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Abstract

Many machine learning problems are formulated in terms of minimization of
mathematical functions, a task which is then solved by various optimization methods.
As more and more data is becoming available, optimization techniques have to
address problems with high-dimensional feature spaces and inexact information.
Therefore, first-order optimization methods with low per-iteration cost have become
predominant in practice and have attained considerable attention in the literature in
recent years. A common characteristic of this type of techniques is slow convergence,
which motivates a great interest in acceleration of existing algorithms in order to
save computational resources.

A goal of this thesis is to explore several topics in optimization for high-
dimensional stochastic problems. The first task is related to various incremental
approaches, which rely on exact gradient information, such as SVRG, SAGA, MISO,
SDCA. While the minimization of large limit sums of functions was thoroughly
analyzed, we suggest in Chapter 2 a new technique, which allows to consider all
these methods in a generic fashion and demonstrate their robustness to possible
stochastic perturbations in the gradient information. Our technique is based on
extending the concept of estimate sequence introduced originally by Yurii Nesterov
in order to accelerate deterministic algorithms. Using the finite-sum structure of
the problems, we are able to modify the aforementioned algorithms to take into
account stochastic perturbations. At the same time, the framework allows to derive
naturally new algorithms with the same guarantees as existing incremental methods.
Finally, we propose a new accelerated stochastic gradient descent algorithm and a
new accelerated SVRG algorithm that is robust to stochastic noise. This acceleration
essentially performs the typical deterministic acceleration in the sense of Nesterov,
while preserving the optimal variance convergence.

Next, we address the problem of generic acceleration in stochastic optimization,
trying to repeat the success of direct acceleration performed in Chapter 2. For this
task, we generalize in Chapter 3 the multi-stage approach called Catalyst, which
was originally aimed to accelerate deterministic methods. In order to apply it to
stochastic problems, we improve its flexibility with respect to the choice of surrogate
functions minimized at each stage. Finally, given an optimization method with mild
convergence guarantees for strongly convex problems, our developed multi-stage
procedure accelerates convergence to a noise-dominated region, and then achieves a
near-optimal (optimal up to a logarithmic factor) worst-case convergence depending
on the noise variance of the gradients. Thus, we successfully address the acceleration
of various stochastic methods, including the variance-reduced approaches considered
and generalized in Chapter 2. Again, the developed framework bears similarities
with the acceleration performed by Yurii Nesterov using the estimate sequences. In
this sense, we try to fill the gap between deterministic and stochastic optimization
in terms of Nesterov’s acceleration. A side contribution of this chapter is a generic
analysis that can handle inexact proximal operators, providing new insights about
the robustness of stochastic algorithms when the proximal operator cannot be exactly
computed.

In Chapter 4, we study properties of non-Euclidean stochastic algorithms applied
to the problem of sparse signal recovery. A sparse structure significantly reduces
the effects of noise in gradient observations. We propose a new stochastic algorithm,
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called SMD-SR, allowing to make better use of this structure. This method is a multi-
step procedure which uses the stochastic mirror descent algorithm as a building block
over its stages. Essentially, the SMD-SR procedure has two phases of convergence
with the linear convergence during the preliminary phase and the optimal asymptotic
rate during the asymptotic phase. Comparing to the most effective existing solutions
to stochastic sparse optimization, we offer an improvement in several aspects. First,
we establish the linear convergence of the initial error (similar to the one of the
deterministic gradient descent algorithm, when the full gradient observation ∇f(x)
is available), while showing the optimal robustness to noise. Second, we achieve
this rate for a large class of noise models, including sub-Gaussian, Rademacher,
multivariate Student distributions and scale mixtures. Finally, these results are
obtained under the optimal condition on the level of sparsity which can approach
the total number of iterations of the algorithm (up to a logarithmic factor).

Keywords: stochastic optimization, convex optimization, complexity, accelera-
tion, sparse optimization
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Résumé

De nombreux problèmes d’apprentissage automatique sont formulés en termes
de minimisation de fonctions mathématiques, une tâche qui est ensuite résolue
par diverses méthodes d’optimisation. Une réponse aux défis liés au traitement de
données massives et hétérogènes fait appel aux techniques d’optimisation pour des
problèmes de grande dimension et avec des informations incertaines. C’est pourquoi
les méthodes d’optimisation à faible coût par itération, dites de premier ordre,
sont devenues un outil numérique principal d’apprentissage automatique, et ont
attiré une attention considérable dans la littérature au cours des dernières années.
Une caractéristique commune de ce type de technique est une convergence lente,
ce qui motive un grand intérêt pour l’accélération des algorithmes existants afin
d’économiser les ressources de calcul.

Cette thèse vise à explorer divers sujets liés à l’analyse des méthodes de premier
ordre appliquées à des problèmes stochastiques de grande dimension. Notre première
contribution porte sur divers algorithmes incrémentaux, tels que SVRG, SAGA,
MISO, SDCA, qui ont été analysés de manière approfondie pour les problèmes
avec des informations de gradient exactes. Nous proposons dans le chapitre 2 une
nouvelle technique, qui permet de traiter ces méthodes de manière unifiée et de
démontrer leur robustesse à des perturbations stochastiques lors de l’observation
des gradients. Notre approche est basée sur une extension du concept de suite
d’estimation introduite par Yurii Nesterov pour l’analyse d’algorithmes déterministes
accélérés. En utilisant la structure de somme finie des problèmes considérés, nous
proposons une modification de ces algorithmes pour tenir compte des perturbations
stochastiques. De plus, notre approche permet de concevoir de façon naturelle de
nouveaux algorithmes incrémentaux offrant les mêmes garanties que les méthodes
existantes tout en étant robustes aux perturbations stochastiques. Enfin, nous
proposons un nouvel algorithme de descente de gradient stochastique accéléré et un
nouvel algorithme SVRG accéléré robuste au bruit stochastique. Dans le dernier
cas il s’agit essentiellement de l’accélération déterministe au sens de Nesterov, qui
préserve la convergence optimale des erreurs stochastiques.

Ensuite, nous abordons le problème de l’accélération générique, en essayant
de répéter le succès de l’accélération directe réalisée au Chapitre 2. Pour cela,
nous étendons dans le Chapitre 3 l’approche multi-étapes de Catalyst, qui visait à
l’origine l’accélération de méthodes déterministes. Afin de l’appliquer aux problèmes
stochastiques, nous le modifions pour le rendre plus flexible par rapport au choix
des fonctions auxiliaires minimisées à chaque étape de l’algorithme. Finalement, à
partir d’une méthode d’optimisation pour les problèmes fortement convexes, avec
des garanties standard de convergence, notre procédure commence par accélérer la
convergence vers une région dominée par le bruit, pour converger avec une vitesse
quasi-optimale ensuite. Cette approche nous permet d’accélérer diverses méthodes
stochastiques, y compris les algorithmes à variance réduite décrits et généralisés au
Chapitre 2. Là encore, le cadre développé présente des similitudes avec l’analyse
d’algorithmes accélérés à l’aide des suites d’estimation proposées par Yurii Nesterov.
En ce sens, nous essayons de combler l’écart entre l’optimisation déterministe et
stochastique en termes d’accélération de Nesterov. Une autre contribution de ce
chapitre est une analyse unifiée d’algorithmes proximaux stochastiques lorsque
l’opérateur proximal ne peut pas être calculé de façon exacte.
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Au Chapitre 4, nous étudions des propriétés d’algorithmes stochastique non-
Euclidiens appliqués au problème d’estimation parcimonieuse. La structure de parci-
monie permet de réduire de façon significative les effets du bruit dans les observation
du gradient. Nous proposons un nouvel algorithme stochastique, appelé SMD-SR,
permettant de faire meilleur usage de cette structure. Là encore, la méthode en
question est une routine multi-étapes qui utilise l’algorithme stochastique de descente
en miroir comme élément constitutif de ses étapes. Cette procédure comporte deux
phases de convergence, dont la convergence linéaire de l’erreur pendant la phase
préliminaire, et la convergence à la vitesse asymptotique optimale pendant la phase
asymptotique. Par rapport aux solutions existantes les plus efficaces aux problèmes
d’optimisation stochastique parcimonieux, nous proposons une amélioration sur plu-
sieurs aspects. Tout d’abord, nous montrons que l’algorithme proposé réduit l’erreur
initiale avec une vitesse linéaire (comme un algorithme déterministe de descente
de gradient, utilisant l’observation complète du gradient de la fonction-objective),
avec un taux de convergence optimal par rapport aux caractéristiques du bruit.
Deuxièmement, nous obtenons ce taux pour une grande classe de modèles de bruit, y
compris les distributions sous-gaussiennes, de Rademacher, de Student multivariées,
etc. Enfin, ces résultats sont obtenus sous la condition optimale sur le niveau de
parcimonie qui peut approcher le nombre total d’iterations de l’algorithme (à un
facteur logarithmique près).

Mots-clés : optimisation stochastique, optimisation convexe, complexité, accélé-
ration, optimisation parcimonieuse
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Chapter 1

Introduction

Over the last decades, a great research interest has been directed towards data science
and machine learning problems, such as fraud and risk detection, search engines, recom-
mendation systems, image and speech recognition, reinforcement learning, to name a few.
Many of these problems are naturally cast as maximization of a quality criterion over a set
of unknown parameters, leading to an increasing demand for mathematical optimization
routines. Nowadays, the choice of optimization method is one of the key steps in building
a machine learning pipeline.

Recent technological advances in data collection and storage raise new challenges in
large-scale machine learning problems that essentially involve optimization over sets of
parameters of particularly large dimension [Bottou et al., 2018]. Specifically, there is a
demand for efficient optimization methods that process data samples at low cost from
both computational and memory usage points of views, while preserving good theoretical
guarantees. This setting is beyond the realm of classical polynomial time optimization
methods [d’Aspremont, 2008, Juditsky and Nemirovski, 2011a], so the first-order methods
take the leading role.

One specific artifact of large-scale setting is working under uncertainty because usually
one does not have access to precise information about incoming data samples. This concept
is often represented by the assumption that the objective function to optimize is stochastic,
leading to stochastic optimization [Nemirovsky and Yudin, 1983]. Operating on problems
of this kind, first-order methods can have access only to inexact and (typically) unbiased
estimations of gradients. This setting dates back to the pioneering work of [Robbins and
Monro, 1951], who established that even under uncertainty such methods converge to the
optimal solution in expectation under rather mild conditions imposed on the criterion.
Since then a large amount of work was devoted to develop, enhance or analyze different
methods dealing with stochasticity [see Nemirovski et al., 2009, Ghadimi and Lan, 2012,
Lan, 2012, Bottou et al., 2018] among many others. When dealing with stochasticity, one
popular approach is to use the variance reduction technique, where gradient estimates
are iteratively refined in order to decrease the variance of estimates [Johnson and Zhang,

1



2 Chapter 1. Introduction

2013, Defazio et al., 2014a, Allen-Zhu, 2017, Lan and Zhou, 2018a]. In this thesis, we
provide a new viewpoint to shed new light on several variance reduction techniques. In
addition, we improve their robustness to uncertainty and design new algorithms with
better convergence guarantees.

Each optimization method is built over a set of assumptions imposed on problems to
be solved. Therefore, it naturally belongs to one or several particular classes of methods
unified by the nature of these assumptions. Methods of each class treat problems of
particular type, that is, for example, optimization problems with/without uncertainty,
with/without sparsity etc. For instance, it is known that some deterministic accelerated
methods may be impractical on optimization problems with uncertainty. As another
example, methods that automatically adapt to hidden geometrical properties of criteria
(like strong convexity) may be beneficial, when an experimenter does not know if a problem
possesses such properties. Therefore, because typically the exact type of a problem is
unknown in practice and the exhaustive search over methods of different classes is usually
intractable in large-scale setting, there exists a strong demand for developing universal
methods that are applicable to wide classes of optimization problems [Lan, 2012, Allen-Zhu
and Yuan, 2016].

Apart from specifics of the large-scale setting, we are also interested in general ap-
proaches to acceleration of existing algorithms. An example of generic scheme accelerating
first-order optimization methods called Catalyst was introduced in [Lin et al., 2015]. It
universally treats algorithms from several classes of methods, including those related
to variance reduction techniques, and can be seen as an inexact accelerated proximal
point algorithm. The method to be accelerated is used iteratively to solve approximately
a well-constructed sequence of problems. However, this technique is not applicable to
problems endowed with uncertainty. In the thesis, we address this challenge and show how
to make Catalyst robust to uncertainty in incoming data.

Another common way to deal with large dimensionality is to exploit the inner structure
of a problem. For instance, in machine learning applications, it happens frequently that
the quality criterion has many insignificant or negligible parameters. Therefore, it is
natural to attempt to recover only a small number of these parameters, while trimming
the others. This setting leads to sparse recovery optimization problems that have gained a
lot of attention in the literature from both practical and theoretical perspectives [Donoho
et al., 2000, Bühlmann and Van De Geer, 2011], and demonstrate their merits in a variety
of applications [Agarwal et al., 2012b]. Sparsity of solutions may be induced in several
ways: by using `0 penalization [Blumensath and Davies, 2009, Jain et al., 2014, Bhatia
et al., 2015] that specifically may be seen as feature selection; by relaxing the problem to
`1-minimization, leading to the well studied Lasso and Dantzig Selector estimators [see
Juditsky and Nemirovski, 2011c, and references therein]; or by an intermediate choice of
`p-"norm" with p ∈ (0, 1) [Foygel Barber and Liu, 2019, Zhao and Luo, 2019] balancing
the merits of the first two approaches. In any case, exploiting sparsity always results
in better convergence with respect to data uncertainty. In the thesis, we develop a fast
first-order method that exploits sparse structure for a wide variety of problems, including
sparse regression and low-rank matrix recovery. Moreover, we show that the theoretical
guarantees of the resulted method are improved comparing to the best currently known
results from [Hazan and Kale, 2010, Juditsky and Nesterov, 2010, Agarwal et al., 2012b,
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Ghadimi and Lan, 2013].
In this introduction, we gave a high-level conceptual overview of main directions

and challenges taken by the thesis. The contributions of the thesis related both to
theoretical and practical sides of our findings are listed in the next section along with a
brief explanation.

1.1 Contributions of the thesis
Before we give a detailed overview with precise definitions and explanations of the

concepts briefly introduced above, we present the list of the main contributions of the
thesis from a high-level perspective, and we cite the corresponding publications. Detailed
descriptions for each point will be given in Sections 2.1.1, 3.1.1 and 4.1.1 respectively.

— In Chapter 2, we propose a unified view for a certain class of first-order algorithms
of stochastic optimization. This class consists of different incremental approaches
with a specific form of the gradient step, including variants of stochastic gradient
descent [Robbins and Monro, 1951] and several variance-reduced algorithms. This
common viewpoint is developed by extending the concept of estimate sequences
introduced in [Nesterov, 1983, 2014]. More precisely, using the estimate sequence
construction, we interpret the considered methods as procedures that iteratively
minimize a surrogate of the objective. Finally, this framework allows us to come up
with (i) a unified viewpoint and proof of convergence for all of these methods; (ii)
generic strategies to make these algorithms robust to stochastic noise (the afore-
mentioned uncertainty in optimization problems), (iii) new accelerated stochastic
variance-reduced algorithm with theoretically optimal complexity. While (i) is a
rather minor addition, (ii) and (iii) are of particular importance, as for example,
robustness to noise and acceleration of variance-reduced methods was only partially
analyzed in the literature. This contribution is based on the following publications

• A. Kulunchakov and J. Mairal. Estimate sequences for variance-reduced
stochastic composite optimization. In Proceedings of the International Confer-
ence on Machine Learning (ICML), June 2019c
• A. Kulunchakov and J. Mairal. Estimate sequences for stochastic composite

optimization: Variance reduction, acceleration, and robustness to noise. Journal
of Machine Learning Research (JMLR), 2020

— In Chapter 3, we introduce several mechanisms to “generically” accelerate different
first-order stochastic algorithms of convex and strongly convex optimization. In a
nutshell, we extend the Catalyst approach [Lin et al., 2015], originally developed
for deterministic problems, to the stochastic setting. The developed generalization
of Catalyst includes a generic acceleration of variance-reduced algorithms for the
case of stochastic problems, which relies upon the results of Chapter 2. In brief,
the applicable stochastic methods (those that can be accelerated) are united by
a mild condition of being linearly convergent to a fixed noise-dominated region
(all notions are defined in Section 1.3). From a high-level perspective, given
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such an algorithm, we accelerate its convergence to a noise-dominated region,
and then achieve a near-optimal convergence by using a restart procedure with
exponentially increasing mini-batches. Finally, we demonstrate that the developed
generic acceleration framework is competitive with the directly accelerated methods
studied in Chapter 2. The overall contribution is based on the following paper.

• A. Kulunchakov and J. Mairal. A generic acceleration framework for stochastic
composite optimization. In Advances in Neural Information Processing Systems
(NeurIPS), 2019

— In Chapter 4, we consider the problem of sparse signal recovery in stochastic
optimization setting. Using the stochastic mirror descent as a workhorse, we
develop a multi-stage procedure with explicit feature selection between stages. We
show that the resulted algorithm enjoys fast linear convergence to a noise-dominated
region, where exploitation of sparse structure of the problem allows to show better
theoretical guarantees compared to non-sparsity-aware optimization algorithms.
At the same time, we maintain the optimal asymptotic rate, shown in [Agarwal
et al., 2012b] for sparse regression, while enlarging the set of admissible values of
the number s of nonvanishing signal components from .

√
N to . N , where N

is the number of iterations. We also enhance the reliability of the corresponding
solutions by using Median-of-Means like techniques [Nemirovsky and Yudin, 1983,
Minsker, 2015]. This contribution is based on the following manuscript.

• A. Juditsky, A. Kulunchakov and H. Tsyntseus. Sparse Recovery by Reduced
Variance Stochastic Approximation. arXiv:2006.06365, 2020

1.2 Optimization problems in machine learning
In machine learning applications, the behavior of a real system of interest is usually

described in terms of some parametrized mathematical model [Hastie et al., 2001, Bottou
et al., 2018], chosen by experimenters. They also set up a mathematical function that
represents the “goodness of fit”—how good does the model describe the system of interest—
with arguments which are the model parameters. One is naturally interested in searching
for such values of these parameters that maximize the “goodness”, looking thus for the
best approximation model. Throughout the thesis, we refer to this quality criterion as
objective function.

But first, let us give a more formal explanation. Assume that our system generates
data samples (zi) that live in a subset Z of Euclidean space E. Assume also that these
data samples (zi) possess some characteristics represented by labels (yi) that lie in a subset
Y of another Euclidean space EY . Specifically, there is an unknown one-to-one mapping
h∗ : Z → Y embedded into the system by nature. This mapping is of interest to us and
we want to predict h∗(z) for all z ∈ Z.

In order to recover h, or at least to approximate it, experimenters choose a family of
prediction functions—candidate models,

H = {h(z, x) : Z ×X → Y } (1.1)
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—parametrized with x from a subset X of Euclidean space EX [Bottou et al., 2018]. This set
is assumed to contain a parameter vector corresponding to a “satisfying” model. In order to
compare different models, we choose a loss function l : Z×Y → R that measures goodness
of fit at data samples. When EY = R, examples of loss function include squared error loss
l(h(z, x), y) = (h(z, x)− y)2, squared hinge loss l(h(z, x), y) = max {0, (1− y · h(z, x))2}
and logistic loss l(h(z, x), y) = log

(
1 + exp−y·h(z,x)

)
. In what follows, unless stated

otherwise, we always assume that E = EX = Rp and EY = R. Moreover, if not explicitly
stated, ‖·‖ will denote the `2 norm. More generally, there are several ways of using a loss
function to select a model [Hastie et al., 2001, Bottou et al., 2018].

1.2.1 Expected Risk and Empirical Risk
Assume that data samples (zi) and labels (yi) are random variables with probability

distribution P (z, y) on Z × Y . Then, the main objective is to minimize the following
function

F (x) =
∫

Z×Y

l(h(z, x), y)dP (z, y) = EP [l(h(z, x), y)] , (1.2)

referred to as expected risk. This risk gives a complete characterization of the model fit over
the whole set Z × Y thus being the ideal criterion when choosing a proper approximation
model. Unfortunately, for most cases, the multidimensional integral in (1.2) can not be
computed even when distribution P is known.

A common approach is to approximate (1.2) with a finite sum

F (x) = 1
n

n∑
i=1

l(h(zi, x), yi), (1.3)

which converges to the expected risk according to the law of large numbers [Dekking et al.,
2005]. This criterion (1.3) is called empirical risk [Vapnik, 2000].

1.2.2 Regularization
When optimizing the sampled objective (1.3), one may encounter the problem of

overfitting [Hastie et al., 2001]. For example, this problem occurs when data samples
(zi) are corrupted by some noise and the selected model excessively fits this noise thus
losing its predictive abilities on unseen data. To mitigate this effect, one popular approach
consists in imposing a penalty on model complexity—risk regularization. As models in (1.1)
are parametrized with x, this complexity is also associated with x and is expressed as a
penalty function ψ(x) added to (1.3) thus leading to composite optimization problems
intensively studied in the literature [Burke and Ferris, 1995, Lan, 2012, Li and Pong, 2015,
Shi et al., 2015, Ghadimi et al., 2016, Gasnikov and Nesterov, 2018, to name just a few].
The regularized empirical risk looks as follows

F (x) = 1
n

n∑
i=1

l(h(zi, x), yi) + ψ(x) , f(x) + ψ(x). (1.4)
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For instance, ψ may be the `p-norm that, for a real p ≥ 1 is defined as

‖x‖p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p . (1.5)

A particular example of (1.5) is the `1-norm, which is very popular in signal processing
and machine learning applications due to for its sparsity-inducing properties [Mairal
et al., 2014, Nesterov and Nemirovski, 2013, Becker et al., 2011, Beck and Teboulle, 2009].
Another way to define ψ is to set it as the extended-valued indicator function of a specific
subset X0 ⊂ X

ψ(x) =

0, when x ∈ X0,

+∞, when x ∈ X0
(1.6)

so that the setting (1.4) encompasses constrained problems [Necoara and Patrascu, 2014,
Hiriart-Urruty and Lemaréchal, 1996]. A proper choice of ψ(x) is dictated not only by
desired properties of geometry of the resulted solutions, but also by “simplicity” of ψ(x).
This notion of simplicity will be expressed in details in the next section, when introducing
proximal operators, that has to be computed efficiently.

In what follows, we denote x∗ the optimal solution to the optimization problem, which
may be (1.2), (1.3) or (1.4), and also refer to the optimal objective value F ∗ = F (x∗).
Before introducing proximal operators, we focus on the case when ψ = 0, so that we
minimize f(x), as the success of optimization of (1.4) depends mostly on the properties
of f(x), not of the regularization ψ(x). In many situations, the optimization problems
stated in (1.4) are unsolvable [Nesterov, 2014]. Therefore, we need to introduce and assume
specific geometric properties of f(x).

1.2.3 Geometry of a problem. Convexity.
One of the main branches of vivid developments in optimization tools is convex

optimization.

Definition 1.1 (Convex set). A set X ⊂ E is convex if (1− α)x1 + αx2 belongs to X for
every x1, x2 ∈ X and any α ∈ [0, 1].

Definition 1.2 (Convex function). A function f : X → R defined on a convex set X is
called convex if ∀x1, x2 ∈ X and ∀α ∈ [0, 1] the following condition holds:

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2).

Convexity plays important role in different applications due to three important implica-
tions. The first states that any local minimum of a convex function is a global minimum as
well. This property is important as optimization tools in non-convex optimization are prone
to get stuck in local minima that can be sub-optimal [Nesterov, 2014]. The second one is
the existence of sub-gradients, good surrogates of gradient of convex function [Nemirovsky
and Yudin, 1983].
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Definition 1.3. If f : X → R is a convex function, a vector g is called a subgradient at a
point x ∈ X if for any y ∈ X one has

f(y)− f(x) ≥ 〈g, y − x〉 .

The final property is that while providing characteristics of optimization problems,
the property of convexity is flexible enough so that many machine learning tasks may be
formulated in terms of optimization of a convex objective, [see Boyd et al., 2004, Dattorro,
2010, Bubeck, 2014, and references therein]. For instance, the examples of popular loss
functions described earlier, that is squared error loss, hinge loss and logistic loss, are all
convex functions. Of course, if the loss function l(h(z, x), y) is convex for all (z, y) ∈ Z×Y ,
then both risks (1.2) and (1.3) are convex functions as well. The penalty function ψ(x) is
also typically assumed to be convex, which is the case for the `p-norm with p ≥ 1 or the
extended-valued penalty function of a convex set (1.6).

Definition 1.2 may be strengthened with introduction of strong convexity.

Definition 1.4 (Strongly convex function). A function f : X → R defined on a convex set
X is called strongly convex with parameter µ if ∀x1, x2 ∈ X and ∀α ∈ [0, 1] the following
condition holds:

f((1− α)x1 + αx2) ≤ (1− α)f(x1) + αf(x2)− µα(1− α)
2 ‖x1 − x2‖2

2 . (1.7)

First, strongly convex functions have unique optima. Second, one may verify by
comparing results of [Lan, 2012] with [Ghadimi and Lan, 2013] that the strong convexity
property significantly improves convergence of optimization algorithms. 1

Another important notion, that arises throughout the thesis, is L-smoothness.

Definition 1.5 (L-smooth functions). Assume that a function f : X → R is continuously
differentiable everywhere on X [Nemirovsky and Yudin, 1983], then it is called L-smooth
if its gradient is Lipschitz continuous with constant L, that is

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ .

The L-smoothness property allows to prove better theoretical convergence rates as we
will see later. This assumption is not strong, as many optimization objectives in machine
learning applications are L-smooth. For example, if f(x) is convex and twice continuously
differentiable, a sufficient condition would be an existence of an upper bound L for
eigenvalues of the Hessian ∇2f(x).

Problem statement Finally, we give a formal description of the general problem
that we optimize throughout the thesis.

min
x∈X

{
F (x) , f(x) + ψ(x)

}
, (1.8)

where X is a convex set, ψ is a convex, semi-continuous penalty function, not necessarily
differentiable, and f is (µ-strongly) convex and L-smooth.
1. This will also be shown in Section 1.3, presenting theoretically optimal convergence rates for convex

and strongly convex optimization.
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1.2.4 Proximal operators
In order to incorporate the composite setting of (1.4), one can introduce proximal

operator associated with the penalty ψ(x) and the projection on the convex set X [Moreau,
1962]. Specifically, it is defined as

Proxηψ[u] , argmin
x∈X

{
ηψ(x) + 1

2‖x− u‖
2
}
. (1.9)

The usage of a proximal operator allows to optimize composite F (x) without querying
sub-gradient information on ψ(x), when it is simple enough for (1.9) to be computed in
closed form or by an efficient fast search routine [Parikh and Boyd, 2014]. This is the
case, for example, for quadratic penalties, lp-norms (with p ≥ 1) or an extended-valued
indicator function of a simple convex set [Agarwal et al., 2012b, Parikh and Boyd, 2014].
Due to the use of (1.9), the optimization methods applied to the pure risks (1.2) and (1.3)
are often generalizable to the composite setting with the same convergence guarantees [see
Beck and Teboulle, 2009, Lan, 2012, Nesterov, 2013].

1.2.5 Oracle complexity of optimization problems
A classical statement of optimization problem involves the notion of a black-box [Ne-

mirovsky and Yudin, 1983, Nesterov, 2014]. Black-box models suggest that one does not
possess any information about f(x), but rather accesses it by pieces through queries to
oracles. The most popular type is a first-order oracle that returns the gradient ∇f(x) at
any requested point x.

The black-box model allows to build a meaningful definition of complexity of an
optimization method being the number of oracle calls requested in order to achieve an
ε-accurate solution x̂, that is f(x̂) − f ∗ ≤ ε. This is also called analytical complexity
compared to arithmetical complexity defined as the number of arithmetic operations
requested by a method [Nesterov, 2014]. Though the latter is a more ideal measure in
practice, we stick to analytical complexity, because it allows to obtain a complete theory
of convex optimization [Nemirovsky and Yudin, 1983] by providing concrete upper bounds
on complexities of methods that could be achieved. Moreover, arithmetic complexity can
usually be derived from it [Nesterov, 2014].

In the stochastic setting, an oracle can return noisy estimates g(x) of the true gradient
∇f(x). Typically, in the literature [Nemirovsky and Yudin, 1983, Nemirovski et al., 2009,
Bottou et al., 2018], it is assumed that g(x) is unbiased g(x) = E [∇f(x)] along with
introduction of the following important characteristic, called oracle variance.

Definition 1.6 (Oracle variance). Assume that there is an oracle that for each x ∈ X
returns an unbiased noisy estimate g(x) of the true gradient ∇f(x). The variance of this
estimate is denoted as σ2

∀x ∈ X E ‖g(x)−∇f(x)‖2 ≤ σ2. (1.10)

In other words, the value of σ2 is a measure of the oracle quality. The assumption
of boundness of the oracle variance is not a weak one. For example, the expected
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deviation E ‖g(x)−∇f(x)‖2 may often be of the same order as ‖∇f(x)‖2, and the latter
may be unbounded, which is the case, for instance, for the aforementioned squared hinge
loss l(h(z, x), y) = max {0, (1− y · h(z, x))2}. However, some functions, such as logistic
loss, have bounded gradients over Rp. Moreover, the minimization may be conducted over
a compact condition set X, so that the value of E ‖g(x)−∇f(x)‖2 remains bounded.

1.3 Classical theoretical results on complexities of
optimization methods

Before we overview and develop algorithms, we discuss how fast these algorithms
may be in theory. In terms of analytical complexity, we are mainly concerned with the
optimal rates of methods applied to convex and strongly convex objectives. We assume
that an oracle in Definition 1.6 is at our disposal and we express the optimal worst-case
convergence rates. Given an optimal rate, it means that there exists a function of the
considered class, which can not be minimized faster than with this prescribed rate. For
the rest of the manuscript, the convergence rates given in this section are referred to as
optimal and we refer to the algorithms that achieve them (either for σ = 0 or σ > 0)
as accelerated. All other rates are referred to as sub-optimal. In what follows, we often
represent the results in the O (·) notation for simplicity hiding the absolute constants.
Moreover, we introduce the notation Õ (1) that is essentially O (·) with probably a hidden
logarithmic factor in the problem dimension or condition number L/µ.

Convex case. Assume that the smooth part f(x) in the objective F (x) of (1.8) is convex,
but not strongly convex. According to [Nemirovsky and Yudin, 1983], for this class of
functions the best convergence rate is

E [F (xN)− F ∗] ≤ O
(
LR2

N2

)
︸ ︷︷ ︸

bias

+O
(
σR√
N

)
︸ ︷︷ ︸

variance

, (1.11)

where R is an upper bound on ‖x0 − x∗‖ with x0 being the initial estimate and N is
the total number of oracle calls. In this statement, we highlight a classical bias-variance
decomposition of a convergence rate of a stochastic method [Bach and Moulines, 2013,
Dieuleveut et al., 2017]. The “bias” term expresses the “reaction” of an algorithm to the
“deterministic” component of random observations. It is associated with the Lipschitz
property of the gradient of f(x). The variance term expresses the effectiveness of treatment
of noise inherited by the oracle. In what follows, we distinguish preliminary and asymptotic
phases of convergence of a method, specifically for bias or variance domination in (1.11)
respectively.

The deterministic case σ = 0 was successfully solved in the seminal paper [Nesterov,
1983], establishing an accelerated algorithm with the optimal rate. The stochastic case
σ > 0, when neglecting bias, was considered in several papers [Nesterov and Vial, 2008,
Nemirovski et al., 2009, Xiao, 2010] yielding the optimal asymptotic rate O

(
1/
√
N
)
using

averaging techniques and decreasing step sizes. The overall universal case (1.11) then was
closed in [Lan, 2012], achieving optimal bias and variance.
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Convergence rate ⇒ Complexity
L ‖x0 − x∗‖2

N2 + σ ‖x0 − x∗‖√
N

‖x0 − x∗‖
√
L

ε
+ σ2 ‖x0 − x∗‖2

ε2

L ‖x0 − x∗‖2

N
+ σ ‖x0 − x∗‖√

N

L ‖x0 − x∗‖2

ε
+ σ2 ‖x0 − x∗‖2

ε2(
1−

√
µ

L

)N
(F (x0)− F ∗) + σ2

µN

√
L

µ
log

(
F (xN)− F ∗

ε

)
+ σ2

µε(
1− µ

L

)N
(F (x0)− F ∗) + σ2

µN

L

µ
log

(
F (xN)− F ∗

ε

)
+ σ2

µε

Table 1.1 – List of convergence rates to and corresponding complexities in different cases.
For brevity of presentation, every expression is given up to absolute constants.

Strongly convex case. Once an optimization problem is strongly convex with µ > 0,
the best possible convergence rate of a method applied to minimize it can be significantly
improved. According to [Nemirovsky and Yudin, 1983, Agarwal et al., 2012a, Nesterov,
2014], for this class of problems, a method can not be faster than

E [F (xN)− F ∗] ≤ O (1)
(

1−
√
µ

L

)N
(F (x0)− F ∗) +O

(
σ2

µN

)
. (1.12)

The deterministic case σ = 0 was solved in [Nemirovsky and Yudin, 1983]. As in the
convex setting, the stochastic case σ > 0 in the pure asymptotic regime was successfully
considered in [Nesterov and Vial, 2008, Nemirovski et al., 2009, Lacoste-Julien et al., 2012]
yielding the optimal asymptotic rate O (1/N) by decreasing step sizes accordingly O (1/N).
In the stochastic setting, the overall universal case (1.12) then was closed in [Ghadimi and
Lan, 2013].

Terminology Throughout the thesis, we refer to different notions related to convergence
rates established above. Next, for such N that the bias is dominated by the variance part
of rate, we say that an algorithm has converged to a noise-dominated region. Another
important notion here is complexity, given in Section 1.2.5. Complexity of a method
is basically derived from its convergence rate, being the number of iterations required
to obtain a solution xN such that E [F (xN)− F ∗] ≤ ε for a given ε > 0. While the
convergence rate expresses an achieved accuracy via number of iterations, complexity does
an inverse task, defining the latter via accuracy, see Table 1.1 for examples.

Main goal In the current thesis, we explore different ways to achieve both (1.11)
and (1.12) simultaneously in the general stochastic composite setting. It is important
to note that by the term “simultaneously” we mean that, while the parameters of the
developed framework may change depending on µ, the same framework nonetheless
achieves either (1.11) or (1.12) through rather straightforward modifications.
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1.4 Stochastic algorithms and variance reduction
Before we give an overview of the methods developed for stochastic optimization

problems with inexact information (σ > 0), we introduce two key paradigms for solving
them, based on two different Monte Carlo sampling techniques.

1.4.1 SA and SAA paradigms
The expected risk (1.2) and the empirical risk (1.3) are minimized differently in the

sense of the Monte Carlo sampling technique which is used to access the information.
Depending on which risk is minimized— (1.2) or (1.3)—an applied method can belong to
the stochastic approximation (SA) paradigm or the sample average approximation (SAA)
paradigm respectively. Let us now describe each of them in details.

SAA methods are essentially two-step deterministic algorithms applied to (1.3). The
first step consists in construction of deterministic risk to be optimized. At the second
step, once all pairs {(zi, yi)}i=1 are sampled and (1.3) bears no uncertainty, a deterministic
optimization algorithm is applied. While numerical complexity of the solution depends
on the optimization procedure used at the second step, the statistical properties are
completely defined by the sampling step [Candes et al., 2007, Negahban et al., 2012, Zhang
et al., 2014]. Nonetheless, different studies [Kleywegt et al., 2002, Shapiro, 2003, Shapiro
and Nemirovski, 2005, Linderoth et al., 2006] show that these techniques are quite efficient
from both theoretical and practical points of view [Nemirovski et al., 2009].

The first stochastic approximation method appears in the seminal paper [Robbins and
Monro, 1951]. SA methods directly target the expected risk (1.2) processing incoming
data samples one by one in online manner. At the core of SA methods lies a simple
algorithm with iterative updates of low computational cost. This allows to significantly
reduce computational burden comparing to SAA, as experimenters do not need to store
and reuse the whole sampled pool of (1.3).

For a long time SAA methods were considered superior to SA approaches [Nemirovski
et al., 2009], partially because the corresponding optimization routines may use the struc-
ture of the problem to solve. Another reason resided in poorly working step size strategy
established by classical theory [Chung, 1954, Sacks, 1958]. The first step in improvement
of SA approaches was done in [Nemirovsky and Yudin, 1983, Polyak and Juditsky, 1992]
where longer step sizes were justified, so that the resulted algorithms are shown to be
competitive with classical SAA approaches. Since then, SA algorithms developed rapidly
and became a highly dynamic domain with numerous important contributions [Duchi
et al., 2011, Lan, 2012, Ghadimi and Lan, 2013, Kingma and Ba, 2014, to name just a
very few]. In what follows, we focus on algorithms of SA type. We start with a description
of a common example of SA algorithm.

1.4.2 Stochastic gradient descent
The gradient descent (GD) algorithm [Rumelhart et al., 1985, Baldi, 1995, Ruder, 2016]

is probably the most studied optimization method in the literature and widely used in
practice due to its simplicity. In a nutshell, this method boils down to a simple scheme:
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set up an initial estimation x0, define a step size sequence (ηi)i=1 and iteratively apply the
update rule for k ≥ 1

xk = xk−1 − ηk∇f(xk−1), (1.13)

(we will assume ψ(x) = 0 and X = Rp to start). 2. The main logic behind (1.13) is that
locally the antigradient shows the direction of the steepest descent of f(x) [Nesterov, 2014].
The step sizes (ηi)i=1 control how far the GD goes in its updates. There are many different
strategies on the choice of ηk [Duchi et al., 2011, Nesterov, 2014, Ruder, 2016], but in
any case, for L-smooth functions, there is a limit value for it. This value is found from
minimizing the right side of

f(xk) ≤ f(xk−1) +∇f(xk−1)>(xk − xk−1) + L

2 ‖xk − xk−1‖2
2,

yielding finally ηk ≤ 1/L. The inequality holds true for L-smooth functions due to Theorem
2.1.5 in [Nesterov, 2014]. For the rest of the section, we assume that the step size is
constant ηi = η for all i.

In the stochastic setting, we do not have access to the exact gradients ∇f(x) and
dispose of its stochastic estimates g(x) only. Therefore, the relation (1.13) is rewritten as

xk = xk−1 − ηkg(xk−1) (1.15)

being the update of the well-known stochastic gradient descent algorithm. This update is
preferable in large-scale setting, because computations of g(x) may be performed much
faster than that of ∇f(x), [Zhang, 2004, Bottou et al., 2018]. We consider algorithms with
averaging of iteration trajectories [Polyak and Juditsky, 1992], so that the approximate
solution at the step N is formed according to

x̂N = 1
N

N∑
i=1

xi. (1.16)

Define R as an upper bound on the initial approximation error ‖x0 − x∗‖. It is well-
known that the following bound holds for x̂N in the case of a convex and L-smooth
objective [Nemirovsky and Yudin, 1983, Nemirovski et al., 2009]

E [f(x̂N)− f ∗] ≤ R2

Nη
+ 2ησ2. (1.17)

When the number N of performed iterations is known in advance (we refer to this setting
as finite horizon), the bound (1.17) transforms into

E [f(x̂N)− f ∗] ≤ LR2

N
+ 2σR√

N
(1.18)

2. In the case, when ψ(x) 6= 0, this update transforms into

xk = Proxηkψ [xk−1 − ηk∇f(xk−1)] . (1.14)
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(by utilizing a proper choice of η).
For µ-strongly convex functions, (1.17) becomes

E [f(xN)− f ∗] ≤ (1− ηµ)N (f(x0)− f ∗) + ηLσ2

2µ , (1.19)

that may be found for example in Theorem 4.6 in [Bottou et al., 2018]. The variance is still
bounded, and the convergence of the bias terms becomes faster due to improved curvature
of f(x). The variance term in (1.19) may be reduced by a specific restarting procedure
(see discussion after Theorem 4.6 in [Bottou et al., 2018]). In a nutshell, this procedure
employs exponentially decreasing step sizes, that are reduced each time we decrease the
expected risk by a factor 2. Note that there are different other ways to obtain a converging
algorithm. For instance, one can consider the following scheme: (i) launch (1.15) with a
fixed step size η = 1/L, (ii) reach a noise-dominated region f(xN) − f ∗ ≤ ηLσ2/µ, (iii)
restart the algorithm with decreasing step sizes ηk ≤ min {η, 2/µk}. The final rate of the
described procedure, according to Theorem 4.7 of [Bottou et al., 2018], is

E [f(xN)− f ∗] ≤
(

1− µ

L

)N
(f(x0)− f ∗) + L

µ

2σ2

µN
. (1.20)

This rate is not optimal as the variance depends on excessive factor (L/µ) that could be
large in high-dimensional problems.

1.4.3 Stochastic Mirror Descent
To finish consideration of the SGD, we need to introduce its celebrated descendant,

called stochastic mirror descent. Let the SGD algorithm be applied to an optimization
problem with ψ = 0 and constrained to a convex set X. Then, its update (1.14) is as
follows

xk = projX [xk−1 − ηk∇f(xk−1)] ,

with projX being the projection operator onX. This rule can be viewed as the minimization
of a quadratically penalized local Taylor expansion of f(x) around xk−1, that is

xk = argmin
x∈X

{
f(xk−1) + 〈∇f(xk−1), x− xk−1〉+ 1

2ηk
‖x− xk−1‖2

2︸ ︷︷ ︸
penalty

}
. (1.21)

One may replace the Euclidean norm with a different regularizer to obtain a different
update rule of the algorithm.

Bregman divergence Let E be an Euclidean space and ϑ : E → R be a continuously
differentiable convex function which is strongly convex with respect to some norm |·| (that
is not necessarily Euclidean), i.e.,

〈∇ϑ(x)−∇ϑ(x′), x− x′〉 ≥ |x− x′|2 , ∀x, x′ ∈ E.
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Following [Nesterov, 2005, Juditsky and Nemirovski, 2011a], we refer to ϑ as a distance-
generating function (for the examples of d.-g. functions for different norms |·| see [Nesterov,
2005, Juditsky and Nemirovski, 2011a]). We define Bregman divergence associated with
the d.-g. function ϑ according to

V (x, z) = ϑ(z)− ϑ(x)− 〈∇ϑ(x), z − x〉 , ∀ z, x ∈ X. (1.22)

Being substituted into (1.21), it leads to the update

xk = argmin
z∈X

{
f(xk−1) + 〈∇f(xk−1), z − xk−1〉+ 1

2ηk
V (xk−1, z)

}

= argmin
z∈X

{
〈∇f(xk−1), z〉+ 1

2ηk
V (xk−1, z)

}

= argmin
z∈X

{〈
∇f(xk−1)− 1

2ηk
∇ϑ(xk−1), z

〉
+ 1

2ηk
ϑ(z)

}
. (1.23)

Finally, the exact gradient ∇f(xk−1) may be replaced by its stochastic observation gk, so
that we arrive to the update rule of the stochastic mirror descent algorithm:

xk = argmin
z∈X

{
〈gk, z〉+ 1

2ηk
V (xk−1, z)

}
. (1.24)

This optimization problem is solved at each iteration of the stochastic mirror descent
algorithm. In order to allow for the efficient implementation of the method, this problem
should be easy (for example, to admit a closed form solution or may be solved by a simple
linear search).

Note that the proximal operator considered here is substantially different from that
defined in Section 1.2.4. In Chapters 2 and 3, we use the notion of proximal operator as
defined in (1.9), while in Chapter 4 the definition (1.24) is used. It remains to note that
the convergence guarantees of the SMD algorithm are of the same type as those of the
SGD algorithm in the case of Euclidean norm.

1.4.4 Variance-reduced algorithms
In order to mitigate the impact of noise that comes from an inexact oracle, one may

exploit a particular structure of the optimization problem. A typical example is provided
by the finite-sum structure. A finite-sum optimization problem is as follows

min
x∈X

{
F (x) , f(x) + ψ(x) , 1

n

n∑
i=1

fi(x) + ψ(x)
}
. (1.25)

The assumptions imposed on X, f(x) and ψ(x) are the same as in (1.8). Let us assume for
now that the deterministic terms fi(x), same as f(x), are µ-strongly convex and L-smooth.

Because all (fi)ni=1 are deterministic, the overall objective F (x) is deterministic as
well. Moreover, it is assumed that the oracles returning gradient estimations ∇fi(x) for
each i and x ∈ X are exact. This allows as well to calculate the full gradient ∇f(x) =
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(1/n)∑n
i=1 fi and apply any deterministic procedure to (1.25). However, in large-scale

setting this strategy would be too expensive from a computational point of view. Therefore,
new optimization algorithms were proposed recently which utilize the finite-sum structure,
while maintaining computational speed and simplicity of SA approaches.

While the finite-sum setting is obviously a particular case of expectation with a
discrete probability distribution, the deterministic nature of F (x) drastically changes the
corresponding performance guarantees. The stochastic gradient descent may be applied
to the minimization of a finite-sum objective when the random gradient realizations is
taken as gk = fik , where ik is chosen randomly from [1, n]. While the update (1.15) is
computationally cheap, it does not explicitly exploit the finite-sum structure of f(x).
Therefore, the stochastic gradient descent, accessing only random unbiased gradient
realizations, can not improve on the O (1/N)-rates from (1.12).

Nonetheless, linear convergence rates can be obtained if first-order methods operate not
on the estimates ∇fi(x), but rather on a refined version of them with a decreasing variance.
Such technique has been introduced by [Blatt et al., 2007, Schmidt et al., 2017] under the
name of a variance-reduced algorithm to build proper unbiased estimates gk(x) of ∇f(x)
with the variance E

[
‖gk(x)−∇f(x)‖2

]
decreasing over the iterations. Since then, different

versions of gk(x) were proposed leading to randomized incremental approaches with linear
convergence rates, such as SAG [Schmidt et al., 2017], SAGA [Defazio et al., 2014a],
SVRG [Johnson and Zhang, 2013, Xiao and Zhang, 2014], SDCA [Shalev-Shwartz and
Zhang, 2016], MISO [Mairal, 2015], Katyusha [Allen-Zhu, 2017], MiG [Zhou et al., 2018],
SARAH [Nguyen et al., 2017a], directly accelerated SAGA [Zhou, 2019] or RPDG [Lan
and Zhou, 2018a].

The key idea used in building the estimate gk(x) in variance-reduced algorithms
is that given two random variables X and Y , it is possible to define a new variable
Z = X − Y + E [Y ] which has the same expectation as X but potentially a lower variance
if Y is positively correlated with X. For example, SVRG approach takes a gradient step
using the following estimate at a step k

gk = ∇fik(xk−1)−∇fik(x̂) +∇f(x̂),

where x̂ is an anchor point updated every n steps. The full gradient ∇f(x̂) is stored after
the update of x̂, and the calculation of ∇fik(x̂) is cheap, so that the overall update (1.15) is
cheap on average as well. The resulted convergence rate of the algorithm applied to (1.25)
with exact oracles for (fi(x))ni=1 is

E [F (xN)− F ∗] ≤ O (1)
(

1− µ

L

)N
(F (x0)− F ∗) , (1.26)

which is similar to the one obtained in [Defazio et al., 2014a, Shalev-Shwartz and Zhang,
2016, Mairal, 2015, Schmidt et al., 2017], while faster convergence rates were obtained in
[Allen-Zhu, 2017, Lan and Zhou, 2018a, Zhou et al., 2018, Zhou, 2019]. To attain (1.26)
one needs to conduct several passes over the data, so that N should be larger than n. All
these algorithms have about the same cost per-iteration as the stochastic gradient descent
method, being O (n) times lower than of SAA techniques. However, these results holds
only for the case when the terms fi are deterministic.
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1.4.5 Variance-reduced algorithms with perturbations
In this thesis, our objective is to provide a unified view of stochastic optimization

algorithms, with and without variance reduction, but we are especially interested in
improving their robustness to random perturbations. Specifically, we consider objectives
with an explicit finite-sum structure when only inexact estimates of the gradients ∇fi(x)
are available. In other words, there are n oracles f̃i of the general type (1.6) for each of the
terms (fi)ni corrupted by random perturbations (ρi)ni , and the smooth part f from (1.8)
may be written as

f(x) = 1
n

n∑
i=1

fi(x) with fi(x) = Eρi
[
f̃i(x, ρi)

]
. (1.27)

The described setting may occur in various applications. For instance, the perturba-
tions ρi may be injected during training in order to achieve better generalization on the
test data [Srivastava et al., 2014], perform stable feature selection [Meinshausen and
Bühlmann, 2010], improve the model robustness [Zheng et al., 2016], or for privacy-aware
learning [Wainwright et al., 2012].

Such problems can not be addressed by algorithms of deterministic optimization, and
most of the aforementioned variance-reduction methods do not apply anymore. The
standard approach to address this problem is to ignore the finite-sum structure and use
variants of the SGD algorithms which were already seen to be sub-optimal. The reason
for this is that the variance of the gradient estimate for (1.27) decomposes into two parts
σ2 = σ2

s + σ̃2, where σ2
s is due to the random sampling of the index ik and σ̃2 � σs is due

to the random data perturbation in the terms (fi)ni=1. The SGD algorithm preserves the
constant variance that depends on σ2

s . And while variance-reduced algorithms manage to
git rid of it when σ̃2 = 0, generalization to the case when σ̃2 > 0 is still an open question
for most of them.

