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et au Canada (je regrette seulement les 5 tonnes de CO2 que j’ai émises pour y participer..).
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également les examinateurs Eliska Greplova, David Guéry-Odelin et Evert van Nieuwenburg
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Je remercie Malika et de Sandrine pour leur sympathie et leur disponibilité, ainsi que les
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Chapter 1

Introduction

1.1 Machine learning

For centuries, humanity has been fascinated by the possibility of non-human intelligence. An

illustrative example of this, among so many others, is the story of the mechanical Turk. In

the late 18th century, Hungarian inventor Wolgang von Kempelen constructed a chess-playing

automaton that was able to defeat many challengers for nearly 80 years around Europe and

America. The Turk was in fact a hoax, a mechanical illusion that allowed a skilled human

player to hide inside to operate the machine (see Fig. 1.1).

Figure 1.1: A copper engraving showing the Turk, the open cabinets where the human operator

could hide and working parts, by [Gottlieb von Windisch’s 1784].

Two centuries after, in 1997, the computer program Deep Blue was the first chess-playing

machine able to defeat a human, none other than Garry Kasparov the world champion at the

time, with a score of 3 wins, 2 losses and 1 draw. The core of this chess program was based on

finely handcrafted evaluation functions that incorporated chess knowledge acquired by grand-

masters from two centuries of game playing. In that sense, perhaps put provocatively, Deep Blue

was just a modern version of the mechanical Turk, devising a chess machine based on human

knowledge, though in a rightfully more sophisticated way. Twenty years after, the Deepmind

team set another milestone in the field by devising AlphaGo [Silver et al. 2016], a program that

was able to beat human champion Lee Sedol in the even more challenging game of Go. Shortly

after, DeepMind introduced a new algorithm [Silver et al. 2017] achieving higher performance by

learning the game only with self-play, that is, only input with the rules of Go, it could improve by
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playing against itself. They later extended their result to the game of chess [Silver et al. 2018]

demonstrating that, starting from random play, AlphaZero could reach superhuman level in

chess after only 4 hours of self-play! The great superiority of machine learning (ML) for Go-

or chess-playing clearly exemplifies its potential and explains its recent popularity as a new

programming paradigm.

Although these superhuman-performing algorithms are impressive in their own right, one

can argue that their capabilities largely rely on the greater computational power and memory

capacity that computers have over humans. In other words, although being intellectually difficult

for humans, chess and Go are straightforward to handle for computers as their rules and the

game mechanics can be easily implemented. Therefore, one can think of a true challenge for

artificial intelligence (AI) as one that involves tasks that are easy for people to perform but hard

to describe formally: where intuition and automatisms play a big role.

Researchers took up this challenge and succeeded in developing machine learning algorithms

that are now able to routinely solve complex real-world tasks such as detecting objects in an

image, recognizing spoken words or translating sentences into another language. Even though

the principles and methods have been known for almost 40 years, the field has greatly ex-

panded in the last decade and is now getting attention across its frontiers, being applied in

many domains like medicine, weather-forecast and even lately physics. The reason for this

golden age stems from a favorable combination of factors. First, the birth of the Internet

and social media has generated an enormous amount of data (40 trillion gigabytes as of to-

day [Reinsel et al. 2018]) which quickly called for efficient analysis methods. Second, major

theoretical breakthroughs [Hinton et al. 2006, Krizhevsky et al. 2017a] led to the birth of deep

learning and triggered the biggest success in AI [LeCun et al. 2015]. Finally, the computa-

tional power of CPUs has been growing constantly over the years and the intensive use of

dedicated hardware such as Graphics Processing Units (GPUs) or Tensor Processing Units

(TPUs) [Jouppi et al. 2017] has only helped this progress.

Deep learning

A learning algorithm is a program that is able to extract knowledge from experience. In other

words its performance can be improved upon being exposed to more data. As for humans, AI

systems have been designed to understand the world in terms of concepts. By being able to

relate and compose concepts with each other, knowledge of increasing-complexity can build up.

If we draw a graph showing the hierarchy of these concepts assembled on top of each other,

the graph would be deep, i.e. containing many layers. The above general conceptualization is

embodied by deep neural networks which in short is a function built as a composition of simple

unit functions. We leave the details to chapter 2 for now.

For a human, the process of recognizing a cat in an image can be decomposed into the

detection of low-level features such as color palette, texture of hairs, small patterns like ears, or

feet, then higher-level characteristics such as body shape, bigger scale color motifs converging

together to the concept of cat. Before deep learning methods were employed, say for a cat

recognition algorithm, programmers would manually implement feature detectors and process

the image through them before eventually providing a shallow algorithm with this human-

processed data. The key advantage of deep learning lies in its ability to automatically find a

suitable representation of the data, possibly containing high-level abstract conceptualization of

2
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the input data, and effectively solve complex tasks.

Limits of machine learning

Although very efficient in many cases, machine learning techniques suffer from different types

of limitations. Since this technology is heavily data-dependent, it is natural to expect that the

quality of the data is directly reflected in the performance of these algorithms. There are many

situations where collecting data is costly, data can also be corrupted or sparse, thus a machine

learning practitioner should devote a substantial part of its time to data normalization. An

other criticism that can be made is that the decision function of deep learning algorithms is

notoriously known to be opaque. In other words, it is almost always impossible for a human to

understand which features of the input dictate the final output of the algorithm. Interpretability

is one of the biggest challenges of today’s machine learning and the lack of notable progress in

this direction actually puts a brake on its real-life applications [Goodman & Flaxman 2017].

On a different note, there is no established understanding why these algorithms work so

well. Some even compare machine learning to steam engines [Hartnett 2019]. At first, engineers

would improve them based on intuitions extracted from direct experimentation, until the theory

of thermodynamics was developed and eventually gave birth to an industrial revolution. The

current situation in machine learning is similar since most architectures and training tricks have

been devised from empirical intuition. One example among many of the deep learning puzzles is

the fact that deep networks that have more adjustable parameters than actual number of training

samples still have good generalization properties [Zhang et al. 2017]. The field certainly calls

for more systematic and theory-based approaches [Carleo et al. 2019b].

1.2 Numerical methods for condensed matter physics

Condensed matter theory is concerned with the study of mathematical models that are effective

representations of real materials. These toy models are conceived to be rich enough to capture

the essential traits of physical systems, while being simple enough to remain analytically (or

numerically) tractable, the latter being achieved by discarding all the irrelevant features of the

system at study in the modelling. New intriguing phenomena are being observed in experiments

on a daily basis and some of them still resist a complete theoretical understanding. Long-

standing problems in quantum many-body physics include high-temperature superconductiv-

ity [Bednorz & Müller 1986], the fractional quantum Hall effect [Tsui et al. 1982, Laughlin 1983]

or lately superconductivity appearing upon twisting two sheets of graphene stacked on top of

each other [Cao et al. 2018].

A relatively new branch of physics is devoted to the study of these complex systems using

computational resources. Half-way between lab experiments and pen-and-paper calculations,

computational physics deals with the in silico simulation of mathematical models. A convenient

simplification for numerics is to consider effective lattice models where the degrees of freedom

lie in a discretized space (which is justified in condensed matter as atoms organize periodically

in space forming crystals). Arguably one of the most important example of such model is

the Hubbard model [Hubbard & Flowers 1963], where electrons can hop on the vertices of a

lattice and interact with each other via on-site repulsion which emulates the underlying Coulomb
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repulsion:

H = −t
∑

〈i,j〉,σ
c†i,σcj,σ + h.c.

︸ ︷︷ ︸
electron hopping

+ U
∑

i

ni,↑ni,↓

︸ ︷︷ ︸
Coulomb repulsion

(1.1)

where 〈· · · 〉 indicates neighboring sites on a given lattice in d spatial dimensions. The fermionic

operator c†j,σ (cj,σ) creates (destroys) one electron with spin σ (up ↑ or down ↓) on an orbital

residing on site j.

The Hubbard model provides an exceptional platform for phase exploration in fermionic

(Fermi-Hubbard model) as well as bosonic (Bose-Hubbard model) systems hosting several in-

teresting phases of matter including metals, Mott insulators or superconductivity. Despite its

apparent simplicity, its phase diagram is not known in systems of dimension larger than 2 and

exact numerics are plagued in most regimes by the so-called sign problem (see below). The

model is also naturally realized in quantum simulators, in particular cold atom gases loaded on

optical lattice. The limit of large interactions gives rise to the Heisenberg model which we will

study in chapter 3 (though with the addition of disorder).

In general, exact solutions of quantum lattice models are rare beyond one dimension, and

usually analytical developments have to ultimately rely on approximations or assumptions that

cannot always be rigorously justified. As a result, computational studies can help circumvent-

ing these limitations. Among other methods, we present in the following three representative

examples of techniques that are routinely used in solving the many-body problem.

Exact Diagonalization

The most direct way to study a quantum spin model is to construct its Hamiltonian matrix

and diagonalize it. This gives access to the exact eigenstates and energy spectrum of any finite

size system. However, due to the exponential growth of the Hilbert space with system size

(the Hilbert space size of N spin-1/2 particles is 2N ), the Hamiltonian matrix also becomes

large exponentially fast and in practice, the limit in computational time and memory capacity

is rapidly reached for a few tens of spins. Nevertheless, the unbiased nature of this method is

of great interest for testing new methods on small lattices against exact exact diagonalization

(ED) results. In some cases, a finite-size study supplemented by an appropriate scaling theory

and symmetry analysis is sufficient to extrapolate observables to the thermodynamic limit and

obtain a phase diagram [Wietek et al. 2017].

One way to push the method further is to take advantage of the symmetries of the model.

Given that the Hamiltonian and the symmetry operators commute with each other, the Hamil-

tonian can be written in a block-diagonal form where each small block corresponds to different

symmetry sectors [Sandvik et al. 2010]. If the focus is on the low-energy properties of the system,

it is possible to target and obtain the exact ground-state and first excited states by employing

Krylov-space-based techniques such as the Lanczos method [Sandvik et al. 2010]. The compu-

tational effort is thereby reduced but still remains exponential. Let us also mention the family

of spectral transform methods (such as shift-invert [Pietracaprina et al. 2018a]) which enables

to obtain eigenstates in the middle of the spectrum.
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Variational methods: compressing

One strategy to circumvent the exponential complexity of a quantum wave-function is to

parametrize it by a tractable number of parameters. More precisely, for a quantum state

|Ψ〉 =
∑

i ci|i〉, the number of amplitude coefficients ci grows exponentially as the system size

increases. The aim of variational approaches is to encode these amplitudes succinctly with a

number of variational parameters that only grows polynomially with system size. By construc-

tion, this approach is biased by the specific wave-function parametrization, nevertheless reliable

approximations of many strongly correlated states can be found. This approach was pioneered

by Feynman in his study of polarons and superfluid helium [Feynman 1955].

Given a Hamiltonian H and its ground-state |E0〉, how can one approximate |E0〉 with a

certain class of wave-functions, i.e. a specific parametrization? One way to achieve this is

to use the so-called variational principle that provides an inequality valid for any variational

state |Ψvar〉, relating the exact ground state energy E0 and the variational energy Evar of |Ψvar〉
(proved in Sec. 4.2 of chapter 4):

E0 ≤ Evar =
〈Ψvar|H|Ψvar〉
〈Ψvar|Ψvar〉

(1.2)

As a result, any trial state |Ψvar〉 gives an upper bound of the exact ground-state energy. More

importantly, equation (1.2) allows to control the approximation made by the variational state

by simply following its variational energy Evar. Indeed, without knowing E0, the lower the

variational energy Evar is, the closer it is expected to be to the actual ground-state energy,

and |Ψvar〉 is expected to approximate the true ground-state wavefunction. Optimizing the

variational parameters can be done with Monte Carlo simulations as will be explained in chapter

4.

One family of states that drew attention in the past decade and was able to achieve state-of-

the-art descriptions of many one-dimensional and some two-dimensional systems, is matrix prod-

uct states (MPS) [Verstraete et al. 2008]. Since Hastings foundational result [Hastings 2007], it

is known that gapped one-dimensional quantum systems satisfy the so-called area law for the

entanglement entropy. A direct consequence of this is the possibility to approximate efficiently

the ground-states of such systems with MPS [Verstraete et al. 2008]. This means that the num-

ber of MPS parameters (the bond dimension) required to reach a given accuracy only grows

polynomially with system size, thus completely removing the original exponential complexity of

the problem. Unfortunately, MPS become inoperative whenever the amount of entanglement in

the targeted state is too large, for example when it obeys a volume-law entanglement entropy.

This can occur for example when the focus is not on the low-energy properties of the system

but on highly excited states usually more entangled. This latter scenario arises in the study of

closed quantum systems which will be discussed in chapter 3.

Quantum Monte Carlo: sampling

Another strategy to deal with the exponential complexity of quantum many-body systems is to

statistically sample a quantum state with quantum Monte Carlo (QMC). Here the most relevant

components of a wave-function or of a path integral are selected through importance sampling

and this allows us to efficiently obtain accurate observable estimations with a number of samples
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that grows polynomially with system size. Contrary to the previous approach, in the best-case

scenario, QMC is unbiased.

In general, one can distinguish QMC methods that target the ground-state and those that

specialize to finite-temperature properties. For the latter, the core idea of the method is to

rephrase the partition function of a d-dimensional quantum system as the partition function of

a d+ 1-dimensional classical system, i.e. Z = Tr
(
e−βH

)
is recast as a sum of statistical weights

over classical configurations, Z =
∑

CWC . When the weights WC are positive, WC/Z can be

interpreted as a probability distribution and the usual Monte Carlo machinery can be applied

straightforwardly with its efficiency as well as its pitfalls. Near a phase transition for instance,

the autocorrelation time between samples can increase so much that the computational effort

needed to get a sufficient amount of samples is prohibitive. The existence of efficient Monte Carlo

updates is often required as we will see in chapter 4 and in some cases, efficient schemes were

found to even cancel this phenomenon [Syljůasen & Sandvik 2002, Alet & Sørensen 2003]. This

latter fortunate situation arises for non-frustrated spin and bosonic systems and QMC is then the

method of choice for accessing exact equilibrium properties at both zero and finite-temperature

and any dimensions.

However, in many interesting cases such as frustrated or fermionic systems, the weights WC

turn to be negative or even complex, which invalidates the usual Monte Carlo interpretation of

WC/Z as a probability distribution, giving rise to the infamous sign problem. Let us first observe

two simple facts, (i) having a Hamiltonian with only negative elements is sufficient to avoid the

sign problem since the partition Z = Tr
(
e−βH

)
will directly be a sum of real positive terms, (ii)

Z is invariant with respect to unitary transformations (H → UHU†). As a consequence, if the

Hamiltonian is expressed in its eigenbasis, its elements can all be made negative (by a global

irrelevant energy shift) and the sign problem is solved... at the exponential cost of diagonalizing

the Hamiltonian! All in all, the sign problem is purely a problem of representation and in some

specific instances, it was in fact possible to solve it by ingeneously designing appropriate unitary

transformations [Chandrasekharan & Wiese 1999, Chandrasekharan & Li 2012, Li et al. 2015,

Alet et al. 2016].

In summary, at present, there are no exact methods that allow to probe eigenstates of gen-

eral many-body Hamiltonians with a computational effort that scales polynomially with the

system size. Although provably hard when the sign problem manifests [Troyer & Wiese 2005],

the many-body problem has been driving the efforts of the computational quantum many-body

physics community for decades and the future developments of the field might well be directed

towards analog quantum simulators [Friedenauer et al. 2008, Bloch et al. 2012], quantum com-

puters [Arute et al. 2019] and, as we will investigate in this thesis, coupling with machine learn-

ing techniques.

1.3 Machine learning and condensed matter physics

Physics does not escape from the general late trend of big data. As greater computational power

and memory capacity are more accessible, datasets become larger and data samples of higher

quality, for example in high-energy physics with data collected from the LHC or big telescopes.

Physics problems also share structural similarities with ML tasks. For example, one can notice

the parallel between the exponential complexity of an interacting many-body quantum system

and the curse of dimensionality which affects machine learning and states that the training
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dataset size should scale exponentially with the dimensionality of the input samples, as shown

in Fig. 1.2.

Figure 1.2: As the dimensionality of the input data is increased (from left to right), the num-

ber of configurations grows exponentially. This means that eventually the size of the train-

ing dataset should scale with input dimension to probe all state space regions. Figure from

[Goodfellow et al. 2015].

Beyond high-dimensionality, many-body systems and data in machine learning can be

characterized by correlations and symmetries. For example, it was showed that pixel-to-

pixel [Ruderman 1994] or word-to-word [Ebeling & Pöschel 1994] correlations are power-law

decaying, which is reminiscent of the power-law spatial correlations of critical systems in many-

body systems. In the same spirit, symmetries often help the understanding of quantum systems

and can reduce the computational complexity of certain learning tasks.

Well known in statistical learning theory and used early on in the large datasets of particle

physics experiments, machine learning became a new phenomenon in condensed matter physics

only recently and started being applied to a large variety of problems such as the determination

of atomization energies of molecules [Rupp et al. 2012, Pilania et al. 2013] or the acceleration

of Monte Carlo simulations [Huang & Wang 2017, Liu et al. 2017a, Xu et al. 2017]. The two

fields have already begun to cross-fertilize as is shown by the use of tensor networks for image

classification [Stoudenmire & Schwab 2016] or the tentative interpretation of neural networks

with renormalization group concepts [Mehta & Schwab 2014]. Numerous contributions also

concerned experiments as the ML-assistance of quantum state tomography [Torlai et al. 2018],

state preparation [Bukov et al. 2018] or parameter estimation [Greplova et al. 2017] proved very

promising. In the following paragraphs, we introduce three other fields of application of ML

to condensed matter physics, which will be the respective topics of the next chapters of this

manuscript.

Machine learning phases of matter (Chapter 3) One of the first application of machine

learning in condensed matter physics treated the problem of classification of phases of matter.

Traditionally, the understanding of phases and the mapping of phase diagram is obtained after

identification of an order parameter that is a physical observable that takes different values

in the phases allowing for their clear distinction. Although this diagnostic is easy to find in

simple models like the Ising model, in the vast majority of cases, it is not always clear what

is the order parameter and even its existence may not be guaranteed. A fresh look on this

problem came from a series of papers [Wang 2016, Carrasquilla & Melko 2017, Wetzel 2017,

van Nieuwenburg et al. 2017, Broecker et al. 2017a] in which a machine algorithm was set up

to achieve the phase classification task autonomously. This approach applies equally well to
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synthetic and experimental data (see Fig. 1.3) and paves the way to exciting possibilities such

as the discovery of new order parameters.

Figure 1.3: Example of a machine learning approach to the classification of phases: an experi-

mental image (here scanning tunneling microscopy of high-temperature superconductors) is sent

to a neural network which classifies it as belonging to one of the preset categories (here different

spatial modulations). Figure adapted from [Zhang & Kim 2017].

Neural-network quantum states (Chapter 4) An entire research field opened up follow-

ing the seminal work of [Carleo & Troyer 2017] who propose to parametrize the amplitudes of a

quantum many-body wave function with a neural network. So-called neural-network quantum

states (NQS) write |Ψ〉 =
∑

i f(i)|i〉, where the basis states |i〉 are chosen to be indexed by

quantum numbers e.g. | ↑↓ · · · ↑〉 for a system of spin-1/2 particles. The neural network f

then simply takes the vector of quantum numbers indexing |i〉 and returns the corresponding

amplitude f(i). [Carleo & Troyer 2017] showed that NQS can be used as variational approxi-

mations of quantum many-body ground states, achieving excellent performance for 1d and 2d

spin models. The complexity of the representation directly follows from the architecture of the

underlying network f , which provides great flexibility and expressive power to this ansatz as

increasing the width or depth of f is likely to improve the variational approximation.

Self-learning decoders for quantum error correction (Chapter 5) Quantum error cor-

rection deals with the protection of quantum information. Topological quantum codes have

recently emerged as promising candidates for the implementation of qubits [Kitaev 2003]. By

encoding one logical qubit in the topological properties of a larger system (that can be com-

posed of many physical spins), the effect of decoherence (individual spin flip for instance)

can be actively corrected. This task can be assisted by machine learning techniques in many

ways [Torlai & Melko 2017, Varsamopoulos et al. 2017, Sweke et al. 2018]. By formulating the

correction process as a game, it is for instance possible to use the same kind of methods that

led to the recent breakthrough in the game of Go [Silver et al. 2016].
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1.4 Organization of the manuscript

This thesis is organized in four chapters.

• Chapter 2 is an introduction to the methods of machine learning and is written to provide

the minimal knowledge needed for the understanding of the rest of the manuscript.

• Chapter 3 focuses on the application of ML to the study of phases of matter. First,

the methods allowing for an automatic detection of phase transitions are described.

Then I present the results of these approaches on the many-body localization prob-

lem [Théveniaut & Alet 2019, Théveniaut et al. 2020].

• Chapter 4 describes how neural-network quantum states can be used in variational Monte

Carlo and in projection methods. I will show how this approach can help study the

ground-state properties of a constrained two-dimensional bosonic model with competing

ring-exchanges.

• Chapter 5 presents preliminary work on the application of an evolutionary algorithm to

quantum error correction.
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Methods of machine learning

Contents

2.1 Machine learning basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Examples of machine learning problems . . . . . . . . . . . . . . . . . . . . 15

2.2 A paradigmatic example: Polynomial regression . . . . . . . . . . . . . . 16

2.2.1 Training of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Evaluation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 The bias-variance tradeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Feed-forward neural networks (FFNN) . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Convolutional neural networks (CNN) . . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Restricted Boltzmann machines (RBM) . . . . . . . . . . . . . . . . . . . . 25

2.3.4 Training of neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.5 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Dimensional reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Principal component analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Variational autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Reinforcement learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 A practical example: the game of chess . . . . . . . . . . . . . . . . . . . . 31

2.5.2 Mathematical formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Before describing the methods of machine learning, we need to define what means learning

for a machine. Answering this question inevitably leads us to build a general theory of learning,

which also concerns human learning. Indeed, if one is able to formalize the learning experience

as a set of fundamental rules and processes, then its simulation in a computer would become

possible. The foundations of reasoning have been discussed first at the time of Ancient Greece

when philosophers introduced seminal ideas in logic distinguishing different types of reasoning

like deduction (where general rules allow to draw conclusions on specific examples) or induction

(where specific examples allow to infer a general rule applicable to new examples).
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In most cases, learning is concerned with a task that an agent, a human or a machine,

wants to achieve. At the beginning, the agent does not know the appropriate actions to make

progress but if it is exposed several times to the same task, one can expect that it will slightly

adjust its actions for the next trial based on success or failures of the previous attempts: this

is the general trial-and-error approach. A more formal definition of this was given by Tom

Mitchell [Mitchell 1997]: ”A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.”

The aim of this chapter is to give a condensed introduction on machine learning (ML) with a

focus on the learning algorithms that I have been using throughout my PhD. First section deals

with presenting the core components of any machine learning algorithm. In second section, we

will solve a concrete simple example of a supervised ML task that will highlight many important

practical notions. In the third section, we will introduce an extremely popular learning model

called neural networks. Fourth section will present two dimensionality reduction techniques.

Finally, the fifth section will give a short introduction to the methods of reinforcement learning.

2.1 Machine learning basics

One can think of two categories of programs: on the one hand, hard-coded algorithms written by

human experts, on the other hand, adjustable algorithms that can change after being exposed

to examples of the task. In the latter scenario where human intervention is greatly reduced one

needs to set up an appropriate environment in which this type of algorithm can evolve in an

autonomous manner, or put differently, learn.

The goal of this section is to introduce the four essential components of any machine learning

method: a dataset, a learning model, a cost function and an optimization procedure. Afterwards,

we will give examples of day-to-day applications of these techniques.

2.1.1 Dataset

In the most general form, a dataset D is a collection of a finite number N of examples, D =

{(xi)}i=1,...,N , where each example or data point is a real vector of possibly large dimension. A

general assumption made in ML is that the dataset is obtained from sampling a data probability

distribution pdata(x), that is generally unknown. It is also commonly assumed that the data

samples are drawn independently and identically distributed from pdata. An example of dataset

is shown in Fig. 2.1.

In some cases, each data sample xi is paired up with a label or a target value yi which is

usually given by a human expert. For example, for the MNIST dataset, each image is provided

with a number from 0 to 9 that simply tells which digit is shown in the image. Another popular

dataset used for benchmarks is ImageNet which contains 14 million of images distributed over

20000 categories [Russakovsky et al. 2015]. When a label is provided with each data sample,

learning is said to be supervised in the sense that a human indicates to the algorithm which

output yi is expected to be returned from an input xi. When no label is given, learning is said

to be unsupervised. We will give examples of both cases in Sec. 2.1.5.
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Figure 2.1: Subset of images originating from the MNIST dataset [LeCun et al. 1998]. The

dataset consists of 60000 images of handwritten digits of size 28× 28. Here each data point xi
is an image encoded as a real vector of 784 dimensions filled with greyscale pixel values.

2.1.2 Model

Depending on the task, a model can be viewed as a deterministic function or a probabilistic

estimator that depend on internal parameters θ. For instance, we will consider models in Sec. 2.2

that are polynomials parametrized by their coefficients. In Sec. 2.3, we will introduce another

family of functions called neural networks. An important notion associated to a model is its

representational capacity which can be roughly estimated as the number of parameters of the

model (e.g. the degree of the polynomial). Most considered models have good representational

properties such as being able to approximate arbitrarily well continuous functions, which comes

in the form of universal approximation theorems.

At first sight, supervised learning tasks may seem very similar to interpolation. Indeed, given

a training dataset Dtraining = {(xi, yi)}i=1,...,N , the learning algorithm is asked to find a model fθ

that approximates well the mapping xi
fdata−−−→ yi (i.e. fdata(xi) = yi), that is such that fθ ≈ fdata

in a sense that we will clarify later. The difference with interpolation techniques comes from

the fact that every ML model is expected to perform well not only on the training dataset but

also on new samples: it should be able to generalize well. Alternatively, machine learning

algorithms can be considered as probabilistic predictors. Put in the probabilistic language, a

model pθ is asked to approximate well the data distribution, either the full distribution pdata(x)

in unsupervised learning, or the conditional probability distribution pdata(y|x) in supervised

learning.

One can now ask the following question: is there a best model? A firm negative answer was

given in 1997 by Wolpert and Macready [Wolpert & Macready 1997] that proved the famous

no free lunch theorem. This theorem states that, averaged over all possible data-generating

distributions, every classification algorithm has the same accuracy when classifying unobserved

data. In other words, no machine learning algorithm is universally better than any other, and

in particular random guessing. Fortunately, these results hold only when we average over all

possible data-generating distributions, therefore it does not forbid the existence of algorithms

that perform better than others for specific data distributions. As we will see in Sec. 2.3,

ML researchers have exploited the characteristics of real-world data to design efficient learning

models.
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2.1.3 Cost function

Let us now clarify in which sense we consider that a model is close to the true underlying data-

generating model (i.e. fθ ≈ fdata). For supervised learning, a cost function is designed to

measure the distance between the model predictions fθ(xi) and the target yi, training will then

consist in minimizing it with respect to the model parameters θ. For continuous labels, one

usually uses the mean-squared error (MSE):

MSE(fθ) =
1

N

N∑

i=1

||yi − fθ(xi)||2 (2.1)

For categorical labels (i.e. taking values in {0, 1}), the most commonly used loss function is the

cross-entropy, defined as follows:

H(fθ) =

N∑

i=1

yi log(fθ(xi)) (2.2)

The cost functions in Eqs. (2.1) and (2.2) define different performance metrics and the best

model given these metrics has parameters θopt = argmin
θ

L(θ), with L being the chosen cost

function.

As evoked earlier, the final goal of a learning algorithm is to generalize well on unseen data,

therefore the evaluation of a model should not only rely on its training performance, one should

also quantify its generalization power. To do so, the dataset is first partitioned between a

training set that the model has access to during training time and a test set not seen during

training which allows to evaluate the predictions of the model on new unobserved samples. The

generalization performance can then be assessed by computing the MSE on the test set for

continuous labels, or the accuracy on the test set (the proportion of correct predictions) for

categorical labels. Generalization performance will be discussed in more details in Sec. 2.2.2.

2.1.4 Optimization

It is possible for certain cost functions to obtain the optimal parameters θ analytically i.e. in

closed form. This usually happens for linear methods, however when non-linearity arises, it is

most often necessary to set up an iterative numerical optimization to minimize the cost function.

One of the simplest techniques is the algorithm of gradient descent. This technique is based on

the observation that in the neighborhood of a point θ, a function f(θ) decreases fastest if one

goes from θ in the direction of the negative gradient of f . This leads to the following iterative

algorithm:

θn+1 = θn − γ~∇f(θn) (2.3)

For γ > 0 small enough, we have f(θn) ≥ f(θn+1). γ is a free parameter of the learning algorithm

called the learning rate in the field of ML, it is one of the most important hyperparameters.

The gradient descent method generates a sequence of points in parameter space that will always

converge to a local minimum. For convex functions, all local minima are also global minima,

unfortunately in ML, we are faced with hard non-convex optimization problems where gradient

descent will most likely get stuck in local minima. We will discuss later the implication of this

in the context of neural networks (see Sec. 2.3). As shown in Fig. 2.2, there is a tradeoff to find
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between slow convergence at small γ and oscillations and divergence at large γ where essentially

the next proposed iteration always overshoot the local minimum. As we will see in Sec. 2.2.2.3

or Sec. 2.3.4, hyperparameter selection is a crucial step in the training phase.

−3 −2 −1 0 1 2 3 4 5

a1

0

2

4

6

8

10

M
S

E

GD, γ = 0.01

GD, γ = 0.75

GD, γ = 1.75

Figure 2.2: MSE as a function of a1 for the training set shown in Fig. 2.3 with a linear model

f(x; a1) = a1x. The gradient descent is employed to find the minimum of the MSE with respect

to a1, the first 10 iterations are shown with an initial point at a1 = −2 and three different

learning rates γ.

2.1.5 Examples of machine learning problems

To get a sense of the type of problems machine learning is able to tackle, let us present some

examples. The most common form of machine learning is supervised learning, here are some

typical tasks:

• Classification: For object recognition or image classification, a machine learning algo-

rithm is asked to detect the presence of objects in an image or assign a category to an

image. There, the dataset is composed of pairs of images and labels. For example, to

classify images of cats and dogs, the xi are large vectors containing the pixel values (for

example with RGB encoding) of the images and the yi is 0 if xi contains a cat or 1

if xi contains a dog. In the case of object classification with multiple categories of ob-

jects, the targets yi are usually encoded as one-hot vectors1. In this type of task, the

learning algorithm should produce a function f taking value in Rd (where d is the dimen-

sion of a flattened image) and returns a value in {1, . . . , k}. The most famous example

of this task is the image classification challenge based on the dataset ”ImageNet” that

stimulated research over the past decade and led to many important contributions to the

field [Krizhevsky et al. 2017b, He et al. 2016].

• Regression: When the target/category yi takes a continuum of values rather than a

discrete one, the task lies in the category of regression problems. In Sec. 2.2, we will

consider such a regression task in a simple scenario.

1If there are k categories and image xi belongs to the kth category, then the components of yi are zero except

its kth component which is 1.
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• Image super-resolution: An example of a less common task is image super-

resolution whose task is to produce a higher resolution version of an image that is low-

quality [Dong et al. 2014]. In this case, the output space is actually larger than the input

space since there are more pixels in the output image.

Overshadowed by the success of supervised learning, unsupervised learning has been applied in

many different contexts.

• Clustering: These tasks involve finding structures in the data like partitioning the dataset

into groups of elements that share the same properties (see for instance the k-means

algorithm [MacQueen 1967]).

• Dimensionality reduction: As we will see in Sec. 2.4, there exist methods like principal

component analysis [Pearson 1901] (PCA) or autoencoders [Hinton & Salakhutdinov 2006]

that aim at searching for a lower dimensional representational space that efficiently keeps

the essential features of the data. These techniques are useful for noise reduction, data

visualization or as an intermediate step that can facilitate other analyses.

• Generative modelling: In this type of task, the machine learning algorithm is asked to

generate new examples that are similar to those in the training data. It is usually done

with techniques similar in spirit with dimensionality reduction, where a simplified model

distribution is found to approximate the true data-generating distribution. One striking

application has been the generation of new art pieces after a generative adversarial net-

work [Goodfellow et al. 2014] has been trained to approximate the probability distribution

of portraits painted from the 14th to the 20th century [Christie’s 2018].

2.2 A paradigmatic example: Polynomial regression

The following section aims at showing a simple application of machine learning, from training

to evaluation. To keep the discussion simple, we will deal with an ad hoc supervised task, a

polynomial regression applied to two-dimensional data. The discussion below is inspired by

the one given in [Mehta et al. 2019], although we changed the dataset. Despite being trivial

compared to most ML problems, this example allows to highlight many of the important concepts

underlying ML methods.

2.2.1 Training of the model

Let us consider a dataset made of N pairs of real numbers, i.e. D = {(xi, yi)}i=1,...,N , which are

represented as points in a plane as shown in Fig. 2.3. The task is to find a function f that can

accurately find the mapping xi → yi. For demonstration purposes, the coordinates yi have been

generated from the equation yi = cos(xi) + εi where εi is an independent Gaussian noise.

Polynomial regression deals with learning models that are polynomials of arbitrary degree,

which can write:

f(x; a0, . . . , ad) = a0 + a1x+ a2x
2 + · · ·+ adx

d (2.4)

where θ = (a0, . . . , ad) are real coefficients and constitute the parameters of the model to be

learned. The capacity of f is determined by the degree d of the polynomial which is related to
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x
y

y=cos(x)

Dataset

Figure 2.3: Dataset of points whose coordinates (xi, yi) are generated from the equation yi =

cos(xi) + εi where εi is an independent Gaussian noise with zero mean and standard deviation

σε = 0.1.

the number of free parameters of the model. Increasing the degree of the polynomial in principle

allows to represent more complex functions. An important property of polynomials is that they

can approximate any continuous function defined on a closed interval.

Training of the parameters of the model is carried out by minimizing the mean-squared error

(MSE) between the prediction of the model f(xi) and the true value yi as shown in Eq. 2.5.

Contrary to most ML tasks, the chosen model and cost function allow to fit the polynomial in

closed form.

MSEtrain(f ; a0 . . . aN ) =
1

N

N∑

i=1

|f(xi; a0 . . . aN )− yi|2 (2.5)

Training results. Fig. 2.4 illustrates three situations that can occur as the complexity of

the model f (d here) is varied. In all cases, a fixed-degree polynomial has been optimized to

minimize the MSE on the same training set.

x

y

d = 1

x

d = 3

x

d = 10

Training set

Test set

Model fit

Figure 2.4: Three models of capacities increasing from left to right fitted on the same training

set.

In the leftmost plot, the model is affine, it is clear that it is too simple to capture the curvature

in the point locations, therefore we say it underfits. In the rightmost plot, a polynomial of

degree 10 is used to fit the training data, it is capable of exactly passing through all the training

points but it does not provide good predictions for new samples as the ones in the test set
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indicated by crosses. In this case, the number of free parameters of the model actually exceeds

the number of training points, as a consequence there is little chance of choosing a solution

that generalizes well, there is overfitting. The appropriate capacity is found in the middle

plot where the model fits well the training data and captures the right trend, leading to good

generalization ability. A more detailed analysis of the generalization performance is given in the

next sections.

2.2.2 Evaluation of the model

The generalization power of model f can be assessed by evaluating the MSE on the test set.

We show next the effect of the model capacity, the size of the training dataset as well as of

regularization on generalization.

2.2.2.1 Effect of model capacity

Fig. 2.5 summarizes the different error regimes depending on the capacity of the model. The

training error is a monotonous decreasing function of the capacity, which is naturally expected

since higher degree polynomials can fit more easily data. At sufficiently large capacity, the

training error is even lower than the inherent noise of the data (the so-called Bayes error) which

essentially means that the model has memorized the entire training dataset. The generalization

error is always greater than the training error since the model is more likely to fail on examples

it has not seen during training. The most notable feature of the figure is that the test error

follows a U -shape because at low and high capacity the model underfits or overfits leading in

both cases to bad generalization.
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Figure 2.5: MSE with respect to training (blue) and test (orange) sets for different polynomial

models plotted against model capacity for the dataset presented above. Underfitting and over-

fitting regimes arise whenever the capacity is respectively lower or greater than the complexity

of the dataset. The Bayes error corresponds to the inherent noise of the dataset σ2
ε as defined

in Fig. 2.3.
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2.2.2.2 Effect of dataset size

Fig. 2.6 shows the effect of the size of the dataset on the generalization performance. Here, we

pick three models of varying capacity and evaluate their training and generalization performances

against augmenting the size of the training dataset.
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Figure 2.6: MSE on the training set (solid lines) and test set (dashed) plotted against the

number of training samples for three polynomials of varying capacity. We ran independent

trainings at each fixed dataset size, this means that every model will be trained and evaluated

on 100 different datasets resampled from the underlying data distribution. Also, the test set

size is set proportional to the training set size (being half as big). The error bars come from

averaging over these 100 independent runs.

For all models, the generalization error always decreases when the training dataset is larger.

This is what we naturally expect from learning since the more diverse samples the algorithm has

experienced the easier it will be able to relate new samples to the ones it has seen. Although

less visible in the figure, the training error slightly increases as there are more training samples.

This can be explained by the difficulty for a fixed-capacity model to completely account for

the complexity of a big and diverse set of data points. The low-capacity model (a 5th-degree

polynomial) was shown to be in the underfitting regime in previous section. Fig. 2.6 confirms this

since its error is the highest in the large dataset limit. This systematic error is the manifestation

of its limited representational capacity that prevents it from fully capturing relevant features

of the dataset, we say it is biased. It is notable that for small training dataset simple models

perform better on average than large-capacity models. The large-capacity model (a 20th-degree

polynomial), which was overfitting in the previous section, still displays poor generalization

performance for small datasets but gets better as the number of training samples increases,

reaching the same error rates as the d = 10 polynomial model. One can notice the important

fluctuations (error bars) from one run to another in this case. This can be explained by the large

capacity of this model that allows it to fit perfectly the small training datasets. We say this

model has a high variance. Finally, the model of appropriate capacity (10th-degree polynomial)

achieves the lowest training and test errors even for moderately big datasets.
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2.2.2.3 Effect of regularization

As shown in Sec. 2.2.2.1, we can tune the representational capacity of polynomials by changing

their degree and achieve the lowest training and test errors with moderate capacity. It is one

central concern of machine learning to devise techniques that allow to improve the generalization

ability without degrading the performance on the training set. Every technique that aims at

achieving this is called regularization. This section is devoted to weight decay which is one of

the simplest regularization techniques among many that we will discuss in Sec. 2.3.5. Weight

decay consists in adding a term in the cost function that penalizes large parameter norms. This

is implemented as follows:

L(θ) = MSE(fθ) + α||θ||22 (2.6)

During the minimization of the cost function L(θ), the optimization procedure should make a

trade-off between minimizing the MSE on the training set and minimizing the L2 norm of the

coefficients of the polynomial. Fig. 2.7 shows that this technique allows to control the effective

capacity of a model. In the leftmost curve, for large α, the constraint on the parameters of the

model is too strong and leads to underfitting: the model is unable to capture the variations of the

data. With no regularization, we recover the overfitting model that has too many parameters.

For moderate regularization strength (middle plot), the large capacity of the model is balanced

by the constraint on the weights and captures better the data structure.
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x

α = 0
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Model fit

Figure 2.7: Results of training on the same training dataset with varying weight decay α. The

model without regularization is a polynomial of degree 10 as the one in Fig. 2.4.

2.2.3 The bias-variance tradeoff

It is instructive to interpret the previous results in light of the concepts of bias and variance,

two notions that sit at the heart of machine learning.

Bias refers to the ability of a model to describe a particular target function h. A model is a

family of functions spanned by parameters θ, i.e. it can be written as Mf = {x 7→ f(x;θ);θ ∈
Rd}. Fig. 2.8 shows the target function h as a red point and two models of different complexities:

a complex model that spans a large area in the functional space (shaded green area) and a

simple model (shaded grey area). If h ∈Mf , the model has no bias with respect to the solution,

it can describe perfectly the target function. This is the case for the complex model which

includes the target h, conversely, the simple model has a bias. Regarding the dataset studied
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Figure 2.8: Schematic illustration of the bias-variance tradeoff. Figure from [Mehta et al. 2019].

previously, the polynomial models are biased since the function to be approximated is cos and

cos(x) =
∑+∞

n=0(−1)n x2n

(2n)! which is a polynomial of infinite order.

The variance of a model refers to its sensitivity to fluctuations of the dataset. Indeed, a

dataset can be seen as being generated from random sampling of a finite number samples from

the data probability distribution. If the model is very sensitive to the specific samples it sees

during training, it is said to have large variance. In fig. 2.8, the crosses indicate the different

realizations of the two models after training on different datasets of the same size (drawn from

the same distribution). As shown in the figure, the complex model (green) has high variance

compared to the simple model (grey).

We refer to the very good discussion given in [Mehta et al. 2019] that poses in quantitative

terms these concepts and derive the following relation on the generalization error:

Egeneralization = Bias2 + Variance + Noise (2.7)

where the bias and variance terms are defined rigorously in [Mehta et al. 2019], the noise term

is related to the inherent random nature of the dataset (ε in our previous test case).

