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Abstract
Nowadays, drone plays a big role in civilian purposes, and it will getting bigger and more

important in the future. Because of it’s flexibility and versatility, the application of drone is
more extensive. In certain fields of implementation, applying a team of drones will improve the
effectiveness and efficiency of the application, such as in search and rescue, military purpose,
agriculture and surveillance. Recently, there is a challenging issue to manage a team of drones
in order to achieve the given mission. This issue opens many research opportunities, and
our project is made to answer this challenge, to develop a platform for managing a fleet of
drones. Among several approaches, vehicle routing problem (VRP) is one of a considered
study to answer this challenge, in order to allocate the tasks and find the best path for
each drone, with several constraints to be considered. There are many methods to solve
VRP, and could be categorized into two groups i.e. exact and approximation method. But
since VRP is classified as an NP-hard optimization problem, an approximation method is
considered to be implemented in this project. Genetic Algorithm (GA), an approximation
method which designed by an inspiration to the evolutionary ideas of genetic and natural
selection, is applied in this project, since it is one of most used algorithm to solve VRP,
among several approximation method. We observed that GA is suitable to be implemented in
this project, but when the number of to-be-visited-points is hugely augmented, the number
of iterations to get a satisfactory result would be extremely increased. This issue led us
to hybridize GA with Clarke and Wright’s saving algorithm (SA) in order to generate the
initial population, so that it is no longer randomly generated as usually done. Eventually, this
proposed hybrid method can improve the performance of the algorithm very satisfactorily,
and reduce the number of iteration more than 90%.

Furthermore, a dynamic scenario in VRP is taken into account in this work i.e. an emerge
of one or several new points that appear once the mission is already launched, and require a
visit by a single drone. To deal with this dynamic scenarios, a Reverse Open Vehicle Routing
Problem (ROVRP) is considered to be implemented. We decide to choose a heuristic method
in solving the ROVRP, as it is classified as an NP-hard optimization problem, and we prefer
to apply Clarke and Wright’s Saving Algorithm (SA) in this project, due to their speed and
simplicity. In our point of view, speed is one most considerable thing in choosing algorithm
to solve dynamic scenario in VRP. Our proposed method is devided into two phases i.e.
clustering and routing. And the experimental results show that our proposed method can
give more than 95% accuracy.

In order to simulate and investigate the proposed methods, a Graphical User Interface
(GUI) is developed. There are some available framework to develop this tool, and Netlogo is
considered as the chosen framework.

Keywords Vehicle Routing Problem - Genetic Algorithm - Saving Algorithm - Dynamic
Scenario - Reverse Open Vehicle Routing Problem - Graphical User Interface.





v

Résumé
Aujourd’hui, le drone joue un rôle important dans les activités civiles et deviendra de plus

en plus important à l’avenir. Récemment, de nouvelles tendances se dirigent vers la gestion
d’une flotte de drones afin de réaliser les missions donné Ce problème ouvre de nombreuses
idée de recherche, et notre projet est fait pour répondre au défi, développer une plateforme
de gestion de flotte de drones. Entre plusieurs approches, le problème de routage de véhicule
(VRP) est une étude parfaite pour relever ce défi, afin de répartir les tâches et de trouver le
meilleur chemin pour chaque drone, en tenant compte de plusieurs contraintes. Comme les
VRP sont classés comme un problème d’optimisation NP-hard, une méthode d’approximation
est considérée comme mise en œuvre dans ce projet. L’algorithme génétique (GA), est appliqué
dans ce projet, puisqu’il s’agit de l’un des algorithmes les plus utilisés pour résoudre le VRP
parmi plusieurs méthodes d’approximation. Nous avons observé que l’AG convient pour être
utilisé dans ce projet, mais lorsque le nombre de points à traiter serait considérablement accru,
le nombre d’itérations pour obtenir un résultat satisfaisant sera extrêmement augmenté. Ce
problème nous a amenés à hybrider GA avec l’algorithme de sauvegarde (SA) afin de générer la
population initiale, pour qu’elle ne soit plus générée aléatoirement comme d’habitude. Comme
nous l’avons testé, cette méthode proposée peut améliorer les performances de l’algorithme
de manière très satisfaisante et réduire le nombre d’itérations de plus de 90%.

De plus, un scénario dynamique dans le VRP est pris en compte dans ce travail, c’est-
à-dire l’émergence d’un ou plusieurs nouveaux points qui apparaissent quand la mission a
déjà été lancée et qui nécessitent une visite d’un seul drone. Pour faire face à ce ce scénario
dynamique, un problème de routage de véhicule ouvert en sens inverse (ROVRP) est considéré.
Le ROVRP est utilisé pour définir un ensemble d’itinéraires de véhicules de retour au dépôt,
lors de la construction de nouveaux chemins en raison d’un scénario dynamique. Nous décidons
de choisir une méthode heuristique pour résoudre le ROVRP, puis q’il s’agit d’un problème
d’optimisation NP-hard, et nous préférons appliquer l’algorithme de sauvegarde (SA) à ce
projet, en raison de leur rapidité et de leur simplicité. A notre point de vue, la vitesse est l’un
des aspects les plus importants du choix d’un algorithme pour résoudre un scénario dynamique
dans un VRP. Notre méthode proposée est divisée en deux phases : regroupement et routage.
Et nos résultats expérimentaux montrent que notre méthode proposée peut donner plus de
95% de précision.

Afin de simuler et d’examiner les méthodes proposées, une interface utilisateur graphique
(GUI) est développée. Il existe un cadre disponible pour développer cet outil, et Netlogo est
considéré comme le cadre choisi.

Mots clés Problème de Routage de Véhicule - Algorithme Génétique - Algorithme de
Sauvegarde - Scénario Dynamique - Problème de Routage de Véhicule Ouverte en Reverse -
Interface Utilisateur Graphique.
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2 Introduction

1.1 The context of the work

It was August 29, 2005, when Hurricane Katrina hit the Gulf Coast in United States. 2
days after, several drones with cameras, microphones and sensors, were involved in searched
of victims and also assessed damage and sent back images from places rescuers couldn’t get.

Technology of drones, and how humans interact with it, has improved. This technology
is changing the way we handle. In the case of disaster relief and recovery, this means more
effective ways to save lives and begin the arduous process of rebuilding after catastrophe, like
a massive flooding after abundant rainfall in Bosnia and Herzegovina in Spring 2014 [30]. The
fundamental advantages of drones are their cost effective, lightness, autonomous, and ability
to perform dangerous in fields that human must avoid, such an assessment at Fukushima
nuclear plant after it’s accident [113], or a surveillance for maintenance in very difficult areas
such as in hydroelectric power plant or subway tunnel. Now, 14 years after the Hurricane
Katrina, drones are widely used today to play the big role in the civilian and also military
world.

The growth and advancements in the studies and researches on drones are very vast in
recent decades, e.g. in terms of its capability to autonomous navigation and mission planning
[7] [20], its ability to simultaneous localization and mapping [70] [66], trajectory generation
of fleet of droneseev [81], coordination of networked drones [121] [122] [114], etc. Because of
their flexibility and versatility of use, the drones application field is more extensive, covering
surveillance [30], intelligent logistics, maintenance, search and rescue [30], agriculture [32],
scientific studies, etc. We believe, the study of drones will be a very potential and extensive
study in the future, because it acts like a plane but smarter than a plane since it’s got all
sorts of on-board electronics to let it do preprogrammed functionality. There are a lot of
research studies in drones. Most of the studies are related to the development its ability in
self-navigation, localization and mapping whether in indoor or outdoor areas, with or without
GPS [7].

But nowadays, the study of drones that is also already being done by several researchers
are about a team of drones that do some cooperation and coordination. A drone team can
accomplish a given task more quickly than a single drone can, by dividing the task into
sub-tasks and executing them concurrently. A team can also make effective use of specialists
designed for a single purpose (e.g., scouting an area, picking up objects, hauling payload),
rather than requiring that a single drone be a generalist, capable of performing all tasks but
expert at no tasks. In the studies on multi drones coordination, the discussions about how to
make a cooperative assignment and task scheduling system for each drone under an a-priori
known area has been widely explored, e.g. by [13] [2], as the examples. Recently, there are
some motivating studies in the coordination of multi drones over a dynamic environment.

This study could be structurized in 3 levels of application, as shown in Fig. 1.1, such
as : strategic level, tactical level and operational level. The strategic level is dealing with the
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Figure 1.1 – Architecture of The Decision Making System

fleet size, characteristics of each drone, routing strategy, tasks allocation, etc. The tactical
level is dealing with the path planning of each drone, high level collision avoidance, etc. And
operational level is dealing with trajectory generation, low level collision avoidance, driver
system, onboard computer, etc.

This thesis is dealing with the strategic level of application. The challenges arise in
coordinating all of these drones to perform a single and global mission, to achieve the goals of
each concurrent assignment, and also to generate the path planning for each and all drones.

The greater challenges emerge in adding the dynamic aspect in the mission. The word
dynamic means each time new requests appear during the mission execution, our system
must decide which drone will visit that new requests and along which route. Hence, the
challenges is to design algorithms that enable dynamic task allocation and vehicle routing.

This thesis presents approximation algorithms to design an algorithm of a fleet of drones in
a dynamic environment. The approach allows groups of agents to complete tasks in uncertain
and dynamically changing environments, where new task requests are generated during the
mission execution. Applications may include surveillance and monitoring missions, as well as
distribution networks and delivery process. We consider the following scenario as an inspiring
example : a team of drones perform a regular surveillance mission around an erupted volcano,
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each of them is equipped with close-range high-resolution on-board sensors. Several sensors
are deployed in certain area around the crater, in order to detect suspicious activity in a region
of interest. Whenever a sensor detects a potential action, a request for close-range observation
by one of the drones is generated. In response to this request, a drone visits the location to
gather close-range information and investigate the cause of the alarm.

The coming Fig. 1.2 gives a clear view for the scenarios mentioned above. Fig. 1.2(a) a
team of 3 drones is required to service a set of 12 points in a 3-dimensional space. The set of
drone {D1,D2,D3} are set to visit a set of points {P3−P4−P5−P6}, {P10−P9−P8−
P7} and {P11− P0− P1− P2} respectively. In Fig. 1.2(b) the mission is already started,
and some drones has already visit some points. Then, in Fig. 1.2(c) few new set of points
{P12,P13,P14} appear and require to be visited by a drone. New paths are reconstructed, as
seen in Fig. 1.2(d), since the appearance of few new points. Accordingly, this thesis presents
task allocation and routing algorithms in a static and dynamic environment for a team of
drones. This thesis applies the Vehicle Routing Problem (VRP) to deal with the task allocation
and routing algorithms for a fleet of drones in accomplishing the given mission. The problem
of planning routes through service demands that arrive during a mission execution is known as
the Dynamic Vehicle Routing Problem (abbreviated as the DVRP in the operations research
literature).

1.2 The Challenges

1.2.1 Task Allocation and Routing Problem

The foundation and well-discussed routing problem is the Traveling Salesman Problem
(TSP) as presented by [45] in Journal of Operations Research, in which a salesman is required
to visit a set of costumers and return to the point he started in, which is known as depot.
The goal for the TSP is to minimize the total distance traveled by the salesman. The Vehicle
Routing Problem (VRP) is a development of the TSP which consists in defining N -number
vehicle routes, where the route is a tour that launchs at the starting point named depot, visit
a set of customers, and returns to the depot. All customers must be visited exactly once and
only by a single vehicle. Also, the total customers demands in a route should not exceed the
vehicle capacity. The goal of the VRP is to minimize the total implementation costs.

In reality, the application of VRP meets number of additional constraints that complicate
the model. These additional constraints could, for instance, be time constraints on the total
route time and time windows within which the service must begin and terminate. Furthermore,
another constraints that complicates the further models are applied in several studies such as
adding multiple depots and commodities. There are many methods to solve VRP, including
exact methods such as mathematical programming, and also custom designed heuristics and
meta heuristics such as Saving Algorithm and Genetic Algorithm have also been applied to
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Figure 1.2 – The Proposed Scenario

the VRP. Several researchers has provided a survey on VRP such as [34] [41] [42] [51] and
[71].

Reference [42] provides examples of VRP and several issues that emerge in its application,
and also presents the examples of simple heuristics, math-programming based heuristics,
optimization algorithms and various heuristic approaches. Reference [34] reviews various types
in VRP and TSP such as inserting time windows, or complicates the problem with pick-
up and delivery problems. Reference [71] exposes various exact methods and approximation
methods, including heuristics meta-heuristics, to solve the VRP and its variants. The meta-
heuristics methods that it exposed are the Ant Colony Optimization and Genetic Algorithm.
Reference [41] presents a review some exacts, heuristics and metaheuristics methods for the
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Vehicle Routing Problem with Time Windows (VRPTW). Reference [41] also reviews several
approximation methods such as Simulated Annealing, Genetic Algorithm and Tabu Search.
Also, reference [51] provides a categorized bibliography of metaheuristics for solving VRP ans
its extensions. The categories are based on various types of metaheuristics like Ant Colony,
Genetic Algorithm, Greedy Randomized Adaptive Search Procedure, Simulated Annealing,
Tabu Search, Variable Neighborhood Search, and hybrid methods.

This thesis applies the VRP to deal with the task allocation and routing algorithms for a
fleet of drones in accomplishing the given mission. The mission mentioned before is not just
take into account the static scenaios, but also the dynamic one.

1.2.2 Dynamic Vehicle Routing

Mainly, most of the available literature on routing for drones focuses on static
environments and does not properly account for dynamic scenarios. In several decades, Vehicle
Routing Problem (VRP) has been studied in a very large scale, and most of them focused
on the static cases of vehicle routing in which at the time of the planning of the routes, all
information is known.

But recently, dynamic scenarios have become more familiar in transportation models,
and are seem to become even more in the future. In vehicle routing, they extend a various
applications, such as the delivery of petroleum products or industrial gases [19] [37] [43],
courier services [79], intermodal services [29] [85], tramp ship operations [48] [102] [112],
pickup and delivery services [84] [117], management of container terminals [4], production
floor robots [105], etc.

In the last decade, the number of publication which discuss the dynamic models for vehicle
routing has been growing. Psaraftis [95] studies the fundamental topics in this field and
contributes a survey for various dynamic vehicle routing problems (DVRP). In [95], he remarks
that just a few results for some simple variants of the DVRP have been retrieved. This
indicates the difficulties in obtaining other results for more advanced DVRP.

According to [93], the first reference to a dynamic vehicle routing problem is due to
Wilson and Colvin [124] . They studied a single vehicle DARP, in which customer requests are
trips from an origin to a destination that appear dynamically. Their approach uses insertion
heuristics able to perform well with low computational effort. Later, [96] introduced the
concept of immediate request : a customer requesting service always wants to be serviced as
early as possible, requiring immediate replanning of the current vehicle route.

As stated in [95], a VRP termed as a "dynamic" (or sometimes named as "real-time", or
"on-line" by several published papers) if the information on the problem is synchronously
updated with the execution of the mission. Otherwise, if all inputs are informed before the
execution of the mission and do not change there after, the problem is named as "static".

Larsen [75] made definition that differs the static VRP with the dynamic one. In the static
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VRP :

1. All relevant informations relevant to the planning of the routes are assumed to be known
by the planner before the routing process begins.

2. Information relevant to the routing does not change after the routes have been
constructed.

While, in the dynamic VRP :

1. All relevant informations to the planning of the routes are known by the planner when
the routing process begins.

2. Information can change after the initial routes have been constructed.

Obviously, the dynamic VRP is more complex compared to the static VRP. The dynamic
VRP demands for real-time algorithms that run right away since the immediate requests
should be handled. As static VRP are NP hard, it is not always possible to find optimal
solutions to the problems. This indicates that the dynamic VRP is also classed as an NP hard
problems, since a static VRP should be solved each time a new immediate request is received.

In Figure 1.3 a simple example of a dynamic vehicle routing scenario is shown. In the
example, three vehicles must visit both advance and actual request points. The advance
request points are illustrated by yellow nodes, while those that are actual requests are
illustrated by black nodes. The solid lines show the three routes that has been planned prior
to the drones leaving the depot. The three drones indicate their positions at the time the
actual requests are received. Then, the new points should be inserted into the routes, and this
insertion demand a path-reconstruction. The dashed lines indicate the cancelled path due to
a path-reconstruction. However, in practice, the insertion of new points will be a complex
task and will imply a re-planning of the non-achieved targets in the system.