In this thesis, our objective is to achieve robustness to the noise σ̃2 > 0, while preserving
a linearly convergent term, that is obtaining the following convergence guarantees

E [F (xN)− F ∗] ≤ O (1)
(

1− µ

L

)N
(F (x0)− F ∗) +O (1) σ̃2

µN
, (1.28)

with the variance that is typically much smaller than σ2/(µN). This is not a contradiction
with the theoretically optimal result stated in (1.12), as the assumptions about the oracles
are different. We adapt several incremental algorithms, including variance-reduced methods
such as SVRG, SAGA, SDCA or MISO, to stochastic optimization setting by providing a
unified common convergence proof for them. The main novelty is the modification to the
aforementioned algorithms that makes them robust to stochastic perturbations.

Note that the SAGA and SVRG methods were adapted for this purpose by [Hofmann
et al., 2015], although the resulting algorithms have non-zero asymptotic error. The MISO
method was adapted by [Bietti and Mairal, 2017] at the cost of a memory overhead of
O (np), whereas other variants of SAGA and SVRG were proposed by [Zheng and Kwok,
2018] for linear models in machine learning. While non-uniform sampling strategies for
incremental methods are now classical [Xiao and Zhang, 2014, Schmidt et al., 2015], the
robustness to stochastic perturbations has not been studied for all these methods and the
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aforementioned approaches have significant limitations. At the same time, they may be
useful, when the terms f̃i have different Lipschitz smoothness constants. In this case, for
example, a non-uniform strategy allows to express the convergence rate in terms of average
Lipschitz smoothness constant L̄ = (1/n)∑n

i=1 Li, and not in L = maxi (Li), which is
larger. In this thesis, we adapt these strategies to work in the generalized stochastic
variance-reduced algorithms.

1.5 Accelerated methods
Optimal optimization methods—those having the optimal bias and variance convergence—

are of particular interest for practitioners. Let us start with consideration of fast optimiza-
tion methods for the deterministic setting.

A heavy-ball algorithm with the optimal convergence rate for the deterministic case was
introduced in [Polyak, 1964] for minimization of smooth strongly convex functions. Next,
using the ideas behind the conjugate gradient method, authors of [Nemirovsky and Yudin,
1983] developed an algorithm with the optimal convergence rate for L-smooth functions.
Finally, [Nesterov, 1983] introduced the optimal algorithm of smooth optimization, now
known as the accelerated gradient method. Essentially, this method had the same worst-
case complexity with [Nemirovsky and Yudin, 1983]. While the ideas behind the algorithm
of [Nemirovsky and Yudin, 1983] are simple, the geometric interpretation of the accelerated
gradient method is still a question for community leading to several attempts to explain
it [Allen-Zhu and Orecchia, 2014, Bubeck et al., 2015, Drusvyatskiy et al., 2018]. This
algorithm was successfully generalized to composite problems in [Tseng, 2008, Beck and
Teboulle, 2009, Nesterov, 2013]. Finally, [Lan, 2012] generalized the Nesterov’s method
to a composite optimization setting of minimizing objectives with smooth stochastic and
non-smooth components. Estimate sequences have already been used to analyze stochastic
optimization algorithms [Devolder et al., 2011, Lin et al., 2014, Lu and Xiao, 2015]. In this
thesis, one contribution is development of a unified framework utilizing estimate sequences
for derivation and analysis of accelerated methods in the stochastic setting.

For the case of smooth strongly-convex stochastic optimization, the optimal method,
attaining the rate (1.12), was described in [Ghadimi and Lan, 2013] using a multi-stage
procedure built over the algorithm from [Ghadimi and Lan, 2012]. The idea of the
multi-stage procedure is simple. Given some base methodM, we iteratively apply it to
the problem of interest. Each stage is a launch ofM (for a certain number of iterates)
initialized from the last obtained solution. This scheme was successfully used to build an
optimal algorithm for stochastic strongly convex optimization.

A different multi-stage scheme called Catalyst was developed in [Lin et al., 2015]
for minimization of deterministic objectives. The Catalyst approach covers convex and
strongly convex finite-sum optimization problems, each along with their composite settings.
At the core of Catalyst lies the assumption that a base methodM enjoys a sub-optimal
linear convergence when minimizing strongly convex objectives. Then, Catalyst builds a
sequence of `2-penalized, well-conditioned sub-problems, each of which is solved efficiently
byM up to a given accuracy. After each stage the extrapolation step is applied in order
to prepare the initialization for the next stage. The described multi-stage procedure
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is shown to derive meta-algorithms with near-optimal convergence rates for many base
approaches, such as gradient descent, block coordinate descent, SAG, SAGA, SDCA,
SVRG, Finito/MISO, mentioned earlier. 3 In this thesis, our objective is to generalize the
Catalyst approach to the stochastic case and achieve near-optimal convergence rates for a
large class of stochastic optimization methods.

1.6 Optimization methods for sparse recovery
Another way to mitigate the impact of noise that comes from an inexact oracle, is to

exploit a particular structure of the problem. One example of such structure is sparsity. For
instance, a data generation model is called s-sparse, if the driving parameter vector x∗ has
at most s non-zero components. Although, we generally aim at solving sparse stochastic
optimization problems of the general form (1.8), in this section, we focus on sparse linear
regression and low-rank matrix recovery in order to simplify the overview. For sparse
linear regression models, the labels are generated according to

y = 〈φ, x∗〉+ σξ, (1.29)
where φ ∈ Rp and ξ ∈ R are typically i.i.d. random variables, and x∗ is s-sparse. The
low-rank matrix recovery model arises straightforwardly from (1.29), that is

y = 〈Φ, X∗〉+ σξ, (1.30)
where 〈·, ·〉 is the Frobenius inner product and Φ is a matrix of regressors, and X∗ has
at most s non-zero eigenvalues. In this section and then in Chapter 4, we explicitly
distinguish ‖·‖2

2-norm from other norms (like `p-norms, matrix norms) that are also
exploited.

Given a sparse linear regression model (1.29), one may try to recover x∗ by using the
least squared loss function and stating an optimization problem. For example, (1.2) gives
rise to the following stochastic optimization problem

min
x∈X

{
fSA(x) = 1

2E
∥∥∥y1 − φ>1 x

∥∥∥2

2

}
, (1.31)

where the minimization may be conducted, for instance, over the space X of s-sparse
vectors. Note that observations yi and φi provide us directly with unbiased estimates
gi = φi

(
φ>i x− yi

)
of the true gradient ∇fSA(x). Therefore, it is possible to address (1.31)

with methods of SA type.
Another type of loss is given by sample average approximation (SAA). In this case, we

sampleN observations (φi, yi) and define the following quantities fi(x) =
∥∥∥yi − φ>i x∥∥∥2

2
, y =

(y1, . . . , yN)>, and D—the matrix with columns {φ1, φ2, . . . , φN}. Then, the optimization
objective becomes

fSAA(x) = 1
N

N∑
i=1

fi(x) = 1
2N

∥∥∥y −D>x∥∥∥2

2
, (1.32)

where the matrix D ∈ Rp×N is referred to as sensing or design matrix.
3. A convergence rate is called near-optimal if it is optimal up to factors which are logarithmic in the

condition number or dimension of the problem.
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1.6.1 Literature overview
Sparse recovery optimization problems have gained a lot of attention in the literature

from both practical and theoretical perspectives [Donoho et al., 2000, Bühlmann and
Van De Geer, 2011]. In order to recover sparse solutions we have to change somehow the
general problem statement and explicitly aim at exploiting its particular structure. In this
introduction, we overview several ways to induce sparsity that are particularly important
to us.

`1-minimization In order to exploit merits of convex optimization, one can use a
relaxation of the `0 pseudonorm to its closest convex surrogate—the `1-norm (or a nuclear
norm in the case of matrix regressors Φ). For the sparse linear regression, this approach
leads to the celebrated Lasso estimator

min
x∈Rp

{1
2 ‖y − Φx‖2 + λ ‖x‖1

}
. (1.33)

and Dantzig Selector, see [Candes et al., 2006, 2007, Bickel et al., 2009, Van De Geer and
Bühlmann, 2009, Candès et al., 2009, Candes and Plan, 2011a, Raskutti et al., 2010, Fazel
et al., 2008, Candès and Recht, 2009, Candes and Plan, 2011b, Juditsky and Nemirovski,
2011b, Negahban and Wainwright, 2011, Koltchinskii et al., 2011, Rudelson and Zhou,
2012, Dalalyan and Thompson, 2019].

Iterative thresholding In order to enforce sparsity of solutions, one can directly use
the `0 pseudonorm either in the form of penalty or constraints. This essentially leads
to non-convex optimization problems. A standard technique to treat such problems is
iterative hard thresholding [Blumensath and Davies, 2009, Jain et al., 2014, Bhatia et al.,
2015, Liu et al., 2019, 2020]. At each iteration, this technique takes a gradient step and
then applies subsequent sparsification of the resulted estimate. In other words, these
algorithms apply the following general update rule

Gradient step: x′k = xk−1 − ηk∇fSAA(xk−1), (1.34)
Sparsification: xk = x′k−1 with s components largest in magnitudes left.

[Foygel Barber and Liu, 2019, Zhao and Luo, 2019] replace hard thresholding with a
less conservative operator in order to improve convergence (see also references in [Zhao
and Luo, 2019]). When applied to sparse linear regression, the convergence bounds for
considered algorithms are typically of the following form and hold with high probability

fSAA(xt)− f ∗SAA ≤ O (1)
(

1− µ

L

)t L
2 ‖x0 − x∗‖2 +O (1)

(
L

µ

)γ
σ2s log(p)

N
, (1.35)

where N is the number of columns in the sensing matrix D, and γ is a positive value. Thus,
in terms of prediction error, they obtain a linear convergence to some inevitable statistical
error, which is at least O ((L/µ)sσ2/n) with n being the number of rows in D. This
statistical error O ((L/µ)sσ2/n) coincides with classical bounds for Lasso problem [Bickel
et al., 2009, Zhang et al., 2014].
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The approaches based on iterative thresholding are SAA techniques that optimize (1.32).
They operate on a sensing matrix and require full gradient computation at each iteration.
This makes them computationally expensive in large-scale setting unless s� p.

Sparse recovery by stochastic approximation In our thesis, we focus on first-order
methods of SA type aimed to solve (1.31) in large-scale setting. Therefore, we consider
algorithms with convergence bounds which are “essentially independent” (logarithmic,
at most) in the problem dimension p. This requirement rules out the use of standard
Euclidean stochastic approximation algorithms. Indeed, typical bounds for the expected
risk E [f(xN)− f ∗] in SA contains the term proportional to σ2E

[
‖φ1‖2

2

]
and thus propor-

tional to p in the case of dense regressors with E
[
‖φ1‖2

2

]
= O (p). For example, [Bietti and

Mairal, 2017] succeed in derivation of a dimension-free bound for the variance convergence
at the cost of assuming that the regressors φ1 are bounded in the `2-norm. Therefore,
unless the regressors φ are sparse (or possess a special structure, e.g., when φi are low
rank matrices in the case of low rank matrix recovery), standard stochastic approximation
techniques have accuracy bounds which are proportional to p [Nguyen et al., 2017b]. In
other words, our interest is in non-Euclidean stochastic approximation procedures, such as
the stochastic mirror descent algorithm.

In particular, different forms of the SMD were extensively used in `1 minimization
for deterministic and stochastic objectives. Authors of [Srebro et al., 2010] establish the
following asymptotic bound for risks

E [f(xN)− f ∗] ≤ O
(
σ
√
s log(d)/N

)
(1.36)

in the sparse generation model. The obtained rate of convergence is often referred to as
“slow rate”, besides this, the considered algorithm does not yield the linear bias convergence
like in (1.35). A similar rate was obtained in [Shalev-Shwartz and Tewari, 2011] for the
problem (1.33), that is

E [f(xN)− f ∗] ≤ O
(
ηs
√

log(d)/N
)
, (1.37)

where η is the magnitude of the gradient of the objective.

Local Strong Convexity In order to improve on slow rates of [Srebro et al., 2010,
Shalev-Shwartz and Tewari, 2011], one may use strong or uniform convexity of the problem
if there is one [Juditsky and Nemirovski, 2011a, Ghadimi and Lan, 2013, Juditsky and
Nesterov, 2014]. However, such assumptions do not generally hold in the problems such
as sparse linear regression problem. More generally, strong convexity of the objective
associated with smoothness is a feature of the Euclidean setup. For instance, the con-
ditioning of a smooth objective (the ratio of the Lipschitz constant of the gradient to
the constant of strong convexity) when measured with respect to the `1-norm cannot be
less than p [Juditsky and Nesterov, 2014]. Therefore, this notion is always replaced by
various “local” conditions [Negahban et al., 2012, Xiao and Zhang, 2013, Nguyen et al.,
2014, Loh and Wainwright, 2015, Foygel Barber and Liu, 2019, Murata and Suzuki, 2018].
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In particular, strong convexity argument is replaced with Restricted (or Local) Strong
Convexity condition.

Definition 1.7 (Restricted Strong Convexity). A function f : X → R defined on a convex
set X satisfies an R-restricted form of strong convexity with constant µ = µ(R) if the
following bound holds

f(x1) ≥ f(x2) + 〈∇f(x2), x1 − x2〉+ µ

2 ‖x2 − x1‖2
2 , (1.38)

for any x1, x2 ∈ X with ‖x1‖1 ≤ R and ‖x2‖1 ≤ R.

Condition (1.38) is equivalent to the standard definition of strong convexity (1.7)
when R =∞. Definition 1.7 may slightly change from paper to paper, but the meaning
remains the same: strong convexity is confined to some specific subset of the feasible set,
and the constant µ becomes a function of the size of this set.

Multi-stage procedures The multi-stage procedures mentioned in Section 1.5 are also
utilized in sparse recovery. In order to improve the convergence from O

(
s1 or 1/2/

√
N
)

to O (sσ2/N) for (locally) strongly convex objectives, the authors in [Agarwal et al., 2012b,
Steinhardt et al., 2014, Sedghi et al., 2014] propose an approach similar in spirit to multi-
stage procedures of [Hazan and Kale, 2010, Juditsky and Nesterov, 2010, Ghadimi and
Lan, 2013]. In this approach, one iteratively forms a sequence of `1 regularized objectives(

min
x∈Ωi

{
fi(x) , f(x) + λi ‖x‖1

})t
i=1

with decreasing penalties (λi)i≥1 and some constraint sets (Ωi)i≥1 with updated proximal
centers and decreasing radii. At each stage of the method, the new objective Fi(x) is
minimized using the stochastic dual averaging algorithm [Nesterov, 2009]. Comparing to
the hard thresholding approaches, [Agarwal et al., 2012b] do not use sparsification steps
and do not try to recover the solution, which is exactly sparse. As mentioned above, the
authors also assume the restricted versions of strong convexity along with smoothness of
the objective and sub-Gaussian stochastic gradients. At the end, they present asymptotic
convergence guarantees, which resume to

E
[
‖xN − x∗‖2

2

]
≤ O

(
sB2σ2

µ2N

)
(1.39)

for the case when the regressors φi are bounded, ‖φ‖∞ ≤ B; this rate is known to be
unimprovable in a certain setting [Raskutti et al., 2009]. Notice that this result appears
only in one section of [Agarwal et al., 2012b], while the rest of the paper uses the following
definition of the variance

∀x ∈ X E ‖g(x)−∇f(x)‖2
∞ ≤ σ̂2 � σ2, (1.40)

where g(x) is a stochastic gradient. This is a more standard definition of the noise variance
in the literature on stochastic approximation, including the aforementioned works on



22 Chapter 1. Introduction

multi-stage procedures. However, in general, the value of σ̂ is proportional to the diameter
of the feasible set and may be much larger than σ2 (this will be explained in more details
in Section 4.1 of Chapter 4).

It is important to note that the admissible values of s in [Agarwal et al., 2012b] are
bounded withO

(
µ
√
N/ log p

)
. Indeed, their method requires to perform at least s2 log p/µ2

iterations per stage, implying that the method in question can be used only if the number
of nonvanishing entries in the parameter vector does not exceed O

(
µ
√
N/ log p

)
. However,

the corresponding limit isO (Nµ/ log p) for Lasso [Raskutti et al., 2010] and iterative thresh-
olding procedures [Barber and Ha, 2018, Foygel Barber and Liu, 2019]). Therefore, there is
a gap for improvement of the condition s ≤ O

(
µ
√
N/ log p

)
to become s ≤ O (Nµ/ log p).



Chapter 2

Estimate Sequences for Stochastic
Optimization

In Section 1.4.4 we overviewed various algorithms based on variance reduction tech-
nique applied to deterministic objectives with finite-sum structure. The success of these
algorithms is partly related to the possibility of keeping the step size constant while
still being able to decrease the variance of the gradient estimations “on the fly”. As we
saw in Section 1.4.4, there is a limitation of variance-reduced algorithms to objectives
with a finite-sum structure when the information about the terms fi(x) is perturbed by
stochastic noise. Another open question concerns the acceleration of these methods when
the objective is strongly convex.

In this chapter, we address these questions one by one. At the core of our framework
lies the concept of estimate sequences introduced by [Nesterov, 2014]. For a long time,
the acceleration via this framework was known to be unstable in the stochastic case. By
extending this concept to minimization of stochastic objectives, we propose a unified view
of first-order methods for stochastic convex composite optimization. More precisely, we
interpret a large class of incremental approaches as procedures that iteratively minimize
some surrogate of the objective. As a result, we cover the stochastic gradient descent
algorithm and several incremental variance-reduced approaches like SAGA, SVRG, MISO,
Finito and SDCA. This point of view has several advantages: (i) we provide a simple
generic proof of convergence for all of the aforementioned methods; (ii) we naturally obtain
new algorithms with the same guarantees as the existing incremental methods; (iii) we
derive generic strategies to make these algorithms robust to stochastic noise, which is
useful when data is corrupted by small random perturbations. Finally, we propose a new
accelerated stochastic gradient descent algorithm and an accelerated SVRG algorithm
with the optimal complexity that is robust to stochastic noise.

This chapter is based on the following publications:

23
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• A. Kulunchakov and J. Mairal. Estimate sequences for variance-reduced stochastic
composite optimization. In Proceedings of the International Conference on Machine
Learning (ICML), June 2019c

• A. Kulunchakov and J. Mairal. Estimate sequences for stochastic composite
optimization: Variance reduction, acceleration, and robustness to noise. Journal of
Machine Learning Research (JMLR), 2020

2.1 Introduction
In order to be precise, we restate the exact optimization problem that we aim to solve

for each chapter throughout the thesis. In this chapter, we minimize objective functions of
the following form

min
x∈Rp

{
F (x) , f(x) + ψ(x) , 1

n

n∑
i=1

fi(x) + ψ(x)
}
, (2.1)

where f is convex and L-smooth, and we call µ its strong convexity modulus with respect to
the Euclidean norm (if such µ is positive). The function ψ is convex lower semi-continuous
and is not assumed to be necessarily differentiable, with possible practical examples of this
penalty function given in Section 1.2.2. Each term fi is convex and Li-smooth with Li ≥ µ.
Moreover, (fi)ni=1 are assumed to be given in the form of expectation fi = Eρi

[
f̃i(x, ρi)

]
, so

that one accesses only inexact gradient information for each of them unless the variance of
the gradient estimate is zero. This statement (2.1) gives a general setting which embodies
both minimization of the expected risk when n = 1 and and the classical empirical risk
when ρi is deterministic. Therefore, the optimal convergence rate for solving (2.1) can not
be better than (1.12) for strongly convex problems and (1.11) for non-strongly convex
ones.

Case with exact gradients Assume that we are in a high-dimensional setting when
either dimensionality of the problem p or the number of terms n is large. Then, the
optimization methods querying the full gradient of ∇f(x) are not applicable and one
standard approach is to operate on the gradients of the terms∇fi(x) instead. First, we focus
on the deterministic case so that we have access to the true gradient estimations ∇fi(x) for
each i. In this case, the stochastic gradient descent algorithm with step size proportional
to 1/µN enjoys the asymptotic convergence rate O (1/N) when n = 1. Even though
this pessimistic result applies to the general stochastic case, linear convergence rates are
obtained for the deterministic finite-sum setting in [Schmidt et al., 2017] and plethora of
other incremental variants of the SGD algorithm. For example, these methods include
SAG [Schmidt et al., 2017], SAGA [Defazio et al., 2014a], SVRG [Johnson and Zhang,
2013, Xiao and Zhang, 2014], SDCA [Shalev-Shwartz and Zhang, 2016], MISO [Mairal,
2015], Katyusha [Allen-Zhu, 2017], MiG [Zhou et al., 2018], SARAH [Nguyen et al., 2017a],
directly accelerated SAGA [Zhou, 2019] or RPDG [Lan and Zhou, 2018a]. All these
algorithms admit the same per-iteration cost as the stochastic gradient descent method,
since they access only a single (or two) gradients ∇fi(x) at each iteration on average.
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Moreover, sometimes they may achieve lower computational complexity than that of
accelerated gradient descent methods [Nesterov, 1983, 2013, 2014, Beck and Teboulle,
2009] in expectation, by exploiting the specific structure of the objective function. In this
chapter, one contribution is a framework that provides a unified view on many of the
aforementioned methods.

Case with inexact gradients One can weaken the assumption of being deterministic
imposed on the terms fi, and suggest that they are given in the form of (unknown)
expectation fi = Eρi

[
f̃i(x, ρi)

]
. As a result, one has access only to noisy estimates of the

true gradients ∇fi(x) for each i. As we saw in Section 1.4.5, this setting is common for
several applications.

Our objective is to investigate robustness to this inexactness in the gradient information
for the aforementioned variance-reduced approaches SVRG/SAGA/SDCA/MISO. The
original versions of these methods do not apply to this setting anymore, at least from
theoretical point of view, so that the standard approach to address (2.1) was to ignore the
finite-sum structure and use SGD or one of its variants.

In order to establish robustness, we adopt the concept of estimate sequences introduced
in [Nesterov, 2014], which consists of building iteratively a quadratic model of the objective.
Typically, estimate sequences are used to analyze the convergence of existing algorithms or
to design new ones, in particular with acceleration. Our construction is however slightly
different than the original since it is based on stochastic estimates of the gradients. We
note that estimate sequences have been used before for stochastic optimization [Devolder
et al., 2011, Lu and Xiao, 2015, Lin et al., 2014], but not for the same generic purpose as
ours.

Additionally, we analyze the aforementioned approaches under a non-uniform sampling
strategy Q = {q1, . . . , qn} where qi is the probability of drawing example i at each iteration,
the strategy that is quite common in literature. Typically, when the gradients ∇fi
have different Lipschitz constants Li, the uniform distribution Q of the sampling yields
complexities that depend on LQ = maxi Li, whereas a non-uniform Q may yield a smaller
quantity LQ = 1

n

∑
i Li. This gain comes at a price of a larger variance convergence,

which is essentially multiplied by ρQ = 1/(nmin qi) ≥ 1. Whereas non-uniform sampling
strategies for incremental methods are now classical [Xiao and Zhang, 2014, Schmidt
et al., 2015], the robustness to stochastic perturbations has not been studied for all these
methods and existing approaches such as [Hofmann et al., 2015, Bietti and Mairal, 2017,
Zheng and Kwok, 2018] have various limitations as discussed earlier in Section 1.4.4.

Finally, when making the aforementioned algorithms robust to stochastic perturbations,
we aim at obtaining the following worst-case iteration complexity for solving (2.1) up to
accuracy ε

O
((

n+ LQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ̃

2

µε

)
, (2.2)

where LQ = maxi Li/(qin) and ρQ = 1/(nmin qi) ≥ 1. The term on the left corresponds to
the complexity of the variance-reduction methods in deterministic setting, and O (σ̃2/µε)
is the desired sublinear rate of convergence for stochastic finite-sums optimization problems
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when the gradient estimates for each fi have the variance bounded with σ̃2. 1 Our next
contribution is a derivation of accelerated stochastic algorithms. In this direction, we
first show that our construction of estimate sequences naturally leads to an accelerated
stochastic gradient method with the iteration complexity for µ-strongly convex optimization
problems

O
(√

L

µ
log

(
F (x0)− F ∗

ε

))
+O

(
σ2

µε

)
,

which was also achieved by [Ghadimi and Lan, 2013, Cohen et al., 2018, Aybat et al., 2019].
When the objective is convex, but not strongly convex, we provide a sublinear convergence
rate for a finite horizon setting. Given a budget of K iterations, our algorithm returns an
iterate xK such that

E [F (xK)− F ∗] ≤ 2L ‖x0 − x∗‖2

(K + 1)2 + σ

√√√√8 ‖x0 − x∗‖2

K + 1 . (2.3)

This convergence rate is optimal for stochastic first-order convex optimization [Lan, 2012].
Second, we address the acceleration of variance-reduced algorithms and design a new
accelerated algorithm for minimization of large limit sums of stochastic functions based
on the SVRG gradient estimator, with complexity, for µ-strongly convex functions,

O
((

n+
√
n
LQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ̃

2

µε

)
, (2.4)

where the term on the left is the classical optimal complexity for deterministic finite
sums optimization, which has been well studied when σ̃2 = 0 [Arjevani and Shamir, 2016,
Allen-Zhu, 2017, Zhou et al., 2018, Lan and Zhou, 2018a, Zhou, 2019, Kovalev et al., 2020].
To the best of our knowledge, our algorithm is nevertheless the first to achieve such a
complexity when σ̃2 > 0. Most related to our work, the general case σ̃2 > 0 was considered
by [Lan and Zhou, 2018b] in the context of distributed optimization, with an approach
that was shown to be optimal in terms of communication rounds. Yet, when applied
in the same context as ours (in a non-distributed setting), the complexity they achieve
is sub-optimal. Specifically, their dependence in σ̃2 involves an additional logarithmic
factor O (log (1/µε)) and the deterministic part is sublinear in O (1/ε).

When the problem is convex but not strongly convex, given a budget of K greater
than O (n log(n)), our algorithm returns a solution xK such that

E [F (xK)− F ∗] ≤ 18nLQ ‖x0 − x∗‖2

(K + 1)2 + 9σ̃ ‖x0 − x∗‖
√

ρQ
K + 1 , (2.5)

where the term on the right is potentially better than the same in (2.3) when σ̃ � σ. When
the objective is deterministic (σ̃ = 0), the term (2.5) yields the complexity O

(√
nLQ/

√
ε
)
,

which is potentially better than the O
(
n
√
L/
√
ε
)
complexity of accelerated gradient

descent, unless L is significantly smaller than LQ.
Now let us finally summarize all contributions of this chapter in a compact list.
1. The more accurate expression for σ̃2 will be given in (2.18) of Section 2.3.2.



2.1. Introduction 27

2.1.1 Contributions of Chapter 2
• We revisit many incremental optimization algorithms, like SGD, SVRG, SAGA,

SDCA, MISO and Finito, and provide a unified convergence proof for these methods.
In addition, we show that they can be modified and become adaptive to the strong
convexity constant µ, which may be important in applications where µ is hard to
estimate.
• We improve these methods by making them robust to stochastic noise in the

terms fi. For strongly convex problems, we develop approaches with the following
worst-case iteration complexity for minimizing (2.1) up to accuracy ε

O
((

n+ LQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ̃

2

µε

)
,

where LQ = maxi Li/(qin) and ρQ = 1/(nmin qi) ≥ 1.
• We show that our construction of estimate sequence naturally leads to an accelerated
stochastic gradient method with the following complexity for µ-strongly convex
objectives

O
(√

L

µ
log

(
F (x0)− F ∗

ε

))
+O

(
σ2

µε

)
.

When the objective is convex, but not strongly convex, we achieve an optimal
sublinear convergence rate for a finite horizon setting

E [F (xK)− F ∗] ≤ 2L ‖x0 − x∗‖2

(K + 1)2 + σ

√√√√8 ‖x0 − x∗‖2

K + 1 .

• We design a new accelerated algorithm for minimization of finite sums based on
the SVRG gradient estimator, with complexity, for µ-strongly convex functions,

O
((

n+
√
n
LQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ̃

2

µε

)
,

To the best of our knowledge, our algorithm is the first to achieve such a complexity
when σ̃2 > 0.
When the problem is convex but not strongly convex, given a budget of K greater
than O (n log(n)), the algorithm returns a solution xK such that

E [F (xK)− F ∗] ≤ 18nLQ ‖x0 − x∗‖2

(K + 1)2 + 9σ̃ ‖x0 − x∗‖
√

ρQ
K + 1 .

The rest of the chapter is organized as follows. Section 2.2 introduces the proposed
framework based on stochastic estimate sequences; Section 2.3 presents a convergence anal-
ysis and Section 2.4 introduces accelerated stochastic optimization algorithms; Section 2.5
contains various experiments demonstrating the effectiveness of the proposed approaches,
and Section 2.6 concludes the chapter.
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2.2 Framework Based on Stochastic Estimate
Sequences

In this section, we present two generic stochastic optimization algorithms to address the
problem (2.1). Both algorithms are related to estimate sequence framework of [Nesterov,
2014] and could be seen as its generalization to the stochastic setting. After the algorithms
are introduced, we will show their relation to variance-reduction methods.

2.2.1 A Classical Iteration Revisited
Consider the stochastic gradient descent that performs the following updates:

xk ← Proxηkψ [xk−1 − ηkgk] with E [gk|Fk−1] = ∇f(xk−1), (A)

where Fk−1 is the filtration representing all information up to iteration k − 1, gk is an
unbiased estimate of the gradient ∇f(xk−1), ηk > 0 is a step size, and Proxηψ[.] is the
proximal operator of Section 1.2.4 defined for any scalar η > 0 as the unique solution of

Proxηψ[u] = argmin
x∈Rp

{
ηψ(x) + 1

2 ‖x− u‖
2
}
. (2.6)

The iteration (A) of stochastic gradient descent is generic and encompasses many existing
algorithms, which basically differ in the way of gk is constructed. These algorithms will be
reviewed later. Key to our analysis, we are interested in a simple interpretation of this
update rule as iterative minimization of strongly convex surrogate functions.

Interpretation with stochastic estimate sequence. Consider now the function

d0(x) = d∗0 + γ0

2 ‖x− x0‖2, (2.7)

with γ0 ≥ µ and d∗0 is a scalar value that is left unspecified at the moment. Then, it is easy
to show that xk in (A) minimizes the following quadratic function dk defined for k ≥ 1 as

dk(x) = (1− δk) dk−1(x)+

δk

(
f(xk−1) + g>k (x− xk−1) + µ

2 ‖x− xk−1‖2 + ψ(xk) + ψ′(xk)>(x− xk)
)
, (2.8)

where δk, γk satisfy the system of equations

δk = ηkγk and γk = (1− δk) γk−1 + µδk, (2.9)

and

ψ′(xk) = 1
ηk

(xk−1 − xk)− gk.

We note that ψ′(xk) is a subgradient in ∂ψ(xk), see Definition 1.3. By simply using the
definition of the proximal operator (2.6) and considering first-order optimality conditions,
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we indeed have that 0 ∈ xk − xk−1 + ηkgk + ηk∂ψ(xk) and xk coincides with the minimizer
of dk. This allows us to write dk in the generic form

dk(x) = d∗k + γk
2 ‖x− xk‖

2 for all k ≥ 0.

The construction (2.8) is akin to that of estimate sequences introduced by Nesterov [2014],
which are typically used for designing accelerated gradient-based optimization algorithms,
as we have overviewed in Section 1.5. In this section, we are not interested in acceleration
for now, but instead we focus on stochastic optimization and variance reduction. One
of the main properties of estimate sequences that we will use is their ability do behave
asymptotically as a lower bound of the objective function near the optimum, like was
shown in Lemma 2.2.1 of Nesterov [2014] for the deterministic case σ = 0. Indeed, we have

E [dk(x∗)] ≤ (1− δk)E [dk−1(x∗)] + δkF
∗ ≤ Γkd0(x∗) + (1− Γk)F ∗, (2.10)

where Γk = ∏k
t=1(1 − δt) and F ∗ = F (x∗). The first inequality comes from a strong

convexity argument since E
[
g>k (x∗ − xk−1)|Fk−1

]
= ∇f(xk−1)>(x∗−xk−1), and the second

inequality is obtained by unrolling the relation obtained between E [dk(x∗)] and E [dk−1(x∗)].
When Γk converges to zero, the contribution of the initial surrogate d0 disappears and
E [dk(x∗)] behaves as a lower bound of F ∗.

Relation with existing algorithms. Now we can overview the body of algorithms
covered by the iteration (A). First, it encompasses such approaches as ISTA (proximal
gradient descent), which uses the exact gradient gk = ∇f(xk−1) leading to deterministic
iterates (xk)k≥0 [Beck and Teboulle, 2009, Nesterov, 2013] or proximal variants of the
stochastic gradient descent method to deal with a composite objective [see Lan, 2012,
for instance]. Second, and of particular interest for us, the variance-reduced stochastic
optimization approaches SVRG [Xiao and Zhang, 2014] and SAGA [Defazio et al., 2014a]
also follow the iteration (A) with a specific unbiased gradient estimator gk whose variance
decreases over time. Specifically, the basic form of these estimators is

gk = ∇fik(xk−1)− zikk−1 + z̄k−1 with z̄k−1 = 1
n

n∑
i=1

zik−1, (2.11)

where ik is an index chosen uniformly in {1, . . . , n} at random, and each auxiliary variable zik
is equal to the gradient ∇fi(x̃ik), where x̃ik is one of the previous iterates. The motivation
is that given two random variables X and Y , it is possible to define a new variable
Z = X − Y + E [Y ] which has the same expectation as X but potentially a lower variance
if Y is positively correlated with X. SVRG and SAGA are two different approaches to
build such positively correlated variables. SVRG uses the same anchor point x̃ik = x̃k for
all i, where x̃k is updated every m iterations. Typically, the memory cost of SVRG is that
of storing the variable x̃k and the gradient z̄k = ∇f(x̃k), which is thus O (p). On the other
hand, SAGA updates only zikk = ∇fik(xk−1) at iteration k, such that zik = zik−1 if i 6= ik.
Thus, SAGA requires storing n gradients. While in general the overhead cost in memory
is of order O (np), it may be reduced to O (n) when dealing with linear models in machine
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learning [see Defazio et al., 2014a]. Note that variants with non-uniform sampling of the
indices ik have been proposed by Xiao and Zhang [2014], Schmidt et al. [2015].

In order to make our proofs consistent for all considered incremental methods, we
analyze a variant of SVRG with a randomized gradient updating schedule [Hofmann et al.,
2015]. Remarkably, this variant was recently used in a concurrent work [Kovalev et al.,
2020] to get the accelerated rate when σ̃2 = 0.

2.2.2 A Less Classical Iteration with a Different Estimate Sequence
In the previous section, we have interpreted the classical iteration (A) as the iterative

minimization of the stochastic surrogate (2.8). Here, we show that a slightly different
construction leads to a new algorithm. To obtain a lower bound, we have indeed used
basic properties of the proximal operator to obtain a subgradient ψ′(xk) and we have
exploited the following convexity inequality ψ(x) ≥ ψ(xk) + ψ′(xk)>(x − xk). Another
natural choice to build a lower bound consists then of using directly ψ(x) instead of
ψ(xk) + ψ′(xk)>(x− xk), leading to the construction

dk(x) = (1− δk) dk−1(x) + δk

(
f(xk−1) + g>k (x− xk−1) + µ

2 ‖x− xk−1‖2 + ψ(x)
)
,

(2.12)

where xk−1 is assumed to be the minimizer of the composite function dk−1, δk is defined as
in Section 2.2.1, and xk is a minimizer of dk. To initialize the recursion, we define then d0
as

d0(x) = c0 + γ0

2 ‖x− x̄0‖2 + ψ(x) ≥ d∗0 + γ0

2 ‖x− x0‖2 ,

with x0 = Proxψ/γ0 [x̄0] is the minimizer of d0 and d∗0 = d0(x0) = c0 + γ0
2 ‖x0 − x̄0‖2 +ψ(x0)

is the minimum value of d0; c0 is left unspecified since it does not affect the algorithm.
Typically, one may choose x̄0 to be a minimizer of ψ such that x0 = x̄0. Unlike in the
previous section, the surrogates dk are not quadratic, but they remain γk-strongly convex.
It is also easy to check that the relation (2.10) still holds.

The corresponding algorithm. It is also relatively easy to show that the iterative
minimization of the stochastic lower bounds (2.12) leads to the following iterations

x̄k ← (1− µηk)x̄k−1 + µηkxk−1 − ηkgk and xk = Proxψ/γk [x̄k] (B)

where again gk is an unbiased gradient estimator E [gk|Fk−1] = ∇f(xk−1). As we will
see, the convergence analysis for algorithm (A) also holds for algorithm (B) such that
both variants enjoy similar theoretical properties. In one case, the function ψ(x) appears
explicitly, whereas a lower bound ψ(xk) + ψ′(xk)>(x− xk) is used in the other case. The
introduction of the variable x̄k allows us to write the surrogates dk in the canonical form

dk(x) = ck + γk
2 ‖x− x̄k‖

2 + ψ(x) ≥ d∗k + γk
2 ‖x− xk‖

2 ,

where ck is constant and the inequality on the right is due to the strong convexity of dk.
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Relation to existing approaches. The approach (B) is related to several optimization
methods. When the objective is a deterministic finite sum, it is possible to relate the
update (B) to the MISO [Mairal, 2015], and Finito [Defazio et al., 2014b] algorithms,
even though they were derived from a significantly different point of view. This is also
the case of a primal variant of SDCA [Shalev-Shwartz, 2016]. For instance, SDCA is a
dual coordinate ascent approach, whereas MISO and Finito are explicitly derived from the
iterative surrogate minimization we adopt in this chapter. As the links between (B) and
these previous approaches are not obvious at first sight, we detail them in Appendix 2.B.

2.2.3 Gradient Estimators and Algorithms
In this chapter, we consider the iterations (A) and (B) with the following gradient

estimators.
— exact gradient with gk = ∇f(xk−1), when the problem is deterministic and we

have access to the full gradient;
— stochastic gradient, when we simply assume that gk has bounded variance.

Typically, when f(x) = Eξ[f̃(x, ξ)], a data point ξk is drawn at iteration k and
gk = ∇f̃(x, ξk).

— random-SVRG: for finite sums, we consider a variant of the SVRG gradient
estimator with non-uniform sampling and a random update of the anchor point x̃k−1,
proposed originally by Hofmann et al. [2015]. Specifically, gk is also an unbiased
estimator of ∇f(xk−1), defined as

gk = 1
qikn

(
∇̃fik(xk−1)− zikk−1

)
+ z̄k−1, (2.13)

where ik is sampled from a distribution Q = {q1, . . . , qn} and ∇̃ denotes that
the gradient is perturbed by a zero-mean noise variable with variance σ̃2. More
precisely, if fi(x) = Eρ[f̃i(x, ρ)] for all i, where ρ is a stochastic perturbation, instead
of accessing ∇fik(xk−1), we draw a perturbation ρk and observe

∇̃fik(xk−1) = ∇f̃ik(xk−1, ρk) = ∇fik(xk−1) +∇f̃ik(xk−1, ρk)−∇fik(xk−1)︸ ︷︷ ︸
ζk

,

where the perturbation ζk has zero mean given Fk−1 and its variance is bounded
by σ̃2. When there is no perturbation, we simply have ∇̃ = ∇ and ζk = 0.
Then, the variables zik and z̄k also correspond to possibly noisy estimates of the
gradients:

zik = ∇̃fi(x̃k) and z̄k = 1
n

n∑
i=1

zik,

where x̃k is an anchor point that is updated on average every n iterations. Whereas
the classical SVRG approach [Xiao and Zhang, 2014] updates x̃k on a fixed sched-
ule, we perform random updates: with probability 1/n, we choose x̃k = xk and
recompute z̄k = ∇̃f(x̃k); otherwise x̃k is kept unchanged. In comparison with the
fixed schedule, the analysis with the random one is simplified and can be unified
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Algorithm 2.1 Variant (A) with random-SVRG estimator
1: Input: x0 in Rp (initial point); K (number of iterations); (ηk)k≥0 (step sizes); γ0 ≥ µ

(if averaging);
2: Initialization: x̃0 = x̂0 = x0; z̄0 = 1

n

∑n
i=1 ∇̃fi(x̃0);

3: for k = 1, . . . , K do
4: Sample ik according to the distribution Q = {q1, . . . , qn};
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk = 1
qikn

(
∇̃fik(xk−1)− ∇̃fik(x̃k−1)

)
+ z̄k−1;

6: Obtain the new iterate

xk ← Proxηkψ [xk−1 − ηkgk] ;

7: With probability 1/n,

x̃k = xk and z̄k = 1
n

n∑
i=1
∇̃fi(x̃k);

8: Otherwise, with probability 1− 1/n, keep x̃k = x̃k−1 and z̄k = z̄k−1;
9: Optional: Use the online averaging strategy using δk obtained from (2.9):

x̂k = (1− τk)x̂k−1 + τkxk with τk = min
(
δk,

1
5n

)
;

10: end for
11: Output: xK or x̂K if averaging.

with that of SAGA/SDCA or MISO. The use of this estimator with iteration (A) is
illustrated in Algorithm 2.1. It is then easy to modify it to use variant (B) instead.
In terms of memory, the random-SVRG gradient estimator requires to store an
anchor point x̃k−1 and the average gradients z̄k−1. The variables zik do not need
to be stored; only the n random seeds to produce the perturbations are kept into
memory, which allows us to compute zikk−1 = ∇̃fik(x̃k−1) at iteration k, with the
same perturbation for index ik that was used to compute z̄k−1 = 1

n

∑n
i=1 z

i
k−1 when

the anchor point was last updated. The overall cost is thus O (n+ p).
— SAGA: The estimator has a form similar to (2.13) but with a different choice of

variables zik. Unlike SVRG that stores an anchor point x̃k, the SAGA estimator
requires storing and incrementally updating the n auxiliary variables zik for i =
1, . . . , n, while maintaining the relation z̄k = 1

n

∑n
i=1 z

i
k. We consider variants such

that each time a gradient ∇fi(x) is computed, it is corrupted by a zero-mean
random perturbation with variance σ̃2. The procedure is described in Algorithm 2.2
for variant (A) when using uniform sampling. When β = 0, we recover indeed the
original SAGA algorithm, whereas the choice β > 0 corresponds to a more general
estimator that we will discuss next.
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The case with non-uniform sampling is slightly different and is described in Algo-
rithm 2.3; it requires an additional index jk for updating a variable zjkk . The reason
for that is to remove a difficulty in the convergence proof, a strategy also adopted
by Schmidt et al. [2015] for a variant of SAGA with non-uniform sampling.

— SDCA/MISO: To put SAGA, MISO and SDCA under the same umbrella, we
introduce a lower bound β on the strong convexity constant µ, and a correcting term
involving β that appears only when the sampling distribution Q is not uniform:

gk = 1
qikn

(
∇̃fik(xk−1)− zikk−1

)
+ z̄k−1 + β

(
1− 1

qikn

)
xk−1. (2.14)

It is then possible to show that when Q is uniform and under the big data condi-
tion L/µ ≤ n (used for instanced by Mairal 2015, Defazio et al. 2014b, Schmidt
et al. 2017) and with β = µ, variant (B) combined with the estimator (2.14)
yields the MISO algorithm, which performs similar updates as a primal variant of
SDCA [Shalev-Shwartz, 2016]. These links are highlighted in Appendix 2.B.
The motivation for introducing the parameter β in [0, µ] comes from empirical
risk minimization problems, where the functions fi may have the form fi(x) =
φ(a>i x) + β

2 ‖x‖
2, where ai in Rp is a data point; then, β is a lower bound on the

strong convexity modulus µ, and ∇fi(x) − βx is proportional to ai and can be
stored with a single additional scalar value, assuming ai is already in memory.

Algorithm 2.2 Variant (A) with SAGA/SDCA/MISO estimator and uniform sampling
1: Input: x0 in Rp; K (number of iterations); (ηk)k≥0 (step sizes); β ∈ [0, µ]; if averaging,
γ0 ≥ µ.

2: Initialization: zi0 = ∇̃fi(x0)− βx0 for all i = 1, . . . , n and z̄0 = 1
n

∑n
i=1 z

i
0.

3: for k = 1, . . . , K do
4: Sample ik in {1, . . . , n} according to the uniform distribution;
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk = ∇̃fik(xk−1)− zikk−1 + z̄k−1;

6: Obtain the new iterate

xk ← Proxηkψ [xk−1 − ηkgk] ;

7: Update the auxiliary variables

zikk = ∇̃fik(xk−1)− βxk−1 and zik = zik−1 for all i 6= ik;

8: Update the average variable z̄k = z̄k−1 + 1
n
(zjkk − z

jk
k−1).

9: Optional: Use the same averaging strategy as in Algorithm 2.1.
10: end for
11: Output: xK or x̂K (if averaging).
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Algorithm 2.3 Variant (A) with SAGA/SDCA/MISO estimator and non-uniform sam-
pling
1: Input: x0 in Rp; K (number of iterations); (ηk)k≥0 (step sizes); β ∈ [0, µ]; if averaging,
γ0 ≥ µ.

2: Initialization: zi0 = ∇̃fi(x0)− βx0 for all i = 1, . . . , n and z̄0 = 1
n

∑n
i=1 z

i
0.

3: for k = 1, . . . , K do
4: Sample ik according to the distribution Q = {q1, . . . , qn};
5: Compute the gradient estimator, possibly corrupted by random perturbations:

gk = 1
qikn

(
∇̃fik(xk−1)− zikk−1

)
+ z̄k−1 + β

(
1− 1

qikn

)
xk−1;

6: Obtain the new iterate

xk ← Proxηkψ [xk−1 − ηkgk] ;

7: Draw jk from the uniform distribution in {1, . . . , n};
8: Update the auxiliary variables

zjkk = ∇̃fjk(xk)− βxk and zjk = zjk−1 for all j 6= jk;

9: Update the average variable z̄k = z̄k−1 + 1
n
(zjkk − z

jk
k−1).

10: Optional: Use the same averaging strategy as in Algorithm 2.1.
11: end for
12: Output: xK or x̂K (if averaging).

Summary of the new features. As we combine different types of iterations and
gradient estimators, we recover both known and new algorithms. Specifically, we obtain
the following new features:

— robustness to noise: we introduce mechanisms to deal with stochastic perturba-
tions and make all these previous approaches robust to noise.

— adaptivity to the strong convexity when σ̃ = 0: Algorithms 2.1, 2.2, and 2.3
without averaging do not require knowing the strong convexity constant µ (it may
only need a lower-bound β, which is often trivial to obtain).

— new variants: Whereas SVRG/SAGA were originally developed with the itera-
tions (A) and MISO in the context of (B), we show that these gradient estimators
are both compatible with (A) and (B), leading to new algorithms with similar
guarantees.

2.3 Convergence Analysis and Robustness
We now present the convergence analysis for iterations (A) or (B). In Section 2.3.1, we

present a generic convergence result. Then, in Section 2.3.2, we present specific results
for the variance-reduction approaches in including strategies to make them robust to
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stochastic noise. Acceleration is discussed in the next section.

2.3.1 Generic Convergence Result Without Variance Reduction
Key to our complexity results, the following proposition gives a first relation between

the quantity F (xk), the surrogate dk, dk−1 and the variance of the gradient estimates.

Proposition 2.1 (Key relation). For either variant (A) or (B), when using the con-
struction of dk from Sections 2.2.1 or 2.2.2, respectively, and assuming ηk ≤ 1/L, we have
for all k ≥ 1,

δk(E [F (xk)]− F ∗) + E [dk(x∗)− d∗k] ≤ (1− δk)E
[
dk−1(x∗)− d∗k−1

]
+ ηkδkω

2
k, (2.15)

where F ∗ is the minimum of F , x∗ is one of its minimizers, and ω2
k = E

[
‖gk −∇f(xk−1)‖2

]
.

Proof. We first consider the variant (A) and later show how to modify the convergence
proofs to accommodate the variant (B).

d∗k = dk(xk) = (1− δk) dk−1(xk) + δk

(
f(xk−1) + g>k (xk − xk−1) + µ

2 ‖xk − xk−1‖2 + ψ(xk)
)

≥ (1− δk) d∗k−1 + γk
2 ‖xk − xk−1‖2 + δk

(
f(xk−1) + g>k (xk − xk−1) + ψ(xk)

)
≥ (1− δk) d∗k−1 + δk

(
f(xk−1) + g>k (xk − xk−1) + L

2 ‖xk − xk−1‖2 + ψ(xk)
)

≥ (1− δk) d∗k−1 + δkF (xk) + δk(gk −∇f(xk−1))>(xk − xk−1),

where the first inequality comes from Lemma 2.6—it is in fact an equality when considering
Algorithm (A)—and the second inequality simply uses the assumption ηk ≤ 1/L, which
yields δk = γkηk ≤ γk/L. Finally, the last inequality uses a classical upper-bound for
L-smooth functions presented in Lemma 2.4. Then, after taking expectations,

E[d∗k] ≥ (1− δk)E
[
d∗k−1

]
+ δkE [F (xk)] + δkE

[
(gk −∇f(xk−1))>(xk − xk−1)

]
= (1− δk)E

[
d∗k−1

]
+ δkE [F (xk)] + δkE

[
(gk −∇f(xk−1))>xk

]
= (1− δk)E

[
d∗k−1

]
+ δkE [F (xk)] + δkE

[
(gk −∇f(xk−1))> (xk − wk−1)

]
,

where we have defined the following quantity

wk−1 = Proxηkψ [xk−1 − ηk∇f(xk−1)] .

