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ABSTRACT

In contexts such as embedded and cyber-physical systems, the design of a desired
functionality under constraints increasingly requires a parallel execution of different tasks
on heterogeneous architectures. The nature of such parallel systems implies a huge com-
plexity in understanding and predicting performance in terms of response time. Indeed,
response time depends on many factors associated with the characteristics of both the
functionality and the target architecture.

State-of-the art strategies derive response time by examining the operations required
by each task for both processing and accessing shared resources. This procedure is often
followed by the addition or elimination of potential interferences due to task concurrency.
However, such approaches require an advanced knowledge of the software and hardware
details, rarely available in practice.

This thesis provides an alternative "top-down" strategy aimed at extending the cases
in which hardware and software response times can be analyzed and predicted. The pro-
posed strategy leverages on dataflow-based application representations and focuses on the
response time estimation of reconfigurable applications mapped on both general-purpose
and specialized processing elements.
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Chapter 1

INTRODUCTION

Nowadays, embedded systems are certainly the most common devices in mass and
industrial electronics. Multiprocessor System on Chip (SoC)s (MPSoCs), on which are
handled their processing phases, embed a growing number of heterogeneous Processing
Elements (PEs) in order to efficiently perform modern functionalities. For this reason,
the design of systems based on MPSoCs has become increasingly complex and several
approaches aiming at limiting this complexity have appeared [CF16]. Among the concepts
of embedded systems, Cyber-Physical Systems (CPSs) have become known and studied
with interest by the scientific community in the last few years. These systems are capable
of monitoring and controlling physical elements and consider heterogeneous components
that interact with each other in different modalities depending on the context in which
they operate [Raj+10]. Design and maintenance of such systems are extremely complex
because of their multidisciplinary nature, their elaborate requirements, the heterogeneity
of their components and the continuous communication between their physical and cyber
layers [DLS12]. Both embedded systems and CPSs imply demanding requirements in terms
of flexibility and efficiency. The former property requires solutions capable of performing
different functionalities evaluated in various operating modes. The latter is needed for the
exploitation of the system with respect to the performance and costs deriving from the
design choices (e.g. regarding requirements associated with energy budget and response
time).

In order to achieve flexibility and efficiency, there is a need for digital hardware and
software capable of implementing different functionalities with multiple operating modes
in order to meet the requirements. An increasingly considered solution is represented by
the combination of reconfigurable implementations both in terms of hardware and soft-
ware [Sha+14; GPK19; Pér+20]. However, in the presence of multiple operating modes
that depend on the state of the system and the external environment, reconfiguration
may not be sufficient to guarantee complete flexibility and/or an appropriate degree
of efficiency. Indeed, in cases such as the failure of system components or the need to

13



Chapter 1 – Introduction

change functionality, a runtime management of the execution is required. Nevertheless,
adaptation according to uncertain events and to changing functional and non-functional
requirements is an important challenge for system developers [LCK16]. In order to fa-
cilitate reconfiguration and application of adaptation strategies, the use of parameters
associated with specific operating modes offers high-level management of functionality.
Since these operating modes can concern both hardware (HW) and software (SW) im-
plementations, parametric functionalities performed on heterogeneous systems, aimed at
providing flexibility and efficiency, are increasingly evaluated.

In this context, CERBERO 1 H2020 and FitOptiVis 2 ECSEL European projects aim
at developing design environments for CPSs. CERBERO is based on two main elements:
i) a cross-layer and model-based approach to describe, optimize and analyze the system
according to different views; and ii) an extended adaptation of the calculation to the
system state as well as to its environment, provided by an autonomous adaptation engine.
FitOptiVis is focused on a cross-domain approach aiming at achieving multi-objective
optimization for performance and energy use, which is aimed at adapting distributed
image and video processing pipelines of CPSs. This thesis is mainly focused on the second
CERBERO objective, which also applies to FitOptiVis, and, in particular, on the study
of design methodologies in order to apply reconfiguration and adaptation of parametric
functionalities executed on heterogeneous systems.

Cyber
Layer

Physical
Layer

Fault
Tolerance

Movement
Accuracy

Figure 1.1 – Example of adaptation in a CPS, based on a use case of the CERBERO
H2020 European Project.

As an example of adaptation in CPS, Figure 1.1 depicts a use case of CERBERO

1. https://www.cerbero-h2020.eu
2. https://fitoptivis.eu
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(provided by: Thales Alenia Space), which consists of a self-healing system for planetary
exploration aiming at moving across the surface and studying future planet at depth.
The cyber layer considers a heterogeneous HW architecture, which can be reconfigured
with multiple PEs aimed at performing the same processing in order to provide fault
tolerance through output data redundancy, since the effect of solar radiation may produce
a malfunction of the electronics on board. The cyber layer adapts the system based on
information from the physical layer to control its physical components, e.g. moving a
robotic arm with a certain degree of accuracy depending on the current level of energy
stored in the battery.

Among the most common Key Performance Indicators (KPIs) of embedded systems
and CPSs, response time plays a relevant role for the strategies considered for reconfigura-
tion and adaptation of signal processing solutions [HAR14; GPM14]. Indeed, this metric
represents the execution time of a complete elaboration of a functionality, starting from
the acquisition of a given input data and ending with the generation of an associated
output data. Nevertheless, the accurate evaluation of the response time implies complex
timing analyses and/or strong limitations in the implementation of the HW and SW com-
ponents. Indeed, although different approaches in literature aim at providing accuracy
and reliability in the verification of the response time, their applicability depends on var-
ious aspects, such as: the availability of information regarding HW and SW details, and
the amount of processing and requests in the use of system resources associated with the
functionality [Wil+08]. In addition, in contexts demanding reconfiguration and adapta-
tion, on-line timing evaluation and budgeting may require complex models execution, not
compatible with applicative performance requirements. Therefore, this issue remains far
from being solved effectively for functionalities that require flexibility and efficiency in
their execution. For this reason, there is a need to identify an alternative approach in
order to simplify the response time estimation, especially when parametric functionalities
are performed on heterogeneous systems. However, reducing complexity does not come for
free, and typically is linked to a loss of response time evaluation accuracy. The analysis
must therefore maintain the robustness of the estimated values, presenting at least a high
degree of fidelity with respect to the trend of the real cost of the functionality in terms
of response times.

A promising approach capable of offering a new perspective with respect to the state
of the art consists in characterizing a functionality as its activity in terms of a chosen
metric, and then evaluating its associated cost when mapped upon an Model of Architec-
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Chapter 1 – Introduction

ture (MoA) [Pel+18]. Such a strategy leverages on a high level of abstraction, which is
a fundamental prerequisite to allow a reduction of complexity. In addition, MoAs can be
designed and taylored in order to obtain linearity in the relation between cost and activity.
In particular, an approach based on linear MoAs has been proved to have a high degree of
fidelity for the energy estimation of parametric functionalities mapped on heterogeneous
systems. Nevertheless, MoA-based approach has not yet been applied in the context of
estimating timing metrics. In addition to the purpose of reducing model complexity, such
a strategy may also favor the elasticity of the timing analysis, since the activity can be
selected depending on the factors that the developer considers crucial in determining re-
sponse time. In fact, elastic analyses are convenient when applying reconfiguration and
adaptation of parametric functionalities on heterogeneous MPSoCs [Pim+02; Hen+11].
In particular, since such systems must satisfy flexibility and efficiency requirements, they
need to be capable of handling generic and customized specifications of parametric func-
tionalities. Therefore, a combination of general-purpose PEs and specific hardware with
low reconfiguration overhead may represent a proper trade-off in order to provide flexi-
bility and efficiency at the same time. Nevertheless, design and management of MPSoCs
composed of such elements leads to consider different development methods, which imply
specific levels of knowledge and estimation opportunities. For these reasons, the use of
tools with demonstrated capabilities in terms of reconfiguration and adaptation of such
components is required. Given the H2020 CERBERO context and the complementarity of
the tools built within the CERBERO consortium, a decision has been taken early in the
project to concentrate on the tools described in Section 2.4 rather than integrating exter-
nal tools into the process. Within the CERBERO project, a design flow evaluating the
tools MDC and SPIDER, which present common properties of modularity, parametriza-
tion and availability of their source code, can provide proper solutions to be implemented
in order to provide reconfiguration and adaptation of such combined systems. Indeed,
while MDC manages hardware datapath reconfiguration at runtime, SPIDER handles the
adaptation of a parallel software datapath. However, both tools do not integrate response
time analysis methods among their design features, motivating for the current study of a
lightweight response time model.

Objectives of the Thesis

The main objective of this thesis is to offer an elastic approach for response time
estimation that aims at supporting adaptation strategies in contexts where parametric

16



functionalities are implemented with HW and SW dataflow specifications and executed in
general-purpose and customized reconfigurable PEs. For this purpose, the following sub
objectives have been envisioned:

— Objective 1: Design an alternative approach for the estimation of the response time
in the design of customized CG Reconfigurable (CGR) architectures.

— Objective 2: Compose a toolchain for the design and runtime management of func-
tionalities mapped upon systems composed of general-purpose and CGR PEs.

— Objective 3: Imagine a methodology for detecting application activity determining
response time associated with parametric functionalities.

— Objective 4: evaluating the linear MoA (called LSLA) with the previously defined
activity for the response time estimation, in order to provide a motivational starting
point for supporting reconfiguration and adaptation based on simple and generaliz-
able activity of parametric functionalities executed on heterogeneous MPSoCs.

Structure of the Thesis

The thesis manuscript firstly exposes an overview of the research areas at the back-
ground of the proposed approach in Chapter 2: dataflow (DF) Models of Computation,
CGR acceleration, and timing analysis. In Chapter 3, problem definition, motivation and
objectives for each contribution are described. The subsequent three chapters, associated
with the contributions of the thesis, are organized as follows:

— Chapter 4 - Contribution 1: a design flow capable of estimating the response time in
the design of CGR accelerators (Objective 1) and a framework for the development
of parametric applications mapped on CGR and general-purpose PEs (Objective 2)
are presented and evaluated.

— Chapter 5 - Contribution 2: a methodology for detecting the determining factors of
response time in the execution of parametric functionalities mapped on heteroge-
neous MPSoCs (Objective 3) is proposed.

— Chapter 6 - Contribution 3: a design flow for estimating system execution latency
through the linear MoA, depending on the activity defined in Contribution 2 (Ob-
jective 4), is described.

Final considerations related to the thesis work and possible future improvements conclude
the manuscript (Chapter 7).
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Chapter 2

HW/SW DESIGN OF RECONFIGURABLE

SYSTEMS FOR SIGNAL PROCESSING

APPLICATIONS

Since this thesis work is focused on estimating the response time of parametric func-
tionalities performed on systems composed of general-purpose and CGR PEs, this chapter
provides an overview of the research areas related to this context. Indeed, the evaluation
of such KPI depends on the strategies used in the design of the functionality. In par-
ticular, such a design can combine specific approaches associated with the development
of SW and HW implementations of the functionality. While SW provides versatile pro-
cessing with arbitrarily complex control paths, a HW implementation tailors processing
to the task at hand, reaching higher performance and energy efficiency. From the SW
perspective, each description of the functionality is aimed at providing the instructions
to be executed in the HW architecture. However, depending on the application model
and the target platform considered in the design, timing analysis varies significantly in
terms of complexity and accuracy. In fact, the behavior of an application can be described
through a combination of operational elements present in a specific set corresponding to
a so-called Model of Computation (MoC) [LX04]. Such set and the rules of interaction
among its elements represent the semantics of the MoC. Depending on the semantics, a
specific strategy for evaluating response time needs to be determined. A MoC aims at
formalizing the representations of applications. So as to foster real interoperability and
make transformations and exploitation repeatable. On the other hand, the impact of the
target architecture on timing is commonly known, since this can have different types and
numbers of hardware components. In particular, in addition to an improvement in per-
formance, the implementation of a customized architecture capable of performing only
desired operating modes of a functionality or part of this, may lead to more predictable
timing behaviors. In general, since describing functionalities through specifications based
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Chapter 2 – HW/SW Design of Reconfigurable Systems for Signal Processing Applications

on DF MoCs presents properties such as abstraction and modularity which favor desired
mapping of its various components, this has been widely used in the evaluation of the
response time. For this reason, particular attention will be given to these MoCs and to
the use of architectures composed of general-purpose and customized PEs.

This chapter is structured as follows. Section 2.1 presents a focus on the state of the art
related to the design of signal processing applications by using DFMoCs. In Section 2.2, an
overview of the current hardware (HW) platforms and a detailed description about CGR
acceleration and design is proposed. Section 2.3 is focused on the main approaches used
in estimating response time. In Section 2.4, tools involved in the design flows proposed as
contributions of this thesis have been described. Section 2.5 concludes the chapter.

2.1 Design of Signal Processing Applications

We call a signal processing application a digital processing functionality to be per-
formed on constantly arriving digital data. The model used to describe such a functionality
determines the response time estimation strategy. Since DF models present characteristics
of modularity and abstraction, these are widely used in predicting application response
time. In Section 2.1.1, a brief description of the common systems simulation methods is
proposed. Sections 2.1.2 and 2.1.3 respectively report a focus on the models and timing-
based tools present in the DF approach.

2.1.1 Overview of the Main System Simulation Methods

In order to describe a functionality, different application models can be applied. This
led to the development of many tools capable to also evaluate the functionality in terms
of timing behavior [AS19; Men+17; Objb; ABA16]. Different Design Space Exploration
(DSE) strategies are based on specific MoCs to study application KPIs [AA18]. However,
DSE methods can be grouped into the four families below, on the basis of their application
models.

Imperative code simulation (Imp)

The latency of an imperative code with parallel tasks can be predicted before actual
execution using an Instruction Set Simulator (ISS) [AS19]. The ISS reproduces the behav-
ior of HW executing the code and determines response time by performing simulations
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2.1. Design of Signal Processing Applications

based on generated streams of instructions and evaluated with fixed input data. Never-
theless, this strategy requires, to build the tooling, a detailed knowledge of the underlying
architecture. It also suffers from a lack of scalability, since fast hardware (HW) operations
are simulated by a software (SW) that is orders of magnitude slower [Pim17].

SystemC-based simulation (SysC)

The SystemC C++ libraries [Acc] provide timing annotation mechanisms to modu-
larly specify an algorithm and simulate its timing behavior with several levels of timing
accuracy. The SystemC breakthrough is notably caused by a reduced simulation time with
respect to Hardware Description Languages (HDLs) simulation, and a coupling with other
system simulators, extending design interoperability [Men+17]. The good availability of
general-purpose platform models on which to simulate the applications makes the usage
of SystemC quite common for timing analyses [LIP]. However, the low level of abstraction
of such models requires still detailed HW information [Moy14].

UML-based simulation (UML)

The Unified Modeling Language (UML) standard object model decomposes a compu-
tation into a set of objects. UML extensions such as SysML[Obja] and MARTE [Objb]
are providing KPI specification semantics to feed an abstract simulation. In these DSE
tools, latency estimation is performed by Register Transfer Level (RTL) or Transaction-
Level Modeling (TLM) simulations [Gam+11]. In addition, UML-based simulations can
exploit the benefits of the other application models, such as those based on dataflow (DF)
[Gli+15]. However, MoA-based evaluations, which are focused on abstract KPI cost com-
putation and can be used in the context of UML-based methods, can further increase KPI
cost standardization offered by the plethora of UML-based DSEs works [Pel+18].

Dataflow model-based KPIs evaluations (DF)

DF MoCs have proven useful for modeling signal processing applications. When using
a DF MoC, one of several alternative abstract models can be chosen to represent the
computation of a functionality as a set of non-preemptive tasks which exchange messages
with each other through First In, First Out data queues (FIFOs) [PL95]. Each DF MoC
offers a different trade-off between application behavior predictability and runtime recon-
figuration of the workload. Synchronous DF (SDF) [LM87] in particular makes it possible
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to precisely define an execution iteration that is indefinitely repeated after an initial tran-
sitory phase. In that case, response time can be defined as the time between the beginning
of the execution of the firstly executed data source actor in the graph iteration and the end
of the execution of the last data sink actor, where the actors are non-preemptive tasks and
a data source actor (data sink actor) corresponds to a task that acquires (provides) deter-
mined input data (output data) of the DF network. Latency evaluations can be computed
from a DF MoC instance and a model of the HW architecture [Mat+19]. In that case, the
accuracy of the timing analysis relies on the quality of these timing models, based on KPI
estimates that define runtime behavior thresholds (such as Worst-Case Execution Time
(WCET) or average execution time).

Model Pros Cons

Imp cycle accuracy detailed HW/SW information
SysC high accuracy limited HW model abstraction
UML abstraction, flexibility limited KPI cost standardization
DF abstraction, modularity lower accuracy

Table 2.1 – Comparison among application models in DSE context.

Table 2.1 summarizes advantages and disadvantages of the previously presented cate-
gories. Depending on the latency evaluation objectives and their requirements in terms
of accuracy, the DSE methods based on the presented categories can lead to intractable
evaluation problems and long times of development and analysis. This is mainly due to
the amount of information (even not always available) required in this type of investi-
gation, which implies scalability issues. Different design tools can be used depending on
the constrained and optimized KPIs that have to be considered during development of
the functionality. In particular, in order to achieve timing estimation and optimization
for embedded systems, simulators working on different abstraction levels are exploited
[ABA16; OB18; Pim17]. Among these tools, DSE tools are focused on high abstraction
levels and designed for obtaining fast evaluation. Conversely, low-level analyses such as
the ones performed by ISSs favour accuracy at the expense of an increased exploration
time. For these reasons, having the possibility to include in the analysis a certain amount
of information available depending on the degree of accuracy required (i.e. elasticity in
the DSE) is desirable to efficiently exploit this trade-off and improve design productivity
[AA18]. This is particularly true with large design spaces, where abstraction is needed
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to reduce exploration complexity [Jon+18]. In this thesis, a method called PathFinder
(PF), aimed at estimating latency in the DF context, is proposed (as described in Section
3.2). This choice is dictated by the fact that DF MoCs give advanced information on
both computation and data transfers in the application, represented as a network of tasks
that communicate with each other. This approach presents capabilities of modularity and
abstraction that have been widely exploited in timing analysis (as explained in Section
2.3), including evaluation of certain undesired behaviours that may occur at runtime on
an MPSoC [RDP17]. Moreover, it naturally fits for latency predictability in heterogeneous
architectures [FW19]. For these reasons, the method for analysing system execution la-
tency in this thesis is based on a DF representation of the application, and Section 2.1.2
and Section 2.1.3 propose an overview of the DF MoCs and the timing-focused tools based
on these models respectively.

2.1.2 Dataflow Model of Computations

In literature, a plethora of DF MoCs has been defined. In particular, their semantics
represent different modeling in terms of activation, execution, and interaction among tasks
that describe the desired functionality. For this reason, each MoC implies specific features
as reported in Table 2.2. Although other MoCs exist in literature (such as multidimen-
sional models [ML02; Gam+08]), this table takes into account only a representative part
of monodimensional MoCs, since target tools support this type of DF models (see Section
2.4). Kahn Process Networks (KPNs) [Kah74] consider a certain number of parallel tasks
in communication with each other via unbounded FIFOs. Each task represents a specific
amount of computation of the whole functionality, which, at each iteration, receives cer-
tain input data (called tokens) through the FIFO interface. In particular, FIFO channels
writes and FIFO channel reads are non-blocking and blocking respectively. Other MoCs
presented below derive from the KPN model, since this corresponds to the main family
in the DF context [Pel+13]. As a specialization of the KPNs, Dataflow Process Networks
(DPNs) [LP95] imply a sequence of executions (or firings) for each task (called actor).
Such executions are completed without any interruption and enabled by a set of dynamic
firing rules based on the presence of tokens into bounded FIFOs. SDF [LM87] specializes
DPNs providing static firing rules, losing the dynamic datapath reconfiguration property.
Indeed, consumption and production rates associated with the number of tokens are fixed
and constant for all the executions. This leads to the advantage of improving design-time
predictability leveraging on a simpler analysis of the model. As an extension of the SDF,
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MoC Reconfig. Rate Determinism Expressivity Turing
Variability Completeness

KPN N N N high Y
DPN Y Y N high Y
SDF N N Y low N
BDF N Y N high Y
CSDF N Y Y low N
HDF N Y Y low N
SADF Y Y N medium Y
PSDF Y Y Y medium N
PiSDF Y Y N medium N
SPDF Y Y N high Y
BPDF Y Y N high Y
EIDF Y Y N high Y
CFDF Y Y Y high Y

Table 2.2 – Comparison of the presented DF MoCs.

Boolean DF (BDF) [Buc93] involves further actors in order to control the token con-
sumption and production rates. This control flow makes the BDF model Turing complete
unlike its more specialized version SDF. Like BDF, Cyclo-Static DF (CSDF) [Bil+96]
enables variable token consumption and production rates, representing another extension
of the SDF. However, the control flow consists of a cyclic variation of the rates through
a state modeled in the actors and initialized every determined number of firings. Other
MoCs limited to applications that provide for the sequential execution of scenarios are
the Heterochronous DF (HDF) [GBL99] and the Scenario-Aware DF (SADF) [The+06].
HDF supports changing the token consumption and production rates through Finite State
Machine (FSM), whose state remains fixed during a firing, and during which the system
can be considered as an SDF model. SADF extends SDF with the concept of scenarios,
which imply the dynamic control of the rates. An alternative way to perform reconfigu-
ration of the data rates at runtime in static MoCs is represented by the Parameterized
SDF (PSDF) meta models [BB01]. Their strategy extends a DF model with dynamically
reconfigurable hierarchical actors and considering parameters modifiable at runtime. With
a similar approach, the Parameterized and Interfaced SDF (PiSDF), or πSDF, [Des+13]
refines the control over the parametrization compared to the PSDF and merges the no-
tion of interface [PBR09] that insulates the different levels of hierarchy in the application
representation. This is managed by improving graph composition and adding dependen-
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cies among parameters, whose relations are defined in a hierarchical tree. Other models
that make use of parameters to set consumption and production rates are the Schedula-
ble Parametric DF (SPDF) [FGP12] and the Boolean Parametric DF (BPDF) [Beb+13].
Nevertheless, these represent non-hierarchical reconfigurable generalizations of the SDF
model. SPDF considers special actors in charge of modifying parameters after every spec-
ified number of firings, with the purpose of guaranteeing schedulability. BPDF leverages
on a combination of integer and boolean parameters in order to dynamically control rates
and communication channels respectively. An alternative to the parametric approach con-
sists in other dynamic MoCs. With respect to the parametric-based MoCs, these models,
such as Enable-Invoke DF (EIDF) [Pli+08] and Core Functional DF (CFDF) [PSB09],
offer more efficient implementations with different degree of analyzability. These models
are by nature less predictable than PiSDF. In the EIDF, consumption and production
rates depend on the dynamic firing modes of the actors. These latter are handled by
model specifications that check the activation requirements given the rates of current
mode (enable), execute the requested functionality and determine a set of feasible modes
for the next firing (invoke). CFDF corresponds to a subset of the EIDF, that provides
for a restriction of the achievable next modes, from a series to a single and deterministic
case.

In this thesis, the PiSDF MoC has been chosen for the availability of advanced tooling
and the predictability of the application representations supporting reconfiguration.

2.1.3 Timing-focused Tools in the Dataflow Context

In literature, various tools depending on specific DF MoCs have been developed over
the years. This section focuses on those tools that provide system-level analysis to optimize
timing of functionality expressed with the DF models (see Table 2.3). MAPS [Leu+17] is a
compilation framework that targets applications expressed with the KPNmodel. The main
feature of MAPS consists of providing DSE in order to favour fast functional validation
in systems with heterogeneous PEs, which are defined by their cost functions. Applica-
tions can be implemented in sequential C code or in its extension called C for Process
Networks (CPN). Developed by Kalray, MPPA AccessCore [Kal; BMd12] is a commercial
framework dedicated to MPPA multi-core systems. Applications are expressed as CSDFs
through a C-based language called Sigma-C. PREESM [Pel+14] is a rapid prototyping
tool that provides design simulation and verification for applications described as a PiSDF
graph. The tasks of the desired functionality are specified as C functions and mapped on
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DF Tool MoC Arch. Input Specs AvailabilityModel

cost funct.MAPS KPN of target C,CPN accademic

MPPA AccessCore CSDF abstract Sigma-C commercial
PREESM PiSDF S-LAM C open source

KPN,DPN,SDF,
BDF,CSDF,HDF, variousPtolemy II

PSDF
abstract languages open source

commands,SDF3 SDF,CSDF,SADF abstract C/C++ open source

SPIDER PiSDF S-LAM C++ open source

Table 2.3 – Comparison of the main timing-focused tools based on DF MoCs.

a target modeled through the System-Level Architecture Model (S-LAM). In order to
execute the application on the system, PREESM provides code generation for MPSoCs.
Ptolemy II [Pto14] provides modeling and simulation of heterogeneous systems expressed
as combinations of various DF MoCs. A functionality is specified through a hierarchy of
application graphs, whose levels conform to a determined MoC, which is represented in
some modeling language (such as Java or C). SDF3 [SGB06] is an open-source framework
that offers analysis and simulation for SDF, CSDF and SADF MoCs. functionalities are
described by using command-line tools and C/C++ Application Programming Interface
(API). Nevertheless, like in Ptolemy II, code generation of the application prototype for
MPSoCs is not provided. SPIDER [Heu+14] offers runtime management of applications
specified as PiSDFs. The development of the functionality can take place by exploiting
the PREESM environment, and the actors internal code is provided as C++ code.

In this thesis, PREESM and SPIDER have been chosen since they provide a design
environment for scheduling and mapping parametric functionalities at design time and
runtime respectively. In addition, both tools are open source and consider the S-LAM as
an architectural model, which is suitable for describing heterogeneous MPSoCs with a
high level of abstraction.
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2.2 Design of Coarse-Grained Reconfigurable Archi-
tectures

Nowadays, a wide spectrum of processing systems capable of offering different trade-
offs in terms of flexibility and specialization/efficiency can be considered for signal pro-
cessing systems. Figure 2.1 illustrates the main HW platforms depending on these design
properties.

Specialization/EfficiencyFlexibility

ASICCGRAFGRADSPGPUCPU

Reconfigurable

Application
Specific

Domain
Specific

General
Purpose

Figure 2.1 – Comparison among the main architectures for processing systems in terms
of flexibility and specialization/efficiency.

Central Processing Units (CPUs) are general-purpose HW units capable of implement-
ing arithmetic, logic, branching, and data transfer [HP17]. Since CPUs support any func-
tionality, they provide the highest degree of flexibility. For this reason, this type of PEs
is integrated in personal computers and most high performance computers. Nevertheless,
CPUs do not represent an efficient solution when more strict requirements with respect to
timing performance, chip area, energy/power consumption must be satisfied. In fact, each
functionality is described through programming languages, then translated in a sequence
of instructions (called machine code) suitable for the execution on these general-purpose
units. The Instruction Set Architecture (ISA) of a CPU is extensive, with the objective
to efficiently support a vast set of operations on integers, floats, vectors and matrices. In
this context, the generic operations are performed in different pipeline stages that can
imply specific amounts of clock cycles: instruction fetch, instruction decode, execution,
memory and write back. This strategy leads to long runtimes, large circuitry sizes, and
high energy/power demands. Indeed, the fundamental principle to which general-purpose
systems comply is the adaptation of the functionality to the target architecture. Since the
latter is generic and fixed, the efficiency is sacrificed in favor of the flexibility. Moreover,
deep pipelines of instructions and multi-threading support make these architectures costly
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in energy.

Although created for uses in specific domains, additional architectures can support
general-purpose functionalities: Graphics Processing Units (GPUs) and Digital Signal
Processors (DSPs). In particular, with respect to the CPUs, GPUs provide a more efficient
handling for operations associated with image and video processing, for which they obtain
the best performance. Indeed, their architectures are capable to exploit the typical data
parallelism present in the applications of this domain. GPUs consider a pipeline capable
of processing a large number of tasks and where the output of each task is linked to the
input of the next task. Differently from CPUs, where the task is processed in stages in a
pipeline divided over time and which exploits all processor resources, the GPUs provide
for a distribution of HW resources between the stages of a pipeline divided into space
[Owe+08]. Each part of the processor elaborates a stage and provides its output to the
other part that takes care of the next stage. In order to make the best use of GPU,
the code related to general-purpose operations has to be rewritten for a dedicated API or
framework (such as the OpenCL library [Gro]). However, in addition to achieving the best
performance on the GPU, the programmer must take care of coordinating the scheduling
of the processing on the system processor and the GPU and the transfer of data between
the memories associated with these units [HP17].

Since DSPs are also capable of performing generic functionalities, they can be counted
among general-purpose devices. However, their ISAs are specialized for matrix, filtering
and transformation operations (such as multiplication and accumulation) which are char-
acteristic of signal processing. In this domain, DSPs can take advantage of the parallelism
of data which can often be in both fixed and floating point formats. In order to obtain the
best performance, as seen for the GPUs, the description of the applications is associated
with specific compilers, and also requires the presence of signal processing operations and
particular attention in the management of generic instructions.