1.3 Objectives and Contributions

To deal with the challenges we defined in the previous section, we propose these
contributions :

1. Approximation Algorithms for 3-Dimensional Vehicle Routing Problem for
a Fleet of Drones.
We implement vehicle routing problem (VRP) to address the challenge of task allocating
and routing for a fleet of drones which doing a surveillance mission above a certain
terrain. The fleet must perform route to visit a set of points while respecting constraints.
We apply an approximation method to solve VRP since it is classified as an NP-hard
optimization problem. Among the existing approximation methods, we use Genetic
Algorithm (GA). GA is one of the most used algorithm in solving VRP. This topic has



8 Introduction

Figure 1.3 – A dynamic vehicle routing scenario with 12 known points and 3 new emerge
points. Solid lines show the arranged routes. Dashed lines show the deleted routes due to the
emerge of the new points.

already been intensively researched by a lot of papers in decades. At least, thousands
of paper with this topic are published yearly.
To boost-up the performance of GA, we consider to find a better initial population
constructor. We don’t want to generate the initial population in a random manner as
usual. So, we decide to implement Saving Algorithm (SA) in constructing the initial
population of GA.
Hybridizing two or more algorithms is not a new concept in this field of study. A hybrid
of GA and SA is also done by several research. Most of them implement the SA in
order to generate new generation in GA, but we implement SA in order to generate
initial population, so that the initial population generation no longer done in a random
manner.
Hybridizing GA and SA is perfect for each other. GA can play a role as improvement
phase heuristic for SA, since SA is a construction heuristic. For this reason, SA could
be the perfect initial population constructor for GA, since one of the basic items that
need to be carefully considered for GA to work as effective as possible is : a good initial
population constructor.
As the tool for experiment and simulation as well, we use Netlogo. By using Netlogo,
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we can create an interface window as the control panel of the algorithm, which consist
of interfaces to control the parameters of experimental and simulation.
The experimental result shows that GA can give us a satisfactory result for finding the
optimal flyable route in the 3D environment. But later, we will find that it’s hybrid with
SA give a very encouraging result in this project.

2. Reverse Open Vehicle Routing Problem in a Dynamic Scenario of a Fleet of
Drones.
The core of this contribution is the Dynamic Vehicle Routing Problem (DVRP). During
the decades, number of papers have issued in many journals and books discussing DVRP.
The most common source of dynamism in vehicle routing is the online arrival of customer
requests during the operation. More specifically, requests can be a demand for goods,
services and travel time. DVRP force making decisions in an online manner, which often
compromises reactiveness with decision quality. In other words, the time invested for
searching better decisions, comes at the price of a lower reactiveness to input changes.
This aspect requires a good decision, at the time when new requests appear, to be made
as fast as possible.
We implement Reverse Open Vehicle Routing Problem (ROVRP) as a technique to deal
with the dynamic scenario which could occurs during the mission execution. According
to our knowledge, the ROVRP has not been much discussed. As named, ROVRP is the
reverse version of open vehicle routing problem (OVRP), which, the difference with the
classic VRP is that the vehicles are not demanded to return to the depot. That is why
we call it open. ROVRP is applied to define a set of to-depot returning vehicle routes
from any position of the vehicles, in constructing a new paths due to a dynamic scenario
in a fleet of drones. Since VRP is classified as an NP-hard optimization problem, then
ROVRP is also classified as the same. For that reason, we propose an heuristic algorithm
to find a solution to this combinatorial optimization problem.
We divide our ROVRP into two phases : clustering and routing. In clustering phase,
we simply determine it by seeking the nearest neighbor of each new points emerge. The
new points emerge will be joined into their nearest neighbor’s cluster. In routing phase,
we implement the Saving Algorithm. This phase is divided into 2 steps : creating saving
list and constructing routes.
We implement this ROVRP because it works fast. The clustering can be done fast, and
the routing is done by the fastest heuristic, SA. Dynamic VRP force making decisions in
an online manner, which often compromises reactiveness with decision quality. In other
words, the time invested searching for better decisions, comes at the price of a lower
reactiveness to input changes. This aspect requires a good decision, at the time when
new requests appear, to be made as fast as possible.
For the experiment and simulation as well, we also use Netlogo as the tool.
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1.4 Scientific Production

1. S. A. Sukarno, R. Ben Atitallah and M. Djemai, "Approximation Algorithm for 3-
Dimensional Vehicle Routing Problem for Fleet of Multi-Agents," 6th International
Conference on Control Engineering & Information Technology, Istanbul, Turkey, 2018.

2. S. A. Sukarno, R. B. Atitallah and M. Djemai, "Approximation Methods to Vehicle
Routing Problem for a Drone Fleet Management," Transactions of the Institute of
Measurement and Control. (Under Review)

1.5 Organization of the Thesis

This thesis is organized as follows :

— Chapter 1 starts with general introductions and the challenges of research to the problem
that we studied in this thesis. In the general introduction, we present the context of
our works in this thesis. The task allocation and routing problem, and also the dynamic
vehicle routing problem are delivered as the challenges in this works. Afterwards, this
chapter also provides the objectives and the contributions of this thesis, and the scientific
productions that we have already produced.

— Chapter 2 presents the backgrounds and the related works to this thesis. Chapter 2
reviews the literature on vehicle routing problem (VRP) and the existing methods
in solving VRP. The review includes the classification of methodologies in solving
combinatorial optimization problems. In particular, literatures on classic heuristic,
metaheuristic, and the hybrid algorithm are discussed for a deeper understanding of
the problem determined in this thesis. In this chapter, we also discuss the dynamic
VRP (DVRP) and another version of VRP called reverse open VRP (ROVRP), to deal
with a dynamic scenario in a fleet of drones.

— Chapter 3 begins the discussion on the challenges in organizing a fleet of drones. Vehicle
routing problem (VRP) is stated as a perfect study to answer this challenges. Among
the existing methodologies to solve VRP, we choose approximation methods since VRP
is an NP-hard problem. Among several algorithms in approximation methods, genetic
alorithm (GA) is one of the most used and famous algorithm in solving VRP. Thousand
of papers each year discuss GA to solve VRP. So, in this chapter we present the
application of GA in solving the 3-dimensional VRP for a fleet of drones. In the second
part of this chapter, we decide to add another algorithm to improve the performance of
the previous proposition. We finally decide to hybridize GA with saving algorithm (SA),
since SA is classified as the construction heuristic, and has a perfect score in speed and
simplicity. Those attributes are perfect to be hybridized with GA. To meet the needs in
experimental purpose, we’ve searched an experimental tool that can be programmed to
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model a complex system, and also simulate and observe events in 3D environment, where
user can give instructions at many agents to operate independently and concurrently.
For that reason, we chose Netlogo. NetLogo is the next generation of the series of multi-
agent modeling languages. It enables users to open simulations and “play” with them,
exploring their behavior under various conditions. It is also an authoring environment
that is simple enough to enable students and researchers to create their own models,
even if they are not professional programmers. That makes Netlogo becomes suitable
in education and research, and it is also used by many researchers worldwide. With
Netlogo, we can create an interface window as the control panel of the algorithm, which
consist of interfaces to control the parameters of experimental and simulation, buttons
to control the process, and also monitors to see the solution visually.

— Chapter 4 proposes a dynamic scenario that might happen in the mission given. Many
literatures denote this problem as a dynamic vehicle routing problem (DVRP). We
use the reverse open vehicle routing problem (ROVRP) approach to deal with the
dynamic scenario in the mission of a fleet of drones. To solve the ROVRP, we devide
the implementation into two phases : clustering and routing. In the clustering phase,
we simply search the nearest neighbor for each new points emerge to be clustered in to.
Also, to create the new routes according to the emerge of one or more new points, we
apply the saving algorithm (SA). The routing phase is divided into two steps : creating
saving list and constructing routes. As implemented in chapter 3, in this chapter we
also use Netlogo as the tool for programming and simulating.

— Finally, conclusions with some proposed future works are presented in Chapter 5. Here,
we summarize the main contributions achieved in this work, and we will put our work
in perspective with suggestions for future works. The growth and advancements in the
studies and researches on managing a fleet of drones has lead the emerged of this thesis.
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2.1 Vehicle Routing Problem

In this chapter, we will review the discussion on Vehicle Routing Problem (VRP), the
open version of it and also it’s dynamic version. Then, we will introduce the heuristic and
metaheuristic methods in designing an algorithm for the fleet of drones to accomplish the
mission given.

Since Dantzig and Ramser [31] introduced it in modeling how a fleet of homogeneous
trucks could serve the demand for oil of a number of gas stations from a central hub and with
a minimum traveled distance in 1959, VRP became one of the most analyzed problem in the
fields of transportation, distribution and logistics, and one of the most widely studied topics
in the field of operation research [17]. It requests a solution of the optimal set of routes to be
performed by a fleet of vehicles to serve a set of customers [119], subject to a set of constraints
[71] [73]. The main objective is to minimize the cost in serving all costumers. It generalizes
the well-known traveling salesman problem (TSP).

Although VRP is a very important combinatorial optimization problem, it is categorized
as an NP-hard problem, thus it is hard to find the global solution in a large scale problem
in VRP. In decades, so many extensive studies in finding algorithms to solve VRP. All of
them could be divided into two categories : exact methods and approximation methods. The
exact algorithms can be classified into three classifications : (1) direct tree search method ;
(2) dynamic programming ; and (3) integer linear programming. Since VRP is categorized as
an NP-hard problem, the exact algorithms can only solve the VRP with a small-scale. In [73]
six representative examples of exact algorithms for VRP are provided, including two direct
tree search methods based on different relaxations, a dynamic programming formulation and
three integer programming algorithms.

The most effective exact algorithm for VRP is branch-and-cut (BC) algorithm based on
a two-commodity network flow formulation of the problem [9]. Reference [47] proposed the
method of a new branch-and cut-and-price (BCP) algorithm based on the two-index and
the set partitioning (SP) formulations. The lower bound is computed with a column-and-cut
generation method that uses k-cycle-free q-routes instead of feasible CVRP routes and the
valid inequalities. The first exact algorithm for the VRPTW based on the SP formulation
was the branch-and-price (BP) algorithm from reference [33]. In general, any exact algorithm
for the VRPTW based on the SP model can be easily adapted to solve the CVRP by simply
relaxing the time window constraints in the pricing algorithm.

2.2 Saving Heuristic for Vehicle Routing Problem

Reference [56] indicates that for VRP with more than 50 costumer, exact algorithm do not
agree with the optimal solution. This circumstances led so many researches to design several
algorithms with approximation methods. The approximation methods are divided into two
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Figure 2.1 – Graphical representation of several construction and improvement heuristics.
Bricks represent the construction phase. Ripples represent the improvement phase. Source :
[27]

groups : classical heuristic and metaheuristics.
Classical heuristics for the VRP are naturally divided into constructive heuristics and

improvement heuristics. Laporte and Semet [74] documents and reviews these two types
of heuristic. The descent heuristics always proceed from a solution to a better one in
its neighbourhood until no further gain is possible. In contrast, metaheuristics allow the
consideration of non-improving and even infeasible intermediate solutions.

Construction heuristics mainly includes Clarke and Wright’s savings algorithm [26], route-
first cluster-second [10], cluster-first route-second [44] and sweep algorithm [52] [106]. Two
types of improvement algorithms can be applied to VRP solutions : intra-route heuristics and
inter-route heuristics. Mostly, constructive procedures are followed by an improvement phase
[27].

Fig. 2.1 illustrates a number of ways to design heuristics consisting of a construction
phase followed by an improvement phase. Fig. 2.1(a) shows the constructive heuristic. Fig.
2.1(b) shows single construction improvement thread. The constructive phase followed by
improvement in several ways (may be executed in parallel) is shown in fig. 2.1(c), and fig.
2.1(d) demonstrates several construction improvement threads (may be executed in parallel).

Savings heuristic was proposed by [26] to solve the problem for which the number of
vehicles is a decision variable. It is perhaps the most widely known heuristic for the VRP.

This method is started by calculates saving amount for every pair of points. Those saving
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amounts are then ranked from the biggest to the smallest. Starting from the biggest amount,
the paired points are linked and added to the tour, and the other points are placed on routes
into which they can be linked (otherwise a new route is started) until a constraint is reached.

Later, this algorithm is implemented in this thesis. It is easy to implement but is suitable
mainly to the small scale optimization. According to [78], this algorithm does not work well
when the scale of costumer increases. That is why, in the implementation on chapter 3, we
hybridize it with an algorithm that can play the improvement role, since we know that saving
algorithm is a constructive heuristic. Another constructive heuristics is listed in annex of this
thesis.

2.3 Genetic Algorithm for Vehicle Routing Problem

In the application to combinatorial optimization problems, metaheuristics is a field of
research that is growing rapidly in decades. Reference [14] surveys the metaheuristic for
combinatorial optimization problem. [14] gives a definition of metaheuristic : In computer
science and mathematical optimization, a metaheuristic is a higher level procedure or heuristic
designed to find, generate or select a heuristic that may provide a sufficiently good solution
to an optimization problem, especially with incomplete or imperfect information of limited
computation capacity. Recently, this methods are rising as successful alternatives to more
classical approaches also for solving optimization problems that include in their mathematical
formulation uncertain, stochastic, and dynamic information.

Blum and Roli [16] lists the properties that characterize most metaheuristics : (1)
Metaheuristics are strategies that guide the search process. (2) The goal is to efficiently explore
the search space in order to find near optimal solutions. (3) Techniques which constitute
metaheuristic algorithms range from simple local search procedures to complex learning
processes. (4) Metaheuristic algorithms are approximate and usually non-deterministic. (5)
Metaheuristics are not problem-specific.

There are a wide variety of metaheuristics. Some properties are used to classify them, such
as local search or global search, single-solution or population-based, hybridization or memetic
algorithms, parallel metaheuristcs and mature-inspired metaheuristcs. The most common and
studied metaheuristics include Ant Colony Optimization, Simulated Annealing, Tabu Search
and Evolutionary Algorithm (AE). Genetic algorithm, which later is applied in this thesis,
evolutionary programming and memetic algorithm belong to EA. The classification and main
metaheuristics in each classification is showed in figure 2.2.

Furthermore, a good metaheuristic implementation can provide near-optimal solutions in
reasonable computation times. VRP, in particular, exhibits an impressive record of successful
metaheuristic implementations [51].

The most popular types of metaheuristics, according to [51], are explained in the annex of
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Figure 2.2 – Classification of Metaheuristics. Source : [36]

this thesis. One of them is evolutionary algorithm. Evolutionary algorithms are a large class
of metaheuristics, also inspired from a natural metaphor, with Genetic Algorithms (GAs)
[55] being one of the best known. Basically, they imitate the technique species evolve and
adapt to their environment, according to the Darwinian principle of natural selection. Under
this paradigm, a population of solutions (often encoded as bit or integer strings, known as
chromosomes) evolves from one generation to the next through the application of operators
that are similar to those found in nature, like selection of the fittest, genetic crossover and
mutation. Through the selection process, only the best solutions are allowed to become
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parents and to generate offspring. The mating process, known as crossover, then takes two
selected parent solutions and combines their most desirable features to create one or two
offspring solutions. This is repeated until a new population of offspring is obtained. Finally
each offspring is randomly perturbed by a mutation operator. Starting from a randomly or
heuristically generated initial population, this cycle is repeated for a number of generations,
and the best solution found is returned at the end. When applied to vehicle routing problems,
the classical GA solution scheme is often modified. In particular, the encoding of solutions
into chromosomes is either completely ignored (by applying the various operators directly on
the solutions) or designed in a very particular way to take advantage of specialized crossover
and mutation operators. Fig. 2.3 shows the brief diagram of the GA’s procedure in searching
for a solution in a combinatorial optimization problems.

Among the Metaheuristic Algorithms, Genetic Algorithm (GA) is one of the most used in
various types of transportation problems, such as facility location problem (FLP) and vehicle
routing problem (VRP) [68]. There have been a lot of the researches done about solving VRP
with GA such as [6] [8] [23] [65] and [127]. In [6] and [8], authors discuss the application of GA
to the capacitated VRP and basic VRP in which customers of known demand are supplied
from a single depot. Cheng et al. [23] shows that an ideal flight path for unmanned aerial
vehicle (UAV) can be more quickly searched using Immune GA. Zhang et al. [127] introduces
a finite automaton (FA) to produce individual population and proposes a new evolution way
enlightened by hermaphrodites. Iwańkowicz and Sekulski [65] applies GA in planning the
collection of wastes by one garbage truck from a certain number of collection points. The
topic of GA in solving VRP has already been intensively researched by a lot of papers in
decades, as shown in fig. 2.4

2.4 Hybrid Genetic and Saving Algorithm for Vehicle Routing
Problem

The main reason of hybridizing two or more algorithms in solving the combinatorial
optimization problem is to improving the result and the performance of the algorithm. We
need to consider two criteria in determining which algorithm we use to solve the optimization
problem : speed and accuracy [28]. Beside those main criteria, there are also another additional
attributes that are also essential : simplicity dan flexiility [28]. But, the problem we frequently
meet is not easy to get those criteria in a heuristic we apply. If it has speed, sometimes it is
not accurate. Otherwise, if it has accuracy, it is not fast.

