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ABSTRACT

Title: Mathematical modeling of antibody nanoconjugates transport in tumors

Abstract: Nanomedicine offers promising and innovative tools to treat cancer. Recently, liposomes

conjugated with an antibody were developed to target breast cancer cells while sparing healthy tis-

sues from the toxicity of the chemotherapy. These nanoparticles are called antibody-nanoconjugates

(ANCs) and are currently tested in a preclinical trial. However, the pharmacokinetics, biodistribu-

tion, and efficacy of these nanoparticles are not well known and could be improved. Mathematical

modeling can help in understanding the intratumor penetration of the nanoparticles and in quanti-

fying the treatment efficacy.

Pharmacokinetic-pharmacodynamic modeling evaluates the dose-response relationship in vivo and

can be used to optimize the therapy schedule. Here, we described several biological processes us-

ing ordinary differential equations: (i) the untreated tumor growth with a novel reduced Gompertz

model, (ii) the nanoparticle biodistribution using a two-compartment pharmacokinetic model, and

(iii) the therapeutic response with a resistance model. All the models were validated against ex-

perimental data in the statistical framework of nonlinear mixed-effects modeling, which models

simultaneously the dynamic of the population and the inter-individual variability.

Furthermore, we derived a spatial mathematical model with the two-scale asymptotic expansion

method to describe the fluid and nanoparticle transport within the tumor tissue. This approach al-

lowed us to evaluate the barriers that impair a homogeneous distribution of nanoparticles at the

tumor site. Moreover, we propose a computational framework to predict tumor accumulation of

nanoparticles using individual imaging data.

Keywords: antibody-nanoconjugates, nonlinear mixed-effects modeling, two-scale asymptotic ex-

pansion
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Titre: Modélisation mathématique du transport des nanoparticules dans les tumeurs

Résumé: La nanomédecine offre des perspectives ambitieuses pour le traitement du cancer. Récem-

ment, des liposomes conjugués à des anticorps spécifiques ont été développés pour cibler les cellules

tumorales du cancer au sein, en réduisant la toxicité de la chimiothérapie dans les tissus sains. Ces

nanoparticules, appelées ANC (pour antibody nano-conjugate), sont actuellement testées dans une

phase préclinique. Cependant, la pharmacocinétique, la biodistribution et l’efficacité de ces nanopar-

ticules ne sont pas bien caracterisées quantitativement et pourrait être ameliorées. La modélisation

mathématique peut aider à mieux comprendre la dynamique de la pénétration des ANC dans la

tumeur et à améliorer l’efficacité du traitement.

La modélisation pharmacocinétique-pharmacodynamique permet d’évaluer la réponse du traitement

in vivo en fonction de la dose injectée. Dans ce travail, nous avons décrit plusieurs phénomènes bi-

ologiques avec des équations differentielles ordinaires : (i) la croissance tumorale avec un nouveau

modèle réduit de Gompertz, (ii) la biodistribution des nanoparticules avec un modèle pharmacociné-

tique à deux compartiments, et (iii) la réponse au traitement avec un modèle de résistance. Tous

les modèles ont été calibrés dans le cadre des modèles non linéaires à effets mixtes, qui décrivent la

dynamique globale de la population ainsi que la variabilité individuelle.

De plus, nous avons dérivé un modèle mathématique spatial avec la technique de développement

asymptotique double-échelle pour décrire le transport des fluides et des nanoparticules dans le tissu

tumoral. Cette méthodologie nous permet d’évaluer les barrières microscopiques qui empêchent une

distribution homogène des ANC dans la tumeur. Finalement, nous proposons un schéma computa-

tionnel pour prédire l’accumulation des nanoparticules à partir des données individuels d’imagerie.

Keywords: nanoparticules, modèles non linéaires à effets mixtes, pharmacocinétique, pharmaco-

dynamique, développement asymptotique double-échelle
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RÉSUMÉ

Le cancer du sein est le plus diagnostiqué chez les femmes au monde. Les progrès faits par la

science dans le cadre des traitements médicaux et chirurgicaux ont permis d’améliorer les perspec-

tives de survie ainsi que la qualité de vie des personnes affectées par cette maladie. Néanmoins,

beaucoup reste à faire pour améliorer les médicaments. La toxicité des chimiothérapies est no-

tamment un grand problème. Pour limiter ces effets secondaires, une approche innovante consiste à

appliquer des nanotechnologies pour encapsuler l’agent cytotoxique dans des nanoparticules, afin de

cibler les cellules tumorales et de préserver les tissus sains. Cependant, la dynamique de pénétration

de ces nanoparticules dans le tissu tumoral n’est pas bien caractérisée quantitativement. L’objectif

de ce projet de recherche est d’utiliser la modélisation mathématique pour décrire le transport des

nanoparticules dans la tumeur, afin de mieux comprendre leurs propriétés et en optimiser l’efficacité.

Cette thèse se base sur une collaboration interdisciplinaire avec des pharmaciens de l’équipe

SMARTc de l’université d’Aix-Marseille, qui ont développé des immunoliposomes, aussi appelés ANC

(pour antibody nano-conjugate). Ces nanoparticules à base lipidique contiennent un agent cytotox-

ique (docétaxel) et présentent sur leur surface un anticorps (trastuzumab) qui se lie aux récepteurs

Her2 des cellules du cancer au sein. Elles sont actuellement évaluées dans une phase préclinique.

Les questions auxquelles nous nous sommes intéressés sont les suivantes: Comment est-il possible

de prévoir la taille de la tumeur et l’efficacité des nanoparticules ? Quelle est la programmation

optimale du traitement ? Comment le microenvironnement de la tumeur (comme la pression du

fluide interstitiel, la densité des vaisseaux, la taille de la tumeur ou l’expression de Her2) affecte-t-il

le transport des nanoparticules ? Comment est-il possible de personnaliser la dose et le protocole

d’administration des médicaments à partir de données histologiques sur le microenvironnement de

la tumeur ?

Les résultats de ce travail apportent une contribution directe au développement des anticorps-

nanoconjugués dans le traitement du cancer du sein.

La modélisation mathématique peut permettre de mieux comprendre la dynamique sous-jacente

au processus de transport des nanoparticules dans la tumeur, ce qui est la première étape pour

évaluer l’efficacité et adapter la posologie. Quand les ANC sont injectées par voie intraveineuse,

elles doivent traverser différentes barrières: le transport vasculaire jusqu’au site de la tumeur, le

transport trans-épithélial pour passer des capillaires au tissu tumoral, la pénétration dans le com-
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partiment interstitiel et l’absorption par les cellules (endocytose). La complexité liée au transport

des nanoparticules jusqu’au tissu tumoral rend difficile de quantifier la concentration de nanopar-

ticules qui va réellement agir sur les cellules cancéreuses à partir de la dose injectée. Des modèles

biophysiques peuvent décrire ce processus et déterminer la portion de médicament qui arrive aux

cellules tumorales ainsi que leur efficacité.

Ce manuscrit se divise en deux parties: dans la première partie, nous étudions un modèle

pharmacocinétique-pharmacodynamique afin de caractériser la biodistribution des nanoparticules

ainsi que l’efficacité in vivo ; dans la deuxième partie, un modèle spatial de transport de fluide et de

nanoparticules dans la tumeur est dérivé avec la méthode du développement asymptotique double-

échelle.

***

La modélisation pharmacocinétique-pharmacodynamique permet d’évaluer la réponse du traite-

ment in vivo en fonction de la dose injectée. Dans ce travail, nous avons décrit plusieurs phénomènes

biologiques avec des équations différentielles ordinaires: (i) la croissance tumorale avec un nouveau

modèle réduit de Gompertz, (ii) la biodistribution des nanoparticules avec un modèle pharmacociné-

tique à deux compartiments, et (iii) la réponse au traitement avec un modèle de résistance. Tous

les modèles ont été calibrés dans le cadre des modèles non linéaires à effets mixtes, qui décrivent la

dynamique globale de la population ainsi que la variabilité inter-individuelle.

Nous avons dérivé un modèle de Gompertz réduit dans le cadre statistique des modèles non

linéaires à effets mixtes pour décrire la croissance des tumeurs non traitées. Ce modèle, qui com-

porte un paramètre au niveau de la population et un paramètre spécifique à l’individu, a montré

un bon pouvoir descriptif (similaire au modèle de Gompertz) et a amélioré les prédictions du temps

d’initiation de la tumeur. En outre, grâce à l’interprétation biologique des paramètres du modèle,

nous avons pu valider le modèle sur un nouvel ensemble de données en estimant les paramètres

à partir d’expériences indépendantes. Notre modèle devrait être testé afin de prédire la taille des

tumeurs individuelles (c’est-à-dire pour les prévisions dans le futur). En effet, une bonne caractérisa-

tion de la croissance de la tumeur est d’une importance fondamentale pour faire des prédictions sur

la réponse individuelle aux traitements. Bien que notre méthode reste à étendre à des données clin-

iques, ces résultats sont prometteurs pour l’estimation personnalisée de l’âge d’une tumeur à partir

de mesures limitées au moment de la détection. L’estimation de l’âge de la tumeur d’un patient pour-

rait en effet être instructive pour la pratique clinique, par exemple pour contribuer à l’élaboration

de modèles informatiques personnalisés de métastases.

La biodistribution des ANC et leur efficacité ont été évaluées à l’aide d’un modèle

pharmacocinétique-pharmacodynamique. Un modèle pharmacocinétique (PK) à deux comparti-

ments basé sur un système d’équations différentielles ordinaires a été utilisé pour décrire l’échange de

nanoparticules entre les compartiments systémique et tumoral. Le modèle PK a été calibré sur qua-

tre ensembles différents de données, ce qui nous a permis de comparer la distribution des anticorps-

nanoconjugués et des liposomes (sans trastuzumab greffé en surface) dans les compartiments central
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et tumoral. Un modèle pharmacodynamique (PD) de résistance a été utilisé pour évaluer l’efficacité

des nanoparticules. La comparaison entre les liposomes et les ANC n’a pas montré de différences

significatives en termes d’activité cytotoxique, bien que la résistance acquise aux ANC soit légère-

ment inférieure à la résistance aux liposomes. Les mécanismes d’action des liposomes et des im-

munoliposomes devraient être davantage mis en évidence, même si la plus grande efficacité globale

des ANC pourrait être due à une internalisation plus efficace grâce à l’anticorps greffé à la surface.

De plus, l’efficacité des deux nanoparticules était supérieure à celle des médicaments libres grâce à

l’amélioration de la pharmacocinétique des deux formulations liposomales. Toutefois, la PK des ANC

et des liposomes pourrait être évaluée plus en détail. La mesure de la concentration plasmatique du

médicament nous permettrait d’estimer le volume de distribution et la clairance systémique des deux

formulations liposomales. En effet, les immunoliposomes pourraient être reconnus et éliminés plus

rapidement par le système des macrophages ou ils pourraient être absorbés par d’autres organes en

raison du trastuzumab greffé. Dans une perspective d’avenir, un modèle pharmacocinétique physi-

ologique (PBPK) pourrait permettre de mieux comprendre les phénomènes impliqués dans les pro-

cessus d’absorption, de distribution, de métabolisme et d’excrétion. En outre, l’efficacité in vivo des

nanoparticules pourrait être modélisée en tenant compte du docétaxel et du trastuzumab dans le

processus de la croissance tumorale.

La modélisation pharmacocinétique-pharmacodynamique est fondamentale dans le processus

de développement des médicaments: la pharmacocinétique permet d’évaluer l’exposition au site

d’action en fonction de la dose injectée, tandis que la pharmacodynamique décrit la réponse au

traitement. De nouveaux schémas de traitement pourraient être testés expérimentalement en fonc-

tion des prédictions de notre modèle. Il est important de noter que la modélisation de la PKPD permet

de traduire la PK en applications cliniques en quantifiant la dose initiale requise chez l’homme.

***

La grande hétérogénéité des tissus tumoraux ainsi que les propriétés des nanomédicaments ont

un impact sur l’administration des médicaments au niveau du site de la tumeur. Pour comprendre

les principaux facteurs qui affectent la distribution des nanoparticules, nous avons dérivé un modèle

spatial de transport de médicaments qui prend en compte les caractéristiques microscopiques de la

tumeur sur la dynamique globale. L’étude de la distribution des ANC dans la tumeur se base sur

trois points : (i) l’élaboration d’un modèle théorique avec des équations mathématiques pour la de-

scription des phénomènes biologiques, (ii) la simulation numérique des modèles dérivés et (iii) leur

validation avec des données expérimentales. On propose un modèle théorique de concentration des

ANC dans les vaisseaux et dans le compartiment interstitiel couplé avec l’écoulement des fluides dans

le tissu tumoral. La pénétration des nanoparticules dans la tumeur se produit par diffusion et convec-

tion. Il faut donc d’abord caractériser l’environnement tumoral, c’est-à-dire le transport des fluides

interstitiel et sanguin. Le tissu tumoral peut être vu comme un milieu poreux hétérogène irrigué

par des capillaires très irréguliers et perméables. Avec la méthode d’homogénéisation nous avons

construit un modèle asymptotique qui décrit l’écoulement des fluides au niveau macroscopique, en
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tenant compte de la microstructure du tissu tumoral (i.e., le réseau des capillaires). Le modèle est

un couplage d’équations de Darcy et présente des comportements différents selon la perméabilité

et la structure capillaire paramétrée. Ainsi, le modèle prend en considération l’hétérogénéité et

la porosité du tissu tumoral. Enfin, nous avons développé un modèle asymptotique de diffusion,

convection et réaction des nanoparticules avec la méthode d’homogénéisation pour décrire la con-

centration des ANC dans les capillaires et dans le compartiment interstitiel. Le terme de réaction

prend en compte l’interaction des nanoparticules avec les cellules tumorales. Après avoir fait une

analyse mathématique du modèle dérivé, nous avons obtenu des résultats numériques en utilisant

la méthode des différences finies. Les simulations numériques ont montré que l’environnement tu-

moral (i.e., la structure des capillaires et leur perméabilité) a un fort impact sur la pénétration des

ANC, en accord avec les observations biologiques. Ce résultat qualitatif est une étape essentielle pour

garantir la validité du modèle. La calibration du modèle a été effectuée empiriquement ou à l’aide

des différentes données à disposition: des données in vitro qui permettent d’analyser le mécanisme

d’absorption par les cellules (pour déterminer le terme de réaction) ; les données in vivo donnent des

informations sur la perméabilité des vaisseaux et sur la clairance des nanoparticules dans le plasma.

Enfin, nous avons proposé une méthodologie pour intégrer les données d’imagerie individuelles

dans le modèle mathématique spatial. En particulier, nous avons utilisé des données ex vivo pour

récupérer les tenseurs de perméabilité et avons effectué des simulations individuelles de la péné-

tration des nanoparticules dans le compartiment interstitiel de la tumeur. Ces prédictions ont été

comparées aux résultats du modèle pharmacocinétique calibré à partir de mesures macroscopiques.

Ces résultats sont prometteurs pour la personnalisation des traitements. Les technologies émergentes

d’acquisition d’images permettent de quantifier les propriétés microscopiques de la tumeur in vivo.

Ces données peuvent être intégrées dans le modèle afin de prédire l’accumulation de nanoparticules

et de programmer la dose optimale pour améliorer l’efficacité thérapeutique.

Plusieurs stratégies pourraient être employées pour améliorer la délivrance des médicaments par

les nanoparticules au niveau du site de la tumeur. Selon notre analyse, la pression du fluide inter-

stitiel est la principale barrière d’une pénétration inefficace dans le tissu tumoral. Pour diminuer

la pression du fluide interstitiel, la normalisation vasculaire pourrait être une solution possible. La

diminution de la surface vasculaire et de la conductivité hydraulique des parois des vaisseaux ré-

duirait la filtration du fluide et la pression du fluide interstitiel. Cependant, elle entraînerait égale-

ment une perte de filtration des nanoparticules en raison de la perte de perméabilité des parois des

vaisseaux. Une deuxième stratégie possible pourrait être la normalisation de la matrice interstitielle.

L’augmentation de la conductivité hydraulique interstitielle permettrait de réduire la pression du flu-

ide interstitiel. De plus, la normalisation de la matrice interstitielle pourrait améliorer la diffusion

des nanoparticules, qui est affectée par le collagène. En outre, les propriétés des immunoliposomes

pourraient être optimisées. Dans ce travail, nous avons observé que la taille des nanoparticules joue

un rôle important dans leur transport. En effet, les grosses particules sont moins susceptibles d’être

extravasées dans l’interstitium de la tumeur que les petites particules et leur diffusion est entravée.

Par conséquent, la réduction de la taille pourrait favoriser une pénétration homogène dans le tissu
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tumoral. En outre, le taux de greffe du trastuzumab pourrait affecter l’affinité de liaison des nanopar-

ticules avec les cellules et les taux d’internalisation. Les expériences in vitro pourraient fournir des

informations sur cette propriété des immunoliposomes. De plus, le médicament encapsulé dans les

nanoparticules pourrait être modulé pour optimiser la quantité de médicament qui atteint le site

de la tumeur. Une étude récente a montré qu’il pourrait y avoir une dose seuil du nombre de NP

qui pourrait améliorer la délivrance du médicament (à savoir, 1 trillion de nanoparticules chez la

souris). En outre, nous avons observé que les ANC pourraient améliorer la vascularisation. L’impact

des immunoliposomes sur la vascularisation de la tumeur pourrait être étudié afin d’évaluer les effets

sur la perméabilité des parois des vaisseaux. En particulier, la couronne de protéines qui se forme

à la surface des nanoparticules pourrait apporter de l’oxygène à la tumeur, améliorant ainsi sa per-

méabilité. En outre, la couronne protéique pourrait être différente selon la composition chimique

de la nanoparticule, ce qui pourrait mettre en évidence les différences d’accumulation de la tumeur

entre les liposomes et les immunoliposomes.
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ACRONYMS

NP Nanoparticle

ANC Antibody-nanoconjugate

NLMEM Nonlinear mixed effects modeling

IFP Interstitial fluid pressure

IFV Interstitial fluid velocity

MVP Microvascular pressure

EPR Enhanced permeability retention

PK Pharmacokinetics

PD Pharmacodynamics
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CHAPTER 1

INTRODUCTION

Breast cancer is the most common malignant tumor diagnosed in women worldwide [1]. In the

last decades, several innovative treatments have improved life expectancies and the quality of life of

people who are affected by this disease. Indeed, the majority of early-stage breast malignancies is

curable with currently available therapeutical options. However, advanced metastatic breast cancer

is still an incurable disease and the goals of therapies are to control symptoms and prolong survival

with low-toxic treatments [2].

Toxicity associated with cytotoxic drugs is a challenging problem in breast cancer therapy. To

overcome this issue, nanoparticles (NPs) can be developed to target the tumor site and to spare

healthy tissues. In this thesis, we focus on liposomes conjugated with cancer cell-specific antibodies

[3], which are called antibody-nanoconjugates (ANCs). Mathematical modeling can help in better

understanding the properties of these nanoparticles, enabling us to quantify the intra-tumor pene-

tration and their efficacy. Importantly, it provides a link between different kinds of data (such as in

vitro, in vivo and ex vivo data) that can be used to understand the nanoparticle contribution in the

tumor growth kinetics. This can be applied to make predictions of the individual NPs accumulation

and response to the therapy and potentially schedule personalized treatments.

This thesis is the result of a three year research project in the INRIA team MONC at the Institut

de Mathematiques de Bordeaux (University of Bordeaux). The study has been carried out in collab-

oration with the SMARTc team1 in Marseille, who realized the experiments and provided the data to

analyze.

The document is divided into two parts: in the first part, the pharmacokinetic-pharmacodynamic

of the nanoparticles is investigated to assess the nanoparticles dose-response relationship; in the sec-

ond part, a spatio-temporal model of ANC transport in the tumor tissue is introduced to quantify the

intra-tumor penetration of the nanoparticles according to the characteristics of the tumor architec-

ture. This chapter introduces the biological background and relevant questions that were addressed,

as well as the methodology that has been applied.

1SMARTc, CRCM Inserm UMR1068, CNRS UMR7258, Aix Marseille University, France
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1.1 Biological background

1.1.1 Breast cancer overview

Breast cancer is a disease that develops primarily in the breast tissue, typically in the lobules or the

ducts of the breast. It occurs when mutations of genes that regulate cell growth let cells proliferate

in an uncontrolled way. Therapies and prognosis strongly depend on the histological and molecular

characteristics and several classifications of breast cancer have been made (see Figure 1.1). Here,

we shortly explain the major features of breast cancer and its treatment and we invite the reader to

read [2] and [4] for further details.

Histology. Invasive ductal carcinoma is the most common breast cancer (50%-70% of patients)

followed by invasive lobular carcinoma (5%-15% of cases) [4].

in the Ashkenazi group (10.2%) in a US nationwide 
study28. Germline BRCA testing will now be performed 
as a companion diagnostic in patients with metastatic 
breast cancer29 given the availability of poly(ADP- 
ribose) polymerase (PARP) inhibitors, which prolong 
progression- free survival (PFS) and improve quality of 
life30,31, as a targeted therapy for BRCA mutation carriers 
in HER2-negative metastatic breast cancer32,33.

Several syndromes related to germline mutations of 
genes involved in DNA repair and maintaining genomic 
integrity have been shown to be linked to, to a lesser 
degree, the inherited breast cancer risk (TABLE 1). Next- 
generation sequencing has enabled panels of genes to be 

screened — beyond BRCA1 and BRCA2 — to determine 
the inherited breast cancer risk34–36, and include ATM, 
CHEK2, PALB2, PTEN, STK11 and TP53 (REF.37).

Lifestyle and other environmental factors
Breast cancer epidemiology pattern differences across 
countries are further compounded by cultural factors, 
lifestyle factors and national awareness campaigns. The 
increase in breast cancer incidence between 1980 and 
the late 1990s is likely due to changes in reproductive 
factors, with advanced maternal age for first pregnancy, 
and an increase in awareness and mammography screen-
ing38,39. Several explanations have been offered as to why  

Invasive
Ductal carcinoma no special 
type (NST)
• Develops from DCIS; fibrous 
 response to produce a mass; 
 metastasizes via lymphatics 
 and blood
Lobular carcinoma (ILC)
• Isolated tumor cells (CDH1 
 mutations) minimal fibrous 
 response; metastasizes 
 preferentially via viscera

Triple-negative
ER–, PR–, HER2–; high 
grade; high Ki67 index; 
NST histology; special 
type histology 
(metaplastic, adenoid 
cystic, medullary-like 
and secretory); poor 
prognosis except for 
some special types

HER2-enriched 
(non-luminal)
ER–, PR–, HER2+; 
high grade; high Ki67 
index; NST histology; 
aggressive disease 
but responds to 
targeted therapies; 
intermediate 
prognosis

Luminal B-like HER2+
ER+ but lower ER 
and PR expression 
than luminal A-like; 
HER2+; higher grade; 
high Ki67 index; NST 
and pleiomorphic; 
responds to targeted 
therapies; intermediate 
prognosis

Luminal B-like HER2–
ER+ but ER and PR 
expression lower than 
in luminal A-like; HER2–; 
higher grade; high Ki67 
index; high-risk GES; 
NST, micropapillary and 
lobular pleiomorphic 
histology; intermediate 
prognosis

Luminal A-like
Strongly ER+ and PR+; 
HER2–; low proliferation 
rates; typically low 
grade; low Ki67 index; 
low-risk GES; NST, 
tubular cribriform 
and classic lobular 
histology; good 
prognosis

Surrogate
intrinsic

subtypes

Basal-like
TP53 
mutations; 
genetic 
instability; 
BRCA 
mutations;
medullary-like 
histology 
poorly 
differentiatied

HER2-enriched
HER2 amplification; 
GRB7 amplification; 
PIK3CA mutations;
TOPO2 and/or MYC
amplification; NST, 
pleiomorphic lobular 
and micropapillary
histology

Luminal B
PI3KCA mutations (40%);  ESR1 
mutations (30–40%)a; ERBB2 and 
ERBB3 mutations; NST, micropapillary 
and atypical lobular histology

Claudin-
low
Largely 
triple-
negative;
metaplastic

Normal-likeb

Luminal A
Activation of ERS1, 
GATA3, FOXA1, XBP1; 
NST, tubular cribriform 
and classic lobular 
histology

Intrinsic
subtypes 

(PAM50)

10–15% 13–15% 10–20% 60–70%

Proliferation

High grade

Basal-like genes

HER2 expression

ER expression

Low grade

Preinvasive
Ductal carcinoma in situ (DCIS)
• Spreads through ducts and 
 distorts ductal architecture; 
 can progress to invasive 
 cancer; unilateral
Lobular carcinoma in situ (LCIS)
• Does not distort ductal 
 architecture; can be 
 bilateral
• Risk factor rather than 
 precursor

Histological subtypes

Areola

Adipose tissue
Fatty connective tissue

Nipple
Collecting duct

Lobule
Duct

Basal
myoepithelial cell

Lumen
Luminal

epithelial
cell

Rib
Muscle
Intercostal muscle

Fig. 1 | Breast cancer. All breast cancers arise in the terminal duct lobular units 
(the functional unit of the breast) of the collecting duct. The histological and 
molecular characteristics have important implications for therapy , and several 
classifications on the basis of molecular and histological characteristics have 
been developed. The histological subtypes described here (top right) are the 
most frequent subtypes of breast cancer ; ductal carcinoma (now referred to 
as ‘no special type’ (NST)) and lobular carcinoma are the invasive lesions; their 
preinvasive counterparts are ductal carcinoma in situ and lobular carcinoma 
in situ (or lobular neoplasia), respectively. The intrinsic subtypes of Perou and 
Sorlie1 are based on a 50-gene expression signature (PAM50)321. The surrogate 

intrinsic subtypes are typically used clinically and are based on histology and 
immunohistochemistry expression of key proteins: oestrogen receptor (ER), 
progesterone receptor (PR), human epidermal growth factor receptor 2 
(HER2) and the proliferation marker Ki67. Tumours expressing ER and/or PR 
are termed ‘hormone receptor- positive’; tumours not expressing ER , PR and 
HER2 are called ‘triple- negative’. The relative placement of the boxes  
align with the characteristics (for example, proliferation and grade) in  
green. −, negative; +, positive. GES, gene expression signature. aESR1 
mutations induced by aromatase inhibitor targeted therapy. bArtefact; 
expression of normal breast components due to low tumour cellularity.

  3NATURE REVIEWS | DISEASE PRIMERS | Article citation ID:            (2019) 5:66 
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Figure 1.1. Classification of breast cancer according to the histology and the molecular alterations (from [2]).

Molecular alterations. Two major molecular alterations affect the prognosis and the treatment of

breast cancer: the hormon receptors and the epidermal growth factor receptor. The estrogen re-
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ceptor alpha (ERα) is overexpressed in over half of all breast cancers [5]. ERα is a ligand-activated

transcription factor that stimulates cell proliferation in the breast tissue when activated by estrogens.

A further marker of ERα signaling is the progesterone receptor (PR). Breast cancers with overexpres-

sion of one of these two steroid hormone receptors are classified as HR+. The second main molecular

alteration concerns the epidermal growth factor (ERBB2, also known as Her2 or Her2/neu). Breast

cancer with overexpression of Her2 receptors are classified as Her2-positive. Amplification of this

oncogene plays an important role in the development of certain types of aggressive breast tumors.

However, this receptor has recently become an important biomarker since drugs targeting Her2 re-

ceptors have drastically improved the prognosis of Her2-positive breast cancer [6].
Breast cancers that don’t express ERα, PR and Her2 receptors are called triple-negative and lack

targeted therapies, implying a worse prognosis. It represents approximately 15% of all breast tumors

[7].

Stages. Breast cancer stage is usually denoted by a number on a scale from I to IV based on the extent

of the disease (tumor size, skin or chest invasion, lymph nodes involvement and metastatic spread).

Stage I is associated to non-invasive breast cancers, while stage IV describes distant metastatic dis-

eases. Recently, molecular alterations have been included in the determination of breast cancer stage

[4].

Standard treatments. Therapies for early-stage breast cancer usually include local intervention and

systemic treatments to eliminate the tumor and to prevent metastatic spread. The goal of advanced

breast cancer treatments is rather to prolong life and control symptoms with palliative care. Lo-

cal treatment consists of surgical intervention with the removal of the tumor possibly followed by

radiotherapy. Systemic treatments can be adjuvant (before surgery), neo-adjuvant (after surgery)

or both. They can involve chemotherapy, targeted therapies or a combination of them according

to the molecular alteration of the cancer cells. Among the targeted therapies, the introduction of

trastuzumab (Herceptin®) has revolutionized the treatment of Her2-positive breast cancer.

Moreover, trastuzumab emtansine (T-DM1, Kadcyla®) is an antibody-drug conjugate consisting of

trastuzumab covalently linked to the microtubule inhibitory drug DM1 and has recently been ap-

proved to treat Her2-positive advanced breast cancer [8].

The toxicity of chemotherapy drugs remains a major issue in breast cancer treatment. Nanotech-

nology offers potential and hopes to breast cancer research with the development of innovative

nano-formulations of chemotherapy [9]. With a deeper understanding of the molecular properties

of breast cancer, the nano-carriers can indeed better target the tumor cells while sparing healthy

tissues [10]. The next sections provide an overview of nanomedicine and its role in breast cancer

therapy.

1.1.2 Nanomedicine

Nanomedicine is an emerging branch of medicine that applies tools and knowledge of nanotech-

nology, involving the use of materials at the nanoscale (1-100 nm). Research in this field spans from
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nanoscience to chemistry, physics, biology and pharmacology. Early and rapid diagnosis, targeted

drug delivery, innovative ways to provide tissue and organ replacement and personalized medicines

are the main challenges of nanomedicine [11]. Here, we provide a short overview of the major

applications of nanomedicine and refer to [12] for an exhaustive review. Then, we focus on the

mechanism of drug delivery in tumors by liposomes.

Nanoparticles for drug delivery can improve the pharmacokinetics (i.e., the absorption, distri-

bution, metabolism, and excretion) of the drug. Nanoengineered devices can indeed increase the

bioavailability of a drug in a specific part of the body over a period of time. For example, in anti-

cancer therapy, they can easily circulate in the blood vessel network and target the tumor thanks to

the leaky neoplastic vasculature. Moreover, nanocarriers might regulate drug release, reduce drug

clearance rate and lower the side effects on non-target tissues [13]. Furthermore, their ability to in-

teract with molecules can overcome biological barriers and improve the uptake across the cell mem-

brane. Nanosized formulations include liposomes, polymeric nanoparticles, dendrimers, inorganic

nanoparticles and nanocrystals and are mainly applied in the treatment of cardiovascular diseases

[14], brain diseases and disorders [15], and cancer. Doxil® and Abraxane® are two examples of

FDA-approved nanodrugs used to treat advanced metastatic breast cancer [10].

Nanotechnologies also provide alternative approaches for medical diagnosis. Nanoparticle con-

trast agents can be used for ultrasound or magnetic resonance imaging (MRI) to improve contrast

[16]. They are mainly used to detect cardiovascular diseases and tumors. Nanosensors can be en-

gineered to label specific structures or microorganisms to monitor physical parameters or detect the

presence of chemical species [17]. Theranostic nanoparticles are biomedical devices that combine

diagnostic and therapeutic agents in a single platform and are designed for specific and personalized

disease management [18].

Furthermore, nanomedicine offers promises to tissue and organ engineering. The primary goal

is to create devices that can substitute tissues. Nanomaterials can be synthesized to provide new

functions and properties to implants. For example, carbon nanostructures are integrated in bone

tissue engineering as they provide mechanical strength and useful electronic properties [19].

1.1.2.1 Liposomes: mechanism of drug delivery in cancer treatment

Liposomes are spherical vesicles with a membrane composed of a lipid bilayer that can encapsulate

drugs and imaging agents. They are currently used for cancer treatment and diagnosis. In the last

three decades, efforts have been made to improve their efficiency, biocompatibility, biodegradability,

toxicity profile, capability to incorporate multiple agents (both hydrophilic and hydrophobic drugs)

and, finally, actively target the tumor site [20].

The original liposome preparation dates back to 1965 by Bangham et al. [21], who established the

basis for model membrane systems. Liposomes were first studied as drug delivery systems in the 70s

[22, 23, 24]. However, when intravenously administered, the conventional liposomes were rapidly

captured by the mononuclear phagocyte system (MPS) and removed from blood circulation, leading
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Figure 1.2. History of the development of liposomes for drug delivery: conventional liposomes (left); stealth
liposomes (center); immunoliposomes (right). Images adapted from [30].

to inefficient drug delivery (Figure 1.2, left). Therefore, at the end of the 80s, a second formula-

tion of long-circulating liposomes has been developed to reduce the interactions between the MPS

macrophages and the nanoparticles. Among these long-circulating liposomes, there are stealth lipo-

somes, which are nanocarriers obtained by modifying the surface with hydrophilic polymers such as

polyethylene glycol (PEG) [25, 26] (see Figure 1.2, center). The hydrophilic polymers possess a flex-

ible chain that occupies the space around the liposome surface and excludes other macromolecules

from this space, inhibiting the interaction between the macrophages and the liposomes. As a re-

sult, long-circulating liposomes can passively accumulate inside other tissues and organs, taking

advantage of the leaky vasculature in correspondence of the tumor. This phenomenon, called pas-

sive targeting, is particularly evident in tumors undergoing angiogenesis [27]. Finally, starting from

the 90s, efforts have been focused on developing stealth-liposomes that actively target tumor sites

[28]. These stealth-immunoliposomes are obtained by coupling specific ligands to the liposomal

surface that bind tumor cell-specific receptors (Figure 1.2, right). For instance, anti-Her2 monoclonal

antibodies can be used as ligands to target Her2 receptors [29, 3].

Doxil® (pegylated liposomal doxorubicin) is the first FDA approved nanodrug (1995) [31]. It is

used in the treatment of some types of cancer, such as metastatic ovarian cancer, metastatic breast

cancer and AIDS-related Kaposi’s sarcoma.

As stated before, passive and active targeting are the main strategies that allow intravenously

injected liposomes to reach the tumor site (Figure 1.3). Here below, we explain the main features of

these two mechanisms.
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Passive targeting

Big molecules, such as nanoparticles, liposomes or macromolecular drugs, tend to accumulate

in tumor tissues much more than they do in healthy tissues. This phenomenon is called Enhanced

Permeability Retention (EPR) effect [27]. Solid tumors are characterized by leaky vasculature that

is necessary for the development of the tumor (angiogenesis). In addition, solid tumors lack of

an adequate lymphatic drainage, leading to a limited circulatory recovery of the molecules that

go through the vasculature gaps. As a results, macromolecules and nanoparticles accumulate in the

tumor microenvironment. Long circulating liposomes improve the EPR effect, since they have longer

interaction with the target and are more likely to pass through the vasculature gaps.

Important parameters that affect passive targeting through the EPR effect, apart from the PEGy-

lated liposomes, are the size of the liposomes, the composition and the charge on the surface of the

nanoparticles [32]. In particular, the permeation of the nanoparticles within the tumor is highly in-

fluenced by the size of the nanoparticles. Small nanoparticles (∼10 nm) rapidly diffuse throughout

the tumor matrix, while large nanoparticles (∼100 nm) stay close to the vasculature [32]. Physical

and chemical properties of the nanoparticles affect their pharmacokinetics and, therefore, their tu-

mor accumulation capacity [32]. The process involving cell internalization of liposomes is mainly

endocytosis [33]. Depending on their physical attributes, such as particle size, shape and surface

charge and on the cell line, they are subject to a particular cellular internalization route or a com-

bination of processes. These include, for example, phagocytosis, clathrin-mediated endocytosis (or

receptor-mediated endocytosis), clathrin-independent endocytosis, caveolae and macropinocytosis.

Active targeting

Actively targeted liposomes have been designed to improve tumor specificity. They are prepared

by engrafting targeting moieties, such as molecule ligands, peptides or monoclonal antibodies, on the

liposomal surface. When liposomes accumulate in the tumor microenvironment, they are endocy-

tosed into the cells by interacting with specific cell surface receptors (receptor-mediated endocytosis)

[34]. However, a comparison between passive and active targeting reveals a lack of significant dif-

ference in tumor accumulation [35, 36].
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Passive targeting

2. Expected improvements in pharmacokinetics with
nanoparticles

2.1. Achieving longer exposure through decreased clearance

In vivo elimination of conventional liposomes, and to a lesser extent
for other nanoparticles, has been extensively studied and reported in
the past (Zamboni, 2005). Briefly, it depends on upstream interactions
with specific proteins in plasma and the activity of Mononuclear Pha-
gocyte System (MPS) (Zamboni, 2005). Macrophages indeed play a
major role; 80%–90% of nanoparticles will get engulfed in the liver or
spleen and degraded. Although this process occurs rapidly, liposomes
show longer stay in the body as compared with free drugs (Gabizon
et al., 1989). Even if first-generation liposomes displayed reduced
clearance as compared with standard drugs, different strategies have
been further developed next to limit organ uptake and immune system-
related clearance. The most common strategy consists of masking the
nanoparticle through surface pegylation, thus generating stealth, or
second-generation nanoparticles (Fanciullino et al., 2013a). Second-
generation liposomes are less likely to be recognized by MPS and ac-
cumulate in the spleen and liver (Allen and Hansen, 1991), enabling the
drug to stay in the blood stream longer, as demonstrated for instance in
stealth liposomal doxorubicin (Gabizon et al., 1994).

2.2. Reducing toxicity via higher tumor specificity

Solids tumors present a leaky vasculature, originally allowing nu-
trient supply necessary for sustained tumor growth. This anarchical
organization has been defined by Maeda as enabling Enhanced
Permeability and Retention (EPR) effect (Maeda, 2001). Liposomal
nanoparticles could passively target the tumor by going through the
vasculature gaps (i.e., 200 nm (Sawant and Torchilin, 2012)) and be
retained near the tumor because of deficient lymphatic drainage
(Fig. 2). In preclinical studies, radiotherapy has been sometimes used to
enlarge these gaps by depleting the pericytes; further enhancing per-
meation (Kobayashi et al., 2013) and thus tumor accumulation
(Lammers et al., 2008). Developing stealth agents (e.g., PEG, see above)
is another strategy to increase the EPR effect since the longer nano-
particles stay in the blood, the more they will pass through the

vasculature gaps to target tumor tissue. This could explain why some
liposomal nanoparticles display both decreased clearance and a higher
volume of distribution (Vd) with limited drug accumulation in healthy
tissues (Fanciullino et al., 2013a).

In spite of a more specific delivery to the tumor, the EPR effect alone
usually achieves less than a 2-fold increase in tumor accumulation
(Nakamura et al., 2016). Efforts have thus been made to develop third
generation liposomes that display more active targeting. This is mostly
achieved by grafting an agent on the surface that will specifically re-
cognize cancer cells (Fig. 3). Many moieties (e.g., small-molecule li-
gands, peptides and monoclonal antibodies) have been used over recent
years to this end - including targeting EGFR (Xu et al., 2013), folate and
transferrin receptors, tumor antigens (Deshpande et al., 2013) and neo-
antigens that appear on the surface of irradiated tumor cells (Lowery
et al., 2011).

Third generation liposomes can also be coupled to another up-
coming strategy; triggered systems that can be functionalized with heat,
ultrasound, light, enzymes or pH. Among them, the preclinical devel-
opment of temperature sensitive liposomes exploits temperature or
local hyperthermia, improving tumor targeting and cytotoxicity (Shin
et al., 2016).

2.3. Main parameters driving nanocarrier pharmacokinetics

2.3.1. Size
As discussed since 1999 (Nagayasu et al., 1999), size is a major

factor that impacts liposomal nanoparticle behavior, once adminis-
tered. The smaller nanoparticles are, the less they will be recognized by
MPS and be eliminated from the body (Liu et al., 1992). However it has
been demonstrated that nanoparticles< 8 nm are mostly eliminated by
the kidneys (Choi et al., 2007), not to mention a loss of stability in
plasma and therefore quicker clearance below a given size. Being too
big (i.e., > 200 nm) is also a major drawback, since it prevents nano-
particles from benefitting from the EPR Effect. Several preclinical stu-
dies have shown how size can affect the distribution phase within
tumor tissue and does indeed matter for tumor accumulation. When
testing three different batches of stealth liposomes of 5-FU of varying
size (i.e., 70–250 nm) in mice bearing resistant breast tumors, data
showed that the smaller the liposomes, the greater the tumor uptake

Fig. 2. Schematic representation of the EPR Effect.
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(Fanciullino et al., 2014). Consequently, better efficacy and longer
survival were achieved in animals treated with smaller liposomes, thus
demonstrating how size can impact tumor tissue distribution and ulti-
mately efficacy. Similar results were found by Charrois et al. who stu-
died the influence of liposome diameter on tumor distribution in mice
bearing mammary carcinoma (Charrois and Allen, 2003). Statistically
significant lower accumulation and reduced efficacy were evidenced for
bigger liposomes. Overall, those experimental results confirmed older
studies reporting that the optimal size for nanoparticles is in the
100–200 nm range, most probably because of the EPR Effect (Mayer
et al., 1989).

2.3.2. Composition
The use of stealth or a targeting agent deeply modifies the phar-

macokinetics of the nanoparticle. The choice of components is critical
since it will modulate the stability of the nanoparticle in its systemic
circulation by affecting the RES recognition and subsequently the drug
release. Unstable liposomes will display increased plasma clearance and
reduced circulation times compared to stable ones. The Gregoriadis
group extensively studied the major role of composition in phospholi-
pids and cholesterol in the early 1980’s (Senior and Gregoriadis, 1982);
subsequent studies have further addressed the issue of lipids and cho-
lesterol ratios required to achieve the most stable liposomes with op-
timal controlled release, especially the critical role cholesterol plays
(Senior and Gregoriadis, 1982). Indeed, cholesterol’s inclusion in the
lipid bilayer of a liposome stabilizes its structure and decreases drug
leakage and the risk of opsonization, thus extending circulation time
(Ait-Oudhia et al., 2014; Briuglia et al., 2015).

2.3.3. Electric charge
The zeta potential of liposomal nanoparticles is another major factor

influencing stability and therefore pharmacokinetics. Of note, this po-
tential depends on the components used to synthesize liposomes. Geng
et al. studied the impact of cholesterol on the stability of a doxorubicin
PEGylated liposome - this time focusing on electric charge (Geng et al.,
2014). Using two cholesterol derivatives (i.e., positively charged VS.
neutral), pharmacokinetic studies in rats showed that neutral choles-
terol liposomes displayed higher stability than positively charged ones.
Similarly, the Torchillin group evaluated the clearance of liposomes
displaying different surface properties in mice (Levchenko et al., 2002).

Different charged lipids were tested, with or without surface pegyla-
tion. Charged liposomes showed higher clearance, especially the ne-
gatively charged ones, which were preferentially found in the liver.
Adding PEG-750 helped counter-balance the higher clearance of posi-
tively charged liposomes but not for the negatively charged ones.
Conversely, PEG-5000 partly reduced negatively charged liposome
clearance, thus highlighting how complicated the combined impacts of
electric charge and pegylation on nanoparticle pharmacokinetics can
be. Recent studies have confirmed the deleterious impact of a negative
charge on liposome clearance, and shown how pegylation can help
improve their pharmacokinetics (Zhang et al., 2016). Additionally,
other studies focused on the impact of positively charged nanoparticles
on tumor uptake. For instance, Campbell et al. have studied the bio-
distribution of cationic liposomes in human colon cancer bearing mice
(Campbell et al., 2002). The impact of the cationic lipid ratio on dis-
tribution was investigated: increasing cationic lipids by 10% decreased
spleen uptake, while a further increase did not further reduce liposome
accumulation in the spleen. Regarding tumor uptake, although differ-
ences in the total tumor accumulation were not statistically significant,
intravital microscopy revealed that cationic charges specifically target
tumor vasculature. Increasing the charge content led to the doubling of
neo-vessels uptake, suggesting its impact on tumor distribution and the
benefit of using charged lipids for increased tumor specificity. Indeed,
as compared with neutral liposomes, the cationic ones display a higher
tumor uptake that can be hindered when pegylated. Positive charge and
pegylation are then two opposite characteristics that can modulate
tumor specificity. Both can be combined to achieve adequate targeting.
For instance, Li et al. evaluated the quantitative relationship between
these parameters on pancreatic cancer cells (Li et al., 2011), using li-
posomes with alterable zeta potential and using a methoxy-analog of
PEG-DSPE to reduce the electric charge. Data showed that each mol %
of PEG could be compensated with a 4mV increase, thus suggesting the
existence of a balance between those two parameters to maximize
stealth while ensuring tumor internalization of cationic liposomes.
Once again, this highlights the complexity of how nanocarrier compo-
sition must be finely tuned to ultimately optimize their pharmacoki-
netics, especially at the tumor level.

2.3.4. Protein corona
When in biological fluids, the liposome surface attracts proteins and

Fig. 3. Schematic representation of active tumor cells targeting for immunoliposomes.
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Figure 1.3. Passive targeting (top) and active targeting (bottom): mechanisms of drug delivery of the im-
munoliposomes. Images adapted from [37].

1.1.3 Development of antibody-nanoconjugates against breast cancer

Several efforts have been made to reduce the toxicity and improve the specificity of chemoterapy

treatments of breast cancer. The research group SMARTc has developed a liposomal formulation

that combines docetaxel and trastuzumab to target breast cancer cells [3]. These nanocarriers are
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currently in a preclinical trial. In this section, we explain the main characteristics of this kind of

nanoparticles and how they are obtained.

Docetaxel is a chemotherapy drug belonging to the family of taxanes. It is an anti-mitotic drug

that arrests the mitosis cycle at the metaphase/anaphase stabilizing the microtubules. Then, since

the microtubules don’t disassemble in presence of docetaxel, they accumulate inside the cell lead-

ing to cell apoptosis. Trastuzumab is a monoclonal antibody that binds Her2 receptors, inducing an

immune-mediated response that causes internalization and downregulation of Her2. Docetaxel com-

bined with trastuzumab is widely used to treat Her2 positive breast cancers, (neoadjuvant and/or

adjuvant [38], both for advanced and early-stage diseases).

The high cytotoxicity of docetaxel affects all dividing cells in the human body, leading to severe

adverse effects. To overcome this issue, the chemotherapy drug has been incorporated into stealth

liposomes engrafted with trastuzumab on the surface to target better tumor cells and to spare healthy

tissues. These immunoliposomes are called antibody-nanoconjugates (ANCs). A schematic of ANCs

is shown in Figure 1.4.

