30′ Montillaud et al. 2019b, also visible in Fig. 5.3 as a group of Class0/I YSOs).
We note that, in contrast to the Orion dataset, this one does not provide the full point-source
catalog, but a preprocessed object list compiled after performing band selection and magnitude
uncertainty cuts. However, it should not affect the selection, since we used the exact same
uncertainty cuts as them.

• Combined: We then defined a dataset that is the combination of the previous two catalogs,
which we call the "combined" dataset. We used it to test the impact of combining different
star-forming regions in the training process, because distance, environment, and star formation
history can impact the statistical distributions of YSOs in CMDs.

• Full 1 kpc: We pushed this idea further by defining an additional "1 kpc" catalog, directly
from Gutermuth et al. (2009) (Fig. 5.5). It contains a census of the brightest star forming regions
closer than 1 kpc, excluding both Orion and NGC 2264. However, this catalog only contains the
extracted YSO candidates and not the original point source catalog with the corresponding con-
taminants. This is an important drawback, since it cannot be used to add diversity information
in this category. Yet, it can be used to increase the number of class I and II and increase their
respective diversity. We refer to the dataset that combines the three previous datasets Orion,
NGC 2264 and 1 kpc, as the "full 1 kpc" dataset.

This first classification provided various labeled datasets, that were used as targets for the
learning process. The detailed distribution of the resulting classes for all our datasets is pre-
sented in a common table (Table 5.1), in order to ease their comparison. This table also shows
the subclass distribution of the contaminants, as obtained with our modified G09 methods.

We examine here the discrepancies between our results and those provided in the respec-
tive publications. In the case of Orion, merging their various subclasses, Megeath et al. (2012)
found 488 class I and 2991 class II, no details being provided for the distribution of contaminant
subclasses. This is consistent with our simplified G09 method, considering that the absence of
the 2MASS phase prevented us from recovering objects that lacked detection in some IRAC
bands, and that the authors also applied additional customized YSO identification steps. For the
NGC 2264 region, Rapson et al. (2014) report 308 sources that present an IR excess, merging
class 0/I, II and transition disks. However, they used more conservative criteria than in the G09
method to further limit the contamination, which partly explains why our sample of YSOs is
larger in this region. The authors do not provide all the intermediate numbers, but they state that
they excluded 5952 contaminant stars from the Mon OB1 region, a number roughly consistent
with our own estimate (6893). Finally, the 1 kpc dataset only contains class I and II objects,
which means that every object that we classified as contaminant is a direct discrepancy between
the two classifications. This is again due to the absence of some refinement steps in our sim-
plified G09 method. For the complete catalog containing 36 individual star-forming regions,
Gutermuth et al. (2009) report 472 class I and 2076 class II extracted, which is also consistent
with our adapted method that extract 370 class I and 1735 Class II, taking into account the ab-
sence of the 2MASS phase.

From these results, the strong imbalance between the 3 labeled classes is striking. We
detailed some of the difficulties that imbalance learning raises in Section 4.9.3. This aspect will
be described and carefully handled in the following section, as it proved to have a very strong
impact on our results (Sect. 6.1).

84

5 Automatic identification of YSOs in infrared surveys

Figure 5.2: Spitzer coverage of the Orion cloud. The grayscale is an extinction map of the
region obtained using the 2MASS point source catalog. Left: in green, the fields surveyed with
IRAC. Right: in green and red, the fields surveyed with MIPS. Adapted from Gutermuth et al.
(2009).

Figure 5.3: Spitzer Coverage of Mon OB1 East. The grayscale is the inversion of the observed
4.5 µm band. Left: the red boxes define NGC 2264. The magenta boxes were used to estimate
the field stars amount in the original study. Right: retrieved class 0/I YSOs are in red, class
II YSOs are in green and "transition disks" are in blue, from the original study. Adapted from
Rapson et al. (2014).

85

5.2 Labeled datasets in Orion, NGC 2264, 1 kpc and combinations

Orion NGC 2264

Figure 5.4: Orion and NGC 2264 as observed using the colored AllWISE data (Red, Green,
Blue correspond to W4, W2, W1, respectively).

-150° -120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

R.A.-75°
-60°

-45°
-30°

-15°

0°

15°

30°
45°

60°
75°

De
c.

Aitoff projection of the <1kpc regions (ICRS)

0

255

510

765

1020

1275

1530

Di
st

an
ce

 (p
c)

Figure 5.5: Distribution of the < 1 kpc regions from the corresponding catalog on the sky using
an Aitoff projection with ICRS frame. The colors indicate the estimated distance of the regions,
based on Gutermuth et al. (2009)

86

5 Automatic identification of YSOs in infrared surveys

Figure 5.6: Rebalancing process illustrated on the Combined dataset. The orange color shows
the number of objects in the complete dataset, the blue color represents the remaining objects
after exclusion of the test set in observational proportion using θ = 0.2, and the green color
represents the training objects using the γi corresponding to this case. The vertical dashed black
line is the 1 − θ value corresponding to CI, which is the γi = 1 reference.

5.3 Construction of the test, valid and train dataset
As described in Section 4.7.6, the learning process requires not only a training dataset to up-
date the weights, but also a test set and a validation set, which contain sources that were not
shown to the network during the learning process. This provides a criteria to stop the learning
process. The class proportions in those datasets can be kept as in the labeled dataset or can be
rebalanced to have an even number of objects per class. However, our sample suffers from two
limitations: its small size and its strong imbalance. To optimize the quality of our results, we
needed to carefully define our training and test datasets. Since one of our class of interest (CI)
is represented by a relatively small number of objects, the efficiency of the training strongly
depends on how many of them we kept in the training sample. Therefore, we chose to adopt
the strategy where the same dataset is used for both validation and test steps (Sect. 4.7.6). It
remains efficient to track overfitting, but it increases the risk to stop the training in a state that
is abnormally favorable for the test set. As mentioned in Section 4.7.6, discrepancies between
results on the training and test datasets can be used to diagnose over-training and will be de-
tailed for the present application in Section 6.1. Even with this strategy, it remains that the
labeled dataset has only few objects to be shared between the training and the test set for some
subclasses, considering the expected complexity of the classification.

In addition to the previous point, to evaluate the results quality, it was necessary for the test
set to be representative of the actual problem. As before, this is difficult mainly because our case
study is strongly imbalanced. Therefore, we needed to keep "observational proportions" for the
test set as discussed in Section 4.9.3. We defined a fraction θ of objects from the labeled dataset
that was taken to form the test dataset. This selection was made independently for each of the
seven subclasses provided by the modified G09 classification. It ensured that the proportions
were respected even for highly diluted classes of objects (e.g. for Shocks). The effect of taking
such proportions is discussed for our various results in Section 6.

87

5.3 Construction of the test, valid and train dataset

In contrast, the training set does not need to have observational proportions. It needs to
have more numerous objects from the classes that have a greater intrinsic diversity and populate
a larger volume in the input parameter space. It is also necessary to be more accurate on the
most abundant classes, since even a small error on them induces a large contamination of the
diluted classes (Sect. 4.9.3). We chose to scale the number of objects from each class to the
number of CI YSOs. The choice of this class is motivated by the fact that the identification of
CI YSOs is missing in several other YSO identification methods that do not use surveys with
enough sensitivity to detect them. Therefore, we want this class to be predicted with the highest
achievable quality. Additionally, they are rare in our labeled dataset, mainly due to the fact that
they are much fainter. This induces that we wanted to have the maximum number of them in our
training sample while also having a fine control over the degree of dilution of this class against
the others. Consequently, the scaling is performed as follows. We shared all the CI objects
between the training and the test samples as fixed by the fraction θ, that is:

N train
CI = (1 − θ) × N tot

CI and (5.1)

N test
CI = θ × N tot

CI , (5.2)

respectively, where N tot
CI is the total number of CI objects. Then, we defined a new hyperparam-

eter, the factor γi, as the ratio between the number of selected objects from a given subclass
N train

i and the number N train
CI of class I YSOs in the same dataset:

γi =
N train

i

N train
CI

. (5.3)

If N train
i were computed directly from this formula, it may exceed (1−θ)×N tot

i in some cases,
a situation incompatible with keeping N test

CI = θ×N tot
CI in the test set. Thus, we limited the values

of N train
i as follows:

N train
i = min

((
γi × (1 − θ) × N tot

CI
)
,
(
(1 − θ) × N tot

i
))
, (5.4)

where the values of the γi factors were determined manually by trying to optimize the results on
each training set. We note that for the most populated classes, this approach implies that only
part of the sample was used to build the training and test sets. As discussed below, this was a
motivation to repeat the training with various random selections of objects, and thus assess the
impact of this random selection on the results.

The adopted values of θ, γi, and the corresponding numbers of objects in the training sample
are given in Table 5.2 for each dataset, while Figure 5.6 shows a graphical representation of the
rebalancing process for the Combined dataset. The figure compares the sizes of the complete
labeled dataset, the training set, and the test set. Like for the other parameters the choice of γi

values for each dataset was the result of an exploration and of the analysis of the results given
for each case. The table shows the general trend that with larger labeled datasets, we can use
smaller values of θ because it corresponds to a large enough number of objects in the associated
test set. In addition, the number of objects in the training set of NGC 2264 is significantly
smaller than in the other datasets. The sample also lacks some subclasses of contaminants,
mainly due to the much smaller sky coverage of the region when compared to Orion, which
impacted the results for the associated training. The fine tuning of the γi values is discussed
for each region in Section 6 and aims at maximizing the precision for CI, while keeping a large

88

5 Automatic identification of YSOs in infrared surveys

Table 5.2: Composition of the training and test datasets for each labeled dataset.

CI CII Gal. AGNs Shocks PAHs Stars Total

Orion - θ = 0.3

Test: 97 667 122 342 8 26 4470 5732

Train:
γi 1.0 3.35 0.6 1.3 0.1 0.3 4.0
Ni 226 757 135 293 19 60 904 2394

NGC 2264 - θ = 0.3

Test: 27 130 34 75 1 0 2067 2334

Train:
γi 1.0 2.5 0.3 0.6 0.1 0.3 3.5
Ni 62 155 18 37 4 0 217 493

Combined - θ = 0.2

Test: 82 531 104 278 6 17 4359 5377

Train:
γi 1.0 3.45 0.7 1.6 0.1 0.3 3.8
Ni 331 1141 231 529 27 70 1257 3586

Full 1 kpc - θ = 0.2

Test**: 82 531 104 278 6 17 4359 5377

Train:
γi 1.0/1.0* 3.3/3.0* 1.0 1.4 0.1 0.3 8.0
Ni 331/331* 1092/993* 331 463 27 70 2648 6286

Notes. *The first and second values of γi are for YSOs from the Combined and 1 kpc datasets,
respectively.
**The 1 kpc dataset does not add contaminants, therefore the Full 1 kpc test set is the same as
the Combined test dataset to keep realistic observational proportions.

enough value in recall (ideally > 90% for both of them), and a good precision on CII as well.
This choice strongly impacts the tuning of the γi values, since they directly represent the em-
phasis given to a class against the others during the training phase, hence biasing the network
toward the class that needs the most representative strength. This will slightly lower the quality
of objects in other classes but always to a very acceptable extent. Moreover, it is still possible
to isolate objects with the best classification reliability using the probability output to overcome
this effect, as discussed in Section 4.10.2. One last point is that the exploration of the optimal
proportion of each class in the training dataset allows one to account for intrinsicly more com-
plicated distributions in the input feature space for certain classes. Some subclasses might be
very easy to isolate since they are linearly separable from the rest of the problem. Therefore,
reducing the number of objects in this subclass will mostly conserve their quality but will free
the space for other, more difficult, objects and will also reduce the dilution of other rare sub-
classes. This point was evoked in Section 4.9.3 and will also be covered more deeply in the
results (Sect. 6)

89

5.4 Network architecture and parameters

Finally, to ensure that our results are statistically robust, each training was repeated several
times with different random selections of the testing and training objects based on the θ and γi

factors. This allowed us to estimate the variability of our results as discussed during the result
analysis in Section 6. We checked these variability after each change in any of the hyperpa-
rameters. In the case of subclasses with many objects, some objects were included neither in
the training nor in the test set. This ensured that the random selection could pick up various
combinations of them at each training. In contrast, in the case of the rare subclasses, since
they are entirely included in either the training or the test set, it is more difficult to ensure a
large diversity in their selection to test the stability against selection. For each result presented
in Section 6, we took care to also dissociate this effect from the one induced by the random
initialization of weights by doing several trainings with the same data selection, which is an
indication of the intrinsic stability of the network for a specific set of hyperparameters.

We acknowledge here that our approach to re-balancing might not be optimum. We have
considered other approaches for this task like various data augmentation methods, setting a
different error cost for each class, having some priors in the class distribution, etc. Our method
based on γi values still has the advantage of simplicity of implementation and it solely relies
on observed data. However, it has the major flaw of not using a significant part of the labeled
dataset.

5.4 Network architecture and parameters
We adjusted most of the network hyperparameters manually to find appropriate values for our
problem. To ease the research of optimal values, we started with values from general recipes.
To start, we defined the number of neurons in the hidden layer. The number of neurons can be
roughly estimated with the idea that each neuron can be seen as a continuous linear separation
in the input feature space (Sect. 4.7.1). Based on Figure 5.1 at least n = 10 neurons should be
necessary, since this figure does not represent all the possible combinations of inputs. We then
progressively raised the number of neurons and tested if the overall quality of the classification
was improving as defined in the previous Section 5.3, looking at CI and CII recall and preci-
sion. In most cases, it improved continuously and then fluctuated around a maximum value.
The corresponding number of neurons and the maximum value can vary with the other network
hyperparameters. The chosen number of neurons is then the result of a joint optimization of the
different parameters. We observed that, depending on the other parameters, the average network
reached its maximum value for n ≥ 15 hidden neurons when trained on Orion. However, the
network showed better stability with a slightly larger value. We adopted n = 20 hidden neurons
for almost all the datasets, and increased it to n = 30 for the largest dataset, because it slightly
improved the results in this case (Table 5.3). Increasing too much this number could lead to less
stability and increases the computation time. The corresponding network architecture for this
example is illustrated in Figure 5.7. It shows all the input features described in Section 5.1, the
"large" hidden layer with 20 to 30 sigmoid neurons and the 3 Softmax probability outputs.

The optimum number of neurons and the maximum quality of the classification also depends
on the number of objects in the training dataset. As discussed in Section 4.7.1, we checked if
we satisfy the recommended rule of having 10 times more training objects that weights in the
network. In our case, including the bias nodes, we would need (m+1)×n+(n+1)×o×10 objects
in our training set, with the same notations as in Section 4.5. This gives us a minimum of 2830
objects in the whole training set using our network structure with n = 20, assuming a balanced
distribution among the output classes. As shown in Table 5.2, some of our training samples are
too small for the class I YSOs and critically small for various subclasses of contaminants. Still,

90

5 Automatic identification of YSOs in infrared surveys

…
…

…
…

…
…

[3.6]

σ [3.6]

[4.5]

[5.8]

σ [4.5] CI

Oth.

n = 20+

−1
−1

σ [5.8]

[8.0]

σ [8.0]

[24]

σ [24]

..
.

..
.

CII

..
.

Example

0.87

0.12

0.01

Figure 5.7: Illustration of the ANN actually used for the YSO classification. The light dots
with blue border are input nodes representing each feature and the necessary bias nodes, the
black dots are hidden neurons with sigmoid activation, and the red dots are the output neurons
with a probabilistic Softmax activation. The black lines represent the linking weights. Only
part of the hidden neurons and weights are represented to increase readability.

each class does not get the same number of neurons from the network. As we already stated, we
expect some classes to have a less complex distribution in the parameter space, meaning that
they can be represented by a smaller number of weights, therefore with less training examples.
The extra representative strength can then be used to better represent more complex classes that
may be more abundant. Thus, it is a matter of balance between having a sufficient amount of
neurons to properly describe our problem and the maximum number of available data.

Our datasets were individually normalized in an interval of −1 to 1 as described in Sec-
tion 4.7.4. Therefore, we set the steepness β of the sigmoid activation of the hidden neurons to
β = 1, which worked well with the adopted normalization and our weight initialization that is
the same as in Section 4.7.3. Regarding the gradient descent scheme (Sect. 4.7.7), all methods
were compared at various steps of the study, but none has been outperforming significantly the
others in terms of reached best prediction. Then, regarding the actual computation time neces-
sary to converge we selected the full batch method.

Concerning the computational performance, it is worth noting that at the moment of the
described application, all our computations were made using a much simpler precursor of
CIANNA that also was GPU accelerated. At that time we used a now 7 years old NVIDA

91

5.4 Network architecture and parameters

Table 5.3: Non structural network hyperparameter values used in training for each dataset.

Orion NGC 2264 Combined Full 1 kpc

Train size 2394 493 3586 7476

η 3 × 10−5 2 × 10−5 4 × 10−5 8 × 10−5

α 0.7 0.6 0.6 0.8
n 20 20 20 30
ne 5000 5000 5000 3000

Notes. The size of the corresponding training set is put for comparison. η is the learning rate,
α the momentum, n the number of neurons in the hidden layer, and ne the number of epochs
between two control steps.

GTX 780 which is a non-professional GPU. Still, it was able to train our networks in about
10-15 minutes using the batch formalism, while our CPU parallel implementation using Open-
BLAS and OpenMP on an intel 3770k (4C/8T, 3.5 Ghz) required approximately 1h. These
results are for roughly 1.3 × 106 full epochs. This is consistent with a rough estimate of 537
GFLOPS for our overclocked 3770k against 4.93 TFLOPS for our version of the GTX 780
(both for FP32). This is a nice example of the aspects discusses in Section 4.8, showing that
GPUs are very efficient to perform such tasks. As a matter of fact, this GPU draws up to 250
W of power while the 3770k CPU is rated for 77W, which is certainly vastly underestimated
considering our 4.2GHz all core overclock. Therefore, while having a 3.24 times higher power
usage, the GPU has a raw compute capability 9.18 times higher. To end the comparison, we note
that the used framework at that time was much more naive than our current version of CIANNA
and was using an old CUDA version (<10.0) that did not take advantage of some kernel la-
tency improvements of the subsequent versions, while it would have allow for mini-batch to
efficiently converge with less epochs, i.e less raw computations. Also, while modern GPU now
have a compute power above 15 TFLOPS in FP32, their power consumption is very similar. In
contrast, the modern high-end CPUs power consumption tends to increase (up to 250 W) fol-
lowing their higher core count. Also we did not account for any modern hardware ANN specific
use in this comparison (Sect. 4.8.4), which would have further reinforce the advantage of GPUs.

More practically, the learning rates we finally adopted are in the range η = 3 − 8 × 10−5

and used momentum ranging from α = 0.6 to α = 0.8 depending on the dataset, as shown in
Table 5.3. We note that during training and in contrast with what is described in Section 4.7.7,
we summed the weight update contributions from each object in the training set as in Rumel-
hart et al. (1986a) over a batch, instead of averaging them as, for example, in Glorot & Bengio
(2010). This implies that our learning rate must be accordingly small when using large datasets.
We observed that, for this specific study, the learning rate could instead be progressively in-
creased when the training dataset was larger. This indicates that, in small training sets, the
learning process is dominated by the lack of constraints, causing a less stable value of conver-
gence. This translates into a convergence region in the weight space that contains numerous
narrow minima due to the relatively larger granularity of the objects in a smaller dataset. The
network can only properly resolve it with a smaller learning rate and will be less capable of
generalization. This is an expected issue, because we intentionally included small datasets in
the analysis to assess the limits of the method with few objects.

92

5 Automatic identification of YSOs in infrared surveys

Finally, one less important hyperparameter is the number of epochs between two monitoring
steps which was set from ne = 3000 to ne = 5000. It defines at which frequency the network
state is saved and checked, leaving the opportunity to decrease the learning rate η if necessary.

5.5 Convergence criteria
Since training the network is an iterative process, a convergence criteria must be adopted. In
principle, this criteria should enable one to identify an iteration where the training has suffi-
ciently converged for the network to capture the information in the training sample, but is not
yet subject to over-training, as stated in Section 4.7.6. However, in our case this global error
is affected by the proportions in the training sample and does not necessarily reflect the under-
lying convergence of each subclass. Our approach to this issue was to let the network learn
for an obviously unnecessary amount of steps and regularly save the state of the network. This
allowed us to better monitor the long term behavior of the error, and to compare the confusion
matrices at regular steps. In most cases, the error of the training and test sets both converged
to a stable value and stayed there for many steps before the second one started to rise. During
this apparently stable moment, the prediction quality of the classes oscillated, switching the
classes that get the most representativity strength from the network. Because we want to put the
emphasis on CI YSOs, we then manually selected a step that was near the maximum value for
CI YSO precision, with a special attention to avoid the ones that would be too unfavorable to
CII YSOs.

As one would expected, we observed that the convergence step changed significantly with
the network weight random initialization, even with the exact same dataset and network, rang-
ing from 100 to more than 1000, where each step corresponds to several thousands epochs
(Table 5.3). Most of the time, the error plateau lasted around 100 steps. We emphasize that the
number of steps needed to converge has no consequences on the quality of the results; it only
reflects the length of the particular trajectory followed by the network during the training phase.

93

6 Subsequent application to multiple star-forming regions
This section presents the results of our YSO classification using ANN, obtained for the various
labeled datasets described in Section 5. To ease the reading of this section, we summarize all the
cases in Table 6.1. This section also includes some analysis of each case and some comparison
of the results that allows to explain the motivations behind our choice of parameters.

6.1 First training on one specific region: the Orion molecular cloud 95
6.1.1 Hyper-parameter and training proportion evaluation 95
6.1.2 Main result . 96
6.1.3 Test on a balanced dataset . 96
6.1.4 Prediction stability . 97
6.1.5 Detailed sub-classes distribution . 97
6.1.6 Full dataset result . 98

6.2 Effect of the selected region: training using NGC 2264 99
6.2.1 Main result . 99
6.2.2 Small dataset issues . 100
6.2.3 Prediction stability . 100
6.2.4 Full dataset result . 101

6.3 Generalization capacity: crossed application 102
6.3.1 Cross forward considerations . 102
6.3.2 O-N main result . 103
6.3.3 Detailed feature space analysis for O-N 104
6.3.4 N-O main result . 105
6.3.5 Detailed feature space analysis for N-O 106

6.4 Improving diversity: combined training . 107
6.4.1 Hyper-parameter and training proportion changes 108
6.4.2 Main result . 108
6.4.3 Generalization capacity evaluation . 109
6.4.4 Full dataset result and analysis of rare sub-classes prediction 110

6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc) 111
6.5.1 Hyper-parameter and training proportion changes 111
6.5.2 Main result . 111
6.5.3 More detailed analysis . 112
6.5.4 Full dataset result . 113
6.5.5 Misclassified objects distribution . 113
6.5.6 Forward of the trained network on Orion and NGC 2264 114

6.6 Orion and NGC 2264 YSO candidates distribution maps 118

94

6 Subsequent application to multiple star-forming regions

Table 6.1: List of case studies regarding the dataset used to train the network and the dataset to
which it was applied to provide predictions.

Forward dataset
Tr

ai
ni

ng
da

ta
se

t Orion NGC 2264 Combined Full 1 kpc

Orion O-O O-N*

NGC 2264 N-O* N-N

Combined C-C

Full 1 kpc F-O* F-N* F-C

Notes. *These cases were only forwarded on the full corresponding dataset with no need for a
test set. There was no forward on the full 1 kpc dataset since, as a combination of a complete
catalog and a YSO-only catalog, it is not in observational proportions.

6.1 First training on one specific region: the Orion molecular cloud

In this section, we consider the case where both the training and forward datasets were built from
the Orion labeled dataset, hereafter denoted the "O-O" case. This first application is expected
to draw a baseline of results on the simplest case possible, since Orion is the star-forming
region of our sample that contains the most YSOs.

6.1.1 Hyper-parameter and training proportion evaluation

The network hyperparameters used for Orion are described in the previous Section 5 and Ta-
ble 5.3. The resulting confusion matrix is shown in Table 6.2 using the test set in observational
proportions from Table 5.2. The optimal γi factors found for Orion show a stronger importance
of the CII YSOs (γCII = 3.35) and of the Stars subclass (γStars = 4.0) than for any other subclass
(γi . 1). In contrast, the optimal values for Shocks and PAHs are saturated in the sense that in
Eq. (5.4), N train

i = (1 − θ) × N tot
i , but they appeared to have a negligible impact on the classifica-

tion quality in this case. Galaxies and PAHs appeared to be easily classified with a rather small
number of them in the training sample. This is convenient since adding too many objects of any
class hampers the capacity of the network to represent CI objects, i.e. the most diluted class
of interest, in the network, degrading the reliability of their identification. Therefore, Stars and
CII objects could be well represented with a large fraction of them in the training sample, still
limiting their number to avoid an excessive dilution of CI YSOs (Sect. 4.9.3).

We note that we have explored different values for the θ parameter. It revealed that the net-
work predictions improve continuously when increasing the number of objects in the training
sample. However, to keep enough objects in the test dataset, we had to limit θ to 0.3 (Table 5.2).
The only classes for which the number of objects in the training sample is limited by the θ value
rather than their respective γi values are CI YSO, Shocks and PAHs. Since Shocks and PAHs
are rare in the observational proportions, they are unlikely to have a dominant impact on the
prediction quality; we discuss more deeply the results for these rare subclasses in Section 6.4.4.
This leads to the outcome that the results on Orion are currently mainly limited by the number
of CI YSOs, because their dilution prevents the use of more objects of the other subclasses for
which we have numerous examples.

95

6.1 First training on one specific region: the Orion molecular cloud

Table 6.2: Confusion matrix for the O-O case for a typical run.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 88 4 5 90.7%
CII YSOs 7 651 9 97.6%
Others 11 58 4899 98.6%

Precision 83.0% 91.3% 99.7% 98.4%

Table 6.3: Subclass distribution for the O-O case.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 88 7 1 2 3 3 2
CII YSOs 4 651 5 0 2 4 47
Others 5 9 116 340 3 19 4421

6.1.2 Main result

The global accuracy of this case is 98.4%, but the confusion matrix (Table 6.2) shows that this
apparently good accuracy is unevenly distributed between the three classes. The best repre-
sented class is the contaminant class, with an excellent precision of 99.7% and a very good
recall of 98.6%. The results are slightly less satisfying for the two classes of interest, with
recalls of 90.7% and 97.6%, and precisions of 83.0% and 91.3% for the CI and CII YSOs, re-
spectively. In spite of their very good recall, due to their widely dominant number, objects from
the Other class are the major contaminants of both CI and CII YSOs, with 11 out of 18, and 58
out of 62 contaminants, respectively. Therefore, improving the relatively low precision of CI
and CII objects mainly requires to better classify the Other objects. In addition, less abundant
classes are more vulnerable to contamination. This is well illustrated by the fact that the 7 CII
YSOs misclassified as CI YSOs account for a loss of 7% in precision for CI objects, while the
9 CII YSOs misclassified as Others account for a loss of only 0.2% in the Others precision.
Those properties are typical of classification problems with a diluted class of interest, where
it is essential to compute the confusion matrix using observational proportions. Computing it
from a balanced forward sample would have led to apparently excellent results, which would
greatly overestimate the quality genuinely obtained in a real use case. Moreover, it illustrates
the necessity of a high γi value for dominant classes regardless of their interest (e.g Stars), as
we need to maximize the recall of these classes to enhance the precision of the diluted ones.

6.1.3 Test on a balanced dataset

To illustrate the interest of selecting our training proportions with the θ and γi factors, we made
a test with a balanced training set, where all three classes were represented by an equal num-
ber of objects. The result of this test for a typical training run is provided in Table 6.4. The
best we could achieve this way was not more than ∼ 55% precision on CI YSOs, showed in
red in our table, and ∼ 87% for CII YSOs, which is considerably less than the results with the
rebalanced dataset. This was mostly due to the small size of the training sample (681 objects

96

6 Subsequent application to multiple star-forming regions

Table 6.4: Confusion matrix for a balanced training on the O-O case for a typical run.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 94 3 0 96.9%
CII YSOs 28 613 26 91.9%
Others 50 93 4826 97.1%

Precision 54.7% 86.5% 99.5% 96.5%

with θ = 0.3), which was constrained by the less abundant class, and to the poor sampling
of the Other class compared to its great diversity. Especially with only 227 contaminants it is
impossible to represent all the subclasses. We could also have attempted a balanced training
with more output classes in our network definition, to account for this diversity, but it results in
other issues, CI recall getting way too low regarding our expectations. In contrast, when using
our more complex sample definition, despite the reduced proportion of YSOs in the training
sample, the precision and recall quantities for both CI and CII remained above 80% and 90%,
respectively. This means that we found an appropriate balance between the representativity of
each class and their dilution in the training sample.

6.1.4 Prediction stability

As discussed in Section 5.3, we tested the stability of those results regarding (i) the initial
weight values using the exact same training dataset, and (ii) the random selection of objects
in the training and test set. For point (i), we found that in Orion, the weight initialization has
a weak impact with approximately ±0.5% dispersion in almost all the quality estimators. For
point (ii), we found the dispersion to average around ±1% for the recall of YSO classes. Con-
taminants were found to be more stable with a recall dispersion under ±0.5%. Regarding the
precision value, there is more instability for the CI YSOs, because they are weakly represented
in the test set and one misclassified object changes the precision value by typically 1%. Overall,
we observed values ranging from 77% to 83% for the CI YSOs precision. For the better repre-
sented classes, we obtained much more stable values with dispersions of ±0.5 to ±1% on class
II, and less than ±0.5% on Other objects. This relative stability is strongly related to the proper
balance between classes, controlled by the γi parameters, since strong variations between runs
imply that selection effects are important, and that there are not enough objects to represent the
input parameter space properly.

6.1.5 Detailed sub-classes distribution

We also looked at the detailed distribution of classified objects regarding their subclasses from
the labeled dataset. These results are shown for Orion in Table 6.3. It is particularly useful to
detail the distribution of contaminants across the three network output classes. For CI YSOs,
the contamination appears to originate evenly from various subclasses, while for CII there is a
strong contamination from non-YSO stars, though this represents only a small fraction (∼ 1%)
of the Stars population. The distribution of Other objects among the subclasses is very similar
to the original one (Table 5.1). Interestingly, the Shocks subclass is evenly scattered across the

97

6.1 First training on one specific region: the Orion molecular cloud

Table 6.5: Confusion matrix for the O-O case forwarded on the full dataset.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 305 11 8 94.1%
CII YSOs 34 2157 33 97.0%
Others 34 201 16331 98.6%

Precision 81.8% 91.1% 99.7% 98.3%

Table 6.6: Subclass distribution for the O-O case forwarded on the full dataset.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 305 34 2 11 11 7 3
CII YSOs 11 2157 10 9 9 18 155
Others 8 33 395 1121 8 62 14745

three output classes, which we interpret as a failure by the network to find a proper general-
ization for these objects. More generally, Table 6.3 shows that the classes that are sufficiently
represented in the training set like AGNs or Stars are well classified, while the Galaxies, Shocks
and PAHs are less well predicted. This is directly related to the fact that the training dataset does
not fully covers their respective volume in the input parameter space or to the fact that they are
too diluted in the dataset. Additionally, Stars and Galaxies mainly contaminate the CII class.
This is a direct consequence of the proximity of theses classes in the input parameter space, as
can be seen in Figure 5.1.

6.1.6 Full dataset result

To circumvent the limitations due to the small size of our test set, we also applied our network
to the complete Orion dataset. The corresponding confusion matrix is in Table 6.5 and the
associated subclass distribution is in Table 6.6. It may be considered to be a risky practice,
because it includes objects from the training set that could be over-fitted, so it should not be
used alone to analyze the results. Here, we used it jointly with the results on the test set as an
additional over-fitting test. If the classes are well constrained, then the confusion matrix should
be stable when switching from the test to the complete dataset. For Orion, we see a strong
consistency between Tables 6.2 and 6.5 for the Other and CII classes, both in terms of recall
and precision. For CI YSOs, the recall has increased by 3.4%, and the precision has decreased
by 1.2%. These variations are of the same order as the variability observed when changing the
training set random selection, indicating that over-fitting is unlikely here. If there is over-fitting
it should be weak and restricted to CI YSOs. Therefore, the results obtained from the complete
Orion dataset appear to be reliable enough to take advantage of their greater statistics. Table 6.5
gives slightly more information than Table 6.2, and mostly confirms the previous conclusions on
the contamination between classes. Table 6.6 provides further insight. AGNs, which seemed to
be almost perfectly classified, are revealed to be misclassified as YSOs in 1.8% of cases. It also
shows that the missed AGNs are equally distributed across the CI and CII YSO classes. Shocks
are still evenly spread across the three output classes. Regarding PAHs, Table 6.6 reveals that
there is more confusion with the CII YSOs than with the CI YSOs.

98

6 Subsequent application to multiple star-forming regions

Table 6.7: Confusion matrix for the N-N case for a typical run.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 26 1 0 96.3%
CII YSOs 1 121 8 93.1%
Others 2 31 2144 98.5%

Precision 89.7% 79.1% 99.6% 98.2%

Table 6.8: Subclass distribution for the N-N case.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 26 1 0 2 0 0 0
CII YSOs 1 121 4 5 1 0 21
Others 0 8 30 68 0 0 2046

6.2 Effect of the selected region: training using NGC 2264

After having established base results using Orion, we wanted to test if the learning process
could be performed on another region. As Orion is the largest star-forming region of our
sample, it implies selecting a region with less YSOs, which was expected to have a strong im-
pact on the results. Training on an individual region is very limited as they are very few to
have a sufficient amount of stars. However, we wanted to have two distinct one-region cases
in order to ease the comparison of the two, and to assess the presence of region specific features.

6.2.1 Main result

For this, we used the training and forward datasets for NGC 2264 as described in Table 5.2 with
the corresponding hyperparameters (Table 5.3). The results for this region alone, obtained by
a forward on the test set, are shown in Table 6.7, with the subclass distribution in Table 6.8.
We refer to this case as the N-N case. The major differences with Orion are expected to come
from the differences in input parameter space coverage and from the different proportions of
each subclass. This N-N case is also useful to see how difficult it is to train our network with a
small dataset. We notice that the recall and precision of CI YSOs are greater (96.3% and 89.7%,
respectively) than in Orion, but the corresponding number of objects is too small to draw firm
conclusions. For CII YSOs, the recall and precision are lesser than in Orion by approximately
4% and 10%, respectively. The Other class shows similar values as in Orion.

99

6.2 Effect of the selected region: training using NGC 2264

6.2.2 Small dataset issues

We highlight here how having a small learning sample is problematic for this classification.
First of all, the training set contains only 62 CI YSOs, which is far from enough in regard of the
size of the network (Sect. 4.7.1). This difficulty is far worse than for Orion, because, to avoid
dilution, we had to limit the number of objects in the two other classes, leading to the small size
of the training sample (493 objects), and consequently to worse results for all classes. To miti-
gate these difficulties and because the dilution effect occurs quickly, we adopted lower γi values
for CII YSOs and Stars, thus reducing their relative strength. This results in too small training
set sizes for all the subclasses compared to the number of weights in the network. However, we
observed that a decrease in the number of neurons still reduced the quality of the results. Al-
though a lower number of hidden neurons tended to increase stability, we chose (i) to keep them
at n = 20 to get the best results, and (ii) to reduce the learning rate to achieve better stability. We
note that, due to the use of batch training with the sum of contributions, the smaller size of the
dataset than for the O-O case is somewhat equivalent to an additional lowering of the learning
rate (Sect. 4.7.7). For this dataset, slight changes on the γi values happened to lead to great dif-
ferences in terms of results and stability, which indicates that the classification lacks constraints.

6.2.3 Prediction stability

Even for a given good γi set, there is a large scatter in the results when changing the training
and test set random selection. It leads to a dispersion of about ±4% in both recall and precision
for the CI YSOs. This can be due to a lack of representativity of this class in our sample, but it
can also come from small-number effects in the test set that are stronger than in Orion. These
two points show that the quality estimators for CI YSOs are not trustworthy with such a small
sample size. The results shown in Tables 6.7 and 6.8 correspond to one of the best training on
NGC 2264, that achieves nearly the best values for CI quality estimators. The CII precision
dispersion is about ±2%, and its average value is around 80%, which is higher than in the spe-
cific result given in Table 6.7, but still significantly lower than for Orion. In contrast, the CII
recall is fairly stable with less than ±1% dispersion. Contaminants seem as stable as for Orion
using these specific γi values. However, it could come from the artificial simplification of the
problem due to the quasi-absence of some subclasses (Shocks and PAH, see Table 5.2) in the
test set. We note that the network would not be able to classify objects from these classes if this
training were applied to any other region that contained such objects.

As in the previous section, we studied the effect of the random initialization of the weights.
We found that both precision and recall of YSO classes are less stable than for the O-O case
with a dispersion of ±1.5% to ±2.5%. The Other class shows a similar stability than for Orion,
with up to ±0.5% dispersion on precision and recall, which could again be biased by the fact
that the absence of some subclasses simplifies the classification. These results indicate as be-
fore that our network is not sufficiently constrained using this dataset alone with respect to the
architecture complexity that is needed for YSO classification.

100

6 Subsequent application to multiple star-forming regions

Table 6.9: Confusion matrix for the N-N case forwarded on the full dataset.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 88 2 0 97.8%
CII YSOs 7 406 22 93.3%
Others 12 77 7175 98.8%

Precision 82.2% 83.7% 99.7% 98.4%

Table 6.10: Subclass distribution for the N-N case forwarded on the full dataset.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 88 7 0 8 3 0 0
CII YSOs 2 406 8 10 1 0 58
Others 0 22 106 232 2 0 6835

6.2.4 Full dataset result

The forward on the complete NGC 2264 dataset is crucial in this case, since it may overcome
small-number effects for many subclasses. The corresponding results are shown in Tables 6.9
and 6.10. It is more difficult in this case than in the O-O one to be sure that there is no over-
training, even with a careful monitoring of the error convergence on the test set during the
training, because the small-number effects are important. As a precaution, in all the results for
the N-N case, we chose to stop the training slightly earlier in the convergence phase in compari-
son to Orion, for which we found over-training to be negligible or absent (Sect. 6.1). We expect
this strategy to reduce over-training, at the cost of a higher noise.

With this assumption, the results show more similarities to the Orion case than those ob-
tained with the test set only (comparing Tables 6.5 and 6.9). Because NGC 2264 contains less
CI and CII YSOs than Orion, their boundaries with the contaminants in the parameter space are
less constrained. This results in a lower precision for YSO classes, which is mainly visible for
the CII YSOs with a drop in precision down to 83.7%. For NGC 2264, we have smaller optimal
γi values for the contaminants (especially the Stars) than in Orion. Since it implicitly forces the
network to put the emphasis on CI and CII, it should result in better, or at least equivalent, val-
ues for recall on these classes than on Orion. It appears to be the case for CI (≈ 98%). It is less
clear for CII (93.3%), possibly because of their lesser γi value than for the Orion case. For the
sub-contaminant distributions, the statistics are more robust than in Table 6.8, and the Galaxies
and AGNs are properly represented. Still, it appears that the AGN classification quality is not
sufficient and has a stronger impact on the CI precision than in the case of Orion. The other
behaviors are similar to those identified in Orion.

101

6.3 Generalization capacity: crossed application

Table 6.11: Confusion matrix for the O-N case forwarded on the full NGC 2264 dataset.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 74 2 14 82.2%
CII YSOs 6 402 27 92.4%
Others 9 52 7203 99.2%

Precision 83.1% 88.2% 99.4% 98.6%

Table 6.12: Subclass distribution for the O-N case forwarded on the NGC 2264 dataset.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 74 6 0 3 5 0 1
CII YSOs 2 402 6 2 0 0 44
Others 14 27 108 245 0 1 6848

6.3 Generalization capacity: crossed application
In this section, we tested the generalization capacity of the trained networks by using the
network trained on one region to classify the sources of the other one. This test is important
because this is a typical use case: training the network on well-known regions, and use it on a
new one. This is also a way to highlight more discrepancies between the datasets.

6.3.1 Cross forward considerations

For this, we used the obtained trained networks from the O-O and N-N cases described in Sects.
6.1 and 6.2. Since they are both built from the same original classification scheme (Sect. 5.1),
we applied directly one training to the other labeled dataset, which resulted in the two new cases
O-N and N-O (see Table 6.1). However, the forwarded dataset must be normalized in the same
way as the training set (Sect. 5.4). Omitting this step would lead to deviations and distortions of
our network class boundaries in the input parameter space, with a strong impact on the network
prediction. One difficulty is that some objects end up with parameters outside the [−1; 1] range,
corresponding to areas of the feature space where the network is not constrained. One could
partly hide this effect by excluding those out-of-boundary objects. However, they give an ad-
ditional information about which kind of objects are missing in the respective training datasets
and about the corresponding input feature space areas. Therefore, we preferred to keep them
in the forward samples. It is legitimate here to use the full dataset directly to test the networks,
because none of its objects were used during the corresponding training. It also means that we
forwarded datasets with different proportions than the ones they were trained with, but this is
the expected end use of such networks. Moreover, both datasets are the results of observations,
which means that our tests measured the effective performance of the trained network on a gen-
uine observational use case with the corresponding proportions of classes.

One must note that, in order to properly compare the results, we needed to keep the exact
same networks that produced the results in Tables 6.2, 6.5, 6.7, 6.9. Therefore, we did not es-
timate the dispersion of the prediction regarding the weight initialization, and the training set
random selection on the O-N and N-O cases.

102

6 Subsequent application to multiple star-forming regions

Orion NGC 2264

Combined Combined + 1 kpc

Figure 6.1: Illustration of the differences in feature space coverage for our datasets. The CI
YSOs, CII YSOs, and contaminants are shown in red, green, and blue, respectively, according
to the simplified G09 classification scheme. The crosses in the last frame show the YSOs from
the 1 kpc sample. In the side frames, the area of each histogram is normalized to one.

6.3.2 O-N main result

Regarding the results from O-N in Tables 6.11 and 6.12, we see that the recall for CI YSOs is
lower by approximately 8% than the one on the O-O case (Table 6.2) and lower by approxi-
mately 12% when compared to the Orion full dataset results (Table 6.5). Similarly, CII YSOs
have a recall lower by approximately 5%. This difference being much greater than the disper-
sion of our results on the O-O case, indicates that the Orion data lack some specific information
that is contained in NGC 2264 for these classes. This should correspond to differences in feature
space coverage, but these differences might be subtle in the limited set of CMDs considered in
the G09 method, whereas the network works directly in the 10-dimension space composed of
the 5 bands and 5 errors. For example, as shown in Fig. 6.1, it is striking that both YSO classes
cover less the upper part of the diagram ([4.5] < 9) in the NGC 2264 case than for Orion. The
slopes of the normalized histograms in this figure also illustrate that the density distributions
are different between Orion and NGC 2264, especially for CI YSOs. For this population, Orion

103

6.3 Generalization capacity: crossed application

Missed Wrong

Figure 6.2: Space coverage of misclassified objects in the O-N case. Left: Genuine CI and CII
according to the labeled dataset that were misclassified by the network. Green is for CII YSOs,
red for CI YSOs. The points and crosses indicate the network output as indicated in the legend.
Right: Predictions of the network that are known to be incorrect based on the labeled dataset.
Green is for predicted CII YSOs, red for predicted CI YSOs. The points and crosses indicate
the genuine class as indicated in the legend.

presents a virtually symmetrical peaked distribution of [4.5]-[8] centered near [4.5]-[8] = 1.9
mag, while NGC 2264 shows a flatter and more skewed distribution. Although subtle, this
specificity of the parameter space coverage is in line with the drop in the CI YSO recall in the
O-N case, since, in Orion, the area located at [4.5]-[8] > 2 is less constrained than for [4.5]-[8]
≈ 1.9, while, in NGC 2264, the area at [4.5]-[8] > 2 contains a larger fraction of CI YSOs. This
interpretation is also consistent with the fact that in the O-N case, CI YSOs are mostly confused
with objects from the Other class, in contrast with the O-O and N-N cases, suggesting a lack of
constraint for the boundary between the CI and Other classes in the lower-right area of the CI
distribution in Fig. 6.1, although the differences in class proportions may also contribute. From
the perspective of the network, it is likely that the weight values were more influenced by the
more abundant updates from objects near the CI peak at [4.5]-[8] = 1.9 mag.

6.3.3 Detailed feature space analysis for O-N

To confirm the previous analysis, Figure 6.2 shows the distribution of misclassified objects for
this O-N case using the same ([4.5]-[8], [4.5]) CMD. To ease the comparison, the misclassified
objects are separated in two categories, with "Missed" objects standing for misclassified gen-
uine YSOs, and "Wrong" objects standing for any class being wrongly predicted as a YSO. This
representation is equivalent to take either the YSO rows or the YSO columns in the confusion
matrix, respectively. As a consequence, CI YSOs misclassified as CII, and CII YSOs misclas-
sified as CI both appear in the two representations. Despite the very small number of CI YSOs
of the NGC 2264 dataset, and therefore the few CI YSOs that are misclassified, some trends
can still be observed. Regarding missed CI YSOs, more that half of them are misclassified as
Other in the bottom part ([4.5]< 12) of the CMD. This indicates that this region is less con-

104

6 Subsequent application to multiple star-forming regions

strained when training on Orion than when training on NGC 2264, or at least that the learned
boundary is not favorable to the NGC 2264 dataset. While the latter region has much less CI
training examples in this part of the CMD, the more homogeneous CI YSOs distribution over
the feature space of NGC 2264 allows more weights to be dedicated to this specific part. We
also noted that the number of CI misclassified as CII is almost the same in N-N and O-N with 3
and 2 objects, respectively (Tables 6.9 and 6.11). Therefore the drop in CI recall is dominated
by these misclassified CI as contaminants. Interestingly, the O-N subclass distribution shows
that the misclassified CI are mainly predicted as CII and Shocks, the confusion with AGN being
of the same order than the N-N case. Regarding the CII YSOs, the O-N case is more compelling
since their recall only slightly dropped, and their precision increased. Therefore, the CII distri-
bution in Orion appears suitable to constrain the CII YSO boundaries which was not the case of
NGC 2264.

Physically, the observed differences in this CMD are likely to come from the different star
formation histories and from the difference in distance between the two regions, respectively
between ∼ 420 pc for Orion (Megeath et al. 2012), and ∼ 760 pc for NGC 2264 (Rapson et al.
2014). In contrast, the Other class appears to be well represented, suggesting that the Orion
training set contains enough objects to represent properly the inherent distribution of this class
also in NGC 2264.

The changes in precision are less significant than those in recall, due to the differences in
class proportions between the two datasets. For example, there is a 1.58 factor in the CI over
Other ratio between Orion and NGC 2264. The number of misclassified Other as CI is then
expected to rise, with a consequent impact on CI precision. However, for this case the improved
Other recall between the O-O and O-N case of 0.6% seems to overcome this effect partly. In
contrast, the CII YSOs, for which the proportions are lowered by a 2.24 factor, indeed suffer
a ∼ 8% drop in precision. This strong interplay between proportions and changes in recall for
each class makes the differences in precision less prone to analysis.

6.3.4 N-O main result

Concerning the results from N-O in Tables 6.13 and 6.14, the precision of CI YSOs dropped to
65.2%, in spite of the number of objects, sufficient not to be affected by small-number effects.
This is the worst quality estimator value we observed in the whole study. The precision drop
in CII YSOs is less important and only 2% lesser than the NGC 2264 full dataset results. The
impact of the differences in feature space coverage is even stronger than for the O-N case,
since there are almost no YSOs brighter than [4.5]=9 mag in NGC 2264, therefore a large
part of the feature space where many Orion objects lie is left unconstrained. Moreover, the
NGC 2264 dataset lacks shocks and PAHs that are present in non negligible proportions in the
Orion dataset. Therefore, the NGC 2264 trained network did not constrain them, as confirmed
in Table 6.14, where PAHs are evenly scattered in all output classes, and where shocks are
completely misclassified as YSOs. In addition to these flaws, the number of objects in the
training set is too small to properly constrain the overall network architecture that suits this
problem (Sect. 5.4).

105

6.3 Generalization capacity: crossed application

Table 6.13: Confusion matrix for N-O case forwarded on the full Orion dataset.
Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 285 33 6 88.0%
CII YSOs 54 1967 203 88.4%
Others 98 293 16175 97.6%

Precision 65.2% 85.8% 98.7% 96.4%

Table 6.14: Subclass distribution for the N-O case forwarded on the full Orion dataset.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 285 54 8 37 12 39 2
CII YSOs 33 1967 18 34 15 27 199
Others 6 203 381 1070 1 21 14702

6.3.5 Detailed feature space analysis for N-O
Similar to the previous O-N case, Figure 6.3 shows the distribution of misclassified objects for
this N-O case. Thanks to the much larger Orion dataset size, it is much easier to extract the
trends regarding the class distribution within the feature space. On the main vertical separation
between CI and CII YSOs, around [4.5]-[8] = 1.8, there is a noticeable change in behavior at
[4.5] = 9. Bellow this limit ([4.5] > 9), there is a large amount of missed CII classified as CI,
while above this limit ([4.5] < 9) it is reversed with more CI misclassified as CII. It perfectly
illustrates the fact that in the N-N training it was acceptable to consider every object above
this limit and with [4.5]-[8] > 1.8 as CII. In the same way, the highest density of CI and CII
near the vertical splitting between CI and CII YSOs that is present in Orion (top left frame in
Figure 6.1), is smoothed in NGC 2264 (top right frame in Figure 6.1). Therefore, this boundary
is less constrained, and the class proportions gave the advantage to CI YSOs due to the much
lower γCII value in NGC 2264 that allowed to reach good CI recall in the N-N case, but is
unsuitable for a generalization to Orion. This behavior strongly decreases the predicted CI YSO
precision but is not sufficient to explain the drop to 65%. Most of the contamination comes
from contaminants misclassified as CI. In the figure there are two main regions for these objects,
below the AGNs limit and on the far right side of the CMD, [4.5]-[8] > 3. This is confirmed by
the subclass distribution (Table 6.14), where there is a lot of misclassified AGNs and PAHs as
CI, which correspond to these regions. This is directly due to the complete absence of identified
PAHs in the NGC 2264 dataset and to the very few number of AGNs that must not be enough
to provide a complete coverage of their feature space. Finally, the CII YSOs are contaminated
by genuine CI YSOs in the upper part of the diagram, but the main sources of contaminants are
the Stars. As before the two frames of Figure 6.3 show how a lot of misclassified objects fall at
the boundary between the two classes. Interestingly, the region [4.5] > 13 that contains genuine
CII classified as contaminants (group of green dots in the left frame), is continuous with the
region [4.5] < 13 where Contaminants (mainly stars) are misclassified as CII (group of green
dots in the right frame), illustrating the misplacement of the network boundary. The upper part
of the CMD at [4.5] < 9, contains as before a lot of CII that were missed as contaminants, most
likely bright stars. The remaining contamination is visible in the "wrong" frame showing many
CII predictions in the AGNs and PAH region, again due to this regions not being constrained
properly by the NGC 2264 training.

106

6 Subsequent application to multiple star-forming regions

Missed Wrong

Figure 6.3: Space coverage of misclassified objects in the N-O case. Left: Genuine CI and CII
YSOs according to the labeled dataset that were misclassified by the network. Green is for CII
YSOs, red for CI YSOs. The points and crosses indicate the network output as indicated in the
legend. Right: Predictions of the network that are known to be incorrect based on the labeled
dataset. Green is for predicted CII YSOs, red for predicted CI YSOs. The points and crosses
indicate the genuine class as indicated in the legend.

6.4 Improving diversity: combined training
The two major limitations identified in the cases of Orion and NGC 2264 are (i) the lack of CI
YSOs in the training datasets to be properly constrained by the network, with the associated
reduction of other types of objects to avoid dilution, and (ii) the differences in feature space
coverage for the two different regions, which induce a lack of generalization capacity toward
new star-forming regions. A simple solution to overcome those limitations is to perform a
combined training with the two clouds (Fig. 6.1). We refer to this case, where we merged
the labeled samples from Orion and NGC 2264, and used it both to train the network and
perform the forward step, as the C-C case. Since the two labeled datasets were obtained with
our modified G09 classification, they formed a homogeneous dataset and it was straightforward
to combine them. We normalized this new combined dataset as explained in Section 5.4. The
detailed subclass distribution of the target sample for this dataset is presented in Table 5.1.
Thanks to the larger number of CI YSOs in the labeled dataset, we were able to adopt a lower
value of θ (θ = 0.2) to build the test set, which proved to be large enough to mitigate the small-
number effects for our output classes. It conserved most data in the training set, where they were
needed to improve the classification quality. We note that merging the datasets led to slightly
different observational proportions, still realistic enough.

107

6.4 Improving diversity: combined training

Table 6.15: Confusion matrix for the C-C case for a typical run.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 77 2 3 93.9%
CII YSOs 9 514 8 96.8%
Others 9 49 4706 98.8%

Precision 81.1% 91.0% 99.8% 98.5%

Table 6.16: Subclass distribution of the C-C case.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 77 9 1 3 3 2 0
CII YSOs 2 514 0 3 3 4 39
Others 3 8 103 272 0 11 4320

6.4.1 Hyper-parameter and training proportion changes
Table 5.2 shows the optimal γi values obtained with the combined dataset. The γi values are
very similar to those of Orion, as a result of Orion providing two to five times more objects
than NGC 2264 to the combined dataset. The dataset is globally larger, so that the optimal
number of neurons could have been raised to represent the expected more complex boundaries
in the parameter space. However, increasing the number of hidden neurons did not show any
improvement of the end results. Thus, we kept 20 hidden neurons for this C-C case. Never-
theless, the larger size of the training set tended to stabilize the convergence of the network
during the training, which allowed us to increase the learning rate to η = 4 × 10−5. As exposed
in Section 5.4, this is counter-intuitive. Indeed, since the weight updates are computed as a
sum over the objects in the training sample, they should be greater here than in previous cases,
increasing the probability that the network misses potentially good but narrow minima, usually
forcing to lower the learning rate. On the other hand, the larger statistics improves the weight
space resolution, mitigating meaningless local minima that originate in the limited number of
objects. It appears that the latter effect was dominant with smaller dataset forcing a smaller
learning rate to properly explore all these minima and find the best one. Using larger dataset
then allowed us to raise the learning rate even more. We kept the momentum value at α = 0.6
(Sect. 4.7.8) because a greater value happened to make the network diverge in the first steps of
training, when the weight corrections were too large.

6.4.2 Main result
The results of this C-C case, presented in Table 6.15 and 6.16, are very close to those on the
O-O case with the full Orion dataset. The largest difference is by 0.7% for the precision of
CI YSOs. The other differences are ≤ 0.2%. The stability of the results regarding both the
weight initialization and the random selection of the test and training sets is also very similar
to that of the O-O case (Sect. 6.1), with recall and precision values scattered by typically
±0.5%, except for CI precision which scattered by about ±1%. These fluctuations exceed the
differences between the O-O and C-C case, as observed from their confusion matrices, when
considering the full-dataset forward. This stability was not guaranteed, since, on the one hand,
the combined training set is more general than previous training sets, and, on the other hand, the
combined training is a more complex problem than a single cloud training, due to the expected
more complex distribution of objects in the input parameter space, especially for YSOs.

108

6 Subsequent application to multiple star-forming regions

Table 6.17: Confusion matrix for the C-C case forwarded on the full dataset.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 389 14 11 94.0%
CII YSOs 53 2570 36 96.7%
Others 50 254 23526 98.7%

Precision 79.1% 90.6% 99.8% 98.4%

Table 6.18: Subclass distribution for the C-C case forwarded on the full dataset.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 389 53 2 10 22 11 5
CII YSOs 14 2570 4 16 11 15 208
Others 11 36 515 1365 1 62 21583

6.4.3 Generalization capacity evaluation

If the latter effect dominates, the results could be expected to be poorer than both the O-O and
N-N results individually, or any linear combination of them. We illustrate this idea with the fol-
lowing conservative reasoning. If, when using the combined training dataset, the network had
only learned from Orion objects, as might be argued due to their dominance in the combined
sample, then the state of the network should be very similar to that obtained in the O-O case.
The C-C confusion matrix should then be a linear combination of those of the O-O (Table 6.5)
and O-N cases (Table 6.11), weighted by the respective abundances of Orion and NGC 2264
in the forward sampling. The recall of CI YSOs in the O-O and O-N were 94.1% and 82.2%,
respectively. Since, in the Combined dataset, 78.3% of CI YSOs come from Orion, the expected
recall from an Orion dominated network would be 91.5%. This results can also be seen as the
cell-wise sum of the two matrices, from which the recall and precision are re-computed using
the new proportions. Considering the obtained value of 93.9% in the C-C case(Table 6.15),
with a ±1% dispersion, the network has indisputably learned information from the NGC 2264
objects, and the increased complexity of the problem was more than balanced by the increased
generality of the sample. In other words, the fact that the results of the C-C test are as good as
those of the O-O test in spite of the increased complexity implies that the network managed to
take advantage of the greater generality of the combined sample to find a better generalization.

