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ABSTRACT

Towards Smart Firefighting Using The Internet of Things and Machine Learning

Gaby Bou Tayeh
University of Bourgogne Franche Comté, 2020

Supervisors: Abdallah Makhoul and Jacques Bahi

The Internet of Things (IoT) is the ability for “things” that contains embedded technolo-

gies to sense, communicate, interact, and collaborate with other things, thus creating a

network of physical objects. These connected devices are meant to constantly log and

communicate data to an end-user. Once, the data has been collected, it could be ana-

lyzed to extract extremely useful information. IoT is taking connectivity beyond laptops

and smartphones towards connected cars, smart homes, smart industries, connected

wearables, smart cities, and connected healthcare.

Firefighters are now operating in an ever-increasing sensor-rich environment that is creat-

ing vast amounts of potentially useful data. The comprehensive ability to collect, analyze

and process this data is opening new possibilities for the fire service to perform work

tasks in a highly effective and efficient manner either during pre-fire, trans-fire (i.e. during

the event), and post-fire stages. This dissertation global objective is to propose solutions

that effectively use the available sensor technology, the means to communicate that data,

the knowledge base and algorithms to most process the data, convert it into significant

knowledge/beneficial decision tools, and effectively communicate the information to those

who need it, on the fire ground and elsewhere.

The first objective was to focus our efforts on the sensor devices which are the source

of the valuable data. The most challenging problem is how to ensure a sufficient opera-

tional lifetime for these tiny devices that have very limited energy available for consump-

tion. Based on the fact that the sensing, transmission, and processing are the governing

energy-consuming activities of the sensor devices we worked on reducing these activities.

We first proposed a novel data transmission reduction algorithm, our approach learns the

moving trend of the collected data after a brief observation period. Then it uses this knowl-

edge to build a prediction model on the sensor node that is able to forecast future mea-
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surements. The latter, does not transmit any measurement to the destination (Sink) as

long as its corresponding prediction is considered accurate. Having built the same predic-

tion model simultaneously with the sensor node, the Sink produces the same predictions.

Since packet loss is a common problem in Wireless Sensor Networks (WSNs) we cou-

pled this transmission reduction algorithm with a technique that detects missing packets,

ensures synchronization during occasional re-adjustment of the prediction model, and

reconstructs all the missing data. Adding an additional adaptive sampling layer on the

previously described transmission reduction algorithm is then proposed. If no significant

variations in collected data over a certain period of time are recorded, the sensing sam-

pling rate is reduced without compromising the quality of the reported information. Lastly,

we developed a centralized data reduction algorithm for cluster-based sensor networks.

This latter, periodically analyses the data reported by its member nodes and adjust their

sampling/transmission rates according to their level of correlation with each other.

With the help of the fire brigade of the department of Doubs, we successfully attained

our second objective which is the development of a firefighter 2.0 system prototype. This

latter consisted of a smart-watch for heart rate and movement monitoring and two sensor

devices, one for localization and the other for environmental data sensing. Lastly, a web

application for real-time visualization of the transmitted data is integrated into the system.

The latter was validated throughout small-scale experiments. In addition, our proposed

energy management algorithms were implemented on the real devices composing the

system and their energy consumption was analyzed.

The third objective was to use sensory and non-sensory data to help in decision making.

We first studied and compare different recent clustering algorithms for massive IoT data.

The aim was to use the obtained results in order to determine the best clustering strategy

for our network and develop an indoor localisation system. Second, we investigated the

possibility of predicting the number of future interventions by training Machine Learning

methods on data-set aggregated from multiple sources. The latter contained information

on all interventions that have taken place in the department of Doubs in France since

the year 2012, meteorological data, traffic data, and other information. The aim was to

help the fire brigade to better manage their human and mobile resources according to the

anticipated number of interventions.

Keywords: Wireless Sensor Networks, Internet of Things, Machine Learning, Energy

Management, Lora, LoraWan, Remote Monitoring, Fire Fighters.



RÉSUMÉ

L’Internet des objets (IoT) est l’extension de la connectivité Internet dans des appareils

physiques et des objets quotidiens. Ces derniers sont équipés d’éléments actifs qui les

rend capable de collecter, traiter, et transmettre des données. Ces dispositifs connectés

sont destinés à enregistrer et à communiquer en permanence des données à un utilisa-

teur final. Une fois les données collectées, elles peuvent être analysées pour en extraire

des informations extrêmement utiles.

Les pompiers travaillent actuellement dans un environnement de plus en plus riche en

capteurs qui génère de grandes quantités de données potentiellement utiles. La capac-

ité globale de collecte, d’analyse et de traitement de ces données ouvre de possibilités

d’amélioration du quotidien des sapeurs-pompiers. L’objectif global de cette thèse est

de proposer des solutions qui exploitent cette nouvelle technologie de capteurs et de

communication à faible coût, ainsi que des algorithmes de traitement de données, pour

les convertir en connaissances significatives/outils de décision, et communiquer efficace-

ment les informations à ceux qui en ont besoin, sur les lieux d’intervention ou ailleurs.

Le premier objectif était de développer des solutions algorithmiques pour la gestion

d’énergie des dispositifs IoT qui ont une source énergétique limitée afin de maximiser

la durée de vie du réseau. En premier lieu, nous avons proposé un nouvel algorithme de

réduction de la transmission des données. Notre approche est basée sur un modèle de

prédiction dual, qui est capable de prédire des mesures futures. Ce dernier, exécuté à

la fois par les capteurs et la station de base (Sink), permet au dispositif IoT de ne plus

transmettre les mesures collectées vers la station tant que leurs prédictions correspon-

dantes sont correctes. Le Sink ayant construit le même model il reproduit alors toutes les

données non transmises. Finalement, le Sink et le dispositif IoT mettront à jour systéma-

tiquement le model de prédiction en fonctions de nouvelles estimations réelles. Comme

la perte de paquets pendant la transmission est un problème courant dans les réseaux

de capteurs sans fil (WSN), nous avons couplé cet algorithme de réduction de la trans-

mission à une technique qui détecte les paquets manquants. Notre proposition assure

la synchronisation de la mise à jour occasionnel du modèle de prédiction et intègre un

modèle de reconstruction de données dans le cas de perte de messages. L’ajout d’une

couche d’échantillonnage adaptative supplémentaire sur l’algorithme de réduction de la

transmission décrit précédemment est ensuite proposée. Il s’agit d’adapter la fréquence

de la collecte de données en fonction de leur variation. Si aucune variation significa-
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tive des données collectées sur une certaine période de temps n’est enregistrée, le taux

d’échantillonnage sera réduit tout en garantissant l’intégrité de l’information. De plus,

nous avons développé un algorithme centralisé de gestion d’activité des dispositifs IoT.

Cette approche permet à un Cluster-Head (CH) d’analyser périodiquement les données

communiquées par ses nœuds membres et ajuste leurs taux d’échantillonnage et de

transmission en fonction de la corrélation spatio-temporelle intra et inter nœuds.

D’un autre côté, notre deuxième objectif de cette était le développement d’un prototype

réel et un système IoT déployé et dédié aux sapeurs-pompiers. Ce système a été réalisé

en partenariat avec les pompiers du département du Doubs. Il consistait en une montre

intelligente pour la surveillance du rythme cardiaque et des mouvements des pompiers

et en deux dispositifs de capteurs, l’un pour leur localisation et l’autre pour la collecte de

données environnementales de la zone d’intervention. Le système a été validé par des

expériences et de banc-d ’essais. De plus, ce système a été utilisé pour confirmer les

résultats obtenus de nos algorithmes proposés sur une plateforme réelle.

Le troisième objectif était d’utiliser des données issues des capteurs et d’autres concer-

nant les interventions dans un but d’aide à la décision. Nous avons étudié et comparé

différents algorithmes de clustering récents pour les données IoT massives. Le but était

d’utiliser les résultats obtenus pour sélection la méthode optimale pour la problématique

de la localisation interne “indoor”. Ensuite, en utilisant des méthodes de Machine Learn-

ing entrainées sur une base de données existante, nous avons étudié la possibilité de

prédire le nombre d’interventions futures des sapeurs-pompiers. Cette base de données

contenait des informations sur toutes les interventions qui se sont passées dans le dé-

partement du Doubs depuis l’année 2012. Elle contient des données météorologiques, et

d’autres valeurs indépendantes. Le but était d’aider les pompiers à gérer leurs ressources

humaines et mobiles en fonction de nombre d’interventions anticipé.

Mots-clés: Réseaux de capteurs sans fils, Internet des Objets, Machine Learning, Ges-

tion d’Energy, LoRa, LoRaWan, Surveillance à distance, Sapeurs-pompiers.
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INTRODUCTION

GENERAL INTRODUCTION

The internet of things (IoT) represents a general concept about the ability of network de-

vices to detect and collect data from the world around us and then share this data on the

web where it can be processed and used for a variety of purposes. IoT is a technologi-

cal revolution that is already underway and is becoming more and more part of our daily

lives. However, it is not a new concept, it dates back to 2003 when the first connected

lamp (DAL) was created. The main reason why IoT is considerably developed today is

because of its association with currently trending technologies such as big data and arti-

ficial intelligence. Perhaps one of the examples that could give us a glance into the future

of IoT is the newly registered patent by MICROSOFT under the name of "CRYPTOCUR-

RENCY SYSTEM USING BODY ACTIVITY DATA", that shows how IoT is being pushed

to even become a part of our body.

As the world progresses rapidly and new technologies and tools are invented every day,

the firefighting industry will eventually catch up with the innovations. Would today’s fire-

fighter imagine fighting a fire in a woolen uniform with a rubber slicker? Most definitely

not, but there was a time when that was considered the state of the art personal protec-

tive equipment (PPE). Tomorrow’s firefighter may not be able to imagine fighting a fire

without having his condition and the conditions around him continuously being monitored

by wireless sensors. These sensors could have the ability to monitor in real-time, not

just the intervention area (whether it is a fire intervention or another type) but also the

firefighter’s physical condition. Embedded sensors would do more than monitoring, they

would provide alerts that will take safety to a new level.

Whether it is your fitness tracker or a smart-watch, wearable technology is becoming

more and more a part of our daily life. Knowing how advantageous wearable technology

can be, it is simple to understand why the industry is moving towards making wearable

sensors an important part of a firefighter’s PPE. The latter can monitor both body and

environmental parameters and can emit an alert when these parameters are deemed

dangerous or indicate physical distress. These are signs a firefighter may overlook in

his adrenaline-fueled dedication to accomplishing his job. There are already numerous

off the shelf sensors that can monitor location, movement, heart rate, sleep quality, etc.

These sensors need to be adapted to provide more information and withstand harsh
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environmental conditions. Wearable sensors are small by nature and can go wherever the

firefighter goes. Still, it is a challenge to create sensors and networks that are small in size

but efficient and have enough energy to withstand for hours. The sensor networks should

also be able to have quantitative approaches to data, capture motion, and conditions

accurately to meet the identified needs. Finally, they need to be integrated into PPE

gear while keeping it comfortable and non-constrictive at the same time. Technologically-

enabled PPE will be able to help improve the safety of firefighters and management more

efficiently the interventions. They can increase productivity for both individuals and crews,

but most importantly, preventing injury and protecting lives will be their most important

role.

MOTIVATION/OBJECTIVES

In this dissertation and under the project “Firefighter 2.0”, we work on tackling the most

prominent issues facing the development of a smart wearable system for firefighters.

Some interventions can last for long hours and the energy powering the system is all

that matters. Therefore, the first objective is to focus our efforts on energy management

in wireless sensor networks in order to ensure a maximum operational lifetime for the

sensors and the system in general.

The second objective is to move on to resolve the engineering problems of the remote

monitoring system. Several vital questions need to be addressed such as what devices

to use? How to reliably deliver the collected information to the distant command-station?

How can we design a simple system that is non-obstructive and does not get rejected

by the firefighters? What advantages should the system provide? How can we balance

between cost and the quality of service? etc.

After developing the energy management algorithms, and proposing a remote monitoring

system that meets all the requirements, the third objective is to take a step further and

pass from theory to real implementation. The proposed energy management algorithms

are verified on real sensor devices and the prototype of the proposed system is validated.

Finally, the last objective is to use Machine Learning (ML) to build decision making tools

that could improve the efficiency of the daily operational life of firefighters. With our hands

on a large data set containing information about all the interventions that happened dur-

ing the past six years in the region of Doubs, France, we build a prediction model capable

of predicting accurately the number of future interventions. This could help firefighters ef-

ficiently manage their human and mobile resources according to the frequency of events.

Moreover, several recent clustering techniques for massive sensor data are reviewed and

compared aiming to find the best clustering strategy for the proposed sensor network and
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to pre-process the data for future usage in decision making tools.

Figure 1 illustrates how the three main parts of this thesis are interconnected and it also

resumes our contributions.

1. Design and development of an IoT-
based wearable smart system

2. Development and implementation of 
data-driven energy management 
algorithms for the IoT devices

Collection and 
transmission of data

Data storage and real time visualization

Feed sensor data

Feed knowledge
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Machine Learning:
• Data pre-processing
• Decision making tools

Figure 1: Graphical summary

MAIN CONTRIBUTIONS OF THIS DISSERTATION

Motivated by what has been discussed previously, the main contributions in this disser-

tation concentrate mainly on energy management in wireless sensor networks, design of

the smart-wearable system for firefighters, validation of the proposed system and energy

management algorithms through real implementation, and usage of ML models for help

in decision making.

Energy Management: Energy management in wireless sensor networks is a broad

and generalized term. There are a variety of approaches that aim to resolve this issue

and they are discussed in detail in Chapter 1 of Part I. The common objective of these

approaches is to reduce the energy consumption of the sensors in order to extend as

much as possible the lifetime of the network. The root of the problem goes back to the

fact that sensor nodes are, in general, powered by small batteries that have a short life

span. Moreover, sensor nodes are generally designed for deployment either in large

quantities or in a harsh environment, which renders the task of monitoring the battery lev-

els of each individual node and periodically replacing depleted ones almost impossible.
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Therefore, based on the fact that four main activities are responsible for consuming the

majority of the provided energy namely sensing, processing, transmission, and powering

the node’s components, the research community developed various energy management

approaches. In this dissertation, we focus mainly on two of them, namely data-driven and

duty cycling. The former aims to reduce the volume of collected and transmitted data

by a node using data-driven approaches such as compression, aggregation, prediction,

adaptive sampling, etc. The latter aims to construct an efficient scheduling scheme that

maximizes the sleep duration of a sensor. Our contributions regarding energy manage-

ment in wireless sensor networks are listed below.

1. First, an algorithm that reduces the number of transmitted data between the sen-

sor and the destination (Sink) is proposed. This algorithm exploits the temporal

correlation of collected sensor measurements to build a simple yet robust model

that is able to forecast future observations. This model is built simultaneously on

the sensor and the Sink using a well-known approach called the Dual Prediction

Model (DPM). Instead of transmitting each collected measurement, the sensor first

compares it to the model’s prediction, and in case there is no significant difference,

the sensor node discards the measurement. The Sink, having produced the same

prediction, considers it valid as long as it did not receive anything from the sensor.

Finally, each time the wrong prediction is produced, the sensor transmits the real

collected measurement (referred to as correction packet) to the Sink, and they will

both use it to re-train the model.

2. Second, for a realistic implementation of the previously described algorithm, we

took into consideration the packet loss during the transmission of correction pack-

ets. The Dual prediction mechanism works well as long as we consider a loss-free

communication network, which of course is not possible in a real-world implemen-

tation. Packet loss is a major issue that could make the DPM approach unusable if

not taken into consideration. In case a correction packet is lost during transmission

and did not reach the sink, on the one hand, the sensor will proceed to re-train the

model, on the other hand, the sink will consider that the model is still valid. Thus,

the updated model on the sensor and the outdated one on the Sink will start pro-

ducing different predictions. To prevent the model synchronization loss problem, we

coupled the previously proposed data reduction algorithm with a mechanism that

can identify lost packets, force synchronization, and reconstruct missing data.

3. Third, Knowing that the sensing activity does also require a significant amount of

power, we extended the previous algorithm and added an additional adaptive sam-

pling layer. The idea is to first store in separated data sets the collected/predicted

data over multiple periods (duration pre-defined by the user). Then, these sets are

analyzed using the Kruskal-Wallis statistical test, which determines whether there
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is a significant difference between them or not. If not, the sensor is considered to

be collecting redundant information, therefore, using the Behavior Curve function a

new reduced sampling rate (sleep time) is assigned to it. By doing so, the sensor

will wake up less often, thus the wake-up, sensing, and transmission energies will

be reduced.

4. Finally, we also proposed a decentralized data reduction approach for cluster-based

sensor networks. Instead of distributing the burden of data-reduction on the de-

ployed sensors, it is now the responsibility of the Cluster-Head (CH). The latter is

considered to have higher energy and memory storage, and more computational

powers. Every time a CH receives a new measurement from a member node, it

stores the value locally then forwards it to the destination. After having collected

enough data from the sensors over a predefined period of time, the CH computes

the correlation among member nodes using the stored data. Finally, following spe-

cific rules, it assigns a new reduced sampling rate (sleep time) for highly correlated

ones.

Real Implementation - Application to Firefighters 2.0 After developing the previously

described energy management algorithms, it was time to apply them in the context of our

project “Firefighter 2.0”. First, we had to propose and develop a remote monitoring sys-

tem prototype that is adapted according to the needs and requirements of the fire brigade

of the region of Doubs in France. Several interviews were held with the personnel from

the fire and emergency response department that included discussions regarding the re-

liability, cost, and security of the system and the collected data. The interviews led to

developing and validating the first prototype of a plug and play system that is specifi-

cally tailored for the needs of the fire brigade and also designed to work in areas with

no network coverage. The system is composed of two sensors, one for localization and

the other for environmental data collection. In addition, a smart-watch is used to monitor

the condition of the firefighter (mainly heart rate and movement monitoring). Finally, as

a communication protocol, we used LoRaWan for its proven advantages of being low-

cost, long-range, and infrastructure-less. The previously described energy management

algorithms were implemented on the environment monitoring sensor. Real current con-

sumption has been measured and the final results are presented in Chapter 5.

Machine Learning for Decision making The last part of this thesis is Machine Learn-

ing (ML) oriented. In connection to the duty cycling energy management algorithm that

relies on a cluster type of networks. It is essential to have “good” clusters for maximum

efficiency. Moreover, clustering enables cluster analysis which is very helpful for deci-

sion making. In light of this, we surveyed the different clustering algorithms that could be
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used for wireless sensor networks (or IoT in general) and we determined throughout sim-

ulated experiments on real sensor readings which one performs better. While most works

present the well-known K-means approach as the state-of-the-art clustering method, our

results demonstrated a different reality.

Lastly, for an efficient allocation of mobile and human firefighting resources, we investi-

gate the possibility of predicting future incidents using machine learning algorithms that

are trained on a set of data containing information on almost 200,000 firemen interven-

tions that happened during the last 6 years. After pre-processing the data we tested

multiple machine learning algorithms and we compared their results, aiming to determine

which algorithm performs better. The results look promising as we were successfully able

to predict the number of future interventions with an acceptable error margin.

OUTLINE OF THIS DISSERTATION

The dissertation is divided into three parts. Part I is dedicated to energy management in

WSN and it is composed of five chapters. Chapter 1 presents a brief introduction on wire-

less sensor networks (WSNs) and provides a high-level taxonomy of energy management

in WSNs in addition to a detailed state of the art of the related literature. Chapters 2, 3,

and 4 describes the transmission reduction algorithm, its extension through combination

with adaptive sampling, and the duty-cycling approach respectively. Finally, Chapter 5

presents the proposed remote monitoring system and illustrates the energy consump-

tion results of the implementation of the energy management algorithms on real sensor

devices. Part II is Machine Learning oriented and it is composed of two chapters. In

Chapter 6 the work related to comparing different recent clustering approaches for IoT is

presented. The case study of the prediction of the number of interventions is provided in

Chapter 7. Lastly, In Part III, Chapter 8 concludes the work that has been done in this

thesis.
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ENERGY MANAGEMENT FOR WSNS:
STATE OF THE ART

S ustainable Wireless Sensor Networks (WSNs) are becoming more of a reality due

to the key driving energy management techniques. Since sensor nodes are typ-

ically powered by attached batteries, some of these techniques propose battery-driven

energy conservation schemes to ensure energy-efficient network operation. However,

the constraints associated to the limited battery capacity shifted the focus towards either

exploiting alternative energy sources by harvesting ambient energy or developing data-

driven algorithms aiming to minimize the sensor’s most energy-consuming activities. In

this chapter, we briefly introduce wireless sensor networks and we present a high-level

taxonomy of their energy management. Moreover, a detailed state of the art on energy

management in WSN is also presented.

1.1/ INTRODUCTION ON WIRELESS SENSOR NETWORKS

Wireless Sensor Networks (WSNs) can be defined as a self-configured and infrastructure-

free wireless network that is typically used to monitor physical or environmental con-

ditions, such as temperature, sound, vibration, pressure, movement or pollutants

[Estrin et al., 1999], and transmit their data through the network to a central worksta-

tion (Sink) where the data can be visualized and analyzed [Davis et al., 2012]. A Sink

acts like an intermediate interface that enables the user to either retrieve information

from the network through query injections or to gather information transmitted to it. The

number of sensor nodes consisting of the network can range from tens to thousands

[Cerpa et al., 2001, Shih et al., 2001, Petriu et al., 2000], depending on the application

and they are mainly equipped with sensing and computing devices, radio transceivers,

and power components. These sensor nodes are inherently resource-constrained, they

have limited processing speed, storage capacity, communication bandwidth, and energy

9
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resource [Kahn et al., 1999]. After deployment, the sensor nodes self-organize an ap-

propriate network infrastructure, often with multi-hop communication, in order to transmit

the data to be collected to the Sink. The working mode of the sensor nodes may be

either continuous, periodic, or event-driven. Wireless sensor networks (WSNs) paved

the way for new applications and, due to several constraints, require non-conventional

paradigms for protocol design [Borges et al., 2014]. Owing to the requirement for low de-

vice complexity and low energy consumption, proper and efficient management of the

communications and data processing capabilities must be found. This has motivated a

lot of researches on the design of energy and computationally efficient algorithms and

protocols for WSNs. There are several methods and approaches to manage energy con-

sumption in WSN. In the next section, we will introduce these techniques, explain them,

and provide examples of their application from the literature.

1.2/ STATE OF THE ART ON ENERGY MANAGEMENT IN WSN

Power management in WSNs is known as the set of rules that control the different mech-

anisms of energy supply to ensure efficient consumption of the energy provided to the

sensor. The overall objective is to control resources in such a manner that slows down

or prevents the depletion of the energy of a node for the network to operate continuously

and to ensure connectivity and coverage.

In this section, we describe a high-level taxonomy of how to take energy management into

consideration while designing or developing an algorithm for Wireless Sensor Networks

(WSNs). At the same time, we present a detailed state of the art of all the different

approaches proposed in the literature aiming to manage energy consumption in WSNs.

We start by breaking down the taxonomy in order to clearly present for the reader a

general idea on what are the possible options to manage energy in WSNs.

The first option is to search for external energy sources to provide as much surplus in

energy as possible to the sensor nodes and extend the lifetime of the network. This op-

tion is referred to as energy provisioning. Energy provisioning can be further classified

into three main schemes, namely, energy sourced by batteries, energy harvested from

the environment, and transference energy. The second option is to develop efficient en-

ergy management schemes on the basis of energy consumption. The latter assumes

that no external power source is available, thus energy optimization algorithms must be

implemented on the sensor nodes in order to extend their lifetime. These energy man-

agement schemes can be generally divided into four schemes, namely, data-driven, duty

cycling, routing protocols, and mobility. A detailed discussion and a state of the art on

each sub-classification of this taxonomy is presented in the subsequent sections.
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1.2.1/ ENERGY PROVISION

1.2.1.1/ BATTERY DRIVEN

The major and most viable power supply for the overwhelming majority of commercially

available sensor nodes is a fixed battery, especially for sensor networks deployed in re-

mote areas. Most of the sensor nodes are either compatible with Lipo or compacted

sized AA batteries. Unfortunately, no matter how large is the capacity of these batteries

or how efficient are the protocols implemented on the nodes, the energy will eventually

drain. Therefore, in order to avoid interruption in communication or a network outage,

these batteries must be periodically replaced. However, it is not always possible to do so.

In the next subsections, we will present replaceable and irreplaceable fixed batteries.

Irreplaceable Fixed Batteries: Irreplaceable fixed batteries with limited capacity, are

usually found in scenarios where the sensor nodes are deployed in harsh inaccessible

environments or hostile military locations. It is then practically impossible to physically

access the deployed nodes and replace their batteries. An example of such a scenario

can be found in [Mahamuni, 2016] where the authors highlight the problem of senor nodes

accessibility in military applications for battery replacement and proposed an energy-

efficient military surveillance system that aims to maximize the lifetime of the network.

Replaceable Fixed Size Batteries: Other WSN deployment scenarios are accessible

for battery replacement. The replacement can be either performed by humans or robots.

The latter could be a plausible solution for human hazardous locations.

[Tong et al., 2011] proposed a node reclamation and replacement strategy, where mobile

robots or human labors periodically check up the sensor network in order to reclaim nodes

with low or no power supply and replaces them with fully charged ones. Finally, the

reclaimed nodes are brought back to an energy station for recharging.

[Sheu et al., 2005] presented a designed smart mobile robot that navigates towards low-

energy nodes and automatically replaces them with recharged ones. The navigation

algorithm relies on the received signal strength in order to localize depleted nodes.

1.2.1.2/ ENERGY HARVESTING

The energy provisioning trend is now shifting more towards alternative energy sources

rather than relying on limited supply provided by fixed capacity batteries. These alterna-

tive sources are renewable energy, specifically in the form of energy harvesting from the
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surrounding environment. There are various sources of natural and man-made energy

that can be harvested by sensor nodes and converted to electrical energy. The differ-

ent types of energy that can be harvested and examples for their application in Energy-

harvesting Wireless Sensor Networks (EH-WSNs) is provided below.

Radiant Energy: Radiant energy, by definition, is the energy harvested from solar radi-

ations and radio frequency (RF) waves. Both of these energy sources have been exten-

sively explored in an attempt to utilize them in powering sensor nodes.

[Varghese et al., 2016] proposed an RF power harvesting battery management scheme

for aerospace applications that can be used even in harsh real-time applications. Using

special synchronized MAC protocol, low power techniques, low leakage components, and

systematic coding of the microcontroller firmware, they were capable of keeping sensor

nodes, located 2 meters away from the RF power source, operating continuously.

[Nishimoto et al., 2010] proposed an RF energy harvesting prototype that exploits TV

broadcasts airwaves as the source harvested energy in order to power up the sensor

nodes. In addition, they propose an adaptive duty cycle scheduling method to turn on the

radio module only when it is necessary in order to reduce furthermore energy consump-

tion.

[Kaushik et al., 2016] proposed a low-cost wake-up receive hardware design for RF en-

ergy harvesting sensor nodes, capable of performing both range-based wake-up and

directed wake-up using a single hardware.

[Li et al., 2015] proposed an intelligent solar energy-harvesting system that it is designed

using Maximum Power Point Tracker (MPPT) circuit. The system is composed of a solar

panel, a lithium battery, and a control circuit. The system can afford a stable power supply

with 5-V output voltage through a standard USB interface. The Lithium battery-charging

strategy is designed to avoid as much as possible the charge-discharge cycle, which

greatly improves its lifetime. The system has been finally proven, through experiments, to

have a stable and safe performance. Moreover, it has been demonstrated that the system

has high reliability, high efficiency, and low power loss.

[Alippi et al., 2011] proposed a WSN framework for marine environment monitoring. The

design of the system included all the essential aspects such as sensing, transmission,

data storage, and visualization. But most importantly, each sensor node was equipped

with a solar-energy-harvesting mechanism in order to harvest energy from the sun and

prolong the lifetime of the network.
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[Li, 2018] proposed an optimized solar energy harvesting system. The optimization pro-

cess concerned the capacity of the supercapacitor and the size of the solar panel. The

proposed system that is used to monitoring the environment in Sundsvall, Sweden, was

proven through simulation to be low-power consuming and secure.

Mechanical Energy: Mechanical energy is another source of energy that can be har-

vested. Typically, it is harvested using piezoelectric devices. Numerous piezoelectric

based-systems and other mechanical approaches for energy harvesting in WSNs have

been developed throughout the years.

[Kahrobaee et al., 2013] proposed an EH-WSN for agriculture applications. It utilizes

underground piezoelectric devices to harvest energy generated by the vibrations of an

above-ground four-wheeler center pivot irrigation system. Moreover, they argue that the

same technique can be used to harvest energy from road vibrations in road monitoring

WSN applications.

[Zhu et al., 2012] proposed an energy harvesting system that generates energy from road

vibrations caused by automobiles using piezoelectric devices. This technique is proposed

as a viable solution for WSN applications dedicated to monitoring various automobile

physical parameters such as ultrasonic sensors for distance detection, tire pressure mon-

itoring, and other applications.

[Wijesundara et al., 2016] proposed an EH-WSN system to track and localize elephants

in their habitats. The sensors are powered by the harvested Kinetic energy generated by

the elephants’ movements. The proposed system consists of a moving magnet, two fixed

magnets, a poly-carbon tube, and two coils. Through experiments, they demonstrated

that their system is capable of generating enough power for a mounted tracking sensor to

transmit its location up to 24 times a day.

[Ye et al., 2011] proposed an EH-WSN system to harvest hydraulic energy using a micro-

turbine installed in bypass tubes of water distribution systems. However, this method is

found to either wastewater (releasing water from the water distribution system) or cannot

generate enough power in the level of mW. Therefore, it remains partially impractical.

Thermal Energy: Thermal energy is produced when there is a temperature difference

between two conducting materials. Many environmental studies on thermal powered sen-

sor nodes have been conducted throughout the years.

[Woias et al., 2014] proposed a thermo-electrical generator (TEG) to track sheeps. The
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generator is mounted on the sheep’s collar and harvests thermal energy generated by the

difference in temperature between the sheep’s body and the ambient temperature. The

system has been proven to generate enough power in order to power a low-power radio

tracking system.

[Davidson et al., 2009] proposed a thermally powered sensor node that generates ther-

mal energy by exploiting the difference between the ocean water surface and the ambient

air to monitor ocean water quality. The average energy output is shown to be enough to

potentially power aquatic sensors.

[Hou et al., 2018] proposed a thermal energy harvesting system for industrial IoT tem-

perature monitoring applications. The obtained results demonstrate that the designed

TEG-based system has an acceptable energy conversion rate, and is capable of indef-

initely power a commercial sensor node when the sleep period of the device exceeds

16s.

Hybrid Energy-Harvesting Systems: We can also find in the literature some research

related to hybrid energy-harvesting systems. The latter combines multiple types of energy

harvesters into a single hybrid system. We list some of these existing approaches.

[Yu et al., 2008] proposed a solar/thermal hybrid system to power sensor nodes for WSN

applications. The latter consisted of a solar panel and a TEG. In order to store energy,

a Li-ion battery and a super-capacitor are used. Moreover, the system included a power

management subsystem. The results demonstrated that the proposed solution could

prolong the lifetime of a sensor node up to 5 years under normal sunny weather. However,

it only lasts for 7 days when it is rainy and dark.

[Tan et al., 2010] proposed a hybrid indoor artificial lightning and thermal energy harvest-

ing system. The latter consisted of a solar cell, a miniature TEG, and a power manage-

ment circuit. The obtained results demonstrated that the proposed system can harvest

three times more energy than a conventional single thermal energy harvesting one.

[Chottirapong et al., 2015] proposed a solar/thermal harvesting hybrid system for indoor

ammonia gas concentration measurements in an organic fertilizer plant. The source of

the energy harvested by the TEG is the heat difference between the hot side and the cold

side of the deodorizer tank.
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1.2.1.3/ TRANSFERENCE

With the recent breakthrough in the area of wireless energy transfer technology, energy

management in WSNs took a new dimension. A technique called magnetic resonance

enables wireless energy transfer from one storage device to another without any plugs

or wires. This energy transference technique works regardless of the neighboring envi-

ronment and does not require a direct line of sight between the energy transferring and

receiving node. This technology has a positive impact on energy-constrained wireless

networks. Instead of harvesting energy locally at a node, efficiently generated energy

can be brought wirelessly to a sensor node periodically in order to charge its battery.

Some of the efforts carried out in terms of wireless energy transference in the last few

years are presented in this section.

[Mascarenas, 2008] developed a mobile charging host capable of transferring wireless

electrical energy to remote nodes on a 2.4 MHz signal. This host can also retrieve the

data collected by the deployed sensor nodes. The system has been tested and it was

able to charge the deployed sensor nodes condensers with no less than 12 seconds for

an assumed distance of two meters between the host and the charging node. However,

the receiving and transmitting antennas used in the experiment are 18.7x3 and 15x15

inches in size respectively, which makes it impractical in terms of size and cost.

[Doost et al., 2010] have made some similar efforts, by transferring wireless energy

through electromagnetic waves to sensor nodes equipped with rechargeable batteries.

Experiments have been conducted to study the impact of distance and the nodes’ loca-

tion on the efficiency of the system. It was reviled through testing that a distance greater

than 12m would render the system obsolete since it would take an infinite time to charge

a battery. Moreover, the relative placement of the nodes plays a big role in reducing the

charging time. In addition, a modified version of the Ad-hoc On-Demand Routing (AODV)

is proposed as an energy charging cycle aware routing algorithm. Finally, in order to

address the trade-offs of the charging and transmission duration that they occur on the

same frequency band, an optimization framework is also proposed.

[Guo et al., 2013] proposed and approach to further enhance the network lifetime by op-

timizing the charging process for the deployed nodes. Instead of having a fixed data

collection rate, a sensor node would rather tune its data rate based on the current energy

replenishment status. Moreover, the Wireless Charging Vehicle (WCV) responsible for

charging the sensor nodes dynamically adjusts its visiting time for each node.

