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Abstract

The context of this thesis is the improvement of road safety through the develop-

ment of active safety systems. One challenge in the development of active safety

systems is obtaining accurate information about unmeasurable vehicle dynamic

states. Specifically, the necessity to estimate the vertical load, frictional forces at

each wheel (longitudinal and lateral), and also the sideslip angle at the center

of gravity. These states are the critical parameters for optimizing the control of a

vehicle’s stability. If the vertical load on each tire can be estimated, then the risk of

rollover can be evaluated. Estimating tire lateral forces can help to reduce lateral

slip and prevent dangerous situations like spinning and drifting out the road. Tire

longitudinal forces influence the performance of a vehicle. Sideslip angle is one of

the essential parameters for controlling the lateral dynamics of a vehicle. However,

the different technologies that the market offers, are no tbased on tire-ground forces

due to the lack of cost-effective methods for obtaining the required information.

For the above mentioned reasons, we want to develop a system that monitors

these dynamic vehicle states using only low-cost sensors. To accomplish our en-

deavor, we propose developing novel observers to estimate unmeasured states.

Constructing an observer that met the reliability, robustness and accuracy require-

ments is not an easy task. It requires one the one hand, accurate and efficient

models, and on the other hand, robust estimation algorithms that take into account

variations in parameters and measurement errors. The present thesis has conse-

quently been structured around the following two aspects: modeling of vehicle

dynamics, and design of observers.

Under the heading of modeling, we propose new models to describe vehicle

dynamics. Current models simplify the vehicle motion as a planar motion. In

our proposal, our models describe vehicle motion as a 3D motion, including the

effects of road inclination. Regarding vertical dynamics, we propose incorporating

the suspension deflection to calculate the transfer of vertical load. Regarding

lateral dynamics, we propose a model for the lateral forces transfer to describe the

interaction between the left wheel and the right wheel. With this relationship, the

lateral force on each tire is computed without using the sideslip angle. Similarly,



for longitudinal dynamics, we also propose a model for the transfer of longitudinal

forces to calculate the longitudinal force at each tire.

Under the heading of observer design, we propose a novel observation system

consisting of four individual observers connected in cascade. The four observers

are developed for estimating vertical tire force, lateral tire force, longitudinal tire

force, and sideslip angle, respectively. For the linear system, the Kalman filter is

employed, while for the nonlinear system, the EKF applied to reduce estimation

errors.

Finally, we implement our algorithm in an experimental vehicle to perform

estimation in real-time, and we validate our proposed algorithm using experimental

data.
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Chapter 1

Introduction

1.1 Motivation

The early history of the automobile can be divided into few eras, based on the

prevalent means of propulsion; later periods were defined by trends in exterior

styling, size, and utility preferences. In 1769 the first steam-powered automobile

capable of human transportation was built by Nicolas-Joseph Cugnot, see [Ecker-

mann, 2001]. In 1885, Karl Benz developed a petrol/gasoline-powered automobile.

This vehicle is the first "production" vehicle as Benz made several identical copies.

In 1913, the Ford Model T became the first automobile to be mass-produced on

a moving assembly line. By 1927, Ford had produced over 15 million model T

automobiles; nowadays, the world vehicle population exceeded 1 billion units in

2010. One of the drawbacks of such success is vehicle collisions; today, standard

automobiles can achieve high speeds, resulting in deadly crashes. Traffic crashes

are the largest cause of injury-related deaths worldwide. In France, according to

the latest statistic report of the ONISR (Observatoire National Interministriel de la
Sécurite Routière) manifest that 58,352 accidents occurred in France in 2018, and a

total of 3,488 deaths were the product of those accidents, see [ONI, 2018]. These

fatalities and injuries are related to three principal types: single-vehicle crashes,

multi-vehicle crashes, and rollovers. The report also states that human errors cause

over 90% of all accidents.

The automotive industry has made significant improvements in the last decades,

addressing passenger safety, driving quality, and energetic efficiency; recently, with

the introduction of on-board automatic control systems, the leaps have increased

exponentially. One example of this trend is the amount of first-event rollovers for

single-vehicle crashes, which has decreased considerably. For instance, as reported

in [Pai, 2017], in the USA, it went from 4.29% in 2004 to 2.61% in 2010. This

decrease is the result of the introduction of the Electronic Stability Control (ESC)

system. Also, vehicles equipped with Anti-lock Braking System and ESC, have 50%

less probability of running off the road, see [Liu and Ye, 2011]. Within the scope

3
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of active safety control systems and energy efficiency topics, the estimation of

tire-ground contact forces has become an important research topic; knowledge of

these forces can prevent over-steering or under-steering phenomena, leading to

accidents.

1.2 Objective and contribution

Autonomous manufacturers are currently giving much interest to in-vehicle sensors

and their intelligent system applications. The number of in-vehicle sensors is con-

tinuously increasing, given their proven benefits represented in avoided accidents,

higher driving efficiencies, and ubiquitous sensing-based services. Each vehicle has

from 60 to 100 sensors on board, and we can expect this number to grow as the

car gets smarter. The industry projects 200 sensors installed on each vehicle, and

the price range for a sensor installed on a mass-produced vehicle varies between

50 and 200 dollars.

Currently, sensors that measure tire-ground forces are available in the market.

Nevertheless, their cost amounts to more than 100,000 euros; thus, their use

for mass production automobile systems becomes prohibited. The introduction

of observers to estimate these forces is an effective solution for this problem.

However, providing accurate estimates of the tire-ground forces is considered a

difficult task. The variation of vehicle mass, the center of gravity (COG), the load

transfer effects, the road slope or bank angles, its irregularities, among others,

increase the problem complexity considerably. Accurate knowledge of vehicle

dynamics is essential to determine the wheel tire-ground forces with a level of

accuracy suitable for the Advanced Driver Assistance Systems (ADAS). Motivated by

this necessity of improving ADAS and safety controllers’ performances, numerous

research works have addressed the estimation of vehicle parameters and forces

[Bae et al., 2001, Vahidi et al., 2005, Fathy et al., 2008, McIntyre et al., 2009, Han

et al., 2009, Hong et al., 2015]. Conversely, on the side of energetic efficiency,

recent vehicle controllers developed for fuel consumption reduction require an

accurate estimation of the vehicle traction force [Hellström et al., 2009, Ganji et al.,

2011, Khayyam et al., 2011, Shakouri and Ordys, 2014].

This dissertation’s main contribution is the introduction of a tire-ground forces

estimation scheme for vehicle states, tire-ground forces, and design parameters.

The observers presented in this dissertation are based on vehicle models without

requiring a tire-model and their respective parametric identification. Our proposal

implements an observation scheme with sensors available for mass-produced

vehicles.
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1.3 Context of the research work

The entire work is completed at the HeuDiaSyc (“Heuristic et Diagnostic des

Systèmes Complexes”) UMR 7253 CNRS Laboratory at the Computer Science

Department of Université de Technologie de Compiègne (UTC) in France, under

the supervision of Prof. Ali Charara and A.P. Alessandro Victorino.

Figure 1.1 – Experimental testbed: Dyna

This project has received funding from the European Commission under the

H2020 Grant agreement ITEAM No. 675999. The ITEAM (Interdisciplinary Training

Network in Multi-Actuated Ground Vehicles) program, see Figure 1.1, unites

academic and industrial partners across Europe; the following organization form

part of the ITEAM consortium:

• Academy: TU Ilmenau (Germany), Coventry University (UK), KU Leuven

(Belgium), University of Pavia (Italy), Flanders Make (Belgium), UTC - The

University of Technology of Compiègne (France), TU Delft (Netherlands),

The University of Liverpool (UK), The Institute of Information Theory and

Automation (Czech Republic), TU Graz (Austria), Chalmers University of

Technology (Sweden), Tallinn University of Technology (Estonia).

• Industry: AVL List (Austria), Infineon (Germany), Škoda Auto (Czech Repub-

lic), Virtual Vehicle (Austria), Volvo Car Group (Sweden), IPG Automotive

(Germany), Jaguar Land Rover (UK).

This work was also carried out in the framework of the Labex MS2T, (Reference

ANR-11-IDEX-0004-02) and the Equipex ROBOTEX (Reference ANR-10-EQPX-
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1.5 Experimental Vehicle-Infrastructure

1.5.1 Dyna308

Our experimental vehicle known as Dyna308 is instrumented by the laboratory

heudiasyc UMR 7253 CNRS at Compiègne, France, see Figure 1.2. The baseline

vehicle is a Peugeot 308sw. This car is additionally instrumented with transducers to
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Figure 1.2 – Experimental testbed: Dyna

measure dynamic vehicle states. The sensors installed in our vehicle are validation

sensors, input sensors, and exteroceptive sensors.

1.5.1.1 Validation sensors

• CORREVIT S-400: It is a non-contact optical sensor that measures the transver-

sal dynamics at large operating ranges. The sensor is installed at the place

of the spare wheel under the car it returns the measurement of transversal

speed, vg =
√
v2
x + v2

y, and sideslip angle, β (see Figure 1.3(a)). The cost of

this sensor is around 8,000 e.

• Kistler RoaDyn S625 wheel force transducers: four-wheel force sensors for

passenger cars RoaDyn (Kistler) are fixed at each wheel, see Figure 1.3(b).

They measure the forces and torques at the tire for its three axes (x, y, z), it

also offers an accurate measurement of the wheel angular speed. The cost of

a single Kysler sensor is around 120,000 e.

• GPS receiver operating in RTK mode locates the vehicle with a centimeters

accuracy.

1.5.1.2 Input sensors

• Sensor CROSSBOW VG700AB: An inertial measurement unit designed specifi-

cally for automotive test applications. It combines MEMSIC’s high-performance

fiber optic gyros with silicon micro-machined accelerometer technology to

provide a highly accurate Vertical Gyro. The location of this sensor is at the

trunk.
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(a) Correvit Sensor (b) Kysler Sensor

Figure 1.3 – Validation sensors

• CORRSYS-DATRON HT500: This transducer is an optical device that measures

the distance between chassis and ground. They are installed respectively at

each vehicle corner; see Figure 1.4(a).

• Sensor WAYCON SX50: These sensors are installed at the suspension, see

Figure 1.4(b); these sensors can measure the deflection of the suspension,

emulating the distance between the sprung and unsprung masses.

• Other sensors available through CAN bus are the wheel rotation velocity, the

engine speed, the yaw rate, the brake pressure, the lateral and longitudinal

acceleration, and the steering wheel angle.

1.5.1.3 Exteroceptive sensors

• A scenario record camera is used to register the vehicle trajectory.

• Mobileye system: It provides a list of detected obstacles (pedestrians, vehicles,

etc.) and their position relative to the vehicle in real-time.

• Ibeo Standard (8L) Eight Layer/Multi-Echo Lux Sensor (Ibeo LUX 8L): the

sensor is installed at the front bumper to track the object on the top 4 layers

and raw data ground scanning/profiling (see Figure 1.4(c)).

• All the electronics systems and PC are located in the trunk, see Figure 1.4(d).

The complete vehicle architecture is presented in Appendix A.

1.5.2 Flanders Make evoque

This works has been made in collaboration with Flanders Make. They allow us

to use data from its testing platform, see Figure 1.5. The main peculiarity of this
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(a) Laser Sensor (b) Deflection Sensor

(c) Front laser (d) Computer

Figure 1.4 – Validation sensors
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vehicle is that the combustion engine of a Range Rover evoque is replaced by an

electrical drivetrain with four independent electrical motors.

Figure 1.5 – Land Rover Evoque experimental testbed at Flander Make

The technical specification of this vehicle is

• Fully electric vehicle.

• Four individual drivetrains and in-house developed battery pack.

• Individual wheel drive control: Four x switched reluctance motor.

• Individual wheel friction brake control: Slip Control Boost unit.

• Steer-by-Wire

• dSPACE rapid prototyping platform and Nvidia drive PX2 360° sensors for

environment perception by:

– 6 camera’s

– 6 Lidars

– 6 radars

– 12 ultrasound sensors

• V2X communication capabilities

• Throttle and brake by wire
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1.6 Thesis structure

This dissertation has seven chapters: The organization is as follows:

• Chapter 2: Modeling preliminaries. This chapter presents the most common

models used to estimate tire-ground forces and sideslip angle, and the models

used as the base for our estimation schemes.

• Chapter 3: Lateral speed estimation. This chapter shows the use of a

kinematic model to estimate the lateral speed; first, we discuss the reason

for using a kinematic model; second, an adaptation of a kinematic model

with gravity compensation with quaternions. The method selected to use the

estimation is the Kalman filter.

• Chapter 4: Normal tire-ground force estimation. This chapter shows the

challenges to estimate normal TGFs. We perform the tire-ground forces

estimation using vehicle dynamics and the suspension model to enhance

robustness and accuracy.

• Chapter 5: Longitudinal and lateral tire-ground force estimation: Part

1. This chapter shows one proposed methodology to estimate the longitu-

dinal and lateral TGFs; based on two lumped models and a Kalman filter

implementation to built a close loop observer.

• Chapter 6: Longitudinal and lateral tire-ground force estimation: Part 2.

This chapter presents a second proposal to estimate the longitudinal and

lateral TGFs; this model bases the tire-ground forces’ computation on local

accelerations and equivalent masses, thus, do not require any vehicle, neither

a tire model.

• Chapter 7: Application of TGFs estimation to enhance vehicle subsystem

controllers. In this chapter, the TGFs estimation application improves the

performance of a road profile estimator and a closed-loop controller for an

active suspension system.

• Chapter 8: Conclusions. This is the last chapter of this thesis, here we

present the conclusions, perspectives, and future work for our research group.
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2.1 Introduction

In recent years, an essential share of automotive research aims to improve active

safety systems and energy efficiency. Vehicle dynamics research stands out since

knowing the car behavior allows engineers to increase their grades in certain

performance indexes, such as maneuverability, comfort, and road holding. The

tire-ground interaction forces significantly influence the vehicle’s longitudinal and

lateral dynamics; these forces trigger the vehicle’s movement from a physical

perspective. Thus, an accurate estimation of such effects will improve several

vehicle subsystems’ effectiveness, like braking, steering, electronic stability, or

comfort. The vehicle dynamics estimation methods associate a tire model, a vehicle

model, and an observer technique. Then, the knowledge about the dynamics of

the tires and vehicle body is essential. This chapter shows the background of tire-

ground forces formulations, vehicle models, and suspension subsystem models as

the advantages and drawbacks of each model.

2.2 Important parameters and variables

This section is an introduction to vehicle dynamics with an emphasis on the

influence of tire properties. We discuss the steady-state cornering behavior of simple

automobile models and the transient motion after small and large steering inputs

and other disturbances. The effects of various shape factors of tire characteristics,

see Figure 2.1, on vehicle handling properties, will be analyzed. The slope of the

side force, Fy, versus sideslip angle, α, near the origin (the cornering stiffness)

is the determining parameter for the basic linear handling and stability behavior

automobiles.

Let us consider a free-rolling wheel over a flat road along a straight line without

any sideslip angle, α = 0, a small pulling force is needed to overcome the rolling

resistance1 present at the tire, also a side force, and an aligning torque could appear

due to the asymmetrical structure of the tire when the zero-slip condition occurs

other tire deformations accompanied by sliding section in the contact patch. Thus,

this results in the generation of more tire ground forces.

Figure 2.1 shows a wheel turning with an angular speed Ω, with a linear velocity

v with two components, a longitudinal vx =|| v ||2 cosα, and a lateral component

vy =|| v ||2 sinα; where || v ||2 is the 2-norm of the velocity vector v. These velocity

1Rolling resistance is the force resisting the motion when the wheel rolls on a surface. Non-elastic
effects mainly cause it. Several factors increase the magnitude of the rolling resistance: wheel radius,
forward speed, surface adhesion, and relative micro-sliding.
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Figure 2.1 – Slip angle and force and moment positive directions

Figure 2.2 – Effective rolling radius and longitudinal slip velocity.

components are related by to the sideslip angle, α.

For the freely rolling wheel, we can measure the forward speed vx (a component

of the velocity vector v at the wheel center) and the tire’s angular speed Ω0 and

compute the effective rolling radius, re, given by the ratio of both quantities:

re =
vx
Ω0

The radial deflection of the tire, ρ, is defined as the reduction of the radius from

the unloaded situation, rf , to the loaded scenario, r:

ρ = rf − r
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To properly define the longitudinal slip, the slip point S is introduced, see Figure

2.2. This point is attached to the rim or wheel body at a radius equal to the slip

radius re and forms the center of rotation when the wheel rolls at a longitudinal slip

equal to zero. Figure 2.3 shows several planes on a wheel to improve the reader’s

understanding; the figure shows the wheel, road, and normal-to-road planes; notice

the camber, γ, and the sideslip angle, α. The velocity vector origin is the center of

the wheel, A0. Also, at the zero-slip condition, the longitudinal speed, vx is:

vx = reΩ (2.1)

Notice that Ω 6= Ω0, Ω0 is the free-rolling angular speed of the wheel, and Ω is the

wheel speed produced by a torque input. Thus, when the longitudinal slip is no

longer zero, and if γψ̇ = 0 holds, it is possible to define:

vsx = vx − reΩ

since γψ̇ = 0; if a camber angle exists, the vehicle does not have a yaw rate, and

backward, if there is a yaw rate different to zero, the camber angle is equal to

zero. The longitudinal slip is denoted by κ and stands for the ratio between the

longitudinal slip velocity, vsx and the forward speed of the wheel center vx:

κ = −vsx
vx

Remember this holds for a wheel on a flat road with γψ̇ = 0. The slip angle α,

which for a wheel, not showing camber rate γ̇ = 0, nor radial deflection rate, ρ̇ = 0

and yaw rate ψ̇ at nonzero camber angle γ; also when running on a flat road, is

defined as the ratio of the lateral and forward speed at the wheel center A0:

tanα = −vy
vx

(2.2)

2.3 Tire Models

Tire models are usually classified according to their formulation in two major

groups: physical and empirical models. On the one hand, physics-based models

characterize the tire-ground interactions deterministically, using equations based

on physics laws. It is assumed that the tire-ground force generation follows physical

principles such as adhesion, elastic deformation, and friction forces. On the other
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Figure 2.3 – Definition of position, attitude, and motion of the wheel and the forces and
moments acting from the road on the wheel

hand, empirical models are based on experimental data; the most popular approach

is the Magic Formula.

Finite element models belong to the physics-based group; they consider the tire’s

composite materials structure and its constitutive elements’ nonlinear properties.

The main backlash of finite element formulations is its computational cost that

limits its use in real-time applications. Several companies have developed tire

models, and such formulations take into account complex phenomena, such as the

temperature, its compounding materials, to predict the tire-ground forces. Vehicle

dynamics simulation software implements these models in emulation environments

as Hardware in the loop (HIL); nevertheless, there is no evidence pointing towards

the model convenience for embedded applications of vehicle state estimation.

Researchers also have developed simpler physical models to compute tire-ground

forces; they introduce simplifications regarding the force generation mechanism

at the contact patch. The main differences between these approaches depend on

the considerations taken during the model development process while maintaining

a reduced computational burden. The most popular approaches that fall into this

category are the brush, Dugoff, and linear tire models.

On the other hand, to avoid errors induced by physical models without consid-

erably increasing the computational burden, empirical experimental-data based

models have been developed. The Magic Formula is based on a complex nonlinear

function’s parameterization to fit bast amounts of experimental data. Several

variants of this model have been proposed during the last years, and MF-Tire is a

commercial model developed by Delft-Tire and is based on the standard Pacejka
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Figure 2.4 – Deformation of the rubber layer between the tire carcass and the road
according to the brush model

formulation. MF-Swift is an extension of the standard Magic Formula that provides

enhanced results when modeling the tire’s behavior at high frequency, especially

for comfort and vibrational analysis.

2.3.1 Brush Tire Model

The brush model assumes that the slip occurs due to the rubber material’s defor-

mation between the carcass and the ground. The technique proposes to model

the material as small bristles attached to the carcass; see Figure 2.4. Every brush

element can deform independently of the other. Three different phenomena at the

contact patch may occur:

• Adhesion occurs in the entire contact area. The slip curves depend only on

the rubber properties.

• Sliding and adhesion. Two sections divide the contact area, one with pure

adhesion and the other with pure sliding, see Figure 2.4 the sections are

divided at point xs.

• The entire surface slides against the ground.

The development of the brush tire model is similar to the longitudinal and lateral

tire-ground forces. In the following two subsections are created to deal with each

one of these phenomena separately.

2.3.1.1 Longitudinal force-slip model

To develop the brush tire model, we divide the tire into its composing elements, the

bristles, and study its particular behavior; thus, a brush element k comes in contact

with the road at time t = t0 and position x = a. The position can be defined either

by the bristles’ upper point or by its lower point, as illustrated in Figure 2.5. First,
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Figure 2.5 – The relative velocity and the position of upper and lower point of a brush
element.

let us consider a bristle in the adhesion region; its position is defined by:

xck = a−
∫ t

t0

Ωredt

xrk = a−
∫ t

t0

vxdt

(2.3)

where a is half of the length of the contact patch in the longitudinal direction,

Ω, re and vx have been already defined at equation (2.1). From Figure 2.5, the

deformation of kth element is defined as:

∆xk = xck − xrk =

∫ t

t0

(vx − Ωre)dt =

∫ t

t0

vsxdt

If constant velocity is assumed, gives

∆xk =
vsx
Ωre

(a− xck) =
vsx
vx

(a− xrk)

The force produced from such a deformation is

Fxk = mx∆xk

Is widely known that the longitudinal tire-ground force Fxk is constrained by the

friction, µ, present at the tire-road and the tire-ground normal force, Fzk, acting on

the i brush element, given by

Fxk,max = µFzk
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thus, the maximum deformation is:

∆xi,max =
µFzk
k

The brush element starts to slide when the deformation reaches ∆xk,max. When

both adhesion and sliding occurs at the contact patch, it is possible to compute the

exact position where the sliding section begins

xcks =
µFzkΩRd

vsxk
− a =

µFzk
ksx

− a (2.4)

Finally, if we sum-up the forces generated by all the bristles within the contact

patch, gives:

Fx =

∫ a

xs

cpx
vsx
Ωre

(a− xc)dxc +

∫ xs

−a
qz(xc)µdxc (2.5)

with mx = cpxdxc and Fzi = qz(xc)dxc, where cpx denotes the stiffness per length

unit and qz means the vertical force per length unit between tire and road. The

vertical pressure is assumed to have a parabolic distribution, then

qz(xc) =
3µFz

4a

(
1−

(xc
a

)2
)

(2.6)

To solve (2.5) is necessary to find the breakaway point, xs, thus similarly as in eq.

(2.4) we have

cpx
vsx
Ωre

(a− xs) = µqz(xs)

and after some algebraic manipulation

xs =
4acpxsx − 3aµFz

3µFz
(2.7)

Solving (2.5) for the pressure distribution given in (2.6), and evaluating the integral

with the breaking point (2.7), gives

Fx = 2cpxa
2sx −

4

3

(cpxa
2sx)

2

µFz
+

8

27

(cpxa
2sx)

3

(µFz)2
(2.8)

Thus, the longitudinal tire-ground force is computed with (2.5), and eq. (2.8) is

valid for the following longitudinal slip range

0 ≤ sx ≤
3µFz
2cpx
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the slip that produces the maximum longitudinal tire-ground force is

s∗x =
3µFz
4cpx

nonetheless, for sx > 3µFz
2cpx

the longitudinal force is simply governed by Fx = µFz.

2.3.1.2 Lateral force-slip model

For the lateral tire-ground force development, the strategy is similar that for

the longitudinal force, the main differences rely on the kth bristle deformation

definition, thus:

∆yk = (xk − a) tan(αk)

and the force produced for such deformation is

Fyk = my∆yk

the lateral force of that bristle is constrained by the friction and normal force at the

kth bristle, as follows

Fyk,max = µFzk

analogously to the longitudinal force, the lateral tire-ground force response from

the brush model is:

Fy =

∫ xs

−a
qz(xc)µdxc +

∫ a

xs

cpy tan(α)(a− xc)dxc (2.9)

Solving (2.9) with the pressure distribution (2.6) and the breakaway point (2.7),

gives

Fy = 2cpya
2 tan(α)− 4

3

(cpya
2 tan(α))2

µFz
+

8

27

(cpya
2 tan(α))

3

(µFz)2
(2.10)

Thus, the longitudinal tire-ground force is computed with (2.9), nonetheless the

solution eq. (2.10) gives a valid response withing the sideslip angle range:

0 ≤ tan(α) ≤ 3µFz
2cpy

for 3µFz
2cpy

< tan(α) ≤ π
2

the longitudinal tire-ground force is governed by Fy = µFz.
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2.3.2 Dugoff tire model

The Dugoff tire model provides a method to compute the longitudinal and lateral

forces in different situations as pure cornering, pure longitudinal acceleration, or

combined maneuvers. This approach considers uniform vertical pressure distribu-

tion at the tire contact patch. The advantages of this approach are:

• The Dugoff tire model represents the tire-ground forces nonlinear dynamics.

• The Dugoff tire model represents the tire-ground forces at combined slips

(lateral and longitudinal).

Hence, it is widely used when the tire forces are intervened in the vehicle control or

estimation system. In extensive literatures such as [Zhang et al., 1998, Dakhlallah

et al., 2008, Boyden and Velinsky, 1994, Smith and Starkey, 1995] [Dakhlallah

et al., 2008, Zhang et al., 1998], the Dugoff model is adopted for its simplicity

and efficiency. The Dugoff tire model can also be used to calculate lateral and

longitudinal forces, either for pure-slip or combined-slip conditions [Ding and

Taheri, 2010]. The longitudinal force is:

Fxij = Csij
sij

1 + sij
f(λ) (2.11)

and the lateral forces is:

Fyij = Cαij
αij

1 + sij
f(λ) (2.12)

with sij and αij represent the longitudinal slip ratio and the sideslip angle. Where

sij =
vxij − reijΩ

vxij

αij = arctan

(
vyij
vxij

)
the suffixes i, j ∈ A := {1, 2} help to describe an effect in a particular tire, i.e. α11

stands for the front-left wheel slip angle. Notice that the equations presented in

this section are defined in the ijth wheel frame of reference. The function f(λ) is

defined as

f(λ) =

{
λ(2− λ) λ ≤ 1

1 λ > 1

with

λ =
µijFzij (1 + sij)

2
√

(Csijsij)
2 +

(
Cαij tan (αij)

)2
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The function f(λ) acts as a constraint to limit the longitudinal and lateral force

responses for (2.11) and (2.12) and for this case µij stands for the local friction

and Fzij means the normal tire-ground force at the ijth tire.

2.3.3 Linear Tire Model

The most simple tire model description is the linear tire model. The tire’s dynamic

properties are derived from the longitudinal slip, sideslip angle, normal tire-

ground force, and maximum road friction coefficient. On the one hand, the linear

relationship to compute the longitudinal tire-ground force is:

Fxij =Csij (sij + SH) + SV (2.13)

with SH and SV are the horizontal and vertical shifts, Csij represents the longitudi-

nal tire stiffness; Csij depends on the wheel load, Fzij , and the tire-road friction,

µxij . Also, the longitudinal tire stiffness is:

Csij = lim
sij→0

(
∂Fxij
∂sij

)
On the other hand, the lateral tire-ground force linear representation is:

Fyij = Cαijαij + SV (2.14)

where

α1,j = δj − β1j + SH

α2,j = −β2,j + SH
(2.15)

with SH and SV are already defined, and Cαij means the tire cornering stiffness;

analogously to (2.13), Cαij depends on the wheel load and the tire-road friction,

µyij , and the normal tire-ground force. Finally, δj stands for the steering angle for

the left or right wheel respectively. Also,

βij = arctan

(
vycog + (−1)iliψ̇

vxcog + (−1)jejψ̇

)
(2.16)

and

Cαij = lim
αij→0

(
∂Fyij
∂αij

)
Notice that the definition for the sideslip angle, α1j, is given from the vehicle body
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(a) Equation (2.13) response (b) Equation (2.14) response

Figure 2.6 – Operation Region of equations (2.13) and (2.14)

frame of reference placed at the center of gravity. Figure 2.6 shows the region in

which eqs. (2.13) and (2.14) are valid. With a black-solid line, this figure shows

the actual tire-ground force trough all the domain and, on the other hand, with a

red-solid line depicts the response of eq. (2.14). Notice in green color, this figure

portrays the actual linear region, while in pink color depicts the saturation region.

An automobile’s operation domain is mainly within the linear region; nevertheless,

most of the lane departure accidents occur while performing on the non-linear

region.

2.3.4 Magic Formula Tire Model

A widely used semi-empirical tire model to calculate tire-ground force and moment

characteristics for vehicle dynamics studies is known as Magic Formula. The

development of this model started as a joint venture between Volvo and TU-Delft in

the mid-eighties. Several versions were developed through the years [Bakker et al.,

1987, Bakker et al., 1989, Pacejka and Besselink, 1997a]. In these models, the

combined slip situation is modeled from a physical viewpoint. In 1993, Michelin

introduced a purely empirical method using Magic Formula-based functions to

describe the tire horizontal force generation at a combined slip. This approach has

been adopted in subsequent versions of the Magic Formula Tire Model.

The general form of the formula holds for given values of vertical load and

camber angle is the set

Y (X) = y(x) + SV

y(x) =D sin [C arctan{Bx− E (Bx− arctanBx)}]

x = X + SH

(2.17)
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Figure 2.7 – Curve produced by the original sine version of the Magic Formula, Eqn (2.17).
The meaning of curve parameters has been indicated.

where Y (X) is the output variable Fxij , Fyij or Mzij and X stands for the input

variable tan(αij) or κij, and B is the stiffness factor, C the shape factor, D the peak

value, E the curvature factor, SH , and SV are the horizontal and vertical shifts. The

Magic Formula (2.17) typically produces a curve that passes through the origin

x = y = 0, reaches a maximum, and subsequently tends to a horizontal asymptote.

A new set of coordinates arises, see Figure 2.7. The formula is capable of producing

characteristics that match measured curves for the lateral force Fyij and for the

longitudinal force Fxij as functions of their respective slips: the sideslip angle, α,

and the longitudinal slip, κ, with the effect of load, Fzij , and camber angle, γ,

included in the parameters.

Figure 2.7 illustrates the meaning of some of the factors using a typical side

force characteristic. The product BCD corresponds to the slope at the origin

(x = y = 0). The shape factor C controls the range limits of the sine function

appearing in formula (2.17) and thereby determines the shape of the resulting

curve. The factor B is left to determine the slope at the origin and is called the

stiffness factor. The factor E controls the curvature at the peak and, at the same

time, the peak’s horizontal position. The offsets SH and SV appear to occur when

ply-steer2, conicity3 effects or possibly the rolling resistance cause the Fyij and Fxij
curves not to pass through the origin. Wheel camber may give rise to a large offset

of the Fyij versus αij curves. Such a shift may be accompanied by a significant

2Ply steer describes the lateral force a tire generates due to asymmetries in its carcass as it rolls
forward with zero slip angle and may be called pseudo side slip.

3Conicity is a parameter based on lateral force behavior. It is the characteristic that describes the
tire’s tendency to roll like a cone.



26 CHAPTER 2. MODELING PRELIMINARIES

Table 2.1 – Main Components of the Magic formula for the longitudinal tire-ground force
computation (2.18)

Coefficient Name Formula

C Shape factor C = b0

D Peak factor D = Fzij
(
b1Fzij + b2

)
BCD Stiffness BCD = (b3F

2
zij

+ b4Fzij)e
−b5Fzij

B Stiffness factor B = BCD/(CD)

E Curvature factor E =
(
b6F

2
zij

+ b7Fzij + b8

)
(1− b13sign(sij + SH))

SH Horizontal Shift SH = b9Fzij + b10

SV Vertical Shift SV = b11Fzij
Bs Bs = B (sij + SH)

deviation from the original curve’s pure anti-symmetric shape.

