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Abstract

This thesis is devoted to studying synchronizing words for finite automata and variable-length
codes. Intuitively, a synchronizing word is a word such that its application brings a system into
some particular state regardless of its initial state. A code or automaton is synchronizing if it
admits a synchronizing word. There is a deep connection between the concrete implementations of
this notion for finite automata and variable-length codes, and the use of it is one of the leitmotifs
of this thesis.

One of the main tools for dealing with variable-length codes is assigning a special automa-
ton preserving many synchronization properties to it. For finite codes, this is done using prefix
automata.

We investigate two fundamental problems about synchronization. The first one is measuring
the length of shortest synchronizing words for synchronizing automata and codes. For the case
of complete deterministic finite automata, the Černý conjecture, one of the oldest problems in
combinatorial automata theory, proposes a quadratic upper bound in terms of the number of states
in the automaton. We broaden this conjecture to partial deterministic finite automata and then to
unambiguous non-deterministic finite automata. We show polynomial upper bounds for mentioned
classes in the presence of strong connectivity, and discuss their connections with the original Černý
conjecture.

The relation with finite codes allows us to show similar bounds in terms of the sum of the lengths
of the codewords, as well as in terms of the length of the longest codeword. The second case is
related to another important conjecture stated by Restivo. It deals with mortal words instead of
synchronizing ones, the case which we also investigate.

For most of these settings we also examine the computational complexity of finding short syn-
chronizing words, which is the second fundamental question investigated in this thesis. Besides
that, we study various generalization of the notion of a synchronizing word, which allow to use
some partial information about the current state of an automaton. For several such generalizations
we show strong computational complexity lower bounds even in very restricted cases.

Keywords: synchronizing automaton, variable-length code, finite code, Černý conjecture,
Restivo’s conjecture, weakly acyclic automaton, monotonic automaton, synchronizing word, mortal
word
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Résumé

Cette thèse est consacrée a l’étude des mots synchronisants pour les automates finis et les codes.
Intuitivement, un mot synchronisant est tel que son application amène le système dans un état
indépendant de létat initial. Un code ou un automate est synchronisant s’il admet un mot syn-
chronisant. Il existe une forte relation entre l’utilisation de cette notion pour les automates ou les
codes et son usage est l’un des leitmotifs de cette thèse.

Un des principaux outils pour traiter les codes est l’usage d’un automate particulier préservant
ses propriétés de synchronisation. Pour les codes préfixes, ceci est obtenu en utilisant un automate
déterministe.

Nous avons exploré deux problèmes principaux concernant la synchronisation. Le premier con-
siste à mesurer la longueur du plus court mot synchronisant pourun automate ou un code. Dans le
cas d’un automate fini complet et déterministe, un des problèmes les plus anciens de la théorie com-
binatoire des automates propose une borne quadratique en termes du nombre détats de l’automate.
Nous étendons cette conjecture aux automates partiels non-déterministes. Nous établissons des
bornes polynomiales pour ces classes en présence de la forte connexité, et nous discutons leur lien
avec la conjecture originale de Černý.

La relation avec les codes finis nous permet de prouver l’existence de bornes similaires en termes
de la somme des longueurs des mots du code, et aussi de la longueur du plus long mot. Le deuxième
cas est lié à une autre importante conjecture, proposée par Restivo. Elle concerne les mots mortels
plutot que synchronisants.

Dans la plupart de ces cas, nous examinons aussi la complexité de calcul d’un mot synchro-
nisant court, un deuxième aspect fondamental de cette thèse. Au-delà, nous étudions plusieurs
généralisations de la notion de mot synchronisant, qui permettent d’utiliser une information par-
tielle sur sur l’état dand lequel se trouve l’automate. Pour plusieurs de ces généralisations, nous
prouvons des bornes inférieures de complexité, même dans dans cas très particuliers.

Mots clé: Automate synchronisant, code à longueur variable, code fini, conjecture de Černý,
conjecture de Restivo, automate faiblement acyclique, automate monotone, mot synchronisant, mot
mortel.
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Résumé 3
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Chapter 1

Introduction

In this chapter we provide an informal introduction to the main objects and concepts of the thesis,
and describe their motivation and applications. Formal definitions are given in the next chapter.

1.1 Testing of Reactive Systems

It is more fun to talk with someone who doesn’t use long, difficult words but rather
short, easy words like “What about lunch?”

“Winnie-the-Pooh” by Alan Alexander Milne

Consider the following simple vending machine which serves coffee. It has only two buttons
“yes” and “no” and a screen printing some message for the user. The machine is able to brew just
one type of coffee, and can add zero, one or two portions of sugar, and zero or one portions of milk
into it. Initially, the machine is in the idle state, waiting for the user to answer the first question.
Since there is only one option available, it does not need to ask anything about coffee, so the first
question is already “would you like sugar?”. If the user presses “yes”, the machine asks “would you
like more sugar?”. If the user presses “no” answering the first question, or presses any button for
the second question, the machine asks “would you like milk?”, and then provides the user with the
beverage according to their commands and goes back to its idle state (asking again about sugar).

The described machine can be modeled by the (complete deterministic) finite state automaton
depicted in Figure 1.1. It starts in the “sugar?” state and then changes its state according to the
button pressed. During each transition it also does necessary actions (brews coffee, adds sugar or
milk) and prints the next question. In our extremely simplified example, it brews coffee as soon as
any button is pressed for the first time, so that it does not have to remember any choices. After
that it adds sugar or milk as soon as the user answers the corresponding question.

Consider now the situation where we need to test the behavior of the machine and to make
sure it coincides with the specification (for example, the one written above). Suppose that we have
already ensured that the states and the transitions of the machine are correct (which means that
they completely coincide with our specification), but we still need to test the output of the machine,
that is, its actions and messages. This can be easily done by applying an input sequence traversing
through all possible transitions of the machine and comparing its behavior with the specification
letter by letter [21]. However, if we are dealing with a real implementation of the machine, we do
not have any “reset” buttons which guarantee that we start the testing procedure from the desired
state. If we have a large number of (presumably) identical machines that we want to test at the
same time, this problem gets even more complicated. Thus, we need the “specification” machine
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sugar?

more sugar?

milk?

yes

no

yes, no

yes, no

Figure 1.1: The model of a simplified vending machine.

and the machine (or machines) under tests to get to the same state no matter in which state they
are at the beginning of testing.

The existence of a reset button, that is, a button sending the machine to some known state,
would solve this problem trivially. However, in some cases adding this button is impossible or
undesirable. For instance, its absence can decrease the cost of producing such machines or make
them safer to use. In fact, in some cases it is impossible to make such a button available to the user,
because the machine cannot abandon some process in the middle. However, in many cases there
is a sequence of commands acting as a reset button. In our example, one can see that applying
yes-no-yes brings the machine from each state to the “sugar?” state.

The sequences (or words in our terminology) which bring all the states of a finite automaton to
one particular state are called synchronizing. This thesis is devoted to studying such sequence for
various classes of automata, and the connection of these ideas with the theory of variable-length
codes and testing of reactive systems (systems designed to work without halting and react to the
environment, just like the coffee machine in our example).

The described testing procedure can be applied many times to many machines, so it is important
for it to be as effective as possible. This means that we need to use short synchronizing words. In
this regard, two important questions concerning the length of shortest synchronizing words arise.
The first one is extremal: how long can shortest synchronizing words be? This question is related
to the Černý conjecture, one of the oldest open problems in combinatorial automata theory (see
Section 2.8 for its discussion). The second one is algorithmic: how hard is it to find a short
synchronizing word?. This thesis is devoted to both questions.

1.2 Orienting Parts in Manufacturing

As Navidson indicates on the recorder, he is slowly becoming more and more
disoriented. He suffers from surges of nausea, like I’ve got a bad case of the spins.
Questions plague him. Is he floating, falling, or rising? Is he right side up, upside
down or on his side? Eventually, however, the spins stop and Navidson accepts that
the questions are sadly irrelevant.

“House of Leaves” by Mark Z. Danielewski
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The same idea of finding a sequence of events bringing the system to a particular state can
be also used in manufacturing. Consider a set of identical polygonal parts arriving on a conveyor
belt. Suppose that the parts have a finite number of different orientations (for example, because
of the previous operations that were applied to them), and each part can arrive in each of these
orientations. The goal is ensure the same orientation for all the parts for further processing. One
may put a set of sensors to determine the actual orientation of each part, and then apply necessary
rotations individually, depending on the data from sensors. However, sensors are expensive and
subject to errors. An alternative solution is to use a system of obstacles which change the position of
a part depending on the orientation it has when arrives to this obstacle. The setting can be modeled
by a finite automaton, where orientations of a part are states, and the results of encountering the
obstacles are transitions. Desired sequences of obstacles then correspond exactly to synchronizing
words.

We refer to [37,77,78] for more details, and to [113] for a nice illustrative example. In [119] this
problem is considered with additional restrictions on the order in which the transformations can be
applied. This setting is motivated, for example, by the presence of lids which must be closed before
the end of the process, or which must be hold closed during the whole orienting process. Ideas and
results of Chapter 6 are used in the mentioned work.

1.3 Error Recovery for Variable-Length Codes

Despite the constant negative press covfefe

Donald J. Trump

Consider now a maximal finite prefix code X = {aa, ab, ba, bba, bbb}. “Prefix code” here means
that no word is a prefix of another word, and “maximal” means that it is maximal by inclusion
among sets with this property. Codes like that are widely used for data compression, and the
most important example is Huffman codes [54]. The coding and decoding processes are as follows.
Suppose that you have a long message over a five-letters source alphabet x, y, z, t, s. To each letter
you assign a codeword from X, and concatenate the codewords in the same order as the letters from
the source alphabet in the original message. Then you can transmit this message over a channel.
To recover the original message, it is enough to go from left to right and each time a codeword is
read, turn it back into the original symbol. Since no codeword is a prefix of another codeword, there
can be no other ways to partition the coded message into codewords, so thus obtained message will
coincide with the original one.

The code X is a variable-length code, which means that different codewords can have different
lengths. This property is important in data compression, since it allows to exploit the information
about different frequencies of coded letters: one assigns longer codewords to less frequent letters
and shorter codewords to more frequent ones, thus decreasing the length of the coded message. In
particular, this is the main idea of constructing Huffman’s codes.

However, this property also brings some vulnerabilities. Since not all the lengths are aligned, a
single error during the transmission (or just storage) of a message can completely ruin the whole
decoding process starting from the codeword containing this error.

Consider the following example of using the code X. Let the original message be yzzyzzy. It
will be coded then as the word in the second row of Figure 1.2. Suppose now that during the
transmission, the fourth symbol is received incorrectly and is switched from a to b. The resulting
decoding of the received word can be seen in the bottom row of the same picture, so after decoding

11



we will see ysxtzy. This message is not only very different from the original one, it also has a
different length and has occurrences of symbols which are absent in the original message.

y |z |z |y |z |z |y
ab|ba|b a|a b|ba|ba|ab
ab|bb b|a a|b ba|ba|ab
y |s |x |t |z |y

Figure 1.2: The original coded message and the decoded erroneous message.

In more details, the flip of the fourth symbol cases next four codewords to be read incorrectly.
Potentially this problem can propagate arbitrarily long, resulting in a major data because of a single
error. To prevent this from happening, one can use, for example, error-correcting codes, which add
redundant symbols for recovering up to some number of errors. However, in some situations, for
example, for traffic-demanding applications such as video streaming, this is undesirable, and it is
preferable to lose some (bounded) amount of information instead of requesting larger capacity from
a channel.

Note that for the last two codeword the decoding process returns back to correct reading. This
is not a coincidence, but instead a useful feature of the code. The word abba has a special property
that no matter what word is before it, any partition of a message into codewords ends right after
abba. That is, for any word u we have that uabba is a sequence of codewords. Since every word
has at most one partition over X, any decoding process will treat the position immediately after
the occurrence of abba as the end of a codeword. Thus, even if there were some errors before the
occurrence of abba, the correct reading of this word returns the decoding process back to normal.

A word w ∈ X∗ with the property that uw ∈ X∗ for any u is called synchronizing for a
maximal prefix code X, and maximal prefix codes admitting them are also called synchronizing.
The presence of a synchronizing word allows to return the decoding process back to the correct
one, thus stopping error propagation. Note that in this setting we do not actually care what kind
and what number of errors have happened: once the decoder reads a synchronizing word, it is
fine again. Moreover, in terms of the required capacity, this property is obtained with adding no
redundant data. In many cases, for example, in the Huffman’s algorithm, there is some freedom in
choosing a particular code. For any maximal finite prefix code there exists a maximal prefix code
with the same lengths distribution, provided the greatest common divisor of all codewords lengths
is one, which is an obvious requirement [101]. Moreover, almost all maximal finite prefix codes are
synchronizing [41].

The introduction of the thesis [15] and the book [14] serve as a great survey on different aspects
of constructing, studying and applying synchronizing codes.

There is in fact a clear connection between synchronizing codes and synchronizing automata.
Given a maximal finite prefix code, one can build a particular automaton (called literal or prefix
automaton) associated to it. This is done as follows. First, the tree of the code is constructed. For
each prefix of a codeword, this tree has a separate node, and the children of a node for a prefix u
are nodes for prefixes ua, where a is a letter. This includes the case of the empty prefix, which is
the root of this tree. Finally, all leaf nodes of this tree are merged with the root node, see Figure
1.3 for an example.

Every synchronizing word for a maximal finite prefix code is then also synchronizing for its literal
automaton. Also, every word mapping all the states to the root state of the literal automaton is
synchronizing for the initial code. Moreover, the total length of all words of a maximal finite prefix
code is polynomially equivalent to the number of states in its literal automaton. This shows a tight
connection between synchronizing automata and synchronizing codes, which is used a lot in this
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Figure 1.3: The tree of X and its literal automaton.

thesis.

1.4 Mortal Words as Resynchronization Markers

Yes, man is mortal, but that would be only half the trouble. The worst of it is that
he’s sometimes unexpectedly mortal – there’s the trick!

“The Master and Margarita” by Mikhail Bulgakov

A notion closely related to a synchronizing word is a mortal word. Some determiniscti finite
automata may have undefined transitions, either due to undefined behavior in some configurations,
or because some actions are forbidden in some states. A mortal word is a word which, being
applied to any state, forces to use an undefined transition while reading this word. Is some sense,
synchronizing words bring all states to one state, while mortal words bring all states to the void.
These two notions share a number of properties and quite often can be studied by similar techniques.

Here we would like to mention one particular application of mortal words to synchronizing
codes. The previous subsection describes the behavior of synchronizing codes which are maximal
prefix. However, for non-maximal prefix codes it is also possible to define synchronizing words.
A word w is called synchronizing for a prefix code X if for any words u, v such that if uwv is a
sequence of codewords, then so are uw,wv. Hence, we require that if uwv ∈ X∗, then uw,wv ∈ X∗.
In particular, this means that v is then also in X∗. Hence, if a synchronizing word is seen in a
coded message, one can start correct decoding from the position right after this word no matter
what happens before it. This is a huge advantage over the usual decoding process of prefix codes,
which goes sequentially from left to right starting from the beginning of the message. In our case
we can run decoding in parallel for each occurrence of a synchronizing word.

The ability to use non-maximal codes extends the domain from which the codes are chosen.
For any non-maximal prefix code there exists a mortal word, that is, a word which cannot occur
as in any decodable message. It is easy to modify such a word to make sure that no its prefix
coincides with its suffix. This can be done by adding a short word to the end of it [16]. After any
such operation the word obviously remains mortal. One can then use this word as a special kind
of resynchronization marker. By its construction, no two occurrences of this word can overlap, and
this word cannot be a part of the original coded message. It is then easy to adapt the decoding
algorithm to handle these markers, and add them with some frequency thus getting a code with very
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nice synchronization properties. The algorithm described in [16] finds similar markers depending
on the message to be coded. However, the described approach allows to build them universally
for all messages by looking only at the code itself. A similar idea lies in the heart of extended
synchronizing codewords [67], clear codewords [69] and unique codewords [55].

It makes sense to include resynchronization markers with some constant frequency to ensure
that the coded message can be decoded from many positions. Thus, it is once again useful to use
short mortal words in this construction. The Restivo’s conjecture bounds the length of a shortest
mortal word for a finite code in terms of the length of the longest codeword. Thus it can be seen
as a more precise variant of the Černý conjecture for mortal words instead of synchronizing. Both
these conjectures are discussed in Section 2.8.

1.5 Reachability in Automata

“And I hit everything within reach,” cried Tweedledum, “whether I can see it or not!”

“Through the Looking-Glass, and What Alice Found There” by Lewis Carroll

Synchronization and mortality of automata belong to a general class of reachability properties.
Indeed, both problems ask whether it is possible to reach a certain (one-state or empty) set of
states starting from the whole set of states of the automaton.

Reachability problems are widely studied for various computational models and mathematical
structures, including pushdown [20], timed and [1] one-counter [48] automata, vector addition
systems [99], Petri nets [74], continuous linear dynamical systems [120], sets of integer or real
matrices [80] and many others.

Reachability properties of finite automata are relatively easy to analyze, since in most cases
it is enough to traverse the underline graph of the power automaton, the automaton catching the
behavior of the subsets of active states in the original one. Thus, such problems are decidable in at
most exponential time, and shortest words with required reachability properties also have at most
exponential length. This makes such models easier than more complex problems like infinite-state
systems or weighted automata. On the one hand, using the results for finite automata as steps in
investigating more complex models and problems is very effective. For example, if a problem can
be reduced to synchronization of a DFA, it can be solved effectively.

On the other hand, many properties of finite automata are not well-understood, and not because
of lack of trying. The Černý conjecture is one of the oldest and well-known problems in automata
theory [113], and since eighties no progress on it has been made until a couple of years ago [103,106].
In this thesis we provide a natural generalization of the Černý conjecture to larger classes of
automata, first allowing undefined transitions, and then allowing some non-determinism. These
models are naturally motivated by their importance in coding theory, but also they are a source
of interesting problems, which are sometimes not “blocked” by the requirements of progress in
the Černý conjecture, and are therefore have more chances to be solved. Another example is the
already mentioned Restivo’s conjecture. Though it has been recently disproved in its full generality
(that is, for arbitrary finite sets of words [75]), it is still open in the case of arbitrary finite codes.
The progress in these conjectures and related questions can be a good source of new insights about
reachability in more complex structures.
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Chapter 2

Main Definitions and Existing Results

Synchronization is a concept in various domains of computer science which consists in regaining
control over a system by applying (or observing) a specific set of input instructions. These instruc-
tions are usually required to lead the system to a fixed state no matter in which state it was at the
beginning. This idea has been studied for automata (deterministic [28,113], non-deterministic [56],
unambiguous [7], weighted and timed [33], partially observable [68], register [6], nested word [29]),
parts orienting in manufacturing [37,77], testing of reactive systems [100], variable-length codes [14],
and Markov Decision Processes [34,35]. In this thesis, we concentrate on two particular and tightly
connected cases: finite automata and variable-length codes.

To provide more intuition, we start with definitions concerning synchronization in deterministic
finite automata (Section 2.1). After that, in Section 2.2 we provide their generalization to the case
of non-deterministic unambiguous finite automata. Then in Section 2.3 we discuss main definitions
about codes, and in Section 2.4 we describe the tight relation between synchronization of finite
automata and variable-length codes. In Section 2.5 we provide main definitions for two particular
classes of automata: monotonic and weakly acyclic. Sections 2.6 and 2.7 discuss two generalizations
of the concept of synchronization: subset and careful synchronization. In Section 2.8 we discuss
open problems related to bounding the length of words with some particular properties in automata
and codes. Section 2.9 surveys known results about the computational complexity of finding such
words. Finally, in Section 2.10 we provide the overview of the rest of the thesis and the list of
conferences and journals where the results of this thesis were published.

2.1 Synchronizing DFAs

A partial deterministic finite automaton (partial DFA) is a triple A = (Q,Σ, δ), where Q is a set
of states, Σ is a finite non-empty alphabet and δ : Q× Σ→ Q is a (possibly incomplete) transition
function. Note that the automata we consider do not have any initial or final states.

We extend δ to partial functions Q × Σ∗ → Q and 2Q × Σ∗ → 2Q in the usual way: δ(q, w) =
δ(δ(q, v), a) if w = va for some word v ∈ Σ∗ and a ∈ Σ, and δ(S,w) = {δ(q, w) | q ∈ S} for S ⊆ Q.
For a state q ∈ Q and a word w ∈ Σ∗, if the action δ(q, w) is undefined, then we write δ(q, w) = ⊥,
and say that w sends q to the void. Note that if δ(q, w) = ⊥ for a word w ∈ Σ∗, then δ(q, wu) = ⊥
for every word u ∈ Σ∗. A DFA is complete if all its transitions are defined, and it is incomplete
otherwise. A DFA over an alphabet of size two is called binary, and over an alphabet of size three
is called ternary.

A word w is called synchronizing (or reset) for a partial DFA A = (Q,Σ, δ) if it is defined for
at least one state, and brings all such states to one particular state, that is, if |δ(Q,w)| = 1. A
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partial DFA admitting a synchronizing word is also called synchronizing. The minimum length of
a synchronizing word for A is called the reset threshold of A and is denoted rt(A).

Example 1. Figure 2.1 provides an example of a synchronizing DFA. The word aba is synchronizing
for this automaton, since it maps q1 and q3 to the void, and q2 to q3.

q1

q2

q3

b b

b

a

a

Figure 2.1: A synchronizing automaton.

For complete DFAs, a synchronizing word collects all the states in a single state. Thus, one
can apply such a word at every moment and be sure that the automaton is now in a particular
state. For partial DFAs the situation is a bit more complicated, since a synchronizing word can
be undefined for some states. However, this setting is still very useful for recovering information
about the active state. One its application is when the input of a partial DFA is not chosen by the
user, but is rather observed from some source which guarantees that no word undefined for all the
states is applied. Seeing a synchronizing word in the input then allows to identify the active state
of this partial DFA.

A DFA is called strongly connected if for every state p and every state q there is a word
mapping p to q. While for complete DFAs the property of being strongly connected is not essential
for many synchronization properties, the situation changes dramatically for partial DFAs. For
example, there is a polynomial (in the number of states) upper bound on the length of shortest
synchronizing words in complete DFAs, and checking whether a complete DFA is synchronizing can
be done in polynomial time [113]. In contrast, partial DFAs which are not strongly connected can
have exponentially long shortest synchronizing words, and the problem of checking the existence of
a synchronization word for general partial DFAs is PSPACE-complete [11]. However, as discussed
in Chapter 4, strongly connected partial DFAs share most of the nice synchronizing bound with
complete DFAs.

Reactive systems (such as Web servers, communication protocols, operating systems and pro-
cessors) are systems developed to run without termination and interact through visible events, so it
is natural to assume that the system can return to any state from any other state. The probabilistic
version of the synchronization problem for strongly connected partial DFAs has been considered
in the context of ε-machines [109]. In particular, the observer knows the state of an ε-machine
precisely if and only if a reset word for the underlying partial DFA was applied.

Given a partial DFA A = 〈Q,Σ, δ〉, the rank of a word w ∈ Σ∗ with respect to A is the number
of states active after applying it, that is, the number |δ(Q,w)|. When the DFA is clear from the
context, we simply call it the rank of w. In contrast to complete DFAs, partial DFAs may admit
words of rank zero; these words are called mortal. Words of non-zero rank are called non-mortal.

The rank of a partial DFA is the minimum rank among all non-mortal words with respect to
the automaton. A synchronizing word (DFA) is thus a word (DFA) of rank 1. We call the length
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of a shortest word of minimum rank of an automaton A the minimum rank threshold of A. We
denote it mrt(A).

2.2 Synchronizing NFAs

A non-deterministic finite automaton (NFA) is a triple A = (Q,Σ,∆), where Q is a finite set of
states, Σ is a finite non-empty alphabet, and ∆ is a transition relation Q×Σ→ 2Q, where 2Q is the
family of all subsets of Q. Note that our definition of an automaton does not include any initial or
accepting states.

An NFA is called strongly connected if for every state p and every state q there is a word w
such that q ∈ p.w. As for DFAs, an NFA over an alphabet of size two is called binary, and over an
alphabet of size three is called ternary.

We say that a word w kills a state q if ∆(q, w) is empty, otherwise we say that q survives w.
The transition relation is naturally extended to 2Q × Σ→ 2Q by taking ∆(S, a) = ∪q∈S∆(q, a) for
S ⊆ Q and a ∈ Σ, and then to Q×Σ∗ → 2Q by taking ∆(q, wa) = ∆(∆(q, w), a) for w ∈ Σ∗, a ∈ Σ
and q ∈ Q. When the transition relation is clear from the context, we denote ∆(q, w) by q.w. We
also denote by w.q the set {p | q ∈ p.w}. More generally, we denote by S.w and w.S the sets
{q.w | q ∈ S} and {w.q | q ∈ S} for S ⊆ Q, w ∈ Σ∗. An NFA is unambiguous if for any two states
p, q ∈ Q and any word w ∈ Σ∗ there is at most one path from p to q labeled by w.

Recall that an NFA is deterministic if for every state q ∈ Q and every letter a ∈ Σ the set
∆(q, w) has cardinality at most one. Clearly, every deterministic finite automaton is unambiguous.

Provided a word w ∈ Σ∗ for an NFA A = (Q,Σ,∆), one can naturally assign a matrix M(w)
to it as follows. Fix some ordering q1, . . . , qn of the set Q of states. The entry M(w)i,j of the
matrix M(w) is the number of paths from qi to qj labeled by w. As follows from the definition,
each entry of such a matrix for an unambiguous NFA belongs to the set {0, 1}. For the mapping
M : Σ∗ → {0, 1}n×n for any words w1, w2 ∈ Σ∗ we have M(w1w2) = M(w1)M(w2). We denote
M(A) = {M(w) | w ∈ Σ∗}.

Using this morphism, we define the rank of a word w in an unambiguous NFA A as the Boolean
rank of the matrix M(w) [7]. By Boolean rank we mean the rank over the Boolean semiring {0, 1}
(having 1 + 1 = 1), that is, the smallest r such that M(w) can be represented as a product of an
n× r and r× n zero-one matrices. Given an NFA A, we call a word synchronizing if it has rank 1,
and mortal if it has rank 0. An NFA is called non-complete if it admits a mortal word, otherwise it
is called complete. An NFA admitting a synchronizing word is called synchronizing. The paper [7]
surveys some questions on the structure of unambiguous automata and words of particular rank
for them.

Example 2. Figure 2.2 provides an example of a synchronizing unambiguous NFA. The matrix of
the word aa is

M(aa) =

1 1 1
0 0 0
0 0 0


Thus this word is synchronizing.

It follows from the definition that a word w is synchronizing for an unambiguous NFA if and
only if there exist two non-empty subsets C,R of its states such that the action of w maps every
state of C to the set R, and is undefined for all the states outside C. For partial DFAs, the set
R has size one, and, for complete DFAs, the set C is the whole set of states. In Example 2 the
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Figure 2.2: A synchronizing NFA.

state q1 is mapped by a synchronizing word aa to the states q1, q2, q3, while the states q2 and q3

are mapped to the void.

2.3 Codes

Let Σ be a finite non-empty alphabet, consisting of letters. A code X over Σ is a set of words over
Σ (called codewords) such that no word over Σ can be represented as a concatenation of codewords
from X in two different ways. A word w is called a factor of w′ if there exist words u, v such that
w′ = uwv. A word w ∈ Σ∗ is called non-mortal for a code X over Σ if it is a factor of a word in X∗,
otherwise it is called mortal. A code is called complete if it does not admit a mortal word. Thus,
complete codes are exactly the codes such that every word is a factor of a decodable message.

Example 3. The set {aba, ab, ba} is not a code, since (aba)(ba) = (ab)(aba). The set {aba, a} is a
code. It is not maximal, since bb is not a factor of any sequence of codewords. The set {a, ab, bb}
is a complete code.

Since the lengths of codewords can be different, one transmission error can make the whole
decoding process incorrect, causing a major data loss. Also, decoding a part of a message (e.g., a
segment of a compressed video stream) is not possible without decoding the whole message. These
issues can be addressed by using synchronizing codes. A word w ∈ X∗ is called synchronizing
for a code X if for every pair of words u, v such that uwv ∈ X∗ we have uw,wv ∈ X∗. A code
admitting a synchronizing word is also called synchronizing. If the word w is synchronizing, then
seeing a word ww in a decodable message uwwv allows to separate the decoding process into two
independent parts for uw and wv. A presence of a word ww in a message allows to restart the
decoding process after transmission errors or when a part of a message is skipped.

Example 4. The code {a, ab, bb} is synchronizing, and the word a is synchronizing for it. The code
{a, aba} is synchronizing with a synchronizing word aba. The code {a, b}2 is not synchronizing.

A code is called prefix if none of its codewords is a prefix of another codeword. Such codes
allow obtaining the correct partition of a message into codewords one by one by going from left to
right.

Even if a code is synchronizing, there are no guarantees that a synchronizing word will appear in
a message. Codes where every long enough concatenation of codewords is synchronizing are called
uniformly synchronizing [14, 22]. A prefix code is called maximal if it is not a subset of another
prefix code. All non-trivial uniformly synchronizing finite prefix codes are non-maximal [14]. A
recognizable (by some NFA) code is complete if and only if it is maximal [14].

18



Example 5. The set {aba, a} is not a prefix code, since a is the prefix of aba. The set

{aa, ab, baa, bab, bba, bbb}

is a finite maximal prefix code.

2.4 Automata for Codes

Automata serve as a very powerful tool for studying codes. Let A be a strongly connected unam-
biguous NFA, and q be some its state. The set of first return words of q is then defined as the
set of all words labeling paths from q to q and not containing q as an intermediate state. For a
strongly connected unambiguous NFA A and a state q in it, the set of first return words is always
a recognizable (by some NFA) code [14]. The converse is also true: for every recognizable code X
there is a strongly connected unambiguous NFA A such that X is the set of first return words of
some state of A [14, Chapter 4].

Moreover, every mortal (synchronizing) word for X is also mortal (synchronizing) for A. The
converse is true for mortal words. Provided a synchronizing word w for A, there are words u, v of
length at most n each such that uwv is synchronizing for X, where n is the number of states of A.
This follows from the fact that synchronizing words for codes are in fact synchronizing words for
corresponding automata with the additional property that the state q must be mapped to itself.
More generally, the minimum non-zero rank of words for A is related to the minimum number of
interpretations of words with respect to X (called the degree of X, see Section 9.6 of [14]).

The described correspondence between strongly connected NFAs and recognizable codes can
be made more precise for special classes of codes. In particular, recognizable codes which are,
respectively, maximal, prefix and maximal prefix are exactly the families of first return words
of strongly connected unambiguous NFAs which are, respectively, complete, deterministic and
deterministic complete .

If a state q can be picked in a DFA in such a way that the set of all first return words is a finite
prefix code, we call the DFA a partial Huffman decoder. If such a DFA is complete (and thus the
finite prefix code is maximal), we call it simply a Huffman decoder.

Example 6. Consider the maximal finite code {aa, ab, baa, bab, bba, bbb}. It is the set of first return
words of the state q1 in the complete DFA from Figure 2.3. This DFA is thus a Huffman decoder.

q1

q2

q3

b

a

a, b

a, b

Figure 2.3: A Huffman decoder.