In the previous relations, we have used twice the fact that E
[
(gk −∇f(xk−1))>y|Fk−1

]
= 0,

for all deterministic variable y given xk−1, such as y = xk−1 or y = wk−1. We may now
use the non-expansiveness property of the proximal operator [Moreau, 1965] to control the
quantity ‖xk − wk−1‖, which gives us

E[d∗k] ≥ (1− δk)E
[
d∗k−1

]
+ δkE [F (xk)]− δkE [‖gk −∇f(xk−1)‖ ‖xk − wk−1‖]

≥ (1− δk)E
[
d∗k−1

]
+ δkE [F (xk)]− δkηkE

[
‖gk −∇f(xk−1)‖2

]
= (1− δk)E

[
d∗k−1

]
+ δkE [F (xk)]− δkηkω2

k.
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This relation can now be combined with (2.10) when z = x∗, and we obtain (2.15). It is
also easy to see that the proof also works with variant (B). The convergence analysis is
identical, except that we take wk−1 to be

wk−1 = Proxψ/γk [(1− µηk) x̄k−1 + µηkxk−1 − ηk∇f(xk−1)] ,

and the same result follows. �

Then, without making further assumption on ωk, we have the following general con-
vergence result, which is a direct consequence of the averaging Lemma 2.12, inspired
by Ghadimi and Lan [2012], and presented in Appendix 2.A.3:

Theorem 2.1 (General convergence result). Under the same assumptions as in
Proposition 2.1, we have for all k ≥ 1, and either variant (A) or (B),

Eδk (F (xk)− F ∗) + dk(x∗)− d∗k ≤ Γk
(
d0(x∗)− d∗0 +

k∑
t=1

δtηtω
2
t

Γt

)
, (2.16)

where Γk = ∏k
t=1(1− δt). Then, by using the averaging strategy x̂k = (1− δk) x̂k−1 + δkxk

of Lemma 2.12, for any point x̂0 (possibly equal to x0), we have

E [δk (F (x̂k)− F ∗) + dk(x∗)− d∗k] ≤ Γk
(
F (x̂0)− F ∗ + d0(x∗)− d∗0 +

k∑
t=1

δtηtω
2
t

Γt

)
.

(2.17)

Theorem 2.1 allows us to recover convergence rates for various algorithms. Note that
the effect of the averaging strategy is to remove the factor δk in front of F (xk)− F ∗ on
the left part of (2.16), thus improving the convergence rate by a factor 1/δk. Regarding
the quantity d0(x∗)− d∗0, we have the following relations

— For variant (A), d0(x∗)− d∗0 = (γ0/2) ‖x∗ − x0‖2;
— For variant (B), this quantity may be larger and we may simply say that d0(x∗)−

d∗0 = γ0
2 ‖x

∗ − x0‖2 + ψ(x∗) − ψ(x0) − ψ′(x0)>(x0 − x∗) for variant (B), where
ψ′(x0) = γ0(x0 − x̄0) is a subgradient in ∂ψ(x0). Note that if x̄0 is chosen to be a
minimizer of ψ, then d0(x∗)− d∗0 = (γ0/2) ‖x∗ − x0‖2 + ψ(x∗)− ψ(x0).

In the next section, we will focus on variance reduction mechanisms, which are able to
improve the previous convergence rates by better exploiting the structure of the objective.
By controlling the variance ωk of the corresponding gradient estimators, we will apply
Theorem 2.1 to obtain convergence rates. Before that, we remark that it is relatively
straightforward to use this theorem to recover complexity results for proximal SGD,
both for the usual variant (A) or the new one (B). Since these results are classical, we
present them in Appendix 2.C. As a sanity check, we note that we recover the optimal
noise-dependency [see Nemirovski et al., 2009], both for strongly convex cases, or when
µ = 0.
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2.3.2 Faster Convergence with Variance Reduction
Stochastic variance-reduced gradient descent algorithms rely on gradient estimates

whose variance decreases as fast as the objective function value. Here, we provide a unified
proof of convergence for our variants of SVRG, SAGA, and MISO, and we show how to
make them robust to stochastic perturbations. Specifically, we consider the minimization
of a finite sum of functions as in (1.27), but, as explained in Section 2.2, each observation of
the gradient ∇fi(x) is corrupted by a random noise variable. The next proposition extends
a proof for SVRG [Xiao and Zhang, 2014] to stochastic perturbations, and characterizes
the variance of gk.

As we now consider finite sums, we introduce again the quantity σ̃2, which is an
upper-bound on the noise variance due to stochastic perturbations for all x in Rp and for
i in {1, . . . , n}:

E
[∥∥∥∇̃fi(x)−∇fi(x)

∥∥∥2
]
≤ σ̃2

i such that σ̃2 = 1
n

n∑
i=1

1
qin

σ̃2
i , (2.18)

where the expectation is with respect to the gradient perturbation, and Q = {q1, . . . , qn}
is the sampling distribution. As having the variance to be bounded across the domain of
x may be a strong assumption, even though classical, we also introduce the quantity

σ̃2
i,∗ = E

[∥∥∥∇̃fi(x∗)−∇fi(x∗)∥∥∥2
]

with a related quantity σ̃2
∗ = 1

n

n∑
i=1

1
qin

σ̃2
i,∗, (2.19)

where x∗ is a solution of the optimization problem. As we will show, in this section, our
complexity results for unaccelerated methods when µ > 0 under the bounded variance
assumption σ̃2 < +∞ will also hold when simply assuming σ̃2

∗ < +∞ at the cost of
slightly degrading the complexity by constant factors. The next proposition provides an
upper-bound on the variance of gradient estimators gk, which we have introduced earlier,
as a first step to use Theorem 2.1.

Proposition 2.2 (Generic variance reduction with non-uniform sampling). Con-
sider (2.1) when f is a finite sum of functions f = 1

n

∑n
i=1 fi where each fi is convex

and Li-smooth with Li ≥ µ. Then, the gradient estimates gk of the random-SVRG and
MISO/SAGA/SDCA strategies defined in Section 2.2.3 satisfy

E
[
‖gk −∇f(xk−1)‖2

]
≤ 4LQE [F (xk−1)− F ∗] + 2

n
E
[
n∑
i=1

1
nqi
‖uik−1 − ui∗‖2

]
+ 3ρQσ̃2,

(2.20)

where LQ = maxi Li/(qin), ρQ = 1/(nmini qi), and for all i and k, uik is equal to zik
without noise—that is

uik = ∇fi(x̃k) for random-SVRG
ujkk = ∇fjk(xk)− βxk and ujk = ujk−1 if j 6= jk for SAGA/MISO/SDCA,

and ui∗ = ∇fi(x∗)− βx∗ (with β = 0 for random-SVRG).
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If we additionally assume that each function fi may be written as fi(x) = Eξ
[
f̃i(x, ξ)

]
where f̃i(., ξ) is Li-smooth with Li ≥ µ for all ξ, then

E
[
‖gk −∇f(xk−1)‖2

]
≤ 16LQE [F (xk−1)− F ∗] + 2

n
E
[
n∑
i=1

1
nqi

∥∥∥uik−1 − ui∗
∥∥∥2
]

+ 6ρQσ̃2
∗.

(2.21)

In particular, choosing the uniform distribution qi = 1/n gives LQ = maxi Li; choosing
qi = Li/

∑
j Lj gives LQ = (1/n)∑i Li, which may be significantly smaller than the

maximum Lipschitz constant. We note that non-uniform sampling can significantly improve
the dependency of the bound to the Lipschitz constants since the average (1/n)∑i Li may
be significantly smaller than the maximum maxi Li, but it may worsen the dependency
with the variance σ̃2 since ρQ > 1 unless Q is the uniform distribution. The proof of the
proposition is given in Appendix 2.D.1.

For simplicity, we will present our complexity results in terms of σ̃2. However, when the
conditions for (2.21) are satisfied, it is easy to adapt all results of this section to replace σ̃2

by σ̃2
∗, by paying a small price in terms of constant factors. Note that this substitution will

not work for accelerated algorithms in the next section. The general convergence result is
given next; it applies to both variants (A) and (B).

Proposition 2.3 (Lyapunov function for variance-reduced algorithms). Consider
the same setting as Proposition 2.2. For either variant (A) or (B) with the random-SVRG
or SAGA/SDCA/MISO gradient estimators defined in Section 2.2.3, when using the
construction of dk from Sections 2.2.1 or 2.2.2, respectively, and assuming γ0 ≥ µ and
(ηk)k≥0 is non-increasing with ηk ≤ 1

12LQ , we have for all k ≥ 1,

δk
6 E [F (xk)− F ∗] + Tk ≤ (1− τk)Tk−1 + 3ρQηkδkσ̃2 with τk = min

(
δk,

1
5n

)
, (2.22)

where

Tk = 5LQηkδkE [F (xk)− F ∗] + E [dk(x∗)− d∗k] + 5ηkδk
2 E

[
1
n

n∑
i=1

1
qin

∥∥∥uik − ui∗∥∥∥2
]
.

The proof of the previous proposition is given in Appendix 2.D.2. From the Lyapunov
function, we obtain a general convergence result for the variance-reduced stochastic
algorithms.

Theorem 2.2 (Convergence of variance-reduced algorithms). Consider the same
setting as Proposition 2.3, which applies to both variants (A) and (B). Then, by using the
averaging strategy of Lemma 2.12 with any point x̂0,

E
[
F (x̂k)− F ∗ + 6τk

δk
Tk

]
≤ Θk

(
F (x̂0)− F ∗ + 6τk

δk
T0 + 18ρQτkσ̃2

δk

k∑
t=1

ηtδt
Θt

)
, (2.23)

where Θk = ∏k
t=1(1− τt). Note that we also have

T0 ≤ 10LQη0δ0 (F (x0)− F ∗) + d0(x∗)− d∗0. (2.24)



2.3. Convergence Analysis and Robustness 39

The proof is given in Appendix 2.D.3. From this generic convergence theorem, we now
study particular cases. The first corollary studies the strongly-convex case with constant
step size.

Corollary 2.3 (Variance-reduction, µ > 0, constant step size independent of µ).
Consider the same setting as in Theorem 2.2, where f is µ-strongly convex, γ0 = µ, and
ηk = 1

12LQ . Then, for any point x̂0,

E [F (x̂k)− F ∗ + αTk] ≤ Θk (F (x̂0)− F ∗ + αT0) + 3ρQσ̃2

2LQ
(2.25)

with τ = min
(

µ
12LQ ,

1
5n

)
, Θk = (1 − τ)k, and α = 6 min

(
1, 12LQ

5µn

)
. Note that Tk ≥

µ
2 ‖xk − x

∗‖2 and for Algorithm (A), we also have T0 ≤ (13/12) (F (x0)− F ∗).

The proof is given in Appendix 2.D.4. This corollary shows that the algorithm achieves
a linear convergence rate to a noise-dominated region and produces converging iterates
(xk)k≥0 that do not require to know the strong convexity constant µ. It shows that all
estimators we consider can become adaptive to µ. Note that the non-uniform strategy
slightly degrades the dependency in σ̃2: indeed, LQ/ρQ = maxi=1 Li if Q is uniform, but if
qi = maxi Li/

∑
j Lj, we have instead LQ/ρQ = mini=1 Li. The next corollary shows that

a slightly better noise dependency can be achieved when the step sizes rely on µ.

Corollary 2.4 (Variance-reduction, µ > 0, µ-dependent constant step size).
Consider the same setting as Theorem 2.2, where f is µ-strongly convex, γ0 = µ, and
ηk = η = min

(
1

12LQ ,
1

5µn

)
. Then, for all x̂0,

E [F (x̂k)− F ∗ + 6Tk] ≤ Θk (F (x̂0)− F ∗ + 6T0) + 18ρQησ̃2. (2.26)

The proof follows similar steps as the proof of Corollary 2.3, after noting that we have
δk = τk for all k for this particular choice of step size. We are now in shape to study a
converging algorithm.

Corollary 2.5 (Variance-reduction, µ > 0, decreasing step sizes). Consider the
same setting as Theorem 2.2, where f is µ-strongly convex and target an accuracy ε ≤
24ρQησ̃2, with η = min

(
1

12LQ ,
1

5µn

)
. Then, we use the constant step size strategy of

Corollary 2.4 with x̂0 = x0, and stop the optimization when we find points x̂k and xk such
that E [F (x̂k)− F ∗ + 6Tk] ≤ 24ρQησ̃2. Then, we restart the optimization procedure with
decreasing step sizes ηk = min

(
1

12LQ ,
1

5µn ,
2

µ(k+2)

)
and generate a new sequence (x̂′k)k≥0. The

resulting number of gradient evaluations to achieve E [F (x̂′k)− F ∗] ≤ ε is upper bounded by

O
((

n+ LQ
µ

)
log

(
F (x0)− F ∗ + d0(x∗)− d∗0

ε

))
+O

(
ρQσ̃

2

µε
.

)

Note that d0(x∗)− d∗0 ≤ F (x0)− F ∗ for variant (A).
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The proof is given in Appendix 2.D.5 and shows that variance-reduction algorithms
may exhibit an optimal dependency on the noise level σ̃2 when the objective is strongly
convex. Next, we analyze the complexity of variant (A) when µ = 0. Note that it is
possible to conduct a similar analysis for variant (B), which exhibits a slightly worse
complexity (as the corresponding quantity d0(x∗)− d∗0 is larger).

Corollary 2.6 (Convergence of variance-reduced algorithms with constant step
size, µ = 0). Consider the same setting as Theorem 2.2, where f is convex and proceed
in two steps. First, run one iteration of (A) with step size 1

12LQ with the gradient estima-
tor (1/n)∑n

i=1 ∇̃fi(x0). Second, use the resulting point to initialize the variant (A) with
the random-SVRG or SAGA/SDCA/MISO gradient estimators, with a constant step size
η ≤ 1

12LQ , γ0 = 1/η, for a total of K ≥ 5n log(5n) iterations. Then,

E [F (x̂K)− F ∗] ≤ 9n
η(K + 1) ‖x0 − x∗‖2 + 36ησ̃2ρQ.

If in addition we choose η = min
(

1
12LQ ,

‖x0−x∗‖
2σ̃

√
n

ρQ(K+1)

)
.

E [F (x̂K)− F ∗] ≤ 108nLQ
(K + 1) ‖x0 − x∗‖2 + 36σ̃ ‖x0 − x∗‖

√
ρQn

K + 1 . (2.27)

The proof is provided in Appendix 2.D.6. The second part of the corollary is not a
practical result since the optimal step size depends on unknown quantities such as σ̃2, but
it allows us to highlight the best possible dependence between the budget of iterations K,
the initial point x0, and the noise σ̃2. We will show in the next section that acceleration is
useful to improve the previous complexity.

2.4 Accelerated Stochastic Algorithms
We now consider the following iteration, involving an extrapolation sequence (yk)k≥1,

which is a classical mechanism from accelerated first-order algorithms [Beck and Teboulle,
2009, Nesterov, 2013]. Given a sequence of step sizes (ηk)k≥0 with ηk ≤ 1/L for all k ≥ 0,
and some parameter γ0 ≥ µ, we consider the sequences (δk)k≥0 and (γk)k≥0 that satisfy

δk = √ηkγk for all k ≥ 0
γk = (1− δk) γk−1 + δkµ for all k ≥ 1.

Then, for k ≥ 1, we consider the iteration

xk = Proxηkψ [yk−1 − ηkgk] with E [gk|Fk−1] = ∇f(yk−1)

yk = xk + βk(xk − xk−1) with βk = δk (1− δk) ηk+1

ηkδk+1 + ηk+1δ2
k

,
(C)



2.4. Accelerated Stochastic Algorithms 41

where with constant step size ηk = 1/L, we recover a classical extrapolation parameter of
accelerated gradient based methods [Nesterov, 2014]. Traditionally, estimate sequences
are used to analyze the convergence of accelerated algorithms. We show in this section
how to proceed for stochastic composite optimization and later, we show how to directly
accelerate the random-SVRG approach we have introduced. Note that Algorithm (C)
resembles the approaches introduced by Hu et al. [2009], Ghadimi and Lan [2012] but is
simpler since our approach involves a single extrapolation step.

2.4.1 Convergence Analysis Without Variance Reduction
Consider then the stochastic estimate sequence for k ≥ 1

dk(x) = (1− δk) dk−1(x) + δklk(x),

with d0 defined as in (2.7) and

lk(x) = f(yk−1) + g>k (x− yk−1) + µ

2 ‖x− yk−1‖2 + ψ(xk) + ψ′(xk)>(x− xk), (2.28)

and ψ′(xk) = 1
ηk

(yk−1 − xk)− gk is in ∂ψ(xk) by definition of the proximal operator. As
in Section 2.2, dk(x∗) asymptotically becomes a lower bound on F ∗ since (2.10) remains
satisfied. This time, the iterate xk does not minimize dk, and we denote by vk instead its
minimizer, allowing us to write dk in the canonical form

dk(x) = d∗k + γk
2 ‖x− vk‖

2 .

The first lemma highlights classical relations between the iterates (xk)k≥0, (yk)k≥0 and the
minimizers of the estimate sequences dk, which also appears in [Nesterov, 2014, p. 78] for
constant step sizes ηk. The proof is given in Appendix 2.D.7.

Lemma 2.1 (Relations between yk, xk and dk). The sequences (xk)k≥0 and (yk)k≥0
produced by Algorithm (C) satisfy for all k ≥ 0, with v0 = y0 = x0,

yk = (1− θk)xk + θkvk with θk = δkγk
γk + δk+1µ

.

Then, the next lemma is key to prove the convergence of Algorithm (C). Its proof is
given in Appendix 2.D.8.

Lemma 2.2 (Key lemma for stochastic estimate sequences with acceleration).
Assuming (xk)k≥0 and (yk)k≥0 are given by Algorithm (C). Then, for all k ≥ 1,

E [F (xk)] ≤ E [lk(yk−1)] +
(
Lη2

k

2 − ηk
)
E
[
‖g̃k‖2

]
+ ηkω

2
k,

with ω2
k = E

[
‖∇f(yk−1)− gk‖2

]
and g̃k = gk + ψ′(xk).

Finally, we obtain the following convergence result.



42 Chapter 2. Estimate Sequences for Stochastic Optimization

Theorem 2.7 (Convergence of the accelerated stochastic optimization algo-
rithm). Under the assumptions of Lemma 2.1, we have for all k ≥ 1,

E
[
F (xk)− F ∗ + γk

2 ‖vk − x
∗‖2
]
≤ Γk

(
F (x0)− F ∗ + γ0

2 ‖x0 − x∗‖2 +
k∑
t=1

ηtω
2
t

Γt

)
,

where, as before, Γt = ∑t
i=1 (1− δi).

Proof. First, the minimizer vk of the quadratic surrogate dk may be written as

vk = (1− δk) γk−1

γk
vk−1 + µδk

γk
yk−1 −

δk
γk
g̃k = yk−1 + (1− δk) γk−1

γk
(vk−1 − yk−1)− δk

γk
g̃k.

Then, we characterize the quantity d∗k:

d∗k = dk(yk−1)− γk
2 ‖vk − yk−1‖2

= (1− δk) dk−1(yk−1) + δklk(yk−1)− γk
2 ‖vk − yk−1‖2

= (1− δk)
(
d∗k−1 + γk−1

2 ‖vk−1 − yk−1‖2
)

+ δklk(yk−1)− γk
2 ‖vk − yk−1‖2

= (1− δk) d∗k−1 +
(
γk−1 (1− δk) (γk − (1− δk) γk−1)

2γk

)
‖vk−1 − yk−1‖2 + δklk(yk−1)

− δ2
k

2γk
‖g̃k‖2 + δk (1− δk) γk−1

γk
g̃>k (vk−1 − yk−1)

≥ (1− δk) d∗k−1 + δklk(yk−1)− δ2
k

2γk
‖g̃k‖2 + δk (1− δk) γk−1

γk
g̃>k (vk−1 − yk−1).

Assuming by induction that E
[
d∗k−1

]
≥ E [F (xk−1)] − ξk−1 for some ξk−1 ≥ 0, we have

after taking expectation

E [d∗k] ≥ (1− δk) (E [F (xk−1)]− ξk−1) + δkE [lk(yk−1)]− δ2
k

2γk
E ‖g̃k‖2

+ δk (1− δk) γk−1

γk
E
[
g̃>k (vk−1 − yk−1)

]
.

Then, note that E [F (xk−1)] ≥ E [lk(xk−1)] ≥ E [lk(yk−1)] + E
[
g̃>k (xk−1 − yk−1)

]
, and

E [d∗k] ≥ E [lk(yk−1)]− (1− δk) ξk−1 −
δ2
k

2γk
E ‖g̃k‖2 +

(1− δk)E
[
g̃>k

(
δkγk−1

γk
(vk−1 − yk−1) + (xk−1 − yk−1)

)]
.

By Lemma 2.1, we can show that the last term is equal to zero, and we are left with

E [d∗k] ≥ E [lk(yk−1)]− (1− δk) ξk−1 −
δ2
k

2γk
E ‖g̃k‖2 .
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We may then use Lemma 2.2, which gives us

E [d∗k] ≥ E [F (xk)]− (1− δk) ξk−1 − ηkω2
k +

(
ηk −

Lη2
k

2 − δ2
k

2γk

)
E ‖g̃k‖2

≥ E [F (xk)]− ξk with ξk = (1− δk) ξk−1 + ηkω
2
k,

where we used the fact that ηk ≤ 1/L and δk = √γkηk.
It remains to choose d∗0 = F (x0) and ξ0 = 0 to initialize the induction at k = 0 and we

conclude that

E
[
F (xk)− F ∗ + γk

2 ‖vk − x
∗‖2
]
≤ E [dk(x∗)− F ∗] + ξk ≤ Γk(d0(x∗)− F ∗) + ξk,

which gives us the statement of the theorem when noticing that ξk = Γk
∑k
t=1

ηtω2
t

Γt . �

Next, we specialize the theorem to various practical cases. For the corollaries below,
we assume the variances (ω2

k)k≥1 to be upper bounded by σ2.

Corollary 2.8 (Proximal accelerated SGD with constant step size, µ > 0). As-
sume that f is µ-strongly convex, and choose γ0 = µ and ηk = 1/L with Algorithm (C).
Then,

E [F (xk)− F ∗] ≤
(

1−
√
µ

L

)k (
F (x0)− F ∗ + µ

2 ‖x0 − x∗‖2
)

+ σ2
√
µL

. (2.29)

We now show that with decreasing step sizes, we obtain an algorithm with optimal
complexity similar to [Ghadimi and Lan, 2013].

Corollary 2.9 (Proximal accelerated SGD with decreasing step sizes and µ > 0).
Assume that f is µ-strongly convex and that we target an accuracy ε smaller than 2σ2/

√
µL.

First, use a constant step size ηk = 1/L with γ0 = µ within Algorithm (C), leading to
the convergence rate (2.29), until E [F (xk)− F ∗] ≤ 2σ2/

√
µL. Then, we restart the

optimization procedure with decreasing step sizes ηk = min
(

1
L
, 4
µ(k+2)2

)
and generate a new

sequence (x̂k)k≥0. The resulting number of gradient evaluations to achieve E [F (xk)− F ∗] ≤
ε is upper bounded by

O
(√

L

µ
log

(
F (x0)− F ∗

ε

))
+O

(
σ2

µε

)
.

The proof is provided in Appendix 2.D.9. We note that despite the “optimal” theoretical
complexity, we have observed that Algorithm (C) with the parameters of Corollaries 2.8
and 2.9 could be relatively unstable, as shown in Section 2.5, due to the large radius
σ2/
√
µL of the noise region. When µ is small, such a quantity may be indeed arbitrarily

larger than F (x0)− F ∗. Instead, we have found a mini-batch strategy to be more effective
in practice. When using a mini-batch of size b = dL/µe, the theoretical complexity becomes
the same as SGD, given in Corollary 2.16, but the algorithm enjoys the benefits of easy
parallelization.
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Corollary 2.10 (Proximal accelerated SGD with with µ = 0). Assume that f is
convex. Consider a step size η ≤ 1/L and run one iteration of Algorithm (A) with a
stochastic gradient estimate. Use the resulting point to initialize Algorithm (C) still with
constant step size η, and choose γ0 = 1/η. Then,

E [F (xk)− F ∗] ≤
2 ‖x0 − x∗‖2

(1 +K)2η
+ σ2η(K + 1).

If in addition we choose η = min
(

1
L
,

√
2‖x0−x∗‖2

σ2
1

(K+1)3/2

)
, then

E [F (xk)− F ∗] ≤
2L ‖x0 − x∗‖2

(1 +K)2 + 2‖x0 − x∗‖σ
√

2
1 +K

. (2.30)

The proof is given in Appendix 2.D.10. These convergence results are relatively similar
to those obtained in [Ghadimi and Lan, 2013] for a different algorithm and is optimal for
convex functions.

2.4.2 An Accelerated Algorithm with Variance Reduction
In this section, we show how to combine the previous methodology with variance

reduction, and introduce Algorithm 2.4 based on random-SVRG. Then, we present the
convergence analysis, which requires controlling the variance of the estimator in a similar
manner to [Allen-Zhu, 2017], as stated in the next proposition. Note that the estimator
does not require storing the seed of the random perturbations, unlike in the previous
section.

Proposition 2.4 (Variance reduction for random-SVRG estimator). Consider
problem (2.1) when f is a finite sum of functions f = 1

n

∑n
i=1 fi where each fi is Li-smooth

with Li ≥ µ and f is µ-strongly convex. Then, the variance of gk defined in Algorithm 2.4
satisfies

ω2
k ≤ 2LQ

[
f(x̃k−1)− f(yk−1)− g>k (x̃k−1 − yk−1)

]
+ 3ρQσ̃2.

The proof is given in Appendix 2.D.11. Then, we extend Lemma 2.2 that was used in
the previous analysis to the variance-reduction setting.

Lemma 2.3 (Lemma for accelerated variance-reduced stochastic optimization).
Consider the iterates provided by Algorithm 2.4 and call ak = 2LQηk. Then,

E [F (xk)] ≤ E [akF (x̃k−1) + (1− ak)lk(yk−1)] +

E
[
akg̃

>
k (yk−1 − x̃k−1) +

(
Lη2

k

2 − ηk
)
‖g̃k‖2

]
+ 3ρQηkσ̃2.

The proof of this lemma is given in Appendix 2.D.12. With this lemma in hand, we
may now state our main convergence result.
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Algorithm 2.4 Accelerated algorithm with random-SVRG estimator
1: Input: x0 in Rp (initial point); K (number of iterations); (ηk)k≥0 (step sizes); γ0 ≥ µ;
2: Initialization: x̃0 = v0 = x0; z̄0 = ∇̃f(x0);
3: for k = 1, . . . , K do
4: Find (δk, γk) such that

γk = (1− δk) γk−1 + δkµ and δk =
√

5ηkγk
3n ;

5: Choose

yk−1 = θkvk−1 + (1− θk)x̃k−1 with θk = 3nδk − 5µηk
3− 5µηk

;

6: Sample ik according to the distribution Q = {q1, . . . , qn};
7: Compute the gradient estimator, possibly corrupted by stochastic perturbations:

gk = 1
qikn

(
∇̃fik(yk−1)− ∇̃fik(x̃k−1)

)
+ z̄k−1;

8: Obtain the new iterate

xk ← Proxηkψ [yk−1 − ηkgk] ;

9: Find the minimizer vk of the estimate sequence dk:

vk =
(

1− µδk
γk

)
vk−1 + µδk

γk
yk−1 + δk

γkηk
(xk − yk−1);

10: With probability 1/n, update the anchor point

x̃k = xk and z̄k = ∇̃f(x̃k);

11: Otherwise, with probability 1− 1/n, keep the anchor point unchanged x̃k = x̃k−1
and z̄k = z̄k−1;

12: end for
13: Output: xK .
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Theorem 2.11 (Convergence of the accelerated SVRG algorithm). Consider the it-
erates provided by Algorithm 2.4 and assume that the step sizes satisfy ηk ≤ min

(
1

3LQ ,
1

15γkn

)
for all k ≥ 1. Then,

E
[
F (xk)− F ∗ + γk

2 ‖vk − x
∗‖2
]
≤ Γk

(
F (x0)− F ∗ + γ0

2 ‖x0 − x∗‖2 + 3ρQσ̃2

n

k∑
t=1

ηt
Γt

)
.

Proof. Following similar steps as in the proof of Theorem 2.7, we have

d∗k ≥ (1− δk) d∗k−1 + δklk(yk−1)− δ2
k

2γk
‖g̃k‖2 + δk (1− δk) γk−1

γk
g̃>k (vk−1 − yk−1).

Assume now by induction that E
[
d∗k−1

]
≥ E [F (x̃k−1)]− ξk−1 for some ξk−1 ≥ 0 and note

that δk ≤ 1−ak
n

since ak = 2LQηk ≤ 2
3 and δk =

√
5ηkγk

3n ≤
1

3n ≤
1−ak
n

. Then,

E [d∗k] ≥ (1− δk) (E [F (x̃k−1)]− ξk−1) + δkE [lk(yk−1)]− δ2
k

2γk
E
[
‖g̃k‖2

]
+ E

[
g̃>k

(
δk (1− δk) γk−1

γk
(vk−1 − yk−1)

)]

≥
(

1− 1− ak
n

)
E [F (x̃k−1)] +

(1− ak
n
− δk

)
E [F (x̃k−1)] + δkE [lk(yk−1)]−

δ2
k

2γk
E
[
‖g̃k‖2

]
+ E

[
g̃>k

(
δk (1− δk) γk−1

γk
(vk−1 − yk−1)

)]
− (1− δk) ξk−1.

Note that

E [F (x̃k−1)] ≥ E [lk(x̃k−1)] ≥ E [lk(yk−1)] + E
[
g̃>k (x̃k−1 − yk−1)

]
.

Then,

E [d∗k] ≥
(

1− 1− ak
n

)
E [F (x̃k−1)] + 1− ak

n
E [lk(yk−1)]− δ2

k

2γk
E
[
‖g̃k‖2

]
+E

[
g̃>k

(
δk (1− δk) γk−1

γk
(vk−1 − yk−1) +

(1− ak
n
− δk

)
(x̃k−1 − yk−1)

)]
−(1− δk) ξk−1.

We may now use Lemma 2.3, which gives us

E [d∗k] ≥
(

1− 1
n

)
E [F (x̃k−1)] + 1

n
E [F (xk)] +

(
1
n

(
ηk −

Lη2
k

2

)
− δ2

k

2γk

)
E
[
‖g̃k‖2

]
+ E

[
g̃>k

(
δk (1− δk) γk−1

γk
(vk−1 − yk−1) +

( 1
n
− δk

)
(x̃k−1 − yk−1)

)]
− ξk, (2.31)

with ξk = (1− δk) ξk−1 + 3ρQηkσ̃2

n
. Then, since δk =

√
5ηkγk

3n and ηk ≤ 1
3LQ ≤

1
3L ,

1
n

(
ηk −

Lη2
k

2

)
− δ2

k

2γk
≥ 5ηk

6n −
δ2
k

2γk
= 0,
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and the term in (2.31) involving ‖g̃k‖2 may disappear. Similarly, we have

δk (1− δk) γk−1

δk (1− δk) γk−1 + γk/n− δkγk
= δkγk − δ2

kµ

γk/n− δ2
kµ

= 3nδ3
k/5ηk − δ2

kµ

3δ2
k/5ηk − δ2

kµ
= 3n− 5µηk

3− 5µηk
= θk,

and the term in (2.31) that is linear in g̃k may disappear as well. Then, we are left with
E [d∗k] ≥ E [F (x̃k)]− ξk. Initializing the induction requires choosing ξ0 = 0 and d∗0 = F (x0).
Ultimately, we note that E [dk(x∗)− F ∗] ≤ (1− δk)E [dk−1(x∗)− F ∗] for all k ≥ 1, and

E
[
F (x̃k)− F ∗ + γk

2 ‖x
∗ − vk‖2

]
≤ E [dk(x∗)− F ∗] + ξk

≤ Γk
(
F (x0)− F ∗ + γ0

2 ‖x
∗ − x0‖2

)
+ ξk,

and we obtain the statement. �

We may now derive convergence rates of our accelerated SVRG algorithm under various
settings. The proofs of the following corollaries, when not straightforward, are given in
the appendix. The first corollary simply uses Lemma 2.9.

Corollary 2.12 (Accelerated proximal SVRG - constant step size - µ > 0). With
ηk = min

(
1

3LQ ,
1

15µn

)
and γ0 = µ, the iterates produced by Algorithm 2.4 satisfy

— if 1
3LQ ≤

1
15µn ,

E [F (xk)− F ∗] ≤
(

1−
√

5µ
9LQn

)k (
F (x0)− F ∗ + µ

2 ‖x0 − x∗‖2
)

+ 3ρQσ̃2√
5µLQn

;

— otherwise,

E [F (xk)− F ∗] ≤
(

1− 1
3n

)k (
F (x0)− F ∗ + µ

2 ‖x0 − x∗‖2
)

+ 3ρQσ̃2

5µn .

The corollary uses the fact that Γk
∑k
t=1 η/Γt ≤ η/δ =

√
3nη/5µ and thus the algorithm

converges linearly to an area of radius 3ρQσ̃2
√

3η/5µn = O
(
ρQσ̃

2 min
(

1√
nµLQ

, 1
µn

))
,

where as before, ρQ = 1 if the distribution Q is uniform. When σ̃2 = 0, the corresponding
algorithm achieves the optimal complexity for finite sums [Arjevani and Shamir, 2016].
Interestingly, we see that here non-uniform sampling may hurt the convergence guarantees
in some situations. Whenever 1

maxi Li >
1

5µn , the optimal sampling strategy is indeed the
uniform one. Next, we show how to obtain a converging algorithm in the next corollary.

Corollary 2.13 (Accelerated proximal SVRG - diminishing step sizes - µ > 0).
Assume that f is µ-strongly convex and that we target an accuracy ε smaller than B =
3ρQσ̃2

√
η/µ with the same step size η as in the previous corollary. First, use such a

constant step size strategy ηk = η with γ0 = µ within Algorithm 2.4, leading to the
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convergence rate of the previous corollary, until E [F (xk)− F ∗] ≤ B. Then, we restart the
optimization procedure with decreasing step sizes ηk = min

(
η, 12n

5µ(k+2)2

)
and generate a new

sequence (x̂k)k≥0. The resulting number of gradient evaluations to achieve E [F (xk)− F ∗] ≤
ε is upper bounded by

O
((

n+
√
nLQ
µ

)
log

(
F (x0)− F ∗

ε

))
+O

(
ρQσ

2

µε

)
.

The proof is given in Appendix 2.D.13. Next, we study the case when µ = 0.

Corollary 2.14 (Accelerated proximal SVRG - µ = 0). Consider the same setting
as Theorem 2.11, where f is convex and proceed in two steps. First, run one iteration
of (A) with step size η ≤ 1

3LQ with the gradient estimator (1/n)∑n
i=1 ∇̃fi(x0). Second, use

the resulting point to initialize Algorithm 2.4 and use step size ηt = min
(

1
3LQ ,

1
15γtn

)
, with

γ0 = 1/η, for a total of K ≥ 6n log(15n) + 1 iterations. Then

E [F (xK)− F ∗] ≤ 6n ‖x0 − x∗‖2

η(K + 1)2 + 3ηρQσ̃2(K + 1)
n

.

If in addition we choose η = min
(

1
3LQ ,

√
2n‖x0−x∗‖

σ̃
√
ρQ(K+1)3/2

)
,

E [F (xK)− F ∗] ≤ 18LQn ‖x0 − x∗‖2

(K + 1)2 + 6σ̃ ‖x0 − x∗‖
√2ρQ√

K + 1
. (2.32)

The proof is provided in Appendix 2.D.14. When σ̃2 = 0 (deterministic setting), the
first part of the corollary with η = 1/3LQ gives us the same complexity as Katyusha [Allen-
Zhu, 2017] and RPDG [Lan and Zhou, 2018a], and in the stochastic case, we obtain a
significantly better complexity than the same algorithm without acceleration, which was
analyzed in Corollary 2.6.

2.5 Experiments
In this section, we evaluate numerically the approaches introduced in the previous

sections.

2.5.1 Datasets, Formulations, and Methods
Following classical benchmarks in optimization methods for machine learning [see, e.g.

Schmidt et al., 2017], we consider empirical risk minimization formulations. Given training
data (ai, bi)i=1,...,n, with ai in Rp and bi in {−1,+1}, we consider the optimization problem

min
x∈Rp

1
n

n∑
i=1

φ(bia>i x) + λ

2 ‖x‖
2 ,

where φ is either the logistic loss φ(u) = log(1 + e−u), or the squared hinge loss φ(u) =
max(0, 1−u)2. Both functions are L-smooth; when the vectors ai have unit norm, we may
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indeed choose L = 0.25 for the logistic loss and L = 1 for the squared hinge loss. Studying
the squared hinge loss is interesting: whereas the logistic loss has bounded gradients on
Rp, this is not the case for the squared hinge loss. With unbounded optimization domain,
the gradient norms may be indeed large in some regions of the solution space, which may
lead in turn to large variance σ2 of the gradient estimates obtained by SGD, causing
instabilities.

The scalar λ is a regularization parameter that acts as a lower bound on the strong
convexity constant of the problem. We consider the parameters µ = λ = 1/10n in our
problems, which is of the order of the smallest values that one would try when doing a
parameter search, e.g., by cross-validation. For instance, this is empirically observed for
the dataset cifar-ckn described below, where a test set is available, allowing us to check
that the “optimal” regularization parameter leading to the lowest generalization error is
indeed of this order. We also report an experiment with λ = 1/100n in order to study the
effect of the problem conditioning on the method’s performance.

Following Bietti and Mairal [2017], Zheng and Kwok [2018], we consider DropOut
perturbations [Srivastava et al., 2014] to illustrate the robustness to noise of the algorithms.
DropOut consists of randomly setting to zero each entry of a data point with probability
δ, leading to the optimization problem

min
x∈Rp

1
n

n∑
i=1

Eρ
[
φ(bi(ρ ◦ ai)>x)

]
+ λ

2 ‖x‖
2 , (2.33)

where ρ is a binary vector in {0, 1}p with i.i.d. Bernoulli entries, and ◦ denotes the
element-wise multiplication between two vectors. We consider two DropOut regimes, with
δ in {0.01, 0.1}, representing small and medium perturbations, respectively.

Then, we consider three datasets with various number of points n and dimension p,
coming from different scientific fields:

— alpha is from the Pascal Large Scale Learning Challenge website 2 and contains
n = 250 000 points in dimension p = 500.

— gene consists of gene expression data and the binary labels bi characterize two
different types of breast cancer. This is a small dataset with n = 295 and p = 8 141.

— ckn-cifar is an image classification task where each image from the CIFAR-10
dataset 3 is represented by using a two-layer unsupervised convolutional neural
network [Mairal, 2016]. Since CIFAR-10 originally contains 10 different classes,
we consider the binary classification task consisting of predicting the class 1 vs.
other classes. The dataset contains n = 50 000 images and the dimension of the
representation is p = 9 216.

For simplicity, we normalize the features of all datasets and thus we use a uniform sampling
strategy Q in all algorithms. Then, we consider several methods with their theoretical step
sizes, described in Table 2.1. Note that we also evaluate the strategy random-SVRG with
step size 1/3L, even though our analysis requires 1/12L, in order to get a fair comparison
with the accelerated SVRG method. In all figures, we consider that n iterations of SVRG
count as 2 effective passes over the data since it appears to be a good proxy of the

2. http://largescale.ml.tu-berlin.de/
3. https://www.cs.toronto.edu/~kriz/cifar.html

http://largescale.ml.tu-berlin.de/
https://www.cs.toronto.edu/~kriz/cifar.html
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Algorithm step size ηk Cor. Complexity O (.) Bias O (.)
SGD 1

L
2.15 L

µ
log

(
C0
ε

)
σ2

L

SGD-d min
(

1
L
, 2
µ(k+2)

)
2.16 L

µ
log

(
C0
ε

)
+ σ2

µε
0

acc-SGD 1
L

2.8
√

L
µ

log
(
C0
ε

)
σ2
√
µL

acc-SGD-d min
(

1
L
, 4
µ(k+2)2

)
2.9

√
L
µ

log
(
C0
ε

)
+ σ2

µε
0

acc-mb-SGD-d min
(

1
L
, 4
µ(k+2)2

)
2.9 L

µ
log

(
C0
ε

)
+ σ2

µε
0

rand-SVRG 1
3L 2.3

(
n+ L

µ

)
log

(
C0
ε

)
σ̃2

L

rand-SVRG-d min
(

1
12LQ ,

1
5µn ,

2
µ(k+2)

)
2.5

(
n+ L

µ

)
log

(
C0
ε

)
+ σ̃2

µε
0

acc-SVRG min
(

1
3LQ ,

1
15µn

)
2.12

(
n+

√
nL
µ

)
log

(
C0
ε

)
σ̃2

√
nµL+nµ

acc-SVRG-d min
(

1
3LQ ,

1
15µn ,

12n
5µ(k+2)2

)
2.13

(
n+

√
nL
µ

)
log

(
C0
ε

)
+ σ̃2

µε
0

Table 2.1 – List of algorithms used in the experiments, along with the step size used and
the pointer to the corresponding convergence guarantees, with C0 = F (x0)− F ∗. In the
experiments, we also use the method rand-SVRG with step size η = 1/3L, even though
our analysis requires η ≤ 1/12L. The approach acc-mb-SGD-d uses mini-batches of size
d
√
L/µe and could thus easily be parallelized. Note that we potentially have σ̃ � σ.

computational time. Indeed, (i) if one is allowed to store the variables zki , then n iterations
exactly correspond to two passes over the data; (ii) the gradients ∇̃fi(xk−1)− ∇̃fi(x̃k−1)
access the same training point which reduces the data access overhead; (iii) computing the
full gradient z̄k can be done in practice in a much more efficient manner than computing
individually the n gradients ∇̃fi(xk), either through parallelization or by using more
efficient routines (e.g., BLAS2 vs BLAS1 routines for linear algebra). Each experiment
is conducted five times and we always report the average of the five experiments in each
figure. We also include in the comparison two baselines from the literature: AC-SA is the
accelerated stochastic gradient descent method of Ghadimi and Lan [2013], and adam-heur
is the Adam method of Kingma and Ba [2014] with its recommended step size. As Adam is
not converging, we adopt a standard heuristics from the deep learning literature, consisting
of reducing the step size by 10 after 50 and 150 passes over the data, respectively, which
performs much better than using a constant step size in practice.

2.5.2 Evaluation of Algorithms without Perturbations
First, we study the behavior of all methods when σ̃2 = 0. We report the corresponding

results in Figures 2.1, 2.2, and 2.3. Since the problem is deterministic, we can check that
the value F ∗ we consider is indeed optimal by computing a duality gap using Fenchel
duality. For SGD and random-SVRG, we do not use any averaging strategy, which we
found to empirically slow down convergence, when used from the start; knowing when to
start averaging is indeed not easy and requires heuristics which we do not evaluate here.

From these experiments, we obtain the following conclusions:
— Acceleration for SVRG is effective on the datasets gene and ckn-cifar except on alpha,

where all SVRG-like methods perform already well. This may be due to strong
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Figure 2.1 – Optimization curves without perturbations when using the logistic loss and
the parameter λ = 1/10n. We plot the value of the objective function on a logarithmic
scale as a function of the effective passes over the data (see main text for details). Best seen
in color by zooming on a computer screen. Note that the method Adam is not converging.
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Figure 2.2 – Same experiment as in Figure 2.1 with λ = 1/100n.
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Figure 2.3 – Same experiment as in Figure 2.1 with squared hinge loss instead of logistic.
ACC-SA and acc-SGD-d were unstable for this setting due to the large size of the noise
region σ2/

√
µL =

√
10nσ2 and potentially large gradients of the loss function over the

optimization domain.

convexity hidden in alpha leading to a regime where acceleration does not occur—
that is, when the complexity is O (n log(1/ε)), which is independent of the condition
number.

— Acceleration is more effective when the problem is badly conditioned. When
λ = 1/100n, acceleration brings several orders of magnitude improvement in
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complexity.
— Accelerated SGD is unstable with the squared hinge loss. During the initial phase

with constant step size 1/L, the expected primal gap is in a region of radius
O
(
σ2/
√
µL
)
≈
√
nσ2, which is potentially huge, causing large gradients and

instabilities.
— Accelerated mini-batch SGD performs best among the SGD methods and is compet-

itive with SVRG in the low precision regime. The performance of Adam on these
datasets is inconsistent; it performs best among SGD methods on alpha, but is
significantly worse on ckn-cifar. Note also that AC-SA performs in general similarly
to acc-SGD-d.

2.5.3 Evaluation of Algorithms with Perturbations
We now consider the same setting as in the previous section, but we add DropOut

perturbations with rate δ in {0.01, 0.1}. As predicted by theory, all approaches with
constant step size do not converge. Therefore, we only report the results for decreasing
step sizes in Figures 2.4, 2.5, and 2.6. We evaluate the loss function every 5 data passes
and we estimate the expectation (2.33) by drawing 5 random perturbations per data point,
resulting in 5n samples. The optimal value F ∗ is estimated by letting the methods run for
1000 epochs and selecting the best point found as a proxy of F ∗.
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Figure 2.4 – Optimization curves with DropOut rate δ when using the logistic loss and
λ = 1/10n. We plot the value of the objective function on a logarithmic scale as a function
of the effective passes over the data. Best seen in color by zooming on a computer screen.

The conclusions of these experiments are the following:
— accelerated mini-batch SGD performs the best among SGD approaches in general

except on alpha where Adam performs best.
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Figure 2.5 – Same setting as in Figure 2.4 but with λ = 1/100n.
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Figure 2.6 – Same setting as in Figure 2.4 but with the squared hinge loss.
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— accelerated SVRG performs better than SVRG in general, or they achieve the same
performance. As in the deterministic case, the gains are typically more important
in ill-conditioned cases.

— accelerated SVRG performs better than SGD approaches in the low perturbation
regime δ = 0.01 and only on the alpha dataset when δ = 0.1. Otherwise, the
methods perform similarly.

— not reported on these figures, high perturbation regimes, e.g., δ = 0.3 make variance
reduction less useful since the noise due to data sampling becomes potentially of
the same order as σ̃2; Yet, benefits are still seen on the alpha dataset, whereas SGD
approaches perform slightly better than SVRG approaches on ckn-cifar and gene.

2.6 Discussion
In this chapter, we have studied simple stochastic gradient-based rules with or without

variance reduction, and presented an accelerated algorithm dedicated to finite-sums
minimization under the presence of stochastic perturbations. The approach we propose
achieves the classical optimal worst-case complexities for finite-sum optimization when
there is no perturbation [Arjevani and Shamir, 2016], and exhibits an optimal dependency
in the noise variance σ̃2 for convex and strongly convex problems.

Our work is based on stochastic variants of estimate sequences introduced by Nesterov
[1983, 2014]. The framework leads naturally to many algorithms with relatively generic
proofs of convergence, where convergence is proven at the same time as the algorithm’s
design. With iterate averaging techniques inspired by Ghadimi and Lan [2013], we show
that a large class of variance-reduction stochastic optimization methods can be made
robust to stochastic perturbations. Estimate sequences also naturally lead to several
accelerated algorithms, some of them we did not present in this chapter. For instance, it is
possible to show that replacing in (2.28) the lower bound ψ(xk) +ψ′(xk)>(x− xk) by ψ(x)
itself—in a similar way as we proceeded to obtain iteration (B) from iteration (A)—also
leads to an accelerated algorithm with similar guarantees as (C).

Possibilities offered by estimate sequences are large, but our framework also admits a
few limitations, paving the way for future work. In particular, our results are currently
limited to Euclidean metrics—meaning that our convergence rates typically depend on
quantities involving the Euclidean norm (e.g., strong convexity or L-smooth inequalities),
and one may expect extensions of our work to other metrics such as Bregman distances.
Estimate sequences admit indeed known extensions to such metrics, and can also deal
with higher-order smoothness assumptions than Lipschitz continuity of the gradient [Baes,
2009]—e.g., cubic regularization [Nesterov and Polyak, 2006]. We leave such directions for
the future.

Another limitation we encountered was the inability to propose robust accelerated
variants of SAGA, MISO, or SDCA based on our stochastic estimate sequences framework.
To address this problem, we investigate in Chapter 3 a significantly different approach
based on the Catalyst method [Lin et al., 2018], allowing us to accelerate stochastic
first-order methods in a generic fashion, at the price of a logarithmic factor in the optimal
complexity—in other words, we were able to obtain for SAGA, MISO, and SDCA a
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complexity close to (2.4) up to a logarithmic factor in the condition number LQ/µ. We
believe that estimate sequences may be useful to obtain the optimal complexity without
this logarithmic term, but the construction would be non-trivial and would rely on a
different lower bound than the one we used in Section 2.4.

Finally, we note that the optimal complexities we have obtained with diminishing step
sizes for strongly convex objectives can also be achieved by using instead a constant step
size combined with mini-batch and restart strategies. As a constant step size yields a
linear rate of convergence to a noise-dominated region of radius O (σ̃2), we can indeed use
the restart procedure described in Section 3.2 of the next chapter, which would yield an
optimal or near-optimal complexity.





Appendix

2.A Useful Mathematical Results
2.A.1 Simple Results about Convexity and Smoothness

The next three lemmas are classical upper and lower bounds for smooth or strongly
convex functions [Nesterov, 2014].

Lemma 2.4 (Quadratic upper bound for L-smooth functions). Let f : Rp → R be
L-smooth. Then, for all x, x′ in Rp,

∣∣∣f(x′)− f(x)−∇f(x)>(x′ − x)
∣∣∣ ≤ L

2 ‖x− x
′‖2

2.

Lemma 2.5 (Lower bound for strongly convex functions). Let f : Rp → R be a
µ-strongly convex function. Let z be in ∂f(x) for some x in Rp. Then, the following
inequality holds for all x′ in Rp:

f(x′) ≥ f(x) + z>(x′ − x) + µ

2‖x− x
′‖2

2.

Lemma 2.6 (Second-order growth property). Let f : Rp → R be a µ-strongly convex
function and X ⊆ Rp be a convex set. Let x∗ be the minimizer of f on X . Then, the
following condition holds for all x in X :

f(x) ≥ f(x∗) + µ

2‖x− x
∗‖2

2.