The analysis of the other two classes does not contradict those conclusions, although the im-
provement for CII objects is only marginal, since the same reasoning applied to CII YSOs leads
to a recall of 96.2%, to be compared to the C-C value of 96.8%, with ±0.5% dispersion. This
is in line with the fact that the CII YSO coverage in Orion was already close to that of NGC
2264, as highlighted by the less than 1% difference between the CII YSO recall in O-N and
N-N. Finally, contaminants are dominated by subclasses that were already nicely constrained in
the O-O and N-N cases.

109

6.4 Improving diversity: combined training

The fact that the network results for the C-C case are as good as, or better than, for the Orion
case despite the added complexity confirms that the number of objects was a strong limitation
in the O-O and N-N cases. It also confirms that the O-O training might have provided better
results with more observed objects in the same region, which was already established from the
improvement of results with lower θ values in Section 6.1. Moreover, the absence of positive
effect when raising the number of neurons demonstrates that the network efficiently combined
their respective input parameter space coverage and that n = 20 is not limiting these results.
The change in observational proportions that occurred by merging the two datasets seems to
have a negligible impact as they are still close to the Orion ones, but adding more regions with
less YSOs is expected to decrease the precision values for YSOs by increasing their dilution by
the Other class.

6.4.4 Full dataset result and analysis of rare sub-classes prediction

The results for the complete combined dataset are presented in Tables 6.17 and 6.18. As before,
the results appear to be free of over-training, since there is no noticeable increase in recall for
any of our classes. These results are very similar to the previous ones, with differences in quality
estimators of the same order as the dispersion observed with random weight initialization. The
slight decrease in precision of CI YSOs is also of the same order as the dispersion obtained from
the random selection of our training and test samples. The contaminants that are not sufficiently
constrained, like Shocks, could also be affected by selection effects between the two sets, which
could lead to such a dispersion in precision for CI YSOs. This seems to be confirmed by the
fact that two thirds of the shocks were misclassified as CI YSOs.

Interestingly, this suggests a change in the network behavior, compared to the O-O case,
where shocks were almost evenly distributed among the three output classes. We interpret the
difference in shock distributions as a consequence of the difference in the relative abundance of
this subclass compared to the rest of the training set, and to its strong dependancy to the MIPS
rebranding step. Indeed, the special location of Shocks in the feature space, close to CII YSOs
and mixed with the MIPS-identified CI YSOs (Fig. 5.1 D), makes this subclass identification
sensitive to its small relative abundance during the learning process. Thus, in the O-O case, the
number of shocks in the sample enabled the network to place the boundary in the vicinity of
the Shocks region, but in an inaccurate way, hence the even distribution. Conversely, the lower
fraction of shocks in the C-C sample probably made the network find an optimum where most
of its representative strength was used for other parts of the feature space. In this situation,
the majority of shocks are likely to be included in one specific output class, which can vary
according to the random training set selection, but is more likely to be a YSO class, and even
more likely to be CI due to the MIPS rebranding step.

To summarize the results of this combined training, we exposed that combining two star-
forming clouds has improved the underlying diversity of our prediction, and therefore the
generalization capability of our network over possible new regions. The added complexity
was largely overcome by the increased statistics on our classes of interest, CI and CII YSOs,
which allowed to conserve very good accuracy and precision for them. However, some rare
contaminant subclasses suffered from their increased dilution. Also, it is worth mentioning
that, despite the very good recall we obtained on this C-C result that could convincingly be
used to predict other regions, it is still composed of just two star-forming regions that are much
more massive than any other at our disposal. This was our motivation to include more regions
in the next Section despite the noted limitations of the corresponding 1 kpc dataset (Sect. 5.2).

110

6 Subsequent application to multiple star-forming regions

6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc)

In this section, we present the advantages of the 1 kpc dataset to further improve the network
generalization capacity by increasing the underlying diversity of the object sample. As dis-
cussed in Section 5.2, this dataset only contains YSOs. This is not a major issue, because most
of our contaminant subclasses are already well constrained, while we have shown that it is not
the case for YSOs, since adding more of them led to a better generalization. Moreover, as the
dataset contains several regions, it should ensure an even better diversity and input parameter
space coverage for YSOs than the previous C-C case, but it might also increase again the under-
lying distribution complexity (Fig. 6.1). In this section, we study the F-C case, that is a training
on the full 1 kpc dataset (combined + 1 kpc YSOs) and a forward on the combined dataset, to
keep a realistic test dataset with almost observational proportions. As before, the full 1 kpc
dataset is normalized as described in Section 5.4.

6.5.1 Hyper-parameter and training proportion changes

The detailed γi selection for this more complicated dataset is presented in Table 5.2. As we
added YSOs, we had to increase the number of contaminants to preserve their dominant repre-
sentation in the training sample. However, some subclasses of contaminants were already too
few in the C-C case and already included in the training set as much as possible. Therefore, we
did not add all the CI YSOs at our disposal to avoid a too strong dilution of these subclasses
of Contaminants. For objects from the combined dataset, we kept θ = 0.2, giving the now
usual (1 − θ) CI YSOs in the training sample, which are doubled using the 1kpc dataset. For
CII YSOs, results were better when taking a slightly fewer proportion of them from the 1 kpc
dataset. In the same manner as for the other datasets, we tried various numbers of neurons in the
hidden layer, with for the first time a higher optimum value around n = 30. This means that we
certainly have sufficiently raised the number of objects to break previously existing limitations
regarding the size of the network. We also took advantage of the larger dataset and adopted
greater values for η = 8 × 10−5 and α = 0.8, which proved to stabilize more the network than
smaller value, following the trend already described in Section 6.4.

6.5.2 Main result

The results for this F-C case are presented in Tables 6.19 and 6.20. The precision of CI YSOs
has dropped by 2.5%, but all the other precisions have slightly improved. Compared to the
C-C case (Table 6.15), the precision of CI YSOs raised by 2.8%, but the recall is significantly
lowered with a drop by nearly 5%. In contrast, the precision of CII YSOs dropped by 1.2%, and
the recall improved by 0.8%. Overall, these results are similar to the previous C-C case, despite
the increase in complexity coming from the addition of YSOs from new star forming regions.
Similarly to the combination of Orion and NGC 2264, we could have observed a stronger drop
in quality estimators, because the problem becomes more general and therefore more difficult to
constrain. It is worth noting that the stability of the network somewhat decreased in comparison
to the O-O and C-C cases. We observed a dispersion of recall regarding the weight random
initialization of about ±1% for CI and ±0.7% for CII YSOs. This dispersion affects less the
Other class with a value around ±0.15%. The precision is less reliable with a dispersion of
nearly ±1.5% for CI YSOs. The precision dispersion for CII YSOs is around ±0.5% and is less
than ±0.1% for the Other class.

111

6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc)

Table 6.19: Confusion matrix for the F-C case for a typical run.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 73 4 5 89.0%
CII YSOs 9 518 4 97.6%
Others 5 55 4704 98.7%

Precision 83.9% 89.8% 99.8% 98.5%

Table 6.20: Subclass distribution for the F-C case.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 73 9 0 0 1 2 2
CII YSOs 4 518 1 6 5 6 37
Others 5 4 102 272 0 9 4321

6.5.3 More detailed analysis

More generally, the sources of contamination of the YSO classes have not changed, their overall
effect has just risen. The fact that raising the number of neurons from 20 to 30 in the network
leads to better results is certainly an indication of the increased complexity of this problem.
This means that the network uses more refined splittings in the input parameter space. How-
ever, there might not be enough objects in our dataset to perfectly constrain this larger network,
despite the added YSOs. This naturally leads to a stronger sensitivity to the weight initializa-
tion. In contrast, the dispersion over the training set random selection is similar to the one
observed on the C-C case and is of the same order as the weight initialization dispersion. As
in the previous cases, the results show that the main source of contamination of CI YSOs are
the CII YSOs, while the latter are mostly contaminated by the Other class. This is, again, an
indication of the respective proximity of the three classes in the input parameter space.

The increased number of objects allowed us to see more details on the subclass distribution
across the output classes. Similarly to the C-C case, the Shocks behave as completely uncon-
strained, since they end up in mostly one class, which changes randomly when the training is
repeated. Compared to the C-C case, this effect is stronger, most likely because we did not add
any Shocks in the training sample, therefore increasing their dilution. For almost any of the
other subclasses, the variations are quite within the dispersion, with a slight trend for contam-
inant subclasses (Galaxies, AGNs, Shocks, PAH) to be less well classified, and CII YSOs and
Stars to be better classified. One may expect these results, because we increased the number
of YSOs and Stars in the training sample. On the other hand, we also have increased the YSO
distribution complexity, which could lead to worse overall results. Possibly, this induced the
slight drop in CI YSO recall observed from C-C to F-C, whereas CII YSOs and Others kept
their quality indicators stable, either due to the increased statistics, or because their input fea-
ture space was already properly constrained by the Combined dataset (C-C case).

112

6 Subsequent application to multiple star-forming regions

Table 6.21: Confusion matrix for the F-C case forwarded on the full combined dataset.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 378 22 14 91.3%
CII YSOs 45 2584 30 97.2%
Others 43 244 23543 98.8%

Precision 81.1% 90.7% 99.8% 98.5%

Table 6.22: Subclass distribution for the F-C case forwarded on the full combined dataset.

Actual

Pr
ed

ic
te

d CI CII Gal AGNs Shocks PAHs Stars

CI YSOs 378 45 0 15 8 15 5
CII YSOs 22 2584 6 22 25 14 177
Others 14 30 515 1354 1 59 21614

6.5.4 Full dataset result

The results of a forward of the complete combined dataset using this network are shown in
Table 6.21, with the subclass distributions in Table 6.22. These results show a 2.3% increase in
the CI YSO recall compared to Table 6.19 and a 2.8% drop in precision for the same class. As
for all the previous cases, the Other class remained almost identical. For CII YSOs and Other,
the variations in precision and recall are within the weight initialization dispersion. The case of
CI YSOs is less clear as their recall increase is greater than their dispersion, which could mean
that there is a slight over-training. However, when searching for the optimum set of γi values,
we observed that the sets leading to a lesser over-training of CI YSOs also degraded the overall
quality of the results. Still, it suggests that the genuine CI YSO recall is between the values of
Table 6.19 and Table 6.21.

6.5.5 Misclassified objects distribution

Since the present F-C case is our most complete result, and in order to provide additional
verification of the limitations we exposed, we checked the distribution of the misclassified ob-
jects in the same fashion as in Section 6.4. For that, Figure 6.5 at the end of the section shows
the same five usual CMDs as in Section 5.1 for the labeled distribution from our G09 method,
the predicted distribution by the F-C network, the "missed" and the "wrong" CI and CII YSOs,
all for the full Combined dataset. Figure 6.4 presents a zoom on the fourth row to ease the com-
parison. As for the previous result we did not forward on the 1 kpc sample since we do not have
contaminant estimates and therefore we cannot provide quality estimates. They are just used to
enhance the YSO diversity through their feature space coverage in the training process. From
this figure, we observe that there are two main misclassification zones. The first one between
CI and CII YSOs, which can mostly be seen in the fourth row (Fig. 6.4). And the second one
between CII YSOs and more evolved Stars, which can mostly be seen in the second row. This
is strongly consistent with our previous interpretation of the object distribution in the various
confusion matrix of the F-C case. Some other contamination area can also be seen like in the
AGNs exclusion region close to the corresponding cut, or like in the Shocks exclusion region.
The fact that the misclassified objects mostly stacks along the cuts is a strong indication of
where the network is less precise,this is also a first indication that the membership probability
could be used to improve the results.

113

6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc)

Missed Wrong

Figure 6.4: Zoom on the [4.5]− [5.8] vs. [3.6]− [4.5] graph, for misclassified objects in the F-C
case. Left: Genuine CI and CII YSOs according to the labeled dataset that were misclassified
by the network. Green is for CII YSOs, red for CI YSOs. The points and crosses indicate the
network output as indicated in the legend. Right Predictions of the network that are known to
be incorrect based on the labeled dataset. Green is for predicted CII YSOs, red for predicted CI
YSOs. The points and crosses indicate the genuine class as indicated in the legend.

6.5.6 Forward of the trained network on Orion and NGC 2264

We also looked at the F-C trained network prediction over Orion and NGC 2264 individually,
hereafter the F-O and F-N cases. This allowed us to verify that they are both properly repre-
sented by the F-C network and that one is not responsible for the majority of the misclassified
objects. We present in Tables 6.23 and 6.24 the confusion matrices that represent the predictions
on the F-O and F-C cases, respectively. For this, we used the full labeled datasets of the each
region, meaning that they must be compared to the full combined dataset prediction from Table
6.21. Regarding the F-O result, we can see that the changes in recall and precision are very
small and within the dispersion for each class. For the F-N result, it is also very stable but with
an average of 2% change with respect to Table 6.21 in all the YSO quality estimators. How-
ever, the two regions are expected not to have the same prediction due to the fact that they can
sometimes constrain different parts of the feature space. Therefore, the full combined dataset
result in Table 6.21 is a sum of the two individual predictions from Tables 6.23 and 6.24, which
implies that the quality estimator for both of them may individually get out of the dispersion
range estimated around the mean value of the quality estimator of the full dataset. Overall, both
the individual predictions remain satisfying.

Interestingly, these F-O and F-N predictions can be compared to the individual training on
Orion and NGC 2264, with the O-O case in Table 6.5 and the N-N case in Table 6.9, respec-
tively. For Orion, the F-O results are very similar to the O-O results, with a slightly better recall
on the CII YSOs with a 0.6% increase. The CI YSOs, however, are slightly less well repre-
sented with a drop by 3.4% in recall, which seems mainly caused by an increased confusion
with CII YSOs. Still, we suspected a slight overtraining of the CI YSOs in this O-O case that
might explain the difference and could be confirmed by the fact that the CI recall between F-O
and the test dataset only O-O results are almost identical, the dispersion of the F-C training

114

6 Subsequent application to multiple star-forming regions

Table 6.23: Confusion matrix for the F-O case.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 294 20 10 90.7%
CII YSOs 35 2170 19 97.6%
Others 36 191 16339 98.6%

Precision 80.5% 91.1% 99.8% 98.4%

Table 6.24: Confusion matrix for the F-N case.

Predicted

A
ct

ua
l

Class CI YSOs CII YSOs Others Recall

CI YSOs 84 2 4 93.3%
CII YSOs 10 414 11 95.2%
Others 7 53 7204 99.2%

Precision 83.2% 88.3% 99.8% 98.9%

being lower (Table 6.2). However, the O-O case did not show this stronger confusion between
CI and CII, which tends to indicate that the numerical similitude between F-O and O-O does
not correspond to the same underlying classification properties. It means that the two results
cannot be directly compared, and prevents a strong conclusion on the overtraning of the O-O.
Still, this result remains very strong since we achieved almost identical prediction, and better
CII prediction, with our much more generalist ANN training. Indeed, as we stated previously
we could have expect to obtain a classifier that works well enough on all regions but that would
be significantly poorer than any individual training.

The results are much more striking for NGC 2264, with the F-N prediction being much bet-
ter than the N-N prediction for CII YSOs (+1.9%) and contaminants (+0.4%), which allows an
increase of CI precision of 1% despite their 4.5% drop in recall. This is not very surprising that
the CI YSOs from NGC 2264 are less well represented since their distribution is very peculiar
and that they are not numerous enough in the full 1 kpc training dataset to be better constrained
than the N-N case that focus only on this specific distribution. Still, the confusion between CI
and CII YSOs is not very impacted and the confusion between CII and contaminants is signif-
icantly improved, which is as before a very strong results considering that it is the result of the
more generalist network. This F-N case can also be compared to the O-N case (Table 6.11),
where it is striking from the 11.1% CI recall increase and the 2.8 % CII recall increase, that this
full 1 kpc training is much more suitable than Orion alone to generalize over other regions.

115

6.5 Further increase in diversity and dataset size: nearby regions (< 1kpc)
A

ct
ua

l
Pr

ed
ic

te
d

M
is

se
d

W
ro

ng

116

6 Subsequent application to multiple star-forming regions

A
ct

ua
l

Pr
ed

ic
te

d
M

is
se

d
W

ro
ng

Fi
gu

re
6.

5:
In

pu
tp

ar
am

et
er

sp
ac

e
co

ve
ra

ge
in

th
e

C
M

D
su

se
d

fo
rt

he
G

09
m

et
ho

d
in

th
e

F-
C

ca
se

on
th

e
fu

ll
da

ta
se

tr
eg

ar
di

ng
di

ff
er

en
tp

op
ul

at
io

ns
.

A
ct

ua
l:

di
st

ri
bu

tio
n

of
ge

nu
in

e
cl

as
se

s.
C

I
Y

SO
s

ar
e

in
re

d,
C

II
Y

SO
s

ar
e

in
gr

ee
n

an
d

O
th

er
s

ar
e

in
bl

ue
.

P
re

di
ct

ed
:

pr
ed

ic
tio

n
gi

ve
n

by
th

e
ne

tw
or

k
w

ith
th

e
sa

m
e

co
lo

r-
co

de
as

fo
r

th
e

ac
tu

al
fr

am
es

.
M

is
se

d:
G

en
ui

ne
C

I
an

d
C

II
ac

co
rd

in
g

to
th

e
la

be
le

d
da

ta
se

tt
ha

tw
er

e
m

is
cl

as
si

fie
d

by
th

e
ne

tw
or

k.
G

re
en

is
fo

r
ge

nu
in

e
C

II
Y

SO
s,

re
d

fo
r

ge
nu

in
e

C
I

Y
SO

s.
T

he
po

in
ts

an
d

cr
os

se
s

in
di

ca
te

th
e

ne
tw

or
k

ou
tp

ut
as

sp
ec

ifi
ed

in
th

e
le

ge
nd

.
W

ro
ng

:
Y

SO
pr

ed
ic

tio
ns

of
th

e
ne

tw
or

k
th

at
ar

e
kn

ow
n

to
be

in
co

rr
ec

tb
as

ed
on

th
e

la
be

le
d

da
ta

se
t.

G
re

en
is

fo
r

ge
nu

in
e

C
II

Y
SO

s,
re

d
fo

rg
en

ui
ne

C
IY

SO
s

an
d

bl
ue

is
fo

rg
en

ui
ne

co
nt

am
in

an
ts

.T
he

tw
o

ty
pe

s
of

cr
os

se
s

in
di

ca
te

th
e

pr
ed

ic
te

d
Y

SO
cl

as
s

as
sp

ec
ifi

ed
in

th
e

le
ge

nd
.

117

6.6 Orion and NGC 2264 YSO candidates distribution maps

6.6 Orion and NGC 2264 YSO candidates distribution maps
With the prediction from the full 1 kpc training over Orion and NGC 2264 we were able to look
at the distribution of CI and CII YSOs in the corresponding regions. To represent the density
of the regions we chose to use data from the Herschel space observatory (Pilbratt et al. 2010),
especially the Spectral and Photometric Imaging REceiver (SPIRE) 500 µm band that is a rea-
sonable proxy of the total gas column density.

Figure 6.6 shows the distributions for the Orion A region that contains the Orion nebula
(Messier 42). It shows that our CI YSOs follow the main dense filament very closely, especially
in the so-called "integral" shaped filament (between l = 208 and 210 degrees). As expected, the
CII YSOs, which are more evolved, spread more widely on the observed region. Still, the high
CII density nicely maps the densest part of the Orion molecular cloud and traces the parts that
are expected to form stars more actively.

The Orion B part of the molecular complex is presented in Figure 6.7. The number of YSOs
in this part of the cloud is lesser than in Orion A. This is line with Orion B being in an earlier
evolutionary stage, but the comparison is hampered by the fact that in this region the Spitzer
observations were not continuous (see Fig. 5.2). Yet, as for Orion A the CI YSOs tightly follow
the densest parts of the star-forming region, while CII show a greater dispersion around the
density peaks. We note that the number of YSOs found in each part is large enough to hope for
some of them having a Gaia counterpart that would allow us to estimate their distance (Sect. 8).

The NGC 2264 region is presented in Figure 6.8. As for the two others, the main star-
forming region is well traced by our CI YSOs, with CII being more dispersed (Buckner et al.
2020, as in). As for the rest of the study the smaller number of YSOs in the region makes it
slightly more difficult to analyze.

Interestingly, there is a small concentration of CI YSOs around l = 202.3, b = 2.5 which
corresponds to the G202.3 + 02.50 molecular cloud region where we showed that two filaments
of the cloud are colliding (Montillaud et al. 2019a,b, and Fig. 6.9). It is remarkable that this
small CI cluster coincides tightly with the junction region between the two merging filaments,
whereas the CII distribution seems mostly independent. Based on the typical time scale of the
CI protostellar phase, and assuming that the formation of the small CI cluster was triggered by
the filament collision, we conclude that the collision would have started typically . 5 × 105

years ago (Evans et al. 2009). This age is compatible with the age estimate of ∼ 105 yr obtained
from N2H+ observations of the junction region (Montillaud+19b).

Finally, we do not provide any prediction from the 1 kpc dataset, because it is impossible
for us to construct a confusion matrix and to provide quality estimators from them, due to the
absence of contaminants. However, we have made some attempts to use our trained network
over other star-forming regions using Spitzer data, which is partly discussed in Section 9.5.

To conclude this section, we are confident that our Full 1 kpc trained network contains a
sufficient diversity of subclasses to be efficiently applied to most nearby (. 1 kpc) star forming
regions. Our results show that one can expect nearly 90% of the CI YSOs to be properly re-
covered with a precision above 80%, while near 97% of CII YSOs are expected to be recovered
with a 90% precision.

118

6 Subsequent application to multiple star-forming regions

Figure 6.6: Distribution of YSO candidates in the Orion A part of the molecular complex. The
grey scale shows the Herschel SPIRE 500 µm map. CI and CII YSOs are shown in the middle
and lower frames in red and green, respectively.

Figure 6.7: Distribution of YSO candidates in the Orion B part of the molecular complex. The
grey scale shows the Herschel SPIRE 500 µm map. CI and CII YSOs are shown in the middle
and right frames in red and green, respectively.

119

6.6 Orion and NGC 2264 YSO candidates distribution maps

Figure 6.8: Distribution of YSO candidates in the NGC 2264 region. The grey scale shows the
Herschel SPIRE 500 µm map. CI and CII YSOs are shown in the middle and lower frames in
red and green, respectively.

Figure 6.9: Herschel view of the G202.3+2.5 region, about 1 deg north to the open cluster
NGC 2264. Left: column density of molecular hydrogen derived from the SED fit of SPIRE
bands. Right: dust temperature from the same SED fit. In both frames, the ellipses show the
submillimeter compact sources extracted by Montillaud et al. (2015). The junction region,
along with other important structures of the cloud are indicated with white shapes. In both
frames, the inset shows a zoom to the junction region. From Montillaud et al. (2019b).

120

7 Probabilistic prediction contribution to the analysis

Output Correct

Missed Wrong

Figure 7.1: Ternary plots of output membership probability for each class in the F-C case
forwarded on the full dataset. Output: all objects. Correct: genuine and predicted classes
are identical. Missed: misclassified objects colored regarding their genuine class. Wrong:
misclassified object colored regarding their predicted class.

7 Probabilistic prediction contribution to the analysis

7.1 Interpretation of the membership probability 122
7.2 Graphical analysis of the membership probability 127

In this section, we discuss the inclusion of a membership probability prediction into our
network. If we assumed that the original classification were absolutely correct, the discrepan-
cies would only correspond to errors. However, as illustrated by the effect of the MIPS band,
the original classification has its own limitations. Therefore, the objects misclassified by our
network might highlight that they were already less reliable in the original classification or may
even have been misclassified. A membership probability allows one to refine this idea by quan-
tifying the level of confidence of the network on each prediction, directly based on the observed
distribution of the objects in the input parameter space. In practice, as already illustrated in Fig-
ure 6.4, where misclassified objects stack around the inter-class boundaries, the classification
reliability of individual objects is mostly a function of their distance to these boundaries. One
strength of the probabilistic output presented in Section 4.9.1 is that the probability values pro-
vided by the network take advantage of the network ability to combine the boundaries directly
in the ten dimensions of the feature space.

121

https://doi.org/10.5281/zenodo.2628066

7.1 Interpretation of the membership probability

Output

0.4 0.6 0.8 1.0
Membership Probability

0

500

1000

1500

2000

2500
Class II
Class I

Correct

0.4 0.6 0.8 1.0
Membership Probability

0

500

1000

1500

2000
Correct CII
Correct CI

Missed

0.4 0.6 0.8 1.0
Membership Probability

0

5

10

15

20 Missed CII
Missed CI

Wrong

0.4 0.6 0.8 1.0
Membership Probability

0

20

40

60

80

100
Wrong CII
Wrong CI

Figure 7.2: Histograms of membership probability for YSO classes regarding different popu-
lations in the F-C case forwarded on the full dataset. Output: all objects. Correct: genuine and
predicted classes are identical. Missed: misclassified objects colored regarding their genuine
class. Wrong: misclassified object colored regarding their predicted class.

7.1 Interpretation of the membership probability

We used the probabilistic predictions to measure the degree of confusion of an object between
the output classes. This is illustrated by the ternary plots in Figure 7.1, where the location of
the objects corresponds to their predicted probability to belong to each class. On these plots,
an object with a high confidence level lies near the peaks. Objects that are in the inner part of
the graph are the most confused between the three classes, while objects on the edges illustrate
a confusion between only two classes. The sample size obviously plays a role in this represen-
tation, but each class clearly shows a level of confusion that is higher with one specific other
class. The graph for all outputs shows that the confusion between CI and Other is the lowest,
followed by the confusion between CI and CII YSOs, with the highest confusion level being
between the CII and Other classes. Those observations are strongly consistent with our previous
analysis based only on the confusion matrix.

122

7 Probabilistic prediction contribution to the analysis

Table 7.1: F-C case forwarded on the full dataset with membership probability > 0.9.

Predicted

A
ct

ua
l

Class CI YSO CII YSO Other Recall

CI YSO 297 5 8 95.8%
CII YSO 16 2412 13 98.8%
Other 26 118 23247 99.4%

Precision 87.6% 95.1% 99.9% 99.3%

Notes. The selection removed 104 CI (−25.1%), 218 CII (−8.2%), and 439 Other (−1.8%).

Table 7.2: F-C case forwarded on the full dataset with membership probability > 0.95.

Predicted

A
ct

ua
l

Class CI YSO CII YSO Other Recall

CI YSO 274 2 7 96.8%
CII YSO 11 2302 8 99.2%
Other 23 92 23136 99.5%

Precision 89.0% 96.1% 99.9% 99.4%

Notes. The selection removed 131 CI (−31.6%), 338 CII (−12.7%), and 579 Other (−2.4%).

Table 7.3: F-C case forwarded on the full dataset with membership probability > 0.99.

Predicted

A
ct

ua
l

Class CI YSO CII YSO Other Recall

CI YSO 203 0 5 97.6%
CII YSO 4 1970 4 99.6%
Other 14 51 22747 99.7%

Precision 91.9% 97.5% 99.9% 99.7%

Notes. The selection removed 206 CI (−49.8%), 681 CII (−25.6%), and 1018 Other (−4.3%).

Additionally, as discussed in Section 4.9.1, the probabilistic predictions can be used to re-
move objects that are not reliable enough. The misclassified objects show a higher degree of
confusion, and therefore a maximum value of membership probability lower than the objects
properly classified. This characteristic is illustrated by Figures 7.1 and 7.2. The latter compares
histograms of the highest output probability for properly and wrongly classified objects. This
figure reveals that the great majority of correctly classified YSOs have a membership proba-
bility greater than 0.95, whereas most missed or wrong YSOs have a probability membership
below that threshold. In this context, applying a threshold on the membership probability will
proportionally remove more misclassified objects than properly classified ones, therefore im-
proving the recall and precision of our network. The threshold value is arbitrary, depending on
the application.

123

7.1 Interpretation of the membership probability

We illustrate this selection effect on the F-C case in Tables 7.1, 7.2, and 7.3. These tables
represent the confusion matrix of the complete combined dataset after selecting objects with
membership probability above 0.9, 0.95 and 0.99 respectively. In the 0.9 case (Table 7.1), 25%
(104) of the CI YSOs were removed, while their recall increased by 4.5%. In the same way,
8.2% (218) of the CII YSOs were removed leading to a 1.2% increase in their recall. Contam-
inants were less affected with only 1.8% of objects removed, which still increased the recall
by 0.6%. This is an additional demonstration of the CI YSOs being less constrained than the
other output classes. In the 0.95 case (Table 7.2), the output classes have lost 31.6% (131),
12.7 (338), and 2.4% (579) of objects, respectively. This still improved the recall of the two
YSO classes with a 1% increase for CI and an 0.4% increase for CII, when compared to the 0.9
case. This result is also the first one to be close to have all quality estimators above 90%, since
the CI YSO precision is 89%, while losing an acceptable fraction of them. The 0.99 case (Ta-
ble 7.3) is more extreme, since almost 50% (206) of CI YSOs were removed, but the recall of
the remaining one reached 97.6%, that is a 6.3% improvement over the regular F-C full dataset
case. However, the CII YSOs are also strongly affected, with 25.6% (681) of them removed,
and only yielding a 0.4% improvement in comparison to the 0.95 case. Another illustration that
this strategy effectively excludes objects that are near the cuts is presented by Figure 7.3 where
the objects above or below a 0.9 membership threshold are plotted separately for a usual set of
CMDs. This effect is particularly visible in the ([4.5]-[8],[3.6]-[5.8]) (second frame) and the
([4.5]-[5.8],[3.6]-[4.5]) (forth frame) diagrams. This figure illustrates that membership proba-
bility less than 0.9 can be considered unreliable.

It is important to emphasize again, as stated in Section 4.9.1, that the membership prob-
ability output is not a direct physical probability. It is a probability regarding the network
knowledge of the problem, which can be biased or incomplete or both. Therefore, selecting a
0.9 membership probability does not necessarily correspond to a 90% certainty prediction level.
The only usable probability is the one given by the confusion matrix. Consequently, according
to Table 7.1, when applying a 0.9 membership limit, the probability that a predicted class I
YSO is correct is estimated to be 87.6%, while, with the same limit, class II YSOs are correct
in 96.1% of the cases. These two values are not equivalent and one must not use the network
output membership probability as a true estimate of the reliability of an object. It can only be
used to compare objects from the same network training, and must be converted as a true quality
estimator using the confusion matrix.

124

7 Probabilistic prediction contribution to the analysis

Above 0.9 Bellow 0.9

Figure 7.3: See caption on second half of the figure next page.

125

7.1 Interpretation of the membership probability

Figure 7.3: Input parameter space coverage using the usual G09 diagrams in the F-C case on
the full dataset regarding their predicted membership probability. CI YSOs are in red, CII YSOs
are in green while Other are in blue. Left: objects with membership probability greater than 0.9.
Right: objects with membership probability less than 0.9.

126

7 Probabilistic prediction contribution to the analysis

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R Incre

asing

 threshold

CI, AUC = 0.9925
CII, AUC = 0.9959
Oth., AUC = 0.9951
Random, AUC = 0.50

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
FPR

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

TP
R

Increasing

 threshold

CI, AUC = 0.9925
CII, AUC = 0.9959
Oth., AUC = 0.9951
Random, AUC = 0.50

Figure 7.4: ROC curves for each of our output classes, CI in blue, CII in orange and other in
green. The red curve illustrates a random classifier. Each point of the curve is obtained from a
given threshold limit. The right frame is a zoom of the upper left part of the left frame.

7.2 Graphical analysis of the membership probability
Printing the confusion matrix for each threshold value of the membership probability is the op-
timal way to get the direct performance information at a given threshold value. Despite this,
there are some common representations that can be made using the threshold value. The most
common one is the Receiver Operating Characteristic (ROC) curve, which is a standard tool to
assess the prediction quality of a binary probabilistic classifier. In our case it is possible to plot
the corresponding ROC curve for each output class by considering it as binary output against
the other two classes. The ROC curve is usually defined as the False Positive Rate (FPR) or 1
- specificity, against the True Positive Rate (TPR) or sensitivity, which is the equivalent of our
previously defined recall (Sect. 4.9.3). To produce this curve, the threshold value is sampled
and the previous two values are computed for each point for a specific class. We stress that,
during this process the predicted class depends solely on the fact that the corresponding neuron
has a value higher than the threshold and does not mean that it is the maximum value of the
output neurons. It produced the Figure 7.4 that contains the corresponding ROC for each class.
In this figure, a random classifier would produce a linear response, while a perfect classifier
would have only one point at the top left edge of the graph, meaning that it has both a perfect
sensitivity and a perfect specificity. This ROC curve allows to compute the Area Under the
Curve or AUC, that is an estimate of the global binary classifier performance. The regular ROC
plot being generally used for less efficient classifier, we made a zoom on the interesting part for
our case in the bottom frame of Figure 7.4. It is striking by looking at the AUC and the curves
that our CI YSO class is less well represented. Interestingly, the CII and Other classes seem
more or less equivalent using this quality estimator, which was not the case when looking at our
confusion matrix.

127

7.2 Graphical analysis of the membership probability

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P. Threshold

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ke

pt
 p

ro
p.

CI
CII
Other

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P. Threshold

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

CI
CII
Other

0.4 0.5 0.6 0.7 0.8 0.9 1.0
P. Threshold

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

CI
CII
Other

Figure 7.5: Evolution of quality estimators for each class regarding the membership probability
threshold. Top, Middle and Bottom frame shows the evolution of the kept proportion, recall, and
precision, respectively.

128

7 Probabilistic prediction contribution to the analysis

The ROC is an interesting indicator when comparing different classifiers, but it is less useful
in our case with just one final classifier. However, it motivated the estimate of other quantities
as a function of the probability threshold. There are mainly three quantities that are interesting
in our case, which are the proportion of objects that are excluded, the recall and the precision.
Figure 7.5 shows all these quantities for our three output classes. We note that the curve does
not go bellow a probability value of 1/3 since, for a normalized output with three classes, when
a class has a probability lesser than 1/3, another necessarily has a probability greater than this
value. These curves perfectly illustrate the lesser network confidence level on our CI prediction
against the two other classes. Ultimately, they can be used to predict the threshold to apply
in order to get a given recall or precision on a given class, and what would be the number of
objects that are lost and the impact on the other classes.

However, we note that this curve is unable to reproduce our F-C full dataset result since the
class association that was used for it consisted in taking the maximum of the three probability
output. With this threshold approach, considering an object as a CI as soon as its membership
probability is above 0.4 does not prevent another class to be at 0.6 and therefore do a misclas-
sification. However, doing so allows to select objects that are at least close to the CI category.
In order to avoid misclassification, the threshold value must be above 0.5, since no other class
alone can be higher. Still, it will miss some objects that the maximum probability association
would have found, as for example a (0.4,0.3,0.3) probability output. These examples highlight
the threshold approach limits, especially for lower thresholds values.

Finally we looked at the effect of the membership probability threshold on the distribution
of the remaining YSOs in Orion and NGC 2264. Figures 7.6 and 7.7 show the distribution of
CI and CII YSOs, respectively. Despite the fact that the objects classified as CI but removed
by a probability threshold of 0.9 have a greater chance not to be genuine CI YSOs, it does not
translate into evident correlation in the distribution of these objects in the sky plane. Indeed,
the removed excluded objects seem to mostly follow the global distribution of the same class.
Still, due to the higher concentration of objects in the densest part of the cloud, applying a
threshold will result in an apparently narrower distribution on the filament. Figure 7.8 shows
similar results for NGC 2264. We note that such a cut is only interesting when looking at the
statistical properties of the clouds. For more local, or per star study, it could be useful to keep
all candidates and proceed to further individual inspection.

To conclude, with the inclusion of this probability in our results, we provide a substantial
addition to the original G09 classification, for which it might be more difficult to identify the
reliable objects. The results of the F-C case will be published in the form of a public catalog
available at CDS and associated with our paper (Cornu & Montillaud 2020), which contains the
class prediction along with the membership probability for each object in the Combined dataset.
It includes all objects from the catalogs by Megeath et al. (2012) and Rapson et al. (2014), as
described in Section 5.2, and Table 7.4 shows an excerpt from our catalog.

129

7.2 Graphical analysis of the membership probability

Figure 7.6: Distribution of CI YSO candidates for Orion A after a membership probability
threshold. The background grayscale is the Herschel SPIRE 500 µm map. Top, Middle and
Bottom frames are for 0.9, 0.95 and 0.99 probability threshold, respectively.

130

7 Probabilistic prediction contribution to the analysis

Figure 7.7: Distribution of CII YSO candidates for Orion A after a membership probability
threshold. The background grayscale is the Herschel SPIRE 500 µm map. Top, Middle and
Bottom frames are for 0.9, 0.95 and 0.99 probability threshold, respectively.

131

7.2 Graphical analysis of the membership probability

Figure 7.8: Distribution YSO candidates for NGC 2264 after a membership probability thresh-
old. The background grayscale is the Herschel SPIRE 500 µm map. Left: distribution of the CI
YSOs. Right: distribution of the CII YSOs. Top, Middle and Bottom frames are for 0.9, 0.95
and 0.99 probability threshold, respectively.

132

7 Probabilistic prediction contribution to the analysis
Ta

bl
e

7.
4:

Fi
rs

t2
0

an
d

la
st

20
el

em
en

ts
of

th
e

ca
ta

lo
g

of
ne

tw
or

k
pr

ed
ic

tio
n

in
th

e
F-

C
ca

se
us

in
g

th
e

fu
ll

da
ta

se
t.

R
A

D
E

C
C

at
al

og
O

ri
g.

C
la

ss
3.

6
e3

.6
4.

5
e4

.5
5.

8
e5

.8
8.

0
e8

.0
24

e2
4

Ta
rg

.
Pr

ed
.

P(
C

I)
P(

C
II

)
P(

O
th

.)
(d

eg
)

(d
eg

)
(m

ag
)

(m
ag

)
(m

ag
)

(m
ag

)
(m

ag
)

(m
ag

)
(m

ag
)

(m
ag

)
(m

ag
)

(m
ag

)

10
0.

79
29

99
+

8.
75

31
47

2
0

II
I/

F
10

.3
2

0.
00

3
10

.1
7

0.
00

3
10

.0
7

0.
00

5
10

.0
3

0.
00

8
..

.
..

.
6

2
0.

0
5.

7e
-5

0.
99

99
10

0.
67

76
25

+
8.

75
56

25
0

0
II

I/
F

11
.6

2
0.

00
3

11
.6

0
0.

00
4

11
.5

5
0.

01
6

11
.5

6
0.

03
5

..
.

..
.

6
2

0.
0

0.
0

1.
0

10
0.

76
09

58
+

8.
75

66
52

8
0

II
I/

F
13

.3
8

0.
00

7
13

.2
8

0.
01

1
13

.2
7

0.
05

13
.7

8
0.

15
5

..
.

..
.

6
2

0.
0

0.
0

1.
0

10
0.

75
78

75
+

8.
75

89
38

9
0

II
I/

F
12

.5
2

0.
00

5
12

.5
2

0.
00

6
12

.4
0.

03
12

.4
1

0.
05

3
..

.
..

.
6

2
0.

0
0.

0
1.

0
10

0.
72

45
00

+
8.

76
06

94
4

0
II

I/
F

13
.7

1
0.

00
9

13
.6

6
0.

01
3

13
.6

0.
06

9
13

.6
7

0.
14

8
..

.
..

.
6

2
0.

0
0.

0
1.

0
10

0.
72

89
17

+
8.

76
09

72
2

0
II

I/
F

13
.2

3
0.

00
7

13
.1

7
0.

00
8

12
.9

9
0.

04
2

13
.1

6
0.

08
1

..
.

..
.

6
2

0.
0

0.
0

1.
0

10
0.

74
49

58
+

8.
76

30
75

0
0

II
I/

F
11

.2
8

0.
00

3
11

.3
7

0.
00

4
11

.3
2

0.
01

1
11

.2
2

0.
02

7
..

.
..

.
6

2
0.

0
0.

0
1.

0
10

0.
66

71
67

+
8.

76
53

72
2

0
II

I/
F

13
.5

0.
01

5
13

.3
6

0.
02

9
13

.3
9

0.
07

5
13

.4
3

0.
11

..
.

..
.

6
2

2.
0e

-6
1.

4e
-4

0.
99

98
10

0.
67

02
50

+
8.

76
91

22
2

0
II

I/
F

8.
64

0.
00

2
8.

54
0.

00
2

8.
4

0.
00

2
8.

36
0.

00
2

8.
29

0.
04

3
6

2
0.

0
5.

9e
-4

0.
99

94
10

0.
79

20
83

+
8.

76
92

69
4

0
II

I/
F

13
.3

9
0.

00
7

13
.4

0
0.

01
0

13
.4

1
0.

05
2

13
.0

1
0.

09
..

.
..

.
6

2
0.

0
4.

6e
-5

0.
99

99
10

0.
76

92
92

+
8.

77
04

55
6

0
II

I/
F

12
.9

3
0.

00
6

12
.8

7
0.

00
8

12
.8

9
0.

03
8

12
.7

0.
05

8
..

.
..

.
6

2
0.

0
3.

0e
-6

0.
99

99
10

0.
75

77
08

+
8.

77
10

50
0

0
II

I/
F

10
.5

8
0.

00
2

10
.6

5
0.

00
3

10
.5

9
0.

00
7

10
.5

6
0.

01
2

..
.

..
.

6
2

0.
0

0.
0

1.
0

10
0.

81
12

50
+

8.
77

14
55

6
0

II
I/

F
7.

75
0.

00
2

7.
83

0.
00

2
7.

63
0.

00
2

7.
63

0.
00

2
..

.
..

.
6

2
0.

0
8.

2e
-3

0.
99

17
10

0.
76

82
08

+
8.

77
28

19
4

0
II

I/
F

13
.8

3
0.

00
9

13
.8

0
0.

01
4

13
.9

9
0.

08
8

13
.5

6
0.

11
7

..
.

..
.

6
2

0.
0

0.
0

1.
0

10
0.

77
36

67
+

8.
77

44
22

2
0

II
I/

F
11

.6
8

0.
00

4
11

.8
7

0.
00

4
11

.6
1

0.
01

2
11

.6
1

0.
03

2
..

.
..

.
6

2
0.

0
0.

0
1.

0
10

0.
67

22
08

+
8.

77
65

88
9

0
II

I/
F

13
.3

7
0.

00
7

13
.3

1
0.

01
0

13
.3

2
0.

05
5

13
.2

1
0.

08
9

..
.

..
.

6
2

0.
0

1.
0e

-6
0.

99
99

10
0.

76
83

75
+

8.
77

75
69

4
0

II
I/

F
12

.4
9

0.
00

5
12

.5
2

0.
00

6
12

.4
4

0.
02

6
12

.4
1

0.
05

3
..

.
..

.
6

2
0.

0
0.

0
1.

0
10

0.
69

72
92

+
8.

77
83

97
2

0
II

I/
F

10
.7

8
0.

00
3

10
.7

9
0.

00
3

10
.7

4
0.

00
7

10
.5

7
0.

01
4

..
.

..
.

6
2

0.
0

3.
0e

-6
0.

99
99

10
0.

68
42

08
+

8.
77

84
63

9
0

II
I/

F
12

.8
7

0.
00

5
12

.8
5

0.
00

7
12

.8
1

0.
03

3
12

.7
4

0.
06

5
..

.
..

.
6

2
0.

0
0.

0
1.

0
10

0.
79

25
42

+
8.

77
96

38
9

0
A

G
N

16
.1

8
0.

04
7

5.
12

0.
03

5
14

.3
7

0.
14

1
13

.0
0

0.
07

9
..

.
..

.
3

2
4.

9e
-5

2.
0e

-6
0.

99
99

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

86
.8

01
53

97
-0

.7
21

78
30

1
O

th
er

13
.7

9
0.

01
1

13
.7

3
0.

01
7

13
.6

6
0.

10
6

13
.5

4
0.

15
3

..
.

..
.

6
2

0.
0

1.
0e

-6
0.

99
99

86
.7

22
79

24
-0

.7
20

44
20

1
O

th
er

11
.8

8
0.

00
5

11
.8

5
0.

00
6

11
.8

7
0.

02
6

11
.7

3
0.

03
6

..
.

..
.

6
2

0.
0

0.
0

1.
0

86
.7

29
61

91
-0

.7
18

95
94

1
O

th
er

14
.5

4
0.

01
9

14
.1

4
0.

02
6

13
.8

4
0.

14
7

10
.9

8
0.

02
2

8.
44

0.
11

0
2

2
0.

0
0.

0
1.

0
86

.6
18

58
32

-0
.7

16
37

86
1

O
th

er
9.

60
0.

00
2

9.
60

0.
00

3
9.

57
0.

00
6

9.
53

0.
00

7
..

.
..

.
6

2
0.

0
2.

1e
-5

0.
99

99
86

.8
82

22
81

-0
.7

11
16

07
1

O
th

er
13

.1
6

0.
00

9
13

.1
3

0.
01

2
13

.0
2

0.
05

6
13

.0
0

0.
11

0
..

.
..

.
6

2
0.

0
2.

0e
-6

0.
99

99
86

.8
18

72
51

-0
.7

08
60

41
1

O
th

er
13

.4
0

0.
01

0
13

.3
2

0.
01

1
13

.2
4

0.
07

2
13

.3
4

0.
12

3
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.8
93

82
00

-0
.7

07
53

97
1

O
th

er
11

.3
6

0.
00

4
11

.3
8

0.
00

5
11

.2
7

0.
01

7
11

.2
9

0.
02

7
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.7
45

17
51

-0
.7

07
40

37
1

O
th

er
11

.6
1

0.
00

4
11

.5
4

0.
00

4
11

.5
1

0.
02

4
11

.5
3

0.
02

4
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.6
62

73
09

-0
.7

06
03

98
1

O
th

er
12

.9
9

0.
00

8
12

.9
3

0.
00

8
12

.8
6

0.
05

6
12

.9
5

0.
06

4
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.6
65

22
94

-0
.7

03
61

16
1

O
th

er
11

.5
2

0.
00

4
11

.4
7

0.
00

4
10

.5
9

0.
01

3
11

.4
5

0.
02

2
..

.
..

.
5

2
0.

0
0.

0
1.

0
86

.6
47

87
10

-0
.7

02
89

39
1

O
th

er
11

.4
0

0.
00

4
11

.4
4

0.
00

5
11

.3
5

0.
01

8
11

.2
8

0.
02

7
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.6
73

49
74

-0
.7

02
53

17
1

O
th

er
12

.6
8

0.
00

6
12

.6
4

0.
00

9
12

.6
0

0.
04

5
12

.4
8

0.
06

4
..

.
..

.
6

2
0.

0
1.

0e
-6

0.
99

99
86

.6
59

32
66

-0
.6

98
56

67
1

O
th

er
13

.5
4

0.
01

0
13

.5
0

0.
01

5
13

.5
5

0.
09

5
13

.3
6

0.
14

7
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.8
58

69
10

-0
.6

94
81

55
1

O
th

er
12

.7
7

0.
00

7
12

.7
5

0.
01

0
12

.6
3

0.
04

3
12

.7
2

0.
07

7
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.6
52

25
43

-0
.6

91
38

75
1

O
th

er
8.

95
0.

00
7

8.
95

0.
00

2
8.

87
0.

00
4

8.
83

0.
00

4
8.

94
0.

16
8

6
2

1.
0e

-6
3.

1e
-3

0.
99

69
86

.7
71

85
31

-0
.6

90
36

23
1

O
th

er
13

.8
3

0.
01

4
13

.7
8

0.
02

0
13

.6
3

0.
10

4
13

.6
5

0.
18

4
..

.
..

.
6

2
0.

0
1.

0e
-6

0.
99

99
86

.8
16

44
38

-0
.6

90
12

89
1

O
th

er
13

.3
9

0.
01

0
13

.2
9

0.
01

1
13

.1
2

0.
06

6
13

.0
8

0.
08

4
..

.
..

.
6

2
1.

0e
-6

2.
5e

-5
0.

99
99

86
.7

21
83

42
-0

.6
86

36
91

1
O

th
er

14
.1

5
0.

01
5

13
.9

0
0.

02
2

13
.0

8
0.

07
6

10
.3

2
0.

01
4

8.
32

0.
09

5
2

2
0.

0
0.

0
1.

0
86

.6
60

42
87

-0
.6

85
57

91
1

O
th

er
10

.5
1

0.
00

3
10

.4
6

0.
00

2
10

.4
0

0.
00

9
10

.4
2

0.
01

0
..

.
..

.
6

2
0.

0
0.

0
1.

0
86

.8
97

64
92

-0
.6

83
95

29
1

O
th

er
8.

97
0.

00
6

8.
97

0.
00

2
8.

85
0.

00
4

8.
81

0.
00

4
8.

82
0.

15
2

6
2

1.
0e

-6
3.

0e
-3

0.
99

70

N
ot

es
.T

he
fu

ll
ca

ta
lo

g
is

pu
bl

ic
ly

av
ai

la
bl

e
at

C
D

S.
T

he
co

lu
m

ns
ar

e:
(1

-2
)T

he
so

ur
ce

co
or

di
na

te
s

(J
20

00
);

(3
)t

he
or

ig
in

al
ca

ta
lo

g
(0

:
M

eg
ea

th
et

al
.(

20
12

),
1:

R
ap

so
n

et
al

.(
20

14
))

;(
4)

th
e

or
ig

in
al

cl
as

si
fic

at
io

n;
(5

-1
4)

IR
A

C
an

d
M

IP
S

m
ag

ni
tu

de
s

an
d

co
rr

es
po

nd
in

g
un

ce
rt

ai
nt

ie
s;

(1
5)

th
e

ta
rg

et
cl

as
si

fic
at

io
n

ob
ta

in
ed

w
ith

ou
r

si
m

pl
ifi

ed
G

09
sc

he
m

e
(0

:
C

I
Y

SO
s,

1:
C

II
Y

SO
s,

2:
G

al
ax

ie
s,

3:
A

G
N

s,
4:

Sh
oc

ks
,5

:
PA

H
s,

6:
St

ar
s)

;
(1

6)
th

e
cl

as
si

fic
at

io
n

pr
ed

ic
te

d
by

th
e

A
N

N
in

th
e

F-
C

ca
se

(0
:

C
IY

SO
s,

1:
C

II
Y

SO
s,

2:
co

nt
am

in
an

ts
);

(1
7-

19
)t

he
co

rr
es

po
nd

in
g

m
em

be
rs

hi
p

pr
ob

ab
ili

tie
s.

133

Table 8.1: Orion A sample size for different selection criteria.

CI YSOs CII YSOs

(0): Raw catalog 275 1957
(1): Raw X-match 49 1612
(2): 1 with $ 36 1457
(3): 2 with σ$/$ < 0.1 12 1006
(4): 2 with P(X) > 0.99 2 1038
(5): 2 with P(X) > 0.95 and σ$/$ < 0.1 5 932

8 3D cloud reconstruction using cross-match with Gaia

8.1 Orion A distance and 3D information . 134
8.2 Distances to Orion B sub-regions . 139
8.3 NGC 2264 distance and 3D information . 141

8.1 Orion A distance and 3D information

We aim to demonstrate that our catalog of YSO candidates can be used to retrieve distance
information about molecular clouds, and even reveal more subtle 3D structural characteristics.
For this we mainly followed the approach exposed by Großschedl et al. (2018) (hereafter GR18)
who performed a 3D reconstruction of Orion A based on the Megeath et al. (2012) catalog (and
some refinements from Megeath et al. (2016)) and an additional 200 YSOs sample from the
ESO-VISTA near-infrared survey (Meingast et al. 2016), all cross-matched with Gaia DR2 in
order to obtain parallax measurements. Therefore, using our own YSO candidate catalog, we
tried to reproduce the results on Orion A, and subsequently applied a similar approach to Orion
B and NGC 2264. Our approach is described in the following paragraphs.

We performed a cross-match with Gaia DR2 (Gaia Collaboration et al. 2018a) that associate
objects based on a 1′′ sky distance as in GR18. Since YSOs are embedded in an environment
that is often optically thick for the optical Gaia G band, we only recovered a fraction of them,
and lost almost all the CI YSOs for all datasets. Still following GR18 we applied cuts in parallax
quality with the σ$/$ < 0.1 condition. We also stress that we conserved their assumption that
the direct inverse of parallax is a sufficiently good distance approximation in the case of Orion
A, with less than 1% difference with the Bailer-Jones et al. (2018) Bayesian inference distance
estimate. Then, instead of applying subsequent Gaia astrometry filters and an additional color
excess exclusion like in GR18, we preferred to test if improving the YSO selection quality leads
to similar results. For this we applied a 0.95 membership threshold that has shown to conserve
a large fraction of the objects while having a ∼90% precision on our CI YSOs (Table 7.2),
which is important for such application. This threshold further reduces the number of objects
recovered after the cross match with Gaia. The rest of the analysis is then specific to each region.

134

8 3D cloud reconstruction using cross-match with Gaia

Figure 8.1: Orion A distance distribution from GR18, with their full selection. Error bars
correspond to (σ$/$

2). The orange and blue markers are the mean and median distance for
each ∆l = 1◦ distance bin, respectively. The light and dark blue areas represents the 2σ and
1σ percentiles for each bin, respectively. The background grayscale is an Herschel map. From
Großschedl et al. (2018)

For Orion A, we used galactic coordinates to properly compare with GR18, and because it
is a wise choice since the filament structure is mostly aligned with the galactic longitude axis.
A few YSO selection criteria have been tested and are summarized in Table 8.1. From 275
CI and 1957 CII YSO candidates corresponding to Orion A in our catalog (case (0)), the Gaia
cross match only preserves 49 CI and 1612 CII YSOs (case (1)), with only 36 and 1457 of
them, respectively, with a parallax measurement (case (2)). Afterward, the use of our "good
YSO" condition that include the membership probability threshold at 0.95, combined with an
exclusion of objects with parallaxes clearly unrelated with Orion ($ > 3.333 or $ < 1.666)
like in GR18), left only 5 CI and 932 YSOs (case (5)). We observed that the threshold is only
responsible for a subsequent removal of 7 CI and 74 CII, while all the other removals are in-
duced by the parallax condition (case (3)). Nevertheless, selecting YSOs with a membership
probability > 0.95 with no cut in parallax quality still led to a sample that is smaller that the
raw cross match, with 23 CI and 1441 CII YSOs. A 0.99 membership cut (case(4)) resulted
in a sample with 2 CI and 1038 CII YSOs, on which the addition of the parallax condition left
only 2 CI and 846 CII YSOs. This tends to indicate that there is an overlap between the two
conditions, meaning that selecting very firmly established YSOs could be a sufficient enough
criteria in the case of Orion A.

135

8.1 Orion A distance and 3D information

Selection criteria (5)

207208209210211212213214215
l (deg)

300

350

400

450

500

550

600

di
st

an
ce

 (p
c)

Median
Mean
CII
CI

Selection criteria (4)

207208209210211212213214215
l (deg)

300

350

400

450

500

550

600

di
st

an
ce

 (p
c)

Median
Mean
CII
CI

Figure 8.2: Orion A distance distribution from the F-C YSO candidates, along with the sky
distribution over the region. Error bars correspond to (σ$/$

2). CI and CII selected YSOs are
in red and green, respectively. The orange and blue markers are the mean and median distance
for each ∆l = 1◦ distance bin, respectively. The light and dark blue areas represents the 2 and 1
σ percentiles for each bin, respectively. The background grayscale is the Herschel SPIRE 500
µm map. Top duo: YSO selection and distribution in case (5). Bottom duo: YSO selection and
distribution in case (4).