For finite codes, this construction can be further simplified. Let X be a finite code over an
alphabet Σ. One can then construct the prefix automaton A = (Q,Σ,∆) of X as follows. The
states of A are the proper prefixes of words in X. For a state q ∈ Σ∗ and a letter a ∈ Σ the set
∆(q, a) contains qa if qa is a proper prefix of a word in X and contains ε if qa is a word in X
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(these situations can occur at the same time). It is easy to see that the prefix automaton of a finite
code is always strongly connected and unambiguous. The number of its states provides a lower
bound on the total length of all words in the code. The prefix automaton of a prefix code is always
deterministic, and is also sometimes called its literal automaton.

2.5 Monotonic and Weakly Acyclic Automata

A complete DFA A = (Q,Σ, δ) is called monotonic if there is a linear order ≤ of its states such
that for each x ∈ Σ if q1 ≤ q2 then δ(q1, x) ≤ δ(q2, x). In this case we say that the transitions
of the automaton preserve, or respect this order. Monotonic automata play an important role in
the part-orienting process in manufacturing [3], some connections of monotonic automata with
infinite games are described in [64] and [65]. Checking that a complete DFA is monotonic is NP-
complete even for binary automata [105]. Once the order q1, . . . , qn of the states is fixed, we denote
[qi, qj ] = {q` | i ≤ ` ≤ j}, and minS, maxS as the minimum and maximum states of S ⊆ Q with
respect to the order. The following open problem is mentioned in [102], showing that monotonic
automata are not fully understood, and require more investigation.

Question 7. Find a combinatorial characterization (for example, using regular expressions) of
languages recognized by monotonic automata.

For n-state monotonic complete DFAs of rank at most r, Ananichev and Volkov [3] show an
upper bound of n− r on the length of a shortest word of rank at most r, and also provide bounds
on the length of a shortest word of so-called interval rank at most r. Shcherbak [102] continues the
investigation of words of bounded interval rank in monotonic automata. Ananichev [4] provides
bounds on the length of a shortest mortal word in partial monotonic DFAs (a partial DFA is called
monotonic if there exists a linear order of its states such that each letter preserves the restriction
of the order to the domain of the respective transformation).

A simple cycle in a partial DFA A = (Q,Σ, δ) is a sequence q1, . . . , qk of its states such that all the
states in the sequence are different and there exist letters x1, . . . , xk ∈ Σ such that δ(qi, xi) = qi+1

for 1 ≤ i ≤ k − 1 and δ(qk, xk) = q1. A simple cycle is a self-loop if it consists of only one state. A
partial DFA is called weakly acyclic if all its simple cycles are self-loops. In other words, a partial
DFA is weakly acyclic if and only if there exists an ordering q1, q2, . . . , qn of its states such that if
δ(qi, x) = qj for some letter x ∈ Σ, then i ≤ j (such ordering is called a topological sort). Since a
topological sort can be found in polynomial time [31], this class can be recognized in polynomial
time. Weakly acyclic complete DFAs are called acyclic in [57] and partially ordered in [23], where
the class of languages recognized by such automata is characterized. A partial DFA is called strongly
acyclic if it is weakly acyclic and has self-loops only in sink states

Weakly acyclic DFAs arise naturally in synchronizing automata theory. For example, the com-
plete DFAs in the reductions showing the hardness of the problem of finding a shortest synchronizing
word of Eppstein [37] and Berlinkov [11] are weakly acyclic. Surprisingly, most of the computa-
tional problems that are hard for general DFAs remain very hard in this class despite its very
simple structure. Thus, investigation of weakly acyclic DFAs provides good lower bounds on the
complexity of many problems for general automata. A complete DFA is called aperiodic if for any
word w ∈ Σ∗ and any state q ∈ Q there exists k such that δ(q, wk) = δ(q, wk+1), where wk is a
word obtained by k concatenations of w [108]. Obviously, weakly acyclic complete DFAs form a
proper subclass of aperiodic complete DFAs, thus all hardness results hold for the class of aperiodic
complete DFAs.

Note that a monotonic DFA does not have to be weakly acyclic, and vice versa. Monotonic
complete DFAs also present a proper subclass of aperiodic complete DFAs [113]. A complete DFA

20



is called orientable if there exists a cyclic order of its states that is preserved by all the transitions
of the automaton (see [113] for the discussion of this definition). Each monotonic complete DFA is
obviously orientable.

2.6 Subset Synchronization

Synchronizing DFAs model devices that can be reset, by applying a synchronizing word, to some
particular state without having any information about their current state. However, even if an
automaton is not synchronizing, some partial information about its current state may be available,
namely that the current state belongs to a particular set of states. A set S ⊆ Q of states of a
complete DFA A = (Q,Σ, δ) is called synchronizable if there exists a word w ∈ Σ∗ and a state
q ∈ Q such that the word w maps each state s ∈ S to the state q. The word w is then said to
synchronize the set S. It follows from the definition that a complete DFA is synchronizing if and
only if the set Q of all its states is synchronizable.

The behavior of words synchronizing a subset of states is quite different from the behavior
of words synchronizing the whole automaton. It is known that the length of a shortest word
synchronizing a subset of states in a binary strongly connected complete DFA can be exponential in
the number of states of the automaton [114]. For orientable n-state complete DFAs, a tight (n−1)2

upper bound on the length of a shortest word synchronizing a subset of states is known [37]. In
the general case, a trivial upper bound 2n − n − 1 on the length of a shortest word synchronizing
a subset of states in an n-state complete DFA is known [114]. In [24] Cardoso considers the length
of a shortest word synchronizing a subset of states in a synchronizing complete DFA.

Consider the problem Sync Set of deciding whether a given set S of states of a complete DFA
A is synchronizable.

Sync Set
Input: A complete DFA A and a subset S of its states;
Output: Yes if S is a synchronizable set, No otherwise.

The Sync Set problem is PSPACE-complete [89, 100], even for binary strongly connected
complete DFAs [114]. In [77] it is shown that the Sync Set problem is solvable in polynomial
time for orientable complete DFAs if the cyclic order respected by the automaton is provided in the
input. The problem of deciding whether the whole set of states of a complete DFA is synchronizable
is also solvable in polynomial time [113].

Eppstein [37] provides a polynomial algorithm for the Sync Set problem, as well as for some
other problems, in orientable complete DFAs. However, the proposed algorithms assume that a
cyclic order of the states preserved by the transitions is known. Since the problems of recognizing
monotonic and orientable complete DFAs are NP-complete [105], a linear or cyclic order preserved
by the transitions of an automaton cannot be computed in polynomial time unless P = NP.

A synchronizable set of states can be considered as a set compressible to one element. A more
general case of a set compressible to a set of size r is defined by the notion of the rank of a subset.
Given an complete DFA A = (Q,Σ, δ), the rank of a word w ∈ Σ∗ with respect to a set S ⊆ Q is
the size of the image of S under the mapping defined by w in A, i.e., the number |{δ(s, w) | s ∈ S}|.
The rank of a subset S of states is the minimum among the ranks of all words w ∈ Σ∗ with respect
S. It follows from the definition that a set of states has rank 1 if and only if it is synchronizable.

We define the Set Rank problem as follows.
Set Rank
Input: A DFA A and a set S of its states;
Output: The rank of S.
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2.7 Careful Synchronization

A problem closely connected to subset synchronization is careful synchronization of partial DFAs.
A word w is said to carefully synchronize a partial DFA A if it maps all its states to the same
state. In particular, it means that the mapping corresponding to w is defined for every state. The
automaton A is then called carefully synchronizing. A carefully synchronizing word can be applied
to a partial DFA at any moment without the risk of using an undefined transition. This comes at
a high cost: even for strongly connected partial DFAs, the shortest carefully synchronizing words
can have exponential length [114, Proposition 9], and the problem of checking the existence of
such a word is PSPACE-complete [114, Theorem 12], in contrast with the case of complete DFAs.
On the contrary, the notion of a synchronizing partial DFA preserves most of the properties of a
synchronizing complete DFA, at least in the strongly connected case. Note that every carefully
synchronizing word is synchronizing, but the converse is not true.

Careful Synchronization
Input: A partial DFA A;
Output: Yes if A is carefully synchronizing, No otherwise.

The length of a shortest word carefully synchronizing an n-state partial DFA is also a subject
of research. Rystsov [88], Martyugin [72], Vorel [114] and de Bondt et al. [32] propose consecutive
improvements of exponential lower bounds for this value, both in the case of constant and non-
constant alphabets. Rystsov [88] provides an upper bound of O(3

n
3 ) on this value. A simple relation

between careful synchronization and subset synchronization is provided by Lemma 1 of [114].
Deciding whether a partial automaton is carefully synchronizing is PSPACE-complete for binary

partial DFAs [71], and moreover for binary strongly connected partial DFAs [114].
For general NFAs, synchronizability can be generalized to Di-directability for i = 1, 2, 3 [56].

As discussed in [114, Section 6.3], for partial DFAs the notions of D1- and D3-directing words both
coincide with carefully synchronizing words. These are words sending every state of a partial DFA
to the same state, not using any undefined transitions at all. A D2-directing word for a partial
DFA is either carefully synchronizing or mortal (undefined for every state).

2.8 Černý and Restivo’s Conjectures

A natural question arises: how large can the reset threshold of an n-state synchronizing automaton
be? In 1964 Černý [28] constructed an n-state binary synchronizing automaton Cn which reset
threshold is (n− 1)2 for all n > 1. The state set of Cn is Q = {1, 2, . . . , n} and the letters a and b
act on it as follows:

δ(i, a) =

{
i, if i > 1

2, if i = 1;
δ(i, b) =

{
i+ 1, if i < n

1, if i = n.

We refer to automata of this series as the Černý automata. Figure 2.4 shows C3.
Some time later (e.g. [28]) it was conjectured that every synchronizing automaton with n states

can be synchronized by a word of length (n − 1)2. This is known as the Černý Conjecture which
remains open more than 50 years later (for a survey on this topic see [113]). The best known upper
bound is cubic in n [103,106].

The Černý conjecture can be generalized to a much more general setting. Let A be an n-state
strongly connected unambiguous NFA of rank r. Carpi proved an upper bound of 1

2rn
3 on the length

of a shortest word of minimum rank if A is complete [25]. Kiefer and Mascle extended his result
and proved an upper bound of n5 on the length of a shortest mortal word if A is non-complete [62].
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Figure 2.4: A synchronizing automaton.

Note that the Černý automata provide the best known lower bound even on the length of shortest
synchronizing words even for the case of strongly connected unambiguous NFAs. This shows that
the Černý conjecture can be broadened to strongly connected unambiguous NFAs [14].

Provided a finite set X of words, one can also argue about the length of a shortest word of some
particular rank in terms of the length k of the longest codeword in X. The conjecture proposed by
Restivo [87] stays that every non-complete code has a mortal word of length at most 2k2. In its full
form, this lower bound was first pushed to ck2 for a constant c > 2 [39, 47], and then completely
disproved by showing an exponential lower bound [75]. However, the case where X is a code still
remains open. No polynomial upper bound is known in this case, and the best known lower bound
is k2 + k − 1, provided by a simple prefix code [86].

2.9 Finding Shortest Synchronizing Words

We refer to the book by Sipser [104] for the notions related to NP-completeness, and to the book
by Vazirani [112] for the notions of an approximation algorithm, gap-preserving reduction and
inapproximability.

We consider the following computational problem.
Short Sync Word
Input: A synchronizing partial DFA A;
Output: The length of a shortest synchronizing word for A.

We shortly survey existing results and techniques in the computational complexity and approx-
imability of finding shortest synchronizing words for complete automata. See [104] for an intro-
duction to NP-completeness and [112] for an introduction to inapproximability and gap-preserving
reductions.

There exist several techniques of proving that Short Sync Word is hard for different classes
of automata. The very first and the most widely used idea is the one of Eppstein [37]. Here,
the automaton in the reduction (from some variant of the satisfiability problem) is composed of
a set of “pipes”, and transitions define the way the active states are changed inside the pipes to
reach the sink state where synchronization takes place. This idea, sometimes extended a lot, allows
to prove NP-hardness of the decision version of Short Sync Word in the classes of strongly
acyclic [37], ternary Eulerian [73], binary Eulerian [115], and binary circular [73] automata. It is
also used to prove inapproximability within an arbitrary constant factor for binary automata [10]
and for n1−ε-inapproximability for n-state binary automata [43] (the last proof uses the theory of
Probabilistically Checkable Proofs). In fact, the proof in [43] works for binary automata with at
most linear (in the number of states of the automaton) length of a shortest synchronizing word and
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a unique sink state.
Another idea is to construct a reduction from the Set Cover problem. It was used to show

logarithmic inapproximability of Short Sync Word in weakly acyclic [44] and binary automata
[11]. Finally, a reduction from Shortest Common Supersequence provides inapproximability
of this problem within a constant factor [44].

In the class of monotonic automata, Short Sync Word is solvable in polynomial time: be-
cause of the structure of these automata, this problem reduces to a problem of finding a shortest
word synchronizing a pair of states [97]. For general n-state automata, a dn−1

k−1e-approximation
polynomial-time algorithm exists for every k [44].

2.10 Organization of the Thesis

The rest of the thesis is organized as follows. Chapters 3, 4 and 5 are devoted to studying bounds
on the length of shortest words of some particular rank in finite automata. This includes mortal
and synchronizing words as particular examples. Hence these results are related to the Černý and
Restivo’s conjectures.

Chapter 3 is devoted to words of minimum rank in complete DFAs. The results of this chap-
ter were obtained in collaboration with Jarkko Kari and Anton Varonka, and published in [61].
Chapter 4 studies shortest synchronizing words in strongly connected partial DFAs. The results of
this chapter were obtained in collaboration with Mikhail V. Berlinkov, Robert Ferens and Marek
Szyku la, and are prepared for submission. Chapter 5 provides results on the length of shortest
words of minimum and minimum non-zero rank in strongly connected unambiguous NFAs. The
results of this chapter are published in [93].

In Chapters 6, 7 and 8 we study the computational complexity side of the mentioned settings.
Chapter 6 studies the complexity of several problems related to synchronization of weakly acyclic

complete DFAs. The results of this chapter are published in [95], with a preliminary version at
CIAA 2017 [92]. Chapter 7 is devoted to the same questions in monotonic complete and partial
DFAs. The results of this chapter were obtained in collaboration with Anton Shemyakov, and
are published in [97], with a preliminary version at RuFiDiM 2017 [96]. Chapter 8 considers the
complexity of synchronizing DFAs for finite prefix codes. The results of this chapter were obtained
in collaboration with Marek Szyku la, and are published in [98].

A part of this thesis (namely, preliminary versions of Chapters 6 and 7) constituted a part of
the authors master’s thesis, defended at University Grenoble Alpes in 2017.

Finally, we would like to mention several work which were done during the PhD studies of
the author, but were not included in this thesis. Decomposition of finite sets and its relation to
their degree is considered in the paper [81] in collaboration with Dominique Perrin. This paper
is currently submitted. The computational complexity of problems related to birecurrent sets and
automata recognizing them are published in [94]. Some results on several extremal problems in
combinatorics on words are published in [76] in collaboration with Clemens Müllner .
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Chapter 3

Extremal Bounds for Complete DFAs

All automata in this chapter are complete DFAs, so we simply write “DFA” or “automaton” for a
“complete DFA”.

3.1 Introduction

Pin [84] proposed the following generalization of the Černý Conjecture: for every n-state DFA
having a word of rank at most r, there exists such a word of length at most (n − r)2. A cubic
upper bound is proved for this conjecture [63]. However, Kari [59] found a counterexample to the
conjectured (n−r)2 bound for r = 2, which is a binary DFA K with n = 6 states. As a consequence,
a modification of this generalized conjecture was proposed by Pribavkina restricting it to r being
the rank of the considered DFA (K is synchronizing but the Pin’s bound is exceeded for a word of
rank 2). This restricted case has not been disproved yet, and is sometimes referred to as the Rank
Conjecture (or the Černý-Pin Conjecture in [2]). The case r = 1 is the Černý Conjecture.

It was pointed out in [5] that one of the reasons why the Černý Conjecture is so hard to tackle
is the lack of examples of slowly synchronizing DFAs. The same is true concerning the Rank
Conjecture. Pin [83] provided the following example. The DFA with two letters consists of r
connected components, one of which is the Černý automaton Cn−r+1 and r − 1 others are isolated
states with loops labeled with both letters. The DFA thus constructed has n states, rank r and its
minimum rank threshold is precisely (n− r)2. However, this DFA is not strongly connected (recall
that a DFA is called strongly connected if any state can be mapped to any other state by some
word), so this case in some sense reduces to the rank 1 case. No series of strongly connected DFAs
with mrt(A) close to the (n− r)2 bound were introduced so far.

In this chapter, we propose a number of techniques to construct strongly connected DFAs of
rank r with large minimum rank thresholds. The families of DFAs we obtain do not reach the

conjectured bound (n − r)2, but the minimum rank threshold is typically of the order (n−r)2
r , or

within a constant multiple of this. We provide families of DFAs having additional properties such
as being Eulerian or circular, or having rank equal to the period (see Section 3.2 for definitions
of these concepts). We also consider upper bounds: we prove the Rank Conjecture for Eulerian
DFAs, and obtain an upper bound on the minimum rank threshold of circular DFAs.

The chapter is organized as follows. In Section 3.2 we provide the main definitions and pre-
liminary results. In Section 3.3 we provide constructions for turning a binary synchronizing DFA
into a higher rank ternary (Section 3.3.1) or binary (Section 3.3.2) DFA having its minimum rank
threshold close to the reset threshold of the original DFA. Applying these constructions on known
series of synchronizing automata yield new series of DFAs of higher ranks r > 1. In Section 3.3.3 we
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show how upper bounds on the reset threshold can be turned into upper bounds on the minimum
rank thresholds on DFAs with period equal to rank. In Section 3.4 we prove the Rank Conjec-
ture for DFAs based on Eulerian digraphs, along with exhibiting lower bounds on minimum rank
thresholds. In Section 3.4.2 we present a way to transform known bounds from Eulerian DFAs
to circular DFAs. In particular, quadratic upper bounds on minimum rank thresholds for circular
DFAs (including the reset threshold) are proved. In Section 3.4.3 we contribute to the Road Col-
oring Problem, presenting a nearly-linear algorithm of finding a coloring of minimum rank for an
Eulerian digraph.

3.2 Digraphs and Automata

All our digraphs are multigraphs and they are allowed to have loops. The underlying digraph D(A)
of a DFA A = (Q,Σ, δ) has vertex set Q, and for any q, p ∈ Q, there are as many edges from q to
p as there are letters a ∈ Σ such that δ(q, a) = p. A DFA A is called a coloring of its multigraph
D(A). The underlying digraph of every DFA has the same outdegree at all its vertices. From now
on, we consider only digraphs with this property.

A digraph D is called strongly connected if for every pair (v, v′) of vertices there exists a directed
path from v to v′. Thus a DFA is strongly connected if and only if its underlying digraph is strongly
connected.

The period of a digraph D is the greatest common divisor of the lengths of its cycles, and the
period of a DFA is defined as the period of its underlying digraph. Let us remark explicitly that
digraphs with period p > 1 do not have synchronizing colorings. The following lemma is essential
to understand the period of a digraph.

Lemma 8 ( [13], p.29). Let D be a digraph with period p. Then the set V of vertices of D can
be partitioned into p nonempty sets V1, V2, . . . , Vp where each edge of D goes from a vertex from Vi
and enters some vertex in Vi+1 for some i (the indices are taken modulo p).

We will call this partition a p-partition of a digraph or of its coloring.
Much of the literature on synchronizing automata concentrates on the primitive case. A digraph

is called primitive if it is strongly connected and the period is p = 1. In this chapter we are interested
in DFAs with underlying digraphs which are strongly connected but not primitive.

A digraph is Eulerian if for each vertex the outdegree is equal to the indegree. A DFA is
Eulerian if it is strongly connected and its underlying digraph is Eulerian. Equivalently, at every
state there must be exactly |Σ| incoming transitions, where Σ is the alphabet of the automaton. A
DFA is circular if there is a letter which acts on its set of states as a cyclic permutation.

3.3 Strongly Connected Automata

3.3.1 A Lower Bound for Ternary Automata

We start with a construction yielding a series of strongly connected ternary automata. We transform
a synchronizing binary automaton A into a ternary automaton A′ of a given rank r > 1 such that
mrt(A′) is related to rt(A).

We start with a synchronizing binary automaton A = (Q, {a, b}, δ) with t states q1, . . . , qt.
We define a ternary automaton A′ = (Q′, {a, b, c}, δ′) of rank r with the size n = r · t state set
Q′ =

⋃r−1
i=0 Qi where each Qi contains t states qi,1, . . . , qi,t. The action of the transition function δ′

on the set Q0 repeats the action of δ on set Q for the letters a, b: for x = a and x = b we have
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δ′(q0,j , x) = q0,k if and only if δ(qj , x) = qk. On the other sets Q1, . . . , Qr−1 the transitions by the
letters a, b are self-loops: we set δ′(qi,k, x) = qi,k for x = a and x = b, for all i 6= 0 and all k. Finally,
the letter c shifts states of Qi to the next set Qi+1: we define δ′(qi,k, c) = qi+1,k where i + 1 is
counted modulo r, that is, elements of Qr−1 are shifted to the set Q0. Note that the construction
preserves the property of the automaton to be strongly connected or Eulerian.

Since A is synchronizing, we certainly obtain an automaton of rank r as the result of this
construction. No two states from different sets Qi, Qj with i 6= j can be merged for the obvious
reason. Each of them though can be mapped using the letter c to Q0 which, in turn, can be mapped
to a single state.

If w is a shortest reset word for A, a trivial way to compose a word of rank r for A′ is as follows.
We use w to merge the states of Q0 to one particular state, then use the letter c to shift the set at
play and continue until every set Qi is merged into one state. The resulting word w′ = wcw . . . cw
thus has length rt(A) · r + r − 1. Moreover, w′ is the shortest word of rank r. Indeed, since all
the transitions in the sets Q1, Q2, . . . , Qr−1 are self-loops for a, b, the only place where merging of
states takes place is inside Q0. While states of some Qi are treated there, the states of all Qj , j 6= i,
remain invariant. Obviously, c has to be applied at least r − 1 times. Hence, by the pigeonhole
principle, the existence of a shorter word of minimum rank would imply that an automaton induced
by the action of {a, b} on Q0 can be synchronized faster than in rt(A) steps.

If we apply the construction to the Černý automaton Cn
r
, we get the following.

Proposition 9. For every n and every r > 1 such that r divides n, there exists a ternary strongly
connected automaton with n states and rank r such that the length of its shortest word of minimum

rank is (n−r)2
r + r − 1.

It is natural to ask for a lower bound on the minimum rank threshold for binary automata.
There are some techniques known to decrease the alphabet size of an automaton while not changing
the length of a shortest synchronizing word significantly. By carefully applying the construction
encoding letters in states [11, 114] one can get a lower bound of n2

3r − 7
3n + 5r for the binary case.

Another technique decreasing alphabet size, namely by encoding binary representation of letters
in states [11, Lemma 3], does not yield any better bounds. Below we present some different ideas
providing stronger lower bounds on mrt(A) in the class of binary strongly connected automata.

3.3.2 Lower Bounds for Binary Automata

In the ternary construction above we may represent the actions of words ac and bc by two new
letters, and afterwards remove the original letters a, b, c. This yields a binary automaton of rank
r. More generally, we can do this on the analogous construction from an automaton with alphabet
size k to size k + 1, obtaining again an automaton with alphabet size k and having rank r.

The detailed construction goes as follows. Given a strongly connected synchronizing automaton
A = (Q,Σ, δ) over any alphabet Σ and with state set Q = {q1, . . . , qt}, we define the automaton
A′ = (Q′,Σ, δ′) over the same alphabet as follows. As in the ternary construction, the state set is
Q′ =

⋃r−1
i=0 Qi where each Qi contains t states qi,1, . . . , qi,t. The transitions from Q0 to Q1 imitate

the transitions of A: for every letter a ∈ Σ we set δ′(q0,j , a) = q1,k if and only if δ(qj , a) = qk. For
the states in Qi with i 6= 0 we define the transitions by just shifting a state to the state with the
same index in the next set: for every a ∈ Σ we set δ′(qi,j , a) = qi+1,j , with the index i + 1 taken
modulo p.

Observe that the action of the set of words Σr on the set Qi in A′ induces the automaton A

(up to duplicating its letters). Moreover, the words of length r − 1 only shift the states of the set
Q1 to Q0. Thus, any word synchronizing Q1 is of length at least rt(A) · r over the initial alphabet.
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Clearly, this automaton has rank r, and its period is also r because A is synchronizing and thus
primitive. We obtain the following result.

Proposition 10. For every t-state strongly connected synchronizing automaton A and for every
r there exists a tr-state strongly connected automaton A′ over the same alphabet, with period and
rank equal to r, such that mrt(A′) = rt(A) · r.

Observe that the construction described preserves the property of the automaton to be strongly
connected, circular or Eulerian. Applied to the Černý automaton this construction yields the
following result.

Corollary 11. For every n and every r such that r divides n, there exists an n-state circular binary

automaton of period and rank r with minimum rank threshold (n−r)2
r .

The Wielandt digraph Wn has n > 1 vertices 0, . . . , n− 1. From each vertex i > 0 there are two
edges to the next vertex i+1 modulo n, and from vertex 0 there are single edges to vertices 1 and 2.
Introduced in [118], and studied in connection to synchronizing automata in [5], these digraphs have
the interesting property that they admit only one coloring, when automata obtained by renaming
letters are considered identical. The reset threshold of this n-state Wielandt automaton was proved
in [5] to be n2 − 3n+ 3.

The Hybrid Černý-Road Coloring problem (see [5], [27]) asks for the shortest length of a syn-
chronizing word among all colorings of a fixed primitive digraph with n vertices. Since Wn has only
one coloring, it provides the lower bound n2 − 3n + 3 on this quantity. We can apply the binary
construction of this section on the Wielandt automaton. The resulting automaton of rank r also
admits only one coloring. Hence we get the following result in the spirit of the Hybrid Černý-Road
Coloring problem, generalizing it to cases r > 1.

Corollary 12. For every n > 1 and every r such that r divides n, there exists an n-vertex strongly
connected digraph D of constant outdegree 2 such that all colorings of D are circular, have the same

period and rank r, and for every coloring the length of a word of minimum rank is (n−r)2
r − n+ 2r.

It is interesting to note that the digraphs D in Corollary 12 are the digraphs with the largest
possible index, described in Theorem 4.3 of [51], after duplicating some edges to make all outdegrees
equal to 2. Recall that the index of a strongly connected digraph with period r is the smallest k
such that any pair of vertices are connected by a directed path of length k if and only if they are
connected by a path of length k + r. In fact, one can easily show the following relationship, which
also appears in [46] for the primitive case r = 1.

Proposition 13. For a strongly connected n-state automaton A of rank r and period r the following
holds:

mrt(A) ≥ k(A)− n+ r,

where k(A) is the index of the underlying digraph of A.

Since the index of D in Corollary 12 was proved in [51] to be (n−r)2
r + r, we get from Proposi-

tion 13 the same lower bound as in Corollary 12.
We finish this section with a family of strongly connected binary automata that reach the

same minimum rank threshold as the ternary automata in Proposition 9. Recall the n-state Černý
automaton from Section 3.1. Let r be a number that divides n. Change in the Černý automaton
the transition from state 1 by letter a to go into state r + 1 instead of state 2. After this change,
for any states i and j such that i ≡ j modulo r, also δ(i, x) ≡ δ(j, x) modulo r holds for both
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x = a and x = b. This means that states in different residue classes modulo r cannot be merged,
so that the rank of this automaton is at least r. Using the trick from [5], we introduce a new input
letter c that acts as the word ab does. Now letters c and b define exactly the modified Wielandt
automaton leading to Corollary 12 above, so there is a word of rank r with letters c and b. Hence
our automaton has rank r as well.

Since the action of word aa is the same as the action of a, a shortest minimum rank word w
cannot contain factor aa. The word wb has also minimum rank, and it can be factored into ab’s
and b’s. Viewing this as a word over letters c and b, we see that the number of c’s and b’s must be

at least the minimum rank threshold (n−r)2
r − n + 2r from Corollary 12. Since b is a permutation

and since c merges at most one pair of states, there must be at least n − r letters c used. Each c
counts as two letters over the alphabet {a, b}, so the length of word wb is at least

(n− r)2

r
− n+ 2r + (n− r) =

(n− r)2

r
+ r.

Removing the last b from wb we obtain the following lower bound. Observe that the bound is
exactly the same as in the ternary case in Proposition 9.

Proposition 14. For every n and every r > 1 such that r divides n, there exists a binary n-state

circular automaton A of rank r having mrt(A) = (n−r)2
r + r − 1.

3.3.3 Upper Bound in the Case When the Rank Equals the Period

Obviously, the period of an automaton is a lower bound on its rank. It is interesting to consider the
special case of automata where these two values are equal. For lower bounds, observe that the rank
r automata reported in Corollaries 11 and 12 have the same period as the rank. In this section we
obtain upper bounds on the minimum rank threshold from any known upper bounds on the reset
threshold, in the case that the rank equals the period.

For every n, let f(n) denote the maximum of reset thresholds of n-state synchronizing automata.

Theorem 15. Let A be an automaton of rank r and period r. Then mrt(A) ≤ r2 · f(nr ) + (r − 1).

Proof. Let A = (Q,Σ, δ). By Lemma 8 there exists a partition of the set Q into the sets
Q0, . . . , Qr−1 such that every transition maps a state in Qi to a state in Qi+1 (with the index
i + 1 taken modulo r). Since the rank of A equals its period, each of the sets Q0, . . . , Qr−1 is
synchronizable (a set is called synchronizable if there is a word mapping this set to a single state).
Assume without loss of generality that Q0 is the smallest set in the partition. Consider then the
automaton Ar = (Q0,Σ

r, δ′) induced by the actions of all the words of length r on Q0. This au-
tomaton is synchronizing, and by our assumption there is a word synchronizing it of length at most
f(|Q0|) ≤ f(nr ) over the alphabet Σr. Over the alphabet Σ this word has length at most r · f(nr ).
Then to find a word of minimum rank it is enough to subsequently map each set Q1, . . . , Qr−1

to Q0 and apply the described word. In total we get a word of minimum rank of length at most
r2 · f(nr ) + (r − 1).

For example, using the unconditional upper bound f(n) ≤ n3−n
6 on the reset threshold [84] we

get that for every n-state automaton of rank r and period r we have mrt(A) ≤ n(n2−r2)
6r + (r − 1),

which is roughly r times stronger than the best known upper bound for the general case [63]. The
Černý Conjecture implies the upper bound of (n−r)2 +(r−1). Thus, in the case of automata with
rank equal to period the Rank Conjecture is implied by the Černý Conjecture up to an additive
factor of (r − 1). However we conjecture that in this case the upper bound can be improved to
(n−r)2

r +O(n).
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3.4 Eulerian Automata

3.4.1 The Rank Conjecture

We continue our discussion on the Rank Conjecture proving it for a particular class of automata,
namely the Eulerian automata. Eulerian automata have been widely studied, in particular, Kari [60]
showed that rt(A) ≤ (n − 1)(n − 2) + 1 for any synchronizing Eulerian n-state automaton, thus
proving the Černý Conjecture for this class of automata. We extend the mentioned result to the
case of arbitrary minimum rank.

Theorem 16. Let A be an n-state Eulerian automaton of rank r. Then A has a word of rank r of
length at most (n− r − 1)(n− r) + 1.

Proof. Let A = (Q,Σ, δ). Following [60], we consider the set Q, |Q| = n, of states as an orthonormal
basis of Rn with subsets of states corresponding to the sums of the basis vectors. Thus, a set S ⊆ Q
is viewed as a vector

∑
q∈S q.