In addition to the presented categories, there are others that respond to the need for
high efficiency, despite a reduction in flexibility. The assumption on which they are based
is reversed with respect to that one defined for general-purpose platforms. In this case,
the architecture is adapted to the desired functionality. The devices that best denote this
principle are the Application-Specific Integrated Circuits (ASICs). As depicted in Figure
2.1, they provide the maximum efficiency among the HW systems, since their implementa-
tion is dedicated to the execution of a single functionality. Only the HW blocks required
to carry out this application are present in the circuitry. Generally, the architecture is
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optimize to reduce the execution time related to the target algorithms, reason why in
this case it is known as HW acceleration [Nur+16]. However, the optimization of these
devices can follow different strategies based on the KPI selected in the development flow.
This may determine different HW designs for the same functionality, which in any case
remains the only executable in a system absolutely not flexible.

Reconfigurable devices offer a combination of the approaches that can be defined
as flexibility-oriented and efficiency-oriented, typical of the general-purpose systems and
HW implementations respectively. These consist of a set of PEs and connections that can
be adapted at runtime [CH02], in order to perform a specific functionality or operating
mode (called also scenario). The system adaptation is applied through a HW-level re-
configuration of logic blocks and interconnects [TB01]. These are deployed onto a logic
substrate of a reconfigurable platform, the most common of which in the market is the
Field-Programmable Gate Array (FPGA) [Res]. In literature, such platform is used to
implement two main approaches based on Fine-Grained (FG) and Coarse-Grained (CG)
reconfigurable architectures respectively [Che05]. These are defined depending on the de-
gree of granularity associated to their PEs and connections. FG implementations are
characterized by a bit-level reconfiguration of the logic substrate. This fine modification
implies long adaptation times, although it favors high flexibility. On the contrary, since
CG architectures involve word-level PEs, they leads to a reduction of the reconfiguration
timing at the expense of flexibility. Figure 2.2 shows the fundamental difference between
the FG and CG approaches. FG reconfiguration consists in totally or partially replacing
the bit-level description of the architecture in the FPGA (see Figure 2.2A). On the other
hand, reconfiguration in the CG approach is a selection of PEs or their configuration given
the operating mode represented as an ID and chosen for the execution of the functionality
(see Figure 2.2B).

In the last decades, systems composed of different platforms have been designed for op-
timizing flexibility and efficiency. Indeed, general-purpose architectures enable more flexi-
ble solutions with lower design effort and cost with respect to reconfigurable architectures
or ASICs. Nevertheless, HW acceleration is sometimes necessary for computationally-
intensive workloads in order to satisfy the use-case requirements [FW19], especially in
terms of timing and energy/power consumption. Since this thesis is focused on the first
aspect, and in particular on estimating latency for flexible systems, a heterogeneous ar-
chitecture based on a combination of CPUs and CGR accelerators has been selected. In
fact, this represents a trade-off between flexibility and efficiency in HW/SW co-design,
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Figure 2.2 – Example of layout and reconfiguration in FG and CG reconfigurable archi-
tectures.

when avoiding high design overheads to gain performance.

2.2.1 Coarse-Grained Reconfigurable Architectures

Although CGR systems enable less flexibility with respect to the FG counterparts, they
avoid the slow reconfiguration times required by the latter. In fact, they consists of bigger
PEs that involve Arithmetic Logic Units (ALUs) and a relevant storage capacity. Since
interconnects among PEs generally present the same level of granularity, Coarse-Grained
Reconfigurable Architectures (CGRAs) make easier the place and route process than FGR
Architectures (FGRAs) [Har01]. Moreover, CGR accelerators can be implemented on both
ASIC or FPGA platforms, while FGRAs are specific to FPGAs. For these reasons, over
the years various Coarse-Grained Reconfigurable Architectures have been proposed, which
can be grouped into the main categories introduced in [Har01]. This classification focuses
on the differences in terms of layout and connections of the PEs, distinguishing three
different types: linear arrays, mesh-based arrays and crossbar-based arrays.

Linear arrays are often associated with the pipelined execution of the functionalities
(see Figure 2.3A). Each PE is connected with its closest neighbors (predecessor and succes-
sor) in order to constitute linear arrays. In case of a combination of several PEs running in
parallel, further routing resources are needed, which may involve switching blocks among
multiple stages of the pipeline [Sma+14]. For these properties, CGRAs based on linear
arrays can implement processor-like systems where instructions are processed in stages
[HSM03].
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Figure 2.3 – Different types of layout and connections used in CGRA design.

Mesh-based CGRAs are used in the most of the cases. As depicted in Figure 2.3B, these
consider a matrix of PEs, each typically connected to its 4 or 8 neighbors. Implementations
of this kind of systems have been proposed in [NKS12] and [PDM12]. In the former, the
CGR architecture involves arithmetic and logical units for integer or fixed point numbers
arranged as a 8-by-8 mesh and an additional line of storage elements. In the latter, the
proposed system evaluates PEs composed of specific DSP and memory blocks of the
vendor-specific FPGA on which this is deployed.

Less commonly used are CGRAs based on a crossbar switch implementing the con-
nection among PEs (see Figure 2.3C). One of the first examples of this type of systems
is organized with a communication structure consisting of a local and a global network,
which respectively connect the 4 PEs (implemented as ALUs) grouped in a cluster and
the clusters among each other [YR93]. A further implementation with different crossbar
configurations has been proposed in [Ino+10].

In addition to the categories mentioned above and proposed in [Har01], CGR systems
can integrate sets of heterogeneous PEs (e.g. DSPs, processors, etc.) and functional units
(FUs) (e.g. adders, multipliers, etc.) and interconnects strictly necessary to the domain-
specific functionalities (as shown in Figure 2.3D). In fact, since applications do not always
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fit in CGRs with fixed elements, custom PEs capable of increasing the efficiency of the
designed solution are often needed, and CGRAs are employed as co-processors for these
general-purpose units.

2.2.2 State-of-the-art Tools for CGRA Design

Since features and granularity of CGRAs are highly varied, several works in literature
address their design issues [CH02] [WWC16]. Indeed, complexity appears under differ-
ent aspects such as: hardware (HW) design, platform dependency, resources mapping,
optimisation, reconfiguration management. Although CGR acceleration can be achieved
by writing HDL code manually, High-Level Synthesis (HLS) provides design automation
through a high-level description of the desired functionality. The main approaches are
based on a design toolchain with HLS or on a sole HLS tool. In both cases, the input
specifications can be described by using the application models mentioned in Section 2.1.1.

Stefanov et al. [Ste+04] propose a KPN-based flow for a system composed of a CPU
and an FPGA. The functionality is specified as a Matlab code and mapped upon the
target architecture. In order to generate the implementation of the application starting
from the Matlab specifications, the development of COMPAAN and LAURA tools has
been required. Raffin et. al [Raf+10] present a framework named ROMA for the schedul-
ing, binding and routing of reconfigurable accelerators for multimedia applications. The
ROMA architecture is composed of custom reconfigurable PEs and the framework is
specific to them, executing a fixed set of standard operations, thus with limited special-
ization. Voros et. al [Vor+13] leverage on a fixed CGR structure that comes along with
its synthesis flow, and where 3 different types of PEs can be used for accelerating pur-
poses. Such types of PEs corresponds to 3 heterogeneous reconfigurable architectures: i)
a streaming-oriented CGRA based on an array of 16-bit PEs that exchange data through
configurable channels, ii) a reconfigurable architecture for different application domains
that is based on a combination of a RISC processor and a mid-grain reconfigurable datap-
ath, iii) an embedded FPGA suitable for FG Reconfigurable (FGR) algorithm or arbitrary
logic implementation. Among tools based on the MPEG-RVC standards and the Cal Ac-
tor Language (CAL), Open RVC-CAL Compiler (ORCC) [Sir+10] is the most commonly
used compilation infrastructure. It provides generation of descriptions for software (SW),
hardware (HW) or mixed designs leveraging on an intermediate representation of the DPN
MoC. Indeed, this latter can be used in DSE and vendor-specific FPGA-based HLS tools
(such as Turnus [CMJ13] and Xronos [BMJ13] tools). Beaumin et al. [Bea+10] adopt
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designs based on MPEG-RVC-cal for building a custom CGRA, where actors are directly
mapped onto different PEs and communicate through FIFOs. The reconfiguration consists
of modifying DF actor currently executed by a PE. However, design automation is not
supported. Multi-Dataflow Composer (MDC) is a tool for the creation and the DSE of
multi-functional reconfigurable architectures [PSR15]. This tool has been previously inte-
grated with ORCC in order to optimize DF specifications for the generation of CGR HDL.
Then, it has been combined with the Xronos HLS to build a vendor-specific DF-to-HW
design environment [Sau+14]. Ciobanu et al. [Cio+18] propose an open design platform
named EXTRA and based on a web-oriented user interface for the development of accel-
erated applications for High Performance Computing (HPC) systems. Depending on the
DF specifications and the HW requirements, EXTRA generates reconfigurable architec-
tures implemented in FPGA devices. Synflow Studio [Syn] is an Integrated Development
Environment (IDE) for the HW design of functionality described as a task networks. This
is specified by a C-based high-level code, written in a proprietary DF language named Cx.
The code compilation translates into a HDL (Verilog or VHDL) which can be synthesized
and simulated by several design tools for multi-vendor FPGA devices. CAPH [SBA13]
represents another HLS framework based on DF MoC and specialized for streaming ap-
plications. Applications are described as a DF network through functional expressions
of the CAPH language. The generated HDL can be adopted for synthesis in ASIC and
FPGA platforms. The Xilinx Vivado HLS [Xil] provides generation of HW Intellectual
Properties (IPs) targeted for Xilinx FPGAs from a C-like description of the functionality.
Moreover, the design environment provides functional verification and DSE after the syn-
thesis phase. The Intel FPGA SDK for OpenCL [Int] is a development suite for systems
with Intel CPUs and FPGAs. Applications are specified in the OpenCL language, a vari-
ant of the C language widely used in GPU programming. Starting from C/C++/SystemC
specifications, Catapult HLS [Gra] provides RTL designs for ASIC and FPGA platforms.
However, in order to perform the RTL synthesis, vendor-specific tools are required.

Table 2.4 reports a qualitative comparison among the HLS-based design solutions.
This table highlights the characteristics of the HLS toolchains respectively in terms of:
application model as introduced in Section 2.1.1, ability to re-map the functionality on
different HW components at runtime, the possibility of generating the HDL describing
the CGRA, the platform on which the generated accelerator, the heterogeneity and the
connection topology of the PEs belonging to the system, and the availability to use the
toolchain. In order to favor IP-level latency predictability in platform-agnostic design of
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CGR accelerators, a new trade-off named DataFlow-Functional (DFF) HLS [Rub+19] is
proposed in this thesis. It builds on the properties of two open-source DF-based tools
mentioned above: MDC and CAPH (for more details see Sections 2.4.2 and 2.4.1 respec-
tively). In Section 3.1, HLS design approaches and motivations at the base of the novel
methodology are discussed. Section 4.1 presents the design flow of the DFF HLS and
an assessment in the context of video coding with respect to the main commercial tools
(Xilinx Vivado HLS and Intel FPGA SDK for OpenCL).

HLS Appl. (Re-) HDL Target PE Topology Toolchain
Toolchain Model Map. Gen. Platform Heter. Availability

[Ste+04] DF Y Y FPGA Y custom accademic
[Raf+10] Imp Y N custom device N fixed accademic
[Vor+13] Imp Y Y custom device Y fixed accademic
[Bea+10] DF Y Y FPGA Y fixed open source

Xilinx[Sau+14] DF Y Y FPGA Y custom open source

[Cio+18] DF Y Y FPGA Y custom open source
[Syn] DF Y Y FPGA Y custom open source

[SBA13] DF N Y ASIC, Y custom open sourceFPGA
Xilinx[Xil] Imp Y Y FPGA Y custom commercial

[Int] Imp Y Y Intel Y custom commercialFPGA
ASIC,[Gra] Imp Y Y FPGA Y custom commercial

[Rub+19] DF Y Y ASIC, Y custom open sourceFPGA

Table 2.4 – Overview of the main state-of-the-art toolchains that provide CGR accelera-
tion through HLS.

2.3 Timing Analysis on MPSoCs

Knowing timing behavior of a desired functionality is an important premise in the
effectiveness and efficiency of system design, especially in the presence of time constraints.
Basing on the requirements for running a functionality, development can take several
paths depending on the choice of the application model and the type of architecture.
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However, the problems associated to the timing estimation and the strategies employed
in solving them belong to a common context. In particular, studies concerning real-time
systems are very important, since they address very strong requirements. In fact, works
of this research area are useful in understanding the problems related to the estimation of
execution times. Time estimation is specifically difficult when an application is mapped
to an architecture with multiple PEs. For this reason, this section proposes an overview of
time estimation research areas. At first, the main concepts at the base of timing analysis
are discussed in Section 2.3.1. Indeed, these refer to the techniques used in the literature
for the evaluation of the response time. The state-of-the-art strategies that make use of
one or more of these techniques are described in Section 2.3.2.

2.3.1 Fundamental Concepts in Timing Analysis

The main strategies adopted in timing analyses aim at evaluating the WCET and han-
dling the limitations due to task concurrency in a finite architecture. These strategies are
based on the use of techniques such as: WCET analysis, schedulability analysis, resource
arbitration, and cache partitioning.

WCET Analysis
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Figure 2.4 – Example of CFG in WCET analysis.

WCET defines a deadline within which the execution of a single-task application in a
single-core platform is guaranteed [Wil+08]. However, calculating this bound is challeng-
ing, since it depends on the characteristics of the functionality and architecture [MTT18].
In fact, the input data values impact the operations of the tasks, which can be associ-
ated with different control flow branches and certain delays due to the memory hierarchy
of the architecture. Therefore, WCET identification is a complex process that has been
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widely explored in literature. The common approaches can be classified into static and
dynamic evaluations [Lv+16]. In order to estimate WCET, the static evaluation methods
are based on representing the executable program of the task as a Control-Flow Graph
(CFG). As depicted in Figure 2.4A, a CFG is composed of instructions (vertices) and
control flow statements (links). Analysing all paths present in the CFG (the set of paths
must be finite), ranges for input data and iterations are extracted or provided by the user.
Selected paths and ranges determine the degree of flexibility of the admitted behaviors
of the application. This information is therefore combined with an abstract model of the
architecture or a model checker, in order to compute the bounds of the instructions. Since
WCET is computed as a sum of these contributions (see Figure 2.4B), the accuracy of the
used model heavily affect the analysis in terms of estimation quality and complexity. On
the other hand, achieving WCET through dynamic, or measured-based, methods consists
in measuring end-to-end execution latency of a subset of task scenarios and selecting the
maximum measure as WCET [Wen+08]. The measurements are performed by using either
the target hardware (HW) or an ISS. In the case of measuring execution times without
the use of an ISS, this fact avoids the detailed knowledge about the ISA specifications and
system features. However, an underestimated WCET is generally provided by dynamic
analyses because of a limited case coverage. For this reason, more refined hierarchical
methods that compute WCET by analysing measures of parts of the task (mainly, CFG
blocks) combined with all possible paths (extracted from the CFG as in the static ap-
proach) have been proposed. One may note that any approximation on either application
or architecture jeopardizes the WCET estimate reliability.

Schedulability Analysis
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Figure 2.5 – Example of partitioned and global scheduling.

In order to determine the response time of a complete application composed of several
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tasks, a schedulability analysis is required. Typically, this analysis takes as input WCET
(and/or Best-Case Execution Time (BCET)) bounds of the tasks and give as a result
the Worst-Case Response Time (WCRT) [Axe+14]. Scheduling algorithms have been
proposed in the analysis depending on the policy chosen for task resource sharing. These
can be grouped in two main classes partitioned and global scheduling [Gua+11]. The
former evaluates a fixed mapping of each task upon a single PE, not allowing any task
migration (see Figure 2.5A). In the latter, tasks can be performed on different PEs,
either during its execution or between its distinct executions (see Figure 2.5B). Both
classes are often specified depending on a further property of scheduling algorithms: the
possibility to interrupt task execution and resume the task later (preemption). Preemptive
and non-preemptive scheduling can be applied depending on the selected design trade-off.
In addition, information associated with the task priority, operating-system overheads,
and shared-resource delays can be integrated into the schedulability analysis. In this way,
timing requirements of tasks and application in a specific context can be verified [AP14].

Resource Arbitration
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Figure 2.6 – Example of memory arbitration using static and dynamic policies (respec-
tively by considering TDMA and RR).

In a CPS context where the system has many sensors and actuators, applications
involve multiple tasks that concurrently run on MPSoCs. Since WCET-based estimates
consider tasks executed separately, delays due to accessing shared resources (such as
buses and memories) lead to strongly incorrect analyses. For this reason, evaluations
aimed at avoiding this issue are required. A typical strategy is to remove the effects of
interference by adopting predictable shared resource arbitration mechanisms [Mai+19].
Such arbiter handles conflicts in task requests by guaranteeing them access to the bus
and memory one at a time. However, implicit accesses (e.g. related to the cache-coherence
protocol) increase uncertainty in static task management [Kel+14; HKP17]. The main
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techniques used in this context are respectively called: time-driven, event-driven, and
hybrid [Abe+13]. Time-driven arbitration consists in a predefined scheduling of the access
requests and in the exclusive assignment of the shared resource for a determined time slot.
This policy, commonly known as Time Division Multiple Access (TDMA), distinguishes
the execution times due to computation and those deriving from concurrent access to
shared resources. Figure 2.6A shows an example of memory arbitration with a TDMA
policy, where in particular each PE periodically accesses the resource in a time slot of
the same duration. Event-driven arbitration considers runtime decisions based on the
access history for determining access grants. The main policies respectively evaluate, as
a worst-case scenario, the circumstance where the maximum number of access requests
are allowed before (Round-Robin (RR)) and simultaneously (First-Come First-Served
(FCFS)) with respect to a specific request. Figure 2.6B illustrates the counterpart to
Figure 2.6A for the RR policy, where slot assignment and length are decided dynamically.
Hybrid arbitration combines the time- and event-driven arbitration depending on static
or dynamic arbitration periods respectively.

Cache Partitioning
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Figure 2.7 – Example of 3-levels cache hierarchy with partitioning.

In order to reduce data access time, various levels of cache are used in an MPSoC
memory hierarchy. In general-purpose architectures these levels are 3 or 4, and are referred
to as L1, L2, L3 and L4 on the basis of an increasing order by size. Each level of cache
can be assigned exclusively by a single PE (private cache) or can be shared between
different PEs (shared cache) (see Figure 2.7). Private caches provides data access with a
lower latency with respect to the shared caches [DS07]. On the other hand, large shared
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caches offer higher efficiency for the same chip area than small private cache sets. For
these reasons, only the L1 level cache is often assigned privately, sharing the other levels
of the hierarchy [Gra+15]. Nevertheless, parallel accesses to the cache resources create
delays due to the inability to handle requests in a completely parallel way, leading to a
pipelining of the accesses. Moreover, since cache levels are limited in size, not all required
data may be available. This fact implies the use of a data replacement policy aimed at
keeping only the most important data for a given time window. However, although access
to data is favored through data replacement policy algorithms and pipelining of accesses
can regulate parallel requests, accurate and efficient timing analyses remain challenging
[Abe+13]. For this reason, a recent trend is to associate a specific part of the cache to
each owner PE. In this manner, each memory block is replaced according to the need of
the same PE. In this context, the partitioning methods can build their decisions based on
HW or SW implementations using exclusive access to a determined number of ways, sets,
or blocks of the cache [Mit17]. Especially in application for real-time systems, this choice
is supported by a task characterization (provided by a WCET analysis), in order to count
the potential cache hits [Abe+13]. Other approaches, based on previous task behavior, rely
on dynamic partitioning to improve performance. These methods take into account the
reconfiguration time needed to deeply modify system behavior. A further strategy to gain
performance considers the optimization of the scheduling. In fact, the information about
cache accesses can be exploited to modify task priority in static and dynamic scheduling.
One may note that all practical scheduling problems are NP-complete and thus require
heuristics and non-optimal decisions.

2.3.2 Main Strategies in Timing Verification

Focusing on the timing analysis of systems with multiple PEs, the survey presented
in [Mai+19] classifies the state-of-the-art into four general research categories, as follows.

Full Integration (FI)

Works based on Full Integration leverage on the complete information regarding the
execution of the tasks. The analysis is based on WCET, using model checking and abstract
processor states. In particular, potential interference due to the simultaneous requests of
the shared resources is taken into account in the evaluation. In addition, no particular
relevance is dedicated to the exploration of various strategies regarding task scheduling,
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which is considered known, non-preemptive and fixed with synchronous task releases with
small or no jitter.

In literature, efforts have been focused on the evaluation of interferences based on the
type of shared resources considered in the analysis: memory, bus and a combination of
both. Works focused on the memory interference examine the cache state through models
deriving from abstract assumptions or model checking [Gus+10; Lv+10; YPV15; NS16].
Works aimed at evaluating bus interferences integrate an accurate contribution model of
the related interference in the WCET analysis, assuming shared memory interference as
negligible or handled by cache partitioning or resource arbitration itself [Rih+15; JHH15;
JHH16]. Other works deal with both types of shared resources [DN12; Bon+12; KM15].

Although FI promises precise estimations, generally it suffers from a high complexity
and a low scalability, because HW real architecture must be known and precisely modeled
analysis required in its methodologies. Moreover, the provided estimate relates to an exact
context, since the integrated interference depends on how concurrency affects the access
to the shared resources in given time windows.

Temporal Isolation (TI)

Temporal Isolation separates task processing over time in order to avoid contempora-
neous usage of the shared resources, mainly the memory bus, which is considered as the
main source of interference. In order to achieve this, different methods can be applied.

Solutions based on a phased execution model refactor the code of the task, identifying
two or three main phases [Yao+12; Bak+12; WP14]. As a first step, data and instructions
loading from main memory to private cache is performed. The second phase consists of
executing task computation by taking advantage of the data and instructions availability.
As a third phase, the data storing time in the main memory can optionally be evaluated.
Exploiting this model, a proper task scheduling can avoid overlapping memory access
phases.

Another strategy aims at handling accesses to the memory bus by using memory
bandwidth regulators [Now+14; Man+17; FUU18]. These periodically assign a limited
bandwidth to each PE. In this way, tasks running onto different PEs can access the
memory with independent flows. However, in the case that a PE requires more bandwidth
than the assigned one, this is forced to wait for the next period, even if other PEs are
idle.

In order to provide temporal isolation, a further method evaluates offline scheduling
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decisions [Gia+15; Per+16; CC18]. The set of scheduling decisions is statically generated
to be used as is at runtime to manage access to shared resources. Nevertheless, specific
operating modes or dynamic code modifications may require a regeneration of these spec-
ifications.

Other works make use of hardware isolation mechanisms that remove or limit the de-
pendency of the interference on the co-running tasks. Common techniques involve resource
arbitration (by using TDMA or RR) or cache partitioning [Ros+07; YKS11; OLF17]. In
addition to requesting specific hardware designs, the implementation of Temporal Isolation
often implies issues in effective bandwidth handling or pessimistic worst-case analyses.

Such approaches provide context-independent estimations, since the interferences due
to the co-running tasks is bounded or removed in the analysis. In addition to improving
predictability of the access requests, TI leads to a simpler timing evaluation than FI
analyses. However, the lower HW utilization penalizes the performance in running the
whole application, especially when a full isolation is applied [Mai+19].

Integration into Schedulability Analysis (IS)

Integration into Schedulability Analysis accounts additional delays due to the presence
of co-running tasks and to the policy of accessing shared resources in the schedulability
analysis. This integration is considered with respect to a model based on the WCET of
each task in isolation. As a result of this combination, WCRT evaluation can be obtained.
In literature, works that deal with sharing of single or multiple resources are present.
These can be grouped depending on which they focus: interconnects ([Pel+10; Sch+11;
SE11]), memory ([Kim+16; XAP17]), or multiple resources ([Dav+17; And+18]). For the
mentioned reasons, the IS approach is characterized by highly flexible analyses, since it is
compatible with various assumptions regarding different types of scheduling, arbitration,
and shared resources. In particular, with this approach, analyses either context-dependent
or context-independent are feasible. Indeed, the analysis can evaluate the behavior of
actual co-runners or be based on worst-case considerations that include any co-runner.
In addition, the main advantage of IS methods derives from modeling interference with a
time slot for the resource demand that is equal to the task response time. This strategy
reduces the pessimistic evaluation of the WCRT compared to the sum of worst-case delays
associated to shorter time windows. Moreover, more precise analyses are provided when
information about potential concurrent tasks and the amount of resource access requests
in the task time slot are included. Nevertheless, an issue of circular dependency requires to
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be handled. Indeed, execution times of the tasks depend on resource contentions, which
in turn are based on the time slot of the tasks under evaluation. This can be solved
for practical-sized systems with a quasi-polynomial complexity degree. However, works
based on the IS approach effectively manage analysis with serialized access to the shared
resources, at the cost of excluding their overlapped usage.

Mapping and Scheduling (MS)

Mapping and Scheduling combine a timing analysis with mapping and scheduling
solutions to guarantee timing constraints. Mapping consists in assigning tasks to PEs
and data to specific memory sections. On the other hand, the order and management of
tasks are addressed by the scheduling. These two processed can lead to various solutions
in terms of efficiency and their decisions are based on analyses with a different degree
of computational complexity. For this reason, methods aimed at obtaining of optimal or
sub-optimal mapping and scheduling are present in literature. These can be classified
depending on the optimization strategy as follows.

A common method consists of converting the mapping and scheduling processes into a
Integer Linear Programming (ILP) problem [Bec+16; Chi+16; ZWN17]. ILP provides an
optimal solution for mapping and scheduling, based on the trade-off chosen for a function
that depends on variables related to the problem (such as number of PEs, communication
delay and order of tasks). In particular, all variables are limited to the domain of integers,
and the function to optimize as well as the non-integer constraints are linear. Instead, if
some decision variables are not discrete, the problem is known as Mixed-Integer Linear
Programming (MILP).

Other works address a further problem when optimizing task partitioning, called the
Bin-Packing (BP) problem [NP15; Xu+16]. BP consists in packing n objects (tasks) of
different sizes in the minimum number of bins (PEs) of capacity C. Since this problem is
strongly NP-complete, heuristics (such as next-fit, best-fit, worst-fit) have been developed
to achieve close-to-optimal solutions quickly.

Additional strategies are respectively based on programming paradigms or on algo-
rithms [Che+16; SS17; SI18]. In constraint programming, the solution of the mapping and
scheduling problem is deduced from a relationship between variables. Dynamic program-
ming can be used to reduce the complexity of the problem by dividing it into simpler
sub-problems recursively. Finally, genetic algorithms, inspired by the natural selection
process, are often used to solve such non-convex optimization problems by generating
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random solutions and keeping the best ones.

The MS strategy aims to solve a wide issue: the fulfillment of the timing requirements
and the searching of a valid mapping and scheduling solution at the same time. In FI, TI
and IS approaches, mapping and planning are in fact generally taken as pre-established
inputs to be provided for the analysis of the timing. However, mapping and scheduling
are highly complex problems, and it is difficult to clearly evaluate the impact of the de-
cisions on which a MS solution is based in terms of reliability and accuracy. In addition,
MS works suffer from scalability issues, as well as strong dependence on application and
architecture characteristics (such as the number of tasks and PEs respectively). For these
reasons, they tend to not provide a complete solution for the entire issue faced by their
approach.

Table 2.5 compares the PathFinder objectives (presented in Section 3.2.4) to the proper-
ties of the previously presented timing verification categories. Assets are shown in green,
while the light and heavy drawbacks are in orange and red respectively. Although the
works of the reported publication categories provide early performance evaluations, they
are based on complex analyses that are limited by the nature (mainly the size) of the
considered applications and architectures. On the other hand, in order to benefit from the
provided analyses, unambiguous and precise specifications for the application and the ar-
chitecture are required. Moreover, existing timing verification methods require advanced
knowledge of the software (SW) and hardware (HW) scheduling and features that are
not always available in practice. PathFinder provides a novel trade-off among the listed
properties. Indeed, the proposed method reduces the HW/SW information required by
the state-of the-art strategies by estimating task execution times from platform measure-
ments and Longest-Latency Path (LLP) analysis, enabling response time evaluation of
DF-based applications mapped in a free way upon a wide range of target architectures. In
addition, the proposed method aims at supporting strategies based on Model of Architec-
tures [Pel+18], since PathFinder provides the response time activity of the functionality
that can be used to build an MoA. With respect to the PathFinder, the main advantage
in evaluating timing with MoAs is in estimating response time at design time on a range
of architectures, at the expense of a loss of accuracy (as shown in Section 6).
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Property FI TI IS MS PF MoA

Complexity high medium medium high medium low-to-medium
Scalability low medium medium low medium high
Accuracy high high high medium high low-to-medium
HW usage medium low low medium high high
Expressivity medium low high medium high high

required SW details high high high high low low
required HW info high high high high low low

Table 2.5 – Design properties of the timing verification approaches.