136

8 3D cloud reconstruction using cross-match with Gaia

Ta
bl

e
8.

2:
O

ri
on

A
di

st
an

ce
es

tim
at

es
an

d
di

sp
er

si
on

fo
re

ac
h

ga
la

ct
ic

lo
ng

itu
de

bi
n.

C
as

e
(5

):
X

-m
at

ch
w

ith
P(

X
)>

0.
95

an
d
σ
$
/$

<
0.

1
C

as
e

(4
):

X
-m

at
ch

w
ith

P(
X

)>
0.

99

∆
lc

en
te

r
N

Y
S

O
M

ea
n

M
ed

ia
n

St
D

p(
−

2σ
)

p(
−

1σ
)

p(
+

1σ
)

p(
+

2σ
)

N
Y

S
O

M
ea

n
M

ed
ia

n
St

D
p(
−

2σ
)

p(
−

1σ
)

p(
+

1σ
)

p(
+

2σ
)

(d
eg

)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)
(p

c)

20
7.

5
2

40
1.

4
±

19
.4

39
4.

7
29

.1
36

4.
3

37
5.

7
42

0.
7

47
0.

1
18

40
1.

0
±

38
.4

39
3.

5
41

.3
33

1.
9

37
5.

7
42

5.
6

48
9.

6
20

8.
0

15
5

39
6.

4
±

17
.2

39
4.

7
25

.5
35

0.
9

37
6.

4
41

1.
2

46
1.

7
15

5
40

1.
1
±

42
.9

39
5.

7
35

.7
34

5.
9

37
6.

7
41

7.
6

50
2.

5
20

8.
5

32
1

39
2.

3
±

17
.9

39
3.

4
29

.0
33

1.
1

37
1.

4
41

1.
4

45
4.

1
31

4
39

2.
9
±

35
.4

39
3.

4
36

.7
31

2.
1

36
9.

5
41

4.
9

47
1.

0
20

9.
0

41
6

39
7.

5
±

18
.5

39
6.

7
32

.0
33

0.
8

37
5.

5
41

8.
3

46
7.

3
41

0
39

7.
6
±

29
.5

39
6.

9
38

.2
31

3.
2

37
1.

4
42

0.
7

48
7.

4
20

9.
5

33
7

39
9.

2
±

18
.5

39
6.

6
30

.4
34

2.
1

37
6.

1
41

9.
8

47
6.

1
34

4
40

2.
1
±

35
.3

39
8.

0
37

.4
33

4.
6

37
5.

6
42

4.
5

49
8.

5
21

0.
0

18
0

39
1.

3
±

18
.4

38
8.

7
29

.8
32

9.
6

36
7.

8
41

5.
5

45
9.

6
19

5
39

4.
9
±

38
.9

39
0.

4
37

.5
32

7.
0

36
6.

7
42

0.
0

49
1.

5
21

0.
5

11
5

39
5.

1
±

19
.5

39
1.

4
33

.8
32

8.
9

36
7.

9
42

0.
0

47
9.

9
13

6
39

8.
1
±

60
.7

39
3.

1
40

.4
32

8.
6

36
6.

3
42

7.
5

51
4.

4
21

1.
0

56
39

7.
5
±

20
.4

39
4.

6
38

.8
33

0.
6

36
5.

3
41

8.
2

50
6.

4
78

40
6.

2
±

84
.8

39
7.

5
47

.7
32

8.
1

36
6.

3
44

7.
1

52
9.

2
21

1.
5

31
40

2.
7
±

20
.2

39
8.

4
39

.8
32

9.
3

37
2.

1
43

0.
8

48
7.

0
48

41
8.

5
±

66
.6

40
8.

2
47

.0
33

7.
1

38
1.

8
46

3.
2

52
7.

3
21

2.
0

52
42

5.
3
±

22
.0

42
3.

0
44

.5
35

3.
0

38
0.

5
46

9.
4

52
1.

4
66

43
1.

2
±

51
.7

42
6.

0
48

.0
35

5.
7

38
1.

9
47

6.
2

53
9.

8
21

2.
5

65
43

3.
9
±

23
.4

43
9.

7
43

.8
35

5.
5

38
3.

1
47

1.
5

51
4.

0
89

43
9.

7
±

61
.4

44
6.

8
50

.6
35

1.
6

38
2.

9
48

2.
5

55
2.

0
21

3.
0

48
43

6.
9
±

23
.9

44
3.

9
35

.8
36

0.
3

40
2.

2
46

7.
1

49
0.

5
81

43
9.

0
±

66
.5

44
6.

8
56

.8
32

3.
1

38
1.

2
49

0.
7

53
9.

5
21

3.
5

32
43

9.
5
±

24
.5

44
2.

9
36

.0
36

8.
3

41
0.

1
47

2.
9

49
6.

6
59

43
9.

7
±

69
.8

44
3.

1
62

.1
31

5.
3

38
5.

9
49

0.
7

56
2.

7
21

4.
0

24
46

1.
1
±

29
.1

46
1.

0
44

.6
38

9.
9

41
7.

6
50

8.
4

54
9.

5
52

47
1.

9
±

95
.8

46
5.

4
63

.4
37

8.
1

40
3.

2
54

1.
7

58
9.

1
21

4.
5

13
47

6.
1
±

30
.2

46
8.

9
44

.5
40

9.
3

43
0.

1
51

3.
5

55
8.

6
30

48
6.

2
±

10
4

46
9.

5
64

.9
37

0.
6

42
9.

1
56

5.
1

59
3.

5

137

8.1 Orion A distance and 3D information

To help the comparison of our results with GR18, Figure 8.1 from Großschedl et al. (2018)
depicts the distribution of their YSO selection on Orion A using their full selection, resulting in
a 682 CII YSOs sample. The top frame shows the distance distribution following the galactic
longitude with each point being a YSO with its uncertainty (σ$/$

2). To extract a continuous
3D information, they chose to make bins of longitude with a ∆l = 1◦ width and evaluated the
mean and median distance for such interval every 0.5◦. This conducted to their main result with
a clear depth evolution toward the molecular complex with an estimated angle of ∼ 70◦ with the
plane of the sky. This also allowed them to estimate that the physical length of Orion A is ∼ 90
pc. These results strongly underline the limits of the commonly adopted 414 distance estimate
for the whole molecular complex (Menten et al. 2007).

Using our catalog we were able to observe a very similar distance distribution. Figure 8.2
shows our result with the combined selection based on probability and parallax uncertainty,
corresponding to case (5), and for our membership selection alone, i.e. case (4). The first one,
despite being more noisy that the GR18 result, follows the same global trend, with an 1σ dis-
persion that is very similar. We used the same longitude binning approach and represented the
same mean, median and 1-2 σ percentiles. While the distribution over the plane of the sky is
slightly more crowded, it seems that we have less objects that are far away from the main fila-
ment. It is interesting to note that, in this example we have 37% more CII than GR18, which
could result in a better overall statistic. Also, we remind that, in this case, we only applied one
criterion on astrometry quality, while there are many other filters applied in GR18. Still, we
reached the same conclusion as GR18, with at least around 80 pc distance difference between
the closest (∼395) and the farthest (∼475) points and very similar bin averages and standard
deviations.

The lower part of Figure 8.2, shows our attempt to use the case (4), with no parallax quality
criteria at all. As expected the uncertainties are much larger, while the overall trend is mostly
conserved. The fact that there is no parallax quality filter at all makes the mean uncertainty
estimation very large for some regions for which very uncertain objects are used. We observed
that, in the longitude bins that contains many YSOs, the 1σ percentile of the distance estimate is
very similar to case (5), while it significantly increases for areas that are less dense in YSOs, at
greater longitude. Still, the 2σ percentile is always larger, which is expected with the increased
dispersion. Nevertheless, the distribution over the plane of the sky remains convincing with
very few objects far off the main filament. Additionally, we have noticed that other selections
did not lead to significant changes. A combination of the two cases with both the 0.99 threshold
and the astrometry criteria only reduced the dispersion by a small amount, with no other signif-
icant changes. For in depth comparison between our two cases and the GR18 case, we provide
all measurements for each of our galactic longitude bins in Table 8.2, containing YSO counts,
mean and median values, and the standard deviation along with the four percentiles values.

138

8 3D cloud reconstruction using cross-match with Gaia

8.2 Distances to Orion B sub-regions
We applied the same methodology to the Orion B part of the molecular complex. As before we
used the 0.95 membership threshold along with the σ$/$ < 0.1 condition. We also removed
the maximum and minimum parallax limits since there was much less objects that were evident
distance outliers. We considered the following sub-regions: NGC 2024/2022, NGC 2071/2068
and LDN 1622, as in Megeath et al. (2012). We applied our selection to each of these regions
and produced a distance estimate for the three of them. The results are summarized in Ta-
ble 8.3. First, we observed that, despite the fact that no CI passed through the full selection
criteria, NGC 2024/2022 and NGC 2071/2068 still contain a reasonable number of CII YSOs
to estimate a distance with 51 and 67 objects, which is larger than in several bins we used for
Orion A. The LDN 1622 region, despite being actively forming stars on a very localized spot
(see CI in Fig. 6.7), is only characterized with 9 CII YSOs after the selection which is similar
to our less represented Orion A bin. We show in Figure 8.3 the selected YSOs within Orion B.

The NGC 2024/2022 region, that is the closest one to Orion A in the plane of the sky, shows
a mean 382 ± 20 pc and median 397 pc estimated distance that is very close to the one of the
Orion A nebula. We emphasize that all the errors that are given along the mean prediction cor-
respond to the propagated parallax errors. In this case, the standard deviation of 47 pc is similar
to the largest values observed in Orion A (Table 8.2) and could indicate either that the selection
of YSO candidates in this region in not as good as expected, or that this cloud is particularly
extended along the line of sight. Using the mean distance, it is possible to estimate the physical
width of the region considering a 2◦ width on the plane of the sky (as the circle in Fig. 8.3),
which provides 14 pc. Considering this results it is unlikely that our dispersion represents the
cloud depth. Also, a recent estimation of the distance of this region was made using the VLA
and led to an average distance of 423± 15 pc using the stellar parallax estimation of 5 very well
identified YSOs (Kounkel et al. 2017). Despite the relatively small given uncertainty, they have
values ranging from 356 to 536 pc associated to this region with a very small sample size. Inter-
estingly, they refined their distance estimate in Kounkel et al. (2018), where they used clustering
in a 6D space that merges Gaia and Apogee data with several YSO catalogs including Megeath
et al. (2012). In this study they found a 403 ± 4 pc estimate that is slightly more compatible
with our own result.

For the NGC 2071/2068 region, we found a mean distance of 431 ± 26 pc, with an even
larger standard deviation of 53 pc. This result suggests that the region is further away by around
30 to 40 pc than the Orion nebula region, which is more than what their alignment in the plane
of the sky suggested. Comparing to Kounkel et al. (2017), they estimated a distance of 388±10,
which is the opposite of the trend we observed. Still, this estimate was only based on 3 YSOs
with again strong differences between their sources estimated at 383, 392 and 455 pc, respec-
tively. Their distance refinement from Kounkel et al. (2018) is more compatible with our result
with a 417 ± 5 pc estimation.

The LDN 1622 region appears much closer than expected with a mean distance of 343± 13
pc and a much smaller standard deviation of ±17 pc. This result clearly separates the region
from the rest of the molecular complex. The same conclusion is obtained by Kounkel et al.
(2018), where they found a distance of 345 ± 6 pc that is almost identical to our own estimate.
These results highlight that the widely adopted 400 to 420 pc distance estimate might often be
incorrect since the star-forming regions in the Orion molecular complex can spread over a 80
pc distance range, and some of them that were though to be linked to the complex are actually
up to 60 pc closer to us than the Orion nebula.

139

8.2 Distances to Orion B sub-regions

Table 8.3: Orion B distance estimates and dispersion for each identified region.

NGC 2024 NGC 2071 LDN 1622
/2022 /2068

Raw catalog 31/182 52/223 7/18
Raw X-match 5/131 4/151 1/15
Full selection 0/51 0/67 0/9
Mean (pc) 381.8 431.5 343.4
Median (pc) 397.0 424.9 337.8
StD (pc) 46.9 52.9 17.4
p(−2σ) 261.9 346.5 323.3
p(−1σ) 340.7 399.1 327.3
p(+1σ) 421.7 464.2 357.8
p(+2σ) 443.3 509.1 375.7

Notes. The object numbers are given for CI/CII YSOs. The full selection applied here are the
same than the case (5) of Table 8.1.

Figure 8.3: Distribution of the YSO candidates that are kept by the selection criteria to compute
the distance of each region. The blue circles show the three regions for which a distance is
estimated.

140

8 3D cloud reconstruction using cross-match with Gaia

Table 8.4: NGC 2264 sample size for different selection criteria.

CI YSOs CII YSOs

Raw catalog 101 469
Raw X-match 8 390
with $ 6 355
with P(X) > 0.95 and σ$/$ < 0.1 0 142

Table 8.5: NGC 2264 distance estimates and dispersion for each galactic longitude bin.

l interval NYS O Mean Median StD p(−2σ) p(−1σ) p(+1σ) p(+2σ)
(deg) (pc) (pc) (pc) (pc) (pc) (pc) (pc)

[202.50, 202.85] 19 724.3 ± 45.6 707.1 52.6 636.0 678.5 780.8 810.8
[202.85, 203.10] 45 730.8 ± 42.5 738.4 51.7 575.0 695.8 770.4 800.1
[203.10, 203.35] 59 746.3 ± 36.9 743.3 43.1 652.1 706.4 785.5 830.4
[203.35, 203.70] 18 745.4 ± 52.7 740.7 39.2 676.1 705.9 780.0 814.3

8.3 NGC 2264 distance and 3D information
The last region for which we were able to provide a distance estimate is NGC 2264. As for
Orion A, it is possible to make slices using the galactic longitude that mostly follow the sub-
structures of the region. We used the same selection as for Orion B with a 0.95 membership
threshold and the same σ$/$ < 0.1 criteria. We summarize in Table 8.4 the effect of the basic
selections. We note that there was no CI remaining after our final selection criteria. First, we
made an average distance estimate over the whole region that gave a mean distance of 738± 43
pc and a median distance of 742 pc, and standard deviation of 48 pc and the following 1 and 2
σ percentiles 630, 699, 781, 827 pc. This global estimate is consistent with the Rapson et al.
(2014) estimates, but is even closer to the estimated distance of the open cluster with Gaia of
723 ± 50 that has a similar dispersion to our result (Cantat-Gaudin et al. 2018). We note that
this last estimate was not made using YSOs and therefore our estimated distance should better
trace the star-forming region inside NGC 2264.

Since the number of selected CII is low we limited ourselves to four longitude bins that do
not have the same size in order to get more stars in the less crowded regions. The selected bins
are l = [202.50, 202.85], [202.85, 203.10], [203.10, 203.35], [203.35, 203.70]. Figure 8.4 shows
the distance distribution of our YSO selection using the same visualization as for Orion A in
Section 8.1. We observed that the distance estimate is much more constant in longitude with
only a variation of around 20 pc in the mean values. We summarize in Table 8.5 the results
for each bin including the YSO count, the mean and median values, and the standard deviation
along with the 4 percentiles values. This detailed values indicate a small variation in distance
along the star-forming cloud, however our dispersion are significantly larger than for Orion
making this trend difficult to confirm. We also note that our selection criteria removed most of
the stars in the region of the filament junction region G202.3+2.5 (Montillaud et al. 2019b).

141

8.3 NGC 2264 distance and 3D information

202.0202.5203.0203.5204.0
l (deg)

550

600

650

700

750

800

850

di
st

an
ce

 (p
c)

Median
Mean
CII

Figure 8.4: NGC 2264 distribution of the F-C YSO candidates, along with the sky distribu-
tion over the region. Error bars correspond to (σ$/$

2). The selected YSOs (all CII) are in
green. The orange and blue markers are the mean and median distance for each longitude bin,
respectively. The light and dark blue areas represent the 2 and 1 σ percentiles for each bin,
respectively. The background grayscale is the Herschel SPIRE 500 µm map.

142

9 Additional discussion and further improvements

9 Additional discussion and further improvements
9.1 Identified limitations to our results . 143
9.2 MIPS 24 micron band effect on the results . 144
9.3 Usage of Spitzer colors instead of bands . 144
9.4 Method discussion . 145
9.5 Conclusion and perspectives . 146

9.1 Identified limitations to our results
With the dataset selected for this study, the quality of our results is mostly dependent on the
proper choice of the γi factors, that is to say that the main limitation comes from the construction
of our labeled dataset. It is indeed expected to be the most critical part of any ML application,
because the network only provides results as good as the input data. One of our major issues
is that some subclasses of rare contaminants remain poorly constrained, like Shocks or PAHs,
which leads to a significant contamination of the YSO classes. The non-homogeneity between
the 1 kpc small cloud dataset and the other datasets worsen this effect by increasing the dilution
of these rare subclasses (Sect. 6.4). They are almost evenly distributed across output classes in
the O-O case, revealing that the network was not able to identify enough constraints on those
objects. In contrast, for the C-C and F-C cases, they are randomly assigned to an output class.
This means that they are completely unconstrained by the network, which failed to disentangle
them from the noise of another class. This effect appeared in those specific cases due to the
increased dilution of those subclasses of contaminants.

On the other hand, the main source of contamination for CII YSOs is the Star subclass.
Adding more of them has proven to improve their classification quality (Sects. 6.1 and 6.4),
but at the cost of even more dilution of all the other subclasses, which has a stronger nega-
tive impact on the global result. Similarly, YSO classes themselves should be more present to
further improve their recall, but again at the cost of an increased dilution of the contaminant
subclasses. The confusion between CI and CII YSOs is illustrated by Figure 6.4, where the
misclassified YSOs of both CI and CII accumulate at the boundary between them in the input
parameter space. This figure also illustrates the CII contamination from Other with the same
kind of stacking, where the two classes are close to each other. A similar representation for all
the CMDs is provided in Figure 6.5.

Overall, we lack data to get better results. Large Spitzer point source catalogs are avail-
able, but the original classification from Gutermuth et al. (2009) was tailored for relatively
nearby star-forming regions, where YSOs are expected to be observed. Therefore, using a
non-specific large Spitzer catalog would mostly add non star-forming regions, which would
create a significant number of false positive YSOs. In practice, these false positive YSOs would
overwhelmingly contaminate the results, and the network performance would drop to the point
where more than 50% of CI YSOs are false positive. However, since one of our main limitation
is the number of contaminants, a large Spitzer catalog could be used to increase the number of
rare contaminants in the training sample by selecting areas that are known to be clear of YSOs.
Unfortunately, this approach would mostly provide us with more Stars, Galaxies and AGNs,
which are already well constrained, while the two most critical contaminant subclasses, Shocks
and PAHs, originate mostly from star forming regions.

143

9.2 MIPS 24 micron band effect on the results

9.2 MIPS 24 micron band effect on the results
We investigate here the impact of the MIPS 24 µm band on the original classification, and there-
fore on the results of the network. As stated in Section 5.1, this band is used as a refinement
step of the G09 method. Considering the classification performed using the four IRAC bands,
it ensures that it is consistent with the 24 µm emission where available, for example by test-
ing whether the SED still rises at long wavelength to better distinguish between different YSO
classes. However, it adds heterogeneity in the classification scheme, since objects that do not
present a MIPS emission cannot be refined. It makes the results harder to interpret and gives
more work to the network as it has to learn an equivalent of this additional step. Moreover, the
effect of this band on the end classification strongly affects some subclasses that are very rare in
the dataset. For example, almost half of the objects initially classified as Shocks are reclassified
as CI YSOs after this refinement step. Therefore, as it corresponds to a significant increase in
complexity on very few objects, it is difficult to get the network to constrain them, considering
the other limitations. It results in a strong contamination of the CI YSOs, as highlighted multi-
ple times in our results.

On the other hand, most of the Spitzer large surveys miss a 24 µm MIPS band measurement,
preventing us from generalizing our network to those datasets. Nevertheless, we chose to keep
this band in our study to have the most complete view of its effect on our network. To quantify
this effect, we have trained networks that did include neither the MIPS refinement step, nor the
24 µm in input. These networks have shown a small increase in performance, especially for CI
YSOs with 2% to 3% improvement in recall and precision in the F-C case. This can mainly be
explained by the simplification of the problem, but also by the greater number of objects in rare
subclasses like Shocks. Moreover, such results could be generalized over larger datasets. In this
case, a MIPS refinement step could still be performed a posteriori on the network output, for
objects where this band is available. Interestingly, although the absence of the MIPS refinement
step could be expected to degrade the absolute reliability of the classification, the potentially
large increase in the number of rare subclasses may improve the overall network performance
sufficiently for the net effect on the absolute accuracy of the classification to be positive.

We emphasize here that the inherent difficulties that come from the use of the MIPS band
can be generalized to the addition of any other band from a different survey. As we exposed
in Section 3.3 with the study from Miettinen (2018), cross-matching several surveys to have
more bands comes at the cost of much less objects or divergent classification paths that are very
difficult to constrain using ML methods. Still, very well identified YSOs with several bands that
better reconstruct the SED could be used as a training dataset to construct a single large scale
infrared survey classification. In this case, selection effects should be looked into with care, and
it would still require a significant amount of examples.

9.3 Usage of Spitzer colors instead of bands
We stated in Section 5.1 that we chose to use IRAC and MIPS bands, along with their respective
uncertainties, as direct input features. The obvious alternative would have been to use colors,
that present the advantage to be robust to many environmental properties of the star-forming
regions of interest like the distance. While this approach could be efficient in principle, the G09
classification was constructed using a few direct band criteria like in the C frame of Figure 5.1.
This allows the G09 method to more robustly exclude some extra-Galactic contaminants, but it
also excludes the faintest YSOs and consequently limits the method to close star forming re-

144

9 Additional discussion and further improvements

gions. Since the present study only sticks to the G09 scheme for training, we were constrained
to use these magnitudes in a way or another. The next section discusses possible alternative
methods to construct the training dataset, in which case the use of colors as input features could
be much more relevant.

From the network standpoint, using bands or colors as input features is somehow identical
since it is able to reconstruct one from the other. Still, it would have an effect on the normal-
ization of the features since colors are, in principle, less prone to variations in feature space be-
tween various star-forming regions. Another argument for using colors is that it should already
be a more appropriate space for the problem we want to solve. However, all our attempts to use
various color combinations or a mixture of bands and colors, plus uncertainty combinations,
never outperformed our training where we used solely the bands and uncertainties directly. In
any case, the prediction results were very similar but the network tends to train slightly faster
when using colors but at the cost of a small increase in result dispersion. For this last reason,
we chose to keep the bands as input features for the present study.

9.4 Method discussion

Our approach has several caveats, the main one being that we built our labeled dataset from the
preexisting G09 classification that has its own limitations including the placement of the cuts,
the fact that it was constrained only on few star-forming regions, the use of magnitude cuts
limiting the distance range, etc. As a consequence, our prediction is likely to inherit several
of these limitations. The membership probability discussed in the previous section provides a
first but limited view of the uncertainties of the original classification scheme. One approach to
completely release our methodology from its dependence on the G09 scheme would consist in
building our training set from a more conclusive type of observations, like visible spectroscopy
to detect the Hα line that is usually attributed to gas accretion by the protostar (Kun et al. 2009),
or (sub-)millimeter interferometry to detect the disks (e.g. Ruíz-Rodríguez et al. 2018; Cazzo-
letti et al. 2019; Tobin et al. 2020). Alternatively, a large set of photometric bands could be
gathered to reconstruct the SED across a wider spectral range, as in Miettinen (2018). Unfortu-
nately, for now, too few objects have been observed that extensively to build a labeled sample
large enough to efficiently train most of the ML algorithms.

Another approach would be to use simulations of star-forming regions (e.g. Padoan et al.
2017; Vázquez-Semadeni et al. 2019) and of star-forming cores (e.g. Robitaille et al. 2006) to
provide a mock census of YSOs and emulate their observational properties. This option would
enable us to generate large training catalogs, and would provide additional control on the YSO
classes, but at the cost of other kinds of biases coming from the simulation assumptions. An ad-
ditional difficulty of this approach would be to find a way to generate the required large variety
of contaminant objects, each of which would require a dedicated treatment.

A different strategy could consist of improving the method itself. With feedforward neural
networks like in this study, there may still be improvement possibilities by using deeper net-
works with, for example, a different activation function, weight initialization, or a more complex
error propagation. We explore this aspect later in the present manuscript (see Sect. 12.3.3) as it
needs subsequent introduction to more complex networks (Sect. 11. By choosing a completely
different, unsupervised method, one could work independently of any prior classification. How-
ever, there is a risk that the classes identified by the method do not match the classical ones. In

145

9.5 Conclusion and perspectives

particular, the continuous distribution from CI to CII YSOs, and then to main sequence stars,
is likely to be identified as a single class by such algorithms. A middle-ground could be the
semi-supervised learning algorithms such as Deep Belief Networks (Hinton & Salakhutdinov
2006). Such algorithms were designed to find a dimensional reduction of the given input fea-
ture space that is more suitable to the problem, therefore making its own classes based on the
proximity of objects in the feature space. It could then be connected with a regular supervised
feedforward neural network layer, that would combine the found classes into more usual ones.
This approach would reduce the impact of the original classification on the training process,
and therefore its impact on the final results.

9.5 Conclusion and perspectives
We have presented a detailed methodology to use Neural Networks to extract and classify YSO
candidates from several star-forming regions using Spitzer infrared data, based on the method
described by (Gutermuth et al. 2009). This study led to the following conclusions.

Neural Networks are a suitable solution to perform an efficient YSO classification using
the Spitzer four IRAC bands and the MIPS 24 µm band. When trained on one cloud only, the
prediction performance mostly depends on the size of the sample. Fairly simple networks can
be used for this task with just one hidden layer that only consists of 15 to 25 neurons with a
classical sigmoid activation function.

The prediction capability of the network on a new region strongly depends on the properties
of the region used for training. Therefore, the study revealed the necessity to train the network
on a census of star forming regions to improve the diversity of the training sample. A network
trained on a more diverse dataset has been able to maintain a high quality prediction, which is
promising for its ability to be applied to new star-forming regions.

The dataset imbalance has a strong effect on the results, not only on the classes of interest,
but also for the hidden subclasses considered as contaminants. Carefully rebalancing each sub-
class in the training dataset, according to its respective feature space coverage complexity and
to its proximity with other classes of interest, has shown to be of critical importance. The use
of observational proportions to measure the quality of the prediction has been exposed to be of
major importance to properly assess the quality of the prediction.

This study showed that the network membership probability prediction complements the
original G09 classification with an estimate of the prediction reliability. It allows one to select
objects based on their proximity to the whole set of classification cuts in a multi-dimensional
space, using a single quantity. In addition, the identification of objects with a higher degree
of confusion highlights parts of the parameter space that might lack constraints and that would
benefit from a refinement of the original classification. The corresponding catalog of YSO can-
didates in Orion and NGC 2264 predicted by our final ANN, along with the class membership
probability for each object, is publicly available at CDS.

We showed that our prediction can efficiently be used in combination to a survey like Gaia
to recover distance information on the star forming regions. In the most favorable cases, it
allowed to reconstruct a continuous distance information, while in the other cases it provided
competitive global distance estimates of the star forming clouds. We also exposed that the more
interesting younger CI YSO candidates do not have an optical emission that is strong enough or
that the recovered parallaxes has too large uncertainty on these objects. It would be interesting
to be able to recover these objects with a good parallax measurement as the showed to better
trace the star forming regions than more evolved CII YSOs.

146

9 Additional discussion and further improvements

The current study contains various limitations, mainly the lack of additional near star-
forming region catalogs, that contain the sub-contaminant distinction to construct complete
training samples. Moreover, some sub-classes, namely Shocks and PAHs, remain strongly un-
constrained due to their scarcity. Identifying additional shocks and resolved PAH emission in
Spitzer archive data could significantly improve their classification by our networks, and con-
sequently improve the YSO classification. The attention has also been drawn toward the use of
simulations to compile large training datasets, that might be used in ensuing studies.

Finally, our method could be improved by adopting more advanced networks which would
probably overcome some difficulties, for example by avoiding local minima more efficiently,
and would improve the raw computational performance of the method. Semi-supervised or
fully unsupervised methods may also be promising tracks to predict YSO candidates which
may overthrow the supervised methods in terms of prediction quality. On the other hand, we
have highlighted that most of the difficulties come from the training set construction, which is
mostly independent of the chosen method. Therefore, future improvements in YSO identifica-
tion and classification from ML applied to mid-IR surveys will require compilation of larger and
more reliable training catalogs, either by taking advantage of current and future surveys from
various facilities, like the Massive Young Star-Forming Complex Study in Infrared and X-ray
(MYStIX, Feigelson et al. 2013) and the VLA/ALMA Nascent Disk and Multiplicity survey
(VANDAM, Tobin et al. 2020), or by synthesizing such catalogs from simulations.

Most of the methods and results discussed in this first part (Part I) are published in the
section "Numerical methods and codes" of the journal Astronomy and Astrophysics (Cornu &
Montillaud 2020, accepted).

147

Part III

Reconstruction of the 3D interstellar
extinction of the Milky Way

Part III: Reconstruction of the 3D interstellar extinction of the Milky Way

10 Using interstellar extinction to infer the 3D Milky Way structure 152
10.1 Current state of 3D extinction maps . 152
10.2 Per line of sight approach . 155
10.3 The Besançon Galaxy Model . 158
10.4 Mesuring extinction using the BGM . 159
10.5 Using Machine Learning for this task . 160
10.6 Objective and organization . 161

11 Convolutional Neural Networks 162
11.1 The image processing impulse . 162
11.2 Convolutional networks parameters . 181
11.3 Use of the dropout to estimate the uncertainty in a regression case 191

12 Extinction profile reconstruction for one line of sight 193
12.1 Construction of a simulated 2MASS CMD using the BGM 193
12.2 Creating realistic extinction profiles for training 200
12.3 Tuning the method . 204

13 2MASS only extinction maps 209
13.1 Training with one line of sight . 209
13.2 Combination of several lines of sight in the same training 218
13.3 Comparison with other 3D extinction maps 228
13.4 Addition of a second color-magnitude diagram 232

14 Combined Gaia-2MASS extinction maps 235
14.1 Realistic Gaia diagram construction from the BGM 235
14.2 Training with one line of sight . 238
14.3 Combined sampled training . 240

15 Method discussion and conclusion 244
15.1 Dataset construction limits and improvements 244
15.2 CNN method discussion . 246
15.3 Conclusion and perspectives . 247

16 General conclusion 248

151

10 Using interstellar extinction to infer the 3D Milky Way
structure

10.1 Current state of 3D extinction maps . 152
10.2 Per line of sight approach . 155
10.3 The Besançon Galaxy Model . 158
10.4 Mesuring extinction using the BGM . 159
10.5 Using Machine Learning for this task . 160
10.6 Objective and organization . 161

10.1 Current state of 3D extinction maps

We introduced in Section 1.2.2 that the extinction is a physical process which reduces the appar-
ent luminosity of an astronomical object. The latter is also reddened according to an extinction
law that correlates the effect of the extinction with the wavelength according to a given dust
grain size and composition, which is considered constant in the diffuse ISM of the Milky Way.
For large-scale Galactic studies or stellar population studies, having a good measurement of
the extinction is a necessity, since all the light observed has traveled through at least a small
piece of ISM. It can also be important for extra-galactic and cosmological studies to remove
the Milky Way foreground extinction in order to measure absolute magnitudes, for example to
estimate the distance to standard candles like type Ia supernovae or Cepheids (Nataf et al. 2016).

One major issue with extinction is that it is an integrated quantity, cumulated along the
whole light path from the source to the observer. Still, it requires to know what is the true
emitted spectra of the source in order to measure its reddening properly. Since the extinction
value is directly linked to the dust density, being able to estimate the differential extinction as a
function of the distance is a way to reconstruct the Milky Way dust structure. For these reasons,
the reconstruction of 3D extinction maps of the Milky Way has been an active topic for several
years involving many research groups.

The usual approach consists in estimating the extinction for each star, or group of stars,
along a line of sight (LOS). The extinction is usually measured in the infrared since it is less
affected by the extinction than optical wavelength, which provides a deeper view in dense en-
vironments. The approaches that rely on star parallaxes to get the distance of each star and
reconstruct the extinction distribution from it, are usually limited to short distance estimates
and are not able to provide constraints on galactic-scale structures other than the closest arms
(Local, Perseus, Sagittarius). Still, such approaches usually provide a better resolution at short
distances. In contrast, methods that rely solely on infrared data are usually able to make pre-
dictions at much greater distances, but suffer from a lower resolution and a quickly increasing
distance uncertainty, which produces elongated artifacts that are known as "fingers of God".

Here we discuss some of the most known extinction maps in order to identify what are their
present limitations. Among the most known extinction maps we can cite Marshall et al. (2006)
with its last refinement on which we participated Marshall et al. (2020, in prep.). This map is
done using a per line of sight approach and works by comparing statistical predictions of the
Besançon Galaxy Model (see Sect. 10.3) with the equivalent observed quantities. The map is
made using solely 2MASS data allowing a greater distance range (up to 14 kpc) due to the lesser

152

10 Using interstellar extinction to infer the 3D Milky Way structure

Figure 10.1: Four recent extinction maps based on different methods and data. These maps
all represent a face-on view of differential extinction in the Milky Way Disk integrated over a
given galactic height or latitude. In all maps the Sun is in the middle and the galactic center is
to the right. Top-left: Map from Marshall et al. (2020, in prep.) integrated for |b| < 1 deg using
solely 2MASS. Each circle is a 2 kpc radius, the purple and red squares represent the range
of two of the other maps as indicated. Top-right: Map from Lallement et al. (2019) integrated
for |z| < 300 pc using 2MASS and Gaia DR2 cross matched data, the purple square represents
the range of the bottom left map. Bottom-left: Map from Green et al. (2019) integrated for
|z| < 300 pc using Pan-STARRS, 2MASS and Gaia DR2 cross matched data. Bottom-right:
Map from Chen et al. (2019) integrated for |b| < 0.1 deg using WISE, 2MASS and Gaia DR2
cross matched data.

153

10.1 Current state of 3D extinction maps

optical depth of interstellar clouds in the infrared than in the visible. The last iteration of this
map is visible on the top-left frame of Figure 10.1 using a face-on view of the Galactic disk. It
has been successfully used to identify some large-scale structures that are coherent with several
of the expected Galactic arms. Still, they can be difficult to distinguish from one another due
to the relatively low distance resolution in some places of the map (e.g. the Scutum-Crux and
Norma arms at a distance of ∼4 kpc in the direction of the Galactic Center). It also detects a
first part of the Galactic bar centered around 8 kpc. The main limitations of this map are that
the anti-center region is not strongly constrained due to a lesser star count, and that the fingers
of god artifacts remain significant.

The map from Lallement et al. (2019) is not based on a line of sight approach, but on a global
inversion from a given star list. The aim is to find the extinction value for each star and to re-
construct a 3D spatially coherent distribution from it. In practice the last iteration of the map is
based on a cross-match between Gaia and 2MASS and uses the magnitudes from both surveys.
The combination of: (i) a meticulously-constructed hierarchical inversion method that is based
on Bayesian processes, and (ii) the very large set of individual Gaia distances from stars that
have been carefully selected, leads to an unmatched map resolution. The corresponding map is
shown in the top-right frame of Figure 10.1 also using a face-on view. This map efficiently dis-
entangles several extinction regions that are aligned on the same line of sight, which is difficult
to achieve with other methods. The structures present little to no stretching in distance. This
map as been observed to reconstruct well-know structures at close range and highlight a global
curved and continuous structure associated to the local arm. Some sub-structures also tend to
match the expected position of some other arms, namely Perseus, and a Sagittarius-Carina fore-
ground. Still, the limits of this map are the possible biases in the star selection and the low
distance range of the prediction, up to 3 kpc only, which is mainly due to the cross-match with
Gaia that is much more affected by extinction than 2MASS. The authors also highlight that
the distance estimates from the parallax inversion might be underestimated, and that there is
a lower limit in structure size induced by the method that remains unrealistic, which is more
problematic with larger distances.

Another common map we can cite is Green et al. (2019) that uses individual lines of sight
but with a prior on the correlation between adjacent ones. The method is made of several steps
that consist in finding the extinction and distance modulus for each star using the observed par-
allax and photometric magnitudes using a set of priors. Then another step reconstructs the line
of sight extinction distribution using the star list sampled into distance bins. Finally a Gaussian
process is added to correlate adjacent lines of sight. In practice they used a cross match be-
tween Pan-STARRS 1 (Chambers et al. 2016), 2MASS and Gaia DR2 (parallax only), inducing
and even lower maximum distance estimate than the map from Lallement et al. (2019) with
only a 2kpc range of confident prediction. The bottom-left frame of Figure 10.1 also shows a
face-on view of this map. The authors observed a convincing match between their prediction
and well-known star-forming regions that are associated to different arms that appear roughly
aligned in the map. The local arm structure is the most convincing with Perseus, Sagittarius
and Scutum being either not strongly predicted by the map or less well defined by the reference
star-forming regions that present a high distance uncertainty. The limitations of this map are
that the survey selection prevents any prediction in more than a quarter of the MW, the short
distance prediction, and finally several individual priors that could accumulate biases. We also
note that, despite the added correlation between lines of sight, there is still significant variations
between adjacent ones, especially for distances greater than 1 kpc.

154

10 Using interstellar extinction to infer the 3D Milky Way structure

Lastly, we mention the map by Chen et al. (2019) that uses a machine learning method
based on the very efficient random forests algorithm that is trained using well constrained ex-
ample stars. They use this method to predict various color excesses for individual stars using
the 2MASS and Gaia magnitudes. Their full star list is then decomposed into lines of sight for
which a color excess vs. distance profile is fitted using Gaia distances from (Bailer-Jones et al.
2018). The bottom-right frame of Figure 10.1 shows a face-on view of their prediction. The
overploted arms are from (Reid et al. 2014) and mostly match what would be the local arm an
the close part of Sagittarius. The match with the Perseus arm that the authors claim to observe
in their map seems more uncertain, because many similar structures as those used for this as-
sessment are observed outside any arm structure. Still, the map is mostly in good agreement
with (Lallement et al. 2019) when looking at comparable distance range, which is expected
since they used very similar input data and dimensions. The limits of this map are mainly the
relatively small distance range as well, and strong fluctuations between adjacent lines of sight
due to the absence of correlation between them.

We do note perform an exhaustive extinction map census here, and we will stop with these
four more detailed maps, but there are still a few works that we find worth mentioning. The
work by Drimmel & Spergel (2001) that was a precursor for the present extinction maps, the
map from Sale & Magorrian (2014) and all its refinements that also relies on a hierarchical
Bayesian approach but using other types of surveys like in Hα, or the recent new work from
Rezaei Kh. et al. (2017, 2018) that uses Gaussian processes to overcome several difficulties of
the previous maps and that is slightly more discussed in Section 10.5.

For the present study the aim is to construct a method that is able to be efficient at an
intermediate scale between large distance from Marshall et al. (2006, 2020, in prep.) and the
closer range ones like Lallement et al. (2019). More details on our objectives are given in
Sect. 10.6.

10.2 Per line of sight approach
We describe here the approach that consists in selecting a small cone observation in the sky that
contains several stars. This cone is designated as a Line Of Sight (LOS), that is defined by its
center position on the sky and by its radius or solid angle. We illustrate in Figure 10.2 a simple
case where all the extinction is packed in two individual clouds. In this simple case it is visible
that the stars before the first cloud do not suffer of extinction, the stars between the two clouds
are extincted only by the first one, while the stars that are behind the second cloud are extincted
by both clouds.

In this context, we want to reconstruct the distribution of the extinction as a function of the
distance for this LOS. If the majority of the extinction is concentrated in dense clouds then it
is equivalent to find the position of the clouds along the LOS. The corresponding cumulative
or differential extinction profile, assuming that the clouds have a negligible extent along the
LOS, is illustrated in Figure 10.3. To construct a large 3D extinction map it is then possible to
decompose the plane of the sky into several small individual lines of sight.

155

10.2 Per line of sight approach

Inferring the extinction along the LOS can be done using different methods and data. They
all have in common to work from observed stars but using different quantities. One approach
consists in estimating the distance and the intrinsic extinction to the stars and then infer the ex-
tinction profile along the LOS. This approach was adopted by Green et al. (2018) who used
Bayesian inference with a Markov Chain Monte Carlo (MCMC) technique to estimate the
distance-extinction pairs of a sample of stars built by cross-matching Pan-STARRS-1, Gaia
DR2, and 2MASS stars. Another MCMC step is then used to infer an extinction profile com-
patible with the distance-extinction pairs in each conical LOS. In Lallement et al. (2019) a
catalog made of stars from the cross-match of 2MASS and Gaia DR2 was compiled, where
the distances were derived from Gaia parallaxes with uncertainties better than 20%, and the
extinction from a fit of the intrinsic colors in Gaia-2MASS colors by adjusting the extinction
parametrization. The differential extinction distribution is then inferred by a hierarchical, multi-
scale Bayesian inversion in 3D where a 3D Gaussian kernel, whose size depends on the current
scale, is used to ensure the spatial coherence.

In contrast, (Marshall et al. 2006, 2009, 2020, in prep.) forgo determining the distance and
extinction to individual stars. Instead, they rely on a stellar population model of the Milky
Way (see next section) which provides the statistical distributions of the intrinsic stellar ob-
servational properties for each LOS. The extinction profile of each LOS is inferred from the
statistical comparison between the intrinsic and observed distributions of stars. Different meth-
ods were attempted, including genetic algorithm (Marshall et al. 2009) and MCMC (Marshall
et al. 2020, in prep.).

Figure 10.1 compares some of the 3D extinction maps obtained by the authors mentioned
above. They reveal some of the major limitations of these approaches: (i) it is difficult to re-
cover spatially coherent structures between line of sights without adding an ad-hoc correlation,
(ii) once a first front of extinction has been localized it is much more difficult to reliably detect
additional extinction beyond this front, and (iii) the large difference between the uncertainties
parallel and perpendicular to the LOS leads to an elongated radial artifact often called "finger
of gods", with a strong variation of the prediction between adjacent LOS.

In the present work, we elaborate on the approach by Marshall et al., comparing 2MASS
and Gaia data to a stellar population model of the Milky Way: the Besançon Galaxy model.

156

10 Using interstellar extinction to infer the 3D Milky Way structure

No extinction 1 cloud extinction 2-cloud extinction

1 2

Figure 10.2: Simple line of sight (cone view) example that contains two clouds, with the ob-
server to the left. The star colors are reddened and faded according the observed cumulative
extinction effect on them from the observer’s point of view.

Distance

Ex
tin

ct
io

n

Cumulative
Differential

Figure 10.3: Simple extinction profile example corresponding to the LOS with two clouds of
Figure 10.2. The profile is represented using both the cumulative and differential extinction
from the same underlying quantity.

157

10.3 The Besançon Galaxy Model

0 1 2 3
J - K [mag]

11

12

13

14

15

16

K
[m

ag
]

0

500

1000

1500

2000

2500

10 12 14 16 18 20
G [mag]

0.0

0.5

1.0

1.5

2.0

Pa
ra

lla
x

[m
as

]

0

500

1000

1500

2000

2500

3000

3500

Figure 10.4: Illustration of observed diagrams that can be reproduced using the Besançon
Galaxy Model. The two diagrams are obtained from a 4◦ degree radius centered at galactic
coordinates l = 280 deg, b = 0 deg. Left: 2MASS observed [J-K]-[K] CMD. Right: Gaia DR2
observed [Gmag]-[Parallax] diagram.

10.3 The Besançon Galaxy Model

We are lucky to have a favored access to the Besançon Galaxy Model (BGM), a world-class
stellar population synthesis model (Robin et al. 2003, 2012b). It was noticeably adopted to an-
ticipate Gaia results (Robin et al. 2012a) and is still used as a validation tool for Gaia catalogs
(Arenou et al. 2018). This model is able to generate 3D stellar distributions that are statisti-
cally representative of many observables. It is based on four distinct stellar populations: a thin
disk, a thick disk, a bulge and a halo. The model is constrained by both observations and the-
oretical recipes that account for stellar evolution (Lagarde et al. 2012), dynamics (Bienayme
et al. 1987), initial mass function (Haywood et al. 1997a,b), etc. A BGM computed realization
takes the form of a star list that contains various physical quantities for each modeled star, like
mass, velocity, age, magnitudes, stellar count, distance, etc. Regarding the star emission, the
BGM uses color tables based on stellar atmosphere models to accurately reproduce stellar col-
ors (based on and refined in Lejeune et al. 1997; Westera et al. 2002).

It is interesting to note that, in order to convert absolute quantities to observable ones ap-
propriately, the BGM must use an extinction map. Depending on the model version, it uses
different extinction maps, and it is even possible to select the most appropriate map depending
on the region of the Milky Way. Overall it relies mainly on those of Marshall et al. (2006) and
more recently Lallement et al. (2019). This is another example of the importance of producing
good quality extinction maps.

In order to be representative of the real Milky Way, the BGM prediction must be used only
with statistical representations and with a large enough number of stars. A suitable representa-
tion is a Color-Magnitude Diagram, that is similar to 2D histogram of the star list, or any similar
representation involving a stellar observable (e.g. parallaxes). Figure 10.4 shows two examples
for observed data, with a 2MASS [J-K]-[K] CMD and a Gaia [Gmag]-[Parallax] diagram using
a 4◦ radius line of sight centered on the galactic coordinates l = 280 deg, b = 0 deg. We detail
in Section 12.1 and 14.1 how the BGM can be used to reconstruct theses diagrams in a realistic
fashion.

158

10 Using interstellar extinction to infer the 3D Milky Way structure

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
] Extinction

reddening

BGM Model without extinction

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

Observed

0

20

40

60

80

100

120

Figure 10.5: 2MASS [J-K]-[K] CMD comparison between model prediction without extinction
and observed extinction for the same LOS. The two diagrams are obtained from a 0.25◦ degree
radius centered at galactic coordinates l = 280 deg, b = 0 deg. The red arrow illustrates the
extinction translation direction for individual stars. The dashed blue line corresponds to the
observation limit cut as described in Sect. 12.1.2. Left: 2MASS model without extinction.
Right: 2MASS observed [J-K]-[K] CMD.

10.4 Mesuring extinction using the BGM
The fact that the BGM first produces stellar quantities without the extinction contribution is very
useful feature in our case. On the left frame of Figure 10.5 we show the same [J-K]-[J] 2MASS
CMD predicted by the model as in Figure 10.4, but for a smaller radius of 0.25◦ and without
the extinction. Following the physical properties of the extinction exposed in Sections 1.2.2
and 10.1, the stars will both be fainted and reddened by the extinction creating a translation
toward lower [K] and larger [J-K], due to the fact that the wavelength of J (1.235µm) is lower
than the one of Ks (2.159µm) inducing a stronger extinction in the J band. The right frame of
Figure 10.5 illustrates this effect by showing the equivalent observed 2MASS CMD.

From these results it is possible to formulate the following hypothesis: assuming a per-
fectly representative model, the difference between the BGM and the observed CMD is
solely due to interstellar extinction. Considering this, it should be possible to design a method
that infers the extinction profile from the differences between synthetic and observed CMDs.
This model-observation comparison is already at the heart of the Marshall et al. (2020) method
which also uses the BGM as a reference. We emphasize that, even if the effect of extinction
on a single star in this diagram is a simple translation, there is a complex distribution of these
stars along the LOS entangled with the extinction distribution. It means that all stars will move
following their own local cumulative extinction, inducing a much more complex transformation
in this diagram including translation, stretching and overlap. It also has to account for a cut in
magnitude that corresponds to the limits of the 2MASS observations (see Sect.12.1.2).

159

10.5 Using Machine Learning for this task

10.5 Using Machine Learning for this task
There are many various methods that were used to perform a similar comparison in order to
reconstruct the extinction distribution (see references in Sect. 10.1), some recent ones includ-
ing machine learning as well. Still, we observed that few attempts were made using classical
algorithms and that the solutions proposed are usually too computationally intensive for large
maps reconstructions. For example, in Marshall et al. (2009) they used a Genetic Algorithm
(GA) method (see Sect. 4.1.3, and Fig. 4.1) to reconstruct individual dark clouds distance from
extinction. Still, they used GA by fitting each LOS individually in a very similar fashion as the
recent work by Marshall et al. (2020), and to not construct a high resolution extinction map.
Another recent example comes from Rezaei Kh. et al. (2017) and Rezaei Kh. et al. (2018) who
use Gaussian Process (GP) (Sect. 4.1.3, and Fig. 4.1) to reconstruct the 3D extinction. In this
approach there is no LOS consideration and the large regions are reconstructed at once. It no-
ticeably reconstructs 3D spatially coherent structures in a very smooth way. The main difficulty
is that, because it relies on a one time large inversion that scales non linearly with the number of
data points and the resolution, it is very computationally heavy. To overcome this, the authors
mostly used restricted datasets, which negatively impacted the statistical representation of the
problem. Another approach using Random Forest is described by Chen et al. (2019) where they
used it to fit the Gaia color excess of individual stars that are then positioned in distance using
Gaia parallaxes. This method is certainly computationally efficient but the stars that have the
largest reddening will have very uncertain distance estimate, which results in important finger
of gods effects.

We highlight that, to our present knowledge, there was no published application that uses
any kind of Artificial Neural Network to reconstruct extinction profiles, or that uses the ex-
tinction distribution to infer distances, and even less a large 3D structural reconstruction of or
from the extinction. The only links between ANN and extinction we found are in applications
that assess the cumulative extinction as a single quantity for given stellar clusters (Bialope-
travičius & Narbutis 2020) or for galaxy observations (Almeida et al. 2010). We believe that
this method may have been considered too computationally heavy under the intuitive approach
where each LOS would be fit individually by an ANN, following a similar approach to Mar-
shall et al. (2009) with GA method. The difficulty is that training an ANN for each LOS with a
sufficient resolution on the plane of the sky to build a map is an unrealistic solution due to the
huge cumulative training dataset size that it would require and similarly the massive cumulative
training time. The dataset size and computation time for a good single LOS training that are
exposed later, in Section 13.1, perfectly illustrates this point. However, we will demonstrate
in the present study that it is possible to design an ANN formalism that can be trained one
single time on various lines of sight simultaneously and that can still predict individual
LOS extinction profiles (Sect.13.2). Additionally, this type of method being capable of com-
bining different quantity at the same time and find the correlation automatically, it should permit
a combination of photometric and astrometric surveys without the necessity of a cross match
(Sect. 14). We also note that, in opposition to a widespread belief, simple ANN architectures
can be tweaked to provide result uncertainties in the form of a posterior probability distribution
just like a Gaussian process method (Sect. 11.3).

160

10 Using interstellar extinction to infer the 3D Milky Way structure

10.6 Objective and organization
The aim of this second part of the manuscript (Part II) is to propose an ANN architecture
that is capable of sharing information from various lines of sight in a single training and
that can be used to predict large extinction maps. For this we extensively describe a more
advanced ANN formalism that is based on the redundancy of information when using images as
input, namely Convolutional Neural Networks. We then describe how it can be used to recon-
struct extinction profiles using CMDs from the Besançon Galaxy Model and from observational
surveys. We also detail the construction of the training dataset, which requires several precau-
tions that has considerable impact on the prediction capability. We analyze the effect of several
properties of the network on the prediction quality. We finally use this formalism to predict
extinction maps for a portion of 45◦ of the Milky Way disk using both a 2MASS only dataset,
and a 2MASS plus Gaia DR2 dataset without cross match.

Like for the previous session we emphasize that the results of the following part will soon be
published in Cornu et al. (2020) in the form of a short letter to the Astronomy and Astrophysics
journal. The present manuscript provides a large amount of additional material and analysis.

161

11 Convolutional Neural Networks
In this section we describe several additions to the ANN formalism introduced in Section 4
which can be used to construct much more complex network architectures and that can effi-
ciently process images. We will first describe how classical neural networks can be used on
images and what are the corresponding limitations. Then, we will define the convolution op-
eration and the associated convolutional layers and explain their training procedure. Finally,
we will discuss the construction of deep ANN architectures along with descriptions of various
necessary parameters.

11.1 The image processing impulse . 162
11.1.1 Spatially coherent information . 162
11.1.2 Information redundancy: pattern recognition 165
11.1.3 Convolution filter . 166
11.1.4 Convolutional layer . 168
11.1.5 A simpler activation function : the rectified linear unit 172
11.1.6 Stacking Convolutional layers . 174
11.1.7 Pooling layer . 175
11.1.8 Learning the convolutional filters . 176

11.2 Convolutional networks parameters . 181
11.2.1 Convolutional Neural Network architectures 181
11.2.2 Weight initialization and bias value . 184
11.2.3 Additional regularization: Dropout and momentum 185
11.2.4 Implications for GPU formalism . 186
11.2.5 Example of a classical image classification 189

11.3 Use of the dropout to estimate the uncertainty in a regression case 191

11.1 The image processing impulse
Machine Learning is historically tightly related to the field of signal processing. Similar meth-
ods are used in both fields and they regularly influence each other. Image processing is certainly
the strongest bond between the two, with a long history in signal processing and with most mod-
ern corresponding applications being made using ML. In this section we focus on describing
how to use images as input for ANN.

11.1.1 Spatially coherent information

As we discussed in the GPU Section 4.8, images can be considered as two dimensional arrays
of pixels. Each pixel contains at least one value that is often an integer encoded using a 8 bit
format (0-255) and more rarely up to 16 or 32 bit. To obtain colored images, at least 3 of these
8 bit arrays must be superimposed, with each layer corresponding to a specific color intensity in
each pixel often following the Red-Green-Blue (RGB) encoding. Fundamentally, an image is a
decomposition of an information, for example a physical object, captured into flat “2D” discrete
representation. Image recognition performs the opposite operation, that is to find coherent in-
formation in an array of pixel and associate it to a more abstract object that the image represents.
For example, Figure 11.1 represent 6 × 7 binary pixel representations of digits, from which one
may want to identify the digit that is represented. This is a typical image classification example
that will be discussed for a more concrete example in Section 11.2.5.

162

11 Convolutional Neural Networks

Figure 11.1: Simple digit representation as a 6 × 7 binary pixel image.

Input Target

Figure 11.2: Representation of a simple cross pattern on a 5 × 5 image as input, and the corre-
sponding localization prediction on an equivalent size output image.

Input
layer

Hidden Layer

Output
layer..

.

−1 −1

..
.

..
.

Figure 11.3: Fully connected network corresponding to the cross pattern identification and
localization problem. The images are flattened and each pixel is connected to each neuron of
the hidden layer acting as a feature. The pixels of the output layer are considered neurons.

163

11.1 The image processing impulse

Figure 11.4: Image of the prediction of a computer vision deep learning algorithm for au-
tonomous vehicle. Objects are classified based on a list of useful elements for driving and are
localized into a boundary box. Image credits www.lebigdata.fr.

One key element to the extraction of image information is that it is spatially coherent. To
illustrate why spatial coherence can be difficult, we first show how the classical ANN algorithm
described in Section 4 can be used to compute information using images as input. We consider
a network for pattern recognition and localization. An image, that may or may not contain a
specific pattern, is presented to this network. The algorithm task is then to predict the position
of the pattern in the image when it is present. This application is illustrated by the Figure 11.2
where the pattern to identify is a 3×3 binary pixel cross and the expected output is an identically
sized image that contains a positive value at the pixel that represents the center of the cross. Al-
though we chose a single and very simple pattern, this application illustrates many modern ML
uses in computer vision, where the objective is to find if an image contains a specific object
from a given set (classification) and to predict its location or a boundary box around it. This is
the typical example that is shown for self driving vehicles in Figure 11.4.

Using this representation, the easiest approach to connect an input image to an ANN is to
consider that each pixel is an individual feature. An input vector can then be constructed, with
the same size as the image. In this specific example the output vector has the same dimension.
Figure 11.3 shows a corresponding single hidden layer network that takes as input and output
the corresponding flatten images. This network is actually suitable to perform this task. In order
to ease the comparison with other network architectures, we will now refer to such a network ar-
rangement as a "fully connected" or "dense" network, and we will also use these formulation as
adjectives for a "fully connected layer" or "dense-layer" to depict a MLP like weight connection.

