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Résumé

Les réseaux de communication sans fil modernes doivent s’adapter à différents types de trafic de données

avec des contraintes de latence différentes. Les applications vidéo sensibles à la latence, en particulier,

représentent une part croissante du trafic de données. En outre, les réseaux modernes doivent accepter

des débits de données élevés, ce qu’ils peuvent faire par exemple avec des terminaux coopératifs ou avec

l’assistance de relais tels que les drones. Cependant, la coopération introduit généralement des retards

de communication supplémentaires et n’est donc pas applicable au trafic de données sensibles à la latence.

Cette thèse porte sur les réseaux d’interférence avec des contraintes de latence mixtes et sur les architectures

de systèmes où des émetteurs et/ou des récepteurs voisins peuvent coopérer. Dans de tels systèmes, les

messages sensibles à la latence doivent être encodés et décodés sans délai et ainsi ne peuvent pas bénéficier

des liens de coopération disponibles.

Nous proposons différents schémas de codage pour permettre la transmission simultanée de messages

sensibles et insensibles à la latence. Pour les schémas proposés, nous analysons les gains de multiplexage

(MG) qu’ils réalisent sur le réseau de transfert intercellulaire souple de Wyner, le réseau symétrique de

Wyner, le réseau hexagonal et le réseau hexagonal sectorisé. Pour le réseau de transfert souple de Wyner

et le réseau symétrique de Wyner, nous identifions aussi des résultats étroits s’agissant de leurs limites en

théorie de l’information et nous définissons ainsi l’ensemble exact de paires MG qui peuvent être obtenus

simultanément pour les données sensibles et insensibles à la latence. Ces résultats montrent que lorsque

les émetteurs et les récepteurs peuvent coopérer et que les taux de coopération sont suffisamment élevés,

il est possible d’obtenir le plus grand MG possible pour les messages sensibles à la latence sans pénaliser

la somme maximale des MG pour l’ensemble des messages sensibles et insensibles à la latence. Cependant,

la somme des MG des systèmes que nous proposons pour le modèle hexagonal est diminuée en présence

de données sensibles à la latence. Cette pénalité disparaît dans le cas du réseau hexagonal sectorisé quand

chaque cellule est divisée en trois secteurs non interférents en équipant les stations de base d’antennes
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directionnelles.

Nous proposons, de surcroît, des schémas de codage similaires en fonction de différents types d’activité

aléatoire de la part des usagers du réseau. Nous considérons plus particulièrement deux configurations. Dans

la première configuration, chaque émetteur envoie toujours des données insensibles à la latence et reçoit

aléatoirement des données sensibles à la latence. Dans la seconde configuration, les arrivées de données

sensibles et insensibles à la latence sont aléatoires, et chaque transmetteur n’envoie ou ne reçoit qu’un seul

type de données à un instant donné. Pour ces deux configurations, nous proposons des schémas de codage

généraux et caractérisons leurs régions de MG réalisables pour différents réseaux. Dans les deux cas, les

régions de MG obtenues montrent que le MG moyen des données insensibles à la latence diminue lorsque

davantage d’utilisateurs sont actifs. Les régions MG obtenues montrent également que dans la première

configuration, l’augmentation du taux de MG correspondant aux données sensibles à la latence diminue

toujours la somme des MG. En revanche, dans la seconde configuration, pour certains paramètres, la plus

grande somme des MG est obtenue au maximum du taux de MG correspondant aux données sensibles à la

latence et donc l’augmentation des MG sensibles à la latence améliore la somme des MG.

Nous étudions aussi un réseau d’accès radio "cloud" avec des contraintes de latence mixtes, c’est-à-dire

où chaque utilisateur mobile peut simultanément envoyer un flux sensible à la latence et un flux qui la

tolère et où seules les données sensibles sont décodées conjointement au sein du cloud. Pour ce réseau, nous

dérivons les limites intérieures et extérieures de la région de capacité sous des contraintes de latence mixtes,

et nous caractérisons précisément la région MG optimale. Lorsque le rapport signal / bruit (SNR) est élevé,

nos résultats démontrent que, pour des capacités frontales modérées, le MG maximal pour les messages

sensibles à la latence reste inchangé sur une large gamme de petits et moyens MG de messages sensibles à la

latence. La somme des MG est donc améliorée si certains messages peuvent être décodés directement aux

stations de base. Pour un SNR modéré, les résultats montrent que lorsque le débit de messages sensibles à

la latence est faible ou modéré, nous obtenons une somme de débit de données constante.
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Abstract

Modern wireless communication networks have to accommodate different types of data traffic with different

latency constraints. In particular, delay-sensitive video-applications represent an increasing portion of data

traffic. Modern networks also have to accommodate high total data rates, which they can accomplish for

example with cooperating terminals or with helper relays such as drones. However, cooperation typically

introduces additional communication delays, and is thus not applicable to delay-sensitive data traffic. This

thesis focuses on interference networks with mixed-delay constraints and on system architectures where

neighbouring transmitters and/or neighbouring receivers can cooperate. In such systems, delay-sensitive

messages have to be encoded and decoded without further delay and thus cannot benefit from available

cooperation links.

We propose various coding schemes that can simultaneously accommodate the transmission of both

delay-sensitive and delay-tolerant messages. For the proposed schemes we analyze the multiplexing gains

(MG) they achieve over Wyner’s soft hand-off network, Wyner’s symmetric network, the hexagonal network

and the sectorized hexagonal network. For Wyner’s soft hand-off network and Wyner’s symmetric network,

we also provide tight information-theoretic converse results and thus establish the exact set of MG pairs

that can simultaneously be achieved for delay-sensitive and delay-tolerant data. These results demonstrate

that when both transmitters and receivers cooperate and the cooperation rates are sufficiently large, it is

possible to achieve the largest MG for delay-sensitive messages without penalizing the maximum sum MG

of both delay-sensitive and delay-tolerant messages. In contrast, under our proposed schemes, the sending

of delay-sensitive data in hexagonal models decreases the maximum sum MG. This penalty vanishes when

we consider the sectorized hexagonal network where each cell is divided into three non-interfering sectors

by employing directional antennas at the base stations.

We further propose similar coding schemes for scenarios with different types of random user activity. We

specifically consider two setups. In the first setup, each active transmitter always has delay-tolerant data to
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send and delay-sensitive data arrival is random. In the second setup, both delay-tolerant and delay-sensitive

data arrivals are random, and only one of them is present at any given transmitter. For both setups, we

propose general coding schemes and characterize their achievable MG regions for different networks. In both

cases, the obtained MG regions show that the average MG for delay-tolerant data decreases when more

users are active. The obtained MG regions also show that in the first setup, increasing the delay-sensitive

MG always decreases the sum MG. In contrast, in the second setup, for certain parameters, the highest

sum MG is achieved at maximum delay-sensitive MG and thus increasing the delay-sensitive MG provides

a gain in sum MG. Additionally, we also study a cloud radio access network with mixed delay constraints,

i.e., where each mobile user can simultaneously send a delay-sensitive and a delay-tolerant stream and only

the delay-tolerant data is jointly decoded at the cloud unit. For this network, we derive inner and outer

bounds on the capacity region under mixed delay constraints, and we exactly characterize the optimal MG

region. At high signal-to-noise ratio (SNR), our results show that for moderate fronthaul capacities, the

maximum MG for delay-sensitive messages remains unchanged over a large regime of small and moderate

MGs of delay-sensitive messages. The sum MG is thus improved if some of the messages can directly be

decoded at the base stations. At moderate SNR, the results show that when the data rate of delay-sensitive

messages is small or moderate, the achievable sum rate is constant.
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Chapter 1

Introduction

1.1 Background and Motivation

One of the main challenges for the new generation of wireless communication systems is to accommodate

different types of data traffic with different delay constraints. Delay-tolerant traffic, such as enhanced mobile

broadband (eMBB) data, allows for higher transmission rates by exploiting techniques such as advanced

coding, joint decoding or cooperation between terminals. Delay-sensitive traffic, such as video-applications

or ultra-reliable low-latency communication (URLLC) data, is subject to stringent delay constraints and is

not compatible with techniques that delay encoding and decoding processes. The following techniques are

examples that cannot be applied to delay-sensitive traffic.

• In wireless fading channels where transmissions experience multiple fading realizations, ergodic ca-

pacity is only achievable using long codewords and thus only on delay-tolerant traffic. The achievable

rate of delay-sensitive traffic degrades because codewords have to be short.

• In cloud radio access networks (C-RAN) where base stations (BSs) are connected to a cloud unit

(CU) via fronthaul links, delay-tolerant traffic is typically decoded jointly at the CU to achieve higher

transmission rates. Meanwhile, delay-sensitive traffic has to be decoded immediately at the BSs, and

consequently cannot profit from joint processing.

• In interference networks where neighbouring transmitters (Txs) and/or neighbouring receivers (Rxs)

can cooperate over dedicated cooperation links to alleviate the effect of interference, delay-sensitive

traffic has to be encoded and decoded without further delay and thus cannot profit from cooperation.

The design of coding schemes for transmission of such mixed-delay traffic is the focus of recent works,
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notably [1–7]. In particular, wireless fading channels with mixed delay traffic are studied in [1–4]. Reference

[1] studies the fundamental limits of dynamic resource allocation over fading broadcast channels where some

users have delay-sensitive data and the others have delay-tolerant data. They solve a convex optimization

problem that minimizes the average transmission power at the BS. The optimization problem is constrained

by the average transmit rate over fading states for users with delay-tolerant data, and the constant transmit

rate at any fading state for users with delay-sensitive data. The key to solve this problem is a two-layer

Lagrange duality method. The work in [1] also proposes a scheduling algorithm that prioritizes delay-

sensitive messages over delay-tolerant messages. In particular, in their model delay-sensitive messages can

be stored in the buffer for only one scheduling period.

The work in [2] proposes a broadcasting approach over a single-antenna fading channel to communicate

a stream of delay-sensitive messages and a stream of delay-tolerant messages. In this approach, delay-

sensitive messages have to be sent over a single coherence block, while delay-tolerant messages can be

sent over multiple blocks. During the decoding of each delay-sensitive block, the decoder treats the delay-

tolerant parts as noise. The decoded delay-sensitive parts are fed to the Rxs before decoding the delay-

tolerant blocks. To manage the interference more effectively, the work in [3] proposes to combine such a

broadcasting approach with decoder-cooperation. Another similar approach is taken in [4] for a broadcast

scenario with K users. Instead of superposing delay-tolerant messages on delay-sensitive messages, this

work proposes a scheduling approach to give preference to the communication of delay-sensitive messages.

Cooperative interference networks under mixed-delay traffic have not been well-addressed in the liter-

ature. This thesis thus focuses on interference networks under mixed-delay constraints where certain Txs

and/or certain Rxs can cooperate. We propose various coding schemes to accommodate the transmission of

both delay-sensitive and delay-tolerant messages [8–11]. In the proposed schemes, delay-sensitive messages

have to be encoded and decoded without further delay and thus cannot profit from cooperation. We also

propose similar coding scheme for scenarios with different kinds of random users activities [12]. The impact

of random user activity on cellular networks has been previously studied in [13–15]. Reference [13] uses the

rate of a two-tap input erasure channel to characterize the throughput of Wyner’s soft-handoff network [16]

with random user activity. The work in [14] uses the same tool to derive the outage probability of this

network. Reference [15] extends the results in [13] to more than one user per cell.

We also study a C-RAN with mixed delay constraints, i.e., where each mobile user can simultaneously

send a delay-sensitive and a delay-tolerant stream and only the delay-tolerant data is jointly decoded at the

CU. Mixed delay constraints in C-RANs have also been studied in [5] and [6]. In particular, [5] proposes a
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CHAPTER 1. INTRODUCTION 3

scheme where users close to the BSs send only delay-sensitive messages (URLLC data) and it is assumed

that these communications do not interfere. Users located further away send delay-tolerant messages (eMBB

data) and their interference pattern is modeled by Wyner’s symmetric network [16–18] with static channel

coefficients. In our work, communications between users and BSs are modeled by Wyner’s soft-handoff

network with random time-varying channel coefficients [19].

1.2 Contributions

Throughout this thesis, delay-sensitive messages are called “fast" messages and delay-tolerant messages

“slow" messages. The followings are the main contributions of this thesis:

• For Wyner’s soft-handoff network with only Tx or only Rx cooperation:

– We determine the set of all achievable “fast" and “slow" multiplexing gain (MG) pairs, that is,

the optimal MG region, in function of the prelogs of the cooperation links and the total number

of cooperation rounds allowed for “slow” messages. We also propose inner and outer bounds on

the capacity region under mixed delay constraints with only Rx cooperation.

– Our results indicate that the sum rate of “fast" and “slow" messages is approximately constant

when “fast" messages are sent at small rates. In this regime, the stringent decoding delay of

“fast" messages does not cause a loss in overall performance. When “fast" messages have large

rates, this is not the case. In this regime, increasing the rate of “fast" messages by ∆ requires that

the rate of “slow" messages be reduced by approximately 2 ·∆. Our results also show a duality

between only Tx-and only Rx -cooperation in the high signal-to-noise ratio (SNR) regime.

• For Wyner’s soft-handoff network with both Tx and Rx cooperation:

– We determine the optimal MG region, in function of the prelogs of the cooperation links and the

total number of cooperation rounds allowed for “slow” messages.

– The obtained results show that it is possible to accommodate the largest possible MG for "fast"

messages without decreasing the maximum sum MG, when the cooperation rates are sufficiently

large and both Txs and Rxs can cooperate. The stringent delay constraints thus do not harm

the overall performance in this scenario.

• For a general interference network with both Rx-and Tx-cooperation:
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– We propose a general coding scheme that accommodates the transmissions of “slow” and “fast”

messages simultaneously. We apply this coding scheme to three cellular network models: a

Wyner’s symmetric model, a hexagonal model, and a sectorized hexagonal model.

– The results for Wyner’s symmetric model show that it is possible to accommodate the largest

possible MG for “fast” messages, without penalizing the maximum sum MG of both “fast” and

“slow” messages. The results for the hexagonal model show that there is always a penalty in

sum-MG at any “fast" MG. In contrast, for the sectorized hexagonal model where each cell is

divided into three non-interfering sectors by employing directional antennas at the BSs, it is

possible to eliminate this penalty and accommodate the largest possible MG for “fast” messages

without penalizing the maximum sum MG.

• For a general interference network with random users activity and Rx-cooperation:

– We consider two setups under mixed delay constraints. In both setups, each Tx is active with

probability ρ ∈ [0, 1], and the goal is to maximize the average expected “slow" rate of the network,

while the rate of each “fast" message is fixed to a target value. In the first setup, each active Tx

transmits a “slow” message, and with probability ρf ∈ [0, 1] also transmits an additional “fast”

message. In the second setup, each active Tx sends either a “fast” message with probability ρf

or a “slow" message with probability 1− ρf .

– For both setups, we propose general coding schemes and characterize their achievable MG regions

for three networks: Wyner’s soft-handoff network, Wyner’s symmetric network and the hexagonal

network. The achievable MG region is shown to be optimal for Wyner’s soft-handoff network.

In both setups, the obtained MG regions show that the average “slow” MG decreases i) with

increasing number of interfering links, and ii) with increasing user activity parameter ρ.

– The obtained MG regions also show that in the first setup, the maximum sum MG is always

attained at 0 “fast" MG, and increasing the “fast” MG decreases the sum MG by a penalty that

tends to increase with the number of interference links in the network and with the user activity

parameter ρ. In contrast, in the second setup, for certain parameters the sum MG is achieved

at maximum “fast" MG and thus increasing the “fast" MG provides a gain in sum MG, where

we observe that the gain decreases with the number of interferers and the activity parameter ρ.

• For the uplink of a fading C-RAN where “slow" messages are jointly decoded in the CU, whereas
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CHAPTER 1. INTRODUCTION 5

“fast" messages have to be decoded immediately at the BSs:

– We derive inner and outer bounds on the capacity region under mixed delay constraints. Fur-

thermore, we characterize the exact MG region.

– At high SNR, the results show that for moderate fronthaul capacities, the maximum “slow” MG

remains unchanged over a large regime of small and moderate “fast" MG. The sum MG is thus

improved if some of the messages can be decoded directly at the BSs. In contrast, for large

fronthaul capacities or large “fast" MGs, this sum-MG deteriorates by ∆ if one further increases

the “fast" MG by ∆.

– At moderate SNR, the results show that when the “fast" rate is small or moderate, the achievable

sum rate is constant. When the "fast" rate is large, the achievable sum rate decreases by a factor

γ times ∆ when the rate of “fast” messages increases by ∆. The penalty factor γ is approximately

1 for static channel coefficients and typically higher for random coefficients. The stringent delay

constraint on “fast" messages thus seems to be more harmful at moderate SNR and for time-

varying channel conditions than at high SNR or for static channels.

1.3 Organization of the Thesis

In Chapter 2 we describe the channel model of interference networks and introduce tools used in the

literature to manage interference with and without cooperation. Chapter 3 proposes a coding scheme that

accommodates the transmission of "fast" and "slow" messages simultaneously. Chapter 4 presents our

results for Wyner’s soft-handoff model under mixed-delay constraints and when only Txs or only Rxs can

cooperate and the results when Txs and Rxs can cooperate. In Chapter 5, we propose a general coding

scheme for any interference network with both Tx- and Rx-cooperation. We specialize the results to Wyner’s

symmetric model, to the hexagonal model and to the sectorized hexagonal model. In Chapter 6, we combine

random user activity with mixed-delay traffic. We then propose general coding schemes and characterize

the achievable MG regions for three networks: Wyner’s soft-handoff network, Wyner’s symmetric network

and the hexagonal network. Chapter 7 presents the results for the uplink of a fading C-RAN under mixed

delay constraints.
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1.4 Notation

We use the shorthand notations “Rx" for “Receiver" and “Tx" for “Transmitter". The set of all integers

is denoted by Z, the set of positive integers by Z+ and the set of real numbers by R. For other sets

we use calligraphic letters, e.g., X . Random variables are denoted by uppercase letters, e.g., X, and their

realizations by lowercase letters, e.g., x. For vectors we use boldface notation, i.e., upper case boldface letters

such as X for random vectors and lower case boldface letters such as x for deterministic vectors.) Matrices

are depicted with sans serif font, e.g., H. We write Xn for the tuple of random variables (X1, . . . , Xn) and

Xn for the tuple of random vectors (X1, . . . ,Xn). We denote the entropy function by H(·), and the mutual

information function by I(·).
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Chapter 2

Multiplexing Gains of Interference Networks

2.1 Interference Networks Without Cooperation

2.1.1 Problem Setup

Consider a Gaussian interference network with K Tx-Rx pairs and define K , {1, . . . ,K}. Each Tx

is equipped with Lt antennas and each Rx with Lr antennas. To describe the interference network, let

Xk ∈ RLt×1 denote Tx k’s input signal and Y k ∈ RLr Rx k’s output signal and define the interference sets

IRx,k , {k̃ ∈ K\{k} : Xn
k interferes Y n

k̃
}, (2.1)

ITx,k , {k̃ ∈ K\{k} : Xn
k̃
interferes Y n

k}. (2.2)

The input-output relation of the network is then described as

Y k = Hk,kXk +
∑

k̃∈ITx,k

Hk̃,kX k̃ + Zk, ∀k ∈ K (2.3)

where Zk ∈ N (0, ILr) is the additive white Gaussian noise at Rx k, and Hk̃,k ∈ RLr×Lt is the channel transfer

matrix from Tx k̃ to Rx k. The Txs are assumed to operate under an average power constraint P, i.e., the

power consumed by Tx k is not allowed to exceed P on average.

Each Tx k attempts to transmit the message Mk to Rx k over the interference channel (2.3). A

communication scheme consists of an encoder-decoder pair for each message. The scheme is reliable if all

the messages can be reconstructed at their respective Rxs with a high probability of success. For a single-user

channel, Shannon [20] established that coding over multiple symbols is the key to reliable communication
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8 2.1. INTERFERENCE NETWORKS WITHOUT COOPERATION

through noisy channels. To this end, we consider block coding frameworks where communication schemes

operate over n ≥ 1 channel uses at a time. Thus for a fixed rate tuple (R1, R2, . . . , RK), the message Mk

is assumed to be a uniform random variable whose values belong to a finite setMk = {1, 2, . . . , b2nRkc}.

In block coding, each Tx k computes its channel inputs Xn
k as a function of its message:

Xn
k = f

(n)
k (Mk), (2.4)

where f (n)k denotes an encoding function on appropriate domains. Each Rx k decodes its desired message

as

M̂k = g
(n)
k (Y n

k), (2.5)

where g(n)k denotes a decoding function on appropriate domains.

The rate tuple (R1, R2, . . . , RK) is achievable if, and only if, there exists a sequence of block codes

satisfying the average block power constraints

E

[
1

n

n∑
t=1

||Xk(t)||2
]
≤ Pk, ∀k ∈ K, (2.6)

and the probability of decoding error tends to zero as n → ∞. The capacity region C is defined as the

closure of the set of achievable rate tuple, and the sum capacity is defined as:

Csum = max
(R1,R2,...,RK)∈C

R1 +R2 + . . .+RK . (2.7)

Except in some special cases, determining the exact capacity region of Gaussian interference networks re-

mains an open problem [21]. In the regime of high signal to noise ratios (SNR) (i.e., high powers Pk in

(2.6)), the capacity region of an interference channel is approximately characterized by the multiplexing

gain (MG)1 region. Roughly speaking, the capacity region at high SNR is equal to the MG region scaled by

1
2 log SNR. The sum MG captures the number of interference-free sessions that can be scheduled simultane-

ously over an interference channel. In other words, we say that the MG tuple (S1, S2, . . . ,SK) is achievable

if there exists an achievable rate tuple (R1(P), R2(P), . . . , RK(P)) satisfying

Sk = lim sup
P→∞

Rk(P)
1
2 logP

, ∀k ∈ K. (2.8)

1Also known as degree of freedom or capacity prelog.
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The MG region S is defined as the closure of the set of all achievable MG tuples. The sum MG is defined

as

Ssum = max
(S1,S2,...,SK)∈S

S1 + S2 + . . .+ SK . (2.9)

2.1.2 Non-Cooperative Interference Management Tools

Managing interference among users sharing the same frequency band is central to wireless communications.

The following are some of the well-known tools to manage interference without cooperation:

• Treating interference as noise: when the interference is weak, the interfering signal can be simply

treated as noise. Many practical schemes operate in this mode and results for more than two users

are available [22–24].

• Orthogonal access: When the strength of interference is comparable to the strength of desired signal,

one often wishes to orthogonalize channel access for the various users. This approach corresponds to

sharing the available resources between the K users. In particular, the single MG achievable for a

given Tx-Rx pair will be shared between the K users resulting in a per user achievable MG of 1
K .

• Decoding interference When the interference is strong, decoding the interference may improve the

rate for the desired signal [25].

• Han-Kobayashi The main idea of this technique is to split each Tx’s signal into common and private

parts. The common part then can be decoded by all Rxs which reduces the overall interference level.

• Interference Alignment (IA): The main insight of this technique is to use beamforming over infinite

symbol extensions and restrict all interference at every Rx to approximately half of the received signal

space. This renders the other half-space interference-free [26,27] and allows each Tx to send with MG

equal to 1
2 . To illustrate the main concept of this technique, we present a toy example for which we

allow the channel gains and inputs to be complex numbers and the noise samples circular complex

Gaussian. Such a channel is easily simulated from (2.3) by fixing all the direct channel coefficients at

1 and all the cross channnel coefficients at j =
√
−1. Each Tx only sends a real Gaussian signal with

power P. Each Rx k thus observes the channel output:

Yk = Xk + j
∑

k̃∈ITx,k

Xk̃ + Zk, ∀k ∈ K, (2.10)
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where here Zk is a complex circularly symmetric Gaussian. Each Rx can now simply ignore all

imaginary parts of its received signal and decode its desired message based on the interference-free

real part of the signal. The scheme achieves one MG for every two real channel uses, and thus an

effective MG of 1
2 per dimension and per user.

2.2 Interference Networks with Cooperation

2.2.1 Problem Setup

Consider a Gaussian interference network with K Tx/Rx pairs where neighbouring Txs and neighbouring

Rxs can communicate with each other over dedicated orthogonal links, as first introduced in Willems

seminal work [28] and subsequently used in the relevant literature such as [29,30]. In particular, each Tx k

computes its channel inputs Xn
k = (Xk,1, . . . ,Xk,n) ∈ RL×n as a function of the message Mk and of all the

conferencing information that it obtained from its neighbouring Txs during the preceding communication

phase. The channel inputs again have to satisfy the average block-power constraint in (2.6).

At the Rx side, Rxs first communicate with their neighbours over dedicated noise-free but rate-limited

links, and then they decode their intended messages based on their outputs and based on the conferencing

information obtained from their neighbours.

2.2.2 Cooperative Interference Management Tools

The following are some of the well-known tools to manage interference when cooperation links are available.

• Dirty Paper Coding (DPC): If interference is known at a Tx before communication starts, e.g.,

through cooperative communication as explained above, the Tx can mitigate this interference through

Dirty Paper Coding [31]. To illustrate the key concept of this technique, we present a toy example.

Consider the Gaussian interference channel

Y n
k = Xn

k +Wn
k + Znk , (2.11)

where Zk ∼ N (0, 1) and we assume that also Wk ∼ N (0,P), e.g., because it comes from a Gaussian

codebook. If Wn
k is unknown to both the Tx and the Rx, the capacity of above channel is equal to

1
2 log(1 + P

1+P). Costa [31] shows that with Wk known only to the Tx (i.e., in advance before the

communication starts), we can achieve a capacity of 1
2 log(1 + P) if we use the DPC technique. We

10



CHAPTER 2. MULTIPLEXING GAINS OF INTERFERENCE NETWORKS 11

summarize the dirty paper encoding and decoding process as follows.

– Define Unk = Xn
k + αWn

k with α = P
1+P . Fix ε > 0 arbitrary small.

– Generate 2n(I(Uk;Yk)−ε) sequences Unk with components drawn according to N
(
0,P(1 + α2)

)
.

Place these sequences into 2n(
1
2
log(1+P)−2ε) bins with 2n(I(Uk;Wk)+ε) sequences each. Reveal the

codebooks and the bins to the Rx and the Tx.

– Given Wn
k = W̃n and a message Mk ∈ {1, . . . , b2nRkc}, the Tx k looks for a jointly typical pair

(Unk , W̃
n) in bin Mk. Call Ũn the suitable sequence. Tx k then calculates X̃n = Ũn − αW̃n

and sends it over the channel. Note that Tx k declares an error if it cannot find an appropriate

sequence Ũn.

– Rx k observes Y n
k = Ỹ n and looks for a sequence Unk such that (Unk , Ỹ

n) are jointly typical. Rx k

declares an error if it finds more than one or no such sequence. With high probability, Rx k

finds only one such sequence and it is equal to Ũn. Rx k then sets M̂k as the index of the bin

containing this sequence.

• Successive Interference Cancellation (SIC): The key concept of this technique is that Rxs send

their decoded messages to their neighbours so that the interference from already decoded messages

can be cancelled [32]. As an example, assume that all Rxs in ITx,k can decode their desired messages

and send them to Rx k over the cooperation link. Rx k then uses these cooperation messages to delete

the interference term
∑

k̃∈ITx,k
Hk̃,kX

n
k̃
(M̂k̃) from its output sequence Y n

k , i.e., it forms

Ŷ
n
k = Y n

k −
∑

k̃∈ITx,k

Hk̃,kX
n
k̃
(M̂k̃), (2.12)

and decodes its desired message Mk based on Ŷ
n
k .

• Multiple access channel (MAC): In the ideal case of infinite backhaul capacity at the Rx side,

all Rxs can learn all their signals observed at the other Rxs. The setup then specializes to a single-

receiver multiple-access channel (MAC). The capacity of a MAC is achieved by superposition coding

and SIC decoding [33–35]. When interference is weak, then the simpler beamforming technique, or

equivalently a network-wide zero-forcing strategy, suffices to approximately achieve capacity.

• Broadcast channel (BC): Transmit beamformer is used to send each user’s codeword across all

the BSs to succesfuly encode each user’s codeword while treating the already encoded messages as
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known interference [36]. In practice, lattice precoding strategies [37] are used to implement DPC

approximately. Similar to the uplink case, when the interfering links are much weaker than the direct

links the zero forcing strategy is again near optimal.

• Coordinated Multi Point (CoMP) Reception: Rxs quantize and share their received signals

over the cooperation links to a dedicated Rx that jointly decodes all the signals based on the obtained

quantization outputs [38–41]. This technique can be viewed as a practical implementation of the

MAC setup introduced above.

• CoMP Transmission: Txs exchange parts of their messages and then jointly encode their transmit

signals based on this set of messages [42–44]. This technique can be viewed as a practical implemen-

tation of the BC setup introduced above.