[Watfa et al., 2011] proposed charging the sensor nodes using multi-hop energy transfer.

In order to achieve that, the magnetic resonance-based technology, “Witricity” is used.
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Three different energy transferring techniques are proposed, namely, store and forward,

direct flow, and hybrid schemes. In-store and forward, the energy received by an inter-

mediate node is first stored in a buffer and when the battery is fully charged it forwards

the energy to the next hope. Indirect flow, the intermediate node directly forward the re-

ceived energy to the next hope. Finally, the hybrid is the combination of the previous two

approaches and it showed to be the most efficient.

[Summerer et al., 2009] demonstrated a LASER reflection-based energy transference,

where energy is transferred from a host to a sensor node using laser beams.

1.2.2/ ENERGY CONSUMPTION

1.2.2.1/ DATA DRIVEN

The elements of energy dissipation in wireless sensor nodes that monitor a specific en-

vironment and report the collected information to a central workstation are numerous.

However, in the monitoring stage, the micro-controller, sensor and radio components

dominate the energy consumption and they are the main optimization targets. Therefore,

the research community has proposed, developed and adopted several approaches to im-

prove the battery-driven device’s efficiency aiming to keep the network perpetual. In this

section, we present the key approaches that include data aggregation, data compression,

adaptive sampling, and data prediction.

Data Compression and Aggregation: Due to the nature of Wireless Sensor Networks,

the reported measurements collected by the deployed sensor nodes are highly redun-

dant. This redundancy offers no benefits for the end application, and it has a significant

downside on the lifetime of the network. The redundant readings require energy to be

transmitted to the Sink station. Why bother to lose scarce energy transmitting these read-

ings while we can simply ignore them? In order to address this problem researchers have

proposed compression and aggregation techniques that aim to eliminate redundant infor-

mation from the source in order to reduce energy consumption and extend the lifetime of

the network.

[Marcelloni et al., 2008] proposed a simple compression algorithm that assumes a high

exploitable correlation between consecutive sampling. Following the principles of entropy

compression, the proposed algorithm is able to compress sensed values on-the-fly. This

algorithm is inspired by the baseline JPEG algorithm for compressing the DC coefficients

of a digital image. It is lossless and compresses the data using a small size dictionary.
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[Medeiros et al., 2014] proposed a lightweight compression mechanism for low resolution

sensor nodes based on fixed Huffman encoding. Instead of using a specific dictionary

for each new data-set, they argue that using a general dictionary created using a similar

data-set would give a very close compression ratio. This makes the proposal modest in

terms of computational power and memory requirements.

[Wu et al., 2017] proposed a holistic approach to compress and reconstruct data in ocean

sensor network using Compression Sensing. It is based on an algorithm that re-orders

the sensor nodes in such a way that improves the signal sparsity property in DCT or

Fourier Transform Domain and improves the compression rate of the data.

[Basheer et al., 2017] proposed a cluster-based quality-aware adaptive data compression

scheme, that takes into account the application’s data quality and it also limits information

loss by using adaptive clustering and novel coding algorithm.

[Uthayakumar et al., 2019] proposed a lossless compression scheme called Neighbor-

hood Indexing Sequence (NIS) algorithm. This applies a procedure called "traversing

data based on 0’s and 1’s" to produce a shorter length code-words for the characters

in the input sequence. The algorithm adopts a method that decompresses each packet

individually which makes it robust to packet losses.

[Du et al., 2015] proposed Dynamic Message List Technique Based Data Aggregation

(DMLDA). This method is based on a data clustering algorithm and it provides real-time

data aggregation of collected measurements. A special data structure called a dynamic

list is the cornerstone of this mechanism. This list is used for storing history messages

before transmission in every filtering node.

[Al-Karaki et al., 2004] proposed a hierarchical model that uses data aggregation and in-

network processing in order to maximize the network lifetime. The sensor network is

subdivided into two subsets. The first is called the Local Aggregators (LAs) which are a

set of sensor nodes elected to form the routing path on which the first level of aggregation

is performed. The second set, called Master Aggregators (MAs), is then selected to

perform the second level of aggregation. In addition, in order to find the MAs, which is an

NP-complete problem, they propose three near-optimal approximation algorithms.

[Çam et al., 2006] proposed an Energy-efficient and Secure Pattern-based Data Aggre-

gation (ESPDA). This algorithm has two independent levels of operation. On a first level,

this algorithm allows the Cluster Head (CH) to organize a sleep schedule for the deployed

sensor nodes transmitting redundant information. On the second level, the CH uses pat-
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tern codes to perform data aggregation. The usage pattern code instead of actual sensor

data allows the content of the transmitted data to remain disclosed, which enables ES-

PDA to work in conjunction with the security protocol.

[Chao et al., 2014] proposed a structure-free and energy-balanced data aggregation pro-

tocol (SFEB). As an event occurs, data aggregators are dynamically selected using a

lightweight aggregator election algorithm. Once selected, they collect sensory data from

their neighbors to finally transmit them to the Sink station using an enhanced, structure-

free version of Data-Aware Anycast and Randomized Waiting protocol (DAA+RW).

[Khorasani et al., 2017] study the capability Neural of Networks in aggregating sen-

sory data. They implement and analyze four algorithms namely, Moments Estimation

Data Aggregation (MEDA), Levenberg– Marquardt Training Back Propagation Network

(LMTBPN), Radial Basis Data Aggregation (RBDA), and General Regression Data Aggre-

gation (GRDA). According to the simulations, all of these algorithms show some promising

results regarding energy efficiency in WSN.

[Humidi et al., 2019] proposed a lightweight, low latency data transmission reduc-

tion scheme based on data aggregation. Similarly to the approach proposed in

[Al-Karaki et al., 2004], a centralized control algorithm is used to select the optimal Clus-

ter Heads (CHs). Then, the selected CHs performed a first-level of data aggregation,

followed by a second-level aggregation performed by a selected optimal subset of CHs.

Adaptive Sampling: The main objective of the aggregation and compression tech-

niques is to eliminate the already collected but redundant sensor readings. What if we

can avoid collecting these readings in the first place? This is where the adaptive sampling

technique is presented as a solution. The latter allows the sensor node to dynamically in-

crease or decrease its sampling rate according to the level of variance between collected

measurements over a certain period of time. This approach prevents the sensor from

collecting redundant information. The fewer are the collected readings, the less sensing

and transmission is required, hence, reduced energy consumption. In this section, we list

some of the proposed adaptive sampling approaches.

[Willett et al., 2004] proposed an adaptive sampling technique called “Backcasting”. The

proposed sampling adaptation algorithm assumes the field being sensed is supported on

one square meter, and that the sensors were deployed uniformly over the square. In the

first phase a number of sensors are activated to produce a coarse estimate of the field

at the Sink. Afterward, based on the coarse estimate, the Sink determines which regions

of the field may contain boundaries or sharply varying behavior, and activates additional

sensors in those regions.
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[Alippi et al., 2009] proposed an adaptive sampling algorithm that estimates in real-time

the optimal sampling frequency for each deployed sensor node. The algorithm adopts

a modified version of the cumulative sum (CUSUM) to detect changes in values in non-

stationary data and adapts the sampling rate accordingly.

[Nguyen et al., 2015] proposed an optimality criterion for designing a sampling strategy

that finds the most informative locations in taking future observations for physical phe-

nomena monitoring WSN applications. To achieve this, a Gaussian process (GP) is used

to statistically model the physical spatial fields. This model is then used to produce obser-

vation predictions. This is where the optimal criterion is proposed to solve the sampling

path optimization problem in a practically feasible time.

[Makhoul et al., 2015] proposed an adaptive sampling approach based on the depen-

dence of conditional variance on measurements. Three different statistical tests (Fisher,

Tukey, and Bartlett) for variance detection based on the One Way Anova Model are stud-

ied. If the tests indicate high variance, the new sampling rate is then determined using

the Bezier curves while taking into account the residual energy level of the sensor node.

[Masoum et al., 2013] proposed an adaptive sampling approach for the applications that

can tolerate variations in the collected measurements as long as these variations do

not exceed a fixed error threshold. The proposed algorithm uses the Spatio-temporal

correlation of the collected data in order to determine how often should a sensor sample

and transmit.

[Monteiro et al., 2017] proposed a technique named Dual Prediction with Cubic adaptive

sampling (DPCAS). They adopted an approach that merges an exponential time series

predictive model with a TCP CUBIC congestion adaptive sampling technique. This ap-

proach enables the sensor to reduce the number of transmissions using the predictive

model and adapt as well its sampling rate using the TCP CUBIC congestion technique.

[Yang et al., 2016] proposed an approach that takes into account both the system and the

application context levels to adapt the sampling rate of the sensor nodes. For example,

the energy available for harvesting represents the context of the system. One of the

used criteria to set the node’s maximum sampling rate is his availability. The application

context is reflected by the user’s request, where feedback from the system performing

specific rules is used to optimally set sensor nodes sampling rates.

[Harb et al., 2018] proposed three distinct data collection and adaptive sample techniques

in the context of industrial process monitoring. One uses ANOVA, while the second uses



20 CHAPTER 1. ENERGY MANAGEMENT FOR WSNS: STATE OF THE ART

similarity sets and the third uses distance functions in order to capture similarities in the

collected data and adapt the sampling rate accordingly.

[Bhuiyan et al., 2017] proposed an event-sensitive adaptive sampling and low-cost mon-

itoring (e-Sampling) scheme, where each sensor has short and recurrent bursts of high

sampling rate in addition to a low sampling rate. Depending on the analysis of the fre-

quency content of the signal, each sensor can autonomously switch between the two

sampling speed.

Data Prediction: The principle of data prediction in Wireless Sensor Networks (WSNs)

is to construct a predictive model that is capable of forecasting future measurements.

This enables the sensor node to compare the sampled measurement with its matching

prediction and transmit this measurement only when the prediction is deemed inaccurate.

This model could be built either locally at the sensor level or at the destination server

(Sink) using a collected training set. In both cases, the constructed model is re-shared

between the two. Alternatively, the model could be built simultaneously on both entities

to prevent communication overhead. This technique is generally referred to as the Dual

Prediction Mechanism (DPM).

Several DPM model building approaches are presented in the literature. They all share

the same assumption that the radio component of the sensor node used to transmit data

consumes a substantial amount of energy. Therefore, they all aim to reduce the amount of

transmitted data in order to preserve scarce energy and extend the lifetime of the network.

In this section, we present a general overview of all the available techniques.

[Guestrin et al., 2004] proposed to build a prediction model on the sensor node using the

kernel linear regression. Afterward, the node transmits the coefficients of the regression

model to the Sink. The latter then can proceed to predict future measurements without

having to receive anything from the sensor node. However, if the model is no longer

producing accurate predictions, the sensor node re-trains it and re-transmits the new co-

efficients to the Sink. The obtained results showed that the proposed approach converges

rapidly to the optimal solution and is robust to packet loss.

[Li et al., 2013] the authors adopted the Auto-Regressive Integrated Moving Average

(ARIMA) as a forecasting model. In a similar fashion to the Previous approach, the sensor

node will first build a time series forecasting model using recently collected data values,

then it shares the parameters of the model with the Sink in order to proceed with predic-

tions. Through experiments on a real data-set collected from TAO (Tropical Atmosphere

Ocean) project, the model has shown to fit well the sensed data and is capable of reduc-

ing transmissions.
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[Moghadam et al., 2011] proposed a hybrid model by combining both ARIMA and a Neu-

ral Network in order to cover the limitation of the former in adapting to non-linear changes.

Experiments were conducted on real-world data-sets from the Intel Berkeley research lab

and it shows that the presented approach outperforms other proposed hybrid models.

[Santini et al., 2006] proposed a DPM that is based on the Least Mean Squares (LMS)

adaptive filter. The authors claim that their approach can reduce the number of trans-

missions up to 92% while maintaining a minimal accepted accuracy. These claims were

backed by experiments conducted on a real data-set from the Intel Berkeley research lab.

[Tan et al., 2016] proposed the usage of Hierarchical Least Mean Squares (HLMS) adap-

tive filter as a dual prediction mechanism, which is a multi-level LMS filter that has been

proven to achieve faster and more stable convergence than the regular single LMS filter.

This is partially achieved due to a dynamic computation of the step size parameter (µ)

that controls the convergence and the stability of the LMS filters.

[Wu et al., 2016] proposed an approach called the Optimal Step Size LMS (OSSLMS).

The idea was to dynamically calculate the value of the step size parameter (µ) of the LMS

filter by trying to minimize the mean-square derivative at each iteration. This has proven

through simulation on a real data-set to achieve faster convergence and a more stable

forecasting LMS filer.

[Raza et al., 2015] proposed a Derivative Based Prediction (DBP) approach. It is less

complex than the adaptive-filter based approaches. The goal is to find the best line in-

terpolating a window of data of size m, by connecting the mean value of the first and

last l measures in this window. Once this “optimal” slop is found, the predicted values

are considered to follow the same direction as the latter. Experiments on 4 different real

data-sets have demonstrated that their approach can outperform other well-established

ones.

[Fathy et al., 2019] proposed an Adaptive Method for Data Reduction (AM-DR), it is based

on a DPM consisting of a convex combination of two adaptive filters with different learning

window sizes. Similar to the other DPM approaches, AM-DR exploits fine-grained sensor

readings in order to reconstruct the whole data-set. The proposed approach outper-

formed the baseline LMS method in experiments conducted on three different real-world

data-sets.

[Aderohunmu et al., 2013] proposed a naive approach where the predicted value is con-

sidered to be exactly the same as the last received/transmitted one. Therefore, no model
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needs to be built. The authors wanted to demonstrate that sometimes simple models

can be as effective as more complex ones. Indeed, in their experimentation, they out-

performed in most scenarios the LMS, ARIMA, and the fixed-Weighted Moving Average

(WMA) approaches.

1.2.2.2/ DUTY CYCLING

Duty cycling, which is also referred to as scheduling, is considered to be the most effec-

tive way of improving the network’s lifetime. The idea is to adjust the duty cycle of nodes

by alternating between sleep and wake-up modes in order to preserve as much energy

as possible. Instead of keeping a node awake when there is no processing, sensing, nor

communication in progress, the latter is put into low power mode or deep-sleep. In the

deep-sleep mode, the processor, co-processor, radio models, and peripherals are turned

off, only the RTC memory is kept awake allowing the node to store data to be retrieved

after wake-up. This process reduces drastically energy consumption since these com-

ponents are the major energy consuming components of the node. Duty cycle based

algorithms can be further categorized as topology control protocols, sleep/wake-up pro-

tocols, and MAC protocols. In this section, we will present some of the research works

related to these approaches.

Topology Control Protocols: Topology control Protocols aim to reduce the network

topology by turning off redundant nodes, for a certain period of time, while preserving

network connectivity or ensuring coverage. Below we list a few approaches proposed for

this matter.

[Xu et al., 2003] proposed Geographic Adaptive Fidelity (GAF) and Cluster-based Energy

Conservation (CEC) as topology control protocols. GAF determines node redundancy

based on the geographical position of the nodes. CEC organizes nodes into overlapping

clusters where the members of the cluster are a subset of nodes that are mutually reach-

able in at most two hops. A detailed description and extensive analysis and comparison

of these protocols have been conducted including energy conservation, network connec-

tivity, sensitivity to network density, protocol overhead, and sensitivity to the propagation

model.

[Mochaourab et al., 2008] proposed a localized algorithm that enables sensor nodes to

self-organize in order to build an overall reduced network topology. Each node in the net-

work chooses its appropriate neighbors according to a defined distance measure, which

is dependent on the radio characteristics and the channel conditions while taking into
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consideration the energy reserve of the neighboring node.

[Qureshi et al., 2011] proposed a topology construction protocol based on the idea of

polygons (Poly). The proposed approach aims to form a Connected Dominating Set

(CDS) by finding polygons formation of nodes. Poly was compared to three well estab-

lished CDS-based topology construction protocols namely CDS-Rule K, Energy-efficient

CDS (EECDS) and A3. The obtained results showed that the proposed approach has low

message overhead and energy consumption, and can provide higher network reliability.

[Chiwewe et al., 2011] proposed a distributed topology control technique, where each

node in the network makes a local decision about its transmission power using the Smart

Boundary Yao Gabriel Graph (SBYaoGG) optimization algorithm. The culmination of

these local decisions leads to the production of a network topology that preserves global

connectivity while minimizing energy consumption.

[Deniz et al., 2016] proposed a distributed fault-tolerant topology control algorithm for het-

erogeneous WSNs, called Adaptive Disjoint Path Vector (ADPV). The role of this algo-

rithm is to ensure the connectivity of resource-rich super-nodes. This is done by dynam-

ically alternating through routing paths, that are computed during an initialization phase,

each time the connectivity is broken. Moreover, the proposed algorithm takes into con-

sideration the possibility of node failure while choosing the new routing paths.

[Zhang et al., 2019] proposed a 3D topology-control algorithm for underwater sensor net-

works, where sensor nodes are suspended at different depths in the water for monitoring

purposes. The sensor nodes are first partitioned into units and clusters. Then, the algo-

rithm arranges wake-sleep schedules within each cluster based on the residual energy of

each sensor node.

Sleep/Wake-up Protocols: The sleep and wake-up protocols can be generally clas-

sified into on-demand protocols where nodes only wake up when they are needed for

communication. Scheduled rendezvous protocols, where nodes wake-up on a synchro-

nized, scheduled rendezvous with neighbors. Asynchronous protocols where the nodes

wake-up independently of their neighbors without requiring global clock synchronization.

Finally, data correlation-based scheduling protocols that aim to set asleep, periodically,

sensor nodes showing a high-level correlation with neighboring ones. In this section, we

present some of the research work dedicated to these approaches.

[Liang et al., 2007] proposed a passive RF wake-up (PRFW) scheme for on-demand

wake up of sensor nodes. A low power radio model embedded into the node is always
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on and listening for preambles. Once detected, the model gives an interrupt signal to the

Micro Controler Unit (MCU) for wake-up.

[Bdiri et al., 2015] proposed to integrate into the sensor nodes an ultra-low-power radio

Wake-Up Receiver (WuRex) for real-time applications. The latter has low wake-up packet

decoding latency and approximately -60 dBm sensitivity. It remains active to listen to on-

demand wake-up queries instead of the main energy-consuming RX transceiver that is

only waking up when a transmission is needed.

[Lin et al., 2004] proposed two generic rendezvous schemes for dense wireless sensor

networks, namely TICER (Transmitter Initiated CyclEd Receiver) and RICER (Receiver

Initiated CyclEd Receiver).

[Kosanovic et al., 2013] proposed a rendezvous-based wake-up scheme that provides

synchronous wake-up times for sensor nodes in a fully decentralized manner. the pro-

posed scheme can rapidly detect new appended sensor nodes and has an implemented

mechanism that prevents collision avoidance during the registration of a new node.

[Zheng et al., 2003] proposed a neighbor discovery and schedule bookkeeping protocol.

First, the problem of generating wake-up schedules is formulated as a block design prob-

lem. Then, theoretical bounds are derived under different communications models. The

optimal obtained results are then used to design the proposed asynchronous protocol.

This can detect neighboring nodes infinite time without requiring slot alignment. More-

over, it is resilient to packet collision and network dynamics. Finally, two power manage-

ment scheme are considered and stacked on top of the designed protocol.

[Dutta et al., 2008] proposed an asynchronous neighbor discovery and rendezvous pro-

tocol (DISCO). This latter allows sensor nodes to activate their radio modules at very low

duty cycles, while still being able to discover and communicate with one another during

infrequent, opportunistic encounters without requiring any prior synchronization informa-

tion.

[Villas et al., 2013] proposed an Efficient Data Collection Aware of spatial-temporal Cor-

relation (EAST). In this latter, the sink subdivides the event area into spatially correlated

cells of the same size, then, in each cell, the node having the highest residual energy is

elected as a representative node. This transmits data to the sink while also applying a

temporal correlation suppression method on its collected data. Finally, the representative

node is re-elected periodically according to the same previous rule.
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[Karuppasamy et al., 2013] proposed a sleeping schedule algorithm that aims to minimize

the total spatial-temporal coverage redundancy among neighboring nodes while maxi-

mizing coverage. Each sensor node compares itself with neighboring ones using weight

criteria and it locally optimizes its scheduling according to its coverage redundancy.

[Dhimal et al., 2015] proposed a spatial-temporal correlation model that aims to extend

the network lifetime by scheduling a sleeping period for sensors showing high similarities

with other ones belonging to the same cluster. The similarity is measured by comput-

ing the Euclidean Distance, Cosine Similarity and Pearson Product-Moment Coefficient

(PPMC). If the result of one of the three indicates a high similarity, the sensor node is set

to sleep for a certain period of time.

MAC Protocols: MAC protocol duty cycling approaches can be classified as Time Di-

vision Multiple Access (TDMA) based, contention-based, and hybrid MAC protocols. In

TDMA, the nodes’ duty cycle is enabled only when channel access is required. In Con-

tention based protocols duty cycling is achieved by integrating medium access functional-

ity with sleep or wake-up process. Finally, Hybrid schemes refer to algorithms combining

properties from both, TDMA based and contention-based schemes. In this section, we

present some of the proposed methods related to these approaches.

[Song et al., 2009] proposed an Energy-efficient localized TDMA MAC protocol

(TreeMAC) for sensor networks that aims to achieve high throughput and low conges-

tion for high-data-rate sensor networks. The proposed algorithm divides a time cycle into

frames and each frame into slots. A parent node determines the children’s frame assign-

ment based on their relative bandwidth demand, and each node calculates its own slot

assignment based on its hop-count to the sink.

[Louail et al., 2016] proposed a cross-layer TDMA MAC protocol for sensor networks that

uses the information of the routing protocol from the network layer, in order to enhance

the performance in terms of latency of the scheduling TDMA MAC protocol situated at the

data link layer.

[Liu et al., 2005] proposed an energy-efficient, QoS-aware MAC protocol for sensor net-

works. It consists of intra-node and inter-node scheduling. The former adopts a multi-

queue based queuing architecture that uses the MAXMIN fairness algorithm and the

packetized GPS algorithm to determine the next packet to be served. The latter em-

ploys the power conservation MACAW protocol and the loosely prioritized random access

protocol for multiple access of the channel among neighboring sensor nodes.
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[Rao et al., 2018] proposed a self-adaptive implicit contention window adjustment mech-

anism for the Sensor MAC (SMAC) protocol. This latter optimizes the model for the con-

tention priority distribution of the nodes. Moreover, it integrates a delay-oriented optimiz-

ing contention window, contention priority optimization model with the estimation method

of contenders’ number in order to reduce the idle listening duration and collision proba-

bility.

[Salajegheh et al., 2007] proposed a hybrid MAC layer protocol for sensor networks (HY-

MAC) that combines the strengths of both TDMA and FDMA. The communication period

in HYMAC is a fixed-length TDMA cycle composed of a number of frames that are further

divided into several fixed slots. In addition, a fixed number of consecutive slots at the

beginning of each cycle are scheduled slots while the remaining slots of that cycle are

contention ones. The appropriate frequency, as well as a specific time slot(s) of each

node, are assigned by the Sink station.

[Rhee et al., 2008] proposed Zebra MAC (Z-MAC) a hybrid MAC layer protocol for sensor

networks that combines the strengths of TDMA and CSMA while offsetting their weak-

nesses. Under low contention, Z-MAC behaves like CSMA, and under high contention,

like TDMA, Z-MAC uses CSMA as the baseline MAC scheme but uses a TDMA schedule

as a “hint” to enhance contention resolution. Thus, in the worst case, its performance

always falls back to that of CSMA.

[Rhee et al., 2008] proposed a hybrid time division multiple access/carrier sense multiple

access (TDMA/CSMA) protocol for intra-satellite wireless network (ISWN). The network

works in a periodic mode, where both centers controlled scheduling and contention ac-

cess are adopted. Sensor nodes are categorized into 3 types, namely, A for high data

rate, sensitive and insensitive nodes, B for low data rate sensitive, and C low data rate

insensitive nodes. The main communication phase provides center scheduled slots that

are assigned by the nodes’ ID. Nodes in type A and type B will communicate in this pe-

riod. By contrast, the extended communication phase provides contention-based slots,

in which an improved slotted CSMA/CA strategy is performed and nodes in type C will

transmit their packet in this period.

1.2.2.3/ ROUTING PROTOCOLS

In a large scale WSN, on the one hand, if we consider a star topology that enables a direct

transmission from the source to the destination, the farther is a node from the destination

Sink, the more energy it will consume. This is because the transmission energy is directly
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related to the transmission distance. On the other hand, if we consider a cluster-based

mesh topology, then each node will forward the packet it desires to transmit to its closest

neighbor, which in turn moves it forward in the cluster hierarchy to finally reach the Sink.

Thus, the higher is a node in the hierarchy, the more packets it needs to forward, the more

energy it will consume. Therefore, nodes that are closer to the Sink will drain much faster

than the ones that are farther away. In order to solve this problem, energy-efficient routing

protocols are proposed. The purpose of these algorithms is to extend the lifetime of the

network by equally distributing the transmission load on the deployed sensor nodes in

such a way that it ensures balanced energy drainage regardless of the distance between

the node and the Sink. In this section, we will present some of the research work related

to energy-efficient routing in WSNs.

[Muruganathan et al., 2005] proposed a centralized routing protocol called Base-Station

Controlled Dynamic Clustering Protocol (BCDCP). This assumes a base station with suf-

ficient energy to set up clusters and routing paths, performs a randomized rotation of

cluster heads, and carries out other energy-intensive tasks. BCDCP produces balanced

clusters with an equal number of member nodes, uniformly selects clusters through the

sensor field, and utilizes cluster-head to cluster-head communication to transfer packets

to the Sink.

[Xiangning et al., 2007] proposed two improved versions of the Low-Energy Adaptive

Clustering Hierarchy (LEACH) protocol. Namely, energy-LEACH and multihop-LEACH

protocols. The former makes the residual energy of the node as the main criteria which

decides whether these nodes are selected as a cluster head or not in the next round. The

latter selects the optimal path and adopts a multi-hop between the cluster heads and the

Sink.

[Wang et al., 2012] proposed a link-aware clustering mechanism (LCM), that determines

an energy-efficient and reliable routing path. This mechanism relies on the transmit power

consumption, residual energy, and link quality of the nodes to compute a clustering metric

called “predicted transmission count (PTX)”. This latter is then, used to derive a priority

that decides whether a node can be qualified as a cluster-head or not.

[Amiri et al., 2014] proposed an optimal routing protocol for WSN based on the Fuzzy Ant

Colony Optimization Routing (FACOR). A source node sends an “ant”, which is modeled

by an RREQ and an RREP message, to all of its neighbors. Then, each ant tries to find

a route to the Sink by calculating the fuzzy amounts for their neighbors and choosing the

next hope accordingly. The same step is repeated until the ants finally reach the Sink.

While, the ones that could not reach it, they kill themselves. Finally, the BS chooses a
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winner ant and returns it through the same path it came from to update the routing table

of the intermediate nodes.

[Zeng et al., 2016] proposed an Improved Harmony Search-Based Energy Efficient Rout-

ing Algorithm (IHSBEER) for WSNs. The improvement included the encoding harmony

memory and the improvisation of a new harmony. Moreover, the authors introduced dy-

namic adaptation for the Harmony Memory Considering Rate (HMCR) parameter and a

local search strategy is proposed to enhance the local searchability. Finally, an objec-

tive function model that takes both the energy consumption and the length of the path in

consideration is developed which has a great impact on the maximization of the network

lifetime.

[Ayoub et al., 2017] proposed a Multi-Hop Advance Heterogeneity-aware Energy Efficient

(MAHEE) clustering path planning algorithm for WSNs. MAHEE routing protocol opera-

tion is divided into time-based iterations, and each iteration is divided into rounds. At each

round, the Sink selects the appropriate cluster-heads based on Hello packets broad-

casted by the nodes and containing information about initial energy, remaining energy,

location of node and status (active or dead).

[Wang et al., 2019a] proposed a special clustering method called Energy Centers search-

ing using Particle Swarm Optimization (EC-PSO) that aims to optimize the heavy burden

of forwarding on the cluster-head level. The protocol operates in rounds, and during the

first rounds, cluster-heads are elected according to the location of nodes using geometric

partitioning. After the energy of the network becomes heterogeneous, the Particle Swarm

Optimization is used to search energy centers for the cluster-head election. Moreover,

random re-initialization is used to avoid cluster-heads getting too close and a protection

mechanism using threshold value is utilized to prevent the low energy nodes from for-

warding.

1.2.2.4/ MOBILITY

In contrast to the previously described data routing approaches that aim to distribute

the message forwarding burden on the sensor nodes of the network in such a way that

ensures a maximum lifetime. Mobility based approaches aim to eliminate message for-

warding by introducing mobile agents with high energy resources. This moves through

the field where the sensor nodes are deployed in order to directly collect the data from

the nodes through short-range communications that require no routing. These agents

can either be a mobile Sink, or mobile relay nodes. In this section, we will present some

of the research work adopting this technique.
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[Kim et al., 2003] proposed a Scalable Energy-efficient Asynchronous Dissemination pro-

tocol (SEAD). SEAD builds and maintains a dissemination tree (d-tree for short) that a

mobile Sink can traverse to collect data from the nodes. Stationary nodes are used as

end-points on behalf of the mobile Sink and the adopted scheme caches sensed data in

the d-tree in such a way that reduces the energy consumption.

[Liang et al., 2010] proposed a three-stage heuristic to optimize the mobility of the mobile

Sink. First, the time for a mobile sink to collect data at each potential location is calculated.

Then, a feasible tour is computed for the mobile sink in such a way that the sum of the

times spent at the visited locations is maximized. Finally, a visit time schedule is created

for the mobile Sink by determining its exact visit time at each location.

[Wang et al., 2018] proposed an improved ant colony optimization (ACO) based ap-

proach. The proposed approach considers the distance heuristic factor between the

cluster heads and the distance to the mobile Sink. This considerably enhances the

global search ability, prevents the algorithm from being trapped in a local optimal solu-

tion, and improves the convergence rate. On top of ACO, a clustering algorithm is added.

The mobile Sink finds an optimal sink mobility trajectory by the improved ACO algorithm

to communicate with the cluster heads only and collect data from them via short-range

communications.

[Zhao et al., 2004] proposed a mobility-assisted approach called Message Ferrying (MF)

which provides a communication service for the deployed sensor nodes using a set of

special mobile nodes called message ferries. Two schemes are presented, the first is

where the message ferries move according to a specific route that is known by nodes that

take proactive movement periodically to meet up with the ferries. The second scheme is

where the ferries take proactive movement to meet up with nodes after broadcasting their

locations.

[Fayçal-Khelfi et al., 2016] proposed a solution to the problem of mobile data collectors al-

leviating high traffic load to the Sink and causing bottleneck and packet loss. First, the im-

pact of the mobile data collector (mobile Sink or relay nodes) in terms of energy efficiency,

latency, and traffic load, have been studied to determine the best approach. Then, three

well-established mobility models have been compared, namely Gauss-Markov, Random

Walk, and WayPoint. The conducted simulations demonstrated that using mobile relays

node and models containing random movements give the best results.

[Wang et al., 2019c] proposed a clustering algorithm for 3D underwater sensor networks

with mobile nodes. The network consists of mobile Sinks, mobile relay nodes and fixed
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sensing nodes. First, the fixed nodes are organized into clusters and appropriate cluster-

heads (CHs) are elected. Afterward, mobile relay nodes can pass to collected data from

the cluster CHs and transmit them to the mobile Sink, which in turn forwards the packets

to the base station.

1.2.3/ CONCLUSION

This chapter presented a brief introduction on WSNs and a survey of the relevant liter-

ature for their Energy management. The latter was classified into two main categories,

energy provisioning, and energy consumption. Both categories share the same objective

which is extending the lifetime of the network. Energy provisioning does so by system-

atically replenishing the energy source of the sensor nodes to prevent power outage.

Such schemes can be further classified into battery-driven, energy harvesting, and en-

ergy transference based schemes. Energy consumption based schemes assume a lim-

ited energy resource that cannot be replenished. Therefore, algorithms and protocols

that are implemented on the sensor nodes are proposed instead. Energy consumption-

based approaches were categorize into data-driven, duty-cycling, routing protocols, and

mobility-based energy management schemes. Assuming that activities such as sens-

ing, processing, and transmission are the most energy-consuming activities performed

by a sensor node. Some proposed algorithms aim to minimize these activities in order

to preserve energy. Others aim to set the node asleep as long as possible. Lastly, other

algorithms aim to efficiently route data packets through the network to reduce energy

dissipation caused by overhead.

All the categories and sub-categories for data management in wireless sensor networks

were briefly explained in this chapter and examples of related research works were pre-

sented for each one of them. Figure 1.1 represents a graphical summary of the detailed

taxonomy. In this thesis, we focused mainly on two categories, namely, data-driven and

duty cycling. More precisely for data-driven schemes we were interested in data pre-

diction and adaptive sampling, and for duty cycling, we were interested in wake-up/sleep,

spatio-temporal correlation approaches (marked in red in Figure 1.1). Next, in the upcom-

ing chapters, we present in detail our proposed solutions in the scope of the previously

mentioned categories.
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2

FAULT-TOLERANT DATA

TRANSMISSION REDUCTION FOR

WSNS

T he radio module of a sensor node is considered to be one of the most energy

hungry components. Therefore, numerous approaches aiming to minimize the

sensors-to-sink data transmissions have been proposed in the literature. In this chapter,

we first present one of the most adopted data-driven transmission reduction techniques,

we spot the light on one of its major vulnerabilities, to finally propose a novel transmission

reduction algorithm that can overcome it while outperforming similar approaches.

