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Modeles réduits : convergence entre calcul et données pour
la mécanique des fluides

Résumé

L’objectif de cette these est de réduire significativement le cotut de calcul associé
aux simulations numériques gouvernées par des équations aux dérivées partielles.
Dans ce but, nous considérons des modeles dits "réduits”, dont la construction
consiste typiquement en une phase d’apprentissage, au cours de laquelle des solu-
tions haute-fidélité sont collectées pour définir un sous-espace d’approximation
de faible dimension, et une étape de prédiction, qui exploite ensuite ce sous-
espace d’approximation conduit par les données afin d’obtenir des simulations
rapides voire en temps réel. La premiere contribution de cette these concerne la
modélisation d’écoulements gazeux dans les régimes hydrodynamique et raréfié.
Dans ce travail, nous développons une nouvelle approximation d’ordre réduite de
I’équation de Boltzmann-BGK, basée sur la décomposition orthogonale aux valeurs
propres dans la phase d’apprentissage et sur la méthode de Galerkin dans I’étape de
prédiction. Nous évaluons la simulation d’écoulements instationnaires contenant
des ondes de choc, des couches limites et des vortex en 1D et 2D. Les résultats
démontrent la stabilité, la précision et le gain significatif des performances de calcul
fournis par le modele réduit par rapport au modele haute-fidélité. Le second sujet
de cette these porte sur les applications du probleme de transport optimal pour
la modélisation d’ordre réduite. Nous proposons notamment d’employer la théorie
du transport optimal afin d’analyser et d’enrichir la base de données contenant
les solutions haute-fidélité utilisées pour l'entrainement du modele réduit. Les
tests de reproduction et de prédiction d’écoulements gouvernés par 1’équation de
Boltzmann-BGK en 1D montrent I’amélioration de la précision et de la fiabilité du
modele réduit résultant de ces deux applications. Finalement, la derniere contri-
bution de cette these concerne le développement d’une méthode de décomposition
de domaine basée sur la méthode de Galerkin discontinue. Dans cette approche, le
modele haute-fidélité décrit la solution ot un certain degré de précision est requis,
tandis que le modele réduit est employé dans le reste du domaine. La méthode de
Galerkin discontinue pour le modele réduit offre notamment une maniere simple
de reconstruire la solution globale en raccordant les solutions locales aux inter-
faces des cellules a travers les flux numériques. La méthode proposée est évaluée
pour des problemes paramétriques gouvernés par les équations d’Euler en 1D et
2D. Les résultats démontrent la précision de la méthode proposée et la réduction
significative du cout de calcul par rapport aux simulations haute-fidélité.

Mots-clés : Réduction de modeles, Décomposition orthogonale aux valeurs
propres, Ecoulements raréfiés, Probleme de transport optimal, Partitionnement
de données, Décomposition de domaine, Méthode de Galerkin discontinue.
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Reduced-order models: convergence between scientific
computing and data for fluid mechanics

Abstract

The objective of this thesis is to significantly reduce the computational cost
associated with numerical simulations governed by partial differential equations.
For this purpose, we consider reduced-order models (ROMs), which typically con-
sist of a training stage, in which high-fidelity solutions are collected to define a
low-dimensional trial subspace, and a prediction stage, where this data-driven trial
subspace is then exploited to achieve fast or real-time simulations. The first con-
tribution of this thesis concerns the modeling of gas flows in both hydrodynamic
and rarefied regimes. In this work, we develop a new reduced-order approxima-
tion of the Boltzmann-BGK equation, based on Proper Orthogonal Decomposition
(POD) in the training stage and on the Galerkin method in the prediction stage.
We investigate the simulation of unsteady flows containing shock waves, boundary
layers and vortices in 1D and 2D. The results demonstrate the stability, accuracy
and significant computational speedup factor delivered by the ROM with respect
to the high-fidelity model. The second topic of this thesis deals with the optimal
transport problem and its applications to model order reduction. In particular,
we propose to use the optimal transport theory in order to analyze and enrich the
training database containing the high-fidelity solution snapshots. The reproduc-
tion and prediction of unsteady flows governed by the 1D Boltzmann-BGK equa-
tion show the improvement of the accuracy and reliability of the ROM resulting
from these two applications. Finally, the last contribution of this thesis concerns
the development of a domain decomposition method based on the discontinuous
Galerkin method. In this approach, the ROM approximates the solution where a
significant dimensionality reduction can be achieved while the high-fidelity model
is employed elsewhere. The discontinuous Galerkin method for the ROM offers
a simple way to recover the global solution by linking the local solutions at cell
interfaces through numerical fluxes. The proposed method is evaluated for para-
metric problems governed by the quasi-1D and 2D Euler equations. The results
demonstrate the accuracy of the proposed method and the significant reduction of
the computational cost with respect to the high-fidelity model.

Keywords: Model order reduction, Proper Orthogonal Decomposition, Rarefied

flows, Optimal transport problem, Cluster analysis, Domain decomposition,
Discontinuous Galerkin method.
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Introduction

Over the last few decades, numerical simulation has gained a growing interest in
the fields of engineering and applied sciences. Thanks to the democratization of
high-performance computing (HPC), numerical simulations currently provide an
effective tool for solving models for which there is no simple analytical solution
or experiments in real conditions are very expensive and difficult to perform. In
addition, the constant increase in available computing power make nowadays pos-
sible the numerical modeling of complex, multiscale and multiphysics phenomena
that were up to now inaccessible.

In numerical simulation, the dynamic of fluid flows or the deformation of me-
chanical structures are governed by mathematical models involving the resolution
of partial-differential equations (PDEs). Since most of these equations are too com-
plex to admit closed-form solutions, numerical methods are employed to transform
the continuum problem into its discrete counterpart, leading to the resolution of a
large-scale system. However, the computational complexity of the resulting high-
dimensional model (HDM) can be problematic due to the large number of degrees
of freedom N =~ O(10°,...,10°) to be determined. In many industrial applica-
tions, efficient simulations are required, either due to runtime constraints in the
case of extremely large-scale models or due to the large number of simulations to
perform for different input parameters in the case of many-query problems.

This thesis aims at developing accurate and efficient reduced-order models
(ROMs) in order to significantly decrease the computational complexity of the
simulations. Instead of discretizing the solution without any knowledge about the
dynamical system, ROMs [48, K1, [103], 49, 95 B4] use a posteriori information
to considerably reduce the number of unknowns M = O(10'). The construction
of ROMs is similar to the machine learning approach to achieve dimensionality
reduction (M < N). It first consists of a training stage in which high-fidelity
solutions are acquired for some training parameters to learn the system behaviour
and to extract a low-dimensional trial subspace representing accurately the high-
dimensional solution manifold. Then, during the prediction stage, the large-scale
system is projected onto the test subspace, leading to the resolution of a small-scale
system that enables fast or real-time simulations for new input parameters.
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Figure 1: Schematic diagram illustrating the construction of ROMs.

The first contribution of this thesis concerns the simulation of gas flows in
both hydrodynamic and rarefied regimes. In fluid dynamics, the regime of a gas
flow is characterized by the Knudsen number Kn, defined as the ratio between the
mean free path of the particles and the characteristic length of the problem. When
the Knudsen number is low (Kn < 1), the gas particles are close to each other
with respect to the characteristic length of the problem. The behaviour of the
particles is similar to the macroscopic flow, and the regime is said hydrodynamic.
Conversely in the rarefied regime (Kn 2 1), the behaviour of each particle can
significantly differ from the macroscopic flow due to the large distance between the
particles. For the simulation of hydrodynamic flows, it is generally sufficient to
consider the macroscopic flow as in the Euler or Navier-Stokes equations. However
in the rarified regime, this approach can fail to properly describe the dynamic of
the fluid. In this work, we consider a model developed during the PhD thesis of
F. Bernard [2I] to simulate gas flows in both hydrodynamic and rarefied regimes.
In this model, the dynamic of the gas flow is governed by the Boltzmann-BGK
equation [35], 23], which is known to be sufficient for moderate and small Knudsen
numbers (Kn < 1). However, the large number of degrees of freedom to be de-
termined leads to a computationally expensive model, whose simulations require
weeks on supercomputers. For this reason, we develop in this thesis a stable, ac-



curate and efficient ROM [22] which employs a new reduced-order approximation
of the Boltzmann-BGK equation to considerably decrease the computational com-
plexity of these simulations.

The second topic of this thesis is about the optimal transport problem [80, [66]
and its applications to model order reduction [64] 22]. To construct an accurate
and robust ROM over a wide range of input parameters, high-fidelity snapshots of
the solution are collected at different time instances and input parameters in order
to learn the solution manifold. However, the number of high-fidelity simulations
for sampling the solution manifold is limited due to the expensive computational
cost of the HDM. In particular, if the training snapshots are too different from the
new predicted solution, the ROM may lead to unreliable predictions. In addition,
since the trial subspace is constructed to approximate the previously collected
snapshots, the accuracy of the ROM also depends on its ability to represent all
these snapshots characterized by different physical regimes and moving features.
For these reasons, we propose to employ the optimal transport problem in order
to enrich and partition the snapshot database resulting from the sampling of the
solution manifold. Notably, the optimal transport theory provides powerful tools
to analyze and manipulate the snapshots of the solution. The transportation dis-
tance, commonly known as the Wasserstein distance, defines a robust metric to
quantify the notion of proximity between two distribution functions. Compared
to the classical L?-norm which corresponds to the pointwise difference of the two
distributions, the Wasserstein distance measures the minimal effort needed to push
forward one distribution onto the other. In addition, this distance gives rise to
realistic interpolations, referred to as Wasserstein barycenters, which preserve the
features of the interpolated distribution functions.

Finally, the last contribution of this thesis concerns the development of a do-
main decomposition method for model order reduction [76, [73]. Perhaps the most
common approach for constructing the low-dimensional trial subspace is the Proper
Orthogonal Decomposition [87, 48| [103] 20], which hierarchically rearranges the
high-dimensional solution manifold according to an energy criterion so that redun-
dant information can be discarded to achieve dimensionality reduction. However,
the nature of the problem strongly determines the extent to which one can re-
duce the dimensionality of the trial subspace. As the problem parameters are
varied, singular solution features (e.g. discontinuities and fronts) or compact sup-
port phenomena can change their position and shape such that dimensionality
reduction is limited. In this work [92], we adopt the strategy of employing the
ROM only in those subdomains where a significant dimensionality reduction can
be achieved. Instead of modeling the flow by a global ROM, the fluid problem is
spatially partitioned to isolate the subdomains containing shocks or compact sup-
port phenomena. Local ROMs then predict the solution where a low-dimensional
trial subspace is sufficiently accurate, while the HDM is employed elsewhere.
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In addition to the introductory and concluding chapters, this manuscript con-
sists of four main chapters organized as follows.

1.

The first Chapter [[] gives a quick overview of the model order reduction
framework. The goal is to present the main techniques later employed in this
manuscript for the construction of ROMs. In particular, we introduce the
Proper Orthogonal Decomposition (POD) and the Petrov-Galerkin method
used during the training and prediction stages, respectively. In addition, we
present hyper-reduction techniques to deal with nonlinear problems.

The first contribution of this thesis is presented in the second Chapter I} In
this work, we develop a new reduced-order approximation of the Boltzmann-
BGK equation to significantly decrease the computational cost associated
with the numerical simulation of gas flows in both hydrodynamic and rar-
efied regimes. To this end, we adopt an approach based on POD in the
training stage and on the Galerkin method in the prediction stage. This
approach is then adapted to the case of the Boltzmann-BGK equation. The
performance of the resulting ROM is evaluated on the simulation of unsteady
flows governed by the Boltzmann-BGK equation in 1D and 2D.

In the third Chapter [[TI, we presents two applications of the optimal trans-
port problem in order to improve the ROM described in Chapter In
the first application, the snapshot database is enriched with additional snap-
shots interpolated by optimal transport. These artificial snapshots allow to
complete the sampling of the solution manifold in order to perform reliable
predictions. In the second application, the snapshot database is partitioned
into clusters by the k-means algorithm combined with the Wasserstein dis-
tance. The solution is then represented by several local trial subspaces,
which are more appropriate and accurate than a single global trial subspace
to approximate the snapshots associated with each cluster. These two ap-
plications are evaluated on the reproduction and prediction of shock waves
described by the 1D Boltzmann-BGK equation.

The fourth Chapter presents a domain decomposition method based
on the discontinuous Galerkin method. In this approach, the ROM ap-
proximates the solution in regions where significant dimensionality reduction
can be achieved while the HDM is employed elsewhere. The Discontinuous
Galerkin (DG) method for the ROM offers a simple way to recover the global
solution by linking the local solutions at the interface of subdomains though
the numerical flux. Compared to the standard DG method, the polynomial
shape functions are replaced by empirical modes constructed by POD dur-
ing the training stage. The performance of the resulting method is evaluated
on the prediction of unsteady flows governed by the quasi-1D and 2D Euler
equations in the presence of shocks.



Chapter 1

Model order reduction

1.1 Introduction

In numerical simulation, the dynamic of fluid flows or the deformation of mechan-
ical structures are governed by mathematical models involving the resolution of
parametrized partial-differential equations (PDEs). Since most of these equations
are too complex to admit simple analytical solutions, numerical methods are em-
ployed to transform the continuum problem into its discrete counterpart, leading to
the resolution of a large-scale system. However, the computational complexity of
the resulting high-dimensional model (HDM) can be problematic due to the large
number of degrees of freedom N ~ O(105,...,10%) to be determined. In many
industrial applications, efficient simulations are required, either due to runtime
constraints in the case of extremely large-scale models or due to the large number
of simulations to perform for different input parameters in the case of many-query
problems.

Reduced-order models (ROMs) [48, BT, [103], 49, 05, [33] have been developed
in order to decrease the computational complexity of the simulations. Instead
of discretizing the solution without any knowledge about the dynamical system,
ROMs use a posteriori information to drastically reduce the number of unknowns
M = O(10%). The construction of ROMs is similar to the machine learning ap-
proach to achieve dimensionality reduction (M < N). It first consists of a training
stage in which high-fidelity solutions are acquired for some training parameters to
learn the system behaviour and to extract a low-dimensional trial subspace repre-
senting accurately the solution manifold. Then, during the prediction stage, the
large-scale system is projected onto the test subspace, leading to the resolution of a
small-scale system that enables fast or real-time simulations for new input param-
eters. Moreover, in the case of nonlinear systems, an additional hyper-reduction
approximation is introduced to ensure the computational complexity of the ROM
is independent of the dimension N of the HDM.
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This chapter presents the main techniques later employed in this manuscript for
the construction of ROMs. In Section[[.2] we introduce the HDM resulting from the
discretization of the parametrized PDEs. Then, Section |I.3| describes the Petrov-
Galerkin method employed in the prediction stage to obtain the reduced-order
system. In Section we present the Proper Orthogonal Decomposition allowing
during the training stage to find the low-dimensional trial subspace representing
accurately the solution manifold. Finally, Section [[.5(details hyper-reduction tech-
niques for the model order reduction of nonlinear problems.

I.2 High-dimensional model

In numerical simulation, the dynamic of fluid flows or the deformation of mechan-
ical structures are described by mathematical models involving the resolution of
parametric PDEs. In particular, we will focus on the Euler and Boltzmann equa-
tions in the next chapters. These models depends on input parameters p, which
may characterize geometric features of the domain, fluid or material properties,
or initial and boundary conditions. The PDEs connect the input parameters to
the dynamical system solution and possibly to some outputs of interest. The solu-
tion may represent, for example, the deformation of a structure or fluid quantities
such as the density, the velocity and the pressure. Since most of PDEs do not
admit closed-form solutions, numerical methods are used to transform the contin-
uum problem into its discrete counterpart. This discretization step leads to the
resolution of a large-scale system often referred to as the high-dimensional model
(HDM). This system can be solved with high accuracy, and its solution is seen as
the high-fidelity solution of the PDEs.

I.2.1 Parametrized partial differential equations

Let the parameter domain D C RP be a closed and bounded subset of the Euclidean
space R? with p € N*. Moreover, let Q C R? be a regular open domain, where
d € {1,2,3} is the space dimension. We consider the parametric, time-dependent,
partial-differential equation for x € 2, t € R* and p € D:

ou
T + Lu] =0, (L.1)
subject to appropriate initial and boundary conditions. Here, x denotes the space
variable, ¢ denotes the time, p denotes the input parameters, u : Q@ xR xD — R
denotes the exact solution, belonging to a suitable functional space V(£2), and L][u]
denotes the spatial differential operator containing, for example, the convective,
diffusive and source terms.



[.3. PROJECTION BASED-REDUCED ORDER MODEL

1.2.2 Numerical methods

Since the PDE does not admit analytical solutions in general, numerical
methods are used to transform the continuum problem into its discrete counter-
part. The domain 2 is first partitioned into a conforming mesh of non-overlapping
elements K;:
Q:UKl and KlﬂK]:Q)
i i#]

This partition depends on the parameter h, defined as the maximum diameter
of the mesh elements. In this manuscript, the elements are, for instance, inter-
vals (1D), squares (2D) or triangles (2D). On each element, the exact solution is
approximated by polynomial shape functions:

up, € Vi(Q) = {u € V(Q), such that ux, € P(K;)},

where P denotes the space of polynomial functions and u,(x,t; ) denotes the
discrete solution representing the exact solution at point x, time instance ¢ and
input parameter . Moreover, the discrete solution is encoded as the vector
w,(t; ) = (un(xp, t: ), .. up(xy, t; )" € RY with N the number of degrees
of freedom. The spatial operator is then discretized by, for example, the finite
difference (FD), finite element (FE), finite volume (FV) or discontinuous Galerkin
(DG) method, leading to the semi-discrete system

duh

5 = fu[un)(t; 1), (1.2)

where f5[uy,] denotes the discretization of the spatial differential operator L[up]
and is encoded as the vector f,(t; ) = (fu(x1,t: ), ..., fa(xn, t; )" € RY. The
time is finally discretized by a linear multistep scheme or a Runge-Kutta scheme,
leading at each time-step t; to the resolution of the large-scale N x N system

rp[up)(ty; p) = 0, (13)

where rj,[u,] denotes the high-dimensional residual and is encoded as the vector
(6 ) = (r(xa, t ), ... ru(xn, £ )’ € RY. This system is referred to as the
high-dimensional model (HDM) in the following. We assume that the HDM can
be solved with high accuracy, and its solution is considered to be the high-fidelity
solution to the continuum problem (|I.1]).

1.3 Projection based-reduced order model
The HDM involves a large number of degrees of freedom N ~ O(10°, ..., 109)

to achieve accurate simulations. The computational complexity of the HDM can
therefore be problematic due to the resolution of the large-scale N x N system

7
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(I.3) at each time-step. Notably, many industrial applications require efficient
simulations, either due to runtime constraints in the case of extremely large-scale
models or due to the large number of simulations to perform for different input
parameters in the case of many-query problems. In this context, reduced-order
models [109, [44) 57, 18, 4], 5], [38] have been developed in order to reduce the number
of unknowns M = O(10') and thus decrease the computational complexity of the
simulations.

I.3.1 Solution approximation

Instead of approximating the solution belonging to the high-dimensional space
V() without any knowledge about the dynamical system, the ROM uses a pos-
teriori information to find a low-dimensional trial subspace S, (€2) C V;,(€2) where
the solution is searched. To reduce the number of degrees of freedom (M < N),
the discrete solution is approximated by

Up(X, 1 1) = uo(x) + Zl an(t; )P (x). (1.4)

Here, the offset u, and the basis functions ®,, span the affine trial subspace Sp,(€2),
and a,, denote the reduced coordinates of the approximate solution u;, € S,(2) in
this subspace. By introducing the vectors u, € RY and a(t; u) € R containing
the offset and the reduced coordinates, respectively, and the matrix ® € RV*M
containing the basis functions, the approximate solution can be written in matrix
format as follows

uy(t; ) = u, + Pa(t; p),

where
Up(X1) Pi(x1) Po(x1) - Puy(x1) ai
w, — Uo(:Xz) B @1(:X2) @2(:X2) : CI)M:(XQ) Ca— 45
UO(XN) (I)1<XN) (I)Q(XN) cee CDM(XN) apnr

The offset and the basis functions are constructed offline during the training stage,
while the reduced coordinates are computed online in the prediction stage. To
define the offset, there are three popular choices:

1. no offset:

2. the initial solution (if this one does not depend on the input parameters p):

Uo(X) = uo(x; p);
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3. the mean solution over time and parameter space:

1 tmaz
Up(X) = ———— up(x,t; ) dt dp.
= i . / (5,1 ) it dp

The basis functions are then constructed by Proper Orthogonal Decomposition,
which allows to extract, from the high-dimensional solution manifold V,(€2), the
low-dimensional trial subspace S;,(€2) that is optimal in the least-squares sense to
approximate the solution. Once the affine trial subspace (i.e. the offset and the
basis functions) is defined, the approximate solution depends only on the reduced
coordinates during the prediction stage. In this way, the number of degrees of
freedom is significantly reduced (M < N), enabling fast simulations for new input
parameters.

1.3.2 Petrov-Galerkin method

In the prediction stage, the reduced coordinates a,(t; ) are determined at low
cost by the Petrov-Galerkin method. By inserting the approximate solution
into PDE ([L.1)), we obtain the residual
_ ou _

rlin] = aTh + Lla). (15)
In the Petrov-Galerkin method, this residual is enforced to be orthogonal to
the test subspace. To this end, the solution manifold V() is endowed with the
inner product (-, -)g associated with the norm ||-||g = 1/(,)g- The inner product
is induced by the symmetric positive-definite (SPD) matrix @ € RV*V:

(v1(x), v2(X)) g = V] OV,
where v = (v(x1), v(X2),...,v(xy))" € RY. In this manuscript, we will mainly
consider the L?-norm, and © will correspond to the diagonal matrix containing

the weights of the quadrature rule on the diagonal. The projection of the residual
(I.5)) onto the test subspace leads to the system of M equations

Vne{l,...,M}: (rluy)(x,t;p), ¥n(x))g =0, (L.6)
where W, denote the test functions spanning the test subspace. There are two
popular choices to define the test subspace:

1. the Galerkin method [81} 94] 96 [11]:
(rlun](x,t; 1), Pu(x))e = 0,

wherein the test functions are set to the basis functions, i.e. ¥,, = ®,,;

2. the residual minimization method [33], 34} 2, [56]:

P . ~ . 2
rﬁ%ﬁg)nelﬂgsf l7nltn] (%, te; 1) |l »

wherein the test functions are chosen at each time-step t; in order to minimize
the ®-norm of the high-dimensional residual r,[tp,)].
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1.3.2.1 Galerkin method

In the Galerkin method, the residual is enforced to be orthogonal to the trial
subspace. Inserting the approximate solution into PDE (I.1)) and projecting the
resulting equation onto the basis functions yield after semi-discretization to the

system of ODEs

& @Ton ) (17)

where we assume the basis functions are orthonormal, i.e. ®7@® = I,,. This
system is then discretized in time, leading to the small-scale M x M system

q)T(")I‘h[ﬁh] (tk; [,l,) = 0.

The drawback of this approach is that the Galerkin projection may lead to unstable
ROM, even if the HDM is stable, according to [95]. Consider, for example, the
linear time invariant system

dllh

i A(p)un(t; p), (L8)

where the real part of the eigenvalues of A(u) € RY*V is negative, that is, the
HDM is stable. By applying the Galerkin projection, we obtain
da

-~ 2 OA(m)®a(t; ).

If ®A(p) is a symmetric negative-definite matrix, it follows

d|alf3
dt

meaning the ROM is stable. Notably in [95] [IT], the inner product is defined so
as to obtain a stable ROM formulation. However, if @ A(pu) is not symmetric
negative-definite, the real part of the eigenvalues of ®T @A (u)® may be strictly
positive, leading to an unstable ROM. To overcome this issue, the residual min-
imisation method was developed in order to generate stable ROM.

2
= 2| ®a(t; p)||Zga <0,

1.3.2.2 Residual minimization method

In the residual minimization method, the test subspace is defined at each time-step
t, so that @, minimizes the high-dimensional residual ([.3)) in the @-norm:

o T~ 1.9
minimize |7nltn] (%, tes 1) || g (L9)

The first-order necessary condition for optimality is
& (Jn[n](tr; )" Orpln)(ts; ) = 0,

10
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0
a%[uh] (tr; 1) € RN denotes the HDM residual Jacobian.
h

In particular, the residual minimization method is a special case of the Petrov-
Galerkin method wherein the test functions are defined by ¥,, = Jy, [0 (t; @)@,
The minimization problem can be solved in practice by the Gauss-Newton
method as in the least-squares Petrov-Galerkin (LSPG) method [33], 2], 56].
Under some conditions [32], the Galerkin and residual minimization methods
are equivalent. In the case of time explicit discretization, the residual minimiza-
tion method reduces to the Galerkin method since Jj,[up](tx; 1) o< Iny. Also when
OJ[u](t; ) is SPD, the Galerkin method minimizes the high-dimensional resid-
ual in the norm induced by the inner product defined by the matrix @J[uy](tx; 1)

where Jp[ug](te; p) =

1.3.3 Error analysis

In the Galerkin method, pre-multipling the semi-discrete system of ODEs (|.7))
by the basis functions leads to the equivalent system verified by the approximate
solution: e

% — BT Of,[1,](t; ). (1.10)
Notably, an estimate of the error e(x, ¢; ) between the solution and its approxi-
mation is derived in [89]. By introducing the orthogonal projection @, € S,(€2) of

the discrete solution u; onto the trial subspace

Up(x,t; 1) = up(x Z up (X, t; p) — Uo(x), Pp(x)) g Pn(x), (I.11)

where we assume the basis functions are orthonormal, the error can be decomposed
into one component eg(x,t; ) € Sp(2) belonging to the trial subspace and one
component eg1 (x,t; pu) € Si(Q) belonging to the orthogonal complement of the
trial subspace:

6<X7 t; ”’) = Uh<X, t Pl/) - ﬂh<x7 t; ”’)
= Uh<X, 4 l'l’) - @h(X, 4 l'l') + ﬁh(X, t; /1') - ’ljh<X, 4 l'l’) :
€st (Xut; IJ’) eS(th; IJ’)

The first term egi(x,¢; ) represents the projection error between the solution
and its orthogonal projection onto the trial subspace. It shows the importance of
choosing the trial subspace to best represent the solution manifold (e.g. by Proper
Orthogonal Decomposition). This term is orthogonal to the trial subspace, and its
projection onto the trial subspace verifies ®®7@eg. (t; ) = 0. The second term
es(x, t; p) represents the modeling error between the HDM and the equivalent
system . This term is parallel to the trial subspace, and its orthogonal
projection onto the trial subspace verifies ®®7@es(t; u) = es(t; ). The term

11
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est(x,t; ) can be estimated without executing the ROM, and then es(x,t; )
can be estimated from eg1 (x,t; p) by solving the initial value problem

de
2 — @070l (1 1) — v + e +es] (6 11)).
where es(x,to; ) = 0 since (X, to; o) = Up(X, to; o). In addition, if the initial
solution verifies (X, to; ) = up(X, to; i) (e.g. by defining u,(x) = up(x, to; 1)),
then egi (X, to; ) = 0 and the initial error is zero. In the case of the linear time
invariant system , the error is reduced in particular to

des

P PP OA(ples(t; p) + PRTOA(n)es: (t; p),

where ®®TOA (u)es: (t; p) acts as a forcing term.