• Clustered Cooperation: The (quantized version of) received signals of each Rx is shared within a

local cluster of Rxs. Similarly, the messages of each Tx is shared within a local cluster of Txs [45–49].

• Process and Share: Rxs process their channel output signals and the signals they receive from the

other Rxs. They then share their messages with the other Rxs. Similarly, Txs jointly process their

own messages and the cooperative messages they receive from the other Txs. They then share their

messages with the other Txs [50–52].

2.3 Related Works

Various forms of interference management techniques have been the focus of recent research. Notably, recent

theoretical results [27, 53–55] show that transmission schemes based on IA are able to provide a MG of 1
2

for every user in the network. In particular, [27] establishes that in a K user fully-connected time-varying

interference channel, IA enables each user to achieve reliable communication at rates approaching half of

the achievable capacity in the absence of all interference. Equivalently, at high SNR, a sum-MG of K
2 is

achievable in a fully-connected K user interference channel.

IA-based schemes achieve a significant theoretical gain compared to the conventional interference mitiga-

tion techniques. Practical scenarios, however, do not find this gain achievable [56] due to the exponentially-

large delay or exponentially accurate channel estimation required in such schemes. To implement IA without

asymptotic symbol expansion, hybrid scenarios where IA is combined with cooperative techniques are of

more practical use [56, 57]. In particular, [56] studies a non-linear process and share cooperation approach

12
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for the uplink of a large sectorized hexagonal network. In this approach, a successive decoding scheme is

used where each Rx decodes its desired message by processing its own channel outputs and the decoded

messages received from a set of neighbouring Rxs. This Rx then transmits its decoded message to a set of

Rxs that have not yet decoded their messages. This backhaul cooperation changes the interference graph of

the network in such a way that practical one-shot IA without symbol extensions is possible and 1
2 MG per

user is achievable. Reference [57] proposes to combine IA with CoMP transmission and reception techniques

where each message is jointly transmitted by Mt successive Txs, and is jointly decoded by Mr Rxs. The

results in [57] show that a sum MG of K is achievable for a K user fully-connected interference channel

only if Mt +Mr ≥ K + 1. In the general case, i.e., for arbitrary values of Mt and Mr, the MG is bounded

by dK+Mt+Mr−2
2 e. This implies that, when K is very large compared to Mt and Mr, CoMP transmission

and reception do not significantly improve the sum MG compared to the pure IA based schemes.

Towards the different levels of pure cooperative techniques, [58] studies a scheme known as interference-

coordination where BSs share the channel state information (CSI) of both the direct and interfering channels

(obtained from the users via feedback channels) to coordinate their signaling strategies. Signaling strategies

can include scheduling, power control and beamforming. A simple example of joint power control and

scheduling across the multiple BSs is the interference pricing approach [59]. In this approach the impact of

each Tx’s interference level on its neighbouring transmissions is measured, then Txs are coordinated in such

a way that Txs causing excessive interference to neighbouring Tx/Rx pairs reduce their transmit power.

This basic level of cooperation requires a low amount of backhaul communication and can improve the

performance of current cellular interference networks when many users co-exist in the system.

When high-capacity delay-free backhaul links are available among BSs, a further significant improvement

in data rate is possible if, in addition to CSI, each BS shares the full data signals of its users with other

BSs. Under this cooperative technique, known as MIMO cooperation [60] technique, all propagation links

(including interfering ones) are exploited to carry useful data. As a result, the uplink channel is equivalent

to a multiple access channel (MAC) with multiple Txs and a single multi-antenna Rx, and the downlink

channel is equivalent to a broadcast channel (BC) with a single multi-antenna Tx and multiple Rxs.

In case BSs are connected via limited-capacity backhaul links, a partial interference cancellation or an

increase in the transmission rate is still possible if BSs first share CSI then a quantized version of their

antenna signal [61]. An example of the rate increase can be seen in the uplink of a two-user interference

channel with Han-Kobayashi [62] common-private information splitting style. In this network, the common

message rate is increased if each Rx sends a bin index of the decoded part over the rate-limited cooperation

13
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links to the neighbouring Rxs after decoding its common message. Similarly in the downlink of such

networks, if the Txs are equipped with rate-limited cooperation rates, a rate increase of common messages

is possible if Txs cooperatively send these messages. Furthermore, a partial interference cancellation is

possible if they share part of their private messages as well.

The main drawbacks of the MIMO Network approach are i) they require high backhaul loads, ii) increase

delay in communications, and iii) make interference to propagate across the network. To reduce the backhaul

load requirements of the Network MIMO technique, [45,46,48] propose a cluster cooperation technique. In

this technique, the network is divided into smaller subnets and the interference management approaches are

employed for each subnet individually. This clustered cooperation technique also reduces communication

delay and avoids interference to propagate across the entire network.

The work in [46] employs clustered cooperation technique in a Wyner’s soft-handoff network where

neighbouring Txs and neighbouring Rxs can cooperate over rate-limited and noise-free links that do not

interfere with the main communication channels and where this cooperative communication is limited to a

couple of rounds. Due to this cooperation constraint, the network is divided into interference-free subnets by

switching off a set of Txs. The results in [46] show that for small cooperation prelogs, a single cooperation

round at the Txs or at the Rxs achieves the same MG as when the number of cooperation rounds is

unlimited. On the other hand, for large cooperation prelogs, the maximum per user MG increases with

every additional cooperation round that is permitted either at the Txs or at the Rxs.

To sum up, cooperative and non-cooperative interference networks have been well-studied in the liter-

ature. Now, the question is how interference networks should deal with heterogeneous traffic where parts

of messages cannot benefit from cooperation because they are subject to stringent delay constraints. In

the next chapter, we propose a coding scheme that accommodates the transmission of such heterogeneous

traffic over an interference network.

14





Chapter 3

Interference Networks Under Mixed Delay

Constraints

In this chapter, we propose a model for interference networks with mixed delay constraints when neigh-

bouring Txs and Rxs cooperate. Specifically, our model accommodates not only “slow" messages that can

tolerate the delays introduced by cooperation, but also “fast" messages that have to be encoded and de-

coded without further delay and thus cannot profit from cooperation. The standard approach to combine

the transmissions of “slow” and “fast” messages is to apply a smart scheduling algorithm and thus to time-

share a scheme for only “slow” messages with a scheme for only “fast” messages. In our model, each Tx can

simultaneously convey “fast" and “slow" messages to its corresponding Rx.

3.1 Problem Setup

We consider cellular interference networks with K cells each consisting of one Tx and Rx pair. Txs and

Rxs are equipped with Lt = Lr = L antennas and in the networks we consider regular interference patterns

except at the edges. As an example, Fig. 3.1 shows Wyner’s symmetric network, where each cell corresponds

to a Tx/Rx pair and the interference pattern is depicted with black dashed lines. Each Tx k ∈ K wishes

to send a pair of independent messages M (F )
k and M

(S)
k to a specific Rx k ∈ K. The “fast" message

M
(F )
k is uniformly distributed over the set M(F )

k , {1, . . . , b2nR
(F )
k c} and needs to be decoded subject to

a stringent delay constraint, as we explain shortly. The “slow" message M (S)
k is uniformly distributed over

M(S)
k , {1, . . . , b2nR

(S)
k c} and is subject to a less stringent decoding delay constraint. Here, n denotes the

blocklength of transmission and R(F )
k and R(S)

k the rates of transmissions of the “fast" and “slow" messages.

15



16 3.1. PROBLEM SETUP

+ + + + + + + + + + + + + + + +

1 2 . . . K

Figure 3.1: Illustration of the symmetric Wyner network. Pink circles indicate Txs and gray circles indicate
Rxs, purple arrows indicate the available cooperation links at Txs and at Rxs side, and black dashed lines
indicate that the communication in neighbouring cells interfere.

We consider three different cooperation scenarios:

• Neighbouring Txs cooperate by communicating during DTx > 0 rounds over dedicated cooperation

links. Rxs cannot cooperate, and so the number of Rx-cooperation rounds is DRx = 0. (This scenario

is termed “Tx-cooperation Only")

• Neighbouring Rxs cooperate by communicating during DRx > 0 rounds over dedicated cooperation

links. Txs cannot cooperate, and so the number of Tx-cooperation rounds is DTx = 0. (Termed

“Rx-cooperation Only")

• Neighbouring Txs cooperate during DTx > 0 rounds over dedicated cooperation links and neighbouring

Rxs cooperate during DRx > 0 rounds. (Termed “Tx- and Rx-cooperation").

The cooperative communication is subject to a total delay constraint

DTx + DRx ≤ D, (3.1)

where D ≥ 0 is a given parameter of the system and the values of DTx and DRx are design parameters

and can be chosen arbitrary such that (3.1) is satisfied. As we will see, in our setup the cooperative

communication only concerns “slow" messages, because “fast" messages are subject to a stringent delay

constraint and thus have to be transmitted and decoded without further delay. In the following we explain

the encoding and the decoding procedure of “Tx- and Rx-cooperation" scenario. The procedure can be

easily adjusted for “Tx-cooperation Only" and “Rx-cooperation Only" scenarios.

We describe the encoding at the Txs. Neighbouring Txs first communicate to each other over dedicated

noise-free, but rate-limited, links. Communication takes place over DTx > 0 rounds and can depend only

on the “slow" messages but not on the “fast" messages. To describe this cooperative communication more

16



CHAPTER 3. INTERFERENCE NETWORKS UNDER MIXED DELAY CONSTRAINTS 17

formally, define for each k ∈ K the Tx-neighbouring set NTx(k) as the set of all Txs that can directly

exchange cooperation messages with Tx k. In each cooperation round j ∈ {1, . . . ,DTx}, Tx k sends a

cooperation message T (j)
k→`

(
M

(S)
k ,

{
T
(1)
`′→k, . . . , T

(j−1)
`′→k

}
`′∈NTx(k)

)
to Tx ` if ` ∈ NTx(k). The rate-limitation

on the cooperation link imposes

DTx∑
j=1

H(T
(j)
k→`) ≤ πTx, k ∈ K, ` ∈ NTx(k), (3.2)

where πTx , µTx · n2 log(P) for a given Tx-cooperation prelog µTx > 0.

Tx k finally computes its channel inputs Xn
k = (Xk,1, . . . ,Xk,n) ∈ RL×n as a function of its “fast" and

“slow" messages and of all the DTx|NTx(k)| cooperation messages that it obtained from its neighbouring

transmitters:

Xn
k = f

(n)
k

(
M

(F )
k ,M

(S)
k , {T (1)

`′→k, . . . , T
(DTx)
`′→k }`′∈NTx(k)

)
. (3.3)

The channel inputs have to satisfy the average block-power constraint

1

n

n∑
t=1

||Xk,t||2 ≤ P, ∀ k ∈ K, (3.4)

almost surely.

We now describe the decoding. For each k ∈ K, define the Rx-neighbouring set NRx(k) as the set of all

receivers that can directly exchange cooperation messages with Rx k, and recall the interference set ITx,k

as the the set of all Txs whose signals interfere at Rx k.

Decoding takes place in two phases. During the first fast-decoding phase, each Rx k decodes its intended

“fast" message M (F )
k based on its own channel outputs Yn

k = (Y k,1, . . . ,Y k,n) ∈ RL×n where

Yn
k = Hk,kX

n
k +

∑
k̂∈ITx,k

Hk̂,kX
n
k̂

+ Zn
k,k, (3.5)

and Zn
k,k is i.i.d. standard Gaussian noise, the interference set ITx,k is defined in (2.2), and the fixed L-by-L

full-rank matrix Hk̂,k models the channel from Tx k̂ to the receiving antennas in Cell k.

So, Rx k produces:

M̂
(F )
k = g

(n)
k

(
Yn
k

)
, (3.6)

where g(n)k denotes a decoding function on appropriate domains.

17



18 3.1. PROBLEM SETUP

In the subsequent slow-decoding phase, Rxs first communicate with their neighbours during DRx ≥ 0

rounds over dedicated noise-free but rate-limited links, and then they decode their intended “slow"

messages based on their outputs and based on this exchanged information. Specifically, in each co-

operation round j ∈ {1, . . . ,DRx}, each Rx k, for k ∈ {1, . . . ,K}, sends a cooperation message

Q
(j)
k→`

(
Yn
k ,
{
Q

(1)
`′→k, . . . , Q

(j−1)
`′→k }`′∈NRx(k)

})
to Rx ` if ` ∈ NRx(k). The rate-limitation on the cooperation

link imposes
DRx∑
j=1

H(Q
(j)
k→`) ≤ πRx, k ∈ {1, . . . ,K}, ` ∈ NRx(k), (3.7)

where πRx , µRx · n2 log(P) for some given Rx-conferencing prelog µRx > 0.

After the last conferencing round, each Rx k decodes its desired “slow" messages as

M̂
(S)
k = b

(n)
k

(
Yn
k ,
{
Q

(1)
`′→k, . . . , Q

(DRx)
`′→k

}
`′∈NRx(k)

)
, (3.8)

where b(n)k denotes a decoding function on appropriate domains.

We assume that interference is short range, and thus only from neighbouring Txs and Rxs. More

precisely, we assume that the interference set ITx,k of Rx k is a subset of both the k-th Tx-neighbouring set

NTx(k) and the k-th Rx-neighbouring set:

ITx,k ⊆ {NRx(k) ∩NTx(k)}. (3.9)

Given power P > 0, maximum delay D ≥ 0, and cooperation rates πRx, πTx ≥ 0, average rates

(R̄
(S)
K (P), R̄

(F )
K (P)) are called achievable, if there exist rates {(R(F )

k , R
(S)
k )}Kk=1 satisfying

R(F ) ,
1

K

K∑
k=1

R
(F )
k , and R(S) ,

1

K

K∑
k=1

R
(S)
k , (3.10)

and encoding, cooperation, and decoding functions for these rates satisfying constraints (3.1), (3.2), (3.4),

and (3.7) and so that the probability of error vanishes:

p(error) , P
[ ⋃
k∈K

((
M̂

(F )
k 6= M

(F )
k

)
∪
(
M̂

(S)
k 6= M

(S)
k

))]
→ 0 as n→∞. (3.11)

Definition 1. Given power constraint P > 0, maximum delay D, and maximum cooperation rates πTx and

18
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S(F )

S(S)

S
(S)
max

S
(F )
max

Time-sharing

slope < −1

(S
(F )
both,S

(S)
both)

Figure 3.2: Schematic representation of a typical optimal MG region

πRx, the capacity region C(P, πTx, πRx,D) is the closure of the set of all rate pairs (R̄(F ), R̄(S)) that are

achievable.

An MG pair (S(F ), S(S)) is called achievable, if for every positive integer K and power P > 0 there exist

achievable average rates {R(F )(P), R(S)(P)}P>0 satisfying

S(F ) , lim
K→∞

lim
P→∞

R(F )(P)
1
2 log(P)

, and S(S) , lim
K→∞

lim
P→∞

R(S)(P)
1
2 log(P)

. (3.12)

Definition 2. The closure of the set of all achievable MG pairs (S(F ), S(S)) is called optimal MG region

and denoted S?(µTx, µRx,D).

As we will see, in some cases, the maximum sum MG S(F ) + S(S) can also be achieved at positive “fast”

MGs (or even for all “fast” MGs) implying that the more stringent constraints on transmission of “fast"

messages do not harm the overall performance of the system. This is for example the case for all MG pairs

(S(F ), S(S)) that in Fig. 3.2 lie on the straight line connecting the blue point S
(S)
max and the green point

(S
(F )
both,S

(S)
both). In comparison, scheduling schemes that alternate between transmissions of “fast" and “slow"

messages can achieve only the straight line (see the dashed red line in Fig. 3.2)) connecting the largest

MG of “fast" and the largest MG of “slow" messages. For scheduling schemes, the sum MG thus decreases

19



20 3.1. PROBLEM SETUP

linearly with the “fast” MG whenever the maximum “fast” MG is smaller than the maximum “slow” MG.

20





Chapter 4

Wyner’s Soft-Handoff Model Under Mixed

Delay Constraints

In this chapter, we consider Wyner’s soft-handoff network and derive inner and outer bounds on the set of

MG pairs that are simultaneously achievable for "fast" and "slow" messages. Scenarios with Tx-cooperation,

Rx-cooperation or both are considered. We also propose inner and outer bounds on the capacity region of

this network when only Rxs can cooperate.

The MG bounds are tight in special cases and allow us to obtain the following conclusions. For large

cooperation rates, and when both Txs and Rxs can cooperate, it is possible to simultaneously attain

maximum MG for "fast" messages and maximum sum MG for all messages. When only Txs or only Rxs

can cooperate (but not both), the largest achievable sum MG decreases linearly with the MG of "fast"

messages if "fast" messages have moderate or large MG. In contrast, if the MG of "fast" messages is small,

the maximum sum MG can be achieved even with only Tx or only Rx cooperation. A similar conclusion

holds in the finite SNR regime when only Rxs can cooperate.

4.1 System Model Description

Consider Wyner’s soft-handoff network with K Txs and K Rxs that are aligned on two parallel lines so

that each Tx k has two neighbours, Tx k− 1and Tx k+ 1, and each Rx k has two neighbours, Rx k− 1 and

Rx k+ 1. Interference is short-range in the sense that the signal sent by Tx k is observed only by Rx k and

by the neighbouring Rx k + 1 (see Figure 4.1). Let Txs and Rxs be equipped with L > 0 antennas each.
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T
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Figure 4.1: System model with Tx- and Rx-cooperation.

The time-t channel output at Rx k is then described as

Y k,t = Hk,kXk,t + Hk−1,kXk−1,t + Zk,t, (4.1)

where Xk,tand Xk−1,t are the real L-dimensional vectors sent by Tx k and Tx k − 1 at time t; {Zk,t} is

a noise sequence consisting of i.i.d. standard Gaussian vectors; Hk,k and Hk−1,k are fixed full rank channel

matrices; and X0,t = 0 for all t.

In the following sections, we consider the Rx-cooperation only scenario and the Tx-cooperation only

scenario. For each scenario we present coding schemes and the optimal MG region. We also present an inner

bound on the capacity region with only Rx-cooperation. The scenario with both Tx-and Rx-cooperation is

treated in Section 4.5.

4.2 Optimal MG Region and Coding Schemes for Rx-cooperation Only

In this section, we consider only Rx-cooperation but no Tx-cooperation. So,

µRx > 0 and µTx = 0. (4.2)

Theorem 1 (Optimal Multiplexing Gain Region: Rx-cooperation Only). For any given µRx > 0, the MG
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region S?(µRx,D) is the set of all nonnegative pairs (S(F ),S(S)) satisfying

2S(F ) + S(S) ≤ L (4.3)

S(F ) + S(S) ≤ min

{
L

2
+ µRx, L · 2D + 1

2D + 2

}
. (4.4)

Proof. The converse to (4.3) is proved in Appendix A.1.1.The converse to (4.4) is proved in Appendix A.1.2.

For the achievability, define the following five MG pairs:

(
S(F ) =

L

2
, S(S) = 0

)
, (4.5a)(

S(F ) = 0, S(S) = L · 2D + 1

2D + 2

)
, (4.5b)(

S(F ) = 0, S(S) =
L

2
+ µRx

)
, (4.5c)(

S(F ) =
L

2D + 2
, S(S) = L · 2D

2D + 2

)
, (4.5d)(

S(F ) =
L

2
− µRx, S

(S) = 2µRx

)
. (4.5e)

In the following Subsection 4.2.1 we show that when µRx ≥ µmax, where

µmax , L · D
2D + 2

, (4.6)

the MG pairs (4.5a), (4.5b), and (4.5d) are achievable. When µRx < µmax the MG pairs (4.5a), (4.5c),

and (4.5e) are achievable. The proof of achievability of Theorem 1 then follows from simple time-sharing

arguments.

Figure 4.2 depicts the MG region in Theorem 1 for different values of µRx. When there are only “slow"

messages, the maximum MG is min{L2 + µRx, L · 2D+1
2D+2} which by a rate-transfer argument is equal to the

maximum sum MG. Interestingly, this sum MG remains unchanged whenever the “fast” MG S(F ) is below

a certain threshold. Mathematically, this is described by the slope of the maximum S(S) in function of S(F )

boundary being equal to −1 when

S(F ) ≤ max

{
L

2
− µRx,

L

2D + 2

}
. (4.7)
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Figure 4.2: The optimal MG region S?(µRx,D) for Rx-cooperation only, for different values of µRx and
D = 10 and L = 1.

For

S(F ) > max

{
L

2
− µRx,

L

2D + 2

}
, (4.8)

the slope is −2. In this latter regime, increasing the MG of “fast" messages by ∆ requires decreasing the

MG of “slow" messages by 2∆. There is thus a penalty in sum MG caused by the more stringent delay

constraints on “fast" messages.

4.2.1 Schemes Proving Achievability of Theorem 1

We prove achievability of the MG pairs in (4.5).

1. MG pair in (4.5a): Periodically silence every second Tx. This splits the network into dK/2e non-

interfering point-to-point links. Send a “fast" message over each of these links (see Figure 4.3), but no

“slow" message at all. The described scheme achieves the MG pair in (4.5a) and requires no cooperation

rate.

2. MG pairs in (4.5b) and (4.5c): Let the Txs only send “slow" messages but no “fast" messages. Under

this coding assumption, the setup at hand is a multi-antenna version of the setup in Reference [46], but

specialized to 0 Tx-cooperation rounds and D Rx-cooperation rounds. The multi-antenna extension of

the scheme proposed in Reference [46, Section V] can thus be used to achieve the MG pair in (4.5b) if

µRx ≥ µmax and the MG pair in (4.5c) if µRx < µmax.

For reference in the following subsection, we briefly review the scheme in Reference [46, Section V] when

specialized to Rx-cooperation only. For details, see Reference [46]. Consider first the case µRx ≥ µmax. In
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Figure 4.3: Scheme achieving Multiplexing Gain (MG) pair (4.5a) where only “fast” messages are transmit-
ted.
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Figure 4.4: Scheme for Rx-cooperation only.

this case, the scheme periodically silences every 2D+ 2nd Tx. This splits the network into smaller subnets,

each consisting of 2D + 1 active Txs and 2D + 2 active Rxs. We describe the communication in the first

subnet, see also Figure 4.4; the others are treated in an analogous way.

Each Tx k ∈ {1, . . . , 2D+1} in this first subnet encodes its “slow" messageM (S)
k using an L-dimensional

Gaussian codebook and then sends the resulting codeword using its L Tx-antennas over the channel. De-

coding is performed as follows. Rx 1 decodes its desired message using an optimal point-to-point decoding

method based on the interference-free channel outputs Y n
1 = H1,1X

n
1 + Zn

1 . Then it sends its decoded

message M̂ (S)
1 over the cooperation link to Rx 2 during the first cooperation round. Rxs 2 to D + 1 apply

successive interference cancellation (SIC) where they cancel the interference from the preceding Tx with the

cooperation message obtained from their left neighbour. After decoding its intended “slow" message, each
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Rx k ∈ {2, . . . ,D} sends its decoded message M̂ (S)
k over the cooperation link to Rx k+1 during cooperation

round k.

We now describe decoding at Rxs D + 2, . . . , 2D + 2. Recall that Tx 2D + 2 is silenced. Therefore

Rx 2D + 2 observes the interference-free channel outputs Y n
2D+2 = H2D+1,2D+2X

n
2D+1 + Zn

2D+2. Based on

these outputs, Rx 2D + 2 decodes the “slow" message M (S)
2D+1 intended for Rx 2D + 1 and transmits the

decoded message M̂ (S)
2D+1 to this Rx over the cooperation link in round 1. Rxs D + 2 to 2D + 1 declare

the cooperation message that they receive from their right neighbour as their desired message. They also

employ SIC to decode the “slow" message intended for the neighbour to their left. Finally, after this decoding

step, each Rx k ∈ {D + 3, . . . , 2D + 2} sends the decoded message M̂ (S)
k−1 over the cooperation link to its

left neighbour during cooperation round 2D + 3 − k. Figure 4.4 illustrates the decodings and conferenced

messages.

In the described scheme, 2D + 1 Txs send a “slow" message using an L-dimensional Gaussian codebook

of power P and all these messages can be decoded based on interference-free outputs. An average “slow"

MG of L · 2D+1
2D+2 is thus achieved in each subnet. Moreover, 2D cooperation messages are sent in each subnet,

each of prelog equal to the rate of a “slow" message, i.e., L. The average cooperation prelog per link is thus

L · 2D
2(2D+2) = µmax. If one time-shares 2D + 2 different instances of the described scheme with a different

subset of silenced users in each of them, the overall scheme achieves the MG pair (S(F ) = 0, S(S) = L · 2D+1
2D+2)

with each cooperation link being loaded at average cooperation prelog µmax.

When µRx < µmax, we can time-share the scheme achieving (4.5b) with a scheme that deactivates every

second Tx and sends “slow” messages over the interference-free links. This latter scheme does not require

any cooperation. Time-sharing is done according to the available cooperation prelog µRx: the first scheme

that uses cooperation prelog µmax is used over a fraction µRx
µmax

of time and the no-cooperation scheme over

the remaining fraction 1 − µRx
µmax

of time. The combined scheme then requires cooperation prelog µRx and

achieves the MG pair in (4.5c).

3. MG pairs in (4.5d) and (4.5e): Reconsider the coding scheme that achieves MG pair (4.5b) and that

is described in the previous subsection and illustrated in Figure 4.4. A close inspection of the scheme reveals

that in each subnet, decoding of the message sent by the left-most Tx does not rely on the conferenced

information. This first message of each subnet thus satisfies our decoding requirement for “fast" messages.

We propose to apply the above scheme, but to let the first Tx of every subnet (the yellow Tx in Figure

4.4) send a “fast" message and the subsequent 2D Txs of the subnet send “slow" messages. This modified

scheme requires the same cooperation prelog µmax as before and it achieves the MG pair in (4.5d).
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For setups where µRx < µmax, we propose to time-share the scheme achieving (4.5d) over a fraction µRx
µmax

of time with the scheme achieving (4.5a) over the remaining fraction 1 − µRx
µmax

of time. This time-sharing

scheme has cooperation prelog equal to µRx, and thus respects the constraint (3.7). Moreover, it achieves

the MG pair in (4.5e).

4.3 Optimal MG Region and Coding Schemes for Tx-Cooperation Only

In this section, we consider only Tx-cooperation but no Rx-cooperation. So,

µTx > 0 and µRx = 0. (4.9)

Theorem 2 (Optimal MG region: Tx-cooperation Only). For any given µTx > 0, the MG region S?(µTx,D)

is the set of all nonnegative pairs (S(F ), S(S)) satisfying

2S(F ) + S(S) ≤ L (4.10)

S(F ) + S(S) ≤ min

{
L

2
+ µTx, L · 2D + 1

2D + 2

}
. (4.11)

Proof. The converse to (4.11) is proved in Appendix A.1.1. The converse to (4.10) is proved in Ap-

pendix A.1.3. For the achievability, define the following MG pairs:

(
S(F ) = 0, S(S) = L · 2D + 1

2D + 2

)
, (4.12a)(

S(F ) = 0, S(S) =
L

2
+ µTx

)
, (4.12b)(

S(F ) =
L

2D + 2
, S(S) = L · 2D

2D + 2

)
, (4.12c)(

S(F ) =
L

2
− µTx, S

(S) = 2µTx

)
. (4.12d)

In the following Subsection 4.3.1 we show that when µTx ≥ µmax the MG pairs (4.5a), (4.12a), and

(4.12c) are achievable and when µTx < µmax the MG pairs (4.5a), (4.12b), and (4.12d) are achievable. The

achievability proof of the theorem then follows by simple time-sharing arguments.

Remark 1. Notice the duality between Theorems 1 and 2, which show that cooperation is equally beneficial

for only Tx- or only Rx-cooperation. As we will see in Section 4.5, it is however more beneficial, when Txs

and Rxs can conference.
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4.3.1 Schemes Proving the Achievability of Theorem 2

We prove achievability of the MG pairs in (4.12). MG pair (4.5a) is achievable as described in the previous

section (no cooperation is required at all).

1. MG pairs in (4.12a) and (4.12b): Let the Txs only send “slow" messages but no “fast" messages.

Under this coding assumption, the introduced setup corresponds to a multi-antenna version of the setup in

Reference [46] but specialized to D Tx-cooperation rounds and 0 Rx-cooperation rounds. Achievability of

MG pairs (4.12a) and (4.12b) then follows immediately by specializing [46, Theorem 1] to Tx-cooperation

only. In the following we briefly describe the schemes achieving (4.12a) and (4.12b). For details see

Reference [46].

We silence every 2D + 2nd Tx. This splits the network into non-interfering subnets, and in a given

subnet we apply the scheme depicted in Figure 4.5. Specifically, Tx 1 encodes its message using an L-

dimensional power-P Gaussian point-to-point codebook, and sends the resulting codeword Xn
1 using its L

Tx-antennas over the channel. It also precodes the obtained sequence with the matrix H−12,2H1,2, quantises

the precoded sequence In1 , H−12,2H1,2X
n
1 with a rate-L2 log(1 + P) quantiser to obtain a quantisation În1

at noise level, and sends the resulting quantisation message as a first-round cooperation message to Tx 2.