In the following two subsections, the magic formula parameters are defined for

the longitudinal and lateral directions.

2.3.4.1 Longitudinal Tire-Ground Force

From (2.17) is easy to obtain the formula to compute the longitudinal tire-ground

force, thus:

Fxij = D sin [C arctan{Bs − E arctan (Bs − arctan (Bs))}] + SV (2.18)

with elements D, C, Bs, E, and Sv defined in Table 2.1. Table 2.2 presents the

formulas to derive the main components from coefficients b0, b1, ...b13, including its

nominal values, and its ranges. The main components are b0 known as shape factor,

b2 as the longitudinal friction coefficient, b4 is the change of stiffness related to the

slip, and b8 the curvature factor. The inputs are the friction coefficient, the normal

tire-ground force in kilo-Newtons, and the longitudinal slip (value between 0 and

100).

2.3.4.2 Lateral Tire-Ground Force

The formula to compute the longitudinal tire-ground force from (2.17) is:

Fyij = D sin(C arctan (Bα − E arctan (Bα − arctan (Bα)))) + SV (2.19)
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Table 2.2 – Components require to form the (2.18)

Param. Role Typical range Nom. Value
b0 Shape factor 1.4 ... 1.8 1.5
b1 Load influence on longitudinal friction coefficient -80 ... +80 0
b2 Longitudinal friction coefficient 900 ... 1700 1000
b3 Curvature factor of stiffness/load -20 ... +20 0
b4 Change of stiffness with slip 100 ... 500 300
b5 Change of progressiveness of stiffness/load -1 ... +1 0
b6 Curvature change with square load -0.1 ... +0.1 0
b7 Curvature change with load -1 ... +1 0
b8 Curvature factor -20 ... +1 -2
b9 Load influence on horizontal shift -1 ... +1 0
b10 Horizontal shift -5 ... +5 0
b11 Vertical shift -100 ... +100 0
b12 Vertical shift at load = 0 -10 ... +10 0
b13 Curvature shift -1 ... +1 0

Table 2.3 – Main Components of the Magic formula for the lateral tire-ground force
computation (2.19)

Coefficient Name Formula
C Shape factor C = a0

D Peak factor D = Fzij
(
a1Fzij + a2

)
(1− a15γ

2)
BCD Stiffness BCD = (a3 sin(arctan(Fzij)2)(1− a5 | γ |)
B Stiffness factor B = BCD/(CD)
E Curvature factor E =

(
a6Fzij + a7

)
(1− (a16γ + a17)sign(αij + SH))

SH Horizontal Shift SH = a8Fzij + a9 + a10γ
SV Vertical Shift SV = a11Fzij + a12 + (a13Fzij + a14)γijFzij
Bα Bα = B (αij + SH)

in this case Table 2.3 presents the main components of equation (2.19) and their

dependence on coefficients a0, a1, ..., a17. Table 2.4 presents the range of such

coefficients with their nominal values. Notice here that even the camber angle γ is

introduced to define some of the main components of (2.19). The main coefficients

used are the shape factor a0, the lateral friction coefficient, a2, the change of

stiffness with the sideslip angle, a3, the change of progressiveness of stiffness

against the load, a4, and the Curvature factor, a7.
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Table 2.4 – Components require to form the (2.19)

Param. Role Typical range Nom. Value
a0 Shape factor 1.2 ... 1.8 1.4
a1 Load influence on longitudinal friction coefficient -80 ... +80 0
a2 Lateral friction coefficient 900 ... 1700 1000
a3 Change of stiffness with slip 500 ... 2000 1000
a4 Change of progressiveness of stiffness / load 0 ... 50 10
a5 Camber influence on stiffness -0.1 ... +0.1 0
a6 Curvature change with load -2 ... +2 0
a7 Curvature factor -20 ... +1 -2
a8 Load influence on horizontal shift -1 ... +1 0
a9 Horizontal shift at load = 0 and camber = 0 -1 ... +1 0
a10 Camber influence on horizontal shift -0.1 ... +0.1 0
a11 Vertical shift -200 ... +200 0
a12 Vertical shift at load = 0 -10 ... +10 0
a13 Camber influence on vertical shift, load dependent -10 ... +10 0
a14 Camber influence on vertical shift -15 ... +15 0
a15 Camber influence on lateral friction coefficient -0.01 ... +0.01 0
a16 Curvature change with camber -0.1 ... +0.1 0
a17 Curvature shift -1 ... +1 0
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Figure 2.8 – Tire-ground force vs the longitudinal or lateral slip respectively

Figure 2.8 shows the magic formula (2.17) response with different input values

of µFzij from 3500 Newtons to 5000 Newtons, and assuming a camber angle

equal to zero, γ = 0 and a friction coefficient equal to 1.0; this means that the

magic formula is not constrained to a tire operation region as the linear tire model

(2.13)-(2.14). Notice that the normal tire-ground force units are kilo-Newtons.

2.4 Vehicle Models

The tire models are useful and valid; nevertheless, they consider prior knowledge

on the normal tire-ground force, the friction coefficient, and the camber angle,
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among others, its implementation to an embedded unit within the car is not possible

yet. Several authors had the idea to use both the tire and vehicle models to improve

the estimation’s robustness and accuracy by developing closed-loop observers.

Therefore, three mathematical representations of a vehicle are introduced in this

section: the double track, the bicycle, and the hoverboard model. These models

help to develop the vehicle state observers and the control schemes proposed in

the following chapters.

2.4.1 Double Track Model

The double-track model is a four-wheel vehicle representation widely used in the

literature. This model assumes null rear steering angles, the direction or heading

of the rear tires are considered the same as the vehicle, thus from Figure 2.9 and

using Newton-Euler laws of motion:

max =Fx11 cos(δ11)− Fy11 sin(δ11) + Fx12 cos(δ12)− Fy12 sin(δ12) + Fx21 + Fx22

−mg sin(θr)−
1

2
ρCDxSxv̄

2
x

may =Fx11 sin(δ11) + Fy11 cos(δ11) + Fx12 sin(δ12) + Fy12 cos(δ12) + Fy21 + Fy22

−mg sin(φR) cos(θR)− 1

2
ρCDySyv̄

2
y

maz =Fz11 + Fz12 + Fz21 + Fz22 −mg cos(θR) cos(φR)

Ixφ̈ =e1(Fz11 + Fz21)− e2(Fz12 + Fz22)− hmay
Iyθ̈ =l1(Fz11 + Fz12)− l2(Fz21 + Fz22) + hmax

Izψ̈ =l1may − l(Fy21 + Fy22) + e2max − e(Fx11 cos(δ11)− Fy11 sin(δ11) + Fx21)

(2.20)

where m stands for the mass of the vehicle, ap, ∀p ∈ B := {x, y, z} means an

acceleration at the p-axis, Fpij represents a force at the ijth, ∀i, j ∈ A : +{1, 2}
wheel directed towards its particular p-axis, δij describes the steering wheel angle

of the ijth wheel, θr denotes the road slope angle, ρ∗4 is the air’s density, CDp means

the drag coefficient, Sp is the vehicle’s surface in hitting the wind while vehicle’s

movement, φr describes the road bank angle, li means the distance between the

COG and the front, (i = 1), and rear (i = 2) axles, also L =
∑

i∈A li holds, h is

the minimum distance from the COG to the ground, ei stands for the distance in

the lateral direction from the COG to the left or right tires, also in this case E∗5

=
∑

j∈A ej holds, g is the acceleration due to the gravity, Ip is the inertia for a given

4ρ is redefined in this section.
5E in this case is a distance and not the curvature factor used by the magic formula
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p-axis; finally, φ, θ, and ψ define the attitude of the vehicle and φ̈, θ̈ and ψ̈ describe

the angular acceleration for the roll, pitch and yaw angles respectively.

Figure 2.9 – Double track model

2.4.2 Single Track Model

The bicycle model is arguably the most used mathematical representation of a

vehicle in the literature; see Figure 2.10. Its main characteristic is that it considers

the left and right front wheels as a single central wheel with a steering angle δ

defined as the average of left and right steering angles. Also, one central wheel

without steering represents the rear left and right tires. In this case, only the front

tire is controlled. Further, as an intrinsic property of this model, the roll dynamics

are ignored. Then, from Figure 2.10 and using Newton-Euler laws of motion, the

following set of equations are formulated:

max =
∑
j∈A

Fx1j cos(δ)−
∑
j∈A

Fy1j sin(δ) +
∑
j∈A

Fx2j −
1

2
ρCDxSxv̄

2
x −mg sin(θr)

may =
∑
j∈A

Fx1j sin(δ) +
∑
j∈A

Fy1j cos(δ) +
∑
j∈A

Fy2j −mg sin(φr) cos(θr)

maz =
∑
i∈A

∑
j∈A

Fzij −mg cos(θr) cos(φr)

Ixφ̈ = 0

Iyθ̈ =l1
∑
j∈A

Fz1j − l2
∑
j∈A

Fz2j + hmax

Izψ̈ =l1may − l
∑
j∈A

Fy1j

(2.21)

where m, ap, Fpij , ρ, CDx, Sx, v̄x, g, θr, φr, l1, l2, L, φ, θ and ψ are already defined
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Figure 2.10 – Single Track Model

in last subsection. In this model δ describes the steering wheel which has been

defined as the average of the front left and right tires, δ := (δ11 + δ12)/2, and as

the model is different the values for Ip even thought represents the same could be

different.

2.4.3 Hoverboard Model

Figure 2.11 portrays the hoverboard model; this model represents the left tires

(front/rear) as one left wheel and the right tires (front/rear) as a single right wheel.

Here, the steering wheel system and the pitch vehicle dynamics are neglected.

Therefore, from Figure 2.11 and using Newton-Euler laws of motion, gives:

Figure 2.11 – Hoverboard car representation sketch - Superior view
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max =
∑
i∈A

Fxi1 +
∑
i∈A

Fxi2 −
1

2
ρCDxSxv̄

2
x −mg sin(θr)

may =
∑
i∈A

Fyi1 +
∑
i∈A

Fyi2

maz =
∑
i∈A

Fzi1 +
∑
i∈A

Fzi1 −mg cos(θr) cos(φr)

Ixφ̈ =e2

∑
i∈A

Fzi2 − e1

∑
i∈A

Fzi1

Iyθ̈ = 0

Izψ̈ =e2

∑
i∈A

Fxi2 − e1

∑
i∈A

Fxi1

(2.22)

where m, ap, Fpij , ρ, CDx, Sx, v̄x, g, θr, φr, e1, e2, E, φ, θ and ψ are already defined

in last subsection. Also here the values for Ip could be different even thought

represent the same effects.

2.5 Torque-based models

In other cases, authors have taken advantage of using the torque τ coming from

the powertrain subsystem. In some cases, linear models relating the brake pressure

and some braking stiffness are used to provide more information and generate new

and more accurate observation systems. In this section, the torque is available, and

two models have been introduced: the single-corner model and the double-corner

model.

2.5.1 Single-corner model

The single-corner model is a simple but effective model, typically used to design

and test braking subsystems. Therefore, the model considers the four wheels as

dynamically decoupled, neglecting the effects of the suspension dynamics and load

transfer. This model is valid for straight-line maneuvers, where the camber angle γ

and the tire slip angle α are near zero, and considers a constant wheel radius. The

model is given by the following set of equations obtained after applying Newton

laws of motion and Figure 2.12:

IΩΩ̇ij =rijFxij − τij
mij v̇xij =− Fxij

(2.23)

where Ω is the angular speed of the wheel, vxij stands for the longitudinal speed of

the itth tire, τij means the torque (drive or braking torque), Fxij is the longitudinal
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Figure 2.12 – Simple corner model

tire-road contact force and IΩ, mij and rij are the moment of inertia of the wheel,

the single-corner mass and the wheel radius, respectively.

2.5.2 Double-corner model

The double-corner model can be regarded as a side view of the vehicle, where one

front and one rear wheel are modeled, (similar to the single-track model). Let us

consider the double-corner model shown in Figure 2.13, the vehicle dynamics are

described by the following set of equations:

IΩΩ̇f =rf
∑
j∈A

Fx1,j −
∑
j∈A

τx1,j

IΩΩ̇r =rr
∑
j∈A

Fx2,j −
∑
j∈A

τx2,j

mv̇x =−
∑
j∈A

Fx1,j −
∑
j∈A

Fx2,j

(2.24)

where Ωf = 0.5
∑

i∈AΩ1i is the mean speed of the two front wheels, Ωr =

0.5
∑

i∈AΩ2i represents the averages speed of the two rear wheels,
∑

i∈A τx1,i
means the torque at the virtual-centered front wheel,

∑
i∈A τx2,i is the torque

at the virtual-centered rear wheel,
∑

i∈A Fx1,i and
∑

i∈A Fx2,i are already defined.

Finally, rf = 0.5
∑

i∈A r1i, and rr = 0.5
∑

i∈A r1i are the mean radius of the front

and rear wheels, respectively.

2.6 Suspension System Models

While driving, the vehicle is under the influence of the driver commands (accel-

eration, deceleration), external disturbances (road conditions, bumps, bank, and
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Figure 2.13 – Double-corner model

slope angles), environmental conditions, etc. Specifically, the suspension system

experiments two primary disturbances:

• The load transfer is the change in tire-ground normal force produced due

to longitudinal and lateral vehicle accelerations, i.e., when accelerating, the

chassis experiments a force that pulls or pushes in the vertical axes at the

front or rear axle. This force affects the driving experience by diminishing the

driver’s comfort.

• The road profile affects the driver’s comfort and the vehicle’s road holding.

2.6.1 Quarter Car Model

The most used vehicle suspension model is known as a quarter car model, see

Figure 2.14. With this model, the vertical vibration of a vehicle could be represented

by two solid masses ms and mus denoted as sprung and unsprung mass, respectively.

The equivalent values for spring stiffness ks, and the damping coefficient cs, support

the sprung mass while the unsprung mass is in contact with the ground. While

using the quarter car model, equivalent coefficients also represent the tire for spring

stiffness kt and a shock absorber ct; these values (kt, ct) emulate the compression

and decompression of the tire’s rubber. Thus, from Newton laws of motion and

Figure 2.14 is obtained:

msz̈s =− ks(zs − zus)− cs(żs − żus)

musz̈us = ks(zs − zus) + cs(żs − żus)− kt(zus − zr)− ct(żus − żr)
(2.25)

where zn, żn and z̈n stand for the mass’ height, velocity and acceleration respectively,

with n ∈ C := {s, us}. The suffix n stands for an effect applied at the sprung or
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unsprung mass correspondingly, and variables zr, and żr are unknown inputs

representing the road profile and its time derivative.

Ground

Figure 2.14 – Passive suspension system

Figure 2.15 shows in red-solid line the actual force produced at the suspension

spring and dampers (left figures) and the actual force produced by the tire

represented by a series of springs and dampers (right figures). Also, displays

with black circles the linear approximation of such forces using the equivalent

parameters (ks, cs , kt and ct). Notice that this linear approximation lacks accuracy

at the edges of the graphs. Moreover, the presence of such uncertainties increases

the estimation problem complexity.

2.6.2 7 degrees of freedom vehicle vertical model

This model includes the chassis’ vertical dynamics, pitch and roll, and the vertical

motions of the wheels. The dynamic equations are:

msz̈s =−
∑
i∈A

∑
j∈A

Fzsij

Ixφ̈ =e1

∑
j∈A

Fzsi1 − e2

∑
j∈A

Fzsi2 − hmay

Iyθ̈ =l1
∑
j∈A

Fzs1j − l2
∑
j∈A

Fzs2j − hmax

musij z̈ij =Fzsij − Fztij

(2.26)

with ms defined as the sprung mass of the whole vehicle, z̈s is the vertical accelera-

tion of the vehicle’s COG, musij stands for the ijth unsprung mass, z̈usij represent

the acceleration of the ijth unsprung mass, Ip, φ, θ, h, ej, li and ap are already
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Figure 2.15 – Spring and Damping force response measured forces portrayed with red-solid
line and linear model depicted with black-circled line. Up-left: Suspension deflection against
spring force at the suspension. Up-right: Tire deflection against the spring force at the
tire. Down-left: Suspension deflection speed against the damping force at the suspension.
Down-right: Tire deflection speed against the damping force at the tire.

defined. The forces Fzsij are modeled by a linear equation as in (2.25), thus,

Fzsij = ksij(zsij − zusij) + csij(żsij − żusij),

and

Fzusij = ktij(zusij − zrij) + ctij(żusij − żrij),

where the coefficients ksij , csij , ktij , ctij , are found as:

ksij =

(
∂Fzsij
∂zsdij

)
|żsdij=0, csij =

(
∂Fzsij
∂żsdij

)
|zsdij=0,

ctij =

(
∂Fztij
∂ztdij

)
|żtdij=0, ktij =

(
∂Fzsij
∂żdij

)
|ztdij=0,

with zsdij = zsij − zusij , żsdij = żsij − żusij , ztdij = zusij − zrij and żtdij = żusij − żrij .



2.7. CONCLUSIONS 37

(a) 7 DoF model Lateral view (b) 7 DoF model rear view

Figure 2.16 – 7 DoF model

2.7 Conclusions

This chapter provides a brief introduction to the vehicle dynamics modeling stated

of the art. The vehicle dynamics study is mainly divided into two major topics: the

dynamics of the road-tire interactions and vehicle motion dynamics. The road-tire

interactions explain how the tire-ground forces are generated. The vehicle dynamics

emphasize the relation between the tire forces and vehicle motion.

This chapter presents the brush model, the Dugoff model, the linear tire model,

and the Magic tire formula. The brush model is a simplified physical model of a

tire that considers the tire as a series of small bristles that model the tire rubber’s

compression and decompression. The reader can get a lot of intuition from it. The

Dugoff model is even simpler than the brush model, and this is more suitable for

embedded implementations. An extra simplification is introduced by the linear tire

model, which captures the relation between the tire-ground forces and the tire slips;

as the name implies, this representation does not consider the force saturation that

a tire can experiment. The magic formula is the most complex of all, and also is the

most accurate.

This chapter also presents the vehicle models that represents the vehicle motions.

The double-track, single-track, and the hoverboard models represent the car in 6

degrees of freedom environment. On the other hand, the single-corner and double-

corner models are presented; they consider the vehicle as the tire or couple of tires;

these models consider the motor torque as the longitudinal force producer. Finally,

the quarter-car model and the 7 degrees of freedom suspension model help us

explain the vertical motion of the vehicle in more detail.
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3.1 Introduction

This section proposes techniques to estimate the longitudinal and lateral speed,

which is an important variable related to the sideslip angle. Most of the lateral

stability controllers for vehicles define the sideslip angle as part of the vehicle state;

thus, estimating both the longitudinal and lateral speed is crucial to increase the

lateral stability controller’s performance.

In Section 3.2, we present the preliminaries of state estimation; this section’s

scope is the Luenberger observer and Kalman filter techniques that are the basis

of the developed observers in this thesis. Section 3.3 presents a review specifically

on the most relevant works in the sideslip angle / lateral speed estimation topic.

This thesis’s contribution that addresses lateral speed estimation is seen in Section

3.4, while Section 3.5 analyses the results of the estimation technique. Finally, in

Section 3.6, the conclusions and perspectives are discussed.

3.2 Preliminaries

In control theory, state-feedback controllers and most controllers assume that all

the state variables are available for feedback. This assumption may not hold in

practice because sensing devices are not available, or the cost is too high for mass-

produced vehicles. In this case, we must design a device, called state estimator or

state observer, so that the device’s output will generate an estimate of the state.

3.2.1 Observability for Linear Systems

In this section, we explain the notion of state to provide the basis for the Luenberger

Observer. This definition is crucial to formulate a state-space model, thus:

• System equation, which describes the evolution of the state through time.

• Measurement equation, which describes the dependence of the measurements

on the state.

Definition 3.2.1. In general, we can say that the state of a system at a given time
instant t1 ≥ t0 should include the minimal information that allows one to continue
the dynamic for t ≥ t1.
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In this chapter we will consider the n-dimensional, p-input, q-output state-space

equation:

ẋ(t) =Ax(t) + Bu(t)

y(t) =Cx(t)
(3.1)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n with constant elements and usually

known as the state, input and output matrices, the state x(t) ∈ Rn×1 and the output

y(t) ∈ Rq×1.

The problem of interest is to estimate the state x(t) based on the measurements

y(t). The general form of the estimate x̂(t) is:

x̂(t) = α (x̂(0),Y(t))

where x̂(0) is a guess of the statistical mean1,2 and Y(t) =
∫ t

0
y(t)dt. Let us define

observable state.

Definition 3.2.2. The state-space equation (3.1) is said to be observable if for any
unknown initial state x(0) there exists a finite t1 > 0 such that the knowledge of the
input, u, and the output, y, over [0, t1] suffices to determine uniquely the initial state
x(0). Otherwise, the equation is said unobservable.

The response of (3.1) is

y(t) = CeAtx(0) + C

∫ t

0

eA(t−τ)Bu(τ)dτ (3.2)

Theorem 3.2.1. The state-space equation (3.1) is observable if and only if the matrix

W0(t) =

∫ t

0

eA
T τCTCeAτdτ

is non-singular for any t > 0

Proof. First, lets rewrite (3.2) as

CeAtx(0) = ȳ(t) (3.3)

1The statistical mean is also called the mathematical expectation, mx = E(x) and E(x) =∫
S
xp(x)dx, where p(x) is the probability density function and S the support on which the variable

is defined
2In probability theory, a probability density function is a function whose value at any given

sample in the sample space provides a relative likelihood that the variable’s value would equal that
sample.
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with

ȳ(t) := y(t)−C

∫ t

0

eA(t−τ)Bu(τ)dτ

if we premultiply (3.3) and then integrate it over [0, t1], yields∫ t1

0

eA
T τCTCeAτdτx(0) =

∫ t1

0

eA
T τCT ȳ(τ)dτ

and finally

x(0) = W0(t1)−1

∫ t1

0

ATτCT ȳ(τ)dτ

Theorem 3.2.2. The state-space equation (3.1) is observable if and only if the
observability matrix

O =


C

CA
...

CAn−1

 (3.4)

has rank n (full column rank).

Proof. Lets consider (3.3), differentiating it repeatedly n− 1 times and set the time

to zero, we obtain: 
C

CA
...

CAn−1

x(0) =


ȳ(0)

˙̄y(0)
...

ȳn−1(0)


if and only if O is a full column rank matrix could be an invertible matrix, and it

follows that the initial state condition x(0) could be isolated as

x(0) =




C

CA
...

CAn−1


T 

C

CA
...

CAn−1



−1 

C

CA
...

CAn−1


T 

ȳ(0)

˙̄y(0)
...

ȳn−1(0)

 (3.5)

The problem is to estimate the state, x, from the input, u, and the output y using

the knowledge of matrices A, B, and C; with this knowledge, we can duplicate the

original system as:
˙̂x(t) = Ax̂(t) + Bu(t) (3.6)
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+

+

Figure 3.1 – Open Loop Observer

the system (3.6) is known as open-loop estimator, see Figure 3.1.

There are, however, two disadvantages of using an open-loop estimator. First,

the initial state must be computed and set each time we use the estimator. Second,

if the matrix A has eigenvalues with positive real parts, the estimation error will

grow with time.

The open-loop estimator in (3.6) could be modified as:

˙̂x(t) = (A− LC)x̂(t) + Bu(t) + Ly(t) (3.7)

where L is the gain matrix defined this way in honor of David Gilbert Luenberger,

giving the diagram shown in Figure 3.2.

Now, let us define the estimation error as x̂(0) = x(0) + x̃(0), and differentiating

the estimation error yields

˙̃x(t) =Ax(t) + Bu(t)− (A− LC)x̂(t)−Bu(t)− Ly(t)

=(A− LC)x̃(t)
(3.8)

Suppose the system (3.1) is fully observable. In that case, it means that all

eigenvalues of A− LC can be arbitrarily assigned, then we can control the rate in

which the estimation error, x̃(t), decays to zero.

3.2.2 Kalman Filter

In this section, we complete our study with a linear optimum filter by developing

the Kalman filter’s basic ideas. A distinctive feature of the Kalman filter is that its

mathematical formulation describes the state-space. Another part of a Kalman filter

is that it has a recursive solution; only the previous estimate requires storage. The
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+

+

+

Figure 3.2 – Closed Loop Observer

Kalman filter is ideally suited for computer implementations. In a few words, the

Kalman filter is an "estimator/predictor" observer whose gain K is calculated such

that the estimate is optimal in the sense of the orthogonality principle.

The state-space system (3.1) is redefined in this section and discretized. We

assume that the signal yn can be described by a linear time-invariant state model

and additive-noise model for the measurements zn. Then we have the state-space

model:

xn+1 =Φxn + Γωn, (3.9a)

yn =Cxn, (3.9b)

and

zn = yn + vn (3.10)

where Φ ∈ Rn×n, Γ ∈ Rn×m, and C ∈ Rq×n are known deterministic matrices,

xn ∈ Rn×1 is the current state vector with x0 is the initial state, ωn ∈ Rm×m denotes

the stationary process noise with covariance matrix, Q ∈ Rm×m, vn ∈ Rq means the

stationary measurement noise with zero-mean white-noise and covariance matrix

R ∈ Rq×q. Notice that ωn and vn are considered uncorrelated, zero-mean, white

noise processes, and system (3.9) has no input.

Once the system (3.9) is defined, we could develop the two main stages of the

Kalman filter: The prediction and update stages.
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3.2.2.1 Prediction Stage

In this stage the filter finds the a priori estimate, x̂n|n−1, from the a posteriori

estimate, x̂n−1|n−1, and the error covariance matrix, Pn|n−1. Thus, the a priori
estimate, x̂n|n−1, should be the optimum estimate and x̂n|n−1 must satisfy the

orthogonality condition. Then,

E
[(

xn|n − x̂n|n−1

)
Zn−1

]
= 0 (3.11)

with Zn−1 = [z1, z2, . . . , zn−1] and 0 represents a matrix full of zeros with adequate

dimensions.

Lets consider the error defined as xn−1 = x̂n−1|n−1 + x̃n−1|n−1, and introducing

the state-space equation (3.9a), to eq. (3.11) becomes:

E
[(

Φx̂n−1|n−1 − x̂n|n−1

)
Zn−1

]
+ ΦE

[
x̃n−1|n−1Zn−1

]
+ ΓE [ωn−1Zn−1] = 0

Since x̂n−1|n−1 is the optimal estimate of xn−1,

ΦE
[
x̃n−1|n−1Zn−1

]
= 0

holds. Similarly, ωn−1 is independent of all measurements in Zn−1,

ΓE [ωn−1Zn−1] = 0,

therefore,

E
[(

Φx̂n−1|n−1 − x̂n|n−1

)
Zn−1

]
= 0

holds, if

x̂n|n−1 = Φx̂n−1|n−1 (3.12)

The covariance matrix Pn is defined as:

Pn|n = E
[
x̃n|nx̃

T
n|n
]

thus, the a priori covariance matrix Pn|n−1 is:

Pn|n−1 = E
[
x̃n|n−1x̃

T
n|n−1

]
(3.13)

where x̃n|n−1 = xn − x̂n|n−1. Then, considering that E
[
x̃n−1ω

T
n−1

]
= 0, eq. (3.13)

becomes:

Pn|n−1 = ΦPn−1|n−1Φ
T + ΓQΓT (3.14)



3.2. PRELIMINARIES 47

The recursions (3.12) and (3.14) are called the time update. They describe the

evolution of the estimate and error covariance across time n − 1 to n before the

measurement is available.

3.2.2.2 Update stage

When the measurement becomes available, the estimator shall produce the estimate

of x given the observations Zn; to perform this action, we also need the a posteriori
error covariance matrix.

On the one hand, we assume knowledge of xn−1|n−1, the optimal estimate of

xn−1 given Zn−1. Then we write x̂n−1 as a linear combination of the measurements

Zn−1, then,

x̂n−1|n−1 = Jn−1Zn−1 (3.15)

thus it follows that the actual estimate xn|n is

x̂n|n = JnZn

last equation could be rewritten as

x̂n|n = knzn + GnZn−1 (3.16)

where kn ∈ Rq×1 and Gn ∈ Rq×n−1. Now, let us consider (3.9) and substitute into

(3.16), gives

x̂n|n =kn [Cxn + vn] + GnZn−1

=knCΦxn−1 + knCΓωn−1 + knvn + GnZn−1

Remember that x̂n has to be the optimal estimate of xn, then, the following holds

E
[(

xn − x̂n|n
)
Zn

]
=0 (3.17a)

E [x̃nZn−1] =0 (3.17b)

E [x̃nzn] =0 (3.17c)

Equations (3.17b) and (3.17c) are direct derivations from (3.17a), thus we have

x̃n = [I− knC] Φx̂n−1|n−1 + [I− knC] Φx̃n−1|n−1 + [I− knC] Γωn−1 − knvn −GnZn−1

and considering E [ωn−1Zn−1] = 0 and E [vnZn−1] = 0 we get

E [x̃nZn−1] = [I− knC] ΦE
[
x̂n−1|n−1Zn−1

]
+ [I− knC] ΦE

[
x̃n−1|n−1Zn−1

]
−GnE [Zn−1Zn−1]

0 = [I− knC] ΦJn−1E [Zn−1Zn−1]−GnE [Zn−1Zn−1]

Gn = [I− knC] ΦJn−1
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the above is accomplished by the fact that R > 0 is positive definite, thus, it follows

that E
[
Zn−1Z

T
n−1

]
is also positive-definite and consequently invertible. Also, as

x̂n−1|n−1 is already the optimal estimate of xn−1 the expectancy E
[
x̃n−1|n−1Z

T
n−1

]
=

0. Substituting this result into (3.16), and taking into account equations (3.12)-

(3.15), gives

x̂n|n = x̂n|n−1 + kn
[
zn −Cx̂n|n−1

]
(3.18)

To define kn, it must be fulfilled the condition (3.17c), then from (3.9) and (3.18)

is obtained:

x̃n|n = Φx̃n−1|n−1 + [I− knC] Γωn−1 − knvn

consequently,

E
[
x̃n|n

]
=ΦPn−1|n−1Φ

TCT + ΓQΓTCT − knCΦPn−1|n−1Φ
TCT − knCΓQΓTCT − knR

using (3.14), it follows

0 = Pn|n−1C
T − kn

[
CPn|n−1C

T + R
]

kn = Pn|n−1C
T
[
CPn|n−1C

T + R
]−1

(3.19)

The matrix kn is known as the Kalman gain. Finally, we need to compute the

formulation for the a posteriori error covariance, therefore, from its definition

Pn|n = E
[
x̃nx̃

T
n

]
= Pn|n−1 − knCPn|n−1 −Pn|n−1C

TkTn + kn
[
CPn|n−1C

T +R
]
kTn(3.20)

If we substitute the Kalman gain (3.19), Pn|n becomes:

Pn|n = Pn|n−1 − knCPn|n−1 (3.21)

3.2.2.3 Algorithm

Algorithm 3.1 shos the Kalman filter, the initialization for x0|0 and P0|0 is zero

and the identity matrix, respectively, Γ is the identity matrix and matrices Q

and R are the tunning parameters of the filter, that should be coherent with the

covariance in the model and the sensors respectively. The Kalman filter is similar to

the Luenberger observer; notice the similarities by comparing Figures 3.2 and 3.3.
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Figure 3.3 – Kalman Filter

Algorithm 3.1: Kalman filter
1: Initialization

2: x0|0, P0|0, Γ, Q, R

3: for(n = 1 :∞)

4: Time update stage (prediction stage)

5: x̂n|n−1 = Φx̂n−1|n−1

6: Pn|n−1 = ΦPn−1|n−1Φ
T + ΓQΓT

7: Measurement update stage (correction stage)

8: kn = Pn|n−1C
T
[
CPn|n−1C

T + R
]−1

9: x̂n|n = x̂n|n−1 + kn
[
zn −Cx̂n|n−1

]
10: Pn|n = Pn|n−1 − knCPn|n−1

11: end
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3.2.3 Observability for linear time varying systems

The estimation techniques presented so far are developed for linear time-invariant

models. Nevertheless, nonlinear equations describe many systems in real-life. In

this case, we will consider systems with the following form:

ẋ(t) =A(t)x(t) + B(t)u(t)

z(t) =C(t)x(t)
(3.22)

where x(t) is the state of system, u(t) is the input control, z(t) is the measurement

of the system and, A(t) and C(t) are some time-varying matrices.