Lemma 2.7 (Useful inequality for smooth and convex functions). Consider an
L-smooth µ-strongly convex function f defined on Rp and a parameter β in [0, µ]. Then,
for all x, y in Rp,

‖∇f(x)−∇f(y)− β(x− y)‖2 ≤ 2L(f(x)− f(y)−∇f(y)>(x− y)).

Proof. Let us define the function φ(x) = f(x)− β
2 ‖x‖

2, which is (µ− β)-strongly convex.
It is then easy to show that φ is (L− β)-smooth, according to Theorem 2.1.5 in [Nesterov,
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2014]: indeed, for all x, y in Rp,

φ(x) = f(x)− β

2 ‖x‖
2 ≤ f(y) +∇f(y)>(x− y) + L

2 ‖x− y‖
2 − β

2 ‖x‖
2

= φ(y) +∇φ(y)>(x− y) + L− β
2 ‖x− y‖2 ,

and again according to Theorem 2.1.5 of [Nesterov, 2014],

‖∇φ(x)−∇φ(y)‖2 ≤ 2L(φ(x)− φ(y)−∇φ(y)>(x− y))

= 2L
(
f(x)− f(y)−∇f(y)>(x− y)− β

2 ‖x− y‖
2
)

≤ 2L
(
f(x)− f(y)−∇f(y)>(x− y)

)
.

�

2.A.2 Useful Results to Select Step Sizes
In this section, we present basic mathematical results regarding the choice of step sizes.

The proofs of the first two lemmas are trivial by induction.

Lemma 2.8 (Relation between (δk)k≥0 and (Γk = ∏k
t=1(1 − δt))k≥0). Consider the

following cases:
— δk = δ (constant). Then Γk = (1− δ)k;
— δk = 1/(k + 1). Then, Γk = δk = 1

(k+1) ;
— δk = 2/(k + 2). Then, Γk = 2

(k+1)(k+2) ;
— δk = min(1/(k + 1), δ). then,

Γk =
{

(1− δ)k if k < k0 with k0 =
⌈

1
δ
− 1

⌉
Γk0−1

k0
k+1 otherwise.

— δk = min(2/(k + 2), δ). then,

Γk =

 (1− δ)k if k < k0 with k0 =
⌈

2
δ
− 2

⌉
Γk0−1

k0(k0+1)
(k+1)(k+2) otherwise.

Lemma 2.9 (Simple relation). Consider a sequence of weights (δk)k≥0 in (0, 1). Then,
k∑
t=1

δt
Γt

+ 1 = 1
Γk

where Γt ,
t∏
i=1

(1− δi). (2.34)

Lemma 2.10 (Convergence rate of Γk). Consider the same quantities defined in the
previous lemma and consider the sequence γk = (1− δk) γk−1 + δkµ = Γkγ0 + (1− Γk)µ
with γ0 ≥ µ, and assume the relation δk = γkη. Then, for all k ≥ 0,

Γk ≤ min
(

(1− µη)k , 1
1 + γ0ηk

)
. (2.35)

Besides,
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— when γ0 = µ, then Γk = (1− µη)k.
— when µ = 0, Γk = 1

1+γ0ηk
.

Proof. First, we have for all k, γk ≥ µ such that δk ≥ ηµ, which leads then to Γk ≤
(1− ηµ)k. Besides, γk ≥ Γkγ0 and thus Γk = (1− δk) Γk−1 ≤ (1− Γkγ0η) Γk−1. Then,

1
Γk

(1− Γkγ0η) ≥ 1
Γk−1

, and

1
Γk
≥ 1

Γk−1
+ γ0η ≥ 1 + γ0ηk,

which is sufficient to obtain (2.35). Then, the fact that γ0 = µ leads to Γk = (1− µη)k is
trivial, and the fact that µ = 0 yields Γk = 1

1+γ0ηk
can be shown by induction. Indeed, the

relation is true for Γ0 and then, assuming the relation is true for k − 1, we have for k ≥ 1,

Γk = (1− δk) Γk−1 = (1− ηγk)Γk−1 = (1− ηγ0Γk)Γk−1 ≥ (1− ηγ0Γk)
1

1 + γ0η(k–1) ,

which leads to Γk = 1
1+γ0ηk

. �

Lemma 2.11 (Accelerated convergence rate of Γk). Consider the same quantities
defined in Lemma 2.9 and consider the sequence γk = (1− δk) γk−1+δkµ = Γkγ0+(1− Γk)µ
with γ0 ≥ µ, and assume the relation δk = √γkη. Then, for all k ≥ 0,

Γk ≤ min
(

(1−√µη)k , 4
(2 +√γ0ηk)2

)
.

Besides, when γ0 = µ, then Γk = (1−√µη)k.

Proof. see Lemma 2.2.4 of [Nesterov, 2014]. �

2.A.3 Averaging Strategies
Next, we show a generic convergence result and an appropriate averaging strategy

given a recursive relation between quantities acting as Lyapunov function.

Lemma 2.12 (Averaging strategy). Assume that an algorithm generates a sequence
(xk)k≥1 for minimizing a convex function F , and that there exist non-negative sequences
(Tk)k≥0, (δk)k≥1 in (0, 1), (βk)k≥1 and a scalar α > 0 such that for all k ≥ 1,

δk
α
E [F (xk)− F ∗] + Tk ≤ (1− δk)Tk−1 + βk, (2.36)

where the expectation is taken with respect to any random parameter used by the algorithm.
Then,

E [F (xk)− F ∗] + α

δk
Tk ≤

αΓk
δk

(
T0 +

k∑
t=1

βt
Γt

)
where Γk ,

k∏
t=1

(1− δt). (2.37)
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Generic averaging strategy. For any point x̂0, consider the averaging sequence (x̂k)k≥0,

x̂k = Γk
(
x̂0 +

k∑
t=1

δt
Γt
xt

)
= (1− δk) x̂k−1 + δkxk (for k ≥ 1),

then,

E [F (x̂k)− F ∗] + αTk ≤ Γk
(
F (x̂0)− F ∗ + αT0 + α

k∑
t=1

βt
Γt

)
. (2.38)

Uniform averaging strategy. Assume that δk = 1
k+1 and consider the average sequence

x̂k = 1
k

∑k
i=1 xi. Then,

E [F (x̂k)− F ∗] + αTk ≤
α

k

(
T0 +

k∑
t=1

βt
Γt

)
. (2.39)

Proof. Given that Tk ≤ (1− δk)Tk−1 + βk, we obtain (2.36) by simply unrolling the
recursion. To analyze the effect of the averaging strategies, divide now (2.36) by Γk:

δk
αΓk

E [F (xk)− F ∗] + Tk
Γk
≤ Tk−1

Γk−1
+ βk

Γk
.

Sum from t = 1 to k and notice that we have a telescopic sum:
1
α

k∑
t=1

δt
Γt

E [F (xt)− F ∗] + Tk
Γk
≤ T0 +

k∑
t=1

βt
Γt
. (2.40)

Then, add (1/α)E [F (x̂0)− F ∗] on both sides and multiply by αΓk:
k∑
t=1

δtΓk
Γt

E [F (xt)− F ∗] + ΓkE [F (x̂0)− F ∗] + αTk ≤ Γk
(
αT0 + E [F (x̂0)− F ∗] + α

k∑
t=1

βt
Γt

)
.

By exploiting the relation (2.34), we may then use Jensen’s inequality and we obtain (2.38).
Consider now the specific case δk = 1

k+1 , which yields Γk = 1
k+1 . Multiply then

Eq. (2.40) by α/k and use Jensen’s inequality; we obtain Eq. (2.39). �

2.B Relation Between Iteration (B) and MISO/SDCA
In this section, we derive explicit links between the proximal MISO algorithm [Lin

et al., 2015], a primal version of SDCA [Shalev-Shwartz, 2016], and iteration (B) when
used with the gradient estimator (2.14) without stochastic perturbations. Under the big
data condition L/µ ≤ n, consider indeed β = µ, constant step sizes ηk = η = 1

nµ
, γk = µ,

and a uniform sampling distribution Q; then, we obtain the following algorithm
x̄k ← (1− µη)x̄k−1 + µηxk−1 − η

(
∇fik(xk−1)− zikk−1 + z̄k−1

)
and xk = Proxψ/µ [x̄k]

z̄k = z̄k−1 + 1
n

(zikk − z
ik
k−1) and zikk = ∇fik(xk−1)− µxk−1,

with z̄0 = x̄0 = 0. Then, since µη = 1
n
, it is easy to show that in fact z̄k = µx̄k for all

k ≥ 0. This is then exactly the proximal MISO algorithm [see Bietti and Mairal, 2017].
For the relation between primal variants of SDCA and MISO, see page 4 and Equation (3)
of Bietti and Mairal [2017].
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2.C Recovering Classical Results for Proximal SGD
In this section, we present several corollaries of Theorem 2.1 to recover classical results

for proximal variants of the stochastic gradient descent method. Throughout the section,
we assume that the gradient estimates have variance bounded by σ2:

ω2
k = E

[
‖gk −∇f(xk−1)‖2

]
≤ σ2.

Convergence results for the deterministic case σ2 = 0 can be also recovered naturally
from the corollaries. We start by applying Theorem 2.1 with a constant step size strategy
ηk = 1/L, which shows convergence to a noise-dominated region of radius σ2/L. In all the
corollaries below, we use the notation from Theorem 2.1.

Corollary 2.15 (Proximal variants of SGD with constant step size, µ > 0).
Assume that f is µ-strongly convex, choose γ0 = µ and ηk = 1/L with Algorithm (A)
or (B). Then, for any point x̂0,

E [F (x̂k)− F ∗ + dk(x∗)− d∗k] ≤
(

1− µ

L

)k
(F (x̂0)− F ∗ + d0(x∗)− d∗0) + σ2

L
, (2.41)

when using the averaging strategy from Theorem 2.1. Note that dk(x∗)− d∗k ≥ µ
2 ‖xk − x

∗‖2

for all k ≥ 0 with equality for Algorithm (A).

Next, we show how to obtain converging algorithms by using decreasing step sizes.

Corollary 2.16 (Proximal variants of SGD with decreasing step sizes, µ > 0).
Assume that f is µ-strongly convex and that we target an accuracy ε smaller than 2σ2/L.
First, use a constant step size ηk = 1/L with γ0 = µ within Algorithm (A) or (B), using
x̂0 = x0, leading to the convergence rate (2.41), until E [F (x̂k)− F ∗ + dk(x∗)− d∗k] ≤
2σ2/L. Then, we restart the optimization procedure, using the previously obtained x̂k, xk
as new initial points, with decreasing step sizes ηk = min

(
1
L
, 2
µ(k+2)

)
, and generate new

sequences (x̂′k, x′k)k≥0. The total number of iterations to achieve E [F (x̂′k)− F ∗] ≤ ε is
upper bounded by

O
(
L

µ
log

(
F (x0)− F ∗ + d0(x∗)− d∗0

ε

))
+O

(
σ2

µε

)
. (2.42)

Note that d0(x∗)− d∗0 = µ
2 ‖x0 − x∗‖2 ≤ F (x0)− F ∗ for Algorithm (A).

Proof. Given the linear convergence rate (2.41), the number of iterations of the first the
constant step size strategy is upper bounded by the left term of (2.42). Then, after restarting
the algorithm, we may apply Theorem 2.1 with E [F (x̂0)− F ∗ + d0(x∗)− d∗0] ≤ 2σ2/L.
With γ0 = µ, we have γk = µ for all k ≥ 0, and the rate of Γk is given by Lemma 2.8,
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which yields for k ≥ k0 =
⌈

2L
µ
− 2

⌉
,

E [F (x̂′k)− F ∗] ≤ Γk
(

2σ2

L
+ σ2

k∑
t=1

δtηt
Γt

)

= Γk

2σ2

L
+ σ2

L

k0−1∑
t=1

δt
Γt

+ σ2
k∑

t=k0

2δt
Γtµ(t+ 2)


= k0(k0 + 1)

(k + 1)(k + 2)

Γk0−1
2σ2

L
+ σ2

L
Γk0−1

k0−1∑
t=1

δt
Γt

+ σ2
k∑

t=k0

2δtΓk
Γtµ(t+ 2)

= k0(k0 + 1)
(k + 1)(k + 2)

(
Γk0−1

2σ2

L
+ (1− Γk0−1)σ

2

L

)
+ σ2

k∑
t=k0

2δtΓk
Γtµ(t+ 2)

≤ k0(k0 + 1)
(k + 1)(k + 2)

2σ2

L
+ σ2 1

(k + 1)(k + 2)

 k∑
t=k0+1

4(t+ 1)(t+ 2)
µ(t+ 2)2


≤ k0

(k + 1)(k + 2)
4σ2

µ
+ 4σ2

µ(k + 2) ,

where the second inequality uses the fact that (µ/2) ‖x0 − x∗‖2 ≤ F (x0)− F ∗ ≤ 2σ2

L
, and

then we use Lemmas 2.8 and 2.9. The term on the right is of order O (σ2/µk) whereas
the term on the left becomes of the same order or smaller whenever k ≥ k0 = O (L/µ).
This leads to the desired iteration complexity. �

We may now study the case µ = 0, first with a constant step size. The next corollary
consists of simply applying the uniform averaging strategy of Lemma 2.12 to Proposition 2.1,
noting that δk = 1

k+1 for all k ≥ 0 if µ = 0 and γ0 = 1/η.

Corollary 2.17 (Proximal variants of SGD with constant step size, µ = 0).
Assume that f is convex, choose a constant step size ηk = η ≤ 1

L
with Algorithm (A) or (B)

with γ0 = 1/η.
Then,

E [F (x̂k)− F ∗] ≤
d0(x∗)− d∗0

k
+ ησ2, (2.43)

where x̂k = 1
k

∑k
i=1 xi. Note that d0(x∗)− d∗0 = 1

2η ‖x0 − x∗‖2 for Algorithm (A).

The noise dependency is now illustrated for Algorithm (A) in the next corollary,
obtained in a finite horizon setting.

Corollary 2.18 (Proximal variants of SGD with µ = 0, finite horizon). Consider
the same setting as in the previous corollary. Assume that we have a budget of K iterations
for Algorithm (A). Choose a constant step size

ηk = min
 1
L
,

√
T0

Kσ2

 with T0 = 1
2 ‖x0 − x∗‖2 .
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Then, with γ0 = 1/η and when using the averaging strategy from Corollary 2.17,

E [F (x̂K)− F ∗] ≤ LT0

K
+ 2σ

√
T0

K
. (2.44)

This corollary is obtained by optimizing the right side of (2.43) with respect to η under
the constraint η ≤ 1/L. Considering both cases η = 1/L and η =

√
T0/Kσ2, it is easy to

check that we have (2.44) in all cases. Whereas this last result is not a practical one since
the step size depends on unknown quantities, it shows that our analysis is nevertheless able
to recover the optimal noise-dependency in O

(
σ
√
T0/K

)
, [see Nemirovski et al., 2009].

2.D Proofs of the Main Results

2.D.1 Proof of Proposition 2.2

Proof. The proof borrows a large part of the analysis of Xiao and Zhang [2014] for
controlling the variance of the gradient estimate in the SVRG algorithm. First, we note
that all the gradient estimators we consider may be written in the generic form (2.14),
with β = 0 for SAGA or SVRG. Then, we will write ∇̃fik(xk−1) = ∇fik(xk−1) + ζk, where
ζk is a zero-mean variable with variance σ̃2 drawn at iteration k, and zik = uik + ζ ik for
all k, i, where ζ ik has zero-mean with variance σ̃2 and was drawn during the previous
iterations. Let us denote by ω2

k = E [‖gk − f(xk−1)‖2] and let us introduce the quantity
Ak = E

[
1

(qikn)2‖ζk‖2
]
. Then,

ω2
k = E

∥∥∥∥∥ 1
qikn

(
∇̃fik(xk−1)− βxk−1 − zikk−1

)
+ z̄k−1 + βxk−1 −∇f(xk−1)

∥∥∥∥∥
2

= E
∥∥∥∥∥ 1
qikn

(
∇fik(xk−1)− βxk−1 − zikk−1

)
+ z̄k−1 + βxk−1 −∇f(xk−1)

∥∥∥∥∥
2

+ E
[

1
(qikn)2 ‖ζk‖

2
]

≤ E
∥∥∥∥∥ 1
qikn

(
∇fik(xk−1)− βxk−1 − zikk−1

)∥∥∥∥∥
2

+ Ak

= 1
n

n∑
i=1

1
qin

E
[∥∥∥∇fi(xk−1)− βxk−1 − zik−1

∥∥∥2
]

+ Ak

= 1
n

n∑
i=1

1
qin

E
[∥∥∥∇fi(xk−1)− βxk−1 − ui∗ + ui∗ − zik−1

∥∥∥2
]

+ Ak

≤ 2
n

n∑
i=1

1
qin

E
[∥∥∥∇fi(xk−1)− βxk−1 − ui∗

∥∥∥2
]

+ 2
n

n∑
i=1

1
qin

E
[∥∥∥zik−1 − ui∗

∥∥∥2
]

+ Ak
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≤ 2
n

n∑
i=1

1
qin

E
[
‖∇fi(xk−1)−∇fi(x∗)− β(xk−1 − x∗)‖2

]
+ 2
n

n∑
i=1

1
qin

E
[∥∥∥uik−1 − ui∗

∥∥∥2
]

+ 3Ak

≤ 4
n

n∑
i=1

Li
qin

E
[
fi(xk−1)− fi(x∗)−∇fi(x∗)>(xk−1 − x∗)

]
+ 2
n

n∑
i=1

1
qin

E
[∥∥∥uik−1 − ui∗

∥∥∥2
]

+ 3Ak

≤ 4LQE
[
f(xk−1)− f(x∗)−∇f(x∗)>(xk−1 − x∗)

]
+ 2
n

n∑
i=1

1
qin

E
[
‖uik−1 − ui∗‖2

]
+ 3Ak,

(2.45)

where the first inequality uses the relation E
[
‖X − E[X]‖2

]
≤ E

[
‖X‖2

]
for all random

variable X, taking here expectation with respect to the index ik ∼ Q and conditioning
on Fk−1; the second inequality uses the relation ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2; the last
inequality uses Lemma 2.7.

We have now two possibilities to control the quantity Ak related to ζk. First, we may
simply upper bound it as follows

Ak = E
[

1
(qikn)2 ‖ζk‖

2
]
≤ ρQσ̃

2.

Then, since x∗ minimizes F , we have 0 ∈ ∇f(x∗)+∂ψ(x∗) and thus −∇f(x∗) is a subgradi-
ent in ∂ψ(x∗). By using as well the convexity inequality ψ(x) ≥ ψ(x∗)−∇f(x∗)>(x− x∗),
we have

f(xk−1)− f(x∗)−∇f(x∗)>(xk−1 − x∗) ≤ F (xk−1)− F ∗, (2.46)

leading finally to (2.20).
The second possibility is to relate Ak to σ̃2

∗, under the assumption that each fi may be
written as fi(x) = Eξ

[
f̃i(x, ξ)

]
, i ∈ [1, . . . , n] with f̃i(., ξ) Li-smooth with Li ≥ µ for all ξ.

Then,

E
[

1
(qikn)2 ‖ζk‖

2
]

= E
[

1
(qikn)2

∥∥∥∇̃fik(xk−1)−∇fik(xk−1)
∥∥∥2
]

= E

 1
(qikn)2

∥∥∥∇̃fik(xk−1)− ∇̃fik(x∗) + ∇̃fik(x∗)

−∇fik(x∗) +∇fik(x∗)−∇fik(xk−1)
∥∥∥


≤ E
[

1
(qikn)2

[∥∥∥∇̃fik(xk−1)− ∇̃fik(x∗) + ∇̃fik(x∗)−∇fik(x∗)
∥∥∥2
]]

≤ 2E
[

1
(qikn)2

[∥∥∥∇̃fik(xk−1)− ∇̃fik(x∗)
∥∥∥2

+
∥∥∥∇̃fik(x∗)−∇fik(x∗)∥∥∥2

]]
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≤ 4E
[

Lik
(qikn)2

(
fik(xk−1)− f ∗ik − 〈∇fik(x

∗), xk−1 − x∗〉
)]

+ 2E
[

1
(qikn)2 σ̃

2
ik,∗

]

≤ 4LQE
[

1
qikn

(
fik(xk−1)− f ∗ik − 〈∇fik(x

∗), xk−1 − x∗〉
)]

+ 2ρQσ̃2
∗

= 4LQ (f(xk−1)− f ∗ − 〈∇f(x∗), xk−1 − x∗〉) + 2ρQσ̃2
∗, (2.47)

where we use the relation E [‖X − E[X] ‖2] ≤ E [‖X‖2] for the first inequality, the well-
known inequality for a convex norm ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2 for the second inequality
and the definition σ̃∗ = 1

n

∑n
i=1 σ̃

2
i,∗.

Then, we may combine (2.47) with (2.45) and use (2.46) to obtain (2.21).
�

2.D.2 Proof of Proposition 2.3
Proof. To make the notation more compact, we call

Fk = E [F (xk)− F ∗] , Dk = E [dk(x∗)− d∗k] and Ck = E
[

1
n

n∑
i=1

1
qin
‖uik − ui∗‖2

]
.

Then, according to Proposition 2.2, we have

ω2
k ≤ 4LQFk−1 + 2Ck−1 + 3ρQσ̃2,

and according to Proposition 2.1,

δkFk +Dk ≤ (1− δk)Dk−1 + 4LQηkδkFk−1 + 2ηkδkCk−1 + 3ρQηkδkσ̃2. (2.48)

Then, we note that both for the SVRG and SAGA/MISO/SDCA strategies, we have (with
β = 0 for SVRG),

E
[
‖uik − ui∗‖2

]
=
(

1− 1
n

)
E
[
‖uik−1 − ui∗‖2

]
+ 1
n
E‖∇fi(xk)−∇fi(x∗) + β(xk − x∗)‖2.

By taking a weighted average, this yields

Ck ≤
(

1− 1
n

)
Ck−1 + 1

n2

n∑
i=1

1
qin

E
[
‖∇fi(xk)−∇fi(x∗)− β(xk − x∗)‖2

]
≤
(

1− 1
n

)
Ck−1 + 1

n2

n∑
i=1

2Li
qin

E
[
fi(xk)− fi(x∗)−∇fi(x∗)>(xk − x∗)

]
≤
(

1− 1
n

)
Ck−1 + 2LQFk

n
,

where the second inequality comes from Lemma 2.7 and the last one uses similar arguments
as in the proof of Proposition 2.2. Then, we add a quantity βkCk on both sides of the
relation (2.48) with some βk > 0 that we will specify later:(

δk − βk
2LQ
n

)
Fk +Dk + βkCk

≤ (1− δk)Dk−1 +
(
βk

(
1− 1

n

)
+ 2ηkδk

)
Ck−1 + 4LQηkδkFk−1 + 3ρQηkδkσ̃2,
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and then choose βk/n = (5/2)ηkδk, which yields
δk (1− 5LQηk)Fk +Dk + βkCk

≤ (1− δk)Dk−1 + βk

(
1− 1

5n

)
Ck−1 + 4LQηkδkFk−1 + 3ρQηkδkσ̃2.

Remember that τk = min
(
δk,

1
5n

)
, notice that the sequences (βk)k≥0, (ηk)k≥0 and (δk)k≥0

are non-increasing and note that 4 ≤ 5
(
1− 1

5n

)
for all n ≥ 1. Then,

δk (1− 10LQηk)Fk + 5LQηkδk +Dk + βkCk︸ ︷︷ ︸
Tk

≤ (1− τk) (Dk−1 + βk−1Ck−1 + 5LQηk−1δk−1Fk−1) + 3ρQηkδkσ̃2,

which immediately yields (2.22) with the appropriate definition of Tk, and by noting that
(1− 10LQηk) ≥ 1

6 . �

2.D.3 Proof of Theorem 2.2
Proof. The first part of the theorem is a direct application of Lemma 2.12 to Proposition 2.3,
by noting that (2.36) holds—when replacing the notation δt by τt in (2.36)—since for a fixed
number of iterations K, we have the relation τkδK

6τK E [F (xk)− F ∗] + Tk ≤ (1− τk)Tk−1 +
3ρQηkδkσ̃2 for all k ≤ K. Indeed, δk = τkδk

τk
≥ τkδK

τK
since the ratio δt/τt is non-increasing.

Then, we may now prove (2.24):

T0 = 5LQη0δ0 (F (x0)− F ∗) + d0(x∗)− d∗0 + 5η0δ0

2
1
n

n∑
i=1

1
qin

∥∥∥ui0 − ui∗∥∥∥2

≤ 5LQη0δ0 (F (x0)− F ∗) + d0(x∗)− d∗0

+ 5η0δ0

2
1
n

n∑
i=1

2Li
qin

(
fi(x0)− fi(x∗)−∇fi(x∗)>(x0 − x∗)

)
≤ 5LQη0δ0 (F (x0)− F ∗) + d0(x∗)− d∗0 + 5η0δ0LQ(f(x0)− f(x∗)−∇f(x∗)>(x0 − x∗))
≤ 10LQη0δ0 (F (x0)− F ∗) + d0(x∗)− d∗0,

where the first inequality uses Lemma 2.7, and the second one uses the definition of LQ,
whereas the last one uses (2.46). �

2.D.4 Proof of Corollary 2.3
Proof. First, notice that δk = ηkγk = µ

12LQ and that α = 6τk
δk

. Then, we apply Theorem 2.2
and obtain

E [F (x̂k)− F ∗ + αTk] ≤ Θk

(
F (x̂0)− F ∗ + αT0 + 18ρQτkσ̃2

δk

k∑
t=1

ηtδt
Θt

)

= Θk

(
F (x̂0)− F ∗ + αT0 + 3ρQσ̃2

2LQ

k∑
t=1

τt
Θt

)

≤ Θk (F (x̂0)− F ∗ + αT0) + 3ρQσ̃2

2LQ
.
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�

2.D.5 Proof of Corollary 2.5
Proof. Since the convergence rate (2.26) applies for the first stage with a constant step
size, the number of iterations to ensure the condition E [F (x̂k)− F ∗ + 6Tk] ≤ 24ηρQσ̃2 is
upper bounded by K with

K = O
((

n+ LQ
µ

)
log

(
F (x0)− F ∗ + d0(x∗)− d∗0

ε

))
,

when using the upper-bound (2.24) on T0. Then, we restart the optimization procedure,
using x′0 = xK and x̂′0 = x̂′K , assuming from now on that E [F (x̂′0)− F ∗ + 6T ′0] ≤ 24ηρQσ̃2,
with decreasing step sizes ηk = min

(
2

µ(k+2) , η
)
. Then, since δk = µηk ≤ 1

5n , we have that
τk = δk for all k, and Theorem 2.2 gives us—note that here Γk = Θk—

E [F (x̂′k)− F ∗] ≤ Γk
(
F (x̂′0)− F ∗ + 6T ′0 + 18ρQσ̃2

k∑
t=1

ηtδt
Γt

)
with Γk =

k∏
t=1

(1− δt).

Then, after taking the expectation with respect to the output of the first stage,

E [F (x̂′k)− F ∗] ≤ Γk
(

24ρQησ̃2 + 18ρQσ̃2
k∑
t=1

ηtδt
Γt

)
.

Denote now by k0 the largest index such that 2
µ(k0+2) ≥ η and thus k0 = d2/(µη) − 2e.

Then, according to Lemma 2.8, for k ≥ k0,

E [F (x̂k)− F ∗] ≤ Γk

24ρQησ̃2 + 18ρQησ̃2
k0−1∑
t=1

δt
Γt

+ 18ρQσ̃2
k∑

t=k0

2δt
µΓt(t+ 2)


≤ k0(k0 + 1)

(k + 1)(k + 2)

Γk0−124ρQησ̃2 + 18ηρQσ̃2Γk0−1

k0−1∑
t=1

δt
Γt


+ 36ρQσ̃2

k∑
t=k0

δtΓk
µΓt(t+ 2)

≤ k0(k0 + 1)
(k + 1)(k + 2)24ηρQσ̃2 + 36ρQσ̃2

k∑
t=k0

(t+ 1)(t+ 2)
µ(k + 1)(k + 2)(t+ 2)2

≤ k0η

k + 224ρQσ̃2 + 36ρQσ̃2

µ(k + 2) = O
(
ρQσ̃

2

µk

)
,

which gives the desired complexity. �

2.D.6 Proof of Corollary 2.6
Proof. Let us call x′0 the point obtained by running one iteration of (A) with step size
η ≤ 1

12LQ and gradient estimator (1/n)∑n
i=1 ∇̃fi(x0), whose variance is σ̃2/n. Then, since
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δ1 = Γ1 = 1/2, according to Theorem 2.1, we have

E
[
F (x′0)− F ∗ + 1

2η‖x
′
0 − x∗‖2

]
≤ 1

2η ‖x0 − x∗‖2 + ησ̃2

n
. (2.49)

Then, we consider the main run of the algorithm, and apply Theorem 2.2, replacing x0 by
x′0. With the chosen setup, we have δk = 1

k+1 and since K ≥ 5n, we have δK = τK , such
that (2.23) becomes

E [F (x̂K)− F ∗] ≤ ΘK

(
F (x′0)− F ∗ + 6T0 + 18ρQησ̃2

k∑
t=1

δt
Θt

)
,

and from (2.24), we have

T0 ≤ 10LQη(F (x′0)− F ∗) + 1
2η‖x

′
0 − x∗‖2 ≤ 5

6(F (x′0)− F ∗) + 1
2η‖x

′
0 − x∗‖2,

which yields, combined with (2.49),

E [F (x′0)− F ∗ + 6T0] ≤ 6E
[
F (x′0)− F ∗ + 1

2η ‖x
′
0 − x∗‖

2
]
≤ 3
η
‖x0 − x∗‖2 + 6ησ̃2

n
.

Note that Lemma 2.8 gives us that Θk = (1− 1/5n)5n−1 5n
k+1 ≤

3n
k+1 for k ≥ 5n and since

1 +∑K
t=1

τt
Θt = 1

ΘK according to Lemma 2.9,

E [F (x̂K)− F ∗] ≤ ΘK

(
3
η
‖x0 − x∗‖2 + 6ησ̃2

n
+ 18ρQησ̃2

K∑
t=1

δt
Θt

)

≤ 9n
η(K + 1) ‖x0 − x∗‖2 + 6ησ̃2ρQΘK

(
1
n

+ 3
K∑
t=1

τt
Θt

+ 3
5n−1∑
t=1

δt
Θt

)

≤ 9n
η(K + 1) ‖x0 − x∗‖2 + 6ησ̃2ρQ

(
ΘK

n
+ 3(1−ΘK) + 15n

K + 1

5n−1∑
t=1

δt

)

≤ 9n
η(K + 1) ‖x0 − x∗‖2 + 18ησ̃2ρQ

(
1 + 5n

K + 1 log(5n)
)

≤ 9n
η(K + 1) ‖x0 − x∗‖2 + 36ησ̃2ρQ.

It remains to optimize it over η to get the left side of (2.27). �

2.D.7 Proof of Lemma 2.1
Proof. Let us assume that the relation yk−1 = (1− θk−1)xk−1 + θk−1vk−1 holds and let us
show that it also holds for yk. Since the estimate sequences dk are quadratic functions, we
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have

vk = (1− δk)
γk−1

γk
vk−1 + µδk

γk
yk−1 −

δk
γk

(gk + ψ′(xk))

= (1− δk)
γk−1

γk
vk−1 + µδk

γk
yk−1 −

δk
γkηk

(yk−1 − xk)

= (1− δk)
γk−1

γkθk−1
(yk−1 − (1− θk−1)xk−1) + µδk

γk
yk−1 −

δk
γkηk

(yk−1 − xk)

= (1− δk)
γk−1

γkθk−1
(yk−1 − (1− θk−1)xk−1) + µδk

γk
yk−1 −

1
δk

(yk−1 − xk)

=
(

(1− δk) γk−1

γkθk−1
+ µδk

γk
− 1
δk

)
yk−1 −

(1− δk) γk−1(1− θk−1)
γkθk−1

xk−1 + 1
δk
xk

=
(

1 + (1− δk) γk−1(1− θk−1)
γkθk−1

− 1
δk

)
yk−1 −

(1− δk) γk−1(1− θk−1)
γkθk−1

xk−1 + 1
δk
xk.

Then note that θk−1 = δkγk−1
γk−1+δkµ

and thus, γk−1(1−θk−1)
γkθk−1

= 1
δk
, and

vk = xk−1 + 1
δk

(xk − xk−1).

Then, we note that xk − xk−1 = δk
1−δk

(vk − xk) and we are left with

yk = xk + βk(xk − xk−1) = βkδk
1− δk

vk +
(

1− βkδk
1− δk

)
xk.

Then, it is easy to show that

βk = (1− δk) δk+1γk
δk(γk+1 + δk+1γk)

= (1− δk) δk+1γk
δk(γk + δk+1µ) = (1− δk) θk

δk
,

which allows us to conclude that yk = (1− θk)xk + θkvk since the relation holds trivially
for k = 0. �

2.D.8 Proof of Lemma 2.2
Proof.

E [F (xk)] = E [f(xk) + ψ(xk)]

≤ E
[
f(yk−1) +∇f(yk−1)>(xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

= E
[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ E
[
(∇f(yk−1)− gk)>(xk − yk−1)

]
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= E
[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ E
[
(∇f(yk−1)− gk)>xk

]
= E

[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ E
[
(∇f(yk−1)− gk)>(xk − wk)

]
≤ E

[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ E [‖∇f(yk−1)− gk‖‖xk − wk‖]

≤ E
[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ E
[
ηk‖∇f(yk−1)− gk‖2

]
≤ E

[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ ηkω
2
k,

where wk = Proxηkψ[yk−1−ηk∇f(yk−1)]. The first inequality is due to the L-smoothness of f
(Lemma 2.4); then, the next three relations exploit the fact that E

[
(∇f(yk−1)− gk)>z

]
= 0

for all z that is deterministic with respect to the algebra Fk−1; the third inequality uses
the non-expansiveness of the proximal operator. Using the definition (2.28) for lk, we
proceed with

E [F (xk)] ≤ E
[
f(yk−1) + g>k (xk − yk−1) + L

2 ‖xk − yk−1‖2 + ψ(xk)
]

+ ηkω
2
k,

= E
[
lk(yk−1) + g̃>k (xk − yk−1) + L

2 ‖xk − yk−1‖2
]

+ ηkω
2
k,

≤ E [lk(yk−1)] +
(
Lη2

k

2 − ηk
)
E
[
‖g̃k‖2

]
+ ηkω

2
k,

where we use the fact that xk = yk−1 − ηkg̃k and g̃k = gk + ψ′(xk). �

2.D.9 Proof of Corollary 2.9

Proof. The proof is similar to that of Corollary 2.16 for unaccelerated SGD. The first
stage with constant step size requires O

(√
L
µ

log
(
F (x0)−F ∗

ε

))
iterations. Then, we restart

the optimization procedure, and assume that E
[
F (x0)− F ∗ + µ

2 ‖x
∗ − x0‖2

]
≤ 2σ2
√
µL

. With
the choice of parameters, we have γk = µ and δk = √γkηk = min

(√
µ
L
, 2
k+2

)
. We may

then apply Theorem 2.7 where the value of Γk is given by Lemma 2.8. This yields for
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k ≥ k0 =
⌈
2
√

L
µ
− 2

⌉
,

E [F (xk)− F ∗] ≤ Γk
(
E
[
F (x0)− F ∗ + µ

2 ‖x0 − x∗‖2
]

+ σ2
k∑
t=1

ηt
Γt

)

≤ Γk

 2σ2
√
µL

+ σ2

L

k0−1∑
t=1

1
Γt

+ σ2
k∑

t=k0

4
Γtµ(t+ 2)2


= k0(k0 + 1)

(k + 1)(k + 2)

Γk0−1
2σ2
√
µL

+ σ2

L
Γk0−1

k0−1∑
t=1

1
Γt

+ σ2
k∑

t=k0

4Γk
Γtµ(t+ 2)2

= k0(k0 + 1)
(k + 1)(k + 2)

(
Γk0−1

2σ2
√
µL

+ (1− Γk0−1) σ2
√
µL

)
+ σ2

k∑
t=k0

4Γk
Γtµ(t+ 2)2

≤ k0(k0 + 1)
(k + 1)(k + 2)

2σ2
√
µL

+ σ2 1
(k + 1)(k + 2)

 k∑
t=k0+1

4(t+ 1)(t+ 2)
µ(t+ 2)2


≤ k0

(k + 1)(k + 2)
4σ2

µ
+ 4σ2

µ(k + 2) ≤
8σ2

µ(k + 2) ,

where we use Lemmas 2.8 and 2.9. This leads to the desired iteration complexity. �

2.D.10 Proof of Corollary 2.10
Proof. Let us call x′0 the point obtained by running on step of iteration (A), which according
to Theorem 2.1 satisfies, with γ0 = 1/η,

E
[
F (x′0)− F ∗ + 1

2η‖x
′
0 − x∗‖2

]
≤ 1

2η ‖x0 − x∗‖2 + ησ2.

Then, we note that according to Lemma 2.11, we have

Γk ≤
4(

2 + k
√
γ0η

)2 ≤
4

γ0η (1 + k)2 ,

and we apply Theorem 2.7 to obtain the relation

E [F (xK)− F ∗] ≤ ΓKE
[
F (x′0)− F ∗ + 1

2η‖x
′
0 − x∗‖2

]
+ σ2ηΓK

K∑
t=1

1
Γt

≤ ΓK
(
‖x0 − x∗‖2

2η + ησ2
)

+ σ2ηK

≤ 2
(1 +K)2η

‖x0 − x∗‖2 + σ2η(K + 1).

Optimizing with respect to η under the constraint η ≤ 1/L gives (2.30). �
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2.D.11 Proof of Proposition 2.4
Proof.

ω2
k = E

∥∥∥∥∥ 1
qikn

(
∇̃fik(yk−1)− ∇̃fik(x̃k−1)

)
+ ∇̃f(x̃k−1)−∇f(yk−1)

∥∥∥∥∥
2

= E
∥∥∥∥∥ 1
qikn

(∇fik(yk−1) + ζk − ζ ′k −∇fik(x̃k−1)) +∇f(x̃k−1) + ζ̄k−1 −∇f(yk−1)
∥∥∥∥∥

2

,

≤ E
∥∥∥∥∥ 1
qikn

(∇fik(yk−1)−∇fik(x̃k−1)) +∇f(x̃k−1) + ζ̄k−1 −∇f(yk−1)
∥∥∥∥∥

2

+ 2ρQσ̃2,

where ζk and ζ ′k are perturbations drawn at iteration k, and ζ̄k−1 was drawn last time
x̃k−1 was updated. Then, by noticing that for any deterministic quantity Y and random
variable X, we have E [‖X − E[X] − Y ‖2] ≤ E [‖X‖2] + ‖Y ‖2, taking expectation with
respect to the index ik ∼ Q and conditioning on Fk−1, we have

ω2
k ≤ E

∥∥∥∥∥ 1
qikn

(∇fik(yk−1)−∇fik(x̃k−1))
∥∥∥∥∥

2

+ E
[∥∥∥ζ̄k−1

∥∥∥2
]

+ 2ρQσ̃2

≤ 1
n

n∑
i=1

1
qin

E ‖∇fi(yk−1)−∇fi(x̃k−1)‖2 + 3ρQσ̃2

≤ 1
n

n∑
i=1

2Li
qin

E
[
fi(x̃k−1)− fi(yk−1)−∇fi(yk−1)>(x̃k−1 − yk−1)

]
+ 3ρQσ̃2

≤ 1
n

n∑
i=1

2LQE
[
fi(x̃k−1)− fi(yk−1)−∇fi(yk−1)>(x̃k−1 − yk−1)

]
+ 3ρQσ̃2

= 2LQE
[
f(x̃k−1)− f(yk−1)−∇f(yk−1)>(x̃k−1 − yk−1)

]
+ 3ρQσ̃2

= 2LQE
[
f(x̃k−1)− f(yk−1)− g>k (x̃k−1 − yk−1)

]
+ 3ρQσ̃2, (2.50)

where the second inequality uses the upper-bound E
[
‖ζ̄‖2

]
= σ2

n
≤ ρQσ

2, and the third
one uses Theorem 2.1.5 in [Nesterov, 2014]. �

2.D.12 Proof of Lemma 2.3
Proof. We can show that Lemma 2.2 still holds and thus,

E [F (xk)] ≤ E [lk(yk−1)] +
(
Lη2

k

2 − ηk
)
E
[
‖g̃k‖2

]
+ ηkω

2
k.

≤ E
[
lk(yk−1) + akf(x̃k−1)− akf(yk−1) + akg

>
k (yk−1 − x̃k−1)

]
+ E

[(
Lη2

k

2 − ηk
)
‖g̃k‖2

]
+ 3ρQηkσ̃2,
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Note also that

lk(yk−1) + f(x̃k−1)− f(yk−1) = ψ(xk) + ψ′(xk)>(yk−1 − xk) + f(x̃k−1)
≤ ψ(x̃k−1)− ψ′(xk)>(x̃k−1 − xk) + ψ′(xk)>(yk−1 − xk) + f(x̃k−1)
= F (x̃k−1) + ψ′(xk)>(yk−1 − x̃k−1).

Therefore, by noting that lk(yk−1)+akf(x̃k−1)−akf(yk−1) ≤ (1−ak)lk(yk−1)+akF (x̃k−1)+
akψ

′(xk)>(yk−1 − x̃k−1), we obtain the desired result. �

2.D.13 Proof of Corollary 2.13
Proof. The proof is similar to that of Corollary 2.9 for accelerated SGD. The first stage with
constant step size η requires O

((
n+

√
nLQ
µ

)
log

(
F (x0)−F ∗

ε

))
iterations. Then, we restart

the optimization procedure, and assume that E [F (x0)− F ∗] ≤ B with B = 3ρQσ̃2
√
η/µn.

With the choice of parameters, we have γk = µ and δk =
√

5µηk
3n = min

(√
5µη
3n ,

2
k+2

)
.

We may then apply Theorem 2.11 where the value of Γk is given by Lemma 2.8. This
yields for k ≥ k0 =

⌈√
12n
5µη − 2

⌉
,

E [F (xk)− F ∗] ≤ Γk
(
E
[
F (x0)− F ∗ + µ

2 ‖x0 − x∗‖2
]

+ 3ρQσ̃2

n

k∑
t=1

ηt
Γt

)

≤ Γk

2B + 3ρQσ̃2η

n

k0−1∑
t=1

1
Γt

+ 3ρQσ̃2

n

k∑
t=k0

12n
5Γtµ(t+ 2)2


= k0(k0 + 1)

(k + 1)(k + 2)

Γk0−12B + 3ρQσ̃2η

n
Γk0−1

k0−1∑
t=1

1
Γt

+ 36ρQσ̃2

5µ

k∑
t=k0

Γk
Γt(t+ 2)2

= k0(k0 + 1)
(k + 1)(k + 2)

(
Γk0−12B + (1− Γk0−1)3ρQσ̃2η

nδk0

)
+ 36ρQσ̃2

5µ

k∑
t=k0

Γk
Γt(t+ 2)2

≤ 2k0(k0 + 1)B
(k + 1)(k + 2) + 8ρQσ̃2

µ(k + 1)(k + 2)

 k∑
t=k0+1

(t+ 1)(t+ 2)
(t+ 2)2


≤ 2k0B

k + 2 + 8ρQσ̃2

µ(k + 2) ,

where we use Lemmas 2.8 and 2.9. Then, note that k0B ≤ 6ρQσ̃2/µ and we obtain the
right iteration complexity. �

2.D.14 Proof of Corollary 2.14
Proof. Let us call x′0 the point obtained by running one iteration of (A) with step size
η ≤ 1

3LQ and gradient estimator (1/n)∑n
i=1 ∇̃fi(x0), whose variance is σ̃2/n. Following the

proof of Corollary 2.6, the relation (2.49) holds. Then, we consider the main run of the
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algorithm, and apply Theorem 2.11, replacing x0 by x′0, which yields, combined with (2.49)

E [F (xk)− F ∗] ≤ Γk
(
F (x′0)− F ∗ + 1

2η‖x
′
0 − x∗‖2 + 3ρQσ̃2

n

k∑
t=1

ηt
Γt

)

≤ Γk
(

1
2η‖x

′
0 − x∗‖2 + η

σ̃2

n
+ 3ρQσ̃2

n

k∑
t=1

ηt
Γt

)
.

Then, we note that δk = min
(√

5Γk
3n ,

1
3n

)
such that Γk =

(
1− 1

3n

)k
for k ≤ k0, where k0 is

the index such that
(
1− 1

3n

)k0+1
≤ 1

15n <
(
1− 1

3n

)k0 , which gives us (3n− 1) log(15n) ≤
k0 ≤ 3n(log(15n)). For k > k0, we are in a constant step size regime, and we may then
use Lemma 2.11 to obtain

Γk = Γk0

4(
2 + (k − k0)

√
5γk0η

3n

)2 ≤ Γk0

4
(k − k0)2 5Γk0

3n

≤ 3n
(k − k0)2 .

Then, noticing that K ≥ 2k0 + 1, we have K − k0 ≥ (K + 1)/2, and we conclude that

E [F (xK)− F ∗] ≤ 3n ‖x′0 − x∗‖
2

2η(K − k0)2 + 3ηρQσ̃2(K + 1)
n

≤ 6n‖x′0 − x∗‖2

η(K + 1)2 + 3ηρQσ̃2(K + 1)
n

.

Then, it remains to optimize with respect to η, under the constraint η ≤ 1/(3LQ), which
provides (2.32). �



Chapter 3

A Generic Acceleration for
Stochastic Optimization

The convergence rate of a method is the central property of interest in many applications.
Consequently, arises a natural need for acceleration of optimization methods. In this
chapter, we consider acceleration in a generic fashion, meaning that one acceleration
framework is simultaneously applicable to many methods with various characteristics. In
contrast to direct acceleration approaches, which change existing methods from inside or
just recreate them from scratch, the task of generic acceleration is to use an optimization
method as a building block inside a meta-procedure that does not change the method from
inside. We refer to such building blocks as base methods. The theoretical convergence
bounds of such meta-procedures do not depend on the inner structure of base methods.
Yet, acceleration meta-procedures may require these base methods to possess specific
convergence properties in order to be able to accelerate them. For example, the Catalyst
approach [Lin et al., 2015], developed for optimization of deterministic L-smooth, convex
(or strongly convex) composite objectives, requires sub-optimal linear convergence of base
methods in order to accelerate them. At the output, it produces an accelerated meta-
algorithm with a convergence rate, which is essentially optimal up to factors which are
logarithmic in the condition number. For the sake of brevity, we refer to such convergence
as near-optimal in what follows.

In this chapter, we introduce various mechanisms of such generic acceleration that
operate on first-order algorithms and generalize them to stochastic optimization problems.
Specifically, we extend the Catalyst approach of deterministic optimization to the stochastic
setting with L-smooth, convex (or strongly convex) composite objectives. The principal task
here is to derive stochastic meta-algorithms with the optimal (up to a factor logarithmic in
the condition number) convergence, meaning that we preserve the deterministic acceleration
of the bias part (performed by the original Catalyst approach) and simultaneously achieve
robustness to noise which comes from inexact oracle. As the base methods are essentially
stochastic in our setting, the requirement of linear convergence imposed by Catalyst

75
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has to be refined. In particular, we preserve the assumption of linear bias convergence
of a base method, and additionally assume that its variance does not diverge. Under
this rather mild requirement, we show that our multi-stage procedure results in meta-
algorithms of near-optimal convergence rates. As the Catalyst approach is also applicable
to incremental variance-reduced algorithms from Chapter 2 when σ = 0, we address their
generic acceleration for σ > 0 as well.

This chapter is based on the following publication:

• A. Kulunchakov and J. Mairal. A generic acceleration framework for stochastic
composite optimization. In Advances in Neural Information Processing Systems
(NeurIPS), 2019

3.1 Introduction
In this chapter, we consider stochastic composite optimization problems of the form

min
x∈Rp

{
F (x) , f(x) + ψ(x)

}
with f(x) = Eρ[f̃(x, ρ)], (3.1)

where f is convex and L-smooth, and we call µ its strong convexity modulus with respect to
the Euclidean norm (if such µ is positive). The function ψ is convex lower semi-continuous
and is not assumed to be necessarily differentiable, with possible practical examples of
this penalty function given in Section 1.2.2. In addition, we separately consider the
optimization setting of Chapter 2, being

min
x∈Rp

{
F (x) , f(x) + ψ(x) , 1

n

n∑
i=1

fi(x) + ψ(x)
}
, (3.2)

where the terms fi are L-smooth and convex. Moreover, we assume (fi)ni=1 to be given in
the form of expectation fi = Eρi

[
f̃i(x, ρi)

]
, so that one has access only to inexact gradient

estimations for each fi. Principally, in this chapter, we focus on solving optimization
problems of the form (3.1). The statement (3.2) will be analyzed only in Section 3.3.2
where we consider acceleration of stochastic incremental approaches from Chapter 2,
such as stochastic SVRG/SAGA/SDCA/Finito/MISO. The merits of consideration of
problems (3.2) were given in Section 2.1, so that we focus further on the overview of
methods solving (3.2).