We finish this section by giving guidelines to set up a ML task. It can be summarized as

follows:

1. Collect and pre-process the data

2. Define the model and its architecture

3. Choose the cost function and optimizer

4. Train the model

5. Evaluate and study the model performance on the test data

6. Use the validation data to adjust the hyperparameters to optimize performance for the

specific dataset

2.3 Neural networks

The first example of a neural network was introduced in the 1940s in the form of percep-

trons [Rosenblatt 1957]. It was first thought as a computational model of the brain with the hope

21



Chapter 2. Methods of machine learning

that the dynamics of learning in these models would shed some light on how decision-making

is achieved in the brain. Nowadays the first motivation was completely overshadowed by the

amazing efficiency of these models at discriminative or generative tasks on data like image, sound

or video. Moreover, the number of nodes in current artificial neural networks barely reaches the

number of neurons of a frog which is roughly 6 orders of magnitude smaller than for the human

brain [Goodfellow et al. 2016]. In previous section, polynomial regression was performed with

models that depend linearly on their parameters (the function (a0, . . . , aN ) 7→ fa0,...,aN being

linear). Neural networks can be seen as a natural non-linear generalization of linear models

which are known to fail as soon as the data become more intricate.

The following sections will introduce a few of the most important neural network architec-

tures currently used. We will introduce feed-forward neural networks (FFNNs) used for general

purpose supervised learning, then convolutional neural networks (CNNs) that were designed

specifically for image processing and finally restricted Boltzmann machines (RBMs) that are

most often used in the context of generative modelling. At the end, we will discuss the speci-

ficities of training and regularization when learning models are neural networks.

As a disclaimer, we will not discuss support vector machines [Cortes & Vapnik 1995] or

kernel methods [Guyon et al. 1993] in general, nor the very popular recurrent neural net-

works [Rumelhart et al. 1986] (RNNs) used for temporal or sequential data.

2.3.1 Feed-forward neural networks (FFNN)

Neural networks are composed of units or neurons with properties loosely resembling real

neurons. In a nutshell, artificial neurons are simple functions that can take multiple input

values and returns an output after some nonlinear operations. The perceptron neuron is defined

as follows:

Neuron(x) = H(WTx + b) (2.8)

where H is the Heaviside function defined as H(x) = 1 if x > 0 and H(x) = 0 otherwise, W

and b are respectively a vector of weights and a scalar bias, and x a real vector of input values.

Thus, neurons are small nonlinear functions that are the result of an affine transformation of

the input followed by a nonlinear operation, carried out by a so-called activation function

(here the Heaviside function H) as can be seen in Fig. 2.9(a). The most common functions

are depicted in Fig. 2.9(b), in particular the rectified linear units (ReLU(x) = max(0, x)) is

currently the most popular one for deep architectures since it was showed that it allowed for

faster training [Glorot et al. 2011].

Neural networks as their name suggests are built by connecting neurons with each other.

Neurons are usually arranged in successive layers (see Fig. 2.9(c)). A layer is an array of

neurons which processes simultaneously the incoming vector of values. Eq. 2.8 can be slightly

changed to take the form:

Layer(x) = H(WTx + b) (2.9)

where in this case H is the Heaviside function applied element-wise on the incoming vector, W

and b are respectively a weight matrix of size No × Ni and a bias vector of size No (Ni is the

size of the input vector and No the number of neurons in this layer). As shown in Fig. 2.9(c), a

layer of neurons located between the input and output layers is called hidden. In this figure,

the network is fully-connected because each neuron from one layer is connected to all neurons
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Figure 2.9: (a) Decomposition of a neuron, linear and nonlinear parts are exposed, from

[Mehta et al. 2019]. (b) Most commonly used activation functions in deep learning applications.

(c) Basic architecture of a feed-forward neural network, from [Mehta et al. 2019].

in the next layer. Finally, such neural-networks are called feed-forward because there are no

recurrent connections in the network, the flow of computations in the neural network only goes

forward, towards the output layer.

Deep learning. A neural network architecture that is obtained by stacking multiple layers of

neurons on top of each other is called deep. The huge interest raised by deep neural networks

stems from the fact that they are particularly suited to represent hierarchical concepts in which

higher-level features are obtained by composing lower-level ones. This explains the success of

these models when applied to datasets made of hierarchical data like texts, sounds or images.

For example, detecting a cat in an image means that an algorithm has to somehow learn the

concept of a cat, which is itself obtained as a composition of other concepts like the concept of

a tail or triangular ears, which are again themselves composition of low-level concepts of shapes

and textures. Fig. 2.10 shows how the concept of a person can be represented in a deep neural

network: each layer transforms the input image by extracting low-level features, combining them

in the next layer to detect increasingly abstract or bigger scale concepts, eventually being able

to assign a label to the image.

The compositional nature of deep architectures allows to represent data in an exponentially

compact form. One layer of n binary neurons (each neuron detecting a distinct feature in the

data) can represent 2n different concepts, and since the representations of two successive layers

compose with one another, a neural network with L layers can in theory encode (2n)L possible

concepts. The exponential advantage is two-fold coming from the fact that representations are

distributed among the neurons inside each layer and across layers. This also enables generaliza-

tion to new combinations of the learned features beyond those seen during training. Another

important point is the existence of a universal theorem stating that, given enough neurons, any

continuous function can be arbitrarily approximated by a neural network [Cybenko 1989]. How-

ever, one of the main difficulties of the field is that in general, choosing the right architecture

(number of nodes per layer, number of layer, which activation function,..) mostly resorts as of

today on the empirical intuition developed by the ML practitioners and largely depends on the

task and data at stake.
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Figure 2.10: Schematic illustration of how deep neural networks build up by combining concepts

of increasing complexity. The first layers will be able to detect low-level features such as color

gradients or small motifs, while the next levels will combine these features making possible to

detect higher scale components such as shapes, then entire objects until outputting the most

abstract representation of the image being its label. Image from [Goodfellow et al. 2016].

2.3.2 Convolutional neural networks (CNN)

We have seen previously that the structure of neural networks are particularly suited to data

that is structured in a hierarchical manner. Real-life images have the property to be translation

and scale invariant (a translated or bigger dog on a image is still a dog) and respect locality

(short-range pixel-pixel correlations [Ruderman 1994]) which are not properties implemented

in the structure of fully-connected neural networks. Convolutional neural networks (CNNs)

have been thought to fix this and has recently emerged as one of the most efficient architecture

in image-based tasks [LeCun et al. 1989, LeCun et al. 2010, Krizhevsky et al. 2017b]. Fig. 2.11

shows the typical architecture of a CNN:

Figure 2.11: Architecture of a Convolutional Neural Network. Image from [Mehta et al. 2019].

Convolutions. The input image is represented as three matrices corresponding to the three

red, green, blue (RGB) channels. This is first treated by convolutional filters (D of them in the

24



2.3. Neural networks

figure) that act as follows:

(X ?K)i,j,k =
∑

m

∑

n

Xi+m,j+n,kKm,n,k (2.10)

where the input X is a tensor of rank 3 (the third dimension corresponds to the RGB channel)

and K the convolutional filter which takes the form of a 3-rank tensor of arbitrary dimension.

The convolution operation produces a 3-dimensional tensor of dimensions that depend on filter

shape and additional options (for instance periodic boundary conditions on the image). In

practice, many filters are applied simultaneously to the input image, thereby producing a stack

of filtered images as depicted in Fig. 2.11.

The presence of these convolution filters has many consequences: (i) their action is very

localized, which is relevant for input data (images) that have short-distance correlations, (ii)

convolution is equivariant2 with image translations, which is relevant for object detection since

the CNN should not be sensitive to the location of the object within the image, (iii) a more

practical advantage is the reduced number of parameters (which scales as the size of the filters

and the number of them) compared to a fully-connected neural network of the same input and

output dimensions (whose number of parameters scales as the size of the input multiplied by the

size of the output). The latter property – sparse connectivity – has enabled CNNs to significantly

increase network width and depth without requiring a corresponding increase in training data

since the number of free parameters could stay small.

Pooling and final layers. The pooling filters act by reducing the resolution of the image

with a coarse-graining operation. For condensed matter physicists, in essence it is very close

to a block-decimation operation as seen in renormalization techniques. The aim of pooling

operations is to downscale the images to detect features at larger scales, indeed the detection of

a specific object should not depend on its size relative to the image size. Thus pooling allows

to implement this scale invariance property present in real-world image datasets. Finally, the

CNN finishes with a fully-connected part that ensures that the output is of fixed size (since

convolution and pooling operations produce output tensors whose dimensions are a function of

the input dimension).

The CNNs brought about astonishing improvements in tasks like object recognition, as it be-

came state-of-the-art from 2012 on after winning the ImageNet contest [Krizhevsky et al. 2017b].

After that, it was quickly adopted beyond its original use, proving to be very efficient at many

other tasks like natural language processing [Yin et al. 2017] or in condensed matter physics

applications [Carrasquilla & Melko 2017, Choo et al. 2019] as we shall see in the next chapters.

2.3.3 Restricted Boltzmann machines (RBM)

Contrary to FFNNs or CNNs, Boltzmann machines are most often used in the context of gen-

erative modelling when the task is to approximate a multivariate probability distribution. We

will focus here on restricted Boltzmann machines which will be the topic of chapter 4. A RBM

is an undirected graph containing a layer of visible units v and a layer of hidden units h that

are connected as shown in Fig. 2.12.

2The convolution operation commutes with any pixel translation.
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Figure 2.12: Architecture of a restricted Boltzmann machine with a visible layer of 3 units and

a hidden layer with 4 units. Note that there are no connections between hidden units nor visible

units, hence the name restricted.

It is a so-called energy-based model which encodes the following joint probability distribution:

P (v,h) =
1

Z
exp(−E(v,h)) (2.11)

E(v,h) = −aTv− bTh− vTWh (2.12)

Z =
∑

v

∑

h

exp(−E(v,h)) (2.13)

where a, b, W are the free parameters of the RBM.

The normalizing constant Z can in fact be interpreted as the partition function of an Ising-

type model with two species of spins interacting with each other via W and coupled to magnetic

fields a and b. As is commonly the case in statistical physics, Z is not tractable, hence P (v)

is intractable when v and h are binary vectors. However, one advantage of RBMs is that the

conditional probabilities P (h|v) and P (v|h) can be computed exactly. For the interested reader,

we refer to [Goodfellow et al. 2016] for more details about the training and sampling of RBMs.

2.3.4 Training of neural networks

Many of the progress in the training of neural networks consisted in circumventing limitations

arising from the use of gradient descent techniques, the paragraphs below discuss these different

issues. Eq. 2.14 shows a schematic cost function L on a dataset D and a neural network f(·;θ):

L(θ) =
∑

(x,y)∈D
dist (y, f(x;θ)) (2.14)

Stochastic gradient descent. As mentioned in Sec. 2.1.4, minimizing L(θ) can be done with

gradient descent. In ML, a stochastic version of this algorithm called stochastic gradient descent

(SGD) was designed to speed up learning. Indeed, the cost function in Eq. 2.14 contains a sum

that runs over the entire dataset, as a consequence it becomes prohibitive to evaluate it (or its

derivatives) at every training step whenever D is too big. To solve this, the idea is to sample

the cost function, i.e, at every training step a random minibatch of training samples is picked

from the dataset and the total loss function is stochastically estimated on these subsets of data

points.
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Also mentioned in Sec. 2.1.4 is the paramount importance of the learning rate. Algorithms

with adaptive learning rates have been developed and proved to provide significant speedups in

deep learning [Duchi et al. 2011, Kingma & Ba 2015, Zeiler 2012].

Second-order methods, for instance involving the computation of the Hessian matrix, are typ-

ically to be avoided in ML since functions have a very large number of parameters to optimize

(and the size of these matrices are as big). In particular, this hinders the use of natural gradi-

ent [Amari 1998], which exploits the geometry of the loss landscape. We will discuss in more

details the latter algorithm in chapter 4 since it was also proved to be efficient and applicable

in the case of variational Monte Carlo studies [Sorella 1998].

Back-propagation. Gradient descent involves the computation of the derivative of the cost

function with respect to all the parameters of the neural networks. To do so, the simplest

Euler finite-difference scheme would result in evaluating Nθ + 1 times different neural networks

(where Nθ is the total number of parameters in the NN) at each training step of the gradient

descent. The discovery of the back-propagation algorithm [Rumelhart et al. 1986] was a major

breakthrough in the field as it allows exact and fast gradient calculations by exploiting the

architecture of neural networks.

This algorithm consists in a set of recurrent equations that link the vector of activation

values zl of each layer l and the so-called errors δl to the derivatives of the cost function with

respect to any of the parameters of the neural network. We denote al the activation vector of

layer l, zl being the vector of activation before application of the nonlinear activation function

σ, written as follows:

zl = Wlal−1 + bl (2.15)

al = σ(zl) (2.16)

with a0 = x is the input vector. The values of zl can be obtained from the equations above,

which constitutes a forward pass in the neural network. For the interested reader, a detailed

derivation of the back-propagation equations is provided in [Nielsen 2015]. The vector of errors

δl are defined as follows:

δl = ((Wl+1)Tδl+1)� σ′(zl) (2.17)

with δL = ∇aL � σ′(zL) (where L is the cost function). Contrary to zl, the errors δl can be

computed only backwards, going from the output layer to the input layer, which explains the

term ”back-propagation”. After only two passing – forward and backward – through the neural

network, one can obtain the gradient of the cost using the following relations:

∂L
∂blj

= δlj (2.18)

∂L
∂wljk

= al−1
k δlj (2.19)

Preconditioning. As gradient descent is an iterative local algorithm, it is very sensitive to

the value of the initial parameters of the optimization. Starting from different initial values of

the weights and biases of a neural network, one may get stuck in different local minima (thereby

generating variance in the model predictions). Most modern initialization strategies are based on

27



Chapter 2. Methods of machine learning

heuristics and consist for example in sampling a Gaussian distribution with a standard deviation

that depends on the neural network architecture [Goodfellow et al. 2016].

Learning can become difficult when the loss landscape has a mixture of steep and flat direc-

tions since gradient descent treat all directions in parameter space uniformly. One simple trick to

avoid this issue is to standardize the data by subtracting the mean and normalizing the variance

of input variables (see also Sec. 2.4.1 to decorrelate the input data). By doing this, we ensure

that the landscape looks homogeneous in all directions in parameter space [Mehta et al. 2019].

This idea was recently generalized in [Ioffe & Szegedy 2015] where normalization is performed on

the activations of each layer, which allows for great acceleration of training in deep architectures.

Nature of local minima. Gradient-descent will always find local minima of the cost function,

moreover since neural networks are non-convex functions, it is possible that gradient descent

eventually gets stuck in local minima with poor generalization performance. Although long

considered as a serious hurdle for the success of deep neural networks, practice and theory

eventually led to the observation that shallow architectures are more prompt to be trapped

in bad local minima compared to deep architectures [Choromanska et al. 2015]. This can be

explained by the fact that even though the loss surface is extremely rugged and presents many

local minima, many of them have good generalization properties. Interestingly, this type of

behaviour raised interest from the physics community since it bears similarities with spin-glass

models [Geiger et al. 2020, Spigler et al. 2019].

2.3.5 Regularization

In this section, we focus on explicit regularization strategies for deep neural networks. Many

training settings mentioned previously can influence the type of solution we end up with, for

example it was shown that for linear models, SGD always converges to a solution with a small

norm [Zhang et al. 2017], which is an example of implicit regularization.

Parameter norm penalties. As introduced in Sec. 2.2.2.3, applying a penalty in the cost

function on the norm of the model parameters is known as weight decay. It is possible to adapt it

to neural networks by adding the L2 norm of the weight matrices (defined as ||W ||2 =
√∑

i |wi|2)

to the cost function. Usually the penalty does not apply to the biases because they typically

require less data than the weights to converge [Goodfellow et al. 2016]. Alternatively, one can

choose the L1 norm (||W ||1 =
∑

i |wi|) which in practice has the effect of setting a subset of the

weights to zero for high enough penalty parameter [Goodfellow et al. 2016]. This results in a

solution that is more sparse, which can be used as a feature selection mechanism.

Early stopping. When training large models with sufficient representational capacity to over-

fit, it is often observed that training error decreases steadily over time, but the test error begins

to rise again. This means we can obtain a model with better generalization performance by stop-

ping at the point in time where the minimum test error has been reached. This strategy is known

as early stopping. Its effect is in fact very similar to L2 regularization [Goodfellow et al. 2016].

Dropout. Dropout [Srivastava et al. 2014] is a very popular technique consisting in randomly

”switching off” neurons (see Fig. 2.13) at each training step with some probability p, the gra-
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dient descent is then performed only on the thinned network. This has the effect of preventing

co-adaptations of neurons which results in less overfitting. This is very close in spirit to en-

semble methods where several models are aggregated to eventually reduce the variance of the

predictions, here the different models are obtained with this switching off/on procedure.

Figure 2.13: Dropout consists in switching off neurons during the training procedure. Figure

from [Mehta et al. 2019].

Dataset augmentation. As we saw in Sec. 2.2.2.2, more training data allows to improve

generalization performance. One popular idea widely used in the field of image recognition is

to generate new fake data by slightly modifying the available data. Indeed, transformations

like rotation, translation, dilatation, addition of noise of small magnitude are applicable since

variations of viewing angle, variations of colors due to shadows or exposition are generally

irrelevant for the final classification task.

2.3.6 Software

Many machine learning libraries, in particular Python packages, have been intensively developed

over the recent years. The principal ones include Tensorflow [Abadi et al. 2015] along with its

API Keras [Chollet et al. 2015] and the concurrent Torch [Paszke et al. 2019]. They provide an

optimized set of tools ranging from creation of neural networks, automatic differentiation to

GPU parallelism. The existence of these libraries (and others) have clearly helped broadened

the impact, accessibility and thus success of ML techniques.

2.4 Dimensional reduction

2.4.1 Principal component analysis

Principal component analysis (PCA) is a linear method used for dimensional reduction, as well

as data visualization or analysis. The aim of PCA is to find a new coordinate system where each

axis corresponds to a direction of high-variance of the data. The idea is that in many cases, the

relevant information in a signal is contained in the directions with largest variance, as depicted

for example in Fig. 2.14.

The directions of highest variance can be obtained as the eigenvectors of the covariance

matrix of the data. To do so, we first perform singular value decomposition (SVD) on the data

matrix X (where vector of data points x are stacked to form the matrix), yielding X = USVT ,

where S is a diagonal matrix of singular values si, the orthogonal matrix U (resp. V) contains

as its columns the left (resp. right) singular vectors of X, this eventually allows to diagonalize

the covariance matrix:

Σ(X) :=
1

N − 1
XTX = VΛVT (2.20)
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Figure 2.14: Example of a cloud of points where PCA enables to find the largest variance

direction (signal) as compared to orthogonal lower variance direction (noise). Figure from

[Mehta et al. 2019].

where Λ is a diagonal matrix with eigenvalues λi sorted in decreasing order. Therefore, to reduce

the dimensionality of the input data, we can project the data on the singular components with

the largest singular values corresponding to the highest data variance directions. The same idea

is central to tensor network techniques used to compress the number of components in quantum

wavefunctions in studies of low-dimensional many-body lattice systems.

2.4.2 Variational autoencoders

We briefly introduce in this section a nonlinear dimensional reduction technique based on au-

toencoders [Kramer 1991]. An autoencoder is a neural network that learns to copy its input to

its output. As shown in Fig. 2.15, its structure is made of (i) an encoding section (left part of

the figure) where the input data is mapped to a code, which can be a hidden layer containing

generally fewer neurons than the input dimension, (ii) followed by a decoding section where the

code is decoded so that it reconstructs the original input. As visible, the code part acts as a

bottleneck in the network and the representation of the data is forced to be expressed in a latent

space of lower dimension. This is why autoencoders can serve for dimensionality reduction tasks,

they have also been used for generative modelling.

Figure 2.15: Basic architecture of an autoencoder. Figure from [Wikipedia contributors 2020].
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2.5 Reinforcement learning

We introduce in this section a machine learning paradigm that has been harvesting a lot of

success lately, which is called reinforcement learning (RL). We provide in the following a

quite general introduction to the main concepts of this field. More details will be given in

chapter 5 on the specific kind of RL used in my work.

Figure 2.16: In reinforcement learning, an agent and an environment interact with each other.

Figure from [Sweke et al. 2018].

RL is probably the most natural way to simulate what learning is. As shown in Fig. 2.16, an

artificial agent (an algorithm) and an environment interact with each other: the agent can

perform actions that can modify the current state of the environment, in response the latter

sends back positive or negative rewards, the goal of the agent is then to maximize this reward.

The whole difficulty of this game is that some actions will produce an immediate positive high

reward from the environment but at the same time they will only result in low reward for the next

interactions (for example, the capture of a piece in chess can be poisoned, leading later to higher

material loss or checkmate). Consequently, the policy of the agent should take into account the

long-term consequences of each action. In particular, in any reinforcement learning application,

a trade-off between exploration and exploitation needs to be made. On the one hand, the agent

has to exploit the strategies that proved successful in the past, on the other hand it has also to

explore uncharted territories to discover new policies that could be more efficient. The dilemma

lies in the fact that pursuing only one of the two strategies will inevitably lead to failing at the

task.

Reinforcement learning cannot be confused with supervised or unsupervised learning. In

supervised learning, an algorithm is provided with examples of solutions of the task, the correct

actions are known and easy to obtain from a human expert which is often not the case in RL.

Although RL may seem unsupervised, it is also different from unsupervised learning because the

reward system implicitly works as a cost function, guiding the learning process towards better

performing agents.

2.5.1 A practical example: the game of chess

Reinforcement learning is particularly suited to tasks like game-playing. An important

benchmark in this field consists in playing a set of 57 games originally developed for Atari

2600 [Bellemare et al. 2015]. A long-standing problem in the RL community was to devise an

algorithm that would be able to beat chess and Go human players. This was finally achieved

recently in a succession of works [Silver et al. 2016, Silver et al. 2017, Silver et al. 2018] in which
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the breakthrough came from a combination of reinforcement learning and deep neural networks.

Figure 2.17: In the game of chess, two players play against each other on an 8× 8 square grid.

They play one after the other by moving one of his/her 16 pieces to an empty square (black or

white) or capture an enemy piece. The winner is the player that was able to capture the enemy

king.

The following paragraphs give details on how RL can be used for the game of chess, namely

what is the environment, the agent, actions, etc..

• The agent is one of the two players, i.e. it can act on either the white or the black

pieces. The possible actions include moving its own pieces to empty squares of the board,

capturing an opponent’s piece, and so on, while obeying the rules of chess. The action

space here is finite and is roughly of the order of 150 possible actions.

• The state of the environment is defined as the positions of all the pieces on the board. The

state space is finite but extremely large since there are roughly 1050 board configurations

in chess (to be compared to 10162 configurations for the game of Go). Here as in many

other RL tasks, the curse of dimensionality manifests in a severe fashion. Evaluating

which action is best in all these game situations is computationally intractable, as a result

RL must work by generalization: the agent should be able to deduce an action from its

accumulated experience in a new unseen context. The key insight of [Silver et al. 2018] to

achieve this was to exploit the excellent generalization power of deep neural networks.

• The reward system is a algorithm-dependent, that is it is not defined by the rules of the

game. Namely, for chess, a reward is sent at the end of the game, for instance giving 1

point for a win, -1 point for a loss and 0 point for a draw. In that case, a reward is given

only after the end of the game which happens after many moves have been made by the

agent. This further shows the importance of long-term predictions of the agent, it must

be able to anticipate its opponent’s moves at the scale of the whole game which can last

more than 50 moves.
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2.5.2 Mathematical formalization

As we typically deal with discrete time problems, we define variables with a time step index t

(as in Fig. 2.16). The action at made by the agent on the state st of the environment results

in a new environment state st+1 and a reward rt is returned to the agent. These interaction

cycles can be formalized as a classical finite Markov decision process governed by the transition

probabilities:

p(s′, r|s, a) = Pr(st = s′, rt = r|st−1 = s, at−1 = a) (2.21)

which is the probability to transition from state s at time t to state s′ at time t+ 1 under action

a, returning the reward r.

The goal of a reinforcement learning agent is to learn a policy which maximizes the expected

cumulative reward. The decision-policy π of the agent can be modeled by a probability distribu-

tion that maps states to probabilities of specific actions, i.e. π(a, s) = Pr(at = a|st = s) which is

the probability that action a is chosen given the system is in state s. The cumulative reward is

simply the sum of all rewards obtained while interacting with the environment and it provides a

measure of the performance for long-term decisions. This can be put in more quantitative terms

with a value function vπ(s), which defines the value of a state s as the total amount of reward

an agent following a policy π can expect to accumulate over the future, starting from that state:

vπ(s) = Eπ

[ ∞∑

k=0

γkrt+k+1|st = s

]
(2.22)

with the discount factor 0 ≤ γ ≤ 1 which allows to vary how much long-term rewards are taken

into account. Once this function is known, the optimal policy can be simply obtained as the

one that maximizes the value function for all states. However, given the state space is huge in

many RL tasks, one needs to resort to an iterative optimization procedure.

Let us sketch how optimization of a policy can be performed with a policy gradient method.

The first step is to parametrize the agent’s policy as π(a, s) = fθ(a, s), where fθ can be chosen to

be a neural network (which was done in chapter 5). Then, the next step is to design an objective

function to optimize with respect to the policy parameters θ. One option is to maximize the

value function vπ using a gradient descent algorithm which necessitates to compute the gradient

of vπ with respect to θ. Different algorithms exist to compute this gradient using Monte Carlo

estimates [Williams 1992] or indirectly in so-called Q-learning [Sutton & Barto 2018]. In chapter

5, we will use a different method that does not rely on gradient computations. The interested

reader will find more details about these methods in [Sutton & Barto 2018].
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Chapter 3. Automatic classification of phases of matter

A central focus of condensed matter theory is the understanding of phases of matter. Roughly

speaking, a phase is defined by consistent properties a system displays in varying external

conditions. It may happen that changing an external parameter abruptly perturbs the system

such that its properties radically change: a phase transition took place. This chapter deals with

the detection of such phase transitions using methods of machine learning (ML).

In Sec. 3.1, we will introduce the general theory of quantum phase transitions and dis-

cuss the traditional tools to map out phase diagrams. In Sec. 3.2, we will show how ma-

chine learning can be employed to detect automatically phase transitions. Sec. 3.3 is de-

voted to the physics of many-body localization (MBL). We applied these ML approaches to

a one-dimensional model in Sec. 3.4 and a two-dimensional model in Sec. 3.5, both exhibit-

ing a – still debated– phase transition. This chapter contains the results we obtained in

[Théveniaut & Alet 2019, Théveniaut et al. 2020] as well as new results that place emphasis

on the interpretation of the neural networks.

3.1 Quantum phase transitions

In general, the study of phases and phase transitions in condensed matter systems can be

achieved using mathematical and numerical tools that were specifically designed to tackle these

problems. On the analytical side, field theories, mean-field approximation, perturbative expan-

sions or renormalization-group approaches are among the most powerful techniques used by

theoreticians to elucidate the existence and stability of phases [Sachdev 2011, Herbut 2007]. On

the numerical side, Monte Carlo or variational approaches can take over in models or parameter

regimes when analytical calculations become impractical [Becca & Sorella 2017].

3.1.1 Critical points and universality

In strongly correlated systems, we usually consider a lattice Hamiltonian H that encodes the

kinetics and interactions of the particles of the system. Hamiltonian H usually depends on

external parameters λ like hopping amplitude t, repulsion or attraction strength U or external

magnetic fields. Then, the focus is often put on the correlation properties of the ground state but

higher-energy states can also be targeted (see Sec. 3.3). Roughly speaking a phase transition

is an abrupt change of the characteristics of the state at study upon changing parameter λ.

However, H(λ) is always a linear function of λ and in most cases1 it is impossible to observe

a non-analyticity of the ground-state energy for finite-size systems. This brings about the first

important point that phase transitions are expected to occur only in the thermodynamic limit,

that is in the limit of an infinite lattice.

It is also important to make other distinctions. First, phase transitions observed as the

temperature T is changed are called thermal phase transitions. This is to be contrasted with

quantum phase transitions that occur at T = 0 as function of a non-thermal parameter λ,

the latter transitions being driven by quantum fluctuations (a manifestation of the Heisenberg

uncertainty principle). One may argue that reaching T = 0 is not possible in real-life settings,

thus this asks the question of the relevance of theoretically studying such a regime. Remarkably

1For H = H0 + λH1 where H0 and H1 commute, there can be a level-crossing for the ground-state energy.
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enough, a lot of the finite-temperature features can in fact be inferred from the nature of the

quantum critical point [Sachdev 2011].

Another important property of phase transitions regards whether they are of first-order or

second-order type. During a first-order phase transition, the system can absorb or release a

fixed amount of energy per volume, they correspond to scenarios in which some observables are

discontinuous across the transition. For a second-order phase transition, also called continuous

phase transitions, the characteristic energy scale vanishes at the critical point. This implies

that there exists at least one diverging length scale ξ, for instance a correlation length or a

localization length. It is possible to characterize more finely the properties of the system in the

vicinity of critical points with critical exponents by defining a correlation length exponent ν as

follows (with λc the critical value):

ξ ∼ |λ− λc|−ν (3.1)

The characterization of phases of matter is often done based on the correlations of the state.

A powerful method pioneered by Landau was to identify a quantity called order parameter, that

would take a finite non-zero value in the ordered regimes (long-range correlations) and be zero in

the disordered phase (short-range correlations). For example, this applied well to the classical

2D Ising model where the total magnetization is the order parameter of the ferromagnetic-

paramagnetic transition as it takes a non-zero finite value in the ferromagnetic phase (since most

spins are pointing up/down) but vanishes in the paramagnetic phase (since spins’ orientation is

random). The Landau theory of phase transitions also put forward the mechanism of symmetry-

breaking where some symmetries of the system are not preserved across a phase boundary.

Although powerful, this hypothesis does not hold for the –later discovered– topological phase

transitions [Schirber 2016].

An important discovery in the field was that of universality. This states that the criti-

cal behaviour of a physical system only depends on the dimensionality and the symmetries of

the model, which means that there are physical systems which, regardless of their microscopic

properties (lattice geometry, chemical constituents, etc..) do behave similarly near a phase

transition. This involves that they have the same critical exponent ν and/or other critical ex-

ponents associated to observables like specific heat, magnetic susceptibility. For example, the

ferromagnetic-paramagnetic transition of magnets is in the same universality class as the liquid-

gas critical point in water. Universality in fact results from the divergence of the characteristic

length scale at the critical point which makes finite length scales irrelevant. This also has the

consequence of making the system scale-invariant at the critical point, which is incidentally the

basis of the renormalization group theory [Wilson 1975].

3.1.2 The finite-size scaling method

The divergence of the critical length ξ will never be observed in practice in simulations of

continuous transitions on finite-size systems. Instead, ξ will be cut off at the size L of the

system, which means that near the critical point we have L ∼ ξ ∼ |λc(L) − λc|−ν where λc(L)

is the finite-size pseudo critical point and λc is the true critical point in the thermodynamic

limit. Similarly, an observable that is expected to diverge at the transition will remain finite for

finite-size systems. From these observations, it is possible to derive the following expression for
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an extensive observable O associated to critical exponent β [Newman & Barkema 1999]:

O(λ− λc) = Lβ/νÕ
[
L1/ν(λ− λc)

]
(3.2)

where Õ is a dimensionless function that does not depend on L. For an intensive quantity, the

factor Lβ/ν would be absent. By explicitly writing the finite-size behaviour (dependence with

L) of observables, one can determine the critical exponents ν and β by a collapse procedure.

3.2 Automatic classification of phases of matter

The traditional way of studying phases and phase transitions relies on the choice of observables

that can be motivated by their experimental accessibility (like specific heat) or theoretical con-

siderations like the identification of order parameters. Recently, a parallel was drawn between

the study of phases of matter and the field of data analysis. The state of a physical system is

described by the state of its many constituents which makes up a data of large dimension, one

can then see that measuring the value of an observable on this state corresponds to a projection

of this large dimension data (the state) onto a low-dimensional space (here of dimension 1, the

measurement). Following up on this observation, several approaches based on machine learning

were developed to tackle the problem of mapping phase diagrams.

After highlighting the specificities of data in the physics context in Sec. 3.2.1, we introduce

three methods using supervised, unsupervised and semi-supervised learning. We will discuss in

details the pros and cons of these ML-based approaches in Sec. 3.2.5.

3.2.1 Data in condensed matter physics.

It is important to clarify which data will be considered in the following sections. First, data

can be experimental, i.e. directly obtained from experimental measurements or synthetic, i.e.

generated from numerical simulations of a model. We will focus on the latter type in the rest

of the chapter. Second, it is not obvious which ”image” of a physical system is relevant for

a machine learning treatment. For classical spin models like the Ising model, it is natural to

encode real-space spin configurations as colored pixels with the mapping: ↑ = �, ↓ = �. For a

two-dimensional square lattice, the representation is even more straightforward as can be seen

in Fig. 3.1.

For a quantum system, the first difficulty arises from the exponential complexity of the

quantum wave-function. Indeed the description of a quantum state needs to specify a number

of coefficients that grows exponentially with the system size. In addition to that, the notorious

curse of dimensionality in ML entails that the size of the dataset (number of samples) has to

increase exponentially with the dimension of the data samples to ensure efficient training. These

two phenomena may severely limit the treatment of large system sizes. Additionally, a quan-

tum state can be decomposed in many different basis sets, which adds some freedom to their

representation. To limit the exponential complexity of the wave function, one can compress the

quantum state in a more compact form [Broecker et al. 2017b, van Nieuwenburg et al. 2017,

Beach et al. 2018, van Nieuwenburg et al. 2018, Zhang & Kim 2017, Théveniaut & Alet 2019,

Théveniaut et al. 2020] like preprocessing techniques in ML. Preprocessing data can be cru-

cial to achieve training, however in the physics context this step can induce biases as we will

discuss later in Sec. 3.4.1.
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Figure 3.1: Spin configurations of the two-dimensional Ising model on the square lattice rep-

resentative of different temperature regimes (ferromagnetic, critical, paramagnetic from left to

right) viewed as black-and-white images.

Obtaining large datasets is straightforward when data is generated from Monte Carlo simu-

lations since obtaining more data points simply mean sampling more. It is important to keep in

mind that the quality of the data is key to the success of these ML approaches, therefore auto-

correlation between Monte Carlo samples for instance are of significance for the interpretation

of the final results. An interesting property of disordered systems is that the dataset can be

enlarged very simply by generating more instances of the system from different random realiza-

tions of disorder. This remark applies as well for ground states of classical models that have a

very large degeneracy. On the contrary, for models without disorder, at zero temperature, one

can be faced with the problem of having too small datasets since there are not enough available

physical ”images” representative of a given phase.

3.2.2 Supervised method

Carrasquilla and Melko proposed a method based on supervised learn-

ing [Carrasquilla & Melko 2017] that works as follows: (i) physics knowledge is used to

label training samples in well understood limits of the phase diagram i.e. each training sample

has a phase label (see red training regions in Fig. 3.2), (ii) then a neural network is trained

to classify accurately these training samples according to their phase label, (iii) finally the

trained NN is used to predict the phase label of samples across the whole phase diagram and

its predictions are used to map out the phase boundaries.

Carrasquilla and Melko show that, trained on classical spin configurations labelled as fer-

romagnetic (low-temperature) and paramagnetic (high-temperature) generated from a Monte

Carlo simulation of the square lattice Ising model, a neural network is capable of not only per-

forming well on the training dataset but also allows to predict a critical temperature as well

as a correlation length exponent ν consistent with the exact known values (the latter being

obtained with a finite-size scaling analysis on the neural-network output). Quite remarkably,

they also show that a NN trained on square lattice configurations can accurately predict the

phase boundaries of an Ising model defined on a triangular lattice geometry. By designing a toy

model reproducing the NN predictions, they found out that the NN in fact computes the total

magnetization of the configuration, which is known to be the order parameter of this transition.

Next, they turned to more difficult scenarios where no conventional order parameter ex-

ists. They show that a NN is able to distinguish the ground states and the high-temperature
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Figure 3.2: The supervised learning approach works by training a neural-network to distinguish

samples from phases 1 and 2, physics knowledge is used to label the training samples originating

from the limits of the phase diagram. Phase prediction is done on all samples across the phase

diagram.

states of the two-dimensional frustrated square-ice Hamiltonian. Contrary to the ferromagnetic-

paramagnetic transition in the Ising model where the two phases could be told apart to the

naked eye, here it is much harder to tell since the distinction lies in the decay of spin-spin cor-

relations changing from power-law (at T = 0) to exponential (at T = ∞). They were also able

to classify accurately low-temperature from high-temperature states of an Ising lattice gauge

theory, which is an example of topological phase transition with no order parameter, though

requiring the use of a deep CNN. The discriminative power of the CNN was explained by the

existence of convolutional filters each detecting satisfied local energetic constraints.

3.2.3 Unsupervised method

Concurrently, Wang [Wang 2016] and Wetzel [Wetzel 2017] treated the same problem employing

unsupervised learning techniques. Compared to the previous method, this approach has the

advantage that it does not require the labelling of ”images” and hence works without assuming

the existence of a phase transition. Using PCA (see Sec. 2.4.1 in chapter 1), they show that

a majority of the variance of the spin-configuration data matrix (consisting of stacked spin

configurations from all temperatures) was carried by the first principal axis, which was in one-

to-one correspondence with the magnetization. Wang studied a spin model conserving the total

magnetization and was able to uncover a seemingly unknown order parameter for the transition

occurring in this model.
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Training/Prediction

λ

λc

Figure 3.3: The unsupervised learning approach works by applying data analysis tools (PCA,

clustering, etc..) on the set of samples coming from the whole phase diagram.

3.2.4 Semi-supervised method

An alternative approach was proposed by van Nieuwenburg, Liu and Hubert in

[van Nieuwenburg et al. 2017] and at the same time by Trebst and coworkers in

[Broecker et al. 2017a]. There, contrary to the supervised method, the training dataset con-

tains samples not only from the extremes but across all parameter regimes (see Fig. 3.4). The

crucial insight is that it is possible to apply a labelling hypothesis for which labels are assigned

to samples with no physical ground. In most cases, data can be ordered by the variable driv-

ing the transition (for instance temperature in the ferromagnetic-paramagnetic transition of the

Ising model), this means that a labelling hypothesis is achieved by assigning label ”1” (resp.

”2”) to all samples corresponding to λ ≤ λhyp
c (resp. λ ≥ λhyp

c ) as shown in Fig. 3.4 where

λhyp
c is the hypothetical ”critical” point. For each hypothesis λhyp

c , a neural network is trained

to learn the data labelling. Two situations may arise: on the one hand, for points B and C in

Fig. 3.4 the samples do not belong to the same phase but have the same phase label, therefore

we expect difficult training. On the other hand, for points A and B in Fig. 3.4 the samples

belong to the same phase but are labelled differently, in this case we expect poor prediction

performance since the neural network will predict both samples to be of the same type whereas

the labelling hypothesis says the opposite. By testing different labelling hypothesis, their per-

formance can be tracked as a function λhyp
c and is expected to take a generic W-shape as argued

in [van Nieuwenburg et al. 2017]. The best performing hypothesis is expected to coincide with

the actual phase labelling (in other words λhyp
c = λc), hence unravelling the phases and phase

boundaries.
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Figure 3.4: The semi-supervised approach works by first assuming a labelling hypothesis λhyp
c ,

samples lying for which λ ≤ λhyp
c (resp. λ ≥ λhyp

c ) are labelled as phase 1 (resp. phase 2).

Then, training is attempted and the training performance is reported as a function λhyp
c . The

transition point is detected with the hypothesis of maximum training accuracy, indeed when

λhyp
c = λc training is expected to be the easiest.

3.2.5 Advantages and drawbacks

The machine-learning approaches exposed above constitute a complete paradigm shift in the

field. Rather than using human knowledge and intuition to identify order parameters or relevant

observables, these methods work by presenting raw data from a physical system to a learning

algorithm that will automatically learn the most relevant features, which are characteristic of

the phases at play. We list below the advantages of these methods:

• Great versatility. These methods work without the knowledge of the Hamiltonian which

means they can be applied in principle in any context: classical or quantum models,

frustrated, bosonic or fermionic systems in any dimension, for topological phase transi-

tions [Beach et al. 2018, Suchsland & Wessel 2018] in equilibrium [Ch’ng et al. 2017] or

out-of-equilibrium [Schindler et al. 2017, van Nieuwenburg et al. 2018]. This is also of

great interest for experimental settings where the exact Hamiltonian is not known.

• NNs see better than humans. These methods can discern intricate patterns, find

subtle correlations in the data, that are otherwise invisible to human eyes. This

is of particular relevance for experimental data that are often plagued with noise

and other imperfections. NNs can also perform hypothesis testing as was shown in

[Bohrdt et al. 2019, Zhang et al. 2019b] where NNs can see the compatibility of single

experimental snapshots of density-matrix with respect to different theoretical predictions

which cannot be distinguished by conventional observables. If the NN has access directly

to the state or snapshots (projective measurements), it provides an unbiased predictor and

can in principle allow to rule out theories [Greitemann et al. 2019] or even used to discover

new physical theories [Iten et al. 2020].

• Better phase transition diagnostics. One possibility is that NN learns an observ-

able that is less sensitive to finite-size effects than other human-engineered quantities,

which can be crucial for for certain models with random disorder [Khemani et al. 2017,
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Panda et al. 2020]. Some works also claim that NNs can provide sharper estimates of criti-

cal points [Venderley et al. 2018, Rem et al. 2019] and that has less variance with the same

number of samples compared to some conventional observables [Huembeli et al. 2018].

• A tool for material design. If measurements are costly at different locations of the

phase diagram, one can use this approach to map out phase diagram in a fast way to

suggest interesting experimental conditions for measurements. One can use it as a material

design technique where physical models are optimized to increase the critical temperature

of high-Tc superconductors for instance, in a systematic and fast way using NNs.