Definition 3.2.3. A system expressed with set of equations (3.22) is said to be
completely observable if there exist some tf > t0 such that the initial state x0 of the
system can be determined from the knowledge of z(t) on the interval [t0, tf ].

For the linear-time-invariant system, the Gramian matrix of observability is:

O(t, t0) =

∫ tf

t0

φT (t, t0)CT (t)C(t)φ(t, t0)dt

where φ(t, t0) is the state transfer matrix that transfers the state at t0 to the state at

the moment t.

Theorem 3.2.3. The system characterized by equations (3.22) is completely observ-
able on the interval [t0, tf ] if and only if the matrix O(t0, tf ) is nonsingular.

Considering the discrete form of system, and then rewrite system (3.22) as:

xk+1 =Φkxk + Γu(t)

zk =Ckxk
(3.23)

Definition 3.2.4. System (3.23) is said to be locally observable on the interval
[tk, tk+l−1], if for a state xk, there is a finite [tk, tk+l−1], such that knowledge of the
measurement zk from tk to tk+l−1 are sufficient to determine the state xk which may
be considered as the initial state of the interval, uniquely.

Definition 3.2.5. The local observability matrix is

Ok =


Ck

Ck+1Φk

...
Ck+j−1Φk+j−2Φk
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3.2.4 Nonlinear estimation - Extended Kalman filter

In this section, the Kalman filter is modified to address nonlinear systems, and the

resulting observer/estimator is known as the extended Kalman filter (EKF). Let us

consider a nonlinear system of the form

xn+1 =φ (xn) + Γωn

zn =γ(xn) + vn
(3.24)

where ω(n) and v(n) are uncorrelated, zero-mean, withe noise processes with

covariance matrices Qn and Rn, respectively. The operators φ(x) and γ(x) represent

nonlinear vector-valued functions of the state, x and dimension n. Let x consist of

m states, the φ ∈ Rm×1, and as the measurement zn are p-vectors, γ ∈ Rp×1.

The next step to develop the EKF requires linearization of system (3.24). Then,

expanding φ into a first order Taylor expansion series about x̂n|n, gives:

φ(xn) = φ(x̂n|n) + Jφ(x̂n|n)
[
xn − x̂n|n

]
where Jφ(x) is the Jacobian of φ evaluated at x. Then,

Jφ(x̂n|n)(x̂n|n) =
∂φ

∂x̂n|n
=



∂φ1

∂x̂
(1)
n|n

∂φ1

∂x̂
(2)
n|n
· · · ∂φ1

∂x̂
(m)
n|n

∂φ2

∂x̂
(1)
n|n

∂φ2

∂x̂
(2)
n|n
· · · ∂φ2

∂x̂
(m)
n|n

...
... . . . ...

∂φm

∂x̂
(1)
n|n

∂φm

∂x̂
(2)
n|n
· · · ∂φm

∂x̂
(m)
n|n


Likewise, for γ(xn), we expand about x̂n|n−1, gives:

γ (xn) = γ
(
x̂n|n−1

)
+ Jγ(x̂n|n−1)

[
xn − x̂n|n−1

]
with

Jγ(x̂n|n−1)(x̂n|n−1) =
∂γ

∂x̂n|n−1

=



∂γ1

∂x̂
(1)
n|n−1

∂γ1

∂x̂
(2)
n|n−1

· · · ∂γ1

∂x̂
(m)
n|n−1

∂γ2

∂x̂
(1)
n|n−1

∂γ2

∂x̂
(2)
n|n−1

· · · ∂γ2

∂x̂
(m)
n|n−1

...
... . . . ...

∂γp

∂x̂
(1)
n|n−1

∂γp

∂x̂
(2)
n|n−1

· · · ∂γp

∂x̂
(m)
n|n−1
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by now, we have a linearized state-space model given by

xn+1 =φ(x̂n|n) + Jφ(x̂n|n)
[
xn − x̂n|n

]
+ Γωn

zn =γ
(
x̂n|n−1

)
+ Jγ(x̂n|n−1)

[
xn − x̂n|n−1

]
+ vn

(3.25)

We have skipped some steps; if required, please follow the same pattern as the

linear Kalman filter.

3.2.4.1 Prediction stage

The a priori estimate is given by

x̂n|n−1 =φ
(
x̂n−1|n−1

)
Pn|n−1 =Jφ(x̂n|n−1)Pn−1|n−1J

T
φ(x̂n|n−1) + ΓQkΓ

T

3.2.4.2 Measurement Update stage

The a posteriori estimate is given by

x̂n|n =x̂n|n−1 + kn

[
zn − Jγ(x̂n|n−1)x̂n|n−1

]
Pn|n =Pn|n−1 − knCPn|n−1

kn =Pn|n−1J
T
γ(x̂n|n−1)

[
Jγ(x̂n|n−1)Pn|n−1J

T
γ(x̂n|n−1) + Rk

]−1

3.3 State of the art on sideslip angle estimation

Research on vehicle dynamics active control has been more diligent in recent

years. Active safety systems improve vehicle stability during critical maneuvers by

applying specific inputs from the braking, steering, or drive systems. The sideslip

angle measures vehicle lateral drift; therefore, many vehicle dynamics control

schemes use the sideslip angle to improve the stability of the vehicle, see [Abe et al.,

2001, Zhu et al., 2013, Klomp et al., 2014, Reif, 2014, Tchamna and Youn, 2013].

Nowadays, three main categories of vehicle sideslip angle estimation exist:

• Kinematic-based Observer: This approach uses the kinematic model for an

estimate of the object velocities; taking advantage of some non-holonomic

constraints, the model is simplified. The most significant benefit of state

estimation based on kinematic models is that they are immune to parameter

variations and unknown disturbances. Since it suggests using a combination

of low-cost sensors, these transducers’ specific characteristics will have a

significant effect on the performance of the state estimator.
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• Dynamic-based Observer: This approach uses the vehicle dynamic model

for state estimations. Besides using low-cost sensors, the method requires a

model; this implies that its performance is also related to the model complexity

and the prior knowledge of its parameters. Another degree of complexity is

introduced with the description of the tires and their interaction with the

road.

• Neural network-based: This method does not require the vehicle model either

its parameters; nonetheless, the estimation results depend on how accurately

the training dataset represents the actual vehicle behavior.

3.3.1 Kinematics Models

Kinematic models are simple and depend on the velocity of the vehicle. Including

the non-holonomic constraints of a ground vehicle, we neglect the vertical speed

vg = vxi+ vyj (3.26)

where vg stands for the velocity vector, vx and vy means the longitudinal and lateral

velocity, respectively, i and j are unit vectors aligned with the body coordinate

frame of reference. The time derivative of (3.26) is

ag = axi+ ayj =
dvg
dt

= v̇xi+ vx
di

dt
+ v̇yj + vy

dj

dt
(3.27)

where di
dt

= ωzj and dj
dt

= −ωzi, gives:

ax = v̇x − vyωz
ay = v̇y + vxωz

(3.28)

The kinematic model observer-based approaches mainly use (3.28) to estimate

lateral speed and the sideslip angle from its definition (??). Moreover, from (3.26),

and considering small sideslip angles, β << 1, such that, || vg ||2 ≈ vx, and given

the sideslip definition (2.2), is possible to consider vy ≈ vxβ, then the sideslip angle

time derivative could be expressed as:

β̇ =
ay − axβ − ωzvx

vx
(3.29)

Equation (3.29) have already introduced considerations that do not hold with

sideslip angles higher than ten degrees; most sideslip estimation schemes based

on dynamic models introduce this consideration. Therefore, in order to avoid such
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assumptions, from (3.28) the velocity derivatives v̇x and v̇y are isolated as:

v̇x = ax + vyωz

v̇y = ay − vxωz
(3.30)

Many approaches use the set of equations (3.30) and solve using an observation

strategy. Nonetheless, they assume that the road surface is horizontal. This assump-

tion is not accurate on regular driving maneuvers. Therefore including the slope

and bank angle in (3.30), gives:

v̇x =ax + vyωz + g sin(θr)

v̇y =ay − vxωz − g cos(θr) sin(φr)
(3.31)

where θr stands for the slope road angle, and φr means the bank road angle.

The main strategies to estimate the vehicle sideslip angle are known in the con-

trol research domain: Luenberger Observer (LO), Kalman Filter (and its variants),

and lately, linear parameter varying (LPV) Observer.

There are many works on the literature referring to kinematic based-observers;

in this section, we will describe three propositions made relatively recently.

In [Grip et al., 2009], the author proposes a pure kinematic model approach;

the system (3.31) includes the slope and bank angles. The signals required to apply

this strategy are the accelerations in the longitudinal and lateral direction, the yaw

rate, and the vehicle tires’ angular speed to emulate the longitudinal speed of the

vehicle. The observer has a nonlinear Luenberger-structure, where the observer

gain complies with the system stability on the Lyapunov sense.

In [Madhusudhanan et al., 2016], the authors used an extended Kalman

filter build with system (3.30). The Kinematic model was modified to have a

smooth transition between the maneuvers with and without lateral excitation. The

modification is: [
ˆ̇vx
ˆ̇vy

]
=

[
0 ωz

−ωz fv

][
v̂x

v̂y

]
+

[
1
m

0

0 1
m

][
Fx

Fy

]

with

fv =

−20

(
1− ω2

z

0.01 π2

1802

)
, if | ωz |< 0.1deg/s and | Fy |< 100Newtons

0

This approach’s particularity relies on the use of load-bearing sensors to compute
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equivalent accelerations from its measurement of normal, longitudinal, and lateral

forces; nonetheless, the equivalent accelerations resulting from the system do not

overcome disturbances introduced by the road profile (bank and slope angle).

In [Selmanaj et al., 2017a], the authors use a pure kinematic model com-

plemented with a smoothing function to prevent deviation due to accumulated

integration errors. Instead of fv, the use a value F (t), choosing F (t) > 0 and

sufficiently high when the vehicle is moving straight, the lateral velocity converge

to zero. The value of F (t) is scheduled by a heuristic algorithm that identifies

straight driving. The sensor required is an inertial measurement unit, compensated

for bias and the gravity components affecting the acceleration measurements and

the longitudinal speed. The observation technique is a nonlinear observer with the

same structure as the LO. The resulting outputs are the lateral and longitudinal

vehicle speeds.

In Section 3.4 our proposal is presented, and how we have handled the problems

inherent to kinematic-based-model observation schemes.

3.3.2 Dynamic Models

The dynamic models provide a more detailed explanation of the vehicle. Then,

from (2.21), the single-track model is modified to be a function of the sideslip

angle, hence,

mv̇x =
∑
j∈A

Fx1j cos(δ)−
∑
j∈A

Fy1j sin(δ) +
∑
j∈A

Fx2j −
1

2
ρCDxSxv̄

2
x −mg sin(θr) + βvxωz

mβ̇ =
1

vx

∑
j∈A

Fx1j sin(δ) +
∑
j∈A

Fy1j cos(δ) +
∑
j∈A

Fy2j −mg sin(φr) cos(θr)

− ωz
Izω̇z = l1may − l

∑
j∈A

Fy1j

(3.32)

Several authors use different vehicle dynamical models, but the single-track model

is the most common for the sideslip angle estimation problem. One common

consideration among observers based on dynamical models is that longitudinal

speed vx is constant.

In [Bevly et al., 2001], on the one hand, the author proposes the use of GPS

velocity measurements to determine the direction of travel. On the other hand,

the vehicle heading is estimated by direct integration of a gyroscope in the z-axis

while turning. The integration computation is reset and biased compensated during
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straight driving. The sideslip angle is obtained from

β̂ = ψGPS − ψ̂∫ Gyro
where ψGPS and ψ̂∫ Gyro are the orientation measured with the GPS and the

orientation estimation given by the direct integration. Later on v̂y = vGPSg sin(β̂)

the lateral speed is obtained.

In [Bevly et al., 2006], the author compares the approach presented in [Bevly

et al., 2001], against a two GPS antenna approach. The two GPS antennas can

accurately estimate the road bank angle and improve the sideslip angle estimation.

Additionally, with a Kalman filter, the cornering stiffnesses for the front and rear

axle are estimated.

In [?], the author describes a simple observer structure that contains a sliding

mode term that includes robustness against output noises and parameter variations

as sustained disturbances. The vehicle’s nonlinear model is represented by an

uncertain Takagi-Sugeno fuzzy model when the road adhesion conditions change,

and the sideslip angle is unavailable for measurement. The stability conditions of

such observers are expressed in linear matrix inequalities. The scheme is validated

with numerical simulations. Moreover, in [?], the author can use the closed-loop

observer to develop a closed-loop controller and validate it through simulation.

In [Stéphant et al., 2007], the authors develop a two stages observer; during

the first stage, a SMO is developed based on the bicycle model, while assuming the

lateral and longitudinal force time derivative as random walk variables. In this step,

the yaw rate and the longitudinal and lateral forces at each tire are estimated. On

the second stage, an EKF estimates the sideslip angle and the cornering stiffness.

One advantage of using this type of structure is that the EKF filters the sliding

modes observer’s outputs and correct them.

In [You et al., 2009], a similar approach is taken into account. Still, lateral load

transfer and traction/braking force are known values, improving the cornering

stiffness and the sideslip angle estimations.

In [Zhao et al., 2011] the authors proposed a nonlinear observer for estimating

the vehicle velocity with a bicycle model and Dugoff’s tire model. The nonlinear

observer complies with the observability criterion in the Lyapunov sense. The

measurements required are the longitudinal and lateral acceleration, as the yaw

rate.

In [Antonov et al., 2011], the authors consider a passenger vehicle equipped

with standard vehicle dynamic control sensors, the propulsion, and the braking

torques of the wheels are known. They use the planar two-track vehicle model as a



3.3. STATE OF THE ART ON SIDESLIP ANGLE ESTIMATION 57

basis for the uncented Kalman filter (UKF) design. A method for the vertical tire

forces calculation is developed, which additionally accounts for the tire stiffness.

The simplified empirical Magic Formula is used for describing the tire/road interac-

tions. Afterward, the performance of the augmented state UKF implementation is

evaluated, employing real vehicle tests.

In [Nguyen et al., 2012], the heading measurement from a GPS is used to

estimate the sideslip angle, also requires the steering angle and the yaw rate. The

authors use the bicycle model to build its Kalman filter; here, the asynchronous

measurement problem is addressed.

In [Yoon and Peng, 2013], the heading and roll angles to the inertial frame

of reference are computed with a Kalman filter using a magnetometer sensor,

the yaw rate, and the roll rate measurements. The sideslip angle is estimated

using the previously obtained estimations and fusing them with the accelerometer

measurements and the GPS sensor’s velocities.

In [Chen et al., 2014] the authors use a SMO build over a vehicle dynamics 5-

order model composed of the bicycle model and four single corner representations.

In [Gadola et al., 2014] an EKF is proposed to estimate the sideslip angle based

on a single-track model using a family of curves representing a generic Pacejka

magic tire model. Another critical part of this work is the way to update the Q, R

matrices with and optimization tool, over,

min

(
||

[
ay

φ

]
−Hx̂− ||2

)

In [Zhang et al., 2016a, Zhang et al., 2016b], the estimation scheme is a LPV

observer build over the lateral dynamics of the bicycle model. With this approach,

the velocity is not considered constant. The observer gain is obtained through

optimization by solving a linear matrix inequality (LMI) to comply with the stability

constraints in the Lyapunov sense.

In [Katriniok and Abel, 2016], show a complete tire force estimation scheme,

using the magic tire. The inputs are ax, ay, ψ̇, vg virtual measurements of the friction

are added µx = 0 if observable, µx = µx if not. The same goes for µy. Observability

is verified each iteration and if not observable choose between the values available

of friction.

In [Naets et al., 2017], the estimation scheme is an EKF build over a bicycle

model, complemented with Dugoff models boosted with cornering stiffness adapta-

tion through the nonlinear least-squares method. This method requires the steering

angle, lateral and longitudinal accelerations, yaw rate, tire angular speed, and the
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actual car speed obtained through GPS.

In [Chen et al., 2018], the estimation scheme is a nonlinear Luenberger-structure

observer over the lateral dynamics of the bicycle model, where the observer gain is

found through Lyapunov functions. The scheme requires the IMU and GPS.

All the approaches mentioned above use kinematic equations somehow; how-

ever, some use the dynamical models that require prior knowledge on the vehicle

mass, the cornering stiffness for the virtual front and rear tires. Our proposal has

more similarity with [Grip et al., 2009, Madhusudhanan et al., 2016, Selmanaj

et al., 2017b], but do not require load-bearing sensors nor heuristic methods to

ensure the system’s observability. We introduce the random walk variables into the

observation matrix to solve the observability dilemma; besides, we compensate for

the lateral speed estimation with gyroscope measurements and its rotation defined

by quaternion operations.

3.3.3 Neural Network

Currently, the research community has been experiencing a rise in the use of ma-

chine learning techniques, especially neural networks, to solve complex problems.

The vehicle sideslip angle estimation is no exception; several works can be found

in the literature, see [Busnelli et al., 2017] and [De Martino et al., 2017].



3.3. STATE OF THE ART ON SIDESLIP ANGLE ESTIMATION 59

hidden layers

Figure 3.4 – Neural network structure

Figure 3.4 shows a generic neural network structure. In this particular case,

the network’s inputs are the longitudinal and lateral acceleration, ax, and, ay,

respectively, the steering angle, δ, the longitudinal speed, vx, is considered available,

and the yaw rate, ωz. This network has three hidden layers with 11 neurons each,

and the sideslip angle, β, is the output. Nevertheless, a neural network structure

could be modified to include more hidden layers, neurons, inputs, or outputs.

Current advances in technology, specifically the increase in computational power,

enable machine learning or neural networks to solve complex problems that were

impossible to solve in the past.

The advantage of using a neural network approach is that you do not need

information about the system. Through optimization, the network is trained to find

the transfer function between the inputs and outputs. Nonetheless, to apply this

technique successfully, vast amounts of data are required to perform its training.

The training dataset has to represent the system behavior and scenarios; if not, the

results might be inaccurate.



60 CHAPTER 3. LONGITUDINAL AND LATERAL SPEED ESTIMATION

3.4 Contribution to the sideslip angle estimation

Sideslip angle estimation is a well-studied research topic, and small differences

arise between the proposals found in the literature. In this work, we will focus

on observer-based approaches and explain the method selected from this point

forward.

The kinematic approach does not require specific information about the vehicle

such as the cornering stiffness, the mass, the inertias; on the contrary, needs the

position placement of the sensors, Ωij, ωz, ax, ay, to be able to extrapolate the

sideslip angle to a specific coordinate position in the vehicle body. The lateral speed

estimation at the COG is a complicated task. The COG position on the vehicle is not

constant, and it changes according to the vehicle’s cargo distribution. Nonetheless,

if the COG position is known in advance with a nonlinear transformation, the

COG’s lateral speed could be estimated. The COG position estimation is addressed

in Chapter 4.

A dynamic-based-model observer needs to comply with the Newton-Euler laws

of motion; the tire-ground forces are estimated using a force tire model formulations

as the magic tire or the Dugoff’s tire model. Nonetheless, the introduction of a

model needs to include parameters that shall be identified. Similarly, the COG

position and the vehicle’s mass are considered known variables; moreover, several

values that should be identified directly depend on the vehicle mass and its COG

coordinates.

If we address a specific problem to solve, it becomes easier to decide how to

arrive at a solution.

On the one hand, if we are trying to estimate the sideslip angle in racing

Formula one car, see 3.5(a), it is accurate to say that the vehicle parameters could

be identified in advance. Therefore, as the COG position and the vehicle mass are

known, any of the approaches presented to solve the sideslip angle estimation

problem are a good fit to solve this task. If the information provided’s accuracy is

addressed, a method that uses as much information possible will be the best.

On the other hand, if we deal with estimating the sideslip angle for mass-

produced vehicles, the problem’s complexity increases when considering the sys-

tem’s variability. With this type of vehicle, we could not expect to ask the driver

for information about the vehicle’s extra cargo, how many passengers and how

many pieces of baggage, etc. Therefore, the estimation results will be inaccurate

using dynamical models since the vehicle mass differs from the expected value. For

sure, a closed-loop observer solves this problem; nevertheless, if we include these

uncertainties at the observer design stage with classical approaches, the system
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becomes unobservable. The unique solution presented so far is to use deflection

sensors or tire-force transducers, but not many vehicles have deflection sensors,

even less tire-force transducers. Using kinematic models, we require the COG

position to successfully translate the sideslip angle from the estimation point to

the COG; nonetheless, the sideslip angle at the axles could be accurately estimated

since the axle position is known by design.

(a) Formula 1 vehicle (b) Renault Megane Sedan

Figure 3.5 – Vehicles for different purposes: Competition and daily life

This chapter aims to develop a black box able to reconstruct vehicle states

for commercial vehicles; therefore, for our purposes, a kinematic model-based

observer is simply a better fit. Nonetheless, if the COG position is not available, this

uncertainty is addressed via proper observer tunning. For our purposes, we use an

EKF to overcome the model uncertainty, sensor bias, and noise through appropriate

tunning matrices Q and R.

All the tests presented in this chapter are obtained from an experimental testbed;

a 2011 Range Rover Evoque, see Figure 1.5; the test was performed at Lommel

proving ground in Belgium under dry conditions. This vehicle is instrumented with

two force transducers at the rear wheels, which measures the forces and torques

at the longitudinal, lateral, and vertical directions. Additionally, it is instrumented

with an IMU that measures the accelerations and angular rates for the x, y, and z

axis.
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3.4.1 Kinematic System Analysis

From the kinematic model (3.28) without considering a planar road, the following

state-space representation is introduced:

ẋ(t) = A(t)x(t) + Bu(t)

y(t) = Cx(t)
(3.33)

where:

A(t) =

[
0 ωz(t)

−ωz(t) 0

]
; B =

[
1 0

0 1

]
; C =

[
1 0

]
with x(t) =

[
vx(t) vy(t)

]T
; u(t) =

[
ax(t) ay(t)

]T
. Two scenarios are impor-

tant for (3.33), when ωz equals zero, and all other values for ωz. When ωz = 0,

the observability of the system reduces to unity. Nonetheless, when ωz 6= 0, system

(3.33) is fully observable. As mentioned in the literature review section, many

authors have decided to use the bicycle model to deal with unobservable states,

vy, and others have modified the state matrix, A(t), to include a function that

eliminates the observability problem.

3.4.1.1 Comparison between observers build from different models

In this section, a comparison between observers is based on different models. For

each comparison, the difficulty degree of the maneuver is upgraded. Thus, we will

start analyzing maneuvers on a plane road and increase the road complexity with

unknown road profiles consisting of non-zero slope and bank angles.

In system (3.33) the output equation assumes knowledge on the longitudinal

speed vx, this measurement could be computed from the angular speed sensor at

the wheels, with vx(t) ≈ 1
2

∑2
j=1 Ω2j(t). Usually, vehicles with front-wheel driven

sets give an excellent computation of this state; nonetheless, it could fail during

vehicle braking, since the wheels could be locked.

System (3.33) requires to be transformed into a discrete state-space equation,

and we have decide to use the simple Euler discrete transformation ẋ ≈ xk+1−xk
∆t

xn|n =Φnxn−1|n−1 + Γnun (3.34a)

yn|n =Cnxn|n (3.34b)
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where

Φk =I + ∆tAk

Γ =∆tB

here I is an identity matrix with proper dimensions such that matrix operations are

consistent, and ∆t is the sampling period.

The observer choose is an EKF,

x̂n|n = Φkx̂n−1|n−1 + Γun|n + Kn

[
zn −C

(
Φkx̂n−1|n−1 + Γun|n

)]
Pn|n = ΦnPn−1|n−1Φ

T
n + Q−KnCn

(
ΦnPn−1|n−1Φ

T
n + Q

) (3.35)

with

Kn =
(
ΦnPn−1|n−1Φ

T
n + Q

)
CT
[
C
(
ΦnPn−1|n−1Φ

T
n + Q

)
CT + R

]−1
(3.36)

where Q and R represent the state process noise and the output noise matrices,

respectively.

The first test is conducted with an ISO double lane change maneuver at 30

kph (kilometers per hour), in a flat and dry surface. Figure 3.6 shows the main

accelerations, the steering angle evolution, and the vehicle trajectory. Notice that

the accelerations levels are at maximum values of | ax |= 2 and | ay |= 4. For more

information on the ISO double lane change, see Appendix B.
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Figure 3.6 – ISO double lane change at 30 kph
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Figure 3.7, shows the response of observer (3.35) applied to system (3.34). In

Figure 3.7(a), the estimation for the longitudinal speed is depicted with a red-solid

line and with a black-dashed line the actual longitudinal vehicle speed. Notice

the accuracy of the longitudinal speed estimation, v̂x. Figure 3.7(b), shows a poor

lateral estimation response, caused by the noise and bias from the measurements

and second by the reduced observability during the straight driving part of the test.

This was perceived in several works, see [Madhusudhanan et al., 2016, Selmanaj

et al., 2017a, Grip et al., 2009]
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(a) Longitudinal speed comparison between ob-
server response v̂x and actual velocity vx.
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(b) Lateral speed comparison between observer
response v̂y and actual velocity vy.

Figure 3.7 – Comparison of the longitudinal and lateral speeds for system (3.34a)-(3.34b)
performing an ISO double lane change.

A vast number of complex solutions has been proposed to solve the issues of

lateral speed estimatiop (observability, bias, and noise); with our proposal, the

original process state-space system (3.34a) remains invariant; in exchange, we

modify the output system to ensure system full-observability, even while the yaw

rate, ωz, is close to zero.

3.4.2 First solution [Consideration of vg = vx]

Lets consider the following linear time varying system:

xn|n =Φnxn−1|n−1 + Γnun (3.37a)

yn|n =C1
nxn|n (3.37b)
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where Φn, xn|n, Γn, un are already defined in (3.34) and

C1
n =

[
1 0

x̂1,n|n−1 x̂2,n|n−1

]

which means that the measurement is z =
[
vx v2

x

]T
. Last statement considers

v2
x ≈|| vg ||22.
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(a) Longitudinal speed comparison between ob-
server response v̂x and actual velocity vx.
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(b) Lateral speed comparison between observer
response v̂y and actual velocity vy.

Figure 3.8 – Comparison of the longitudinal and lateral speeds for system (3.37)
performing an ISO double lane change.

Figure 3.8 shows the Kalman filter (3.35) response to the same maneuver.

Notice in Figure 3.8(b) the improvement for the lateral speed estimation. The

system achieves full observability for all time with C1
n, the color and shapes are

maintained to preserve readability. The filter solves the noise and bias problems

with proper tunning. The estimation for the lateral speed is improved due to

the imposed constraint added by the virtual measurement of || vg ||22. The error

introduced with this consideration is also handled with proper tuning of the filter.

3.4.3 Second solution [Consideration of vy = 0]

Section 3.4.2 solves the observability problem; nonetheless, the poor performance

of the estimation gives room for improvement. Notice that the output matrix

C1
n is time-varying, which increases the computation time and optimality of our

observations scheme. Another approach to ensure full-observability is to consider a

virtual measurement for the lateral speed equal to zero, vy = 0; in this case, the

actual measurement is the amplitude of the virtual measurement noise. Thus, again
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the output equation is modified to:

xn|n =Φnxn−1|n−1 + Γnun (3.38a)

yn|n =C2xn|n (3.38b)

with

C2 =

[
1 0

0 1

]

In this case z =
[
vx 0

]T
, which means vy = 0 + wvy , with wvy as a random

centered noise and vy as a random walk variable.

Figure 3.9 displays the filter response for the same maneuver. Notice that in Fig.

3.9(b) the lateral speed estimation, v̂y, shows less noise at striaght driving when

compared against the results in Fig. 3.8(b). The consideration presented in this

section vy = 0 is exactly the same as || vg ||22, the difference relies on the discrete

handling of matrices C1
n and C2.
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(a) Longitudinal speed comparison between ob-
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(b) Lateral speed comparison between observer
response v̂y and actual velocity vy.

Figure 3.9 – Comparison of the longitudinal and lateral speeds for system (3.38)
performing an ISO double lane change.

The tests presented up to this point are in flat roads; the observer’s performance

still has to be tested with at roads with bank and slope angles.

3.4.4 Considering bank and slope angle

This section introduces another degree of freedom; the maneuver now includes

bank and slope angles. The road in which the new mission is performed has a

different bank and slope angles. In this case, the vehicle drives the track two times.
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During the first lap, medium speed is pursued; consequently, the maximum lateral

acceleration achieved is 5 m/s2. We aim to finish the second lap as soon as possible;

therefore, the maximum lateral acceleration achieved is about 10 m/s2. Figure 3.10

shows the described maneuver. Before modifying the system lets show how the

observers build with system (3.37) and (3.38) perform with this maneuver. The

mission is the following:
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Figure 3.10 – Mission No. 2, test track with different road angles

vFigure 3.11, shows the sideslip-lateral force relationship. The upper figure

shows the lateral TGF-sideslip angle relationship’s linear behavior during the

first lap, and the lower figure shows the same relationship during the second

lap. An advantage of the kinematic approach is that no force is required in

the observation scheme; thus, the saturation does not affect a kinematic-based

observer’s performance, and no special cases have to be considered.

First, let us consider systems () and () and its robustness against model

uncertainty. Figure 3.12 shows a comparison between the estimated and actual

lateral speeds. On the left figure, Fig. 3.12(a), the Kalman filter is build with (3.37),

and on the right figure, Fig. 3.12(b), the filter is build with (3.38). Both approaches

look-alike, nevertheless, the mean square error (MSE) has small differences, for

the system pair (3.37), the MSE = 0.126889, on the other hand for the system pair

(3.34a)-(3.38), the MSE = 0.118474. The model has to be modified to consider

the road bank and slope angles to improve accuracy. Remember that the Kalman

filter can deal with zero mean and Gaussian distribution uncertainty; nonetheless,
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Figure 3.11 – Sideslip angle - Lateral Force Relation. Up: Linear relationship. Down:
Non-linear relationship

road and slope do not fall within this category. Thus, to take into account the road

angles, the system is modified into:

xn|n =Φ1
nxn−1|n−1 + Γ1un (3.39a)

yn|n =C3xn|n (3.39b)

where

Φ1
n =



1 ∆tωz,n g∆t 0 0 0

∆tωz,n 1 0 0 −g∆t 0

0 0 1 ∆t 0 0

0 0 0 1 0 0

0 0 0 0 1 ∆t

0 0 0 0 0 1


; Γ1 =



∆t 0

0 ∆t

0 0

0 0

0 0

0 0



C3 =


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 1 0 0 0 0


with xn|n =

[
v̂x,n v̂y,n θ̂n ω̂y,n φ̂n ω̂x,n

]
, zn =

[
vx,n ωy,n ωx,n 0

]
, and un

remains the same.