I.4 Proper Orthogonal Decomposition

The basis functions spanning the trial subspace S,,(2) are constructed offline dur-
ing the training stage. The Proper Orthogonal Decomposition (POD) [87] is a
popular dimensionality reduction method used in model reduction [811 114} [95] [33]
to define the trial subspace. It was first introduced in the context of the simulation
of turbulent flows [103] 20] to find the coherent structures of the solution. In this
approach, snapshots of the high-fidelity solutions are first acquired for some train-
ing parameters to learn the solution manifold. Then, the POD allows to extract,
from the high-dimensional solution manifold V},(£2), the low-dimensional affine trial
subspace S, (€2) C V() that is optimal in the least-squares sense to approximate
the solution snapshots. This optimization problem is known as the low-rank ap-
proximation problem and is solved by the Schmidt-Eckart-Young-Mirsky theorem
[98), 148, [79].

1.4.1 Low-rank approximation

Let s(x) = un(x, teq); mjoy) be a snapshot of wy, collected at time instance ¢y
and input parameter p;;). Given a database of K snapshots, the trial subspace
is defined as the affine subspace of rank M minimizing, in the least-squares sense,
the difference between the snapshots and their orthogonal projections onto this
subspace:

K
. . . = 2
11(1132]11%1%1% E [s1(x) — 51(%) | (I.12)

subject to <q>;(x), D, (X)g = Onm Vn,me{l,..., M},

where 9,,,, denotes the Kronecker delta. The orthonormality constrains of this
minimization problem ([.12)) allow in particular to simplify the projection formulas

12
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(I.7) and (I.11)). By introducing the snapshot matrix

S51(x1) So(x1) -+ Sk(x1)
s Sa(x2) s

5 _ .

S51(xn) S2(xn)

SK(XN)

where 5;(x) = 5;(x) —u,(x), the minimization problem ([[.12)) can be cast in matrix
format as follows

‘I’ERNXM

(I.13)
subject to TP =1,,,

{ minimize HS — <I><I>T@SH?®
where I, denotes the M x M identity matrix and ||A||§® = Tr(AT®A) denotes
the Frobenius norm associated with the inner product defined by ©. Since the
matrix © is SPD, the Cholesky decomposition (Definition can be employed
to factorize ® = @é(@%)T. Moreover, by considering the change of variables
S = (©2)"S and ® = (©2)7® in the minimization problem (L.13), we recover the
low-rank approximation problem:

~ )2
minimize S — @78
HERN XM

o (I.14)
subject to ~ ®TH =1,,,

where ||A||% = Tr(ATA) denotes the Frobenius norm.

Definition 1. (Cholesky decomposition) The Cholesky decomposition of a
Hermatian positive-definite matriz A € R™™™ is a decomposition of the form

A =LL",

where L € R™" is a lower triangular matrix with real and positive diagonal en-
tries. FEvery Hermitian positive-definite matriz (and thus also every real-valued
symmetric positive-definite matriz) has a unique Cholesky decomposition.

I.4.2 Schmidt-Eckart-Young-Mirsky theorem

In the low-rank approximation problem ([.14] - the best approximation to S by
a matrix X = ®®7TS of rank M is given by the Schmidt-Eckart-Young-Mirsky
theorem [l

Definition 2. (Singular Value Decomposition) Let M € K™ where K is
either the field of real numbers or the field of complex numbers. Then, the singular
value decomposition of M exists and is a factorization of the form

M=UXVT,

13
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where U € K™ and V € K™*™ are unitary matrices, and 3 € R}*™ is a diagonal
matrix with non-negative real numbers on the diagonal. The diagonal entries o,
of X are known as the singular values of M. A common convention is to list the
singular values in descending order. In this case, 3 is uniquely determined by M
(though not the matrices U and V if M is not square).

Theorem 1. (Schmidt-Eckart- Young-Mirsky theorem [98, 48, [79]) Let
S € R™™ be a real rectangular matriz. Suppose that the singular value decompo-
sition (Deﬁm’tz’on@ of S is

S=uxVvT,
where U € R™™ and VI € R™™ are orthogonal matrices, and £ € R*™ is
a diagonal matrix with the singular values sorted in descending order. Let k <
min(n, m), the best rank k approximation to S is given by

min Hg — XH2 = Hg - S
F

9 min(n,m)
k(X)<k F Z o
rank(X)< i=k+1

where S* is the trounced singular values decomposition of S:

Ul,l - Ul,k o1 0 vﬂ . me
S* — : : . : c Rk,
Upi -~ Ui 0 o) \Vii - Vi,

By considering the change of variables ® = (9%)’“5, the basis functions ®,,
are given by the Schmidt-Eckart-Young-Mirsky theorem [T}

U - Uim
®=(0) " : S (115)
Uni -+ Unm
where U is obtained from the singular value decomposition (SVD) of S = UL V7.

Moreover, according to Theorem [I], the projection error can be evaluated from
the singular values corresponding to the neglected basis functions:

(1.16)

where o,, are the singular values of S sorted in descending order. It follows that the
basis functions are ordered in such a way that the first k£ columns of ® lead to the
best rank k£ approximation to S. The basis functions associated with small singular
values can therefore be discarded without significantly changing the accuracy of
the projection. This suggests that the number of basis functions M can be chosen
so that the projection error is less than a given tolerance.

14
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1.4.3 Trial subspace construction

For the construction of the basis functions, it is not necessary to compute the
singular value decomposition of S (equation ), especially for large problem,
where the SVD may become computationally prohibitive. In practice, two methods
are useful to perform the POD when the number of points N and the number of
snapshots K are significantly different from each other:

1. the classical method when N < K

2. the method of snapshots [103] when K < N.

Listing 1.1: Matlab style pseudocode to perform the POD.

function Phi = POD (S, Theta, tol)

Lt = chol (Theta);

Stilde = Lt=xS;

[U,D,~] = svd(Stilde);

ric = cumsum(diag (D). 2)/sum(diag (D). 2);
M = find(ric>1—-tol,1);

Phi = Lt\U(:,1:M);

© 00 N O s W N =

end

=
o

I.4.3.1 Classical method

In the classical method, we consider the symmetric positive semi-definite correla-
tion matrix

SST = (uxvh(uzvhHT = uxvivzu? = ux?u’.

Notably, the matrix U also corresponds to the left and right eigenvectors of the
correlation matrix, and the eigenvalues of SST are equal to the squared singular
values of S. When N < K, the basis functions can therefore be constructed as

follows
Ug - Uim

where U is either obtained from the eigendecomposition or the SVD of SST ¢
RN*N In practice, the SVD of SS7 is preferable because this decomposition is
more accurate for small singular values.

15
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Listing [.2: Matlab style pseudocode to perform the classical method.

1 function Phi = Classical (S, Theta,tol)

2

3 Lt = chol (Theta);

4 Stilde = LtxS;

5 [U,D,~] = svd(StildexStilde');

6 ric = cumsum(diag (D). 2)/sum(diag (D). " 2);
7 M = find(ric>1—-tol,1);

8 Phi = Lt\U(:,1:M);

9

10 end

1.4.3.2 Method of snapshots

Similarly, the method of snapshots [I03] considers the symmetric positive semi-
definite correlation matrix
STS = (uxzvhHT(usvh) = vuTuznv? = v2vT,

Since U = SVX~!, the basis functions can be constructed when K < N as follows

-1

Viig - Vi 01 0

)

LG(I te LG{AJ 0 oM

where V and ¥ are obtained from the SVD of STS € RE*K_ Note that if ¥ is
singular, the compact SVD of STS, corresponding to non-zero singular values, can
be employed since the basis functions associated with zero singular values does not
improve the accuracy of the projection.

Listing 1.3: Matlab style pseudocode to perform the method of snapshots [103].

function Phi = Sirovich (S, Theta, tol)

[V,D,~] = svd(S'+xThetax*9S);

ric = cumsum(diag(D)."2)/sum(diag(D)."2);
M = find(ric>1—-tol,1);

Phi = S*V(:,1:M)/sqrt(D(1:M,1:M));

0 N O g ks W N

end

I.4.4 Dimensionality reduction analysis

The POD is an effective tool to analyse the reducibility of a problem. According
to equation (L.16)), the square of the projection error is equal to the sum of the
squared singular values corresponding to the neglected basis functions. Based on

16
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this indicator, a criterion to choose the number of basis functions is to find the
minimal integer M such that the square of the relative projection error (i.e. the
objective function of the low-rank approximation problem ([.14)) is smaller than
a given tolerance e. In particular, when the offset is zero (i.e. u,(x) = 0), this
condition reads
min(N,K)
2
~ )2
s-aas), A7, "
F _ n=M+1 < ¢
a2 " min(N,K) :
IS

>, o

n=1

Equivalently, another popular indicator for choosing the dimension M of the ROM
is the Relative Content Information (RIC):

M
>0
RIC(M)= —"L > 1—¢

min(N,K)

> o

n=1
which is often interpreted as the relative energy of the snapshots captured by the
basis functions. Notably if the singular values decrease quickly, a small number
M of basis functions is suffisant to satisfy small tolerances (e.g. € ~ 0.01%), and a
significant dimensionality reduction can be achieved (M < N). We illustrate the
application of the POD for dimensionality reduction by considering a problem in
which a small number of basis functions is sufficient to approximate the solution,
and then a problem in which the dimensionality reduction is very limited.

1.4.4.1 Example 1: fast decay of the singular values

First, we consider the one-dimensional heat equation:

du 0*u

87—&@:0 fOI'fEE]O,].[,tE]O,].],O[E[175]
u(z,0; ) = sin(mx) + sin(27z) for x €10, 1], € [1, 5]
uw(0,t; ) = u(l,t;0) =0 for t €10, 1], € [1, 5]

whose exact solution is
u(z, t; o) = sin(rz) exp(—n*at) + sin(27x) exp(—4r’at).

As the solution is a linear combination of two modes {sin(7x), sin(27z)}, this one
can be exactly represented in the 2-dimensional linear subspace spanned by these
two modes.

In Figure [[.1, we show snapshots of the solution collected at different time
instances ?, and input parameters ;. In Figure we plot the squared singular
values of the snapshot matrix and the basis functions obtained by POD.

17
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(a) M =1. (b) M = 2.

Figure 1.1: Top: database containing K = 40 snapshots of the solution collected
every 0.0526 time units for a; € {1,5}. Bottom: orthogonal projection of the
snapshots onto the M first basis functions.
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Figure 1.2: Results of the POD.
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The fast decay of the squared singular values indicates that a significant di-
mensionality reduction can be achieved. For n > 3, the singular values are almost
zero, and the corresponding basis functions does not decrease the projection error.
They can therefore be discarded, as expected, since the first two basis functions
are sufficient to represent exactly the solution. Note that these two modes are not
necessarily equal to {sin(rz),sin(27z)}, but they spanned the same subspace.

In Figure [[LI, we show the orthogonal projection of the snapshots onto the
trial subspace depending the number of basis functions. The projection becomes
more accurate when the number of basis functions increases, and with M = 2, the
projection is exact.

1.4.4.2 Example 2: slow decay of the singular values

Then, we consider the one-dimensional linear transport equation:

ou ou

E+c%:o for x € ]—5,25[,t € ]0,20], ¢ € [1,2]
u(z,0;c) = exp(—z?) for z € |—5,25[,c € [1, 2]
u(—=5,t;¢) =0 for t €0,20],c € [1,2]

whose exact solution is
u(z,t;¢) = exp(—(z — ct)?).

In this case, the exact solution cannot be written as a finite linear combination
of modes. To analyse the reducibility of this problem, we first collect K = 40
snapshots of the solution taken at different time instances ¢, and input parameters
¢; as shown in Figure [[.3]

L L L L L
-5 0 5 10 15 20 25

Figure 1.3: Database containing K = 40 snapshots of the solution collected every
1.0526 time units for ¢; € {1,2}.

In Figure we plot the squared singular values of the snapshot matrix and
the basis functions obtained by POD.
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(a) Squared singular values.

grooe
EEEEE

(b) Basis functions.

Figure 1.4: Results of the POD.

Square of the relative projection error = 82.7414%

Square of the relative projection error = 15.4876%

@

Square of th(al)cM:tl eevor = 1.6211% (b) M : 9.
B
SN

(¢c) M = 16.

(d) M = 24.

Figure 1.5: Orthogonal projection of the snapshots onto the M first basis functions.
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The decay of the squared singular values is very slow, which means that a large
number of modes is necessary to accurately approximated the solution. More
precisely, at least 24 basis functions are required to obtain a relative squared
projection error of less than 0.01% (or equivalently to capture more than 99.99%
of the relative energy of the snapshots). Since the rank of the snapshot matrix is
at most min(N, K) = 40, the dimensionality reduction is very limited. Figure
shows the orthogonal projection of the snapshots onto the trial subspace depending
on the number of basis functions. This example illustrates the limit of the POD
to achieve dimensionality reduction for advection-dominated flows.

1.5 Model reduction of nonlinear problems

When the discretization of the spatial differential operator is linear in u, (¢; ) (i.e.
£,[0s) (t; ) = Aty (t; p) with A € R¥*Y), the Petrov-Galerkin method leads to a
small-scale M x M system, which can be efficiently solved. For example, consider
the semi-discrete system of ODEs resulting from the Galerkin projection:

da -
i ST Of,[U,](t; ).

Thanks to the linearity of fj[u,], this system scales with the dimension M of the

ROM:

da T T
i & OAu, + &' OAPa(t; u),
where ®TOAu, € RM and ®TOAP ¢ RM*M can be precomputed offline dur-
ing the training stage. However, in the presence of nonlinear terms, the high-
dimensional quantity f,[t,](¢; ) must be evaluated and pre-multiplied by ®7©.
The computational complexity of the resulting ROM scales with the dimension
N of the HDM, which is in general computationally prohibitive. To address this
computational bottleneck, two methods are commonly used:

1. the precomputation-based approach;
2. the hyper-reduction method [49, 12, 6] 37, 50].

The precomputation-based approach enables the evaluation of ®7Of,[u,](t; u) at
a cost that scales with the dimension M of the ROM. However, this method can
be applied only when f,[0,](¢; ) is a polynomial function of uy(¢; p). In the other
cases, the ROM is equipped with hyper-reduction techniques, which introduce a
second layer of approximation to ensure the computational complexity of the ROM
is independent of the dimension N of the HDM.
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1.5.1 Precomputation-based approach

When f},[4,,](¢; ) is polynomial in uy(¢; ), the precomputation-based approach
allows to evaluate ®7Of;,[u;](t; u) without additional approximation at a cost
that scales with M. In this approach, fy[u](¢; ) is developed in order to ex-
hibit quantities that can be pre-computed offline in the training stage. The term
®7Of,[u,)(t; 1) can then be evaluated during the prediction stage as a polynomial
function of the reduced coordinates a(t; p). For example, consider f,[a,](t; @) is a
quadratic function of uy,(t; p):

N N
fh[“h]( ) b+zcluh Xi, 7/1' ZZ l]uh X, 7/"’)uh(xjat7l'l')

=1 =1 7=1

where b, ¢;,d;; € RY. Then, ®7Of,[u,](¢; i) is given during the prediction stage
by

" M M M
n=1 n=1m=1

where B, Cp, &nm € RM are pre-computed in the training stage as follows

b= <I>T®(b + ﬁv: citlo(x;) + fj i di,juo(xi)uo(xj)),

i=1 i=1j5=1
N N N
C, = ‘I)T@< Z Ciq)n(xi) + Z Z dz’,j (Uo(xi)(l)n(xj) + UO(Xj)q)n(Xi))>v
i=1 =1 j=1
_ N N
dn,m = Z Z @TGdi,jQJn(xi)@m(xj).
i=1j=1

Note that while detailed here for the quadratic case for the sake of clarity, the
method is easily generalizable to higher-order polynomials. Given f,[a,](t; @)
a polynomial function of degree D, the computational complexity of evaluating
T Of,[u,)(t; p) is therefore O(MPT). Tt follows that if f,[0,](t; ) is a high-
order polynomial, then the precomputation-based approach will quickly become
computationally prohibitive due to the large number of pre-computed quantities.

1.5.2 Hyper-reduction

When f},[u,](¢; i) exhibits non-polynomial nonlinearities or the complexity of the

precomputation-based approach is computationally prohibitive, the ROM is equipped

with hyper-reduction techniques. Theses methods can be divided into two classes:
1. the approximate-then-project approach [49] 12 37, [34];

2. the project-then-approximate approach [6, 50l 60], 117).
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[.5. MODEL REDUCTION OF NONLINEAR PROBLEMS

In theses approaches, fi,[uy](x,t; p) is evaluated at a few points {X;,Xs, ..., X} €
(2, and a second layer of approximation is introduced in order to ensure the cost
of the ROM scales with L instead of N (L < N).

1.5.2.1 Approximate-then-project approach

In the approximate-then-project methods, f5[us](x,t; ) is approximated by

fh[uh X, t; @) = Zb

where the empirical modes 6, are built by POD from snapshots of f5,[si](x, txa); i)
during the training stage and are stored in the matrix

0r1(x1)  Oa(x1) - Oag(x1)
0— 91(:X2) 92(:?(2) ' 9M9:(X2) c RN*Mo.
Or1(xn) O2(xn) -+ Ong,(xn)

During the prediction stage, the nonlinear function f,[u,](x,t; @) is then interpo-
lated at points X; by least-squares regression:

L

min Yy (fh[ﬁh](fii, tip) — ﬁ[ah](ii’t; 'U’))Q

b(t;p)eRMe s
whose solution is given by

fh[u ](Xlﬂtvu)

b(t;u) = (PO)* fh[u](f@,t,p,) |

fultn) (%L, t; p)
where (P8)" denotes the Moore-Penrose inverse of P8 and P € RL*YN denotes the

index matrix

P = { 0 otherwise. (L.17)

By substituting £, [0, (¢; ) to f,[0,](¢; @), we finally obtain
Jultn] (X1, 6 p)

@7 Of,[uy)(t; u) ~ 2"OO(PO) " fh[ﬂh}@?mt;u) |

fulin] R )

where ®7@0(P6)* € RM*L is pre-computed offline in the training stage. To select
the interpolation points X;, many strategies have been proposed in the literature,

such as for example, the empirical interpolation method (EIM) [12], the discrete
EIM (DEIM) [37] and the Gauss-Newton with approximation tensor (GNAT') [34].
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CHAPTER I. MODEL ORDER REDUCTION

1.5.2.2 Project-then-approximate approach

Instead of approximating and projecting the nonlinear function f,[uy](x,t; p), the
project-then-approximate methods estimate directly (fy[us](x,t; ), P (%)) g. In
this approach, the inner product is approximated by

(fultn](x, 8 1), Pu(x)) @ & ;@ifh[ﬂh] (Xi, 5 ) @ (i),

where X; and w; > 0 denotes the quadrature points and weights, respectively, and
we assume here that © is a diagonal matrix for simplicity. The great advantage
of this approach is that the quadrature points and weights are computed simul-
taneously during the training stage in order to best approximate the exact inner
product:

Fialup)(tp) -+ Fnalun](t p) w1 (fultn)(x,t; 1), @1(x)) g
Foaslinlti) - Fuoarlinltm) ) \ww alin] (5,1 1), @0 (%)
I Il I
F(7is) (1 1) w clin](t: 1)

where F; ,[tp](t; 1) = faltn](xi, t; )@ (x;). As the training is based on the entire
snapshot database, we obtain the approximation problem

Fs1](teq); mj0)) w1 cls1](tr1); j(1))
F|so] (tk(Q); Mj(z)) p) N c|ss] (tk(2); “j(Q))
Flsx] (e mi) WN c[sx](t(r); Bjx))
I 1 [

G w d

where the snapshots s; can also be replaced by their orthogonal projections §; in
order to further reduce the dimension of the problem and the number of points X;
required to achieve accurate approximations. The weights w; are then solution of
the sparse minimisation problem:

minimize |lwll,
weRY (I.18)
subject to  ||Gw —d||, < €]/d]|,,

where ||-||, denotes the ¢, pseudo-norm. Unfortunately, this problem is
NP-hard, and in practice, it is replaced by simpler problems such as the non-
negative least-squares problem in the energy-conserving sampling and weighting
method (ECSW) [50] 5], 55], or the ¢;-norm regularization problem in the empir-
ical quadrature procedure (EQP) [I17, 116]. The weights &; are finally obtained
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[.5. MODEL REDUCTION OF NONLINEAR PROBLEMS

by keeping only the nonzero components of the solution to problem ([.18)), and the
points X; are the points associated with these weights w;. In the prediction stage,
®7Of,[u,)(t; ) is therefore approximated by

(Dl _ fh[u ](Xl, 7“’)
$TO8,6,](t )  (PD)T Do Jultn ](>:<2, S 1) ’
wr, fulun)(Xp, t; @)

where P denotes the index matrix ([.17) and (P®)Tdiag(@,,@s, ...,&) € RM*L
is precomputed offline during the training stage.
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Chapter 11

A reduced-order model for
rarified flows

II.1 Introduction

In fluid dynamics, the regime of a gas flow is characterized by the Knudsen number

Kn = T

defined as the ratio between the mean free path of the particles A and the char-
acteristic length of the problem L. When the Knudsen number is low (Kn < 1),
the gas particles are close to each other with respect to the characteristic length
of the problem. The behaviour of the particles is similar to the macroscopic flow,
and the regime is said hydrodynamic. Conversely in the rarefied regime (Kn 2 1),
the behaviour of each particle can significantly differ from the macroscopic flow
due to the large distance between the particles.

For the simulation of hydrodynamic flows, it is generally sufficient to consider
the macroscopic flow as in the Euler or Navier-Stokes equations. However in the
rarified regime, this approach can fail to properly describe the dynamic of the fluid.
In this work, we consider the Boltzmann equation [35]:

W 0) + € VS 60) = QLS. (1L1)
which is valid to model gas flows in both hydrodynamic and rarefied regimes.
This equation describes the microscopic behaviour of the gas particles, instead of
considering only the macroscopic state such as the density, velocity and pressure
of the gas. The non-negative function f represents the temporal evolution of the
distribution of the gas particles at point x and moving with microscopic velocity
&. Two approaches are mainly used to solve the Boltzmann equation:

1. the probabilistic approach, such as the direct simulation Monte Carlo method;
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II.1. INTRODUCTION

2. the deterministic approach, relying on the discretization of the Boltzmann
equation (|II.1)).

The deterministic approach is computationally very expensive due to the quadratic
cost of the velocity discretization of the collision operator (). As a consequence,
the probabilistic approach is extensively used in engineering applications due to its
lower computational cost. However, this approach leads to noisy results compared
to the deterministic approach.

In this work, we consider a deterministic model developed during the PhD
thesis of F. Bernard [21] to simulate gas flows in both hydrodynamic and rarefied
regimes. In this model, the Boltzmann equation is replaced by simplified models
such as the BGK equation [23], which is known to be sufficient for moderate and
small Knudsen numbers (Kn < 1). This equation is then discretized in velocity
space by a discrete velocity method [31], [78], leading to a system of transport
equations. This system is finally solved by the finite volume method [110] in space
and an implicit-explicit Runge-Kutta scheme [10] 67, [86] in time. The resulting
model is referred to as the high-dimensional model (HDM) in the following and
allows to efficiently simulate gas flows in both hydrodynamic and rarefied regimes.
However, the large number of dimensions (i.e. 3 in space + 3 in velocity + 1 in
time) still leads to a computationally expensive model, whose simulations require
weeks on supercomputers.

For this reason, we develop in this thesis [22] a stable, accurate and efficient
reduced-order model (ROM) to compute approximations of the density distribu-
tion function f at low cost with respect to the HDM. This ROM employs a new
reduced-order approximation of the BGK equation where the gas density distribu-
tion function is represented in velocity space by a small number of basis functions:

XEt Z_: (&).

The construction of the ROM adopts an approach based on Proper Orthogonal
Decomposition [87, 48] 03], 20] in the training stage and on the Galerkin method
in the prediction stage. This approach is then adapted to the case of the BGK
equation, and the ROM is modified in order to preserve important properties of
the HDM. Furthermore, we derive the CFL condition of the numerical schemes to
ensure a stable ROM in 1D. We investigate the reproduction and prediction of un-
steady flows in both hydrodynamic and rarefied regimes. The results demonstrate
the accuracy of the ROM and the significant reduction of the computational cost
with respect to the HDM.

This work is organized as follows. In Section we briefly introduce the HDM
modeling gas flows in both hydrodynamic and rarefied regimes. Then, Section
presents in detail the training and prediction stages of the ROM approximating
the HDM. Finally, the last Section demonstrates the performance of the ROM
with respect to the HDM.
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CHAPTER II. A REDUCED-ORDER MODEL FOR RARIFIED FLOWS

1I.2 High-dimensional model

The high-dimensional model (HDM) was developed during the PhD thesis of F.
Bernard [21] to simulate gas flows in both hydrodynamic and rarefied regimes.
The dynamic of the gas flow is described by the Bathnagar-Gross-Krook (BGK)
equation [23], which is an approximation of the Boltzmann equation, known to be
sufficient for moderate and small Knudsen numbers (Kn < 1). This equation is
then discretized in velocity space by a discrete velocity method [311 [7§] to ensure
the conservation of mass, momentum and energy of the gas at the discrete level.
This discretization step leads to a large-scale system of transport equations, which
is solved by a finite volume scheme [I10] in space and an implicit-explicit Runge-
Kutta scheme [10, 67, [86] in time.

11.2.1 BGK model

The dynamic of the gas flow is described by the BGK equation, wherein the col-
lision term () is approximated by a relaxation of the density distribution function
towards the Maxwellian distribution function. Moreover, the Chu reduction [40)] is
used in 1D and 2D to reduce the number of dimension in velocity space and thus
speed up the computations. For simplicity, we consider a monoatomic gas, and
the specific gas constant R is taken as R = 1 in the following.