None of the classical heuristics fares very well on accuracy and flexibility. In this category,
Saving algorithm (SA) has at least the distinct advantage of being very quick and simple to
implement. SA is one of the best known and remains widely used in practice to this day. It is
a heuristic with the best score in speed and simplicity as well [28]. SA contains no parameters
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Figure 2.3 – Procedure of Genetic Algorithm
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Figure 2.4 – The number of papers per year on using GA for solving VRP. Source : [68]

and easy to code, that is why it has a good score in simplicity. But, as stated by [78], saving
algorithm does not work well when the scale of costumer increases. So, we need to apply
another algorithm to improve and boost the lack from the weak attributes of SA. This is the
main reason of hybridizing.

In order to boost their performance, most constructive procedures are followed by an
improvement phase [27]. Compared with classical heuristics, metaheuristics perform a much
more thorough search of the solution space, allowing inferior and sometimes infeasible moves,
as well as recombinations of solutions to create new ones. A metaheuristic that fit and
compatible to play the role as an improvement heuristics methods is Genetic Algorithm (GA)
[15].

In this thesis, we combine GA with saving algorithm (SA) in solving VRP for a fleet of
drones. We found few papers that combine GA with SA in VRP, for example [60] and [89].
In [60], GA is hybridized with three heuristics. [60] A hybrid genetic algorithm for the multi-
depot vehicle routing problem. The three heuristics hybridized in the algorithm are SA, the
nearest neighbor heuristic, and the iterated swap procedure. Paper [89] also combined GA
and SA in their work, but in different way with ours. They implemented the SA in order
to generate new generation, but we implement SA in order to generate initial population as
shown in the diagram of fig. 3.8.

Hybridizing GA and SA is perfect for each other. GA can play a role as improvement
phase heuristic for SA, since SA is a construction heuristic, as shown in fig. 3.9. And SA
could be the perfect initial population constructor for GA. Since one of the basic items that
needs to be carefully considered for the algorithm to work as effective as possible is : a good
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Figure 2.5 – Diagram of Combining Genetic Algorithm and Saving Algorithm.

initial population constructor.

2.5 Reverse Open Vehicle Routing Problem for Dynamic
Scenarios in a Fleet of Drones

2.5.1 Dynamic Vehicle Routing Problem

According to Pillac et al. [93], the first scientific paper to a dynamic vehicle routing
problem (DVRP) is due to Wilson and Colvin [124]. They studied a single vehicle dial-a-
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Figure 2.6 – Construction and Improvement Heuristic. SA as the Construction Heuristic,
and GA as the Improvement Heuristic.

Figure 2.7 – Example application of DVRP

ride problem (DARP), in which customer requests are trips from an origin to a destination
that appear dynamically. Their approach uses insertion heuristics able to perform well with
low computational effort. Later, Psaraftis [96] proposes the concept of immediate request :
a customer demanding service always wants to be serviced as early as possible, requiring
immediate replanning of the current vehicle route. The differences between static or classic
VRP and DVRP are explained in the annex of this thesis. The real-life application of DVRP
is also explained.

In giving a better understanding to what we mean by dynamic, fig. 2.7 illustrates the route
execution of a three drone in DVRP. Before the drones leave the depot at time t = 0, an
initial route plans to visit the currently known requests. While the drones execute their routes,
three new requests (P12, P13 and P14) appear at t = x and the initial route is adjusted to
fulfill them. Finally, at time t = T the all routes are executed, and the initial route plans are
changed due to the emerge of the new requests. This example expose how dynamic routing
fundamentally adjusts routes in an ongoing fashion, which requires real-time communication
between drones and the ground communication center.

In 2015, Schopka and Kopfer [109] implements the adaptive large neighborhood search
(ALNS) in generating cost-efficient transportation plans for the reverse open vehicle routing
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Figure 2.8 – The difference of best known solutions between classic VRP and OVRP. Source :
[92]

problem (ROVRP). To us, ROVRP is another approach for DVRP, since it is used in updating
vehicle return-trip to the depot. For that reason, we use this approach in our thesis.

2.5.2 Reverse Open Vehicle Routing Problem

Reverse open vehicle routing problem (ROVRP) is an opposite version of the Open VRP
(OVRP), which has been presented before by Sariklis and Powell [108] in their paper on
distribution management problems. The special characteristic which distinguishes open-VRP
(OVRP) from the classic-VRP (CVRP) is that the vehicles are not demanded to return to the
depot. In different case, the vehicles could return to the depot by tracking the same tour in
reverse order [92]. In classic VRP each route is TSP which requires a Hamiltonian cycle, but
in OVRP each route is a Hamiltonian path. The classic VRP and OVRP are both NP-Hard
problem. In fig. 2.8, the best known solution for the OVRP is very different from the classic
VRP.

The OVRP has been discussed in several studies, for example in a train plan model for
British Rail freight services through the Channel Tunnel [46], a case study for the school
bus routing problem in Hong Kong [77], the distribution of fresh meat in Greece [115], the
distribution of a daily newspaper in the USA [104] [24], a lubricant distribution problem in
Greece [100], and a mines material transport vehicle routing optimization in China [125].
Whereas, according to our knowledge, the ROVRP has not been much discussed. We found a
work from Schopka and Kopfer [109] who modified the Adaptive Large Neighborhood Search
(ALNS) for generating ROVRP in updating vehicle return-trip to the depot. Also, Park and
Kim [90] and Li and Fu [77] who reviewed and made a case study of the School Bus Routing
Problem.

We apply ROVRP to define a set of to-depot returning vehicle routes from any position
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Figure 2.9 – The application of ROVRP. (a) At time t = x when three new requests (P12,
P13 and P14) appear during mission execution. (b) The result of ROVRP in adjusting the
routes.

but depot, in constructing a new paths due to a dynamic scenario in a fleet of drones as
shown in fig. 2.7. At the time t = x, when the drones execute their routes, three new requests
(P12, P13 and P14) appear. At the time when a new request appears, the ROVRP is applied
to adjust the initial routes in real-time so that we get the result as shown in fig. 2.9. This
method is divided into 2 phases i.e. clustering and routing.

2.5.2.1 Partitioning and Clustering

In partitioning and clustering, we simply determine it by seeking the nearest neighbor of
each new points emerge. For example each new points emerge in fig. 2.9, the nearest neighbor
for the points P12, P13 and P14 are points P0, P3 and P9 respectively. So, we insert the
points P12, P13 and P14 to the cluster set of points {P11, P0, P1, P2}, {P3, P4, P5, P6} and
{P10, P9, P8, P7} respectively. But, since the points P10 and P11 is already visited (marked
by the same color with the drones who visited them) by one of the drones who is carrying out
a mission, those points are not inserted to the new cluster, thus the new cluster to be taken
into account are {P12, P0, P1, P2}, {P13, P3, P4, P5, P6} and {P14, P9, P8, P7}.

2.5.2.2 Routing

The algorithm we implement in this step is the saving algorithm (SA). This steps is divided
into 2 parts : creating saving list and constructing routes.

The saving list is only made for each cluster of points. It means, if Si,j is the saving value
between point-i and point-j, we should ensure that point-i and point-j are in the same cluster.
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The savings value between point i and j is calculated as :

Si,j = ci,P + cP ,j − ci,j

where ci,P is the traveling distance between the actual position of the drone (P ) and point-i,
cP ,j is the traveling distance between the actual position of the drone (P ) and point-j, and
ci,j is the traveling distance between two points i and j. After calculation, all savings values
are collected in the savings list, and the values in the savings list are sorted in decreasing
order.

The route constructing procedure starts from the top of the savings list (the biggest value
of Si,j). Both point i and j will be merged into the same route if the total flight time does not
exceed the drone’s maximum flight duration. Since ROVRP is a to-depot returning vehicle
route, the route will be defined as an ordered sequence of points which starts at the actual
position of the drone (P ), visits all its points once and only once, and terminates at the
depot (0). The cost of a route is defined as the sum of the traveling costs through its cluster
members. In this phase we aim to find the least cost route in each cluster.

2.6 Positioning

In this section, we will position our contributions with respect to the described state-of-
the-art. Classical heuristic algorithms and metaheuristic algorithms are widely implemented
to solve various combinatorial optimization problem in decades, especially the vehicle routing
problem (VRP). The existence of those algorithms are very important since the exact
algorithms can only solve the small scale opotimization problem. Throughout the chapter,
we reviewed several algortihm to solve VRP. In recent decades, hybridizing two or more
algorithms become a widely used methods since none of the heuristics works very well on
accuracy and flexibility.

We choose to hybridize genetic algorithm (GA) and saving algorithm (SA) in solving VRP
for the following reasons :

— GA was among the most widely used metaheuristic for solving VRP. For more than two
decades, in average, thousands of papers are issued per year providing GA for solving
VRP.

— GA still opens opportunities for improving the algorithm by considering several basic
items such as : (1) A good genetic representation of a solution in a form of a chromosome,
(2) An initial population constructor, (3) An evaluation function to determine the fitness
value for each solution, (4) Genetic operators, simulating reproduction and mutation,
(5) Values for parameters ; population size, probability of using operators, etc. That’s
why, hybridize GA with another algorithm is one of solutions that could be considered.
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— SA is the best heuristic in speed and simplicity. SA is easy to implement but is suitable
mainly to the small scale optimization. It does not work well when the scale of problem
increases. This opens an opportunity to hybridize it with an algorithm that can play
the improvement role, since we know that SA is a constructive heuristic. In order to
boost their performance, most constructive heuristic are followed by an improvement
methods.

— Hybridizing GA and SA is perfect for each other. GA can play a role as improvement
phase heuristic for SA, since SA is a construction heuristic. SA could be the perfect
initial population constructor for GA. Since one of the basic items that need to be
carefully considered for the algorithm to work as effective as possible is : a good initial
population constructor.

Reverse Open VRP (ROVRP) is the opposite version of open VRP. ROVRP occurs in
dynamic VRP (DVRP), when return trips to a central depot have to be generated, due to a
planning updates caused by the occurrence of a dynamic scenario. We apply ROVRP to define
a set of non-depot returning vehicle routes, in constructing a new paths due to a dynamic
scenario in a fleet of drones. In recent decade, DVRP is discussed by number of papers issued
in journals and books, but research attention on the ROVRP is still limited. We perform the
ROVRP in two phases : clustering and routing. We simply implement nearest neighbor for
clustering, and SA for routing, for the sake of speed and simplicity, so that no much time
wasted to calculate the routing updates.

2.7 Conclusion

In this chapter, we have reviewed several algorithms for solving the combinatorial
optimization problem, in particular vehicle routing problem (VRP). Since the exact algorithms
can only solve the small scale VRP, the heuristic and metaheuristic methods are widely applied
in a lot of studies. But, condidering that none of the classical heuristics works very well
on accuracy and flexibility, hybridizing two or more heuristic and metaheuristic algorithms
become a widely used methods in decades. In this thesis, we hybridize Genetic Algorithm
(GA) and Saving Algorithm (SA) for solving the VRP. GA is one of the most used algorithm
in solving VRP. To improve the performance of the GA, we consider to find a good initial
population constructor. For that reason, we choosed SA, a heuristic with the best score in
speed and simplicity. It is a perfect method to play the role as initial population constructor.
Hybridizing GA and SA is perfect for each other. GA can play a role as improvement phase
heuristic for SA. Also, SA could be the perfect initial population constructor for GA.

To tackle the dynamic challenge in VRP, we applied the opposite version of Open VRP
(OVRP) named reverse open vehicle routing problem (ROVRP). Research attention on the
ROVRP is limited but we believe this approach is suitable to answer this problem. We applied



2.7 Conclusion 27

ROVRP with tho phases : clustering and routing. In partitioning and clustering, we simply
determine it by seeking the nearest neighbor of each new points emerge. Then we insert each
new points emerge to its neighbors cluster. For routing phase, we implement the SA, since
SA is very fast and we need to make a good decision as fast as possible.
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3.1 Introduction

Nowadays, drone plays a big role in civilian purposes, and it will be getting bigger and more
important in the future. Because of its flexibility and versatility, the application of drone is
more extensive, covering surveillance, intelligent logistics, search and rescue, scientific studies,
etc.

Recently, new trends are moving towards to manage a fleet of drones which collaborate
in order to achieve the given mission. This issue opens many research opportunities, and our
project is made to answer the challenge, to develop a platform for managing a fleet of drones.
As being researched in decades, Vehicle Routing Problem (VRP) is a perfect study to answer
this challenge, in order to find the best route for each drone, with several constraints to be
considered.

In decades, many researchers had extensively studied this field of study as surveyed in [71]
[73]. Dantzig and Ramser [31] were the first to address VRP in the optimization literature by
the appearance of their paper in the journal Management Science, concerning the routing of
a fleet of gasoline delivery truck between a bulk terminal and a number of service station
supplied by the terminal. The problem formulated in [31] was named ’truck dispatching
problem’, but several literatures on the VRP cited their paper as the first example of this
problem.

According to [71], there are many methods to solve VRP, and could be categorized into
two groups i.e. : exact and approximation methods. But, since VRP is classified as an NP-
hard optimization problem, and the exact methods do not agree with the optimal solution
for VRP with more than 50 clients [56], we decided to choose an approximation method for
this project.

In chapter 2, we have already reviewed several approximation methods that widely used
in solving VRP. Among several algorithms in approximation methods, we prefer to apply
Genetic Algorithm (GA) in this project. It is an approximation method which designed by
an inspiration to the evolutionary ideas of genetic and natural selection [55]. This algorithm
relies on bio-evolution procedures such as crossover, mutation and selection, to find the better
generation than the previous one.

Arostegui et al [3] and Youssef et al [126] made comparison between GA and another
metaheuristic approaches, and the results show that the main advantage of GA in comparison
to other metaheuristic algorithms is the performance and final result on time constraints and
limited computer power, while still resulting in competitive solutions. Although some other
metaheuristics are able to find better solutions than GA, GA can generally find adequate
solutions in a shorter time frame [3] [126]. This is also the main reason that GA are still used
in solving the routing, locating and other NP hard problems.

In the field of VRP, there are six famous metaheuristics that have been applied extensively
to solving the problem [15] : Simulated Annealing (SiA), Deterministic Annealing (DA), Tabu
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Search (TS), Ant Systems (AS), Neural Networks (NN) and Genetic Algorithms (GA). The
algorithms SiA, DA and TS move from one solution to another one in the neighbourhood
until a stopping criterion is satisfied. The fourth method, AS, is a constructive mechanism
creating several solutions in each iteration based on information from previous generations.
NN is a learning method, where a set of weights is gradually adjusted until a satisfactory
solution is reached. Finally, GA maintain a population of good solutions that are recombined
to produce new solutions.

But all GA must have the following basic items that need to be carefully considered for
the algorithm to work as effective as possible [83] :

1. A good genetic representation of a solution in a form of a chromosome,

2. An initial population constructor,

3. An evaluation function to determine the fitness value for each solution,

4. Genetic operators, simulating reproduction and mutation,

5. Values for parameters ; population size, probability of using operators, etc.

Points (1), (2) and (4) lead to an idea of hybridize GA, in order to boost the performance.
Hybridize GA with another algorithm is one of solutions that could be considered.

GA is widely used on several combinatorial optimization problem [99] [111]. Reference
[111] used GA to find the optimal flyable path for the UAV in a 3D environment. The main
obstacle of their problem is the complex environment and coverage zones of radars, since
the UAV intended to travel all control points in an optimal way while avoiding radar. [111]
solved the Travelling Salesman Problem (TSP) for the purpose of reaching an optimal path.
As the implementation environment, [111] preferred MATLAB to show the solution visually.
Reference [99] used GA to define a shortest path for a quadrotor-type UAV to travel through
target point without hitting an obstacle. Obstacle avoidance is the major factor they put in
the problem.