System (3.39) considers the slope and bank angles; notice that is its dimension

increased and, subsequently, its complexity.
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(a) Lateral speed comparison between observer response v̂y and actual velocity vy for system (3.37).
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(b) Lateral speed comparison between observer response v̂y and actual velocity vy for system (3.38).

Figure 3.12 – Comparison of the longitudinal and lateral speeds for systems (3.37) and
(3.38), performing Mission No. 2
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Figure 3.13 shows the response of an extended Kalman filter based on system

(3.39), the accuracy of the response increases when compared to Figure 3.12. Now

our kinematic model can compensate for the gravity components that affect the

sensor measurement.
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server response v̂x and actual velocity vx.
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(b) Lateral speed comparison between observer
response v̂y and actual velocity vy.

Figure 3.13 – Comparison of the longitudinal and lateral speeds for system (3.39)
performing Mission No. 2.

3.4.5 Including the three Euler’s angles

The Euler angles are the three angles that describe the orientation of a rigid body

with respect to a fixed coordinate system. Any orientation can be achieved by

composing three fundamental rotations about the axis of a coordinate system, in

this case the angles φ, θ and ψ for the roll, pitch and yaw rotations, respectively.

Thus, by extending the kinematic system to R3 and compensating against gravity,

gives:

a = v̇ + ω × v + Rφ,θ,ψg (3.40)

where a ∈ R3 stands for the acceleration, v ∈ R3 is the velocity, v̇ describes
dv
dt

, ω ∈ R3 defines the angular rate, g ∈ R3 means the gravity’s acceleration,

Rφ,θ,ψ ∈ R3×3 is a rotation matrix. Then, system (3.40) could be represented as:

ax =v̇x − ωzvy + ωyvz − g sin(θ)

ay =v̇y + ωzvx − ωxvz + g sin(φ) cos(θ)

az =v̇z + ωyvx − ωxvy + g cos(φ) cos(θ)

(3.41)

where coefficients x, y and z represents the body longitudinal, lateral and vertical

axis and angles θ, φ means the angle between the body and an inertial frame
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of reference; notice that the rotation matrix, Rφ,θ,ψ is defined such that the

transformation from (3.40) to (3.41) holds. The discrete state-space representation

is:

xn|n =Φ2
nxn−1|n−1 + Γ2un

yn|n =C4xn|n
(3.42)

where

Φ2 =



1 ∆tωz,n −∆tωy,n g∆t 0 0 0

−∆tωz,n 1 ∆tωx,n 0 0 −g∆t 0

∆tωy,n −∆tωx,n 1 0 0 0 0

0 0 0 1 ∆t 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 ∆t

0 0 0 0 0 0 1



Γ2 =



∆t 0 0

0 ∆t 0

0 0 ∆t

0 0 0

0 0 0

0 0 0

0 0 0


; C4 =


1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0



with xn|n =
[
v̂x v̂y v̂z θ̂ ω̂y φ̂ ω̂x

]T
, zn =

[
vx ωy ωx 0 0

]
, and un =[

ax ay az

]
.
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(a) Longitudinal speed comparison between ob-
server response v̂x and actual velocity vx.
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(b) Lateral speed comparison between observer
response v̂y and actual velocity vy.

Figure 3.14 – Comparison of the longitudinal and lateral speeds for system (3.42) and
Mission No. 2.

Figure 3.14, shows the estimation response with a red-solid line, and the actual

measurement with a black dashed line. In this case the error difference is not

noticeable at eye sight, further experimentation and analysis are introduced in

further sections.

3.4.6 Quaternions

Another approach to handle rotations are quaternions. Quaternions are widely used

on aerunautics and simulation software, since they have plenty of adavantages

compared to Euler angles.

3.4.6.1 Fundamentals

Quaternions were discovered by William Rowan Hamilton in the 19th century. A

quaternion has three imaginary units (i, j, k) and the following holds:

i2 = j2 = k2 = ijk = −1;

jk = i; kj = −i; ki = j; ik = −j; ij = k; ji = −k;

A quaternion could be expressed as a couple composed of a real number and a

vector as:

q =
[
q0 q̄

]
; q ∈ H

with q0 ∈ R and a vector q̄ =
[
q1 q2 q3

]T
∈ R3. For background on the

properties and quaternion operations, see Appendix C.
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Specifically, unit quaternions, provide a convenient mathematical notation for

representing orientations and rotations of objects in three dimensions. Compared

to Euler angles they are simpler to compose and avoid the problem of gimbal lock.

Compared to rotation matrices they are more compact, more numerically stable,

and more efficient. Quaternions have applications in computer graphics, [Shoe-

make, 1985], computer vision, robotics, [McCarthy, 1990], navigation, molecular

dynamics, flight dynamics, [Katz, 1997], orbital mechanics of satellites, [Harrison,

1999], and crystallographic texture analysis, [Kunze and Schaeben, 2004].

When used to represent rotation, unit quaternions are also called rotation

quaternions as they represent the 3D rotation group. When used to represent an

orientation (rotation relative to a reference coordinate system), they are called

orientation quaternions or attitude quaternions.

From (3.40), and if we replace the rotation matrix with unitary quaternions

gives: using quaternions is obtained:[
0

a

]
=

[
0

v̇

]
+

[
0

ω × v

]
+ q⊗

[
0

g

]
⊗ q∗ (3.43)

with q and q∗ as unitary quaternion and its conjugate, respectively, the operator

⊗ means the Hamiltonian product, see Appendix C for more information on

quaternion specifics. Also representing system (3.43) in scalar form:

ax =v̇x + ωyvz − ωzvy − 2g(q1q3 − q0q2)

ay =v̇y + ωzvx − ωxvz − 2g(q0q1 + q2q3)

az =v̇z + ωyvx − ωxvy − g(q2
0 − q2

1 − q2
2 + q2

3)

(3.44)

where q =
[
q0 q1 q2 q3

]
and the auqternionr time derivative is given by:

q̇ =
1

2
q⊗ ω

thus, the system composed by the Newton equation and its attitud equation is:[
0

a

]
=

[
0

v̇

]
+

[
0

ω × v

]
+ q⊗

[
0

g

]
⊗ q∗

q̇ =
1

2
q⊗ ω

(3.45)

The discrete state-space representation of the kinematic system including its attitude
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(a) Longitudinal speed comparison between ob-
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(b) Lateral speed comparison between observer
response v̂y and actual velocity vy.

Figure 3.15 – Comparison of the longitudinal and lateral speeds for system (3.46).

is:

xn|n =Φ3
nxn−1|n−1 + Γ2un

yn|n =C5xn|n
(3.46)

where

C5 =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 x4 x5 x6 x7



Φ3 =



1 ∆tωz,n −∆tωy,n gx6∆t −gx7∆t gx4∆t −gx5∆t

−∆tωz,n 1 ∆tωx,n −gx5∆t −gx4∆t −gx7∆t −gx6∆t

∆tωy,n −∆tωx,n 1 −gx4∆t gx5∆t gx6∆t −gx7∆t

0 0 0 1 −∆tωx,n
2
−∆tωy,n

2
−∆tωz,n

2

0 0 0 ∆tωx,n
2

1 ∆tωz,n
2

−∆tωy,n
2

0 0 0 ∆tωz,n
2

∆tωy,n
2

1 −∆tωx,n
2

0 0 0 ∆tωz,n
2

∆tωy,n
2

−∆tωx,n
2

1


;

with Γ2 is already defined in system (3.42), xn|n =
[
v̂x v̂y v̂z q̂0 q̂1 q̂2 q̂3

]T
,

zn =
[
vx 0 0 1

]T
, and un =

[
ax ay az

]T
.

Figure 3.15 shows the response obtained from observer based on system (3.46)

against the actual velocities measurements. The improvement in the last case are

easily noticed. The advantage of the quaternion approach is that uses the complete
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model without requiring simplifications due to linearization, contrary to the use

of sinus and cosinus operations. Figure 3.16 shows both estimation responses

build with system (3.42), in Figure 3.16(a), and (3.46), in Figure 3.16(b). When

comparing both results, we can state that the response obtained with the kinematic

model using quaternions is better in terms of accuracy. In later sections the later

will be re-validated with more manuevers and tests.
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(a) Lateral speed comparison between observer response v̂y and actual velocity vy for system (3.42).
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(b) Lateral speed comparison between observer response v̂y and actual velocity vy for system (3.46).

Figure 3.16 – Comparison of the longitudinal and lateral speeds for systems (3.42) and
(3.46).

3.4.7 Wheels locked dilemma

In the previous section we have already and accurate estimation of the longitudinal

speed, given the test results, this is explained due to we are considering that we can

measure the longitudinal speed. Nonetheless, the longitudinal speed measurement

that we use will not be correct 100% of the cases. The velocity is commonly

computed with information of the wheel speed sensors; there exists a linear

relationship between the linear and the angular velocity of the wheel, remember

vx = reΩij; poor accuracy is often the result of this relationship not holding.
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Figure 3.17 shows the actual vehicle speed, vx, versus the longitudinal speed

computed from the angular wheel speed sensors, Ωij. Notice, in this case the

front-right wheel is locked, and the measurement Ω12 goes to zero, while the other

measurements Ω11, Ω21, Ω22 show that their respective tires behave regularly and

comply with the longitudinal speed vx. In some particular cases when braking,

the tires could arrive to the saturation point, and the tires (or a single tire) could

become into a locked state.
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Figure 3.17 – Longitudinal speed of the vehicle compared against the longitudinal speed
computed from the angular wheel speed.

Thus, in this case the longitudinal speed could not be estimated with a simple

arithmetic mean. Let us define other different means that are more adequate for

computing the longitudinal speed from angular wheel speed sensors.

The arithmetic mean is defined as the sum of a collection of numbers divided

by the count of numbers in the collection, see [Jacobs, 1994],

µA =
1

n

n∑
i=1

xi (3.47)

where n is the number of elements in the set to compute the average, and xi ∈ R is

a real number.

The harmonic mean µH is defined as:

µH =

(
1

n

n∑
i=1

x−1
i

)−1

(3.48)

The harmonic mean is a Schur-concave function, and dominated by the minimum of

its arguments, in the sense that for any positive set of arguments, min (x1, · · · , xn) ≤
µH (x1, · · · , xn) ≤ nmin (x1, · · · , xn). Thus, the harmonic mean cannot be made



3.4. CONTRIBUTION TO THE SIDESLIP ANGLE ESTIMATION 77

arbitrarily large by changing some values to bigger ones (while having at least one

value unchanged).

Finally, the contraharmonic mean of a set of positive numbers is defined as the

arithmetic mean of the squares of the numbers divided by the arithmetic mean of

the numbers:

µC =

∑n
i=1 x

2
i∑n

i=1 xi
(3.49)

notice that here xi ∈ R+ and (µH + µC)1
2

= µA, Thus, the contraharmonic mean

cannot be made arbitrarily small by changing some values to smaller ones (while

having at least one value unchanged).

Figure 3.18 shows a comparison between the longitudinal speed, vx, and

the longitudinal speed computed with arithmetic mean, (3.47), the harmonic

mean, (3.48), and the contraharmonic mean, (3.49), while the vehicle is having a

demanding braking. The figure shows with a black-dashed line the arithmetic mean;

notice that its accuracy is affected by the wheel locked phenomena, therefore using

a simple mean affects our final estimation once the wheel lock phenomena occurs.

On the one hand, the figure also displays with a pink dot-dashed line the response

of the harmonic mean, notice that this result is simlar to the Ω12 measurement. On

the other handm with a blue-dotted line, the figure shouws the contraharmonic

mean response similar to the actual vehicle spee.

Once, depicted the different properties of each one of the means, (µA, µH , µC),

a switched computation is proposed. Let us assume that we are able to detect when

the vehicle is braking. Thus, the formula to compute the longitudinal speed is given

by:

v̂x = bµC(Ωij) + (1− b)µH(Ωij)

b ∈ χ := {0, 1}
(3.50)

where b is a flag, with value one while braking and zero otherwise.

Equation (3.50), means that while braking the longitudinal speed estimation is

computed with the contraharmonic mean, (3.49), otherwise, while accelerating is

computed with the harmonic mean, defined in (3.48). Equation (3.50) also deals

with effects that occur when a driving torque is higher than the tire’s saturation

constraint.

But, what happens when the four wheels are locked in an extreme situation? in

this case, using equation (3.50) develop from the angular speed wheel sensor is
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Figure 3.18 – Results comparing the harmonic, contraharmonic and arithmetic mean

not enough, thus, let us consider the following discrete state-space system:

xn|n =Φ4
nxn−1|n−1

yn|n =
(
C6 (1− bn) + bnC

7
)
xn|n = C8xn|n

(3.51)

where

Φ4 =

[
1 ∆t

0 1

]
; C6 =

[
1 0

0 1

]
; C7 =

[
0 1

]
; (3.52)

with xn|n =
[
vx ax

]
, zn =

[
v̂x,n ax,n

]
(1− bn) + ax,nbn.

In system (3.51) we consider a system with a switched output equation. The

switching mechanism is defined by the braking flag, moreover when the vehicle is

not braking the dimension of the measurement, z, is two, the measurement are the

longitudinal speed computed with eq. (3.50) and the accelerometer; while braking

the system relies on the acceleration measurement. Heuristically, to avoid a biased

response, the flag signal is activated only when the following conditions occur:

• The braking flag is active

• The estimated velocity is greater than the measured velocity.

Figure 3.19 displays the results obtained from a Kalman filter observer base on

system (3.51). Notice that while braking the vx measurement is not available for

the observer. The braking maneuvers are usually short, therefore, the deviation due

to error integration is small, more over if the condition b and (x̂1,n < v̂x) is true,
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Figure 3.19 – Comparison between the longitudinal velocity, the estimation with the
Kalman filter and the switched equation (3.50)

the estimation is again set to the actual velocity in a shorter amount of time. The

algorithm to implement the developed Kalman filter is shown in Algorithm 3.2.

In some cases, an observer based on system (3.51) is not able to estimate

accurately the longitudinal velocity, due to uncertainty in the model, or missing

variables important for an accurate model. Thus, using the same principle as in

system (3.51), the Newton-quaternion system (3.46) could be modified as:

xn|n =Φ3
nxn−1|n−1

yn|n =
(
C9 (1− bn) + bnC

10
)

xn|n = C11xn|n
(3.53)

with Φ3 is already defined, xn|n =
[
v̂x v̂y v̂z q̂0 q̂1 q̂2 q̂3

]T
,

zn =
[
v̂x 0 0 1

]
(1− bn) +

[
0 0 1

]
bn, and un =

[
ax ay az

]

C9 =


1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 x4 x5 x6 x7

 ; C10 =

 0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 x4 x5 x6 x7



The algorithm applied is the same as in Algorithm 3.2.
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Algorithm 3.2: Longitudinal Velocity Estimator
1: Initialization
2: x0|0, P0|0, Q1, R1, Q2, R2, Φ = Φ3, C = C8

3: for(n = 1 :∞)
4: Prediction stage (prediction stage)
5: x̂n|n−1 = Φx̂n−1|n−1

6: if bn
7: Pn|n−1 = ΦPn−1|n−1Φ

T + Q2

8: else
9: Pn|n−1 = ΦPn−1|n−1Φ

T + Q1

10: end
11: Measurement update stage (correction stage)
12: if bn
13: kn = Pn|n−1C

T
[
CPn|n−1C

T + R2

]−1

14: else
15: kn = Pn|n−1C

T
[
CPn|n−1C

T + R1

]−1

16: end
17: x̂n|n = x̂n|n−1 + kn

[
zn −Cx̂n|n−1

]
18: Pn|n = Pn|n−1 − knCPn|n−1

19: end

3.5 Robustness analysis

In this section, we will proove that the algorithm has the same level of performance

with different maneuvers and levels of exitation. First, we have to compare the

estimator quality. The most common choices to measure model/estimator quality

in terms of the fit between the estimated output, B̂, and the measured output, B,

are the mean squared error (MSE), the normalized mean squared error (NMSE)

and the normalized root mean squared error (NRMSE).

MSE =
1

m
|| B− B̂ ||22 (3.54a)

NMSE =
|| B− B̂ ||22
|| B̄ ||22

(3.54b)

NRMSE =
|| B− B̂ ||22
|| B̄− µ(B̄) ||22

(3.54c)

A total of 57 missions were performed to validate the robustness of our approach,

all of them with the land rover evoque experimental testbed. In the following

subsections our results are presented.
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Figure 3.20 – Comparison between (3.42) and (3.53)

3.5.1 Steady State cornering ISO-4138

Steady state maneuvers reveals important information about the vehicles behavior.

The results from this maneuver are used as reference values in several other test

such as a sine with dwell and continuous sinusoidal input. This maneuver reveal

the vehicle under/over-steer behavior, roll angle at steady state, steering and

sideslip angle as function of lateral acceleration . The steady state cornering can

be performed in three different ways, using constant radius, constant velocity or

constant steering angle. More information regarding the maneuver is available in

[ISO4138, 2012].

Figure 3.20(a) shows the MSE response of systems (3.42) and (3.46). The full

Euler-model-based observer (EMBO) MSE response of each one of the 14 steady

state cornering maneuvers is depicted with a black-solid line with circles. The

quaternion-model-based observer (QMBO) MSE response is shown with a red-solid

line with crosses. Notice the MSE error is lower for the QMBO, and also the error

response has less variance within the samples.

A similar behavior is found in Figure 3.20(b) presents the statitucal analysis of

the errors. Notice that the error resulting from the QMBO have less variance when

compared against the EMBO.

The maneuver consist to drive a circular trajectory while mantainin a constan

longitudinal acceleration until the vehicle becoms unstable. Table 3.1 presents the

numerical results of the error analysis. The improvement for using the QMBO are

quantitative and consistent.
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Table 3.1 – MSE for different constant radius and longitudinal acceleration maneuvers

Radius (m) direction MSE vy Euler MSE vy quaternion

30 counterclockwise 0.070279 0.016816
30 clockwise 0.168943 0.016066
60 counterclockwise 0.097955 0.027253
60 clockwise 0.291116 0.022299
100 counterclockwise 0.170159 0.036599
100 clockwise 0.438473 0.030370
30 clockwise 0.174269 0.018584
30 counterclockwise 0.104587 0.014540
60 counterclockwise 0.182624 0.026411
60 clockwise 0.388101 0.029618
100 clockwise 0.620598 0.038744
100 counterclockwise 0.385646 0.025060
60 counterclockwise 0.248291 0.026451
60 clockwise 0.468711 0.035321

3.5.2 Braking Maneuvers ISO 21994 and ISO 7975

In this section two maneuvers are considered the straight line braking and the

brake in turn maneuvers. On the one hand straight line braking; ISO 21994,

gives information about the braking distance. This test evaluates the stability

performance of the vehicle while braking after a straight line maneuver. More

information regarding the maneuver is available in [ISO21994, 2007]. On the

other hand, the brake in turn maneuver give information regarding yaw stability

and change in lateral acceleration compared to steady state. More information

regarding the maneuver is available in [ISO21994, 2006].
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Figure 3.21 – Comparison between (3.42) and (3.53)



3.5. ROBUSTNESS ANALYSIS 83

(a) Error histogram and boxplot for straigth
braking

(b) Error histogram and boxplot for brake in
turn

Figure 3.22 – Operation Region of equations (2.13) and (2.14)

Figure 3.21(a) shows the MSE error response obtained from both observers

(lateral and longitudinal speed) for a series of straight braking maneuvers. Notice

that,for the lateral speed the EMBO provides better results, but for the longitudinal

speed there is no differences between the simple mean and the filtered state

obtained with (3.51).

Figure 3.22 shows the error histograms and boxplot for the lateral speed of

each one of the respective tests. Notice in Figure 3.22(b) the error response for

the QMBO approach shows more accuracy compared with the EMBO, nonetheless

Figure 3.22(a) shows the opposite.

While performing the straight line braking maneuvers the tires did not expe-

rience saturation, thus, the wheel lock phenomena was not present. Otherwise,

while the brake and turn maneuver at least one of the tires arrived to the saturation

point, and the wheel lock phenomena is easily noticed in Figure 3.21(b).

Figure 3.23 shows the error obtained at the longitudinal speed, for the straight-

line braking maneuver both results are similar, nonetheless, for the brake and turn

maneuver the improvement is perceived with ease, see Fig. 3.23(b).
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(a) Error histogram and boxplot for straigth
braking

(b) Error histogram and boxplot for brake in
turn

Figure 3.23 – Comparison between (3.42) and (3.53)

Table 3.2 show the MSE values for the stright-line maneuver while Table 3.3

depicts the values for the brake in turn maneuver, E means Euler and Q stands for

quaternion.

Table 3.2 – MSE for different constant radius and longitudinal acceleration maneuvers

Pedal (%) MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

20 0.004068 0.008902 0.057545 0.058018
40 0.004825 0.008825 0.054098 0.054291
60 0.004064 0.009146 0.052605 0.052449
100 0.005880 0.010009 0.063889 0.065338
100 0.005725 0.009122 0.057778 0.058676
100 0.006268 0.009260 0.061450 0.062937

Table 3.3 – MSE for brake in turn maneuver with a 100 meters constant radius at different
speeds.

Velocity (kph) Direction MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

80 counterclockwise 0.056891 0.031292 0.046015 0.424291
80 clockwise 0.061238 0.024737 0.041473 0.232241

100 counterclockwise 0.235579 0.025738 0.058562 0.829700
100 clockwise 0.368966 0.030055 0.060807 1.078813
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3.5.3 Lateral excitation maneuvers ISO 3888-1, ISO 7401, ISO

8725

In this section the lateral excitation maneuvers are analyzed: double lane change,

step steer, sine with dwell and slaloms. The test presented here are far similar, this

test are used to obtain information about the road holding ability of the vehicle,

the lateral acceleration and yaw rates achieved at given steering angle and its rates.

Also, the vehicle transient response to different inputs, including their overshoots,

its gain and phase angles functions. These test are not fully representative of real

driving but similar to aggressive overtake maneuvers. More information regarding

these maneuvers are provided in [ISO3888-1, 1999] and [ISO7401, 2011].

Figure 3.24 shows the MSE response to a series of double lane change ma-

neuvers. Notice that the results are similar for both analyzed approaches, EMBO

and QMBO, and Table 3.4 depicts the test speed conditions and its respective MSE

values.
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change

(b) Lateral velocity histogram for ISO double
lane change

Figure 3.24 – Comparison between (3.42) and (3.53)

Figure 3.25, show the MSE response to a set of steep steer maneuvers at 80

kilometers per hour (kph), with different steering wheel angles as input. This test

emulates the step response of the vehicle to a different amplitude step input. Table

3.5, shows the different responses of MSE for each test with different steering angle

input.

Figure 3.26 shows the MSE response for the sine with dwell maneuvers, this

series of maneuver are performed at 60 kph, with different steering wheel inputs,

the behavior are similar for all the approaches, nonetheless, the QMBO approach

present better accuracy accross the test. Look at Table 3.6 for the exact MSE.
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Table 3.4 – MSE for ISO double lane change at different speeds.

Velocity (kph) MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

30 0.004166 0.004470 0.020424 0.019668
30 0.004379 0.004423 0.021783 0.021045
40 0.007835 0.006950 0.024824 0.024464
40 0.007611 0.006966 0.024747 0.023676
50 0.024883 0.015741 0.034059 0.032239
50 0.022677 0.016405 0.034388 0.033974
55 0.031406 0.024740 0.034101 0.033617
55 0.028734 0.022450 0.032754 0.032200
55 0.037198 0.028691 0.037347 0.035959
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(a) Lateral velocity MSE for step steer (b) Lateral velocity histogram for step steer

Figure 3.25 – Comparison between (3.42) and (3.53)

Table 3.5 – MSE for steep steer with different steering wheel angles at 80 kph.

Steer. wheel (o) Direction MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

40 counterclockwise 0.034006 0.030507 0.051315 0.051289
80 counterclockwise 0.151392 0.024463 0.049239 0.049329
40 clockwise 0.089987 0.012930 0.053981 0.053072
80 clockwise 0.207573 0.034528 0.054560 0.054229

120 clockwise 0.328881 0.119281 0.044419 0.044781

Table 3.6 – MSE for sine with dwell with different angles at 60 kph.

Steer. wheel (o) MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

40 0.010844 0.014232 0.037233 0.036398
60 0.097562 0.036119 0.036126 0.035722
80 0.118307 0.049020 0.038272 0.037569
40 0.014041 0.018760 0.036695 0.035985
60 0.029260 0.023742 0.038574 0.036992
80 0.044139 0.025563 0.033110 0.032601
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Figure 3.26 – Comparison between (3.42) and (3.53)
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Figure 3.27 – Operation Region of equations (2.13) and (2.14)

Finally, Figure 3.27 shows the MSE results obtained for the lateral speed

estimation, the histogram and boxplots of a series of slalom maneuvers and Table

3.7 depicts the MSE obtained at each test.

3.5.4 Non planar road tests

The last set of test are performed on a regular track with different slop and road

angles at different speeds. Also here, we will see the response of our algorithm to

a couple of oval test with a high bank angle. Figure 3.28 shows the MSE for the

lateral speed at eight laps on the same test track, the efficiency of the Newton-Euler

base observer decreases as the vehicle speed increases, the same happens with the

Newton-quaternion approach but the effects on the response are less noticeable.

Figure 3.29 shows the histograms and boxplots of both series of tests.
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Table 3.7 – MSE for slalom maneuvers at different speeds

Velocity (kph) MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

30 0.011824 0.005496 0.025754 0.025172
35 0.010823 0.005450 0.025652 0.024836
40 0.031559 0.016119 0.031195 0.030582
45 0.046704 0.021941 0.029019 0.028263
50 0.081802 0.041881 0.036033 0.035733
55 0.075563 0.048997 0.046760 0.049048
60 0.104775 0.051124 0.040413 0.040803
60 0.073598 0.040362 0.035311 0.034630
60 0.087631 0.044218 0.038369 0.037491
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Figure 3.28 – Operation Region of equations (2.13) and (2.14)

(a) Lateral velocity histogram for durability tests (b) Lateral velocity histogram for high slop
roads

Figure 3.29 – Operation Region of equations (2.13) and (2.14)
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Table 3.8 – MSE for track at different speeds

speed condition MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

low 0.010399 0.007496 0.041330 0.041684
low 0.008714 0.007557 0.039841 0.040080

medium to high 0.030281 0.017894 0.061497 0.061017
medium to high 0.021714 0.014034 0.055285 0.055515
limit handling 0.148285 0.051917 0.079352 0.080250
limit handling 0.111260 0.037682 0.073168 0.071856

low and limit handling 0.048276 0.027570 0.060648 0.061618
medium to high 0.024548 0.014917 0.061359 0.061249

Table 3.9 – MSE for oval at high speed

MSE vy (E) MSE vy (Q) MSE vx filter MSE vx mean

0.063728 0.021054 0.106145 0.106053
0.060040 0.022928 0.109358 0.109022

3.6 Conclusions

This chapter presents a proposal to estimate an automobile’s lateral and longitudinal

speed using wheel transducers and an inertial measurement unit.

The first section presents the state of the art for sideslip angle estimation and

related research. After, we define this work’s scope and select the kinematic model

to base our observation scheme.

The second section develops our observation strategy, starts with the most simple

model, and later considers the slope and bank angles. The system’s attitude uses

a quaternion ordinary-differential equation. Finally, we address the wheel locked

phenomena for the longitudinal state estimation strategy. The results validate the

excellent behavior of our proposal.

The third section validates the proposal under different standardized tests. The

selected maneuvers are steady-state cornering, brake and turn, straight-line braking,

sine with dwell, step steer, double lane change, and test tracks on roads with a

different bank and slope angles.
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4.1 Introduction

In this section, we propose techniques to estimate the normal tire-ground forces.

This variable’s estimation is crucial for the overall estimation set-up since these

variables are used as inputs to estimate the longitudinal and lateral tire-ground

forces. Besides the normal tire-ground forces, our final implementation can provide

vehicle parameters as the mass and the center of gravity position; these values are

essential to ensure the excellent performance of controllers that relies on dynamic

models. Model-based controllers usually use the single-track model, which requires

the mass and center of gravity position; most of the literature’s works consider

these values constant; nevertheless, these parameters are not constant.

In Section 4.2, we present the preliminaries for normal tire-ground estimation.

Section 4.3 describes different strategies to estimate the normal TGFs available

in the literature. The contribution of this thesis that addresses normal TGFs is in

Section 4.4. Finally, Section 4.5 presents the conclusions and perspectives.

4.2 Preliminaries

In this section, we introduce the formulations made from different models, de-

scribed in Chapter 2; the single-track and hoverboard models, and further, we

develop the equations required to build our estimation scheme.

4.2.1 Acceleration Measurement

Let us consider modeling the vehicle on a banked road; the roll angle contains the

suspension roll angle and road bank angle, hence φ = φv + φr. The acceleration

measurement updates by: in [Kawashima et al., 2010, Piyabongkarn et al., 2008]:

āy = ay cos(φ) + g sin(φ)

āz = −ay sin(φ) + g cos(φ)
(4.1)

Similarly, for a vehicle on a slope

āx = ax cos(θ) + g sin(θ)

āz = −ax sin(θ) + g cos(θ)
(4.2)
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4.2.2 Normal force equation from vehicle dynamics

The wheel load shifts according to the vehicle’s acceleration. The vertical force on

each tire can be computed separately under the consideration that the roll and pitch

movement are decoupled. When the car moves forward, the positive acceleration

causes a load shift from front to rear axle, given the vehicle body’s pitch motion

due to its inertia. Similarly, when the vehicle is turning left, the lateral acceleration

causes a load shift from left to right wheels, given the roll motion. [Kiencke and

Nielsen, 2005] presents the complete formulation.

On the one hand, using the simplified bicycle model (2.21), and after some

algebraic manipulation, it follows the equation to compute the front and rear virtual

wheel forces:∑
j∈A

Fzij =
lic

l
mg cos(θr) cos(φr) + qi

c h

l
m (ax + g sin(θr)) + qi

Iy
l
θ̈v (4.3)

On the other hand, from the hoverboard model (2.22), it is also possible to estimate

the vertical contact forces at the virtual left and right wheels. Using some algebra

gives:

∑
i∈A

Fzij =
ecj
e
mg cos(θr) cos(φr) + qj

h

l
m (ay + g sin(φr) cos(θr)) + qj

c Ix
e
φ̈v (4.4)

Applying the superposition principle to sets (4.3)-(4.4), we are able to compute the

normal tire:

F̂zij =qj
Ix
2e
φ̈v + qi

Iy
2l
θ̈v +

1

2gel

(
qjlicIxφ̈vg cos(θr) cos(φr) + qjejcIyθ̈vg cos(θr) cos(φr)

+ qiqjhIxφ̈v (ax + g sin(θr)) + qiqjhIyθ̈v (ay + g sin(φr) cos(θr))

+ 2eicljcmg
2 cos2(θr) cos2(φr) + 2qj

c

hlicmg cos(θr) cos(φr) (ay + g sin(φr) cos(θr))

+ 2qihejcmg cos(θr) cos(φr) (ax + g sin(θr))

−2qiqjh2m (ay + g sin(φr) cos(θr)) (ax + g sin(θr))
)

(4.5)

with q = −1 and c stands for the complement operator, (i ∈ A := {1, 2}, thus, if

i = 2; then ic = 1).