• Good scaling properties of NNs extending the range of accessible regimes. The

compositional nature of NNs allow to treat hierarchical data (for instance patterns of spins

at different scales) in an exponentially efficient way. This paves the way for descriptions

of physical states that live in exponentially large state space from data (input dimension)

and neural network (number of parameters) scaling only polynomially with system size. It

is notorious that certain observables that might be crucial for the understanding of certain

phase transitions are extremely hard to compute such as off-diagonal observables in QMC,

or the entanglement spectrum that is both experimentally and numerically exponentially

difficult to obtain. Therefore NNs provide a new route towards finding scalable and relevant

observables for general phase transitions.

• Possibility of knowledge transfer. The generalization power of neural networks offer

an exciting path towards the mapping of phase diagrams in regimes that are hard to

simulate numerically. The ML approach allows for extrapolating the predictions of neural

networks to physical models of different geometries [Carrasquilla & Melko 2017], larger

sizes [Théveniaut & Alet 2019, Saraceni et al. 2020] or to phases that cannot be accessed

by current techniques like regimes where there is a sign-problem [Broecker et al. 2017b,

Vargas-Hernández et al. 2018].

It is important to keep in mind that these approaches a priori also suffer from the pitfalls

of any NN-based methods regarding data (too small amount, biased), neural networks (opacity

of the decision function, vulnerability to pixel attacks) or training (overfitting, underfitting,..).

3.3 Many-body localization

Anderson localization is a quantum phenomenon occurring in random media where one elec-

tron can become localized in real space due to destructive interferences of its own quan-

tum paths. Investigating the fate of localization when electrons are interacting with each

other led to the discovery of many-body localization, dating back to the seminal contribu-

tions of Gornyi, Mirlin and Polyakov [Gornyi et al. 2005] in 2005, Basko, Aleiner and Alt-

shuler [Basko et al. 2006] in 2006. In these works, these authors were able to show with perturba-

tive arguments that localization can resist weak interaction at high temperature. Later Huse and

coworkers [Oganesyan & Huse 2007, Pal & Huse 2010] discovered a metallic-to-insulator phase

transition at infinite temperature as a function of disorder strength in the presence of interac-

tions.
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3.3.1 Thermalization in closed systems

Many-body localization is in fact related to more fundamental questions such as the nature

of the dynamics of an isolated interacting quantum system. Given a quantum state |Ψ〉, its

evolution is fully governed by the Hamiltonian H according to the following equation (solution

of the Schrodinger equation):

|Ψ(t)〉 = e−iHt|Ψ〉 (3.3)

By diagonalizing the Hamiltonian, one can rewrite |Ψ〉 in terms of the eigenvectors |En〉 as

follows |Ψ〉 =
∑

n cn|En〉. As a result, Eq.3.3 transforms into:

|Ψ(t)〉 =
∑

n

cne
−iEnt|En〉 (3.4)

The expectation value of an observable O can then be expressed as:

〈Ψ(t)|O|Ψ(t)〉 =
∑

n,m

cnc
∗
mOmne−i(En−Em)t (3.5)

One could expect from Eq.3.5 that the diagonal terms Onn in the eigenbasis dominate at long

times since the contribution coming from terms where En 6= Em will dephase out upon summa-

tion and eventually vanish at long times. In the thermodynamic limit, one may however argue

than in a many-body system the energy gaps close exponentially fast, which could counteract

the dephasing. To justify more clearly the predominance of the diagonal ensemble, one often

refers to the so-called Eigenstate Thermalization Hypothesis (ETH) that states that:

〈En|O|Em〉 = O(E)δnm + e−S(E)/2f(E,ω)Rnm (3.6)

where S(E) the microcanonical entropy, O(E), f(E,ω) are smooth functions of their arguments

with E ≡ (En + Em)/2 and ω = En − Em and Rnm are random independent variables with

zero mean and a unit variance. In particular, this relation means that eigenstates that are close

in energy have the same properties (e.g. local observables value) and form a microcanonical

ensemble. The ETH is found to be satisfied in most many-body quantum models.

A system that is many-body localized (MBL) does not obey ETH anymore, it does not

thermally equilibrate under its own dynamics. This has many consequences on the nature of

MBL systems: they exhibit Poisson-type energy level statistics, they are lowly entangled even at

very high energy (unlike the volume-law expected for high-energy states), integrability emerges

in the form of local integrals of motions, the memory of initial conditions persists at arbitrary

long times, etc. A full review of the features of the MBL phase and of the critical phenomena

in the transition region towards ETH regimes goes beyond the scope of this thesis and we refer

to recent reviews for a more detailed discussion [Abanin et al. 2019b, Abanin & Papić 2017,

Alet & Laflorencie 2018, Nandkishore & Huse 2015].

3.3.2 The random-field Heisenberg model

One of the paradigmatic model hosting a ETH-MBL transition is the Heisenberg model with

on-site random magnetic fields. It has the following form:

H =

L∑

i=1

Si · Si+1 −
L∑

i=1

hiS
z
i (3.7)
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where Si = 1
2σi, σi are Pauli matrices and hi are random fields uniformly drawn in a box

[−h, h] with h the disorder strength. It was studied numerically in [Luitz et al. 2015] where

numerous properties of the two phases were probed like spectrum statistics through gap ratios,

entanglement properties through entanglement entropies, and Hilbert space localization studied

with participation entropies whose scaling is shown in Fig. 3.5. Finite-size scaling on each of

these observables has been performed resulting in estimates of the critical point around hc ≈ 3.7

and localization length exponent ν ≈ 1 in the middle of the spectrum (ε = 0.5).

Figure 3.5: Disorder (h) - Energy (ε) phase diagram for the random field Heisenberg

model [Luitz et al. 2015].

A numerical challenge. Due to the specificities of the MBL problem, its numerical treatment

is very challenging. We refer to [Macé & Alet 2019] for a thorough discussion on the difficul-

ties specific to the MBL problem. Let us enumerate a few of these issues: (i) MBL concerns

high-energy eigenstates, which are not the targets of most traditional techniques like variational

Monte Carlo, (ii) most Quantum Monte Carlo algorithms are inoperative since they assume the

existence of a heat bath whereas systems considered here are isolated, (iii) the entanglement

scaling is different in ETH (volume-law) and MBL (area-law) regimes which prevents the use

of many variational Ansatz which are designed to approximate states that have area-law entan-

glement, as a consequence matrix-product states would be for instance inoperative in the ETH

regime.

Open questions and current challenges. Despite a decade of intense work, many aspects

of the MBL problem evade a full theoretical understanding. One of the most prominent question

is its very existence. Although it is widely considered to be established in dimension 1, there has

been recent polemics [Suntajs et al. 2020, Abanin et al. 2019a] that highlighted the strong finite-

size effects at play in these types of transitions [Panda et al. 2020]. The existence of MBL phases

in larger dimension is still an open problem. Another very debated question is the universality
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class of the ETH-to-MBL transition, since exact numerics are very sensitive to finite-size effects,

initial works based on phenomenological renormalization group equations led to different descrip-

tions of the critical region with critical exponent ν ≈ 3 [Potter et al. 2015, Vosk et al. 2015],

while recent improvement point towards a BKT-type transition [Dumitrescu et al. 2019,

Goremykina et al. 2019, Morningstar & Huse 2019, Morningstar et al. 2020]. Another subject

that is not fully addressed is the existence of a many-body mobility edge the thermodynamic

limit (that is, the transition point depends on the energy density). Although numerics indeed

show such an edge (see Fig. 3.5), there are theoretical arguments precluding their survival in

the thermodynamic limite [de Roeck et al. 2016].

3.4 Application to the ETH-MBL transition in a 1D model

The current limitations of numerical techniques to tackle the MBL problem and the promis-

ing application of machine learning in physics motivated works using the ML machinery on

MBL systems. In particular, the debate regarding the existence of an order parameter of the

transition offers an interesting benchmark to explore the ML abilities to treat such a diffi-

cult transition. Moreover, the strong finite-size effects present in random disorder MBL mod-

els [Khemani et al. 2017, Panda et al. 2020] calls for the use of observables that are less sensitive

to finite-size effects, which could be found via a ML procedure (as discussed in Sec. 3.2.5).

As a result, a number of works has been devoted to the study of ETH-MBL transitions in one-

dimensional disordered quantum systems and were able to achieve (i) qualitative location of MBL

and ETH phases in agreement with more conventional approaches and (ii) detection of ”new”

phases in known models [Venderley et al. 2018, Hsu et al. 2018]. Although quite successful, we

find that these works also have the following limitations:

• the detection of a phase transition is sometimes claimed considering small systems without

attempting a finite-size scaling,

• training is done on human-processed data like the entanglement spectrum of eigenstates,

which might bias the learning process,

• the influence of hyperparameters is not systematically examined,

• the interpretation of the neural network is sometimes absent,

• the existence of a first estimate of the transition point (hc ≈ 3.7 in model (3.7)) can bias

some work towards claiming the success of machine learning methods as soon as this value

is recovered.

Our work was an attempt to fill the above-mentioned gaps and we provide an ML-based

extensive study of the MBL-to-ETH transition of model (3.7) following the guidelines:

1. Minimizing human intervention to reduce the bias that can possibly come from data

preprocessing, choice of specific NN architecture, ad hoc interpretation of the NN output,

etc. We want to remain as agnostic as possible regarding the physics at play, which could

possibly reveal new phenomena in the transition. As a byproduct, the more general the

input is, the more applicable it will be to other phase transitions.
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2. Scalability, the input data dimension should be reduced so that training of a neural network

remains tractable for the largest system sizes we have (L = 24) since we want to perform

a finite-size scaling analysis.

3. Minimizing the influence of unphysical parameters, the variability of the results with re-

spect to the method parameters (data formatting, NN hyperparameters) should be inves-

tigated and mitigated as much as possible.

4. Interpretability, data and NN architecture should allow for a possible interpretation of the

learned decision function.

These guidelines may sometimes be antagonist, the following sections present the compromise

we ended up with to match all these demands. Additionally, we provide a PCA of the dataset

in Sec. 3.4.2 and interpretation of the neural networks in Sec. 3.4.6, which did not appear in our

published work [Théveniaut & Alet 2019].

3.4.1 Description of the dataset

The following section is a rather lengthy discussion where we evaluate the pros and cons of

different types of input data and justify our final choice of input data.

Which data? A variety of data types have been considered in the previous related

works. Entanglement spectrum of eigenstates have been used in [van Nieuwenburg et al. 2017,

Hsu et al. 2018, Schindler et al. 2017, Venderley et al. 2018, Durr & Chakravarty 2019], dy-

namical observables in [Doggen et al. 2018, van Nieuwenburg et al. 2018], eigenergies in

[Rao 2018, Kausar et al. 2020] and full eigenstates in [Zhang et al. 2019a, Huembeli et al. 2019].

The specificities of the ETH-MBL transition certainly motivated these choices since entangle-

ment scaling with system size, observables decay or growth with time and energy level statistics

are known to be different in both phases. We think that the last approach, taking eigenstates

as input data, is unbiased in the sense that all information is stored in the eigenvector (all

quantities above can be obtained from eigenvectors) and therefore the most promising regarding

possible new insights in the physics at play. Additionally, it is known that thermal eigenstates

can fully encode a local Hamiltonian [Garrison & Grover 2018, Qi & Ranard 2019], therefore

a neural-network provided with such an eigenstate could in principle know the Hamiltonian of

equation (3.7). On the MBL side however, the authors of [Dupont et al. 2019] showed that there

is not a one-to-one correspondence from MBL eigenstates to Hamiltonian.

Choosing full eigenstates as input data raises issues. First, one has to expand these states in

a basis set, which leaves room for human –undesired– intervention. Our choice was to stick with

the Sz computational basis which is the physically-relevant one in the infinite disorder limit as

it diagonalizes the model. This allows us to keep our approach scalable and have access to the

largest system sizes (due to sparsity of the matrix). An unbiased solution could be to choose

a random basis set, however expressing the eigenstates (obtained in the Sz basis) in a random

basis involves multiplying each of them with a fully filled matrix of exponentially-increasing

dimension, which is clearly prohibitive.

Given an eigenstate |Ψ〉 and its expansion in the Sz basis |i〉, |Ψ〉 =
∑

i ci|i〉, we denote its
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real2 amplitudes as ci and the probabilities as pi ≡ |ci|2. If one tries to input the the whole

eigenstate as the vector (p0, . . . , p2L−1), the input dimension would eventually grow exponentially

with system size (for instance an eigenstate of the largest considered system in our work contains

2.8 millions of coefficients, for L = 24). This is problematic regarding the tractability of our

approach since the curse of dimensionality of ML states that the size of the training dataset

should scale exponentially with the input dimension, as a result memory or long training issues

would be inevitable.

Which preprocessing? Compressing a quantum many-body state is arguably the biggest

challenge of strongly correlated physics. Unfortunately, as discussed in Sec. 3.3.2, the nature

of the transition prevents us from applying variational approximation of the eigenstates with

ansatz like MPS and therefore there is no obvious compressed parametrization of these states

that we could use as input data.

As a consequence, we chose to compress eigenstates by hand: our solution is to keep the

Nc largest probabilities pi for each eigenstate, shown for illustration in Fig. 3.6 for Nc = 256

and different L. Note that the basis states associated to the largest coefficients differ from

one eigenstate to the other. Instead of using the probabilities pi, we could directly use the real

amplitudes ci with the additional sign information. We performed this analysis and reported the

results in appendix C of [Théveniaut & Alet 2019]. Surprisingly, even though the amplitudes

contain in principle more information than the probabilities, we were not able to show any

advantage of this choice of input data. This formatting introduces the truncation order Nc

parameter whose influence will be investigated in Sec. 3.4.6. A crucial advantage of keeping

only the largest probabilities is that it allows to have data from different systems sizes L of

same dimension Nc.
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Figure 3.6: Examples of Nc = 256 highest probabilities pi for eigenstates in the middle of the

spectrum (ε = 0.5) for different disorder realizations and system sizes for two disorder values lo-

cated strongly in the ETH (left) and MBL (right) phases. Figure from [Théveniaut & Alet 2019].

2because the Hamiltonian (3.7) is real and symmetric (up to degeneracies which can occur only exceptionally

due to the random part in the Hamiltonian).
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Possible bias? Our understanding of model (3.7) gives us strong confidence that this compres-

sion step, although somewhat brutal at first sight, preserves many physically relevant features.

Indeed, on the MBL side, in the infinitely strong disorder limit, eigenstates are product states

in the Sz basis which translates into having one pi = 1 while all the other basis states have

pj 6=i = 0. As first shown in [Serbyn et al. 2013], the structure of MBL states is robust as dis-

order is decreased and local conservation laws emerge where the Hamiltonian can be rewritten

in terms of pseudo-spin operators that are dressed versions of the original spin operators. The

physical extension of these local integral of motions decreases exponentially with distance to the

localization center. Eigenstates are then product-states in this pseudo-spin basis and by con-

struction, their amplitudes spread over Sz basis states around the localization center. Therefore

we also expect a dominant component pi at finite but large disorder strength. On the ETH side,

one expects a random coefficient structure with no correlation between basis states, thus the

probabilities should distribute uniformly.

It was shown [Luitz et al. 2015, Kjäll et al. 2014, Luca & Scardicchio 2013] that quantities

computed from the pis like the inverse participation ratio IPR(|Ψ〉) =
∑

i p
2
i or participation

entropies Sq(|Ψ〉) = 1
1−q log (

∑
i p
q
i ) are discriminative of the MBL and ETH phases. These

observables are most sensitive to the largest probabilities pi (independently of which basis state

corresponds to index i, one eigenstate from another). By removing the reference to which basis

set each pi comes from, we loose all information about the structure of eigenstates in Hilbert

space. It was shown [Luitz et al. 2015, Macé et al. 2019] that eigenstates are in fact delocalized

in Hilbert space in both regimes (though with a much lower slower growth of participation

entropies for MBL). One can suspect that giving the probabilities pi as input data will bias

the ML analysis to find quantities that are easily expressed as a function of pi, like IPR or

participation entropies. It seems less likely that the procedure will uncover order parameters

that resemble gap ratios [Oganesyan & Huse 2007].

An alternative formatting. An alternative approach which we did not explore is to sample

each Sz basis state |i〉 with probability pi and store these samples. As a result, sampling N times

a given eigenstate would give rise to a data sample of size N×L (since |i〉 is defined by L quantum

numbers). This formatting has the advantage of keeping the input dimension polynomial w.r.t

system size L, as well as preserving the Hilbert space structure of eigenstates. It is well suited for

models where QMC works since this is precisely the type of data generated by these techniques.

However, the representation of the same state can fluctuate due to random sampling of the

basis states, which may pose problems. Lastly, this formatting may be more prompt to capture

quantities like local magnetizations which are discriminative of the transition [Pal & Huse 2010,

Laflorencie et al. 2020] since the input data is itself made of the local spin magnetizations.

Dataset details. We obtain exact eigenstates at energy density ε = 0.5 (infinite tempera-

ture) of model (3.7) with the shift-invert method [Pietracaprina et al. 2018b]. We use periodic

boundary conditions and consider eigenstates in the Sz = 0 sector (the total magnetization

Sz =
∑

r S
z
r is conserved in this model). We insist on having a large, state-of-the-art dataset.

For training, we use 1000 realizations of disorder per disorder strength and 250 (respectively,

about 150) realizations of disorder at prediction time for sizes L = 14, 16, 18, 20, 22 (respec-

tively, L = 24). For each realization of disorder, we compute 100 (respectively, 60) eigenstates

for L ≤ 22 (respectively, for L = 24). We use a fine grid of disorder strength, specially close to
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the alleged transition region.

3.4.2 Dataset analysis with PCA

Data analysis usually begins by studying the dataset with the help of the linear methods

such as PCA (see Sec. 2.4.1 of chapter 2). This analysis was not performed in our work

[Théveniaut & Alet 2019] and for simplicity, we will only treat data originating from a L = 16

spin chain. The PCA is done on a matrix consisting of 1300 truncated eigenstates (stacked on

top of each other) where the first Nc = 128 highest probabilities are kept, originating from 13

different disorder strengths and 100 different disorder realizations per disorder. We will also

study the effect of randomization (pi ← pP(i) with P a permutation).
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Figure 3.7: (Left) Explained variance per principal component of the PCA for two datasets:

sorted corresponding to the truncated eigenstates pis sorted by descending amplitude, random-

ized corresponding to truncated eigenstates whose indices have been randomized (pi ← pP(i)

with P a permutation). (Right) First three principal axis, they are able to explain 99% of the

variance of the sorted dataset.

Fig. 3.7 is illustrative of the relative simplicity of this dataset. The first three principal

axis are able to explain 99% of the variance for the sorted data. The first principal component

reveals that only the first three highest eigenstate probabilities (pi with i ≤ 3) are the most

discriminative of the data for PCA. Interestingly, neural networks also put more weight in the

first highest probabilities (see Sec. 3.4.6). This motivates us to quantify how much characteristics

of the eigenstates like the highest probability (p0) or the sum of all components (
∑

i pi, not

normalized to 1 anymore with our formatting) are a priori discriminative of our data. To do so,

we calculate the variance of the dataset in the direction of these features. As a result, the highest

probability (p0) is responsible for 84.1% of the variance of the data (we did a projection onto

the vector (1, 0, . . . , 0)) which almost corresponds to the 85.6% of the first principal axis. The

”norm” of the input vector accounts for only 1% of the total variance of the dataset (projected

onto the vector (1, 1, . . . , 1)/
√

128).

Listing the probabilities by descending order simplifies considerably the dataset as compared

to the PCA results on the randomized dataset. This can be explained by the fact that with the

sorted convention MBL eigenstates are all located near the vertex (1, 0, 0, . . . , 0) of the hypercube

[0, 1]⊗Nc where the data live. The effect of randomizing the basis states indices spread the
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MBL samples across the whole hypercube, shattering them over all vertices. As a consequence,

the variance distributes equally over almost all the principal components which reflects the

greater complexity of this formatting as compared to the sorted input. Randomization can

be seen as data augmentation since the ordering of probabilities is physically irrelevant, more

problematically sorting probabilities gives artificial structure to the data that a ML analysis

could exploit. In practice, we found that randomization make the training of neural networks

(see next sections) harder, even impossible in some cases, which explains why we chose to the

sorted convention.
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Figure 3.8: (Top) Representation of the dataset in the direction of the two first principal compo-

nents, each dot corresponds to an eigenstate. The color shading indicates the disorder strength

going from a fully ETH (h = 0.5) regime to a fully MBL (h = 12) regime. (Bottom) Mean of

the projections of the dataset onto the three first principal components as a function of disorder

strength h, the average is done on 100 different disorder realizations. The error bars correspond

to one standard deviation.

Fig. 3.8 allows to visualize the PCA results in two equivalent ways. In the top panel, the

data do not seem to exhibit clear clustering corresponding to different phases but rather forms

a continuum going from ETH (h ≤ 1 in yellow) data points localized on the left of the figure

to fully MBL (h ≥ 10 in blue) data points. One can notice a broader distribution of MBL

samples on the first axis from one realization to the other. This is natural to expect since

MBL eigenstates largely depend on the specific random fields hence a larger variance, unlike

ETH eigenstates whose properties are determined uniquely by their energy. The bottom panel

of Fig. 3.8 further shows the larger variance for MBL data than for ETH data, moreover it

highlights the capacity of PCA to distinguish fully ETH or MBL regimes but also its limits

regarding a precise determination of a finite-size crossover. Considering h = 12 as MBL, one

can see there are MBL samples extending down to h = 4 where the projection on the first
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component (blue curve) is inside the error bars of the h = 12 data. Similarly, considering

h = 0.5 as ETH, the ETH region extends no further than h ≤ 2. This roughly corresponds to

the conventional estimates of the cross-over at L = 16.

3.4.3 Neural networks as phase classifiers

As previous section brought to light, a linear method is sufficient to separate strongly ETH

from strongly MBL regimes, however the crossover it uncovers is too smooth to give a sharp

estimate of a (finite-size) critical disorder hc(L). As a result, we resort to nonlinear methods

such as neural networks with the hope that its increased power will cure the limitations of

PCA. From now on, we follow the supervised approach developed by Carrasquilla and Melko

[Carrasquilla & Melko 2017] (see Sec. 3.2.2) because we are quite confident on the physics at

the extreme locations of the phase diagram, i.e. a fully ETH regime for h ≤ 1 and fully MBL

regime for h ≥ 10 for all system sizes considered.

Which architecture? The question now is which neural network architecture to choose?

Following our agnostic point of view, we want the most general form of a neural network. In this

sense, a CNN seems too specific to respect this criterion, moreover a CNN is designed to exploit

locality and translation invariance, both properties not seen by our data. As a result, we chose

fully-connected feed-forward neural networks. We found that using a shallow architecture (as

the one represented in Fig. 3.9) was able to fulfill many of our constraints. First, interpretability

by direct inspection of the NN weights is feasible thanks to a rather small number of parameters.

Second, we checked that such number of hidden neurons is optimal regarding performance on

the task and variability from one NN instance to the other.

Figure 3.9: Neural network architecture used in the following. Each eigenstate is fed to the

network as a vector of size Nc and the neural network outputs a number pMBL in [0, 1] (with

pMBL + pETH = 1) that is interpreted as the MBL classification confidence of the NN.

There are other advantages offered by shallow architectures. First, as seen in previous

chapter, a low capacity NN needs less data to train well which can be advantageous in particular

in our case since data is (exponentially) costly to generate. More crucially, it was shown in

[Zhang et al. 2017] that state-of-the-art deep networks are able to fit randomly labelled data.

They were also able to construct a two-layer neural network with ReLU activation functions and
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3.4. Application to the ETH-MBL transition in a 1D model

2n+ d weights that could exactly memorize a dataset of n samples of dimension d. Obviously,

complete memorization of the dataset is dramatic for our task since the classification would

loose its ability to generalize meaningfully to the transition region. By keeping our NN small,

we therefore protect ourselves from the possibility of memorization3.

Possible bias? As shown in Fig.3.9, we applied dropout (see Sec. 2.3.5 of chapter 2) between

the hidden layer and the output neuron and used ELU activation functions [Clevert et al. 2016].

Dropout is efficient to reduce correlations between hidden neurons since dropping connections

from one training step to the other forces neurons to learn features robust and independent from

the activation of other parts of the NN that could be switched off during training. Regarding the

activation function, we give details in appendix A of our paper [Théveniaut & Alet 2019] about

the phenomenon of dead neurons (always outputting 0) that can occur with ReLU activation

functions, we found that ELU activation functions solved this issue.

NNs are universal approximators if we allow for an infinite number of units, however NNs

with a finite number of parameters only span a subspace of the space of continuous function and

in principle, the unknown order parameter of the transition could lie outside of this ensemble of

functions. Consequently, our approach is inherently biased by the use of NNs of constant finite

size. However, by monitoring the influence of parameters such as NN depth (number of layers)

or width (number of neurons per layer), we could also in principle mitigate this bias.

Physical observables as neural networks. It is interesting to notice that many relevant

observables such as IPRs or participation entropies can be written as relatively simple neural

networks. Indeed, Fig. 3.10 shows the corresponding neural network that allows to compute

such physical quantities: an operation f is applied element-wise to the input vector followed

by a fully-connected layer that sum up all the neurons and give the observable. This structure

resembles a CNN where an operation is performed identically on portions of the input vector

(here reduced to just one value) and then a max-pooling operation reduces the dimension (here

to 1). We checked that the function f in the cases of IPR (f(x) = x2) or q = 1 participation

entropy (f(x) = −x log(x)) can be accurately approximated by a fully-connected neural network

having a few tens of hidden neurons. This reassures us that standard shallow neural networks

are expressive enough to represent usual physical observables.

Model selection. As the PCA highlighted, distinguishing strongly ETH from MBL is rela-

tively easy and in practice, all considered neural networks achieve 100% accuracy on training

and test sets. Given that the assumption is that NNs will learn features in the training dataset

that are relevant over the whole phase diagram, namely over the transition region, we need

another way to discriminate NNs performance.

One possibility is to ensure that the learned model achieves low bias and low variance. On

the one hand, we argue that bias is low having checked that increasing the number of hidden

neurons does not change the predictions, rather increasing variance. On the other hand, variance

is kept small by choosing a relatively small number (32) of hidden neurons. Moreover, we can

track the variance using cross-validation, i.e. obtaining multiple training instances from random

3In our case is Nc × Nhidden + Nhidden + 2Nhidden which is 8288 for the largest considered Nc = 256 and

Nhidden = 32, to be compared to 2n+ d = 400256 for our training datasets of n = 200000 eigenstates (d = Nc)
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∑
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Figure 3.10: Schematic representation of a neural network computing the IPR (if f(x) = x2) or

the q = 1 participation entropy (if f(x) = −x log(x)) from the vector of probabilities pi of an

eigenstate.

initialization of the NN weights and random partitioning of the training datasets (as we leave

aside a fraction of the data in a separate test set). In most cases, we observe a low and stable

(during training) variance with a learning rate empirically chosen at α = 0.01, batch size of

1000 samples and number of epochs of 5. The variance gets problematic when an adversarial

component is added and further comments are provided in the corresponding Sec. 3.4.8.

3.4.4 Results: Neural-network output analysis

In this section, we trained a single neural network on a dataset consisting of eigenstates obtained

at h = 0.25 (resp. h = 12.0) for ETH (resp. MBL)-labelled samples for L = 18. The next

paragraphs highlight several interesting features of the neural network predictions when applied

to eigenstates over the whole parameter regime, in particular regarding (i) the typical output

values of a neural-network, (ii) the variability of the predictions with respect to different training

runs (iii) different disorder realizations or (iv) between eigenstates of the same realization.

Output of a typical neural network. Thanks to the use of softmax activation functions

for the output layer, each eigenstate fed to the NN will produce a number between 0 and 1 that

is the confidence of the NN to classify it as ETH (0) or MBL (1). Fig. 3.11 shows the typical

distribution of a NN output, the distribution is unimodal for almost all disorder strengths h

with a very low variance around 0 (1) in the ETH (MBL) phase, except at the transition where

there is coexistence of two sharp modes (we checked that this is the case for all system sizes

considered). This was not implemented as a constraint in the training of the NNs, but it turns

out that the NNs output are all very close to 0 or 1, therefore to a very good approximation, the

NN output can be considered binary, each sample being clearly identified as being either ETH

or MBL (we will find an explanation for that in Sec. 3.4.6). Contrary to PCA, this already

shows that NNs are able to detect sharp transitions only given samples at the extreme part of

the phase diagram.
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Figure 3.11: Color histogram of the output of a typical neural network trained with L = 18 data

evaluated on 300 disorder realizations for each disorder strength.

This motivates the choice of considering the fraction f of MBL samples as a good quantity to

faithfully describe the output of the neural network. The fraction f of MBL-classified samples

is defined in the following way:

f =
1

NθNrNi

∑

θ,r,i

Θ

(
yθ,r,i −

1

2

)
(3.8)

where yθ,r,i denotes the output of the neural-network θ (corresponding to MBL output proba-

bility) when fed with eigenstate i from disorder realization r, Θ is the Heaviside step function,

Nθ the number of trained neural networks, Nr the number of disorder realizations per disorder

and Ni the number of eigenstates per disorder sample. This quantity depends on the disorder

strength f(h) as will be shown in Figs. 3.17 and Figs. 3.22.

We define the finite-size critical disorder hc(L) as the disorder strength at which half of the

samples are classified as MBL, meaning f(hc(L)) = 0.5. This choice is motivated by our agnostic

criterion which restrain ourselves from using the fact that the critical point of model (3.7) is

known to rather have MBL properties [Thiery et al. 2018]. Exploiting this fact would give rise

to an alternative definition of hc(L) = argmin
h
{f(h) = 1}.

Variance from one training instance to another. Due to random initialization of the

neural-network parameters and the use of stochastic gradient descent, training can in principle

converge to different local minima. To quantify this effect, we pick one eigenstate per disorder

realization and compute its average classification over 50 training runs denoted by yr. We do

the same for the 250 different other disorder realizations and the result is showed in Fig. 3.12 as

a function of h.

Fig. 3.12 reveals that there is almost no variance from run to another: all NN classify the

same eigenstate almost identically (data is either clearly red or clearly blue). As we show in

appendix B of our paper [Théveniaut & Alet 2019], this picture does not hold in one of the

training setups we will consider later in Sec. 3.4.8 where larger fluctuations between neural

networks can be seen.
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Figure 3.12: Fraction of MBL-classified eigenstates (color) over 50 training instances (yr as

defined in the main text) as a function of disorder strength (x-axis) and realization number

(y-axis) when training and prediction are done on L = 18 data. One eigenstate per disorder

realization is fed to every NN.

Eigenstate-to-eigenstate, sample-to-sample variance First, we consider variations of

classification from one disorder realization to another. For a given neural network θ, we study

the average classification of individual eigenstates sharing the same disorder realization r denoted

as yθ(r). Fig. 3.13 shows an histogram of yθ(r) for a typical NN θ for 250 disorder realizations.

We have checked that this picture is stable for all training instances and for any of the considered

training setups.
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Figure 3.13: Histogram of yθ(r) obtained on 250 disorder realizations. Training and prediction

are obtained from L = 18 data.

For disorder strengths slightly lower (resp. higher) i.e. at h = 2.0 (resp. h = 4.0) than the

crossover point (here around h = 3.0 for L = 18), the distribution is peaked around 0 (resp. 1)

meaning that almost all eigenstates from any disorder realizations are classified as ETH (resp.
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3.4. Application to the ETH-MBL transition in a 1D model

MBL). More interestingly, for h = 3.0 the NN detects both ETH and MBL eigenstates within the

same disorder realization. The fact that, close to the transition, the network predicts both ETH

and MBL eigenstates in the same disorder realization at the same energy density is reminiscent of

what was observed in [Yu et al. 2016], where a bimodal distribution of entanglement entropy was

observed also at the individual disorder realization level close to the transition. This motivated

us to look at the correlation between the prediction of each eigenstate and its entanglement

entropy. Our analysis in appendix B of our paper [Théveniaut & Alet 2019] clearly shows that

eigenstates with low (high) entanglement are systematically classified as MBL (ETH), which

also implicitly indicates that our input formatting is not too destructive.

Error bars. The discussion above allows to simplify the analysis of the NN output by: (i)

describing the NN output as binary ({0, 1}), (ii) neglecting the variance coming from the stochas-

ticity of training. Moreover, as eigenvectors of the same disorder realization are correlated, we

chose to bin quantities over all eigenstates of the same realization and all neural networks, and

then compute the standard error over these bin averages in order not to underestimate error

bars. This is similar to what was done in the conventional analysis of [Luitz et al. 2015]. The

only remaining variability originates from disorder realizations, as showed by the error bars in

the forecoming plots.

3.4.5 Neural-network setups

To identify the phases and obtain critical exponents of the transition, we use the finite-size

scaling method explained in Sec. 3.1.2.
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Figure 3.14: Two typical observables’ behaviours arising in finite-size simulations (darker grey

means larger system size): (left) a unique crossing point is visible which unambiguously locates

the size-invariant critical point, (right) a ”drift” of the finite-size curves prevents from identifying

the critical point.

First, let us observe Fig. 3.14 where two observables and their finite-size trends are showed.

One the one hand, the left plot exemplifies a situation where a unique crossing point is visi-

ble which allows to identify the critical point directly. This was the situation encountered in

[Carrasquilla & Melko 2017] for the neural-network output for the Ising model, or for the MBL

transition in [Huembeli et al. 2019]. On the other hand, when curves rather drift and do not

cross, one can alternatively try to define a finite-size pseudo critical point hc(L) (with some cri-

terion) and naturally assume a finite-size relation hc(L)−hc(∞) ∼ L−1/ν . This was for instance
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used in Refs. [Li et al. 2019, Zhang et al. 2019a]. In our case, we find (see Figs. 3.17, 3.22) that

the latter situation applies (no crossing of curves) and thus assume the second scaling form. The

definition of hc(L) was given in Sec. 3.4.4.

As a disclaimer, the use of approximate ML techniques in combination with such a sophis-

ticated procedure like finite-size scaling seems uncertain. Indeed, there is no constraint on the

ML procedure to uncover a classification rule that corresponds to a physical order parameter or

physically interpretable quantity which correctly captures critical phenomena. Due to stochas-

ticity in the training procedure, all other things being equal, two independent trainings could for

instance converge to a NN approximating an order parameter in one run and converge to a NN

approximating its Binder cumulant for the other run (or any combination thereof), which are

known to exhibit different critical behavior and finite size effects. This is especially problematic

when the finite-size scaling is attempted from the aggregation of different training instances. As

a result, our work consisted in designing setups that would mitigate as much as possible these

harmful effects.

We investigated the two following setups to perform finite-size scaling:

• Single-size setup. An ensemble of NNs are separately trained on different systems sizes,

a finite-size critical disorder hc(L) can be deduced from the output of each NN, finally we

attempt to obtain hc(∞) and ν by fitting these hc(L) to the scaling form shown in the

figure below. The results will be presented in Sec.3.4.6.

Figure 3.15: Single-size training setup.

• Multiple-size setup. One NN is trained on a dataset containing data from multiple

system sizes at once. The results are discussed in Sec.3.4.7. We will consider an augmented

version of this setup in Sec.3.4.8 to achieve better generalization across system sizes.

Figure 3.16: Multiple size training setup.

3.4.6 Results: Single system size training

We present in this section the results obtained with the single-size training setup. We study the

predictions of five neural networks trained on data respectively from L = 14, 16, 18, 20, 22. Apart

from the training dataset, all hyperparameters (learning rate, batch size, number of epochs, etc..)

and NN architecture (number of hidden neurons, etc..) are fixed. The training dataset consists

of eigenstates obtained at h = 0.25 (resp. h = 12.0) for ETH (resp. MBL)-labelled samples for

all system sizes.
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Figure 3.17: Fraction of MBL-classified samples as a function of disorder strength for NN trained

on a given system size L. Predictions are averaged over 250 disorder realizations per disorder

(with 100 eigenstates per realization) and 50 training instances. Truncation order is Nc = 256.

The error bars indicate the statistical error due to sampling disorder realizations. Inset: finite-

size scaling analysis of hc(L) defined as f(hc(L)) = 0.5 for different truncations Nc. The error

bars on the final estimates come from the fitting procedure.

Several features can be distinguished in Fig. 3.17: one is the existence of a fully ETH region

(where all samples are classified as ETH) that extends from h = 0 to h = 2 and a fully MBL

region starting from h = 6 for all system sizes. Another distinct feature is the hierarchy of

the curves depending on the system size L, i.e. the crossover from ETH to MBL happens for

higher disorder as L is increased. This behavior is in agreement with many other observables

(such as spectral statistics, entanglement variance, dynamical spin fraction) used in the standard

analysis of this system [Luitz et al. 2015], which also display regions where ETH and MBL are

clearly well identified, and a crossover region with a right-shift (i.e. towards larger disorder) of

the finite-size estimate of the transition point with system sizes (similar to the right panel of

Fig. 3.14).

Interpretation of the neural network — The most straightforward way to understand

what a NN learnt is to directly look at its weights. The neural network structure we used

(showed in Fig. 3.9) encodes the following function:

f({pi})n = softmax




∑

j

W
(2)
nj ELU

(∑

i

W
(1)
ji pi + b

(1)
j

)
+ b(2)

n





n

(3.9)

where W (1) and W (2) are matrices of dimension respectively (32, Nc) and (2, 32), b(1) and b(2)

are vectors of dimension 32 and 2, respectively. Note that softmax is a function that takes a
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vector z and outputs softmax(z)n = ezn/
∑

n e
zn . These variables constitute the parameters of

the neural network, their values obtained after training are shown in Fig. 3.18.
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Figure 3.18: Values of the internal weights of a typical NN trained on L = 18 data with

Nc = 256. (Top left) The set of 32 weights W
(1)
ij (i ∈ [1, 32]) are represented as a function of

the input neuron index (j ∈ [0;Nc]) and coloured according to the category we assigned them:

being dubbed MBL detectors (blue) or ETH detectors (red). (Top right) The biases b
(1)
i of each

hidden node i are shown, where the color of the dots tells to which category neuron i belongs to,

ETH (red) or MBL (blue) detectors. (Bottom left) The weights W
(2)
0j (resp. W

(2)
1j ) outputting

the ETH-classification (resp. MBL-classification) confidence is shown in light red (resp. light

blue) as a function of j the hidden node index where we added a blue (red) dot to indicate the

category of the hidden node.

The top left plot of Fig. 3.18 highlights the existence of two categories of hidden neurons:

(i) (resp. (ii)) half of the neurons weigh positively (resp. negatively) the largest probabilities pi
(corresponding to the smallest input indices) until input index i ' 40 then the next inputs are

weighed negatively (resp. positively). Let us denote category (i) MBL detectors and category

(ii) ETH features, this denomination will be clearer later. We denote the weights of MBL

detectors as WMBL
i . The biases of the hidden nodes (b(1)) as well as the weights coming from

the hidden layer to the output layer (W (2)) have a behaviour that can be directly deduced from

the category of the hidden node (whether it is a MBL detector or an ETH detector) it is linked

to. In particular, Fig. 3.18 reveals the following relations (following Eq. 3.9 conventions):

• if hidden node j is a MBL detector, then W
(1)
j,i ' WMBL

i , b
(1)
j ' −0.4, W

(2)
0j ' −1 and

W
(2)
1j ' 1.

• if hidden node j is an ETH detector, then W
(1)
j,i ' −WMBL

i , b
(1)
j ' 0.4, W

(2)
0j ' 1 and

W
(2)
1j ' −1.
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The relations above allows to obtain a simplified expression of the argument of softmax in

Eq. 3.9:

±
∑

j∈ETH

ELU

(
−
∑

i

WMBL
i pi + 0.4

)
∓

∑

j∈MBL

ELU

(∑

i

WMBL
i pi − 0.4

)
± 0.1 (3.10)

Given that the softmax activation function is applied to 2-component vector such that z =

(z0,−z0) (as showed in Eq. 3.10), this gives softmax(z)k = sigmoid(2z0). Moreover, there is on

average as many ETH detectors as MBL detectors, which further simplifies Eq. 3.10 as follows:

f0,ETH({pi}) =sigmoid

[
32g

(
−
∑

i

WMBL
i pi + 0.4

)
+ 0.2

]
(3.11)

f1,MBL({pi}) =sigmoid

[
−32g

(
−
∑

i

WMBL
i pi + 0.4

)
− 0.2

]
(3.12)

with g(x) = ELU(x)−ELU(−x). It is possible to identify, to a good approximation, the function

x 7→ sigmoid [32g(x) + 0.2] by the Heaviside step function, consequently we can summarize the

action of the neural networks as follows:

1. Given eigenstate p = (pi), compute the scalar product C = WMBL · p
2. Classify eigenstate {pi} as being ETH if C < 0.4, MBL otherwise.

(3.13)

This shows that the action of the neural network essentially boils down to a linear operation

on the input data followed by a thresholding operation. Compared to PCA, the sharpness of the

neural-network predictions directly comes from the application of the sharp non-linear threshold.

Fig. 3.19 shows a histogram of WMBL · p.
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Figure 3.19: Histogram of the activations of the first hidden layer −∑iW
MBL
i pi+0.4 computed

over 32 hidden neurons of a neural-network trained at L = 16 and 100 disorder realizations per

disorder strength (different colors). The dotted line is the classification threshold.

Alternatively, the shape of WMBL
i (see top left plot in Fig. 3.18) points towards the relevance

of the participation entropies SPq for high values of q (as the largest pi are more weighted by the
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NN), as a feature to classify the phases and detect the transition. The particular relevance of

the IPR (q = 2) was also noted in the support vector machine analysis of a MBL transition in

[Zhang et al. 2019a].