We have mentioned earlier that the deterministic nature of F (x) could drastically
change performance guarantees of methods applied to minimize it. Yet, as noted in
[Bottou and Bousquet, 2008], one is typically not interested in such minimization with
high precision, but instead, one should focus on the expected risk (3.1) involving the
true (unknown) data distribution. When one can draw an infinite number of samples
from this distribution, this true risk may be minimized by using appropriate stochastic
optimization techniques. Yet, standard non-accelerated methods of SA type admit optimal
“slow” rates that are typically O

(
1/
√
N
)
for convex functions and O (1/N) for strongly

convex ones without a simultaneous establishment of fast linear convergence of the initial
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error. At the same time, as mentioned in Section 1.5, accelerated deterministic methods
do not straightforwardly apply to the minimization of the true risk. That is why better
understanding the gap between deterministic and stochastic optimization in terms of
acceleration is one goal of this chapter.

Specifically, we are interested in Nesterov’s acceleration of gradient-based approaches [Nes-
terov, 1983, 2014] Whereas no clear geometrical intuition seems to appear in the literature
to explain why such acceleration occurs, there are now well established proof techniques to
show accelerated convergence [Tseng, 2008, Beck and Teboulle, 2009, Nesterov, 2014] and
extensions to a large class of other gradient-based algorithms [Nesterov, 2012, Chambolle
and Pock, 2015, Shalev-Shwartz and Zhang, 2016, Allen-Zhu, 2017, Lin et al., 2018]. Yet,
the effect of Nesterov’s acceleration to stochastic objectives remains poorly understood
since existing unaccelerated algorithms already achieve the optimal asymptotic rate. Nev-
ertheless, several approaches such as [Hu et al., 2009, Xiao, 2010, Devolder et al., 2011,
Ghadimi and Lan, 2012, 2013, Cohen et al., 2018, Aybat et al., 2019] have managed to show
that acceleration may be useful in order to reach faster a region dominated by the noise of
stochastic gradients. Then, “good” methods are expected to asymptotically converge with
a rate exhibiting an optimal dependency in the noise variance, but with no dependency
on the initialization. Therefore, there is a demand for accelerated stochastic methods
that perform in both these regimes optimally. In this chapter, we address this task by
developing a multi-stage procedure that takes non-accelerated methods—referred to as
base methods—as input and outputs meta-algorithms with a near-optimal complexity.

Throughout the chapter, we denote each base method asM and assume it to satisfy the
following property. Given an auxiliary strongly convex objective function h, a base method
M is able to produce iterates (zt)t≥0 with expected linear convergence to a noise-dominated
region—that is, such that

E [h(zt)− h∗] ≤ C (1− τ)t (h(z0)− h∗) +Bσ2, (3.3)

where C, τ, B are positive, h∗ is the minimum function value, and σ2 is an upper bound
on the variance of stochastic gradients accessed byM, which we assume to be uniformly
bounded, see Definition 1.10. Whereas this assumption has limitations, it remains the most
standard one for stochastic optimization (see [Bottou et al., 2018, Nguyen et al., 2018] for
more realistic settings in the smooth case) with the class of methods satisfying (3.3) being
relatively large. For instance, when h is L-smooth, the stochastic gradient descent method
(SGD) with constant step size 1/L and iterate averaging satisfies (3.3) with τ = µ/L,
B = 1/L, and C = 1, see Corollary 2.15.

In order to build an acceleration framework for stochastic methods, we extend the
Catalyst approach [Lin et al., 2018] originally developed for optimization problems in the
deterministic setting. Let us briefly give a flavor of its scheme. In a nutshell, Catalyst is
based on the inexact accelerated proximal point algorithm [Güler, 1992], which consists in
solving approximately a sequence of sub-problems and updating two sequences (xk)k≥0
and (yk)k≥0 by

xk ≈ argmin
x∈Rp

{
hk(x) , F (x) + κ

2 ‖x− yk−1‖2
}

and yk = xk + βk(xk − xk−1), (3.4)
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where βk in (0, 1) is obtained from Nesterov’s acceleration principles [Nesterov, 2014], and
κ > 0 is a well chosen regularization parameter. The base methodM to be accelerated is
used to obtain an approximate minimizer of hk by using an appropriate computational
budget. WhenM converges linearly (like in (3.3) when σ = 0), it may be shown that in
the deterministic setting σ = 0 the resulting algorithm (3.4) enjoys a better worst-case
complexity than ifM was used directly on f . Since asymptotic linear convergence is out
of reach when f is stochastic, a classical strategy consists in replacing F (x) in (3.4) by
its finite-sum approximation. Typically without Nesterov’s acceleration (with yk = xk),
this strategy is often called the stochastic proximal point algorithm [Asi and Duchi, 2019,
Bertsekas, 2011, Kulis and Bartlett, 2010, Toulis et al., 2018, 2016].

The point of view we adopt in this chapter is different from stochastic PPA and is based
on the minimization of surrogate functions hk related to (3.4), which are more general
and may take forms different from F (x) + (κ/2) ‖x− yk−1‖2. Similarly to the original
Catalyst method, given a base methodM that satisfies the condition (3.3), our procedure
is able to turnM into a converging algorithmM′ with a near-optimal worst-case iteration
complexity, being specifically

E [F (xN)− F ∗] ≤ Õ
((

1−
√
µ

L

)N
(F (x0)− F ∗)

)
+ Õ

(
σ2

µN

)
, when µ > 0,

where N is the budget of iterations and Õ (·) may hide some logarithmic factors in the
condition number L/µ. These rates are achieved essentially due to improved analysis and
flexibility with respect to the choice of surrogate functions hk(x). The principal scheme of
the procedure looks similar to the one of the original Catalyst with the only difference
being the update for the extrapolated point yk, which becomes

yk = x∗k + βk(x∗k − xk−1) + (µ+ κ)(1− αk)
κ

(xk − x∗k) (3.5)

where βk > 0 and x∗k is the minimizer of a properly chosen surrogate function hk. When x∗k
is not available, the scheme is just the same as in the original Catalyst approach.

To illustrate the versatility of our approach, we consider the stochastic finite-sum
problem (3.2) which was reviewed in details in Sections 1.4.4 and 2.1. Whereas it was
shown in Chapter 2 that many variance-reduced algorithms, such as SVRG, SAGA, SDCA,
Finito or MISO, can be made robust to noise, the analysis conducted there is only able to
accelerate the SVRG approach. With our framework, all of the aforementioned incremental
methods can be accelerated to a near-optimal convergence rate. As well as for the Catalyst
approach, the price to pay compared to direct acceleration techniques of [Allen-Zhu, 2017,
Lan and Zhou, 2018a] and Chapter 2 is a logarithmic factor.

In Table 3.1 we present the complete list of transformations of complexities performed
by our framework. Note that even though in (3.3) we make assumptions about the
behavior ofM when applied to strongly convex sub-problems, we also effectively treat the
setting where the objective is convex, but not strongly convex. In this case, base methods
still need to be defined on strongly convex problems and enjoy the convergence (3.3),
even though they are applied to a non-strongly convex objective. For the cases when
a base method is not defined on strongly convex problems, we use a separate restart
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Table 3.1 – Complexity transformations performed by our acceleration framework. The
dash fields mean that the base method is an algorithm of one specific step. Here ∆0 is an
upper bound on the initial primal gap F (x0)− F ∗; Ω2 is an upper bound on the initial
approximation error ‖x0 − x∗‖2

2; and ε is a targeted accuracy. All constants are omitted
for a simplicity and generality.

Value of µ Original complexity ofM Resulting complexity
Deterministic case with σ = 0 and n 6� 1

µ > 0 (L/µ) log (∆0/ε)
√
L/µ log (∆0/ε)

µ = 0 LΩ2/ε
√
LΩ2/ε

Deterministic case with σ = 0 and n� 1
µ > 0 (n+ L/µ) log (∆0/ε)

(
n+

√
nL/µ

)
log (∆0/ε)

Stochastic case with σ > 0 and n 6� 1
µ > 0 —

√
L/µ log (∆0/ε) + σ2/µε

µ = 0 —
√
LΩ2/ε+ (σΩ/ε)2

Stochastic case with σ > 0 and n� 1

µ > 0
(n+ L/µ) log(1/ε) + σ2/µε
or even
(n+ L/µ) log(1/ε) biased as ε ≥ σ2/µ

(
n+

√
nL/µ

)
log(1/ε) + σ2/µε

procedure, called domain shrinking, which was developed in [Ghadimi and Lan, 2013,
Iouditski and Nesterov, 2014]. Specifically, this procedure is aiming to convert convex
methods into strongly convex ones, thus changing sublinear bias convergence into the
linear one. Many resulting complexities also require the use of a special restart procedure
with exponentially increasing batches, which will be defined in the next section. The
empty cells in Table 3.1 represent cases when the base methods consist of one step, so
that the overall meta-procedure may be seen just as a stand-alone algorithm.

Finally, let us now briefly overview the explicit list of the contributions presented in
the chapter.

3.1.1 Contributions of Chapter 3
• We extend the Catalyst approach [Lin et al., 2018] to minimization of stochastic
objective functions. Under mild condition (3.3), our approach is able to turn a
base method into a converging algorithm with one of the worst-case convergence
rates (1.11) or (1.12), depending on the value of µ.
• Beyond the ability to deal with stochastic optimization problems, our procedure
improves the Catalyst approach by allowing deterministic sub-problems of the
form (3.3) with σ = 0 to be solved approximately in expectation, which is more
realistic than the deterministic requirement made in [Lin et al., 2018] and which is
also critical for stochastic optimization algorithms.
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• The original Catalyst approach is able to accelerate various incremental variance-
reduced methods applied to (3.2) in the deterministic case σ = 0. We generalize
this acceleration to the stochastic setting using the generalized versions of these
methods described in Chapter 2.
• A side contribution of this chapter is also a generic analysis that can handle inexact
proximal operators, providing new insights about the robustness of stochastic
algorithms when the proximal operator cannot be exactly computed. To the best
of our knowledge, the stochastic setting with approximately computed proximal
operators has never been analyzed in the literature.

The rest of the chapter is organized as follows. Section 3.2 overviews two basic multi-
stage schemes, namely the domain shrinking and mini-batch restart procedures, which
both improve the worst-case complexities of different stochastic optimization methods. In
Section 3.3, we introduce the proposed acceleration framework along with its theoretical
guarantees and examples of acceleration. Section 3.3.2 gives a slightly finer analysis to this
framework, which allows to accelerate stochastic incremental variance-reduced algorithms.
In Section 2.3, we present various experiments demonstrating the effectiveness of our
procedure.

3.2 Preliminaries: Basic Multi-Stage Schemes
In this section, we overview two simple multi-stage procedures aimed to improve the

worst-case iteration complexities of different stochastic optimization methods. Both of
them are used by our framework in some cases in order to achieve near-optimal convergence
rates for the accelerated methods.

Basic restart with mini-batching or decaying step sizes. Consider a base opti-
mization methodM with a convergence rate of the form (3.3) and assume that there exists
a hyper-parameter to control a trade-off between the constant term Bσ2 and per-iteration
computational complexity ofM. Specifically, we assume that the constant term can be
reduced by an arbitrary factor η < 1, while paying the factor 1/η in terms of complexity
per iteration (for instance, τ may become ητ < τ thus slowing down the convergence). For
example, this mechanism may be available in two cases:

— by using a mini-batch of size 1/η to sample gradients, which replaces σ2 by ησ2;
— if the method uses a step size proportional to η that can be chosen arbitrarily small.
Then, consider a target accuracy ε and define the sequences ηk = 2−k and εk = 2Bηkσ2

for k ≥ 0. We may now successively solve the problem of interest up to accuracy εk—e.g.,
with a constant number O (1/τ) of steps ofM when using mini-batches of size 1/ηk = 2k—
and by using the solution of iteration k − 1 as a warm restart. This approach is expressed
explicitly in Algorithm 3.1.

As shown in Appendix 3.B, this algorithm converges and the worst-case complexity to
achieve the accuracy ε in expectation is

O
(

1
τ

log
(
C (F (x0)− F ∗)

ε

)
+ Bσ2 log(2C)

τε

)
. (3.6)
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Algorithm 3.1 Mini-batch restart procedure
Input: objective F , optimization method M with convergence rate (3.3); an initial
estimate x0.
for k = 1 . . . K do

— Set up an oracle with mini-batches of size 1/ηk = 2k;
— Launch the methodM started from the last disposed solution xk−1 for O (1/τ)

iterations such thatM reaches an (expected) accuracy E [F (xk)− F ∗] ≤ 2Bσ2/2k.
end for
Output: xK

This result opens doors for the following strategy. Let us consider the SGD algorithm
with a constant step size η from Corollary 2.15 of Chapter 2, which has the following
convergence rate

E [F (x̂k)− F ∗] ≤ 2
(

1− µ

L

)k
(F (x̂0)− F ∗) + σ2

L
,

where x̂0 = x0 and x̂k is the estimate recursively obtained as x̂k = (1− δk) x̂k−1 +
δkxk (we have neglected all absolute factors for simplicity). This expression is of the
form (3.3) with B = 1/L, C = 2, and τ = µ/L. Then, when used as a base method in
Algorithm 3.1, it obtains the convergence guarantee (3.6) with the left term being the
classical complexity O ((L/µ) log(1/ε)) of the (unaccelerated) gradient descent algorithm
for deterministic objectives, whereas the right term is the optimal complexity for stochastic
optimization being O (σ2/µε). Similar restart principles appear for instance in [Aybat
et al., 2019] in the design of a multi-stage accelerated SGD algorithm.

Domain shrinking: from sub-linear to linear rate with strong convexity. A
natural question is whether asking for a linear rate in (3.3) for strongly convex problems is
a strong requirement. Here, we show that a sublinear rate is in fact sufficient for our needs
by using the technique of domain shrinking developed in [Ghadimi and Lan, 2013, Iouditski
and Nesterov, 2014]. Specifically, consider an algorithmM for stochastic optimization
with the following convergence rate

E [h(zt)− h∗] ≤
D ‖z0 − z∗‖2

2td + Bσ2

2 , (3.7)

where D, d > 0 and z∗ is a minimizer of h. Assume now that h is µ-strongly convex
with D ≥ µ and consider restarting s times the methodM, each time running it for t′ =⌈
(2D/µ)1/d

⌉
iterations. This scheme is expressed explicitly in Algorithm 3.2.

It is shown in Appendix 3.B that the resulted algorithm enjoys the following convergence
rate

E [h(zt)− h∗] ≤ (h(z0)− h∗)
(

1− 1
2

(
µ

2D

)1/d
)t

+Bσ2,

which is essentially the desired relation (3.3) with C = 1 and τ = 1/(2t′) = 1
2(µ/2D)1/d.

Therefore, if a mini-batch or step size mechanism is available, we may then proceed with
Algorithm 3.1 and finally obtain a converging scheme with the complexity (3.6).
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Algorithm 3.2 Restart with domain shrinking
Input: optimization methodM; an initial point x0 in Rp; target accuracy ε; parameters
µ and D,B, σ from (3.7).
for k = 1 . . . K = dlog2 (2Bσ2/ε)e do

produce xk by runningM with

t′ =
⌈
(2D/µ)1/d

⌉
(3.8)

iterations, being initialized at xk−1.
end for
Output: xK

Table 3.1 – Complexity transformations performed by the domain shrinking restart proce-
dure from Algorithm 3.2, when a base methodM is defined only for non-strongly convex
problems. Here Ω2 is an upper bound on the initial approximation error ‖z0 − z∗‖2

2; and ε
is a targeted accuracy. All constants are omitted for a simplicity and generality.

B Original complexity ofM Resulting complexity Use Algorithm 3.1
Procedure from Algorithm 3.2

1/L LΩ2/ε with ε ≥ σ2/2L (L/µ) log (∆0/ε)
with ε ≥ σ2/L

no
1/L LΩ2/ε with ε ≥ σ2/2L (L/µ) log (∆0/ε) + σ2/µε yes

1/
√
µL

√
LΩ2/ε with ε ≥ σ2/2

√
µL

√
L/µ log (∆0/ε)

with ε ≥ σ2/
√
µL

no

1/
√
µL

√
LΩ2/ε with ε ≥ σ2/2

√
µL

√
L/µ log (∆0/ε) + σ2/µε yes

Modified procedure from Algorithm 3.2 according to [Ghadimi and Lan, 2013]
— LΩ2/ε+ (Ωσ/ε)2 (L/µ) log (∆0/ε) + σ2/µε no
—

√
LΩ2/ε+ (Ωσ/ε)2

√
L/µ log (∆0/ε) + σ2/µε no

According to [Ghadimi and Lan, 2013], it can also be shown that a slightly modified
Algorithm 3.2 is also applicable to methods with convergence rates of the form

E [h(zt)− h∗] ≤
D ‖z0 − z∗‖2

2td + ‖z0 − z∗‖σ√
t

with d = 1 or 2, (3.9)

having thus a typical rate for convex optimization problems. For this purpose, we need
only to change the expression for the number of iterations (3.8) which becomes slightly
more complicated, so that we do not present it here and refer the reader to Equation (3.7)
of [Ghadimi and Lan, 2013]. Then, when a base method with convergence of the type (3.9)
is wrapped by the modified Algorithm 3.2, it will eventually converge with the following
rate

E [h(zt)− h∗] ≤ (h(z0)− h∗)
(

1−
(
µ

D

)1/d
)t

+ σ2

µt
,
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with absolute constants omitted for simplicity.
For convenience, we present all complexity transformations performed by Algorithm 3.2

in Table 3.1. The bottom row demonstrates the transformation which is essentially the
one made in [Ghadimi and Lan, 2013].

3.3 Generic Multi-Stage Approaches with Acceleration
We are now in shape to present the main contribution of this chapter, namely a generic

acceleration framework that generalizes the Catalyst approach. First, we introduce the
concept of surrogate functions which is the key for this procedure.

Assumption 3.1 (Surrogate function). Assume that we have a base optimization methodM
with convergence (3.3). Consider the k-th stage of some multi-stage procedure that forms
two two sequences (xk)k≥0 and (yk)k≥0. Given some parameters κ > 0 and δk ≥ 0, we
consider a surrogate function hk that satisfies the following properties:

(H1) hk is (µ+ κ)-strongly convex, where µ is the strong convexity parameter of f ;

(H2) E [hk(x)|Fk−1] ≤ F (x) + (κ/2) ‖x− yk−1‖2 for x = αk−1x
∗ + (1 − αk−1)xk−1,

which is deterministic given the past information Fk−1 up to iteration k − 1 and
αk−1 is given further in Algorithm 3.3;

(H3) M can provide the exact minimizer x∗k of hk and a point xk (possibly equal to
x∗k) such that E [F (xk)] ≤ E [h∗k] + δk where h∗k = minx hk(x) = hk(x∗k).

The parameter κ from Definition 3.1 has the same meaning as the one from the Catalyst
approach, being essentially the constant smoothing parameter for the sub-problems. Note
that the conditions imposed on hk bear similarities with estimate sequences introduced
by [Nesterov, 2014]. Indeed, (H3) is a direct generalization of (2.2.2) from [Nesterov,
2014] and (H2) resembles (2.2.1). However, the choices of hk and our proof technique are
significantly different, as we will see with various examples below. Note also that (H3) is
rather a definition for the parameter δk than a condition imposed on hk(x). In other
words, one may implicitly state that δk = E [F (xk)]− E [h∗k]. At the moment, we assume
that the exact minimizer x∗k of hk is available, which differs from the original Catalyst
framework [Lin et al., 2018]. The case with approximate minimization will be presented
further in Section 3.3.1.

Now, we are able to present the scheme of our generic acceleration framework in
Algorithm 3.3. Note that we do not need to know all of the surrogate functions (hk)Kk=1 in
advance. We can construct them one per stage on the fly.

Note that the update rule (3.10) for the extrapolation point becomes yk=xk + βk(xk −
xk−1) when x∗k = xk, being the update of the deterministic Catalyst (3.4) approach and
the standard Nesterov’s extrapolation rule. In this sense, Algorithm 3.3 can be seen as a
generalization of Nesterov acceleration, where gradient steps are replaced with full launches
of the base input methodM. The convergence rate of Algorithm 3.3 is expressed in the
following
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Algorithm 3.3 Generic Acceleration Framework with Exact Minimization of hk
1: Input: x0 (initial estimate);M (optimization method); µ (strong convexity constant);
κ (parameter for hk); K (number of iterations); (δk)k≥0 (approximation errors);

2: Initialization: y0 = x0; q = µ
µ+κ ; α0 = 1 if µ = 0 or α0 = √q if µ 6= 0;

3: for k = 1, . . . , K do
4: Consider a surrogate hk satisfying (H1), (H2) and obtain xk, x∗k usingM satisfying

(H3);
5: Compute αk in (0, 1) by solving the equation α2

k = (1− αk)α2
k−1 + qαk.

6: Update the extrapolated sequence

yk = x∗k + βk(x∗k − xk−1) + (µ+ κ)(1− αk)
κ

(xk − x∗k) with βk = αk−1(1− αk−1)
α2
k−1 + αk

.

(3.10)

7: end for
8: Output: xk (final estimate).

Proposition 3.1 (Convergence analysis for Algorithm 3.3). Consider the optimization
problem 3.2. Given a base optimization method with a convergence rate of the type (3.3),
the scheme expressed in Algorithm 3.3 has the following convergence rate

E [F (xk)− F ∗] ≤


(
1−√q

)k (
2 (F (x0)− F ∗) +∑k

j=1

(
1−√q

)−j
δj

)
if µ 6= 0

2
(k+1)2

(
κ ‖x0 − x∗‖2 +∑k

j=1 δj(j + 1)2
)

otherwise
.

(3.11)

The proof of the proposition is given in Appendix 3.C. This proof is based on an exten-
sion of the analysis of Catalyst [Lin et al., 2018]. As we see, these bounds depend on values
of (δj)kj=1, which essentially express the “tightness” of the surrogate functions (hj(x))kj=1
to the true objective function F (x).

Let us now present various application cases leading to algorithms with acceleration.

Accelerated proximal gradient method. Assume that f is deterministic and there
is an exact oracle for the true gradient ∇f(x), and the proximal operator (1.9) of ψ can
be computed in closed form. Then, choose κ = L− µ and define

hk(x) , f(yk−1) +∇f(yk−1)>(x− yk−1) + L

2 ‖x− yk−1‖2 + ψ(x). (3.12)

Consider M that minimizes hk in closed form: xk = x∗k = Proxψ/L
[
yk−1 − 1

L
∇f(yk−1)

]
.

Then, (H1) is obvious; (H2) holds from the convexity of f , and (H3) with δk = 0 follows
from classical inequalities for L-smooth functions [Nesterov, 2014]. Finally, we recover
accelerated convergence rates [Beck and Teboulle, 2009, Nesterov, 2014]

E [F (xk)− F ∗] ≤

 2
(
1−

√
µ/L

)k
(F (x0)− F ∗) if µ 6= 0

2L ‖x0 − x∗‖2 /(k + 1)2 otherwise
. (3.13)
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Accelerated proximal point algorithm. We consider hk given in (3.4) with exact
minimization that is performed by a base methodM in N0 = O (1) iterations. This is
an unrealistic setting, but still conceptually interesting. Given κ = L − µ, the assump-
tions (H1), (H2), and (H3) are satisfied with δk = 0 and we recover the accelerated rates
of [Güler, 1992].

E [F (xk)− F ∗] ≤

 2
(
1−

√
µ/L

)k/N0
(F (x0)− F ∗) if µ 6= 0

2L ‖x0 − x∗‖2 /(k/N0 + 1)2 otherwise
. (3.14)

Accelerated stochastic gradient descent with prox. A more interesting choice of
surrogate is

hk(x) , f(yk−1) + g>k (x− yk−1) + µ+ κ

2 ‖x− yk−1‖2 + ψ(x), (3.15)

where κ ≥ L− µ and gk is an unbiased estimate of ∇f(yk−1) that satisfies

E [gk|Fk−1] = ∇f(yk−1) and E
[
‖gk −∇f(yk−1)‖2 |Fk−1

]
≤ σ2

following classical assumptions from the stochastic optimization literature [Hu et al., 2009,
Ghadimi and Lan, 2012, 2013]. Then, (H1) and (H2) are satisfied given that f is convex.
To characterize (H3), consider a base methodM that minimizes hk in closed form in one
step:

xk = x∗k = Proxψ/(µ+κ)

[
yk−1 −

1
µ+ κ

gk

]
,

and define

uk−1 , Proxψ/(µ+κ)

[
yk−1 −

1
µ+ κ

∇f(yk−1)
]
,

which is deterministic given Fk−1. Then, from (3.15), we have

f(xk) ≤ hk(xk) + (∇f(yk−1)− gk)>(xk − yk−1) (from L-smoothness of f)
= h∗k + (∇f(yk−1)− gk)>(xk − uk−1) + (∇f(yk−1)− gk)>(uk−1 − yk−1).

When taking expectations, the last term on the right disappears since E [gk|Fk−1] =
∇f(yk−1):

E [f(xk)] ≤ E [h∗k] + E [‖gk −∇f(yk−1)‖ ‖xk − uk−1‖] (3.16)

≤ E [h∗k] + 1
µ+ κ

E
[
‖gk −∇f(yk−1)‖2

]
≤ E [h∗k] + σ2

µ+ κ
, (3.17)

where we used non-expansiveness of the proximal operator [Moreau, 1965]. Therefore,
(H3) holds with δk = σ2/(µ + κ). The resulting algorithm is similar to Algorithm C
from Chapter 2 and offers the same guarantees according to Corollaries 3.1 and 3.2.
Compared to Algorithm C, the novelty of our approach is a unified convergence proof for
the deterministic and stochastic cases.
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Corollary 3.1 (Complexity of Algorithm 3.3 when µ > 0). Consider the setting of
Proposition 3.1 with hk defined in (3.15). When f is µ-strongly convex, choose κ = L− µ.
Then, the Algorithm 3.3 has the following convergence rate

E [F (xk)− F ∗] ≤
(

1−
√
µ

L

)k
(F (x0)− F ∗) + σ2

√
µL

,

which is of the form (3.3) with τ =
√
µ/L and B = σ2/

√
µL. Therefore, the optimal

complexity O
(√

L/µ log((F (x0)− F ∗) /ε) + σ2/µε
)
can be obtained by using the restart

strategy in Algorithm 3.1 either with exponentially increasing mini-batches or decreasing
step sizes.

When the objective is convex, but not strongly convex, Proposition 3.1 gives a constant
bias term O (σ2k/κ) that increases linearly with k. Yet, the following corollary exhibits an
optimal rate for the finite horizon setting, when both σ2 and an upper-bound on ‖x0 − x∗‖2

are available. Even though non-practical, the result shows that our analysis recovers the
optimal dependency in the noise level, as in [Ghadimi and Lan, 2013], Chapter 2 and
others.

Corollary 3.2 (Complexity of Algorithm 3.3 when µ = 0). Consider the setting of
Proposition 3.1. Assume that we have a fixed budget K of iterations of Algorithm 3.3 with
hk defined in (3.15). When κ = max(L, σ(K + 1)3/2/ ‖x0 − x∗‖), the procedure has the
following convergence rate

E [F (xK)− F ∗] ≤ 2L ‖x0 − x∗‖2

(K + 1)2 + 3σ ‖x0 − x∗‖√
K + 1

.

While all the previous examples use the choice xk = x∗k, we demonstrate in Section 3.3.2
a situation where we need to choose xk 6= x∗k even though x∗k is available. Now, we introduce
a variant of acceleration framework when we choose xk 6= x∗k, because x∗k is not known.

3.3.1 Variant with Inexact Minimization
In this variant, the minimizer x∗k is not available and we impose an additional assumption

onM to satisfy the following condition

(H4) the estimate xk provided byM in the condition (H3) satisfies E [hk(xk)− h∗k] ≤ εk
for some εk ≥ 0.

Similarly to (H3), it is rather a definition for the parameter εk than a condition imposed
on hk(x). In other words, one may implicitly state that εk = E [hk(xk)− h∗k]. The modified
version of the framework is presented in Algorithm 3.4.

The next proposition gives us some insight on how to achieve acceleration, when x∗k is
not available. The proof may be found in Appendix 3.C.

Proposition 3.2 (Convergence analysis for Algorithm 3.4). Consider the optimization
problem 3.2. Given a base optimization method with a convergence rate of the type (3.3),
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Algorithm 3.4 Generic Acceleration Framework with Inexact Minimization of hk
1: Input: same as Algorithm 3.4;
2: Initialization: y0 = x0; q = µ

µ+κ ; α0 = 1 if µ = 0 or α0 = √q if µ 6= 0;
3: for k = 1, . . . , K do
4: Consider a surrogate hk satisfying (H1), (H2) and obtain xk satisfying

(H3) and (H4);
5: Compute αk in (0, 1) by solving the equation α2

k = (1− αk)α2
k−1 + qαk.

6: Update the extrapolated sequence yk = xk+βk(xk−xk−1) with βk defined in (3.10);
7: end for
8: Output: xk (final estimate).

the scheme expressed in Algorithm 3.4 has the following convergence rate for any γ ∈ (0, 1],

E [F (xk)− F ∗] ≤


(
1−

√
q

2

)k (
2 (F (x0)− F ∗) + 4∑k

j=1

(
1−

√
q

2

)−j (
δj + εj√

q

))
if µ 6= 0

2e1+γ

(k+1)2

(
κ ‖x0 − x∗‖2 +∑k

j=1(j + 1)2δj + (j + 1)3+γγ−1εj
)

if µ = 0.

From this result, we see that in order to maintain the accelerated rate, the sequence
(δk)k≥0 needs to converge at a similar speed as in Proposition 3.1, but the dependency
in εk is slightly worse. Specifically, when f is µ-strongly convex, we may have both (εk)k≥0

and (δk)k≥0 decreasing at a rate O
(
(1− ρ)k

)
with ρ > √q/2, but we pay a factor (1/√q)

compared to (3.11). When µ = 0, the accelerated O (1/k2) rate is preserved whenever
εk = O (1/k4+2γ) and δk = O (1/k3+γ), but we pay a factor O (1/γ) compared to (3.11).
This is the price both for stochasticity in f and for not having (x∗k)k≥1 available.

Catalyst [Lin et al., 2018]. Let us show that in the deterministic case with σ = 0 we
recover the convergence rates of the original Catalyst approach, when using a surrogate
function hk = F (x)+(κ/2) ‖x− yk−1‖2 for k ≥ 1. First, in such a case we can set up δk = εk
since E [F (xk)] ≤ E [hk(xk)] ≤ E [h∗k] + δk. Second, we demand that at the k-th stage of
Algorithm 3.4 the base methodM is initialized with the previous solution xk−1. This is
essentially the warm start strategy from [Lin et al., 2018], which allows to explicitly express
the number of iterations required by M in order to minimize hk(x) up to accuracy εk
sufficiently quickly. For this purpose we introduce the following proposition, which is
essentially a generalization of Proposition 12 from [Lin et al., 2018].

Proposition 3.3 (Warm restart for Catalyst). Consider Algorithm 3.4 with hk defined
in (3.4). Set up x−1 = x0. Then, for k ≥ 2,

E [hk(xk−1)− h∗k] ≤
3εk−1

2 + 54κmax
{
‖xk−1 − x∗‖2 , ‖xk−2 − x∗‖2 , ‖xk−3 − x∗‖2

}
,

The proof may be found in Appendix 3.C. Following [Lin et al., 2018], we may now
analyze the global complexity of Algorithm 3.4 when the base methodM behaves as (3.3).
For instance, when f is µ-strongly convex, we may choose εk = O

(
(1− ρ)k (F (x0)− F ∗)

)
with ρ = √q/3. Then, it is possible to show that Proposition 3.2 yields E [F (xk)− F ∗] =
O (εk/q). Therefore, from the inequality (µ/2) ‖xk − x∗‖2 ≤ F (xk)−F ∗ and Corollary 3.3,
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we have E [hk(xk−1)− h∗k] = O (κεk−1/(µq)) = O (εk−1/q
2). When σ = 0, the estimate xk

is obtained by M in O (log(1/q)/τ) = Õ (1/τ) iterations. This yields the global com-
plexity Õ

(
(1/(τ√q)) log(1/ε)

)
. For example, whenM is the proximal gradient descent

method, we have τ = (µ+ κ)/(L+ κ) and choosing κ = L we obtain the global complexity
Õ
(√

L/µ log(1/ε)
)
of an accelerated method. Recall that Õ (·) notation may hide some

terms logarithmic in L and µ.
In this deterministic case σ = 0, our results improve upon Catalyst [Lin et al., 2018] in

two aspects that are crucial for stochastic optimization: (i) we allow the sub-problems to
be solved in expectation, whereas Catalyst requires the stronger condition hk(xk)−h∗k ≤ εk;
(ii) Proposition 3.3 removes the requirement of [Lin et al., 2018] to perform a full gradient
step for initializing the methodM in the composite case (see Proposition 12 in [Lin et al.,
2018]).

Proximal gradient descent with inexact prox [Schmidt et al., 2011]. Assume
that we have the surrogate (3.12), but the proximal operator can not be computed
exactly, notwithstanding that σ = 0. In this case, it can be treated in the same way as
Catalyst above, which provides a unified proof for both problems. Then, we recover the
results of [Schmidt et al., 2011], while allowing inexact minimization to be performed in
expectation.

Stochastic Catalyst. With Proposition 3.3 at hand, we are in shape to consider
stochastic problems with σ2 6= 0 when using a methodM that converges as (3.3). As in
Section 3.2, we also assume that there exists a mini-batch/step size parameter η that can
reduce the constant bias by a factor η < 1 while paying a factor 1/η in terms of complexity
per stage. As above, we discuss the strongly convex case and choose the same sequence
(εk)k≥0 with εk = O

(
(1− ρ)k (F (x0)− F ∗)

)
. In order to minimize hk up to accuracy εk,

we set ηk = min(1, εk/(2Bσ2)) such that ηkBσ2 ≤ εk/2. Then, the complexity to minimize
hk withM when using the initialization xk−1 becomes Õ (1/(ηkτ)), leading to the global
complexity for minimization of F (x) up to accuracy ε

Õ
(

1
τ
√
q

log
(
F (x0)− F ∗

ε

))
+ Bσ2

q3/2τε
. (3.18)

Details about the derivation are given in Appendix 3.B. The left term corresponds to the
Catalyst accelerated rate, but it may be shown that the term on the right is sub-optimal.
Indeed, considerM to be ISTA with κ = L− µ. Then, B = 1/L, τ = O (1), and the right
term becomes Õ

((√
L/µ

)
σ2/(µε)

)
, which is sub-optimal by a factor

√
L/µ. Whereas

this result is a negative one, suggesting that Catalyst is not robust to noise, we show in
Section 3.3.2 how to circumvent this for a large class of algorithms.

Accelerated stochastic proximal gradient descent with inexact prox. Finally,
consider hk defined in (3.15) with σ 6= 0 and let the proximal operator there be computed
approximately, which, to our knowledge, has never been analyzed in the stochastic context.
Then, it is shown in Appendix 3.B that Proposition 3.2 holds with δk = 2εk+3σ2/(2(µ+ κ)).
Then, an interesting question is how small should εk be to guarantee the optimal (or
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near-optimal) dependency with respect to σ2 as in Corollary 3.1. In the strongly convex
case, Proposition 3.2 simply gives εk = O

(√
qσ2/(µ+ κ

)
) such that δk ≈ εk/

√
q.

3.3.2 Exploiting methods M providing strongly convex surrogates
Among various aforementioned application cases, we have seen an extension of Cat-

alyst to stochastic problems. To achieve convergence, the strategy was to use a specific
mechanism to reduce the bias Bσ2 in (3.3), e.g., by using mini-batches or decreasing step
sizes described in Section 3.2. Yet, the approach suffers from two issues: (i) some of the
parameters are based on unknown quantities such as σ2; (ii) the worst-case complexity
exhibits a sub-optimal dependency in σ2, typically with an extra factor 1/√q when µ > 0.
Whereas practical workarounds for the first point are discussed in Section 3.4, we now
show how to solve the second one in many cases by using Algorithm 3.3.

Denote a sequence of surrogate functions (Hk)k≥1 withHk(x) = F (x)+(κ/2) ‖x− yk−1‖2

for some positive smoothing parameter κ > 0. Consider a base methodM with conver-
gence (3.3), which is able, after T steps, to produce a point xk such that for some ξk−1 > 0
the following bound holds

E [Hk(xk)− h∗k] ≤ C (1− τ)T (Hk(xk−1)−H∗k + ξk−1) +Bσ2. (3.19)

where hk is a function satisfying (H1), (H2) that can be minimized in closed form. In
this sense, hk is a surrogate function for F (x), because, given (3.19), (H3) is immediately
satisfied with δk being the right side of (3.19)

δk = C (1− τ)T (Hk(xk−1)−H∗k + ξk−1) +Bσ2.

The value of ξk−1 is typically chosen as ξk−1 = O (E [F (xk−1]− F ∗)). In this section,
the functions (hk)k≥1 are assumed to be constructed explicitly by the base optimization
method M. Specifically, we will associate (hk)k≥1 with the estimate sequences (dk)k≥1
of Chapter 2 when accelerating the variance-reduced algorithms generalized there to the
stochastic setting. In a sense, hk may be seen as a supporting model of the function Hk(x)
with a “simpler form”.

Let us now explain the acceleration procedure of this section in more details. In a
nutshell, we apply Algorithm 3.3, where the base methodM is used to perform approximate
minimization of Hk = F (x) + (κ/2) ‖x− yk−1‖2. However, at the post-processing step we
refer to another surrogate, namely hk, with closed-form minimizer. This function may be
provided by an oracle or constructed byM during the solving of the k-th sub-problem.
As the minimizer of hk is available, we are able to apply the update (3.10) and finally
benefit from Algorithm 3.3, which has better convergence guarantees than Algorithm 3.4.

As shown in Appendix 3.D, even though the condition (3.19) looks technical, a large
class of optimization techniques are able to provide a solution xk and surrogate hk(x)
satisfying it. The examples include many variants of proximal stochastic gradient descent
methods with variance reduction such as SAGA [Defazio et al., 2014a], MISO [Mairal,
2015], SDCA [Shalev-Shwartz and Zhang, 2016], or SVRG [Xiao and Zhang, 2014] due to
the theoretical results of Chapter 2. In this sense, the constructed surrogates (hk)k≥1 may
be set up as the estimate sequences (dk)k≥1 from relation (2.8) of Chapter 2.
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MethodM κ τ B q Complexity after Catalyst

prox-SGD L− µ 1
2

1
L

µ

L
Õ
(√

L

µ
log

(
F0

ε

)
+ σ2

µε

)
SVRG/SAGA/MISO etc.
of Chapter 2 with L

n
≥ µ

L

n
− µ 1

n

1
L

µn

L
Õ
(√

n
L

µ
log

(
F0

ε

)
+ σ̃2

µε

)

Table 3.1 – Meta-parameters τ and B describing convergences of different methods
according to (3.3) along with the practical choices of κ and corresponding values of q.
This parameter description is accompanied with the final complexity of the methods
being wrapped by our accelerating framework. The value of F0 denotes the initialization
error F (x0) − F ∗, the values of σ2 and σ̃2 are defined in (1.10) and (2.18) respectively.
Once again, Õ (·) may hide some logarithmic factors.

Now, whereas (3.19) seems to be a minor modification of (3.3), an important conse-
quence is that it will allow us to gain a factor 1/√q in the variance complexity when
µ > 0, corresponding precisely to the sub-optimality factor. Therefore, even though the
surrogate Hk needs only to be minimized approximately, the condition (3.19) allows us to
use Algorithm 3.3 instead of Algorithm 3.4. Given that the dependency with respect to δk
is better than εk (by 1/√q), we have then the following result:

Proposition 3.4 (Stochastic Catalyst with Optimality Gaps, µ > 0). Consider Algo-
rithm 3.3 with a methodM and surrogates hk satisfying (3.19) whenM is used to minimize
Hk by using xk−1 as a warm restart. Assume that f is µ-strongly convex and that there
exists a parameter η that can reduce the bias Bσ2 by a factor η < 1 while paying the same
factor in terms of complexity per stage.

Choose δk = O
((

1−√q/2
)k

(F (x0)− F ∗)
)
and ηk = min {1, δk/2Bσ2}. Then, the

complexity to minimize approximately Hk(x) and compute xk satisfying (3.19) is Õ (1/ηkτ),
so that the global complexity to obtain E [F (xk)− F ∗] ≤ ε is

Õ
(

1
τ
√
q

log
(
F (x0)− F ∗

ε

)
+ Bσ2

qτε

)
.

The term on the left is the accelerated rate of the Catalyst approach for deterministic
problems, whereas the term on the right is potentially near-optimal for strongly convex
problems, as illustrated in Table 3.1. We provide indeed practical choices for the parameters
κ, leading to various values of B, τ, q, for the proximal stochastic gradient descent method
with iterate averaging as well as for stochastic variants of SVRG, SAGA, MISO, SDCA,
Finito from Chapter 2. All the values below are given up to universal constants to simplify
the presentation.

The aforementioned incremental algorithms are applied to the stochastic finite-sum
optimization problem with n L-smooth functions (3.2). The corresponding values of τ
and B for them and for the proximal variants of SGD follow from Corollaries 2.15 and
2.3 respectively. As well as in the deterministic case considered by [Lin et al., 2018],
we note that when L/n ≤ µ, there is no acceleration for the incremental algorithms
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since the complexity of the unaccelerated methodM is Õ (n log (F0/ε) + σ2/µε), which
is independent of the condition number and already near-optimal, see Corollary 2.12.
In comparison, the logarithmic terms in L, µ that are hidden in the notation Õ do not
appear for a variant of the SVRG method with direct acceleration introduced in Chapter 2.
However, while we managed there to directly accelerate only the SVRG approach, our
approach developed in the current chapter is more generic. Note also that σ2 for prox-
SGD is typically much larger than σ̃2 for the incremental algorithms since the source of
randomness is larger for prox-SGD, see comparison of 1.28 with 1.12 in Section 1.4.5.

3.4 Experiments
In this section, we perform numerical evaluations by following the steps of Section 2.5,

where we were able to make SVRG and SAGA robust to stochastic noise, and, in addition,
accelerate SVRG.

Formulation We consider `2-logistic regression and support vector machine with the
squared hinge loss. More specifically, given training data (ai, bi)i=1,...,n, with ai in Rp and
bi in {−1,+1}, we consider the optimization problem

min
x∈Rp

1
n

n∑
i=1

φ(bia>i x) + λ

2 ‖x‖
2 ,

where φ is either the logistic loss φ(u) = log(1 + e−u), or the squared hinge loss φ(u) =
1
2 max(0, 1− u)2, which are both L-smooth, with L = 0.25 for logistic and L = 1 for the
squared hinge loss. The scalar λ is a regularization parameter that acts as a lower bound
on the strong convexity constant µ of the problem. It is chosen among the smallest values
one would try when performing parameter search, e.g., by cross validation. Specifically,
we consider λ = 1/10n and λ = 1/100n, where n is the number of training points; we
also try λ = 1/1000n in order to evaluate the numerical stability of methods on very ill-
conditioned problems. Studying the squared hinge loss is interesting since its gradients are
unbounded on the optimization domain, which may break the bounded noise assumption.
Following [Bietti and Mairal, 2017, Zheng and Kwok, 2018] and Section 2.5, we consider
DropOut perturbations [Srivastava et al., 2014]. DropOut consists of randomly setting to
zero each entry of a data point with probability δ, leading to the optimization problem

min
x∈Rp

1
n

n∑
i=1

Eρ
[
φ(bi(ρ ◦ ai)>x)

]
+ λ

2 ‖x‖
2 , (3.20)

where ρ is a binary vector in {0, 1}p with i.i.d. Bernoulli entries that are set up according
to probability δ, and ◦ denotes the element-wise multiplication between two vectors. We
consider DropOut perturbations with rates δ = 0 (no noise), δ = 0.01 and δ = 0.1. The
purpose of using such perturbation is to manually emulate inexactness in the oracle.

Datasets We consider the same datasets used in Section 2.5 with all points being
normalized to have unit `2-norm.

— alpha is from the Pascal Large Scale Learning Challenge website 1 and contains
1. http://largescale.ml.tu-berlin.de/

http://largescale.ml.tu-berlin.de/
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n = 250 000 points in dimension p = 500.
— gene consists of gene expression data and the binary labels bi characterize two

different types of breast cancer. This is a small dataset with n = 295 and p = 8 141.
— ckn-cifar is an image classification task where each image from the CIFAR-10

dataset 2 is represented by using a two-layer unsupervised convolutional neural
network [Mairal, 2016]. We consider here the binary classification task consisting
of predicting the class 1 vs. other classes. The dataset contains n = 50 000 images
and the dimension of the representation is p = 9 216.

Methods We consider the variants of SVRG and SAGA of Chapter 2, which use
decreasing step sizes when δ > 0 (otherwise, they do not converge). We use the suffix “-d”
each time decreasing step sizes are used in order to designate curves on plots. We also
consider Katyusha [Allen-Zhu, 2017] when δ = 0, and the accelerated SVRG method of
Section 2.4 from Chapter 2, denoted by acc-SVRG. Finally, SVRG-d, SAGA-d, acc-SVRG-d
are used with the step size strategies described in Chapter 2.

Practical questions and implementation. In all setups, we choose the parameter κ
according to the theory, which are described in the previous section, following the Catalyst
approach. For composite problems, Proposition 3.3 suggests to use xk−1 as a warm start for
the sub-problems. For the smooth ones, [Lin et al., 2018] shows that, in fact, other choices
such as yk−1 are appropriate and lead to similar complexity results. In our experiments
with smooth losses we use yk−1, which has shown to perform consistently better.

The strategy for ηk discussed in Proposition 3.4 suggests to use constant step sizes in
the first stages, typically of order 1/(κ+ L) for the methods we consider, before using an
exponentially decreasing schedule. Unfortunately, even though theory suggests a rate of
decay in (1−√q/2)k, it does not provide useful insight on when decaying should start since
it requires knowledge of σ2. A similar issue arises in stochastic optimization techniques
involving iterate averaging [Bottou et al., 2018]. We adopt a similar heuristic as in this
literature and start step size decaying after k0 epochs, with k0 = 30. Finally, we discuss the
number of iterations ofM to perform per stage. When ηk = 1, the theoretical value is of
order Õ(1/τ) = Õ(n), and we choose exactly n iterations (one epoch), as in Catalyst [Lin
et al., 2018]. After starting decaying the step sizes (ηk < 1), we use dn/ηke, according to
the theory.

Making plots. We run each experiment five times and average the outputs. We display
plots on a logarithmic scale for the primal gap F (xk) − F ∗ (with F ∗ estimated as the
minimum value observed from all runs), and the x-axis denotes the number of epochs.
Note that for SVRG, one iteration is considered to perform two epochs since it requires
accessing the full dataset every n iterations on average. The colored tubes around each
curve denote one standard deviation across 5 runs.

Acceleration with no noise, δ = 0. We start evaluating the acceleration approach
when there is no noise. This is essentially evaluating the Catalyst method [Lin et al., 2018]

2. https://www.cs.toronto.edu/~kriz/cifar.html

https://www.cs.toronto.edu/~kriz/cifar.html
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in a deterministic setup in order to obtain a baseline comparison when δ = 0. The results
are presented in Figures 3.1 and 3.2 for the logistic regression problem. As predicted by
theory, acceleration is more important when conditioning is low (bottom curves).

Stochastic acceleration with no noise, δ = 0.01 and δ = 0.1. Then, we perform a
similar experiments by adding noise and report the results in Figures 3.3, 3.4, 3.5, 3.6, 3.7.
In general, the stochastic Catalyst approach seems to perform on par with the accelerated
SVRG approach of Chapter 2 and even better in one case, showing that generic acceleration
may be useful even in the stochastic optimization regime, consistently with Section 2.5.

Evaluating the square hinge loss. In Figure 3.8, we perform experiments using the
square hinge loss, where the methods perform similarly as for the logistic regression case,
despite the fact that the bounded noise assumption does not necessarily hold on the
optimization domain for the square hinge loss.

Evaluating ill-conditioned problems. In Figure 3.10, we study the methods behavior
on badly conditioned problems. There, acceleration seems to work on ckn-cifar, but fails
on gene and alpha, suggestions that acceleration is difficult to achieve when the condition
number is extremely low. However, we should note that the ill-conditioning obtained by
choosing λ = 1/1000n is unrealistic in the context of empirical risk minimization
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Figure 3.1 – Accelerating SVRG-like methods for `2-logistic regression with λ = 1/(10n)
(top) and λ = 1/(100n) (bottom) for δ = 0.
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Figure 3.2 – Same plots as in Figure 3.1 when comparing SVRG and SAGA, with no noise
(δ = 0) with λ = 1/(10n) (top) and λ = 1/(100n) (bottom) .
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Figure 3.3 – Accelerating SVRG-like (top) and SAGA (bottom) methods for `2-logistic
regression with λ = 1/(100n) (bottom) for δ = 0.1.
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Figure 3.4 – Same plots as in Figure 3.1 for δ = 0.01 with λ = 1/(10n) (top) and
λ = 1/(100n) (bottom).
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Figure 3.5 – Same plots as in Figure 3.2 for δ = 0.01 with λ = 1/(10n) (top) and
λ = 1/(100n) (bottom).
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Figure 3.6 – Same plots as in Figure 3.1 for δ = 0.1 with λ = 1/(10n) (top) and
λ = 1/(100n) (bottom).
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Figure 3.7 – Same plots as in Figure 3.2 for δ = 0.1 with λ = 1/(10n) (top) and
λ = 1/(100n) (bottom).
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Figure 3.8 – Accelerating SVRG-like methods when using the squared hinge loss instead
of the logistic for δ = 0 (top) and δ = 0.1, both with λ = 1/(10n).
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Figure 3.9 – Same plots as in Figure 3.8 for SVRG and SAGA, with δ = 0 (top) and
δ = 0.1 for λ = 1/(10n).
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Figure 3.10 – Illustration of potential numerical instabilities problems when the problem
is very ill-conditioned. We use λ = 1/(1000n) with δ = 0 for the logistic loss (top) and
squared hinge (bottom).