For each k = 2, . . . ,D + 1, Tx k obtains a round-(k − 1) cooperation message from its left neighbour Tx

k − 1 that describes the quantised version Î
n
k−1 of Ink−1 , H−1k,kHk−1,kX

n
k−1. Based on this message, Tx k

reconstructs Î
n
k−1, encodes its “slow" messageM (S)

k using a power P dirty-paper code (DPC) that mitigates

the interference Î
n
k−1, and sends the resulting DPC sequenceXn

k over the channel. Moreover, it precodes this

input sequence with the matrix H−1k+1,k+1Hk,k+1, quantises the precoded sequence Ink , H−1k+1,k+1Hk,k+1X
n
k

with a rate-L/2 log(1+P) quantiser (for a quantisation at noise level) to obtain Î
n
k , and sends the quantisation

message as a round-k cooperation message over the link to its right neighbour. Tx D+1 produces its inputs

in a similar way, that is, using DPC, but sends no cooperation message at all.

Rx 1 decodes M (S)
1 based on the interference-free outputs

Y n
1 = H1,1X

n
1 + Zn

1 , (4.13)

using a standard point-to-point decoding rule. Each Rx k ∈ {2, . . . ,D + 1} decodes its desired message
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Figure 4.5: Scheme for Tx-cooperation only.

M
(S)
k based on the premultiplied outputs

H−1k,kY
n
k = H−1k,kHk−1,kX

n
k−1 + Xn

k + H−1k,kZ
n
k , (4.14)

using an optimal DPC decoding rule. (Recall that Xn
k was produced as a DPC sequence that mitigates

Î
n
k−1, a quantised version of Ink−1 = H−1k,kHk−1,kX

n
k−1). Since quantisation was performed at noise level,

each message M (S)
1 , . . . ,M

(S)
D+1 can be sent reliably with MG L.

Each message Mk, with k ∈ {D + 3 . . . 2D + 2}, is sent over the path Tx k →Tx k − 1 → Rx k. We

describe the transmissions in more detail, starting with the last Tx in the subnet. Tx 2D+ 2 does not send

any channel inputs, that is, Xn
2D+2 = 0n. However, it first encodes its “slow" message M (S)

2D+2 using an

L-dimensional Gaussian point-to-point codebook, precodes the codeword Un
2D+2 by the matrix H−12D+1,2D+2,

and then quantises this precoded codeword Sn2D+1 , H−12D+1,2D+2U
n
2D+2 with a rate-L/2 log(1+P) to obtain

a quantisation Ŝ
n
2D+1 at noise level. It finally sends the quantisation message describing Ŝ

n
2D+1 as a first-

round cooperation message to Tx 2D+ 1. Tx 2D+ 1 reconstructs Ŝ
n
2D+1 and sends it over the channel, that

is, Xn
2D+1 = Ŝ

n
2D+1.

In a similar way, each Tx k ∈ {2D + 1, . . . ,D + 2} encodes its own “slow" message M (S)
k by means of

DPC of power P that mitigates the interference H−1k−1,kHk,kX
n
k of the signal sent by Tx k itself; precodes the

obtained sequence Un
k with the matrix H−1k−1,kHk,k; quantises the precoded sequence Snk−1 , H−1k−1,kHk,kU

n
k

to obtain a quantisation Ŝk−1 at noise level; and sends the corresponding quantisation message as a (2D+

3− k)-round cooperation message over the link to Tx k − 1. Tx k − 1 then reconstructs Ŝ
n
k−1 and sends it
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over the channel: Xn
k−1 = Ŝ

n
k−1. Rxs D + 2, . . . , 2D + 1 decode their intended messages using an optimal

DPC decoding rule based on the premultiplied outputs

H−1k−1,kY
n
k = Xn

k−1 + H−1k−1,kHk,kX
n
k + H−1k−1,kZ

n
k . (4.15)

Recall that Xn
k−1 is a quantised version (at noise level) of the precoded signal Snk−1 , H−1k−1,kHk,kU

n
k ,

where Un
k is a DPC sequence that mitigates the interference H−1k−1,kHk,kX

n
k . Each of the messages

M
(S)
D+3, . . . ,M

(S)
2D+2 can thus be transmitted reliably at full MG L.

In the described scheme, an average “slow" MG of L · 2D+1
2D+2 is thus achieved in each subnet. Moreover,

2D cooperation messages of prelog L are sent in each subnet, and the average cooperation prelog per link

is L · 2D
2(2D+2) = µmax. If one time-shares 2D + 2 different instances of the described scheme with a different

subset of silenced users in each of them, the overall scheme achieves the MG pair (S(F ) = 0, S(S) = L2D+1
2D+2)

with each cooperation link being loaded at average cooperation prelog µmax.

When µTx < µmax, we propose to time-share above described scheme over a fraction µTx
µmax

of time with a

scheme that deactivates every second Tx and sends “slow” messages over the interference-free links (which

does not require any cooperation) over the remaining fraction 1 − µTx
µmax

of time. The overall time-sharing

scheme achieves the MG pair (4.12b) and loads each Tx-cooperation link at prelog µTx.

2. MG pairs in (4.12c) and (4.12d): A close inspection of the coding scheme described above and de-

picted in Figure 4.5 reveals that in each subnet, the message pertaining to the D+1st Tx does not participate

in the cooperation, see Figure 4.5. That means, all conferenced information is independent of this message.

The message thus satisfies the constraints imposed on “fast" messages in our scenario. We thus propose to

employ above scheme, but where the D+ 1st Tx in each subnet (the yellow Tx in Figure 4.5) sends a “fast"

message and the first and the last D Txs in the subnet send “slow" messages. This scheme requires again

cooperation prelog µmax and achieves the MG pair in (4.12c).

When µTx < µmax, we can time-share this scheme over a fraction µTx
µmax

of time with the scheme achieving

(4.5a) over the remaining fraction 1− µTx
µmax

of time. The time-shared scheme achieves the MG pair (4.12d)

and loads each Tx-cooperation link at orelog µTx.

Remark 2. An analogous result can be obtained for the setup where each receiver can send conferencing

messages only to its left neighbour or only to its right neighbour. The multiplexing gain region is character-
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ized by (6.25) and

S(F ) + S(S) ≤ min

{
1

2
+
µ

2
,

D + 1

D + 2

}
. (4.16)

Notice that despite the asymmetry of the network, the result is the same for conferencing to left or right

neighbours.

4.4 Results in the Finite SNR Regime with Rx-Cooperation Only

In this section, we propose an inner bound at finite SNR on the capacity region of Wyner’s soft-handoff

model when only Rxs can cooperate. For simplicity, we assume L = 1 and we fix all the direct channel

coefficients at 1 and all the cross channel coefficients at a fixed value α ∈ (0, 1). This inner bound is based

on two schemes. The first scheme assumes πRx ≤ R(F ). Each Tx uses a 3-layer superposition code, where

it sends its “fast" message in the lowest two layers and its “slow" message in the upper-most layer. Each

Rx immediately decodes its intended “fast" message based only on its channel outputs and then sends the

part encoded in the lower-most layer to its right neighbour. To decode its intended “slow" message, it first

pre-subtracts the interference caused by the lower-most layer of the superposition codeword sent by the Tx

to its left. This scheme uses only a single conferencing round.

The second scheme assumes πRx > R(F ) and also exchanges parts of “slow" messages over the conferenc-

ing links. Each transmitter employs a D + 1-layer superposition code, where the lower-most layer encodes

the “fast" message and all higher layers encode parts of the “slow" message. As before, each Rx decodes

its intended “fast" message immediately based on its channel outputs. It then sends this decoded message

over the conferencing link to its left neighbour during the first conferencing round. Subsequently, after each

conferencing round j = 1, . . . ,D, each receiver cancels the interference from the layer-j codeword sent by

the transmitter to its left and then decodes the layer-j + 1 of its intended message. It sends the decoded

message part and the conferencing message that it obtained in the previous rounds to its right neighbour.

Theorem 3 (Capacity Inner Bound). The capacity region C(P, πRx) includes all rate-pairs (R(F ), R(S))

that satisfy

R(F ) ≤ min
{
I(U2;Y ), I(U2;Y |U1) + πRx

}
(4.17a)

R(F ) +R(S) ≤ 1

K

K∑
k=1

[
I(X;Y, U ′1|U1) + min

{
I(U2;Y ), I(U2;Y |U1) + πRx

}]
, (4.17b)

where triples (U1, U2, X) and (U ′1, U
′
2, X

′) are i.i.d. according to some probability distribution PU1U2X that
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Figure 4.6: The inner bound in Theorem 3 and the outer bound in Theorem 4 on the capacity for P = 5,
α = 0.2, πRx = 0.346, and D = 16.
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Figure 4.7: Capacity inner bound in Theorem 3 for πRx = 2, P = 5, α = 0.2 and different values of D.

satisfies the Markov chain U1 → U2 → X, and where Y = X + αX ′ + Z with Z standard Gaussian

independent of (U1, U2, X, U
′
1, U

′
2, X

′).

The capacity region C(P, πRx) also includes all rate-pairs (R(F ), R(S)) that satisfy

R(F ) ≤ I(U ;Y ) (4.18a)

R(F ) +R(S) ≤ I(U ;Y ) + I(V1;Y, U
′|U)

+
D−1∑
d=2

I(Vd;Y, V
′
d−1|Vd−1) + I(X;Y,X ′|VD−1), (4.18b)

where the tuples (U, V1, . . . , VD−1, X) and (U ′, V ′1 , . . . , V
′
D−1, X

′) are i.i.d. according to some probability
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distribution PUV1...VD−1X satisfying the Markov chain U → V1 → V2 → . . . → VD−1 → X and the rate

constraint

I(U ;Y ) + I(V1;Y,U
′|U) +

D−1∑
d=2

I(Vd;Y, V
′
d−1|Vd−1) ≤ πRx, (4.19)

and where Y = X + αX ′ + Z with Z independent standard Gaussian.

Proof: See Appendix A.1.4.

Theorem 4 (Capacity Outer Bound). Any achievable rate pair (R(F ), R(S)) satisfies the following two

conditions:

R(F ) +R(S) ≤
(⌈

K−1
2

⌉
+ 1
)

K
· 1

2
log
(
1 + (1 + α2)P

)
+

⌊
K−1
2

⌋
K

·max{− log |α|, 0}+

⌊
K
2

⌋
K
· 1

2
log(1 + α2) +

K − 1

K
· πRx, (4.20)

2R(F ) +R(S) ≤ K − 1

K

(
1

2
log
(
(1 + (1 + α2)P)(1 + α2)

)
+ 2 max{− log |α|, 0}

)
+

1

K
log(1 + P).(4.21)

Proof: Follows by the proof of the bounds (4.3) and (4.4) in Appendices A.1.1 and A.1.2, and by

fixing L = 1 and all the direct channel coefficients at 1 and all the cross channel coefficients at α ∈ (0, 1).

Fig. 4.6 illustrates the outer bound on the capacity-region in Theorem 4 and the inner bound in Theo-

rem 3 when this latter is evaluated for jointly Gaussian distributions on the inputs and the auxiliaries. For

small values of R(F ), both the lower and the upper bounds decrease with slope -1. For large values of R(F ),

they decrease with slope -2. Figure 4.7 illustrates the inner bound on the capacity region for P = 5 and

different values of D.

4.5 MG Region for Both Tx-and Rx-Cooperation

In this section we consider both Tx- and Rx-cooperation and we focus again on the high SNR regime, more

specifically on the MG region. Recall that the number of Tx- and Rx-cooperation rounds DTx and DRx is a

design parameter over which we can optimize subject to the sum-constraint DTx +DRx ≤ D. For simplicity,

in this section we assume that the total number of cooperation rounds D is even.

In the first subsection 4.5.1 we present our inner and outer bounds on the MG region. We also prove

that they match in some cases. In the following subsections we then present the coding schemes that allow

us to conclude our achievability result.
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4.5.1 Results on the MG Region

Let the maximum number of total cooperation rounds D be given. For any pair DRx ∈ {1, . . . ,D− 1} and

DTx ∈ {1, . . . ,D− 1} summing to less than D, define

µTx,L(DTx) , L · DTx

2D + 2
, (4.22)

µRx,L(DRx) , L · DRx

2D + 2
, (4.23)

µTx,H(DTx) , L ·
D
2 + 3

4DTx − 1
4

2D + 2
, (4.24)

µRx,H(DRx) , L ·
D
2 + DRx − 1

2D + 2
. (4.25)

Notice that µTx,L(DTx) ≤ µTx,H(DTx) and µRx,L(DRx) ≤ µRx,H(DRx).

Also, define the five MG pairs:

S
(F )
NoCoop ,

(
S(F ) =

L

2
, S(S) = 0

)
, (4.26a)

S
(S)
NoCoop ,

(
S(F ) = 0, S(S) =

L

2

)
, (4.26b)

SCoop ,
(
S(F ) = 0, S(S) = L · 2D + 1

2D + 2

)
, (4.26c)

SPartial ,
(
S(F ) = L · 2

2D + 2
, S(S) = L · 2D− 1

2D + 2

)
, (4.26d)

SInterlaced ,
(
S(F ) =

L

2
, S(S) = L · D

2D + 2

)
. (4.26e)

Notice that all these MG pairs do not depend on the number of cooperation rounds DTx and DRx. In what

follows, we will be interested in convex combinations of these points and therefore define for each α ∈ [0, 1]:

SCoop(α) , α · SCoop + (1− α) · S(S)NoCoop, (4.27a)

SPartial(α) , α · SPartial + (1− α) · S(F )
NoCoop, (4.27b)

SInterlaced(α) , α · SInterlaced + (1− α) · S(F )
NoCoop, (4.27c)

SPartial-Inter(α) , α · SInterlaced + (1− α) · SPartial. (4.27d)

Notice that SCoop(1) = SCoop and SPartial(1) = SPartial and SInterlaced(1) = SInterlaced. Moreover,

SPartial-Inter(1) = SInterlaced and SPartial-Inter(0) = SPartial.
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Theorem 5 (Achievable MG Region: Tx- and Rx-cooperation). For any choice of odd-valued integers

DTx,DRx ∈ {1, 3, 5, . . . ,D− 1} summing to D, the optimal MG region S?(µTx, µRx,D) contains some of the

following regions, depending on the available cooperation prelogs µTx and µRx.

• If µTx ≥ µTx,H(DTx) and µRx ≥ µRx,H(DRx), the optimal MG region S?(µTx, µRx,D) contains the

trapezoidal region

conv hull
(

(0, 0), S
(F )
NoCoop, SCoop, SInterlaced

)
. (4.28)

• If µTx ≥ µTx,L(DTx) and µRx ≥ µRx,L(DRx), the optimal MG region S?(µTx, µRx,D) contains the

pentagon

conv hull
(

(0, 0), S
(F )
NoCoop, SCoop, SPartial-Inter(α

?
1), SInterlaced(β?1)

)
, (4.29)

where

α?1 , min

{
µTx − µTx,L(DTx)

µTx,H(DTx)− µTx,L(DTx)
,

µRx − µRx,L(DRx)

µRx,H(DRx)− µRx,L(DRx)
, 1

}
(4.30)

and

β?1 , min

{
µTx

µTx,H(DTx)
,

µRx

µRx,H(DRx)
, 1

}
. (4.31)

• For µTx ≤ µTx,L(DTx) or µRx ≤ µRx,L(DRx), the optimal MG region S?(µTx, µRx,D) contains the

region

conv hull ((0, 0), SCoop(α?2), SPartial(α
?
2), SInterlaced(β?2)) . (4.32)

where

α?2 , min

{
µTx

µTx,L(DTx)
,

µRx

µRx,L(DRx)

}
(4.33)

and

β?2 = min

{
µTx

µTx,H(DTx)
,

µRx

µRx,H(DRx)

}
. (4.34)

In Figure 4.8 we schematically illustrate above MG regions (4.28), (4.29) and (4.32). We see that for

large cooperation prelogs our MG region is the trapezoid in Figure 4.8a. For smaller cooperation prelogs

the MG region turns into a pentagon, see Figure 4.8b, because MG pair SInterlaced is not included anymore.

Finally, for even smaller cooperation prelogs even the MG pair SCoop is not included anymore, but needs

to be replaced by SCoop(0.93). Similarly, SPartial-Inter(0.6) needs to be replaced by SPartial(0.93).

The achievable MG region described in the theorem can also be written as a union over the choice of
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Figure 4.8: Examples of the three MG regions in (4.28), (4.29) and (4.32). Specifically, we used DTx = 3,
DRx = 3, and µTx ∈ {0.4, 0.3, 0.2} and µRx ∈ {0.4, 0.3, 0.2}.

the Tx- and Rx-cooperation rounds DTx and DRx summing to no more than D. Notice however, that one

cannot take the convex hull of this union because of the way we defined the problem setup, the choice of

DTx and DRx needs to be fixed in advance and time-sharing between different choices is not possible.

Proof of Theorem 5. In the following Subsections 4.5.2, 4.5.3 and 4.5.4 we show how to achieve the MG

pairs in (4.26c)–(4.26e) with sufficiently large cooperation prelogs µTx and µRx. In particular, to achieve

(4.26c) and (4.26d), cooperation prelogs µTx ≥ µTx,L(DTx) and µRx ≥ µRx,L(DRx) are required. To achieve

(4.26e) cooperation prelogs µTx ≥ µTx,H(DTx) and µRx ≥ µRx,H(DRx) are required. MG pairs (4.26a) and

(4.26b) can be achieved without any Tx- or Rx-cooperation by simply silencing every second transmitter

and sending either only “fast" or only "slow" messages over the remaining K/2 isolated point-to-point links.

The proof of the theorem follows then by simple time-sharing arguments. In particular, for any α ∈ [0, 1]

the MG pair SCoop(α) can be achieved by time-sharing the scheme achieving SCoop over a fraction α of

the time with the scheme achieving S
(S)
NoCoop over the remaining fraction of time. Such a time-sharing

scheme requires cooperation prelogs of µTx ≥ αµTx,L and µRx ≥ αµRx,L. The MG pairs SPartial(α) and

SInterlaced(α) are achieved by time-sharing the scheme achieving SPartial or the scheme achieving SInterlaced

over a fraction α of the time with the scheme achieving S
(F )
NoCoop over the remaining fraction of time. The

time-sharing scheme leading to SPartial(α) requires cooperation prelogs µTx ≥ αµTx,L and µRx ≥ αµRx,L

and the time-sharing scheme leading to SInterlaced(α) requires µTx ≥ αµTx,H and µRx ≥ αµRx,H. The MG

pair SPartial-Inter(α) is achieved by time-sharing the scheme achieving SInterlaced over a fraction α of the time

with the scheme achieving SPartial over the remaining fraction of time. This time-sharing scheme requires

cooperation prelogs µTx ≥ αµTx,H + (1− α)µTx,L and µRx ≥ αµRx,H + (1− α)µRx,L.

Notice that for all of above time-sharing arguments, it is important that the MG pairs S(F )
NoCoop, S

(S)
NoCoop,
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Figure 4.9: Examples of the MG regions discussed in Remark 3 for even values of DTx and DRx.

SCoop, SPartial, and SInterlaced can be achieved using the same values of DTx and DRx. As will become clear

in the following sections, these MG pairs can be achieved using any values DTx,DRx ∈ {1, 3, 5, . . .D − 1}

summing to D. The required cooperation prelogs however depend on the specific choices of DTx and DRx.

This explains why the allowed time-sharing coefficients α depend on the number of cooperation rounds DTx

and DRx.

Remark 3. If in Theorem 5 we allow the parameters DTx,DRx to take on any values in {1, 2, . . . ,D − 1}

summing to D and we remove the MG points SInterlaced, SInterlaced(β?1), SInterlaced(β?2), and SPartial-Inter(α
?
1),

we obtain a different achievable region, which can be larger for certain system parameters.

To see that this modified region is also achievable, notice that our schemes achieving SCoop and SPartial

described in Subsections 4.5.2 and 4.5.3 can be run with any number of Tx- and Rx- cooperation rounds DTx

and DRx, irrespective of whether they are odd or even. Their performance remains unchanged. In contrast,

the scheme achieving SInterlaced that we present in Subsection 4.5.4 requires that both DTx and DRx are both

odd.

In Figure 4.9 we schematically illustrate the MG regions that are achieved for DTx or DRx even. Specif-

ically, Figure 4.9a shows the MG region for large cooperation prelogs and Figure 4.9b for small cooperation

prelogs.

We also have the following converse result.

Proposition 1 (Outer Bound on Optimal MG Region: Both Tx- and Rx-cooperation). Any MG pair
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(S(F ), S(S)) in S?(µTx, µRx,D) satisfies

S(F ) ≤ L

2
, (4.35a)

S(F ) + S(S) ≤ min

{
L

2
+ µTx + µRx, L ·

2D + 1

2D + 2

}
. (4.35b)

Proof. Follows from the converse result in Reference [46] and by a rate-transfer argument from “fast" to

“slow" messages.

Figure 4.10 depicts our inner and outer bounds (Theorem 5, Remark 3, and Proposition 1) on the optimal

MG region with µTx = µRx = 0.45 and D = 10 for different values of DTx and DRx. For DRx = D/2 = 5

and DTx = D/2 = 5,

µTx ≥ µTx,H and µRx ≥ µRx,H, (4.36)

and the inner bound is given by the trapezoidal region defined in (4.28). It coincides with the outer bound,

and thus establishes the exact MG region. Notice that in this case, the MG region is solely constrained by

the fact that the MG of “fast" messages cannot exceed L
2 and that the sum MG of all messages cannot exceed

L · 2DRx+2DTx+1
2DRx+2DTx+2 . Imposing a stringent constraint on the decoding delay of the “fast" messages in this case

never penalises the sum-MG of the system. Our inner bounds obtained for odd-valued cooperation-rounds

(DTx,DRx) ∈ {(1, 9), (3, 7), (7, 3), (9, 1)} coincide with the outer bound only if S(F ) ≤ L · 2(1−α
?
1)+α

?
1·(D+1)

2D+2 ,

where α?1 depends on the choice of (DTx,DRx) and is defined in (4.30). The inner bounds for even-valued

cooperation-rounds (DTx,DRx) ∈ {(2, 8), (4, 6), (6, 4), (8, 2)} all coincide and attain the outer bound only if

S(F ) ≤ L · 2
2D+2 .

Figure 4.11 depicts our inner and outer bounds on the optimal MG region for the same D = 10 but

smaller values of µTx = µRx = 0.3. In Figure 4.11, we see that by decreasing µTx and µRx from 0.45 to 0.3,

our inner and outer bounds do not coincide for all values of S(F ). Our inner bound for DRx = 5 and DTx = 5

contains all other inner bounds and it matches the outer bound in the regime S(F ) ≤ L · 2(1−α
?
1)+α

?
1·(D+1)

2D+2 ,

where for the definition of α?1 in (4.30) one should set DTx = DRx = 5.

Figure 4.12 depicts our inner and outer bounds on the optimal MG region for the same D = 10 but when

µTx = 0.3 is smaller than µRx = 0.45. Here, the inner bound obtained for (DTx = 3,DRx = 7) includes all

other inner bounds and it matches the outer bound in the regime S(F ) ≤ L · 2(1−α
?
1)+α

?
1·(D+1)

2D+2 , where α?1 is

defined in (4.30) with DTx = 3 and DRx = 7.

38



CHAPTER 4. WYNER’S SOFT-HANDOFF MODEL UNDER MIXED DELAY CONSTRAINTS 39

0 0.5 1
0

0.2

0.4

0.6

0.8

1

S(F )

S
(S

)

Outer Bound
DTx = 1,DRx = 9

even-valued DTx,DRx

DTx = 3,DRx = 7

DTx = 5,DRx = 5

DTx = 7,DRx = 3

DTx = 9,DRx = 1

Figure 4.10: Bounds on S?(µTx, µRx,D) for µTx = 0.45, µRx = 0.45, D = 10 and L = 1 with both Tx- and
Rx-cooperation.
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Figure 4.11: Bounds on S?(µTx, µRx,D) for µTx = 0.3, µRx = 0.3, D = 10 and L = 1 with both Tx- and
Rx-cooperation.

The following corollaries generalise these observations.

Corollary 1. If there exist integers DTx,DRx ∈ {1, 3, 5, . . . ,D − 1} summing to D such that the two con-

straints

µTx ≥ µTx,H(DTx) (4.37a)

µRx ≥ µRx,H(DRx) (4.37b)

are simultaneously satisfied, then the optimal MG region S?(µTx, µRx,D) coincides with the trapezoidal
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Figure 4.12: Bounds on S?(µTx, µRx,D) for µTx = 0.3, µRx = 0.45, D = 10 and L = 1 with both Tx- and
Rx-cooperation.

region in (4.28). That means, S?(µTx, µRx,D) is the set of all nonnegative pairs (S(F ), S(S)) satisfying

S(F ) ≤ L

2
, (4.38)

S(F ) + S(S) ≤ L · 2D + 1

2D + 2
. (4.39)

Proof. Follows directly from the achievability result in Theorem 5, see (4.28), and the converse result in

Proposition 1. For the converse result notice in particular that under constraints (4.37) the sum µTx + µRx

exceeds L · D
2D+2 .

Remark 4. Under conditions (4.37) there is no penalty in sum-MG due to the stringent decoding constraint

on “fast" messages. These “fast" messages can be submitted at maximum MG without decreasing the overall

performance of the system.

The following corollaries present partial characterizations of the optimal MG region S?(µTx, µRx,D) for

S(F ) below a certain threshold.

Corollary 2. If a pair of integers DTx,DRx ∈ {1, 3, . . . ,D− 1} summing to D satisfies

µTx ≥ µTx,L(DTx), (4.40a)

µRx ≥ µRx,L(DRx), (4.40b)
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then the optimal MG region S?(µTx, µRx,D) contains the MG pair (S(F ),S(S)) with

S(F ) ≤ L

2

(
1− D− 1

D + 1
(1− α?1)

)
(4.41)

(where α?1 is defined in (4.30) and depends on the choice of DTx,DRx and on µTx, µRx) if, and only if,

S(F ) + S(S) ≤ L · 2D + 1

2D + 2
. (4.42)

Similarly, if a pair of integers DTx,DRx ∈ {2, 4, . . . ,D − 2} summing to D satisfies (4.40), then the

optimal MG region S?(µTx, µRx,D) contains the MG pair (S(F ),S(S)) with

S(F ) ≤ L

2
· 2

D + 1
(4.43)

if, and only if,

S(F ) + S(S) ≤ L · 2D + 1

2D + 2
. (4.44)

Noting the fundamental bound S(F ) ≤ L
2 , one observes that when there is a odd-valued pair DTx,DRx ∈

{1, 3, . . . ,D− 1} such that (4.40) holds and α?1 = 1, then the first part of Corollary 2 recovers Corollary 1

and determines the entire optimal MG region S?(µTx, µRx,D).

Proof. Achievability of (4.42) follows from Theorem 5, see (4.29), because the two components of

SInter-Partial(α
?
1) = (S(S), S(F )) satisfy:

S(F ) = α?1
L

2
+ (1− α?1)

L

2

2

D + 1
=

L

2

(
1− D− 1

D + 1
(1− α?1)

)
(4.45)

and

S(S) + S(F ) = L · 2D + 1

2D + 2
. (4.46)

Achievability of (4.44) can be proved in a similar way from Remark 3. The converse to both results follows

from Proposition 1 because constraint (4.42) implies that the sum µTx + µRx exceeds L · D
2D+2 .
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Corollary 3. If

µRx + µTx < L · D
2D + 2

(4.47)

and if a pair DTx,DRx ∈ {1, 2, 3, . . . ,D− 1} (both odd and even values are allowed) summing to D satisfies

µTx

DTx
=

µRx

DRx
, (4.48)

then the optimal MG region S?(µTx, µRx,D) contains the MG pair (S(F ),S(S)) with

S(F ) ≤ L

2

(
1− µTx

2(D− 1)

L ·DTx

)
(4.49)

if, and only if,

S(F ) + S(S) ≤ L

2
+ µTx + µRx. (4.50)

Proof. The result (4.50) follows from the converse result in Proposition 1 and the achievability results in

Theorem 5, see (4.32), and Remark 3. More specifically, to prove achievability let DTx and DRx be such

that Condition (4.48) is satisfied. Then,

µTx,L(DTx)

µTx
=
µRx,L(DRx)

µRx
(4.51)

and Condition (4.47) implies that both inequalities

µTx < µTx,L and µRx < µRx,L (4.52)

are satisfied. Moreover, α?2 as defined in (4.33) satisfies

α?2 =
µTx

µTx,L
= µTx

2D + 2

L ·DTx
=

µRx

µRx,L
= µRx

2D + 2

L ·DRx
. (4.53)

Notice next that for the two MG pairs SCoop(α?2) and SPartial(α
?
2), which are achievable by either Theorem 5

or Remark 3, the sum of the two components satisfies

S(F ) + S(S) = α?2 ·
L

2
· 2D + 1

D + 1
+ (1− α?2)

L

2
=

L

2
+
µTx

DTx
D =

L

2
+ µTx + µRx, (4.54)
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where in the last equation we used (4.48). Moreover, the “fast" MG S(F ) in SCoop(α?2) equals 0, whereas in

SPartial(α
?
2) it equals

S(F ) = α?2 ·
L

2
· 2

D + 1
+ (1− α?2)

L

2
=

L

2

(
1− µTx

2(D− 1)

L ·DTx

)
=

L

2

(
1− µRx

2(D− 1)

L ·DRx

)
. (4.55)

Since one can always choose to transmit at smaller MGs and because the convex hull of all achievable MG

pairs is also achievable, this concludes the proof of achievability.