3.2 Problem Formulation

In this section, we will discuss the problem formulation of this work. VRP usually defined
as a complete undirected network G = (N ,E) with a set of points N = {0, 1, ...,n,n+ 1},
where the starting point, known as depot, denoted as point 0 and point N + 1, and a set of
edge E = {(i, j)|i, j ∈ N}. Here, we also have a set of drones V = {1, 2, .., v} which will be
tasked to visit points.

The biggest concern in our VRP is determining the best route with the minimum total
distance as the best solution. Using GA, we consistently evolve the solution by choosing
the better chromosomes, which representing the route, in every iteration. The parameter
that we use to define the better chromosomes is a function called fitness function. Designing
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fitness function is an important aspect, since it is the one-and-only factor to decide which
chromosomes will be chosen as the best solution. In our work, the fitness function F can be
formulated as shown in equation (3.1) :

F = min
V∑

v=1

N∑
i=0

N+1∑
j=1

TijX
v
ij (3.1)

Where Tij is the distance covered, associated with set of edge E, when a drone travels
from point-i to point-j. Tij is a matrix of a complete graph. Then, Xv

ij is a binary variable
which defined for each arc (i, j), such that equal to 1 if and only if a drone-v visit point-i and
then travels directly to point-j, and equal to 0 if otherwise.

In constructing the routes, there are some conditions to be considered as below :

— Each vehicle visits a point once, and each point is visited once and only by a single
vehicle.

N∑
i=0;i 6=j

Xi,j = 1, ∀j ∈ {1, ..,N + 1} (3.2)

N+1∑
j=1;j 6=i

Xi,j = 1, ∀i ∈ {0, ..,N} (3.3)

— Each vehicle leaves from point where it arrived in.

N∑
i=0;i 6=g

Xi,g −
N+1∑

j=1;j 6=g

Xg,j = 0, ∀g ∈ {1, ..,N}, j 6= i (3.4)

— Each vehicle should make a complete tour, and the number of routes (R) which leave
and come to the starting point are the same.

R =
N∑

j=1
X0j (3.5)

R =
N∑

i=1
Xij , ∀j ∈ {N + 1, ..,N + V } (3.6)

And also, the value of R should not exceed the value of V , where V is the number of
drones prepared.

R ≤ V (3.7)

— If tv is the total flight time of route which traveled by drone v which visit points
(i0, i1, .., il), where given by :

tv =
lv−1∑
j=0

Tijij+1 (3.8)
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and lv is the length of route which traveled by drone-v, the value of tv should not exceed
the value of Qv, where Qv is the maximum time duration can be performed by drone-v.

tv ≤ Qv (3.9)

— The length of the created chromosomes (λ) is the sum of the number of points and the
number of drones.

λ = N + V (3.10)

3.3 Implementing Genetic Algorithms

In this section, we explain the details of implementing Genetic Algorithm (GA) in our
work. According to [1], the workflow of GA is shown in Algorithm 1 :

Algorithm 1 The workflow of GA
1: Produce an initial population of chromosomes
2: Evaluate the fitness of all chromosomes
3: Store the chromosome with the best value as the BestChromosome
4: while termination condition not met do
5: Select fitter chromosomes for reproduction and produce new chromosomes by crossover

and mutation procedures
6: Evaluate the fitness of all new chromosomes
7: if one of new chromosomes has a better fitness then
8: Store the chromosome as the BestChromosome
9: end if

10: end while

We firstly generate several number of populations, by a random manner, which will become
our initial generation or first known solution. Then we evaluate that first population by
applying the fittness function to find the best solution to be involved in the next procedures.
Next, we will run several procedures such as chromosomes-selection, crossover and mutation,
as the evolutionary procedure for generating a new generation, to find the best fitness value
as the best solution in answering the optimization problem that we are facing.

Fig. 3.1 shows the brief diagram of the GA which we proposed as the method we used in
this work.

3.3.1 Pre-crossover Procedure

Genetic Algorithm is always started by generating first population. It is known as the
initial solution for the problem, before the better generation is obtained by each iteration in
searching the best generation. As common in GA, we generate the first population randomly,
as described in Listing 3.1
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Figure 3.1 – Diagram of Genetic Algorithm
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1 to initial-population
2 create-turtles number-of-population [
3 set string n-values (number-of-points * 20) [random (number-of-points + number

-of-drones)]
4 set string remove-duplicates string
5 set string remove 0 string
6 set string lput (number-of-points + number-of-drones) string
7 ]
8 end

Listing 3.1 – Netlogo pseudo code for generating initial population

The solution will be an array of a chain of number from 1 to λ− 1 that arranged randomly
as shown in Listing 3.1 line-3, and λ is placed in the last chain of number as shown in Listing
3.1 line-6. λ is length of this chain of numbers. In the terminology of GA, this chain of numbers
is denoted as chromosomes, and the size of the array is denoted as the population number.
The length of the chromosomes is the sum of the number of points (N) and the number of
drones (V ). For example, if we have 13 number of points and 2 number of drones, so the
chromosomes will have 15 chains of number, where ended with 15. The number from N + 1 to
λ is denoted to the ending point for each drone. For example the chromosomes in population
1 as shown in table 3.1, number 14 and 15 is the ending point for the two drones, so that the
paths for each drone are (1, 2, 9, 11, 10, 12, 4) and (3, 5, 8, 7, 6, 13) consecutively.

population 1 1 2 9 11 10 12 4 14 3 5 8 7 6 13 15
population 2 3 2 9 13 11 4 14 5 1 12 6 10 8 7 15
population 3 6 2 11 10 12 4 14 1 3 5 9 7 8 13 15
population 4 1 5 2 10 12 7 4 14 3 8 6 9 11 13 15
population 5 9 11 10 13 3 4 14 1 2 5 8 7 6 12 15
population 6 12 4 1 2 9 11 10 14 13 3 5 8 7 6 15

Table 3.1 – The 15-cells of Chromosomes from 6 populations. The yellow highlighted numbers
are the ending points (depots) for each drone

After creating the initial population, we evaluate the fitness value of it, and store it as the
temporary best solution, as described in Listing 3.2. In line-3, we describe the best solution
as the winner, that is the turtle that has the least fitness number. Later, every time we create
new generation in each iteration, the fitness value will be used to rate the betterness of the
new generation. If the fitness value of the new generation is better than the previous one,
we will update the fitness value, and the latest will be denoted as the new temporary best
solution, until the iteration is finished.

The creation of the new generation consists of two phases i.e. crossover and mutation.
Those phases will be explained in the next subsection. Before we create the new generation,
we have to choose two parents from the previous population. To choose two chromosomes
from the population that we have, we use the tournament selection procedure.
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1 to calculate-fitness
2 set fitness fitness-value
3 set winner min-one-of turtles [fitness]
4 end

Listing 3.2 – Netlogo pseudo code for finding a chromosome with the best fitness value

1 to choose-parents
2 ask turtles [
3 let parent1-p min-one-of (n-of tournament-size old-generation) [fitness]
4 let parent2-p min-one-of (n-of tournament-size old-generation) [fitness]]
5 end

Listing 3.3 – Netlogo pseudo code for choosing two parents for the new generation

Tournament selection is a method that takes a subset from the solution set randomly then
selects the best value among them. This is a part to select 2 chromosomes among population
to be parents in the next evolution process, i.e. crossover and mutation. In this part, we choose
randomly tournament− size-number of chromosomes from solution set which we denote as
old generation, as described in Listing 3.3. Then, we choose two select chromosomes to be
processed as the parents of the new generation.

3.3.2 Crossover and Mutation

After choosing two chromosomes by tournament selection shown in Listing 3.3, we combine
them to produce new generation with a procedures called crossover. It is the important phase
in GA, since it can affect the performance of the algorithm. Umbarkar and Sheth [123] stated
that the selection of crossover operator has more impact on the performance of GA. In the
other words, selecting appropriate crossover technique is important to obtain a better result.

Reference [123] reviews several crossover operators proposed and experimented by various
researchers. One of them which called edge recombination crossover (ERX) is a technique
that we implement in this work. This technique is also used by [59] in solving TSP. But since
the VRP is more complicated than TSP, we made several modifications for this work.

The first step in our crossover procedure is to create an array of datas called an edgemap.
Algorithm 2 shows the formula to produce an edgemap from the chosen parents. First, we put
two chosen chromosomes as the parents as shown in Table 3.2. Then, we make an edge-map
for each parent and extend the table by adding the edges that are incident to each gene/city.
The first row from each parent is set as the sequence for the next table we made, as shown in
Table 3.4. In the next step, we unite the 2nd and 3rd row of each parent as shown in Table
3.5.

After the final edge-map has already composed, the crossover procedure to generate a
child could be started. Algorithm 3 shows the steps of crossover procedure in searching for a
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Algorithm 2 Creating EdgeMap
Require: parent1, parent2

1: for i← 1 to 2 do
2: matrixi[row0]← parenti
3: matrixi[row1]← RightRotate(parenti)
4: matrixi[row2]← LeftRotate(parenti)
5: SortColumn(matrixi)
6: Remove(matrixi[row0])
7: i← i+ 1
8: end for
9: EdgeMap[row0]← matrix1[row0]

10: EdgeMap[row1]← matrix1[row1]
11: EdgeMap[row2]← matrix2[row0]
12: EdgeMap[row3]← matrix2[row1]
13: return EdgeMap

Algorithm 3 Crossover Procedure
Require: EdgeMap
Ensure: i = 0

1: y ← rand(n), ∀n ∈ {0..(λ− 1)}
2: x← y
3: Child[columni]← x
4: Remove all x in EdgeMap
5: i← i+ 1
6: x← top data in yth column of EdgeMap
7: Child[columni]← x
8: Remove all x in EdgeMap
9: i← i+ 1

10: while i ≤ (λ− 1) do
11: y ← top data in xth column of EdgeMap
12: x← y
13: Child[columni]← x
14: Remove all x in EdgeMap
15: i← i+ 1
16: end while
17: return Child
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Chromosomes of Selected Parents
Parent 1 15 1 2 9 11 10 12 4 14 3 5 8 7 6 13
Parent 2 5 14 1 11 9 7 10 8 3 13 12 6 15 4 2

Table 3.2 – Chromosomes of Selected Parents

Edgemap of Each Chromosome
Parent1 15 1 2 9 11 10 12 4 14 3 5 8 7 6 13

13 15 1 2 9 11 10 12 4 14 3 5 8 7 6
1 2 9 11 10 12 4 14 3 5 8 7 6 13 15

Parent2 5 14 1 11 9 7 10 8 3 13 12 6 15 4 2
2 5 14 1 11 9 7 10 8 3 13 12 6 15 4
14 1 11 9 7 10 8 3 13 12 6 15 4 2 5

Table 3.3 – Edgemap of Each Chromosome

Sorted Edgemap
Parent1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

15 1 14 12 3 7 8 5 2 11 9 10 6 4 13
2 9 5 14 8 13 6 7 11 12 10 4 15 3 1

Parent2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
14 4 8 15 2 12 9 10 11 7 1 13 3 5 6
11 5 13 2 14 15 10 3 7 8 9 6 12 1 4

Table 3.4 – Sequenced Egde-Map for each Parent

Sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chromosomes
15 1 14 12 3 7 8 5 2 11 9 10 6 4 13
2 9 5 14 8 13 6 7 11 12 10 4 15 3 1
14 4 8 15 2 12 9 10 11 7 1 13 3 5 6
11 5 13 2 14 15 10 3 7 8 9 6 12 1 4

Table 3.5 – Final Egde-Map

better solution to the problem, called a child. First, we produce a random number, and we
define it as the first point in route. Next, the random number is used to define the next tour,
by use it to find the xth column where the first data on it will be taken as the next point.

For example, we got 1 as the random number. So, we put 1 as the first point, and remove
1 in the whole table. Then, we go to 1st column and find (15, 2, 14, 11) in it. We choose 15
since it is the first data on it, and again, we put 15 as the next point and remove 15 in the
whole table. Then, we go to 15th column and find (13, 6, 4) in it, and we take 13 as the next
point, as shown in Table 3.7. After that, we do it continuously until all the route is completed,
as shown in the Table 3.8.
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Sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chromosomes
14 12 3 7 8 5 2 11 9 10 6 4 13

2 9 5 14 8 13 6 7 11 12 10 4 3
14 4 8 2 12 9 10 11 7 13 3 5 6
11 5 13 2 14 10 3 7 8 9 6 12 4

The Child
1 15

Table 3.6 – Generating a Child

Sequence
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Chromosomes
14 12 3 7 8 5 2 11 9 10 6 4

2 9 5 14 8 6 7 11 12 10 4 3
14 4 8 2 12 9 10 11 7 3 5 6
11 5 2 14 10 3 7 8 9 6 12 4

The Child
1 15 13

Table 3.7 – Generating a Child for the Next Gene

The Child
1 15 13 6 7 8 5 3 14 4 12 10 11 9 2

Table 3.8 – The Completed Tour

Initial Result from Crossover Procedure
1 15 13 6 7 8 5 3 14 4 12 10 11 9 2

Mutated Result
1 15 13 12 7 8 5 3 14 4 6 10 11 9 2

Table 3.9 – Mutation Table

After the crossover procedure is completed, we jump into the mutation procedure,
where the algorithm is shown in Algorithm 4. Mutation procedure is able to emerge a new
chromosome that is not come from the crossover procedure. In VRP, mutation will result a
swap or a sequence change from the solution. The simple explanation on mutation procedure
is shown in Table 3.9.

3.4 Graphical User Interface Setup

In order to simulate and investigate the proposed methods, a Graphical User Interface
(GUI) is developed. We have searched a framework that can be programmed to model our
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Algorithm 4 Mutation Procedure
Require: Child

1: y ← rand(n), ∀n ∈ {0..100}
2: if y ≤MutationRate then
3: i← rand(n), ∀n ∈ {0..(λ− 1)}
4: j ← rand(n), ∀n ∈ {0..(λ− 1)}
5: a← Child[Columni]
6: b← Child[Columnj ]
7: Child[Columni]← b
8: Child[Columnj ]← a
9: end if

10: return Child

system, and also simulate and investigate events in a 3-Dimensional environment, where
user can give instructions at many agents to operate independently and concurrently. There
are some available framework to develop this tool, and Netlogo is considered as the chosen
framework.

NetLogo is the next generation of the series of multi-agent modeling languages [118]. It
was designed by Uri Wilensky in 1999, and since then, it has been developed continuously
in Northwestern’s Center for Connected Learning and Computer-Based Modelling (CCL).
NetLogo enables users to open simulations and “play” with them, exploring their behavior
under various conditions. NetLogo is also an authoring environment that is simple enough to
enable students and researchers to create their own models, even if they are not professional
programmers. That makes Netlogo becomes suitable in education and research, and it is also
used by many researchers worldwide. Further information about netlogo is put in the annex
of this thesis.

With Netlogo, we can create an interface window as the control panel of the algorithm,
which consist of interfaces to control the parameters of experimental and simulation, buttons
to control the process, and also monitors to see the solution visually, as shown in Fig. 3.2.

Fig. 3.2 shows the interface window that we made for our work. In the right side, there
are two plots to see how the evolutionary procedure works and affects the process in finding
the best solution for our problem. In the left-top side, as shown in Fig. 3.3, are the panels
to control the parameters in the experiment and simulation. The parameters used in the
experiment and their values are shown in Table 3.10.

In addition to it, as shown in Fig. 3.4, in the left-bottom side, there are also several button
to control the process of the experiment and simulation.

Between the parameter control and process control, there are some monitors to see the
solution visually, as shown in Fig. 3.5.

To run the process, first we click "Load Nodes" to put the set of points in the 3D
environment. Then, Netlogo will show the position of points in the 3D environment as shown
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Figure 3.3 – The Parameter Control Panels.

Figure 3.4 – The Process Control Buttons.

Figure 3.5 – The Monitoring Windows.

Figure 3.6 – 3D View of Loading Points.

Figure 3.7 – 3D View of Path Planning.
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Parameter Value
Number of points 1 - 100
Number of drones 1 - 10
Number of cycles 10 - 2000
Tournament size 2 - 20
Number of population 0 - 1000
Mutation rate 0 - 40 (in %)
Flight time constraint 50 - 500

Table 3.10 – The Parameters used in the Interface Window

Title Function

Load Nodes to place the set of points in the 3D
environment

Setup Generation generate the initial population
Run start the iteration
Load Routes alocate the task to each drone
Check for
Intersection

check whether an or several
intersection exist

Fly simulate the flight

Table 3.11 – The Control Panel List

in Fig. 3.6. The number of nodes is defined by "number-of-points" panel in the control panel.
Then, as noted in the previous section, the next step is to generate the initial population

(solution) in the genetic algorithm by clicking "Setup Generation".
After the initial generation is already setup, it is time to run the algorithm and start

the iteration in searching the best solution by clicking the "Run" button. Once the process is
completed, the path will appear in the 3D environment as shown in Fig. 3.7. After the best
path is already defined, the next step is to allocate the task by pressing "Load Routes". The
last button "Fly" is to run the flight simulation of the drones.