The first striking limitation with this representation is that the number of weights is very
large. It has a cost in terms of computing performance and requires a lot of examples to be
properly constrained. The second limitation is that, in order to train the weights of each pixel,
examples of a cross on each pixel must be contained in the training set. It means that such a
network on this specific case will need to be provided all the possible positions as example, and
is therefore inefficient to generalize the problem.

164

https://www.lebigdata.fr/computer-vision-definition

11 Convolutional Neural Networks

Input A Target A Input B Target B

Figure 11.5: Two examples, A and B, of input and target images for cross pattern localization.
Multiple objects in the same 10 × 10 image are permitted and the complexity is raised by the
addition of noise or other patterns.

11.1.2 Information redundancy: pattern recognition

We now consider an example where the image is larger and that it can contain multiple times
the looked-up pattern at the same time. This case is illustrated by Figure 11.5 where we rep-
resented two different 10 × 10 cases in which we have added some irrelevant input pixels that
could be noise or non looked-for patterns to make the example more realistic. The images in
this case can be plugged as before to a fully connected network. This time, considering that
there are irrelevant patterns increasing the complexity of the problem, the network should be
able to generalize information. Indeed, even if it is mandatory to provide at least one example
of a searched pattern at each point, it is not necessary to add examples that correspond to all the
possible irrelevant information combination on all other pixels. A fully connected ANN trained
on this problem might be more time efficient to predict the solution than a naive algorithm that
searches for the presence of a cross at each pixel position in the image. A similar illustration on
differentiating T from C letters representations independently of translation and rotation using
a MLP is presented in Rumelhart et al. (1986b).

However, an instinctive reaction to this problem is to notice that there is only one pattern
to look for, and that learning this pattern once and for all, and then search for it at different
places, would be much more efficient than learning how to react to this pattern at every possible
positions in the image. This is because one, as a human being, is sensitive to redundancy of
the information. Then it should be possible to construct a network architecture that is able to
perform the same task. The objective is to build an operation that is capable of detecting a
pattern in a way that is invariant by translation in the image. This can be done by creating
a unique artificial receptive field that can be applied at several places on the image, strongly
reducing the number of parameters that are needed by sharing them over the full image. In
practice this is done using an operation that is called a convolution and that relies on a filter
(also called a kernel).

165

11.1 The image processing impulse

-2 0 1 -3 4 1 -1Input

Output 1 4 -8 6 -2

-2 0 1 -3 4 1 -1

1 8 -2

-1 1 -1

Filter

Stride 1 Stride 2

1 1 2 1 2 1 1N. contrib 1 2 3 3 3 2 1

Figure 11.6: Illustration of a 1D convolution operation on a 7-element input vector (in blue)
using a 3-element filter (in red). The output result is in green and the grayscale table represents
the number of times each input was used by the operation. Two examples are given for S = 1
(left) and S = 2 (right) on the same input vector and using the same filter.

11.1.3 Convolution filter

A convolution operation consists in the application of a filter to an image through a decompo-
sition in sub-regions. For this, the filter is considered as a set of numerical values that has the
size of the wanted receptive field. The values of this filter are then multiplied element-wise
to a subset of pixels and the results are summed to obtain a single value. This operation can
be performed at several places in the image to produce an output vector that contains all the
corresponding results. Usually, the filter is applied at regular intervals on the input vector with
a shift in pixels between each application that is called the stride S . We illustrate this operation
in a one dimensional example in Figure 11.6 with a 7-pixel input vector (here with positive or
negative integer values) that is convolved using a 3-pixel filter. This figure shows two examples
with strides S = 1 and S = 2 leading to output vectors of 5 and 3 elements, respectively. We
stress that, in the S = 1 case, each input value is used between 1 and 3 times depending on the
filter overlap and with a continuous contribution pattern, while in the S = 2 case, each input
is only used 1 or 2 times with a periodic overlap pattern. While such an overlap pattern from
each input pixel is expected in this operation, it could lead to concerns in specific cases. To
better visualize this property of the convolution operation, we included a representation of the
contribution number of each pixel in Figure 11.6 and in subsequent figures.

For images, the information is spatially coherent in two dimensions, therefore the convolu-
tion operation is performed using a 2D filter that "slides" over the image along one axis (say,
along a line) with a shift between each application that is defined by the stride. When the end of
the line is reached, the operation is repeated for another line according to the stride. This way
the filter is applied regularly in both dimensions. One side effect of the convolution is to reduce
the size of the image. Although this can be useful to reduce the dimensionality of the problem,
in some cases it is preferable to conserve the image dimension by adding a zero-padding (often
just refered to as padding) around the input image. It results in the following relation between
input and output dimensions:

wout =
win − fs + 2P

S
+ 1 hout =

hin − fs + 2P
S

+ 1 (11.1)

where w and h denote the input and output widths and heights, respectively, fs is the filter size,
P is the padding, and S is the stride, considering that the last three quantities have the same
values for both axes.

166

11 Convolutional Neural Networks

0 0 0 0 0 0 0

0 1 0 -3 2 1 0

0 -1 4 -2 1 0 0

0 0 -2 -1 0 4 0

0 2 4 3 -4 -1 0

0 -1 1 0 1 2 0

0 0 0 0 0 0 0

Input

-1 0 1

0 0 0

1 0 -1

-4 1 3 -2 1

2 -3 0 -1 -2

0 -2 5 6 -5

-3 -2 2 3 1

4 1 -8 -4 4

Output

Filter

Stride 1 and Padding 1

w in=7

h
in
=
7

f s=3

f s
=
3

wout=5

h
ou
t=
5

4 6 6 6 4

6 9 9 9 6

6 9 9 9 6

6 9 9 9 6

4 6 6 6 4

N. contrib

*

Figure 11.7: Illustration of a 2D convolution operation on a 5 × 5 input table (in blue) with an
added zero padding P = 1 represented in yellow, using a fs = 3 filter (in red). The resulting 5×5
table is in green and the grayscale table is the number of contributions from each input element.
Purple and orange squares highlight two specific sub-region products and their corresponding
output pixels.

We illustrate this 2D convolution operation in Figure 11.7 using a 7 × 7 input 2D table and
a filter with fs = 3, S = 1 and P = 1, where the ∗ symbol represents the convolution operation.
To ease the understanding of the operation, the figure also presents two colored squares that are
used to highlight two specific sub-regions that are individually multiplied by the filter and result
in the corresponding colored elements in the output table 3.

Consequently, the convolution operation can be used to detect a specific pattern at any place
in an image by using a filter that is a replica of the pattern. This property is very convenient
for the example of the previous section, which is automatically solved using only a convolu-
tion with the appropriate padding to conserve the image size in the output. However, for more
complex images the convolution can be seen as a specific image processing. The most common
convolution operations are the ones that blur an image or apply an interpolation in order to re-
size the image. We illustrate in Figure 11.8 the effect of standard convolution filters on three
different astronomical images that represent very different physical scales. While the sharpen
and blur operations are common in every day life, the edge detector and the axis elevation ones
demonstrate how convolution filters can be used to extract patterns in an image. Still, one con-
volution would often be insufficient to solve a complexe problem directly, leading to a necessary
combination of several convolution operations.

3A very nice animation of the convolution operation on a randomly generated input table can be found in the
excellent ANN online course of the Stanford university at cs231n.github.io

167

https://cs231n.github.io/convolutional-networks/

11.1 The image processing impulse

11.1.4 Convolutional layer

There are two main cases that justify the use of several convolution filters. The first is when one
filter alone, that directly represents the looked up pattern, is too large compared to the size of the
image. The second is when multiple patterns are looked for. In such cases it is more efficient to
use several small convolution filters that represent sub-parts of the pattern and that can be shared
in the case of multiple-object identification. If we consider the simple digit-identification exam-
ple from Section 11.1.1, it is manifest that they can be decomposed into much easier redundant
parts. We illustrate this case in Figure 11.9, where we proposed 4 simple filters that are just
different continuous and aligned pixel layouts. When used in a convolution operation, each of
these filters will produce an individual output image. In this case we consider that there must
be a perfect match between the filters colored pixel and the pixel of the input image at given
sub-region for the corresponding output to be activated. If we consider that blank pixels are 0
and colored ones are 1, it means that there is a threshold of 3 to be reached for the output to be
set to 1 as well. In this figure we used different colors for each filter and stacked up the color-
coded output images in order to ease the representation. We note that there is no overlap in this
specific case, but that nothing prevents multiple filters to produce the same output at a given
pixel location. The figure illustrates that, by using adequate filters, it is possible to construct a
smaller and simpler space that represents all digits differently.

Using the defined convolution operation, it is now possible to link it to our ANN formal-
ism. There is a direct analogy between the dot product and sum of the result that occurs in the
convolution operation and the weighted sum of input in a neuron operation that we described
in Section 4.2.2. Indeed, the sub-region of the image, when flattened, can be considered as
our input vector Xi, the filter considered as the weights Wi also considering it flattened, and the
result is summed into a h quantity. The only missing part for a convolution output pixel to act
as a neuron is the activation function along with a bias value that are very simple to add to the
operation. The choice of an appropriate activation function that works well with the convolu-
tion operation on the weights is discussed in Section 11.1.5. The convolution operation is then
a suitable approach to share a small group of weights over the all image, strongly reducing the
number of parameters that need to be constrained. This formalism of neural receptive field is
long known and was already introduced in a very similar fashion by Rumelhart et al. (1986a).

To be usable for real image processing, this model of weight filters still has to cover the
case of multiple color channels in an image, which can be considered as an added depth d to
the input, resulting in an input volume of win × hin × d. This can be done by considering that
the weight filter is a 3D table that has a width and height equivalent to the filter size fs and an
additional depth d that corresponds to the number of input depth channels. This way the weight
filter combines spatial information that comes from all the input depth channels at the same
place in the images and still only moves in a 2D space following the stride parameter. We note
that this 3D filter still sums its fs × fs × d contributions into only one result for each area of the
images, and therefore produces a 2D output. To stick to the network representation, each pixel
of this output image goes through an activation function, which results in a so-called activation
map. The input images can be convolved by a certain number n f of these 3D weight filters,
which results in a number of activation maps equal to the number of filters, with a size that fol-
lows the relations of Equation 11.1. The output volume is then of wout×hout×n f . This complete
operation constitutes what is called a convolutional layer and is illustrated in Figure 11.10.

168

11 Convolutional Neural Networks
N

o
fil

te
r

Sh
ar

pe
n

 0
−

1
0

−
1

5
−

1
0
−

1
0

G
au

ss
ia

n
bl

ur

1 16

 1
2

1
2

4
2

1
2

1
E

dg
e

de
te

ct
or

 −
1
−

1
−

1
−

1
8
−

1
−

1
−

1
−

1
A

xi
se

le
va

tio
n

 −
1
−

1
−

1
0

0
0

1
1

1

Fi
gu

re
11

.8
:C

on
vo

lu
tio

n
re

su
lts

us
in

g
co

m
m

on
fil

te
rs

ap
pl

ie
d

to
a

se
le

ct
io

n
of

th
re

e
as

tr
on

om
ic

al
im

ag
es

fr
om

th
e

H
ub

bl
e

Sp
ac

e
Te

le
sc

op
e

(H
ST

)
re

pr
es

en
tin

g
ob

je
ct

s
of

ve
ry

di
ff

er
en

tp
hy

si
ca

ls
iz

e.
T

he
ba

se
im

ag
es

on
th

e
le

ft
ar

e
th

e
re

d
ch

an
ne

ls
fr

om
th

e
or

ig
in

al
im

ag
es

.T
op

:
H

ST
im

ag
e

of
th

e
C

ar
in

a
N

eb
ul

a.
M

id
dl

e:
H

ST
im

ag
e

of
U

G
C

18
10

al
on

g
w

ith
th

e
sm

al
le

st
U

G
C

18
13

ga
la

xi
es

.B
ot

to
m

:H
ST

im
ag

e
of

Ju
pi

te
r.

169

https://apod.nasa.gov/apod/ap170702.html
https://apod.nasa.gov/apod/ap191120.html
https://apod.nasa.gov/apod/ap181016.html

11.1 The image processing impulse

Input images

Filters

Superimposed output images

Figure 11.9: Multiple simple 3 × 3 filters applied to digit recognition on three 6 × 7 images.
Each filter can extract patterns at several point in each image and can be used for different
digits. A filter predict a positive output if there is a full match between its activated pixels and
the activated pixels of each input sub-region. Top: the three input images. Middle: the colored
filters. Bottom: output from all filters are stacked and color-coded in one 4× 5 output image for
each input example.

The resulting activation maps that constitute a re-arrangement and often a dimensional re-
duction of the input images can then be fully connected to an MLP architecture with each pixel
of each activation map considered as a feature. If we consider an example with input images
sized as win = 100, hin = 100 et d = 3, a full connection to an n = 20 hidden MLP layer
would require 6 × 105 weights. Using the same input images and n f = 6 filters of size fs = 4
that are used with a stride of S = 3, it is only 48 weights per filter or 288 weights for all the
filters of the convolutional layer. This convolution produces a 32 × 32 × 6 activation map vol-
ume that requires "only" 1.23×105 weights to be fully connected to the same n = 20 MLP layer.

170

11 Convolutional Neural Networks

()

R G B

Fn

F3

F2

…

…

…

A2

A3

An
F1

F

A1

∘ =g

Inputs Conv.
Filters

Activation maps

X i W i a

∑ i
¿¿

Figure 11.10: Detailed representation of a convolutional layer. The input image is made of
d = 3 layers (RGB), the filters (in light red) are cubes of dimension fs × fs × d. The transparent
gray box denotes the region of the image that is multiplied by the filter to obtain a specific
neuron activation. The activation maps from each filter are in green, with the first one showing
each activated neuron pixel as a dark green square.

This architecture already presents several advantages: (i) the exclusion of irrelevant pat-
terns, (ii) the dimension reduction that occurs with a large stride and filter size, and (iii) a huge
reduction of the number of weights compared to a fully connected layer thanks to the possibil-
ity to share the small filters that are applied over the whole image . While these additions are
already interesting enough to justify such an architecture, the true interest is the possibility to
easily stack such layers to extract more complex representations of the input, which is covered
in detail in Section 11.1.6.

171

11.1 The image processing impulse

11.1.5 A simpler activation function : the rectified linear unit

While a convolution layer can technically be built using any activation function, some of them
proved to be more efficient than others. The main issue is that adding a convolutional layer over
a fully connected network, and moreover stacking several convolutional layers as we will dis-
cuss in the next section, add depth to the network which can result in a vanishing gradient issue
(Sect. 4.5.2). Additionally, since each output pixel is considered as a neuron, and therefore is
activated, the computational efficiency of the activation function becomes more important when
working with large images.

Because it is able to solve this problem, the most widely used activation function in deep
network with convolution is the Rectified Linear Unit activation, or ReLU (Nair & Hinton
2010). This function is simply linear for any input value above zero and is equal to zero in the
negative input part, which is summarized as:

a j = g(h j) =

h j if h j ≥ 0
0 if h j < 0

or a j = g(h j) = max(0, h j) (11.2)

following the same notations as Equation 4.5. Despite its simplicity this function presents sev-
eral advantages, (i) it conserves the global non linearity with two states, (ii) it is scale invariant,
because it does not saturate, (iii) it is easy to compute with only a comparison and a memory
affectation in the negative input case, (iv) it has a constant derivative equal to one, meaning
that there is no loss of gradient information when the neuron is in its activated state, which also
speeds up the learning process. We illustrate this function along with its derivative in the left
frame of Figure 11.11.

There is in fact a family of ReLU activation functions, starting with the leaky ReLU (Maas
2013) that defines a leaking factor λ for the negative input part of the function making it linear as
well. While in the original paper they suggested a leaking factor of λ = 0.01 recent applications
have demonstrated that other leaking factor could produce better results. This activation is
summarized as:

a j = g(h j) =

h j if h j ≥ 0
λh j if h j < 0

or a j = g(h j) = max(0, h j) + min(0, λh j). (11.3)

The leaky ReLU activation is illustrated in the right frame of Figure 11.11. The idea behind
this addition is that neurons that are not activated with the classical ReLU are not updated at all,
which could lead to neurons that remain stuck in this state depending on the input features and
weight values. Using a leaky parameter, neurons that where not responsible of a given activation
can slowly get involved if they are not currently used to constrain another part of the feature
space, or if they would be more useful to the present example than to the ones they where con-
straining before. A small leaking factor value ensures that activated ReLU remains the main
responsible for the output, preserving the global propagation scheme of the network. We note
that, this small propagation to non-activated neurons is sensitive to the vanishing gradient since
the derivative is equal to λ. Therefore the propagation remains driven by the activated neurons
in the previous layer, which is mostly a good thing as we want the global propagation to mostly
follow the activated neurons path. Still, it can be an issue in the very rare case of a continuous
path of never activated neurons.

172

11 Convolutional Neural Networks

−4 −2 0 2 4

−1

1

2

3

ReLU

Derivative

−4 −2 0 2 4

−1

1

2

3

ReLU λ = 0.2

Derivative λ = 0.2

Figure 11.11: Illustration of the ReLU activation function as plain line and its derivative as
dashed line. Left: classical ReLU activation. Right: leaky ReLU activation with λ = 0.2.

For now, the leaky ReLU activation is our preferred solution with λ as a tunable hyper-
parameter. Other ReLU activations are for example the parametric ReLU (or PReLU) that is
equivalent to the leaky case but with the optimal leaking factor being learned during the train-
ing process (He et al. 2015), the randomized leaky ReLU that randomly selects a λ value for
each neuron, or the exponential linear unit (ELU) that smooth the negative input part with an
exponential. Empirical performance comparison for networks with convolutional layers did not
shown any significant superiority of these variants of ReLU, while they all perform decisively
better than the basic ReLU (Xu et al. 2015).

While the ReLU activation was introduced to help convolutional networks it can efficiently
be used on fully connected MLP networks. As we discussed in Section 4.7.5, the sigmoid neu-
rons are expected to work mainly in their close-to-linear regime to help error propagation and
network stability, while the non-linear part of the function should only be used when necessary.
These constraints are released by the ReLU activation with a very nice error propagation even
for deep networks. The trade-off is that much more ReLU neurons must be used when the
boundaries to find are truly non linear. However, ReLU neurons are much simpler to constrain
and we observed in our applications that less data are usually necessary to properly constrain
the network, in spite of the greater number of weights than in the case of sigmoid neurons (Sect.
4.7.1). We show an example of a fully connected layer that uses ReLU in Section 11.3.

173

11.1 The image processing impulse

Figure 11.12: Example of mock images generated to maximize the activation of specific filters
in the network. Left: using filters form an early convolution layer. Middle: using filters from a
deeper layer. Right: using filters close to the output of the network. Image from Distil.

11.1.6 Stacking Convolutional layers

Even if one convolutional layer can already identify a lot of pattern if provided with many fil-
ters, it remains limited to patterns of the size of the filter and is often enable to learn efficiently
complex non-linear patterns (LeCun et al. 1995). Therefore, convolutional layers are usually
repeated in an MLP-like fashion, each layer considering the outputs of the previous layer as its
own input images. This is a very efficient way to identify more and more complex patterns as
the network gets deeper. Usually the first layers act as basic detectors for edges, lines, colors,
luminosity, ... that correspond to low-level representations; then the mid network layers detect
more advanced features of the image like textures, repetitive patterns, and very basic shapes that
act as mid-level representations; the final network layers act as sub-object detectors, behaving
like small classifiers of much more abstract content of the image. The end of the network is
usually still connected to a few fully connected layers that merge these sub-classifiers into a
final classification output or into any other kind of output that is targeted. Such an artificial
neural network architecture is called a Convolutional Neural Network (CNN).

While it is difficult to look directly at the filters themselves because they are usually very
small, there are optimization techniques that can be used to construct mock input images that
maximize the activation of a specific filter. While such methods are beyond the scope of this the-
sis, they still provide a didactic illustration of the previous multi-level representation in CNNs.
Figure 11.12 shows an example from the Distil online CNN visualization tool. The filters be-
come more and more precise to identify specific sub-parts of the images, with the apparent
repetition of the pattern in the image being just a construction effect. The filters become more
and more precise to identify specific sub-parts of the images. We note that the apparent repeti-
tion of the pattern in the image is just a construction effect in the sens that the filters selected to
produce the image are usually small (3×3 or 5×5) weight matrices, so that the complex pattern
is constructed from the non-linear combination of all the previous layer filters that contribute to
the looked at filterup to input image that maximizes the looked at filter.

174

https://distill.pub/2017/feature-visualization/
https://distill.pub/2017/feature-visualization/

11 Convolutional Neural Networks

2 1 -3 -2

-2 -7 -4 -1

0 4 5 6

-2 -1 2 1

Input

w in=4

h
in
=
4 2 -1

4 6

wout=2

h
ou
t=
2

P=2

P
=
2

Output

Figure 11.13: Illustration of the Max-Pooling operation with Po = 2 on a single layer image,
colored by sub-regions.

11.1.7 Pooling layer

Convolutional layers are often used in combination with another new type of layer that reduces
the dimensionality of the output images (or activation maps). This layer performs a so-called
pooling operation, and is therefore named a pooling layer. While there are different types of
pooling operations, the most commonly used is the Max-Pooling. Considering a pooling size
Po it will decompose each depth channel of the image in non-overlaping sub-regions of Po × Po

pixels and produce an output image that is composed only of the maximum value of each of
these sub-regions. It is common to use Po = 2, which results in an image that is half the size
in both dimensions, conserving only a quarter of the pixels of the original image. This opera-
tion is performed for each depth channel of the image, which can be the activation maps of a
previous layer, so it conserves its depth. We note that a pooling layer does not use weights or
activation in any way, so it does not increase the number of learned parameters in the network.
This operation is illustrated in Figure 11.13 using a different color for each sub-region. Among
the most common max-pooling alternatives we can cite the average pooling, max-out layers,
L2-norm pooling, global pooling, fractional pooling, etc. (LeCun et al. 1998b; Scherer et al.
2010; Gulcehre et al. 2013; Graham 2014, ...)

The aim of this operation is to reduce dimensionality by selecting only the dominant pixels
in the input image. This can lead to a very convenient speed up of the learning process with
generally small or negligeable degradation of the prediction capacity of a CNN network. Using
a pooling layer just after a convolutional one conserves an important overlap of the convolu-
tion filter with a small stride. This way the convolved image has a much better resolution and
the max-pooling operation conserves only the most relevant information by selecting only one
pixel. Such construction has long proven to be a very efficient architecture as exposed in Sec-
tion 11.2.1. While pooling layers were widely used a few years ago with a pooling after each
convolution, they tend to be less common in modern architectures, with a pooling layer only
every several convolution layers. Moreover, the pooling layers has shown to be replaceable by
carefully designed convolution that performs equivalent dimensionality reduction (Springen-
berg et al. 2014).

175

11.1 The image processing impulse

1 0 0 0

0 0 0 -1

0 -2 0 0

0 0 3 0

Error

1 -1

-2 3

P=2

P
=
2

Propagated

0 3

1 2

Max-Loc

&

Figure 11.14: Illustration of the Max-Pooling error backpropagation with Po = 2 on a sin-
gle layer image, colored by sub-regions. The "Max-Loc" matrix gives the location where the
maximum value were prior to the Max-Pooling step, counted from zero. The used maximum
location are those of Figure 11.13 for consistency.

11.1.8 Learning the convolutional filters

In the previous sections we have expressed the convolution operation by using already appro-
priate weight filters. While it is possible to use only pre-defined filters like it was the case in the
first few decades of machine learning image applications, the true objective with this architec-
ture is to learn these filters (LeCun et al. 1998a). We note that, in echo to our first discussion in
Section 4.5.2, this is the boundary where many agree on the definition of "deep learning". The
"deep" attribute here does not only represents the depth of the network as a stack of layers but
refers to the fact that both the link between filters and the filters themselves are learned during
the training process. Here, we describe all the elements that are necessary to propagate the
error through a convolutional architecture. We note that this description is frequently missing
in many deep learning courses or presentations (e.g Stanford CS231 or Bishop (2006)) while it
is often the most difficult part of a CNN construction.

First, the simplest operation to propagate is the pooling. Considering that the error has been
propagated using the classical rules for fully connected layers as described in Section 4.5.2, the
propagation produces an error volume for the pooling layer that has the size of its output. The
error then has to be propagated to the input image with the appropriate error being associated
to the input neurons (or pixels) that was the maximum value of each sub-region. In practice it
means that one must conserve the memory of the position of the neuron that contained the max-
imum value. The error is reported to this element location and all the other elements involved in
the associated pooling sub-region get their error set to zero. We illustrate this procedure in the
typical case of a Po = 2 pooling size in Figure 11.14, where the input image was a single layer
of size 4 × 4, which is equivalent to the size of the propagated error. Identically to the forward
pooling operation, the depth channels are independent.

176

https://cs231n.github.io/convolutional-networks/

11 Convolutional Neural Networks

Error

Propagated

Stride 1

0 1 -2 3 1

0 -1 3 -6 4 -2 -10 -1 3 -6 4 -2 -1

0 -1 3 -6 4 -2 -11 2 2 2 2 2 1N. contrib.

Stride 2

21 7

-1 1 -8 7 -9 2 -2

0 -1 3 -6 4 -2 -11 1 2 1 2 1 1

-1 1 -1

Filter

Figure 11.15: Illustration of a 1D transposed convolution operation using a 3-element filter (in
red). The error is in green, the propagation result in blue and the grayscale table represents the
number of error elements that contribute to each propagated pixel. Two examples are given for
S = 1 and S = 2 that result in propagated errors with identical sizes.

For the error propagation in the convolutional layers, we need to define an operation that
is called a transposed convolution (Dumoulin & Visin 2016). It works in a very symmetrical
way as the convolution, each pixel of an input image being multiplied by all the filter values to
produce an identical number of elements in an output image. This operation is repeated for each
pixel in the input image according to the stride. Pixels next to each other in the input image will
often have an overlap of their projected field of contribution in the output image, depending on
the stride. In this case the contribution from each input weighted by the filter are summed on
overlapping output pixels. With this operation it is possible to propagate an error "image" of
the size of the forward convolution output to produce an error table that has the size of the input
image used by the forward convolution. This way each error pixel propagates its value to all the
original input positions that were involved in its activation, accordingly weighted by the filter
element used by each original input pixel. This operation is the exact equivalent of the Equa-
tion 4.10, or the simplified version from Equation 4.15, for each sub-region of the considered
operation input image. Indeed, each error is scaled by each weight that were involved in the
activation of the forward output neurons and the error is propagated the corresponding forward
input neurons.

We illustrate this transposed convolution operation in a one dimensional case in Figure 11.15
that is the equivalent of the propagation of the case presented in Figure 11.6. We note that the
stride in this image is the one that was used in the forward convolution. For the S = 2 case
an equivalent of the transposed convolution should be used, but it requires an addition that we
explain below, in the 2D case. Interestingly, in this figure, the contribution pattern is identical
to the one that was used for the forward convolution but this time it represents the overlapping
of each pixel contribution.

We illustrate a 2D transposed convolution operation in Figure 11.16. We consider an origi-
nal convolution operation that was performed on a 4×4 input image using a 3×3 filter producing
a 2 × 2 output image. Then the transposed convolution operation combines the error computed
in this output with the same filter than the one used in the forward in order to propagate it into
an input error that has the same size of the original input. To ease the understanding of the op-
eration, the contribution from each error pixel has been represented independently and colored
accordingly. These contributions are summed to produce the shown propagated error along with
the associated contribution pattern 4.

4Useful animated illustrations of the transposed convolution can be found on the GitHub page associated with
the paper from (Dumoulin & Visin 2016)

177

https://github.com/vdumoulin/conv_arithmetic

11.1 The image processing impulse

-3 0 2

-1 3 0

0 2 -1

6 0 -4

2 -6 0

0 -4 2

Propagated

Filter

-2 2

3 -1

Error

-6 0 4

-2 6 0

0 4 -2

-9 0 6

-3 9 0

0 6 -3

3 0 -2

1 -3 0

0 -2 1

+ +

+

+

6 -6 -4 4

-7 -5 12 -2

-3 6 3 -2

0 6 -5 1

=

N. contrib

1 2 2 1

2 4 4 2

2 4 4 2

1 2 2 1

*

Figure 11.16: Illustration of a 2D transposed convolution operation on a 2 × 2 error using a
3 × 3 filter (in red). Each error pixel has a different color and the individual contribution to the
operation is shown for each of them in the corresponding color. The resulting 4 × 4 propagated
error is in blue and the grayscale table show the number of contribution for each pixel.

We stress that the transposed convolution is not a true "deconvolution" as it is often called.
While the transposed convolution performs exactly the action we need, that is to distribute the
error over all the original input neurons that were responsible of each output activation, a decon-
volution in the sense of signal processing would reconstruct the convolution original input. This
is not the same operation as the transposed convolution. Another way to depict a transposed
convolution is through a so-called fractionally-stride convolution (Dumoulin & Visin 2016),
which is discussed in the next paragraph.

While the transposed convolution performs the wanted operation it is often re-expressed as
a regular convolution. There are two main motivations for this: (i) the homogeneity of the op-
erations to perform, that already led to replace pooling and dense layers by convolutional ones
(Springenberg et al. 2014), (ii) and the fact that the convolution can efficiently be encoded as a
matrix multiplication operation as we describe in Section 11.2.4.

This alternative formulation of the back-propagation transposed convolution takes the same
output error image as its own input but with a scaling transformation so that a regular con-
volution operation produces an output image that has the size of the one from the transpose
convolution. In order to replicate the correct propagation, this convolution has to reproduce the
input size of the forward convolution operation. It means that it usually has to "upscale" its
input image, here the output error to be propagated. This is possible by adding zero padding
around the image similarly to the one that is used to preserve the size between the input and
the output in the forward convolution. To avoid the filters to be applied to zero values only,
the padding must be smaller than the filter size (see Fig. 11.7). The quantity of padding to
add in a S = 1 case is defined as P′ = fs − P − 1 where P′ is the padding of the propagation
convolution and P is the padding of the forward convolution. The change of size between the
input and output image of the forward operation can then be reversed. However, to reproduce
the transposed convolution operation, the weight filter must be rotated by 180◦ when using this

178

11 Convolutional Neural Networks

-1 1 -2

-2 3 3

-3 4 -1

-9 2 -19

-8 20 -19

-13 28 -10

-2 3 4 4

-2 -1 -3 3

-4 0 -5 0

0 3 -4 -1

Input

1 -2

2 -3

Output
Filter

1 2 2 1

2 4 4 2

2 4 4 2

1 2 2 1

N. contrib

Error 0 0 0 0 0

0 -1 1 -2 0

0 -2 3 3 0

0 -3 4 -1 0

0 0 0 0 0

Padded Error

-3 2

-2 1

Rotated
Filter

180°

=

=

-1 3 -4 4

-4 12 -10 0

-5 22 -12 -7

-6 17 -14 3

Propagated

*

*

Figure 11.17: Illustration of the complete forward and backpropagation process for 4× 4 input
images using a filter of size fs = 2 (in red) and a stride S = 1. The input and propagated error
are in blue, the output and its error are in green. The yellow outline is the external zero-padding
P = 1. The grayscale table represents the number of contributions from each input pixel and is
equivalent to the number of contributing elements from the error. The colored dashed squares
highlight specific input-weight pairs to help following pixel paths in the operation.

Filter size
padding

Filter size
padding

0 16 8 24 12

-4 -8 -18 -12 -18

-8 0 -10 -2 2

1 2 4 4 6

2 -1 3 -2 -2

Stride
padding
Stride

padding

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 -4 0 -6 0 0

0 0 0 0 0 0 0

0 0 1 0 2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

-26 -33

4 14

-3 2 -7 5 -4

-7 0 -8 -3 -7

-6 -4 7 -2 2

6 -3 6 -3 -1

-6 -4 8 -5 8

0 -4 -2

1 2 3

2 -1 -1

Filter

Input

Output

-4 -6

1 2

Error
-1 -1 2

3 2 1

-2 -4 0

Rotated Filter

=

=

Propagated

Using stride = 2

Using stride = 1

1 1 2 1 1

1 1 2 1 1

2 2 4 2 2

1 1 2 1 1

1 1 2 1 1

N. contrib

*

*

180°

Figure 11.18: Illustration of the complete forward and backpropagation process for 5× 5 input
image using a filter of size fs = 3 (in red) and a stride S = 2. The input and propagated
error are in blue, the output and its error are in green. The yellow outline is the external zero-
padding Po = 2 and the purple internal zero-padding represents Ps = 1. The grayscale table
represents the number of contributions from each input pixel and is equivalent to the number of
contributing elements from the error.

179

11.1 The image processing impulse

propagation convolution. This way, each weight in the filter is applied to the appropriate output
value to reconstruct the correct propagated error. This full operation including the filter rotation
is often referred to as a full convolution (Dumoulin & Visin 2016). We illustrate this operation
in Figure 11.17 that contains both the forward convolution and the associated error propagation
using the full padded convolution. The 4 × 4 input image is convolved by a fs = 2 filter with a
stride S = 1 and no padding, resulting in a 3 × 3 output image, here pictured with no activation
function. To illustrate the propagation convolution we used an arbitrary error image that has the
same size of the output, on which a P′ = 1 padding is apply. Two specific input-weight pairs are
highlighted using dashed colored squares, to help verifying that the proper association is kept
between the forward and the backward operations.

In the previous example we addressed the full convolution in a case with S = 1 but the
use of a larger stride in the original convolution requires additional transformations of the error
image. Indeed, it is necessary to control the overlapping pattern as well as the resizing process.
This is done by using an additional internal zero-padding (or stride padding) that will enlarge
the the error image. This padding is simply defined as Ps = S − 1 and is applied between each
input image pixel in both dimensions. We illustrate the case of a S = 2 convolution and the
associated full convolution for error propagation in Figure 11.18. In this example a 5 × 5 input
image is convolved by a 3 × 3 filter using a stride S = 2, which results in a 2 × 2 output image.
The full convolution for the error propagation, then uses an external padding Po = 2 and an
internal padding Ps = 1 on the 2 × 2 error that is propagated into a 5 × 5 error input image
by using the weights from the rotated filter applied to the corresponding output. As before the
contribution pattern is reproduced in the forward and back-propagation operations.

Finally, there are usually more than one input and output depth channels di and do in a con-
volutional layer. In the forward convolution each filter presents a depth that is equivalent to the
number of input depth channels di. The output depth is then the number of filters in the layer
n f = do forming an individual filter volume V = fs × fs × di inside a larger volume of V × do.
The backpropagation convolution must produce a propagated-error volume with the same depth
di as the input layer. To achieve this, the error propagation convolution must reorganized the
filters so that it creates a new volume where a given depth di for all the do filters are associated
in a new individual filter volume V ′ = fs × fs × do inside a larger volume of V ′ × di. The
new filter volume then contains a number of filters corresponding to the the number of depth
channel of the input image of the forward convolution, and each of this filter contain as much
depth channel than the output of the forward convolution. An illustration of this process using
the matrix formalism in presented later in Figure 11.21.

180

11 Convolutional Neural Networks

11.2 Convolutional networks parameters
11.2.1 Convolutional Neural Network architectures
Convolutional layers can be stacked on top of each others (Sect. 11.1.6) and pooling layers can
be added to reduce the dimensionality of the intermediate activation maps (Sect. 11.1.7). To
achieve this, many questions need to be addressed: How to choose the appropriate detailed ar-
chitecture? How many layers are necessary? With how many filters in each? What should be the
size of the filters? Is a pooling layer necessary after each convolution, etc ? The general answer
to all these questions is: it depends. Some extreme boundaries are easy to estimate: like not
having larger filters than the input image, avoiding to reduce the dimensionality too quickly, or
avoid having a stride that is larger than the filter size which would cause some pixels to never be
scanned. It remains, however, difficult to provide proper general advice. The ANN community
has long adopted a "trial and error" approach to find the most effective network architectures,
but the number of possible combinations is huge and continues to rise exponentially with the
addition of ever new ANN features and layer types.

For these reasons, the ML community is mainly moving forward by organizing contests on
always more difficult tasks or by comparing the success of various architectures on freely ac-
cessible datasets. This leads to a proliferation of algorithms and architectures to be tested and
the most successful ones then spread to the rest of the user base. This principle is going even
further these days with many architectures being so hard to train and unstable for a long training
time that it is advised to get a pre-trained network for very general purpose classification, and
then continue the training with completely different input images to adapt it to a new application.

For general considerations, it has been observed that architectures that have many convo-
lutional layers with many small filters were much more efficient than fewer layers with larger
filters (Simonyan & Zisserman 2014). While a large filter scans over a large region at once, the
same large region can be scanned using successive layers with small filters. For example two
layers of 3×3 filters with a stride of S = 1 scan up to a 5×5 area of the original image. Adding
an extra layer with identically sized filters results in a 7 × 7 area. The advantage of this type
of architecture is that it decompose large scale pattern into a non-linear combination of several
small patterns, increasing the diversity of objects that can be identified for a same given number
of filter. This is exactly comparable to the difference between one MLP layer with much more
neurons against the same number of neuron distributed over multiple MLP layers. Additionally,
a complex 7 × 7 pattern can be decomposed into pieces that might be useful for another type
of objects in the same dataset, reducing the global quantity of weights in the network. Most
common filter sizes are 3 × 3 or 5 × 5.

Other common practices are for example to use adequate zero-padding in order to conserve
the image size in the convolutional layers. The dimension reduction is then completely endorsed
by the pooling layers. Small strides are more common, generally with a simple S = 1 value. In
some cases larger filters are used in conjunction with a larger stride when the number of param-
eters in the network is problematic, but only on the first layers Krizhevsky et al. (2012). This
leads to a common practice that is to start with layers that have few filters in order to reduce the
number of activations and that conserve the input image size. The subsequent layers are made
denser with more filters, and the activation maps are pooled to reduce the dimensionality. Most
networks finish their convolution part with a layer that contains many filters that produce very
small activation maps. The objective being to list all the necessary sub-patterns from the input
images that are necessary to perform the end classification. Ultimately, the last convolution
layer is fully connected to a smaller series of MLP layers with, as before, each pixel of all the

181

11.2 Convolutional networks parameters

activation maps considered as an independent input feature. It is also common to perform a
last convolution operation with many filters of the size of the last activation maps to produce
a large mono-dimensional activation before adding the fully connected layers, which results in
the exact same number of parameters than the previous solution. We illustrate a very generic
architecture of this type in Figure 11.19, where only the activation maps are represented, but
their size and number is characteristic of the filters used at each layer.

There are many other kinds of layers and tuning with for example non linear architectures,
networks with outputs larger than their input, recurrent CNN, residual CNN... We can notice-
ably mention the widely used "depthwise separable convolution" that performs a regular con-
volution layer per layer and then recombines them using a 1 × 1 convolution. Some networks
also work with tensor images that have more than two spatially coherent dimensions, and can
still have several multiple depth channels, needing tensor weight filters and subsequent tensor
representation of the network. However, these advanced techniques are for now irrelevant for
our applications.

Finally, we list here some famous CNN architectures that illustrate the previous general
considerations. We note that, because the size of the activation maps, and therefore the depth
of the network, depends on the size of the input map, each architecture is given with its typical
input image size. We note that all these architectures have won one or several image classifi-
cation contests that are described in the reference paper for each of them, leading to their wide
adoption in the ANN community. To ease the architecture description we use the following
naming system: the input volume is denoted I along with its dimensions (width, height, depth)
as I-W.H.D, a convolutional filter is denoted C with the number of filters N followed by the filter
size dimension fs and the stride S as C-N. fs.S (the stride S is omitted in the case of S = 1), a
pooling layer is simply denoted P along with its Po values as P-Po, and dense layers are denote
D followed by the number of neurons n as D-n.

• LeNet: a "classical" simple CNN architecture from LeCun et al. (1998a), from which the
most known revision is the LeNet-5: [I-32.32, C-6.5, P-2, C-16.5, P-2, C-5.120, D-84, D10].

• AlexNet: a much more recent and larger architecture from Krizhevsky et al. (2012), but that
remains modest enough to be usable on most modern individual computers. It noticeably
uses larger filters and stride in the first layer to strongly reduce the image size. Its architecture
is [I-224.224, C-96.11.4, P-2, C-256.5, 2×[C-384.3], C-256.3, P-2, 2×[D-4096], D-1000].

• VGGNet: that made the demonstration that a very deep network with only small filters
can achieve top-tier performances. This network architecture from Simonyan & Zisserman
(2014) is still widely used today due to it simplicity of implementation and very good per-
formance even on modern problems. It is made of chunks of identical convolutional layers.
The architecture can be described as [I-224.224.3, 2× [C-64.3], P-2, 2× [C-128.3], P-2, 3×
[C-256.3], P-2, 3× [C-512.3], P-2, 3× [C-512.3], P-2, D-4096, D-4096, D-4096, D-1000].

• Inception: a much more recent approach to CNN that is composed of several "blocks" of
parallel networks that are concatenated after a number of layers (Szegedy et al. 2014). The
number of continuous convolutional layers in the first version is 22 and it goes above 70
for more recent iterations of this network architecture (Szegedy et al. 2016), which we do
not represent here because of its complexity. This category of networks can only be trained
using powerful computing clusters but are capable of solving very diverse tasks efficiently
using the very same architecture. However, the details of such an architecture is beyond the
objectives of this thesis.

182

11 Convolutional Neural Networks

O
u

tp
u

t
la

y
e

r
In

p
u

t
Im

a
g

e
(s

)
C

o
n

vo
lu

ti
o

n
a

l
la

y
e

r
P

o
o

lin
g

la
y

e
r

C
o

n
v.

la
y

e
r

P
o

o
l.

la
ye

r

C
o

n
v

 o
r

P
o

o
l.

la
ye

r

...

F
C

la
y

er
F

C
la

y
e

r

R
G

B

...

...

(R
e

p
e

a
t)

(R
e

p
e

a
t)

...

Fi
gu

re
11

.1
9:

Il
lu

st
ra

tio
n

of
a

ty
pi

ca
lC

N
N

ar
ch

ite
ct

ur
e

w
ith

su
bs

eq
ue

nt
co

nv
ol

ut
io

na
ll

ay
er

s
w

ith
re

gu
la

rp
oo

lin
g.

In
th

is
re

pr
es

en
ta

tio
n

th
e

gr
ay

sl
ic

es
re

pr
es

en
ta

ct
iv

at
io

n
m

ap
s,

th
e

fil
te

rs
ar

e
no

tr
ep

re
se

nt
ed

.
T

he
en

d
of

th
e

ne
tw

or
k

is
co

m
po

se
d

of
se

ve
ra

lf
ul

ly
co

nn
ec

te
d

la
ye

rs
w

ith
gr

ay
ci

rc
le

s
re

pr
es

en
tin

g
re

gu
la

ri
nd

iv
id

ua
ln

eu
ro

ns
.

183

11.2 Convolutional networks parameters

11.2.2 Weight initialization and bias value

As we exposed in Section 4.7.3, the method used to initialize the weights at the beginning of
the training process can have a strong impact on the stability and convergence ability of ANN.
We also discussed that it is strongly linked to the choice of activation function, bias value, and
even to the network architecture. Overall, the ReLU activation function is much more reliable
than the sigmoid activation for similarly deep networks. In the case of a very deep network like
the one we described in the previous section, the ReLU activation quickly becomes the only
suitable solution. In such a case, the choice of an appropriate weight initialization is crucial be-
cause an inapproriate choice can completely prevent very deep networks to converge. The main
objective remains to conserve the weight small enough to preserve precision and stability but
also large enough to quickly obtain very different behaviors of each neuron in the network. The
performance comparison between the various weight initialization methods is mainly empirical.
Still, the main objective of each method is to get as close to the same initial weight variance
over all the network layers, independently of their size.

In the VGG network for example, they used the Xavier initialization (also named Glorot
depending on the reference to the name of forename of the author) that is a uniform distribution
scaled according to the size of the layers by

√
1/nl−1, where nl−1 is the size of the previous layer

(Glorot & Bengio 2010). In the same paper they also propose what is now called the normalized
Xavier initialization that scales the uniform distribution by:√

6
nl−1 + nl

. (11.4)

They claim that this initialization works better with layers that are unevenly sized. These ini-
tializations can be generalized to be used with a normal distribution instead. Using a zero mean
and standard deviation of one, the Xavier initialization is scale by:√

2
nl−1 + nl

. (11.5)

We note that this is the weight initialization currently used by default in our CIANNA
framework.

Another initialization that is frequently used is the He initialization that follows the same
idea but with a wider variance by scaling the uniform or normal distribution by

√
6/nl−1 and

√
2/nl−1, respectively (He et al. 2015). This initialization is claimed to be more efficient on very

deep ReLU activated networks, while in practice it appears that both He and Xavier initializa-
tion are commonly used in such applications.

Regarding the bias value, there are many approaches using ReLU in convolutional layers
that differ regarding their implementation. If the bias value itself changes during the learning
phase, then it is often initialized to zero at the beginning of the training. The other approach that
uses a constant bias value and an adaptive weight can emulate the same behavior with a weight
set to zero for the bias at the initialization. It is common to rather use a small positive value in
order to allow the ReLU to not start in an inactive state. Our approach to this problem has
been to use a bias value of 0.1 with an associated weight that is randomly generated following
the previously described rules for every neuron that uses a ReLU activation.

184

11 Convolutional Neural Networks

11.2.3 Additional regularization: Dropout and momentum

In the context of modern ANN, regularization denotes any technique that is used to prevent
overfitting and to even the generalization of the network between training data points. These
methods aimed at gaining a better representation of the larger scale network prediction (Good-
fellow et al. 2016). Most of the modern CNN architectures use a regularization technique called
dropout (Srivastava et al. 2014). It consists in randomly removing a given proportion dr of neu-
rons at each training step, taking into account that the dr proportion can be different for each
layer. A dropout of dr = 0.6 means that 60% of neurons are dropped. It noticeably prevents
overfitting by forcing the network weights to adapt in a more general way by preventing given
weights to become the only overspecialized representation of a training dataset specificity. This
type of regularization enables the network to work with smaller datasets without overfitting.

Usually, this technique is used only on dense layers at the end of the CNN architecture. This
presents a very interesting side effect that is to better specialize the filters themselves, especially
if dropout is used in combination with a momentum (Sect. 4.7.8). This way each filter really
becomes responsible for one robust pattern as presented in Section 11.1.6. Without dropout,
multiple filters can share the responsibility for a pattern that could otherwise be represented by
just one of them, making the interpretation of a filter more complex. Despite having less neu-
rons to compute, using dropout usually makes the training process require much more epochs
to converge due to the multiple suitable combination of weights that must be learned to account
for the random shutdown of neurons. However the improved robustness of the network repre-
sentation is often considered worth the slower training.

Usually, the first dense layers after the convolution part present a high dropout rate with up
to dr = 0.9 that is consecutively reduced for layers closer to the output with a value depending
on the usage. A value around dr = 0.5 is often adopted for the last dense layer in classifica-
tion cases but smaller values of 0.2 or 0.1 are sometimes adopted on suitable applications like
regression cases with great efficiency (Gal & Ghahramani 2015). Naturally, the output layer
does not have dropout since it encodes the problem prediction. One side effect of the use of
a high dropout value is that the number of neurons must be significantly raised. An common
heuristic is to have an "active" number of neurons that is the equivalent of the same network
without dropout, but it might be insufficient is some cases. Still, having n/dr neurons where n
is the number of neuron necessary for a non-dropout model is a useful minimal approach. We
also note that a high momentum (α >= 0.9) is often advised to minimize dropout undesirable
effects like gradients canceling each other and an increased noise in the global gradient descent.
This can also be efficiently combined to a larger learning rate.

Finally, once the network has been trained using dropout, there are two opposite approaches
to compute the prediction of the network. The first one, that is recommended most of the time,
is to scale down all the weights by the dr factor and then to use all the network weights without
removing neurons. This way the global sum of the weights remains scaled similarly as during
the training process but all representations are averaged. This is usually the most efficient
way to preform the prediction. The other approach is to perform a Monte-Carlo estimation
of the output by performing several predictions with a different dropout activation for each
layer. This method requires several predictions of the network before being close to the average
predicted by weight scaling but is equivalent to sampling a prediction probability distribution,
just like a Bayesian approach (see Sect. 11.3) We stress that we only scratched the surface of
the complexity and capacity of dropout for many artificial neuron based ML applications, more
details and examples being presented in the reference paper from Srivastava et al. (2014).

185

11.2 Convolutional networks parameters

-3 2 -7 0 2 2 -7 -7

2 -7 0 -8 2 -2 -7 4

-7 5 -8 -3 -2 -4 4 0

5 -4 -3 -7 -4 -4 0 2

-7 0 -6 -4 -7 -7 7 -1

0 -8 -4 7 -7 4 -1 -6

-8 -3 7 -2 4 0 -6 -2

-3 -7 -2 2 0 2 -2 4

-6 -4 6 -3 7 -1 -6 -5

-4 7 -3 6 -1 -6 -5 4

7 -2 6 -3 -6 -2 4 -7

-2 2 -3 -1 -2 4 -7 0

6 -3 -6 -4 -6 -5 -4 -3

-3 6 -4 8 -5 4 -3 -5

6 -3 8 -5 4 -7 -5 6

-3 -1 -5 8 -7 0 6 4

-3 2 -7 5 -4

-7 0 -8 -3 -7

-6 -4 7 -2 2

6 -3 6 -3 -1

-6 -4 8 -5 8

In: Depth channel 1

im2col

Modified Input

In: Depth channel 2

2 2 -2 -4 -4

-7 -7 4 0 2

7 -1 -6 -2 4

-6 -5 4 -7 0

-4 -3 -5 6 4

f s=2

W 1

f s
=
2

wi

h i
=
5

wi=5

h i

w
o
=
4

w
o
×
h o

=
16

f s×f s=4

d i×f s×f s=8

X

Filter 1

Flatten filters

do

d
i×
f s
×
f s

W

Figure 11.20: Illustration of the im2col (here, rather im2row) operation performed on an depth
d = 2 input image of size wi = hi = 5 using filters with fs = 2 represented in red. Elements
from input depth channel 1 and 2 are colored in blue and orange, respectively. The expanded
input present wo × ho× columns which correspond to the flatten dimension of one input depth
channel, and d × fs × fs to correspond to a flatten sub-region. W represents the flatten filter
matrix, with do independent filters, that is multiplied by the expanded input to produce the
activation maps. The red and blue dashed rectangles highlight two specific sub-regions that go
through the conversion.

11.2.4 Implications for GPU formalism

We exposed in Section 4.8 the advantages of a matrix formalism to speed up the network oper-
ations. Following the same objective, we discuss here a possible approach to express the con-
volutional layer operations as matrix multiplications. The element-wise multiplication between
a filter and several sub-regions of an image is already very close to the operations performed in
a matrix multiplication. Some methods also take advantage of its underlying SIMD structure
to construct GPU kernels that perform the convolution operation directly. However, it is often
more efficient to use the already strongly optimized linear algebra libraries.

The most widely adopted approach is based on a representation of the weight filters as a
matrix with columns representing each filter flattened (fs × fs × di) and with as many columns
as the number of filters (do) in the layer. To correspond to this weight matrix, the input matrix
must be composed of rows that represent all the elements of each sub-region flattened accord-
ingly. Besides, multiple images from the same batch can be concatenated in the same expanded

186

11 Convolutional Neural Networks

D
e

p
th

 w
is

e

ro
ta

ti
o

n
 a

n
d

 f
la

tt
e

n

F
o

rw
a

rd
 p

a
s

s
F

o
rw

a
rd

 p
a

s
s

w
i

hi

X

f s
×
f s
×
d
i+
1

wo×ho
b×wo×ho

im
2

c
o

l

X
'

0
.1

Wd
o

fs×fs×di+1

X

wo×ho
b×wo×ho

a

d
o

w
o

ho

a
'

f sW

fsF
la

tt
e

n

E
q

u
iv

.

w
o

ho

E
a

g
(
h
)

h

wi×hi
b×wi×hi

f s
×
f s
×
d
o

E
a
'

W
'T

d
i

X

fs×fs×do

d
i

wi×hi
b×wi×hi

E
X

E
rr

o
r

b
a

c
k
p

ro
p

a
g

a
ti

o
n

E
rr

o
r

b
a

c
k

p
ro

p
a

g
a

ti
o

n

w
i

hi

E
X
'

im
2

c
o

l

E
q

u
iv

.

E
rr

o
r

b
a

c
k
p

ro
p

a
g

a
ti

o
n

E
rr

o
r

b
a

c
k
p

ro
p

a
g

a
ti

o
n

fs×fs×di+1

w
o
×
h
o

b
×
w
o
×
h o

X
'

0
.1

wo×ho b×wo×ho

E
a

d
o

X
Δ
Wd
o

fs×fs×di+1

E
q

u
iv

.

f s

Δ
W

fs

X
W

a
E
a

B
a

tc
h

e
d

 I
n

p
u

ts
W

e
ig

h
t

fil
te

rs
A

ct
iv

a
tio

n
 m

a
p

s
A

ct
iv

a
tio

n
 e

rr
o

rs
E
X

P
ro

p
a

g
a

te
d

 I
n

p
u

t
e

rr
o
rs

Fi
gu

re
11

.2
1:

G
ra

ph
ic

al
re

pr
es

en
ta

tio
n

of
th

e
m

at
ri

x
ba

tc
h

op
er

at
io

n
fo

r
on

e
co

nv
ol

ut
io

na
ll

ay
er

.
T

he
la

rg
e

re
d

ar
ro

w
s

in
di

ca
te

th
e

or
de

r
of

th
e

op
er

at
io

ns
.

L
ar

ge
×

sy
m

bo
ls

ar
e

m
at

ri
x

m
ul

tip
lic

at
io

ns
.

T
he

m
at

ri
x

si
ze

s
ar

e
as

fo
llo

w
s:

b
is

th
e

ba
tc

h
si

ze
,w

i,
h i

an
d

d i
th

e
w

id
th

,h
ei

gh
ta

nd
de

pt
h

of
th

e
in

pu
ti

m
ag

e,
re

sp
ec

tiv
el

y,
w

o,
h o

ar
e

th
e

w
id

th
an

d
he

ig
ht

of
th

e
ac

tiv
at

io
n

m
ap

s,
d o

is
th

e
nu

m
be

ro
ffi

lte
rs

an
d

ac
tiv

at
io

n
m

ap
s,

an
d

f s
is

th
e

fil
te

rs
iz

e
in

bo
th

sp
at

ia
ld

im
en

si
on

s.

187

11.2 Convolutional networks parameters

representation resulting in a wo × ho × b number of rows. It is then possible to perform all the
convolution operations of the batch using one single matrix operation (Chellapilla et al. 2006).
Using this representation, each sub-region of the input is multiplied by each filter of the layer
and produces an output matrix where each column is the flattened activation maps for one fil-
ter. This conversion operation is often referred as "im2col" that stands for all the operations of
this type, even if the operation we describe might be more suited by the "im2row" name. We
illustrate this conversion in Figure 11.20 where an input image with two depth channels of 5×5
pixels is converted into an expanded version that corresponds to filters of size fs = 2 with the
same number of dimensions. Two dashed areas highlight specific sub-regions that go through
the conversion.

While it is relatively easy to construct the weight matrix in the right format and conserve
it during training, it is much more difficult to convert the input in the right form. The first
problem is that this representation uses much more memory than the regular image form due to
the redundancy of elements caused by the overlap between the sub-regions. This is a common
algorithmic trade off that consists in increasing the memory usage in order to improve com-
putational performances. But, even if it is possible in some cases to keep the expanded form
in memory for simple problems, most of the time the images must be converted dynamically
to lower the memory footprint. The second problem is that the output format of the activation
maps correspond to regular flattened images. This means that they must also be converted in
the expanded form if the next layer is a convolutional one, and successively for the all network
convolutional layers, increasing even more the memory issue.