The ANCs developed by Rodallec et al. are made of natural lipids [39] and the diameter of

the nanoparticle is 140 nm. Other details on the encapsulation of docetaxel and the trastuzumab

engraftment on the liposome surface are detailed in [39].

Figure 1.4. Stealth liposome with targeting ligand: the liposome is composed by a lipid bilayer and it contains
the chemoterapy drug (docetaxel). On the surface, the PEGylated chain impairs the interactions with the
macrophages and the ligand (trastuzumab) targets Her2 receptors on breast cancer cells. Figure adapted
from [40].
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1.1.4 Open questions

The main challenge of nanoparticles for drug delivery is to enhance the drug efficacy at the site of

action while reducing toxicity. The quantification of the efficacy of ANCs is not a trivial task due to

the higher complexity associated with the nanoformulation compared with the standard treatments.

Indeed, several parameters might affect the journey of the nanoparticles as well as the cellular up-

take. Furthermore, the characteristics of the tumor tissue - such as interstitial fluid pressure, the

permeability of the vessel walls, and tumor size - can impact the absorption of the nanoparticles.

Moreover, the heterogeneity of the tumor microenvironment impairs a homogeneous distribution of

the NP (e.g., some regions of the tumor might have high enhanced permeability retention, while

others might show a limited vascular permeability), implying also a heterogeneous response in the

in vivo experiments.

The quantification of the biodistribution properties of the nanoparticle is of fundamental im-

portance to ameliorate the ANC design. Moreover, efficacy studies allow patient-specific therapy

scheduling.

The following points are the main questions that we want to address in this study:

• How is it possible to predict the tumor size and the NP efficacy? Which is the optimal treament

scheduling? Which is the dose for first clinical studies?

• How does the tumor microenvironment (such as interstitial fluid pressure, vessel density, tu-

mor size or Her2 expression) affect the transport of nanoparticles? How could it be possible

to personalize the drug dose and scheduling from histology data about the tumor microenvi-

ronment?

• Which is the optimal design of ANCs (size, trastuzumab graft rate) to increase their concen-

tration in the tumor tissue?

Mathematical modeling is a powerful tool to (i) improve our understanding of biological processes

of cancer and (ii) to help physicians and experimental design. For the first purpose, mechanistic

models are built under given assumptions and tested against experimental data. On the one hand,

this methodology allows us to strengthen or reject the initial theory and helps in formulating new

hypotheses. On the other hand, the quantification of the treatment efficacy and predictions of the

tumor progression are necessary for clinical decision management. Furthermore, in a preclinical

context, they provide insights of new therapeutic options including optimal scheduling that can

eventually be translated into clinical applications.

In this thesis, we focus on the two purposes: (i) we investigate the efficacy of the nanoparticles

as function of the concentration to schedule an optimal treatment and (ii) we develop a continuum

model to understand how nanoparticles penetrate into the tumor tissue.
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1.2 State of the art

1.2.1 Overview of mathematical models in cancer nanomedicine

Nanomedicine offers promising therapeutical and diagnostic options, but there are several chal-

lenges that need to be investigated. Low and heterogeneous nanoparticle accumulation are the

major limitations of nanomedicine [35]. NP physicochemical parameters, tumor models and cancer

types affect the low delivery efficiency. Therefore, it is necessary to define techniques and tools for

a quantitative analysis. For example, computational tools and mathematical modeling can help in

understanding tumor interactions and response to drugs and nanoparticles, coupling models of the

physical microenvironment of the tumor with convection-diffusion equations for drug transport [41].
Several challenges must nevertheless be addressed to have a successful fruition of nanomedicine

[42]: improving loading efficacy and on-command release, modulating recognition and sequestra-

tion by immune cells and maximizing accumulation at biological targets. This can be achieved with

a joint collaboration between experimental and computational scientists.

Several mathematical modeling approaches can be employed according to the nanoparticle prop-

erties that have to be investigated [43]. Different time and length scale models can be considered

to address questions about the biochemical interactions of the nanoparticle in the organism and the

tumor deliverability [43] (Figure 1.5). Molecular simulations, such as Monte Carlo, molecular dy-

namics and coarse-grained simulations, can be employed to maximize the loading efficiency, namely

the ratio between the mass of encapsulated drug and the total mass, while controlling the release

(see, for example, [44, 45]). Molecular simulations can be also applied to analyze the interaction

of blood proteins with nanoparticles in order to optimize the surface features [46]. Indeed, it has

been noted that nanoparticles exposed to blood tend to be covered by different molecules forming

a protein corona, affecting the bioavailability and the therapeutic performances of nanomedicines

[47]. Discrete modeling has been adopted to investigate the nanoparticle internalization, highlight-

ing the process of endocythosis by the cells [48, 49]. At the tissue scale, continuum models highlight

the macroscopic behavior of nanoparticles. Gentile et al. [50] investigated how the vessel perme-

ability and blood rheology impact the nanoparticle diffusion in the blood vessels using a diffusion-

convection equation. Importantly, continuum models are increasingly validated against imaging data

[51]. Continuum models of spheroids have been employed to determine the diffusion coefficient of

the nanoparticles and the cellular uptake [52, 53]. Several studies have analyzed the diffusion co-

efficient according to the properties of the nanoparticles. Size, shape, and density were found to

impact the nanoparticle wall-deposition in the blood vessels [54, 55]. In particular, small nanopar-

ticles improve the margination rates; lighter particles marginate singificantly more compared to NP

with larger density; non-spherical nanoparticles showed higher margination compared to spherical

particles. Moreover, intratumoral pharmacokinetics of nanoparticle has been studied using intravital

imaging and linked to the treatment efficacy [56]. Furthermore, the transport of nanoparticles in

tumor tissues can be modeled with continuum mechanics approaches and particle based systems

[57].
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nano-bio interactions (Monopoli et al. 2012; Caracciolo et al.
2017). The bimolecular corona around the particles is a dy-
namic entity and, depending upon the relative affinity of the
proteins for the NP surface, the coronas at steady state can
have varied compositions. The nature of the corona can im-
pact nano-bio interactions by affecting the hydrodynamic size,
surface charge, and immunogenicity of the NPs, thereby af-
fecting their cellular internalization, biodistribution, and cir-
culation half-life (Aggarwal et al. 2009).

Simultaneously, NPs are transported across the body via
the vascular network, and upon arrival at the finest blood
vessels, i.e., capillaries, particles are faced with special ana-
tomical, physiological, and hemodynamic conditions that
strongly influence their fate. Healthy capillaries are broadly
classified as: i) continuous, ii) fenestrated, and iii) sinusoidal,
depending upon the upper limit of pore size in the vessel
walls. Continuous capillaries have pore sizes <5 nm (e.g.,
brain, lungs, muscles, skin), fenestrated capillaries haves
pores <15 nm (e.g., kidneys), and sinusoids in liver have pores
<200 nm, while those in spleen are ~5 μm (Sarin 2010). Thus,
the NP to pore size ratio becomes a determining factor (be-
sides surface charge) in the extravasation of NPs into tissue
interstitium (Stylianopoulos et al. 2013) or excretion in kid-
neys (Choi et al. 2007). In addition, the presence of resident
macrophages in the lumen of capillaries causes NPs, which
are already opsonized,2 to be imminently phagocytosed and
removed from circulation, thereby affecting their circulation
time in the body. Kupffer cells of the liver (Tsoi et al. 2016)
and splenic macrophages (Cataldi et al. 2017) have been rec-
ognized to contribute significantly to this mechanism of NP
clearance. Given the significant decrease of blood flowrate in
capillaries (~1mm ∙ s−1), compared to larger vessels (>10 cm ∙
s−1), hemodynamic conditions exist in capillaries conducive

for NP interaction with vessel wall pores or immune cells (Jain
and Stylianopoulos 2010; Tsoi et al. 2016). However, it is
important as a prerequisite that NPs gain near-wall access
via a size-, shape-, and hematocrit3-dependent phenomenon
referred as margination4 (Lee et al. 2013; Müller et al. 2014).
As a result, a complex interplay between these microscopic
interactions inside blood capillaries defines the global
biodistribution and clearance of NPs from the body, thereby
strongly influencing the tumor delivery of NPs (Dogra et al.
2018).

Once NPs enter into the tumor interstitium following cap-
illary extravasation, they are subject to a hostile microenviron-
ment that weakens convective transport; thus diffusion be-
comes the primary means of transport for NPs. This signifi-
cantly limits the penetration distance and delivery of cargo to
cancerous cells distant from the tumor-feeding capillaries
(Deisboeck et al. 2011; Pascal et al. 2013b; Wang et al.
2016; Cristini et al. 2017). Readers are referred to the follow-
ing review for a detailed discussion on intra-tumoral trans-
port barriers responsible for chemotherapy resistance
(Brocato et al. 2014).

3 Mathematical modeling in cancer
nanomedicine

We now discuss mathematical modeling works that focus on
the above mentioned biophysical processes for optimizing NP
design towards improved tumor delivery and efficacy. The
following sections are organized based on the problem they
seek to investigate (Table 2). Upon entering the blood stream,
the formation of an enveloping protein corona changes the
biochemical properties of NPs, a process which is best

2 Adsorbed with plasma proteins of the complement system (opsonins) that
cause recognition of xenobiotics by the immune system.

3 Volume percentage of red blood cells in blood.
4 Lateral drift of particles towards the vessel well.

Fig. 2 Classification of
mathematical models.
Mathematical models in cancer
nanomedicine can be classified
based on the characteristic
spatiotemporal scale of the system
under consideration

40 Page 4 of 23 Biomed Microdevices (2019) 21: 40

Figure 1.5. Classification of the mathematical models used to study nanoparticles for cancer treatment ac-
cording to the length and time scales. NP = nanoparticle. Image from [43].

1.2.2 The journey of nanoparticles to solid tumors: determinants and barriers

Most tissues (both healthy or neoplastic) are composed of three subcompartments: vascular, inter-

stitial and cellular. When drugs or nanoparticles are intravenously injected, they have to go through

several barriers to reach the tumor tissue, such as the distribution through vascular space, transport

across microvascular walls, transport through interstitial space and transport across the cell mem-

brane [58] (see Figure 1.6). All these processes may involve either convection or diffusion. Tumors

have an abnormal microenvironment that is characterized by (i) accumulated solid stress, (ii) abnor-

mal blood vessels network, (iii) elevated interstitial fluid pressure and (iv) dense interstitial structure

[59]. These peculiarities, that distinguish a neoplastic tissue from a normal one, cause barriers to

drug delivery. Moreover, heterogeneity in the microenvironment results in poor drug delivery. Here

below, we list the main determinants and barriers that drugs and nanoparticles have to encounter

during their path to the tumor tissue [60].

• Blood transport. The heterogeneous spatial distribution of tumor vessels and poor lymphatic

drainage hinder a uniform delivery and efficacy of therapeutic agents in tumors. Indeed, blood

vessels are heterogeneously distributed, leaving avascular spaces. Moreover, their walls are

leaky and hyperpermeable in some places while not in other [62]. Vessel collapse can also

occur, due to the solid stress exerted by proliferating tumor cells and stromal cells. Blood flow

velocity is also compromised by the elevated viscous and geometrical resistance offered by the

tumor vasculature. Finally, the lack of an efficient lymphatic network inside the tumor coupled

with leaky tumor vessels increases the interstitial fluid pressure.

Blood transport in tumor capillaries is quantified based on the perfusion rate of blood q [63],
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into the blood vessels of the tumor and
across the vessel wall into the intersti-
tium. Finally, it must travel, often great
distances, through that matrix to the
cells. Accomplishing any of those steps,
I reasoned, could be problematic.

I was unable to pursue this idea when
I obtained my first faculty position, but

connected to the circulatory
system by a single artery and
a single vein. That arrange-
ment enables us to measure
how much drug flows into
and out of a tumor. From
such information, the amount
of drug that is retained can

Copyright 1994 Scientific American, Inc.
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Figure 1
Transport in tumors. (a) A schematic of drug transport steps overlaid on an image of the tumor margin of an orthotopic mammary
tumor in a mouse that depicts delivery of a low-molecular-weight fluorescent probe after 30 min. Overall, delivery is heterogeneous
and poor, with retention of the probe in the peritumor tissue. Examples of vascular, transvascular, and interstitial transport steps are
depicted. (b) Transport steps in a tumor tissue unit consisting of blood vessels and the surrounding tissue. (c) General properties of the
tumor microenvironment, including drug delivery heterogeneity. Three regions of tumors—the periphery, seminecrotic region, and
necrotic core—are delineated along with their characteristics. Adapted from Reference 122.

is equal to Q multiplied by the drug concentration in the feeding blood vessel Cv, or Jv = QCv,
along with the heterogeneity in vascular distributions and flow rates that determine the volume of
distribution. This heterogeneity can be considered in terms of the distribution of perfusion rates,
calculated as the volumetric flow rate for each vessel Qj multiplied by the volume of tissue it feeds
Vj. The parameters Qj, Cj, and Vj can be measured in real time using standard intravital microscopy
(8), multiphoton microscopy (7, 27), and potentially optical frequency domain imaging (28).
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Figure 1.6. Left: scheme of solid tumor (from [61]): blood vessels, interstitium and cancer cells. Right:
determinants of particle transport in a tumor composed by blood vessels and the surrounding tissue. Figure
from [59].

defined as:

q =
Q
V

, (1.1)

where Q is the volumetric flow rate and V is the tissue volume. The flow rate Q is equal to the

pressure drop ∆pc divided by the resistance R:

Q =
∆pc

R
. (1.2)

The flow resistance R is a function of the vascular morphology (i.e., the number of vessels of

various types, their branching pattern, their diameter, length and volume) and of the blood

rheology (i.e., their viscosity). Under the assumption of a laminar flow through a circular rigid

vessel of radius r and length L, the flow resistance is given by the Hagen-Poiseuille equation

[63]:

R=
8ηL
πr4

= ηZ , (1.3)

where η is the viscosity and Z is the geometrical resistance (hindrance).

The drug supply to tumor tissue is determined by the flux of drug Jv into a tissue region by

blood vessels. Denoting by cc the drug concentration in the feeding blood vessels, Jc is defined

by

Jc =Qcc . (1.4)

The heterogeneity in vascular distribution and flow rates can be taken into account by consid-

ering the distribution of perfusion rates calculated as the volumetric flow rate for each vessel

Q j multiplied by the volume of tissue it feeds Vj . Note that the parameters Q j , cc, j and Vj can be
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measured in real time using different techniques [59], such as standard intravital microscopy

[64], multiphoton microscopy (e.g. [65]) and optical frequency domain imaging (e.g., [66]).

• Transvascular transport. Nanoparticles are transported across the vascular endothelium

through intracellular junctions. They take advantage of the leaky vasculature characterizing

the tumor microenvironment (EPR effect) [27]. However, vascular permeability depends on

both the properties of the particles and the physiological characteristics of the vasculature.

Indeed, it decreases when the size of the particles increases. Moreover, the heterogeneity of

the tumor vessels impairs a homogeneous extravasation and delivery of particles.

Tumors are characterized by high interstitial fluid pressure [67]. The interstitial hypertension

is caused by the high permeability of tumor vessels in combination with the lack of functional

lymphatic vessels in the tumor interstitial space. On the one hand, this results in high IFP

inside the tumor that becomes almost equal to the microvascular pressure. On the other hand,

close to the tumor surface the IFP decreases rapidly causing a sharp pressure gradient. When

the IFP inside the tumor exceeds the microvascular fluid pressure, it causes intravasation of

materials back to the blood vessels. A direct consequence of the high IFP is that the main

mechanism of mass transport across vessels is diffusion.

The flux of drugs across the vessel walls and their basement membranes is due to a combination

of diffusive and convective transport. The diffusive flux Jt,d depends on the difference between

the plasma concentration cc and the intersitial concentration ct , the vascular surface area Sv

and the vascular permeability P:

Jt,d = PSv(cc − ct). (1.5)

The advective flux Jt,a is defined as follows

Jt,a = cc LpSv(1−σ)(pc − pt), (1.6)

where Lp is the hydraulic conductivity of the vessel walls, σ is the solute reflection coefficient,

and pc − pt is the transmural hydrostatic pressure gradient.

The transvascular flux Jt is equal to the sum of (1.5) and (1.6):

Jt = PSv(cc − ct) + LpSv(1−σ)(pc − pt)cc (1.7)

Moreover, the transvascular flux Jt can be measured experimentally [59].

• Interstitial transport. It has been demonstrated that the IFP in tumors strictly depends on the

hydrostatic microvascular pressure [68]. Due to the elevated IFP, tumor interstitium is char-

acterized by no pressure gradient. Therefore, the main mechanism of transport in the tumor

interstitium is diffusion. The tumor interstitial matrix consists of collagen fibers that inter-

act with other molecules such as proteoglycans and glycosaminoglycans. The movement of a

diffusing nanoparticle depends on the size, charge and configuration of the particle, and on

the properties of the interstitium, such as the collagen content, the site of tumor growth and



1.2. State of the art 15

Tumor region Perfusion

Interstitial fluid pressure

Oxygenation

Extracellular pH

Proliferation

Vascular transport

Transvascular transport

Interstitial transport

Periphery

Seminecrotic

Necrotic core

~

–

––

+

++

++

~

~/–

–

< 7.4

~ 6.5–7

~ 7–8

++

+/~

~

~

~/–

–

+

–

–

+

–

––

a b

c

Cells

Key: +, greater than normal; –, less than normal; ~, close to normal

Vessels Drug

Vascular

Transvascular

Vascular

Transvascular

Vascular

Transvascular

Interstitial

Convection Diffusion

ConvectionConvection

Convection Diffusion

Endothelium

Basement 
membrane

Tumor and
stromal cells

Interstitial 
matrix

InterstitialInterstitial

Figure 1
Transport in tumors. (a) A schematic of drug transport steps overlaid on an image of the tumor margin of an orthotopic mammary
tumor in a mouse that depicts delivery of a low-molecular-weight fluorescent probe after 30 min. Overall, delivery is heterogeneous
and poor, with retention of the probe in the peritumor tissue. Examples of vascular, transvascular, and interstitial transport steps are
depicted. (b) Transport steps in a tumor tissue unit consisting of blood vessels and the surrounding tissue. (c) General properties of the
tumor microenvironment, including drug delivery heterogeneity. Three regions of tumors—the periphery, seminecrotic region, and
necrotic core—are delineated along with their characteristics. Adapted from Reference 122.

is equal to Q multiplied by the drug concentration in the feeding blood vessel Cv, or Jv = QCv,
along with the heterogeneity in vascular distributions and flow rates that determine the volume of
distribution. This heterogeneity can be considered in terms of the distribution of perfusion rates,
calculated as the volumetric flow rate for each vessel Qj multiplied by the volume of tissue it feeds
Vj. The parameters Qj, Cj, and Vj can be measured in real time using standard intravital microscopy
(8), multiphoton microscopy (7, 27), and potentially optical frequency domain imaging (28).
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Figure 1.7. Properties of the three regions in the tumor microenvironment: periphery, seminecrotic region
and necrotic core. Figure from [59]

the sulfate glycosaminoglycan content. Moreover, the interstitial matrix in tumor is character-

ized by a heterogeneous distribution of the components. It can be divided into two phases:

a viscous phase, characterized by high collagen-fiber concentration, and an aqueous phase,

characterized by low fiber concentration. This results in a two components diffusion.

In [58], the transport of molecules through the interstitial matrix is described as a diffusion-

convection equation on the variable ct (i.e., the interstitial concentration of particles):

∂ ct

∂ t
= Dt∇2ct + ut · ∇ct , (1.8)

where Dt is the diffusion coeffiecient and ut is the interstitial fluid velocity. Diffusion is caused

by concentration gradients while convection is due to the motion of interstitial fluid. Moreover,

diffusion and convection coefficients depend on the tumor type and on the molecules that are

transported inside the tumor interstitium. In [69] the authors underline that the elevated

interstitial pressure plays a significant role in the transport of macromolecules in tumors: the

poor penetration of macromolecules into tumors is due to heterogeneous blood perfusion,

hindered diffusion in the interstitium, high initerstitial fluid pressure and, in case of binding

molecules such as monoclonal antibodies, rapid and heterogeneous extravascular binding.

• Cell transport and metabolism. The cellular uptake depends on the drug interaction with

the cell membrane and membrane molecules. A mathematical model based on statistical ther-

modynamic theory has been developed in [70] to define the ligand density and the particle

size that optimally yield cellular uptake. The results agree with the experimental data in [71].

1.2.3 Techniques to improve nanoparticle delivery

Tumor normalization strategies might be adopted to overcome the biological barriers that char-

acterize malignant tissues, enhancing nanoparticle delivery [60]. For this purpose, mathematical

modeling is a powerful tool to test in silico the combination of several treatments and at different

regimes. Results can guide the formulation of new hypotheses and the planning of new experiments.
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Antiangiogenic drugs normalize the tumor vasculature reducing the permeability of the vessel

walls, hence improving a homogeneous drug perfusion in the tumor tissue [60]. Trastuzumab has

an indirect antiangiogenic effect [72]. It was observed that it decreases diameter, volume and per-

meability of blood vessels in experimental human breast tumour that overexpress receptor Her2 in

mice. However, vascular normalization leads to a decreased permeability of the vessel walls that

might represent a disadvantage in nanomedicine. Indeed, nanoparticles might not take advantage

of large pores to accumulate in tumors [60]. Yonucu et al. introduced a mathematical model to

study wheather antiangiogenic therapy could increase liposome delivery due to normalization of

tumor vessels [73]. They assessed the improvement of liposomal drug delivery by experimenting

different drug regimens.

The dense structure of the interstitial matrix hinders the penetration of nanoparticles in the tu-

mor. Enhanced NPs interstitial diffusion coefficient has been found with multiphase nanoparticles

that decrease their size from 100 nm to 10 nm when extravasated in the tumor interstitium [74].
Furthermore, extracellular matrix normalization might increase the volume fraction assessible to

the molecules. Mathematical models can describe the combined effects of chemotherapy and matrix

degrading drugs [75].

1.3 Experimental data

All the experimental data were provided by the SMARTc in Marseille and include in vitro, in vivo

and ex vivo data. Animal tumor model studies were performed in strict accordance with guidelines

for animal welfare in experimental oncology and were approved by local ethics committees. Mainly,

three human cell lines were considered in the studies according to the expression of Her2 receptor:

SKBR3 (Her2++), MDA-MB-453 (Her2+) and MDA-MB-231 (Her2-). The latter is also known as

triple negative breast cancer and it is therefore more challenging as it is the most resistant cell line

to trastuzumab.

1.3.1 In vitro data

In vitro data were used to assess the in vitro cytotoxicity, namely to build the dose-response

relationship with a cell culture. 2D experiments performed to study the efficacy of different types

of drugs as a function of the concentration [39]. 3D in vitro cytotoxicity was studied with different

dose regimens [76].

Cell viability: 2D MTT assay

The MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) is applied to

measure the cell viability. It is a colorimetric assay that reflects the metabolic activity of the cells:

after adding a solubilization solution, the live cells become pink and the dead ones become blue.
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Then, a spectrophotometer measures the wavelength of the absorbance of the solution. Finally, the

wavelength relative to each concentration is normalized with respect to the control cells.

1.3.2 In vivo data

Female nude mice with an orthotopically implanted tumor were considered for in vivo studies.

In this thesis, we will focus on the MDA-MB-231 cell line to test the efficacy of the treatment as

well as the penetration of nanoparticles in the tumor. Tumor growth, angiogenesis and liposomal

distribution in the body were tracked in vivo using different techniques that are listed below (such

as caliper, fluorescence and bioluminescence).

Tumor growth: caliper

Traditionally, caliper measurements are used to compute tumor volume. Two perpendicular di-

ameters (d1 ≤ d2) of the tumors are measured using a caliper and the tumor volume is obtained as

follows:

V =
1
6
πd2

1 d2. (1.9)

However, the measurement of the diameters of the tumors is not always of easy access, especially

when tumors are orthotopically implanted. Therefore, non-invasive in vivo imaging techniques have

been developed to quantify the tumor development.

Tumor growth and nanoparticles biodistribution: fluorescence and bioluminescence imaging

The most common reporter genes are green fluorescent proteins (GFP) and red fluorescent pro-

teins, in case of fluorescence imaging, and luciferase, for bioluminescence imaging. Fluorescence

imaging is based on the acquisition of GFP signal resulting from the excitation by an external light

source. Bioluminescence imaging is based on the endogeneous production of light by the expression

of luciferase. This enzyme produces light when it reacts with the substrate luciferin in the presence

of oxygen and ATP. An advantage of bioluminescence is that there is a low background, since it does

not require an excitation light source. Fluorescent imaging suffers from the problem of autofluores-

cence. However, GFP fluorescent images can be acquired in real-time, while bioluminescent images

are acquired in the minute timescale [77].

Fluorescence imaging was used to track tumor growth and nanoparticle distribution in the body.

1.3.3 Ex vivo data

CD31 antibody staining and fluorescence imaging have been employed to have the distribution

of the blood vessels and the cell density ex vivo. CD31 (acronym of cluster of differentiation 31) is

a membrane protein that is expressed on endothelial cells. It is primarily used to demonstrate the
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presence of endothelial cells in histological tissue sections to evaluate the degree of angiogenesis.

Specific antibodies bind the CD31 proteins and can be conjugated with dyes to make neoplastic

vessels fluorescent.

1.4 Main contributions and outline of the thesis

In this section, the main results of the thesis are summarized and the organization of the document

is described.

Unperturbed tumor growth analysis

Published in [78, 79].

For several decades, mathematical models have been used to quantify tumor growth kinetics,

but mostly fitted to individual or average growth curves. In Chapter 2, we compared three classical

models (exponential, logistic and Gompertz) using a population approach (nonlinear mixed-effects

modeling), which accounts for inter-animal variability. The exponential and the logistic models

failed to fit the experimental data while the Gompertz model showed excellent descriptive

power. Indeed, the Gompertz model might catch the drop-off of the specific growth rate:

V (t) = Vinj exp

�

αi

β i

�

1− exp(−β i t)
�

�

,

where Vinj is the initial tumor size at t = 0, while αi and β i are the two individual parameters to

estimate. The strong correlation observed between these two parameters whithin the population mo-

tivated a simplification of the model. Assuming a linear relationship between αi and β i (αi = kβ i),

we defined the reduced Gompertz model:

V (t) = Vinj exp
�

k
�

1− exp(−β i t)
��

.

with a single individual-specific parameter β i and a population-specific parameter k within the pop-

ulation.

The reduced Gompertz model and the Gompertz model showed equal descriptive power.

Combining the mixed-effects approach with Bayesian inference, we predicted the age of individual

tumors with only few late measurements. Thanks to its simplicity, the reduced Gompertz model

showed superior predictive power. Furthermore, we tested the ability of the reduced Gompertz

model to capture differences in tumor growth dynamics within subgroups of the same population,

obtaining good results.

Although our method remains to be extended to clinical data, these results are promising for the

personalized estimation of the age of a tumor from limited measurements at diagnosis.
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Pharmacokinetic-pharmacodynamic modeling of liposomes and immunoliposomes

In Chapter 3 we conducted a statistical analysis using in vitro data to compare the efficacy of

liposomes, immunoliposomes and standard drugs on monolayer cell cultures. In particular, we found

that the efficacy of ANCs was equal or higher than normal drugs and estimated some parameters that

provide information on the interactions between nanoparticles and cells (such as the dissociation

constant).

In Chapter 4 we introduce a mathematical model to investigate the pharmacokinetics-

pharmacodynamics (PKPD) of nanoparticles.

We used a two-compartment pharmacokinetic (PK) model to describe the NPs exchange between

the blood vessels (central or systemic compartment) and the tumor compartment. Denoting by Ac

and At the nanoparticle amount in the blood and in the tumor, respectively, the model reads as:

dAc

d t
= −kcAc − kc,tAc ,

dAt

d t
= kc,tAc − keAt ,

where kc is the clearance rate of the systemic compartment, ke is the elimination rate of the tumor,

and kc,t is the parameter that drives the exchange of nanoparticles between the tumor and the cap-

illaries, which depends on the properties of the nanoparticle and on the permeability and surface of

the vessel walls.

Several biodistribution datasets were used to estimate the parameters employing nonlinear

mixed-effects modeling. In particular, we compared the PK of liposomes and ANCs at different doses.

High inter-individual variability was recognized in the results, confirming previous observations.

Indeed, individual tumor architecture might have peculiar barriers that affect the tumor accumula-

tion of nanoparticles. Importantly, we estimated a larger exchange rate for the immunoliposomes

than for the liposomes. This result was found in accordance with the observation that immunoli-

posomes might improve the vascularization of the tumor.

Furthermore, the nanoparticle-induced decay was described by a resistance model. The two lipo-

somal formulation did not show a significant difference in terms of efficacy, although liposomes had

larger resistance compared to ANCs. Moreover, we analyze the pharmacodynamic to the free drugs

(free docetaxel plus free trastuzumab), which efficacy was lower with respect to the nanodrugs.

Moreover, ANCs and liposomes showed improved pharmacokinetics with respect to the free drugs.

Mathematical modeling of fluid and nanoparticle transport in malignant tissues

Submitted [80].

Tumor architecture is highly heterogeneous and develops barriers that impair a homogeneous

distribution of therapeutics. New technologies permit to acquire highly detailed imaging data that
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could be integrated into mathematical models to investigate the properties of particles and make

predictions on their accumulation. However, the resolution of discrete models that take into account

the entire complexity of the tumor microstructure is infeasible due to the high computational costs.

In Chapters 5 and 6, macroscopic models of fluid and nanoparticle transport are investigated using

formal two-scale asymptotic expansion. This technique allows us to take into account the microscopic

features of the tumor environment on the global dynamic at the tissue scale. We assumed that

a generic variable vε(x), as function of the macroscopic spatial variable x and of the microscopic

parameter ε, could be approximated as

vε(x) = v(x) + εφ
�x
ε

�

∇xv(x),

where v(x) is the macroscopic variable andφ
�x
ε

�

is the corrector that takes into account oscillations

at the microscopic scale.

The main drivers of nanoparticle transport in the tumor tissue are diffusion and convection.

Therefore, fluid transport must be first described using mathematical modeling.

In Chapter 5 we studied macroscale models of fluid transport in tumor tissues using the two-scale

asymptotic expansion method. These models consisted of a system of Darcy’s law that describes the

fluid transport in a double porous medium (i.e., capillaries and interstitium). Starting from a micro-

scale model of interstitial fluid transport and blood transport, we motivated the interface conditions

between the interstitial compartment and the capillaries using an asymptotic expansion technique.

We derived a Starling’s law type equation to describe the flux through the vessel walls. Moreover, we

considered the Joseph-Beavers-Saffman slip condition at the boundary between the capillary lumen

and the vessel wall. This condition states that the slip velocity along the vessel wall is proportional

to the shear stress.

Then, using the two scale homogenization technique, we derived three different macroscale mod-

els to describe the fluid transport in tumor tissues according to the magnitude of the permeability of

the vessel walls and of the interstitial hydraulic conductivity. In particular, the following regimens

were derived for the interstitial fluid pressure pt and the capillary pressure pc in the domain Ω:

• Model 1: highly permeable walls and large interstitial hydraulic conductivity

∇ ·
��

K+
Ct

Cc
E
�

∇pc

�

= 0 pt = pc in Ω. (1.10)

• Model 2: weakly permeable walls and large interstitial hydraulic conductivity

∇ · (K∇pt) = Ct (pt − pc) , ∇ · (E∇pc) = Cc (pc − pt) in Ω. (1.11)

• Model 3: weakly permeable walls and small interstitial hydraulic conductivity

∇ · (K∇pt) = Ct (pt − pc) , ∇ · (E∇pc) = 0 in Ω. (1.12)
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In the three models, K and E are the permeability tensors of the interstitium and of the capillaries,

respectively, and Ct , Cc are constant parameters that will be defined later on. The definition of these

tensors involves the so-called correctors, as usual in homogenization. It characterizes the impact

of the microstructure on the effective properties of the tissue at the macroscale. Model 2 has been

derived assuming a small magnitude of the capillary permeability and confirms previous results of

Shipley and Chapman [81] and Penta et al. [82].

The interstitial fluid flow ut and the blood velocity uc are given in the first two cases by the

average quantities

ut = −K∇pt , uc = −E∇pc in Ω,

while for the third model they are given by

ut = −εK∇pt , uc = −E∇pc in Ω.

Boundary conditions must be added to guarantee well-posedness. Dirichlet-Dirichlet boundary con-

ditions can be imposed to pt and pc if the pressures in the surrounding tissue are known. Mixed

Dirichlet and Neumann boundary conditions can be chosen to ensure the continuity of ut or uc .

We compared the different asymptotic regimes with some models given in the literature and

showed the links between the different models.

Furthermore, mathematical and numerical analysis on the homogenized tensors was performed to

assess their properties according to the geometric microstructure. Eventually, numerical simulations

on the macroscopic models were performed and the results were compared to the literature.

The nanoparticle accumulation depends on the tumor microstructure and nanoparticle design.

In Chapter 6, a mathematical model of nanoparticle transport in the tumor interstitium was derived

using formal two-scale asymptotic expansion. Since the nanoparticle concentration in the capillaries

cc was considered to be saturated, we neglected spatial variations of cc and modeled the nanoparticle

concentration in the interstitium ct and the NP concentration that binds the cells cb. The diffusion

tensor Dt was defined according to the correctors that arose from homogenization. The nanoparticle-

cell interactions were driven by the parameters λt and λb that depend on the association and dis-

sociation rates, and on the concentration of the Her2 receptors ce. The decay rate of the drugs was

denoted by λd The homogenized model reads as:

∂ ct

∂ t
+∇ · (ut ct) =∇ · (Dt∇ct)−λt ct(ce − cb) +λbcb −λd ct + Tv[cc , ct], in Ω,

dcb

d t
= λt ct(ce − cb)−λbcb −λd cb, in Ω,

where Tv[cc ,φt ct] is a term that drives the exchange between the capillaries and the interstitium.

The model was calibrated with nanoparticle-specific parameters that were estimated empir-

ically or with experimental data. In vitro data were used to quantify the cellular uptake; in vivo

pharmacokinetic data provided information on the permeability of the vessel walls and the nanopar-
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ticle concentration in the tumor vessels. Comparison of ANCs, liposomes and docetaxel as a free

drug showed improved accumulation of nanoparticles with respect to the free drugs, thanks to the

better pharmacokinetics of NP (such as low clearance rates). Qualitative simulations were performed

to investigate several properties of the nanoparticles and of the tumor architecture to assess their

impact on the global accumulation.

A computational framework to predict individual tumor liposome accumulation

Chapters 5 and 6 provide a theoretical and qualitative analysis of the mathematical models of

fluid and NPs transport.

In Chapter 7, we used ex vivo microscopy fluorescence images to recover the individual vascular

structure and interstitial porosity. This allowed making individual predictions on the tumor accumu-

lation of nanoparticles. To this end, we introduced the interstitial porosity of the interstitium φt , i.e.

the interstitial volume fraction available to the nanoparticles:

∂ (φt ct)
∂ t

+∇ · (utφt ct) =∇ · (φtDt∇ct)−λtφt ct(ce − cb) +λbφt cb + Tv[cc ,φt ct]−λdφt ct , in Ω,

d(φt cb)
d t

= λtφt ct(ce − cb)−λbφt cb −λdφt cb, in Ω.

Results were in agreement with the pharmacokinetic model found in Chapter 4. We remarked

high inter-individual variability based on the tumor characteristics. Indeed, large tumors improved

the total accumulation of nanoparticles. Moreover, the vascular and interstitial volume fractions

affected the global accumulation of nanoparticles.

This approach is promising for treatment personalization. In vivo image acquisition modalities

or biopsies might provide the data to integrate into mathematical models to predict therapeutic

accumulation in the tumor.

Code development

Several codes have been implemented to simulate the different mathematical models.

The mlx_pymodule was written using both Python and R to analyze tumor growth with nonlinear

mixed effects modeling. Given a dataset with measurements and a tumor growth model as inputs,

the module calibrates the mathematical model running Monolix 2018 R2 [83] thanks to the Monolix

API for R. The outputs of the module are the same as Monolix: a folder containing the estimates,

standard errors, graphics and several diagnostic tools is created. Moreover, a function was written to

compare different tumor growth models. It creates a .pdf file with a summary of the models ranked

in ascending order of Akaike information criteria.

The library PLUMKY (Population modeling of tumor growth kinetics and Bayesian predictions)

was implemented to run predictions of tumor kinetics with Bayesian inference and likelihood maxi-
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mization. This code is publicly available at https://github.com/cristinavaghi/plumky and

is specifically designed to perform backward extrapolation of initiation time. The library contains

mlx_py to learn the population parameters from the learning dataset. Moreover, the a posteriori

distributions of the parameters were estimated using PyStan, which is a Python interface to the

software Stan [84] for Bayesian inference based on the No-U-Turn sampler, a variant of Hamiltonian

Monte Carlo [85].

Simulations of the fluid transport model were performed using FreeFem++ [86] and visualization

was done thanks to the ffmatlib.idp library (https://github.com/samplemaker/freefem_
matlab_octave_plot). The code was implemented to perform 2D and 3D simulations. For 3D

simulations, the geometry of the domain and the triangulation were defined with Gmsh [87]. For

the time-dependent nanoparticle transport model, we used a model in radial coordinates assuming

an axisymmetric domain. A finite difference scheme was implemented in Matlab.

https://github.com/cristinavaghi/plumky
https://github.com/samplemaker/freefem_matlab_octave_plot
https://github.com/samplemaker/freefem_matlab_octave_plot
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CHAPTER 2

UNTREATED TUMOR GROWTH ANALYSIS

Abstract. Tumor growth curves are classically modeled by means of ordinary differential equa-

tions. In analyzing the Gompertz model several studies have reported a striking correlation between

the two parameters of the model, which could be used to reduce the dimensionality and improve

predictive power. We analyzed tumor growth kinetics within the statistical framework of nonlinear

mixed-effects (population approach). This allowed the simultaneous modeling of tumor dynamics

and inter-animal variability. Experimental data comprised three animal models of breast and lung

cancers, with 833 measurements in 94 animals. Candidate models of tumor growth included the

exponential, logistic and Gompertz models. The exponential and – more notably – logistic models

failed to describe the experimental data whereas the Gompertz model generated very good fits. The

previously reported population-level correlation between the Gompertz parameters was further con-

firmed in our analysis (R2 > 0.92 in all groups). Combining this structural correlation with rigorous

population parameter estimation, we propose a reduced Gompertz function consisting of a single

individual parameter (and one population parameter). Leveraging the population approach using

Bayesian inference, we estimated times of tumor initiation using three late measurement timepoints.

The reduced Gompertz model was found to exhibit the best results, with drastic improvements when

using Bayesian inference as compared to likelihood maximization alone, for both accuracy and pre-

cision. Specifically, mean accuracy (prediction error) was 12.2% versus 78% and mean precision

(width of the 95% prediction interval) was 15.6 days versus 210 days, for the breast cancer cell line.

These results demonstrate the superior predictive power of the reduced Gompertz model, especially

when combined with Bayesian estimation. They offer possible clinical perspectives for personalized

prediction of the age of a tumor from limited data at diagnosis. The code and data used in our

analysis are publicly available at https://github.com/cristinavaghi/plumky. [79]

Part of this chapter has beeen published in [79, 78].
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2.1 Overview on tumor growth

Cancer can be viewed as the result of abnormal proliferation of any of the different kinds of cells

in the body. A tumor can be either benign, if it remains confined to its original location mostly, or

malignant if it can invade the surrounding tissues and spread to distant body sites throughout the

circulatory or lymphatic systems, creating metastasis [88].
Moreover, both benign and malignant tumors can be classified according to the type of cells that

are involved. A carcinoma is a type of cancer that involves epithelial cells; sarcoma is a solid tumor

of connective tissues (e.g., muscle, bone or cartilage); leukemia and lymphoma are tumors of the

blood-forming cells and of the immune system, respectively.

Since we deal with breast cancer data, we will focus on the process of tumor growth relative to

carcinomas.

2.1.1 The mechanisms of tumor growth

At the cell scale, tumor initiation arises from a genetic mutation that leads to abnormal cell pro-

liferation of a single cell [89]. Then, tumor progression is a multistep process that results from a

progressive alteration of the cells that become gradually malignant.

Not all the cells in a tumor proliferate: only a small percentage of cells in a tumor duplicates, while

the majority is composed of quiescent cells (i.e. that do not proliferate) and dead cells, that are due

to necrosis.

The steps characterizing tumor growth can be summarized as follows [89]:

• carcinoma generation: cells start to proliferate abnormally, pushing away the surrounding

tissues including vasculature;

• cell necrosis: when the tumor grows (more than 1 mm3), the cells in the center miss nutri-

ents and die without control (cell necrosis; this is in contrast to apoptosis that is an active,

programmed process of cell death);

• angiogenesis: large tumors require new vessels network to receive oxygen and nutrients. Tu-

mors release VEGF (Vasculature Endothelial Growth Factor) proteins that induce the formation

of vasculature;

• metastasis: it refers to the growth of secondary tumors at sites distant from the primary tumor.

Metastatic spread is linked to the dissemination of tumor cells via the blood or lymphatics.

Figure 2.1 shows the main steps of tumor growth.
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Figure 2.1. Tumor growth: proliferating cells (A); when the tumor size is greater than 1 mm3 angiogenesis
occurs (B); metastatic spread (C). Figure from [90].

2.1.2 Techniques to monitor tumor growth

In vivo studies are fundamental to analyze the effects of potential anti-cancer treatments. Tumor

cell lines can be implanted orthotopically or ectopically in mice or, alternatively, oncogene-driven or

chemically induced models can be adopted in order to better simulate human diseases.

Several techniques have been adopted to study solid tumor growth and cancer progression in living

animals [91]. Traditionally, caliper measurements are used to compute tumor volume. Two perpen-

dicular diameters (d1 ≤ d2) of the tumors are measured using a caliper and then the tumor volume

is obtained as follows:

V =
1
6
πd2

1 d2. (2.1)

However, the measurement of the diameters of the tumors is not always of easy access, especially

when tumors are orthotopically implanted. Therefore non-invasive in vivo imaging is necessary in

order to quantify the tumor development. Non-invasive imaging techniques are promising in order to

make longitudinal studies possible (indeed the measurement of tumor development does not require

to sacrifice the animal), reducing the number of animals needed and producing more robust data.

These techniques for small animals include, for example optical imaging, such as bioluminescence

imaging (BLI) [92] and fluorescence imaging (FLI) [93], that are widely used in the preclinical appli-

cations (for both in vitro and in vivo experiments). Puaux et al. [91] provide a detailed comparison

between the various techniques according to the quantities of interest (detection of small tumors,

tumor burden measurement and tumor identification).

The most common reporter genes are green fluorescent proteins (GFP) and red fluorescent proteins,

in case of fluorescence imaging, and luciferase, for bioluminescence imaging. Fluorescence imaging

is based on the acquisition of GFP signal resulting from the excitation by an external light source.
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Method Bioluminescence imaging Fluorescence imaging

Physical basis
Visible light emitted during

chemical reaction
Visible light emitted after
fluorochrome excitation

Reagent used D-luciferin substrate None

Spatial resolution
1 to 10 mm dependant on

tissue depth
1 to 10 mm dependant on

tissue depth

Reporter gene
needed

Yes Yes

Smallest
detectable tumor

(diameter)
< 1 mm 2 mm

Analysis time
1 hour/mouse; 2 hours/10

mice
30 min/mouse; 1 hour/10

mice

Main advantages

Detection of nonpalpable
tumors; low background;

relative measure of tumor size;
high throughput

High throughput

Main
disadvantages

Light emission dependant on
tissue depth and on local
availability of substrate

reagents (such as luciferin)

Light emission dependant on
tissue depth; high background

due to tissue fluorescence

Table 2.1. Summary of optical imaging methods used for detection of tumors in living animals (from [91]).

Bioluminescence imaging is based on the endogeneous production of light by the expression of lu-

ciferase. This enzyme produces light when it reacts with the substrate luciferin in the presence of

oxygen and ATP. An advantage of bioluminescence is that there is a low background, since it does not

require an excitation light source. Fluorescent imaging suffers from the problem of autofluorescence.

On the other hand, GFP fluorescent images can be acquired in real-time, while bioluminescent im-

ages are acquired in the minute timescale [77]. Table 2.1 provides a comparison between the two

optical imaging techniques. As found in [77, 92], there is a significative correlation between tumor

volume and the fluorescent signal, as well as between tumor volume and bioluminescent imaging

[94]. This proofs that both optical techniques can be applied to study tumor growth over time.
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2.2 Introduction

In the era of personalized oncology, mathematical modeling is a valuable tool for quantitative

description of physiopathological phenomena [95, 96]. It allows for a better understanding of bio-

logical processes and generates useful individual clinical predictions, for instance for personalized

dose adaptation in cancer therapeutic menagement [97]. Tumor growth kinetics have been stud-

ied since several decades both clinically [98] and experimentally [99]. One of the main findings of

these early studies is that tumor growth is not entirely exponential, provided it is observed over a

long timeframe (100 to 1000 folds of increase) [100]. The specific growth rate slows down and this

deceleration can be particularly well captured by the Gompertz model [101, 100, 102]:

V (t) = Vinje
α
β (1−e−β t), (2.2)

where Vinj is the initial tumor size at tinj = 0 and α and β are two parameters.

While the etiology of the Gompertz model has been long debated [103], several independent

studies have reported a strong and significant correlation between the parameters α and β in either

experimental systems [100, 104, 105], or human data [105, 106, 107]. While some authors sug-

gested this would imply a constant maximal tumor size (given by Vinje
α
β in (2.2)) across tumor types

within a given species [105], others argued that because of the presence of the exponential function,

this so called ’carrying capacity’ could vary over several orders of magnitude [108].