The significant challenge for computing the set of equations (4.3)-(4.5) is

the estimation of bank and slope angles as its respective angular accelerations.

Some authors [Tseng, 2001, Ryu and Gerdes, 2004, Kawashima et al., 2010] have

analyzed the influence of bank angle on the vehicle dynamics and concluded that

for a correct estimation is critical to differentiate between road bank angle (φr) and
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chassis roll angle (φv) relative to the environment coordinate system, φ = φr + φv.

When calculating the vertical load distribution, the most critical parameters are the

lateral acceleration. The normal TGFs due to gravity and road bank angle affect

the lateral accelerometer when the vehicle tilts around the x-axis [Nilsson and

Lingefelt, 2011].

Nonetheless, for planar road conditions, the dynamics equations (4.3) are

simplified to

∑
j∈A

Fzij =
lic

l
mg + qi

h

l
māx (4.6)

the left and right virtual tires,(4.4), to

∑
i∈A

Fzij =
ejc

e
mg + qj

h

l
māy (4.7)

and finally the normal force at each tire, (4.5) is:

F̂zij =
1

gel

(
eicljcmg

2 + qj
c

hlicmgāy + qihejcmgāx − qiqjh2māyāx
)

(4.8)

4.3 State of the art

The chassis controllers’ design is a difficult problem; they should address several

issues such as road handling, body motion, vehicle safety, and ride comfort.

These algorithms are sensitive to changes in inertial vehicle parameters, including

the vehicle’s mass, the moments of inertia, and the COG location. Furthermore,

observation/estimation schemes are substantially sensitive to these parameters.

The vehicle’s mass is the most critical parameter since it directly affects the lon-

gitudinal, lateral, and suspension dynamics; this parameter can vary substantially

during vehicle operation. The mass estimation methods could be classified based

on the observed dynamics.

• Longitudinal Dynamics: Many researchers have capitalized on the relationship

between vehicle mass, longitudinal forces, and the resulting longitudinal accel-

eration, see [Bae et al., 2001, Vahidi et al., 2005, Winstead and Kolmanovsky,

2005, Rhode et al., 2016].

• Powertrain Dynamics, see [Fremd, 1987].

• Suspension Dynamics: The mass’ estimation problem is simplified when

suspension deflection sensors are available. In [Kim and Ro, 2000], the
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author estimates the vehicle mass with the quarter-car model. Furthermore, in

[Rajamani and Hedrick, 1995] based on the same model has been developed

as an adaptive observer to estimate suspension states and parameters.

In [Rajamani and Hedrick, 1995], based on a nonlinear adaptive observer, the

estimation of the sprung mass is addressed; even though an experimental validation

exists the experiment was carried on in a test-rig with scaled testbeds. The real-

experiment signals are clean (without noise), what it helps the nonlinear observer

convergence.

Patent [Genise, 1996] shows an approach that has been used in industry for

mass estimation based on the velocity drop during a gearshift. The change in

velocity before and during gearshift is used to calculate a mass estimate based on

the longitudinal dynamics equation.

In [Bae et al., 2001], presents a system for estimating the road grade, mass,

rolling resistance, and aerodynamic drag of a ground vehicle using recursive least

squares and as inputs values of engine torque calculated by the engine map, a

Global Positioning System (GPS) receiver, and, optionally, wheel speed or inertial

sensors.

In [Vahidi et al., 2005], using the longitudinal vehicle dynamics and recursive

least square (RLS) with multiple forgetting factors. The information required to

apply such estimation technique is plenty: Velocity estimate, wheel angular speed,

GPS velocity measurement, the engine torque, compression brake, transmission

retarded torques, brake pressure, transmission gear ratio, and the final drive ratio.

The method estimates the mass and the slope angle simultaneously. They used both

simulation and test data to validate the estimation scheme, and even during the

gear shift operation.

In [Winstead and Kolmanovsky, 2005], introduces an active on-line estimation

method for road grade and vehicle mass. The scheme combines the estimation of

parameters with an EKF and a model predictive control (MPC) scheme to control

vehicle speed while enhancing parameters’ identification. Nonetheless, the research

results are constraint to simulations.

[Rhode et al., 2016] introduces a windup-stable Kalman filter, called Stenlund-

Gustafsson M-Kalman filter to recursively solve the random-walk output error

model with the presence of outliers and periods with low excitation to estimate the

vehicle mass, the road grade, and the drag force.
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4.4 Contribution to Normal TGF Estimation

This chapter aims to develop an algorithm capable of accurately estimate the

normal TGFs, using available sensors of conventional mass-produced automobiles,

like accelerometers and gyroscopes, diminishing the use of other transducers that

regular vehicles do not have.

4.4.1 Normal equation method

A car can be described with equations more complex than the presented in (2.20).

Equation (2.20) assumes a rigid body, and therefore is possible to represent the

vehicle as four contact points (one for each wheel) with constant distances L1, L2,

E1 and E2 for all time. Nonetheless, this model is still too complex to develop an

estimator. To simplify it, we consider the following: the tire patch always touches

the ground, the effects of sprung mass do not affect the vehicle dynamics. The

car movement is mainly towards the longitudinal vehicle’s direction, then, vy is

considered zero. The assumptions are:

• az << ζ << 1 ∴ az ≈ 0.

• θ̈v << ζ << 1 ∴ θ̈v ≈ 0.

• φ̈v << ζ << 1 ∴ φ̈v ≈ 0.

• FDy << ζ << 1 ∴ FDy ≈ 0 with FDy = 1
2
ρCDySyvy.
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Thus, from the above assumptions system (2.20) becomes,

max =
∑
i∈A

F o
x2i +

∑
i∈A

F o
x1i cos(δ)−

∑
i∈A

Fy1i sin(δ)−mvg sin(θr);

may =
∑
i∈A

Fy2i +
∑
i∈A

Fy1i cos(δ) +
∑
i∈A

F o
x1i sin(δ)−mvg sin(φr) cos(θr);

0 =
∑
i∈A

Fz1i +
∑
i∈A

Fz2i −mvg cos(θr) cos(φr)

0 =
∑
i∈A

Fzi1 +
∑
i∈A

Fzi2 −mvg cos(φr) cos(θr);

Izψ̈v =l1

(∑
i∈A

Fy1i cos(δ)−
∑
i∈A

F o
x1i sin(δ)

)
− l2

∑
i∈A

Fy2i;

0 =h

(∑
i∈A

Fyi2 +
∑
i∈A

Fy1i cos(δ) +
∑
i∈A

F o
x1i sin(δ)

)
− e1Fzl + e2Fzd;

0 =h

(∑
i∈A

F o
x2i +

∑
i∈A

F o
x1i cos(δ) +

∑
i∈A

Fy1i sin(δ)

)
+ l1

∑
i∈A

Fz1i − l2
∑
i∈A

Fz2i;

(4.9)

Thus, the rolling resistance, the drag force and the longitudinal force are included

within the variable F o
x1i = Fx1i−F1i(ωr)− γiFDx with γ1, γ2 ≥ 0 and these variables

satisfy γ1 + γ2 = 1.

4.4.1.1 Normal Forces Modeling

On the one hand, from (4.9) is developed an estimator set to compute the front and

rear virtual wheel forces, here they are calculated as static and dynamic vertical

force components, F̂zνs and F̂zνd respectively, defined as

∑
i∈A

F̂z2i =
l1
l
F̂zνs +

h

l
F̂zνd (4.10a)

∑
i∈A

F̂z1i =
l2
l
F̂zνs −

h

l
F̂zνd (4.10b)

with,

F̂zνs = mg cos(θr) cos(φr) (4.11a)

F̂zνd = m(ax + g sin(θr)) (4.11b)

Notice that, F̂zνs depends on the vehicle’s mass (m) and the road’s slope angle

(θr), see (4.11a), while F̂zνd includes also the acceleration on x’s direction, ax, see
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Figure 4.1 – Vehicle Model Draft - Double Track Model Superior View. Red dashed line
shows the bicycle model and the blue dashed line refers to the hoverboard model

(4.11b).

On the other hand, from model (4.9), it is also possible to estimate the

vertical contact forces at the virtual left and right wheels,
∑

i∈A F̂zi1 and
∑

i∈A F̂zi2

respectively. After some algebraic manipulation, gives

∑
i∈A

F̂z1i =
e2

e
F̂zηs −

h

e
F̂zηd (4.12a)

∑
i∈A

F̂z2i =
e1

e
F̂zηs +

h

e
F̂zηd (4.12b)

with,

F̂zηs =mg cos(φr) cos(θr) (4.13a)

F̂zηd =m(ay + g sin(φr) cos(θr) (4.13b)

Here, F̂zηs depends on vehicle’s mass (m) and the road’s bank angle (φr), see

(4.13a), and for F̂zηd definition also includes the lateral acceleration term ay, see

(4.13b). Observe that equations (4.10) and (4.12) are analogous addressing each

one the longitudinal and lateral dynamics.

Equation sets (4.10) and (4.12) are used to compute the vertical forces at the

front, rear, left and right virtual tires. However, our goal is to estimate the normal



4.4. CONTRIBUTION TO NORMAL TGF ESTIMATION 99

forces at each wheel, not at virtual positions derived from bicycle and hover-board

models; see Figure 4.1 to see the virtual tires with dotted lines. The estimation

schemes obtained from sets (4.10) and (4.12) are used to develop the following

linear system, thus,

AF̂z = F̂k; (4.14)

where:

A =


1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1

 (4.15)

F̂z =
[
F̂z11 F̂z12 F̂z21 F̂z22

]T
(4.16)

F̂k =
[ ∑

i∈A F̂z1i
∑

i∈A F̂z2i
∑

i∈A F̂zi1
∑

i∈A F̂zi2

]T
(4.17)

with F̂z11 representing the vertical force estimation at the front left tire, F̂z12,

F̂z21 and F̂z22 are the estimations for the front-right, rear-left, and rear-right tires

respectively. Figure 4.1 shows the vertical forces in the middle of each wheel as a fill

circled, representing a force vector that is perpendicular to the paper with direction

towards the reader. System (4.14) is now used to calculate the normal TGFs, F̂z;

nevertheless, as matrix A is singular, the linear system is singular. There exist plenty

of vectors capable of transforming A into a full rank matrix, see [Lipschutz and

Lipson, 2001] to look for suitable methods to find system eigenvectors; however,

through in-depth analysis, we conclude that the required vectors to solve system

(4.14) are a1 =
[

1 0 0 1
]

and a2 =
[

0 1 1 0
]
, FzDi = aiFz is the sum of

the normal contact forces between the front left and rear right tires and backwards.

4.4.1.2 Heuristic Estimator Model

Analyzing equations (4.10), (4.12) and (4.14), notice that, the static vertical force

component remains constant and due to the dynamic component the load transfer

occurs. Nevertheless, when the load is added to a tire due to vehicle dynamics,

effects are also subtracted from another wheel to satisfy the mass conservation law

because the total mass remains constant (neglecting fuel consumption), and the

vertical movement is neglected. Thus from heuristic observations, the following
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estimation model,

F̂z11 =c1 − c2ax − c3ay;

F̂z12 =c4 − c5ax + c6ay;

F̂z21 =c7 + c8ax − c9ay;

F̂z22 =c10 + c11ax + c12ay;

(4.18)

The coefficients cn∀n ∈ [1, 12] are constants values which depends on initial weigh

distribution, variables l1, l2, e1, e2, h and m. The just mentioned is noticeable when

we compare equations (4.8) and (4.18). Then, if we consider a symmetric weight

distribution of the vehicle means that c2 ≈ c11, c5 ≈ c8, c3 ≈ c12, and c9 ≈ c12. Thus,

it follows that

F̂z12 + F̂z21 = c4 + c7

F̂z11 + F̂z22 = c1 + c10

(4.19)

where c1 stands for the initial vertical force condition at the front left tire, F̂z11(0),

similarly the coefficients c4, c7 and c10 are defined by the initial vertical forces at

F̂z12(0), F̂z21(0) and F̂z22(0), respectively; this also could be obtained from (4.5) or

(4.8). Equations (4.19), means that F̂z11 + F̂z22 and F̂z12 + F̂z21 remains constant

for all time.This assumption allows us to solve system (4.14); nonetheless, it holds

when the automobile has a standard design and under regular use (by classic

design, we mean a balanced car vehicle with the COG at the middle of the car). In

Figure 4.2, a comparison between the response of consideration (4.19) and the

actual measurements from wheel force transducers is presented. Here in solid line

c1 +c7 is depicted, in dashed-dotted line c4 +c10 is displayed, in dashed line is shown

the measurement for Fz11 + Fz22 and the dotted line illustrates the measurement

for Fz12 + Fz21. Now, it is required to be developed a static vertical force estimator

to compute
[
F̂z12(0); F̂z21(0); F̂z11(0); F̂z22(0)

]
.

4.4.1.3 Modeling using simplified quarter car suspension approach

A vehicle suspension system has multiple degrees of freedom; the suspension is a

complex vibrations problem. Figure 4.3 represents a wheel that includes viscoelastic

effects in the spring and damper suspension coefficients. Observe that the goal is

to compute F̂zij(0), which could be measured accurately at a stationary vehicle’s

condition. The model presented here uses just one degree of freedom; however, in

subsection 4.4.1.4, more degrees of freedom are introduced. Thus, applying Newton

laws of motion and from Figure 4.3, it follows that F̂zij = keqij ·hij + ceqij · ḣij where
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keqij describes the spring coefficient, hij denotes mass’ heigh, mg is the weight, ceqij
stands for the damping coefficient and ḣij means the mass velocity on the vertical

direction. Notice here, that our aim is to find the normal force at a static condition,

thus, ḣij = 0, an this implies that F̂zij(0) = keqij · hij; where hij = zij − zrij and

ḣij = żij − żrij .

Ground

Ground

Figure 4.3 – Quart-Cart suspension model Sketch
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4.4.1.4 Multi-model approach

We created a database from the data collected. We include measurement of the

vehicle static and dynamic state; thus, using statistical software Minitab ※and the

static collected data (hij), we obtain 18 regressions; each regression depends on the

suspension deflection sensors. A brief sample of these models is in the following:

F̂zij1 (0) =5566− 3852hij;

F̂zij2 (0) =− 12945 + 151394hij − 322525h2
ij;

... =
...

F̂zij18 (0) =6737− 3451hij + 5348hijc − 15905hicj + 2420hicjc ;

(4.20)

Each one of the models presented in (4.20) has a 95% confidence interval with

a two tales normal distribution, and a different determination coefficient, R2. A

parallel Kalman filter is applied to the set of models. The intention is to find the

most probable response for F̂zij(0) by performing a fusion of the regressions. Figure

4.4 shows with blue-dashed line two regression responses with different covariance;

the same figure also portrays with a red-solid line the fusion response of the Kalman

filter.
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Figure 4.4 – Model responses with different covariance aiming to find the sweet spot
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4.4.1.5 Vertical Force Estimator

Takin into account from vectors FzD1, FzD2; considering (4.19) and from linear

system (4.14) and extended linear system is built; such system is:

A0F̂z = F̂k0 (4.21)

where

A0 =


1 0 1 0 1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 1 0 1 1 0


T

F̂k0 =
[ ∑

i∈A F̂z1i
∑

i∈A F̂z2i
∑

i∈A F̂zi2
∑

i∈A F̂zi1 F̂zD1 F̂zD2

]T
(4.22)

where F̂zD1 = F̂z11(0) + F̂z22(0); and F̂zD2 = F̂z12(0) + F̂z21(0). Observe that, F̂z

remains the same as in (4.14), thus isolation F̂z from linear system (4.21), gives

F̂z = (AT
0 A0)−1AT

0 F̂k0 (4.23)

Equation (4.23) defines our first estimation algorithm to compute wheel-ground

contact vertical forces. In the following sections, its feasibility and accuracy under

real-time experiments are proved.

4.4.1.6 Experimental results using the normal equation method

An experiment to validate our vertical forces estimation model is defined in equation

(4.23). In this case, we consider prior knowledge of the initial weight distribution

(F̂z11(0), F̂z12(0), F̂z21(0), F̂z22(0)) due the multi-model approach applied with set

of equations (4.20).

A slalom maneuver is performed with our experimental testbed, Dyna308, at a

maximum of 60 kph. During this maneuver, the tires do not experiment saturation.

Figure 4.6 shows the response of equation (4.23) with a red-solid line; the black-

dashed line represents the actual force measured with the Kistler’s sensors; finally,

this figure shows with a pink-dotted line the response from algorithm presented in

[Jiang et al., 2014].
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Figure 4.5 – Slalom maneuver carried out to validate the model at 60 km/h maximum
velocity

4.4.2 Extension using the quarter-car model

The mass’ estimation problem is simplified when suspension deflection sensors are

available. In [Kim and Ro, 2000] employing the quarter-car model, the authors

estimate the vehicle’s mass. Furthermore, in [Rajamani and Hedrick, 1995] based on

the same principle, an adaptive observer has been developed to estimate suspension

states and parameters.

In Chapter 2, the quarter car model is introduced in equation (2.25); nonetheless

this equation is already simplified to work at the equilibrium point of the suspension

system, but to estimate the mass, we need the base model, thus:

msij z̈sij =− ksij(zsij − zusij − Lsij)− csij(żsij − żusij)−msijg (4.24a)

musij z̈usij = ksij(zsij − zusij − Lsij) + csij(żsij − żusij) (4.24b)

− ktij(zusij − zrij −Rtij)− ctij(żusij − żrij)−musijg

where Ls is the nominal elongation of the spring, and Rt is the nominal elongation

of the spring modeling the tire. If we analyze the equilibrium points of (4.24) we

could obtain:

msij =− ksij
g

(zsij − zusij − Lsij) (4.25a)

Fzij(0) =musijg − ksij (zsij − zusij − Lsij) (4.25b)
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Figure 4.6 – Fzij measurement response versus the estimate F̂zij at maximum speed of 60
km/h velocity.

notice that ksij and Lsij are design variables; therefore prior knowledge is con-

sidered, deflection sensors measure zsij − zusij. Also, given this knowledge, it is

possible to obtain the initial condition for the normal TGFs, given that the unsprung

mass is also a design variable. Moreover, from model (2.26) we get:

msz̈s = −
∑
i∈A

∑
j∈A

(ksij (zsij − zusij − Lsij) + csij (żsij − żusij))−msg (4.26)

here, ms represents the vehicle sprung mass, and z̈s is the vertical acceleration at

the COG of the whole vehicle sprung mass and calculating the equilibrium points,

gives:

msg −
∑
i∈A

∑
i∈A

ksijLsij = −
∑
i∈A

∑
j∈A

ksij (zsij − zusij) (4.27)
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and when setting our equilibrium point to zero, (zsij − zusij) = 0, we get:

msg =
∑
i∈A

∑
i∈A

ksijLsij (4.28a)

msijg = ksijLsij (4.28b)

Fzij(0) = musijg + ksijLsij (4.28c)

from (4.28c) and the single-track model (2.21), it follows:

l̂1 =

∑
i∈A F̂z2i(0)l − h (mg sin(θr(0)))

mg cos(θr(0)) cos(φr(0))

l̂2 =

∑
i∈A F̂zf (0)l + h (mg sin(θr(0)))

mg cos(θr(0)) cos(φr(0))

(4.29)

with m = 1
g

∑
i∈A
∑

j∈A F̂zij(0). Analogously, taking into account the hoverboard

vertical dynamics, gives

ê2 =

∑̂
i∈AFzi2(0)E + hm(g sin(φr(0)) cos(θr(0))

mg cos(φr(0)) cos(θr(0))

ê1 =

∑
i∈A F̂zi1(0)E − hm(g sin(φr(0)) cos(θr(0))

mg cos(φr(0)) cos(θr(0))

Finally, the weight distribution and the COG computation increase its accuracy with

lower excitation inputs and in particular situations as when vx = 0; considering

small road angles φr ≈ θr ≈ 0; simplifies the computation of variables l̂i and êi,

thus

l̂1 =

∑
i∈A F̂z2i(0) · l
m · g

; l̂2 =

∑
i∈A F̂z1i(0) · l
m · g

;

ê1 =

∑
i∈A F̂zi2(0) · e
m · g

; ê2 =

∑
i∈A F̂zi1(0) · e
m · g

;

without requiring prior knowledge on the COG’s altitude, h. This algorithm’s

accuracy at lower excitation environments is higher when compared against other

responses obtained with different methodologies based exclusively on vehicle

dynamics.

All of the approaches to estimating TGFs or even chassis controllers are sensitive

to changes in the vehicle inertial parameters. The normal TGFs are the most
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critical parameter in our scheme since they directly affect our estimations for the

longitudinal and lateral TGFs.

4.4.2.1 Experimental results extension

A total of three tests are presented, the results validate the proposed algorithms;

Figures 4.7, 4.8 and 4.9, represent part of the vehicle state in each one fo the

test, respectively. The first two tests are slalom maneuvers at 55 kph and 70 kph

maximum speed, respectively. Notice that during the first test, the absolute lateral

acceleration is maintained below 5 m/s2, while the second test the same variable

reaches 10 m/s2, see Figures 4.7, 4.8. During test No. 2, the tire experiments

force saturation; this phenomenon increases the problem"s complexity. The test is

conducted at 60 kph with a constant steering value to maintain a circular vehicle

trajectory. During this maneuver, a low steering excitation is pursued; moreover,

while performing the circle at the 150 seconds mark, the driver brakes while

turning.

The first two tests can be divided into three main parts, an acceleration stage

until we arrive at cruise speed where a slalom is done and, finally, the braking

stage. During test No. 1, the schedule is the following:

• Acceleration phase from 25 to 40 seconds.

• Slalom from 40 to 60 s.

• Braking phase from 60 to 80 s.

The schedule for test No. 2 is:

• Acceleration phase from 25 to 38 seconds.

• Slalom from 38 to 55 s.

• Braking phase from 55 to 70 s.

The schedule for test No. 3 is:

• Constant steering from 20 s to 250 s.

• Braking phase from 140 s to 150 s.

Figure 4.10, shows the normal TGFs response to mission No. 1; here, the tire

operation point is within the limits of its linear response. This figure depicts the

proposed model response with a red-solid line; this predictor perfectly fits the

actual normal TGFs portrayed with a black-dotted line.
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Figure 4.7 – Test No. 1 carried out to validate the longitudinal/lateral TGFs estimation
scheme (max(vx) = 60km/h, max(| ay |) = 4.7m/s2).
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Figure 4.9 – Test No. 3 carried out to validate the longitudinal/lateral TGFs estimation
scheme (max(vx) = 60km/h, max(| ay |) = 6.5m/s2).

Figure 4.11 presents similar behavior; during this test, the tires experiment

saturation. Notice that the proposed model shows a response overshoots at the

front tires (F̂z11 and F̂z12); we attribute this phenomenon to the change from the

linear operation region to the saturated one.

Finally, Figure 4.12 validate our algorithm during transient situations as maneu-

ver No. 3. The estimation during maneuvers of this kind might suffer accuracy loss

since they do not consider the vehicle chassis angles or low excitation levels.

4.4.2.2 Result Analysis

Once proposed and validated our algorithm, we have to make a quantitative

assessment addressing the accuracy of our estimation; thus, we define the following

error,

F̃zij := F̂zij − Fzij

Figure 4.13 shows the error distribution after analyzing test No. 1 on the left side,

test No. 2 on the center, and test No. 3 on the right side. In this analysis, the four

wheels’ errors are taken into account; the same figure shows the residual outliers

for each one of the tests. The error has a normal distribution; the standard deviation

for the test No. 1 is σz = 210N , with a mean value of µz = 68.35N , and 0.76% of

the data is considered an outlier. Similarly, for test No. 2, the error distribution has

normal characteristics; during this test, the error standard deviation is σz = 381N ,

and its mean value is µz = 165.80N , while the data outliers are 5.64%. Finally,
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Figure 4.10 – Estimated Normal TGFs, F̂zij , response compared against the actual
measurement given by Kysler dynamometers during test No. 1. Red-Solid line: F̂zij -
Proposition. Black-Pointed line: Fzij - Sensor Measurement

Figure 4.11 – Estimated Normal TGFs, F̂zij , response compared against the actual
measurement given by Kysler dynamometers during test No. 2. Red-Solid line: F̂zij -
Proposal. Black-Pointed line: Fzij - Sensor Measurement
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Figure 4.12 – Estimated Normal TGFs, F̂zij , response compared against the actual
measurement given by Kysler dynamometers during test No. 3. Red-Solid line: F̂zij -
Proposal. Black-Pointed line: Fzij - Sensor Measurement

for the test No. 3 shows a standard deviation of σz = 199N , a mean error of

µz = −15N , and the error outliers are 1.98%.

4.4.3 Data fusion with Kalman filter

The normal TGFs are crucial for obtaining an accurate longitudinal and lateral

TGFs estimation. So far, we have used vehicle and suspension models to compute

the normal TGF’s, but it is widely known that data fusion is a powerful tool to

increase accuracy and add robustness. This section uses a Kalman filter to estimate

these forces by fusing the bicycle, hoverboard, quarter-car, and seven degrees of

freedom models. The use of a Kalman filter improves the estimation accuracy and

adds robustness via statistical consensus of those mentioned models.

Data fusion strategy resembles the sensor redundancy concept (in this case

is model redundancy); this allows us to an estimator able to estimate model

parameters that up to this moment were considered known.

Figure 4.14 shows our strategy; first, we compute the normal TGFs obtained

from the suspension model; we feed these results to an EKF based on the dynamic

vehicle models; as an output, we get the normal TGFs, the mass, m̂, and the COG

position estimation (Ê1, L̂1, ĥ).
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Figure 4.13 – Up: Distribution of the estimation error. Down: Boxplot graph obtained from
the estimation error. Left: test No. 1. Center: test No. 2. Right: test No. 3.
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Figure 4.14 – Normal TGFs observation diagram
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Figure 4.15 – Low friction coefficient mission. Upper-Left: gps measurement x, y coordi-
nates. Upper-Right: Vehicle velocity –black-solid line –. Rear tires average velocity – red-
dotted line –. Bottom-Left: Longitudinal acceleration. Bottom-Right: Lateral acceleration.

4.4.3.1 Experimental Results

This section presents experiments to validate our data fusion scheme. We carried out

two experiments with Dyna308 to validate our proposals; the missions performed

are depicted in Figures 4.15 and 4.16. During the first test, the road has low friction.

Figure 4.15 shows with a black-solid line the vehicle speed measured with a GPS

and with a red-dotted line the average angular rate obtained from the rear wheels;

here, we show that exists a discrepancy between both sensors due to the wheel lock

phenomena. Figure 4.16 shows the same maneuver but with high road friction;

after a careful analysis of both tests, we can notice that during mission No. 2 the

tires did not reach the saturation point during the braking operation.

The initial state of our filter uses data provided by the car manufacturer; this

means that m̂(0), Ê1(0), and L̂1(0) are set with values of an empty car. As time

passes, the estimated state converges to the actual state.

Figure 4.17 shows the response of our model fusion during test No. 1; this figure

displays the estimation algorithm response in the red-solid line, and a black-dashed

line represents the actual measurement from the force transducer. Notice that our

algorithm has some pikes, caused by the noise and the sensibility of the input

sensors; remember that this test is carried out in a road with low friction.

Figure 4.18 displays with a red-solid line the parameters estimated with our

proposal and the real parameters are depicted with a black-dashed line. The initial

values for the parameter estimation are m = 1582 kg, L1 = 1.0410 m, E1 = 0.6958
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Figure 4.16 – High friction coefficient mission. Upper-Left: gps measurement x, y coordi-
nates. Upper-Right: Vehicle velocity –black-solid line –. Rear tires average velocity – red-
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m, and h = 0.48 m.

Figures 4.19 and 4.20 show the estimated state obtained with our proposal

against the actual state. During this test, the road has high friction.

4.5 Conclusions

The chapter addresses the normal TGFs computation/estimation problem. The

normal TGFs are the most crucial variable of the TGFs since it is used for the

computation of the longitudinal and lateral TGFs estimation.

The first section presents state of the art for normal TGFs and related research.

The most important works related to this are mentioned, and from that point, we

start our proposal.

Our proposal could be divided into three stages, first solving the normal equation

using only dynamic-vehicle models and a simplified quarter-car model. On a second

stage, we use the quarter-car model to improve the estimator accuracy; here, we

consider knowledge on design variables as the unsprung mass, the suspension

stiffnesses, and damping coefficients. Finally, on the third stage, we implement a

Kalman filter to fuse all the incoming information. We estimate the normal TGFs

and the vehicle’s mass and the center of gravity position (E1, L1, h).

Finally, we validate our proposal with tests that address different maneuvers

and road conditions. On the one hand, we perform tests that consist of tire linear
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and nonlinear behavior produced by an excess in vehicle speed. On the other hand,

we validate our scheme to variable road friction—the proposed scheme’s accuracy

and robustness in all conditions.
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5.1 Introduction

The longitudinal and lateral tire-ground forces estimation is divided into two

chapters, given that there exists a lot of differences between both methods. The

organization of both strategies into a single chapter would have been confusing;

therefore, in this first chapter, we present the estimation scheme based on vehicle

models, notably the bicycle and hoverboard models. This chapter aligns with the

existing literature because it follows more or less the standard approach, which

is divided into three parts: An observer (LO, KF, SMO), based on a vehicle model

(bicycle model, single corner) fused with a tire model (Dugoff, magic formula),

such that, the system is fully observable.

Section 5.2 presents a review of different works addressing different strategies

to estimate longitudinal and lateral TGFs. The contribution of this thesis that

addresses longitudinal and lateral TGFs is seen in Sections 5.3, 5.4 and 5.5, these

sections show the mathematical hypothesis to build our models, the overall scheme

to estimate these TGFs and the experimental results, respectively. Finally, in Section

5.6, the conclusions, and perspectives are discussed.

5.2 State of the art on Longitudinal and Lateral Tire-

Ground Force Estimation

One of the most widely used tire models is the magic tire model. Pacejka proposed

this model in [Pacejka and Besselink, 1997b]. It is renowned as semi-empirical

because its development is based on measured data and physical models; this

approach can compute the longitudinal and lateral tire-ground forces. The magic

tire model is arduous to implement into an embedded system. Its complexity is due

to the requirement of some tire parameters, which are usually difficult to identify

and might change due to use and tire wear. In [Dugoff, 1969], Dugoff provides

a simpler formulation with the ability to describe forces in different situations as

pure cornering, acceleration/braking, and combined maneuvers. Dugoff’s model

synthesizes all tire-vehicle properties required by the magic tire model into two

constant parameters Cσ and Cα, known as longitudinal and cornering stiffness,

respectively. Several authors had the idea of computing these tire-ground forces

using observers built with dynamic models. In [Ray, 1995], a nonlinear state tire-

ground force observer is developed and applied to a braking control system, where

the tire-ground forces are computed for the virtual wheels proposed in the bicycle

system. In [Wilkin et al., 2006], the tire-ground forces for the virtual centered
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wheels are estimated using an Extended Kalman Filter. In [Dakhlallah et al., 2008],

on a first stage, an EKF is used to estimate the lateral vehicle speed, vy, at the

vehicle’s center of gravity, a transformation is made to determine the longitudinal

and lateral speed at each tire position and compute the sideslip angle at each

tire. The longitudinal/lateral tire-ground forces are estimated using the Dugoff’s

tire model on a second stage. In [Doumiati et al., 2012], a linear Kalman filter

is implemented to estimate the forces at each wheel, to differentiate the front-

left/right and rear-left/right wheels, the normal tire-ground forces are included

in the estimation scheme. Also, Dugoff’s tire model response is used to close the

observation loop. [Rezaeian et al., 2015] presents a similar approach; however, in

this work, the torque generated by the brakes and engine are known. In [Jiang

et al., 2016], the longitudinal and lateral force transfer concept is introduced. This

term improves accuracy at the force splitting stage. The virtual forces can be divided

for each tire with this variable. In [Rhode et al., 2016], a tractive force estimation

scheme is developed, taking into account the drag force; nevertheless, its goal is to

estimate the total longitudinal tire-ground force produced in the vehicle.