Every word w ∈ Σ∗ defines a state transition function fw : Q → Q on the set of states, with
fw(q) = δ(q, w). Furthermore, f−1

w (q) = {v | fw(v) = q}. Since we know the values of f−1
w on all

the basis vectors, there is a unique way to extend it to a linear mapping f−1
w : Rn → Rn. Clearly,

for a set S ⊆ Q we have f−1
w (S) =

∑
q∈S f

−1
w (q). Moreover, for a vector x = (x1, . . . , xn) we define

a linear weight function |x| such that |(x1, . . . , xn)| = x1 + . . . + xn. The weight of a set S ⊆ Q is
just its cardinality.

Let Z1 ⊆ Rn be the set of all non-extendable vectors, i.e. such vectors x that there exists
no word w with |f−1

w (x)| 6= |x| (all the remaining vectors we call extendable). Observe that∑
w∈Σk |f−1

w (S)| = |Σ|k · |S|. Thus, if there exists a word w of length k such that |f−1
w (S)| 6= |S|

then there is a word of the same length extending S (a word v is said to extend S if |f−1
v (S)| > |S|).

We will refer to that as the averaging argument.
Note that Z1 is a linear subspace of Rn of dimension at least r. First we prove that it is a linear

subspace. Indeed, consider a linear combination λ1v1 + . . . + λkvk of vectors from Z1. Since the
weight function is linear, any image of this combination under f−1

w has the same weight, and thus
the combination belongs to Z1. To bound the dimension of Z1 from below, consider a word w of
minimum rank such that there exists a partition of Q into sets S1, . . . , Sr, such that each Si is a
maximal synchronizable set. Such a word exists by Proposition 1 of [60]. The vectors corresponding
to S1, . . . , Sr are then non-extendable,and linearly independent since they have disjoint non-zero
coefficients in the standard basis decomposition. We apply some linear algebra to obtain the
following lemma.

Lemma 17. For every extendable vector x there exists a word w of length at most n− r such that
|f−1
w (x)| 6= |x|.

Proof. Suppose the contrary: let x be extendable such that that shortest word w such that
|f−1
w (x)| 6= |x| has length m > n− r. Note that for any words u, v we have f−1

uv (x) = f−1
u (f−1

v (x)).
Take Z0 to be the orthogonal complement of Z1. Since the dimension of Z1 is at least r, the dimen-
sion of Z0 is at most n−r. For every i ≤ m we denote xi = f−1

wi
(x) where wi is the suffix of w of length

i, and we write xi = x
(0)
i +x

(1)
i for x

(0)
i ∈ Z0 and x

(1)
i ∈ Z1. Since m is greater than the dimension of

Z0, vectors x
(0)
0 , x

(0)
1 , . . . , x

(0)
m−1 are linearly dependent. This means that for some k < m the vector

x
(0)
k is a linear combination λ0x

(0)
0 + · · · + λk−1x

(0)
k−1 of vectors before it, with coefficients λi ∈ R.

The corresponding linear combination of vectors xi is λ0x0 + · · · + λk−1xk−1 = xk + x′ for some
x′ ∈ Z1. Let w = uv where v is the suffix of w of length k. Then, f−1

u (xk) = f−1
u (f−1

v (x)) = f−1
w (x).
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Moreover, for every i < k we have |f−1
u (xi)| = |xi|. Indeed, f−1

u (xi) = f−1
u (f−1

wi
(x)) = f−1

uwi
(x) has

the same weight as x because uwi is shorter than w, and of course |xi| = |x|. Also, because x′

is non-extendable, we have |f−1
u (x′)| = |x′|. Putting all together, using linearity of f−1

u and the
weight function, we obtain |f−1

w (x)| = |x|, a contradiction.

By the averaging argument we obtain from Lemma 17 that for any extendable set S of states
there is a word w of length at most n−r such that |f−1

w (S)| ≥ |S|+1. Now we apply this extension
procedure as follows. Start with a one-state set. Extend it step by step to a maximal synchronizable
set (having size n

r ). Then add another state to this maximal synchronizable set and extend this new
set to a union of two disjoint maximal synchronizable sets. Repeat this procedure of adding a new
state and extending the set to a union of several maximal synchronizable sets until the whole set
of states of the automaton is reached. The extension is possible, since at every step the set S that
we have to extend is a disjoint union of several maximal synchronizable subsets and a non-maximal
synchronizable subset S′. Any word extending S′ extends S, since f−1

w preserves the weights of all
the maximal synchronizable subsets for any word w (since otherwise by the averaging argument
such sets are extendable).

For each step of this algorithm, we have a word of length at most n− r to extend a set by one
element. Each maximal synchronizable set has size n

r , and we have to reach r such sets, so the
total length of the word is at most (n− r)(nr − 1)r = (n− r)2. We can initially choose a one-state
set extendable by a word of length 1, which improves the bound to (n− r)(n− r − 1) + 1.

To obtain a lower bound on the minimum rank threshold of Eulerian automata, recall the
construction used to prove the bound of Proposition 9. It was mentioned previously that applying it
to an Eulerian automaton yields another Eulerian automaton. Thus, we repeat the same reasoning
starting with a synchronizing n-state Eulerian automaton over alphabet of size 4 having reset
threshold n2−3

2 , for any n > 1 such that n ≡ 1 (mod 4), see [107].

Proposition 18. For every n and every r < n such that n = (4p + 1)r, there exists an n-state

Eulerian automaton A of rank r with mrt(A) = n2−r2
2r − 1.

The standard binarization methods cannot be applied to provide the lower bounds for binary
Eulerian automata. However, we can apply the argument of Proposition 10 to the n-state binary
Eulerian automaton whose reset threshold is at least n2−3n+4

2 for odd n ≥ 3 [46]. (This was proved
for all odd n ≥ 5 in [46] but the same construction also covers the case n = 3.) The automaton we
obtain is also Eulerian.

Proposition 19. For every n and every r such that r divides n and n/r ≥ 3 is odd, there exists

an n-state binary Eulerian automaton A of rank r having mrt(A) ≥ (n−2r)2+nr
2r .

The multiplicative gap between the lower and the upper bounds consists intuitively of two
parts. The factor of two comes from the gap between the known bounds on the reset threshold
of Eulerian automata, while the factor r comes from the gap on the minimum rank threshold in
general strongly connected automata that we see in the results in Section 3.3.

3.4.2 A Corollary for Circular Automata

In this section we provide a simple trick, similar to the idea of [26], which allows to transfer the
results on Eulerian automata to the class of circular automata. Recall that an automaton is called
circular if there is a letter which acts on its set of states as a cyclic permutation. The Černý
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Conjecture for this automata class was proved by Dubuc [36]. Note that the Černý automata are
circular and possess the largest known reset thresholds.

Let us consider an n-state circular automaton A = (Q,Σ, δ) such that some letter b ∈ Σ acts
as a cyclic permutation on Q. Let us replace each a ∈ Σ by n letters a0, . . . , an−1, where ai acts
on Q the same way as the word abi does in the original automaton. Let Σ′ be the obtained new
alphabet of size n · |Σ|. It is not hard to prove that the obtained automaton is Eulerian.

Observe that this transformation preserves the synchronization properties of the initial automa-
ton in the following sense. A word of rank r over Σ is clearly a word of rank r over Σ′ because
Σ ⊂ Σ′. The opposite holds as well since every word over Σ′ can be rewritten as a word over Σ. It
follows that the rank of the resulting automaton is equal to the rank of the initial one.

Theorem 20. Every n-state circular automaton of rank r < n has a minimum rank word of length
at most (2n− r − 1)(n− r − 1) + 1.

Proof. Let A = (Q,Σ, δ) be an n-state circular automaton with a cyclic permutation letter b. An
Eulerian automaton A′ = (Q,Σ′, δ′) with n states is constructed as above. Now we show how to
use the procedure described in Theorem 16 to get the upper bound.

According to the proof of Theorem 16, for every s ∈ Rn there exists a unique representation
s = s0 +s1 where s0 ∈ Z0 and s1 ∈ Z1. Furthermore, |f−1

w (s)| 6= |s| is equivalent to |f−1
w (s0)| 6= |s0|.

Observe that any word in Σ′ can be written as a concatenation of words over Σ. Thus we can
apply Lemma 3 of [60] on the linear transformations f−1

a , for a ∈ Σ, in the automaton A′, and get
that the shortest word w ∈ Σ∗ such that |f−1

w (s0)| 6= |s0| has length at most n− r. Consequently,
w is the shortest word over Σ such that |f−1

w (s)| 6= |s|.
Let w = cv where c ∈ Σ and v ∈ Σ∗. Now consider all the words of the form σv with σ ∈ Σ′.

Clearly, w is one of them. Because A′ is Eulerian, we have∑
σ∈Σ′

|f−1
σv (x)| =

∑
σ∈Σ′

|f−1
σ (f−1

v (x))| = |Σ′| · |f−1
v (x)| = |Σ′| · |x|.

Since there exists a word w = cv such that |f−1
w (x)| 6= |x|, the above equality implies that there

is u = σv such that |f−1
u (x)| > |x|. Notice that v is a word of length at most n− r− 1 over Σ, and

hence u is of length |σ|+ |v| ≤ n+ (n− r − 1) = 2n− r − 1 over Σ.
Thus we showed that every extendable set of states in A′ can be extended by a word of length

at most 2n − r − 1 (over the alphabet Σ). We can now use the extension procedure described in
Theorem 16 (starting from a one-state set extendable by a word of length 1) and get the upper
bound of (2n− r − 1)(n− r − 1) + 1 on the length of a shortest word of minimum rank in A.

3.4.3 A Road Coloring Algorithm

As proved by Kari [60], every primitive strongly connected Eulerian digraph such that all its vertices
have equal outdegrees has a synchronizing coloring. If the primitiveness condition is omitted, the
period of a digraph is the lower bound on the rank of any coloring. A coloring of rank equal to
period always exists and can be found in quadratic time [8]. We show that for Eulerian digraphs
it can be found in almost linear time. We use the approach described in Section 3 of [60] and show
how to generalize it and turn into an algorithm.

First observe that a permutation coloring (a coloring of rank n) of an Eulerian digraph with n
vertices and constant outdegree k corresponds to a partition of a regular bipartite graph with n
vertices and kn edges into k perfect matchings (Lemma 1 of [60]), and thus can be computed in
O(kn log k) time [30].

33



The construction of a permutation coloring is used as a subroutine in order to construct a
coloring with a stable pair of states. A pair of states p, q of an automaton is called stable if
application of any word to this pair results in a synchronizable pair. For a permutation coloring
A = (Q,Σ, δ) of a digraph take a state x ∈ Q such that y = δ(x, a) 6= δ(x, b) = z for some letters
a, b ∈ Σ. Note that in a strongly connected digraph such state always exists, otherwise the digraph
consists of one cycle and we have nothing to prove. We swap the letters coloring the edges x→ y
and x→ z. As proved in Theorem 1 of [60], the pair y, z is then stable in the resulting automaton A′

and thus defines a congruence relation (that is, an equivalence relation invariant under application
of any word) ≡ on its state set. The quotient automaton A′/ ≡ is then obtained by merging all
the states of each congruence class. If A′ is Eulerian, so is A′/ ≡ [60].

Lemma 21. Let A′ be the Eulerian automaton, and y, z be the stable pair with corresponding
congruence relation ≡ obtained as described above. Then the quotient automaton A′/ ≡ has at
most half as many states as A′.

Proof. We compute A′/ ≡ following the Merge procedure described in [8]. We start by merging the
congruent pair y, z and then propagate this equivalence to the images of y, z under all the letters in
Σ until we get a deterministic automaton. Observe that since we start with a permutation coloring,
each state that has not yet been merged with some other state has all incoming edges of different
colors. Thus, if there is such a state in the pair to be merged, the second state in this pair is
different from it, and thus further calls of merging their successor will be performed. Moreover,
assume that some state is not merged with any state during this procedure. Then there is such a
state p having a transition going to it from some already merged state q, otherwise the digraph is
not strongly connected. This means that during the first merging for q, merging for p has to be
called, which is a contradiction. Hence, each state is in a congruence class of cardinality at least 2,
and after taking the quotient, the number of states of A′/ ≡ is at most half of the number of states
A′.

Theorem 22. Given a strongly connected Eulerian digraph of period r with n vertices and outdegree
k, a coloring of rank r of this digraph can be found in O((k log k + α(n)) · n) time, where α(·) is
the inverse Ackermann function.

Proof. The algorithm is recursive. At each iteration we start by finding a coloring with a stable
pair as described above. Then we proceed by computing the quotient automaton as in Lemma
21. The automaton we obtain is Eulerian [60], moreover, it has the same period since no pair of
states from different sets in a p-partition can be stable (since no such pair can be synchronized). If
the automaton has rank r, we stop, otherwise we call the same algorithm for coloring it and then
recover the final coloring by taking for every vertex the same permutation of the colors of outgoing
edges as used for the equivalence class of this vertex (see Theorem 1 of [60]).

To analyze the time complexity, we estimate the complexity of one recursion step. Let ` be the
size of the automaton at some iteration. As it was mentioned before, it takes O(k` log k) time to find
a permutation coloring. The Merge procedure requires O(k`) time for traversing and O(`α(`)) time
for merging the sets. Moreover, recovering the coloring from the smaller automaton can be done
in O(k`) time by storing the quotient automaton (together with the correspondence between the
states and their equivalence classes) at each iteration. Hence, the time complexity of one iteration
is O(`(k log k + α(`))).

Now we can sum up the time complexity of all recursion steps. Lemma 21 implies that the
number of states of each next automaton in the recursion call is decreased at least twice. Thus,
the total time complexity is O(n(k log k + α(n))), where n is the number of vertices of the initial
digraph.
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Chapter 4

Extremal Bounds for Partial DFAs
and Prefix Codes

All automata in this chapter are deterministic, so we say “partial automaton” for “partial DFA”,
and “complete automaton” for “complete DFA”.

4.1 Introduction

In this chapter, we transfer the Černý conjecture and a more general Rank Conjecture to the case of
partial DFAs. This setting is motivated by the connection between strongly connected partial DFAs
and recognizable prefix codes described in Section 2.4. The fact of the partial DFA being strongly
connected is essential here, since checking if a partial DFA is synchronizing is PSPACE-complete
in general [11].

Partial DFAs can be seen as a natural intermediate class between complete DFAs and unam-
biguous NFAs. The known upper bounds for unambiguous NFAs are quite high (see the next
chapter), which motivates studying simpler models, and partial DFAs indeed allow to obtain much
tighter bounds. Despite their similarity to complete DFAs, the case of partial DFAs requires a set of
new techniques to tackle synchronization problems. In contrast to the complete case, in incomplete
DFAs some states can have an undefined action of a synchronizing word and all the others are
collected to one state. In other words, the process of synchronization becomes more complicated
and includes two different ways of reducing the number of active states. Thus, it is not possible to
transfer trivially the classical synchronization methods, both extending and compressing.

We develop a framework for deriving results for strongly connected partial DFAs and apply
it to relate problems for strongly connected partial and complete DFAs, showing that they are
equivalent, sometimes up to minor differences.

The chapter is structured incrementally: we start from basic properties and introduce more
advanced techniques alternatingly with their applications. Our main results are as follows:

1. The rank conjecture is equivalent in both models. It shows a general way for transferring
upper bounds from the case of complete DFAs to partial DFAs, e.g., that the rank conjecture
holds for partial Eulerian automata. For this, we introduce the first basic tool called fixing
automaton, which is a complete automaton obtained from a partial one and sharing some
properties.

2. Synchronization of a strongly connected partial automaton can be effectively reduced to the
same problem of a complete automaton. We get this through another construction called
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collecting automaton, which extends the concept of the fixing automaton.

3. The Černý conjecture and all upper bounds on reset threshold, up to a subquadratic additive
component, are equivalent in both models. This also follows through a particular usage of
the collecting automaton.

4. The length of the shortest reset words of literal automata of prefix codes is at most O(n log3 n).
This bound is the same as the best known for complete automata, but it requires more
arguments, which constitute the most involved proof in this chapter. To show this, we prove
that such automata have a linear word of logarithmic rank, and use another construction called
induced automaton, which allows applying linear algebraic techniques for partial automata.

5. Undefined transitions do not help: an essential improvement of the upper bound on the
length of the shortest reset words of a properly incomplete DFA implies an improvement on
the equivalent bound for a complete DFA.

4.2 Preliminaries

By Σi we denote the set of all words over Σ of length exactly i and by Σ≤i the set of all words
over Σ of length at most i. For two sets of words W1,W2 ∈ Σ∗, by W1W2 we denote their product
{w1w2 ∈ Σ∗ | w1 ∈ W1, w2 ∈ W2}. The empty word is denoted by ε. Throughout the chapter, by
n we always denote the number of states |Q|.

We provide some definitions and notation special for partial DFAs. We use ⊥ to say that a
transition is undefined, that is, δ(q, w) = ⊥ means that the action of the word w in undefined
for q, and δ(q, w) 6= ⊥ means that is is defined. Given S ⊆ Q, the image of S under the action
of w is δ(S,w) = {δ(q, w) | q ∈ S, δ(q, w) 6= ⊥}. The preimage of S under the action of w is
δ−1(S,w) = {q ∈ Q | δ(q, w) ∈ S}. Since A is deterministic, for disjoint subsets S, T ⊆ Q, their
preimages under the action of every word w ∈ Σ∗ are also disjoint.

We say that a word w compresses a subset S ⊆ Q, if |δ(S,w)| < |S| but δ(S,w) 6= ∅. A subset
that admits a compressing word is called compressible. There are two ways to compress a subset
S ⊆ Q with |S| ≥ 2. One possibility is the pair compression, which is the same as in the case of
a complete automaton, i.e., mapping at least two states p, q ∈ S to the same state (but not to ⊥).
The other possibility is to map at least one state from S to ⊥, but not all states from S to ⊥.
Sometimes, a subset can be compressed in both ways simultaneously.

q1 q2 q3

q4q5q6

a a

a

aa

a

b b

b

b

q1

q2

q3

q4 q5

a6

a

b

a b

a

b

a, b

a

Figure 4.1: Left: a strongly connected partial 6-state binary automaton; right: the literal automaton
of the prefix code {abaaa, abaab, abab, abba}.
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An example of a strongly connected partial automaton is shown in Fig. 4.1(left). We have two
undefined transitions: δ(q3, b) = δ(q6, b) = ⊥. The unique shortest reset word for this automaton is
bab: δ(Q, b) = {q1, q2, q5}, δ(Q, ba) = {q2, q3, q6}, and δ(Q, bab) = {q2}. However, in contrast with
the case of a complete automaton, the preimage δ−1({q2}, bab) = {q1, q4} is not Q.

4.3 Upper Bounds

4.3.1 Inseparability Equivalence

Let A = (Q,Σ, δ) be a partial automaton. We define the inseparability relation ≡ on Q. Two states
are separable if they can be separated by mapping exactly one of them to ⊥, leaving the other one.

Definition 23. The inseparability equivalence ≡ on Q is defined as follows:

p ≡ q if and only if ∀u∈Σ∗ (δ(p, u) ∈ Q⇔ δ(q, u) ∈ Q) .

The same relation is considered in [14, Section 1.4] if all states of the partial automaton are
final. Also, if we replace ⊥ with a unique final state, then ≡ is the well-known Myhill-Nerode
congruence on words in a complete automaton. Under a different terminology, it also appears in
the context of ε-machines, where non-equivalent states are called topologically distinct [109].

For a subset S ⊆ Q, let κ(S) be the number of equivalence classes that have a non-empty
intersection with S. In the automaton from Fig. 4.1(left) we have three equivalence classes, where
q1 ≡ q4, q2 ≡ q5, and q3 ≡ q6.

Our first auxiliary lemma states that a subset S ⊆ Q that intersects at least two equivalence
classes can be compressed and the number of intersected classes can be decreased with a short word.
This is done by mapping to ⊥ all the states of S from at least one equivalence class, but not the
whole set S. A linear upper bound can be inferred from a standard analysis of the corresponding
Myhill-Nerode congruence (e.g., [110]), but we will need a more precise bound in terms of κ(S).

Lemma 24. Let A = (Q,Σ, δ) be a partial automaton, and let S ⊆ Q be a subset such that
κ(S) ≥ 2. Then there is a word w ∈ Σ∗ of length at most κ(Q)− κ(S) + 1 ≤ n− |S|+ 1 and such
that 1 ≤ κ(δ(S,w)) < κ(S).

Proof. We define auxiliary relations on Q that are restricted to words of certain lengths. For k ≥ 0,
we define:

p ≡k q if and only if ∀u∈Σ≤k (δ(p, u) ∈ Q⇔ δ(q, u) ∈ Q) .

Clearly, ≡0 has all states in one equivalence class, and there is some m such that ≡m is the
same as ≡ because the number of different actions of words is finite. Also, for every p, q ∈ Q and
k ≥ 0, if q 6≡k p, then q 6≡k+1 p.

We show that if for some k, ≡k is the same as ≡k+1, then the chain of relations stabilizes at
≡, i.e., all relations ≡k,≡k+1,≡k+2, . . . are the same as ≡. Assume for a contradiction that ≡k is
the same as ≡k+1, but ≡k+2 is different from them. This means that there are two distinct states
p, q ∈ Q such that p ≡k q, p ≡k+1 q, and p 6≡k+2 q. Hence, there exists a word u of length k + 2
such that, without loss of generality, δ(p, u) = r ∈ Q and δ(q, u) = ⊥. Write u = av, where a ∈ Σ
and v ∈ Σ∗. Then δ({p, q}, a) = {p′, q′} for some distinct states p′, q′ ∈ Q. Since |v| = k + 1,
δ(p′, v) = r and δ(q′, v) = ⊥, we have p′ 6≡k+1 q

′, and from our assumption that ≡k is the same
as ≡k+1, we also have p′ 6≡k q′. This means that there exists a word v′ of length at most k such
that δ(p′, v′) = r′ ∈ Q and δ(q′, v′) = ⊥, or vice versa. But then δ(p, av′) = r′, δ(q, av′) = ⊥, and
|av′| ≤ k + 1, which yields a contradiction with that p ≡k+1 q.

37



If for some k, ≡k+1 is different from ≡k, then the number of equivalence classes in ≡k+1 is larger
by at least one than the number of equivalence classes in ≡k. Note that the number of equivalence
classes is limited by κ(Q), so ≡κ(Q)−1 (and every further relation) is the same as ≡.

Observe that, for a k ≥ 0, if S is not contained in a single equivalence class of ≡k, then there
exists a word w ∈ Σ≤k such that, for some states p, q ∈ S, we have δ(p, w) 6= ⊥ and δ(q, w) = ⊥,
thus w satisfies 1 ≤ κ(δ(S,w)) < κ(S).

We consider ≡κ(Q)−κ(S)+1. It has at least κ(Q)− κ(S) + 2 equivalence classes. Therefore, since
there are at most κ(Q) − κ(S) equivalence classes not intersecting S, this relation must have at
least two classes that intersect S, so S is not contained in a single class. It follows that there is a
word w of length at most κ(Q)− κ(S) + 1 satisfying the lemma.

The second upper bound follows from the fact that there are at most n−|S| equivalence classes
in Q \ S, so κ(Q) ≤ n− |S|+ κ(S).

By an iterative application of Lemma 24, we can easily compress any subset of states to a subset
of a single equivalence class.

Corollary 25. Let A = (Q,Σ, δ) be a partial automaton, and let S ⊆ Q be a non-empty subset.
There is a word w of length at most (κ(S)− 1)(κ(Q)−κ(S)/2) such that δ(S,w) is non-empty and
is contained in one inseparability class.

Proof. In the worst case, we apply at most κ(S) − 1 times Lemma 24 for subsets intersecting
κ(S), κ(S)− 1, . . . , 2 equivalence classes.

4.3.2 Fixing Automaton

The other possibility of compressing a subset in a partial automaton is the classical pair compres-
sion. This is the only way for compressing a subset with all states in one equivalence class, which
is always the case in a complete automaton.

Our next tool to deal with this way of compression is the fixing automaton. This is a complete
automaton obtained from partial one, defined as follows.

Definition 26 (Fixing automaton). For a partial automaton A(Q,Σ, δ), the fixing automaton is
the complete automaton AF = (Q,Σ, δF) such that the states are fixed instead of having an undefined
transition: for every q ∈ Q and a ∈ Σ, we have δF(q, a) = q if δ(q, a) = ⊥, and δF(q, a) = δ(q, a)
otherwise.

We list some useful properties of the fixing automaton.

Lemma 27. Let A = (Q,Σ, δ) be a partial automaton, let S ⊆ Q, and let w ∈ Σ∗. We have
δ(S,w) ⊆ δF(S,w). Moreover, if for every state q ∈ S we have δ(q, w) 6= ⊥, then δ(S,w) = δF(S,w).

Lemma 28. Let A = (Q,Σ, δ) be a partial automaton. Let S ⊆ Q be a non-empty subset and w ∈
Σ∗ be a word. There exists a word w′ ∈ Σ∗ of length |w′| ≤ |w| such that ∅ 6= δ(S,w′) ⊆ δF(S,w).
In particular, if w has rank r in AF, then w′ has rank 1 ≤ r′ ≤ r in A.

Proof. For a letter a ∈ Σ, let δ−1(⊥, a) = {q ∈ Q | δ(q, a) = ⊥}, which is the set of states that are
mapped to ⊥ under the action of a in A.

We prove the statement by induction on the length |w|. Obviously, it holds for |w| = 0. Consider
w = ua for some u ∈ Σ∗ and a ∈ Σ, and let u′ be the word obtained from the inductive assumption
for u. Recall that all states from δ−1(⊥, a) are fixed in AF under the action of a. Let T = δ(S, u′);
thus ∅ 6= T ⊆ δF(S, u) by the inductive assumption. We have two cases.
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1. If T ⊆ δ−1(⊥, a), then we let w′ = u′. Hence, we still have δ(S,w′) = δ(S, u′) = T ⊆ δF(S, ua),
because T is fixed under the action of a by δF.

2. If T * δ−1(⊥, a), then we let w′ = u′a. Since there is a state q ∈ T \ δ−1(⊥, a), we know that
δ(T, a) is non-empty. We also have δ(T, a) ⊆ δF(T, a), since the states in T \ δ−1(⊥, a) are
mapped in the same way under the action of a by both δ and δF. We get that δ(S, u′a) =
δ(T, a) ⊆ δF(T, a) ⊆ δF(S, ua).

Corollary 29. The minimal non-zero rank of a partial automaton A is at most the minimal rank
of AF.

In the general case of a partial automaton, it can happen that we cannot compress some subset
S even if there exists a word of non-zero rank smaller than |S|. This is the reason why the shortest
words of the minimal non-zero rank can be exponentially long and why deciding if there is a word
of a given rank is PSPACE-complete [11].

However, in the case of a strongly connected partial automaton, as well as for a complete
automaton, every non-mortal word can be extended to a word of the minimal non-zero rank. This
is a fundamental difference that allows constructing compressing words iteratively. Note that the
fixing automaton of a strongly connected partial one is also strongly connected.

Lemma 30. Let A = (Q,Σ, δ) be a strongly connected partial automaton, and let r be the minimal
non-zero rank over all words. For every non-empty subset S ⊆ Q, there exists a non-mortal word
w such that |δ(S,w)| ≤ r.

Proof. Let u be a word of rank r. Then there exists a state q ∈ Q such that δ(q, u) is defined
(6= ⊥). Let p ∈ S be any state and let vp,q be a word mapping p to q (from strong connectivity).
Then δ(S, vp,qu) has a non-zero rank ≤ r.

4.3.3 Rank Conjecture

The rank conjecture (sometimes called Černý-Pin conjecture) is a well-known generalization of the
Černý conjecture to non-synchronizing automata (e.g., [84]). See Chapter 3 for the discussion of
the rank conjecture for the case of complete DFAs.

Conjecture 31 (The rank conjecture). For an n-state complete automaton where r is the minimal
rank over all words, there exists a word of rank r and of length at most (n− r)2.

For partial automata, the rank conjecture is analogous with the exception that r is the minimal
non-zero rank.

Theorem 32. Let A = (Q,Σ, δ) be a strongly connected partial automaton. If the rank conjecture
holds for the fixing automaton AF, then it also holds for A.

Proof. Let r be the minimal rank in AF over all words. From the conjecture and by Lemma 28,
there exists a word w′ of length at most (n− r)2 and such that ∅ 6= δ(Q,w′) ⊆ δF(Q,w).

Let r′ ≤ r be the minimal rank of A. For every s = r, r− 1, . . . , r′+ 1, we inductively construct
a word of non-zero rank at most s−1, of length at most (n−(s−1))2, and such that w′ is its prefix.
Let w′v be a word of rank at most s and of length at most (n−s)2, and let S = δ(Q,w′v). Suppose
that κ(S) = 1. Since s is not the minimal rank of A, by Lemma 30, S must be compressible.
Since its states are inseparable, there must be two distinct states p, q ∈ S and a word u such
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that δ(q, u) = δ(p, u) 6= ⊥. But (from Lemma 27) {p, q} ⊆ δ(Q,w′v) ⊆ δF(Q,w′v) ⊆ δF(Q,wv),
thus δF(Q,wv) is compressible in AF, which contradicts that w has the minimal rank in AF. Hence
κ(S) ≥ 2, and by Lemma 24, δ(Q,w′v) can be compressed with a word u of length at most n−s+1.
We have |w′vu| ≤ (n− s)2 + n− s+ 1 ≤ (n− (s− 1))2, which proves the induction step.

The theorem implies that, in the strongly connected case, the rank conjecture is true for com-
plete automata if and only if it is true for partial automata. For instance, we immediately get
the result for the class of Eulerian automata. A partial automaton is Eulerian if the numbers
of outgoing and incoming transitions are the same at every state, i.e., for every q ∈ Q, we have
|{a ∈ Σ | δ(q, a) ∈ Q}| = |{(p, a) ∈ Q × Σ | δ(p, a) = q}|. The following corollary follows from
the facts that the rank conjecture holds for complete Eulerian automata [61] and that the fixing
automaton of a partial Eulerian automaton is also Eulerian.

Corollary 33. The rank conjecture is true for partial Eulerian automata.

4.3.4 Collecting Automaton

The fixing automaton allows relating the behavior of words in a partial and a complete automaton,
but its main disadvantage is that it is not necessarily synchronizing. Therefore, we will need one
more tool, called collecting automaton. It is an extension of the fixing automaton by an additional
letter that allows a quick synchronization into one inseparability class, while it does not affect the
length of a shortest synchronizing word for any particular inseparability class.

By A/≡ = (QA/≡ ,Σ, δA/≡), we denote the quotient automaton by the inseparability relation.
A/≡ is also a partial automaton, and if A is strongly connected, then so is A/≡. By [p] ∈ QA/≡ ,
we denote the class of a state p ∈ Q of the original automaton A.

Let T be a directed tree on QA/≡ such that each edge from a class [p] ∈ QA/≡ to a class
[p′] ∈ QA/≡ corresponds to a transition of a letter a ∈ Σ and is labeled by this letter, and there
is an arbitrary root [r] ∈ QA/≡ such that all edges are directed toward it. We call such a directed
labeled tree a collecting tree of A. (See Fig. 4.2 for an example.) An automaton can have many
collecting trees, even for the same [r], and every strongly connected automaton has a collecting tree
for every class [r].