Mathematical models for tumor growth have been previously studied and compared at the level of

individual kinetics and for prediction of future tumor growth [109, 110]. However, detailed studies

of statistical properties of tumor growth models using a population approach (i.e. integrating struc-

tural dynamics with inter-subject variability [111]) are rare [112]. Nonlinear mixed effects modeling

of the Gompertz model has been applied to several fields in biology, e.g. to model growth in Japanese

quails [113] or broiler chicken growth [114]. In the field of tumor growth modeling, studies using

a population approach have mostly been conducted for perturbed tumor growth under the action of

therapeutics (see e.g. [115] for a clinical study and [116] for a review). In a previous publication,

our group has used a mixed-effects framework to compare the descriptive power of several unper-

turbed tumor growth models, yet without reporting visual predictive checks, analysis of residuals nor

values of the population parameters (typical values and standard deviations of the random effects)

[109]. Other related works include the coupling of tumor growth models with metastatic spreading

[117, 118], or an analysis of tumor growth kinetics from different cell lines using the Simeoni model

only [119, 112]. A calibrated model of lymphoma tumor growth has also been introduced and used

for predictions in [120]. More complex mechanistic models have been proposed to investigate the

link between biological processes and tumor growth dynamics and perform predictions, including

angiogenesis [121] and solid stress [122]. A model for tumor-immune interactions has been devel-

oped and validated in [123, 124], demonstrating its ability to predict future prostate specific antigen

dynamics based on several pre- and post-treatment initiation data points. Mathematical models of

tumor growth inhibition were presented to assess tumor size dynamics in colorectal cancer [125]
and adult diffuse low-grade gliomas [126]. Spatial models have also been widely proposed in a the-
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oretical context but few of them have been compared to data (see [127] for an example on thyroidal

lung nodules and [128, 129] for gliomas).

Here we provide a detailed and comparative analysis of statistical properties of multiple classical

tumor growth models within a population framework, applied to a data set of 94 animals, including

three animal models and two methods of tumor size quantification (versus 54 animals in [109]).

The main focus and novelty of the work reported here is to analyze the above-mentioned correlation

between Gompertz parameters using a population approach, in order to improve model-derived

predictions. This led us to a simplified model with only one subject-specific parameter (and one

population-specific), the "reduced Gompertz" model [105].

Using population distributions as priors allows to make predictions on new subjects by means of

Bayesian algorithms [85, 130, 84]. The added value of the latter method is that only few measure-

ments per individual are necessary to obtain reliable predictions. In contrast with previous work

focusing on the forward prediction of the size of a tumor [109], the present study addresses the

backward problem, i.e. the estimation of the age of a tumor [131]. This question is of fundamental

importance in the clinic since the age of a tumor can be used as a proxy for determination of the

invisible metastatic burden at diagnosis [118]. In turn, this estimation has critical implications for

decision of the extent of adjuvant therapy [132]. Since predictions of the initiation time of clinical

tumors are hardly possible to verify for clinical cases, we developed and validated our method using

experimental data from multiple data sets in several animal models. This setting allowed to have

enough measurements, on a large enough time frame in order to assess the predictive power of the

methods.

2.3 Material and methods

The python code and the data used in our analysis are available at https://github.com/
cristinavaghi/plumky.

2.3.1 Ethics statement

Animal tumor model studies were performed in strict accordance with the recommendations in

the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Protocols

used were approved by the Institutional Animal Care and Use Committee (IACUC) at Tufts University

School of Medicine for studies using murine Lewis lung carcinoma (LLC) cells (Protocol: #P11-324)

and at Roswell Park Cancer Institute (RPCI) for studies using human LM2-4LUC+ breast carcinoma

cells (Protocol: 1227M). Institutions are AAALAC accredited and every effort was made to minimize

animal distress [109].

For the breast data measured by fluorescence, guidelines for animal welfare in experimental on-

cology as recommended by European regulations (decree 2013-118 of February 1, 2013) were fol-

https://github.com/cristinavaghi/plumky
https://github.com/cristinavaghi/plumky
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lowed. All animal experiments were approved by the Animal Ethic Committee of the Aix-Marseille

Université (CE14). The protocol was registered as #2017031717108767 at the French Ministry of

Research. Mice were monitored daily for signs of distress, pain, decreased physical activity, or any

behavioral change and weighted thrice a week. Water was supplemented with paracetamol (80

mg/kg/day) to prevent any metastasis-related pain [76].

2.3.2 Mice experiments.

The experimental data comprised three data sets. Animal tumor model studies were performed

in strict accordance with guidelines for animal welfare in experimental oncology and were approved

by local ethics committees. Precise description of experimental protocols was reported elsewhere

(see [109] for the volume measurements and [76] for the fluorescence measurements).

Breast data measured by volume (N= 66) This dataset is publicly available at the following reposi-

tory [133]. It consisted of human LM2-4LUC+ triple negative breast carcinoma cells originally derived

from MDA-MB-231 cells. Animal studies were performed as described previously under Roswell Park

Comprehensive Cancer Center (RPCCC) Institutional Animal Care and Use Committee (IACUC) pro-

tocol number 1227M [109, 118]. Briefly, animals were orthotopically implanted with LM2-4LUC+

cells (106 cells at injection) into the right inguinal mammary fat pads of 6- to 8-week-old female se-

vere combined immunodeficient (SCID) mice. Tumor size was measured regularly with calipers to a

maximum volume of 2 cm3, calculated by the formula V = π/6w2 L (ellipsoid) where L is the largest

and w is the smallest tumor diameter. The data were pooled from eight experiments conducted with

a total of 581 observations. All LM2-4LUC+ implanted animals used in this study are vehicle-treated

animals from published studies [109, 118]. Vehicle formulation was carboxymethylcellulose sodium

(USP, 0.5% w/v), NaCl (USP, 1.8% w/v), Tween-80 (NF, 0.4% w/v), benzyl alcohol (NF, 0.9% w/v),

and reverse osmosis deionized water (added to final volume) and adjusted to pH 6 (see [134]) and

was given at 10ml/kg/day for 7-14 days prior tumor resection.

Breast data measured by fluorescence (N = 8). This dataset is publicly available at the follow-

ing repository [135]. It consisted of human MDA-MB-231 cells stably transfected with dTomato

lentivirus. Animals were orthotopically implanted (80,000 cells at injection) into the mammary fat

pads of 6-week-old female nude mice. Tumor size was monitored regularly with fluorescence imag-

ing. The data comprised a total of 64 observations. To recover the fluorescence value corresponding

to the injected cells, we computed the ratio between the fluorescence signal and the volume mea-

sured in mm3. We used linear regression considering the volume data of a different data set with

same experimental setup (mice, tumor type and number of injected cells). The estimated ratio was

1.52· 109 photons/(s·mm3) with relative standard error of 11.3%, therefore the initial fluorescence

signal was 1.22· 107 photons/s.

Lung data measured by volume (N = 20). This dataset is publicly available at the following repos-

itory [136]. It consisted of murine Lewis lung carcinoma cells originally derived from a spontaneous

tumor in a C57BL/6 mouse [137]. Animals were implanted subcutaneously (106 cells at injection)
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on the caudal half of the back in anesthetized 6- to 8-week-old C57BL/6 mice. Tumor size was mea-

sured as described for the breast data to a maximum volume of 1.5 cm3. The data was pooled from

two experiments with a total of 188 observations.

2.3.3 Tumor growth models.

We denote by t I and VI the initial conditions of the equation. At time of injection (t = 0), we

assumed that all tumors within a group had the same size/volume Vinj (equal to the number of

injected cells converted into the appropriate unit) and denoted by α the specific growth rate (i.e.
1
V

dV
d t ) at this time and size.

We considered the exponential, logistic and Gompertz models [109]. The first two are respectively

defined by the following equations










dV
d t
= αV,

V (t I) = VI ,

and











dV
d t
= ρ

�

1−
V
K

�

V,

V (t I) = VI .

(2.3)

In the logistic equation, K is a carrying capacity parameter. It expresses a maximal reachable size

due to competition between the cells (e.g. for space or nutrients). The quantity ρ = α
�

K
K−Vinj

�

is a

coefficient related to the growth rate. For small values of Vinj, ρ tends to α.

The Gompertz model is characterized by an exponential decrease of the specific growth rate with

rate denoted here by β . Although multiple expressions and parameterizations coexist in the litera-

ture, the definition we adopted here reads as follows:










dV
d t
=

�

α− β
�

V
Vinj

��

V,

V (t I) = VI .

(2.4)

Note that the injected volume Vinj appears in the differential equation defining V . This is a natural

consequence of our assumption of α as being the specific growth rate at V = Vinj. This model exhibits

sigmoidal growth up to a saturating value given by K = Vinje
α
β . Note also that the value of K in the

Gompertz model is independent of the initial data (t I , VI). The latter was considered to be (0, Vinj)
when performing population analysis, while it was set equal to the observation y i

ni−2 of an animal i

for backward prediction (see section Individual predictions).

2.3.4 Population approach.

Let N be the number of subjects within a population (group) and Y i = {y i
1, ..., y i

ni} the vector

of longitudinal measurements in animal i, where y i
j is the observation of subject i at time t i

j for

i = 1, ..., N and j = 1, ..., ni (ni is the number of measurements of individual i). We assumed the

following observation model

y i
j = f (t i

j;θ
i) + ei

j , j = 1, ..., ni , i = 1, ..., N , (2.5)
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where f (t i
j;θ

i) is the evaluation of the tumor growth model at time t i
j , θ

i ∈ Rp is the vector of

the parameters relative to the individual i and ei
j the residual error model, to be defined later. An

individual parameter vector θ i depends on fixed effects µ, identical within the population, and on

a random effect ηi , specific to each animal. Random effects follow a normal distribution with mean

zero and variance matrix ω. Specifically:

log
�

θ i
�

= log (µ) +ηi , ηi ∼N(0,ω).

The choice of a log-normal distribution ensured the positivity of the parameters without adding any

constraint. Moreover, the ratio of two log-normal distributions is a log-normal distribution.

We considered a combined residual error model ei
j , defined as

ei
j = (σ1 +σ2 f (t i

j;θ
i))εi

j ,

where εi
j ∼N(0, 1) are the residual errors and σ = [σ1,σ2] is the vector of the residual error model

parameters.

In order to compute the population parameters, we maximized the population likelihood, ob-

tained by pooling all the data together. Usually, this likelihood cannot be computed explicitly for

nonlinear mixed-effect models. We used the stochastic approximation expectation minimization al-

gorithm (SAEM) [111], implemented in the Monolix 2018 R2 software [83]. This algorithm is

a variation of the EM algorithm, where the expectation step is replaced by a stochastic approxima-

tion of the likelihood function [138]. This method has been proven to efficiently converge to the

maximum likelihood estimator for nonlinear mixed effects models [111].

In the remainder of the manuscript we will denote by φ = {µ,ω,σ} the set of the population

parameters containing the fixed effects µ, the covariance of the random effects ω and the error

model parameters σ.

2.3.5 Individual predictions

For a given animal i, the backward prediction problem we considered was to predict the age

of the tumor based on the three last measurements y i = {y i
ni−2, y i

ni−1, y i
ni}. Since we were in an

experimental setting, we considered the injection time as the initiation time and thus the age was

given by ai = t i
ni−2. Then, we considered as model f (t;θ i) the solution of the Cauchy problem (2.4)

endowed with initial conditions
�

t i
I = t i

ni−2, V i
I = y i

ni−2

�

. For estimation of the parameters (estimate

θ̂
i
), we applied two different methods: likelihood maximization alone (no use of prior population

information) and Bayesian inference (use of prior). The predicted age âi was then defined by

f
�

t i
ni−2 − âi; θ̂ i

�

= Vinj,

that is:

âi =
1

β̂ i

�

log

�

α̂i

β̂ i

�

− log

�

α̂i

β̂ i
− log

�

V i
I

Vinj

���

(2.6)

in case of the Gompertz model.
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Likelihood maximization

For individual predictions with likelihood maximization, no prior information on the distribution

of the parameters was used. Parameters of the error model were not re-estimated: values from the

population analysis were used. The log-likelihood can be derived from (2.5):

l(θ i) = ln

 

ni
∏

j=ni−2

P
�

y i
j

�

�

�θ i
�

!

= −
3
2

log (2π)−
1
2

ni
∑

j=ni−2



log
�

σ1 +σ2 f
�

t i
j ,θ

i
��

+





y i
j − f

�

t i
j ,θ

i
�

σ1 +σ2 f
�

t i
j ,θ

i
�





2

 , (2.7)

where P
�

y i
j

�

�

�θ i
�

is the likelihood of the observation of the animal i at time t i
j .

In order to guarantee the positivity of the parameters, we introduced the relation θ i = g(γi) = eγ
i

and substituted this in equation (2.7). The negative of equation (2.7) was minimized with respect

to γi (yielding the maximum likelihood estimate γ̂i) with the function minimize of the python

module scipy.optimize, for which the Nelder-Mead algorithm was applied. Thanks to the in-

variance property, the maximum likelihood estimator of θ i was determined as θ̂
i
= eγ̂

i
. Individual

prediction intervals were computed by sampling the parameters θ i from a gaussian distribution

with variance-covariance matrix of the estimate defined as ∇g(γ̂i)T ·
�

ŝ2,i(I−1(γ̂i))
�

· ∇g(γ̂i) where

ŝ2,i = 1
3−p

∑ni

j=ni−2

�

y i
j− f

�

t i
j ,θ̂

i�

σ1+σ2 f
�

t i
j ,θ̂

i�

�2

, with p the number of parameters (and the factor 3 in the denom-

inator because this is the number of observations), I(γ̂i) the Fisher information matrix and ∇g(γ̂i)

the gradient of the function g(γ) evaluated in the estimate γ̂i . Denoting by f (γ) =
�

f
�

t i
j , eγ

��ni

j=ni−2

and byΩ(γ) = diag
�

σ1 +σ2

�

f
�

t i
j , eγ

��ni

j=ni−2

�

, the Fisher information matrix was defined by [139]
:

[I(γ)]l,m =

�

∂ f (γ)
∂ γl

�T

Ω−1(γ)

�

∂ f (γ)
∂ γm

�

+
1
2

tr

�

Ω−1(γ)
∂Ω(γ)
∂ γl

Ω−1(γ)
∂Ω(γ)
∂ γm

�

. (2.8)

Bayesian inference

When applying the Bayesian method, we considered training sets to learn the distribution of the

parameters φ and test sets to derive individual predictions. For a given animal i of a test set, we

predicted the age of the tumor based on the combination of: 1) population parameters φ identified

on the training set using the population approach and 2) the three last measurements of animal i.

We set as initial conditions t I = 0 and V i
I ∼N(y i

ni−2,σ1+σ2 y i
ni−2). We considered the initial volume

VI to be a random variable to account for measurement uncertainty on y i
ni−2. We then estimated the
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posterior distribution P(θ i|y i) of the parameters θ i using a Bayesian approach [130]:

P
�

θ i|y i
�

=
P
�

y i|θ i
�

P
�

θ i
�

P(y i)
, (2.9)

where P
�

θ i
�

is the prior distribution of the parameters estimated through nonlinear mixed-effects

modeling (i.e., the population parameters φ), P
�

y i|θ i
�

=
∫

R P
�

V i
I

�

P
�

y i|θ i , V i
I

�

dV i
I is the likeli-

hood, defined from equation (2.5), and P(y i) =
∫

Rp P
�

θ i
�

P
�

y i|θ i
�

dθ i is a normalization factor.

The predicted distributions of extrapolated growth curves and subsequent âi were computed by sam-

pling θ i from its posterior distribution (2.9) using Pystan, a Python interface to the software Stan
[84] for Bayesian inference based on the No-U-Turn sampler, a variant of Hamiltonian Monte Carlo

[85]. The sampling procedure depends on the evaluation of the likelihood P
�

y i|θ i
�

, which relies

itself on V i
I . Therefore, V i

I was sampled from its distribution for each realization of the posterior

distribution. Predictions of âi were then obtained from (2.6), considering the median value of the

distribution.

Different data sets were used for learning the priors (training sets) and prediction (test sets) by means

of k-fold cross validation, with k equal to the total number of animals of the dataset (k = N , i.e.

leave-one-out strategy). At each iteration we computed the parameters distribution of the popula-

tion composed by N−1 individuals and used this as prior to predict the initiation time of the excluded

subject i. The Stan software was used to draw 2000 realizations from the posterior distribution of

the parameters of the individual i.

2.4 Results

Results were similar for the three data sets presented in the materials and methods. For concise-

ness, the results presented below are related to the largest dataset (breast cancer data measured by

volume). Results relative to the other datasets are reported in Tables B1-B4 and Figures B1-B10.

2.4.1 Population analysis of tumor growth curves

The population approach was applied to test the descriptive power of the exponential, logistic

and Gompertz models for tumor growth kinetics. The number of injected cells at time tinj = 0

was 106, therefore we fixed the initial volume Vinj = 1 mm3 in the whole dataset [109]. We set

(t I , VI) = (tinj, Vinj) as initial condition of the equations.

We ran the SAEM algorithm with the Monolix software to estimate the fixed and random effects

[83]. Moreover, we evaluated different statistical indices in order to compare the different tumor

growth models. This also allowed learning of the parameter population distributions that were

used later as priors for individual predictions. Results are reported in Table 2.2, where the models

are ranked according to their AIC (Akaike Information Criterion), a metrics combining parsimony

and goodness-of-fit. The Gompertz model was the one with the lowest values, indicating superior

goodness-of-fit. This was confirmed by diagnostic plots (Figure 2.2). The visual predictive checks
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(VPCs) in Figure 2.2A compare the empirical percentiles with the theoretical percentiles, i.e. those

obtained from simulations of the calibrated models. The VPC of the exponential and logistic mod-

els showed clear model misspecification. On the other hand, the VPC of the Gompertz model was

excellent, with observed percentiles close to the predicted ones and small prediction intervals (in-

dicative of correct identifiability of the parameters). Figure 2.2B shows the prediction distributions

of the three models. This allowed to compare the observations with the theoretical distribution of

the predictions. Only the prediction distribution of the Gompertz model covered the entire dataset.

The logistic model exhibited a saturation of tumor dynamics at lower values than compatible with

the data.

Moreover, the distribution of the residuals was symmetrical around a mean value of zero with

the Gompertz model (Figure 2.2C), strengthening its good descriptive power, while the exponential

and logistic models exhibited clear skewed distributions. The observations vs individual predictions

in Figure 2.2D further confirmed these findings.

These observations at the population level were confirmed by individual fits, computed from the

mode of the posterior conditional parameter distribution for each individual (Figure 2.3). Confirm-

ing previous results [109], the optimal fits of the exponential and logistic models were unable to give

appropriate description of the data, suggesting that these models should not be used to describe tu-

mor growth, at least in similar settings to ours. Fitting of late timepoints data forced the proliferation

parameter of the exponential model to converge towards a rather low estimate, preventing reliable

description of the early datapoints. The converse occurred for the logistic. Constrained by the early

data points imposing to the model the pace of the growth deceleration, the resulting estimation of

the carrying capacity K was biologically irrelevant (much too small, typical value 1303 mm3, see

Table 2.3), preventing the model to give a good description of the late growth.

Table 2.3 provides the values of the population parameters. The relative standard error estimates

associated to population parameters were all rather low (<3.81%), indicating good practical identi-

fiability of the model parameters. Standard error estimates of the constant error model parameters

were found to be slightly larger (<19.3%), suggesting that for some models a proportional error

model might have been more appropriate - but not in case of the exponential model. Since our aim

was to compare different tumor growth equations, we established a common error model parame-

ter, i.e. a combined error model. Relative standard errors of the standard deviations of the random

effects ω were all smaller than 9.6% (not shown).

These model findings in the breast cancer cell line were further validated with the other cell

lines. For both the lung cancer and the fluorescence-breast cancer cell lines, the Gompertz model

outperformed the other competing models (see Tables B1 and B2 for goodness-of-fit metrics, and

Tables B3 and B4 for parameter values), as also shown by the diagnostic plots (Figures B1 and

B2). Individual plots confirmed these observations and are provided in Figures B3 and B4. For the

fluorescence-breast cancer cell line the constant part of the error model was found negligible and we

used a proportional error model (i.e., we fixed σ1 = 0). Value of σ2 was found particularly high for

the Exponential model (Table B4), which resulted in inappropriate fits (Figures B2 and B4), further
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supporting rejection of this model. Estimated inter-individual variability for the other models was

found small. This was probably due to the small number of animals in the data set.

Together, these results confirmed that the exponential and logistic models are not appropriate

models of tumor growth while the Gompertz model has excellent descriptive properties, for both

goodness-of-fit and parameter identifiability purposes.

Model -2LL AIC BIC

Gompertz 7129 7143 7158
Reduced Gompertz∗ 7259 7269 7280
Logistic 7584 7596 7609
Exponential 8652 8660 8669

Table 2.2. Models ranked in ascending order of AIC (Akaike information criterion). Other statistical indices
are the log-likelihood estimate (-2LL) and the Bayesian information criterion (BIC). ∗The reduced Gompertz
model is introduced below.

Model Par. Unit Fixed effects ω R.S.E. (%)

Gompertz α day−1 0.58 0.19 2.51
β day−1 0.072 0.26 3.42
σ - [20.5, 0.11] - [16.9, 7.53]

Reduced Gompertz∗ β day−1 0.075 0.13 1.74
k - 7.87 - 0.21
σ - [14.8, 0.17] - [19.3, 5.32]

Logistic ρ day−1 0.325 0.138 1.82
K mm3 1303 0.25 3.81
σ - [58.9, 0.12] - [8.97, 9.14]

Exponential α day−1 0.231 0.08 1.38
σ - [272, 0.26] - [6.10, 15.1]

Table 2.3. Fixed effects (typical values) of the parameters of the different models. Par. = parameter. ω =
standard deviation of the random effects. R.S.E. = relative standard errors of the estimates. σ = residual
error model parameters. ∗The reduced Gompertz model is introduced below.

2.4.2 The reduced Gompertz model

Correlation between the Gompertz parameters.

During the estimation process of the Gompertz parameters, we found a high correlation between

α and β within the population. At the population level, the SAEM algorithm estimated a correlation

of the random effects equal to 0.981. At the individual level, αi and β i were also highly linearly

correlated (Figure 2.4A, R2 = 0.968), confirming previous results [100, 105, 104, 106, 140]. This
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1Figure 2.2. Population analysis of experimental tumor growth kinetics. (A) Visual predictive checks
assess goodness-of-fit for both structural dynamics and inter-animal variability by reporting model-predicted
percentiles (together with confidence prediction intervals (P.I) in comparison to empirical ones. They were
obtained by multiple simulations of each model. The time axis was then split into bins and in each interval the
empirical percentiles of the observed data were compared with the respective predicted medians and intervals
of the simulated data [83]. (B) Prediction distributions. They were obtained by multiple simulations of all
individuals in the dataset, excluding the residual error [83]. (C) Individual weighted residuals (IWRES) with
respect to time. (D) Observations vs predictions Left: exponential, Center: logistic, Right: Gompertz models.
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1Figure 2.3. Individual fits from population analysis. Three representative examples of individual fits (ani-
mal (A), animal (B) and animal (C)) computed with the population approach relative to the exponential (left),
the logistic (center) and the Gompertz (right) models.
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motivated the reformulation of the alpha parameter as follows:

αi = kβ i + c, (2.10)

where k and c are representing the slope and the intercept of the regression line, respectively. In our

analysis we found c to be small (c = 0.14), thus we further assumed this term to be negligible and

fixed it to 0. This suggests k as a constant of tumor growth within a given animal model with similar

characteristics (note however that from (2.4), k depends on Vinj) [105, 141]. In turn, this implies an

approximately constant limiting size

K i = Vinje
αi

β i ' Vinje
k ' 2600 mm3, ∀i. (2.11)

The other data sets gave analogous results in terms of goodness of fit and correlation between α

and β , even if the constant limiting size was found different in the three cell lines. The estimated

correlations of the random effects were 0.967 and 0.998 for the lung cancer and for the fluorescence-

breast cancer, respectively. The correlation between the parameters was also confirmed at the indi-

vidual level (see Figures B5 and B6, R2 was 0.923 and 0.99 for the two data sets, respectively).

Biological interpretation in terms of the proliferation rate.

By definition, the parameter αi is the specific growth rate (SGR) at the volume Vinj, simply as-

sumed to be the volume corresponding to the number of injected cells within a given animal model

(e.g. Vinj = 1 for the breast data measured by volume). Assuming that the cells don’t change their

proliferation kinetics when implanted, this value should thus in theory be equal to the in vitro prolif-

eration rate (supposed to be the same for all the cells of the same cell line), denoted here by λ. The

value of this biological parameter was assessed in vitro and estimated at 0.837 [118]. In support

to our quantitative assumptions, we indeed found estimated values of αi close to λ (fixed effects of

0.58, see Table 2.3).

However, most of the values of αi were smaller than λ in the majority of the cases (Figure 2.4A).

We postulated that this difference could be explained by the fact that not all the cells will be success-

fully grafted when injected in an animal. Under such assumption the SGR at the initial time, to be

compared with λ, would not be given by αi anymore. Instead, denoting by V̂ i
inj < Vinj the (unknown)

volume of the successfully grafted cells, and assuming further that the SGR at initiation would be

fixed and given by λ leads to the following reformulation of the Gompertz model










dV i

d t
=

 

λ− β i log

 

V i

V̂ i
inj

!!

V i

V i(t I = 0) = V̂ i
inj

In turn, fitting this model to the data provides estimates of the percentage of successful engraftment

of 7%± 12.5% (mean ± standard deviation).

Alternatively, these results might also be explained by a time lag between the cell implantation and

the initiation of tumor growth, due to the time needed by the cells to adapt to the new environment

[142]. However, the two interpretations are indistinguishable in our case and might require a more
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elaborate analysis with specific data.

Population analysis of the reduced Gompertz model.

The high correlation among the Gompertz parameters, suggested that a reduction of the degrees

of freedom (number of parameters) in the Gompertz model could improve identifiability and yield

a more parsimonious model. We considered the expression (2.10), assuming c to be negligible. We

therefore propose the following reduced Gompertz model:






































dV i

d t
=

�

β ik− β i log

�

V i

Vinj

��

V i

V i(t i
I) = V i

I

log
�

β i
�

= log
�

βpop

�

+ηi
β

, ηi
β
∼N(0,ωβ)

k = kpop

, (2.12)

where β has mixed effects, while k has only fixed effects, i.e., is constant within the population.

Figure 2.4 shows the results relative to the population analysis of this reduced Gompertz model.

Results of the diagnostic plots indicated no deterioration of the goodness-of-fit as compared with the

Gompertz model (Figure 2.4B-D). Only on the last timepoint was the model slightly underestimating

the data (Figure 2.4D), which might explain why the model performs slightly worse than the two-

parameters Gompertz model in terms of strictly quantitative statistical indices (but still better than

the logistic or exponential models, Table 2.2). Individual dynamics were also accurately described

(Figure 2.4E). Parameter identifiability was also excellent (Table 2.3).

The other two data sets gave similar results (see Figures B5 and B6).

Together, these results demonstrated the accuracy of the reduced Gompertz model, with improved

robustness as compared to previous models.

2.4.3 Prediction of the age of a tumor

Considering the increased robustness of the reduced Gompertz model (one individual parameter

less than the Gompertz model), we further investigated its potential for improvement of predictive

power. We considered the problem of estimating the age of a tumor, that is, the time elapsed between

initiation (here the time of injection) and detection occurring at larger tumor size (Figure 2.5). For

a given animal i, we considered as first observation y i
ni−2 and aimed to predict its age ai = t i

ni−2

(see Methods). We compared the results given by the Bayesian inference with the ones computed

with standard likelihood maximization method (see Methods). To that end, we did not consider

any information on the distribution of the parameters. For the reduced Gompertz model however

(likelihood maximization case), we used the value of k calculated in the previous section (Table 2.3),

thus using information on the entire population. Importantly, for both prediction approaches, our

methods allowed not only to generate a prediction of ai for estimation of the model accuracy (i.e.
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1Figure 2.4. Correlation of the Gompertz parameters and diagnostic plots of the reduced Gompertz
model from population analysis. Correlation between the individual parameters of the Gompertz model (A)
and results of the population analysis of the reduced Gompertz model: visual predictive check (B), scatter
plots of the residuals (C), prediction distribution (D) and examples of individual fits (E).
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absolute relative error of prediction), but also to estimate the uncertainty of the predictions (i.e.

precision, measured by the width of the 95% prediction interval (PI)).

Figure 2.5 presents a few examples of prediction of three individuals without (LM) and with

(Bayesian inference) priors relative to the breast cancer measured by volume. The reduced Gom-

pertz model combined to Bayesian inference (bottom row) was found to have the best accuracy in

predicting the initiation time (mean error = 12.2%, 8.8% and 12.3% for the volume-breast cancer,

lung cancer and fluorescence-breast cancer respectively) and to have the smallest uncertainty (pre-

cision = 15.6, 7.79 and 23.6 days for the three data sets, respectively). Table 2.4 gathers results

of accuracy and precision for the Gompertz and reduced Gompertz models under LM and Bayesian

inference relative to the three data sets. With only local information of the three last data points,

the Gompertz model predictions were very inaccurate (mean error = 156%, 178% and 236%) and

the Fisher information matrix was often singular, preventing standard errors to be adequately com-

puted. With one degree of freedom less, the reduced Gompertz model had better performances with

LM estimation but still large uncertainty (mean precision under LM = 210, 103 and 368 days) and

poor accuracy using LM (mean error= 79%, 68.9% and 91.7%). Examples shown in Figure 2.5 were

representative of the entire population relative to the breast cancer measured by volume. Eventu-

ally, for 97%, 95% and 87.5% of the individuals of the three data sets the actual value of the age

fell in the respective prediction interval when Bayesian inference was applied in combination with

the reduced Gompertz models. This means a good coverage of the prediction interval and indicates

that our precision estimates were correct. On the other hand, this observation was not valid in case

of likelihood maximization, where the actual value fell in the respective prediction interval for only

42.4%, 35% and 75% of the animals when the reduced Gompertz model was used.

Addition of a priori population information by means of Bayesian estimation resulted in drastic

improvement of the prediction performances (Figure 2.6). This result was confirmed in the the

other data sets (see Figures B7 and B8 for the lung cell line and Figures B9 and B10 for the breast

cell line measured by fluorescence). For the breast and lung cancer cell lines measured by volume, a

Wilcoxon test was performed to analyze the different error distributions shown in Figures 2.6C and

B8C. For the fluorescence-breast cancer cell line we could not report a significant difference in terms

of accuracy between the Gompertz and the reduced Gompertz when applying Bayesian inference.

This can be explained by the low number of individuals included in the data set.

Overall, the combination of the reduced Gompertz model with Bayesian inference clearly outper-

formed the other methods for prediction of the age of experimental tumors.

2.5 Discussion

We have analyzed tumor growth curves from multiple animal models and experimental tech-

niques, using a population framework. This approach is ideally suited for experimental or clinical

data of the same tumor type within a given group of subjects. Indeed, it allows for a description



2.5. Discussion 47

A B C

Gompertz
(LM)

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

Reduced
Gompertz

(LM)

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

Gompertz
(Bayesian
inference)

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

Reduced
Gompertz
(Bayesian
inference)

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

0 tn 2
Time (days)

0.1

10

1000

Vinj

V
ol

um
e 

(m
m

3 )

1Figure 2.5. Backward predictions computed with likelihood maximization and with Bayesian inference.
Examples of backward predictions of three individuals (A), (B) and (C) computed with likelihood maximiza-
tion (LM) and Bayesian inference: Gompertz model with likelihood maximization (first row); reduced Gom-
pertz with likelihood maximization (second row); Gompertz with Bayesian inference (third row) and reduced
Gompertz with Bayesian inference (fourth row). Only the last three points are considered to estimate the
parameters. The grey area is the 95% prediction interval (P.I) and the dotted blue line is the median of the
posterior predictive distribution. The red line is the predicted initiation time and the black vertical line the
actual initiation time.
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1Figure 2.6. Accuracy of the prediction models. Swarmplots of relative errors obtained under likelihood
maximization (A) or Bayesian inference (B) (∗ p-value < 0.05, ∗∗ p-value < 0.01, Levene’s test). (C) Absolute
errors: comparison between the different distributions (∗ p-value < 0.05, ∗∗ p-value < 0.01, Wilcoxon test).
In (A) three extreme outliers were omitted (values of the relative error were greater than 20) for both the
Gompertz and the reduced Gompertz in order to ensure readability. LM = Likelihood Maximization
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Cell line Model Estimation
method

Error PI

Breast, volume Reduced Gompertz Bayesian 12.2 (1.05) 15.6 (0.509)
Reduced Gompertz LM 79 (13.2) 210 (58.6)
Gompertz Bayesian 16.4 (1.65) 41.1 (1.63)
Gompertz LM 156 (21.7) -

Lung, volume Reduced Gompertz Bayesian 8.78 (1.43) 7.79 (0.275)
Reduced Gompertz LM 68.9 (33.1) 103 (92.6)
Gompertz Bayesian 18.9 (2.87) 19.7 (1.89)
Gompertz LM 178 (71.6) -

Breast, fluores-
cence

Reduced Gompertz Bayesian 12.3 (2.9) 23.6 (5.15)

Reduced Gompertz LM 91.7 (21.1) 368 (223)
Gompertz Bayesian 13.5 (3.5) 45.4 (4.43)
Gompertz LM 236 (150) -

Table 2.4. Accuracy and precision of methods for prediction of the age of experimental tumors of the three
cell lines. Accuracy was defined as the absolute value of the relative error (in percent). Precision was defined
as the width of the 95% prediction interval (PI column, in days). Reported are the means and standard errors
(in parenthesis). LM = likelihood maximization

of the inter-subject variability that is impossible to obtain when fitting models to averaged data (as

often done for tumor growth kinetics [143]), while enabling a robust population-level description

that is strictly more informative than individual fits alone. As expected from the classical observation

of decreasing specific growth rates [100, 144, 102, 145, 146], the exponential model generated very

poor fits. More surprisingly given its popularity in the theoretical community (probably due to its

ecological ground), the logistic model was also rejected, due to unrealistically small inferred value of

the carrying capacity K . This finding confirms at the population level previous results obtained from

individual fits [109, 147]. It suggests that the underlying theory (competition between the tumor

cells for space or nutrients) is unable – at least when considered alone – to explain the decrease of the

specific growth rate, suggesting that additional mechanisms need to be accounted for. Indeed, the

logistic model relies on space-independent cellular interactions, which might be biologically unreal-

istic [148]. Few studies have previously compared the descriptive performances of growth models

on the same data sets [109, 149, 110]. In contrast to our results, Vaidya and Alexandro [110] found

admissible description of tumor growth data employing the logistic model. Beyond the difference

of animal model, we believe that the major reason explaining this discrepancy is the type of error

model that was employed, as also noticed by others [147]. Here we used a combined error model, in

accordance to our previous study [109] that had examined repeated measurements of tumor size and

concluded to rejection of a constant error model (used in [110]). Moreover, statistical goodness-of-fit

metrics were substantially worse when using a constant error model (e.g AIC of 7362 versus 7129,

for the Gompertz model, results not shown). To avoid overfitting, we also made the assumption to

keep the initial value VI fixed to Vinj. As noted before [109], releasing this constraint leads to ac-



50 Chapter 2. Population modeling of tumor growth curves

ceptable fits by either the exponential or logistic models (to the price of deteriorated identifiability).

However, the estimated values of VI are in this case biologically inconsistent.

On the other hand, the Gompertz model demonstrated excellent goodness-of-fit in all the experi-

mental systems that we investigated. This is in agreement with a large body of previous experimen-

tal and clinical research works using the Gompertz model to describe unaltered tumor growth in

syngeneic [150, 100, 104, 147] and xenograft [151, 152] preclinical models, as well as human data

[145, 107, 106, 102]. The poor performances of the logistic model compared to the Gompertz model

can be related to the structural properties of the models. The two sigmoid functions lie between two

asymptotes (V = 0 and V = K) and are characterized by an initial period of fast growth followed

by a phase of decreasing growth. These two phases are symmetrical in the logistic model, which is

characterized by a decrease of the specific growth rate 1
V

dV
d t at constant speed. On the other hand,

the Gompertz model exhibits a faster decrease of the specific growth rate, at speed −βV , or e−β t as a

function of t, and the sigmoidal curve is not symmetric around its inflexion point. The logistic and

Gompertz models belong to the same family of tumor growth equations and can be seen as specific

cases of the generalized logistic model dV
d t = ρV

�

1−
� V

K

�ν�
[146, 109]. We also analyzed the latter

model, which demonstrated good descriptive power but lacked robustness of convergence. Indeed,

the SAEM algorithm converged to different estimates starting from different initial guesses of the

parameters. This might be explained by the larger number of parameters (3) that led to identifiabil-

ity problems. In addition, we found that values of ν able to describe the data were often very small

(< 10−3), thus suggesting convergence to the Gompertz model.

Similarly to previous reports [100, 105, 106, 107], we also found a very strong linear correla-

tion between the two parameters of the Gompertz model, i.e. α the proliferation rate at injection

and β the rate of decrease of the specific growth rate. Importantly, this correlation is not due to

a lack of identifiability of the parameters at the individual level, which we investigated and found

to be excellent. Such finding motivated our choice to use a reduced Gompertz model, with only

one individual-specific parameter, and one population-specific parameter. This model has been pro-

posed before in the context of individual tumor growth curves [105, 141] but here we leveraged

the population approach to ensure reliable estimation of the population-level parameter and sta-

tistical distribution of the individual-level parameter. Importantly, while previous studies had only

investigated the resulting predictive power in only one animal [104] or using simulation data [141],
here we rigorously demonstrated how the reduced Gompertz allows better backward (or forward,

although not reported here) prediction of tumor size and time of initiation. This analysis was per-

formed using state-of-the art techniques from predictive modeling (e.g. cross-validation), on a large

number of animals.

The descriptive power of the reduced Gompertz model was found similar to the two-parameters

Gompertz model. Critically, while previous work had demonstrated that two individual parameters

were sufficient to describe tumor growth curves [109], these results now show that this number can

be reduced to one. Interestingly, we found different values of the carrying capacity K for the breast

and the lung cancer cell lines measured by volume (K = 2600 mm3 and 12300 mm3, respectively), in
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contrast with previous claims [105]. This suggests that there might not be a characteristic saturation

point within a species [141] but the carrying capacity could be a typical feature of a tumor type in

an animal model. From (2.12), the population constant k depends on the value of the parameter

Vinj, therefore it cannot be viewed as a universal constant of tumor growth. However, it can be

considered as a common trait within a species with similar characteristics (such as tumor type and

value of Vinj). We used the formulations of the Gompertz (2.4) and reduced Gompertz (2.12) in

order to define α as the specific growth rate at injection, which could be compared to the in vitro

proliferation rate λ. This could be leveraged clinically to predict past or future tumor growth kinetics

based on proliferation assays, derived from a patient’s tumor sample.

The reduced Gompertz model, combined to Bayesian estimation from the population prior, al-

lowed to reach good levels of accuracy and precision of the time elapsed between the injection of the

tumor cells and late measurements, used as an experimental surrogate of the age of a given tumor.

Importantly, performances obtained without using a prior were substantially worse. The method

proposed herein remains to be extended to clinical data, although it will not be possible to have a

firm confirmation since the natural history of neoplasms from their inception cannot be reported in a

clinical setting. Nevertheless, the encouraging results obtained here could allow to give informative

estimates, even if approximative. Importantly, the methods we developed also provide a measure

of precision, which would give a quantitative assessment of the reliability of the predictions. For

clinical translation, Vinj should be replaced by the volume of one cell Vc = 10−6 mm3. Moreover,

since the Gompertz model has a specific growth rate that tends to infinity when V gets arbitrarily

small, our results might have to be adapted with the Gomp-Exp model [153, 118].

Our methodology might face multiple challenges for future clinical applications. First, it is dif-

ficult to fully characterize unperturbed tumor kinetics in humans and only few studies support the

evidence that it follows a gompertzian growth [102]. This is due to the limited number of available

observations in the clinic and to the fact that saturation of human tumors is almost never reached,

since it coincides with an advanced stage of the cancer where patients usually receive a treatment.

Moreover, human tumor growth curves, even if limited to the same organ and histological type,

exhibit a substantially larger variability than in in vivo experimental settings where immortalized

cancer cell lines are injected in genetically identical mice. Here, we have proven that a given animal

model (i.e. same mice, tumor type and number of injected cells) is characterized by a common tu-

mor growth constant, that defines the saturation point. In the human setting, it could be interesting

to analyze this constant as a function of some covariates (such as weight, sex, tumor type). Even-

tually, in the Gompertz model we haven’t considered that the initial phase of tumor growth might

be affected by intrinsic stochasticity. Our choice was motivated by the large number of injected cells

(of the order of 106) that allowed us to consider the initial variability to be negligible. For accurate

clinical translation, stochasticity should ideally be taken into account to model the initial stages of

tumor growth.

Personalized estimations of the age of a given patient’s tumor would yield important epidemi-

ological insights and could also be informative for routine clinical practice [131]. By estimating
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the period at which the cancer initiated, it could give clues on the possible causes (environmental

or behavioral) of neoplastic formation. Moreover, reconstruction of the natural history of the pre-

diagnosis tumor growth might inform the presence and extent of invisible metastasis at diagnosis.

Indeed, an older tumor has a greater probability of having already spread than a younger one. Al-

together, the present findings could contribute to the development of personalized computational

models of metastasis [118, 154, 155].

2.6 Validation of the reduced Gomperz model

We validated the reduced Gompertz model on a new dataset of unperturbed tumor growth with

a different Vinj. The experiment details are provided in [76]. 6-week-old female nude mice were

orthotopically grafted (mammary fat pad) with 80,000 MDA-MB-231 cells in 60% Matrigel. Tu-

mor growth was initially monitored using fluorescence imaging, while starting from day 44 caliper

measurements were employed because of loss of dTomato expression in vivo.

Data and methods

We took into account the two types of observations. In particular, until day 30 tumor size was

monitored with fluorescence imaging and starting from day 44 it was measured with caliper. There-

fore, tumor growth data y j
i of an individual i at time t j

i is defined as

y j
i =







y j
fluo,i , t j

i ≤ 30,

y j
cal,i , t j

i ≥ 44,
(2.13)

where y j
fluo,i is the fluorescence signal and y j

cal,i is the tumor volume measured with caliper. We

denoted by KFV the conversion rate from the fluorescence signal to the tumor volume (in mm3·
(phot./s)−1). In the following sections, we will denote the evolution of the tumor volume V in time

considering the two measurement types Vfluo (fluorescence) and Vcal (caliper) as follows

V (t) =







KFV Vfluo(t), t ≤ 30,

Vcal(t), t > 30.
(2.14)

The injected number of tumor cells was Vinj = 0.08 mm3.

The reduced Gompertz model was considered to describe the tumor growth kinetics in time:

dVfluo

d t
=

�

kβ i − β i log

�

Vfluo

Vinj/K
i
FV

��

Vfluo, Vfluo(0) = Vinj/K
i
FV ,

dVcal

d t
=

�

kβ i − β i log

�

Vcal

Vinj

��

Vcal, Vcal(0) = Vinj,

(2.15)

(2.16)

where k has fixed effects, while K i
FV and β i have random effects within the population. The specific

growth rate αi at the injected volume Vinj satisfies αi = kβ i . The large number of degrees of freedom

and the lack of data from day 30 to day 44 induced us to determine some parameters from other
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experiments. Since we claim that the carrying capacity might be constant within a tumor type in a

given species (see Section 2.4.2), we estimated the fixed-effects parameter k from equation (2.11),

with Vinj = 0.08 mm3:

k = log

�

K
Vinj

�

≈ 10.4. (2.17)

Moreover, we observed that the specific growth rate α should be equal to the in vitro proliferation

rate λ. Assuming this relationship, we were able to estimate the parameter β as follows:

β i =
αi

k
=
λi

k
.

The cell doubling time was studied in vitro on MDA-MB-231 dTomato cells and results are provided

in appendix A. From Table A3, we estimated the distribution of the proliferation rate (in h −1):

log(λi)∼N
�

log(λpop),ω
2
λ

�

=N

�

log

�

Kpop − V0,pop

Kpop
ρpop

�

,

�

Kpop − V0,pop

Kpop

�2

ω2
ρ

�

=N (log(0.037), 0.004) .
Therefore, we obtained the distribution of the parameter β (converted in day−1):

log(β i)∼N

�

log
�

24
k
λpop

�

,
�

24
k

�2

ω2
λ

�

=N (log(0.086), 0.024) . (2.18)

We tested the reduced Gompertz model on the control data fixing k and β i according to (2.17) and

(2.18), respectively, using Monolix 2019R2. This was a real validation of the reduced Gompertz

model, as the predictions were concordant with independent data. Moreover, we estimated the

parameter KFV and recovered the entire tumor growth kinetics.

Parameter estimation with nonlinear mixed effects modeling

We pooled together fluorescence and volume data to estimate tumor growth parameters. We

employed a similar methology to section 2.4.1. In this case, we assumed a proportional error model

for both the fluorescence and the caliper measurements. Indeed, early observations of the caliper-

measured tumor volume were not available. The observation model reads as follows:






y j
fluo,i = Vfluo(t j;θ ) +σfluoVfluo(t j;θ )εi

j ,

y j
cal,i = Vcaluo(t j;θ ) +σcalVcal(t j;θ )εi

j ,
(2.19)

where θ is the set of parameters of the tumor growth model V (t), σfluo and σcal are the error model

parameters, and εi
j ∼N(0, 1) is the residual error.

Due to the large number of degrees of freedom, the error model parameter of caliper data σcal

was fixed to 0.17, which was the estimated value for the reduced Gompertz model in Table 2.3.



54 Chapter 2. Population modeling of tumor growth curves

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

0

1000

2000

3000

0 20 40 60
Time (days)

V
ol

um
e 

(m
m

3 )

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

0

1000

2000

0 20 40 60
Time (days)

V
ol

um
e 

(m
m

3 )
A B

1Figure 2.7. Validation of the reduced Gompertz model: prediction distributions (A) and individual fits (B)
with the volume data (after day 44) and the rescaled fluorescence data (before day 30).

Results

We analyzed the control group to validate the hypotheses on the parameters k and β and to

estimate the distribution of the parameter KFV . We used Monolix 2019R2 [156] to perform the

analysis. The visualization was done useing the Simulx function of the mlxR R package [157], that

allowed us to rescale fluorescence data to volume data. Results are shown in Figure 2.7 on the

left. Good individual fits were found for the caliper data (after day 44) considering that k and the

distribution of the parameter β were fixed. Moreover, the reduced Gompertz model was able to

describe the rescaled fluorescence data (before day 30). The parameter KFV was found to have fixed

values of 2.11e-7 mm3· (phot/s)−1 and standard deviation of the random effects equal to 0.54.