However, even with a very poor conversion performance the large single matrix operation is
so much faster than a raw computation of the convolution that it is almost always worth the ad-
ditional cost of the conversion. There are many reasons for the raw convolution to be slow, the
main one being that the input elements are poorly arranged in memory for this operation, induc-
ing regular cache-misses 5. This is completely solved with the expanded matrix representation
that fully uses the matrix multiplication optimization of cache and redundancy. Again, we insist
on the fact that in almost all cases it is faster to use this approach anyway, but it makes the con-
version operation the most probable bottleneck of the whole network, then any improvement
in the conversion computational cost results in a large global network performance increase.
There are many implementations of this function that make use of various hardware capabili-
ties, with many of them being open source while others are protected inside closed frameworks.
This function is so important in modern networks that it is the object of several researches and
publications; a nice empirical method comparison can be found in Anderson et al. (2017). Still,
we propose our own im2col implementation that takes the form of a CUDA kernel . While we
kept a simple approach, we minimized the number of memory operations with only one read
per input pixel and just the absolutely necessary number of affectations. Despite this, the kernel
remains completely memory bound, which indicates that it is as optimized as it can be without
using advanced shared GPU memory management and low-level cache operations. We empha-
size that, depending on the network architecture, our im2col implementation is efficient enough
not to be the computational bottleneck with most of the computation time spent in matrix mul-
tiplication even on a high-end GPU.

5Cache-miss refers to the CPU being forced to load data from the host memory rather than from the cache.
Memory copy being made by blocks, operations on continuous data in memory allows the CPU to read the subse-
quent data from the cache loaded from previous access.

188

11 Convolutional Neural Networks

Using this approach we now have a method to convert convolutional layers into efficient
matrix operations. Each subsequent layer can then use the same approach to construct the full
network. The pooling operations are just a SIMD operation on all sub regions and do not re-
quire any additional treatment. It is possible to use the matrix formalism for fully connected
layers described in Section 4.8 for the end of a CNN, when necessary. Regarding the error
backpropagation, we exposed that it can be expressed as a classical convolution, meaning that
the same im2col routine can be used with minimal adjustments to propagate the error in a con-
volutional layer. We illustrate this matrix formalism in Figure 11.21 that presents the forward,
the backpropagation and the weight update for a convolutional layer that consists in the multi-
plication of the expanded input and the expanded output error. The dimensions of each element
are provided in the figure following the same notations as in the previous sections. The figure
also shows the addition of a bias value in the expanded image form, as before to minimize
the number of kernel launches that must be performed. Still, unlike the matrix formalism we
presented for fully connected layers (Fig. 11.21), this representation is not exhaustive: to limit
the complexity of the figure, we omitted many small adjustments that are needed to achieve a
computationally efficient matrix operation.

11.2.5 Example of a classical image classification

To illustrate the classification capacity of a CNN architecture and connect the exposed theo-
retical aspects to a real simple example, we will use a very well known dataset named MNIST
(Modified NIST’s Special Database) (LeCun et al. 1995, 1998a). It consists of a set of handwrit-
ten digits from 500 different writers expressed as 28× 28 grayscale images (0-255 pixel values)
positioned to their respective centers of mass. It is freely accessible in the form of a 60000-
image training dataset and a 10000-image test set. We stress that although the digits are not
perfectly equally represented, the proportions are sufficiently balanced to not cause any issue.
Figure 11.22 shows the first 36 images of the training dataset with the corresponding labels. It
has been the support of some of the first CNN architectures that automated the filter selection
by training them as the rest of the network. It has then been used by many others to test the
efficiency of architectures or even non-ANN classification methods due to its free access and
balanced difficulty. The results for various architectures are listed on the dataset website along
with the associated publications for each of them (for example LeCun et al. 1998a; Belongie
et al. 2002; Cires, an et al. 2012) with best results near 0.23% error rate to be compared to a hu-
man performance estimated at 0.2% error rate. For comparison, a single-layer linear ANN gets
only a 12% error rate on this dataset. These days, MNIST remains a widely adopted benchmark
set for CNN applications and is used for many pedagogical illustrations.

For this example we used our framework CIANNA to construct a simple CNN that is vastly
inspired by the LeNET-5 from LeCun et al. (1998a) slightly described in Section 11.2.1, and
that achieved a 0.95% error rate on this dataset. We note that, for our application, we did not use
any pre-processing on the input data, like dataset augmentation, image distortion or deskewing
and just used the raw MNIST training dataset. Firstly, we used a convolutional layer that is
composed of 6 filters of size fs = 5 with a stride of S = 1 and padding of P = 2, directly
followed by a max-pooling of size Po = 2. It results in a set of 14×14 activation maps that uses
leaky ReLU with λ = 0.01, and goes through a second convolutional and pooling combination
using the same parameters but with 16 filters, resulting in 7×7 activation maps. A last convolu-
tional layer is added without pooling using 48 filters of size fs = 3 and P = 1. It produces 5 × 5

189

http://yann.lecun.com/exdb/mnist/

11.2 Convolutional networks parameters

5 0 4 1 9 2

1 3 1 4 3 5

3 6 1 7 2 8

6 9 4 0 9 1

1 2 4 3 2 7

3 8 6 9 0 5

Figure 11.22: Excerpt of the first 36 images of the MNIST dataset. Each image has a size
of 28 × 28 pixels and is encoded using grayscale with integer values in the range 0-255. The
corresponding targets are shown in red for each image.

activation maps. This output is flattened into a 5 × 5 × 48 = 1200 input vector that is connected
to two fully connected layers with n = 1024 , dr = 0.5 and n = 256, dr = 0.2, respectively, that
both use the same ReLU activation than the convolutional layers. The network ends with a fully
connected layer of o = 10 using Softmax activation with a cross-entropy error (Sect. 4.9.1).
The network is trained using mini-batches of size b = 64, a learning rate of 2× 10−4 that slowly
decays to 1 × 10−4, a momentum of α = 0.9, for a total of 40 epochs.

With this simple network we reached a 0.65% error rate on the test set at around epoch 30,
corresponding to a ∼ 3 minutes training running on a Nvidia Quadro P2000 mobile. The cor-
responding confusion matrix (Sect.4.9.3) is shown in Table 11.1 that shows the global accuracy
of 99.35%. It also highlights some specific confusion between digits that are more alike, for
example between C4 and C9. More importantly for this manuscript, this result demonstrates the
overall effectiveness of our implementation and choice of optimization as it is very competitive
to similarly deep state-of-the art network implementations. For example, the same network ar-
chitecture declared using the Keras framework with the much more advanced ADAM gradient
descent optimization (Kingma & Ba 2014) does not achieve better accuracy results. We illus-
trate the use of the CIANNA interfaces on this example in Appendix A, where we also use this
example to make a performance comparison between CIANNA and Keras (TensorFlow).

190

https://www.techpowerup.com/gpu-specs/quadro-p2000-mobile.c3202

11 Convolutional Neural Networks

Table 11.1: Confusion matrix for the MNIST prediction using our CNN implementation.

Predicted

A
ct

ua
l

Class C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 Recall

C0 976 0 1 0 0 0 1 1 1 0 99.6%
C1 0 1132 1 0 1 0 0 0 1 0 99.7%
C2 1 1 1027 0 1 0 0 1 1 0 99.5%
C3 0 0 1 1004 0 3 0 1 1 0 99.4%
C4 0 0 1 0 972 0 1 0 1 7 99.0%
C5 0 0 0 4 0 886 1 0 0 1 99.3%
C6 3 2 0 0 1 2 949 0 1 0 99.1%
C7 0 2 3 0 0 0 0 1020 1 2 99.2%
C8 0 0 1 1 0 1 1 1 968 1 99.4%
C9 0 0 0 0 3 1 0 4 0 1001 99.2%

Precision 99.6% 99.6% 99.2% 99.5% 99.4% 99.2% 99.6% 99.2% 99.3% 98.9% 99.35%

11.3 Use of the dropout to estimate the uncertainty in a regression case

An interesting side-usage of the dropout (Sect. 11.2.3) in ANN is to provide an uncertainty
measurement of the prediction. Indeed, a network trained using dropout can be used to make
several predictions with different random selections of neurons performing a Monte-Carlo esti-
mate of the network prediction (Srivastava et al. 2014). In fact, the dropout of neurons in dense
layers forces the network to learn a probability distribution of the output, each random selection
being responsible for a sub-set of this distribution. Many applications that need this feature
use Bayesian Neural Networks (MacKay 1992) that achieve such task using modern variational
inference (Titsias & Lázaro-Gredilla 2014), but they often have an important supplementary
computational cost. However, it has been demonstrated that a regular ANN with dropout can
achieve similar predictions while being much more efficient in terms of computational perfor-
mances (Blundell et al. 2015; Gal & Ghahramani 2015).

We illustrate this capacity here using the simple one-dimensional example from Section 4.10.1.
To better show the uncertainty measurement we slightly raised the added noise dispersion
around our original function to σ = 0.15. The network we used here is composed of two
hidden layers with a leaky-ReLU activation that contains n = 64 and n = 48 neurons using
a dropout rate of dr = 0.6 and dr = 0.5, respectively. Having larger layers than these values
with a higher dropout rate has shown to degrade the global prediction performance. In contrast,
smaller layers were able to get a similar global prediction but the uncertainty appeared to be
underestimated in these cases. As expected, too large layers with a too small dropout rate led
to overtraining. On this example the optimal learning rate was η = 0.002 using a batch size of
bs = 64 and a momentum of 0.8.

The results are presented in Figure 11.23 corresponding to 100 predictions using the train-
ing network with random neuron exclusion. The figure shows two different representations,
the first one using the mean and the standard deviation from all the predictions of each input
point in our test set, and the second one by drawing a histogram of the predicted values for each
input point. The two representations reveal that the global prediction mostly follows the orig-
inal function in a good confidence interval. The points near the limits of the training interval
(X > 4 and X < −4) are less constrained, like in the regular case due to the combination of

191

11.3 Use of the dropout to estimate the uncertainty in a regression case

4 2 0 2 4
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ou
tp

ut

Network prediction
Original function
Training data
Prediction StD

4 2 0 2 4
Input

2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

Ou
tp

ut

Original function
Training data

0

10

20

30

40

Figure 11.23: Error prediction using dropout in a 1D regression example (from Sect. 4.10.1)
using a two fully-connected hidden layer network. Top: Average of 100 predictions using
dropout. The gray area shows the uncertainty computed as the standard deviation of all the
predictions at a given abscissa. Bottom: 2D histogram of the 100 predictions. Each input value
correspond to a vertical histogram of prediction values.

few training points and quick local-changes in the original function at these places, just like a
regular boundary effect. It is also visible that the network confidence interval is more narrow
in regions that have a steeper slope. The histogram representation is very informative since it
directly represents the probability distribution but it is less well suited for visualisation of higher
dimension regressions.

192

12 Extinction profile reconstruction for one line of sight

12 Extinction profile reconstruction for one line of sight
In this section we describe how the discussed CNN formalism can be used to reconstruct an ex-
tinction profile based on the comparison between observed and modeled data (see Sect. 10.4).
We explain our choice of observed quantities for this comparison and describe various process-
ing that had to be performed in order to make the BGM predictions as realistic as possible.
We also detail our methodology to construct mock extinction profiles that are sufficiently rep-
resentative of the interstellar dust distribution to train our network. We then describe various
effects either from the previous construction or from the network architecture itself than can
have effects on the prediction. Finally, we combine these elements to perform a first CNN pre-
diction using one LOS and discuss its generalization capacity to neighboring lines of sight in
the Galactic plane.

12.1 Construction of a simulated 2MASS CMD using the BGM 193
12.1.1 Choice of BGM representation and observed quantity 193
12.1.2 Reproducing realistic observations: uncertainty and magnitude cuts . . 196
12.1.3 Simple extinction effect on the diagram 198

12.2 Creating realistic extinction profiles for training 200
12.2.1 Gaussian Random Fields . 200
12.2.2 GRF generated profile . 201
12.2.3 Profile star count limit and magnitude cap 202

12.3 Tuning the method . 204
12.3.1 Input and output dimensions . 204
12.3.2 Network architecture . 205
12.3.3 Network hyperparameters . 206
12.3.4 Computational aspects . 208

12.1 Construction of a simulated 2MASS color-magnitude diagram using
the Besançon Galaxy model

12.1.1 Choice of BGM representation and observed quantity

We stated in Section 10.4 that we aim at using the Besançon Galaxy Model to reconstruct ex-
tinction profiles by comparison to observed quantities that are also predicted by the model.
We also explained that, because the BGM is a statistical stellar synthesis model, we have to
use observations in a statistical form as well. In a first step, for the sake of simplicity, we
wanted to use solely 2MASS data. We thus take advantage of the potentially large distance
range permitted by the relatively low extinction in the near IR, and of the possibility of a direct
comparison to the other work we are involved in (Marshall et al. 2020). There are 3 bands in
the 2MASS survey that can also be predicted by the BGM, namely J (1.235µm), H (1.662µm)
and K (2.159µm). To constrain the extinction, it is better to have one color and one magnitude
to be sensitive to both the reddening and the brightness decrease that it induces. To maximize
the leverage in the color dimension (i.e. the difference in extinction between two wavelengths)
we chose to use a [J-K]-[K] CMD, that we already illustrated in Figures 10.4 and 10.5.

193

12.1 Construction of a simulated 2MASS CMD using the BGM

Giant stars (Class III) Main sequence stars (Class V)

All modeled stars

Figure 12.1: Color-magnitude diagram simulated by the BGM for mock 2MASS data, without
extinction, in the direction l = 280 deg, b = 0 deg. The contributions of giant stars and main
sequence stars are shown separately and together. The raw BGM values are show in the left
frame of each case. The right frame of each case shows the same data after adding simulated
2MASS noise.

We highlight that the various stellar populations distribute differently in this diagram. This
is an important aspect to understand which classes of stars are the most useful to the profile
reconstruction. For example, without extinction, the giant stars mainly align vertically around
a color of [J-K]'0.7 forming a vertical continuous distribution in almost all our K magnitude
range. The rest of the diagram mostly corresponds to main sequence stars with the highest
density being due to the relatively low-mass star population centered around [J-K] = 0.25 and
[K]' 15 mag. These two populations are represented separately in Figure 12.1 for a modeled
2MASS CMD without extinction, with and without simulated noise (the details on the noise
modeling are given in Section 12.1.2). Additionally, the respective proportions of each of them
varies as a function of their location in the Milky Way, as parametrized by the BGM. This ex-
tinction free diagram is also shaped by the effect of distance to the Sun. Figure 12.2 shows the
corresponding CMD for slices of distance for an example LOS at l = 280 deg, b = 0 deg. It
shows that the primary effect of increasing distance (i.e. a vertical shift) also leads to a strong
increase in the ratio of giant to main sequence stars, since the latter are to faint to be detected
by 2MASS beyond ∼ 8 kpc. These properties highlight again that the amount of information
contained in a simple 2D image is considerable, and that powerful statistical techniques are
needed to disentangle this complex information.

This choice of using a multi-faceted CMD as input for our method makes clear that, due
to the properties exposed in Section 11.1, the CNN architecture should be more suitable than a
classical ANN for this task (see Sect. 12.3.1). Indeed, a CMD can be considered as an image
with the pixel value encoding the quantity in each bin when using a sufficient numerical range,

194

12 Extinction profile reconstruction for one line of sight

d = 0→ 1 kpc d = 5→ 6 kpc

d = 1→ 2 kpc d = 6→ 7 kpc

d = 2→ 3 kpc d = 7→ 8 kpc

d = 3→ 4 kpc d = 8→ 9 kpc

d = 4→ 5 kpc d = 9→ 10 kpc

Figure 12.2: Effect of distance on a 2MASS CMD. The data are the same as in Fig. 12.1, but
split in 1 kpc bins of distance.

195

12.1 Construction of a simulated 2MASS CMD using the BGM

Table 12.1: Uncertainty fitting free parameters for all 2MASS bands

a b c

J 7.253 × 10−8 8.590 × 10−1 2.258 × 10−2

H 1.807 × 10−8 9.894 × 10−1 2.802 × 10−2

Ks 2.242 × 10−7 8.768 × 10−1 2.044 × 10−2

and in the comparison we mostly want to estimate the translation of specific patterns for each
stellar population. In the present study we used CMDs of 64 × 64 pixels with −0.5 < [J − K] <
6.1 and 10 < [K] < 16. This choice of resolution and limits is discussed in Section 12.3.1.
However, for a CNN architecture to properly predict on real data we have to assess to what
extent the BGM prediction realistically represents an observation. This is of major importance
because ANN can easily be biased by systematic differences in the training sample or by non-
representative proportions (as seen in Sects. 4.9.3, 5.3, or 6.3.3), for example by populating a
part of the training CMDs that is never present in real observations, or in the opposite case if the
training data lack constrains on parts of the CMDs that contain information in the observations.

12.1.2 Reproducing realistic observations: uncertainty and magnitude cuts

On the one hand, an astronomical observed data can be altered in several ways during the
acquisition process. Observational instruments have limits to their sensitivity inducing incom-
pleteness, measurement uncertainty, and can even have systematic biases. Usually, these effects
are well documented for each instrument which makes it possible to take them into account in
the data analysis. On the other hand, a model also have biases or incompleteness of other types
that are often difficult to assess, even for models that are constrained by observations. Our ob-
jective here is to make the training CMDs and the observed ones as alike as possible. There are
two main properties that must be evaluated: the measurement photometric uncertainty, and the
magnitude detection limit cut of the telescope. In our approach, these quantities are estimated
individually. Anticipating on Section 13.1 we note that we will focus on the Milky Way disk
between galactic latitudes |b| < 5 deg and galactic longitudes 257 < l < 303 deg centered on
l = 280 deg.

Regarding the magnitude cuts, we fitted data from the 2MASS point source catalog. For
this, we downloaded the stars from a 1 deg2 region, centered on l = 280 deg and b = 0 deg. We
excluded the stars for which one or more of the J, H, Ks bands was missing. We then fitted the
magnitude histogram for each band individually using the following analytical formula:

f (x) = 0.5axαS(x) with S(x) = 1 + tanh
(
b ×

x50 − x
x50 − x90

)
(12.1)

where a and α are free parameters that correspond to the first part of the function follow-
ing a power law, used as a simple model for the underlying star distribution. The constant
b = arctanh(0.8) is fixed and x50 and x90 are free parameters that correspond to the abscissa
values at half and 90% increase of the selection function S. To use this selection in our mock
CMDs, for each star we drew a value randomly from the selection function according to the star
magnitude for each involved in the CMD. Therefore the shape of the selection cut is reproduced
statistically. Figure 12.3 shows the observed star distribution histograms (in blue) and the best
fit obtained for each band.

196

12 Extinction profile reconstruction for one line of sight

Figure 12.3: Fitting of the cut in magnitude for the three 2MASS bands. The blue histograms
show the observed distribution, the fitted models are in red. The gray area shows the range of
magnitude values included in the fit.

Figure 12.4: Fit of 2MASS uncertainties. The gray dots are 2MASS stars, the gray scale
representing the star density in the diagram. The running median (blue dots) is fitted by an
exponential model (orange line).

To evaluate the photometric uncertainty for each 2MASS band we used the same 1 deg2

region centered on l = 280 deg, b = 0 deg. Similar, to the cut fitting, we excluded stars for which
at least one of the J, H, Ks bands was missing but also the stars that do not have all the respective
uncertainties. For each band we represented the corresponding magnitude-uncertainty diagram.
Figure 12.4 shows that the stars mostly distribute following an exponential law. Following the
example of Robin et al. (2003), we fitted the distribution with using the following form:

σ(x) = a exp
(
b x

)
+ c (12.2)

where x is the magnitude of the fitted band and a, b, and c are free parameters. To overcome
the fact that the number of outliers greatly increases toward the higher magnitudes, we first
computed the running median (RM) of the distribution, that has the advantage of being robust
against outliers. In practice, the RM was evaluated for 100 magnitude bins of 0.3 mag evenly
distributed between the 0.1 and 99.9 percentiles of the magnitude interval. The RM has then
been fitted using Equation 12.2 without weighting in order to prevent the less represented mag-
nitude bins from being less constrained due to their smaller proportion. The corresponding RM
values and our fit results are illustrated in Figure 12.4. Table 12.1 summarizes the free param-
eter values obtained for the three 2MASS bands. To compute mock photometric errors, the σ
value of each star was computed using the best fit a, b, and c values, and was used to draw a
random Gaussian error that was added to the errorless magnitude computed by the BGM.

197

12.1 Construction of a simulated 2MASS CMD using the BGM

12.1.3 Simple extinction effect on the diagram

Now that we have described the effects of observational noise and selection on the CMDs, we
can build a realistic CMD without extinction. From this "bare" CMD we illustrate the effect
of rudimentary extinction profiles in order to better understand what is the information that the
network will be tasked to extract. As we described in Section 10.4, a star that is present in a
given CMD pixel at the beginning will translate toward a higher color and a lower magnitude.
If we consider the case with a single point-like cloud on the LOS, all stars that are in front of the
cloud do not move at all, while all others are translated with respect to the extinction quantity of
the cloud, as illustrated in Figure 12.5. In the same figure we also illustrate a simple two-cloud
example in which the stars that are behind the clouds are affected by the cumulative extinction.
The individual cloud extinction effect is especially visible in the vertical branch of the giant
stars.

We note that with the typical angular resolution of our 3D extinction maps (15 arcmin per
pixel), the sub-beam distribution of extinction is not uniform. For example, at 5 kpc, a 15
arcmin beam covers a physical area of ∼ 20 pc, which is enough to contain a whole molecular
cloud, with its complex substructures (filaments, clumps, cavities, ...). To take this effect into
account, we followed Marshall et al. (2020) and modeled this so-called fractal structure of the
ISM with a log-normal probability density function:

f (AV) =
1

σAV
√

2π
exp

(
−

log2(AV)
2σ2

)
(12.3)

where AV is the cumulative extinction from the star to the observer as obtained from our extinc-
tion profile. This value can be considered as the mean extinction in the beam. The constant σ
characterizes the width of the distribution. We adopted a value σ = 0.4, typical of the values
estimated by Kainulainen et al. (2009) in a score of nearby molecular clouds using near-IR 2D
extinction maps derived from 2MASS data. In practice, we used this probability density func-
tion to randomly draw the actual value of AV of each star. The bottom frames of Figure 12.5
show a comparison of the produced CMD using the same extinction profile but with a log-
normal and uniform extinction distribution, respectively.

We showed in Fig. 10.5 that extinction corresponds to a shift in CMD diagrams. This pro-
vides a very important insight about the expected resolution of the predicted extinction. Indeed,
due to the position of the CMD and to the translation direction, it is challenging to retrieve more
than 30 discrete values for the height of an extinction bin in the profile. In addition, the distance
at which the extinction must be placed in the profile corresponds to the fraction between the
number of reddened stars and the number of not reddened stars. Consequently the best achiev-
able distance resolution is related to the number of stars per CMD bins, which is of a few tens of
stars per bin for the example LOS. We elaborate more on consequences of the choice of CMD
resolution in Section 12.3.1

Despite the relative easy understanding of the extinction effect on individual stars in this
CMD it is striking from Figures 12.1, 12.2 and 12.5, that the combination of the different stellar
classes, the spatial variations of the Galactic structures, the observation noise, and sub-beam
extinction distribution is a very complex problem for a 2D CMD representation. This justifies
the need for a highly non-linear method that would be able to automatically extract all these
correlations from the intricate CMD, just like our CNN formalism.

198

12 Extinction profile reconstruction for one line of sight

No extinction 1 Cloud, AV = 3 mag, d = 2 kpc

1 Cloud, AV = 10 mag, d = 2 kpc 1 Cloud, AV = 10 mag, d = 4 kpc

2 Clouds, AV = 1.5, 6 mag, d = 1, 6 kpc Uniform ext - 2 Clouds, AV = 1.5, 6 mag, d = 1, 6 kpc

Figure 12.5: Effect of individual clouds on the 2MASS [J-K]-[K] CMD. The extinction is mod-
eled as a log-normal distribution, except in the bottom-right panel where a uniform extinction
is used.

199

12.2 Creating realistic extinction profiles for training

12.2 Creating realistic extinction profiles for training
We remind the reader that the objective of the study is to reconstruct the underlying dust distri-
bution of each LOS, represented by a differential extinction profile. In this section we prepare
a training sample to train an ANN to perform this task. We used the BGM to generate many
realistic star distributions on given lines of sight. Then, applying a given extinction profile to
this star distribution we construct a mock extincted CMD. The network will then take this CMD
as its input and will learn to predict the extinction profile that was used by taking it as its target.

To be capable of predicting extinction profiles from observed CMD, the ANN must have
been trained using realistic extinction profile examples. It means that we have to find a pre-
scription to construct sufficiently realistic example to train the network. One approach could
be to use simulations of the interstellar medium (e.g. Padoan et al. 2017) but it would require
very large hardware facilities considering the fact that we are interested in large distances at the
Milky Way scale and due to the number of examples that will be necessary to train a relatively
large ANN architecture (Sects. 12.3.3, 13.1.1, 13.2.3, 14.2, and 14.3). Another approach would
be to use previous 3D extinction maps of other methods as a prior for our training profiles but
it would be difficult to assess the induced bias in our own results. Instead, we adopted a lower
level approach that consists in creating mock training profiles from Gaussian Random Fields
(GRF, e.g. Sale & Magorrian 2014) and to tune general construction parameters to correspond
to our need.

12.2.1 Gaussian Random Fields

We succinctly describe here the necessary elements to construct 1D Gaussian Random Fields
(GRFs) that are then used to construct our profiles. Details on the method formalism that we
depict here can be found in the appendix B of Sale & Magorrian (2014). The objective here is
to construct a realistic dust density profile, for which the logarithm can be approximated by a
GRF. In the present method we first start by assuming that the log of density ρ (i.e. of differen-
tial extinction) has a power law |FT (log ρ2(k))| ∝ k−2β, where FT is the Fourier transform, and
k is the spatial frequency. Each point in the Fourier space then receives a complex magnitude
drawn randomly from a Gaussian probability distribution of standard deviation k−β that corre-
sponds to the square root of its value from the power law. A complex phase is added to each
point randomly in the 0 < φ < 2π range. Applying the inverse Fourier transform to this space
generates a GRF that follows the desired power spectrum. The final profile of differential ex-
tinction is obtained by exponentiating the GRF following dAV

dz (z) = exp(σGRF). Two parameters
can be tuned in this formalism in order to control the properties of the constructed profile, (i)
a β parameter that controls whether the peaks of the predicted density are narrow and frequent
or more sparse and large, and (ii) a σ parameter that acts as a posterior scaling of the profile,
being responsible for the contrast between the peaks and the lows in the profile. Example of the
generated GRF profiles are in Figure 12.6 for two different sets of β, σ parameters.

200

12 Extinction profile reconstruction for one line of sight

0 20 40 60 80 100 120
0.5

1.0

1.5
Ex

tin
ct

io
n

= 2.0, = 1.0

0 20 40 60 80 100 120
0

5

10

15

= 1.8, = 5.0

0 20 40 60 80 100 120

1

2

Ex
tin

ct
io

n

0 20 40 60 80 100 120
0

10

20

0 20 40 60 80 100 120
0.75

1.00

1.25

1.50

Ex
tin

ct
io

n

0 20 40 60 80 100 120
0

5

10

0 20 40 60 80 100 120

0.5

1.0

1.5

2.0

2.5

Ex
tin

ct
io

n

0 20 40 60 80 100 120
0

5

10

15

0 20 40 60 80 100 120
Distance

0.5

1.0

1.5

2.0

Ex
tin

ct
io

n

0 20 40 60 80 100 120
Distance

0

2

4

6

8

Figure 12.6: Examples of Gaussian random field realizations with the two sets of adopted
parameters, as indicated above each column. We emphasize that the ordinate scales are different
in each example.

12.2.2 GRF generated profile

Using this formalism we tested many combinations of β and σ to assess which one was suitable
for our application. One important point to notice here is that, providing the network with a
target that contains too much details in comparison to the amount of information that is con-
tained in the inputs is counterproductive. Indeed, the fine-grained error that would be produced
from the target output comparison in such a case would not find any input information that
correlates with this error. This would induce a non meaningful correction to all the weights of
active neurons, globally adding noise to the network preventing it from properly converging to
the information effectively accessible. Therefore, the training profile realism must also be lim-
ited. We noticeably tested training profiles that contains several narrow structures close to each
others, and the network was enable to reconstruct them only finding smoother structures. We
also tested to create training datasets that were based on random β and σ values within given
ranges, but the diversity was too large for the network to converge without over-sized datasets.

201

12.2 Creating realistic extinction profiles for training

0 20 40 60 80 100 120
Distance [kpc]

1

2

3

A v
 [m

ag
/k

pc
]

Figure 12.7: Example of a profile obtained by summing two Gaussian random field profiles,
one with β = 2.0 and σ = 1.0, the other with β = 1.8 and σ = 5.0, weighted with a random
value randomly drawn between 0 and 1.

By looking at the predictions from other maps and also at the prediction capacity of the net-
work on several tested parameters we settled on an approach that makes a combination of two
individual GRF profiles. We generated a profile with β = 2.0 and σ = 1.0 to obtain large struc-
tures (low spatial frequencies) along the LOS, in order to represent the more diffuse ISM. The
second profile was generated with β = 1.8 and σ = 5.0 to represent more compact structures
(higher spatial frequencies), representative of molecular complexes. We illustrate a few profiles
from each of these two sets of parameter in Figure 12.6. To construct a single training profile,
a realization of each of these two types of GRF was summed using a random fraction between
0 and 1 for each of them. We illustrate a typical result of this combination in Figure 12.7. The
profile is then scaled based on its maximum value using a random AV,max between 10−2 and
100 mag/kpc. To avoid having profiles with a very strong total extinction, which could occur
with the GRF, we excluded any profile for which the total cumulative extinction is higher than
AV,cumul > 50 mag. The latter effect is visible in several of our profiles in our result section (e.g.
in Figures 13.1 and 13.12). The exact values of our profile generation were tuned to maximize
statistical similarities between our profiles and the prediction from other extinction maps, by
looking for example at the maximum peak extinction distribution, or at the integrated extinc-
tion distribution. Tuning the parameters of the GRF profiles in order to modify their statistical
properties is very similar to our training dataset rebalacing from Section 5.3. More profiles
generated using the same approach are visible in subsequent figures that illustrate the network
predictions in the following sections (e.g. Figs. 13.1 or 13.12).

12.2.3 Profile star count limit and magnitude cap

The obtained profiles are the ones that are effectively applied to the bare modeled CDMs to ob-
tain the final mock CMDs of the training sample. However, after computing the mock CMDs,
we performed two last transformations of the profiles before using them as targets, still fol-
lowing the idea that we should not have targets that are impossible to reproduce. The first
transformation is motivated by the possibility that, despite our limit in AV,cumul, some profiles
can have an sufficient cumulative extinction to completely screen the stars beyond a certain dis-
tance. In other words, it is possible that parts of the profile are not constrained at all, or not by
a sufficient amount of stars. To account for this effect, we manually defined a star count limit

202

12 Extinction profile reconstruction for one line of sight

Zlim that was used to force the target profile to zero after a certain point. In practice, after the
application of the full extinction profile to the star list, we searched the farthest distance beyond
which remained only Zlim stars. For each training profile every distance bin beyond this limit
was set to zero, which is illustrated by the cut profiles in Figure 13.1. Interestingly, since the
full profile and not the cut profile is used to compute the input CMD extinction, it only means
that the network is trained to consider all the confused cases where there is not enough stars
anymore to be zero, still conserving a fully realistic CMD. From a classification standpoint, it
can be seen as making one large class that contains all the cases that are too difficult to discrim-
inate and attribute the same target to all of them.

The second transformation followed a similar idea. We also capped the maximum extinc-
tion per bin in the target profile to dAV/dz = 50 mag/kpc despite the dAV/dz = 100 mag/kpc
permitted by the GRF profile construction. Just like for the Zlim cut, this modification is only
made on the target profile while the CMD is still affected by the full profile. Again it just acts
as an additional clustering of the cases with large extinction per bin, strongly stabilizing the
training and improving the global network prediction. This choice is justified because we are
more interested in the dust distribution rather than the exact extinction quantity at a first time.
Additionally our various results showed that the cases where the predicted profile is saturated
are rare (Sect. 13, e.g. Fig. 13.4).

Finally, even if it is possible to generate profiles with a very small total extinction, we ob-
served that adding some flat extinction profiles in the training sample significantly improved
the prediction results. The might be due to the fact that the network has to see the original
distribution of the stars in the bare CMD directly from the model without extinction. It helps
better constraining the reference pixels for each star. We control the proportion of profiles that
we manually set to zero using the fnaked parameter that is usually set at 0.01 so that 1 out of 100
profiles is a flat zero extinction one. This might seems a large amount but we expect to have
many predicted profiles with very faint extinction, especially if we try to perform prediction
outside of the Galactic Place. Still, we exposed in our YSO application that a better represen-
tation of the most common case is a way of reducing false positive in the more rare classes. In
other words, since ANN works by assessing differences between cases, having a strong con-
straint on what a null or faint profile looks like significantly reduces the noise in our prediction
and increases the confidence one can have when there is a detection.

203

12.3 Tuning the method

12.3 Tuning the method

12.3.1 Input and output dimensions

In the present section we describe some general network architecture properties that are shared
by our different applications in Sections 13 and 14. First, it is important to note that the angular
resolution in the plane of the sky will strongly affect how many stars will be present in our lines
of sight, therefore affecting the proportions in the CMDs. For all our applications we adopted
a pixel size of 0.25◦, corresponding to a 0.2deg2 surface on the plane of the sky. In practice
it means that for each pixel we built the forward sample from a query of the 2MASS or Gaia
catalogs within an area of this size.

The input volume of our CNN is always composed of images of size 64 × 64, representing
different diagrams, in the case of 2MASS the [J-K]-[K] CMD. Considering the adopted LOS
area, this CMD resolution has been identified as a proper balance between the number of pixels
in the CMD and the number of stars per bin, following the considerations on how the extinction
profile is encoded in the CMD (Section 12.1.3). Indeed, in the case of a too low resolution
(i.e. only few pixels in the CMD) the network is unable to assess properly both the original
position of the stars and shift length in the diagram, leading to imprecise extinction quantity
prediction at a given distance. In the opposite case of a too high resolution, the number of stars
per bin becomes too small for the network to properly assess how many stars have moved due
to extinction, making the distance estimate very inaccurate. We note that our input CMDs are
systematically normalized by a simple scaling between 0 and 1 according to the maximum pixel
value in the full training dataset, which works well with a CNN architecture.

Regarding the predicted profile resolution, we opted for 100 pc bins. We expect, somewhat
naively, that it corresponds to the typical resolution one could expect around 2 to 3 kpc. Closer
distance estimates could be slightly under resolved compared to the information we expect to
be contained in the CMD. At larger distances, the profile will be clearly over resolved compared
to what can be extracted from the CMD. In this case the network prediction is expected to be
spread across several bins, following the distance uncertainty. We note that the same resolution
was adopted by (Marshall et al. 2020, in prep.). Testing progressive bin sizes would certainly
be worth testing in the future.

We choose to have profiles of 128 bins allowing a maximum distance estimate of 12.8
kpc. We observed that having a maximum distance at 10 kpc induced boundary artifacts when
there was indeed structures around this maximum distance. As we show in Section 13.2, our
method manages to reconstruct extinction structures at distances around 10 kpc when looking
at sufficiently populated line of sights. From a network perspective, these profiles are encoded
using a set of 128 linearly activated neurons representing each bin in the profile. It means
that each bin is independently activated and that any correlation between nearby bins is the
result of the network training without any prior on the form of the output other than the list of
training target profiles. The profile is numerically encoded using the differential extinction per
bin dAV/dz in units of mag / 100 pc, which is similar to considering that the profile is an array
of total extinction AV in each 100 pc-bin. These values are normalized using a constant division
by 5, which corresponds the maximum possible value of a single bin. This leads to targets in
the range 0 to 1, which works well for linearly activated neurons. We note that we did not force
any output to be above 0, so it happened that some profiles present slightly negative predictions.
When negative values were present in a map prediction, they were changed to 0.

204

12 Extinction profile reconstruction for one line of sight

12.3.2 Network architecture
We have described our input image and our output layer dimension for the targeted and pre-
dicted profiles. They define the boundary dimensions of the network between which we can
arrange our internal network architecture. In the following paragraphs we compare the capacity
of several network architectures based on their error on a modeled test dataset after training.

We first attempted a fully connected architecture, considering each input pixel of the input
CMD as an independent feature. We tested several variations with up to 5 layers of various size
(up to 4096 neurons on each layer) and used several of the improvements from the Section 11.2
that are suitable for regular ANN, like the change in activation function for leaky ReLU, a better
weight initialization, and the use of a dropout. While such an architecture is still suitable for the
task to a certain extent, it never managed to get to a similar prediction quality than a carefully
designed CNN architecture. It is interesting to note that the high number of weights induced by
a fully connected architecture is not the limiting factor in our case since our best CNN network
has a number of weights that is of the same order of magnitude.

We then tried to use classical architectures (LeNet, AlexNet, VGG, ..., Sect. 11.2.1) as an
inspiration for our own convolutional layer construction. Despite many careful attempts almost
no architecture with 3 or more convolutional layers was able to perform even as good as a fully
connected one. We found that one solution to improve the performance is to have few con-
volutional layers that quickly increase their number of filters up to above 256 before the fully
connected layers with a minimum amount of image size reduction. Such architecture barely
outperformed the fully connected architecture in spite of a huge increase in computational time.

From this observations we evaluated why the fully connected architecture was performing
so well on this task. First, we remind that a convolutional layer extracts pattern in the images.
At first glance it seems to be the operation that we want to perform here since we mostly want
to detect an echo of a given pattern (typically, the giant branch) a several positions in the image.
Additionally it is more indicated when a pattern to detect can be a different places in the image,
which is not the case of our CMD for which the reference pattern is always at the same place for
the stars that are not affected by extinction. Then the most common CNN architectures progres-
sively reduce the image dimensionality and increase the number of filter, corresponding to the
amount of feature. This architecture is well suited to differentiate between many very different
objects that might share some sub-patterns. In our case this is not really the expected operation.
In Sections 12.1.3 and 12.3.1, we stated that the information about the profile is encoded in the
CMD in the form of: (i) a shifting amount in pixel corresponding to the extinction quantity, and
(ii) a ratio between pixels assessing how many stars have moved from their original position,
corresponding to the distance. From this it is more evident than common CNN architectures
that are mainly design around classification are not suitable for the task.

Our approach to improve the results using the CNN formalism was then to assess what a
convolutional layer can add to the fully connected architecture. Noticeably, it is efficient to find
some patterns, to reduce noise in the original image, and to find a similar representation of the
input with less dimensions. Each of these reasons is sufficient to justify the addition of at least
one convolutional layer to the fully connected architecture. Indeed, even with as few as 4 filters
of size 5 × 5 with a stride of 1 and then 3 fully connected layers similarly sized to the fully
connected architecture, the prediction result was significantly improved. This attests that few
filters are sufficient to average, denoise and strengthen the most important patterns in the CMD.
We then explored various small improvements around this very simple architecture.

205

12.3 Tuning the method

Following the notation introduced in Section 11.2.1 and including the dropout notation in a
dense layer as D-n_dr where dr is the dropout fraction, we list here a few of the architectures
that we explored:

1. [I-64.64, C-4.5, 2×[D-3072_0.1], D-2048, D128]

2. [I-64.64, C-8.5, P-2, 2×[D-3072_0.1], D-2048, D128]

3. [I-64.64, C-12.5, P-2, 2×[D-3072_0.1], D-2048, D128]

4. [I-64.64, C-8.5.2, P-2, 2×[D-3072_0.1], D-2048, D128]

5. [I-64.64, C-6.5, C-8.5, 2×[D-3072_0.1], D-2048, D128]

6. [I-64.64, C-6.5, C-8.5, P-2, 2×[D-3072_0.1], D-2048, D128]

7. [I-64.64, C-6.5, P-2, C-8.5, P-2, 2×[D-3072_0.1], D-2048, D128]

8. [I-64.64, C-6.5.2, C-8.5, P-2, 2×[D-3072_0.1], D-2048, D128]

9. [I-64.64, C-12.3, P-2, C-24.3, P-2, 2×[D-3072_0.1], D-2048, D128]

and many other variations, including modifications to the dense part.

We found that the architecture 3 in this list was the one that had the best balance between
prediction quality, much better than the fully connected one, and computational efficiency. The
first convolutional layer is used with a padding of two P = 2 to conserve the input dimension-
ality and apply 12 filters of size 5 × 5 with a stride of S = 1. This leads to 12 activation maps
that conserve the image resolution, and therefore preserve the shift quantity in the input CMD.
Connecting these maps directly to the dense part of the network would induce a very large num-
ber of weights which would make the training much more difficult and the error convergence
much more noisy as well as much slower. We had two choices for the reduction dimensional-
ity, a Max-Pooling or a stride of 2 for the first convolution. We kept the first one since it was
providing significantly better predictions. Adding more convolutional layers after this first con-
struction almost always led to less good predictions and a significant increase in computational
time. The end of the network is then made of two dense layers with n = 3072 leaky-ReLU
neurons with dropout. We discuss the choice of dropout rate in the following Section 12.3.3.
There is then a last smaller dense layer with n = 2048 leaky-ReLU without dropout, and then
the output layer and its 128 linear activations corresponding to the extinction profile.

12.3.3 Network hyperparameters

Our choice of hyperparameters regarding the selected architecture is the result of a meticulous
manual exploration. Due to the number of hyperparameters to tune and to the time required
to train a network on a given set (Sect. 12.3.4), it was unrealistic to attempt an automated ex-
ploration of a large hyperparameter space, therefore it might exist a combination that works
better than the one we adopted. We note that the adopted combination provides similar network
training behavior in all the cases that are exposed in our results Sections 13 and 14, therefore
the following description is valid for all the following applications. To better understand the
choice of hyperparameters we already state here that our typical training dataset size will range
between 5×105 and 2×106. We note that the few parameters that are not mentioned here follow
the prescription from the corresponding section, usually following the CIANNA default values.

206

12 Extinction profile reconstruction for one line of sight

The network weights are initialized using the Xavier normal distribution (Sect. 11.2.2, equa-
tion 11.5). We adopted a batch size of 32, which provided an appropriate balance between
the computational time of a large enough batch (Sect. 4.8.4) and small weight updates to ef-
ficiently resolve the error in the weight space and converge in a reasonable number of epochs
(Sect. 4.7.7). Interestingly, we observed that having momentum on this architecture was mostly
preventing the network from reaching its optimal value while only slightly speeding up the error
convergence. It is possible that the learning rate decay that we used was somehow redundant
with the momentum effect, and decided to not use the latter. The training is then decomposed
into 3 blocks of 50 epochs with their own learning rate. The blocks have individual learning
rate prescription with an exponential decay that follows the equation:

η(t) = ηmin + (ηmax − ηmin) exp
(
− τt

)
(12.4)

where η is the learning rate as a function of the epoch, ηmax is the starting learning rate at the
beginning of the block, ηmax is the asymptotic minimum value, τ is the decay rate and, t the
current epoch number. We note that each block count its own epoch from zero. The first block
starts with ηmax = 0.002 and decreases exponentially toward ηmin = 0.001. The second and third
blocks are identical, starting at ηmax = 0.0015 and aiming at ηmin = 0.001. All the blocks have
the same decay rate of τ = 0.005. Most of our networks converge between the epoch 50 and
100. We kept the third block in case, similarly to a simulated annealing technique, the sudden
increase in learning rate at the beginning of the third block gets the weights out of a local min-
ima. In practice we found it to be rare, since the network properly converged almost all the time
before epoch 100.

Regarding the dropout rate in the dense layer at the end of the network, we observed that
having at least a small dropout is absolutely necessary on this architecture. Without dropout,
repeating the same training several time could lead to inconsistent predictions on observed data
and very noisy predictions, even if the valid and test dataset errors where very similar between
the different training. We note that this is not solely due to a possible overfitting induced by
potentially too large dense layers, since we observed the same behavior even with much smaller
ones. Still, the dropout solves this issue very nicely and allowed us to estimate uncertainties
on our predicted profiles. In practice, we adopted a dropout rate of dr = 0.1 for the two first
dense layers afters the convolutional part as in Gal & Ghahramani (2015), the last layer being
smaller and free of dropout since we observed that it evened the prediction between several
training without a significant impact on the uncertainty predictions. However, in order to assess
if the network produces uncertainties that are representative of a true underlying dispersion,
we should have make several training, slowly increasing the dropout value to find the point
where the dispersion do not increase anymore. Larger dropout would imply to resize the lay-
ers accordingly, which would increasing the raw computation time of these larger layers and
would significantly increase the number of epochs required to converge (Sect. 11.2.3). Such an
exploration was not compatible with the time given to the present study, but it would be an inter-
esting future development in order to have accurate prediction uncertainties. Still, we note that
an identical value of dropout rate was used to reproduce accurate posterior-error measurement
on a regression case in Gal & Ghahramani (2015) even more efficiently than other usual meth-
ods. In any case our dropout rate is useful to overcome undesirable effects on the prediction and
provide at least a first estimate of the uncertainty morphology in large predictions (Sect. 13.1).

207

12.3 Tuning the method

12.3.4 Computational aspects
All our network trainings were performed on Deep-Learning dedicated GPU cluster nodes from
the "Université de Franche-Comté" Mesocenter. These nodes contain a total of 7 Nvidia Tesla
V100 GPU, which was at this point the most powerful Nvidia professional GPU for servers.
Each of these card contains 5120 CUDA cores clocked at 1.38 GHz corresponding to 14.13
TFLOPS in FP32. We had access to two sub-models of V100 with either 16 or 32 GB of dedi-
cated HBM2 memory that uses a 4096 bit interface to reach a bandwidth of ∼900 GB/s. Using
one of these monstrous GPUs, our CIANNA framework managed to train at a rate of ∼7000
examples/s. Increasing the batch size, it would be possible to achieve up to ∼18000 examples/s
for training but at the cost of more epochs needed and a less good overall error convergence.
We note that these GPUs are equiped with first generation Tensor Cores, but that we did not
used them since we did not had the time to add Mixed-Precision training in CIANNA.

Depending on the training dataset size, our training process required between 2h and 8h to
converge, and had a memory usage between 6 and 190 GB. The timescale and memory usage
match with most CNN applications, considering for example that the training in the AlexNet
(Krizhevsky et al. 2012) study needed 6 days on an old generation ∼3 TFLOPS total GPU
machine. Our persistent memory usage is also very high since testing different dataset con-
structions and storing the network weights all uncompressed we would accumulate several TB
of data production. While there are still a lot of improvements possible from a numerical per-
formance and memory usage standpoint, we highlight that this is already the result of large
optimizations and meticulous choices of relevant data. This study would certainly not have
been possible on a similarly sized hardware infrastructure without all the time we invested in
tuning our own CNN framework to be optimized for the task and our careful dataset construc-
tion.

Finally, while our training process is very computationally intensive we stress that using the
trained network to produce large scale maps with dropout uncertainty is a matter of minutes us-
ing a mid-range laptop GPU Nvidia P2000-mobile with 768 CUDA cores clocked at 1.6 GHz.
Still, most of our map predictions using our trained networks was made on a server belong-
ing to the UFC Computational Physics Master that is equipped with a much more recent Nvidia
Quadro RTX-5000 GPU. Overall, the network architecture is very computationally efficient and
the time to train the network is only a consequence of the complexity of the problem to solve,
which requires to constrain a large number of parameters. Otherwise, the prediction of a large
scale map from a single path without dropout is always a matter of second on any GPU. This
opens the possibility to distribute the trained network along with the map itself, the first one
being much lighter with only 560 MB while a reasonable sized map with the full prediction
probability distribution weights several GB. This would allow anyone to quickly reconstruct a
map with an individual control of the probability distribution sampling or on the resolution.

For the present work we accumulated more than 1000 GPU hours on the UFC Mesocenter.
While the comparison with CPU hour is not straightforward since our code takes advantage of
GPUs architecture specificity, we can roughly estimate the conversion between GPU and CPU
hours. A Tesla V100 is estimated at 14.13 TFLOPS, while the CPUs on the same machine are
Intel 4110 at 2.1 GHz, which convert roughly to 67 GFLOPs per core in single precision. Using
the ratio between the two raw-compute power our GPU hours count converts to ∼210000 CPU
hours. We note that for subsequent studies we plan to make a proposal to the Jean Zay GENCI
super computer as stated in Section 4.8.3, which has a dedicated entry program for AI projects,
granting access to large GPU-nodes equipped with several Tesla V100 GPUs.

208

http://www.idris.fr/annonces/annonce-jean-zay-eng.html

13 2MASS only extinction maps

13 2MASS only extinction maps
In this section we describe the results we obtained using our CNN architecture solely on 2MASS
data. We first present results in a large zone from the generalization of a training on a single
LOS, and in a second step we show how several lines of sight can be combined into a single
training. We also illustrate the effect of some parameters of our training dataset like the Zlim

value on our network prediction. Because the results are mostly arranged in an linearly increas-
ing complexity order, we perform most of the analysis of each case after the presentation of the
results.

13.1 Training with one line of sight . 209
13.1.1 Network training and test set prediction 209
13.1.2 Generalizing over a Galactic Place portion 210
13.1.3 Integrated view of the plane of the sky 212
13.1.4 Face-on view . 214

13.2 Combination of several lines of sight in the same training 218
13.2.1 Sampling in galactic longitude . 218
13.2.2 Multiple line of sights in a single training 218
13.2.3 Dataset construction, architecture effect and training 219
13.2.4 Map results . 221
13.2.5 Effect of the galactic latitude . 226

13.3 Comparison with other 3D extinction maps 228
13.4 Addition of a second color-magnitude diagram 232

13.1 Training with one line of sight

13.1.1 Network training and test set prediction

The simplest approach we can elaborate to train a CNN on 2MASS CMDs is the one that has
been described along with the dataset construction in Section 12). For this first application, we
considered only one LOS. Still, we will show that a training on a single LOS can be generalized
to a relatively large galactic longitude range. We selected the LOS l = 280 deg, b = 0 deg in
galactic coordinates because this region approximately corresponds to the observable tangent
of the Sagittarius-Carina galactic arm. In this region we expect to have a significant diversity of
extinction distributions in a relatively narrow galactic longitude window.

Using solely the central LOS value, we generated a training sample of various extincted
CMDs. For this we first produced several BGM realizations because they are always slightly
different considering that it represents stellar populations statistically (Sect. 10.3). For each of
these realizations, we generated 100 (i.e. 1/ fnaked, Sect. 12.2.3) mock extinction profiles fol-
lowing our GRF recipe (Sect. 12.2) that are applied to the BGM star distance distribution. We
then used the magnitude limit cuts to exclude too faint stars and added the modeled photometric
errors, both following the description from Section 12.1.2. The extincted CDMs are generated
from the extincted star lists and defined as the network inputs. Finally, the realistic list of stars
for each example is used to modify the corresponding extinction profile based on a Zlim = 100
value, and the extinction profiles are capped (Sect. 12.2.3). The modified profile is then defined
as the network target.

209

13.1 Training with one line of sight

For our first application using a single LOS we generated 5 × 105 examples of 2MASS
CMD-profile pairs meaning that the training sample is based on 1000 BGM realizations. Also,
a part of the profiles are considered as flat with no extinction to better constrains the bare CMDs
distribution, using fnaked = 0.1 as described in Section 12.2.3. This dataset is separated into a
training dataset that contains 94% (470000) of the examples, a valid dataset with 5% (25000),
and the remaining 1% (5000) are our test dataset (see Sect. 4.7.6). The training is performed
using the architecture we highlighted in Section 12.3.2 with only one convolutional layer with
few filters followed by three dense layer that include a small dropout. The network hyperpa-
rameters are described in Section 12.3.3. It took around 60 epochs for the network to converge
corresponding to a few hours on a Tesla V100 GPU, then the prediction is mostly stable up to
epoch 100 where the network distinctly began to overtrain.

A global error on the test dataset is not a very visual representation of the network capacity
to reproduce the target, so we extracted a few extinction profile predictions of the network on
the test dataset that we represent in Figure 13.1. This figure shows the CMD that is used as input
for each case on the left column, and it compares the target for this case to the network predic-
tion using a sample of 100 random dropout predictions to construct the prediction probability
distribution. From the figure it is striking that the network greatly succeeds in localizing the
extinction peaks, but it is slightly less accurate to reproduce the maximum extinction amount.
We also observe that some structures are not reconstructed properly after a first extinction peak,
for example in frames 1 and 3. The frame 3 illustrates a case where the network manages to
reconstruct a relatively low second extinction peak after a first one, even at a large distance
d ' 5 kpc. In all the cases the network mostly succeeds to localize the Zlim maximum distance
and appropriately predicts zero for larger distances. On the other hand, high extinction peaks
are not always as nicely represented, as illustrated in frame 2, especially at large distance. We
especially notice that in the case of a relatively strong first extinction peak, the network has
much more difficulties to predict a second one that is still not cut by the Zlim limit distance, as
visible in frame 1. In such a case, we observe that the network still localizes an extinction in-
crease at the appropriate location but with an underestimated extinction value. However, as our
following results will show, our map will mostly predict extinction that lies in a range where
our test examples are properly reconstructed. Indeed, the most difficult cases are in fact less
realistic or would be very uncommon. We kept them in the network training in order to ensure
that we have a large enough feature space coverage, in an attempt to obtain a sufficient diversity
to avoid leaving unusual observed CMDs completely unconstrained.

13.1.2 Generalizing over a Galactic Place portion

From this trained network we were able to make predictions on real observed data. For this,
we used observed CMDs in place of the mock ones as the input of our network. While our
network was trained using solely mock CMDs that correspond to the l = 280 deg, b = 0 deg it
is still possible to construct a map using close enough lines of sight. In practice we constructed
our maps using cone queries with 0.25 deg radius on the 2MASS PSC, corresponding to the
same 0.2deg2 solid angle that was used to build our mock CMDs from the BGM. In order to
be sure that our observed and mock CMDs are constructed from similar stellar distributions we
removed every 2MASS star that lacks one or more band detection since this is the approach
followed in our mock CMD construction. Our map is then considered as a grid of 0.2 deg sized
square pixels so that it is close to follow the Nyquist criterion. Our map range is as follow,
257 < l < 303 deg and −5 < b < 5 deg. Since each pixel of the map is a LOS with an extinction
profile prediction, our map is a 3D volume of 230 × 50 × 128 bins of differential extinction
values that represent a large squared-cone field of view.

210

13 2MASS only extinction maps

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10
Distance [kpc]

0

5

10

15

20

25
Di

ffe
re

nt
ia

l A
v

(m
ag

/k
pc

)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0

10

20

30

40

50

0

5

10

15

20

25

0

10

20

30

40

50

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

2

4

6

8

10

12

14

0

5

10

15

20

25

0

10

20

30

40

0

5

10

15

20

25

Figure 13.1: Excerpt of a few objects from the test dataset of the 2MASS single LOS training.
Left: View of the CMD for which the prediction is made. Right: View of corresponding profile.
The dashed line shows the target of the network that accounts for the Zlim maximum distance
limit. The network prediction is presented in the form of a vertical histogram prediction for
each distance bin corresponding to 100 random dropout predictions.

211

13.1 Training with one line of sight

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2000 4000 6000 8000 10000 12000
Star count

Figure 13.2: Map of star counts in the 2MASS [J-K]-[K] CMDs for each pixel on the same
grid as in Fig. 13.3.

13.1.3 Integrated view of the plane of the sky

From this predicted map we first reconstructed the integrated extinction as observed in the plane
of the sky. With this test it is possible to verify that our method predicts realistic total extinction
in the various line of sights, and more importantly to verify that the observed Galactic Plane
morphology is properly reconstructed. We chose to use the Planck optical depth τ353 that is de-
rived from dust emission as a proxy for the dust distribution morphology. Figure 13.3 shows the
comparison between the Planck sky map and our CNN predictions for Zlim = 50 and Zlim = 100.
The morphology of the Planck map mostly follows the Galactic Plane with structures mostly
contained in the |b| < 2 deg interval.

The most striking result of this figure is that there is a large difference induced by the choice
of the Zlim value especially for the lines of sight that contain less stars, i.e. at higher latitudes
outside the Plane, and at lower galactic longitudes away from the Galactic Center. When the
drop in star count compared to the reference training LOS is not related to extinction, the net-
work still predicts an important amount of extinction. The star count distribution is illustrated
by Figure 13.2. We observe that this star count distribution strongly (anti-)correlates with our
inappropriate extinction predictions. The Zlim = 100 value mitigates this effect, but we could
not remove it completely. It probably cannot be done using a single LOS training.