2.1/ INTRODUCTION

Several studies have demonstrated that the Dual Prediction Mechanism (DPM) remains

the most efficient data-driven technique for energy conservation in Wireless Sensor Net-

works (WSNs). In real world, the deployed sensor nodes suffer from packet loss and even

failures which renders the DPM unreliable, since it requires flawless synchronization be-

tween the source (sensor node) and the destination (Sink). Most of the proposed DPM-

based data reduction methods [Santini et al., 2006, Tan et al., 2016, Wu et al., 2016,

Raza et al., 2015, Fathy et al., 2019, Aderohunmu et al., 2013, Guestrin et al., 2004,

Li et al., 2013, Moghadam et al., 2011] consider loss-free communication links, which is

not the case in a real-world distributed system. Data loss is a major issue that can re-

duce the performance of these techniques dramatically. Therefore, a mechanism that can

identify missing data coupled with an algorithm that can reconstruct them is mandatory

for a realistic application of the dual prediction mechanism.

In this chapter, we present a novel DPM-based technique that lends itself to be simple yet

robust, and effective in terms of prediction accuracy and data reduction. In addition, we

33
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coupled this technique with a data reconstruction algorithm that exploits both temporal

smoothness and spatial correlation among different sensed features in order to estimate

missing values. This proposed algorithm belongs to the data prediction sub-category

presented in Chapter 1, Section 1.2.2.1.

The main contributions in this chapter include:

• Proposing a novel data reduction algorithm that integrates a mechanism capable of

identifying missing sensor readings and maintaining a synchronized communication

link between the source node and the Sink (which is mandatory for a successful

implementation of the DPM technique).

• Adoption and adaptation of a data reconstruction algorithm in order to recover miss-

ing values that failed to reach the Sink.

The rest of the chapter is organized as follow. In Section 2.2 we briefly explain the Dual

Prediction Mechanism (DPM). The adopted energy consumption model is presented in

Section 2.3. The data-sets used for simulation are illustrated in Section 2.4. In Sec-

tion 2.5 the data transmission reduction algorithm is explained. In Section 2.5.2 the

method used to identify wrong predictions is presented. Section 2.5.3 illustrates and

explains the data reconstruction algorithm. The experimental results are presented in

Section 2.6, including comparison of performance in terms of data reduction, energy con-

sumption, scalability, and prediction delay. Finally, the chapter is concluded in Section 2.7.

Let us first explain and describe the Dual Prediction Mechanism (DPM) which is the base-

line of this contribution. In addition, we present and describe both the data-sets and the

energy model considered for the simulations and experimentations.

NB: The presented DPM, energy model, and data-sets will also be considered in
the next chapters of this part.

2.2/ THE DUAL PREDICTION-BASED MECHANISM

The Dual-Prediction Mechanism (DPM) is the most relevant technique adopted by most

of the prediction-based data reduction approaches. This mechanism works by building a

prediction model that analyzes the history of previously collected measurements in order

to extract the moving trend of the data and estimate future readings. The same prediction

model is shared between both the sensor node and the Sink. Using the shared model,

they both proceed to periodically predict future observations. This approach allows the

sensor node to avoid transmitting its collected measurements to the Sink, as long as their

corresponding predictions are accurate. Meanwhile, the Sink always presumes that its

prediction reflects the real observation unless it receives the corrections from the sensor
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Figure 2.1: The concept of DPM

node. After receiving a number of corrections, the Sink assumes that the prediction model

is no longer valid and it must be rebuilt. Therefore, they both proceed to build a new model

using the newly transmitted data. The same cycle is repeated over and over again until

the battery of the sensor node is depleted. Figure 2.1. illustrates in a simplified way how

this mechanism works.

2.3/ THE ENERGY CONSUMPTION MODEL

Most of the energy consumed by a sensor node is generally related to four main tasks,

namely, memory logging, sampling, processing, and radio transmission. In order to esti-

mate the energy consumed by a given algorithm we will be using the following model or

at least a part of it depending on the experiment:

Enode = Esampling + Eprocessing + Eradio + Elogging (2.1)

Esampling is the energy required to transform a physical signal into a digital one. This value

is calculated using Equation (2.2), where Isens is the total current for the sensing activity,

Tsens is the total duration of the latter, V is the supply voltage and b is the number of bits

in the sensed packet when transformed to digital.

Esampling = bVIsensTsens (2.2)

Eproccessing is the energy consumed by the CPU to perform a certain number of instruc-

tions. It is calculated using Equation (2.3), where N is the number of cycles required at

each iteration of the algorithm, b is the number of bits to be processed, C is the average

capacitance switched per cycle, I is the leakage current, np is a constant that depends on
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the processor, Vt is the thermal voltage, and f is the sensor frequency.

EProcessing = bNCV2 + bV(Ie
V

npVt )(
N
f

) (2.3)

Finally Eradio is the energy required to transmit a b bits packet for a distance d. It could be

calculated using Equation (2.4), where Eelec is the energy required to transmit electronics,

Eamp is the energy consumed by the power amplifier, and n is the distance-based path

loss exponent (n = 2 for free space fading, and n = 4 for multi-path fading)

Eradio = bEelec + bdnEamp (2.4)

Elogging is the required energy to write/read a b bit packet into/from memory. Sensor log-

ging energy consumption for a sensor node per round is evaluated using Equation (2.5),

where Iwrite and Twrite are the current and time duration for reading 1 byte of data respec-

tively.

Elogging =
b × V

8
× (Iwrite × Twrite) (2.5)

Symbol Description Value
N Number of clock cycles per task 0.97 × 106

C Avg. capacitance switch per cycle 22pF
V Supply voltage to sensor 2.7V
Vt Thermal voltage 0.2V
f Sensor frequency 191.42MHz
I Leakage current 1.196mA
b Transmit packet size 2kb
n Path loss exponent 2 or 4
np Constant: depending on the processor 21.26

Eelec Energy dissipation: electronics 50nJ/bit
Eamp Energy dissipation: power amplifier 100pJ/bit/m2
Tsens Time duration: sensor node sensing 0.5ms
Isens Current: sensing activity 25mA
Twrite Time duration: flash writing 12.9ms
Iwrite Current: flash reading 1 byte data 6.2mA

Table 2.1: Base values of the energy model parameters

This energy model is inspired from the one discussed in [Halgamuge et al., 2009] and all
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the base values used in this simulation for all the previously described parameters can be

found in Table 2.1.

2.4/ THE DATA SETS

In this chapter and the upcoming ones, we consider two different data-sets for simulation

and performance comparison. Both of them contain real data collected by real sensor

nodes. We will briefly present and explain these data-sets in the next subsections.

2.4.1/ GRAND-ST-BERNARD PASS DATA-SET

This data-set consists of real sensor readings collected from a sensor net-

work that was deployed at the Grand-St-Bernard pass between Switzerland and

Italy [Sensorscope, 2007]. The network consisted of 23 sensors, each one of them col-

lects 9 different environmental features with a fixed sampling rate of 1 sample every 2

minutes. We have chosen 4 out of these 9 features (ambient temperature [C◦], Surface

temperature [C◦], relative humidity [%], and wind speed [m/s]) since the others are not

complete. Environmental features are usually stationary, therefore, in addition to taking

a sample every 2 minutes, and for a rigorous comparison of the algorithms, we set up

two other scenarios. In the first one, a sample is taken every 10 minutes instead. In

the second one, a sample is taken every 20 minutes. In this way, the data will become

“non-stationary" which makes it more realistic and harder for data reduction algorithms to

adapt to the stream.

The raw data set (sample every 2mins) consists of 10000 readings for each sensor, for

the 1st scenario (1 sample per 10 minutes) we will end up with 2000 readings instead,

and 1000 readings for the second one (1 sample per 20 minutes).

2.4.2/ DISC DATA-SET

Twenty data sets containing each, 300,000 readings (100,000 temperature, 100,000

humidity, and 100,000 infrared readings), have been collected using twenty Crossbow

TelosB nodes with an integrated weatherboard that have been deployed in our laboratory.

It is equivalent to approximately 35 days of non-stop data collection. Measurement was

taken every 30 seconds and transmitted to a central Sink node called SG1000 connected

to a laptop machine. The temperature value was measured by degrees Celsius, Humidity

ranges between 0 − 100%, and Light is in Lux.

Figure 2.2 shows the geographical distribution of the deployed sensor nodes. The x and
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y coordinates of sink and sensors (in meters relative to the upper left corner of the lab)

are given in Table 2.2
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Figure 2.2: The geographical distribution of the sensor nodes

Sensor ID x-coordinates (m) y-coordinates (m)
1 (Sink) 9.6 3.82

2 3.63 7.97
3 1.57 6.06
4 3.61 3.1
5 8 1.2
6 9.54 1.3
7 12.63 0.94
8 13.97 0.47
9 17.16 2.36

10 15.58 4.26
11 14.57 3.72
12 10.93 3.37
13 15.95 4.73
14 17.79 7.91
15 14 7.64
16 11.65 6.31
17 9.57 7.71
18 9.57 4.77
19 8 5.3
20 6.42 8.11
21 7.7 4.24

Table 2.2: Sensor nodes coordinates

2.5/ THE PROPOSED APPROACH

Let us first describe our data transmission reduction method which exploits the temporal

correlation among sensed measurements in order to limit the number of radio transmis-

sions performed by each sensor node. As mentioned earlier, both the sensor and the

sink need to build and maintain simultaneously a prediction model capable of forecasting

future readings within a predefined error margin. This is achieved by following a few sim-

ple steps, described hereafter.

NB: we assume a periodic sensor network where every sensor collect and transmit a

measurement every F seconds, where F is a value predefined by the user.
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The moment when a sensor is activated, it transmits to the Sink the first two collected

measurements, x0 and x1 at time t0 and t1. Afterward, they both calculate the value

C_Temp that is supposed to represent the temporal correlation among the already col-

lected and the upcoming measurements as shown in Eq. (2.6). Moreover, the Sink and

the sensor need to store in their memories the last communicated value which is referred

to as LC (in this case x1), that will be used later to update the prediction model when it is

needed.

C_Temp0 = x1 − x0 (2.6)

Once C_Temp0 is calculated, the sensor is no longer required to transmit to the sink

any collected measurement at any time k as long as the predicted value x̂k as shown in

Eq. (2.7) is accurate.

x̂k = x̂k−1 + C_Temp0 ∗ α (2.7)

The parameter α is a rectification value that can range between 0 and 1. Its role is to

harmonize the predictions with the real sensed readings. This is achieved by applying a

dynamic penalty on C_Temp based on an error and a model accuracy feedback. By doing

so, we aim to reduce the bias in the temporal correlation value C_Temp. A more detailed

explanation of how α is automatically calculated is provided in the next subsection.

As mentioned earlier, as long as the prediction is accurate (the difference between the real

sensed value and the predicted one does not exceed a user predefined error threshold

emax), the sensor discards the real sensed value and does not transmit it to the Sink.

In its turn, if the Sink does not receive any value at a given time where it is supposed

to receive one, it acknowledges that the prediction outputted by the same shared model

is accurate. However, if a prediction x̂n at a given time n is not accurate, the sensor

is required to transmit the real sensed value xn to the Sink in order to simultaneously

update the prediction model (C_Temp). This is done by subtracting LC from the current

communicated reading xn and dividing the results by prediction horizon N (Eq. (2.9)) as

shown in Eq. (2.8). Finally, LC is set equal to xn until the next update occurs.

C_Tempn =
xn − LC

N
. (2.8)

Where:

N =
tn − tLC

F
. (2.9)
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2.5.1/ UPDATING α

During the update phase, and in order to tune α for the next prediction phase, we need

to know first how did the model performe in terms of prediction accuracy and durabil-

ity. Therefore, both the sink and the node are required to calculate a value called the

Accuracy Factor (AF). This is done by subtracting the value of the communicated mea-

surement xn from the erroneous prediction x̂n that triggered the update, and dividing the

result by the prediction horizon N as shown in Eq (2.10).

AF =
x̂n − xn

N
. (2.10)

Then, a percentage value (P) of how much the value of AF is compared to emax is calcu-

lated as shown in Eq (2.11). The smaller is the absolute value of AF the more accurate it

was C_Tempn, therefore, the latter must be updated relatively to the value of P.

P =
AF × 100

emax
(2.11)

If AF is negative, this means that C_Tempn must be increased in order to fit better the up-

coming data, therefore, α is increased by P%. In contrast, if AF is positive this means that

C_Tempn must be decreased by decreasing α by P%. In this way, we are automatically

tuning alpha according to a model accuracy feedback extracted from the last produced er-

ror and the prediction horizon (Eq. (2.12)). This will lead to having a more accurate model,

thus a longer prediction horizon (durability) and fewer transmissions.

αnew = α −
P × α
100

(2.12)

A few rules are required to take into consideration in order to prevent any possible dead-

lock when updating α : AF is very small compared to emax (e.g. 10% of emax), this

means that the error is very small, and α is almost optimal. Thus, it should remain un-

changed. AF exceeds emax, in order to prevent α from having a negative value, it should

be reset to 0.5. AF remains positive for multiple successive adjustments, α could start to

deviate to 0. If this is the case, α should be reset to 0.5.

The Algorithm 1 below illustrates the proposed method that is implemented on the sensor.

2.5.2/ IDENTIFYING WRONG PREDICTIONS

Let us assume a scenario where a sensor fails to report a reading to the sink during the

adaptation phase (where the prediction model update procedure is launched). The sen-
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Algorithm 1 Transmission reduction

Require: emax (maximum error threshold)
1: Read x0 and x1
2: Transmit x0 and x1 to Sink
3: C_Temp0 ← x1 − x0
4: α← 0.5
5: LC ← x1
6: while Energy , 0 do
7: Read xk at time k
8: x̂k ← x̂k−1 + C_Tempk × α

9: if |xk − x̂k| ≥ emax then
10: Send xk to Sink
11: C_Tempk ←

xk−LC
N

12: LC ← xk

13: AF ← x̂k−xk
N

14: if AF ≥ emax then
15: α← 0.5
16: else if AF ≤ 10×emax

100 then
17: Do not update α
18: else
19: P← AF×100

emax
20: αnew ← α − P×α

100
21: if alpha ≈ 0 then
22: α← 0.5
23: end if
24: end if
25: x̂k ← xk

26: end if
27: end while

sor will not know that the sink did not receive it, and it will use this reading to update its

model. However, the sink considers that its prediction is within the error budget, therefore

no update is needed. Hence, the prediction models on both sides will lose synchroniza-

tion and start outputting different values. Therefore, we propose a solution that is based

on an acknowledgment mechanism between the sensor and the sink. Consider that a

sensor transmits a reading to the Sink, instead of switching immediately to the adaptation

phase, the sensor must wait for an acknowledgment indicating that the reported value

has been well received. As long as the sensor has not yet received an acknowledgment,

it must keep reporting readings to the sink. This method ensures that both the sink and

the node update their models simultaneously. Moreover, a sequence number is sent with

each reading. If the sink detects a jump in the sequence number, it flags the correspond-

ing measurements as missing, which allows the reconstruction algorithm to identify and

reconstruct them. Yet, this is not sufficient to cover all potential failures, the batteries may

deplete or the sensor could crash due to a software failure. Therefore, since the sensor

operates in rounds, where each round is divided into several periods. At the beginning of
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each period, a sensor must send the current reading even if it is within the error budget.

Hence, if the sink does not receive a reading at the beginning of a given period, it will

consider that the sensor has crashed, and all the future estimations will be replaced by a

"NaN" value (flagged as missing).

The Algorithm 2 is implemented on the Sink, it illustrates how the latter can detect missing

values. An instance of this algorithm is initialized for each sensor node.

Algorithm 2 Detecting missing data
1: Receive x0 and x1
2: C_Temp0 ← x1 − x0
3: LC ← x1
4: while Energy , 0 do
5: if xk is received with sequence number S N then
6: Send an acknowledgment to the sensor
7: if SN > 1 then
8: for i=1:SN do
9: xk−i ← “NaN”

10: end for
11: end if
12: C_Tempk ←

xk−LC
N

13: Update α
14: LC ← xk

15: x̂k ← xk

16: else
17: x̂k ← x̂k−1 + C_Tempk × α

18: end if
19: end while

2.5.3/ RECONSTRUCTION OF MISSING DATA

At the end of the sensing period, all missing data (NaN values) must be reconstructed.

Several methods have been proposed in the literature that exploit spatial correlation

along with temporal smoothness to recover missing data in WSN [Wu et al., 2018,

Pan et al., 2013, Gao et al., 2016, Gruenwald et al., 2010]. However, due to the sizes

of the collected data-sets that are massively large and containing multiple dimensions,

these methods are extremely expensive in terms of computation complexity. Therefore,

we adopt and adapt the method proposed in [Li et al., 2009] that captures the correlations

between multiple co-evolving time sequences, by identifying automatically a few hidden

variables from the large data-set and mining their dynamics to impute missing values with

low reconstruction errors.

Let us consider a time sequence X with a duration of T in m dimensions, where m is

equal to the number of sensors in the monitoring area. This sequence X contains all the
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data reproduced by the sink, and it also includes "NaN" values indicating that a reading is

missing. The goal of this algorithm is to reconstruct these missing readings, by observing

the values of the missing sensor and other ones at neighboring time ticks.

X =



x1
1 x2

1 ... NaN ... xT
1

x1
2 x2

2 ... xT
2 ... xT

2

... NaN ...

...

x1
m x2

m ... NaN ... xT
m


Let us denote the observed part as Xo, and the missing part as Xm. A probabilistic model

(Figure 2.3) is built to estimate the expectation of missing values conditioned by the ob-

served part E[Xm|Xo]. A set of latent variables denoted Zn are calculated using a belief

propagation system. These latent variables model the dynamic and hidden patterns of the

observed sequence. Moreover, the latent variables Zn are assumed to be time-dependent

with the value at time tick t is determined by the value at time tick t−1 using a linear map-

ping F. In addition, linear projection matrix G from the latent variables Zn to the data

sequence for each time tick, is assumed to represent the spatial correlation among dif-

ferent dimensions. Once the latent variables are calculated, they are used as input for

an EM iterative algorithm [Shumway et al., 1982] in order to find the best-fit parameters

(such as G and F) for the data reconstruction probabilistic model.

Figure 2.3 illustrates this probabilistic model used to estimate missing values at a given

time tick. For instance, the figure shows a missing sensor value at the time tick 3. This

value can be estimated by multiplying the linear projection matrix G with the estimated

latent variables Z3. A detailed explanation of how the parameters of the model and the

latent variables are calculated can be found in [Li et al., 2009].

The size of the latent variables set can vary between 1 and m. There is an optimal value for

the number of latent variables that can render the reconstruction algorithm more accurate.

In [Li et al., 2009] this number was fixed during the experiments to 15. However, in order

to adapt the reconstruction algorithm to our needs we have calculated the optimal value

for the latent variables using the following method:

• We first divide the collected data set into two subsets, a training subset and a val-

idation one. The values belonging to either one of the sets are chosen randomly.

The values are equally divided between the two sets and one value can only belong

to one of the two sets.

• In the training subset the values that belong to validation subset are set to “NaN”.

For instance if x j
i where i ∈ [1,m] and j ∈ [1,T ] is selected to be in the validation set,

the value of x j
i in the training set will be set to “NaN”
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Figure 2.3: Probabilistic model

• For each value of n ranging from 1 to m we run the reconstruction algorithm and we

give it as input to the training set and we set the number of latent variables equal to

n. Then we calculate the Root Mean Square Error (RMSE) between the predicted

values and their corresponding matches in the validation set.

• For each value of n, we select a random training and a validation set and we run the

reconstruction algorithm 10 different times. Finally, we average the RMSE of the 10

runs and we chose the value of n that returned the lowest RMSE.

2.6/ EXPERIMENTAL RESULTS

In this section, we present the experimentation we have conducted so as to demonstrate

the efficiency and the robustness of our proposed approach compared to three recent

and well established linear data prediction algorithms (OSSLMS, HLMS, and DBP). Our

goal is to maximize the data suppression ratio while maintaining a low computation cost,

ensure a loss-free communication link between the source node and the Sink via syn-

chronization, and preserve data quality via reconstruction of the missing observations.

For this experimentation, we consider the DISC data-set described in Section 2.4.2 of

Chapter 2. The temperature readings are smooth, where neighboring measurements

vary only slightly over time. However, humidity readings are not as smooth, a noticeable

variation can be observed, but they are still easily predictable since they follow a clear

trend. Last but not least, infrared data does not follow any specific trend and the data are



2.6. EXPERIMENTAL RESULTS 45

basically either irregular and highly varying or stable and barely changing. These three

types of data can show weakness if existed in any of the 4 algorithms being compared in

handling a specific type of upcoming readings.

2.6.1/ PERFORMANCE COMPARISON WITH OTHER APPROACHES IN TERMS OF

TRANSMISSION REDUCTION

In this section, we evaluate the performance of our transmission reduction algorithm com-

pared to the OSSLMS, HLMS, and DBP approaches. The simulation has been conducted

using a custom WSN simulator built-in MATLAB and the following experimentation set-

tings were used. The error threshold emax was set to ±0.1 for temperature and humidity,

and ±1 for Infrared. The number of sub-filters (m2) and the size of each one of them

(m1) for the HLMS algorithm, were set to 2 and 3 respectively. The size of the OSSLMS

filter was set to 5. For DBP, the number of edge points l, the learning window m, the

relative error for all environmental features, and the time tolerance εT , were set to 3, 6,

5%, and 2 respectively. Finally, we would like to note that the simulation was repeated 10

different times and the results presented in this section are the average results of the 10

simulations. The final averaged results of the 20 sensor nodes are listed in Table 2.3.

All the proposed algorithms performed well in terms of data suppression. However, our

data reduction method outperformed the other approaches in two out of three environ-

mental features, and OSSLMS has outperformed our method in one feature. As shown in

Table 2.3, all of the four algorithms have approximately the same Suppression Ratio (SR)

for temperature data, except for DBP that has an SR that is around 2% lower than the

others. The reason is that temperature data are very smooth and the variations in neigh-

boring measured values are small. Thus, a linear prediction algorithm is very efficient in

keeping up with these small changes. For humidity data, OSSLMS has adapted itself bet-

ter and achieved the best suppression ratio of 94.1% among the three other approaches,

including ours that achieved an SR of 93.6%. Finally, when we tested the algorithms on

highly varying infrared data, our approach was significantly better in reducing the number

of radio communication. For instance, our SR was 5.6%,13.1%, and 29.7% greater than

OSSLMS, HLMS, and DBP respectively.

Table 2.3: Suppression ratio of transmitted data

Supression ratio (%)
TR OSSLMS HLMS DBP

Temperature 99.8 99.7 99.6 97.7
Humidity 93.6 94.1 90.3 82.7
Infrared 93.2 87.6 80.1 63.5
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2.6.2/ COMPLEXITY COMPARISON WITH OTHER APPROACHES

The complexity of the data reduction algorithm is as important as its efficiency in reducing

transmission. An optimal algorithm is the one who has the highest suppression ratio and

the lowest complexity. In a periodic sensor network, a sensor wakes up performs a task

(sensing, prediction or transmission) and then goes back to sleep for a predefined period

of time before waking up again. As explained in Section 1.2.2.2 of Chapter 1, the sensor

consumes the minimum amount of energy when he is in sleep mode. Therefore, the faster

the required task is accomplished, the faster a sensor would go to sleep, the less energy

it will consume. The more complex is an algorithm, the more time it will take a sensor to

perform the given task, the more energy it will consume. For that matter, in this section,

we will compare the complexity of the four algorithms by breaking down each one of them

into a series of mathematical operations and counting their number at each iteration.

OSSLMS has achieved the best suppression ratio in one out of two features and was

ranked second for the other two. However, despite its efficiency in suppressing trans-

missions, this algorithm has a very high complexity of order O(n3). At each iteration, this

algorithm requires 4N + 4N2 multiplications, 2N + 2N2 additions, N subtractions, 1 division,

2N + N2−N
2 swap operations, and 2N3+N2+2N2+N

6 − N2−N
2 operation to compute the pseudo-

inverse of a matrix (N is the size of the adaptive LMS filter). HLMS ranks second in terms

of complexity and it has achieved the third-best suppression ratio. For HLMS the following

operations are required at each iteration: 4m2m1 multiplications, 2m2m1 + 3m2 + m1 addi-

tions, m2 + 1 subtractions, and m2 + m1 divisions, where m2 represents the number of the

LMS sub-filters, and m1 represents the length of each LMS filter. The complexity of this

algorithm is then of order O(n2). DBP However is linear of order O(n) when an update is

needed since it requires only 2(l-1) additions, 2 divisions, and 1 subtraction to readjust

the model, and when no readjustment is needed, only 1 addition is required to calculate

the prediction. Therefore during prediction DBP has a constant complexity of order O(1).

It seems that the higher the complexity of the algorithm, the better its efficiency. However,

our method is the least complex one and achieves the best results. When no adjustment

is needed for the model, 1 addition is required to calculate the prediction (α ∗ C_Temp

is computed once during readjustment only). When an adjustment is needed, 2 sub-

tractions, 4 divisions, and 3 multiplications are required to update the model. Thus our

algorithm has a constant complexity of O(1). This means, our proposed algorithm pro-

vides the best trade-off between complexity and transmission reduction. Thus, in theory,

it is the least energy consuming algorithm compared to the other approaches. This as-

sumption will be further validated in the next section through simulations and in the next

chapter of this dissertation through real implementation.
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2.6.3/ ENERGY CONSUMPTION

In order to compute an estimate of the energy consumed by a specific sensor activity

we have used the energy model described Section 2.3. Figure 2.4 shows the energy

consumed by the transmission, and processing activities, in addition to the overall energy

consumed by both activities combined. The sensing activity has been excluded since it is

the same for all algorithms and it would not affect the end results. Moreover, we also did

not include the logging activity. In this experiment we were only interested in transmission

and computational costs. Therefore, the overall energy consumption is computed as

following:

Etotal = Eradio + Eprocessing. (2.13)

Figure 2.4(a) shows that the energy consumed by the transmission activity is directly re-

lated to the number of data transmitted by the node. The obtained results are proportional

to the suppression ratio results in Section 2.6.1. At every iteration, each algorithm per-

forms a number of CPU cycles in order to execute the required instructions. The more

complex is the algorithm the more CPU cycles are required to execute it, the longer it

takes the sensor to go to sleep, which implies more energy consumption. Figure 2.4(b)

shows the energy consumed by the processing activity. The results are aligned with the

complexity of the algorithms discussed in the previous section. For instance, OSSLMS

with a complexity of O(n3) has consumed the most energy, followed by HLMS, DBP, and

FTDTR.

If we only take into consideration the energy consumed by data transmission, it seems

that OSSLMS can outperform FTDTR with humidity data and holds second place with

temperature and infrared data. However, when the computational energy consumption

is considered, OSSLMS falls to the fourth place behind HLMS and even DBP with tem-

perature and humidity data. Since our algorithm has a constant complexity and it can

effectively reduce data transmission, as shown by the results (Figure 2.4(c)), FTDTR has

consumed the least energy compared to OSSLMS, HLMS, and DBP.

2.6.4/ SCALABILITY AND PREDICTION DELAY

The scalability of the Dual-Prediction scheme, whether it is FTDTR, OSSLMS, HLMS,

DBP or others greatly depends on two main factors. The computational power of the Sink

and its memory capacity. Therefore, the more complex an algorithm is, and the more

memory space it requires, the fewer nodes the Sink can handle simultaneously. The

advantage that our proposal provides is that it requires a small memory footprint and it is

not complex, yet, it is robust and efficient. For instance, Figure 2.5 shows the time each
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Figure 2.4: Energy consumption

algorithm needs to produce a prediction (prediction delay). The shown results are the

aggregate sum of 10000 predictions. As we can see, OSSLMS takes significantly more

time to produce a prediction than its counterparts, this is due to its high complexity. Since

the CPU of the Sink will be blocked for a longer duration in order to produce a prediction,

this would affect negatively the number of nodes a sink running OSSLMS can handle

simultaneously. In the case of FTDTR the prediction delay is almost negligible. Thus

the CPU and the memory will be liberated rapidly which gives more space to the Sink to

handle a larger number of nodes.
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Figure 2.5: Prediction delay comparison

Eventually, sensor nodes can be grouped into clusters and each group can be assigned

to a different Sink. The number of sensors belonging to the same group is influenced
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by the complexity of the running algorithm and the computational capacity of the Sink. A

large number of possible settings could be taken into consideration. Therefore in future

work, a comprehensive study on the scalability of our proposal could be conducted.

2.6.5/ DATA LOSS/COMMUNICATION ERROR

In this section, we will compare the different approaches in a scenario where data loss

occurs randomly when a sensor is trying to send a measurement to the Sink. The percent-

age of a sensor failing to transmit its readings can vary from 10% in an ideal environment

and when there are low collision and overload in the network, up to 50% in harsh environ-

ments and a jammed network [Zhao et al., 2003, Zong et al., 2017]. We have evaluated

the performance of each of the four methods with a transmission failure possibility rang-

ing from 10% to 50% based on the Bernoulli distribution, where the probability of failed

transmission p is varied within the range of [0.1 − 0.5], and the probability of a successful

transmission q (1 − p) within [0.5 − 0.9].

Figure 2.6 shows the number of temperature, humidity, and infrared data exceeding the

error threshold emax when different missing possibilities are considered. With a data

loss detection mechanism, FTDTR was able to limit the number of wrong estimations by

keeping the model at the sensor and the sink synchronized. Thus, only the readings that

failed to reach the sink and were flagged as “NaN” values by the later are considered

to exceed the error threshold. Oppositely, the number of estimations exceeding the error

threshold for other approaches is far greater than the number of measurements that failed

to be reported. The reason is that the readings that fail to reach the sink are used by the

sensor to adjust the model, thus leaving the sink with an outdated one that produces

wrong estimations, while the sensor is producing correct ones.

For each environmental feature (temperature, humidity, and infrared) the twenty data sets

reproduced by the sink corresponding to the twenty deployed sensor nodes are passed

to the reconstruction algorithm (DynnaMMO) in order to fill the blank values flagged as

“NaN”. Figure 2.7 shows the average percentage of the successfully reconstructed data.

The reconstruction success rate can range between 45% and 72% according to the num-

ber of missing readings and on the temporal smoothness and spatial correlation of the

data set.

The reconstruction of a missing reading at time t is considered to be unsuccessful if

the difference between the values of the reconstructed measurement and the real one

is greater than the maximum error tolerance (|x̂t − xt| > emax). For a missing probabil-

ity varying from 10% to 50%, Table 2.4 shows the Root Mean Square Error (RMSE) of

the measurements that have been unsuccessfully reconstructed by FTDTR and the data

exceeding emax for OSSLMS, HLMS, and DBP.
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Figure 2.6: Number of measurements surpassing the error threshold
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Figure 2.7: Percentage of successfully reconstructed data

Table 2.4: RMSE of data exceeding emax

Temperature Humidity Infrared

FTDTR OSSLMS HLMS DBP FTDTR OSSLMS HLMS DBP FTDTR OSSLMS HLMS DBP

10% 0.103 0.16 0.22 0.639 0.13 0.41 1.88 0.44 2.3 3.21 2.84 10.65

20% 0.104 0.188 0.238 0.849 0.15 0.29 2.15 0.47 2.7 3.39 4.39 15.52

30% 0.104 0.218 0.356 1.233 0.14 0.28 2.424 0.763 2.8 3.45 4.85 15.28

40% 0.111 0.242 0.782 1.025 0.14 0.312 2.937 0.834 2.8 4.06 5.42 18.46

50% 0.110 0.252 3.04 1.10 0.16 0.472 3.374 0.838 3.3 4.41 6.82 22.31

The results show that our method has the lowest RMSE for all environmental features and

for all missing probabilities. Moreover, for temperature and humidity data, the RMSE’s are

very close to emax (0.1). Therefore, when we increased emax to 0.2, the reconstruction

success rate for a 50% miss probability reached 99.6% and 94.3% for temperature and
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humidity data respectively. For infrared data when we increased emax to 4 instead of 1

(which is still an acceptable error for most applications) the reconstruction success rate

increased to 91%.

The obtained results are in line with what has been previously emphasized, showing that

the proposal outperforms existing works in maintaining high-quality estimations when a

data loss scenario occurs.

2.7/ CONCLUSION

In this chapter, we have demonstrated that our proposed method is better at reducing

the number of transmissions from the node to the sink compared with other approaches

existing in the literature. Moreover, we take into consideration communication error, links

failures, and battery depletion in order to prevent the loss of synchronization between the

sink and the node, by applying an appropriate mechanism that identifies and reconstruct

missing data. Simulations have been conducted using real data sets in a custom Matlab

simulator. The performance of our proposal in terms of data reduction, complexity, energy

consumption, scalability, and data quality, compared to other recent similar approaches

has been proven through experimentation to outperform them.





3

A DISTRIBUTED PREDICTION AND

ADAPTIVE SENSING APPROACH

T he sensor board of a sensor node is considered one of the most energy consuming

components. Therefore, an important portion of the related literature proposed

adaptive sampling algorithms that preserve the scarce sensor energy by minimizing the

number of sampled data. In this chapter, we present an approach that combines the

previously described transmission reduction technique with an adaptive sampling one

into one efficient, data-driven, energy management algorithm.

3.1/ INTRODUCTION

In the previous chapter, we presented a novel fault-tolerant data transmission reduction

algorithm. The proposed approach can extend the lifetime of the network by minimizing

the number of transmitted packets. In this chapter, we will present an extension of this

approach. To further reduce energy consumption we propose merging the fault-tolerant

DPM with an adaptive sampling technique. This will enable the sensor node to adapt its

sampling rate depending on the variations in collected data over a certain period of time.