2.4 Tools used in the Proposed Design Flows

In this section, a description of the mentioned tools considered in the design flows is
presented. These tools are chosen within the H2020 CERBERO consortium for their com-
plementarity for building a model-based design method of MPSoCs with Coarse-Grained
reconfiguration for signal processing applications. Figure 2.8 shows the connections among
tools and their use for design time and runtime support.

MDC

CAPH

PREESM

(A) Design time support

MDC

CAPH

SPIDER

(B) Runtime support

Figure 2.8 – Overview of the tools utilized in this thesis. Tools chosen for design time and
runtime support in the context of the H2020 CERBERO project are represented into the
colored boxes.

2.4.1 CAPH

The Caph just Ain’t Plain HDL (CAPH) 1 [SBA13] is an open-source, domain-specific
framework for the specification, simulation and implementation of signal processing ap-
plications based on a dynamic DF MoC. Figure 2.9 depicts the structure of the CAPH
toolchain. Applications are specified as dataflow networks (DFNs) using a higher-order,
polymorphic functional language based on Objective Caml. The behavior of each DF

1. https://github.com/jserot/caph
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actor is defined as a set of transition rules using pattern matching on structured data,
resulting in improved abstraction capabilities. The CAPH toolchain provides graphical
visualization of DFNs; code simulation with trace facilities; and HLS producing SystemC
code for simulation and resource-monitoring purposes, as well as platform-agnostic ready-
for-synthesis VHDL code.
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Figure 2.9 – CAPH toolset overview.

2.4.2 MDC

The Multi-Dataflow Composer (MDC) 2 is a toolset for the design and development
of custom CGRA based on a set of DFNs: the DPN MoC [Pal+17]. As shown in Figure
2.10, the MDC design suite is composed of two main sub-components:

— the Merging Process (MP): a dataflow (DF)-based model-to-model compiler that,
given an input set of DPNs describing the functionalities to be executed in hardware
(HW), generates a high-level multi-dataflow (DF) DPN [Sau+15a] of the system
leveraging on datapath merging techniques [Sou+05];

2. https://github.com/mdc-suite
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— the Platform Composer (PC): a dataflow (DF)-to-hardware (HW) synthesizer that,
given the mentioned multi-dataflow (DF) specification, the HW description of the
DF actors and the protocol used for communication among them, generates a
CGRA.

MDC offers also other features that optimize the generated systems and favor their inte-
gration in real environments, such as:

— a structural profiler [PSR15] that, taking into account the low level feedback coming
from a priori synthesis of the generated platform, is capable of identifying the opti-
mal multi-dataflow (DF) configuration depending on a set of metrics (area, power,
frequency);

— a power manager [Fan+16; Fan+15] that automatically sets power saving strategies,
such as clock- and power-gating at system modelling level;

— a rapid prototyper [Sau+15b] embedding the generated CGR systems onto ready-
to-use platform-dependent IPs (for Xilinx devices).

Before the integration work proposed in Section 4.1 of this thesis, MDC was specific
to the RVC-CAL language and the actor communication protocol was hardwired on the
resulting CGR architecture. Now users define custom communication protocols, and MDC
accordingly implements the handshake among PEs.
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Figure 2.10 – Overview of the MDC design flow.
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2.4.3 PREESM

The Parallel and Real-time Embedded Executives Scheduling Method (PREESM) 3

[Pel+14] is an open-source rapid prototyping tool for signal processing applications de-
scribed as a PiSDF graph and mapped upon heterogeneous multi/many-core embedded
systems. Its main functionalities currently are:

— A fully automated mapping of actors to multiple processing PEs with the objective
of optimizing statically the execution latency and load balancing;

— A state-of-the-art and fully automated optimization of the generated application
memory footprint.

Figure 2.11 illustrates its design flow. This starts from the creation of the PiSDF model,
that specifies the desired functionality, and the S-LAM graph, that represents the archi-
tectural model. In addition, a scenario associated to such inputs summarizes the character-
istics of the system to be implemented. Depending on the scenario information, PREESM
applies a single-rate (sr) transformation to the PiSDF in order to simplify scheduling
and mapping potentially at the cost of large graph management. At this point, static
scheduling (List or Fast [KA99]) and memory management are performed. Output of
these phases are the C code generation of the system and the Gantt visualization of the
achieved solution respectively. The execution is self-timed, with one thread on each PE,
synchronized by inter-PE communication. Finally, by adding the actors specification, the
C code compilation and the system execution can be evaluated.

Figure 2.11 – Overview of the PREESM flow.

3. https://preesm.github.io
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2.4.4 SPIDER

The Synchronous Parameterized and Interfaced Dataflow Embedded Runtime (SPI-
DER) 4 is a runtime manager for applications described through the PiSDF MoC and
executed on heterogeneous multi-core architectures [Heu+14]. When compared to DPN,
PiSDF increases processing and communication predictability, serving as input informa-
tion for multicore and multisystem partitioning, at the cost of some expressiveness, i.e.
some non-deterministic application behaviors cannot be modeled with PiSDF. The SPI-
DER runtime is currently available for ARM/Linux-based architectures, Intel x86 plat-
forms, Keystone II architectures from Texas Instruments, and MPPA256 many core from
Kalray. In order to ensure independence between application and platform levels, the
SPIDER runtime structure consists of the following layers:

— the Application Layer : that is composed of dataflow actors and PiSDF specifications
describing a stream processing application;

— the Runtime Layer : the core of the runtime manager consisting of a master part
called Global Runtime (GRT), that handles scheduling and mapping of the applica-
tion, and slave elements named Local Runtimes (LRTs), that execute the processing
of the actors depending on the current scheduling decided by the GRT;

— the HW Specific Layer : this layer is a platform-dependent component designed to
manage the inter-core communication and synchronization.

Figure 2.12 shows the execution scheme of SPIDER. The GRT (master) schedules the
application (1) and sends the execution order based on the mapping decisions (2). The
LRTs (slaves) deal with the execution of the actors present in the dedicated job queue (3).
Jobs are data structures containing the information about synchronization, data and code
of the actors to properly perform one instance of an actor in a specific slave. The LRT can
be implemented over general- or special-purpose processors, as well as accelerators. During
code execution, LRTs exchange data tokens through a pool of data FIFOs (4). Once the
processing of the actor is completed, the LRTs send new parameter values (if any) to
the GRT (5). Indeed, a parameter value can be set dynamically by a configuration actor
mapped in a LRT, influencing the algorithm execution. Moreover, the GRT receives also
the execution traces (the actor start and end times based on the same timing reference)
by the LRTs (6).

4. https://github.com/preesm/spider
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Figure 2.12 – The SPIDER runtime internal scheme.

2.5 Chapter Remarks

In this chapter, the state-of-the-art strategies used in the design of a parametric func-
tionality have been presented. A focus has been put on design based on signal processing
application models and CGR hardware. Indeed, these represent a valid trade-off in order
to obtain a system with flexibility and efficiency. In particular, the description of the func-
tionality in a SW-oriented environment such as PiSDF and in HW-oriented environment
such as CGRA provides the operating mode reconfiguration through the use of param-
eters. For these reasons, the tools described in Section 2.4 have been integrated in the
design flows related to the contributions of this thesis. For taking a design decision, a sys-
tem designer or an automated DSE procedure require an early knowledge of the impact
on performance of the different alternatives. State-of-the-art timing analysis methods are
either over simplifying MPSoC architecture or requiring excessive knowledge of the un-
derlying hardware. PathFinder aims at proposing a lightweight alternative to this state
of the art for CPS design.

In addition, common concepts and approaches in the evaluation of the response time
of applications mapped on architecture with multiple PEs have been reported. Specif-
ically, such approaches represent the pillars of the timing verification for the HW/SW
contexts, although they have been mainly assessed for SW-based applications running on
general-purpose systems with multi or many homogeneous PEs. In the specification of
the functionality, they make extensive use of DF MoCs, which favour predictability and
abstraction in timing analyses. Based on the same strategy, our proposed PathFinder and
MoA-based approach have been briefly introduced and compared to the state of the art as
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alternative methodologies. These correspond to another trade-off for early system timing
analysis aimed at reducing the amount of HW/SW information required in the traditional
approaches.
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Chapter 3

LATENCY ESTIMATION IN HYBRID

FLEXIBLE HW/SW CPSS: PROBLEM

DEFINITION AND OBJECTIVES

In this chapter, our objectives on latency estimation in hardware and software de-
signs aimed to flexible solutions are presented. In Section 3.1, a comparison in terms of
IP-level latency predictability for CGR accelerators among the main state-of-the-art HLS
approaches and a novel methodology are proposed. Regarding the SW programming con-
text, latency estimation capabilities of the approaches used for applications described as
a Directed Acyclic Graph (DAG) of tasks are analyzed in Section 3.2. Section 3.3 aims at
providing a more general strategy for response time estimation than what is proposed in
the state of the art. This alternative explores the use of MoAs to extend the applicabil-
ity of timing analysis to comples HW/SW defined CPSs by reducing complexity due to
the detailed descriptions involved in the state-of-the-art strategies. Finally, Sections 3.4
summarizes problems and objectives associated with the contributions of the thesis.

3.1 Problem Definition in the CPS Hardware Con-
text

Flexibility and performance are two highly valued properties of processing systems
in many applicative domains. Modern systems include widely deployed and upgradable
devices for cyber-physical applications that also communicate with cloud infrastructures.
These systems must adapt to mutable conditions, while avoiding unpredictable perfor-
mance degradation.

To boost performance, HPC and embedded systems designers are pushed to opt for
Domain-Specific Accelerators (DSAs), built from ad-hoc hardware-coded kernels exploit-
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ing parallelism for optimizing performance. Two representative examples of this trend are
Amazon Web Services (AWS) and Intel Movidius. On the HPC side, AWS offers FPGAs
in a cloud environment [Bar17]. On the embedded side, the Intel® MovidiusTM Vision Pro-
cessing Unit (VPU) is a low-power DSA used in smartphones and drones for computer
vision and artificial intelligence applications.

In terms of system flexibility, hardware DSAs based on CGR architectures offer flexi-
bility by adapting to variable application parameters. CGR architectures are traditionally
composed of a mesh of PEs whose interconnections are reconfigured over time [WWC16]
to offer flexibility. CGR architectures inherit from their hardware nature the capacity of
executing compute-intensive kernels in an energy-efficient way. However, efficiency and
flexibility do not come for free. HW design is a complex and error-prone task, leading
to productivity losses, especially for heterogeneous and irregular targets. HLS approaches
have been proposed to cope with these losses, obtaining design productivity gains by sepa-
rating functional system verification, performed from a time-agnostic high-level language,
from timed system verification, performed after automatically inferring hardware-specific
code [Pel+16].

As explained in Section 2.2.2, many HLS tools are now available, such as Xilinx Vivado
HLS [Xil] and Intel FPGA SDK for OpenCL [Int]. These tools are based upon impera-
tive, C-like, languages. The algorithm to be implemented is formulated as a sequence of
instructions operating on mutable data. This choice is motivated by the very large num-
ber of developers trained to manipulate imperative languages that have been dominating
computer sciences for decades. But, from a hardware perspective, this choice presents two
major drawbacks:

— imperative formulations generally do not distinguish iterations over time from it-
erations over space, which do not translate uniformly in hardware (the latter do
not imply causality and can therefore be parallelized using replication). Indeed, as
depicted in Figure 3.1, a high-level description (Figure 3.1A) can correspond to dif-
ferent time/space solutions by replicating HW blocks as enabled by using or not
techniques such as unrolling (see Figures 3.1B and 3.1C respectively).

— imperative formulations implicitly rely on the concept of global memory at the
implementation level (see Figure 3.2A), which in turn leads to a “bottleneck” on
memory accesses [Bac07].

These drawbacks can be circumvented by relying upon so-called applicative or functional
languages in which algorithms are described as a (mathematical) composition of side-
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void ip(...){
...
for(i=0;i<=N;i++){

//read, compute and write
z[i] = x[i] + y[i];

}
...

}

(A) High-level specifications
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x[1]

+
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+
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time
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(B) With HW unit repetition
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z[1]

time

space

...
x[N]

+
y[N]

z[N]

(C) Without HW unit repetition

Figure 3.1 – Example of imperative formulations in terms of iterations over time and
space.

A B C

MEM

(A) Global memory approach

FIFO FIFO

A FIFO B FIFO C

MEM

(B) Stream-based approach

Figure 3.2 – Comparison of stream-based and global memory approaches.

effect free functions. This approach naturally fits DF MoCs. An application is decom-
posed into independent processing actors, communicating with FIFOs, with no global
storage or synchronization (as depicted in Figure 3.2B). This is particularly true for sig-
nal processing applications, processing data “on the fly” and which benefit significantly
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from CGR architectures-based acceleration, as found in signal/image processing, media
coding/compression, cryptography, video analytics, etc.

This section, introduces a novel methodology for the optimal characterization of CGR
DSAs exploiting a DataFlow-Functional HLS approach as an alternative to traditional
HLS tools based on imperative languages.

3.1.1 Discussion on Latency Information in CGR DSA Designs

Knowing latency of the implemented system at early design stages is an important
tool for improving productivity and reducing design effort. Moreover, platform-agnostic
HDL specification is challenging, as a resulting generic hardware has difficulties to com-
pete with platform-specific code performance. However, this property enables re-use in
contexts in which a wider DSE is evaluated. In this section, approaches based on providing
response time estimation before and after the RTL synthesis process and depending on
the platform/target selection are described.

Synthesis lat > latreq IP
Functionality

Implementation Simulation
Platform/Target

Selection

(A) Platform-/Target-Dependent Approach with Post-Synthesis Information

Functionality
Implementation Simulation lat > latreq

Platform/Target
Selection IPSynthesis

(B) Platform-/Target-Agnostic Approach with Pre-Synthesis Information

Figure 3.3 – HW time verification strategies.

Platform-/Target-Dependent Approach with Post-Synthesis Information

Figure 3.3A illustrates the design methodology of the main imperative-based target-
dependent HLS tools present at the state of the art. As a first step, the IP developer
needs to decide the platform (ASIC or FPGA) and the final target depending on the
vendor (such as Xilinx and Intel). The following phases are strictly characterized by this
design choice, whether they are related to the target hardware or to the functionality
(respectively depicted as light yellow and light cyan boxes). In order to implement and
optimize the description of the functionality, developers have to understand how to exploit
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both the available #pragmas (i.e. metadata added in the imperative code to orientate
synthesis) and their combinations towards best performance. Nevertheless, simulation of
the functional behavior provide no information about the achieved response times. Indeed,
an often computationally-intensive and target-dependent process capable of extracting
this knowledge is needed: the RTL synthesis. It consists of assigning HW resources to each
combinatorial and sequential construct implementing the application. In addition, code
refactoring may also be necessary to achieve optimal latency values. As a consequence,
this type of HLS tools require a DSE to obtain the required system execution latency
(lat > latreq), iterating among implementation, simulation and synthesis. Moreover, in
order to deploy a corresponding IP for a new target hardware, the functionality needs
to be re-implemented according to the specifications associated with the new target.
For these reasons, developers must have a thorough knowledge of the synthesizer and a
considerable effort is required to obtain an optimized architecture, especially in contexts
requiring different targets.

Platform-/Target-Agnostic Approach with Pre-Synthesis Information

The DFF HLS proposed in this work is designed to offer response time evaluation before
synthesis, relying on dataflow-based tools and functional programming. Pre-synthesis time
prediction gives developers the advantage of focusing on the application to be accelerated
with a functionality-oriented approach rather than a synthesizer-based one. Moreover,
when the description of the algorithm leads to platform-/target-agnostic synthesizable
HDL, the development of the IP can be split into two parts associated to the application
and to the hardware respectively (which can also be entrusted to different developers).
As shown in Figure 3.3B, the high-level simulation of the generic specification provides
response time estimation in terms of clock cycles (CCs). Thus, in order to reach the
required system execution latency, the optimization of the functionality does not keep
the developer waiting for the important times linked to the synthesis. Moreover, since
it is relevant for different platform natures, DFF HLS can be re-used in contexts with
a wide spectrum of implementations. To conclude, when compared to imperative HLS,
the DFF nature of the proposed HLS provides earlier explorations, while offering system
predictability and guaranteeing performance.
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3.1.2 Motivation on Creating DFF HLS CPS Hardware Design

Regarding the frameworks related to the CGR design (reported in Table 2.4), to the
best of our knowledge, neither [Raf+10] nor [Vor+13] present the capability to provide
pre-synthesis response time estimation, while [Sau+14] handles SDF inputs only. Although
the designer needs to model reconfiguration by hand, CGR DSAs can also be obtained
with sole HLS. Nevertheless, state-of-the-art HLS frameworks are based on imperative
languages, and most of them are also target-dependent [Nan+16].

HLS tools based on imperative languages can only provide IP response time estimates
after synthesis when a reconfigurable system is designed. In Vivado HLS [Xil] this es-
timate takes the form of a range (min to max latency): the actual value of each single
configuration in a reconfigurable case is obtained by running the corresponding mode over
the deployed CGR accelerator. The Intel FPGA SDK for OpenCL [Int] pursues automatic
system-level integration (and parallelization) of HW accelerators complying the OpenCL
computing model. As a result, low-level, cycle-accurate pipeline/scheduling information,
typical in other IP-based HLS tools, is sacrificed in favor of an annotated dependence
graph describing the generated kernel as a combination of blocks. The estimation pro-
vided in the graph refers to the types/sizes of load/store units, stalls and latencies, but
a non-trivial calculation of the IP response time is left to designers. Finally, optimiza-
tion is performed by profiling kernel execution, requiring re-synthesizing an equivalent
kernel, automatically instrumented with performance counters, to analyze memory access
behavior (stall, occupancy, bandwidth).

In addition to relying on imperative languages, Vivado HLS and Intel FPGA SDK for
OpenCL are target-dependent (Xilinx and Intel FPGA devices respectively). The Synflow
Studio tool [Syn] provides a proprietary HLS framework for multi-vendor FPGAs using
the Cx DF language, which does not support ASICs. To the best of our knowledge, only
two academic flows support platform-agnostic DF-oriented HLS: the Orcc HDL backend
tool [Sir+10] leveraging on the RVC-CAL language, and CAPH [SBA13]. CAPH, adopted
in the proposed flow, has the advantage of using functional programming semantics that,
contrary to the RVC-CAL language, removes imperative semantics from actors. The Orcc
HDL backend is no longer supported, thus it is not possible to compare the performance of
our proposed solution with [Sir+10]. Moreover, our platform-agnostic DFF-oriented HLS
needs to deal with the reconfiguration management of the custom IP in order to reach
high performance in a CGR DSA design. As reported in Table 2.4, the DF-based suite
for CGR accelerators MDC provides maximization and control of the resource re-use, and
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reconfiguration, leveraging on datapath merging techniques.

3.1.3 Objectives of this Thesis on Hardware Design Automation

The key selling feature of the proposed DFF HLS is its ability to compute early and
accurate system execution latency 1 estimations before synthesis. Such values depend on
the critical path length in the dataflow network and on the maximum number of cycles
required for each actor firing. For SDF graphs, both can be computed statically. For
non-SDF graphs, CAPH estimates system execution latency of a complete execution by
running the cycle-accurate code generated by its SystemC backend. The response time
of the CGR-based DSAs generated by the DFF flow depends on the selected mode only,
corresponding to the selected stand-alone networks, since merging only adds combinatorial
switching elements for the configuration of the accelerator which do not affect system
execution latency. As a result, the DSA can be optimized in terms of response time before
synthesis.

The proposed methodology is targeted for heterogeneous and irregular CGR architec-
tures, leveraging on application specific PEs and tailoring the interconnect to minimize
FIFOs. For prototyping purposes, and to compare with commercial flows, experiments
target FPGA technologies and demonstrate that, thanks to its modularity and abstrac-
tion capabilities, the proposed approach guarantees latency predictability (Section 4.1.3).
Moreover, the DFF approach leads to improved performance for DSAs with CGR archi-
tectures.

3.2 Problem Definition in the CPS Parallel Software
Context

High performance embedded systems and CPSs now process, close to sensors, complex
workloads that need to be spread over heterogeneous and specialized PEs to comply with
systems timing constraints. In this context, performance measurement is crucial in achiev-
ing efficient solutions with respect to the relevant KPIs, such as throughput and latency.
Latency , also called system execution latency or response time, has varied definitions
in various communities. Indeed, its definition requires the notion of a unit of execution,

1. Number of clock cycles required to compute all outputs as in [Xil].
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potentially indefinitely repeated on input data streams, whose lifetime in the system de-
fines latency. Regardless of the type of applicative workload (signal processing, stream
processing, batch processing, etc.), response time is determined by a succession of causal,
time consuming mechanisms that are usually representable by a DAG of data-dependent
tasks, representing one execution iteration. The application DAG then serves as the en-
try point for execution time studies [FW19]. On the HW level, heterogeneous MPSoCs
are efficient solutions when executing multi-functional applications with workloads that
can vary depending on timing requirements. However, when an application is parallelized
and scheduled on an MPSoC, the performance of the system in terms of response time is
difficult to predict and understand from application and architecture models. Indeed, la-
tency is a highly non-linear property, affected by many software, hardware, and scheduling
phenomena.

This section introduces a new methodology for modeling the system execution latency.
The objective of the developed method, named PathFinder, is to extract, from an appli-
cation model, a Longest-Latency Path (LLP), that is a subset of the application workload
that approximates the response time. Generalizing this concept, we refer as activity to the
share of an application workload that determines a given KPI [Pel+18]. In this context,
the LLP is the application activity for system execution latency. Having such information
on the application workload opens up a large set of studies, ranging from abstract Model
of Architecture (MoA) design to scheduling optimizations and design space exploration.

PathFinder aims at building a model of the MPSoC workload execution that offers
more insights on response time activity than the Deterministic Actor Execution Time
(DAET)-based solution provided by schedulers. The following sections detail the input
MoC for the method (Section 3.2.1), a motivating example showing that straightforward
DAG scheduling does not properly model real execution (Section 3.2.3), a discussion on
the high-level information that can be exploited from the architecture to model latency
more accurately (Section 3.2.2), and the objectives of the proposed PathFinder method
(Section 3.2.4). Chapter 5 will detail the pros and cons of PathFinder.

3.2.1 Application Representation

The application representation input to the PathFinder method complies to a subset
of the SDF [LM87] MoC corresponding to a transformation into a DAG. In this form, pro-
duction and consumption rates on each FIFO in the graph are made identical. Moreover,
to this general graph, the following simplifications are applied: i) no cycle is considered
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(FIFOs from one iteration of the graph to the next are ignored) and ii) it is assumed
that the number of initial data packets (delay) in each FIFO is zero. A formal definition
follows.

The DAG model is represented as a finite directed, weighted graph G =< V,E,m >

where:

— V is the set of nodes called actors; each node represents a non-preemptive task that
performs computation on one or more input data streams and produces one or more
output data streams. Task execution is data driven: the task is fired as soon as input
messages are available on all input edges.

— E ⊆ V × V is the edge set, representing messages between tasks.

— m : E → N∗ is the message size function with m(e) representing the number of data
indivisible units (called tokens) sent from the e source actor to the e sink actor in a
message.

The absence of cycles and delays makes the consistency and liveness studies of the
graph trivial and its single-rate nature makes all tasks executed only once per iteration
of the graph. One may note that for the graph to be alive, all source actors, i.e. actors
with no input edge, shall be fired at the same rate. This graph is a coordination language.
It only specifies the topology of the network, but does not give any information on the
internal behavior of tasks. However, each actor is associated to a code implementing its
internal functionality (e.g., a C code as in Section 5.2). Moreover, information is tagged
on tasks and messages to model the relative cost of their management.

Such a model is called single-rate DAG (srDAG) in the literature and has the advantage
of simplicity at the cost of a lack of scalability for heavily multirate applications (e.g.,
see [Hsu+07]). This srDAG entry point (depicted in Figure 3.4A) is chosen because it
is common to many studies in the literature (e.g., [FW19; Li+17; Now+13; Mel+15;
Bon+19]) and can be generated from many applicative representations, ranging from
advanced DF algorithms (such as SDF, CSDF [Bil+96] or PiSDF in our case [Des+13])
to real-time application task sets. In the following discussions, we will refer to DAG or
srDAG interchangeably, considering their meanings corresponding to the definition given
in this section.
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Figure 3.4 – Topological-based latency evaluation of a dataflow application.

3.2.2 Discussion on the Levels of Exploitable Architectural In-
formation

The next sections list incremental levels of architecture knowledge, discussing the de-
termining factors that can be used when modeling response time. Figure 3.5 illustrates
the different levels of architectural information that can be leveraged on to predict sys-
tem execution latency. The discussion starts from the steps (A, B and C) based on the
information available before running the DAG on the MPSoC, such as DAET tags and
architectural properties (called a-priori information). On the other hand, the subsequent
levels (D and E) consider tags of the start/end time, obtained only after the DAG execu-
tion and named a-posteriori information.

Knowledge on latency determining factors

MEM

PE1 PE2

(A) Inf. Hom. PEs

MEM

PE1 PE2

(B) Fin. Hom. PEs

MEM

PE1 PE2

(C) Fin. Het. PEs

MEM

PE2
REGS

PE1
REGS

(D) Real Archi

MEM

PE2PE1

(E) PathFinder

Figure 3.5 – Latency evaluation strategies depending on the level of architecture knowl-
edge.

A-Priori Information Level A – DAG with Single DAET Tags

Several works have analysed the theoretical latency of the DAG depending on its Crit-
ical Path (CP) [Sin07; KAL11; Pel+13]. As shown in Figure 3.4B, the DAG is divided
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into task chains starting from each source node and ending to every sink node, that in
this paper will be called CP candidates. The latency evaluation from CP analysis is often
performed by using heuristic approaches based on path exploration and task characteriza-
tions. For each CP candidate, DAG nodes are tagged with timing weights to compose its
specific latency. Thus, the CP is characterized by the following assumptions: i) it consists
of a task chain that maximizes the sum of contributions, and ii) the CP determines the
latency of the whole application (as shown in Figure 3.4C). In this context, since no infor-
mation about the architecture is considered, CP is considered to independently run on a
system with unbounded (or large enough) memory and infinite (or as many as necessary)
number of homogeneous PEs, as depicted in Figure 3.5A).

A-Priori Information Level B – DAG with Single DAET Tags and Architecture
with a Specified Number of PEs

With a known number of homogeneous PEs and a bounded memory (see Figure 3.5B),
a heuristic-based scheduling/mapping strategy can be applied in order to achieve an op-
timized solution in terms of timing performance [Sin+13]. This procedure leads to a more
realistic model of execution in which paths do not need to be analyzed in the latency rep-
resentation (often depicted with Gantt charts). As tasks share PEs and messages share
memory, contentions appear on architectural resources among tasks or communication op-
erations. These contentions lead to interferences in DAG execution, which in turn increase
latency and, if not predicted, reduce latency predictability.

A-Priori Information Level C – Architecture with a Specified Number of PEs
of Different Types, and DAG tagged with one DAET per PEs Type

A more accurate solution in terms of the DAG execution time can be achieved by
distinguishing the types of the PEs in the target system (see Figure 3.5C). Nevertheless,
with respect to the homogeneous case, this implies to provide latency prediction with
the characterization of: i) the tasks for each type of PE, and ii) the elements of the
hardware infrastructure. To do so, a DSE consisting of a statistical evaluation of the
target-dependent costs associated to computation and communication may be required.
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A-Posteriori Information Level D (Trace) – DAG with Start and End Time
Tags and Real Architecture

Figure 3.5D highlights the differences between i) the model of the system interconnects
and the bus system linking multiple PEs, and ii) the abstract memory and its actual
hierarchical structure. This case corresponds to an execution trace, extracting from code
executions the start and end times of all tasks. It can be used as the reference Gantt
chart to be looked for by models. At this post-execution stage, system execution latency
is perfectly known. However, the complexity of the monitoring procedure increases when
not only task start and end dates are observed but also communication related contention.
Indeed, several factors, such as task synchronization and data movements, combine during
the management of the DAG messages, and this requires complex monitoring in order to
obtain a detailed information. Regarding explainability, such a trace does not provide a
full knowledge on the execution, as only start and end times of tasks are known but the
causes of potential time variations and instants of data transfers and synchronizations
remain unknown.