11.2.1.1 BGK equation

Let the parameter domain D C RP be a closed and bounded subset of the Euclidean
space R? with p € N*. Moreover, let , C R? be a regular open physical domain
with boundary 02, where d € {1,2,3} is the space dimension. In the HDM,
the dynamic of the gas flow is governed by the parametrized BGK equation for
X €Ny, &€= (§u &0, &)t €R® t € R and p € D:

of My(x,& tp) — f(x,€ )

_ s , t’ . VX s s t’ = . ]:[2

g &) € Vaf(x. &1 p) . (I1.2)
For each input parameter p, the density distribution function f(x,&,t; ) repre-
sents the temporal evolution of the distribution of the gas particles at point x and
moving with microscopic velocity &. The relaxation time 7 is given in dimensionless
form by

p(x, t )T (x, 8 )

Kn
with v, the exponent of the viscosity law of the gas, taken as ¥ = 1 in the follow-
ing. In the BGK equation, the collision term is linearized around the Maxwellian
equilibrium distribution function

pxtip) <_||s—u<x,t;u>||§)
(2nT(x,t; ) 2T(x,t;) )’

T (%, p) =

My(x,€,t; 1) =
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I1.2. HIGH-DIMENSIONAL MODEL

where p is the density, u € R? is the macroscopic velocity and 7' is the temperature
of the gas. These macroscopic quantities of interest are recovered from the density
distribution function. The density, momentum and energy E are given by

1 p(x,t; )
f&tp) | & |dE=| plx,t;pmulx,t;p) |, (I1.3)
w L E(x.t; p)

and the temperature T" and pressure p of the gas are then deduced from

L 2B(x ) lu(xt )l
 3p(x,tip) 3
This equation ([I.3)) connects the microscopic behaviour of the particles with the
macroscopic state of the gas. It is verified by every distribution function (i.e. f
and My) and ensures the conservation of mass, momentum and energy. In the
hydrodynamic limit (Kn — 0), the density distribution function tends to the
Maxwellian distribution function (f — My), and the compressible Euler equations
can be derived from the BGK equation by the Chapman-Enskog expansion [36].

T(x,t; ) and  p(x,t;p) = p(x, t; w)T(x, 15 p).

I1.2.1.2 Chu reduction

To ensure equation , the velocity space has always 3 dimensions even if the
physical space has less dimensions. In 1D and 2D, the Chu reduction allows to
speed up computations by reducing the number of dimension in velocity space.
The density distribution functions f, defined on R? in velocity space, is replaced
by two density distribution functions ¢ and v, defined on R¢ in velocity space.
The macroscopic quantities of interest are then deduced from these new density
distribution functions.

1D case. We consider the one-dimensional BGK equation (d = 1):

of of My(x,&,t;p) — f(@,€,t: )
- t; — tp) = . 1.4
In 1D, the density distribution function f(z,&,t; ) is replaced by
o untin) = [ Flo.6ti) 06,
R (IL.5)

2 2
Slobntim) = [ T80 p0 e ) de, de.

By integrating equation ([1.4]) in velocity space, the new density distribution func-
tions verify

w2

a¢ . a¢ . o Md)(xvfmt;ll’) — ¢(x,§u,t;u)

e (b ) G (b b pe) = (e )

8¢ X a,lvb . o Mw(l’,fu,t; M) —@D(%ﬁu,t; ,LL)

o (Dbw i) T (o b i) = (b 0) |
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where the new equilibrium distribution functions are defined by

' o p(ZL’, t; u) (gu B U(l‘, t; #’))2
My (, &, t; p) = WGXP (— 2T (x, b o) > )

Mw(l‘, Eus &; p/) = T(CL’, b M)M¢(ZB, Sus 6; “’)'

By inserting (IL.5)) into (II.3]), the macroscopic quantities are then deduced from

1 0 p(,t; )
[otentin (& )ae+ [wmntm | 0)de= plotiputetin) ).
® & ® 1 B : 1)

’ (I1.6)

2D case. Similarly, we consider the two-dimensional BGK equation (d = 2):

0 Do '

Y

ot

where x = (z,9)T and & = (&,,&)T. The new density distribution functions are
defined by

52
oot = [ Fx €t ds and vx ot = [0 €t a6

These new density distribution functions verify

9 My(x. .t 1) — D(x, Ex. 1
£(X’ o, 15 1) + & - Vio(x, €, ) = o T{Lx),t;;f)(}( k)
0 Moy (x. €. 1 1) — (. Eg. 1
c‘;tb<x’ o, ti 1) + & Vb (x, &2, 15 ) = ek 7jT(Mx),t; ;D)(X = “)7

where the new equilibrium distribution functions are

p(x.t; ) 1€ — u(x. t; )3
o &0, 1) orT(x,t ) © ( 2T (x,t; ) ’
T(x,t; @
M¢<X7 527 ta ,J’) = (2)M¢(X7 527 t7 l’l’)a

with u = (u,v)’. The macroscopic state of the gas is finally recovered from

! 0 p(x,t; p)
. Su . 0 [ op(x,t pu(x, t )
et | | der [t g e = | DR GRE TR
L1 1 E(x,t; p)
(IL7)
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I1.2.2 Numerical methods

The BGK model is discretized in velocity space by a discrete velocity method
(DVM) [31, [78] to ensure the conservation of mass, momentum and energy of the
gas at the discrete level. This discretization step leads to a large-scale system
of transport equations solved by the finite volume method [110] in space and an
implicit-explicit (IMEX) Runge-Kutta scheme [10, 67, [86] in time. The result-
ing HDM is a first-order scheme, and the discrete density distribution function
frn(x,&,t; i) represents the exact density distribution function f at point x, mi-
croscopic velocity &, time instance ¢ and input parameter p.

I1.2.2.1 Velocity space discretization

In equation ([L.3), the density distribution function is integrated in velocity space
over R3. For this reason, the velocity space Q¢ is chosen so that f is negligible
outside §2¢. More precisely, the lengths L¢,, L¢, and L¢, of the velocity domain
Q¢ =|—Le¢,, Le, [ X |—Leg,, Le, [ X | —Le,,, Le, [ are defined to capture at least 99.99%
of the integral of the distribution functions. The velocity space is then discretized
by a uniform cartesian grid containing N¢ points &; jx = (£,&,&F), where & =
—Le, + (i — %)A{u and A, = 2]5;“. In the following, the points are indexed by a
multi-index & = &;(),j),k) to simplify notation.

Quadrature rule. The integrals are approximated by the midpoint rule:

Ne
/Q 9(6)dE ~ AES g(&).
£ =1

where A = AE,AE,AE,,. The discrete inner product associated with the L2-norm
is therefore defined by

(91(6), 92(6)) = As§g1<sl>g2<sl>.

This discrete inner product is induced by the diagonal matrix
Ag
0= A _ € RNexNe
) Ae
and corresponds in matrix form to

(91(8), 92(€)) o = &1 Oo,

where the scalar function g(€) is encoded as the vector g = (g(&1), 9(&2), - - - ,g(éNg))T €
RVe,
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Discrete velocity method. If the discrete Maxwellian distribution function
is defined by

In

th<X, slat; ,LL) = Mf(X> €l,t; ,Ll;), (II8)
then My, will not necessarily verify equation (II.3) at the discrete level, and the
conservation of mass, momentum and energy will not hold:

1 p(x,t; p)
el E(x,t; p)
2 e

For this reason, the discrete Maxwellian distribution function is not computed
from equation (IL.8). In the DVM [31] [7§], the discrete Maxwellian distribution
function is defined by

th (Xv €t I*I’) = exp(w(x, t; “) ) m(&')),

where the vector w(x,t; ) € R® is computed in order to verify

1 p(x,t; p)

My, (x, & tip), | & = | p(x t;p)u(x,t; p) (11.9)
l€llz E(x,t;p)
2 @ ) 7“

2
with m(§) = (1,§, ||€2H2)T € R’. This nonlinear system (IL9) is solved by the
Newton-Raphson method at each point x, time instance ¢ and input parameter
p, as explained in [2I]. In the same way, the discrete equilibrium distribution
functions My, and M,, are computed to verify, at the discrete level, equation

(L1.6) (resp. (II.7)) in 1D (resp. 2D), see [21I]. The BGK equation (II.2)) becomes

after velocity space discretization
af th(X7€l7t; lJ’> _fh(x7£lat;l'l’)
ot 7(x,t; p)

for [ € {1,..., N¢}. Notably, this system (II.10|) consists of N¢ transport equations
with a collision term coupling all the equations.

——(x, &t ) + & - Vi fu(x, &t p) =

(I.10)

I1.2.2.2 Physical space discretization

The physical domain Qx = |Zmin, Timaz| X |Ymins Ymaz| X |Zmin, Zmaz| is discretized by
a uniform cartesian mesh containing Ny cells K, with center x; ;1 = (x;,y;, 2k)
and size AxAyAz, where z; = Ty + (i — f)Ax and Ax = fmartmin . On each
cell, the convective term is approximated by the finite volume method, while the
collision term is discretized by a centered approximation. On cartesian grid, the
first-order finite volume scheme reads

Oty F! —F'

7’+ j k Zif’jak
fu, a (Xi,j,kv Ela ta l’l‘) = A.T : )
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where the flux Fz’l—l—%,j,k between the cells K; ;, and K 1 is

FL%J,;C = max(ful, O)fh(Xi,j,ka &, H) + min(ful, O)fh<xi+1,j,k7 &t M)~
After physical space discretization, the system ([I.10)) becomes

Afn Jo(Xigws &t ) — fa(Xiz1: &, 5 1)
E(Xi,j,ka &ty p) = — max(&y,, 0) : Ar .
Jn(Xi1g &t ) — Ta(Xigins &, 6 1)

Ax

So X &t ) — fa(Xij—10: &1, 5 1)
Ay

fh(xi,j—i—l,ka €l7 ta IJ’) - fh(xi,j,ka Eh ta IJ’>
Ay

JoXij &t ) — fn(Xige—1, &t 1)
Az

i, ) 7ta - 2,7,k 7t7
(g, 0) T2 S 2 BB
Az
My, (Xi e &t ) — [a(Xign, &1t 1)
T(Xi,j,kn t? I‘l’)
which corresponds to a system of Ny/Ng ODEs. The boundary conditions complet-
ing this system are presented in Section |[1.2.2.4]

— min(&,,,0)

— max(§,,,0)

- min(ﬁvz ) 0)

(IL11)

— max(&,,,0)

_I_

Y

I1.2.2.3 Time discretization

The system is solved by an IMEX Runge-Kutta scheme [10] [67, 86]. In this
method, the convective term is treated explicitly, while the collision term is treated
implicitly. In this way, the CFL condition does not depend on the collision term,
which tends to zero in the hydrodynamic limit (Kn — 0). In the first-order IMEX
Runge-Kutta scheme, there is one intermediate time-step given by the implicit
formula

1
M}i)(xi,j,ka i) — [y )(Xi,j,k7£l§ )

(1) (Xi,j,k§ N)

flgl)(xi,j,kaéﬁ ) = fn(Xijk &ty ) + At

By integrating this formula in velocity space, it follows that f, and f,(Ll) have the
same moments because f}(Ll) and M J(ci) have the same moments. In addition, since
frn and Mjy, also have the same moments, this implies that M](ci) (resp. 7)) is

equal to My, (resp. 7). The intermediate time-step can therefore be re-written in
explicit format as follows

T\X4 5 7t )
f}(zl)(xi,j,kvél;p’) ( SR u’) ( h(xi,j,k7€l7tp;l“l’)+At

_ My, (Xi 5k, €15 tp; M))
At + 7 (X j ks tp; 1) '

T(Xijiks L 1)
(IL.12)
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The next time-step is then given by

fh(xi,j,ka &, lpt1; M) = fh(Xi,j,k> &, tp; M)

Wi o) — FDi g
— At max(gu“ 0) fh (X%j,ka €l7 l’l’) fh (Xzfl,_y,lm Ela H’)

Ax
: ff(Ll)(Xz‘ijfz;M) —ff(ll)(xijk,&;u)
— At 2J ) 2Jy
min(&,,, 0) o
fi(bl)(xijkagl; p) — fisl)(xij—l K & )
— At > I
max(&,,,0) Ay
— Atmin(&,,0) fi(Ll)(Xi,j+1,k7€l; p) — ffgl)(xi,j,kafl;l«lf)
v Ay
f(l)(Xz' ik €z'u) - f(l)(Xz' i k—1 El'u)
- At maX(ﬁwl,O) h 2] K9 Sy AZh e s Qs
/o . oMy .
—Atmin(gwl,o)fh (X%HMEI’MAZ Io (K &5 1)

1
Athh (Xi7j1k7 Ela tp; p,) — f}(z )(Xi,j,kz) €l§ P")

+
T(Xz’,j,k7 Lp; N)

(I1.13)
The initial solution of this system

Tn(Xijn, &, tos ) = My, (Xijk, &1, to; 1)

corresponds to the initial discrete Maxwellian distribution function computed from
the initial state (pg, ug,Tp) of the gas. Furthermore, the time-step size is chosen
in the HDM according to the CFL condition

(Aa: Ay Az)
[l 180l (Gl /-

At < min
1<l<N§

11.2.2.4 Boundary conditions

To impose the boundary conditions, ghost cells are employed at boundary. These
ones contain the density distribution function f;. determined by the boundary con-
ditions. Let o € 9§« be a boundary point of Q. In the following, fi.(6™, &, t; 1)
denotes the density distribution function contained in the ghost cell that shares
an interface, at point o, with the interior cell containing the density distribution
function f,(o7,&,t; p).

Free flow. For a free flow boundary condition, the density distribution functions
in the ghost cell and in the cell centered at point o~ € {2, are the same

fbc<a+7 67 t; N) = fh(o-ia €7 t; l’l’)
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Inflow/outflow. The inflow (or outflow) is represented by a fluid state in the
ghost cell. This fluid state depends on the density py., the macroscopic velocity
. and the temperature T}, and it corresponds to

be(aJr? 57 t? l’l‘) = th [pr7 Upe, TbCKU’ £7 t) l'l')a (1114)

where My, [ppe, Wpe, The] denotes the discrete Maxwellian distribution function de-
termined by (ppe, Wpe, The)-

Specular reflection. The wall specular reflection is a wall reflecting the particles
in opposite normal direction. The wall is moving with macroscopic velocity u.,
and there is no mass and energy fluxes through the wall. The microscopic velocity
of the particles becomes after collision

gTefl - € - 2<<£ - ubc(aa t; H)) : nw) 1y,

where n,, denotes the outward unit normal at the wall. The particles hitting the
wall verify 0 < (& — uy) - n,, and the boundary condition reads

oy T et ) 0 < (E— wpelo,ti ) -1y,
fuelo™, &8 1) = { f:(o'_,é,t]:lu) otherwise. b

Diffuse reflection. The wall diffuse reflection is a wall reflecting the particles
as a Maxwellian distribution function. The macroscopic velocity and temperature
of the wall are u,. and T, respectively, and there is no mass flux through the
wall. In the ghost cell, the boundary condition is represented by the Maxwellian
distribution function determined by (ppc, Wpe, The) With the density pp. computed
to guarantee zero mass flux:

/ (€ - ubc)fh d€ + / (€ - ubc)Mf[pbca Upe, Tbc] d€ = 07
(E_ch)'nw<0 (E_ubc)'nw>0

/ (& —wpe) frd€ + / (& — Wpe) poc My (1, upe, Tpe] d€ = 0,
(€—upc) nw<0

(gfubc) Ty >0

/ (€ — W) fo de
_ (g_ubc)'nw<0
Pbe = —
/ (€ - ubc)th [17 Uy, Tbc] dﬁ
(g_ubc)'nw>0

Y

where we have substituted My, to M;. Moreover, only the particles hitting the
wall are reflected, yielding to

fbc(0'+>£, t: “) — { th [pbm ubcaTbC](07€7t§ ll') if0< (€ - ub0<a7t; ll’)) "Iy

fn(le™, &, t; 1) otherwise.
(IL.15)
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I11.3 Reduced-order model

The HDM simulations are computationally expensive due to the large number of
dimensions, i.e. d in space + d in velocity + 1 in time. For this reason, we develop
in this thesis [22] a stable, accurate and efficient reduced-order model to compute
approximations of the density distribution function at low cost with respect to
the HDM. This ROM presents a new reduced-order approximation of the BGK
equation where the gas density distribution function is represented in velocity
space by a small number of basis functions. The construction of the ROM adopts
an approach based on Proper Orthogonal Decomposition [87, 48|, 103], 20] in the
training stage and on the Galerkin method in the prediction stage. This approach
is then adapted to the case of the BGK equation, and the ROM is modified in
order to conserve the mass, momentum and energy of the gas. Moreover, we derive
the CFL condition ensuring a stable ROM in 1D.

I1.3.1 Solution approximation

In the ROM, the discrete density distribution function f; is approximated in ve-
locity space by a small number of basis functions ®/:

2

fu(x, &t Z L (x, t; 1) 1(€)

in order to reduce the computational complexity of the model. The basis functions
®J are constructed in the training stage by Proper Orthogonal Decomposition
(POD), and the reduced coordinates af are computed at low cost by the Galerkin
method during the prediction stage.

In 1D and 2D, the discrete density distribution functions ¢, and 1, are ap-
proximated in the same way by

Ny Ny

Oz, &0, t; ZZ (2, t; )DL (&), Yn(m, &usts )= a¥(z, t; w) @Y (&,) in 1D,
n=1 n=1
Ns’ N;"od

:@

¢h X 527 au' Z X ta“ Q)¢(€2> wh(xa 527t; :u’> (X t?”’)q)w(éé) in 2D.

We will detail the model for ﬁ in the following. For $h and %, the formulation
is similar.

11.3.2 Training stage

The basis functions are constructed in the training stage by POD (Section[[.4). In
this approach, the HDM provides snapshots of the density distribution function

36



I1.3. REDUCED-ORDER MODEL

to learn the solution manifold. This sampling is enriched with snapshots of the
Maxwellian distribution function since this one is also represented by the basis
functions. Then, the POD is used to extract the low-dimensional trial subspace
spanned by the basis functions, which is optimal in the least-squares sense to
approximate these snapshots. In this work, the POD is performed by the classical
method (Section due to the large number of snapshots collected during the

sampling of the solution manifold.

I1.3.2.1 Snapshot database

Let s{(ﬁ) = fa(Xi@), 0.k & tp); Hqy) be a snapshot of the discrete density dis-
tribution function collected at point Xy juk@), time instance t,;) and input pa-
rameter pqy. The snapshots are provided by the HDM and are taken at every
point of the physical space and uniformly in time. In this way, the snapshots are
uniformly distributed to represent the discrete density distribution function for
each input parameter. The Ny snapshots provided by this sampling are stored in
the snapshot matrix

€ RNexNs,

lene) shen) - shi(€xy)

In the prediction stage (Section , the basis functions also represent the dis-
crete Maxwellian distribution function. For this reason, the basis functions are con-
structed in order to represent accurately the density and Maxwellian distribution
functions. For this purpose, the snapshot database also contains snapshots of the
discrete Maxwellian distribution function sle (&) = My, (%i0),50).50): & tp)s Bq@))-
collected in the same way as the discrete density distribution function. These
snapshots are stored in the matrix

(&) s (&) sy (&)
517 (&) sy’ (&) oo sy (&)
M : M : Y |
81 f(£N§> S2 f(ﬁNs) T SNSf (EN&)
and the complete snapshot database is

S =(S; Su,) € RNeXCN), (IL.16)

The results of this modification are presented in Section [[1.4.2] In Figure
we show 1D and 2D examples of snapshots collected at a low Knudsen number
(Kn = 107°). In this case, the regime of the gas flow is hydrodynamic, and the
snapshots are close to the Maxwellian distribution function.
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01 0.1

40 0 13 & 10 .10

Figure I1.1: Examples of snapshots of ¢, in 1D (top) and in 2D (bottom) randomly
choosen.

11.3.2.2 Proper Orthogonal Decomposition

Given the snapshot database S, the trial subspace is defined as the linear subspace
of rank N,,; minimizing, in the least-squares sense, the difference between the
snapshots and their projections onto this subspace:

<I>€]RNE XNpod

{ minimize HS — (I)(I)T@SHi“@
subject to  ®TO® =1y .

Here, the basis functions are stored in the matrix

of(&1)  DL(&) {vpod(&)
o [ & <I>§<_£2> ) ) e,
(I){(ENg) (I)g(ENg) e (I){Vpod (€Ng)

and the matrix ® € RMe*Ne¢ is defined in Section [I1.2.2.1 According to the
Schmidt-Eckart-Young-Mirsky theorem [1, the basis functions are given by

) Ul,l e Ul,Npod
®=(02)" | : :
UN&,]. T UN&»Npod
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where S = UXV7 is the singular value decomposition (SVD) of S=0:Sand® =
@é(@%)T is the Cholesky decomposition of ©. Since the sampling is performed
over physical space, time and parameter domain, the number of snapshots is in
practice too large (N, &~ O(107)) to find the SVD of S. For this reason, the basis
functions are computed by the classical method, where U is obtained from the
SVD of SST e RNexNe ingtead of S € RNex(2Ns)

Figure shows examples of basis functions obtained with this method. In
this case, the snapshots (see Figure are close to the Maxwellian distribution
functions, and the first basis function ®¢ (on the left) is close to the mean of the
snapshots.

0.7 0.6 06

06 04 04

05 0.2 02

B A £ .
& 10 10 13 & 40 -0 ¢ & 1010

Figure I1.2: Examples of basis functions for ¢, in 1D (top) and in 2D (bottom).

I11.3.3 Prediction stage

Once the basis functions are constructed, the approximate density distribution
function depends only on the reduced coordinates. These ones are determined at
low cost during the prediction stage by the Galerkin method (Section . In
this approach, the residual is enforced to be orthogonal to the trial subspace, lead-
ing to the resolution of a small-scale system which is hyperbolic by construction.
This system is then modified in order to preserve important properties of
the HDM. Finally, the ROM is discretized by the same numerical methods used
in the HDM, and we derive the CFL condition ensuring a stable ROM in 1D.
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I1.3.3.1 Galerkin method

In the Galerkin method, the approximate density distribution function is inserted
into the system of transport equations ([I.10]), yielding to the residual

Ofn My, (x, &, 8 1) — fu(x, &, 8 1)
ot T(x, t; ) ‘

This residual is then projected onto the basis functions

Vne{l,... . Nyoa} 1 (r(x,& t:p), L(€)) g =0,
leading to the system verified by the reduced coordinates:

Oal Oal dal  «0af aMsr—al
A A A% 1117
ot o Ty TA: — (IL17)

where Ay = (§,®F,(€), 1(€)) g, Anm= (&PF(€), PLE)) g Anm= (€0, (€), PL(E))
an'’ (x,t, 1) = (My, (x, &, 1, 10), 4(€)) o, @ (x, 1, ) = (af (x, 8, ), .y, (x, 8 )T
and aMr(x t,pu) = (aiwf(x,t,y,),...,aANifod(x,t, )T, The matrices AAA €
RNpoaXNpoi are symmetric and thus diagonalizable by a real orthogonal similarity.
This system is therefore hyperbolic, and the equations can be decoupled direction

by direction with a linear change of variables. Let the eigendecompositions be
A = PDP7?, where D € RMrod*Npod is a diagonal matrix and P € R¥NpedXNpod ig an

orthogonal matrix. The hyperbolic system ([L.17) becomes

Oal ob/ dc’ . od! aMr —af
< L PD—— +PD— PD = II1.18
ot * Ox + dy * 0z T ( )

where the changes of variables are b/ = P7al, ¢/ = PTa/ and d/ = P7a/.

r(x, &t p) = 20 (%, 6,1 ) + € Viefu(x, €, ) —

11.3.3.2 Preservation of properties of the HDM

In system (I1.18), the discrete Maxwellian distribution function is projected onto
the basis functions:

a (x,t; p) = (My, (x, &, 1), ®1(€)) o » (I1.19)

and the approximate Maxwellian distribution function Mth is given by

Npod

My, (x,&.tp) = Y adls(x,t; )@ (£).

n=1

Due to projection error, the conservation of mass, momentum and energy is not
necessarily preserved:

N 1 p(x,t; )
lI€1l5 E(X, t; p,)
2 e
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. : M .
For this reason, the reduced coordinates an’ are not computed from equation

(I1.19). The approximate Maxwellian distribution function is determined to con-
serve the mass, momentum and energy of the gas and to be as close as possible to
the Maxwellian distribution function M;:

L — 2
Jminimise, |0y, (x, &t 1) = My(x, &, 8 )|
N 1 p(x,t; )
subject to My, (x, & t;m), | & = | p(x,t; p)u(x,t; pu)
ligI® E(x,t; p)
2 (_) V)

(I1.20)
The objective function of this minimization problem ([I.20)) can be cast in matrix
format using the Ng X Np,q system

of(&) P4(&) - DL (&)
of(&) (&) 1
of(en) ®hen) - ok (€] Lol o) Mi(xéxtim)
Il | Il
P als(x,t; ) My (x,t; p)

M
a ' (%, t; )

Mo Mf(x>€1>t§ﬂ)
ay ' (x,t; p)

Mf(X7 527 ta l'l’)

~

Likewise, the constraints in problem (I1.20]) lead to the 5 X N4 system

(®1(8), 1) (@f, ,(&).1) y |
@©).6)g o (Ph@a), [ ) [ ebeti
f f as T (x,t; @) p(x, t; pu(x, t; p)
(@1(8), §v>@ <<I>Npod(£)a fv>@ _ = | p(x,t; p)v(x,t; 1)
(@{(£). &) g (@4, 60y || px, & p)w(x, t u)
<¢{(£)7 I€l ] <¢{Vp0d(£)7 €l ) ay! (%t p) E(x,t; p)
I I I
v ar (x,t; p) p(x,t; )

The solution to ([1.20]) is then given by the method of Lagrange multipliers:
a'’ = ®"eOM; + ¥ (¥¥")"! (p— ¥R OMy). (I1.21)

If $W7T is singular, there is no solution satisfying the constraints. In this case, we
search the best approximation in the least-squares sense of the constraints that
minimizes the objective function. The corresponding approximate Maxwellian
distribution function is given by

all(x,t; p) = ®TOM(x, t; p) + O (p(x,1; ) — WRTOM(x, 13 1)), (11.22)

where W+ denotes the Moore-Penrose inverse of ¥. When W7 is invertible,
these two formulations (I1.21)) and (1.22) are equivalent since ¥+ = ¥ (P PT)~1,
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Moreover, the matrices ®7©, ¥+ and ¥®7© are pre-computed offline to save
computing time. This modification is used in the Galerkin projection ([I.18), in
the initial condition and in the boundary conditions and ,
see [22] for more details. The results of this modification are presented in Section
. In 1D and 2D, the approximate equilibrium distribution functions My, and

%h are determined in the same way, see Appendix .

11.3.3.3 Numerical methods

The hyperbolic system is solved by the finite volume method in space and
an IMEX Runge-Kutta scheme in time, as in the HDM. The resulting ROM is a
first-order scheme, and we derive the CFL condition ensuring a stable ROM in
1D. This CFL condition leads in particular to larger time-step size At than those
used in the HDM, allowing to further reduce the computational cost of the ROM.