Remark 5. For both corollaries, in the regimes where we could characterize the optimal MG region, i.e.,

for “fast" MGs below a certain threshold, the sum-MG is at its maximum. We can thus conclude that for

sufficiently small S(F ) the sum-MG is not decreased due to the stringent constraint on the “fast" messages.

In the following subsections we present the coding schemes achieving the MG regions in Theorem 5 and

Remark 3.

4.5.2 Scheme Achieving MG Pair (4.26c)

Let each Tx only send “slow" messages but no “fast" messages. Under this coding assumption, our setup is

a multi-antenna version of the setup in [46]. Achievability of (4.26c) then follows immediately by the multi-

antenna version of [46, Theorem 1]. We redescribe the coding schemes achieving (4.26c) for completeness

and reference in the next subsection.

We silence every 2D+2nd Tx, which splits the network into smaller subnets. In each subnet, we combine

the SIC idea explained for the setup with only Rx-cooperation (see Subsection 4.2.1) with the DPC coding

idea that was explained for the setup with only Tx-cooperation (see Subsection 4.3.1). The scheme for the

first subnet is illustrated in Figure 4.13 and will be explained in the following. Communication in the other

subnets is similar.

The Tx/Rx pairs of the first subnet are assigned to four groups, depending on their mode of operation.

Notice that the Tx/Rx pair DRx + 2DTx + 2 is assigned to both groups G3 and G4, whereas all other Tx/Rx

pairs are assigned to only one group. The reason is that message M (S)
DRx+2DTx+2 is split into two parts

(M
(S,3)
DRx+2DTx+2,M

(S,4)
DRx+2DTx+2) of equal rates, and part M (S,3)

DRx+2DTx+2 is communicated in the same way as

the messages for Tx/Rx pairs in group G3, whereas M (S,4)
DRx+2DTx+2 is communicated in the same way as the

messages for Tx/Rx pairs in group G4.
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Figure 4.13: Scheme with Rx- and Tx-cooperation.

Group G1 , {1, . . . ,DRx + 1}: Each Tx k ∈ G1 encodes its “slow" message M (S)
k using a codeword

Xn
k(M

(S)
k ) from a Gaussian point-to-point code of power P, and transmits this codeword over the channel:

Xn
k = Xn

k(M
(S)
k ). Each Rx k ∈ G1 uses the cooperation message received from its left neighbour Rx k − 1

for SIC, i.e., to delete the interference term Hk−1,kX
n
k−1(M̂

(S)
k−1) from its output sequence Y n

k :

Ŷ
n
k = Y n

k − Hk−1,kX
n
k−1(M̂

(S)
k−1), (4.56)

and to decode its desired message M (S)
k based on Ŷ

n
k . Rx k also describes its decoded message M̂k over

the cooperation link to Rx k + 1, so as to facilitate SIC at this next Rx.

To facilitate the transmissions in the next group, the last Tx of group G1, Tx DRx+1, precodes its channel

inputs Xn
DRx+1 with the matrix H−1DRx+2,DRx+2HDRx+1,DRx+2, quantises the produced sequence InDRx+1 ,

H−1DRx+2,DRx+2HDRx+1,DRx+2X
n
DRx+1 with a rate-L/2 log(1 + P) quantiser to obtain the quantisation Î

n
DRx+1

at noise level and sends the resulting quantisation index as a first-round cooperation message to the first

Tx in group G2, i.e. to Tx DRx + 2.
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Group G2 , {DRx + 2, . . . ,DRx +DTx + 1}: Each Tx k ∈ G2 obtains a cooperation message from its left

neighbour Tx k − 1 that describes the quantised version Î
n
k−1 of Ink−1 , H−1k,kHk−1,kX

n
k−1. Based on this

message, Tx k reconstructs Î
n
k−1, encodes its “slow" message M (S)

k using a power P DPC that mitigates the

interference Î
n
k−1, and sends the resulting DPC sequence Xn

k over the channel. Moreover, it precodes this

input sequence with the matrix H−1k+1,k+1Hk,k+1, quantises the precoded sequence Ink , H−1k+1,k+1Hk,k+1X
n
k

with a rate-L/2 log(1+P) quantiser (for a quantisation at noise level) to obtain Î
n
k , and sends the quantisation

message as a round-k cooperation message over the link to its right neighbour. Tx DTx +DRx + 1 produces

its inputs in a similar way, i.e., using DPC, but sends no cooperation message at all. Rxs in G2 use a

standard DPC decoding rule based on the premultiplied outputs

H−1k,kY
n
k = H−1k,kHk−1,kX

n
k−1 + Xn

k + H−1k,kZ
n
k , (4.57)

to decode their intended “slow” messages. (Recall that Xn
k was produced as a DPC sequence that mitigates

Î
n
k−1, a quantised version of H−1k,kHk−1,kX̂

n
k−1). Since quantisation was performed at noise level, each

message M (S)
DRx+2, . . . ,M

(S)
D+1 can be sent reliably with MG L.

Group G3 , {DRx + DTx + 2, . . . ,DRx + 2DTx + 2}: This group of Tx/Rx pairs participates in the

transmission of the “slow" messages

M
(S)
DRx+DTx+3, . . . ,M

(S)
DRx+2DTx+1,M

(S,3)
DRx+2DTx+2. (4.58)

In particular, Tx DRx + 2DTx + 2 does not send an own message to its corresponding Rx.

Each of the messages in (4.58) is transmitted over the communication path Tx k → Tx k − 1 → Rx k

for some k ∈ {DRx + DTx + 3, . . . ,DRx + 2DTx + 2}.

For each k ∈ {DRx + DTx + 3, . . . ,DRx + 2DTx + 2}, Tx k encodes its own “slow" message M (S)
k

by means of DPC of power P that mitigates the interference H−1k−1,kHk,kX
n
k of the signal sent by Tx k

itself; precodes the obtained sequence Un
k with the matrix H−1k−1,kHk,k; quantises the precoded sequence

Snk−1 , H−1k−1,kHk,kU
n
k to obtain a quantisation Ŝk−1 at noise level; and sends the corresponding quantisation

message as a (2D+ 3− k)-round cooperation message over the link to Tx k− 1. Tx k− 1 then reconstructs

Ŝ
n
k−1 and sends it over the channel: Xn

k−1 = Ŝ
n
k−1. The construction of the transmit signal Xn

DRx+2DTx+2

mentioned above, is explained in the following paragraph. RXs DRx +DTx + 3, . . . ,DRx + 2DTx + 2 decode
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their intended “slow” messages using an optimal DPC decoding rule based on the premultiplied outputs

H−1k−1,kY
n
k = Xn

k−1 + H−1k−1,kHk,kX
n
k + H−1k−1,kZ

n
k . (4.59)

Recall that Xn
k−1 is a quantised version (at noise level) of the precoded signal Snk−1 , H−1k−1,kHk,kU

n
k for

Un
k a DPC sequence that mitigates the interference H−1k−1,kHk,kX

n
k . Each of the messagesM (S)

D+3, . . . ,M
(S)
2D+2

can thus be transmitted reliably at full MG L.

Group G4 , {DRx + 2DTx + 2, . . . , 2DRx + 2DTx + 2}: This group of Tx/Rx pairs participates in the

transmission of the “slow" messages

M
(S,4)
DRx+2DTx+2,M

(S)
DRx+2DTx+3, . . . ,M

(S)
2DRx+2DTx+1. (4.60)

Tx 2DRx +2DTx +2 thus is not sending an own message to its corresponding Rx. The messages in (4.60) are

transmitted over the path Tx k → Rx k+ 1→ Rx k, for some k ∈ {DRx + 2DTx + 2, . . . , 2DRx + 2DTx + 2}.

Each Tx k ∈ {DRx + 2DTx + 2, . . . , 2DRx + 2DTx + 1} encodes its “slow" message M (S)
k (or M (S,4)

k if

k = DRx + 2DTx + 2) using a codeword from a Gaussian codebook of power P, and sends this codeword

over the channel Xn
k = Xn

k(M
(S)
k ) (or Xn

k = Xn
k(M

(S,4)
k ) if k = DRx + 2DTx + 1).

Rx 2DRx + 2DTx + 2 decodes M (S)
2DRx+2DTx+1 based on an interference-free output Y n

2DRx+2DTx+2 =

H2DRx+2DTx+1,2DRx+2DTx+2X
n
2DRx+2DTx+1 + Zn

2DRx+2DTx+2, and sends the decoded message M̂ (S)
2DRx+2DTx+1

over the cooperation link to the intended Rx 2DRx + 2DTx + 1. For k = 2DRx+2DTx+1, . . . ,DRx+2DTx+3,

Rx k uses the cooperation message received from its right neighbour Rx k + 1 to decode M (S)
k−1 (or M (S,4)

k−1

if k = DRx + 2DTx + 2) using SIC, i.e., to first delete the interference Hk,kX
n
k from Y n

k and then decode

message M (S)
k−1 (or M (S,4)

k−1 if k = DRx + 2DTx + 2) from an interference-free signal. Rx k then sends the

decoded message M̂ (S)
k−1 (or M̂ (S,4)

k−1 if k = DRx + 2DTx + 2) over the cooperation link to its left neighbour

Rx k − 1, which is the intended Rx for this message.

In the described scheme, each transmitted message is either decoded based on interference-free outputs

or using DPC. Since precoding matrices do not depend on the power and quantizations are performed at

noise levels, all messages can be transmitted reliably at MG L. Tx DRx+2DTx+2 sends two “slow" messages

and 2DRx + 2DTx− 1 other Txs send one “slow" message. An average “slow" MG of L · 2DRx+2DTx+1
2DRx+2DTx+2 is thus

achieved in each subnet. Moreover, 2DRx + 2DTx cooperation messages of prelog L are sent in each subnet:

• Rxs in G1 send DRx Rx-cooperation messages with prelog L;
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• Txs in G2 send DTx Tx-cooperation messages with prelog L;

• Txs in G3 send DTx Tx-cooperation messages with prelog L;

• Rxs in G4 send DRx Rx-cooperation messages with prelog L.

The average cooperation prelog per link at the Tx-side is µTx,L and at the Rx-side it is µRx,L. If one

time-shares 2D + 2 different instances of the described scheme with a different subset of silenced users in

each of them, the overall scheme still achieves the MG pair (S(F ) = 0, S(S) = L2D+1
2D+2) in (4.26d), each

Tx-cooperation link is loaded at exactly this average cooperation prelog µTx,L, and each Rx-cooperation

link is loaded at the average cooperation prelog µRx,L.

4.5.3 Scheme Achieving MG Pair (4.26d)

Consider the scheme described in the previous Subsection 4.5.2 and depicted in Figure 4.13. Notice that

the first Tx in each subnet does not at all participate in the cooperation, and decoding of its message also

does not rely on cooperation messages. The same observation applies also to the DRx + DTx + 1st Tx of

each subnet and its message. The first and the DRx + DTx + 1st message of each subnet (the yellow Txs in

Figure 4.13) thus satisfy the requirements on “fast" messages. We propose to use this scheme but let the

first and the (DRx +DTx +1)st messages in each subnet be “fast" messages and all other messages be “slow"

messages. This achieves the MG pair (4.26d).

The required cooperation rates equal µTx,L and µRx,L, as explained in the previous Subsection 4.5.2.
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2D + 2

(a) Communicating “fast” messages

+ + + + + + + + + + + + + + +
+

2D + 2

(b) Interference graph of “slow” messages transmissions

++++++++++++++

+
+ + + + + + + + + + + + + + +

SIC DPC DPC SIC

2 . . . DRx + 1 . . . DRx + DTxD + 2 . . . D + DTx + 2 . . . 2D + 2

(c) Communicating “slow” messages

Figure 4.14: An illustration of the scheme achieving MG pair (4.26e). Notice that since D is even, the last
Tx of G2 sends a “fast” message. And since DRx is odd, also the first Tx in G4 sends a “fast” message.

4.5.4 Schemes Achieving MG Pair (4.26e)

We periodically silence every 2D+ 2-nd Tx to split the network into smaller subnets. Then we send a “fast"

message on all odd Txs and a “slow" message on all even Txs, except for the previously silenced Txs (which

are all even). See Fig. 4.14.

In what follows, we describe and analyze transmissions over the first subnet. Other subnets are treated

analogously.

Odd Txs 1, 3, 5, . . . , 2D+ 1: Each odd Tx encodes its “fast" message M (F )
k using a codeword Un

k(M
(F )
k )

from a Gaussian codebook of power P that depends on the Tx and the channel realizations and is explained

later. Tx 1 simply sends this Gaussian codeword Xn
1 = Un

1 (M
(F )
1 ). Any other odd Tx k first considers

the cooperation message it received from its left neighbour Tx k − 1 and reconstructs X̂
n
k−1, a quantised

version of Tx k − 1th input Xn
k−1. Tx k then sends the input signal

Xn
k = Un

k(M
(F )
k )− H−1k,kHk−1,kX̂

n
k−1. (4.61)
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Odd Txs relay some of the cooperation messages they obtain from their neighbours, as will become clear

in the following, but they do not create new cooperation messages.

Odd Rxs 1, 3, 5, . . . , 2D+1: Given the precanceling at odd Txs described above, each odd Rx k observes

an almost interference-free signal:

Y n
k = Hk,kU

n
k + Hk−1,k(X

n
k−1 − X̂

n
k−1) + Zk,k, (4.62)

where notice that X̂
n
k−1 is a quantised version of Xn

k−1 at noise level. Each odd Rx k therefore decodes

its desired fast message M (F )
k using standard point-to-point decoding. It also sends the decoded message

M̂
(F )
k over the cooperation link to its right neighbour Rx k + 1 as a first round cooperation message.

Odd Rxs also relay some of the cooperation messages they obtain from their neighbours, as will become

clear in the following.

Before describing the operations at the even Tx/Rx pairs, we make the following observations based

on the operations at the odd Tx/Rx pairs. Irrespective of the operations performed at the even Txs, each

even Rx k observes the sum of a signal depending only on “slow" messages and a signal depending only

on its left-neighbour’s “fast" message (the signal Hk−1,kUn
k−1). Since odd Rxs convey their decoded “fast"

messages to their right-neighbour, even Rxs can cancel the signals depending on “fast" messages whenever

they have been decoded correctly. There is thus no loss in reliable communication rate caused by the

transmission of “fast” messages. And transmission of “slow" messages at even Txs can be designed as if no

“fast” messages were present. However, if “slow” Rxs wish to send cooperation messages that do not depend

on the “fast” transmissions, they have to wait for the second round.

Even Txs 2, 4, 6, . . . , 2D: Each even Tx k, for k = 2, . . . , 2D, performs the same steps as Tx k in the

scheme described in Section 4.5.2, but where the scheme needs to be adapted to include only even Txs. In

particular, if an even Tx k previously sent a quantisation message to its direct left- or right-neighbour Tx

k − 1 or k + 1, now it will send it to the previous or following even Tx k − 2 or Tx k + 2. (This simply

means that the odd Tx lying between them has to relay the cooperation message as we already mentioned

previously.) Similarly, when using DPC, if Tx k previously mitigated the quantised sequence Î
n
k−1 or Ŝ

n
k+1,

now it mitigates the quantised sequence Î
n
k−2 or Ŝ

n
k+2. Notice that since D is even, Tx D is the last even

Tx in G2 (so the last Tx in G2 sending a “slow” message). Tx-cooperation in group G2 thus takes place only

during the first DTx − 1 rounds. The only Tx-cooperation message in round DTx is the message sent from
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Tx D + 3 to Tx D + 2 in group G3.

In addition, if this is not already done as part of the scheme in Section 4.5.2, any even Tx k also quantizes

its channel inputs Xn
k at rate L · 1/2 log(1 + P) to generate the quantised sequence Î

n
k . The quantisation

message describing Î
n
k is then sent as a DTx-round cooperation message over the link to Tx k + 1 to allow

this Tx to precancel this interference in the way that was described previously. Even Tx D + 2 (the first

Tx in group G3) does not need to send this round-DTx cooperation message because its right neighbour

Tx D+ 3 already learns the Tx signal Xn
D+2 as part of the proposed scheme in Section 4.5.2. Since all even

Txs (except for Tx D+2) receive their last cooperation message in round DTx−1, they can indeed compute

their input perior to the last round DTx and thus perform the proposed round-DTx cooperation.

Even Rxs 2, 4, 6, . . . , 2D + 2: Using the round-1 Rx-cooperation messages from its left neighbour, each

even Rx k, for k = 2, . . . , 2D + 2, first subtracts the interference caused by the transmission of the “fast”

message M (F )
k−1 at its left neighbour. That means, it forms

Ỹ
n
k = Y n

k − Hk−1,kU
n
k−1. (4.63)

It then proceeds with this modified output sequence Ỹ
n
k and performs all the steps as Rx k did in the

scheme in Section 4.5.2, but where the scheme again needs to be adapted to include only even Rxs and it

also needs to be adapted to start only at cooperation round 2. This allows even Rxs to calculate (4.63)

before performing the other steps. Notice that since the first Txs of G1 and G4 only send “fast” messages

(the latter holds because DRx is odd), there is no harm in waiting for this second round. To adapt the

scheme in Section 4.5.2 only to even Rxs, any even Rx k that previously sent its decoded message to its

direct left- or right-neighbour Rx k − 1 or Rx k + 1, now sends it to the previous or following even Rx

k− 2 or Rx k+ 2. Similarly, any Rx k that previously applied the SIC step to cancel the interference from

Tx k − 1 or Tx k + 1, now cancels the interference from Tx k − 2 or Tx k + 2.

In the described scheme, all odd Txs of a subnet can send reliably a “fast" message of MG L and the

even Txs {2, 4, . . . , 2D} each can send reliably a “slow" message of MG L. The scheme thus achieves the

MG pair in (4.26e): (S(F ) = L
2 , S

(S) = L · D
2D+2).

We now analyze the cooperation prelog of the described scheme. Recall that in this scheme each even Tx

sends a quantised version of its inputs to its right neighbour and each odd Rx sends its decoded message to

its right neighbour. Since each of these cooperation messages is of prelog L the described messages consume

a Tx-cooperation prelog of L ·D and a Rx-cooperation prelog of L ·D.
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In addition, for encoding and decoding of “slow” messages:

• Rxs in G1 send DRx−1 Rx-cooperation messages with prelog L. (The cooperation message from Rx 1

to Rx 2 has already been counted in the previous paragraph.)

• Txs in G2 send (DTx − 1)/2 Tx-cooperation messages with prelog L. (The cooperation message from

even to odd Txs in G2 have already been counted in the previous paragraph.)

• Txs in G3 send DTx Tx-cooperation messages with prelog L.

• Rxs in G4 send DRx − 1 Rx-cooperation messages with prelog L. (The first Rx in G4 does not obtain

a cooperation message because it is a “fast” Tx.)

To summarize, the described scheme requires an average prelog per Tx-cooperation link of µTx,H =

L ·
D
2
+ 3

4
DTx− 1

4
2D+2 and an average prelog per Rx-cooperation link of µRx,H = L ·

D
2
+DRx−1
2D+2 . (Notice that this is

larger than in the scheme in Subsection 4.5.2.) If one time-shares 2D+2 different instances of the described

scheme with a different subset of silenced users in each of them, the required prelog on each Tx-cooperation

link is exactly µTx,H and the required prelog on each Rx-cooperation link is exactly µRx,H. This concludes

the proof.
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Chapter 5

Mixed Delay Coding Scheme with CoMP

Transmission and Reception

In this chapter, we propose a general coding scheme for arbitrary networks that accommodates the transmis-

sions of “slow” and “fast” messages simultaneously. We apply this coding scheme to three cellular network

models: Wyner’s symmetric model, the hexagonal model, and the sectorized hexagonal model. The results

for Wyner’s symmetric model show that it is possible to accommodate the largest possible MG for “fast”

messages, without penalizing the maximum sum MG of both “fast” and “slow” messages. The results for

the hexagonal model show that there is always a penalty in sum-MG at any “fast" MG. In contrast, for the

sectorized hexagonal model where each cell is divided into three non-interfering sectors by employing direc-

tional antennas at the BSs, it is possible to eliminate this penalty and accommodate the largest possible

MG for “fast” messages without penalizing the maximum sum MG.

5.1 Coding Schemes and Achievable Multiplexing Gains

An important building block in our coding schemes is coordinated multi point (CoMP) transmission or

CoMP reception. Depending on which of the two is used, the scheme requires more Tx- or Rx-cooperation

rates. So, depending on the application, any of the two can be advantageous. In some applications,

cooperation rates might however be too low to employ either of the two. In this case, the proposed schemes

can be time-shared with alternative schemes that require less or no cooperation rates at all. Alternatively,

the proposed schemes can be employed with a smaller number of cooperation rounds D′ < D, which also

reduces the required cooperation prelog in all our schemes.
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The rest of the section is organized as follows. We first describe our coding schemes that simultaneously

send “fast" and “slow" messages; they either employ CoMP reception (Subsections 5.1.1) or CoMP trans-

mission (Subsection 5.1.2). Next, we describe schemes that send only “slow" messages (Subsection 5.1.3) or

do not use any kind of cooperation (Subsection 5.1.4).

5.1.1 Coding Scheme to Transmit Both “Fast” and “Slow” Messages with CoMP Re-

ception

This scheme splits the total number of cooperation rounds between Tx- and Rx-cooperation as:

DTx = 1 and DRx = D− 1. (5.1)

1) Creation of subnets and message assignment:

Each network is decomposed into three subsets of Tx/Rx pairs, Tsilent, Tfast and Tslow, where

• Txs in Tsilent are silenced and Rxs in Tsilent do not take any action.

• Txs in Tfast send only “fast” messages. The corresponding Tx/Rx pairs are henceforth called “fast"

Txs/Rxs.

• Txs in Tslow send only “slow” messages. The corresponding Tx/Rx pairs are henceforth called “slow"

Txs/Rxs.

We choose the sets Tsilent, Tfast and Tslow in a way that:

• the signals sent by the “fast" Txs do not interfere; and

• silencing the Txs in Tsilent decomposes the network into non-interfering subnets such that in each

subnet there is a dedicated Rx, called master Rx, that can send a cooperation message to any other

“slow" Rx in the same subnet in at most
⌊

DRx−1
2

⌋
cooperation rounds.

For example, consider Wyner’s symmetric model (described in details in Section 5.2) where Txs and Rxs

are aligned on a grid and cooperation is possible only between neighbouring Txs or Rxs. Interference at

a given Rx is only from adjacent Txs. The network is illustrated in Figure 5.1a. This figure also shows

a possible decomposition of the Tx/Rx pairs into the sets Tsilent (in white), Tfast (in yellow) and Tslow (in

blue) when D = 6. The proposed decomposition creates subnets with 7 active Tx/Rx pairs where the Rx
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(a) Silencing every D + 2nd Tx creates interference-free subnets. Txs in yellow send “fast” messages and Txs in blue
send “slow” messages.
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(b) Blue arrows illustrate the quantized “slow” signals transmitted to the “fast” Txs during the single Tx-cooperation
round. Yellow arrows indicate the decoded “fast” messages transmitted to the “slow” Rxs during the first Rx-
cooperation round.

+ +
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+
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(c) Canceling the interference of “slow” signals on other “slow” signals using CoMP reception. The green Rx is the
master Rx. The blue arrows indicate the flows of the Rx-cooperation messages in rounds 3–6, which enable CoMP
reception.
Figure 5.1: Flow of cooperation communication in Wyner’s symmetric model for D = 6 and for the scheme
transmitting both “fast” and “slow” messages with CoMP reception.

in the center of any subnet (e.g. Rx 4 in the first subnet) can serve as a master Rx as it reaches any slow

(blue) Rx in the same subnet in at most bDRx − 1/2c = b(D− 2)/2c = 2 cooperation rounds. As required,

transmissions from fast (yellow) Txs are only interfered by transmissions from slow (blue) Txs.

2) Precanceling of “slow” interference at “fast” Txs:

Any “slow" Tx k′ quantizes its pre-computed input signal Xn
k′ (how this signal is generated will be described

under item 5)) and describes the quantised signal X̂
n
k′ during the last Tx-cooperation round to all its

neighbouring “fast" Txs. (Here, there is only a single Tx-cooperation round, but this item will be reused in

later subsections where DTx > 1.) Fig. 5.1b illustrates the sharing of the described quantization information

with neighbouring “fast" Txs for Wyner’s symmetric model.
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“Fast" Txs precancel the interference from their neighboring “slow" Txs. To describe this formally, recall

the set ITx,k from (2.2), for each k ∈ {1, . . . ,K}, then we define the “slow" interfering set

I(S)k , ITx,k ∩ Tslow, (5.2)

as the set of “slow" Txs whose signals interfere at a given Rx k. Also, we denote by Un
k(M

(F )
k ) the non-

precoded input signal precomputed at a given “fast" Tx k. (The following item 3) explains how to obtain

Un
k(M

(F )
k ).) Tx k sends the inputs

Xn
k = Un

k(M
(F )
k )−

∑
k′∈I(S)

k

H−1k,kHk′,kX̂
n
k′ , (5.3)

over the channel. Since each “fast" Rx k is not interfered by the signal sent at any other “fast" Tx, the

precoding in (5.3) makes that a “fast" Rx k observes the almost interference-free signal

Y n
k = Hk,kU

n
k +

∑
k′∈I(S)

k

Hk′,k(X
n
k′ − X̂

n
k′) + Zn

k

︸ ︷︷ ︸
disturbance

, (5.4)

where the variance of above disturbance is around noise level and does not grow with P.

3) Transmission of “fast” messages:

Each “fast" Tx k encodes its desired messageM (F )
k using a codeword U

(n)
k (M

(F )
k ) from a Gaussian point-to-

point code of power P. The corresponding Rx k applies a standard point-to-point decoding rule to directly

decode this “fast” codeword without Rx-cooperation from its “almost" interference-free outputs Yk, see

(5.4).

4) Canceling “fast” interference at “slow” Rxs:

According to the previous item 3), all “fast" messages are decoded directly from the outputs without any

Rx-cooperation. During the first Rx-cooperation round, all “fast" Rxs can thus share their decoded messages

with all their neighbouring “slow" Rxs, which can cancel the corresponding interference from their receive

signals. More formally, we then define the fast interference set

I(F )
k , ITx,k ∩ Tfast (5.5)
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as the set of “fast" Txs whose signals interfere at Rx k. Each “slow" Rx k forms the new signal

Ŷ
n
k := Y n

k −
∑

k̂∈I(F )
k

Hk̂,kX
n
k̂
(M̂

(F )

k̂
), (5.6)

and decodes its desired “slow" message based on this new signal following the steps described in the following

item 5). Fig. 5.1b illustrates with yellow arrows the sharing of decoded “fast” messages with neighbouring

“slow" Rxs in Wyner’s symmetric model.

5) Transmission and reception of “slow” messages using CoMP reception:

Each “slow" Tx k encodes its message M (S)
k using a codeword Xn

k(M
(S)
k ) from a Gaussian point-to-point

code of power P. “Slow" messages are decoded based on the new outputs Ŷ
n
k in (5.6). CoMP reception

is employed to decode all “slow" messages in a given subnet. By item 4) the CoMP reception can ignore

interference from “fast" Txs, but has to account for the modified interference graph and the modified channel

matrix from “slow" Txs caused by the precanceling in item 2). For example, in Fig. 5.1c we depict with

blue dashed lines the modified interference graph for Wyner’s symmetric model.

CoMP reception involves that each “slow" Rx k applies a rate-L2 log(1 +P) quantizer to the new output

signal Ŷ
n
k , and relays the quantization information over the cooperation links to the master Rx in its subnet.