{q1, q4} {q2, q5} {q3, q6}
a a

q1 q2 q3

q4q5q6

a, γ a, γ

a

a, γa, γ

a

b b b, γ

b

bb, γ

Figure 4.2: Left: a collecting tree with root [q3] = {q3, q6}; right: the corresponding collecting
automaton (right) of the example from Fig. 4.1(left).

Definition 34 (Collecting automaton). Let A = (Q,Σ, δ) be a strongly connected partial automaton
and let T be one of its collecting trees with a root [r]. The collecting automaton AC(T ) = (Q,Σ ∪
{γ}, δC(T )) is defined as follows:
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• γ /∈ Σ is a fresh letter.

• The transition function δC(T ) on Σ is defined as in the fixing automaton AF.

• The action of the new letter γ is defined according to the edges in T : Let q1 ∈ Q \ [r] be a
state. Since T is a tree directed to [r], there is exactly one edge ([q1], [q2], a) ∈ T , for some
[q2] ∈ QA/≡ and a ∈ Σ. We set δC(T )(q1, γ) = δ(q1, a). Finally, the transition of γ on each
state in [r] is the identity.

A collecting automaton is always strongly connected, as it contains all transitions of the fixing
automaton. We prove several properties connecting partial automata and their collecting complete
automata. They are preliminary steps toward relating the Černý conjecture for strongly connected
partial and complete automata.

Lemma 35. Let A = (Q,Σ, δ) be a strongly connected partial automaton, and let T be one of
its collecting trees with a root [r]. If there is a word over Σ ∪ {γ} synchronizing [r] in AC(T ) =
(Q,Σ ∪ {γ}, δC(T )), then there is such a word over Σ that is not longer.

Proof. Let w′ ∈ (Σ ∪ {γ})∗ be a word synchronizing [r] in AC(T ). We construct w ∈ Σ∗ from w′

such that w also synchronizes [r] and |w| ≤ |w′|. This is done by replacing every occurrence of γ
in w′ with a suitable substituting letter from Σ or removing it.

Consider an occurrence of γ in w′, so let w′ = uγv, for some u, v ∈ (Σ ∪ {γ})∗. Let [p] be
the class such that δC(T )([r], u) ⊆ [p]. If [p] 6= [r], then let a ∈ Σ be the letter labeling the
outgoing edge ([p], [p′], a) in the collecting tree. The action of a on [p] is thus the same as the
action of γ. Hence, δC(T )([r], uγv) = δC(T )([r], uav). If [p] = [r], then γ acts as identity on [p], thus
δC(T )([r], uγv) = δC(T )([r], uv).

We can consider the γ occurrences in any order and the obtained word w have the property
that δC(T )([r], w′) = δC(T )([r], w), thus synchronizes [r] as w′ does.

Lemma 36. Let A = (Q,Σ, δ) be a strongly connected partial automaton and let T be one of
its collecting trees. Then A is synchronizing if and only if the collecting automaton AC(T ) =
(Q,Σ ∪ {γ}, δC(T )) is synchronizing.

This also means that the choice of T does not matter: A = (Q,Σ, δ) is synchronizing if and
only if all AC(T ) are synchronizing.

Proof. Let [r] be the root class of T . Let w ∈ Σ∗ be a reset word for A. Then there is some class [p]
such that w synchronizes it. By Lemma 27, δ([p], w) = δF([p], w) is a singleton. Since A is strongly
connected, there is a word ur→p whose action maps all states from [r] into [p]. Then γn−1ur→pw is
a synchronizing word for AC(T ).

Conversely, if AC(T ) is synchronizing, in particular there exists a word synchronizing [r]. By
Lemma 35, there is also a word w synchronizing [r] in AC(T ). By Corollary 25, we can find a word
v whose action maps Q into a single equivalence class [p]. By strong connectivity, we can find a
word up→r that maps all states from [p] into [r]. Thus, vup→rw is a reset word for A.

4.3.5 Algorithmic Issues

Checking if a strongly connected partial automaton is synchronizing and finding a minimum-rank
word can be done similarly as for a complete automaton, by a suitable generalization of the well-
known Eppstein algorithm [37, Algorithm 1]. The same algorithm for checking synchronizability,
under different terminology, was described in the context of ε-machines [109].
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Proposition 37. Checking if a given strongly connected partial automaton with n states over an
alphabet Σ is synchronizing can be done in O(|Σ|n2) time and O(n2 + |Σ|n) space. Finding a word
of the minimum rank can be done in O(|Σ|n3) time and O(n2 + |Σ|n) space.

Proof. We modify the well-known Eppstein algorithm [37, Algorithm 1] by generalizing it to par-
tial and not necessarily synchronizing automata. We mark all pairs of states {p, q} such that
|δ({p, q}, a)| = 1 for some a ∈ Σ (note that this includes two possibilities of compression) and
propagate the compressibility backwards. If all pairs are compressible, then the automaton is syn-
chronizing. Then starting from Q, we repetitively apply a shortest word compressing a pair of
states in the current subset. The algorithm stops when the subset is no longer compressible, and
by Lemma 30, its size is equal to the minimal rank.

Furthermore, the problem of checking the synchronizability of a strongly connected partial
automaton can be reduced in smaller time to the case of a complete automaton.

Theorem 38. Given a strongly connected partial automaton, we can construct in O(|Σ|n log n)
time a complete automaton that is synchronizing if and only if the given partial automaton is
synchronizing.

Proof. We can compute all inseparability classes in O(|Σ|n log n) time. This is done by the Hopcroft
minimization algorithm [53], if we interpret the partial DFA as a language-accepting DFA with an
arbitrary initial state and the sink state ⊥ that is its only final state.

Having computed the classes, we can construct a collecting automaton for an arbitrary collecting
tree. Note that it can be done in O(|Σ|n) time by a breadth-first search from a class [r]. The desired
property follows from Lemma 36.

4.3.6 Černý Conjecture

The famous Černý conjecture is the rank conjecture for r = 1. Let C(n) be the maximum length
of the shortest reset words of all n-state synchronizing complete automata. It is well known that
C(n) ≥ (n− 1)2 [28]. The Černý conjecture states that C(n) = (n− 1)2, but the best proved upper
bound is cubic [103,106].

Let CP(n) be the maximal length of the shortest reset words of all n-state synchronizing strongly
connected partial automata. We show that if the Černý conjecture is true (or another upper bound
holds), then a slightly weaker upper bound holds for synchronizing strongly connected partial
automata.

To prove the following theorem, we combine several techniques, in particular, the inseparability
equivalence, the collecting automaton, and an algebraic upper bound on the reset threshold of a
complete automaton with a word of small rank [12].

Theorem 39.
CP(n) ≤ C(n) + O(n4/3).

Proof. Let A = (Q,Σ, δ) be a synchronizing partial automaton with n states. Let T be a collecting
tree of A with a root class [r] containing the smallest number of states. We consider the collecting
automaton AC(T ) = (Q,Σ ∪ {γ}, δC(T )). By Lemma 36, AC(T ) is synchronizing. We consider two
cases, depending on the number κ(Q) of inseparability classes of A.

First, suppose that κ(Q) ≤ n2/3. Then, by Corollary 25 (for S = Q), there is a word v of
length at most (κ(Q) − 1)κ(Q)/2 < n4/3 such that δ(Q, v) is non-empty and is contained in one
equivalence class, say [p]. Since A is strongly connected, there is a word up→r of length at most
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n − 1 whose action maps [p] into [r]. Let w′ be a reset word for AC(T ) of length at most C(n).
In particular, w′ synchronizes [r], so by Lemma 35, we get a word w of length at most C(n) that
synchronizes [r] in A. Then, vup→rw is a reset word for A of length at most n4/3 + n− 1 + C(n).

In the second case, we have κ(Q) > n2/3. Then the size of [r], which has been chosen to have the
smallest size, has at most n1/3 states. Note that γn−1 is a word of rank at most n1/3. Then we can
apply [12, Theorem 2] (d1 = d2 = n− 1) or Corollary 42 for AC(T ) with this word, obtaining that
the reset threshold of AC(T ) is upper bounded by (n− 1) + 2(n− 1)C(n1/3). Using the well-known
general cubic upper bound n3/6 on the reset threshold of a complete automaton (e.g., [84]), we get
that there is a reset word w′ for AC(T ) of length at most (n− 1) + 2(n− 1)n/6. Now, we return to
A. By Corollary 25 (for S = Q), we get a word v of length at most (n− 1)n/2 such that δ(Q, u) is
non-empty and is contained in one equivalence class [p]. As in the first case, there is a word up→r
of length at most n− 1 whose action maps [p] into [r]. By Lemma 35, from w′ we obtain a word w
that synchronizes [r] and is no longer than (n− 1) + 2(n− 1)n/6. Finally, vup→rw is a reset word
for A of length at most (n− 1)n/2 + (n− 1) + (n− 1) + 2(n− 1)n/6 ≤ (n− 1)2 for n ≥ 18.

From both cases, we conclude that rt(A) ≤ C(n) + O(n4/3).

From Theorem 39, it follows that all upper bounds on the reset threshold of a complete au-
tomaton transfer to upper bounds for partial automata, up to a subquadratic component. Thus
CP(n) ≤ 0.1654n3 + O(n2) [103]. It can be also seen from the proof that if we have a better
general upper bound on C(n), we get a smaller additional term, e.g., if C(n) ∈ O(n2), then
CP(n) = C(n) + O(n), so the additional term is at most linear. The additional component is
likely not needed, but it is difficult to completely get rid of it in general, as for that we could not
lengthen by any means the reset word assumed for a complete automaton. However, it is easy to
omit it when reproving known bounds for complete automata, both combinatorial [84] and based
on avoiding words [103,106]. We conjecture that CP(n) = C(n) for all n.

4.3.7 Induced Automaton

We develop an algebraic technique applied to partial automata. It will allow us deriving upper
bounds on reset thresholds, in particular, in the cases when there exists a short word of a small
rank, which is the case of the literal automaton of a prefix code. We base on the results from [12]
for complete automata and generalize them to be applied to partial automata. The existing linear
algebraic proofs for complete automata do not work for partial ones, because the matrices of
transitions may not have a constant sum of the entries in each row.

We need to introduce a few definitions from linear algebra for automata (see, e.g., [12, 60, 82,
106]). Let A = (Q,Σ, δ) be a partial DFA. Without loss of generality we assume thatQ = {1, . . . , n}.
By Rn, we denote the real n-dimensional linear space of row vectors. For a vector v ∈ Rn and an
i ∈ Q, we denote the vector’s value at the i-th position by v(i). Similarly, for a matrix M , we
denote its value in an i-th row and a j-th column by M(i, j). A vector is non-negative if g(i) ≥ 0 for
all i, and it is stochastic if

∑n
i=1 g(i) = 1. For a word w ∈ Σ∗, by M(w) we denote the n×n matrix

of the transformation of w in δ: M(w)(p, q) = 1 if δ(p, w) = q, and M(w)(p, q) = 0 otherwise. Note
that if δ(p, w) = ⊥, then we have M(w)(p, q) = 0 for all q ∈ Q. The usual scalar product of two
vectors u, v is denoted by u� v. The linear subspace spanned by a set of vectors V is denoted by
span(V ).

Given a transition function δ (which defines matrices M(w)), call a set of wordsW ⊆ Σ∗ complete
for a subspace V ⊆ Rn with respect to a vector g ∈ V , if span({gM(w) | w ∈W}) = span({gM(w) |
w ∈ Σ∗}) = V . Notice that due to the linear extending argument, Σ≤n−1 is complete for every
g ∈ V . A set of words W ⊆ Σ∗ is complete for a subspace V ⊆ Rn if for every non-negative
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stochastic vector g ∈ V , W is complete for V with respect to g. Let χ(p) denote the characteristic
(unitary) vector of {p}. For a subset S ⊆ Q, we define V(S) = span({χ(p) | p ∈ S}) ⊆ Rn.

For example, consider the automaton from Fig. 4.1(left). Let V = V({q1, q2, q4}) and let
W = {ε, b, bab}a∗. Let g ∈ V be a non-negative stochastic vector. Using that the transition of
b is undefined for q3, depending on g, we can choose u1 ∈ {ε, b, bab} so that gM(u1) has exactly
one non-zero component, say i ∈ {1, 2, 3}; e.g., if g has two non-zero entries of q1 and q3, then
u1 = b. Then, for each j ∈ {1, 2, 3}, the vector gM(u1a

6−i+j) has a unique non-zero component
corresponding to qj , thus W is complete for V with respect to g.

The induced automaton of a partial one is another automaton acting on a subset of states
R ⊆ Q. The alphabet consists of words, whose actions always keep the states mapped back into R.
We can analyze an induced automaton as a separate one, and synchronize the whole automaton
using it, which is particularly profitable when R is small.

Definition 40 (Induced automaton). Let W1,W2 ⊆ Σ∗ be non-empty and R = {δ(q, w) | q ∈
Q, w ∈ W1, δ(q, w) 6= ⊥}. If R is non-empty, we define the induced automaton AI(W1,W2) =
(R,W2W1, δAI(W1,W2 ), where the transition function is defined in compliance with the actions of
words in A, i.e., δAI(W1,W2)(q, w) = δ(q, w) for all q ∈ R and w ∈W2W1.

The induced automaton AI(W1,W2) is A restricted to R. Note that its transition function is well
defined, which is ensured by the fact that every word of the form w2w1 ∈ W2W1 has the action
mapping every state q ∈ Q into R or to ⊥.

The following lemma states that the completeness property of a set of words in the whole
automaton transfers to the induced automaton. This is straightforward in the case of a complete
automaton [12], because the whole subspace V(Q) transformed by the matrices of W1 yields V(R),
but it requires a new argument in the case of a partial automaton.

Lemma 41. Let A = (Q,Σ, δ) be a strongly connected synchronizing partial automaton and let W1

and W2 be two non-empty sets of words over Σ. Let B = AI(W1,W2) = (R,W2W1, δAI(W1,W2)) be
the induced automaton. If W2 is complete for V(Q) = Rn with respect to a stochastic non-negative
vector α ∈ V(R) (e.g., W2 = Σ≤n−1), then W2W1 is complete for V(R) with respect to α, and B is
synchronizing and strongly connected.

Proof. First, let us prove the completeness of W2W1 with respect to an arbitrary non-negative
stochastic vector α ∈ V(R). By the definition of R, for each state r ∈ R, there is a state q1 and a
word u1 ∈W1 such that δ(q1, u1) = r. Since A = (Q,Σ, δ) is synchronizing and strongly connected,
there is a synchronizing word u2 such that δ(Q, u2) = {q1}. Since the image is non-empty, there is a
state q2 ∈ Q such that δ(q2, u2) = q1. Let q3 ∈ R be a state such that χ(q3)�α 6= 0 (since α ∈ V(R)
is stochastic, there must be a non-zero entry). Again by strong connectivity of A, there is a word
u3 whose action maps q3 to q2. Hence, u3u2u1 is a synchronizing word with the action mapping
q3 to r. Thus αM(u3u2u1) ∈ span({χ(r)}), and since α and M(u3u2u1) are also non-negative,
(αM(u3u2u1))(r) 6= 0. Since this holds for every r ∈ R, that is, for every r we can find a word u3u2u1

that yields a vector with non-zero r-th entry and all the other entries containing zero. Moreover,
these words are from Σ∗W1, thus we get span({αM(w) | w ∈ Σ∗W1}) = V(R). As W2 is complete
for V(Q) with respect to α, we have span({αM(w) | w ∈ Σ∗}) = V(Q) = span({αM(w) | w ∈W2}),
thus span({αM(w) | w ∈W2W1}) = V(R).

It remains to prove that B is synchronizing. If |R| = 1, we are done. If R is compressible
in B by a word w, we can use induction proving that the induced automaton for (W1{w},W2) is
synchronizing. Otherwise, for each word v ∈ W2W1, we have δ(R, v) ∈ {R, ∅}. This contradicts
with W2W1 being complete for V(R) since a vector αM(v) either has sum of the entries equal 1 or
it is the zero vector. Hence R is compressible in B and the statement follows by induction.
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The following corollary directly follows from Lemma 41. It is useful for deriving upper bounds
for automata with a word of small rank; we show its application in the next subsection.

Corollary 42. Let A = (Q,Σ, δ) be a strongly connected synchronizing partial automaton with n
states, and let w ∈ Σ∗ be a word such that R = δ(Q,w) 6= ∅. Let W1 = {w}, W2 = Σ≤n−1, and
B = AI(W1,W2) = (R,Σ≤n−1{w}, δAI(W1,W2)) be the induced automaton. Then rt(A) ≤ |w| + (|w| +
n− 1) · rt(B).

4.3.8 The Literal Automaton of a Finite Prefix Code

Let X be a finite prefix code over an alphabet Σ, and AX = (Q,Σ, δ) be its literal automaton. The
state corresponding to the empty prefix ε is called the root state. The height of a literal automaton
is the length of a longest path of its transitions without repetition of states; equivalently, this is the
length of the longest word in X minus one. Note that the number of states of AX is at most the
total length of all codewords of X. An example of a literal automaton is shown in Fig. 4.1(right).

It is proved that every complete literal automaton over an alphabet of size k has a word of rank
and length at most dlogk ne ( [12, Lemma 16], cf. [17, Lemma 14]). This is no longer true for non-
mortal words in partial literal automata [98]. We prove that there exist O(log2 n)-rank non-mortal
words of length O(n) in such automata, excluding the case of a code with only one word. Then we
use this result to provide an O(n log3

2 n) upper bound on the reset threshold of n-state synchronizing
partial literal automata, matching the known upper bound for complete literal automata [12].

We start with a special case of one-word codes. A non-empty word w is called primitive if it is
not a power of another word, i.e., w 6= uk for every word u and k ≥ 2. The upper bound on rt(AX)
follows from a result of Weinbaum ( [49,117]).

Proposition 43. Let X = {x} be a one-word prefix code, and suppose that x = yk, where y
is a non-empty primitive word and k ≥ 1. Then AX has rank k. If AX is synchronizing, then
rt(AX) ≤ |x|2 , and this bound is tight.

Proof. Observe that the literal automaton of a one-word code forms as a single cycle labeled by
the letters of this word. No two states can be mapped to a single state by the action of any letter,
which excludes pair compression.

Observe that AX/≡ is the literal automaton AY of Y = {y}. In AX , there are n/k inseparability
classes, each of size k. Hence, the rank of AX equals k times the rank of AY . Since y is primitive,
its action is defined only for the root state (and maps the root to itself). Thus AY is synchronizing,
so the rank of AX equals k.

Now, we will bound the length of the shortest reset words. A word t is called a conjugate of t′

if t = uv and t′ = vu for some words u, v. By a result of Weinbaum, stated in terms of automata,
every primitive word x has a conjugate x′ = uv such that both u and v have the action defined
exactly for one state of AX [49]. Thus, both u and v are reset for AX . The shorter of them has

length at most |x|2 .
To see that the bound can be met, consider the code Z = {akbak+1b}. The shortest reset word

for AZ is ak+1 of length b2k+3
2 c = k + 1.

In the remaining cases, there always exists a word of linear length and logarithmic rank.

Theorem 44. Let X be a prefix code with at least two words. Let AX = (Q,Σ, δ) be its partial
literal automaton with n states and height h. Then there exists a word of length at most 2h and of
rank at most dlog2 hne+ dlog2 he for AX . Moreover, such a word can be found in polynomial time
in n = |Q|.
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Proof. Since X consists of at least two words, there exists a state p such that at least two letters
have defined the transition from it. We choose p to be a state with this property that is at the
minimal distance from the root state r, i.e., such that the length of the shortest word w such that
δ(r, w) = p, is the smallest possible. Let a, b ∈ Σ be two letters with defined transitions going from
p. Since each state on the path from the root to p has only one letter with a defined outgoing
transition, such a state p is unique. For the literal automaton in Fig. 4.1(right), the chosen state p
is q3.
Filtering algorithm. Consider the following auxiliary algorithm having a word w ∈ Σ∗ as the
input. We perform steps for i = 1, 2, . . .. In each step, we keep a subset of active states Si ⊆ Q,
and two words ui, wi. At the beginning, S1 = Q, u1 = ε, and w1 = w. In an i-th step, we have two
cases.
(Case 1) If p is active, then let a be the first letter of wi, assuming wi is non-empty. We apply the
transition of a to Si, and let Si+1 = δ(Si, a) for the next iteration. Also, we move the first letter
from wi to the end of ui, thus we set ui+1 = uia and wi+1 to be such that wi = awi+1.
(Case 2) If p is not active, then let y be the smallest letter, under some fixed order on Σ (the same
for every step), that is non-mortal for Si, i.e., δ(Si, y) 6= ⊥. Such a letter always exists in a literal
automaton, as for every state we can find a non-mortal letter. We apply y to Si, so Si+1 = δ(Si, y),
and set ui+1 = uiy and wi+1 = wi.
(Termination) If wi+1 is empty or ui+1 has length at least h, we stop. The word ui+1 is the output
of the algorithm.

To see that the algorithm terminates, observe that at every step the length of ui is increased
by 1, thus there are at most h iterations.

For a word z, denote by α(z) the word ui+1 obtained in the last step of the algorithm. Note
that δ(Q, ui) = Si holds in every step. Since every time we apply a letter that is non-mortal for the
set of active states, this word is non-mortal for AX . It has also length at most h. Observe that for
two different words v1, v2, either the words α(v1), α(v2) are different or they have length h. Indeed,
if they have a length smaller than h, then the algorithm terminates when wi+1 is empty. Consider
the longest common prefix v of v1 and v2, so v1 = vv′1 and v2 = vv′2. The algorithm executes
in the same way up to the |v|-th time when Case 1 is applied. Then it performs some iterations
with Case 2, which do not decrease the length of wi. Finally, Case 1 must hold, and the algorithm
applies the first letters of v′1 and v′2. At this moment, the two words constructed become different.
All-through-root word construction. Now, we show that there exists a word w of length
dlog2 hne such that, for every state q ∈ Q, either the action of some prefix of α(w) maps q to the
root r or the action of α(w) is undefined for q, and the word α(w) is non-mortal. Recall two letters
a, b ∈ Σ such that state p has a defined outgoing transition under both of them. Consider the set
of the resulting words W = {α(w) | w ∈ {a, b}dlog2 hne}. If there is at least one word of length h in
W , we are done. Otherwise, all words in W are of a length less than h, and there are at least hn
pairwise distinct words. Then, by the pigeonhole principle, there is a subset W ′ ⊆W consisting of
at least n + 1 words of equal length. Suppose for a contradiction that for every word α(w) ∈ W ′,
there is a state qα(w) such that δ(qα(w), α(w)) 6= ⊥ and that is not mapped to r by the action of
any prefix of α(w). Note that in a literal automaton of a prefix code, every state except the root
state has an ingoing transition for exactly one letter. Thus for a pair q, q′ of states and two words
t, t′ of the same length, we can have δ(q, t) = δ(q′, t) 6= ⊥ only if some prefix of t (or t′) has the
action mapping q (or q′, respectively) to the root state. Therefore, all states qα(w) for α(w) ∈ W ′
are pairwise distinct, and we have at least n+ 1 such states. This means that the number of states
of AX is larger than n, which is a contradiction. Thus, we get a non-mortal word α(w) of length at
most h with the property that every state q ∈ Q with δ(q, α(w)) 6= ⊥ is mapped to the root state
by some prefix of α(w).
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Splitting the image. We consider the set δ(Q,α(w)) and split it into two sets, one with specific
states and the other one with logarithmic size. Let P ⊆ Q be the set of all states in the unique
shortest path from r to p excluding p itself. For the literal automaton in Fig. 4.1(right), P = {q1, q2}.
The size of P is at most h. Note that, by the selection of p, for each state in P , exactly one letter
has a defined transition. Thus, the other set Q \ P has the property that the unique shortest path
from r to each state from Q \ P contains p. Note that δ(Q,α(w)) ∩ (Q \ P ) has up to dlog2 hne
states, since by the construction of α(w), at most |w| prefixes of α(w) have the action mapping
some state to p (when Case 1 holds).
Compressing the part in P . Denote by R the image δ(Q,α(w)). We are going to construct a
word v of length at most h such that 1 ≤ |δ(P ∩R, v)| ≤ dlog2 he. However, if P ∩R = ∅, then we
skip this phase and let v = ε.

Consider the following procedure constructing an auxiliary word v. We perform steps i =
1, 2, . . ., and in an i-th step keep a word vi and a set Si of active states. At the beginning, we set
v1 = ε and S1 = R ∩ P . In an i-th step, we do the following. Let `i be the shortest word mapping
some active state from P to p. We apply `i to the set S of active states and let S′ = δ(S, `i). Let
`′i ∈ {a, b} be a letter whose transition is undefined for at least half of the states in S′ ∩ P (unless
S′ ∩P = ∅). At least one of these two letters have this property since all states in P have only one
defined transition. We set vi+1 = vi`i`

′
i and Si+1 = δ(S′ \ {p}, `′i) for the next step; note that we

additionally remove p from the set of active states. If the length of vi+1 is at least h or Si+1 = ∅,
we stop. Otherwise, we proceed to the (i+ 1)-th step for Si+1 ⊂ P of size at most b|Si|/2c.

Denote the word vi+1 constructed at the last step by v. By the construction, the word α(w)v is
non-mortal, because after each step, p ∈ δ(P ∩ R, vi+1). The number of active states decreases at
least twice in every step, thus the number of performed steps is at most dlog2 he. Furthermore, in
every step, exactly one active state from P is mapped to a state in Q \P , since we use the shortest
word such `i. This state is always p, which we remove from the active states. The number of these
removed states is at most dlog2 he and we know that the other states from R∩P are mapped to ⊥
in some step, thus the cardinality of δ(P ∩R, v) is at most dlog2 he.

To bound the length of v, we observe that the sum of the lengths of words `i`
′
i from every

iteration cannot exceed h. It is because every active state, if it is not mapped to ⊥, is mapped by
the action of `i`

′
i to a state farther from the root by |``′i|. Thus, the sum of the lengths cannot

exceed h.
Summary. It follows that the rank of α(w)v is at most dlog2 hne+ dlog2 he: Indeed, the states in
Q that are mapped into the set P by the action of α(w) are then mapped by the action of v to a
set of cardinality at most dlog2 he. All the other states are mapped by the action of α(w) to a set
of size at most dlog2 hne.

Finally, note that the word α(w)v can be found in polynomial time. In particular, to find α(w),
we check 2dlog2 hne = O(hn) different words, and every word is processed in polynomial time by the
auxiliary algorithm computing α.

Corollary 45. Let AX be a partial literal automaton with n states. If it is synchronizing, its reset
threshold is at most O(n log3

2 n).

Proof. If |X| = 1 then the bound follows from Proposition 43. If |X| ≥ 2, from Theorem 44, we
get a word w of length O(n) and rank O(log n). Then we use Corollary 42 with w, which yields
the upper bound O(n) +O(n) · rt(B), where B is an induced automaton with O(log n) states. Then
we use a cubic upper bound on the reset threshold of a complete DFA ( [103, 106]) transferred to
strongly connected partial DFAs by Theorem 39.
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4.4 Lower Bounds for Properly Incomplete Automata

Finally, we note about transferring lower bounds from the complete case to the partial case. Of
course, in general, this is trivial, since a complete automaton is a special case of a partial one. On
the other hand, letters with totally undefined transitions cannot be used for synchronization thus
are useless. Hence we need to add a restriction to exclude these cases and see the effect of usable
incomplete transitions. A partial automaton is properly incomplete if it is not complete and there is
at least one letter whose transition is defined for some state and is undefined for some other state.

We will show that bounding the rank/reset threshold of a strongly connected properly incom-
plete automaton is related to bounding the corresponding threshold of a complete automaton.

Definition 46 (Duplicating automaton). For a complete automaton A = (Q,Σ, δA), we construct
the duplicating automaton AD = (Q ∪Q′,Σ ∪ {γ}, δAD) as follows. Assume that Q = {q1, . . . , qn}.
Then Q′ = {q′1, . . . , q′n} is a set of fresh states disjoint with Q and γ /∈ Σ is a fresh letter. For
all 1 ≤ i ≤ n and a ∈ Σ, we define: δAD(qi, a) = qi, δAD(qi, γ) = q′i, δAD(q′i, a) = δA(qi, a), and
δAD(q′i, γ) = ⊥.

The duplicating automaton AD has twice the number of states of A and is properly incomplete.
Also, it is strongly connected if A is.

Proposition 47. Let A = (Q,Σ, δA) be a strongly connected complete automaton. For all 1 ≤ r <
n, we have rt(AD, r) = 2 rt(A, r).

Proof. It is easy to observe that if A is strongly connected, then so is AD.
Let 1 ≤ r < n, and let w be a shortest word of rank at most r in AD. We observe that

w = γa1γa2γa3 . . . γak, for some letters ai ∈ Σ. Indeed, the action of aiaj is the same as the action of
ai, thus two consecutive letters from Σ cannot occur in a shortest word. Also, γ2 cannot occur, as it
is a mortal word. There is no letter ai at the beginning of w, because δAD(Q, aiγ) = δAD(Q, γ) = Q′.
Finally, w does not contain γ at the end, because otherwise the rank would be the same, i.e., for
all S ⊆ Q′, we have |δAD(S, aiγ)| = |δAD(S, ai)|.

We observe that the word w′ = a1a2 . . . ak has rank r in A. Indeed, δAD(Q ∪ Q′, w) ⊂ Q, and
qi ∈ δAD(Q ∪Q′, w) if and only if qi ∈ δA(Q,w′). Since w is a word of rank r in AD, so is w′ in A.
Thus rt(AD, r) = |w| = 2|w′| ≥ 2 rt(A, r).

Conversely, having a shortest word w′ = a1a2 . . . ak of rank r in A, we can construct w =
γa1γa2γa3 . . . γak or rank r in AD, thus rt(AD, r) ≤ 2 rt(A, r).

From Proposition 47, it follows that we cannot expect a better upper bound on the reset
threshold of a properly incomplete strongly connected automaton than 0.04135n3 + O(n2), unless
we can improve the best general upper bound on the reset threshold of a complete automaton,
which currently is roughly 0.1654n3 + O(n2) [103, 106]. We can also show a lower bound on the
largest possible reset threshold. There is a connection with a particular class of automata with
long shortest mortal words [91].

Proposition 48. For every n, there exists a strongly connected properly incomplete n-state au-
tomaton with reset threshold n2−n

2 .

Proof. Let A = (Q,Σ, δ) be a strongly connected partial automaton with only one state r having
undefined outgoing transitions of some letter, and let w be its shortest mortal word. Let w = w′a,
where a ∈ Σ. Then δ(Q,w′) = {r}. Moreover, since the automaton is strongly connected, every
prefix w′′ of w′ of length smaller than |w| − (|Q| − 1) has the action mapping Q to a set of size at
least two; otherwise there is a shorter word mapping Q to {r}. Thus we get that A is synchronizing,
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and the length of its shortest reset word is at least |w| − (|Q| − 1) − 1 = |w| − |Q|. For every n,
Rystsov [91] constructed a strongly connected properly incomplete n-state automaton with the only
one state having undefined outgoing transitions. The length of its shortest mortal word is equal to
n2+n

2 . Thus we get the lower bound of n2+n
2 − n on the length of its shortest reset word. It can be

seen directly from the construction of the automaton that this bound is tight.
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Chapter 5

Extremal Bounds for Unambiguous
NFAs and General Codes

Everywhere in the paper we assume the automata to be strongly connected.