Influence of truncation order Nc — Fig. 3.20 shows the averaged weights WMBL
i after

training is done with different truncation orders Nc. We checked that all the other parameters

(b(1), b(2), W (2)) of the NN roughly take the same values as shown in Fig.3.18 irrespective of the

system size L or the training instance. These results show that the ”order parameter” uncovered

by the NN is consistent as we increase the size of the input sample, i.e. as we provide more

eigenvalue probabilities pi. More formally, we have: (WMBL,Nc=128
i )i∈[[1,64]] ' WMBL,Nc=64

i and

so on.
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Figure 3.20: Weights of the first hidden layer WMBL
i for different truncation order Nc =

64, 128, 256 for a NN trained on L = 22 data, averaged over the 32 hidden neurons of the

NN. The inset shows the average weights without error bars for clarity purposes.

Weight scaling with system size L — We notice that the existence of MBL/ETH detectors

persists for different system sizes, moreover the values of the biases b(1), b(2) and weights of the

second layer W (2) take almost the same values. However, there is variability for the weights

W (1) as can be seen in the left plot of Fig. 3.21.

Quite remarkably, despite any constraint the neural networks trained on different system sizes

learn the same classification rule modulo a certain rescaling with system size L. The separation

between positive and negative weighing of the input data is pushed further (towards larger input

index number) as L increases. This is shown in the right plot of Fig.3.21 where the index number

of the maximum of WMBL
i follows a scaling law of the form ∼ |N (L)|D where |N (L)| is the size

of the Hilbert space for system size L considered. We have not found a precise explanation for

this scaling but we can make the following speculation: it suggests that the neural networks

detect eigenstates that have a multifractal dimension D < 1. We know that eigenstates in the

MBL regime have D < 1 and those in the ETH regime D = 1 [Macé et al. 2019]. Since the

NN was trained on both MBL and ETH eigenstates, we can perhaps interpret D as an average

over all fractal dimensions, which would constitute an upper (resp. lower) bound for the fractal
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Figure 3.21: (Left) Weights of the first hidden layer WMBL
i for different NNs trained separately

at system sizes from L = 14 to L = 22 with Nc = 256 and dataset consisting of ETH-labelled

eigenstates from hETH = 0.25 and MBL-labelled eigenstates from hMBL = 12. The vertical

dashed lines indicate the locations of the maximum of WMBL
i (stars in right panel). (Right)

Locations of the maxima of WMBL
i are plotted as a function of L for different training datasets

having different hMBL = 8, hMBL = 10, hMBL = 12. A scaling law of the form |N |D is fitted for

each hMBL with |N | the size of the corresponding Hilbert space.

dimension of a MBL (resp. ETH) eigenstate. Moreover, the ”fractal” dimension depends on the

training dataset and as the disorder strength used for training hMBL is decreased, the fractal

dimension slightly increases which seems to support our hypothesis.

Finite-size scaling — Previous paragraph showed that neural networks trained on different

system sizes L encode the same observable but stay different because they have to adapt to the

scaling with L of the input values with a shared constant architecture. Given the scalability of

these results, it seems reasonable to perform a finite-size scaling analysis. The finite-size scaling

results for different truncation order Nc = 64, 128, 256 are summarized in Table 3.1. In practice,

we approximate the fraction f by a cubic polynomial around the putative hc(L) fitted in the

interval [hc(L)− w;hc(L) + w] with w = 0.6 (giving the smallest error bars).

Truncation hc ν χ2/dof

Nc = 64 3.16± 0.13 0.23± 0.07 0.03

Nc = 128 3.19± 0.09 0.22± 0.06 0.13

Nc = 256 3.25± 0.09 0.23± 0.05 0.32

Table 3.1: Finite-size scaling results with single-size training, as a function of truncation order

Nc. The scaling ansatz is hc(L) = hc(∞) +AL−
1
ν .

The scaling procedure leads to a critical disorder value hc ' 3.2 that is lower than the usual

estimate around hc ' 3.7 [Luitz et al. 2015], and extremely small values of ν ' 0.22, which

appears unreasonable. The underestimation of the critical disorder seemingly comes from the
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truncation preprocessing step, indeed hc increases as Nc increases. Note that we needed to take

aside L = 22 data for Nc = 64 (otherwise having χ2/dof = 0.95) : the number of truncated

probabilities is too small to get a meaningful result for the largest size (see Fig. 3.20).

Discussion — Even though our results show consistent behaviours with respect to Nc or L,

this setup could allow for the unfortunate possibility that a NN trained on a given L learns (i.e.

reproduces the features of) a certain physical observable different from the one learned for a NN

trained at a different L. Indeed, learning a certain classification model depends for instance on

the NN capacity (number of layers / hidden neurons) relative to the complexity of the training

dataset (that varies from one system size to another). It has already been noticed that non-

universal size-dependent features were indeed captured by neural networks [Beach et al. 2018].

Even more dramatically, [Ponte & Melko 2017] showed that different physical observables are

learned depending on the amount of regularization, though this happened with support vector

machines.

In the next section, we use the multi-size setup that attempts to solve the latter issue by

allowing for the learning of size-invariant features. In addition to that, it will in principle permit

meaningful transfer learning like detecting the transition on L1 data from a model trained on

L2 6= L1 data.

3.4.7 Results: Multiple system size training

The chosen formatting of input data (Sec. 3.4.1) with fixed size allows us to use one unique

NN to treat data from different system sizes on equal footing. We hope that this will help the

neural network to capture size-invariant features, i.e. features in the thermodynamic limit, in

particular close to criticality. We investigate in the following what a neural network trained on

a dataset containing system sizes L = 16, 18, 20, 22 all at once can learn and compare the results

to the previous analysis (we refrain from using L = 24 data as not enough samples are available

for training). To do so, we need to work at constant truncation order Nc whatever system size is

picked for training. The dataset has the same size as in the previous section, taking one fourth

of samples from L = 16 data, one fourth from L = 18 and so on.

Fig. 3.22 shows the fraction of MBL-classified samples as defined in Sec.3.4.4 and displays

similarities with Fig. 3.17 regarding the existence of fully-ETH and fully-MBL regimes located

at the same regions. Nevertheless a striking asymmetry from single-size training appears: a

broadening of the curves in the crossover region. Fig. 3.22 also features non-trivial transfer

learning: a neural network trained on L = 16, 18, 20, 22 is asked to classify samples from system

sizes L = 14 and L = 24 for which it has never seen any samples before. This highlights

one advantage of this multi-size training setup, namely its reduced computational cost. It is

indeed reduced by a factor proportional to the number of considered system sizes and number

of retrainings, which can represent a huge saving in computation time.

Interpretation of the neural networks — To understand the differences between the

predictions of the single-size setup (see Fig. 3.4.6) and the multi-size setup (see Fig. 3.4.7), we

performed in [Théveniaut & Alet 2019] a PCA on the weights W (1) of the first hidden layer (see

Eq. 3.9). More precisely, we form a matrix by stacking the 32 columns of W (1) (i.e. (Wji)i=1...Nc)

as there are 32 hidden nodes for 5 different training instances, the matrix is then of dimension
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Figure 3.22: Fraction of MBL-classified samples as a function of disorder strength for a NN

trained on multiple system sizes all at once and evaluated on different system sizes. Predictions

are averaged over 250 disorder realizations per disorder (with 100 eigenstates per realization)

and 50 training instances. Truncation order is Nc = 256. The error bars indicate the statistical

error due to sampling disorder realizations. Inset: finite-size scaling analysis using ETH-labeled

data at hETH = 0.25 and MBL-labeled data at hMBL = 8.0, 10.0, 12.0. The error bars on the

final estimates come from the fitting procedure.

(32× 5, Nc). Fig. 3.23 shows the weights (Wji)i=1...Nc after a projection onto the two principal

axis.

We find this analysis less informative than a direct inspection of the weights as done for

the single-size setup, nevertheless Fig. 3.23 has the merit of providing a simple picture of the

situation. The weights split up into two symmetric categories by a sign change, this corresponds

to the MBL and ETH detectors revealed previously, visible here through the PCA representation.

It also confirms that single-size training on L-data leads to capturing L-specific features. A

hierarchy appears where the weights corresponding to training at a given system size L are next

to the weights for L± 2.

The weights learned in the multiple-size setup overlap the weights of the NN trained at

L = 18 and L = 20, capturing an averaged model of the system sizes L = 16, 18, 20, 22. This

shows that the NN does not actually capture size-independent features (which would manifest

by a uniform distribution of weights over the L-specific subspace of weights) but rather in a

weaker way, it uncovers averaged features that are shared by all the provided system sizes. To

corroborate this point, we trained a NN on system sizes L = 14, 16, 18, 20 and we also notice the

same averaging behaviour, i.e. this time the NN captured features similar to those captured for

L = 16 and L = 18 trainings.
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Figure 3.23: PCA representation of the weights learned after training on single system size

datasets (Sec. 3.4.6), multiple system size datasets (Sec. 3.4.7), supplemented by an L-adversarial

component (Sec. 3.4.8). Each dot is a weight projected on the two principal axis of the PCA

analysis (which accounts for 90% of the total variance). 5 training instances are included for

each training case.

Finite-size scaling — We perform a finite-size scaling with varying training datasets which

include MBL-labelled samples drawn from different disorder strengths hMBL = 8, 10, 12 while

the ETH-labelled samples are all taken from hETH = 0.25, because we noticed negligible change

in the scaling for hETH = 0.5 or hETH = 1.0. We found that including predictions obtained by

transfer learning at L = 14 and L = 24 system sizes considerably improve the results, in the

sense that the fitting procedure converges with rather small error bars on hc and ν. If L = 14

is taken aside, the error bars are multiplied by a factor of 4 and the fits do not converge if no

transfer learning is done (performing the fit only on L = 16, 18, 20, 22).

Data hc ν χ2/dof

hMBL = 8.0 4.17± 0.04 0.58± 0.01 /

hMBL = 10.0 4.93± 0.10 0.93± 0.04 /

hMBL = 12.0 5.74± 0.21 1.27± 0.09 /

Table 3.2: Finite-size scaling results with multiple-size training, for different values of the

training disorder used to label the MBL phase. Truncation order is Nc = 256. The absence of

χ values come from our specific scaling procedure, see note [76] of [Théveniaut & Alet 2019]

The finite-size scaling analysis with varying training datasets leads to a somewhat unexpected

result: whereas it is generally considered that the h > 8 region contains only strongly MBL

eigenstates with very similar physical properties, the neural networks learn nevertheless different

models resulting in estimates of hc ranging from hc ' 4 to hc ' 6, higher than the estimated
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value, and ν ranging from 0.6 to 1.4. This phenomenon can be rationalized with the following

naive argument: samples in the transition region will be classified MBL for lower disorders if the

MBL-labelled samples are themselves taken from region closer to the transition, thus shifting

the transition point towards lower critical disorder. As discussed earlier for the single-size setup,

one can speculate that this finding actually echoes the non-universal multifractal properties of

the MBL phase noticed in [Macé et al. 2019] and based on the same type of input data. Indeed

one can associate a different multifractal dimension (decreasing with h) to every hMBL: the

hMBL-dependence could then be viewed as the manifestation of the varying multifractality in

the MBL phase. To circumvent this issue, one may for instance include samples from a range of

disorder values all at once. However, we noticed that if we provide a training dataset containing

MBL-samples from hMBL = 8, 10, 12, the NN tends to capture hMBL-averaged features of the

dataset (see next paragraph), i.e. leading to predictions similar to those of a NN trained at

hMBL = 10.

Discussion — The multiple-size training setup was expected to produce more reliable pre-

dictions i.e. that would be less prone to learning L-dependent features. Nevertheless, we found

the transition point greatly depends on the region of the phase diagram used for training (this

was also noticed in Refs. [Ch’ng et al. 2017, van Nieuwenburg et al. 2017]). This is clearly a

limitation of our setup since one would want the critical parameters to be insensitive to the

location of the training data in the phase diagram.

The analysis of the weights revealed that this setup leads to the learning of an averaged

model of the system sizes provided in the dataset, i.e., the neural network in the multi-size

setup computes the same observable as a neural-network that we would obtain from training

on a single system size L = 16+18+20+22
4 . The multi-size predictions are then obtained from a

neural-network that does not scale with system size while the input data naturally does (the

first Nc highest pi values have a larger tail for larger system sizes) and the different broadening

of the curves (see Fig. 3.16) can perhaps be interpreted as an artifact of this. A possible solution

would be to normalize the input data for the multiple-size setup, which we have not attempted

in [Théveniaut & Alet 2019].

In next section, we will try to circumvent these limitations by adding a constraining element

in the NN architecture such that it will prevent the NN from capturing size-dependent features

or size-averaged behaviors.

3.4.8 Results: System size adversarial training

The two previous sections pointed out the difficulty to fight against dataset dependence of

the NN predictions. Domain-adversarial neural networks (DANN) have been introduced in

[Ganin et al. 2016] in order to tackle domain adaptation, i.e. when the datasets at training

and prediction time come from similar but different distributions. The goal of domain adapta-

tion is to learn features that cannot discriminate between the training and prediction domains.

This particularly fits the problem of phase classification since we would like the features cap-

tured in the extremal regions of the phase diagram during training to be generic enough to

describe the intermediate parameter region during prediction. This idea was introduced for

phase classification in [Huembeli et al. 2018] and proved successful for many types of transi-

tions [Huembeli et al. 2019].
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It is possible to expand these ideas and constraint a NN to learn features that are insensitive

to the system sizes it has been trained on, i.e. L-invariant. To do so, we design a DANN

containing two supplementary components as shown in Fig. 3.24: a system size classifier and a

gradient reversal layer. The presence of the system size classifier means that every eigenstate

in the training dataset will have not only a phase label but also a size label which simply tells

from which system size the sample is from. The gradient reversal component works by leaving

the input unchanged during forward-propagation and reverses the gradient by multiplying it by

a negative scalar during the back-propagation. Its effect is crucial because it changes the sign

of the derivatives of the feature extractor parameters with respect to the size classifier output.

As a consequence, the parameters of the feature extractor will be optimized to make the task

of the phase classifier as easy as possible while making that of the system size classifier as hard

as possible. If the network reaches equilibrium, the selected features are the best suitable to

identify which phase a sample lies in, while containing no information about which system size

it emanates from.
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Figure 3.24: Neural network containing an adversarial component applied on the system size

label.

Learning L-invariant features — The feature extractor is identical to the neural network

(Fig. 3.9) used in previous sections. The system size classifier consists of 4 softmax neurons

corresponding to each provided system size (L = 16, 18, 20, 22) and outputs what can be inter-

preted as the probability of a sample to be from a given system size. The loss function contains

now an additional term corresponding to the size classifier:

L =
∑

x,yh,yL

2∑

j=1

yh
j log

(
fh
j (x)

)

︸ ︷︷ ︸
Phase classifier loss

+

4∑

j=1

yL
j log

(
fL
j (x)

)

︸ ︷︷ ︸
Size classifier loss

(3.14)

where yh (resp. yL) is the two-dimensional (resp. four-dimensional) one-hot vector representing

the phase label (resp. the system size label) of sample x, fh (resp. fL) is the corresponding

two-dimensional (resp. four-dimensional) softmax output of the phase classifier (resp. the

system size classifier). Because of the adversarial component, the optimization process will keep

the size classifier loss at much higher values (in practice orders of magnitude larger) than the

phase classifier loss: the NN will thus be discriminative for the phase classification task and

indiscriminate with respect to the shift between the L−data domains.

Adversarial learning is generally considered to be a hard task [Lucic et al. 2018], for instance

non-convergence can occur with oscillations of the optimized parameters. Training is known to be
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very sensitive to the hyperparameter selections since any unbalance between the two adversaries

can lead to overfitting or other unwanted phenomena. In particular, we noticed that the weights

of the feature extractor tended to take arbitrarily large values (increasing with training time).

This has the effect of increasing the variance of the predictions from one training instance to

another and may also cause overfitting. Therefore we found crucial to add a L2 weight decay

term in the cost function (3.14), in the form µ|W |2 with W being the internal parameters of

the feature extractor. This regularization technique requires however a good choice of µ. After

fine-tuning, we found that µ = 0.05 gives good results. We checked that the finite-size scaling of

previous section with the same regularization (weight decay with µ = 0.05) gives same critical

values with no better error bars.

Interpretation of the neural network — The PCA representation of the DANN weights

in Fig. 3.23 shows that this setup allows some apparent independence of the model with respect

to system size since the weights are homogeneously distributed over L-specific weights subspaces.

Fig. 3.25 shows the matrix of weights (of dimension (4, 32)) connecting the feature extractor to

the size classifier. The L-invariance property of the NN is achieved by reaching the following

trivial equilibrium configuration: the output of the feature detector is multiplied by the weight

vector WL to the L-output of the size classifier with L = 16, 18, 20, 22 and Fig. 3.25 shows

precisely that WL=16 = WL=18 = ... As a result, any sample has an equal probability of

belonging to any of the provided system sizes, in other words, the output of the size classifier is(
1
4 ,

1
4 ,

1
4 ,

1
4

)
for all input.
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Figure 3.25: Weights connecting the feature extractor to the system-size classifier plotted against

hidden layer neuron index of a training instance of a DANN trained on L = 16, 18, 20, 22 data

for Nc = 256. Each color corresponds to one of the 4 size-classifier neurons.

Finite-size scaling — We notice various improvements from last section. The adver-

sarial component helps reducing the training region dependence noticed before as well as in

[Huembeli et al. 2019]. The critical disorder hc ' 5.5 − 6 is still higher than the conventional

estimate and ν ' 1.2 is also (slightly) higher. We stress that these results cannot be compared to

the ones obtained in [Huembeli et al. 2019] because the setup used there differs in several ways:

whole eigenfunctions (up to size L = 18) and single-size training are used, and the adversar-
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ial component is used differently to reduce the discrepancy between samples from the strongly

ETH/MBL regions and from the intermediate region.

Training data hc ν χ2/dof

hMBL = 8.0 5.38± 0.14 1.14± 0.06 /

hMBL = 10.0 5.75± 0.19 1.37± 0.08 /

hMBL = 12.0 6.16± 0.34 1.54± 0.15 /

Table 3.3: Finite-size scaling results using a DANN approach for multiple-size training, as a

function of the training disorder used to label the MBL phase. The predictions for L = 14 and

L = 24 were obtained by transfer learning.

Discussion — This setup allows to improve on many limitations of the previously considered

architectures, namely reducing the training dataset as well as the training region dependencies.

Nevertheless, we found that training a DANN is very sensitive to hyperparameters choices

(regularization parameter µ, etc..) and chosen NN structure (depth, etc..), hence requiring very

good calibration otherwise instabilities can rapidly occur. We also noticed greater variance of

the predictions from one instance to another (see appendix B of [Théveniaut & Alet 2019]).

Regarding the weight structure in this setup, the PCA in Fig. 3.7 shows that comparatively to

single-size and multiple-size, the weights are very different but this does not strictly mean that

the learned features are independent of L.

As a last remark, one could easily generalize the use of adversarial components to fight against

all at once the dependence on the training region, the discrepancy between samples from the

transition region and extremal region of the phase diagram as done in [Huembeli et al. 2018]

and so on, at the cost of further fine-tuning of extra parameters.

3.4.9 Discussion

Interestingly, our results show consistent behaviours upon changing the input dimension (the

classification rule is stable with Nc, see Fig. 3.20) and the system sizes (the classification rule

scales appropriately to adapt to the scaling of the first largest pi, see Fig. 3.21).

The initial goal of this work was to attempt a finite-size study of model Eq. 3.7 using neural

networks. Our analysis revealed numerous difficulties: the scaling procedure appeared very

sensitive to the neural network hyperparameters (the specific choice of activation function, the

addition of dropout or weight decay), as well as the imposed structure (whether an adversarial

component is added or not). In addition to that, there is no inherent criterion that allows us to

discriminate between these different external choices, and as a matter of fact, we can consider

our analysis as a kind of model exploration (different machines with the same accuracy have

different ways of solving the same task) rather than model selection (selecting the machine that

achieves the highest accuracy on a given task).

The limitations also arose from the dependence on the particular choice of training dataset,

we highlighted that the NN predictions and ultimately the finite-size scaling actually depend on

the region of the phase diagram used for training. Moreover when the training dataset includes

data from several system sizes, the NN tend to extract average features that do not permit
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accurate transfer learning. Including a constraint to fight against this behavior (here in the

form of L-invariant adversarial component) improves the situation to a certain extent at the

cost of having to fine-tune extra hyperparameters and thus potentially adding more bias in the

final estimates.

These limitations occurred even though we provided the best possible input data (i) giving

directly the wavefunctions with a controlled compression step and (ii) also in terms of available

system size (up to L = 24, state-of-the-art in the MBL context). Nevertheless we find that

all setups allow to grasp consistent finite-size trends with a sharp behaviour near the critical

region, based on a limited amount of disorder realizations. This points towards one of the NN

advantages, that is its reduced computational cost compared to conventional methods. Another

interesting point (discussed in Sec. 3.4.4 and in the appendix of B of [Théveniaut & Alet 2019])

which we discovered in investigating the contributions to the variance of the prediction is that

the network output correlates quite well with the entanglement entropy.

The finite-size scaling led to critical values of hc and ν quite different from the conventional

estimates: hc ' 3.2 and ν ' 0.22 for the single-size setup, and hc ' 5− 6 and ν ' 1.2− 1.5 for

the multi-size setups. The finite-size scaling of the MBL transition in model (3.7) (with random

disorder) has been shown to be particularly difficult, with system sizes available from exact

diagonalization argued to be too small to probe the correct criticality [Khemani et al. 2017,

Panda et al. 2020]. We do not find that the machine learning analysis improves this situation,

at least within the setup and input data that we chose. In particular there is no obvious reason

to trust more the neural networks final results than the ones reached within the conventional

approach. The generic trend that seems to emerge is towards a larger extent of the ETH phase,

even though we emphasize that no critical field hc(L) (obtained for each individual system size

L) exceeds the value hc ' 3.7 reached from the conventional approach within error bars.

Our thorough finite-size study of this phase transition leads to the conclusion that one always

has to be aware of the multiple bias that can possibly arise when using neural networks and

its power might be limited to qualitative predictions rather than precise estimations, here for

instance finite-size scaling. This is particularly relevant for phase transitions whose nature or

universality class is unknown or debated and/or for which the input data has some limitations

(e.g. in terms of the range of size accessible).

3.5 Application to the ETH-MBL transition in a 2D model

One of the biggest unsettled question about MBL is its fate in systems of physical dimension

larger than 1. This question received so far a rather limited amount of attention both from

the theoretic and numerical perspectives, given the lack of full understanding of ETH-to-MBL

transitions in dimension d = 1. The current status of MBL in d = 2 can be summarized as

follows: there are analytical arguments suggesting that any state eventually reaches thermal

equilibrium [De Roeck & Huveneers 2017, De Roeck & Imbrie 2017, Potirniche et al. 2019] and

numerical and in-lab experiments (limited to finite-time and finite-size) that showed evidence

of localization [Thomson & Schiró 2018, Wahl et al. 2019, De Tomasi et al. 2019], although a

recent numerical work [Doggen et al. 2020] does not support this.

In the following, I will mostly focus on the results of Sec.IV of [Théveniaut et al. 2020]

that deals with a machine learning analysis of a possible ETH-MBL transition in a disordered

quantum dimer model on the square lattice. In Sec. 3.5.1, the model is introduced. In Sec. 3.5.2,
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I will quickly discuss the spectral properties of the model. Finally, Sec. 3.5.3 presents the phase

diagram obtained with the same machine learning approach as in last section, though simplified.

3.5.1 The quantum dimer model with random disorder

Our work in [Théveniaut et al. 2020] focuses on a two-dimensional quantum dimer model with

random potential on the square lattice, which reads:

H = −t
∑

�

(
| 〉〈 |+ | 〉〈 |

)
+
∑

�p

Vp
(
| 〉〈 |+ | 〉〈 |

)
.

The sums run over all plaquettes �p of the square lattice, Vp is a random potential different

for each plaquette which is drawn uniformly from a box distribution Vp ∈ [−V, V ]. We set the

kinetic energy scale to t = 1. We use shift-invert methods to obtain exact eigenstates in the

middle of the spectrum for the system sizes up to N = 52 sites. In the following, our ML

analysis will be limited to sample with at most 48 sites since not enough samples were available

for N = 52.

The number of sites N is almost doubled compared to 1d spin chains (N = 24 for 1/2-spins)

and is a consequence of the constrained nature of model (3.15) since the Hilbert space size scales

here as ∼ 1.34N instead of the faster 2N for spin-1/2 models. Here, the degrees of freedom

are dimers that obey the constraint that each site must belong to one and only dimer. This

has strong implications on the dynamics since a dimer configuration cannot be obtained by

moving one dimer alone. On the one hand, we expect that model (3.15) exhibits slow dynamics

due to the constraints, therefore favoring a localized phase. On the other hand, the presence

of the local constraints may suggest that one can think of this model as already being in the

strongly interacting limit (even without interactions encoded in the Hamiltonian), which would

rather favors delocalization and thermalization. The interplay between these two effects was our

original motivation to study this model, which was achieved by computing numerous static and

dynamical observables (see [Théveniaut et al. 2020]).

3.5.2 Results: Spectral statistics

One of the simplest property of a many-body system is its spectral statistics. As discussed

in Sec.3.3, the distribution of energy levels can already give us information about the physical

system: level repulsion is a footprint of ergodic systems, whereas MBL systems display no cor-

relation between energy levels which translate into Poissonian distribution of energy spacings.

The gap ratio (see definition below) was first introduced in [Oganesyan & Huse 2007] in the

context of MBL in 1d systems and is known to take well-defined values for Poissonian distri-

butions (〈r〉 ≈ 0.38629) and distributions emanating from the Gaussian Orthogonal random

matrix Ensemble (GOE) (〈r〉 ≈ 0.5307).

We define gaps in the many-body spectrum as sn = En−En−1 and consider the consecutive

reduced gap ratio rn = min (sn,sn+1)
max (sn,sn+1) , for which 0 ≤ r ≤ 1. Shown in Fig. 3.26, the average value

of 〈r〉 =
∫ 1

0 rP (r)dr, averaged over eigenstates and disorder realizations, displays an interesting

crossover between the two limiting cases, with different system sizes showing an apparent crossing

point (see inset of top panel of Fig. 3.26 for square samples N = 32, 36, 40) around V ' 15− 20.

The critical value of the gap ratio 〈r〉∗ ' 0.392 is smaller than for the 1d standard MBL
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Figure 3.26: Average gap ratio 〈r〉 for different 2d samples as a function of disorder, for eigen-

states located in the middle of the spectrum ε = 0.5.

model [Luitz et al. 2015], indicating that the putative transition point looks even closer to the

Poissonian localized limit.

In [Théveniaut et al. 2020], we also analyzed eigenstate statistics by computing the Kullback-

Leibler divergence, dimer occupations and participation entropies as well as entanglement en-

tropies. In all cases, the observables show clear signatures of the two regimes, MBL for large

disorder and ETH for small disorder, in the range of system sizes considered. Dynamical probes

of localization effects were also studied in [Théveniaut et al. 2020] leading to the same conclu-

sion. We now complete this conventional analysis with a ML treatment presented below.

3.5.3 Results: Machine learning this transition

As a complementary approach, we use machine learning techniques to study the quantum dimer

model Eq. 3.15 and follow a supervised approach similar to [Schindler et al. 2017]. As input

data representative of the two phases, we provide entanglement spectra (i.e. the eigenvalues λi
of the reduced density matrix ρA) obtained deep in the ETH and the MBL phases and we train

a neural network to classify them accordingly (see Fig. 3.27). We previously argued in Sec.3.4.1

that such input data are to be avoided since entanglement spectra are preprocessed quantities

that contain a lot of physical knowledge. However, our analysis in Sec. 3.4 concerned MBL in

one dimension where the nature of the ETH-to-MBL transition was in question rather than the

very existence of the MBL phase which is still debated in 2d. Therefore, our goal is not to

determine precisely the location of the critical point (if there is one) but rather to assert the

existence of a phase transition. Moreover since it is the first application of ML to this model, we

think ”helping” a bit the classification task by preprocessing the data (thereby inserting some

physical knowledge) is not an issue, and a more refined agnostic study could be left for future

investigations.

For this approach, we consider the N = 32, 36, 40 square samples and the largest rectangular
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Figure 3.27: Entanglement spectra (eigenvalues λi of the reduced density matrix ordered by

amplitude) used in the neural network approach to label the ETH (V = 1, blue colors) and MBL

phase (V = 30, orange colors), for the N = 36 square sample. For both cases, ∼ 100 spectra

obtained from different realizations of disorder are represented. The dashed line represents the

average of all spectra for V = 30. Inset: Higher part of the average entanglement spectra for

different sample sizes for V = 30. The log-log scale highlights a power-law behavior for the

larger eigenvalues λi.

sample N = 6 × 8. For each of them, we form a dataset of 10.000 entanglement spectra (2000

for N = 40, 6× 8) including between 100 and 200 disorder realizations per disorder strength at

V = 1 for the ETH-labelled phase and V = 30 for the MBL-labelled phase. The spectra being

rather large (1972 values for N = 32, up to 21286 for N = 6 × 8), we found that sorting them

allowed for both perfect training and test accuracies for all system sizes. Fig. 3.27 shows the

entanglement spectra used in these two limits, the very similar form for various disorder samples

in the ETH phase clearly contrasts with the stronger dispersion observed in the MBL phase. In

the latter, superposing the entanglement spectra for various samples sizes (inset of Fig. 3.27)

highlights that the larger values of the spectrum decay as a power-law, similar to what is found

in 1D MBL [Serbyn et al. 2016].

We used a fully-connected neural network consisting of one hidden layer of 32 neurons fol-

lowed by two softmax output neurons. We follow a cross-validation procedure where we randomly

selected half of the dataset to form the training dataset, the rest being assigned to the test set.

This process is repeated multiple times, generating new training and test partitions each time.

This allowed us to track whether the neural networks were overfitting depending on the training

conditions. Namely, we checked that data from V = 1 and V = 30 give perfect training and test

accuracies for each system size. We adopted a single-size setup as introduced in Sec.3.4.6 where

a neural network is trained and evaluated on data originating from only one system size.

Fig. 3.28 displays features that are consistent with the previous analysis of the gap ratio in

the previous section. The left panel displays the average output of the neural network for the

different samples as a function of disorder strength. At low V , the machine learning analysis

validates a fully-ETH phase (i.e. where all samples are classified ETH) that extends up to a

value V = V1, and at large V a fully-MBL phase (with more than 99% accuracy) at large for
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Figure 3.28: As a function of disorder strength V and for different system sizes: (a) mean

and (b) standard deviation (right panel) of the neural network output p, defined such that the

labels are p = 0 (p = 1) in the ETH (MBL) samples at V = 1 (V = 30). The neural network

predictions involved 5000 entanglement spectra per disorder (including 100 disorder realizations

per disorder). Error bars show standard deviation over 10 instances of neural networks from the

cross-validation procedure, stopped after 100 epochs. Square samples are color highlighted.

V ≥ V2 (V1 ' 6 and V2 ' 20 for the largest N = 6 × 8 sample). Notice how these bounding

values (in particular V1) shift to higher values of disorder with system size. This reflects that

ETH is easier to disrupt on a too small sample, in perfect agreement with the trend in all other

observables discussed in [Théveniaut et al. 2020]. Similar to what was observed in the 1d MBL

transition, we find no crossing point with system size.

The right panel of Fig. 3.28 shows the standard deviation of the neural network output as

a function of disorder. The standard deviation is low in both limits where the phases are well

distinguished (at low and large V ), and peaks at an intermediate value of disorder. The location

of the peak (which shifts with system size) is the point where the neural network has most

difficulties to classify phases. It can be interpreted as a finite-size estimate of a possible transition

point. Notice the similarity between the standard deviation of the neural network output and the

standard deviation of the entanglement entropy (Fig. 8 in [Théveniaut et al. 2020]), in particular

the positions of the peaks are almost the same for both quantities for the different sample sizes.

In conclusion of this section, we find that a neural network only fed with entanglement

spectra is able to learn how to correctly distinguish the ETH and MBL regimes for the quantum

dimer model with random potential Eq. 3.15 as well as to provide finite-size estimates of the

transition point between the two. This automated method gives results in good qualitative

agreement with the analysis based on more standard, feature-engineered, estimators of the

phases presented in [Théveniaut et al. 2020]. One noticeable interest of the neural network

analysis (already pinpointed earlier [Schindler et al. 2017, Venderley et al. 2018]) is that the

required amount of data and overall computational cost is considerably lower than with more

traditional observables to obtain approximately similar quality of prediction: for instance good

statistics on the gap ratio (Fig. 3.26) requires ' 100 times more realizations of disorder than

with the machine learning analysis.
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3.5.4 Discussion

All data presented in [Théveniaut et al. 2020], both for eigenstate or dynamical properties, can

be interpreted as consistent with the existence of two distinct phases: an ETH phase at low

disorder and a many-body localized phase at strong disorder, which are separated by a transition

located around disorder strength V ' 15 − 20. The ML analysis of entanglement spectra

presented in Sec. 3.5.3 provides the same conclusion.

Since MBL in 2d is a controversial topic, let us now do a critical analysis of these results.

Our evidence for a MBL transition in the 2d quantum dimer model comes from numerical

simulations on finite lattices. Of course, finite-size simulations can always be argued to artificially

detect a MBL phase even when only a ETH phase occurs in the thermodynamic limit. We

would like to emphasize that the level of numerical evidence for a MBL transition in the 2d

quantum dimer model is similar to the one obtained for the standard model of MBL in one

dimension [Pal & Huse 2010, Luitz et al. 2015], with similar or larger Hilbert space sizes and

time scales probed. This is of course not a definite proof that a MBL transition occurs in the

thermodynamic limit. What is perhaps more important with respect to potential experiments is

the fact that even if the behavior at large values of disorder (say V ≥ 25) is ultimately ergodic,

the time scales and / or system sizes needed to probe ergodicity would be extremely large. An

experimental realization of Eq. 3.15 or of a similar constrained model in 2d would see localization

for all practical purposes on the time scales available in the lab. For one-dimensional MBL, the

larger linear length scales that can be reached have been argued (see e.g. [Khemani et al. 2017])

not to be large enough to provide correct estimates of asymptotic critical behavior. The situation

is likely to be the same here. With these numerical limitations in mind, we can nevertheless

observe that critical values of the gap ratio of eigenstates are closer to their Poisson than their

ETH limits, indicating that the putative transition point is even less ergodic than for the one-

dimensional MBL transition in the random-field Heisenberg spin chain [Luitz et al. 2015].

There are several perspectives opened up by our work. First, the roadmap to 2d MBL can

be exploited using the QDM on other lattices, allowing to test for universality and to search for

other features. A recent investigation [Pietracaprina & Alet 2020] considered the honeycomb

lattice, which has an effective smaller local Hilbert space allowing to reach larger samples, and

obtained results similar to ours. The QDM on the kagome lattice is also an interesting case as

it possesses conserved Z2 quantum numbers, allowing the exciting possibility of 2d topological

order in MBL states [Moessner & Sondhi 2001]. The possibility of MBL in other quantum

constrained models such as quantum ice or loop models also provide an interesting follow-up.

Regarding the ML part, it would be intriguing to see if the machine learning techniques used

in Sec. 3.5.3 would be able to distinguish 1d from 2d MBL, and if not, to use neural networks

trained on 1d spin chain models to probe 2d MBL (transfer learning). Nevertheless, we think it

is probable that the same limitations brought to light for the 1d case in Sec. 3.4 will eventually

appear upon closer inspection of the predictions. Namely, there is no reason to expect that the

dependence of the ML results with the dataset or with the neural-network architecture will be

lower in model 3.15.
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This chapter deals with the variational approximation of quantum many-body ground states.

While in previous chapter the problem of mapping phase diagram was recast as a conventional

supervised learning task, here instead machine learning was used as a source of inspiration by

Carleo and Troyer in [Carleo & Troyer 2017] when they examined the ability of neural networks

to encode quantum wave functions.

In Sec. 4.1, the set of neural-network quantum states (NQS) and the particular family we

use, restricted Boltzmann machines, are defined and we will highlight some of their physical

properties. Sec. 4.2 will introduce the method of variational Monte Carlo (VMC) and Sec. 4.3

will focus on a projection technique called reptation Quantum Monte Carlo (RQMC) that are

important numerical tools in condensed matter physics. Sec.4.4 will present the results we

obtained on a two-dimensional constrained model of hardcore bosons using NQS applied in the

framework of both variational and projection methods.

4.1 Neural-network quantum states

In the era of the development of quantum computers, one may think that it is a bit anachronistic

to try to improve on classical algorithms to study quantum materials. However it is still not clear
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whether there exists a quantum advantage for approximate optimization problems[Preskill 2018],

which means that approximating quantum ground-states with classical algorithms is still of great

relevance. At the same time, the industrial and academic interest in the field of machine learning

has exploded and brought about a lot of algorithmic improvements, efficient implementations

and hardware[Jouppi et al. 2017]. As a result, one can consider that machine learning arguably

contains the most powerful set of numerical techniques for the approximation of high-dimensional

functions nowadays. This certainly explains the surge of interest of ML in condensed matter

physics and in particular the motivation of Carleo and Troyer to design neural-network based

quantum wave functions[Carleo & Troyer 2017].

Let us denote s1, . . . , sN the quantum numbers of a system of N particles, one can write

any state in the basis set of elements |s1, . . . , sN 〉, which leads to the following definition of

neural-network quantum states (NQS):

|ΨNQS〉 =
∑

s1,··· ,sN
f(s1, . . . , sN )|s1, . . . , sN 〉 (4.1)

where f is a neural network, i.e. a high-dimensional function that takes an input of dimension

N and returns a complex number (note that in conventional ML tasks, neural networks usually

manipulate real numbers). Eq. (4.1) defines a large ensemble of states that is parametrized by

the choice of neural-networks (FFNN, CNN, etc..), their specific architecture (depth, etc..) and

the values of their internal weights.

As we will see in Sec. 4.2, these states can serve as variational ansatz to approximate

ground-states of quantum many-body systems. Another possible application is quantum

state tomography where one wants to reconstruct the many-body wave function of a sys-

tem realized in an experiment having only access to projective measurements in a given

basis[Carrasquilla et al. 2019, Torlai et al. 2018]. One can notice that the state in Eq. 4.1 is

defined up to a particular basis set, the natural basis arises from the experimental constraints

in tomography, but there is more freedom in VMC as will see later.

More importantly, the universal approximation theorems of machine learning ensure that

any physical state can be approximated with arbitrary precision with a NQS. However this does

not exclude the case where the size of the neural-network has to scale exponentially with system

size, therefore one of the primary focus of the field was to investigate the efficiency of NQS,

in other words the possibility to encode quantum states with neural networks growing only

polynomially with system size.

4.1.1 Restricted Boltzmann Machine

The first NQS considered in [Carleo & Troyer 2017] was based on a restricted Boltzmann ma-

chine (RBM). As defined in Sec. 2.3.3 of chapter 2, RBMs are energy-based models that contain

visible and hidden neurons coupled to each other as shown in Fig. 4.1.

Since the neuron values are usually binary, it is particularly natural to use this parametriza-

tion for spin-1/2 systems, with local magnetizations σzi = ±1 chosen as quantum numbers.

More precisely, for a spin-1/2 system of N constituents, any quantum state |Ψ〉 can be written

in the basis set of states |σz1〉 ⊗ · · · ⊗ |σzN 〉 (with σ̂zi |σzi 〉 = σzi |σzi 〉). The RBM ansatz consists in

parametrizing the complex amplitude on one this basis set, i.e. 〈σz1 · · ·σzN |Ψ〉, with the partition
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Figure 4.1: A RBM having N visible units taking the values of the local magnetizations σzi = ±1

of a spin-1/2 system and 3 hidden nodes hj = ±1. Some of its internal parameters are shown:

visible biases ai, hidden biases bj and connection weights Wi,j .

function of a RBM as follows:

ΨRBM(σz1 , . . . , σ
z
N ) =

∑

(h1,...,hM )∈{−1,1}M
exp




N∑

i=1

aiσ
z
i +

M∑

j=1

bjhj +
N∑

i=1

M∑

j=1

Wijσ
z
i hj


 (4.2)

where a = (ai)i=1...N ∈ CN , b = (bj)j=1...M ∈ CM and W = (Wij)i=1...N,j=1...M ∈ CN×M are

the complex variational parameters. Note that if these parameters were real, the wave function

would be real and positive and therefore could not encode a fermionic state with a sign structure.

Due to the absence of intralayer connections (visible-visible, hidden-hidden) in the RBM, the

expression above can be factored out:

ΨRBM(σz1 , . . . , σ
z
N ) = exp

(
N∑

i=1

aiσ
z
i

)
M∏

j=1

2 cosh

(
bj +

N∑

i=1

Wijσ
z
i

)
(4.3)

Efficiency of RBM states. The parametrization in Eq. 4.3 involves a total of NM +M +N

variational parameters which, provided the number of hidden nodes M is a polynomial function

of the system size N , results in an ansatz of polynomial complexity. The expressive power of

RBM states (which physical states can they efficiently approximate?) has been extensively

studied in the past years, with a particular focus on how they compare to tensor-network

states. Indeed, matrix product states (MPS) are considered state-of-the-art for 1D gapped

systems[Verstraete et al. 2008] where the entanglement is small, but the situation is less favor-

able in 2D since there exist area-law (for entanglement entropy) states that cannot be efficiently

approximated by PEPS[Ge & Eisert 2015] – the 2D generalization of MPS. A first striking result

was obtained in [Deng et al. 2017b] as the authors showed that a RBM can encode area-law as

well as volume-law states, in contrast to tensor-network states that can only sustain low entangle-

ment. Moreover, this could be achieved very efficiently, the number of RBM parameters scaling

only linearly with system size. It was also proven that RBMs can exactly represent topological

states[Deng et al. 2017a, Clark 2018] and that there exist RBMs of specific weight connectivity

that map exactly to tensor-network states[Glasser et al. 2018, Chen et al. 2018]. Despite these

encouraging results, RBMs as defined in Eq. 4.2 are shallow networks (they can be mapped to
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a two-layer feed-forward neural networks) and thus limited. In particular, there exist a class of

many-body ground states that cannot be efficiently approximated by RBMs[Gao & Duan 2017].