In spite of the star count variations across the map, our Zlim = 100 result already reconstructs
the Planck map morphology very well. Many of the strongest τ353 structures are also predicted
as strong extinction LOS by our CNN and the contours of these structures are accurately fol-
lowed most of the time. We stress that generalizing over a ±23◦ longitude range from a single
training is a very challenging task since the corresponding CMD variations are important. It
means that the CNN architecture manages to identify the parts of the CMD that are most rele-
vant for the extinction, and probably also that the part that it learned to ignore happened to be
the one that changes the most between galactic coordinate positions. We highlight that there
is no strong constraint on the integrated extinction value in our CNN profile prediction, each
output neuron being completely independent there is no error propagation corresponding to a
total extinction error on the profile. Therefore, having a proper predicted integrated morphology
is already a sign that the reconstructed profile is likely to be realistic.

212

13 2MASS only extinction maps

Planck dust opacity τ353

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
353

Single position training - Zlim = 50

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Av (mag)

Single position training - Zlim = 100

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Av (mag)

Figure 13.3: Comparison of the 2MASS single-LOS training results in a plane of the sky view
using galactic coordinates. Top: Observed Planck dust opacity at 353 GHz. Middle: Integrated
extinction over the whole LOS for each pixel corresponding to the 2MASS single-LOS training
with Zlim = 50. Bottom: Integrated extinction for the same case but with Zlim = 100. The
contours of the Planck map at τ353 = 0.00016, 0.00028, and 0.0004 are reproduced in the other
two frames to ease the comparison.

213

13.1 Training with one line of sight

13.1.4 Face-on view

To visualize the distance prediction, we built face-on views of the Galactic Plane. To do so we
had to select a latitude thickness in which we average our differential extinction cube. In order
to be comparable to the other maps described in Section 10.1 we used a slice of |b| < 1 deg.
Due to the remark we made on Figure 13.3 that most of the structures truly lie in the |b| < 2 deg
range for our region, we compared the integrated map obtained with |b| < 1 deg and |b| < 2 deg,
and found only marginal differences, so in the following we only discuss the one with |b| < 1
deg. We present our first distance prediction results in the Figure 13.4 that presents the polar
face-on view of the portion of disk between 257 < l < 303 deg. In this figure we show the full
distance prediction up to 12.8 kpc and a zoom on the nearby predictions closer than 3.5 kpc,
for both the Zlim = 50 and 100 values. On all the figures that follow this representation, we also
display other observational constraints on the Milky Way morphology.

We added HII and GMC regions (red squares and purple circles) from Hou & Han (2014),
that are expected to trace the Galactic spiral arm structure. The distance to these regions was
either compiled from various previous studies or estimated by the authors using the kinematic
method based on a rotation curve of the Milky Way resulting in relatively heterogeneous sam-
ple with large uncertainties that are not provided in their fully accessible catalog. Still, from
their catalog, the Carina arm appears very clearly, suggesting that the distance estimates are
relatively reliable in this region of the Milky Way, although they could be subject to the same
systematic error. The dispersion of their points suggests uncertainties of the order of a few hun-
dred parsecs, but it is difficult to disentangle the genuine scatter of interstellar structures from
the distance uncertainties.

We also added the Gaia stellar cluster catalog (Yellow crosses with green border) from
Cantat-Gaudin et al. (2018) that are much more accurately positioned in distance thanks to
the Gaia parallaxes, but that are less likely to be directly related to dust distribution because
it mostly includes relatively evolved stars (see our YSO-Gaia cross match in Sect. 8). Addi-
tionally, there are only few of these clusters close to the Galactic Place that are found at large
distances. We therefore only display these data points in our short-distance view. We note that
for both catalogs, only the regions inside the |b| < 1 deg range are displayed.

We also display a very simple elliptical arm model represented by light gray dots simply
constrained by a distance and a pitch angle, and that is parameterized to represent the Carina
arm (we used r0 = 5.0 kpc, p = 14.5�) and the end of the Perseus arm at high distance (we
used r0 = 3.8 kpc, p = 14.5�) in the low galactic longitude part of our map, both assuming a
sun distance to the galactic center of 8.4 kpc (Marshall 2006). These are really simplistic arm
equations just constrained by a distance and a pitch angle, therefore they are not adjusted on
any data and just provide a global insight on arms shape in such representation. Still, we see
that with our adopted parameters the mock Carina arm mostly follows the Hou & Han (2014)
regions.

Finally, we note that the polar view is not the most representative of the data cube the CNN
works with, especially at short distances where the first bins of all our lines of sight overlap. As
an alternative, we provide a Cartesian view of the the same Galactic Place view in Figure 13.5,
that can be used to complement the previous Figure 13.3 and ease the prediction interpretation.

214

13 2MASS only extinction maps

Zlim = 50 Zlim = 100

Zlim = 50 Zlim = 100

Figure 13.4: Face-on view of the Galactic Plane |b| < 1 deg in polar galactic-longitude distance
coordinates for the predicted Carina-arm region using our 2MASS single-LOS training. Left
column: Network prediction with Zlim = 50. Right column: Network prediction with Zlim = 100.
Top row: Full distance prediction. Bottom row: Zoom on the d < 3.5 kpc prediction. The HII
regions and GMCs compiled by Hou & Han (2014) are displayed as red open squares and
purple open circles, respectively. The yellow pluses are open clusters from the catalog by
Cantat-Gaudin et al. (2018). In the top row, simple spiral arm models from (Marshall 2006) are
represented by gray dots for comparison.

215

13.1 Training with one line of sight

Zlim = 50

0

10

20

30

40

Pi
xe

l s
ize

 (p
c)

260270280290300
Galactic Longitude (deg)

0

2

4

6

8

10

12

Di
st

an
ce

 (k
pc

)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log10 dAv

dr (mag/kpc)

Zlim = 100

0

10

20

30

40

Pi
xe

l s
ize

 (p
c)

260270280290300
Galactic Longitude (deg)

0

2

4

6

8

10

12

Di
st

an
ce

 (k
pc

)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log10 dAv

dr (mag/kpc)

Figure 13.5: Face on view of the Galactic Plane |b| < 1 deg in cartesian galactic-longitude
distance coordinates for the predicted Carina-arm region using our 2MASS single-LOS training.
The axis on the right border of each frame corresponds to the pixel height as a function of the
distance induced by the conic shape of our LOS. The symbols are the same as in figure 13.4.
Top: Network prediction with Zlim = 50. Bottom: Network prediction with Zlim = 100.

From Figures 13.4 and 13.5, we observe that the Zlim = 50 case is much more noisy and
presents quasi-periodic artifacts in the l < 275 deg part corresponding to the case where the
latitude artifact joins the plane in Figure 13.3. In contrast the Zlim = 100 case is much more
realistic, and is devoid of these periodic artifacts in the low longitude region, with a convincing
nearby extinction distribution. The other striking observation is how the larger longitude results
are compatible with an arm shape. The most convincing part is the tangent structure found just
above l = 280 deg at around 6 kpc with a clear structure interruption along the longitude axis.
The large blurry prediction at between 285 < l < 303 deg at 10 kpc is likely to be dominated
by an artifact. The galactic disk morphology induce that the number of stars is rising quickly
with the observational longitude and distance roughly following the shape of this structure. This
is a surprising effect that the network tend to compensate higher star count for which it is not
constrained by an excess of extinction at high distances.

These maps also illustrate that the network manages to reconstruct structures that are very
coherent between lines of sight. We remind that there is no prescription of LOS correlation be-
tween adjacent pixels, and that the CNN still reconstructs convincing structures that are some-
time coherent for more that 10 adjacent pixels following the longitude axis.

216

13 2MASS only extinction maps

Figure 13.6: Face-on view of the Galactic Plane |b| < 1 deg in polar galactic-longitude distance
coordinates for the standard deviation predicted in the Carina arm region using our 2MASS
single-LOS training. The symbols are the same as in figure 13.4. Left: Full distance prediction.
Right: Zoom in on the d < 3.5 kpc prediction region.

There is also a notable separation between two continuous structures at distances of ∼2 and
∼4 kpc in the large longitude part (290 < l < 303 deg), which is more visible in Figure 13.5.
The arm model seems to follow the closer structure but there are no HII region or GMC to con-
firm that this separation is real. Still, the group of Gaia clusters and HII region that is present at
l ' 287 and d = 2.5 kpc, visible in the close distance representation of Figure 13.4, suggests that
the distance to the local maximum of extinction at l ' 287 and d = 2.5 kpc is under-estimated
by ∼ 500 pc in our map.

One of the use of our network prediction density probability from dropout (Sect. 13.1.1)
is to assess which structure could be less realistic according to the network own uncertainty.
Figure 13.6 shows the same face-on view as before but representing the averaged standard de-
viation of individual prediction at each distance. This figure reveals that the large-longitude
short-distance region discussed in the previous paragraph is the less well constrained, with the
uncertainty maximum being reached for the secondary structure at l ' 301, d = 3.5 kpc. This is
consistent with the fact that it is ∼ 23 deg away from our training LOS, and that the star count
starts to rise quickly at these galactic longitudes. It is likely that a similar issue occurs for the
other boundary of the map at l = 257 due to the lower star count, but it is partly compensated
by the Zlim = 100 parameter, still causing the network to loose the higher distance information.

Overall, these results on a single LOS training are surprisingly capable of a convincing gen-
eralization on a large galactic longitude window once tuned appropriately. However, many of
the limitations we exposed in the present section should be resolved if we were able to train the
network on several lines of sight at different galactic coordinates.

217

13.2 Combination of several lines of sight in the same training

13.2 Combination of several lines of sight in the same training

13.2.1 Sampling in galactic longitude

There are a few methods that could be used to construct a map that is capable of taking into
account the presented LOS. We saw in the previous Section 13.1.4 that the network prediction
in the vicinity of the training LOS appears to be reconstructed properly within several degrees.
The simplest approach would then be to sample the plane of the sky with a few reference LOS
and to train an individual network on each of them. The map would then be made of several tiles
centered on each reference LOS, each tile corresponding to an independent network training.
We tested this method as follows.

Considering that we are mainly interested in the Galactic Place and that we are reasonably
free of latitude artifacts in the range |b| < 1 deg we only sampled the galactic longitude axis
with a training every 5◦ centered on the l = 280 deg, b = 0 deg position, ending up with 9 LOS
from l = 260 deg to l = 300 deg. While this approach provides interesting results that solved
some of the issues we had with the single training generalization (Fig. 13.4) it creates strong
discontinuities at the junction between adjacent tiles, resulting in a very patchy prediction. Ad-
ditionally, we saw that we needed up to 5 × 105 training examples for a single LOS training, so
9 individual training were very expensive in terms of memory and training time.

13.2.2 Multiple line of sights in a single training

We found a more suitable approach in the idea that there should be redundant information be-
tween the different training. It is straightforward that convolutional filters that were found to be
useful for one LOS is very likely to be useful for another LOS. This consideration can be gen-
eralized to the whole network architecture. One possible solution would have been to perform a
single training on the central LOS and then use it as a pre-trained starting point for all the other
LOS trainings. This would have significantly reduced the training time and possibly reduced a
part of the tiling effects, considering that all networks have mostly similar weights. However,
this solution is still not as appealing as a single training that capable of predicting the whole
map at once. For this to be possible we made a few changes in our network input.

For a single network to work on multiple lines of sight, it must be provided with the CMD-
profile pairs, but also with some information about the reference bare CMD. In our single train-
ing this was done by including a fnaked proportion of bare CMDs in the training corresponding to
a flat profile so that the network could learn the reference statistically. In the present approach
we chose to change the form of the input by adding an input depth channel containing the bare
BGM realization CMD that was used to compute the extincted one. This way the network is
provided in a single input with both the reference CDM of the given LOS and the corresponding
extinct one. We kept our fnaked = 0.1 value corresponding to cases with the bare CDM in both
input depth channels, so that the network can still associate this reference to a flat profile. We
note that the bare CDM is presented with the same magnitude limit cut and uncertainties. Using
a completely non-processed CMD as reference, the network was not able to extract the link be-
tween a reference CMD and a CMD with almost no extinction. With this approach it is possible
to construct a single training that learns from various lines of sight at the same time. Because
making BGM realizations requires a significant computational time, we still used the 9 LOS
sampling described in the previous section, but here they were merged into one single training
dataset. We highlight that in this approach we double the input dimensions which results in
twice larger dataset memory usage.

218

13 2MASS only extinction maps

13.2.3 Dataset construction, architecture effect and training

Considering that there will be redundancy of a non-negligible part of the information from
different lines of sight we were able to reduce the number of examples to 2 × 105 for each
reference LOS. This still results in a 1.8 × 106 dataset that has twice the number of pixels per
object compared to Section 13.1, requiring a careful choice of numerical range for each of our
pixels to reduce storage footprint that could reach 50 GB easily. From this dataset we used the
same 0.94, 0.05, 0.01 proportions for the training, valid and test dataset, respectively, than in
the previous single LOS training. We took care of applying these proportions to each reference
LOS set of 2 × 105 examples before merging them. Additionally, each input depth channel is
scaled separately by looking for the pixel with the highest star count in the whole dataset. This
way, both our reference and observed CMD fall in a 0 to 1 range by conserving the proportions
between various example on a given diagram and also ensuring that both the diagrams have sim-
ilar actual pixel values, just like we normalized every input feature individually in Section 4.7.4.

We highlight that despite this change in input size, the first convolutional layers of the net-
work produce an activation volume with the same size as before. The only change in network
parameters is that the filters of this convolutional layer get an extra depth channel, which is
an insignificant increase in regards of the more than 50 × 106 weights in our network architec-
ture. We note that despite this change in input dimension and a much more general context,
the CNN architecture described in Section 12.3.2 remained the one with the lowest error on
the test dataset from all the other architectures we tested. Since only the first convolutional
layer is changed, the network mostly conserves its training speed in terms of number of objects
per seconds. However, the dataset is much larger than in the single LOS case so each epoch
takes much more time. The typical number of epochs required to train then remains mostly
unchanged meaning that we have provided a similar amount of information overall, considering
both the increased generality of this case and the additional global statistic of the larger dataset.
We note that using only 1 × 105 examples for each reference LOS was providing significantly
less good results, still with very acceptable predictions. Therefore, the redundancy of informa-
tion is effectively present but in a smaller amount than we expected. We could not try 3 × 105

since it would exceed the maximum host RAM memory of the compute cluster we used for
training (250 GB). Still, since the difference between 1 × 105 and 2 × 105 examples per LOS
was only slightly improving the results, we do not expect important improvements for a 3× 105

sample. Overall, the training using this dataset with 2×105 examples per LOS requires between
8h and 12h to complete using the Tesla V100 GPU (Sect. 12.3.4) depending on the number of
epochs required to converge.

Following the approach of Section 13.1.1 we present in Figure 13.12 a typical prediction
of our multiple-LOS CNN training. All the predictions in the figure refer to the middle LOS
l = 280 deg, b = 0 deg, so it can be compared to Figure 13.1. The reconstruction of the profiles
is very similar to the one on the single LOS training, despite the number of example given for
this specific LOS being reduced by 60%. This confirms that our dual depth-channel input ap-
proach is suitable for the task, and that the network successfully shared a part of the information
between several LOS to maintain a similar prediction capacity on individual one. This figure
noticeably highlights a case in frame 2, where a first extinction structure with a non negligible
total extinction is very well predicted and where the second structure at high distance (∼9 kpc)
is perfectly localized. The amount of extinction however is significantly underestimated for the
second structure, but interestingly the dropout dispersion is maximal at the same location and
can therefore be used to diagnose the poor reliability of this structure in the map.

219

13.2 Combination of several lines of sight in the same training

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10 12
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10 12
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10 12
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10 12
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0 2 4 6
J - K

10

11

12

13

14

15

16

K
[m

ag
]

0 2 4 6 8 10 12
Distance [kpc]

0

5

10

15

20

25

Di
ffe

re
nt

ia
l A

v
(m

ag
/k

pc
)

0

10

20

30

40

50

60

70

0

5

10

15

20

25

0

10

20

30

40

50

0

5

10

15

20

25

0

10

20

30

40

50

60

0

5

10

15

20

25

0

5

10

15

20

25

0

5

10

15

20

25

0

10

20

30

40

50

60

70

0

5

10

15

20

25

Figure 13.7: Excerpt of a few objects from the test dataset of the 2MASS multiple-LOS train-
ing, for the l = 280 deg, b = 0 deg reference LOS. Left: View of the CMD for which the
prediction is made. Right: Corresponding profile. The dashed line shows the target of the net-
work that accounts for the Zlim maximum distance limit. The network prediction is presented in
the form of a vertical histogram prediction for each distance bin, corresponding to 100 random
dropout predictions.

220

13 2MASS only extinction maps

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Av (mag)

Figure 13.8: Integrated extinction for each pixel of the 2MASS multiple-LOS training predic-
tion in a plane of the sky view using galactic coordinates. Contours are from Planck τ353.

13.2.4 Map results

Performing a prediction on an observed CMD with this combined network is slightly more com-
plicated than in the previous case. Indeed, additionally to the observed CMD we have to provide
a reference bare CMD from the BGM. We could use different approaches for this independently
of the reference CMD that was used for the training. One solution would be to perform a BGM
realization for each pixel of our map. While it will obviously be at the cost of a significant
computational time, it is indeed possible to have a bare BGM CMD at each pixel, although
due to the statistical fluctuations of the realizations it may produce artifacts. To remove them
it would be necessary to have several BGM realizations for each map pixel and then either av-
erage them or including a random reference choice in our 100 predictions that already account
for the dropout, making this solution too much time and resource consuming. A much simpler
approach consists in using a random reference CMD from the training dataset corresponding
to the closest reference LOS. This would also induce a possible tiling effect but that would be
much lighter than with a completely independent training on each reference LOS. We chose to
use this approach with the addition that we constructed an average reference CMD from 10 of
the bare reference CMD of each training reference LOS. From this the map is constructed by
using the observed CMD and the closest averaged reference CMD as input. We note that an
intermediate approach would be either to interpolate the reference CMD or to construct a sub
grid of BGM references that has a better resolution than the training, but still is significantly
less sampled than the map resolution.

The results for this network prediction are presented in Figure 13.8 that shows the plane
of the sky map of integrated extinction, and in Figure 13.10 that shows the face-on polar view
of our distance prediction. For this result we also present in Figure 13.9, a decomposition of
the integrated extinction corresponding to different distance range, [0 6 d < 4], [4 6 d < 7]
and [d > 7] kpc. From these figures it is visible that a tiling effect remains in the integrated
extinction, especially for the large-longitude tile. However, it mainly impacts the highest lat-
itudes and close distance range (d < 4 kpc) of the map, which are not in our Galactic Place
slice represented in the face-on view. Interestingly, these results were made using Zlim = 50
meaning that the effect of properly sampling the galactic longitude into several lines of sight
already considerably reduces the very large amount of artifacts we had in the equivalent training
using the same value of Zlim. The reason we chose not to use a larger Zlim was that it reduced
the map maximum distance estimation loosing most of the structures for d > 8kpc, which were

221

13.2 Combination of several lines of sight in the same training

0 6 d < 4 kpc

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2 4 6 8 10 12
Av (mag)

4 < d 6 7 kpc

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2 4 6 8 10 12 14 16 18
Av (mag)

d > 7 kpc

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2 4 6 8 10 12 14
Av (mag)

Figure 13.9: Integrated extinction for different distance range from the 2MASS multiple-LOS
training prediction in a plane of the sky view using galactic coordinates. Contours are from
Planck τ353.

222

13 2MASS only extinction maps

Figure 13.10: Face-on view of the Galactic Place |b| < 1 deg in polar galactic-longitude dis-
tance coordinates for the predicted Carina arm region using our 2MASS multiple-LOS training.
The symbols are the same as in figure 13.4. Left: Full distance prediction. Right: Zoom in on
the d < 3.5 kpc prediction region. The displayed symbols are as in Fig. 13.4.

recovered using a smaller Zlim value. Another striking difference between this result and the
single training one, even with high Zlim, is the contrast we obtain in high-extinction regions. For
example the structure around l = 283 deg and b = −1 deg contains a much higher integrated
extinction than before. The few structures at low longitude are also much more convincing,
following accurately several of the Planck map structures highlighted by the contours. The
structure at l = 266 deg and between 1 < b < 2 deg is much better identified as containing
much more extinction that the surrounding small regions, which was not the case in our single
LOS training. In the large-longitude part (l > 297) the situation is more complicated. Even if
we have a dedicated LOS for this region, the predictions appear to be less good. It is still much
better than the single previous single LOS training but the structures less accurately follow the
Planck morphology and are more prone to artifacts. Indeed, the large difference in star count
with the previous one (see Fig.13.2) tends to indicate that either our longitude sampling is too
coarse and more reference LOS should be used here, or the information is too different from the
other lines of sight for the generalization on them to be useful here. This would be equivalent
to consider that this LOS was trained solely on the 2 × 105 examples which is insufficient to
constrain a single LOS training. However, trying to voluntarily imbalance this training dataset
would require much care and we preferred to delay such an approach to a future work.

223

13.2 Combination of several lines of sight in the same training

Figure 13.11: Face-on view of the Galactic Place |b| < 1 deg in polar galactic-longitude
distance coordinates for the standard deviation predicted in the Carina arm region using our
2MASS multiple-LOS training. The symbols are the same as in figure 13.4. Left: Full distance
prediction. Right: Zoom in on the d < 3.5 kpc prediction region.

Regarding the details from the face-on view (Fig. 13.10), the extinction distribution in dis-
tance is quite similar to that obtained with our single-LOS training. Still, we stress again that
this result is obtained using Zlim = 50, which led to many artifacts in the single-LOS training,
whereas they are totally absent here. This tends to confirm that there is effectively no strong
extinction structures in the low longitude l < 280 deg high distance d > 3 region, since a lower
value of Zlim increases the sensitivity to structures traced by a limited number of stars, and since
we used multiple dedicated reference lines of sight for this large region. Still, the short-distance
figure (Right frame) shows an interesting extinction dynamic in this region for 0.5 < d < 2.5
kpc with regions mostly being in agreement with both the HII regions and the Gaia clusters.
Overall the region at l = 283 deg and d = 5.5 kpc interpreted as the Carina arm tangent is
still well resolved and is mostly in agreement with the HII regions. The regions at d = 10 kpc
and 295 < l < 303 deg show a good match with many HII regions and a much more detailed
structure than the diffuse structure obtained in this area with our single-LOS training. For this
reason, although we found the single-LOS result of this area suspicious, we are quite confident
with that of the multiple-LOS training. We note that this is typically the kind of structures that
are removed if the Zlim parameter is increased, since they are at large distances and are most
likely constrained by a relatively small number of stars in the CMD. Finally, the problematic
structure at l ' 300 deg, d = 4 kpc is still present and has a stronger maximum differential
extinction than for the single LOS training. The foreground for this large-longitude LOS still
remains compatible with our arm shape. The result from this multiple-LOS training and pre-
sented in the two previous figures (13.8 and 13.10) constitutes our main reference result. For
the rest of the present manuscript we refer to this result as our "main 2MASS result", to
ease the comparison with our cases.

224

13 2MASS only extinction maps

0

10

20

30

40

Pi
xe

l s
ize

 (p
c)

260270280290300
Galactic Longitude (deg)

0

2

4

6

8

10

12

Di
st

an
ce

 (k
pc

)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log10 dAv

dr (mag/kpc)

Figure 13.12: Face-on view of the Galactic Place |b| < 1 deg in cartesian galactic-longitude
distance coordinates for the predicted Carina arm region using our 2MASS multiple-LOS train-
ing. The axis on the right border corresponds to the pixel height as a function of the distance
induced by the conic shape of our LOS. The symbols are the same as in Figure 13.4.

Figure 13.11 shows the averaged standard deviation of the prediction coming from the
dropout using the face-on view. Overall this figure appears more contrasted than the equiva-
lent one from the single-LOS training (Fig. 13.6. Again it is mostly explained by the lower
Zlim value that allows the network to consider less stars as relevant for the extinction predic-
tion, inducing that we recover structures that we potentially missed before, but also reduce the
signal-to-noise ratio of the global map prediction. For this reason and because we conserved
the same scale for comparison, we expect only the two regions with the highest dispersion to
reflect a true underlying issue. These regions are both found in the large-longitude region that
corresponds to the same problematic reference LOS. The region at d = 10 kpc that contains
several small predictions lost by the higher Zlim are in fact expected to be uncertain from this
standpoint since they are at our detection limit. This does not raise much concern about the
fact that they are representative of genuine physical structures, but rather that their differential
extinction might be off the true value and that they are possibly too extended around their cen-
tral position, similarly to what is illustrated in the second frame of Fig. 13.12. In contrast, the
region between 3 < d < 4 kpc is much more likely to be an artifact since it has a very large
dispersion while it is much closer and does not have a high extinction foreground. We expect
this behavior for a significantly unconstrained region, or for an input that lies off the part of the
feature space that was effectively constrained during training. Without additional investigation
of this region we were unable to draw firm conclusion about the reality of this strong extinction
structure.

225

13.2 Combination of several lines of sight in the same training

13.2.5 Effect of the galactic latitude

In this section, we use a new multiple line of sights training to examine the effects of a latitude
sampling. The general purpose of this test is to assess whether a multiple-LOS training based on
a sampling both in longitude and latitude would be useful, since it would considerably increase
the size of our training dataset. For this we performed a training again centered on l = 280 deg,
b = 0 deg using 5 reference lines of sight between −4 < b < 4 deg, each LOS being used as
a reference for a 2 deg slice in latitude. Each reference LOS is again provided with 2 × 105

examples following the same construction described in Section 13.2.2.

Figure 13.13 shows a comparison of different integrated extinction map over the plane of
the sky for that include this training in the bottom-left frame. From this figure, the three middle
reference LOS b = −2, 0, 2 deg seems to have slightly improve the boundary of the structure in
comparison to the two previous 2MASS training. Still the most striking effect is that there are
significantly less latitude artifacts and extinction overall predicted in empty regions, especially
considering that this training was made with Zlim = 50. However there is a relatively strong
tiling effect. This should come from the same effect we exposed for the multiple-LOS training
in the previous section, where the discontinuity between tiles is stronger when the star count
changes quickly. As we get farther from the Galactic Place this is likely to be the case here.
Surprisingly, the network seems to react to an overall excess of stars compared to the reference
LOS by overestimating the extinction, as revealed by the strong latitude gradient in the +4 and
−4 deg tiles. Finally, we observed that the extinction visible for |b| between 3 and 4 deg is
mostly localized at large distance d > 10 kpc.

There are a few solutions to overcome this effect and still take advantage of the added
information coming from multiple LOS in latitude. First, since most of the errors appear to be
at large distance, we could simply raise the Zlim value. Another solution would be to increase
the number of LOS to better sample the latitude axis. This second solution would require again
a very large amount of data for large maps. Another approach would be to refine only the spatial
grid of the reference CMDs that are used during the forward step along with the observed one.
Indeed, we expect that from several reference LOS the network should have found a continuous
transformation of the CMD to account for the variations in star count. Therefore, changing only
the reference CMD for the one corresponding to each pixel LOS when constructing the map
should benefit from this automated CMD interpolation by the network. However, as we stated
before, creating that many BGM realizations would be very compute intensive. As proposed
before, a convenient solution would be to use a grid for the BGM CMDs used in the forward
step with an intermediate resolution between that of the map and that used for training. In any
case, this tiling effect should be fixed before attempting a multiple-LOS training on longitude
and latitude simultaneously.

226

13 2MASS only extinction maps

Single LOS

276278280282284
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

5 10 15 20
Av (mag)

Multi LOS longitude

276278280282284
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)
5 10 15 20

Av (mag)

Multi LOS latitude

276278280282284
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

5 10 15 20
Av (mag)

Planck τ353

276278280282284
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

0.0002 0.0004 0.0006
353

Figure 13.13: Comparison of the integrated extinction for different 2MASS training prediction
in a plane of the sky view using galactic coordinates. All the predictions are cropped at the
longitude prediction range of the 2MASS latitude sampling training. The contours are from
Planck τ353. Top-left: 2MASS single LOS training result. Top-right: 2MASS multi LOS longi-
tude sampling training result. Bottom-left: 2MASS multi LOS latitude sampling training result.
Bottom-Right: Observed Planck dust opacity at 353.

227

13.3 Comparison with other 3D extinction maps

13.3 Comparison with other 3D extinction maps
In this section we discuss briefly the comparison of our main 2MASS result with 3D extinc-
tion maps obtained with different methods. The simplest one to perform is with Marshall et al.
(2020) (here after M20) since both our maps rely on the BGM, use the same survey as input,
use a LOS approach and have the same distance bin resolution. Figure 13.14 shows the com-
parison of our map with the M20 one. In this figure we added Planck data for which we used
the angular resolution of the M20 map rather than our lower resolution (the Planck map with
our resolution is in Fig. 13.3). To ease the comparison we cropped our map to the |b| < 1 deg
range of the M20 map. From this figure our prediction appears less noisy that but it might be
affected by the resolution choice. Still, the prediction of larger structure regarding the radial
axis could be explained by the typical structure width from our GRFs, pushing the network to
avoid very narrow structures. It can also be an effect of the convolution and pooling steps of
our network which tend to smooth the fine grained differences in the input CMD, while in the
MCMC method of M20, these fine grained differences are likely to be responsible for the strong
contrast between some adjacent pixels in the map.

In Figure 13.15 we compare our maps with the M20 map using the same face on represen-
tation using an identical plotting methodology from the M20 raw data cube. Both of the maps
are averaged for a |b| < 1 deg slice. In this figure, the two maps are compared with the same
color scale, the same colobar range and the same method to average on latitude pixels. At first
glance, most of the important structures are reconstructed similarly. The Carina arm tangent
is very similar in our two maps. However, in our prediction the low longitude part is free of
structures that could either be artifacts in the M20 map or be missed by our method. The d = 10
kpc, l ' 300 deg group of structures we recover in our map are absent from the M20, or may
correspond to the extinction detected near 7 - 8 kpc in the M20 map. The fact that we have a
very clear extinction free area in our results at the same place, and that it matches very well the
distribution of HII region by Hou & Han (2014) suggests that our map is more reliable in this
area. The structure at l ' 300 deg, 3 < d < 4 kpc has an equivalent in the M20 map but with
a much lower extinction and a lesser extent along the longitude axis than our prediction. As
discussed in Section 13.2.4, we doubt that our prediction is accurate for this structure.

We compare in Figure 13.16 our short-distance prediction with M20, and also with Lalle-
ment et al. (2019) (hereafter L19) and Chen et al. (2019) (hereafter C19) since the distance range
is now comparable. As before, all the maps are made from the accessible raw data cubes and
therefore compared using the same color-scale and intervals. The L19 map does not use galactic
coordinate but a cartesian frame. Our approach for this comparison was to average the Galactic
Place in a constant ±35 pc slice around the Galactic Place, roughly corresponding to the height
of our map at 2kpc. We note that both the L19 and C19 maps use Gaia DR2 parallaxes through
a cross-match in their process of recovering the extinction distance, which might explain the
global morphology match between the two. We also did not degrade the resolution of any map
to correspond to our resolution since the very high resolution of the L19 provides interesting
substructures that are worth discussing. From this comparison we see that at distance d > 2.5
kpc there is almost no extinction left in both L19 and C19, while our result and M20 predict
a significant extinction passed this distance, with a similar morphology. The high-extinction
structure at l ' 300 deg, d = 3.5 kpc is the problematic one discussed in Section 13.2.4 and in
the previous paragraph.

228

13 2MASS only extinction maps
Pl

an
ck

du
st

op
ac

ity
τ

35
3

26
0

27
0

28
0

29
0

30
0

Ga
la

ct
ic

Lo
ng

itu
de

 (d
eg

)

101
Gal. Latitude (deg)

0.
00

01
0.

00
02

0.
00

03
0.

00
04

0.
00

05
0.

00
06

A v
 (m

ag
)

M
ai

n
2M

A
SS

re
su

lt

26
0

27
0

28
0

29
0

30
0

Ga
la

ct
ic

Lo
ng

itu
de

 (d
eg

)

101

Gal. Latitude (deg)

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

A v
 (m

ag
)

M
ar

sh
al

l+
20

26
0

27
0

28
0

29
0

30
0

Ga
la

ct
ic

Lo
ng

itu
de

 (d
eg

)

101

Gal. Latitude (deg)

2.
5

5.
0

7.
5

10
.0

12
.5

15
.0

17
.5

20
.0

22
.5

A v
 (m

ag
)

Fi
gu

re
13

.1
4:

C
om

pa
ri

so
n

of
th

e
2M

A
SS

m
ul

tip
le

-L
O

S
tr

ai
ni

ng
re

su
lts

w
ith

Pl
an

ck
op

ac
ity

an
d

w
ith

th
e

3D
ex

tin
ct

io
n

m
ap

by
M

20
,i

n
a

pl
an

e
of

th
e

sk
y

vi
ew

us
in

g
ga

la
ct

ic
co

or
di

na
te

s.
A

ll
th

e
m

ap
s

ar
e

cr
op

pe
d

ac
co

rd
in

g
to

th
e

M
20

la
tit

ud
e

lim
its

.
To

p:
O

bs
er

ve
d

Pl
an

ck
du

st
op

ac
ity

at
35

3
G

H
z

us
in

g
th

e
pi

xe
l

re
so

lu
tio

n
of

M
20

.
M

id
dl

e:
In

te
gr

at
ed

ex
tin

ct
io

n
ov

er
th

e
w

ho
le

L
O

S
fo

r
ea

ch
pi

xe
l

co
rr

es
po

nd
in

g
to

th
e

2M
A

SS
m

ul
tip

le
-L

O
S

tr
ai

ni
ng

.B
ot

to
m

:
In

te
gr

at
ed

ex
tin

ct
io

n
ov

er
th

e
w

ho
le

L
O

S
fo

re
ac

h
pi

xe
lf

or
th

e
M

20
pr

ed
ic

tio
n.

229

13.3 Comparison with other 3D extinction maps

Main 2MASS result Marshall+20

Figure 13.15: Comparison of the face-on view of the Galactic Place |b| < 1 deg in polar
galactic-longitude distance coordinates for the Carina arm region. The symbols are the same
as in figure 13.4. Left: Our main 2MASS multiple-LOS training result. Right: The M20
prediction using the same galactic slice construction.

To compare the sub structures in the close range comparison (Fig. 13.16), we will refer to the
sub structures observed in the L19 map. We call A the structure at close d = 0.8 kpc and that is
observed in the range 257 < l < 280 deg, then the structures that are all between 1.5 < d < 2.0
kpc are called B, C, D, E and correspond to the longitude 260, 272, 283, 302 respectively. The
last, more blurry, structure around l = 280 deg at a higher distance 2.5 < d < 3 kpc is called
F. We observe that the L19 map D structure has a counterpart in M20 and in our map as well.
In the M20 map, this structure is blurred by the large uncertainties in distance and it cannot be
disentangled from the arm tangent structure. Our method seems to dissociate this D structure
from a more distant one that is compatible with the F structure from the L19 map and that is
visible in the C19 maps as well. Regarding the region A, B, and C the morphology of the M20
map in the corresponding region seems compatible with that of L19 and C19, with a significant
detection of the gap at ' 265 deg but with a higher distance prediction for the B and C structures
that are behind A. In our result it seems that our CNN has rather smoothed and packed all these
structures together, with a continuous structure between d = 0.8 and d = 2.5 kpc. A gap may
also be present at ' 265 deg, although it is less clear than in the three other maps. We not that
the structure E from L19 and that is also predicted by C19 does not have a counterpart in the
M20 map and in our prediction. However, our prediction and the M20 map both reconstruct a
closer structure at l = 303 deg around d = 1 kpc, the more distant one at the same longitude
being the probable artifact we described before.

From all these comparisons our method seems to be at least as efficient as the M20 approach
that uses the same data, with the advantage of predicting less noisy maps with more compact
structures and more resolved high distance structures. Our map still contains uncertainty on
the distance estimate that can spread over several distance bins, but the finger of god effect is
greatly reduced. Our CNN might still lack distance resolution at closer distance to match the
overall morphology of the L19, which might be improved by adding Gaia data in our approach
(Section 14).

230

13 2MASS only extinction maps

Main 2MASS result Marshall+20

Lallement+19

260° 270° 280°
290°

300°

Galactic Longitude (deg)

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

Distance (kpc)

A

B C D
E

F

0.2

0.0

0.2

0.4

0.6

0.8

1.0

log10 d ext
dr

(mag/kpc)

Chen+19

Figure 13.16: Short distance comparison of the face-on view of the Galactic Place in polar
galactic-longitude distance coordinates for the Carina arm region using various maps. All the
maps are limited to d < 3.5 kpc. The symbols are the same as in figure 13.4. Top-left: our
2MASS multiple-LOS training result for |b| < 1 deg. Top-Right: M20 prediction for |b| < 1
deg. Bottom-left: L19 prediction for |z| < 35 pc. Bottom-right: C19 prediction for |b| < 1 deg.

231

13.4 Addition of a second color-magnitude diagram

0 2 4 6
J - K [mag]

10

11

12

13

14

15

16

K
[m

ag
]

0

5

10

15

20

25

30

35

40

0 1 2 3
J - H [mag]

10

11

12

13

14

15

16

H
[m

ag
]

0

5

10

15

20

25

Figure 13.17: Illustration of the two different 2MASS CMDs [J-K]-[K] and [J-H]-[H] as ob-
served by 2MASS for l = 280 deg, b = 0 deg with a cone query radius of 0.25 deg.

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Av (mag)

Figure 13.18: Integrated extinction of the 2MASS dual-CMD multiple-LOS training prediction
in a plane of the sky view using galactic coordinates. Contours are from Planck τ353.

13.4 Addition of a second color-magnitude diagram

Based on our multiple-LOS training, we demonstrated that it is possible to efficiently add a new
input depth-channel without significantly increasing the network computational time and that it
manages to infer information correlation between the two channels. While this approach was
used to allow the network to distinguish different line of sigh references, it can be used to add
more information in the form of additional images. Thus, we added a second 2MASS CMD
representing [J-H]-[H] with the same 64 × 64 resolution. The J-H colors are lesser than the
J-K colors, because of the lesser difference in wavelengths, so we reduced the color range of
this diagram to better resolve the induced star shift. Figure 13.17 shows a comparison of the
two observed diagrams. For this training we directly used the multiple reference LOS approach
conserving the same 9 reference LOS for training. Therefore, our input for each example is now
a set of 4 CMD, two observed ones and two bare references, consequently increasing the dataset
size. We conserved fnaked = 0.1 and Zlim = 50 but the definition of the latter change slightly. It is
still used to assess a maximum distance after which the target profile is set to zero (Sect. 12.2.3),
but this time it does so only after both CMDs have reached this limit individually. Each CMD
input depth channel is normalized individually by looking for the highest pixel value in the all
dataset corresponding to a given depth. The training time required for this is similar to our main
2MASS result, although the convergence requires more epochs overall.

232

13 2MASS only extinction maps

Figure 13.19: Face-on view of the Galactic Place |b| < 1 deg in polar galactic-longitude dis-
tance coordinates for the predicted Carina arm region using our dual-CMD 2MASS multiple-
LOS training. The symbols are the same as in figure 13.4. Left: Full distance prediction. Right:
Zoom on the d < 3.5 kpc prediction.

0

10

20

30

40

Pi
xe

l s
ize

 (p
c)

260270280290300
Galactic Longitude (deg)

0

2

4

6

8

10

12

Di
st

an
ce

 (k
pc

)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log10 dAv

dr (mag/kpc)

Figure 13.20: Face on view of the Galactic Place |b| < 1 deg in cartesian galactic-longitude
distance coordinates for the predicted Carina arm region using our dual-CMD 2MASS multiple-
LOS training. The axis on the right border corresponds to the pixel height as a function of the
distance induced by the conic shape of our LOS. The symbols are the same as in figure 13.4.

233

13.4 Addition of a second color-magnitude diagram

We illustrate our prediction in the plane of the sky in Figure 13.18. It mainly highlights
that there are more latitude artifacts and a stronger tiling effect than in our main 2MASS result.
Still, the Galactic Place in the |b| < 2 deg range is mainly free of this artifacts and accurately
follows the Planck morphology contours. The most interesting difference with our main results
is that the extinction quantity seems better constrained overall. We conserved mostly the same
integrate extinction dynamic range in the map but there are much less saturated pixels and the
transition between the high and low extinction regimes is smoother. This could be explained by
the fact that, even if the second CMD did not improve the distance estimate (that is mostly in-
duced by the amount of pixel shift), it has certainly improved the resolution of extinction value
(that depends of the star ratio between pixels, Sect. 12.3.1). Indeed, two CMDs improve the
global statistic but there are also more stars per pixel overall in the [J-H]-[H] CMD, definitely
improving the extinction quantity resolution. However, the fact that this result presents more
latitude artifacts might indicate that the Zlim = 50 value is not adapted to this case. The [J-H]-
[H] CMD generally being more populated than the [J-K]-[K] one, it usually reaches the limit
later, and it can still be used to infer the extinction profile up to greater distances. However,
the color leverage being lesser in this diagram it tasks the network to predict more extinction
with less information. A suitable solution to counter this effect would be to have a different Zlim

value for each CMD, but we did not had time for this test for now.

The face-on view for this training is presented in Figure 13.19 and the cartesian view of
the same prediction is in Figure 13.20. The lower longitude part l < 280 deg is roughly iden-
tical to our main 2MASS result with a bit more of very close d < 0.4 kpc foreground. In
contrast, the high longitude part l > 280 deg presents a few differences that are more evident
in Figure 13.20. First there is much more continuity along the structure at 1 < d < 2 kpc,
and along that at 3 < d < 5 kpc. Even if this view strongly stretches the short distances, it
is visible that the extinction is more evenly distributed between these two structures than in
our main result where the structure at 3 < d < 5 kpc was much denser. This latter structure
now has a much lower extinction value and looks much more alike the M20 prediction in Fig-
ures 13.15 and 13.16. These elements support the idea that it is not an artifact, but a genuine
interstellar structure, although it remains more extended in longitude in the present prediction
than in M20. Interestingly, the network tends to predict a connection between the tangent and
this secondary structure more than with the closer one that would better correspond to our arm
model. The more distant group of structures around d ' 10 kpc is roughly identical with an or-
der of variation similar to the one we would obtain from repeated training over the same dataset.

While these results are sufficiently improved to justify the addition of the second 2MASS
CMD, we were not able to always include it in all our tests since it would lead to very large
datasets that are hard to work with using our main hardware infrastructure. Therefore, in the
following section this diagram is not used.

234

14 Combined Gaia-2MASS extinction maps

14 Combined Gaia-2MASS extinction maps
In this section we generalize our approach of multiple CMDs as input by adding a Gaia data
diagram. We present some specificity related to the Gaia dataset like the band and parallax error
fittings. We also present the results from a CNN training on a single reference LOS case and
from a multiple reference LOS one. We compare them to our main 2MASS result and to other
extinctions maps. We finally discuss the current limitations of our approach with Gaia along
with some possible adjustment that we considered.

14.1 Realistic Gaia diagram construction from the BGM 235
14.2 Training with one line of sight . 238
14.3 Combined sampled training . 240

14.1 Realistic Gaia diagram construction from the BGM
In the previous Section 13, we illustrated that the network architecture and training dataset
construction using the BGM and GRF generated profiles (Sect. 12) was suitable to reconstruct
large 3D extinction maps. We exposed that our CNN architecture allows to efficiently combine
multiple diagrams as input depth channels allowing the network to generalize complex problem
representations. One of the main advantages of this construction is that each diagram can theo-
retically be completely independent and that the network will automatically extract the relevant
information contained in each of them regarding the task to perform. From these observations
and theoretical elements it should be possible to add an independent diagram from Gaia without
the necessity of cross matching the stars with 2MASS. For this to be possible we still had to
follow the rules that allowed us to construct a suitable 2MASS CMD from the BGM, meaning
that we had to select a statistical representation that accurately reproduced an observed quantity
based on cuts and uncertainties (Sect. 12.1.2).

For this application we chose to use a [G]-[$] diagram, where G is the photometric Gaia
band at λeff = 0.623 µm, and$ is the parallax measurement. We note that using directly the par-
allax instead of the distance removes the necessity of a possibly inaccurate or complex distance
inversion (Bailer-Jones et al. 2018). In this diagram the extinction effect will be to decrease the
star luminosity (increasing the G magnitude value) of all stars after the corresponding distance.
This should mainly result in platforming the continuous parallax distribution following the G
magnitude axis. We illustrate the effect of extinction on this diagram in Figure 14.1. We note
that this effect is very strong due to the relatively short wavelength of the G band, implying
greater extinction than with 2MASS, and that therefore the diagram will not provide any addi-
tional information for large distance estimates. Still, it should be useful to increase the close
distance resolution, especially providing a better first extinction front position. It is also possi-
ble that it helps to better constrains the low extinction lines of sight.

Like for 2MASS, we had to characterize the selection cut and the observational uncertainties
for the Gaia data. For this we used the same approach than the one described in Section 12.1.2
on the same l = 280 deg, b = 0 deg LOS with a 1 deg2 radius. For the magnitude cut in the
G, GBP and GRP bands we excluded the stars that lack one or more detection and followed the
equation 12.1 to fit each magnitude histogram. Figure 14.2 shows the resulting fitted cuts in the
three Gaia bands. For the parallax, we selected the stars based on the ratio of their parallax over
parallax-error with $/σ($) > 3, excluding all stars that miss any of these quantities. This last
addition reduced the number of stars that is then closer to the order of 2MASS star count.

235

14.1 Realistic Gaia diagram construction from the BGM

No extinction 1 Cloud, Av = 3 mag, d = 0.5 kpc

1 Cloud, Av = 5 mag, d = 0.5 kpc 2 Clouds, Av = 5, 3 mag, d = 0.5, 2 kpc

1 Cloud, Av = 3 mag, d = 2 kpc Uniform ext - 1 Cloud, Av = 3 mag, d = 2 kpc

Figure 14.1: Effect of individual clouds on the Gaia [G]-[$] diagram. The extinction is mod-
eled as a log-normal distribution, except in the bottom-right panel where a uniform extinction
is used.

Figure 14.2: Fitting of the cut in magnitude for the three Gaia bands. The blue histograms
show the observed distribution, the fitted models are in red. The gray area shows the range of
magnitude values included in the fit.

236

14 Combined Gaia-2MASS extinction maps

Table 14.1: Uncertainty best fit parameters for all Gaia bands and parallax

a b c

G 7.950 × 10−12 1.013 × 100 4.069 × 10−4

GBP 5.003 × 10−8 7.074 × 10−1 −8.295 × 10−4

GRP 1.621 × 10−11 1.147 × 100 1.187 × 10−3

$ 2.138 × 10−8 8.539 × 10−1 2.767 × 10−2

Figure 14.3: Fit of Gaia uncertainties. The gray dots are Gaia stars, the gray scale representing
the star density in the diagram. The running median (blue dots) is fitted by an exponential model
(orange line).

Regarding the uncertainties we kept only stars that present all the bands, all the uncertainties
and both the parallax value and its uncertainty, which conserved around 80% of the stars on the
present LOS. For the 3 magnitude band uncertainties we followed the same procedure described
in Section 12.1.2 following Equation 12.2. Regarding the parallax uncertainty, we observed that
it has a higher correlation with the G band than with the parallax itself. So we decided to fit
this uncertainty using the [G]-[σ($)] diagram. All the fits are illustrated in Figure 14.3 and
the Table 14.1 contains the corresponding best fit parameters for the Gaia magnitudes and the
parallaxes. There is an important observed difference between the diagram with and without
the added uncertainty which plays a major role to make the diagram realistic.

237

14.2 Training with one line of sight

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Av (mag)

Figure 14.4: Integrated extinction for each pixel of the Gaia-2MASS single-LOS training pre-
diction in a plane of the sky view using galactic coordinates. Contours are from Planck τ353.

14.2 Training with one line of sight

For comparison with the single LOS training using solely 2MASS from Section 13.1, we present
here a Gaia-2MASS training on a single LOS. For this we defined our input as a dual depth
channel CMD, the first one being the same [J-K]-[K] CMD and the new [G]-[$] diagram, both
using the same 64 × 64 resolution. As for 2MASS only, the order of the operations is as fol-
low: we started with raw BGM realizations, we generated composite GRF extinction profiles
(Sect. 12.2) that are used to extinct all stars from each list, then the fitted cuts are applied and
the noise is added. From these extincted star lists we determined the limiting distances using
Zlim = 100 and forced all profiles to zero after this point. Finally we cut every extinction peak
above five in the targets (Sect. 12.2.3). The created input-target pairs are then used to train the
network accounting for a fnaked = 0.1 value in order to regularly present the bare diagrams as
inputs. Similarly to the single LOS training using 2MASS, we generated 5 × 105 of these ex-
amples and kept the 0.94, 0.05, 0.01 proportions for the training, valid, and test datasets. Each
input depth channel is normalized into the 0 to 1 range according to the maximum pixel value
in the full dataset. This step is even more important in this case because there are significantly
more stars in the [G]-[$] diagrams than in the [J-K]-[K] CMDs, therefore the normalization
evens out the initial respective influence of the two diagram types. Training the network on this
dataset is quick since it only contains two input depth channels and 5×105 examples per epoch.
The convergence is reached at a very similar epoch as for the 2MASS single-LOS training.

The predictions from the previously described network training are presented in the fol-
lowing figures: the integrated extinction plane of the sky view is presented in Figure 14.4, the
face-on view of the Galactic Place corresponds to Figure 14.5 and the cartesian view of the same
quantity is in Figure 14.6. From these results we observe that the prediction is very similar to
the one from the 2MASS only results. It mostly suffers from the same issues and presents the
same strengths. However we note two major differences: (i) in the low longitude part l < 280
deg the prediction seems to better follow the L19 or C19 morphology from Figure 13.16, with
a much clearer distinction between two groups of structures in distance, and (ii) in the high lon-
gitude part l > 290 deg almost all the extinction is concentrated in the structure we interpreted
as an artifact in previous sections in the region 295 < l < 303 deg and 2.5 < d < 3.5 kpc.
There might be two explanations for the second point. One possibility is that the very large star
count increase from Gaia, when following the longitude axis, pushes the network more quickly
to perform prediction on non-constrained parts of the feature space. Indeed, it has never been
presented such highly populated CMD in the training dataset. The other explanation would be

238

14 Combined Gaia-2MASS extinction maps

Figure 14.5: Face-on view of the Galactic Place |b| < 1 deg in polar galactic-longitude distance
coordinates for the predicted Carina arm region using our Gaia-2MASS single LOS training.
The symbols are the same as in figure 13.4. Left: full distance prediction. Right: zoom in on
the d < 3.5 kpc prediction region.

0

10

20

30

40

Pi
xe

l s
ize

 (p
c)

260270280290300
Galactic Longitude (deg)

0

2

4

6

8

10

12

Di
st

an
ce

 (k
pc

)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log10 dAv

dr (mag/kpc)

Figure 14.6: Face-on view of the Galactic Place |b| < 1 deg in cartesian galactic-longitude
distance coordinates for the predicted Carina arm region using our gaia-2MASS single-LOS
training. The axis on the right border corresponds to the pixel height as a function of the
distance induced by the conic shape of our LOS. The symbols are the same as in figure 13.4.

that we did not manage to create a representative Gaia diagram and that this artifact is the result
of a systematic difference between modeled and observed diagrams. We note that the high dis-
tance diffuse structure is predicted very similarly to the 2MASS single LOS training indicating
that the network must have automatically identified that it can use 2MASS only for such high
distance prediction independently of the foreground for which Gaia dominates. This might also
come from a non sufficiently restrictive Zlim but we already adopted a relatively large Zlim = 100
value, as further discussed for the next case.

239

14.3 Combined sampled training

260270280290300
Galactic Longitude (deg)

4

2

0

2

4

Ga
l.

La
tit

ud
e

(d
eg

)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5
Av (mag)

Figure 14.7: Integrated extinction for each pixel of the Gaia-2MASS multiple-LOS training
prediction in a plane of the sky view using galactic coordinates. Contours are from Planck τ353.

14.3 Combined sampled training

For the same reason as exposed in Section 13.2, we proceed to a single training using the same
sampling of 9 LOS over the galactic longitude range 260 < l < 300 deg. This should help take
into account the specificity of each LOS and share the redundant information between them.
The input is then adjusted to account for 4 individual diagrams at once, a 2MASS [J-K]-[K]
extinct CMD and its bare reference, and a Gaia [G]-[$] extinct diagram and its bare reference.
The output is still a single LOS profile. We used the same previously defined parameters with
2 × 105 examples per reference LOS, Zlim = 100 and kept fnaked = 0.1 so that the network
can associate the bare references to a flat-zero extinction profile. Each input depth channel is
normalized as an independent feature from the maximum pixel value of each diagram in the
whole dataset. This last step is of critical importance because a bare Gaia reference diagram
can contain a very large number of stars that would completely dominate the network training
error at the beginning otherwise.

The integrated extinction plane of the sky view is presented in Figure 14.7. It is visible that
this map presents significantly less contrast in the low extinction regions, but the high-latitudes
predictions seem more even than in our previous maps. The central structure presents a very
high integrated extinction that is significantly higher than in several of our previous results but
this high extinction is compatible with our main 2MASS result (Fig. 13.10). The low longitude
part appears properly reconstructed, again with less contrast, which is also the case for the high
longitude part but with an added diffuse latitude extinction.

The usual face-on view of the Galactic Place slice is presented in Figure 14.8 and the same
quantity using a cartesian view is in Figure 14.9. We also provide a comparison of this result
with our previous main 2MASS result along with the M20 and the L19 maps in a close distance
view in Figure 14.10. These figures illustrate important issues we have with this result. First,
from a simple prediction stability standpoint, the prediction seems more noisy with several con-
tinuous and quasi-periodic stripes with widths of 1 to 3 bins, and that are much more visible in
Figure 14.9. These are obvious network artifacts, althouh most of them have low extinction val-
ues (. 1 mag/kpc). Regarding the low longitude part, the prediction roughly follows our main
2MASS result but with much larger absolute extinction and with a late first extinction estimate
and more compact structure (see the short-distance comparison in Fig. 14.10). There is also a
foreground extinction in the first 2 distance bins in this region. The high longitude region is sim-
ilarly dominated by the likely artifact structure at d = 3 kpc, that is now closer by about 0.5 kpc

240

14 Combined Gaia-2MASS extinction maps

Figure 14.8: Face-on view of the Galactic Place |b| < 1 deg in polar galactic-longitude distance
coordinates for the predicted Carina arm region using our Gaia-2MASS multiple-LOS training.
The symbols are the same as in figure 13.4. Left: Full distance prediction. Right: Zoom in on
the d < 3.5 kpc prediction region.

in comparison to the main 2MASS result. We also note that we do not detect any structure after
d > 6 kpc anymore, which is unlikely to be due to the addition of Gaia since we did not remove
any information from the 2MASS data, and that structures were present at those distances in
the single LOS Gaia-2MASS result (Fig. 14.5). At short distance in the middle longitude range
275 < l < 285 deg, the prediction appears realistic. The first central extinction peak around
region D at l ' 282 and d = 1.5 kpc roughly corresponds to the L19 one for the same structure
and our structures in this small area are compatible with the M20 prediction. Still, in the same
middle longitude range, the secondary peak that could correspond to the arm tangent around
l = 282 deg and d = 6 kpc from our main 2MASS result, is predicted with a shorter distance
by at least 1 kpc, and is not as elongated than in the previous Gaia-2MASS single LOS result.
Considering that the single LOS training had 2.5 times the number of training example for this
centered LOS it is more likely that it has a better prediction here, and that with just 2 × 102 this
LOS is underconstrained in the present result.

241

14.3 Combined sampled training

0

10

20

30

40

Pi
xe

l s
ize

 (p
c)

260270280290300
Galactic Longitude (deg)

0

2

4

6

8

10

12
Di

st
an

ce
 (k

pc
)

0.2 0.0 0.2 0.4 0.6 0.8 1.0
log10 dAv

dr (mag/kpc)

Figure 14.9: Face-on view of the Galactic Place |b| < 1 deg in cartesian galactic-longitude
distance coordinates for the predicted Carina arm region using our gaia-2MASS multiple-LOS
training. The axis on the right border corresponds to the pixel height as a function of the distance
induced by the conic shape of our LOS. The symbols are the same as in figure 13.4.