Appendix

3.A Useful Results and Definitions
In this section, we present auxiliary results that are used in the subsequent proofs.

Lemma 3.1 (Convergence rate of the sequences (αk)k≥0 and (Ak)k≥0). Consider the
sequence in (0, 1) defined by the recursion

α2
k = (1− αk)α2

k−1 + qαk with 0 ≤ q < 1,

and define Ak = ∏k
t=1(1− αt). Then,

— if q = 0 and α0 = 1, then, for all k ≥ 1,

2
(k + 2)2 ≤ Ak = α2

k ≤
4

(k + 2)2 .

— if α0 = √q, then for all k ≥ 1,

Ak = (1−√q)k and αk = √q.

— if α0 = 1, then for all k ≥ 1,

Ak ≤ min
(

(1−√q)k , 4
(k + 2)2

)
and αk ≥ max

(
√
q,

√
2

k + 2

)
.

Proof. We prove the three points, one by one.

First point. Let us prove the first point when q = 0 and α0 = 1. The relation Ak = α2
k

is obvious for all k ≥ 1 and the relation α2
k ≤ 4

(k+2)2 holds for k = 0. By induction, let us
assume that we have the relation α2

k−1 ≤ 4
(k+1)2 and let us show that it propagates for α2

k.
Assume, by contradiction, that α2

k >
4

(k+2)2 , meaning that αk > 2
(k+2) . Then,

α2
k = (1− αk)α2

k−1 ≤ (1− αk)
4

(k + 1)2 <
4k

(k + 2)(k + 1)2 = 4
(k + 2)(k + 2 + 1

k
) <

4
(k + 2)2 ,

97
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and we obtain a contradiction. Therefore, α2
k ≤ 4

(k+2)2 and the induction hypothesis allows
us to conclude for all k ≥ 1. Then, note [Paquette et al., 2018] that we also have for all
k ≥ 1,

Ak =
k∏
t=1

(1− αt) ≥
k∏
t=1

(
1− 2

t+ 2

)
= 2

(k + 1)(k + 2) ≥
2

(k + 2)2 .

Second point. The second point is obvious by induction.

Third point. For the third point, we simply assume α0 = 1 such that α0 ≥
√
q. Then,

the relation αk ≥
√
q and therefore Ak ≤

(
1−√q

)k
are easy to show by induction. Then,

consider the sequence defined recursively by u2
k = (1− uk)u2

k−1 with u0 = 1. From the first
point, we have that

√
2

k+2 ≤ uk ≤ 2
k+2 . We will show that αk ≥ uk for all k ≥ 0, which will

be sufficient to conclude since then we would have Ak ≤
∏k
t=1(1− ut) ≤ 4

(k+2)2 . First, we
note that α0 = u0; then, assume that αk−1 ≥ uk−1 and also assume by contradiction that
αk > uk. This implies that

u2
k = (1− uk)u2

k−1 ≤ (1− uk)α2
k−1 < (1− αk)α2

k−1 ≤ α2
k,

which contradicts the assumption αk > uk. This allows us to conclude by induction. �

Lemma 3.2 (Convergence rate of sequences Θk = ∏k
i=1(1− θi)). Consider the sequence

θj = γ
(1+j)1+γ with γ in (0, 1]. Then,

e−(1+γ) ≤ Θk ≤ 1. (3.21)

Proof. We use the classical inequality log(1 + u) ≥ u
1+u for all u > −1:

− log(Θk) = −
k∑
j=1

log
(

1− γ

(1 + j)1+γ

)
≤

k∑
j=1

γ

(1 + j)1+γ − γ
≤

k∑
j=1

γ

j1+γ ,

when noting that the function g(x) = (1 + x)1+γ − x1+γ is greater than γ for all x ≥ 1,
since g(1) ≥ 1 ≥ γ and g is non-decreasing. Then,

− log(Θk) ≤
k∑
j=1

γ

j1+γ ≤ γ + γ
∫ k

x=1

1
x1+γ dx = γ + 1− 1

kγ
≤ γ + 1.

Then, we immediately obtain (3.21).
�

3.B Details about Complexity Results
3.B.1 Details about (3.6)

Consider the complexity (3.3) with h = f . To achieve the accuracy 2Bσ2, it is sufficient
to run the methodM for t0 iterations, such that

C(1− τ)t0 (F (x0)− F ∗) ≤ Bσ2.
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It is then easy to see that this inequality is satisfied as soon as t0 is greater than
1
τ

log(C (F (x0)− F ∗) /Bσ2). Since ε ≤ Bσ2 and using the concavity of the logarithm
function, it is also sufficient to choose t0 = 1

τ
log(C (F (x0)− F ∗) /ε).

Then, we perform K restart stages such that εK ≤ ε. Each stage is initialized with
a point xk satisfying E [F (xk)− F ∗] ≤ εk−1, and the goal of each stage is to reduce the
error by a factor 1/2. Given that ηk increases the computational cost, the complexity of
the k-th stage is then upper-bounded by 2k

τ
log(2C), leading to the global complexity

O
(

1
τ

log
(
C (F (x0)− F ∗)

ε

)
+

K∑
k=1

2k
τ

log (2C)
)

with K =
⌈
log2

(
2Bσ2

ε

)⌉
,

and (3.6) follows by elementary calculations.

3.B.2 Obtaining (3.6) from (3.7)
Since h is µ-strongly convex, we notice that (3.7) implies the rate

E [h(zt)− h∗] ≤
D(h(z0)− h∗)

µtd
+ Bσ2

2 ,

by using the strong convexity inequality h(z0) ≥ h∗ + µ
2‖z0 − z∗‖2. After running the

algorithm for t′ = d(2D/µ)1/de iterations, we can show that

E [h(zt′)− h∗] ≤
h(z0)− h∗

2 + Bσ2

2 .

Then, when restarting the procedure s times (using the solution of the previous iteration
as initialization), and denoting by hst′ the last iterate, it is easy to show that

E [h(xst′)− h∗] ≤
h(x0)− h∗

2s + Bσ2

2

(
s−1∑
i=0

1
2i

)
≤ h(z0)− h∗

2s +Bσ2.

Then, calling t = st′, we can use the inequality 2−u ≤ 1− u
2 for u in [0, 1], due to convexity,

and

E [h(zt)− h∗] ≤ (h(z0)− h∗)
(
2−1/t′

)t
+Bσ2 = (h(z0)− h∗)

(
1− 1

2t′
)t

+Bσ2,

which gives us (3.3) with C = 1 and τ = 1
2t′ . It is then easy to obtain (3.6) by following

similar steps as in Section 3.B.1, by noticing that the restart frequency is of the same
order O (1/τ).

3.B.3 Details about (3.18)
Inner-loop complexity. Since ηk is chosen such that the bias ηkBσ2 is smaller than
εk, the number of iterations ofM to solve the sub-problem is O (1/τ) = O (log (1/q) /τ),
as in the deterministic case, and the complexity is thus O (1/(ηkτ)).
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Outer-loop complexity. Since

E [F (xk)− F ∗] ≤ O
(
(1−√q/3)k (F (x0)− F ∗) /q

)
according to Proposition 3.2, it suffices to choose

K = O
(

1
√
q

log
(
F (x0)− F ∗

qε

))

iterations to guarantee

E [F (xK)− F ∗] ≤ ε = O (εK/q) = O
(
(1−√q/3)K (F (x0)− F ∗) /q

)

Global complexity. The total complexity to guarantee E [F (xk)− F ∗] ≤ ε is then

C =
K∑
k=1
Õ
(

1
ηkτ

)

≤ Õ
(

K∑
k=1

1
τ

+
K∑
k=1

Bσ2

εkτ

)

= Õ

 K∑
k=1

1
τ

+
K∑
k=1

Bσ2

τ
(
1−

√
q

3

)k
(F (x0)− F ∗)


= Õ

 1
τ
√
q

log
(
F (x0)− F ∗

ε

)
+ Bσ2

τ
√
q
(
1−

√
q

3

)K+1
(F (x0)− F ∗)


= Õ

(
1

τ
√
q

log
(
F (x0)− F ∗

ε

)
+ Bσ2

q3/2ετ

)
,

where the last relation uses the fact that ε = O (εK/q) = O
((

1−√q/3
)K

(F (x0)− F ∗) /q
)
.

3.B.4 Complexity of accelerated stochastic proximal gradient
descent with inexact prox

Assume that hk(xk)− h∗k ≤ εk. Then, following similar steps as in (3.17),

E [F (xk)] ≤ E [hk(xk)] + E
[
(gk −∇f(yk−1))>(xk − yk−1)

]
= E [hk(xk)] + E

[
(gk −∇f(yk−1))>(xk − uk−1)

]
= E [hk(xk)] + E

[
(gk −∇f(yk−1))>(xk − x∗k)

]
+ E

[
(gk −∇f(yk−1))>(x∗k − uk−1)

]
≤ E [hk(xk)] + E

[
(gk −∇f(yk−1))>(xk − x∗k)

]
+ σ2

µ+ κ
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≤ E [hk(xk)] + E [‖gk −∇f(yk−1)‖2]
2(µ+ κ) + (µ+ κ)E [‖xk − x∗k‖2]

2 + σ2

µ+ κ

≤ E [hk(xk)] + E [hk(xk)− h∗k] + 3σ2

2(µ+ κ)

≤ E [h∗k] + 2εk + 3σ2

2(µ+ κ) .

And thus, δk = 2εk + 3σ2

2(µ+ κ) .

3.C Proofs of Main Results

3.C.1 Proof of Propositions 3.1 and 3.2
Proof. In order to treat both propositions jointly, we introduce the quantity

wk =
{
xk for variant A
x∗k for variant B ,

and, for all k ≥ 1,

vk = wk + 1− αk−1

αk−1
(wk − xk−1), (3.22)

with v0 = x0, as well as γk = αk−q
1−q for all k ≥ 0.

Note that the following relations hold for all k ≥ 1, keeping in mind that α2
k =

(1− αk)α2
k−1 + qαk:

1− γk = 1− αk
1− q = (µ+ κ)(1− αk)

κ

γk = αk − q
1− q = α2

k − qαk
αk − qαk

= α2
k−1(1− αk)

αk − α2
k + (1− αk)α2

k−1
= α2

k−1
α2
k−1 + αk

.

Then, based on the previous relations, we have

yk = wk + βk(wk − xk−1) + (µ+ κ)(1− αk)
κ

(xk − wk)

= wk + αk−1(1− αk−1)
α2
k−1 + αk

(wk − xk−1) + (1− γk)(xk − wk)

= wk + γk(1− αk−1)
αk−1

(wk − xk−1) + (1− γk)(xk − wk)

= γkvk + (1− γk)xk,
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which is similar to the relation used in [Lin et al., 2018] when wk = xk. Then, the proof
differs from [Lin et al., 2018] since we introduce the surrogate function hk. For all x in Rp,

hk(x) ≥ h∗k + µ+ κ

2 ‖x− x∗k‖2 (by strong convexity, see H1) (3.23)

= h∗k + µ+ κ

2 ‖x− wk‖2 + µ+ κ

2 ‖wk − x∗k‖2 + (µ+ κ)〈x− wk, wk − x∗k〉︸ ︷︷ ︸
−∆k(x)

. (3.24)

Introduce now the following quantity for the convergence analysis:

zk−1 = αk−1x
∗ + (1− αk−1)xk−1,

and consider x = zk−1 in (3.24) while taking expectations, noting that all random variables
indexed by k − 1 are deterministic given Fk−1,

E [F (xk)] ≤ E [h∗k] + δk (by H3) (3.25)

≤ E [hk(zk−1)]− E
[
µ+ κ

2 ‖zk−1 − wk‖2
]

+ E [∆k(zk−1)] + δk (3.26)

≤ E [F (zk−1)] + E
[
κ

2‖zk−1 − yk−1‖2
]
−

E
[
µ+ κ

2 ‖zk−1 − wk‖2
]

+ E [∆k(zk−1)] + δk, (3.27)

where the last inequality is due to (H2).
Let us now open a parenthesis and derive a few relations that will be useful to

find a Lyapunov function. To use more compact notation, define Xk = E [‖x∗ − xk‖2],
Vk = E [‖x∗ − vk‖2] and Fk = E [F (xk)− F ∗], and note that

E [F (zk−1)] ≤ αk−1F
∗ + (1− αk−1)E [F (xk−1)]− µαk−1(1− αk−1)

2 Xk−1

E
[
‖zk−1 − wk‖2

]
= α2

k−1Vk

E
[
‖zk−1 − yk−1‖2

]
≤ αk−1(αk−1 − γk−1)Xk−1 + αk−1γk−1Vk−1.

(3.28)

The first relation is due to the convexity of F ; the second one can be obtained from the
definition of vk in (3.22) after simple calculations; the last one can be obtained as in the
proof of Theorem 3 in [Lin et al., 2018].

We may now close the parenthesis, come back to (3.27) and we use the relations (3.28):

Fk + (µ+ κ)α2
k−1

2 Vk ≤ (1− αk−1)Fk−1 −
µαk−1(1− αk−1)

2 Xk−1+
κ

2αk−1(αk−1 − γk−1)Xk−1 + κ

2αk−1γk−1Vk−1 + δk + E [∆k(zk−1)] .

It is then easy to see that the terms involving Xk−1 cancel each other since γk−1 =
αk−1 − (µ/κ) (1− αk−1).
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Lyapunov function. We may finally define the Lyapunov function

Sk = (1− αk)Fk + καkγk
2 Vk. (3.29)

and we obtain

Sk
1− αk

≤ Sk−1 + δk + E [∆k(zk−1)] , (3.30)

For variant Algorithm 3.3, we have ∆k(zk−1) = 0 since wk = x∗k, and we obtain the
following relation by unrolling the recursion:

Sk ≤ Ak

S0 +
k∑
j=1

δj
Aj−1

 with Aj =
j∏
i=1

(1− αi). (3.31)

Specialization to µ > 0. When µ > 0, we have α0 = √q and

S0 = (1−√q) (F (x0)− F ∗) +
κ
√
q(√q − q)

2(1− q) ‖x0 − x∗‖2

= (1−√q) (F (x0)− F ∗) +
(µ+ κ)√q(√q − q)

2 ‖x0 − x∗‖2

= (1−√q) (F (x0)− F ∗) +
µ
(
1−√q

)
2 ‖x0 − x∗‖2

≤ 2 (1−√q) (F (x0)− F ∗) , (3.32)

by using the strong convexity inequality F (x0) ≥ F ∗ + (µ/2) ‖x0 − x∗‖2. Then, noting
that E [F (xk)− F ∗] ≤ Sk

1−√q and Ak =
(
1−√q

)k
(Lemma 3.1), we immediately obtain

the first part of (3.11) from (3.31).

Specialization to µ = 0. When µ = 0, we have α0 = 1 and S0 = κ
2 ‖x0 − x∗‖2. Then,

according to Lemma 3.1 and (3.31), for k ≥ 1,

E [F (xk)− F ∗] ≤
Sk

1− αk
≤ κ ‖x0 − x∗‖2

2 Ak−1 +
k∑
j=1

δjAk−1

Aj−1
, (3.33)

and we obtain the second part of (3.11) noting that Ak−1 ≤ 4
(k+1)2 and that Aj–1 ≥ 2

(j+1)2 .
Then, Proposition 3.1 is proven.
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Proof of Proposition 3.2. When wk = xk, we need to control the quantity ∆k(zk−1).
Consider any scalar θk in (0, 1). Then,

∆k(zk−1) = −µ+ κ

2 ‖xk − x∗k‖
2 − (µ+ κ) 〈zk−1 − xk, xk − x∗k〉

= −µ+ κ

2 ‖xk − x∗k‖
2 − (µ+ κ)αk−1 〈x∗ − vk, xk − x∗k〉

≤ −µ+ κ

2 ‖xk − x∗k‖
2 + (µ+ κ)αk−1‖x∗ − vk‖‖xk − x∗k‖

≤
( 1
θk
− 1

)
µ+ κ

2 ‖xk − x∗k‖
2 + θk(µ+ κ)α2

k−1
2 ‖x∗ − vk‖2 (Young’s inequality)

≤
( 1
θk
− 1

)
(hk(xk)− h∗k) + θk(µ+ κ)α2

k−1
2 ‖x∗ − vk‖2 (since θk ≤ 1)

≤
( 1
θk
− 1

)
(hk(xk)− h∗k) + θk(µ+ κ)(α2

k − αkq)
2(1− αk)

‖x∗ − vk‖2

=
( 1
θk
− 1

)
(hk(xk)− h∗k) + θkκαkγk

2(1− αk)
‖x∗ − vk‖2 .

Then, we take expectations and, noticing that the quadratic term involving ‖x∗ − vk‖ is
smaller than θkSk/(1− αk) in expectation (from the definition of Sk in (3.29)), we obtain

E [∆k(zk−1)] ≤
( 1
θk
− 1

)
εk + θkSk

1− αk
,

and from (3.30),

Sk ≤
(1− αk)
(1− θk)

(
Sk−1 + δk +

( 1
θk
− 1

)
εk

)
.

By unrolling the recursion, we obtain

Sk ≤
Ak
Θk

S0 +
k∑
j=1

Θj−1

Aj−1

(
δj − εj + εj

θj

) with Aj =
j∏
i=1

(1− αi) and Θj =
j∏
i=1

(1− θi).

(3.34)

Specialization to µ > 0. When µ > 0, we have αk = √q for all k ≥ 0. Then, we may
choose θk =

√
q

2 ; then, 1 −√q ≤
(
1−

√
q

2

)2
and Ak

Θk
≤
(
1 −

√
q

2

)k
for all k ≥ 0. By using

the relation (3.32), we obtain

Sk ≤ 2
(

1−
√
q

2

)k
(1−√q) (F (x0)− F ∗) + 2

k∑
j=1

1−√q
1−

√
q

2

k−j+1 (
δj − εj + εj√

q

)

≤ (1−√q)

2
(

1−
√
q

2

)k
(F (x0)− F ∗) + 4

k∑
j=1

1−√q
1−

√
q

2

k−j (δj − εj + εj√
q

)
≤ (1−√q)

2
(

1−
√
q

2

)k
(F (x0)− F ∗) + 4

k∑
j=1

(
1−
√
q

2

)k−j (
δj − εj + εj√

q

) ,
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where the second inequality uses
(
1−

√
q

2

)−1
≤ 2. Since

(
1−√q

)
E [F (xk)− F ∗] ≤ Sk,

we obtain the first part of Proposition 3.2.

Specialization to µ = 0. When µ = 0, we have α0 = 1 and S0 = κ
2 ‖x0 − x∗‖2. We

may then choose θk = γ
(k+1)1+γ for any γ in (0, 1], leading to e−(1+γ) ≤ Θk ≤ 1 for

all k ≥ 0 according to Lemma 3.2. Besides, according to the proof of Lemma 3.1,
2

(k+2)2 ≤ Ak ≤ 4
(k+2)2 for all k ≥ 1.

Then, from (3.34),

E [F (xk)− F ∗] ≤
Ak−1

Θk

κ ‖x0 − x∗‖2

2 +
k∑
j=1

Ak−1Θj−1

ΘkAj−1

(
δj − εj + εj

γ
(1 + j)1+γ

)

≤ 2e1+γ

(k + 1)2

κ ‖x0 − x∗‖2 +
k∑
j=1

(j + 1)2(δj − εj) + (j + 1)3+γεj
γ

 ,
which yields the second part of Proposition 3.2. �

3.C.2 Proof of Proposition 3.3
Assume that for k ≥ 2, we have the relation

E
[
hk−1(xk−1)− h∗k−1

]
≤ εk−1. (3.35)

Then, we want to evaluate the quality of the initial point xk−1 to minimize hk.

hk(xk−1)− h∗k = hk−1(xk−1) + κ

2 ‖xk−1 − yk−1‖2 − κ

2 ‖xk−1 − yk−2‖2 − h∗k

= hk−1(xk−1)− h∗k−1 + h∗k−1 − h∗k + κ

2 ‖xk−1 − yk−1‖2 − κ

2 ‖xk−1 − yk−2‖2

= hk−1(xk−1)− h∗k−1 + h∗k−1 − h∗k−

κ(xk−1 − yk−1)>(yk−1 − yk−2)− κ

2 ‖yk−1 − yk−2‖2 . (3.36)

Then, we may use the fact that h∗k can be interpreted as the Moreau-Yosida smoothing of
the objective F , defined as G(y) = minx∈Rp F (x) + κ

2‖x− y‖
2, which gives us immediately

a few useful results, as noted in [Lin et al., 2019]. Indeed, we know that G is κ-smooth
with ∇G(yk−1) = κ(yk−1 − x∗k) for all k ≥ 1 and

h∗k−1 = G(yk−2) ≤ G(yk−1) +∇G(yk−1)>(yk−2 − yk−1) + κ

2 ‖yk−1 − yk−2‖2

= h∗k + κ(yk−1 − x∗k)>(yk−2 − yk−1) + κ

2 ‖yk−1 − yk−2‖2 . (3.37)
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Then, combining (3.36) and (3.37),

hk(xk−1)− h∗k ≤ hk−1(xk−1)− h∗k−1 + κ(xk−1 − x∗k)>(yk−2 − yk−1).
≤ hk−1(xk−1)− h∗k−1 + κ(xk−1 − x∗k−1)>(yk−2 − yk−1)+

κ(x∗k−1 − x∗k)>(yk−2 − yk−1)
≤ hk−1(xk−1)− h∗k−1 + κ(xk−1 − x∗k−1)>(yk−2 − yk−1) + κ ‖yk−1 − yk−2‖2

≤ hk−1(xk−1)− h∗k−1 + κ

2
∥∥∥xk−1 − x∗k−1

∥∥∥2
+ 3κ

2 ‖yk−1 − yk−2‖2

≤ 3
2(hk−1(xk−1)− h∗k−1) + 3κ

2 ‖yk−1 − yk−2‖2 ,

where the third inequality uses the non-expansiveness of the proximal operator; the fourth
inequality uses the inequality a>b ≤ ‖a‖2

2 + ‖b‖2
2 for vectors a, b, and the last inequality uses

the strong convexity of hk−1. Then, we may use the same upper-bound on ‖yk−1 − yk−2‖
as [Lin et al., 2018, Proposition 12], namely

‖yk−1 − yk−2‖2 ≤ 36 max
{
‖xk−1 − x∗‖2 , ‖xk−2 − x∗‖2 , ‖xk−3 − x∗‖2

}
,

where we define x−1 = x0 if k = 2.

3.C.3 Proof of Proposition 3.4
The proof is similar to the derivation described in Section 3.B.3.

Inner-loop complexity. With the choice of δk, we have that ξk−1 = O
(
δk−1/

√
q
)
.

Besides, since we enforce E [Hk(xk)−H∗k ] ≤ δk for all k ≥ 0, the result of Proposition 3.3
can be applied and the discussion following the proposition still applies, such that the
complexity for computing xk is indeed Õ(1/(ηkτ)).

Outer-loop complexity. Then, according to Proposition 3.1, it is easy to show that
E [F (xk)− F ∗] ≤ O

(
(1−√q/2

)k
(F (x0)− F ∗))/√q and thus it suffices to choose

K = O
(

1
√
q

log
(
F (x0)− F ∗
√
qε

))

iterations to guarantee E [F (xK)− F ∗] ≤ ε.

Global complexity. We use the exact same derivations as in Section 3.B.3 except that
we use the fact that ε = O

(
εK/
√
q
)

= O
(
(1−√q/3

)K
(F (x0)− F ∗) /√q) instead of

ε = O (εK/q), which gives us the desired complexity.
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3.D Methods M with Duality Gaps Based on
Strongly-Convex Lower Bounds

In this section, we summarize a few results from Chapter 2 for convenience and
introduce minor modifications to guarantee the condition (3.19). For solving a stochastic
composite objectives such as (3.1), where F is µ-strongly convex, consider an algorithmM
performing the following classical updates

zt ← Proxηψ [zk−1 − ηgt] with E [gt|Fk−1] = ∇f(zk−1),

where η ≤ 1/L, and the variance of gt is upper-bounded by σ2
t . Inspired by estimate

sequences from [Nesterov, 2014], in Chapter 2, we have built recursively a µ-strongly
convex quadratic function dt of the form

dt(z) = d∗t + µ

2 ‖zt − z‖
2 .

From the proof of Proposition 2.1 in Chapter 2, we then have

E [d∗t ] ≥ (1− ηµ)E
[
d∗k−1

]
+ ηµE [F (zt)]− η2µσ2

t ,

which leads to

F ∗ − E [d∗t ] + ηµ(E [F (zt)]− F ∗) ≤ (1− ηµ)E
[
F ∗ − d∗k−1

]
+ η2µσ2

t ,

which is a minor modification of Proposition 2.1 in Chapter 2 that is better suited to our
purpose.

With constant variance. Assume now that σt = σ for all k ≥ 1. Following the iterate
averaging procedure used in Theorem 2.1, which produces an iterate ẑt, we obtain

E [F (ẑt)− d∗t ] ≤ (1− ηµ)t (F (z0)− d∗0) + ησ2, (3.38)

where d∗0 can be freely specified for the analysis: it is not used by the algorithm, but it
influences d∗t through the relation E [dt(z)] ≤ Γtd0(z)+(1−Γt)E [F (z)] with Γt = (1−µη)t,
see relation (2.10) in Chapter 2. In contrast, Theorem 2.1 would give here

E [F (ẑt)− F ∗ + dt(z∗)− d∗t ] ≤ 2 (1− ηµ)t (F (z0)− F ∗) + ησ2, (3.39)

where z∗ is a minimizer of F , which is sufficient to guarantee (3.3) given that dt(z∗) ≥ d∗t .

Application to the minimization of Hk. Let us now consider applying the method
to an auxiliary function Hk from (3.19) instead of F , with initialization xk−1. After
running T iterations, define hk to be the corresponding function dT defined above and
xk = ẑT . Hk is (µ + κ)-strongly convex and thus hk is also (µ + κ)-strongly convex
such that (H1) is satisfied. Let us now check possible choices for d∗0 to ensure (H2). For
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z = αk−1x
∗ + (1− αk−1)xk−1, we have E [dT (zk−1)] ≤ ΓTd0(zk−1) + (1− ΓT )Hk(zk−1) such

that we simply need to choose d∗0 such that E [d0(zk−1)] ≤ E [Hk(zk−1)]. Then, choose

d∗0 = H∗k − F (xk−1) + F ∗, (3.40)

and

d0(zk−1) = d∗0 + µ+ κ

2 ‖xk−1 − zk−1‖2 = d∗0 + (µ+ κ)α2
k−1

2 ‖xk−1 − x∗‖2

= d∗0 + µ

2 ‖xk−1 − x∗‖2 ≤ d∗0 + F (xk−1)− F ∗

= H∗k ≤ Hk(z),

such that (H2) is satisfied, and finally (3.38) becomes

E [Hk(xk)− h∗k] ≤ (1− η(µ+ κ))T (Hk(xk−1)−H∗k + F (xk−1)− F ∗) + ησ2,

which matches (3.19).

Variance-reduction methods. In Chapter 2, gradient estimators gt with variance
reduction are studied, leading to variants of SAGA [Defazio et al., 2014a], MISO [Mairal,
2015], and SVRG [Xiao and Zhang, 2014], which can deal with the stochastic finite-sum
problem presented in Section 4.1. Then, the variance of σ2

t decreases over the iterations,
see Proposition 2.2 Chapter 2, and their convergence bounds have the variance established
in terms of σ̃2 � σ2 from (2.18).

Let us then consider again the guarantees of the method obtained when minimizing F
with µ/L ≤ 1/5n. From Corollary 2.3, we have

E [F (ẑt)− F ∗ + dt(z∗)− d∗t ] ≤ 8 (1− µη)t (F (x0)− F ∗) + 18ησ̃2,

and (3.3) is satisfied. Consider now two cases at iteration T :
— if E [dT (z∗)] ≥ F ∗, then we have E [F (ẑT )− d∗T ] ≤ 8 (1− µη)T (F (x0)− F ∗)+18ησ̃2.
— otherwise, it is easy to modify Theorem 2 and Corollary 2.3 to obtain

E [F (ẑT )− d∗T ] ≤ (1− µη)T (2(F (x0)− F ∗) + 6(F ∗ − d∗0)) + 18ησ̃2.

Application to the minimization of Hk. Consider now applying the method for
minimizing Hk, with the same choice of d∗0 as (3.40), which ensures (H2), and same
definitions as above for xk and hk. Note that the conditions on µ and L above are satisfied
when κ = (L/5n)− µ under the condition L/5n ≥ µ. Then, we have from the previous
results, after replacing F by Hk making the right substitutions

E [Hk(xk)− h∗k] ≤ (1− (µ+ κ)η)T (8(Hk(xk−1)−H∗k) + 6(F (xk−1)− F ∗)) + 18ησ2,

and (3.19) is satisfied with σ̃2 instead of σ2. Therefore, we refer to σ̃2 in Table 3.1 for
variance-reduced methods.

Other schemes. Whereas we have presented approaches were dt is quadratic, in Chap-
ter 2 we also studied another class of algorithms where dt is composite (see Section 2.2.2).
The results we present in this chapter can be extended to such cases, but for simplicity,
we have focused on quadratic surrogates.



Chapter 4

Sparse Recovery with
Reduced-Variance Algorithms

One of the main contributions of Chapters 2 and 3 was development of various
algorithms, which are robust to stochastic noise. In particular, several approaches were
based on the variance reduction technique which utilizes finite-sum structure of optimization
problems. Another example of a structure, which allows to mitigate the impact of noise
that comes from an inexact oracle, is sparsity. From high-level perspective, an optimization
problem is called sparse if the signal to be recovered has a minor fraction of significant
components. Therefore, for sparse problems we may potentially reduce the noise effects
coming from insignificant components and decrease the overall variance.

As was mentioned in Section 1.6, this field is well studied with various optimization
methods of both SA and SAA types being developed. The latter include iterative thresh-
olding techniques, particularly widely studied Lasso estimator (1.33) and Dantzig Selector.
Most of them inherit the computational burden typical to SAA approaches. At the same
time, some optimization algorithms of SA type with a lower per-iteration cost achieved a
slow rate of asymptotical error O

(
σ
√
s log(d)/N

)
, which was then eventually improved

to O (sσ2 log(d)/(µN)) by a multi-stage procedure.
In this chapter, our objective is to achieve the convergence rate O (sσ2 log(d)/(µN))

for a larger class of noise models. At the same time, we establish linear convergence of
the initial error—the task which was not done in the papers on multi-stage procedures
overviewed in Section 1.6.

To address these tasks, we develop a procedure called SMD-SR, which is based
on the SMD algorithm. Roughly speaking, the SMD-SR procedure is a multi-stage
hard thresholding stochastic approximation algorithm where the gradient step (1.34) is
substituted with a full launch of the SMD algorithm. The main distinction of our procedure
from the other multi-stage routines is the use of hard thresholding operator between stages,
while we do not use projections on constraint sets and do not update the minimized
objective, like was was done, for instance, in [Agarwal et al., 2012b, Steinhardt et al., 2014,
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Sedghi et al., 2014].
Though we solve sparse stochastic optimization problems of the general form (1.8),

our main focus in this chapter is on signal recovery in sparse linear regression (1.29) and
low-rank matrix recovery (1.30).

This chapter is based on the following publication:

• A. Juditsky, A. Kulunchakov and H. Tsyntseus. Reduced variance algorithms of
stochastic approximation for sparse recovery. arXiv:2006.06365, 2020

4.1 Introduction
We consider stochastic optimization problems of the following form

min
x∈X

{
f(x) = E

[
f̃(x, ω)

]}
(4.1)

where X is a given convex subset of the Euclidean space E, the function f̃ : X × Ω→ R
is a mapping, which is convex, finite and differentiable for all x ∈ X, and E stands for the
expectation with respect to an unknown distribution of ω ∈ Ω. The optimal value of f
is denoted as f ∗ = f(x∗) where the optimum x∗ is unique. In what follows, we assume
that E = Rn, unless stated otherwise. Note that, unlike previous chapters, we define n as
the problem dimension.

There are several distinctions between (4.1) and the problem (1.8), which was solved
in Chapters 2 and 3. First, (4.1) has a non-composite formulation. Second, we assume
that the optimal solution x∗ is sparse. The general notion of sparsity structure will be
given in Section 4.2.1, and comprises “usual” sparsity, group sparsity, and low rank matrix
structures as basic examples. For simplicity, in the introduction we stick to the “usual”
s-sparsity of vectors, being the property of having at most s non-zero components. Finally,
while the L-smoothness of f(x) in Chapters 2 and 3 was defined in the Euclidean norm, we
consider it with respect to a general norm ‖·‖. Specifically, we assume that the following
Lipschitz property is satisfied for f̃(·, ω)∥∥∥∇f̃(x, ω)−∇f̃(x′, ω)

∥∥∥
∗
≤ L(ω) ‖x− x′‖

where E [L(ω)] ≤ ν < ∞ for some positive ν and ‖·‖∗ is the conjugate norm ‖z‖∗ =
max
x

{
zTx : ‖x‖ ≤ 1

}
. We also suppose that the gradient ∇f(x) of the expected function

is Lipschitz-continuous on X with the constant L with respect to the same norm. The
norm ‖·‖ will be usually chosen as ‖·‖ = ‖·‖1, so that ‖·‖∗ = ‖·‖∞. Finally, we suppose
that f(x) satisfies a quadratic growth condition on X with respect to the Euclidean norm
‖·‖2, being

f(x)− f ∗ ≥ (µ/2) ‖x− x∗‖2
2 , ∀ x ∈ X. (4.2)

Apparently, a uniformly strongly convex function satisfies (4.2).
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Sparse linear regression Sparse optimization problems (4.1) have received a lot of
attention in the literature as we have already seen in Section 1.6. In particular, they have
been studied in relation with the sparse linear regression problem (1.29), which can be
cast as minimization of either deterministic (1.32) or stochastic (1.31) objective function.
In this chapter, we focus on SA approaches which minimize the latter, while addressing
the reader to Section 1.6.1 for the overview of SAA techniques. which minimize (1.32).
For convenience, we repeat here the statement of sparse linear regression problems

min
x∈X

{
fSA(x) = 1

2E
∥∥∥η − φ>x∥∥∥2

2

}
, (4.3)

where η = 〈φ, x∗〉+ σξ (4.4)

with i.i.d. random variables φ ∈ Rn and ξ ∈ R. The parameter σ stands for the
scale of noise, while the random variable ξ is assumed to have unit variance. The
optimum vector x∗ is supposed to be s-sparse, and the minimization is conducted over
the set X of s-sparse vectors. For the general case of (4.1), the variance σ2 would
denote E

∥∥∥∇f̃(x∗, ω)−∇f(x∗)
∥∥∥2

∗
being the discrepancy measured only at the optimum

point x∗. 1 Apparently, this definition is consistent with (4.4).

Related work In Section 1.6, we have overviewed the literature on solving (4.3). Let
us briefly recall the key points. The case of sparse regression was considered in [Srebro
et al., 2010, Shalev-Shwartz and Tewari, 2011], establishing a slow asymptotic convergence
rate O

(√
s log(d)/N

)
, while not obtaining the linear convergence (1.35) of the initial

error specific to hard thresholding techniques of SAA type in the strongly convex setting.
However, this linear convergence is achieved by several multi-stage optimization procedures.
For example, in [Agarwal et al., 2012b] authors develop a multi-stage procedure, called
RADAR, which applies to (4.3). In the case of uniformly bounded regressors ‖φ‖∞ ≤ B,
RADAR enjoys the following convergence rate

E
[
‖xN − x∗‖2

2

]
≤ O

(
sB2σ2 log n

µ2N

)
. (4.5)

Notice that this result appears only in Section 3.2 of [Agarwal et al., 2012b], while the
other results of this paper appeal to the other definition of σ, being

∀x ∈ X E
∥∥∥f̃(x, ω)−∇f(x)

∥∥∥2

∞
≤ σ̂2 � σ2. (4.6)

This is a more standard definition of the noise variance in the literature on stochastic
approximation. However, the value of σ̂ is generally much larger than of σ. Indeed,
for example, in the setting of least-squares regression (4.3) with σ = 0, ‖·‖ = ‖·‖1
and φ ∼ N (0, I), we have

σ ≥ E
∥∥∥∇f̃(x, ω)−∇f(x)

∥∥∥
∞
∼ E ‖x− x∗‖1

∥∥∥φ>φ− I
∥∥∥
∞

∼ ‖x− x∗‖1 E
∥∥∥φ>φ− I

∥∥∥
∞
, (4.7)

1. Further, we give a precise definition of σ2 for the general case in Assumption 4.9.
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where ‖x− x∗‖1 is typically a large factor. In this chapter, we focus on the large-scale
setting where n� N . Therefore, we are looking for convergence bounds on the recovery
error that are independent (or logarithmic at most) in the problem dimension n. For this
reason, in the view of (4.7) it is particularly important to refer in (4.5) exactly to σ2,
not to σ̂2. We do not compare our results with other multi-stage procedures overviewed
in Section 1.6, because they express their convergence bounds in terms of σ̂2. This
argument rules out the comparison with algorithms of the standard “Euclidean” stochastic
approximation as well.

Our approach Now, let us briefly describe the procedure—Stochastic Mirror Descent
for Sparse Recovery (SMD-SR)—developed in this chapter for the general stochastic
optimization problem (4.1) and, in particular, for sparse linear regression (4.3). For now,
let us assume that the regressors φi are almost surely bounded ‖φi‖∞ = O (1) and the
covariance matrix Σ = E

[
φφT

]
satisfies Σ � µI. We also suppose that that we are given

R <∞, such that the initialization x0 ∈ Rn satisfies E‖x0 − x∗‖2
1 ≤ R2.

The multi-stage SMD-SR procedure is based on the stochastic mirror descent briefly
introduced in Section 1.4.3. The procedure roughly follows the steps below

• The SMD-SR algorithm operates in stages divided into two groups—phases—named
preliminary and asymptotic. Each stage is basically a launch of the SMD algorithm,
after which we “sparsify” the resulted approximate solution, so that the next launch
is initialized at it. The sparsification step is done by zeroing out all but s entries of
largest amplitudes of the approximate solution.
• At each stage of the preliminary phase we perform a fixed numberm0 = Õ (s log n/µ)
of iterations of SMD so that the expected quadratic error E‖ŷN − x∗‖2

2 decreases
linearly as the total iteration count N grows. The coefficient of this linear decrease
is proportional to µ

sν logn . When the expected quadratic error becomes O (σ2s/µ),
we pass to the asymptotic phase of the method.
• During the asymptotic phase, the number of iterations per stage mk grows expo-

nentially with the stage index k. The resulted expected quadratic error decreases
as O

(
σ2s logn
µ2N

)
which corresponds to (4.5).

Now, let us explicitly present the list of main contributions of this chapter. Once again,
the notation Õ (1) is essentially O (1) that probably hides a logarithmic factor on n.

4.1.1 Contributions of Chapter 4
— The main contribution of this chapter is development of the SMD-SR procedure

with the following convergence rate

E
[
‖xN − x∗‖2

2

]
≤
(

1− Õ (1) µ
sν

)N ‖x0 − x∗‖2
1

2s + Õ (1) sσ
2

µ2N
. (4.8)

In particular, we explicitly establish that the algorithm converges linearly during
the preliminary phase eliminating quickly the initial error, when the variance part
is small. This convergence is similar to the deterministic gradient descent algorithm,
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when “full gradient observation” ∇f(x) is available. On the other hand, in the
asymptotic regime, SMD-SR attains the rate Õ (1/N) which is equivalent to the
best known rates in this setting (4.5).

— Another important notion concerns the admissible values of s. While the asymp-
totic rate (4.5) of RADAR is optimal, it requires to perform at least s2 log[n]/µ2

iterations of the dual averaging algorithm per stage. Consequently, it can be used
only if the number of nonvanishing entries in the optimal solution x∗ does not
exceed O

(
µ
√
N/ log n

)
. However, the corresponding limit is O (Nµ/ log[n]) for

Lasso [Raskutti et al., 2010] and iterative thresholding procedures [Barber and Ha,
2018, Foygel Barber and Liu, 2019]). In this chapter, we relax the condition on
admissible values of sparsity from s ≤ Õ

(
µ
√
N/ log n

)
of [Agarwal et al., 2012b]

to become s ≤ Õ (Nµ/ log[n]).
— We establish the optimal asymptotic rate Õ (sσ2/µ2N) for several different noise

models, not only for regressors φ bounded in the `∞-norm. For example, these
models include sub-Gaussian, Rademacher, multivariate Student distributions and
scale mixtures. This amounts to derivation of the optimal asymptotic rate under
the model assumptions which are close to the weakest known today [Foygel Barber
and Liu, 2019, Raskutti et al., 2010].

— We show how one can straightforwardly enhance reliability of the corresponding
solutions by using Median-of-Means like techniques [Nemirovsky and Yudin, 1983,
Minsker, 2015]. Although the convergence bounds obtained for the expected risks
do allow only for Chebyshev-type bounds for risks, their confidence can nonetheless
be easily improved by applying an adapted version of median-of-means estimate.

The rest of the chapter is organized as follows. We define the key assumptions and
introduce a general notion of sparsity in Section 4.2.1. The stochastic mirror descent is
analyzed in Section 4.2.2. The precise scheme and the analysis of the SMD-SR procedure
is presented in Section 4.3. Next, in Section 4.3.1 we show how sub-Gaussian confidence
bounds for the error of approximate solutions can be obtained using an adopted analog
of Median-of-Means approach. In Section 4.4 we discuss the properties of the method
and conditions in which it leads to a “small error” solution when applied to sparse linear
regression and low rank linear matrix recovery problems. Finally, Section 2.5 contains
various experiments demonstrating the effectiveness of the proposed approach.

Notation In what follows, we use a generic notation C for an absolute constant; notation
a . b means that the ratio a/b is bounded by an absolute constant, the norm ‖·‖ is not the
Euclidean norm by default anymore, and we explicitly distinguish `2-norm from other `p
norms. For Q ∈ Rp×q we denote ‖Q‖∞ = maxij |[Q]ij| and for symmetric positive-definite
Q ∈ Rn×n with x ∈ Rn we denote ‖x‖Q =

√
xTQx. Besides, bac stands for the smallest

integer greater or equal to a, and ead stands for the smallest integer strictly greater than a.
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4.2 Prerequisites
4.2.1 Assumptions and sparsity

We start with formulating the key assumption about the structure of the gradient
estimates, that will allow us to perform the aforementioned decrease in the variance from σ̂2

of (4.6) to σ2 of (4.4).

Assumption 4.1. Let the function f̃(·, ω) be continuously differentiable 2 on X for almost
all ω ∈ Ω, and have the following Lipschitz property∥∥∥∇f̃(x, ω)−∇f̃(x′, ω)

∥∥∥
∗
≤ L(ω) ‖x− x′‖

with E [L(ω)] ≤ ν <∞ for some positive ν. Denote ζ(x, ω) , ∇f̃(x, ω)−∇f(x) and

ς2(x) = E
[∥∥∥∇f̃(x, ω)−∇f(x)

∥∥∥2

∗

]
.

Assume that there are constants 1 ≤ κ,κ′ <∞ such that the following bound holds:

ς2(x) ≤ κν [f(x)− f ∗ − 〈∇f(x∗), x− x∗〉]︸ ︷︷ ︸
=:Vf (x∗,x)

+κ′ E
[
‖ζ(x∗, ω)‖2

∗

]
︸ ︷︷ ︸

=:ς2∗

. (4.9)

Essentially, this assumption is necessary to decompose the discrepancy ς2(x) to two
parts. The first part Vf (x∗, x) is then accumulated properly by our algorithm and decrease
with linear speed, and ς2

∗ is the dimension-free variance that will appear in the final
convergence bounds. Several examples of models, which satisfy this assumption, will
be given further in Section 4.4. For now, let us note that the relation (4.9) is rather
characteristic to the case of smooth stochastic observation. Indeed, let us consider the
situation where the Lipschitz constant L(ω) is a.s. bounded, i.e. L(ω) ≤ ν. Using a
reasoning similar to the derivation of relation (2.47) in Section 2.D.1, we obtain in this
case

ς2(x) ≤ 16ν [f(x)− f ∗ − 〈∇f(x∗), x− x∗〉] + 2ς2
∗ .

The same strong assumption of uniform boundness L(ω) ≤ ν was used by [Bietti and
Mairal, 2017] and in Proposition 2.2 of our Chapter 2.

Sparsity structure. In what follows we assume to be given a sparsity structure [Juditsky
et al., 2014] on E, that is a family P of projector mappings P = P 2 on E with associated
nonnegative weights π(P ). For a nonnegative real s we set

Ps = {P ∈ P : π(P ) ≤ s} .

Given s ≥ 0 we call x ∈ E s-sparse if there exists P ∈ Ps such that Px = x. We will make
the following assumption.

2. In what follows ∇f̃(·, ω) replaces notation ∇xf̃(·, ω) for the gradient of f̃ w.r.t. the first argument.
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Assumption 4.2. Given x ∈ X, assume that we can efficiently compute a “sparse
approximation” of x being an optimal solution xs := sparse(x) to the optimization problem

min ‖x− z‖2 over s-sparse z ∈ X (4.10)

where ‖·‖2 is the Euclidean norm ‖z‖2 = 〈z, z〉1/2. Furthermore, we assume that for any
s-sparse vector z ∈ E the norm ‖·‖ satisfies ‖z‖ ≤

√
s ‖z‖2.

In what follows we refer to xs as s-sparsification of x. We are mainly interested in the
following standard examples:

1. “Vanilla” sparsity: in this case E = Rn with the standard inner product, P
is comprised of projectors on all coordinate subspaces of Rn, π(P ) = rank(P ),
and ‖·‖ = ‖·‖1.
Assumption 4.2 clearly holds, for instance, when X is orthosymmetric, e.g., a ball of
`p-norm on Rn, 1 ≤ p ≤ ∞.

2. Group sparsity: E = Rn, and we partition the set {1, . . . , n} of indices into K
non-overlapping subsets I1, ..., IK , so that to every x ∈ Rn we associate blocks xk with
corresponding indices in Ik, k = 1, . . . , K. Now P is comprised of projectors P = PI
onto subspaces EI = {

[
x1, ..., xK

]
∈ Rn : xk = 0 ∀k /∈ I} associated with subsets I of

the index set {1, ..., K}. We set π(PI) = cardI, and define ‖x‖ = ∑K
k=1 ‖xk‖2—block

`1/`2-norm.
Same as above, Assumption 4.2 holds in this case when X is “block-symmetric,” for
instance, is a ball of the block norm ‖·‖.

3. Low rank sparsity structure: in this example E = Rp×q with, for the sake of
definiteness, p ≥ q, and the Frobenius inner product. Here P is the set of mappings
P (x) = P`xPr where P` and Pr are, respectively, q × q and p × p orthoprojectors,
and ‖·‖ is the nuclear norm ‖x‖ = ∑q

i=1 σi(x) where σ1(x) ≥ σ2(x) ≥ ... ≥ σq(x) are
singular values of x.
In this case, Assumption 4.2 holds due to the Eckart–Young approximation theorem,
it suffices that X is a ball of a Schatten norm ‖x‖r = (∑q

i=1 σ
r
i (x))1/r, 1 ≤ r ≤ ∞.

In what follows we assume that the optimal solution x∗ to the problem (4.1) is s-sparse.
As the true value of s is always unknown, we denote an upper bound s̄ ≥ s for the signal
sparsity. Our goal is to build approximate solutions x̂N to the problem (4.1) utilizing N
queries to the stochastic oracle. We quantify the accuracy of an approximate solution x̂
using the following risk measures:

— Recovery risks: first, the maximal over x∗ ∈ X expected squared error

Risk|·|(x̂|X) = sup
x∗∈X

E
[
|x̂− x∗|2

]
where | · | stands for ‖·‖2- or ‖·‖-norm, and, second, the ε-risks of recovery, being
essentially the smallest maximal over x∗ ∈ X radius of (1− ε)-confidence ball of
norm | · | centered at x̂:

Risk|·|,ε(x̂|X) = inf
{
r : sup

x∗∈X
Prob|x̂− x∗| ≥ r ≤ ε

}
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— Prediction risks: first, the maximal over x∗ ∈ X expected sub-optimality
Riskf (x̂|X) = sup

x∗∈X
E [f(x̂)]− f ∗,

of x̂, and, second, the smallest maximal over x∗ ∈ X (1− ε)-confidence interval

Riskf,ε(x̂|X) = inf
(
r : sup

x∗∈X
Prob (f(x̂)− f ∗ ≥ r) ≤ ε

)
.

4.2.2 Stochastic Mirror Descent algorithm
Let ϑ : E → R be a distance-generating function from Section 1.4.3, such that the

problem (1.24) is easy (for example, admits a closed form solution or may be solved by a
simple linear search). From now on, w.l.o.g. we assume that ϑ(x) ≥ ϑ(0) = 0. We say
that Θ is the constant of quadratic growth of ϑ(·) if

∀x ∈ E ϑ(x) ≤ Θ‖x‖2.

We also utilize associated Bregman divergence
Vx0(x, z) = ϑ(z − x0)− ϑ(x− x0)− 〈∇ϑ(x− x0), z − x〉 , ∀ z, x, x0 ∈ X,

which is a slightly modified version of (1.22). The proximal operator (1.24) is naturally
associated with Vx0(x, z), and we note that it is different from the proximal operator (1.9)
used in Chapters 2 and 3. Here we denote this proximal operator for x, x0 ∈ X, u ∈ E,
and β > 0 as follows

Proxβ(u, x;x0) , argmin
z∈X

{〈u, z〉+ βVx0(x, z)}

= argmin
z∈X

{〈u− β∇ϑ(x− x0), z〉+ βϑ(z − x0)} . (4.11)

Then, for i = 1, 2, . . . , we consider the following stochastic mirror descent recursion
xi = Proxβi−1

(
∇f̃(xi−1, ωi), xi−1;x0

)
, x0 ∈ X, (4.12)

Here βi > 0 is a step size parameter which is defined later, and ω1, ω2, . . . are independent
identically distributed (i.i.d.) realizations of the random variable ω from (4.1).