Physical space discretization. For simplicity in this work, the HDM and ROM
both use the same mesh to discretize the physical space. On each cell, the con-
vective term is discretized by the finite volume method, and the collision term is
approximated by a centered approximation. Since the reduced coordinates b/ are
transported in the x-direction at constant speed D, , in the hyperbolic system
(TL.18), the first-order finite volume scheme reads on cartesian grid

obv! Flage— Ty,
DnnJ(th; IJ’) = +27J7k 27]7k7
" Ox Ax
where the flux F;T-Ll—%,j,k between the cells K; ;; and K11 j is
Fﬁr%,j,k = maX(Dn,na O>b£(xi,j,k7 t7 l’l’) + min(Dn,n7 0)b£<xi+1,j,k7 tv l’l’)

By using the change of variables b/ = P7a/, the hyperbolic system ([1.18)) becomes

a;j(xz',j,k, t; ) = — Pmax(D, O)PTaf(Xi’j’k’ L) _Azf(xil’j’k’ L)

pT al (Xip1 0t 1) — & (%, 1 1)
Ax

IODTaf(Xi,j,k7 tip) —al (xij1p, t; 1)
Ay

Xijtih £ ) — & (Xiju, t; 1)
Ay

f)Taf(Xi,j,ka ) —al (X 51,15 )
Az

Xijhi1s i ) — &l (Xijn t; p)
Az

i aMr (i, b ) — al (Xi i s )

T(Xijk, 1)

— P min(D, 0)

— Pmax(D,0)

. . . f
_ Pmin(D, 0)p7 21

_P max(f), 0)

X N . af
_ P omin(D, 0)p7 21

?
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where max(D, 0) denotes the diagonal matrix D with the negative elements re-

placed by 0. The matrices P max(D, 0)P? and P min(D, 0)P? can be pre-computed
offline to save computing time. Moreover, the boundary conditions are given by

projecting the boundary density distribution function f. (Section onto

the basis functions, see [22] for more details.

Time discretization. The intermediate time-step of the IMEX Runge-Kutta
scheme [10, [67), 86] is in explicit form

M
1) L T(Xijk, tpy 1) ( s _ avf (X j g, ty; u))
a ikl ) = a’ (x; i, ty; At
(xiias 1) At + 7(X; k, tp; 1) (i toi 1) + T(Xijk, Lps 14)

by following the same arguments used in Section [[[.2.2.3] The next time-step is
then given by

af(xi,j,ka tpp1s ) = af<Xi,j,ka tpi )

- a(l)(xi—l,j,k; .U)

— AtP max(D, O)PT a(l)(xi,j,k; .u)

Az

AP min(D, 0)pr A (e 1) —al (i 1)
’ Az

— AtP max(D, 0)P” aW (x5 ) —aW (x5 14 1)
) Ay

— AP min(f) O)f)Ta(l)(Xz’,jH,k; p) —aW(x; 5 1)
) Ay

— AP max(f) O)f’T a(l)<xiﬂ?k; ©) — a(l)(xi,j,k—l; )
7 Az

— AtP min(D, 0)P” ) (i1 ) — @ (x5 1)
7 Az

ar (x5 tp; ) — al (x50 1)
T(Xi .k, tps L)

The approximate density distribution function is initialized from

+ At

afl(Xi,j,k, to; ) = ahls (Xij ks tos 1), (I1.23)

where the reduced coordinates of the initial approximate Maxwellian distribution
function are computed from the initial state of the flow (pg, ug, To). Moreover, the
CFL condition used in this ROM reads

Ar Ay A
At < min ( e A ) (I1.24)

) ©. ) *
1<n<Npoi \ [Dnn|” | Dy 1Dy
b

Notably, this CFL condition ensures a stable ROM in 1D and leads to larger
time-step sizes than those used in the HDM, allowing to further reduce the com-
putational cost of the ROM by decreasing the number of time-steps.
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II.4 Applications

We analyze the performance of the ROM with respect to the HDM for four appli-
cations in 1D and 2D. The ROM accuracy is evaluated using the relative approx-
imation error in the predicted density distribution functions at final time ¢,,4,:

1H¢h_$h 1H¢h_%

2 ||¢h||L2(Qxe§><{tmax}) 2 quz)hHL?(QxeEx{tmm})

L2(Qx X Qe X {tmax }) L2(Qx X Qe X {tmax})

Error = x 100%.

Furthermore, the computational speedup of the ROM with respect to the HDM
is evaluated using the relative run time in order to quantify the reduction in
computational cost provided by the ROM:

ROM run time
ti = 1 .
Run time DM run time x 100%

I1.4.1 Reproduction of a shock wave

The first application evaluates different definitions of the approximate Maxwellian
distribution function. In the Galerkin method, Mjy, is defined as the projection
of the discrete Maxwellian distribution function onto the basis functions, while in
Section [[1.3.3.2] we propose to determine the approximate Maxwellian distribution
function by constrained projection in order to conserve the mass, momentum and
energy of the gas. We compare these two approaches to compute My, .

We consider the Sod shock tube problem [104] at Kn = 1075. The physical
space x = |0, 1] is discretized using Ny = 200 cells, and the velocity space Q¢ =
|—10,10[ is discretized using N¢ = 41 points. The final time is t,,,, = 0.12 and
the CFL number is 0.1. The initial condition is

po(x) =1, ug(x) =0, To(x) =1 if x €]0,0.5]
po(x) = 0.125, ug(xz) =0, To(x) = 0.8 otherwise,

and we consider free flow boundary conditions.

For the construction of the basis functions, the database Sy (resp. S,;) contains
snapshots of ¢, (resp. 1) taken at each point in space and every 0.005 time units.
The Figure shows the squared singular values of S¢ and Sw The decay of the
squared Slngular values is fast, and 3 basis functions (i.e. 7.3% of the complete
basis) are sufficient to obtain a relative squared projection error lower than 0.01%.

In Figure[[T.4] we plot the macroscopic quantities of interest of the gas at final
time obtained by the ROM using the constrained projection-based approach to
determine the approximate Maxwellian distribution function.

In Figure [[1.5] we compare the performance of the two approaches to compute
f/[th as a function of the number of basis functions N,oq = Nﬁod = N;f’od.
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10710
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x--- Reduced-order model

Figure I1.4: Density, macroscopic velocity and temperature of the gas at final time
for the reproduction of a shock wave with N,oq = 9.
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Figure I1.5: Performance of the ROM depending on the definition of the approxi-
mate Maxwellian distribution function.

The constrained projection-based approach is more accurate than the projection-
based approach because the approximate Maxwellian distribution function con-
serves the mass, momentum and energy of the gas. Moreover, the constrained
projection-based approach is also more efficient in terms of computational cost
since My, is given by the explicit formula , whereas in the projection-based
approach, we have to solve a nonlinear system . More specifically, in the
projection method-based approach, the Maxwellian distribution function M} is
evaluated to initialize the Newton-Raphson method (Section . Then, this
nonlinear system is solved to obtain the discrete Maxwellian distribution
function, which is finally projected onto the basis functions. In the constrained
projection-based approach, the Maxwellian distribution function My is evaluated
and projected directly from equation to obtain /]W}h' For these reasons,
the approximate Maxwellian distribution function will be determined by the con-
strained projection-based approach in the following.

11.4.2 Reproduction of two boundary layers

The second application concerns the choice of the snapshots. Originally, the
database S contains snapshots of the discrete density distribution function be-
cause we want the basis functions to be the best representation of f;,. In Section
[1.3.3] the Maxwellian distribution function is also represented by the basis func-
tions. For this reason, we evaluate the benefit of enriching the database with
snapshots of the discrete Maxwellian distribution function.

We consider the reproduction of a flow between two walls (diffuse reflection)
placed at z = 0 and z = 1 with different temperatures at Kn = 1072. The
physical space €, = ]0,1[ is discretized using Ny = 100 cells, and the velocity
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space ¢ = |—20,20[ is discretized using Ng = 100 points. The final time is
tmaz = 13.03 and the CFL number is 0.1. The initial and boundary conditions are

po(x) =1, ug(x) =0, To(x) =1 for x € Qi
upe(0,1) =0, Tpe(0,t) = 0.5, upe(1,t) =0, Tpe(1,t) = 1.5 for t € |0, trmaa)-

For the construction of the basis functions, we consider two methods. In the first
one, the database S, (resp. S,) contains snapshots of ¢, (resp. 15,) taken at each
point in space and every 0.4 time units. In the second one, the database S (resp.
S,) contains snapshots of ¢;, and My, (resp. vy, and M,, ) taken at each point in
space and every 0.4 time units. Figure shows the squared singular values of
Sy and S,, for the two methods.

RSERTR S 105

10710 + 10710 +

10.15 1 1 1 1 1 1 1 1 1 10'15

Figure I1.6: Squared singular values of §¢ and §¢ without (on the left) and with
(on the right) Maxwellian snapshots for the boundary layers reproduction.

The decay of the squared singular values is fast, and 4 basis functions (i.e. 4%
of the complete basis) are sufficient to obtain a relative squared projection error
of less than 0.01%. In Figure [IL.7, we plot the macroscopic quantities of interest
of the gas at final time obtained by the ROM containing snapshots of the density
and Maxwellian distribution functions in the database.

In Figure[[I.8 we compare the performance of the two approaches to construct
the ROM depending on the number of basis functions N,.q = Nfod = N;fod.

The enrichment of the snapshot database with the discrete Maxwellian distribu-
tion function reduces the approximation error because the Maxwellian distribution
function is better represented. Moreover, the run time is almost the same for the
two methods. The run time is not exactly the same because the time-step sizes
At are determined by the CFL condition ([1.24]), which is slightly different since
the basis function are not the same. In the following, the database will contain
snapshots of the density and discrete Maxwellian distribution functions in order
to improve ROM accuracy.
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Figure I1.7: Density, macroscopic velocity and temperature of the gas at final time
for the reproduction of two boundary layers with Np,q = 12.
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Figure I1.8: Performance of the ROM depending on the choice of the database S.
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I1.4.3 Reproduction of a vortex

The third application evaluates the ROM in 2D. We consider the reproduction
of a flow past a vertical plate [24] at Kn = {0.0345,0.0689,0.115,0.23}. The
physical space 2, = ]—1.33,2[ x ]0,3.33[ is discretized using Ny = 642 cells, and
the velocity space ¢ = ]—10, 10[2 is discretized using N¢ = 412 points. The final
time 18 ¢4, = 5.3332 and the CFL number is 0.5. The initial condition is a uniform
flow at Mach 0.68

Vx € Qx: po(x) =1, up(x) = 0.68, vy(x) =0, Tph(x) = 1.

An inflow is imposed at the boundary (r = —1.33, z = 2 and y = 3.33) and is
set to be a uniform flow at Mach 0.68. Moreover, a specular reflection is applied
at the wall x = {0} x ]0,1[ and at the boundary y = 0. The basis functions ®¢
(resp. ®¥) are constructed from the database S, (resp. Sy) containing snapshots
of ¢, and My, (resp. vy, and My, ) taken at each point in space and every 0.2665
time units. The Figure shows the squared singular values of §’d> and §¢ at
Kn =0.0345.

Figure 11.9: Squared singular values of Sy (blue) and S, (red) for the vortex
reproduction.

The decay of the squared singular values is fast, and 6 basis functions (i.e. 0.4%
of the complete basis) are sufficient to obtain a relative squared projection error
below 0.01%. In Figure [I1.10, we plot the streamlines of the macroscopic velocity
of the gas at final time obtained by the ROM for different Knudsen numbers.
According to the high-fidelity simulations, a vortex is formed at the back of the
wall, and the vortex becomes stronger when the Knudsen number decreases. In
Figure [[I.11] we evaluate the performance of the ROM as a function of the number
of basis functions Npq = Nz?od = N;fod.
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Figure I1.10: Streamlines of u at final time for the vortex reproduction with Np,q = 20.
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Figure I1.11: Performance of the ROM for the reproduction of a vortex.
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I1.4. APPLICATIONS

When the number of basis functions N, increases, the approximation error de-
creases and the run time increases. The approximate density distribution function
becomes more accurate because the trial subspace spanned by the basis functions
converges to the solution manifold. The computational cost increases because we
solve more equations in system ([I1.18]) and because the time-step size At decreases.
The number N4 of basis functions therefore represents a trade-off between accu-
racy and computational cost. With N,,q = 20 basis functions, the approximation
error is less than 1% and the run time is divided on average by about 45 with
respect to the HDM.

I1.4.4 Prediction of a vortex

The previous applications were reproduction tests, i.e. the density distribution
function that we approximated was included in the snapshot database used to
construct the basis functions. We now consider the prediction of a 2D flow past
a vertical plate at Kn = 0.0345. The input parameter is the free-stream Mach
number p € [0.23,0.63]. As in the previous application (Section , the phys-
ical space Qy = ]—1.33,2[ x ]0,3.33[ is discretized using Ny = 642 cells, and the
velocity space Q¢ = |—10, 10[* is discretized using N¢ = 412 points. The final time
1S tee = 5.3332 and the CFL number is 0.5. The initial condition is a uniform
flow at Mach p

Vx € Qx: po(xs ) =1, wo(x; 1) = p, vo(x; ) =0, To(x; ) = 1.

An inflow is imposed at the boundary (r = —1.33, z = 2 and y = 3.33) and is set
to be a uniform flow at Mach . Moreover, a specular reflection is applied at the
wall x = {0} x ]0,1[ and at the boundary y = 0.

The snapshot database S, (resp. Sy) contains snapshots of ¢y, and My, (resp.
Yy, and My, ) taken at each point in space, every 0.2665 time units and at training
input parameter ; = 0.63. In this way, the database contains all the information
required to predict flows corresponding to p € [0.23,0.63].

In Figure [[I.12] we plot the streamlines of the macroscopic velocity of the
gas at final time obtained by the ROM for different free-stream Mach numbers
p € {0.23,0.43,0.63}.

In Figure[[T.13] we evaluate the performance of the ROM for different predictive
input parameters p € {0.23,0.33,0.43,0.53,0.63}. For pu € [0.23,0.63], the ROM
is able to represent the density distribution function even if this one is not in
the snapshot database used to construct the basis functions. Moreover, when the
number of basis functions Ny.q = Nfod = N;f;d increases, the ROM becomes more
accurate, and with N,,; = 20 basis functions, the error is less than 1% for all
prediction tests.
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II.5. CONCLUSION

I11.5 Conclusion

In this work, we have presented a new reduced-order approximation of the BGK
equation for the simulation of gas flows in both hydrodynamic and rarefied regimes.
In this approach, the density distribution function f is represented in velocity space
by a small number of basis functions in order to considerably reduce the computa-
tional cost associated with these simulations. The basis functions are constructed
in the training stage by POD, and the approximate density distribution function
is determined at low cost during the prediction stage by the Galerkin method.

In the training stage, we have proposed to collect snapshots of fj, and My,
since the discrete Maxwellian distribution function is also approximated by the
basis functions. The POD is then performed by the classical method due to the
large number of snapshots provided by the sampling of the solution manifold.

In the prediction stage, we have shown that the system obtained by the Galerkin
method is hyperbolic by construction. Moreover, this system has been modified to
preserve the conservation of mass, momentum and energy of the gas. The ROM
is finally solved by the finite volume method in space and an IMEX Runge-Kutta
scheme in time. Notably, the CFL condition derived from the numerical schemes
ensures a stable ROM in 1D and leads to larger time-step sizes than those used
in the HDM, allowing to further reduce the computational cost of the ROM by
decreasing the number of time-steps.

The performance of the resulting ROM has been evaluated for the simulation
of gas flows in both hydrodynamic and rarefied regimes. We have validated the
proposed modifications to improve the ROM on the reproduction of a shock wave
and boundary layers in 1D. Then, we have investigated the reproduction and
prediction of unsteady flows containing vortices in 2D. The results demonstrate
the accuracy of the ROM (with less than 1% error) over a range of predictive input
parameters and the significant computational speedup factor (approximately 45)
delivered by the ROM over the HDM simulation.
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Chapter 111

Optimal transportation for model
order reduction

III.1 Introduction

In Chapter [[T, we have developed a ROM for the simulation of gas flows in both
hydrodynamic and rarefied regimes. In this model, the solution is approximated in
velocity space by a small number of basis functions in order to reduce the compu-
tational complexity of the simulations. These basis functions are constructed by
Proper Orthogonal Decomposition from previously collected solution snapshots.
However, the number of high-fidelity simulations to explore the parameter space
D is limited due to the expensive computational cost of the HDM. Notably if the
sampling fails to correctly learn the solution manifold, then the training snapshots
may be too different from the new predicted solution, and the ROM may lead to
unreliable predictions. In addition, the accuracy of the ROM also depends on the
snapshot database resulting from the sampling of the solution manifold. Since the
snapshots of the high-fidelity solution are collected at different physical points x,
time instances ¢ and input parameters p, the sampling provides a large number
of snapshots characterized by different physical regimes and moving features. In
particular, due to advection-dominated phenomena, the dimensionality reduction
of the resulting snapshot database may be limited, and the number of basis func-
tions required to accurately approximate all these snapshots could be large, as
illustrated in Section [.4.4.2

For these reasons, we propose to modify the snapshot database resulting from
the sampling of the solution manifold in order to improve the accuracy and relia-
bility of the ROM developed in Chapter [[Il These improvements are based on the
optimal transport problem, which provides powerful tools to analyze and manip-
ulate the snapshots of the distribution functions (fj, and My, ). To illustrate this
problem, consider a pile of sand that must be displaced to fill up a hole and a cost
of transporting one unit of mass from one place to another. The optimal transport
problem [80, 66, 27, (3] B, 112, O7] is to find the optimal way to transport the
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pile of sand to fill up the hole while minimizing the total transport cost. When
the transport cost is associated with the L2-ground cost, the square root of the
minimal total transport cost corresponds to the L?-Wasserstein distance, which de-
fines a robust metric to quantify the notion of proximity between two distribution
functions. Compared to the classical L?-norm which corresponds to the pointwise
difference of the two distributions, the Wasserstein distance measures the minimal
effort to push forward one distribution onto the other. In addition, this distance
can also be used to define geodesic paths between distribution functions. In partic-
ular, Wasserstein barycenters on these geodesics give rise to realistic interpolations
that preserve the features of the interpolated distribution functions.

In this work, we propose two applications of the optimal transport problem
for model order reduction [64, 22]. In the first application, the sampling of the
solution manifold is completed with additional snapshots [82) 113, 22] generated
by optimal transport in order to improve the reliability of the ROM. To this end,
the new artificial snapshots are defined as the Wasserstein barycenters of the high-
fidelity snapshots, enabling a fast enrichment of the snapshot database without
employing the computationally expensive HDM. In the second application, the
Wasserstein distance is combined with a cluster analysis method to partition the
large snapshot database [30, B, 65]. Instead of approximating the solution with
the same reduced basis in all the physical domain €2, different local reduced
bases are used to improve the ROM accuracy. The objectif of this clustering is to
identify regions where the behaviour of the solution is similar to decompose the
physical domain. The solution is then approximated in each subdomain by a local
reduced basis, which is more accurate than the global reduced basis to represent
the corresponding snapshot cluster.

This work is organized as follows. In Section we introduce the optimal
transport problem and its numerical resolution. Then, two applications of the
optimal transport problem for model reduction are presented. In Section
the high-fidelity snapshots are interpolated in velocity space by optimal transport
to enrich the snapshot database with new artificial snapshots. In the second ap-
plication, a clustering analysis algorithm combined with the Wasserstein distance
is employed to partition automatically the physical domain from the snapshot
database, as described in Section

II1.2 Optimal transport

The optimal transport problem was introduced by Monge [80] and then developed
by Kantorovich [66]. Given two non-negative functions fi, fo and a cost ¢(x,y)
of transporting one unit of mass from x to y, the optimal transport problem
[27, B3| Bl 112, 97] is to find the optimal way to transport f; to f, while min-
imizing the total transport cost. Even though this problem is difficult to solve,
special cases have simple characterizations of the solution. In particular, the one-
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dimensional case and the optimal transport problem for normal distributions have
useful applications. In the general case, many approaches [16] 84] [17, 85] have been
developed to solve the optimal transport problem. However, these methods are
computationally prohibitive for large-scale problems. For this reason, we consider
an approach based on an entropic-regularization of the optimal transport problem
[T05], which enables fast computations of the solution.

II1.2.1 Optimal transport problem

The optimal transport problem was first introduced by Monge [80]. In this formu-
lation, the problem is to find the transport map M minimizing the total transport
cost. However, the mass is mapped and cannot be split, leading to difficulties
concerning the existence of valid transport maps. For this reason, Kantorovich de-
veloped a natural relaxation of the optimal transport problem [66] allowing mass
to be split. In this formulation, the problem consists in finding the transport plan
7 minimizing the total transport cost. In particular, when the cost function ¢(x,y)
is the LP-ground cost, the minimum of the total transport cost corresponds to the
LP-Wasserstein distance to the p-th power. Notably, this metric offers a relevant
way to compare density distribution functions by measuring the cost of transport-
ing their features. In the same way, the optimal transport framework also provides
natural interpolations of distribution functions, as illustrated in Figures [[I[.2] and

ML3l

I11.2.1.1 Monge-Kantorovich formulation

Let f1, fo : RY — R, be two non-negative functions with bounded supports in R?
(d € N*). Since f; and f5 are only transported, they must have the same total
mass and in the following, we assume without loss of generality that f; and f, are
probability density functions with total mass one:

fixk)dx= [ fa(y)dy =1.
R4 Rd

Moreover, the cost function c(x,y) : R x R — R, represents the cost of trans-
porting one unit of mass from x to y in the following.

Monge formulation. The original problem is to find the optimal transport map
M : R — RY minimizing the total transport cost:

min /R e, M) fu(x) dx,

MEeT(f1,f2)

where M denotes the map transporting f;(x) to fo(IM(x)). A valid transport map
M that pushes forward f; onto f, satisfies for all bounded subset  C R%:

1(x)dx = [ fo(y)dy, II1.1
f o hax= [ Aay (1)
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and I'(f1, f2) denotes the set of valid transport map verifying (I11.1)). Moreover, if
M is a smooth one-to-one map, then this condition ([1I.1)) is equivalent to

fi(x) = f2(M(x))]det(VM(x))]

by using the change of variables M(x) =y.

Kantorovitch formulation. In the Monge formulation, the mass is mapped
and cannot be split. In particular, this causes difficulties concerning the existence
of valid transport maps (e.g. consider f; = dp and fo = %5_1+%51). For this reason,
Kantorovich formulated a natural relaxation of the optimal transport problem
allowing mass to be split. This problem is to find the optimal transport plan
7 : R? x R? — R, minimizing the total transport cost:

min //c(x,y)ﬂ(x,y)dxdy, (I11.2)
) Jrd JRd

7T€H(f1,f2

where 7(x,y) denotes the among of mass transferred from x toy. A valid transport
plan 7 conserves the mass moved from f;(x) and to fa(y):

filx) = /]R{d m(x,y)dy and fo(y) = /Rd 7(x,y) dx, (I11.3)
and II(f1, f2) denotes the set of valid transport plan verifying ([IL.3). This formu-
lation leads to a linear programming problem since the objective function (I1I.2])
and the constraints are linear with respect to the transport plan 7. How-
ever, the computational complexity of this approach is prohibitive for large-scale
problem due to the quadratic number of unknowns.

I11.2.1.2 Wasserstein distance

The optimal transport framework offers a relevant way to measure distances be-
tween pairs of probability density functions. Let the Euclidian space R? endowed
with the LP-norm [|-|| . The LP-Wasserstein distance W(f1, f2) between two prob-
ability density functions fi, fo : R? — [0, 1] with bounded p-th moment is defined
by

1/p
— : Ty
W)= ot ([ [ Iy =xlp seyyaxdy) L i

In particular, W, (f1, f2) corresponds to the p-th root of the minimal total transport
cost ([II.2)) associated with the cost function c(x,y) = [ly — x||7. In the following,
we will focus on the L2-Wasserstein distance since there exists a unique solution
[28, I11] to the optimal transport problem associated with the quadratic cost
function ¢(x,y) = ||y — x||3.
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In addition, the Wasserstein distance also provides natural interpolation of
probability density functions. Given K probability density functions f, the L*-
Wasserstein barycenter of (fi,..., fx) at barycentric coordinates (Ay,..., k) is
defined as the Féchet mean associated with the L?-Wasserstein distance:

K
mini}nize > Nl i, f)?
k=1

K
subject to Z A =1
k=1
M =0 Vk’E{l,...,K}.

Since the Wasserstein distance measures the cost of transporting the features of
the probability density functions, an interpolation based on this distance also takes
into account the transport of these features. Compared to the L?-norm which leads
to a pointwise interpolation, the Wasserstein barycenter interpolates the position
of the features, as illustrated in Figures [[T1.2] and [[TI.3]

II1.2.2 Special cases

Even though the optimal transport problem is difficult to solve in general, the one-
dimensional case and the optimal transport problem for normal distribution have
simple characterizations of the solution. In particular, this last special case has
useful applications since the Maxwellian distribution function My(x, &, t; p) follows
a normal distribution with mean u(x, t; ) and variance T'(x, ¢; p) in velocity space
after normalization, i.e. p(x,¢;u) = 1. Furthermore, the density distribution
functions f(x,&,t;u) also tends to a Maxwellian distribution (f — Mjy) in the
hydrodynamic limit (Kn — 0) according to Section

111.2.2.1 Optimal transport in 1D
Let Fi,Fy : R — [0,1] be the cumulative distribution functions of f; and fs,

respectively,
= / f(s)ds, (IIL.5)

where F' is right-continuous, non-decreasing, F(—oco) = 0 and F(+00) = 1. More-
over, let ! be the generalized inverse of I defined by

F~!(s) = inf{x € R, such that F(z) > s}. (I11.6)

Note that this definition is not unique since we could also consider F~1(s) =
sup{z € R, such that F'(z) < s} for example. In 1D, the L?-Wasserstein dis-
tance between f; and f, corresponds to the L!-distance between the cumulative
distribution functions:

Wil fi, f)? / F7) = B @)lds = [ |F@) - P e
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as illustrated in Figure [[II.1l Moreover, the L?-Wasserstein barycenter f; of
{fu}E | at barycentric coordinates A = (\y,. .., A\x), defined by

K
fx= arg;ninZ/\kWQ(fk,ff

k=1

K
where > Ay =1and A\, > 0 for k € {1,..., K}, verifies
E=1

(FR)"(s) = ;AzFfl(S)-

By inverting equations (III1.6)) and (II1.5), the Wasserstein barycenter f; is then
recovered from (F})™!, as illustrated in Figure [[II.1

0.035

_fl _Fl

—_—f 0.9 || mm Fy
Haouun £ r 1 *
0.03 foas07s e Fos07s

Figure III.1: Illustration of the one-dimensional optimal transport problem. The
yellow surface represents the L2-Wasserstein distance, and the dotted black lines
illustrate the construction of L2-Wasserstein barycenters.