By definition of master Rxs (see item 1)) this can be performed in Rx-cooperation rounds 2, . . . , bDRx−1
2 c+

1. (Fig. 5.1c illustrates with blue arrows the exchanged quantization information for Wyner’s symmetric

model.) Each master Rx reconstructs all the quantized signals received from “slow" Txs and jointly decodes

these “slow” messages. During Rx-cooperation rounds bDRx−1
2 c+ 2, . . . , 2bDRx−1

2 c+ 1, it shares each of the

decoded messages over the conferencing links with its intended Rx. (Fig. 5.1c illustrates with blue arrows

the sharing of decoded “slow” messages with the corresponding Rxs.)

6) MG Analysis:

In the described scheme, all transmitted “fast" and “slow” messages can be sent reliably at MG L because

all interference is canceled (up to noise level) either at the Tx or the Rx side, and because Txs and Rxs are

equipped with L antennas each.

The presented coding scheme thus achieves the MG pair

(
S(F ) = S

(F )
both, S(S) = S

(S)
both

)
, (5.7)
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where

S
(F )
both , L · lim

K→∞

|Tfast|
K

and S
(S)
both , L · lim

K→∞

|Tslow|
K

. (5.8)

The scheme we described so far requires different cooperation rates on the various Tx- or Rx-cooperation

links. To evenly balance the load on the Tx-cooperation links and on the Rx-cooperation links, different

versions of the scheme with different choices of the sets Tsilent, Tfast and Tslow and different cooperation

routes can be time-shared. The main quantity of interest is then the average cooperation load, which for the

scheme above is characterized as follows. During the single Tx-cooperation round, each “fast" Tx k receives

a quantised version of the transmit signal of each of its “slow" interferers k̂ ∈ I(S)k . Since each quantisation

message is of prelog L, the average required Tx-cooperation prelog equals

µ
(r)
Tx,both , L · lim

K→∞

∑
k∈Tfast |I

(S)
k |

QK,Tx
, (5.9)

where QK,Tx denotes the total number of Tx-cooperation links in the network.

There are three types of Rx-cooperation messages. In the first Rx-cooperation round, each “slow" Rx k

obtains a decoded message from each of its “fast" interferers k̂ ∈ I(F )
k . The total number of messages sent in

this first round is thus
∑

k∈Tslow |I
(F )
k | and each is of prelog L. In Rx-cooperation rounds 2, . . . , bDRx−1

2 c+1,

“slow" Rxs send quantized versions of their output signals to the master Rx in the same network. Each

of these messages is of prelog L and the total number of such messages equals
∑

k∈Tslow γRx,k, where γRx,k

denotes the number of cooperation rounds required for “slow" Rx k to reach the master Rx in its subnet. In

rounds bDRx−1
2 c+2, . . . ,DRx, the master Rx sends the decoded messages to all the “slow" Rxs in the subnet.

Each of these messages is again of prelog L and the total number of such messages is again
∑

k∈Tslow γRx,k.

To summarize, each of the transmitted messages is of prelog L and thus the average cooperation prelog

required per Rx-cooperation link is:

µ
(r)
Rx,both , L · lim

K→∞

∑
k∈Tslow

(
|I(F )
k |+ 2γRx,k

)
QK,Rx

, (5.10)

where QK,Rx denotes the total number of Rx-cooperation links in the network.

Remark 6. If the master Rx of a subnet is a “fast” Rx, it does not have to send its decoded message to its

“slow” neighbours, because it decodes all “slow” messages jointly. In this case, less Rx-cooperation prelog is

required.
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5.1.2 Coding Scheme to Transmit Both “Fast” and “Slow” Messages with CoMP

Transmission

This second scheme splits the total number of cooperation rounds between Tx- and Rx-cooperation as:

DTx = D− 1 and DRx = 1. (5.11)

Similarly to the previous Subsection 5.1.1, the scheme is described by 5 items:

1) Creation of subnets and message assignment:

This item is similar to item 1) of Subsection 5.1.1, but the sets Tsilent, Tfast and Tslow are chosen in a way

that:

• as before, the signals sent by the “fast" Txs do not interfere; and

• silencing the Txs in Tsilent decomposes the network into non-interfering subnets so that in each subnet

there is a dedicated master Tx that can send a cooperation message to any other “slow" Tx in the

same subnet in at most
⌊

DTx−1
2

⌋
cooperation rounds.

Items 2)-4) remain as described in Subsection 5.1.1. Item 5) is replaced by the following item.

5) Transmission and reception of “slow” messages using CoMP transmission:

“Slow" messages are transmitted using standard CoMP transmission techniques that can ignore interference

from “fast" Txs (due to the post-processing in item 4)) but has to account for the modified interference

graph and the modified channel matrix between slow messages caused by the precanceling performed under

item 2). The receivers decode based on the newly constructed outputs Ŷ
n
k defined in (5.6).

We describe CoMP transmission in this context more formally. During the first bDTx−1
2 c Tx-cooperation

rounds, each “slow" Tx of a subnet, sends its message to the master Tx of the subnet. This latter encodes

all received “slow" messages using individual Gaussian codebooks and precodes them so as to cancel all the

interference from other “slow" messages at the corresponding Rxs. I.e., it produces signals so that when

they are transmitted over the active antennas in the cell, the signal observed at each “slow" Rx only depends

on the “slow" message sent by the corresponding Tx but not on the other “slow" messages. The master Tx

applies a Gaussian vector quantizer on these precoded signals and sends the quantization information over

the cooperation links to the corresponding Txs during the Tx-cooperation rounds bDTx−1
2 c+ 1 to DTx − 1.
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This is possible by the way we defined the master Txs. All “slow" Txs reconstruct the quantized signals

X̂
n
k intended for them and send them over the network: Xn

k , X̂
n
k .

Each “slow" Rx k decodes its desired message from the modified output sequence Ŷ
n
k defined in (5.6)

using a standard point-to-point decoder.

6) MG Analysis

Similarly to Subsection 5.1.1, each transmitted message can be sent reliably at MG L, and thus the scheme

achieves the MG pair in (5.7).

The load on the different cooperation links is again unevenly distributed across links, and thus, by time-

sharing and symmetry arguments, the average Rx- and Tx-cooperation rates are the limiting quantities.

The required average Rx-cooperation rate is easily characterized as:

µ
(t)
Rx,both , L · lim

K→∞

∑
k∈Tslow |I

(F )
k |

QK,Rx
, (5.12)

because Rx-cooperation takes place in a single round, during which each “slow" Rx k learns all decoded

“fast" messages that interfere their receive signals and these messages are of MG L. To calculate the required

average Tx-cooperation rate, define for each k ∈ Tslow the positive parameter γTx,k to be the number of

cooperation hops required from Tx k to reach the master Tx in its subnet. During the first bDTx−1
2 c

Tx-cooperation rounds, a total of
∑

k∈Tslow γTx,k cooperation messages of MG L are transmitted from the

“slow" Txs to the master Txs in their subnet. The same number of Tx-cooperation messages, all of MG L,

is also conveyed during rounds bDTx−1
2 c + 1, . . . , 2bDTx−1

2 c, now from the master Tx to the “slow" Txs in

the subnet. During the last round, “slow" Txs convey their messages to the adjacent “fast" Txs that are

interfered by their signals. Some of these signals, however have already been shared during Tx-cooperation

rounds bDTx−1
2 c+ 1, . . . , 2bDTx−1

2 c, and thus do not have to be sent again. The total number of cooperation

messages during the last Tx-cooperation rounds is thus only equal to
∑

k∈Tfast |I
(S)
k | − q, where q denotes

the number of the messages that have already been sent in previous rounds. We will chracterize the value

of q when we analyze specific networks. To summarize, the average required Tx-cooperation rate of our

scheme is:

µ
(t)
Tx,both , L · lim

K→∞

∑
k∈Tslow 2γTx,k +

∑
k∈Tfast |I

(S)
k | − q

QK,Tx
. (5.13)
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5.1.3 Coding Scheme to Transmit Only “Slow” Messages with CoMP Reception and

Transmission

In principle, since any “fast” message satisfies the constraints on “slow” messages, we can use the schemes

provided in Subsections 5.1.1 and 5.1.2 to send only “slow” messages. In some cases, it is however possible

to design a purely CoMP-based scheme that requires less Tx- and Rx-cooperation rates than our previously

described schemes. Specifically (and similarly to items 1) of Subsection 5.1.1 and Subsection 5.1.2), each

network is decomposed into two subsets of Tx/Rx pairs, Tsilent and Tslow, where Txs in Tsilent are silenced and

Txs in Tslow send a “slow" message. Specifically, we choose the set Tsilent so that silencing its Txs decomposes

the remaining Tx/Rx pairs into non-interfering subnets and in each subnet there is a dedicated Rx, called

master Rx, that in at most
⌊D
2

⌋
cooperation rounds can reach any other Rx in the same subnet. CoMP

reception as described in item 5) of Subsections 5.1.1 is then used for transmission of the “slow" messages

in each subnet. This scheme requires positive Rx-cooperation rate but no Tx-cooperation. Alternatively,

the set Tsilent can be chosen so that each created subnet contains a dedicated Tx, called master Tx, that

in at most
⌊D
2

⌋
cooperation rounds can reach any other Tx in the same subnet and messages are sent by

means of CoMP transmission as described in item 5) of Subsection 5.1.2. This scheme requires positive

Tx-cooperation rate but no Rx-cooperation.

The MG pair achieved by both schemes is characterized as

(
S(F ) = 0, S(S) = S(S)max

)
, (5.14)

where

S(S)max , L · lim
K→∞

|Tslow|
K

. (5.15)

The CoMP-reception scheme requires an average Rx-cooperation rate of

µ
(r)
Rx,S , L · lim

K→∞

∑
k∈Tslow 2γRx,k

QK,Rx
, (5.16)

and the CoMP-transmission scheme an average Tx-cooperation rate of

µ
(t)
Tx,S , L · lim

K→∞

∑
k∈Tslow 2γTx,k

QK,Tx
, (5.17)

where recall that γRx,k, γTx,k ∈ {1, . . . ,
⌊D
2

⌋
} denote the number of cooperation hops required from a Rx k
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Figure 5.2: Illustration of the scheme without cooperation in Wyner’s symmetric model.

or a Tx k to reach the master Rx or the master Tx in its subnet.

5.1.4 Coding Scheme without Cooperation

In this scheme, we silence a set of Txs, denoted by Tsilent, in a way that the transmissions of non-silenced Txs

do not interfere, and the network is thus decomposed into non-interfering point-to-point links. See Fig. 5.2

where even Txs are silenced. Independent Gaussian codes are used to communicate over the individual

links without any Tx- or Rx-cooperation. Each non-silenced Tx can choose to send either a “slow” or a

“fast” message. If β ∈ [0, 1] fraction of the non-silenced Txs send a “fast” message and the other send “slow”

messages, this scheme achieves MG pair

(
S(F ) = βSno-coop, S(S) = (1− β)Sno-coop

)
, (5.18)

where

Sno-coop , L · lim
K→∞

(
1− |Tsilent|

K

)
. (5.19)

The cases β = 0 and β = 1 will be of special interest.

In the following sections we specialize the results obtained in this section to three different networks.

Notice that it suffices to describe for each of the schemes the choice of the Tx/Rx sets Tsilent, Tslow, Tfast.

5.2 Wyner’s Symmetric Model

5.2.1 Network and Cooperation Model

Consider Wyner’s symmetric linear cellular model where cells are aligned in a single dimension and signals

of users that lie in a given cell interfere only with signals sent in the two adjacent cells. Since the focus of

this chapter is on the MG, for simplicity, we assume only a single mobile user in each cell, each wishing to
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communicate with the corresponding BS of the cell. We shall further assume that the number of cells K

and the maximum delay D are even.

The input-output relation of the network is

Y k,t = Hk,kXk,t + Hk−1,kXk−1,t + Hk+1,kXk+1,t + Zk,t, (5.20)

where X0,t = 0 for all t, and the interference set at a given user k is

ITx,k = {k − 1, k + 1}, (5.21)

where indices out of the range {1, . . . ,K} should be ignored. In this model, Rxs and Txs can cooperate

with the two Rxs and Txs in the adjacent cells, so

NTx(k) = {k − 1, k + 1} and NRx(k) = {k − 1, k + 1}. (5.22)

Fig. 3.1 illustrates the interference pattern of the network and the available cooperation links. As can be

seen from this figure, Txs 1 and K and Rxs 1 and K have a single outgoing cooperation link and all other

Txs and Rxs in this network have two outgoing cooperation links. Thus, the total numbers of Tx- and of

Rx-cooperation links both are

QK,Tx = QK,Rx = 2K − 2. (5.23)

5.2.2 Tx/Rx Set Associations

We specialize the coding schemes proposed in Section 5.1 to Wyner’s symmetric model.

Transmitting both “fast” and “slow” messages with CoMP reception

Consider the scheme in Subsection 5.1.1, where we set DTx = 1 and DRx = D−1. Choose the cell association

in Fig. 5.1a, where “fast” Tx/Rx pairs are in yellow, “slow” Tx/Rx pairs in blue, and silenced Tx/Rx pairs

in white. More formally, choose

Tsilent =

{
` (D + 2) : ` = 1, . . . ,

⌊
K

D + 2

⌋}
, (5.24a)

Tfast = {1, 3, . . . ,K − 1}, (5.24b)

Tslow = {1, . . . ,K}\{Tsilent, Tfast}. (5.24c)
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This choice satisfies all the conditions explained under item 1) in Subsection 5.1.1. In particular, transmis-

sions of “fast" messages are interfered only by transmissions of “slow" messages and for any `, the Tx/Rx

pairs in

T` , {`(D + 2) + 1, . . . , (`+ 1)(D + 2)− 1} (5.25)

form a subnet for which Rx `(D + 2) + D/2 + 1 can act as the master Rx. Indeed, it can be checked that

this Rx can be reached by any “slow” Rx (i.e., even Rx) in its subnet in at most (DRx − 1)/2 cooperation

hops.

By (5.8) and (5.24), the scheme achieves the MG pair (S(F ) = S
(F )
both,S

(S) = S
(S)
both) where

S
(F )
both ,

L

2
and S

(S)
both , L · D

2(D + 2)
. (5.26)

To analyze the required cooperation prelogs of the scheme, µ(r)Tx,both and µ
(r)
Rx,both, we evaluate the

formulas in (5.9) and (5.10). We start with the required Tx-cooperation prelog in this system, which we

denote by µ(r)Tx,both. Notice that in each subnet, the “slow" interfering set I(S)k , i.e., the set of “slow" Txs

interfering at Rx k, is a singleton for the first and the last active Rx in each subnet because we assume D

even, and it is of size 2 for the other “fast” Rxs. We then have for each subnet ` ∈ {1, . . . , bK/(D + 2)c}:

∑
k∈Tfast∩T`

|I(S)k | = 2 + 2(D/2− 1) = D. (5.27)

There can be a last subnet ` = dK/(D + 2)e with fewer active Tx/Rx pairs and smaller (but positive)

Tx-cooperation prelog. Therefore, for fixed K, the required average Tx-cooperation prelog is bounded as

L ·

⌊
K

D+2

⌋
·D

QK,Tx
≤ µ(r)Tx,both ≤ L ·

⌈
K

D+2

⌉
·D

QK,Tx
. (5.28)

When K →∞, the inequalities in (5.28) turn to equalities and by (5.23) we obtain

µ
(r)
Tx,both = L · D

2(D + 2)
. (5.29)

To calculate the required Rx-cooperation prelog µ(r)Rx,both, we start by calculating the cooperation prelog

in the first subnet. Notice that each “slow" Rx is interfered by two “fast" Txs and thus |I(F )
k | = 2. Since

63
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there are D/2 “slow" Rxs in each subnet T`:

∑
k∈Tslow∩T`

|I(F )
k | = 2 · D

2
= D. (5.30)

In addition, Rxs also exchange cooperation messages to enable CoMP reception. Thereby, the quanti-

zation message produced by a “slow" Rx k = `(D + 2) + i, for i ∈ {2, 4, . . . ,D− 2}, has to propagate over

γRx,k = |D/2 + 1− i| hops to reach the master Rx in its subnet. If D/2 + 1 is even,

∑
k∈Tslow∩T`

γRx,k =
∑

i∈{2,4,...,D/2−1}

2 · (D/2 + 1− i) =
1

2

(
D2

4
− 1

)
. (5.31)

Then, according to (5.10), (5.23), (5.30), and (5.31), when D/2 + 1 is even, the average Rx-cooperation

prelog is bounded by

L ·

⌊
K

D+2

⌋(
D + D2

4 − 1
)

2K − 2
≤ µ(r)Rx,both ≤ L ·

⌈
K

D+2

⌉(
D + D2

4 − 1
)

2K − 2
. (5.32)

Letting K →∞ the inequalities in (5.32) turn into equalities, and

µ
(r)
Rx,both = L ·

D + D2

4 − 1

2(D + 2)
, for D/2 + 1 even. (5.33)

When D/2 + 1 is odd, the sum in (5.31) evaluates to D2

8 . Moreover, in this case, the master Rx is a “fast"

Rx. It does not have to send its decoded message to any neighbour, as it locally decodes all “slow" messages

of the subnet. So, (see also Remark 6), the nominator in (5.10) can be reduced by 2. Putting all these

together, we obtain µ(r)Rx,both = L · D+D2

4
−2

2(D+2) when D/2 + 1 is odd.

Transmitting both “fast” and “slow” messages with CoMP transmission

Consider the scheme in Subsection 5.1.2, where we set DRx = 1 and DTx = D − 1. Choose the same

cell association as for the CoMP reception scheme described in Subsection 5.1.2 and depicted in Fig. 5.1a.

Under this cell association, Tx D/2 + 1 can act as a master Tx because it can be reached by any “slow"

(even) Tx in its subnet in at most (DTx − 1)/2 cooperation rounds.

Since the same cell partitioning is used, namely (5.24), this scheme achieves the same MG pair as with

CoMP reception, see (5.26). Moreover, by (5.12) and (5.30) and a sandwich argument similar to the one
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leading to (5.28), in the limit as K →∞, the required average Rx-cooperation prelog is

µ
(t)
Rx,both = L · D

2(D + 2)
. (5.34)

Similarly, consider (5.13) and (5.27) and notice that for D/2 + 1 even,

∑
k∈Tslow∩T`

γTx,k =
∑

i∈{2,4,...,D/2−1}

2(D/2 + 1− i) =
1

2

(
D2

4
− 1

)
, (5.35)

whereas for D/2+1 odd, this sum evaluates to D2

8 . We consider the q-term in (5.13), which characterizes the

number of quantization messages describing the “slow" signals that are counted twice: once for the CoMP

transmission and once for the interference mitigation at “fast" transmitters. In each subnet, D/2− 1 such

messages are double-counted, when D/2 + 1 is even, and D/2 messages are double-counted when D/2 + 1 is

odd. Therefore, and according to (5.13), (5.27), (5.35), when K → ∞, the average Tx-cooperation prelog

required by the scheme is

µ
(t)
Tx,both = L ·

D + D2

4 − 1−D/2 + 1

2(D + 2)
= L · D

8
, (5.36)

irrespective of whether D/2 + 1 is even or odd.

Remark 7. Despite the symmetry of the network, the sum-cooperation prelog µ(r)Tx,both+µ
(r)
Rx,both in the scheme

with CoMP reception, see (5.29) and (5.33), exceeds the sum-cooperation prelog µ(t)Tx,both + µ
(t)
Rx,both in the

scheme with CoMP transmission, see (5.34) and (5.36). This can be explained as follows. In both schemes

the transmissions of “fast" and “slow" messages are disentangled through one round of Tx-cooperation and

one round of Rx-cooperation. The Tx-cooperation messages relay information about “slow" transmit signals

and this cooperation information can be reused in the context of CoMP transmission. In contrast, the

Rx-cooperation messages only relay information about “fast" signals and are not useful to enable CoMP

reception. As a result, the additional cooperation rate required to enable CoMP reception is larger than for

CoMP transmission.

Transmitting only “slow” messages with CoMP reception and transmission

Consider the scheme in Subsection 5.1.3 that transmits only “slow" messages, either using CoMP trans-

mission or CoMP reception. For both schemes we regularly silence every D + 2nd Tx, i.e., as in the two
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previous subsections, Tsilent ,
{
`(D+ 2): ` = 1, . . . , b K

D+2c
}
. Also, we set Tslow = {1, . . . ,K}\Tsilent. These

choices are permissible, because all Txs (or Rxs) in a subnet T` = {(` − 1)(D + 2) + 1, . . . , `(D + 2) − 1}

can reach the subnet’s central Tx (` − 1)(D + 2) + D + 1 (or Rx (` − 1)(D + 2) + D + 1) in at most D/2

cooperation hops.

By (5.15), the scheme in Subsection 5.1.3 achieves the MG pair (S(F ) = 0, S(S) = S
(S)
max) where

S(S)max , L · D + 1

D + 2
. (5.37)

With CoMP reception, this scheme does not use any Tx-cooperation. To calculate the Rx-cooperation

prelog, we use the fact that Rx k = `(D + 2) + i, for positive integers ` and i ≤ D + 1, reaches the master

Rx in its subnet in γRx,k = |D/2 + 1− i| hops. Since:

2
∑
k∈T`

γRx,k = 4

D/2∑
i=1

i =
D(D + 2)

2
, (5.38)

by (5.16), in the limit as K →∞, the average Rx-cooperation prelog tends to

µ
(r)
Rx,S = L · D

4
. (5.39)

Similar conclusions show that when CoMP transmission is used instead of CoMP reception, the scheme

requires zero Rx-cooperation prelog and a Tx-cooperation prelog of µ(t)Tx,S = µ
(r)
Rx,S.

No-cooperation scheme

Consider the no-cooperation scheme in Subsection 5.1.4. For Wyner’s symmetric network we create

non-interfering point-to-point links by silencing all even Txs in the network, i.e., by choosing Tsilent ,

{2, 4, . . . 2bK2 c}. Since all odd receivers remain active, the sum-prelog in (5.19) for this network evaluates

to

S(F )
max ,

L

2
. (5.40)

If active Txs send only “fast” messages, (set β = 1 in (5.18)), this scheme achieves the MG pair (S(F ) =

S
(F )
max, S(S) = 0) and if the active Txs send only “slow" messages (set β = 0 in (5.18)), this scheme achieves

the MG pair (S(F ) = 0, S(S) = S
(F )
max).
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Time-Sharing and Operating with a Reduced Number of Rounds

Each of the proposed coding schemes requires certain Tx- and Rx-cooperation prelogs. If these prelogs

exceed the available cooperation prelogs µTx and µRx, the corresponding scheme cannot be applied directly

but instead should be time-shared with any of the other schemes requiring less cooperation rates. Alter-

natively, it is also possible to reduce the number of cooperation rounds, because the required cooperation

prelogs increase with D. Thus, employing above schemes with a reduced parameter D′ < D allows to meet

the cooperation prelog constraints, and in some cases achieves a better MG pair than using time-sharing.

Consider for example the scheme with CoMP-transmission in Subsection 5.1.2 with transmitting both

“fast” and “slow” messages but for only D′ cooperation rounds where D′ < D. It achieves the MG pair(
S(F ) = L/2, S(S) = L D′

2(D′+2)

)
using cooperation prelogs µRx = L · D′

2(D′+2)
and µRx = L · D′8 . We can achieve

the same MG pair also by choosing β = D′
D < 1 and time-sharing the same scheme but for parameter D over

a β-fraction of time with the no-cooperation scheme in the preceding subsection (which achieves MG pair

(L/2, 0)) over the rest of the time. Both approaches require same Tx-cooperation prelog µTx = LD′/8 =

LβD/8. However, the former scheme achieves a larger MG pair, namely
(
S(F ) = L/2,S(S) = L D′

2(D′+2)

)
, than

the time-shared scheme, namely (L/2, L D′
2(D′/β+2)

), at the expense of also requiring a larger Rx-cooperation

prelog: µRx = L D′
2(D′+2)

for the former simple scheme and µRx = L D′
2(D′/β+2)

for the time-sharing scheme. We

conclude that in a setup where the Rx-cooperation prelog is not the stringent resource, the simple scheme

with a reduced number of cooperation rounds D′ < D is advantageous compared to the time-shared scheme.

Similar observations also hold for the scheme in Subsection 5.1.1 using CoMP reception and for the schemes

in Subsection 5.1.3 sending only “slow" messages.

5.2.3 Achievable MG Regions

Recall the definitions of S
(F )
both, S

(S)
both, S

(S)
max, S

(S)
no-coop in (5.26), (5.37), and (5.40) and the definitions of

µ
(r)
Tx,both, µ

(r)
Rx,both, µ

(t)
Rx,both, µ

(t)
Tx,both in(5.29), (5.33), (5.36), and (5.34). Define further

α , max

min

 µTx

µ
(r)
Tx,both

,
µRx

µ
(r)
Rx,both

 , min

 µTx

µ
(t)
Tx,both

,
µRx

µ
(t)
Rx,both


 . (5.41)

and

S
(S)
sym,1(α) , αS(S)max + (1− α)S(S)no-coop (5.42)
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S
(F )
sym,2(α) , αS

(F )
both + (1− α)S(F )

max and S
(S)
sym,2(α) , αS

(S)
both (5.43)

S
(F )
sym,3(α) , αS

(F )
both and S

(S)
sym,3(α) , αS

(S)
both + (1− α)S(S)max. (5.44)

According to the arguments in the previous subsection, the following regions of MG pairs are achievable

depending on the available cooperation prelogs µTx and µRx.

Theorem 6 (Achievable MG Region: Wyner’s Symmetric Model). Assume D ≥ 2.

When µRx ≥ µ
(r)
Rx,both and µTx ≥ µ

(r)
Tx,both; or when µRx ≥ µ

(t)
Rx,both and µTx ≥ µ

(t)
Tx,both:

convex hull
(

(0, 0), (0,S(S)max), (S
(F )
both,S

(S)
both), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.45)

When µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both; or when µTx ≥ µ

(t)
Tx,S and µRx < µ

(t)
Rx,both:

convex hull
(

(0, 0), (0, S(S)max), (S
(F )
sym,3(α), S

(S)
sym,3(α)), (S

(F )
sym,2(α),S

(S)
sym,2(α)), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D).(5.46)

When µRx < µ
(r)
Rx,both or when µTx < µ

(t)
Tx,both:

convex hull
(

(0, 0), (0,S
(S)
sym,1(α)), (S

(F )
sym,2(α), S

(S)
sym,2(α)), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D).

Proposition 2 (Outer Bound on the MG Region: Wyner’s Symmetric Model). Any MG pair (S(F ), S(S))

in S?(µTx, µRx,D) satisfies

S(F ) ≤ L

2
, (5.47)

S(F ) + S(S) ≤ L · D + 1

D + 2
. (5.48)

Proof: Follows by specializing the MAC-Lemma for interference networks with conferencing [46,

Lemma 1]) to

Joutputs ,
⋃

`∈{1,...,d K
2(D+2)

e}

{2 + (`− 1)(2D + 4), . . . , `(2D + 4)− 1} , (5.49)

Jinputs ,
⋃

`∈{1,...,d K
2(D+2)

e}

{D + 2 + (`− 1)(2D + 4), . . . ,D + 3 + (`− 1)(2D + 4)} , (5.50)

Jmessages ,
⋃

`∈{1,...,d K
2(D+2)

e}

{D + 2−DTx + (`− 1)(2D + 4), . . . ,D + 3 + DTx + (`− 1)(2D + 4)} .
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(5.51)

Corollary 4. If

µRx ≥ µ
(r)
Rx,both and µTx ≥ µ

(r)
Tx,both, (5.52)

or if

µRx ≥ µ
(t)
Rx,both and µTx ≥ µ

(t)
Tx,both, (5.53)

the optimal MG region S?(µTx, µRx,D) coincides with the trapezoid in (5.45).

Proof: Follows directly by Theorem 6 and Proposition 2.

The result of Corollary 4 implies that for large cooperation prelogs µTx and µRx, imposing a stringent

delay constraint on the “fast” messages never penalizes the maximum achievable sum-MG of the system:

the same sum-MG can be achieved as if only “slow" messages were sent.

The next corollary characterizes the optimal MG region S?(µTx, µRx,D) when one of the two cooperation

prelogs (µTx or µRx) is small and the other large, and when S(F ) lies below a certain threshold. The corollary

shows that also in this regime the same maximum sum-MG can be achieved as if only “slow" messages were

sent. When S(F ) exceeds this threshold, our achievable MG region in (5.46) shows a penalty in sum-MG

which increases linearly with the “fast" MG. In this regime we do not have a matching converse result.

Corollary 5. Assume that

µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both (5.54)

hold, or

µTx ≥ µ
(t)
Tx,S and µRx < µ

(t)
Rx,both (5.55)

hold. For any S(F ) ∈ [0, α · L2 ], where α is defined in (5.41), the pair (S(F ),S(S)) lies in the optimal MG

region S?(µTx, µRx,D) if, and only if, it is included in the trapezoid region described on the LHS of (5.46).