Advantages of depth. Contrary to machine learning where the advantage of depth still lacks

rigorous arguments, the situation is quite the opposite in quantum many-body physics. The the-

oretical superiority of deep architectures was studied in [Gao & Duan 2017] where they provide

a rigorous proof that deep neural networks can efficiently represent most physical states, includ-

ing ground states of many-body Hamiltonians. Moreover, deep NQS based on CNN or RNN can

sustain entanglement polynomially more efficiently than shallow RBM states[Levine et al. 2019].

Finally, deep Boltzmann machines – a deep generalization of RBM – are provably capable of

exactly representing quantum many-body states[Carleo et al. 2018]. However, one has to keep

in mind that depth comes with the price of a higher computational cost which can make these

deep NQS impractical in practice.

4.1.2 Implementing symmetries

Hamiltonians often have symmetries that their eigenstates inherit. Consequently, variational

quantum states that directly implement the symmetries of the model are expected to perform

best. For spatial symmetries in lattice models, a NQS based on CNN for example can easily

enforce translation-invariance[Choo et al. 2019]. Other symmetries like fermionic symmetry are

however more difficult to incorporate in the parametrization.

We follow the construction employed in [Carleo & Troyer 2017, Fabiani & Mentink 2019] to

design a symmetric RBM wave function. Let us consider a symmetry group containing S linear

transformations Ts that commute with the physical Hamiltonian, for instance translations, re-

flections or rotations of a lattice. We denote the transformed spin configurations Ts(σ
z
i ) = σ̃zi (s).

We would like to have a RBM parametrization such that Ψ(σz1 , . . . , σ
z
N ) = Ψ(σ̃z1(s), . . . , σ̃zN (s))

(up to a phase factor) for every transformation Ts and all configurations σz = (σz1 , . . . , σ
z
N ). This

can be achieved by considering a larger RBM having S × N visible units fed with the values

of σz and all its transformed copies T1σ
z, . . . , TSσ

z, coupled to S ×M hidden units but with

sparse weight connectivity and parameter sharing across the network as shown in Fig. 4.2.

This corresponds to the symmetric parametrization introduced in Eq. (S13) of the supple-

mentary material of [Carleo & Troyer 2017] (albeit with minor differences1):

Ψsym
RBM(σz1 , . . . , σ

z
N ) =

∑

(hf,s)∈{−1,1}M×S

S∏

s=1

exp




N∑

i=1

aiσ̃zi (s) +

M∑

f=1

b(f)hf,s

+
M∑

f=1

N∑

i=1

σ̃zi (s)W
(f)
i hf,s




(4.4)

1We corrected some typos in Eq.(S13), in particular their definition of the visible bias a(f) is such that∑
f,s,i a

(f)σ̃zi (s) =
(∑

f a
(f)
)∑

s,i σ̃
z
i (s) ≡ A

∑
s,i σ̃

z
i (s). We changed the definition of the visible bias to the

more natural form:
∑
s,i aiσ̃

z
i (s).
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Figure 4.2: A restricted Boltzmann machine that is invariant under the action of the transfor-

mations Ts corresponding to S symmetries of the system. This is done by considering S copies

of the same RBM whose parameters are shared across the network, this gives rise to S × N
visible units corresponding to the S transformed copies of the ”spin” configurations Tsσ

z and

S×M hidden units (here M = 3). Parameter sharing manifests in the fact that the same biases

ai, b
(f) and weights W

(f)
i are applied to each spin configuration Tsσ

z.

As done previously, it is possible to trace out the hidden variables, which gives:

Ψsym
RBM(σz1 , . . . , σ

z
N ) =

S∏

s=1

exp

(
N∑

i=1

aiσ̃zi (s)

)
M∏

f=1

2 cosh

(
b(f) +

N∑

i=1

W
(f)
i σ̃zi (s)

)
(4.5)

A symmetric RBM has NM +M +N variational parameters which is the same number as for a

non-symmetric RBM. However, the number of hidden nodes in non-symmetric RBMs is usually

chosen to scale with N as M ≡ αN , whereas it is chosen constant for symmetric RBM M ≡ α.

This means that symmetric RBM ansatz will have in practice less variational parameters than

non-symmetric RBM ansatz. This last point will be discussed in Sec. 4.4.

4.2 Variational Monte Carlo

The idea of variational approximation was introduced in the early days of quantum mechanics

when Heitler and London proposed a simplified expression of the ground state of theH2 molecule.

Roughly speaking, variational approximation boils down to approximating a target state with a

guess wave function (ansatz ) which depends on a preferably small number of variational parame-

ters, this way studying the target state is made analytically and/or numerically tractable. Many

wave functions of electronic systems have been proposed: ones that assume that electrons are

independent i.e. using the so-called Hartree-Fock approximation[Slater 1930], ones that include

the effect of on-site electron repulsion also known as Gutzwiller wave functions[Gutzwiller 1963],

which can be further modified to account for density-density correlations in the form of Jastrow

factors[Jastrow 1955]. In Sec. 4.2.3, we will see how NQS can be used as variational wave

functions. This section follows to a great extent chapters 5 and 6 of [Becca & Sorella 2017].
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4.2.1 Variational principle

Let us say one wants to find a good approximation of the ground-state |E0〉 of a given Hamil-

tonian H using a variational state |Ψθ〉. How can one find the parameters of the wave-function

θ such that |Ψθ〉 is close to |E0〉? The first part of the solution is provided by the variational

principle derived below (we use |Ψθ〉 =
∑

i ai|Ei〉 in the eigenbasis of H):

ε ≡ Eθ − E0 =
〈Ψθ|H|Ψθ〉
〈Ψθ|Ψθ〉

− E0 (4.6)

=
∑

i

|ai|2Ei − E0 (4.7)

=
∑

i

|ai|2(Ei − E0) (4.8)

≥ 0 (4.9)

where we used the normalization condition 〈Ψθ|Ψθ〉 =
∑

i |ai|2 = 1 and the fact that E0 ≤ Ei.

In particular, this shows that the energy of any variational state |Ψθ〉 provides an upper bound

on the true ground state energy E0. Therefore, by minimizing Eθ, one can expect that the

variational wave function will become a better approximation of the true ground-state wave

function |E0〉. This statement can be made more precise by considering the energy gap ∆ ≡
E1 − E0 with respect to the first excited state. Indeed, one can obtain a better lower bound in

Eq. 4.8 since Ei − E0 ≥ ∆ for i 6= 0, hence:

ε ≥ ∆
∑

i 6=0

|ai|2 (4.10)

ε

∆
≥ 1− |a0|2 = 1− 〈E0|Ψθ〉 (4.11)

One sees that if the energy error ε is small compared to the gap, the overlap 〈E0|Ψθ〉 is guaranteed

to be close to 1.

If the parametrization |Ψθ〉 is too simple, the true target ground-state could potentially

be out of reach and in general this makes this method biased. In particular, difficult cases

arise when many incompatible assumptions are possible, for instance when there exist states

with different physical properties but close in energy as in the frustrated J1 − J2 Heisenberg

model[Figueirido et al. 1990, Kotov et al. 1999, Zhitomirsky & Ueda 1996]. Nevertheless an im-

portant advantage of the variational approach is that it does not suffer from the sign problem

contrary to quantum Monte Carlo methods.

Calculating energy and diagonal observables. Let us denote a complete orthogonal and

normalized basis set {|x〉} of the many-body Hilbert space. The energy expectation value Eθ

can be computed as follows (using a resolution of the identity
∑

x |x〉〈x| = I):

Eθ =
〈Ψθ|H|Ψθ〉
〈Ψθ|Ψθ〉

=
∑

x

|Ψθ(x)|2∑
x |Ψθ(x)|2 eL(x) (4.12)

where we introduced the local energy eL(x):

eL(x) =
〈x|H|ψθ〉
〈x|ψθ〉

=
∑

x′
Hx,x′

Ψθ(x′)
Ψθ(x)

(4.13)
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Note that the Hamiltonian H is in general a local operator which means that the sum
∑

x′ is

tractable since there are at most O(N) non-zero elements Hx,x′ for a given x, with N being the

number of lattice sites. For an observable O diagonal in the basis {|x〉} (i.e. 〈x|O|x′〉 = δx,x′Ox),

one can similarly compute the expectation of O on |Ψθ〉 as follows:

〈O〉 =
〈Ψθ|O|Ψθ〉
〈Ψθ|Ψθ〉

=
∑

x

|Ψθ(x)|2∑
x |Ψθ(x)|2Ox (4.14)

Given that P(x) ≡ |Ψθ(x)|2∑
x |Ψθ(x)|2 defines a probability distribution, it is clear that energy and

diagonal observables can be evaluated statistically with a Markov chain Monte Carlo (MCMC)

procedure. By performing a random walk in configuration space (here {|x〉}) with a probability

of selecting and accepting the next configuration such that detailed balance is satisfied, a se-

quence of configurations {xi} can be generated and will be distributed as P(x). The acceptance

probability follows the usual Metropolis scheme:

A(xi → xi+1) = min

(
1,

∣∣∣∣
Ψθ(xi+1)

Ψθ(xi)

∣∣∣∣
2
)

(4.15)

The selection rule is usually chosen such that the ratio Ψ(xi+1)/Ψ(xi) can be evaluated quickly.

Also it must be ergodic meaning that any configuration x can be reached from any starting x0

in configuration space. All in all, the energy (Eq. 4.12) and diagonal observables (Eq. 4.14) can

be estimated from a sequence of configurations {xi}i=1...Nsamples
as follows:

Eθ ≈
1

Nsamples

Nsamples∑

i=1

eL(xi) (4.16)

〈O〉 ≈ 1

Nsamples

Nsamples∑

i=1

OL(xi) (4.17)

The zero-variance property. An important feature of VMC is the fact that whenever a

variational state coincides with an exact eigenstate of the Hamiltonian, the expectation value of

the energy variance 〈(H − E)2〉 vanishes. This originates from the property of the local energy

eL(x):

eL(x) =
〈x|H|Ψθ〉
〈x|Ψθ〉

= E
〈x|Ψθ〉
〈x|Ψθ〉

= E (4.18)

which becomes constant in that case and thereby shows that the random variable eL(xi) does

not fluctuate. In some VMC settings, this property is used and minimization of the energy

variance is attempted instead of minimization of the energy.

4.2.2 Energy minimization

Gradient descent can be applied to minimize Eθ, this means the parameters of the variational

state are updated according to:

θj ← θk − λ
∂Eθ

∂θk
(4.19)
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with the learning rate λ being sufficiently small to ensure convergence. Note that one can include

higher-order terms in Eq. 4.19 (though it becomes too expensive in the majority of cases) or use

algorithms like Adam[Kingma & Ba 2015], Adadelta[Duchi et al. 2011] that adapt the learning

rate as done in ML (see Sec. 2.3.4 in chapter 2). As shown in [Becca & Sorella 2017], evaluating
∂Eθ
∂θk

requires computing the logarithmic derivative of Ψθ, which we denote Ok which reads:

Ok(x) =
∂ log Ψθ(x)

∂θk
=

1

Ψθ(x)

∂Ψθ(x)

∂θk
(4.20)

The detailed derivation can be found in [Becca & Sorella 2017] and the final results include the

local energy eL(x) defined in Eq. 4.13:

∂Eθ

∂θk
≈ 2<


 1

Nsamples

Nsamples∑

i=1

e∗L(xi)
(
Ok(xi)−Ok

)

 (4.21)

Ok =
1

Nsamples

Nsamples∑

i=1

Ok(xi) (4.22)

Stochastic reconfiguration. The stochastic reconfiguration (SR) algorithm was introduced

in [Sorella 1998] and uses information about the geometry of the parameter space to improve

the stability of the optimization. SR is also known as natural gradient[Amari 1998] in the ML

community and stems from the observation that the gradient descent update rule (Eq. 4.19)

assumes that the parameter space is Euclidean, i.e. every dimension corresponding to a param-

eter θk is equivalent. However in most cases many non-equivalent variational parameters enter

the ansatz in a highly non-linear fashion. Put in other words, a change of parameter θk + δθ

results in a wavefunction |Ψθ+δθek〉 that can be very different from |Ψθ+δθek′ 〉, although the

change in parameter θk′ was done with the same magnitude δθ. This calls the consideration of

the non-Euclidean metric δs that defines a distance with respect to change of the wavefunction,

i.e.

δs2 = min
φ
‖exp(−iφ)Ψθ+δθ −Ψθ‖2 (4.23)

where the presence of φ is required as we do not want to distinguish wave functions that differ

only by a phase factor. This distance can be related to the original Euclidean metric via the

following relation[Sorella 1998]:

δs2 =
∑

k,k′
Sk,k′δθkδθk′ (4.24)

where the covariance S matrix can be obtained stochastically with the relation:

Sk,k′ ≈ <


 1

Nsamples

Nsamples∑

i=1

(Ok(xi)−Ok)(Ok′(xi)−Ok′)


 (4.25)

Finally, the parameter update takes the form[Sorella 1998]:

θk+1 = θk − λ
∑

k′
S−1
k,k′

∂Eθ

∂θk′
(4.26)
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In practice, the matrix S can be non-invertible and explicit regularization may be needed.

One possibility is to add a small diagonal matrix of the form Sreg
k,k′ = Sk,k′ + λtδk,k′Sk,k as in

[Carleo & Troyer 2017] with λt decaying with the number of VMC iterations t. In addition to

that, it is possible to avoid inverting the whole matrix S and instead exploit the structure of S

combined with conjugate-gradient methods to iteratively compute the pseudo-inverse S−1.

Implementation. In summary, each gradient descent step involves:

1. generating a sequence of Nsamples independent configurations {xi} obtained after equili-

brating a MCMC according to the probability distribution P(x) = |Ψθ(x)|2∑
x |Ψθ(x)|2 ,

2. computing the values of the local energy eL(xi) (Eq. 4.18), the logarithmic derivatives

of Ψθ, Ok(xi) (Eq. 4.20) and Ok (Eq. 4.22) for all samples xi and all the variational

parameters θk,

3. computing ∂Eθ
∂θk

(Eq. 4.21) and Sk,k′ (4.25) for all the variational parameters θk,

4. if stochastic reconfiguration is used, computing the inverse of the S matrix,

5. updating the parameters θk according to Eq. 4.26.

4.2.3 RBM as variational wave functions

The seminal work of Carleo and Troyer[Carleo & Troyer 2017] stimulated a num-

ber of contributions[Nomura et al. 2017, Fabiani & Mentink 2019, Ferrari et al. 2019,

Inack et al. 2018, Pilati & Pieri 2020] that showed that RBM-type wave functions can

provide an accurate variational description of ground states of several 1d and 2d bosonic

and fermionic quantum systems in the framework of variational Monte Carlo. Other NQS

have been considered and produced excellent results: CNN in [Choo et al. 2019], RNN in

[Hibat-Allah et al. 2020] or autoregressive networks in [Sharir et al. 2020]. The VMC method

essentially relies on the computation of the log-derivatives Ok and the local energy eL where

the ratio Ψ(x′)/Ψ(x) appear. When |Ψθ〉 is parametrized by a RBM, the expression of Ok is

given in Tab. 4.1.

non-symmetric RBM (Eq. 4.2) symmetric RBM (Eq. 4.4)

1
Ψ(σz)

∂Ψ
∂ai

(σz) = σzi
1

Ψ(σz)
∂Ψ
∂ai

(σz) =
∑S

s=1 σ̃
z
i (s)

1
Ψ(σz)

∂Ψ
∂bj

(σz) = tanh [θj(σ
z)] 1

Ψ(σz)
∂Ψ
∂b(f)

(σz) =
∑S

s=1 tanh [θf,s(σ
z)]

1
Ψ(σz)

∂Ψ
∂Wij

(σz) = σzi tanh [θj(σ
z)] 1

Ψ(σz)
∂Ψ

∂W
(f)
i

(σz) =
∑S

s=1 σ̃
z
i (s) tanh [θf,s(σ

z)]

Table 4.1: Log-derivatives of two types of RBM wave functions with respect to all variational

parameters. We defined angles θj(σ
z) = bj+

∑
iWijσ

z
i for non-symmetric RBMs and θf,s(σ

z) =

b(f) +
∑

iW
(f)
i σ̃zi (s) for symmetric RBMs.
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We refer to Sec. A.1 of appendix A for a detailed discussion of the complexity of the VMC

algorithm with RBM wave functions. The dominant cost is shown to be O(αN2 ×Nsamples) for

both M ≡ αN non-symmetric RBMs and M ≡ α symmetric RBMs.

4.3 Projection methods

Projection methods rely on the power method which consists in repeatedly applying the Hamil-

tonian H on a given state |Ψinit〉, after a large enough number of projections, the projected state

is expected to be close to the eigenstate of largest absolute eigenvalue of H. In other words, we

have:

lim
p→∞

(λI −H)p|Ψinit〉 ∝ |E0〉 (4.27)

where |E0〉 is the ground state wave function and the value of λ (which has no consequences on

the physics) is such that the largest absolute eigenvalue of (λI −H) is the ground-state energy

E0. The successive projections have the effect of filtering out the highest-energy states because

of the following relations (using |Ψinit〉 =
∑

i ai|Ei〉):

(λI −H)p|Ψinit〉 =
∑

i

ai(λ− Ei)p|Ei〉 (4.28)

= a0(λ− E0)p


|E0〉+

∑

i 6=0

ai
a0

(
λ− Ei
λ− E0

)p
|Ei〉


 (4.29)

in particular with a suitable choice of λ such that |λ − Ei| < |λ − E0|, the method converges

exponentially fast to the ground-state wave function (the factor a0(λ−E0)p being irrelevant) as

long as |Ψinit〉 is not orthogonal to the ground state (a0 6= 0). Note that in accordance with the

variational principle, the energy of the projected state is also an upper bound of the true ground

state energy. Contrary to VMC, projection methods are exact by nature for p large enough

which makes them particularly appealing for the study of strongly-correlated models. One way

to use the power method for large systems is to consider the projection operations stochastically

as it is done in the reptation Quantum Monte Carlo method presented below.

4.3.1 Reptation QMC

An interesting approach called reptation Quantum Monte Carlo (RQMC) was in-

troduced in [Baroni & Moroni 1999] that uses a path-integral representation leading

to a method conceptually more simple than the previously used many walkers

formulation[Calandra-Buonaura & Sorella 1998]. The aim of RQMC is to define a Markov pro-

cess that allows to sample the following partition function:

Z = 〈Ψinit|(λI −H)p|Ψinit〉 (4.30)

where |Ψinit〉 is a given state that can be random or the best variational state obtained from

VMC calculations. The impact of the choice of |Ψinit〉 will be evaluated later in this section. By

inserting p+ 1 resolutions of unity in Eq. 4.30, we obtain:

Z =
∑

x0,...,xp

〈Ψinit|x0〉〈x0|(λI −H)|x1〉 · · · 〈xp−1|(λI −H)|xp〉〈xp|Ψinit〉 (4.31)
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We introduce the quantity Gx,x′ = 〈x|(λI −H)|x′〉 〈x′|Ψinit〉
〈x|Ψinit〉 which is close to a Green’s function

supplemented with a guiding function Ψinit(x). Rearranging the terms in the equation above,

we obtain:

Z =
∑

x0,...,xp

Gx0,x1 · · · Gxp−1,xp |Ψinit(x0)|2 ≡
∑

x0,...,xp

W (x0, . . . , xp) (4.32)

Note that to ensure that the relation above can be interpreted as a classical partition function,

W (x0, . . . , xp) hence all the terms Gx,x′ should be positive. Whenever any of the Gx,x′ is negative,

we are faced with the famous sign problem.

Ground-state energy and calculation of other observables. Given thatW (x0, . . . , xp)/Z

can be interpreted as a probability distribution (granted there is no sign problem), let us see

now how to compute the ground-state energy and other physical observables of interest. Let us

consider the energy expectation value of the projected state (λI −H)p/2|Ψinit〉:

〈H〉 =
〈Ψinit|(λI −H)p/2H(λI −H)p/2|Ψinit〉

〈Ψinit|(λI −H)p|Ψinit〉
=

1

Z

∑

x0,...,xp

eL(x0)W (x0, . . . , xp) (4.33)

where we used the fact that H commutes with (λI − H)p/2 and eL(x0) is the local energy as

defined in Eq. 4.13. For diagonal operators O, similarly we have that :

〈O〉 =
〈Ψinit|(λI −H)qO(λI −H)p−q|Ψinit〉

〈Ψinit|(λI −H)p|Ψinit〉
=

1

Z

∑

x0,...,xp

O(xp−q)W (x0, . . . , xp) (4.34)

where we can choose q = bp/2c. As we will see in next paragraph, it is possible to sample

efficiently the probability distribution P(x0, . . . , xp) = W (x0, . . . , xp)/Z which makes possible

the statistical estimation of observables by sampling the middle configuration of the snake R ≡
(x0, . . . , xp) for diagonal operators or its end points for the energy.

Sampling W (x0, . . . , xp). Sampling is done by generating a sequence of reptiles R in a Monte

Carlo Markov chain. Two basic reptile moves were introduced in [Baroni & Moroni 1999] and

consist in shifting the snake to the right or the left as shown in Fig. 4.3.

x0

x1

x2

x3

x4

xTd=+1
?

Figure 4.3: A reptile of size p = 4 and a right move d = +1 extending the snake with the

configuration xT .

We need to introduce the quantities bx =
∑

x′ Gx,x′ and px′,x = Gx,x′/bx (giving
∑

x′ px′,x = 1)

to write down the transition t(d) and acceptance a(d) probabilities for the right (d = +1) and

left (d = −1) moves:

t(+1)(R′|R) = pxT ,x0 , a(+1)(R′|R) = min

[
1,

bx0
bxp−1

]
(4.35)

t(−1)(R′|R) = pxT ,xp , a(−1)(R′|R) = min

[
1,
bxp
bx1

]
(4.36)
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What is important to notice in the above equations is that selection and acceptance only

needs values of bx and px,x′ from either ends of the reptile. Moreover, it solves the low ac-

ceptance problem occurring in Green’s function Monte Carlo. There, acceptance is computed

as a product of bx · · · b′x weights whose number of terms grows along sampling and eventually

vanishes[Becca & Sorella 2017]. We refer the interested reader to [Becca & Sorella 2017] for the

detailed derivation of these relations and the proof that it satisfies detailed balance. A sam-

pling scheme called the bounce algorithm was shown to decrease the autocorrelation between

samples[Pierleoni & Ceperley 2005]. All in all, for sufficiently large p, the ground-state energy

and diagonal observables can be estimated from Nsamples independent samples {Ri}:

E0 ≈
1

Nsamples

Nsamples∑

i=0
Ri=(x0,...,xp)

eL(x0) + eL(xp)

2
(4.37)

〈O〉 ≈ 1

Nsamples

Nsamples∑

i=0
Ri=(x0,...,xp)

O(xbp/2c) (4.38)

where we used also in Eq. 4.37 the equivalence of the endpoints of the snake.

4.3.2 RBM as guiding wave functions

When |Ψinit〉 is chosen to be a more educated guess than just a random state, it is called a

guiding wave function. If |Ψinit〉 is close to the exact ground-state, i.e. ai/a0 � 1 in Eq. 4.29,

we naturally expect faster convergence (still exponential but with a better prefactor), therefore

reaching a certain error threshold could require less projections. Another important advantage

of the guiding wave function is the fact that it can cure the sign problem in some cases. Indeed,

if the Green’s function 〈x|(λI − H)|x′〉 is negative for some configurations x and x′, the sign

structure of H can sometimes be cancelled out by encoding it in |Ψinit〉, hence ensuring Gx,x′ > 0.

We refer to Sec. A.2 of appendix A for details on the complexity of the RQMC algorithm.

The dominant cost of to obtain Nsamples samples with p projections is O(N × p × Nsamples)

without a guide and O(αN2×p×Nsamples) for both M ≡ αN non-symmetric RBMs and M ≡ α
symmetric RBMs.

4.4 Study of a two-dimensional ring-exchange model

The prototypical ground state of a fermionic system is a Fermi liquid where electrons lie inside

a sphere in momentum space called the Fermi surface. Low-energy excitations happen only

near this surface because of the Pauli principle. Bosonic systems typically form Bose-Einstein

condensates (BEC) at T = 0 where all bosons behave as a whole in the form of a coherent

macroscopic quantum wave function. When the repulsion is increased between bosons in a

lattice, superfluidity arising in BEC is often replaced by a Mott insulating phase in which

bosons localize in a crystalline arrangement. In [Paramekanti et al. 2002], Paramekanti, Balents

and Fisher proposed the existence of a new bosonic state of matter sharing many similarities

with fermionic states. They provide theoretical arguments in favor of the stability of this phase

if ring-exchange kinetic terms (see Fig. 4.4) are sufficiently strong compared to usual near-site
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hopping. These findings were particularly exciting as it was argued to be relevant in the context

of solid 3-He[Roger 1983] and possibly related to high-Tc superconductivity. Alternatively, one

can view ring-exchange processes as the hopping of a pair of particles – one boson and one

hole forming an exciton – throughout the lattice, thus motivating the name exciton Bose liquid

(EBL). EBL features the following thermodynamic properties: finite compressibility, specific

heat in ∼ T log(T ) and the existence of a 1D manifold of gapless excitations, which is reminiscent

of liquids[Paramekanti et al. 2002].

Figure 4.4: A ring-exchange moves two bosons located on the diagonal of a plaquette to the

opposite diagonal.

4.4.1 The K1 −K2 model

Following up on a series of attempts[Sandvik et al. 2002, Melko et al. 2004,

Rousseau et al. 2004, Rousseau et al. 2005] to realize the EBL phase in Hamiltonian models,

Tay and Motrunich [Tay & Motrunich 2010, Tay & Motrunich 2011] studied a model of

hardcore bosons with two types of ring-exchange moves where they provide numerical evidences

in favor of the existence of this phase. Let us first define ring-exchange operators on the square

lattice on plaquette r:

Pmnr = b†rbr+mx̂b
†
r+mx̂+nŷbr+nŷ (4.39)

Figure 4.5: The ring exchange operators for (a) 1× 1, (b) 2× 1 and (c) 1× 2 plaquettes. Figure

from [Tay & Motrunich 2010].

Fig. 4.5 shows the three types of plaquette operators appearing in the Hamiltonian considered

in [Tay & Motrunich 2010, Tay & Motrunich 2011] which reads:

H = −K1

∑

r

P 1×1
r −K2

∑

r

(
P 1×2
r + P 2×1

r

)
(4.40)

Without loss of generality, we set K1 = 1 and vary K2 ≥ 0 in the following. The model

with K2 = 0 was considered earlier in [Melko et al. 2004] and was shown to exhibit a (π, π)

charge-density wave (CDW) phase. This could be expected since energy decreases as more 1×1

plaquettes are hoppable, the ground state will lie in the sector containing the Néel boson configu-

ration (see Fig. 4.7a where all the L2 plaquettes of the lattice are hoppable, L being the linear size

of the square lattice). It was shown in [Tay & Motrunich 2011] that the EBL phase is unstable to
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such a (π, π)-CDW due to the presence of Umklapp terms that destroy the liquid. Model (4.40)

can be considered as the simplest model including only ring-exchange terms that is capable of

destabilizing a CDW order due to the presence of the K2 terms. Indeed, the K2 terms do not act

on the Néel configuration, they compete with K1 terms and also between each other. In addition

to that, extended ring-exchanges have the effect of mitigating phase separation tendencies as

observed away from half-filling[Rousseau et al. 2004, Rousseau et al. 2005]. Despite the absence

of a sign problem for non-negative K1 and K2 (all terms in Hamiltonian (4.40) are negative),

the model is hard to simulate with QMC. Indeed, efficient update schemes are hard to design

due to the ring-exchange term[Melko & Sandvik 2005]. As a consequence, Tay and Motrunich

used variational and Green function Monte Carlo[Calandra-Buonaura & Sorella 1998] methods

to obtain the phase diagram in Fig. 4.6.

Figure 4.6: Phase diagram for model 4.40 as obtained in [Tay & Motrunich 2011]. A charge-

density wave (CDW) phase develops at small K2/K1, then a columnar valence-bond state (VBS)

was observed at moderate values of K2/K1, then the exciton Bose liquid phase starts off beyond

K2/K1 ≈ 4.

The relevant order parameters or observables of each phase are listed below:

1. Density structure factor – the CDW phase. An important observable to detect

ordering is the density structure factor, it is defined as the Fourier transform of density-

density correlations:

S(qx, qy) =
1

L2

∑

r,r′
eiq·(r−r

′)〈nrnr′ − n̄〉 (4.41)

A natural order parameter for a (π, π)-CDW is the value of the density structure factor

at q = (π, π) where it reaches a maximum for a staggered boson occupation (Neéel state).

The value of S(π, π) can also be written as:

S(π, π) =

〈∣∣∣∣∣∣
1

L

∑

r=(rx,ry)

(−1)rx+ry(nr − n̄)

∣∣∣∣∣∣

2〉
(4.42)

whose computational cost scales like N rather than N2 if calculated naively from Eq. 4.41.

2. Plaquette structure factor – the VBS phase. Likewise, the corresponding order

parameter for a (0, π) valence bond solid (VBS) is obtained from plaquette structure

factor defined as follows:

P (qx, qy) =
1

L2

∑

r,r′
eiq·(r−r

′)
〈(
P 11
r

)2 (
P 11
r′
)2〉

(4.43)

whose value at q = (0, π) can be used as an order parameter of this phase. Again, it is

possible to obtain a similar simplified expression as in Eq. 4.42.
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3. Cross observable – the EBL phase. The conditions for the existence of an EBL phase

were derived in [Paramekanti et al. 2002]: (i) there should not be any charge ordering,

which can be probed by the existence/absence of Bragg peaks in the Brillouin zone and

(ii) the density structure factor should display singular lines (0, qy) and (qx, 0) which are

theoretically identified with the presence of a Bose surface. The second condition can be

examined based on the cross operator defined in [Tay & Motrunich 2011]:

σ(qx, qy) =
S(qx, qy)

4| sin(qx/2) sin(qy/2)| (4.44)

where SEBL(qx, qy) ≡ 4| sin(qx/2) sin(qy/2)| is the prediction of the EBL the-

ory [Paramekanti et al. 2002]. As argued in [Tay & Motrunich 2011], a positive identi-

fication of the EBL phase is signaled if the value of σ near the singular lines stays finite

in the thermodynamic limit since in that case S(qx, qy) ∝
qx→0

SEBL(qx, qy) (or equivalently

when qy → 0). Moreover, [Tay & Motrunich 2011] argued based on an effective field

theory that in order for the EBL phase to be stable, σ should stay above a threshold

value σ ≥ σc = 3/16. In practice, we will evaluate σ(qmin = 2π/L, qy) or equivalently

σ(qx, qmin = 2π/L).

4.4.2 Conservation laws and consequences

The peculiarity of the K1 −K2 model stems from the presence of ring-only kinetic terms which

induces a number of symmetries and associated conservation laws. Hamiltonian (4.40) conserves

the total number of bosons (U(1) symmetry), it is particle-hole symmetric and inherits the spa-

tial symmetries of the square lattice (i.e. invariant under the action of the C4v point-group

corresponding to the L2 translations and 8 rotations and reflections of the lattice). More impor-

tantly, the number of bosons per line and per column is conserved (associated to 2L symmetries).

These latter conservation laws have profound consequences on the properties of the system such

as highly constrained dynamics since the bosons can only move in a correlated manner. An-

other direct consequence is the existence of a zero-energy manifold along the lines (qx, 0) and

(0, qy) [Paramekanti et al. 2002] from which the Bose surface of low-energy gapless excitations

originates.

The existence of these conservation laws means that the Hilbert space will fragmentate in

as many sectors as specific values of the conserved quantities. In the following, we will study

the half-filled lattice, i.e. n̄ = 1
2 sector, and concentrate on the sector of half-filled columns and

rows. We checked for the smallest system sizes that the ground-state is in that sector and its

size has a favorable scaling 2L
2−L log(L)+L(log(2)−log(π))+o(L) (that we derived from the results

of [Canfield & McKay 2005]). Since the variational and projection methods rely on sampling

boson configurations, one has to verify whether sampling can be ergodic if new configurations

are obtained from a Hamiltonian move (i.e. boson configurations are transformed according to

1× 1, 1× 2 or 2× 1 plaquette ring-exchanges). Clearly, sampling preserves the same conserved

quantities as the Hamiltonian, that is the number of bosons and the number of bosons per rows

and columns. However, we noticed that some configurations of bosons are kinetically frozen as

can be seen Fig. 4.7b, meaning that they are connected to no other configurations by an element

of the Hamiltonian. For K1 6= 0 and K2 6= 0, we checked that they represent a negligible portion

of the sector size: 0 for L = 4, 12 for L = 6 (the exact enumeration for larger system sizes is
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too expensive). For K1 = 0 or K2 = 0, more care has to be taken as we noticed fragmentation

of the Hilbert space into an extensive number of Krylov subspaces similar to what was observed

in [Khemani & Nandkishore 2020, Moudgalya et al. 2019, Sala et al. 2020] but this is out of the

scope of our current study and we leave this for future investigations.

Figure 4.7: (Left) Néel state where all 1×1 plaquette of the lattice are ring-exchangeable. (Right)

Example of a kinetically frozen configuration for the K1 − K2 model on a 6 × 6 lattice. This

boson configuration (bosons are black filled circles, holes are white circles) is in the n̄ = 1
2 sector

with half-filled rows and columns but is connected to no other configurations by the dynamics

produced by the Hamiltonian, i.e. Hcf ,c′ = 0 for all other configuration c′ of the sector with cf
the frozen configuration. For L = 6, there are 12 such frozen states related by 6 x-translation

and a reflection.

Motivated by the burst of activity surrounding NQS, our work is an attempt to extend the

findings of [Tay & Motrunich 2010], i.e. confirm or contradict their results on larger system

sizes (up to L ≤ 16 compared to L = 12 in [Tay & Motrunich 2010]) with a variational study

using NQS and guided reptation QMC methods as presented in previous sections. This also

constitutes an interesting benchmark to test the efficiency of NQS in this multifaceted phase

diagram.

4.4.3 VMC results

Although RBM wave functions are provably unable to approximate efficiently certain many-

body states, they achieved excellent performance in many different contexts and stand as one

of the simplest NQS to use. A key ingredient in the success of variational approaches is the

implementation of symmetries of the model directly into the variational ansatz. Here, given

that −H is real and non-negative in the basis of boson occupation number, the Perron-Frobenius

theorem ensures that the ground-state is unique and can be written as a real and positive vector,

thus we will consider RBM with only real parameters. The uniqueness of the ground state proves

that it possesses the same symmetries of the Hamiltonian2. Throughout our variational study,

we will use three types of RBM ansatz, each being invariant to different symmetries of model

(4.40):

• a real RBM (denoted rRBM hereafter) based on the non-symmetric ansatz of Eq. 4.3 with

M ≡ αN hidden nodes which amounts to αN2 + (α+ 1)N variational parameters.

• a real translation-invariant RBM (denoted T -invariant rRBM) based on the symmetric

2Since for any eigenstate |E〉 and a symmetry U of the Hamiltonian, U |E〉 is also an eigenstate of the Hamil-

tonian with the same energy E.
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ansatz of Eq. 4.4 implementing the N lattice translations. We choose a number of filters

M ≡ α, thus this ansatz includes (α+ 1)N + α variational parameters.

• a real C4v-invariant RBM (denoted hereafter C4v-invariant rRBM) containing the sym-

metries of the T -invariant rRBM supplemented with the 8 rotations and reflections of the

lattice, thereby enforcing the complete C4v point-group symmetry of the square lattice. It

includes the same amount of variational parameters as the T -invariant RBM but results

in a computational overhead proportional to the number of additional symmetries (×8).

Setting the visible biases ai to 0 is a sufficient condition to enforce particle-hole symmetry,

however we did see only little improvement of the performance doing this. Sampling according

to Hamiltonian moves allows to conserve the number of bosons per row and column during

the sampling procedure, which also preserves the U(1) symmetry. We empirically chose the

hyperparameters of the simulation. In most runs, the learning rate was set around 0.05 but

needed to be decreased for larger values of K2 and larger lattices. We noticed that stochastic

reconfiguration produces more stable learning and faster convergence (in terms of the number

of VMC iterations) than simple gradient descent. The VMC calculations were done with the

Netket library [Carleo et al. 2019a].

In the following, we start by benchmarking the RBM ability to accurately approximate the

ground state of model (4.40) by comparing the energy and the value of other observables of

optimized RBMs to exact diagonalization for L = 6 (maximum achievable) and to the Green’s

function Monte Carlo results of [Tay & Motrunich 2011] for L = 12. After that, we attempt a

finite-size scaling analysis of the different order parameters to map out the phase diagram.

4.4.3.1 Benchmark against exact diagonalization on L = 6

Fig. 4.8 shows the accuracy of the observables of interest as a function of the ansatz complexity

α, in the three regimes revealed by [Tay & Motrunich 2010]: K2 = 0 representative of the

CDW phase, K2 = 1 representative of the VBS phase and K2 = 7 representative of the EBL

phase. First of all, we note that the precision of all observables is better than the one-parameter

variational ansatz of [Tay & Motrunich 2011] that was based on spin wave theory, this holds

for all K2 regimes and all RBM ansatz considered. Energy and fidelity can be systematically

improved by increasing α, we can reach 10−3 relative error with moderate effort from α = 4 on,

also the precision has not yet saturated for the symmetric ansatz for large α and large K2 which

is reassuring regarding the expressive power of the RBMs. As K2 is increased, the relative error

slightly increases which can be explained by the fact that the large-K2 regime is gapless (see

Eq. 4.11). Finally, the advantage of implementing symmetries is more visible for K2 ≤ 1 and

large α, as can be seen from the fact that the relative error on the energy and fidelity of rRBMs

saturates at higher values than with T - or C4v-invariant rRBMs.

The relative error on S(π, π) and P (0, π) is not a clear monotonously decreasing function

of α since these observables are not explicitly optimized (although P (0, π) behaves somewhat

better). It is in fact known that the error on these observables scales as
√

1− 〈E0|ΨRBM〉 (see

[Becca & Sorella 2017]), which roughly applies here (10−3 precision on fidelity translates into

∼ 10−2 for S(π, π) and P (0, π)). We checked that these results hold for other values of K2.
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Figure 4.8: Relative error on (a) the energy, (b) overlap 1 − 〈E0|ΨRBM〉, (c) S(π, π), (d)

P (0, π), with respect to the exact ground-state for L = 6 at different values of K2 as a

function of the RBM complexity α. The relative error on each observable O is computed as

|ORBM −Oexact|/|Oexact|. For clarity purposes, we set the α axis as logarithmic for S(π, π) and

P (0, π). The variational results of [Tay & Motrunich 2011] are represented as red dashed lines.

The energy of the first-excited state is represented as purple dashed lines. All observables are

evaluated on 50000 configurations sampled from the corresponding RBMs.
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4.4.3.2 Benchmark against GFMC on L = 12
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Figure 4.9: Relative error of observables with respect to the best RQMC results (see Sec. 4.4.4),

i.e. |ORBM − ORQMC|/|ORQMC|, obtained from different RBMs trained at different K2 and

L = 12 plotted as a function α. (Top) Energy. (Middle) Density structure factor S(π, π).

(Bottom) Plaquette structure factor P (0, π).

We benchmark our variational wave functions on L = 12 against the best RQMC results of

Sec. 4.4.4 which can be considered exact. Here we discard rRBMs since they displayed the worst

performance in last section. The precision on the energy is slightly worse (by a factor of 10)

than for L = 6 (see Fig. 4.8) but remains good. The precision stabilizes at large α and shows
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the inherent approximation bias of the T -invariant rRBMs.

Given the VMC calculations are 8 times slower for C4v-invariant RBMs than T -invariant

RBMs for a given α (see Sec. A.1 of appendix A), the largest α data points represented in

Fig. 4.9 (α = 2 for C4v-invariant RBMs and α = 16 for T -invariant RBMs) in fact carry

the same computational cost. Knowing this, the precision of the C4v-invariant ansatz is quite

disappointing since it has a larger relative error on all observables and in all regimes (except

S(π, π) at K2 = 1) when compared to T -invariant RBMs of the same computational cost.

4.4.3.3 Variational phase diagram

Let us establish the phase diagram of the K1 − K2 model from our RBM-VMC setup. In

particular, we are interested in seeing whether the RBMs are able to reveal the plaquette ordered

phase that was missed by the variational ansatz of [Tay & Motrunich 2011]. We perform a finite-

size scaling analysis of the CDW and VBS order parameters calculated from T -invariant rRBM

wave functions with α = 10 across the whole phase diagram for system sizes up to L = 16. The

scaling is done on the quantities S(π, π)/L2 and P (0, π)/L2, which we expect to converge to

a finite non-zero value in the thermodynamic limit. We also looked at their respective Binder

cumulant that is defined as follows for an observable O:

Binder ratio =
〈|O|4〉
〈|O|2〉2 (4.45)

The advantage of such a quantity is that it is expected to approach 1 in the presence of order

and 3 in the absence of order, moreover it is less sensitive to finite-size effects.