3.5 Simulation Results

For finding the best tuning parameter for the algorithm, comparing the combination of
parameter is needed. Table 3.12 is made base on our experimental using Netlogo. The first
column is the tournament size, and the second is the number of iterations. Column 3 gives us
the fitness value of the solution, column 4 gives the best solution, and the last column is the
relative error to the best solution known.

Table 3.12 shows that the value of tournament size does not give a big impact in finding
the optimal solution. Even though, we can see that, generally, the bigger tournament size,
could give the better fitness value.

Because of the little impact of the value of tournament size, in the table 3.13, we will not
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Tour-
nament
Size

Number
of
Iterations

Fitness
Value

Best
Solution1

Relative
Errors

2

200 164.54 140.27 17.30%
400 163.94 140.27 16.87%
600 160.61 140.27 14.5%
800 154.96 140.27 10.47%
1000 155.37 140.27 10.76%
1200 141.25 140.27 0.69%
1600 140.27 140.27 0%
2000 140.27 140.27 0%

6

200 167.58 140.27 19.47%
400 165.69 140.27 18.12%
600 161.89 140.27 15.41%
800 160.72 140.27 14.58%
1000 155.22 140.27 10.66%
1200 150.79 140.27 7.5%
1600 140.27 140.27 0%
2000 140.27 140.27 0%

1Best solution is got from exact method calculation

Table 3.12 – Computational Result with Population Size = 100, and Mutation Rate = 16%.

Mutation
Rate

Number
of
Iterations

Fitness
Value

Best
Solution1

Relative
Errors

16%

200 160.58 140.27 14.48%
400 158.55 140.27 13.03%
600 157.32 140.27 12.15%
800 148.95 140.27 6.19%
1000 140.27 140.27 0%
1200 140.27 140.27 0%

30%

200 157.65 140.27 12.39%
400 155.63 140.27 10.95%
600 151.35 140.27 7.9%
800 145.17 140.27 3.49%
1000 140.27 140.27 0%
1200 140.27 140.27 0%

1Best solution is got from exact method calculation

Table 3.13 – Computational Result with Population Size = 250, and Tournament Size = 2.

compare the tournament size, but mutation rate. The first column is the mutation rate, and
the second is the number of iterations. Column 3 gives us the fitness value of the solution,
column 4 gives the best solution, and the last column is the relative error.

From the Table 3.12 and Table 3.13, we can see that if population size and mutation rate
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increase, the solution are getting better, the relative errors are decreasing, and the number of
iterations needed is also decreasing.

3.6 Hybridizing Saving and Genetic Algorithm

The main reason of hybridizing two or more algorithms in solving the combinatorial
optimization problem is to improving the result and the performance of the algorithm. We
need to consider two criteria in determining which algorithm we use to solve the optimization
problem : speed and accuracy[28]. Beside those main criteria, there are also another additional
attributes that are also essential : simplicity and flexibility [28]. But, the problem we frequently
meet is not easy to get those criteria in a heuristic we apply. If it has speed, sometimes it
isn’t accurate. Otherwise, if it has accuracy, it isn’t fast.

None of the classical heuristics fares very well on accuracy and flexibility. In this category,
saving algorithm (SA) has at least the distinct advantage of being very quick and simple to
implement. SA is one of the best known and remains widely used in practice to this day. It is
a heuristic with the best score in speed and simplicity as well [28]. SA contains no parameters
and easy to code, that is why it has a good score in simplicity. But, as stated by [78], saving
algorithm does not work well when the scale of costumer increases. So, we need to apply
another algorithm to improve and boost the weak attributes of SA. This is the main reason
of hybridizing.

SA is one of the best and most famous in constructive heuristic [27] [28]. In order to boost
their performance, most constructive procedures are followed by an improvement phase [27].
Compared with classical heuristics, metaheuristics perform much more thorough search of the
solution space, allowing inferior and sometimes infeasible moves, as well as recombinations
of solutions to create new ones. This area of research has experienced a formidable growth
over the decades and has produced some highly effective and flexible VRP heuristics [28]. A
metaheuristic that fit and compatible to play the role as an improvement heuristics methods
is Genetic Algorithm (GA) [15].

In decades, Hybrid genetic algorithms have received significant interest. A genetic
algorithm is able to incorporate other techniques within its framework to produce a hybrid
that reaps the best from the combination [40]. Not only in VRP application, but also in
distribution [50] [69], industrial application [61], economic and banking [86], etc.

In [50], a hybrid GA is used for a multi-time period production/distribution planning.
It deals with a production/distribution problem to determine an efficient integration of
production, distribution and inventory system so that products are produced and distributed
at the right quantities, to the right customers, and at the right time, in order to minimize
system wide costs while satisfying all demand required. In [69], a hybrid GA is applied for
the design of water distribution networks. It uses heuristic-based approach to provide a good
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initial population for genetic algorithm runs.

In industrial applications, paper [61] presents a hybrid GA to optimize the sequence
of component placements on a PCB and the arrangement of component types to feeder
simultaneously for a pick-and-place machine with multiple stationary feeders, a fixed board
table and a movable placement head. In economic and banking field, [86] uses hybrid GA and
support vector machines for bankruptcy prediction. GA is used to optimize both a feature
subset and parameters of the support vector machine (SVM) for a bankruptcy prediction,
an important and widely studied topic since it can have significant impact on bank lending
decisions and profitability.

In the field of Operation Reasearch (OR), especially in solving VRP, we found a lot of
papers that study and discuss the combination algorithm using GA as one of the combined
algorithm, and mostly combined with Tabu Search (TS). Few of them are [25] [12] [21] [22]
[57] [64] [60] [80] [82] and [125]. To our knowledge, [54] is the first to hybridize GA with
TS for optimization purpose, while [25] is the first to hybridize GA with TS for solving
VRP. [25] focuses on the study of a hybrid of two search heuristics, TS and GA on Vehicle
Routing Problem with Time-Windows (VRPTW). Papers [21] and [12] implement hybrid GA
to handle VRPTW. In [22], GA is hybridized with a decomposition technique. GA is developed
to solve the clustering problem, while the decomposition technique is formulated to solve
the set of traveling salesman problems for each cluster. Reference [57] applies combination
between GA and TS in solving a practical OVRP, to optimize the mines material transport
vehicle routing in a Chinese Coal Mine. Ismail and Irhamah [64] propose a hybrid GA-TS
in considering a version of the stochastic vehicle routing problem where customer demands
are random variables with known probability distribution. Paper [80] uses some heuristic in
addition during crossover or mutation for tuning the system to obtain better result. Miao
et al [82] combines GA and TS in addressing a Three-Dimensional Loading Capacitated
Vehicle Routing Problem (3L-CVRP) which combines a three-dimensional loading problem
and vehicle routing problem in distribution logistics. GA is developed for vehicle routing
and TS for three-dimensional loading, while these two algorithms are integrated for the
combinatorial problem. Paper [125] deals with hybrid GA–TS algorithm for open vehicle
routing optimization of coal mines material in Zhengzhou, China.

The previous section shows us that applying GA in our project gave us a satisfactory
result. But later, we found that if the number of points is hugely augmented, the number of
iterations to get a satisfactory result would be increasing extremely.

In this thesis, we combine GA with saving algorithm (SA) in solving VRP for a fleet of
drones. Clarke and Wright’s [26] SA is developed to solve combinatorial optimization problems
since it can be very difficult to be solved by an exact method. This method is started by
calculates saving amount for every pair of points, as shown in the line 5 to 8 in Listing 3.4.
Those saving amounts are then ranked from the biggest to the smallest, as shown in Listing
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1 to constructing-saving-table
2 while [a < number-of-points] [
3 set x_a item a p-x set y_a item a p-y set z_a item a p-z
4 set x_b item b p-x set y_b item b p-y set z_b item b p-z
5 ask patch x_a y_a z_a [set da distancexyz-nowrap item 0 p-x item 0 p-y

item 0 p-z]
6 ask patch x_b y_b z_b [set db distancexyz-nowrap item 0 p-x item 0 p-y

item 0 p-z
7 set dab distancexyz-nowrap x_a y_a z_a]
8 set sab (da + db - dab)
9 set data_saving lput a data_saving

10 set data_saving lput b data_saving
11 set data_saving lput sab data_saving
12 set saving_table lput data_saving saving_table
13 set data_saving []
14 set b b + 1
15 if (b > number-of-points) [set a a + 1 set b a + 1]
16 ]
17 end

Listing 3.4 – Netlogo pseudo code for constructing saving table

3.5. Starting from the biggest amount, the paired points are linked and added to the tour,
and the other points are placed on routes into which they can be linked (otherwise a new
route is started) until a constraint is reached, as shown in Algorithm 5.

We found few papers that combine GA with SA in solving VRP, for example [60] and
[89]. In [60], GA is hybridized with three heuristics. [60] A hybrid genetic algorithm for the
multi-depot vehicle routing problem. The three heuristics hybridized in the algorithm are SA,
the nearest neighbor heuristic, and the iterated swap procedure. Paper [89] also combined
GA and SA in their work, but in different way with ours. They implemented the SA in order
to generate new generation, but we implement SA in order to generate initial population as
shown in the diagram in fig. 3.8.

GA can replace the weaknesses of SA, vice versa. Hybridizing GA and SA is perfect
for each other. GA can play a role as improvement phase heuristic for SA, since SA is a
construction heuristic as shown in fig. 3.9 and table 3.14. Otherwise, SA could be the perfect
initial population constructor for GA. Since one of the basic items that need to be carefully
considered for the algorithm to work as effective as possible is : a good initial population
constructor.

Speed Simplicity Improvement Accuracy
Genetic Algorithm (GA) Slow Average Yes Low
Saving Algorithm (SA) Fastest High No High
Hybrid GA+SA Fast High Yes Very High

Table 3.14 – Hybrid vs Non-Hybrid
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1 to sorting-saving-table
2 set saving_table_temp saving_table
3 set a 0 set b 0
4 let biggest_temp 0 let biggest_item# 0
5 let saving_sorted []
6 while [length saving_table_temp > 0] [
7 set a 0 set b 0
8 set biggest_temp 0
9 set biggest_item# 0

10 while [a < length saving_table_temp] [
11 set b item 2 item a saving_table_temp
12 if (b > biggest_temp) [set biggest_temp b set biggest_item# a]
13 set a a + 1
14 ]
15 set saving_sorted lput item biggest_item# saving_table_temp saving_sorted
16 set saving_table_temp remove-item biggest_item# saving_table_temp
17 ]
18 end

Listing 3.5 – Netlogo pseudo code for sorting saving table

3.7 Simulation Results for The Hybrid of Saving and Genetic
Algorithm

The previous section shows us that applying GA in our project gave us a satisfactory
result. But later, we found that if the number of points is hugely augmented, the number of
iterations to get a satisfactory result would be increasing extremely.

Therefore, we applied Clarke and Wright’s Saving Algorithm (SA) to generate the initial
population in GA. So, it is no longer generated randomly, as shown in fig. ??.

We made a comparison test between a pure GA and a GA combined with SA. We increase
the number of the points, and compare the result. Table 3.15, shows us the comparison using
16 points, with number of population = 100. As shown by fig. 3.10, we can see that combining
GA and SA will give a better performance in searching the optimal solution of the problem.
By using only 200 iterations with this combination, the result still better than using 1600
iterations (8 times more) with the pure GA.

Table 3.16 use bigger number of points than table 3.15, and the comparison result is more
encouraging. As shown by fig. 3.11, the combination still give better performance, and more
significant.

Few number of points is added in table 3.17, and the comparison is getting more obvious
as shown by fig. 3.12. With a little number of iterations, which means also a little number of
time, the combination of GA and SA could give a better result, as indicated with the small
relative error.

From the data we get in this section, we found that the result of hybridizing GA and SA
is encouraging and also satisfying. The comparison result also shown that this hybrid give
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Algorithm 5 Constructing Path
Require: SortedSavingTable
Ensure: i = 0

1: while i < length(SortedSavingTable) do
2: pair(i, j)← SortedSavingTable[i]
3: if neither i nor j have already been assigned to a route then
4: include i and j in new route
5: else if one of the two points (i or j) has already been included in an existing route and

that point is not interior to that route then
6: if adding pair(i, j) to the route will not exceed the constraint then
7: pair(i, j) is added to that route
8: end if
9: else if both i and j have already been included in two different existing routes AND

neither point is interior to its route then
10: if merge the two routes will not exceed the constraint then
11: the two routes are merged
12: end if
13: end if
14: i← i+ 1
15: end while
16: return Route

Number
of
Iterations

Fitness
Average
of GA

Relative
Error

Fitness
Average
of GASA

Relative
Error

200 471.59 20.68% 398.97 2.10%
400 451.65 15.58% 398.55 1.99%
600 417.85 6.93% 401.20 2.67%
800 416.62 6.62% 398.27 1.92%
1000 417.25 6.78% 394.44 0.94%
1200 418.97 7.22% 400.78 2.56%
1600 432.01 10.56% 392.41 0.42%

Table 3.15 – GA vs GASA Experiment Table with Number of Points = 16 and Number of
Population = 100.

more significant result when the number of points is increasing.

3.8 Conclusions

In this chapter a preview and idea about hybridizing genetic algorithm (GA) and saving
algorithm (SA) for 3-dimensional vehicle routing problem in a fleet of drones were discussed.
In general, we are confident that SA could be the best and fastest GA’s initial population
constructor, since SA is a heuristic with the best score in speed and simplicity. Hybridizing
GA and SA is perfect for each other. GA can play a role as improvement phase heuristic for
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Figure 3.8 – Diagram of Combining Genetic Algorithm and Saving Algorithm.

Figure 3.9 – Construction and Improvement Heuristic. SA as the Construction Heuristic,
and GA as the Improvement Heuristic.
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Number
of
Iterations

Fitness
Average
of GA

Relative
Error

Fitness
Average
of GASA

Relative
Error

200 648.30 43.99% 460.03 2.17%
400 603.8 34.11% 460.03 2.17%
600 585.13 29.96% 460.03 2.17%
800 573.32 27.34% 460.03 2.17%
1000 559.15 24.19% 460.03 2.17%
1200 511.72 13.65% 459.09 1.97%
1600 496.84 10.35% 450.24 0.00%

Table 3.16 – GA vs GASA Experiment Table with Number of Points = 22 and Number of
Population = 100.

Number
of
Iterations

Fitness
Average
of GA

Relative
Error

Fitness
Average
of GASA

Relative
Error

200 674.85 43.85% 475.40 1.33%
400 630.34 34.36% 473.70 0.97%
600 595.81 27% 475.97 1.45%
800 602.77 28.48% 475.12 1.27%
1000 572.42 22.01% 475.12 1.27%
1200 588.14 25.36% 475.12 1.27%
1600 574.67 22.49% 473.30 0.97%

Table 3.17 – GA vs GASA Experiment Table with Number of Points = 25 and Number of
Population = 100.

SA. In the other hand, SA could be the perfect initial population constructor for GA.
The first experimental result in this chapter shows satisfactory results in applying Genetic

Algorithm (GA) for this work. But since we need to hugely increase the number of iteration
when several points is added, we hybridize GA with Saving Algorithm (SA). SA in inserted
in GA as the constructor of the initial population. And we found that the result of this
hybridization of GA and SA is encouraging and also satisfying. The comparison results
also show that this combination gives more significant result when the number of points
is increasing.
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Figure 3.10 – "GA" vs "SA+GA" with Number of Points = 16 and Number of Population =
100.

Figure 3.11 – "GA" vs "SA+GA" with Number of Points = 22 and Number of Population =
100.
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Figure 3.12 – "GA" vs "SA+GA" with Number of Points = 25 and Number of Population =
100.
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4.1 Dynamic Vehicle Routing Problem (DVRP)

Nowadays, drone plays a big role in civilian purposes, and it will getting bigger and more
important in the future. Because of it’s flexibility and versatility, the application of drone is
more extensive, covering surveillance, intelligent logistics, search and rescue, scientific studies,
etc.