A-Posteriori Information Level E – DAG with Start and End Time Tags, Full
Scheduling Information and Architecture with a Specified Number of PEs

We propose PathFinder as a method for creating this new level of architectural infor-
mation from system monitoring (Figure 3.5E). This level extracts the LLP as the subset
of tasks causing latency. In order to explain the monitored latency, PathFinder analyzes
the causes for each LLP task. Indeed, since the previous levels (A,B,C) rely on models
with average task behaviors, a degree of uncertainty exists that, due to the strongly non-
linear nature of latency, results in large modeling errors. This error is further discussed in
the next section. In order to obtain an insight of the execution, the examination can be
based only on the start and end times of the tasks. In particular, if the task are scheduled
non-preemptively, their latency contribution can be identified using performance moni-
tors. In such a case, we can benefit from the advantages of a DAG-based model and make
latency predictions closer to reality than with levels (A,B,C). In particular, when task
contributions dominate the cost due to communication and synchronization, this fact can
be exploited to simplify modelling. As the primary goal of PathFinder is to target shared
memory heterogenerous MPSoCs that constitute a largely deployed set of HW platform,
most latency cost of communication is considered embedded into tasks, as tasks access
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memory and activate cache write-backs while computing. Our experimental results show
that this hypothesis is acceptable on our test platform. For this reason, messages are not
scheduled and there is no communication-related line in the displayed Gantt charts.

3.2.3 Motivating Example: Latency Evaluation of a DAET Tagged
DAG Scheduling
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Figure 3.6 – Gantt chart with tasks execution times for each level of architecture knowledge
depicted in Figure 3.5.

For each step in Figure 3.5, possible Gantt charts are shown in Figure 3.6 (where the
CP actors are depicted with teal color). Moreover, they are based on the actor and edge
characterization as in Figure 3.4C and its double values for the PE1 and PE2 clusters
respectively. In this example, to accentuate the possible differences between real execution
(Level D) and its models (Levels A, B, C, E), the communication costs are considered
doubled in case of token transfer among different clusters.

Although level C requires an advanced a-priori knowledge on tasks execution times
and tasks causality, it provides low accuracy estimations and improper explainability of
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the real execution. For evaluating this mismatch, we translate the concept of Jaccard
index [Rez+19], also called Intersection over Union (IoU), for comparing Gantt charts.
We name this metric Gantt Similarity (GS), and compute it by applying the method of
IoU to the context of parallel processing. This score between 0 and 1 indicates the degree
of similarity between two Gantt charts X and Y:

GS(X, Y ) =
T∑
i=0

[IoU(Xi, Yi)] · wi =
T∑
i=0

[
area(Xi ∩ Yi)
area(Xi ∪ Yi)

]
· area(Yi)
area(Y ) (3.1)

where T is the number of actors present in the srDAG, and Xi and Yi represent the boxes
associated to the execution times of the i-th task in X and Y respectively. Xi and Yi are
represented as rectangles with fixed arbitrary height. Since tasks affect execution with
different weights, wi takes into account this aspect, considering the ratio between the
areas of the i-th task and of all the tasks present in a reference Gantt chart (Y).

With respect to the example shown in Figure 3.6, a comparison between the Gantt
charts of the level C and D leads to a GS of 0.43, i.e. a similarity of 43% (see Figure 3.6F).
In reality in an MPSoC, the mismatch can be much higher, as shown in Section 5.2, due
to variations in tasks processing times and communications. For this reason, PathFinder
relies first on an a-posteriori execution information (i.e. task execution times are known,
GS = 1), with the objective to extend PathFinder results to a-priori latency prediction.
The latency difference between Figures 3.6E and 3.6D, and the remaining uncertainty in
PathFinder response time prediction, come from 1) communication and synchronization
times that are currently non-modelled and 2) potentially missed interferences that should
have entered LLP. Indeed, the LLP is computed by heuristics and not by exact algorithms.
However, we show in Section 5.2 that under these hypothesis, PathFinder is capable of
modelling the LLP with high accuracy, giving insights on latency-causing task in the
application.

3.2.4 Objectives on Software Latency Predictability

PathFinder aims at analyzing the determining factors that lead to the prediction gap
between Gantts C and D. The proposed strategy relies on an application-centric informa-
tion: the application Critical Path (CP). In particular, by decomposing the list of elements
determining latency into CP and interferences, we propose the concept of Longest-Latency
Path as an equivalent to CP in levels B through E. Indeed, interferences are introduced
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by different phenomena, mainly: i) sharing of a finite number of hardware resources (pro-
cessor, memory, interconnects, peripherals, etc); ii) the nature of the application itself
(task heterogeneity, scenario-based diversity in the actor characterization, task relations,
etc); iii) the random access to the memory by tasks that prevents complete determinism
[HP18].

In level A, no interference arises, since CP can run independently. From B to D, the
main types of interference that can be observed are associated to:

— scheduling: when a CP actor execution is delayed due to other tasks that precede it
in scheduling are mapped in the same PE (in Figure 3.6B, a4 cannot be executed
since a5 is still running);

— dependency: when the execution of a CP instance has to wait for tokens coming
from other tasks that are not present in the CP (as shown in Figure 3.6C, a6 is
waiting for a token from a3);

— shared memory: that lengthens a CP task execution, since simultaneous memory
accesses are limited (as depicted in Figure 3.6D, a1 is waiting for the access to the
memory);

— shared communication node: if a CP edge execution is prolonged due to the traffic
in the links between PEs and memory (still in Figure 3.6D, a7 and a6 are using the
communication node at the same time).

3.3 Problem Definition in the Hybrid Hardware-Software
Context

In Sections 3.1 and 3.2, discussed objectives aimed at estimating response time of
functionalities implemented as a CGR accelerator, and DAG of software tasks, have been
described respectively. Although these two aspects have been treated separately, their
combination is often desired in contexts where reconfiguration or adaptation is required.
However, scheduling and mapping such functionalities requires to generalize the strategy
used in estimating system execution latency. As seen in Chapter 2, the characterization
of a functionality depends on the MoC selected at design time. Moreover, the HW system
affects the response time according to the use of the PEs, memory and interconnects.
For this reason, the architectural elements are often modelled in detail. Nevertheless, this
leads to a high degree of complexity that reduces the applicability domain of the timing
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analyses. In particular, this fact can have a strong impact on the support of scheduling and
mapping strategies, especially when parametric applications are mapped on heterogeneous
systems involving general-purpose and CGR PEs. In order to extend the feasibility of the
response time evaluations and efficiently exploit them for adaptation purposes, a more
simple activity that determines the latency costs needs to be considered. However, finding
a proper solution in this context represents an open issue for many years.

In addition, although several tools capable of handling runtime adaptation have been
proposed in literature, most of them concentrate only on SWmanagement [AG17; Gau+13;
Ger+16; HPB17; Hor+09; QP16; RBK16; YPB15; Zha+15]. HW runtime adaptation is
managed in [TB04], in which data routing in a specific HoneyComb processor array hard-
ware has been considered, and in [Bra+18], in which, besides the SW runtime handling,
HW tasks can be implemented in FPGA devices. However, among the proposed frame-
works only a few are open-source and effectively available [Bra+18; Gau+13; Ger+16;
RBK16]. Among these, [Gau+13] and [RBK16] are HPC management systems that place
themselves over large-scale facilities composed of multiple CPUs and GPUs. In [Ger+16],
the framework does not consider HW acceleration, which is today compulsory in most
High Performance Embedded Computing systems found in CPSs, such as embedded video
processing systems, embedded deep learning, telecommunication and computer vision sys-
tems [Wol14]. Although the framework presented in [Bra+18] can handle HW tasks, these
are specific to Intel FPGA devices. Therefore, a framework capable of providing runtime
management of reconfigurable functionalities mapped on systems with CGR accelerators
and general-purpose PEs is desirable.

3.3.1 Motivation on Latency Estimation for Hardware-Software
Design Automation

In order to determine the response time of a parametric functionality, new approaches
that carefully trade-off between accuracy and complexity need to be considered. In par-
ticular, the idea is to evaluate a strategy that favors a reduction of complexity at the
expense of a controlled degradation of accuracy. Since the reconfiguration and adaptation
requirements must be met, this new approach must nevertheless generate a model with
high fidelity, i.e. capacity to feed correct decisions. For this purpose, a fidelity calculation
method and new approach with high fidelity properties in KPI estimation for parametric
applications performed on MPSoCs are introduced below.
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Fidelity Evaluation

A useful metric for measuring the effectiveness of an estimator is a Fidelity Metric
(FM). Fidelity does not measure the absolute accuracy of a model, but rather its capac-
ity to correctly order the set of its outputs. It can be defined through the correlation
coefficients of Spearman’s rank ρ and Kendall’s tau τ [BB00; JIP10] as follows:

FMρ = 1− 2 ·∑n
i=1 r

2
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i ))
where sign(x) = {−1 : x < 0; 0 : x = 0; 1 : x > 0},

— −1 ≤ FMρ,τ ≤ 1, where the value 1 (−1) corresponds to datasets perfectly corre-
lated (uncorrelated).

Model of Architecture (MoA)

Recently, a new architecture modeling approach based on the concepts of abstraction
and modularity has been proposed [Pel+18]. Through the introduction of an MoA, the cost
related to the activity in terms of a specific KPI can be defined. In this context, application
activity represents the amount of processing and communication to be carried out in order
to execute the functionality. Activity consists of a number of packets (the tokens, τ) in
turn composed of smaller units (the quanta, q) (see Figure 3.7A). Tokens and quanta
are associated with the processing (τP ∈ TP and qP ) or to the communication (τC ∈ TC
and qC), as shown in Figure 3.7B for the tasks (such as T1) and their links (e.g. C12).
Intuitively, tokens correspond to units of either processing or communication, and quanta
represent the unitary brick (inseparable unit) of either computation or communication.
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Deriving from the Y-chart design method, the calculation of the activity depends on the
MoC considered to describe the high-level application (see Figure 3.7C). Indeed, the Y-
chart approach [Kie+97] consists of characterizing the development of application and
architecture separately. The contribution of the activity (derived from the MoC) mapped
on an MoA produces a cost in terms of the selected KPI, which is defined with respect
to cost functions associated with each architectural node (as depicted in Figure 3.7D).
In the case of energy estimation, the degree of fidelity has been demonstrated highly
promising (FMτ equal to 0.86 and 0.93 for heterogeneous systems based on CPUs and
GPUs respectively). Nevertheless, studies on MoAs [Pel+18; Pay+19] are focused on
energy, which, differently from system execution latency, presents additive properties by
nature. This fact made it possible to use a linear characterization of the cost functions
that compose the MoA, called Linear System-Level Architecture Model (LSLA). On the
other hand, estimating response time may lead to nonlinear MoAs depending on the
activity properties. However, since representing a model in linear terms offers a reduction
in complexity and the wide set of linear algebra analysis functions, choosing an activity
aimed at preserving this property is highly convenient.
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Figure 3.7 – Overview of the MoA approach.
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3.3.2 Objectives on Latency Evaluation Hardware-Software Hy-
brid Systems

As will be shown in Chapter 5, PathFinder provides estimations of response time
for DAG-based applications with different scenarios and scheduled and mapped on a
determined number of PEs. PathFinder leverages on the notion of LLP that pinpoints
the relevant activity for response time analysis. Therefore, LLP can properly represent
the activity required to build an MoA in timing context. As in [Pel+18; Pay+19], the idea
is to consider an activity that takes a the form of a set of tokens, although they derive
from a DAG of tokens where edges model the causality between tokens. In particular, the
proposed contribution aims at using the Linear System-Level Architecture Model MoA
for the system execution latency based on the PathFinder (PF) analysis and at assessing
such MoA for parametric applications on a MPSoC. For the measurement of the fidelity,
(3.2) and (3.3) are involved in the evaluation.

With respect to a framework that can exploit the MoA support for the reconfiguration
and adaptation strategies, a possible toolchain is introduced in Section 4.2 in order to
design parametric applications mapped on general-purpose and CGR PEs. The idea is
to use system execution latency cost of different mappings in order to offer a support to
re-schedule and re-map the application upon HW/SW heterogeneous systems depending
on user needs, environment and state of the architectural elements.

3.4 Chapter Remarks

In this chapter, a focus has been put on the definition of problems addressed by the
thesis contributions. The general issue concerns the estimation of response time for para-
metric signal processing functionalities implemented on hardware and software hybrid
systems. As a starting point, a new methodology capable of dealing with IP-level estima-
tion for CGR accelerators has been discussed in comparison with the strategy used in the
state-of-the-art toolchains. A design flow and an assessment of the proposed methodology
are presented in Section 4.1.

The problem of estimating the response time is also of interest for SW applications,
since the objective is to involve these accelerators in a system with general-purpose re-
sources. Focusing on functionalities described as a DAG, difficulties in understanding fac-
tors that determine system execution latency through schedulers based on DAETs have
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been discussed. In order to provide explainable and accurate estimates, PathFinder has
been introduced as a new strategy. In Chapter 5, details on PathFinder with an assessment
involving different use cases are proposed.

Since efficiently managing reconfiguration and adaptation of parametric applications
on heterogeneous systems may lead to an explosion of the complexity in evaluating re-
sponse times, simplified analyses are required. The use of MoAs has been discussed as
a promising trade-off aimed at reducing complexity in timing analyses, especially when
reconfiguration and/or adaptation are required. Indeed, this may enable linear evaluation
of costs associated with an activity in terms of response time. Nevertheless, MoAs have
not been assessed with respect to timing metrics yet. In Chapter 6, building, training and
a first assessment of an MoA for response time are presented. In addition, when CGR
acceleration is combined with SW task execution, a proper toolchain needs to be used. In
Section 4.2, a framework based on dataflow tools is described and applied to different use
cases.
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Chapter 4

CONTRIBUTION 1: ON BUILDING A

DESIGN TOOLCHAIN FOR FLEXIBLE YET

PREDICTABLE HW/SW CPSS

Our objective in this chapter is to propose a HW-SW co-design flow, for signal pro-
cessing applications, represented as parameterized dataflow, that outperforms state of the
art in terms of latency predicability. Next contribution chapters will successively study a
method to understand the applicative features causing system execution latency, called
PathFinder, and an MoA unsing this activity to early estimate response time. For that we
compose state-of-the-art tools in the context of the H2020 CERBERO project, combining
their best HW and SW features. In particular, we combine dataflow tools and functional
programming compiler. In this chapter, two DF-based design flows are combined. The
objective of the study is to derive a strategy with which to manage flexible HW/SW
systems depending on the system execution latency.

At first, the focus is put on reaching response time predictability for the HW compo-
nents. As explained in Section 3.1, several limitations exist in the development of CGR
DSAs. In order to provide an alternative that reduces these, the DFF HLS has been
built (Section 4.1). This novel methodology assembles and characterizes CGR acceler-
ators based on dataflow and functional programming principles, capable of addressing
design productivity issues for CGR DSAs. The objectives have been obtained thanks to
the integration of the DF-based HLS CAPH tool for streaming applications (Section 2.4.1)
and the dataflow-to-hardware MDC design suite for CGR accelerators (Section 2.4.2). The
main advantage of the proposed methodology is the accurate IP-level latency predictabil-
ity, improving Design Space Exploration when compared to state-of-the-art HLS.

As a second step, in order to support time adaptation in HW/SW heterogeneous
systems exploiting multi-core architectures and CGR DSAs, a combination of MDC and
the SPIDER software runtime manager (Section 2.4.4) has been proposed (Section 4.2).
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This tool integration enables the runtime handling of CGR DSAs generated by MDC. For
these reasons, two Proof of Concepts (PoCs) are proposed by using the DFF HLS and by
considering only MDC in Sections 4.2.2 and 4.2.3 respectively.

4.1 Predicting Latency in CGR DSAs

4.1.1 DataFlow-Functional High-Level Synthesis

The proposed framework [Rub+19] is built on two pre-existing tools: the CAPH com-
piler and the MDC toolset. MDC provides N:1 DFNs mapping on a CGR DSA, but it
does not support PE synthesis. CAPH provides 1:1 DFN PEs synthesis, but no support
for reconfiguration. Based on the described complementaries, this work proposes a fully
automated toolchain, integrating MDC and CAPH, for specifying and deploying CGR
DSAs. The toolchain architecture is depicted in Figure 4.1. The proposed DFF HLS flow
consists of three main phases (see Figure 4.1A):

1. Composition - Model-to-model compilation performed by the Multi-Dataflow Gener-
ator (MDG) component of MDC, taking as inputs generic (including CAPH) DFNs.
This phase outputs a high-level multi-dataflow DFN of the DSA.

2. Optimization - Optimal sizing of the actor-connecting FIFOs. Optimization starts
from an estimation produced by the CAPH Compiler SystemC backend, which is
adapted to the multi-functional DFN case by worst case analysis.

3. Generation - Deployment of the CGR DSA. The MDC PC component outputs a
top-level HDL module (in the Verilog language), corresponding to the optimized
multi-functional DFN, using the CAPH generated Hardware Component Library
(HCL) actors. With respect to writing HDL, writing CAPH DF hardware is fully
synchronous by design and data-triggered processing is automatically generated.

Figure 4.1B summarizes the flow steps. (1) Users are required to provide the input set
of specifications (N different DFNs) to be accelerated using the CAPH language. Starting
from these inputs, three parallel steps take place to i) make CAPH DFNs compliant with
MDC through the CAPH-to-XDF parser (2), ii) optimize sizing of the buffer connecting
DF actors (3), and iii) generate the target-independent HCL (4). Three more steps come
in succession. The N XDF networks produced by (2) are merged in a multi-dataflow net-
work (5), which is optimized (6) using the worst-case analysis resulting from (3). Finally,
the CGR platform-independent DSA is deployed in (7). During the merging process (5),
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Figure 4.1 – Proposed DFF HLS.

common actors are identified and connections minimization is ensured. In the CGR DSA,
combinatorial switching elements, also called Switching Boxes (SBs), are used to access
shared modules, this may affect frequency but not latency.

In summary, with respect to the context of CGR DSAs, the main benefits/features of
the proposed integrated flow are:

1. Custom PE Generation - HW generation considers heterogeneous, HLS-generated
PEs for each DF actor, favoring flexibility with respect to [Raf+10].

2. Reconfigurability Management - DF-based mechanism maximizes and controls re-
source re-use, leveraging on datapath merging techniques. Moreover, reconfiguration
management is provided by MDC.
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3. Predictability - Modular specifications facilitate the predictability of system prop-
erties. Before synthesis, latency estimations can be carried out on the basis of the
pre-processed CAPH DFNs. Since the MDC datapath merging process inserts only
combinatorial switching elements [Pal+12], DF performances such as processing
latency are not altered (at least in CC but frequency can suffer).

4. Target Independence and Availability - Both MDC and CAPH are platform-agnostic
and open source.

5. Code Readability - MDC and CAPH preserve the correspondence among DF actors
and hardware PEs. This is important for example in case of post-HLS enhancements.
Vivado HLS acts differently since it assigns IPs to functional units (see Figure 4.2).

module rec_iP(…); …
rec_IP_mux_3to1_sel2_32_1 #(…)
rec_IP_mux_3to1_sel2_32_1_U0(

.din1( tmp_2_fu_602_p1 ),…);
rec_IP_mac_muladd_8ns_8s_16s_16_1 #(…)
rec_IP _mac_muladd_8ns_8s_16s_16_1_U17(

.din0( grp_fu_1351_p0 ),…); …
endmodule

void rec_IP(…){  …
switch(id){

case 2: 2tap_function(…); break;
case 3: 3tap_function(…); break; 
default: 4tap_function(…); break;}…}
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module rec_iP(…); …
configurator config_0(.sel(sel),.ID(ID));
mul_act actor_mul_act_0(…);
fifo #(.depth(8),.size(16)) 
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// 2tap
net prod=mul(…);
net sum=add(prod,…);
net out=fir2(sum, …);
…

.c

.v .v

// 3tap
net prod=mul(…);
net sum=add(prod,…);
net out=fir3(sum, …);
…

// 4tap
net prod=mul_act(…);
net sum=add_act(prod,…);
net out=fir4_act(sum, …);
…

.cph2tap_function

rec_IP_mac_muladd
_8ns_8s_16s_16_1 

add_act

add_act

Figure 4.2 – Proposed DFF HLS vs. Vivado HLS: written and generated codes.

4.1.2 Use-case Application

Most video capable CPSs embed compression mechanisms in the domain of video
coding. High Efficiency Video Coding (HEVC) is a recent format provided by the main
players in developing video compression standards: ISO/IEC MPEG and ITU-T VCEG.
Since HEVC offers a data compression gain of up to 50% compared to previous standards
(such as Advanced Video Coding (AVC)), this codec has been successfully embedded in
video systems. Nevertheless, the increasing demand for higher resolutions and frame rates
led to a higher complexity of the HEVC encoding and decoding hardware. One of the
most costly algorithm in HEVC decoder computation is due to the motion compensation
[Nog16]. This technique, implemented with image interpolation filters, enables the data
compression to exploit the temporal redundancy present in video streams. In the HEVC
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standard, two 1D filters associated to the horizontal and vertical directions perform the
interpolation. Finite impulse response filters with N taps constitute the filtering blocks.
The considered HW implementation [Sau+17] of their structure consists of the following
elements corresponding to sequential stages of the architecture:

— a pipelined channel with depth N : this hardware performs the interpolation for the
incoming pixel associated to the horizontal direction;

— N − 1 FIFO memories: in which the outputs of the pipelined channel are stored
without applying any clipping;

— N parallel multipliers: the product between coefficients and interpolated data (cur-
rent and previous N − 1 rows in the FIFOs) is computed with these blocks;

— an adder tree: this completes the vertical interpolation;

— a right shifter: the output of the adder tree is shifted to store the proper value;

— a clipping block: after shifting, the result is clipped to have the original bit length.

In order to reduce filtering complexity, approximated filters with a low length N equal to
8, 5 and 3 respectively have been chosen in the proposed use case [Nog16]. The CGR DSA
implementing all these configurations has been obtained for 1D filter and its 2D version
(as a composition of two 1D stages) by using the design flow described in Section 4.1.1.
Table 4.1 reports the number of elements of the DF specifications associated to the fixed
(with 3, 5 and 8 taps) and reconfigurable (R, with runtime filter switching) designs.

Tap 1D Filter 2D Filter
No. of Actors No. of Edges No. of Actors No. of Edges

3 11 17 19 30
5 17 27 31 50
8 26 42 49 80
R 30 45 55 86

Table 4.1 – Number of actors and edges in the implemented configurations.

4.1.3 Experimental Results

This section compares results obtained with three design flows: i) the proposed DFF
HLS, using Vivado v2015.2 and Quartus v17.1 to synthesize the CGR DSAs; ii) Vivado
HLS v2015.2; and iii) Intel FPGA SDK for OpenCL v17.0. Target devices are Xilinx
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Virtex 7 and Intel Cyclone V FPGAs. In the case of Xilinx/Intel tools, a moderate effort
has been put into code refactoring for optimization using shift register inference, line
buffers, resource reuse when possible, and pragmas (loop unrolling and pipeline). For this
reason we show results for two reconfigurable designs: baseline (R) and optimized (R*).
A comparison among the different flows is proposed in terms of resource utilization and
early estimation of the response time. By early estimation we refer to an estimate obtained
before the synthesis process.

DFF HLS vs. Vivado IP-Level HLS

Table 4.2 shows that for standard implementations (indicated by 3/5/8/R) the DFF
flow achieves better latency results. The very large latencies obtained with Vivado HLS are
explained by the default area-driven synthesis (which required adding #pragma and code
refactoring). Moreover, as stated in Sect. 3.1.1, the proposed flow preserves the latency
values of the reconfigurable IPs, meaning that merging does not alter response time in
terms of CCs as opposed to other synthesizers. Moreover, estimations before synthesis
are equal to actual post-synthesis results. With respect to the optimized reconfigurable
versions (R*), only for the 1D filter a lower use of resources (see Figure 4.3) and latency
has been obtained using Vivado HLS (-72.0% of registers, REG; -76.1% of logic elements,
LOGIC; -10.5% for minimum latency and +14.8% for maximum latency). In the 2D
filtering case, DFF HLS performances are superior. Latency results are more than 3 times
larger in the best Vivado HLS case, and again the latency is (i) not preserved and (ii)
highly variable in the reconfigurable case.

DFF HLS vs. OpenCL System-Level HLS

As in the Vivado HLS case, a significant effort on code refactoring is needed for op-
timization, which is directed by an optimization report offered at early design phases (it
contains highly inaccurate resource and system-level pipeline latency/stalls estimations,
rather than individual kernel latency values). Hence, OpenCL does not provide a method
to accurately calculate kernel latency and have insights into the generated datapath;
therefore, no response time results are reported in Table 4.2. For resource usage, results
refer to the kernel instantiation (See Figure 4.4). The support for the OpenCL HLS model
even at kernel level (automatic pipeline to support various threads on the fly, memory
accesses optimization, replications, etc.) introduces significant resource overheads.
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Filter Tap DFF HLS Vivado HLS
[CCs estimate] [CCs estimate]

3 76 1615
5 78 2403
8 81 3479
R 76,78,81 2171-5771

1D

R* — 68-69

2D

3 4365 504557
5 4369 1135201
8 4375 2409163
R 4365,4369,4375 543782-3681252
R* — 15106-38999

Table 4.2 – DFF HLS vs. Xilinx Vivado HLS on Xilinx target FPGA (XC7VX485T) in
terms of latency (represented in clock cycles).

4.1.4 Section Remarks

The results suggest that DFF HLS is a promising alternative to classical imperative
HLS to build flexible and predictable CGR DSAs. Competitive resource usage are achieved
with respect to commercial HLS methods, while allowing pre-synthesis and exact datapath
latency predictions. By trying to ease hardware design to software developers, mainstream
HLS tools have probably missed a key point in HW design that is critical to embedded
systems: having precise information on the generated datapaths to better optimize HW
accelerators through improved Design Space Exploration. We demonstrated this issue on
latency, proposing an alternative design flow that overcomes traditional HLS tools under
this aspect. DFF HLS is able to tackle both issues: raising the abstraction level with
respect to RTL writing timeless code and letting the tool generate data-triggered code,
while keeping low-level performance estimates available for further HW tuning. However,
the current assessment has been focused on a single accelerator. In order to deal with the
wider context of HW/SW systems, a novel design flow has been considered, as described
in the following Section 4.2.

4.2 Adding Software in the Loop

In this Section, an open-source adaptive management system [Rub18] is proposed,
portable over several embedded software systems and heterogeneous CGR DSAs. In or-

77



Chapter 4 – Contribution 1: On Building a Design Toolchain for Flexible yet Predictable
HW/SW CPSs

3 5 8 R 3 5 8 R

100

101

102

103

104

105

106

1D Filter 2D Filter

[u
n
it

]

DFF HLS
REG LOGIC RAM DSP

3 5 8 R R* 3 5 8 R R*

100

101

102

103

104

105

106

1D Filter 2D Filter

[u
n
it

]

Vivado HLS
REG LOGIC RAM DSP

Figure 4.3 – DFF HLS vs. Xilinx Vivado HLS on Xilinx target FPGA (XC7VX485T) in
terms of Xilinx resources: REG=FF, LOGIC=LUT, RAM=BRAM, DSP=DSP. Data are
shown on a logarithmic scale with base of 10.

der to combine these PEs with multi-core architectures, the integration activity between
the SPIDER DF-based runtime manager (see Section 2.4.4) and the MDC dataflow-to-
hardware suite (see Section 2.4.2) has been conducted. SPIDER and MDC show com-
plementary characteristics that motivate their integration. Both tools are based on a
DF MoC that can be used to separate temporal and functional problems in HW design.
Moreover, modularity of the dataflow representations favors a natural splitting of the
computation into different blocks, making it possible to automatically map them onto
heterogeneous PEs. SPIDER provides SW scheduling and memory management at run-
time for multi-core architectures. However, SPIDER supported processing elements do
not include reconfigurable HW blocks and adaptation is based on an a priori knowledge
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Figure 4.4 – DFF HLS vs. SDK for OpenCL on Intel target FPGA (5CSEMA5) in terms
of Intel resources: REG=register, LOGIC=ALUT, RAM=M10K, DSP=DSP. Data are
shown on a logarithmic scale with base of 10.

of several metrics (latency, throughput and memory utilization) evaluated with respect to
changes in software parameters. On the contrary, MDC provides a model-to-model com-
piler capable of merging several dataflow applications, as well as a dataflow-to-hardware
synthesizer that implements CGR systems. Moreover, MDC profiles CGR system con-
figurations, providing different metrics (area, power, frequency) and includes a power
manager that offers clock- and power-gating techniques for improving energy efficiency.
In Section 4.2.1, the proposed tool integration aimed at exploiting the features of SPIDER
and MDC is proposed in order to respectively manage SW and HW reconfiguration at
runtime. Tool integration is also based on the use of DF models with similar properties
in order to provide response time estimation. The main idea behind this integration is to
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use CGR DSAs as slave processing elements in the target system, and re-schedule these
PEs from a host SW-programmed processor at runtime using models of the instantaneous
HW behavior in terms of execution time. The SW application has been designed using
a PiSDF specification and the toolchain composed of the design-time tool PREESM and
SPIDER (integrating the automatic code generation of PAPIFY 1 processor event moni-
toring [Mad+18]). In this context, actors exchange tokens through FIFOs depending on
the feasible working points of the application scenario. The configuration parameters set
at design-time and run-time are respectively called static and dynamic. The latter ones
imply on-the-fly re-scheduling and re-mapping when their values change.