5.3 Longitudinal/Lateral TGFs model

In this section, the longitudinal/lateral ground-force estimation methodology is

introduced. Figure 5.1 displays the estimation scheme; observe that we require

the acceleration in the lateral and longitudinal directions, the angular acceleration

around the z axis, the steering angle, δ, the braking pressure P , and finally, the

road bank and slope angles. The road angles are considered known variables, you

can refer to our work [Acosta et al., 2017] or to [Ryu and Gerdes, 2004, Sebsadji

et al., 2008, Grip et al., 2009].
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Bicycle Model Extended
Kalman F. Implementation

Hoverboard Model
Kalman F. Implementation

Split 
EKFInputs

Sensor

Figure 5.1 – Longitudinal/Lateral TGFs estimation scheme

5.3.1 Longitudinal and lateral TGFs using the bicycle model

Figure 5.1 shows our observation scheme; in this section, we develop the EKF that

estimates the longitudinal and lateral TGFs for the front and rear-virtual tires of

the single-track model. Thus, the bicycle model (2.21) can be rewritten as:

H · Fx|y:v = J (5.1)

where

H :=

 cos δ 1 − sin δ 0

sin δ 0 cos δ 1

L1 · sin δ 0 L1 · cos δ −L2



J :=

 m · (ax + g · sin θr) + γx · v̄2
x

m · (ay + g · sinφr · cos θr) + γy · v̄2
y

Izz · ψ̈


Fx|y:v :=

[ ∑
i∈A F̂x1i

∑
i∈A F̂x2i

∑
i∈A F̂y1i

∑
i∈A F̂x2i

]T
with γi = 0.5ρCDiSi standing for the drag force.

Notice that matrix H is singular; therefore, its inverse, H−1, does not exist. A

quick solution to isolate Fx|y:v; such as the pseudo-inverse, could be applied, but

its response has low accuracy. To find a suitable solution, we can use our system’s

information to make considerations and simplify the problem.

In the literature, authors neglect the rear longitudinal TGF,
∑

i∈A Fx2i = 0;
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this consideration is valid for academic purposes, however, in real scenarios the

assumption does not hold. Developing an algorithm capable of computing the

longitudinal TGFs is an arduous task because initially, the system (5.1) does not

have a straightforward solution. Secondly, the powertrain configuration impacts

the longitudinal TGFs distribution. There are at least 18 different powertrain

configurations, but this work’s scope only concerns the front-wheel-drive set, given

that Dyna308 has this configuration.

The goal of this section is to isolate Fx|y:v in the system (5.1), thus, taking into

account the powertrain set configuration, we have obtained a relationship between

the front and rear wheels which is formulated as:∑
i∈A

Fx2i ≈ η
∑
i∈A

Fx1i (5.2)

In our previous work [Alatorre et al., 2017], η has been defined as a switched

constant variable, negative when accelerating and positive while braking and

always fulfilling | η |< 1. Notice that a linear switching relationship between

the front and rear wheels does not capture the complete TGFs dynamics. This

assumption is only valid at steady-state; therefore, this relationship is defined in

the following sections.

5.3.1.1 Acceleration mode

During the vehicle’s acceleration, a car with front-wheel drive set produces the

torque required to move the automobile with its front wheels; meanwhile, the

rear tires do not provide torque, but the rear tires deliver a force that opposes the

vehicle movements. Thus, considering the single-corner model gives:

Iωij ω̇ij = τij − rij · Fxij − ζxij · v̄2
x (5.3)

where the suffixes i, j ∈ A := {1, 2}. From (5.3) is obtained:

∑
i∈A

Fx1i =
1

r̄1

(∑
i∈A

ζx1i v̄
2
x −

∑
i∈A

Iω1i
˙̄ω1 +

∑
i∈A

τ1i

)
∑
i∈A

F̂x2i =
1

r̄2

(∑
i∈A

ζx2i v̄
2
x −

∑
i∈A

Iω2i
˙̄ω2

)

where r̄i = 1
2

∑
j∈A rij, and ˙̄ωi = 1

2

∑
j∈A ωij; also considering the physical similarity

between front and rear wheels, the following assumption, r̄1 ≈ r̄2, is considered,
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then

∑
i∈A

F̂x2i =

∑
i∈A ζx2i v̄

2
x −

∑
i∈A Iω2i

˙̄ω2∑
i∈A ζx1i v̄

2
x −

∑
i∈A Iω1i

˙̄ω1 +
∑

i∈A τ1i

∑
i∈A

F̂x1i

=ηa
∑
i∈A

F̂x1i

with

ηa =

∑
i∈A ζx2i v̄

2
x −

∑
i∈A Iω2i

˙̄ω2∑
i∈A ζx1i v̄

2
x −

∑
i∈A Iω1i

˙̄ω1 +
∑

i∈A τ1i

and considering
∑

i∈A τ1i ≈ m · r̄1 · ax, ˙̄ωi ≈ ax/r̄i, gives,

ηa ≈
∑

i∈A ζx2i v̄
2
x − 1

r̄2

∑
i∈A Iω2i

ax∑
i∈A ζx1i v̄

2
x − ( 1

r̄1

∑
i∈A Iω1i

−m · r̄1)ax

Approximating ηa with a second order Taylor series of expansion gives

ηa(Φ) ≈ ηa(C) + η′a(C)(Φ−C) + η′′a(Φ−C)T (Φ−C)

where Φ =
[
ax v̄x

]T
and C in this case represents the operation point, where

approximation is done. We made the following consideration v̄x ≈ vx. To find the

partial derivatives of η we use the least squares method, thus:

ηa ≈ η̄a(Φ1) = Θ1 ·Φ1

with

Θ1 =
[
c1 c2 c3 c4 c5

]
Φ1 =

[
a2
x ax v2

x vx 1
]

here coefficients c1 − c5 are constant real numbers. Thus, while accelerating∑
i∈A

F̂x2i ≈ η̄a
∑
i∈A

F̂xi (5.4)

5.3.1.2 Braking mode

The torque produced during the braking process is distributed between the front

and rear wheels. The torque distribution is set by design, thus each car has its own

braking torque distribution. Thus, the braking system distributes the total torque
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within the four wheels, then from (5.3), are obtained

∑
i∈A

Fx1i =
1

r̄1

(∑
i∈A

ζx1i v̄
2
x −

∑
i∈A

Iω1i
˙̄ω1 +

∑
i∈A

τ1i

)
∑
i∈A

Fx2i =
1

r̄2

(∑
i∈A

ζx2i v̄
2
x −

∑
i∈A

Iω2i
˙̄ω2 +

∑
i∈A

τ2i

)

similarly, as in the acceleration case, rr ≈ rf , hence

∑
i∈A

Fx2i =

∑
i∈A ζx1i v̄

2
x −

∑
i∈A Iω1i

˙̄ω1 +
∑

i∈A τ1i∑
i∈A ζx2i v̄

2
x −

∑
i∈A Iω2i

˙̄ω2 +
∑

i∈A τ2i

∑
i∈A

Fx1i

=ηb
∑
i∈A

Fx1i

with

ηb =

∑
i∈A ζx1i v̄

2
x −

∑
i∈A Iω1i

˙̄ω1 +
∑

i∈A τ1i∑
i∈A ζx2i v̄

2
x −

∑
i∈A Iω2i

˙̄ω2 +
∑

i∈A τ2i

equivalently, as with ηa could be approximated a function η̄b(Φ2). Thus,

ηb ≈ η̄b(Φ2) = Θ2 ·Φ2

with

Θ2 =
[
c6 c7 c8 c9 c10

]
Φ2 =

[
a2
x ax v2

x vx 1
]

coefficients c6 − c10 are constant real numbers. Therefore, while braking∑
i∈A

Fx2i ≈ η̄b ·
∑
i∈A

Fx1i (5.5)

5.3.1.3 Switched rear TGF estimation model

The goal is to have a single relationship between the front and rear wheels; thus,

the acceleration and braking modes (5.4) and (5.5) have to be fused. A braking

flag is introduced, b1, this variable represents the brake system status, b1 = 1 when

braking, and b1 = 0 at any other condition. It follows:∑
i∈A

Fx2i = η̄b
∑
i∈A

Fx1i · b1 + η̄a
∑
i∈A

Fx1i · (1− b1) (5.6)
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5.3.1.4 Brake pressure approach

Another approach used to estimate the TGFs while braking, is based on the brake’s

pressure. The formulation is quite simple, due to a linear relationship between the

force and the system’s pressure, it follows

Fxj = P ·Kj (5.7)

where the suffix j has already been defined, P is the pressure produced by the

braking system obtained through the CAN signal and Kj denotes a gain required to

transform the applied pressure into a the longitudinal TGF.

5.3.1.5 Longitudinal virtual TGFs model using the hoverboard model

The hoverboard model ((2.22) provides the longitudinal TGF for the left and right

virtual tires. Observe that the virtual left and right tires are exposed to the same

phenomena when accelerating or braking; thus, a single approach to estimate the

left and right virtual TGFs suffices our purposes. Hence, after isolating the TGFs in

the hoverboard model (2.22) gives:

F̄x:v =
(
HH
)−1

JH (5.8)

with

HH :=

[
1 1

E2 −E1

]
; F̄x:v =

[ ∑
i∈A F̂xi1∑
i∈A F̂xi2

]

JH :=

[
m · (ax + g · sin(θr)) + γxv̄

2
x

Izz · ψ̈

]

With the introduction of the virtual right and left longitudinal TGFs, we can replace

the prior dependence on variables obtained through parameter identification that

usually does not serve as a general solution since the overfits the response. One

advantage of this proposal is the robustness improvement since variation on the

road friction no longer affects the model response.

5.3.2 Longitudinal and lateral virtual TGFs division

The formulations presented can solve systems (5.1) and (5.8) for the virtual TGFs.

Nevertheless, our final goal is to estimate the longitudinal and lateral forces at each

one of the vehicle tires, front left/right and rear left/right, as depicted in Figure

4.1.
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Several approaches have been used in literature to split these virtual forces.

For example, in [Doumiati et al., 2012] the normal TGFs, the sideslip angle, and

the Dugoff’s tire model are used to divide the longitudinal and lateral TGFs. In

the following, a proposal to split the virtual TGFs without using a tire model is

presented.

5.3.2.1 Longitudinal virtual TGFs decoupling

The proposal based on [Jiang et al., 2016], where the difference between left and

right longitudinal TGFs is defined as longitudinal force transfer as:

Txf = Fx11 − Fx12 ≈ g1
ψ̇

vx
+ g2ay + g3δ (5.9a)

Txr = Fx21 − Fx22 ≈ g4
ψ̇

vx
+ g5ay (5.9b)

where the coefficients gk∀k ∈ {1, ..., 5} are computed using a regression (parameter

identification). The performance of the estimation scheme using this set of equations

is overwhelming for controlled experiments. Nevertheless, after a deep analysis, it

is concluded that the coefficients’ value is strictly related to road friction, µ. Thus,

to maintain the same degree of accuracy, the coefficients must be re-identified

with a new set of data with current environmental conditions, translating into an

extenuating series of experimentation that will take lots of time and money.

In this work, the rear longitudinal force transfer Txr, the concept is used, but

re-defined as an independent function such that modifications on the environmental

conditions do not affect the algorithm response. Equation (5.9a) is not taken into

account in this proposal.

Considering our previous work [Alatorre et al., 2017], we have deduced an

equation that defines the rear-right/left wheel longitudinal TGFs:∑
i∈A

Fx2i = ξx2iax2i + (−1)i+1 · ξy2iay2i − γxv̄2
x (5.10)

if we apply (5.10) to the longitudinal for transfer definition, yields

Txr = ξx21ax21 + ξy21ay21 − γxv̄2
x − ξx22ax22 + ξy22ay22 + γxv̄

2
x

From classical mechanics, we can use the motion of a particle on a rigid body,

Txr = (ξx21 − ξx22)Eψ̇ + ξy21ay21 + ξy22ay22
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it follows

Txr = (ξy21 + ξy22)
1

2

∑
i∈A

ay2i + (ξy21 − ξy22)ψ̇2E + (ξx21 − ξx22)ψ̇E

Since, the terms (ξy21 − ξy22) = ∆ξ and (ξx21 − ξx22) are too small,they do not

contribute to the longitudinal force transfer model, Txr. The following is obtained:

Txr = ε−1
∑
i∈A

Fz2i
1

2

∑
i∈A

ay2i ≈ ε−1 ·
∑
i∈A

Fy2i (5.11)

with ∑
i∈A

Fz2i = ε
∑
i∈A

ξy2i

where ε is defined as constant and could be obtained through a regression. It has

to be remarked that ε does not require adjustments due to different environmental

conditions.

5.3.2.2 Lateral virtual TGFs decoupling

The solution provided in [Jiang et al., 2016] for the rear lateral force transfer is

adequate for our proposal and will be re-used.

T̂yr = Fy21 − Fy22 =
F̂z21 − F̂z22

F̂zr
· F̂yr (5.12)

Our solution does not take into account the front lateral force transfer, Tyf . Notice

that is necessary to include the rear wheels normal TGFs estimation.

5.4 Observer design

The TGFs models previously obtained could be solved with probabilistic estimation

techniques. We prioritize the Kalman filter to take into account the uncertainties

associated with the model and the measures. Finally, considering the linear nature

of the systems (bicycle, hoverboard, force split), it has been chosen to use a KF or

EKF accordingly.
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5.4.1 Bicycle model EKF implementation

The first step towards the implementation is to represent set of eqs. (5.1), as a

discrete state-space system. Thus, eq. (5.1), becomes

xk+1 = (I6×6 + Ts ·A1(k)) · xk + Ts ·B1 · u + Ts ·wk

yk =C1(k) · xk + νk
(5.13)

where

xk =
[
x1 x2 x3 x4 x5 x6

]T

A1(k) =



0 0 0 0 0 0

− cos δk 0 − sin δk 0 0 cos δk

0 0 0 0 0 0

sin δk 0 − cos δk 0 0 − sin δk

0 0 0 0 0 0

0 0 0 0 0 0



B1 · u =



0

cos δk ·m · ax(k) + sin δk ·m · ay(k)
1
L
· (−Izz · ψ̈(k) + L1 ·m · ay(k))

cos δk ·m · ay(k)− sin δk ·m · ax(k)

0

0



C1(k) =



1 cos δk 0 − sin δk 0 0

0 sin δk 1 cos δk 0 0

0 L1 · sin δk −L2 L1 · cos δk 0 0

1 −x5 0 0 0 1

1 0 0 0 −x2 1

0 0 0 0 1 0

0 0 0 0 0 1

b1(k) 0 0 0 0 0

0 b1(k) 0 0 0 0


with x1 =

∑
i∈A F̂x2i, x2 =

∑
i∈A F̂x1i, x3 =

∑
i∈A F̂y2i, x4 =

∑
i∈A F̂y1i, x5 = η and

x6 = ζ · v̄2
x. System (5.13) is non-linear, and observable; its observability has been

verified by means of the criterion proposed in [Sontag, 1998] and presented in

Definition 3.2.5.
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5.4.2 Hoverboard model KF implementation

The second step for completing the TGFs observation scheme as shown in Figure

(5.1), is to represent model (5.8) with a state-pace realization. Then,

xk+1 = (I3×3 + Ts ·A2(k)) · xk + Ts ·B2 · u + Ts ·wk

yk =C2(k) · xk + νk
(5.14)

where

xk =

 x1

x2

x3

 ; A2(k) =

 0 −1 1
E2

E1
0 0

0 0 0

B2 · u =

 m · ax(k)

Izz · ψ̈(k)

0

 ; C2(k) =

 1 1 −1

−E2 E1 0

0 0 1


with x1 = Fxl, x2 = Fxd and x3 = ζ · v̄2

x. The observability of system (5.14) is verified

with the full column rank of its observability matrix,

rank[O] = dim(x)

where

O =
[

CT (C ·A)T (C ·A2)T
]T

5.4.3 Tire-ground force split EKF implementation

The final step of our scheme is the TGFs splitting stage, which uses TGFs estimation

response obtained from the bicycle-hoverboard models and the TGFs transfer

equations (5.11)-(5.12) as measurements. Therefore,

xk+1 =I8×8 + wk

yk =C3(k) · xk + νk
(5.15)

where

xk =
[
x1 x2 x3 x4 x5 x6 x7 x8

]T
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C3(k) =



1 0 cos δk 0 0 0 0 0

1 0 0 cos δk 0 0 0 0

0 1 1 0 1 0 0 0

0 1 0 1 −1 0 0 0

0 0 − sin δk 0 0 1 0 0

0 0 0 − sin δk 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 −1



T

with x1 = Fx11, x2 = Fx12, x3 = Fx21, x4 = Fx22, x5 = Fy11, x6 = Fy12, x7 = Fy21 and

x8 = Fy22 .

The constrains (
µ · Fzij

)2 ≥ F 2
xij

+ F 2
yij

are included in the EKF implementation for the bicycle model and the split TGFs

stage, in the observation matrix.

5.5 Experimental Results

Our proposal is validated with real data; three special cases were selected. These

test cases validate our proposal’s robustness at low and high lateral excitation levels

as when the tires experiment force saturation.
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Figure 5.2 – No. 1 carried out to validate the longitudinal/lateral TGFs estimation scheme
(max(vx) = 60km/h, max(| ay |) = 4.7m/s2).
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Figure 5.3 – Test No. 2 carried out to validate the longitudinal/lateral TGFs estimation
scheme (max(vx) = 71km/h, max(| ay |) = 7m/s2).
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Figure 5.4 – Test No. 3 carried out to validate the longitudinal/lateral TGFs estimation
scheme (max(vx) = 60km/h, max(| ay |) = 6.5m/s2).



134 CHAPTER 5. LONGITUDINAL AND LATERAL TIRE GROUND FORCE ESTIMATION: PART 1

-0.04 -0.02 0 0.02 0.04 0.06

-2000

-1000

0

1000

-0.2 -0.1 0 0.1 0.2

-10000

-5000

0

Figure 5.5 – Saturation level comparison between test No. 1 and 2. Up: Test No. 1. Down:
Test No. 2

5.5.1 Tests Description

Three tests are carried out to validate the proposed algorithms, the tests performed

are depicted in Figures 5.2, 5.3 and 5.4, respectively. During the first two tests, the

vehicle is subjected to a slalom maneuver at 55 km/h and 70 km/h maximum speed,

respectively. The difference between performed tests is noticed when the maximum

lateral acceleration is compared. During test No. 1, the lateral acceleration is

maintained below 5 m/s2, during test No. 2, the lateral acceleration achieved is

up to 10 m/s2, see Figs. 5.2 and 5.3. Nevertheless, the main difference is noticed

when comparing the sideslip-lateral TGF relationship, see Figure 5.5; this figure

shows with red circles the lateral TFG, and with black circles, a polynomial data

fit to see the graph trend easily. During test No. 2, the tire was being subjected to

force saturation. The third test is conducted at 60 kph with constant steering such

that the vehicle path is a circle; during the last maneuver, we look to validate our

proposal against maneuvers with low lateral excitation.

The first two tests can be divided into three main parts, an acceleration stage

until we arrive at cruise speed where a slalom maneuver is done, and finally, the

braking stage. The schedule for test 1 is:

• Acceleration phase from 25 to 40 seconds.

• Slalom maneuver at 55 kph cruise speed from 40 to 60 seconds.

• Braking phase from 60 to 80 seconds.
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The schedule for test No. 2 is:

• Acceleration stage from 25 to 38 seconds.

• Slalom section from 38 to 55 seconds.

• Braking phase from 55 to 70 seconds.

The schedule for test No. 3 is:

• Constant steering from 20 s to 140 seconds.

• Braking phase from 140 s to 150 seconds.

• Constant steering from 150 to 250 seconds

5.5.2 Results

The first two tests were selected to present our proposal working under linear TGFs-

Sideslip relationship (test No. 1) and also with a non-linear lateral TGFs-Sideslip

behavior (test No. 2). The third test shows the performance of our proposal with a

low lateral excitation.

Figure 5.6 – Estimated Longitudinal TGFs, F̂xij , response compared against the actual
measurement given by Kysler dynamometers during test No. 1. Red-Solid line: F̂xij -
Proposal. Black-Pointed line: Fxij - Sensor Measurement

Figure 5.6 portrayed the estimation response with a red-solid line and compared

it against the sensor measurement with a black-dotted line. Observe the existing
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error during the acceleration stage due to uncertainties introduced by the rubber

and the steering system. Remember that the longitudinal and lateral dynamics fo

the front wheels are tightly coupled.

Figure 5.7 – Estimated Lateral TGFs, F̂yij , response compared against a response obtained
using a Dugoff’s tire model and the actual measurement given by Kysler dynamometers
during test No. 1. Red-Solid line: F̂yij - Proposition. Blue-Dashed line: F̂yij - Dugoff’s Tire
model. Black-Pointed line: Fyij - Sensor Measurement

Figure 5.7 depicts our results for lateral TGFs estimation; with a red-solid

line, we present our proposal response; with a black-dotted line, the lateral TGF

transducers data; finally, with a blue-dashed line, the result of a Dugoff’s tire model.

We compute the Dugoff’s tire model using the normal TGFs measurements, Fzij ,

and the sideslip angle measurement, α, to compare against our proposal.

The longitudinal/lateral front-left/right and right-left/right TGFs responses

obtained from test No. 2 are displayed from Figure 5.8 and 5.9, respectively. The

results obtained are accurate, and the estimated variables correspond to those

measured by the sensors; nonetheless, the overall performance is degraded. Notice

that the Dugoff’s tire model performance has also been degraded, see Figure 5.9,

due to nonlinear tire behaviors.
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Figure 5.8 – Estimated Longitudinal TGFs, F̂xij , response compared against the actual
measurement given by Kysler dynamometers during test No. 2. Red-Solid line: F̂xij -
Proposal. Black-Pointed line: Fxij - Sensor Measurement

Figure 5.9 – Estimated Lateral TGFs, F̂yij , response compared against a response obtained
using a Dugoff’s tire model and the actual measurement given by Kysler dynamometers
during test No. 2. Red-Solid line: F̂yij - Proposition. Blue-Dashed line: F̂yij - Dugoff’s Tire
model. Black-Pointed line: Fyij - Sensor Measurement

Finally, the results obtained from test No. 3 are presented in Figures 5.10 and
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5.11. After analyzing the results, we can state that our proposal is more robust and

accurate than those presented in the literature, see [Doumiati et al., 2012, Jiang

et al., 2016, Alatorre et al., 2017]. A remark that should be addressed is that the

proposed scheme does not require the sideslip angle estimation nor a tire model.

Still, the observation scheme remains a closed-loop observer; the later is one of the

main differences between this proposal and [Jiang et al., 2016].

Figure 5.10 – Estimated Longitudinal TGFs, F̂xij , response compared against the actual
measurement given by Kysler dynamometers during test No. 3. Red-Solid line: F̂xij -
Proposal. Black-Pointed line: Fxij - Sensor Measurement
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Figure 5.11 – Estimated Lateral TGFs, F̂yij , response compared against a response obtained
using a Dugoff’s tire model and the actual measurement given by Kysler dynamometers
during test No. 3. Red-Solid line: F̂yij - Proposition. Blue-Dashed line: F̂yij - Dugoff’s Tire
model. Black-Pointed line: Fyij - Sensor Measurement

5.5.3 Results Analysis

Once proposed and validated our algorithm, we have to make a quantitative

assessment addressing the accuracy of our estimation; thus, we define the following

error,

F̃pij := F̂pij − Fpij

where p := x, y, and i, j are already defined.

Figure 5.12 shows the longitudinal and lateral TGFs error distributions obtained

from test No. 1; here, the errors have a normal distribution; this figure also shows

a boxplot of the residual errors. The error function for the longitudinal TGFs has a

standard deviation σx = 250 and a mean value of µx = 29.16 and just 3.14% of the

evaluated data are considered outliers. For the lateral TGFs the standard deviation

is σy = 385, the mean value is µx = −170 and 7.72% of the data are outliers. On

the other hand, the Dugoff’s tire model response has a standard deviation of 531 N,

a mean error of -62 N, and 10% of the data is considered an outlier.
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Figure 5.12 – Up: Distribution of the estimation error for the TGFs during test No. 1. Down:
Boxplot graph obtained from the estimation error for the TGFs during test No. 1.

Similarly, Figure 5.13 shows the error analysis of test No. 2; in this figure, the

error distribution is normal. In this case, the statistical values of the error are: a

standard deviations of σx = 369 N, σy = 1198 N, µx = 49.90 N, µy = −148.39 N,

the data outliers are 6.48 and 7.11% for the x, and y directions, respectively. The

residuals from the Dugoff’s tire model have a standard deviation of σd = 1609, a

mean error of µd = 5.6450, and 16% of the data is considered an outlier, see the

center of Figure 5.15.

Finally, Figure 5.14 displays the error analysis of test No. 3; this figure shows

that the error has normal distribution, and the statistical values of the error are

σx = 165, σy = 326, µx = −44.14, µy = −41.68, the data outliers are 1.56%, 3.52%,

for the x, and y directions, respectively. On the other hand, the right figures of

Figure 5.15 show the residuals from the Dugoff’s tire model, the residuals have a

normal distribution of σd = 409 N, a mean of µd = −67 N, and 4.87% of the data is

considered an outliers; if we analyze particularly the braking phase, the analitycal

resuls are the following: σx = 137 N, µx = −55.01 N, σy = 457 N, µy = 18.67 N and

the data outliers are 1.79%, 0.39% for the x and y directions, respectively. The

statistical error analysis from the Dugoff’s tire model is modified to σd = 640 N,

µd = 143 N, and 4.56% of the data is considered an outlier.

Observe that during the three tests, Dugoff’s tire model response has lower

accuracy levels than our proposal; these results are obtained even when the
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Figure 5.13 – Up: Distribution of the estimation error for the TGFs during test No. 2. Down:
Boxplot graph obtained from the estimation error for the TGFs during test No. 2.

Figure 5.14 – Up: Distribution of the estimation error for the TGFs during test No. 3. Down:
Boxplot graph obtained from the estimation error for the TGFs during test No. 3.
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Figure 5.15 – Up: Distribution of the estimation error for the lateral TGFs using Dugoff’s
tire model. Down: Boxplot graph obtained from the estimation error obtained using Dugoff’s
formulation. Left: test No. 1. Center: test No. 2. Right: test No. 3.

Dugoff’s tire model is fed with the sideslip angle and normal tire-ground forces

measurements.

5.5.4 Mass Sensitivity Analysis

One of the most important parameters for TGFs estimation or control schemes

is the vehicle’s mass. In our scheme, we use the mass, computed by eq. (4.28c),

as input. Thus, it becomes mandatory to analyze how sensitive our proposal is

to miss-calculations of this variable. Thus, is defined m̃ = m − m̂ as the mass’

estimation error. Now, we compute the following cost function

e =
3∑

nm=1

(
1

n

n∞∑
n=1

(∑
i∈A

∑
j∈A

(Ex + Ey)

))
(5.16)

with

Ex =

(
F̂xij − Fxij

)2

max | Fxij |2
; Ey =

(
F̂yij − Fyij

)2

max | Fyij |2

where nm stands for the test number. The observation scheme is feed with different

mass values in the range [-300, 300] kg and the error obtained from computing

(5.16) is show in Figure 5.16.
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Figure 5.16 – Observation Scheme mass’ sensitivity

Figure 5.16 shows the algorithms robustness against mass uncerteinty, the error

defined in (5.16) varies from 0.25 to 0.4 with translates into an increase of 76%.

5.6 Conclusions

This chapter presents the first part of our solution to address the longitudinal and

lateral tire-ground forces state estimation problem.

The first section of this chapter presents state of the art for longitudinal and

lateral tire-ground estimation. The main contributions in the literature are stated,

and our contribution is remarked.

After, during the second section, the observer scheme is built. We started with

two lumped models, an extended Kalman filter for the single-track model, and a

linear Kalman filter for the hoverboard model. A different model for accelerating

and braking is obtained for the single-track model, and both models are fused

using a braking flag. Finally, an extended Kalman filter splits the virtual tire-ground

forces into the tires.

The robustness of our scheme is validated with real-data for maneuvers with

and without tire force saturation. Finally, a sensibility analysis against variations in

the mass is presented.
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6.1 Introduction

In this chapter other approach is taken into account to compute the longitudinal

and lateral tire-ground forces; even though we did not find a single matricial

representation for the x, y, and z axis. Nonetheless, the we think that the results

are good enough to present this contribution.

Section 6.2 presents the background required to develop the estimator for

longitudinal and lateral TGFs. The strategy itself is presented in Section 6.3, the

validation of the TGF computation is presented in Section 6.4. Finally in Section

6.5 the conclusions and perspectives are discussed.

6.2 Preliminaries

6.2.1 Relative Motion

An accelerometer measures the specific forces applied to a specific mass in a sensor.

This particular force is the sensor acceleration minus the gravity field, g. The

acceleration measured by an accelerometer could be expressed using the rotational

speed ω and angular acceleration ω̇ of the vehicle, see [Brunner et al., 2015]:

aI
s −GM

dsE

|| dsE ||3
=aE

B −GM
dBE

|| dBE ||3
+ ω̇BE × dsB + ωBE ×

(
ωBE × dsB

)
+ ωEI ×

(
2
(
vEB + ωBE × dsB

)
+ ωEI × dsI

)
(6.1)

where aI
s is the acceleration at some point of a rigid body, G is the gravitational

constant and M is the mass of the earth, dsE stands for the distance between

point aI
s and the center of the earth, aE

B is the acceleration at a different point of

the same rigid body, but different than aI
s, dBE defines the distance between a

point aE
B and the center of the earth, ω̇BE × dsB + ωBE ×

(
ωBE × dsB

)
represents

the acceleration due to the position difference between point aI
s and aE

B and

ωEI ×
(
2
(
vEB + ωBE × dsB

)
+ ωEI × dsI

)
means the acceleration involved by the

earth rotation. The acceleration given by the rotation of the earth, is really small in

the context of intelligent vehicles, and the distance between the both points and the

center of the earth could be considered equal, the later means that gravity affects

both points equally. After applying the above mentioned consideration gives:

aI
s = aE

B + ω̇BE × dsB + ωBE ×
(
ωBE × dsB

)
(6.2)
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Figure 6.1 – Isometric tire

Specifically, in this section, we aim to compute the acceleration at the ijth tire;

therefore, we consider prior knowledge of the vehicle longitudinal and lateral

accelerations, ax and ay, and the vehicle yaw rate, ψ̇; these measurements are

obtained from an inertial measurement unit; where aI
s =

[
axij ayij azij

]T
is the

tire acceleration vector, aE
B =

[
ax ay az

]T
means the vehicle’s acceleration vector

– or the acceleration vector at the sensor position – ωBE =
[
φ̇ θ̇ ψ̇

]T
defines

the vector of angular rates, ω̇BE =
[
φ̈ θ̈ ψ̈

]T
is the angular acceleration vector,

dsBij
=
[
(−1)1+iLi (−1)1+jEj −h

]T
represents the distance between the sensor

and the ijth tire. Specifically, we require the angular acceleration vector, but there

is no sensor able to provide such measurements; therefore, ω̇ is estimated using an

EKF as in [Brunner et al., 2017].