New trends are moving towards to manage a fleet of drones in order to achieve the given
mission. This issue opens many research opportunities, and our project is made to answer
the challenge, to develop a platform for managing a fleet of drones. As being researched in
decades, Vehicle Routing Problem (VRP) is a perfect study to answer this challenge, in order
to allocate the tasks and find the best path for each drone, with several constraints to be
considered.

Lately, in the real-world, the mission may be affected by uncertainty and may be not always
completely available because of unexpected or uncertain events, such as ongoing customer
requests, actual amount of demand, failure of one or more drones, etc. To deal with this
"dynamic" challenge, the study of the dynamic version of VRP has been done. During the
decades, number of papers have issued in many journals and books discussing DVRP. Psaraftis
[95] [96] [97] was among the first to study dynamic versions of the VRP. In [96], he outlines the
status and prospects for future research within DVRP. Pillac et al [93] provides a review in
this subject with a broad introduction to it. The most common source of dynamism in vehicle
routing is the online arrival of customer requests during the operation. More specifically,
requests can be a demand for goods [63], services [116] and travel time [5].

Several strategy have been applied by researchers in order to solving the DVRP. Pavone
[91] uses queueing strategy in modelling the dynamic routing problem for a robotic system.
Ichoua et al. [63] and Attanasio et al. [5] tackled the dynamics problem with tabu search
(TS). Pureza and Laporte [98] introduces the request buffering that consists in delaying the
assignment of some requests to vehicles in a priority buffer, so that more urgent requests
can be handled first in the emerged dynamic scenario. Branke et al [18] and Thomas [116]
implement the waiting strategy in DVRP. The waiting strategy consists in deciding whether
a vehicle should wait after servicing a request, before heading toward the next customer ;
or planning a waiting period on a strategic location. This strategy is particularly important
in problems with time windows, where time lags appear between requests. Aside from the
waiting after or before servicing a customer, a vehicle can be relocated to a strategic position,
where new requests are likely to appear. Larsen [75] applies the relocation strategy to a
DVRP. Sarasola et al.[107] applies variable neighborhood search (VNS) for the stochastic and
dynamic VRP. Okulevicz et al. [88] use a two-phase particle swarm optimization (PSO) in
solving the DVRP. In each time slice, a PSO assigns costumers to vehicles, then different
PSOs (hybridized with 2-Opt algorithm) solve a TSP instance for each single vehicle. Schyns
[110] applies ant colony system (ACS) in the DVRP, and proposes an adaptation of ACS in a
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context where the objective is the responsiveness, i.e. servicing a customer as soon as possible
in its time window.

DVRP force making decisions in an online manner, which often compromises reactiveness
with decision quality. In other words, the time invested searching for better decisions, comes
at the price of a lower reactiveness to input changes [93]. This aspect requires a good decision,
at the time when new requests appear, to be made as fast as possible. For that reason, we
implement the reverse open vehicle routing problem (ROVRP) to deal with the DVRP. To
us, ROVRP is another approach for DVRP, since it is used in updating vehicle return-trip to
the depot. That is why, we use this approach in our thesis as well. We believe that ROVRP
is fast enough to carry out this challenges.

4.2 Reverse Open Vehicle Routing Problem (ROVRP)

In this thesis, we consider a special variant of VRP called Reverse Open VRP (ROVRP)
to deal with the dynamic scenario in the mission of a fleet of drones. It is a reverse version of
the Open VRP (OVRP), which has been presented before by Sariklis and Powell [108] in their
paper on distribution management problems. The special characteristic which distinguishes
OVRP from the classic VRP is that the vehicles are not demanded to return to the depot.
In different cases, the vehicles could return to the depot by tracking the same tour in reverse
order [92].

The OVRP has been discussed in several studies, for example in a train plan model for
British Rail freight services through the Channel Tunnel [46], a case study for the school
bus routing problem in Hong Kong [77], the distribution of fresh meat in Greece [115], the
distribution of a daily newspaper in the USA [104] [24], a lubricant distribution problem in
Greece [100], and a mines material transport vehicle routing optimization in China [125].
Whereas, according to our knowledge, the ROVRP has not been much discussed. We found a
work from Schopka and Kopfer [109] who modified the Adaptive Large Neighborhood Search
(ALNS) for generating ROVRP in updating vehicle return-trip to the depot. Also, Park and
Kim [90] and Li and Fu [77] who reviewed and made a case study of the School Bus Routing
Problem.

We apply ROVRP to define a set of to-depot returning vehicle routes, in constructing a
new paths due to a dynamic scenario in a fleet of drones. We consider a dynamic scenario as
shown in Fig. 4.1 and as described as follows. For example, we have 3 drones and 12 targets
to be visited, and the drones are assigned to visit the target points as shown in Fig. 4.1(a).
In this case, drone D0, D1 and D2 are assigned to visit set of points {P3− P4− P5− P6},
{P10−P9−P8−P7} and {P11−P0−P1−P2} consecutively. After we assign the points
visiting task to each drone, then the mission is launched as shown in Fig. 4.1(b). Afterward,
few or several new targets appear at a random location and at a random time, like points P12,
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Figure 4.1 – The Proposed Dynamic Scenario

P13 and P14 in Fig. 4.1(c). As consequence, we need to construct new paths for the drones
to return to the depot. As shown in Fig. 4.1(d), the remaining route for drone D2 is changed
from set of points {P0− P1− P2− depot} to set of points {P0− P12− P1− P2− depot}.

Since the ROVRP is classified as an NP-hard optimization problem, we decide to choose
a heuristic method for this project, and we prefer to apply Clarke and Wright’s [26] Saving
Algorithm (SA) in this project. SA is developed to solve combinatorial optimization problems
since it can be very difficult to be solved by an exact method. This method is started by
define the saving value among every pair of points in the system. Those saving amounts are
then ranked from the biggest to the smallest. Starting from the biggest amount, the paired
points are linked and added to the tour, and the other points are placed on routes into which
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they can be linked (otherwise a new route is started) until a constraint is reached. Pichpibul
and Kawtummachai [92] proposed this heuristic method to solve the OVRP.

4.3 Problem Formulation

We define ROVRP as a complete undirected network G = (N ,E) with a set of edge
E = {(i, j)|i, j ∈ N}. We have set of drones V = {1, 2, .., v} who will be tasked to visit points.
We have also a set of points N = {0, 1, ...,n,n+ 1,n+ 2, ...,n+ v}, where the ending point,
known as depot, denoted as point 0. The set of points {n+ 1,n+ 2, ...,n+ v} are the initial
position (P ) of each drones, i.e. the last position of each drone at the time when the dynamic
scenario is activated.

The main objective of this project is to minimise the total traveling and vehicle operating
cost. It can be formulated as follow :

F = min
V∑

v=1

N∑
i=0

N+1∑
j=1

ci,jX
v
i,j (4.1)

where ci,j , associated with set of edge E, is the traveling cost and also the cost of
implementation that a drone travel from point-i to point-j. ci,j is a matrix of a complete
graph. Then, Xv

i,j is a binary variable which defined each arc (i, j), such that equal to 1 if and
only if a drone-v visit point-i and then travels directly to point-j, and equal to 0 if otherwise.

Then the problem is designed to find the set of routes in such a way that satisfy these 3
criterias :

1 Each route depart at initial position and must terminates at the depot.

R =
N+V∑

i=N+1
Xi,j , ∀j ∈ {0, ..,N} (4.2)

R =
N+V∑
i=1

Xi,j , j = 0 (4.3)

where R is the set of r routes which must finish at depot. The number of routes (R)
should not exceed the number of drones (V ).

R ≤ V (4.4)

2 Each point is visited once and only by exactly one drone.

V∑
v=1

N∑
j=0

Xv
i,j = 1, ∀i ∈ {1, ..,N + V } (4.5)
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V∑

v=1

N+V∑
i=1

Xv
i,j = 1, ∀j ∈ {0, ..,N} (4.6)

And each vehicle leaves from point where it arrived in.

N+V∑
i=1;i 6=g

Xi,g −
N∑

j=0;j 6=g

Xg,j = 0, ∀g ∈ {1, ..,N}, j 6= i (4.7)

3 The total time spent to visited all customers in each route less than or equal to the
maximum flight time of the vehicle assigned to serve the route.

tv ≤ Qv − t (4.8)

Qv is the maximum time duration can be performed by drone-v.
t is the total time that has been spent until the dynamic scenario is occurs.
tv is the total flight time of route which traveled by drone v which visit points
{i0, i1, ..., il}. The value of tv is given by

tv =
lv−1∑
j=0

Tij ,ij+1 , ∀j ∈ {1, .., lv} (4.9)

where lv is the length of route which traveled by drone-v

In order to forming the vehicle route, we need to make a list of saving amount for every pair
of points, called the saving value, as the core in Saving Algorithm. The amount is calculated
as follow :

Si,j = ci,0 + c0,j − ci,j (4.10)

where Si,j is called saving value between two points i and j.

4.4 Implementation

We implement ROVRP to define a set of to-depot returning vehicle routes from any
position but depot, in constructing a new paths due to a dynamic scenario in a fleet of drones
as shown in fig. 2.7. At the time t = x, when the drones execute their routes, three new
requests (P12, P13 and P14) appear. At the time a new request appears, the ROVRP is
applied to adjust the initial routes in real-time so that we get the result as shown in fig. 4.2.

To determine the route adjustment as a consequence of the appearance of a dynamic
scenario, we implement the ROVRP using an approach which alike to the sweep algorithm :
partition first, route later. The steps is shown in fig 4.3.

This method is divided into 2 phases i.e. clustering and routing.
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Figure 4.2 – The application of ROVRP. (a) At time t = x when three new requests (P12,
P13 and P14) appear during mission execution. (b) The result of ROVRP in adjusting the
routes.

4.4.1 Clustering

In this phase, we form clusters of to-be-visited points. Each cluster will be served by a
single drone. So, the number of clusters is equal to the number of routes, and should not
exceed the number of drones. The member of a cluster is the member of established route.
For example in Fig. 4.2a, drone D0 is assigned to visit set of points {P3− P4− P5− P6},
so those points mentioned are the member of Cluster 0, which is served by drone D0.

When the dynamic scenario is occured, we merge the new points into the closest existing
cluster. For example, as shown in Fig. 4.2a, set of points {P12,P13,P14} emerge when the
mission has been already launched. So, we define onto which cluster is those new points will
be merged. Since P12, P13 and P14 are close to the cluster 2, 0 and 1 consecutively, we
merge those new points into the clusters mentioned after, as shown in Fig. 4.2b. Listing 4.1
shows the pseudo code for clustering phase.

4.4.2 Routing

We divide this phase into 2 steps i.e. creating saving list and constructing routes.

4.4.2.1 Creating Saving List

The saving list is only made for each cluster of points. It means, if Si,j is the saving value
between point-i and point-j, we should ensure that point-i and point-j are in the same cluster.
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Figure 4.3 – The steps of ROVRP implementation.

The savings value between point i and j is calculated as :

Si,j = ci,P + cP ,j − ci,j

where ci,P is the traveling cost between the initial position of the drone (P ) and point-i, cP ,j

is the traveling cost between the initial position of the drone (P ) and point-j, and ci,j is the
traveling cost between two points i and j. Listing 4.2 shows this calculation in the line 14 to
16. After calculation, all savings values are collected in the savings list, and the values in the
savings list are sorted in decreasing order, as shown in Listing 4.3

The saving list creation is described by Fig. 4.4 which shows a cluster of points that consist
of 5 points, i.e. point P as the initial position of the drone which appointed as the starting
point of the route, set of points {1, 2, 3}, and point 0 or denoted as depot or the end-point.
Fig. 4.4a shows that the cluster is a complete undirected network. The table of ci,j for every
points in Fig. 4.4 is shown in Table 4.1.

From the information provided in Table 4.1, we can calculate the saving value among
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1 to clustering
2 set cluster remain
3 set point# number-of-points + 1
4 while [point# < number-of-points + number-of-new-points + 1][
5 set row# 0
6 while [row# < route#] [
7 set column# 0
8 while [column# < length item row# cluster - 1][
9 set old-point item column# item row# cluster

10 ask patch item point# p-x item point# p-y item point# p-z [
11 set point-distance distancexyz-nowrap item old-point p-x item old-point

p-y item old-point p-z
12 ]
13 if (point-distance < nearest) [
14 set nearest point-distance
15 set nearest-point old-point
16 set nearest-cluster row#
17 ]
18 set column# column# + 1
19 ]
20 set row# row# + 1
21 ]
22 set x item nearest-cluster cluster
23 set x insert-item 0 x point#
24 set cluster replace-item nearest-cluster cluster x
25 set nearest 1000
26 set point# point# + 1
27 ]
28 end

Listing 4.1 – Netlogo pseudo code for clustering new points that emerge

ci,j P 1 2 3 0
P - 4 5 3 9
1 4 - 3 5 10
2 5 3 - 4 7.2
3 3 5 4 - 6
0 9 10 7.2 6 -

Table 4.1 – Table of ci,j for every points in Fig. 4.4

rank Si,j saving value rank Si,j saving value
1 S2,0 6.8 4 S2,3 4
2 S3,0 6 5 S1,0 3
3 S1,2 6 6 S1,3 2

Table 4.2 – The saving value list for every points in Fig. 4.4

every pairs in the cluster, and rank them as shown in Table 4.2. Then, we will construct the
route based on that table.
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1 to constructing-saving-table
2 set row# 0
3 set column# 0
4 while [row# < cluster#][
5 set clusterx item row# cluster
6 set column# 0
7 while [column# < (length clusterx) - 1] [
8 set a item column# clusterx
9 set b item (column# + 1 + c) clusterx

10 set x_a item a p-x set y_a item a p-y set z_a item a p-z
11 set x_b item b p-x set y_b item b p-y set z_b item b p-z
12 ask patch x_a y_a z_a [set dab distancexyz-nowrap x_b y_b z_b]
13 ask turtle (number-of-population + inters# + collin# + row# + 1) [
14 set pb distancexyz-nowrap x_b y_b z_b
15 set pa distancexyz-nowrap x_a y_a z_a]
16 set sab (pa + pb - dab)
17 set data_saving lput a data_saving
18 set data_saving lput b data_saving
19 set data_saving lput sab data_saving
20 set saving_table lput data_saving saving_table
21 set data_saving []
22 set c c + 1
23 if (c > (length clusterx) - 2 - column#) [set column# column# + 1 set c 0]
24 ]
25 set row# row# + 1
26 set saving_table_full lput saving_table saving_table_full
27 set saving_table []
28 ]
29 end

Listing 4.2 – Netlogo pseudo code for constructing saving table

4.4.2.2 Constructing Routes

The route constructing procedure starts from the top of the savings list (the biggest value
of Si,j). Both point i and j will be merged into the same route if the total flight time does
not exceed the drone’s maximum flight duration. Algorithm 6 shows the constructing steps in
each cluster. Since ROVRP is a to-depot returning vehicle route, the route will be defined as
an ordered sequence of points which starts at the initial position of the drone (P ), visits all
its points once and only once, and terminates at the depot (0). The cost of a route is defined
as the sum of the traveling costs through its cluster members. In this phase we aim to find
the least cost route in each cluster.

In Fig. 4.4a, P has already been assigned as the starting point, and 0 as the end point.
Then, from the top to bottom of the list in the Table 4.2, we merge the pairs into the route.
Table 4.2 shows that S2,0 has the biggest value in the list, so we merge the edge (2, 0) into
the route, as shown in Fig. 4.4b.

According to Table 4.2, the next saving value in the rank is S3,0. But, since the point 0
is the end point in the route, it has only one edge adjacent to it. So, we will not merge the
edge (3, 0) into the route.
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1 to sorting-saving-table
2 let biggest_temp 0 let biggest_item# 0
3 let saving_sorted []
4 set row# 0
5 set saving_table_temp saving_table_full
6 while [row# < cluster#] [
7 set clusterx item row# saving_table_temp
8 set a 0 set b 0
9 while [length clusterx > 0] [

10 set a 0 set b 0
11 set biggest_temp 0
12 set biggest_item# 0
13 while [a < length clusterx] [
14 set b item 2 item a clusterx
15 if (b > biggest_temp) [set biggest_temp b set biggest_item# a]
16 set a a + 1
17 ]
18 set saving_sorted lput item biggest_item# clusterx saving_sorted
19 set clusterx remove-item biggest_item# clusterx
20 ]
21 set saving_table_temp replace-item row# saving_table_temp saving_sorted
22 set saving_sorted []
23 set row# row# + 1
24 ]
25 end

Listing 4.3 – Netlogo pseudo code for sorting saving table

In Fig. 4.4c, we merge the edge (1, 2) to the route, as it’s saving value is in the next list.
The edge (2, 3) could not be merged into the route, because its already 2 edges adjacent to
point 2. The edge (1, 0) also can’t be merged into the route, because point 0 has already an
edge adjacent to it. Then, the last pair in the list, the edge (1, 3), we can merge it into the
route, as shown in Fig. 4.4d. Since the point 3 is the last point to be merged in the cluster,
the route is already complete.