In Sections 4.2.2 and 4.2.3 are presented two PoCs implemented for testing the tool
integration on the Image Processing and Inverse Kinematics (IK) applications. In both
cases, the system is based on the Zynq-7000 XC7Z020CLG484 device running Linux. This
consists of SW and HW parts, both modeled as dataflow networks. The SW Application
has been mapped upon the two ARM Cortex A9 cores available on the target board. The
HW accelerator has been implemented on the Programmable Logic of the FPGA as a
CGR DSA.

4.2.1 CGR Adaptation Framework

The proposed framework has been composed from a combination of the state-of-the-
art functionalities within the H2020 CERBERO project. Indeed, a main objective of the
CERBERO project is to demonstrate an extended adaptation of the CPS calculation to
the system state as well as to its environment, adaptation provided by an autonomous
reconfiguration engine. The adaptation architecture can be illustrated as in Figure 4.5. An
application graph, conforming to a PiSDF MoC, is dynamically scheduled by SPIDER.
Depending on the scheduling, a hardware system composed of ARM cores and CGR accel-
erators (implemented in Xilinx or Intel modern SoC FPGAs) performs the computation.
HW and SW monitoring provides feedback to SPIDER about the current execution of the
tasks. Regarding the monitoring, this feature has been provided through the integration of
PAPIFY, an event-based performance monitoring tool [Mad+18], and MDC [Fan+19b].
In addition, reconfiguration/re-scheduling can also be triggered by sensors in order to
adapt the computing layer to the environment changes or system needs.

Figure 4.6 depicts the proposed design flow more in details. In particular, once obtained

1. https://github.com/Papify
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Figure 4.5 – Adaptation scheme as proposed in the H2020 CERBERO European Project.

the srDAG from the PiSDF, the execution of the tasks is delegated to the SW PEs
present in the architecture. On the other hand, the HW functionalities of the task to be
accelerated (a6 ) are described as DFNs (α, β and γ). With the merging process, these
are implemented by the multi-DF network, whose CGRA is generated. The selection of
its functionality is performed at the SW level of the accelerated task, which sends it as
input to the configuration manager of the CGRA every launch.

4.2.2 Proof of Concept on Image Processing Application with
DFF HLS

As a proof of concept, the proposed toolchain is evaluated through an application
for Image Processing, involving a multi-functional accelerator for edge detection, able
to compute two different filters: Sobel and Roberts. These are based on discrete first-
order differentiation operators, in which the boundary of an object is the difference of
the intensity levels in its pixels with respect to the surrounding pixels. These operators
are applied to evaluate the gradient image (G), that corresponds to the magnitude of the
edge. The computation consists of a convolution of a 3x3 kernel (k) with the source image
(A) for Sobel, while for Roberts k is 2x2: G = k ∗ A. This PoC has been used in order to
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Figure 4.6 – Overview of the heterogeneous HW/SW reconfigurable system.

assess a design flow in which a combination among PAPIFY and MDC has been proposed
[Fan+19b].

SW Application

The use-case algorithm depicted in Figure 4.7 can be described as follows:

— Given as an input to the actor Read_YUV, a YUV video is read frame by frame,
where the number of rows and columns correspond to height and width parameters
respectively. Filtering is applied only to the Y component, while the other ones are
directly sent to be displayed.

— Before the edge detection, the block Split divides the image in slices depending on the
degree of exploitable parallelism. In this assessment, having available one single HW
accelerator, no adaptation has been implemented in this sense (nbSlice = 1, that is
sliceHeight = height).

— At this point, verified the on-the-fly selected kernel (set by IdSetter) among Sobel and
Roberts, an initialization phase is performed in EdgeMDC_1. In this phase, the pro-
cessing data and the communication with the accelerator (through the Direct Memory
Access) are handled.

— Then, processing occurs by blocks of pixels of a size suitable for the accelerator spec-
ifications (in the assessed example, 32 × 32). EdgeMDC_2 sends a number of blocks
corresponding to width_blk×height_blk to the EdgeMDC_hw_filter, which forwards
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the data to the coprocessor. Therefore, EdgeMDC_3 receives the result of each itera-
tion, which is collected in EdgeMDC_4.

— Finally, the filtered frame is merged and displayed with the applied type of kernel and
the execution time expressed in Frames per Second (FpS).

With respect to the mapping strategy, SPIDER handles all SW tasks taking into account
the constraints given as input by the application designer. In the evaluated case, the
actors performing splitting and merging have to be executed onto the same core. Moreover,
SPIDER has managed 305 instances of the single-rate graph. Indeed, 8 actors are executed
1 time per firing, and 99 times the other 3 ones (EdgeMDC_2, EdgeMDC_hw_filter, and
EdgeMDC_3 ), since 99 32 × 32 blocks are present in the frame size considered in this
assessment (352x288 pixels). Regarding the actual filtering, this has been accelerated on
HW, as explained in the next section.

HW accelerator

As described in Section 2.4.2, MDC takes as input the DF descriptions of the applica-
tions to be accelerated. These DF specifications has been processed by MDC, to generate
a CGR DSA able to compute both Sobel and Roberts algorithms, which has been au-
tomatically embedded into the ready-to-use Xilinx IP. The CGR accelerator has been
implemented considering the design flow proposed in Section 4.1.1.

4.2.3 Proof of Concept on an Inverse Kinematics Application
with MDC

An additional PoC has been implemented by using the CGR Adaptation Framework
for an IK algorithm. The application considers the Dumped-Least Squares (DLS) algo-
rithm in order to control a robotic arm [Fan+19a]. In order to demonstrate the capabilities
of MDC, a previous version of this PoC have been used as a baseline in the assessment
proposed in [Sau+20b].

83



Chapter 4 – Contribution 1: On Building a Design Toolchain for Flexible yet Predictable
HW/SW CPSs

Figure 4.7 – DF description of the SW application, modeled using PREESM. Actors
and routing blocks are respectively represented by gray and orange boxes. Blue pen-
tagons correspond to the PiSDF parameters that, given as inputs to the actors, estab-
lish their specific functionalities. In particular, parameters with white circle vary at run-
time.Connections among blocks depict the data token transfer links (gray wires) and the
dependencies from the parameters (blue dashed lines).
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Figure 4.8 – PiSDF description of the subgraph DLS_Loop.
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SW Application

Figure 4.9 and Figure 4.8 show the DF description of the DLS application and of its
unique subgraph respectively, that have been designed by using PREESM and SPIDER.
The evaluated implementation can be explained as follows:

— A configuration actor (DLS_PreProcessing) reads the inputs given by the user re-
lated to the accuracy and the required points of the robotic arm trajectory. From
the distance between subsequent input points, it calculates the number of iterations
required to the DLS to achieve every specific point, given input accuracy. Then, it
writes a file ("segmentsInfo.txt") in which all the points are reported with the related
number of iterations. Moreover, it evaluates the total number of iterations needed
to perform the entire movement (sum of the iterations of each point). However,
its main work is to set the dynamic parameters: number of input segments/points
(segments) and number of total iterations (total_iterations).

— The actor DLS_init fires one time per graph firing, only to read and send all the
point information contained in the "segmentsInfo.txt", and enable the N firings of
the next actor Firing_Init (where N corresponds to the parameter segments).

— For each point of the trajectory, Set_Iter updates the number of iterations (it-
erations), on which the fifo sizes and delays (grey circles on the edges) depend.
Moreover, depending on the battery level, it triggers high or low performance of the
accelerator by setting its ID (parameter acc_id).

— FK provides the proper angles of the joints associated to the starting point of the
trajectory (that is statically defined).

— The actor Firing_DLS handles input data tokens to send to the DLS_allin1.

— For the whole trajectory, DLS_allin1 fires iterations times for each input point,
performing the DLS algorithm and sending the output to the ThetaOut_Writer
that stores it into the file “thetas.txt” for each DLS iteration.

— ThetaOut_Enabler fires at the end of every segment present in the trajectory only
to enable the DataSender. This actor properly sets the angles of the joints, send the
data of the whole trajectory to the arm, and enables a new reading of the input in
the configurator (DLS_PreProcessing).
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Figure 4.9 – PiSDF description of the DLS application for run-time configuration using
SPIDER.

HW Accelerator

The CGR DSA corresponds to the hardware counterpart of the actor DLS_allin1
within the DLS_Loop. This can be reconfigured in two different working modes in term
of execution time: baseline and high performance. In this case, the HDL specifications of
the actors present in the CGR DSA (generated by MDC) have been derived from Vivado
HLS, and not by using the design flow proposed in Section 4.1.1.

4.2.4 Section Remarks

In a signal processing HW context, efficiency and flexibility in terms of functionalities
can be reached by considering CGR DSAs because these accelerators combine a recon-
figurable datapath and local data exchanges without reaching a main memory. The DFF
HLS has proven capable of providing these flexible devices for both Xilinx and Intel FP-
GAs and predicting their latency at IP level. In order to exploit CGR acceleration at
system level, this design flow has been integrated with the proposed flow in a HW/SW
context. Indeed, the complementary properties of MDC and SPIDER have enabled a
novel approach based on the dataflow modularity and the runtime handling of the HW
reconfiguration. In order to support fast reconfiguration and the correct execution of the
application, SW tasks and CGR acceleration can be combined by using the proposed flow
that extends the features provided by the state-of-the-art SPIDER and MDC tools. In
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addition, this integration has supported the creation of the presented PoCs that have been
used in the assessment of further works within the H2020 CERBERO project. In current
version, the complexity due to the execution of parallel applications on heterogeneous
architectures leads to a loss of predictability at system level. Moreover, the dynamic man-
agement of parametric applications requires a specific strategy to perform adaptation. For
these reasons, a method aimed at evaluating the execution time of the whole DAG to be
implemented in both HW and SW is needed, as mentioned in Section 3.2 and proposed
in Chapter 5.

4.3 Chapter Remarks

This chapter contains two main parts respectively aimed at i) improving response
time predictability in the design of CGR IPs (Section 4.1), and ii) providing a framework
in which these accelerators can be integrated in higher-level DF-based parametric appli-
cations involving hardware and software tasks (Section 4.2). From the HW perspective,
reconfiguration can be applied with respect to the response times of each operating mode,
since this metric is known and understandable during the design phases (even before
the synthesis process associated with a specific target). Nevertheless, the execution of a
functionality with multiple SW tasks on a general-purpose architecture implies a context
difficult to determine. Therefore, in order to offer a support to the proposed adaptation
framework, a strategy based on the MoA approach have been identified (as described in
Chapter 6). The proposed framework consists of a combination of MDC and SPIDER
which is not completely automatic, and several improvements can be developed. As an
example, an implementation of different type of dynamic parameters associated with the
reconfiguration of the accelerators is required, since these parameters currently imply
re-scheduling and re-mapping at each change of their values.
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Chapter 5

CONTRIBUTION 2: PATHFINDER:
STUDYING THE APPLICATION

LATENCY-CAUSING ACTIVITY

The PathFinder method introduced in Section 3.2 computes the application activity
determining response time from applications modeled by such DAGs of tasks, tagged
with timings for both task execution and message passing. In experimental results, these
DAGs of tasks are generated from DF modeled applications using the PiSDF MoC. The
chosen definition of response time corresponds to the value W in the queuing formula
[Lit61]. The value W gives the expected time spent by a [data] unit in the system as it
passes from a data source to a data sink. In order to make the study more practical,
several data sources and sinks can be considered, determined by the system designer and
based on the objectives of the system. The derived response time is the maximum of
these independent latencies. As an example, a near-sensor stereo matching algorithm that
computes a depth map from two views of a scene takes as data sources two images from
sensors and computes a unique map representing the depth of the scene at each pixel.
PathFinder considers system execution latency as the time difference tp − min(ta1, ta2),
where ta1 and ta2 represent the arrivals of the first pixel from the two cameras, and tp

corresponds to the production of the last pixel of the depth map.
To the extent of our knowledge, this work constitutes the first effort to decompose the

determining factors of system execution latency in an MPSoC. The main contributions of
this chapter are:

— a model of the application activity causing response time in the form of an LLP;

— a method to extract an LLP from an application task DAG mapped upon an MPSoC
with a post-execution analysis;

— an assessment of the model and method on large, functional task graphs.
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5.1 Design Flow
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Figure 5.1 – Design flow implementing the PathFinder method.

In this section, the design flow for estimating LLP latency for a parametric applica-
tion described as a task graph is proposed. As depicted in Figure 5.1, this starts from the
creation of the application and the modeling of the target architecture (1). Next phases
can be performed in loop for each scenario, starting from the scheduling (2). The appli-
cation execution is monitored (3). A user that wants to apply the proposed flow needs
to manage these 3 HW- and SW-specific steps by utilizing tools in order to schedule,
map and monitor the DF-based application onto a heterogeneous system. After that, a
fully-automated chain of scripts analyzing system execution latency can be launched. At
first, this process provides a list of CP candidates depending on the DAG analysis, and
then adding interferences to a chosen CP in order to build the LLP that approximates the
response time of the functionality. Indeed, while CP is the list of tasks causing response
time in an idealized architecture with an unlimited number of PE, LLP is the list of tasks
and communications determining response time in a real MPSoC, including many inter-
ferences of different kinds (as discussed in Section 3.2.2). The input list provided by the
user for these phases consist of:

— the architectural information (number of PEs, and types, corresponding to the
names, of PEs);

— the srDAG (with parameters indicating how to explore it);

— the running and monitoring information (number of executions and measures);

— the selected statistical metrics (e.g. average) on which to base the timing character-
ization and the LLP analysis.

Thus, depending on the chosen metric, the timing cost of the actor and edge instances are
extracted from measurements (4). In parallel, the CP Candidates analysis explained in
Section 5.1.5 can be evaluated (5). Following to this method, the CP is obtained starting
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from the monitored actor times for a desired execution (6). Finally, the LLP analysis is
performed (7). In the rest of this section, flow steps are described in details.

5.1.1 HW/SW Modeling for LLP Analysis

In order to feed the LLP analysis, the model of the HW system and the application have
to be provided to the scheduler. The architectural information consists of the specified
number of PEs of different types (already known at the level C described in Section 3.2.2).
On the other hand, the application is modeled as a srDAG (as in Section 3.2.1).

5.1.2 Scheduling Scenarios

In contexts in which instantaneous system requirements imply the reconfiguration of
the application, functional changes can lead to application graphs with different numbers
of actors and paths. For this reason, it can be useful for the user to identify specific
operating modes (scenarios) of the application. The LLP analysis can then be focused
separately on the srDAG structures associated with each individual scenario. This favors
the awareness of the user about the impact of multiple instances in the execution in terms
of speedup and interferences. After a task characterization on multiple PE types from
single-core executions, the proposed flow relies on the scheduling and mapping algorithm
of the compilation tool (in our case PREESM) in order to find unconstrained solutions,
only dependent on the number of PEs, and on time characterization of the actors and
the communication cost. Moreover, in order to provide the most flexibility in executing
actors, the HW configuration corresponds to the exploitation of all the PEs present in
the HW target. Nevertheless, this corresponds to the worst-case configuration, since this
choice could imply a delay in the execution of the actors and their data exchanges.

5.1.3 Measuring Local Timings

Due to the timing variability of the srDAG instances, multiple measurements are
required for their post-characterization. Indeed, starting and ending times of the tasks
are obtained by a system monitoring, and used to obtain a CP linked to the particular
running process. This CP takes part in the LLP evaluation, and computed as proposed in
Section 5.1.6. Moreover, the measures feed the statistical latency evaluation of the srDAG.
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5.1.4 Latency Post-Characterization and Relevant Execution

Depending on the objective of the exploration, the choice of two statistical metrics
of interest leads respectively to: i) the post-characterization of the time contributions for
DAG actors and edges, and ii) the analysis based on a specific monitored execution that
more than the others represents the chosen metric. This pair of metrics customizes the
latency evaluation considered in the presented flow.

5.1.5 Finding the Critical Path Candidates

Starting from the application srDAG, several ways can be considered to obtain CP
candidates. In this work, complete and selective analyses have been evaluated (see Tables
5.1 and 5.2). The complete analyses does not require a-priori knowledge of the application
and provides the user with all the paths present in the graph. However, this could not
always be convenient since scalability issues may occur. To avoid these, in the selective
analysis, the evaluation is limited by setting the maximum number of paths per source
to be considered. Moreover, being familiar with the application favors the reduction of
computational complexity by selecting sources and sinks of the paths that have to be
analyzed.

Description of the Algorithms

Starting from each graph source actor (i.e. without predecessor), the search algorithm
implies to find the next nodes connected to it (lines 14 and 16 in algorithms of Tables
5.1 and 5.2 respectively). This continues until all paths for each sink actor (i.e. without
successor) has been found (see procedure f_nxt, lines from 1 to 10 in algorithm of Table
5.1). The heuristic version of such procedure evaluates only N paths for each selected input
(see f_nxt_N, lines from 1 to 12 in algorithm of Table 5.2). Procedures sel_graph and
sel_edges (lines 13 and 14) are used to select only the part of the srDAG affected by the
paths with the chosen sources (Sel_Sources) and sinks (Sel_Sinks) with their associated
edges (Sel_Edges), instead of considering all the sources (All_Sources), sinks (All_Sinks)
and edges (All_Edges).

Complexity of the Algorithms

A full exploration of the srDAG can easily lead to an explosion of the investigation
timing depending on the number of nodes and links among them. Indeed, the algorithm
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In srDAG
Out all CP Candidates
Pros no application knowledge is needed
Cons poor scalability

Algo

1 Procedure f_nxt(starting_node,Links,Paths)
2 for i← 1 to size(Links) do
3 next_node = get_target(starting_node,Links[i]);
4 if next_node then
5 update_paths(Paths);
6 Paths = f_nxt(next_node,Links,Paths);
7 end
8 end
9 return Paths;

10 end
11 All_Sources = find_all_sources(srDAG);
12 All_Edges = find_all_edges(srDAG);
13 for i← 1 to size(All_Sources) do
14 CP_Candidates = f_nxt(All_Sources[i],All_Edges,CP_Candidates);
15 end
16 return CP_Candidates;

Table 5.1 – Overview of the Complete CP Candidates Analysis.

of Table 5.1 presents a complexity of O(s · e · n), where s = All_Sources, e = All_Edges,
and n is the maximum length of the paths in the srDAG. Hence, to make the analysis
be tractable working on large graphs, the search space should be strategically pruned.
The analysis can be limited to O(s′ · e′ · n′), with s′ ≤ s, e′ ≤ e, n′ ≤ n, s′ = Sel_Sources,
e′ = Sel_Edges, and n′ the maximum length of the paths in the limited srDAG. Moreover,
the space complexity can be reduced to O(s′ · e′′ · n′′) (with e′′ ≤ e′, n′′ ≤ n′) by limiting
the searching to only N CP candidates per source. In the current version of PathFinder,
the parameters s′ and n′′ that limit the complexity of the analysis are given as inputs by
the user, while e′ and e′′) are obtained in dependence on these.

5.1.6 Choosing the Most Probable CP

Among the CP candidates collected in the previous phase, the critical (longest) one can
be detected with strategies based on the available information. In the proposed method
(see Table 5.3), details of the monitored execution are exploited: scheduling, mapping,
starting and ending times of each actor (available at level E). CP provides an estimation
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In srDAG, selected sources/sinks
Out selected CP Candidates
Pros tractable complexity
Cons application knowledge is needed

Algo

1 Procedure f_nxt_N(starting_node,Links,Paths,N)
2 if size(Paths) < N then
3 for i← 1 to size(Links) do
4 next_node = get_target(starting_node,Links[i]);
5 if next_node then
6 update_paths(Paths);
7 Paths = f_nxt_N(next_node,Links,Paths,N);
8 end
9 end

10 end
11 return Paths;
12 end
13 Sel_srDAG = sel_graph(srDAG,Sel_Sources,Sel_Sinks);
14 Sel_Edges = sel_edges(Sel_srDAG);
15 for i← 1 to size(Sel_Sources) do
16 CP_Candidates_i = f_nxt_N(Sel_Sources[i],Sel_Edges,CP_Candidates,N);
17 CP_Candidates = append_paths(CP_Candidates,CP_Candidates_i);
18 end
19 return CP_Candidates;

Table 5.2 – Overview of the Selective CP Candidates Analysis.

of the response time with a poor accuracy, that needs to be integrated in an LLP by
adding interferences (as in Section 5.1.7). However, this method makes it possible to ex-
amine latency variability of the CP tasks during the execution. Among the paths provided
as input (CP_Candidates), algorithm of Table 5.3 detects the CP (CP) as that path with
the maximum difference (max_diff) between the end time of its last actor and the start
time of its first one (by the procedure get_diff). As a next step, the Gantt chart describ-
ing scheduling/mapping of the real execution (Mon_Gantt) is explored. In addition, the
processing ratio (path_proc_ratio) between the latency due to the all of the actors in the
path (path_lat) and the one due to the whole path execution (end_start_diff) determines
the choice of the CP. If more paths with the same end-to-start difference are present, the
choice falls on that one with the largest processing ratio. The logic behind this decision
aims to reduce the impact of the communication links (not considered in this version of
the PathFinder) that can occur in the time windows present among executions of con-
nected CP actors. Communication times have been ignored because all experiments have
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been conducted on an MPSoC with shared memory for which inter-PE communications
use loads/stores which latencies are measured within actor execution time.

In CP Candidates, measured execution time tags
Out CP, CP latency
Pros analysis of runtime latency variability
Cons poor accuracy, running information needed

Algo

1 max_exec_time = 0;
2 for i← 1 to size(CP_Candidates) do
3 for j ← 1 to legth(CP_Candidates[i]) do
4 actor_lat = Mon_Actor_Lats[CP_Candidates[i, j]];
5 path_lat = path_lat+ actor_lat;
6 end
7 end_start_diff = get_diff(Mon_Gantt,CP_Candidates[i]);
8 if i == 1 then
9 path_proc_ratio = path_lat/end_start_diff ;

10 else
11 path_proc_ratio = path_lat/max_diff ;
12 end
13 if end_start_diff > max_diff then
14 max_diff = end_start_diff ;
15 end
16 if path_proc_ratio > CP_proc_ratio then
17 CP_lat = path_lat;
18 CP_proc_ratio = path_proc_ratio;
19 CP = CP_Candidates[i];
20 end
21 end
22 return CP and CP_lat;

Table 5.3 – Overview of the A-Posteriori CP Analysis.

5.1.7 Finding the LLP

Adding the interference to the CP analysis leads to a better awareness about the
determining factors response time, exploiting the information of the level E presented
in Section 3.2.2. Nevertheless, this further investigation increases the evaluation time
and the complexity of the analysis. Indeed, for each element of the CP, an identification
of potential interference is required (see Table 5.4). The different types of interferences
have specific weights, and one of them can dominate over the others. Thus, a selective
evaluation (get_sel_int in algorithm of Table 5.4) can satisfactorily approximate a more
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complete one, at the same time reducing the time and complexity of the analysis. In this
work, interferences due to scheduling and dependency (defined in the Section 3.2) have
been added to the selective LLP analysis. In the case of overlapping, only that one due
to the scheduling is counted. Moreover, the dependency interference is computed in a
recursive manner and, in case of overlapping, considering only one contribution at a time.
Figure 5.2 shows how LLP appears in three Gantt charts representing the real execution
of one DAG iteration of three different applications mapped on a heterogeneous 8-PEs
MPSoC, in which PEs with index from 1 to 4 are less performing in terms of ISA than
PEs with index from 5 to 8. LLP is represented as a succession of the execution time
contributions of tasks associated with the CP (in teal color), scheduling interference (in
orange) and dependency interference (in purple). The considered mappings show different
characteristics in terms of LLP. Indeed, Figure 5.2A shows a work-dominated application,
that is, where the CP contribution in the LLP is lower than the interferences. In Figure
5.2B, the LLP is the result of a balanced mix of both contributions due to CP and
interferences. Finally, Figure 5.2C depicts an LLP dominated by the CP (or span).

In CP, CP latency, execution times of actors, Gantt Chart
Out LLP, LLP latency
Pros medium complexity
Cons high accuracy

Algo

1 k = 1;
2 for i← 1 to legth(CP) do
3 LLP [k] = CP [i];
4 k = k + 1;
5 for j ← 1 to size(Actor_Lats) do
6 actor_int = get_sel_int(CP[i],Actor_Lats[j],Gantt);
7 if actor_int > 0 then
8 CP_int = CP_int+ actor_int;
9 LLP [k] = Actor_Lats[j];

10 k = k + 1;
11 end
12 end
13 end
14 LLP_lat = CP_lat+ CP_int;
15 return LLP and LLP_lat;

Table 5.4 – Overview of the Selective LLP Analysis.
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Figure 5.2 – Example of one iteration of DAG execution, represented as Gantt charts,
of work-dominated, balanced work and span, span-dominated applications mapped on an
heterogeneous MPSoC. These proposed execution views are associated with three DAGs
respectively composed of 22, 74 and 172 actors (as will be assessed in Section 5.2). LLP
tasks are highlighted in teal, orange and purple, depending on the type of contribution, as
tasks associated with: CP, scheduling interference, and dependency interference respec-
tively. 97
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5.2 Assessment

In this section, a comparison among the approaches described in Section 3.2 and the
LLP analysis is proposed. The flow described in Section 5.1 has been assessed with 3 differ-
ent PiSDF applications evaluated in several scenarios and mapped onto an ODROID-XU3
board [Har]. As explained before, PiSDF [Des+13] is a DF MoC that models synchroniza-
tion among tasks and algorithmic semantics handled by using high-level parameters. By
using this MoC, the user can vary the consumption/production rates to obtain different
structures of the srDAG. Indeed, each configuration of the PiSDF parameters represents a
specific scenario of the application, having a certain number of actor instances. The PiSDF
graphs of the chosen applications have been designed in PREESM [Pel+14], which embeds
a non-preemptive ASAP multi-core list scheduling targeting latency minimization [KA99].
The monitoring consists of 101 executions with the highest priority (available for a process
in the Linux environment) for each evaluated scenario. Among these, the execution that
best fits the mean value of the 100 measures (excluding the 1st execution to avoid typical
initial events, such as first input load into the RAM) is selected to represent the response
time of the scenario. Moreover, the same metric has been used for the characterization
of the srDAG instances. About CP candidates analysis, only 50 random paths per graph
source have been explored, we show that represent a good trade-off between complexity
and DAG exploration for the use-case applications.

Regarding the target platform, the experimental setup processor is a Samsung Exynos
5422 composed of 8 ARM cores in a big.LITTLE configuration: 4 cores are of type Cortex-
A7 with a cluster frequency up to 1.4GHz, and other 4 cores of type Cortex-A15 with
a cluster frequency up to 2GHz. In the experiments, both clocks have been set at their
maximum. In order to observe the most difficult scheduling conditions, all the 8 PEs
present in the HW target have been used for mapping of the tasks. Indeed, this choice
leads to an increased execution time associated with the data exchanges among actors.

5.2.1 Use-case Applications

This study exploits realistic use-case applications. In the context of image/video pro-
cessing, the selected applications show distinct features in terms of actors, firing, and
parallelism. These have been evaluated in 6 different scenarios depending on their pa-
rameters in order to change the dataflow graph structure: CP candidates, pipeline actor
stages, data parallel tasks.
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Example of a Work-Dominated Application — Video Stabilization

This application is work-dominated for the considered architecture parallelism. This
property means that the response time is influenced more by the number of PEs and
architecture properties rather than by application limitations. Video stabilization reduces
the effects of undesired fast camera movements due to a shaking camera during video
recording. Post-processing techniques can analyse image motion, leading to the generation
of a new video in which shaky movements are removed. The author thanks Karol Desnos
for providing the PiSDF version of the Video Stabilization application. For each frame,
the proposed solution 1 embeds the following steps:

— a frame is read from a YUV stream (ReadYUV in Table 5.5);

— the input frame is divided into blocks of BLOCK_HEIGHT by BLOCK_WIDTH
pixels (DivideBlocks);

— for each block, the minimum squared error is evaluated with respect to its possi-
ble position in the previous frame, after a restricted research (limited by MAX_-
DELTA_X/Y) that leads to the creation of a motion vector (ComputeBlockMotion-
Vector, the only one data parallel actor);

— the different motion vectors are analysed in order to identify the dominating motion
by using multivariate Gaussian criteria (FindDominatingMotion);

— the dominating motion vector is accumulated (AccumulateMotion);

— the motion-compensated frame is rendered with two times BORDER additional
pixels with respect to the input, in order to move within a larger area before leaving
the frame (renderFrame);

— a hash value is assigned to the rendered frame (MD5 );

— the rendered frame is stored in order to create the post-processed video (WriteYUV ).