5.1 Introduction

As described in Section 2.4, there is a natural correspondence between recognizable codes and
strongly connected unambiguous NFAs. This correspondence allows to generalize many synchro-
nization problems from deterministic to unambiguous automata. In this chapter we study the
length of shortest words of minimum rank and minimum non-zero rank in strongly connected un-
ambiguous NFAs, thus further generalizing the Rank Conjecture. In contrast to the case of strongly
connected partial DFAs, a polynomial upper bound is not trivial in this case, since it is much harder
to control the image of a subset of states. In particular, it is not possible anymore to simply decrease
the size of the set of active states step by step. We show that a polynomial upper bound is still
achievable, by extending the technique of Carpi [25] and Kiefer and Mascle [62]. Thus we partially
answer a question stated in the list of research problems of [14], and obtain a generalization of the
Černý conjecture to the case of strongly connected unambiguous NFAs. Our proof also implies
that it can be checked in polynomial time whether a strongly connected unambiguous automaton
is synchronizing. It also allows to get a better bounds for the case of finite codes.

The chapter is organized as follows. In Section 5.2 we present the idea of the proof of Kiefer
and Mascle on bounding the lengths of mortal words in strongly connected unambiguous NFAs. In
Section 5.3 we show how to extend this proof to obtain an n5 upper bound on the length of shortest
words of minimum non-zero rank. In Section 5.4 we refine the bounds on the length of shortest
words of minimum rank for prefix automata of finite codes. In Section 5.5 we provide lower bounds
on the length of shortest mortal words in several classes of deterministic automata. In Section 5.6
we prove a sufficient condition for recognizable codes to be synchronizing.

5.2 The result of Kiefer and Mascle

Let A = (Q,Σ,∆) be an n-state strongly connected unambiguous automaton. Fix an ordering
q1, . . . , qn of the set Q. For a subset S of states denote by vect(S) the n-dimensional characteristic
(row) vector of S, that is, a vector v ∈ {0, 1}n with ith component equal to 1 if qi ∈ S and equal
to 0 otherwise.
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A set C ⊆ Q is called mergeable if there exists a word w and a state q′ such that for every
state q ∈ R we have q′ ∈ q.w. A set R ⊆ Q is called coreachable if there exists a word w and a
state q′ such that for every state q ∈ C we have q ∈ q′.w. Characteristic vectors of mergeable and
coreachable sets are exactly non-zero columns and rows of matrices in the monoid M(A).

Let y, z be a pair of words. We denote by P(y, z) the set of all states q which are reached
by y and survive z, that is such that y.q and q.z are non-empty. Studying P(y, z) is the central
idea of the discussed result. Assume without loss of generality that P(y, z) = {q1, . . . , qk}. Then
there exist two families of non-empty sets: a family C = {C1, . . . , Ck} of mergeable and a family
R = {R1, . . . , Rk} of coreachable sets such that Ci = y.qi, Ri = qi.z for 1 ≤ i ≤ k.

The rank of the word yz is at most k. Indeed, we can represent the matrix M(yz) as a product of
the matrix with columns vect(C1)T , . . . , vect(Ck)

T and the matrix with rows vect(R1), . . . , vect(Rk)
(by vT we denote the column which is the transposition of the row v):

M(yz) = vect(C1)T · vect(R1) + . . .+ vect(Ck)
T · vect(Rk).

Without additional restrictions on the words y and z, the sets from C and R can intersect.
However, the relations between the sets Ci and Rj are not arbitrary. First, for a mergeable set
C and a coreachable set R the intersection C ∩ R has size at most one. Second, if Ci intersects
Cj then Ri and Rj are disjoint and vice versa. Some further results in this direction are obtained
in [85].

In [62] Kiefer and Mascle show how to construct a pair y, z of words of length O(n4) such that
no pair of states in P(y, z) is coreachable or mergeable. In particular this means that no pair of
sets in C and no pair of sets in R intersects. The algorithm decreases the number of states in
P(y′, z′) by iteratively constructing the words y′, z′. This is done by concatenating words zq for
different states q with the property that no state coreachable with q survives zq. Thus we obtain
the word z forcing that no pair of states in P(ε, z) is coreachable. The same is done symmetrically
for mergeable states by the word y. Such a pair y, z allows to manipulate unambiguous automata
much easier. In particular, one can kill a state in P(y, z) by a word of linear length (Lemma 14
of [62]). The final mortal word is then obtained by subsequently killing all the remaining states
in P(y, z). The rank of yz for such y, z is exactly the cardinality of P(y, z).

The proof of Carpi [25] (with some small modifications) can be seen as a similar algorithm. The
main difference is that the structure of complete automata (provided in particular by Proposition
3.4 of [25]) makes it possible to get a better upper bound. In particular, it is enough to perform
only r steps of the algorithm producing the pair y, z, and there is no need then to kill the states in
P(y, z) afterwards.

5.3 Words of minimum non-zero rank

In this section we extend the result of Kiefer and Mascle described in Section 5.2 to words of
minimum non-zero rank. First we observe that the word yz constructed in Lemma 11 of [62] is not
mortal. Indeed, every word wq produced in Lemma 10 of [62] does not kill the state q. Then the
algorithm in Lemma 11 consists of taking a state p.w such that p survives w, and applying wp.w to
it, thus p is not killed by wwp.w. After getting rid of coreachable states the symmetric version for
mergeable states which are not yet killed is performed, and by the same reason it is still maintained
that some state survives.

Let now w be a word of minimum non-zero rank r such that at least one state qi ∈ P(y, z) is
not killed by zwy. Such a word always exists, since we can take w = w1w

′w2 where w′ is a word
of minimum non-zero rank, and the words w1 and w2 are such that w1 maps a state qi.z to a state
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which is not killed by w′, and w2 maps a state in qi.zw1w
′ to a state surviving y. The pair yzwy, z

has then the same properties as y, z but the cardinality of the set P(y, zwyz) is exactly r. This
means there exist exactly r states in P(y, z) which are mapped by zw to y.P(y, z), and all the other
states are mapped to the complement of this set. Let qi, qj be a pair of states such that zw sends
exactly one of them to y.P(y, z), and the other one to the complement of this set. The next lemma
is an analogue of Lemma 14 from [62] for the case of words of minimum non-zero rank instead of
mortal words.

Lemma 49. One can compute in polynomial time a word x ∈ Σ∗ with |x| ≤ n such that exactly
one of the sets qi.zxyz and qj .zxyz is empty.

Proof. It is enough to compute a word x such that exactly one of the sets qi.zx and qj .zx intersects
y.P(y, z). Define ei, ej and f to be the characteristic vectors of qi.z, qj .z and y.P(y, z) respectively.
As shown in the proof of Lemma 14 of [62], we have that eiM(x)fT ≤ 1 and ejM(x)fT ≤ 1. Since
all the entries are non-negative and integer, the only two possible values are thus 0 and 1.

Let V be the subspace of Rn spanned by the vectors (ei − ej)M(x) for x ∈ Σ∗. This subspace
can be seen as the smallest subspace containing the vector ei− ej and closed under multiplying by
M(a) for all a ∈ Σ. Thus we can compute a basis B of V by subsequently finding for an already
added word u a letter a ∈ Σ such that (ei− ej)M(ua) is not in the already generated subspace and
adding this vector to the basis. Since the dimension of V is at most n, every vector in this basis
corresponds to a word of length at most n.

As shown before, the possible values of (ei−ej)M(x)fT belong to the set {−1, 0, 1}. Since there
exists a word w (defined above) with (ei− ej)M(w)fT 6= 0, we have that V is not orthogonal to f .
Thus there exists a word x corresponding to a vector in B such that (ei − ej)M(x)fT ∈ {−1, 1},
and |x| ≤ n. The word x has then the required properties.

Now we can follow the proof of [62] up to using Lemma 14, and then use Lemma 49 of this
paper instead. This lemma allows to kill one state of the set P(y, z) while maintaining that the
constructed word is not mortal. Thus we can proceed to Lemma 15 of [62] and construct iteratively
a word of minimum non-zero rank having the same upper bound of n5 on its length. We summarize
these results in the following theorem.

Theorem 50. Every strongly connected unambiguous automaton A with n states has a word of
minimum non-zero rank of length at most n5. Such a word can be found in polynomial time.

In particular, this means that it can be checked in polynomial time whether a finite code is
synchronizing (for example, by checking that its prefix automaton is synchronizing, see Section 5.4
for the definition). It is natural to ask whether a faster algorithm to check synchronizability of a
finite code (or a strongly connected unambiguous automaton in general) exists.

The main contribution of Theorem 50 is the first known polynomial upper bound on the length
of shortest words of minimum non-zero rank for the non-complete case. Additionally it can be seen
as a way to make the proof of Kiefer and Mascle (in the general case of words of minimum rank)
more uniform, since it still works for the complete case and does not require the proof of Carpi for
the special case of complete automata.

If a non-complete strongly connected deterministic automaton has a synchronizing word of
length `, then it has a mortal word of length at most `+n, where n is the number of states. To find
this word it is enough to kill the only state in the image of the synchronizing word, which can be
done by a word of linear length. A similar relation for strongly connected unambiguous automata
is provided by the following result.
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Proposition 51. Let A be an n-state strongly connected non-complete synchronizing unambiguous
automaton. If A has a synchronizing word of length `, then it has a mortal word of length 3`+ n.

Proof. Let w be a synchronizing word for A = (Q,Σ,∆). If ww is mortal, we are done. Otherwise
there exists exactly one state q which survives w and is reached from some state by w. Indeed, by
definition every word of rank 1 has sets C,R of states such that Q.w = R, w.Q = C and w maps
every state in C to every state in R. Thus, if there are two different states in R∩C, the automaton
is not unambiguous. Hence we can apply Lemma 14 of [62] for y = w and z = w and get a word x
of length at most n such that the word wxww of length at most 3`+ n is mortal.

Obviously, no relation in the other direction exists in the general case: one can consider an
arbitrary synchronizing complete deterministic automaton and add a nowhere defined new letter
to it. Then the length of a shortest synchronizing word is not bounded by any non-trivial function
of the length of a shortest mortal word which is equal to 1.

5.4 Prefix automata

The next lemma generalizes the log-log lemma (Lemma 16 of [12], see also [17]) from complete
prefix codes to general complete codes.

Lemma 52 (Log-log lemma for general complete codes). Let A be the prefix automaton of a finite
code X over an alphabet of size m. Then there exists a word of length dlogm ne and rank at most
dlogm ne for this automaton, where n is the number of its states.

Proof. Denote r = dlogm ne and let i be the state corresponding to ε. Similar to the prefix case,
we first show that there exists a word w of length r such that for every state q every path from q
labeled by w contains the state i. Suppose that this is not true and hence for every word w of this
length there is a state qw having a path labeled by w which does not contain the state i. Denote by
q′w a state in qw.w such that the path from qw to q′w labeled by w does not contain i. Observe that
for different words w1, w2 the states q′w1

, q′w2
are different, and none of these states is the state i.

Thus the total number of states in A is at least mr+1 = mdlogm ne+1 > n, which is a contradiction.
Now we will show that w has rank at most r. Denote by W the set of prefixes of w. Since for

every state q all the paths going from q and labeled by w contain the state i, every row of M(w)
is a linear combination of vectors vect(i.w′) for w′ ∈ W with coefficients 0 and 1. Hence the rank
of M(w) is at most r.

Provided a short word of small rank, we can perform the general algorithm of [62] described
in Section 5.2 starting with the pair w,w and thus improve the upper bound. Let w be a word of
rank k for a strongly connected unambiguous automaton A. Then the set P(w,w) contains at most
k2 states. Indeed, by definition of rank the matrix M(w) can be represented as

∑k
i=1 vect(Ci)

T ·
vect(Ri) for some families C1, . . . , Ck and R1, . . . , Rk of states, where w maps every state of Ci to
every state of Ri. Every state in P(w,w) is then contained in some Ci and in some Rj . If there are
two different states contained in the same pair Ci and Rj , the automaton A is not unambiguous.
Hence the cardinality of P(w,w) is at most k2. If the rank of ww is zero, we have constructed a
mortal word for A. Otherwise we can start with the pair w,w and apply the iterative algorithm
described in Section 5.2 to get a pair y′, z′ of words such that no pair of states in P(y′w,wz′) is
coreachable or mergeable. Since P(w,w) contains at most k2 states, it remains to perform at most
k2 steps to get rid of all mergeable and coreachable states by y′ and z′. Then we can kill the states
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in P(y′w,wz′) one by one as described in Lemma 15 of [62]. The length of a mortal word thus
constructed is at most k2n+(k2 +1)(1

4k
2(n+2)2(n−1)+2|w|), see the bound in Lemma 15 of [62].

By Lemma 52 we can find in polynomial time a word w of logarithmic length and logarithmic
rank (by enumerating all words of that length). By starting with the pair w,w we get the following.

Theorem 53. Let A be the prefix automaton of a finite non-complete code X over an alphabet of
size m. Then there exists a mortal word of length O(n3(logm n)4), where n is the number of states
in A.

For the case of complete automata we can get a slightly better bound by using the main result
of [25], since by Lemma 52 the minimum rank of a word in a complete prefix automaton of a finite
code is at most logarithmic.

Corollary 54. Let A be the prefix automaton of a finite complete code X over an alphabet of size
m. Then the length of a word of minimum rank for A is at most 1

2n
3 · dlogm ne, where n is the

number of states in A.

Now we proceed to a much stronger bound for the special case of non-complete finite prefix
codes. If k is the length of the longest codeword of a finite non-complete prefix code, an upper
bound of 2k2 on the length of a shortest mortal word can be easily obtained (see, e.g., [79]). We
improve this bound.

Theorem 55. Let X be a non-complete finite prefix code, and let k be the length of a longest word
in X. Then there exists a mortal word of length at most 3

2(k2 + k).

Proof. Consider the prefix automaton A = (Q,Σ, δ) of X (since X is a prefix code, this automaton
is deterministic). Observe that Q′ = Q.ak is a subset of Q of size at most k. For any word w ∈ Σ∗

the set Q′.w does not contain two different states corresponding to prefixes of the same length.
Now we start with the set Q′ of active states and consequently perform the following algorithm:

while there is at least one active state, take the active state corresponding to the longest prefix and
kill it by sending it to a state q such that q.a is empty for some a ∈ Σ and then applying a. Since
the set of active states consists of states corresponding to prefixes of pairwise different lengths, it
takes a word of length at most (1 + k) + (2 + k) + . . .+ (k+ k) = k(k+1)

2 + k2 = 3k2+k
2 to map each

state first to the state corresponding to the empty prefix and then to kill it. Together with the
word ak we get the required.

As proved in [86], the code Σk \{u} for any unbordered word u (that is, a word having no prefix
equal to its suffix) has the length of a shortest mortal word equal to k2 +k− 1. We conjecture that
the order of this bound is tight, that is, the optimal upper bound is k2 +O(k).

5.5 Mortality lower bounds for deterministic automata

In this section we provide lower bounds on the length of shortest mortal words in several classes
of deterministic automata. It is known that every n-state non-complete deterministic automaton
admits a mortal word of length at most n(n+1)

2 , and the bound is tight [91] (the lower bound is
the best known even for unambiguous automata). For strongly connected binary automata the

best known lower bound is of order n2

4 +O(n), see, e.g., [70]. We concentrate on several subclasses
of strongly connected automata and show similar lower bounds for them. We start with a short
proof of a lower bound of Pribavkina for Huffman decoders [86], basing directly on the structure of
the automaton. Then we use a similar technique to provide quadratic upper bounds for two other
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classes of automata. For all figures of this section dashed lines represent transitions for a, dotted
lines for b, and solid lines for both a and b.

Recall that a strongly connected deterministic automaton is called a Huffman decoder if it has
a state which is contained in every cycle.

q1

q2

q3

q4q5

p1

p2

p3

p4

Figure 5.1: A Huffman decoder with 9 states.

Proposition 56. For every odd n ≥ 3 there exists an n-state binary non-complete Huffman decoder
A with the length of a shortest mortal word equal to n2+4n−1

4 .

Proof. Consider the following construction of a non-complete deterministic automatonA = (Q, {a, b}, δ).
The automaton has a cycle q1, . . . , qm ∈ Q such that it is possible to leave this cycle only at the
state qm. More formally, δ(qi, x) = qi+1 for 1 ≤ i ≤ m− 1 and x ∈ {a, b}. The state qm is mapped
to q1 by a.

Besides the cycle q1, . . . , qm, A has a chain p1, . . . , pm−1 of states leading to the only state with
an undefined transition, which is pm−1. More precisely, the letter a moves the states of the chain
(except pm−1) one step forward: δ(pi, a) = pi+1 for 1 ≤ i ≤ m− 2. The letter b returns the states
of the chain to the cycle (to the same position as like they did not leave it): δ(pi, b) = qi+1 for
1 ≤ i ≤ m − 1. The only undefined transition is by the letter a at the state pm−1. Finally, the
state qm is mapped to p1 by b, which is the only way to reach the chain p1, . . . , pm−1 from the cycle
q1, . . . , qm. See Figure 5.1 for the example with m = 5.

In the automaton A thus constructed all the cycles pass through the state qm, hence it is a
Huffman decoder.

Observe that the word bam−1(bbam−1)m−1 of length m2 +m− 1 is mortal for A. We are going
to show that it is in fact a shortest mortal word.

Indeed, A has period m, which means that Q can be partitioned into m equivalence classes such
that no pair of states from different classes can be mapped to the same state. More precisely, the
classes are {qi, pi} for 1 ≤ i ≤ m − 1 and {qm}. The only way to decrease the number of active
classes is to map a state of some active class to the state pm−1 and then apply a. We call a class
active if at least one state from it is active. Let us start with the set {q1, . . . , qm} of active states, one
from each class. To kill a state from this set (by sending it to pm−1 first) we have to apply the word
bam−1, and during the application of this word no other active state leaves the set {q1, . . . , qm}.
Further, after any application of bam−1 the state qm cannot be active, thus we have to apply b to
make qm active so that we can kill another active state. We have to perform that for each of m
classes, thus the length of a shortest mortal word is at least m+ (m+ 1)(m− 1) = m2 +m− 1.

If we take the state qm to be the only initial and accepting state, the prefix code decoded by
the automaton constructed in the proof is the code {a, b}m \ {bam−1}. The same construction and
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arguments show that for any alphabet Σ and an unbordered word u of length m the code Σm \ {u}
has the same length of a shortest mortal word [86] (recall that a word is called unbordered is none
of its prefix equals to its suffix).

We proceed with a lower bound for circular automata. Recall that an automaton is called
circular if it has a letter acting as a cyclic permutation on the whole set of its states. Circular
automata play a crucial role in the theory of synchronizing automata since the automata with the
longest known length of shortest synchronizing words are circular [113].

q7

q1

q2

q3q4

q5

q6

Figure 5.2: A circular automaton with 7
states.

q7

q1

q2

q3q4

q5

q6

Figure 5.3: A circular Huffman decoder with
7 states.

Proposition 57. For every odd n ≥ 3 there exists an n-state non-complete deterministic circular
automaton A with the length of a shortest mortal word equal to n2+2n+1

4 .

Proof. Consider the following construction of a non-complete deterministic automaton A = (Q, {a, b}, δ).
The automaton has a cycle q1, . . . , qn ∈ Q which is induced by the letter b. This means that
δ(qi, b) = qi+1 for 1 ≤ i ≤ n−1, and δ(qn, b) = q1. The letter a is undefined for qn. Let n = 2m+1.
For qi, 1 ≤ i ≤ m, a acts as a self-loop. Finally, for qi, m+ 1 ≤ i ≤ 2m, a sends the state m steps
back on the cycle: δ(qi, a) = qi−m. See Figure 5.2 for an example.

Observe that a(bm+1a)m is a mortal word of length m2 + 2m + 1 = n2+2n+1
4 . We will show

that this is in fact a shortest mortal word. Let us start with a set {qn, q1, . . . , qm} of active states,
and let w be a shortest word killing all these states. There are two options: either w first maps a
pair of active states to the same state, or it first kills one state. In both cases after that the set
of active states is exactly {q1, . . . , qm}. No pair of active states can be mapped to the same state
after that, so the only way to decrease the number of active states is to map a state to qn and then
to apply a. After each application of a the set of active states is a subset of {q1, . . . , qm}, and the
number of active states is decreased by at most 1. Thus, every mortal word has length at least
1 + (m+ 2)m.

Proposition 58. For every odd n ≥ 3 there exists an n-state non-complete circular Huffman
decoder with the length of a shortest mortal word at least n2

8 .

Proof. We modify the construction of Proposition 57. Consider the following construction of a non-
complete deterministic automaton A = (Q, {a, b}, δ). The automaton has a cycle q1, . . . , qn ∈ Q
which is induced by the letter b. This means that δ(qi, b) = qi+1 for 1 ≤ i ≤ n−1, and δ(qn, b) = q1.
The letter a is undefined for qn. Let n = 2m+ 1. For qi, 1 ≤ i ≤ m, a sends the state qi one step
forward on the cycle: δ(qi, a) = qi+1. Finally, for qi, m + 1 ≤ i ≤ 2m, a sends the state m steps
back on the cycle: δ(qi, a) = qi−m. See Figure 5.3 for an example. The proof of the lower bound is
similar to the previous two proofs, so we omit it because of the space constraints.
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It is an interesting question whether there is a connection of the length of shortest mortal words
with properties of graphs and matrices, similar to the synchronization case [5].

5.6 Codes of full combinatorial rank

In this section we use unambiguous automata to prove a result about synchronizing codes. A
bi-infinite word over an alphabet Σ is a bi-infinite sequence of symbols from Σ, i.e. a mapping
w : Z → Σ. A bi-infinite word w is periodic if there exists an integer k such that w(i) = w(i + k)
for every i ∈ Z. A finite word which is not a power of a shorter word is called primitive.

Proposition 59. Let X be a recognizable (by a finite automaton) code consisting of at least two
words. If X is not synchronizing, then there exists an infinite number of bi-infinite periodic words
having two different factorizations over X.

Proof. Construct a strongly connected unambiguous automaton A = (Q,Σ,∆) such that X is the
set of first return words of some of its state i (such an automaton always exists, see Section 4
of [14]). If A is not synchronizing, the minimum non-zero rank r of words in A is at least 2. Then
there exists an idempotent e ∈ Σ∗ of rank r stabilizing i (Theorem 9.3.10 of [14]), that is, i.e = i
and for every state q ∈ Q we have q.e2 = q.e. Consider the set W of all non-mortal words eue with
u ∈ Σ∗. Let S be the set of fixed points of e, that is, states q with q.e = q. The set W acts on S as
a transitive permutation group of degree r, with r ≥ 2 (Theorem 9.3.10 of [14]). Thus, there exists
a word w = eme ∈W having i.w = q, where q ∈ S, q 6= i. Let ` be the smallest number such that
i.w` = i. The states i, i.w, i.w2, . . . , i.w`−1 are pairwise different. Thus, the word w` ∈ X∗ is not a
power of a shorter word from X∗.

Let x1, x2 be two words in X. At least one of them, say x1, does not commute with w′ = eem,
that is, x1w

′ 6= w′x1. Then x1 and w′ are not the powers of the same word. We are going to show
that the words w′xk1 are primitive for large enough k. Indeed, assume that ut = w′xk1 for t > 1. If
|xk1| ≥ |x1| + |u|, then by the periodicity lemma [40] we get that u and x1 are powers of the same
word, and thus w′ is also a power of this word, which is not possible. If |xk1| < |x1|+ |u|, then t = 2
and |w′|+ |x1| ≥ |xk−1

1 |, which is false for k large enough.
Denote wk = emxk1e. Since the word w′xk1 = eemxk1 is primitive for large enough k, so is wk.

The word wk is not mortal for every k since q′.wk = i, where q′ ∈ S is a state such that q′.w = i
(the word x1 stabilizes i). Moreover, wk has rank r, and we have q′.wk = i, so i.wk 6= i. Thus
in the same way as for w, we get for every large enough k a word (wk)

`k ∈ X∗ which is not a
power of a shorter word in X∗. To every word wk we put in correspondence a bi-infinite word
obtained by repeating wk. Since the lengths of the words wk increase and the words are primitive
for large enough k, all these bi-infinite words are pairwise different. Each of them has two different
factorizations over X.

The converse statement is not true. To see that, it is enough to consider a non-synchronizing
code which is contained in a synchronizing code. For example, the code

{aaaa, aabb, bbaa, bbbb}

is contained in the code
{aaaa, aabb, bbaa, bbbb, abab, baba}.

The combinatorial rank of a set X of words over an alphabet Σ is the minimum cardinality
of a set Y ⊆ Σ∗ such that X ⊆ Y ∗. That is, it is the minimum cardinality of a set of words
such that every word of X can be written as a concatenation of words from Y . For example, the
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combinatorial rank of every binary code is exactly two. By the result of [58] every finite code
X with the combinatorial rank equal to the cardinality of X has only finite number of bi-infinite
words with two different factorizations over X. By Proposition 59 this means that this code is
synchronizing. Thus we get the following.

Theorem 60. Every finite code such that its cardinality equals its combinatorial rank is synchro-
nizing.

Since every two-word code has combinatorial rank 2, we get in particular that every two-
word code is synchronizing. Consider the following examples. For the two-word code {x, y} with
x = abab, y = baba none of the codewords is synchronizing, but xy and yx are. For the two-word
code {x, y} with x = b, y = abab none of the codewords is synchronizing, xy is not synchronizing,
but yx is. For the two-word code {x, y} with x = ababa, y = bab none of the codewords is
synchronizing, xy and yx are not synchronizing, but xx and yy are. We conjecture that for every
two-word code X there always exists a synchronizing word in X2.
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Chapter 6

Weakly Acyclic Automata

Since all automata in this chapter are deterministic, we write “automaton” for a “complete DFA”,
and “partial automaton” for a “partial DFA”.

6.1 Introduction

In this chapter we provide various results concerning computational complexity and approximability
of the problems related to subset synchronization in weakly acyclic automata. Such automata serve
as an example of a small class of automata where most of the synchronization problems are still
hard. More precisely, switching from general automata to weakly acyclic usually results in changing
a PSPACE-complete problem to a NP-complete one.

In Section 6.2 we prove some lower and upper bounds on the length of a shortest word synchro-
nizing a weakly acyclic automaton or, more generally, a subset of its states. We also show that the
problem of finding the length of a shortest word synchronizing a subset is hard to approximate. In
Section 6.3 we study inapproximability of the problem of finding a subset of states of maximum
size. In Section 6.4 we give strong inapproximability results for computing the rank of a subset
of states in binary weakly acyclic automata. In Section 6.5 we show that several other problems
related to recognizing a synchronizable set in a weakly acyclic automaton are hard.

6.2 Bounds on the Length of Shortest Synchronizing Words

Each synchronizing weakly acyclic automaton is a 0-automaton (i.e., an automaton with exactly

one sink state), which gives an upper bound n(n−1)
2 on the length of a shortest synchronizing

word [91]. The same bound can be deduced from the fact that each weakly acyclic automaton
is aperiodic [108]. However, for weakly acyclic automata a more accurate result can be obtained,
showing that weakly acyclic automata of rank r behave in a way similar to monotonic automata
of rank r (see [3]). The following result is a special case of Theorem 2.6 of [2], but here we provide
its direct proof.

Proposition 61. Let A = (Q,Σ, δ) be an n-state weakly acyclic automaton, such that there exists
a word of rank r with respect to A. Then there exists a word of length at most n − r and rank at
most r with respect to A.

Proof. Observe that the rank of a weakly acyclic automaton is equal to the number of sink states
in it. The conditions of the theorem imply that A has at most r sink states.
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Consider the sets S1, . . . , St constructed in the following way. Let pi be the state in Si−1 with
the smallest index in the topological sort such that pi is not a sink state. Let xi, 1 ≤ i ≤ t, be a
letter mapping the state pi to some other state, where Si = {δ(q, xi) | q ∈ Si−1}, 1 ≤ i ≤ t, and
S0 = Q. Since A has at most r sink states, we can thus construct step by step a word w = x1 . . . xt
with t ≤ n− r that has rank at most r with respect to A.

The following simple example shows that the bound is tight even for the case of alphabet of
size one. Consider an automaton A = (Q, {x}, δ) with states q1, . . . , qn. For the letter x define
the transition function δ(qi, x) = qi+1 for 1 ≤ i ≤ n − r and δ(qi, x) = qi for n − r + 1 ≤ i ≤ n.
Obviously, A has rank r and shortest words of rank r with respect to A have length n− r. For an
example with a larger alphabet one can duplicate the letter x.

Proposition 62. Let S be a synchronizable set of states of size k in a weakly acyclic n-state
automaton A = (Q,Σ, δ). Then the length of a shortest word synchronizing S is at most k(2n−k−1)

2 .

Proof. Consider a topological sort q1, . . . , qn of the set Q. Let qs be a state such that all states in
S can be mapped to it by a shortest word w = x1 . . . xt. We can assume that the images of all
words x1 . . . xj , j ≤ t, are pairwise distinct, otherwise some letter in this word can be removed.
Then a letter xj maps at least one state of the set {δ(q, x1 . . . xj−1) | q ∈ S} to some other
state. Thus the maximum total number of letters in w sending all states in S to qs is at most
(n− k) + (n− k+ 1) + . . .+ (n− 1) = k(2n−k−1)

2 , since application of each letter of w increases the
sum of the indices of reached states by at least one.

Consider a binary automaton A = (Q, {0, 1}, δ) with n states q1, . . . , qk−1, s1, . . . , s`, t, where
` = n − k. Define δ(qi, 0) = qi, δ(qi, 1) = qi+1 for 1 ≤ i ≤ k − 2, δ(qk−1, 1) = s1. Define also
δ(si, 0) = si+1 for 1 ≤ i ≤ `− 1, δ(si, 1) = t for 1 ≤ i ≤ `− 1. Define both transitions for s` and t
as self-loops. Set S = {q1, . . . , qk−1, s`}. The shortest word synchronizing S is (10l−1)k−1 of length
(k − 1)(n − k). The automaton in this example is binary weakly acyclic, and even has rank 2.
Figure 6.1 gives the idea of the described construction.

q1 q2

1
qk−1

. . .
s1

1
s2

0 s`
. . .

t

0, 10 0 0

1
1

0, 1

Figure 6.1: The automaton providing the lower bound for subset synchronization

As was noted by an anonymous reviewer of the paper [92], for alphabet of size n−2, a better lower

bound of (k−1)(2n−k−2)
2 can be shown as follows. Let Q = {−1, 0, 1, . . . , n− 2}, Σ = {a1, . . . , an−2},

δ(k, ai) =


k if k > i,
k − 1 if k = i,
−1 if 0 < k < i,
k if k ∈ {−1, 0}

If k < n and S = {0, n − 2, n − 3, . . . , n − k}, then it is easy to see that the shortest word

synchronizing S has length (n − k) + (n − k + 1) + · · · + (n − 2) = (k−1)(2n−k−2)
2 . For each n and

k, this is less than the upper bound of Proposition 62 by n− 1 only.
Consider now the following problem, which is a generalization of the Short Sync Word

problem.
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Shortest Set Sync Word
Input: An automaton A and a synchronizable subset S of its states;
Output: The length of a shortest word synchronizing S.

It follows from Proposition 62 that the decision version of this problem (asking whether there
exists a word of length at most k synchronizing S) is in NP for weakly acyclic automata, so it is
reasonable to investigate its approximability.

Theorem 63. The Shortest Set Sync Word problem for n-state binary weakly acyclic au-
tomata cannot be approximated in polynomial time within a factor of O(n

1
2
−ε) for any ε > 0 unless

P = NP.