We do not push much further the detailed analysis of this result since it presents clear signs
of a very underconstrained training. There are several reasons that could explain this behavior.
First, we observed that our prediction from a single-LOS training presented more plausible re-
sults than the multiple LOS training. Cases where adding information causes the network to
degrade its prediction are likely to be a sign of non-realistic input examples. This assumption is
strongly supported by the fact that this network performs significantly better with lower average
error on its test set than an identical training with the same parameters but using 2MASS only
CMDs. It means that the network better reproduces the training profiles, but is still unable to
predict the observed quantity correctly, confirming an intrinsic difference between our training
input and the observed one. Additionally, the fact that the central LOS prediction is also less
well reconstructed illustrates that the information generalized from the other reference LOS is
at best not used, and at worse badly affecting the central LOS prediction. The Zlim maximum
distance is unlikely to be affected by Gaia since most of the corresponding stars are extincted
very early, therefore the high distance range should be constrained solely based on 2MASS. The
fact that the prediction at these distances is degraded means that the addition of Gaia affects the
2MASS prediction, which should not be the case. Here, again the explanation might be in the
existence of a systematic difference between our training Gaia diagram and the observed ones.
We note that such effects have also been observed in our early-testing results using 2MASS
only, and that usually managing to create more realistic training CMD solved the issues. The
main difference here is that the Gaia diagram seem more affected by aspects of the construction
that was negligible for the 2MASS data. Overall, the present inconsistency of our Gaia-2MASS
multiple reference LOS training, is likely to come from a combination of all the limits we dis-
cuss in Section 15.

Independently of the previous discussion, we note that our choice of diagram for Gaia was
not the most appropriate. Using a Gaia color [GBP - GRP] would probably have worked better
in place of the G band. This way the diagram may have contained more information thanks
to the correlation between distance and extinction. Also, as we discussed for the 2MASS dual
CMD case, it should be possible to add another Gaia diagram. Ideally, we aim at using a [GBP -
GRP]-[$] diagram and a [GBP - GRP]-[G] CMD all together with one or several 2MASS CMDs.
This is a step-by-step and ongoing work where we try to combine the most of the two surveys.

242

14 Combined Gaia-2MASS extinction maps

Main 2MASS result 2MASS & Gaia result

Marshall+20 Lallement+19

260° 270° 280°
290°

300°

Galactic Longitude (deg)

0.0
0.5

1.0
1.5

2.0
2.5

3.0
3.5

Distance (kpc)

A

B C D
E

F

0.2

0.0

0.2

0.4

0.6

0.8

1.0

log10 d ext
dr

(mag/kpc)

Figure 14.10: Short distance comparison of the face-on view of the Galactic Place in polar
galactic-longitude distance coordinates for the Carina arm region using various maps. All the
maps are limited to d < 3.5 kpc. The symbols are the same as in figure 13.4. Top-left: Our
2MASS multiple-LOS training result for |b| < 1 deg. Top-Right: Our Gaia-2MASS multiple-
LOS training result for |b| < 1 deg. Top-left: M20 prediction for |b| < 1 deg. Bottom-right: L19
prediction for |z| < 35 pc.

243

15 Method discussion and conclusion

15.1 Dataset construction limits and improvements

15.1.1 Magnitude cuts and uncertainty issues

We highlighted in several section that the construction of realistic examples to train the network
is the most critical aspect of this application. It is difficult to assess whether our training data are
realistic enough since even if it is not the case, the network will mostly reconstruct a good pre-
diction of the test dataset because it is based on the same construction than the training dataset.
Therefore, it only provides information on how well the network is able to perform the task it
was given, but not in any case if the prediction using observed inputs will be realistic. One can
directly have a look at the diagrams to search for striking differences, but the use of a complex
ANN method was selected exactly because the fine analysis of this diagram is difficult. There-
fore, imperceptible differences could remain. Another solution is to look at the predicted map
and its uncertainty and to compare it to other predictions to identify clear errors. According to
the region where major differences are noticed, it is possible to better analyze the underlying
prediction and input to diagnose the origin of the problem. In the end, it is only by trying to
reproduce the acquisition scheme of the observed data that a realistic example can be built.

One of our main assumption, that we did not stress strongly before, is that we fit our magni-
tude cut limits and uncertainties solely on the l = 280 deg, b = 0 deg. However, it is well known
that 2MASS and Gaia have variations of these values across the plane of the sky, mainly due
to the variations in stellar confusion across the Milky Way (Skrutskie et al. 2006; Evans et al.
2018). For this reason it should be more efficient to perform at least an uncertainty and limit
fitting for each of the reference LOS used in multiple-LOS training. From preliminary tests we
observed significant variations of the cut limit following the galactic longitude axis for 2MASS.
However, since the magnitude cut limit mainly affects faint main sequence dwarf stars, it could
explain that our 2MASS results are not that much affected. Indeed, the network most likely
does not use these limit stars, as a small extinction is sufficient to shift those stars beyond the
detection limit in the CMD, preventing the network from extracting any information from them.
In contrast, it is very probable that for the Gaia diagram the network is significantly affected by
this limit. Overall, it means that the Gaia and 2MASS mock diagrams differ from the observed
ones, which could affect some results like the last combined Gaia-2MASS multiple-LOS maps.

15.1.2 Modular Zlim value

Regarding the Zlim value, we stressed that its value is important to assess the network predic-
tion limit capacity and to avoid providing target profiles that are impossible to reconstruct from
the input data information. A simple addition to improve results from multiple-CMD would
be to have a different Zlim for each. Especially, in the case of Gaia, since the number of stars
is larger and because there is less extinction information contained in each of them, it should
be justified to adopt a significantly higher Zlim for Gaia than for 2MASS in the same training.
Another improvement would be to have a different Zlim for each reference CMD. This could
be used to force the network to perform higher distance estimates in less crowded areas of the
Milky Way, toward the anti-center for example. This would results in less precise predictions
in these regions, but it could be better than no prediction at all. More populated areas would

244

15 Method discussion and conclusion

keep a high Zlim to improve the prediction uncertainty since the number of stars will be suffi-
cient to still reconstruct high distance structures. We note that we tried to use a relative Zlim

value so that each LOS has a Zlim that correspond to 1% of its total star count. We combined
this solution with fixed Zlim to avoid very low star counts LOS to be too noisy. However, for
now we did not manage to improve the results using this approach. The other limitations of
the study may remain the dominant issue, or we did not found an appropriate Zlim recipe yet.
Still, having the possibility to choose the map detection limit for each region would be a very
useful addition to the map prediction, which would make it tunable as a function of the use case.

15.1.3 Construction of realistic profiles

Our profile construction using GRFs could certainly benefit from some refinements as well. Our
current prescription induces two main problems. The first one is that there is a characteristic
structure size range. Similarly to the effect of a prior in a Bayesian approach, our predictions
might then be biased toward structures of the same size. This means that it might be neces-
sary to increase the diversity of our training dataset, and therefore to also increase its size. In
contrast, there is a significant part of our generated profiles that remains very unrealistic due to
the intrinsic randomness of the GRF generation. Reducing the occurrence of these unrealistic
examples would help reducing the training dataset size for an identical prediction capacity, and
could enable the network to save many of its weights for the actually realistic profiles. While
our GRF recipe could definitely be improved, we could also use other profile prescriptions. We
could for example use profiles predicted from a variety of other extinction maps. In this case,
we would only keep the realistic profiles independent of the studied LOS, so we could apply
all theses profiles randomly to a large variety of CMDs from any region of the Milky Way. A
similar solution would be to use simulations of the large scale Milky Way distribution to also
recreate realistic profiles. One advantage would be that several simulation realizations could
be used to significantly increase the training dataset size and diversity. Both of the previous
approaches could also be used just to constrain the best parameters for our GRF construction.
This would then allow us to generate as many profiles we want with the added property that it
could create new realistic examples that were not seen in simulations or observations, but that
have a similar statistical distribution. On the other hand, in this approach the predictions would
inherit of the biases of the simulations or the other maps used as a model for our profiles.

Another approach would be to reverse the methodology of the present study. We could
use a generative method that learns to reconstruct realistic CMDs based on a mock profile.
We performed preliminary attempts in this direction by designing a Generative Adversarial
Network (GAN) for this task (Goodfellow et al. 2014). This is a double ANN setup where
a network learns to predict a realistic extinction profile from a random vector, and a second
network tries to distinguish extincted CMDs produced from the combination of a bare BGM
CMD and the previous network profile prediction. This is then a "zero sum game" where the
first network learns to fool the second one, while the second one tries to distinguish between
true and fake extincted CMDs. This approach would allow us to have a GAN profile generator
that was constrained to reconstruct realistic profiles based on observations. Still, GAN are long
to train and usually do not have a transforming process between the generator prediction and the
discriminator input as we described here. Getting to a working configuration of this approach
would still require a lot of efforts.

245

15.2 CNN method discussion

15.1.4 The "perfect BGM model" assumption

One of our strongest assumptions is that the BGM prediction perfectly reproduces the observed
LOS without extinction, at least statistically. Obviously the BGM itself has assumptions and
limits, but one of the most important issues is that it predicts only the general shape of the
Milky Way disk. In this model, there is no galactic arm, and no local stellar over-density. For
example, the youngest stars are modeled with the same assumptions as the older stars, so that
they are well mixed with the general population, while in observations they are more often
grouped in open clusters. It means that the difference between our bare BGM and our observed
quantity is certainly not solely due to the extinction. While it might be possible to construct
an input quantity that would be sensitive to the presence of stellar clusters using Gaia, they
are still missing in the training dataset for the network to learn to make the difference. A long
term approach here would be to create star lists that may or may not contain star clusters using
an additional construction recipe, that can again be constrained by observations or simulations.
This would obviously be a considerable work to properly parameterize such datasets and it
would very significantly increase the problem complexity and therefore the training dataset
sizes and training times. It is not excluded that it would be possible to construct a very large
network infrastructure that smartly combines all this information in a near future.

15.2 CNN method discussion
Regarding the CNN architecture itself, there is still room for improvement. The first modi-
fication to attempt in a near future will be to allow our network to work on Mixed precision
datasets. This would enable us to significantly reduce the training dataset storage by at least a
factor of two, and additionally it would strongly improve the network training speed without a
significant prediction penalty regarding the expected precision of extinction maps. Still from a
computational standpoint, allowing our framework to load data dynamically from the durable
storage source would strongly reduce our RAM memory usage. The next step is then multi-
GPU support. This way we could expect to work on much larger datasets and to add several
input depth-channels from other studies to be all combined at once by our CNN, still without
the necessity of a cross match.

Another modification would be to improve the network architecture itself. There are still
recent CNN approaches that we did not attempt in the present construction like Residual Neural
Networks (He et al. 2015) or multi-path networks like in the Inception architecture (Szegedy
et al. 2016) that might improve the generalization capacity of the method. We note that we were
surprised by the performance of a 1 × 1-filter convolution in our architecture exploration, so
a careful redesign of the network architecture with more of them could lead to prediction im-
provements. Finally, at a much larger time scale, we could consider to include spatial coherency
in our input, by for example showing the input depth channel for the presented LOS but also
for all the ones that are close to it. Our input could also be constructed from higher dimen-
sion depth channels, for example using 3D histograms like [G]-[H]-[K], or a similar one that
includes the Gaia parallax. This way the network would be provided with a sampling of the star
distance distribution and it would look for 3D coherent patterns in this volume. Finally, we can
imagine a network that would be able to take large-scale Milky Way volumes as its input at once
(instead of discrete LOS-profiles), allowing it to construct several realistic 3D Milky Way dust
distributions as single examples and generalizing from it. Such an application would be a huge
computational challenge, but it is becoming more and more realistic considering the important
improvement in ANN dedicated hardware in the past few years and the present performance
prediction for the upcoming new hardware technologies.

246

15 Method discussion and conclusion

15.3 Conclusion and perspectives
In the final part (Part III) of the manuscript, we presented a Convolutional Neural Networks
methodology to reconstruct 3D extinction maps of the Milky Way, based on the Besançon
Galaxy Model and applied to 2MASS and Gaia data, and that is suitable for large scale predic-
tions. This study led to the following conclusion. A comparison between modeled extinction-
free and observed extincted CMDs (or 2D histogram) contains a sufficient amount of informa-
tion to reconstruct extinction profiles with a large distance range d & 10 kpc prediction. Usual
methods compare star list directly to avoid too intricate information in a CMD formalism for
which it is necessary to construct a highly non-linear analysis method.

A Convolutional Neural Network is a suitable method for this task. It is able to extract the
information contained on the input CMD efficiently. The most efficient CNN architecture that
was found is based on very few convolutional layers with a minimal dimensionality reduction of
the input and then requires large dense layers to reconstruct extinction profiles accurately. The
exposed architecture is computationally efficient but the training process requires large datasets
of examples (5 × 105 to 2 × 106). This formalism can efficiently be generalized over a multiple
LOS combination in a single training by adding reference LOS as input depth channel.

The realism of the chosen input is of critical importance. Small differences between the
training modeled examples and the observations lead to significant prediction artifacts in some
cases. The magnitude limit cut and the uncertainty fitting of all used quantity from both our
used survey has been identified as the most important step. The target profile realism is of sim-
ilar importance. It must be, at the same time, diverse enough to properly constrain the feature
space, and restricted enough to avoid too many unrealistic examples that slow the training pro-
cess down and add noise to the predictions. The target profiles must also be modified so they do
not correspond to unpredictable results regarding the information contained in the input volume.

The CNN construction we propose is able to reconstruct large portions of the Milky Way
Galactic Place by learning from a relatively sparse sampling in galactic longitude. The network
predicts spatially coherent structures even without forcing any correlation between adjacent
lines of sight. The distance dispersion of the prediction is smaller than in maps working from
the same datasets and the prediction contains much less finger of gods artifacts.

It has been exposed that the CNN architecture can efficiently combine several diagrams as
input allowing to combine information from multiple surveys like Gaia and 2MASS without a
cross match of the stars. Presently, the results from large scale application of such combina-
tion is limited by realism of our modeled diagrams especially in terms of magnitude cut limit
and uncertainty fitting. The star count limit that the network considers as relevant for making
a prediction also appears to be insufficiently described for the combined surveys prediction to
conserve the distant 2MASS-identified structures.

Our on-going works are focused on the improvement of the training dataset and construction
and on the assessment of hyperparameters relative to reference LOS used during the training.
The objective is to correct the Gaia-2MASS prediction to better balance the contribution from
each survey, and then to predict a full Galactic Place map. Several important improvements
are currently under study, such as adding other surveys, adding spatial coherence between lines
of sight, changing the profile construction toward more realistic ones, network architecture
improvements to speed up the training and increase the generalization capacity. The method
description and first results on 2MASS will be soon published in the form of a letter to the
journal Astronomy and Astrophysics (Cornu et al. 2020).

247

16 General conclusion

Each of the previous parts has already been discussed in depth individually. In the present sec-
tion we partly describe the timeline of the presented work. We remind the reader some of the
global questioning with our approach to solve them and briefly the main results and limitations.
We also provide more general insights on our approach and slightly discuss what could be the
role of ML methods in astronomy during the coming years.

In this study we presented the work that we have done toward the reconstruction of the large-
scale 3D structure of the Milky Way. The objective of this work was to design a new methodol-
ogy based on Machine Learning and that could efficiently use infrared surveys in combination
with Gaia to infer this Galactic structure. From the beginning of this work, the underlying goal
was to assess if these methods would be able to construct new 3D extinction maps. The main
motivation for this was the present opposition between: (a) small distnace range but high reso-
lution maps that use astrometry from optical surveys in combination with infrared ones, and (b)
high distance range with lower resolution maps that use infrared surveys only. The rationale was
based on the reputation of ML methods that should be able to combine heterogeneous datasets
automatically. This property would permit the construction of extinction maps for which the
most suitable survey, or a complex combination of them, is used as a function of the distance
in an automated way. Additionally, the very large dataset usually involved in such tasks would
ensure a proper training of the ML methods and their efficiency in handling a very high number
of dimensions would open the possibility for the combination of several large surveys at once.

It quickly became apparent that, independent to the intrinsic strengths of ML methods, they
require the given task to be constructed in a very specific form. Replacing some steps of existing
methods with ML fitting would have been possible and relatively easy, but not satisfying due to
the fact that it would not make use of the full generalization potential of a ML approach. For
this reason we decided to build a strong theoretical and practical knowledge on ML methods by
designing our own framework from scratch. The choice of Artificial Neural Network, or Deep
Learning, was motivated by their almost unmatched versatility and for their high computational
performance. In order to build experience on their usage we approached a simpler problem,
YSO classification, that would still be able to provide 3D spatial constrains on medium scale
structures.

As demonstrated in the present study, Young Stellar Objects trace dense clouds and can be
used with Gaia to reconstruct their distance, elongation, and even global morphology in 3D.
One difficulty of this approach is the lack of detected YSOs to enable robust predictions, and
more importantly the fact that some regions that could contain YSOs are not investigated. We
then decided to construct an identification that would focus on the deep infrared survey Spitzer.
It provides the addition of granting constrains that can help to distinguish youngest Class I and
older Class II YSOs, which are missing in many surveys, and its sensitivity also allows it to
detect more YSOs overall, even in dense environment. The two limitations are that Spitzer does
not cover the full sky but mostly the Galactic Place and that even if it detects more deeply em-
bedded YSOs they are unlikely to have a counterpart with Gaia. Putting aside this limitation,
we managed to design an ANN that is able to accurately reproduce the classification scheme
from (Gutermuth et al. 2009) and that also provides an additional membership probability for
each object. It allowed us to identify a few weaker points in the usual classification scheme,
but more importantly we demonstrated that this probability can be used to select the most re-
liably identified YSOs, providing additional constraints for the 3D reconstruction of observed

248

16 General conclusion

clouds. This approach should be able to provide large Spitzer census of YSO candidates in the
near future that could be used to identify new regions of interest or even constrains more clouds
morphology. We identified several possible improvements of the method mainly relying on fur-
ther improving the training dataset, especially by reducing the reliance on the (Gutermuth et al.
2009) classification and rather use strong observational targets or simulations. This approach
is also suitable to be applied to other all-sky surveys, or even to be used with a combination of
surveys without cross-match.

This first application allowed us to construct a much deeper understanding of ANN structure,
behavior, limits, etc. This allowed us to identify more clearly a specific problem construction
that would be able to work on the original objective of building a new 3D extinction map. After
significant improvements of our framework and a careful problem description, we managed to
use a Convolutional Neural Network to perform direct extinction profile reconstruction. The
approach is based on the comparison of the Besançon Galaxy Model with observations from
the 2MASS infrared survey. From a set of training mock profile examples, the CNN has proved
capable of accurately predicting the position and size of typical extinction structures for indi-
vidual lines of sight. We successfully generalized our approach in a manner that allows the
network to be trained simultaneously on multiple lines of sight from different galactic longi-
tudes. Thus, our network can be trained once and is then capable to generalize its prediction for
large Galactic Place portions. From it we constructed large extinction maps that exhibit spatial
coherence between adjacent lines of sight and that strongly reduce common elongation artifacts
in distance. Our map based on 2MASS exhibits compact substructures up to 10 kpc and is in
correct agreement with many other maps, and it also correlates with other tracers of high den-
sity structures like HII regions that are expected to trace the spiral arms. We also demonstrated
that it is possible to combine Gaia and 2MASS data in a manner that does not require a cross-
match. We observed that the network efficiently combines the information without requiring a
significant increase in the number of parameters in the network and a negligible computation
time increase. Our results are promising, particularly in some places of the map where it is clear
that the information from the two surveys is efficiently combined. However, most of our results
from this 2MASS-Gaia combination remain dominated by artifacts that are likely to come from
insufficiently realistic training examples that still have to be refined. Since this artifacts are
similar to the ones we had in our first attempts of 2MASS only predictions, we are confident in
the fact that they will be solved and do not represent a fundamental limitation of either the data
or the method.

To conclude, Machine Learning methods are becoming an essential tool in astronomy, espe-
cially in regard of the future challenges from very-large and highly-dimensional surveys. In this
work we successfully constructed ML approaches around the identified limitations that were
observed in two different astronomical problems. These methods must be used properly in or-
der to truly provide genuine improvements to various present works in astronomy. The easy
accessibility of ML frameworks and the frequent publicized breakthroughs they permit often
convey the idea that these methods are so efficient that they can be used even on poorly de-
scribed problems. We exposed in this work that this is at the opposite of the proper approach,
that consists in a fine identification of the parameter space to constrain the dataset reliability,
the training and observed proportions, etc. These methods will solve many currently impossible
problems in astronomy, but that they will first need to be progressively tamed by the community.

249

Appendix

A Detailed description of the CIANNA framework

Detailed description of the CIANNA framework
A.1 Global description . 254
A.2 CIANNA objects . 255
A.3 Description of the layers . 256

A.3.1 Dense layer . 256
A.3.2 Pooling layer . 256
A.3.3 Convolutional layer . 257

A.4 Im2col function . 258
A.5 Other important functions . 260
A.6 Python and C interfaces . 260
A.7 Performance comparison . 264
A.8 Future improvements . 265

A.1 Global description

Detailed description of the CIANNA framework
In this section we describe our numerical framework CIANNA (Convolutional Interactive Ar-
tificial Neural Networks by/for Astrophysicists) in its present state. Our framework is evolving
fast so some of the information presented here might be out of date at some point, but the main
programming philosophy should remain the same. For up to date information please look for
CIANNA on GitHub or similar code-hosting solution (currently at github.com/Deyht/CIANNA).
All the results from the previous study were obtained using CIANNA or its precursors, from the
simpler illustrative examples (Sect. 4) up to the advanced various CNN architectures (Sect. 11).
Despite being a very generalist framework that could be applied to any ANN application, the
development was mostly driven by its ability to solve various astrophysical problems. For
example we successfully used it for: regression, classification, clustering, other program accel-
eration, and dimensionality reduction, all in the context of an astrophysical application. This
demonstrates an already satisfying maturity of the framework that is available as Open Source
under the Apache 2 license. In the present appendix section we detail the overall development
philosophy, the global programming scheme, some very important functions like im2col, how
the interface works on a concrete example, and finally the framework performance in compari-
son to the widely used Keras (TensorFlow) framework.

A.1 Global description

CIANNA is written using the C language (C99 revision), but it also contains a large amount of
Nvidia CUDA code allowing for Nvidia GPU acceleration. Any application can be coded using
a low-level C interface to access to the full potential of the framework. Additionally, we con-
structed a Python high-level interface that resembles the Keras one. This interface is suitable
for the vast majority of applications and can be easily modified to suit many other needs (see
Sect. A.6). CIANNA allows the use of several computing methods through different implemen-
tations: a very simple no-dependency CPU, OpenMP, an OpenBLAS matrix formalism, and
finally the CUDA GPU matrix acceleration. Overall, the framework has been built to permit
subsequent additions in a modular way. However, each time a choice had to be made between
modularity or ease of use against performance, we systematically privileged the latter. The ra-
tional behind this decision is that, with this framework, we wanted to get the finest possible
control over the detailed compute behavior. A focus on modularity would have enclosed the de-
tailed behavior into too many high-level considerations, which would have strongly complicated
any application that would get out of the pre-determined range of use cases. This noticeably
explains that there are some repetitions in the network in order to obtain a proper modularity
over several independent fine grained implementations. Overall, the framework aims at pro-
viding basic elements for which we proposed several arrangements but that remain suitable to
construct any non anticipated application with less efforts than with a very high level framework.

In practical terms, CIANNA presently allows the user to construct arbitrarily deep convo-
lutional or fully connected networks with a fine control over each layer property. In addition
to the overall architecture construction, it is possible to control several aspects of the network
including: learning rate with decay, weight initialization, activation function, gradient descent
scheme, shuffle method, momentum, weight decay, dropout, etc. Interestingly, the framework
being based on low-level functions it can be adapted to easily get out of the classical feedfor-
ward ANN with backpropagation scheme. For example we were able to construct several other
applications from CIANNA, namely: Generative Adversarial Networks, object detection net-
works, semi-supervised clustering by K-means, Self Organizing Maps (SOM) and Radial Basis

254

https://github.com/Deyht/CIANNA

A Detailed description of the CIANNA framework

Functions. Even if we did not had time to test other constructions, we are confident that the
framework could be adapted to other applications, for example to ANN trained from a Genetic
Algorithm formalism.

A.2 CIANNA objects
While CIANNA is coded with regular C that is not focused on high-level object programming,
we still reproduced some simple object properties in the framework based on C data structures
that are associated to specific sets of functions. This choice was mainly made due to strong
pre-existing programming habit, still presenting a few advantages. It is easier to manipulate
for programmers who are not used to the object formalism, and it provides full access to ev-
ery element of our data structures at any place. This allows one to elaborate on the pre-existing
CIANNA functions from completely new files without the need for modifying the existing code,
or to create derivative objects. We list here the principal data-structures and briefly describe their
role in the framework:

• The network structure allows the user to create several networks in the same instance of
CIANNA. This structure contains all the properties of the networks that have an impact on
the subsequent structures. For example it contains the choice of gradient descent scheme,
the batch size if needed, the learning rate and momentum, but also all the information about
the dataset to be processed, with their input and output dimensions. But more importantly
it is the home structure of the list of layer objects that will be declared for this network.
It also contains references to the training, test, and valid datasets that are associated to this
network. Still, since this structure mostly contains references, it means that layers or datasets
can technically be associated to several networks.

• The dataset structure is the simplest one. It contains the memory location of the raw data
already divided into the several batches. This structure then only contains the sizes of the
data it handles, but also references their location that can be either on the host memory or the
device (GPU) memory. The independence of this structure allows to create and manipulate
any dataset before an association to a network in the rare case it is useful, but it also allows
the creation of transition datasets for various internal operations of the framework.

• The layer structure is certainly the most important one. This structure is highly modular
since it must handle all the types of layers in the same object: Convolutional, pooling, dense,
or any other kind of layers. Each layer is associated to a network structure but is constructed
independently, so that a given layer could be used by different networks, for example to vary
the dataset to be trained from. Each layer contains a reference to the previous layer or to
the input dataset if it is the first one. It contains all the internal data that it needs, like the
weights, but also its output and any memory set that would be needed for intermediate trans-
formations between layers. It also usually contains all the equivalent memory required for
the backpropagation. Interestingly, the layer structure contains placeholder references in the
form of a per-type-of-layer structure and of activation function pointers that are referenced
during layer initialization.

• The layer parameter structures are as many as the number of layer types in the framework.
Each of them is an independent structure that is able to store the information that is required
regarding the layer type. For example the parameter structure associated to a convolutional
layer contains the number of filters, the filter size, the padding, the stride, etc. All these
structures can take the same void place-holder in a layer structure and are then converted
back to their true type in any function that requires this information.

255

A.3 Description of the layers

A.3 Description of the layers
The previous description of data structures already provides a lot of details on how the frame-
work is constructed. Still we want to provide more details here by listing the typical major
operations performed by each type of layer. Since it would be too long to distinguish the differ-
ent approaches we only discuss the matrix formalism in the general case.

A.3.1 Dense layer

The dense layers follow the various prescriptions from Section 4.8. They are composed of 2D
matrices that represent the batched input with a size depending on the previous layer output, the
weight matrix sized accordingly to the input and to the number of the neurons in the layer, and
finally the batched output depending on the number of neurons in the layer. All these elements
have a counterpart used for the error propagation through the layer. In the case where the previ-
ous layer is dense as well, the input is not duplicated and the previous layer output is directly in
the right form to be used as input in the present layer, assuming the use of the bias propagation
trick described in Section 4.8.4. In the case where the previous layer is a convolutional or
pooling one, then a temporary matrix is made to re-arrange the data in the proper format. We
also note that this is the only layer type that can use dropout in CIANNA for now.

The dense layers are mainly characterized by two functions, that strongly resemble what
was illustrated in Figure 11.21: the forward propagation and the back propagation. The forward
function is mainly composed of a matrix multiplication between the weight matrix and the
input followed by the use of the activation function associated to the layer applied on each
element of the output. Each activated neuron then gets a chance of being set to zero according
to the dropout rate. Therefore, the number of neurons dropped at each path is not constant.
The position of the deactivated neurons is stored for the backpropagation phase. The layer
does not actively transfer its output to the next layer, it is at the charge of the next layer to
gather this output. The construction of the backpropagation function is very similar, starting by
setting the propagated output error elements corresponding to the dropped neurons to zero. Then
it continues with a large matrix multiplication between the transposed weight matrix and the
remaining sparse output error. The result goes through the derivative of the activation function
of the previous layer and is then propagated to the previous layer output-error directly. Finally,
the backpropagation function handles the weight update by multiplying the present layer output
error by the transposed input it has received and stored from the forward phase. This creates an
update matrix that is used to change the weights. This update matrix is kept in the layer memory
and all subsequent update matrices use it to account for the momentum parameter.

A.3.2 Pooling layer

The pooling layers are by far the simplest ones. For now the pooling is systematically con-
sidered as a max pooling, but other kinds could be added simply. The present pooling layers
are characterized only by the pooling size. They are characterized by forward and backward
functions with a single internal operation for both (See Figures 11.13 and 11.14). The forward
function performs the pooling operation by selecting the maximum input pixel values in each
Po × Po area for each depth channel and stores the position of the maximum. The backpropa-
gation function then takes the output error it has inherited from the previous layer propagation
and propagates it in a matrix that contains zeros everywhere except for the position of the max-
imums of the forward phase that get the error of the associated output error pixel corresponding
to their area. The pooling layer also handles the transformation of this propagated error by
applying the derivative of the activation function of the previous layer to its own output.

256

A Detailed description of the CIANNA framework

A.3.3 Convolutional layer

The convolutional layers are the most complicated to handle. They are characterized by all the
necessary parameters: filter size, stride, padding, and number of filters. They are composed of
many 2D matrices, several of them being in fact flattened versions of 3D matrices. Presently we
consider that a convolutional layer can only be preceded by a convolution or pooling layer. It
should be possible to allow the network to grow convolutional layers from dense ones in order
to have for example auto-encoders convolutional architectures, but it is currently not present
in CIANNA. The flattened input usually considers that each depth channel is a continuous 1D
array, and that these depths can be stacked after another. There are two arrangements here, (i)
one where all the first depth channel images are subsequent in a 1D array and the second dimen-
sion is the number of input depths, (ii) and the second where all the depth channels of a given
image are flattened in a 1D array and the second dimension is the batch size. The input image
is usually considered in the second format, while the activation maps at the output of a convo-
lutional layers are in the first one. The layer is then composed of the filter volume that depends
both on the previous layer number of depth channels and on the number of filters of the present
layers. Finally the output is in the form of a flatten volume from the different activation maps.
As before, all these inputs have a duplicate form that is dedicated to the error backpropagation
phase. We remind that a simple example of matrix formalism for a single convolution layer is
given in Figure 11.21.

As for the previous layers, the convolutional ones are separated into a forward and a back-
propagation function, but more importantly here is the im2col function that transforms the input
in the appropriate form to be handled as a matrix multiplication. We dedicate the next Section
A.4 to this function and only refer to its use here for the rest of the description. The forward
function of a convolutional layer actually starts with the im2col transformation that rearranges
the input volume into a larger flattened volume that separates all the sub regions to which the
filters must be applied. This volume is then transposed and multiplied by the flattened weight
filter matrix to obtain all the activation maps with all their depth channels from the full batch
at once. The resulting volume then goes through the activation function of the present layer.
While the ReLU activation is strongly recommended for convolutional layers it is still possible
to use other activation functions in CIANNA.

The backpropagation function is very similar. Based on the input and output shapes it eval-
uates the parameters that must be used for the transposed convolution like the external and
internal padding or the stride. It then rotates and rearranges the filters following the prescription
from Section 11.1.8 so that each weight is effectively used to propagate each error pixel to the
input pixels that were involved in its activation. The im2col includes the padding and stride pa-
rameters in its transformation so there is no need to have an intermediate transformation. Then
the transformed error volume is transposed and multiplied by the rotated filter volume. The
propagated error obtained then goes through the derivative of the activation function from the
previous layer. As for the dense layer, the convolutional layer handles the weight update after
the propagation by multiplying the im2col transformed input from the forward phase by the
output error before the im2col transformation. The obtained weight update matrix is considered
with a momentum using its previous value and then used to change the weight filter volume.

257

A.4 Im2col function

A.4 Im2col function
The im2col function is by far the most important one of the all framework when considering
convolutional networks. We remind that a graphical representation of the procedure is presented
in Figure 11.20. The development of this function has concentrated a lot of optimization efforts
and the version we present here is already the 4th major version. This function is very important
because it is a prerequisite of the matrix formalism for convolutional layers, which is usually
much quicker than direct convolution implementation. The total time is then dominated by the
im2col function itself as we discussed in Section 11.2.4. Any improvement to this function
then leads to strong overall performance improvements of the whole network. In our approach
the im2col operation directly handles the transformation induced by the external and internal
padding and by the stride and filter size choice. This way we avoid any non-necessary interme-
diate computation and kernel launch time when using the GPU acceleration. We note that the
position of the zeros induced by the previous parameters do not move in the matrix expanded
form. For this reason the full matrix is set to zero at the layer creation and all elements that must
stay at zero are left untouched by our im2col implementation. We note that there is still room
for improvement for this function, especially using advanced CUDA shared memory manage-
ment and better thread block fine tuning. Our version currently minimizes the number of read
and write in memory by only accessing once to all input and output pixels. The fact that our
function remains memory bound with a minimal cache-miss in this situation is in fact a strong
indication that we have constructed a computationally efficient implementation that is mainly
limited by the GPU memory clock.

We present our im2col implementation in Algorithm 1 using the notations from Table A.1.
While this algorithm is fairly difficult to follow, we resume here the overall approach. The dif-
ferent loops allow to go through all the pixels of the original input volume. Then the objective
is to find all the locations of the transformed volume that must contain a duplicate of this input
pixel. We remind that this is due to the overlap of the different sub-regions in the image that
occurs when S < fs. With this approach there is only one reading per input pixel, which then
stays on the cache, and only one affectation for each output pixel that must receive a value and
no memory action for those that must stay to zero. To do so the algorithm searches all the
possible filter positions around the running input pixel. This can be seen as overlapping a filter
above the running pixel starting at the top-right corner position of the filter and then moving the
filter around this point following the stride value searching for all filter placements that still con-
tain the looked-at pixel. Each of the contribution of the current input pixel is then associated to
all the transformed output pixel identified, taking into account the external and internal padding.

This algorithm form is in fact slightly different than the concrete implementation in CIANNA.
In fact our im2col approach was designed directly into a CUDA kernel. The conversion between
the presented algorithm and the kernel is relatively easy and mainly consists in replacing the i,
d and z loops by the indices of a 3D CUDA thread block. The rest of the differences should
be marginal and was just made to improve the readability of the present algorithm. We note
that, using CUDA blocks, it is very important to consider the memory arrangement to avoid
cache-misses. Therefore, the z loop that goes through contiguous pixels must absolutely be as-
sociated with the quickest CUDA block index. We also note that the present matrix is suitable
for both forward and backpropagation by adjusting the Ishift, Dpad and Tflat parameters that depict
the arrangement of the images and their depth channels in memory. This function handles the
conversion to correspond to a fractionally-stride convolution with internal padding and various
strides. The choice of parameters that correspond to the adequate backpropagation is made
automatically by the convolutional layer in the backpropagation function.

258

A Detailed description of the CIANNA framework

Table A.1: Variable list for the im2col algorithm

Symbol Type Description
i variable Index of current image in the batch
d variable Index of depth channel in the input image
z variable Index of pixel in the input depth channel
w variable Pixel width coordinate in transformed image
h variable Pixel height coordinate in transformed image
x variable The corresponding region on the width axis
y variable The corresponding region on the height axis
pw variable The width position inside the filter
ph variable The height position inside the filter
pos variable Pixel 1-D flatten coordinate in transformed image
in pointer Temporary position in the input image
mod pointer Temporary position in the transformed image
Bsize constant Batch size
D constant Number of input depth channel
Iflat constant Size of a flattened input depth channel, i.e win × hin
Dpad constant Separation between two depth channels in memory (Iflat or BsizeIflat)
Pext constant External padding
Pint constant Internal padding
Tflat constant Size of a flattened image in the transformed format, i.e wout × hout × f 2

s D
Ishift constant Separation between two input images in memory (Iflat or DIflat)
fs constant Filter 1D size
S constant Convolution stride
Narea constant Number of regions in the image in one axis, i.e wout

for i← 0 to Bsize do
for d ← 0 to D do

in ← i × Ishift + d × Dpad

mod← i × Tflat + d × f 2
s

for z← 0 to Iflat do
w← (z ÷ ws) × (1 + Pint) + Pext

h ← (z / ws) × (1 + Pint) + Pext

x ← w/S
while (w − xS) < fs and x > 0 do

pw ← w − xS
y ← h/S
while (h − yS) < fs and y > 0 do

ph ← h − yS
pos← x f 2

s D + yNarea fs + ph fs + pw

if pos > 0 and pos < Iflat then
mod[pos]← in[z]

end
y ← y − 1

end
x ← x − 1

end
end

end
end

Algorithm 1: Im2col algorithm

259

A.5 Other important functions

A.5 Other important functions
We have reviewed the most important elements in the CIANNA framework. Around them are
also various auxiliary functions like the activation functions, weight initializations, dataset shuf-
fling, normalizations, dataset loading, etc. It is already possible to assemble all these elements
using C programming to create almost any network structure. Still, we added a few higher lever
functions that provide an easier network construction for the classical cases. Among them,
there are several construction functions that declare the network, dataset and layer structures.
The link between them is then automatized. Once assembled the network can be used with a
global training and forward functions that take various network hyperparameters as argument.

The simplest of these large scale functions is the one that performs a forward on a given
dataset. It simply takes the dataset as input and forwards each pre-constructed batch through
the network layers one after the other. The layer construction has already linked the respective
layer inputs and outputs so that each of them only has to be called through its associated internal
forward function. This global function is in fact built among another one that performs this task
in addition to computing the error between the targets and the network outputs. In this case the
error is only used as a monitoring information and not for training. It can noticeably display a
confusion matrix on the provided dataset. This forward with error computation allows one to
monitor the evolution of the error on the valid dataset during the training process.

Finally, the highest-level function is the training one. This function includes all the neces-
sary elements to perform the full network training during a given number of epochs. It handles
the learning rate with decay, momentum, the frequency of control steps, the frequency of shuf-
fle, etc. It means that it has access to all the required datasets, to the network structure, and to
all the hyperparameters that are not considered as parameters of the function itself. If needed,
it also manages a part of the data transfers between the CPU host memory and the GPU de-
vice memory. Overall, the function proceeds by forwarding the training dataset batches one
after another through all the network layers, then computes an output error that is used for the
backpropagation through each layer again. After a full epoch, the function shuffles the training
dataset if necessary and it computes the error on the valid dataset using the previous error func-
tion. Interestingly, we also added a performance measurement inside this function that takes the
form of the number of objects processed per second by the network.

A.6 Python and C interfaces
Now that we have covered most of the internal elements of CIANNA, we present here the two
interfaces, in C and Python, on a practical example. For this section and the following one about
the network performance we used the example from Section 11.2.5 on MNIST. We illustrate the
two interfaces in Listings 1 and 2 for Python and C, respectively. There are many tunable pa-
rameters in the CIANNA interface so we only discuss the global approach here since this section
does not stand in place of the full instructions that will be provided with the source code. Both
interfaces require the same list of actions that resemble the Keras approach. First, the network
must be created. This is done using a function that takes as arguments the size of the input and
output of the network and the batch size, which are all required to properly arrange memory
in the dataset constructions. Then the data can be loaded directly into the dataset structure in
the C interface, while for the Python one it requires the user to create Numpy arrays that are
then converted into the right format. The network construction is made through individual layer
creation functions for which the order is important to automatize the connection between the
subsequent layers. It is then possible to call the train function on the constructed network. Once
trained it is possible to forward the test dataset through the network to construct predictions.

260

A Detailed description of the CIANNA framework

Listing 1: Python interface
import CIANNA as cnn

V a r i o u s p a r a m e t e r s
image_wid th = 28
i m a g e _ h e i g h t = 28
image_dep th = 1
i n p u t _ d i m = np . a r r a y ([image_width , im ag e_h e i gh t , image_dep th])
o u t p u t _ d i m = 10
i n p u t _ b i a s = 0 . 1
b a t c h _ s i z e = 64

I n i t i a l i z e t h e ne twork
cnn . i n i t _ n e t w o r k (inpu t_d im , o u t p u t _ d i m , i n p u t _ b i a s , b a t c h _ s i z e , ’C_CUDA’)
Reading da ta i n t o numpy fp32 a r r a y s (d a t a _ t r a i n , t a r g e t _ t r a i n , . . .)
[. . .]

C r e a t i n g d a t a s e t i n s i d e t h e CIANNA C framework from t h e py tho n da ta
cnn . c r e a t e _ d a t a s e t ("TRAIN" , 60000 , d a t a _ t r a i n , t a r g e t _ t r a i n)
cnn . c r e a t e _ d a t a s e t ("VALID" , 10000 , d a t a _ v a l i d , t a r g e t _ v a l i d)
cnn . c r e a t e _ d a t a s e t ("TEST" , 10000 , d a t a _ t e s t , t a r g e t _ t e s t)

C re a t e a l l t h e ne twork l a y e r s
cnn . c o n v _ c r e a t e (f _ s i z e =5 , n b _ f i l t e r s =6 , s t r i d e =1 , padd ing =2 , a c t i v a t i o n ="RELU")
cnn . p o o l _ c r e a t e (p o o l _ s i z e =2)
cnn . c o n v _ c r e a t e (f _ s i z e =5 , n b _ f i l t e r s =16 , s t r i d e =1 , padd ing =2 , a c t i v a t i o n ="RELU")
cnn . p o o l _ c r e a t e (p o o l _ s i z e =2)
cnn . c o n v _ c r e a t e (f _ s i z e =3 , n b _ f i l t e r s =48 , s t r i d e =1 , padd ing =1 , a c t i v a t i o n ="RELU")
cnn . d e n s e _ c r e a t e (nb_neurons =1024 , a c t i v a t i o n ="RELU" , d r o p _ r a t e =0 . 5)
cnn . d e n s e _ c r e a t e (nb_neurons =256 , a c t i v a t i o n ="RELU" , d r o p _ r a t e =0 . 2)
cnn . d e n s e _ c r e a t e (1 0 , a c t i v a t i o n ="SOFTMAX")

T r a i n t h e ne twork and c o n t r o l r e g u l a r l y on t h e v a l i d d a t a s e t
cnn . t r a i n _ n e t w o r k (nb_epoch =40 , l e a r n i n g _ r a t e =0 .0002 , e n d _ l e a r n i n g _ r a t e =0 .0001 , \
c o n t r o l _ i n t e r v =1 , momentum =0 .9 , decay =0 .009 , confmat =1)

Forward on t h e t e s t d a t a s e t
cnn . f o r w a r d _ n e t w o r k ()

Listing 2: C interface
[. . .]

i n t i n p u t _ d i m [3] = { 2 8 , 2 8 , 1 } ;
i n t o u t p u t _ d i m = 10 , b a t c h _ s i z e =64 , n e t _ i d = 0 ;
f l o a t b i a s = 0 . 1 ;
ne twork * c _ n e t ;

i n i t _ n e t w o r k (n e t _ i d , inpu t_d im , ou tpu t_d im , b i a s , b a t c h _ s i z e , C_CUDA, / * d y n a m i c _ l o a d i n g * / 0) ;
c _ n e t = n e t w o r k s [n e t _ i d] ;

c_ne t −> t r a i n = c r e a t e _ d a t a s e t (c_ne t , 6 0 0 0 0) ;
c_ne t −> t e s t = c r e a t e _ d a t a s e t (c_ne t , 1 0 0 0 0) ;
c_ne t −> v a l i d = c r e a t e _ d a t a s e t (c_ne t , 1 0 0 0 0) ;
/ / Reading d a t a d i r e c t l y i n t o t h e d a t a s e t s t r u c t u r e s r e f e r e n c e d in t h e ne twork
[. . .]

/ / E x p l i c i t cuda d a t a s e t c o n v e r s i o n
c u d a _ c o n v e r t _ d a t a s e t (c_ne t , &c_ne t −> t r a i n) ;
c u d a _ c o n v e r t _ d a t a s e t (c_ne t , &c_ne t −> t e s t) ;
c u d a _ c o n v e r t _ d a t a s e t (c_ne t , &c_ne t −> v a l i d) ;

c o n v _ c r e a t e (c_ne t , NULL, 5 , 6 , 1 , 2 , RELU, NULL) ;
p o o l _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] , 2) ;
c o n v _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] , 5 , 16 , 1 , 2 , RELU, NULL) ;
p o o l _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] , 2) ;
c o n v _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] , 3 , 48 , 1 , 1 , RELU, NULL) ;
d e n s e _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] , 1024 , RELU, 0 . 5 , NULL) ;
d e n s e _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] , 256 , RELU, 0 . 2 , NULL) ;
d e n s e _ c r e a t e (c_ne t , c_ne t −> n e t _ l a y e r s [c_ne t −>n b _ l a y e r s −1] ,

c_ne t −>outpu t_d im , SOFTMAX, 0 . 0 , NULL) ;

t r a i n _ n e t w o r k (c_ne t , / * epochs * / 40 , / * c o n t r o l _ i n t e r v * / 1 , / * l e a r n i n g _ r a t e * / 0 . 0 0 0 2 ,
/ * e n d _ l e a r n i n g _ r a t e * / 0 . 0 0 0 1 , / * momentum * / 0 . 9 , / * decay * / 0 . 0 0 9 ,
/ * confmat * / 1 , / * s a v e _ n e t _ e v e r y * / 1 , / * s h u f f l e _ g p u * / 1 , / * s h u f f l e _ e v e r y * / 1) ;

f o r w a r d _ t e s t s e t (c_ne t , c_ne t −>epoch , / * d r o p o u t _ r e a l i s a t i o n s * / 1) ;

261

A.6 Python and C interfaces

Now that the general procedure is described we list here a few details on the interfaces.
First, it is visible that many of the network hyperparameters are expressed in the example we
selected. It is possible to custom simple parameters like the batch size or the learning rate,
momentum, etc; but also layer dependent parameters like the stride, padding, number of filters,
number of neurons, dropout, etc; and more importantly it is possible to select the activation
function for each layer. In the Python interface there are many optional parameters that are not
all expressed here, while in our classic C interface all the parameters are required every time.
This exposes some details of the underlying C structure of CIANNA. It is important to note that
the Python interface only calls the equivalent functions from the C interface in a simplified way.
Therefore, the C interface provides much more control over the network behavior. For example
it is possible to design two networks that share some layers, or to have much more datasets
that can be switched to emulate transfer learning. A more practical example that we actually
made was a Generative Adversarial Network, which we were able to design using a succession
of networks to associate the generative and the discriminative parts and train them separately
or simultaneously. Finally, we note that both the interfaces allow for what we call "dynamical
loading" on GPU, which consists in loading each batch individually on the GPU memory while
keeping the all dataset on the host memory. While this approach is expected to add memory
loading overhead during the training, we observed that this overhead mostly overlaps with other
actions performed by the framework like kernel launch latency. In addition, this allows to del-
egate the shuffle task to the CPU host memory that is much more efficient than the GPU for
this and that can therefore be done concurrently to GPU computations. For these reasons, the
performance hit induced by the dynamic loading is most of the time negligible while allowing
to handle much larger datasets that would not fit entirely inside the GPU memory. We also
highlight that the network training and forward functions can be serialized to construct train-
ing blocks or to construct more complex evolution of the training hyperparameters or dataset.
Finally, the CIANNA framework can save the network state regularly during the training, and
consequently it is able to reload any previously trained network. This allows to pursue training
from a given point, to make predictions using a saved network, or to perform transfer learning
from any network.

We illustrate in Listing 3 a typical console output of the network construction and training
for 3 epochs using the Python interface on the MNIST example. This constitutes the CIANNA
log file that can be saved during training and that shows several hyperparameters as well as
the network layer structure. This output was made using the option that displays the confusion
matrix from the test dataset at each control step, here at every epoch. This allows one to have
a detailed view of the network prediction for all the classes at each epoch. While the network
appears to have already a very good prediction at the first epoch with a global accuracy of
97.72%, we remind that the best accuracy achieved by this network is around 99.35% as exposed
in Section 11.2.5. With this log it is also possible to monitor the network error on the validation
dataset expressed as the "cumulated error" at each epoch, which correspond to the average of
the cross-entropy error computed on the prediction of each validation object in this case. On
this example it is visible that the error slowly decreases with the values 0.0758, 0.0570, and
0.0463. Because this error is measured from a given dropout selection and not from a scaling
of the weights, it is expected that it will present significant oscillations during training, the best
classification result on this example being obtained at an error around 0.036. Still, it is usually
easy to spot overtraining by looking for a global increase of this error over several control steps.

262

A Detailed description of the CIANNA framework

Listing 3: Typical CIANNA training monitor
###
I m p o r t i n g CIANNA python module V−p . 0 . 4 , by D. Cornu
###

Network have been i n i t i a l i z e d wi th :
I n p u t d i m e n s i o n s : 28 x28x1
Outpu t d imens ion : 10
Batch s i z e : 64
Using CUDA compute methode

Reading i n p u t s . . . Done !
Reading t a r g e t s . . . Done !
S e t t i n g t r a i n i n g s e t
i n p u t dim : 7 8 4 , C r e a t i n g d a t a s e t w i th s i z e 60000 (n b _ b a t c h = 938) . . . Done !
C o n v e r t i n g d a t a s e t t o GPU d e v i c e (CUDA)
S e t t i n g v a l i d s e t
i n p u t dim : 7 8 4 , C r e a t i n g d a t a s e t w i th s i z e 10000 (n b _ b a t c h = 157) . . . Done !
C o n v e r t i n g d a t a s e t t o GPU d e v i c e (CUDA)
S e t t i n g t e s t i n g t e s t
i n p u t dim : 7 8 4 , C r e a t i n g d a t a s e t w i th s i z e 10000 (n b _ b a t c h = 157) . . . Done !
C o n v e r t i n g d a t a s e t t o GPU d e v i c e (CUDA)

Layer o u t p u t : 28 28
L : 1 − C o n v o l u t i o n a l l a y e r c r e a t e d :

I n p u t : 28 x28x1 , F i l t e r s : 5x5x6 , Outpu t : 28 x28x6
A c t i v a t i o n : (RELU) , S t r i d e : 1 , padd ing : 2

L : 2 − P o o l i n g l a y e r l a y e r c r e a t e d :
I n p u t : 28 x28x6 , P . s i z e : 2 , Outpu t : 14 x14x6

Layer o u t p u t : 14 14
L : 3 − C o n v o l u t i o n a l l a y e r c r e a t e d :

I n p u t : 14 x14x6 , F i l t e r s : 5x5x16 , Outpu t : 14 x14x16
A c t i v a t i o n : (RELU) , S t r i d e : 1 , padd ing : 2

L : 4 − P o o l i n g l a y e r l a y e r c r e a t e d :
I n p u t : 14 x14x16 , P . s i z e : 2 , Outpu t : 7 x7x16

Layer o u t p u t : 7 7
L : 5 − C o n v o l u t i o n a l l a y e r c r e a t e d :

I n p u t : 7x7x16 , F i l t e r s : 3x3x48 , Outpu t : 7 x7x48
A c t i v a t i o n : (RELU) , S t r i d e : 1 , padd ing : 1

L : 6 − Dense l a y e r c r e a t e d :
I n p u t : 2353 , Nb . Neurons : 1024
A c t i v a t i o n : (RELU) , Dropout : 0 .500000

L : 7 − Dense l a y e r c r e a t e d :
I n p u t : 1025 , Nb . Neurons : 256
A c t i v a t i o n : (RELU) , Dropout : 0 .200000

L : 8 − Dense l a y e r c r e a t e d :
I n p u t : 257 , Nb . Neurons : 10
A c t i v a t i o n : (SMAX) , Dropout : 0 .000000

Epoch : 1
Net . t r a i n i n g p e r f . : 11215 .43 i t e m s / s
L e a r n i n g r a t e : 0 .0002
Confus ion m a t r i x l o a d
Net . f o r w a r d p e r f . : 27050 .57 i t e m s / s
Cumulated e r r o r : 0 .0758373

R e c a l l
969 | 1 | 2 | 0 | 0 | 0 | 2 | 1 | 2 | 3 | 98.88%

0 | 1128 | 3 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 99.38%
6 | 1 | 1012 | 3 | 1 | 0 | 0 | 7 | 2 | 0 | 98.06%
1 | 0 | 4 | 981 | 0 | 12 | 0 | 5 | 5 | 2 | 97.13%
0 | 0 | 3 | 0 | 953 | 0 | 6 | 1 | 0 | 19 | 97.05%
2 | 0 | 1 | 8 | 0 | 878 | 2 | 0 | 0 | 1 | 98.43%

10 | 4 | 1 | 0 | 1 | 8 | 933 | 0 | 1 | 0 | 97.39%
0 | 3 | 6 | 4 | 0 | 0 | 0 | 1009 | 1 | 5 | 98.15%
6 | 0 | 5 | 3 | 3 | 4 | 0 | 3 | 946 | 4 | 97.13%
4 | 6 | 1 | 6 | 5 | 3 | 0 | 18 | 3 | 963 | 95.44%

P r e c i s i o n : 97.09% 98.69% 97.50% 97.61% 98.96% 97.02% 98.83% 96.65% 98.23% 96.59%
C o r r e c t : 97.719994%

Epoch : 2
Net . t r a i n i n g p e r f . : 11232 .12 i t e m s / s
L e a r n i n g r a t e : 0 .000199104
Confus ion m a t r i x l o a d
Net . f o r w a r d p e r f . : 27467 .02 i t e m s / s
Cumulated e r r o r : 0 .0570341

R e c a l l
974 | 1 | 0 | 0 | 0 | 0 | 2 | 1 | 2 | 0 | 99.39%

1 | 1124 | 4 | 1 | 0 | 0 | 0 | 1 | 3 | 1 | 99.03%
1 | 1 | 1020 | 0 | 0 | 0 | 0 | 4 | 6 | 0 | 98.84%
0 | 0 | 2 | 994 | 0 | 4 | 0 | 5 | 5 | 0 | 98.42%
0 | 0 | 1 | 0 | 970 | 0 | 1 | 1 | 2 | 7 | 98.78%
2 | 0 | 0 | 5 | 0 | 879 | 2 | 0 | 4 | 0 | 98.54%
8 | 4 | 0 | 0 | 4 | 4 | 936 | 0 | 2 | 0 | 97.70%
0 | 3 | 12 | 6 | 0 | 0 | 0 | 998 | 3 | 6 | 97.08%
4 | 0 | 4 | 3 | 1 | 2 | 1 | 1 | 956 | 2 | 98.15%
3 | 2 | 0 | 8 | 4 | 3 | 0 | 7 | 9 | 973 | 96.43%

P r e c i s i o n : 98.09% 99.03% 97.79% 97.74% 99.08% 98.54% 99.36% 98.04% 96.37% 98.38%
C o r r e c t : 98.239998%

Epoch : 3
Net . t r a i n i n g p e r f . : 11355 .42 i t e m s / s
L e a r n i n g r a t e : 0 .000198216
Confus ion m a t r i x l o a d
Net . f o r w a r d p e r f . : 27464 .00 i t e m s / s
Cumulated e r r o r : 0 .0463487

R e c a l l
973 | 0 | 0 | 0 | 0 | 2 | 2 | 1 | 2 | 0 | 99.29%

1 | 1116 | 3 | 1 | 0 | 0 | 5 | 4 | 5 | 0 | 98.33%
1 | 0 | 1025 | 2 | 0 | 0 | 0 | 2 | 2 | 0 | 99.32%
0 | 0 | 1 | 998 | 0 | 4 | 0 | 4 | 3 | 0 | 98.81%
0 | 0 | 2 | 0 | 970 | 0 | 2 | 1 | 2 | 5 | 98.78%
2 | 0 | 0 | 3 | 0 | 884 | 1 | 0 | 2 | 0 | 99.10%
6 | 2 | 0 | 0 | 4 | 6 | 939 | 0 | 1 | 0 | 98.02%
0 | 0 | 7 | 4 | 0 | 0 | 0 | 1017 | 0 | 0 | 98.93%
1 | 0 | 5 | 3 | 0 | 6 | 3 | 1 | 954 | 1 | 97.95%
3 | 3 | 0 | 7 | 2 | 3 | 0 | 6 | 5 | 980 | 97.13%

P r e c i s i o n : 98.58% 99.55% 98.27% 98.04% 99.39% 97.68% 98.63% 98.17% 97.75% 99.39%
C o r r e c t : 98.559998%

[. . .]