The approximate solution to the problem (4.1) after N iterations is defined as the
following weighted average

x̂N =
[
N∑
i=1

β−1
i−1

]−1 N∑
i=1

β−1
i−1xi. (4.13)

The next result describes some useful properties of the recursion (4.12).

Proposition 4.1. Suppose that the SMD algorithm (4.12) is applied to the problem (4.1).
We assume that Assumption 4.3 holds and that initial condition x0 ∈ X is independent of
(ω)i≥1 and such that E

[
‖x0 − x∗‖2

]
≤ R2. Choose the constant step size

βi ≡ β ≥ 2κν, i = 1, 2, ...,m.
Then the approximate solution x̂m = 1

m

∑m
i=1 xi after m steps of the algorithm satisfies

E [f(x̂m)]− f ∗ ≤ 2R2

m

(
Θβ + κν2

2β

)
+ 2κ′ς2

∗
β

. (4.14)
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4.3 Multistage SMD algorithm
We are using the stochastic mirror descent algorithm as the building block in the

iterative approach of [Juditsky and Nemirovski, 2011a, Juditsky and Nesterov, 2014] to
improve its accuracy bounds. The proposed Stochastic Mirror Descent algorithm for
Sparse Recovery (SMD-SR) works in stages, which are split into two groups—phases—
corresponding to two essentially different regimes of the method. We refer to the first phase
as preliminary, and refer to the second as asymptotic. Each stage consists of a launch of
the SMD algorithm initialized at some proper point and subsequent post-processing of
the resulted approximate solution. By the end of each stage, we have Risk‖·‖(ŷN |X) being
halved in expectation. Then, we “sparsify” the obtained approximate solution by zeroing
out all but s entries of largest amplitudes. This sparse point is used then to initialize the
SMD algorithm at the next stage. At the preliminary phase we perform a fixed number m0
of iterations of the SMD so that the expected quadratic error E‖ŷN − x∗‖2

2 decreases
linearly. The asymptotic phase is dedicated to decrease the variance part, and we increase
exponentially the number of iterations per stage mk. The resulted asymptotic expected
quadratic error decreases as Õ

(
σ2s logn
µ2N

)
which corresponds to (4.5).

We are in shape to present the precise scheme of the SMD-SR procedure in Algorithm 4.1,
where we assume to be given R <∞ and x0 ∈ X such that ‖x∗ − x0‖ ≤ R, along with the
problem parameters κ,κ′, ν, ς2

∗ , µ and an upper bound s̄ for signal sparsity. The number
of steps of the SMD to perform locally (mk)K

′

k=0 and the step sizes (βk)K
′

k=0 are chosen
such that Risk‖·‖(ŷN |X) is halved in expectation based on the convergence guarantees of
Proposition 4.1. Properties of the proposed procedure are summarized in the following
statement.

Theorem 4.1. In the situation of this section, suppose that N ≥ m0 so at least one
preliminary stage of Algorithm 4.1 is completed. Then there is an absolute c > 0 such that
approximate solutions x̂N and ŷN produced by the algorithm satisfy

Riskf (x̂N |X) ≤ µR2

s̄
exp

(
− cNµ

Θκs̄ν

)
+ C

ς2
∗ s̄κ′Θ
µN

, (4.15)

Risk‖·‖(ŷN |X) ≤ 2sRisk‖·‖2(ŷN |X) ≤ 8sRisk‖·‖(x̂N |X)

. R2 exp
(
− cNµ

Θκs̄ν

)
+ Θκ′ς2

∗ s̄
2

µ2N
. (4.16)

4.3.1 Enhancing reliability of SMD-SR solutions
In this section, our objective is to build approximate solutions to problem (4.1)

utilizing Algorithm 4.1 which obey “sub-Gaussian type” bounds on their ε-risks. Note
that bounds (4.15) and (4.16) of Theorem 4.1 do allow only for Chebyshev-type bounds
for risks of ŷN and x̂N . Nevertheless, their confidence can be easily improved by applying,
for instance, an adapted version of “median-of-means” estimate [Nemirovsky and Yudin,
1983, Minsker, 2015].
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Algorithm 4.1 Stochastic Mirror Descent algorithm for Sparse Recovery [SMD-SR]
1: Input: x0 in Rp (initial point); N (budget of iterations);
2: Initialization:

Set y0 = x0, R0 = R ≥ ‖x0 − x∗‖, constant step size

β0 = 2κν, (4.17)

the number of steps of the SMD algorithm to perform locally

m0 =
⌋
16µ−1s̄(8Θκ + 1)ν

⌊
; (4.18)

and the number of preliminary stages performed

K =
⌋
log2

(
R2

0µνκ
32ς2
∗ s̄κ′

)⌊
and K = min

{⌊
N

m0

⌋
, K

}
. (4.19)

3: for k = 1, . . . , K do stages of the preliminary phase
4: — Launch the SMD algorithm, initialized with yk−1, for m0 iterations with constant

step size parameter β0. Obtain an approximate solution x̂m0(yk−1, β0).
5: — Define yk as s-sparsification of x̂m0(yk−1, β0), being yk = sparse(x̂m0(yk−1, β0)).
6: end for
7: Output of the phase:

define ŷ(1) = yK and x̂(1) = x̂m0(yK−1, β).
8: Initialization of the asymptotic phase:

Set the remaining budget M = N −m0K.
Set the number of steps of the SMD to perform per stage

mk =
⌋
512 s̄Θνκ

µ
2k
⌊
.

9: if m1 > M then we do not have a budget for the asymptotic phase.
We output ŷN = ŷ(1) and x̂N = x̂(1).

10: end if
11: Set y′0 = ŷ(1) and βk = 2kνκ and the number of asymptotic stages to perform

K ′ = max
{
k :

k∑
i=1

mi ≤M

}
.

12: for k = 1, . . . , K ′ do stages of the asymptotic phase
13: — Launch the SMD initialized with y′k−1, for mk iterations and constant step size

parameter βk. Obtain an approximate solution x̂mk(y′k−1, βk).
14: — Define y′k as s-sparsification of x̂mk(y′k−1, βk).
15: end for
16: Output: ŷN = y′K′ and x̂N = x̂mK (y′K′−1, βK′).
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Reliable recovery utilizing geometric median of SMD-SR solutions. Suppose
that available sample of length N can be split into L independent samples of length
M = N/L (for the sake of simplicity let us assume that N is a multiple of L). We run
Algorithm 4.1 on each subsample thus obtaining L independent recoveries x̂(1)

M , ..., x̂
(L)
M and

compute “enhanced solutions” using an aggregation procedure of geometric median-type.
Note that we are in the situation where Theorem 4.1 applies, meaning that approximate
solutions x̂(1)

M , ..., x̂
(L)
M satisfy

∀` E
[
f(x̂(`)

M )
]
− f ∗ ≤ τ 2

M := µR2

s̄
exp

(
− cMµ

Θκs̄ν

)
+ C

ς2
∗ s̄κ′Θ
µM

, (4.20)

and so

∀` E
[∥∥∥x̂(`)

M − x∗
∥∥∥2

2

]
≤ θ2

M := 2
µ
τ 2
M .

R2

s̄
exp

(
− cMµ

Θκs̄ν

)
+ Θκ′ς2

∗ s̄

µ2M
. (4.21)

We are to select among x̂(`)
M the solution which attains similar bounds “reliably.”

1. The first reliable solution x̂N,1−ε of x∗ is a “pure” geometric median of x̂(1)
M , ..., x̂

(L)
M :

we put

x̂N,1−ε ∈ Argmin
x

L∑
`=1

∥∥∥x− x̂(`)
M

∥∥∥
2
, (4.22)

and then define ŷN,1−ε = sparse(x̂N,1−ε).
Computing reliable solutions x̂N,1−ε and ŷN,1−ε as optimal solutions to (4.22) amounts
to solving a nontrivial optimization problem. A simpler reliable estimation can be
computed by replacing the geometric median x̂N,1−ε by its “empirical counterparts”
(note that, number L of solutions to be aggregated is not large—it is typically order
of log[1/ε]).

2. We can replace x̂N,1−ε with

x̂′N,1−ε ∈ Argmin
x∈
{
x̂

(1)
M ,...,x̂

(L)
M

} L∑
`=1

∥∥∥x− x̂(`)
M

∥∥∥
2

and compute its sparse approximation ŷ′N,1−ε = sparse(x̂′N,1−ε).
3. Another reliable solution (with slightly better guarantees) was proposed in [Hsu and

Sabato, 2014]. Let i ∈ {1, ..., L}, we set

rij =
∥∥∥x̂(i)

M − x̂
(j)
M

∥∥∥
2

and denote ri(1) ≤ ri(2) ≤ ... ≤ ri(L−1) corresponding order statistics (i.e., ri·’s sorted
in the increasing order). We define reliable solution x̂′′N,1−ε = x̂

(̂i)
M where

î ∈ Argmin
i∈{1,...,L}

rieL/2d (4.23)

and put ŷ′′N,1−ε = sparse(x̂′′N,1−ε).
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Theorem 4.2. Let ε ∈ (0, 1
4 ], and let xN (resp. yN) be one of reliable solutions

x̂1−ε,N , x̂
′
1−ε,N and x̂′′1−ε,N (resp., ŷ1−ε,N , ŷ

′
1−ε,N and ŷ′′1−ε,N) described above using L =

cα log[1/ε]b 3 independent approximate solutions x̂(1)
M , ..., x̂

(L)
M by Algorithm 4.1. When

N ≥ Lm0 we have

Risk‖·‖,ε(yN |X) ≤
√

2sRisk‖·‖2,ε(yN |X) ≤
√

8sRisk‖·‖2,ε(xN |X)

. R exp
(
− cNµ

Θκs̄ν log[1/ε]

)
+ ς∗s̄

µ

√
Θκ′ log[1/ε]

N
. (4.24)

Remark. Notice that the term log[1/ε] enters the bound (4.24) as a multiplier which is
typical for accuracy estimates of solutions which relies upon median to enhance confidence.
A better dependence on reliability tolerance parameter with the corresponding term
entering as in Θ + log[1/ε] may be obtained for algorithm utilizing “trimmed” stochastic
gradients [Juditsky et al., 2019].

Algorithm 4.2 Reliable aggregation

1: Input: approximate solutions of the first step x̂(1)
M , ..., x̂

(L)
M ; observation samples lengths

N and K; algorithm parameters ε ∈ (0, 1
2 ], L′ ∈ Z+ and m = K/L′ (for the sake of

simplicity we assume, as usual, that K = mL′).
2: Compute x̂′′N,1−ε = x̂

(̂i)
M the reliable solution as defined in (4.23) and denote Î =

{i1, ..., ieL/2d}, the set of indices of eL/2d closest to x̂′′N,1−ε points among x̂(1)
M , ..., x̂

(L)
M .

Comparison procedure:
3: Split the (second) sample ωK into L′ independent subsamples

(
ω`
)L′
l=1

of size m.
4: For all i ∈ Î, compute the index

v̂i = max
j∈Î, j 6=i

{
median

`
[v̂`ji]− ρij

}

where

v̂`ji = 1
m

m∑
k=1

〈
∇f̃(x̂(j)

M + tk(x̂(i)
M − x̂

(j)
M ), ω`k), x̂

(i)
M − x̂

(j)
M

〉
, ` = 1, ..., L′,

are estimates of vji = f(x̂(i)
M )− f(x̂(j)

M ), tk = 2k−1
2m , k = 1, ...,m, and coefficients ρij > 0

to be defined depend on rij =
∥∥∥x̂(i)

M − x̂
(j)
M

∥∥∥
2
.

Output: We say that x(i)
M is admissible if v̂i ≤ 0. When the set of admissible x̂(i)

M ’s is
nonempty we define the procedure output xN+K,1−ε as one of admissible x̂(i)

M ’s, and
define xN+K,1−ε = x̂

(1)
M otherwise.

3. The exact value of the numeric constant α is specific for each construction, and can be retrieved
from the proof of the theorem.



4.4. Applications 121

Reliable solution aggregation. Let us assume that two independent observation
samples of lengths N and K are available. In the present approach, we use the first sample
to compute, same as in the construction presented above, L independent approximate
SMD-SR solutions x̂(`)

M , ` = 1, ..., L, M = N/L. Then we “aggregate” x̂(1)
M , ..., x̂

(L)
M —select

the best of them in terms of the objective value f(x̂(`)
M ) by computing reliable estimations

of differences f(x̂(i)
M )− f(x̂(j)

M ) using observations of the second subsample.
The proposed procedure for reliable selection of the “best” solution x̂(`)

M is presented in
Algorithm 4.2. Now, consider the following (cf. Assumption 4.3)

Assumption 4.3. There are 1 ≤ χ, χ′ < ∞ such that for any x ∈ X and z ∈ E the
following bound holds:

E
[
〈ζ(x, ω), z〉2

]
≤ ‖z‖2

2

[
χL2 (f(x)− f ∗) + χ′ς2

∗

]
(4.25)

where L2 is the Lipschitz constant of the gradient ∇f of f with respect to the Euclidean
norm,

‖∇f(x′)−∇f(x′′)‖2 ≤ L2 ‖x′ − x′′‖2 , ∀x
′, x′′ ∈ X.

Theorem 4.3. Let Assumption 4.3 hold, and let τM and θM be as in (4.20) and (4.21)
respectively. Further, in the situation of this section, let ε ∈ (0, 1

2 ], L =cα log[1/ε]b for
large enough α, and let xN+K,1−ε be an approximate solution by Algorithm 4.2 in which we
set L′ ≥

⌋
7 log[2/ε]

⌊
and

ρij = 2rij

√
L2χ

m
(γ(rij) + τM) + 2rijς∗

√
χ′

m

where

γ(r) =


4r

√
χL2

m
+ τM

2

+ 4rζ∗

√
χ′

m


1/2

. (4.26)

Then

Riskf,ε(xN+K,1−ε|X) ≤ γ̄2 := γ2(8θM),

In particular, when K = mL′ ≥ cmax
{
χL2 log[1/ε]

µ
, Nχ

′

Θκ′s̄

}
for an appropriate absolute c > 0,

one has

Riskf,ε(xN+K,1−ε|X) . µR2

s̄
exp

(
− cNµ

Θκs̄ν log[1/ε]

)
+ ς2

∗ s̄Θκ′ log[1/ε]
µN

.

4.4 Applications
4.4.1 Sparse linear regression by stochastic approximation

Let us consider the problem of recovery of a sparse signal x∗ ∈ Rn, n ≥ 3, from
independent and identically distributed observations

ηi = φTi x
∗ + σξi, i = 1, 2, ..., N



122 Chapter 4. Sparse Recovery with Reduced-Variance Algorithms

with φi and ξi mutually independent and such that E
[
φiφ

T
i

]
= Σ, µΣI � Σ, and ‖Σ‖∞ ≤ υ,

with known µΣ > 0 and υ; we also assume that E [ξi] = 0 and E [ξ2
i ] ≤ 1.

We suppose that x∗ is s-sparse. Furthermore, we assume to be given a convex and
closed subset X of Rn (e.g., a large enough ball of `1- or `2-norm centered at the origin)
such that x∗ ∈ X, along with R <∞ and x0 ∈ X such that ‖x∗ − x0‖1 ≤ R.

We are about to apply the SMD-SR approach from Algorithm 4.1. To this end, consider
the following stochastic optimization problem

min
x∈X

{
f(x) = 1

2E
[
(η − φTx)2

]}
, (4.27)

so that f̃(x, ω) = (η − φTx)2 with ω = [φ, η]. Note that x∗ is the unique optimal solution
to the above problem. Indeed, we have

f(x) = 1
2E

[
[φT (x∗ − x) + σξ]2

]
= 1

2 (x− x∗)TΣ(x− x∗)︸ ︷︷ ︸
=:‖x−x∗‖2Σ

+1
2σ

2.

Observe that ∇f(x) = Σ(x− x∗) = E
[
∇f̃(x, ω)

]
where

∇f̃(x, ω) = φφT (x− x∗)− σξφ, (4.28)

and

ζ(x, ω) = ∇f̃(x, ω)−∇f(x) =
[
φφT − Σ

]
(x− x∗)− σξφ.

Further, the objective f is strongly convex with respect to the `2-norm, so that the
condition (4.2) holds with the parameter µ = µΣ. We set ‖·‖ = ‖·‖1 with ‖·‖∗ = ‖·‖∞, and
we use the “`1-proximal setup” of the SMD-SR algorithm with a quadratically growing
for n > 2 distance-generating function, see, for instance, Theorem 2.1 in [Nesterov and
Nemirovski, 2013]

ϑ(x) = 1
2e log(n)n(p−1)(2−p)/p ‖x‖2

p , p = 1 + 1
log n,

where the corresponding Θ satisfies Θ ≤ 1
2e

2 log n.
Note that

ς2(x) = E
[∥∥∥∇f̃(x, ω)−∇f(x)

∥∥∥2

∞

]
= E

[∥∥∥[φφT − Σ
]

(x− x∗)− σξφ
∥∥∥2

∞

]
.

Therefore, in our present situation Assumption 4.3 reads

E
[∥∥∥[φφT − Σ

]
(x− x∗)− σξφ

∥∥∥2

∞

]
≤ 1

2κν ‖x− x
∗‖2

Σ + ς2
∗ . (4.29)

The following statement is a straightforward corollary of Theorems 4.1 and 4.2; it describes
the properties of approximate solutions obtained by Algorithm 4.1 when applied to the
observation model in this section. We assume that the problem parameters—values
of κ, ν, µΣ, σ

2 and an upper bound s̄ on sparsity of x∗—are known.
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Proposition 4.2. Suppose that (4.29) holds.
(i) Let the sample size N satisfy

N ≥ m0 =
⌋

16νs̄
µΣ

(4e2κ log[n] + 1)
⌊

so at least one preliminary stage of Algorithm 4.1 is completed. Then, approximate solutions
x̂N and ŷN produced by the algorithm satisfy

Risk‖·‖(ŷN |X) ≤ 8sRisk‖·‖(x̂N |X) . R2 exp
(
− cNµΣ

κs̄ν log n

)
+ νσ2s̄2 log n

µ2
ΣN

, (4.30)

Riskf (x̂N |X) . µΣR
2

s̄
exp

(
− cNµΣ

κs̄ν log n

)
+ νσ2s̄κ′ log n

µΣN
.

(ii) Furthermore, when observation size satisfies N ≥ αm0 log[1/ε] with large enough
absolute α > 0, 1− ε reliable solutions ŷN,1−ε and x̂N,1−ε as defined in Section 4.3.1 satisfy

Risk‖·‖,ε(ŷN,1−ε|X) ≤
√

2sRisk‖·‖2,ε(ŷN,1−ε|X) ≤ 2
√

2sRisk‖·‖2,ε(x̂N,1−ε|X)

. R exp
(
− cNµΣ

κs̄ν log[1/ε] log n

)
+ σs̄

µΣ

√
ν log[1/ε] log n

N
, (4.31)

with x̂′N,1−ε, x̂′′N,1−ε and ŷ′N,1−ε, ŷ′′N,1−ε verifying similar bounds.

Note that Assumption 4.3 in the case of sparse linear regression holds when for some
1 ≤ χ <∞

∀x ∈ X, z ∈ Rn E
[(
zTφ

)2 (
φT (x− x∗)

)2
]
≤ 1

2χ ‖z‖
2
2 σ1(Σ) ‖x− x∗‖2

Σ (4.32)

where σ1(Σ) is the principal eigenvalue (the spectral norm) of Σ. Indeed, in this case we
have

E
[(
zT ζ(x, ω)

)2
]

= E
[(
zT
{[
φφT − Σ

]
(x− x∗)− σφξ

})2
]

= E
[(
zT
[
φφT − Σ

]
(x− x∗)

)2
]

+ σ2E
[
ξ2
(
zTφ

)2
]

≤ E
[(
zTφ

)2 (
φT (x− x∗)

)2
]

+ σ2 ‖z‖2
2 σ1(Σ)

≤ 1
2 ‖x− x

∗‖2
Σ︸ ︷︷ ︸

=f(x)−f∗

χ ‖z‖2
2 σ1(Σ) + σ1(Σ)σ2 ‖z‖2

2

implying Assumption 4.3 with χ′ = σ1(Σ)/ν .
The following result is a corollary of Theorem 4.3.

Proposition 4.3. Suppose that (4.29) and (4.32) hold true, and let

N ≥ cmax
{
κνs̄
µΣ

log[1/ε] log n, χσ1(Σ)
µΣ

log[1/ε]
}
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with large enough c > 0. Then aggregated solution x2N,1−ε (with K = N) by Algorithm 4.2
satisfies

Riskf,ε(x2N,1−ε|X) . µΣR
2

s̄
exp

(
− cNµΣ

κs̄ν log[1/ε] log n

)
+ σ2νs̄ log[1/ε] log n

µΣN
. (4.33)

Note that when σ1(Σ) = O (ν log n) and κ and χ are both O (1) bounds (4.31)
and (4.33) hold for N ≥ c νs̄

µΣ
log[1/ε] log n.

Remark. Results of Propositions 4.2 and (4.3) merit some comments. If compared to
now standard accuracy bounds for sparse recovery by `1-minimization [Candes, 2006, 2008,
Bickel et al., 2009, Van De Geer and Bühlmann, 2009, Raskutti et al., 2010, Juditsky and
Nemirovski, 2011b, Candes and Plan, 2011a, Rudelson and Zhou, 2012], to the best of our
knowledge, (4.29) and (4.32) provide the most relaxed conditions under which the bounds
such as (4.30)–4.33 can be established. One may notice a degradation of bounds (4.31)
and (4.33) with respect to comparable results [Juditsky and Nemirovski, 2011b, Raskutti
et al., 2010, Dalalyan and Thompson, 2019] as far as dependence in factors which are
logarithmic in n and ε−1 is concerned—bound (4.24) depends on the product log[n] log[1/ε]
of these terms instead of the sum log[n] + log[ε−1] in the “classical” results. 4 This seems
to be “an artifact” of the reliability enhancement approach using median of estimators we
have adopted in this work, cf. the comment after Theorem 4.2. Nevertheless, it is rather
surprising to see that conditions on the regressor model in Proposition 4.2, apart from
positive definiteness of regressor covariance matrix, essentially resume to (cf. 4.29)

E
[∥∥∥φφT z∥∥∥2

∞

]
. ν ‖z‖2

Σ ∀z ∈ Rn.

Below we consider some examples of situations where bounds (4.29) and (4.32) hold
with constants which are “almost dimension-independent,” i.e. are, at most, logarithmic
in problem dimension. When this is the case, and when observation count N satisfies
N ≥ αm0 log[1/ε] log[R/σ] for large enough absolute α, so that the preliminary phase of
the algorithm is completed, the bounds of Propositions 4.2 and 4.3 coincide (up to already
mentioned logarithmic in n and 1/ε factors) with the best accuracy bound available for
sparse recovery in the situation in question. 5

1. Sub-Gaussian regressors: suppose now that φi ∼ SG(0, S), i.e., regressors φi are
sub-Gaussian with zero mean and matrix parameter S, meaning that

E
[
eu

Tφ
]
≤ e

uT Su
2 for all u ∈ Rn.

Let us assume that sub-Gaussianity matrix S is “similar” to the covariance matrix Σ
of φ, i.e. S � µΣ with some µ <∞. Note that E

[
(φT z)4

]
≤ 16(zTSz)2 ≤ 16µ2 ‖z‖4

Σ,
and thus

E
[
(zTφφTx)2

]
≤ E

[
(zTφ)4

]1/2
E
[
(xTφ)4

]1/2
≤ 16zTSz xTSx ≤ 16µ2σ1(Σ) ‖z‖2

2 ‖x‖
2
Σ ,

4. Note that a similar deterioration was noticed in [Candes and Plan, 2011a].
5. In the case of “isotropic sub-Gaussian” regressors, see [Lecué et al., 2018], the bounds of Proposi-

tion 4.2 are comparable to bounds of [Lecué et al., 2020, Theorem 5] for Lasso recovery under relaxed
moment assumptions on the noise ξ.



4.4. Applications 125

what is (4.32) with χ = 16µ2. Let us put ῡ = maxi[S]ii. One easily verifies that in
this case

ν = E
[
‖φ‖2

∞

]
≤ 2ῡ(log[2n] + 1) ≤ 2µυ(log[2n] + 1),

and

E
[
‖φ‖4

∞

]
≤ 4ῡ2(log2[2n] + 2 log[2n] + 2) ≤ 4µ2υ2(log2[2n] + 2 log[2n] + 2).

As a result, we have

ζ2(x) = E
[∥∥∥[φφT − Σ](x− x∗)− σξφ

∥∥∥2

∞

]
≤
[
(E
[
‖φ‖4

∞

]
)1/4(E

[
(φT (x− x∗))4

]
)1/4 + σ(E

[
‖φ‖2

∞

]
)1/2 +

√
υ ‖x− x∗‖Σ

]2
≤
[√

8ῡ(log[2n] + 2) ‖x− x∗‖S + σ
√

2ῡ(log[2n] + 1) +
√
υ ‖x− x∗‖Σ

]2

≤ 2
(
µ
√

8(log[2n] + 2) + 1
)2
υ ‖x− x∗‖2

Σ + 4µυ(log[2n] + 1)σ2.

whence, (4.3) holds with κν . µ2υ log n, κ′ . 1, and ς2
∗ . µυσ2 log n.

2. Bounded regressors: we assume that ‖φi‖∞ ≤ µ a.s.. One has

ς2(x) = E
[∥∥∥[φφT − Σ

]
(x− x∗)− σξφ

∥∥∥2

∞

]
≤ E

[
‖φ‖∞

(
|φT (x− x∗)|+ σ|ξ|

)
+
∥∥∥E{φφT (x− x∗)

∥∥∥2

∞

]
≤ µ2E

[[
|φT (x− x∗)|+ σ|ξ|+

√
υ ‖x− x∗‖Σ

]2]
≤ 2(µ+

√
υ)2 ‖x− x∗‖Σ + 2µ2σ2

implying (4.29) with κν ≤ 4(µ+
√
υ)2 and ς2

∗ ≤ µ2σ2. In particular, this condition
is straightforwardly satisfied when φj are sampled from an orthogonal system with
uniformly bounded elements, e.g., φj =

√
nψκj where {ψj, j = 1, ..., n} is a trigono-

metric or Hadamard basis of Rn, and κj are independent and uniformly distributed
over {1, ..., n}. On the other hand, in this case, for z = x = ψ1 we have

E
[
(zTφφTx)2

]
= E

[
(ψ1φφ

Tψ1)2
]

= n = n ‖ψ1‖4
2 = n ‖x‖2

2 ‖z‖
2
2 ,

implying that (4.32) can only hold with χ = O (n) in this case.
Besides this, when φ is a linear image of a Rademacher vector, i.e. φ = Aη
where A ∈ Rm×n and η has independent components [η]i ∈ {±1} with Prob{[η]i =
1} = Prob{[η]i = −1} = 1/2, one has Σ = AAT , and

E
[
(zTφφT (x− x∗))2

]
≤ E

[
(zTφ)4

]1/2
E
[
((x− x∗)Tφ)4

]1/2
≤ 2zTΣz (x− x∗)TΣ(x− x∗) ≤ 2σ1(Σ) ‖z‖2

2 ‖x− x
∗‖2

Σ
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implying (4.32) with χ = 4. On the other hand, E
[
(φTx)4

]
≤ 2

∥∥∥ATx∥∥∥4

2
(cf. the

case of sub-Gaussian regressors above), and, denoting µ = maxj ‖Rowj(A)‖2, we get
Prob

(
‖φ‖4

∞ ≥ tµ
)
≤ 2ne−t2/2, with

E
[
‖φ‖2

∞

]
≤ 2µ2[log[2n] + 1] and E

[
‖φ‖4

∞

]
≤ 4µ4[log2[2n] + 2 log[2n] + 2].

Thus,

ζ2(x) = E
[∥∥∥[φφT − Σ](x− x∗)− σξφ

∥∥∥2

∞

]
≤
[
(E
[
‖φ‖4

∞

]
)1/4(E

[
(φT (x− x∗))4

]
)1/4 + σ(E

[
‖φ‖2

∞

]
)1/2 +

√
υ ‖x− x∗‖Σ

]2
≤
[√

4(log[2n] + 2)µ ‖x− x∗‖Σ + σ
√

2(log[2n] + 1)µ+
√
υ ‖x− x∗‖Σ

]2

≤ 2
(
µ
√

4(log[2n] + 2) +
√
υ
)2
‖x− x∗‖2

Σ + 4µ2(log[2n] + 1)σ2

what is (4.9) with κν . µ2 log n+ υ, κ′ . 1, and ς2
∗ . µ2σ2 log n.

3. Scale mixtures: Let us now assume that

φ ∼
√
Zη, (4.34)

where Z is a scalar a.s. positive random variable, and η ∈ Rn is independent of Z
with covariance matrix E

[
ηηT

]
= Σ0. Because

E
[
‖φ‖2

∞

]
= E [Z]E

[
‖η‖2

∞

]
, E

[∥∥∥φφT z∥∥∥2

∞

]
= E

[
Z2
]
E
[∥∥∥ηηT z∥∥∥2

∞

]
and

[Σ :=] E
[
φφT

]
= E [Z]E

[
ηηT

]
,

we conclude that if random vector η satisfies (4.29) with Σ0 substituted for Σ
and E [Z2] is finite then a similar bound also holds for φ. It is obvious that if η
satisfies (4.32) then

E
[
(zTφφTx)2

]
= E

[
Z2
]
E
[
(zTηηTx)2

]
≤ E [Z2]

E [Z]2
χ ‖z‖2

Σ ‖x‖
2
Σ

≤ χ
E [Z2]
E [Z]2

σ1(Σ) ‖z‖2
2 ‖x‖

2
Σ ,

and (4.32) holds for φ with χ replaced with χE[Z2]
E[Z]2 .

Let us consider the situation where η ∼ N (0,Σ0) with positive definite Σ0. In this
case φ is referred to as Gaussian scale mixture with a standard example provided by n-
variate t-distributions tn(q,Σ0) (multivariate Student distributions with q degrees of
freedom, see [Kotz and Nadarajah, 2004] and references therein). Here, by definition,
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tn(q,Σ0) is the distribution of the random vector φ =
√
Zη with Z = q/ζ, where ζ

is the independent of η random variable following χ2-distribution with q degrees of
freedom. One can easily see that all one-dimensional projections eTφ, ‖e‖2 = 1, of φ
are random variables with univariate tq-distribution. When φi ∼ tn(q,Σ0) with q > 4,
we have for ζ ∼ χ2

q

E
[
q

ζ

]
= q

q − 2 , E
[
q2

ζ2

]
= 3q2

(q − 2)(q − 4) ,

so that Σ = q
q−2Σ0, and

ς2(x) = E
[∥∥∥[φφT − Σ](x− x∗)− σξφ

∥∥∥2

∞

]
.
q − 2
q − 4υ log[n] ‖x− x∗‖Σ + σ2υ log n

implying (4.9) with κ,κ′ . 1 and ς2
∗ . σ2υ log n. Moreover, in this case

E
[
(zTφφTx)2

]
= E

[
Z2
]
E
[
zTηηTx)2

]
≤ 3E [Z2]

E [Z]2
‖z‖2

Σ ‖x‖
2
Σ ≤ 9q − 2

q − 4σ1(Σ) ‖z‖2
2 ‖x‖

2
Σ .

Another example of Gaussian scale mixture (4.34) is the n-variate Laplace distribution
Ln(λ,Σ0) [Eltoft et al., 2006] in which Z has exponential distribution with parameter
λ. In this case all one-dimensional projections eTφ, ‖e‖2 = 1, of φ are Laplace
random variables. If φi ∼ Ln(λ,Σ0) one has

ς2(x) . υ log[n] ‖x− x∗‖Σ + σ2υ log n

and

E
[
(zTφφTx)2

]
. σ1(Σ) ‖z‖2

2 ‖x‖
2
Σ .

4.4.2 Stochastic Mirror Descent for low-rank matrix recovery
In this section we consider the problem of recovery of matrix x∗ ∈ Rp×q, from indepen-

dent and identically distributed observations

ηi = 〈φi, x∗〉+ σξi, i = 1, 2, ..., N, (4.35)

with φi ∈ Rp×q which are random independent over i with covariance operator Σ (defined
according to Σ(x) = E [φ 〈φ, x〉]). We assume that ξi ∈ R are mutually independent and
independent of φi with E [ξi] = 0 and E [ξ2

i ] ≤ 1.
In this application, E is the space of p× q matrices equipped with the Frobenius scalar

product

〈a, b〉 = Tr
(
aT b

)
with the corresponding norm ‖a‖2 = 〈a, a〉1/2. For the sake of definiteness, we assume
that p ≥ q ≥ 2. Our choice for the norm ‖·‖ is the nuclear norm ‖x‖ = ‖σ(x)‖1
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where σ(x) is the singular spectrum of x, so that the conjugate norm is the spectral norm
‖y‖∗ = ‖σ(y)‖∞. We suppose that

µΣ ‖x‖2
2 ≤ 〈x,Σ(x)〉 ≤ υ ‖x‖2

2 ∀x ∈ Rp×q,

with known µΣ > 0 and υ, we write µΣI � Σ � υI; for x ∈ Rp×q we denote ‖x‖Σ =√
〈x,Σ(x)〉. Finally, we assume that matrix x∗ is of rank s ≤ s̄ ≤ q, and moreover, that

we are given a convex and closed subset X of Rp×q such that x∗ ∈ X, along with R <∞
and x0 ∈ X satisfying ‖x∗ − x0‖ ≤ R.

Consider the following stochastic optimization problem

min
x∈X

{
f(x) = 1

2E
[
(η − φTx)2

]}
, (4.36)

so that f̃(x, ω) = (η−φTx)2 with ω = [φ, η]. We are to apply SMD algorithm to solve (4.36)
with the proximal setup associated with the nuclear norm with quadratically growing
for q ≥ 2 distance-generating function

ϑ(x) = 2e log(2q)
 q∑
j=1

σ1+r
j (x)

 2
1+r

, r = (12 log[2q])−1 ,

(here σj(x) are singular values of x) with the corresponding parameter Θ ≤ C log[2q]
(cf. [Nesterov and Nemirovski, 2013, Theorem 2.3]). Note that, in the premise of this
section,

f(x) = 1
2E

[
(σξ + 〈φ, x∗ − x〉)2

]
= 1

2(‖x− x∗‖2
Σ + σ2),

with

∇f(x) = Σ(x− x∗) = E[φ(〈φ, x− x∗〉 − σξ)︸ ︷︷ ︸
=∇f̃(x,ω)

]

and

ζ(x, ω) = ∇f̃(x, ω)−∇f(x) = [φ 〈φ, x− x∗〉 − Σ(x− x∗)]− σφξ.

Let us now consider the case regressors φi ∈ Rp×q drawn independently from a sub-
Gaussian ensemble, φi ∼ SG(0, S) with sub-Gaussian operator S. The latter means
that

E
[
e〈x,φ〉

]
≤ e

1
2 〈x,S(x)〉 ∀x ∈ Rp×q

with linear positive definite S(·). To show the bound of Theorems 4.1–4.3 in this case we
need to verify that relationships (4.9) and (4.25) of Assumptions 4.3 and 4.3 are satisfied.
To this end, let us assume that S is “similar” to the covariance operator Σ of φ, namely,
S � µΣ with some µ <∞. This setting covers, for instance, the situation where the entries
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in the regressors matrix φ ∈ Rp×q are standard Gaussian or Rademacher i.i.d. random
variables (in these models, S = Σ is the identity, and f(x)− f(x∗) = 1

2 ‖x− x
∗‖2

2).
Note that, more generally, when S � µΣ we have S � µυI with

E
[
‖φ‖4

∗

]
≤ C2µ2υ2(p+ q)2,

cf. Lemma 4.3 of the appendix, and

E
[
〈φ, x− x∗〉4

]
≤ 16 〈x− x∗, S(x− x∗)〉2 ≤ 16µ2 ‖x− x∗‖2

Σ

for sub-Gaussian random variable 〈φ, x− x∗〉 ∼ SG(0, 〈x− x∗, S(x− x∗)〉). Therefore,

E
[
‖φ 〈φ, x− x∗〉∗ − Σ(x− x∗)‖2

]
≤ 2E

[
‖φ 〈φ, x− x∗〉‖2

∗

]
+ 2υ ‖x− x∗‖2

Σ

≤ 2E
[
‖φ‖4

∗

]1/2
E
[
〈φ, x− x∗〉4

]1/2
+ 2υ ‖x− x∗‖2

Σ

≤ 8Cµ2(p+ q)υ ‖x− x∗‖2
Σ + 2υ ‖x− x∗‖2

Σ .

Taking into account that ν = E
[
‖φ‖2

∗

]
≤ Cµυ(p+ q) in this case, we have

ς2(x) = E
[
‖ζ(x, ω)‖2

∗

]
≤ 2E

[
‖φ 〈φ, x− x∗〉 − Σ(x− x∗)‖2

∗

]
+ 2σ2E

[
‖φ‖2

∗

]
≤ 8(4Cµ2(p+ q) + 1)υ[f(x)− f ∗] + 2Cµυ(p+ q)σ2︸ ︷︷ ︸

=ς2∗

implying (4.9) with κ . µ and κ′ . 1.
Similarly, we estimate ∀x ∈ X, z ∈ Rp×q

E
[
〈φ, z〉2 〈φ, x〉2

]
≤ E

[
〈z, φ〉4

]1/2
E
[
〈φ, x〉4

]1/2
≤ 16 〈z, S(z)〉 〈x, S(x)〉 ≤ 16µ2υ ‖z‖2

2 ‖x‖
2
Σ ,

so that

E
[
〈z, ζ(x, ω)〉2

]
= E

[
〈z, φ 〈φ, x− x∗〉 − Σ(x− x∗)− σφξ〉2

]
= E

[
(〈z, φ〉 〈φ, x− x∗〉 − 〈z,Σ(x− x∗)〉)2

]
+ σ2E

[
ξ2 〈z, φ〉2

]
≤ E

[
〈z, φ〉2 〈φ, x− x∗〉2

]
+ σ2υ ‖z‖2

2

≤ 16µ2υ (f(x)− f ∗) ‖z‖2
2 + σ2υ ‖z‖2

2

implying the bound (4.25) with χ . µ(p+ q)−1 and χ′ . µ−1(p+ q)−1. When substituting
the above bounds for problem parameters into statements of Theorems 4.1–4.3 we obtain
the following statement summarizing the properties of the approximate solutions by the
SMD-SR algorithm utilizing observations (4.35).

Proposition 4.4. In the situation of this section,
(i) let the sample size N satisfy

N ≥ α

[
µ2υ(p+ q)s̄ log q

µΣ

]
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for an appropriate absolute α, implying that at least one preliminary stage of Algorithm 4.1
is completed. Then there is an absolute c > 0 such that approximate solutions x̂N and ŷN
produced by the algorithm satisfy

Risk‖·‖(ŷN |X) ≤ 8sRisk‖·‖2(x̂N |X) . R2 exp
(
− cNµΣ

µ2υ(p+ q)s̄ log q

)
+ σ2µυ(p+ q)s̄2 log q

µ2
ΣN

,

Riskf (x̂N |X) . µΣR
2

s̄
exp

(
− cNµΣ

µ2υ(p+ q)s̄ log q

)
+ σ2µυ(p+ q)s̄ log q

µΣN
.

(ii) Furthermore, when observation size satisfies

N ≥ α′
[
µ2υ(p+ q)s̄ log[1/ε] log q

µΣ

]

with large enough α′, 1 − ε reliable solutions ŷN,1−ε and x̂N,1−ε defined in Section 4.3.1
satisfy for some c′ > 0

Risk‖·‖,ε(ŷN,1−ε|X) ≤
√

2sRisk‖·‖2,ε(ŷN,1−ε|X) ≤ 2
√

2sRisk‖·‖2,ε(x̂N,1−ε|X)

. R exp
(
− c′NµΣ

µ2υ(p+ q)s̄ log[1/ε] log q

)
+ σs̄

µΣ

√
µυ(p+ q) log[1/ε] log q

N
, (4.37)

with solutions x̂′N,1−ε, x̂′′N,1−ε and ŷ′N,1−ε, ŷ′′N,1−ε verifying analogous bounds. Finally, the
following bound holds for the aggregated solution x2N,1−ε (with K = N) by Algorithm 4.2:

Riskf,ε(x2N,1−ε|X) . µΣR
2

s̄
exp

(
− c′NµΣ

µ2υ(p+ q)s̄ log[1/ε] log q

)
+ σ2µυ(p+ q)s̄ log[1/ε] log q

µΣN
.

Remark. Let us now compare the bounds of the proposition to available accuracy
estimates for low rank matrix recovery. Notice first, that when assuming that µ . 1 the
bounds of the proposition hold if (the upper bound on unknown) signal rank s̄ satisfies

s̄ .
NµΣ

(p+ q)υ log[1/ε] log q .

The above condition is essentially the same, up to logarithmic in 1/ε factor, as the best
condition on rank of the signal to be recovered under which the recovery is exact in the
case of exact—noiseless—observation [Candes and Plan, 2011b, Recht et al., 2010]. The
risk bounds of Proposition 4.4 can be compared to the corresponding accuracy bounds for
recovery x̂N,Lasso by Lasso with nuclear norm penalization, as in [Koltchinskii et al., 2011,
Negahban and Wainwright, 2011]. For instance, when regressors φi have i.i.d. N (0, 1)
entries they state (cf. [Negahban and Wainwright, 2011, Corollary 5]) that the ‖·‖2 , ε-risk
of the recovery satisfies the bound

Risk‖·‖2,ε(x̂N,Lasso|X) . σ2r(p+ q)
N

for ε ≥ exp−(p+ q). Observe that the above bound coincides, up to logarithmic in q
and 1/ε factors with the second—asymptotic—term in the bound (4.37). This result
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is all the more surprising if we recall that its validity is not limited to sub-Gaussian
regressors—what we need in fact is the bound (cf. the remark after Proposition 4.3)

E
[
‖φ 〈φ, z〉‖2

∗

]
. (p+ q) ‖x− x∗‖2

Σ . (4.38)

For instance, one straightforwardly verifies that the latter bound holds, for instance, in the
case where regressor φ is a scale mixtures of matrices satisfying (4.38) (e.g., scale mixture
of sub-Gaussian matrices).

4.5 Experiments
Here we present a small simulation study illustrating the performance of the SMD

algorithm.

Problem statement and model description We analyze the application of the SMD-
SR algorithm to sparse linear regression model of Section 4.4.1,

ηi = φTi x
∗ + σξi, i = 1, 2, ..., N.

The signal x∗ ∈ Rn is assumed to be s-sparse; we consider large-scale setting with
(N, n, s) = (100000, 100000, 50) of the case N ≤ n. The random observations (φi, ξi)Ni=1 are
assumed to be mutually independent. In our first experiments, the noise terms (ξi)Ni=1 are
standard Gaussian, and regressors (φi)Ni=1 are normally distributed with zero mean and
covariance matrix Σ. Matrix Σ is diagonal with entries µ = Σ1,1 ≤ Σ2,2 ≤ · · · ≤ Σn,n = ν.
The parameters (µ, ν) are specific for each experiment, while the rest (Σi,i)n−1

i=2 are evenly
spaced in the segment [µ, ν]. The components of the optimal solution x∗ are evenly spaced
in [1, n] with the non-zero entries being sampled from the standard Gaussian distribution.
The number s of non-zero components is assumed to be known.

We consider the following stochastic optimization problem

min
x∈Rn

{
f(x) = 1

2E
[(
η − φTx

)2
]}
,

with inexact gradients ∇f̃(x, ω) = φφT (x− x∗)− σξφ being accessible at each iteration.
We compare the SMD-SR procedure with the SMD algorithm having the same proximal

operator and with the coordinate descent algorithm (CDA) solving the Lasso problem

min
x∈Rn

{
1

2N

N∑
i=1

(
ηi − φTi x

)2
+ λ ‖x‖1

}
, with λ = 2

√
2σ
√

log(n)
N

, (4.39)

implemented in a Python package sklearn. The choice of λ in (4.39) is theoretically optimal
according to [Bickel et al., 2009, Koltchinskii et al., 2011]. The code of the SMD algorithm
is the same as the one used by the SMD-SR procedure.
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Algorithm 4.3 Asymptotic phase of Algorithm 4.1, when using mini-batches of exponen-
tially increasing sizes.
1: Initialization:

Set the constant step size β0 = 2κν,
and the number of steps of the SMD to perform per stage

m0 =
⌋
16µ−1s̄(8Θκ + 1)ν

⌊
,

and the coefficient for the mini-batch sizes l0 = log(n).
2: for k = 1, . . . , K ′ do stages of the asymptotic phase
3: — Launch the SMD, initialized with y′k−1, for m0 iterations with the constant step

size parameter β0, using mini-batches with size lk = l02k. Obtain an approximate
solution x̂m0(y′k−1, β0).

4: — Define y′k as s-sparsification of x̂m0(y′k−1, β0).
5: end for
6: Output: ŷN = y′K′ and x̂N = x̂m0(y′K′−1, β0).

Mini-batches in the asymptotic phase In our simulations, we use mini-batch im-
plementation of the asymptotic phase of the SMD-SR algorithm. It allows to reduce
the computational complexity of the method while preserving the convergence bounds of
Theorem 4.1. Mini-batch technique essentially amounts to averaging stochastic gradients
when staying at one point. Then the updates are made using the averaged oracle responses.
We use mini-batches of exponentially increasing sizes lk = 2kl0, where k is the index of the
asymptotic phase of the algorithm. This allows to run the algorithm with the constant step
size parameter βk = β0 and constant number of steps per asymptotic stage mk = m0. This
might significantly reduce the computational complexity of the algorithm in the case with
expensive computation of proximal mapping (4.11) and/or in a distributed setting. The
updated scheme of the asymptotic phase with mini-batches is presented in Algorithm 4.3.

The theoretical guarantees for approximate solutions by the Algorithm 4.3 with mini-
batches are essentially the same as those of the standard implementation given in Algo-
rithm 4.1. We will assume that for mini-batch with size l the following holds

E

∥∥∥∥∥1
l

l∑
i=1

ζ(x, ωi)
∥∥∥∥∥

2

∗

 ≤ Cς2
∗/l

for every x ∈ X with the factor C = C(n) depending on problem dimension. 6 Let us then
set up l0 = cCb.

Workarounds for SMD-SR The choice of algorithm parameters given in Section 4.4.1
is derived from the theoretical worst-case perspective and is typically very conservative in
practice. We give a brief overview of the workarounds used in our simulations.

6. Note that the factor C(n) = 1 in the case of Gaussian regressors and is always bounded
with O (log(n)). For instance, C(n) ∼ logn in the case of Rademacher and bounded regressors.
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— First of all, the number of steps m0 to be performed by the SMD algorithm on
each preliminary stage is taken as m0 = c(1/2)sν(log(n) + 1)b, which coincides
with (4.18) in the case of µ = 1.0.

— In our simulations, we apply the CUSUM test for monitoring a change detec-
tion [Ploberger and Krämer, 1992, Lee et al., 2003] to define the switching point
between the preliminary and the asymptotic phase of the algorithm. In any case,
we perform at least 4 preliminary stages: if we pass to the asymptotic phase slightly
lately, the SMD-SR procedure is fast to regain the pace even if there is an unstable
behavior at the end of the preliminary phase.

— We use mini-batches instead of the exponentially increasing mk and βk. This allows
to significantly accelerate the method at the asymptotic regime alleviating the
computational burden of expensive prox-evaluations.

— Our step size strategy is to use variable step sizes βi = β0 ‖φi‖2
∞ with a constant

factor β0 = 1.0 both for SMD-SR and SMD. The optimal choice of β0 was made
in accordance with the condition β0 ≥ ν, neglecting the constants derived in the
theoretical analysis. In order to compute the current approximate solution, the
estimates of the SMD algorithm are then weighted according to the corresponding
step sizes βi.

Setups We conduct comparisons of the SMD-SR procedure with the SMD algorithm
and with the coordinate descent algorithm for the Lasso version of sparse linear regression
problem. First, we consider four setups, each corresponding to a specific pair (µ, σ), where µ
belongs to {0.1, 1.0} and σ ∈ {0.001, 0.1}. We run 15 simulations for each combination
of parameters. On the figures below we present the median curve along with the tube of
25% and 75% quantiles around it. For the SMD algorithm we plot both the averaged and
the non-averaged solutions. Plots presented in Figure 4.1 illustrate the improvement by
the SMD-SR procedure over the plain SMD algorithm in the considered settings. The
acceleration of the initial error convergence is clearly seen on the plots for σ = 0.001.

We present a comparison with the CDA for Lasso in Figure 4.2 in the case of
large noise, σ = 10.0. Due to memory limitations of the CDA, we consider the setup
with (N, n, s) = (10000, 50000, 50). The CDA is restarted for different sizes of the observa-
tion sample, each time the number of iterations of the algorithm is limited to N = 10000.
Same as in the previous comparison, we run 15 simulations; the plots represent the median
curve along with the tube of 25% and 75% quantiles.

While the coordinate descent algorithm outperforms the SMD-SR procedure for smaller
values of (N, n, σ), the proposed algorithm appears to be competitive in the large noise
setting. This improvement is especially notable in terms of the time of performance.