Table 5.5 shows the repetitions of the 8 actors present in the PiSDF, application
model corresponding to the number of actor instances in the srDAG. Each column is
associated to a chosen scenario that depends on the values of the parameters BLOCK_-
HEIGHT, BLOCK_WIDTH and BORDER mentioned before. In this context, since the
task graph presents only one data parallel actor (ComputeBlockMotionVector), the split
of its associated work leads to the generation of a certain interference that implies a
decoupling between the CP and the real latency.

1. github.com/preesm/preesm-apps/tree/master/org.ietr.preesm.stabilization
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n PiSDF Actor Repetitions
256,10 192,200 160,200 128,200 64,200 48,200

1 ReadYUV (src) 1 1 1 1 1 1
2 SG1/SG2/DivideBlocks 1 1 1 1 1 1
3 SG1/SG2/ComputeBlockMotionVector 2 6 8 15 66 120
4 SG1/FindDominatingMotion 1 1 1 1 1 1
5 SG1/AccumulateMotion 1 1 1 1 1 1
6 SG1/renderFrame 1 1 1 1 1 1
7 MD5 (snk) 1 1 1 1 1 1
8 WriteYUV (snk) 1 1 1 1 1 1

No. of actor instances 9 13 15 22 73 127
No. of edge instances 41 57 65 93 297 513

Table 5.5 – Actor repetitions in one DAG graph iteration in the chosen scenarios for the
Video Stabilization application. Each scenarios is represented by 2 parameters, with the
following string: p1,p2; where, p1 is the block size (p1xp1, where BLOCK_HEIGHT ==
BLOCK_WIDTH), p2 is the BORDER parameter. For this application, actors within a
subgraph (SG) are preceded by SG1 and/or SG2 (respectively named Stabilization and
ComputeBlockMotionVectorss in the PiSDF). When the actor name is specified by (src)
or (snk), this is a source actor or a sink actor of the graph respectively.

Example of a Balanced Work and Span Application — Stereo Matching

For the considered platform, the Stereo Matching application has complex behaviors
in terms of response time: latency is influenced by both application CP and architecture
number of PEs. From the comparison of two images from two different poses of the same
scene, the Stereo Matching application obtains the scene depth information in the form of
a disparity map. Indeed, disparity map pixels represent the distance between the locations
of the same pixel in the two regularized views. The considered implementation 2 can be
described as follows:

— two RGB images are read as PPM files (Read_PPM0 and Read_PPM1 in Table
5.6);

— a grayscale conversion is applied to both, left and right views (RGB2Gray_L and
RGB2Gray_R);

— every pixel of the images is compared to its 8 neighbors in order to obtain an 8-bit
signature, where the bit is set to 1 if the value of the neighbor is greater, otherwise
to 0 (Census_L and Census_R);

2. github.com/preesm/preesm-apps/tree/master/stereo/org.ietr.preesm.stereo
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— an array of offsets used in the computation of the depth map is generated (Offset-
Gen);

— horizontal and vertical weights are produced for each pixel, depending on the neigh-
boring pixels and the offsets, and firing NbIterations times (ComputeHorWeights
and ComputeVertWeights);

— the disparity level (NbDisparity) is evaluated (DisparityGen);

— the grayscale images and their census signatures are combined in order to produce
the cost of matching of a specific pixel of the left image with its corresponding pixel
in the right image shifted by the disparity level (CostConstruction);

— for each pixel, an aggregation of the the horizontal and vertical disparity error for
several offsets is performed (AggregateCost);

— a disparity map is generated by computing the disparity of the input cost map from
the lowest matching cost for each pixel (disparitySelect);

— the disparity map is divided depending on the parameter NbSlice (Split);

— a 3-by-3 pixels median filter fires NbSlice times in order to smooth the result (Me-
dian_Filter);

— the result image is written in the PPM format (Write_PPM ).

For each selected scenario, the number of actor firings per DAG iteration are reported
in Table 5.6. The application has been evaluated depending on the values of 3 different
parameters: NbDisparity, NbIterations and NbSlice. Besides the mentioned firing depen-
dencies (of the actors ComputeHorWeights, ComputeVertWeights, and Median_Filter),
the NbDisparity affects the pipelined repetitions of the task chain composed by CostCon-
struction, AggregateCost and disparitySelect. The task graph presents mixed character-
istics between the exploitation of its intrinsic parallelism and the tuning of its work to
reach a better depth map quality. These characteristics lead to a proportional relationship
between the CP and the real latency. Nevertheless, since the amount of interference is not
negligible, the accuracy of the CP as a model of response time decreases with the number
of actor instances present in the srDAG.

Example of a Span-Dominated Application — SIFT Point Computation

This application is span-dominated as its response time in the architecture considered
is strongly characterized by its CP. In the context of computer vision, the Scale Invariant
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n PiSDF Actor Repetitions
2,2,4 2,4,4 2,4,8 4,4,8 16,4,8 64,4,8

1 Read_PPM0 (src) 1 1 1 1 1 1
2 Read_PPM1 (src) 1 1 1 1 1 1
3 RGB2Gray_L 1 1 1 1 1 1
4 RGB2Gray_R 1 1 1 1 1 1
5 Census_L 1 1 1 1 1 1
6 Census_R 1 1 1 1 1 1
7 SG1/OffsetGen (src*) 1 1 1 1 1 1
8 SG1/ComputeHorWeights 2 4 4 4 4 4
9 SG1/ComputeVertWeights 2 4 4 4 4 4
10 SG1/DisparityGen (src*) 1 1 1 1 1 1
11 SG1/CostConstruction 2 2 2 4 16 64
12 SG1/AggregateCost 2 2 2 4 16 64
13 SG1/disparitySelect 2 2 2 4 16 64
14 Split 1 1 1 1 1 1
15 Median_Filter 4 4 8 8 8 8
16 Write_PPM (snk) 1 1 1 1 1 1

No. of actor instances 24 28 32 38 74 218
No. of edge instances 80 94 102 136 331 1099

Table 5.6 – Actor repetitions in one DAG graph iteration in the chosen scenarios for
the Stereo Matching application. Each scenario is represented by 3 parameters, with the
following string: p1,p2,p3; where, p1 is the disparity level (NbDisparity), p2 is the number
of iterations (NbIterations), p3 is the number of slices (NbSlice). For this application,
actors within a subgraph (SG) are preceded by SG1 (named Cost_Parallel_Work in the
PiSDF). When the actor name is specified by (src) or (snk), this is a source actor or a sink
actor of the graph respectively. A * is added to indicate an initialization actor unrelated
to the input that can be evaluated as a source node in the I/O path analysis.

Feature Transform (SIFT) is an algorithm used to detect features of an image. Keypoints
are extracted by the comparison between corresponding points of the input image and
of the same image evaluated in its blurred versions and at different resolutions. The
author thanks Alexandre Honorat for providing the PiSDF version of the SIFT Point
Computation application. In particular, the evaluated implementation 3 can be explained
as follows (see Table 5.7):

— name and path of the input image are acquired (filename1 );

— the file is read in the PGM format (read_pgm);

— the integer value of the pixels is converted in floating point number (to_float);

— to properly handle the user requirements (parallelism level, blur layers, and the

3. github.com/preesm/preesm-apps/tree/master/SIFT
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various resolutions), counters have been instantiated (respectively: counterPLevels,
counterGpyrLayer and counterOctaveDownN );

— in order to create the versions at various resolutions (octaves), the input image is
upscaled once (SPLIT_upsample2x and upsample2x), and downscaled several times
(downsample2x1 and downsample2xN );

— regarding the blurring, the gaussian coefficient are calculated (compute_gaussian_-
coefs);

— the blurred images are computed for the upscaled image (row_filter_transpose2x_-
1, BarrierTranspose2x_1, row_filter_transpose2x_2, and BarrierTranspose2x_2 )
and the original one (row_filter_transpose_1, BarrierTranspose_1, row_filter_-
transpose_2, and BarrierTranspose_2 );

— blur filtering is also applied to the downscaled images (BarrierCounterGpyr, seq_-
blur1 and seq_blurN );

— all generated images are described by an array of 4 dimensions: octave (associated
to the resolution), layer (representing the blur level), height, width;

— considering all resolutions and blur levels, an image pyramid is built in order to
efficiently compute the difference of gaussian function in the next step (MERGE_-
gpyr);

— for each of these images, difference of gaussians (ITERATOR_build_dog_pyr and
build_dog_pyr), and gradient and rotational metrics (ITERATOR_build_grd_-
rot_pyr and build_grd_rot_pyr) are computed;

— keypoints detection is performed (ITERATOR_detect_keypoints and detect_key-
points);

— an extraction phase refines the detected keypoints (extract_descriptor);

— keypoints deriving from the parallel evaluations are merged (MERGE_keypoints);

— an output image with the keypoints is stored as a PPM file (draw_keypoints_to_-
ppm_file);

— the keypoints are reported in a file (export_keypoints_to_key_file).

The structure of the srDAG changes along the reported scenarios. Indeed, the par-
allelism establishes the corresponding number of firings associated with the actors to_-
float, upsample2x, downsample2x1, build_dog_pyr, build_grd_rot_pyr, detect_keypoints
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and extract_descriptor. On the other hand, some of the filtering actors (BarrierTrans-
pose2x_1, BarrierTranspose2x_2, BarrierTranspose_1, BarrierTranspose_2, seq_blur1,
and seq_blurN ) are strictly correlated to the number of blur levels (the relation is equal to
nLayer+3, except for the last one that depends on the number of the octaves too). Finally,
the combination of the two chosen parameters leads to a specific number of instances for
the tasks row_filter_transpose2x_1, row_filter_transpose2x_2, row_filter_transpose_1,
and row_filter_transpose_2. The task graph shows a sufficient parallelism that can be
effectively handled almost without the creation of further undesired activity.

5.2.2 Experimental Results

In this section, the latency evaluations associated with the levels presented in Section
3.2.2 for the use-case applications are shown. In particular, the task characterization for
the a-priori information levels A and B has been obtained by the average of the execution
times associated to the different types of PEs present in the target board. In Figure 5.3,
a comparison of the knowledge levels presented in Section 3.2 in terms of response time
estimation is proposed. Figure 5.4 shows the percentage error with respect to level D,
expressed as average (Avg) and standard deviation (StD).

Video Stabilization

Starting from the first application, Figure 5.3A shows an inversely proportional trend
between CP and real latency, as expected in presence of work domination. Indeed, with
increasing number of tasks, the estimate values at level A decrease, while the interference
grows. Compared to the level D (trace of the real latency) along all the scenarios, this
leads to a poor accuracy depending only on the knowledge of the level A. As reported
in Figure 5.4, its error in terms of average and standard deviation is -36.1% and 44.4%
respectively. Regarding the other a-priori information levels (B and C), the estimates
are more realistic since the exploitable parallelism in the application is higher than the
number of the used PEs. Indeed, work domination is effective except in the first scenario
(with 9 actors in total, but less than 8 with equivalent weights in parallel). Nevertheless,
in these two levels, the error presents a mean value and a standard deviation equal to
-2.0% and 22.2% (level B), and -33.1% and 2.9% (level C). These results derive from i) the
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n PiSDF Actor Repetitions
2,1 2,2 2,3 2,4 4,2 4,4

1 filename1 (src) 1 1 1 1 1 1
2 read_pgm 1 1 1 1 1 1
3 SG1/to_float 2 2 2 2 4 4
4 SG1/counterPLevels (src*) 1 1 1 1 1 1
5 SG1/counterGpyrLayer (src*) 1 1 1 1 1 1
6 SG1/counterOctaveDownN (src*) 1 1 1 1 1 1
7 SG1/SPLIT_upsample2x 1 1 1 1 1 1
8 SG1/upsample2x 2 2 2 2 4 4
9 SG1/downsample2x1 2 2 2 2 4 4
10 SG1/downsample2xN 4 4 4 4 4 4
11 SG1/compute_gaussian_coefs (src*) 1 1 1 1 1 1
12 SG1/SG2/row_filter_transpose2x_1 8 10 12 14 20 28
13 SG1/SG2/BarrierTranspose2x_1 4 5 6 7 5 7
14 SG1/SG2/row_filter_transpose2x_2 8 10 12 14 20 28
15 SG1/SG2/BarrierTranspose2x_2 4 5 6 7 5 7
16 SG1/SG3/row_filter_transpose_1 8 10 12 14 20 28
17 SG1/SG3/BarrierTranspose_1 4 5 6 7 5 7
18 SG1/SG3/row_filter_transpose_2 8 10 12 14 20 28
19 SG1/SG3/BarrierTranspose_2 4 5 6 7 5 7
20 SG1/BarrierCounterGpyr 1 1 1 1 1 1
21 SG1/seq_blur1 4 5 6 7 5 7
22 SG1/seq_blurN 16 20 24 28 20 28
23 SG1/MERGE_gpyr 1 1 1 1 1 1
24 SG1/ITERATOR_build_dog_pyr (src*) 1 1 1 1 1 1
25 SG1/build_dog_pyr 2 2 2 2 4 4
26 SG1/ITERATOR_build_grd_rot_pyr (src*) 1 1 1 1 1 1
27 SG1/build_grd_rot_pyr 2 2 2 2 4 4
28 SG1/ITERATOR_detect_keypoints (src*) 1 1 1 1 1 1
29 SG1/detect_keypoints 2 2 2 2 4 4
30 SG1/extract_descriptor 2 2 2 2 4 4
31 SG1/MERGE_keypoints 1 1 1 1 1 1
32 draw_keypoints_to_ppm_file (snk) 1 1 1 1 1 1
33 export_keypoints_to_key_file (snk) 1 1 1 1 1 1

No. of actor instances 101 118 135 152 172 222
No. of edge instances 550 645 740 835 951 1229

Table 5.7 – Actor repetitions in one DAG graph iteration in the chosen scenarios for
the SIFT Point Computation application. Each scenario is represented by 2 parameters,
with the following string: p1,p2; where, p1 is the parallelism level (parallelismLevel), p2
is the number of layers (nLayers). For this application, actors within a subgraph (SG)
are preceded by SG1, and/or SG2, or SG3 (respectively named SIFT, Blur2x and Blur
in the PiSDF). When the actor name is specified by (src) or (snk), this is a source actor
or a sink actor of the graph respectively. A * is added to indicate an initialization actor
unrelated to the input that can be evaluated as a source node in the I/O path analysis.
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(C) SIFT Point Computation

Figure 5.3 – Response time estimate comparison with respect to the knowledge levels
presented in Section 3.2. For each chosen scenario of the use-case applications, the selected
execution (corresponding to level D) is highlighted among 100 measurements (in Execs)
and their associated histogram (in Hist). Response time is represented in terms of 106[µs]
and 105[µs] in the main plots and in the small ones (y-axis in Execs, and x-axis in Hist)
respectively.

supposition of a homogeneous MPSoC which leads to a wide oscillation of the estimate
around the average value (level B), and ii) from the evaluation which excludes scheduling
delays due to non-ideal behaviors in execution which cause underestimated response times
(level C). On the other hand, PathFinder (level E) achieves a high-accurated estimations,
having an error with an average and a standard deviation respectively of -1.2% and 0.3%.

Stereo Matching

In the second application, the characteristics of parallelism and work lead to an in-
cremental trend, when number of actors rises, of the activity associated to the CP and
the interference, that can be seen in all the levels (as shown in Figure 5.3B). Regarding
the error on the estimates depicted in Figure 5.4, the levels A and B suffer from a lack
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Figure 5.4 – Error comparison with respect to the reference level D. For each level, per-
centage error in terms of standard deviation (StD) and average (Avg) along the scenarios
is reported for the 3 applications: Video Stabilization (1), Stereo Matching (2) and SIFT
Point Computation (3).

of knowledge of architecture. Indeed, they show an error of 11.9% (16.6%) and 14.0%
(15.3%) in terms of average (standard deviation) respectively. On the other hand, esti-
mations based on level C show a decreasingly accurate estimate as the amount of work
grows, with an mean error of -15.8% and a standard deviation of 14.1%. On the contrary,
estimates obtained from the PathFinder (level E) follow the measured response times
(Avg: 1.4%, StD: 2%). The good performances of PathFinder validate the heuristics com-
posing the method. While not exploring all paths, PathFinder can still locate the causes
of latency in the application.

SIFT Point Computation

As shown in Figure 5.3C, even if the presence of interferences does not dominate in this
third application, PathFinder can reduce the estimate error with respect to the other levels
(A, B and C). Indeed, PathFinder presents the following characteristics: Avg = −5.0% and
StD = 2.7% (see Figure 5.4). On the contrary, results based on the a-priori levels (A, B
and C) show an error with mean values of 8.9%, 8.9% and -31.3%, and deviations of
10.2%, 10.2% and 9.1% respectively.

5.2.3 Gantt Similarity Analysis

Nevertheless, since level C provides the highest execution knowledge based on a-priori
information (i.e. information available before the execution), Figure 5.5 illustrates an
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evaluation with respect to the metric Gantt Similarity (GS) defined in Section 3.2.3. In
this comparison, the matching between the levels C and D has been considered. Figure
5.5 confirms the aspects described above for the estimate error. In Stereo Matching, since
work and span are balanced, the accuracy of the estimation decreases with the number of
actors, as the GS. In the other two applications respectively dominated by work and span,
the values of GS does not present high variations. However, the similarity between the
two Gantt charts remains low for all the applications, showing the limits of the response
time estimates. These results show the complexity of the underlying problem, a real-life
schedule being extremely different from levels A, B, and C sketches. Please note that GS
cannot be drawn for PathFinder, as PathFinder constructs only the LLP, and not the
complete Gantt.
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Figure 5.5 – Gantt Similarity evaluation for levels C and D by using the metric defined
in the Equation (3.1).

5.2.4 Analysis of the Interferences

In this assessment, two types of interference have been evaluated. Indeed, the LLP
analysis considers only the effects due to the scheduling and the dependencies, mentioned
in Section 3.2.4. The choice fell on these two types, since, in the context of image/video
processing, the actor latency dominates the communication latency. Otherwise the system
would be inefficient, spending its time communicating data and not processing. Figure
5.3 also shows the subdivision of the interference for the scenarios of the Section 5.2.2 (SI
and DI indicate scheduling and dependency interferences respectively). The interference
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of Video Stabilization grows with the amount of work of the actors and is mainly due
to scheduling. Such an analysis is actually a method to determine that the application
is work-dominated. This derives from the strategy applied by PREESM, that favors the
mapping on the faster PEs until the parallelism does not give any advantage. On the
contrary in SIFT Point Computation, the dependency interference affects the CP until the
last scenarios. However, the CP contribution mainly determines the response time, since
the span dominates the execution. In Stereo Matching, both scheduling and dependency
interferences grow with work. In the 5-th scenario the dependency interference starts to
have a significant weight. As expected by an application in which coexist work and span
effects, the combination of both types leads to an increase with the number of the actors.

5.3 Chapter Remarks and Future Works

PathFinder aims at explaining factors that determine system execution latency. The
design of PathFinder design flow provides novel latency analyses for parametric applica-
tions. In addition, a new metric called Gantt Similarity that guides the response time
estimation process has been introduced. The method assessment on three non-toy appli-
cations shows the difficulties in predicting and understanding response time depending
on a-priori information. On the other hand, PathFinder provides execution awareness
based on applications described as an srDAG as well as on monitored execution times.
PathFinder generates high-accuracy latency estimates based on statistical execution be-
haviors.

However, the scenarios evaluated in the assessment belong to an application domain
(image/video processing) in which task processing dominates the communication costs.
Thus, out-of-domain scenarios with important communication costs have been neglected
in the assessment. Moreover, the detection of the interferences could be extended in order
to cover the combinations of the presented types, such as the following ones:

— scheduling affected by dependency: such interference appears when an actor that
interferes with CP through scheduling interference has to wait for a token from
other tasks, which affects its execution with a dependency interference;

— dependency affected by scheduling: such interference appears when an actor that
interferes with depending interference has to wait for the execution of other tasks,
which affect its execution with a scheduling interference.
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5.3. Chapter Remarks and Future Works

These second-order interferences are not evaluated yet by PathFinder while, in some
real cases, they do have a non-negligible impact, especially when the CP estimate is
underperforming. The current version of the PathFinder LLP detection does consider
communication costs as embedded inside tasks costs. This hypothesis is valid in the case of
shared memory MPSoCs because cache accesses and cache management operations (write-
back, invalidate) are entangled with processing operations. When considering architectures
with distributed memories, such as multiple networked systems, communications will need
to be considered separately.

In addition, timing analyses are especially useful also in the context of runtime man-
agement. Indeed, for the dynamic handling of task scheduling and mapping, runtime man-
agers rely on profiling of the system execution in order to apply the adaptation strategies
[Sin+17]. PathFinder provides response time analysis based on specific statistical metrics,
suitable for parametric applications. Future works can consider an improvement with an
a-priori version, in order to favor runtime adaptation based on LLP analysis.
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Chapter 6

CONTRIBUTION 3: RESPONSE TIME

ESTIMATION THROUGH LLP ACTIVITY

AND A MODEL OF ARCHITECTURE

In this chapter, a flow aimed at building, training and assessing a Model of Architec-
ture (MoA) to access response time is proposed. The purpose of the flow is to evaluate a
novel top-down strategy for reducing complexity in estimating system execution latency
of a parametric application described as a DF specification, and mapped upon a hetero-
geneous system. More generally, the question is on whether we can generalize a model
to unobserved cases. Indeed, mapping tasks of an application on specific sets of PEs of
the target architecture (HW configurations) leads to different execution costs in terms
of specific KPIs, since performance and scheduling of tasks are modified depending on
the number and type of selected PEs. On the other hand, even fixing the HW config-
uration, values of parameters used to perform a particular functionality or its different
operating modes (scenarios) give rise to distinct execution costs (e.g. due to changes of
the exploitable parallelism level), as already seen in Chapter 5 regarding response time.
A generalized model is capable of providing cost estimation for all desired HW config-
urations and scenarios, basing on a few observed cases used for training the model (see
Figure 6.1). Modifying HW configurations and scenarios makes it possible to separate
functional and architectural sides while identifying inter-relations between them. Figure
6.1A illustrates the estimation capability of a generalized model when a scenario-based
application is mapped on a target architecture evaluated in its different HW configura-
tions. Instead, Figure 6.1B shows how a generalized model can estimate execution costs
of multiple scenarios upon a HW configuration.

As also introduced in Section 3.3, MoAs have been used as generalized models with
promising results, modeling an MPSoC with high fidelity in energy estimation [Pel+18].
MoAs provide reusable tools for specifying KPI-based models that are abstract, application-
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Figure 6.1 – Model generalization for multiple HW configurations and application scenar-
ios.

agnostic (as much as possible), and reproducible. The foundations of an MoA are rep-
resented by the concepts of activity and cost function. Activity consists of a representa-
tion/model of application-side sources that determine the execution cost on the targeted
architecture with respect to a desired KPI. Any other source not in the given activity
does not impact the KPI-based cost. A cost function specified at MoA-side expresses the
relation between activity and its cost when this is mapped onto a specific element of the
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targeted architecture. An MoA is represented by a set of cost functions in equal number
with respect to the abstract elements describing the target architecture, whether they are
associated with processing or communication. An example of more detailed definitions of
activity and cost function will be provided in Section 6.1.

Although the promising results for energy modeling, the context of timing analysis
implies a more complex characterization of the activity that determines the metric on
which the MoA is based. Indeed, the additive nature of energy makes all processing and
communication in the workload to enter activity. For this purpose, PathFinder can be
exploited in order to provide an activity efficient for response time analysis. Indeed, as
demonstrated in Section 5.2, LLP represents a set of execution time contributions that
properly fits the response time of the whole application. The question is now: can we
generalize the output of PathFinder to unobserved cases?

This chapter is organized as follows. In Section 6.1, a definition of the MoA linked to
the activity provided by the PathFinder (such as LLP) is presented. Section 6.2 shows
how the amount of information involved in the model building may affect in terms of
accuracy and fidelity. The effects of these degrees of freedom are examined more in details
with respect to the training of the model in Section 6.3. In Section 6.4, the design flow
considered for the training and evaluation is described. The assessment of the model is
proposed in Section 6.5. Comments related to this chapter are presented in Section 6.6.

6.1 Using the LSLA MoA for LLP-based Activity

If the LLP is well built by PathFinder, the response time of the application is obtained
by summing the effect of each LLP element. Thus, combining the notion of LLP and a
linear MoA is a promising direction for decomposing the problem of response time model
generalization. When an activity is mapped onto an MoA, the cost due to its execution can
be estimated, either at design time if everything is known on this activity, or at runtime
if activity is discovered along execution. The MoA considered in this thesis is the Linear
System-Level Architecture Model (LSLA) proposed in [Pel+18] (see Figure 6.2), which
corresponds to an undirected graph (Λ = (P , C, L, cost, λ)) respectively composed of
sets of PEs (P ), Communication Nodes (CNs) (C), connection links (L), cost functions
(cost) and coefficients of the cost ratio between processing and communication (λ). A
constraint for the model to be an MoA is that, in order to be reproducible, it must specify
cost computation (the cost being the KPI of interest). The amount of "pressure" put on
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Figure 6.2 – Overview of the Y-chart-based estimation flow by using LSLA MoA.

hardware by the application is abstracted by a notion of activity composed of tokens.
A token itself is composed of a natural number of non-divisible quanta. In particular, a
processing (resp. communication) token τP (τC) must mapped onto a PE p (CN c). When
a token τ is mapped onto a node n (a PE or a CN), its cost in LSLA is computed by a
function defined as:

costn = αn · size(τn) + βn = αnsn + βn (6.1)

where αn and βn ∈ R. αn (βn) represents the fixed cost (overhead) of a quantum q (token
τn) executed on n (potentially in the presence of co-running interference). The idea behind
the two-levels construct with tokens and quanta is for the activity to include two levels
of granularity (typically function/cycle in processing and message/byte in communica-
tion). As will be proposed in Section 6.3, αn, βn and the cost unit ν can be expressed in
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time/quantum, time/token, and time respectively when targeting response time. While
in the energy case, αn, βn and ν have been respectively defined in energy/quantum,
energy/token, and energy. However, the main difference between energy and response
time lies in the cost computation of the model. While the the cost of the execution of the
energy-related activity A onto the LSLA MoA Λ with size(P ) PEs and size(C) CNs is:

cost(A,Λ) = [
Tp∑
τp

costp] + λ · [
Tc∑
τc

costc] (6.2)

the cost of the counterpart LLP-based activity A onto the LSLA MoA Λ can be estimated
as follows:

cost(A,Λ) = [
Tp⊂LLP∑

τp

costp] + λ · [
Tc⊂LLP∑

τc

costc] (6.3)

with (in both Equations 6.2 and 6.3)

costp = αpsp + βp

costc = αcsc + βc
(6.4)

where λ ∈ R is the Lagrangian coefficient setting the relative weight between communication-
related and processing-related costs per quantum, and p ≤ size(P ) (c ≤ size(C)), with
size(P ) (size(C)) the number of PEs (CNs) present in the system. p (c) corresponds to
the index of a specific PE (CN) on which tokens are mapped. These represent the activity
as contributions belonging to the LLP. However, this implies that a set of tasks present
in the DAG determines a cost in terms of response time. In addition, LLP depends on the
mapping solutions of a determined DAG, which in turn derives from a single operating
mode of the parametric application. So if we want to generalize the MoA to all or a part
of parameter values in a target application, the LLP needs to either be relatively stable,
or recomputed based on application parameters. In fact, each application scenario may
involve a different number of tasks and therefore lead to a distinct LLP. For these reasons,
the total cost defined by Equation (6.3) needs to be evaluated for each desired mapping
and corresponds to the response times associated with a determined LLPs. This enables
estimates with respect to specific mapping configurations, which consider only the PEs
actually involved in the execution of the activity associated with the LLPs. In particular,
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since an MoA can be tailored for different statistical metrics for the timing analyses (such
as the maximum or the average), αn and βn can be derived for each desired behavior.
Furthermore, in contexts where application activity is mainly due to processing, so that
it is predominant with respect to communication, it may be convenient to consider a
simplified model, ignoring communication costs, as follows:

cost(A,Λ) ≈
Tp⊂LLP∑

τp

costp (6.5)

6.2 The Long Road Towards the Fully Generalized
MoA

A fully generalized MoA would be applicable to all functionalities and HW config-
urations for a given platform family (e.g. multi-ARM). In order to use an MoA, some
assumptions related to the model building need to be clarified. Indeed, depending on the
choice of the activity and the procedure used for obtaining model parameters (αn and
βn), cost functions can present a certain degree of accuracy making it suitable to spe-
cific domains. In general, αn and βn are obtained as a function of the cost-activity pairs
(e.g. through linear regression). This fact implies a strict relation between these data and
the domain of accuracy of the model, which can concern specific scenarios, applications,
and HW setups. For this reason, the steps aimed at obtaining a model with a large do-
main of accuracy are explained in the following sections. In this work, generalization is
achieved incrementally, first looked for on new mappings to the same platform, then to
new scenarios of the same application and finally to new forms of application.