As visible in Fig. 4.10, S(π, π)/L2 does not renormalize down to 0 for K2 ≤ 0.4 and it is

hard to conclude for larger K2. The Binder cumulant is more instructive as it clearly reaches

3 for all system sizes around K2 = 2 which means there is no (π, π)-CDW order beyond this

value. For smaller K2 ≤ 1, although its value is close to 3, the Binder cumulant seems to slowly

renormalize downwards, which does not strictly rule out the possibility of order up until K2 = 1.

Again, it is hard to tell whether P (0, π)/L2 vanishes or not for large L, it is possible to

see that this quantity decreases faster with L for K2 . 0.3 (red/orange curves) than for higher

K2 around K2 = 0.6 (green curves). The trends can be more easily analyzed from the Binder

cumulant: an upward renormalization at low K2 ≤ 0.4 indicates the instability of a VBS in this

low K2 regime. The Binder cumulant clearly shows the absence of order beyond K2 ≥ 2 where

its value exceeds 3 for all system sizes. For intermediate 0.5 ≤ K2 < 2, plaquette correlations

are well captured by the RBM wave function and we see downwards finite-size trends which

suggests the stability of a plaquette-ordered phase.

For K2 = 1.0, the EBL diagostics σ clearly renormalizes down to zero which signals the

absence of an EBL phase. Almost all the values of σ are below the threshold σc = 3/16 for

K2 = 3.0 which sets a lower bound for the extension of the EBL phase at small K2. The criterion

is almost not violated for K2 = 7.0, only for large momentum close to π. As acknowledged in

[Tay & Motrunich 2010], the stability threshold may not in fact be considered as strict. Given

the biased nature of VMC and the imperfection of the stability criterion, we do not conclude on

the existence of the EBL phase for the moment and we will re-examine our results in Sec. 4.4.4

in light of the exact RQMC results.
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Figure 4.10: (Top left) S(π, π)/L2 plotted against L2 for different values of K2. (Top right)

Binder cumulant of S(π, π) for system sizes from L = 6 to L = 16. Note that we use a linear

scale in the range K2 ∈ [0, 1] and a log scale for K2 ∈ [1, 10]. (Middle left) P (0, π)/L2 plotted

against L2 for different values of K2. (Middle right) Binder cumulant of P (0, π) for system sizes

from L = 6 to L = 16. (Bottom) Cross operator σ(2π/L, qy) (as defined in Eq. 4.44) plotted

against qy for different values of K2 and system sizes up to L = 16. The dashed line indicates

the critical value of σc = 3/16 below which the EBL phase is not stable.
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The VMC results obtained with a T -invariant rRBM wave function with α = 10 are sum-

marized in Fig. 4.11. We obtain good qualitative agreement with the phase diagram obtained

in [Tay & Motrunich 2010] with GFMC.

~2

EBL?

~0.5

CDW VBS

0
K2/K1

~3~1

Figure 4.11: VMC phase diagram obtained with T -invariant rRBMs with α = 10 from finite-size

scaling on systems up to L = 16. The first color gradient indicates the conflicting coexistence

of the CDW and VBS phases. The dashed area indicates a region where we detect no plaquette

correlations and where the EBL is clearly unstable based on our criterion.

4.4.4 RQMC results

Last section showed that even though our purely variational approach with a RBM ansatz is

quite accurate on L = 6 and on L = 12, it was sometimes difficult to establish a phase diagram

with a high degree of uncertainty given the too slow or inhomogeneous finite-size trends of the

order parameters. Also more fundamentally, this remained a variational study. In this section,

we turn to results we obtained using a reptation QMC approach. This method fundamentally

differs from variational methods in that it is unbiased. As pointed out in Sec. 4.3.1, using a

good starting wave function (close to the actual ground-state wave function) allows to speed

up the convergence as well as providing statistical estimations with less variance. As a result,

we will compare unguided projections with projections guided with the RBM wave functions

optimized in last section. To do so, we implemented the RQMC algorithm on top of the Netket

library [Carleo et al. 2019a] to be able to use RBMs as guiding wave functions.

4.4.4.1 Benchmark against exact diagonalization on L = 6

In Fig. 4.12, we benchmark RQMC results against exact diagonalization and in particular com-

pare the performance of unguided projections compared to ones with a T -invariant rRBM wave

function as a guide. We did not include non-symmetric rRBMs in our analysis because this

ansatz carries the same computational cost as T -invariant rRBMs (see Sec. A.2 in appendix A)

while having no symmetry implemented. Likewise we do not include C4v-invariant rRBMs due

to their prohibitive computational cost (8 times slower than T -invariant rRBMs), we will give

further justification in next section on L = 12 simulations.

For unguided RQMC, the energy converges in ∼ 40 projections up to an error of 10−4 for all

K2, which is slightly better than our best variational results. Using a guide clearly speeds up

convergence since the energy is converged in 20 projections (sometimes less) for all K2 and α.

We are able to reach accuracies of the order of 10−5 for the energy and 10−3 for the observables,

although we note that the unguided results include the best guided results within its error bars.

However, to make a fair comparison between unguided and guided projections, one has

to take into account the additional computational cost that comes with evaluating the ratio

Ψ(x′)/Ψ(x) with a guide. As explained in Sec. 4.3.1, the cost is proportional to α. Additionally,

we defined a Monte Carlo sweep as p local moves, which means the computational time is also
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proportional to p. An important quantity is the autocorrelation time τ , which in essence tells

that the samples used for the statistical estimation should be picked every τ steps in the Markov

chain. The bigger τ , the more samples we need to obtain a good statistical uncertainty. The

bottom figure in Fig. 4.12 shows the relative energy error as a function of the time needed to

obtain one uncorrelated sample, which is proportional to α, p and τ as explained above. Then,

the most time-efficient ansatz would be the one that can reach low error with minimum time

(therefore it is best if the points accumulate in bottom left corner of Fig. 4.12d). Unfortunately,

it is quite difficult to conclude from Fig. 4.12d which setup is the most time-efficient: indeed for

K2 = 0 or K2 = 7, α = 1 seems best but α = 4 seems preferable for K2 = 1. We will reexamine

these results for L = 12 below.
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Figure 4.12: Relative error on (a) the energy, (b) S(π, π), (c) P (0, π) with respect to the exact

ground-state for L = 6 at different values of K2 as a function of the number of projections. Our

best variational results are showed in grey dashed lines. All observables are evaluated on 6.106

configurations. For the energy, the stars indicate the VMC energy of the respective guiding wave

functions. The last row (d) shows the same data as in (a) but plotted against the time needed

to get one uncorrelated sample which is proportional to α× p× τ where τ is the autocorrelation

time between samples.
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4.4.4.2 Benchmark against GFMC on L = 12

0 100 200 300 400

p

10−5

10−4

10−3

10−2

10−1

Energy

0 500 1000 1500

Time for one uncorrelated sample
∼ α× p× τ

10−5

10−4

10−3

10−2

10−1
Energy

0 100 200 300 400

p

10−3

Energy Variance

0 100 200 300 400

p

10−3

10−2

10−1

S(π, π)

GFMC [Tay et al.]

Best VMC

α = 1, T -invariant rRBM

α = 2, T -invariant rRBM

α = 4, T -invariant rRBM

No guide

Figure 4.13: Observables obtained with RQMC without a guide (blue) or guided by T -invariant

rRBMs trained at K2 = 0.5 and L = 12 plotted as a function the number of projections. (Top

left) Energy relative error with respect to the best RQMC energy we obtained (α = 2, p = 400).

(Top right) Same energy data plotted against the time needed to compute one independent

sample (see main text) (Bottom left) Relative energy variance 〈(H − E)2〉/E2. (Bottom right)

S(π, π) relative error with respect to the best RQMC data (α = 2, p = 400). The grey dashed

(red dashed) lines indicate our best VMC results (GFMC results from [Tay & Motrunich 2011]

with error bar shown with the shaded area). The red shaded area shows the error bar on S(π, π)

for the reference RQMC point (α = 2, p = 400).

The exponential decrease of the relative energy error with p (line in log scale) confirms the

exponential convergence expected from RQMC as pointed out in Sec. 4.3.1. The projections

converge for a larger number of projections than L = 6 (more than 200 here), this is due to

smaller relative energy gaps for larger systems. For unguided RQMC, the energy seemingly

converge to a relative error of 10−3, however we think this saturation may be interpreted as

an artifact of very long equilibration we observed for the largest projections (the p = 300 and

p = 400 data were likely not thermalized long enough). We did not notice such limitations

for guided projections, which also show lower relative energy variance and better precision on
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S(π, π). As for L = 6, the observables are more accurate when α and p are increased, the top

right panel in Fig. 4.13 thus plots the relative energy error as a function the time needed to

obtain one uncorrelated sample. Fig. 4.13 seems to suggest that the most time-efficient guide is

a T -invariant rRBM with α = 2, however the variable outcomes obtained from the same analysis

on L = 6 suggest that we should perform the same analysis for other values of K2.

4.4.4.3 RQMC phase diagram

Fig. 4.14 summarizes the results we obtained with RQMC guided with T -invariant rRBMs with

α = 1, which were optimized for each K2 and system size. We motivate the choice of α = 1 by

the following arguments: (i) we mention that we did the previous benchmark and time efficiency

analysis after obtaining the results of this section, (ii) ideally, knowing the autocorrelation time

before starting the Monte Carlo sampling, one would generate just the amount of samples needed

to obtain a given statistical uncertainty, however crucially, this is not possible, we found easier in

practice to generate a large amount of samples (without fine-tuning) in order to have reasonably

small error bars. As a consequence, this excluded the use of costly guiding wave functions like

T -invariant for α > 4 or C4v-invariant rRBMs.

As is visible from the Binder cumulant of S(π, π), the (π, π)-CDW order develops no further

than K2 ≥ 0.5 beyond which the Binder cumulant reaches the disordered value 3 and the finite-

size curves overlap without a clear trend. The plaquette correlations P (0, π)/L2 vanish in the

CDW phase at low K2 < 0.5, which is confirmed by the upward trend of the Binder cumulant

for the largest system sizes. Based on the Binder cumulant, the VBS phase could extend up to

K2 ≈ 3.5 ∼ 4 where all the curves seem to overlap (showing no renormalization).

Regarding the EBL phase, for K2 = 3.8, σ seems to renormalize down with system size

but more importantly violates the stability criterion (σ < 3/16) for almost all qy values. For

K2 = 7, the situation is mixed, the downwards finite-size trends seem slower than for K2 = 3.8

and σ > 3/16 for a majority of the momenta qy but not all. If the criterion is strictly followed,

the latter observation would rule out the existence of the EBL phase. However, the derivation of

the stability threshold is based on some assumptions made in [Tay & Motrunich 2011] that these

authors acknowledge. The EBL is considered stable if the leading Umklapp term is irrelevant,

which means its associated scaling dimension (Eq. A22 in [Tay & Motrunich 2011])

∆ = 8

∫ π

0

σ(0, qy)

|C(0, qy)|2
cos2(qy/2) sin(qy/2)dqy (4.46)

should be greater than 1. As argued in [Tay & Motrunich 2011], we can consider

|C(0, qy)|2 = 1. To determine which values of σ(0, qy) satisfy this inequality, the authors of

[Tay & Motrunich 2011] consider it to be constant, which allows to estimate the integral in

Eq. 4.46. This leads to the criterion σ > 3/16 to assess the stability of EBL. Nevertheless, given

the function x 7→ cos2(x/2) sin(x/2) is peaked around π/2 as is σ(0, qy) in our data, this criterion

may be underestimating the stability of the EBL phase. As a further check that no other simpler

order is present in this region of the phase diagram, we display the structure factor at K2 = 7

for L = 16 (Fig. 4.15) which does not display any Bragg peak. All in all, the L = 14 and L = 16

data at large K2 (not available in [Tay & Motrunich 2010]) show that (i) the shape of the cross

operator seems to stabilize on these system sizes and (ii) no order is visible for L = 16, which

further solidifies the conjecture of [Tay & Motrunich 2010] that the EBL is realized at large K2

for model (4.40). The RQMC results are summarized in Fig. 4.16.
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Figure 4.14: RQMC phase diagram. (Top left) S(π, π)/L2 plotted against L2 for different values

of K2. (Top right) Binder cumulant of S(π, π) for system sizes from L = 8 to L = 16. Note

that we use a linear scale in the range K2 ∈ [0, 1] and a log scale for K2 ∈ [1, 10]. (Middle

left) P (0, π)/L2 plotted against L2 for different values of K2. (Middle right) Binder cumulant

of P (0, π) for system sizes from L = 8 to L = 16. (Bottom) Cross operator at large K2 for

different system sizes. The dashed line indicates the threshold for the EBL stability σc = 3/16.
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Figure 4.16: RQMC phase diagram obtained with translation-invariant RBMs with α = 1 used

as a guide from finite-size scaling on systems up to L = 16. The shaded region corresponds to

where VBS is no longer present but where showing the stability of the EBL phase is not possible

given our system size.
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4.4.5 Conclusion

We established that the RBM wave functions are capable of reliably approximating the solid

and liquid phases of the K1 −K2 model. In particular, increasing the number of hidden nodes

(α) allows to systematically improve their precision. As compared to the variational ansatz of

[Tay & Motrunich 2011] based on spin-wave theory, RBMs are not only able to be more accurate

on the energy and observables even for the lowest α considered and no symmetry implemented,

but they seem also capable of capturing plaquette correlations up to the thermodynamic limit,

hence detecting the VBS phase. We also noticed improvements when implementing some symme-

tries of the model in the RBM structure. However, the finite-size trends of the order parameters

calculated in VMC remain unclear in some regions which prevents the precise determination of

the phase boundaries.

An exact study of the K1 − K2 model is possible thanks to reptation QMC. We showed

that the presence of a guiding wave function in the form of a RBM was beneficial in many

respects (shorter equilibration, faster convergence, smaller error bars). We were not able to

conclusively decide on the best value of α in regard of time efficiency. Nevertheless, our finite-

size scaling analysis with RQMC guided with translation-invariant α = 1 RBMs confirmed the

phase diagram found in [Tay & Motrunich 2011], thereby extending their results up to L ≤ 16.

As a point of caution, we want to stress that although the stability of EBL is visible at large K2

and for the largest system size, we cannot exclude the possibility that for better guides or larger

system sizes the criterion on the cross operator σ may not be satisfied anymore. Nevertheless,

as also pointed out in [Tay & Motrunich 2011], the criterion on the cross operator σ may not

be the ultimate argument to assess the stability of the EBL phase.

Regarding future developments, we are currently working on positively identifying the EBL

phase from entanglement. Indeed, as showed in [Lai et al. 2013], the entanglement entropy is

expected to scale as ∼ L log(L) for bosonic systems with Bose surfaces, thus providing a possible

indicator of the EBL phase. Whereas the entanglement entropy is very hard to compute in

RQMC, it can in fact be accessed quite efficiently in VMC [Hastings et al. 2010] in particular

with RBM wave functions.
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Reinforcement learning for quantum
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The quest for a viable quantum computer inevitably leads to the challenge of error correction.

Indeed, qubits are fragile and can be altered by thermal fluctuations or perturbations coming

from the environment. In order to make computations reliable, one has then to find ways to

restore the quantum state the qubit was in before the error happened. In fact, this problem

also concerns classical computers, however the peculiarities of the quantum world prevent the

direct application of classical error correction schemes and therefore the field of quantum error

correction (QEC) was developed.

This chapter will start with an introduction to the quantum error correction problem, with a

focus on the paradigmatic toric code. Sec. 5.2 will explain how machine learning can be applied

to this problem, discussing how reinforcement learning has recently become a method of choice.

We will then introduce the NEAT algorithm which is an evolutionary algorithm capable of

optimizing the weights and the architecture of neural-networks. Sec. 5.3 presents our preliminary

results showing that the NEAT algorithm allows to find efficient error-correcting strategies for

the toric code. This work has been done in collaboration with Pr. van Nieuwenburg.

5.1 Quantum error correction

Classical bits are 0s and 1s. However, the bit value stored in memory might change during

computations because of thermal noise or any external perturbative process. This clearly asks

for strategies to protect these bits. One possibility is to store many copies of the same bit and
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a logical bit 0L = 0
d· · · 0 is then encoded by d physical bits (likewise we can define the logical

bit 1L). By redundantly storing the logical bit value, it is possible to easily correct errors like

a bit-flip error on the middle bit of 0L = 000 → 010: it suffices to apply the majority rule on

the bit copies to retrieve the logical bit value 010→ 000 = OL. Nevertheless, whenever d/2 + 1

bit-flips occur, the majority rule will return the wrong logical bit value, 1L in that case: a logical

error has occurred. One strategy to limit this is to increase the code distance d simply because

logical errors happen with a probability that decreases with d.

In the quantum world, the building block of computations is the qubit which can be in

a state |0〉 or |1〉 or any superposition of these two |Ψ〉 = α|0〉 + β|1〉. Groundbreaking at

first sight, the new perspectives brought about by qubits are quickly limited by serious issues

related to their quantumness. The first problem arises when one wants to retrieve information

from a qubit |Ψ〉 since any measurement will collapse the qubit into one eigenstate of the

observable, therefore corrupting the information stored in |Ψ〉. A second barrier is the no-

cloning theorem which states that there is no unitary transformation that is capable of copying

a quantum state. This has the immediate effect that the classical solution of redundant codes is

not conceivable here. Nevertheless one possibility is to consider logical qubits encoded as |Ψ〉L =

α|000〉 + β|111〉. Another way out was found and led to the conception of so-called quantum

codes like the Calderbank-Shor-Steane code [MacKay & Neal 1996] or low-density parity check

(LDPC) codes [Steane 1996]. A particularly popular category of quantum codes are topological

codes [Gottesman 2009] like the surface or the toric code, that is presented below.

5.1.1 Toric code

The toric code [Kitaev 2003] is a model of spin-1/2 particles living on the bonds of a square

lattice with periodic boundary conditions. The Hamiltonian reads:

H = −
∑

v

Av −
∑

p

Bp (5.1)

which include vertex stabilizers Av = Πi∈vσxi where v is a vertex of the lattice (the product

is done over all spins lying on nearest bonds in red in Fig. 5.1a) and plaquette stabilizers

Bp = Πi∈pσzi where p is a center of a plaquette (the product is done over all surrounding bonds

in green in Fig. 5.1a). Operators Av and Bp have ±1 eigenvalues, commute with each other and

with the Hamiltonian. As a result, the Hamiltonian is block-diagonal in the computational σz

basis and contains 22(d2−1) blocks corresponding to all the possible d2 − 1 independent sets of

eigenvalues ±11 for the operators Av and Bp. This means that each of these blocks is of size

22d2/22d2−2 = 4. In particular the ground-state is 4-fold degenerate and allows to define two

logical qubits. Note that one needs 2L2 physical qubits to encode 2 logical qubits in the toric

code which is quite a large overhead compared to other codes like LDPC codes [Steane 1996].

Ground-state manifold. The ground state of the toric code lies in the sector where Av = +1

and Bp = +1 simultaneously for all vertices and plaquettes. The fully polarized state |FP〉 =

| ↑ . . . ↑〉 is clearly an eigenstate of the plaquette operators Bp with eigenvalue +1, but not an

eigenstate of the vertex stabilizer Av that flips all spins around vertex v. The symmetrized state

1Since we have the two relations
∏
v Av = 1 and

∏
pBp = 1, when PBC are imposed.
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Figure 5.1: (a) Action of the two stabilizer operators Av and Bp. (b) The action of the vertex

operator can be seen as introducing a trivial loop. (c) A wider – still topologically trivial–

loop. (d) The four topologically non-trivial loops of operators σx and σz allow to define the four

different ground states. The figure is from [Andreasson et al. 2019].

Av|FP〉+ |FP〉 instead is an eigenstate of Av with eigenvalue +1 while still being an eigenstate

of all the Bp operators with eigenvalue +1. A useful representation of Av|FP〉 is to identify

this state as a loop of operators σx (see Fig. 5.1b). Fig. 5.1c shows that the action of two Av
operators lying on two neighbouring vertices generate a bigger loop. It is not difficult to check

that the state |GS〉 =
∑

trivial loop

(∏
i∈trivial loop σ

x
i

)
|FP〉, i.e. that is constructed as the equal-

amplitude superposition of all trivial loops acting on |FP〉, lies in the ground-state manifold

of the toric code. Fig. 5.1d shows that there also exist 4 types of non-trivial loops of σx or

σz operators that wrap around the torus in the x or y direction. Let us denote them X
(1/2)
L ,

Z
(1/2)
L according to the figure. It is possible to obtain the 3 other ground-states by applying

the operators X
(1/2)
L on |GS〉, which gives the following basis set for the ground-state space:

{|GS〉, X(1)
L |GS〉, X(2)

L |GS〉, X(1)
L X

(2)
L |GS〉}. In fact, XL,1/2 can be identified as the logical bit-flip

operator on the logical qubit and the operators Z
(1)
L and Z

(2)
L allow to measure the logical state

of the two qubits encoded in the toric code.

Excitations and error correction. Since the ground-state of the toric code encodes the

logical qubits, it is required that the qubits stay in the ground-state manifold. However exci-

tations may occur and move the toric code state out of the ground-state manifold. The lowest

excited states are obtained by the application of a Pauli operator on |GS〉. The excited state

σxi |GS〉 produces a bit-flip error, likewise σzj |GS〉 produces a phase-flip error. For an excitation

σy = iσxσz, bit-flips and phase-flips are correlated. In the following however, we will focus on

the case where the noise is uncorrelated, meaning we can treat bit-flips and phase-flips inde-

pendently (and completely equivalently). Also, it is common to consider an error model where

errors occur with probability p on each physical qubit.
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Now that errors are defined, let us see how one can correct them. In Fig. 5.2a, two σxi
errors produce two so-called syndromes that are the positions of the plaquettes having Bp = −1

eigenvalue (shown in orange in the figure). Contrary to Pauli operators, syndromes can be

measured without altering the quantum state (since the plaquette operators Bp commute with

H), thus this gives an indirect way to probe errors. One way to project the state σxi σ
x
j |GS〉 back

to the ground-state manifold is to apply a string of operators
∏
k σ

x
k (blue operators in Fig. 5.2c)

such that the product with the error (σxi σ
x
j

∏
k σ

x
k) forms a trivial closed loop of σx operators.

It turns out that they are as many ways to correct an error as there are – trivial or non-trivial

– loops of σx operators including the σx errors. However, Fig. 5.2d shows that a correction

creating a non-trivial loop of σx operators actually acts as the logical bit-flip operator X
(1)
L : the

corrected state is in the ground state but its logical value has changed. The central difficulty of

the decoding task stems from the fact that the relation between syndromes and physical errors

is not one-to-one and the inherent ambiguity of the syndromes does not allow to avoid logical

errors to occur after correction.

Figure 5.2: (a) Two σx errors occur and manifest as a syndrome represented by red dots where

the plaquette stabilizers have -1 eigenvalue. (c) A possible correction is to flip spins to form a triv-

ial loop of σx as shown in blue. (d) This correction creates a non-trivial loop of σx operators that

wraps around the torus and change the logical state. The figure is from [Andreasson et al. 2019].

5.1.2 One example of a decoding algorithm

A perfect decoder cannot exist because of the inherent ambiguity of syndrome mea-

surements. More problematically, the decoding problem is even proven to be NP-

hard [Hsieh & LeGall 2011]. However, there exist instances of quantum codes where effi-

cient decoding algorithms exist [Duclos-Cianci & Poulin 2010a, Poulin et al. 2009]. One de-

terministic algorithm that has near-optimal performance is minimum weight perfect matching

(MWPM) [Edmonds 1965]. The decoding is achieved by linking (matching) pairs of syndromes
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with strings of Pauli operators, in such a way that the total string length is minimal. This can

be implemented efficiently with the Blossom algorithm [Edmonds 1965, Fowler 2015]. Fig. 5.3

shows the logical fidelity, i.e. the proportion of corrected error samples not having a logical

error, as a function of physical error rate (here the probability of physical qubit-flips) for this

algorithm.
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Figure 5.3: Logical fidelity as a function of bit-flip error rate for different code distances after

decoding with the MWPM algorithm. The error threshold of the MWPM algorithm can be

estimated around pc ≈ 0.1.

Fig. 5.3 shows a very interesting feature of MWPM: below an error threshold pc the logical

fidelity increases as the toric code distance increases, conversely for p > pc the trend changes

and the logical fidelity worsens for larger code distances. Let us consider the limiting case p→ 0

to get an intuition of these trends. For p small, errors most often consist of one single qubit-flip

giving rise to two syndromes on the adjacent plaquettes, the distance between these syndromes

is 1 and the MWPM algorithm will never link these syndromes with a string of operators that

wrap around the torus since the string length would be at least of size d − 1 > 1 in that case.

However, when two qubit-flip errors happen say next to each other, Fig. 5.2b shows three possible

correcting strings of operators: MWPM would implement the shortest (solid red) of size 2, but

the correction string that wraps around the lattice (dotted blue) is only of size d − 2 = 3 and

introduces a logical error. It is then easy to see from this example that as the code size d is

smaller there will be more cases where the shortest correction induces a logical fault.

The existence of an error threshold has very important consequences on the experimental

realization of the toric code since if the crafted physical qubits happen to have an experimental

error rate below the MWPM error threshold, this means that it suffices to add more physical

qubits (increase code distance) to obtain a higher fidelity on the logical qubit with MPWM.

Note that the error threshold is a property of the decoding algorithm, therefore in general the

higher the (algorithmic) error threshold the better the algorithm is considered.

Interestingly, it was shown that the toric code with uncorrelated noise can be mapped

to the random bond Ising model where the error rate p plays the role of the disorder

strength [Dennis et al. 2002]. Echoing bond percolation, the mapping reveals the existence of

a critical error threshold pc ≈ 0.11 between an ordered phase for p < pc where the probability

that a correction will create a non-trivial loop and hence alter the logical state is 0 (in the

111



Chapter 5. Reinforcement learning for quantum error correction

thermodynamic limit), whereas it is 1 in the disordered phase for p > pc. For finite-size codes,

a crossover is visible similarly to what is shown in Fig. 5.3.

Note that there exist many other decoding algorithms, some performing better than MWPM.

Maximum likely decoding (MLD) searches for the most probable error and performs better

than MWPM but with a larger computational cost. Some strategies are based on tensor net-

works [Ferris & Poulin 2014] or on the renormalization group [Duclos-Cianci & Poulin 2010b].

Next section will introduce other decoding strategies that use machine learning techniques.

5.2 Machine learning applied to error correction

In the past years, unsupervised, supervised and reinforcement learning approaches have been

applied to quantum error correction. Seminal work was done by Torlai and Melko in

[Torlai & Melko 2017] where they trained a RBM to model the joint probability distribution

of errors e and syndromes S as p(e, S). Once the RBM is optimized, the correcting error chain

ecorr is drawn from the marginal distribution p(e|s). Other works have used feed-forward and

recurrent neural networks [Krastanov & Jiang 2017, Varsamopoulos et al. 2020a] to learn the

mapping from syndromes (input) to errors (target) in a supervised manner. Although they

showed performance comparable to MWPM, sometimes better for certain error models, a major

flaw of these methods comes from the possibility that the drawn correction string does not project

the altered state back to the ground state manifold. In the above-mentioned works, the decoders

are low-level in the sense that they tell which individual physical qubits to flip in order to correct

the code. Another possibility is to consider high-level decoders, where here instead the code is

projected back to the ground state with a simple deterministic algorithm and a neural-network

proposes a logical correction if one is needed [Maskara et al. 2019, Varsamopoulos et al. 2020a,

Chamberland & Ronagh 2018, Varsamopoulos et al. 2017, Baireuther et al. 2018]. Another se-

ries of work used reinforcement learning techniques [Sweke et al. 2018, Andreasson et al. 2019,

Fitzek et al. 2020, Domingo Colomer et al. 2020], which I will explain in next section. Finally,

hybrid approaches were proposed where neural-networks appear only in combination with more

physically-motivated components [Liu & Poulin 2019, Ni 2020, Varsamopoulos et al. 2020b].

5.2.1 Decoding as a reinforcement learning problem

As explained in Sec. 2.5 of chapter 5, reinforcement learning (RL) is an optimization technique

that lets an agent interact with an environment. In the QEC context, the environment is usually

the state of the code and the agent can apply Pauli matrices on the physical qubits. We generally

consider a decoding cycle which consists in a sequence of agent-environment interactions starting

from a state containing syndromes and terminating when the agent removed all of them. Positive

rewards are given if the correction did not introduce a logical error, negative otherwise.

Note that contrary to supervised learning, RL does not provide examples of solved cases

which potentially enables the discovery of innovative decoding strategies. RL seems also more

naturally suited to decoding tasks because of its sequential nature, that resembles what an

actual correction process could look like2. We also expect RL to find decoders that will be more

interpretable than the ones obtained in supervised learning: the correcting strategies can be

2RNN can in fact also be used within the supervised approaches [Baireuther et al. 2018,

Varsamopoulos et al. 2020a].
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accessed more easily by evaluating which action is preferable in which scenario. Setting up the

problem in a sequential way could also improve the performance since the agent is in principle

able to correct the effect of bad actions (it may have taken previously) along the decoding cycle.

More importantly, it enforces time-translation invariance which allows a lot of information reuse:

starting from an initially complex syndrome pattern, the complexity of the syndrome pattern is

expected to decrease with time and the decoding agent can then use the knowledge it acquired

independently by decoding simpler initial syndrome patterns.

In general, an agent chooses actions based on a policy π, which is in essence its decod-

ing strategy. More precisely, given a state of the environment S the agent chooses action

a with probability π(a|S). Optimization of π can be achieved within the framework of so-

called Q-learning [Sutton & Barto 2018] which was used in all prior works [Sweke et al. 2018,

Andreasson et al. 2019, Fitzek et al. 2020, Domingo Colomer et al. 2020]. We take a different

path in our work as we will employ evolutionary algorithms to perform the optimization directly

in policy space. In our approach, the agent’s policy π is approximated by a neural network f ,

which returns the selected action a given the current code state S, i.e. f(S) = a. The neural

network optimization is then done with the NEAT algorithm explained below.

5.2.2 The NEAT algorithm

The NeuroEvolution Augmented Topologies (NEAT) algorithm was introduced by Stanley and

Miikulainen in [Stanley & Miikkulainen 2002] and is part of the family of evolutionary algo-

rithms. These algorithms are gradient-free optimization techniques that work by evolving a

population of individuals according to heuristics inspired by biological evolution. At each gen-

eration – optimization step – the individual’s fitness is evaluated and the population of the next

generation is obtained by mutation, reproduction and selection of the best performing individu-

als. Mutation consists in randomly changing some of the properties of an individual. Selection

is based on the individual’s fitness and only the best performing elements of population will

survive to the next generation. Reproduction will allow mixing of two individuals to create an

offspring that inherits some of their respective characteristics. Thanks to these heuristics, the

individuals are more and more fitted to their environment as evolution goes on.

In the NEAT algorithm, the evolution is done on a population of neural networks. The

specificity of NEAT is that mutations not only change the internal weights of the neural networks

but also their own architecture. Indeed, nodes can be added as well as connections between

nodes. The breakthrough of the NEAT algorithm was to make possible a meaningful breeding

of neural networks of different topologies (architectures). NEAT works as a combination of the

three following ideas: (i) the existence of historical markings in the genetic encoding of neural

networks allows meaningful crossover, (ii) isolating subgroups –niches– of similar individuals in

the population allows to protect innovation, (iii) starting evolution with simple neural networks

allows to obtain a final solution of minimal complexity. NEAT showed very good performance on

different control tasks benchmarks and demonstrated very fast convergence to a neural network

solution of small complexity compared to previous works at the time. This approach has been the

basis of many important and recent contributions in the field of neuroevolution [Real et al. 2017,

Real et al. 2019, Liu et al. 2018].

In the following paragraphs, we tried to make the description of the algorithm as self-

contained as possible, nevertheless we have eluded some technical details that can be found
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in [Stanley & Miikkulainen 2002].

Genetic encoding and crossovers. Each neural network of the population is encoded by a

genome as shown in Fig. 5.4a. The key insight of [Stanley & Miikkulainen 2002] was to introduce

an innovation number that keeps track of the history of a gene. Every new connection appearing

in the population (see Fig. 5.4b) via a mutation is assigned a unique identification number (note

that weight mutation does not generate a new innovation number). This crucially enables a

simple and meaningful procedure for the crossover of two neural-networks as shown in Fig. 5.4c.

Protection of the innovation by speciation. Another key element of NEAT is the design

of a speciation mechanism that allows subgroups of similar neural networks – species – to

evolve separately from the rest of the population. When the architecture of a neural network is

changed via a mutation, it is likely that it will not perform well at first and a few generations are

needed so that its weights can be adjusted. The issue is that the selection rules will eliminate

these more complex individuals and effectively prevent better topologies to be found. It is

possible to circumvent this issue by creating niches of individuals that share characteristics

among themselves but not with the rest of the population and applying selection independently

on these subgroups. As a result, speciation is able to protect genetic innovation.

In [Stanley & Miikkulainen 2002], the species are defined via a compatibility distance δ which

simply accounts for the number of excess E or disjoint D genes between two genomes, as well

as the average weight differences in the matching genes W :

δ = c1
E

Ngenes
+ c2

D

Ngenes
+ c3W (5.2)

where ci are hyperparameters to adjust the respective importance of these three factors, Ngenes

is the number of genes in the largest genome. At each generation, genomes are sequentially

placed in species by checking whether the compatibility δ between the current genome and a

genome randomly picked from a given species is below a threshold distance δc. Additionally,

NEAT employs a heuristic called explicit fitness sharing which favors homogeneity inside the

species. The idea is to fight against the tendency that largely-populated species take over the

rest of the species. This works by adjusting the size Nj of species j according to the ratio:

N ′j = Nj
fj

f
(5.3)

where N ′j is the size of species j for the next generation, f is the fitness averaged over the entire

population and fj averaged over the individuals in species j.

Minimizing dimensionality. The last key insight of [Stanley & Miikkulainen 2002] was to

initialize the population with neural networks having the simplest topology possible. For in-

stance, neural networks of the first generation may have no hidden nodes. In combination

with speciation, this is argued to minimize the complexity of the final solution. Indeed, new

architectural components are tested and optimized independently thanks to speciation: if the

architectural innovation is proven to provide a significant performance boost, it is then included

in the rest of the population. This way the complexity of the population only increases when
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necessary. Starting the evolution with the simplest neural networks then ensures that the final

solution has the minimal complexity to achieve the given task.
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Figure 5.4: (a) The genome of a neural network contains node and connection genes. A node

gene stores an identification number and its type (input (sensor), hidden or output). A connec-

tion gene informs about which nodes it connects (the directionality allows to define recurrent

connection that creates a loop in the neural network structure), the weight value it carries, a

boolean allowing for disabling the connection and, crucially, the innovation number (see main

text). All these information uniquely define a phenotype neural network. (b) (Left) Adding a

connection is done by adding a new connection gene to the genome, with a new unique innova-

tion number (here 7). (Right) Adding a node is done by splitting an existing connection in two

where the previous connection (here 3→ 4) is disabled and two new connection genes are created

(here 8 and 9). (c) Crossover is achieved by matching connection genes that share innovation

numbers between the two parents (here genes 1-5), these matching genes are transmitted to the

offspring with a weight and disabling option that is picked with equal probability from one of

the two parents. The other disjoint genes are inherited randomly by the offspring. The figures

are from [Stanley & Miikkulainen 2002]. 116
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5.3 A NEAT quantum error decoder

The properties of the NEAT algorithm are very appealing in the QEC context. First, the

fact that it can optimize neural-network architectures makes it very flexible: the pecularities of

quantum devices may likely change drastically in the near future, so it could potentially save a lot

human effort to leave the task of finding the appropriate neural-network structure to the NEAT

algorithm. Second, by keeping the architecture as small as possible (only necessary components

survive evolution), NEAT provides fast-to-execute decoders, which can be crucial in real systems

where the proliferation of errors might simply overcome too slow decoding algorithms. Third,

shallow neural networks are also more easily interpretable which could possibly give insights on

new correcting strategies. Finally, training is expected to be fast because the method is gradient-

free and highly parallelizable (since independent individuals in the population are evaluated on

independent syndromes). Our work focused on the ability of NEAT to decode the toric code

with uncorrelated noise. After presenting the training setup in details, we will highlight some

of the preliminary results we obtained in the next sections.

5.3.1 Training setup

Input data. Since we consider only σx bit-flip errors, the input data include only the L2

eigenvalues of the plaquette operators Bp, expressed as binary numbers Bp ∈ {0, 1}. At first,

the input data contained information about which physical qubits were already flipped (adding

2L2 more binary values), thus providing the history of the past actions to the agent. Surprisingly

enough, we were able to achieve the same level of performance without memory of the past. This

somewhat echoes the ability of the NEAT algorithm to achieve the difficult task of double pole

balancing without information on the velocities of the poles [Stanley & Miikkulainen 2002].

Exploiting translation-invariance. Translational-invariance of the toric code can be

used to simplify the decoding task: one can use CNNs as in [Ni 2020] or imple-

ment perspectives, introduced in [Andreasson et al. 2019] (also used in [Fitzek et al. 2020,

Domingo Colomer et al. 2020]). As shown in Fig. 5.5, for a sample having NS syndromes, the

perspectives are the NS translated copies of the sample such that for each of these copies there

is a syndrome residing in the central plaquette of the lattice. As a result, the neural networks

will always be fed with syndrome patterns containing a syndrome in the central plaquette. The

advantage of this formatting is that the action space can be reduced to a constant size of 4,

corresponding to applying a σx operator on the 4 physical qubits the nearest to the central pla-

quette. Thus, the correction will always proceed by flipping qubits that are next to syndromes.

Although this introduces a bias, we think this assumption is reasonable and provides significant

speed-up since there is at least one flipped qubit out of the four surrounding a plaquette con-

taining a syndrome. Note that we could further reduce the action space (down to 1) by using

similarly the rotation or reflection symmetries of the toric code, however it is important to keep

in mind that real experiments are usually not perfectly symmetric. We could in principle keep

the perspective tricks and take into account imperfect translation symmetries by considering

faulty syndrome measurements for example.
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Figure 5.5: Each error sample generates as many translated ”perspectives” as syndromes, where

each perspective has a central syndrome. Figure taken from [Andreasson et al. 2019].

Decoding algorithm. Starting from an initial observation i.e. measurements of the

plaquette stabilizers B = (B1, . . . , BN ), a decoding cycle is performed as follows:

Data: Toric code Code, Neural network f

Result: reward∈ {0, 1}
while Code has syndromes do

Measure plaquette stabilizers: B= (B1, . . . , BN )

for i such that Bi = −1 do
Generate the ith perspective Pi
for action a in A=(flip1,. . . ,flip4) do

Compute the action probability pa from the policy network f: Proba=f(Pi)

end

end

if rand() < ε then
action = random action in A

else
action = argmax

a
Proba

end

if action was already taken then
return reward=0

else
Code is changed according to action

end

end

if Code has a logical error then
return reward=0

else
return reward=+1

end

Note that we also prevented the decoder from performing an action twice on the same

qubit (thus a decoding cycle cannot last more than 2L2 steps). An ε-greedy policy is used

and consists in picking a random action with probability ε instead of the action recommended
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by the neural-network policy with highest probability, we found it worked best with ε = 0.1.

Notice that our approach is not biased towards selecting the smallest error-correcting chain

like MWPM or as in [Andreasson et al. 2019, Fitzek et al. 2020], neither towards selecting the

most probable error patterns like MLD or as in [Torlai & Melko 2017], since the reward is

only a function of the presence or absence of a logical error in the final state (similarly to

[Domingo Colomer et al. 2020]). Note that checking whether a logical error occurred or not can

be done quickly by measuring the logical operators Z
(1)
L and Z

(2)
L introduced in Sec. 5.1.1.

Fitness evaluation. The fitness of each neural network is evaluated by presenting N eval error

samples, so-called puzzles. Each puzzle is generated by inserting a σx bit-flip with probability p

on each site, hence the total number of bit-flips follows a binomial distribution with parameters

n = 2L2 (number of qubits) and p. As done in previous works, the training set is made as

diverse as possible to ensure good performance across different error rate regimes. In our case,

the N eval training samples are obtained at error rate p ∈ {0.01, 0.05, 0.1, 0.15}, i.e. in practice

N eval=0.01 = N eval=0.05 = N eval=0.1 = N eval=0.15 = N eval/4. This way, the neural network fitness

reflects its ability to perform in situations of varying difficulty. However, as training lasts, the

population of neural networks gets better on average and the easiest puzzles are solved by a

majority of them. Spending time on these easy cases is somewhat useless, this suggests that

we could instead adapt the set of problems presented to the neural networks and purposefully

include only puzzles in the training set the neural networks struggle more on. This strategy is

called curriculum learning, however we found that it only improved marginally the performance

while slowing down the training process. In all simulations, N eval was set to 400 training puzzles.

Population characteristics. The first generation is composed of Npop (100 in most simula-

tions) fully-connected neural networks with no hidden nodes, the 4L2 weights are initialized at

random (from a Gaussian noise). The mutation rates are set to 0.1 for the addition of a connec-

tion or a node, to 0.5 for the weights, which we obtained from a hyperparameter grid-search.

5.3.2 Error correction performance

A common way to measure the performance of a decoder is to track the logical fidelity as a

function of physical error rate. This quantity is computed as the ratio of successfully decoded

samples (reward 1 returned from the algorithm above) over the total number of samples. Fig. 5.6

shows the performance of the best neural-network found by the NEAT algorithm after a few

hundreds of generations. Note that the NEAT evolutions are run separately for different code

distances, which in principle makes the definition of an algorithmic error threshold ill-posed

since each run is not constrained to converge to the same decoding algorithm.