6.3 Tire Dynamics

At this point, the normal tire-ground forces are available. From the literature, we

could notice that most works use the bicycle model to compute the longitudinal and

lateral TGFs, see [Ray, 1995, Wilkin et al., 2006, Doumiati et al., 2012, Alatorre

et al., 2017]. In some special cases [Rezaeian et al., 2015, Regolin et al., 2017], a

piece of the tire dynamics is used to boost the vehicle model implementations. In

this section, we propose a different approach that takes advantage of the vehicle

dynamics to promote the dynamic tire system by means of local accelerations ai,j,

and equivalent masses.
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6.3.1 Lateral tire-ground force computation

This concept is based on a tire as a system; therefore, we first model the dynamic

behavior of the tire, thus

mijaxij = Fxij − /tauxijreij
mijayij = Fyij

mijazij = Fzij

(6.3)

then, from (6.3) we define our equivalent mass as:

m∗ij =
Fzij
azij

(6.4)

where azij ≈ g. Now for the y-axis we will separate the analysis for front and rear

wheels.

The front and rear wheels analysis is similar; nevertheless, the steering sub-

system introduces some differences between the definitions. The rear tires are

considered to be parallel with the vehicle orientation; thus, the small steering

angles are neglected to simplify our mathematical manipulations; thus,

m2jay2j = Fy2j (6.5)

by introducing the equivalent mass defined in (6.4) into equation (6.5), gives

Fy2j =
Fz2jay2j
az1j

≈
Fz2jay2j

g
(6.6)

and finally, the computation for the rear lateral TGFs is defined by:

Fy2j =
Fz2j
g

(
ay + ω̇xh− ω̇zl2 + ωz(q

1+jejωz − hωy) + ωx(q
1+jejωx − l2ωy)

)
with q = −1. Considering small angles for roll and pitch, we can consider small roll

and pitch rates and accelerations, giving

Fy2j =
Fz2j
g

(
ay − ω̇zl2 + q1+jejω

2
z

)
(6.7)

For the front wheels the approach is similar, nonetheless the effect of the steering

angle is added, thus

Fy1j =
Fz1j
g

(
ay + ω̇xh+ λ̇jl1 + λj(q

1+jejλj − h ∗ ωy) + ωx(q
1+jejωx + l1ωy)

)
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with λj = ωz + δ̇j. And finally

Fy1j =
Fz1j
g

(
ay − λ̇jl1 + q1+jejλ

2
j

)
(6.8)

6.3.2 Longitudinal tire-ground force

In this case the heuristic formula that was develop is the following for the front
tires

Fx1j
= (1+χ)

Fz1j + 1
2

∑
i∈A Fz1j

g

(
ax + q1+jω̇zej − ω̇yh− ωy(q1+jejωx + l1ωy)− ωz(hωx + l1ωz)

)
and the simplified version

Fx1j = (1 + χ)
Fz1j + 1

2

∑
i∈A Fz1j

g

(
ax + q1+jω̇zej − l1ω2

z

)
(6.9)

and for the rear tires

Fx2j = χ
Fz1j + 1

2

∑
i∈A Fz1j

g

(
ax + q1+jω̇zej − l1ω2

z

)
(6.10)

with | χ | a value lower than the unity.

6.4 Experimental Results

In this section, we present the designed experiments to validate our TGFs computa-

tion/estimation scheme. In order to strengthen the advantages of our approach, the

validation is carried out using two different vehicles. On the one hand, a Peugeot

308sw, with a gasoline combustion engine and a front-driven powertrain. On the

other hand, a modified Land Rover Evoque is used to validate our approach; this

vehicle has two in-wheel electric motors at the rear wheels.

6.4.1 Peugeot 308sw

The experimental testbed was already presented in Chapter 1.

Two test were performed; the same as in section 4.4.3.1; recalling those tests,

see Figures 6.2 and 6.3. During the first mission, the road has low friction. Figure

6.2 shows at the upper-right corner with a black-solid line the vehicle speed

measured with a GPS and with a red-dotted line is depicted the average angular

speed obtained from the rear wheels speed sensors. Here we show that the rear

tires were locked during braking due to tire force saturation. Figure 6.3 shows the
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Figure 6.2 – Low friction coefficient mission. Upper-Left: gps measurement x, y coordinates.
Upper-Right: Vehicle velocity –black-solid line –. Rear tires average velocity – red-dotted
line –. Bottom-Left: Longitudinal acceleration. Bottom-Right: Lateral acceleration.

same maneuver at a different road with high friction; analyzing the differences

between missions No.1 and No.2, we could notice that during mission No. 2, the

tires did not reach the saturation operation region during the braking operation.

The lateral TGFs computation results are compared against the Dugoff’s and the

magic tire models; for more information on both approaches, see [Dugoff, 1969]

and [Pacejka and Bakker, 1993], respectively. Using the correvit S400 transducer,

we obtain the vehicle sideslip angle, which is feed to both tire models. Notice that

we have to translate the vehicle speeds (vx, vy), from the correvit position at each

one of the tires using

vij = vc + ω ×Ξij

where vij =
[
vxij vyij vzij

]
means the velocity vector at the ijth tire, vc =[

vxc vyy vzc

]
stands for the velocity at the correvit position and

Ξij =
[
±lij ±eij ±s

]
defines de distances between the tires and the sideslip

transducer position in the longitudinal, lateral, and vertical directions, respectively.

On the one hand, to compute the lateral TGFs, the Dugoff model needs for

its computation prior knowledge on Cσ, Cα, µ, and the normal TGFs, Fzij, see

[Dugoff, 1969]. On the other hand, the magic tire model requires prior knowledge

of variables B, C, D, E, Sh, Sv and Fzij, see [Pacejka and Bakker, 1993]. In both

cases, the normal TGFs and the sideslip angle are used directly from the transducers.

The other parameters are identified using particle swarm optimization (PSO).
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Figure 6.3 – High friction coefficient mission. Upper-Left: gps measurement x, y coordinates.
Upper-Right: Vehicle velocity –black-solid line –. Rear tires average velocity – red-dotted
line –. Bottom-Left: Longitudinal acceleration. Bottom-Right: Lateral acceleration.
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Figure 6.4 – Low Friction Mission. Longitudinal TGFs comparison. Model Fusion Proposal:
red-solid line. Sensor measurement: black-dashed line.
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Figure 6.5 – Low Friction Mission. Lateral TGFs comparison. Mass equivalent method:
red-solid line. Sensor measurement: black-dashed line. Dugoff tire model: blue-dotted line.
Magic Tire Model: pink-dotted line

Figures 6.4 and 6.5 show the response of our proposal during the low friction

test. Figure 6.4 shows the longitudinal response obtained from our proposal with

a red-solid line and compared against the actual longitudinal TGFs with a black-

dotted-dashed line. The proposal delivers an accurate computation of the forces; at

the end of the mission, the rear wheels experimented an error due to the locked

tires at a slow speed below 4 m/s present in Figure 6.2 around the 40 seconds

mark.

Figure 6.5 displays the lateral TGFs comparison. A blue-dotted line is presented

with the Dugoff’s tire model, and with a pink-dotted line is depicted the magic tire

model’s respective responses. Here, we see that it is difficult for the tire models

to deliver a good response for all the tires; the problem appears while translating

the sideslip angle to the actual tire position coherently for all the tires. With our

proposal, those problems disappear, since our algorithm is not dependent on the

sideslip angle, nonetheless for Fy12 at [5,10] seconds time frame, a discrepancy

between the estimated force and the actual force appears; this is explained due

to the low vehicle speed. The force components due to camber, conicity, plysteer,

radial run-out, and lateral run-out are stronger than the force produced due to

vehicle dynamics. These effects are not considered in our proposal; thus, it is not

possible to estimate the TGFs produced purely with those effects.

Figures 6.6-6.7 presents the same responses, but in this case, the tire-ground

friction is high, and we drive two laps. Our approach’s accuracy is again validated,
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Figure 6.6 – High Friction Mission. Longitudinal TGFs comparison. Mass equivalent
method: red-solid line. Sensor measurement: black-dashed line.
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Figure 6.7 – High Friction Mission. Lateral TGFs comparison. Mass equivalent method:
red-solid line. Sensor measurement: black-dashed line. Dugoff tire model: blue-dotted line.
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Figure 6.8 – Mission No. 3. Low Speed lap to Lommel proving ground. Maximum lateral
acceleration, ay about 3 m/s2

and even more, we could see a more significant difference between its response

and the one obtained from the tire models. Notably, in Figure 6.7, between [0, 10]

seconds and [50,60] seconds, our response deviates from the actual force; this

is explained due to the low vehicle speed (less than 5 m/s); at a low rate, the

tire disturbances, such as camber, are more potent than the effects of the moving

vehicle.

6.4.2 Land Rover Evoque

The second experimental testbed is a 2011 Range Rover Evoque; the test is

performed at Lommel proving ground in Belgium under dry conditions. This vehicle

is instrumented with two force transducers at the rear wheels which measures the

forces and torques at the longitudinal, lateral and vertical directions. Additionally, it

is instrumented with an IMU that measures the accelerations and angular rates for

the x, y, and z axis. Two tests are presented here: one lap at low speed and another

at the limit handling speed. Figure 6.8 shows Mission No.3 with the velocity profile

at a maximum speed of 15 m/s; mission No. 4 followed the same route, but, the

velocity profile was scaled showing a maximum speed of 22 m/s, the difference

between mission No. 3 and 4 is that during mission No. 4 the tire experiment

the saturation phenomena. It should be mentioned that a professional driver was

required to conduct these tests.

Figure 6.10 shows the rear tire’s algorithm responses for the longitudinal and
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Figure 6.9 – Mission No. 4. High Speed lap to Lommel proving ground. Maximum lateral
acceleration, ay about 3 m/s2

lateral TGFs during mission No. 3; here, on the one hand for the longitudinal

TGFs exist a region of maximum noise between the 50 and 70 seconds – given

by the longitudinal accelerometer –. On the other hand, for the lateral TGFs, this

figure compares our proposal, the Dugoff, and magic tire models; notice here, the

excellent response of the three computations.

Figure 6.11 shows the rear tire’s algorithm responses for the longitudinal and

lateral TGFs during mission No. 4; here, for the longitudinal TGFs exist a region

of maximum noise between the 30 and 50 seconds – given by the longitudinal

accelerometer –. For the lateral TGFs, this figure compares our proposal, the Dugoff,

and magic tire models; notice here, the inadequate response of the Dugoff and

magic tire models computation. Based on these inadequate responses, given by

the tire models, we conclude, that with this approach, the values Cσ and Cα

for the Dugoff tire model and B, C, D, and E for the magic tire model varies

with the vehicle velocity and the level of lateral excitation. On the contrary, our

approach displays robustness, since algorithm tunning is not required to obtain

similar accuracy.

6.4.3 Estimation Scheme Response Analysis

In order to analyze the estimation performance of our proposal, the following error

is defined

F̃pij := F̂pij − Fpij ;∀p ∈ {x, y}
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Figure 6.10 – Low Speed Mission. Longitudinal and Lateral TGFs comparison for the rear
wheels. Mass equivalent proposal: red-solid line. Sensor measurement: black-dashed line.
Dugoff tire model: blue-dotted line. Magic Tire Model: pink-dotted line

0 50 100 150 200 250

-2000

0

2000

0 50 100 150 200 250

-2000

0

2000

0 50 100 150 200 250
-5000

0

5000

10000

0 50 100 150 200 250
-10000

-5000

0

5000

Time (s)

Figure 6.11 – High Speed Mission. Longitudinal and Lateral TGFs comparison for the rear
wheels. Mass equivalent proposal: red-solid line. Sensor measurement: black-dashed line.
Dugoff tire model: blue-dotted line. Magic Tire Model: pink-dotted line
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Figure 6.12 – Mission No. 1 Lateral TGFs comparison. Analysis made using our proposal,
the Dugoff’s model and magic tire model. Up: Distribution of the estimation error. Down:
Boxplot graph obtained from the estimation error for the TGFs.

also the responses of each tire are concatenated to its further analyze. The index

selected to analyze the performance of our proposal are the mean error, µp, the

standard deviation of the error, σp, the maximum absolute error, max
(
| F̃pij |

)
, and

the percentage of outliers.

Table 6.1 shows the response analysis for the longitudinal TGFs during the

four missions. This result’s primary concern is the high value for the absolute

error, which could be explained due to the high convergence time required by

the observer to follow high excitation inputs (accelerating, braking). Nonetheless,

observe that the standard deviation remains small.

Table 6.2 presents a comparison between the response obtained with our

proposal (P) against the Dugoff’s (D) and magic tire (M) models. Notice that

our results are better for the most important parameters (σy, max
(
| F̃yij |

)
) in all

Table 6.1 – Longitudinal TGFs error response analysis

µx σx max(| F̃xij |) outliers
Mission (N) (N) (N) (%)
No. 1 48 375 5191 15.26
No. 2 45 299 3213 14.44
No. 3 -7.9 145 2809 1.81
No. 4 39 186 2953 1.73
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Figure 6.13 – Mission No. 2 Lateral TGFs comparison. Analysis made using our proposal,
the Dugoff’s model and magic tire model. Up: Distribution of the estimation error. Down:
Boxplot graph obtained from the estimation error for the TGFs.

Figure 6.14 – Mission No. 3 Lateral TGFs comparison. Analysis made using our proposal,
the Dugoff’s model and magic tire model. Up: Distribution of the estimation error. Down:
Boxplot graph obtained from the estimation error for the TGFs.
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Table 6.2 – Lateral TGFs error response analysis

µy σy max(| F̃yij |) outliers
(P/D/M) (P/D/M) (P/D/M) (P/D/M)

Mission (N) (N) (N) (%)
No. 1 -64/-146/-214 436/543/472 2949/5084/5445 6.06/7.19/6.56
No. 2 -92/-91/-128 570/595/814 3501/5506/4739 12.36/11.27/12.9
No. 3 -108/-82/-63 243/681/634 3053/4860/5647 2.17/4.95/1.23
No. 4 -194/-115/-67 744/1415/1480 4215/5239/5505 0.52/0.49/0.27

Figure 6.15 – Mission No. 1 Lateral TGFs comparison. Analysis made using our proposal,
the Dugoff’s model and magic tire model. Up: Distribution of the estimation error. Down:
Boxplot graph obtained from the estimation error for the TGFs.

missions by a significant margin that means that our results are more accurate and

at high speed as in mission No. 4 the results given with our proposal overthrow the

Dugoff’s or the magic tire responses.

On the other hand, Figures 6.12-6.15, display the response comparison between

our proposal, the Dugoff, and the magic tire models for mission No. 1 through

No. 4, respectively. The numbers presented in Table 6.2 are more precise, and the

improvement obtained from the proposed approach could be verified with ease. In

all cases, the resulting boxplot is more compact with smaller outliers and quartiles.

Notice in Figure 6.15, that the values considered outliers from our proposal would

not have this tag with the Dugoff or the magic tire formulations.
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6.5 Conclusions

This chapter presents a novel longitudinal and lateral TGFs approach; this model

computes the TGFs without requiring a tire model or vehicle model.

The model is obtained directly from the tire representation and the use of

equivalent masses and local accelerations. This method follows the simple Newton

laws of motion and does not require the sideslip angle to compute the TGFs.

The algorithm is validated with experimental data, and the method’s robustness

is tested for variation in friction and tire operation region. The saturation is

taken into account intensely since the acceleration is the force’s product and

not backward.

The results tell us that this approach is more robust and accurate than other

methods found in the literature.
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7.1 Introduction

This chapter includes some applications that could consist of estimating the

tire-ground forces or even the parameter estimation. Here two applications are

presented first, the road profile estimation and later the control of an active

suspension system to improve passenger comfort. Even though we give two

applications, many systems will significantly improve their performance, i.e., the

braking system, optimal controllers to improve energy efficiency, and electronic

stability controllers.

7.2 Road Profile Estimation

In later years, active or semi-active suspension systems have been introduced and

integrated into intelligent vehicles with the Advanced Driver Assistance System.

These suspensions modify the mechanical properties using actuators that actively

move the vehicle chassis through the vertical direction (active suspension) or

using a magnetorheological damper (semi-active suspension) modifies the system

response by varying the actual damping in the system. The correct behavior of this

system can improve the maneuverability, comfort, and stability of the vehicle.

In the literature, most of the approaches to control the suspension system

considers complete knowledge of the state; just a few works have addressed the

state estimation problem in the close loop control scheme, see [Pletschen and Badur,

2014, Wang et al., 2017]. This work’s scope is the estimation problem, including

the suspension states, the unknown inputs, and the load transfer that actively

affect the ride comfort and safety. Suspension state estimation is an arduous task;

the introduction of unknown inputs such as road profile, transfer load, the use of

equivalent parameters that can vary according to the system state, among others,

increases the problem’s complexity. The road profile is one of the most important

variables that determine the dynamic suspension performance. Knowledge of the

road profile is essential for vehicle dynamics and active controllers, see [Chokor

et al., 2016, Shin et al., 2014, Savaresi et al., 2010a, Gillespie, 1992, Sayers and

Karamihas, 1998, Bastow et al., 2004, ElMadany and Abduljabbar, 1999]. Road

profile and accurate state estimation provides useful information to design active

controllers and improve passenger’s safety and comfort. Nowadays, there is no

low-cost sensor able to measure the road irregularities; thus, developing a virtual

sensor to reconstruct the road profile is of great importance. There are methods

to measure road profiles by doing visual inspections as in [Kim et al., 2002],

and recently Mercedes-Benz introduced stereo cameras to perform this operation.
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However, these approaches are sensitive to weather and light conditions, without

mentioning the computational burden required to perform its computation. In

[Doumiati et al., 2011], a quarter-car representation is proposed to estimate the

road profile using a Kalman filter. In [Doumiati et al., 2017], the road profile

estimation is performed by an adaptive Youla-Kuc̆era parameterization technique.

In [Imine et al., 2005], estimation techniques based on sliding mode observers are

proposed.

This work’s main contribution consists of the development of an embedded

estimation algorithm to estimate not only the road profile but the suspension states,

and the load transfer as well, using a single observer structure. The quarter-car

model is boosted using the vehicle dynamics so that an approximation for the road

profile time derivative is defined. The estimation procedure is validated with a high

order vehicle model using a professional automotive simulator OKTAL-SCANeR

studio-Callas, and the primary vehicle dynamics considerations that empower

SCANeR suspension model are validated using experimental data from our testbed.

The most known vehicle suspension model is the quarter-car model,

msij z̈sij =− ksij(zsij − zusij)− csij(żsij − żusij)

musij z̈usij =ksij(zsij − zusij) + csij(żsij − żusij)− ktij(zusij − zrij)− ctij(żusij − żrij)
(7.1)

Front Axle

Rear Axle

Figure 7.1 – Coupled Corner Suspension Model

The quarter-car model defined in equation set (7.1) is a linear model that

neglects the interaction between vehicle corners. According to [Kim and Ro, 2000],

this simple two-mass model misrepresents the suspension dynamics; In [Kim and
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Ro, 2000], a 32 order linear model based on ADAMS is introduced. Nonetheless,

designing an observer/controller for a system of such dimension is inconceivable;

besides, this 32-order model requires variables that are only available through

simulation. The quarter-car model is not enough to estimate the vehicle mass; thus,

a coupled-corner representation is proposed in Figure 7.1. Thus, from Figure 7.1,

and to comply with the conservation of angular momentum law, the coupled-corner

model is modified as:

msij z̈sij =−
∑
α∈A

∑
β∈A

(ksijαβ(zsαβ − zusαβ) + csijαβ(żsαβ − żusαβ))

musij z̈usij =
∑
α∈A

∑
β∈A

(ksijαβ(zsαβ − zusαβ) + csijαβ(żsαβ − żusαβ))

−
∑
α∈A

∑
β∈A

(ktijαβ(zusαβ − zrαβ) + ctijαβ(żusαβ − żrαβ))

(7.2)

where suffixes α, β ∈ A represents the suspension spring stiffness given by the

interaction between corners – i.e., ks1111 means the spring stiffness for the front-left

wheel and ks1112 signify the stiffness related to the dynamics between the front-right

and front-left wheel. Thus, after an insightful analysis, the load transfer is defined

as:

ΞFzij =
∑
α∈A

∑
β∈A

(ktijαβ(zusαβ − zrαβ) + ctijαβ(żusαβ − żrαβ))

Then, assuming a plane road (zr = żr = 0) and the vehicle at a steady condition

(az = ax = ay = 0); the initial normal force condition is obtained from (7.2), and

defined:

Fzij(0) =
∑
α∈A

∑
β∈A

(ksαβ · (hsαβ − lsαβ)) +musij · g (7.3)

where hsαβ = zsαβ − zusαβ, lsαβ means the nominal elongation of the αβth spring.

Notice that, musij is a design known variable. The only fluctuating mass is at the

chassis, msij and msij ≈ Fzij(0)/g. The variables that defines the center of gravity

position E1, L1, could be easily identified given the vehicle’s weight distribution.

E1 and L1 are defined in later sections of the paper.

7.2.1 Observer Design and Analysis

This section presents an analysis of the system uncertainty and observer design.

First, as mentioned in the last section, the quarter car model has its flaws; however,

its accuracy-simplicity trade-off is higher than the coupled-corner model. In the
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Figure 7.2 – Up-left: Suspension deflection against spring force at the suspension. Up-right: Tire deflection against the
spring force at the tire. Down-left: Suspension deflection speed against the damping force at the suspension. Down-right:
Tire deflection speed against the damping force at the tire.

previous section, the coupled corner model helps to compute the system’s mass and

the COG position.

The quarter-car model allows studying a vehicle’s vertical behavior according

to its suspension type (passive or controlled). However, the road profile, zr, is

an unknown input that results in undesired vibrations if it is not considered at

the controller design stage. These vibrations affect vehicle stability and reduce

passengers’ comfort. Thus, it is crucial to provide the road profile for its inclusion

into the closed-loop controller strategy to profit from a semi-active or active

suspension fully.

Figure 7.2 shows in red-solid line the actual force produced at the suspension

spring and dampers (left figures) and the actual force produced by the tire

represented by a series of springs and dampers (right figures). Also, displays

with black circles the linear approximation of such forces using the equivalent

parameters (ks, cs, kt and ct). Notice that this linear approximation lacks accuracy

at the edges of the graphs. Moreover, the presence of such uncertainties increases

the estimation problem complexity.

To overcome these uncertainties, we choose to develop a closed-loop stochastic

observer. Then, let us consider a general nonlinear suspension model:

żij = f(t, zij, zrij)

y = h(t, zij, zrij)
(7.4)
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Thus, from (7.4) is possible to obtain the state-space representation

ẋ = Ax + d(t,x)

y = Cx + g(t,x)
(7.5)

where xT =
[

zij
T zrij

T ∆Fzij

]
with errors d(t,x) = f(t,x)−Ax and g(t,x) =

h(t,x) − Cx bounded by the L2-norm || d(t,x) ||2≤ M1 < ∞, and || g(t,x) ||2≤
M2 < ∞. Matrices M1 and M2 are composed of elements in positive real space,

R+, and M1 > 0, M2 > 0. With zij
T = [zsij, żzij, zusij, żusij], zTrij = [zrij, żrij]. Also

the following property holds

|| d(t,x) ||2= Q(t,x) ≤ Qmax ∼ N (0, σd)

|| g(t,x) ||2= R(t,x) ≤ Rmax ∼ N (0, σg)

where Qmax and Rmax are the covariance process and the output noise matrices,

respectively. The elements of matrix A ∈ R7×7 and C ∈ R4×7 are defined in the

following subsections.

7.2.1.1 Sprung mass height at the inertial frame

The body attitude with respect to the inertial frame could be estimated using an

inertial measurement unit. Then, if we translate the vertical velocity of the vehicle

to each one of the tires, gives:

vzij = vzcog ± Liθ̇ ± Ejφ̇ (7.6)

where vzij means the vertical speed at the ijth corner, vzcog is the vertical speed at

the center of gravity, Li means the smallest distance between the COG and the front

or rear axle, respectively. The variable θ̇ means the pitch angular rate measured by

an IMU. Ei stands for the distance in the y − body plane between the tire and the

COG, and finally, φ̇ represents the angular roll rate given by the IMU. The ground

vehicle is a non-holonomic system, thus, it is correct to consider vzij = vzcog ± żij.
Then, from (7.6), gives

żsij = ±Liθ̇ ± Ejφ̇ (7.7)

finally, integrating (7.7) it comes

zsij = ±Liθ ± Ejφ (7.8)
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The decision for using eq. (7.7) or (7.8) in our observation scheme depends entirely

on the IMU’s quality. It is necessary to avoid bias in the estimations due to high

noise within the gyroscopes measurements; however, we prefer to use (7.8) because

of an increase in the system observability index.

7.2.2 Sprung mass height at the body frame

The roll dynamics at the vehicle body frame could be modeled as a second-order

system as

Iφφ̈v =− kφφv − cφφ̇v − γyay
φv(s)

ay(s)
=

γy
Iφs2 + cφs+ kφ

(7.9)

The pitch body dynamics model is nonlinear; the approximation is a third-order

polynomial. Thus,

Iθθ̈v = fθ(θv, θ̇v, ax) (7.10)

we are able to compute φv, φ̇v, θv and θ̇v using (7.9) and (7.10). Finally, applying

the same concept as in (7.7), we get the following set

żij − żrij =± Liθ̇v ± Ejφ̇v
zij − zrij =± Liθv ± Ejφv

(7.11)

7.2.3 Normal Tire-Ground forces obtained from vehicle dynam-

ics

The vertical vehicle dynamics affect the suspension system. In this subsection are

two representations of a vehicle, presented in Chapter 2, the bicycle and hoverboard

models. Eventually, using both models is possible to obtain the normal TGFs, as

depicted in 4. Thus, normal TGFs are defined as:

F̂zij =
1

gel

(
eicljcmg

2 + qj
c

hlicmgāy + qihejcmgāx − qiqjh2māyāx
)

(7.12)

with q = −1 and c stands for the complement operator, (i.e i = 2 ∈ A := {1, 2},
then, ic = 1). Then,

∆Fzij = Fzij − (ms +mus) g (7.13)
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From the quarter-car model is possible to obtain the load transfer, then from (7.1)

analogously to (7.3), the load transfer is redefined as:

∆Fzij = ktij (zuij − zrij) + ctij (żuij − żrij) (7.14)

Hence, from (7.14) and considering prior knowledge of the load transfer given by

(7.13) is possible to obtain,

żrij =
ktij
ctij

(zuij − zrij) + żuij −
1

ctij
∆F̂zij (7.15)

Equation (7.15) approximates the road irregularities time derivative, obtained by

the mixture between the suspension and vehicle dynamic models.

As mentioned earlier, the suspension model (7.5) is not perfect, and to overcome

the mentioned uncertainties, we develop an observer based on the Kalman filter

technique in the next section.

7.2.4 Kalman filter implementation

Let us consider the models presented in the previous section in a discrete state-space

form, as follows:

xk = Ākxk−1 + w̄k

yk = Ckxk + v̄k
(7.16)

with xk as defined in equation (7.5), Ā = I+A∗ ts, I is an identity matrix, I ∈ R7×7,

ts defines the sampling period of the discrete system. Also here w̄k is the system
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uncertainty, and v̄k represents the measurement noise and uncertainty.

A =

[
Ω4×4 B4×2 05×1

Θ3×4 Φ3×2 J2×1

]
; C =

[
L4×4 M4×3

01×6 11×1

]

Ω =


0 1 0 0

−m−1
s ks −m−1

s cd m−1
s ks m−1

s cd

0 0 0 1

m−1
us ks m−1

us cd −m−1
us (ks + kt) −m−1

us (cd + ct)


B =

[
0 0 0 m−1

s kt

0 0 0 m−1
us ct

]T
; J =

[
−c−1

t

1

]

Θ =

 0 0 0 0

0 0 ktc
−1
t 1

0 0 0 0

 ; Φ =

 0 1

−ktc−1
t 0

0 0



L =


1 0 −1 0

0 1 0 −1

1 0 0 0

1 0 0 0

 ; M =


0 0 0

0 0 0

0 0 0

−1 0 0


with 0m×n ∈ Rm×n as a matrix full of zeros with adequate dimensions. Figure

7.3 shows the overall observation scheme, with the inputs required to obtain the

complete suspension state, and its road profile.

Figure 7.3 – Overall observation scheme
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7.2.5 Simulation Results

In this section, a set of simulations are performed to validate the proposed scheme

using automotive simulation environment OKTAL-SCANeRstudio with a high order

vehicle dynamic model Callas. The system response is directly obtained from the

simulator, and the observer is implemented using a Matlab script. Two maneuvers

where carried out: 1) The first one was to follow a straight line at a constant speed

with a road profile defined as zr = 0.1 · sin
(

1
7
· 2 · π · xpos

)
where xpos means the

longitudinal vehicle position within the trajectory. The road profile zr, in this case,

has a sinusoidal periodicity every 7 meters. A set of 5 missions were performed at

10, 15, 20, 25, and 30 kph. 2) The second maneuver is a slalom. A set of 10 slaloms

are performed at different speeds from 50 to 100 kph in a flat road.

7.2.6 Observation schemes performance

There are other approaches able to compute the road profile. A classic approach is

to consider the road profile time derivative as a random walk variable (żrij = 0).

Table 7.1 shows a comparison between the mean square error of our contribution

and the classical observer considering żrij = 0. The matrices R and Q for the

Kalman filter are selected after an optimization process known as PSO. Thus, both

approaches (proposal and random walk definition) have the best possible choice

for R and Q matrices. Notice that our proposal delivers an improved performance

according to the mean square error results in most cases.

In Table 7.2, the mean estimation errors and the standard deviation of the

estimation errors for each one of the test are presented. Figure 7.4, shows the road

profile estimation response with a red-solid line and with black dots the actual road.

Table 7.2 shows that the maximum standard deviation for z̃sij := zsij − ẑsij is 1.5

centimeters, from now on the symbol ·̃ means an error and the symbol ·̂ represents

an estimation, for z̃uij is 1.7 centimeters and for the standard deviation of the road

profile error, z̃rij, is 1.8 centimeters. The main difference between our proposal

and the random walk approach relies upon the slalom stage since the random walk

consideration, żr = 0, is, on the one hand, unconstrained and the filter is not able to

differentiate between noise or model uncertainty. The measured input, zsij − zusij,
has the same order of magnitude for both maneuvers; nonetheless, the road profile

is equal to zero for all the slalom maneuvers. On the other hand, in our proposal

żrij is constrained by equation (7.15).