Single Mapping Information (SMI)

The simplest model can be based on the information about the LLP of a single map-
ping solution of an application scenario. This is actually a degenerated case with no
generalization where only "curve fitting" is tested. This leads to unitary cost functions
expressed as follows:

costn,i = αn · size(τn,i) + βn = αnsn,i + βn (6.6)
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which corresponds to Equation (6.1) with the dependency on the LLP activity highlighted
through the index i. The latter is associated with the i-th task present in the LLP of the
considered mapping for the scenario. A model based on Equation (6.6) can be used in
identifying the cost of a predetermined mapping solution of a single scenario for a specific
application. Indeed, each scenario is represented by a unique DAG, which can be mapped
on a certain number of PEs present in the target architecture. Since the cost function is
derived from the knowledge of a single mapping configuration, response time is likely to
be roughly estimated. However, re-mapping LLP tasks to PEs with different αn and βn
is a first method to generalize the model to a different mapping.

Multiple Mappings Information (MMI)

In order to achieve a more accurate estimation, the model building can take into
account m mappings of the same scenario. With such a strategy, for each task the couple
of the variables cost and activity depends also on a selected number of mapping solutions.
The fixed DAG can for instance be mapped to different sets of PEs. Accordingly, the
linear parameters of the cost functions are extracted considering also this dependency on
the mappings, and can be expressed as follows:

costn,i,m = αn · size(τn,i,m) + βn = αnsn,i,m + βn (6.7)

where the computation of αn and βn can provide for more than one step. For instance,
a linear regression with respect to the m-th set of cost-activity pairs, and therefore an
average operation on the m values of αn and βn.

Such a model is aimed at estimating response time for the activity associated with
further mappings of the fixed DAG, which are different from them used in model building.

Multiple Scenarios Information (MSI)

The purpose of the model can be to estimate the system execution latency for different
scenarios of the same application. In this case, different DAGs can be involved in building
of the parameters of cost functions. As seen in Section 5.2, tasks of different scenarios often
differ from each other in terms of number, duration, dependencies with other tasks. This
leads to the evaluation of this information in the construction of the model. Therefore, in
the cost functions should appear the dependency on s selected scenarios of the variables
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related to cost and activity of the tasks:

costn,i,m,s = αn · size(τn,i,m,s) + βn = αnsn,i,m,s + βn (6.8)

Multiple Applications Information (MAI)

In order to build an MoA capable to provide estimates for different applications, αn
and βn parameters can be evaluated in their related scenarios. Indeed, cost functions
should take into account such information in the choice of the cost and activity:

costn,i,m,s,a = αn · size(τn,i,m,s,a) + βn = αnsn,i,m,s,a + βn (6.9)

Involved Information Mappings Scenarios Applications

SMI 1 1 1
MMI m 1 1
MSI m s 1
MAI m s a

Table 6.1 – Overview of the information involved in building of the cost functions.

6.3 Training an MoA from System Platform Mea-
surements

Different solutions, given by the activity definition and the computation of the cost
function parameters, make the MoA an enabler for DSE methods with a high level of
elasticity. Indeed, an MoA-based method is capable of trading off between fidelity and
estimation complexity (as shown in Section 6.5). In particular, the training leading to
parameter values of the function costs, defined in Equation (6.1), that are the basis of the
MoA, can be performed in many different ways.
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6.3.1 Example of choice of the activity

Considering an LLP-based activity for MoA training, single token cost can be defined
as follows:

size(τn) = sn = wn · Char_costn = LLP_costn
Real_Exec_costn

· Char_costn (6.10)

where wn ∈ R+ : wn ≤ 1 represents the weight of the token (mapped on the n-th PE)
relative to the execution (selected by the PathFinder) with respect to its characterized
value (Char_costn) taken as a reference. In this section, this weight is obtained from the
ratio of costs in terms of execution time that the task associated with the token presents
in the LLP (LLP_costn) and in the real execution (Real_Exec_costn). In particular,
activity depends on the information used to build the cost function, as seen for (6.6), (6.7),
(6.8) and (6.9). This leads to explicitly represent activity with respect to the information
used in the construction, for the levels SMI, MMI, MSI, MAI respectively as follows:

sn,i = LLP_costn,i
Real_Exec_costn,i

· Char_costn,i (6.11)

sn,i,m = LLP_costn,i,m
Real_Exec_costn,i,m

· Char_costn,i,m=mref (6.12)

sn,i,m,s = LLP_costn,i,m,s
Real_Exec_costn,i,m,s

· Char_costn,i,m=mref ,s (6.13)

sn,i,m,s,a = LLP_costn,i,m,s,a
Real_Exec_costn,i,m,s,a

· Char_costn,i,m=mref ,s,a (6.14)

where the weight w is respectively related to the LLP and real execution costs of the i-th
task of: i) the single mapping of chosen scenario, ii) the m mappings of chosen scenario,
iii) the m mappings of s scenario of the chosen application, and iv) the m mappings of s
scenario of the a applications. On the other hand, i) a single mapping in (6.11) or one of
the m mappings: ii) of the same scenario in (6.12), iii) for each of the s scenarios in (6.13),
iv) for each of the s scenarios of the a applications in (6.14), is selected as a reference of
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the characterized cost of the tasks.

6.3.2 A method for choosing the mappings

The complexity of the timing analysis is mostly due to the large number of possible
combinations of the several variables involved. For instance, the number of considered
mappings can lead to an explosion of the analysis. Indeed, if within the application graph
and the architecture are respectively present c actors and K PEs, the number of their
mapping combinations are equal to Kc. Thus, considering 10 actors mapped onto 8 PEs,
more than a billion of different mappings could be analyzed. In analysis that considers a
pruned space of actors and of PEs is necessary. For these reasons, in order to face complex-
ity, the proposed training considers a number of mapping solutions that are dependent
only on the type t and on the number K of the PEs. When considering a platform, with
the number of PE types lower than the number of PEs (i.e. with more than one PE of
each type), the mappings with most interest for the training set are the ones that differ
from each other in the number of PEs of at least one type. In particular, the training
relies on the scheduling and mapping algorithm of the compilation tool in order to find
unconstrained solutions regardless of number of actors, as considered in PathFinder. In
this case, the number of mappings depending only on the type t of each PE and the
number K of the PEs are:

M =
K∑
k=1

(t+ k − 1)!
k!(t− 1)! (6.15)

where k is the number of currently active PEs, on which tokens can be mapped. Thus, for
each architectural configuration corresponds a values of the index k ≤ K. For example,
with 8 PEs (K = 8) of 2 different types (t = 2), Equation (6.15) becomes ∑8

k=1(k+1) = 44
combinations of different mappings to be evaluated. Indeed, for the k-th configuration,
there are k + 1 combinations of different PE types to have k of them that are active.
However, considering to have an equal number of PEs for each type present in the archi-
tecture (in our case 4), the number of differing mapping solutions decreases to 24. In fact,
Equation (6.15) becomes:

M =
K/2∑
k=1

(k + 1) +
K∑

k=K/2+1
(K − k + 1) (6.16)
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Such strategy leads to measure m < M mappings in the training of the model. The other
m′ = M −m mapping solutions can be used as a test set to assess the model (since they
serve as unobserved cases). Table 6.2 reports the M mappings derived from Equation
(6.16).

Mapping No. of Active No. of Active No. of Active
Index PEs t1-type PEs t2-type PEs

1 1 1 0
2 1 0 1
3 2 2 0
4 2 1 1
5 2 0 2
6 3 3 0
7 3 2 1
8 3 1 2
9 3 0 3
10 4 4 0
11 4 3 1
12 4 2 2
13 4 1 3
14 4 0 4
15 5 4 1
16 5 3 2
17 5 2 3
18 5 1 4
19 6 4 2
20 6 3 3
21 6 2 4
22 7 4 3
23 7 3 4
24 8 4 4

Table 6.2 – HW configuration with respect to the mapping solutions given by the (6.16).

6.4 Estimation Flow through MoA with LLP-based
Activity

Figure 6.3 illustrates the design flow used to train and assess the LSLA MoA with LLP-
based activity. This flow starts from the selection of i) s application scenarios, described
through the specifications given by the DF MoC with a determined set of parameters,
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and ii) the architecture to be modeled, which embeds K PEs configured to have k of
them active. Among all potential mappings, M desired solutions are chosen, e.g. using
Equation (6.16). These are analyzed by PathFinder in order to obtain as many LLPs. In
this flow, LLPs represents the activity of a single srDAG related to a specific scenario.
Therefore, a certain number m of LLPs is used in the training of the cost functions. As an
output of this phase, m sets of (α,β) pairs associated with the t types of PEs present in
the architecture model are provided. Leveraging on these sets, a final version of the cost
functions is defined depending on the assumptions described in Section 6.2. At this point,
the cost functions complete the whole model, which is previously expressed by Equation
(6.5). Such model is ready to be assessed with the other m′ = M −m LLPs in order to
evaluate its accuracy and fidelity in a generalized mapping case and under the hypothesis
that the LLP is well known, by using Equations (3.2) and (3.3).
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Figure 6.3 – Response time estimation flow through LSLA MoA

6.5 Assessment of the Method

In this section, a first assessment of the proposed MoA-based method for application
with processing that dominates communication is proposed. The use case corresponds
to the 3rd scenario of the Stereo Matching application proposed in Section 5.2.2. In the

124



6.5. Assessment of the Method

same way, this has been mapped onto an ODROID-XU3 board [Har], which is composed
of K = 8 ARM cores (4 CORTEX-A7 and 4 CORTEX-A15, t = 2) as specified previously.
The scenario has been evaluated in M = 24 different mapping solutions, as proposed in
Equation (6.16). The model is evaluated based on single and multiple mappings of the
unique scenario (SMI and MMI respectively), as described in Section 6.2. The model
obtained by the single mapping considers one mapping per PE type. In this case, the
chosen mapping solution (m = 1) is associated with the execution of the scenario on only
one active PE for each PE type (mapping indexes 1 and 2 of Table 6.2). On the other
hand, the models based on multiple mappings per PE type are related to the solutions in
which PEs of a unique type are solely active (as in Table 6.2 for the mapping indexes: 1,
3, 6 and 10 for the type CORTEX-A7; and 2, 5, 9 and 14 for the type CORTEX-A15).
Table 6.3 reports the values obtained for the parameters of the cost functions for both
models, which have been trained by using Equations (6.11) and (6.12) respectively.

Model Training CORTEX-A7 CORTEX-A15
K t M m m′ α β α β

MoA (SMI) 8 2 24 2 22 1.63 53437.97 1.02 -966.32
MoA (MMI) 8 2 24 8 16 1.56 29946.72 1.01 536.70

Table 6.3 – Parameters of the cost functions for the models based on the information of
single and multiple mappings per PE type.

Figure 6.4 shows the estimation results compared to the real response times and the
LLP of the selected scenario. The reported executions correspond to the average ones
derived from the PathFinder analysis. In order to explain the properties of the model
estimates, Table 6.4 reports the results in term of fidelity and percentage error. Start-
ing from the input of the models, LLP presents a high accuracy with an mean error
of -2.04% and a standard deviation of 1.39%. With respect to the fidelity metrics, LLP
achieves almost the perfect correlation considering the Spearman’s rank correlation co-
efficient (FMρ = 0.98), and a high fidelity for the Kendall’s tau (FMτ = 0.92). On the
other hand, the training of the model with single and multiple mapping solutions leads to
a clear reduction depending on the used metric: FMρ (0.94 and 0.95) and FMτ (0.85 and
0.83). Although the model based on multiple mappings is more refined, this is not clearly
shown in terms of fidelity as in those of accuracy. In fact, its estimation error exhibits
better results in average (-3.17% vs 3.97%) and standard deviation (5.51% vs 11.25%).
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Figure 6.4 – Comparison of the real response time with the estimation provided by the
LLP, and MoAs based on single and multiple mapping information (SMI and MMI re-
spectively).

Model Fidelity Metric Error [%]
FMρ FMτ n nc nd

∑n
i=1 r

2
i min max avg std

MoA (SMI) 0.94 0.85 24 255 21 136 -10.58 31.28 3.97 11.25
MoA (MMI) 0.95 0.83 24 252 24 124 -19.23 4.82 -3.17 5.51

LLP 0.98 0.92 24 265 11 36 -4.57 -0.41 -2.04 1.39

Table 6.4 – Comparison of the models in terms of Fidelity Metric, by using the (3.2) and
(3.3), and estimated error compared to the real latency.

6.6 Chapter Remarks

In this chapter, an method aimed at estimating response time based on LLP and
the LSLA MoA has been proposed. Compared to the state-of-the-art approaches, MoAs
represent a promising alternative in order to increase the applicability of timing analysis to
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a large family of systems. Especially in contexts that require the execution of parametric
applications on heterogeneous systems, MoAs can be used to support reconfiguration and
adaptation management. Indeed, MoAs can leverage on a simple characterization of the
factors that determine an execution KPI such as the system execution latency. This fact
enables more tractable KPI evaluations, in particular when the choice of the activity leads
to linear MoAs. Nevertheless, finding a proper activity representing response time of multi-
scenario functionalities is not a trivial operation. In order to present a first assessment
of the proposed MoA, activity has been modeled leveraging on the LLP provided by the
PathFinder. Although this choice may appear advantageous in building cost functions,
in current work, it requires to be obtained for each desired mapping. Therefore, the LLP
can be considered useful in the verification of accuracy and fidelity of an MoA based on
this activity, but an important remaining open question is on how to also generalize the
LLP to unseen cases.

In addition, a reduction of the complexity, due to the analysis of more HW/SW details,
can be achieved at the cost of a loss of accuracy in the estimation. Indeed, as seen in
the assessment, the estimation error can raise compared to the LLP model provided
as an input. However, the MoA is capable of preserving a reasonable degree of fidelity
with respect to the Spearman’s and Kendall’s metrics. However, these sets of results are
certainly preliminary, therefore the work associated with estimating response time through
an MoA needs to be refined before applying the strategy on a hybrid HW/SW system.
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Chapter 7

CONCLUSION

Combining heterogeneous devices in MPSoCs in order to increase flexibility and ef-
ficiency in embedded and cyber-physical systems increasingly represents an inevitable
design choice. In particular, a balanced trade-off between specialization and flexibility is
the composition of a system based on general-purpose and CGR PEs. In this context, a
functionality with multiple operating modes can be described with generic SW specifica-
tions, and accelerated with low reconfiguration overhead for its computationally intensive
workloads. However, mapping such a functionality upon a set of specific PEs requires
the use of a Model of Computation which provides a modular description and defines the
execution rules of its parametric tasks. For this purpose, DF MoCs represent a suitable so-
lution for a design based on both HW and SW implementations of signal/streams of data.
Nevertheless, in order to estimate response time of parametric functionalities mapped on
heterogeneous MPSoCs, state-of-the-art approaches request complex timing analyses that
are rarely applicable in practice because details of the hardware are unknown and/or un-
der NDA. In particular, a simplification of architecture models aimed at supporting live
adaptation strategies is required.

For these reasons, this thesis work has been focused on an new method that pinpoints
from platform measurements the factors that determine response time. In particular, the
contributions of the thesis have proposed and assessed the following elements (see Figure
7.1):

— Chapter 4 - Contribution 1: The DataFlow-Functional HLS, created from the com-
bination of the CAPH functional programming DF-based HW generation and the
MDC reconfigurable HW datapath management tool, makes it possible to design a
system with a parametric functionality or, more specifically, with one of its paramet-
ric tasks implemented as a CGR IP. Compared to the state-of-the-art approaches,
DFF HLS leads to i) early predictability in terms of IP-level response time and ii)
functionality-oriented solution synthesizable for different platforms (vendor-agnostic
FPGAs and ASIC). Co-processing with other general-purpose processors, the gener-
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ated IP can be integrated in an MPSoC by using the proposed adaptation framework
for dynamically managing parametric functionalities implemented through HW and
SW specifications based on a dataflow representation of the application.

— Chapter 5 - Contribution 2: The PathFinder tool is proposed that aims at under-
standing factors that determines system-level response time for parametric function-
alities mapped on heterogeneous MPSoCs. Compared to the traditional approaches,
PF proposes a different point of view for identifying timing activity through an ap-
proximation of the succession of tasks causing response time, called Longest-Latency
Path.

— Chapter 6 - Contribution 3: An evaluation of an MoA-based approach for estimating
system execution latency of functionalities characterized by LLPs as application
activity is proposed. Although, the method is far from providing a complete solution
in terms of generalization to mappings, application parameters, application and
architectures, it represents the first attempt of building an elastic model aimed at
supporting runtime management in the intricate context of MPSoC timing analysis.

Future Works

Many works can be envisioned to enhance the contributions of this thesis. In order
to reduce limitations and complete the design steps to reach system adaptation, some
propositions of future work are exposed below:

— Chapter 4 - Contribution 1: The DFF HLS is based on the combination of the HLS
for streaming functionalities named CAPH and the suite for CGR devices named
MDC. This contribution has required a large effort of tool design within the context
of the H2020 CERBERO project. Nevertheless, the degree of design expressivity of
the CAPH-MDC combination is currently limited compared to that of the single
tools. In particular, restrictions to the potential of the proposed flow are related to
the generation of the CGR accelerator, since the specifications provided by CAPH
are not fully supported by MDC. In addition, the integration of the accelerator
in design solutions obtained through the proposed adaptation framework is still
manually managed. Indeed, using the drivers provided by the generation of the
accelerator, the developer needs to manually create a SW task in order to properly
provide and obtain input and output data respectively to/from the CGR PE, which
is reconfigured by means of a specific parameter given as an input to the drivers of
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Figure 7.1 – Development timeline of the thesis work according to the contributions and
objectives presented in Section 1.

the accelerator. Moreover, from a high-level perspective, the accelerator appears into
the System-Level Architecture Model as a generic SW PE, without the attribution of
specific characteristics, such as the property of the number of configurations present
in the IP, and an extended architecture model is to be created to improve integration.
The same applies to the configuration parameter described in the Parameterized
and Interfaced SDF, which should actually be limited to a limited set of values,
while currently they can take any integer value. This limitation is also linked to the
characterization of each configuration of the accelerator in terms of response time
in order to properly schedule the functionality on the target MPSoC. On the other
hand, the switching of the parameters configuration is applied to the subsequent
firing of the whole application graph PiSDF. This strategy may be unsuitable in
the context in which the timing overhead of reconfiguration is severely constrained.
Finally, further demands may derive from the exploitation of parallel execution of
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multiple accelerators, since only one CGR IP is tested in the proposed PoCs.

— Chapter 5 - Contribution 2: PathFinder provides a set of execution time contri-
butions total to the response time which include interferences in reference to a
selected critical path. Limitations related to the types of interference not consid-
ered in the LLP analysis can affect the estimation in terms of accuracy. In fact, as
already mentioned, high-order combinations of the so-called scheduling and depen-
dency interferences can arise in certain use cases, although the amount of processing
dominates the communication and synchronization between tasks. For these reasons,
further studies aimed at extending the applicability of the LLP analysis would be
interesting. In addition, the algorithmic complexity of the PathFinder can be re-
duced through refinements of the choices associated with the DAG exploration and
CP detection. Finally, a design-time strategy aimed at obtaining the LLP is highly
desirable, since this is currently based on a-posteriori timing information (level E
in Section 3.2.2). LLP generalization to sets of system configurations is especially
desirable if using the LLP as the activity for an MoA-based response time study.

— Chapter 6 - Contribution 3: As a first proposition with respect to a highly complex
context of the timing analysis of parametric functionality mapped on a heteroge-
neous MPSoC, the estimation of the response time based on MoAs represents an
on-going work. In particular, a further study on a generalized activity obtained at
design time, also based on the LLP criteria, is required. For instance, a strategy
aimed at exploiting a single LLP for more than one mapping could be explored.
This could be applied first to span-dominated applications, which present a limited
interference with respect to the CP. On the other hand, a method for predicting
the LLPs of parametric functionalities can represent another way to obtain activity.
In addition, new MoAs described as non-linear models, differently from the chosen
LSLA, may favor accuracy and fidelity, but they require to stick to explainable pa-
rameters for the activity and MoA to remain explainable. As a further work, the
assessment of functionalities with HW task mapped on CGR accelerators can be
considered. For this purpose, a fundamental step consists of integrating the MoA-
based estimation into the proposed adaptation framework, in order to handle the
parametric functionality upon heterogeneous systems.
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Appendix A

FRENCH SUMMARY

A.1 Introduction

Actuellement, les systèmes embarqués sont certainement les dispositifs les plus cou-
rants dans l’électronique de masse et industrielle. Les systèmes multiprocesseurs sur une
seule puce (MPSoCs), sur lesquels sont traitées leurs phases de traitement, intègrent un
nombre croissant de éléments de traitement (PEs) hétérogènes afin d’assurer efficacement
les fonctionnalités modernes. Pour cette raison, la conception de systèmes basés sur MP-
SoCs est devenue de plus en plus complexe et plusieurs approches visant à limiter cette
complexité sont apparues [CF16]. Parmi les concepts de systèmes embarqués, les sys-
tèmes cyberphysiques (CPSs) ont été connus et étudiés avec intérêt par la communauté
scientifique au cours des dernières années. Ces systèmes sont capables de surveiller et de
contrôler des éléments physiques et considèrent des composants hétérogènes qui inter-
agissent les uns avec les autres selon des modalités différentes en fonction du contexte
dans lequel ils fonctionnent [Raj+10]. La conception et la maintenance de ces systèmes
sont extrêmement complexes en raison de leur nature multidisciplinaire, de leurs exigences
complexes, de l’hétérogénéité de leurs composants et de la communication continue entre
leurs couches physiques et cybernétiques [DLS12]. Tant les systèmes embarqués que les
CPSs impliquent des exigences élevées en termes de flexibilité et d’efficacité. La première
propriété exige des solutions capables de réaliser différentes fonctionnalités évaluées dans
divers modes de fonctionnement. La seconde est nécessaire pour l’exploitation du sys-
tème en ce qui concerne les performances et les coûts découlant des choix de conception
(par exemple en ce qui concerne les exigences liées au budget énergétique et au temps de
réponse).

Afin d’atteindre la flexibilité et l’efficacité, il est nécessaire de disposer de matérielles
et logicielles numériques capables de mettre en œuvre différentes fonctionnalités avec plu-
sieurs modes de fonctionnement afin de répondre aux exigences. Une solution de plus
en plus envisagée est représentée par la combinaison d’implémentations reconfigurables



à la fois en termes de matérielles et logicielles [Sha+14 ; GPK19 ; Pér+20]. Toutefois, en
présence de multiples modes de fonctionnement qui dépendent de l’état du système et de
l’environnement extérieur, la reconfiguration peut ne pas être suffisante pour garantir une
flexibilité complète et/ou un degré d’efficacité approprié. En effet, dans des cas tels que
la défaillance de composants du système ou la nécessité de changer de fonctionnalité, une
gestion de l’exécution en temps réel est nécessaire. Néanmoins, l’adaptation en fonction
d’événements incertains et de l’évolution des exigences fonctionnelles et non fonction-
nelles constitue un défi important pour les développeurs de systèmes. Afin de faciliter la
reconfiguration et l’application des stratégies de adaptation, l’utilisation de paramètres
associés à des modes de fonctionnement spécifiques offre une gestion de haut niveau de
la fonctionnalité. Étant donné que ces modes de fonctionnement peuvent concerner à la
fois les implémentations matérielles et logicielles, les fonctionnalités paramétrique réalisée
sur des systèmes hétérogènes, visant à apporter flexibilité et efficacité, est de plus en plus
évaluée.

Parmi les indicateurs clés de performance (KPIs) de systèmes embarqués et CPSs les
plus courants, le temps de réponse joue un rôle pertinent pour les stratégies envisagées pour
la reconfiguration et adaptation des solutions de traitement du signal [HAR14 ; GPM14].
En effet, cette métrique représente le temps d’exécution d’une élaboration complète d’une
fonctionnalité, à partir de l’acquisition d’une donnée d’entrée donnée et jusqu’à la généra-
tion d’une donnée de sortie associée. Néanmoins, l’évaluation précise du temps de réponse
implique des analyses de temps complexes et/ou de fortes limitations dans la mise en
œuvre des composantes matérielles et logicielles. En effet, bien que différentes approches
dans la littérature visent à fournir une précision et une fiabilité dans la vérification du
temps de réponse, leur applicabilité dépend de divers aspects, tels que : la disponibilité des
informations concernant les détails matérielles et logicielles, et la quantité de traitement
et de demandes dans l’utilisation des ressources du système associées à la fonctionnalité
[Wil+08]. En outre, dans les contextes exigeant une reconfiguration et une adaptation,
l’évaluation du calendrier et la budgétisation en ligne peuvent nécessiter l’exécution de
modèles complexes, non compatibles avec les exigences de performance applicative. Par
conséquent, ce problème est loin d’être résolu efficacement pour les fonctionnalités qui
exigent flexibilité et efficacité dans leur exécution. C’est pourquoi il est nécessaire d’iden-
tifier une autre approche afin de simplifier l’estimation du temps de réponse, en particu-
lier lorsque les fonctionnalités paramétriques sont exécutées sur des systèmes hétérogènes.
Toutefois, la réduction de la complexité n’est pas gratuite et est généralement liée à une
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perte de précision de l’évaluation temps de réponse. L’analyse doit donc maintenir la ro-
bustesse des valeurs estimées, en présentant au moins un degré élevé de fidélité par rapport
à la tendance du coût réel de la fonctionnalité en termes de temps de réponse.

Le résumé expose tout d’abord un aperçu de l’état de l’art relatif à l’approche proposée
(Section A.2). La Section A.3 présente la définition du problème, la motivation et les ob-
jectifs de chaque contribution. La Section A.4 décrit les contributions de la thèse comme
suit. La Section A.4.1 (Contribution 1) présente et évalue un flux de conception capable
d’estimer le temps de réponse dans la conception des accélérateurs CGR (Objectif 1) et un
cadre pour le développement d’applications paramétriques mappées sur PE reconfigurable
à gros grains (CGR) et d’usage général (objectif 2). La Section A.4.2 (Contribution 2)
propose une méthodologie pour détecter les facteurs déterminants du temps de réponse
dans l’exécution des fonctionnalités paramétriques mappées sur des MPSoCs hétérogènes
(Objectif 3). La Section A.4.3 (Contribution 3) décrit un flux de conception pour l’esti-
mation de la latence d’exécution du système par la MoA linéaire, en fonction de l’activité
définie dans la contribution 2 (objectif 4). Les considérations finales relatives au travail
de thèse et les éventuelles améliorations futures concluent l’étude (Section A.5).

A.2 Etat de l’Art

Comme ce travail de thèse est axé sur l’estimation du temps de réponse des fonction-
nalités paramétriques réalisées sur des systèmes composés de systèmes polyvalents et de
CGR PE, cette section donne un aperçu des domaines de recherche liés à ce contexte. En
effet, l’évaluation de ces KPI dépend des stratégies utilisées dans la conception de la fonc-
tionnalité. En particulier, une telle conception peut combiner des approches spécifiques
associées au développement de mises en œuvre matérielles et logicielles de la fonction-
nalité. Toutefois, selon le modèle d’application et la plate-forme cible considérés dans la
conception, l’analyse du temps varie considérablement en termes de complexité et de pré-
cision. En fait, le comportement d’une application peut être décrit par une combinaison
d’éléments opérationnels présents dans un ensemble spécifique correspondant à un en-
semble appelé modèle de calcul ou Model of Computation (MoC) [LX04]. Un MoC vise à
formaliser les représentations des applications et implique une stratégie spécifique d’éva-
luation du temps de réponse. D’autre part, l’impact de l’architecture cible sur le temps
de réponse est communément connu, car celle-ci peut avoir différents types et nombres
de composants matériels. En général, comme la description des fonctionnalités par des
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spécifications basées sur les MoCs DF présente des propriétés telles que l’abstraction et la
modularité, elle a été largement utilisée dans l’évaluation du temps de réponse. C’est pour-
quoi une attention particulière sera accordée à ces MoCs et à l’utilisation d’architectures
composées de PEs polyvalents et spécifiques.

A.2.1 Conception d’applications de traitement du signal

Nous appelons application de traitement du signal une fonctionnalité de traitement
numérique à effectuer sur des données numériques arrivant constamment. Le modèle uti-
lisé pour décrire une telle fonctionnalité détermine la stratégie d’estimation du temps de
réponse [AS19 ; Men+17 ; Objb ; ABA16]. Différentes stratégies de Design Space Explo-
ration (DSE) sont basées sur des MoCs spécifiques pour étudier les KPIs d’application
[AA18]. Cependant, les méthodes DSE peuvent être regroupées dans les quatre familles
ci-dessous, sur la base de leurs modèles d’application.