Proof: Follows directly by Theorem 6, see (5.46), and by Proposition 2, and because the sum

S
(F )
sym,3(α) + S

(S)
sym,3(α) = L · D+1

D+2 coincides with the maximum sum MG.

Figure 5.3 illustrates the inner and outer bounds (Theorem 6 and Proposition 2) on the MG region

with D = 6 and D = 10, and different values of µRx and µTx. As can be seen in Figure 5.3a and as also

explained in Corollary 4, when µRx ≥ 2.625 and µTx ≥ 1.125, or when µRx ≥ 1.125 and µTx ≥ 2.25 the
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Figure 5.3: Inner and outer bounds on S?(µTx, µRx,D) for the symmetric Wyner network for different values
of µRx and µTx, and for L = 3, a) D = 6, and b) D = 10.

inner bound in (5.45) and the outer bound match. In the former case, the inner bound is achievable using

the scheme in Subsection 5.2.2 based on CoMP reception, and in the latter case it is achievable using the

scheme in Subsection 5.2.2 based on CoMP transmission. As explained in Corollary 5, when only one of

the two cooperation prelogs is large and the other small (e.g., µRx ≥ 4.5 and µTx = 0.5; or µTx ≥ 4.5 and

µRx = 0.5) the inner bound in (5.46) matches the outer bound of Proposition 2 only for S(F ) < α · L2 , where

α is defined in (5.41). For larger values of S(F ), the “slow" MG achieved by our schemes decreases linearly

by approximately 1.8∆ when S(F ) increases by ∆, and thus the sum-MG also decreases approximately by

0.8∆. When both µRx and µTx are moderate or small, e.g., µRx = 0.5 and µTx = 1 or µRx = 1 and

µTx = 0.5, the sum-MG achieved by our inner bound is smaller than for larger cooperation prelogs, but is

constant over all regimes of S(F ). We finally notice that these inner bounds are the same for any number

of cooperation rounds D = 6, 8, 10. The reason is that for small cooperation prelogs, reducing the number

of cooperation rounds to satisfy the cooperation prelogs is more advantageous than time-sharing different

schemes with D cooperation rounds, see also the discussion in Subsection 5.2.2.

5.3 Hexagonal Network

5.3.1 Network and Cooperation Model

Consider a cellular network with K hexagonal cells, where each cell consists of one single mobile user (MU)

and one basestation (BS). The signals of users that lie in a given cell interfere with the signals sent in the
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6 adjacent cells. The interference pattern of our network is depicted by the black dashed lines in Fig. 5.4,

i.e., the interference set ITx,k contains the indices of the 6 neighbouring cells whose signals interfere with

cell k. The input-output relation of the network is as in (3.5).

Each Rx k (BS of a cell) can cooperate with the six Rxs in the adjacent cells, i.e., |NRx(k)| = 6. Thus,

the number of Rx-cooperation links QK,Rx in this network is approximately equal to 6K (up to edge effects).

Similarly, each Tx (MU of a cell) can cooperate with the six Txs in the adjacent cells and thus |NTx(k)| = 6

and QK,Tx ≈ 6K.

To describe the setup and our schemes in more detail, we parametrize the locations of the Tx/Rx pair

in the k-th cell by a number ok in the complex plane C. Introducing the coordinate vectors

ex =

√
3

2
− 1

2
i and ey = i, (5.56)

as in Figure 5.4, the position ok of Tx/Rx pair k can be associated with an integer pair (ak, bk) satisfying

ok , ak · ex + bk · ey. (5.57)

The interference set ITx,k and the neighbouring sets can then be expressed as

NTx(k) = NRx(k) = ITx,k =
{
k′ : |ak − ak′ | = 1 and |bk − bk′ | = 1

and |ak − ak′ − bk + bk′ | = 1
}
. (5.58)

For simplicity we assume an even-valued D satisfying

mod

(
D
2
− 1, 3

)
= 0. (5.59)

Other cases can be treated in a similar way.

5.3.2 Tx/Rx Set Associations

In this subsection, we propose Tx/Rx set associations for this network that can be used to implement

the schemes in section 5.1, and we present the corresponding MG pairs and cooperation prelogs. In Ap-

pendix A.2.1, we prove that the proposed associations are indeed permissible and we present details on the

evaluations of the achieved MG pairs and the required cooperation prelogs.
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ex

ey

Figure 5.4: Illustration of the hexagonal network. Small circles indicate Txs and Rxs, black solid lines
depict the cell borders, and black dashed lines indicate that the communication in two given cells interfere.

We first explain the choice of Tsilent for the no-cooperation scheme in Subsection 5.1.4. Choose

Tactive = {k ∈ [K] : (ak + bk) mod 3 = 0} (5.60)

and Tsilent = [K]\Tactive. The corresponding cell association is shown in Figure 5.5a where active cells are

depicted in yellow and silenced cells in white. By (5.19), the sum-MG achieved by this scheme is

Sno-coop =
L

3
. (5.61)

We next explain the choice of the Tx/Rx sets for the schemes sending only “slow" messages described

in Subsection 5.1.3. Set τ = D
2 + 1 and choose a Tx k (Rx k) as a master Tx (Rx), if it belongs to the set

Tmaster = {k ∈ [K] : (ak mod τ = 0) and (bk mod τ = 0) and (|ak + bk| mod 3τ = 0)} . (5.62)

To describe the set of silenced Txs Tsilent, we introduce the following notation. For any integers x and τ ≥ 0:

x[−τ,2τ ] , ((x+ τ) mod 3τ)− τ, (5.63)

where mod denotes the standard modulo operator. In fact, the operator x[−τ,2τ ] ressembles the standard

mod 3τ operator, but it shifts every number into the interval [−τ, 2τ) and not into [0, 3τ). We then set

Tsilent =
{
k : max{|ak[−τ,2τ)|, |bk[−τ,2τ)|, |ak[−τ,2τ) − bk[−τ,2τ)|} = τ

}
(5.64)

and Tslow = [K]\Tsilent. Figure 5.5b shows the proposed cell association for D = 6: blue or yellow are the
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(a) Non-cooperative scheme (b) Cooperative scheme

Figure 5.5: Illustration of the cell associations for the non-cooperative and the cooperative schemes in the
hexagonal network. Txs in white cells are deactivated. In (a), Txs in yellow cells are active. In (b), when
transmitting only “slow” messages with D = 6, Txs in blue and yellow cells send “slow” messages. When
transmitting both “fast” and “slow” messages with D = 8, Txs in yellow cells send “fast” messages and Txs
in blue cells send “slow” messages. Master Txs (Rxs) are depicted with green borders.

active “slow" cells and white the silenced cells. Master Txs (Rxs) are depicted with green borders. We

observe that the choice in (5.64) silences all Tx/Rx pairs which lie D
2 + 1 hops away from a master Tx/Rx

pair. As we detail out in Appendix A.2.1, by (5.14) and (5.15), this choice establishes an achievable MG

pair of (S(F ) = 0,S(S) = S
(S)
max), where

S(S)max , L · 4 + 3D(D + 2)

3(D + 2)2
. (5.65)

Moreover, by (5.16) and (5.17), with CoMP reception or CoMP transmission the scheme requires average

Rx- or Tx-cooperation prelogs equal to

µ
(t)
Tx,S = µ

(r)
Rx,S = L · D(D + 1)

9(D + 2)
. (5.66)

Finally, we turn to the scheme that sends both “fast" and “slow" messages in Subsections 5.1.1 and

5.1.2. Here, we set τ = D
2 and choose the set of master Txs (Rxs) as in (5.62), but for this new value

of τ . Similarly, we choose the silenced set Tsilent as in (5.64) but again for the new value τ = D
2 . The

“fast" transmit set Tfast is chosen in the same way as Tactive in (5.60), and Tslow = T csilent ∩ Tfast. The cell

association is depicted in Figure 5.5b for D = 8, where “fast" cells are in yellow, “slow" cells in blue, and

master cells are designated with green borders. As detailed out in Appendix A.2.1, by (5.8), the proposed
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cell association achieves the MG pair (S(F ) = S
(F )
both,S

(S) = S
(S)
both) where

S
(F )
both ,

L

3

(
1− 2(D− 2)

D2

)
and S

(S)
both ,

2L

3

(
1− 2

D

)
, (5.67)

and by (5.9) and (5.10) the required average Tx- and Rx-cooperation prelogs with CoMP reception are

µ
(r)
Tx,both , L · (D− 2)(3D− 4)

9D2 and µ
(r)
Rx,both , L · 4D3 + 3D2 − 42D + 112

54D2 , (5.68)

and with CoMP transmission they are

µ
(t)
Tx,both , L · 4D3 − 3D2 − 6D− 8

54D2 and µ
(t)
Rx,both , L · (D− 2)(3D− 4)

9D2 . (5.69)

5.3.3 Achievable MG Region

Recall the definitions of S(F )
max, S

(S)
max, S

(F )
both, S

(S)
both in (5.61), (5.65), and (5.67). Define

α1 , max

min

 µTx

µ
(r)
Tx,both

,
µRx

µ
(r)
Rx,both

 , min

 µTx

µ
(t)
Tx,both

,
µRx

µ
(t)
Rx,both


 , (5.70)

α2 , max

 µTx

µ
(t)
Tx,S

,
µRx

µ
(r)
Rx,S

 . (5.71)

Also, define

S
(F )
hexa,1(α1) , α1S

(F )
both, S

(S)
hexa,1(α1) , α1S

(S)
both + (1− α1)S

(S)
max, (5.72)

S
(F )
hexa,2(α1) , α1S

(F )
both + (1− α1)S

(F )
max, S

(S)
hexa,2(α1) , α1S

(S)
both, (5.73)

S
(S)
hexa(α2) , α2S

(S)
max + (1− α2)S

(S)
no-coop. (5.74)

Theorem 7 (Achievable MG Region: Hexagonal Model). Assume D ≥ 2.

• When µRx ≥ max{µ(r)Rx,both, µ
(r)
Rx,S} and µTx ≥ µ

(r)
Tx,both; or when µTx ≥ max{µ(t)Tx,both, µ

(t)
Tx,S} and µRx ≥

µ
(t)
Rx,both;

convex hull
(

(0, 0), (0, S(S)max), (S
(F )
both, S

(S)
both), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.75)
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Figure 5.6: Inner bounds on S?(µTx, µRx,D) for the hexagonal model for D = 8, L = 3 and different values
of µRx and µTx.

• When µ(r)Rx,both ≤ µRx < µ
(r)
Rx,S and µTx ≥ µ

(r)
Tx,both; or when µ(t)Tx,both ≤ µTx < µ

(t)
Tx,S and µRx ≥ µ

(t)
Rx,both;

convex hull
(

(0, 0), (0,S
(F )
both + S

(S)
both), (S

(F )
both,S

(S)
both), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.76)

• When µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both; or when µTx ≥ µ

(t)
Tx,S and µRx < µ

(t)
Rx,both;

convex hull
(

(0, 0), (0,S(S)max), (S
(F )
hexa,1(α1),S

(S)
hexa,1(α1)), (S

(F )
hexa,2(α1),

S
(S)
hexa,2(α1)), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.77)

• When µRx < µ
(r)
Rx,both or When µTx < µ

(t)
Tx,both,

convex hull
(

(0, 0), (0,S
(S)
hexa(α2)), (S

(F )
hexa,2(α1),S

(S)
hexa,2(α1)), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.78)

Figure 5.6 illustrates the inner bounds (Theorem 7) on the MG region for D = 8, and different values of

µRx and µTx. This figure shows that unlike the results obtained for Wyner’s symmetric model, the sum-MG

of this network decreases as S(F ) increases. This can be seen from the slop of the line connecting the

(0, S
(S)
max) point to the (S

(F )
both,S

(S)
both) point which is always smaller than −1. Furthermore, in this network,

it is not possible to achieve the maximum S(F ) when transmitting both “fast” and “slow” messages.
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Figure 5.7: Illustration of the sectorized hexagonal network. Small circles indicate Txs (mobile users),
black solid lines depict the cell borders, brown lines the sector borders, and dashed lines indicate that the
communication in two given sectors interfere.

5.4 Sectorized Hexagonal Model

5.4.1 Network and Cooperation Model

Consider again a cellular network with K hexagonal cells, but where now each cell consists of three sectors.

Each Tx is associated with a distinct sector and is equipped with L antennas. Each Rx is associated with

a distinct cell and is equipped with 3L directional antenna, where L antennas are pointing to each of the

three sectors of the cell. This allows avoiding interference between communications from different sectors

in the same cell. Thus, each Rx k observes three channel outputs Y n
k,k1

, Y n
k,k2

and Y n
k,k3

where Txs k1, k2

and k3 are the three Txs of the sectors of the cell. More formally, Rx k observes a set of channel outputs

Y (k) = [Y n
k,k1

Y n
k,k2

Y n
k,k3

] where the input-output relation Y n
k,k̂

for k̂ ∈ {k1, k2, k3} is based on (3.5) and

the set ITx,k̂ contain the indices of the 4 neighbouring sectors whose signals interfere with sector k̂.

The interference pattern of our network is depicted by the dashed lines in Fig. 5.7, where the three

sectors of a cell are separated by brown lines. Notice for example, that transmission in the grey-shaded

sector is interfered only by the transmissions in the four adjacent pink-shaded sectors from other cells. In

this model, each Rx k (BS of a cell) can cooperate with the six Rxs in the adjacent cells, i.e., |NRx(k)| = 6.

Thus the number of Rx-cooperation links QK,Rx in this network is approximately 6K. Each Tx (MU of

a cell) can cooperate with the four Txs in the adjacent sectors, i.e. |NTx(k)| = 4. Thus the number of

Tx-cooperation links QK,Tx is approximately 12K. Assume that D is even. For simplicity, in this network

we only consider the uplink communications with CoMP reception.
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Figure 5.8: Illustration of the sectorized hexagonal network where the sectors labeled by “S" colored in
yellow, sectors labeled by“NW” are colored in red, and the sectors labeled by “NE" are colored in green.
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Figure 5.9: Illustration of cell allocation for D = 4 in the sectorized hexagonal network. Txs in white sectors
are deactivated, Txs in yellow sectors send “fast” messages and Txs in blue sectors send “slow” messages.
Master cells are marked by green.

5.4.2 Tx/Rx Set Associations

We present the sector associations for the schemes in Subsection 5.1.1 for this network. (Recall that in this

model each Tx is associated with a given sector and each Rx with a given cell.) Within a cell, we label the

three sectors by “S", “NW’, “NE" as colored in yellow, red and green in Figure 5.8.

For the no cooperation scheme, we define the active set Tactive as the set of either the “NW" sectors, the

“NE" sectors, or the “S" sectors of all cells as depicted in Figure 5.8. The proposed cell association achieves

the sum-MG

Sno-coop ,
L

3
. (5.79)

For the cooperative schemes, both when we send only “slow" messages or when we send both “fast"

and “slow" messages, we pick the set of master cells Tmaster as in (5.62) for the choice τ = D
2 . Unlike in the
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Figure 5.10: Illustration of cell allocation for D = 8 in the sectorized hexagonal network. Txs in white
sectors are deactivated, Txs in yellow sectors send “fast” messages and Txs in blue sectors send “slow”
messages.

hexagonal model in Section 5.3, we do not need to deactivate the entire τ -th cell layer around each master

cell. Instead, for the 6 corner cells that lie exactly τ cell-hops away from 3 different master cells, we silence

all users in every second of these corner cells and keep all Txs of the other 3 corner cells active. For the non-

corner cells that lie τ cell hops away from only 2 different master cells, we only silence the Txs in the sector

that is closest to the next active corner cell, and keep all other Txs active. As for the hexagonal model, all

Txs that lie less than τ cell hops from a master cell are kept active. See Figure 5.9 for an illustration of the

proposed cell association when D = 4 and Figure 5.10 when D = 8. For the scheme sending only “slow"

messages, all Txs in the yellow and blue sectors send “slow" messages. As explained in Appendix A.2.2, for

this scheme the proposed sector association achieves the MG pair (S(F ) = 0,S(S) = S
(S)
max) where

S(S)max , L · 3D− 2

3D
, (5.80)

and it requires an average Rx-cooperation prelog of

µ
(r)
Rx,S = L · (D− 1)

3
. (5.81)

In the scheme sending both “fast" and “slow" messages, the Txs in the “yellow" sectors of Figure 5.9

send “fast" messages and the Txs in the “blue" sectors send “slow" messages. All active Txs that lie τ cell

hops away from the next master cells send “fast" messages. Txs that lie τ − 1 cell hops away from the next
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Figure 5.11: Inner bounds on S?(µTx, µRx,D) for the sectorized hexagonal model for D = 4, L = 3 and
different values of µRx and µTx.

master cell send a “fast" message if their signals do not interfere with an active sector in layer τ ; otherwise

they send a “slow" message. Similarly, Txs that lie τ − i cell hops away from the next master cell, for

i = 1, . . . , τ , send a “fast" message if their signals do not interfere with an active sector in the next layer

τ − i + 1; otherwise they send “slow" messages. We prove in Appendix A.2.2 that the proposed sector

association achieves the MG pair

S
(F )
both ,

L

3
, and S

(S)
both , L · 2D− 2

3D
, (5.82)

and requires average Tx- and Rx-cooperation prelogs

µ
(r)
Tx,both , L · (D− 1)

9D
and µ

(r)
Rx,both , L · 2D2 − 5

9D
. (5.83)

5.4.3 Achievable MG Region

Recall the definitions of S(F )
both, S

(S)
both, S

(S)
max, and Sno-coop in (5.79), (5.80), and (5.82). Define

α1 ,
µTx

µ
(r)
Tx,both

and α2 , min

 µTx

µ
(r)
Tx,both

,
µRx

µ
(r)
Rx,both

 . (5.84)
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Also, define

S(F )
sec (α1) , α1S

(F )
both, S(S)sec (α1) , α1S

(S)
both + (1− α1)S

(S)
max, (5.85)

S(F )
sec (α2) , α2S

(F )
both + (1− α2)S

(F )
max, S(S)sec (α2) , α2S

(S)
both, (5.86)

S
(S)
sec,1(α2) , α2S

(S)
max + (1− α2)S

(S)
no-coop. (5.87)

According to the arguments in Appendix A.2.2, the following regions of MG pairs are achievable depending

on the available cooperation prelogs µTx and µRx.

Theorem 8 (Achievable MG Region: Sectorized Hexagonal Model). Assume D ≥ 2.

• When µRx ≥ µ
(r)
Rx,both and µTx ≥ µ

(r)
Tx,both;

convex hull
(

(0, 0), (0, S(S)max), (S
(F )
both, S

(S)
both), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.88)

• When µRx ≥ µ
(r)
Rx,S and µTx < µ

(r)
Tx,both;

convex hull
(

(0, 0), (0,S(S)max), (S(F )
sec (α1),S

(S)
sec (α1)), (S(F )

sec (α2),S
(S)
sec (α2)), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D).(5.89)

• When µRx < µ
(r)
Rx,both and µTx < µ

(r)
Tx,both;

convex hull
(

(0, 0), (0,S
(S)
sec,1(α2)), (S(F )

sec (α2), S
(S)
sec (α2)), (S(F )

max, 0)

)
⊆ S?(µTx, µRx,D). (5.90)

Figure 5.11 illustrates the inner bounds (Theorem 8) on the MG region for D = 4, and different values

of µRx and µTx. As can be seen from this figure, when µRx ≥ 2.25 and µTx ≥ 0.25, there is no penalty in

sum Mg even at maximum “fast” MG. This can be seen from the slop of the line connecting the (0, S
(S)
max)

point to the (S
(F )
both,S

(S)
both) point which is equal to −1. Furthermore, in this network, it is possible to achieve

the maximum S(F ) when transmitting both “fast” and “slow” messages.
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Chapter 6

Random Users Activity with Mixed Delay

Traffic

In this chapter, we combine random user activity with mixed delay traffic. Specifically, in each transmission

block only a subset of the users has a message to convey to its corresponding Rxs. We specifically consider

two setups. In both setups, Rxs can cooperate to decode their desired “slow” messages but not to decode

“fast” messages. Each Tx is active with probability ρ ∈ [0, 1], and the goal is to maximize the average

expected “slow" rate of the network, while the rate of each “fast" message is fixed to a target value. In the

first setup, each active Tx transmits a “slow” message, and with probability ρf ∈ [0, 1] also transmits an

additional “fast” message. In the second setup, each active Tx sends either a “fast” message with probability

ρf or a “slow" message with probability 1− ρf .

For both setups, we propose general coding schemes and characterize their achievable MG regions for

three networks: Wyner’s soft-handoff network, Wyner’s symmetric network and the hexagonal network.

The achievable MG region is shown to be optimal for Wyner’s soft-handoff network. In both setups, the

obtained MG regions show that the average “slow” MG decreases i) with increasing number of interfering

links, and ii) with increasing activity parameter ρ. The obtained MG regions also show that in the first

setup, the maximum sum-MG is always attained at 0 “fast" MG, and increasing the “fast” MG decreases the

sum-MG by a penalty that roughly speaking increases with the number of interference links in the network

and with the activity parameter ρ. In contrast, in the second setup, for certain parameters the sum-MG is

achieved at maximum “fast" MG and thus increasing the “fast" MG provides a gain in sum-MG, where we

observe that the gain decreases with the number of interferers and the activity parameter ρ.
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6.1 Random “Fast” Arrivals Only

6.1.1 Problem Setup

Consider a cellular network with K Tx-Rx pairs k = 1, . . . ,K. Each Tx k ∈ K , {1, . . . ,K} is active with

probability ρ ∈ [0, 1], in which case it sends a “slow" message M (S)
k to its corresponding Rx k. Here, M (S)

k

is uniformly distributed overM(S)
k , {1, . . . , b2nR

(S)
k c}, with n denoting the blocklength and R(S)

k the rate

of message M (S)
k . Given that Tx k is active, with probability ρf ∈ [0, 1], it also sends an additional “fast"

message M (F )
k to Rx k. These “fast" messages are subject to stringent delay constraints, and uniformly

distributed over the setM(F ) , {1, . . . , b2nR(F )c}. “Fast" messages are thus all of same size and same rate

R(F ).

We introduce the i.i.d Bernoulli-ρ random variables A1, . . . , AK and the i.i.d Bernoulli-ρf random vari-

ables B1, . . . , BK and define the active Tx-set as

Tactive , {k ∈ K : Ak = 1}, (6.1)

and the “fast” Tx-set as

Tfast , {k ∈ K : Ak ·Bk = 1}. (6.2)

Then, for each k ∈ K, Tx k computes its channel inputs Xn
k , (Xk,1, . . . , Xk,n) ∈ Rn as

Xn
k =


f
(B)
k

(
M

(F )
k ,M

(S)
k

)
, if k ∈ Tfast

f
(S)
k

(
M

(S)
k

)
, if k ∈ Tactive\Tfast

0, if T cactive.

(6.3)

for some encoding functions f (B)
k and f

(S)
k on appropriate domains satisfying the average block-power

constraint
1

n

n∑
t=1

X2
k,t ≤ P, ∀ k ∈ K, almost surely. (6.4)

The input-output relation of the network is then described as

Yk,t = AkXk,t +
∑

k̃∈ITx,k

Ak̃hk̃,kXk̃,t + Zk,t, (6.5)
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where {Zk,t} are independent and identically distributed (i.i.d.) standard Gaussians for all k and t and

independent of all messages; the interfering set ITx,k is defined in (2.2); hk̃,k > 0 is the channel coefficient

between Tx k̃ and Rx k and is a fixed real number smaller than 1; and X0,t = 0 for all t.

Each Rx k ∈ Tfast decodes the “fast" message M (F )
k based on its own channel outputs Y n

k . So, it

produces:

M̂
(F )
k = g

(n)
k

(
Y n
k

)
, (6.6)

for some decoding function g(n)k on appropriate domains. It is assumed that receivers can fully cooperate

on all receive signals when decoding their “slow” messages. So,

M̂
(S)
k = b

(n)
k

(
Y n
1 , . . . , Y

n
K

)
, (6.7)

where b(n)k is a decoding function on appropriate domains.

Given P > 0, a pair (R(F )(P), R̄(S)(P)) is said achievable, if for each K > 0, there exist rates {R(S)
k }

K
k=1

satisfying

R̄(S) ≤ lim
K→∞

1

K
E

 ∑
k∈Tactive

R
(S)
k

 , (6.8)

and encoding, cooperation, and decoding functions satisfying constraint (6.4) and so that the probability

of error

P
[ ⋃
k∈Tfast

(
M̂

(F )
k 6= M

(F )
k

)
or

⋃
k∈Tactive

(
M̂

(S)
k 6= M

(S)
k

)]
(6.9)

goes to 0 as n→∞.

Given the random arrival of the messages, the definition of the MG region differs from the previous

sections. Specifically, an MG pair (S(F ),S(S)) is called achievable, if for all powers P > 0 there exist

achievable average rates {R(F )(P), R̄(S)(P)}P>0 satisfying

S(F ) , lim
P→∞

R(F )(P)
1
2 log(P)

· ρρf , (6.10)

S(S) , lim
P→∞

E

[
R̄(S)(P)
1
2 log(P)

]
. (6.11)

The closure of the set of all achievable MG pairs (S(F ), S(S)) is called statistical MG region and is denoted
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S?(ρ, ρf ).

The MG in (6.11) measures the average expected “slow” MG on the network. Since the “fast" rate is

fixed to R(F ) at all Txs in Tfast, we multiply the MG in (6.10) by ρρf to obtain the average expected “fast"

MG of the network.

6.1.2 Achievable MG Region and Coding Schemes

In this section, we propose two schemes, one with large “fast” MG and the other with zero “fast” MG.

Transmitting at large S(F ):

Since we wish to transmit at maximum “fast" MG, each “fast” transmission should not be interfered (except

for signals up to noise level) by any other (“fast” or “slow”) transmission. Therefore, we partition K into δ

subsets K1, . . . ,Kδ, for some positive integer δ, in a way that all the signals sent by Txs in a given subset

Ki do not interfere, i.e., for each i ∈ {1, . . . , δ}:

k′ /∈ IRx,k′′ and k′′ /∈ IRx,k′ , ∀k′, k′′ ∈ Ki, (6.12)

where IRx,k is defined in (2.1). We divide the total transmission time into δ equally-sized phases. In the

i-th phase,

• each Tx k in Ki ∩ Tfast sends its entire “fast” message M (F )
k but no part of the “slow" message M (S)

k ;

• each Tx k ∈ K\(Ki ∩ Tfast) sends a part of its “slow” message M (S)
k if

IRx,k ∩ Tfast ∩ Ki = ∅; (6.13)

otherwise it does not send anything.

Condition (6.13) ensures that transmissions of “fast” messages are not interfered at all. By (6.12), the

condition is in particular satisfied for all k ∈ Ki ∩ (Tactive\Tfast).

The described scheme achieves a “fast” rate of R(F ) = 1
δ
1
2 log(1 +P), and thus by (6.10), a “fast” MG of

S(F )
max =

ρρf
δ
. (6.14)
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+ + + + ++ + + + +

1 2 3 4 5 6 7 8 9 10

Figure 6.1: An illustration of Wyner’s soft-handoff network where the Tx/Rx pairs in K1 are colored in
gray and the Tx/Rx pairs in K2 in pink. The interference graph is depicted by black dashed lines.

It also achieves an expected “slow” MG of

S̄(S)coop(K) =
1

K

δ∑
i=1

1

δ

( ∑
k∈Ki

P{k ∈ Tactive\Tfast}+
∑

k∈K\Ki

P{k ∈ Tactive}P{IRx,k ∩ Tfast ∩ Ki = ∅}
)
(6.15)

=
1

K

δ∑
i=1

(ρ(1− ρf )

δ
|Ki|+

∑
k∈K\Ki

P{k ∈ Tactive}
∏

k̃∈{IRx,k∩Ki}

P{k̃ /∈ Tfast}
)

(6.16)

=
ρ

δK

δ∑
i=1

(
(1− ρf )|Ki|+

∑
k∈K\Ki

(1− ρρf )|IRx,k∩Ki|}
)
. (6.17)

Transmitting at S(F ) = 0:

Each Tx k ∈ Tactive sends only a “slow” message but no “fast" message. Since perfect cooperation is assumed

at the Rxs, each of the “slow" messages can be transmitted with MG 1. The average expected “slow" MG

over the network is therefore

S̄(S)max = ρ, (6.18)

while S(F ) = 0.

Time sharing the two schemes establishes the following:

Proposition 3 (Achievable MG Region). The inner bound on S?(ρ, ρf ) contains the region:

convex hull
(

(0, 0), (0, S̄(S)max), (S(F )
max, S̄

(S)
coop), (S(F )

max, 0)

)
. (6.19)

In the following three sections we specialize this proposition to different interference networks. As we

will see, for our first network, we can also prove a corresponding converse result, and thus Proposition 3

exactly characterizes S?(ρ, ρf ).
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6.1.3 Wyner’s Soft-Handoff Network

Consider Wyner’s soft-handoff network shown in Figure 6.1. Interference is short-range in the sense that

the signal sent by Tx k is observed only by Rx k and by the neighbouring Rx k+ 1. Thus IRx,k = {k+ 1}.