263

A.7 Performance comparison

A.7 Performance comparison
Now that we have presented how CIANNA can be used, we proceed to an evaluation of its com-
pute performance. To have a reference we will declare the exact same network on an identical
dataset with CIANNA and with a Keras implementation that relies on TensorFlow, both using
GPU acceleration. All the measurements were made on our Nvidia P2000 mobile since it is the
system on which we have the finest control over the software versions and hardware properties.
Even if we usually use the latest CUDA 10.2 version with CIANNA, the present TensorFlow
stable release is limited to CUDA 10.1, we then compiled our framework with this version as
well. We remind that the specifications of the P2000 mobile are: 768 CUDA cores clocked at
1544 MHz (for our version), with 4GB of GDDR5 dedicated memory clocked at 1502 MHz
(6008 Mhz effective) and interfaced with a 128 bit connection to the host memory, achieving 96
GB/s of bandwidth. The host system uses a Xeon E-2176M, and both frameworks use only a
single CPU thread to drive the GPU on a single core that sustains a sturdy 4.2 GHz clock under
load. The reference network used for the comparison is again the one from the MNIST dataset,
since it is one of our network with the most convolutional layers.

First we observed that both frameworks achieved very similar prediction quality on a iden-
tical architecture, even if the ADAM error gradient optimization is automatically used in the
Keras version. The only advantage that this advanced gradient optimization provides is that it
is more resilient to changes in the network learning rate, momentum, and batch size, and more
generally of all elements that affect the size of the weight updates. In practical terms it means
that the network is more likely to converge properly in a larger range of values for these param-
eters than with our present very naive learning rate decay implementation. In terms of number
of epochs to converge, CIANNA has usually a lesser accuracy during the first few epochs on
which the ADAM optimized Keras version is more efficient, but still the two frameworks reach
their best prediction at a similar epoch.

In terms of compute performance, it is difficult to separate some network construction ele-
ments from the training function itself. For this reason we only excluded the initial data loading
and kept the network initialization, the layers creation and the data conversion into the com-
parison, even if the times for these operations are marginal against the training time. Both
framework implementations were executed several times in a row to account for possible over-
heating of the system that would lead to thermal throttling in one run and not in the other.

We present the performance comparison results in Table A.2 for 4 network architectures
that are variations around the one we used originally for MNIST. We used the same architecture
description as in Section 12.3.2. Before analyzing the results we note that: (i) all the convo-
lutional layers use an external padding that preserves the image size between the input and the
output, but that is not displayed to increase the readability, (ii) Keras performance metric are
the time in second for an epoch, or the time in millisecond for a batch, both not being very
accurate to compute the number of items used per second during training, which is the metric
used in CIANNA. From these results we observed that CIANNA is most of the time faster for
the considered architectures. For the dense-only network (N°2) CIANNA is even twice faster
than Keras. The other architectures tend to confirm a general trend of CIANNA being much
faster for dense layers, and Keras being significantly faster for the convolutional layers. The
latter effect is expected considering that Keras/TensorFlow relies on the cuDNN closed frame-
work from Nvidia that is strongly optimized for convolution, using dedicated kernels that was
specifically designed for the task.

264

A Detailed description of the CIANNA framework

Table A.2: Performance comparison CIANNA vs Keras/TensorFlow

Network architecture
CIANNA Keras

Time [s] Object/s Time (s) Object/s

1. I-28.28, C-6.5, P-2, C-16.5, P-2, C-48.3,
D-1024_0.5, D-256_0.2, D10

226 11360 241 ∼9900

2. D-1024_0.5, D-1024_0.5, D-256_0.2, D10
63 41000 144 ∼18700

3. I-28.28, C-6.5, P-2, C-16.5, P-2, C-48.3,
D-256_0.2, D10

185 14000 208 ∼12800

4. I-28.28, C-6.5, P-2, C-16.5, P-2, C-48.3,
C-96.3, D-1024_0.5, D-256_0.2, D10

339 7540 324 ∼7800

We also noticed a few interesting behavior during training. First, the Keras framework fully
utilizes the GPU memory while CIANNA only uses a third of it, and does not suffer of important
performance impact when using the dynamic load that allows to use only a few hundred MB
on the GPU. Concurrently, we observed that the Nvidia monitoring tools report a 50 to 70%
GPU utilization when using Keras, while the GPU utilization is always saturated at 100% with
CIANNA. We note that many behaviors of the frameworks can be affected by the present P2000
architecture and what are its inherent bottlenecks. For example we noticed that CIANNA as
well does shows a ∼ 75% GPU utilization on the V100 GPU. Still, this difference highlights
that Keras must be mostly memory bound, while CIANNA remains compute bound for at list
a significant subset of its operations. For this reason we expect that much deeper convolutional
architectures will certainly train faster with Keras than CIANNA. Still, our results here are
sufficient to predict that CIANNA will not be far behind in computational time, and that it will
be as good or better on large networks with a more balanced architecture.

A.8 Future improvements
Presently, the objectives for the development of CIANNA are the addition of the "mixed pre-
cision" support to be used with Nvidia tensor cores, which should lead to a huge performance
boost of the framework when using modern GPUs. We also want to include multi GPU support,
at least on a single cluster node. Overall, we aim at improving the memory loading scheme
since we were limited by the host memory usage in our extinction map application. Just like we
added dynamic load to the GPU we would like to serialize the data loading from the permanent
memory into the host RAM memory with a minimum performance impact overall and allow the
possibility of dynamic data augmentation that is especially useful when working with images.
Another major improvement would be to generalize CIANNA to handle inputs that present
more than 2D spatial coherency, so we could have several 3D cubes as input "channels". We
would also like to increase the diversity of weight initialization, activation functions and layers.
We would like to create more high-level functions to handle some cases like GAN, Geneti-
cally trained ANN, semi-supervised learning including clustering, etc. Finally, we are looking
forward to automatize more complex layer connections like in Recurrent Neural Network, or
Residual Neural Networks, or even blocks of layers like in the Inception architecture.

265

LIST OF FIGURES

List of Figures

1.1 Spiral galaxy examples . 6
1.2 Artistic view of the Milky Way . 7
1.3 Gaia DR2 view of the Milky Way in the plane of the sky 7
1.4 Extinction curve variation as a function of RV 12
1.5 2MASS view of the Milky Way in the plane of the sky 12
1.6 Dust emission as a function of wavelength . 13
1.7 Planck dust opacity view of the Milky Way in the plane of the sky 13
1.8 Milky Way illustration with observational constraints 14
1.9 Longitude-velocity map using CO(J=1-0) emission 15
1.10 Galactic plane source-count in the infrared from Spitzer 16
1.11 Discrete catalogs for Galactic arm fitting . 16
1.12 Extinction map from Marshall et al. (2006) . 17
3.1 Simplified YSO SED for each class. 30
4.1 List of common ML algorithms packed by type 37
4.2 Schematic view of a binary neuron . 41
4.3 Schematic view of a binary neuron with bias node 43
4.4 Effect of a bias node on a binary separation 43
4.5 Schematic view of a simple Perceptron neural network 45
4.6 Three class separation using a trained Perceptron 45
4.7 Illustration of a sigmoid activation . 46
4.8 Schematic view of a "deep" neural network with one hidden layer 47
4.9 Example of sigmoid combinations . 47
4.10 Three class separation in a two dimensional space using a MLP 48
4.11 Evolution of the error as a function of the number of neurons 52
4.12 Error value in the weight space . 53
4.13 Effect of overtraining on a one dimensional regression 57
4.14 Graphical representation of the matrix batch training 63
4.15 Sum-of-square error against cross-entropy error 69
4.16 Two dimensional regression example results. 74
4.17 Evolution of the error during training . 74
4.18 Evolution of the error as a function of the number of neurons 75
5.1 Selection of CMD diagrams from our simplified G09 81
5.2 Spitzer Coverage of the Orion cloud . 85
5.3 Spitzer Coverage of Mon OB1. East . 85
5.4 Orion and NGC 2264 as seen by AllWISE . 86
5.5 Distribution of the < 1 kpc regions . 86
5.6 Rebalancing process illustrated on the Combined dataset 87
5.7 Illustration of the ANN used for the YSO classification 91
6.1 Differences in feature space coverage for our datasets 103
6.2 Space coverage of misclassified objects in the O-N case 104
6.3 Space coverage of misclassified objects in the N-O case 107

266

List of Figures

6.4 Zoom on misclassified objects in the F-C case 114
6.5 Input parameter space coverage in the F-C case 117
6.6 Orion A YSO candidate distribution . 119
6.7 Orion B YSO candidates distribution . 119
6.8 NGC 2264 YSO candidates distribution . 120
6.9 Herschel view of the G202.3+2.5 region . 120
7.1 Ternary plots of output membership probability in the F-C case 121
7.2 Histograms of membership probability in the F-C case 122
7.3 See caption on second half of the figure next page. 125
7.3 Probability threshold effect on feature space coverage 126
7.4 ROC curves for output classes in the F-C case 127
7.5 Fraction of exclusion, recall and precision as a function of probability treshold . 128
7.6 Probability filter on Orion CI YSO candidate distribution 130
7.7 Probability filter on Orion CII YSO candidate distribution 131
7.8 Probability filter on NGC 2264 YSO candidate distribution 132
8.1 Orion A distance distribution from Großschedl et al. (2018) 135
8.2 Orion A distance distribution from the F-C YSO candidates 136
8.3 Orion B distribution from the F-C YSO candidates 140
8.4 NGC2264 distance distribution from the F-C YSO candidates 142
10.1 Examples of recent 3D extinction maps . 153
10.2 Illustration of a simple LOS with two clouds 157
10.3 Extinction profile example . 157
10.4 Observed diagrams for comparison with the BGM 158
10.5 Model without extinction and observed extinction for the same LOS 159
11.1 Simple digit image 6 × 7 . 163
11.2 Cross pattern localization example . 163
11.3 FC network for the cross pattern localization example 163
11.4 Computer vision example for autonomous vehicle 164
11.5 Multiple cross pattern detection in a large image with noise 165
11.6 1D convolution example . 166
11.7 2D convolution example . 167
11.8 Common filters applied to a selection of astronomical images 169
11.9 Multiple filters for simple digit recognition . 170
11.10 Detailed convolutional layer . 171
11.11 Illustration of a ReLU activation . 173
11.12 CNN filters representation-level examples . 174
11.13 Illustration of the Max-Pooling operation . 175
11.14 Illustration of the Max-Pooling error backpropagation 176
11.15 Illustration of a 1D transposed convolution operation 177
11.16 Illustration of a 2D transposed convolution operation 178
11.17 Illustration of the complete forward and backpropagation process for S = 1 . . 179
11.18 Illustration of the complete forward and backpropagation process for S = 2 . . 179

267

LIST OF FIGURES

11.19 Illustration of a typical CNN architecture . 183
11.20 Illustration of the im2col operation . 186
11.21 Graphical representation of a CNN matrix batch training 187
11.22 Excerpt of the first 36 images of the MNIST dataset 190
11.23 Error prediction using dropout in a 1D regression case 192
12.1 Simulated 2MASS CMDs for giant and main sequence stars 194
12.2 Effect of distance on a 2MASS CMD . 195
12.3 Fitting of the cut in magnitude for the three 2MASS bands 197
12.4 Fit of 2MASS uncertainties . 197
12.5 Effect of individual clouds on the 2MASS CMD 199
12.6 Examples of GRF realizations . 201
12.7 Example of a combined Gaussian random field profile 202
13.1 Single 2MASS LOS training prediction on the corresponding test set 211
13.2 2MASS star count . 212
13.3 Integrated view of the plane of the sky for the 2MASS single LOS training . . . 213
13.4 Face-on view for the 2MASS single-LOS training 215
13.5 Cartesian face-on view for the 2MASS single-LOS training 216
13.6 Face-on view for the standard deviation of the 2MASS single-LOS training . . 217
13.7 2MASS Multiple-LOS training prediction on the corresponding test set 220
13.8 Plane of the sky view for the 2MASS multiple-LOS training 221
13.9 Integrated view as a function of distance . 222
13.10 Face-on view for the 2MASS multiple-LOS training 223
13.11 Face-on view for the standard deviation of the 2MASS multiple-LOS training . 224
13.12 Cartesian face-on view for the 2MASS multiple-LOS training 225
13.13 Plane-of-the-sky view for the 2MASS latitude sampling multiple-LOS training . 227
13.14 Comparison of Galactic Place for the 2MASS multiple-LOS training with M20 229
13.15 Comparison of face-on views for the 2MASS multiple-LOS training with M20 . 230
13.16 Face-on view comparison at short distances for the 2MASS multiple-LOS training231
13.17 Dual 2MASS CDM illustration . 232
13.18 Plane-of-the-sky view of the 2MASS dual-CMD multiple-LOS training 232
13.19 Face-on view for the dual-CMD 2MASS multiple-LOS training 233
13.20 Cartesian face-on view for the dual-CMD 2MASS multiple-LOS training 233
14.1 Effect of individual clouds on the Gaia diagram 236
14.2 Fitting of the cut in magnitude for the three Gaia bands 236
14.3 Fit of Gaia uncertainties . 237
14.4 Plane of the sky view for the Gaia-2MASS single-LOS training 238
14.5 Face-on view for the Gaia-2MASS single-LOS training 239
14.6 Cartesian face-on view of the Gaia-2MASS single-LOS training 239
14.7 Plane-of-the-sky view for the Gaia-2MASS multiple-LOS training 240
14.8 Face-on view for the Gaia-2MASS multiple-LOS training 241
14.9 Cartesian face-on view for the Gaia-2MASS multiple-LOS training 242
14.10 Face-on view comparison at short distance for various maps 243

268

List of Tables

List of Tables

4.1 Confusion matrix example for a cats and dogs example. 69
4.2 Imbalanced classification for a medical example using balanced proportions. . . 71
4.3 Imbalances classification for a medical example using imbalance proportion with

similar recall for the two classes . 71
4.4 Imbalanced classification for a medical example using imbalanced proportions

with a better recall for the dominant class. 72
4.5 Iris classification, confusion matrix of the test set. 76
4.6 Wines classification, confusion matrix of the test set. 78
5.1 Results of our simplified G09 method for our various datasets. 83
5.2 Composition of the training and test datasets for each labeled dataset. 89
5.3 Non structural network hyperparameter values used in training for each dataset. 92
6.1 List of case studies regarding the dataset used to train the network and the dataset

to which it was applied to provide predictions. 95
6.2 Confusion matrix for the O-O case for a typical run. 96
6.3 Subclass distribution for the O-O case. 96
6.4 Confusion matrix for a balanced training on the O-O case for a typical run. . . . 97
6.5 Confusion matrix for the O-O case forwarded on the full dataset. 98
6.6 Subclass distribution for the O-O case forwarded on the full dataset. 98
6.7 Confusion matrix for the N-N case for a typical run. 99
6.8 Subclass distribution for the N-N case. 99
6.9 Confusion matrix for the N-N case forwarded on the full dataset. 101
6.10 Subclass distribution for the N-N case forwarded on the full dataset. 101
6.11 Confusion matrix for the O-N case forwarded on the full NGC 2264 dataset. . . 102
6.12 Subclass distribution for the O-N case forwarded on the NGC 2264 dataset. . . . 102
6.13 Confusion matrix for N-O case forwarded on the full Orion dataset. 106
6.14 Subclass distribution for the N-O case forwarded on the full Orion dataset. . . . 106
6.15 Confusion matrix for the C-C case for a typical run. 108
6.16 Subclass distribution of the C-C case. 108
6.17 Confusion matrix for the C-C case forwarded on the full dataset. 109
6.18 Subclass distribution for the C-C case forwarded on the full dataset. 109
6.19 Confusion matrix for the F-C case for a typical run. 112
6.20 Subclass distribution for the F-C case. 112
6.21 Confusion matrix for the F-C case forwarded on the full combined dataset. . . . 113
6.22 Subclass distribution for the F-C case forwarded on the full combined dataset. . 113
6.23 Confusion matrix for the F-O case. 115
6.24 Confusion matrix for the F-N case. 115
7.1 F-C case forwarded on the full dataset with membership probability > 0.9. . . . 123
7.2 F-C case forwarded on the full dataset with membership probability > 0.95. . . 123
7.3 F-C case forwarded on the full dataset with membership probability > 0.99. . . . 123

269

LIST OF TABLES

7.4 First 20 and last 20 elements of the catalog of network prediction in the F-C case
using the full dataset. 133

8.1 Orion A sample size for different selection criteria. 134
8.2 Orion A distance estimates and dispersion for each galactic longitude bin. 137
8.3 Orion B distance estimates and dispersion for each identified region. 140
8.4 NGC 2264 sample size for different selection criteria. 141
8.5 NGC 2264 distance estimates and dispersion for each galactic longitude bin. . . 141
11.1 Confusion matrix for the MNIST prediction using our CNN implementation. . . 191
12.1 Uncertainty fitting free parameters for all 2MASS bands 196
14.1 Uncertainty best fit parameters for all Gaia bands and parallax 237
A.1 Variable list for the im2col algorithm . 259
A.2 Performance comparison CIANNA vs Keras/TensorFlow 265

270

References

References

Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems [38]

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., et al. 2016, arXiv e-prints, 1603.04467 [38]
Allen, L. E., Calvet, N., D’Alessio, P., et al. 2004, ApJs, 154, 363 [29]
Almeida, C., Baugh, C. M., Lacey, C. G., et al. 2010, MNRAS, 402, 544 [160]
Alvarez, E., Lamagna, F., Miquel, C., & Szewc, M. 2020, arXiv e-prints, 2002.02460 [36]
Anand, R., Mehrotra, K. G., Mohan, C. K., & Ranka, S. 1993, IEEE Transactions on Neural Net-

works, 4, 962 [70]
Anderson, A., Vasudevan, A., Keane, C., & Gregg, D. 2017, arXiv e-prints, 1709.03395 [188]
Arenou, F., Luri, X., Babusiaux, C., et al. 2018, A&A, 616, A17 [158]
Bahdanau, D., Cho, K., & Bengio, Y. 2014, arXiv e-prints, 1409.0473 [36]
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R. 2018, AJ, 156, 58

[134, 155, and 235]
Banerji, M., Lahav, O., Lintott, C. J., et al. 2010, MNRAS, 406, 342 [20]
Baymani, Kerayechian, & Effati. 2010, Applied Mathematics, 1, 288 [75]
Beaumont, C. N., Williams, J. P., & Goodman, A. A. 2011, ApJ, 741, 14 [21]
Belongie, S., Malik, J., & Puzicha, J. 2002, IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24, 509 [189]
Bengio, Y., Courville, A., & Vincent, P. 2012, arXiv e-prints, 1206.5538 [54]
Benjamin, R., ed. 2014, The Other Half of the Milky Way, ed. R. Benjamin [14]
Benjamin, R. A., Churchwell, E., Babler, B. L., et al. 2005, ApJL, 630, L149 [15]
Berat Sezer, O., Ugur Gudelek, M., & Murat Ozbayoglu, A. 2019, arXiv e-prints, 1911.13288 [36]
Bialopetravičius, J. & Narbutis, D. 2020, A&A, 633, A148 [160]
Bienayme, O., Robin, A. C., & Creze, M. 1987, A&A, 180, 94 [158]
Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Springer) [40, 49, 58, and 176]
Bland-Hawthorn, J. & Gerhard, O. 2016, ARA&A, 54, 529 [6 and 8]
Blundell, C., Cornebise, J., Kavukcuoglu, K., et al. 2015, arXiv e-prints, 1505.05424 [191]
Bojarski, M., Del Testa, D., Dworakowski, D., et al. 2016, arXiv e-prints, 1604.07316 [36]
Bournaud, F. & Combes, F. 2002, A&A, 392, 83 [10]
Bournaud, F., Elmegreen, B. G., Teyssier, R., et al. 2010, MNRAS, 409, 1088 [10]
Breen, P. G., Foley, C. N., Boekholt, T., & Portegies Zwart, S. 2020, MNRAS, 494, 2465 [75]
Bridle, J. S. 1990, in Neurocomputing (Springer), 227–236 [67 and 68]
Bron, E., Daudon, C., Pety, J., et al. 2018, A&A, 610, A12 [21]
Brook, C. B., Kawata, D., Gibson, B. K., & Freeman, K. C. 2004, ApJ, 612, 894 [6]
Brown, A. G. A., de Geus, E. J., & de Zeeuw, P. T. 1994, A&A, 289, 101 [83]
Brown, D. W., Chandler, C. J., Carlstrom, J. E., et al. 2000, MNRAS, 319, 154 [29]
Buckner, A. S. M., Khorrami, Z., González, M., et al. 2020, A&A, 636, A80 [28, 84, and 118]
Campbell, M., Hoane, A., & hsiung Hsu, F. 2002, Artificial Intelligence, 134, 57 [20]

271

REFERENCES

Cantat-Gaudin, T., Jordi, C., Vallenari, A., et al. 2018, A&A, 618, A93 [83, 141, 214, and 215]
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245 [10 and 11]
Cazzoletti, P., Manara, C. F., Baobab Liu, H., et al. 2019, A&A, 626, A11 [145]
Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv e-print, 1612.05560 [22 and 154]
Chellapilla, K., Puri, S., & Simard, P. 2006, in Tenth International Workshop on Frontiers in Hand-

writing Recognition (Suvisoft) [188]
Chen, B. Q., Huang, Y., Yuan, H. B., et al. 2019, MNRAS, 483, 4277 [153, 155, 160, and 228]
Chollet, F. et al. 2015, Keras, https://keras.io [38]
Churchwell, E., Babler, B. L., Meade, M. R., et al. 2009, PASP, 121, 213 [15 and 16]
Cires, an, D., Meier, U., & Schmidhuber, J. 2012, arXiv e-prints, 1202.2745 [189]
Compiègne, M., Verstraete, L., Jones, A., et al. 2011, A&A, 525, A103 [11 and 13]
Cook, S. 2013, in CUDA Programming, ed. S. Cook (Morgan Kaufmann), 1 – 19 [60]
Cooper, A. P., Cole, S., Frenk, C. S., et al. 2010, MNRAS, 406, 744 [6]
Cornu, D. & Montillaud, J. 2020, A&A[accepted] [32, 129, and 147]
Cornu, D., Montillaud, J., Marshall, D. J., & Cambresy, L. 2020, A&A[in prep.] [161 and 247]
Crapsi, A., van Dishoeck, E. F., Hogerheijde, M. R., et al. 2008, A&A, 486, 245 [29]
Crockett, N. R., Bergin, E. A., Neill, J. L., et al. 2014, ApJ, 787, 112 [83]
Cybenko, G. 1989, Mathematics of Control, Signals and Systems, 2, 303 [47]
Dahm, S. E. & Simon, T. 2005, AJ, 129, 829 [84]
Dame, T. M., Hartmann, D., & Thaddeus, P. 2001, ApJ, 547, 792 [14 and 15]
De Mijolla, D., Viti, S., Holdship, J., Manolopoulou, I., & Yates, J. 2019, A&A, 630, A117 [21]
De Vaucouleurs, G. 1959, Classification and Morphology of External Galaxies (Springer) [6]
De Vaucouleurs, G., De Vaucouleurs, A., Corwin, Herold G., J., et al. 1991, Third Reference Cata-

logue of Bright Galaxies (Springer) [6]
Dewdney, P. E., Hall, P. J., Schilizzi, R. T., et al. 2009, IEEE Proceedings, 97, 1482 [22]
Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [20]
Dolan, C. J. & Mathieu, R. D. 2001, AJ, 121, 2124 [83]
Draine, B. T. 2003, ARA&A, 41, 241 [10 and 12]
Drimmel, R. & Spergel, D. N. 2001, ApJ, 556, 181 [155]
Du, P., Weber, R., Luszczek, P., et al. 2012, Parallel Computing, 38, 391 [60 and 62]
Dumoulin, V. & Visin, F. 2016, arXiv e-prints, arXiv:1603.07285 [177, 178, and 180]
Efron, B. & Tibshirani, R. 1986, Statist. Sci., 1, 54 [58]
Elmegreen, B. G., Elmegreen, D. M., & Leitner, S. N. 2003, ApJ, 590, 271 [10]
Engel, J., Resnick, C., Roberts, A., et al. 2017, arXiv e-prints, 1704.01279 [36]
Evans, D. W., Riello, M., De Angeli, F., et al. 2018, A&A, 616, A4 [244]
Evans, Neal J., I., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJs, 181, 321 [118]
Feigelson, E. D., Townsley, L. K., Broos, P. S., et al. 2013, ApJs, 209, 26 [29 and 147]
Feng, Q. Y., Vasile, R., Segond, M., et al. 2016, Geoscientific Model Development Disc., 2016, 1 [36]
Ferrière, K. M. 2001, Reviews of Modern Physics, 73, 1031 [9]

272

https://keras.io

References

Fitzpatrick, E. L. 1999, PASP, 111, 63 [10 and 12]
Freeman, K. & Bland-Hawthorn, J. 2002, ARA&A, 40, 487 [6]
Freund, Y. & Schapire, R. E. 1997, Journal of Computer and System Sciences, 55, 119 [58]
Fritzke, B. 1995, in Neural Information Processing Systems 7 (MIT Press), 625–632 [50]
Gaia Collaboration, Brown, A. G. A., & Vallenari. 2018a, A&A, 616, A1 [22, 31, and 134]
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018b, A&A, 616, A1 [7]
Gal, Y. & Ghahramani, Z. 2015, arXiv e-prints, 1506.02142 [185, 191, and 207]
Galoppo, N., Govindaraju, N. K., Henson, M., & Manocha, D. 2005, in Proceedings of IEEE Confer-

ence on Supercomputing, 3–3 [62]
Ghosh, S. & Kristensson, P. O. 2017, arXiv e-prints, arXiv:1709.06429 [36]
Glorot, X. & Bengio, Y. 2010, Journal of Machine Learning Research, 9, 249 [54, 92, and 184]
Goicoechea, J. R., Pety, J., Cuadrado, S., et al. 2016, Nature, 537, 207 [83]
Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (The MIT Press) [185]
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, arXiv e-prints, 1406.2661 [245]
Graham, B. 2014, arXiv e-prints, 1412.6071 [175]
Grassi, T., Merlin, E., Piovan, L., Buonomo, U., & Chiosi, C. 2011, arXiv e-prints, 1103.0509 [21]
Green, G. M., Schlafly, E., Zucker, C., et al. 2019, ApJ, 887, 93 [153 and 154]
Green, G. M., Schlafly, E. F., Finkbeiner, D., et al. 2018, MNRAS, 478, 651 [156]
Greene, T. P. 2001, American Scientist, 89, 316 [30]
Großschedl, J. E., Alves, J., Meingast, S., et al. 2018, A&A, 619, A106 [28, 32, 134, 135, 138,

and 267]
Gulcehre, C., Cho, K., Pascanu, R., & Bengio, Y. 2013, arXiv e-prints, 1311.1780 [175]
Gupta, A. & Lam, S. M. 1998, Neural Networks, 11, 1127 [55]
Gutermuth, R. A., Megeath, S. T., Myers, P. C., et al. 2009, ApJS, 184, 18 [29, 32, 79, 84, 85, 86,

143, 146, 248, and 249]
Gutermuth, R. A., Myers, P. C., Megeath, S. T., et al. 2008, ApJ, 674, 336 [29]
Gutermuth, R. A., Pipher, J. L., Megeath, S. T., et al. 2011, ApJ, 739, 84 [28]
Haarnoja, T., Ha, S., Zhou, A., et al. 2018, arXiv e-prints, 1812.11103 [35]
Hacar, A., Tafalla, M., & Alves, J. 2017, A&A, 606, A123 [28]
Hanson, S. J. & Pratt, L. Y. 1989, in Advances in Neural Information Processing Systems 1 (Morgan-

Kaufmann), 177–185 [55]
Haywood, M., Robin, A. C., & Creze, M. 1997a, A&A, 320, 428 [158]
Haywood, M., Robin, A. C., & Creze, M. 1997b, A&A, 320, 440 [158]
He, H. & Garcia, E. A. 2009, IEEE Transactions on Knowledge and Data Engineering, 21, 1263 [70]
He, K., Zhang, X., Ren, S., & Sun, J. 2015, arXiv e-prints, 1512.03385 [246]
He, K., Zhang, X., Ren, S., & Sun, J. 2015, 1502.01852, 1502.01852 [54, 173, and 184]
Heckman, T. M. & Best, P. N. 2014, ARA&A, 52, 589 [6]
Heess, N., TB, D., Sriram, S., et al. 2017, arXiv e-prints, 1707.02286 [35]
Heiderman, A., Evans, Neal J., I., Allen, L. E., Huard, T., & Heyer, M. 2010, ApJ, 723, 1019 [28]
Hennebelle, P. & Iffrig, O. 2014, A&A, 570, A81 [10]

273

REFERENCES

Hinton, G. E. & Salakhutdinov, R. R. 2006, Science, 313, 504 [146]
Hopfield, J. J. 1982, Proceedings of the National Academy of Sciences, 79, 2554 [19]
Hou, L. G. & Han, J. L. 2014, A&A, 569, A125 [15, 16, 214, 215, and 228]
Hsieh, K., Harlap, A., & Vijaykumar, N. 2017, in NSDI 17 (USENIX Association), 629–647 [22]
Hsueh, B. Y., Li, W., & Wu, I.-C. 2018, arXiv e-prints, 1806.01593 [53]
Hubble, E. 1929, Proceedings of the National Academy of Science, 15, 168 [5]
Hubble, E. P. 1926, ApJ, 64, 321 [5]
Hubble, E. P. 1936, Realm of the Nebulae (Yale University Press) [6]
Huertas-Company, M., Aguerri, J. A. L., Bernardi, M., et al. 2011, A&A, 525, A157 [20]
Huertas-Company, M., Gravet, R., Cabrera-Vives, G., et al. 2015, ApJs, 221, 8 [20]
Hurt, R. 2008, Artistic view of the Milky Way [7, 8, and 14]
Ise, T. & Oba, Y. 2019, Frontiers in Robotics and AI, 6, 32 [36]
Jørgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861 [29]
Kainulainen, J., Beuther, H., Henning, T., & Plume, R. 2009, A&A, 508, L35 [198]
Kalberla, P. M. W. & Kerp, J. 2009, ARA&A, 47, 27 [14]
Kapteyn, J. C. 1922, ApJ, 55, 302 [5]
Kennicutt, R. C. & Evans, N. J. 2012, ARA&A, 50, 531 [9 and 28]
Kingma, D. P. & Ba, J. 2014, arXiv e-prints, 1412.6980 [54, 55, and 190]
Koenig, X. P., Leisawitz, D. T., Benford, D. J., et al. 2012, ApJ, 744, 130 [29 and 80]
Kounkel, M., Covey, K., Suárez, G., et al. 2018, AJ, 156, 84 [139]
Kounkel, M., Hartmann, L., Loinard, L., et al. 2017, ApJ, 834, 142 [139]
Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, in Advances in Neural Information Processing

Systems 25 (Curran Associates, Inc.), 1097–1105 [181, 182, and 208]
Kun, M., Balog, Z., Kenyon, S. J., Mamajek, E. E., & Gutermuth, R. A. 2009, ApJs, 185, 451 [145]
Lada, C. J. 1987, in IAU Symposium, Vol. 115, Star Forming Regions, 1 [29]
Lagarde, N., Decressin, T., Charbonnel, C., et al. 2012, A&A, 543, A108 [158]
Lallement, R., Babusiaux, C., Vergely, J. L., Katz, D., et al. 2019, A&A, 625, A135 [153, 154, 155,

156, 158, and 228]
Lang, D. 2014, AJ, 147, 108 [31]
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998a, Proceedings of the IEEE, 86, 2278 [58, 176,

182, and 189]
LeCun, Y., Bottou, L., Orr, G. B., & Müller, K.-R. 1998b, in Neural Networks: Tricks of the Trade

(Springer-Verlag), 9–50 [175]
LeCun, Y., Jackel, L. D., Bottou, L., et al. 1995, in Neural Networks: The Statistical Mechanics

Perspective (World Scientific), 261–276 [174 and 189]
Lejeune, T., Cuisinier, F., & Buser, R. 1997, A&As, 125, 229 [158]
Lintott, C. J., Schawinski, K., Slosar, A., et al. 2008, MNRAS, 389, 1179 [6 and 20]
Maas, A. L. 2013, International Conference on Machine Learning, 30 [172]
MacKay, D. J. C. 1992, Neural Computation, 4, 448–472 [191]
Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., & Allende Prieto, C. 2017, AJ, 154, 94 [21]

274

References

Marshall, D. 2006, Theses, Université de Franche-Comté [214 and 215]
Marshall, D. J., Joncas, G., & Jones, A. P. 2009, ApJ, 706, 727 [156 and 160]
Marshall, D. J., Montillaud, J., Cambrésy, L., C., & Cornu, D. 2020, A&A[in prep.] [152, 153, 155,

156, 159, 160, 193, 198, 204, and 228]
Marshall, D. J., Robin, A. C., Reylé, C., Schultheis, M., & Picaud, S. 2006, A&A, 453, 635 [17, 152,

155, 156, 158, and 266]
Marsland, S. 2014, Machine Learning: An Algorithmic Perspective (CRC Press) [40 and 49]
Marton, G., Ábrahám, P., Szegedi-Elek, E., et al. 2019, MNRAS, 487, 2522 [31 and 80]
Marton, G., Tóth, L. V., Paladini, R., et al. 2016, MNRAS, 458, 3479 [31 and 80]
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., & Green, A. J. 2004, ApJL, 607, L127 [14]
McCorduck, P. 2004, Machines Who Think (AK Peters Ltd) [19]
McCulloch, W. S. & Pitts, W. 1943, The bulletin of mathematical biophysics, 5, 115 [19, 40, and 41]
McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565 [9 and 28]
McMillan, P. J. 2017, MNRAS, 465, 76 [6 and 8]
Megeath, S. T., Gutermuth, R., Muzerolle, J., et al. 2012, AJ, 144, 192 [29, 83, 84, 105, 129, 133,

134, and 139]
Megeath, S. T., Gutermuth, R., Muzerolle, J., et al. 2016, AJ, 151, 5 [134]
Meingast, S., Alves, J., Mardones, D., et al. 2016, A&A, 587, A153 [134]
Menten, K. M., Reid, M. J., Forbrich, J., & Brunthaler, A. 2007, A&A, 474, 515 [138]
Micikevicius, P., Narang, S., Alben, J., et al. 2018, in International Conference on Learning Repre-

sentations [66]
Miettinen, O. 2018, Astrophysics and Space Science, 363, 197 [31, 71, 144, and 145]
Minsky, M. & Papert, S. 1969, Perceptrons: Introduction to Computat. Geometry (MIT Press) [19]
Monet, D. G., Levine, S. E., Canzian, B., et al. 2003, AJ, 125, 984 [21]
Montillaud, J., Juvela, M., Vastel, C., et al. 2019a, A&A, 631, L1 [118]
Montillaud, J., Juvela, M., Vastel, C., et al. 2019b, A&A, 631, A3 [83, 84, 118, 120, and 141]
Motte, F., Bontemps, S., & Louvet, F. 2018, ARA&A, 56, 41 [28]
Nair, V. & Hinton, G. E. 2010, in Proceedings of the 27th International Conference on Machine

Learning, ICML’10 (Omnipress), 807–814 [172]
Nataf, D. M., Gonzalez, O. A., Casagrande, L., et al. 2016, MNRAS, 456, 2692 [11 and 152]
Nutter, D. & Ward-Thompson, D. 2007, MNRAS, 374, 1413 [83]
Ohashi, N., Saigo, K., Aso, Y., et al. 2014, ApJ, 796, 131 [29]
Padoan, P., Haugbølle, T., Nordlund, Å., & Frimann, S. 2017, ApJ, 840, 48 [10, 145, and 200]
Paszke, A., Gross, S., Chintala, S., et al. 2017, in NIPS-W [38]
Peek, J. E. G. & Burkhart, B. 2019, ApJL, 882, L12 [21]
Pety, J., Guzmán, V. V., Orkisz, J. H., et al. 2017, A&A, 599, A98 [83]
Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1 [118]
Planck Collaboration I. 2016, A&A, 594, A1 [11]
Planck Collaboration XI. 2014, A&A, 571, A11 [13]
Polyak, B. T. 1964, USSR Computational Mathematics and Mathematical Physics, 4, 1 [59]

275

REFERENCES

Qian, N. 1999, Neural Networks, 12, 145 [59]
Rapson, V. A., Pipher, J. L., Gutermuth, R. A., Megeath, S. T., et al. 2014, ApJ, 794, 124 [83, 84, 85,

105, 129, 133, and 141]
Reid, M. J., Menten, K. M., Brunthaler, A., et al. 2014, ApJ, 783, 130 [15, 16, and 155]
Rezaei Kh., S., Bailer-Jones, C. A. L., Hanson, R. J., et al. 2017, A&A, 598, A125 [155 and 160]
Rezaei Kh., S., Bailer-Jones, C. A. L., Hogg, D. W., et al. 2018, A&A, 618, A168 [155 and 160]
Richards, J. W., Starr, D. L., Butler, N. R., et al. 2011, ApJ, 733, 10 [71]
Rivilla, V. M., Martín-Pintado, J., Jiménez-Serra, I., et al. 2013, A&A, 554, A48 [83]
Robin, A. C., Luri, X., Reylé, C., et al. 2012a, A&A, 543, A100 [158]
Robin, A. C., Marshall, D. J., Schultheis, M., & Reylé, C. 2012b, A&A, 538, A106 [8 and 158]
Robin, A. C., Reylé, C., Derrière, S., & Picaud, S. 2003, A&A, 409, 523 [158 and 197]
Robinson, T., Hochberg, M., & Renals, S. 1996, The Use of Recurrent Neural Networks in Continuous

Speech Recognition (Springer), 233–258 [50]
Robitaille, T. P., Meade, M. R., Babler, B. L., et al. 2008, AJ, 136, 2413 [29]
Robitaille, T. P., Whitney, B. A., Indebetouw, R., et al. 2006, ApJs, 167, 256 [145]
Rosenblatt, F. 1958, Psychological Review, 65 [19, 40, and 44]
Ruíz-Rodríguez, D., Cieza, L. A., Williams, J. P., et al. 2018, MNRAS, 478, 3674 [145]
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986a, in Parallel Distributed Processing (MIT

Press), 318–362 [40, 44, 46, 48, 50, 92, and 168]
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986b, Nature, 323, 533 [19, 40, and 165]
Sale, S. E. & Magorrian, J. 2014, MNRAS, 445, 256 [155 and 200]
Salim, S. & Rich, R. M. 2010, ApJL, 714, L290 [6 and 8]
Sawant, M. M. & Bhurchandi, K. M. 2019, Artif. Intell. Rev., 52, 981–1008 [36]
Scherer, D., Müller, A., & Behnke, S. 2010, in ICANN (3), 92–101 [175]
Schirmer, T., Abergel, A., Verstraete, L., et al. 2020, arXiv e-prints, 2003.05902 [11]
Schlafly, E. F., Meisner, A. M., Stutz, A. M., et al. 2016, ApJ, 821, 78 [11]
Segura-Cox, D. M., Looney, L. W., Tobin, J. J., et al. 2018, ApJ, 866, 161 [29]
Shapley, H. & Curtis, H. D. 1921, Bulletin of the National Research Council, 2, 171 [5]
Shi, W., Caballero, J., Huszár, F., et al. 2016, arXiv e-prints, arXiv:1609.05158 [36]
Shimabukuro, H. & Semelin, B. 2017, MNRAS, 468, 3869 [21]
Shu, F. H. 2016, ARA&A, 54, 667 [8]
Simonyan, K. & Zisserman, A. 2014, arXiv e-prints, 1409.1556 [181 and 182]
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 [12, 21, 29, 80, and 244]
Solomon, P. M. & Rivolo, A. R. 1989, ApJ, 339, 919 [6]
Specht, D. F. 1990, Neural Networks, 3, 109 [67]
Springenberg, J. T., Dosovitskiy, A., Brox, T., et al. 2014, arXiv e-prints, 1412.6806 [175 and 178]
Srivastava, N., Hinton, G., Krizhevsky, A., et al. 2014, Journal of Machine Learning Research, 15,

p1929 [185 and 191]
Stinchcombe & White. 1989, in International Conference on Neural Networks, 613–617 vol.1 [67]
Stutz, A. M. & Gould, A. 2016, A&A, 590, A2 [28 and 83]

276

References

Stutz, A. M., Tobin, J. J., Stanke, T., et al. 2013, ApJ, 767, 36 [31]
Sun, Y., Wong, A. K. C., & Kamel, M. S. 2009, International Journal of Pattern Recognition and

Artificial Intelligence, 23, 687 [70]
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. 2016, arXiv e-prints, 1602.07261 [182 and 246]
Szegedy, C., Liu, W., Jia, Y., et al. 2014, arXiv e-prints, 1409.4842 [182]
Titsias, M. K. & Lázaro-Gredilla, M. 2014, in Proceedings of the 31st International Conference on

Machine Learning - V. 32 (JMLR), 1971–1980 [191]
Tobin, J. J., Sheehan, P. D., Megeath, S. T., et al. 2020, ApJ, 890, 130 [29, 145, and 147]
Tompson, J., Schlachter, K., Sprechmann, P., & Perlin, K. 2016, arXiv e-prints, 1607.03597 [75]
Turing, A. M. 1937, Proceedings of the London Mathematical Society, s2-42, 230 [19]
Van de Hulst, H. C., Muller, C. A., & Oort, J. H. 1954, BAIN, 12, 117 [14]
Vázquez-Semadeni, E., Palau, A., Ballesteros-Paredes, J., et al. 2019, MNRAS, 490, 3061 [145]
Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. 1989, IEEE Transactions on Acous-

tics, Speech, and Signal Processing, 37, 328 [50]
Walmsley, M., Smith, L., Lintott, C., et al. 2020, MNRAS, 491, 1554 [20 and 71]
Wang, M. & Deng, W. 2018, arXiv e-prints, 1804.06655 [36]
Wegg, C., Gerhard, O., & Portail, M. 2015, MNRAS, 450, 4050 [8]
Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJs, 154, 1 [15, 21, 29, and 80]
Westera, P., Lejeune, T., Buser, R., Cuisinier, F., & Bruzual, G. 2002, A&A, 381, 524 [158]
Wickelgren, I. 1996, Science, 273, 48 [40]
Widrow, B. & Lehr, M. A. 1990, Proceedings of the IEEE, 78, 1415 [40]
Wilson, D. R. & Martinez, T. R. 2003, Neural Networks, 16, 1429 [58]
Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 [21, 29, and 31]
Xu, B., Wang, N., Chen, T., & Li, M. 2015, arXiv e-prints, 1505.00853 [173]
Xu, L., Krzyzak, A., & Suen, C. Y. 1992, IEEE on Systems, Man, and Cybernetics, 22, 418 [58]
Yen, H.-W., Takakuwa, S., Ohashi, N., et al. 2014, ApJ, 793, 1 [29]
Yi, H.-W., Lee, J.-E., Liu, T., et al. 2018, ApJs, 236, 51 [83]
Zhu, J.-Y., Park, T., Isola, P., & Efros, A. A. 2017, arXiv e-prints, 1703.10593 [36]

277

Abstract / Résumé

Large-scale structure in the Milky Way (MW) is, observationally, not well constrained. Studying the morphol-
ogy of other galaxies is straightforward but the observation of our home galaxy is made difficult by our internal
viewpoint. Stellar confusion and screening by interstellar matter are strong observational limitations to assess the
underlying 3D structure of the MW. At the same time, very large-scale astronomical surveys are made available and
are expected to allow new studies to overcome the previous limitations. The Gaia survey that contains around 1.6
billion star distances is the new flagship of MW structure and stellar population analyses, and can be combined with
other large-scale infrared (IR) surveys to provide unprecedented long distance measurements inside the Galactic
Plane. Concurrently, the past two decades have seen an explosion of the use of Machine Learning (ML) methods
that are also increasingly employed in astronomy. With these methods it is possible to automate complex problem
solving and efficient extraction of statistical information from very large datasets.

In the present work we first describe our construction of a ML classifier to improve a widely adopted classifica-
tion scheme for Young Stellar Object (YSO) candidates. Born in dense interstellar environments, these young stars
have not yet had time to significantly move away from their formation site and therefore can be used as a probe of
the densest structures in the interstellar medium. The combination of YSO identification and Gaia distance mea-
surements enables the reconstruction of dense cloud structures in 3D. Our ML classifier is based on Artificial Neural
Networks (ANN) and uses IR data from the Spitzer Space Telescope to reconstruct the YSO classification automat-
ically from given examples. We extensively explore dataset constructions and the effect of imbalanced classes in
order to optimize our ANN prediction and to provide reliable estimates of its accuracy for each class. Our method
is suitable for large-scale YSO candidate identification and provides a membership probability for each object. This
probability can be used to select the most reliable objects for subsequent applications like cloud structure recon-
struction.

In the second part, we present a new method for reconstructing the 3D extinction distribution of the MW and that
is based on Convolutional Neural Networks (CNN). With this approach it is possible to efficiently predict individual
line of sight extinction profiles using IR data from the 2MASS survey. The CNN is trained using a large-scale
Galactic model, the Besançon Galaxy Model, and learns to infer the extinction distance distribution by comparing
results of the model with observed data. This method has been employed to reconstruct a large Galactic Plane portion
toward the Carina arm and has demonstrated competitive predictions with other state-of-the-art 3D extinction maps.
Our results are noticeably predicting spatially coherent structures and significantly reduced artifacts that are frequent
in maps using similar datasets. We show that this method is able to resolve distant structures up to 10 kpc with a
formal resolution of 100 pc. Our CNN was found to be capable of combining 2MASS and Gaia datasets without
the necessity of a cross match. This allows the network to use relevant information from each dataset depending
on the distance in an automated fashion. The results from this combined prediction are encouraging and open the
possibility for future full Galactic Plane prediction using a larger combination of various datasets.

Titre en français : Modélisation de la Voie Lactée en 3D par machine learning
avec les données infrarouges et Gaia

La structure à grande échelle de la Voie-Lactée (VL) n’est actuellement toujours pas parfaitement contrainte.
Contrairement aux autres galaxies, il est difficile d’observer directement sa structure du fait de notre appartenance à
celle-ci. La confusion entre les étoiles et l’occultation de la lumière par le milieu interstellaire (MIS) sont les prin-
cipales sources de difficulté qui empêchent la reconstruction de la structure sous-jacente de la VL. Par ailleurs, de
plus en plus de relevés astronomiques de grande ampleur sont disponibles et permettent de surmonter ces difficultés.
Le relevé Gaia et ses 1.6 milliards mesures de distances aux étoiles est le nouvel outil de prédilection pour l’étude
de la structure de la VL et l’analyse des populations stellaires. Ces nouvelles données peuvent être combinées avec
d’autres grands relevés infrarouges (IR) afin d’effectuer des mesures à des distances jusque-là inégalées. Par ailleurs,
le nombre d’applications reposant sur des méthodes d’apprentissage machine (AM) s’est envolé ces vingt dernières
années et celles-ci sont de plus en plus employées en astronomie. Ces méthodes sont capables d’automatiser la
résolution de problèmes complexes ou encore d’extraire efficacement des statistiques sur de grands jeux de données.

Dans cette étude, nous commençons par décrire la construction d’un outil de classification par AM utilisé pour
améliorer les méthodes classiques de classification des Jeunes Objets Stellaires (JOS). Comme les étoiles naissent
dans un environnement interstellaire dense, il est possible d’utiliser les plus jeunes d’entre elles, qui n’ont pas encore
eu le temps de s’éloigner de leur lieux de formation, afin d’identifier les structures denses du MIS. La combinaison
des JOS et des distances mesurées par Gaia permet alors de reconstruire la structure 3D des nuages denses. Notre
méthode de classification par AM est basée sur les réseaux de neurones artificiels et se sert des données du télescope
spatial Spitzer pour reconstruire automatiquement la classification des JOS sur la base d’une liste d’exemples. Nous
détaillons la construction des jeux de données associés ainsi que l’effet du déséquilibre entre les classes, ce qui per-
met d’optimiser les prédictions du réseau et d’estimer la précision associée. Cette méthode est capable d’identifier
des JOS dans de très grands relevés tout en fournissant une probabilité d’appartenance pour chacun des objets testés.
Celle-ci peut alors être utilisée pour retenir les objets les plus fiables afin de reconstruire la structure des nuages.

Dans une seconde partie, nous présentons une méthode permettant de reconstruire la distribution 3D de l’
extinction dans la VL et reposant sur des réseaux de neurones convolutifs. Cette approche permet de prédire des
profils d’extinction sur la base de données IR provenant du relevé 2MASS. Ce réseau est entraîné à l’aide du modèle
de la Galaxie de Besançon afin de reproduire la distribution en distance de l’extinction à grande échelle en s’appuyant
sur la comparaison entre le modèle et les données observées. Nous avons ainsi reconstruit une grande portion du
plan Galactique dans la région du bras de la Carène, et avons montré que notre prédiction est compétitive avec
d’autres cartes d’extinction 3D qui font référence. Nos résultats sont notamment capables de prédire des structures
spatialement cohérentes, et parviennent à réduire les artefacts fréquents dits “doigts de Dieu”. Cette méthode est
parvenue à résoudre des structures distantes jusqu’à 10 kpc avec une résolution formelle de 100 pc. Notre réseau
est également capable de combiner les données 2MASS et Gaia sans avoir recours à une identification croisée. Cela
permet d’utiliser automatiquement le jeu de données le plus pertinent en fonction de la distance. Les résultats de
cette prédiction combinée sont encourageants et ouvrent la voie à de nouvelles reconstructions du plan Galactique
en combinant davantage de jeux de données.

	Acknowledgments
	Abstract
	Résumé en Français
	I Context
	Milky Way 3D structure
	Review of useful properties of the Milky Way
	The only galaxy that can be observed from the inside
	Expected structural information

	The interstellar medium
	The bridge between stellar population and interstellar medium
	Interstellar medium extinction and emission

	Observational constraints on the Milky Way structure

	The rise of AI in the current Big Data era
	Proliferation of data and meta-data
	Artificial intelligence, a not-so-modern tool
	Beginnings of AI
	End of 20th century difficulties and successes
	The new golden age of AI
	Astronomical uses of AI

	Astronomical Big Data scale surveys
	Previous large surveys
	A new order of magnitude with PanSTARRS and Gaia
	The historical challenge of SKA and following surveys

	II Young Stellar Objects classification
	Young Stellar Objects as a probe of the interstellar medium
	YSO definition and use
	YSO candidates identification
	Machine Learning motivation and previous attempts
	Objective and organization

	Classical Artificial Neural Networks
	Attempt of ML definition
	"Animal" learning and "Machine" Learning
	Types of artificial learning
	Broad application range and profusion of algorithms
	Toolboxes against home-made code

	Artificial Neuron
	Context and generalities
	Mathematical model
	Supervised learning of a neuron

	The bias node
	Perceptron algorithm: linear combination
	Multi Layer Perceptron : universal approximation
	Non linear activation function and neural layers stacking
	Supervised network learning using backpropagation

	Limits of the model
	Neural network parameters
	Network depth and dataset size
	Learning rate
	Weight initialization
	Input data normalization
	Weight decay
	Monitor overtraining
	Shuffle and gradient descent schemes
	Momentum conservation

	Matrix formalism and GPU programming
	Hardware considerations for matrix operations
	Artificial Neural networks as matrix operations
	GPUs variety
	Insights on GPU programming

	The specificities of classification
	Probabilistic class prediction
	The confusion matrix
	Class balancing and observational proportions

	Simple examples
	Regression
	Classification

	Automatic identification of YSOs in infrared surveys
	Problem description and class definition
	Labeled datasets in Orion, NGC 2264, 1kpc and combinations
	Construction of the test, valid and train dataset
	Network architecture and parameters
	Convergence criteria

	Subsequent application to multiple star-forming regions
	First training on one specific region: the Orion molecular cloud
	Hyper-parameter and training proportion evaluation
	Main result
	Test on a balanced dataset
	Prediction stability
	Detailed sub-classes distribution
	Full dataset result

	Effect of the selected region: training using NGC 2264
	Main result
	Small dataset issues
	Prediction stability
	Full dataset result

	Generalization capacity: crossed application
	Cross forward considerations
	O-N main result
	Detailed feature space analysis for O-N
	N-O main result
	Detailed feature space analysis for N-O

	Improving diversity: combined training
	Hyper-parameter and training proportion changes
	Main result
	Generalization capacity evaluation
	Full dataset result and analysis of rare sub-classes prediction

	Further increase in diversity and dataset size: nearby regions (< 1kpc)
	Hyper-parameter and training proportion changes
	Main result
	More detailed analysis
	Full dataset result
	Misclassified objects distribution
	Forward of the trained network on Orion and NGC 2264

	Orion and NGC 2264 YSO candidates distribution maps

	Probabilistic prediction contribution to the analysis
	Interpretation of the membership probability
	Graphical analysis of the membership probability

	3D cloud reconstruction using cross-match with Gaia
	Orion A distance and 3D information
	Distances to Orion B sub-regions
	NGC 2264 distance and 3D information

	Additional discussion and further improvements
	Identified limitations to our results
	MIPS 24 micron band effect on the results
	Usage of Spitzer colors instead of bands
	Method discussion
	Conclusion and perspectives

	III Reconstruction of the 3D interstellar extinction of the MW
	Using interstellar extinction to infer the 3D Milky Way structure
	Current state of 3D extinction maps
	Per line of sight approach
	The Besançon Galaxy Model
	Mesuring extinction using the BGM
	Using Machine Learning for this task
	Objective and organization

	Convolutional Neural Networks
	The image processing impulse
	Spatially coherent information
	Information redundancy: pattern recognition
	Convolution filter
	Convolutional layer
	A simpler activation function : the rectified linear unit
	Stacking Convolutional layers
	Pooling layer
	Learning the convolutional filters

	Convolutional networks parameters
	Convolutional Neural Network architectures
	Weight initialization and bias value
	Additional regularization: Dropout and momentum
	Implications for GPU formalism
	Example of a classical image classification

	Use of the dropout to estimate the uncertainty in a regression case

	Extinction profile reconstruction for one line of sight
	Construction of a simulated 2MASS CMD using the BGM
	Choice of BGM representation and observed quantity
	Reproducing realistic observations: uncertainty and magnitude cuts
	Simple extinction effect on the diagram

	Creating realistic extinction profiles for training
	Gaussian Random Fields
	GRF generated profile
	Profile star count limit and magnitude cap

	Tuning the method
	Input and output dimensions
	Network architecture
	Network hyperparameters
	Computational aspects

	2MASS only extinction maps
	Training with one line of sight
	Network training and test set prediction
	Generalizing over a Galactic Place portion
	Integrated view of the plane of the sky
	Face-on view

	Combination of several lines of sight in the same training
	Sampling in galactic longitude
	Multiple line of sights in a single training
	Dataset construction, architecture effect and training
	Map results
	Effect of the galactic latitude

	Comparison with other 3D extinction maps
	Addition of a second color-magnitude diagram

	Combined Gaia-2MASS extinction maps
	Realistic Gaia diagram construction from the BGM
	Training with one line of sight
	Combined sampled training

	Method discussion and conclusion
	Dataset construction limits and improvements
	Magnitude cuts and uncertainty issues
	Modular Zlim value
	Construction of realistic profiles
	The "perfect BGM model" assumption

	CNN method discussion
	Conclusion and perspectives

	General conclusion

	Appendix
	Detailed description of the CIANNA framework
	Global description
	CIANNA objects
	Description of the layers
	Dense layer
	Pooling layer
	Convolutional layer

	Im2col function
	Other important functions
	Python and C interfaces
	Performance comparison
	Future improvements

	List of Figures
	List of Tables
	References