2.7 Further applications of the reduced Gompertz model: assessing
the differences in tumor growth kinetics

An additional application of the reduced Gompertz model consists in the evaluation of the dif-

ferences in tumor growth dynamics in different experimental groups. We performed an analysis on

data provided by Melissa Dolan and John Ebos1 to test if there were significative differences in tumor

growth kinetics between groups (such as resistant vs sensitive cancer cell lines).

A classical approach to compare tumor growth curves of different experimental groups consists in

determining if there are significant differences between the means at given time points using a t-test.

However, this methodology is highly limited, as it requires that measurements are acquired at the

same time and multiple p-values need to be compared. The evaluation of the specific growth rate

using the exponential growth model could be a possible strategy to address this problem. However,

1Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center
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Group Cell type Strain Treatment Vinj [mm3] # of animals

1 + BALB/c None 0.04 40
2 - BALB/c None 0.04 40
3 + SCID None 0.04 5
4 - SCID None 0.04 5

Table 2.5. Summary of the different groups considered in the study. Cell type + means reistant cells, while
cell type - means sensitive cells. Vinj is the volume of tumor cells that was initially injected into the animal.

the exponential model failed in fitting tumor growth data, as observed before. Here, we propose a

novel strategy to compare tumor growth curves based on the parameter β of the reduced Gomperz

model.

Tumor growth analysis was performed on each couple of groups using the Monolix software. The

parameter k was considered to have fixed effects within the population - composed by the two groups

- while β was assumed to have both fixed and random effects. Moreover, a combined error model was

used. The population parameters were estimated by maximizing the population likelihood, obtained

by pooling together the data of each pair of groups, adding a group covariate to the parameter β .

This methodology allowed us to estimate only one individual parameter β and to compare the

distributions of this parameter in each pair of groups. Student’s t-test was used to determine weather

the mean of the estimated individual parameter β was the same for the two groups. If the calculated

p-value was found lower than 0.05, then we rejected the null hypothesis that the distributions of β

of the two groups were equal.

Here, we show some examples of this kind of test. We analyzed tumor growth kinetics on control

groups, therefore no treatment was provided. Table 2.5 provides a summary of the different groups

that we considered. The animals were classified according to the strain, cell type and treatment.

The analysis was performed to assess differences in tumor growth kinetics in groups 1-2 and 3-4.

Figure 2.8 shows the results of the test. The spaghetti plots provides a visualization of the dataset.

Especially for the pair 3-4, the difference in tumor growth kinetics is noticeable from this plot. Using

nonlinear mixed effects modeling, we estimated the parameter k (considered fixed in each couple

of groups) and the distribution of the parameter β . The prediction distributions in Fig 2.8 assess

the goodness of fit of the reduced Gompertz model. Eventually, the t-test was used to evaluate the

differences in the distribution of the parameter β between the two groups. In the two cases, the

estimated p-value was small, suggesting a significant difference within the subgroups in each pair.

These results is relevant for our collaborators to quantify difference in tumor growth kinetics.
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1Figure 2.8. Test between groups 1-2 (first row) and groups 3-4 (second row): spaghetti plot (left) with
the individual tumor growth data; prediction distribution (middle) obtained by the nonlinear mixed effects
modeling analysis; distribution of the parameter β in the groups (right) with the result from the t-test. *
means that the p-value was less than 0.05 and ** means that the p-value was less than 0.01.

2.8 Conclusion

To conclude this chapter, we have defined a novel reduced Gompertz model in the statistical

framework of nonlinear mixed-effects modeling. It consists of a parameterization of the Gompertz

model with one population-specific parameter and a animal-specific parameter. Besides the good

performances in fitting tumor growth data of different cancer types, this new model has higher

predictive power than the classical Gompertz model since it requires only one parameter to estimate.

Moreover, it is a promising tool to assess differences in tumor growth kinetics between subgroups of

a population. Indeed, models with only one individual-specific parameter are preferable for this type

of analysis. Among these models, we have considered the exponential and the reduced Gompertz.

The latter was found to have much superior descriptive power.



CHAPTER 3

EVALUATION OF THE NANOPARTICLE

DOSE-RESPONSE RELATIONSHIP: in vitro
STUDIES

Abstract. In vitro experiments are the first step to evaluate the cellular response to a drug. In

the case of nanoparticles, they are carried out on cell cultures that have been isolated from their

usual biological context. These simplified systems - that exclude the complexity associated with all

living organisms - permit to identify the interactions between components, such as drug molecules

and cells. Here, we compare the in vitro efficacy of immunoliposomes, liposomes and free drugs on

different breast cancer cell lines using mathematical modeling. In particular, we fitted experimental

data to the Hill function, which describes the ligand-receptor interactions. Results obtained from this

analysis provide important information that can be integrated into mathematical models to simulate

the response of more complex systems.

57
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3.1 Introduction

Nanoparticle antiproliferative efficacy depends on the biochemical behavior at the cellular level.

However, the complexity related to all living organisms impairs to evaluate interactions of specific

components in vivo. This is the reason why in vitro cell cultures are used to first investigate their

response when they are subject to a drug.

Here, we used the Hill equation [158] to describe the biochemical behavior of 2D breast cancer cell

cultures that were treated with different drugs [3]. In particular, we investigated the antiproliferative

efficacy of docetaxel, docetaxel combined with trastuzumab and two kinds of liposomal formulations

that differ by their chemical composition. Experiments were carried out on three different breast

cancer cell lines, according to the expression of the Her2 receptor, namely SKBR3 (Her2++), MDA-

MB-453 (Her2+) and MDA-MB-231 (Her2-).

The Hill equation has been extensively used to describe physicochemical reactions [159], such

as enzyme kinetics [160] (Michaelis-Menten equation). In pharmacological modeling, it has been

proposed first by Wagner to investigate the drug concentration-response relationship [161]. Later, it

has been extensively used in pharmacokinetic-pharmacodynamic modeling to characterize the drug

response when it is nonlinear and saturable [162, 163, 159].

The Hill function is widely accepted in the pharmacological community as it is simple and provides

good fits to experimental data. However, other models present in the literature characterize the effect

of a drug. The Emax model, is the simplest model which describes the effect E of a drug as a function

of the concentration c [164]:

E = E0 ±
Emaxc

Ec50 + c
, (3.1)

where E0 is the baseline, Emax is the maximum effect of the drug and Ec50 is the concentration

corresponding to the half of Emax. However, the Emax model is not able to describe the dose-response

relationship of each drug. The Hill equation was then derived starting from the Emax model and

adding a new parameter γ that represents the number of binding molecules to a receptor [158]:

E = E0 ±
Emaxcγ

Ecγ50 + cγ
. (3.2)

The Hill model has been proven to describe a larger variety of drug responses. Indeed, when γ= 1,

the equation reduces to the hyperbolic Emax model, while if γ is different than one, the curve becomes

sigmoid. More complex models can be defined to describe the effect of the combination of multiple

drugs [159].

Nonlinear regression was used to calibrate the Hill function using in vitro data. This methodology

allowed to estimate the parameters relative to the cytotoxic activity of different treatments and to

compare them. In this Chapter, we focused on the in vitro efficacy of the ANCs, liposomes plus free

trastuzumab and free drugs (free docetaxel plus free trastuzumab) on three cell lines that differ

for the expression of the Her2 receptor expression. In section 3.2, we explain the material and

methods. In particular, we derive the Hill function highlighting its mechanistic properties in section
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3.2.2. Moreover, the different nonlinear regression techniques that have been adopted as well as

their computation in sections C.1-C.2. Results of the data fit are shown in detailed in appendix C.

Eventually, we draw the conclusions in section 3.4.

Importantly, the Hill model has been shown to have great descriptive power and to provide mech-

anistic insights in the setting of physicochemical equilibrium [159]. Data fit to the Hill equation

specifies information on the nanoparticle-cell interactions that can be integrated in other models to

make predictions of the drug response in complex organisms.

3.2 Material and methods

3.2.1 Experimental in vitro data

In vitro experimental details are provided in [3]. Here, we provide a concise description of the

data and techniques. The in vitro experiments were carried out on the MDA-MB-231, SKBR3 and

MDA-MB-453 cell lines. The cells were treated with different combination of drugs or nanoparticles:

• docetaxel: injection of the cytotoxic agent only,

• docetaxel + trastuzumab: injection of the chemoterapy combined with the monoclonal anti-

body,

• empty ANC-1: injection of the stealth immunoliposome without docetaxel,

• liposome 1 + free trastuzumab,

• ANC-1: injection of the stealth immunoliposome with trastuzumab engrafted on the surface,

• empty ANC-2,

• liposome 2 + free trastuzumab,

• ANC-2.

ANC-1 and liposome-1 differed from ANC-2 and liposome-2 for the chemical composition. The for-

mer were made of natural lipids and the latter were made of synthetic lipids.

The 2D in vitro experiments were conducted on a monolayer well plate for each treatment-group.

Different concentrations of docetaxel and trastuzumab were tested and the efficacy was compared

to the control. The MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was

applied to measure the cell viability. This method is a colorimetric assay that reflects the metabolic

activity of the cells: after adding a solubilization solution, the alive cells become pink and the dead

ones become blue. Then, the spectrophotometer measures the wavelength of the absorbance of the

solution. Finally the wavelength relative to each concentration is normalized with respect to the

control cells.
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3.2.2 Derivation of the Hill function

We now consider the Hill function, that was introduced by Hill in 1910 to describe the binding

of oxygen to hemoglobin [158]. Then, the theory has been extended to describe the interaction

between ligands and receptors in the fields of biochemistry, physiology and pharmacology.

The Hill function has been widely used in the context of pharmacodynamics in order to describe the

drug effect on targeted receptors. We derive the model according to the occupancy theory, that states

that the drug binds to the receptor and induces the receptor activation and that the pharmacological

effect is proportional to the number of receptor sites occupied by drug [165, 166]. We make use of

the following notation:

• R is the receptor; the receptor concentration is r(t) = [R];

• C is the drug molecules; c(t) = [C] is the drug concentration;

• γ is the number of drug molecules C binding to one receptor R;

• RγC is the drug-receptor complex; v(t) = [RγC] is the drug-receptor complex concentration;

• E or E(t) is the pharmacological effect;

• kon, koff are the association and dissociation rate constants, respectively, and k2 is a propor-

tionality constant.

The following equation describes the drug-receptor reaction:

R+ γC
kon
�
koff

RγC ,

RγC
k2→ E,

(3.3a)

(3.3b)

where� denotes a reversible reaction, while→ indicates that the reaction goes in one way only.

We are interested in determining an equation that describes the trend of the concentration of the

drug-receptor complex with respect to the drug concentration.
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In (3.3a) kon and koff are rate constants that characterize the association and dissociation of the

complex, respectively. According to the law of mass action, the rate of a reaction is proportional to

the product of the concentrations of the reactants. Therefore, the law of mass action applied to the

reaction (3.3a) gives the following ordinary equation






dv(t)
d t

= konr(t)cγ(t)− koffv(t),

v(0) = 0.
(3.4)

Moreover, we assume that the total concentration of R, free plus combined, is constant. This conser-

vation law implies that
dr
d t
+

dv
d t
= 0 ⇒ r(t) + v(t) = r0 (3.5)

Combining (3.4) with (3.5) we obtain






dv(t)
d t

= koncγ(t)[r0 − v(t)]− koffv(t),

v(0) = 0.
(3.6)

We now assume that the formation of the complex RγC is very fast, so that it is at equilibrium, i.e.

dv/d t = 0:

v̄ =
r0 c̄γ

kD + c̄γ
, (3.7)

where v̄ and c̄ are, respectively, the drug and the drug-receptor complex concentrations at the equi-

librium and kD = koff/kon is called dissociation constant of the complex.

In (3.3b), k2 is a proportionality constant characterizing the pharmacological effect E(t)with respect

to the drug-receptor complex concentration v(t):

E(t) = k2v(t). (3.8)

When the total number of receptors is occupied, the effect is maximal:

Emax = k2r0. (3.9)

Combining equations (3.7) and (3.9) we obtain the sigmoid model, that describes the pharmaco-

logical effect at the equilibrium Ē:

Ē =
Emax c̄γ

kD + c̄γ
. (3.10)

In the pharmacodynamic models usually the constant kD is substituted by Ecγ50, where Ec50 is the

concentration at half the maximal effect.

Moreover, it is possible to introduce a baseline E0, obtaining

Ē = E0 ±
Emax c̄γ

Ecγ50 + c̄γ
. (3.11)

Equation (3.11) is an empirical model that describes either stimulation or inhibition of the effect

with respect to the concentration of the drug.
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3.2.3 Model calibration: nonlinear regression

The methodology employed to calibrate the model with the in vitro data are detailed in Appendix

C, in particular in Sections C.1 and C.2. In general, we used the Nelder-Mead algorithm to maximize

the likelihood function and ran a Python code to obtain the best estimates. For each drug on each

cell line, we tested the descriptive power of the Hill function with (i) two parameters to estimate

(Ec50 and γ, with Emax = 1) and (ii) three degrees of freedom (Ec50, γ and Emax) and compared the

two formulations with the likelihood ratio test. This methodology allowed to understand which set

of parameters could better describe the data.

3.3 Results

Results are detailed in Sections C.3, C.4 and C.5 for the MDA-MB-231, SKBR3 and MDA-MB-453

cell lines, respectively. All the liposomal formulations showed similar cytotoxic activity in vitro on

the three cell lines. Here, we summarize the results relative to the in vitro antiproliferative efficacy

of the ANC-1, liposome-1 plus free trastuzumab and free drugs.

Globally, the Hill function could describe the different treatments apart from trastuzumab when

administered alone, which did not show antiproliferative activity. The model with three parameters

to estimate (namely, Ec50, γ and Emax) provided the best description of the ANC-1 and liposome-1

plus free trastuzumab for the MDA-MB-231 and SKBR3 cell lines. The cytotoxicity of the free drugs

was better described when fixing Emax = 1. However, for the MDA-MB-453 cell line, results showed

better estimates fixing Emax = 1 when any of the three treatments was administered.

The comparison of the treatments is shown in Figure 3.2 on the different cell lines. In the three

cell lines, the cell viability showed similar trends when ANC-1 or liposome-1 plus free trastuzumab

were administered. Free drugs behaved differently compared to the nanoparticles in the MDA-MB-

231 and SKBR3 cell lines. Indeed, the estimated Ec50 was larger for the free drugs than for the

nanoparticles, as shown in Table 3.1.

3.4 Discussion

The Hill equation allowed us to quantify the nanoparticle efficacy in vitro and to compare it to the

cytotoxic behavior of the traditional free drugs. We observed that the Hill function with three degrees

of freedom described better the behavior of the liposomes, in particular of ANC-1 and liposome-1

plus free trastuzumab. Hence, the cell viability does not tend to zero when the concentration tends

to infinite, but there is a plateau corresponding to Emax. This could be due to several effects. First of

all, there is uncertainty in the experimental evaluation for low values of cell viability (i.e. < 20%).

Moreover, it is possible that the nanoparticles do not diffuse around the cells and, therefore, that

the cell viability for high concentrations of the drug is lower when the drug is free than when it
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Cell line Drug Parameter Value R.S.E.(%)

MDA-MB-231

ANC-1 Ec50 1.188 18.456
γ 0.983 15.585
Emax 0.758 4.084

Liposome-1 + free trastuzumab Ec50 1.031 25.488
γ 0.867 19.144
Emax 0.764 5.334

Free drugs Ec50 9.528 31.903
γ 0.490 14.987
Emax 1 -

MDA-MB-453

ANC-1 Ec50 1.543 14.494
γ 1.433 21.543
Emax 1 -

Liposome-1 + free trastuzumab Ec50 1.274 12.131
γ 1.318 19.396
Emax 1 -

Free drugs Ec50 1.547 10.830
γ 1.433 11.504
Emax 1 -

SKBR3

ANC-1 Ec50 2.065 25.018
γ 1.672 28.418
Emax 0.800 5.154

Liposome-1 + free trastuzumab Ec50 1.734 26.757
γ 1.763 40.958
Emax 0.800 5.261

Free drugs Ec50 17.917 31.569
γ 0.471 13.239
Emax 1 -

Table 3.1. Best estimates of the Hill model parameters of the ANC-1, liposome-1 plus free trastuzumab and
free drugs (free docetaxel plus trastuzumab) on the three different cell lines. Ec50 is expressed in nM, while
γ and Emax are dimensionless parameters. R.S.E.= relative standard error.



3.4. Discussion 65

10
2

10
1

10
0

10
1

10
2

Concentration (nM)

20

40

60

80

100

C
el

l v
ia

bi
lit

y 
(%

)

10
2

10
1

10
0

10
1

10
2

Concentration (nM)

0

25

50

75

100

C
el

l v
ia

bi
lit

y 
(%

)
10

2
10

1
10

0
10

1
10

2

Concentration (nM)

20

40

60

80

100

C
el

l v
ia

bi
lit

y 
(%

)

ANC-1
Liposome-1 + free trastuzumab
Free drugsMDA-MB-231 MDA-MB-453 SKBR3

1Figure 3.2. Best fit of the Hill function plotted against in vitro data as function of the docetaxel concentration:
cell viability of the three different cell lines when treated with ANC-1, liposome-1 plus free trastuzumab or
free drugs (free docetaxel + free trastuzumab).

is encapsulated into the immunoliposomes. In order to address this issue, 3D in vitro experiments

might help in understanding the propagation of the nanoparticles in the tissue.

The in vitro analysis was performed to compare the cytotoxicity of the different drugs, as provided

in Appendix C. No large difference was observed in efficacy between the liposomal formulations

when administered in vitro. However, ANCs and liposomes showed equal or higher efficacy in vitro

compared to the free drugs, regardless of the Her2 expression on the cell lines. Indeed, the estimated

Ec50 of the different nanoparticles was equal or lower than Ec50 of the free drugs.

Although the efficacy of the two immunoliposomes was similar, ANC-1 showed larger encapsu-

lation rate of docetaxel and stability (i.e., limited leakage of docetaxel, conservation of the original

shape and trastuzumab engraftment) than ANC-2 [39]. Hence, ANCs-1 were further tested in vivo

to evaluate the pharmacokinetics and pharmacodynamics. In the remaining part of the thesis, we

denote by ANC the immunoliposomes that have the same composition of ANC-1. Furthermore, the

liposomal formulation of docetaxel considered for the in vivo studies corresponds to liposome-1.

In vitro studies provide insights on the nanoparticle-cell interactions. For instance, the association,

dissociation and internalization rates drive cell metabolism and drive the efficacy of the treatment.

These parameters could be integrated into pharmacokinetic-pharmacodynamic models to analyze in

vivo the drug cytotoxicity. Moreover, they can be used to calibrate models of nanoparticle transport

in the tumor interstitium to describe the cellular binding and uptake of the nanoparticles. To this

end, specific in vitro experiments could provide information on the binding sites of the nanoparticles,

as well as the binding affinity of the drug [53, 52].





CHAPTER 4

In vivo
PHARMACOKINETIC-PHARMACODYNAMIC

MODELING OF LIPOSOMES AND

IMMUNOLIPOSOMES

Abstract. Pharmacokinetic-pharmacodynamic modeling (PKPD) is based on mathematical expres-

sions that allow a quantification of the dose-response relationship of drugs. Pharmacokinetic models

describe at the macroscopic scale how the organs in the body affect the drug delivery to the tumor

through the mechanisms of absorption, distribution, metabolism and excretion. Pharmacodynamics

describes of the efficacy of the nanoparticles. In this chapter, we performed an analysis of ANCs and

liposomes injected with free trastuzumab. A two-compartmental PK model allowed us to evaluate

the biodistribution of the two nanoparticles. Furthermore, a resistance model was used to compare

the efficacy of different treatments. The experimental data involved the MDA-MB-231 breast cancer

cell line, which does not show overexpression of the Her2 receptor.
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4.1 Introduction

Pharmacokinetic-pharmacodynamic modeling is fundamental in the drug delivery system devel-

opment [167]. It permits to quantify the pharmacokinetics (PK), pharmacodynamics (PD) and their

relationship using mathematical models [168]. PK describes the absorption and distribution of the

drugs and PD evaluates the efficacy of the drugs.

Pharmacokinetic (PK) models can be noncompartmental or compartmental. The latter estimate

the drug exposure by computing the area under the curve of the concentration as function of time,

without providing a description of the drug kinetics. On the other hand, compartmental models are

based on the empirical assumption that the body can be decomposed into compartments (i.e., organs

or tissues), namely a central one that is connected to one or more peripheral compartments. A system

of ordinary differential equations defines the nanoparticle concentration in each compartment and

their coupling. The parameters of the model might include for example the clearance, the tumor

uptake and the elimination and can be determined by fitting plasma concentration data. Nonlinear

mixed-effects modeling is an ideal statistical framework to estimate the population parameters, as

it provides a description of the global dynamics as well as the inter-individual variability within a

dataset. Several mathematical models have been used to describe the bioavailability of nanoparticles

at the tumor site. For exhaustive reviews, we refer to [37, 43]. A one-compartment model has been

employed to evaluate differences between active and passive targeting of nanoparticles in tumor

accumulation [169]. When intraveneously injected, nanoparticle concentration in plasma might

show a biphasic decrease [170], suggesting a two-compartment model. Three compartment models

have also been considered to estimate tumor vascular permeability and nanoparticle retention in

tumors [171].

Compartmental PK models are the most used to describe drug biodistribution, to estimate phar-

macokinetic parameters and to test different dose and schedules [172]. They are fundamental to

translate the preclinical studies into the clinics. A further class of more complex models is repre-

sented by physiologically based pharmacokinetic (PBPK) models. They take into account physiolog-

ical mechanisms, providing a more realistic description of the impact of the whole body in the drug

biodistribution. The first PBPK models of nanoparticles are quite recent [173, 174] and are based

on models originally developed for free drugs. In [175] the authors investigate a compartmental

PBPK model for nanoparticles. It is a mechanistic model that describes the whole-body nanoparticle

biodistribution and the in vivo tumor uptake. Mechanistic models have been employed to study the

PK of antibody-drug conjugates in breast cancer treatment, such as trastuzumab emtansine (T-DM1),

that is a drug consisting in a chemical combination of a monoclonal antibody (trastuzumab) and a cy-

totoxic agent (maytansinoid antitubulin agent DM1) [176]. Singh et al. used a two-compartmental

model with linear elimination from the central compartment to describe the biexponential profile of

both trastuzumab and T-DM1. Importantly, Cilliers et al. developed a detailed PBPK model that was

able to study the impact of the drug-antibody ratio on the tumor penetration [177].

Optical fluorescence imaging is a technique of rising interest to monitor in vivo nanoparticle
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biodistribution. Kumar et al. conjugated silica nanoparticles with near-infrared fluorophore to to

analyze NP biodistribution, clearance and toxicity [178]. Furthermore, this methodology has been

proven to be ideal to perform pharmacokinetic analysis of different nanoparticle designs, such as to

investigate shape, size and active vs passive targeting [179, 169].

Pharmacokinetic-pharmacodynamic modeling is used to quantify the relationship between dose,

drug exposure and response. The efficacy of the therapies can be described by ordinary differential

equations that evaluate the net growth rate and the drug-induced decay [180].

Here, we investigated a two-comparmental model that describes the nanoparticle exchange be-

tween the systemic and the tumor compartments. Our model was tested on two datasets with two

different administration schedules and on two nanoparticles, namely the ANCs and the liposomes

injected with trastuzumab. In vivo biodistribution of nanoparticles was tracked with fluorescence

imaging. Moreover, we employed a resistance model to describe the efficacy of nanoparticles. The

model was calibrated against in vivo tumor growth data.

Further applications of PKPD modeling include the translation of preclinical studies to the clinics,

optimization of therapeutic scheduling and clinical trials [181].

4.2 Biodistribution and tumor growth data

In vivo nanoparticle distribution was tracked in time using fluorescence imaging. Optical imaging

is a fast and non-invasive approach that has been proved to be able to monitor nanoparticle amount

in the tumor and in the body [179, 169].

Low dose

8-weeks old female nude mice (Charles River, France) were orthotopically grafted (mammary fat

pad) with 80 000 MDA-MB-231 Luc+ dTomato+ cells in 60% matrigel. Here, we consider the group

of animals treated with ANC (n= 12 mice) and the group that received liposomal docetaxel with free

trastuzumab (n = 10 mice). Treatments started 13 days after tumor implantation. Docetaxel and

trastuzumab were administered at 1.3 mg/kg and 0.5 mg/kg once a week for 5 consecutive weeks.

Localization and quantification of DiR-fluorescent nanoparticles in tumors were tracked weakly using

spectral unmixing.

Since the injected dose of drugs was low, no efficacy was observed on tumor growth. Therefore,

this dataset was used only for the pharmacokinetic study.

High dose

All the experiment details are provided in [76]. Distribution studies were performed on MDA-

MB-231 bearing mice. 6-week-old female nude mice were orthotopically grafted (mammary fat
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and [T-DM1] �13 ng/mL; with the square brackets denoting 
concentration) at the end of the study (ie, 14 days).

On MDA-MB-453 low-density spheroids, early incuba-
tion led to concentration-dependent cytotoxicity (Figure 2A); 
the higher the concentration, the higher the antiproliferative 
effect. Free drugs, docetaxel liposomes � free trastuzumab, 
and immunoliposomes showed marked efficacy as cell 
growth was reduced by 95%, 94%, and 94% when compared 
to the control group, respectively, but no difference was 
observed between treatments (P�0.599, one-way ANOVA 
with multiple comparison testing). T-DM1 performance 
was significantly lower than other treatments because cell 
growth was reduced by 23% only (P�0.001, one-way 
ANOVA with multiple comparison testing). When seeded 
at higher density, we observed an increase in the efficacy 
with immunoliposomes (Figure 2B). When compared to 
the control group, free docetaxel � free trastuzumab and 
liposomes � free trastuzumab performed equally (ie, cell 
growth reduction of 43%, 35%, P�0.892, Student’s t-test), 
whereas immunoliposomes showed significantly higher 
efficacy (ie, cell growth reduction 85%, P�0.041, one-way 
ANOVA). T-DM1 had still no effect (P�0.632, Student’s 
t-test vs control). With delayed incubation on low-density 
spheroids, antiproliferative efficacy was no longer observed 
(P�0.326, one-way ANOVA), regardless of the treatments, 
with respect to control (Figure 2C).

On MDA-MB-231 low-density spheroids, early incuba-
tion led to concentration-dependent cytotoxicity (Figure 3A). 
Both liposomal forms performed slightly better than the other 
drugs. When compared to control, cell growth reduction was 

69%, 73%, 77%, and 22% (P�0.001, one-way ANOVA 
with multiple comparison testing) for free drugs, docetaxel 
liposomes � free trastuzumab, immunoliposomes, and 
T-DM1 groups, respectively. When seeded at higher den-
sity we observed similar results (Figure 3B) as cell growth 
was reduced significantly by 43%, 46%, 53%, and 19% 
(P�0.001, one-way ANOVA), respectively. With delayed 
incubation on low-density spheroids (Figure 3C), free drugs, 
docetaxel liposomes � free trastuzumab, and immunolipo-
somes showed equal efficacy as cell growth was reduced by 
60%, 56%, and 55% when compared to the control group, 
respectively, and no difference was found between treatments 
(ie, P�0.05, one-way ANOVA with multiple comparison 
testing). T-DM1 performance was significantly lower as 
cell growth was reduced by 29% only (P�0.017, one-way 
ANOVA with multiple comparison testing).

In vivo distribution studies
Figure 4 shows typical fluorescence after spectral unmixing, 
allowing to localize and to quantify separately DiR-labeled 
nanoparticles into tumors. With MDA-MB-453 xenografts, 
both at the end of the treatment (ie, D51) and mid-study 
(ie, D67), 1%o1% of the administered immunoliposomes 
accumulated in the tumor (Figure 5A). With liposomes, 
1%o1% and 4%o3% were found in tumors at D51 and D67, 
respectively. However, no significant difference was observed 
between immunoliposomes and liposomes intratumor 
accumulation throughout time (P�0.05, Student’s t-test).

For MDA-MB-231 cell line, at the end of the treatment 
(ie, D51) and the end of the study (ie, D67), 11%o10% and 

Figure 4 Spectral unmixing of dTomato� MDA-MB-453 and MDA-MB-231 bearing mice, 5 days after administration of DiR-labeled immunoliposomes.

Abbreviation: MDA-MB, derived from metastatic site: mammary breast.
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A B

C

Nanoparticle fluorescence in the body

Nanoparticle fluorescence in the tumor

Figure 4.1. Pharmacokinetic analysis: data and model. (A) Example of fluorescence imaging to quantify im-
munoliposome accumulation in tumors: tumor localization and nanoparticle distribution in the entire body.
Figure from [76]. (B) Example of the spaghetti plot of the nanoparticle distribution in the entire body (top)
and in the tumor (bottom). Vertical black dotted lines correspond to the days of nanoparticle administration.
The dataset corresponds to the ANC group with high dose of docetaxel. (C) Schematic of the two-compartment
model used for the pharmacokinetic analysis: The nanoparticle amounts in the central and in the tumor com-
partments are denoted, respectively, by Ac and At . The injected dose enters into the central compartment. The
parameter kc,t drive the nanoparticle exchange between the tumor compartment and the central comparment.
Nanoparticles are eliminated by the body with a clearance rate kc and by the tumor with a rate ke.
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Group Drug Day 18 Day 25 Day 32 Day 39 Day 46 Day 53

ANC
Docetaxel 3.3 5 5 5 5 3
Trastuzumab 1.3 1.9 1.9 1.9 1.9 1.15

Liposome + free
trastuzumab

Docetaxel 5 5 5 5 5 5
Trastuzumab 1.9 1.9 1.9 1.9 1.9 1.9

Table 4.1. Treatment scheduling of ANCs and liposomes plus free trastuzumab in the high-dose experiment.
Dose is given in (mg/kg).

pad) with 80,000 MDA-MB-231 cells in 60% Matrigel. After 18 days, mice were divided into groups

according to the treatment. Here, we consider mice treated with ANC (n = 10 animals) and li-

posomal docetaxel + free trasuzumab (n = 10 animals) to analyze the both the pharmacokinetics

and pharmacodynamics, and mice treated with free docetaxel plus free trastuzumab to compare the

pharmacodynamics of three different therapies. Treatment administration occured once a week over

6 consecutive weeks. Drug administration is detailed in Table 4.1. Localization and quantification

of DiR-fluorescent nanoparticles in tumors were tracked weakly using spectral unmixing (see Fig-

ure 4.1A). Imaging was performed on an IVIS Spectrum imager equipped with Living Image 4.2.1

software. DiR-labeled nanoparticles were excited at 745 nm and emission was recorded from 780

to 840 nm. The spaghetti plot of the nanoparticle fluorescence of the ANC group is shown in Figure

4.1B.

Tumor growth was initially monitored using fluorescence imaging, while starting from day 44

caliper measurements were employed because of loss of dTomato expression in vivo.

4.3 Mathematical modeling and calibration

4.3.1 Two-compartment PK model

We grossly assumed that the body is composed of two compartments: the central compartment

and the tumor. A schematic of the model is provided in Figure 4.1C. The injected dose Di at day tadm,i

(for i = 1, ..., Nadm, where Nadm is the total number of drug administration) enters into the systemic

circulation, where nanoparticle amount is denoted by Ac . Here, nanoparticles are eliminated by the

macrophages, liver, spleen and kidneys with a clearance rate kc . Nanoparticle amount in the tumor

is described by the variable At . The rate of nanoparticle tumor entry from the central compartment is

denoted by kc,t and we assumed that NPs could not return in the vessels once they had extravasated

into the malignant tissue. Moreover, nanoparticles might be cleared or uptaken by the tumor cells

with a rate ke. Denoting by KF the conversion rate from mg/kg to fluorescence values, the system
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of ordinary differential equations reads as

dAc

d t
= −kcAc − kc,tAc +

Nadm
∑

i

Di

KF
δD(t − tadm,i), Ac(0) = 0,

dAt

d t
= kc,tAc − keAt , At(0) = 0,

(4.1)

(4.2)

where δD is the Dirac delta function that satisfies δD(t 6= 0) = 0 and
∫∞
−∞δD(t)d t = 1.

Parameter estimation using nonlinear mixed effects modeling

The population approach is a particularly appropriate statistical framework to analyze pharma-

cokinetic data. Monolix 2019 R2 [156] was used to estimate the PK model parameter for each

group of individuals.

Since docetaxel was the cytotoxic drug encapsulated in the nanoparticles, the injected dose D was

calibrated based on the docetaxel administration. Trastuzumab dose was neglected in the PK model.

Moreover, we assumed the conversion rate KF and the tumor elimination rate ke to have fixed values

within the population, while all other parameters were assumed to have fixed and random effects

within the population. Eventually, we assumed a proportional error model e i
j for both observations

in the central and tumor compartments, and denoted by σc and σt the error model parameters of

the two compartments. Denoting by Yi
j = [Y

i
c, j , Y i

t, j] the vector of subject i at time t i
j containing

the observations of the nanoparticle fluorescence in the entire body Y i
c, j and in the tumor Y i

t, j , we

assumed the following observation model

Yi
j = A(t i

j;θ
i) + e i

j ,

e i
j =

�

σcAc(t i
j;θ

i)εi
j

σtAt(t i
j;θ

i)εi
j

�

,

(4.3)

(4.4)

where A(t i
j;θ

i) = [Ac(t i
j;θ

i)εi
j , At(t i

j;θ
i)εi

j] is the vector of the solution of system (4.1)-(4.2) eval-

uated at time t i
j , θ

i is the vector of the parameters of individual i and εi
j ∼ N(0,1) is the residual

error.

4.3.2 PKPD modeling

Two measurement types were used to monitor tumor growth. In particular, until day 30 tumor

size was monitored with fluorescence imaging and starting from day 44 it was measured with caliper.

Therefore, tumor growth data y j
i of an individual i at time t j

i is defined as

y j
i =







y j
fluo,i , t j

i ≤ 30,

y j
cal,i , t j

i ≥ 44,
(4.5)

where y j
fluo,i is the fluorescence signal and y j

cal,i is the tumor volume measured with caliper. We

denoted by KFV the conversion rate from the fluorescence signal to the tumor volume (in mm3·
(phot./s)−1). In the following sections, we will denote the evolution of the tumor volume V in time
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considering the two measurement types Vfluo (fluorescence) and Vcal (caliper) as follows

V (t) =







KFV Vfluo(t), t ≤ 30,

Vcal(t), t > 30.
(4.6)

The injected number of tumor cells was Vinj = 0.08 mm3.

Ordinary differential equations usually quantify the net growth and drug-induced decay process

[180] and nonlinear mixed-effects modeling is used to calibrate the model. Here, we considered the

reduced Gompertz model [79] to describe the unperturbed tumor growth and a first-order decay

process to model the action of nanoparticles:

dV
d t
=

�

kβ i − β i log

�

V
Vinj

��

V − E(At(t))V, (4.7)

where E(At(t)) is the NPs efficacy that is considered as a function of the drug exposure At (i.e., the

nanoparticle amount in the tumor interstitium). In (4.7), k is the population-level parameter and

β i is specific for each animal i. We used the parameters β , k and KFV estimated in Section 2.6 to

characterize the untreated tumor growth kinetics.

Drug-induced decay is often modeled as function of the drug exposure. The simplest model

consideres the drug efficacy e constant in time:

E(At(t)) = eKF At(t), (4.8)

where we considered the conversion of the fluorescence intentity of the nanoparticles KF At(t) in

mg/kg.

To account for a progressive development of resistance, we assumed that the efficacy of the drug

decreases exponentially in time according to λR [125]:

E(At(t)) = e0 exp
� t − t0,adm

λR

�

KF At(t), (4.9)

where e0 is the initial drug effect (or drug potency) t0,adm is the day of the first administration.

The two models were calibrated using the tumor growth data of individuals treated with ANCs,

liposomes plus free trastuzumab and free drugs. We used the two compartment PK model to evaluate

the exposure At of the two nanoparticles, while we did not have data on the pharmacokinetic of free

docetaxel. Hence, we assumed the exposure of free docetaxel to be equal to the plasma amount of

docetaxel, which dynamic was described by a one compartment model:
dAc

d t
= −kcAc , (4.10)

where the clearance rate kc was fixed within the population to 2.24 days−1 [182].

Parameter estimation with nonlinear mixed effects modeling

We pooled together fluorescence and volume data to estimate tumor growth parameters. We

employed a similar methology to section 2.4.1. In this case, we assumed a proportional error model

for both the fluorescence and the caliper measurements. Indeed, early observations of the caliper-
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measured tumor volume were not available. The observation model reads as follows:






y j
fluo,i = Vfluo(t j;θ ) +σfluoVfluo(t j;θ )εi

j ,

y j
cal,i = Vcaluo(t j;θ ) +σcalVcal(t j;θ )εi

j ,
(4.11)

where θ is the set of parameters of the tumor growth model V (t), σfluo and σcal are the error model

parameters, and εi
j ∼N(0, 1) is the residual error.

Due to the large number of degrees of freedom, the error model parameter of caliper data σcal

was fixed to 0.17, which was the estimated value for the reduced Gompertz model in Table 2.3.

4.4 Results

4.4.1 PK modeling

We considered the data of the four groups of individuals (treated with ANC or liposomal docetaxel

plus free trastuzumab, at low and high concentrations) and used Monolix 2019 R2 to fit the PK

model and estimate the parameters.

Diagnostic plots of the low-dose groups are shown in Figure 4.2. The visual predictive check (VPC)

of the central compartment of the ANCs data set (Figure 4.2A, left) shows that the model provides

good fits in the central compartment at the first three injections (until day 34). Indeed, the predicted

percentiles in the central compartment overestimate the empirical percentiles after day 34. However,

the predicted percentiles in the VPC of the tumor compartment (Figure 4.2B, left) were found to be

close to the empirical percentiles. The prediction distributions of the two compartments (Figure 4.2A-

B, center) covered the data set, apart from the latest data points. Moreover, the observations versus

predictions (Figure 4.2A-B, right) were symmetrically distributed around the bisector. Liposomes

plus free trastuzumab (Figure 4.2C-D) provided good fits until the last injection (day 34).

Diagnostic plots of the high-dose groups are shown in Figure 4.3. ANCs provided good fits apart

from the third and the last injection (Figure 4.3 A-B). On the other hand, the model was not able to

catch the liposomal PK, since data show an exponential decreasing profile starting from the second

injection.

Parameter estimates are provided in Table 4.2. Good parameter identifiability was found in the

analysis. We observed that the value of the parameter kc,t was similar in the ANC-low-dose and

ANC-high-dose groups and larger in the ANC groups than in the liposome groups. Moreover, low

values of the clearance rate kc were found in the four groups. Eventually, the tumor clearance rate

ke was found slightly larger for ANCs than for liposomes, implying a more rapid elimination of the

immunoliposomes by the tumor compartment.
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1Figure 4.2. Low dose data sets - diagnostic plots obtained with Monolix: visual predictive checks (first col-
umn), prediction distribution (second column) and observations versus predictions (third column). (A) and
(B) are the results of the ANC group in the central and tumor compartment, respectively. (C) and (D) are the
results of the liposome + free trastuzumab in the central and tumor compartment, respectively.
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1Figure 4.3. High dose data sets - diagnostic plots obtained with Monolix: visual predictive checks (first
column), prediction distribution (second column) and observations versus predictions (third column). (A)
and (B) are the results of the ANC group in the central and tumor compartment, respectively. (C) and (D) are
the results of the liposome + free trastuzumab in the central and tumor compartment, respectively.



78 Chapter 4. PKPD modeling

Data set Parameter Fixed effects ω R.S.E. (%)

ANC, low dose KF 1.98e-11 - 5.3
kc,t 0.0669 0.45 16.9
kc 0.0706 0.855 32.6
ke 0.489 - 11.2
σc 0.337 - 8.04
σt 0.63 - 10.3

Liposome, low dose KF 1.48e-11 - 7.71
kc,t 0.0363 0.142 20.8
kc 0.0648 0.72 31.6
ke 0.131 - 28.4
σc 0.377 - 8.85
σt 0.817 - 12.1

ANC, high dose KF 7.67e-11 - 5.1
kc,t 0.1 0.206 9.25
kc 0.0212 0.785 64.5
ke 1.17 - 2.37
σc 0.333 - 8.17
σt 0.466 - 9.22

Liposome, high dose KF 5.77e-10 - 7.82
kc,t 0.0867 0.067 7.15
kc 0.038 0.526 38.3
ke 1 - 0.085
σc 0.49 - 8.14
σt 0.558 - 8.56

Table 4.2. Parameter estimates of the PK model obtained with the nonlinear mixed effects modeling. KF
is expressed in mg/ks · (phot./s)−1, while kc,t , kc and ke are all expressed in day−1. σc and σt are the
dimensionless error model parameters of the central and tumor compartments, respectively. ω = standard
deviation of the random effects. R.S.E. = relative standard errors of the estimates.
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Group Parameter Fixed Effects ω R.S.E (%)

ANC e0 0.27 1.12 15.8
λR 19.5 0.698 42.7
σfluo 0.383 - 21.6

Liposome + free trastuzumab e0 0.305 0.468 14.6
λR 13.4 0.639 26
σfluo 0.464 - 19

Free drugs e0 0.157 0.318 38.3
λR 20.7 1.66 17.2
σfluo 0.405 - 18.1

Table 4.3. Resistance model: estimated parameters of the ANCs, the liposomes plus free trastuzumab and
free drugs (free docetaxel plus free trastuzumab). σfluo is the dimensionless error model parameter of the
fluorescence data. ω = standard deviation of the random effects. R.S.E. = relative standard errors of the
estimates.

4.4.2 PKPD modeling

Drug-induced decay of ANCs, liposome+free trastuzumab and free drugs (free docetaxel plus free

trastuzumab) was studied fixing the distributions of the parameters relative to the net tumor growth

(β and k) and the fluorescence conversion parameter KFV .

First, the efficacy model in (4.8) was tested, but it failed in describing the dataset (results not

shown). Indeed, constant efficacy might be not realistic. Then, the resistance model in (4.9) was

considered and showed better fits than (4.8). Diagnostic plots are shown in Figure 4.4. Good indi-

vidual fits of the caliper data were observed in the ANC, liposome and free drugs groups. Moreover,

the resistance model could describe the rescaled fluorescence data. The tumor growth curves of in-

dividuals treated with free drugs showed a drop at each injection, since we assumed that the drug

induced decay is proportional to the plasma exposure. However, smoother curves are expected in

the biological process.

The estimates of the parameters of the resistance model are provided in Table 4.3. The large

values of the standard deviations of the random effects ω for both e0 and λR were indicative of a

large inter-individual variability. No significant difference was found between ANCs and liposomes

in terms of drug potency, although liposomes showed larger resistance than the immunoliposomes.

Moreover, the estimated drug potency of the free drugs was significantly smaller than the other two

groups.

4.4.3 Applications to dose optimization

The pharmacokinetic-pharmacodynamic model could be used to optimize the treatment schedul-

ing. Here, we compared different administrations and simulated the PKPD model to predict the drug
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1Figure 4.4. Pharmacodynamic modeling: prediction distributions (A) and individual fits (B) of the control
group (left), ANC group (center) and liposome group (right).
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exposure and the treatment efficacy. We compared ANCs, liposomes plus free trastuzumab and free

drugs. Assuming that the drugs are administered within day 18 and 53 and that the total injected

dose of docetaxel is 70 mg/kg, the following administrations were compared:

• Administration 1: 2 mg/kg every day,

• Administration 2: 14 mg/kg once a week,

• Administration 3: 10 mg/kg every 5 days,

• Administration 4: 35 mg/kg at day 18 and at day 53.

Simulations were performed with the mlxR package of Simulx [157] using the population param-

eters estimated in Tables 4.2 (high dose, for the two types of nanoparticles only) and 4.3. First,

we compared the drug accumulation in the central and tumor compartments. The area under the

curve (AUC) of the docetaxel amount delivered by the two nanoparticles is shown in Figure 4.5.

Since parameters of the PK model of free drugs were fixed within the population, no inter-individual

variability was shown in the simulations. The estimated AUCs of free docetaxel in the systemic

compartment were 35.9, 41.9, 39.9 and 34.9 mg/kg for administration 1, 2, 3 and 4, respectively.

In all cases, administration 2 led to a larger accumulation of the drug in the tumor compartment

(Figure 4.5B). Moreover, Figure 4.6 shows the amount of nanoparticles in the tumor and systemic

compartments as a function of time as well as the tumor growth inhibition relative to the four differ-

ent treatment schedules. Globally, the groups of animals treated with one of the two nanoparticles

showed large variability with any administrations. Lower variability was observed for the free drugs,

where administration 2 significantly improved the treatment efficacy compared to administrations 1

and 4, while it showed a similar outcome as administration 3.

4.5 Discussion

PK modeling

We have analyzed the kinetics of nanoparticles in the body and tumor using a two-compartment

model. The data were obtained with fluorescence imaging, that quantified the nanoparticle amount

in the body and tumor. The goal of the PK model was to determine pharmacokinetic parameters for

the ANCs and for the liposomal docetaxel injected with free trastuzumab.

We assumed that the nanoparticle fluorescence at the tumor site is proportional to the nanopar-

ticle amount in the tumor interstitium, while the nanoparticle fluorescence in the entire body is

proportional to the amount in the systemic circulation. This motivated our choice of the PK model,

which describes the exchange between the central compartment (systemic circulation) and the tu-

mor compartment thanks to a parameter that depends on the permeability and surface of the vessel

walls. Moreover, nanoparticles might be cleared both in the central and tumor compartments. When
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Figure 4.6. Tests of the different administrations: PK model simulations of the amount of drug in the systemic
compartment (A), in the tumor compartment (B) and tumor growth inhibition simulations (C) of groups of
animals treated with ANCs (left), liposomes+ free trastuzumab (center) and free docetaxel+ free trastuzumab
(free drugs, right).
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nanoparticles are in the systemic circulation, they might interact with the macrophage system, the

liver or the kidneys, and are therefore eliminated. In the tumor compartment, nanoparticles might

be expelled because of the high interstitial fluid velocity that drives particles out at the periphery of

the tumor. Moreover, NPs might be drained by the lymphatic vessels.