If no significant change is noticed, the sensor node could eventually reduce its sampling

speed (the time between two consecutive samples) and sleep for a longer duration. This

proposed algorithm belongs to the data prediction and adaptive sampling sub-categories

presented in Chapter 1, Section 1.2.2.1. Adaptive sampling could, in theory, drastically

reduce the energy consumption of the sensor. First, it reduces the energy consumed

by the sensor board by minimizing the number of collected measurements. Second, it

reduces the active duration of the sensor node by enabling it to sleep for a longer duration,

which preserves an important amount of energy. The rest of this chapter is organized

as follow. In Section 3.2 the Kruskal-Wallis based algorithm that allows the sensor to

adapt its sampling rate is explained. Section 3.3 explains how the adaptive sampling and

53
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transmission reduction techniques can be merged together. The obtained experimental

results are shown in Section 3.4. Finally, the chapter is concluded in Section 3.5.

3.2/ THE KRUSKAL-WALLIS STATISTIC MODEL

Let us first begin by explaining the Kruskal-Wallis statistic model, which forms the core

of the adaptive sampling algorithm. The Kruskal-Wallis test [McKight et al., 2010] takes

as input a group of data sets to identify whether there is a difference between at least

two of these sets. To understand how this test works and how it could help us to reduce

the sampling rate of a sensor, we give the following illustrative example that explains its

functionality and applicability in WSNs.

3.2.1/ ILLUSTRATIVE EXAMPLE

Let us consider that a sensor operates in rounds, where each round consists of p periods.

To simplify the example, let us assume that p is equal to two. Table 3.1 shows a set of

measurements collected by a sensor during two consecutive periods.

Table 3.1: Example of collected measures

Raw Measures Measures Rankings
Period 1 Period 2 Period 1 Period 2

3.4 4.6 1 2
6.2 5.8 4 3
7.0 7.0 �5 5.5 �6 5.5
7.3 7.5 7 8
7.6 8.0 9 10
10.3 10.2 ��12 12.5 11

10.3 ��13 12.5
Number of Measures Sum of Rankings

6 7 39 52

The first step is to order the measurements in both periods by increasing order of their

values and assign a rank denoted r to each one of them, representing its position in the

ordered list. However, two or more measurements could have the same value. In this

case, the mean value of their ranks is calculated and assigned to each one of them.

For instance, in Table 3.1 the value 7.0 is repeated twice, both in period 1 and 2 with

ranks 5 and 6 respectively. The mean value of both ranks is 5.5. Thus, the ranks of both

measurements holding the value 7.0 are replaced by 5.5. The second step is to pass the

ranked measurements as input to the Kruskal-Wallis test in order to find which one of the

following assumptions is correct:

Assumption 1: the two groups of data (measurements in period 1 and 2) are significantly
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different.

Assumption 2: the difference between the two groups of data is not significant.

The test is conducted using Equation (3.1), where N is the total number of measurements

in all periods, ni is the number of measurements inside the ith period, and ri is the sum of

all ranks in the ith period.

H =
12

N × (N + 1)

p∑
i=1

r2
i

ni
− 3 × (N + 1) (3.1)

Using the data in Table 3.1 and based on Equation (3.1), H is calculated as follows:

H =
12

13 × (13 + 1)
(
392

6
+

522

7
) − 3 × (13 + 1) = 0.183

Finally, to check which assumption is the correct one, the result of this formula is com-

pared with a “difference value” denoted Ht. Ht varies according to the false rejection

probability predefined by the user, denoted α. The relation between α and Ht can be

found in the chi − square Table. The risk α is defined in a statistical test as the risk of

rejecting the Null hypothesis when in fact it is true, it is also known as Type I error. This

risk is stated in terms of probability (such as 0.05 or 5%). It corresponds to the confi-

dence level of a statistical test, so a level of significance α = 0.05 corresponds to a 95%

confidence level. In our approach, it is the probability that a sensor node finds a high

variance between its collected data while in reality there are no variances and it should

adapt the sampling rate. Therefore, when α decreases the value of Ht increases and then

the condition H < Ht becomes more difficult to be satisfied. Consequently, the sampling

rate increases when α decreases. Let us assume α = 0.05, for this value of α, Ht is equal

to 5.991. Comparing the results of the previous equation we notice that H < Ht (0.183 <

5.991). Therefore, the first assumption is accepted. Hence, the sampling rate must be

adapted.

3.2.2/ THE BEHAVIOR CURVE FUNCTION

Based on the Kruskal-Wallis test, when a node notices high variance differences, it in-

creases its sampling rate in order to prevent missing important measurements and de-

creases its sampling rate when the variance is less than the threshold Ht. Following the

example above low variance was detected, since H < Ht.

To compute the sampling rate of the sensor a behavior function (BV) is used, taking as

input the risk of the application denoted R, or in other words, how important the quality

of data is to the end-user. This BV function is expressed by a Bezier curve that passes

through three points as shown in Figure 3.1: (0,0), (Ht, Maximum Sampling Rate), and R.
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Figure 3.1: Sampling rate adaptation using the Behavior function

3.3/ MERGING ADAPTIVE SAMPLING AND DPM BASED TRANS-

MISSION REDUCTION

One can notice that Adaptive Sampling (AS) and the Transmission Reduction (TR) al-

gorithms are compatible. First, their work does not overlap and they do not affect each

other’s results since one is supposed to reduce sampling and the other is supposed to

reduce transmission. Secondly, the prediction model is capable of filling the gap of “non

collected data”, since as mentioned before these measurements are mostly redundant

or roughly similar to closely collected ones, and the prediction model efficiency is at a

maximum when the change in values is smooth and slow. Therefore, on the one hand,

the sampling rate is reduced and on the other hand, the end-user will still have access to

the complete set of data. Finally, the complexity of the transmission reduction algorithm

is constant. Thus, when combined with the adaptive sampling algorithm the overall com-

plexity will remain unchanged. Therefore, we propose to combine these two techniques

into a single algorithm (AS+TR), enabling us to achieve lower energy consumption com-

pared to each one of them when implemented solely. Instead of waking up periodically

after a fixed period of time, the sensor, at the end of each round, will automatically adapt

its sleeping duration according to AS results. This is simply how the two algorithms could

be merged. Figure 3.2 gives an illustrative example of the procedure, and Algorithm 3

shows how this method is implemented on the sensor.
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Algorithm 3 Adaptive Sampling + Transmission Reduction

Require: emax (maximum error threshold)
1: Read x0 and x1
2: Transmit x0 and x1 to Sink
3: C_Temp0 ← x1 − x0
4: α← 0.5
5: LC ← x1
6: j← 0
7: while Energy , 0 do
8: Read xk at time k
9: x̂k ← x̂k−1 + C_Tempk × α

10: if period 1 then
11: x_period1[ j] = xk

12: else if period 2 then
13: Reset j to 0 once
14: x_period2[ j] = xk

15: end if
16: if End of round then
17: Apply the KRUSKAL-WALLIS test on x_period1 and x_period2
18: Update the sampling rate for the next round
19: j← 0
20: end if
21: if |xk − x̂k| ≥ emax then
22: Send xk to Sink
23: C_Tempk ←

xk−LC
N

24: LC ← xk

25: Update α
26: x̂k ← xk

27: end if
28: end while

Figure 3.2: Illustrative example of the (AS+TR) method
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3.4/ EXPERIMENTAL RESULTS

In this section, we present the experimentation we have conducted on the DISC wireless

sensor data-set described in Section 2.4.2 of Chapter 2. We compared our approach

with a recent similar one called Data Prediction with Cubic Adaptive Sampling (DP-

CAS [Monteiro et al., 2017]), which merges an exponential time series predictive model

with a TCP CUBIC congestion adaptive sampling technique. The setup parameters for

this experimentation are shown in the Table 3.2.

Table 3.2: Setup parameters

DPCAS AS+TR
Smin 310 sec Smin 310 sec
Smax 31 sec Smax 31 sec

smoothing coefficient α
& multiplicative reduction factor β 0.2 Risk R 0.6

cubic parameter C 0.4 Rejection Probability α 0.05

3.4.1/ SAMPLING RATE ADAPTATION

Let us first illustrate how the adaptive sampling algorithm works. Figure 3.3 shows the

variation in the sampling rate for temperature data in two different nodes, namely Node1

and Node2 during 80 periods. In contrast with the naive approach where the sampling

rate is fixed for all periods, the adaptive sampling method allowed the sensor to adapt its

rate by either scaling it up or down according to the variation in measured data. However,

we set a lower limit for the sampling rate S min equivalent to 10% of S max in order to reduce

the risk of missing important information. This assumption will be demonstrated in the

Subsection 3.4.3.
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Figure 3.3: Number of samples during each period for temperature data
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3.4.2/ ENERGY CONSUMPTION COMPARED TO DPCAS

In this experiment, we focused only on the cost of radio transmission and data sensing,

without taking into consideration the computational cost and the energy preserved while

in sleep mode. Instead of simulations, a dedicate chapter for real implementation and

energy measurement of all activities will be presented next chapter of this dissertation.

In order to calculate the energy consumed by a sensor node, we used the energy con-

sumption model described in Chapter 2, Section 2.3 (excluding Elogging). Figure 3.4, 3.5

and, 3.6 show a comparison between the amount of energy consumed by each one of

the 20 sensor nodes when both ASTR and DPCAS are implemented. We can notice that

DPCAS performs better with stationary temperature data. However, for non-stationary

data, ASTR has the upper-hand.

2 4 6 8 10 12 14 16 18 20
Node ID

5

10

15

20

25

30

35

40

E
n

e
r
g

y
 c

o
n

s
u

m
p

t
io

n
 (

J
)

DPCAS
AS+TR

Figure 3.4: Energy consumption compa-
rison for temperature data
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Figure 3.5: Energy consumption comparison
for humidity data
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Figure 3.6: Energy consumption comparison
for infrared data

3.4.3/ QUALITY OF THE REPLICATED DATA

Data quality is a very important factor in WSNs since the end-user depends on it to

make appropriate decisions. Accuracy, precision, completeness, and consistency are the

attributes that measure the quality of data.

When we reduce the sampling rate within a certain period, we risk missing sudden vari-

ations in measurements. Thus, the estimation of these irregular non-sampled data may
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exceed the desired error threshold. To study the impact of the adaptive sampling algo-

rithms on the integrity of the replicated data we compare the estimated measurements

with its corresponding raw data collected by the sensor nodes, and we calculate the val-

ues of 4 quality metrics: Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE), Mean Square Error (MSE), Root Mean Square Error (RMSE). The lower the

values of these metrics the better are the results.
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Figure 3.7: Quality metrics comparison for
replicated temperature data
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Figure 3.8: Quality metrics comparison for
replicated humidity data
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Figure 3.9: Quality metrics comparison for
replicated infrared data

Figure 3.7, 3.8, and 3.9 show a comparison between the quality metrics for each set of

data of the three environmental features. For temperature data, both algorithms are neck

to neck. However, AS+TR has a clear superiority for humidity and Infrared. Since infrared

contains 0 values, MPAE could not be computed. As for MSE in order to keep Figure 3.9

simple and comprehensible, instead of plotting the graph we provide the average values

which are 2.49 and 2.72 for AS+TR and DPCAS respectively.

Adaptive sampling makes a trade-off between data quality and the amount of sampled

measurements, to deliver a minimum amount of readings while satisfying the quality re-

quirements of the application. Thus, the integrity of data depends on how tolerant is the

end-user to the error in replications. The obtained results demonstrated that our method

was able to reproduce the whole data set with less error and better quality compared with

DPCAS.
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3.5/ CONCLUSION

In this chapter, we proposed an energy-efficient data reduction method for Wireless Sen-

sor Networks based on a combination of the adaptive sampling and dual prediction mech-

anism techniques. The former allows the sensor to adapt its sampling rate according to

the variance in data. Thus, the sensor samples relevant data only and avoids the sam-

pling of redundant and insignificant information. The latter enables the Sink to estimate

the collected data through a prediction mechanism that is shared with the sensor node.

Thus, instead of transmitting all the readings, the sensor reports to the Sink a measure-

ment only when the estimation exceeds a predefined error threshold. By merging these

two techniques together, we were able to reduce radio communication and data sens-

ing at the same time. Since these two activities are considered to consume most of the

energy resources, we were able to preserve a great amount of energy and extend the

lifetime of the network significantly compared to another similar technique.





4

SLEEP SCHEDULING FOR

CLUSTER-BASED SENSOR NETWORKS

I t is evident that a sensor node consumes the most when it is activated. When the lat-

ter is put into sleep it consumes a negligible amount of energy. The wake-up sleep

scheduling algorithms that gained a lot of traction in the research community aim to exploit

this by organizing sleep schedules for the sensor nodes without sacrificing coverage, con-

nectivity, nor data quality. In this chapter, we propose and present a periodical scheduling

scheme for cluster-based sensor networks based on the spatial temporal correlation of

the deployed sensor nodes.

4.1/ INTRODUCTION

In this chapter, we present a Spatial-Temporal Correlation-based Approach for Sampling

and Transmission rate Adaptation (STCSTA) in cluster-based sensor networks. Unlike

the previous approaches, the sensor nodes do not need to run any distributed algorithm.

It is rather a centralized approach where the cluster head is responsible for collecting

data from its member sensor nodes and computing a correlation function in order to

measure the correlation degree among them. The sensors that show high correlation

will be asked to reduce their sampling rate and the ones showing low correlation will be

asked to increase it. Moreover, in order to ensure the integrity of the data, the previously

described reconstruction algorithm (Chapter 2, Section 2.5.3) is implemented on the Sink

station in order to reconstruct the “non-sampled” measurements. This proposed algorithm

belongs to the wake-up sleep sub-category of duty cycling presented in Chapter1, Section

1.2.2.2.

The rest of the chapter is organized as follows, in Section 4.2 the system model is briefly

explained. A detailed explanation of the proposed approach is provided in Section 4.3,

while experimental results are discussed in Section 4.4. This chapter ends with a conclu-

63
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sion section, in which the contribution is summarized.

4.2/ SYSTEM MODEL

We consider a set S of N sensor nodes and C cluster heads deployed over a specific mon-

itoring area at locations LS={ls1, ls2, ..., lsN} and LC={lc1, lc2, ..., lcC} respectively, where a

sensor S i is located at the location lsi and a cluster-head C j is located at the location lc j,

and the Sink S is placed in a distant location at a position l0. Sensor nodes are grouped

into clusters, where each one of them belongs to one cluster only. The cluster heads are

considered to be more powerful than sensor nodes in terms of processing capabilities

and they have been allocated larger energy resources. Figure 4.1 illustrates an example

of the described network architecture for one cluster.

Figure 4.1: Illustrative example of the network architecture

a) Sensor node

b) Cluster Head (CH)
c) Workstation (Sink)

The network is periodic and operates in rounds, where each round R is exactly P sec-

onds, and it is subdivided into m time slots, where at each time slot a sensor samples

one measurement. Therefore, the maximum sampling rate (S Rmax) is considered to be

P/m samples per round. During the very first round, each sensor node collects data us-

ing the maximum sampling rate S Rmax and transmits the readings to the CH after each

acquisition. On the CH level, when the latter receives a measurement from any sensor S i

it stores the values in its memory and routes it directly to the Sink. At the end of the first

round, the CH would have stored in his memory the following matrix M, where n is equal

to the current sampling rate (S Rmax) in this case, and N is the number of sensors in the

cluster.

M =


x1

1 x2
1 x3

1 . . . xn
1

x1
2 x2

2 x3
2 . . . xn

2
...

...
...

. . .
...

x1
N x2

N x3
N . . . xn

N
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The CH than proceeds to computing the correlation between each pair of sensors (The

number of possible pairs is N(N−1)
2 ). Using the obtained correlation results the CH cal-

culates then transmit to each sensor node its new SR. A detailed explanation of how the

correlation is calculated and how the new SR is determined is provided in Section 4.3. For

the next round, each sensor samples data according to its new sampling rate provided

by the CH. For Instance, if the latter demands a specific sensor to reduce its sampling

rate by 40%, and supposing that S Rmax is equal to 50 measures/round, the sensor is

supposed to sample 30 measurements instead. If each round is 10 minutes long (600s),

instead of sampling a measurement every 12 seconds (600/50), the sensor would sample

a measurement every 20 sec (600/30). Moreover, knowing the duration of each round,

the maximum sampling rate and the time stamp when each measurement was received,

both the Sink and the CH are capable of identifying the non-sampled data, which will be

replaced by "Nan" (see matrix M′) in order to reconstruct them later at the Sink station

and in order to make the computation of the correlation among sensor nodes easier for

the CH as explained in Section 4.3. Therefore, the stored matrix that is used to compute

the correlation will actually be as shown below, where n is equal to the number of samples

per round (S R):

M′ =


x1

1 x2
1 x3

1 . . . x50
1 Nan xn

1

x1
2 x2

2 x3
2 . . . Nan Nan xn

2
...

...
... Nan

...
...

...

x1
N x2

N x3
N . . . x50

1 Nan xn
N


4.3/ THE PROPOSED APPROACH (STCSTA)

In this section, we will explain in detail, how the correlation between sensor nodes and

the new sampling rates of each sensor are calculated.

4.3.1/ COMPUTING CORRELATION AND SAMPLING RATE ALLOCATION

Algorithm4 - line(1-13): After a round is completed, each sensor node would have trans-

mitted to the cluster head a different number of measurements since the sampling rate of

each one of them can be different. Nevertheless, as mentioned earlier the CH identifies

the non-sampled data and fills their corresponding place in the vector by a “Nan” value,

therefore all the vectors will have the same size n. However, the correlation between two

vectors containing “Nan” values cannot be computed. Therefore, each one is replaced

by the value of the first “non-Nan” value that comes before it in the same vector. For

instance, in the “M′” matrix, x51
1 is Nan it will be set equal to the same value as x50

1 , and

x50
2 and x51

2 are set equal to the same value as x49
2 , and so on.
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Figure 4.2: Figure showing the number of moderately & highly correlated sensors (pear-
son correlation coefficient ≥ 0.5) during each one of the first 100 Periods

Algorithm4 - line(16-21) : Afterward, the linear dependency of each pair of vectors (vi,v j)

∈M′ is calculated using the Pearson correlation coefficient. The latter is known as the best

method of measuring the association between variables of interest because it is based

on the method of covariance. It gives information about the magnitude of the association,

or correlation, as well as the direction of the relationship. The Pearson correlation coeffi-

cient is described in the Equation 4.1 below, where µ and σ are the mean and standard

deviations.

ρ(vi, v j) =
1

n − 1
×

n∑
k=1

(
vik − µvi

σvi

)(
vik − µv j

σv j

) (4.1)

The justification behind using the Pearson correlation can is illustrated in Figure 4.2. We

have used a data set of 92 sensors to generate 4 graphs that show the number of sensors

that are moderately & highly correlated with 4 randomly chosen sensors during each

period and for the first 100 periods. For instance, in Figure 4.2(a) we notice that this

randomly chosen ambient temperature sensor correlates with a large number of sensors

during each period. On average it correlates with 27 sensors as the mean values show.

Same for Figure 4.2(b) and (c) on average these sensors correlate with approximately

30 other sensors that are in the same cluster. However, the mean value in Figure 4.2(d)

is significantly lower (mean=19), in Section 4.4 we will see how this will reflect on the

results.

Heterogeneous environmental data besides other types of data such as medical data
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(vital signs), movement tracking data (speed, acceleration, location) and etc., are usually

highly and/or moderately correlated. This correlation thus can be used in order to reduce

the number of transmitted measurements by deriving values from other observed ones.

This is indeed the motivation behind using correlation to adapt the sampling rate of the

sensors.

Algorithm4 - line(22-27): After computing the correlation value of each sensor i with all

the other sensors belonging to the same cluster, the CH looks for the sensor j that it

correlates the most with as shown in Table 4.1.

Algorithm4 - line(28-37): Afterward, the CH counts the number of occurrences of each

sensor j in the second column of the table and stores them in a list according to their

ascending order.

Sensor i

Sensor j
(has the max

correlation
with Sensor i)

Correlation degree

1 54 0.91
2 7 0.87
3 5 0.70
4 2 0.96
5 6 0.75
... ... ..
n 32 0.88

Table 4.1: The correlation table

Algorithm4 - line(38-48): Starting from the first sensor j in the ordered list, the CH looks

in Table 4.1 for the sensor j in the first column and extracts the value of its max correlation

from the third column. Then the CH notifies j that its sampling rate must be reduced

proportionally to the correlation value. For instance, if sensor 5 was first in the ordered

list, the CH would notify it that its sampling rate for the next round must be reduced by

75%, since its level of correlation with sensor 6 is 0.75. Then the sensor j (in this case 5)

is flagged as already notified. Thus, for the next sensor j in the ordered list, if its matching

sensor i is already flagged. Instead of reducing its sampling rate proportionally to the level

of correlation, it is reduced by (100 - i’s reduction %). For instance, if the next sensor j

in the list is 3, it matches with sensor 5 in Table 4.1, therefore, it’s sampling rate will be

reduced by 100 − 75 = 25%. And so on, until the last element in the ordered array.

Algorithm4 - line(49-55): However, some sensors may not appear in the second column

of the Table 4.1, since they have not been matched with other sensors. Therefore, the

CH looks for these sensors in the 1’st column of Table 4.1, and for each sensor i, it finds

their matching sensor j in the second column, looks at how much the sampling rate was

reduced for sensor j and notifies sensor i that its sampling rate must be reduced by (100
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- sensor j′s reduction %).

The same explained operation is repeated at the end of each round. Therefore, enabling

each sensor node to adjust its sampling rate according to its level of correlation with

other sensors in the network. The Algorithm 4 illustrates the proposed method that is

implemented on the CH.

Algorithm 4 STCSTA

Require: S Rmax (1 sample/ X seconds)
1: k ← 1
2: for each sensor j in the cluster do
3: receive the first value v0

j at the beginning of the round
4: data[ j][0]← v0

j

5: lastReceived[ j]← v0
j

6: end for
7: while ! end of round do
8: if nothing is received from sensor j after X seconds then
9: data[ j][k]← lastReceived[ j]

10: else if vn
j is received during the X seconds count then

11: data[ j][k]← vn
j

12: lastReceived[ j]← vn
j

13: end if
14: k ← k + 1
15: end while
16: if end of round then
17: for i=1 to N do
18: for j=i+1 to N do
19: corrArray[i][ j]← PearsonCorr(data[i][:], data[ j][:])
20: end for
21: end for
22: for i=1 to N do
23: maxCorr[i][0]← i
24: [index, value]← max(corrArray[i][:])
25: maxCorr[i][1]← index
26: maxCorr[i][2]← value;
27: end for
28: k ← 1
29: for each element i ∈ the second column of maxCorr do
30: if i < first column of countOcc then
31: count ← count how many times i occures in the second column of maxCorr
32: countOcc[k][0]← i
33: countOcc[k][1]← count
34: k ← k + 1
35: end if
36: end for
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37: order countOcc in ascending order according to the second column
38: k ← 1
39: for each element j ∈ the first column of countOcc do
40: match← maxCorr[ j][1]
41: if reduce[match-1] is empty then
42: Notify sensor j that its sampling rate must be reduced by (maxcorr[j][2]*100)%
43: reduce[ j − 1]← (maxcorr[ j][2] ∗ 100)
44: else
45: Notify sensor j that its sampling rate must be reduced by (100 - reduce[match-

1])%
46: reduce[j-1]=100 - reduce[match-1]%
47: end if
48: end for
49: for j=1 to N do
50: if reduce[j-1] is empty then
51: match← maxCorr[ j][1]
52: Notify sensor j that its sampling rate must be reduced by (100 - reduce[match-

1])%
53: end if
54: end for
55: end if

4.3.2/ ANALYSIS STUDY

The objective of this algorithm is to create and manage a sampling rate balancing system

based on the correlation degree between the nodes belonging to the same cluster. The

idea is to match each sensor node with the one that correlates the most with, in such a

way that, if one node of the paired couple reduces heavily its sampling rate, the other one

keeps it high and vice versa, allowing them to compensate one another. This compen-

sation mechanism is crucial for the success of the reconstruction algorithm in terms of

minimizing the estimation error and increasing the quality of the replicated data. The lat-

ter relies on the correlation among sensor nodes in order to reconstruct the non-sampled

measurements. Therefore, if highly correlated sensors are missing data simultaneously

this would negatively affect the accuracy of the reconstructed measurement. When the

balancing of non-sampled data is kept in check on the CH level, the reconstruction algo-

rithm on the Sink will theoretically produce better estimations.

In this section, we will illustrate an example that explains our algorithm step by step. The

latter provides a better analysis of what happens at the end of each round on the cluster

head to better understand why and how this compensation system works. Let us start by

assuming that at the end of a given period, the CH has already computed the correlation

between each pair of sensors belonging to the same cluster. In addition, we assume

that the CH already matched each sensor with the one that correlates the most with and

stored the results in a table similar to Table 4.2. The next step is to count for the sensors
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appearing in the second row of the table how many times it has been matched. For

instance, sensor 7 has been matched 4 times, sensor 1 has been matched 2 times, and

sensor 10, 9, 3, and 8 have been matched only one time. The matched sensors are then

ordered in ascending order according to how many times they have been matched. the

order will then be: {sensor 8, sensor 3, sensor 9, sensor 10, sensor 1, sensor 7}.

Sensor i 1 2 3 4 5 6 7 8 9 10

Sensor j (has max

correlation with i)
8 1 7 3 9 1 10 7 7 7

Correlation degree *10−2 78 69 54 92 85 72 79 83 89 90

Table 4.2: Table showing for each sensor its best match (maximum correlation) and the
degree of correlation with this match

Starting from the first sensor in the list (sensor 8) the CH looks for the sensor that it

matches with. Looking at Table 4.2 we see that sensor 8 matches with sensor 7. The CH

then checks whether the sampling rate of sensor 7 for the next round has been decided

yet. If it is not the case the CH notes that the sensor 8 must reduce its sampling rate for

the next round by 83%, since the correlation degree for sensor 8 with its match is 0.83.

The CH then follows the same procedure for the next sensor in the ordered list. Sensors

3, 9, and 10 they all match with sensor 7 too, and since the sampling rate of sensor 7

has not been decided yet, their sampling rate will be reduced by 54%, 89%, and 90%

respectively for the next round. Now the CH searches for the sensor that matches with

the next sensor in the ordered list (sensor 1). Looking at Table 4.2 we see that it is sensor

8. However, the sampling rate of sensor 8 has been already decided to be reduced by

83%, therefore instead of reducing the sampling rate of sensor 1 by 78% it will be reduced

by 100-83%, therefore 17% only. Same for sensor sensors 7, it matches with sensor 10,

therefore its sampling rate must be reduced by 100-90% (10% only).

The next step is to adapt the sampling rate of the sensors that do not appear in the second

row of the table, or in other words they have not been matched with other sensors in the

cluster. In this example, the non-matched sensors are sensors 2,4,5 and 6. Starting by

sensor 2, its match is 1, therefore the sampling rate of sensor 2 for the next round must

be reduced by 100-17% (83%), same for sensor 4,5, and 6 their sampling rate will be

reduced respectively by 46%, 11%, and 83%.

Before computing the percentage of the reduction in sampling rate, the matched sen-

sors are first ordered in ascending order according to how many times they have been

matched. The reason for this crucial step can be explained as follows: let us suppose

the list has not been ordered, and the CH started by sensor 7, which has been matched

4 times with 4 different sensors. The sampling rate of sensor 7 will be reduced by 79%.
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Therefore, eventually, the sampling rates of sensors 3, 8, 9, and 10 will be reduced by

21% only compared to 54%, 83%, 89%, and 90% respectively if the list was ordered.

In consequence of not ordering the list first, the overall reduction in the sampling rate of

the sensors would be reduced, which would lead to an increase in data transmission and

energy consumption. Since sensor 7 can compensate for 4 other sensors, it is wise to

leave it until the end, allowing the sensors that it matches to reduce more their sampling

rate.

A summary of the results is illustrated in Table 4.3. We notice that if a sampling rate of

a particular sensor is highly reduced, the one of the sensor that it correlates the most

with will be proportionally and slightly reduced (e.g. sensors 2 and 1). This balanced

reduction is meant to compensate for the matched sensor since the non-sampled values

will eventually be derived mostly from its best match. Similarly, if the sampling rate of

a sensor is slightly reduced, this will give more freedom to its match thus allowing it to

highly reduce its sampling rate (e.g. sensors 5 and 9).

Sensor i 1 2 3 4 5 6 7 8 9 10

SR reduction (%) 17 83 54 46 11 83 10 83 89 90

Sensor j (has max

correlation with i)
8 1 7 3 9 1 10 7 7 7

SR reduction (%) 83 17 10 54 89 17 90 10 10 10

Table 4.3: Table showing the % of SR reduction for each sensor compared with its match

4.4/ EXPERIMENTAL RESULTS

We implemented our algorithm in addition to DPCAS [Monteiro et al., 2017] in a custom

WSN simulator built in Matlab, and we conducted multiple experiments in order to evalu-

ate and compare their performances. In the simulation, we used the real sensor data-set

described in Section 2.4.1 of Chapter 2. In DPCAS the parameter ε defines the error

tolerance of the application, the greater is ε, the less is the amount of data that will be

sampled and transmitted. However, the error of the estimated data will increase. There-

fore, the value of ε is the level of trade-off between the quality of the replicated data and

the amount of sampled and transmitted measurements. In our experimentation, we set

up five different values for ε ranging between 0.1 and 0.5 and we compare our approach

to DPCAS for each value of ε.
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4.4.1/ SAMPLING AND TRANSMISSION REDUCTION

In this section, we will explore and compare the effectiveness of each algorithm in reduc-

ing the number of both sampled and transmitted data in three different scenarios. In the

used data-set, each one of the 23 sensor nodes collects 4 different environmental fea-

tures (ambient temperature, surface temperature, relative humidity, and wind speed). For

simplicity and better visualization of the results, all the figures will illustrate the percentage

of the aggregated sum of the data sampled and transmitted by the 23 nodes combined

and for all features.
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Figure 4.3: Average percentage of data sampled by each sensor node
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Figure 4.4: Average percentage of data transmitted by each sensor node

Figure 4.3 and Figure 4.4 show that on the one hand, the bigger is the sampling interval

between two consecutive measurements (higher variations in data), the greater is the av-

erage percentage of both sampled and transmitted data will be when DPCAS is deployed.

On the other hand, when our approach (STCSTA) is deployed, the average percentage

remains stable despite the level of variations in collected measurements, which makes it

more robust, dynamic and tolerable to high variations. This is not the case for DPCAS

however, its effectiveness can be significantly affected (a double-digit increase in sam-

pled and transmitted data) depending on the type of data being collected. For sampled

data, Figure 4.3 shows that STCSTA outperforms DPCAS in all scenarios and for all the

values of ε. Figure 4.4 shows the average percentage of data transmitted by each one of
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the 23 nodes for both algorithms in 3 different scenarios and using different ε for DPCAS.

The obtained results show the following: STCSTA outperforms DPCAS when ε ≤ 0.2 in

all scenarios. However, for ε = 0.3 DPCAS transmits less data in the first scenario (S Rmax

= 1 sample/ 2mins), but more data in the other two scenarios (S Rmax = 1 sample/ 10 mins

and 1 sample/ 20 mins). Finally, for ε = 0.4 and 0.5, DPCAS is slightly better in the first

two scenarios. To sum it all up, the results in Figure 4.4 show that STCSTA outperformed

DPCAS 9 times, the latter outperformed STCSTA 5 times, and finally, there is 1 tie.

4.4.2/ ENERGY CONSUMPTION

In this paragraph, we present a comparison between the average energy consumed by

the 23 sensor nodes when DPCAS and STCSTA are deployed.

Figure 4.5: Average energy consumption of each sensor node
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Knowing that in DPCAS an algorithm must be deployed on the node that handles 4 dif-

ferent sensors at a time. The node needs to perform reading and writing in the memory,

and it needs to compute instructions using the CPU. Therefore, the node will consume

additional energy (Elogging and EProcessing). However, for STCSTA, the node does not have

to run an algorithm, nor to perform read and write in the memory, it simply collects a

measurement using the integrated sensors, and directly transmits it to the CH. Therefore,

no additional energy consumption is required. Figure 4.5 shows the average energy in

Joule consumed by each one of the 23 deployed nodes. We can see that our approach

consumes approximately from 20% up to 60% less energy than DPCAS depending on the

scenario and the value of ε.

Comparison with a baseline method: The previously described results demon-

strated that our approach STCSTA outperforms DPCAS in terms of energy preserva-

tion. The DPCAS algorithm in [Monteiro et al., 2017] was compared to two other ap-

proaches that use a similar technique, namely EDSAS [Gupta et al., 2011] and ASTCP

[Al-Hoqani et al., 2015]. The ASTCP algorithm was inspired by the EDSAS. Moreover,
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the DPCAS algorithm was inspired by both ASTCP and EDSAS. In this section, we will

use the EDSAS as a baseline for comparison since it was the root algorithm that inspired

both ASTCP and DPCAS. Table 4.4 below shows the average energy consumed by each

node in all scenarios and for the same value of ε=0.1 used in [Monteiro et al., 2017]. The

obtained results are fairly similar to the ones obtained in [Monteiro et al., 2017] and our

approach remains better.

Algorithm STCSTA DPCAS EDSAS

Sampling Rate

1 sample/ x min
x=2 x=10 x=20 x=2 x=10 x=20 x=2 x=10 x=20

Energy (J) 6.06 1.21 0.59 13.06 2.84 1.47 13.38 2.92 1.52

Table 4.4: Table comparing STCSTA and DPCAS to the baseline EDSAS

4.4.3/ THE QUALITY OF THE REPLICATED DATA

In order to measure the quality of the final set of data, we use the accuracy of the estima-

tions as the validation criteria. Specifically, we use the Root Mean Square Error (RMSE)

and the Mean Absolute Error (MAE) as an accuracy metric. Table 4.5 shows the RMSE

and MAE of the estimated data for the three scenarios. For ambient temperature, sur-

face temperature and relative humidity the errors are low. This is due to the fact that the

spatial-temporal correlation of these features is strong, so the estimation algorithm can

obtain an accurate and solid relationship based on mining correlation rules. Table 4.5

also shows that the error increases when the sampling interval widens. The bigger is

the sampling interval, the weaker is the temporal correlation, therefore the harder is for

the estimation algorithm to accurately estimate values. For Wind direction, the errors in-

crease significantly but they are still proportionally low compared with the range of value

for the wind speed (between 0 and 350 m/s). Wind speed has no spatial correlation with

any other feature. Moreover, the wind speed value varies significantly between one sam-

ple and the other as shown in Figure 4.6d, therefore the temporal correlation is weak as

well, that is why it has the highest error among other features.