For this network, we can exactly characterize the statistical MG region S?(ρ, ρf ):

Theorem 9. The statistical MG region S?(ρ, ρf ) of Wyner’s soft-handoff network is the set of all nonneg-

ative pairs (S(F ), S(S)) satisfying

S(F ) ≤
ρρf
2
, (6.20)

(1 + ρ)S(F ) + S(S) ≤ ρ. (6.21)

Proof: The achievability part follows by specializing Proposition 3 to δ = 2 and to

K1 = {1, 3, . . . ,K − 1} and K2 = {2, 4, . . . ,K}. (6.22)

For this choice |IRx,k ∩ Ki| = 1. The proof of the converse bound (6.20) is straightforward. The converse

bound (6.21) is proved in Appendix A.3.1.

By above theorem, the statistical MG region S?(ρ, ρf ) is a quadrilateral, see also Fig. 6.4, and it

is mostly determined by the activity parameter ρ; the “fast” arrival probability ρf only determines the

vertical maximum-S(F ) =
ρρf
2 boundary of the region. The maximum-S(S) boundary, which characterizes

the maximum achievable “slow" MG S(S) in function of the “fast" MG S(F ), is fully characterized by ρ:

it’s a line segment with slope −(1 + ρ). In general, this slope determines the penalty that the maximum

“slow” MG S(S) incurrs when one increases the “fast" MG. This penalty increases with increasing ρ because

with more active Txs in the network the probability increases that a given active “fast" Tx is interfered by

other active transmitters, which then have to be forced to send at “slow" MG 0 in order not to harm the

achievable “fast" MG.

6.1.4 Wyner’s Symmetric Network

Consider Wyner’s symmetric network in Figure 6.2, where the signal sent by Tx k is observed by Rxs k

and k + 1, and also by Rx k − 1. Thus IRx,k = {k − 1, k + 1} for each k ∈ K.

Corollary 6. The statistical MG region S?(ρ, ρf ) of Wyner’s symmetric model includes all nonnegative
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+ + + + ++ + + + +

1 2 3 4 5 6 7 8 9 10

Figure 6.2: An illustration of Wyner’s symmetric network where the Tx/Rx pairs in K1 are colored in gray
and the Tx/Rx pairs in K2 in pink. The interference graph is depicted by black dashed lines.

pairs (S(F ),S(S)) satisfying

S(F ) ≤
ρρf
2
, (6.23)

(1 + ρ(2− ρρf ))S(F ) + S(S) ≤ ρ. (6.24)

Proof: Specialize Proposition 3 to δ = 2 and to the sets K1 and K2 in (6.22). For this choice

|IRx,k ∩ Ki| = 2.

The region in above corollary is again a quadrilateral, but the maximum-S(S) boundary is now deter-

mined by both parameters ρ and ρf as its slope is − (1 + ρ(2− ρρf )). The dependency on ρf however

vanishes as ρ · ρf → 0 in which case the slope approaches −(1 + 2ρ). Interestingly, this asymptotic slope

shows a factor 2 compared to the slope of the maximum-S(S) boundary in Wyner’s soft-handoff network.

The reason is that in Wyner’s symmetric network |ITx,k| = 2 whereas in Wyner’s soft-handoff network

|ITx,k| = 1. In the next subsection, we will see that in the hexagonal network where |ITx,k| = 6, this

asymptotic slope is −(1 + 6ρ).

6.1.5 Hexagonal Network

Consider the hexagonal network in Figure 6.3 with K hexagonal cells and each cell including one Tx and

one Rx. The signals of Tx/Rx pairs that lie in a given cell interfere with the signals sent in the 6 adjacent

cells. The interference pattern is depicted by the dashed black lines in Fig. 6.3.

Corollary 7. The multiplexing gain region S?(ρ, ρf ) includes all nonnegative pairs (S(F ),S(S)) satisfying

S(F ) ≤
ρρf
3
, (6.25)(

1 + 2ρ(3− 3ρρf + ρ2ρ2f )
)
S(F ) + S(S) ≤ ρ. (6.26)
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ex

ey

(0,−1)

(−1, 0) (1, 1)

(0, 1)

(1, 0)(−1,−1)

Figure 6.3: An illustration of the hexagonal network where the Tx/Rx pairs in K1 are colored in gray, the
Tx/Rx pairs in K2 in blue and the Tx/Rxs in K3 in pink. The interference graph is depicted by black
dashed lines.

Proof: Follows by specializing Proposition 3 to δ = 3 and to appropriate sets K1, K2 and K3 shown

in Fig. 6.3. To describe these sets, we associate each cell with a different Eisenstein integer similarly to

Section 5.3.1. So, we pick a cell in the center of the network and associate it with the origin (0, 0). Using

the basis ex , −
√
3

2 + 1
2 i and ey = i in the complex plane, each other cell k is associated to a different pair

of integers (ak, bk). We choose:

K1 = {k ∈ K : |ak + bk| mod 3 = 0}, (6.27a)

K2 = {k ∈ K : |ak + bk − 1| mod 3 = 0}, (6.27b)

K3 = {k ∈ K : |ak + bk − 2| mod 3 = 0}. (6.27c)

For this choice, |IRx,k ∩ Ki| = 3.

Figure 6.4 evaluates the regions in Theorem 9 and in Corollaries 6 and 7 for ρ = 0.8 and ρf either 0.3

or 0.6. We observe the quadrilateral shapes of all three regions.

88



CHAPTER 6. RANDOM USERS ACTIVITY WITH MIXED DELAY TRAFFIC 89
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Figure 6.4: MG Region S?(ρ, ρf ) of different networks with ρ = 0.8 and different values of ρf .

6.2 Random “Fast” and “Slow” Arrivals

6.2.1 Problem setup

The setup considered in this section differs from the previous setup only in that Txs in Tfast only send a

“fast” message but no “slow” message. Thus, defining

Tslow , {k ∈ K : Ak · (1−Bk) = 1}, (6.28)

we have

Xn
k =


f
(F )
k

(
M

(F )
k

)
, if k ∈ Tfast

f
(S)
k

(
M

(S)
k

)
, if k ∈ Tslow

0 if k ∈ T cactive.

(6.29)

for some function f
(F )
k and f

(S)
k on appropriate domains that satisfy the average block-power constraint

(6.4). All other definitions are as in the previous Section 6.1. We denote the statistical MG region for this

setup by S∗2 (ρ, ρf ).

6.2.2 Achievable MG Region and Coding Schemes

We again propose two schemes, one for large “fast” MG and the other for zero “fast” MG.
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Transmitting at large S(F ):

Similar to the scheme presented in Subsection 6.1.2, we partition K into sets K1, . . . ,Kδ and divide the

total transmission time into δ equally-sized phases. In the i-th phase, each Tx k in Ki∩Tfast sends its “fast”

message and each Tx k ∈ Tslow sends its “slow” message if IRx,k ∩ Tfast ∩Ki = ∅; otherwise it does not send

any message. The described scheme achieves a “fast” MG of S(F )
max =

ρρf
δ , and an expected “slow” MG of

S̄
(S)
coop,2(K) =

1

K

δ∑
i=1

1

δ

( ∑
k∈Ki

P{k ∈ Tslow}+
∑

k∈K\Ki

P{k ∈ Tslow}P{IRx,k ∩ Tfast ∩ Ki = ∅}
)

(6.30)

=
1

K

δ∑
i=1

(ρ(1− ρf )

δ
|Ai|+

∑
k∈K\Ai

P{k ∈ Tactive}
∏

k̃∈{IRx,k∩Ai}

P{k̃ /∈ Tfast}
)

(6.31)

=
ρ(1− ρf )

δK

δ∑
i=1

(
|Ki|+

∑
k∈K\Ki

(1− ρρf )|IRx,k∩Ki|}
)
. (6.32)

Transmitting at S(F ) = 0:

Each Tx k ∈ Tslow sends a “slow” message with MG 1. The average expected “slow" MG over the network

is therefore

S̄
(S)
max,2 = ρ(1− ρf ). (6.33)

Each Tx k ∈ Tfast remains silent and thus S(F ) = 0.

Time sharing the two schemes establishes the following:

Proposition 4. The set S?2 (ρ, ρf ) contains the region:

convex hull
(

(0, 0), (0, S̄
(S)
max,2), (S(F )

max, S̄
(S)
coop,2), (S(F )

max, 0)

)
. (6.34)

We specialize this result to the interference networks introduced in Sections 6.1.3, 6.1.4 and 6.1.5 using

the same choices for δ and the sets {Ki}δi=1. For Wyner’s soft-handoff network this inner bound is again

tight.

6.2.3 Wyner’s Soft-Handoff Network

Theorem 10. The statistical MG region S?2 (ρ, ρf ) is the set of all nonnegative pairs (S(F ), S(S)) satisfying

S(F ) ≤
ρρf
2
, (6.35)
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ρ(1− ρf )S(F ) + S(S) ≤ ρ(1− ρf ). (6.36)

Proof: Achievability follows by specializing Proposition 4 to δ = 2 and to the sets K1 and K2 in

(6.22). For this choice |IRx,k ∩ Ki| = 1. The proof of the converse bound (6.35) is straightforward. The

converse bound (6.36) is proved in Appendix A.3.2.

Like in the previous setup, the statistical MG region S?2 (ρ, ρf ) is a quadrilateral. Interestingly, now all

boundaries depend on both activity parameters ρ and ρf , in particular the maximum “slow" MG equals

ρ(1 − ρf ). Moreover, the maximum sum-rate is not achieved for this maximum “slow" MG anymore.

Formally, this holds because the slope of the maximum-S(S) boundary is −ρ(1 − ρf ) and thus larger than

−1. So, the maximum sum-rate point is obtained for maximum “fast" MG S(F ) =
ρρf
2 . The underlying

intuition is that for ρ(1− ρf ) < 1 it may occur that a “fast" MG can be accommodated without the need

to sacrifice a “slow" MG when the single interferer is not active anyways.

6.2.4 Wyner’s Symmetric Network

Corollary 8. The MG region S?2 (ρ, ρf ) includes all nonnegative pairs (S(F ), S(S)) satisfying

S(F ) ≤
ρρf
2
, (6.37)

ρ(1− ρf )(2− ρρf )S(F ) + S(S) ≤ ρ(1− ρf ). (6.38)

Proof: Specialize Proposition 4 to δ = 2 and toK1 and K2 as in (6.22). For this choice |IRx,k∩Ki| = 2.

Here the slope of the maximum-S(S) boundary is −ρ(1− ρf )(2− ρρf ) and can be larger or smaller than

−1 depending on the activity parameters. So, depending on these parameters, the maximum sum-MG is

either achieved for zero “fast" MG or for maximum “fast" MG. Typically, for large values of ρf , i.e., when

most of the “active" Txs send “fast" messages, the maximum sum-MG is achieved at maximum “fast" MG.

When ρf is small and ρ sufficiently large, then most of the users are active and intend to send “slow"

messages. In this case, scheduling “fast" messages most likely comes at the expense of silencing active

neighbours that wishing to send “slow" messages. It is further interesting to notice that in the limiting

regime ρρf → 0, the slope of the maximum-S(S) boundary approaches −2ρ(1− ρf ) and is thus 2 times the

slope in Wyner’s soft-handoff network. As we will see, the hexagonal model treated next shows a factor 6.

For all three networks, the asymptotic slope in the limit ρρf → 0 is thus given by −|ITx,k|ρ(1− ρf ).
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Figure 6.5: statistical MG Region S?2 (ρ, ρf ) of the three networks with ρ = 0.8 and ρf equal to 0.3 or 0.6.

6.2.5 Hexagonal Network

Corollary 9. The MG region S?2 (ρ, ρf ) includes all nonnegative pairs (S(F ),S(S)) satisfying

S(F ) ≤
ρρf
3
, (6.39)

2ρ(1− ρf )(3− 3ρρf + ρ2ρ2f )S(F ) + S(S) ≤ ρ(1− ρf ). (6.40)

Proof: Specialize Proposition 4 to δ = 3 and to the sets K1, K2, and K3 in (6.27). For this choice

|IRx,k ∩ Ki| = 3.

Figure 6.5 illustrates S?2 (ρ, ρf ) for Wyner’s soft-handoff network as well as the inner bounds we obtain

for Wyner’s symmetric network and the hexagonal network under activity parameters ρ = 0.8 and ρf is

either 0.3 or 0.6.
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Chapter 7

Uplink of a Fading C-RAN under Mixed

Delay Constraints

In this chapter, a cloud radio access network (C-RAN) is considered where the first hop from the user

equipments (UEs) to the basestations (BSs) is modeled by the fading Wyner soft-handoff model. The focus

is on mixed-delay constraints where “slow" messages are jointly decoded in the cloud unit (CU), whereas

the “fast" messages have to be decoded immediately at the BSs. We present inner and outer bounds on the

capacity region for such a setup. Moreover, the MG region is characterized exactly. The results show that

for small fronthaul capacity it is beneficial to send both “fast" and “slow" messages. However, when the

rate of “fast" messages is already large, then increasing it further, deteriorates the sum rate of the system.

In this regime, the stringent decoding delay on the “fast" messages penalizes the overall performance. Our

results indicate that this penalty is larger at moderate SNR than at high SNR and it is also larger for

random time-varying fading coefficients than for static ones.

7.1 Problem Setup

Consider the uplink communication of a multi-cell C-RAN with K UEs and K BSs. UEs and BSs are

indexed by 1, . . . ,K. Each BS is connected to a CU via a separate fronthaul link of capacity C (see Fig.

7.1). At a given time t ∈ {1, . . . , n}, the signal received at BS k is described as

Yk,t = Gk,tXk,t + Fk,tXk−1,t + Zk,t, (7.1)
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Figure 7.1: System model

where Xk,t and Xk−1,t are the symbols sent by UE k and UE k − 1 at time t; {Zk,t} are i.i.d circular

Gaussian noises of variance 1; and

Gk,t, Fk,t ∈ C (7.2)

represent the time-t fading coefficients. We assume that the sequence of channel coefficients

{
(G1,t, G2,t, . . . , GK,t, F1,t, F2,t, . . . , FK,t)

}n
t=1

(7.3)

is i.i.d. over time and distributed according to the K-tuple distribution

PG1···GKF1···FK
(7.4)

of a given stationary and ergodic process {(Gi, Fi)}∞i=−∞ satisfying E
[
|G0|2

]
<∞ and E

[
|F0|2

]
<∞. Each

BS k has perfect channel state information (CSI) about its own channel, i.e., it observes the realizations

of {(Gk,t, Fk,t)} for all t ∈ {1, . . . , n}. The UEs know only the statistics of the random channel coefficients

and are said to have no CSI. Figure 7.1 shows an extract of our system model.

Each UE k wishes to convey the pair of independent messages (M
(F )
k ,M

(S)
k ) to BS k. The “fast" message

M
(F )
k is uniformly distributed over the setM(F )

k := {1, . . . , b2nR
(F )
k c} and has to be decoded by BS k as we
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explain shortly. The “slow" source message M (S)
k is uniformly distributed over M(S)

k := {1, . . . , b2nR
(S)
k c}

and is decoded at the CU.

UE k computes its channel inputs Xn
k := (Xk,1, . . . , Xk,n) as a function of the pair (M

(F )
k ,M

(S)
k ):

Xn
k = φ

(n)
k

(
M

(F )
k ,M

(S)
k

)
, (7.5)

for some function φ(n)k on appropriate domains so that the average block-power constraint (6.4) is satisfied.

Each BS k decodes the “fast" source message M
(F )
k based on its own channel outputs Y n

k :=

(Yk,1, . . . , Yk,n). So, it produces:

M̂
(F )
k = ψ

(n)
k

(
Y n
k

)
(7.6)

using some decoding function ψ(n)
k on appropriate domains.

It further produces the fronthaul message

Lk = q
(n)
k (Y n

k ), (7.7)

using some encoding function

q
(n)
k : Rnk →

{
1, . . . ,

⌊
2nC
⌋}
. (7.8)

The CU then decodes the set of “slow" messages as

(
M̂

(S)
1 , . . . , M̂

(S)
K

)
:= b(n)

(
L1, . . . , LK

)
(7.9)

by means of a decoding function b(n).

Definition 3 (Capacity Region). The capacity region C(P,C) is the closure of the set of all rate pairs

(R(F ), R(S)), defined in (3.10), that are achievable with power P and fronthaul link capacity C.

Definition 4 (Multiplexing Gains). The closure of the set of all achievable MGs (S(F ), S(S)), defined in

(3.12), is called MG region and denoted S?(µ) where

µ ,
C

1
2 log(1 + P)

. (7.10)
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7.2 Main Results

For each β ∈ [0, 1] define σ2β ≥ 0 as the unique positive real number satisfying

E

[
log

(
1 +

1 + (1− β)P|G0|2 + |F0|2P)

σ2β

)]
= C (7.11)

and the random process {W β
i }∞i=−∞ as the unique stationary process satisfying:

W β
i =

(
1 + (1− β)P|Gi|2

(
1 +

(1− β)P|Fi|2W β
i−1

1 + σ2β + βP|Fi|2
)−1)−1

. (7.12)

Notice that the joint process {(Fi, Gi,W β
i )}∞i=−∞ is also stationary and ergodic.

For a given β ∈ [0, 1], let R(β) ⊆ R2 be the set of all non-negative pairs (R(F ), R(S)) that satisfy

R(F ) ≤ E
[
log

(
1 +

βP|G0|2

(1− β)P|G0|2 + P|F0|2 + 1

)]
(7.13a)

and

R(S) ≤ E
[

log
(

1 +
(1− β)P|F0|2W β

−1
1 + σ2β + βP|F0|2

)
− logW β

0

]
. (7.13b)

Theorem 11 (Capacity Inner Bound). The convex closure of the sets {R(β) : β ∈ [0, 1]} is achievable:

conv cl

 ⋃
β∈[0,1]

R(β)

 ⊆ C(P,C). (7.14)

Proof: See Section 7.3.

Theorem 12 (Capacity Outer Bound). Assuming log |G0| and log |F0| are integrable near 0, any rate pair

(R(F ), R(S)) in the capacity region C(P,C) satisfies the following four constraints:

2R(F ) +R(S) ≤ E
[

log(1 + (|G0|2 + |F0|2)P)
]

+ E
[

log

(
1 +
|F0|2

|G0|2

)]
+ max

{
E
[

log

(
|G0|2

|F0|2

)]
, 0

}
, (7.15a)

R(F ) +R(S) ≤ 1

2
E
[

log(1 + (|G0|2 + |F0|2)P)
]

+
1

2
max

{
E
[

log

(
|G0|2

|F0|2

)]
, 0

}
+

1

2
E
[

log(1 + (|F0|2)−1)
]

+
C

2
, (7.15b)
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Figure 7.2: Capacity inner bound in Theorem 11 and capacity outer bound in Theorem 12 for P = 100,
C = 6.5, and different variances σ2F and σ2G of F and G, and for static G and F .

R(F ) ≤ 1

2
E
[

log(1 + |G0|2P)
]
, (7.15c)

R(S) ≤ C. (7.15d)

Proof: The proofs to the bounds (7.15a) and (7.15b) follow from the converse bounds in Appendices

(A.1.1) and (A.1.2) and by fixing L = 1 and considering the channel coefficient to be time varying. Proofs

of the bounds (7.15c) and (7.15d) are straightforward.

Corollary 10 (Multiplexing Gain Region). The multiplexing gain region S?(µ) is the set of all nonnegative

pairs (S(F ),S(S)) satisfying

2S(F ) + S(S) ≤ 1, (7.16a)

S(S) ≤ µ. (7.16b)

Proof: The converse holds by Theorem 12 and the achievability by Theorem 11. Specifically, for the

achievability part, it suffices to prove that the two pairs

(
S(S) = 0, S(F ) = 1/2

)
, (7.17)(

S(S) = min{µ, 1}, S(F ) = max{0, 1/2− µ/2}
)

(7.18)

are achievable. The multiplexing gain pair in (7.17) can be achieved by silencing every second UE, which

decomposes the network into K/2 non-interfering point-to-point links. If µ ≥ 1, the multiplexing gain pair
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Figure 7.3: Region S?(µ) for µ = 0.6 in blue and µ ≥ 1 in black.

(S(S) = 1,S(F ) = 0) is achieved by a scheme where each BS quantizes its observed outputs to noise level

and the CU decodes all the transmitted “slow" messages based on these quantized outputs. If µ < 1, then

the multiplexing gain pair (S(S) = µ, S(F ) = 1/2− µ/2) in (7.18) is achieved by a scheme that time-shares

the schemes above over fractions of 1− µ and µ of the time.

Figure 7.2 illustrates the proposed inner and outer bounds on the capacity region for independent

random processes {Gi} and {Fi}, where each Fi is circularly Gaussian of variance σ2F and each Gi is

circularly Gaussian of variance σ2G. Numerical simulations are performed for different values of σ2F . The

figure also presents inner and outer bounds on the capacity region assuming static channel coefficients

(regions in red). As can be seen from the figure, for small values of R(F ), the slope δR(F )

δR(S) of the inner bound

is approximately −1 both for static and random channel coefficients. This means increasing the rate of “fast”

messages by ∆, decreases the rate of “slow” messages by ∆ and thus the sum-rate remains constant. For

large values of R(F ) and random time-varying channel coefficients, the slope of the inner bound is around

−3.5 for σ2F = 0.2 and around −4 for σ2F = 0.3. In contrast, this slope is around −2.7 for static channel

coefficients. Increasing an already large “fast" rate R(F ) thus penalizes the sum-rate of the system and is

more pronounced under random fading. Note that, to reduce the gap between the proposed inner and outer

bounds on capacity, one can include more sophisticated multi-user compression techniques [77, 78] at the

BSs and the cloud processor.

Figure 7.3 shows the multiplexing gain region for different values of µ. We notice that when µ < 1,

for S(F ) ≤ 1
2 −

µ
2 , the multiplexing gain of “slow” messages is constant and solely limited by the fronthaul

capacity. In this regime, the sum-multiplexing gain of the system is increased by decoding parts of the
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messages directly at the BSs. When µ < 1 and S(F ) > 1
2 −

µ
2 , or when µ ≥ 1, the slope of the boundary of

the region is −2. In these regimes the maximum sum-multiplexing gain is decreased by ∆ when the “fast”

multiplexing gain increases by ∆.

7.3 Proof of Theorem 11

Fix β ∈ [0, 1]. Recall that σ2β was defined so as to verify (see (7.11))

E

[
log

(
1 +

1 + (1− β)P|G0|2 + |F0|2P)

σ2β

)]
= C. (7.19)

For each k ∈ {1, . . . ,K}, define

Xk = Uk + Vk, (7.20a)

Yk = GkXk + FkXk−1 + Zk, (7.20b)

Ck = GkVk + FkXk−1 + Zk, (7.20c)

Ĉk = Ck +Qk, (7.20d)

for {Qk}, {Uk}, {Vk}, and {Zk} independent zero-mean Gaussian random variables with variances σ2β , βP,

(1− β)P, and 1.

Random Code Construction: For each k ∈ {1, . . . ,K}, generate codebooks Cu,k, Cv,k, and Cw,k randomly.

Codebook

Cu,k :=
{
unk(i) : i = 1, . . . ,

⌊
2nR

(F )
k

⌋}
(7.21)

is generated by picking all entries i.i.d. circularly Gaussian of variance βP. Independently thereof, codebook

Cv,k :=
{
vnk (j) : j = 1, . . . ,

⌊
2nR

(S)
k

⌋}
(7.22)

is generated by picking all entries i.i.d. circularly Gaussian of variance (1− β)P. Quantization codebook

Cc,k :=
{
ĉnk(`) : ` = 1, . . . ,

⌊
2nC
⌋}

(7.23)

is generated by picking all entries i.i.d. according to PĈ .
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Reveal all codebooks to all terminals. We explain the encoding and decoding operations assuming that

Gnk = gnk and Fnk = fnk . (7.24)

(Recall that BS k and the CU know these realizations.)

UE k: Sends

xn = unk
(
M

(F )
k

)
+ vnk

(
M

(S)
k

)
. (7.25)

BS k: Decodes its “fast" message M (F )
k based on its own channel outputs Y n

k = ynk . It then looks for a

unique îk such that

(unk (̂ik), y
n
k , g

n
k , f

n
k ) ∈ A(n)

ε (PUY G0F0), (7.26)

where A(n)
ε (·) refers to the jointly typical set as defined in [69] and where given G0 = g and F0 = f the pair

(U, Y ) is a centered bivariate Gaussian vector of covariance matrix

KUY |g,f =

 βP gβP

gβP (g2 + f2)P + 1

 . (7.27)

If none or more than one such indices îk exist, BS k declares an error. Otherwise it declares

M̂
(F )
k = îk. (7.28)

Subsequently it forms the difference

cnk := ynk − unk (̂ik), (7.29)

and looks for an index `k such that

(ĉnk(`k), c
n
k , f

n
k , g

n
k ) ∈ A(n)

ε (PĈCFG). (7.30)

If none or more than one such indices `k exist, BS k declares an error. Otherwise it sends Lk = `k.

CU: Assume it receives L1 = l1, . . . , LK = lK . Then, it looks for a unique set of indices ĵ1, . . . , ĵK that
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satisfy

(
ĉn1 (`1), . . . , ĉ

n
K(`K), vn1 (ĵ1), . . . , v

n
K(ĵK), gn1 , . . . , g

n
K , f

n
1 , . . . , f

n
K

)
∈ A(n)

ε (PĈ1,...,ĈK ,V1,...,VK ,G,F), (7.31)

where

G = {G1,t, . . . , GK,t}nt=1, F = {F1,t, . . . , FK,t}nt=1. (7.32)

If none or multiple such indices ĵ1, . . . , ĵK exist, the CU declares an error. Otherwise, it declares

M̂
(S)
k = ĵk, k ∈ {1, . . . ,K}. (7.33)

Analysis: For any k ∈ {1, . . .K}, decoding in (7.26) is successful with probability tending to 1 as n→∞, if

R
(F )
k < I(Uk;Yk|Gk, Fk)

= E
[
log

(
1 +

βP|Gk|2

(1− β)P|Gk|2 + P|Fk|2 + 1

)]
. (7.34)

Assuming that this decoding was successful, quantization in (7.30) also succeeds with probability tending

to 1 as n→∞, because by the choice of the quantization noise σ2β :

C ≥ I(Ĉk;Ck|Gk, Fk)

= E

[
log

(
1 +

1 + (1− β)P|Gk|2 + |Fk|2P)

σ2β

)]
. (7.35)

Now assuming that both the decoding in (7.26) and the quantization in (7.30) were successful, the decoding

in (7.31) also succeeds with probability tending to 1 as n→∞, if

1

K

K∑
k=1

R
(S)
k

<
1

K
I(V1, . . . , VK ; Ĉ1, . . . , ĈK |G,F)

=
1

K
I
(
{Sk}Kk=1 ; {G̃kSk + F̃kSk−1 + Ξk}Kk=1

∣∣∣G,F), (7.36)

where {Z̃k} and {Ξk} are sequences of i.i.d. circularly symmetric Gaussian noises of variances 1+σ2β+f2kβP
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and 1 and

Sk :=
√

(1− β)−1/2P · Vk, (7.37a)

G̃k :=

√
(1− β)P√

1 + σ2β + βP |Fk|2
·Gk, (7.37b)

F̃k :=

√
(1− β)P√

1 + σ2β + βP |Fk|2
· Fk, k ∈ {1, . . . ,K}. (7.37c)

By these definitions and assumptions on the channel, the sequences {Sk}, {(G̃k, F̃k)}, {Ξk} satisfy the

conditions in [70, Assumption 1] (where we associate Gk, Fk, and Vk in [70] with G̃k, F̃k, and Ξk). Therefore

in the limit whenK →∞, the mutual information in (7.36) can be evaluated using [70, Theorem1] to obtain:

R(S) ≤ E
[

log
(

1 +
(1− β)P|F0|2W β

−1
1 + σ2β + βP|F0|2

)
− logW β

0

]
(7.38)

where {Wi}∞i=−∞ is the unique stationary process satisfying

W β
i =

(
1 + (1− β)P|Gi|2

(
1 +

(1− β)P|Fi|2W β
i−1

1 + σ2β + βP|Fi|2
)−1)−1

. (7.39)

Achievability of the pairs (7.13) follows then from (7.34) and (7.38).
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Chapter 8

Summary and Outlook

8.1 Summary

In this thesis we focused on interference networks with mixed-delay constraints and on system architectures

where certain transmitters and/or certain receivers can cooperate. In such systems, delay-sensitive messages

have to be encoded and decoded without further delay and thus cannot benefit from available cooperation

links.