The decoders found by NEAT display features shared by MWPM and most of decoders:

the performance deteriorates as the physical error rate is increased and a crossing of the curves

is visible around pc ≈ 0.08 − 0.09 for NEAT, which is a little worse than MWPM that has

pc ≈ 0.1, but the critical fidelity ≈ 0.85 is better than ≈ 0.75 for MWPM. Moreover, one can

see that the logical fidelity is greater than MWPM for the largest error rates beyond p = 0.1.

Despite the simplicity of our approach, we are able to reach the same performance level than

previously [Torlai & Melko 2017, Andreasson et al. 2019] (same code and same type of noise),

outperforming MWPM on bit-flip errors in the noisiest regime. These results are obtained with
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considerably less computational power than previous works as well as returning the most succint

neural-network decoders. Indeed, as can be seen in Tab. 5.1, our policy neural networks have

1000 to 10000 times fewer parameters than deep Q-networks trained in previous works using

Q-learning3. Fig. 5.7 shows the policy-network obtained for d = 3 which contains 8 hidden nodes

and a total of 47 weights.
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Figure 5.6: Logical fidelity as a function of physical error rate p for different code distances. The

performance of MWPM is shown in dotted lines and symbols show the performance of the best

neural-network found by the NEAT algorithm. The vertical dotted line shows the theoretical

upper bound of the error threshold [Dennis et al. 2002]. Evaluation is done on 5000 independent

random error samples for each physical error rate.

d = 3 d = 5 d = 7

[Sweke et al. 2018] ∼ 800000 ∼ 2000000 ∼ 3800000

[Andreasson et al. 2019] ∼ 500000 ∼ 1200000

[Fitzek et al. 2020] ∼ 900000 ∼ 9000000

[Domingo Colomer et al. 2020] ∼ 640000 ∼ 1700000 ∼ 3200000

Our work ∼110 ∼300 ∼550

Table 5.1: Number of parameters of the deep Q-networks and of the policy-neural-networks

found by the NEAT algorithm.

3It should be noted though that [Fitzek et al. 2020, Domingo Colomer et al. 2020] treat depolarizing noise and

[Sweke et al. 2018] deals with faulty measurements, which are harder decoding tasks.
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Figure 5.7: Architecture of a d = 3 NEAT decoder. Plaquette operators (in red boxes) are

placed where they are located on the lattice. The width of the edges is proportional to the

corresponding absolute value of the weight. Positive (negative) weighting is shown in green

(red). The 4 output nodes (blue filled circles) are placed on the location of the qubit they flip.

The hidden nodes are displayed as white circles.

5.3.3 Transfer learning by genomic transplantation

Thanks to the use of perspectives, it is actually possible to use a decoder trained on a small code

to treat larger codes. This can be done by performing what we call genome transplantation.

Transplantation simply consists in creating a neural network NN2 applicable to code distance

d2 from a neural network NN1 that was trained on code distance d1 < d2. This works by adding

d2
2 − d2

1 input neurons to NN1 that corresponds to plaquette operators the furthest away from

the central plaquette, which do not exist in the d1-code. All the weight connections coming

from these neurons are set to 0, therefore the region beyond a distance of d1
2 lattice spacing

is effectively ignored during decoding. The resulting transplanted neural network is showed in

Fig. 5.8(a) with d2 = 5 and d1 = 3 with NN1 being the neural network showed in Fig. 5.7.

Fig. 5.8(b) shows the performance of such transplanted genomes starting from a neural network

trained at d = 3.

In the limit of small error rates, it is expected that the transplanted decoders perform well

since in that regime, there are only a few qubit flips, each separated by a distance that grows

on average with code distance. Therefore the fact that the transplanted neural networks ignore

long-distance information has little effect in that regime. The transplantation performs quite

well until the logical fidelity slowly drops with increasing error rate. It is quite remarkable that

having only one NEAT decoder trained at d = 3 is sufficient to define decoders for arbitrary

large code distances with zero additional training cost and performance that is not null although

far from optimal.
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Figure 5.8: (Left) A neural network obtained from training at d = 3 can be used as a d = 5

decoder by inserting plaquette input nodes without connection weights linked to the rest of

the neural network. (Right) Logical error rate as a function of bit-flip noise for different code

distances from a NEAT decoder trained at d = 3 and its transplanted counterpart for the

evaluation on larger code distances. The dashed lines indicate the ratio of error configurations

that contain no bit-flips. The evaluation is done over 5000 random syndromes for each noise

rate.

Speeding up trainings. Another direct application of genomic transplantation is the pos-

sibility to initialize a population of d = 5 decoders with the best d = 3 decoder found in a

previous NEAT run. Fig. 5.9 shows that it can accelerate a lot training, in particular for the

largest system sizes.
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Figure 5.9: Logical fidelity against time (number of generations) for the best individual of each

generation evaluated on 1000 random puzzles at physical error rates p = 0.01, 0.05, 0.1, 0.15.

The dashed lines correspond to starting evolution with an initial random population, while solid

lines correspond to starting with a population of transplanted neural-networks from the best

d1 = 3 decoder for d2 = 5, and the best d1 = 5 decoder for d2 = 7.

5.3.4 Future work

In summary, we showed that the NEAT algorithm can reproduce the same level of decoding

performance than MWPM or approaches based on Q-learning. We are confident that we can

extend these preliminary results to larger system sizes, in particular this is made possible thanks

to genomic transplantation (see last section) that allows to start the evolution with a good

starting population. Crucially, by performing optimization directly in policy space and thanks

to the properties of the NEAT algorithm, we were able to achieve the decoding task with very

small neural networks, which represents a gain of the order of 104 in terms of number of network

parameters. This not only provides a fast decoder but makes the interpretation of the policy

possible. We plan to study in more depth the policy-networks found by NEAT (such as the one

shown in Fig. 5.7) and attempt to understand their decoding strategy.

Regarding future developments, it would be interesting to see how these performances trans-

late to harder QEC scenarios with depolarizing noise or fault-tolerant computations for instance.

We could also test recurrent neural networks on these tasks given they can reuse information

from the past in a more natural way than in our setup. The only element to change would be

to enable the creation of loops in the neural networks evolved by NEAT. Performance improve-

ments could also be expected from the use of policy gradient methods [Williams 1992]. The idea

would be to first perform a NEAT run, keep the best policy-network and apply a few policy

gradient steps to optimize it further. Alternatively, we could also examine whether the hyper-

NEAT algorithm [Stanley et al. 2009] could improve on the situation as it allows in principle to

discover and exploit the symmetries of the task in an automatic manner.
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Conclusion

Searching for new efficient classical algorithms in the era of quantum computers may

seem anachronistic at first glance. Unfortunately (or fortunately), despite recent

progress[Arute et al. 2019], quantum supremacy is far from being established[Preskill 2018]. At

the same time, in the last decades, the field of machine learning has developed a set of extremely

efficient tools (algorithms, softwares and even hardwares) for the treatment of high-dimensional

functions. The biggest success came from deep learning and over the years neural-networks have

proved to be one of the most flexible and efficient function approximators.

In short, my work consisted in evaluating the opportunity of using neural networks in three

problems of condensed matter physics: (i) the classification of quantum phases of matter, (ii)

the variational representation of quantum states, and (iii) the correction of errors in quantum

codes.

Neural-networks as phase classifiers

Formulating the problem of detecting a phase transition as a classification task was a major

paradigm shift in the field of condensed matter theory [Carrasquilla & Melko 2017]. Although

exciting prospects were highlighted such as the discovery of new unknown order parameters, our

work [Théveniaut & Alet 2019] raises concerns about the reliability of this approach.

Our results evidence that the ML predictions inevitably suffer from the same pitfalls as any

application of machine learning. We found that the specific hyperparameter settings (choice

of activation functions, addition of dropout or regularization) have sometimes a great impact

on the final outcome. Moreover, for all setups considered, we observed dramatic overfitting to

the training data: the neural-networks capture features specific to the system size or disorder

strength of the training samples. This is surely a major issue in our approach since the goal is to

eventually predict the behaviour of the system near the transition in the thermodynamic limit.

Despite our best efforts to be as agnostic and general as possible, we are also not sure whether

the advantages of our setups (possible interpretation, consistent finite-size trends) would hold

for an alternative input formatting and/or a different neural network architecture that would

be equally well justified.

One could reply to the previous remarks that searching for better hyper-

parameters or adopting the unsupervised [Wang 2016, Wetzel 2017] or semi-

supervised [van Nieuwenburg et al. 2017, Broecker et al. 2017a] methods may improve on

the situation. The reason we think this is not true stems from the more general interrogation:

how much can we trust the predictions of a neural network? Over the years, there has

been an accumulation of evidences showing that neural-networks are not only notorious

black-boxes but are also fragile [Goodfellow et al. 2015] and their generalization power can be

seriously questioned [Zhang et al. 2017]. On the other hand, ML can be viewed as a functional
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approximation technique whose output is conditioned by an objective function, the class of

functions considered and so on, which makes it inherently biased. Retrospectively, it seemed

very ambitious to combine such an approximative and general approach with the precise and

physically-motivated finite-size scaling method. All the more so as we studied a transition

whose scaling theory is still not established and controversial [Laflorencie et al. 2020].

We see different outlooks regarding the future of machine learning applied to the study of

phases of matter and phase transitions. First, progress may be tied to improvements coming

from the ML community. In particular a lot of effort has been directed lately towards the design

of efficient interpretation methods, stimulated by the ethical and legal issues raised by the opac-

ity of neural-networks in industrial applications. We think interpretability of the predictions will

set the next milestone for automatic phase classification and we can already see some progress

in this direction [Liu et al. 2019, Greitemann et al. 2019, Dawid et al. 2020, Cole et al. 2020].

Finally, the current situation may perhaps benefit from the interesting connections uncov-

ered between renormalization group theory and machine learning [Mehta & Schwab 2014,

Koch-Janusz & Ringel 2018, Li & Wang 2018, Iso et al. 2018, Lenggenhager et al. 2020].

Neural-networks as quantum wave functions

The seminal idea of [Carleo & Troyer 2017] was to connect neural-networks and their impres-

sive capacity to compress the information contained in large datasets, to the central problem

of quantum many-body physics which is the exponential complexity of quantum states. The

parametrization of quantum wave functions with neural-networks showed promise early on,

with great empirical success [Carleo & Troyer 2017, Nomura et al. 2017] and theoretical demon-

strations of the efficiency and expressive power of these representations [Gao & Duan 2017,

Deng et al. 2017b]. Following up on this, we used RBM states as variational ansätze and guid-

ing wave functions for a VMC and reptation QMC study of a 2d constrained model of hardcore

bosons introduced in [Tay & Motrunich 2011].

We found that RBM states are expressive enough to capture the two solid and the liq-

uid phases in this model and achieve considerably higher precision than the physically-motived

ansatz considered in [Tay & Motrunich 2010]. Our exact study based on reptation QMC con-

firms the phase diagram of [Tay & Motrunich 2011] for system sizes up to L = 16. Used as

guiding wave functions, RBM wave functions allow for drastic improvements (shorter equilibra-

tion and faster convergence). Nevertheless, we were not able to conclude on the existence of

the EBL phase at large K2 based on the stability criterion proposed in [Tay & Motrunich 2011].

This criterion may in fact be questioned as the authors of [Tay & Motrunich 2011] admit and

therefore a definitive conclusion on the EBL requires a better probe. We think considering

entanglement properties may be a step forward, indeed detecting a ∼ L logL scaling of the

entanglement entropy at large K2 could provide a direct and positive proof of the existence of

an EBL phase.

In the near future, NQS may well benefit from further transfer of knowledge from the ML

community (optimized softwares, GPU parallelism for example) and we can already see good

effort in this direction [Carleo et al. 2019a]. Another direction of research concerns the chal-

lenging task of implementing and efficiently simulating fermionic symmetries in NQS. Finally,

understanding the effect of the neural-network architecture on the approximation or describing

the set of all physical states NQS can encode efficiently are still unsettled issues. A solution
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would provide a firm theoretical basis for NQS which could then stand among the most flexible

and efficient variational ansätze.

Neural-networks as quantum error decoders

The use of reinforcement learning techniques in the field of quantum error correction was

inevitable. On the one hand, QEC can be naturally formulated as a two-player game

with incomplete information: first, one player flips qubits, then the other player receives

the measured syndromes and attempts correction, the game is won if the original logical

state is preserved. On the other hand, RL has recently showed impressive performance in

game-playing tasks [Silver et al. 2016, Silver et al. 2017, Silver et al. 2018]. In a series of re-

cent works, the match indeed proved successful [Sweke et al. 2018, Andreasson et al. 2019,

Fitzek et al. 2020, Domingo Colomer et al. 2020]. We propose a follow-up study based on

sligthly different techniques as we used evolutionary algorithms, in particular the NEAT al-

gorithm [Stanley & Miikkulainen 2002].

Our results showcase the capability of our approach on the toric code with uncorrelated

noise, as we are able to reach performance levels equivalent to MWPM or other ML-based

techniques [Torlai & Melko 2017, Andreasson et al. 2019]. More strikingly, this is achieved with

neural-networks containing a number of parameters that is 4 orders of magnitude smaller com-

pared to the deep networks considered previously. This clearly shows that depth is not needed

for this task. Several consequences follow: (i) decoders are fast to execute which could prove

crucial in real-life applications, (ii) we expect a more favorable computational scaling to access

larger systems and (iii) it might possible to understand the neural-network decoding strategies.

However, we want to point out that the algorithmic complexity of our algorithm is

at least O(L2) (corresponding to evaluating the output of a neural-network), which does

not at all compete with the best known deterministic algorithm of complexity O(logL)

[Duclos-Cianci & Poulin 2010a]. Nevertheless, we think a machine-learning treatment for QEC

could well find its place in situations where efficient hand-made algorithms do not exist. In

particular, the ML flexibility is a definitive practical advantage as the specific experimental

realization of quantum codes might likely change a lot in the future. Finally, our work pro-

vides a proof of concept in line with the recent fruitful combination of evolutionary strategies

with traditional machine learning [Salimans et al. 2017, Stanley et al. 2019]. We hope this can

stimulate further contributions in these promising directions.

Perspectives

Let us conclude with broader perspectives on the interplay between ML and quantum physics.

We think that an important research direction will be to couple ML techniques to experiments,

such as in the field of material design [Liu et al. 2017b, Schmidt et al. 2019] or quantum con-

trol [Bukov et al. 2018, Niu et al. 2019]. The interaction between quantum physics and machine

learning will also certainly take place through theoretical contributions, with the emergence of

new research areas such as quantum machine learning [Schuld et al. 2015, Biamonte et al. 2017]

or the use of statistical physics for the understanding of neural networks [Spigler et al. 2019,

Geiger et al. 2020]. We hope that our work contributes to the first steps of this cross-fertilization,

showing at the same time the interest and current limitations of machine learning for studying

complex quantum systems.
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Complexity of the algorithms
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The complexity of the VMC and RQMC methods are evaluated in this appendix. We will

examine the computational cost associated to the three types of RBMs we considered in chapter

3: rRBMs with M ≡ αN , T -invariant rRBMs with S = N and M ≡ α and C4v-invariant rRBMs

with S = 8N and M ≡ α. The complexity is studied as a function of the system size N and the

number of variational parameters with α .

Evaluating Ψ(σz1 , . . . , σ
z
N ). Let us consider particle-hole symmetric RBM ansatz without bi-

ases (ai = 0, bj = 0) and recall the expression of the non-symmetric RBM ansatz with M hidden

nodes:

Ψ(σz1 , . . . , σ
z
N ) =

M∏

j=1

cosh

(
N∑

i=1

Wijσ
z
i

)
(A.1)

The symmetric ansatz with S symmetries and M filters writes:

Ψ(σz1 , . . . , σ
z
N ) =

S∏

s=1

M∏

f=1

cosh

(
N∑

i=1

W
(f)
i σ̃zi (s)

)
(A.2)

Importantly, let us denote

θj(σ
z) =

N∑

i=1

Wijσ
z
i (A.3)

θf,s(σ
z) =

N∑

i=1

W
(f)
i σ̃zi (s) (A.4)
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Operation rRBM
T -invariant

rRBM

C4v-invariant

rRBM

Calculating σ̃zi (s) for all i and s - ∝ N2 ∝ 8N2

Calculating θj(σ
z) for one j

Calculating θf,s(σ
z) for one (f, s)

∝ N

Calculating θj(σ
z) for all j

Calculating θf,s(σ
z) for all (f, s)

∝ αN2 ∝ 8αN2

Calculating cosh products

(with θs pre-computed)
∝ αN ∝ 8αN

Dominant complexity to compute Ψ(σz) O(αN2)

Table A.1: Computational cost and complexity of evaluating Ψ(σz).

A.1 Complexity of VMC

One VMC optimization step can be split in two parts: (i) generating Nsamples independent sam-

ples, (ii) updating the Nparams variational parameters with or without stochastic reconfiguration

(SR).

A.1.1 Sampling.

One Markov Chain Monte Carlo step involves selection of a new configuration and acceptance

of it. Starting from a configuration σz, the next one in the Markov chain is chosen such that

〈σz|H|σ′z〉 6= 0, i.e. they are related by an Hamiltonian element. In the K1 − K2 model in

chapter 3, σz is connected to O(N) configurations on average.

Calculating the probability of accepting σ′z involves computing the ratio Ψ(σ′z)/Ψ(σz). It

is in fact possible to compute it efficiently by taking advantage of the fact that σz and σ′z are

related by a Hamiltonian move, which changes the value of 4 spins for all kinetic terms in the

K1 −K2 model. For two configurations differing by only one spin flip at site k, i,e. σ′zk = −σzk,
we have the following relations (σzi ∈ {−1,+1}) for a non-symmetric RBM:

θj(σ
′z) = θj(σ

z)− 2Wkjσ
z
k (A.5)

and for a symmetric RBM:

θf,s(σ
′z) = θf,s(σ

z)− 2W
(f)
k σ̃zk(s) (A.6)

Therefore, we only need to compute once the value Ψ(σz) at the beginning of sampling, and

by storing the values θj(σ
z) or θf,s(σ

z), we only need to apply the above O(1) update to the

O(αN) cosh terms to compute the Ψ(xi). This allows to drop a factor of N in the complexity.

We often consider O(N) local moves as being the unit of Monte Carlo steps, i.e sweeps. One

must also keep in mind that autocorrelation between samples can increase the number of sweeps

needed to get independent samples by a possibly large prefactor. All in all, the complexity of

generating Nsamples independent samples is O(αN2 ×Nsamples) in all cases.
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Operation rRBM
T -invariant

rRBM

C4v-invariant

rRBM

Selecting σ′z O(N)

Updating θj(σ
z) for all j

Updating θf,s(σ
z) for all (f, s)

∝ αN ∝ 8αN

Calculating cosh products

(with θs pre-computed)
∝ αN ∝ 8αN

Dominant cost of computing Ψ(σ′z)/Ψ(σz) O(αN)

Table A.2: Computational cost and complexity for sampling in VMC.

A.1.2 Updating variational parameters.

Updating the value of a variational parameter is done according to:

θk+1 = θk − λ
∑

k′
S−1
k,k′

∂Eθ

∂θk′
(A.7)

This means one has to calculate (i) the energy derivative ∂Eθ
∂θk

with respect to all variational

parameters θk and (ii) the inverse of the S matrix when stochastic reconfiguration is used.

These quantities can be estimated with the following equations:

∂Eθ

∂θk
= 2<


 1

Nsamples

Nsamples∑

i=1

e∗L(xi)
(
Ok(xi)−Ok

)

 (A.8)

Sk,k′ = <


 1

Nsamples

Nsamples∑

i=1

(Ok(xi)−Ok)(Ok′(xi)−Ok′)


 (A.9)

We see that computing the above expressions amounts to calculating the wave function logarith-

mic derivatives Ok(xi) with respect to all the variational parameters and all the Monte Carlo

samples xi, their average over the samples Ok and the local energies eL(xi) for all samples {xi}.

Computing Ok(σ
z) and Ok. Note that here k refers to the αN2 variational parameters

(Wij) of the rRBM, and to αN variational parameters (W
(f)
i ) of the T -invariant rRBM and

C4v-invariant rRBM. The above-mentioned quantities are defined as follows for non-symmetric

RBMs:

Ok(σ
z) ≡ ∂ log Ψ

∂Wij
(σz) = σzi tanh [θj(σ

z)] (A.10)

and for symmetric RBMs:

Ok(σ
z) ≡ ∂ log Ψ

∂W
(f)
i

(σz) =
S∑

s=1

σ̃zi (s) tanh [θf,s(σ
z)] (A.11)

Ok ≈
1

Nsamples

Nsamples∑

i=1

Ok(xi) (A.12)

133



Appendix A. Complexity of the algorithms

Operation rRBM
T -invariant

rRBM

C4v-invariant

rRBM

Calculating σ̃zi (s) for all i and s - ∝ N2 ∝ 8N2

Calculating θj(σ
z) for all j

Calculating θf,s(σ
z) for all (f, s)

∝ αN2 ∝ 8αN2

Calculate Ok(σ
z) for one k

(with θs pre-computed)
O(1) ∝ N ∝ 8N

Calculate Ok(σ
z) for all k

(with θs pre-computed)
∝ αN2 ∝ 8αN2

Dominant cost to compute Ok(σ
z)

for all samples
O(αN2 ×Nsamples)

Dominant cost to compute Ok for all k

(with all Ok(xi) pre-computed)
O(αN2 ×Nsamples) O(αN ×Nsamples)

Table A.3: Computational cost and complexity for the calculations of the wave function deriva-

tives in VMC.

Local energies eL(x). The local energies are calculated as follows:

eL(σz) =
∑

σ′z

〈σz|H|σ′z〉Ψ(σ′z)

Ψ(σz)
(A.13)

It is possible to use the same trick as in Sec. A.1.1 since σz and σ′z are related by an Hamiltonian

move. We compute once Ψθ(σz) (which amounts to O(αN2) as shown in Tab. A.1) and com-

puting the value Ψθ(σ′z) only require O(αN) operations (see Tab. A.2). Since there are O(N)

non-zero elements in the column of the K1 −K2 Hamiltonian, calculating all 〈σz|H|σ′z〉Ψ(σ′z)

terms scales as O(αN2). The dominant cost of computing eL(σz) on all samples is then

O(αN2 ×Nsamples).

Stochastic reconfiguration. Let us estimate the cost of inverting the S matrix, given that

the values of Ok(xi) and Ok have already been computed. As noted in [Carleo & Troyer 2017],

due to the symmetric nature of S and its product structure, it is not necessary to explicitly

evaluate each of its elements and then compute its inverse. Iterative solvers can reduce the cost

greatly as showed below:
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Operation rRBM
T -invariant

rRBM

C4v-invariant

rRBM

Calculating one element Sk,k′

(with Ok(xi) and Ok precomputed)
O(Nsamples)

Calculating the full S matrix O(α2N4 ×Nsamples) O(α2N2 ×Nsamples)

Inverting S O(α3N6) O(α3N3)

Iterative solving of S−1 O(αN2 ×Nsamples) O(αN ×Nsamples)

Table A.4: Computational complexity of the stochastic reconfiguration algorithm.

Dominant cost for parameter update. Once the quantities Ok(xi), Ok, eL(xi), S
−1
k,k′ are

computed, the energy derivative in Eq. A.8 can be evaluated in O(Nsamples) and the RBM

parameters updated.

Operation rRBM
T -invariant

rRBM

C4v-invariant

rRBM

Calculating ∂Eθ
∂θk

for all k

(with Ok(xi), Ok, eL(xi) precomputed)
O(αN2 ×Nsamples) O(αN ×Nsamples)

Updating θk RBM parameters

for all k without SR

(with ∂Eθ
∂θk

precomputed)

O(αN2) O(αN)

Updating θk with SR

(with ∂Eθ
∂θk

, S−1
k,k′ precomputed)

O(α2N4) O(α2N2)

Table A.5: Computational cost and complexity for

In summary, the dominant cost O(αN2 ×Nsamples) is equally distributed over the different

algorithm sections. Though we expect slower execution for non-symmetric RBMs when using

stochastic reconfiguration. We note a computational cost greater by a factor of 8 for the C4v-

invariant ansatz compared to the T -invariant ansatz, that shows up whenever the wave function

is evaluated.

A.1.3 Computing energy and observables.

The local energy is already computed during the optimization procedure, so the variational

energy can be estimated with a O(Nsamples) cost. The computation of S(π, π), P (0, π) or σ scale

as O(N ×Nsamples).
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A.2 RQMC with guiding RBMs

Let us recall that selection probability t and acceptance probability a are governed by the

following equations:

t(+1)(R′|R) = pxT ,x0 , a(+1)(R′|R) = min

[
1,

bx0
bxp−1

]
(A.14)

t(−1)(R′|R) = pxT ,xp , a(−1)(R′|R) = min

[
1,
bxp
bx1

]
(A.15)

Let us remind that bx =
∑

x′ Gx,x′ and px′,x = Gx,x′/bx and

Gx,x′ = 〈x|(−H)|x′〉Ψ(x′)
Ψ(x)

(A.16)

A.2.1 Sampling.

The reptile is initialized with p configurations all connected between each other by a Hamil-

tonian element. We first start by evaluating pxT ,x, bx, for all configuration x of the reptile

and all xT configurations connected to x. The selection and acceptance of a new configuration

xnew can be computed from quantities pxT ,x0 , bx0 , etc.. that we know the value. Once a new

configuration xnew has been selected and accepted, we need to compute the associated weights

bxnew =
∑

x′ Gxnew,x′ and probabilities px′,xnew = Gxnew,x′/bxnew . Since all pairs xnew, x′ are always

related with an Hamiltonian move, we can use the same trick as in Sec. A.1.1.

Operation rRBM
T -invariant

rRBM

C4v-invariant

rRBM

Pick a configuration xnew at random

from distributions pxT ,x0 or pxT ,xp
O(N)

Calculating Gxnew,x′ for one x′ ∝ αN ∝ 8αN

Calculating Gxnew,x′ for all x′ ∝ αN2 ∝ 8αN2

Calculating Gxnew,x′ for all x′ without guide O(N)

Calculating bxnew
(with Gxnew,x′ precomputed)

O(N)

Calculating all px′,xnew
(with Gxnew,x′ precomputed)

O(N)

Table A.6: Computational cost and complexity of sampling in RQMC.

The dominant cost of one reptile move is O(N) without a guide and O(αN2) for

all guides considered (although in practice the prefactor may be small). Moreover it is

common to scale a Monte Carlo sweep with p Monte Carlo updates (even though an

equally natural choice could be to scale sampling with systems size N , but we did not do

that). In summary, the dominant cost without a guide is O(N × p×Nsamples) whereas it is

O(αN2 × p×Nsamples) with all guides considered (though we note a computational cost pref-

actor of 8 for C4v-invariant rRBM). In addition to that, equilibration of the Markov chain

sometimes requires to discard of the order of 10% of the Nsamples.
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A.2.2 Computing energy and observables.

The local energy is obtained for free since eL(x) = −bx and the ground state energy can be

estimated with a O(Nsamples) cost. The computation cost of S(π, π), P (0, π) or σ scales as

O(N ×Nsamples).
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Résumé en français

La physique de la matière condensée a pour objet l’étude de modèles mathématiques censés

décrire des matériaux réels. Ces modèles ”jouets” sont conçus pour être assez riches pour

rendre compte des propriétés de systèmes physiques réels, tout en étant assez simples pour

pouvoir être traité analytiquement ou numériquement. Les laboratoires sont le lieu de la

découverte de nouveaux faits expérimentaux qui intriguent et peuvent résister longtemps aux

efforts de compréhension des physiciens. Parmi les phénomènes bien connus de la matière

condensée mais qui échappent encore aujourd’hui à une théorisation satisfaisante, on peut

compter la supraconductivité à haute-température [Bednorz & Müller 1986], l’effet Hall quan-

tique fractionnaire[Tsui et al. 1982, Laughlin 1983] et, apparue dernièrement, la supraconduc-

tivité qui est observée lorsque deux feuillets de graphène sont placés l’un sur l’autre avec un

léger décalage angulaire [Cao et al. 2018].

Une branche relativement nouvelle de la physique concerne l’étude de modèles complexes en

utilisant la puissance de calcul des ordinateurs. A mi-chemin entre les expériences en laboratoire

et les calculs analytiques, la physique numérique concerne la simulation numérique de ces modèles

de matériau. Une simplification utile pour l’approche numérique est de considérer des modèles

sur réseau où les degrés de liberté sont disposés dans un espace discrétisé (ce qui se justifie en

matière condensée étant donné que les atomes s’organisent de manière périodique dans l’espace

pour former des cristaux). Le modèle de Hubbard [Hubbard & Flowers 1963] est central dans le

domaine et décrit des électrons pouvant sauter d’un sommet à l’autre du réseau et interagissant

via un terme de répulsion sur site qui modélise l’interaction de Coulomb sous-jacente:

H = −t
∑

〈i,j〉,σ
c†i,σcj,σ + h.c.

︸ ︷︷ ︸
electron hopping

+ U
∑

i

ni,↑ni,↓

︸ ︷︷ ︸
Coulomb repulsion

(B.1)

où 〈· · · 〉 désigne les sites voisins d’un réseau de dimension d. L’opérateur fermionique c†j,σ (cj,σ)

crée (détruit) un électron avec un spin σ (up ↑ ou down ↓) sur une orbitale résidant sur le site

j.

En général, les solutions exactes de modèle sur réseau sont rares au-delà de systèmes uni-

dimensionnels, et habituellement les développements analytiques doivent en dernier recours

s’appuyer sur des approximations ou des hypothèses qui ne peuvent pas être rigoureusement

justifiées. Par conséquent, les études basées sur des simulations numériques permettent de

contourner ces limitations. Nous présentons ci-dessous deux méthodes représentatives des tech-

niques souvent utilisées pour étudier des systèmes quantiques fortement corrélés.

Diagonalisation exacte

La façon la plus directe d’étudier un modèle de spins quantiques est de construire la matrice du

Hamiltonien et de la diagonaliser. Ceci donne accès en principe aux états propres exacts ainsi
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qu’au spectre d’énergie pour tout système de taille finie. Cependant, à cause de la croissance

exponentielle de la taille de l’espace de Hilbert avec la taille du système (la taille de l’espace de

Hilbert de N spins-1/2 est 2N ), la matrice du Hamiltonien devient exponentiellement grande

et en pratique la limite en temps ou en mémoire est rapidement atteinte pour une dizaine de

spins. Néanmoins, cette méthode étant exacte par nature, elle est d’une grande utilité pour

tester de nouvelles méthodes en utilisant les résultats exacts obtenus par diagonalisation sur

des petites systèmes comme base de comparaison. Dans certains cas, une étude à taille finie

accompagné d’une théorie d’échelle appropriée et d’une analyse des symétries est suffisante

pour extrapoler des observables dans la limite thermodynamique et obtenir un diagramme de

phase [Wietek et al. 2017].

Méthodes variationnelles : compresser

Une stratégie pour contourner la complexité exponentielle d’une fonction d’onde quantique est

de la paramétrer par un faible nombre de paramètres. Plus précisément, pour un état quantique

|Ψ〉 =
∑

i ci|i〉, le nombre de coefficients ci crôıt exponentiellement avec la taille du système.

Le but des approches variationnelles est d’encoder ces amplitudes de manière succincte avec un

nombre de paramètres variationnels qui ne crôıt qu’en loi polynomiale de la taille du système.

Par construction, cette approche est biaisée par la paramétrisation choisie, néanmoins des ap-

proximations pertinentes d’états fortement corrélés peuvent être trouvées.

Étant donnés un Hamiltonien H et son état fondamental |E0〉, comment pouvons-nous ap-

proximer |E0〉 avec une certaine classe de fonctions d’onde ? Une manière de procéder est

d’utiliser le principe variationnel qui donne une relation entre l’énergie de tout état variationnel

|Ψvar〉 et l’énergie de l’état fondamental E0 :

E0 ≤ Evar =
〈Ψvar|H|Ψvar〉
〈Ψvar|Ψvar〉

(B.2)

En conséquence, l’énergie de tout état variationnel |Ψvar〉 fournit une borne supérieure à la

valeur exacte de l’énergie du fondamental. Sans connâıtre E0, plus l’énergie Evar est basse,

plus on s’attend à ce que l’état |Ψvar〉 soit proche du véritable état fondamental. En pratique,

on cherchera donc à optimiser les paramètres variationnels pour minimiser Evar, ceci peut être

effectué avec des techniques d’échantillonnage Monte Carlo.

Apprentissage automatique et matière condensée

Le domaine de la physique n’échappe pas à la tendance générale actuelle qui a vu la quantité

de données exploser. Comme la capacité de calcul et de mémoire augmentent et sont plus

accessibles, les ensembles de données deviennent plus grands et les échantillons de meilleure

qualité, comme on a pu le voir en physique des hautes énergies et la quantité croissante de

données collectées par le LHC ou les grands télescopes. Par ailleurs, il existe des similarités

entre la physique et le domaine de l’apprentissage automatique. On peut noter par exemple

le parallèle entre la complexité exponentielle d’un système quantique en interaction avec la

malédiction de la dimension qui affecte l’apprentissage automatique et stipule que le nombre de

données d’entrâınement doit crôıtre exponentiellement vite avec la dimension des échantillons

comme montré sur la figure B.1.
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Figure B.1: Quand la dimension des données d’entrée augmente (de gauche à droite), le

volume de l’espace des données augmente exponentiellement. Cela signifie que la taille des

données d’entrâınement doit crôıtre exponentiellement avec la dimension en entrée pour qu’une

machine puisse être entrâınée avec un échantillon représentatif de données. Figure issue de

[Goodfellow et al. 2015].

Les systèmes étudiés en matière condensée et les données en apprentissage automatique sont

souvent caractérisés par leurs corrélations et leur symétries. Par exemple, il a été montré que les

corrélations entre pixels [Ruderman 1994] ou entre mots [Ebeling & Pöschel 1994] décroissent

en loi de puissance ce qui rappelle les corrélations dans les systèmes physiques proche d’une

transition de phase. Dans le même esprit, les symétries aident souvent à la compréhension

des systèmes quantiques comme elles peuvent réduire l’effort numérique de certaines tâches

d’apprentissage.

Bien connu dans la théorie statistique de l’apprentissage et utilisé très tôt sur des grands

ensembles de données issues d’expériences de physique des particules, l’apprentissage au-

tomatique n’est devenu un nouveau phénomène en physique de la matière condensée que

très récemment. Il a d’abord été appliqué à la détermination des énergies d’atomisation

de molécules [Rupp et al. 2012, Pilania et al. 2013] ou à l’accélération de simulations Monte

Carlo [Huang & Wang 2017, Liu et al. 2017a, Xu et al. 2017]. Les échanges entre les deux do-

maines sont réciproques quand par exemple des réseaux de tenseurs sont utilisés pour clas-

sifier des images [Stoudenmire & Schwab 2016] ou encore quand la compréhension du fonc-

tionnement des réseaux neurones se base sur des concepts empruntés au groupe de renor-

malisation [Mehta & Schwab 2014]. Sur le plan expérimental, des progrès notables ont été

observés pour la tomographie d’état quantique [Torlai et al. 2018], la préparation d’états

[Bukov et al. 2018] ou l’estimation de paramètres [Greplova et al. 2017] en utilisant des tech-

niques d’apprentissage automatique.

Dans les sections suivantes, après avoir introduit la structure d’un réseau de neurones, nous

résumons les trois chapitres de ma thèse qui sont centrés sur trois applications différentes de

l’apprentissage automatique à la physique de la matière condensée.

B.1 Réseaux de neurones

Le premier exemple de réseau de neurones a été introduit dans les années 40 sous la forme de

perceptrons [Rosenblatt 1957] et conçu à l’origine comme une possible modélisation du cerveau.

De nos jours, la première motivation s’est effacée au profit d’une utilisation centrée sur des

tâches de classification ou de génération de données comme des images, des sons ou des vidéos.

Les réseaux de neurones sont composés de neurones qui ont des propriétés qui ressemblent
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(de loin) à des neurones réels. Pour résumer, les neurones artificiels sont des fonctions simples

qui prennent plusieurs valeurs en entrée et renvoie une sortie après des opérations non-linéaires.

Un neurone est défini de la manière suivante :

Neuron(x) = f(WTx + b) (B.3)

où f est une fonction d’activation non-linéaire comme visible sur la figure B.2(b), W et b sont

respectivement des vecteurs de poids et un biais scalaire, et x est un vecteur réel de données

d’entrée. Par conséquent, la sortie d’un neurone est le résultat d’une transformation affine sur

le vecteur d’entrée suivie d’une opération non-linéaire f .

Les réseaux de neurones, comme leur nom l’indique, sont construits en connectant des neu-

rones ensemble. Les neurones sont habituellement organisés en couches successives (voir figure

B.2(c)). Une couche est un ensemble de neurones qui va agir simultanément sur les valeurs

d’entrée. L’équation ci-dessus peut être modifiée pour prendre la forme :

Layer(x) = f(WTx + b) (B.4)

où dans ce cas la fonction f est appliquée à chacun des éléments du vecteur d’entrée.

(a)
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2
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(b) (c)

Figure B.2: (a) Décomposition d’un neurone, les parties linéaire and non-linéaires sont

représentées, extrait de [Mehta et al. 2019]. (b) Fonctions d’activations les plus utilisées dans

les applications d’apprentissage profond. (c) Architecture standard d’un réseau de neurone

feed-forward, extrait de [Mehta et al. 2019].

Apprentissage profond. Un réseau de neurone qui est obtenu en empilant plusieurs couches

de neurones est dit profond. Le vif intérêt suscité par les réseaux de neurones profonds vient du

fait qu’ils sont particulièrement adaptés pour représenter des concepts qui s’organisent en une

hiérarchie de concepts de haut-niveau obtenus en composant des concepts de bas-niveau. Ceci

explique le succès de ces modèles appliqués à du texte, du son ou des images. Par exemple,

détecter un chat dans une image signifie qu’un algorithme doit apprendre le concept du chat,

qui est lui-même obtenu comme la composition d’autres concepts comme le concept de queue

ou d’oreilles, qui peuvent à nouveau s’exprimer comme des compositions de concepts primaires

comme des formes ou des textures. La figure B.3 montre comment le concept d’une personne

peut être décrit par des éléments de bas-niveau, qui sont ensuite combinés entre eux dans les

couches supérieures permettant à la fin de détecter des concepts de plus en plus abstraits ou de

grande échelle et assigner un label à une image.
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Figure B.3: Illustration schématique d’un réseau de neurones profond dont la sortie est obtenue

en combinant des concepts de complexité croissante. Les premières couches sont capables de

détecter des propriétés comme des gradients de couleur ou des petits motifs, ensuite les couches

supérieures combinent ces détails pour permettre la détection de concepts de plus grande échelle

comme des formes ou des objets entiers jusqu’à renvoyer la description la plus abstraite de

l’image, c’est-à-dire le label. Image issue de [Goodfellow et al. 2016].

B.2 Détection automatique de phases de la matière

Une des premières applications de l’apprentissage automatique à la matière condensée a été

de traiter le problème de classification de phases de la matière. Traditionnellement, la

compréhension des phases et l’obtention de diagrammes de phases est réalisé après avoir identifié

un paramètre d’ordre, qui peut être une observable physique prenant différentes valeurs dans

chaque phase. Bien que ces diagnostics soient connus dans des cas simples comme le modèle

d’Ising, la grande majorité du temps il est difficile de connâıtre le paramètre d’ordre, son exis-

tence n’étant d’ailleurs pas tout le temps garantie. De nouvelles perspectives sur ce sujet ont

émergé à la suite d’une série de travaux [Wang 2016, Carrasquilla & Melko 2017, Wetzel 2017,

van Nieuwenburg et al. 2017, Broecker et al. 2017a] dans lesquels un algorithme apprend à clas-

sifier des phases de la matière de manière autonome. Cette approche s’applique aussi bien à des

données expérimentales qu’issues de simulations numériques et ouvre la voie, par exemple, à la

découverte de nouveaux paramètres d’ordre.

B.2.1 Méthode supervisée pour détecter une transition

Carrasquilla et Melko ont proposé une méthode basée sur de l’apprentissage supervisé

[Carrasquilla & Melko 2017] qui fonctionne comme suit : (i) la compréhension physique du

modèle est utilisée pour labelliser des échantillons d’entrâınement dans des limites bien com-

prises du diagramme de phase (voir la zone rouge dans la figure B.4), (ii) ensuite un réseau
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de neurones est entrâıné pour bien classifier les échantillons d’entrâınement selon leur phase,

(iii) enfin le réseau entrâıné est utilisé pour prédire la phase correspondant à des échantillons

provenant de tout l’espace des phases, ces prédictions sont enfin utilisées pour tracer le dia-

gramme de phase.

Prediction
Training

λ

1 2

λc

Figure B.4: L’approche supervisée fonctionne en entrâınant un réseau de neurones à distinguer

des échantillons des phases 1 et 2, la compréhension physique du système est utilisée pour labeller

des données issues de limites bien comprises du diagramme de phase. La prédiction des phases

se fait sur d’autres échantillons obtenus dans tout l’espace des phases.

Carrasquilla et Melko ont montré que, entrâınés sur des configurations de spins classiques

avec un label ferromagnétique (basse température) et paramagnétique (haute température)

générées par des simulations Monte Carlo du modèle d’Ising sur réseau carré, un réseau de

neurones est capable de classifier correctement les données d’entrâınement mais également est

capable de prédire de façon précise la température critique ainsi que l’exposant critique ν lié

à la longueur de corrélation connus exactement. De manière assez remarquable, ils montrent

aussi que ce réseau de neurones entrâıné sur le réseau carré peut aussi prédire précisément le

comportement critique du même modèle sur réseau triangulaire.