Figure 4.6 shows the reconstructed data for ambient temperature, surface temperature,

relative humidity, and wind speed respectively. As shown in the figures, the data estima-

tion (reconstruction) algorithm has been able to capture both the dynamics of the time

series as well as the correlation across given inputs, therefore achieving a very satisfying

reconstruction quality. To conclude on this, simulation results presented in this section,

demonstrated that the Sink is capable of reproducing the “non-sampled” data with a tol-

erable error margin. Thus, using our approach a sensor node can significantly reduce its

sampling rate without affecting the integrity of the data.
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Table 4.5: Quality of the reconstructed data

Ambient Temp Surface Temp Relative Humidity Wind Direction

1 sample/2 mins
RMSE 1.12 1.33 2.7 16.5

MAE 0.71 0.91 1.89 8.78

1 sample/10 mins
RMSE 1.26 1.56 3.68 18.26

MAE 0.74 1.09 2.55 9.13

1 sample/20 mins
RMSE 1.43 1.95 4.78 23.53

MAE 0.87 1.43 3.21 11.93
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(b) Reconstructed surface temperature data
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(c) Reconstructed relative humidity data
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Figure 4.6: Quality of the reconstructed data sets

4.4.4/ THE EFFECT OF THE SCHEDULING STRATEGY ON ERROR MINIMIZATION

The previous results have evaluated the efficiency of our proposed approach (STCSTA)

in terms of reducing data transmission and energy consumption as well as the quality

of the data replicated on the Sink. However, as previously explained in Section 4.3.2,

the objective of our algorithm is to guarantee that the highly correlated sensors are not

skipping data sampling simultaneously in order to reduce the reconstruction error. That

was in theory, therefore, in this section, we put the theory into practice in order to justify

this claim.

Instead of building a list of matching sensors, ordering the list, and reducing the sampling

rate of each sensor proportionally to its match, we eliminated the steps from line 29 and

upward in Algorithm 4, only to allow a sensor to reduce its sampling rate according to

its highest degree of correlation. For instance, let’s assume that the sensor 1 has the

highest correlation degree with sensor 5 (0.8). Without checking whether sensor 5 has
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already reduced its sampling rate or not, it will automatically reduce it by 80%. There is a

chance that sensor 5 has already reduced its sampling rate lets say by 70%. Thus, both

sensors 5 and 1 will skip sampling simultaneously which would, in theory, affect negatively

the reconstruction algorithm, which will lead to an increase in the reconstruction error.

We will be calling this method “The exaggerated sampling reduction” method. Table 4.6

shows the % of the increase in the reconstruction error when this method is applied.

We notice that the Reconstruction error increases significantly in all scenarios and for all

environmental features, which justifies our controlled sampling strategy.

Table 4.6: Percentage of increase in reconstruction error (the exaggerated sampling re-
duction method)

Ambient Temp Surface Temp Relative Humidity Wind Direction

1 sample/2 mins
RMSE 16.9 % 34.5 % 20 % 45.3 %

MAE 12.6 % 41.7 % 16.93 % 23.4 %

1 sample/10 mins
RMSE 26.9 % 44.8 % 35.8 % 52.7 %

MAE 39.1 % 52.3 % 29.4 % 75.2 %

1 sample/20 mins
RMSE 25.8 % 48.2 % 50.2 % 36.0 %

MAE 25.2 % 44.0 % 45.7 % 59.2 %

4.4.5/ SCALABILITY AND LIMITATIONS

Obviously, the scalability of such a network depends on the computational power of the

CH and its memory capacity. A more powerful CPU and big memory size mean that the

CH could handle a large number of sensors simultaneously. The weaker is the CPU and

the smaller is the memory size, the fewer nodes a CH can handle. A great number of

devices that can be used as a CH are currently available in the market, they all have

different features and characteristics. One can find cheap less powerful CH device for

personal use or an expensive and powerful device for commercial use. Therefore, the

choice of the CH depends on the size of the network a user wants to deploy. A network

consisting of thousands of nodes will certainly need a powerful CH. However, a network

consisting of a few hundred or tens of nodes could work just fine with a less powerful CH.

Our proposed algorithm is not very complex though, it has a complexity that is linear in

time (O(n)). This linear complexity allows the CH to handle a large number of nodes

with minimal computational power. Regarding the memory size required by the STCSTA,

assuming that the number of nodes in the cluster is N, and each transmitted value is

encoded into 8 bytes.

• 8 × (N(S Rmax + 1
2 N + 4) + 1) bytes is the memory size required by the Algorithm 4

from line 1-27. Figure 4.7 shows the memory size needed by the CH in function of
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Figure 4.7: Memory size needed for the first part of the Algorithm (line 1-28)
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Figure 4.8: Memory size needed for the second part of the Algorithm (line 23-57)
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S Rmax and the number of nodes belonging to the cluster.

• 8(×6N + 1) bytes is the memory size required by the Algorithm 4 from line 22-55

if we assume that the matching sensors are at maximum equal to the number of

sensors in the cluster. Figure 4.8 shows the maximum memory size needed by the

CH in function of the number of nodes belonging to the cluster.

The maximum memory size required by the CH is 8 × Max(N(S Rmax + 1
2 N + 4) + 1, 6N + 1)

bytes, since the values stored in the first part of the Algorithm (1-15), could be cleared

once the sensors have been matched (Algorithm 4, line 16-27).

Nevertheless, the greater is the number of nodes belonging to the same cluster, the better

is the correlation among these nodes, the fewer data a sensor will sample and transmit

which eventually leads to less energy consumption. Therefore, the number of sensors

belonging to the same cluster should be maximized in function of its computational and

memory resources.

As for the limitation of our proposed algorithm, it is evident when there is no or little

correlation among the collected measurements, the sampling rate of the sensors will be

always kept high. Since the role of this algorithm is to minimize the sampling rate of the

sensor node, it will not be as efficient as it should be.
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4.5/ CONCLUSION

In this chapter, we proposed a sampling and transmission rate adaptation algorithm for

cluster-based sensor networks. This algorithm is deployed on the Cluster-Head (CH) and

it operates in rounds. The latter controls the sampling rate of each individual sensor node

by increasing it or decreasing it according to its spatial correlation with other sensors in

the network. Moreover, we adopted and adapted a data reconstruction algorithm that

is implemented on the Sink station. The latter can identify the “non-sampled” data that

are not collected due to a decrease in the sampling rate of a specific sensor and it es-

timates them using an EM iterative approach that is capable of capturing the temporal

and spatial correlation among the reported measurements. We presented experimenta-

tion that we have conducted on real sensor data of a network that was deployed at the

Grand-St-Bernard pass located between Switzerland and Italy. We have compared our

approach with a recent data reduction technique that combines both adaptive sampling

and transmission reduction. The obtained results demonstrate that our proposal is better

at reducing the energy consumption of the sensor node, thus extending the operational

lifetime of the network while preserving the integrity and the quality of the data.



5

FROM THEORY TO PRACTICE

I n this chapter we present an LPWAN-based remote monitoring system for state as-

sessment and localization of firefighters to improve their safety during intervention.

A small scale prototype of this latter has been validated through real experiments. More-

over, we have implemented on some of the sensor devices composing the system the

energy management algorithms described in the previous chapters and computed their

energy consumption through real-time measurement of the consumed current.

5.1/ INTRODUCTION

Firefighters are equipped with an immobility detector device also called the Personal Alert

Safety System (PASS) that is integrated into the user’s Self-Contained Breathing Appara-

tus (SCBA). If a firefighter remains motionless for a certain period of time, a loud audible

alert is triggered to notify the Firefighter Assist and Search Team (FAST) deployed in the

area of intervention that the wearer of the PASS device is in trouble and in need of rescue.

The first generations of the PASS devices needed to be manually armed by the firefight-

ers, which leads to fatalities among crew members that entered the area of intervention

without arming it. Therefore, new generation devices have been integrated into the user’s

Self-Contained Breathing Apparatus (SCBA), and they are automatically armed when the

SCBA is turned on. When the SCBA is not being used the PASS device should be de-

activated to prevent false alarm, but this does not happen all the time. For instance, a

firefighter might need to remove the SCBA and put in on the ground to change the air

cylinder, which triggers a false alarm thinking that he is not moving. Moreover, if a crew

member did not move for a few seconds but he is okay and did not manually reset the

PASS device, a false alarm will also be triggered. Therefore, this device is not reliable

enough since it triggers frequently false positives which lead to developing a tolerance for

sounding alarms among the crew. As a consequence, they do not seem to be concerned

about it as they should and the alarms are just ignored sometimes.

79
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In this chapter, we first present a PERsonal LPWAN sYstem (PERLY) for state assess-

ment and localization of firefighters during interventions. Our proposal is more reliable

compared to the PASS, it also adds additional important functionalities and minimizes the

false positive alarms. The designed prototype and the proposed solution were adapted

according to the needs and requirements of the fire brigade of the region of Doubs in

France. Several interviews were held with the personnel from the fire and emergency

response department that included discussions regarding the reliability, cost, and secu-

rity of the system and the collected data. The interviews led to developing and validating

a prototype of a plug and play system that is specifically tailored for the needs of the

fire brigade and also designed to work in areas with no network coverage. Secondly, in

order to ensure a maximum operational lifetime for the network, our proposed data man-

agement algorithms were implemented on some of the sensor devices composing the

system. We measured in real-time the energy consumption of sensing, processing, and

transmission activities of the devices in addition to the overall energy consumed by each

algorithm.

5.2/ BACKGROUND AND MOTIVATION

A variety of Wireless Sensor Network (WSN) systems have been proposed in

the literature to support firefighters during their interventions. such as wearable

body-sensors systems for health monitoring [Chen et al., 2007, Shahriyar et al., 2009,

Hao et al., 2008], navigation support systems [Yang et al., 2018, Klann et al., 2007,

Ramirez et al., 2012], fire detection systems [Cantuña et al., 2017, Kanwal et al., 2017,

Khamukhin et al., 2016], etc. However, while the usefulness of these systems is acknowl-

edged [Sha et al., 2006], they are only partially usable either because they rely on the

existence of a pre-deployed and fix communication and/or localization infrastructure or

because they are simply too complex to be accepted and used by firefighters. In our

interviews with the personnel of the fire brigade department of the Doubs region, we

obtained very useful system design information that helped us propose, develop and val-

idate a personal alert safety system that is specifically tailored for their needs. The main

system design requirements are the following:

• A simple, lightweight, and convenient system that could be easily integrated with the

current equipment used by the firefighters and that could be accepted and adopted

by the personnel.

• A plug and play system that does not rely on a pre-existing infrastructure.

• A system that is low cost, fully automated and requires minimum user intervention.
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• A system that ensures reliable delivery of the emergency alert to the concerned

rescue team.

• A system that reduces false flags, monitor the heart condition of firefighters and is

able to localize a firefighter in case of an emergency.

• A low power, low energy consuming system that can last until the intervention ends.

The rest of this chapter is organized as follows: in Section 5.3, a general overview de-

scription of the LoRaWan network architecture, components, and security is presented.

In Section 5.4 the proposed personal LoRaWan-based system (PERLY) is described. A

detailed explanation of the software implementation for emergency detection is presented

in Section 5.5, while the system validation is demonstrated in Section 5.6 and the detailed

energy consumption results are presented in Section 5.7. This chapter ends with a con-

clusion section, in which the contribution is summarized.

5.3/ A GENERAL OVERVIEW OF THE LORAWAN NETWORK

In our proposed system, we use the LoRaWan network protocol to transmit the alert

notifications to a centralized control room (CCR) and to the on-ground chief (OGC) su-

pervising the intervention. The benefits that the LoRaWan protocol brings are long range,

low cost, low energy, infrastructure-less, etc. which are essential for the requirements of

the system. In this section, we will provide a brief introduction on the LoRaWan network

architecture, the different components composing the network and finally its security.

LoRaWan is a wireless communication standard that stands for “Long Range Wide Area

Network”. Its main characteristics are that it allows low powered IoT sensor devices to

communicate with internet-connected applications over a long distance (multiple kilome-

ters). LoRaWan operates in an unlicensed frequency band (867-869Mhz for Europe).

Therefore, it is perfectly possible for anyone to set up a network for the cost of a few hun-

dred Euros or Dollars, that has a coverage of a few kilometers. Figure 5.1 illustrates the

different network components of the LoRaWan protocol, it mainly consists of four, namely:

• IoT sensor devices: these devices are categorized into three classes:

1. Class A: it is the default class, it supports bi-directional communication with

the gateway, and it requires low energy to operate. Uplink messages can be

sent at any time, the device then opens two receive windows at specified times

after an uplink transmission. If the server does not respond in either of these

receive windows, the next opportunity will be after the next uplink transmission

from the device.
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Figure 5.1: The LoRaWan network architecture

2. Class B: it also supports bi-directional communication and it extends class A

by adding additional scheduled receive windows. The gateway sends time

synchronized beacon allowing to know when the device is listening.

3. Class C: are bidirectional with maximal receive slots. This means that they

are continuously listening unless they need to transmit. Thus, Class C devices

consume the most energy.

• The Gateway: it forms a bridge between the devices and the Network Server. Uplink

messages are transmitted to the gateway using low power LoRa protocol, while

the gateway uses the conventional high bandwidth networks such as WiFi, 4G,

Ethernet, etc. A device is not assigned to a specific gateway, all the gateways in the

range of this device will receive the messages and will forward them to the Network

Server using a packet forwarder software. It is the responsibility of the Network

Server to filter packets and remove redundant data. As for downlink, the Network

Server chooses the best gateway to forward the message to the targeted device.

• Network Server: this component is the brain of the network, it is responsible for the

following tasks:

– Aggregate all the upcoming data forwarded by all the gateways and their as-

sociated devices in the network.

– Assign each device to a specific application and route the messages transmit-

ted by each device to its corresponding application.

– Control the LoRa radio configuration of the gateway.

– Select the best gateway for downlinks.

– Store messages until a Class A or B device is ready to receive them.

– Remove duplicates.

– Monitor the devices and the gateway.
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• Application: it is the final destination of the transmitted data, it is written and cus-

tomized by the manufacturer or the developer to suit its needs. It could be a mobile

application, a Web application or any other type of application.

Security is also one of the main characteristics of the LoRaWan network. The communi-

cation between the sensor device and its corresponding application is protected via two

security keys:

• The network session key: it is used by the sensor device to encrypt the whole frame

(header + payload). The Network Server having the same key can verify the identity

of the sender.

• The application session key: it is used to encrypt the payload in the frame. This key

is only known by the application linked with this device, the Network Server cannot

see what is in the payload, it only needs to know to which application should the

message be forwarded. The latter decrypts the payload using the same key.

5.4/ THE PROPOSED SYSTEM’S COMPONENT DESCRIPTION

In this section, we will explain in depth the functionalities of each component, where it

belongs, its role in the hierarchy of the network, and how these different components

are interconnected in order to transmit information from inside the intervention area to a

destination server.

Figure 5.2: The firefighter’s equipement

(a) The IoT-device
(b) The smart-watch

In order to measure the heart rate of a firefighter, and detect mobility, a smart-watch is

proposed as a sensing unit (Figure 5.2b). For this purpose, we use the Huawei Watch

2 that is equipped with the required PPG and accelerometer sensors. An algorithm is

implemented on the watch that can detect abnormal heart rate measurements and the

activity state of the firefighter. Then, it decides whether the system wearer is at risk. If this

is the case the watch transmits an alert message to a GPS enabled IoT device and the



84 CHAPTER 5. FROM THEORY TO PRACTICE

latter re-routes this message alongside the GPS coordinates of the concerned firefighter

to the CCR and the OGC in order to facilitate extraction.

The GPS enabled IoT device used in our prototype is the Pytrack sensor shield from Py-

com (Figure 5.2a), it includes an accurate Global Navigation Satellite System (GNSS) and

Glonass GPS in addition to a 3 axis 12-bit accelerometer. A LoPy4 module is attached to

the Pytrack, the latter includes a LoRa and WiFi radio modules. A WiFi or a BLE socket

is opened between the smart-watch and the LoPy4, it is responsible for transmitting the

alert messages from the watch to the IoT Device. Once the LoPy4 receives the message,

it orders the Pytrack shield to acquire the GPS location, and finally, the LoPy4 transmits

the alert alongside the GPS coordinates via its LoRa radio module to the CCR and OCG.

NB: In our prototype, we have used WiFi instead of BLE to establish a communication link

between the smart-watch and the IoT device, since BLE is not fully functional on Pycom

devices.

Lastly, in addition to monitoring the firefighters, we were interested in monitoring the inter-

vention area as well. For this purpose, we used the Pysense sensor shield from Pycom

(Figure 5.2a) as an environmental sensor data collector. This device includes multiple

sensors namely, ambient light, bio-metric pressure, temperature, humidity, dew point, and

altitude. The role of the Pysense is to collect periodically (every 1 min) environmental data

and transmit them automatically to the CCR and the OGC.

The alert message transmitted by the Pytrack and the data transmitted by the Pysense

passes by an intermediate LoRaWan gateway before reaching the centralized control

room and the on-ground chief. Numerous Indoor and outdoor gateways are available

[Network, ]. In our prototype, we used the 1Gate LoRaWan gateway [1Gate, ] shown in

Figure 5.3. Finally, for the network server, we have used the compact server for private

LoRaWAN networks developed by Gotthardp [Gotthardp, ].

Figure 5.3: The LoRaWan gateway

To summarize it all, Figure 5.4 illustrates the proposed system. Each firefighter is

equipped with both a Pytrack and a Pysense sensor shield, in addition to a smart-watch.

The Pytrack acquires the GPS location information, and immediately transmits them to

the LoRaWan gateway when it receives an alert from the smart-watch indicating that the

firefighter is at risk and needs extraction. The Pysense, regardless of the state of its
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wearer, periodically collect and transmits environmental data to the gateway. This latter

could be placed in a firetruck that is parked in the proximity of the intervention area in

a location that provides the best line of sight with the firefighters. Moreover, in dense

residual and industrial areas, pre-deployed gateways with optimally chosen locations that

ensure maximum coverage could also be considered. The packets received by the gate-

way, are re-routed via the conventional WiFi/GSM Protocols to a local Network Server

that in turn forwards the information to the concerned application. The end application

is responsible for alerting the operators (in the centralized control room or the on-ground

chief) when a firefighter is at risk. Finally, as explained in Section 5.3 the communication

route is encrypted all the way up to the application via a network and an app session key,

preventing any possible attack aiming to sabotage the ongoing operation.

Figure 5.4: The proposed remote monitoring system

5.5/ SOFTWARE IMPLEMENTATION FOR EMERGENCY DETECTION

This section first introduces the Early Warning Score (EWS) system used to assess the

smart-watch pulse samples, then describes the emergency detection algorithms that uti-

lize the EWS system and are implemented for emergency detection on the smart-watch.

5.5.1/ EARLY WARNING SCORE SYSTEM

The use of an EWS system has long been enabled by acute care teams to allow a more

auspicious response and assessment of patients who are highly sick or injured. An EWS

system is based on a simple scoring scheme that assigns a score to each acute patient-

monitored physiological measurement [Azar et al., 2018]. The EWS is used in this work

to assess the heart rate samples gathered from the wearable device. For each vital
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sign, a normal healthy range is defined, and the score assigned reflects how extreme the

measured value varies from the standard. The higher the score assigned, the more a

collected value is outside the normal healthy range.

Figure 5.5: National Early Warning Score (NEWS)

In this work, the scoring template for the National EWS (NEWS) used in U.K [NEW, ],

illustrated in Figure 5.5, is used to assess the severity level of the pulse in order to detect

an emergency situation.

5.5.2/ ALGORITHMS IMPLEMENTATION

This section presents two algorithms to detect heart issues and a man-down state. Three

kinds of sensors can be used for such applications using contemporary wearable devices,

namely the pulse sensor, motion sensor (accelerometer), and step counter sensor.

The first algorithm implemented on the wearable device is a periodic algorithm that runs

after each period of time t (Algorithm 5). The pulse and step counter sensors collect data

on an ongoing basis and store the values in the memory. After each period p, the total

number of steps taken between p and p − 1 in addition to the average heart rate values

are used to detect an abnormal situation. Referring to [STE, ], the average number

of steps that can be taken in one minute for a low-intensity activity such as walking 3

miles per hour is 100. Having done less than 100 steps in a period with a pulse score of 3

(Figure 5.5) can reflect the possibility of an unusual situation such as injury or heat stroke.

If the user has not done an extensive activity and yet has a pulse score of 3, a notification

with vibration will be displayed on the watch for a small amount of time to inform the user

about his pulse rate. If he believes his pulse rate is normal and this is a false alarm, the

user can dismiss the notification by just shaking his hand. If the user has not responded

to the notification, an emergency message will be transmitted to the Pytrack.
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Algorithm 5 Periodic heart rate monitoring

Require: t (period time in seconds)
1: for each period p do
2: steps← number of steps
3: hr ← average h eart rate
4: if steps < 100 and score(hr) = 3 then
5: notifyUser()
6: if notification dismissed then
7: no action taken
8: else
9: send emergency alert

10: end if
11: end if
12: end for

In order to detect a man-down state, Algorithm 6 has been implemented to run continu-

ously in the background. This algorithm uses the accelerometer sensor to detect if the

watch wearer is not moving for more than β amount of time. A notification with vibration

will be displayed on the watch. If the user does not respond, an emergency message will

be sent.

In addition to Algorithms 5 and 6, The user has the choice of sending an emergency

message manually using the watch in case of he felt at risk.

Algorithm 6 Man-down state detection using accelerometer sensor

Require: TS (sampling period in ms)
α (motion threshold)
β (maximum inactive time in seconds)
acc← 0 // Change rate
last_acc← GRAVITY_EART H
current_acc← GRAVITY_EART H
inactive_time← 0
for each period p of time TS do

x, y, z← get_accelerometer_data
\\ calculating euclidean distance
last_acc← current_acc
current_acc←

√
x2 + y2 + z2

delta← current_acc − last_acc
acc← acc × 0.9 + delta
if |acc| < α then
\\ not moving
increment_inactive_time

else
\\ movement detected
inactive_time← 0

end if
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if inactive_time > β then
notifyUser()
if notification dismissed then

no action taken
else

send emergency alert
end if

end if
end for

5.6/ VALIDATION AND VERIFICATION OF THE PROPOSED SYSTEM

A system prototype consisting of a single smart-watch, a Pytrack, a Pysense and a gate-

way has been validated in an experiment that was carried out on the university campus

where our laboratory is located. The used equipment and the setup are illustrated in

Figure 5.6.

Figure 5.6: The used equipment

The wearer of the smart-watch (referred to as person A) has been asked to perform the

following exercises: standing up, sitting down, running, walking, going upstairs, going

downstairs, opening a box and taking items out of it while staying at his place, and finally,

standing still and not moving for a certain duration. This test was carried out to check

whether certain activities can trigger a false “Not Moving” alarm. None of the aforemen-

tioned activities has triggered an alarm as seen if Figure 5.7. The green diamond-shaped

marker shows when the value of Accel falls below the predefined threshold “trh” (alerted

state), which means the watch wearer is not moving but is not considered as a “Man

Down” since the duration in which Accel is below trh is not greater than λ.

An alarm was triggered only when the smart-watch wearer was asked to stand still and

did not move for a certain duration. In Figure 5.8 we can see that a “Man Down” alarm is

triggered only when the “Alerted State” is maintained for a certain predefined duration. In
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Figure 5.7: Accelerometer data for different movements

our application, for the sake of testing, we fixed this duration to 20 seconds. In Figure 5.8

we can see how an alarm is sent (star-shaped red marker) to the Pytrack when the watch-

wearer did not move for 20 successive seconds, thus declaring a “Man Down” situation.

Moreover, after the first alarm was sent, the person A was asked to move immediately. As

a consequence, the smart-watch transmitted a false alarm to the Pytrack (represented by

a circle-shaped orange marker). In contrast, when the second alarm was triggered, the

person A was asked to remain immobile. Thus, no false alarm was transmitted afterward.

Figure 5.8: Accelerometer data
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A second test is conducted to verify whether the smart-watch would send a “Heart Prob-

lem” alarm to the Pytrack in case of abnormal heart rate and how would the activity of

the person A affects the decision of transmitting or not an alarm. Figure 5.9 illustrates

abnormal heartbeat detection. It can be seen that the average heart rate rises and can

bypass 100 bpm, which is quite normal when the amount of steps taken is big. However,

if the score provided by Algorithm 5 is 3 and the amount of steps taken is small, this

may be an unusual behavior such as the red dots shown in Figure 5.9 at the end of the

graph. These dots show that a high heart rate is detected while an intense activity is not

performed by the user. In addition, if the heart-rate falls below “40”, a minimum threshold

that we agreed on with the firefighters, an alert is automatically transmitted.
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Figure 5.9: Abnormal heart beats detection

The two previously conducted tests demonstrated that our proposed system is able to de-

tect heart problems or a “Man Down” while preventing false alarms. Moreover, we verified

the interconnection between the smart-watch and the Pytrack, since we have success-

fully transmitted alert messages from the former to the latter. The final step is to test the

feasibility of transmitting the alert messages from the Pytrack and the environmental data

packets from the Pysense to the gateway. In order to do that we equipped person A with

a Pysense and a Pytrack sensor shield and we asked him to go around the campus.

NB: for the sake of testing the Pytrack was programmed to transmit its location every

10 seconds. The data packets received by the gateway were visualized using a simple

web application that we have developed for this purpose. Figure 5.10 shows the reported

locations of person A, and Figure 5.11 shows a screen-shot of the web application.

NB: Figure 5.11 shows the reported locations on the map in addition to pre-filled locations

used for API testing purposes.

The developed web application shows, the location of the firefighters on the map in case

of emergency. It also shows underneath the map a list of the received alerts. The user

could also chose a matriculation number belonging to a specific firefighter (Figure 5.11)

to show historic environmental data (Figure 5.12).
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Figure 5.10: Trajectory via reported coordinates

Figure 5.11: Web application screenshot 1

Figure 5.12: Web application screenshot 2
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5.7/ ENERGY CONSUMPTION: FROM SIMULATION TO REAL IM-

PLEMENTATION

The energy management models described in Chapters chapters 2 to 4 could be im-

plemented on the Pysense sensor shield of our previously proposed remote monitoring

system. The simulations that have been conducted on real data-sets in the previous chap-

ters have demonstrated that these proposed energy models could extend significantly the

lifetime of the network. In this section, we put this into test, we implement the proposed

algorithms on real Pysense sensor devices and we measure the energy consumption of

each activity (transmission, sensing, processing, idle) independently, in addition to the

overall energy consumption of each algorithm.

In order to do so, we have used the USB current tester “UM24C”. This latter could mea-

sure a current that ranges between 0 and 5000 Ampere. It also registers in real-time the

current variation and automatically calculates the consumed current in mAh and the con-

sumed energy in mWh. All this information is transmitted via Bluetooth to a laptop and a

mobile device and are visualized with the help of an application. Figure 5.13 shows the

UM24C and both the mobile and desktop applications.

Figure 5.13: Energy measurement device

At first, when we started developing our algorithms we were considering a remote moni-

toring system that is based on WiFi instead of LoRa, This is why we have used an energy

model simulator (Section 2.3, Chapter 2) that considered a sensor equiped with a WiFi

radio model. However, after digging upon better solutions we have discovered that LoRa

would be a better choice for our project. Therefore, in addition to measuring the energy

consumption of the devices, in this section, we also aim to verify if these algorithms are

efficient on LoRa-based devices as they are on WiFi-based ones. Two of our proposed

algorithms focused mainly on how to reduce transmitted packets and LoRa radio model
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is known to consume a lot less than a WiFi radio model. Therefore, a question that we

aim to answer in this section is, could the energy consumed by processing offset the

energy preserved by reducing transmission which renders our proposal non-efficient for

LoRa-based devices?

5.7.1/ WIFI-BASED DEVICES

We first start by looking at how efficient are the FTDTR and ASTR algorithms on WiFi-

based devices. We discuss separately the STCSTA algorithm since it falls rather in the

sleep/wake up energy management categories rather than the data-driven one. In or-

der to measure the energy consumption of each activity independently we adopted the

following methodology:

We program the sensor to perform a cycle where it wakes up every one minute, performs

a specific task (activity) before going back to sleep. The cycle is repeated for at least

1 to 5 hours. We then extract the collected real-time current data using the “UM24C”

current tester, and we compute the energy consumption of this activity by averaging the

peak in current consumption during each wake-up. Knowing that during deep sleep the

sensor consumes between 2 and 8 × 10−6A, we ignored these values and considered

that each peak starts when the current surpasses 8 × 10−6A and ends when the current

goes back to less than 8 × 10−6A. We then repeat this test 5 different times, and finally,

we average the averaged values of the five tests and we consider it as the last result.

In this experiment, we were interested in studying the current consumed by the sensing,

processing, transmission, Idle activities and the ASTR, FTDTR, and Naive (wake, collect,

transmit, sleep) methods.

As a first insight, let us look at Figure 5.14 that shows a comparison of one of the many

peaks in current consumption between the different activities and algorithms. The short-

est peaks are for Idle, sensing, and processing, and the longest peaks are for transmis-

sion and the Naive algorithm. Finally, FTDTR and ASTR have an intermediate, slightly

long peak compared to the shortest and the longest. Judging by these results, we can

assume for now that WiFi transmission has indeed a great effect on the overall energy

consumption. Next, We will explain how the averaged current consumption for each dif-

ferent activity, algorithms is computed.

First, “EIdle” is measured, which is how much current the sensor consumes by just wak-

ing up. The averages results using the previously described methodology shows that the

sensor consumes on average at each wake-up (peak) while doing nothing else 0.6388A.

Then, the sensing activity “E′S ensing” is measured, this time the task assigned to the sen-

sor was to wake-up, collect a temperature measurement and then go back to sleep. To

compute the exact current consumption of the sensing activity only, EIdle is subtracted
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Figure 5.14: Peak current consumption comparison

from E′S ensing as shown in Equation 5.1. This is because the sensor needs to wake-up to

perform sensing, thus we need to eliminate the current consumed by waking up in order

to extract the one consumed by sensing only. The results show that ES ensing is on average

0.07425A.

ES ensing = E′S ensing − EIdle (5.1)

To compute the current consumed by transmission (E′Transmission) we did the same as we

did for sensing, but instead of waking up and collecting a measurement, the sensor wakes

up and transmits a random temperature measurement without collecting anything. To ex-

tract the energy consumed by transmission only, EIdle is also subtracted from E′Transmission

(Equation (5.2)). The results show that ETransmission is on average 1.751A.

ETransmission = E′Transmission − EIdle (5.2)

In order to compute EPFT DTR , the current consumed while executing the FTDTR algo-

rithm, we implemented the FTDTR algorithm on the sensor and we measured its current

consumption at every peak E′FT DTR. However, we eliminated transmissions but kept the

sensing activity since the algorithm relies on collected measurements to function cor-

rectly. Therefore, EPFT DTR is calculated according to the Equation (5.3). The results shows

that EPFT DTR is on average 0.1474A.

EPFT DTR = E′FT DTR − E′S ensing (5.3)

Last but not least, to compute the EPAS TR , the current consumed while executing the ASTR

algorithm, we implemented the ASTR algorithm on the sensor and we measured its cur-

rent consumption at every peak E′AS TR. However, we eliminated transmissions, and de-



5.7. ENERGY CONSUMPTION: FROM SIMULATION TO REAL IMPLEMENTATION 95

spite the calculation of a new sampling rate every round, we did not change it we kept it

static. This would allow us to calculate EPAS TR by simply using Equation (5.4). The results

show that EPAS TR is on average 0.115A.

EPAS TR = E′AS TR − E′S ensing (5.4)

As for the current consumed at every peak by ASTR, FTDTR, and the Naive method, We

simply implemented these algorithms on the sensor let them operate 5 different times for

at least 5h and averaged the peak current consumption for the 5 tries. The results shows

that ENaive, EFT DTR, and EAS TR are 2.489, 0.4832, 0.4888 respectively.

Figure 5.15 shows a comparison of the average current consumption of the sensing,

transmission and processing activities, in addition to the current consumption of FTDTR,

ASTR, and the Naive algorithm.
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Figure 5.15: Current consumption comparison

Already we can notice that transmission consumes the most among other activities, and

surprisingly in contrast to what has been assumed in the literature, sensing is the least

consuming activity compared to idle that ranks second and the processing that ranks

third. As for the algorithms, on average the naive method consumes the most, followed by

ASTR and FTDTR. The effect in transmission reduction is already clear since both ASTR

and FTDTR reduced drastically the average current consumption compared to the Naive

method. However, we notice that ASTR despite integrating a mechanism that reduces

sensing in addition to transmission by extending the deep-sleep duration, consumed more

energy then FTDTR that only reduces transmission. This is because, we only computed

the current consumption when the sensor is awake, and we did not consider the current

consumed when the sensor is in deep sleep. This is what we are going to do next.