Proof. To prove this theorem, we construct a gap-preserving reduction from the Shortest Sync
Word problem in p-state binary automata, which cannot be approximated in polynomial time
within a factor of O(p1−ε) for any ε > 0 unless P = NP [43]. Let a binary automaton A =
(Q, {0, 1}, δ) be the input of Shortest Sync Word. Let Q = {q1, . . . , qp}. Construct a binary

automaton A′ = (Q′, {0, 1}, δ′) with the set of states Q′ = {q(j)
i | 1 ≤ i ≤ p, 1 ≤ j ≤ p+ 1}. Define

δ′(q(j)
i , x) = q

(j+1)
k for 1 ≤ i ≤ p, 1 ≤ j ≤ p, x ∈ {0, 1}, where k is such that qk = δ(qi, x). Define

δ′(q(p+1)
i , x) = q

(p+1)
i for 1 ≤ i ≤ p and x ∈ {0, 1}. Take S′ = {q(1)

i | 1 ≤ i ≤ p}.
Observe that any word synchronizing S′ in A′ is a synchronizing word for A because of the

definition of δ′. In the other direction, we note that a shortest synchronizing word for a p-state
automaton in the construction of Gawrychowski and Straszak [43] has length at most p. Hence,
a shortest synchronizing word for A also synchronizes S′ in A′. Thus, the length of a shortest
synchronizing word for A is equal to the length of a shortest word synchronizing S′ in A′, and we
get a gap-preserving reduction with gap O(p1−ε) = O(n

1
2
−ε), as A′ has O(p2) states. Finally, it is

easy to see that A′ is binary weakly acyclic.

6.3 Finding a Synchronizable Set of Maximum Size

One possible approach to measure and reduce initial state uncertainty in an automaton is to find a
subset of states of maximum size where the uncertainty can be resolved, i.e., to find a synchronizable
set of maximum size. This is captured by the following problem.

Max Sync Set
Input: An automaton A;
Output: The maximum cardinality of a synchronizable set of states in A.

Türker and Yenigün [111] study a variation of this problem, which is to find a set of states of
maximum size that can be mapped by some word to a subset of a given set of states in a given
monotonic automaton. They reduce the N-Queens Puzzle problem [9] to this problem to prove
its NP-hardness. However, their proof is unclear, since the input has size O(logN), and the output
size is polynomial in N . Also, the N-Queens Puzzle problem is solvable in polynomial time [9].

First we investigate the PSPACE-completeness of the decision version of the Max Sync Set
problem, which we will denote as Max Sync Set-D. Its formulation is the following: given an
automaton A and a number c, decide whether there is a synchronizable set of states of cardinality
at least c in A.

Proposition 64. The Max Sync Set-D problem is PSPACE-complete for binary automata.

Proof. The Sync Set problem is in PSPACE [100]. Thus, the Max Sync Set-D problem is
also in PSPACE, as we can sequentially check whether each subset of states is synchronizable and
compare the size of a maximum synchronizable set to c.
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To prove that the Max Sync Set-D problem is PSPACE-hard for binary automata, we will
reduce a PSPACE-complete Sync Set problem for binary automata [114] to it. Let an automaton
A and a subset S of its states be an input to Sync Set. Let n be the number of states of A.
Construct a new automaton A′ by initially taking a copy of A. For each state s ∈ S, add n + 1
new states to A′ and define all the transitions from these new states to map to s, regardless of the
input letter. Define the set S′ to be a union of all new states and take c = |S′| = (n+ 1)|S|.

Let S1 be a maximum synchronizable set in A not containing at least one new state q. As S1 is
maximum, it does not contain other n new states that can be mapped to the same state as q. Thus,
the size of S1 is at most n+ (n+ 1)|S|− (n+ 1) < (n+ 1)|S| = c. Hence, each synchronizable set of
size at least c in A′ contains S′. The set S is synchronizable in A if and only if S′ is synchronizable
in A′, as each word w synchronizing S in A corresponds to a word xw synchronizing S′ in A′,
where x is an arbitrary letter. Thus, A′ has a synchronizable set of size at least c if and only if S
is synchronizable in A.

Now we proceed to inapproximability results for the Max Sync Set problem in several classes
of automata. We will need some results from graph theory. An independent set I in a graph G is a
set of its vertices such that no two vertices in I share an edge. The size of a maximum independent
set in G is denoted α(G). The Independent Set problem is defined as follows.

Independent Set
Input: A graph G;
Output: An independent set of maximum size in G.

Zuckerman [121] has proved that, unless P = NP, there is no polynomial p1−ε-approximation
algorithm for the Independent Set problem for any ε > 0, where p is the number of vertices in
G.

Proposition 65. The problem Max Sync Set for weakly acyclic n-state automata over an al-
phabet of cardinality O(n) cannot be approximated in polynomial time within a factor of O(n1−ε)
for any ε > 0 unless P = NP.

Proof. We will prove this theorem by constructing a gap-preserving reduction from the Indepen-
dent Set problem. Given a graph G = (V,E), V = {v1, v2, . . . , vp}, we construct an automaton
A = (Q,Σ, δ) as follows. For each vi ∈ V , we add two states si, ti in Q. We also add a state f to
Q. Thus, |Q| = 2p+ 1. The alphabet Σ consists of letters ṽ1, . . . , ṽp corresponding to the vertices
of G.

The transition function δ is defined in the following way. For each 1 ≤ i ≤ p, the state si is
mapped to f by the letter ṽi. For each vivj ∈ E the state si is mapped to ti by the letter ṽj , and
the state sj is mapped to tj by the letter ṽi. All yet undefined transitions map a state to itself.

Lemma 66. Let I be a maximum independent set in G. Then the set S = {si | vi ∈ I} ∪ {f} is a
synchronizable set of maximum cardinality (of size α(G) + 1) in the automaton A = (Q,Σ, δ).

Proof. Let w be a word obtained by concatenating the letters corresponding to I in arbitrary order.
Then w synchronizes the set S = {si | vi ∈ I} ∪ {f} of states of cardinality |I|+ 1. Thus, A has a
synchronizable set of size at least α(G) + 1.

In other direction, let w be a word synchronizing a set of states S′ of maximum size in A. We
can assume that after reading w all the states in S′ are mapped to f , as all the sets of states that
are mapped to any other state have cardinality at most two. Then there are no edges in G between
any pair of vertices in I ′ = {vi | si ∈ S′}, since each time some state si is mapped to f , each state
sj such that vj and vi share an edge in G, is mapped to tj . Hence I ′ is an independent set of size
|S′| − 1 in G. Thus the maximum size of a synchronizable set in A is equal to α(G) + 1.
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Thus we have a gap-preserving reduction from the Independent Set problem to the Max
Sync Set problem with a gap Θ(p1−ε) for any ε > 0. It is easy to see that n = Θ(p) and A is
weakly acyclic, which concludes the proof of the theorem.

Next we move to a weaker inapproximability result for binary automata.

Proposition 67. The problem Max Sync Set for binary n-state automata cannot be approximated
in polynomial time within a factor of O(n

1
2
−ε) for any ε > 0 unless P = NP.

Proof. Again, we construct a gap-preserving reduction from the Independent Set problem ex-
tending the proof of Proposition 65. Given a graph G = (V,E), V = {v1, v2, . . . , vp}, we construct
an automaton A = (Q,Σ, δ) in the following way. Let Σ = {0, 1}. First we construct the main gad-
get Amain having a synchronizable set of states of size α(G). For each vertex vi ∈ V, 1 ≤ i ≤ p, we

construct a set of new states Li = Vi∪Ui in Q, where Vi = {v(i)
j : 1 ≤ j ≤ p}, Ui = {u(i)

j : 1 ≤ j ≤ p}.
We call Li the ith layer of Amain. We also add a state f to Q. For each i, 1 ≤ i ≤ p, the transition
function δ imitates taking the vertices v1, v2, . . . , vp into an independent set one by one and is
defined as:

δ(v
(i)
j , 0) =

{
u

(i)
j if i = j,

v
(i+1)
j otherwise

δ(v
(i)
j , 1) =

{
u

(i)
j if there is an edge vivj ∈ E,

v
(i+1)
j otherwise

Here all v
(n+1)
j , 1 ≤ j ≤ p, coincide with f . For each state u

(i)
j , the transitions for both letters

0 and 1 lead to the originating state (i.e. they are self-loops).
We also add a p-state cycle Acycle attached to f . It is a set of p states c1, . . . , cp, mapping ci to

ci+1 and cp to c1 regardless of the input symbol. Finally, we set c1 to coincide with f . Thus we get
the automaton A1. Figure 6.2 presents an example of A1 for a graph with three vertices v1, v2, v3

and one edge v2v3.

v(1)
1 v(2)

11 v(3)
10,1

f

0,1
u(1)

1

0

v(1)
2 v(2)

20,1 v(3)
21 0

u(2)
2

0

v(1)
3 v(2)

30,1 v(3)
30

1

u(2)
3

1

u(3)
2

1

u(3)
3

0

c2
0,1

c3

0,1

0,1

L1

Figure 6.2: An example of A1. Unachievable states and self-loops are omitted.

The main property of A1 is claimed by the following lemma.
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Lemma 68. The size of a maximum synchronizable set of states from the first layer in A1

equals α(G).

Proof. Let I be a maximum independent set in G. Consider a word w of length p such that its ith
letter is equal to 0 if vi /∈ I and to 1 if vi ∈ I. By the construction of A1, this word synchronizes

the set {v(1)
j | vj ∈ I}.

Conversely, a synchronizable set of at least three states from the first layer can be mapped only
to some vertex of Acycle, and the corresponding set of vertices in G is an independent set, since
application of each letter corresponds to taking or not taking a vertex into an independent set, and
after taking some vertex all the states corresponding to the neighbors of this vertex are sent to
separate sink states.

Some layer in the described construction can contain a synchronizable subset of size larger than
the maximum synchronizable subset of the first layer. To avoid that, we modify A1 by repeating
each state (with all transitions) of the first layer p times. More formally, we replace each pair of

states v
(1)
j , u

(1)
j with p different pairs of states such that in each pair all the transitions repeat the

transitions between v
(1)
j , u

(1)
j , and all the other states of the automaton. We denote the automaton

thus constructed as A.
The following lemma claims that the described procedure of constructing A from G is a gap-

preserving reduction from the Independent Set problem in graphs to the Max Sync Set problem
in binary automata.

Lemma 69. If α(G) > 1, then the maximum size of a synchronizable set in A is equal to pα(G) + 1.

Proof. Note that since the length of the cycle in Acycle equals p, each synchronizable set of A is
either a subset of a single layer of A together with a state in Acycle (if this set is first mapped

to f) or a subset of a set {v(i)
j | 2 ≤ i ≤ `} ∪ {u(`)

j } for some ` and j, together with p new

states that replaced v
(1)
j (if this set is mapped to u

(`)
j ). Consider the first case. If some maximum

synchronizable set S contains a state from the ith layer of A and i > 1, then its size is at most
p + 1. A maximum synchronizable set containing some states from the first layer of A consists
of pα(G) states from this layer (according to Lemma 68) and some state of Acycle, so this set has
size pα(G) + 1 ≥ 2p+ 1. In the second case, the maximum size of a synchronizable set is at most
p+ (p− 1) + 1 = 2p < pα(G) + 1.

It is easy to see that the constructed reduction is gap-preserving with a gap Θ(p1−ε) = Θ(n
1
2
−ε),

where n is the number of states in A, as n = Θ(p2). Thus the Max Sync Set for n-state binary

automata cannot be approximated in polynomial time within a factor of O(n
1
2
−ε) for any ε > 0

unless P = NP, which concludes the proof of the theorem.

Proposition 67 can also be proved by using Proposition 65 and a slight modification of the
technique used in [114] for decreasing the size of the alphabet. However, in this case the resulting
automaton is far from being weakly acyclic, while the automaton in the proof of Proposition 65 has
only one cycle. The next theorem shows how to modify our technique to prove an inapproximability
bound for Max Sync Set in binary weakly acyclic automata.

Theorem 70. The Max Sync Set problem for binary weakly acyclic n-state automata cannot be
approximated in polynomial time within a factor of O(n

1
3
−ε) for any ε > 0 unless P = NP.
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Proof. We modify the construction of the automaton Amain from Proposition 67 in the following
way. We repeat each state (with all transitions) of the first layer p2 times in the same way as it is
done in the proof of Proposition 67. Thus we get a weakly acyclic automaton Awa with n = Θ(p3)
states, where p is the number of vertices in the graph G. Furthermore, similar to Lemma 69, the size
of the maximum synchronizable set of states in Awa is between p2α(G) and p2α(G) + p(p− 1) + 1,
because some of the states from the layers other than the first can be also mapped to f . Both
of the values are of order Θ(p2α(G)), thus we have an gap-preserving reduction providing the

inapproximability within a factor of O(p1−ε) = O(n
1
3
−ε) for any ε > 0, where n is the number of

states in Awa.

We finish by noting that for two classes of automata the Max Sync Set problem is solvable
in polynomial time.

Proposition 71. The problem Max Sync Set can be solved in polynomial time for unary au-
tomata.

Proof. Consider the digraph G induced by states and transitions of an unary automaton A. By
definition, each vertex of G has outdegree 1. Thus, the set of the vertices of G can be partitioned
into directed cycles and a set of vertices not belonging to any cycle, but lying on a directed path
leading to some cycle. Let n be the number of states in A. It is easy to see that after performing
n transitions, each state of A is mapped into a state in some cycle, and all further transitions will
not map any two different states to the same state. Thus, it is enough to perform n transitions
and select such state s that the maximum number of states are mapped to s.

A more interesting case is covered by the following proposition. Recall that an automaton
A = (Q,Σ, δ) is called Eulerian if there exists k such that for each state q ∈ Q there are exactly k
pairs (q′, a), q′ ∈ Q, a ∈ Σ, such that δ(q′, a) = q.

Proposition 72. The problem Max Sync Set can be solved in polynomial time for Eulerian
automata.

Proof. According to Theorem 2.1 in [42] (see also [60] for the discussion of the Eulerian case), each
word of minimum rank with respect to an Eulerian automaton synchronizes the sets S1, S2, . . . , Sr
forming a partition of the states of the automaton into inclusion-maximal synchronizable sets. More-
over, according to this theorem all inclusion-maximal synchronizable sets in an Eulerian automaton
are of the same size, thus each inclusion-maximal synchronizable set has maximum cardinality. A
word of minimum rank with respect to an automaton can be found in polynomial time [90], which
concludes the proof.

6.4 Computing the Rank of a Subset of States

Assume that we know that the current state of the automaton A belongs to a subset S of its states.
Even if it is not possible to synchronize S, it can be reasonable to minimize the size of the set of
possible states of A, reducing the uncertainty of the current state as much as possible. One way to
do it is to map S to a set S′ of smaller size by applying some word to A. Recall that the size of
the smallest such set S′ is called the rank of S. Consider the following problem of finding the rank
of a subset of states in a given automaton.

Set Rank
Input: An automaton A and a set S of its states;
Output: The rank of S in A.

66



The rank of an automaton, that is, the rank of the set of its states, can be computed in
polynomial time [90]. However, since the automaton in the proof of PSPACE-completeness of
Sync Set in [89] has rank 2 (and thus each subset of states in this automaton has rank either 1
or 2), it follows immediately that there is no polynomial c-approximation algorithm for the Set
Rank problem for any c < 2 unless P = PSPACE. It also follows that checking whether the rank
of a subset of states equals the rank of the whole automaton is PSPACE-complete.

We will need the Chromatic Number problem. A proper coloring of a graph G = (V,E)
is a coloring of the set V in such a way that no two adjacent vertices have the same color. The
chromatic number of G, denoted χ(G), is the minimum number of colors in a proper coloring of
G. Recall that a set of vertices in a graph is called independent if no two vertices in this set are
adjacent. A proper coloring of a graph can be also considered as a partition of the set of its vertices
into independent sets.

Chromatic Number
Input: A graph G;
Output: The chromatic number of G.

This problem cannot be approximated within a factor of O(p1−ε) for any ε > 0 unless P =
NP, where p is the number of vertices in G [121].

Proposition 73. The Set Rank problem for n-state weakly acyclic automata with alphabet of size
O(
√
n) cannot be approximated within a factor of O(n

1
2
−ε) for any ε > 0 unless P = NP.

Proof. We will prove this theorem by constructing a gap-preserving reduction from the Chromatic
Number problem, extending the technique in the proof of Proposition 65. Given a graph G =
(V,E), V = {v1, v2, . . . , vp}, we construct an automaton A = (Q,Σ, δ) as follows. The alphabet
Σ consists of letters ṽ1, . . . , ṽp corresponding to the vertices of G, together with a switching letter
ν. We use p identical synchronizing gadgets T (k), 1 ≤ k ≤ p, such that each gadget synchronizes a

subset of states corresponding to an independent set in G. Gadget T (k) consists of a set {s(k)
i , t

(k)
i |

1 ≤ i ≤ p} ∪ {f (k)} of states.
The transition function δ is defined as follows. For each gadget T (k), for each 1 ≤ i ≤ p, the

state s
(k)
i is mapped to f (k) by the letter ṽi. For each vivj ∈ E the state s

(k)
i is mapped to t

(k)
i

by the letter ṽj , and the state s
(k)
j is mapped to t

(k)
j by the letter ṽi. All yet undefined transitions

corresponding to the letters ṽ1, . . . , ṽp map a state to itself.

It remains to define the transitions corresponding to ν. For each 1 ≤ k ≤ p − 1, ν maps t
(k)
i

and s
(k)
i to s

(k+1)
i , and f (k) to itself. Finally, ν acts on all states in T (p) as a self-loop.

Define S = {s(1)
i | 1 ≤ i ≤ p}. We will prove that the rank of S is equal to the chromatic number

of G. Consider a proper coloring of G with the minimum number of colors and let I1∪ . . .∪Iχ(G) be
the partition of G into independent sets defined by this coloring. For each Ij , consider a word wj
obtained by concatenating the letters corresponding to the vertices in Ij in some order. Consider
now the word w1νw2ν . . . νwχ(G). This word maps the set S to the set {f (i) | 1 ≤ i ≤ χ(G)}, which
proves that the rank of S is at most χ(G).

In the other direction, note that after each reading of ν all states except f (k), 1 ≤ k ≤ p− 1, are
mapped to the next synchronizing gadget (except the last gadget T (p) which is mapped to itself).

Note that each time a state s
(k)
i is mapped to f (k), each state s

(k)
j such that vj and vi share an

edge in G, is mapped to t
(k)
j . Thus, only a subset of states corresponding to an independent set

of vertices can be mapped to some particular f (k), and the image of S after reading any word is a
subset of the states in some gadget together with some of the states f (k), 1 ≤ k ≤ p. Hence, the
rank of S is at least χ(G).
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Thus we have a gap-preserving reduction from the Chromatic Number problem to the Set
Rank problem with gap Θ(p1−ε) for any ε > 0. It is easy to see that n = Θ(p2), A is weakly
acyclic and its alphabet has size O(

√
n), which finishes the proof of the theorem.

Using the classical technique of reducing the alphabet size (see [114]), O(n
1
3
−ε) inapproximability

can be proved for binary automata. To prove the same bound for binary weakly acyclic automata,
we have to refine the technique of the proof of the previous theorem.

Theorem 74. The Set Rank problem for n-state binary weakly acyclic automata cannot be ap-
proximated within a factor of O(n

1
3
−ε) for any ε > 0 unless P = NP.

Proof. To prove this theorem we construct a gap-preserving reduction from the Chromatic Num-
ber problem, extending the proof of the previous theorem.

Given a graph G = (V,E), V = {v1, v2, . . . , vp}, we construct an automaton A = (Q, {0, 1}, δ).
In our reduction we use two kinds of gadgets: p synchronizing gadgets T (k), 1 ≤ k ≤ p, and p

waiting gadgets R(k), 1 ≤ k ≤ p. Gadget T (k) consists of a set {v(k)
i,j | 1 ≤ i, j ≤ p} of states,

together with a state f (k), and R(k), 1 ≤ k ≤ p, consists of the set {u(k)
i,j | 1 ≤ i, j ≤ p}.

For each i, j, k, 1 ≤ i, j, k ≤ p, the transition function δ is defined as:

δ(v
(k)
i,j , 0) =

{
u

(k)
i,j if i = j,

v
(k)
i+1,j otherwise

δ(v
(k)
i,j , 1) =

{
u

(k)
i,j if there is an edge vivj ∈ E,

v
(k)
i+1,j otherwise

Here all v
(k)
p+1,j , 1 ≤ j ≤ p, coincide with f (k). We set δ(u

(k)
i,j , x) = u

(k)
i+1,j for x ∈ {0, 1},

1 ≤ i, k ≤ p − 1, 1 ≤ j ≤ p, and δ(u
(k)
p,j , x) = v

(k+1)
1,j for 1 ≤ j ≤ p, 1 ≤ k ≤ p − 1, x ∈ {0, 1}.

The states u
(p)
i,j are sink states: both letters 0 and 1 act on them as self-loops. Finally, we set

S = {v(1)
1,j | 1 ≤ j ≤ p}. Figure 6.3 gives an idea of the described construction.

The idea of the presented construction is essentially a combination of the ideas in the proofs
of Proposition 67 and Proposition 73, so we provide only a sketch of the proof. A synchronizing
gadget T (k) synchronizes a set S(k) ⊆ S of states corresponding to some independent set in G.
All the states corresponding to the vertices adjacent to vertices corresponding to S(k) are mapped
to the corresponding waiting gadget R(k), and get to the next synchronizing gadget T (k+1) only
after the states of S(k) are synchronized (and thus mapped to f (k)). Hence, the minimum size of a
partition of V into independent sets is equal to the rank of S. The number of states in A is O(p3).

Thus, we get Θ(n
1
3
−ε) inapproximability.

A natural open problem is to study the Max Sync Set and Set Rank problems complexity
in strongly connected automata. The technique used by Vorel for proving PSPACE-completeness
of the Sync Set problem in strongly connected automata [114] seems to fail here.

6.5 Subset Synchronization

In this section, we obtain complexity results for several problems related to subset synchronization
in weakly acyclic automata. We adapt Eppstein’s construction from [37], which is a powerful and
flexible tool for such proofs. We will need the following NP-complete SAT problem [104].
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Figure 6.3: A part of the construction in the reduction for Set Rank. Red dashed arrows represent
transitions for letter 0, red solid arrows – for letter 1, black arrows – for both letters. Self-loops are
omitted.

SAT
Input: A set X of n boolean variables and a set C of m clauses;
Output: Yes if there exists an assignment of values to the variables in X such that all clauses
in C are satisfied, No otherwise.

Theorem 75. The Sync Set problem in binary weakly acyclic automata is NP-complete.

Proof. Because of the polynomial upper bound on the length of a shortest word synchronizing a
subset of states proved in Proposition 62, we can use such word as a certificate. Thus, the problem
is in NP.

We reduce the SAT problem. Given X and C, we construct an automaton A = (Q, {0, 1}, δ).
For each clause cj , we add n + 1 states y

(j)
i , 1 ≤ i ≤ n + 1, to Q. We introduce also a state

f ∈ Q. The transitions from y
(j)
i correspond to the occurrence of xi in cj in the following way:

for 1 ≤ i ≤ n, 1 ≤ j ≤ m, δ(y
(j)
i , a) = f if the assignment xi = a, a ∈ {0, 1}, satisfies cj , and

δ(y
(j)
i , a) = y

(j)
i+1 otherwise. The transition function δ also maps y

(j)
n+1 to itself for all 1 ≤ j ≤ m and

both letters 0 and 1.
Let S = {y(j)

1 | 1 ≤ j ≤ m}. The word w = a1a2 . . . an synchronizes S if ai is the value of xi in
an assignment satisfying C, and vice versa. Thus, the set is synchronizable if and only if all clauses
in C can be satisfied by some assignment of binary values to the variables in X.

By identifying the states y
(j)
n+1 for 1 ≤ j ≤ m and adding f to S it is also possible to prove that

the problem of checking whether the rank of a subset of states equals the rank of an automaton
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is coNP-complete for binary weakly acyclic automata (cf. the remarks in the beginning of Section
6.4).

The proof of Theorem 75 can be used to prove the hardness of a special case of the following
problem, which is PSPACE-complete [66].

Finite Automata Intersection
Input: Automata A1, . . . ,Ak (with initial and accepting states);
Output: Yes if there is a word which is accepted by all automata, No otherwise.

Proposition 76. Finite Automata Intersection is NP-complete when all automata in the
input are binary weakly acyclic.

Proof. Observe first that if there exists a word which is accepted by all automata, then a shortest
such word w has length at most linear in the total number of states in all automata. Indeed, for
each automaton consider a topological sort of the set of its states. Each letter of w maps at least
one state in some automaton to some other state, which has larger index in the topological sort of
the set of states of this automaton. Thus, the considered problem is in NP.

For the hardness proof, we use the same construction as in Theorem 75. Provided X and
C, define A in the same way as in Theorem 75. Define Aj = (Qj , {0, 1}, δj) as follows. Take

Qj = {y(j)
i , 1 ≤ i ≤ n + 1} ∪ {f} and δj to be the restriction of δ to the set Qj . Set y

(j)
1 to be

the input state and f to be the only accepting state of Aj . Then there exists a word accepted by
automata A1, . . . ,Am if and only if all clauses in C are satisfiable by some assignment.

To obtain the next results, we will need a modified construction of the automaton from the
proof of Theorem 75, as well as some new definitions. Given an instance of the SAT problem,
construct a partial automaton Abase = (Q, {0, 1}, δ) as follows. We introduce a state f ∈ Q. For

each clause cj , we add n + 1 states y
(j)
i , 1 ≤ i ≤ n + 1, to Q. For each cj , add also states z

(j)
i for

hi+1 ≤ i ≤ n+1, where hi is the smallest index of a variable occurring in cj . The transitions from

y
(j)
i correspond to the occurrence of xi in cj in the following way: for 1 ≤ i ≤ n, δ(y

(j)
i , a) = z

(j)
i+1

if the assignment xi = a, a ∈ {0, 1}, satisfies cj , and δ(y
(j)
i , a) = y

(j)
i+1 otherwise. For a ∈ {0, 1},

we set δ(z
(j)
i , a) = z

(j)
i+1 for hi + 1 ≤ i ≤ n, 1 ≤ j ≤ m. The transition function δ also maps z

(j)
n+1,

1 ≤ j ≤ m, and f to f for both letters 0 and 1. We use Abase to prove the hardness of the Careful
Synchronization problem.

We call a partial automaton aperiodic if for any word w ∈ Σ∗ and any state q ∈ Q there exists
k such that either δ(q, wk) is undefined, or δ(q, wk) = δ(q, wk+1).

Proposition 77. Careful Synchronization is NP-hard for aperiodic partial automata over a
three-letter alphabet.

Proof. We reduce the SAT problem. Given X and C, we first construct Abase. Then we add an
additional letter r to the alphabet of Abase and introduce m new states s(j), 1 ≤ j ≤ m. For

1 ≤ i ≤ n, 1 ≤ j ≤ m, we define δ(s(j), r) = y
(j)
1 , δ(y

(j)
i , r) = y

(j)
1 , δ(z

(j)
i , r) = y

(j)
1 , δ(f, r) = f . All

other transitions are left undefined. Let us call the constructed automaton A.
The automaton A is carefully synchronizing if and only if all clauses in C can be satisfied by

some assignment of binary values to the variables in X. Moreover, the word w = rw1w2 . . . wn0, is
carefully synchronizing if wi is the value of xi in such an assignment.

Indeed, note that the first letter of w is necessarily r, as it is the only letter defined for all the

states. Moreover, each word starting with r maps Q to a subset of {y(j)
i , z

(j)
i | 1 ≤ j ≤ m+1}∪{f}.

The only way for a word to map all states to f is to map them first to the set {z(j)
n+1 | 1 ≤ j ≤
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m} ∪ {f}, because there are no transitions defined from any y
(j)
n+1, except the transitions defined

by r. If only the states of the set {z(j)
n+1 | 1 ≤ j ≤ m} ∪ {f} are reached by a word ra1 . . . an, then

for every clause in C there exists a variable xi such that taking xi = ai satisfies this clause. Thus
there exists an assignment satisfying C.

The constructed automaton is aperiodic, because each cycle which is not a self-loop contains
exactly one letter r.

The complexity of the following problem can be obtained from Proposition 77.
Positive Matrix
Input: A set M1, . . . ,Mk of n× n binary matrices;
Output: Yes if there exists a sequence Mi1 × . . . ×Mik of multiplications (possibly with

repetitions) providing a matrix with all elements equal to 1, No otherwise.

Corollary 78. Positive Matrix is NP-hard for two upper-triangular and two lower-triangular
matrices.

Proof. The proof uses the idea from [45]. Consider three transition matrices corresponding to the
letters of the automaton constructed in the proof of Proposition 77. Add the matrix corresponding
to the letter mapping the state f to all states and undefined for all other states. Any sequence of
matrices resulting in a matrix with only positive elements must contain the new matrix, and before
that there must be a sequence of matrices corresponding to a word carefully synchronizing the
automaton from the proof of Proposition 77. Thus we get a reduction from Careful Synchro-
nization for aperiodic partial automata over a three-letter alphabet to Positive Matrix. It is
easy to see that the reduction uses two upper-triangular and two lower-triangular matrices.

Finally, we show the hardness of the following problem (PSPACE-complete in general [19]).
Subset Reachability
Input: An automaton A = (Q,Σ, δ) and a subset S of its states;
Output: Yes if there exists a word w such that {δ(q, w) | q ∈ Q} = S, No otherwise.

Theorem 79. Subset Reachability is NP-complete for weakly acyclic automata.

Proof. Consider a topological sort of Q. Let w be a shortest word mapping Q to some reachable
set of states. Then each letter of w maps at least one state to a state with a larger index in the
topological sort. Thus w has length O(|Q|2), since the maximum total number of such mappings
is (|Q| − 1) + (|Q| − 2) + . . .+ 1 + 0. Thus, the considered problem is in NP.

For the NP-hardness proof, we again reduce the SAT problem. Given an instance of SAT,

construct Abase first. Next, add a transition δ(y
(j)
n+1, a) = f for 1 ≤ j ≤ m, a ∈ {0, 1}, resulting in

a deterministic automaton A.
Similar to the proof of Proposition 77, C is satisfiable if and only if the set S = {z(n+1)

j | 1 ≤
j ≤ m}∪{f} is reachable in A. Indeed, consider the word w = a1a2 . . . an where ai is the value of xi
in an assignment satisfying C. Then the image of Q under the mapping defined by w equals S. On
the other hand, any word w with {δ(q, w) | q ∈ Q} = S has length exactly n, since the application

of each new letter increases by one the minimal index i such that a state y
(j)
i or z

(j)
i is reached.

Let w = a1a2 . . . an. If the assignment xi = ai does not satisfy a clause cj , then {δ(q, w) | q ∈ Q}
contains y

(j)
n+1, and thus cannot be equal to S.
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Chapter 7

Monotonic Automata

Since all automata in this chapter are deterministic, we write “automaton” for a “complete DFA”,
and “partial automaton” for a “partial DFA”.

7.1 Introduction

Monotonic automata provide form a special class of automata with a lot of additional structure.
A number of NP-complete and PSPACE-complete synchronization problems, such as finding a
shortest synchronizing word or subset synchronization are solvable in polynomial time for such
automata. Moreover, this class admits upper bounds that are better than in the general case.

In this chapter, we study both extremal and algorithmic questions of subset synchronization
in monotonic automata. In Section 7.2, we provide structural results about synchronizable sets of
states in monotonic automata and give algorithmic consequences of this results. In Section 7.3,
we provide lower and upper bounds on the maximum length of shortest words synchronizing a
subset of states in monotonic automata, and show some lower bounds for related problems. In
Section 7.4, we provide NP-hardness and inapproximability of several problems related to subset
synchronization and careful synchronization of monotonic automata.