Our model has some limitations. First of all, we considered the nanoparticle amount of the sys-

temic compartment to be proportional to the nanoparticle fluorescence of the entire body. However,

we did not take into account that liposomes might be absorbed by other organs (such as the liver,

spleen, or kidneys) and remain fluorescent. This could explain the low values of the clearance rate kc

of the NPs, although it has been proven that stealth liposomes improve significantly drug pharmacoki-

netics [37]. We did not take into account temporal variations of the clearance rate, although it might

be possible that the macrophage system recognizes and eliminates faster the nanoparticles after the

first injections. Especially, ANCs might be cleared faster since they have an antibody coated on the

surface. Indeed, we found that the clearance rate was larger for the ANCs than for the liposomes in

the low-dose dataset. In the high-dose dataset, no difference in clearance rate was noticed between

ANCs and liposomes because of the loss of fluorescence of the liposomes. Moreover, we assumed

that the NP fluorescence at the tumor compartment is proportional to the amount of nanoparticle

in the tumor interstitium, without considering the cell internalization. This was due to a lack of in-

formation on the internalization properties of the nanoparticles but could be integrated into future

works. The parameter that drives the extravasation of liposomes from the vascular network to the

tumor interstitium depends on the effective permeability of the vessel walls and the vascular surface

per unit volume S/V . We have considered the parameter kc,t to be constant in time, while it has been

observed that tumor vascularization evolves with tumor growth [183]. This could explain why the

model was not able to describe the data at the earliest measurements. Interestingly, we found that

the value of the parameter kc,t was significantly larger for the ANC than for liposomes. This could

be explained by the fact that immunoliposomes might improve the vascularization of MDA-MB-231

tumors (as shown in Chapter 7).

We noticed that the high-dose liposome group showed a different trend compared to the other

datasets after the second injection. This could be explained by a loss of fluorescence by the liposomes

due to stability problems of these nanoparticles during the experiment.

As a future perspective, a physiologically-based pharmacokinetic (PBPK) model should be used

to describe mechanistically the biodistribution of the nanoparticles in the body and could provide

insights on the mechanisms of absorption and clearance.

PKPD modeling

Nanoparticle and free drugs efficacy was evaluated as a function of the drug concentration in the

tumor. Due to a loss of fluorescence signal during the experiment, tumor size was monitored with

fluorescence imaging in the first half of the experiment and with the caliper in the second part. The

rescaling of fluorescence data to volume data was achieved by fitting untreated tumor growth to
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the reduced Gompert model and estimating the parameters k and β from previous experiments, as

detailed in Section 2.6. Although the distributions of the parameters KFV and β were known from

control data analysis, we observed that in some cases the large number of degrees of freedom of

the efficacy models and the lack of observations from day 30 to day 44 led to poor fits on caliper

data and to meaningless tumor growth curves obtained by rescaling fluorescence data. To overcome

this problem, we fixed the error model parameter of the caliper measurements equal to 0.17, as

previously estimated.

Drug-induced decay of ANCs, liposomes injected with free trastuzumab, and free drugs was de-

scribed by a resistance model, assuming that the efficacy decreases exponentially in time. Good fits

were observed for the three groups.

The two nanoparticles did not show significant differences in terms of drug potency. However,

liposomes plus free trastuzumab exhibited slightly larger resistance than the immunoliposomes. In-

deed, previous studies demonstrated that targeted-immunoliposomes improved overall therapeutic

efficacy as a result of an efficient cell-internalization [184]. Furthermore, the two nanoparticles

performed significantly better than the free drugs in terms of efficacy, thanks to the improved phar-

macokinetic profiles of the two liposomal formulations. Tumor growth curves relative to the free

drugs curves showed drops at each injection, due to the assumption that the drug-induced decay is

proportional to the plasma amount of docetaxel (indeed, no data on the pharmacokinetics of the free

drugs was available for this experiment). This trend is not usually observed in experimental data.

Other models could be tested to describe the pharmacodynamic of the different drugs. For instance,

the Simeoni model could be used to model the drug potency and the process of cell death, which

could occur with a delay [185]. Moreover, the effect of trastuzumab should be considered in future

works.

As future perspectives, in vitro studied could be integrated into the in vivo PKPD model to better

understand the interactions between the drugs and the cells and how this is linked to the treatment

efficacy. By integrating these data, it could be possible to understand the large inter-individual

variability and to make more accurate individual predictions of the treatment response.

Optimization of the treatment scheduling and predictions of the clinical drug exposure-response

relationship are examples of the applications of the pharmacokinetic-pharmacodynamic modeling.





Part II

SPATIAL MATHEMATICAL MODELING OF

NANOPARTICLE TRANSPORT IN TUMOR

TISSUES

87





CHAPTER 5

MACRO-SCALE MODELS FOR FLUID FLOW IN

TUMOR TISSUES: IMPACT OF THE

MICROSTRUCTURE PROPERTIES

Abstract. Understanding the dynamics underlying fluid transport in tumor tissues is of fundamental

importance to assess processes of drug delivery. Here, we analyze the impact of the tumor micro-

scopic properties on the macroscopic dynamics of vascular and interstitial fluid flow by using formal

asymptotic techniques.

Here, we obtained different macroscopic continuum models that couple vascular and interstitial

flows. The homogenization technique allows us to derive two macroscale tissue models of fluid flow

that take into account the microscopic structure of the vessels and the interstitial tissue. Different

regimes were derived according to the magnitude of the vessel wall permeability and the interstitial

hydraulic conductivity. Importantly, we provide an analysis of the properties of the models and show

the link between them. Numerical simulations were eventually performed to test the models and to

investigate the impact of the microstructure on the fluid transport.

Future applications of our models include their calibration with real imaging data to investigate

the impact of the tumor microenvironment on drug delivery.

Part of this Chapter has been submitted in [80].
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5.1 Introduction

Interstitial and capillary fluids are strongly connected in malignant tissues and are mainly in-

volved in the transport of molecules in tumors. When drugs are intravenously injected, they have to

overcome several barriers, including vascular transport, transvascular transfer, interstitial transport

and finally cellular uptake [61]. The biological and physicochemical properties of the tumor microen-

vironment play a significant role in the drug delivery process [186]. The geometrical microstructure

of the tumor also has an important impact on the fluid flow [187].

Neoplastic tissues are highly heterogeneous. They are generally characterized by [59] accumu-

lated solid stress [188], abnormal blood vessels network [189], elevated interstitial fluid pressure

(IFP) [68], that almost equals the microvessel pressure (MVP) and dense interstitial structure [190].
These traits, that distinguish tumor tissues from normal ones, cause barriers to drug delivery [61].
The heterogeneous spatial distribution of tumor vessels and poor lymphatic drainage impair a uni-

form delivery of therapeutic agents in tumors. Blood vessels are unevenly distributed, leaving avas-

cular spaces. Moreover, their walls are leaky and hyperpermeable in some places while not in other

[191]. Blood flow velocity is also compromised by the elevated viscous and geometrical resistance

offered by the tumor vasculature [187]. Finally, the lack of an efficient lymphatic network inside the

tumor coupled with leaky tumor vessels leads to a high IFP [67] almost equal to the microvascular

pressure [68]. Due to elevated IFP, the tumor interstitium is characterized by no pressure gradient

[192, 69].

Several mathematical models have been developed during the last decades to investigate the

features of fluid transport in the tumor microenvironment. The porous medium theory has been

employed to model interstitial fluid flow (IFF) relying on Darcy’s law and using average field vari-

ables defined over the whole tissue [58, 193]. Fluid transport through the blood vessels has been

exploited in both discrete and continuous manners, including spatial and temporal variations. In

either discrete and continuous models, the IFF and microvascular fluid (MVF) are usually coupled

by Starling’s law [194], that describes the fluid filtration through the highly permeable vessels walls.

Microscopic models of the flow patterns around an individual capillary and a network of blood ves-

sels have been introduced relying on the Krogh cylinder model [195, 196, 197]. Poiseuille’s law

can be considered to describe the blood flow in a cylindrical domain [198, 199, 200]. Furthermore,

Navier-Stokes equations have been adopted to model the spatio-temporal variations in blood flow

[197, 193]. More detailed biophysical models have been developed to take into account the more

realistic heterogeneity of the tumor vasculature [201]. Welter et al [202] introduced an exhaustive

biophysical model the incorporates tumor growth, vascular network (including arteries and veins),

angiogenesis, vascular remodeling, porous medium description for the extracellular matrix (ECM)

and interstitial fluid, interstitial fluid pressure and velocity and chemical entities (such as oxygen,

nutrients, drugs). On the other hand, continuous models based on mixture theory have been ex-

ploited to describe interstitial and vascular fluid flow, assuming that the two phases are present at

each point of the tumor [203]. Multiscale models have further been employed to investigate the
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coupling between tumor growth, angiogenesis, vascular remodeling and fluid transport [204] and

the impact of collagen microstructure on interstitial fluid flow [205]. Imaging data have been inte-

grated to both continuum and discrete models to quantify the effect of the heterogeneity on the fluid

transport [206, 207].

The increasing amount of imaging data makes it possible to recover vascular networks in details.

However, solving discrete models on the entire vessel tree might be computationally expensive. The

formal two-scale homogenization technique allows to take into account microscopic features on the

macroscopic dynamic of fluid flow. Two-scale asymptotic expansion has been previously applied to

fluid and drug transport in tumors. A system of Darcy’s equations has been derived in [81] to couple

interstitial and vascular fluid flows in malignant tissues assuming a periodic medium. A higher

complexity has been taken into account in [82], with the introduction of rheological effects in the

blood flow and of local heterogeneity. A generalization of homogenized modeling for vascularized

poroelastic materials has also been presented [208, 209]. More recently, higher complexity has been

added to the homogenized models [210] considering three length scales for the vessel network (i.e.,

arteriole, venule and capillary scales).

The main novelty of this work is the study of the impact of the tumor microscopic properties

on the global fluid dynamic. First, we describe a system of partial differential equations coupling

interstitial, transvascular and capillary flows at the microscopic scale. While the interstitium and the

capillary walls are assumed to be porous media where the fluid is governed by Darcy’s law, the blood

in the capillaries is considered a Newtonian fluid described by the Stokes equation. As the thickness

of the capillary walls tends to zero, an asymptotic analysis similar to [211, 212] enables us to derive

a Starling’s law-type equation across the vessel wall for the transvascular transport of fluid flow.

Then, we perform a two-scale analysis under periodic assumption [213] to derive formally effective

macroscale tissue models of fluid flow for 3 asymptotic regimes depending on the magnitude of the

permeability of the vessel wall and of the interstitial hydraulic conductivity. These models combine

the effects of the interstitial compartment and the capillaries at the microscale, providing thus a link

between the microstructure and the macroscopic fluid flow. Moreover, we compare the different

asymptotic regimes with some models given in literature (namely, [186], [81], [82]) and show the

links between the different models. In particular, we show that for the model initially derived by

Shipley and Chapman [81] the difference between the capillary and the interstitium pressures decays

exponentially fast from the boundary, making thus a link with the Baxter and Jain model [186].
Furthermore, we present the mathematical and numerical analysis on the homogenized tensors in

order to assess their properties according to the geometric microstructure. Eventually, numerical

simulations on the macroscopic models are performed and the results are compared to the literature.

This approach can be applied to study the impact of the tumor microscopic characteristics on

drug delivery. Imaging data can provide the tissue microstructure that can be integrated in the

homogenized model. This modeling technique prevents the resolution of the original micro-scale

model that might be unfeasible as it requires the discretisation of the entire vessel network and

porous medium. Moreover, the heterogeneities of malignant tissues can be taken into account by
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considering the spatial variability of the micro-vessel features at the macroscopic scale.

Main results

First, we motivated the interface conditions between the interstitial compartment and the capil-

laries of the micro-scale model using an asymptotic expansion technique. We obtained a Starling’s

law type equation to describe the flux through the vessel walls. Moreover, we considered the Joseph-

Beavers-Saffman slip condition at the boundary between the capillary lumen and the vessel wall. This

condition states that the slip velocity along the vessel wall is proportional to the shear stress [214].

Then, using the two-scale asymptotic homogenization, we assumed that a generic variable vε(x),
as function of the macroscopic spatial variable x and of the microscopic parameter ε, could be ap-

proximated as

vε(x) = v(x) + εφ
�x
ε

�

∇xv(x),

where v(x) is the macroscopic variable andφ
�x
ε

�

is the corrector that takes into account oscillations

at the microscopic scale. Using this approach, we derived three different macroscale models to

describe the fluid transport in tumor tissues according to the magnitude of the permeability of the

vessel walls and of the interstitial hydraulic conductivity. In particular, the following regimens were

derived for the interstitial fluid pressure pt and the capillary pressure pc:

• Model 1: highly permeable walls and large interstitial hydraulic conductivity

∇ ·
��

K+
Ct

Cc
E
�

∇pc

�

= 0 pt = pc . (5.1)

• Model 2: weakly permeable walls and large interstitial hydraulic conductivity

∇ · (K∇pt) = Ct (pt − pc) , ∇ · (E∇pc) = Cc (pc − pt) . (5.2)

• Model 3: weakly permeable walls and small interstitial hydraulic conductivity

∇ · (K∇pt) = Ct (pt − pc) , ∇ · (E∇pc) = 0. (5.3)

In the three models, K and E are the permeability tensors of the interstitium and the capillaries,

respectively, and Ct , Cc are constant parameters that will be defined later on. The definition of these

tensors involves the so-called correctors, as usual in homogenization. It characterises the impact

of the microstructure on the effective properties of the tissue at the macroscale. Model (5.2) has

been derived assuming a small magnitude of the capillary permeability and confirms previous results

[81, 82].

The interstitial fluid flow ut and the blood velocity uc are given in the first two cases by the

average quantities

ut = −K∇pt , uc = −E∇pc ,

while for the third model they are given by

ut = −εK∇pt , uc = −E∇pc .
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Boundary conditions must be added in order to guarantee well-posedness. Dirichlet-Dirichlet bound-

ary conditions can be imposed to pt and pc if the pressures in the sourranding tissue are known.

Mixed Dirichlet and Neumann boundary conditions can be chosen to ensure the continuity of ut or

uc .

5.2 Microscale model of fluid transport in tumors

At the microscale, the domain Ω ∈ RN (with N = 2,3) is the medium that consists of the inter-

stitium Ωt , the vessel wall Ωm and the capillary region Ωc . The interface between the capillary and

the vessel wall and the one between the interstitium and the vessel wall are denoted respectively by

Γ = ∂Ωc ∩ ∂Ωm and Γδ = ∂Ωt ∩ ∂Ωm. Figure 5.1 shows the section of a capillary in the surrounding

interstitium. In the three regions, the fluid flow is assumed to be incompressible.

Ωc

Ωt
Ωm

Γδ

Γ

δ

y

x
z

η
θ

Ωc

Ωt

Γ

1

Figure 5.1. Schematic representation of the domain: section of the capillaries in the surrounding interstitial
region.

The interstitium - composed by the cells and the extracellular matrix and collagen - is modeled

as an isotropic porous medium, where the velocity ut and pressure pt follow the Darcy’s law:

∇ · ut = 0, ut = −kt∇pt in Ωt , (5.4)

where kt is the hydraulic conductivity in the interstitium. Vascular endothelial cells in tumors are

highly disorganized and irregularly shaped [191]. Moreover, vessel walls are highly permeable.

Similarly to the interstitium, the capillary walls - of thickness δ - are considered as a porous medium

with hydraulic conductivity km , therefore the fluid flow velocity um and pressure pm in the capillary

walls are described by

∇ · um = 0, um = −km∇pm in Ωm.

In the capillaries, we assume that the fluid is Newtonian with a constant viscosity µ. Neglecting the
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inertial effects and under the assumption of a laminar flow, we end up with the Stokes equation for

the description of the vessel velocity uc and pressure pc

∇ · uc = 0, µ∇2uc =∇pc in Ωc . (5.5)

Interface conditions

At the two boundaries Γ and Γδ, we have to consider interface conditions in order to couple the

different equations. We make the following choices, similarly to [215]:

1. Continuity of the normal velocity on both Γ and Γδ:
uc · n= um · n on Γ ,

ut · n= um · n on Γδ.
This condition guarantees the continuity of mass through the two interfaces and it is a natural

choice since the fluid is assumed to be incompressible in the three regions.

2. Balance of the normal forces at the interfaces Γ , Γδ:

pc −µ[(n · ∇)uc] · n= pm on Γ ,

pt = pm on Γδ.

(5.6)

(5.7)

Condition (5.6) is due to the fact that the blood force in Ωc acting on Γ is equal to the normal

component of the Cauchy stress vector [216], while the only force inΩm acting on the interface

is the Darcy pressure pm. Analogously, equation (5.7) is motivated by the fact that the only

forces acting on the interface Γδ are the Darcy’s pressures pm and pt in the respective regions

Ωm and Ωt .

3. Beavers-Joseph-Saffmann condition on the tangential component of the capillary velocity at

the boundary with a porous medium Γ :

uc ·τ = −
p

kmµ

αBJ
[(n · ∇)uc] ·τ on Γ , (5.8)

where αBJ is a constant depending on the properties of the interface. This condition comes

from the experimental evidence shown by Beavers and Joseph [214] who observed that the

slip velocity along Γ was proportional to the shear stress along Γ . Equation of the form (5.8)

was derived by Saffmann using a statistical approach and the Brinkman approximation for

non-homogeneous porous medium [217] .

Non-dimensionalization

We perform a dimensional analysis in order to understand the relative amplitude of the different

parameters involved. We rescale our fields as follows:

x= Lx′, u= Uu′, p =
µLU
d2

p′ + p0,
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where L is the characteristic domain length, d is the mean intercapillary distance and U is a charac-

teristic velocity. The non-dimensional fluid transport problem reads (neglecting the primes for the

sake of simplicity)

ν∇2uc =∇pc , ∇ · uc = 0, in Ωc ,

ut = −κ∇pc , ∇ · ut = 0, in Ωt ,

um = −κm∇pm, ∇ · um = 0, in Ωm,

uc · n= um · n on Γ ,

ut · n= um · n on Γδ,

pc − ν[(n · ∇)uc] · n= pm on Γ ,

pt = pm on Γδ,

uc ·τ = −Rτ[(n · ∇)uc] ·τ, on Γ .

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

where

ν=
d2

L2
, κ=

ktµ

d2
, κm =

kmµ

d2
, Rτ =

p

kmµ

αBJ L
,

are dimensionless quantities.

Asymptotic expansion of the multi-scale model

We analyze the behaviour of the asymptotic system when the thickness of the capillary wall δ

tends to 0, assuming that κm is proportional to δ with a proportionality coefficient Rn that will be

defined later on:

κm = δRn.

Let us denote by η the normal variable to the vessel membrane and by θ the tangential variable to

the vessel wall. With these coordinates, the Laplacian is defined by

∇2 :
1
δ2
∂ 2
η +

1
δ(1+δζη)

∂η +
1

(1+δζη)2
∂ 2
θ + ∂

2
z ,

where ζ is the curvature of the section. Therefore, the fluid transport equations in the capillary wall

and the interface conditions are given by
�

∂ 2
η +

δ

(1+δζη)
∂η +

δ2

(1+δζη)2
∂ 2
θ +δ

2∂ 2
z

�

pm = 0 in Ωm,

uc · n= −Rn∂ηpm on Γ

∂ηpm =
κ

Rn
∇pt · n on Γδ

pc − ν[(n · ∇)uc] · n= pm on Γ ,

pt = pm on Γδ,

uc ·τ = −Rτ[(n · ∇)uc] ·τ on Γ

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)
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We perform an asymptotic expansion of the variables pm, pt , pc and uc:

pm = p(0)m +δp(1)m +δ
2p(2)m + ...

pt = p(0)t +δp(1)t +δ
2p(2)t + ...

pc = p(0)c +δp(1)c +δ
2p(2)c + ...

uc = u(0)c +δu(1)c +δ
2u(2)c + ...

Equating coefficients of δ0 in (5.17)-(5.22), we obtain the following system of equations

∂ 2
η p(0)m = 0 in Ωm

u(0)c · n= −Rn∂ηp(0)m on Γ

∂ηp(0)m =
κ

Rn
∇p(0)t · n on Γδ

p(0)c − ν[(n · ∇)u
(0)
c ] · n= p(0)m on Γ

p(0)m = p(0)t on Γδ

u(0)c ·τ = −Rτ[(n · ∇)u(0)c ] ·τ on Γ

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

From (5.23) and (5.25) we infer

∂ηp(0)m =
κ

Rn
∇p(0)t · n in Ωm, (5.29)

and then equations (5.29) and (5.26) leads to

p(0)m =
�

κ

Rn
∇p(0)t · n

�

η+ p(0)c − ν[(n · ∇)u
(0)
c ] · n in Ωm. (5.30)

Therefore from (5.27)

p(0)t = p(0)m (η= 1) =
κ

Rn
∇p(0)t · n+ p(0)c − ν[(n · ∇)u

(0)
c ] · n on Γδ. (5.31)

Let us define by Γ ∈ RN−1 the boundary when δ goes to 0, i.e. when the two interfaces Γδ and

Γ are superimposed. From equations (5.31), (5.24) and (5.25) we derive formally the boundary

conditions for small δ:

κ∇p(0)t · n= Rn

�

p(0)t − p(0)c + ν[(n · ∇)u
(0)
c ] · n

�

on Γ ,

u(0)c · n= −κ∇p(0)t · n on Γ ,

u(0)c ·τ = −Rτ[(n · ∇)u(0)c ] ·τ on Γ .

(5.32)

(5.33)

(5.34)

Conditions (5.32)-(5.33) can be rewritten as

ut · n= uc · n= Rn(pc − pt − ν[(n · ∇)uc] · n) on Γ . (5.35)

Equation (5.35) is similar to Starling’s law, that is the most widely used equation in literature to

model flux transport across the vessel wall [69, 198] and reads

uc · n= Lp(pc − pt −σ (πc −πt)), (5.36)

where Lp is the vascular permeability, σ is the osmotic reflection coefficient (σ ∈ (0,1)) that ex-

presses the glycocalyx filter function through the endothelial wall and (πc −πt) is the oncotic pres-

sure difference between the capillaries and the interstitium. However, the latter can be consid-

ered negligible compared to the interstitial fluid pressure difference in tumors [58, 218]. Moreover,
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the viscous term in equation (5.35) is usually neglected but it is necessary to guarantee the well-

posedness of the problem and does not change the physical meaning since it is based on the balance

of the normal forces [82].
The relation between Rn and Lp is given thanks to the nondimensionalization of equation (5.36):

Rn =
Lp Lµ

d2
.

To conclude this section, our model is composed by equations (5.4), (5.5) in the respective regions

of the domain Ωt and Ωc and by the interface conditions (5.32)-(5.34) on Γ .

5.3 Continuum macroscale models using two scale asymptotic analysis

This section is devoted to the derivation of a continuum macro-scale model using the two scale

asymptotic expansion method [219, 220, 213]. We assume that d is the mean inter-capillary distance

and L is the tissue characteristic length such that ε = d/L� 1. We denote by Y the reference periodic

cell that is contained in [0, 1]N and is composed by the interstitium Yt and the capillaries Yc , i.e.

Y = Yc ∪Yt and the interface ΓY = ∂ Yc ∩ ΓYt
. We assume that the interface is entirely contained in Y ,

i.e. ΓY ∩ ∂ Y = ;. The normal vector n to the interface ΓY is directed outward the vascular domain

Yc . The total domain Ω is divided periodically in each direction in identical squares Y εn such that

Y εn = εn+εY, Y εt,n = εn+εYt , Y εc,n = εn+εYc , Γ εn = εn+εΓY , ∀n ∈ {i ∈ ZN |Y εi ∩Ω 6= ;}.

Therefore, the domain Ω is composed of two subdomains Ωεt = ∪nY εt,n and Ωεc = ∪nY εc,n that depend

on ε and are connected when N = 3. The interface between the two subdomains is Γ ε = ∪nΓ
ε
n .

Figure 5.2 shows a schematic illustration of the periodic domain and of the unitary cell Y . According

to the multiple scales theory, we introduce a spatial variation decoupling

y=
x
ε

,

and assume that the macro and the micro spatial variables (x and y, respectively) are independent.

Therefore, any field g that we have introduced before (such as ut , uc , pt , pc) depends on ε and is

assumed to be written following an asymptotic expansion as:

g = gε(x,y) =
∞
∑

l=0

εl g(l)(x,y),

where g(l)(x,y) are Y -periodic functions.

Assuming that ν is of the same scale of ε2, that Rn is of the order of εγ (with γ = 0, 1,2) and that

κ is of the order of εη (with η = 0, 1), we rescale the three parameters as ν = ε2ν̄, Rn = εγR̄n and

κ = εηκ̄ (so that ν̄ = O(1), R̄n = O(1) and κ̄ = O(1)). The choice of the rescaling of the parameter

ν is made in order to avoid trivial solution when ε goes to 0. We analyze the different regimens on

varying the exponent γ.

We summarize here the main results relative to the leading order and derive formally the homog-

enized models in the Supporting Information S2. Let us denote by |Yc| =
∫

Yc
d y, |Yt | =

∫

Yt
d y and

|ΓY |=
∫

ΓY
d s the measures of the subdomains Yc and Yt and of the interface ΓY , respectively. We in-
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Yt

ΓY

Yc

1

A

Ωε
c

Ωε
t

Γε

n

1

B

1

Figure 5.2. Unitary cell Y = [0,1]3 (left) composed by the capillary region Yc and the interstitial compartment
Yt ; the interface between the two regions is denoted by ΓY . Periodic domain Ω (right): the tumor capillaries
Ωεc are assumed to be in the tubes, while the outer region corresponds to the interstitial compartment Ωεt ; the
interface between the two regions is denoted by Γ ε and the normal n is directed outward the vascular domain.

troduce the following two cell problems on the Y -periodic cell variables G j , W j and P j ( j = 1, ..., N):

∇2
yG j = 0 in Yt

∇yG j · n= n · e j on ΓY .

(5.37a)

(5.37b)

ν̄∇2
yW j + e j =∇yP j in Yc ,

∇y ·W j = 0 in Yc ,

W j · n= 0 on ΓY ,

[(n · ∇y)W
j] ·τ = 0 on ΓY .

(5.38a)

(5.38b)

(5.38c)

(5.38d)

Let us define the following tensors:

[K]i j = δi j −
1
|Yt |

∫

Yt

∇yG j · ei d y, [E]i j =
1
|Yc|

∫

Yc

W j · ei d y. (5.39)

The equations for the leading orders are summarized in Table 5.1. Boundary conditions need to be

added, such as Dirichlet or Neumann conditions.

For the sake of simplicity, from now on we denote by (pt , pc) the leading orders of the interstitial

and capillary pressures
�

p(0)t , p(0)c

�

.

5.3.1 Tensors properties

In order to ensure the well-posedness of the models that we have derived, the permeability tensors

K and E need to be positive definite. This section is devoted to the analysis of the tensor properties
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Case Convergence Equation for the leading order in Ω

(1) γ= 0,η= 0

pεt (x,y)* p(0)t (x) ∇ ·
��

κ̄K+
|Yc|
|Yt |

E
�

∇p(0)t

�

= 0

uεt (x,y)* u(0)t (x,y)
¬

u(0)t

¶

Yt
= −κ̄K∇p(0)t

pεc (x,y)* p(0)c (x) p(0)c = p(0)t

uεc (x,y)* u(0)c (x,y)



u(0)c

�

Yc
= −E∇p(0)c

(2) γ= 1,η= 0

pεt (x,y)* p(0)t (x) ∇ ·
�

κ̄K∇p(0)t

�

=
R̄n|ΓY |
|Yt |

�

p(0)t − p(0)c

�

uεt (x,y)* u(0)t (x,y)
¬

u(0)t

¶

Yt
= −κ̄K∇p(0)t

pεc (x,y)* p(0)c (x) ∇ ·
�

E∇p(0)c

�

=
R̄n|ΓY |
|Yc|

�

p(0)c − p(0)t

�

uεc (x,y)* u(0)c (x,y)



u(0)c

�

Yc
= −E∇p(0)c

(3) γ= 2,η= 1

pεt (x,y)* p(0)t (x) ∇ ·
�

κ̄K∇p(0)t

�

=
R̄n|ΓY |
|Yt |

�

p(0)t − p(0)c

�

uεt (x,y)* u(0)t (x,y)
¬

u(0)t

¶

Yt
= −εκ̄K∇p(0)t

pεc (x,y)* p(0)c (x) ∇ ·
�

E∇p(0)c

�

= 0

uεc (x,y)* u(0)c (x,y)



u(0)c

�

Yc
= −E∇p(0)c

Table 5.1. Main results of the two-scale asymptotic analysis on varying the order of the parameters Rn and κ.
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with respect to the periodic cell Y .

Lemma 5.3.1. The tensor K is symmetric and positive definite.

Proof. Thanks to the Lax-Milgram theorem, problem (5.37) has a unique solution in H1(Yt)/R. The
variational formulation associated to (5.37) reads

∫

Yt

∇yG j · ∇yϕ dy−
∫

ΓY

e j · noutϕ ds = 0,

for any periodic ϕ ∈ H1(Yt) such that 〈ϕ〉Yt
= 0. Considering ϕ = Gi on Yt , the following equations

hold thanks to the divergence theorem

0=

∫

Yt

∇yG j · ∇yGi dy−
∫

ΓY

e j · noutG
i ds

=

∫

Yt

∇yG j · ∇yGi dy−
∫

Yt

∇y ·
�

Gie j

�

dy

=

∫

Yt

∇yG j · ∇yGi dy−
∫

Yt

∇yGi · e j dy.

Therefore, the tensor K can be rewritten as

[K]i j = δi j −
1
|Yt |

∫

Yt

∇yG j · ei dy,

= δi j −
1
|Yt |

∫

Yt

∇yG j · ∇yGi dy,

=
1
Yt

∫

Yt

∇y(G
i − yi)∇y(G

j − y j) dy.

It follows that the tensor K is symmetric. To prove that the tensor is positive definite, we consider
any λ ∈ RN and define

φ =
N
∑

i=1

λiG
i .

The functionφ is periodic and belongs to the space H1(Yt). We prove that K is semi-positive definite:

|Yt |λT Kλ=

∫

Yt

|∇y (φ − y ·λ) |2 dy≥ 0,

that is true for any ∇y (φ − y ·λ). The equality holds if and only if

∇yφ = λ.

However, under the assumption of periodicity in a connected domain, ∇yφ = λ if and only if
∇yφ = λ= 0. Therefore, K is positive definite.

Remark 5.3.2. The interstitial domain Yt has to be connected to guarantee the positive definiteness of
the tensor K (otherwise, it is semi-positive definite).

Lemma 5.3.3. If the capillary domain Yc is connected, then the tensor E is symmetric and positive
definite.
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Proof. We proceed analogously as [219]. Thanks to the Lax-Milgram lemma, there exist a unique
weak solution to problem (5.38), which variational formulation reads as

∫

Yc

ν∇yW j :∇yv d y−
∫

Yc

e j · v d y= 0,

for any periodic v ∈ H1(Yc) such that ∇y · v = 0 and v · n = 0 on ΓY . Taking v = Wi the following
identity holds:

|Yc|[E]i j =

∫

Yc

W j · ei d y,

=

∫

Yc

ν∇yW j :∇yWi d y.

Therefore the tensor is symmetric. To prove that it is positive definite, we take any λ ∈ RN and
define

ψ=
N
∑

i=1

λiW
i .

We first prove that λT Eλ is non-negative. Indeed,

|Yc|λT Eλ=

∫

Yc

ν∇yψ :∇yψ d y≥ 0.

The equality holds if and only if ∇yψ= 0. Then, the following equation must be satisfied

0=

∫

Yc

ν∇yψ :∇yv d y−
∫

ΓY

�

[(n · ∇y)ψ] · n
�

(v · n) d s =

∫

Yc

λ · v d y,

∀v ∈ H1(Yc) :∇y · v= 0. (5.40)

Since (5.40) holds for any v in the appropriate space defined above, it is valid also for v = λ.
Therefore, we conclude that (5.40) is true if and only if λ= 0 and state that E is positive definite.

Remark 5.3.4. When the domain Yc is not connected, then the unique solution to problem (5.38) is
W j = 0 and P j = y j . In this case the tensor E is zero.

Remark 5.3.5. The tensor κ̄K+ |Yc |
|Yt |

E is symmetric and positive definite since it is the sum of two sym-
metric and positive definite tensors.

Remark 5.3.6. If one of the two domains (Ωεc or Ωεt ) is not connected, then pc = pt .

5.3.2 Limit problems

In this section, we show the link between the different models. We assume that both instertitium

and capillary phases are connected so that the 3 models complemented with Dirichlet, Neumann or

Robin conditions are well-posed.
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Equivalence of model 2 and 3

First consider model (2) and (3) with Dirichlet conditions. Assuming that both R̄n and κ are of

order of magnitude ε, model (3) reads as follows:

ε∇ · (κ̄K∇pt) = ε
R̄n|ΓY |
|Yt |

(pt − pc) in Ω,

∇ · (E∇pc) = ε
R̄n|ΓY |
|Yc|

(pc − pt) in Ω,

pt |∂Ω =pt,∞, pc|∂Ω = pc,∞, on ∂Ω.

(5.41a)

(5.41b)

(5.41c)

It is clear that (5.41b) is not a singluar perturbation of the operator∇·(E∇·) in the sense of Kato [221]
and thus the solution to problem (5.41) tends to the solution to the following problem, which is

nothing that model (3):

∇ · (κ̄K∇pt) =
R̄n|ΓY |
|Yt |

(pt − pc) in Ω,

∇ · (E∇pc) = 0 in Ω,

pt |∂Ω =pt,∞, pc|∂Ω = pc,∞, on ∂Ω.

Equivalence of model 1 and 2

Considering R̄n of the order of ε−1 and κ̄ of the order of 1, model (2) of Table 5.1 reads then

ε∇ · (κ̄K∇pt) =
R̄n|ΓY |
|Yt |

(pt − pc) in Ω,

ε∇ · (E∇pc) =
R̄n|ΓY |
|Yc|

(pc − pt) in Ω

pt |∂Ω =pt,∞, pc|∂Ω = pc,∞, on ∂Ω.

(5.42a)

(5.42b)

(5.42c)

Here the asymptotic analysis is much trickier since both equations (5.42a)–(5.42b) are singular per-

turbation of the div-grad operator. In particular, a delicate asymptotic analysis makes appear a expo-

nential decay of the pt−pc from the boundary, showing that out of the vicinity of the tumor boundary,

both pressures are equal. The details of this results are given in [222], however we expose here the

main arguments in the simple case where κ̄K and E are colinear to the identity, that is for a λ,µ 6= 0:

κ̄K=
1
λ
I, E=

1
µ
I.

Then simple calculation shows that

∆(pt − pc) =
R̄n

ε

�

λ
|ΓY |
|Yt |
+µ
|ΓY |
|Yt |

�

(pt − pc) in Ω,

(pt − pc)|∂Ω =pt,∞ − pc,∞, on ∂Ω.

(5.43a)

(5.43b)

It is well-known, especially in conduction theory [223] that problem (5.43) makes appear a so-called

skin depth effect: the pressure difference pt − pc decays exponentially fast from the boundary. More

precisely, denoting by α the factor given by

α=

√

√

R̄n

�

λ
|ΓY |
|Yt |
+µ
|ΓY |
|Yt |

�

,
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hence in the local coordinates near the boundary

pt − pc = (pt,∞ − pc,∞)e
− αε xn +O(ε),

where xn is the normal variable with respect to the tumor boundary.

Interestingly, we thus obtain that in this asymptotic regime, the solution to model (2) with Dirich-

let boundary conditions can be approached by the solution to model (1) with the following appro-

priate boundary condition

∇ ·
��

λ+µ
|Yc|
|Yt |

�

∇p
�

= 0, in Ω

p|∂Ω = pt,∞ −
|ΓY |
|Yt |
/

� |ΓY |
|Yt |
+
|ΓY |
|Yc|

�

(pt,∞ − pc,∞), on ∂Ω.

The generalisation to the case of symmetric definite positive tensors K and E is given in [222]. The

result involves Riemannian geometry results which are far from the scope of this chapter, however

the general idea of the exponential decay of the pressure difference remains.

5.4 Derivation of the macro-scale models

We derive the macroscopic models using formal two-scale homogenization according to the mag-

nitude of the permeability of the vessel wall and of the interstitial hydraulic conductivity, namely

• Model 1: γ= 0, η= 0;

• Model 2: γ= 1, η= 0;

• Model 3: γ= 2, η= 1.

The differential operators are then

∇=∇x +
1
ε
∇y, ∇2 =∇2

x +
2
ε
∇x · ∇y +

1
ε2
∇2

y.

The fluid transport in the tumor tissue can be then written as follows:

ε3ν̄∇2
xuc + 2ε2ν̄∇y · ∇xuc + εν̄∇2

yuc = ε∇xpc +∇ypc in Ωεc × Yc ,

ε∇x · uc +∇y · uc = 0 in Ωεc × Yc ,

ε2∇2
xpt + 2ε∇x · ∇ypt +∇2

y pt = 0 in Ωεt × Yt .

(5.44)

(5.45)

(5.46)

The interface conditions vary according to the value of γ and η:

−ε2ν̄[(n · ∇x)uc] · n− εν̄[(n · ∇y)uc] · n+ pc − pt =
1
εγR̄n

uc · n on Γ ε × ΓY ,

−εν[(n · ∇x)uc] ·τ− ν[(n · ∇y)uc] ·τ = ε
ν

Rτ
uc ·τ on Γ ε × ΓY ,

−εηκ̄∇xpt · n− εη−1κ̄∇ypt · n= uc · n on Γ ε × ΓY .

(5.47)

(5.48)

(5.49)
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Case 1: permeable vessel walls i.e. γ= 0, η= 0.

When γ= 0, equation (5.47) reads as

−ε2ν̄[(n · ∇x)uc] · n− εν̄[(n · ∇y)uc] · n+ pc − pt =
1

R̄n
uc · n on Γ ε × ΓY

Identifying the terms of order ε0.

In the interstitium, equating coefficients of ε0 in (5.46) and (5.49) gives

∇2
y p(0)t = 0 in Ωεt × Yt ,

κ̄∇yp(0)t · n= 0 on Γ ε × ΓY ,

(5.50)

(5.51)

with p(0)t periodic in y. Therefore p(0)t does not depend on the local scale, i.e. p(0)t = p(0)t (x).
Equating coeffiecients of ε0 in the capillaries gives:

∇yp(0)c = 0 in Ωεc × Yc ,

∇y · u(0)c = 0 in Ωεc × Yc ,

u(0)c · n= R̄n

�

p(0)c − p(0)t

�

on Γ ε × ΓY ,

[(n · ∇y)u
(0)
c ] ·τ = 0 on Γ ε × ΓY ,

(5.52)

(5.53)

(5.54)

(5.55)

plus periodic boundary conditions on p(0)c and u(0)c in y. Integrating equation (5.53) we get the

following condition on the pressure p(0)c :
∫

Yc

∇y · u(0)c dV =

∫

ΓY

R̄n

�

p(0)c − p(0)t

�

dS = 0 ⇒ p(0)c = p(0)t on ΓY ,

since p(0)t is a constant with respect to y. Therefore, p(0)c depends on the macroscale only and it is

equal to p(0)t (x). Moreover, condition (5.54) becomes

u(0)c · n= 0 on Γ ε × ΓY . (5.56)

Identifying the terms of order ε1.

Equating coefficients of ε1 in (5.46) and (5.49) yields

∇2
y p(1)t = 0 in Ωεt × Yt ,

−κ̄∇xp(0)t · n− κ̄∇yp(1)t · n= u(0)c · n on Γ ε × ΓY ,

(5.57)

(5.58)

where u(0)c · n = 0. We exploit the linearity of system (5.57)-(5.58) and propose a solution of the

form

p(1)t = −
N
∑

j=1

G j
�

∇xp(0)t · e j

�

+ p̄(1)t , (5.59)
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where G j = G j(y) satisfies the cell problem (5.37) for j = 1, ..., N .

Equating coeffiecients of ε1 in the capillaries yields:

ν̄∇2
yu(0)c =∇xp(0)c +∇yp(1)c in Ωεc × Yc ,

∇x · u(0)c +∇y · u(1)c = 0 in Ωεc × Yc ,

u(1)c · n= R̄n(p
(1)
c − p(1)t − ν̄[(n · ∇y) · u(0)c ] · n) on Γ ε × ΓY ,

−Rτ[(n · ∇y)u
(1)
c ] · n ·τ = u(0)c ·τ+ Rτ[(n · ∇x)u

(0)
c ] ·τ on Γ ε × ΓY .

(5.60)

(5.61)

(5.62)

(5.63)

We exploit the linearity of the system composed by (5.60)-(5.53)-(5.56)-(5.55) and propose a solu-

tion of the form:

u(0)c = −
N
∑

j=1 j

W j
�

∇xp(0)c · e j

�

p(1)c = −
N
∑

j=1

P j
�

∇xp(0)c · e j

�

+ p̄(1)(x),

(5.64)

(5.65)

where (W j , P j) solve the cell problem (5.38) for j = 1, ...N . Integrating (5.64) over Yc , we find the

leading order for the velocity u(0)c :



u(0)c

�

Yc
= −E∇xp(0)c ,

where E is defined in (5.39).

Identifying the terms of order ε2.

Equating coefficients of ε2 in (5.46) and (5.49) gives:

∇2
xp(0)t + 2∇x · ∇yp(1)t +∇

2
y p(2)t = 0 in Ωεt × Yt ,

−κ̄∇xp(1)t · n− κ̄∇yp(2)t · n= u(1)c · n on Γ ε × ΓY .

(5.66)

(5.67)

Integrating (5.66) we obtain the equation for the leading order of the interstitial pressure:

∇x ·
��

κ̄K+
|Yc|
|Yt |

E
�

∇xp(0)t

�

= 0, (5.68)

where K and E are defined in (5.39).

Case 2: weakly permeable vessel walls i.e. γ= 1, η= 0.

When γ= 1, equation (5.47) becomes

−ε2ν̄[(n · ∇x)uc] · n− εν̄[(n · ∇y)uc] · n+ pc − pt =
1
εR̄n

uc · n on Γ ε × ΓY .

This case has been previously addressed [81, 82]. We write here the formal derivation of the

macroscale model for the sake of completeness. Equations in the interstitium are the same as the

ones in the previous case, while equations (5.54) and (5.62) take a different form in the capillaries.

Nevertheless, the cell problems defined in (5.37) and (5.38) hold.
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Identifying the terms of order ε0.

As for the previous case, p(0)t in the interstitium does not depend on the micro-scale, i.e.

p(0)t = p(0)t (x). The interface conditions for the variables p(0)c and u(0)c read as follows:

u(0)c · n= 0, on Γ ε × ΓY ,

[(n · ∇y)u
(0)
c ] ·τ = 0 on Γ ε × ΓY .

(5.69)

(5.70)

Equating coefficients of ε0 in the capillaries, equations (5.52)-(5.53)-(5.69)-(5.70) hold. Therefore,

the leading order of the pressure in the capillaries depends only on the macro-scale p(0)c = p(0)c (x).

Identifying the terms of order ε1.

In the interstitium, the same results found in the previous case hold.

Equating coefficients of ε1 in the capillaries, yields

ν̄∇2
yu(0)c =∇xp(0)c +∇yp(1)c in Ωεc × Yc ,

∇x · u(0)c +∇y · u(1)c = 0 in Ωεc × Yc ,

u(1)c · n= R̄n

�

p(0)c − p(0)t

�

on Γ ε × ΓY ,

−Rτ[(n · ∇y)u
(1)
c ] · n ·τ = u(0)c ·τ+ Rτ[(n · ∇x)u

(0)
c ] ·τ on Γ ε × ΓY .

(5.71)

(5.72)

(5.73)

(5.74)

Exploiting the linearity of this system, we propose a solution of the same type of (5.64) and (5.65)

where (W j , P j) solve the cell problem defined in (5.38).

Identifying the terms of order ε2.

In the instersitial domain, equating coefficients of ε2 yields equations (5.66) and (5.67). We obtain

the equations for the leading order by integrating (5.64), (5.73) in the capillaries, (5.66) and (5.67)

in the interstitium:

∇x ·
�

κ̄K∇xp(0)t

�

=
R̄n|ΓY |
|Yt |

�

p(0)t − p(0)c

�

,

∇x ·
�

E∇xp(0)c

�

=
R̄n|ΓY |
|Yc|

�

p(0)c − p(0)t

�

.

(5.75a)

(5.75b)
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Case 3: weakly permeable walls and weakly interstitial hydraulic connectivity i.e.
γ= 2, η= 1.

When γ= 2 and η= 1, equations (5.47)-(5.49) become

−ε2ν̄[(n · ∇x)uc] · n− εν̄[(n · ∇y)uc] · n+ pc − pt =
1
ε2R̄n

uc · n on Γ ε × ΓY ,

−εκ̄∇xpt · n− κ̄∇ypt · n= uc · n on Γ ε × ΓY .

Identifying the terms of order ε0.

Equating the coefficients of ε(0), equation (5.50) holds in the interstitium and (5.52)-(5.53) hold in

the capillaries.

The interface conditions for the variables p(0)t , p(0)c and u(0)c read as follows:

−κ̄∇yp(0)t · n= u(0)c · n, on Γ ε × ΓY ,

u(0)c · n= 0, on Γ ε × ΓY ,

[(n · ∇y)u
(0)
c ] ·τ = 0 on Γ ε × ΓY .

(5.76)

(5.77)

(5.78)

Since u(0)c · n = 0 on Γ ε × ΓY , p(0)t in the interstitium does not depend on the micro-scale, i.e.

p(0)t = p(0)t (x).
Equating coefficients of ε0 in the capillaries, equations (5.52)-(5.53)-(5.77)-(5.78) hold. Therefore,

the leading order of the pressure in the capillaries depends only on the macro-scale p(0)c = p(0)c (x).

Identifying the terms of order ε1.

Equating coefficients of ε1, equation (5.57) holds in the interstitium while equations (5.60)-(5.61)

hold in the capillaries.