Simulation de code impératif (Imp). La latence d’un code impératif avec des
tâches parallèles peut être prédit avant l’exécution réelle en utilisant un Instruction Set
Simulator (ISS) [AS19]. Cette stratégie nécessite une connaissance détaillée de l’archi-
tecture sous-jacente et souffre également d’un manque d’évolutivité, car les opérations
matérielles rapides sont simulées par un logiciel qui est d’un ordre de grandeur plus lent
[Pim17].

SystemC-based simulation (SysC). Les bibliothèques C++ de SystemC [Acc] four-
nissent des mécanismes d’annotation du temps pour spécifier de manière modulaire un
algorithme et simuler son comportement temporel avec plusieurs niveaux de précision.
Toutefois, la disponibilité limitée de modèles de plates-formes polyvalentes sur lesquelles
simuler les applications rend l’utilisation de la simulation du Système C assez coûteuse
en termes de temps de conception dans la pratique.

Simulation basée sur UML (UML). Le modèle d’objet standard Unified Modeling
Language (UML) décompose un calcul en un ensemble d’objets. Les extensions UML telles
que SysML [Obja] et MARTE [Objb] fournissent une sémantique de spécification des KPIs
pour alimenter une simulation abstraite. Dans ces outils DSE, l’estimation de la latence
est effectuée par des simulations RTL ou TLM. Cependant, il n’existe pas de procédure
standard pour dériver les KPIs pour un ensemble spécifique de ressources matérielles et
de caractéristiques non fonctionnelles.

Évaluations des KPIs basées sur un modèle de flux de données (DF). Lors
de l’utilisation d’un MoC DF, un des nombreux modèles abstraits alternatifs peut être
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choisi pour représenter le calcul d’une fonctionnalité comme un ensemble de tâches non
préemptives qui échangent des messages entre elles par le biais de FIFOs [PL95]. Les
évaluations de latence peuvent être calculées à partir d’une instance du MoC DF et d’un
modèle de l’architecture matérielle [Mat+19], et la précision de l’analyse de la latence
dépend de la qualité de ces modèles de latence.

Dans cette thèse, une méthode appelée PathFinder, visant à estimer latence dans
le contexte DF, est proposée. Cette approche présente des capacités de modularité et
d’abstraction qui ont été largement exploitées dans l’analyse du temps. En outre, cela
s’adapte naturellement à la prévisibilité de la latence dans des architectures hétérogènes.
En littérature, une pléthore de MoCs DF a été défini. Leur sémantique représente une
modélisation différente en termes d’activation, d’exécution et d’interaction entre les tâches
qui décrivent la fonctionnalité souhaitée. Dans cette thèse, le MoC PiSDF a été choisi
pour la disponibilité d’outils avancés et la prévisibilité des représentations d’applications
supportant la reconfiguration.

A.2.2 Conception d’architectures reconfigurables à gros grains

Au cours des dernières décennies, des systèmes composés de différentes plateformes ont
été conçus pour optimiser la flexibilité et l’efficacité. En effet, les architectures d’usage
général permettent des solutions plus flexibles avec un effort de conception et un coût
moindre par rapport aux architectures reconfigurables ou ASICs. Néanmoins, l’accélération
matérielle est parfois nécessaire pour les charges de travail à forte intensité de calcul afin
de satisfaire aux exigences du cas d’utilisation [FW19], notamment en termes de timing
et de consommation d’énergie/puissance. Comme cette thèse se concentre sur le premier
aspect, et en particulier sur l’estimation de la latence pour les systèmes flexibles, une
architecture hétérogène basée sur une combinaison d’accélérateurs CPUs et de CGR a
été sélectionnée. En fait, il s’agit d’un compromis entre la flexibilité et l’efficacité de
la co-conception matérielle/logicielle, qui permet d’éviter des frais de conception élevés
pour gagner en performance. Les dispositifs reconfigurables consistent en un ensemble
de PEs et de connexions qui peuvent être adaptées à l’exécution [CH02], afin de réali-
ser une fonctionnalité ou un mode de fonctionnement spécifique (appelé aussi scénario).
L’adaptation du système est appliquée par une reconfiguration au niveau matériel des
blocs logiques et des interconnexions [TB01]. Ceux-ci sont déployés sur un substrat lo-
gique d’une plate-forme reconfigurable, dont le plus courant sur le marché est l’FPGA
[Res]. Dans la littérature, cette plate-forme est utilisée pour mettre en œuvre deux ap-
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proches principales basées respectivement sur les architectures reconfigurables FG et CG
[Che05]. La reconfiguration FG consiste à remplacer totalement ou partiellement la des-
cription de l’architecture au niveau des bits dans l’FPGA. En revanche, la reconfiguration
dans l’approche CG est une sélection des PEs ou de leur configuration étant donné le
mode de fonctionnement représenté comme un ID et choisi pour l’exécution de la fonc-
tionnalité. Bien que les systèmes CGR permettent moins de flexibilité par rapport aux
homologues FG, ils évitent les temps de reconfiguration lents requis par ces derniers. Pour
ces raisons, au fil des ans, plusieurs CGRAs ont été proposés, qui peuvent être regroupés
dans les principales catégories introduites dans [Har01]. Cette classification se concentre
sur les différences en termes de disposition et de connexions des PEs, en distinguant trois
types différents : les tableaux linéaires, les tableaux à base de maillage et les tableaux à
base de barres transversales. En plus des catégories mentionnées ci-dessus et proposées
dans [Har01], les systèmes CGR peuvent intégrer des ensembles de PEs hétérogènes (par
ex. DSPs, processeurs, etc.) et FUs (par ex. additionneurs, multiplicateurs, etc.) et les
interconnexions strictement nécessaires à la fonctionnalité spécifique au domaine.

A.2.3 Analyse de temps sur les MPSoCs

En se concentrant sur l’analyse temporelle des systèmes à plusieurs PEs, l’enquête
présentée dans [Mai+19] classe l’état de l’art en quatre catégories générales de recherche,
comme suit.

Full Integration (FI). Fonctionne sur la base d’un effet de levier FI sur l’information
complète concernant l’exécution des tâches. L’analyse est basée sur WCET, en utilisant
la vérification du modèle et les états abstraits du processeur. Bien que FI promette des
estimations précises, cette stratégie souffre généralement d’une grande complexité et d’une
faible scalabilité.

Temporal Isolation (TI). TI sépare le traitement des tâches dans le temps afin
d’éviter l’utilisation simultanée des ressources partagées, principalement le bus mémoire,
qui est considéré comme la principale source d’interférence. TI conduit à une évaluation
du temps plus simple que les analyses FI. Cependant, la moindre utilisation du matériel
pénalise les performances de l’application dans son ensemble.

Integration into Schedulability Analysis (IS). IS compte des retards supplémen-
taires dus à la présence de tâches en co-exécution et à la politique d’accès aux ressources
partagées dans l’analyse de planifiabilité. Les travaux basés sur l’approche IS gèrent effi-
cacement l’analyse avec un accès sérialisé aux ressources partagées, au prix de l’exclusion
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de leur utilisation superposée.
Mapping and Scheduling (MS) MS combine une analyse du temps avec des solu-

tions de mapping et de planification pour garantir les contraintes de temps. Les travaux
MS souffrent de problèmes d’évolutivité, ainsi que d’une forte dépendance aux caracté-
ristiques de l’application et de l’architecture. Pour ces raisons, elles ont tendance à ne
pas fournir une solution complète pour l’ensemble du problème auquel leur approche est
confrontée.

A.3 Définition du Problème et Motivation

A.3.1 Définition du problème dans le contexte du matériel du
CPS

La connaissance de la latence du système mis en œuvre dès les premières étapes de
la conception est un outil important pour améliorer la productivité et réduire l’effort
de conception. La Figure A.1A illustre la méthodologie de conception des principaux

Synthesis lat > latreq IP
Functionality

Implementation Simulation
Platform/Target

Selection

(A) Approche dépendant de la plate-forme/du cible avec informations post-synthèse

Functionality
Implementation Simulation lat > latreq

Platform/Target
Selection IPSynthesis

(B) Approche agnostique des plates-formes/cibles avec informations de pré-synthèse

Figure A.1 – HW time verification strategies.

outils HLS à base d’impératifs et dépendant de la cible présents à l’état de l’art. Ceux-
ci nécessitent une DSE pour obtenir la latence d’exécution du système requise (lat >
latreq), en itération entre l’implémentation, la simulation et la synthèse. De plus, afin de
déployer un IP correspondant pour une nouvelle cible hardware, la fonctionnalité doit
être réimplémentée selon les spécifications associées à la nouvelle cible. Pour ces raisons,
les développeurs doivent avoir une connaissance approfondie du synthétiseur et un effort
considérable est nécessaire pour obtenir une architecture optimisée, en particulier dans les
contextes nécessitant des cibles différentes. La Figure A.1B illustre le DFF HLS proposé
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dans cette thèse, qui vise à offrir une évaluation du temps de réponse avant la synthèse, en
s’appuyant sur des outils basés sur les flux de données et la programmation fonctionnelle.
Cela donne aux développeurs l’avantage de se concentrer sur l’application à accélérer
avec une approche orientée vers les fonctionnalités plutôt qu’une approche basée sur la
synthèse. De plus, lorsque la description de l’algorithme conduit à un HDL synthétisable
à l’aide d’une plate-forme/cible, le développement de l’IP peut être divisé en deux parties
associées respectivement à l’application et au matériel.

A.3.2 Définition du problème dans le contexte du logiciel paral-
lèle du CPS

Quel que soit le type de charge de travail applicatif, le temps de réponse est déterminé
par une succession de mécanismes causaux, longs à mettre en œuvre, qui sont généralement
représentables par un DAG de tâches dépendantes des données, représentant une itération
d’exécution [FW19]. Au niveau matériel, les MPSoCs hétérogènes sont des solutions effi-
caces pour l’exécution d’applications multifonctionnelles. Cependant, les performances du
système en termes de temps de réponse sont difficiles à prévoir et à comprendre à partir des
modèles d’application et d’architecture. En effet, latence est une propriété hautement non
linéaire, affectée par de nombreux phénomènes logiciels, matériels et d’ordonnancement.
Cette thèse présente une nouvelle méthodologie de modélisation de la latence d’exécution
du système, nommée PathFinder, avec pour objectif d’extraire, à partir d’un modèle d’ap-
plication, un Longest-Latency Path (LLP), c’est-à-dire un sous-ensemble de la charge de
travail de l’application qui se rapproche du temps de réponse. En généralisant ce concept,
nous appelons activité la part de la charge de travail d’une application qui détermine un
KPI donné [Pel+18].

A.3.3 Définition du problème dans le contexte du matériel/logiciel
hybride

Les sections A.3.1 et A.3.2 ont introduit les objectifs visant à estimer respectivement
le temps de réponse des fonctionnalités implémentées comme un accélérateur CGR, et le
DAG des tâches logicielles. Bien que ces deux aspects aient été traités séparément, leur
combinaison est souvent souhaitée dans les contextes où la reconfiguration ou l’adaptation
est nécessaire. Cependant, la planification et le mappage de ces fonctionnalités nécessite
de généraliser la stratégie utilisée pour estimer la latence d’exécution du système.
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Afin de déterminer le temps de réponse d’une fonctionnalité paramétrique, il faut
envisager de nouvelles approches qui font un compromis entre précision et complexité. En
particulier, l’idée est d’évaluer une stratégie qui favorise une réduction de la complexité
au détriment d’une dégradation contrôlée de la précision. Cette nouvelle approche doit
néanmoins générer un modèle de haute fidélité, c’est-à-dire une capacité à alimenter des
décisions correctes. La fidélité peut être définie par les coefficients de corrélation du rang
de Spearman ρ et du tau de Kendall τ [BB00 ; JIP10].

Récemment, une nouvelle approche de modélisation de l’architecture appelée MoA et
basée sur les concepts d’abstraction et de modularité a été proposée [Pel+18]. Dans le cas
de l’estimation de l’énergie, le degré de fidélité a été démontré très prometteur (FMτ égal
à 0,86 et 0,93 pour les systèmes hétérogènes basés sur CPUs et GPUs respectivement).
Néanmoins, les études sur les MoAs [Pel+18 ; Pay+19] sont axés sur l’énergie, qui, à
la différence de la latence d’exécution du système, présente des propriétés additives par
nature.

A.4 Contributions

A.4.1 Construction d’une chaîne d’outils de conception pour des
CPS matérielles et logicielles flexibles et prévisibles

Le flux proposé [Rub+19] s’appuie sur deux outils préexistants : le compilateur CAPH 1

[SBA13] et le jeu d’outils MDC 2 [Pal+17]. Sur la base des compléments décrits, ce travail
propose une chaîne d’outils entièrement automatisée pour la spécification et le déploie-
ment des DSAs CGR. Le flux DFF HLS proposé se compose de trois phases principales
(voir Figure A.2) : Composition, qui effectue une compilation modèle-à-modèle et produit
une DFN multi-dataflow de haut niveau du DSA ; Optimisation, pour le dimensionne-
ment optimal des FIFOs en relation avec les acteurs ; Generation, le déploiement du DSA
CGR. En résumé, en ce qui concerne le contexte des DSAs CGR, les principaux avan-
tages/caractéristiques du flux intégré proposé sont les suivants : Custom PE Generation,
génération de PEs hétérogènes pour chaque acteur du flux de données ; Reconfigurability
Management, mécanisme basé sur le flux de données qui maximise et contrôle la réutilisa-
tion des ressources ; Predictability, avant la synthèse, des estimations de latence peuvent

1. https://github.com/jserot/caph
2. https://github.com/mdc-suite
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Figure A.2 – DFF HLS proposé.

être effectuées sur la base des DFNs CAPH prétraitées ; Target Independence and Availa-
bility, MDC et CAPH sont agnostiques à la plate-forme et open source ; Code Readability,
MDC et CAPH préservent la correspondance entre les acteurs du flux de données et les
PEs matériels. Le DFF HLS proposé a été évalué par rapport aux principaux outils HLS
commerciaux (Vivado HLS v2015.2 et Intel FPGA SDK for OpenCL v17.0) dans l’implé-
mentation reconfigurable de filtres approximatifs HEVC (1D et 2D) [Nog16]. Les résultats
suggèrent que DFF HLS est une alternative prometteuse aux HLS impératifs classiques
pour construire des DSA CGR flexibles et prévisibles, puisqu’il fournit une utilisation
compétitive des ressources et des prévisions de latence pré-synthèse.

Afin d’exploiter l’accélération CGR au niveau système des architectures multi-coeurs,
l’activité d’intégration entre le gestionnaire d’exécution basé sur le flux de données SPI-
DER 3 [Heu+14] et la suite de flux de données vers le matériel MDC a été menée. En
effet, leurs propriétés complémentaires ont permis une nouvelle approche basée sur la mo-
dularité du flux de données et la gestion de l’exécution de la reconfiguration matérielle
(Figure A.3). Cette intégration a permis la création des preuves de concept présentés qui
ont été utilisés dans l’évaluation de travaux ultérieurs dans le cadre du projet CERBERO
H2020.

3. https://github.com/preesm/spider
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A.4.2 PathFinder : étude de l’activité à l’origine de la latence
de l’application

La méthode PathFinder calcule l’activité de l’application, sous la forme d’un Longest-
Latency Path (LLP), en déterminant le temps de réponse des applications modélisées par
de tels DAGs de tâches, marqués avec des temps pour l’exécution de la tâche et le passage
du message. Dans les résultats expérimentaux, ces DAGs de tâches sont générés à partir
d’applications modélisées par des flux de données utilisant le MoC PiSDF [Des+13]. La
définition choisie du temps de réponse correspond à la valeurW dans la formule de mise en
file d’attente [Lit61]. La valeur W donne le temps prévu passé par une unité [de données]
dans le système lorsqu’elle passe d’une source de données à un puits de données. Afin de
rendre l’étude plus pratique, plusieurs sources et puits de données peuvent être considérés,
déterminés par le concepteur du système et basés sur les objectifs du système. Le temps
de réponse dérivé est le maximum de ces latences indépendantes. Dans la mesure de nos
connaissances, ce travail constitue le premier effort pour décomposer les facteurs déter-
minants de la latence d’exécution du système dans un MPSoC. Un LLP est un ensemble
de contributions de latence provenant d’une chaîne source-puit du DAG, le Critical Path
(CP), avec l’ajout des éléments du DAG qui interfèrent avec l’exécution idéale de le CP.
Le flux de conception pour l’estimation de la latence LLP pour une application paramé-
trique décrite comme un graphique de tâches est proposé. Comme le montre la Figure
A.4, cela commence par la création de l’application et la modélisation de l’architecture
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Figure A.4 – Flux de conception mettant en oeuvre la méthode PathFinder.

cible (1). Les phases suivantes peuvent être réalisées en boucle pour chaque scénario, à
partir de l’ordonnancement (2). L’exécution de l’application est surveillée (3). Ainsi, en
fonction de la métrique choisie, le coût du timing de l’acteur et des instances de bord sont
extraits des mesures (4). En parallèle, l’analyse des candidats LLP peut être évaluée (5).
Selon cette méthode, le CP est obtenu à partir des temps d’acteurs surveillés pour une
exécution souhaitée (6). Enfin, l’analyse LLP est effectuée (7).
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Figure A.5 – Comparaison des erreurs par rapport au niveau de référence D. Pour chaque
niveau, le pourcentage d’erreur en termes d’écart type (EcT) et de moyenne (Moy) le long
des scénarios est rapporté pour les 3 applications : Stabilisation vidéo (1), Stéréo (2) et
Calcul du point SIFT (3).

Le flux décrit dans la Figure A.4 a été évalué avec 3 applications PiSDF différentes
évaluées dans plusieurs scénarios et mappées sur une carte ODROID-XU3 [Har]. PiSDF.
[Des+13] est un MoC DF qui modélise la synchronisation entre les tâches et la sémantique
algorithmique traitée en utilisant des paramètres de haut niveau. Chaque configuration
des paramètres PiSDF représente un scénario spécifique de l’application, ayant un certain
nombre d’instances d’acteurs. La Figure A.5 propose une comparaison entre 4 différents
niveaux d’information sur la plate-forme matérielle et l’exécution surveillée (niveau D).
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Ces 4 niveaux sont les suivants : aucune information sur l’architecture n’est prise en
compte et le CP est considéré indépendamment sur le système (niveau A) ; connaissance
de un nombre connu de PEs homogènes et mémoire limitée (niveau B) ; distinction des
types de PEs dans le système cible (niveau C) ; et PathFinder (niveau E).

Pour évaluer le degré de similitude entre deux diagrammes de Gantt sur l’exécution
des tâches X et Y, le concept de Jaccard index [Rez+19], aussi appelé Intersection over
Union (IoU), a été utilisé. Une nouvelle métrique appelée Gantt Similarity (GS) qui donne
un score entre 0 (aucune correspondance) et 1 (correspondance complète) a été définie :

GS(X, Y ) =
T∑
i=0

[IoU(Xi, Yi)] · wi =
T∑
i=0

[
area(Xi ∩ Yi)
area(Xi ∪ Yi)

]
· area(Yi)
area(Y ) (A.1)

où T est le nombre d’acteurs présents dans l’srDAG, et Xi et Yi représentent les cases
associées aux temps d’exécution de la tâche i-th dans respectivement X et Y, et wi prend
en compte la façon dont les tâches affectent l’exécution avec les différents poids.

L’évaluation de la méthode sur les 3 applications montre les difficultés à prévoir et
à comprendre le temps de réponse en fonction des informations a priori. D’autre part,
PathFinder fournit des estimations de latence de haute précision et une connaissance de
l’exécution basée sur les applications décrites comme un srDAG ainsi que sur les temps
d’exécution surveillés.

A.4.3 Estimation du temps de réponse par l’activité LLP et une
MoA

La combinaison de la notion de LLP et d’un MoA linéaire est une direction prometteuse
pour décomposer le problème de la généralisation du modèle du temps de réponse. Lors-
qu’une activité est mappée sur un MoA, le coût dû à son exécution peut être estimé, soit au
moment de la conception si tout est connu sur cette activité, soit au moment de l’exécution
si l’activité est découverte en cours d’exécution. Le MoA considéré dans cette thèse est le
Linear System-Level Architecture Model (LSLA) proposé dans [Pel+18], qui correspond à
un graphique non orienté (Λ = (P , C, L, cost, λ)) respectivement composés d’ensembles
d’éléments de traitement PEs, de nœuds de communication CNs, de liens de connexion, de
fonctions de coût et de coefficients du rapport de coût entre traitement et communication.
Une contrainte pour que le modèle soit un MoA est que, pour être reproductible, il doit
spécifier le calcul des coûts. La quantité de "pression" exercée sur le matériel par l’appli-
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cation est abstraite par une notion de activité composée de tokens. Lorsqu’un jeton τ est
mappé sur un noeud n (a PE ou a CN), son coût en LSLA est calculé par une fonction défi-
nie comme suit : costn = αn ·size(τn)+βn = αnsn+βn, où αn et βn ∈ R. La différence entre
l’énergie et le temps de réponse réside dans le calcul du coût du modèle. En effet, le coût de
l’exécution de l’activité basée sur LLP A sur le MoA LSLA Λ avec size(P ) PEs et size(C)
CNs peut être estimé comme suit : cost(A,Λ) = [∑Tp⊂LLP

τp
costp]+λ · [∑Tc⊂LLP

τc
costc], avec

costp = αpsp + βp et costc = αcsc + βc, et où p ≤ size(P ) (c ≤ size(C)), avec size(P )
(size(C)) le nombre de PEs (CNs) présent dans le système. p correspond à l’index d’un PE
spécifique (CN) sur lesquels les jetons sont mis en correspondance. Ceux-ci représentent
l’activité en tant que contributions appartenant au LLP. Dans les contextes où l’activité
applicative est principalement due au traitement, qui domine la communication, le coût
de l’exécution devient : cost(A,Λ) ≈ ∑Tp⊂LLP

τp
costp.

Le flux de conception utilisé pour former et évaluer les LSLA MoA avec l’activité
basée sur LLP part de la sélection de i) s scénarios d’application, décrits à travers les
spécifications données par le MoC DF avec un ensemble déterminé de paramètres, et ii)
l’architecture à modéliser, qui intègre K PEs configurés pour avoir k d’eux actifs. Parmi
tous les mappages possibles, M solutions souhaitées sont choisies. Celles-ci sont analysées
par PathFinder afin d’obtenir autant de LLPs. Dans ce flux, l’LLPs représente l’activité
d’un seul srDAG lié à un scénario spécifique. Par conséquent, un certain nombre m de
LLPs est utilisé dans l’apprentissage des fonctions de coût. En sortie de cette phase,
des ensembles m de paires (α,β) associés aux types t de PEs présents dans le modèle
d’architecture sont fournis. À ce stade, les fonctions de coût complètent l’ensemble du
modèle. Ce modèle est prêt à être évalué avec les autres m′ = M −m LLPs afin d’évaluer
sa précision et sa fidélité [BB00 ; JIP10] dans un cas de mappage généralisée et sous
l’hypothèse que l’LLP est bien connu, en utilisant les équations suivantes : i) FMρ =
1− 2·

∑n

i=1 r
2
i

n(n2−1)
3

= 1− 2·
∑n

i=1(P r,a
i −P r,e

i )2

n(n2−1)
3

, et ii) FMτ = nc−nd
1
2n(n−1) .

Le cas d’utilisation choisi pour l’évaluation du model correspond à M = 24 différentes
solutions de mappage d’un scénario de l’application Stereo Matching exécutée sur une
carte ODROID-XU3 [Har], qui est composée de K = 8 de cœurs ARM (4 CORTEX-A7
et 4 CORTEX-A15, t = 2). Cette première évaluation montre la possibilité d’obtenir une
bonne fidélité (FMρ ≥ 0.94, FMτ ≥ 0.83). L’LLP peut être considéré comme utile dans
la vérification de l’exactitude et de la fidélité d’un MoA basé sur cette activité, mais une
question importante qui reste ouverte est de savoir comment généraliser également l’LLP
aux cas non vus.
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A.5 Conclusion

Ce travail de thèse s’est concentré sur une nouvelle méthode qui permet d’identifier,
à partir des mesures de la plate-forme, les facteurs qui déterminent le temps de réponse.
En particulier, les contributions de la thèse ont proposé et évalué les éléments suivants.

Contribution 1 (Section A.4.1). Le DFF HLS, créé à partir de la combinaison
de la programmation fonctionnelle CAPH basée sur la génération DF et de l’outil de
gestion du chemin de données matériel reconfigurable MDC, permet de concevoir un
système avec une fonctionnalité paramétrique ou, plus précisément, avec une de ses tâches
paramétriques mise en œuvre en tant que CGR IP. Par rapport aux approches à l’état de
l’art, DFF HLS conduit à i) une prévisibilité précoce en termes de temps de réponse au
niveau IP, et ii) une solution orientée vers les fonctionnalités synthétisable pour différentes
plateformes (FPGAs et ASIC). En co-processing avec d’autres processeurs polyvalents,
le IP généré peut être intégré dans un MPSoC en utilisant le cadre d’adaptation proposé
pour gérer dynamiquement des fonctionnalités paramétriques mises en œuvre par le biais
de spécifications matérielles et logicielles basées sur une représentation du flux de données
de l’application.

Contribution 2 (Section A.4.2). L’outil PathFinder est proposé et vise à com-
prendre les facteurs qui déterminent le temps de réponse au niveau du système pour les
fonctionnalités paramétriques exécutées sur des MPSoCs hétérogènes. Par rapport aux
approches traditionnelles, PF propose un point de vue différent pour identifier l’activité
de chronométrage par une approximation de la succession des tâches causant le temps de
réponse, appelé Longest-Latency Path.

Contribution 3 (Section A.4.3). Une évaluation d’une approche basée sur le MoA
pour estimer la latence d’exécution du système des fonctionnalités caractérisées par le
LLPs comme activité d’application est proposée. Bien que la méthode soit loin de four-
nir une solution complète en termes de généralisation aux mappages, aux paramètres
d’application, à l’application et aux architectures, elle représente la première tentative de
construction d’un modèle élastique visant à soutenir la gestion du temps d’exécution dans
le contexte complexe de l’analyse du temps MPSoC.
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Titre : Analyse du temps de réponse des applications de flux de données paramétrées sur des
systèmes logiciels/matériels hétérogènes

Mot clés : Analyse de performance, MPSoC, Flux de données, Synthèse de haut niveau,

Reconfiguration à gros grains

Résumé : Les fortes contraintes de réacti-
vité et de consommation énergétique des sys-
tèmes embarqués et cyber-physiques néces-
sitent l’utilisation croissante de systèmes de
calculs parallèles et fortement hétérogènes.
La nature de ces systèmes parallèles im-
plique une énorme complexité dans la com-
préhension et la prévision des performances
en termes de temps de réponse. En effet, le
temps de réponse dépend de nombreux fac-
teurs associés aux caractéristiques à la fois de
la fonctionnalité implémentée et de l’architec-
ture cible.

Les méthodes d’optimisation système ac-
tuelles dérivent le temps de réponse du sys-
tème en examinant les opérations requises
par chaque tâche, tant pour le traitement que
pour l’accès aux ressources partagées. Cette

procédure est souvent suivie par l’ajout ou l’éli-
mination des interférences potentielles dues
à la concurrence entre tâches. Cependant,
de telles approches nécessitent une connais-
sance avancée des détails du logiciel et du
matériel, rarement disponible en pratique lors
du dimensionnement du système.

Cette thèse propose une stratégie alter-
native "top-down" visant à étendre les cas
dans lesquels le temps de réponse matériel
et logiciel peut être analysé et prédit. La stra-
tégie proposée s’appuie sur des représenta-
tions d’applications par des modèles flux de
données et se concentre sur l’estimation du
temps de réponse d’applications reconfigu-
rables exécutées par des unités de calcul à la
fois générales et spécialisées.

Title: Response time analysis of parameterized dataflow applications on heterogeneous
SW/HW systems

Keywords: Performance Analysis, MPSoC, Dataflow, HLS, Coarse-Grained Reconfiguration

Abstract: In contexts such as embedded and
cyber-physical systems, the design of a de-
sired functionality under constraints increas-
ingly requires a parallel execution of differ-
ent tasks on heterogeneous architectures. The
nature of such parallel systems implies a huge
complexity in understanding and predicting
performance in terms of response time. In-
deed, response time depends on many factors
associated with the characteristics of both the
functionality and the target architecture.

State-of-the art strategies derive response
time by examining the operations required by
each task for both processing and accessing
shared resources. This procedure is often fol-

lowed by the addition or elimination of potential
interferences due to task concurrency. How-
ever, such approaches require an advanced
knowledge of the software and hardware de-
tails, rarely available in practice.

This thesis provides an alternative "top-
down" strategy aimed at extending the cases
in which hardware and software response
times can be analyzed and predicted. The pro-
posed strategy leverages on dataflow-based
application representations and focuses on the
response time estimation of reconfigurable ap-
plications mapped on both general-purpose
and specialized processing elements.
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