This time we did not compute the average current consumed at each peak (sensor is

awake) as we did before, in contrast we computed the average of the overall consumed

current, even when the sensor is in deep-sleep mode. Figure 5.16 shows the overall,
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average current consumption of each algorithm/activity. Nothing much have changed for

the activities except a slight proportional increase in the current consumption. However,

ASTR now shows a much lower current consumption then FTDTR, this is mainly because

the sensor implementing ASTR sleep-duration has increased on average. Thus, the sen-

sor woke up less and consumed less EIdle, ES ensing, and ETransmission.
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Figure 5.16: Overall average current consumption comparison

Knowing the average current consumption for each algorithm, and considering a Lipo

battery with a capacity of 2000mAh, we can now compute an estimate of the operational

lifetime of each algorithm in days. Figure 5.17 shows the estimated lifetime of a sen-

sor implementing the Naive, FTDTR and ASTR methods. The Naive methods can last

for only 4.456 days, FTDTR showed an increase of 357% (20.38 days) in operational

lifetime, and ASTR showed an increase of 1535% (72.77 days). Therefore, the energy

consumption results of the real implementation of our algorithms are aligned to what has

been previously demonstrated in the previous chapters with the conducted simulations

on real sensor data-sets.
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Figure 5.17: Lifetime estimate in days
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5.7.2/ LORA-BASED DEVICES

In the previous subsection, we demonstrated that our proposed algorithm can greatly

increase the operational lifetime of sensor nodes equipped with a WiFi radio module. In

this section, we aim to study if this is still valid for sensor nodes equipped with a LoRa

radio module since the transmission activity will be consuming much less with LoRa then

with WiFi.

We adopt the same methodology to compute the peaks in current consumption, the av-

erage peak current consumption, the average overall consumption and the average op-

erational lifetime in days. Figure 5.18 shows a comparison of one of the many peaks in

current consumption between the different activities and algorithms. The first thing we

notice is that the transmission peak compared to Figure 5.14 is shorter, which means it

consumes less current. Next, we will see how this could affect the efficiency of FTDTR

and ASTR.
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Figure 5.18: Peak current consumption comparison (LoRa)

Figure 5.19 shows a comparison of the average peak current consumption of the sensing,

transmission and processing activities, in addition to the current consumption of FTDTR,

ASTR, and the Naive algorithm. The first thing we notice that compared to Figure 5.15,

the current consumption is reduced for all activities and algorithms, since the WiFi radio

model was turned off, and only the LoRa radio model was kept on. Second, we notice

that the current consumed by transmission has been drastically reduced compared to

Figure 5.15 and to the other activities such as sensing and Idle. Finally, The difference

between the current consumed by the Naive method and FTDTR has been drastically

decreased, since transmission does not consume that much anymore. Moreover, ASTR

is shown to consume more than the Naive method when the sensor is on.

Figure 5.20 shows the overall, average current consumption of each algorithm/activity.

When we take the current consumption while in deep-sleep into consideration, ASTR

is the least consuming. Still, the difference between the current consumed by FTDTR,
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Figure 5.19: Peak current consumption comparison (LoRa)

ASTR, and Naive has been reduced compared to Figure 5.16.
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Figure 5.20: Overall, average current consumption comparison (LoRa)

Finally, Figure 5.21 shows the estimated lifetime of a sensor implementing the Naive,

FTDTR and ASTR methods. The Naive methods can last for 26.68 days, FTDTR showed

an increase of 10.79% (29.56 days) in operational lifetime instead of 357% previously,

and ASTR showed an increase of 247% (92.74 days) instead of 1535% previously. We

can conclude that our proposed data data-driven energy management algorithms are still

efficient for LoRa-based sensors, but not as much as for WiFi-based sensors.

5.7.3/ STCSTA ENERGY CONSUMPTION

STCSTA is not a distributed algorithm like FTDTR and ASTR, thus, we cannot perform

unitary tests on a single node as we did previously to study its energy efficiency. In order

to study the efficiency of STCSTA, we deployed a sensor network in a 65m2 apartment

as shown in Figure 5.22. The network consisted of 8 sensors distributed on 6 rooms as

follows. Sensor 6 was placed in the first bedroom, sensor 5&4 in the living room, sensor
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Figure 5.21: Lifetime estimation in days (LoRa)

7 in the entrance, sensor 3 in the bathroom, sensor 8 in the kitchen, and finally sensors

1&2 were placed in the second bedroom. All of the 8 sensors are considered to be in

the same cluster, and the cluster-head (sensor 0) is a LoRaWan gateway. The gateway,

through a network server, forwards all the received sensor data to a local database on a

laptop PC. Since it would be difficult to monitor the energy consumption of each individual

sensor, we adopted an approach that combines simulation with the real implementation.

This approach will be explained step by step in the next subsections.

Figure 5.22: The sensor network geographical distribution

5.7.4/ COLLECTING AND PRE-PROCESSING THE DATA

The sensors were kept operating for approximately 42 hours, every one minute, each one

of them wakes-up from deep-sleep to collect and transmit temperature, humidity, pres-
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sure, dew point, and light data. Due to some communication failures caused by downed

internet connection and since sensor 3 that is placed in the bathroom kept crashing for

no reason, we had some missing data in the final collected data-set. Moreover, the col-

lection times of the 8 senors were not consistent. For instance, the CH would receive a

packet from sensor 1 at time 00:00:20 but from sensor 2 at 00:00:31 and from sensor

3 at 00:00:45, etc. Before moving to analyze the energy consumption, the missing data

should be filled and the timing should be made consistent for all sensors.

Consistency of timing: in order to do that, using the python’s pandas library we first

separated the data set into 8 dataframes, each containing only the reported values of one

unique sensor. Then we used the “resample” method provided by pandas for frequency

conversion and resampling of time series. After doing that each one of the 8 time series

stored in separate dataframes are now time consistent.

Filling missing data: on top of the already missing data, the resampling of the time

series has created more gaps. In order to fill these gaps, we used the linear interpolation

method.

Now after the data is resampled and complete we can proceed to simulate the STCSTA

algorithm using our custom-built Matlab simulator (mentioned in Section 4.4 of Chapter 4).

Figure 5.23 shows the pre-processed data of all sensors for each environmental feature.

NB: Pysense has a dual light sensor that provides outputs for external light levels in lux.

This is why we have two different light time series. Here are a couple of things we have

noticed too. For temperature, sensors 4&5 have low temperature values, since when

we are not using the living room, we turn off the heater. For humidity and dew point
the peak that we see in figures 5.23b and 5.23d for sensor 3, is because of the steam

produced when taking a shower.

5.7.4.1/ LIFETIME ESTIMATION

STCSTA works on homogeneous sensor data, however, the time-series data provided by

the Pysense sensor nodes are heterogeneous and multi-feature. Therefore, a separate

instance of the Matlab simulator is run for every environmental attribute separately, as if

we’re considering that each sensor is collecting and transmitting one feature only. The

simulator will then give for every attribute and sensor, the percentage of transmission

(wake-up) reduction.

For instance, considering the temperature attribute, let’s assume the STCSTA Matlab

simulator returned that sensor “x” (x∈1,8) has reduced its transmission rate by 50%. This

means the sensor woke up 50% fewer times than the Naive approach. Since, we al-

ready have the time series of current measurement produced by the Naive approach for
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Figure 5.23: Visualisation of the collected data
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Figure 5.24: Current consumption times series comparison

both LoRa and WiFi (sections 5.7.1 and 5.7.2), all we have to do is to remove 50% of

the wake-up current peaks and replace their values by the average deep-sleep current

consumption. Figure 5.24a shows a portion of the current measurement time series of

the naive approach. Figure 5.24b shows how will this time series look like when 50% of

the peaks are removed. We will do this to each sensor according to the reduction values

returned by STCSTA, and then we will calculate the average current consumption value

to estimate their lifetime.
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Figure 5.25: Increased lifetime in days of WiFi-based sensor devices compared to the
naive approach

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Temperature 44 54 50 48 57 52 58 20

Relative humidity 48 42 45 29 58 48 34 19

Pressure 52 48 49 48 64 50 50 21

Dew Point 35 31 45 16 16 46 27 13

Light1 30 23 4 2 30 28 22 10

Light2 32 26 5 2 11 23 33 5

Table 5.1: Suppression ratio of all sensors for each environmental variable

Table 5.1 shows the suppression ration (SR) of each sensor node for all the environmental

data returned by the simulator. The suppression ratio is the percentage of reduction in the

number of wake-ups. The lighter is a table cell color the higher is SR. We notice that the

best SRs are for temperature, humidity and pressure, since they showed a high degree

of correlation ( figures 5.23a to 5.23c). Sensor 8 has a low SR, although it shows a good

correlation with other sensors. If we go back to Section 4.3.2, we explained that sensors
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unit = % Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5 Sensor 6 Sensor 7 Sensor 8

Temperature 77 116 95 88 132 105 137 25

Relative Humidity 90 70 70 39 130 90 56 23

Pressure 105 90 90 88 174 90 90 20

Dew Point 50 44 80 19 48 80 36 14

Light1 40 30 4 1 41 8 28 10

Light2 40 30 3 1 11 29 49 4

Table 5.2: Percentage of Increase in Lifetime of all LoRa-based sensors for each environ-
mental variable compared to the naive approach

that have a higher amount of matches they slightly reduce their sampling rate to allow the

matching sensors to reduce it more. This could possibly explain why sensor 8 has a low

SR while he correlates well with other sensors in the network.

As demonstrated previously in Section 5.7.1, with the naive approach a WiFi-based sen-

sor node can last for 4.45 days approximately. Figure 5.25 shows the estimated lifetime

of each WiFi-based sensor node and for every environmental feature. Judging by the ob-

tained results, it is clear that STCSTA can significantly extend the lifetime of the network,

even when there is a low correlation as in the case of Light data. Table 5.2 shows the

percentage of increase in the operational lifetime of each LoRa-based sensor node for all

environmental features compared to the naive approach that enables a sensor to operate

for 26.68 days only. For instance, with pressure data, sensor 5 lifetime is increased by

174% compared to the naive approach, which means it is estimated to last for 46.42 days

instead of 26.68. Looking at the results provided in Table 5.2, we can conclude that also

for LoRa-based devices the network lifetime is significantly improved compared to the

naive approach.

NB: The values are colored in shades of red and orange. Starting by the darkest shade of

red for low percentages up to the highest percentages represented by the lightest shade

of orange.

5.8/ CONCLUSION

In this chapter, we proposed a monitoring LoRaWan based system to improve the safety

of firefighters. It uses a smart-watch to collect heart rate measurements and to detect

mobility, and it reports any abnormal heart rate or immobility to a centralized control room

and the on-ground chief. In addition to emergency detection, the system includes environ-

mental sensors that enable real-time monitoring of the intervention area. A first prototype

that aims to verify the intercommunication between the different components of the sys-

tem was tested. The obtained results were promising and demonstrated its feasibility.
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Moreover, we studied the possibility of implementing our proposed energy management

algorithms on the sensor devices composing the LoRaWan system. Through real ex-

perimentation and real measurement of the current consumption, we demonstrated that

our proposals could indeed significantly increase the lifetime of the LoRa-based sensor

devices.
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6

COMPARING RECENT CLUSTERING

METHODS FOR IOT DATA

MANAGEMENT

T he scheduling schemes for wireless sensor networks including our proposal in

Chapter 4 relies on the presence of “good” clusters, where the sensor nodes that

correlates the most are grouped into the same cluster instead of being partitioned on

multiple ones. Otherwise, the cluster-head will will not be very efficient in detecting corre-

lation and increasing the sleep duration of redundant sensors. Moreover, clustering is a

great tool for processing and analysing the data received on the sink and is very helpful

for decision making. Therefore, In this chapter, we survey and compare popular and ad-

vanced clustering schemes for management of massive IoT data and provide a detailed

analysis of their performance.

6.1/ INTRODUCTION

The deluge of data manipulated and transiting in complex systems such as wireless sen-

sor networks (WSN) for the Internet of Things (IoT) recently transformed, in a timely

fashion, the field of data management and the associated technologies. The need for

new scalable data analytics techniques that can guarantee quality of service, reliability,

robustness. and a large battery-operated components’ lifespan has accordingly become

paramount. It has been observed that for many different settings, clustering is a tool of

choice for categorizing and interpreting the data in very large databases when no super-

vision is possible due to scale and time constraints issues. Moreover, and perhaps even

more importantly, clustering is also relevant from a technological viewpoint: As sensors-

to-sink information transmission is often very expensive in term of energy, sensors can

be grouped into clusters where redundant ones belonging to the same cluster could be

107
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scheduled to sleep for longer duration whilst enforcing data quality constraint, thereby

leading to systematic reduction of energy consumption as seen in Chapter 4. Another

example where clustering can be extremely useful is at the sink level, where massive and

heterogeneous data arrive from myriads of various locations in the network. Clustering

may then play a major role in real-time screening, as in the case of setting up alerts for

the presence of dangerous observations. Finally, clustering also takes place when an

extremely large number of sensors are deployed over large remote areas, suffering from

poor signal quality. One specific aspect of clustering in WSN is that data quality is often

poor due to signal transmission problems or even due to the use of certain energy saving

scheduling strategies [Farhat et al., 2017]. Clustering should therefore be tailored with

these peculiaritie in mind. In summary, in the face of massive and heterogeneous data,

clustering is often an essential tool at the various stages of sensor network data analytics.

MOTIVATION AND CONTRIBUTION

Literature on WSNs or the Internet of Things (IoT), where clustering is frequently men-

tioned as a subroutine in scalable routing algorithms, is filled with very interesting spe-

cialized contributions. Nevertheless, general overviews and comparisons appear to be

relatively scarce. Worse, most works present the well-known K-means approach as the

state-of-the-art method without any more careful assessment of the pitfalls associated

with this method, e.g., the non-convexity of the cost function which makes it hard to as-

certain practical optimality (theoretical optimality being precluded by NP-completeness)

or the possible presence of non-spherical clusters, to name a few.

The objective of the present chapter is to review recent clustering techniques and provide

a more rigorous account of when and for which task they might be useful in the context

of WSNs and the IoT. Moreover, this work aims to demonstrate that a few clustering tech-

niques, such as K-means, are not necessarily the magical solution for every clustering

problem. Instead, choosing the most appropriate clustering technique(s) according to the

given scale (sensor, aggregator, sink), the type of data collected, their heterogeneity, and

the possible presence of noise is a difficult but essential problem which deserves proper

consideration.

The contributions provided in this chapter are the following, all the main important tech-

niques which have been devised in the literature, including the necessary details for their

implementation in the network, are described. A thorough comparison between the main

important techniques which have been devised in the literature, as well as their respec-

tive advantages and disadvantages, is provided. Numerical experiments illustrating the

performance of the methods are presented. An example with real data for a gas leak de-

tection sensor network is analyzed to show how these various clustering techniques can
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respond in different ways to data received at the sink level. We demonstrate that choos-

ing the correct method makes a difference via performance comparisons on a massive

dataset.

This chapter is divided into several sections, the first one giving a relatively complete

overview of clustering methods and algorithms that are relevant for application to IoT.

Section 6.3 presents the various established approaches to clustering assessment, di-

vided into two subcategories: those that assume known ideal clustering and those that

do not assume such a prior ideal model. These clustering and assessment techniques

are then tested through simulation experiments, but also through a case study of a WSN

consisting of gas sensors with massive data-sets. This article ends with a conclusion

presenting a list of future research directions for the analysis of massive data-sets in the

context of WSNs and IoT.

6.2/ AN OVERVIEW OF MODERN CLUSTERING METHODS APPLI-

CABLE TO THE IOT

6.2.1/ INTRODUCING CLUSTERING FOR IOT

The number of devices and objects that are connected to the Internet is increasing

rapidly. These connected objects generate a lot data, which can be analyzed to

identify trends and information for various purposes. This is where clustering for IoT

[Xie et al., 2014, Zhou et al., 2009, Saeedi Emadi et al., 2018, Donghua Pan et al., 2011,

Doreswamy et al., 2014, Hu et al., 2015, Kung et al., 2009, Muniraju et al., 2017,

Sohn et al., 2016, ElGammal et al., 2009, Wang et al., 2019b, Sakthidasan et al., 2018,

Zhang et al., 2018, Amaxilatis et al., 2018] becomes highly demanded. The advan-

tages that clustering provides are numerous, such as it enables the scalability of the

IoT network and it reduces the routing overhead by managing the routing decisions

on the elected Cluster-Heads (CHs) [Yang et al., 2017, LI et al., 2018]. Moreover,

it helps saving communication bandwidth and drastically reduces the overhead for

topology maintenance. In addition, only the CHs and the gateway will form the back-

bone of the network, resulting in a simplified topology, reduced overhead, flooding,

and collision. The end devices’ only task is to connect to the CHs and forward the

data without being affected by changes at the inter CH tier. The aggregation of

collected data on the CH reduces the number of exchanged packets. Finally, vari-

ous management strategies such as scheduling that could be implemented on the

CH level can help preserve energy resources and extend the lifetime of the network

[Rajasegarar et al., 2006, Bakaraniya et al., 2013, Pavithra et al., 2015].

As can be seen, clustering can be used in a variety of ways to improve the quality and



110CHAPTER 6. COMPARING RECENT CLUSTERING METHODS FOR IOT DATA MANAGEMENT

operational safety of wireless sensor networks, while extending their lifespan. But the

situation changes from one network to another, depending on its scope, the number of

sensors considered, their resources, the quality of the data produced, etc. A single way of

clustering objects cannot be appropriate for all these situations, nor for the very diverse

reasons (aggregation, hop-by-hop routing, data clustering at sink level) requiring their

implementation. Therefore, in the following, various recent clustering techniques and

their evaluations will be recalled or introduced, all of which have a potential interest in the

Internet of Things.

6.2.2/ ELLIPSOID-SHAPED CLUSTERS

6.2.2.1/ K-MEANS

Generalities The K-means algorithm clusters the data by trying to separate individuals

into groups of equal variance, thus minimizing inertia, or the sum of intra-cluster squares.

Its typical use case is presented in Table 6.1, while pros and cons are detailed in Table 6.2.

Given k initial centres, we want to partition Ω = {x1, ..., xm} into k disjoint subsets, trying to

minimize the Euclidean distance between each xi and its assigned center. In other words,

we want to minimize the criterion:

min


k∑

i=1

∑
x j∈Ci

||x j − ci||, (C1, ...,Ck) ∈ P(Ω)


where:

• P(Ω) is the set of possible subsets of Ω.

• ci is the center of the Ci cluster.

The initial centres can be chosen in various ways: random, with K-means++ (see below),

etc. And the algorithm iterates as follows:

• assign each xi to its nearest center c j

• recalculate each center as an average of the xi closest to it.

Note that there are various tricks, based on triangular inequality for example, to speed up

the process. On the other hand, if K-means generally converges quite well with Euclidean

distance, this convergence is less assured with other distances. Finally, the K-means has

a K-Mediane variant, based as its name suggests on the median. As a result, it is less

sensitive to outliers, but slower (including sorting to obtain the median).
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Examples of the application of K-means in the context of IoT can be found

in [Mittal et al., 2010, Rajasegarar et al., 2006, Tan et al., 2008]. For instance k-

means clustering is used for data irregularities detection and pattern matching in

[Mittal et al., 2010], to extend the lifetime of the network in [Rajasegarar et al., 2006], and

in [Tan et al., 2008] for anomaly detection.

6.2.2.2/ K-MEANS++

The choice of initial centres is crucial for K-means. It has a significant impact on the

results. K-means++ is an initialization algorithm. It avoids choosing two initial centres too

closely. Its principle is as follows:

• The initial centres are chosen randomly, but with a non-uniform probability law.

• The probability of choosing a point as the initial center is proportional to the square

of the distance from that point to the already selected centers.

This can be written in algorithmic form as listed in Algorithm 7.

Algorithm 7 K-means++ initialization

Require: K: Number of clusters
Require: m elements xi to be clustered

c1 ← x1
for k = 1, ...,K − 1 do

s0 ← x0
for i = 1, ...,m do

si = si−1 + min(||x j − c1||
2, ..., ||x j − ci||

2)
end for
pick r randomly in [s1, sm]
find l such that r belongs in [sl, sl+1]
c j ← xl

end for

As we can see, as an input, K-means++ receives the m elements xi to cluster (without the

centers). At the output, it produces the initial K centres for K-means. Among the advan-

tages of the method, K-means++ offers convergence guarantees, and has a parallelized

version. However, this technique requires finding the nearest center to each element for

each use, and this explodes with the number of centers.

Examples of the application of K-means++ in the context of IoT can be found

in [Yang et al., 2017, LI et al., 2018]. For instance, K-means++ clustering is used for find-

ing the optimal path for hop-by-hop routing in [Yang et al., 2017], and for an energy effi-

cient routing algorithm in [LI et al., 2018].
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6.2.2.3/ K-MEDOIDS

The K-Medoids [Park et al., 2009] or PAM (Partitioning Around Medoids) is an adaptation

of the K-means, seeking to minimize the distance between the points of clusters and

their center, the difference being that the medoids are necessarily points of the set to be

clustered (which is not necessarily the case of the K-means centers). Thus a medoid can

be seen as the individual of a cluster whose average dissimilarity to the individuals of said

cluster is minimal: it is to some extent the most central individual of the cluster.

The PAM algorithm is the most common realization of the K-Medoids, but other ap-

proaches exist in the literature (e.g., a method based on Voronoi iterations). PAM follows

a gluttonous approach, which does not guarantee to find the optimum but is much faster

than an exhaustive search. Its operation is as follows:

• Initialization: choose k from n points for medoids.

• Associate each point with its closest medoid.

• As long as the cost of configuration decreases:

– For each medoid m and each non-medoid o:

* Exchange m and o, associate each point with its closest medoid, and re-

calculate the cost (sum of the distances of the points to their medoids).

* If the total cost of the configuration has increased in the previous step,

cancel the exchange.

The complexity of this algorithm is in O(k(n − k)2), and can be improved to O(n2).

Examples of the apllication of K-Medoids in the context of IoT can be

found in [Bakaraniya et al., 2013, Pavithra et al., 2015]. For example, in

[Bakaraniya et al., 2013], K-Medoids clustering is used to improve the Low Energy

Adaptive Clustering Hierarchy (LEACH) and extend the lifetime of the network. Similarly,

In [Pavithra et al., 2015] the K-Medoids is used to improve the data routing and reduce

the energy consumption.

6.2.2.4/ GAUSSIAN MIXTURE MODEL

One of the main concerns about K-means is its naive use of the mean value for the cluster

center.

• We can, for example, have two circular clusters of the same centre and different

radii, which K-means will not be able to capture.
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• Similarly, if the clusters are better modelled using a ellipsoid shaped subset, K-

means might not converge to the correct solution.

The Gaussian Mixture Model (GMM) [McLachlan et al., 2019] gives more flexibility to K-

means, by assuming that each points in the observed sample has been drawn from a

Gaussian distribution with parameters depending on the cluster it belongs to. As a result,

we no longer assume circular clusters, but allow for elliptical shapes in 2D, 3D, etc. Each

cluster will then be defined by the associated probability of belonging to it, its mean vector

and Covariance matrix.

More precisely, GMM assumes that the points follow a distribution:

K∑
k=1

πkN(µk,Σk)

with µ1, ..., µK the cluster centers, π1, ..., πK the probability weights, and Σ1, ...,ΣK the

variance-covariance matrices of each cluster. It is an unsupervised and parametric

model, as we are looking for a distribution in the form of a Gaussian distribution mean.

The parameters are optimized according to a maximum likelihood criterion to get as close

as possible to the desired distribution. This procedure is most often done iteratively via the

expectation-maximization (EM) algorithm [McLachlan et al., 2007], and its Kullback prox-

imal generalisations [Chrétien et al., 2000], [Chrétien et al., 2008], Gauss-Seidel version

[Celeux et al., 2001].

One of the main advantages of the Gaussian Mixture Model is that it has statistical un-

derpinnings that allow for various penalisation allowing principled model order selec-

tion based on e.g. AIC or BIC [McLachlan et al., 2019] of ICL [Biernacki et al., 2003],

or even sparsity inducing penalised version of the maximum likelihood approach

[Chrétien et al., 2012].

The EM algorithm works as follows:

1. We select the number of clusters, and randomly initialize the parameters of the

Gaussian distributions of each cluster.

2. Given these Gaussian distributions for each cluster, we calculate the probability that

each point belongs to each cluster: the closer a point is to a Gaussian centre, the

more likely it is to belong to the associated cluster (Expectation part).

3. Based on these probabilities, we re-estimate the Gaussians: we calculate a new set

of parameters of Gaussian distributions, in order to maximize the probability of the

points to be in the clusters (Maximization part). These new parameters are calcu-

lated using a weighted sum of the point positions, the weights being the probabilities

that the points belong to this cluster.
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4. We repeat this until the distributions no longer change, or almost: we evaluate the

log-likelihood of the data to test convergence (this is the objective function to be

increased).

Finally, let us note the following remarks: (1) K-means is a special case of GMM, i.e. with

a constant covariance per component (GMM is much more flexible in terms of covariance

than K-means); (2) The EM depends in particular on the number of times it is launched

(100 is a good choice), and strongly from the initialization: we can randomly extract k

observations of X as means of the initial components (k : number of Gaussians), or

choose them by K-means++, which is preferable.

As far as we know, the GMM clustering technique has not yet been implemented in any

IoT related application

6.2.3/ DENSITY BASED CLUSTERING

6.2.3.1/ MEAN-SHIFT

Mean-shift [Comaniciu et al., 2002] is a clustering algorithm based on a sliding window

(ball), which searches for dense areas of points by moving the centroids of the balls. We

try to locate the center of each class, updating the candidates as an average of the points

in the window. The windows are finally post-processed to eliminate overlaps.

This method works as follows:

1. For nucleus, we consider a sliding ball centered at a random point C and of radius

r. Through a hill climbing approach, this nucleus is iteratively moved to an area of

higher density, until convergence.

2. This is done by moving the centre of the ball towards the centre of gravity of the

ball’s points, which causes the ball to move to denser areas.

- As the ball has been moved, there are potentially new points, and therefore a

new center of gravity.

- Otherwise, we end up converging.

3. Points 1 and 2 are operated with various randomly placed balls, or according to a

grid adapted to the data. And when several balls overlap, the less dense one is

removed.

Once convergence is established, the remaining balls are the clusters. Refer to Tables 6.1

and 6.2 for the context of use, as well as the advantages and disadvantages of this

method.
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Examples of the application of mean-shift in the context of IoT can be found

in [Xie et al., 2014, Zhou et al., 2009]: in [Zhou et al., 2009], for instance, the mean-shift

clustering is used for localization and tracking in IoT applications.

6.2.3.2/ DBSCAN

The Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN [Ester et al., 1996]) is another density-based clustering: it looks for high-density

areas and then extends clusters from them. Its general operating principle is as follows.

1. We start from a point P of the data, not yet visited.

- If there are enough neighbors (min_samples-1) at ε from this point, clustering

starts with P as the first (core) point of the cluster.

- Otherwise, the point is labeled as noise (which can later integrate a cluster)

and visited.

2. The points at distance ε of P integrate the cluster of P, then all the points at ε of

these points, etc., until it is no longer possible to expand the cluster.

3. We start again with a point not visited, and this until the points are exhausted. At

the end, any point will either be in a cluster or labeled as noise.

DBSCAN is therefore similar in its operation to the mean-shift, although it has some ad-

vantages, see Table 6.2. It has an optimized version called HDBSCAN*, which extends

DBSCAN “by converting it into a hierarchical clustering algorithm, and then using a tech-

nique to extract a flat clustering based in the stability of clusters” [McInnes et al., 2017].

Examples of the application of DBSCAN in the context of IoT can be found

in [Saeedi Emadi et al., 2018, Donghua Pan et al., 2011, Doreswamy et al., 2014].

In [Saeedi Emadi et al., 2018], the DBSCAN clustering algorithm is used for anomaly

detection, while in [Donghua Pan et al., 2011], an improved version of DBSCAN is used

for uncertain data clustering problems. Finally, DBSCAN clustering is used to detect

faulty sensor data in [Doreswamy et al., 2014].

6.2.4/ TREE-BASED CLUSTERING

6.2.4.1/ HIERARCHICAL CLUSTERING

Hierarchical clustering algorithms are either top-down or bottum-up: we start from points

seen as simple clusters, which we iteratively aggregate in pairs, until we reach a single
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final cluster. This bottum-up approach is precisely what is called agglomerative hierar-

chical clustering, and this hierarchy of clusters can be represented as a dendrogram: the

root is the final single cluster, the leafs being the data points. Unlike agglomerative ver-

sion of the hierarchical clustering, the divisive starts with a single cluster encompassing

all points, then iterates divisions until only clusters at one point are obtained.

The agglomerative algorithm can be summarized as follows.

1. Each data point is treated as a single cluster, and a distance between clusters is

fixed - for example, the average linkage: the average distance between the points

of two clusters.

2. At each iteration, the two clusters with the shortest distance are merged, and the

height of the new node in the dendrogram is the similarity between said clusters.

3. Repeat 2 until you only get one cluster left.

4. If a predefined number of clusters is wanted, step number 2 is stopped when the

number is reached.

Its divisive version can be easily deduced from this. Various distances can be used:

• single linkage: the distance between two clusters is the distance corresponding

to the two most similar points.

• complete linkage: as above, but with the least similar points.

• average linkage: the distance between two clusters is defined as the average of

distances between all pairs of points.

• Ward: minimization of the sum of the squares of distances within each cluster. It is

an approach of the variance minimization type, therefore a kind of K-means coupled

with a hierarchical agglomerative approach.

6.2.4.2/ BIRCH

Birch [Zhang et al., 1996] is an online learning algorithm, memory efficient, which can be

seen as an alternative to Mini Batch K-means. It builds a tree, in which the centroids of

the clusters are at the level of the leaves. These can either be the centroids of the final

clustering, or they can be passed as an input to another clustering algorithm, such as

agglomerating clustering.

The data tree consists of nodes, each node consisting of a number of subclusters. The

maximum number of subclusters in a node is determined by the connection factor. Each
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subcluster stores various information necessary for the inline process, such as the num-

ber of samples in that subcluster or the average of its points providing the centroid. In

addition, each sub-cluster can also have a node as a child, if the sub-cluster is not in a

leaf.

Every new individual is introduced to the root. It is merged with the nearest subcluster

and the various information of this subcluster is updated, which is recursively made until

it reaches a leaf.

The parameters of this method are as follows:

• the threshold: the radius of the sub-cluster obtained by merging a new individual

and the nearest sub-cluster must be less than this threshold. If this is not the case,

a new subcluster is initialized. A low value of this threshold therefore multiplies the

number of node breakdowns, and thus the clusters.

• the branching factor: maximum number of subclusters in each node. If a new indi-

vidual entering a node causes the number of subclusters to exceed this branching

factor, then the node is split into 2, which distribute the subclusters. The parent

subgroup of this node is deleted, and two new subclusters are added as parents of

these two cut nodes.

• number of clusters after the last clustering step.

Note that, as far as we know, the Birch clustering technique has not yet been considered

in any IoT related application.

6.2.5/ OTHER METHODS

6.2.5.1/ SPECTRAL CLUSTERING

The Spectral clustering [Von Luxburg, 2007] applies K-means to a low dimensional im-

mersion of the affinity matrix between samples, i.e. to the normalized Laplacian matrix

D−1/2(D − A)D−1/2,

where D is the degree matrix of the graph whose adjacency matrix is the affinity A. This

affinity matrix is constructed using:

• either a kernel function, for example the RBF e−γd(X,X)2
or the heat kernel e−β

d(X,X)
std(d) ,

where d is the distance between individuals, while β and γ are hyperparameters to

set up;
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• or a connectivity matrix in the k-nearest neighbors;

• or, via the precomputed parameter, an affinity matrix provided by the user.

As other clusterings detailed here, pros and cons of this technique are provided in Ta-

bles 6.1 and 6.2.

A study of Laplacian eigenvector based clustering in the context of overlaping clusters is

avialable in [Chretien et al., tted].

Examples of the application of Spectral clustering in the context of IoT can be

found in [Hu et al., 2015, Kung et al., 2009, Muniraju et al., 2017]. For instance, in

[Hu et al., 2015], the Spectral clustering is used to detect disconnected segments of the

sensor network caused by depletion of battery or physical tempering of nodes. Con-

versely, in [Kung et al., 2009], Spectral clustering is used to detect and eliminate sensor

nodes that are not working properly.

6.2.5.2/ AFFINITY PROPAGATION

Affinity propagation (AP [Frey et al., 2007]) is a clustering algorithm based on the notion

of passing messages between data points. As with the K-Medoids, the AP is looking for

models ("exemplars"), i.e. points in the dataset that could be good cluster representa-

tives. The AP starts from a similarity matrix, and exchanges messages (real numbers)

between the points to be clustered until quality clusters emerge naturally. During mes-

sage exchange, the algorithm identifies exemplary points, or models, that are able to

properly describe a cluster.

Let s be a similarity matrix for the points to be clustered, in which s(i, i) designates the

"preference" of the i entry, which means how likely the i element is to be found as a

model. These s(i, i) are typically initialized at the median of the similarities, knowing that

initializing them at a value close to the smallest of the similarities will lead to fewer clusters

(and vice versa for a value close to the maximum).

The algorithm alternates two message passing steps, updating the following two matrices:

• The R matrix of competence (responsibility), in which the element (i, k) quantifies

how much xk is justified as a model for xi, compared to the other candidates.

• The availability matrix A, in which the element (i, k) represents how appropriate it

would be for xi to take xk as a model, once all the other points have been considered

as a model.

These two matrices, which can be seen as log-probability tables, are initialized with 0’s.

The following steps are then iterated:
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• First, we circulate the skill updates: r(i, k)← s(i, k) −maxk′,k {a(i, k′) + s(i, k′)}.

• Then the availability is updated by:

– a(i, k)← min min
(
0, r(k, k, k) +

∑
i′<{i,k}max(0, r(i′, k))

)
for i , k, and

– a(k, k)←
∑

i′,k max(0, r(i′, k)).

Iterations are performed until either the cluster boundaries no longer move, or after a

predefined number of iterations. The models are extracted from the final matrices, as

being the self-competent and self-available elements (i.e. r(i, i) + a(i, i)) >0).