Similar results were observed when utilizing other distributions of φi and ξi. For
instance, the results of simulations with regressors randomly drawn from the Hadamard
basis in Rn with n = 65536 = 216 are presented in Figures 4.3 and 4.4.

Finally, we consider the case of heavy-tail noises—we run simulations with t4-distribution
(multivariate Student distribution with 4 degrees of freedom) of the noise and regressors.
Regressors components were scaled in accordance with the diagonal entries of the covariance
matrix Σ. We present the results of the simulations in Figures 4.5 and 4.6.
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Figure 4.1 – Comparison of SMD-SR and SMD for (N, n, s) = (150000, 100000, 50) in the
Gaussian setting. For all the plots, the prediction error is given on a logarithmic scale,
and the x-axis denotes the number of steps (oracle calls). The colored tubes represent the
25% and 75% quantiles.
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Figure 4.2 – Comparison of SMD-SR and CDA for (N, n, s) = (10000, 50000, 50) on the
Lasso problem in the Gaussian setting. For all the plots, the prediction error is given on a
logarithmic scale, and the x-axis denotes the number of steps (oracle calls). The colored
tubes represent the 25% and 75% quantiles.
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Figure 4.3 – Comparison of SMD-SR and SMD for (N, n, s) = (150000, 65536, 50), when
regressors φi constitute Hadamard basis and ξ is a standard Gaussian noise. For all the
plots, the prediction error is given on a logarithmic scale, and the x-axis denotes the
number of steps (oracle calls). The colored tubes represent the 25% and 75% quantiles.
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Figure 4.4 – Comparison of SMD-SR and CDA on the Lasso problem with (N, n, s) =
(10000, 65536, 50), when regressors φi constitute Hadamard basis and ξ is standard Gaussian
noise. For all the plots, the prediction error is given on a logarithmic scale, and the x-axis
denotes the number of steps (oracle calls). The colored tubes represent the 25% and 75%
quantiles.
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Figure 4.5 – Comparison of SMD-SR and SMD for (N, n, s) = (150000, 100000, 50) in
the setting of t4-distributed noise. For all the plots, the prediction error is given on a
logarithmic scale, and the x-axis denotes the number of steps (oracle calls).
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Figure 4.6 – Comparison of SMD-SR and CDA on the Lasso problem with (N, n, s) =
(10000, 50000, 50) in the setting of t4-distributed noise. For all the plots, the prediction
error is given on a logarithmic scale, and the x-axis denotes the number of steps (oracle
calls). The colored tubes represent the 25% and 75% quantiles.



Appendix

4.A Proof of Proposition 4.1
We start with a technical result on the SMD algorithm which we formulate in a more

general setting of composite minimization. Specifically, assume that we aim at solving the
problem

min
x∈X

{
F (x) = Ex

[
f̃(x, ω)

]
+ h(x) := f(x) + h(x)

}
, (4.40)

where the set X and the function f̃ are as in Section 4.2.1 and h is convex and continuous.
We consider a more general composite proximal mapping: for ζ ∈ E, x, x0 ∈ X, and β > 0
we define

Proxβ(ζ, x;x0) : = argmin
z∈X

{〈ζ, z〉+ h(z) + βVx0(x, z)}

= argmin
z∈X

{〈ζ − βϑ′(x− x0), z〉+ h(z) + βϑ(z − x0)} (4.41)

and consider for i = 1, 2, . . . the stochastic mirror descent recursion (4.12). Same as
before, the approximate solution after N iterations of the algorithm is defined as the
weighted average of (xi)Ni=1 according to (4.13). Obviously, one can recover the setting of
Section 4.2.2 by putting h(x) ≡ 0. Without loss of generality, we can assume that x0 = 0
and denote V (x, z) = V0(x, z). Besides, we denote

ζi = ∇f̃(xi−1, ωi)−∇f(xi−1)

and

ε(xN , z) =
N∑
i=1

β−1
i−1 (〈∇f(xi−1), xi − z〉+ h(xi)− h(z)) + 1

2V (xi−1, xi), (4.42)

with xN = (x0, . . . , xN). In the sequel, we use the following result.
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Proposition 4.5. In the situation of this section, let βi ≥ 2L for all i = 0, 1, ..., and let
x̂N be defined in (4.13), where xi are the iterations (4.12). Then for any z ∈ X we have[

N∑
i=1

β−1
i−1

]
[F (x̂N)− F (z)] ≤

N∑
i=1

β−1
i−1[F (xi)− F (z)] ≤ ε(xN , z)

≤ V (x0, z)− V (xN , z) +
N∑
i=1

[
〈ζi, z − xi−1〉

βi−1
+ ‖ζi‖

2
∗

β2
i−1

]
(4.43)

≤ 2V (x0, z) +
N∑
i=1

[
〈ζi, zi−1 − xi−1〉

βi−1
+ 3

2
‖ζi‖2

∗
β2
i−1

]
, (4.44)

where zi is a random vector with values in X depending only on x0, ζ1, . . . , ζi.

Proof of Proposition 4.5. 1o. Let x0, . . . , xN be some points of X; let

εi+1(z) := 〈∇f(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉+ LV (xi, xi+1).

Note that V (x, z) ≥ 1
2 ‖x− z‖

2 due to the strong convexity of V (x, ·). Thus, by convexity
of f and h and the Lipschitz continuity of ∇f we get for any z ∈ X

F (xi+1)− F (z) = [f(xi+1)− f(z)] + [h(xi+1)− h(z)]
= [f(xi+1)− f(xi)] + [f(xi)− f(z)] + [h(xi+1)− h(z)]
≤ [〈∇f(xi), xi+1 − xi〉+ LV (xi, xi+1)] + 〈∇f(xi), xi − z〉+ h(xi+1)− h(z)
≤ 〈∇f(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉+ LV (xi, xi+1) = εi+1(z);

i.e., the following inequality holds for any z ∈ X:

F (xi+1)− F (z) ≤ εi+1(z). (4.45)

2o. Let us first prove inequality (4.43). In view of (4.41), the optimality condition for xi+1
in (4.12.a) has the form〈

∇f̃(xi, ωi+1) + h′(xi+1) + βi[ϑ′(xi+1)− ϑ′(xi)], z − xi+1
〉
≥ 0, ∀ z ∈ X,

or, equivalently,〈
∇f̃(xi, ωi+1) + h′(xi+1), xi+1 − z

〉
≤ βi 〈ϑ′(xi+1)− ϑ′(xi), z − xi+1〉
= βi 〈V ′(xi, xi+1), z − xi+1〉
= βi (V (xi, z)− V (xi+1, z)− V (xi, xi+1)) , ∀ z ∈ X 7

what results in

〈∇f(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉 ≤ βi (V (xi, z)− V (xi+1, z)− V (xi, xi+1))
− 〈ζi+1, xi+1 − z〉 . (4.46)

7. The last equality follows from the following remarkable identity see, for instance, [Chen and Teboulle,
1993]: for any u, u′ and w ∈ X

〈V ′(u, u′), w − u′〉 = V (u,w)− V (u′, w)− V (u, u′).
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It follows from (4.45) and condition βi ≥ 2L that

F (xi+1)− F (z) ≤ εi+1(z) ≤ 〈∇f(xi), xi+1 − z〉+ 〈h′(xi+1), xi+1 − z〉+ βi
2 V (xi, xi+1).

Together with (4.46), this inequality implies

εi+1(z) ≤ βi

[
V (xi, z)− V (xi+1, z)−

1
2V (xi, xi+1)

]
− 〈ζi+1, xi+1 − z〉 .

On the other hand, due to the strong convexity of V (x, ·) we have

〈ζi+1, z − xi+1〉 −
βi
2 V (xi, xi+1) = 〈ζi+1, z − xi〉+ 〈ζi+1, xi − xi+1〉 −

βi
2 V (xi, xi+1)

≤ 〈ζi+1, z − xi〉+ ‖ζi+1‖2
∗

βi
.

Combining these inequalities, we obtain

F (xi+1)− F (z) ≤ εi+1(z) ≤ βi[V (xi, z)− V (xi+1, z)]− 〈ζi+1, xi − z〉+ ‖ζi+1‖2
∗

βi
(4.47)

for all z ∈ X. Dividing (4.47) by βi and taking the sum over i from 0 to N − 1 we
obtain (4.43).
3o. We now prove the bound (4.44). Applying Lemma 6.1 of [Nemirovski et al., 2009]
with z0 = x0 we get for all z ∈ X

N∑
i=1

β−1
i−1 〈ζi, z − zi−1〉 ≤ V (x0, z) + 1

2

N∑
i=1

β−2
i−1 ‖ζi‖

2
∗ , (4.48)

where zi = argminz∈X{−β−1
i−1 〈ζi, z〉+ V (zi−1, z)} depends only on z0, ζ1, . . . , ζi. Further,

N∑
i=1

β−1
i−1 〈ζi, z − xi−1〉 =

N∑
i=1

β−1
i−1 [〈ζi, zi−1 − xi−1〉+ 〈ζi, z − zi−1〉] ≤

≤ V (x0, z) +
N∑
i=1

β−1
i−1 〈ζi, zi−1 − xi−1〉+ 1

2β
−2
i−1 ‖ζi‖

2
∗ .

Combining this inequality with (4.43) we arrive at (4.44). �

Proof of Proposition 4.1. Note that, by definition, ν ≥ L and κ ≥ 1, thus, Proposi-
tion 4.5 can be applied to the corresponding SMD recursion. When applying recursively the
bound (4.43) of the proposition with z = x∗ and h(x) ≡ 0 we conclude that E [Vx0(xi, x∗)]
is finite along with E

[
‖xi − x∗‖2

]
, and so E [〈ζi+1, xi − x∗〉] = 0. Thus, after taking

expectation we obtain
m∑
i=1

[E [f(xi)]− f ∗] ≤ βE [Vx0(x0, x
∗)− Vx0(xm, x∗)] + β−1

m∑
i=1

E
[
‖ζi‖2

∗

]
≤ E [Vx0(x0, x

∗)− Vx0(xm, x∗)]

+ β−1
m∑
i=1

(
κν[E [f(xi−1)− 〈∇f(x∗), xi−1 − x∗〉]− f ∗] + κ′ς2

∗

)
,
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what, thanks to convexity of F , leads to[
1− κν

β

]
m∑
i=1

E [f(xi)− f ∗] + βE [Vx0(xm, x∗)]

≤ βE [Vx0(x0, x
∗)] + κν

β
[E [f(x0)− 〈∇f(x∗), x0 − x∗〉]− f ∗] + mκ′ς2

∗
β

.

Because, due to the convexity of f , we have f(x̂m) ≤ 1
m

∑m
i=1 f(xi) and

E [f(x0)− 〈∇f(x∗), x0 − x∗〉]− f ∗ ≤
1
2νE

[
‖x0 − x∗‖2

]
≤ 1

2νR
2

we conclude that when β ≥ 2κν

E [f(x̂m)]− f ∗ ≤ 2
m

(
βΘR2 + κν

β
E [Vf (x∗, x0)]

)
+ 2κ′ς2

∗
β

≤ 2R2

m

(
Θβ + κν2

2β

)
+ 2κ′ς2

∗
β

and we obtain (4.14). �

4.B Proof of Theorem 4.1
We start with the following straightforward result:

Lemma 4.1. Let x∗ ∈ X ⊂ E be s-sparse, x ∈ X, and let xs = sparse(x)—an optimal
solution to (4.10). We have

‖xs − x∗‖ ≤
√

2s ‖xs − x∗‖2 ≤ 2
√

2s ‖x− x∗‖2 . (4.49)

Proof. Indeed, we have

‖xs − x∗‖2 ≤ ‖xs − x‖2 + ‖x− x∗‖2 ≤ 2 ‖x− x∗‖2

(recall that x∗ is s-sparse). Because xs − x∗ is 2s-sparse we have by Assumption 4.2

‖xs − x∗‖ ≤
√

2s ‖xs − x∗‖2 ≤ 2
√

2s ‖x− x∗‖2 .

�

Proof of the theorem relies upon the following characterization of the properties of
approximate solutions yk, xk, x′k and y′k.

Proposition 4.6. Under the premise of Theorem 4.1,
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(i) after k preliminary stages of the algorithm one has

E
[
‖yk − x∗‖2

]
≤ 2sE

[
‖yk − x∗‖2

2

]
≤ 2−kR2 + 32ς

2
∗ s̄κ′

µνκ
, (4.50)

E [f(x̂m0(yk−1, β))]− f ∗ ≤ 2−k−4µR
2
0

s̄
+ 2κ′ς2

∗
κν

. (4.51)

In particular, upon completion of K = K preliminary stages approximate solutions x̂(1)

and ŷ(1) satisfy

E
[∥∥∥ŷ(1) − x∗

∥∥∥2
]
≤ 2sE

[∥∥∥ŷ(1) − x∗
∥∥∥2

2

]
≤ 64ς

2
∗ s̄κ′

µνκ
, (4.52)

E
[
f(x̂(1))

]
− f ∗ ≤ 4κ′ς2

∗
κν

. (4.53)

(ii) Suppose that at least one asymptotic stage is complete. Let r2
k = 2−kr2

0 where r2
0=64 ς

2
∗ s̄κ′
µνκ .

Then after k stages of the asymptotic phase one has

E
[
‖y′k − x∗‖

2] ≤ 2sE
[
‖y′k − x∗‖

2
2

]
≤ r2

k = 2−kr2
0, (4.54)

E
[
f(x̂mk(y′k−1, β))

]
− f ∗ ≤ 4ς2

∗κ′

βk
≤ 2−k+2 ς

2
∗κ′

κν
. (4.55)

Proof. 1o. We first show that under the premise of the proposition the following relationship
holds for 1 ≤ k ≤ K:

E
[
‖yk − x∗‖2

]
≤ R2

k := 1
2R

2
k−1 + 16ς∗s̄κ′

µνκ
, R0 = R. (4.56)

Obviously, (4.56) implies (4.50) for all 1 ≤ k ≤ K. Observe that (4.56) clearly holds
for k = 1. Let us now perform the recursive step k − 1 → k. Indeed, bound (4.14) of
Proposition 4.1 implies that after m0 iterations of the SMD with the step size parameter
satisfying (4.17) and initial condition x0 such that E

[
‖x0 − x∗‖2

]
≤ Rk−1 one has

E [f(x̂m0)]− f ∗ ≤ 2
m0

[
2Θκν + ν

4

]
R2
k−1 + κ′ς2

∗
κν

≤ [8Θκ + 1]ν
2m0

R2
k−1 + κ′ς2

∗
κν

. (4.57)

Note that when m0 ≥ 16µ−1s̄(8Θκ + 1)ν we have

8s̄
µ

[8Θκ + 1]ν
m0

≤ 1
2 .

Therefore, when utilizing the bound (4.49) of Lemma 4.1 we get

E
[
‖yk − x∗‖2

]
≤ 2s̄E

[
‖yk − x∗‖2

]
≤ 8s̄E

[
‖x̂m0 − x∗‖

2
2

]
≤ 16s̄

µ
[E [f(x̂m0)]− f ∗]

≤ 16s̄
µ

(
[8Θκ + 1]ν

2m0
R2
k−1 + κ′ς2

∗
κν

)
≤ R2

k := 1
2R

2
k−1 + 16ς2

∗ s̄κ′

µκν
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what is (4.56). Finally, when using (4.57) along with (4.50) we obtain

E [f(x̂m0(yk−1, β))]− f ∗ ≤ µR2
k−1

32s̄ + κ′ς2
∗

κν
≤ 2−k−4µR

2
0

s̄
+ 2κ′ς2

∗
κν

what implies (4.51). Now, (4.52) and (4.53) follow straightforwardly by applying (4.50)
and (4.51) with K = K.
2o. Let us prove (4.54). Recall that at the beginning of the first stage of the second phase
we have E [‖ȳ0 − x∗‖] ≤ r2

0. Now, let us do the recursive step, i.e., assume that (4.54) holds
for some 0 ≤ k < K ′, and let us show that it holds for k + 1. Because Θ ≥ 1 and κ ≥ 1
we have β2

k ≥ κν2

2Θ , k = 1, ..., and, by (4.14),

E
[
f(x̂mk(y′k−1, βk))

]
− f ∗ ≤

2r2
k−1
mk

(
Θβk + κν2

2βk

)
+ 2κ′ς2

∗
βk
≤

4Θβkr2
k−1

mk

+ 2κ′ς2
∗

βk

≤ 2−k r
2
0µ

64s̄ + 21−kκ′ς2
∗

κν
≤ 2−k r

2
0µ

16s̄ ≤ 2−k+2κ′ς2
∗

κν
. (4.58)

Observe that

E
[∥∥∥xmk(y′k−1, βk)− x∗

∥∥∥2

2

]
≤ 2
µ

[E
[
f(x̂mk(y′k−1, βk))

]
− f ∗] ≤ 2−k r

2
0

8s̄ ,

so that by Lemma 4.1

E
[
‖y′k − x∗‖

2] ≤ 8sE
[∥∥∥xmk(y′k−1, βk)− x∗

∥∥∥2

2

]
≤ 2−kr2

0 = r2
k,

and (4.54) follows. Now (4.55) is an immediate consequence of (4.54) and (4.58). �

Proof of the theorem. 1o. Let us start with the situation where no asymptotic stage
takes place. Because we have assumed that N is large enough so that at least one
preliminary stage took place this can only happen when either m0K ≥ N

2 or m1 ≥ N
2 . Due

to m0 > 1, by (4.52) we have in the first case:

E
[
‖yK − x∗‖2

]
≤ R2

K := 2−KR2
0 + 32ς2

∗ s̄κ′

µνκ
≤ 2−K+1R2

0 ≤ R2
0 exp

(
− cNµ

Θκs̄ν

)
for some absolute c > 0. Furthermore, due to (4.51) we also have in this case

E [f(x̂m0(yK−1, β))]− f ∗ ≤ 2−K−4µR
2
0

s̄
+ 2κ′ς2

∗
κν

≤ 2−K−3µR
2
0

s̄
≤ µR2

0
s̄

exp
(
− cNµ

Θκs̄ν

)
.

Next, m1 ≥ N
2 implies that

s̄

µ
≥ cN

Θνκ (4.59)

for some absolute constant c, so that approximate solution yK at the end of the preliminary
phase satisfies (cf. 4.52)

E
[
‖ŷ − x∗‖2

]
≤ C

ς2
∗ s̄κ′

µνκ
≤ C

Θκ′ς2
∗ s̄

2

µ2N
.
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Same as above, using (4.52) and (4.59) we conclude that in this case

E [f(x̂)]− f ∗ ≤ C
κ′ς2
∗

κν
≤ C

Θκ′ς2
∗ s̄

µN
.

2o. Now, let us suppose that at least one stage of the asymptotic phase was completed.
Applying the bound (4.54) of Proposition 4.6 we have E

[
‖y′K − x∗‖

2
]
≤ r2

0. When
M < N/2, same as above, we have

E
[
‖ŷN − x∗‖2

]
≤ r2

0 ≤ R2
0 exp

(
− cNµ

Θκs̄ν

)
and

E
[
f(x̂mK′ (yK′−1, β))

]
− f ∗ ≤ E [f(x̂)]− f ∗ ≤ µR2

0
s̄

exp
(
− cNµ

Θκs̄ν

)
. (4.60)

When M ≥ N/2, since mk ≤ Cm̄k where m̄k = 512 s̄Θνκ
µ

2k we have

N

2 ≤ C
K′∑
k=1

m̄k ≤ C2K′+1m̄1 ≤ C2K′ s̄Θνκ
µ

.

We conclude that 2−K′ ≤ C s̄Θνκ
µN

so that

E
[
‖ŷN − x∗‖2

]
= E

[
‖ŷK′ − x∗‖2

]
≤ 2−K′r2

0 ≤ C
Θκ′ς2

∗ s̄
2

µ2N
.

Finally, by (4.55),

E
[
f(x̂mK′ (yK′−1, β))

]
− f ∗ ≤ 2−K′+2 ς

2
∗κ′

κν
≤ C

ς2
∗ s̄κ′Θ
µN

;

together with (4.60) this implies (4.15). �

4.C Proof of Theorem 4.2
1o. By the Chebyshev inequality,

∀` Prob
{∥∥∥x̂(`)

M − x∗
∥∥∥

2
≥ 2θM

}
≤ 1

4 ; (4.61)

applying [Minsker, 2015, Theorem 3.1] we conclude that

Prob
{
‖x̂N,1−ε − x∗‖2 ≥ 2CαθM

}
≤ e−Lψ(α, 14 )

where

ψ(α, β) = (1− α) log 1− α
1− β + α log α

β
(4.62)
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and Cα = 1−α√
1−2α . When choosing α =

√
3

2+
√

3 which corresponds to Cα = 2 we ob-
tain ψ(α, 1

4) = 0.1070... > 0.1 so that

Prob
{
‖x̂N,1−ε − x∗‖2 ≥ 4θM

}
≤ ε

if L ≥ 10 log[1/ε]. When combining this result with that of Lemma 4.1 we arrive at the
theorem statement for solutions x̂N,1−ε and ŷN,1−ε.
2o. The corresponding result for x̂′N,1−ε and its “sparsification” ŷ′N,1−ε is due to the
following simple statement.

Proposition 4.7. Let 0 < α < 1
2 , | · | be a norm on E, z ∈ E, and let z`, ` = 1, ..., L be

independent and satisfy

Prob{|z` − z| ≥ δ} ≤ β

for some δ > 0 and β < α. Then for ẑ,

ẑ ∈ Argmin
u∈{z1,...,zL}

L∑
`=1
|u− z`|, (4.63)

it holds

Prob{|ẑ − z| ≥ C ′αδ} ≤ e−Lψ(α,β)

with C ′α = 2+α
1−2α .

Proof. Without loss of generality we may put δ = 1 and z = 0. Proof of the proposition
follows that of [Minsker, 2015, Theorem 3.1] with Lemma 2.1 of [Minsker, 2015] replaced
with the following result. �

Lemma 4.2. Let z1, ..., zL ∈ E, and let ẑ be an optimal solution to (4.63). Let 0 < α < 1
2 ,

and let |ẑ| ≥ C ′α. Then there exists a subset I of {1, ..., L} of cardinality cardI > αL such
that for all ` ∈ I |z`| > 1.

Proof. Let us assume that |z`| ≤ 1, ` = 1, ..., L̄ for L̄ ≥ (1− α)L. Then

L∑
`=1
|z` − ẑ| =

∑
`≤L̄
|z` − ẑ|+

∑
`>L̄

|z` − ẑ| ≥ L̄(Cα − 1) +
∑
`>L̄

[|z`| − Cα]

≥
∑
`≤L̄
|z`|+ L̄(Cα − 2) +

∑
`>L̄

|z`| − (L− L̄)Cα

≥
L∑
`=1
|z`|+ L̄(Cα − 2)− (L− L̄)Cα

≥
L∑
`=1
|z` − z1|+ L̄(2Cα − 2)− LCα + L− 1 >

L∑
`=2
|z` − z1|

for L̄ > LCα+L−1
2(Cα−1) . We conclude that 1− α ≤ Cα+1

2(Cα−1) , same as Cα ≤ 2+α
1−2α . �
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For instance, when choosing α = 1/6 with Cα = 13/4, and β such that Cα/
√
β = 10

we obtain ψ(α, β) = 0.0171... so that for L =c58.46 log[1/ε]b we have Lψ(α, β) ≥ log[1/ε].
Because

Prob
{∥∥∥x̂(`)

M − x∗
∥∥∥

2
≥ θM√

β

}
≤ β, ` = 1, ..., L,

by Lemma 4.2 we conclude that

Prob
{∥∥∥x̂′1−ε,N − x∗∥∥∥2

≥ 10θM
}
≤ ε,

implying statement of the theorem for x̂′1−ε,N and ŷ′1−ε,N .
3o. The proof of the claim for solutions x̂′′1−ε,N and ŷ′′1−ε,N follows the lines of that of [Hsu
and Sabato, 2014, Theorem 4]. We reproduce it here (with improved parameters of the
procedure) to meet the needs of the proof of Theorem 4.3.

Let us denote I(τM) the subset of {1, ..., L} ∪ ∅ such that f(x̂(i)
M ) − f ∗ ≤ 2τM and

thus
∥∥∥x̂(i)

M − x∗
∥∥∥

2
≤ 2θM for i ∈ I(τM). Assuming the latter set is nonempty we have for

all i, j ∈ I(τM )
∥∥∥x̂(i)

M − x̂
(j)
M

∥∥∥
2
≤ 4θM . On the other hand, using (4.61) and independence of

x̂
(i)
M we conclude that (cf. e.g., [Lerasle and Oliveira, 2011, Lemma 23])

Prob {|I| ≥eL/2d} ≥ Prob
{
B(L, 1

4) ≥eL/2d
}
≥ 1− exp

(
−Lψ

(
dL/2e
L

,
1
4

))
where dae is the largest integer strictly less than a, B(N, p) is a (N, p)-binomial random
variable, and ψ(·, ·) is as in (4.62). When ε ≤ 1

4 and L =c12.05 log[1/ε]b≥ 16 we have

Prob{|I| ≥eL/2d} ≥ 1− e−Lψ( 7
16 ,

1
4 ) ≥ 1− e−0.083L ≥ 1− ε.

Therefore, if we denote Ωε a subset of ΩN such that |I(τM)| > L/2 for ωN ∈ Ωε we have
P{Ωε} ≥ 1 − ε. Let now ωN ∈ Ωε be fixed. Observe that the optimal value r̂ = r̂ieL/2d
of (4.23) satisfies r̂ ≤ 4θM , and that among eL/2d closest to x̂′′N,1−ε points there is at least
one, let it be x̂(̄i)

M satisfying f(x̂(̄i)
M )− f ∗ ≤ 2τM and

∥∥∥x̂(̄i)
M − x∗

∥∥∥
2
≤ 2θM . We conclude that

whenever ωN ∈ Ω one has∥∥∥x̂′′N,1−ε − x∗∥∥∥2
≤
∥∥∥x̂′′N,1−ε − x̂(̄i)

M

∥∥∥
2

+
∥∥∥x̂(̄i)

M − x∗
∥∥∥

2
≤ 4θM + 2θM ≤ 6θM ,

implying that

Prob
(∥∥∥x̂′′N,1−ε − x∗∥∥∥2

≥ 6θM
)
≤ ε

whenever L =c12.05 log[1/ε]b. �

4.D Proof of Theorem 4.3
1o. Let ωN ∈ Ωε/2 defined as in 3o of the proof of Theorem 4.2; we choose L ≥

c12.05 log[2/ε]b so that Prob{Ωε/2} ≤ ε/2. We denote r̂ the optimal value of (4.23); recall
that r̂ ≤ 4θM . Then for any i, j ∈ Î we have∥∥∥x̂(i)

M − x̂
(j)
M

∥∥∥
2
≤ 2r̂ ≤ 8θM , (4.64)
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and for some ī ∈ Î we have

f(x̂(̄i)
M )− f ∗ ≤ 2τ 2

M (4.65)

where τM and θM are defined in (4.20) and (4.21) respectively. W.l.o.g. we can assume
that x̂(̄i)

M is the minimizer of f(x) over x̂(i)
M , i ∈ Î.

Let us consider the aggregation procedure. From now on all probabilities are assumed
to be computed with respect to the distribution PK of the (second) sample ωK , conditional
to realization ωN of the first sample (independent of ωK). To alleviate notation we drop
the corresponding “conditional indices.”

The proof of the theorem relies on the following statement which may be of independent
interest.

Proposition 4.8. Let U : [0, 1] × Ω → R be continuously differentiable and such
that u(t) = E [U(t, ω)] is finite for all t ∈ [0, 1], convex and differentiable with Lipschitz-
continuous gradient:

|u′(t′)− u′(t)|∗ ≤M|t− t′|, ∀ t, t′ ∈ [0, 1].

In the situation in question, let ε ∈ (0, 1
4 ], J ≥

⌋
7 log[2/ε]

⌊
, and ti = 2i−1

2m , i = 1, ...,m.
Consider the estimate

v̂ = median
j

[v̂j], v̂j = 1
m

m∑
i=1

U ′(ti, ωji ) j = 1, ..., J

of the difference v = u(1) − u(0) using M = mJ independent realizations ωji , i =
1, ...,m, j = 1, ..., L. Then

Prob{|v̂ − v| ≥ ρ} ≤ ε (4.66)

where

ρ = 1
4m

[√
2M(u(1)− u∗) +

√
2M(u(0)− u∗)

]
+ 2
m

√√√√ m∑
i=1

E [[ζ1(ti)]2],

(here and below, ζj(ti) = U ′(ti, ωji )− u′(ti) and u∗ = min0≤t≤1 u(t)).
In particular, if for µ ≥M

E
[
[ζ1(t)]2

]
≤ µ(u(t)− u∗) + ς2 (4.67)

then

Prob{|v̂ − v| ≥ ρ̄} ≤ ε (4.68)

where

ρ̄ = 2
√
µ

m

[√
u(1)− u∗ +

√
u(0)− u∗

]
+ 2ς√

m
.
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We postpone the proof of the proposition to the end of this section. We now finish the
proof of the theorem.
2o. Denote v̂ji = median`[v̂`ji]. For j ∈ Î, j 6= ī let x(t) = x̂

(j)
M + t

(
x̂

(̄i)
M − x̂

(j)
M

)
. Note

that U(t, ω) = f̃(x(t), ω) and u(t) = f(x(t)) satisfy the premise of Proposition 4.8
withM = r2

jīL2 where rjī =
∥∥∥x̂(̄i)

M − x̂
(j)
M

∥∥∥
2
, µ = χL2r

2
jī, and ς2 = χ′ς2

∗r
2
jī. When applying

the proposition with ε = ε/L, J = L′, and K = mL′ we conclude that

∀j ∈ Î , j 6= ī Prob
{
|v̂jī − vjī| ≥ %jī

}
≤ ε

L
,

implying that

Prob
{

max
j∈Î,j 6=ī

|v̂jī − vjī| ≥ %jī

}
≤ ε

2 (4.69)

where

%ij = 2rjī

√
L2χ

m

[√
f(x̂(i)

M )− f ∗ +
√
f(x̂(j)

M )− f ∗
]

+ 2rjīς∗

√
χ′

m
.

Let now Ω′ε/2 ⊂ ΩK such that for all

max
ī 6=j∈Î

|v̂jī − vjī| ≤ %jī, ∀ωK ∈ Ω′ε/2;

by (4.69) Prob{Ω′ε/2} ≥ 1− ε/2.
3o. Let us fix ωK ∈ Ω′ε/2; our current objective is to show that in this case the set of
admissible x̂(i)

M ’s is nonempty—it contains x̂(̄i)
M—and, moreover, all admissible x̂(j)

M ’s satisfy
the bound f(x̂(j)

M ) ≤ γ2(rīj) with γ(r) defined as in (4.26).
Let α, β, τ > 0, and let v(γ) = γ2 − τ 2 − 2[α(γ + τ) + β]; then v(γ) > 0 for γ ≥√

(2α + τ)2 + 4β. Indeed, v(·) being nondecreasing for γ ≥ α, it suffices to verify the
inequality for γ =

√
(2α + τ)2 + 4β. Because

2α + τ + β/α >
√

(2α + τ)2 + 4β

we have

4α2 + 4ατ + 2β > 2α
(√

(2α + τ)2 + 4β + τ
)
,

and

v(γ) = [(2α + τ)2 + 4β]− τ 2 − 2α
(√

(2α + τ)2 + 4β + τ
)
− 2β > 0.

Applying the above observation to α = 2rjī
√
L2χ
m

, β = 2rjīς∗
√

χ′

m
, and τ = τM we conclude

that whenever f(x̂(j)
M )− f ∗ ≥ γ2(rjī)

vjī = f(x̂(̄i)
M )− f(x̂(j)

M ) ≤ τ 2
M − f(x̂(j)

M ) < −2%jī. (4.70)
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Therefore, for f(x̂(j)
M ) ≥ γ2(rjī)

median
`

[v̂`jī]− ρīj = [median
`

[v̂`jī]− vjī] + vjī − ρīj < %jī − 2%jī − ρīj < 0 ∀ωK ∈ Ω′ε/2.

Furthermore, for f(x̂(j)
M )− f ∗ < γ2(rjī) we have

median
`

[v̂`jī]− ρīj ≤ %īj − ρīj < 0 ∀ωK ∈ Ω′ε/2,

and we conclude that x̂(̄i)
M is admissible.

On the other hand, whenever f(x̂(j)
M )− f ∗ ≥ γ2(rjī) we have vīj > 2%īj (cf. 4.70), and

median
`

[v̂`īj]− ρjī = [median
`

[v̂`jī]− vīj] + vīj − ρīj > −%īj + 2%īj − ρīj ≥ 0 ∀ωK ∈ Ω′ε/2.

We conclude that x̂(j)
M is not admissible if f(x̂(j)

M ) ≥ γ2(rjī) and ωK ∈ Ω′ε/2.
4o. Now we are done. So, assume that [ωN , ωK ] ∈ Ωε/2 × Ω′ε/2 (what is the case with
probability ≥ 1− ε). We have rij ≤ 8θM for i, j ∈ Î by (4.64), and f(x(̄i)

M ) ≤ τ 2
M for some

admissible ī ∈ Î by (4.65). In this situation, all x̂(j)
M such that f(x̂(j)

M )− f ∗ ≥ γ2(rjī), j ∈ Î,
are not admissible, implying that the sub-optimality of the selected solution xN+K,1−ε is
bounded with γ2(8θM), thus

Riskf,ε(xN+K,1−ε|X) ≤ γ̄2 = γ2(8θM).

The “in particular” part of the statement of the theorem can be verified by direct substi-
tution of the corresponding values of m, θM , and τM into the expression for γ̄2. �

Proof of Proposition 4.8. Let us denote

v̄ = E
[
v̂j
]

= 1
m

m∑
i=1

u′(ti);

we have

|v̂ − v| ≤ |v̂ − v̄|+ |v̄ − v|. (4.71)

1o. Note that

v̂j − v̄ = 1
m

m∑
i=1

U ′(ti, ωji )− u′(ti) = 1
m

m∑
i=1

ζj(ti),

and

E
[
(v̂j − v̄)2

]
≤ 1
m2

m∑
i=1

E
[
[ζj(ti)]2

]
=: υ2.

By the Chebyshev inequality, Prob{|v̂j − v̄| ≥ 2υ} ≤ 1
4 , and

Prob{median
j

[v̂j]− v̄ ≥ 2υ} ≤ Prob
{∑

j

1{v̂j − v̄ ≥ 2υ} ≥ J/2
}

≤ Prob{B(J, 1
4) ≥ J/2} ≤ e−Jψ( 1

2 ,
1
4 ) ≤ e−0.1438J
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where ψ(·, ·) is defined in (4.62). Because the same bound holds for Prob{medianj [v̂j ]− v̄ ≤
−2υ} we conclude that

Prob{|v̂ − v̄| ≥ 2υ} = Prob{|median
j

[v̂j]− v̄| ≥ 2υ} ≤ 2e−J/7 ≤ ε (4.72)

for J ≥ 7 log(2/ε). Furthermore, if (4.67) holds we have

E
[
(v̂j − v̄)2

]
≤ 1
m2

m∑
i=1

[
µ(u(ti)− f ∗) + ς2

]
≤ 1

2m [(u(1)− u∗) + (u(0)− u∗)] + ς2

m
=: ῡ2

implying (4.72) with υ replaced with ῡ:

Prob{|v̂ − v̄| ≥ 2ῡ} ≤ 2eJ/7 ≤ ε (4.73)

2o. Next, we bound the difference v̄ − v.
Let si = i/m, i = 0, ...,m, and ri = u′(si)− u′(si−1). Let us show that

v − v̄ ≤ 1
4m

[√
2M(u(1)− u∗) +

√
2M(u(0)− u∗)

]
.

Note that

δi =
∫ si

si−1
[u′(s)− u′(ti)]ds ≤ 1

4ri(si − si−1) = (4m)−1ri,

so that

v − v̄ ≤
m∑
i=1

δi ≤ (4m)−1[u′(1)− u′(0)].

Let now t∗ ∈ [0, 1] be a minimizer of u on [0, 1]. Due to the smoothness and convexity of
u we have

|u′(0)− u′(t∗)|2 ≤ 2M[u(0)− u∗ + t∗u
′(t∗)] ≤ 2M[u(0)− u∗]

and

|u′(1)− u′(t∗)|2 ≤ 2M[u(1)− u∗ − (1− t∗)u′(t∗)] ≤ 2M[u(1)− u∗].

We conclude that

u′(1)− u′(0) ≤ u′(1)− u′(t∗) + u′(t∗)− u′(0) ≤
√

2M[u(0)− u∗] +
√

2M[u(1)− u∗],

and

v − v̄ ≤ (4m)−1[u′(1)− u′(0)] ≤ 1
4m

[√
2M[u(0)− u∗] +

√
2M[u(1)− u∗]

]
.

The proof of the corresponding bound for v̄ − v is completely analogous, implying that

|v − v̄| ≤ 1
4m

[√
2M(u(1)− u∗) +

√
2M(u(0)− u∗)

]
.

When substituting the latter bound and the bound (4.72) into (4.71) we obtain

Prob{|v̂ − v| ≥ 2υ + υ′} ≤ ε

for J ≥ 7 log(2/ε), what implies (4.66). When replacing (4.72) with (4.73) in the above
derivation we obtain (4.68). �
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4.E Proofs for Section 4.4.2
The following statement is essentially well known:

Lemma 4.3. Let φ ∈ Rp×q with q ≤ p for the sake of definiteness, be a random sub-
Gaussian matrix φ ∼ SG(0, S) implying that

∀x ∈ Rp×q, E
[
e〈x,φ〉

]
≤ e

1
2 〈x,S(x)〉. (4.74)

Suppose that S � s̄I; then

E
[
‖φ‖2

∗

]
≤ Cs̄(p+ q) and E

[
‖φ‖4

∗

]
≤ C ′s̄2(p+ q)2

where C and C ′ are absolute constants.

Proof of the lemma.

1o. Let u ∈ Rq be such that ‖u‖2 = 1. Then the random vector ζ = φu ∈ Rp is
sub-Gaussian with ζ ∼ SG(0, Q), that is for any v ∈ Rp

E
[
ev

T ζ
]

= E
[
ev

Tφu
]

= E
[
e〈uvT ,φ〉

]
≤ e

1
2〈uvT ,S(uvT )〉 = e

1
2v
TQv

where Q = QT ∈ Rp×p. Note that

max
‖v‖2=1

vTQv = max
‖v‖2=1

〈
uvT , S(uvT )

〉
≤ max
‖w‖2=1

〈w, S(w)〉 .

Therefore, we have Q � s̄I, and Tr(Q) ≤ s̄p.

2o. Let Γ = {u ∈ Rq : ‖u‖2 = 1}, and let Dε be a minimal ε-net, w.r.t. ‖·‖2, in Γ, and
let Nε be the cardinality of Dε. We claim that

{
uTφTφu ≤ υ ∀u ∈ Dε

}
⇒

{∥∥∥φTφ∥∥∥
∗
≤ (1− 2ε)−1υ

}
. (4.75)

Indeed, let the premise in (4.75) hold true; φTφ is symmetric, so let v̄ ∈ Γ be such
that v̄TφTφv̄ =

∥∥∥φTφ∥∥∥
∗
. There exists u ∈ Dε such that ‖v̄ − u‖2 ≤ ε, whence

∥∥∥φTφ∥∥∥
∗

= |v̄TφTφv̄| ≤ 2
∥∥∥φTφ∥∥∥

∗
‖v̄ − u‖2 + |uTφTφu| ≤ 2

∥∥∥φTφ∥∥∥
∗
ε+ υ

(note that the quadratic form zTQz is Lipschitz continuous on Γ, with constant 2 ‖Q‖∗
w.r.t. ‖·‖2), whence

∥∥∥φTφ∥∥∥
∗
≤ (1− 2ε)−1υ.
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30. We can straightforwardly build an ε-net D′ in Γ in such a way that the ‖·‖2-distance
between every two distinct points of the net is > ε, so that the balls Bv = {z ∈ Rp :
‖z − v‖2 ≤ ε/2} with v ∈ D′ are mutually disjoint. Since the union of these balls belongs
to B = {z ∈ Rq : ‖z‖2 ≤ 1 + ε/2}, we get Card(D′)(ε/2)q ≤ (1 + ε/2)q, that is,
Nε ≤ Card(D′) ≤ (1 + 2/ε)q.

Now we need the following well-known result (we present its proof at the end of this
section for the sake of completeness).

Lemma 4.4. Let ζ ∼ SG(0, Q) be a sub-Gaussian random vector in Rn, i.e.

∀t ∈ Rn E
[
et
T ζ
]
≤ e

1
2 t
TQt (4.76)

where Q = QT ∈ Rn×n. Then for all x ≥ 0

Prob
{
‖ζ‖2

2 ≥ Tr(Q) + 2
√
xv + 2xq̄

}
≤ e−x (4.77)

where q̄ = maxi σi(Q) is the principal eigenvalue of Q and v = ‖Q‖2
2 = ∑

i σ
2
i (Q) is the

squared Frobenius norm of Q. Thus, for any α > 0

Prob
{
‖ζ‖2

2 ≥ Tr(Q)(1 + α−1) + (2 + α)xq̄
}
≤ e−x. (4.78)

Utilizing (4.78) with α = 1 we conclude that ∀u ∈ Γ the random vector ζ = φu satisfies

Prob
{
‖ζ‖2

2 ≥ 2s̄p+ 3s̄x
}
≤ e−x. (4.79)

Let us set ε = 1
4 ; utilizing (4.79), we conclude that the probability of violating the

premise in (4.75) with υ = 2s̄p + 3s̄x does not exceed exp (−x+ q log[1 + 2ε−1]) =
exp (−x+ q log 9), so that

Prob
{∥∥∥φTφ∥∥∥

∗
≥ 2s̄(2p+ 3x)

}
≤ exp (−x+ q log 9) .

Finally, we obtain

E
[
‖φ‖4

∗

]
= E

[∥∥∥φTφ∥∥∥2

∗

]
= 2

∫ ∞
0

Prob
{∥∥∥φTφ∥∥∥

∗
≥ u

}
u du

≤ 2
∫ ∞

0
umin

{
exp

(4s̄p− u
6s̄ + q log 9

)
, 1
}
du

≤ 2
∫ s̄(4p+6q log 9)

0
udu+ 2

∫ ∞
s̄(4p+6q log 9)

u exp
(4s̄p− u

6s̄ + q log 9
)
du

≤ s̄2(4p+ 6q log 9)2 + 12s̄2(4p+ 6q log 9) + 72s̄2 ≤ C ′s̄2(p+ q)2.

Similarly we get E
[
‖φ‖2

∗

]
≤ Cs̄(p+ q) for an appropriate C.

4o. Let us now prove Lemma 4.4.
Note that for t < 1/(2s̄) and η ∈ Rn, η ∼ N (0, I) independent of ζ we have by (4.74)

E
[
et〈ζ,ζ〉

]
= E

[
Eη
[
e
√

2t〈ζ,η〉
]]

= Eη
[
E
[
e
√

2t〈ζ,η〉
]]
≤ Eη

[
et〈η,Sη〉

]
= Eη

[
et〈η,Dη〉

]
=
∏
i

Eηi
{
etη

2
i si
}

=
∏
i

(1− 2tsi)−1/2
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where D = Diag(si) is the diagonal matrix of eigenvalues. Recall that one has, cf. [Birgé
et al., 1998, Lemma 8],

−1
2 log(1− 2tsi)− tsi ≤

t2s2
i

1− 2tsi
≤ t2s2

i

1− 2ts̄

for t < 1/(2s̄). On the other hand, ∀t < 1/(2s̄)

Prob
{
‖ζ‖2

2 − Tr(S) ≥ u
}
≤ E

[
exp

(
t

[
‖ζ‖2

2 −
∑
i

si − u
])]

≤ exp
(
−tu+ t2

1− 2ts̄
∑
i

s2
i

)
= exp

(
−tu+ t2v

1− 2ts̄

)
.

When choosing t =
√
x

v+2s̄
√
x

(
< 1

2s̄

)
and u = 2

√
xv + 2xs̄ we obtain

Prob
(
‖ζ‖2

2 ≥ Tr(S) + 2
√
xv + 2xs̄

)
≤ e−x

what is (4.77). Because v ≤ Tr(S)s̄ the latter bound also implies (4.78). �



Chapter 5

Conclusion and Perspectives

In this thesis, we discussed several frameworks addressing the issues of robustness and
acceleration of iterative algorithms in stochastic optimization.

Our first contribution consists of the development of a framework which provides a
unified way for analyzing many incremental approaches, including several variance-reduced
algorithms. First, this technique allows to make all these methods robust to stochastic
noise. Second, it also naturally allows to build new algorithms with theoretical guarantees
which are similar to those obtained for the existing methods. Finally, we have introduced an
accelerated stochastic gradient descent algorithm and a new accelerated SVRG algorithm
that is robust to stochastic noise. All of the developed algorithms support non-uniform
sampling strategies. We have also developed versions of these algorithms for the strongly
convex problems, which are adaptive to the value of the strong convexity parameter.

In our second contribution, we provide a solution to the problem of generic acceleration
generalizing the multi-stage approach called Catalyst, which was aimed originally to
accelerate deterministic methods. We improve its flexibility with respect to the choice of
surrogate functions minimized at different stages and successfully address the acceleration
of the stochastic methods, including the stochastic variance-reduced algorithms introduced
in the first part of this thesis. Besides this, we provide a unified analysis which sheds new
lights on the problem of robustness of stochastic algorithms when the proximal operator
cannot be exactly computed.

Finally, we have focused on stochastic sparse optimization, and our third contribution
amounts to development of a multi-stage procedure that effectively exploits the sparsity of a
problem. This procedure has theoretical guarantees, which are much better in terms of the
variance compared to the standard algorithms relying on Euclidean geometry. It improves
on the best known existing solutions in several aspects, including linear convergence at
initial iterations and enlarged class of considered models.

Perspectives The developed schemes and frameworks provide several perspectives for
future work.
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Given the framework developed in Chapter 2, the first interesting application, which
was not covered in the thesis, amounts to considering optimization problems with a
drifting optimum. Specifically, time-varying optimization problems require algorithms
which converge to a changing solution by catching the objective drift over time. This
general setting, though notably not the most frequent in the literature, can be found
in various applications, see [Simonetto, 2017, Hall and Willett, 2015, Dall‘Anese et al.,
2020] and references therein. This setting was especially well studied in the field of online
learning that typically deals with regret minimization [Hazan, 2019, Shalev-Shwartz et al.,
2012, Wilson et al., 2018]. Another popular criterion to be minimized is called dynamic
regret [Shahrampour and Jadbabaie, 2017], and we can potentially address its optimization
in the large scale setting within our frameworks. The motivation lies in the simple intuitive
observation that the drifts could be seen as inexact computation of gradients. Moreover,
the construction of estimate sequences in non-composite cases is essentially quadratic, so
that the drift could be easily treated. Intuitively, we can expect that the time-varying
setting can be treated in a framework similar to the one developed in Chapter 2. Both
frameworks of Chapters 2 and 3 could be used to generalize existing time-varying first-order
optimization methods to the composite optimization setting.

Unfortunately, consideration of variance-reduced methods, like SVRG, SAGA, SDCA,
Finito or MISO, in the time-varying setting does not seem to be productive. The reason
for it lies in their common motivation, which was explained after Equation (2.11), which
is to define a new gradient estimate Z = X − Y + E[Y ] which has the same expectation
as X but potentially a lower variance if Y is positively correlated with X. When there
is a drift in the objective, the positive correlation between Y and X is hard to maintain,
because it suffers from a quadratic dependency on the dimension p of the problem.

The framework developed in Chapter 4 may be useful in the analysis of the time-varying
setting as well. Although we do not state it explicitly, the SMD-SR algorithm is applicable
to optimization problems with approximately sparse solutions. Therefore, although the
drift of the solution might spoil the sparsity, we will still be able to address such cases
through approximate sparse optimization, for instance, when the drift is bounded in
the `2-norm. If successful, the SMD-SR algorithm could also potentially decrease the
influence of the drift by constraining it only to nonvanishing components of the optimum,
being especially useful in the high-dimensional setting.

We may also raise the question of generalization of the results of other chapters to
the non-Euclidean setting. This question might be especially relevant in the context of
Chapter 3, because the corresponding accelerating framework does not depend on the
inner structure of the base method, which thus might be non-Euclidean one. then, we
could apply the SMD-SR algorithm from Chapter 4, which itself does not depend on
the inner construction of the base method. This would lead to a natural application of
variance-reduced approaches to stochastic sparse optimization.

The variance-reduced algorithms can be analyzed in the context of online learning
algorithms. Although this idea has already appeared in [Cutkosky and Orabona, 2019,
Cutkosky and Busa-Fekete, 2018], it might be interesting to analyze this setting using the
unified framework of Chapter 2 to provide a joint treatment to various variance-reduced
algorithms at once.

In Chapter 2, we were mainly interested in the case of bounded variance σ. However,
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the proposed algorithm might be used in the case of unbounded variance of the gradient
estimations.

In Chapter 3 we have provided the generic acceleration framework with theoretical
guarantees that suffer from an extra logarithmic factor in the condition number. The task
of getting rid from this factor for SAGA/MISO/SDCA/Finito is open (the problem of
acceleration of the SVRG approach was solved in Chapter 2). We believe that estimate
sequences may be useful to obtain the optimal complexity without this logarithmic term,
but the construction would be non-trivial and would rely on a different lower bound than
the one we used in Section 2.4.

Note that the original Catalyst approach [Lin et al., 2015] was successfully generalized
to quasi-Newton methods [Lin et al., 2019]. It is an open question if the analysis of 3
could provide a generalization of [Lin et al., 2019] to the stochastic case.
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