The interface conditions for the variables p(1)t , p(1)c and u(1)c read as follows:

−κ̄∇xp(0)t · n− κ̄∇yp(1)t · n= u(1)c · n, on Γ ε × ΓY ,

u(1)c · n= 0, on Γ ε × ΓY ,

−Rτ[(n · ∇y)u
(1)
c ] · n ·τ = u(0)c ·τ+ Rτ[(n · ∇x)u

(0)
c ] ·τ on Γ ε × ΓY .

(5.79)

(5.80)

(5.81)

In the interstitium, since u(1)c ·n= 0 on Γ ε × ΓY , the same results for p(1)t found in the previous cases

hold.

In the capillaries, we exploit the linearity of the system (5.60)-(5.53)-(5.77)-(5.78) and propose a

solution for u(0)c and p(1)c of the same type of (5.64) and (5.65) where (W j , P j) solve the cell problem

defined in (5.38).
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Identifying the terms of order ε2.

Equating coefficients of ε2 in the interstitium, we obtain (5.66) and the following interface con-

dition:

−κ̄∇xp(1)t · n− κ̄∇yp(2)t · n= u(2)c · n, on Γ ε × ΓY . (5.82)

Equating coefficients of ε2 in (5.48), the following interface condition holds:

u(2)c · n= R̄n

�

p(0)c − p(0)t

�

, on Γ ε × ΓY . (5.83)

Integrating equations (5.66) and (5.82) we obtain the equation for the leading order of the interstitial

pressure:

∇x ·
�

κ̄K∇xp(0)t

�

=
R̄n|ΓY |
|Yt |

�

p(0)t − p(0)c

�

.

Integrating equation (5.64) and (5.80), we obtain the leading order for the pressure in the capillaries:

∇ · (E∇pc) = 0.

5.5 Numerical convergence of the multiscale model to the homoge-
nized models (2D)

The purpose of 2D simulations is to prove the numerical convergence of the multiscale model to

the homogenized ones, considering model 1 and model 2. Indeed, the large number of degrees of

freedom required by the multiscale model makes the 3D simulations infeasible.

We ran the original multi-scale model for different values of ε, considering models 1 and 2 and

compared the solutions to the two respective homogenized problems. In the two cases, the compu-

tational domain was set as the unitary square (0, 1)2 and we assumed that it had a periodic structure

with circular cells of radius 0.25 · ε. We considered values of ε in
�1

5 , 1
10 , 1

15 , 1
20 , 1

30

	

. We denote

by (pεi ,uεi ) the solution to the multi-scale model and by (pi ,ui) the solutions to the homogenized

models (i = t, c). The multiscale model was solved using a subdomain iterative method based on

a Dirichlet-Neumann domain decomposition technique [224, 215] as explained in algorithm 1. The

equations were discretized using the Finite Elements Method, using linear polynomials (P1) for the

pressures pεt , pεc and quadratic polynomials (P2) for the blood velocity uεc . We set Dirichlet boundary

conditions with pεt = pt = pc = p∞ on ∂Ω:

p∞ =















sin(πx) if y = 1, 0< x < 1,

− sin(πx) if y = 0, 0< x < 1,

0 if x = 0, 0< y < 1∨ x = 1, 0< y < 1.

Fig. 5.3 shows an example of the solutions to the multiscale model and to the homogenized

models when ε = 1/10. The first and second columns provide the solution to the multiscale model

(when γ = 0 and 1, respectively), where pεc belongs to Ωεc and pεt belongs to Ωεt . The homogenized

solutions (in the third and fourth columns) have the same trend as the solution to the original mul-
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Algorithm 1 Domain decomposition method for the resolution of the multiple scale model.
Input: Initial guess for λ, positive relaxation parameter θ .

1: while err > tol do
2: find the solution pε,n+1

t to the interstitial problem:

∇2pε,n+1
t = 0 in Ωεt

−κ∇pε,n+1
t = λn on Γ ε

pε,n+1
t = p∞ on Γ εt

3: find the solution (uε,n+1
c , pε,n+1

c ) to the capillary problem:

ν̄ε2∇2uε,n+1
c =∇pε,n+1

c , ∇ · uε,n+1
c = 0 in Ωεc

−ν̄ε2[(n · ∇)uε,n+1
c ] · n+ pε,n+1

c =
1
εγR̄n

uε,n+1
c · n+ pε,n+1

t on Γ ε

−[(n · ∇)uε,n+1
c ] ·τ = Rτuε,n+1

c ·τ on Γ ε

4: compute λn+1 and the error:

λn+1 = θ (uε,n+1
c · n) + (1− θ )λn

err=

∫

Γ ε
|λn+1 −λn|

5: end while

tiscale model in the entire domain Ω. In 2D, the solutions to the two homogenized models are equal

because the tensor E is null.

We showed numerically that pεt converges to pt strongly in L2(Ωεt ) and that pεc converges to pc

in L2(Ωεc ), as proven in [219]. We noticed that the velocities converge weakly with respect to the

L2-norms. To analyze convergence, we defined the following quantities:

eεi,L2 =

�

�

�

�pεi − pi

�

�

�

�

L2(Ωεi )

||pi||L2(Ω)
, eεi,L∞ =

�

�

�

�pεi − pi

�

�

�

�

L∞(Ωεi )
, with i = t, c.

Figure 5.4A shows the pattern of the errors. Indeed, the L2-errors decrease linearly with respect to

1/ε. Figure 5.4B provides the pointwise differences between the solution to the multiscale model

and the solution to the homogenized model, i.e. |pc − pεc | in Ω
ε
c and |pt − pεt | in Ω

ε
t . The peaks of the

errors are in correspondence to the boundary between the two subdomains Γ ε. The oscillations of

the pointwise error can be smoothed thanks to the correctors.
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(pεt , p
ε
c), γ = 0 (pεt , p

ε
c), γ = 1 pc pt

-0.5 0 0.5

1Figure 5.3. Example of the solutions to the multiscale model relative to model 1 (first column), and model 2
(second column) when ε = 1/10, compared with the solutions to the homogenized model (third and fourth
columns). In the first two columns, pεc belongs to the domainΩεc , corresponding to the circles, while pεt belongs
to the outer subdomain corresponding to Ωεt .

Case 1 Case 2

A

5 10 15 20 30

10
-2

10
-1

1

1

5 10 15 20 25 30

10
-2

10
-1

1

1

0 0.025 0.05

B

1

Figure 5.4. (A) numerical convergence of the multiscale problem to the homogenized model 1 (left) and
homogenized model 2 (right). (B) example of pointwise differences of the capillary and interstitial pressures
(|pεc − pc | in the capillaries, |pεt − pt | in the interstitial domain) between the multiscale problem and the
respective homogenized models when ε = 1/10.
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5.6 Numerical simulations

The Galerkin Finite Elements Method was used to discretize the equations in order to test the

homogenized model 2. 3D simulations were run in order to analyze the impact of the micro-scale

geometry on the homogenized solutions and the influence of the vessel permeability Rn on the fluid

transport. Regarding the homogenized models, the following strategy has been adopted:

• The periodic cell was considered as the unit cube (0, 1)3 in R3. The domain was di-

vided in two regions (Yt and Yc) and the software Gmsh [87] was used to perform

the triangulation Th. Problem (5.38) was discretized with the Galerkin Finite Elements

Method using FreeFem++ [86]. Piecewise linear polynomials (P1) were used for the

variable P j . For the variable W j , we used piecewise linear polynomials with bubbles

(P1b = {v ∈ H1(Ω) : ∀K ∈ Th v|K ∈ P1 ⊕ Span{λK
0λ

K
1λ

K
2λ

K
3 }}, where λK

j , j = 0, ..., N are

the 4 barycentric coordinate functions of the element K). Problem (5.37) was solved on the

domain Yt using piecewise linear polynomials (P1) for the variable G j .

• The tensors K and E were computed according to (5.39).

• The homogenized model was simulated on the normalized sphere of radius 0.5. Models in

Table 5.1 were simulated using the Galerkin Finite Elements Method. Quadratic piecewise

elements (P2) were used for both pt and pc .

5.6.1 Cell problems: tensor properties varying the microstructure

The tensors K and E defined in (5.39) have different properties according to the microstructure.

To analyze them, we solved equations (5.37) and (5.38) in the unitary cell, i.e. the cube (0, 1)3 ⊂ R3.

Different geometric configurations for the domains Yt and Yc were tested (Figure 5.5).

Table 5.2 provides the values of the elements in the two tensors K and E. These results confirm the

analysis done in Section 5.3.1. Indeed, the tensors K and E are symmetric and positive definite when

the two domains are connected (Fig. 5.5a, 5.5b and 5.5c). When the capillaries are not connected

in all the directions (Fig. 5.5d, 5.5e), the tensor E is semi-positive definite as the solution to the cell

problems (5.37) is trivial: W j = 0 and P j = e j , j = 1, 2,3. Figure 5.5 provides the values of the

interstitial and capillary volume fractions (|Yt | and |Yc|, respectively) and of the vascular surface ΓY .

5.6.2 Macroscopic dynamic of fluid transport in tumors

We eventually considered realistic parameters to test model (2). The homogenized model was

tested with a tumor considered as a sphere of normalized radius 0.5. Table 5.3 provides the values

of the parameters of the model. Regarding the interstitial hydraulic conductivity kt , the vascular

permeability Lp and the tumor characteristic length L, we considered values relative to different

tissues, as summarized in Tables 5.4, 5.5 and 5.6, respectively. Simulations were run considering
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A |Yt| = 0.72
|Yc| = 0.28
|ΓY | = 2.41

B |Yt| = 0.8
|Yc| = 0.2
|ΓY | = 2.16

C |Yt| = 0.63
|Yc| = 0.37
|ΓY | = 5.87

D |Yt| = 0.88
|Yc| = 0.12
|ΓY | = 1.25

E |Yt| = 0.89
|Yc| = 0.11
|ΓY | = 1.12

1Figure 5.5. Different structures of the unit periodic cell with the respective volume and surface fractions. The
mesh represents the capillary domain Yc , while the difference between the box and the mesh is the interstitial
compartment Yt .

K11 K12 K13 K21 K22 K23 K31 K32 K33

A 0.808 7.5e-5 7.89e-6 7.5e-5 0.808 5.49e-5 7.89e-6 5.49e-5 0.808
B 0.877 -1.76e-3 3.91e-3 -1.76e-3 0.814 2.29e-3 3.91e-3 2.29e-3 0.933
C 0.72 -1.09e-4 1.03e-4 -1.09e-4 0.72 3.98e-5 1.03e-4 3.98e-5 0.72
D 1 -3.19e-8 -9.81e-8 -3.19e-8 0.895 1.01e-4 -9.81e-8 1.01e-4 0.895
E 0.954 -4.69e-5 5.2e-5 -4.69e-5 0.954 8.14e-5 5.2e-5 8.14e-5 0.954

E11 E12 E13 E21 E22 E23 E31 E32 E33

A 2.2e-3 8e-6 -1.1e-6 8e-6 2.2e-3 -1.3e-5 -1.1e-6 -1.3e-5 2.2e-3
B 9.5e-4 8.1e-7 2.3e-5 8.1e-7 1.8e-4 7.7e-6 2.3e-5 7.7e-6 2.9e-3
C 4.0e-4 -8.7e-7 -7.4e-7 -8.7e-7 4.0e-4 -2.7e-6 -7.4e-7 -2.7e-6 4.0e-4
D 4.7e-3 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0

Table 5.2. Values of the tensors K and E for the different microstructures depicted in Fig. 5.5.
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different microstructures, namely the ones shown in Figs 5.5a-c. Dirichlet boundary conditions were

considered for the interstitial and capillary pressure, specifically pt,∞ = 0 and pc,∞ = 1 (normalized

values).

Parameter influence

First, we looked at the behaviour of the solution varying the parameters kt , Lp and L. Examples

of solutions as a function of the radius are shown in Fig. 5.6. In this case, we considered the

microstructure of Fig. 5.5c. Results relative to the interstitial pressure and velocity were in agreement

with the ones found in [186], where the authors considered the following model:

∇ · (K∇pt) =
R̄nS
κ̄V
(pt − pc) , (5.84)

where the vascular pressure pc is assumed to be constant and S/V is the vascular area per unit volume

of the tumor. Therefore, we considered this value to be equal to |ΓY |. The slight differences between

the results obtained from the homogenized model and Baxter and Jain model (5.84) (Figure 5.6A)

are due to the different rescaling of the equation, since we considered S/V to be the vascular area

per unit volume of the interstitial compartment (|ΓY |/|Yt |).

The interstitial fluid pressure is large and almost constant in the centre of the tumor and has a

sharp drop at the periphery for increasing values of R̄n and decrasing values of κ̄. As a consequence,

the interstitial fluid velocity is almost zero in the centre of the tumor (since the pressure gradient is

close to zero) and large at the periphery. The microvessel fluid pressure is almost constant and close

to the value at the boundary. For large values of the parameter R̄n, the capillary pressure decreases

and gets closer to the interstitial fluid pressure. As a consequence, also the microvessel fluid velocity

is close to zero in the centre of the tumor.

Eventually, we observed the skin depth effect of pc − pt when the permeability of the vessel walls

increases (Fig 5.6B). Indeed, the pressure difference is almost zero at the centre of the tumor and

increases exponentially in correspondence of the boundary.

Microstructure

We fixed the parameter values kt = 1.8 · 10−12 m3· s · kg−1, Lp = 1.86 · 10−10 m2· s · kg−1 and

L = 5 mm and looked at the behaviour of the solutions relative to the different microstructures.

Fig. 5.7 shows the results relative to the unitary cells of Fig 5.5A-C. In all cases, the IFP shows a

sharp drop at the periphery and it equates the capillary pressure in the centre of the tumor, while

the capillary pressure is approximately constant in the whole tumor. The interstitial fluid velocity ut

is directed outward from the domain, while the blood velocity is directed inward. The two velocities

are radially homogeneous in cases 5.7A and 5.7C, while they show asymmetries in case 5.7B due to

the asymmetric microscopic structure of Fig 5.5B.

We noticed that only when the capillary subdomain is smaller than the interstitial region, the
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Parameter Description Value Unit Reference

µ blood viscosity 4 · 10−3 kg · m−1 · s−1 [227]
d mean intercapillary distance 50 · 10−6 m [228]
αBJ BJS constant 1 - -

pt,∞ surrounding interstitial pressure 0 mmHg -
pc,∞ surrounding capillary pressure [15,80] mmHg [68]

Table 5.3. Fixed parameters used to simulate IFP and IFV.

Tissue kt [m3· s · kg−1] Reference

Dog squamous cell tissue 1.8 · 10−12 [229]
Mouse mammary carcinoma 1.88 · 10−13 [230]
Hepatoma 5123 in vivo 2.9 · 10−15 [231]

Table 5.4. Values of the interstitial hydraulic conductivity kt of different tissues.

blood velocity is larger than the interstitial fluid flow (data not shown). This is biologically relevant

as the capillary volume fraction is usually within the range [16%, 50%] [225] and the average blood

velocity is larger than the interstitial fluid velocity [226, 65].

Boundary conditions

Eventually, we tested model (2) with different boundary conditions. In particular, Neumann

boundary conditions were considered for the capillary pressure, in order to ensure the continuity of

the normal velocity in the vessels at the tumor periphery:

−E∇pc · n= uc,∞ · n,

where uc,∞ is the blood velocity in the sourranding tissue. Dirichlet boundary conditions were

imposed to the interstitial pressure. Well-posedness of model (2) is guaranteed with this set of

boundary conditions for (pt , pc) ∈ H1
0(Ω)×H1(Ω).

We ran experiments with different boundary conditions for the capillary pressure pc as summa-

rized in Table 5.7. Homogeneous Dirichlet boundary conditions were considered for the interstitial

fluid pressure pt . Figure S1 shows the results at the centre of the sphere as function of the nor-

malized radius. The interstitial pressure increases at the centre of the tumor and equates the blood

pressure in the three cases. When considering the case "Neumann 2", the blood velocity is constantly

high inside the domain and the capillary pressure profile is therefore due to the gradient along the

x-axis.
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Tissue Lp [m2 · s · kg−1] Reference

Mouse mammary carcinoma 1.86 · 10−10 [230]
R3230 mammary adenocarcinoma 4.5 · 10−11 [232]
Healty rat hindquarter tissue 2.3 · 10−12 [233]

Table 5.5. Values of the vessel permeability Lp of different tissues.

Characteristic length L [mm] Tumor volume [mm3] ε = d/L

5 4.2 0.05
10 523.6 0.01
15 4200 0.005

Table 5.6. Characteristic length (diameter) of the tumor and corresponding tumor volume and value of ε.

IFP IFF
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Figure 5.6. (A) Normalized values (n.v.) of interstitial fluid pressure and flow (IFP and IFF), of microvascular
pressure (MVP) and of blood velocity as functions of the normalized radius r̂ varying the parameter R̄n/κ.
The microstructure considered in this case corresponds to Fig 5.5c. The blue lines are the simulations of the
homogenized model (2) and the red lines are the results of Baxter and Jain model [186]. (B) Difference
between p̂c and p̂t in normalized values (n.v.) as functions of the normalized radius r̂ varying the parameter
R̄n and with κ̄ fixed.

Experiment Boundary condition (on ∂Ω) Parameter value (normalized)

Dirichlet pc = pc,∞ pc,∞ = 1
Neumann 1 −E∇pc · n= uc,∞ · n uc,∞ = −1 · 10−3n
Neumann 2 −E∇pc · n= uc,∞ · n uc,∞ = [−1 · 10−5, 0, 0]T

Table 5.7. Different boundary conditions considered for the microvessel pressure pc .
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IFP MVP IFF Blood velocity

.
0 10 17.9 18 0 5 10 15 0 25 50
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1

Figure 5.7. 3D slices at the centre of the sphere with the interstitial pressure (first column), the capillary
pressure (second comumn), interstitial velocity (third column) and capillary velocity (fourth column). Results
were computed using the microstructure of Fig 5.5a (A), of Fig 5.5b (B) and of Fig 5.5c (C) and setting
kt = 1.8 · 10−12 m3 · s · kg−1, Lp = 1.86 · 10−10 m2 · s · kg−1 and L = 5 mm. IFP = interstitial fluid pressure,
MVP = microvascular pressure, IFF = interstitial fluid flow.
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5.7 Discussion

We have provided an analysis of the impact of microstructure properties of the tumor employing

the homogenization theory.

First, we have described a model at the microscopic scale that couples vascular, transvascular and

interstitial fluids, adopting an asymptotic expansion technique. Then, we have derived three macro-

scale models according to the vessel wall permeability and the interstitial hydraulic conductivity.

After having analyzed the well-posedness of the problems, we performed numerical simulations to

assess some properties according to the microstructure.

Well-posedness is guaranteed when the two subdomains Yt and Yc are connected. When one

region is not connected with respect to one axis, the fluid is not transported along this direction.

For example, in Fig. 5.5e the capillary microstructure is a closed sphere, therefore there is no fluid

transport in the blood vessels; in Fig. 5.5d, the vessel geometry is connected only along the x-axis

that is the only direction for the capillary fluid flow. This represents a limit for the 2D simulations,

as the subdomains Yt and Yc cannot be both connected. In this case, one among the interstitial or

the vessel flow is always zero. However, tensors K and E can be determined by calibrating directly

the homogenized models to medical imaging data.

Furthermore, we motivated the links between the various regimes and shown that model (2) cov-

ers a wide range of cases, confirming previous results [81]. In particular, we have shown that model

(1) is equivalent to model (2) under certain conditions and that model (2) can be approximated to

model (3) under certain assumptions on the parameters.

Eventually, we calibrated model (2) with parameters taken from the literature and analyzed their

influence on the solutions. We observed that different microstructures and different sets of boundary

conditions strongly impact the macroscopic dynamics of the fluids. The geometric shape of the

unitary cell influences the isotropy of the capillary fluid velocity, while the vascular volume fraction

affects the blood velocity. Indeed, when the capillary volume fraction |Yc| is large, the blood velocity

uc is equal or lower than the interstitial fluid velocity ut . This might not be biologically relevant.

On the other hand, when the capillary volume fraction is smaller the blood velocity is of higher

magnitude and gets closer to the average values (around 1.62 mm · s−1 [234]). This confirms that

the homogenized models are consistent with biological observations. Indeed, the vascular volume

fraction lies within the values of 16% and 50%. [225, 183, 235]. Moreover, the average values

of the pressures and of the velocities obtained from simulations with different sets of boundary

conditions were compared against literature values. When Dirichlet-Dirichlet boundary conditions

are considered, both the interstitial and the capillary pressures fit better the well-known profile of

the IFP that is high at the centre of the tumor and shows a sharp drop at the periphery [186].
However, when Dirichlet-Neumann boundary conditions are considered for the interstitial and the

capillary pressure, respectively, the blood velocity reaches average values closer to the literature ones.

Possible improvements of our computations might be achieved by considering the correctors and by

adding boundary layers, to take into account the Dirichlet boundary conditions that are imposed to
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the true solution (pεt , pεc ) of the micro-scale model, but are not satisfied by the periodic solutions to

the homogenized ones.

The current work focuses on the analysis of asymptotic models that describe fluid transport in tu-

mor tissues. Fluid velocities are necessary to develop convection-diffusion models for the description

of drug transport in tumor tissues. This motivated our choice of a steady-state model, as in reality,

the time variation of the fluid transport is negligible with respect to the evolution of drug distribution

inside the tumor. However, spatial tumor growth might be included in the model.

Further extensions might include a relaxation of the periodicity hypothesis, that might not be realis-

tic in a biological context, as tumors are highly heterogeneous. Assuming a random distribution of

the capillaries, it is possible to define properly the representative volume element to better predict

the fluid flow in the tumor [236]. Moreover, rheological effects of blood should be included to model

blood transport in capillaries [237].

Applications of the models include the incorporation of 3D imaging data. Images provide the

microstructure of the vessel network, that is necesssary to compute the correctors.





CHAPTER 6

MACRO-SCALE MODEL OF NANOPARTICLE

AND DRUG TRANSPORT IN THE TUMOR

INTERSTITIUM

Abstract. In this chapter, we derive a time-dependent spatial model that describes nanoparticle

transport in the tumor interstitium using formal two-scale asymptotic expansion. Under the hy-

pothesis of a periodic domain, we derive a computational model that includes vascular transport,

interstitial transport, and cellular uptake. Model calibration was done using drug specific param-

eters. Numerical simulations showed the differents trends of nanoparticles (ANCs and liposomes)

with respect to free drugs (docetaxel). Moreover, we provide an analysis of the impact of the tumor

microenvironment on the nanoparticle and drug transport. Future applications of this model include

the calibration with patient-specific data to predict nanoparticle accumulation in the tumor tissue.

121



122 Chapter 6. Nanoparticle and drug concentration in tumors

Contents
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2 A microscopic model of nanoparticle transport in the tumor interstitium . . . 124
6.3 Derivation of a macroscale model of nanoparticle concentration in the tumor

tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.1 Two-scale asymptotic expansion of nanoparticle concentration in tumor tis-

sues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.2 Boundary and initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.4 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.1 A 1D semi-implicit finite difference scheme . . . . . . . . . . . . . . . . . . . . 128

6.4.2 Nanoparticle and drug specific parameters . . . . . . . . . . . . . . . . . . . . 129

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137



6.1. Introduction 123

6.1 Introduction

Physiological barriers of malignant tissues, such as abnormal vasculature and dense interstitial

matrix, impair a uniform distribution of nanoparticles, leading to poor efficacy of nanotherapeutics

[60]. Mathematical models can describe the delivery process to the tumor to quantify nanoparticle

accumulation and possibly analyze new methods to overcome the barriers.

Drug concentration in the tumor interstitium is classically modeled by a diffusion-convection-

reaction equation [186]. This is the case also for nanoparticle penetration in tumors [60]. Nanopar-

ticle penetration in tumor spheroids has been analyzed using systems of partial differential equations

[52, 53] to describe the NPs transport in the tumor interstitium and the cellular uptake. Nanoparticle

kinetics has been studied in more complex organisms thanks to the increasing number of available

data. The impact of blood rheology and vessel permeability on the nanoparticle diffusion coefficient

in blood vessels has been investigated by Gentile et al. [50]. Liu et al. [238] introduced a multi-

scale model to describe the nanoparticle delivery process in the vascular environment, taking into

account the probability of adhesion of nanoparticles to the vessel walls. The transvascular pathway

of nanoparticles has been studied using the pore model for transcapillary exchange [239, 240, 241].
The pore size in tumor vessels is usually large enough to guarantee the extravasation of nanopar-

ticles large up to 400 nm. However, vessel permeability might be affected by the size and by the

composition of the nanoparticle or macromolecule [240]. Mathematical models have been used to

investigate different properties of the nanoparticles. Shape and size affect diffusion and cellular

uptake of nanoparticles [242] as well as other transport features such as margination [54, 55].

Multiple-scale approaches are often considered to take into account the complexity of tumor ar-

chitecture [243, 244]. Indeed, they permit to properly describe the biological processes at the single

scales and to take into account the interdependence among them, hence providing a deep analysis

of the microscopic processes in a biological system. Homogenization techniques allow taking into

account the microscopic features at the macroscopic dynamic, thus not requiring the discretization

of the entire system that might be computationally expensive. Shipley and Chapman [81] derived

different homogenized models of drug transport in tumors coupling the interstitial and blood con-

centrations with different transvascular exchange equations. Penta et al. relaxed the periodicity

assumption [82].

Here, we derived a macroscale model to describe the spatial and temporal variations of the

nanoparticle concentration in the tumor interstitium using two-scale asymptotic expansion. The

NP concentration in the blood vessels was assumed to be saturated, hence spatial variations were

neglected. Moreover, we modeled the cellular uptake of the nanoparticles. The calibration was

done using drug-specific parameters. Diffusion coefficients were evaluated empirically. In vitro data

were used to quantify the cellular uptake; in vivo pharmacokinetic data provided information on the

permeability of the vessel walls and the nanoparticle concentration in the tumor vessels. Numeri-

cal simulations on an axisymmetric domain were performed to investigate the impact of either the

tumor microscopic structure and nanoparticle properties on the NPs penetration. The results were
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compared to the literature.

The qualitative analysis performed in this study is a fundamental step to prove the validity of

the model. Further perspectives include the calibration of the model with individual data (such as

imaging data) to predict the tumor accumulation of nanoparticles and the treatment efficacy.

6.2 A microscopic model of nanoparticle transport in the tumor inter-
stitium

At the microscale, the domain is a medium Ω ∈ R3 composed by the interstitium Ωt and the

capillaries Ωc , such that Ωt ∩Ωc = ;. The interface Γ = ∂Ωc ∩ ∂Ωt is the vascular wall.

For the microscopic model of nanoparticle transport, we assumed that the interstitial fluid veloc-

ity ut and pressure pt as well as the microvascular pressure pc are given functions that solve the

microscopic model of fluid transport defined in section 5.2.

We assumed the nanoparticle concentration in the capillaries cc to be saturated in Ωc . Therefore,

spatial variations of cc were neglected and only temporal variations were considered, according to

the plasma clearance rate kc:
dcc

d t
= −kccc in Ωc × (0, T ).

We introduce a diffusion-convection-reaction equation for the nanoparticle concentration in the

interstitium (ct) [186, 245]. We assumed the binding between the nanoparticles and the cells to be

mediated by the Her2 receptors and denoted by cb the bounded nanoparticle concentration [53, 246].
∂ ct

∂ t
+∇ · (ut ct) = Dt∇2ct − konct(cr − cb) + koffcb − kd ct , in Ωt × (0, T ),

∂ cb

∂ t
= konct(cr − cb)ct − koffcb − kintcb − kd cb, in Ωt × (0, T ).

where Dt is the diffusion coefficient of the interstitium. The reaction coefficient depends on the bind-

ing of the nanoparticles: kon is the binding rate constant, cr is the concentration of the cell receptors.

The parameter koff denotes the dissociation rate constant, while kint is the cell internalization rate.

The rate constant of degradation of the nanoparticles is denoted by kd .

At the interface, the transport across the tumor vessel walls can be approximated as [186, 247]

(ctut − Dt∇ct) · n= (ccuc − Dc∇cc) · n on Γ × (0, T )

= Lp(pc − pt −µ[(n · ∇)uc] · n)(1−σ)cc + P(cc − ct), (6.1)

whereσ is the filtration reflection coefficient (0< σ < 1) and P is the diffusive vascular permeability.

The first term in (6.1) accounts the convection transvascular transport, while the second term denotes

the diffusive transport through the vessel walls.
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Nondimensionalization

We rescaled our fields as follows:

x= Lx′, t =
L
U

t ′, u= Uu′, p =
µLU
d2

p′, c = Cc′, (6.2)

where L is the characteristic size of the domain, d is the vessel diameter, U is a characteristic velocity

and C is a characteristic concentration. The non-dimensional nanoparticle concentration system

reads as (neglecting the primes for the sake of simplicity):
∂ ct

∂ t
+∇ · (ut ct) = At∇2ct −λt ct(ce − cb) +λbcb −λd ct , in Ωt × (0, T ),

∂ cb

∂ t
= λt ct(ce − cb)−λbcb −λintcb −λd cb, in Ωt × (0, T ),

(ctut − At∇ct) · n= (ccuc − Ac∇cc) · n on Γ × (0, T )

= Rn(pc − pt − ν[(n · ∇)uc] · n)(1−σ)cc +Λ(cc − ct),
where

At =
Dt

LU
, ce =

cr

C
λt = kon

C L
Vf U

, λb =
koff L

U
, λint =

kint L
U

, λd =
kd L
U

, Λ=
P
U

.

6.3 Derivation of a macroscale model of nanoparticle concentration in
the tumor tissue

6.3.1 Two-scale asymptotic expansion of nanoparticle concentration in tumor tissues

The hypotheses on the periodic domain are summarized in Section 5.3.

As for the multiscale model for fluid transport in tumor tissues, we consider ν = ε2ν̄ and two

different cases for the vessel permeability coefficient Rn according to its magnitude.

The multiscale problem associated to the nanoparticle concentration reads

ε2 ∂ ct

∂ t
+ ε∇y · (ut ct) + ε

2∇x · (ut ct) = ε
2At∇2

xct + 2Atε∇y · ∇xct + At∇2
yct

−λtε
2ct(ce − cb) +λbε

2cb −λdε
2ct

in Ωεt × Yt × (0, T )

(εctut − εAt∇xct − At∇yct) · n= εγ+1R̄n

�

pc − pt − ε2ν̄[
�

n · ∇y

�

uc] · n

−ε2ν̄ [(n · ∇x)uc] · n
�

(1−σ) cc + ε
ξ+1Λ̄(cc − ct)

on Γ ε × ΓY × (0, T )

(6.3)

(6.4)

We analyze different cases according to the value of the parameters. In particular, we derived

homogenized macro-scale models according to the order of magnitude of the diffusion coefficient,

the fluid velocity, the reaction term, the vessel permeability Rn and the parameter relative to the

vessel permeability of the nanoparticle Λ.
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Summary of the asymptotic models

We introduce the following cell problem on the Y-periodic cell variable Li:

∇2
yLi = 0, in Yt ,

∇yLi · n= ei · n, on ΓY .

(6.5a)

(6.5b)

We define the following tensor:

[Dt]i j = At

�

δi j −
1
|Yt |

∫

Yt

∇yL j · ei

�

.

Moreover, we define the following operator that couples the nanoparticle concentrations in the

interstitium and in the capillaries, representing the transvascular transport of nanoparticles:

Tv[cc , c(0)t ] = R̄n|ΓY |(p(0)c − p(0)t )(1−σ)cc + Λ̄|ΓY |
�

cc − c(0)t

�

We summarize here the main asymptotic models that were found:

• Model 1: γ= ξ= 1.

Convergence:

cεt (x,y)* c(0)t (x), cεb (x,y)* c(0)b (x).

Equation of the leading order:

∂ c(0)t

∂ t
+
¬

∇ ·
�

c(0)t u(0)t

�¶

Yt
=∇x ·

�

Dt∇xc(0)t

�

+
1
|Yt |

Tv[cc , c(0)t ]

−λt c
(0)
t (ce − c(0)b ) +λbc(0)b −λd c(0)t , in Ω,

∂ c(0)b

∂ t
= λt c

(0)
t (ce − c(0)b )−λbc(0)b −λintc

(0)
b −λd c(0)b , in Ω.

• Model 2: γ= 0,ξ= 1.

Convergence:

cεt (x,y)* c(0)t (x), cεb (x,y)* c(0)b (x).

Equation of the leading order:

∂ c(0)t

∂ t
+
¬

∇ ·
�

c(0)t u(0)t

�¶

Yt
=∇x ·

�

Dt∇xc(0)t

�

+ (1−σ)
¬

∇x ·
�

u(0)t cc

�¶

Yt

−λt c
(0)
t (ce − c(0)b ) +λbc(0)b −λd c(0)t in Ω

∂ c(0)b

∂ t
= λt c

(0)
t (ce − c(0)b )−λbc(0)b −λintc

(0)
b −λd c(0)b in Ω

Several other asymptotic models can be derived. For example, when At = O(ε), the resulting

model includes a convection-reaction equation for the interstitial transport of nanoparticles (hence,

the diffusion term can be neglected). Similarly, when ut = O(ε) or λt = O(ε), we can neglect the

convective or reaction term, respectively.

Furthermore, when Λ = O(1) (i.e., ξ = 0), we obtain that c(0)t = cc . However, this case is not
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of large interest, as the diffusive permeability of the vessel walls is usually much smaller than other

parameters of the model. On the other hand, it is more likely that Λ = O(ε2) (i.e., ξ = 2). In this

case, the term multiplying Λ can be neglected in the homogenized models.

Remark 6.3.1. We noticed that model 1 converges to model 2 under the assumption that R̄n →∞.
Hence, as proved in Chapter 5, model 1 covers a wider class of equations. Hence, we’ll focus on this
model in the next sections.

Identifying the terms of order ε0

Equating the terms in ε0 in (6.3) and (6.4) we obtain

At∇2
yc(0)t = 0 in Yt × (0, T ),

At∇yc(0)t · n= 0 on ΓY × (0, T ),

therefore c(0)t = c(0)t (x) depends only on the macroscale variable.

Identifying the terms of order ε1

Equating the terms in ε1 in (6.3) and (6.4) we obtain

At∇2
yc(1)t = 0 in Yt × (0, T ),

At∇xc(0)t · n+ At∇yc(0)t · n= 0 on ΓY × (0, T ).
Therefore, we exploit the linearity of the system and propose a solution of the form

c(1)t = −
N
∑

i=1

Li∇xc(0)t · ei + c̄(1)t

where Li depends on the fast variable y and is the solution to the cell problem (6.5), while

c̄(1)t = c̄(1)t (x) depends on the slow variable only.

Identifying the terms of order ε2

Equating the terms in ε1 in (6.3) and (6.4) yields

∂ c(0)t

∂ t
+∇x ·

�

c(0)t u(0)t

�

+∇y ·
�

c(0)t u(1)t

�

+∇y ·
�

c(1)t u(0)t

�

=

At∇2
xc(0)t + 2At∇x · ∇yc(1)t + At∇2

yc(2)t −λt c
(0)
t

�

ce − c(0)b

�

+λbc(0)b −λd c(0)t in Yt × (0, T )
�

c(0)t u(1)t + c(1)t u(0)t − At∇xc(1)t −At∇yc(2)t

�

· n=

R̄n

�

p(0)c − p(0)t

�

(1−σ)cc + Λ̄
�

cc − c(0)t

�

on ΓY × (0, T ).
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Integrating in Yt we obtain the following equation for the leading order

∂ c(0)t

∂ t
+
¬

∇ ·
�

c(0)t u(0)t

�¶

Yt
=∇x ·

�

Dt∇xc(0)t

�

+
1
|Yt |

Tv[cc , c(0)t ]

−λt c
(0)
t

�

ce − c(0)b

�

+λbc(0)b −λd c(0)t in Ω

∂ c(0)b

∂ t
= λt c

(0)
t

�

ce − c(0)b

�

−λbc(0)b −λintc
(0)
b −λd c(0)b in Ω

(6.6)

(6.7)

In the following sections we will neglect the superscripts and consider ct and cb the leading orders

c(0)t and c(0)b , respectively.

6.3.2 Boundary and initial conditions

We assume that the boundary conditions for the nanoparticle concentration depend on their trans-

port in the surrounding normal tissue, which is assumed to be able to absorb the fluid which comes

out of the tumor [186]. Therefore, the boundary conditions read:

(Dt∇ct − ut ct) · n|∂Ω− =
�

Dt,ext∇ct − ut ct

�

· n|∂Ω+ ,

where Dt,ext is the diffusion coefficient of the nanoparticle in the sourranding tissue.

As initial condition, we consider the concentration in the tumor interstitium to be zero:

ct(x, 0) = 0, cb(x, 0) = 0, x ∈ Ω.

6.4 Numerical simulations

6.4.1 A 1D semi-implicit finite difference scheme

The computational domain Ω ⊂ R3 is the tumor tissue that we assumed to be a sphere. Since 3D

numerical simulation were computationally expensive, we considered the formulation of equations

(7.1)-(7.2) in spherical coordinates, assuming that the tumor is axisymmetric:
∂ (ct)
∂ t

+
1
r2

∂

∂ r

�

r2ut ct

�

=
1
r2

∂

∂ r

�

D̂t
∂

∂ r
ct

�

+
1
|Yt |

Tv[cc , ct]−λt ct(ce − cb) +λbcb −λd ct ,

∂ cb

∂ t
= λt ct(ce − cb)−λbcb −λintcb −λd cb,

where r ∈ [0,1] and t ∈ (0, T ), and ut and D̂t are respectively the interstitial fluid velocity and

diffusion coefficient in spherical coordinates. Boundary conditions were set as follows:

ut ct − D̂t
∂

∂ r
ct

�

�

�

�

r=0
= 0,

ut ct − D̂t
∂

∂ r
ct

�

�

�

�

r=1
= ut ct − D̂t,ext

∂

∂ r
ct

�

�

�

�

r=1
.

A semi-implicit finite difference scheme was implemented in Matlab to run simulations. The nondi-

mensional radius r ∈ [0,1] was discretized in subintervals of dimension h = 0.001. The time grid

was built on the interval (0, T ) (where T = 48 hours) with time step ∆t = 0.01 hours. The time



6.4. Numerical simulations 129

variables were then normalized according to the transformation introduced in 6.2. Denoting by cn
t

and cn
b , respectively, the interstitial and cellular concentrations at time t = n∆t, the semi-implicit

scheme reads as
cn+1

t − c∗,nt

∆t
=

1
r2

∂

∂ r

�

D̂t
1
∂ r

cn+1
t

�

+
1
|Yt |

Tv[c
n
c , cn+1

t ]−λt c
n+1
t (ce − cn

b) +λbcn
b −λd cn+1

t ,

cn+1
b − cn

b

∆t
= λt c

n+1
t (ce − cn+1

b )−λbcn+1
b −λintc

n+1
b −λd cn+1

b ,

where c∗,nt is the approximation of the convection term obtained with an upwind scheme. Moreover,

we used a second-order central finite difference scheme to discretize the Laplacian [248, 249].

6.4.2 Nanoparticle and drug specific parameters

In this section, we estimate some parameters of the model and provide the information on the

parameters that were taken from the literature. We considered three different types of drug admin-

istration: the free drugs, namely docetaxel and trastuzumab, the antibody-nanoconjugates (ANC)

and the liposomal docetaxel with free trastuzumab.

6.4.2.1 Diffusion coefficient

We follow the same approach of [53] for the empirical determination of the diffusion coefficients

of the liposomes and ANCs.

The Einstein-Stokes equation is generally employed to estimate the diffusion coefficient of spher-

ical nanoparticles in an unbounded liquid medium D0:

D0 =
kB T

6πµwrP
, (6.8)

where kB is the Boltzmann’s constant (kB = 1.38 · 10−23 m2· kg · s−2· K−1), T is the absolute body

temperature (T = 310 K), µw is the water viscosity at 310 K (µw = 8.18 · 10−4 N · s · m−2) and rP is

the radius of the particle. In particular, the diffusion coefficient is inversely proportional to the size

of the nanoparticles.

Then, the nanoparticle diffusion in the interstitium can be modeled as a diffusion in porous gel

matrices [53, 250], taking into account the presence of the matrix proteins:

Dt = D0 exp

�

−V−1/2
t,matrix

rP

r f

�

, (6.9)

where Vt,matrix is the volume fraction of the interstitial matrix and r f is the fiber radius (r f = 20 nm

[53, 251]).The volume fraction of the interstitial matrix is defined as the product of the interstitial

collagen concentration (equal to 0.35 g · cm−3 in solid tumors and to 0.032 g · cm−3 in spheroids

[53, 251, 252]) and the effective volume of collagen fibers (equal to 1.89 g−1· cm3 [53, 251]).

Therefore, Vt,matrix = 0.06 in spheroids and Vt,matrix = 0.66 in solid tumors.

Eventually, the presence of cells and other components in the tumor tissue can be modeled by
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rP [nm]∗ D0 [m2· s −1] Dt [m2· s −1] (spheroids) Dt [m2· s −1] (solid tumors)

Liposome 60 4.62e-12 2.21e-12 4.04e-13
ANC 70 3.96e-12 1.68e-12 2.31e-13
Docetaxel 6.12 4.53e-11 4.21e-11 3.53e-11

Table 6.1. Theoretical estimation of the diffusion coefficient of the liposomes and the antibody-
nanoconjugates. ∗Data were taken from [39, 76].
.

adding the interstitial porosity, that depends on the cell density. This can be addressed using imaging

data [53, 52].

Table 6.1 provides the estimated diffusion coefficient of the nanoparticles (liposomes and ANCs).

The difference between the liposomes and the antibody-nanoconjugates is given by trastuzumab

engraftment on the surface of the ANC. Therefore, ANCs are 20 nm bigger than the liposomes in

diameter (indeed, an antibody measures around 10 nm). Moreover, we calculated the empirical

diffusion coefficient of docetaxel using the hydrodynamic radius rH as rP in (6.8),(6.9) defined as

rH =
3
√

√3mP/NA

4πρP
,

where mP = 807,88 kDa is the molecular mass of docetaxel [253], ρ = 1.4 g/cm3 is the density of

docetaxel [254] and NA = 6.022e23 is the Avogadro’s number. The estimated radius resulted equal

to rH = 6.12 nm.

6.4.2.2 Cellular uptake

To investigate cellular uptake, spheroid models have been employed [53, 52]. Cellular uptake

depends on the binding rate kon and the concentration of cell receptors ce. Moreover, particles might

dissociate from the cells with a rate constant koff.

The concentration of Her2 receptors ce was computed as follows. The numbers of Her2 receptor

on each cell NHer2,cell were estimated in [3] and are reported in Table 6.2. Then, assuming that

the volume of one cell is Vc = 1e-15 l and denoting by NA = 6.022e23 the Avogadro’s number, the

concentration of cell surface receptors was estimated as

ce =
NHer2,cell

NAVc
kβ ,

where L is the diameter of the tumor and kβ = 0.01 is a nondimensional parameter that takes into

account the difference in the binding site density of cells in 2D cultures compared to cells in 3D

cultures [52]. Indeed, cells implanted in spheroids or in vivo might have less accessible binding sites

due to extracellular matrix components and cell interactions. The values of ceare reported in Table

6.2.

We did not have any information on the exact parameter values kon and koff. However, we were

able to estimate the dissociation constant at the equilibrium kD = koff/kon from the 2D in vitro
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SKBR3 MDA-MB-453 MDA-MB-231

NHer2,cell [#/cell] ∗ 1117·103±17·103 215·103±34·103 5 · 103 ± 0.3 · 103

ce [M] 1.9e-08 3.57e-09 8.3e-11

kon, [104 M−1· s−1] ∗∗ ANC 2.97 5.37 4.44
Liposomes 3.79 7.94 5.03
Free drugs 4.64 5.35 3.31

Table 6.2. Parameters relative to the cellular uptake according to the cell line. ∗Values were taken from [3].
∗∗Calculated assuming koff = 10−4 s−1.

analysis in Chapter 3, defined as

kD = Ecγ50.

The values of the parameter Ec50 and γ are provided in Table 3.1. Eventually, we assumed the disso-

ciation rate koff to be of the order of 10−4 s−1 [53, 52, 245] and derived the value of the association

rate kon = koff/kD (that was found to be of the order of 104 M−1· s−1).

The internalization rate kint of the ANCs was fixed to 2.8e-4 s−1, while for liposomes and free

drugs we assumed it to be equal to 9.3e-05 [184]. Moreover, we assumed the decay rate of all drugs

to be of the order of 1e-5 s−1.

6.4.2.3 Transvascular transport

Microvascular permeability coefficient

Vascular walls in tumors are hyperpermeable and improve the extravasation of big and small

molecules compared to those in normal tissues. Transvascular transport depends on the diffusive

permeability (P(cc − ct)), convective flux of fluid across vessel walls (Lp(pc − pt) f (cc , ct)) and the

solute reflection coefficient of microvessels σ [255, 256] according to the expression [257]

JT = PeffS(cc − ct),

where JT is the flux of liposomes across the vessel wall and Peff is the effective permeability coefficient

(that takes into account the diffusive and convective contributions) and S is the vascular surface.

The effective (or apparent) microvascular permeability has been quantified using in vivo imaging

techniques [257, 255]. Stealth liposomes of average diameter of 82 nm have an apparent microvas-

cular permeability of Peff = 3.42e-9 m · s−1. The microvascular permeability coefficient P takes into

account only the diffusive component of the transvascular transport. Importantly, it has been found

to depend on the particle size [240]. Indeed, small molecules have larger effective microvascular

permeability due to higher diffusion. We considered an effective permeability coefficient for the

docetaxel to be of the order of 10−9 m · s−1 [240].

In Chapter 4, we introduced a two-compartment pharmacokinetic model based on the assumption

that the nanoparticle exchange between the central and the tumor comparments is driven by the
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product of the effective permeability and the surface of the vessel walls per unit volume kc,t . We

estimated this parameter in Table 4.2 for liposomes and ANC. Assuming that the average vascular

surface area per unit volume is around 20000 m−1 [183, 186], we found an approximation of the

effective permeability for the ANC 6.71e-11 m · s−1 and for the liposomes in the range of [2.31, 4.63]
e-11 m · s−1.

Convection is the main driver of transvascular transport of big particles. The value of P for the

nanoparticles has therefore been scaled of 1% of Peff to take into account the convection contribution.