111.2.2.2 Optimal transport for normal distributions

Let f1, fo be two density probability functions following a normal distribution
with respective means u;, u, € R? and symmetric positive semi-definite covariance
matrices 1,3y € R4 The L?-Wasserstein distance between f; and fs is

),

where & = 22(22)7 denotes the Cholesky decomposition (Definition [1)) of 3.
Moreover, the L?-Wasserstein barycenter f3 of {(fr, )\k)}le, defined by

1

1 1
Wh(f1, £2)? = oy — ug)} + Te(Z) + 2y — 2(27 2 57)

D=

K
Ir= arg]{ﬂin > AWa(fi, f)?

k=1

29



CHAPTER III. OPTIMAL TRANSPORTATION FOR MOR

K
where > A\, =1 and A\, > 0 for k € {1,..., K}, is the normal distribution with
k=1

K
mean > A\yui and covariance matrix 3 verifying
E=1

K
2 =Y M(TEEZ2)5, (111.7)
k=1

This equation (II1.7)) is solved in practice by the fixed point iteration

2
_1
2
) Eold :

However, for K = 2, the solution to equation ([I1.7]) is simply given by

[N

1 [ K 1 1
E%HZEJ<ZMM3%&$&)
k=1

_1 1 1 _1
)RS SRETG VS SHNEDWE 315 508 SEEIES SHER

Moreover, if the covariance matrix is a diagonal matrix, then

VI =3 M/ (B
k=1

Notably in the case of Maxwellian distribution functions, the covariance matrix is
the identity matrix times the temperature 7' € R, , which leads to

VT =S AT

A comparaison of the resulting barycenters computed from the L2-norm and the
L?-Wasserstein distance is presented in Figure [[11.2]

0.035 0.035
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— fo00.100

T
I3
= J1.00,0.00
i
— fors02s
L «
= J0.50,050
i
fos07s
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02

Figure I11.2: Comparison of 5 barycenters f, , of (f1, f2) (plotted in Figure |[11.1)
at barycentric coordinates (A;, \o) computed from the L?-norm (left) and the L2-
Wasserstein distance (right).
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I11.2.3 Entropic-regularization of optimal transportation

In order to solve the optimal transport problem in the general case, many meth-
ods have been developed such as, for example, the linear programming-based
approach, the resolution of the Monge-Ampere equation [84] [17], the proximal
splitting method [85] or the Benamou-Brenier algorithm [16]. However, these ap-
proaches are computationally prohibitive for large-scale problems. For this reason,
we consider in this work an approach [105] based on an entropic-regularization of
the optimal transport problem, enabling fast computations of the solution. Let
~v > 0, the entropy-regularized L2-Wasserstein distance between f; and fo is de-
fined by

2._ —vl|I? —
Waolhofof = ot A [ =yl mtcy) axdy = 2o

where H(m) denotes the entropy

—/ / mlog(m)dx dy.
Rrd JRd

This regularization allows to re-write the optimal transport problem as a projec-
tion:

Wao (fis fo)? = (1 + min KL(wVC)) ,

m€I(f1,f2)
where the Kullback-Leibler divergence [68] is defined by

KL(r|K) = /]R /Rdﬂ<log<;;) ~1)dxdy with K(x.y) = exp (-”X;y”g)

In the ROM developed in Chapter [[I, the velocity space € is discretized by a
uniform cartesian grid. By encoding the distribution functions as the vectors

fi.fy € RJJ\:& and the transportation plan as the matrix o € RfEXNs, the discrete
Kullback-Leibler divergence is defined by

Ne Ne

KL(r[K) = (3633w, (1o (F2) ~1) with Ki’j:exp< 2 753”2)

i=1j5=1

According to the Sinkhorn’s theorem [I01], the discrete transportation plan can
be written as

7 = diag(u)Kdiag(v),
where the vectors u, v € R"¢ satisfy the mass conservation laws ([IL.3):

u=fio(Ka®v)) and v=£f0 (K(a®u))

with a = (Ag,...,A&)T € R and ® (resp. @) denotes the Hadamard product
(resp. division). This discrete problem is solved by the Sinkhorn-Knopp algorithm
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[102], where the discrete transport plan 7r is iteratively projected onto the affine
constraint sets

le{ﬂ'GRfﬁXNE: ﬂa:fl} and ng{ﬂ'ERf&XN&: wTa:fQ}.

The discrete entropy-regularized L2-Wasserstein distance is then recovered from u
and v by
Wa, (f1,£2)* = ya® (fi @ log(u) + f, @ log(v)),

as illustrated by Algorithm

Algorithm 1 Entropy-regularized L*-Wasserstein distance [105]

v+l

repeat
u+fio(K@aev)) > Projection onto IT;
v Hho(K@agu)) > Projection onto I,

until [u® (K(a®v)) —fi||  <e€
return \/vaZ(f; ® log(u) + £, ® log(v))

The entropy-regularized optimal transport also enables the computation of
Wasserstein barycenters. Given K non-negative vectors fi, the entropy-regularized
L*-Wasserstein barycenter f} at barycentric coordinates {(fj, )\k)}le is defined by

K
fy = argmin Y N Wa, (£, )%, (IIL.8)
£ k=1

K

where > Ay = 1 and A\, > 0 for £ € {1,...,K}. By inserting the discrete
k=1

transportation plans into equation (I11.8]), we obtain the minimization problem:

k=1
subject to wla=f; Vke{l,...,K}
LA = ma Vi, le{l,...,K},

where the first (resp. second) constraint enforces the conservation of mass moved
from f;, (resp. to f5). As previously, this problem is solved by the iterative Bregman
projection [26], where the discrete transport plans are iteratively projected onto
the affine constraint sets

le{ﬂ'l,...,ﬂ'K eRfﬁXNg: mla="1f, forkc {1,...,K}},
N&XN&

HQZ{TFl,...,TFKGR+ L TMead = A fOI‘k,lG{l,...,K}}.
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Given m, = diag(u;)Kdiag(vy), the entropy-regularized L?-Wasserstein barycen-
ter is recovered from uy, vy, € R by

f; = é (Vk ® (K(a® llk)))xk,

k=1

as illustrated in Algorithm [2]

Algorithm 2 Entropy-regularized L*-Wasserstein barycenter [105]

Vi,...,Vkg 1
repeat
for k=1,...,K do
u; < £, 0 (K(a® vy)) > Projection onto Iy
end for
K Ak
£y k®1 <Vk ® (K(a® uk))) > Wasserstein barycenter
f} < Entropic-sharpening(f;, Hp) > Algorithm |3 (optional)
for k=1,...,K do
v 5 0 (K(a®uy)) > Projection onto 11y
end for

until 12}52}( lu, @ (K(a® vyi)) — il <€

return f;

The main drawback of this method is that the entropy-regularized L2-Wasserstein
barycenter may appear too diffuse. To cure this issue, a constraint on the entropy
H(f;) < Hy is added in the minimization problem ([IL8), as explained in [107].
This modification of the computation of the entropy-regularized L2-Wasserstein
barycenter is described in Algorithm [3]

Algorithm 3 Entropic-sharpening(f}, Hy) [105]
if Hy < H(fy) then
n<« find(n € Ry : Hy=H((f)")) > The function "find” is given in [52].
fy « (£0)"
end if

return f3

The entropy-regularized transportation problem is particularly well suited to
the ROM developed in Chapter [[I Since the velocity space )¢ is discretized by a
uniform cartesian grid, the matrix-vector multiplications K(a®uy) and K(a®vy)
are replaced by a convolution with a gaussian kernel. Moreover, this kernel is
separable and the convolution is written as successive 1D convolutions, leading to
fast computations of the optimal transport solution. In addition, the run time
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can be further improved by using GPU acceleration [45, [46]. Figure [[I1.3| shows
examples of entropy-regularized L?-Wasserstein barycenters f; in 2D.

Figure I11.3: Examples of 2D entropy-regularized L?-Wasserstein barycenters f;.

III.3 Application to snapshot database enrich-
ment

The first application of the optimal transport problem concerns the interpolation of
distribution functions. In Chapter |lI, we have presented a ROM for the simulation
of gas flows in both hydrodynamic and rarefied regimes. In this model, snapshots
of the high-fidelity solution are collected at different points x, time instances ¢
and input parameters p in order to learn the solution manifold. Since the trial
subspace is then constructed to approximate these snapshots, the reliability of the
ROM depends on the sampling of the solution manifold. However, the number
of high-dimensional simulations for exploring the parameter space is limited due
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to the expensive computational cost of the HDM. In particular, if the training
snapshots are too different from the new predicted solutions, the ROM may lead
to inaccurate approximations. For example, let supp(fs) C €¢ be the subspace
containing at least 99.99% of the distribution function fj:

/ f(€)dE > 99.99% [ fu(€) de,
supp(fn) Qe

since the distribution functions decrease rapidly. If the support of the training

snapshots supp(s;) and the support of the new predicted distribution function

supp( fr) are disjoint sets (i.e. supp(fn)N(Usupp(s;)) = 0), then the basis functions
I

(associated with strictly positive singular values) will be zero on supp( f;) and will
not be able to represent f,. For this reason, we propose to complete the sampling
of the solution manifold with new artificial snapshots [82, [113] 22]. In this strategy,
only snapshots that bring new information are created, enabling a fast enrichment
of the snapshot database with respect to the cost of the HDM. In addition, these
additional snapshots are computed by optimal transport, which provides natural
interpolations of the distribution functions in velocity space without employing
the computationally expensive HDM.

II1.3.1 Snapshot interpolation via optimal transport

Let S € RNexEur he the database containing K high-fidelity snapshots s; of the
distribution functions (f, and Mjy,) collected at point X;u ju)k@), time instance
tpy and input parameter pyg). To enrich the database S" with new snapshots,
optimal transport is used to interpolate the distribution functions in velocity space.
These additional artificial snapshots s* are defined as the Wasserstein barycenters
of the high-fidelity snapshots:

Kyt
§* = arg min Z MWa(s1, 5)2,
s I=1

Ky
where z}:f AN =1land N, > 0 for I € {1,..., Ky}. Before computing artificial
lf

=1
snapshots, the high-fidelity snapshots s; are normalized because they may have
different total mass p(Xi(z),j(z),k(z),tp(l);Mq(z))- The artificial snapshot s* is then

K
rescaled by the weighted total mass Z}ff NP(Xi), 50,k Loy Mg(y)- Given Ky new
=1

low-fidelity snapshots sj, these ones are stored in the matrix

si(&)  s3(&) oo sk, (&)

glf — $1(&2)  s5(&2) -0 sk, (&)

Negx Ky
€ RVexKie,

Si(Eny) siEng) o sio(Ene)
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and the enriched snapshot database is
S = (SM 8'f) e RNex(FurtKi), (111.9)

The resulting ROM is then the same as the one described in Section [I.3] with
the exception of the snapshot database , which also contains the artificial
snapshots ([I1.9)).

In this work, the low-fidelity snapshots are computed by the entropic regular-
ization of the optimal transport problem presented in Section [[I1.2.3], which enables

fast computations of the solution. In Algorithm , we choose Hy =  max H(sy),
U A W

v =5x10"% and e = 10~ from the experiments. The run time of interpolating
the snapshots is evaluated with respect to the cost of sampling the high-fidelity
solution at one point, one time-step and one input parameter. In this respect, we
included the cost of interpolating a snapshot of the density distribution function
frn and a snapshot of the discrete Maxwellian distribution function My,. Over
100 different runs, the computational time of Algorithm [2]is on average about half
that of the HDM. The overall run time of the artificial snapshot procedure will also
depend on the strategy adopted to enrich the database: only snapshots that bring
new information to the snapshot database are created. In addition, these artificial
snapshots can also be generated independently in parallel, while the high-fidelity
snapshots are computed sequentially in time.

I11.3.2 Prediction of a shock wave

The enrichment of the snapshot database is demonstrated for an application where
the predicted solution is significantly different from the training snapshots provided
by the sampling of the solution manifold.

We consider a shock tube problem at Kn = 107°. We want to predict the
flow solution at input parameter p € [—2,2] corresponding to different initial
macroscopic velocities. The physical space Qx = ]0, 1] is discretized using N, = 100
cells, and the velocity space Q¢ = ]—20,20][ is discretized using N¢ = 500 points.
The final time is ¢,,,, = 0.1 and the CFL number is 0.1. The initial condition is

po(x; ) =1, uo(x; p) = p, To(z;p) = 0.5 if 2 €10,0.5]
po(x; ) = 0125, ug(x; u) = p, To(z;pu) = 0.4 otherwise,

and we consider free low boundary conditions. To explore the parameter space,
two high-fidelity simulations corresponding to p € {—2,2} are available. The
snapshot database ng (resp. Sl,}f) contains snapshots of ¢, and My, (resp. 1, and
My,) taken at each point in space, every 0.005 time units and for p € {—2,2}. In
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this case, the training snapshots may be different from the distribution functions
that we want to predict.

0.5 - q 0.5

04 . 04

03 f { o3}

02+ 4 0.2

01 4 0.1 1

Figure I11.4: Examples of 4 high-fidelity snapshots of the simulations p = —2 (left)
and p = 2 (right) randomly chosen.

As shown in Figure [[I.4] the support of the high-fidelity snapshots correspond-
ing to these two simulations is almost disjoint. Moreover, the macroscopic velocity
of the snapshots, which corresponds to the mean of the distribution functions in
velocity space (i.e. u(w,t; 1) = [ &ud(@, &u, t; 1) d£u>, is around -2.5 (resp. 2.5) in
the simulation p = —2.5 (resp. u = —2.5). If we want to predict a new distribu-
tion function with macroscopic velocity 0, the approximation error may be high
even with a large number of basis functions. For this reason, optimal transport is
employed to interpolate the high-fidelity snapshots and thus provides additional
distribution functions with intermediate macroscopic velocities between -2.5 and
2.5. In this work, we add new snapshots with macroscopic velocities around 0 to
the database, as illustrated in Figure More precisely, at each point in space x
and every 0.005 time units, we compute the Wasserstein barycenter s* between the
high-fidelity snapshot s; of the simulation y = —2 and the high-fidelity snapshot
so of the simulation y = 2 at barycentric coordinates {(s1, ), (s2,3)}.

We evaluate two different ROMs depending on the snapshot database used to
construct the basis functions. The first one is built from the high-fidelity snap-
shots of the simulations p € {—2,2}, while the second one is constructed from
the high- and low-fidelity snapshots. Figure shows that the artificial snap-
shots significantly improve the approximation of the solutions corresponding to
p € [—1.5,1.5]. For the training input parameters y = —2 and p = 2, the approx-
imation is slightly less accurate because the low-fidelity snapshots bring useless
information to represent the distribution functions corresponding to p € {—2, 2}.
On average, the ROM is significantly more robust with the artificial snapshots.
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Figure II1.5: Examples of artificial snapshots (red) generated from the simulations
corresponding to p = —2 (black) and g = 2 (blue).
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Figure I11.6: Performance of the ROMs for the shock wave prediction with N;fod =
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III.4 Application to snapshots clustering

The second application of the optimal transport problem is to quantify the simi-
larity between the solution snapshots. In Chapter [[I, we have developed a ROM
for the simulation of gas flows in both hydrodynamic and rarefied regimes. In
this model, the solution is approximated in velocity space by a small number of
basis functions in order to reduce the computational complexity of the simula-
tions. This reduced basis is the same in all the physical domain €2, but different
local reduced bases can also be used in each cell to improve the ROM accuracy.
However, the computational memory required to store N, local reduced bases
may be prohibitive due to the large number of cells. For this reason, we pro-
pose to employ N. € {1,..., Ny} local reduced bases depending on the amount
of computational memory available. The physical domain €2, is then partitioned
into N, non-overlapping subdomains €2; C €2, and the solution is approximated
in each subdomain by the corresponding local reduced basis. This decomposi-
tion is learned automatically by a cluster analysis method [25] from the snapshot
database. The objective is to identify regions where the behaviour of the solu-
tion is similar to decompose the domain [30, B, 65]. In addition, this clustering
analysis problem is combined with the L2-Wasserstein distance instead of the clas-
sical L2-norm to measure the similarity between observations. This metric offers
in particular a relevant way to compare the distribution functions contained in
the snapshot database. The resulting cluster analysis problem is solved by the
k-means algorithm [106), [74], which is a popular method due to its fast execution.

I11.4.1 Partitioning of the physical space

Let S € RMe*K he the database containing K snapshots s; of the distribution
functions (f, and Mjy,) collected at point x;;) (where a multi-index is used to
simplify notation), time instance t,¢) and input parameter pqq). In addition, the
snapshot database can also contain artificial snapshots, as described in Section
1.3l To measure the similarity between pairs of observations, each physical point
X; 1s associated with the observation

~

!
i(

which represents the distribution of gas particles in velocity space observed at
point x; over time and parameter space. As these observations have different total
mass fﬂs X; (&) d€, they are first normalized. The distance between two points

x; and x; is then defined as the L?>-Wasserstein distance W5(X;, X;) between the
corresponding observations. The objective of clustering is to organise data in a
way that maximizes the inner-cluster similarity while minimizing the inter-cluster
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similarity. In this work, the Ny points are partitioned into N, clusters C; by the
k-means algorithm, which minimizes the within-cluster sum of squares

Ne
min Z Z WQ(Xi,Cj)z,

CuoCne 523 X;€C;

where C; denotes the centroid of the cluster C;. This centroid is defined as the
L*-Wasserstein centroid of the observations belonging to C;:

1
Cj = arg min 7W2(Xi, 0)2
C XZEC]' |CJ|

The k-means algorithm is based on two steps: the assignment and update steps.
Given N, centroids, each observation X; is assigned to its closest centroid with
respect to the Wasserstein distance. Then, in the update step, each centroid is
re-computed so as to be the L?-Wasserstein centroid of the observations belonging
to the corresponding cluster. These two steps are repeated until the assignments
no longer change. Moreover, the centroids are initialized by the k-means++ [9]
since the k-means algorithm is sensitive to the initial choice of centroids. The
resulting k-means algorithm is presented in Algorithm

Algorithm 4 k-means algorithm [74]

Ci,...,Cn, < k-means++(Xy,..., Xn,)
repeat
for j=1,...,N.do
C; + {Xi: Wu(X;,C)) < Wh(X;,Cy) for 1 <k < N} > Assignment
end for
for j=1,...,N.do
Cj < argmin ) _ L)/VQ()Q,C’)2 > Update
¢ Xec; 1G]
end for
until the assignments no longer change
return Cy,...,Cy

c

I11.4.2 Local ROM for the BGK equation

Given the clusters C; resulting from the snapshot partitioning, the non-overlapping
subdomains €; C Q, are defined as the union of the cells K; containing the points
x; associated with the observations X; belonging to C;. The density distribution
function is then approximated in each subdomain by

l
Npod

Vxe: fulx,&tp) = > al(x,t; )L (),

n=1
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where the basis functions are constructed by Proper Orthogonal Decomposition
(POD) during the training stage, and the reduced coordinates are determined by
the residual minimization method in the prediction stage.

Training stage. As in the global ROM presented in Section the N, local
reduced bases are constructed by POD (see Sections and . First, the
sampling of the solution manifold provides in each subdomain a local database
S® containing snapshots collected at different points x € €, time instances and
input parameters. Then the POD is applied independently to each local snapshot
database S®, providing N, local reduced bases ®®. Compared to the global
approach, the local reduced bases ®() are more accurate to represent the solution
locally because they are specialized to approximate only the snapshots collected
in their respective subdomain 2;.

Prediction stage. Since the reduced basis is no longer necessarily the same in
all the physical domain, the reduced coordinates cannot be determined by the
Galerkin method described in Section [I[.3.3.1l By writing the high-dimensional

systems ([[1.12)) and ([I.13]) as
Vxijk € QL oralfal(Xijk, &t ) =0,

the reduced coordinates are determined in each subdomain €2; by substituting the
approximate solution for the discrete solution and projecting the residual onto the
local basis functions

Vx; e €8, Vne{l,..., Nzl)od} : <Th[ﬁ](xi7jvk7€7t;“)’ (I)£7l(£>>e =0

Note that this Galerkin projection is equivalent to the residual minimization
method since the time discretization is in explicit form according to Section

In this way, the intermediate time-step ([[.12)) becomes

aMr(x; it )
VXZ" ik - Ql : a(l) (Xi, ik /,l,) = <“v_':l.f(X,L‘7 ik t ,[1,) + At LR )
! ’ nur T(Xijiks tp; 1)
T(Xi 5 ks tps 1)
At + T(Xi,j,k; tp; ll,) ’

and the next time-step ([I.13) becomes

al (%, 1y tpr1; ) = @l (X1, tp; ) — (AP 4 A Ai’j’k>a(1)(xi’j’k; )
+ B a0 (x5 ) — CFa (x5 1)
+ B al (x5 1 1) — CFa (x5 11,05 1)
+ B *a (x5 15 ) — C Rl (x; 1 o)
Mr(x; s tp; o) — @b (x5 1)
T(Xijk> Lps 1)

a
+ At

Y

71



CHAPTER III. OPTIMAL TRANSPORTATION FOR MOR

where
i = S e 1 (€3%,50), (6 %050))
n,m A u y R0k ) S Rigk) ) g
s AN
B:£;77’T]f = Al‘ <maX(£u7 ) fn(ﬁ;xifl,j,k%(I)£<€;Xi,j,k)>®7
. At )
Crl = Ar (min(&,, 0)®f, (& Xir154), PL(E Xijk)) g »
i At
k= — Ay (|€l®), (& xi5k), P& Xi k) g -
Bigk = 2 (nax(€,, 000, (€ %1 14), (i)
n,m Ay v m\S» 2i,j—1Lk/)) ¥n\&s Xijk)/ g
Cit = 8 (min(6,,0)07, 615110, (€%,
n,m Ay v m\Ss Ri,j+1,k ) T S &5,k e’
*1; . At
* .. At
B =X <max<£w, 0), (&5 X1, PL(E; Xiin) g
* o At
Crlz]n];— As <m1n<5w7 0) {n(£§xi,j,k+1)>©£(£;Xi,j,k)>@,

and ®f(&;x;;1) = ®L1(€) denotes the local basis functions employed at point
X; ik € §Y. The time-step size At is the same as the one used in the HDM.
In addition, the reduced coordinates of the approximate Maxwellian distribution
function are determined to conserve the mass, momentum and energy of the gas,

as described in Section [1.3.3.2

I11.4.3 Reproduction of a shock wave

The clustering of the snapshot database is evaluated for an application containing
a shock wave moving in a part of the domain. In the nonshoked subdomain,
the solution can be approximated by a small number of basis functions, while in
the shoked subdomain, the dimensionality reduction is limited due to advection-
dominated phenomena.

We consider a shock tube problem at Kn = 107°. The physical space , =
10,1[ is discretized using Nx = 200 cells, and the velocity space Q¢ = |—5,5[ is
discretized using Ng = 501 points. The final time is ¢,,,, = 0.3 and the CFL
number is 0.25. The initial condition is

po(z) = 10, ug(z) =0, To(x) = 0.1 if x €1]0,0.5]
po(x) = 0.0125, ug(x) =0, To(x) = 0.08 otherwise,

and we consider free flow boundary conditions. To decompose the physical domain,
the snapshot database S, (resp. S,) contains snapshots of ¢, and My, (resp. ¥y,
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and My, ) taken at each point in space and every 0.006 time units. In Figure [[11.7
we plot the density, macroscopic velocity and temperature of the gas at final time

tma:v .

0 041 02 03 04 05 06 07 08 09 1

Figure II1.7: Decomposition of the physical domain. The yellow and green (resp.
blue and red) regions represent the two clusters for ¢, (resp. 1,). The black line
denotes the solution at final time of the local ROM with N,,q = 15 basis functions.

For z € ]0,0.3[U]0.9, 1], the flow corresponds to the initial condition, and two
modes are sufficient to approximate the left and right initial density distribution
functions. For z € ]0.5,0.8[, the distribution functions are transported away from
the initial state due to the moving shock wave. In particular, for x € ]0.7,0.8], the
mean of the density distribution function in velocity space, which corresponds to
the macroscopic velocity of the gas (i.e. u(w,t) = [ Eud(, &0, t) déu), is zero at the
initialization and then about 0.78 at final time. As presented in Section[[.4.4.2] this
convection of the distribution functions may lead to a slow decay of the squared
singular values of the snapshot matrix. For this reason, the physical domain is
decomposed into two subdomains by the k-means algorithm The objective is
to identify the subdomains where a significant dimensionality reduction can be
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achieve. For simplicity, the one-dimensional optimal transport problem is solved
analytically, as described in Section
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Figure I11.8: Examples of local observations X; randomly chosen in the first cluster
(left) and in the second cluster (right), for ¢y (top) and 1y, (bottom).

Figures [[T[.7 and [[TL.§ present the results of the k-means algorithm [ The do-
main decomposition for ¢, and 1y, is approximately the same since in the hydrody-
namic regime (Kn = 107°), we have ¢y,(z, &y, t) = My, (v, &y, t) &= T(x, t) My, (2, &y, t)
~ T(x,t)pn(z, &, t). As expected, the first cluster contains the distribution func-
tions close to the initial condition, while in the second cluster, the distribution
functions are transported by advection. Moreover, the dimensionality reduction
of the global and local approaches is presented in Figure [[IL.9, The decay of the
squared singular values of the global ROM and of the second cluster of the local
ROM is approximately the same since the snapshot database contains the trans-
ported distribution functions. In the first cluster of the local ROM, the distribution
functions are close to the initial condition, and the decay of the squared singular
values is faster.
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Figure I11.9: Squared singular values for the global and local approaches for ¢y,
(left) and 1)y, (right).
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Figure II1.10: Comparison of the accuracy of the global and local ROMs.

In Figure we compare the approximation error of the global (N, = 1)
and local (N. = 2) ROMs as a function of the number of basis functions Np,q =
Nﬁo’all = Nﬁo’z = N;po’; = N;{;j. The local ROM is more accurate than the global
ROM since the local reduced bases improve the accuracy of the solution approxi-
mation. Moreover, in this case, the run time of the global and local ROMs is the
same because the number of basis functions used in the global and local ROMs
is the same at each point x. However, the number of basis functions can also be
different, and in this way, the local approach may allow to reduce the computa-
tional complexity of the ROM since less local basis functions are required to obtain

accurate approximations.

5



CHAPTER III. OPTIMAL TRANSPORTATION FOR MOR

II1.5 Conclusion

In this work, we have presented two applications of the optimal transport problem
to improve the ROM developed in Chapter [II] for the simulation of gas flows in
both hydrodynamic and rarefied regimes.

In the first application, we have proposed to complete the sampling of the
solution manifold with artificial snapshots. In this strategy, only snapshots that
bring new information are created, enabling a fast enrichment of the snapshot
database with respect to the HDM. Moreover, we have proposed to define these
additional artificial snapshots as the Wasserstein barycenters of the high-fidelity
snapshots. In this way, the distribution functions are interpolated in velocity
space by optimal transport to enrich the snapshot database without employing
the computationally expensive HDM. This improvement has been evaluated on
the prediction of a shock wave in 1D. The results show that the artificial snapshots
improve the reliability of the ROM for the prediction of solutions corresponding
to new input parameters p.