Furthermore, in case of non-merged points caused by some constraint, each point will be
serviced by a drone that starts at the depot, visits the non-merged points, and returns to the
depot.

4.5 Experimental Setup and Results

As implemented in chapter 3, in this chapter we also use Netlogo as the tool for
programming and simulating. In this chapter, we add 3 new input panel in the interface
window that we made for our previous chapter as shown in Fig. 4.5. The whole new interface
panel window will be seen as shown in Fig. 4.6.

The toggle switch named new_points_arrive in the additional input panels is to indicate
the emerge of new point(s) in the mission. It should be manually turned on and off to indicate
the emerge of new point(s). The number − of − new − points panel is to inform how many
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Algorithm 6 Constructing Path
Require: SortedSavingTable
Ensure: i = 0

1: while i < length(SortedSavingTable) do
2: pair(i, j)← SortedSavingTable[i]
3: if neither i nor j have already been assigned to the route then
4: if one of the two points (i or j) is zero then
5: define this pair as the end_point
6: else
7: include i and j in the route
8: end if
9: else if one of the two points (i or j) has already been included in the route then

10: if adding pair(i, j) to the route will not exceed the constraint then
11: if one of the two points (i or j) is zero AND zero has not already been assigned to

the route then
12: define this pair as the end_point
13: end if
14: pair(i, j) is added to that route
15: end if
16: end if
17: i← i+ 1
18: end while
19: return Route

Figure 4.4 – The Constructing Route Procedure

points that emerge at a certain time, and the new_points_locations panel is to inform
the location of the new point(s) in 3-dimensional XY Z coordinates. The amounts in the
number− of −new− points and the new_points_locations panels are filled manually before
we turn the new_points_arrive switch on.
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Figure 4.5 – The additional input panels

The problem sizes that we use in this section is a small-scale problem. We use 15 points in
initial state, as shown in Fig. 4.7, but it is available if we want to enlarge the size to a bigger
scale. The problem include a not to be exceeded flight-time-constraint but we do not apply
the capacity constraints. The 3-dimensional environment as shown in Fig. 4.7 shows that the
problem is started with task allocation and vehicle routing problem that has already done in
Chapter 3.

Then, when the mission is already launched, one or more new point(s) emerge in the
environment, at a random time, and request a visit. It requires a route recontruction as
shown in Fig. 4.8. The blue line in Fig. 4.8 indicates the initial route of the drones, and the
yellow line indicates the path that already trailed by drones. The yellow line shows that the
route is already reconstructed due to a request by the new points.

Base on our experimental using Netlogo, the Saving Algorithm that we implement is
suitable to cover this problem. Table 4.3 and table 4.4 show the result in implementing it.
The first column indicates the time when new points are appear (t). At t = 80, the mission
assigned to drone D1 (t1) is already completed the initial mission, as shown in the 11th row
of both tables. The second and third column show the flight time needed for each drone
to complete the reconstructed routes. We have 3 clusters since we have 3 drones in the
initial state. Column 4 provides us the Best Known Solution (BKS) for each problem and
each cluster formed. Then, the last column shows the percentage performance between our
proposed implementation and the best known solution, which is calculated as follows :

Performance =

(
tv +BKS

BKS

)
∗ 100

As we can see, most of the result in the performance column is 100%, which means this
proposed method is feasible to cover this Reverse Open Vehicle Routing Problem.

4.6 Conclusions

In this chapter we discuss the dynamic scenario that could occur in a mission of a fleet of
drones. Literatures denote it as dynamic vehicle routing problem (DVRP). To solve DVRP
we use ROVRP approach because it can solve this dynamic problem fast, since we need a
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Figure 4.7 – 3 Routes has been assigned, with 3 drones and 15 points.

t tv BKS Perf.
(in %)

20
t0 133,0424 133,0424 100
t1 83,2870 83,2870 100
t2 138,0829 137,0269 99,23

30
t0 125,5930 125,5930 100
t1 80,5816 80,5816 100
t2 142,5546 142,5546 100

40
t0 118,4111 118,4111 100
t1 58,8001 58,8001 100
t2 117,6774 117,6774 100

80
t0 104,1932 104,1932 100
t1 mission is already finish
t2 116,6962 116,6962 100

Table 4.3 – Performance of the proposed algorithm with 3 new points that emerge.

fast method to solve DVRP. ROVRP is divided into 2 phase : clustering and rotuing. For the
clustering method, we simply search the nearest neighbor to insert the new points into it.
Finally, for the routing, we implement saving algorithm.

We also have proposed a heuristic approach to solve the Reverse Open Vehicle Routing
Problem (ROVRP). We divided our proposed method into 2 phases i.e. clustering and routing.
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Figure 4.8 – The appearance of 4 points which request a visit. The new points are appointed
with white arrows.

t tv BKS Perf.
(in %)

20
t0 133,0424 133,0424 100
t1 87,9993 87,9993 100
t2 138,0829 137,0269 99,23

30
t0 123,6548 123,6548 100
t1 89,8677 89,8677 100
t2 143,2264 143,2264 100

40
t0 118,4111 118,4111 100
t1 83,7682 83,7682 100
t2 151,3183 151,3183 100

80
t0 81,4686 81,4686 100
t1 mission is already finish
t2 157,7975 157,7975 100

Table 4.4 – Performance of the proposed algorithm with 4 new points that emerge.

We also have done experiments using 15 points and 3 drones in initial state, and also 3 and 4
new points that emerge in dynamic scenario. We use Netlogo in this experiments. The results
show that our approach is feasible to cover this problem.
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5.1 Conclusion

In this chapter, we summarize the main contributions achieved in this work, and we put
our work in perspective with suggestions for future works. The growth and advancements in
the studies and researches on managing a fleet of drones has lead the emerged of this thesis.

In this thesis work, we apply vehicle routing problem (VRP) as a platform for manage a
fleet of drones in accomplishing a given mission. So many researchs in finding algorithm
to solve VRP, and all of them could be divided into two categories : exact methods
and approximation methods. Since VRP is classified as an NP-hard problem, applying
approximation methods is more feasible to find solutions, especially for a large-scale problem
with huge number of costumers. The approximation methods can be classified into two
classifications : classic heuristic and metaheuristic.

In Chapter 3, we presented a hybrid saving algorithm (SA) and genetic algorithm (GA)
to solve the VRP for a fleet of drones. GA is a widely used metaheuristic, especially in solving
VRP and traveling salesman problem (TSP). Eventhough GA is feasible to find solutions in
this combinatorial optimization problem, we were thinking that hybridized it could improve
the performance of this algorithm. For that reason, we choosed SA to hybridize with.

As stated in chapter 2, heuristic methods is divided into two types : construction heuristic
and improvement heuristic. The use of both types is preferable in order to find a better result.
We chose saving algorithm because it is the methods which easy to implemented. But, as a
constructive heuristic, saving algorithm usually does not working well when the scale of the
VRP is large and increasing. That is why SA needs an improvement heuristic to improve the
result. One of heuristic that could play this role is GA.

Later, in Chapter 3, we could see that this combination between SA and GA could improve
the performance of the algorithm very satisfactorily. When GA is overwhelmed by the increase
of the costumer, the hybrid GA-SA could handle it.

In Chapter 4, we added a dynamic scenario into the problem. We used the reverse open
VRP as the approach in solving this dynamic VRP. Also in chapter 4, we could see that
ROVRP could be used in tacklig dynamic VRP.

5.2 Perspectives

Managing the Multi Fleet of Drones. Our thesis was taking into account a single
fleet of drones, which only have a single depot for the drones. As the future perspective, we
consider to manage multi fleet of drones in a huge terrain with number of depots. Each depot
has number of drones which can be sent to complete a certain mission.

Better Crossover Operators. Eventhough it is already been discussed for decades,
Genetic Algorithm still opens opportunities for performance improvement and exploration.
One of the most important item that need to be considered for the algorithm to work as



5.2 Perspectives 73

effective as possible is the crossover operator for reproduction. This operator is the backbone
of the Genetic Algorithm. We believe, by finding the best crossover operator, the performance
of Genetic Algorithm will be boosted, especially its speed.

The Failure of Drones : Another Dynamic Scenario. In this thesis, as the dynamic
scenario, we considered the case where a single or multi requests appear, and asking for a
visit during the mission execution by a fleet of drones. For the future works, we consider a
dynamic scenario where at a random time, one drone is lost or fall or experience a failure so
that it could not be able to continue the mission. So, we need to construct a new paths for the
drones to return to the depot. With this scenario, clustering process like we did in chapter 4
is no longer feasible.

As shown in Fig. 5.1(a), a new path is already been constructed. But suddenly, at a
random time, one drone is lost or fall or experience a failure so that it could not be able
to continue the mission, like drone D2 in Fig. 5.1(b). We turn the color of drone D2 into
grey to show that the drone is fail to complete the mission. Again, we need to construct
a new paths for the drones to return to the depot. As shown in Fig. 5.1(c), the remaining
routes for both drone D1 and D0 are changed. D1’s remaining route is changed from set of
points {P9− P8− P7− depot} to set of points {P9− P8− P7− P6− P5− depot}. Also,
D0’s remaining route is changed from set of points {P13− P3− P4− P5− P6− depot} to
set of points {P13− P4− P3− P2− P12− P1− depot}.

Managing the Fleet of Heterogeneous Drones. Our thesis was taking into account
a fleet of drones that are homogeneous, which every drones have the same characteristic
and specification, and also carry the same payloads and devices. In our thesis, the task also
homogeneous, so that every nodes or points are eligible to be visited by any drones, since
they are homogeneous. For the future works, we consider to take into account the fleet of
drones that are heterogeneous, with heterogeneous tasks. Every drones will not carry the
same payloads and devices, and only certain drones are eligible to visit certain nodes or
points, depend on the tasks in certain points and also the payloads and devices carried by
certain drones. In this case, some nodes or points probably visited by more than just a single
drone, in case of the task inside it could not be solved and accomplished by a single drone.



74 Conclusion and Perspectives

Figure 5.1 – The Dynamic Scenario as Perspective
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Annex A

Constructive Heuristic

Here, we list constructive heuristics that are widely used in slving vehicle routing problem
(VRP),

A.0.1 Nearest Neighbor Method

Rosenkrantz et al [103] proposed the nearest neighbor method in 1977. This method start
from the depot and search for the nearest unvisited costumer as the next costumer. Repeat
this procedure in the condition of not exceeding the capacity until all costumer are visited.
the advatages of this algorithm is that the computation speed is fast and we can easily get
initial solution. The disadvantage is that it is easy to fall into local optimum.

A.0.2 Sweep Algorithm

The main idea of this algoritmh is : "partition first, route later". [106] presents the sweep
algorithm and its application to VRP. The sweep algorithm applies to planar instance of
the VRP. The depot is joined with an arbitrarily chosen point. All other nodes are joined
to the depot and then aligned by in creasing the angles which are formed by the segment
that connects the nodes to the depot. It consists of two parts : - Split : Feasible clusters are
initiated formed rotating a ray centered at the depot based on their capacity ; - TSP : A
vehicle routing is then obtained for each cluster by solving a TSP.

A.0.3 2-Phase Algorithm

The problem is decomposed into its two natural components : (1) clustering of vertices
into feasible routes then use k-opt to optimize the routes respectively and (2) reduce the total
travel cost by swapping between routes and optimize the routes with k-opt. The other 2-phase
algorithm is proposed by Fisher and Jaikumar (1981). The main idea is to solve a Generalized
Assignment Problem (GAP) to decide the feasible cluster and solve the TSP in each route.
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A.0.4 Insertion Heuristics

Insertion heuristics are popular methods for solving a variety of vehicle routing and
scheduling problems. The main principle of insertion heuristics is to start from a single node
that is usually called a seed node and that forms the initial route from the depot. Other
nodes are inserted one by one evaluating certain functions to select a node and the place in
the route for insertion.



Annex B

Metaheuristics for Solving Vehicle
Routing Problem

According to [51], there are a wide variety of metaheuristics. Some properties
are use to classify them, such as local search or global search, single-solution or
population-based, hybridization or memetic algorithms, parallel metaheuristcs and mature-
inspired metaheuristcs. The most common and studied metaheuristics include Ant Colony
Optimization, Simulated Annealing, Tabu Search and Evolutionary Algorithm (AE). Genetic
algorithm, evolutionary programming and memetic algorithm belong to EA.

B.0.1 Ant Colony Optimization

This metaheuristic is inspired from a natural metaphor, namely the communication and
cooperation mechanisms among real ants that allow them to find short paths from their nest
to food sources. The communication medium is a chemical compound, known as pheromone,
which is laid down on the ground. While an isolated ant would more or less wander randomly,
an ant detecting a pheromone path will follow it, with some probability, and will strengthen
it with its own pheromone. Thus, the probability that other ants will follow a given path in
the future increases with the number of ants that previously followed it. This leads to the
emergence of shortest paths, since pheromone tends to accumulate faster on those paths. In
the artificial metaphor known as Ant Colony Optimization (ACO) [35], a number of artificial
ants construct solutions in a randomized and greedy way at each cycle. Each ant chooses
the next element to be incorporated into its current partial solution based on some heuristic
evaluation of that element and the amount of pheromone, represented by a weight, associated
with it. The pheromone represents the memory of the system and is related to the presence of
that element in good solutions previously constructed by the ants. ACO has quite naturally
been applied to the Traveling Salesman Problem (TSP), where a shortest Hamiltonian cycle
must be found over a complete graph. However, the ACO metaheuristic has also been adapted
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to the VRP and some of its extensions.

B.0.2 Greedy Randomized Adaptive Search Procedure

The basic idea of the Greedy Randomized Adaptive Search Procedure (GRASP) [101] is
to use a randomized greedy construction heuristic within a multistart procedure to generate
a variety of solutions. At each step of the greedy construction heuristic, the elements not yet
incorporated into the current partial solution are evaluated with a heuristic function, and the
best elements are kept in a restricted candidate list. One element is then randomly chosen
from that list and incorporated into the partial solution. When the construction process is
completed, the solution is further improved with a local search. The best solution obtained
after a certain number of restarts is then returned at the end.

B.0.3 Simulated Annealing

This metaheuristic is a randomized local search method, where a modification to the
current solution that leads to an increase in solution cost can be accepted with some
probability. This mechanism allows the method to escape from bad local optima. Simulated
Annealing (SA) [72] comes from an analogy with the physical annealing process aimed at
generating solids with low-energy states. In condensed matter physics, annealing is a process
in which a solid is first melted by increasing its temperature. This is followed by a gradual
temperature reduction to recover a solid state of low energy. A careful annealing through a
series of temperature levels, where the temperature is held long enough at each level to allow
the system to reach equilibrium, leads to the more regular structures associated with solids
with low-energy states. In a vehicle routing context, a solution or set of routes corresponds to
a state and the solution cost to its energy. At each iteration, the current solution is modified
by randomly selecting a modification based on a particular class of modifications that defines
the neighborhood structure. If the new solution is better than the current one, it becomes the
current solution. Otherwise, the new solution is accepted according to a probabilistic criterion,
where a modification is more likely to be accepted if a parameter called the temperature
(by analogy with the physical process) is high and the cost increase is low. During the
procedure, the temperature parameter is progressively lowered according to some predefined
cooling schedule, and a number of iterations is performed at each temperature level. When
the temperature is sufficiently low, only improving modifications can be accepted and the
method stops in a local optimum. As opposed to most metaheuristics, it has been shown
that SA asymptotically converges to a global optimum. The success of SA has sparked the
development of deterministic analogs whose performance has been quite similar to that of SA :
Threshold Accepting [39], Record-to-record Travel [38], and the Great Deluge Algorithm [38].
In these methods, as in SA, the acceptance of deteriorating solutions becomes progressively
less frequent as the algorithm unfolds.
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B.0.4 Tabu Search

Like Simulates Annealing, Tabu Search (TS) [53] is a local search-based metaheuristic
where, at each iteration, the best solution in the neighborhood of the current solution is
selected as the new current solution, even if it leads to an increase in solution cost. Through
this mechanism, the method can thus escape from bad local optima. A short-term memory,
known as the tabu list, stores recently visited solutions (or attributes of recently visited
solutions) to avoid short-term cycling. The search stops after a fixed number of iterations or
after a number of consecutive iterations have been performed without any improvement to
the best known solution.