Figure 7.5, shows the ẑsij response of our observer with a red-solid line, while

depicts the actual zsij using black dots. Notice that the estimation error requires

time to adjust and converge to zero.
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Table 7.1 – Comparison between the proposal presented in this work and the known
random walk technique

MSE
Approach z̃sij ˙̃zsij z̃uij ˙̃zsij w̃sij ˙̃wsij

V. Dyn. 0.0001 0.0239 0.0001 0.0239 0.0002 0.0977
R. Walk 0.0002 0.0249 0.0002 0.0249 0.0003 0.0835
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Figure 7.4 – Road profile estimation, ẑrij against the actual road profile, zrij . The first 134 seconds the vehicle
speed is 10 km/h, from 134 to 222 seconds the velocity is 15 km/h, from 222 to 289 s. v = 20 km/h, from 289 to 342
s. the vehicle speed is 25 km/h, from 340 to 386 s. the velocity is 30 km/h. Until second 386 the road is described by
zr = 0.1 · sin

(
1
7
· 2 · π · xpos

)
where xpos. From 386 to 480 seconds, the road profile is zero and the vehicle is performing

the slalom maneuvers at different speeds from 50 to 100 km/h.
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Figure 7.5 – ẑsij response compared against zsij for the mission at 10 km/h speed with a
standard deviation of 1.5 cm
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Table 7.2 – Error analysis: Withing the first five tests the road is described by zr =
0.1 · sin

(
1
7 · 2 · π · xpos

)
. The others zr = 0

vx µz̃s / σz̃s µ ˙̃zs
/ σ ˙̃zs

µz̃us / σz̃us µ ˙̃zus
/ σ ˙̃zus

µz̃r / σz̃r µ ˙̃zr
/ σ ˙̃zr

km/h m m/s m m/s m m/s

10 0.0024 / 0.0153 0.0002 / 0.1666 0.0023 / 0.0169 0.0002 / 0.1666 0.0023 / 0.0178 0.0004 / 0.2098
15 0.0033 / 0.0084 0.0004 / 0.1808 0.0017 / 0.0093 0.0004 / 0.1808 0.0024 / 0.0122 0.0013 / 0.2935
20 0.0050 / 0.0069 0.0014 / 0.1813 0.0000 / 0.0054 0.0014 / 0.1813 0.0025 / 0.0091 0.0025 / 0.3782
25 0.0054 / 0.0088 0.0025 / 0.1629 -0.0028 / 0.0059 0.0025 / 0.1629 0.0024 / 0.0091 -0.0016 / 0.4593
30 -0.0026 / 0.0100 0.0005 / 0.1295 -0.0021 / 0.0075 0.0005 / 0.1295 0.0014 / 0.0112 -0.0213 / 0.5282
50 0.0040 / 0.0035 -0.0007 / 0.0244 0.0008 / 0.0034 -0.0007 / 0.0244 0.0028 / 0.0022 -0.0003 / 0.0408
60 0.0037 / 0.0049 -0.0003 / 0.0428 -0.0008 / 0.0049 -0.0003 / 0.0428 0.0027 / 0.0028 -0.0033 / 0.0514
65 0.0035 / 0.0059 0.0003 / 0.0565 -0.0016 / 0.0061 0.0003 / 0.0565 0.0027 / 0.0032 -0.0037 / 0.0578
70 0.0020 / 0.0070 -0.0000 / 0.0821 -0.0031 / 0.0070 -0.0000 / 0.0821 0.0025 / 0.0035 -0.0073 / 0.0617
75 0.0017 / 0.0070 0.0007 / 0.0842 -0.0033 / 0.0069 0.0007 / 0.0842 0.0025 / 0.0034 -0.0082 / 0.0613
80 0.0008 / 0.0069 0.0003 / 0.0877 -0.0039 / 0.0065 0.0003 / 0.0877 0.0022 / 0.0033 -0.0114 / 0.0589
85 0.0005 / 0.0067 0.0000 / 0.0898 -0.0043 / 0.0062 0.0000 / 0.0898 0.0021 / 0.0032 -0.0125 / 0.0562
90 0.0003 / 0.0065 -0.0005 / 0.0915 -0.0044 / 0.0059 -0.0005 / 0.0915 0.0020 / 0.0031 -0.0127 / 0.0542
95 0.0004 / 0.0064 0.0002 / 0.0931 -0.0044 / 0.0059 0.0002 / 0.0931 0.0020 / 0.0030 -0.0116 / 0.0527

100 0.0002 / 0.0064 0.0008 / 0.0963 -0.0046 / 0.0058 0.0008 / 0.0963 0.0017 / 0.0029 -0.0124 / 0.0520

7.3 Active suspension control

The driver comfort, JD, and road holding, JR, performances criteria are defined as

JD =

∫ 12

0

zs
zr(ωj)

dω; JR =

∫ 20

10

z̈s
zr(ωj)

dω (7.17)

As mentioned before, both criteria can not be optimized at the same time, and,

according to [Savaresi et al., 2010b] and [Sename et al., 2013], the maximum

effect of the road profile on driver’s comfort and road holding are in the closed

frequency domains from [0 Hz, 12 Hz] and [10 Hz, 20 Hz], respectively. The latter

means that even though JD and JR have a trade-off relationship, they could be

optimized both at different frequencies and, this way, obtained the best possible

performance from our closed-loop system.

Another aspect in this work to take into account is the fact that state variables z

defined in equation (7.4), and the road profile, ẑr, are not directly available for its

use in the control design, however, estimation of these variables is developed in the

last section and now are available and ready to be implemented into the controller.

The motivation behind using robust controllers is to deal with non-modeled or

non-measured disturbances as zr, but besides, we want to avoid the uncertainty

introduced by these variables. In this section, an MPC and linear quadratic regulator

(LQR) designs are proposed and compared to be implemented on the system (7.4),

since this type of scheme is used several domains of technology, see [Garcia et al.,

1989, Qin and Badgwell, 2003, Bemporad and Morari, 1999].
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7.3.1 Model predictive control

Model predictive control is an advanced control methodology that can optimize

closed-loop performance subject to operating constraints on input and output

variables. Lately, MPC has gathered plenty of attention from researchers because the

controllers can handle multi-variate control problems as if it was a single variable

problem; it also addresses actuator limitations, leading to optimal operation.

Let us consider the following discrete, linear time-invariant system:

x(t+ 1) =Ax(t) + Bu(t)

y(t) =Cx(t) + Du(t)
(7.18)

with A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p constant matrices, and pair of

matrices (A,B) are stabilizable.

Also lets consider a cost function

J(x,u) =
N−1∑
j=0

Jt(xj,uj) + JN(xN ,uN) (7.19)

where

Jt(xj,uj) =
1

2
|| xj ||2Q +

1

2
|| uj ||2R; ∀j ∈ {0, 1, ..., N − 1}

is the quadratic cost, with weight matrices Q ∈ Rn×n > 0 and R ∈ Rp×p > 0; and a

terminal cost defined by

JN(xN ,uN) =
1

2
|| xN ||2P

where P is the weight on terminal state.

Rewriting the cost junction (7.19) in matricial form, gives:

J(x,u) =
1

2
XT Q̂X +

1

2
UT R̂U (7.20)
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where

X =


x(t)

x(t+ 1)

. . .

x(t+N − 1)

x(t+N)

 ; Q̂ =



Q 0 . . . 0 0

0 Q . . . 0 0
... . . . ...

0 0 . . . Q 0

0 0 . . . 0 P



U =


u(t)

u(t+ 1)

. . .

u(t+N − 2)

u(t+N − 1)

 ; R̂ =


R 0 . . . 0

0 R . . . 0
... . . . ...

0 0 . . . R


Developing (7.20), gives

J(x,u) =
1

2
[ANX0 + BNU]T Q̂ [ANX0 + BNU] +

1

2
UT R̂U

=
1

2
U
(
BT
NQ̂BN + R̂

)
U +

(
XT

0 AT
NQ̂BN

)T
U +

1

2
XT

0 AT
NQ̂AX0

Model predictive control finds a controller u such that the cost function (7.20) is

minimized. Particularly, if the system has some constraints or even the actuator

is saturated, it requires an iterative optimization method, such as the inner-

point method, to solve the quadratic programming problem. If the system has

no constraints, the analytical solution could be applied, therefore,

OUJ(x,u) =
(
BT
NQ̂BN + R̂

)
U +

(
XT

0 AT
NQ̂BN

)T
(7.21)

and finally:

U = −
(
BT
NQ̂BN + R̂

)−1 (
XT

0 AT
NQ̂BN

)T
(7.22)

7.3.2 Linear quadratic regulator

A set of linear differential equations describes the system dynamics, and the cost is

characterized by a quadratic function called the linear quadratic (LQ) problem. One

of the main results, in theory, is that the solution is provided by the linear–quadratic

regulator, a feedback controller whose equations are given below. The LQR is

an integral part of the LQG (linear–quadratic–Gaussian) problem. Like the LQR

problem itself, the LQG problem is one of the most basic controls theory problems.
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7.3.2.1 Finite-Horizon, discrete-time LQR

Let us consider the following discrete, linear time-invariant system:

x(t+ 1) =Ax(t) + Bu(t)

y(t) =Cx(t) + Du(t)
(7.23)

with A ∈ Rn×n, B ∈ Rn×p, C ∈ Rq×n and D ∈ Rq×p constant matrices, and pair of

matrices (A,B) are stabilizable, and consider the cost function (7.20), thus:

J(x,u) =
1

2
XT Q̂X +

1

2
UT R̂U

the optimal control minimizing the performance index is given by:

u(t) = −K(t)x(t)

where

K(t) =
(
R̂ + BTP(t+ 1)B

)−1 (
BTP(t+ 1)A

)
and P(t) is found iteratively in time by solving the dynamic Riccati equation

P(t− 1) = ATP(t)A−
(
ATP(t)B

)((
R̂ + BTP(t+ 1)B

)−1 (
BTP(t+ 1)A

))
+ Q

7.3.3 MPC with known disturbances

Let us consider the following discrete, linear time-invariant system:

z(t+ 1) =Az(t) + Bu(t) + Dzr(t)

y(t) =Cz(t)
(7.24)

with A ∈ R4×4, B ∈ R4×1, C ∈ R2×n and D ∈ R4×1 constant matrices, and pair of

matrices (A,B) are stabilizable, and consider the cost function (7.20), thus:

J(z,u) =
1

2
ZT Q̂Z +

1

2
UT R̂U

following the same procedure as in the MPC section we have:

U = −
(
BT
NQ̂BN + R̂

)−1 (
ZT

0 AT
NQ̂BN + ZT

r DT
NQ̂BN

)T
(7.25)
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Figure 7.6 – Closed loop quarter car system with load transfer and road profile disturbance
and MPC with observation scheme for the load transfer and road profile.

7.3.4 Simulation results

It should be mentioned that a difference arises when the controllers for a front or a

rear-wheel are compared; however, the design procedure and control structure is

the same in both cases. The difference lies in the assumptions made. The suspension

system at the front tire presented in this work has no means to estimate the road

profile ahead since the sensors used to design the observer scheme cannot predict

the future. The method to estimate the road profile is based on system dynamics,

and the excitation exerted from the road to the quarter-car model. There are

other approaches with which it is possible to estimate the road beforehand; these

approaches use vision systems to predict the road profile before the system be

exited by it. We do not implement the later in our proposal; thus, to solve this

dilemma (road profile prediction), the controller for a front-wheel will assume

low-frequency disturbances z̄r, such that the following assumption is considered

truth

z̄rk =
[
zrk zrk · · · zrk

]T
∈ Rn

For the rear wheels suspension systems, the control law remains as presented in

the MPC or the LQR subsections, and the receding horizon should be selected

depending on vehicle velocity and defined as

n =
L

Tsvx

with Ts as the sampling period, and vx represents the longitudinal velocity. A block

diagram of the control scheme is presented in Figure 7.6

We aim to improve vehicle comfort; in the literature, it could be found the
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Figure 7.7 – Vehicles for different purposes: Competition and daily life
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Figure 7.8 – Vehicles for different purposes: Competition and daily life
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Figure 7.9 – Control input comparison between the four closed loop systems

comfort criteria JR; thus, the controllers applied are trying to minimize the comfort

cost function by reducing the controllable state zs. This section compares an LQR

controller, MPC with and without knowledge of the disturbance, and a passive

suspension system with no actuators.

Therefore, on the one hand in Figure 7.7(a), the chassis displacement is depicted,

on black-solid line, the closed-loop system with an LQR controller is presented, in

pink-dashed line, the passive system response is portrayed, in blue-dotted-dashed

line, the closed-loop system with an MPC design without prior knowledge on

disturbances. Finally, in red -dotted line, the closed-loop implementation using

MPC is displayed. Observe that in Figures 7.7(a) and 7.7(b), the improvement

of closed-loop performance with the proposed controller is easily noticeable, also

while the transfer load affects the system from seconds 25 to 80, the performance

is greatly improved compared with all other formulations.

On the other hand, in Figure 7.8(a) and 7.8(b), the unsprung mass displacement

and its derivate responses are presented; observe here a similar behavior between

the four controllers; this could be predicted in advance since the controllers are

configured to optimize the road comfort criterion, ignoring this way the road

holding criterion. Here is shown that the road-holding performance would be at

least as good as with a passive suspension system.

Finally, in Figure 7.9, the controller’s response is portrayed; in the red-dotted

line, the controller proposed uses more energy to overcome the road disturbances

zr, because they are included on the control design. The LQR controller and MPC

designs react to the disruption and could not achieve a better response.
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7.4 Conclusions and perspectives

A vehicle dynamics control methodology is presented to optimize the ride char-

acteristics of automobiles equipped with active suspension. The method is based

on the MPC algorithm designed, taking into account the road profile. The sensors

used to perform such estimations are longitudinal, lateral accelerometers, and

suspension deflection sensors available in most recent vehicle models. The proposal

is validated through emulating real experimental data into simulations with a

comparison between different control schemes. Future work will address the

prediction of the load transfer by including the gas and steering vehicle inputs

and the actuator dynamic model’s inclusion. The main goal of this research is the

real-time implementation of an experimental testbed.





Chapter 8

Conclusions and Perspectives

Conclusions

This thesis presents a series of strategies to estimate vehicle dynamics. The goal

of this work is to develop an observation strategy that can be applied to mass-

produced vehicles. The idea of having an algorithm in a mass-produced car comes

up with a large number of challenges; the ones that we consider in this work are

robustness and cost.

We have proposed models and observer strategies that can cope with high

and low excitation levels to tackle robustness. We have validated the algorithm

robustness with many tests, from small tracks at low speed to ISO double lane-

change maneuvers. Our algorithms have been re-worked several times to achieve a

degree of accuracy that can be useful for integrating into ADAS.

We have also proposed observer strategies that allow this degree of robustness

while maintaining a low-cost sensor grid. The future work will have to address

eliminating the use of deflection sensors and still maintaining a closed-loop observer

strategy to compute the vehicle’s mass and the COG—the integration of environ-

mental sensing devices as the camera to improve state variables and parameters

estimation.

Chapter 3 deals with the estimation of the lateral and longitudinal speed;

these variables are essential for good feedback for stabilization and cruise speed

controllers. Our proposal uses as base a kinematic model to avoid using parameters

related to mass into our model; this is possible since our sensor grid includes

accelerometers and gyroscopes. One of the main contributions in this section is

compensating the gravity; a quaternion differential equation defines our system’s

attitude. More than 100 tests validate the algorithm’s robustness, and we obtain

consistent results in all of them.

Chapter 4 tackles the estimation of the normal tire-ground force estimation.

This variable is, in our opinion, the most difficult one to estimate since the sensor

grid of mass-produced vehicles does not contain many sensors that measure vertical

181
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dynamics. In this section, we have to scope our solution to mass-produced vehicles

with improved suspension systems, including deflection sensors. With those sensors

in place, we can estimate the mass, the mass distribution, and the center of gravity

and forward the normal tire-ground force estimation.

Chapter 5 and 6 presents our estimation strategies for the longitudinal and

lateral tire-ground forces. The first method uses the known single-track and

hoverboard models and Kalman filters to estimate the TGFs, and further models

are introduced to split such forces to the adequate tire. This method has to deal

with tire saturation, to separate the virtual TGFs properly. The second method uses

the Newton laws of motion; here, we compute the local accelerations using a rigid

body’s acceleration and rotations. Considering that we already know the normal

TGFs at each tire, we can calculate the lateral and longitudinal TGFs with great

accuracy. The latter method is more accurate and robust than the first method, and

further research should be directed towards improving the mass estimation using

gravity.

Chapter 7 shows a small result that uses the estimated state to improve on first

hand the road profile estimation and later the comfort and road holding of an

automobile with active suspension.



Appendix A

Experimental Vehicle Infraestructure

Figure A.1 – Experimental testbed: Dyna

Our experimental vehicle known as DYNA is instrumented by the laboratory

HEUDIASYC UMR 7253 CNRS at Compiègne, France, see Figure A.1. The baseline

vehicle is a Peugeot 308sw, this car is additionally instrumented with transducers

to measure vehicle dynamic states and perform tests.

A.1 Embedded sensors

The sensor used in our vehicle are classified as validation sensors, input sensors,

and exteroceptive sensors.

A.1.1 Validation sensors

• CORREVIT S-400: Its a non-contact optical sensor that measures the transver-

sal dynamics at large operating ranges. The sensor is installed at the place

of the spare wheel under the car it returns the measurement of transversal

speed, vg =
√
v2
x + v2

y, and sideslip angle, β (see Figure A.2(a)).

183
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(a) Correvit Sensor (b) Kysler Sensor

Figure A.2 – Validation sensors

• Kistler RoaDyn S625 wheel force transducers: four wheel force sensors for

passenger cars RoaDyn (Kistler) are fixed at each wheel, see Figure A.2(b).

They measure all the forces and wheel torques for the three three axes (x, y, z),

it also offers an accurate measurement of the rotation angle. The cost a single

Kysler sensor is around 120, 000 e.

• GPS receiver operating in RTK mode locates the vehicle with a centimeters

accuracy.

A.1.2 Sensors used as input in our algorithms

• CROSSBOW VG700AB: An inertial measurement unit designed specifically

for automotive test applications. It combines MEMSIC’s high performance

fiber optic gyros with silicon micro-machined (MEMS) accelerometer tech-

nology, in order to provide a highly accurate Vertical Gyro (VG) and Inertial

Measurement Unit.

• CORRSYS-DATRON HT500: This transducer is an optical device who measures

the distance between chassis and ground. They are installed respectively at

each vehicle corner, see Figure A.3(a).

• Sensor WAYCON SX50: These sensors are installed at the suspension, see Fig-

ure A.3(b), these sensors are able to measure the deflection of the suspension,

emulating the distance between the sprung and unsprung mass.

• Available data on CAN bus: wheel rotation velocity, engine speed, yaw rate,

brake pressure, lateral acceleration from the ESP, steering wheel angle.
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(a) Laser Sensor (b) Deflection Sensor

(c) Front laser (d) Computer

Figure A.3 – Validation sensors

A.1.3 Exteroceptive sensors

• A scenario record camera is used to register the vehicle trajectory.

• Mobileye system: it is able to provide a list of detected obstacles (pedestrians,

vehicles, ...) and the position of the vehicle relative to the ground side

markings on the vehicle CAN bus in real-time.

• Ibeo Standard (8L) Eight Layer/Multi-Echo LUX Sensor (Ibeo LUX 8L): the

sensor is installed at front bumper to track the object on top 4 layers and raw

data ground scanning/profiling (see Figure A.3(c)).

• All the electronics systems and PC are located in the trunk ,see Figure A.3(d).

The variables obtained from our experimental testbed are displayed in Table

A.1.
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Table A.1 – Variables available at Dyna

T Timestamps (s) PC
Hij Distance berween chassis and the ground at each corner (m) HT500
βm Sideslip angle (deg) S-400
Vm Vehicle speed (m/s) S-400
Fx,i,j Longitudinal TGFs (N) S625
Fy,i,j Lateral TGFs (N) S625
Fz,i,j Normal TGFs (N) S625
Mx,i,j Longitudinal Moments (N m) S625
My,i,j Lateral Moments (N m) S625
Mz,i,j Vertical Moments (N m) S625
θij Wheel angles (deg) S625
ωij Wheel angular velocity S625
ax Longitudinal acceleration (g) VG700AB
ay Lateral acceleration (g) VG700AB
az Vertical acceleration (g) VG700AB
φ̇ Roll rate (deg/s) VG700AB
θ̇ Pitch rate (deg/s) VG700AB
ψ̇ Yaw rate (deg/s) VG700AB
φ Roll angle (deg) VG700AB
ψ̇c Yaw rate (deg/s) CAN bus
ayc Lateral acceleration (m/s2) CAN bus
Pb Brake pressure (bar) CAN bus
Vs Vehicle speed (km/h) CAN bus
S Traveled distance (m) CAN bus
axc Longitudinal acceleration (m/s2) CAN bus
δ Steering wheel angle (deg) CAN bus
δ̇ Rotation rate of the steering wheel (deg/s) CAN bus
˙δopt Optimized rotation rate of the steering wheel (deg/s) CAN bus
ωF Mean speed of the front wheels CAN bus
ωRL speed of the rear left wheel CAN bus
ωRR speed of the rear right wheel CAN bus
λ Longitude (rad) GPS
γ Latitude (rad) GPS
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Figure A.4 – Dyna Onboard Sensors

A.2 Software modules

A.2.1 Architecture of the acquisition system

We have developed an system capable of acquiring 16, 32 or 48 analog channels

using a 24-bit converter. It consists of a computer UEI powered by a 200 MHz

PowerPC processor running a real-time operating system Xenomai. The UEILogger

is a powerful standalone data logger based on the UEI PowerDNA Ethernet DAQ

Cube. The Cube is based on the framework of Xenomai with 48 acquisition inputs.

The Xenomai is a real-time development framework cooperating with the Linux

kernel. It is used to provide a pervasive, interface-diagnostic, real-time support to

user-space applications. Some tasks are executed in the framework of Xenomai:

• Task of acquiring the highest priority, periodic frequency and frequency

acquisition.

• Task of digital filters function that can be applied to all channels. The software

provides data acquisition by using the analog cards AI-217. The DNA-AI-217

Analog Input Board is compatible with cube chassis. The DNA version is a

kind of analog input module for using with the PowerDNA Cube.
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A.2.2 Communication Protocol

Cube runs with the software that can constitute a system of acquisition network

incorporating digital filters with different cutoff frequencies. Cube returns as

UDP frame according to the request from PC. The packet is sent back on a low

frequency. In our embedded data acquisition system, the acquisition frequency is

4kHz, however the data packet is sent back with 200Hz.

A.2.3 Digital filter

In order to deal with the signals, a 5th order Chebyshev filter applied has a cutoff

frequency of 35Hz, no aliasing and loss of information allows it up to 20Hz.

A.2.4 Implementation

The stability of acquisition system is guaranteed with Xenomai, the sub-kernel

real-time Linux framework. The tasks are distributed as follows:

• An acquisition task maximum up to 4kHz.

• A filtering task using a 5th order Chebyshev filter.

• A surveillance task for each request to be served. A FIR filter is employed for

a specified sample channel. This process will cost more computation power,

hence, its used it has to be commanded.

• A duty that awaits for client requests. Otherwise, the vehicle CAN bus is

available in the acquisition system of the host PC. The GPS and camera are

directly connected to the computer. All the devices are located in the trunk

of the car with the electric circuit system as shown in Figure A.3(d). The

monitoring equipment is located on the back left seat. The operator can

manipulate the configuration of the system with a monitor and keyboard.

A.2.5 Software architecture

A.2.6 Rapid prototyping environment: the framework PAPCUS

Heudiasyc laboratory has developed a rapid prototyping environment for designing

software modules and testing them in real time with the vehicle architecture. The

framework PACPUS is available as an open source with free license CeCILL-C.

The framework PACPUS was developed following the principle of component-

oriented design to provide users more versatility in their developments. The rapid
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Figure A.5 – Pacpus Framework

prototyping environment PACPUS is developed in C++ with multiple operating

systems (Windows, Linux, Mac) in order to:

• keep a close compatibility with C and thus facilitate the development of lower

layers (drivers, sensor interfaces, system calls, ...).

• able to use the mechanisms of object-oriented programming, meet the re-

quirement for modularity.

• obtain a code compiled with higher execution speeds which are much closer

to real-time constraint.

The framework PACPUS employs the Qt API for graphical interfaces and can be

integrated with other development environment for multi-sensor fusion. The class

diagram in Figure A.5 presents the typical architecture of an application using the

framework PACPUS.

This car is equipped with an industrial PC in the trunk. Particular software is

developed for the acquisition system in C/C++. In the data structure, the data

read by the acquisition task is stored in a circular buffer. The buffer is large enough

to prevent the risk of exceeding. The cube sends the packet by Ethernet to the

PC. The signal sequence after the filter FIR is 100Hz. On the PC, the application

“CubeClient” is created to maintain communication between the cube and the PC.

After this, the data is sent to the application which includes the user application

written in C++. The schema shown in Figure A.6 illustrate the just mentioned.

Other components which are designed for the management of different equipments
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Figure A.6

were constructed as well. In the system of the estimation process, the observer is

developed in .DLL library form as a real-time application operating at 200Hz.
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ISO Double lane change

Originally known as the "moose test" the lane change maneuver was transferred to

the International Standard ISO 3888-2 after a revision by the Association of the

German Automotive Industry (VDA). The ISO and VDA lane-change test is used

to evaluate the handling performance of a vehicle and is an integral part of the

vehicle design procedures and vehicle assessment. Based on 3 cone lanes with a

total length of 61 meters a double lane change is defined, which must be completed

with maximum speed.

The ISO double lane change test consists of an entry and an exit lane and with

a length of 12m and a side lane with a length of 11m. The width of the entry and

side lane are dependent on the width of the vehicle, the width of the exit lane is

constantly 3m wide. The lateral offset between entry and side lane is 1 m and the

longitudinal offset is 13.5 m. For the same lateral offset the side and exit lane has a

slightly shorter longitudinal displacement of 12.5m. 2m after the start of the entry

lane the throttle is released so that the entire maneuver is completed in the overrun

mode with the top gear and an engine speed of at least 2000 rev/min. At the end

of the entry and exit lane the velocity is measured. The entry velocity is increased

gradually. If no cones are overturned, the test is passed.

a

b

c

10 m 13.5 m 11 m 12.5 m

1 m

12 m

A

B C

D

Figure B.1 – ISO double lane change
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Appendix C

Quaternion Background

C.1 Quaternion operations and properties

Let p,q ∈ H be a couple of quaternions in a Hamiltonian space, then the following

operations are defined as:

C.1.1 Hamilton product

p⊗ q = [p0 ∗ q0 − p̄q̄, p0 ∗ q̄ + q0 ∗ p̄ + p̄× q̄]

where ∗ defines the scalar multiplication, and the operators · and × stands for the

dot and cross products respectively.

C.1.2 Quaternion inner product

p · q = p0 ∗ q0 + p̄ · q̄

C.1.3 Conjugation Rule

q∗ = [q0,−q̄]; q̃ ∈ H

such that satisfies the following

q⊗ q∗ = [q · q, 0̄]

C.1.4 Quaternion inverse

The use of quaternions in this work is restricted to unitary quaternions, therefore

q · q = 1, thus, the inverse of a given quaternion obeying the unit length constrain

is given by

q⊗ q∗ = [1, 0̄]
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C.1.5 Unit Quaternion Rotation Matrix

A unit quaternion can be used to describe the attitude of a body. Let be v̄ ∈ R3

a vector in fixed coordinate system and be v̄′ ∈ R3 the same vector in a body

coordinated frame. The following relations are satisfied[
0

v̄′

]
= q⊗

[
0

v̄

]
⊗ q∗

C.1.6 Quaternion time derivative

The time derivative of the unit quaternion is the vector of quaternion rates, q̇. This

vector is related to the angular velocities ˙̄ω. Then,

q̇ =
1

2
q⊗

[
0

ω̄

]

C.1.7 Quaternion axis angle representation

One of the most common and advantageous form to represent a quaternion is the

axis-angle representation, defined as

q0 = cos (η/2)

q1 =n1 ∗ sin (η/2)

q2 =n2 ∗ sin (η/2)

q3 =n3 ∗ sin (η/2)

where n̄ = (cosα sin β, sinα sin β, cos β) = (n1, n2, n3) and η is the rotation angle.



Appendix D

Least Squares

D.1 Least Squares

Least squares (LS) is the most applied and studied regression estimator. Its pop-

ularity is due to two facts: First, when invented (around 1800) there were no

computers, and the LS estimator could be computed explicitly from data. Second,

in the one-dimensional case the LS tends toward the arithmetical mean of the

observations; after, when Gauss introduced the Gaussian distribution the LS found

its optimal solution.

Lets consider the following system

AX ≈ B (D.1)

where A ∈ Rm×n is the measured input, X ∈ Rn×d are the unknown parameters

and B̄ ∈ Rm×d is the measured output. Gauss also defined the LS cost function as:

min
X

m∑
i=1

(Bi −AiX)2 (D.2)

it follows that LS solution is optimal for a Gaussian distribution of the output (B).

Nevertheless, if the assumption Gaussian distribution does not hold, outliers could

lead to poorly estimated parameters.

Outliers could appear in the measured input (A) or in the measured output

(B). Figure D.1 shows the difference between an outlier in A or B. Notice that

the response is more prone to error if the outlier is found at the input. Figure D.2

displays the error response for a percentage of outliers within the measurement

at the input or output. Notice that with poor sets of data, such that, 50 % of

the measurement are considered outlilers, the outlier at the output is prone to

produce the bigger error index, nonetheless, from 33 % to zero outliers, in nominal

conditions, the outlier at the input impact more on the LS method response.
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Figure D.1 – LS response to data with outliers in the input, in the output and without.
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Figure D.2 – LS response to a different percentage of outliers within the input and the
output

The LS closed form solution for (D.1) is:

X =
(
ATA

)−1
ATB

Proof. From the LS cost function defined in eq. (D.2), then,

|| B−AX ||22= BTB−BTAX−XTATB + XTATAX (D.3)

the derivative of the cost function respect to the parameters (X) gives

d (|| B−AX ||22)

dX
= −2ATB + 2ATAX (D.4)

setting this derivate to zero, gives

X =
(
ATA

)−1
ATB



Appendix E

Particle Swarm Optimization

Particle swarm optimization (PSO) is a computational method that optimizes a

problem by iteratively trying to improve a candidate solution with regard to a

given measure of quality. It solves a problem by having a population of candidate

solutions, here dubbed particles, and moving these particles around in the search-

space according to simple mathematical formulae over the particle’s position and

velocity. Each particle’s movement is influenced by its local best known position,

but is also guided toward the best known positions in the search-space, which are

updated as better positions are found by other particles. This is expected to move

the swarm toward the best solutions.

PSO is a metaheuristic as it makes few or no assumptions about the problem

being optimized and can search very large spaces of candidate solutions. However,

metaheuristics such as PSO do not guarantee an optimal solution is ever found. Also,

PSO does not use the gradient of the problem being optimized, which means PSO

does not require that the optimization problem be differentiable as is required by

classic optimization methods such as gradient descent and quasi-newton methods.

E.1 Algorithm

A basic variant of the PSO algorithm works by having a population (called a swarm)

of candidate solutions (called particles). These particles are moved around in the

search-space according to a few simple formulae. The movements of the particles

are guided by their own best known position in the search-space as well as the

entire swarm’s best known position. When improved positions are being discovered

these will then come to guide the movements of the swarm. The process is repeated

and by doing so it is hoped, but not guaranteed, that a satisfactory solution will

eventually be discovered.
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Algorithm E.1: Particle swarm optimization
1: Initialization

2: for each particle

3: Initialize the particle’s position with a random vector: xi

4: Initialize the particle’s best known position: pi ←− xi

5: if f(pi) < f(g)

6: update the swarm’s best known position:g←− pi

7: Initialize the particle’s velocity: vi

8: end

9: while a criterion is not met

10: for each particle

11: Pick randon numbers: rp, rg

12: Update velocity: vi ←− wvi + φprp(pi − xi) + φgrg(g − xi)

13: Update particle’s position: xi ←− xi + vi

14: if f(xi) < f(pi)

15: Update particle best known position: pi ←− xi

16: if f(pi) < f(g)

17: Update the swarm’s best known position: g←− pi
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