B.2.2 Application à la transition ETH-MBL en 1d

Les limitations actuelles des méthodes numériques pour aborder le problème de la localisation à

N corps (MBL pour many-body localization) et les applications prometteuses de l’apprentissage

automatique en physique ont été à l’origine de travaux utilisant ces techniques dans des systèmes

présentant des phases MBL. En particulier, les débats touchant à l’existence d’un paramètre

d’ordre dans les transitions ETH-MBL (ETH pour eigenstate thermalization hypothesis) offre

une occasion intéressante de tester la capacité des techniques d’apprentissage automatique à

traiter une transition de phase difficile.

En conséquence, un nombre important de travaux ont porté sur des transitions ETH-MBL

en une dimension dans des systèmes quantiques désordonnés et ont pu (i) montrer des résultats

qualitativement en adéquation avec des approches plus conventionnelles et (ii) parfois détecter

de nouvelles phases dans des modèles connus [Venderley et al. 2018, Hsu et al. 2018]. Bien que

satisfaisants, nous trouvons que ces travaux ont les limitations suivantes :

• la détection d’une transition de phase est parfois affirmée en considérant des petits systèmes

sans qu’une analyse en taille finie soit tentée,
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• l’entrâınement est réalisé sur des données très transformées comme le spectre d’intrication,

ce qui pourrait biaiser l’apprentissage,

• l’influence des hyperparamètres n’est pas systématiquement étudiée,

• l’interprétation des réseaux de neurones est parfois absente,

• l’existence d’une première estimation du point de transition (hc ≈ 3.7 dans le modèle

étudié) peut biaiser certains travaux et les pousser à juger positivement leurs résultats dès

que cette valeur est retrouvée.

Notre travail a consisté à combler ces lacunes et à fournir une étude de la transition ETH-

MBL assistée par des techniques d’apprentissage automatique en suivant les préceptes suivants

:

• Minimiser l’intervention humaine pour réduire le biais qui pourrait venir de la façon

dont les données sont prétraitées, du choix de l’architecture du réseau de neurones, de

l’interprétation ad hoc de la sortie du réseau de neurones, etc.. Nous voulons rester aussi

agnostique que possible en ce qui concerne la physique en jeu, ce qui permettrait de révéler

de nouveaux phénomènes dans cette transition. En corollaire, plus les données d’entrée

sont génériques, plus notre protocole pourra être appliqué à d’autres transitions de phase.

• Accessibilité des grandes tailles, la dimension des échantillons d’entrée doit être réduite

pour que l’entrâınement des réseaux de neurones reste possible pour les plus grandes tailles

de système (L = 24) d’autant plus que nous voulons faire une analyse à taille finie.

• Minimiser l’influence des paramètres non-physiques, la variabilité des résultats en fonction

des paramètres de la méthode (formatage des données, hyperparamètres) doit être étudiée

et éliminée autant que possible.

• Interpretabilité : les données et l’architecture du réseau de neurones doivent rendre possible

une interprétation de la fonction de décision apprise.

Ces directives peuvent parfois être antagonistes, les sections qui suivent présentent le compromis

auquel nous avons abouti pour satisfaire au mieux ces contraintes.

B.2.3 Données

De nombreux types de données ont été considérés dans les précédents travaux

: le spectre d’intrication d’états propres [van Nieuwenburg et al. 2017, Hsu et al. 2018,

Schindler et al. 2017, Venderley et al. 2018, Durr & Chakravarty 2019], des observables dy-

namiques [Doggen et al. 2018, van Nieuwenburg et al. 2018], le spectre d’énergie [Rao 2018,

Kausar et al. 2020] ou les états propres entiers [Zhang et al. 2019a, Huembeli et al. 2019]. C’est

cette dernière approche que nous suivons puisqu’elle a l’avantage de n’opérer aucune compres-

sion de l’information, toutes les observables d’un système pouvant être calculées à partir d’un

état propre. Faire ce choix implique cependant de traiter le problème de la dimensionnalité

des échantillons. En effet, un état propre |Ψ〉 peut s’écrire dans la base des Sz noté |i〉 comme

|Ψ〉 =
∑

i ci|i〉 et le nombre de coefficients pi ≡ |ci|2 crôıt exponentiellement avec la taille du

système. Notre solution a été de garder uniquement les Nc plus grandes probabilités pi comme

montré sur la figure B.5.
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Figure B.5: Exemples des Nc = 256 plus grandes probabilités pi pour des états propres dans

le milieu du spectre pour différentes réalisations du désordre et tailles de système pour deux

valeurs de désordre correspondant aux phases ETH (gauche) et MBL (droite).

Données. Nous obtenons des états propres exacts dans le milieu du spectre (température

infinie) à l’aide de la méthode shift-invert [Pietracaprina et al. 2018b]. Pour les données

d’entrâınement, nous avons utilisé 1000 réalisations de désordre par force de désordre et 250

pour la prédiction pour des tailles allant de L = 14 à L = 24.

Réseau de neurones. Une architecture de réseau de neurones de faible profondeur (voir

figure B.6) permet de satisfaire les contraintes liées à l’interprétabilité des prédictions, puisque

le nombre de paramètres du réseau de neurones est raisonnablement faible.

Figure B.6: Architecture du réseau de neurones que nous avons utilisée. Chaque état propre

est donnée au réseau comme un vecteur de taille Nc et le réseau de neurones renvoie un nombre

pMBL dans [0, 1] (avec pMBL +pETH = 1) qui peut être interprété comme la probabilité de classer

l’échantillon comme MBL.
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B.2.4 Procédure uni-taille

Dans cette procédure, un ensemble de réseaux de neurones est entrâıné séparément sur différentes

tailles de système. Un désordre critique à taille finie hc(L) peut être déduit des prédictions du

réseau de neurone, enfin nous obtenons le désordre critique dans la limite thermodynamique

hc(∞) et ν avec l’ansatz montré sur la figure ci-dessous.

Figure B.7: Procédure uni-taille.
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Figure B.8: Fraction des états propres classifiés comme MBL en fonction de la force de désordre

pour la procédure uni-taille. Les prédictions sont moyennées sur 250 réalisations de désordre

pour chaque force de désordre (avec 100 états propres par réalisation) et 50 entrâınements

indépendants. La troncature vaut Nc = 256. Les barres d’erreur indiquent l’erreur statistique

due à l’échantillonnage du désordre. Encart : étude à taille à finie de hc(L) défini comme

f(hc(L)) = 0.5 pour différentes troncatures Nc.

Nous pouvons faire plusieurs remarques sur la figure B.8 : d’une part l’existence d’une région

entièrement ETH (où tous les échantillons sont classifiés comme ETH) qui s’étend de h = 0 à

h = 2 et une région entièrement MBL qui commence à partir de h = 6 pour toutes les tailles

de système considérées. Un autre point important est l’organisation respective des courbes en

fonction de la taille du système, la transition entre ETH et MBL a lieu à des désordres plus

élevés à mesure que la taille augmente. Ce comportement est en accord avec d’autres observables

(comme les statistiques spectrales ou la variance de l’intrication) utilisées dans l’analyse standard

du système [Luitz et al. 2015].
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L’analyse en taille finie donne un désordre critique hc ≈ 3.2 qui est plus faible que l’estimation

habituelle plutôt autour de hc ≈ 3.7 [Luitz et al. 2015] et des valeurs de ν ≈ 0.22 très petites,

qui semblent non-physiques.

Même si nos résultats montrent des comportements cohérents quand on varie Nc ou L, la

procédure uni-taille autorise a priori la possibilité que des réseaux de neurones entrâınés à des

tailles différentes puissent apprendre différentes observables physiques. En effet, l’entrâınement

dépend par exemple de la capacité du réseau de neurones (nombre de couches, de neurones

cachés) par rapport à la complexité des données d’entrâınement (qui varie d’une taille à l’autre).

B.2.5 Procédure multi-taille

Le formatage des états propres tronqués à Nc coefficients permet d’utiliser un unique réseau

de neurones pour traiter sur le même plan des données venant de différentes tailles de système

(voir figure B.9). Cela pourrait aider le réseau de neurones à apprendre des caractéristiques des

états propres qui ne sont pas spécifiques d’une taille donnée. Dans la suite, nous étudions les

prédictions d’un réseau de neurones entrâıné avec des données venant de tailles L = 16, 18, 20, 22.

Figure B.9: Procédure multi-taille

La figure B.10 montre des similarités avec la figure B.7 mais dans ce cas les courbes cor-

respondantes à différentes tailles de système sont plus espacées dans la région de transition.

Notons que nous avons effectué une prédiction non-triviale en utilisant le réseau de neurones

entrâıné sur les tailles L = 16, 18, 20, 22 sur les tailles L = 14 et L = 24 qu’il n’a pas vues durant

l’entrâınement.

L’étude en taille finie aboutit à un résultat problématique car les prédictions dépendent

fortement de la zone de l’espace des phases utilisée pour l’entrâınement alors même que pour

h > 8 on peut considérer le système comme ayant des propriétés homogènes et très MBL. En

conséquence, les estimations de hc varient entre hc ≈ 4 et hc ≈ 6 ce qui dépasse la valeur de

référence et ν varie entre 0.6 et 1.4.

La procédure multi-taille était a priori plus à même de produire des résultats plus fiables,

c’est-à-dire qui seraient moins sensibles aux effets de taille finie. Cependant, nous avons trouvé

que le point de transition prédit dépend fortement de la région de l’espace des phases utilisée pour

l’entrâınement. Ceci est clairement une limitation de notre procédure puisque nous aimerions

obtenir des valeurs critiques qui ne dépendent pas des données utilisées en entrée.

L’analyse des poids du réseau de neurones a aussi révélé que l’entrâınement aboutit à

une règle de classification qui est une moyenne des règles de classification trouvées en sec-

tion précédente. Plus précisément, c’est la même fonction de décision qui aurait été obtenue en

entrâınant le réseau avec des données provenant de la taille L = 16+18+20+22
4 .

148
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Figure B.10: Fraction des états propres classifiés comme MBL en fonction de la force de désordre

pour la procédure multi-taille. Les prédictions sont moyennées sur 250 réalisations de désordre

pour chaque force de désordre (avec 100 états propres par réalisation) et 50 entrâınements

indépendants. La troncature vaut Nc = 256. Les barres d’erreur indiquent l’erreur statistique

due à l’échantillonnage du désordre. Encart : étude à taille à finie en utilisant des données

labellées ETH à hETH = 0.25 et labellées MBL à hMBL = 8.0, 10.0, 12.0.

B.2.6 Conclusion

Nos résultats montrent des tendances cohérentes lorsque l’on change la dimension des données

d’entrée (la classification est stable avec la troncature Nc) et la taille physique du système

considéré (le critère de classification s’adapte à la décroissance des premiers coefficients pi) pour

la procédure uni-taille.

L’objectif initial de notre travail était de faire une étude à taille finie d’un modèle présentant

des phases MBL et ETH en utilisant des réseaux de neurones. Notre analyse révèle de nom-

breuses difficultés: l’analyse en taille finie est très sensible aux hyperparamètres du réseau de

neurones (le choix des fonctions d’activation, l’ajout ou non de dropout). En plus de cela, il

n’existe pas de critère inhérent à la méthode permettant de discriminer ces différents choix et

d’une certaine manière, on peut voir notre analyse comme une sorte d’exploration de modèles

(différentes machines de performance équivalente ont différentes manières de résoudre la même

tâche) plutôt qu’une sélection de modèles (sélectionner la machine qui est la plus performante).

Les limitations viennent également de la dépendance en les données d’entrâınement, nous

avons montré que les prédictions du réseau de neurones et l’analyse à taille finie changent

selon la zone de l’espace des phases choisie pour l’entrâınement. De plus, quand les données

d’entrâınement contiennent des fonctions d’onde provenant de différentes tailles de système,

le réseau de neurones a tendance à extraire des caractéristiques moyennées. En incluant une

contrainte pour limiter cet effet (sous la forme d’un composant adversaire), la situation s’améliore

au prix d’un plus grand nombre d’hyperparamètres à ajuster et d’un risque accru de biaiser un
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peu plus les estimations finales.

Ces limitations apparaissent alors même que nous avons donné les meilleures données d’entrée

(i) donnant directement les fonctions d’onde compressées de façon contrôlée et (ii) aussi en ter-

mes de tailles de système (jusqu’à L = 24 ce qui est l’état de l’art actuel dans le contexte de

la MBL). Néanmoins nous trouvons que les différents cas capturent des tendances à taille finie

cohérentes avec un changement brusque autour de la région critique, cela en utilisant un nombre

limité de réalisations de désordre. Cette dernière remarque souligne un des avantages des réseaux

de neurones, ils permettent de diminuer le coût de calcul par rapport aux méthodes convention-

nelles. Un autre point intéressant (évoqué dans l’appendice B de [Théveniaut & Alet 2019]), que

nous avons découvert en inspectant les différentes contributions à la variance des prédictions est

que la classification d’une fonction d’onde par un réseau de neurones est bien corrélée avec son

entropie d’intrication.

L’analyse à taille finie aboutit à des valeurs de hc et ν assez différentes des estimations

habituelles: hc ' 3.2 et ν ' 0.22 pour le cas uni-taille, et hc ' 5 − 6 et ν ' 1.2 − 1.5

dans les cas multi-tailles. L’analyse à taille finie de la transition MBL est aussi connue pour

être particulièrement difficile, les tailles accessibles par diagonalisation exacte sont considérées

trop petites pour sonder le bon comportement proche de la transition [Khemani et al. 2017,

Panda et al. 2020]. Nous ne trouvons pas que les techniques d’apprentissage automatique per-

mettent d’améliorer la situation, en tout cas avec les données et les approches que nous avons

choisies. En particulier, il n’y a aucune raison d’accorder plus de crédit aux prédictions des

réseaux de neurones qu’aux résultats obtenus avec les approches usuelles. La tendance globale

qui semble se dessiner pointe vers une phase ETH plus large que détectée auparavant, même si

nous soulignons qu’aucune valeur de champ hc(L) (obtenue individuellement pour chaque taille

de système L) n’excède la valeur de référence hc = 3.7 dans les barres d’erreur.

Notre étude des effets de taille finie de cette transition de phase aboutit à la conclusion qu’il

faut toujours être conscient des multiples biais qui proviennent de l’utilisation de réseaux de

neurones, et que l’intérêt de la méthode pourrait être restreint à des prédictions qualitatives

plutôt qu’à des estimations précises. Cette dernière remarque s’applique d’autant plus pour des

transitions de phase dont la nature ou la classe d’universalité est encore inconnue ou débattue

et/ou pour lesquelles les données d’entrée sont limitées (en termes de taille accessibles par

exemple).

B.2.7 MBL en deux dimensions

Dans [Théveniaut et al. 2020], nous apportons de nombreuses preuves numériques en faveur de

l’existence d’une phase localisée dans des systèmes à deux dimensions, qui est une question du

domaine très débattue.

Nous avons trouvé qu’un réseau de neurones entrâıné avec le spectre d’intrication d’états

propres exacts est capable d’apprendre à distinguer les régimes ETH et MBL pour un modèle

quantique de dimères. Les résultats sont en adéquation avec le comportement d’autres observ-

ables.
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B.3 Des états quantiques paramétrés par des réseaux de neu-

rones

Un champ entier d’études s’est ouvert à la suite de l’article fondateur de Carleo et

Troyer [Carleo & Troyer 2017] dans lequel ils proposent de paramétrer les amplitudes d’une

fonction d’onde quantique par un réseau de neurones. Pour un système de N particules avec des

nombres quantiques s1, . . . , sN , ces états dénommés NQS (pour neural-network quantum states)

peuvent s’écrire

|ΨNQS〉 =
∑

s1,··· ,sN
f(s1, . . . , sN )|s1, . . . , sN 〉 (B.5)

où f est un réseau de neurones, c’est-à-dire une fonction prenant un vecteur de grande dimension

en entrée et renvoyant un nombre complexe. Eq. (B.5) définit un ensemble très large d’états

quantiques selon le type de réseau de neurones (à propagation avant, convolutifs, récurrents,..),

leur architecture (nombre de couches, de neurones,..) et les valeurs de leurs paramètres internes.

Les auteurs de [Carleo & Troyer 2017] ont montré que les NQS peuvent être utilisés comme

approximations variationnelles d’états quantiques fondamentaux et ont montré d’excellentes per-

formances pour des modèles de spins en dimension 1 et 2. La complexité de cette représentation

découle directement de l’architecture du réseau de neurones f sous-jacent, ce qui procure flex-

ibilité et expressivité à cet ansatz car augmenter la largeur ou la profondeur de f améliore en

général la qualité de l’approximation variationnelle.

B.3.1 Machines de Boltzmann restreinte

Le premier ansatz considéré par [Carleo & Troyer 2017] était basé sur une machine de Boltzmann

restreinte (RBM). Les RBMs contiennent des neurones visibles et cachés couplés les uns aux

autres comme le montre la figure B.11.

σz1 σz2 · · · σzN−1 σzN

a1 a2 aN−1 aN
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Figure B.11: Une RBM contenant N neurones visibles prenant en entrée les valeurs des

magnétisations locales σzi = ±1 d’un système de spins-1/2, et 3 neurones cachés hj = ±1.

Quelques poids sont montrés: les biais visibles ai, les biais cachés bj et la matrice de poids Wi,j .

Comme les neurones prennent des valeurs binaires en entrée, il est particulièrement naturel

d’utiliser cette paramétrisation pour des systèmes ayant des degrés de liberté binaires comme un

spin-1/2, pour lequel la magnétisation locale selon z σzi = ±1 peut être choisie comme nombre

quantique. Plus précisément, pour un système de N spins-1/2, tout état quantique |Ψ〉 peut
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s’écrire dans la base des états |σz1〉 ⊗ · · · ⊗ |σzN 〉 (avec σ̂zi |σzi 〉 = σzi |σzi 〉). L’ansatz RBM consiste

à paramétrer l’amplitude complexe de |Ψ〉 dans cette base, c’est-à-dire 〈σz1 · · ·σzN |Ψ〉, par la

fonction de partition d’une RBM comme suit:

ΨRBM(σz1 , . . . , σ
z
N ) =

∑

(h1,...,hM )∈{−1,1}M
exp




N∑

i=1

aiσ
z
i +

M∑

j=1

bjhj +
N∑

i=1

M∑

j=1

Wijσ
z
i hj


 (B.6)

où a = (ai)i=1...N ∈ CN , b = (bj)j=1...M ∈ CM and W = (Wij)i=1...N,j=1...M ∈ CN×M sont

des paramètres variationnels à valeur complexe. A noter que si ces paramètres étaient réels, la

fonction d’onde |Ψ〉 serait réelle et positive et ne pourrait donc pas décrire un état fermionique

possédant une structure de signe.

B.3.2 Le modèle K1 −K2

Dans [Paramekanti et al. 2002], Paramekanti, Balents et Fisher proposent l’existence d’un nouvel

état de la matière bosonique dont les propriétés sont proches de celles de fermions. Les arguments

théoriques mis en avant montrent la stabilité de cette phase si les termes cinétiques de type

échange cyclique (voir figure B.12) sont suffisamment forts comparés aux termes habituels de saut

entre proche voisins. Cette découverte est particulièrement intéressante pour l’étude du matériau

solide 3-He [Roger 1983] et est possiblement reliée aux phénomènes de supraconductivité à haute

température. De façon alternative, on peut voir la cinétique en échange cyclique comme un

terme de saut d’une paire de particules – un boson et un trou formant un exciton – au travers

du réseau, ce qui donne le nom de liquide de Bose excitonique (EBL). La phase EBL présente les

propriétés thermodynamiques suivantes : une compressibilité non nulle, une chaleur spécifique

en ∼ T log(T ) et l’existence de deux lignes d’excitations sans trou spectral dans l’espace de

Brillouin, ce qui rappelle une phase liquide [Paramekanti et al. 2002].

S’inscrivant dans une série de tentatives infructueuses [Sandvik et al. 2002,

Melko et al. 2004, Rousseau et al. 2004, Rousseau et al. 2005] de réaliser une phase EBL

dans des modèles sur réseau, Tay et Motrunich [Tay & Motrunich 2010, Tay & Motrunich 2011]

ont étudié un modèle de bosons de coeur dur avec deux types d’échanges cycliques, ils montrent

des preuves numériques supportant l’existence de cette phase. Les opérateurs d’échange

cycliques sur un réseau carré sont définis sur une plaquette r comme suit :

Pmnr = b†rbr+mx̂b
†
r+mx̂+nŷbr+nŷ (B.7)

Figure B.12: Les opérateurs ring-exchange pour des plaquettes (a) 1×1, (b) 2×1 and (c) 1×2.

Figure extraite de [Tay & Motrunich 2010].
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Fig. B.12 montre trois types d’opérateurs plaquette qui apparaissent dans l’Hamiltonien

considéré dans [Tay & Motrunich 2010, Tay & Motrunich 2011] et qui s’écrit:

H = −K1

∑

r

P 1×1
r −K2

∑

r

(
P 1×2
r + P 2×1

r

)
(B.8)

En utilisant des méthodes variationnelles Monte Carlo (VMC) et Green function Monte Carlo

(GFMC), Tay et Motrunich obtiennent le diagramme de phase montré figure B.13.

Figure B.13: Diagramme de phase du modèle B.8 obtenu par [Tay & Motrunich 2011]. Une

onde de densité de charge (CDW) se développe à petit K2, puis un cristal de liens de valence

(VBS) est observé à des valeurs intermédiaires jusqu’à laisser place à une phase liquide de Bose

excitonique qui s’étend au delà de K2/K1 ≈ 4.

Les paramètres d’ordre de chaque phase sont les suivants:

1. Facteur de structure Une observable importante pour détecter une phase ordonnée

est le facteur de structure densité, qui est défini comme la transformée de Fourier des

corrélations densité-densité:

S(qx, qy) =
1

L2

∑

r,r′
eiq·(r−r

′)〈nrnr′ − n̄〉 (B.9)

Pour détecter une onde de densité de charge (CDW pour charge density wave en anglais)

à (π, π), la valeur du facteur de structure au moment q = (π, π) est un bon indicateur

puisqu’il atteint un maximum pour une configuration de bosons de type Néel.

2. Facteur de structure plaquette De la même manière, le paramètre d’ordre corre-

spondant au cristal de liens de valence à (0, π) s’obtient à partir du facteur de structure

plaquette défini comme suit:

P (qx, qy) =
1

L2

∑

r,r′
eiq·(r−r

′)
〈(
P 11
r

)2 (
P 11
r′
)2〉

(B.10)

La valeur à q = (0, π) sert comme paramètre d’ordre de cette phase.

3. L’observable ”croix” Les conditions de l’existence d’une phase EBL ont été obtenues

[Paramekanti et al. 2002]: (i) il ne doit pas y avoir d’ordre de charge, ce qui peut se voir par

l’absence de pic de Bragg dans la zone de Brillouin et (ii) le facteur de structure en densité

doit présenter des singularités le long des lignes (0, qy) et (qx, 0), qui ont été identifiées

théoriquement comme des marqueurs de l’existence d’une surface de Bose. La condition

(ii) peut être étudiée via l’opérateur ”croix” défini dans [Tay & Motrunich 2011]:

σ(qx, qy) =
S(qx, qy)

4| sin(qx/2) sin(qy/2)| (B.11)
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où SEBL(qx, qy) ≡ 4| sin(qx/2) sin(qy/2)| est la prédiction de la théorie

EBL [Paramekanti et al. 2002]. Comme mentionné dans [Tay & Motrunich 2011], la

phase EBL est signalée si la valeur de σ proche des singularités reste finie dans la

limite thermodynamique puisque cela signifie que S(qx, qy) ∝
qx→0

SEBL(qx, qy) (ou de

façon équivalente quand qy → 0). De plus, [Tay & Motrunich 2011] argumente basé

sur une théorie des champs effective que la phase EBL n’est stable que dans le cas

où σ reste au-dessus d’une valeur seuil σ ≥ σc = 3/16. En pratique, nous évaluerons

σ(qmin = 2π/L, qy) ou de manière équivalente σ(qx, qmin = 2π/L).

Motivés par l’explosion des travaux autour des NQS, notre travail tente d’étendre la va-

lidité des résultats de [Tay & Motrunich 2010], c’est-à-dire de confirmer ou infirmer leurs con-

clusions pour des tailles de système plus grands (jusqu’à L ≤ 16 comparé à L ≤ 12 dans

[Tay & Motrunich 2010]) avec une étude variationnelle utilisant des NQS et des méthodes de

projection guidée. Cela constitue un test pour l’efficacité des NQS dans ce diagramme des phases

contenant plusieurs phases.

B.3.3 Résultats variationnels

Bien que les fonctions d’onde RBMs ne puissent pas décrire efficacement certains états de la

matière [Gao & Duan 2017], leur performance demeure excellente dans une grande majorité des

cas étudiés et fait partie des NQS les plus simples. Nous avons testé la capacité des RBMs à

décrire les états fondamentaux du modèle (B.8) en comparant l’énergie et d’autres observables

(comme les paramètres d’ordre présentés plus haut) de fonctions d’onde RBMs optimisées aux

valeurs exactes obtenues par diagonalisation pour L = 6 (le maximum faisable) et aux résultats

non biaisés donnés par les méthodes projectives (voir section suivante) pour L = 12. De plus,

nous évaluons différents ansatz RBMs implémentant plus ou moins de symétries du modèle.

Nos résultats montrent que la précision des états variationnels RBMs est très bonne dans

les trois phases pour L = 6 et L = 12, atteignant des erreurs relatives sur l’énergie de l’ordre de

10−3 respectivement 10−2 dès α = 4. Le diagramme de phase montré en figure B.14 est établi en

faisant une étude à taille finie des paramètres d’ordre des phases CDW et VBS et en analysant

l’opérateur ”croix” à grand K2.

~2

EBL?

~0.5

CDW VBS

0
K2/K1

~3~1

Figure B.14: Diagramme de phase VMC obtenu avec une fonction d’onde RBM invariante par

translation avec α = 10 et une étude en taille finie pour des systèmes de taille atteignant L = 16.

Le premier gradient de couleur indique la coexistence des phases CDW et VBS. La zone hachurée

indique une région où ni les corrélations plaquette ne sont détectées ni la stabilité de la phase

EBL est établie par notre critère.

B.3.4 Diagramme de phase exact

Dans la section précédente, même si notre approche purement variationnelle avec un ansatz RBM

est plutôt précise pour L = 6 ou L = 12, il est parfois difficile d’établir avec certitude l’extension
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des différentes phases. Cela vient du fait que les tendances à taille finie des paramètres d’ordre

sont difficiles à lire, de plus il est important de rappeler que les méthodes variationnelles sont

biaisées par nature. Cette section est donc dévolue à nos résultats obtenus via des méthodes

projectives non-biaisées. Ces méthodes peuvent être accélérées en utilisant des fonctions d’onde

guide, ici des RBM précédemment optimisées. Les résultats sont présentés en figure B.15 et le

diagramme de phase exact sur la figure B.16.

B.3.5 Conclusion

Nous avons établi que les fonctions d’onde RBM sont capables de bien approximer les phases

solides et liquides du modèle K1−K2. En particulier, augmenter le nombre de neurones cachés

(α) permet d’améliorer la précision de l’ansatz de manière systématique. En comparaison de

l’ansatz variationnel de [Tay & Motrunich 2010] basé sur une théorie d’onde de spins, les RBMs

sont non seulement capables d’être plus précis sur l’énergie et les observables pertinentes même

pour les plus petits α considérés et sans symétrie implémentée, mais semblent aussi capables

de capturer des corrélations de type plaquette dans la limite thermodynamique, permettant de

détecter la phase VBS. Nous avons aussi noté des améliorations en implémentant les symétries

du modèle directement dans la RBM. Cependant, les effets de taille finie des paramètres d’ordre

calculés en VMC restent difficiles à lire dans certaines parties de l’espace des phases, ce qui

empêche de déterminer avec précision les limites des phases.

Une étude exacte du modèle K1 −K2 est possible à l’aide de Monte Carlo quantique ”rep-

tile” [Baroni & Moroni 1999]. Nous avons montré que la présence d’une fonction d’onde guide

RBM était bénéfique sur bien des aspects (thermalisation plus courte, convergence plus rapide,

barres d’erreur plus petites). Notre analyse de taille finie avec les méthodes de projection guidée

par la RBM α = 10 invariante par translation a confirmé le diagramme de phase trouvé dans

[Tay & Motrunich 2010], et étend leurs résultats à L ≤ 16. En guise d’avertissement, nous

voulons souligner que nous ne pouvons pas exclure la possibilité que pour de meilleurs guides

ou des tailles plus grandes, le critère de stabilité sur l’opérateur ”croix” pourrait ne pas être

satisfait. Néanmoins, comme évoqué dans [Tay & Motrunich 2010], ce critère pourrait ne pas

être l’argument final pour conclure sur la stabilité de la phase EBL.

En ce qui concerne les futurs développements, nous travaillons actuellement à trouver des

indices de l’existence de la phase EBL en étudiant l’intrication. En effet, comme montré dans

[Lai et al. 2013], l’entropie d’intrication se comporte en ∼ L log(L) pour des systèmes de bosons

avec des surfaces de Bose, ce qui fournit un possible indicateur pour la phase EBL. Alors que

l’entropie d’intrication est très difficile à obtenir en Monte Carlo quantique, il est plus facile de

la calculer efficacement en VMC [Hastings et al. 2010] en particulier pour des fonctions d’onde

RBM.
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Figure B.15: Résultats RQMC. (Haut gauche) S(π, π)/L2 en fonction 1/L2 pour différentes

valeurs de K2. (Haut droit) Cumulant de Binder de S(π, π) pour des systèmes allant de L = 8

à L = 16. L’échelle est linéaire pour K2 ∈ [0, 1] et logarithmique pour K2 ∈ [1, 10]. (Milieu

gauche) P (0, π)/L2 en fonction de 1/L2 pour différentes valeurs de K2. (Milieu droit) Cumulant

de Binder de P (0, π) pour des systèmes allant de L = 8 à L = 16. (Bas) Opérateur ”croix” à

grand K2 et différentes tailles de système. Les tirets indiquent le seuil limite de stabilité de la

phase EBL σc = 3/16.
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K2/K1

~4

EBL

~0.4

CDW VBS

0 ~5

Figure B.16: Diagramme de phase RQMC obtenu avec une fonction d’onde guide RBM invariante

par translation et α = 10, l’étude à taille finie est effectuée sur des tailles allant jusqu’à L = 16.

La zone grisée correspond à une région dans laquelle la phase VBS n’est plus présente et où la

stabilité de la phase EBL n’est pas visible dans la limite des tailles étudiées.
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B.4 Correction d’erreur dans les codes quantiques à l’aide de

techniques d’apprentissage par renforcement

Dans le contexte du développement des ordinateurs quantiques, la réalisation de qubits ro-

bustes passe inévitablement par la mise en place de stratégies de correction d’erreurs per-

mettant de protéger l’information stockée dans le qubit. Les codes quantiques topologiques

sont récemment apparus comme des candidats prometteurs pour l’implémentation de qubits

robustes [Kitaev 2003]. En encodant un qubit logique dans les propriétés topologiques d’un

système plus grand (qui peut être composé de plusieurs spins physiques), l’effet de la décohérence

(changement d’état d’un spin individuel par exemple) peut être corrigé activement.

B.4.1 Le code torique

Le code torique [Kitaev 2003] est un modèle de spins-1/2 vivant sur les arêtes d’un réseau carré

avec des conditions périodiques au bord. L’Hamiltonien s’écrit :

H = −
∑

v

Av −
∑

p

Bp (B.12)

qui inclut des stabilisateurs ”sommet” Av = Πi∈vσxi où v est un sommet du réseau (le produit

est réalisé sur les spins qui sont les arêtes les plus proches en rouge sur la figure B.17) et des

stabilisateurs ”plaquette” (le produit est réalisé sur toutes les arêtes de la plaquette en vert sur

la figure B.17). Les opérateurs Av et Bv ont pour valeurs propres ±1, commutent mutuellement

et avec le Hamiltonien. L’état fondamental du code torique se situe dans le secteur où Av = +1

et Bv = +1 pour tous les stabilisateurs ”sommet” et ”plaquette”. Nous pouvons montrer que

l’état fondamental est 4 fois dégénéré, ce qui permet de définir deux qubits logiques.

Les excitations de plus faible énergie qui projettent le système en dehors de l’état fondamental

s’obtiennent en appliquant un opérateur de Pauli sur l’état fondamental |GS〉. L’état excité

σxi |GS〉 produit une erreur de type bit-flip, de manière similaire σzj |GS〉 produit une erreur de

type phase-flip. On considère dans la suite un modèle de bruit usuel où les erreurs surviennent

avec une probabilité p sur chaque qubit physique. Une erreur σzj survenant sur l’arête j change

la valeur des stabilisateurs plaquette qui partage cette arête et donne Bv = −1. On définit un

syndrome comme étant la position des stabilisateurs prenant la valeur -1. Contrairement aux

opérateurs de Pauli, les syndromes peuvent être mesurés sans altérer l’état du système (puisque

Bv commute avec H), ce qui donne un accès indirect aux erreurs. La difficulté centrale de

la correction d’erreur vient du fait que la relation entre syndromes et erreurs physiques n’est

pas bijective, en d’autres termes plusieurs configurations d’erreurs peuvent donner le même

syndrome. L’ambigüıté inhérente des syndromes ne permet pas d’éviter une erreur logique

d’apparâıtre après correction.

B.4.2 Décoder avec des algorithmes évolutionnistes

L’algorithme NEAT (pour NeuroEvolution Augmented Topologies) a été introduit par Stanley

et Miikulainen dans [Stanley & Miikkulainen 2002] et fait partie de la famille d’algorithmes

évolutionnistes. Ces algorithmes fonctionnent en faisant évoluer une population d’individus selon

des heuristiques inspirées par l’évolution biologique. A chaque génération, la performance de

chaque individu est évaluée et la population de la génération suivante est obtenue par mutation,
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Figure B.17: (a) Action des opérateurs stabilisateurs Av et Bp. (b) L’action d’un opérateur som-

met peut être vu comme l’ajout d’une boucle triviale. (c) Une boucle plus grande de topologie

triviale. (d) Les quatre boucles d’opérateurs σx et σz de topologie non-triviale qui permettent

de définir les quatre états fondamentaux. La figure est issue de [Andreasson et al. 2019].

reproduction ou sélection des meilleurs individus. Les mutations consistent à changer de manière

aléatoire certaines propriétés des individus. La sélection est basée sur la performance individuelle

et seulement les individus les plus adaptés survivent. La reproduction permet de mélanger les

gènes de deux individus pour créer une descendance qui héritent de leurs traits respectifs. Grâce

à ces heuristiques, les individus s’adaptent de plus en plus à leur environnement à mesure que

l’évolution perdure.

Dans l’algorithme NEAT, la population est composée de réseaux de neurones. La spécificité

de cet algorithme est que les mutations n’altèrent pas uniquement les poids du réseau de neurones

mais également son architecture. En effet, des neurones ou des connexions entre neurones

peuvent être ajoutés ou supprimés.

Dans le contexte de la correction d’erreur dans les codes quantiques, un réseau de neurones

prend en entrée la donnée des syndromes Bv, c’est-à-dire un vecteur binaire de taille L2 et

renvoie la position de l’opérateur σx à appliquer, c’est-à-dire un vecteur de taille 2L2 qui peut

être réduit à 4 en utilisant l’invariance par translation du modèle. La performance de chaque

réseau de neurones est évaluée en lui présentant une série de ”puzzles” (configurations d’erreurs

aléatoires) à corriger, son score correspond à la fraction de puzzles dont la correction n’a pas

introduit d’erreur logique.

B.4.3 Résultats

La performance d’un algorithme de correction d’erreurs peut se mesurer par la proportion

d’erreur logique en fonction du taux de bit-flip. Fig. B.18 montre que les résultats obtenus

sont similaires à l’algorithme MWPM: les performances se détériorent à mesure que le taux de

bit-flip augmente et un point de croisement des courbes est visible autour de pc ≈ 0.08 − 0.09
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pour NEAT, ce qui est un peu moins bien que pc ≈ 0.1 pour MWPM, mais la fidélité cri-

tique est meilleure : ≈ 0.85 pour NEAT comparé à ≈ 0.75 pour MWPM. De plus, nous

pouvons noter que la fidélité logique est plus élevée que MWPM pour p ≥ 0.1. Malgré

la simplicité de notre approche, nous sommes capables d’atteindre des niveaux de perfor-

mance similaires aux approches antérieures basées sur des techniques d’apprentissage automa-

tique [Torlai & Melko 2017, Andreasson et al. 2019] (sur le même code et le même type de bruit),

surpassant MWPM dans les régimes les plus bruités.
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Figure B.18: Fidélité logique en fonction du taux d’erreur physique p pour différentes tailles de

codes. La performance de MWPM est montrée par des lignes pointillées et les symboles montrent

la performance du meilleur réseau de neurones trouvé par l’algorithme NEAT après quelques

centaines de générations. La ligne verticale en pointillée montre la borne supérieure théorique

du seuil critique d’erreur [Dennis et al. 2002]. L’évaluation est faite sur 5000 échantillons

indépendants et aléatoires pour chaque taux d’erreur physique.

Ces résultats ont été obtenus avec un coût de calcul bien moindre comparés aux travaux

précédents et des réseaux de neurones peu profonds. Les réseaux de neurones possèdent 1000

à 10000 fois moins de paramètres que les réseaux profonds utilisés en Q-learning. Ceci est

une preuve forte que des réseaux de neurones profonds ne sont pas nécessaires pour accomplir

ces tâches de correction d’erreur. Plusieurs conséquences découlent de cela: (i) des décodeurs

d’exécution rapide seront probablement nécessaires dans des applications réelles, (ii) nous nous

attendons à une meilleure mise à l’échelle des ressources de calcul pour les plus grandes tailles,

enfin (iii) la faible complexité des réseaux de neurones permet a priori une compréhension plus

aisée.

Un autre avantage de notre approche est la possibilité de décoder des grands codes avec

des réseaux de neurones qui ont été au départ entrâınés sur des petits codes. De cette manière,

l’apprentissage des stratégies de décodage pour les grands codes peut être accéléré en initialisant

la population de réseaux de neurones par le meilleur réseau de neurone trouvé pour la taille de

code inférieur.
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Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon

Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke,

Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,

Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-

ing on heterogeneous systems, 2015. Software available from tensorflow.org. URL:

https://www.tensorflow.org/. (Cited on page 29.)
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Muñoz-Tapia. Reinforcement learning for optimal error correction of toric codes. Physics

Letters A, 384(17):126353, Jun 2020. URL: http://dx.doi.org/10.1016/j.physleta.

2020.126353. (Cited on pages 112, 113, 117, 119, 120 and 127.)

[Dong et al. 2014] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning a

deep convolutional network for image super-resolution. In David Fleet, Tomas Pajdla,

Bernt Schiele, and Tinne Tuytelaars, editors, Computer Vision – ECCV 2014, Lecture

Notes in Computer Science, page 184–199. Springer International Publishing, 2014. doi:

10.1007/978-3-319-10593-2\_13. (Cited on page 16.)

[Duchi et al. 2011] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods

for online learning and stochastic optimization. J. Mach. Learn. Res., 12(null):2121–2159,

July 2011. (Cited on pages 27 and 84.)

[Duclos-Cianci & Poulin 2010a] Guillaume Duclos-Cianci and David Poulin. Fast decoders for

topological quantum codes. Physical Review Letters, 104(5):050504, Feb 2010. URL:

https://link.aps.org/doi/10.1103/PhysRevLett.104.050504. (Cited on pages 110

and 127.)

166

https://link.aps.org/doi/10.1103/PhysRevB.99.241114
https://link.aps.org/doi/10.1103/PhysRevB.99.241114
http://arxiv.org/abs/1609.09060
http://arxiv.org/abs/1701.04844
http://adsabs.harvard.edu/abs/2002JMP....43.4452D
https://link.aps.org/doi/10.1103/PhysRevB.98.174202
http://arxiv.org/abs/2002.07635
http://arxiv.org/abs/2002.07635
http://dx.doi.org/10.1016/j.physleta.2020.126353
http://dx.doi.org/10.1016/j.physleta.2020.126353
https://doi.org/10.1007/978-3-319-10593-2_13
https://doi.org/10.1007/978-3-319-10593-2_13
https://link.aps.org/doi/10.1103/PhysRevLett.104.050504


Bibliography

[Duclos-Cianci & Poulin 2010b] Guillaume Duclos-Cianci and David Poulin. A renormalization

group decoding algorithm for topological quantum codes, 2010. arXiv:1006.1362. (Cited

on page 112.)

[Dumitrescu et al. 2019] Philipp T. Dumitrescu, Anna Goremykina, Siddharth A.

Parameswaran, Maksym Serbyn, and Romain Vasseur. Kosterlitz-thouless scaling

at many-body localization phase transitions. Physical Review B, 99(9):094205, Mar

2019. URL: https://link.aps.org/doi/10.1103/PhysRevB.99.094205. (Cited on

page 46.)

[Dupont et al. 2019] Maxime Dupont, Nicolas Macé, and Nicolas Laflorencie. From eigenstate
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[Serbyn et al. 2013] Maksym Serbyn, Z. Papić, and Dmitry A. Abanin. Local conservation

laws and the structure of the many-body localized states. Physical Review Letters,

111(12):127201, Sep 2013. arXiv:1305.5554. (Cited on page 49.)

[Serbyn et al. 2016] Maksym Serbyn, Alexios A. Michailidis, Dmitry A. Abanin, and Z. Papić.
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