In the second application, we have proposed to approximate the solution by
different local reduced bases instead of employing the same reduced basis in all
the physical domain. In this approach, the physical domain €2y is decomposed into
N. € {1,..., Ny} subdomains, and the solution is approximated in each subdo-
main by the corresponding local reduced basis. Moreover, this decomposition is
learned automatically by a cluster analysis method from the snapshot database.
To measure the similarity between observations, we have proposed to couple the
clustering analysis problem with the Wasserstein distance instead of the classical
L?-norm. Furthermore, since the reduced basis is no longer the same everywhere,
we have developed a local ROM based on the residual minimization method to
compute approximations of the solution at low cost with respect to the HDM.
This local ROM has been evaluated on the reproduction of a shock wave in 1D.
The results demonstrate that the local approach is more accurate than the global
approach. In addition, the local approach may also allow to reduce the computa-
tional complexity of the ROM since less local basis functions are required to obtain
accurate approximations.
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Chapter IV

The discontinuous (alerkin
domain decomposition method
for reduced-order modeling

IV.1 Introduction

In model order reduction (MOR), the most common method for obtaining the
low-dimensional trial subspace is the Proper Orthogonal Decomposition (POD)
[87, 48], T03], 20], which hierarchically rearranges the subspace spanned by the so-
lution snapshots according to an energy criterion so that redundant information
can be discarded to achieve dimensionality reduction. However, the nature of
the problem strongly determines the extent to which one can reduce the dimen-
sionality of the trial subspace. As the problem parameters are varied, singular
solution features (e.g. discontinuities and fronts) or compact support phenomena
can change their position and shape such that dimensionality reduction is limited.
One proposed approach to overcome this limitation is to introduce a mapping ap-
plied to the solution in order to improve dimensionally reduction [64, [77], 83, [O1].
Alternatively in this work, we adopt the strategy of employing the reduced-order
model (ROM) only in those subdomains where a significant dimensionality reduc-
tion can be achieved and employing the high-dimensional model (HDM) elsewhere
[76, [72], (73, 29] [19].

The next element in MOR is the formulation of the reduced-order system in the
prediction stage. The classical approach employs a standard Galerkin projection
of the HDM onto the trial subspace. For flow models dominated by advection,
special care must be deployed to ensure stability of the resulting ROM. It is well
known that standard Galerkin semi-discretization for a linear advection equation
is only marginally stable in the discrete energy norm without the introduction
of suitable additional numerical diffusion [63]. On the other hand, constructing
the ROM based on a discontinuous Galerkin spatial discretization with upwind-
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ing of the numerical fluxes is an alternative way to introduce suitable numerical
dissipation [62]. The discontinuous Galerkin (DG) approach thus offers the advan-
tage of allowing a modal approximation of the solution and a stable time-explicit
discretization.

For the aforementioned reasons, we develop in this thesis a discontinuous
Galerkin domain decomposition (DGDD) method [92] in which high-dimensional
and reduced-order models coexist. Instead of using a global ROM, the domain is
spatially partitioned a priori to isolate the subdomains that are anticipated to con-
tain shocks or compact support phenomena. Spatially local ROMs are employed
in the subdomains where a significant dimensionality reduction can be achieved,
while the HDM is used elsewhere. For the coupling, the ROM is based on the
discontinuous Galerkin method [62, [7, 116] in the prediction stage. Compared to
the standard DG method [90], [43] [61], the polynomial shape functions are replaced
by empirical modes constructed during the training stage by POD in order to best
approximate the solution snapshots. In addition, the ROM is equipped with the
energy-conserving mesh sampling and weighting (ECSW) hyper-reduction method
[50, 51}, 55], which provides an empirical quadrature rule enabling the efficient eval-
uation of the integrals involved in the DG formulation. With this framework, the
domain decomposition is applied in a straightforward manner since the global
solution is recovered by linking the local solutions at the interface between sub-
domains through the numerical flux. The accuracy and computational complexity
of the resulting method depends on the domain decomposition. If the HDM is
employed in a large part of the domain, the accuracy of the coupling model can
be very high but the resulting model will be computationally expensive to solve.
Conversely, if the ROM is sufficient to approximate the solution in most of the do-
main, this method allows to significantly reduce the computational cost associated
with obtaining model solutions in the prediction stage.

The presentation of the discontinuous Galerkin domain decomposition (DGDD)
method is organized as follows. In Section [[V.2] we introduces the Euler equations
and the HDM employed for their numerical solution. Then, Section describes
the ROM based on POD in the training stage and on the DG method in the
prediction stage. In Section [[V.4] we present the domain decomposition and the
coupling between the HDM and ROMs. Finally, Section demonstrates the
accuracy of the proposed method and the reduction of the computational cost
versus the HDM for three different applications.

IV.2 High-dimensional model

In this work, we consider the modeling of inviscid compressible flows governed
by the Euler equations. The HDM implemented during this thesis to solve these
equations is constructed using the discontinuous Galerkin method [90} 43|, [61] in
space and a TVD Runge-Kutta scheme [100] in time.
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IV.2.1 Euler equations

Let the parameter domain D € RP be a closed and bounded subset of the Euclidean
space R? with p € N*. Moreover, let the physical domain £ € R? be a smooth
bounded open set with boundary 0f2, where d € {1,2} is the space dimension. In
this work, we consider the parameterized Euler equations for x € €2, ¢t € R’ and
pn e D:

dq

5 TV Fla) =s(a), (Iv.1)
subject to appropriate initial and boundary conditions. Here, q € R%*? denotes
the conservative state variable, F = (f, g) denotes the flux and s denotes the source
term. In particular, we will focus on the quasi-1D Euler equations, with

p pu —pu %2
q=|(pu |, f=| p®+p |, s=| -—-p?35 |, (IV.2)
E u(E + p) —u(E +p)524

and the 2D Euler equations, defined by

p pu pv 0
2
| pu B pu +p B puv [0
q-= pv ) f= puv ’ g = p’U2 + P ’ - 0 ) (IVB)
E uw(E +p) v(E + p) 0

where p is the density, u = (u,v)? is the velocity, E is the total energy, A(x) €
C!(R) is a smooth function, for example the cross sectional area of a nozzle, and
p is the pressure, given by the equation of state

p=(y~1) <E_p|!112|!§>

with v, the specific heat ratio, taken as v = 1.4 in the following.

IV.2.2 Space discretization

The Euler equations ([V.1)) are semi-discretized by the discontinuous Galerkin
method [90] 43], 61] in space.

IV.2.2.1 Discrete solution

The domain €2 is partitioned into a conforming mesh of Ng non-overlapping micro-
cells ;. In 1D, the domain Q = [Zin, Tmas] is divided into uniform intervals
K; = [:L’jfl,x#%] with 2; = T+ (j—3)h and h = fmagttmin for j € {1,..., Nk},
while in 2]5, the domain is decomposed into triangular cells K;. Each flow variable
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¢" (i.e. the density, momentum and energy) is then approximated on each of these
cells by a polynomial function

Ny

Vx € Kj: qy(x,tm) = D07 (8 p) o), (%), (IV.4)

n=1

where b7 denote the polynomial coefficients, ¢/ € H'(K;) denote the polynomial
shape functions, taken as the Legendre polynomials in 1D and the Dubiner polyno-
mials [47] in 2D, and N4 denotes the number of basis functions, which depends on
the dimension and on the order of the scheme. In this way, the discrete solution
belongs to the space of square-integrable functions L?(Q2) (Definition [3) and its
restriction on each cell K; belongs to the Sobolev space H'(K;) (Definition [4)).

Definition 3. (L? space) L*(Q) is the space of square-integrable functions on :

L*(Q) = {f:QHR, such that /Q|f2|dx<oo},

with the inner product and the norm
ey = [ S99, ey = - T

Definition 4. (H' space) H'(K;) is the space of square-integrable functions on
K whose derivatives are also square-integrable on Kj:

H'(K;) = {f € L*(Kj;), such that V f € (L*(K;))"}.

Legendre basis. In 1D, the polynomial shape functions are Legendre polyno-
mials LL,,, defined by the recurrence formula

(n+ 1)L, (r) = 2n+ 1)rL,(r) — nL,_1(r),

where Lo(r) = 1, Ly(r) = r and r € [—1,1]. These polynomials are orthogonal
with respect to the L2-inner product:

1
2
L,(r)L,, dr = —d,m
/1 (L) dr = o2

Let the change of variables between the reference element r € [—1,1] and the
interval x € K = [z, 1,x]+1] be
h

x:xj+§r.

Then, the polynomial shape functions are defined after normalization by

o) = (275 )

forne {l,..., Ny} and j € {1,..., Ng}.
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Dubiner basis. In 2D, the polynomial shape functions are the tensorial product
of Jacobi polynomials J(*#) defined by the recurrence formula

aJe (1) = (e2 + ) TP (r) — e\ (),
where

a=2n+1)n+a+B+1)2n+a+p),

¢ =(2n+a+ 8 +1)(a® - 57,
a=0C2n+a+8)2n+a+p+1)2n+a+ [ +2),
cs=2n+a)(n+6)2n+a+ B+ 2),

with JP(r) = 1, J1*P (1) = o= o482, and r € [—1,1]. These polynomials
are orthogonal with respect to the following inner product

/1 206+ (n + a)l(n + B)!

. « B (a,,B) (Oﬁﬁ) —
1(1 A T ) dr 2n+a+pB+1)(n+a+p)nl "

In addition, let the change of variables between the reference element r € T =
{r = (r,s) €0, 1]2 cr+s< 1} and the triangle x € K; with vertices v, vy and
v3 be

x=(1—r—s)vi+1vy+ svs.
Then, the polynomial shape functions are defined after normalization by

2r

— S

Onny(X) = V220 + 1)(p + ¢ + DIP (1 - 1) (1= )7 J P9 (2s — 1),

where we use the multi-index

ql¢+1)  plp+1)
5 T

for 0 <p+q<—3+/3+2Nyand 1 <j < Ng.

n(p,q) =1+plg+1)+

IV.2.2.2 Discontinuous Galerkin method

The polynomial coefficients b%’ are determined by the discontinuous Galerkin
method. Inserting the discrete solution (IV.4) into the Euler equations (IV.1))
leads to the residual

rlanix t) = S 4V Fa) - slan)

This residual is then enforced to be orthogonal on each micro-cell to the polynomial
shape functions. By projecting the residual onto the polynomial shape functions
¢! € H'(K;) and performing an integration by parts, we obtain the variational
formulation

O 47 4y = / F(qy) - Vo + s(an) 6, dx — / F(q.) -n ¢ do.
K 0

K; ot j K
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where n = (ng,n,)” denotes the outward unit normal. In the discontinuous
Galerkin method, the discrete solution is not assumed to be continuous at the
interface between micro-cells. The flux is therefore multiply defined, and for this
reason, it is replaced by a numerical flux defining the correct solution at the in-
terface OK;. By replacing the flux in the variational formulation by a numerical
flux at micro-cell boundaries, we obtain the semi-discrete discontinuous Galerkin
formulation

O gy = / F(q) - Vo + s(an)é, dx — /8 F(a;, qf,n)¢) do, (IV.5)
- K K;

K; J

where F denotes the numerical flux, i.e. F = f(q,:, g/ ,n) with g, and q;, the
negative and positive trace, respectively, and q;f = qu. at the boundary 9. In
this way, the surface integral is responsible for recovering the global solution from
the local solutions and imposing the boundary conditions qp..

IV.2.2.3 Numerical flux

As the discrete solution is discontinuous at the interface between micro-cells, the
flux is multiply defined. For this reason, the flux is replaced by a numerical flux
defining the correct solution at micro-cell boundaries. In this work, we consider
the local Lax-Friedrich flux [I00] and the Harten-Lax-van Leer flux [59]. These
numerical fluxes are consistent (Definition |5) and ensure the numerical scheme is
consistent according to Lemma [I] In addition, these numerical fluxes are conser-
vative (Definition @ and since the test subspace contains the constant function,
the numerical scheme is also conservative according to Lemma [2]

Definition 5. (Consistent flux) The numerical flux is consistent if
F(an,an.n) = F(qy) - n
Lemma 1. (Consistent scheme) The scheme is consistent:

Ng
> |Gk Vol —stapgax |

) OK;

F(q~,qt,n)¢) dU) =0

with q the exact solution to the Euler equations (IV.1), if and only if the numerical
flux is consistent.

Proof. Substituting the exact solution for the discrete solution (i.e. q; = q) in the
discontinuous Galerkin formulation (IV.5)) yields

0K

Ng ) ) ) n j
S [ S0 Fla) Vo~ st dx = - Z F(q,q,n)¢, o,
j=1/K;
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where q© = q© = q by continuity of the exact solution. By performing an
integration by parts, we then obtain

Z (815 TV Fla)- (q)) o= 321 e (F(@)-n - F(a.q,n)) ¢ do

Since q is the solution to the Euler equations (IV.1)), the left hand side vanishes,
leading to

Nk R ‘
> [ (Fla)n-Fla.aw)dds =0
—1J 0K,

This equation holds if and only if the numerical flux is consistent. ]

Definition 6. (Conservative flux) The numerical flux is conservative if

F\<q}:> qza l’l) = _F\(qz_a qija —1’1).

Lemma 2. (Conservative scheme) The numerical scheme is conservative:

0
/th +/ F(qﬁ,qbc,n)daz/S(q)an
Q

if the numerical flux is conservative and the constant function belongs to the test
subspace.

Proof. See [41] and Lemma 2.2 in [54]. O

Local Lax-Friedrich flux. The LLF (local Lax-Friedrich) flux [100] is defined
by
F(ar + - _ qt

(@) + Flay) o D i
2 2
where the local maximum of the directional flux Jacobian applied to the Euler
equations is approximated by

ﬁ(‘lﬁa qu{7 Il) =

o = max (HUEHQ + G, ‘u;[H2 + CZ)

with ¢ = y/vp/p the speed of sound.

Harten-Lax-van Leer flux. For the two-dimensional Euler equations, the Rie-
mann problem is first aligned with the face normal direction:

+
iph
nx(W);i +ny(pv)

=
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as proposed in [61]. The Riemann problem then consists of three states, separated
by two waves propagating at speed s~ and s*, with s~ < s*. The HLL (Harten-
Lax-van Leer) flux [59] associated with this Riemann problem is defined by

f(a,) if 0 < s~
~ + =\ _ o~ + —et(a— — ot
fh”(q;,q:{) — S f(qn> S f(?_n) +_S S (qn qn) if s~ < 0 < S+
st — S8
f(q)) if st <0.

Following the approach presented in [59], the wave speeds are estimated from

* +

s =min(u, —c,,u" —c") and sT =max(u’ +ct u"+c"),

n
where the minimum /maximum is taken over the eigenvalues of the linearized flux

Jacobian, and the intermediate state between the two waves is taken to be the Roe
average:

.V Pnun o/t
u = )
Vow + ok
. Venvn +/otut
v o= )
Vo + ok
e VP o
Vow ek

C*Z\/(’y—l) {H*_(“*)QW

2 )

where H = (E + p)/p denotes the total enthalpy. Finally, the numerical flux is
rotated back to Cartesian coordinates as follows

- ny%ll(qna q.;br)
+ ny fs'"(a;,, q;)
q,.4q)

= _ n
F<qh ) qzu Il) = Thil

IV.2.2.4 Numerical integration

The integrals on the real line (i.e. the volume integral in 1D and the surface
integral in 2D) are evaluated by the Gauss-Legendre quadrature rule, while the
two-dimensional volume integrals in ([V.5)) are approximated by the symmetric
rule [115]. The discrete inner product (-, -)g associated with the L?-norm is then
induced by the diagonal matrix @ € RIN&No)X(NkNe) containing the weights of the
quadrature rule on the diagonal.
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Gauss-Legendre quadrature rule. Let I = [—1,1] be the reference element
and [v1,v2] be the domain of integration, i.e. an interval K; in 1D or an edge
of the triangle K, in 2D. The (continuously differentiable) change of variables
@ : I — [v1,v2] between the reference element and the domain of integration is

defined by

() 1—7r +1+7‘
r) = v Vs.
2 5 U1 5 V2

The integrals are approximated by the N .-point Gauss-Legendre quadrature rule,
which is exact for polynomials up to degree 2N, — 1,

/v f()da = / P () dr

Sl / Fle(r)) dr

Vg — V1 =

5 wnd (e(ra))

Here, r, and w,, denote the quadrature points and weights, respectively, and they
are tabulated below.

N, | 2 3
n| VI VE] V0| VB
NENERERE

Table IV.1: Points and weights of the second (N, = 2) and third (N, = 3) order
Gauss-Legendre quadrature rules.

Symmetric rule. Let the reference element be T = {r = (r,s) € [0, 17 :r4s< 1}
and the domain of integration be the triangle K; with vertices vy, vy and vs. The
(injective and continuously differentiable) change of variables ¢ : T' — K between
the reference element and the domain of integration is defined by

o(r) = (1 —r—s)vi +rvy + svs.

To evaluate the integrals, we consider the symmetric rule:

RS ECEACIEE
= | det(vy — v, vs — vy1)| /Tf((p(r)) dr

Nr
~ |det(vy — vi, vz — vi)| Y waf(e(rn)),
n=1
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where J, denotes the Jacobian determinant of ¢. Here, r, and w, denote the
quadrature points and weights, respectively, and they are displayed in Figure

08 08}

0.0;

0.10322
X

06

06

0.22338 0.095092
x x

04r 04r 0.14432
x

0.02723

02l 02l 0.10322 010322

0.22338 * *

0.10995 X 0.095092
x

x

.032458
x 0.02723 0.02723

0.032458

(a) Ny =6 (b) Ny = 16

Figure IV.1: Points and weights of the symmetric quadrature rule for the second
(Ny = 6) and third (N, = 16) order schemes.

IV.2.2.5 Slope limiter

In high-order polynomial approximations, spurious oscillations may appear in the
presence of shock or large gradient due to the Gibbs phenomenon. For this reason,
a slope limiter is introduced in non-smooth regions. In this work, we consider the
minmod limiter [93] in 1D and the Barth-Jespersen limiter [69] in 2D.

Minmod limiter. In 1D, the discrete solution is reduced to a linear polynomial
in non-smooth regions

Vo € Kj o gz, typ) =G, (6 p) + ouj(t; m) g (t p) (z — ),

where @, ; (: gb’i’j ) denotes the mean value, ¢; ; (z @bé’j ) denotes the slope and

«; j denotes the correction factor. In the minmod limiter [93], the correction factor
is defined by

L Gij+1 — iy Gij — Gij—
;j = ——minmod ( ¢} ;, —2* i Tig T ’
! qg,j (qw h h

where

sign(a) min(|al|, |b], |c|) if sign(a) = sign(b) = sign(c)
0 otherwise.

minmod(a, b, ¢) = {

This limiter ensures the TVD property of the scheme [58] and reduces the scheme
to first order (i.e. a;; = 0) in regions with strong gradients.

86



IV.2. HIGH-DIMENSIONAL MODEL

Barth-Jespersen limiter. In 2D, the discrete solution is reduced to a linear
function in non-smooth regions

Vx € K qy(x,tipw) =G ;(; ) + (b ) (Vi (6 p) - (x — X5),

where X; denotes the centroid of the micro-cell Kj, g, ;(t; ) = ¢;,(X;, ; u) denotes
the mean value, V¢, ; denotes the slope and «; ; denotes the correction factor. In
the Barth-Jespersen limiter [69], the maximum admissible slope is defined so that
the discrete solution is bounded by the maximum and minimum values found in
K or in one of its neighbours

Vx € Kt qiln(tp) < gh(x,t; ) < ghi, (6 ). (IV.6)

Due to linearity, the discrete solution ¢} reaches its extrema at the vertices vy,
vy or vy of the triangle K;. The correction factor enforcing condition (IV.6)) is
therefore given by

. Qi (1) =T, (310) ) I — .
i <1’ a5, (Vi ti) =T, 5 (L) g (Vi i ) > @iyt )

a;j(t;p) = min ¢ 1 if (v, ) = qi,j(t; K)o,

e min (1 ?:ﬁén(tw)—ﬁi,j(tw) ) if qi (Vﬁ t; ,lL) < q; -(t' Ij,)
Ty (Vi tpe)—d; 5 () hA Tk ™ ij\b

where ¢}, (v;, , t; u) denotes the negative trace of the discrete solution ¢j, at vertices
vy, of the triangle Kj.

IV.2.3 Time discretization

The time is discretized by an explicit TVD Runge-Kutta scheme [I00]. Writing
the semi-discrete system (IV.5)) as

db
— = Ly(b, t;
dt h( ) 7"")7
where the vector b € R@*2NeNo contains the polynomial coefficients b7 and

Ly(b,t; u) € RE+F2ANeNo regults from the spatial discretization, the second-order
scheme reads

b = b(ty; p) + AtLy(b(t; p), tr; ),
1 1 At
b(tgi1; ) = §b<tk§ ) + §b(1) + 7Lh(b(1), tog1s b)),
and the third-order scheme reads

b™ = b(tx; ) + AtLy(b(tg; ), t; ),

3 1 At
b® = b(ti; ) + b + =L (b, thgas ),
1 2 2t
b(tesis ) = bt 1) + gb(z) + Ly (b®, 1,15 ).
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The initial solution b(¢p; ) of these systems is given by the orthogonal projection
of the initial condition qo(x; @) onto the polynomial shape functions:

bhI (to; p) = /K | a4 (x; p) ¢l (x) dx.

J

IV.3 Reduced-order model based on the discon-
tinuous Galerkin method

To reduce the computational cost of the HDM, we develop in this thesis [02] a
ROM based on Proper Orthogonal Decomposition [87, [48], [103], 20] in the training
stage and on the discontinuous Galerkin method [62, [7, [IT6] in the prediction
stage. Compared to the standard DG method, the polynomial shape functions
are replaced by POD modes in order to best approximate the solution snapshots.
In addition, the ROM is equipped with hyper-reduction techniques to ensure the
computational complexity of the ROM is independent of the size of the mesh.

IV.3.1 Solution approximation

In the ROM, each component of the solution is approximated in space by a small
number of basis functions &%

M;

Vie {1, d 42} Gt ) = gh(x) + Y al(t )@ (x) (IV.7)

n=1

in order to reduce the number of degrees of freedom. The offset ¢’ and the ba-
sis functions ®° are constructed during the training stage by Proper Orthogonal
Decomposition (POD), and the reduced coordinates a!, are determined in the pre-
diction stage by the discontinuous Galerkin method.

IV.3.2 Training stage

For the sampling of the solution manifold, the HDM provides a database of N
snapshots of the high-fidelity solution collected at different time instances and in-
put parameters. Let s,ﬁ’l(x) = ¢ (X, tk); i) be the I'™ snapshot of the conserved
variable g;; collected at time instance t;(;) and input parameter p;q). The offset is
defined as the mean of the snapshots over time and parameter space:

Ne g
' > s (%)
7 =1
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The basis functions ® are then constructed by POD (Section [[.4) to minimize, in
the least -squares sense, the difference between the snapshots s, and their projec-
tions sh onto the trial subspace. That is, the basis functions ®¢ are the solution
to the minimization problem

{ minimize ~ [S® — &O(®®)TOSH

& (1) cRNx X M; ‘ ‘ ©
subject to (@NTO®H =1,
where the snapshots are stored in the matrix
5 (x1) 5,7 (%) 5 (x1)
1 2 —4,Ns
gl — n(%2) n(%2) i (%2) € RNxxN:
Stk S 0ew) e s (XNX)

with 5, (x) = s, (x) — ¢’ (x), the basis functions are stored in the matrix

i(xi)  Ph(xi) o DY (xa)
) Pi(x2)  Ph(x2) - quz (x2) e RNxxMi
Ci(xn,) Ph(xn,) -0 Py <XNx>

and ® € RM*Nx corresponds to the SPD matrix defined in Section [IV.2.2.4
According to the Schmidt-Eckart-Young-Mirsky theorem [T, the basis functions
are given by

Ug o - Ui v,
o0 = (@) | ]
Un, 1 Un,.m,

Where © = ©2(02)7 is the Cholesky decomposition of ©, §(') = (©2)7S( and
S = UXVT is the singular value decomposition (SVD) of S®)

In the discontinuous Galerkin formulation ([V.§]), the derlvatlves of the basis
functions V®! are also required. As the basis functions are a linear combination
of the snapshots, they are derived analytically to obtain

o) g0 (V11 T [ '
or  Ox
Vner -+ Vo 0 oM,
and .
op s (V11 T [ ’
dy oy ’
Vnea -+ Vo 0 oM,
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where {0, }1<n<n, are the singular values of S® . If the method of snapshots
(Section [[.4.3.2)) is employed, then V and ¥ can be obtained from the SVD of
(SU)TS®™, In the same way, the derivatives are given in the classical method

(Section [I.4.3.1]) by

i i U1,1 T Ul,Mi 01 0
02" _ o8 ‘s - :
ox ox
Unei - Unew, 0 oM,
and )
; ; U - Ui, v, o1 0\
aj() _ as()g(i) ‘ ‘
y y . . )
Unei - Unew, 0 oM,

where U and ¥ are obtained from the SVD of S®(S®)T.

IV.3.3 Prediction stage

The reduced coordinates a!, are determined at low cost during the prediction stage
by the discontinuous Galerkin method [62, [7, 116]. Compared to the DG method
employed in the HDM, the polynomial shape functions are replaced by the ba-
sis functions constructed by POD. The resulting nonlinear system of ODEs is
equipped with hyper-reduction techniques, such as the precomputation-based ap-
proach and the energy-conserving mesh sampling and weighting (ECSW) method
[50, 5], 55], which enable the efficient evaluation of the integrals involved in the
DG formulation. The ROM is finally discretized in time by the same explicit TVD
Runge-Kutta scheme [100] used in the HDM.