7.2 Structure of Synchronizing Sets

Let A be an automaton, and S be a subset of its states. In general, if any two states in S can be
synchronized (i.e., form a synchronizable set), S does not necessarily have to be synchronizable, as
it is shown by the following theorem.

Theorem 80. For any positive integer k0, there exists a binary weakly acyclic automaton A and
a subset S of its states such that |S| ≥ k0, each pair of states in S in synchronizable, but the rank
of S equals |S| − 1.

Proof. Consider the following automaton A = (Q, {0, 1}, δ). Let S = {s0, . . . , sk−1}. Let k = 2`

for an integer number `, and let bin(i) be a word which is equal to the binary representation of i
of length ` (possibly with zeros at the beginning). We introduce new states ti, pi for 0 ≤ i ≤ k− 1,
a state f , and new intermediate states in Q as follows. For each si, 0 ≤ i ≤ k − 1, consider a
construction sending si to f for a word bin(i), and to ti by any other word of length `.

For each ti, consider the same construction sending ti to f for a word bin(i), and to pi otherwise.
For each i, define both transitions from pi as self-loops. Define both transitions from f as self-loops.
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In this construction, each word applied after a word of length 2` obviously has no effect. Consider
a word w of length 2`, w = w1w2, where both w1 and w2 have length `. If w1 = w2, then the image
of S under the mapping defined by w has size k. Otherwise, w synchronizes two states si and sj
with bin(i) = w1 and bin(j) = w2 and maps all other states to different states. Thus, the rank of
S equals k − 1.

The size of the whole automaton is O(|S| log |S|), thus S can be large comparing to the size of
the whole set of states in the automaton.

Since the Sync Set problem is PSPACE-complete in strongly connected automata, pairwise
synchronization of states in a subset does not imply that this subset is synchronizable for this class
of automata unless P = PSPACE. Thus, it is reasonable to ask the following question.

Question 81. How large can be the rank of a subset of states in a strongly connected automaton
such that each pair of states in this subset can be synchronized?

For the rest of section, fix a monotonic automaton A = (Q,Σ, δ) and an order q1, . . . , qn of
its states preserved by all transitions. As shown by the next theorem, the situation in monotonic
automata is in some sense opposite to the situation described by Theorem 80.

Theorem 82. Let S ⊆ Q be a subset of states of A. Then S is synchronizable if and only if any
two states in S can be synchronized.

Proof. Obviously, any subset of a synchronizable set is synchronizable.
In the other direction, if any two states in S can be synchronized, then the minimal state

q` = minS and the maximal state qr = maxS in S can be synchronized by a word w ∈ Σ∗. Let
q = δ(q`, w) = δ(qr, w). Then the interval [q`, qr] = {q`, . . . , qr} is synchronized by w, because each
state of [q`, qr] is mapped to the interval [δ(q`, w), δ(qr, w)] = {q}, since A is monotonic. Thus,
S ⊆ [q`, qr] is synchronizable.

Corollary 83. The problem of checking whether a given set S is synchronizable (the Sync Set
problem) can be solved in O(|Q|2 · |Σ|) time and space for monotonic automata.

Proof. By Theorem 82 it is enough to check that each pair of states in S can be synchronized, which
can be done by solving the reachability problem in the subautomaton of the power automaton, built
on all 2-element and 1-element subsets of Q [113]. There are |Q|(|Q|+1)

2 states in this subautomaton
A2. We need to check that from each state {qi, qj}, qi, qj ∈ S, in A2 some singleton set is reachable.
Consider the underlying digraph of A2 and reverse all arcs in it. Then we need to check that in
this new digraph each vertex {qi, qj}, qi, qj ∈ S, is reachable from some singleton. To check it, run
breadth-first search simultaneously from all singletons [31].

To construct the subautomaton we need O(|Q|2 · |Σ|) time and space, and breadth-first search
requires time and space linear in the number of arcs of the digraph.

Corollary 84. A shortest word synchronizing a given subset S of states can be found in O(|Q|4 ·|Σ|)
time and O(|Q|2 · |Σ|) space for monotonic automata.

Proof. Consider the following algorithm. For each pair of states, find a shortest word synchronizing
this pair. This can be done by solving the shortest path problem in the subautomaton of the power
automaton, build on all 2-element and 1-element subsets of Q [113]. Let W be the set of all such
words that synchronize S. Output the shortest word in W .

By an argument similar to the proof of Theorem 82, any shortest word synchronizing {minS,maxS}
is a shortest word synchronizing S, thus the algorithm finds a shortest word synchronizing S. Since
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finding a shortest synchronizing word for a pair of states requires O(|Q|2 · |Σ|) time and there are
O(|Q|2) such words, the set W can be found in O(|Q|4 · |Σ|) time. Finding a shortest word in W
synchronizing S requires additional O(|Q|4) time, since we have to check each word. Thus, the
total time required by the algorithm is O(|Q|4 · |Σ|).

The algorithm requires O(|Q|2 · |Σ|) space for the subautomaton construction. We don’t have
to store W , since we can check the words in W one by one and store only the shortest one, so we
need O(|Q|2 · |Σ|) space.

The same problem (denoted Shortest Set Sync Word) for weakly acyclic automata is
discussed in Section 6.2.

Corollary 85. A synchronizable subset of states of maximum size can be found in O(|Q|4·|Σ|+|Q|5)
time and O(|Q|2 · |Σ|) space in monotonic automata.

Proof. For each synchronizable pair qi, qj of states, find a word synchronizing this pair (in the same
way as described in Corollary 83), and then find all states that are mapped by this word to the
same state as qi and qj . Output the pair with the largest synchronizable set constructed in such a
way.

To prove that this algorithm is correct, observe that each word synchronizing a pair qi, qj
of states synchronizes also all the states qk, qi < qk < qj . On the other hand, if qi = minS
and qj = maxS for a synchronizable set S of maximum size (which is an interval), any word
synchronizing qi and qj synchronizes only S.

The described algorithm requires O(|Q|2 · (|Q|2 · |Σ|+ |Q|3)) (for each pair of states, we need to
find a synchronizing word which requires O(|Q|2 · |Σ|) time, and then apply this word to each state,
which requires O(|Q|3)) time. Since we need to store only the set of maximum size, the algorithm
requires O(|Q|2 · |Σ|) space.

The problem of finding a synchronizable subset of states of maximum size in the general case
(the Max Sync Set) is discussed in Section 6.3.

The algorithms proposed in this section run polynomial time, but the degrees of these polyno-
mials are quite high. A natural question is to find faster algorithms for the described problems.
Another interesting question is whether the results can be generalized to orientable automata.

7.3 Lower Bounds for Synchronizing Words

The length of a shortest word synchronizing an n-state monotonic automaton is at most n− 1 [3].
In this section we investigate a more general question of bounding the length of a shortest word
synchronizing a subset of states in an n-state automaton. For a more general class of orientable
automata a bound of (n − 1)2 is known [37], but for monotonic automata a smaller upper bound
can be proved.

Theorem 86. Let S be a synchronizable set of states in a monotonic n-state automaton A. Then

for n ≥ 8 the length of a shortest word synchronizing S is at most (n−2)2

4 .

Proof. Let A = (Q,Σ, δ), and {q1, . . . , qn} be an order of the states preserved by all transitions
of A. Define q` = minS, qr = maxS. We can assume that S can be mapped only to the states
in [q`, qr]. Indeed, assume without loss of generality that qi, i < `, is a state such that S can be
mapped to qi, and it is the smallest such state. Then by monotonicity there exists a word mapping
qr to qi by taking only transitions going to smaller states. This word then synchronizes S and has

length at most n− 1 ≤ (n−2)2

4 for n ≥ 8.
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Now we can assume that S can be mapped only to states in [q`, qr]. This means that S can
be mapped to the states qi, qj in [q`, qr], and no state outside [qi, qj ] is reachable from any state
of [qi, qj ]. Indeed, the set of states reachable from both q`, qr contains qi and qj , and if some
state outside [qi, qj ] is reachable from [qi, qj ] we can synchronize S to a state outside [qi, qj ], which
contradicts the definition of the interval [qi, qj ]. If both q` and qr are mapped to states inside [qi, qj ],
they can be then synchronized by applying a word of length at most j− i, for example by applying
a word w′ composed of only letters mapping the consecutive images of qj to states with smaller
indexes by the same reasoning as below. By our assumptions, qi is reachable from each state in
[qi, qj ], thus such a word w′ exists.

Suppose now that w = w1 . . . wm is a shortest word synchronizing S. Consider the sequence
of pairs (tk, sk) = (δ(q`, w1 . . . wk), δ(qr, w1 . . . wk)), k = 1, 2, . . . ,m. As w is a shortest word
synchronizing S, and synchronization of S is equivalent to synchronization of {q`, qr}, no pair
appears in this sequence twice, and the only pair with equal components is (sm, tm). Because of
monotonicity, tk ≤ sk for each 1 ≤ k ≤ m. Thus, the maximum length of w is reached when qi = qj ,
since after both images are in [qi, qj ] the remaining length of a synchronizing word is at most j− i.
Observe that if q1 or qn is in S, S again can be synchronized by a word of length n− 1. Thus, we

can assume that |S| ≤ n− 2, and thus the length of w is at most (i− 1)(n− 3− i) ≤ (n−2)2

4 .

The bound is almost tight for monotonic automata over a three-letter alphabet as shown by
the following example.

Theorem 87. For each m ≥ 1, there exists a (2m+ 3)-state monotonic automaton A over a three-
letter alphabet, which has a subset S of states, such that the length of a shortest word synchronizing
S is m2 +m.

Proof. Consider the following monotonic automaton A = (Q,Σ, δ), Q = {q1, . . . , q2m+3}. Let
Σ = {0, 1, 2}. Let states q1, qm+2 and q2m+3 be sink states. For every state qi, 2 ≤ i ≤ m + 1,
we set δ(qi, 0) = qi+1, δ(qi, 1) = qi, δ(qi, 2) = q1. For every state qi, m + 4 ≤ i ≤ 2m + 2,
we set δ(qi, 0) = q2m+3, δ(qi, 1) = qi−1, δ(qi, 2) = qi. Finally we define δ(qm+3, 0) = q2m+2,
δ(qm+3, 1) = qm+3, δ(qm+3, 2) = qm+2. See Figure 7.1 for an illustration of the construction.

q2 q3 qm+1· · · qm+2 q2m+2qm+5 . . .qm+4qm+3q1 q2m+3

Figure 7.1: The automaton providing a lower bound for subset synchronization in monotonic
automata over a three-letter alphabet. Solid arrows represent transitions for the letter 0, dashed –
for the letter 1, dotted – for the letter 2. The states q1, qm+2, q2m+3 are sink states, self-loops are
omitted.

All transitions of A respect the order q1, . . . , q2m+3, so A is monotonic. Let us show that the
shortest word synchronizing the set S = {q2, q2m+2} is w = 1m−1(01m−1)m2. Let S′ be a set of
states such that qi, qj ∈ S′, 2 ≤ i ≤ m + 1, m + 3 ≤ j ≤ 2m + 2. The set S′ can be mapped only
to qm+2, because A is monotonic. Hence if any state of S′ is mapped by a word to q1 or to q2m+3,
then this word cannot synchronize S′.

We start with the set S = {q2, q2m+2}. There is only one letter 1 that does not map the state q2

to q1 or the state q2m+2 to q2m+3, and maps S not to itself. Indeed, 0 maps q2m+2 to q2m+3 and 2
maps q2 to q1. Thus, any shortest synchronizing word can start only with 1. Consider now the set
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{δ(q2, 1), δ(q2m+2, 1)} = {q2, q2m+1}. There is only letter 1 that does not map the state q3 to q1, or
q2m+1 to q2m+3 and maps this set not to itself. Indeed, 0 maps q2m+1 to q2m+3 and 2 maps q3 to
q1. So the second letter of the shortest synchronizing word can only be 1. By a similar reasoning
(at each step there is exactly one letter that maps a pair of states not to itself and does not map
the states to the sink states q1 and q2m+3), we deduce that any shortest synchronizing word has to
begin with 1m−1(01m−1)m and it is easy too see that 1m−1(01m−1)m2 synchronizes S. Thus, w is
a shortest word synchronizing S, and its length is m2 +m.

For an n-state automaton, the lower bound on the length of a shortest word in this theorem is
(n−2)2−1

4 , which is very close to the lower bound (n−2)2

4 from Theorem 86.
By taking q2 and q2m+2 as initial states in two equal copies of the automaton in the proof of

Theorem 87, and taking qm+2 as the only accepting state in both copies, we obtain the following
result.

Corollary 88. A shortest word accepted by two (2m + 3)-state monotonic automata which differ
only by their initial states can have length m2 +m.

For binary monotonic automata, our lower bound is slightly smaller, but still quadratic.

Theorem 89. For each m ≥ 1, there exists a (4m+3)-state binary monotonic automaton A, which
has a subset S of states such that the length of a shortest word synchronizing S is at least m2.

Proof. Consider the following automaton A = (Q,Σ, δ) with Q = {q1, . . . , q4m+3}, Σ = {0, 1}.
Define δ as follows. Set q1, q2m+2, q4m+3 to be sink states. Define δ(qi, 1) = qi−1 for all i 6=
1, 2m+2, 4m+3. For each i, 2 ≤ i ≤ m+1, define δ(qi, 0) = qi+m, and for each i, m+2 ≤ i ≤ 2m+1,
define δ(qi, 0) = q2m+2. For each i, 2m+ 3 ≤ i ≤ 3m+ 3, define δ(qi, 0) = qm+i−1, and for each i,
3m+4 ≤ i ≤ 4m+2, define δ(qi, 0) = q4m+3. The defined binary automaton is monotonic, since all
its transitions respect the order q1, . . . , q4m+3. See Figure 7.2 for an example of the construction.

q1 q2m+2q2m+1qm+3 . . .qm+2q3 · · ·q2 q2m+3

. . .

q2m+2 q4m+3q4m+2q4m+1q3m+3 . . .q3m+2q2m+4 · · ·q2m+3

. . .

Figure 7.2: The automaton providing a lower bound for subset synchronization in binary monotonic
automata. Dashed arrows represent transitions for the letter 0, solid – for the letter 1. The states
q1, q2m+2, q4m+3 are sink states. The picture is divided into two parts because of its width.

Define S = {qm+2, q4m+2}. Let us prove that a shortest word synchronizing S has length at
least m2.

The set S can only be mapped to q2m+2, since it is a sink state between minS and maxS. Thus,
no word synchronizing S maps any its state to q1 or q4m+3. Consider now an interval [qi, qj ] for
2 ≤ i ≤ m+ 1, 2m+ 3 ≤ j ≤ 4m+ 2 and note that applying 0 reduces its length by 1 (or maps its
right end to q4m+3), and applying 1 maps its ends to the ends of another interval of this form with
the same length (or maps its left end to q1). The maximal length of a segment of this form that
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allows its left end to be mapped to q2m+2 is 2m+ 1, so before any end of the interval is mapped to
q2m+2, the letter 0 has to be applied at least m times. Each application of 0 moves the right end
of the intervals m− 1 states to the right, so each application of 0 requires m− 1 applications of 1
so that 0 can be applied one more time. Thus, the word mapping S to q2m+2 has length at least
m2. Note that S can be synchronized by a word w = (1m−10)m12m of length |w| = m2 + 2m.

For an n-state binary monotonic automaton we get a lower bound of (n−3)2

16 from this theorem.
By removing the first and the last state (and leaving all transitions to the removed states

undefined) in the automata in the both series, we get the following results.

Corollary 90. For infinitely many n, there exists an n-state monotonic partial automaton over a

three-letter alphabet with shortest carefully synchronizing word of length at least (n−1)2

4 + 1.

Corollary 91. For infinitely many n, there exists an n-state monotonic binary partial automaton

with shortest carefully synchronizing word of length at least (n−1)2

16 .

Question 92. Find upper bounds on the length of a shortest carefully synchronizing words for
monotonic partial automata.

A related question is to measure the shortest length of a word accepted simultaneously by k
monotonic automata. This question is important, for example, for investigation of the computa-
tional complexity of the Finite Automata Intersection problem, see Section 7.4 for the details.
For alphabet of unbounded size, a partial answer is provided by the following theorem.

Theorem 93. For any k > 0, there exist k 3-state monotonic automata over a k-letter alphabet,
such that the length of a shortest word accepted by all automata is at least 2k − 1.

Proof. To prove the theorem, we show how to imitate a simple binary counter with k monotonic
automata. Consider the following family Ai = (Qi,Σ, δi), 1 ≤ i ≤ k. Here Qi = {fi, si, ti},
Σ = {a1, . . . , ak} and δi are defined as follows. We define δi(si, ai) = ti, and δi(si, aj) = fi,
δi(ti, aj) = si for i < j. All yet undefined transitions are self-loops. In each Ai, we take si as the
initial state, and ti as the only accepting state.

By induction, the length of a shortest word accepted by all automata is 2k − 1, since each next
automaton can be mapped to its accepting state only when all previous automata are already in
their accepting states, and this operation maps all previous automata to their initial states.

Hence, we get a lower bound of 2
n
3 − 1, where n is the total number of states in the automata.

Thus the most obvious candidate for a certificate to show that Finite Automata Intersection
is in NP for monotonic automata fails.

The proof of Theorem 93 implies the following interesting result.

Corollary 94. For each k there exists a monotonic partial automaton with 3k states, alphabet of
size k + 1 and a shortest carefully synchronizing word of length at least 3k.

Proof. Remove the states fi in all automata from the construction of Theorem 93 and leave all
transitions to this states undefined. Then add a letter a such that δ(ti, a) = tk for 1 ≤ i ≤ k. Thus
we get a carefully synchronizing automaton imitating a binary counter. The last step is to note
that 2

1
2 < 3

1
3 , and to imitate a ternary counter in the exactly same way instead.
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We note that the ternary counter is optimal since 2
1
2 < 3

1
3 and 3

1
3 > `

1
` for ` ≥ 4.

The bound in this corollary is of the same order as in the result of Rystsov [88] and Martyu-
gin [71], but our example is monotonic and has simpler structure. Since each carefully synchronizing
partial automaton has a carefully synchronizing word of length O(3

n
3 ) [88], the bound is asymptot-

ically tight.
Some additional optimization can be done for the described construction. In particular, after

counting to 3k− 1, only two states in the set of reached states can be synchronized by a new letter.
Then counting is repeated (to 3k−1 − 1) and again two states are synchronized, and so on. Thus,
the bound will become 3k + 3k−1 + . . .+ 3 + 1. However, the bound remains of the same order and
is still smaller than the bounds of Rystsov and Martyugin for general automata.

For a constant number of letters the considered problems remain open.

Question 95. What is the length of a shortest word accepted simultaneously by k monotonic au-
tomata over an alphabet of constant size? What is the length of a shortest word carefully synchro-
nizing a monotonic partial automaton with n states and alphabet of constant size?

7.4 Complexity Results

In this section, we obtain computational complexity results for several problems related to sub-
set synchronization in monotonic automata. We improve Eppstein’s construction [37] to make it
suitable for monotonic automata. We shall need the following NP-complete SAT problem [104].

SAT
Input: A set X of n Boolean variables and a set C of m clauses;
Output: Yes if there exists an assignment of values to the variables in X such that

all clauses in C are satisfied, No otherwise.

Provided a set X of Boolean variables x1, . . . , xn and a clause cj , construct the following au-
tomaton Aj = (Q,Σ, δ). Take

Q = {q1, . . . , qn+1} ∪ {q′2, . . . , q′n} ∪ {s, t}.
Let Σ = {0, 1, r}. Define the transition function δ as follows. For each i, 1 ≤ i ≤ n, map a

state qi to q′i+1 (or to t if i = n) by a letter x ∈ {0, 1} if the assignment xi = x satisfies cj , and to
qi+1 otherwise. For each i, 2 ≤ i ≤ n − 1, set δ(q′i, x) = δ(q′i+1, x) for x ∈ {0, 1}. Set δ(q′n, x) = t
for x ∈ {0, 1}. Define transitions from t for letters 0, 1 as self-loops. Finally, define δ(q, r) = s for
q ∈ Q \ {t}, δ(t, r) = t. See Figure 7.3 for an example.

s q1 q20 q30, 1 q41 q50 t0, 1

q′2 q′30, 1 q′40, 1
0, 1

1 0 1
0, 1, r0, 1, r

Figure 7.3: The automaton Aj for a clause cj = (x1 ∨x3 ∨x4). Dotted arrows represent transitions
for the letter r.
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Note that Aj is monotonic, since it respects the order

s, q1, q2, q
′
2, q3, q

′
3, . . . , qn, q

′
n, qn+1, t.

It is also weakly acyclic, since its underlying digraph has no simple cycles of length at least 2.
Also, provided the number of variables n, construct an automaton T = (QT ,Σ, δT ) as follows.

Take QT = {a, p1, . . . , pn+1, b}, Σ = {0, 1, r}. Define δ(pi, x) = pi+1 for each i, 1 ≤ i ≤ n, and
x ∈ {0, 1}, and δ(pn+1, x) = b for x ∈ {0, 1}. Define also δ(a, x) = a and δ(b, x) = b for each x ∈ Σ,
and δ(pi, r) = a for 1 ≤ i ≤ n + 1. See Figure 7.4 for an example. This automaton is monotonic,
since it respects the order a, p1, . . . , pn+1, b, and it is obviously weakly acyclic.

a p1 p2

0, 1
p3

0, 1
p4

0, 1
p5

0, 1

b

0, 1
0, 1, r 0, 1, r

Figure 7.4: The automaton T for n = 4 variables. Dotted arrows represent transitions for the
letter r.

First, we prove NP-completeness of the following problem.
Finite Automata Intersection
Input: Automata A1, . . . ,Ak (with initial and accepting states);
Output: Yes if there is a word which is accepted by all automata, No otherwise.

This problem is PSPACE-complete for general automata [66], and NP-complete for binary
weakly acyclic automata (Proposition 76). Some results on this problem are surveyed in [52].
Blondin et al. [18] provide further results on the problem. Some complexity lower bounds are
presented in [116] and [38].

Theorem 96. The Finite Automata Intersection problem is NP-complete for monotonic
weakly acyclic automata over a three-letter alphabet.

Proof. The fact that the problem is in NP follows from the fact that Finite Automata Inter-
section for weakly acyclic automata is in NP (Proposition 76).

To prove hardness, we reduce the SAT problem. For each clause cj ∈ C, construct an automaton
Aj , and set q1 as its initial state and t as its only accepting state. Construct also the automaton
T with the initial state p1 and accepting state a.

We claim that C is satisfiable if and only if all automata in {Aj | cj ∈ C} ∪ {T} accept a
common word w. Indeed, assume that there is a common word accepted by all these automata.
Then none of the first n letters of this word can be r, otherwise all automata Aj are mapped to s,
which is a non-accepting sink state. The next letter has to be r, otherwise T is mapped to b, which
is a non-accepting sink state. But that means that in each Aj , the set q1 is mapped by an n-letter
word z1 . . . zn to the accepting state t. Thus, by construction, the assignment xi = zi satisfies all
clauses in C.

By the same reasoning, if the assignment xi = zi, 1 ≤ i ≤ n, satisfies all clauses in C, then
z1 . . . znr is a word accepted by all automata.

Now we switch to a related Set Rank problem. Its general case is discussed in Section 6.4.
Recall that it is formulated as follows.
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Set Rank
Input: An automaton A and a set S of its states;
Output: The rank of S.

To get inapproximability results for monotonic automata, we use the following problem.
Max-3SAT
Input: A set X of n Boolean variables and a set C of m 3-term clauses;
Output: The maximum number of clauses that can be simultaneously satisfied by

some assignment of values to the variables.

This problem cannot be approximated in polynomial time within a factor of 7
8 + ε for any ε > 0

unless P = NP [50].

Theorem 97. The Set Rank problem cannot be approximated in polynomial time within a factor
of 9

8 − ε for any ε > 0 in monotonic weakly acyclic automata over a three-letter alphabet unless
P = NP.

Proof. We reduce the Max-3SAT problem. For each clause cj ∈ C, construct an automaton Aj .
Construct also m copies of the automaton T , denoted Tj , 1 ≤ j ≤ m. Define an automaton A with
the set of states which is the union of all sets of states of {Aj , Tj | 1 ≤ j ≤ m}, alphabet Σ and
transition functions defined in all constructed automata. For each j, identify the state t in Aj with
the state a in Tj . Take S to be the set of states q1 from each automaton Aj , and p1 from each Tj .
The constructed automaton is monotonic and weakly acyclic.

If h is the minimum number of clauses in C that are not satisfied by an assignment, the set S
has rank m+h. Indeed, consider an assignment xi = zi, 1 ≤ i ≤ n, not satisfying exactly h clauses
in C. Then the word z1 . . . znr has rank m+ h with respect to S.

In the other direction, let w be a word of minimum rank with respect to the set S. If any of
the first n letters of w is r, then q1 in each Ai is mapped to s in the corresponding automaton, and
thus w has rank 2m with respect to S. The same is true if (n + 1)st letter of w is not r, because
then p1 in each Ti is mapped to b in the corresponding automaton. If first n letters z1, . . . , zn of w
are not r, and the next letter is r, then the assignment xi = zi does not satisfy exactly h′ clauses,
where m+ h′ is the rank of the word w with respect to S. For the word of minimum rank, we get
the required equality.

It is NP-hard to decide between (i) all clauses in C are satisfiable and (ii) at most (7
8 + ε)m

clauses in C can be satisfied by an assignment [50]. In the case (i), the rank of S is m, in the case
(ii) it is at least m + (1

8 − ε)m. Since it is NP-hard to decide between this two options, we get
(9

8 − ε)-inapproximability for any ε > 0.

By using an argument similar to the proof of Theorem 97, we can show inapproximability of the
maximization version of Finite Automata Intersection (where we are asked to find a maximum
number of automata accepting a common word). Indeed, take m copies of T together with the
set {Aj | cj ∈ C} as the input of Finite Automata Intersection and reduce Max-3SAT to
it (input and accepting states are assigned according to the construction in Theorem 96). Then
the maximum number of automata accepting a common word is m + g, where g is the maximum
number of simultaneously satisfied clauses in C, since all copies of T have to accept this word.
Thus it is NP-hard to decide between (i) all 2m automata accept a common word and (ii) at most
m+ (7

8 + ε)m automata accept a common word, and we get the following result.

Corollary 98. The maximization version of the Finite Automata Intersection problem cannot
be approximated in polynomial time within a factor of 15

16 + ε for any ε > 0 in monotonic weakly
acyclic automata over a three-letter alphabet unless P = NP.
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Consider now the Careful Synchronization problem for monotonic automata.

Theorem 99. The Careful Synchronization problem is NP-hard for monotonic automata over
a four-letter alphabet.

Proof. We reduce the SAT problem. Let A′j be Aj with alphabet restricted to {0, 1} and without
the state s, and T ′ be T with alphabet restricted to {0, 1} and without the states a, b. Let Σ′ =
{0, 1, y, z}. Provided X and C, construct A′j for each clause cj , and also construct T ′. Let Q′ be
the union of all states of each A′j , all states of T ′ and a new state f . We expand already defined
(for the letters 0, 1) transition function δ as follows. Define y to map all states in each A′j to q1 in
this gadget, and all states in T ′ to p1. Finally, define z to map the state t in each Aj , the state
pn+1 in T and the state f to f . Leave all other transition undefined. We denote thus obtained
automaton as A′ = (Q′,Σ′, δ′).

Any word w carefully synchronizing A′ begins with y, since it is the only letter defined for all
states. After applying it, the set S of reached states consists of q1 in each Aj , p1 in T , and f . To
reach f from this set, we need to apply z at least once. Right before applying z, the set of reached
states must consist of exactly n letters of the set {0, 1}, because application of y takes us back to
S, and applying 0, 1 more than n times is not defined for the state p1. Thus, in each Aj the state
q1 must be mapped to t by n 0s and 1s which is possible if and only if C is satisfiable.

Question 100. What is the complexity of the mentioned problems for binary monotonic automata?
Do the problems discussed in this section belong to NP for monotonic automata?

We note that it does not matter in the provided reductions whether a linear order preserved by
all transitions is known or not.
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Chapter 8

Finite Prefix Codes

All automata in this chapter are deterministic, so we say partial automaton for partial DFA, and
complete automaton, or just “automaton” for complete DFA

8.1 Introduction

Despite the interest in synchronizing finite prefix codes, the computational complexity of finding
short synchronizing words for them has not been studied so far. In this chapter, we provide a
systematic investigation of this topic.

Each recognizable (by a finite automaton) maximal prefix code can be represented by an au-
tomaton decoding the star of this code (see Section 2.4). For a finite code, this automaton can
be exponentially smaller than the representation of the code by listing all its words (consider, for
example, the code of all words of some fixed length). This can, of course, happen even if the code
is synchronizing. An important example here is the code 0{0, 1}n−1 ∪ 1{0, 1}n. The minimized
decoder of this code is a famous Wielandt automaton with n + 1 states [5], while the literal au-
tomaton contains 2n−1 + 2n states, see Figure 8.1 for the case n = 3. In different applications, the
first or the second way of representing the code can be useful. In some cases large codes having a
short description may be represented by a minimized decoder, while in other applications the code
can be described by simply providing the list of all codewords. The number of states of the literal
decoder is equal to the number of different prefixes of the codewords, and thus the representations
of a prefix code by listing all its codewords and by providing its literal automaton are polynomially
equivalent. We study the complexity of problems for both arbitrary and literal decoders of finite
prefix codes.

q0

q1q2

1
0

0, 1

0, 1

ε(q0)

1(q1)

11(q2)

111(q0)110(q0)

10(q2)

101(q0)100(q0)

0(q2)

01(q0)00(q0)

Figure 8.1: The Wielandt automaton on three states and the tree of the code 0{0, 1} ∪ 1{0, 1}2.
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In this chapter we study the existence of approximation algorithms for the problem Short
Sync Word of finding a shortest synchronizing words in several classes of deterministic automata
decoding prefix codes. In Section 8.2 we provide a strong inapproximability result for this problem
in the class of strongly connected automata. Section 8.3 is devoted to the same problem in acyclic
automata, which are then used in Section 8.4 to show logarithmic inapproximability of Short
Sync Word in the class of Huffman decoders. In Section 8.5 we provide a much stronger inap-
proximability result for partial Huffman decoders. In Section 8.6 we provide several algorithms
for literal Huffman decoders and conjecture that Short Sync Word can be solved in polynomial
time in this class. Finally, in Section 8.7 we apply the developed techniques to the problems of
finding shortest mortal and avoiding words.

8.2 The Construction of Gawrychowski and Straszak

In this section we briefly recall the construction of a gadget invented by Gawrychowski and Straszak
[43] to show n1−ε-inapproximability of the Short Sync Word problem in the general class of
automata. Below we will use this construction several times.