Reflection coefficient

For big particles, we estimated the reflection coefficient using the cylindrical pore theory [258,

247]. Assuming that the microvascular pore radius rt is 200 nm, the coefficient σ was defined as

σ =

�

1−
�

1−
rP

rt

�2
�2

,

where rP is the radius of the particle which values relative to the ANC, liposome and docetaxel are

reported in Table 6.1. The estimated values of σ were 0.33 for ANCs and 0.26 liposomes. For the

docetaxel, we considered σ = 0.82 [186].

6.4.2.4 Plasma concentration

We assumed that the plasma concentration of nanoparticles or free drugs cc to be homogeneous

in the tumor. We considered an exponential decreasing function to model the concentration decay

in time, depending on the clearance rate kc:

cc(t) =
D
Vd

exp(−kc t), (6.10)

where D is the initital dose and Vd is the volume distribution.

Importantly, the clearance rates between nanoparticles and free drugs is significantly different.

Indeed, small molecules tend to be eliminated more rapidly than big particles. Docetaxel has a half-

time t1/2 of 2.2 h when 6.67 mg/kg dose are injected [182] (conversion from mg/m2 to mg/kg in

mice was obtained by dividing by 3 the quantity in mg/m2 [259]). Therefore, the clearance rate was

quantified as

kc = ln(2)/t1/2,

and found to be equal to 0.32 h−1 for docetaxel. For the ANCs and liposomes, the clearance rate was

considered as the sum of kc and kc,t in Table 4.2 (i.e., 0.005 h−1).

6.4.2.5 Characteristic concentration

To determine the characteristic concentration C of docetaxel, we considered pharmacokinetics-

specific properties of liposomes and of free docetaxel. The concentration (expressed in M) was
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Parameter Description Tumor tissue Unit Ref.

kt hydraulic conductivity of the intersti-
tium

1.88e-13 m3·s−1· kg−1 [230]

Lp hydraulic conductivity of the vessel
wall

1.4e-10 m2·s−1· kg−1 [231]

µ blood viscosity 4e-3 kg·m−1·s−1 [227]

d intercapillary distance 50e-6 m [228]

Table 6.3. Parameters relative to the fluid transport model in tumors (relative to the MDA-MB-231 breast
cancer cell line).

defined as

C =
D
Vd

,

where D is the injected dose of docetaxel (expressed in mol) and Vd is the volume of distribution

(expressed in l). In particular, Vd depends on the pharmacokinetics of the free or encapsulated drug.

Docetaxel was administered at 5e-3 g/kg. Since the weight of a mouse is approximatively 20 g,

the injected dose of docetaxel was equal to 1e-5 g. The conversion to mol was obtained by dividing

the injected dose by the molar mass of docetaxel (807.88e3 g/mol [253]). Hence D = 1.24e-10 mol.

The volume of distribution of docetaxel in mice was estimated around 0.17 l [260] when admin-

istered free, and in the range of [1.6-5.1] · 10−3 l when encapsulated in nanoparticles of diameter

100-200 nm [260]. Therefore, we considered C equal to 7.3e-10 M and 2.41e-7 M for free docetaxel

and the two liposomal formulations, respectively.

6.4.3 Results

In this first set of results, we assume that the tumor tissue is homogeneous, therefore we consider

a periodic domain and neglect the porosity (setting it equal to 1 in the entire domain). We analyze

the impact of the tumor microscopic properties on the global nanoparticle perfusion in the tumor

tissue. We define the total concentration as the average of the sum of the interstitial and bounded

concentration in the domain:

c̄t =

∫ 1
0 ct r

2dr
∫ 1

0 4πr2dr
, c̄b =

∫ 1
0 cbr2dr

∫ 1
0 4πr2dr

, c̄tot = c̄t + c̄b
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6.4.3.1 Impact of the tumor microscopic characteristics on the global dynamic

First, we evaluated the impact of the tumor microscopic structure on the penetration of drugs in

the tumor tissue, comparing immunoliposomes, liposomes, and docetaxel on the MDA-MB-231 cell

line. In particular, we investigated how the tumor characteristic length L, the permeability of the

vessel wall Lp and the hydraulic conductivity kt affect the transport of nanoparticles. We used the

parameters provided in Tables 6.3 and 6.4 and varied the values of Lp, L and kt .

Results are shown in Figure 6.1. Liposomes and immunoliposomes showed a similar behaviour

although having different parameter values reported in Table 6.4. The slightly higher accumulation

of liposomes compared to ANCs was mainly due to the different reflection coefficient values (Figure

6.1A) that depend on the NP size. In Chapter 5, we observed that the interstitial fluid pressure pt

almost equates the microvascular pressure pc for large values of R̄n/κ̄= Lp L/kt . The high interstitial

fluid pressure impaired a homogeneous distribution of the drug within the tumor tissue. Smaller

values of R̄n/κ̄ enhanced the penetration of nanoparticles at the center of the tumor (Figure 6.1B).

Indeed, small tumors with small permeability of the vessel walls Lp show larger pressure difference

pc−pt in the entire domain. Docetaxel showed a different behavior compared with the two liposomal

formulations. First, the significantly different plasma pharmacokinetic profile led to a poorer tumor

accumulation. Furthermore, the tumor concentration did not vary significantly for different values

of R̄n/κ̄ (Figure 6.1C). Indeed, the vascular exchange of small particles is driven by the diffusive

permeability. Moreover, the larger diffusion coefficient due to the small size of the molecule improved

the drug penetration in the center of the tumor (Figure 6.1D).

6.4.3.2 Binding affinity and receptor concentration: comparison between MDA-MB-231,
MDA-MB-453 and SKBR3 cell lines

We compared the treatments on the different cell lines. Simulations were run according to the

binding affinity and internalization rates defined in Table 6.2 in a tumor of diameter of 2 cm. Fur-

thermore, in our model we computed the internalization rate defined as
∂ cint

∂ t
= λintcint r ∈ (0,1), t ∈ (0, T ).

Moreover, we computed the area under the curve (AUC) of the interstitial, bounded and internalized

concentrations to evaluated the total drug accumulation:

AUCct
=

∫ T

0

c̄t d t, AUCcb
=

∫ T

0

c̄bd t, AUCc̄int
=

∫ T

0

cintd t,

where

c̄int =

∫ 1
0 cintr

2dr
∫ 1

0 r2dr
.

Results are shown in Figure 6.2. The SKBR3 cell line had higher tumor accumulation of ANCs,

liposomes and docetaxel due to the overexpression of Her2 receptors on the cell surface (Figure

6.2A). However, the large binding affinity prevents the pentration of the drug in the tumor center.
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Figure 6.1. Normalized values (n.v.) of the total concentration ctot as function of time (A), and average
interstitial concentration ct with respect to the normalized radius (B, r = 0 corresponds to the center of the
tumor and r = 1 is th periphery of the tumor) of immunoliposomes (left), liposomes (center) and docetaxel as
free drug (right), varying R̄n/κ̄ = Lp L/kt . (C) and (D) are zooms of the free docetaxel concentration trends.
The concentration was normalized with respect to the initial plasma concentration C .
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Indeed, the interstitial concentration of drugs was found to be larger for the MDA-MB-231 and

MDA-MB-453 cell lines, that could imply a more homogeneous distribution within the tumor tissue

(Figure 6.2B). ANCs showed improved cellular internalization than liposomes thanks to the antibody

coated on the surface (Figure 6.2C). This was particularly evident for the SKBR3 cell line, which has

a significantly larger number of cell-surface receptors. The low accumulation of docetaxel as free

drug was mainly due to the plasma clearance. Moreover, the larger vascular diffusive permeability

allowed a better penetration of the drug at the center of the tumor (Figure 6.2D).

6.5 Discussion

We introduced a macroscale model of nanoparticle penetration in tumor tissues that couples

transvascular transport, interstitial transport and cellular uptake. The model was obtained using

two-scale asymptotic expansion that allowed us to take into account the microscopic properties of

the tumor microenvironment and nanoparticles (such as diffusion coefficient, vascular permeability

and the structure of the capillary network) in the global dynamic. We derived two different mod-

els according to the hydraulic permeability of the vessel walls. The model obtained with weakly-

permeable vessel walls was found to be a generalization of the model with large-permeable vessel

walls, in agreement with the results obtained in Chapter 5. Moreover, this model was in agreement

with models found in the literature [81, 82]. The main difference is that we considered a reaction

term that depends on specific nanoparticle-cell interactions and a transvascular transport term that

depends on the diffusive and convective phenomena.

The calibration of the model was done using drug-specific parameters, that allowed us to com-

pare the accumulation of ANCs, liposomes (when injected with free trastuzumab) and docetaxel

(when injected with free trastuzumab). The diffusion coefficient and some parameters relative to

the transvascular transport were determined based on the size of the nanoparticles. Since liposomes

do not have trastuzumab coated on the surface, their radius is slightly smaller than that of the ANCs,

explaining the tiny improved tumor accumulation of liposomes compared to the ANCs. However,

other characteristics such as the charge and composition of nanoparticles were not considered in

our study and could be integrated into future works. Plasma clearance and vascular permeability of

nanoparticles were determined from the pharmacokinetic modeling in Chapter 4.

The tumor microscopic structure impacts the nanoparticle accumulation. In the first set of sim-

ulations, we studied how parameters such as the interstitial hydraulic permeability kt , hydraulic

conductivity of the vessel walls Lp and tumor size L affect NP penetration. In particular, the inter-

stitial fluid pressure gradient drives liposome transport outside the tumor tissue. Indeed, the large

interstitial fluid velocity, associated with high IFP, pushes nanoparticles at the periphery of the ma-

lignant tissue. NP penetration into the tumor center increases when the interstitial fluid velocity

is smaller. This occurs in small malignant tissues and tumors with small permeability of the vessel

walls Lp. These results were found in agreement with previous observations [186, 247]. However,

we did not take into account variations of the reflection coefficient σ that depends on the pore size
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1Figure 6.2. Comparison between the different cell lines (MDA-MB-231, MDA-MB-453 and SKBR3): normal-
ized values (n.v.) of the total concentration c̄tot as function of time (A), and average interstitial concentration
ct with respect to the normalized radius (B, r = 0 corresponds to the center of the tumor and r = 1 is th periph-
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(AUC) of the interstitial ct , bounded cb and internalized cint concentration of drug (third row). Zoom on the
docetaxel concentration profile as function of the normalized radius (D). The concentration was normalized
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on the vascular endothelium. The diffusion of nanoparticles was found to be negligible compared to

the convection and reaction terms. Tumor uptake was furthermore considered in our model, assum-

ing that liposomes and immunoliposomes bind the Her2 receptors on the tumor cells. We observed

that the receptor concentration plays a significant role in the tumor accumulation of nanoparticles.

Indeed, a large number of Her2 receptors on the cell surface is associated with improved cellular

uptake. However, the large amount of receptor might lead to the so-called "binding site barrier",

a phenomenon whereby particles that are rapidly uptaken by cancer cells penetrate to a limited

depth [261]. Free docetaxel showed different trends compared to the two nanoparticles. Indeed,

the diffusive permeability of the vessel walls is larger for small molecules and is the main driver

of transvascular transport. Moreover, the larger diffusion coefficient improved drug penetration in-

side the tumor tissue. However, the poorer pharmacokinetic profile (i.e., higher plasma clearance)

of docetaxel compared to ANCs and liposomes affected the global drug accumulation in the tumor

tissue.

Some limitations of the model and the calibration techniques must be taken into account. First,

we did not consider spatial variations of the plasma concentration of NPs. In the capillaries, nanopar-

ticle transport might be modeled with a convection equation, where the convective term is driven by

the blood velocity. Furthermore, several nanoparticle properties were determined empirically, while

they could be estimated experimentally. The vascular exchange of nanoparticles could be measured

in vivo using fluorescence videomicroscopy [257] to study the plasma clearance and the interstitial

accumulation. Furthermore, the probability of adhesion of the NPs to the vessel walls should be taken

into account in our model. Indeed, the nanoparticle size and composition affect the interaction with

the endothelial cells [262, 263]. The NP-cell interactions were models assuming that the nanoparti-

cles bind Her2 receptors and might be internalized through endocytosis afterward. The association

rate kon was estimated using in vitro data and considering the dissociation rate koff equal to 10−4.

The in vitro experiments analyzed in Chapter 3 did not highlight the differences in cellular uptake

between the two liposomal formulations, since liposomes were administered with free trastuzumab

on the monolayer culture. Hence, the binding affinity of liposomes was found to be similar to that

of immunoliposomes. The difference between the two nanoparticles could reside in the internal-

ization rate, as trastuzumab might enhance endocytosis [184]. However, the cellular uptake could

be further studied with specific in vitro experiments to determine the number of binding sites per

cell and the internalization rates of the ANCs and liposomes when injected with trastuzumab [52].
Moreover, the transport of free trastuzumab should be taken into account in the simulations of free

docetaxel and liposomes.

The applications of this modeling strategy include the calibration of the mathematical model with

patient-specific data. 3D imaging data could provide the information to obtain the microstructure

to compute the correctors. Then, predictions of nanoparticle accumulation could be informative for

treatment optimization.





CHAPTER 7

A COMPUTATIONAL FRAMEWORK TO PREDICT

INDIVIDUAL TUMOR NANOPARTICLE

ACCUMULATION

Abstract. Quantification of nanoparticle accumulation is the first step to predict treatment response.

Indeed, drugs must reach the tumor site in an optimal quantity to make the therapy successful.

NPs transport in the tumor microenvironment depends on their properties, such as size, shape and

chemical composition, as well as individual characteristics.

Here, we propose a methodology to integrate individual imaging data in the mathematical model.

In particular, we used ex vivo data to recover the permeability tensors and performed individual sim-

ulations of the penetration of the nanoparticles in the tumor interstitium. These predictions were

compared against results from the pharmacokinetic model calibrated from macroscopic measure-

ments.

These results are promising for treatment personalization. The emerging technologies to acquire

images permit to quantify the tumor microscopic properties in vivo. These data can be integrated

into the model to predict nanoparticle accumulation and to schedule the optimal dose to enhance

therapeutic efficacy.
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7.1 Introduction

Patient-specific simulations of nanoparticle and drug transport are of large interest to quantify

their tumor penetration and investigate their efficacy. Indeed, they provide information on the drug

distribution and permit to schedule personalized treatments based on tumor-specific parameters and

individual characteristics. This potentially implies a higher efficacy at the site of action and drastically

improves survival.

In the previous chapters, we investigated a spatial mathematical model that describes the drug

transport in the tumor interstitium. In chapter 5, we observed that the tumor microscopic structure

influences the interstitial fluid flow, which in turn drives the convective transport of particles within

the tissue. In chapter 6, we investigated how the nanoparticle or molecule properties affect their

penetration within the tumor tissue. Qualitative results were discussed against observations available

in the literature. This was a first, fundamental step to prove the validity of the model. Here, we

calibrate the model using different experimental data. ex vivo microscopy imaging data enabled to

recover the microstructure of the tumor environment. In particular, these data were informative on

the tumor vascularization and interstitial porosity.

Previously, nanoparticle accumulation and dynamics have been analyzed using imaging data and

mathematical modeling [264, 51]. Van de Ven et al. used intravital microscopy to acquire longitu-

dinal measurements of the dynamic of nanoparticles in animals [265]. These data were integrated

into a mathematical model to quantify the accumulation of doxorubicin and treatment efficacy. Sta-

pleton et al. quantified the liposomal accumulation in tumors using a mathematical model of the

enhanced permeability retention (EPR) effect that was calibrated using computed tomography mea-

surements [247]. The penetration of nanoparticles for different subtypes of triple-negative breast

cancer has been investigated and discussed against imaging data of tumor histology by Goel et al.

[266]. Importantly, the authors observed that nanoparticle properties are not sufficient to predict

tumor accumulation, and tissue architecture must be taken into account to evaluate NPs kinetics.

Machine learning algorithms have been also integrated into 3D microscopy imaging techniques to

assess the penetration of nanoparticles in metastases [267]. Sykes et al. designed nanoparticles

according to tumor pathophysiology [268] monitoring the degree of vascularization (CD31 for ves-

sel), cell density and ECM content (Movat’s Pentachrome staining) and nanoparticle biodistribution

(fluorescence).

Here, we introduced a mathematical model for nanoparticle transport similar to Chapter 6. More-

over, we modeled the porosity of the interstitium, which is the interstitial volume fraction available

to the nanoparticles. Ex vivo data were employed to estimate the individual vascular and interstitial

volume fractions that are needed to solve the equations. Individual predictions were compared with

the results of the pharmacokinetic model introduced in Chapter 4 and found in agreement.

Although our methodology has to be validated further, results are promising for treatment per-

sonalization. In future works, histological data acquired in vivo could be integrated into the model
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to make predictions of the tumor accumulation of nanoparticles.

7.2 Ex vivo data: microscopy fluorescence imaging

An overview on the experiment details and image segmentation have been presented in [269].
Here, we give a concise description. Nude mice were orthotopically grafted with 80 000 human

MDA-MB-231 cells. After 18 days, mice were divided in three groups: 12 control (saline), 15 li-

posomal docetaxel + free trastuzumab, 15 immunoliposomes. All treatments were administered by

retro-orbital injection once a week over 4 consecutive weeks. Liposomal docetaxel and trastuzumab

were administered at 5 and 1.9 mg/kg, respectively, either when given as free drugs or as immuno-

liposome. Blood vessel density and cell density of several animals (7 of the ANC group, 3 of the

liposome + free trastuzumab group, and 4 of the control group) were measured ex-vivo using anti-

CD31 antibodies and electronic microscopy at 2, 4 and 6 weeks. Several slices were sampled at the

center and periphery of the tumor and different acquisitions were taken for each tumor slice. Image

segmentation was done thanks to an algorithm developed in Matlab1. Figure 7.1 shows an example

of microscopy images and their segmentation of an individual treated with ANC.

7.3 Methods

To perform individual predictions of nanoparticle accumulation in the tumor interstitium, we

used a spatial mathematical model based on a diffusion-convection equation. Several parameters of

the model were estimated from the available in vitro and in vivo data, while the diffusion coefficient

was calculated empirically, based on the properties of the nanoparticles. Individual ex vivo imaging

data were used to simulate the interstitial nanoparticle concentration of each animal.

7.3.1 Mathematical model

In Chapters 5 and 6, we have derived a diffusion-advection-reaction model to describe nanoparti-

cle transport in a tumor Ω. The nondimensionalization and meaning of each parameter of the model

are provided in Chapters 5 and 6. In the tumor capillaries, we have assumed that the concentration

is a given function that can be provided, for example, by the plasma concentration. A transvascu-

lar transport component couples the interstitial and capillary concentrations. Moreover, we have

taken into account the cellular uptake of the nanoparticles. However, the two-scale homogenization

requires the domain periodicity assumption that is unrealistic for tumors. Malignant tissues are in-

deed highly heterogeneous media characterized by avascular regions, zones with low perfusion, and

dense interstitium. To take into account the inhomogeneity of the tumor tissues, we introduce the

1We thank Florian Correard (INP, CNRS, UMR 7051, Aix Marseille University, France) for providing the segmented
images.
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A

B

1Figure 7.1. Example of microscopy fluorescence imaging. Cells (left), vasculature (center) and image seg-
mentation (right), where the red pixels correspond to the cells, the green pixels to the vessels and the yellow
ones are the regions where cells and vessels are overlapped. The tumor slice is at the center (A) and pe-
riphery (B) of the tumor of a mouse treated with ANC. Sections were observed under a microscope at 60x
magnification.
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PKPD modeling
- efficacy
- cellular uptake
- NPs clearance
- Tumor accumulation of NPs (biodistribution)

SPATIAL MATHEMATICAL 
MODEL OF NPs TRANSPORT

Individual imaging data
- Tumor vascularization
- Interstitial porosity

Individual predictions of NPs 
accumulation and efficacy

Model validation 
and formulation of 
new hypotheses

Interstitium

Blood vessels

Figure 7.2. Workflow employed to quantify individual accumulation of nanoparticle in the tumor: model cal-
ibration with individual imaging data and parameter estimation using pharmacokinetics-pharmacodynamics
(PKPD) modeling (in particular, from in vitro data and in vivo PK data).

porosity of the interstitial compartment φt that is the fraction of a representative elementary vol-

ume available for the interstitial fluid. Indeed, transport of particles in porous media is dominated

by advection in zones of high permeability and by diffusion in regions of low permeability [270].
Previously, the poroelastic theory has been employed to investigate the interstitial fluid transport

[271] and solute transport [272]. Alteration of the porosity in biological tissue after injection of an

extracellular matrix degradation enzyme has been addressed with a mathematical model by [75].

The nanoparticle concentration in the interstitium reads as:
∂ (φt ct)
∂ t

+∇ · (φt ctut) =∇ · (φtDt∇ct) +
1
|Yt |

Tv[cc ,φt ct]−λtφt ct(ce − cb)+

λbφt cb −λdφt ct , in Ω× (0, T ). (7.1)

Furthermore, the concentration of bounded nanoparticles is described by:
∂ (φt cb)
∂ t

= λtφt ct(ce − cb)−λbφt cb −λintφt cb −λdφt cb, in Ω× (0, T ). (7.2)

Assuming that the tumor is a sphere and that all the variables are axisymmetric, the model is

provided in the radial coordinate. The normalized radius is denoted by r ∈ (0,1) and the temporal
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variable by t ∈ (0, T ).

Cell problems introduced in equations (5.37) and (5.38) were solved on 3D domains considering

various configurations. This allowed us to recover the values of the tensors K, E and Dt that are

needed to simulate the fluid transport and the nanoparticle/drug concentration in tumors. Since we

assumed that the variables are axisymmetric, we considered only the cases where the domains Yt

and Yc are symmetric with respect to the three axes (therefore, K, E and Dt are all proportional to

the identity matrix).

Fluid transport in tumor tissue was modeled by means of a coupled system of Darcy’s equations

that describes the interstitial fluid pressure pt and velocity ut , and the microvascular pressure pc:
1
r2

∂

∂ r

�

κ̄K
∂

∂ r
pt

�

=
Rn|ΓY |
|Yt |

(pt − pc), r ∈ (0,1),

1
r2

∂

∂ r

�

E
∂

∂ r
pc

�

=
Rn|ΓY |
|Yc|

(pc − pt), r ∈ (0,1),

ut = −κ̄K
∂

∂ r
pt , r ∈ (0,1),

where K = K11 and E = E11.

Particle concentrations in the interstitum ct and on the cell surface cb are defined as
∂ (φt ct)
∂ t

+
1
r2

∂

∂ r

�

r2utφt ct

�

=
1
r2

∂

∂ r

�

D̂tφt
∂

∂ r
ct

�

+
1
|Yt |

Tv[cc ,φt ct]−λtφt ct(ce − cb)+

λbφt cb −λdφt ct , r ∈ (0, 1), t ∈ (0, T ),

∂ φt cb

∂ t
= λtφt ct(ce − cb)−λbφt cb −λdφt cb, r ∈ (0, 1), t ∈ (0, T ),

where D̂t = Dt11.

7.3.2 Extrapolation of volume fractions from 2D imaging data

We estimated the individual vascular and cell volume fractions from imaging data. Thanks to the

image segmentation, we were able to compute the capillary surface fraction Sc and the cell surface

fraction Scell of each tumor slice, defined as:

Sc =
Np,c

Np,tot
, Scell =

Np,cell

Np,tot
,

where Np,c is the number of green pixels (that represent the vessels), Np,cell is the number of red

pixels (of the cells) and Np,tot is the total number of pixel.

Assuming an isotropic, uniform and random sampling of the tumor slices, we quantified the vas-

cular volume fraction |Yc| and cell volume fraction φcell as [273, 274]:

|Yc|= 〈Sc〉 ± 2
σSc
p

nSc

, φcell = 〈Scell〉 ± 2
σScell
p

nScell

, (7.3)

where 〈Sc〉 and σSc
(〈Scell〉 and σScell

) are, respectively, the average and standard deviation of the

vascular (cell) surface fractions obtained from the different images, and nSc
(nScell

) is the number of

surfaces used to compute the volume fraction.
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ID Tumor volume (mm3)
〈Sc〉 ± 2

σSc
p

nSc

〈Scell〉 ± 2
σScell
p

nScell

periphery center periphery center
A1 1357 0.44 ±0.06 0.44 ±0.06 0.18 ±0.12 0.18 ±0.12
A2 1143 0.13 ±0.08 0.15 ±0.04 0.14 ±0.05 0.30 ±0.05
A3 715 0.42 ±0.07 0.50 ±0.10 0.25 ±0.05 0.19 ±0.05
A4 1110 0.32 ±0.07 0.32 ±0.07 0.27 ±0.04 0.27 ±0.04
A5 356 0.14 ±0.06 0.45 ±0.08 0.30 ±0.03 0.19 ±0.07
A6 2062 0.09 0.17 0.28 0.28
A7 1367 0.35 ±0.09 0.49 ±0.04 0.28 ±0.03 0.27 ±0.03

Table 7.1. Individual data of animals treated with ANCs: tumor volume, vascular volume fractions (|Yc |) and
cell volume fractions (φb) in the periphery and in the center of the tumor.

ID Tumor volume (mm3)
〈Sc〉 ± 2

σSc
p

nSc

〈Scell〉 ± 2
σScell
p

nScell

periphery center periphery center
L1 477 0.27 ±0.12 0.38 ±0.10 0.22 ±0.03 0.17 ±0.04
L2 683 0.06 ±0.02 0.18 ±0.09 0.22 ±0.04 0.18 ±0.04
L3 2406 0.41 ±0.07 0.41 ±0.07 0.17 ±0.13 0.17 ±0.13

Table 7.2. Individual data of animals treated with liposomes: tumor volume, vascular volume fractions (|Yc |)
and cell volume fractions (φb) in the periphery and in the center of the tumor.

We made a distinction between the center and the periphery of the tumor. Figure 7.3 shows the

vascular and cell volume fractions as function of the tumor volume. Tables 7.1 and 7.3.2 provide

the values of the tumor size and volume fractions of each individual. The inferior vascular volume

fraction of large tumors was probably due to the necrosis.

7.3.3 Parameter settings

We considered the model parameter values relative to the MDA-MB-231 cell line in Tables 6.3 and

6.4. The tumor characteristic length was defined as the diameter of the sphere with volume given

by the last caliper mesurement of the tumor. The characteristic velocity U was fixed equal to 0.12

m·s−1 for all individuals.

Simulations were run on the temporal interval (0, 168) h with a time step∆t = 0.003 h using the

finite difference scheme explained in Section 6.4.1. The computational domain was the normalized

radius r ∈ (0,1) discretized in intervals of size h = 0.002. The domain was divided into two zones,

namely the center of the tumor (for r ∈ (0,0.8)) and the periphery (for r ∈ (0.8, 1)). The permeabil-

ity tensors K, E and Dt were computed taking into account the differences between the two regions.
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Figure 7.3. Vascular volume fraction (first row) and cell volume fraction (second row) at the tumor center
(red) and at the periphery (blue) of the different groups of mice as function of the tumor volume.
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Denoting by A a generic permeability tensor, its definition reads as follows:

A=



















Acenter 0≤ r ≤ 0.8−δ,
Aperiphery −Acenter

δ
(r − 0.8+δ) +Acenter 0.8−δ < r ≤ 0.8,

Aperiphery 0.8< r ≤ 1.

(7.4)

The central and peripheric permeability tensors were obtained solving the 3D cell problems. We

used the vascular volume fractions to recover the unitary cell, assuming a capillary domain of the

form of Figure 5.5A and C.

For each animal, the central and peripheric vascular volume fractions were sampled from the

distributions obtained from (7.3). In total, 36 simulations were performed for each animal to take

into account the variability of the vascular volume fraction at the periphery and at the center of the

tumor.

Let us denote by Scell,center and Scell,periphery the mean cell volume fraction at the tumor center and

periphery, respectively, computed according to 7.3. The discretized interstitial porosity φ i
t at r i = ih

was defined as an oscillating function:

φ i
t =







1−



Scell,center

�

+ εi
center 0≤ r i ≤ 0.8,

1−



Scell,periphery

�

+ εi
periphery 0.8< r i ≤ 1,

(7.5)

where

εi
center ∼N

�

0, 2
σScell,center
pnScell,center

�

, εi
periphery ∼N

�

0,2
σScell,periphery
pnScell,periphery

�

.

A schematic of the methodology is highlighted in Figure 7.4.

7.4 Results

Spatio-temporal individual simulations were run based on the tumor volume and the vascular

and interstitial volume fractions of each animal. To compare the results of the spatial model to the

pharmacokinetic model of Chapter 4, we defined the total amount of nanoparticles in the tumor as

the integral of the total concentration over the entire domain:

At(t) = 4πL3

∫ 1

0

φt(ct + cb)r
2dr,

where L is the radius of the tumor (in dm).

Furthermore, we analyzed the penetration of nanoparticles into the tumor by defining the follow-

ing quantities:

At,center(t) = 4πL3

∫ 0.8

0

φt(ct + cb)r
2dr, At,periphery(t) = 4πL3

∫ 1

0.8

φt(ct + cb)r
2dr.

To quantify the nanoparticle accumulation in the interstitium, we computed the area under the
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Figure 7.4. Scematic of our methodology to obtain the permeability tensors at the center and at the periphery
of the tumor.

curve (AUC) of the total NP amount in the tumor:

AUC=

∫ T

0

At(t)d t, AUCcenter =

∫ T

0

At,center(t)d t, AUCt,periphery =

∫ T

0

At,periphery(t)d t.

Predictions of ANCs and liposomes accumulation are shown in Figures 7.5 and 7.6, respectively.

Globally, results were in agreement with the pharmacokinetic (PK) model of Chapter 4. Figure 7.7A

shows simulations of the PK model for the ANCs and the liposomes obtained with Simulx considering

the population parameters provided in Table 4.2 (high dose). The total area under the curve of the

ANCs estimated with PK model was similar to the one obtained with the spatial model, as shown

in Figure 7.7B. Values of the average AUCs of the spatial model are provided in Tables 7.3 and 7.4

for ANCs and liposomes, respectively, and were found close to the mean exposures of the PK model

which were 44.03±0.22 mg/kg·h for the ANCs and 43.02±0.11 mg/kg·h for the liposomes.

Small penetration of ANCs and liposomes into the tumor center was observed (Tables 7.3 and

7.4). Indeed, the small diffusion coefficient and permeability of the vessel walls combined with large

interstitial fluid pressure impared a homogeneous distribution of the NPs in the tumor tissue. How-

ever, we noticed an enhanced accumulation of nanoparticles in large tumors (in particular, animal

A6 and L3 had the largest tumors and highest tumor accumulation), while smaller tumors showed

lower NP accumulation (such as individual A5 and L1). Comparing individuals with similar tumor

volumes, we observed that the vascular and interstitial volume fractions played a significant role

in the ANCs penetration into the tumor. For example, individuals A2 and A4 had equal tumor size

but significantly different vascular and interstitial volume fractions in the tumor center. The larger
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Total

Center

Periphery

Animal A1 Animal A2 Animal A3

Animal A4 Animal A5 Animal A6

Animal A7

1
Figure 7.5. Predictions of the interstitial concentration of individuals in the ANC group as function of time:
total concentration (blue), concentration in the periphery of the tumor (green) and at the center of the tumor
(red).

vascularization of individual A4 led to higher interstitial fluid pressure which hindered the ANCs

accumulation at the center of the tumor. Furthermore, the large difference in nanoparticle uptake

by the tumor at the periphery could be motivated by the diverse interstitial volume fractions of the

two individuals. The same observation held comparing animals A3 and L2. Individual L2 exhibited

larger nanoparticle accumulation due to the lower interstitial fluid pressure as a consequence of the

lower vascular surface compared to individual A3. Moreover, the overall improved accumulation of

the liposomes compared to ANCs that resulted from our spatial model could be due to the smaller

reflection coefficient of the liposomes, that was computed based on the size of the nanoparticles.
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tumor (red).
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A1 A2 A3 A4 A5 A6 A7

AUC 28.38±0.32 31.27±0.50 16.87±0.21 26.60±0.28 11.63±0.16 51.41±0.65 29.21±0.32
AUCperiphery 28.03±0.33 30.63±0.43 16.61±0.21 26.32±0.27 10.77±0.08 50.86±0.61 28.85±0.32
AUCcenter 0.36±0.02 0.64±0.08 0.26±0.01 0.28±0.01 0.86±0.08 0.55±0.04 0.36±0.01

Table 7.3. Estimated area under the curve of each individual treated with ANCs: total accumulation (AUC),
area under the curve in the periphery (AUCperiphery) and in the center of the tumor (AUCcenter). The reported
values are the mean ± standard error of the mean and are expressed in hours.

L1 L2 L3

AUC 15.98±0.21 24.76±0.50 52.52±0.61
AUCperiphery 15.34±0.14 22.93±0.34 52.24±0.62
AUCcenter 0.64±0.07 1.83±0.17 0.29±0.01

Table 7.4. Estimated area under the curve of each individual treated with liposomes: total accumulation
(AUC), area under the curve in the periphery (AUCperiphery) and in the center of the tumor (AUCcenter). The
reported values are the mean ± standard error of the mean and are expressed in hours.

7.5 Discussion

We calibrated a mathematical model of nanoparticle transport in tumor tissues with ex vivo imag-

ing data providing the vascular and cell volume fractions. The computational domain was divided

into two regions (center and periphery) to evaluate the penetration depth of the nanoparticles. Dif-

ferent permeability tensors were considered in these two regions according to the respective volume

fractions. Nanoparticle specific parameters were considered as explained in Chapter 5.

This methodology allowed us to make individual predictions of nanoparticle accumulation and

penetration in tumors. Moreover, results were compared to the predictions of the two-compartment

pharmacokinetic model introduced in Chapter 4, that were found in agreement. In the spatial model,

the inter-individual variability in tumor accumulation of nanoparticles was mainly due to the differ-

ences in tumor volume. Indeed, nanoparticle uptake by the malignant tissue increased with the

tumor volume, in agreement with previous observations [268]. Interestingly, we observed that the

larger vascularization of the tumor tissue was not associated with an improved nanoparticle accumu-

lation. Indeed, from the fluid transport model, the large vascular surface results in high interstitial

fluid pressure, which hinders the penetration of nanoparticles. Moreover, a larger interstitial volume

fraction improved the distribution of the particles.

Our methodology has some limitations. The simulations in 1D on an axisymmetric domain did

not highlight the heterogeneity of the entire tumor. A 3D efficient numerical scheme with a real

tumor geometry could improve the understanding of the nanoparticle distribution in the malignant

tissue. Here, we divided the domain into two regions (center and periphery) but the tumor could

be sampled in a higher number of zones. This procedure would allow taking into account avascular

regions and necrosis. Importantly, we assumed that fixed values for the characteristic velocity U and



the hydraulic conductivities of the vessel walls Lp and of the interstitium kt , but we expect these two

parameters to be highly variable among individuals [186]. As shown in Section 6.4.3.1, the model

is sensitive to changes in these parameters.

We observed an enhanced vascularization in tumors treated with ANCs, that could potentially

increase the filtration of nanoparticles in malignant tissues. However, this property resulted in a

lower accumulation of nanoparticles due to the high interstitial fluid pressure obtained from the

fluid transport model, in agreement with previous observations [275]. Here, we assumed a homoge-

neous hydraulic conductivity of the vessel walls in the domain which in reality could be significantly

heterogeneous according to the vasculature type. Further studies on the vascularization of the tumor

could highlight the permeability properties of the walls to better describe the transvascular trans-

port of the immunoliposomes. On the one hand, the protein corona that forms on the surface of

the nanoparticles [276] might bring oxygen to the tumor, altering its permeability [277, 278]. On

the other hand, trastuzumab has been proven to have indirect anti-angiogenic effects on mice that

overexpress the Her2 receptors [72]. It might reduce the permeability of the vessel walls, resulting

in diminished IFP.

Several strategies could be considered to reduce interstitial fluid pressure, which would enhance

nanoparticle accumulation. For example, interstitial matrix normalization could significantly reduce

the tumor IFP and improve the diffusion of the nanoparticles within the tumor interstitium [60].

Although our predictions were globally in agreement with the results of Chapter 4, the validation

of the model with imaging data has to be done. Spatial distribution of the drug in the tumor tissue

could be measured using MALDI-MSI (matrix-assisted laser desorption ionization mass spectrometry

imaging) imaging [279]. in vivo predictions [280].





CONCLUSION AND PERSPECTIVES

In this thesis, the biodistribution and pharmacodynamic of antibody-nanoconjugates have been

analyzed using mathematical modeling. The results of this work give a direct contribution to the

development of the antibody-nanoconjugates in breast cancer treatment.

We derived a reduced Gompertz model in the statistical framework of the nonlinear mixed-effects

models to describe untreated tumor growth. This model, which has one population-level parame-

ter and one individual-specific parameter, showed good descriptive power (similar to the Gompertz

model) and improved the predictions of the initiation time of the tumor. Moreover, thanks to the

biological interpretation of the reduced Gompertz parameters, we were able to validate the model

on a new dataset by estimating the parameters from independent experiments. Our model should be

further tested to predict individual tumor size (i.e., for forward predictions). Indeed, a good charac-

terization of the tumor growth is of fundamental importance to make predictions on the individual

response of the treatments. Although our method remains to be extended to clinical data, these re-

sults are promising for the personalized estimation of the age of a tumor from limited measurements

at diagnosis. The estimation of the age of a patient’s tumor could be indeed informative for clinical

practice. Indeed, an older tumor has a greater probability of having already spread than a younger

one. These results could contribute to the development of personalized computational models of

metastasis [118, 154, 155].

The biodistribution of the ANCs and their efficacy were evaluated using a pharmacokinetic-

pharmacodynamic model. A two-compartment pharmacokinetic (PK) model based on a system of

ordinary differential equations was used to describe the nanoparticle exchange between the systemic

and tumor compartments. The PK model was calibrated on four different datasets, that allowed us to

compare the distribution of the antibody-nanoconjugates and the liposomes (without trastuzumab

engrafted on the surface) in the central and tumor compartments. A resistance pharmacodynamic

(PD) model was employed to evaluate the nanoparticle efficacy. The comparison between the lipo-

somes and the ANCs did not show significant differences in terms of cytotoxic activity, although the

acquired resistance to ANCs was slightly lower than the resistance to liposomes. The mechanisms

of action of liposomes and immunoliposomes should be further highlighted [281], even if the global

higher efficacy of the ANCs could be due to a more efficient internalization thanks to the coated

antibody on the surface [184]. Moreover, the efficacy of the two nanoparticles was higher than the

free drugs thanks to the improved pharmacokinetics of the two liposomal formulations. However,
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the PK of the ANCs and liposomes could be further evaluated. Measuring the plasma concentra-

tion of the drug would allow us to estimate the volume of distribution and the systemic clearance

of the two liposomal formulations. Indeed, immunoliposomes might be recognized and eliminated

more rapidly by the macrophage system or they could be uptaken by other organs because of the en-

grafted trastuzumab. As a future perspective, a mechanistic physiologically based pharmacokinetic

(PBPK) model could provide insights into the phenomena involved in the absorption, distribution,

metabolism and excretion processes. Moreover, the in vivo efficacy of the nanoparticles could be

modeled taking into account docetaxel and trastuzumab in the drug-induced decay process [282].
Pharmacokinetic-pharmacodynamic modeling is fundamental in the drug development process: the

PK allows to evaluate the exposure at the site of action as a function of the injected dose, while

the PD describes the treatment response. New treatment schedules could be tested experimentally

according to our model predictions. Importantly, PKPD modeling permits the translation of the PK

to clinical applications by quantifying the initial in-human dose.

The large heterogeneity of malignant tissues and the nanodrug design impact the delivery of ther-

apeutics at the tumor site. To understand the main factors that affect the nanoparticle distribution,

we derived a spatial model of drug transport that takes into account the microscopic characteristics

of the tumor on the global dynamic using the two-scale asymptotic expansion method. Tumor size,

interstitial fluid pressure, vascularization and permeability of the vessel walls play a significant role

in the nanoparticle penetration into the center of the tumor. Furthermore, the size of the liposomes

affects significantly the drug delivery at the tumor site: big particles have lower diffusion coefficient

and are more likely to encounter transvascular barriers than small particles. In our work, we focused

on a simple mathematical model of fluid and nanoparticle transport in the tumor tissue. However,

more complexity could be added. A coupled model of therapeutic transport and tumor growth, in-

cluding angiogenesis and transport of nutrients, could be used to better investigate the interplay of

the NPs with the different tumor components [202] or the combination of different drugs [73]. More-

over, model calibration could be improved. Nanoparticle uptake could be further studied with 3D in

vitro experiments [53, 52]. This could help in understanding the internalization mechanism by the

cells and might improve the calibration of the spatial model and the efficacy models. Importantly, this

analysis could highlight the differences between ANCs and liposomes without trastuzumab coated

on the surface and give more insights into the different efficacies of these two therapeutics [184].
Spheroids experiments could be furthermore informative on the spatial diffusion of nanoparticles in

avascular tumors [53, 52, 283]. Indeed, they could give insights into the interstitial volume fraction

accessible to the nanoparticles and the free macromolecules (such as trastuzumab). Indeed, it could

be possible that liposomes have larger motility than macromolecules thanks to their highly lipophilic

composition [39]. This analysis could be performed using our spatial model by neglecting the vascu-

lar volume fraction and the transvascular transport term in our model and adding suitable boundary

conditions that take into account the drug administration on cell cultures. Moreover, the transport

model could be coupled with a spheroid growth model to evaluate drug efficacy [284, 285]. In the

spatial model for vascularized tumors, there is the need for the quantification of the permeability of

the vessel walls to the nanoparticles with specific experiments [255]. It is also important to quantify
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the interactions between the nanoparticles and the endothelial cells according to the NP composi-

tion, to evaluate the probability of adhesion of the liposomes to the vessel walls [263]. Moreover,

more detailed imaging data could be informative of the vascular network and the interstitial collagen

structure and could help to investigate the regions with poor nanoparticle delivery [280]. Although

individual predictions were validated against the pharmacokinetic model, the model should be tested

on ex vivo imaging data with the spatial nanoparticle distribution [279]. As a future perspective, our

methodology could be used to make individual predictions of the nanoparticle accumulation in vivo

using histological data, which provide the tumor microscopic structure.

The asymptotic model we obtained should be further studied to prove theoretically the two-scale

convergence. For the fluid transport model, we proved numerically that the L2-error between the

solutions to the microscopic model the homogenized model decreases linearly with ε. Furthermore,

the periodicity assumption should be relaxed in future works to take into account the realistic ge-

ometry of malignant tissues. This could be achieved by properly defining the representative volume

element [236]. Moreover, an efficient 3D numerical scheme should be implemented to simulate

the nanoparticle concentration model. It would potentially allow us to take into account realistic

geometries and to improve the predictions on the heterogeneity of the tumor.

Several strategies could be employed to improve the drug delivery by the nanoparticles at the

tumor site. According to our analysis, the large interstitial fluid pressure is the main barrier of an

inefficient penetration within the tumor tissue. To decrease the interstitial fluid pressure, vascular

normalization could be a possible solution. The decrease of the vascular surface area and hydraulic

conductivity of the vessel walls would reduce the fluid filtration and the interstitial fluid pressure

[186]. However, it would also lead to a loss of nanoparticle filtration due to the loss of permeability

of the vessel walls [60]. A second possible strategy could be the normalization of the interstitial ma-

trix. Increasing the interstitial hydraulic conductivity would yield lower interstitial fluid pressure.

Moreover, interstitial matrix normalization could enhance nanoparticle diffusion, which is affected

by the collagen gels [286]. Furthermore, immunoliposomes properties could be optimized. In this

work, we have observed that the size of the nanoparticles plays a significant role in their transport.

Indeed, large particles are less likely to be extravasated in the tumor interstitium than small particles

and their diffusion is hindered. Hence, the size reduction could enhance a homogeneous penetration

within the tumor tissue. Furthermore, the trastuzumab engraftment rate might affect the binding

affinity of the nanoparticles and the internalization rates. In vitro experiments could provide insights

on this property of the immunoliposomes. Moreover, the nanoparticle encapsulated drug could be

modulated to optimize the drug amount that reaches the tumor site. A recent study showed that

there might be a NP number threshold dose that could improve drug delivery (namely, 1 trillion

nanoparticles in mice) [287]. Moreover, in Chapter 7, we observed that the ANCs might improve

vascularization. The impact of the immunoliposomes on the tumor vascularization could be further

studied to assess the effects on the permeability of the vessel walls. In particular, the protein corona

that forms on the surface of the nanoparticles might bring oxygen to the tumor, enhancing its per-

meability [277, 278]. Furthermore, the protein corona might be different according to the chemical
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composition of the nanoparticle, which could highlight differences in tumor accumulation between

liposomes and immunoliposomes.
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A Cell doubling time

The xCELLigence system [288] is a method to monitor cell viability in real time. It measures elec-

trical impedance across interdigitated micro-electrodes integrated on the bottom of the cell culture.

The impedance measurement is displayed as cell index. The cell index (CI) is defined as

CI=
Rn − Rb

15
, (9.6)

where Rn is the cell-electrode impedance of the well with the cells and Rb is the background

impedance of the well with the medium alone [289]. The CI value directly correlates with the

number of viable cells.

We consider five different cell lines relative to the breast cancer, according to variations in Her2

expression and to cell transfection:

• MDA-MB-231: triple negative breast cancer (HER2-),

• MDA-MB-231 Dt+ Luc+: transfected MDA-MB-231,
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Figure A1. Mean trend of the different cell lines.

• MDA-MB-453: Her2+,

• MDA-MB-453 Dt+ Luc+: transfected MDA-MB-453,

• SKBR3: Her2++.

Figure A1 shows the mean trend of the cell index relative to the five cell lines. We want to compute

the cell doubling time of each group comparing different approaches. We fit the data to two models of

tumor growth (logistic and exponential) considering the time interval (t1, t2) = (5, 96). We compare

the results obtained with the individual fit, the population fit, the fit to the mean with the ones

provided by the xCELLigence system. The logistic model is defined as follows:






dV
d t
= ρV

�

1−
�

V
K

��

,

V (t = 0) = V0,
(9.7)

where K is the carrying capacity and ρ depends the fraction of proliferative cells λ:

λ=
K − V0

K
λ

The exponential model is defined as






dV
d t
= λV

V (t = 0) = V0,
(9.8)

where λ is the fraction of proliferative cells.