IV.3.3.1 Discontinuous Galerkin method

In the discontinuous Galerkin method, the approximate solution (IV.7)) is inserted
into the Euler equations (IV.1]), leading to the residual

_ oqy, _ _
rlan)(x tip) = 5=+ V- Fdn) —s(@n).
Projecting this residual onto the basis functions ®¢, performing an integration
by parts over each micro-cell K; and replacing the flux by a numerical flux at
micro-cell interfaces 0K, we obtain the system of ODEs for i € {1,...,d+2} and

ne{l,..., M}

dat Nk B ) ~ i Ba— ~ i
dtn =Y (/ Fi(an) - V&, + si(an)®;, dx _/ Fi(@,, a,)%, da)

j=1 K; 0K;
(IV.8)

_ /V Fy(@n) - VO, + s,(64) @', dx — /VK F(ay.d,n)® do,
UKj U()Kj
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where the orthonormality of the basis functions has been used. Compared to the
standard Galerkin projection presented in Section[[.3.2.1] the additional numerical
flux allows, on the one hand, to enforce in a weak sense the boundary conditions
and, on the other hand, to introduce numerical diffusion/dissipation through, for
example, an upwind convection flux accounting for the flow direction in order
to stabilize the ROM. In addition, the resulting scheme is consistent since the
numerical flux is consistent according to Lemma [T}

IV.3.3.2 Hyper-reduction

In order to evaluate the volume integral in system ([V.8]), we have to compute the
integrand

H[an] = Fi(@n) - VO, + si(@n) P,

N
at each point x € Lj< K, which is prohibitively computationally expensive. To
j=1

resolve this issue, the integrands that are polynomial with respect to q, (e.g.
fi = puin (IV.2)) are computed by the precomputed-based approach described in
Section [[.5.1] Alternatively, the ECSW method is employed for the evaluation of
the non-polynomial integrands (e.g. fo = pu® + p and f3 = u(E + p) in (IV.2)),
where the pre-computation-based approach is not applicable. In this method, the

N
integrands are evaluated at only L, points X € LT K to ensure the computational
j=1

complexity of the ROM does not scale with the size of the mesh (L, < Ny). The
volume integral is then approximated by the following empirical quadrature rule

L,
ﬁKﬂmwwﬁzzwm@mx
L_J K =1

where X; and w; > 0 denote the quadrature points and weights, respectively.
Theses empirical quadrature points and weights are determined simultaneously
during the training stage to best approximate the exact quadrature rule:

Jor )
H;jl[slfb] (x1) -+ H£1[S§L](XNX) wy =
v .l .o HVY l v v
i, M; [s7,)(x1) i, M; [sh,) (%, ) W, /VK U [Sﬁl] (x) dx
K;
j=1
I I I
HO[s}] w cilsh]

where the approximate solution qy in H;,, is replaced by the snapshot st of the con-
served variables collected during the training stage. Combining the contributions
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of all the integrands H/, leads to the approximation problem

HO[s}] cfs)]
HO[s2] ci[s?]
. wy
H®[s}] CE cls)]
. Wh,
H@+2)[s°] Carals]
I I [l
G w d

In the ECSW method, w is the solution of the non-negative least-squares problem

min [|Gw —d|f3, (IV.9)

weRY™

which is solved by the algorithm described in [70)]. This algorithm promotes spar-

sity in the solution and terminates when the stopping criterion [[Gw —dJ|, <

e ||d]|, is satisfied for a given level of hyper-reduction accuracy e. The weights @}

are finally obtained by keeping only the nonzero components of the solution to

problem (IV.9), and the points X; are the points associated with these weights &'
The discontinuous Galerkin ROM then becomes

daf, & e ~ i
a1 = E Wy Hi7n[qh]<xl>_/\’1< Fi<qh7q27n)q)ndo-'
=1 U 9K;
=1

In the same way, the ECSW method is also employed for the evaluation of the
surface integrals by defining

H;,lan) = Fi(a,, af,n)d),

N
for o € Lj O0K;. Finally, the hyper-reduced discontinuous Galerkin ROM becomes
j=1

da; Ly _ _ _ Ls _ _ -
O = G HL @] () = X G H ] (e) (IV.10)
=1 =1

forie{l,...,d+2} and n € {1,..., M}

IV.3.3.3 Time discretization

The ROM is discretized in time by the same explicit TVD Runge-Kutta scheme
[T00] used in the HDM. Writing the system of ODEs (IV.10) as

da_

= _1 . .
i (a(t;p),t; ),
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where the vector a contains the reduced coordinates a’ for i € {1,...,d + 2} and
n € {1,...,M;}, the second-order scheme reads

al) = a(ty; w) + AtL(a(ty: ), te; ),
1

1 At
a(tpi1; ) = §a(tk; p) + ia(l) + TL(a(l), b1 ),

and the third-order scheme reads

aV) = a(ty; p) + AtL(a(ty; w), te; ),
1

3 At
a? = Za(tk; ) + Za(l) + ZL(a(l), th1 ),

1 2 2At
a(tpi1; ) = ga(tk; B + 53(2) + TL(a@)?tk—«—%; B)-
The initial solution a(to; pt) of these systems is given by the orthogonal projection
of the initial condition qo(x; @) onto the affine trial subspace:

i (to: ) = / (66 1) — (%)) B, () dix.

IV.4 Discontinuous Galerkin domain decompo-
sition method

Given the ROM based on the discontinuous Galerkin method developed in the
previous section, the domain decomposition is applied in a straightforward manner
since the coupling between the HDM and the ROM is performed through the
numerical flux.

IV.4.1 Domain decomposition

In the HDM, the domain is divided into Nx micro-cells K; as illustrated by Figure
IV.2] In the standard global MOR approach, these micro-cells are generally ag-
glomerated into a single macro-cell €2. Thanks to the ROM developed in Section
V.3 we formulate a spatially local approach for the case of several non-overlapping
micro- and macro-cells, as illustrated in Figure [[V.2, The HDM is employed in
the micro-cells K, while the ROM is used in the macro-cells €2;. The domain
is spatially decomposed into smooth and non-smooth regions in order to isolate
shocks or compact support phenomena. For simplicity, the partitioning is based in
this work on a priori knowledge of the solution, and we anticipate the subdomains
representable via POD.
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K; Ky

Ky Kg K Ky
K, K3
Ky Ky

K, K Ky Kis
Ky K

Figure IV.2: Top: example of mesh employed in the HDM containing 16 micro-
cells K;. Bottom: examples of domain decomposition. On the left, the domain is
agglomerated into a single macro-cell. On the right, the domain is divided into 4
micro-cells and 3 macro-cells.

IV.4.2 Coupling between the HDM and ROMs

The restriction of the approximate solution to each macro-cell €2; is written as

k€D Gt =P (X) + Y af(Ep)d(x),  (IV.11)
n=1

where we proceed exactly as described in Section for the training and predic-
tion stages. The discontinuous Galerkin ROM (IV.10) now becomes

da” .
Z HY; 0] (%)) Zw 2 alanl(@5), (IV.12)
=1
where HY; , [q] = Fi(q)- V&7 +5;(q) P}/ and H};,[qs] = Fi(d;,, 4, n)®:7. In this

way, the global solution is recovered by linking the local solutions at the interface
between micro- and macro-cells through the numerical flux.
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IV.5 Applications

The performance of the DGDD method is evaluated for three applications based
on the quasi-1D and 2D Euler equations. In each case, the accuracy of the ROM
with respect to the HDM is evaluated using the relative approximation error in
the predicted Mach number:

/tmm/ HMhdm - Mrom
to Q
tma:c 2
[ [ Mo

where M = u/c denotes the Mach number and ¢ = y/vp/p denotes the speed of
sound. Furthermore, the computational speedup of the ROM with respect to the
HDM is evaluated in each case in order to quantify the reduction in computational
cost provided by the ROM based on the proposed DGDD method.

dedt

x 100%,

Error =

IV.5.1 Reproduction of an isentropic vortex

The first application seeks to validate the DGDD method on a reproductive test
case where the predicted ROM solution is obtained at the same input parameter
used in the training stage. We consider an isentropic vortex for x € [0,12] x
[—2.5,2.5] and ¢ € [0,7]. The initial and boundary conditions are supplied by the
exact solution to the 2D Euler equations ([V.3):

1

v—1 2 _2(1-r2) 7T
=(1—
P ( (16772> e
— 1 _ 177'2 y - yO
U Be T
_ 1_,,,2.7; - 330
v = fe o
p=p

with r = \/(z —t — 20)2 + (y — )2, 7o = 2.5, yo = 0 and 3 = 5.

The HDM is constructed by discretizing the 2D Euler equations using
a third-order discontinuous Galerkin method with the local Lax-Friedrichs flux
in space and the third-order TVD Runge-Kutta method in time. The domain
is discretized using Ng = 960 triangular micro-cells, and the time-step size is
At = 0.01. We compare the approximate solutions computed using two ROMs:
the first one is a global ROM where the micro-cells are agglomerated into a single
macro-cell (i.e. no domain decomposition), and the second one is a local ROM
where the domain is divided randomly into 8 contiguous macro-cells €2; shown in

Figure [V.3]
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Figure IV.3: Decomposition of the domain into 8 macro-cells for the reproduction
of an isentropic vortex.

For this example, no hyper-reduction is used to compare directly the errors
introduced by the discontinuous Galerkin formulation of the ROM. Snapshots
of the high-fidelity solution are collected every time-step for the construction of
the basis functions. Figure [[V.4] shows snapshots of the Mach number solution
predicted by the local ROM at different time instances.

Time: 0.00 Time: 2.31

0 1 2 3 9 0 n 2

Mach Magnitude
Mach Magnitude

Mach Magnitude
Mach Magnitude

Figure IV.4: Snapshots of the Mach number solution for the reproduction of an
isentropic vortex with 8 macro-cells and M = 15 basis functions in each macro-
cell, as computed using the DGDD-based ROM. The isolines of the corresponding
high-fidelity solution are plotted in black.

In Figure[[V.5] we compare the error of the global and local ROMs as a function
of the number of basis functions M. Here, the number of basis functions is the
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same for all macro-cells and components of the solution, i.e. Vi,j : M;; = M.
The error of the global and local ROMs tends to decrease as M increases, even
though the convergence behaviour is not necessarily monotonic. Moreover, the
error of the ROMs is close to the L2-projection error of individual state, and the
local ROM is more accurate than the global ROM, which validates the proposed
DGDD approach.

100 T T ]
——Global projection |]
—— Global ROM

—6—Local projection |
—=—Local ROM

Error (%)

0.001 L L L L L L L
0

Figure IV.5: Accuracy of the global and local approches for the reproduction of
an isentropic vortex.

IV.5.2 Prediction of a transonic flow in a converging-diverging
nozzle

The second application considers the prediction of a transonic flow in a converging-
diverging nozzle for x € [0,1] and ¢ € [0,5]. The cross sectional area of the nozzle

Ay — ! (2 + (v — 1)(0.5 + 1.3x)2> 6o
0.5+ 1.3z 1+~

is illustrated in Figure [[V.6]

The steady state solution is determined by the total pressure P, and total
temperature T;,; at the inlet and by the pressure p,,; at the outlet. In this example,
the total temperature at the inlet is fixed to T;,; = 1, and the input parameters
= (P, xs) are the inlet total pressure Py, and the position of the shock wave
xs, which is a function of P,,; and p,,;. We consider the unsteady problem, starting
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from the initial solution given in Figure [[V.7 and with time-dependent boundary
conditions that move the position of the shock wave as follows

P (1 ) — 1+ Pee=lt i ¢ < 0.1 bt 1) = 0.7+ £07¢ if ¢t < 0.1
tot A P else, s A7 Ts else.
\ Converging Diverging

section sectlon

I I T L I I I I I
0 0.1 02 0.3 0.4 05 0.6 07 08 09 1
T

Figure IV.6:  On the left, converging-diverging nozzle [I]. On the right, cross
sectional area profile of the nozzle for this application.

The quasi-1D Euler equations are discretized using a second-order Dis-
continuous Galerkin method equipped with the local Lax-Friedrichs flux and the
minmod limiter in space and the second-order TVD Runge-Kutta scheme in time.
The domain is discretized using N = 500 micro-cells and the time-step size is
At = 0.0008. Domain decomposition is performed from a priori knowledge of
the solution by dividing the physical domain into three regions shown in Figure
V.7 In non-shocked regions 1 and 3, the micro-cells are agglomerated into a sin-
gle macro-cell for each region, and spatially local ROMs are employed. Region 2
consists of 100 micro-cells where the HDM is used in order to accurately capture
the moving shock wave.

Figure[[V.g|illustrates the parameter domain of interest chosen in order to place
the shock wave in the interval x5 € [0.61,0.79]. It also shows the sampled input
parameters used to build the snapshot database in the training stage. Note that
the training input parameters corresponding to g = (P, 0.7) have been removed
from the original sampling since they correspond to the initial solution and are
already in the snapshot database.

For each unsteady simulation corresponding to a sampled input parameter, we
collect one snapshot every 5 time-steps from the HDM simulation. The squared
singular values of the snapshot matrix for each of the conservative variables are
shown in Figure [V.9. The squared singular values decrease rapidly, and 2 basis
functions are sufficient to obtain a relative squared projection error lower than
0.001% for all variables in each macro-cell.
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Figure IV.7: Initial condition corresponding to the steady state solution for P,,; =
1 and x5 = 0.7. The domain is divided into 2 macro-cells, denoted by regions 1
and 3, and 100 micro-cells in region 2.

T + T T
078 X + Training H
x Prediction
0.76 | x 1
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074} 1
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5 07F 1
0.68 x 1
0.66 J
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0.64 1
X
062 1
L L L L + L L L L
095 096 097 098 099 1 101 102 103 104 105
Ptof

Figure IV.8: Input parameter sampling used during the training and prediction
stage for the converging-diverging nozzle problem.
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Figure IV.9: Squared singular values of the snapshot matrix corresponding to
region 1 on the left and region 3 on the right for the converging-diverging nozzle
problem.

The hyper-reduction training tolerance for this problem is chosen by a trial
and error approach as e = 107° in regions 1 and 3, which is sufficient to yield an
accurate approximation of the integrals in the prediction stage. In region 1, the
ECSW procedure identifies Ll = 23 (resp. L! = 9) points 7; (resp. ;) among
the 900 (resp. 301) quadrature points to evaluate the volume (resp. surface)
integrals. In region 3, the ECSW procedure identifies 49 (resp. 33) points Z; (resp.
o) among the 300 (resp. 101) quadratures points to evaluate the volume (resp.
surface) integrals. The reduced mesh delivered by the ECSW method is displayed
in Figure [V.I0] Notably, the ECSW procedure identifies more points in region
3, where a wave is moving at the beginning of the simulations (see Figure ,
than in region 1, where the flow solution is more amenable to a low-dimensional
representation.

A N

i o e S S S S O S B FRHROBBOK

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure IV.10: Quadrature points delivered by the ECSW method to approximate
the volume (blue) and surface (red) integrals for M = 8.

Figures [[V.11] and [[V.12] show the pressure solutions obtained by the DGDD-
based ROM for the different prediction tests denoted in Figure
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Figure IV.11: Computed pressure solution snapshots for the prediction test pu =
(0.97,0.78) with M = 8 for the converging-diverging nozzle problem at different
time instances.
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Figure IV.12: Computed pressure solutions for the prediction tests at steady state
with M = 8 for the converging-diverging nozzle problem.
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35 -
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—— p=(1.035,0.63)
—e— p=(1.000,0.72)| |
u=(0.985,0.68)
—— p=(1.015,0.76)

Figure 1V.13: Error of the prediction tests for the converging-diverging nozzle
problem as a function of the number of basis functions in region 3.

In Figure we compare the error of the prediction tests as a function of
the number of basis functions in region 3. The number of basis functions is chosen
to be the same for all conservative variables, and the number of basis functions
in region 1 is fixed to M = 2. As expected, the error tends to decrease when the
number of basis functions M increases, and the error is less than 1% when M = 4
for all prediction tests. Notably, the error comes mainly from region 2, since a
small perturbation of the shock wave position results in a large approximation
error. For this small problem, using M = 4, the computational speedup factor
for the solution of the ROM versus the HDM is 3.54. Of the time required for
the solution of the DGDD-based ROM, 70.76% is spent in the computation of the
HDM solution in region 2, and the remaining 29.24% is spent for the local ROMs
in regions 1 and 3.

IV.5.3 Prediction of a transonic low over a NACA 0012
airfoil
For the final application, we consider a 2D transonic flow over a NACA 0012
airfoil. We want to predict the flow solution at input parameters p = (M, @)
corresponding to different free-stream Mach numbers M., and angles of attack a.
The initial condition is a uniform flow at Mach M
Vx € Q: po(xp) =7, uo(x; ) = Moo, vo(x;p) =0, po(x; p) =1,

and the unsteady solution is computed for ¢t € [0,21]. Slip boundary conditions
are applied at the airfoil surface, and the far-field boundary condition is set to be
a uniform flow at Mach M.
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The HDM is constructed by discretizing the 2D Euler equations using a
second-order discontinuous Galerkin method equipped with the HLL flux and the
Barth-Jespersen limiter in space and the second-order TVD Runge-Kutta scheme
in time. The domain is discretized using Nx = 4150 triangular micro-cells, and
the time-step size is At = 0.003. As shown in Figure[IV.14] the domain is divided
into two regions: the HDM is employed in the region near the airfoil to accurately
capture the moving shock wave, while the ROM is used elsewhere since the solution
is amenable to accurate low-dimensional representation in the parameter domain
of interest.

Figure IV.14: Decomposition of the domain in 1065 micro-cells (red) and one
macro-cell (blue) for the transonic NACA airfoil problem.

In Figure [V.15] we plot the sampling of the parameter domain for the training
and prediction stages. For each training HDM simulation, one snapshot is col-
lected every 25 time-steps. A unique set of basis functions is constructed for each
prediction input parameter. For each prediction input parameter, we apply POD
on the snapshots corresponding to the four closest training input parameters to the
prediction input parameter, defined by the square grid containing the predicted
parameter value. For example, the basis functions for the queried input parameter
corresponding to M., = 0.754 and o = 0.2 are computed using the snapshots from
the simulations corresponding to pu € {(0.75,0), (0.76,0), (0.75,0.5), (0.76,0.5))}.
Figure plots the decay of the squared singular values of the snapshot ma-
trix for each of the conservative variables for this example. In this case, 6 basis
functions are required to obtain a relative squared projection error of less than
0.001% for p, pu and E. The momentum in the y-direction is close to zero, and
the (absolute) squared projection error is below 0.3 with 6 basis functions for pv.
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Figure IV.15: Input parameter sampling used during the training and prediction

stage for the transonic NACA airfoil problem.

Lastly, the hyper-reduction training is performed using the tolerance ¢ = 1074,
which provides for sufficient accuracy in the prediction stage. For the prediction
test corresponding to g = (0.754,0.2), the ECSW procedure identifies L, = 403
(resp. Lgs = 629) points X; (resp. o) among the 9255 (resp. 9314) quadrature
points to evaluate the volume (resp. surface) integrals. Figure shows the
resulting reduced mesh. The quadrature points are notably located on the left side
of the domain and in the airfoil’s wake, where compression waves and shocks are
propagating before the stationary solution is established. For the other prediction
tests, the result of the ECSW procedure is similar.
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Figure IV.16: Quadrature points delivered by the ECSW method to approximate
the volume (blue) and surface (red) integrals for M = 16.
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Figure IV.17: Squared singular values of the snapshot matrix corresponding to the
prediction input parameter g = (0.754,0.2) for the NACA airfoil problem.
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Figure IV.18: Mach number solution snapshots for the transonic NACA airfoil
problem at different time instances computed using the ROM for the prediction
test = (0.797,1.2) with M = 16. The isolines of the corresponding high-fidelity
solution are plotted in black.
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Figure IV.19: Mach number solution snapshots for the transonic NACA airfoil
problem at steady state with M = 16. The isolines of the corresponding high-
fidelity solution are plotted in black.
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Figure IV.20: Error of the prediction tests for the transonic NACA airfoil problem
as a function of the number of basis functions.

106



IV.6. CONCLUSION

Figures [IV.18| and [[V.19] show snapshots of the computed Mach number us-
ing the DGDD-based ROM for the different prediction input parameters and for
different times during the time-dependent flow simulations.

In Figure[[V.20, we plot the space-time error depending on the number of basis
functions for each of the prediction tests. The number of basis functions is again
taken to be the same for all variables. It can be observed that the approximation
error for the DGDD-based ROM is low even when using a small number of basis
functions. When M = 7, the approximation error is less than 1% for all prediction
tests. As the number of basis functions M increases, the approximation error de-
creases slowly, which is symptomatic of the slow singular value decay demonstrated
in Figure V.17

With M = 7, the computational speedup factor delivered by the ROM over
the HDM simulation is 4.54. Of the time required for the solution of the DGDD-
based ROM, 94.41% comes from the micro-cell solution using the HDM while the
remaining 5.59% comes from the single ROM macro-cell.

IV.6 Conclusion

In this work, we have presented a discontinuous Galerkin domain decomposition
(DGDD) method for model order reduction. In this approach, the ROM ap-
proximates the solution in regions where significant dimensionality reduction can
be achieved while the HDM is employed elsewhere. Notably, the discontinuous
Galerkin formulation for the ROM offers a simple way to perform the coupling
between the HDM and ROMs since the global solution is recovered by linking the
local solutions at the interface between subdomains through the numerical fluxes.
Compared to the standard DG method, the polynomial shape functions have been
replaced by POD modes constructed during the training stage in order to best
approximate the solution snapshots. In addition, the ROM has been equipped
with hyper-reduction techniques such as the ECSW method, which is particularly
well suited to approximate the volume and surface integrals involved in the DG
formulation.

ROMs based on the proposed DGDD framework have been evaluated for para-
metric problems governed by the quasi-1D and 2D Euler equations. We have
validated the DGDD method on the reproduction of an isentropic vortex. We
have then investigated the prediction of unsteady flows in a converging-diverging
nozzle and over a NACA 0012 airfoil. The results demonstrate the accuracy of the
method, capable of delivering less than 1% of error over a range of predictive in-
put parameters, and the significant reduction (approximately 78%) of the required
computation time for the ROM simulations versus the associated HDM.
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Conclusions and perspectives

In many industrial applications, efficient simulations are required, either due to
runtime constraints in the case of extremely large-scale HDMs or due to the large
number of simulations to perform for different input parameters in the case of
many-query problems. For this reason, we have been interested during this thesis
in significantly reducing the computational cost associated with numerical sim-
ulations of parametric problems governed by partial differential equations. To
this end, we have considered ROMs, which typically consist of a training stage,
in which high-fidelity solution snapshots are collected to define a low-dimensional
trial subspace, and a prediction stage, where this data-driven trial subspace is then
exploited in order to achieve fast or real-time simulations for new input parameters.

The first contribution of this thesis concerns the development of a new reduced-
order approximation of the Boltzmann-BGK equation for the simulation of gas
flows in both hydrodynamic and rarefied regimes. In this ROM, the distribution
functions are represented in velocity space by a few basis functions in order to con-
siderably reduce the number of degrees of freedom with respect to the HDM. The
basis functions are constructed in the training stage by POD, and the approximate
distribution functions are determined during the prediction stage by the Galerkin
method. This approach has then been modified in order to preserve important
properties of the HDM. In addition, we have derived the CFL condition ensuring
a stable ROM in 1D.

The performance of the resulting ROM has been evaluated on the reproduc-
tion and prediction of unsteady flows containing shock waves, boundary layers and
vortices in 1D and 2D. The results demonstrate the accuracy of the ROM (with
less than 1% error) over a range of predictive input parameters and the signifi-
cant computational speedup factor (approximately 45) delivered by the ROM with
respect to the HDM simulations.

For future perspectives, we would present several interesting approaches in
order to improve the ROM performance.

e Residual minimization method. The accuracy of the ROM could be improved
by employing the residual minimisation method instead of the Galerkin
method. To this end, the high-dimensional systems and can
be projected onto the basis functions, as we proceeded in Section [[I1.4.2] in
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order to obtain the reduced-order system.

e Hyper-reduction techniques. The computational complexity of the ROM
could be further improved by employing hyper-reduction techniques to com-
pute the macroscopic state of the gas in equation . For this purpose, the
project-and-approximate methods, presented in Sections[[.5.2.2]and[TV.3.3.2]
are particularly well suited and relevant to approximate the integrals involved
in the computation of the macroscopic state of the gas.

e Preservation of the positivity property of the distribution functions. The
ROM could also be modified to ensure the H theorem [35] by enforcing
the approximate distribution functions to be non-negative. However, this
property may be prohibitively computationally expensive to preserve due to
the large number of linear inequality constraints to be satisfied for all points
of the velocity domain at each point of the physical domain and at each
time-step.

e Solution approrimation. In this work, the solution is approximated in ve-
locity because the distribution functions are transported in velocity space
over time. However, the solution could also be represented in velocity and
physical spaces by a small number of basis functions:

Npod

fux Etspm) = D al (t; )Pl (x, €) (IV.13)

n=1

in order to further reduce the number of degrees of freedom. The ROM could
then be constructed by adapting the approach described in Section to
this reduced-order approximation (IV.13)).

In the second part of this thesis, we have proposed two applications of the
optimal transport problem to improve the accuracy and reliability of the ROM
described in Chapter [T}

In the first application, the sampling of the solution manifold has been com-
pleted with artificial snapshots generated by optimal transport. In this strategy,
only snapshots that bring new information are created, enabling a fast enrichment
of the snapshot database without employing the computationally expensive HDM.
This improvement has been evaluated on the prediction of a shock wave in 1D.
The results show that the snapshot database enrichment improves the reliability
of the ROM for the prediction of new solutions.

In the second application, the Wasserstein distance has been coupled with a
cluster analysis method to partition the snapshot database. The objective of this
clustering is to automatically identify regions where the behaviour of the solution
is similar to decompose the domain. The physical domain is then partitioned into
subdomains, and different local trial subspaces are employed in each subdomain
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CONCLUSIONS AND PERSPECTIVES

to approximate the solution. This local approach has been evaluated on the repro-
duction of a shock wave in 1D. The results demonstrate that the local approach is
more accurate than the global approach.

Depending on the application, several perspectives could be interesting to ex-
plore.

e Selection of the artificial snapshots. The enrichment of the snapshot database
could be improved by automatically identifying the snapshots to create. For
this purpose, the Wasserstein distance could be employed to select the snap-
shots that will bring new information to the snapshot database.

e Partitioning of the temporal and parametric domains. The snapshot database
is partitioned with respect to the physical domain, but the snapshots could
also be clustered with respect to time and input parameters [5]. In this
way, the basis functions ®/!(&) could be chosen at each point x, time in-
stance ¢t and input parameter p in order to improve the approximation of
the distribution functions.

e Choice of the number of basis functions. In the local ROM, we use the same
number of basis function in all subdomains, but the size of the different
local reduced bases can be different. In this way, the local approach could
also improve the computational complexity of the ROM since less local basis
functions are required to obtain accurate approximations.

e Unbalanced optimal transport. Since the distribution functions have not nec-
essarily the same total mass, these ones are normalized before employing
the optimal transport problem. To avoid this normalization step, the opti-
mal transport problem can be replaced by the unbalanced optimal transport
problem [15, [75] where the distribution functions can have different total
mass. In particular, the entropic-regularization of the unbalanced optimal
transport problem is derived in [39].

o [rtension to higher dimensions. While these two applications have been
evaluated here in 1D, this work could also be extended to higher dimensions.
However, the entropic-regularization of the optimal transport problem may
lead to unstable results for small values of v, limiting its application to
small-scale problems. Even though the accuracy of the ROM does not di-
rectly depend on the accuracy of the optimal transport solution, large values
of v may lead to poor approximations, causing difficulties to compare and
interpolate the distribution functions. To address this limitation, a recent
approach [99] have been developed for the entropic-regularization of the op-
timal transport problem. This work consider a log-domain implementation
in order to obtain stable computations even for small values of ~.
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The last contribution of this thesis concerns the development of a discontinuous
Galerkin domain decomposition (DGDD) method for model order reduction. In
this approach, the ROM approximates the solution in regions where significant
dimensionality reduction can be achieved, while the HDM is employed elsewhere.
Notably, the discontinuous Galerkin formulation for the ROM offers a simple way
to perform the coupling between the HDM and ROMs since the global solution is
recovered by linking the local solutions at the interface between subdomains though
the numerical fluxes. Compared to the standard DG method, the polynomial shape
functions have been replaced by POD modes constructed during the training stage
in order to best approximate the solution snapshots. In addition, the ROM has
been equipped with hyper-reduction techniques such as the ECSW method, which
is particularly well suited to approximate the volume and surface integrals involved
in the DG formulation.