Suppose that we have a constraint satisfiablity problem (CSP) with N variables and M con-
straints such that each constraint is satisfied by at most K assignments (see [43] for the definitions
and missing details). Following the results in [43], we can assume that N,K ≤ M ε, and also that
either the CSP is satisfiable, or at most 1

M1−ε fraction of all constraints can be satisfied by an
assignment. It is possible to construct the following ternary automaton Aφ in polynomial time.
For each constraint C the automaton Aφ contains a corresponding binary (over {0, 1}) gadget TC
which is a compressed tree (that is, an acyclic digraph) of height N and the number of states
at most N2K having different leaves corresponding to satisfying and non-satisfying assignments.
The automaton Aφ also contains a sink state s such that all the leaves corresponding to satisfying
assignments are mapped to s, and all other leaves are mapped to the roots of the corresponding
trees. The third letter is defined to map all the states of each gadget to its root and to map s to
itself. For every ε > 0 it is possible to construct such an automaton with at most MN2K ≤M1+3ε

states in polynomial time. Moreover, for a satisfiable CSP we get an automaton with a shortest
synchronizing word of length at most N + 1 = O(M ε), and for a non-satisfiable CSP the length of
a shortest synchronizing word is at least NM1−ε ≥ M1−ε. Since ε can be chosen arbitrary small,
this provides a gap-preserving reduction with a gap of M1−ε.

The described construction can be modified to get the same inapproximability in the class of
strongly connected automata.

Theorem 101. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of n1−ε for every ε > 0 for n-state binary strongly connected automata unless P =
NP.

Proof. Consider the automaton Aφ described above. Add a new letter c that cyclically permutes
the roots of all gadgets, maps s to the root of one of the gadgets and acts as a self-loop for all
the remaining states. Observe that thus constructed automaton A is strongly connected and has
the property that every non-satisfying assignment satisfies at most the fraction of 1

M1−ε of all
constraints. Thus, the gap between the length of a shortest synchronizing word for a satisfying and
non-satisfying assignment is still Θ(M1−ε).

It remains to make the automaton binary. This can be done by using Lemma 3 of [11]. This way
we get a binary automaton with Θ(M1+3ε) states and a gap between Θ(M ε) and Θ(M1−ε) in the
length of a shortest synchronizing word. By choosing appropriate small enough ε, we get a reduction
with gap n1−ε for binary strongly connected n-state automata, which proves the statement.
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8.3 Acyclic Automata

In this section we investigate the simply-defined classes of weakly acyclic and strongly acyclic
automata. The results for strongly acyclic automata are used in Section 8.4 to obtain inapprox-
imability for Huffman decoders. Even though the automata in the classes of weakly and strongly
acyclic automata are very restricted and have a very simple structure, the inapproximability bounds
for them are quite strong. Thus we believe that these classes are of independent interest.

We will need the following problem.
Set Cover
Input: A set X of p elements and a family C of m subsets of X;
Output: A subfamily of C of minimum size covering X.

A family C ′ of subsets of X is said to cover X if X is a subset of the union of the sets in C ′. For
every γ > 0, the Set Cover problem with |C| ≤ |X|1+γ cannot be approximated in polynomial
time within a factor of c′ log p for some c′ > 0 unless P = NP [11].

Theorem 102. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of c log n for some c > 0 for n-state strongly acyclic automata over an alphabet of
size n1+γ for every γ > 0 unless P = NP .

Proof. We reduce the Set Cover problem. Provided X and C, we construct the automaton
A = (Q,Σ, δ) as follows. To each set ck in C we assign a letter k ∈ Σ. To each element xj in X we

assign a “pipe” of states q
(j)
1 , . . . , q

(j)
p in Q. Additionally, we construct a state f in Q.

For 1 ≤ i ≤ p− 1 and all k and j we define δ(q
(j)
i , k) = f if ck contains xj , and δ(q

(j)
i , k) = q

(j)
i+1

otherwise. We also define δ(q
(j)
p , k) = f for all j and k.

We claim that the length of a shortest synchronizing word for A is equal to the minimum size
of a set cover in C. Let C ′ be a set cover of minimum size. Then a concatenation of the letters
corresponding to the elements of C ′ is a synchronizing word of corresponding length.

In the other direction, consider a shortest synchronizing word w for A. No letter appears in w
at least twice. If the length of w is less than p, then by construction of A the subset of elements in
C corresponding to the letters in w form a set cover. Otherwise we can take an arbitrary subfamily
of C of size p which is a set cover (such subfamily trivially exists if C covers X).

The resulting automaton has p2 + 1 states and m letters. Thus we get a reduction with gap
c′ log p ≥ c′′ log

√
|Q| = 1

2c
′′ log |Q| for some c′′ > 0. Because of the mentioned result of Berlinkov,

we can also assume that m < p1+γ for arbitrary small γ > 0.

Now we are going to extend this result to the case of binary weakly acyclic automata.

Corollary 103. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of c log n for some c > 0 for n-state binary weakly acyclic automata unless P = NP .

Proof. We extend the construction from the proof of Theorem 102 by using Lemma 3 of [11]. If
we start with a strongly acyclic automaton with p states and k letters, this results in a binary
weakly acyclic automaton with 4pk states. Moreover, the length of a shortest word of the new
automaton is between `(log k + 1) and (` + 1)(log k + 1), where ` is the length of a shortest word
of the original automaton. Since we can assume p < k < p1+γ for arbitrary small γ > 0, we have
log n = Θ(log p), where n is the number of states of the new automaton. Thus we get a gap of
Θ(log p) = Θ(log n).

For ternary strongly acyclic automata it is possible to get (2− ε)-inapproximability.
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Theorem 104. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of 2 − ε for every ε > 0 for n-state strongly acyclic automata over an alphabet of
size three unless P = NP .

8.4 Huffman Decoders

We start with a statement relating strongly acyclic automata to Huffman decoders.

Lemma 105. Let A be a synchronizing strongly acyclic automaton over an alphabet of size k. Let
` be the length of a shortest synchronizing word for A. Then there exists a Huffman decoder AH
over an alphabet of size k + 2 with the same length of a shortest synchronizing word, and AH can
be constructed in polynomial time.

Proof. Provided a strongly acyclic automaton A = (Q,Σ, δ) we construct a Huffman decoder AH =
(QH ,ΣH , δH).

Since A is a synchronizing strongly acyclic automaton, it has a unique sink state f . We define
the alphabet ΣH as the union of Σ with two additional letters b1, b2. The set of states QH is the
union of Q with some auxiliary states defined as follows. Consider the set S of states in A having
no incoming transitions. Construct a full binary tree with the root f having S as the set of its
leaves (if |S| is not a power of two, some subtrees of the tree can be merged). Define b1 to map
each state of this tree to the left child, and b2 to the right child. Transfer the action of δ to δH for
all states in Q and all letters in Σ. For all the internal states of the tree define all the letters of Σ
to map these states to f . Finally, for all the states in Q define the action of b1, b2 in the same way
as some fixed letter in Σ.

Observe that any word w over alphabet Σ synchronizing A also synchronizes AH . In the other
direction, any synchronizing word for AH has to synchronize Q, which means that each state in Q
has to be mapped to f first, so the length of a shortest synchronizing word for AH is at least the
length of a shortest synchronizing word for A.

Now we use Lemma 105 to get preliminary inapproximability results for Huffman decoders.

Corollary 106. (i) The Short Sync Word problem is NP-complete for Huffman decoders over
an alphabet of size 4.

(ii) The Short Sync Word problem cannot be approximated in polynomial time within a
factor of 2− ε for every ε > 0 for Huffman decoders over an alphabet of size 5 unless P = NP .

(iii) For every γ > 0, the Short Sync Word problem cannot be approximated in polynomial
time within a factor of c log n for some c > 0 for Huffman decoders over an alphabet of size n1+γ

unless P = NP .

Proof. (i) The automaton in the Eppstein’s proof of NP-completeness of Short Sync Word [37]
is strongly acyclic. Then the reduction described in Lemma 105 can be applied.

(ii) A direct consequence of Theorem 104 and Lemma 105.
(iii) A direct consequence of Theorem 102 and Lemma 105.

Now we show how to get a better inapproximability result for binary Huffman decoders using
the composition of synchronizing prefix codes. We present a more general result for the composition
of synchronizing codes which is of its own interest. This result shows how to change the size of the
alphabet of a synchronizing complete code in such a way that the approximate length of a shortest
synchronizing pair for it is preserved.
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A pair (`X , rX) of words in X∗ is called absorbing if `XΣ∗ ∩ Σ∗rX ⊆ X∗. The length of a pair
is the total length of two word. A complete code admits an absorbing pair if and only if it is
synchronizing [14].

Let Y be a code over ΣY and Z be a code over ΣZ . Suppose that there exists a bijection
β : ΣY → Z. The composition Y ◦β Z is then defined as the code X = {β(y) | y ∈ Y } over
the alphabet ΣZ [14]. Here β(y) is defined as β(y1)β(y2) . . . β(yk) for y = y1y2 . . . yk, yi ∈ ΣY .
Sometimes β is omitted in the notation of composition.

Theorem 107. Let Y and Z be two synchronizing complete codes, such that Z is finite and m and
M are the lengths of a shortest and a longest codeword in Z. Suppose that the composition Y ◦ Z
is defined. Then the code X = Y ◦ Z is synchronizing, and the length of a shortest absorbing pair
for X is between m` and 2M`+ 2c, where ` is the length of a shortest absorbing pair for Y and c
is the length of a shortest absorbing pair for Z.

Proof. Let Y ⊆ Σ∗Y , X,Z ⊆ Σ∗Z , and β : ΣY → Z be such that X = Y ◦β Z. First, as-
sume that Y and Z are synchronizing, and let (`Y , rY ), (`Z , rZ) be shortest absorbing pairs
for Y and Z. Then `Y Σ∗Y ∩ Σ∗Y rY ⊆ Y ∗ and `ZΣ∗Z ∩ Σ∗ZrZ ⊆ Z∗. We will show that p1 =
(β(`Y )`ZrZβ(rY ), β(`Y )`ZrZβ(rY )) is an absorbing pair forX. Consider the set β(`Y )`ZrZβ(rY )Σ∗Z∩
Σ∗Zβ(`Y )`ZrZβ(rY ). It is a subset of the set β(`Y )(`ZΣ∗Z ∩ Σ∗ZrZ)β(rY ) ⊆ β(`Y )Z∗β(rY ) =
β(`Y Σ∗Y rY ) ⊆ β(Y ∗) = X∗. Thus, p1 is an absorbing pair for X. Moreover, the length of this
pair is between 2m(|`Y |+ |rY |) + 2(|`Z |+ |rZ |) and 2M(|`Y |+ |rY |) + 2(|`Z |+ |rZ |).

Conversely, assume that (`X , rX) is a shortest absorbing pair for X, hence `XΣ∗Z ∩Σ∗ZrX ⊆ X∗.
Then by the definition of composition X∗ ⊆ Z∗ and `X , rX ∈ Z∗; thus, (`X , rX) is also absorbing for
Z. Next, let `Y = β−1(`X), rY = β−1(rX), `Y , rY ∈ Y ∗. Then β(`Y Σ∗Y ∩Σ∗Y rY ) = `XZ

∗ ∩Z∗rX ⊆
`XΣ∗Z ∩Σ∗ZrX ⊆ X∗ = β(Y ∗). Since the mapping β is injective, `YB

∗ ∩B∗rY ⊆ Y ∗. Consequently
Y is synchronizing, and (`Y , rY ) is an absorbing pair for it of length between 1

M (|`X | + |rX |) and
1
m(|`X |+ |rX |).

Summarizing, we get that the length of a shortest absorbing pair for X is between m(|`Y |+ |rY |)
and 2M(|`Y |+ |rY |) + 2(|`Z |+ |rZ |).
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Figure 8.2: An automaton recognizing some infinite maximal prefix code, the tree of a finite maximal
prefix code and an automaton recognizing their composition.

In the case of finite maximal prefix codes the first element of the absorbing pair can be taken
as an empty word. The second element is then a synchronizing word. For recognizable maximal
prefix codes Y and Z, where Z is finite, a Huffman decoder recognizing the star of X = Y ◦Z can
be constructed as follows. Let HY be a Huffman decoder for Y . Consider the full tree TZ for Z,
where each edge is marked by the corresponding letter. For each state q in HY we substitute the
transitions going from this state with a copy of TZ as follows. The root of TZ coincides with q, and
the inner vertices are new states of the resulting automaton. Suppose that v is a leaf of TZ , and
the path from the root to v is marked by a word w. Let a be the letter of the alphabet of HY which
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is mapped to the word w in the composition. Then the image of q under the mapping defined by
a is merged with v. In such a way we get a Huffman decoder with Θ(nY nZ) states, where nY , nZ
is the number of states in HY and TZ . By the definition of composition, this decoder has the same
alphabet as Z. See Figure 8.2 for an example.

Corollary 108. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of c log n for some c > 0 for binary n-states Huffman decoders unless P = NP .

Proof. We start with claim (iii) in Corollary 106 and use Theorem 107 to reduce the size of the
alphabet. Thus, we reduce Short Sync Word for Huffman decoders over an alphabet of size
n1+γ to Short Sync Word for binary Huffman decoders.

Assume that the size of the alphabet k = n1+γ is a power of two (if no, duplicate some letter
the required number of times). We take the code 0{0, 1}log k−1 ∪ 1{0, 1}log k as Z. This is a code
where some words are of length log k and the other words are of length log k+1 (after minimization
the star of this code is recognized by a Wielandt automaton with log k + 1 states discussed in the
introduction). This code has a synchronizing word of length Θ((log k)2) [5]. The number of vertices
in the tree of this code is Θ(n).

Let ` be the length of a shortest synchronizing word for the original automaton. By Theorem
107, the length of a shortest synchronizing word for the result of the composition is between ` log k
and 2(log k + 1)`+ Θ((log k)2) = Θ((`+ log k) log k).

For the Set Cover problem the inapproximability result holds even if we assume that the size
of the optimal solution is of size at least d log |X| for some d > 0. Indeed, if d is a constant we
can check all the subsets of C of size at most d log |X| in polynomial time. Thus, we can assume
that ` ≥ log k implying (` + log k) log k = Θ(` log k). Hence after the composition the length of a
shortest synchronizing word is changed by at most constant multiplicative factor, and we we get
a gap-reserving reduction with gap Θ(log n). The resulting automaton is of size Θ(n2+γ), and the
(2 + γ) dependence is hidden in the constant c in the statement of this corollary.

8.5 Partial Huffman Decoders

In this section we investigate automata recognizing the star of a non-maximal finite prefix code.
Such codes have some noticeable properties which do not hold for maximal finite prefix codes.
For example, there exist non-trivial non-maximal finite prefix codes with finite synchronization
delay, which provides guarantees on the synchronization time [22]. This allows to read a stream of
correctly transmitted compressed data from arbitrary position, which can be useful for audio and
video decompression.

We provide a lower bound on the approximability of the Short Sync Word problem for partial
Huffman decoders by extending the idea used to prove inapproximability for Huffman decoders in
the previous sections. First we prove the result for alphabet of size 5 and then use a composition
with a maximal finite prefix code to get the same result for the binary case.

Theorem 109. The Short Sync Word problem cannot be approximated within a factor of n
1
2
−ε

for every ε > 0 for n-state partial Huffman decoders over an alphabet of size 5 unless P = NP .

Proof. First we prove inapproximability for the class of partial strongly acyclic automata, that is,
automata having no simple cycles but loops in the sink state. We start with the CSP problem
described in Section 8.2 with all the restriction defined there. Having an instance of this problem
with N variables and M constraints such that each constraint is satisfied by at most K assignments,
we construct an automaton Abφ over the alphabet {0, 1}. For each constraint j, we construct M
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identical compressed trees T 1
j , . . . , T

M
j corresponding to this constraint (also described in Section

8.2). Then for 1 ≤ i ≤M−1 we merge the leaves of T ij corresponding to non-satisfying assignments

with the root of T i+1
j , and delete all the leaves corresponding to satisfying assignments (leaving

all the transition leading to deleted states undefined). For each TMj , we again delete all the leaves
corresponding to satisfying assignments and merge all the leaves corresponding to non-satisfying
assignments with a new state s. This state is a self-loop, that is, 0, 1 map s to itself. Now we
define an additional letter a and M new states r1, . . . , rM . We define a to map rj to the root of
T 1
j . Finally, we add N + 1 new states c0, . . . , cN such that a maps c0 to c1, and 0, 1 map ci to ci+1

for 1 ≤ i ≤ N − 1, and map cN to s. All other transitions are left undefined.
If a is applied first, the set S of states to be synchronized is c1 together with the roots of T 1

j for
all j. Observe that a cannot be applied anymore, since it would result in mapping all the active
states of the automaton to void. If a letter other than a is applied first, a superset of S must be
synchronized then.

If there exists a satisfying assignment x1, . . . , xN then the word ax1 . . . xN is synchronizing,
since it maps all the states but c0 to void. Otherwise, to synchronize the automaton we need to
pass through M compressed trees, since each tree can map only at most M ε states to void (since for
every non-satisfiable CSP the maximum number of satisfiable constraints is M ε in the construction,
see Section 8.2). Thus we get a gap of M1−ε = n

1
2
−ε for the class of n-state strongly acyclic partial

automata.
Now we are going to transfer this result to the case of partial Huffman decoders. We extend

the idea of Lemma 105. All we need is to define transitions leading from s to the states having
no incoming transitions (which are r1, . . . , rM together with c0). The only difference is that now
we have to make sure that a cannot be applied too early resulting in mapping all the states of the
compressed trees to void leaving the state s active.

To do that, we introduce two new letters b1, b2 and perform branching as described in Lemma
105. Thus we get M + 1 leaves of the constructed full binary tree. To each leave we attach a chain
of states of length MN ending in the root of T 1

j (or in c0). This means that we introduce MN new
states and define the letters b1, b2 to map a state in each chain to the next state in the same chain.
This guarantees that if the letter a appears twice in a word of length at most MN , this word maps
all the states of the automaton to void. Finally, the action of b1, b2 on the compressed trees and
the states c0, . . . , cN repeats, for example, the action of the letter 0.

The number of states of the automaton in the construction is O(M2+3ε) The gap is then M1−2ε.

By choosing small enough ε we thus get a gap of n
1
2
−ε as required.

The next lemma shows that under some restrictions it is possible to reduce the alphabet of
a non-maximal prefix code in a way that approximate length of a shortest synchronizing word is
preserved. A word is called non-mortal for a prefix code X if it is a factor of some word in X∗.

Lemma 110. Let Y,Z be synchronizing prefix codes such that Z is finite and maximal. Let m and
M be the lengths of a shortest and a longest codeword in Z. Suppose that Y ◦βZ is defined for some
β. If there exists a synchronizing word wZ for Z such that β−1(w) is a non-mortal word for Y , then
the composition X = Y ◦βZ is synchronizing. Moreover, then the length of a shortest synchronizing
word for X is between m` and M` + |wZ |, where ` is the length of a shortest synchronizing word
for Y .

Proof. Let Y ⊆ Σ∗Y , X,Z ⊆ Σ∗Z , and β : ΣY → Z be such that X = Y ◦β Z. Let wY be
a synchronizing word for Y . Then wZβ(wY ) is a synchronizing word for X of length at most
M` + |wZ |. In the other direction, let wX be a synchronizing word for X. Then β−1(wX) is a
synchronizing word for Y . Thus, |wX | ≥ m`.
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Corollary 111. The Short Sync Word problem cannot be approximated in polynomial time
within a factor of n

1
2
−ε for every ε > 0 for binary n-state partial Huffman decoders unless P = NP .

Proof. We use the composition of the automaton constructed in the proof of Theorem 109 with the
prefix code {aaa, aab, ab, ba, bb} having a synchronizing word baab. The word baab is a concatenation
of two different codewords, so their pre-images can be taken to be a and 0, resulting in a non-mortal
word a0 for A, so we can use Lemma 110.

8.6 Literal Huffman Decoders

In this section we deal with literal Huffman decoders. We call the literal automaton of a finite
maximal prefix code a literal Huffman decoder. We will need the following useful lemma.

Lemma 112 ( [12, Lemma 16]). For every n-state literal Huffman decoder over an alphabet of size
k there exists a word of length dlogk ne and rank at most dlogk ne.

Note that if a n-state literal Huffman decoder has a synchronizing word of length at most
O(log n), this word can be found in polynomial time by examining all words of length up to
O(log n). Thus, in further algorithms we will assume that the length of a shortest synchronizing
word is greater than this value. Lemma 112 stays that a word of rank at most dlogk ne can also be
found in polynomial time.

Theorem 113. There exists a O(log n)-approximation polynomial time algorithm for the Short
Sync Word problem for literal Huffman decoders.

Proof. Let A = (Q,Σ, δ) be a literal Huffman decoder, and |Σ| = k. Let w be a word of rank at
most dlogk ne found as described above. Let Q′ be the image of Q under the mapping defined by
w, i.e. Q′ = δ(Q,w). Define by v the word subsequently merging pairs of states in Q′ with shortest
possible words. Note than a shortest word synchronizing A has to synchronize every pair of states,
in particular, one that requires a longest word. Thus the length of v is at most dlogk ne times greater
than the length of a shortest word synchronizing A. Then the word wv is a O(log n)-approximation
for the Short Sync Word problem.

Theorem 114. For every ε > 0, there exists a (1 + ε)-approximation O(nlogn)-time algorithm for
the problem Short Sync Word for n-state literal Huffman decoders.

Proof. Let A = (Q,Σ, δ) be a literal Huffman decoder, and |Σ| = k. First we check all words of
length at most 1

εdlogk ne, whether they are synchronizing. The number of these words is polynomial,
and the check can be performed in polynomial time. If a synchronizing word is found then we have
an exact solution. Otherwise, a shortest synchronizing word must be longer than that and we
proceed to the second stage.

Let w be a word of rank at most dlogk ne found as before. Now we construct the power
automaton A≤dlogk ne restricted to all the subsets of size at most dlogk ne. Using it, we find a
shortest word synchronizing the subset δ(Q,w); let this word be v. We return wv.

Let w′ be a shortest synchronizing word for |A|. Clearly, |w′| ≥ |v| and ε|w′| > dlogk ne. Thus
|wv| ≤ (1 + ε)|w′|, so wv is a (1 + ε)-approximation as required.

In view of the presented results we propose the following conjecture.

Conjecture 115. There exists an exact polynomial time algorithm for the Short Sync Word
problem for literal Huffman decoders.
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Finally, we remark that it is possible to define the notion of the literal automaton of a non-
maximal finite prefix code in the same way. In this case we leave undefined the transitions for a
state w and a letter a such that w is a proper prefix of a codeword, but wa is neither a proper
prefix of a codeword nor a codeword itself. However, the statement of Lemma 112 is false for partial
automata. Indeed, consider a two-word prefix code {(0n1n)n, (1n0n)n}. Its literal automaton has
2n2 − 1 states, and a shortest synchronizing word for it is 0n+1 of length n + 1. Every word of
length at most n which is defined for at least one state is of the form 0∗1∗ or 1∗0∗ and thus has
rank at least n− 1.

8.7 Mortal and Avoiding Words

The techniques described in this chapter can be easily adapted to get the same inapproximability
for the Short Mortal Word problem defined as follows.

Short Mortal Word
Input: A partial automaton A with at least one undefined transition;
Output: The length of a shortest mortal word for A.

This problem is connected for instance to the famous Restivo’s conjecture [87].

Theorem 116. Unless P = NP, the Short Mortal Word problem cannot be approximated in
polynomial time within a factor of

(i) n1−ε for every ε > 0 for n-state binary strongly connected partial automata;
(ii) c log n for some c > 0 for n-state binary partial Huffman decoders.

Proof. It can be seen that in Theorem 101 and Corollary 108 we construct an automaton with
a state s such that each state has to visit s before synchronization. Introduce a new state s′

having all the transitions the same as s, and for s set the only defined transition (for an arbitrary
letter) to map to s′. Then it is easy to see that the constructions work for mortal words instead of
synchronizing.

Moreover, it is easy to get a O(log n)-approximation polynomial time algorithm for Short
Mortal Word for literal Huffman decoders following the idea of Theorem 113. Indeed, it follows
from Lemma 112 that either there exists a mortal word of length at most dlogk ne, or there exists
a word w of rank at most dlogk ne. In the latter case we can find a word which is a concatenation
of w and a shortest word mapping all this states to nowhere one by one. By the arguments similar
to the proof of Theorem 113 we then get the following.

Proposition 117. There exists a O(log n)-approximation polynomial time algorithm for the Short
Mortal Word problem for n-state literal Huffman decoders. This algorithm always finds a mortal
word of length O(n log n).

Another connected and important problem is to find a shortest avoiding word. Given an au-
tomaton A = (Q,Σ, δ), a word w is called avoiding for a state q ∈ Q if q is not contained in the
image of Q, that is, q 6∈ δ(Q,w). Avoiding words play an important role in the recent improvement
on the upper bound on the length of a shortest synchronizing word [106]. They are in some sense
dual to synchronizing words.

Short Avoiding word
Input: An automaton A and its state q admitting a word avoiding q;
Output: The length of a shortest word avoiding q in A.

If q is not the root of a literal Huffman decoder A (that is, not the state corresponding to the
empty prefix), then a shortest avoiding word consists of just one letter. So avoiding is non-trivial
only for the root state.
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Proposition 118. For every ε > 0, there exists a (1 + ε)-approximation O(nlogn)-time algorithm
for the problem Short Sync Word for n-state literal Huffman decoders.

Proof. We use the same algorithm as in the proof of Theorem 114. The only difference is that we
check whether the words are avoiding instead of synchronizing.

8.8 Concluding Remarks

For prefix codes, a synchronizing word is usually required to map all the states to the root [14].
One can see that this property holds for all the constructions of the chapter. Moreover, in all the
constructions the length of a shortest synchronizing word is linear in the number of states of the
automaton. Thus, if we restrict to this case, we still get the same inapproximability results. Also,
it should be noted that all the inapproximability results are proved by providing a gap-preserving
reduction, thus proving NP-hardness of approximating the Short Sync Word problem within a
given factor.
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Chapter 9

Conclusions and Further Directions

While finite automata are used extensively as a tool in coding theory, we believe that the connection
between the domains of synchronizing automata and coding theory is not as strong as it can be. In
particular, there is a number of natural questions in synchronizing automata which have not been
studied much for their codes counterparts, and vice versa. We describe some open questions which
are relevant to (and sometimes implied by) the results of this thesis.

As shown in this thesis, one can go from the classical and most widely studied setting of complete
DFAs to partial DFAs and then to unambiguous NFAs, and still build a theory of synchronizing
automata with very similar properties. The only requirement is to ask the automata to be strongly
connected, which is a very natural restriction.

In this strongly connected case, we obtained upper bounds of O(n2) (Theorem 39) and n5

(Theorem 50) for the reset threshold of partial DFAs and unambiguous NFAs respectively. While
the bound for partial DFAs cannot be asymptotically improved without progress in the original
Černý conjecture, the case of unambiguous NFAs looks much more promising for further progress.
As for the lower bounds, the Černý automata have the largest known reset threshold even in
the class of strongly connected unambiguous NFAs. It would be very interesting to check that
experimentally for unambiguous automata with few states, as well as to try to find other series of
non-deterministic unambiguous automata with large reset threshold. To the best of our knowledge,
all known non-trivial slowly synchronizing series are deterministic.

As shown by Theorem 50, the rank conjecture is also meaningful for strongly connected unam-
biguous NFAs. However, in view of the results of Chapter 3, we believe that the strongly connected
case of this conjecture should be made more precise. Bounds on the length of words of minimum
non-zero rank can be also asked for finite codes and their subfamilies, both in terms of the total
length of all codewords (Černý-type questions) and in terms of the length of the longest codeword
(Restivo-type questions).

The tight connection with codes naturally motivates the cases of automata recognizing the star
of a finite code. This includes both arbitrary such automata and prefix automata of finite codes.
For prefix automata of finite prefix codes, the almost-linear upper bound matches the best known
result for maximal prefix codes (Corollary 45), but the bound for general finite codes (Theorem 53)
is quite large.

Biskup and Plandowski propose a synchronizing counterpart to the Restivo’s conjecture [17].
It stays that for a synchronizing finite maximal prefix code X there always exists a synchronizing
word of length O(k2), where k is the length of the longest codeword in X. This conjecture remains
open, and obviously the same question may be asked for general finite codes instead of maximal
prefix ones.
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Finally, strongly connected unambiguous NFAs may not be the most general case for the Černý-
type conjectures. It would be interesting to find classes of ambiguous NFAs with good synchro-
nization properties.

The computational aspect of the mentioned questions is also not fully understood. Checking
whether a strongly connected partial DFA is synchronizing can be done in quadratic time (Theorem
37). It would be interesting though to improve this time to sub-quadratic, or to find a conditional
lower bound. The case of strongly connected unambiguous NFAs allows an O(n5)-time algorithm
to check whether it is synchronizing (Theorem 50). Any improvement to that should provide new
insights into the structure of such automata and might help to get better upper bounds for the
reset threshold.

Chapters 6 and 7 show that synchronization of a subset of states in a non-synchronizing complete
DFA is usually hard. This includes finding a synchronizable set of maximum cardinality (Section
6.3), computing the rank of a subset (Theorem 6.4), and so on. The only known class where many
such problems are solvable in polynomial time is the class of monotonic automata (Section 7.2). It
would be thus interesting to find other classes which allow easy synchronization in such extended
settings. One candidate for that is the class of literal automata of prefix codes, where finding
a relatively short synchronizing word is easy (Theorem 113). A more general question can be
asked: provided a finite synchronizing code, how hard is it to approximate the length of a shortest
synchronizing word for it? Chapter 8 shows that the way how the code is defined matters a lot:
this problem is difficult for finite prefix codes defined by arbitrary DFAs (Corollary 111), but is
much easier for prefix automata (Theorem 113). More precisely, Conjecture 115 stays that for the
literal automaton of a maximal prefix code the length of the shortest synchronizing word can be
found in polynomial time.
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Câmpeanu, Florin Manea, and Jeffrey Shallit, editors, DCFS 2016. LNCS, vol. 9777, pages
1–17. Springer, Cham, 2016. 71

[20] Ahmed Bouajjani, Javier Esparza, and Oded Maler. Reachability analysis of pushdown
automata: Application to model-checking. In Antoni W. Mazurkiewicz and Józef Winkowski,
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Hamiltonian paths. In Yuan Gao, Hanlin Lu, Shinnosuke Seki, and Sheng Yu, editors, DLT
2010. LNCS, vol. 6224, pages 124–135, 2010. 29
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Informatics and Applications, 32(1-3):21–34, 1998. 33

[37] David Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing,
19(3):500–510, 1990. 11, 15, 20, 21, 23, 41, 42, 68, 74, 78, 85

[38] Henning Fernau and Andreas Krebs. Problems on finite automata and the Exponential Time
Hypothesis. In Yo-Sub Han and Kai Salomaa, editors, CIAA 2016, LNCS vol. 9705, pages
89–100, 2016. 79

[39] Gabriele Fici, Elena V. Pribavkina, and Jacques Sakarovitch. On the minimal uncompletable
word problem. CoRR, abs/1002.1928, 2010. 23

[40] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. Proceedings of the
American Mathematical Society, 16(1):109–114, 1965. 57

[41] Christopher F Freiling, Douglas S Jungreis, François Théberge, and Kenneth Zeger. Almost
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LNCS, vol. 7381, pages 229–239. Springer, Heidelberg, 2012. 20
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[111] Uraz Cengiz Türker and Hüsnü Yenigün. Complexities of some problems related to synchro-
nizing, non-synchronizing and monotonic automata. International Journal of Foundations of
Computer Science, 26(01):99–121, 2015. 62

[112] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag New York, 2001. 23

[113] Mikhail V. Volkov. Synchronizing automata and the Černý conjecture. In Carlos Mart́ın-
Vide, Friedrich Otto, and Henning Fernau, editors, LATA 2008. LNCS, vol. 5196, pages
11–27, 2008. 11, 14, 15, 16, 20, 21, 22, 56, 73
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