In both cases the cell cycle duration is defined as

τ=
log 2
λ

(9.9)

We compute the cell doubling times relative to each approach and compare them to the one obtained

with the xCELLigence system. In all the following analysis we consider the initial volume V0 a free

parameter that has to be estimated.
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Cell line Model AIC -2LL

MDA-MB-231 Exp -109 -119
Logistic -1.07e+03 -1.08e+03

MDA-MB-231 DT+Luc+ Exp -487 -497
Logistic -1.62e+03 -1.63e+03

MDA-MB-453 Exp -3.49e+03 -3.5e+03
Logistic -3.49e+03 -3.5e+03

MDA-MB-453 DT+Luc+ Exp -2.83e+03 -2.84e+03
Logistic -2.82e+03 -2.84e+03

SKBR3 Exp -1.63e+03 -1.64e+03
Logistic -1.63e+03 -1.64e+03

Table A1. AIC and likelihood estimation obtained with the Monolix computation relative to each cell line.

A.1 Mixed effects modelling

In this section we provide the population analysis of the different cell lines. We fit the data to

the exponential and to the logistic models and provide the results in Table A1. We observe that

the logistic model fits better than the exponential model for the cell lines MDA-MB-231 and MDA-

MB-231 Dt+ Luc+. On the other hand, the exponential model provides the best fit to the data

relative to the cell lines MDA-MB-453, MDA-MB-453 Dt Luc+ and SKBR3, even if we observe that

the differences between the AICs are small. However, the large standard errors associated to the

estimated parameters of the logistic model (data not provided) suggest that we might encounter

overfitting when fitting the data to the logistic function.

In Figure A2 we observe the visual predictive checks relative to the best fit of the different cell

lines.

A.1.1 Logistic vs exponential fitting

The estimated fraction of proliferative cells computed by the logistic and the exponential fits to

the data relative to the cell lines MDA-MB-453, MDA-MB-453 Dt+ Luc+ and SKBR3 don’t show vari-

ability. This is due to the fact that the carrying capacity of the logistic function defined in (9.7) tends

to infinite, therefore the model degenerates to an exponential one.

However, the estimated parameters relative to the cell lines MDA-MB-231 and MDA-MB-231

Dt+Luc+ show high variability from the exponential to the logistic models (see Tables A2 and A3).

This is due to the fact that the estimated carrying capicity is not large. Moreover, we observe from

Table A1 and Figure A3 that the best fits are given by the logistic model in both cases.
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Figure A2. VPCs relative to the best fit of each cell line.
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Model Parameter Value St. Err. St. Err.[%]

Logistic V0,pop 0.863 0.034 3.94
ρpop 0.0406 0.00253 6.23
Kpop 3.49 0.0793 2.27
ωV0

0.0824 0.0273 33.2
ωρ 0.133 0.0476 35.7
ωK 0.048 0.0176 36.7

Exp V0,pop 1.33 0.0574 4.33
λpop 0.0106 0.000369 3.48
ωV0

0.0945 0.0316 33.5
ωλ 0.0723 0.0266 36.8

Table A2. Estimated parameters relative to the cell line MDA-MB-231.

Model Parameter Value St. Err. St. Err.[%]

Logistic V0,pop 0.276 0.0127 4.59
ρpop 0.0402 0.00149 3.7
Kpop 3.63 0.0595 1.64
ωV0

0.0889 0.0347 39.1
ωρ 0.072 0.0261 36.3
ωK 0.0265 0.0147 55.3

Exp V0,pop 0.479 0.0352 7.35
λpop 0.0198 0.00033 1.67
ωV0

0.144 0.0538 37.3
ωλ 0.0271 0.0144 53

Table A3. Estimated parameters relative to the cell line MDA-MB-231 Dt+ Luc+.
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Figure A3. Individual fit to the exponential (left) and to the logistic (right) models of the cell lines MDA-MB-
231 (top) and MDA-MB-231 Dt+ Luc+ (bottom).
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Figure A4. Exponential fit to the mean of each cell line.

A.2 Fit to the average

In this Section we analyze the exponential fit to the average. We fit the mean of the data to the

following exponential function:

V (t) = V02t/τ. (9.10)

We apply the scipy algorithm curve fit to perform the nonlinear regression and use the standard

deviation over the square root of the number of data as weight. The least squares function is then

defined as follows:

L(τ) =
N
∑

i=1

(wi( ȳi· − V (t i;τ)))
2, (9.11)

where

wi =
σip
ni

(9.12)

are weights depending on the standard errors of the data.

Figure A4 shows the exponential fit relative to the different cell lines.

A.3 Doubling time

We now compute the cell doubling time as defined in (9.9). Table A4 provides the values of

the doubling time of the different cell lines. We observe a crucial difference between the popula-

tion/individual approach and the xCELLigence/mean fit for the cell lines MDA-MB-231 and MDA-

MB-231 Dt+ Luc+, since the best fit of these two groups is given by the logistic model.
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Cell lines xCELLigence Mean Best fit Individual Population
MDA-MB-231 53.03 ± 0.96 59.8 ± 1.53 Logistic 17.2 ± 2.81 17.1 ± 2.27
MDA-MB-231 DT+Luc+ 28.53 ± 0.26 29.2 ± 0.39 Logistic 17.3 ± 1.19 17.3 ± 1.23
MDA-MB-453 76.62 ± 0.93 78.1 ± 1.72 Exp 74.4 ± 15.8 74.2 ± 15.4
MDA-MB-453 DT+Luc+ 36.72 ± 0.54 30.6 ± 0.42 Exp 29.8 ± 3.9 29.8 ± 3.76
SKBR3 28.01 ± 0.33 25.1 ± 0.48 Exp 21.6 ± 0.982 21.7 ± 0.838

Table A4. Cell doubling time of each cell line. Comparison between the xCELLigence computation, the
values obtained with the fit to the mean and the results obtained with the individual and with the population
approaches (we provide the values relative to the best fit only). Exp = exponential.

A.3.1 Transfected vs non-transfected cell lines

Considering the population approach, we observe a high variability in the doubling times relative

to the cell line MDA-MB-453 and its transfected group MDA-MB-453 DT+ Luc+. The two groups

relative to MDA-MB-231 show less diversity when the data are fitted to the logistic function. From

Tables A2 and A3 indeed we observe that the parameters Kpop and apop are comparable, suggesting

that there isn’t great variability between MDA-MB-231 and its transfected.
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B Supplementary figures and tables to Chapter 2

Model -2LL AIC BIC

Gompertz 2232 2246 2253
Reduced Gompertz 2256 2266 2271
Logistic 2315 2327 2333
Exponential 2644 2652 2656

Table B1. Statistical indices of the tumor growth models (lung, volume). Models ranked in ascending
order of AIC (Akaike information criterion). Other statistical indices are the log-likelihood estimate (-2LL)
and the Bayesian information criterion (BIC).

Model -2LL AIC BIC

Reduced Gompertz 2953 2961 2962
Gompertz 2953 2965 2965
Logistic 3010 3020 3020
Exponential 3097 3103 3104

Table B2. Statistical indices of the tumor growth models (breast, fluorescence). Models ranked in as-
cending order of AIC (Akaike information criterion). Other statistical indices are the log-likelihood estimate
(-2LL) and the Bayesian information criterion (BIC).

Model Parameter Unit Fixed effects ω R.S.E. (%)

Gompertz α day−1 0.718 0.166 3.87
β day−1 0.0742 0.239 5.82
σ - [28.63, 0.078] - [13.71, 14.09]

Reduced Gompertz β day−1 0.077 0.121 2.79
k - 9.42 - 0.293
σ - [27.32, 0.11] - [13.75, 10.79]

Logistic ρ day−1 0.476 0.123 2.84
K mm3 1.65e+03 0.0895 4.04
σ - [39.28, 0.11] - [12.63, 13.08]

Exponential α day−1 0.403 0.111 2.73
σ - [93.69, 0.35] - [19.59, 15.68]

Table B3. Parameter values estimated with the SAEM algorithm (lung, volume). Fixed effects (typical
values) of the parameters of the different models. ω is the standard deviation of the random effects. σ is
vector of the residual error model parameters. Last column shows the relative standard errors (R.S.E.) of the
estimates.
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Model Parameter Unit Fixed effects ω R.S.E. (%)

Reduced Gompertz β day−1 0.077 0.072 4.11
k - 9.85 - 0.919
σ - [0,0.325] - [0,10.2]

Gompertz α day−1 0.758 0.087 4.15
β day−1 0.0769 0.094 5.1
σ - [0,0.325] - [0,10.5]

Logistic ρ day−1 0.404 0.047 2.36
K mm3 1.18e+10 0.092 8.73
σ - [0,0.495] - [0,13.8]

Exponential α day−1 0.078 0.028 6.18
σ - [0,589] - [0,17]

Table B4. Parameter values estimated with the SAEM algorithm (breast, fluorescence). Fixed effects
(typical values) of the parameters of the different models. ω is the standard deviation of the random effects.
σ is vector of the residual error model parameters. Last column shows the relative standard errors (R.S.E.) of
the estimates.
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Exponential Logistic Gompertz

5 10 15 20 25
Time (days)

0

500

1000

1500

2000

V
ol

um
e 

(m
m

3 )

5 10 15 20 25
Time (days)

0

500

1000

1500

2000

V
ol

um
e 

(m
m

3 )

5 10 15 20 25
Time (days)

0

500

1000

1500

2000

V
ol

um
e 

(m
m

3 )

A

5 10 15 20 25
Time (days)

0

500

1000

1500

2000

V
ol

um
e 

(m
m

3 )

5 10 15 20 25
Time (days)

0

500

1000

1500

2000

V
ol

um
e 

(m
m

3 )

5 10 15 20 25
Time (days)

0

500

1000

1500

2000

V
ol

um
e 

(m
m

3 )

B

Observed data
Median model simulation
Prediction distribution

5 10 15 20 25
Time (days)

2

1

0

1

2

IW
R

E
S

5 10 15 20 25
Time (days)

2

1

0

1

2

IW
R

E
S

5 10 15 20 25
Time (days)

2

1

0

1

2

IW
R

E
S

C

0 1000 2000 3000 4000 5000
Individual predictions

0

2000

4000

6000

8000

O
bs

er
va

tio
ns

0 500 1000 1500
Individual predictions

0

500

1000

1500

2000

O
bs

er
va

tio
ns

0 500 1000 1500 2000
Individual predictions

0

500

1000

1500

2000

O
bs

er
va

tio
ns

Observed data
y = x
90% prediction interval

D

1Figure B1. Diagnostic plots from population analysis (lung, volume). Population analysis of experimen-
tal tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for both structural dynamics
and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction
intervals (P.I) in comparison to empirical ones. B) Prediction distributions. C) Individual weighted residu-
als (IWRES) with respect to time. D) Observations vs predictions Left: exponential, Center: logistic, Right:
Gompertz models.
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Exponential Logistic Gompertz
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1Figure B2. Diagnostic plots from population analysis (breast, fluorescence). Population analysis of exper-
imental tumor growth kinetics. A) Visual predictive checks assess goodness-of-fit for both structural dynamics
and inter-animal variability by reporting model-predicted percentiles (together with confidence prediction
intervals (P.I) in comparison to empirical ones. B) Prediction distributions. C) Individual weighted residu-
als (IWRES) with respect to time. D) Observations vs predictions Left: exponential, Center: logistic, Right:
Gompertz models.
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Individual fit
Observed data

Exponential Logistic Gompertz
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1Figure B3. Individual fits from population analysis (lung, volume). Three representative examples of
individual fits (animal A, animal B and animal C) computed with the population approach relative to the
exponential (left), the logistic (center) and the Gompertz (right) models.
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Individual fit
Observed data

Exponential Logistic Gompertz
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1Figure B4. Individual fits from population analysis (breast, fluorescence). Three representative examples
of individual fits (animal A, animal B and animal C) computed with the population approach relative to the
exponential (left), the logistic (center) and the Gompertz (right) models.
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1Figure B5. Correlation between the Gompertz parameters and diagnostic plots of the reduced Gompertz
model with the population approach (lung, volume). Correlation between the individual parameters of the
Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual predictive
check (B), scatter plots of the residuals (C), prediction distribution (D) and examples of individual fits (E).
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1Figure B6. Correlation between the Gompertz parameters and diagnostic plots of the reduced Gompertz
model with the population approach (breast, fluorescence). Correlation between the individual parame-
ters of the Gompertz model (A) and results of the population analysis of the reduced Gompertz model: visual
predictive check (B), scatter plots of the residuals (C), prediction distribution (D) and examples of individual
fits (E).
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1Figure B7. Backward predictions computed with likelihood maximization (LM) and with Bayesian in-
ference (lung, volume). Three examples of backward predictions of individuals A, B and C computed with
likelihood maximization (LM) and Bayesian inference: Gompertz model with likelihood maximization (first
row); reduced Gompertz with likelihood maximization (second row); Gompertz with Bayesian inference (third
row) and reduced Gompertz with Bayesian inference (fourth row). Only the last three points are considered
to estimate the parameters. The grey area is the 95% prediction interval (P.I) and the dotted blue line is the
median of the posterior predictive distribution. The red line is the predicted initiation time and the black
vertical line the actual initiation time.
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1Figure B8. Error analysis of the predicted initiation time (lung, volume). Accuracy of the prediction
models. Swarmplots of relative errors obtained under likelihood maximization (A) or Bayesian inference (B).
(C) Absolute errors: comparison between the different distributions (∗ p-value < 0.05, ∗∗ p-value < 0.01).
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1Figure B9. Backward predictions computed with likelihood maximization (LM) and with Bayesian in-
ference (breast, fluorescence). Three examples of backward predictions of individuals A, B and C computed
with likelihood maximization (LM) and Bayesian inference: Gompertz model with likelihood maximization
(first row); reduced Gompertz with likelihood maximization (second row); Gompertz with Bayesian infer-
ence (third row) and reduced Gompertz with Bayesian inference (fourth row). Only the last three points are
considered to estimate the parameters. The grey area is the 95% prediction interval (P.I) and the dotted blue
line is the median of the posterior predictive distribution. The red line is the predicted initiation time and the
black vertical line the actual initiation time.
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1Figure B10. Error analysis of the predicted initiation time (breast, fluorescence). Accuracy of the predic-
tion models. Swarmplots of relative errors obtained under likelihood maximization (A) or Bayesian inference
(B). (C) Absolute errors: comparison between the different distributions (∗ p-value< 0.05, ∗∗ p-value< 0.01).

C Supplementary material to Chapter 3

C.1 Nonlinear regression

C.1.1 Least squares and likelihood function

We now explain the nonlinear regression basic concept, with two parameters estimation methods:

the least square estimation and the likelihood maximization method.

Let us suppose to have n observations (x i , yi), i = 1, ..., n with a known functional relationship
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f (.;θ ∗), where θ ∗ ∈ Θ ⊂ Rp is the exact value defining the model:

yi = f (x i;θ
∗) + εi , i = 1, ..., n. (9.13)

In (9.13) εi is the residual error, such that E[ε] = 0. The least-square estimate of θ ∗, denoted by

θ̄ , is obtained by minimizing the sum of the square residuals:

r(θ̄ ) =
n
∑

i=1

(yi − f (x i;θ ))
2 , θ ∈ Θ. (9.14)

We now introduce the possible numerical schemes that can be applied to find the solution to the

minization problem. We make use of the following notation:

f(θ ) = [ f (x i ,θ )]
n
i=1, J(θ ) =

�

∂ f (x i ,θ )
∂ θ j

�

i=1,...,n,
j=1,...,p

, e(θ ) = [εi]
n
i=1,

i.e. f(θ ) is the vector containing the evaluation of the function at points x i , J(θ ) is the Jacobian

matrix and e(θ ) is the residual vector.

The solution to the minimization of the nonlinear least square in (9.14) is given, for example, by the

following numerical schemes:

• Gauss-Newton method. It is an iterative algorithm to find the minimum of the least squares

problem, starting from an initial guess θ 0. We explain the derivation of the algorithm in the

following. For θ close to θ 0 we have the Taylor expansion of the nonlinear function f(θ )

f(θ )≈ f(θ 0) + J(θ 0)(θ − θ 0). (9.15)

Then the residual vector is

e(θ ) = y− f(θ )≈ e(θ 0)− J(θ 0)(θ − θ 0). (9.16)

Therefore, r(θ ) = (e(θ ))T e(θ ) becomes

r(θ )≈ (e(θ 0))T e(θ 0)− 2(e(θ 0))T J(θ 0)(θ − θ 0) + (θ − θ 0)T (J(θ 0))T J(θ 0)(θ − θ 0).

(9.17)
The right hand side of 9.17 is minimized with respect to θ when

θ − θ 0 = [(J(θ 0))T J(θ 0)]−1(J(θ 0))T e(θ 0)

= δ0. (9.18)

Then, the next approximation is

θ 1 = θ 0 +δ0. (9.19)

The algorithm proceeds iteratively until a certain accuracy has been reached.

• Levenberg-Marquardt algorithm. This method combines the Gauss-Newton algorithm with

the gradient descent method. Instead of having (9.18), the Levenberg-Marquardt update is

given by

[(J(θ 0))T J(θ 0) +λ diag((J(θ 0))T J(θ 0)))](θ − θ 0) = (J(θ 0))T e(θ 0), (9.20)

where λ is a parameter first initialized to be large, so that first updates are small steps in the

steepes descent direction. If the sum of the square residuals increases, λ increases. Other-
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wise, if the approximation improves, λ decreases so that the Levenberg-Marquardt method

approaches to the Gauss-Newton algorithm and the solution accelerates to the local minimum.

• Nelder-Mead algorithm. This is a simplex method for finding a local minimum of a function of

several variables. It is not based on derivatives, hence it can find minima that are not stationary

points. In two dimensions, for example, a simplex is a triangle. The method is a pattern search

that compares function values at three vertices of a triangle. The vertex where the function

has larger value is rejected and replaced with a new vertex (for further details regarding the

algorithm see [290]). In this way, the algorithm constructs a sequence of triangles where

the function values at the vertices decrease. The size of the triangles reduces and finally the

coordinates of the minimum point are found.

The maximum likelihood estimator maximizes the so called likelihood function. Let us suppose

that the residuals εi are i.i.d. with density function σ−1 g(ε/σ) (i.e. g is the error distribution for

standardized errors). The likelihood function is the joint probability density of the observed events:

L(θ ,σ2) = p(y|θ ,σ2) =
n
∏

i=1

�

σ−1 g
�

yi − f (x i;θ )
σ

��

. (9.21)

If the residuals εi are assumed to be normally distributed (i.e. εi ∼ N(0,σ2), where σ2 is assumed

to be known), then the maximum likelihood estimate coincides with the least square estimate. In

this case, (9.21) becomes:

L(θ ,σ2) =
1

(2πσ2)−n/2
exp

�

−
1
2

n
∑

i=1

(yi − f (x i;θ ))2

σ2

�

. (9.22)

Maximizing (9.22) is equivalent to minimizing the negative log-likelihood function l(θ ,σ2)

l(θ ,σ2) = − log L(θ ,σ2) =
n
2

logσ2 +
1

2σ2

n
∑

i=1

(yi − f (x i;θ ))
2

= − log L(θ ,σ2) =
n
2

logσ2 +
1

2σ2
r(θ ). (9.23)

Minimizing (9.23) with respect to θ is equivalent to minimize r(θ ), i.e. to find the least-squares

estimate θ̄ . Then, the solution to ∂ l/∂ σ2 is given by σ̄2 = r(θ̄ )/n, that is a minimum of (9.23). It

can be proven that the pair (θ̄ , σ̄2) minimizes (9.23) [139].

C.1.2 Evaluation and comparison of nonlinear models

In order to evaluate and compare different nonlinear models, we compute the following quanti-

ties:

• Standard errors. The standard errors of the coefficients characterize the uncertainties that are

generated by the random fluctuations of the data. We start from assuming that asymptotically

the least squares estimator θ is normally distributed [139]:

θ
a∼N

�

θ̄ ,
Cov

n

�

,
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where Cov is the asymtoptic covariance matrix. The standard error is defined as follows

Std(θi) =
Æ

Covi,i , i = 1, ..., p (9.24)

being Cov the covariance matrix defined as

Cov= NMSE((J(θ̄ ))T J(θ̄ ))−1, where NMSE=
1

n− p
r(θ̄ ) (9.25)

In (9.25), NMSE denotes the a posteriori estimate of σ2 and J is the jacobian.

• Akaike information criterion (AIC). It is an estimator of the relative quality of different models

for a given set of data. It provides a measure of the quality of a statistical model, taking into

account the goodness of fit and the complexity of the model. Thus, it is a criterion to compare

different models rather than to evaluate the quality of a single model. It is defined as follows:

AIC = 2p− 2 ln(L(θ̄ )). (9.26)

The model with the lowest AIC is preferred.

• Bayesian information criterion (BIC). As the AIC , it is a criterion to select a model among a finite

set of parametric models with different numbers of parameters. It evaluates the overfitting of

the models by introducing the penalty term for the number of parameters in the model. It is

defined as follows:

BIC = ln(n)p− 2 ln(L(θ̄ )). (9.27)

The model with the lowest BIC is preferred.

• Likelihood ratio test (or log-likelihood ratio test). It is a statistical test that compares the good-

ness of fit of two different models. The test is based on the (log-)likelihood ratio, which com-

pares how many times more likely the data are under a model than the other. We assume

to have two statistical models M1 and M2 with different number of parameters (p1 and p2,

respectively) that fit a given set of data. We specify the null and the alternative hypothesis:
H0 : M1 fits better the data,

H1 : M2 fits better the data.
The likelihood test is based on the likelihood ratio, that is defined as follows:

Λ=
LM1

LM2

, (9.28)

being LM1
and LM2

the computed maximum likelihood estimations of M1 and M2, respectively.

Alternatively, it is possible to substitute the maximum log-likelihood estimations in 9.28. Fi-

nally, we compute the p-value to accept or reject the null hypothesis

p-value= χ2
p2−p1

(Λ), (9.29)

where χ2
p2−p1

is the chi squared distribution with p2 − p1 degrees of freedom.
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C.1.3 Generalized least squares

We consider now the following function to be minimized:

r(θ ) = [y− f(θ )]T W−1[y− f(θ )], (9.30)

where W is a known positive definite matrix, representing a weight matrix. This minimization crite-

rion arises when the residual error is assumed to have variance σ2W, i.e. ε ∼N(0,σ2W).
Let W = UT U be the Cholesky decomposition of W, where U is an upper triangular matrix. Let us

denote R= (UT )−1. Then (9.30) can be written as

r(θ ) = [y− f(θ )]T RT R[y− f(θ )] (9.31)

The numerical schemes that can be applied to solve (9.30) are the same explained in section C.1.1.

As regards the derivation of the standard errors, we compute the covariance matrix as follows:

J(θ ) =

�

R
∂ f (x i ,θ )
∂ θ j

�

i=1,...,n,
j=1,...,p

,

Cov= NMSE((J(θ ))T W−1J(θ ))−1.

C.1.4 Replication

We now deal with replicated data. Suppose that a design is replicated mi times for point x i , so

that the nonlinear model becomes

yi j = f (x i;θ
∗) + εi j , i = 1, ..., n, j = 1, ..., mi . (9.32)

where the fluctuations εi j are assumed to be i.i.d (εi j ∼N(0,σ2)). Let us denote by ȳi� =
1

mi

∑mi
j=1 yi j

the mean of the observations at point x i . The following decomposition holds:
n
∑

i=1

mi
∑

j=1

(yi j − f (x i;θ ))
2 =

n
∑

i=1

mi
∑

j=1

(yi j − ȳi� + ȳi� − f (x i;θ ))
2

=
n
∑

i=1

mi
∑

j=1

(yi j − ȳi�)
2 +

n
∑

i=1

mi( ȳi� − f (x i;θ ))
2. (9.33)

In (9.33)
∑n

i=1

∑mi
j=1(yi j − ȳi�)2 is usually referred to as the pure error sum of squares.

Therefore, minimizing
∑n

i=1

∑mi
j=1(yi j − f (x i;θ ))2 with respect to θ is equivalent to minimize

∑n
i=1 mi( ȳi� − f (x i;θ ))2, i.e. a weighted least-squares analysis with weights mi [139].

C.2 Python computation

We implement the code with python to perform the nonlinear regression analysis. We use the

following functions:

• lmfit.minize: for the optimization problem. It takes an objective function to be minimized

in the least square sense, an initial guess of the parameters and optional arguments (e.g. the

name of the fitting method). The function returns the optimal parameters and the following
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statistical indices:
AIC = n ln(r(θ )/n) + 2p,

BIC = n ln(r(θ )/n) + p ln(n),

χ2 = r(θ ),

reduced χ2 =
χ2

n− p
.

In case we apply the Levenberg-Marquardt algorithm, the function returns also the coviariance

matrix. In order to compare different methods, we compute the covariance matrix by using

other functions.

• algopy.jacobian: this function computes the jacobian function with the finite difference

method. We apply this function in order to compute the covariance matrix to derive the stan-

dard errors of the estimated optimal parameters.

C.3 Results on the MDA-MB-231 cell line

Data fit to the Hill model were performed using the strategies introduced in the previous sections.

Here, results relative to the MDA-MB-231 cell line are shown.

C.3.1 Data analysis

Figure C1 shows the in vitro cell viability with respect to the docetaxel concentration for each

tratement group. We observed that trastuzumab only, empty ANC-1 and ANC-2 do not have any

effect on the cell viability. Docetaxel only and docetaxel injected with trastuzumab showed a sim-

ilar behavior. This is due to the fact that the MDA-MB-231 breast cancer is trastuzumab-resistant.

Liposome-1 plus free trastuzumab and ANC-1 exhibit similar performances, as Liposome-2 plus free

trastuzumab and ANC-2. In the next sections we will focus on the analysis of docetaxel, free doc-

etaxel plus trastuzumab, ANC-1 and ANC-2.

Nonlinear regression: data fit to the Hill function

Two parameters Hill function

Let us consider the Hill function

f (c; Ec50,γ) = 100

�

1−
cγ

Ecγ50 + cγ

�

, (9.34)

that describes the dose-response curve. We denote by Ec50 the half maximal inhibitory concentra-

tion, i.e. the quantity of drug (docetaxel) needed to reduce the cell viability by half, and by γ the

Hill coefficient.

We fit the experimental data to the Hill function and estimate the parameters Ec50 and γ. We mini-
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Figure C1. In vitro efficacy with respect to the docetaxel concentration (mean values of each group)

mize the sum of least squares defined as follows

r(Ec50,γ) =
n
∑

i=1

mi
∑

j

�

yi j − f (ci; Ec50,γ)
�2

, (9.35)

where yi j , j = 1, ..., mi are the repeated observations at point ci (for i = 1, ..., n). We minimize

(9.35) applying the algorithms of Levenberg-Marquardt (least squares method) and of Nelder-Mead

(simplex method) and we compare the results. We denote by (Ec50,γ) the optimal values.

Finally, we compute the standard errors as defined in (9.24): we derive first the jacobian with the

algopy library and then the covariance matrix. Table C1 provides the values and the standard

errors of Ec50 and γ, respectively, computed with the two algorithms of Levenberg-Marquardt and of

Nelder-Mead. We observe that the Hill function does not describe the response of the trastuzumab

only (the standard errors are indeed high), according to the biological reason that the antibody

only does not have any effect on the reduction of the tumor. As regards the other groups, the two

algorithms deliver the same results.

Three parameters Hill function

We now add a new parameter to equation (9.34). Therefore, we consider the following equation:

f (c; Ec50,γ, Emax) = 100

�

1−
Emaxcγ

Ecγ50 + cγ

�

. (9.36)

Note that in this case the concentration corresponding to half the effect is given by
Ec50

(2Emax − 1)1/γ
.
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Figure C2. Data (black circles), Hill function computed with the Levenberg-Marquardt method (orange line)
and with the Nelder-Mead method (black dotted line) and mean values with the standard deviations of the
data (blue). The values in the brackets represent the estimated parameters Ec50 and γ, respectively.
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Levenberg-Marquardt Nelder-Mead

Drug Parameters value StdErr StdErr% value StdErr StdErr%

Docetaxel Ec50 7.092 1.693 23.877 7.092 1.693 23.876
γ 0.524 0.060 11.364 0.524 0.060 11.364

Free docetaxel + trastuzumab Ec50 9.528 3.040 31.903 9.528 3.040 31.903
γ 0.490 0.074 14.987 0.490 0.074 14.987

Empty ANC-1 Ec50 22.975 7.093 30.870 22.975 7.093 30.871
γ 0.751 0.155 20.591 0.750 0.155 20.591

Liposome 1 + free trastuzumab Ec50 3.899 0.980 25.136 3.899 0.980 25.137
γ 0.505 0.062 12.199 0.504 0.062 12.199

ANC-1 Ec50 4.208 0.788 18.727 4.208 0.788 18.727
γ 0.565 0.056 9.974 0.565 0.056 9.974

Empty ANC-2 Ec50 21.855 4.802 21.972 21.856 4.802 21.972
γ 0.680 0.100 14.651 0.680 0.100 14.651

Liposome 2 + free trastuzumab Ec50 2.655 0.565 21.281 2.655 0.565 21.281
γ 0.622 0.077 12.427 0.622 0.077 12.427

ANC-2 Ec50 2.556 0.427 16.702 2.556 0.427 16.702
γ 0.640 0.060 9.455 0.640 0.060 9.455

Trastuzumab Ec50 178.800 3e06 1e06 136.371 2e08 1e08
γ 5.623 1e05 3e06 10.537 5e08 5e09

Table C1. Estimated values with the respective standard errors computed with the Lavenberg-Marquardt
algorithm and with Nelder-Mead algorithm.

We proceed as explained in the previous section, applying the Nelder-Mead algorithm only to mini-

mize

r(Ec50,γ, Ecmax) =
n
∑

i=1

mi
∑

j

�

yi j − f (ci; Ec50,γ, Emax)
�2

(9.37)

Table C2 shows the estimated values. The large standard errors of the parameters relative to the

free drugs (docetaxel and docetaxel plus trastuzumab) suggest that this model is not appropriate

for these two groups. On the other hand, the parameters relative to ANC-1 and ANC-2 don’t exhibit

large errors.

Comparison between the two models

We now compare the two and three parameters Hill function with the indices introduced in

section C.1.2. Table C3 provides the AIC , BIC , χ2 and reduced χ2. For the groups docetaxel and

free docetaxel plus free trastuzumab the two parameters Hill functions fits better the data, while for

the two immunoliposomes (ANC-1 and ANC-2) the three parameters Hill function describes better

the data.

We then perform the likelihood ratio test, where the null and the alternative hypothesis are:
H0 : f (c; Ec50,γ) fits better the data

H1 : f (c; Ec50,γ, Emax) fits better the data
Table C4 provides the p-value for the likelihood ratio test. We reject the null hypothesis for ANC-1
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Drug Parameters Value StdErr StdErr [%]

Docetaxel Ec50 4.083 2.913 71.343
γ 0.595 0.138 23.273
Emax 0.893 0.131 14.677

Free docetaxel + trastuzumab Ec50 6.848 9.232 134.817
γ 0.524 0.176 33.591
Emax 0.936 0.251 26.867

Empty ANC-1 Ec50 7.414 2.370 31.963
γ 2.134 2.087 97.810
Emax 0.688 0.057 8.281

Liposome 1 + free trastuzumab Ec50 1.031 0.263 25.488
γ 0.867 0.166 19.144
Emax 0.764 0.041 5.334

ANC-1 Ec50 1.188 0.219 18.456
γ 0.983 0.153 15.585
Emax 0.758 0.031 4.084

Empty ANC-2 Ec50 7.535 1.077 14.295
γ 1.602 0.534 33.362
Emax 0.711 0.036 5.126

Liposome 2 + free trastuzumab Ec50 1.204 0.333 27.667
γ 0.891 0.184 20.628
Emax 0.829 0.054 6.469

ANC-2 Ec50 1.132 0.208 18.405
γ 0.948 0.136 14.327
Emax 0.832 0.033 3.976

Trastuzumab Ec50 54.865 - -
γ 19.165 1e13 6e13
Emax 0.037 - -

Table C2. Optimal values and standard errors relative to the three parameters Hill function computed by the
Nelder-Mead algorithm.
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Drug # parameters AIC BIC χ2 reduced
χ2

Docetaxel 2 91.345 93.434 1344.543 70.765
3 92.866 95.999 1314.199 73.011

Free docetaxel + trastuzumab 2 85.876 87.657 1701.126 106.320
3 87.817 90.488 1695.566 113.038

Empty ANC-1 2 61.801 62.931 1108.947 100.813
3 55.546 57.241 587.666 58.767

Liposome 1 + free
trastuzumab

2 64.982 66.398 874.391 67.261

3 56.702 58.826 440.606 36.717
ANC-1 2 97.459 99.730 1338.015 63.715

3 82.465 85.871 639.095 31.955
Empty ANC-2 2 39.793 40.398 358.496 44.812

3 31.808 32.716 132.081 18.869
Liposome 2 + free
trastuzumab

2 58.969 60.248 710.130 59.177

3 55.519 57.436 481.114 43.738
ANC-2 2 70.262 72.043 714.501 44.656

3 62.199 64.871 408.528 27.235
Trastuzumab 2 50.799 52.215 339.667 26.128

3 52.799 54.923 339.667 28.306

Table C3. Comparison between the two parameters and the three parameters Hill function: Akaike informa-
tion criterion, bayesian information criterion, sum of square residuals (χ2) and reduced χ2.



Annexes 191

Drug -2 log(L), 2 param-
eters

-2 log(L), 3 param-
eters

p-value

Docetaxel 108.3450 107.8657 0.4887
Free docetaxel + free trastuzumab 99.8761 99.8172 0.8082
Empty ANC-1 70.8008 62.5457 0.0041
Liposome 1 + free trastuzumab 75.9822 65.7015 0.0013
ANC-1 116.4593 99.4648 0.0000
Empty ANC-2 45.7933 35.8083 0.0016
Liposome 2 + free trastuzumab 68.9695 63.5187 0.0196
ANC-2 84.2618 74.1994 0.0015
Trastuzumab 61.7987 61.7987 1.0000

Table C4. Likelihood ratio test: evaluation of the log-likelihood functions and p-value.

and ANC-2, while we accept it for docetaxel and docetaxel combined with trastuzumab. Finally,

Figure C3 shows the two fitted functions for the docetaxel, docetaxel plus trastuzumab and the two

nanoparticles.

C.4 Results on the SKBR3 cell line

We noe consider the SKBR3 cell line, i.e. the breast cancer type that overexpresses Her2 receptor

(Her2++).

C.4.1 Data analysis

Figure C4 shows the mean values of each treatment group. As for the MDA-MB-231 cell line, we

don’t observe differences between the effects of ANC-1 and of liposome 1, as well as the effects of

ANC-2 and liposome 2. In this case ANC-1 performes better than ANC-2. Trastuzumab only and the

empty immunoliposomes do not have effects on the cell apoptosis.

C.4.2 Data fit to the Hill function

We now fit the data to the two parameters and the three parameters Hill function and finally

compare the two models. In order to perform the nonlinear regression analysis, the non-weighted

least squares minimization with the Nelder-Mead algorithm has been applied.

Two parameters Hill function

We proceed as explained in section C.3.1. Table C5 provides the estimated values.
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Figure C3. Comparison between the two parameters (left) and the three parameters (right) Hill functions.
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Figure C4. In vitro efficacy with respect to the docetaxel concentration relative to the SKBR3 cell line. Mean
values of each treatment group.

Drug Parameters Value StdErr StdErr [%]

Docetaxel Ec50 13.758 3.890 28.274
γ 0.543 0.070 12.835

Free drugs Ec50 17.917 5.656 31.569
γ 0.471 0.062 13.239

Empty ANC-1 Ec50 58.211 10.450 17.952
γ 0.856 0.123 14.398

Liposome 1 + free trastuzumab Ec50 3.779 0.786 20.796
γ 0.925 0.142 15.325

ANC-1 Ec50 4.362 0.955 21.890
γ 0.976 0.164 16.757

Empty ANC-2 Ec50 40.404 4.706 11.646
γ 1.053 0.107 10.180

Liposome 2 + free trastuzumab Ec50 9.586 2.543 26.530
γ 0.614 0.093 15.190

ANC-2 Ec50 12.359 2.613 21.145
γ 0.625 0.070 11.118

Table C5. SKBR3 cell line: estimated values and standard errors of the two parameters Hill function computed
with the Nelder-Mead algorithm.
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Drug Parameters Value StdErr StdErr [%]

Docetaxel Ec50 2.576 0.896 34.805
γ 1.068 0.281 26.305
Emax 0.699 0.055 7.895

Free drugs Ec50 2.294 0.902 39.329
γ 0.925 0.243 26.293
Emax 0.647 0.061 9.494

Empty ANC-1 Ec50 7e07 3e11 5e5
γ 0.546 0.423 77.411
Emax 1e3 2e6 2e5

Liposome 1 + free trastuzumab Ec50 1.734 0.464 26.757
γ 1.763 0.722 40.958
Emax 0.800 0.042 5.261

ANC-1 Ec50 2.065 0.517 25.018
γ 1.672 0.475 28.418
Emax 0.800 0.041 5.154

Empty ANC-2 Ec50 305.546 2041.543 668.161
γ 0.723 0.444 61.377
Emax 2.345 7.048 300.516

Liposome 2 + free trastuzumab Ec50 3.490 1.636 46.870
γ 0.881 0.230 26.146
Emax 0.773 0.094 12.182

ANC-2 Ec50 3.791 0.961 25.353
γ 1.044 0.169 16.144
Emax 0.745 0.048 6.484

Table C6. SKBR3 cell line: estimated values and standard errors of the three parameters Hill function com-
puted with the Nelder-Mead algorithm.

Three parameters Hill function

We proceed as explained in section C.3.1. Table C6 provides the estimated values. The standard

errors relative to docetaxel, Free drugs and the two immunoliposomes are acceptable.

Comparison between the different models

For the SKBR3 cell line, the 3 parameters Hill function seems to fit the data better than the 2

parameters Hill function for almost all the treatment groups. Table C7 provides the statistical indices.

Both the AIC and BIC of the three parameters Hill function is lower than the two parameters model or

docetaxel, the Free drugs, ANC-1 and ANC-2. The goodness of fit of the model with three parameters

is confirmed by the likelihood ratio test (see Table C8). Finally, Figure C5 show the comparison of

the two fitted functions for each treatment group.
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Drugs # parameters AIC BIC χ2 reduced
χ2

Docetaxel 2 89.532 91.523 1439.872 79.993
3 83.772 86.759 976.854 57.462

Free drugs 2 67.717 69.262 858.234 61.302
3 62.583 64.901 549.505 42.270

Empty ANC-1 2 45.789 46.759 390.460 39.046
3 47.600 49.055 384.364 42.707

Liposome 1 + free
trastuzumab

2 70.517 72.063 1022.420 73.030

3 59.234 61.552 445.725 34.287
ANC-1 2 62.453 63.731 910.722 75.893

3 50.917 52.834 346.333 31.485
Empty ANC-2 2 52.219 53.635 373.405 28.723

3 53.905 56.029 365.656 30.471
Liposome 2 + free
trastuzumab

2 77.545 79.212 1286.137 85.742

3 76.457 78.957 1072.523 76.609
ANC-2 2 61.983 63.528 599.768 42.841

3 54.728 57.046 336.324 25.871

Table C7. SKBR3 cell line: comparison between the two parameters and the three parameters Hill function:
Akaike information criterion, bayesian information criterion, sum of square residuals (χ2) and reduced χ2.

Drug −2 log(L) 2 param-
eters

−2 log(L) 3 param-
eters

p-value

Docetaxel 105.5315 97.7721 0.0053
Free drugs 79.7166 72.5829 0.0076
Empty ANC-1 53.7890 53.6002 0.6639
Liposome 1 + free trastuzumab 82.5174 69.2338 0.0003
ANC-1 72.4525 58.9168 0.0002
Empty ANC-2 63.2192 62.9047 0.5749
Liposome 2 + free trastuzumab 90.5452 87.4575 0.0789
ANC-2 73.9833 64.7278 0.0023

Table C8. SKBR3 cell line: evaluation of the log-likelihood functions and p-value for the likelihood ratio test.
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Figure C5. SKBR3 cell line: comparison between the two parameters (left) and the three parameters (right)
Hill functions.
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Figure C6. In vitro efficacy with respect to the docetaxel concentration relative to the MDA-MB-453 cell line.
Mean values of each treatment group.

C.5 Results on the MDA-MB-453 cell line

We now consider the MDA-MB-453 cell line, that expresses the Her2 receptor (Her2+).

C.5.1 Data analysis

Figure C6 shows the mean values of each treatment group. As for the MDA-MB-231 cell line, we

don’t observe differences between the effects of ANC-1 and of liposome 1, as well as the effects of

ANC-2 and liposome 2. As for the SKBR3 cell line, ANC-1 performes better than ANC-2. Trastuzumab

only and the empty immunoliposomes do not have effects on the cell apoptosis.

C.5.2 Data fit to the Hill function

We now fit the data to the two parameters and the three parameters Hill function and finally

compare the two models. In order to perform the nonlinear regression analysis, the non-weighted

least squares minimization with the Nelder-Mead algorithm has been applied.

Two parameters Hill function

We proceed as explained in section C.3.1. Table C9 provides the estimated values.
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Drug Parameters Value StdErr StdErr [%]

Docetaxel Ec50 2.515 0.259 10.299
γ 1.291 0.117 9.085

Free drugs Ec50 1.547 0.168 10.830
γ 1.433 0.165 11.504

Empty ANC-1 Ec50 9.419 1.943 20.627
γ 0.840 0.146 17.372

Liposome 1 + free trastuzumab Ec50 1.274 0.155 12.131
γ 1.318 0.256 19.396

ANC-1 Ec50 1.543 0.224 14.494
γ 1.433 0.309 21.543

Empty ANC-2 Ec50 12.156 2.031 16.706
γ 0.832 0.116 13.970

Liposome 2 + free trastuzumab Ec50 2.062 0.380 18.426
γ 1.102 0.179 16.211

ANC-2 Ec50 2.257 0.319 14.118
γ 0.925 0.093 10.088

Table C9. MDA-MB-453 cell line: estimated values and standard errors of the two parameters Hill function
computed with the Nelder-Mead algorithm.

Three parameters Hill function

We proceed as explained in section C.3.1. Table C10 provides the estimated values. This model

is not appropriate for liposome 1 + free trastuzumab and ANC-1. The covariance matrix is indeed

singular, therefore the standard errors tend to infinite. For the other treatment groups, the standard

errors are acceptable.

Comparison between the two models

Table C11 provides the statistical indices for the evaluation of the two models. In this case, the

three parameters Hill function fits better the data relative to the groups of docetaxel and ANC-2.

Regarding the Free drugs, AIC and BIC don’t show big variety between the 2 parameters and the

three parameters Hill function, although they lower for the three parameters model. In Table C12, the

large p-value relative to the Free drugs suggests to accept the null hypothesis, i.e. the 2 parameters

model fits better the data. Figure C7 shows the two fitted functions for each treatment group.
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Drug Parameters Value StdErr StdErr [%]

Docetaxel Ec50 2.106 0.236 11.192
γ 1.534 0.180 11.711
Emax 0.945 0.020 2.099

Free drugs Ec50 1.406 0.177 12.556
γ 1.713 0.383 22.339
Emax 0.968 0.021 2.203

Empty ANC-1 Ec50 8.650 4.096 47.353
γ 0.879 0.252 28.715
Emax 0.973 0.138 14.216

Liposome 1 + free trastuzumab Ec50 1.011 - -
γ 11.809 - -
Emax 0.925 0.023 2.532

ANC-1 Ec50 1.036 - -
γ 12.123 - -
Emax 0.923 0.027 2.877

Empty ANC-2 Ec50 10.247 4.030 39.329
γ 0.914 0.234 25.638
Emax 0.946 0.117 12.349

Liposome 2 + free trastuzumab Ec50 1.872 0.496 26.517
γ 1.223 0.310 25.336
Emax 0.965 0.058 6.051

ANC-2 Ec50 1.769 0.329 18.598
γ 1.149 0.181 15.793
Emax 0.918 0.040 4.361

Table C10. MDA-MB-453 cell line: estimated values and standard errors of the three parameters Hill function
computed with the Nelder-Mead algorithm.
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Drugs # parameters AIC BIC χ2 reduced
χ2

Docetaxel 2 38.150 39.280 179.805 16.346
3 33.066 34.761 104.265 10.426

Free drugs 2 37.213 38.343 167.305 15.210
3 36.607 38.302 136.914 13.691

Empty ANC-1 2 62.188 63.467 893.706 74.475
3 64.147 66.064 891.035 81.003

Liposome 1 + free
trastuzumab

2 59.246 60.662 596.503 45.885

3 55.145 57.269 397.167 33.097
ANC-1 2 58.652 59.930 694.195 57.850

3 55.072 56.989 466.000 42.364
Empty ANC-2 2 55.599 56.877 558.205 46.517

3 57.408 59.325 550.637 50.058
Liposome 2 + free
trastuzumab

2 49.036 50.006 511.802 51.180

3 50.585 52.039 492.895 54.766
ANC-2 2 53.533 54.949 407.586 31.353

3 51.381 53.505 309.031 25.753

Table C11. MDA-MB-453 cell line: comparison between the two parameters and the three parameters Hill
function: Akaike information criterion, bayesian information criterion, sum of square residuals (χ2) and re-
duced χ2.

Drug −2 log(L) 2 param-
eters

−2 log(L) 3 param-
eters

p-value

Docetaxel 47.1500 40.0658 0.0078
Free drugs 46.2133 43.6072 0.1065
Empty ANC-1 72.1885 72.1466 0.8378
Liposome 1 + free trastuzumab 70.2455 64.1446 0.0135
ANC-1 68.6517 63.0718 0.0182
Empty ANC-2 65.5994 65.4083 0.6620
Liposome 2 + free trastuzumab 57.0364 56.5847 0.5015
ANC-2 64.5330 60.3808 0.0416

Table C12. MDA-MB-453 cell line: evaluation of the log-likelihood functions and p-value for the likelihood
ratio test.
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Figure C7. Comparison between the two parameters (left) and the three parameters (right) Hill functions.
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