B.0.5 Variable Neighborhood Search

Variable Neighborhood Search (VNS) [58] is another local search-based metaheuristic
which exploits many different transformation classes, or neighborhoods, to escape from bad
local optima. When a local optimum is reached with regard to a given neighborhood, another
neighborhood is selected and used in the following iterations. More precisely, given a set of
(often nested) neighborhoods, a solution is randomly generated in the first neighborhood of
the current solution, from which a local descent is performed (possibly based on a completely
different neighborhood structure). If the local optimum obtained is not better than the current
solution, then the procedure is repeated with the next neighborhood in the nested structure.
The search restarts from the first neighborhood when either a solution which is better than
the current solution is found or all neighborhoods have been tried. A well-known variant is
the Variable Neighborhood Descent (VND) where the best neighbor of the current solution
is considered instead of a random one. Also, no local descent is performed on this neighbor.
Rather, the latter becomes the new current solution if it provides an improvement. The search
is then restarted from the first neighborhood. Otherwise, the next neighborhood is considered.

B.0.6 Genetic Algorithm

Evolutionary algorithms are a large class of metaheuristics, also inspired from a natural
metaphor, with Genetic Algorithms (GAs) [55] being one of the best known. Basically,
they imitate the technique species evolve and adapt to their environment, according to the
Darwinian principle of natural selection. Under this paradigm, a population of solutions (often
encoded as bit or integer strings, known as chromosomes) evolves from one generation to
the next through the application of operators that are similar to those found in nature, like
selection of the fittest, genetic crossover and mutation. Through the selection process, only the
best solutions are allowed to become parents and to generate offspring. The mating process,
known as crossover, then takes two selected parent solutions and combines their most desirable
features to create one or two offspring solutions. This is repeated until a new population of
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offspring is obtained. Finally each offspring is randomly perturbed by a mutation operator.
Starting from a randomly or heuristically generated initial population, this cycle is repeated
for a number of generations, and the best solution found is returned at the end. When applied
to vehicle routing problems, the classical GA solution scheme is often modified. In particular,
the encoding of solutions into chromosomes is either completely ignored (by applying the
various operators directly on the solutions) or designed in a very particular way to take
advantage of specialized crossover and mutation operators.



Annex C

Real Life Applications of Dynamic
Vehicle Routing Problems (DVRP)

According to [75], we list a number of real-life applications of dynamic vehicle routing
problems (DVRP)

C.0.1 The Traveling Repairman

Consider the situation that arises when for instance a bank teller machine breakes down
and must be repaired by a service technician. The route to be followed by the technician
may be determined using a distance based objective or it might take the urgency of the call
(is the teller-machine located in a high intensity area or is it located in a remote area ?)
into consideration. This problem is often referred to as the Dynamic Traveling Repairman
Problem (DTRP) and is one of the most well-studied dynamic vehicle routing problems. A
similar example is the repairman from the electric power company traveling from house to
house to repair sudden break-downs in the electric power supply.

C.0.2 Courier Mail Services

Courier mail service companies throughout the world offer to pick-up mail and/or packages
at one location and deliver the goods safely at another location within a certain time limit.
Often, the mail/packages to be deliveredare not local, but shipped from other cities or
countries. Hence, the deliveries are shipped to a hub and then distributed from this hub
to the delivery trucks. The deliveries form a static routing problem, because all recipients are
known by the driver (and the dispatcher) before the vehicle leaves the depot. However, the
pick-ups to be handled during the deliveries has the effect that the problem become dynamic
in the sense that the driver and the dispatcher do not have all information on when and where
the pick-ups are going to take place.
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C.0.3 Distribution of Heating Oil

The distribution of heating oil to private households is often based on the so-called degree-
days which is a simple measure of the accumulated outdoor temperature. The oil companies
use the degree-day measure to keep track of how much oil the customers have used for heating
their houses. Whenever the database tells the routing system that a customer is running
low on heating oil, the customer is included in the pool of customers waiting to be served.
Eventhough the degree-day customers could be thought of as static customers, the routing
problem often becomes dynamic due to the fact that a subset of the customers might run out
of oil before the degree-day database includes the customers in the replenishing list. Reasons
for this situation could for instance be that a sudden change in the weather causes a high
use of oil just before replenishment was to take place or a general higher use of oil due to
changes in the behavior of the customer (for example when the house owner invites people
to stay and therefore has to heat rooms which are normally left unheated). Experiences show
that approximately 20% of the customers visited by the oil company in a day are dynamic
customers calling in during the day requesting immediate service. Another element which
makes this problem different from - and much more difficult to solve than - the conventional
static and deterministic routing problems is the fact that the degree-day measure is not a
precise measure for the actual use of heating oil, but merely an estimate. This implies that
the problem becomes stochastic in relation to the demand.

C.0.4 Dynamic Dial-A-Ride Systems

Dial-a-ride transportation systems are one application of the general pickup and delivery
vehicle routing problem, in which one or more types of commodities must be picked-up at
one location and brought to another location where the goods are delivered. One example
of a dynamic diala-ride system is the transportation of elderly and handicapped people. In
Copenhagen, Denmark, the local urban bus companies also provide a service for elderly and
handicapped people. At present time customers are supposed to call in for service one day
before the requested trip is going to take place. This policy of course makes the system static,
but in the future the bus company might offer the service as an online service for instance
via a world wide web based booking system.

C.0.5 Taxi Cab Services

Managing taxi cabs is yet another example of a real-life dynamic routing problem. In
most taxi cab systems the percentage of dynamic customers is very high, i.e., only very few
customers are known to the planner before the taxi cab leaves the taxi central at the beginning
of its duty. A special attribute of the taxi cab routing and dispatching problem is that the
state of the taxi can either be for hire or it can be engaged by one or more passengers. When
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the taxi is free for hire, the driver often repositions the vehicle to a centrally located taxi
rank where the probability of being hailed is higher than it would have been if the driver
had chosen to wait at the destination of the last customer. The location of the taxi ranks
could either be based on extensive empirical data of calls or it could simply be based upon
the intuition and experience of the driver. The policies for assigning customers to taxis differ
from country to country and from company to company. The larger taxi cab companies in
Denmark are owned by relatively few contractors, each of whom might have between one and
100 taxis. The contractors share a central call and dispatch center. The customers are then
assigned to the taxi according to the number of taxi cabs owned by each contractor. This
implies that the taxi cab routing and dispatching system will have to use a load balancing
strategy when assigning the customers to taxis. This policy means that the contractors could
be sure that they will get the best service from the company.

C.0.6 Emergency Services

The dispatching of emergency services (police, fire and ambulance services) resembles the
dynamic vehicle routing problem through the fact that requests for service arrive in real-
time and that the system resembles a geographical based queueing system. In most situations
though, routes are not formed, because the requests are usually served before a new request
appears. The problem then is to assign the best vehicle (for instance the nearest) to the
new request. Methods for designing emergency service dispatch are therefore often based on
location analysis for deciding where to locate the vehicles and crews. This area has been
studied mostly from queueing oriented approaches.
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Annex D

Static versus Dynamic Vehicle
Routing

Psaraftis [95] lists the points that differ the classic VRP and the dynamic version of VRP.
Before we proceed with methodological issues, it is important to be explicit with what we
mean by the word "dynamic". Although this may seem obvious or times between nodes are
known and deterministic, and the salesman spends a known service time at each node. What
is the routing policy that minimizes the average, over all demands, expected time until service
of the demand is completed ? Alternatively, what is the routing policy that maximizes the
average expected number of demands serviced per unit time ?

This problem is dynamic because part of the input required to solve it (that is, which nodes
actually request service) is revealed to the dispatcher concurrently with the determination of
the route. Given this, it is impossible for an optimal route to be produced in advance. At
best, what can be produced is a policy, specifying what action should be taken as a function
of the state of the system. More about this problem and its variants later The above examples
show that the way information about a particular routing problem evolves through time and
is received by the decision maker is critical for the characterization of the problem as static or
dynamic. More important, this plays an important role in determining which methodologies
can be used.

The following taxonomy can be useful in characterizing attributes of information that
forms the input of a certain vehicle routing problem :

— evolution of information : (static/dynamic).

— quality of information : (known-deterministic/forecast/probabilistic/unknown).

— availability of information : (local/global).

— processing of information : (centralized/decentralized).
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D.0.1 Evolution of information

The differentiation between static and dynamic inputs is relevant here. The former are
known for the entire duration of the routing process and are not updated (although they may
very well be functions of time, as in the time-dependent TSP). The latter are not known
for the entire duration of the routing process (which may be open ended anyway), and will
generally be revealed or updated as time goes on.

D.0.2 Quality of information

Some (or all) inputs to the problem can be known with certainty (deterministic),
throughout the duration of the routing process. Examples : Number of nodes, number of
vehicles, vehicle capacities, internode distances, etc. Some other inputs may not be known
with certainty, but only as forecasts. These inputs are subject to revision as the routing process
evolves. Examples : Demand at a certain node, travel times between certain node pairs, etc.
Yet other inputs may be probabilistic, that is, follow prescribed probability distributions or
evolve according to known stochastic processes. Examples : Demand location on a Euclidean
instance is uniformly distributed on the unit square, travel time between nodes follows a
prescribed distribution, arc costs follow a Markov process, quantity demanded at a node
follows a given distribution, etc. Finally, there may be certain inputs on which no information
is available at the time of decision. Examples : The time at which the next demand for service
is received, the location of that demand, etc. It is important to realize that the attributes
of information quality for a certain input variable are defined for the specific point in time
at which the decision has to be made, and may change when time moves along (this is true
for dynamic inputs). For instance, a certain variable may be probabilistic now, but becomes
deterministic when the realization of its value is revealed. The same is true for forecast and
unknown input variables. In addition, the values of probabilities of certain other variables
may very well change, as a result of observations during the course of the routing process.
The quality of information in dynamic vehicle routing is usually good for near-term events,
and becomes poorer for more distant events.

D.0.3 Availability of information

There may be problems in which information is available only on a local basis. For instance,
the travel time between two nodes may be random, and its actual value may be revealed (or
forecast) only when the vehicle arrives at the starting node. The same may be true when the
driver of a tank truck learns of the amount of oil needed to replenish a certain customer’s
inventory only on location. On the other hand, some inputs may be available globally. For
instance, estimated travel times may be received by radio (or by some other device) even for
remote parts of the network. Or, customer inventories may be automatically monitored by a
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device, and this information may be transmitted to the dispatcher on a global and continual
basis. Technologies will generally increase the global availability of information, although the
issue of who receives such information and when he receives it is a crucial parameter of system
architecture and design. For instance, the central vehicle dispatcher may have at his fingertips
all information on a global basis, although he will probably choose to reveal to the driver of
a particular vehicle only information that is needed by that vehicle and driver.

D.0.4 Processing of information

The two main schemes that exist regarding what is done with the information that is
available are the centralized and decentralized ones. According to the former, all information
is collected and processed by a central unit (be that a human scheduler, a man-machine
computer-assisted dispatching system, or a fully automated system). On the other hand, it
may make sense for some of the information to be processed separately. For instance, if the
driver of the truck is given latitude to decide his own routing for a certain set of demand points
(either by himself, or by an on-board computer), we have a (partly) decentralized system. This
attribute is very important with respect to the methodology that is used to solve the routing
problem. Some of the partitioning or decomposition schemes that have been used for many
vehicle routing problems in the past may lend themselves to processing decentralization. It is
our opinion that such schemes are more important for dynamic routing problems, given the
faster running time requirement of the dynamic scenario vis- t-vis the static one.

D.0.5 12 Issues that Differ DVRP

Psaraftis [95] also lists 12 issues on which the dynamic vehicle routing problem differs
from the conventional static routing problem. Below, is a brief summary of these issues as
they are indeed very central to the discussion of static versus dynamic routing.

1. Time dimension is essential. In a static routing problem the time dimension may
or may not be important. In the dynamic counterpart time is always essential. The
dispatcher must as a minimum know the position of all vehicles at any given point in
time and particularly when the request for service or other information is received by
the dispatcher.1

2. The problem may be open-ended. The process is often temporally bounded in a static
problem. The routes start and end at the depot. In a dynamic setting the process may
very well be unbounded. Instead of routes one considers paths for the vehicles to follow.

3. Future information may be imprecise or unknown. In a static problem all information
is assumed to be known and of the same quality. In a real-life dynamic routing problem
the future is almost never known with certainty. At best probabilistic information about
the future may be known.
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4. Near-term events are more important. Due to the uniformity of the information quality
and lack of input updates all events carry the same weight in a static routing problem.
Whereas in a dynamic setting it would be unwise immediately to commit vehicle
resources to long-term requirements. The focus of the dispatcher should therefore be
on near-term events when dealing with a dynamic routing problem.

5. Information update mechanisms are essential. Almost all inputs to a dynamic routing
problem are subject to changes during the day of operation. It is therefore essential
that information update mechanisms are integrated into the solution method. Naturally,
information update mechanisms are not relevant within a static context.

6. Re-sequencing and reassigning decisions may be warranted. In dynamic routing new
input may imply that decisions taken by the dispatcher become suboptimal. This forces
the dispatcher to reroute or even reassign vehicles in order to respond to the new
situation.

7. Faster computation times are necessary. In static settings the dispatcher may afford the
luxury of waiting for a few hours in order to get a high quality solution, in some cases
even an optimal one. In dynamic settings this is not possible, because the dispatcher
wishes to know the solution to the current problem as soon as possible (preferably
within minutes or seconds). The running-time constraint implies that rerouting and
reassignments are often done by using local improvement heuristics like insertion and
k-interchange.

8. Indefinite deferment mechanisms are essential. Indefinite deferment means the
eventuality that the service of a particular demand be postponed indefinitely because
of that demands unfavorable geographical characteristics relative to the other demands.
This problem could for instance be alleviated by using time window constraints or by
using a nonlinear objective function penalizing excessive wait.

9. Objective function may be different. Traditional static objectives such as minimization of
the total distance traveled or the overall duration of the schedule might be meaningless
in a dynamic setting because the process may be open-ended. If no information about
the future inputs is available, it might be reasonable to optimize only over known
inputs. Some systems also use nonlinear objective functions in order to avoid undesirable
phenomena such as the above mentioned indefinite deferment.

10. Time constraints may be different. Time constraints such as latest pickup times tend to
be softer in a dynamic routing problem than in a static one. This is due to the fact that
denying service to an immediate demand, if the time constraint is not met, is usually
less attractive than violating the time constraint.

11. Flexibility to vary vehicle fleet size is lower. In static settings the time gap between the
execution of the algorithm and the execution of the routes usually allows adjustments
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of the vehicle fleet. However, within a dynamic setting the dispatcher may not have
instant access to backup vehicles. Implications of this may mean that some customers
receive lower quality of service.

12. Queueing considerations may become important. If the rate of customer demand exceeds
a certain threshold, the system will become congested and the algorithms are bound
to produce meaningless results. Although vehicle routing and queueing theory are two
very well-studied disciplines, the effort to combine these has been scant.
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Annex E

Netlogo

NetLogo is a programmable modeling environment for simulating natural and social
phenomena. It was authored by Uri Wilensky in 1999 and has been in continuous development
ever since at the Center for Connected Learning and Computer-Based Modeling.

NetLogo is particularly well suited for modeling complex systems developing over
time. Modelers can give instructions to hundreds or thousands of “agents” all operating
independently. This makes it possible to explore the connection between the micro-level
behavior of individuals and the macro-level patterns that emerge from their interaction.

NetLogo lets students open simulations and “play” with them, exploring their behavior
under various conditions. It is also an authoring environment which enables students, teachers
and curriculum developers to create their own models. NetLogo is simple enough for students
and teachers, yet advanced enough to serve as a powerful tool for researchers in many fields.

NetLogo has extensive documentation and tutorials. It also comes with the Models
Library, a large collection of pre-written simulations that can be used and modified. These
simulations address content areas in the natural and social sciences including biology and
medicine, physics and chemistry, mathematics and computer science, and economics and social
psychology. Several model-based inquiry curricula using NetLogo are available and more are
under development.

NetLogo is the next generation of the series of multi-agent modeling languages including
StarLogo and StarLogoT. NetLogo runs on the Java Virtual Machine, so it works on all major
platforms (Mac, Windows, Linux, et al). It is run as a desktop application. Command line
operation is also supported.

The information about Netlogo can be reached online in :
https ://ccl.northwestern.edu/netlogo/docs/
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