Examples of the application of Affinity propagation clustering in the context of

IoT can be found in [Sohn et al., 2016, ElGammal et al., 2009, Wang et al., 2019b,

Sakthidasan et al., 2018]. For instance, in [Sohn et al., 2016], AP is used to improve the

LEACH protocol, while in [ElGammal et al., 2009, Wang et al., 2019b], improved versions

of the AP for sensor data clustering are proposed. Finally, in [Sakthidasan et al., 2018],

AP is used for optimal routing path selection.

6.2.5.3/ CONSTRAINED CLUSTERING

There is a separate branch of clustering that integrates the notion of constraints. Thus,

in COP (COnstrained Pairwise) K-means [Wagstaff et al., 2001], it is specified that this

and that individual must be linked, when that and that other must not, while MinSizeK-

means forces a minimum size for clusters. Other semi-supervised clustering can be

found in the literature, like Seeded-KMeans, Constrainted-KMeans, Pairwise constrained

K-means (PCK-means), Metric K-means (MK-means), or Metric pairwise constrained K-

means (MPCK-means), to name a few. Implementation of such active semi-supervised

clustering algorithms can be found, e.g., in [con, ], while [Pedregosa et al., 2011b] con-

tains the Python implementation of most usual clustering methods.

6.3/ CLUSTERING EVALUATION: STATE-OF-THE-ART

There are two different approaches validation of clustering results. In external validation,

we have access to the real clusters, and we want to measure to what extent the consid-

ered algorithm is able to recover the ground truth. In internal validation, we do not have

access to the ground truth, and an alternative hint about the relevance of the number and

shape of the clusters is needed. External validation provides more relevant and mean-

ingful measures for testing on simulated data, but the hypothesis of having access to

the desired solution is obviously not realistic in practical implementations. Many libraries

already implement most of these metrics, such as [Pedregosa et al., 2011b].
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Table 6.1: Use case of clustering techniques.

Method Parameters Cluster size Nb of clusters Geometry

Affinity damping distinct large nb of clusters; does not scale non flat

propagation sample preference up with the nb of individuals

Birch numerous large data sets large nb of clusters non flat

DBSCAN neighborhood size distinct Very large set of individuals non flat

average number of clusters

GMM nb of clusters not scalable not scalable flat

Hierarchical nb of clusters distinct many clusters hierarchical

clustering link type, distance many samples

K-means nb of clusters regular not too many flat

K-Medoids nb of clusters regular not too many flat

Mean-shift bandwidth distinct many non flat

Spectral nb of clusters distinct small non flat

6.3.1/ EXTERNAL VALIDATION

6.3.1.1/ HOMOGENEITY, COMPLETENESS, AND V-MEASURE

If we know the expected labels, we can define some intuitive measures based on an anal-

ysis of conditional entropy. Thus, Rosenberg and Hirschberg [Rosenberg et al., 2007]

have defined the following two objectives, which are obviously desirable for any cluster-

ing:

• Homogeneity:: each cluster contains only members of a single class.

• Completeness:: all members of a given class are in the same cluster.

These two scores are between 0 and 1 (the higher the value, the better the clustering),

and the V-measure is the harmonic mean of the latter two.

With more details, homogeneity and completeness are defined mathematically as follows:

h = 1 −
H(C | K)

H(C)
, c = 1 −

H(K | C)
H(K)

where:
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Table 6.2: Pros and cons of clustering techniques

Methods Advantages Disadvantages

Affinity - Nb of clusters not required - Quadratic complexity in the nb of points

propagation - One main parameter: the damping factor1 - There may not be convergence

Birch - Outlier deletion, data reduction - Does not adapt very well to large data2

- If large number of subclusters is desired

DBSCAN - No need to provide a priori the nb of clusters - Works less well than others when the

- Useful for identifying outliers, noise clusters to be found have different densities3

- Can find clusters of arbitrary size and shape - Does not work well in very high dimension

- Works well for clusters of homogeneous density

GMM - Intuitive algorithm associated with

maximum likelihood maximisation - Not scalable

- Soft clustering: each point belongs to all

clusters, but with different probabilities

- Allows an estimation of density

- model based approach that comes with easy to implement

information theoretic penalties for

model selection (number of clusters, etc.)

Hierarchical - Nb of clusters not required - Its specificity for hierarchical data

clustering - The most appropriate cluster nb - High impact of outliers

can be chosen afterwards - Slow: O(n3)

- Choice of distance not critical

- Works well when data is naturally hierarchical

allows you to recover this hierarchy

K-means - Fast (linear complexity) - We have to choose the nb of clusters

- Easy to implement - Not very good, outside of spherical clusters

- Proven in many applications - Consistency problem:

- Scalable: different runs produce different

for a large number of individuals clustering, due to its random initialization

and a reasonable number of clusters4

K-Medoids - Robust against noise and presence of outliers - We have to choose the nb of clusters

Mean-shift - No need to provide a priori the nb of clusters - Window size can be difficult to fix

- The centres of the balls converge

towards the places of highest density

Spectral - Useful when cluster structure is highly non-convex - Nb of clusters must be provided

- Very effective with sparse affinity matrix - Not recommended for large nb of clusters

Notes: 1 increasing it would tend to reduce the number of clusters; 2 it is generally
preferable to use MiniBatchKMeans; 3 HDBSCAN* solves this issue; 4 via Mini Batch
K-means.
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• H(C | K) is the conditional entropy of classes knowing clusters, i. e.

−
∑|C|

c=1
∑|K|

k=1
nc,k
n log nc,k

nk
,

• H(K) is the entropy of the class, equal to −
∑|C|

c=1
nc
n log nc

n ,

with n the number of individuals, nc and nk that of the c class and the k cluster, and nc,k the

number of individuals in the c class assigned to the k cluster. And, for the completeness,

the adaptation of the latter. Finally, the V-measurement is the harmonic mean of h and c,

i. e. :

v = 2
hc

h + c
.

The following points can be noted. First of all, a permutation of the class or cluster labels

will not change the value of these scores. Also, homogeneity and completeness are not

symmetrical: changing true labels with predicted labels will move from one score to an-

other (in other words, homogeneity_score(a, b) = completeness_score(b, a)). V-measure,

for its part, is symmetrical; it is equivalent to mutual information, with the arithmetic mean

as an aggregation function. This V-measure can be used to evaluate the agreement of

two independent clustering on the same data set.

Among the advantages of these measures, we can mention the fact that a clustering

with a bad V-measure (i.e., close to 0) can be analyzed qualitatively, in terms of homo-

geneity and completeness, to better interpret the type of error made. On the other hand,

there is no hypothesis on the structure of clusters, so we can compare various clustering

approaches (K-means vs. spectral...)

Conversely, these methods have some disadvantages. First of all, the actual labelling

must be known to calculate these scores. Moreover, these metrics are not adjusted to

account for chance: depending on the number of individuals, clusters and real classes,

completely random labelling will not necessarily produce the same values of homogene-

ity, completeness, and therefore V-measurement. In particular, random labelling is not

necessarily zero, especially for a large number of clusters. However, this problem can be

ignored if the number of individuals exceeds 1,000 for a number of clusters of less than

10. If this is not the case, prefer the ARI recalled below.

6.3.1.2/ ADJUSTED RAND INDEX

The Rand Index (RI) calculates a similarity between two clusterings, by looking at each

peer of individuals, and counting those that are or are not in the same cluster, depending

on whether you are in actual or predicted clustering:

RI =
a + b(

n
2

)
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where a is the number of points that are in the same cluster for both clusterings, b is

for those that are in a different cluster for both clusterings, and n is the total number of

samples. As such, the RI does not guarantee that random assignment will produce a

value close to 0. This is why this raw index is "adjusted to account for chance", which

gives the ARI (Adjusted Rand Index) score:

ARI =
RI − Expected_RI

max(RI) − Expected_RI
.

The ARI, which is symmetrical, measures the similarity, the consensus of two assign-

ments, ignoring permutations and normalizing against what would have happened by

chance. ARI score has various advantages:

• Random labelling leads to an ARI close to 0, regardless of the number of points and

clusters, which is not the case for RI or V-measure.

• The ARI varies between -1 and 1 included. Negative values are for independent

labeling, when similar clusterings have a positive ARI (1 for an exact match).

• No hypotesis on the structure of the clusters: we can therefore compare K-means

to spectral clustering, leading a priori to very different structures.

Its main disadvantage is that it assumes that the actual expected labelling is known.

To have a full understanding of the values returned by the ARI, it can be noted that a

label placing all individuals in the same clusters is complete, but not always pure, and

is therefore penalized. In addition, the ARI is symmetrical, so labelling leading to pure

clustering with members from the same classes, but with unnecessary class splits, is also

penalized. Finally, if the class members are completely separated in different clusters,

then the assignment is totally incomplete, and therefore the ARI is very low.

6.3.1.3/ FOWLKES-MALLOWS SCORE

When we know the classification of individuals whose clustering is done, we can calcu-

late the Fowlkes-Mallows FMI score [Fowlkes et al., 1983] as the geometric mean of the

precision and recall per pair:

FMI =
T P

√
(T P + FP)(T P + FP)(T P + FN)

where:

• TP is the number of true positives: the number of pairs of points in the same cluster

in the real and predicted labelling,
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• FP is the number of false positives: pairs with the same real labelling, but in different

predicted clusters,

• FN is the number of false negatives: pairs in the same predicted clusters, but with

different actual labels.

Clearly, labels can be swapped or renamed, leading to the same score. Also, a perfectly

predicted clustering will have an FMI of 1, while a clustering independent of the real

classes of 0. The FMI has various advantages:

• Unlike mutual information or V-measure, a random clustering will have an FMI score

of 0, regardless of the number of clusters or individuals.

• A value close to 0 indicates largely independent labeling, while a value close to 1

indicates clustering agreement.

• Two equal labels (with permutation) have an FMI of 1.

• Finally, there is no hypothesis on the structure of clusters.

Its main disadvantage is that the actual labelling must be known in order to use this

measure.

6.3.1.4/ BASED ON MUTUAL INFORMATION

Mutual information Entropy is the amount of uncertainty for a partitioning U = (Ui),

which can be defined by :

H(U) = −

|U |∑
i=1

P(i) log(P(i))

where P(i) = |Ui|/N is the probability that a randomly drawn object will end up in

the Ui cluster. The mutual information between two partitionings U and V is defined

by [Meilă, 2007]:

MI(U,V) =

|U |∑
i=1

|V |∑
j=1

P(i, j) log
(

P(i, j)
P(i)P′( j)

)
where P(i, j) = |Ui ∩ V j|/N and P′( j) = |V j|/N are probabilities in the obvious sense. This

mutual information can also be written as follows:

MI(U,V) =

|U |∑
i=1

|V |∑
j=1

|Ui ∩ V j|

N
log

(
N |Ui ∩ V j|

|Ui|.|V j|

)

This is a symmetrical measurement less than or equal to 1. Values close to 0 indicate that

the labels are largely independent, while values close to 1 indicate a significant agreement
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between the two clustering. However, perfect labelling does not necessarily have an MI

of 1; on the other hand, random labelling has a negative MI. This score is independent

of permutation or renaming. But it requires knowledge of true labelling, and unlike AMI

defined below, MI is not adjusted to account for chance.

Normalized Mutual Information It is defined on the basis of mutual information, as

follows [Vinh et al., 2010]:

NMI(U,V) =
MI(U,V)

mean(H(U),H(V))

This is again a symmetrical measurement and increased by 1. Similarly, values close

to 0 indicate that the labels are largely independent, when values close to 1 indicate a

significant agreement between the two clustering. In addition, perfect labelling has an NMI

of 1, and random labelling has a negative NMI. Finally, in the absence of true labelling, the

NMI can be used as a model selection criterion: clusterings on various hyperparameters

producing a score of 1 are agreed.

It should also be noted that this score is independent of permutation or renaming, but like

all measurements in this subsection, it requires knowledge of true labelling. Finally, unlike

the AMI defined below, the NMI is not adjusted to account for chance.

Adjusted Mutual Information The adjusted mutual information, which is a more re-

cent technique than Normalized Mutual Information, is for its part adjusted to account for

chance [Vinh et al., 2010]:

AMI(U,V) =
MI(U,V) − E{MI(U,V)}

max {H(U),H(V)} − E{MI(U,V)}
,

where E{MI(U,V)} is the expected mutual information between two random clusterings.

This is again a symmetrical measurement and bounded by 1. Perfect labelling has an

AMI of 1, and random labelling has an AMI close to 0: values close to 0 indicate that the

labels are largely independent, when values close to 1 indicate a significant agreement

between the two clustering. As before, the AMI can be used as a model selection criterion

(clusterings on various hyperparameters producing a score of 1 are consensus). Finally,

this score is independent of permutation or renaming.
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6.3.2/ INTERNAL VALIDATION

6.3.2.1/ ELBOW METHOD

The “Elbow method” is the technique that considers the elbow that appears when the

number of clusters is plotted on the x-axis and the percentage of variance explained on

the y-axis [Thorndike, 1953]. This method is old and rather rudimentary, although popular.

In practice, it can be calculated in two ways, for each potential number of clusters k :

• we sum the intra cluster variances, which we divide by the overall variance.

• the sum of squared errors (SSE) is calculated: the sum, on all clusters, of the square

distances between the points and their centroids.

For instance, in Figure 6.1, the elbow in the SSE appears for a number of clusters equal

to 3.

Figure 6.1: Illustration of the Elbow method: SSE versus nb of clusters

The following points can then be noted. For the K-means method, the average of each

cluster is its centroid. For normalized data, the mean involved in the total variance is the

origin. Finally, it is ultimately an F-test, in the variance approach.

6.3.2.2/ INDICES

Calinski-Harabaz In the absence of knowledge of actual labels, the Calinski-Harabaz

index [Caliński et al., 1974], also known as the variance ratio criterion, measures how

well clusters are defined. This score is defined as the ratio between the average of the

dispersions between clusters and the intra-cluster dispersion; the larger the score, the

better.
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More precisely, for k clusters, this score is equal to:

s(k) =
tr(Bk)
tr(Wk)

N − k
k − 1

,

where:

• Wk =
∑k

q=1
∑

x∈Cq(x − cq)(x − cq)T is the intracluster dispersion,

• Bk =
∑k

q=1 nq(cq − c)(cq − c)T is the dispersion matrix between groups,

with N the total number of points and c its center, when Cq is the set of points in the cluster

q, nq its number of points and cq its center.

The advantages of this metric are that the score is calculated quickly, and it is higher when

the clusters are dense and well separated, which is usually expected in good clustering.

On the other hand, the Calinski-Harabaz index is generally broader for convex clusters,

which does not fit well, for example, with clusters generally obtained by density-based

techniques such as DBSCAN.

Davies-Bouldin This index is defined by the average similarity between each cluster

(Ci)i=1..k and its most similar C j. For the purposes of this index, this similarity is defined

as the Ri, j compromise between:

• the diameter si of the cluster Ci : average distance between each point of this cluster

and its centroid,

• di, j : the distance between the centroids of the i and j clusters.

A simple way to construct such a measure, so that it is positive and symmetrical, is:

Ri, j =
si + s j

di, j
.

The Davies-Bouldin index is then defined by [Davies et al., 1979]:

DB =
1
k

k∑
i=1

max
i, j

Ri, j.

Clusters are better separated when the Davies-Bouldin index is low. 0 is the highest

score, and partitioning is better when the index is low. The main advantages of this index

is that:

• It can be calculated without the knowledge of true clustering.

• The calculation of the DB is simpler than the Silhouette scores, describe hereafter.
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• The index is calculated only from distances.

Conversely, its disadvantages are:

• It does not evaluate very well in a situation of non-convexity.

• A good value produced by this index does not mean that the information collected

is maximum.

Dunn The Dunn index [Dunn, 1974] is an internal clustering validation measure, which

is calculated as follows:

• For each cluster, the distance between each point of the cluster and the points of

the other clusters is calculated. The minimum of these distances corresponds to

the inter-cluster separation (min.separation)

• The distance between the points of each cluster is calculated, its maximum diameter

being the intra-cluster distance reflecting the compact nature of the clustering.

Dunn’s index is then equal to:

D =
min.separation
max.diameter

If clusters are compact and well separated, the diameter of the clusters should be small

when the distance between clusters should be large. So a good clustering is associated

with high values of this index.

6.3.2.3/ SILHOUETTE

The silhouette method [Rousseeuw, 1987] allows to estimate the consistency of the

points belonging to clusters. The silhouette value measures how similar an object is

to its own cluster (cohesion) compared to other clusters (separation). For each point, this

value is between -1 and 1:

• Close to 1, the object fits very well with its own cluster and very badly with other

clusters.

• Near 0, the data is at the border of two clusters.

• Close to -1, the object would fit better in the neighboring cluster: probably a bad

assignment.

If most objects have a high silhouette value, then clustering is appropriate. Otherwise, it

probably indicates too few or too many clusters. Let:
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• a(i) =
1

|Ci| − 1

∑
j∈Ci,i, j

d(i, j) the average distance between i point and the other points

of its cluster, measuring how much i fits well with its own cluster (value is the smaller

the better the assignment is), and

• b(i) = min
i, j

1
|C j|

∑
j∈C j

d(i, j) the smallest average distance between i and the points of

all other clusters. The average dissimilarity of a point i to a cluster C being seen

as the average of the distances between i and the points of C, the cluster with the

smallest average dissimilarity is therefore the cluster close to i.

The silhouette value of object i is then s(i) =
b(i) − a(i)

max{a(i), b(i)}
if the i cluster has more than

one point, and 0 otherwise.

The average silhouette value on all points of a cluster assesses the extent to which the

points of the cluster are closely grouped. The average value over the entire dataset

indicates whether it has been appropriately clustered. If there are too many or too few

clusters, some of them will typically have much weaker silhouettes than other clusters.

Thus, the display and averages of the silhouettes can be used to determine the natural

number of clusters in a dataset.

6.4/ COMPARISON OF MODERN CLUSTERING TECHNIQUES FOR

THE IOT

6.4.1/ EXPERIMENTAL PROTOCOL: A NETWORK OF GAS SENSORS

The objective of this section is to show that the various clustering methods mentioned

above may behave differently depending on the IoT application in question, and that it is

therefore important to consider the framework in which the study is conducted. Typical

scenarios for the use of each method have been described in a previous section, and we

have indicated the particularities and application contexts associated with each method,

the situations in which it can be expected to work well, as well as those in which these

methods behave poorly. The metrics used to assess the quality of the results produced

have been introduced to show that various measures provide different types of information

on the performance of the various clustering techniques presented in this article. All this

will be illustrated in this section, in a context of the Internet of Things already mentioned

in this article: the difficult case of a network of sensors deployed for gas detection.

The data we will consider are based on a concrete experiment produced by Alexander

Vergara of the University of California San Diego. It is entitled "Gas Sensor Array Drift

Dataset at Different Concentrations Data Set", and can be found on the UCI Machine
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Learning Repository [UCI, ]. In details, this archive contains 13910 measurements from

16 chemical sensors exposed to 6 different gases (Ethanol, Ethylene, Ammonia, Ac-

etaldehyde, Acetone, and Toluene) at various concentration levels. The scenario here is

that the sink receives the values of these 13910 measurements, and it must cluster them

in order to find 6 clusters corresponding to each of the 6 gases. In this clustering applica-

tion at IoT, the operator knows which sensors he has deployed and the types of gases he

wants to detect. In other words, he knows the number of clusters to recover, and since he

himself has exposed his network to these 6 gases at various concentrations, he knows

the true cluster. Its goal is to find the method to best separate all its measurements in

order to make its sensor network operational once this cluster-based post-processing has

been implemented. We would like to note that the gas sensors are not a generalized ver-

sion of any IoT system, different data sets collected by different types of sensor networks

can yield different results than the one obtained in this experiment.

In the following, we will therefore evaluate the clustering techniques for which it is possible

to determine the expected number of clusters beforehand. In detail, these are K-means

with random initialization or following K-means++, agglomerative clustering (we consider

here, for comparison purposes, the linkages of type ward, complete, and average), the

Gaussian Mixture Model, and Birch. First of all, it should be noted that spectral clustering

was excluded from the study: the size of the dataset was too large and led to a mem-

ory error, showing that this technique should be excluded in the case of IoT networks

producing a large amount of data (as expected following our previous presentation).

We also wish to show, in this study, that clustering work for the IoT often benefits greatly

from being preprocessed, such as with an outlier removal step followed by a phase of

dimensional reduction step. These two steps are generally neglected in the literature on

clustering in an IoT context. But we will see, through the various clustering evaluations ob-

tained, that adding such steps greatly improves the results. Concerning the detection and

exclusion of outliers, we will consider the cases where such a step has not been carried

out, then the implementation of a basic technique (i.e. isolation forest [Liu et al., 2008]),

followed by an optimized version (extended isolation forest [Hariri et al., 2018]). In terms

of dimension reduction, we will consider 4 scenarios: (1) the absence of such a step;

(2) its realization by the most traditional method, namely the PCA; (3) a modern ver-

sion of the latter optimized to the problem we are interested in, namely the Sparse

PCA [Zou et al., 2006] (sensors for 6 different gases, exposed to a single gas, should

ideally lead to a sparse matrix); (4) and finally the famous t-SNE [Maaten et al., 2008]

technique. Regarding clustering quality measures, the following list was considered: Ho-

mogeneity, Completeness, Adjusted Rand Index, V-measure, Fowlkes-Mallows, and AMI.

The data were first standardized. Then we performed (or not, as the case may be) the

outlier removal operations followed by dimension reduction, before performing the cluster-
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ing and evaluating its quality. The calculations were carried out in Python. For extended

forest isolation, we used the library available at the reference [Hariri et al., 2018]. The rest

of the clustering methods, forest isolation, and various dimension reduction and evalua-

tion techniques were performed with scikit-learn [Pedregosa et al., 2011b] library. At the

parameter level, reasonable default values were considered: for instance, the branching

factor and the threshold were set at 50 and 0.5 respectively for Birch, while the damping

was set at 0.5 in the AP.

6.4.2/ RESULTS OF THE SURVEY

First of all, it should be recalled that we have deliberately chosen to consider, in this

experiment, the problem of detecting various gases at different concentrations, by means

of a sensor network. A great diversity in the variability in the results after clustering

has been observed, ranging from random-like results (frequently obtained) to results that

carry richer structural information, given the complexity of the task considered in this

experiment. In order to visualize the results better and assess the results in all the tables

in this section, values are highlighted using a three color code:

• Blue: the values highlighted in blue are the highest recorded quality metrics with no

outlier removal.

• Green: the values highlighted in green are the ones showing improvement as com-

pared to the values obtained with no outlier removal.

• Red: the values highlighted in red are the ones showing degraded performance as

compared to the values obtained with no outlier removal.

The clustering technique will be ranked according to who has the highest values for the

majority of the quality metrics (the closer to 1.0, the better). In addition, as explained

earlier in Section 6.3 all the metric values range from either 0 to 1 or from -1 to 1. However,

using the python libraries mentioned in Section 6.4.1, we sometimes obtained values that

exceeded 1 or below -1. Therefore, these values will be ignored and will be removed from

the analysis.

Table 6.3 shows the obtained results when only the outlier removal operations (or not)

have been performed without any reduction in dimensionality afterward. It is clear that

on one hand, the K-means, AC Ward, and the Birch clustering techniques have been

improved in term of quality when the Isolation Forest is used to remove outliers. On the

other hand, only AC Ward and Birch have been improved when the Extended IF is used.

However, Looking at GMM which had the best results (excluding Fowlkes-Mallows) when

no outlier removal has been performed, a reduction in quality has been recorded when



132CHAPTER 6. COMPARING RECENT CLUSTERING METHODS FOR IOT DATA MANAGEMENT

Outliers Clustering Homogeneity Completeness ARI V-measure Fowlkes-Mallows AMI

None kmeans 0.1983 0.2471 0.0797 0.2201 0.2936 0.2196

—"— kmeans++ 0.1739 0.2409 0.0772 0.2020 0.3021 0.2015

—"— AC ward 0.1757 0.2337 0.0869 0.2006 0.3006 0.2001

—"— AC complete 0.0003 0.1554 -3.324 0.0006 0.4189 -5.143

—"— AC average 0.0003 0.1554 -3.324 0.0006 0.4189 -5.143

—"— GMM 0.3196 0.3613 0.2449 0.3392 0.4012 0.3388

—"— Birch 0.1811 0.3273 0.0916 0.2332 0.3564 0.2327

Isolation Forest kmeans 0.2059 0.2619 0.0850 0.2306 0.3020 0.2301

—"— kmeans++ 0.1608 0.2233 0.0772 0.1869 0.3031 0.1865

—"— AC ward 0.1795 0.2341 0.0854 0.2032 0.2981 0.2028

—"— AC complete 0.0003 0.1550 -3.581 0.0006 0.4184 -5.419

—"— AC average 0.0003 0.1550 -3.581 0.0006 0.4184 -5.419

—"— GMM 0.2783 0.3034 0.1669 0.2903 0.3291 0.2899

—"— Birch 0.1856 0.3274 0.0922 0.2369 0.3557 0.2365

Extended IF kmeans 0.1962 0.2447 0.0794 0.2177 0.2934 0.2173

—"— kmeans++ 0.1731 0.2401 0.0768 0.2012 0.3018 0.2007

—"— AC ward 0.1792 0.2363 0.0889 0.2038 0.3017 0.2034

—"— AC complete 0.0003 0.1551 -3.503 0.0006 0.4185 -5.334

—"— AC average 0.0003 0.1551 -3.503 0.0006 0.4185 -5.334

—"— GMM 0.2728 0.3460 0.1826 0.3051 0.3661 0.3047

—"— Birch 0.1806 0.3293 0.0939 0.2333 0.3581 0.2328

Table 6.3: Clustering scores without dimensionality reduction

Isolation Forest and Extended IF are used. Moreover, despite the improvements in other

clustering techniques, non of the values in green did match or exceed the quality metric

values highlighted in blue. Therefore, we can conclude that none of the outlier removal

techniques improved the clustering results. GMM without any outlier removal is by far the

best.

Table 6.4 shows the measured quality metrics of the different clustering techniques when

the PCA dimensionality reduction method is used after the removal (or not) of outliers.

Indeed, a small improvement can be noticed for K-means, K-means++, AC Complete,

and Birch, regardless of the outlier removal technique that has been used. However,

GMM shows an improvement only with Extended IF. Similarly to the previous results, the

best performing clustering technique, AC Ward, showed a reduction in quality instead of

improvement with both Isolation Forest and Extended IF being used. Moreover, both AC

Average and AC Complete had a sufficient improvement in their "Fowlkes-Mallows" and

"Completeness" values respectively to surpass the matching blue metric values of AC

Ward. However, still having the best Homogeneity, V-measure, ARI, and AMI, AC Ward

without any outlier removal, could be considered the best choice.
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Outliers Clustering Homogeneity Completeness ARI V-measure Fowlkes-Mallows AMI

None kmeans 0.1676 0.1893 0.0822 0.1778 0.2682 0.1773

—"— kmeans++ 0.1674 0.1891 0.0820 0.1776 0.2681 0.1771

—"— AC ward 0.2302 0.2716 0.1131 0.2492 0.3072 0.2488

—"— AC complete 0.0848 0.1794 0.0690 0.1152 0.3474 0.1146

—"— AC average 0.0108 0.2496 -0.002 0.0208 0.4115 0.0199

—"— GMM 0.2071 0.2580 0.0950 0.2298 0.3043 0.2294

—"— Birch 0.1006 0.2026 0.0115 0.1345 0.3206 0.1339

Isolation forest kmeans 0.1752 0.1920 0.0863 0.1833 0.2665 0.1828

—"— kmeans++ 0.1754 0.1923 0.0862 0.1835 0.2667 0.1830

—"— AC ward 0.1889 0.2335 0.0763 0.2088 0.2915 0.2084

—"— AC complete 0.0745 0.2994 -0.001 0.1194 0.3746 0.1186

—"— AC average 0.0410 0.1675 -0.006 0.0659 0.3601 0.0651

—"— GMM 0.2006 0.2346 0.0954 0.2162 0.2920 0.2158

—"— Birch 0.1282 0.2751 0.0178 0.1749 0.3351 0.1743

Extended IF kmeans 0.1746 0.1916 0.0855 0.1827 0.2664 0.1822

—"— kmeans++ 0.1750 0.1924 0.0857 0.1833 0.2668 0.1829

—"— AC ward 0.1479 0.1761 0.0485 0.1608 0.2558 0.1603

—"— AC complete 0.1315 0.3068 0.0219 0.1841 0.3423 0.1835

—"— AC average 0.0080 0.2333 -0.001 0.0155 0.4131 0.0146

—"— GMM 0.2181 0.2553 0.1022 0.2352 0.3011 0.2348

—"— Birch 0.1522 0.2705 0.0696 0.1948 0.3361 0.1943

Table 6.4: Clustering scores on data reduced by PCA

In Table 6.5, where sPCA is used to reduce the dimension of the dataset, minor improve-

ment can be found for K-means and K-means++, with both outlier removal techniques.

However, AC Complete and GMM only showed partial improvement with Extended IF and

Isolation Forest respectively. In this table, we notice that no clustering technique domi-

nated the others in terms of quality metrics, thus, we have no clear “winner” yet. However,

AC Ward has been improved enough with Extended IF in order to surpass the blue values

in Homogeneity, ARI, V-measure, and AMI. Therefore, the combination of Extended IF,

sPCA, and AC Ward could be considered better then the others.

The previous experiments clearly show that the performance can have large fluctuations,

depending on how the methods are combined in the pipeline. This corroborated by the re-

ported experiments in Table 6.6. In this table, we discover that when t-SNE is considered

as the dimensionality reduction method, AC Average, GMM, and Birch have improved

performance with both Isolation Forest and Extended IF. However, K-means, K-means++

only showed improvement with the former, and AC Wards only showed improvement with

the latter. This time Birch is the one that stands out as the clustering technique with the
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Outliers Clustering Homogeneity Completeness ARI V-measure Fowlkes-Mallows AMI

None kmeans 0.1975 0.2441 0.0796 0.2184 0.2937 0.2179

—"— kmeans++ 0.2039 0.2515 0.0885 0.2252 0.2989 0.2248

—"— AC ward 0.2198 0.2851 0.0852 0.2482 0.3102 0.2478

—"— AC complete 0.0706 0.3567 0.0062 0.1179 0.3887 0.1171

—"— AC average 0.0129 0.2305 -0.002 0.0244 0.4098 0.0235

—"— GMM 0.2249 0.2754 0.1017 0.2476 0.3095 0.2472

—"— Birch -6.291 1.0 0.0 -1.258 0.4190 -2.293

Isolation forest kmeans 0.2297 0.2666 0.0979 0.2468 0.2981 0.2463

—"— kmeans++ 0.2297 0.2666 0.0979 0.2468 0.2981 0.2464

—"— AC ward 0.2247 0.2793 0.0764 0.2490 0.3023 0.2486

—"— AC complete 0.0732 0.2810 0.0168 0.1162 0.3781 0.1155

—"— AC average 0.0074 0.2255 -0.001 0.0143 0.4133 0.0134

—"— GMM 0.2388 0.2839 0.0990 0.2594 0.3074 0.2590

—"— Birch -3.143 1.0 0.0 -6.287 0.4186 -6.287

Extended IF kmeans 0.2313 0.2685 0.0981 0.2485 0.2985 0.2481

—"— kmeans++ 0.2083 0.2522 0.0893 0.2281 0.2981 0.2277

—"— AC ward 0.2484 0.3249 0.1045 0.2816 0.3294 0.2812

—"— AC complete 0.1168 0.3113 0.0084 0.1699 0.3485 0.1693

—"— AC average 0.0079 0.2364 -0.001 0.0154 0.4133 0.0145

—"— GMM 0.2082 0.2560 0.0943 0.2296 0.3030 0.2292

—"— Birch 3.1444 1.0 0.0 6.2889 0.4187 1.1054

Table 6.5: Clustering scores on data reduced by sPCA

majority of values coloured in blue. By looking at the results obtained using Isolation For-

est and Extended IF, we also observe that AC Average outperforms all other approaches

in terms of clustering quality. Therefore, we can safely conclude that the combination

consisting of, Isolation Forest for outliers removal, t-SNE for Dimensionality reduction and

AC average for clustering is by far the best combination for the given data set.
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Outliers Clustering Homogeneity Completeness ARI V-measure Fowlkes-Mallows AMI

None kmeans 0.3519 0.3476 0.2418 0.3497 0.3723 0.3494

—"— kmeans++ 0.3537 0.3495 0.2427 0.3516 0.3730 0.3513

—"— AC ward 0.3552 0.3593 0.2223 0.3572 0.3618 0.3569

—"— AC complete 0.3123 0.3571 0.2209 0.3332 0.3793 0.3328

—"— AC average 0.2922 0.3467 0.1994 0.3171 0.3684 0.3168

—"— GMM 0.3443 0.3556 0.2138 0.3498 0.3587 0.3495

—"— Birch 0.3547 0.3608 0.2370 0.3578 0.3749 0.3574

Isolation forest kmeans 0.3883 0.3857 0.2904 0.3870 0.4134 0.3867

—"— kmeans++ 0.3888 0.3862 0.2908 0.3875 0.4137 0.3872

—"— AC ward 0.3405 0.3527 0.2436 0.3465 0.3840 0.3462

—"— AC complete 0.2992 0.3311 0.2338 0.3143 0.3801 0.3140

—"— AC average 0.4221 0.5147 0.3666 0.4638 0.5066 0.4635

—"— GMM 0.3608 0.3617 0.2666 0.3613 0.3957 0.3610

—"— Birch 0.3648 0.3696 0.2820 0.3672 0.4104 0.3669

Extended IF kmeans 0.3272 0.3233 0.2238 0.3253 0.3572 0.3249

—"— kmeans++ 0.3272 0.3233 0.2238 0.3253 0.3572 0.3249

—"— AC ward 0.4051 0.4041 0.2972 0.4046 0.4201 0.4043

—"— AC complete 0.2394 0.2432 0.1434 0.2413 0.2974 0.2409

—"— AC average 0.3611 0.3723 0.2281 0.3666 0.3705 0.3663

—"— GMM 0.3723 0.3802 0.2343 0.3762 0.3732 0.3759

—"— Birch 0.4109 0.4201 0.2926 0.4154 0.4208 0.4151

Table 6.6: Clustering scores on data reduced by t-SNE

6.5/ CONCLUSIONS

In this chapter, we surveyed and classified modern clustering schemes applicable to the

Internet of Things (IoT). We categorized the different approaches, highlighted their speci-

ficities and their domain of applicability, and we presented and explained the state-of-

the-art clustering evaluation methods. Our findings were illustrated on the “Gas Sensor

Array Drift at Different Concentration” data set, provided by the UCI Machine Learning

Repository. For this dataset, we compared the most relevant clustering schemes and

tested various combinations of outlier removal and dimensionality reduction approaches.