ROMs based on the proposed DGDD framework have been evaluated for para-
metric problems governed by the quasi-1D and 2D Euler equations. We have
validated the DGDD method on the reproduction of an isentropic vortex. We
have then investigated the prediction of unsteady flows in a converging-diverging
nozzle and over a NACA 0012 airfoil. The results demonstrate the accuracy of the
method, capable of delivering less than 1% of error over a range of predictive in-
put parameters, and the significant reduction (approximately 78%) of the required
computation time for the ROM simulations versus the associated HDM.

In perspective, several approaches could be employed to further improve this
method.

o Automatic domain decomposition. The computational complexity of the
DGDD-based ROMs could be further reduced by optimally reducing the
number of micro- and macro-cells. To this end, the domain can be decom-
posed based on an error indicator, as in [19], instead of using an a priori
decomposition.

e Nonlinear approximation. Another perspective for reducing the computa-
tional cost of the DGDD method would be to replace the HDM by a ROM
in the high-fidelity region. To approximate the local solution features (e.g.
discontinuities and fronts), this ROM could employ a nonlinear trial sub-
space [64], 91), [7T, [107] instead of a linear trial subspace in order to improve
dimensionally reduction.

o Faxtension to higher order differential equations. The DGDD method could
also be extended to higher order differential equations, such as the Navier-
Stokes equations and elliptic problems, by adapting the discontinuous Galerkin
method developed in [8, 13| 14 42} 88, 108] to the ROM approach.
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Appendix A

Preservation of properties of the

HDM in 1D and 2D

In Section the approximate Maxwellian distribution function is computed
to conserve the mass, momentum and energy of the gas and to be as close as
possible to the Maxwellian distribution function M. In 1D and 2D, we use the

same idea to satisfy equation (IL.6) (resp. (IL7)) in 1D (resp. 2D):

a'(x,t; p) = DTOM(x, t; ) + W (p(x,t; ) — WDTOM(x, 1)),

where ®, W, aMr(x,t; ), My(x,¢; p) and p(x,t; ) are redefined as follows.

1D case.
lution of the minimization problem:

e e e

minimize
aMé_aMv cRNpod
1 0
subject to My, , | &u +( My,,| 0
&
2 e 1 ©
The objective function can be written using the (2/Ng) x (N;fod
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In 1D, the approximate equilibrium distribution functions are the so-
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2D case. Similarly in 2D, the approximate equilibrium distribution functions
are solutions to the problem:
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Modeles réduits : convergence
entre calcul et données pour la
mécanique des fluides

Introduction

En simulation numérique, la dynamique d’un fluide est gouvernée par un modele
mathématique impliquant la résolution d’équations aux dérivées partielles (EDP).
Ces équations n’admettant généralement pas de solution analytique, le probleme
continu est discrétisé par des méthodes numériques, conduisant a chaque pas de
temps a la résolution d’un systeme N x N de grande dimension

rhlun)(x,t; ) = 0,

ol x € () désigne la variable spatiale, ¢ € R% désigne le temps, p € D représente
les parametres d’entrée, u, € V,(§2) désigne la solution discrete et rj, représente
le résidu discret. La complexité de ce systéeme peut poser probleme a cause du
nombre important de degrés de liberté N ~ O(10°,...,10%) & déterminer. Dans
de nombreuses applications industrielles, il est nécessaire de résoudre efficacement
ces systemes, soit en raison de contraintes portant sur le temps d’exécution dans
le cas de modeles de tres grande dimension, soit en raison du nombre important
de simulations a effectuer pour différents parametres d’entrée .

Les modeles réduits ont été développés dans le but de diminuer drastiquement
la complexité des simulations. Plutot que de discrétiser la solution sans aucune
connaissance du systeme dynamique a résoudre, les modeles réduits utilisent de
I'information a posteriori afin de réduire significativement le nombre d’inconnues
M =~ O(10') & déterminer :

Un (%, t; 1) = up(x) + Zl an(t; )Py (%),

ou l'offset u, et les modes propres de la base réduite ®,, définissent le sous-espace
affine d’approximation S,(2), et a, désignent les coordonnées de la solution ap-
prochée U, € S,(€2) dans cet espace. La construction des modeles réduits est
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ensuite similaire a I’approche utilisée en apprentissage automatique pour obtenir
la réduction de la dimensionnalité (M < N). Elle consiste d’abord en une
phase d’apprentissage au cours de laquelle des solutions haute-fidélité sont ac-
quises pour différents parametres d’entrainement p afin d’identifier ’espace fonc-
tionnel V},(€2), ou évolue la solution haute-fidélité uy, et d’en extraire le sous-espace
d’approximation S,(€2) C V,(Q2) de faible dimension M représentant de maniere
optimale V;,(€2). Ensuite, au cours de I’étape de prédiction, la solution approchée
est introduite dans le systeme de grande dimension, qui est lui-méme projeté sur
le sous-espace test, conduisant a la résolution d’un systeme M x M de faible di-
mension

Wnef{l,... M} : /th[ﬁh](x,t; 1) 0, (x) dx = 0,

ou les fonctions W, engendrent le sous-espace test. Le sous-espace d’approxi-
mation S;,(12) (c.-a-d. u, et ®,,) étant construit au cours de la phase d’apprentissage,
il ne reste plus qu’a déterminer les M coordonnées réduites a,, pendant I'étape de
prédiction, permettant ainsi d’obtenir des simulations rapides voire en temps réel
pour de nouveaux parametres d’entrée pu.

Modeles réduits pour les gaz raréfiés

La premiere contribution de cette these concerne la modélisation d’écoulements
gazeux dans les régimes hydrodynamique et raréfié. L’objectif est de développer
un nouveau modele réduit [22] pour I’équation de Bathnagar-Gross-Krook (BGK)
[23] afin de réduire significativement le temps de calcul associé a la simulation de
ces écoulements.

Modele BGK

Dans ce travail, la dynamique de ’écoulement est gouvernée par 1’équation BGK
pour X € Oy, € = (§,,&,80)  ER¥ teR et peD:

g(x,f,t;u) F & Vaf(x, &t 1) = Mf(x’ﬁvt;(“x) t—.lJ:)(Xaﬁ,t;u).

ot (1)

Pour chaque parametre d’entrée p, la fonction de distribution f(x, €, t; p) représente
I’évolution temporelle de la distribution des particules du gaz au point x et se
déplacant a la vitesse microscopique &. De plus, la fonction d’équilibre maxwelli-
enne est définie par

My(x,€,t; 1) =

pxtip) <_||s—u<x,t;u>||§)
(2nT(x,t; ) 2T(x, t;p) )’

ol p est la densité, u est la vitesse macroscopique and T est la température du gaz.
Ces quantités macroscopiques sont calculées a partir de la fonction de distribution
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fx,&tp)
1 p(x,t; )
fx&tp) | & |dE=| p(xt;pulx,tipm) | (2)
73 €l B(x,t: 1)
2

Notamment, cette équation connecte le comportement microscopique des partic-
ules avec I’état macroscopique du gaz. Elle est vérifiée par toutes les fonctions
de distribution (f et M) et assure la conservation de la masse, de la quantité de
mouvement et de ’énergie du gaz.

Modéle d’ordre réduit

Afin de réduire le nombre de degrés de liberté, les fonctions de distribution sont
approximées par une combinaison linéaire de fonctions a variables séparées :

Npod o Npod
& tim) =Y al(x, ) @a(€) et My, (x, &, tp) = Y bl (x,t; 1) y(€).
n=1 n=1

Les modes propres ®,, sont construits pendant la phase d’apprentissage par décom-
position orthogonale aux valeurs propres (POD), et les coordonnées réduites af et

an’’ sont déterminées au cours de I’étape de prédiction par la méthode de Galerkin.

Phase d’apprentissage

Lors de la phase d’apprentissage, des instantanés (snapshots en anglais) des fonc-
tions de distribution sont collectées afin d’identifier le sous-espace d’approximation.
Soit s/ (&) = fu(xia), & tuwy; i) (resp. st (&) = My, (Xi), & tray; i) un in-
stantané de la fonction de distribution haute-fidélité f, (resp M fh) pris au point
X;(1), au temps tpqy et pour le parametre d’entrée p;), 'échantillonnage de la
solution haute-fidélité conduit a la création de la base de données

S= {Sl }l 1U{sl }z 1

Les modes propres sont ensuite construits par POD [103] afin d’extraire le sous-
espace d’approximation de faible dimension qui est optimal au sens des moindres
carrés pour représenter les fonctions de distribution contenues dans S :

2K

minimiser Z /R3 (Sl(f) - §l(€))2 dg

(I’l(s)"“)(prod (6) =1

tel que / D,,(£)P,,(&) d€ = 0y ms
R3
ou s; désigne un instantané (slf ou sM) et 3 represente la projection orthogonale

de s; sur I'espace d’approximation, c.-a-d. §;(& (fRS SI(E) P (&) dE') P (€).
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Etape de prédiction

Une fois les modes propres construits, les fonctions de distribution approchées ne
dépendent plus que des coordonnées réduites. Celles-ci sont déterminées a faible
cout par la méthode de Galerkin au cours de I’étape de prédiction. Dans cette
approche, la solution approchée est introduite dans I'équation BGK , qui est
ensuite projetée sur les modes propres, conduisant a la résolution du systeme
d’EDP pour n € {1,..., Npoa} :

daf  Neod dal dal dal a?f U—
%% Ayt 4 By Zom o Zom) T T T 3
ot +mZ::1< ’ 8x+ ’ 8y+ ’ 82) T 3)

ou An,m = fRS gucl)nq)m dsu Bn,m = fRS qu)nq)m dE et On,m = fR3 £w¢n<bm d£ Ce
systeme est hyperbolique par construction et est résolu par la méthode des volumes
finis en espace et un schéma de Runge-Kutta implicite-explicite en temps. De plus,
le systeme est modifié afin de conserver la masse, la quantité de mouvement
et ’énergie du gaz. Pour cela, la fonction maxwellienne approchée est déterminée
de maniere a respecter ’équation tout en étant la plus proche possible au sens
des moindres carrés de la fonction d’équilibre maxwellienne :

Ce v 2
., minimiser / (th (x,&,t; ) — My(x, €, t; ,u)) dé¢
ay (i), aN;d (x,t;p) R3
N 1 p(x,t; p)
tel que / th<X7£7t; ,LL) €2 dg = p(Xﬂf;[,L)ll(X,t; IJ')
R3 lI€l> E(x,t;p)
2 V)

Prédiction d’un vortex

Le modele réduit est évalué sur sa capacité a prédire un écoulement a Kn = 0.0345
pour différents nombres de Mach en entrée p € [0.23,0.63]. La condition initiale
est un écoulement uniforme a Mach p

Vx € Qx & po(xsp) =1, ug(x;p) = p, vo(x;p) =0, To(x;p) =1,

et le temps final est ¢,,,, = 5.3332. De plus, un écoulement uniforme a Mach p
est imposé au bord du domaine (r = —1.33, z = 2 et y = 3.33), et une réflection
spéculaire est appliquée sur le mur (x = {0} x ]0, 1[) et au bord (y = 0).

Le modele réduit est entrainé a partir de la base de données S constituée
d’instantanés collectés au cours de la simulation haute-fidélité correspondante au
parametre d’entrée p = 0.63.

Les lignes de courant de la vitesse macroscopique du gaz prédites par le modele
réduit sont affichées sur la Figure[I] Sur la Figure [2] les performances du modele
réduit sont évaluées pour différentes prédictions correspondantes aux parametres
d’entrée p € {0.23,0.33,0.43,0.53,0.63}.
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Figure 1: Lignes de courant u pour la prédiction de vortex avec Npoq = 20.
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Figure 2: Précision du modele réduit pour la prédiction de vortex.

128



Pour p € [0.23,0.63], le modele réduit est capable de prédire précisément les
nouvelles fonctions de distribution, bien que celles-ci ne soient pas présentes dans
la base de données S. En particulier, avec N,,q = 20 modes propres, l'erreur est
inférieure & 1% pour tous les tests de prédiction, et le temps de calcul est divisé
par environ 45 par rapport aux simulations haute-fidélité.

Transport optimal pour la réduction de modele

Apres avoir développé un modele réduit pour ’équation BGK, deux améliorations
pour ce modele sont proposées. Celles-ci sont basées sur le probleme de transport
optimal, qui permet d’analyser de maniere pertinente les fonctions de distribution.

Probleme de transport optimal

Soient deux fonctions de distribution fi, fo : RY — R, ayant la méme masse
totale (c-a-d. [p, f1dx = [p f2dx) et un colt de transport ¢(x,y) associé au
déplacement d’une unité de masse de x vers y. Le probleme de transport optimal
[80, 66] consiste & trouver le plan de transport 7 : R? x RY — R, minimisant

min c(x,y)m(x,y)dxdy, 4
i [ ity ey ()
ou 7(x,y) représente la quantité de masse déplacée de x vers y et H( f1, f2) désigne
l’ensemble des plans de transport vérifiant fi(x) = fnd x,y)dy et fo(y) =

f]Rd 7(x,y) dx. En particulier, lorsque le cott de transport est associé & la norme L?
(c-a-d. ¢(x,y) = ||lx — y|[3), le coiit de transport total (@) correspond au carré de
la distance L? de Wasserstein Wh(f1, fo) entre les functions f1 et fo. Cette distance
offre notamment une maniere naturelle de comparer et manipuler les fonctions de
distribution, comme illustré a la Figure [3|

0.035 T T T T T T T T T 0.035

n o
—fl 00,0.00 —fl.ououo
i *
— foms02s — fom 02
i -+
0.03 - f(1 50,050 0.03 [~ s £ 50 0,50
X *
foas0ms Fo25.075
—_— —_—
0.00,1.00 0.00,1.00

0.025 - - 0.025 -

0.015 |-

4 00151

0.005 - 0.005

0

0 0.1 02 03 0.4 05 06 07 08 09 1 0 0.1 0.2 03 0.4 05 06 07 08 09 1
E z

Figure 3: Comparaison de 5 interpolations barycentriques définies a partir de la
norme L? (gauche) et de la distance L? de Wasserstein (droite).
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Application a I’enrichissement de données

La premiere application du transport optimal concerne 'interpolation des fonctions
de distribution. Le sous-espace d’approximation étant construit de maniere a
approcher les instantanés de la solution, la précision et la fiabilité du modele
réduit dépendent de la base de données S. Cependant, le nombre de simulations
haute-fidélité disponibles pour la construction de la base de données est limité a
cause du cotut de calcul élevé associé a ces simulations. Pour cette raison, nous
proposons d’enrichir la base de données S avec des nouveaux instantanés générés
par transport optimal [82, 113 22]. Ces instantanés artificiels s* sont définis
comme les barycentres de Wasserstein des instantanés haute-fidélité (si, ..., sk)

aux coordonnées barycentriques (Aq,. .., Ag) :
K
s* = argmin Z MWa(s1, 8)2,
S
=1

K
ou Y N=1et N\ >0pourle{l,...,K}. Le modele réduit est ensuite le méme
=1

que celui présenté dans la section précédente, a 1’exception de la base de données
qui contient aussi les instantanés artificiels.
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Figure 4: Examples d’instantanés artificiels (rouge) créés a partir des instantanés

haute-fidélité correspondant aux simulations g = —2 (noir) et u = 2 (bleu).
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L’enrichissement de la base de données est évalué pour prédire une solution
qui est tres différente des instantanés utilisés pour entrainer le modele réduit.
Comme illustré sur la Figure[d] le transport optimal est employé pour interpoler les
instantanés haute-fidélité et enrichir la base de données. Nous comparons ensuite
deux modeles réduits : le premier modele est construit a partir des instantanés
haute-fidélité, tandis que le second modele est construit a partir des instantanés
haute-fidélité et des instantanés artificiels. D’apres la Figure [5 les instantanés
artificiels permettent d’améliorer la fiabilité du modele réduit pour p € [—1.5,1.5].
Pour 1 € {—2, 2}, les prédictions sont légerement moins précises car les instantanés
artificiels n’apportent pas de nouvelle information utile pour approcher la solution.

50

—+— Without low-fidelity snapshots

o7 —%— With low-fidelity snapshots

40 |

Error (%)

Figure 5: Précision des modeles réduits pour la prédiction d’une onde de choc avec
Npod = 9 modes propres.

Application au partitionnement de données

Le transport optimal est utilisé dans une seconde application pour comparer les
fonctions de distribution. Dans le modele réduit développé dans la section précé-
dente, les fonctions de base sont les mémes dans tout le domaine €2, mais différentes
bases réduites peuvent aussi étre employées en chaque point x afin d’améliorer
la précision de l'approximation des fonctions de distribution [5]. Cependant, la
mémoire requise pour stocker Ny bases réduites peut étre prohibitive a cause du
grand nombre de points. Pour cette raison, nous proposons d’employer N, €
{1,..., Ny} bases réduites locales en fonction de la quantité de mémoire disponible.
Le domaine () est ensuite décomposé en N, sous-domaines €2; C (), et la solu-
tion est approchées dans chaque sous-domaine par la base réduite correspondante,

c-a-d. Vx € Q) :

N! N

F bt =3 al(x )@ (€) et My(x. €)= 3 aM(x,1; 1)L (€).
n=1 n=1
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Cette partition du domaine est déterminée par une méthode de classification non-
supervisée a partir de la base de données S. L’objectif est d’identifier les régions
ou le comportement de la solution est similaire pour décomposer le domaine. De
plus, la mesure de similarité entre les fonctions de distribution est basée sur la
distance L? de Wasserstein plutot que sur la norme usuelle L?2. Le probleme de
classification qui en résulte est résolu par l'algorithme des k-moyennes.

t=03 t=0.3
08

Figure 6: Décomposition du domaine. Les régions jaune et verte (resp. bleue et
rouge) représentent les deux clusters pour ¢ (resp. 1). La courbe noire représente
la solution au temps final du modele réduit local avec IVp,q = 15 modes propres.

Cette modification est évaluée sur un test de reproduction d’'une onde de choc
a Kn = 107°. Sur la Figure @ le domaine est décomposé en deux sous-domaines
(N. = 2). Comme attendu, dans le premier sous-domaine, l'onde de choc n’est
que tres peu voire pas du tout présente au cours du temps, et la solution peut
étre approchée par un faible nombre de modes propres ; tandis que dans le second
sous-domaine, la réduction de la dimensionnalité est beaucoup plus limitée a cause
de l'onde de choc qui se déplace. Sur la Figure[7] la précision des modeles réduits
global (N. = 1) et local (N. = 2) est comparée en fonction du nombre de modes
propres. Le modele réduit local est plus précis que le modele réduit global car les
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modes propres locaux sont mieux adaptés pour approcher localement la solution.

30

T T
—»— Global ROM
—+—Local ROM

Error (%)

Figure 7: Comparaison de la précision des modeles réduits global et local.

Décomposition de domaine via la méthode de Galerkin
discontinue

La derniere contribution de cette these [92] concerne le développement d'une
méthode de décomposition de domaine [76] [72] basée sur la méthode de Galerkin
discontinue [62, [7, [116] pour la modélisation d’ordre réduite. Dans cette ap-
proche, le modele haute-fidélité résout le systeme dynamique o un certain degré
de précision est requis, tandis que le modele réduit est utilisé dans le reste du
domaine.

Equations d’Euler

Dans ce travail, nous considérons 1’écoulement de fluides compressibles et non-
visqueux gouverné par les équations d’Euler :

dq

— + V- -F(q) =0,

ET (q)
oux € QCR*teR: et weD. Ici, g € R* désigne la variable conservative et
F = (f,g) représente les flux :

P gu pU
_ | pu _ | P+ _ puv
q= p’U ) f - pU’U ) g = p'U2 + P )
E uw(E + p) v(E + p)
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oll p est la densité, u = (u,v)T est la vitesse, E est 'énergie et p est la pression

du fluide.

Modéle réduit

Dans le modele réduit, chaque variable conservative ¢; (c.-a-d. la densité, la quan-
tité de mouvement et ’énergie) est approchée en espace par un faible nombre M;
de modes propres

M;
Vie{l,....4} : G(x,t;p) =\ (x Z (t; ) ®L (%),

ol Poffset ¢ et les modes propres ®! sont construits pendant la phase d’appren-
tissage, et les coordonnées réduites a’, sont déterminées au cours de 1'étape de
prédiction par la méthode de Galerkin discontinue.

Phase d’apprentissage

Lors de la phase d’apprentissage, des instantanés sj(x) = gi(x, tx); o)) de la
variable conservative ¢; sont collectés a différents temps 2y, et parametres d’entrée
p i afin de construire la base de données. L'offset g, est ensuite définie comme la
moyenne des instantanés :

K
0ol Z 51
KiD
et les modes propres ®! sont construits par POD & partir de la base de données :
mmlmlser > / (si(x) — 5/(x))" dx
P! (x) 1\4 (x) =19

tel que / P! (x)D! (%) dX = Gy,
0

ot 5/(x) = gi(x) + X (fo(si(y) = ¢.(¥))®Pn(y) dy) ®n(x). Finalement, les modes
n=1

propres ®¢ sont dérivés de maniere analytique afin d’obtenir leurs gradients V®?

qui sont aussi requis dans la formulation de Galerkin discontinue.

Etape de prédiction

Comparées a la méthode de Galerkin discontinue classique, les fonctions de base
polynomiales sont ici remplacées par les modes propres POD, conduisant au systeme
d’EDO suivant pour i € {1,...,4} et n € {1,...,M;} :

da, _ 3 </ Fi(ii)-V(I)ﬁldx—/ E(a‘,ﬁ+,n)¢id0)a
dt =0 \Uk oK
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ot Fy(q,q",n) désigne le flux numériques avec Gt et q-, la trace positive et
négative de q, respectivement, n désigne la normale sortante, et q* = qp. au
bord. Par rapport a la méthode de Galerkin classique, les intégrales aux faces
supplémentaires permettent, d’une part, d’imposer les conditions aux bords dans
un sens faible et, d’autre part, d’introduire de la diffusion/dissipation numérique a
travers le flux numérique pour stabiliser le modele réduit. De plus, afin de réduire
le cotit de calcul des intégrales, celles-ci sont évaluées par la méthode d’hyper-
réduction ECSW, qui définit une méthode d’intégration numérique empirique ou
I'intégrande n’a besoin d’étre évalué qu’en un faible nombre de points x ou o.

Décomposition de domaine

Le modele réduit développé précédemment offre une maniere simple de mettre
en oeuvre la décomposition de domaine. Dans cette approche, le domaine est
déomposé en micro- et macro-cellules comme illustré sur la Figure [§. Le modeéle
haute-fidélité décrit la dynamique du fluide dans les micro-cellules K;, tandis que
le modele réduit approxime la solution dans les macro-cellules €2;. La restriction
de la solution sur chaque macro-cellule €2; est approchée par

M,

Vie{l,.... 4}, Vx € Q; ¢ Gi(x,tip) = g7 (x) + > all (t; p) @ (x),

n=1
ot l'offset ¢/ et les modes propres ®%/ sont construits de la méme maniere que
précédemment. Les coordonnées réduites vérifient maintenant le systeme d’ODE

da%’

- ¥ ([ p@-veiec- [ Rt medo),
dt KGQ]' K 0K

ou les intégrales sont calculées par la méthode ECSW afin de réduire le cotit
de calcul des intégrales. De cette maniere, la solution globale est reconstruite en
raccordant les solutions locales a travers les flux numériques a l'interface des micro-
et macro-cellules.

Figure 8: Exemple de décomposition de domaine en 4 micro-cellules et 3 macro-
cellules.
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Prédiction d’un écoulement transsonique

La décomposition de domaine basée sur la méthode de Galerkin discontinue est
évaluée sur sa capacité a prédire un écoulement transsonique autour d’un profil
d’aile NACA 0012. La solution dépend des parametres d’entrée pu = (M, @)
correspondant a différents nombres de Mach en entrée M., et angles d’attaque «.
Un écoulement uniforme a Mach M, est imposé sur les bords du domaine

Vo € 0Q 1 pelosp) =1, upe(o; p) = Moo, vye(o; ) =0, Tye(o;p) =1,

et une condition de glissement est appliquée sur le profil d’aile. Le domaine € est
décomposé en deux régions : le modele haute-fidélité est utilisé autour de ’aile afin
de représenter précisément I'onde de choc, tandis que le modele réduit est employé
dans le reste du domaine pour approximer la solution.

Les solutions prédites a I'état d’équilibre sont présentées sur la Figure [J] et
les performances de la décomposition de domaine sont données a la Figure
Lorsque M = 7, I'erreur de prédiction est inférieure a 1% pour tous les tests, et le
temps de calcul est réduit de 78% par rapport aux simulations haute-fidélité.
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Figure 9: Nombre de Mach de la solution approchée correspondante a M = 16
pour la prédiction d’un écoulement autour d’un profil d’aile NACA 0012.
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Figure 10: Précision de la méthode DGDD pour la prédiction d'un écoulement
autour d’'un profil d’aile NACA 0012 en fonction de la taille de la base réduite.

Conclusion

Dans cette these, nous avons tout d’abord développé un modele réduit pour la
simulation d’écoulements gazeux dans les régimes raréfié et hydrodynamique. Les
tests ont démontré la précision et 'efficacité du modele réduit, avec une erreur
inférieure a 1% et un temps de calcul divisé par environ 45 par rapport aux simu-
lations haute-fidélité en utilisant 20 modes propres.

Ensuite, deux améliorations pour le modele réduit précédent, basées sur le
probleme de transport optimal, ont été proposées. La premiere amélioration porte
sur 'enrichissement de la base de données avec des nouveaux instantanés artificiels
interpolés par transport optimal. Les tests ont démontré que ces instantanés artifi-
ciels amélioraient la fiabilité du modele réduit dans le cas d’un sous-échantillonnage
de la solution a prédire. La seconde amélioration consiste a partitionner le domaine
par une méthode de classification non-supervisé couplée a la distance de Wasser-
stein, puis a approximer la solution dans chaque sous-domaine par différentes bases
réduites locales. Les tests ont montré que cette modification améliorait la précision
du modele réduit.

La derniere contribution visait a développer une méthode de décomposition
de domaine basée sur la méthode de Galerkin discontinue pour la modélisation
d’ordre réduite. Dans cette approche, le modele haute-fidélité résout le systeme
d’équations ot un certain degré de précision est requis, tandis que le modele réduit
est utilisé dans le reste du domaine. Les tests ont démontré les performances de la
décomposition de domaine, avec une erreur inférieure & 1% et un temps de calcul
réduit de 78% par rapport aux simulations haute-fidélité en utilisant 7 modes
propres.
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