Great diversity in the quality of clustering was observed, leading to the conclusion that

there is no such thing as a simple rule for deciding the best clusters. In particular, the

assumption that K-means should be used regardless of the application context did not

appear to be true, and we were able to conclude that, instead, removing outliers using

the Isolation Forest approach, reducing the dimensionality using t-SNE, and clustering

using AC average yielded the best results.





7

ON THE ABILITY TO PREDICT FIREMEN

INTERVENTIONS: A CASE STUDY

I n this chapter, we investigate the possibility of predicting future incidents using ma-

chine learning algorithms that are trained on a set of data containing information

on almost 200,000 firemen interventions that happened during the last 6 years. After,

pre-processing the data we tested multiple machine learning algorithms and we com-

pared their results, aiming to determine which algorithm performs better. The results look

promising as we were able to predict the number of interventions for each 3 hours block

for a whole year, with an acceptable error margin.

7.1/ INTRODUCTION

Today’s fire-fighters are operating in a technologically progressive environment. Tens of

years ago, there was no such thing as a smoke alarm, water sprinkler system, jaws of

life, and automatic shut-off valves, etc. While the tools are advancing rapidly, many fire

departments are facing budget challenges, rising call volume, personnel and equipment

shortages, and the overall expectation to do more with less. Therefore, there is a need for

an intelligent system capable of making an assessment of the probability or likelihood that

a particular event will occur. This can be achieved by building a model that can forecast

future events using inputted information about incidents that happened in the past. This

intelligent prediction system can help fire departments to manage more efficiently their

allocated mobile and personnel resources, enabling them to have the required resources

when an incident occur, reduce the response time, and save more lives with less effort.

137
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7.1.1/ BACKGROUND

Various statistical, data-mining, and machine learning algorithms are available for use

in predictive analysis model in several domains [Yaseen et al., 2018, Umair et al., 2018,

Samanpour et al., 2018]. Each of these algorithms was developed to solve specific prob-

lems, which may make some of them more appropriate than others depending on the

type, size, and other descriptions of the available data. Comparing different runs of differ-

ent algorithms can bring surprising findings about the data. Doing so gives more detailed

insight into the problem, and helps identify which variables within the data have the best

predictive power.

One of the most known algorithms are the regression ones [Lewis-Beck et al., 2015], they

can be used to forecast continuous data, such as predicting the trend for a stock move-

ment given its past prices. The linear regression model [Montgomery et al., 2012] is one

example, it attempts to model the relationship between two or more variables by fitting a

linear equation to the observed data. One variable is considered to be an explanatory

variable, and the other is considered to be a dependent variable. For example, a modeler

might want to relate the weights of individuals to their heights using a linear regression

model. Therefore, if we know a person’s weight it is possible to estimate its height.

The decision tree [Breiman, 2017] is another approach to predictive analysis that is used

for prediction and decision making. They are often chosen for predictive modeling be-

cause they are relatively easy to understand and effective. The goal of a decision tree is

to split a set of data into smaller subsets that are related to each other. Starting at the

root which includes the total set of data, and as we move down the tree, the goal is to

split them into smaller and smaller subsets at each node of the tree. Each subset must

be as distinct as possible from the other in terms of the target indicator. For instance, if

we have a set containing information about people, an indicator could be sex, where we

split the data into two subsets: one containing females only and the other males. Again,

each subset can be split into multiple other subsets based on the age indicator, and so

on. The optimal way to do that is by iterating through each indicator as it relates to the

target indicator and then choosing the indicator that best splits the data into two smaller

nodes. There are two stages to prediction. The first stage is to build the tree, test it, and

optimize it using the available data set. In the second stage, the model is finally used to

predict an unknown outcome.

An improved version of the decision tree method is the random forest [Liaw et al., 2002].

It is a supervised learning algorithm that builds a forest consisting of an ensemble of

decision trees. The random-forest algorithm brings extra randomness into the model

when it is growing the trees. Instead of searching for the best indicator while splitting

a node, it searches for the best indicator among a random subset of indicators. This

process creates a wide diversity, which generally results in a better model.
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One cannot work on machine learning without considering the Support Vector Machines

(SVMs) [Wang, 2005]. SVMs are based on the concept of decision planes that separates

between a set of data having different class memberships. It was first used for classifica-

tion purposes, then it showed great performances in Support Vector Regression as well

(SVR) [Smola et al., 2004]. SVR aims to minimize a cost function using a kernel, which

could be linear, Gaussian, or polynomial depending on data. The kernel determines the

similarity between different features, and thus assign weights to their corresponding cost

functions. Features that are close to each other and have the same output will be grouped

together due to more weight, while outliers having less weight associated with them are

discarded when the cost function is minimized. Thus, outliers will contribute very little to

the final predictive model.

Last but not least, the least absolute shrinkage and selection operator (LASSO)

[Tibshirani et al., 2015] is also widely used for prediction analyses. This algorithm works

on the concept of penalized regression which helps to select the variables that minimize

the prediction error. Ordinary Least Squares regression chooses the beta coefficients

that minimize the residual sum of squares (RSS), which is the difference between the ob-

served data and the estimated ones. LASSO adds a penalty to the RSS equal to the sum

of the absolute values of the non-intercept beta coefficients multiplied by the parameter λ

that slows or accelerates the penalty. E.g., if λ is less than 1, it slows the penalty and if it

is above 1 it accelerates the penalty.

In this chapter, we compare several machine learning algorithms aiming to find the most

efficient one in terms of prediction accuracy that estimates the number of interventions

for each block of 3 hours. The rest of the chapter is organized as follow. Section 7.2

explains the procedure followed to collect, structure and clean the data. In Section 7.3

the data are visualized to understand better the hidden patterns and identify and extract

the most important features. In Section 7.4 the previously mentioned machine learning

algorithms are tested and their results are compared. In Section 7.5 a suggestion to

improve the prediction results is presented, which opens the doors for a future work.

Finally, Section 7.6 concludes our work and the intended future work is outlined.

7.2/ PRE-PROCESSING THE DATA

The fire department in the region of Doubs-France has provided us with a set of data con-

taining information on a total number of ≈200,000 interventions that occurred during six

years, from 2012 to 2017 (included). The data are separated into three different csv files:

the list of departures by agents, the list of interventions, and the list of victims. These data

files contain information about each incident, such as: The number of intervention (ID),

The location, Y and X coordinates, date of intervention, used vehicle and its registration
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number, departure motivation, alert reception time, departure time, end of intervention

time, the total intervention time, age, sex and the state of the victim, etc. In this section,

we will explain how we cleaned, prepared and enriched these data before passing to the

prediction phase.

7.2.1/ DATA ACQUISITION

Weather conditions are considered to be a factor that affects significantly the number of

road accidents, fires, and casualties. Therefore, including meteorological information to

the analysis of incidents trend can improve the prediction results. Moreover, using the

previously described csv files, we can extract for each individual intervention the hour of

the day when it happened, as well as the day of the week, the month, and the year. This

can help us detect tendencies correlated with these parameters (e.g., the number of car

accidents increases on Saturday night because young people tend to drink during this

period of time). Other parameters that could affect the number of road accidents, fires,

and other events can be also taken into consideration, such as traffic hours, academic

vacations, holidays, dawn and dusk time, moonrise, moonset, and the phase of the moon

as well.

The idea is to predict the number of interventions per hour that will occur for a whole year.

Therefore, we need to create a dataframe where we can aggregate all the available data

provided by the fire department in addition to supplementary data that can be imported

from other various sources. In order to build such a dataframe we performed the following:

• We initialized a dataframe containing keys ranging from ’01/01/2012’ until ’31/12/17’

of the form ’YYYYMMJJhhmmss’. The keys are generated by blocks of 3 hours.

• We imported the following weather related data from three weather stations located

in Dijon-Longvic, Bâle-Mulhouse, and Nancy-Ochey [met, ]: temperature, pressure,

pressure variation each 3 hours, barometric trend type, total cloudiness, humidity,

dew point, precipitation last hour, precipitation last three hours, average wind speed

for every 10 minutes, bursts over a period, measurement of the burst period, hori-

zontal visibility, and finally the current time.

• We added the imported meteorological information to the previously initialized dic-

tionary. However, the data were not complete, some were missing and marked as

“mq”. Therefore, we applied a linear interpolation to fill the blanks. We then intro-

duce various temporal features such as the day in the week (Monday, etc.), month,

year, hour in the day, etc.

• We have extracted the number of interventions from the csv files sent by the fire

brigade department. In the latter, there is one line per intervention, which includes
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the time of the intervention to the second. We group these interventions by blocks

of 1 hour.

• The features “holidays” and “startendVacation” are added to the dataframe, which is

initialized to 0 (false). The first will increase to 1 for any 3 hours block within an aca-

demic holiday period, while the second will increase to 1 for the days corresponding

to the beginning and end of holiday periods.

• We have added the public holidays (1 or 0, for true or false), as well as a second

feature that is set to 1 the days before public holidays, for the hours ranging from

3:00 pm to 11:00 pm (otherwise 0).

• We have included information related to the “Bison Futé” which is a system put

in place in France to communicate to motorists all the recommendations of public

authorities regarding traffic, traffic jams, bad weather, accidents, advice, etc. It

classifies the days at risk according to several colors: green = all is well, fluid traffic,

orange = dense traffic, red = difficult traffic, traffic jams, black = to avoid because of

traffic jams and slow traffic. We integrate these information through two additional

features “bisonFuteDepart” and “bisonFuteRetour”. They are 0, 1, 2 or 3, depending

on whether the traffic forecasts correspond to Green, Orange, Red or Black.

• Finally, we added to the dataframe the sunrises, moon phases, etc. A boolean fea-

ture ’night’ is added to the dataframe to know if it is a day (0) or night (1). Moreover,

We add another boolean feature indicating if the moon has risen at h+30min, and

what is its phase (an integer from 0 to 7, namely 0 for new moon, 2 for the first

quarter, 4 for the full moon, and 6 for last quarter).

In the Table 7.1 we give an illustrated example showing how the final dataframe looks

like. It contains all the information extracted from the provided csv data files (hour, day,

etc.) and the ones imported from external sources (meteorological, ephemeris, traffic,

vacations, etc.). Each column represents a block of 3 hours. Over the period of 6 years,

for each day we have 8 columns representing the 24 hours of the day.‘

7.2.2/ DATA CLEANING

In this subsection, we will explain how we detected and removed outliers that can affect

negatively the end results. First, we noticed that the mean value of the number of inter-

ventions in the dataframe is 3.59 interventions/hour, the minimum number of intervention

is 0, and the maximum is 85. Finally, in 75% of the cases the number of interventions is

less than 5.

Looking at Figure 7.1, there seems to be some very particular situations, having gen-

erated a large number of interventions. As the latter can affect the learning phase, it is
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Table 7.1: Illustrated example of the final dataframe

Intervention nbr 0 1 .. .. .. 52559

year 2012 2012 .. 2012 .. 2017

.. .. .. .. .. .. ..

StartEndVacation 0 0 .. 0 .. 1

.. .. .. .. .. .. ..

WindDirDijon 190 175 .. 120 .. 100

.. .. .. .. .. .. ..

HumBâle 89 85 .. 79 .. 78

Day 150 150 .. 365 .. 365

.. .. .. .. .. .. ..

3 Hours block 0 3 .. 24 .. 24

Holidays 1 0 .. 0 .. 0

VisibiltyNancy 55000 56666 .. 48333 .. 60000

.. .. .. .. .. .. ..

NbrIntervention 7 10 8 6

Figure 7.1: Histogram showing the frequency of each number of intervention
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appropriate to look at them in more detail, asking whether or not they should be discarded

(outliers). We sorted the IDs ranging from 0 to 52559 in descending order according to

their corresponding number of intervention. We have noticed that among the top 8 IDs we

have 7 neighboring ones (same day, neighboring hours). So we investigated more what

happened during this period of time. The ID number 39243 has the maximum number

of interventions of 85 interventions. We listed the year, month, day, and the hour of its

neighboring ID’s. We noticed that they all belong to the night of 24th to the 25th of June

2016. In the csv files, the following main causes were noted for these days: exhaustion,

floods, protection of miscellaneous property, and accidents. That particular night there

were very violent storms [est, 2016], leading to the recognition of the state of natural dis-

aster in the region of Doubs. Therefore, we have two options, either we consider them as

outliers and dismiss them in learning by smoothing out the missing data or consider that

this is a consequence of exceptional weather, but that with the weather data we should be

able to predict this. It remains to be seen whether it seems possible to predict this peak of

intervention using meteorological data from Basel, Dijon, and Nancy. In what follows, we

will look at an interval of 200 hours (a little less than 9 days) centered around this storm.

(a) Precipitation every 1h (b) Precipitation every 3h

(c) 10-minute average wind speed

Figure 7.2: features visualisation

We start by looking at the precipitation during this period. Figure 7.2a shows that there

is indeed a peak in rainfall, but it does not seem obvious: a little less than 4mm, while
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the article from the ’Est republicain’ [est, 2016] speaks of 80mm in less than an hour. If

we compare the IDs of the peaks with the IDs of the maximum precipitations in the data

provided by the weather station in Basel, we notice that they are not among the most

important values recorded in this station. This is probably due to Basel’s distance from the

storm, located between Sancey and L’Isle-sur-le-Doubs (although Basel is closer to this

region than Dijon or Nancy). It may, however, be that, at this time, a lot of water has fallen

for a relatively long time, so we can look at what it is over a longer period. Therefore, let us

look at Figure 7.2b showing the rainfall over 3 hour blocks. A thunderstorm peak appears

clearly, and the amount dropped is over 20mm (closer to 80mm) mentioned above. We

checked if such a quantity is something frequent. It turned out to be the fifth highest rainfall

recorded from 2012 to 2016 inclusive. We looked at how many interventions there were

in the vicinity of the periods of heavier rainfall. On average, there are more interventions

during maximum rainfall. But we remain very far from the number of interventions during

the 6 hours of this stormy peak that is considered as a natural disaster.

To conclude on precipitation, one caused an extreme peak in interventions, but this is

not the case for the other severe weather events. The most important of these leads to

a number of interventions out of the ordinary, but far from the extreme studied situation.

These precipitation data are therefore important for our prediction, but they do not allow

us to predict the extreme situation of June 25, 2016 (due to weather measurements that

are not sufficiently localized). We look to see if other weather information, measured in

Basel, Dijon or Nancy, were remarkable at midnight on 25/06/16. We start with wind

speed. As we can see in Figure 7.2c There is a small peak, but nothing exceptional. The

wind speed (10-minute average) was less than 3.5 m/s. We are far from the maximum of

15.9m/s that we can find when sorting the wind speed in ascending order. We also looked

at humidity, temperature, and pressure values; there was indeed a drop in pressure, but

on the other variables, there was no particular situation at first sight.

It seems difficult, with the weather data currently considered, to predict such a peak

of interventions. The situation is sufficiently exceptional and has a real impact on the

considered data. For example, the number of interventions in June may be significantly

overestimated. For these reasons, we chose to artificially smooth the intervention data

on this date. For outliers, we put the same number of interventions as the next day at the

same time.

7.3/ DATA VISUALIZATION

After cleaning our data and removing the outliers, it is time to analyze it in order to discover

the tendencies correlated with the different feature of the created dataframe. At first, we

calculated the degree of correlation of each parameter with the number of interventions.
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(a) Number of interventions/month (b) Number of interventions/Day

(c) Number of interventions/Day of the week (d) Number of interventions/Hour of the day

Figure 7.3: features correlation with number of interventions

We discovered the following interesting facts:

1. The strongest positive correlation concerns the hour and the strongest negative

concerns the night (there are more interventions when it is a day, whatever the sea-

son). Moreover, this is something cyclic, every day at 2 am there is less intervention

than at 6 pm.

2. The weather data have an impact as well, although less pronounced. Temperature

(positive) and humidity (negative: when it rains, people go out less) are first, wind

speed and visibility comes second.

3. The eve of public holidays has some importance. The beginning or end of holidays

have a greater impact than being on holiday or not. The fact that the moon is

apparent plays a little, but less its phase.

4. The year is also weakly positively correlated: the number of interventions tends to

increase from year to year

5. Temperature data are highly correlated with each other and are strongly but in-

versely correlated with humidity. In a slightly more surprising way, they are corre-

lated with visibility.
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The relevance of keeping several variables so highly correlated could be considered. If

necessary, data could be reduced, for example by aggregating (average, etc.) those

correlated, and see if this facilitates learning and predicting the number of interventions.

The first thing we notice is that the number of interventions increases each year, which

is normal due to population growth. If we accumulate the number of interventions by

month (Figure 7.3a), we notice that the summer months are most of the time the busiest

in terms of the number of interventions. The end of the years are also busy. One can

imagine reasonable causes for this: summer vacations conducive to outings and physical

activities, fires. And end-of-year parties. This assumption can be further emphasized by

looking at Figure 7.3b, we can clearly see the trends related to summer, as well as a

significant number of interventions around mid-February, and lows around April, August-

September, and November. Let’s move on to the day in the week (Figure 7.3c). Weekends

are much busier, with a peak on Saturday (including Friday night after 24h). Let’s look at

the time in the day (Figure 7.3d). As expected, it is during the hours of the day that the

number of interventions is highest, with a small drop during midday. And there is hardly

any intervention at 5:00 in the morning.

7.4/ THE PREDICTION OF INTERVENTIONS

7.4.1/ LEARNING AND TESTING STAGES

In this section, we present different machine learning methods that we have used to

predict future incidents. We also compare their results aiming to find the best approach

that produces the smallest prediction error. We split our data-set into two sub-sets, a

learning sub-set (2011-2016) and a verification one (2017). The former is used to build

a model that will predict the number of interventions for each 3h blocks for the next year

(2017), and the latter is used to verify the accuracy of these predictions.

The first step is to specify which data are numeric (year, humidity, day, month, etc.) and

which are qualitative (night, holiday, day if the week, etc..), since the latter will be pro-

cessed by full disjunctive coding when they are normalized (to avoid large data being

mixed with small data). An encoder is introduced for qualitative data, for example, if we

consider qualitative data at three levels (0, 1, 2), it will be encoded as a three-bit vector,

as follows: [1, 0, 0], [0, 1, 0] and [0, 0, 1]. We also create two python pipelines, the first

is on the numerical data, allowing them to be normalized (mean 0, standard deviation 1),

and the second is on the qualitative data to perform a full disjunctive coding. Finally, the

complete pre-processing pipelines for the explanatory variables are formed.

Before testing the different machine learning methods, we start by discovering some ref-

erence values concerning the mean square error. Having this information will allow us
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to have a better estimate of the results produced thereafter. The mean square error, or

MSE, reinforces the importance of large errors over small ones and is, therefore, a better

score than the mean of absolute errors. We take the square root, leading to the RMSE,

to have similar units. First, we only consider the average number of the interventions for

each year, in order to predict the number of interventions for 2017. We obtain the follow-

ing errors: MAE : 2.39, Root Mean Square Error (RMSE) : 2.94. If we try to do better by

taking the average per hour, the following results are obtained: MAE: 1.75, RMSE: 2.28,

which is better than the previous results. Let these numbers be our references numbers

to test the efficiency of the different prediction models that we will use.

7.4.2/ PREDICTION

We train the prediction models after applying the previously described pre-processing

pipelines. Afterward, we use the trained model to predict the number of interven-

tions for the year of 2017. We used in this work the Scikit-learn Python module

[Pedregosa et al., 2011a] that integrates a wide range of state-of-the-art machine learning

algorithms (including the models that we are interested in) for medium-scale supervised

and unsupervised problems.

• Linear regression: The obtained RMSE for the Linear regression model is 2.59

which is below the standard deviation of the number of interventions (2.7). In addi-

tion, the value of the MAE is 1.763. According to these results, Linear regression

turned out to be better than the “average of the year” method, but less accurate then

the “average per hour”. Figure 7.4a shows a comparison between the number of

actual interventions and that predicted. As we can see the prediction of the number

of interventions follows the trend, but is clearly not extraordinary.

• Decision Tree: Since linear regression is not that great, we try the decision tree

which is a more complex model to see what it gives. It is a powerful model, capable

of finding complex non-linear relationships in data. To evaluate the decision tree

model we use the cross-validation method. The training set is first partitioned into

k=10 distinct blocks, then the training and then the evaluation of the decision tree

model is performed in 10 successive passes, while reserving each time a different

block for the evaluation and performing the training on the other nine blocks. The

end results are 10 evaluation scores. The average of these results is then calculated

to assess the model’s accuracy. Figure 7.4b shows a comparison between the

predictions and the real number of interventions. The obtained RMSE and MAE are

2.86 and 2.15 respectively. It seems to work less well than the linear regression

model and the naive models as well. Therefore, instead of using a single decision

tree, we will move to random forests.
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(a) Prediction using Linear Regression (b) Prediction using Decision Tree

(c) Prediction using Random Forest (d) Prediction using LASSO

(e) Prediction using SVM

Figure 7.4: Visualization of prediction results

• Random Forest: The principle is to drive many decision trees on random subsets

of variables and then average their predictions. The comparison between the real

number of interventions and the predicted ones is shown in Figure 7.4c. The results

look promising since after a random search of best hyper-parameters, the obtained

RMSE and MAE are the lowest until now: 2.19 and 1.68 respectively.

• Support Vector Machine (SVM): In order to get the best results, we used the grid

search technique to find the optimal hyper-parameter C. In the beginning, we select

a grid of values for C of size N ranging between two numbers, say: a and b, then
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we run the SVM for each value of C and we calculate the RMSE of each one of

the N runs. We then select three values of C that returned the minimum RMSE, we

reset the grid to range within these 3 selected values and we rerun the SVM again

for each value in the new grid. Again, we calculate the RMSE and we repeat the

same cycle until we find the optimal value for C that returns the smallest RMSE. The

optimal value for the hyper-parameter C in our case is 1.36. The smallest RMSE for

this value of C is 2.21 and the MAE is 1.68.

• Least Absolute Shrinkage and Selection Operator (LASSO): LASSO is a type of

linear regression that uses shrinkage. It is where data values are shrunk towards a

central point, like the mean. LASSO penalizing the absolute size of the regression

coefficients, where some of the parameter estimates may be exactly zero. The

larger the penalty applied, the further estimates are shrunk towards zero. λ is a

parameter that defines the amount of shrinkage. In order to find the optimal value

for λ, we used the same grid search technique we have used for SVM. The best

value is found to be 0.0031 in our case. Finally, the smallest RMSE for a λ equal to

0.0031 is 4.53 and the MAE is 3.48.

Table 7.2 summarizes the results. The random forest method achieved the lowest RMSE

and MAE. SVM performed good as well, it has the same MAE as the random forest and

a slightly bigger RMSE. Surprisingly LASSO achieved the worse results with very high

errors.

Table 7.2: Error comparison

RMSE MAE

Average 2.94 2.39

Average per hour 2.28 1.75

Linear Regression 2.59 1.76

Decision Tree 2.86 2.15

Random Forest 2.19 1.68

SVM 2.21 1.68

LASSO 4.53 3.48

7.5/ DISCUSSION

In this work, we are predicting the number of interventions regardless of what is the

type of it (suicide, road accident, fire, etc.). The obtained results are fairly acceptable,
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(a) Number of interventions/month (b) Number of interventions/day

(c) Number of interventions/day of the week (d) Number of intervention/hour of the day

Figure 7.5: Interesting visible correlations

and we were capable of predicting the number of interventions for each 3 hours block

to some extent. However, if we look at Figures 7.5a, 7.5b, 7.5c, and 7.5d, we notice

that the number of interventions differs greatly depending on the type. For instance, in

Figure 7.5a we can see a peak in fire interventions starting approximately from May until

the beginning of July, and a similar peak for road accidents starts from May until August.

Drowning, childbirth, and Suicide remain stable over the whole period. This trend is

also visible in Figure 7.5c where we notice a peak during the weekends in fire and road

accident interventions. Moreover, Figure 7.5d shows a peak between 3 pm and 7 pm for

road accidents, and from 4 pm and 8 pm for fire incidents. Therefore, if we can predict

first the type of the incident, we will be able to predict more accurately the number of

interventions. This indeed is a really interesting approach that we will investigate in more

depth in future work.

7.6/ CONCLUSION

Given a large set of data containing information about 200,000 interventions that took

place over a 6 years period in the region of Doubs (France), we aimed to determine
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which technique performs best at predicting the number of interventions for the next 3

hours block with an accuracy that is sufficient for practical purposes. Our results show

that the random forest is the best technique for predicting the number of future incidents

with respect to the obtained RMSE and MAE values. The predictions are within an ac-

ceptable error margin and could help fire departments to anticipate future incidents and

better manage their human and mobile resources. The improved management of re-

sources leads to a reduction in the total intervention time and an increase in the response

speed. This helps reduce the number of injuries significantly, save more lives, and limit

the consequences of an event in the shortest delay possible.

For future work, we will check whether the number of interventions follows a specific

probability distribution law and if the associated parameters evolve in time if so we could

predict the evolution of these parameters instead of the actual number of interventions.

Finally, we will be using Neural Networks for prediction and possibly add additional pa-

rameters to the models in order to increase the prediction accuracy.
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GENERAL CONCLUSION

8.1/ SUMMARY OF THE PHD THESIS

Nowadays, the word “Smart” could be virtually placed before the name of any object or

tool. Instances include Smart Houses, Smart Grid, Smart Cars, Smart Cities, etc. A key

area, ripe for development, is Smart Fire Fighting. Today’s emergency responding includ-

ing firefighting is data-poor and lacks an integrated data analysis and decision-making

tools. The purpose of this thesis is to provide a stepping stone toward the development of

a smart emergency responding environment. The goal is to make situational awareness

significantly stronger by harnessing the power of emerging information, communication,

sensors and building predictive models and decision-making tools. This thesis presents

a series of both software and hardware solutions aimed to advance smart emergency re-

sponding. The full requirements are enormous for consideration in this thesis. Therefore,

a hand-full of priority objectives were derived from guidelines drawn up through a variety

of mechanisms, including the coordinated efforts between multiple teams with a back-

ground in sociology, sports, computer science, and emergency responding. Important

feedback from multiple perspectives on this topic where considered during the course of

the project. Three main objectives were set for this thesis namely development of energy-

efficient algorithms for wireless sensor networks. Design, development, and validation of

a smart emergency responding prototype system (proof of concept) that ensure a reliable

delivery of data over a long distance and in harsh environments. Finally, development of

data analysis and decision-making tools. Our main contributions and perspectives for this

dissertation are listed in the following.

Energy Management: We presented a novel fault-tolerant DPM-based transmission re-

duction algorithm that is simple in terms of complexity yet robust, and effective in terms of

prediction accuracy and data transmission reduction. This algorithm reduces data trans-

missions between the sensor node and the Sink by simultaneously building and main-

taining on both of them a data forecasting model. This model enables the sensor node to

155
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transmit a measurement only when the difference between it and its corresponding pre-

diction exceeds a predefined error threshold. Meanwhile, the non-transmitted measure-

ments are reproduced at the Sink using a similar instance of the jointly built prediction

model. In addition, in order to ensure synchronization between the model on the Sink

and the one on the sensor node, and to improve the quality of the replicated data, we

coupled this technique with a missing data detecting mechanism and a data reconstruc-

tion algorithm. This letter, deployed on the sink, exploits both temporal smoothness and

spatial correlation among different sensed features to recover missing values caused by

communication link failures.

Then, we presented an extension for the previous approach. To further reduce energy

consumption we proposed merging the fault-tolerant DPM-based algorithm with an adap-

tive sampling technique. This later, enable the sensor node to adapt its sampling rate

depending on the level of variations in the collected data over a certain period of time. If

no significant change is noticed, the sensor node is allowed to reduce its sampling speed

(the time between two consecutive samples) and sleep for a longer duration. However,

if important variations are observed, the sensor is forced to use the maximum sampling

speed for not to miss important events. This gives the sensor more flexibility in managing

its sampling rate instead of keeping it at a maximum level all the time even when it is not

necessary which translates in a reduction in sampling energy consumption.

Finally, we presented a spatial-temporal correlation-based approach for sampling and

transmission rate adaptation in cluster-based sensor networks. Unlike the previous ap-

proaches, the sensor nodes do not need to run any distributed algorithm. It is rather

a centralized approach where the cluster head is responsible for collecting data from

its member sensor nodes and computing a correlation function in order to measure the

correlation degree among them. Finally, the sensors that show high correlation will be

asked to reduce their sampling rate and the ones showing low correlation will be asked

to increase it. Moreover, in order to ensure the integrity of the data, the same recon-

struction algorithm described in (Chapter 2) is implemented on the Sink station in order

to reproduce the whole data-stream including values that have not been sampled due to

a prolonged sleep duration.

The previously described approaches have been validated trough both simulations on

real sensor data-sets and implementation on real sensor devices. We measured the

energy consumption of the sensing, processing, and transmission activities of the device

in addition to the overall energy consumed by each algorithm. The final results have

proven the efficiency of our proposed algorithms in reducing the amount of consumed

energy and extending the lifetime of the network, all while preserving the quality of the

collected data.
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Proof of Concept: We presented a proof concept of a smart-system for state assess-

ment and localization of firefighters during interventions. It consisted of a smart-watch

for heart rate and movement monitoring and two sensor devices, one for localization and

the other for environmental data sensing. A LoRaWan network architecture has been

adopted for its ability to transmit the collected information over a long distance with the

presence of obstacles and since it requires virtually no pre-existing infrastructure. Our

proposal is shown through experiments to be more reliable compared to the traditional

mechanical Personal Alert Safety System (PASS) used by firefighters.

Decision Making: We reviewed recent clustering techniques and provided a rigorous

account of when and for which task they might be useful in the context of WSNs and

the IoT. We Provided a thorough comparison between the main important techniques

which have been devised in the literature, as well as their respective advantages and

disadvantages. We Analyzed an example with real data for a gas leak detection sensor

network to show how these various clustering techniques can respond in different ways

to data received at the sink level. Finally, We demonstrated that choosing the correct

method makes a difference via performance comparisons on a massive data set. Some

methods showed excellent accuracy and scalability, whereas others appeared completely

inappropriate for the task.

With our hands on a large data-set containing information on 200,000 intervention that

happened during a period of 6 years in the region of Doubs, France. We studied the

possibility of using Machine Learning to predict the number of future interventions. This

could help the fire brigade to better manage their allocated mobile and human resources

by increasing or decreasing them in a specific area according to the produced predictions

which would prevent having excess resources in low-risk areas or shortage in high-risk

ones. Using a hand-full of well established Machine Learning algorithms we managed to

predict the number of interventions for every 3h block for a whole year with an acceptable

error margin.

8.2/ PERSPECTIVES

Although a lot has been done in this thesis, more could be achieved. In this section, we

list and discuss our perspectives for future work.

Energy Management: The proposed energy management algorithms could be imple-

mented on the environmental data sensing device, but not on the localization device and

the smart-watch since they operate differently. They are in constant active mode, never
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set to sleep and they only transmit in case of emergency. We cannot apply the trans-

mission reduction algorithm since every single emergency alert must be transmitted, and

we cannot apply the adaptive sampling since constant monitoring of movements and

heart-rate is indispensable for emergency detection. Therefore, In future work, we should

consider the optimization of the embedded algorithms on these devices in order to ensure

a prolonged operational lifetime.

The Monitoring System: The localization device is designed to work outdoors, how-

ever, if operating indoor, this information will be lost, the firefighter will no longer be local-

ized. The signal strength of the LoRa packet could be used to estimate the location of

an emitting device. In future work, we aim to conduct a comprehensive study on Indoor,

GPS-free localization via LoRa.

We successfully validated a prototype of the proposed remote monitoring system, how-

ever, the experiments were conducted on a small-scale. In future work, we aim to conduct

close to operational experiments with the fire brigade members in a controlled environ-

ment in order to observe how the system works on large-scale especially to test signal

strength and delivery reliability of data packets in a harsh environment.

Decision Making: Although we managed to develop a system that transmits, stores,

and visualizes the collected real-time sensor data using a web application, we did not yet

exploit this data to develop any predictive tools for decision making. We did however in-

vestigated massive sensor data clustering which is a step-stone towards this goal. Even-

tually, the collected sensor data could be analysed and used to help forecast in real-time

the fire location(s), size, propagation, and environmental conditions. More information

could also be retrieved using more sensors and it could be possible to predict the time

to significant failure in structural and situational tenability of buildings, compute the risk

factors based on the incident (locations of fire, firefighters, occupants, and conditions),

compute change in fire over time based on cleared area and draw an exit path from the

intervention area. Moreover, by acquiring real-time weather data it is possible to analyze

current and projected weather, especially wind-speed which could be a decisive factor

in fire fighting. Information on hospital status (occupancy, resources, etc.) could also

be used for efficient treatments of victims, etc. All this and other examples of predictive

decision-making tools could be considered in future work.
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