• In Chapter 3, we proposed a cooperative communication model that can accommodate the transmis-

sion of both delay-sensitive and delay-tolerant messages.

• In Chapter 4, we considered Wyner’s soft-handoff network and characterized the MG region with

transmitter and receiver cooperation when delay-sensitive messages are subject to stringent delay

constraints. For the setup with only transmitter or only receiver cooperation, we observed the follow-

ing. Increasing the MG of delay-sensitive messages by ∆ requires decreasing the MG of delay-tolerant

messages approximately by 2∆. This penalty does not occur when both transmitters and receivers

can cooperate. More precisely, for small cooperation prelogs, when delay-sensitive messages have

moderate or small MGs, the sum MG is not decreased compared to when only delay-tolerant mes-

sages are transmitted. For large cooperation prelogs, this conclusion even holds when delay-sensitive

messages have large MGs.

• In Chapter 5, we proposed a coding scheme for general interference networks that accommodates the

transmission of both delay-sensitive and delay-tolerant messages. An important building block in

this coding scheme used for the transmission of delay-tolerant messages is coordinated multi point
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transmission or reception. We characterized the MG region of Wyner’s symmetric network and derived

inner bounds on the achievable MG region of the hexagonal network and the sectorized hexagonal

model. The results for Wyner’s symmetric model show that it is possible to accommodate the largest

possible MG for “fast” messages, without penalizing the maximum sum MG of both “fast” and “slow”

messages. The results for the hexagonal model show that there is always a penalty in sum MG at any

“fast" MG. In contrast, for the sectorized hexagonal model where each cell is divided into three non-

interfering sectors by employing directional antennas at the BSs, it is possible to eliminate this penalty

and accommodate the largest possible MG for “fast” messages without penalizing the maximum sum

MG.

• In Chapter 6, we considered two different setups to simultaneously transmit delay-sensitive and delay-

tolerant traffic over interference networks with randomly activated users. Under both setups, we

characterized the MG region of Wyner’s soft-handoff network and derived an inner bound on the

MG region of any general interference network. Our results show that in the first setup, where each

active Tx always has delay-tolerant data to send, the sum MG is decreased with increasing delay-

sensitive MG. The corresponding penalty mostly depends on the activity parameter and the size of

the interference set of the network. It increases with both parameters, intuitively because more Txs

have to be silent when accommodating delay-sensitive transmissions. In contrast, in the second setup

where each active Tx has either a delay-tolerant or a delay-sensitive message to send, depending on

the values of the activity parameters, the sum MG is either achieved at maximum delay-sensitive MG

or at 0 delay-sensitive MG.

• In Chapter 7, we presented the inner and outer bounds on the capacity region of a C-RAN under

mixed delay constraints and characterized the MG region of this network. We learned that when

the fronthaul capacities are small, the overall performance of the system can be improved if some of

the data streams (the delay sensitive streams) are directly decoded at the BSs. The stringent delay

constraint on these streams however becomes harmful when their rate is too large. In this regime

the total sum-rate has to be decreased by a penalty factor γ times ∆ when the delay-sensitive rate is

increased by ∆. The penalty factor γ ≈ 1 for static channel coefficients or in the high-SNR regime,

and it can be significantly larger for random channel coefficients and at moderate SNRs.
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8.2 Outlook

The following are interesting lines of future works:

• In this thesis, we assumed perfect channel state information (CSI) at the transmitter and the receiver

sides. In practice, it seems particularly difficult to obtain such a perfect knowledge at the transmitters

side. It is, therefore, of great interest to understand the fundamental limits of transmitter cooperation

under finite precision CSIT. This leads us to the next logical step, a generalized degrees of freedom

(GDoF) characterization. Readers are encouraged to refer to [71, 72]. The impact of CSI at the

transmitter as in Reference [71] but for the considered model with mixed-delay constraints is also of

high interest. In particular, a model where CSI is present for en/decoding delay-tolerant messages

but not for en/decoding of delay-sensitive messages is a natural extension of our setup.

• Another outgrowth of our work is the finite-blocklength derivation of achievability and converse

bounds. In practice, it is of vital interest to assess the backoff from capacity required to sustain

the desired error probability at a given fixed finite blocklength. Readers are encouraged to refer

to [73,74]

• In the schemes that we proposed for the random users activity with mixed delay traffic, users who

interfere with delay-sensitive transmissions are deactivated. One can thus consider buffers to store

not yet transmitted delay-tolerant messages similar to [75]. It would be interesting to analyze the

required size of these buffers, for example.

• In the completely centralized architecture of C-RAN, we introduced a setup where neither BSs nor

UEs can cooperate and we only focused on Wyner’s soft-handoff model. Our next steps could be to:

(i) investigate the influence of the model employed for the network between UEs and BSs, as well as

the availability of cooperation links between UEs and/or BSs; and (ii) study mixed delay constraints

on transmissions over fog radio access networks (FRAN) where large amount of signal processing and

computing is also performed in BSs and UEs. Readers are encouraged to refer to [76].

In the scheme proposed for C-RAN, we used simple point-to-point compression techniques. One can

reduce the gap between the proposed inner and outer capacity bounds by including more sophisticated

multi-user compression techniques such as successive Wyner-Ziv compression and noisy network coding

[77,78] at the BSs and the cloud processor.
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Appendix A

Proofs

A.1 Proofs of Chapter 4

A.1.1 Proof of the Converse to (4.3)

We start by proving bound (4.3). For convenience of notation, define for any k ∈ K:

Mk , (M
(F )
k ,M

(S)
k ). (A.1)

For each power P > 0, fix a sequence (in the blocklength n) of encoding and decoding functions respecting

the power constraints and the Rx-cooperation rate-limitations (recall that we consider a setup with only

Rx-cooperation but no Tx-cooperation) such that the error probability p(error) → 0 as the blocklength

n→∞.

By Fano’s Inequality there exists a sequence εn satisfying εn
n → 0 as n → ∞ such that for any k ∈ [1 :

K − 1] and each blocklength n:

R
(F )
k + R

(S)
k +R

(F )
k+1 =

1

n

[
H(M

(F )
k ) +H(M

(S)
k ) +H(M

(F )
k+1)

]
(A.2)

=
1

n

[
H(M

(F )
k

∣∣Mk−1)

+H
(
M

(S)
k

∣∣M1, . . . ,Mk−1,M
(F )
k ,Mk+1, . . . ,MK

)
+H

(
M

(F )
k+1

∣∣Mk−1,M
(S)
k+1

)]
(A.3)

≤ 1

n

[
I(M

(F )
k ;Y n

k |Mk−1) + I(M
(S)
k ;Y n

1 , . . . ,Y
n
K |M1, . . . ,Mk−1,M

(F )
k ,Mk+1, . . . ,MK)

+I(M
(F )
k+1;Y

n
k+1|Mk−1,M

(S)
k+1)

]
+
εn
n

(A.4)

(a)
=

1

n

[
I(M

(F )
k ;Y n

k |Mk−1) + I(M
(S)
k ;Y n

k ,Y
n
k+1|Mk−1,M

(F )
k ,Mk+1)
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+I(M
(F )
k+1;Y

n
k+1|Mk−1,M

(S)
k+1)

]
+
εn
n

(A.5)

(b)
=

1

n

[
I(M

(F )
k ,M

(S)
k ;Y n

k |Mk−1) + I(M
(S)
k ;Y n

k+1|Y n
k ,M

(F )
k ,Mk−1,Mk+1)

+I(M
(F )
k+1;Y

n
k+1|Mk−1,M

(S)
k+1)

]
+
εn
n

(A.6)

≤ 1

n

[
h(Hk,kX

n
k + Zn

k)− h(Zn
k) + h(Hk,k+1X

n
k + Zn

k+1|Hk,kXn
k + Zn

k)

−h(Zn
k+1) + h(Y n

k+1|M
(S)
k+1)− h(Hk,k+1X

n
k + Zn

k+1)
]

+
εn
n

(A.7)

(c)

≤
L∑
i=1

1

2
log
(

1 +
( L∑
j=1

|Hk+1,k+1(i, j)|
)2

P +
( L∑
j=1

|Hk,k+1(i, j)|
)2

P
)

+
1

2
log det

(
IL + Hk,k+1Hk,k

−1Hk,k
−THT

k,k+1

)
+

1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k) +

εn
n
, (A.8)

where IL denotes the L-by-L identity matrix and Hk+1,k+1(i, j) and Hk,k+1(i, j) denote the elements of

matrices Hk+1,k+1 and Hk,k+1 in row i and column j. Here, (a) follows because given source messagesMk−1

andMk+1, the triple (Mk,Y
n
k ,Y

n
k+1) is independent of the rest of the outputs Y

n
1 , . . . ,Y

n
k−1,Y

n
k+2, . . . ,Y

n
K

and source messages M1, . . . ,Mk−2,Mk+2, . . . ,MK ; (b) follows by the chain rule of mutual information and

because Mk+1 is independent of the tuple (Mk−1,Mk,Y
n
k); and (c) is obtained by rearranging terms, and

the following bounds (A.9), (A.15), and (A.24).

We first bound the term h(Y n
k+1|M

(S)
k+1), and start by noting that because conditioning can only reduce

entropy and by the entropy-maximizing property of the Gaussian distribution:

h(Y n
k+1|M

(S)
k+1) ≤

L∑
i=1

n∑
t=1

h(Yk+1,t(i)) ≤
L∑
i=1

n∑
t=1

1

2
log((2πe)Var(Yk+1,t(i))), (A.9)

whereYk+1,t(i) denotes the i-th entry of the vector Y k+1,t. Recall that in this setup without Tx-cooperation

the input vectors Xn
k and Xn

k+1 are independent. However the elements of each input vector can be

arbitrarily correlated. The variance Var(Yk+1,t(i)) is maximized if the elements ofXk+1,t are fully correlated

and thus :

Var(Yk+1,t(i)) ≤ 1 +

 L∑
j=1

|Hk,k+1(i, j)|
√
Pk,t(j)

2

+

 L∑
j=1

|Hk+1,k+1(i, j)|
√
Pk+1,t(j)

2

, (A.10)

where Pk,t(j) and Pk+1,t(j) denote the variances of the j-th elements of input vectors Xn
k,t and Xn

k+1,t. In

the following we relax the power constraint (3.4) by requiring only that the power of the n channel inputs
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produced by any given Tx-antenna cannot exceed nP:

n∑
t=1

Pk,t(j) ≤ nP, k ∈ {1, . . . ,K} and j ∈ {1, . . . , L}. (A.11)

Since the right-hand side of (A.10) is monotonically increasing and jointly concave in the powers {Pk,t(j)}

and {Pk+1,t(j)}, the upper bound on Var(Yk+1,t(i)) is largest when Pk,t(j) = Pk+1,t(j) = P. Moreover

since also the function x 7→ log(1 + x) is monotonically increasing, we conclude:

h(Y n
k+1|M

(S)
k+1) ≤ n

L∑
i=1

1

2
log(2πe)

1 +

 L∑
j=1

|Hk,k+1(i, j)|

2

P +

 L∑
j=1

|Hk+1,k+1(i, j)|

2

P

 .(A.12)

We next bound the term

1

n
h(Hk,k+1X

n
k + Zn

k+1|Hk,kXn
k + Zn

k) =
1

n
h(Zn

k+1 − Hk,k+1Hk,k
−1Zn

k |Hk,kXn
k + Zn

k) (A.13)

≤ 1

n
h(Zn

k+1 − Hk,k+1Hk,k
−1Zn

k) (A.14)

=
1

2
log det(IL + Hk,k+1Hk,k

−1Hk,k
−THTk,k+1), (A.15)

where recall that IL denotes the L-by-L identity matrix.

For the last bound, define

T n
k , H−1k,kZ

n
k − H−1k,k+1Z

n
k+1. (A.16)

Then:

1

n
h(Hk,kX

n
k + Zn

k)− 1

n
h(Hk,k+1X

n
k + Zn

k+1)

(e)
=

1

n
h(Xn

k + H−1k,k+1Z
n
k+1 + T n

k)− 1

n
h(Xn

k + H−1k,k+1Z
n
k+1) + log

( det(Hk,k)

det(Hk,k+1)

)
(A.17)

(f)

≤ 1

n
h(Xn

k + H−1k,k+1Z
n
k+1 + T n

k)− 1

n
h(Xn

k + H−1k,k+1Z
n
k+1|T n

k) + log
( det(Hk,k)

det(Hk,k+1)

)
(A.18)

=
1

n
I(Xn

k + H−1k,k+1Z
n
k+1 + T n

k ;T n
k) + log

( det(Hk,k)

det(Hk,k+1)

)
(A.19)

(g)

≤ 1

n
I(H−1k,k+1Z

n
k+1 + T n

k ;T n
k |Xn

k) + log
( det(Hk,k)

det(Hk,k+1)

)
(A.20)

(g)
=

1

n
I(H−1k,k+1Z

n
k+1 + T n

k ;T n
k) + log

( det(Hk,k)

det(Hk,k+1)

)
(A.21)

(h)
=

1

n
h(T n

k)− h(H−1k,k+1Z
n
k+1) + log

( det(Hk,k)

det(Hk,k+1)

)
(A.22)
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=
1

2
log

det
(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
det(H−1k,k+1H

−T
k,k+1)

+ log
( det(Hk,k)

det(Hk,k+1)

)
(A.23)

=
1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k), (A.24)

where (e) holds by the definition of T n
k and because h(AX) = log det(A) + h(X) for any matrix A and

vector X; (f) holds because conditioning can only reduce entropy; (inequalities) (g) hold again because

conditioning can only reduce entropy and by the independence of T n
k and Xn

k ; and (h) holds because by the

independence of the noise vectors we have h(T n
k |H
−1
k,k+1Z

n
k+1+T n

k) = h(−H−1k,k+1Z
n
k |H
−1
k,kZ

n
k) = h(H−1k,k+1Z

n
k).

Following similar steps as the ones leading to (A.9), one can also prove that

R
(F )
1 ≤ 1

n
I(M

(F )
1 ;Y n

1 |M
(S)
1 ) +

εn
n

(A.25)

≤
L∑
i=1

1

2
log

1 +

 L∑
j=1

|H1,1(i, j)|

2

P

+
εn
n
, (A.26)

and

R
(F )
K +R

(S)
K ≤ 1

n
I(M

(F )
K ,M

(S)
K ;Y n

K |MK−1) +
εn
n

(A.27)

≤
L∑
i=1

1

2
log

1 +

 L∑
j=1

|HK,K(i, j)|

2

P

+
εn
n
, (A.28)

where H1,1(i, j) and HK,K(i, :) denote row-i, column-j elements of the matrices H1,1 and HK,K .

We sum up the bound in (A.8) for all values of k ∈ {1, . . . ,K − 1}, and combine it with (A.26) and

(A.28). Taking n → ∞, it follows that because the probability of error p(error) vanishes as n → ∞ (and

thus εn
n → 0 as n→∞):

K∑
k=1

(
2R

(F )
k +R

(S)
k

)
= R

(F )
1 +

K−1∑
k=1

(
R

(F )
k +R

(S)
k +R

(F )
k+1

)
+R

(F )
K +R

(S)
K (A.29)

≤
K−1∑
k=1

[ L∑
i=1

1

2
log
(

1 +
( L∑
j=1

|Hk+1,k+1(i, j)|
)2

P +
( L∑
j=1

|Hk,k+1(i, j)|
)2

P
)

+
1

2
log det

(
IL + Hk,k+1Hk,k

−1Hk,k
−THTk,k+1

)
+

1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k)

]
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+

L∑
i=1

1

2
log

1 +

 L∑
j=1

|H1,1(i, j)|

2

P

+

L∑
i=1

1

2
log

1 +

 L∑
j=1

|HK,K(i, j)|

2

P

 . (A.30)

Dividing by K and 1
2 log(P) and taking P,K →∞, establishes the converse bound (4.3).

A.1.2 Proof of the Converse to (4.4)

We now prove bound (4.4). We assume K is even. For K odd the bound can be proved in a similar way.

Divide the set K into sets Kodd , {1, 3, . . . ,K − 1} and Keven , {2, 4, . . . ,K}. Recall that Xn
0 = 0, and

define

Modd := {Mk : k odd}

Meven := {Mk : k even}

Xnodd := {Xn
k : k odd}

Xneven := {Xn
k : k odd}

Ynodd := {Y n
k : k odd}

Yneven := {Y n
k : k even}

Znodd := {Zn
k : k odd}

Zneven := {Zn
k : k even}

and

Qodd :=
{
Q

(1)

k→k̃, . . . , Q
(D)

k→k̃ : k odd , k̃ ∈ {k − 1, k + 1}
}

Qeven :=
{
Q

(1)

k→k̃, . . . , Q
(D)

k→k̃ : k even, k̃ ∈ {k − 1, k + 1}
}
.

Also define a genie information G as

G , Zodd − Hodd,oddH
−1
odd,evenZeven, (A.31)

where Hodd,odd denotes the channel matrix from the Txs in Kodd to the Rxs in Kodd, and Hodd,even denotes

the channel matrix from the Txs in Kodd to the Rxs in Keven. Because these matrices are square and the

channel coefficients are drawn i.i.d according to a continues distribution, they are invertible.
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By Fano’s inequality, there must exist a sequence {εn}∞n=1 so that εn
n → 0 as n→∞ and

K∑
k=1

(
R

(F )
k +R

(S)
k

)
=

1

n

[
H(Modd) +H(Meven)

]
≤ 1

n

[
I(Modd;Yodd,Qodd) + I(Meven;Yeven,Qeven|Modd)

]
+
εn
n

=
1

n

[
I(Modd;Yodd) + I(Meven;Yeven|Modd) + I(Modd;Qodd|Yodd) + I(Meven;Qeven|Modd,Yeven)

]
+
εn
n

≤ 1

n

[
h(Yodd)− h(Yodd|Modd) + h(Yeven|Modd)− h(Zeven) +H(Qodd) + I(Meven;Qeven|Modd,Yeven)

]
+
εn
n

≤ 1

n

[
h(Yodd)− h(Yodd|Modd) + h(Yeven|Modd)− h(Zeven) +H(Qodd)

+I(Meven;Qeven|Modd,Yeven,G) + I(Meven;G|Modd,Yeven)
]

+
εn
n

(a)

≤
∑

k∈Kodd

L∑
i=1

1

2
log(2πe)

1 +

 L∑
j=1

|Hk−1,k(i, j)|

2

P +

 L∑
j=1

|Hk,k(i, j)|

2

P


+

L∑
i=1

1

2
log(2πe)

1 +

 L∑
j=1

|Hk,k(i, j)|

2

P

+
∑

k∈Keven\K

1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k)

+πRxK +
1

2

∑
k∈Kodd

log det
(
IL + Hk,kH

T
k,k + H−1k,k+1H

−T
k,k+1

)
+
εn
n
, (A.32)

where (a) holds because:

• By (A.10) and (A.12):

h(Yodd)− h(Zeven) ≤ n
∑

k∈Kodd

L∑
i=1

1

2
log(2πe)

1 +

 L∑
j=1

|Hk−1,k(i, j)|

2

P +

 L∑
j=1

|Hk,k(i, j)|

2

P

 ;

(A.33)

• By (A.15) and (A.24):

h(Yeven|Modd)− h(Yodd|Modd)

= h(Y n
K |MK−1)− h(Y n

1 |M1)

+
∑

k∈Keven\K

[
h(Hk,kX

n
k + Zn

k)− h(Hk,k+1X
n
k + Znk+1)

]

≤ n
L∑
i=1

1

2
log(2πe)

1 +

 L∑
j=1

|Hk,k(i, j)|

2

P


+n

∑
k∈Keven\K

1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k); (A.34)
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• By the rate-limitation of the cooperation links:

H(Qodd) ≤ nπRxK; (A.35)

• From the tuple (Modd,Yeven,G) it is possible to compute also Yodd and thus Qeven:

I(Meven;Qeven|Modd,Yeven,G) = 0; (A.36)

• By the fact that conditioning reduces entropy:

I(Meven;G|Modd,Yeven)

≤ h(G)− h(G|Zeven)

=
n

2

∑
k∈Kodd

log det
(
IL + Hk,kH

T
k,k + H−1k,k+1H

−T
k,k+1

)
(A.37)

Taking n→∞ establishes the proof.

A.1.3 Proof of the Converse to (4.10)

Fix a sequence (in the blocklength n) of encoding and decoding functions respecting the power constraints

and the Tx-cooperation rate-limitations (recall that we consider a setup with only Tx-cooperation but no

Rx-cooperation) such that the error probability p(error)→ 0 as the blocklength n→∞.

Let M(S) , (M
(S)
1 , . . . , M

(S)
K ). By Fano’s Inequality there exists a sequence εn satisfying εn

n → 0 as

n→∞ such that for any k ∈ {1, . . . ,K − 1} and any blocklength n:

R
(F )
k +R

(S)
k+1 +R

(F )
k+1

=
1

n

[
H(M

(F )
k |M

(S),M
(F )
k−1) +H(Mk+1|M

(S)
1 , . . . ,M

(S)
k ,M

(S)
k+2, . . . ,M

(S)
K )

]
+
εn
n

≤ 1

n

[
I(M

(F )
k ;Y n

k |M(S),M
(F )
k−1) + I(Mk+1;Y

n
k+1|M

(S)
1 , . . . ,M

(S)
k ,M

(S)
k+2, . . . ,M

(S)
K )

]
+
εn
n

=
1

n

[
h(Hk,kX

n
k + Zn

k |M(S))− h(Zn
k)

+h(Y n
k+1|M

(S)
1 , . . . ,M

(S)
k ,M

(S)
k+2, . . . ,M

(S)
K )− h(Hk,k+1X

n
k + Zn

k+1|M(S))
]

+
εn
n

(a)

≤
L∑
i=1

1

2
log
(

1 +
( L∑
j=1

(|Hk+1,k+1(i, j)|+ |Hk,k+1(i, j)|)
)2

P
)
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+
1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k) +

εn
n
, (A.38)

where (a) follows by similar steps as lead to (A.15) and (A.24), but where one has to account for the fact

that due to the Tx-cooperation, the input vectors Xn
k and Xn

k+1 can be correlated.

Similarly to (A.24) one can further prove that

R
(F )
1 ≤

L∑
i=1

1

2
log
(

1 +
( L∑
j=1

|H1,1(i, j)|
)2

P
)

+
εn
n
, (A.39)

and

R
(F )
K +R

(S)
K ≤

L∑
i=1

1

2
log
(

1 +
( L∑
j=1

(|HK,K(i, j)|+ |HK−1,K(i, j)|)
)2

P
)

+
εn
n
, (A.40)

where again one has to consider that because of the Tx-cooperation the various input vectors can be

correlated.

We now sum up the bound in (A.38) for all values of k ∈ {1, . . . ,K − 1} and combine it with (A.39)

and (A.40). Taking n → ∞, it follows that because the probability of error p(error) vanishes as n → ∞

(and thus εn
n → 0 as n→∞):

K∑
k=1

(
2R

(F )
k +R

(S)
k

)
= R

(F )
1 +

K−1∑
k=1

(
R

(F )
k +R

(S)
k +R

(F )
k+1

)
+R

(F )
K +R

(S)
K

)
(A.41)

≤
K−1∑
k=1

[ L∑
i=1

1

2
log
(

1 +
( L∑
j=1

(|Hk+1,k+1(i, j)|+ |Hk,k+1(i, j)|)
)2

P
)

+
1

2
log det

(
H−1k,kH

−T
k,k + H−1k,k+1H

−T
k,k+1

)
+ log det(Hk,k)

]
+

L∑
i=1

1

2
log
(

1 +
( L∑
j=1

|H1,1(i, j)|
)2

P
)

+
L∑
i=1

1

2
log
(

1 +
( L∑
j=1

(|HK,K(i, j)|+ |HK−1,K(i, j)|)
)2

P
)
.

Dividing by K and 1
2 log(P) and taking P,K →∞, establishes the converse bound (4.10).

113



114 A.1. PROOFS OF CHAPTER 4

A.1.4 Proof of Achievability of Theorem 3

Scheme 1: Conferencing only parts of “fast" messages

Fix a small number ε > 0 and a joint distribution PU1U2X that satisfies the Markov chain U1 → U2 → X.

Let (U ′1, U
′
2, X

′) be an independent copy of (U1, U2, X) and define

Y = X + αX ′ + Z, (A.42)

where Z is standard Gaussian independent of all other defined random variables.

Split each source message into two parts, M (F )
k =

(
M

(F1)
k ,M

(F2)
k

)
, of rates

(
R

(F1)
k , R

(F2)
k

)
that sum up

to R(F )
k = R

(F1)
k +R

(F2)
k and so that

R
(F1)
k < πRx. (A.43)

Codebook construction: For each k ∈ {1, . . . ,K}, generate codebooks C1,k, {C2,k(i)}, and {Cx,k(i, j)}

randomly. Codebook

C1,k :=
{
un1,k(i) : i = 1, . . . ,

⌊
2nR

(F1)
k

⌋}
(A.44)

is generated by picking all entries i.i.d. according to PU1 . For each i ∈
{

1, . . . ,
⌊
2nR

(F1)
k

⌋}
, codebook

C2,k(i) :=
{
un2,k(j|i) : j = 1, . . . ,

⌊
2nR

(F2)
k

⌋}
(A.45)

is generated by picking the t-th entry of codeword un2,k(j|i) independently of all other entries and codewords

according to the distribution PU2|U1
(·|u1,k,t(i)). Here, u1,k,t(i) denotes the t-th entry of codeword un1,k(i).

For each pair (i, j) in
{

1, . . . ,
⌊
2nR

(F1)
k

⌋}
×
{

1, . . . ,
⌊
2nR

(F2)
k

⌋}
, codebook

Cx,k(i, j) :=
{
xnk(`|i, j) : ` = 1, . . . ,

⌊
2nR

(S)
k

⌋}
(A.46)

is generated by picking the t-th entry of codeword xnk(`|i, j) independently of all other entries according to

the distribution PX|U2
(·|u2,k,t(j|i)). Here, u2,k,t(j|i) denotes the t-th entry of codeword un2,k(j|i).

Reveal all codebooks to all terminals.

Encoding: Tx k sends codeword xnk
(
M

(S)
k

∣∣M (F1)
k ,M

(F2)
k

)
over the channel.

Decoding: Each Rx k performs the following steps. Given that it observes Y n
k = ynk , it first looks for a

114



APPENDIX A. PROOFS 115

unique pair (̂i, ĵ) such that

(un1,k (̂i), u
n
2,k(ĵ |̂i), ynk ) ∈ T (n)

ε (PU1U2Y ). (A.47)

If none or more than one such pair (̂i, ĵ) exists, Rx k declares an error. Otherwise, it declares M̂ (F )
k = (̂i, ĵ),

and it sends

Q
(1)
k→k+1 = î. (A.48)

to its right neighbour, Rx k + 1.

With the message Q(1)
k−1→k, Rx k obtains from its left-neighbour, it decodes also its intended “slow"

message. To this end, it looks for an index ˆ̀ such that

(
un1,k (̂i), u

n
2,k(ĵ |̂i), xnk(ˆ̀|̂i, ĵ), unk−1(Q

(1)
k−1→k), y

n
k

)
∈ T (n)

ε (PU1U2XU ′1Y
), (A.49)

If none or multiple such indices ˆ̀ exist, an error is declared. Otherwise, Rx k declares M̂ (S)
k = ˆ̀.

Analysis: Decoding in (A.47) is successful with probability tending to 1 as n→∞, if

R
(F1)
k +R

(F2)
k < I(U2;Y ) (A.50)

R
(F2)
k < I(U2;Y |U1). (A.51)

Decoding in (A.49) is successful with probability tending to 1 as n→∞, if

R
(S)
k < I(X;Y,U ′1|U1). (A.52)

The cooperation constraint is satisfied by (A.43). Apply then Fourier-Motzkin elimination to (A.43),

(A.50) and (A.51). Achievability of the pairs (4.17) follows then by a rate-transfer argument that parts of

the “slow" messages can also be sent as “fast" messages.

Scheme 2: Conferencing also parts of “slow"-messages

Fix ε > 0 and a joint distribution PUV1...VD−1X satisfying the Markov chain U → V1 → V2 → . . . VD−1 → X

and the rate constraint

R
(F )
k < πRx. (A.53)
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Let (U ′, V ′1 , V
′
2 , . . . , V

′
D−1, X

′) be an independent copy of (U, V1, . . . , VD−1, X) and define

Y = X + αX ′ + Z, (A.54)

where Z is independent standard Gaussian.

Split M (S)
k into D parts, M (S)

k = (M
(S1)
k , . . . , M

(SD)
k ), of rates (R

(S1)
k , . . . R

(SD)
k ) that sum up to R(S)

k =∑D
d=1R

(Sd)
k and satisfy

R
(F )
k +

D−1∑
d=1

R
(Sd)
k < πRx. (A.55)

Codebook construction: For each k ∈ {1, . . . ,K}, generate the following codebooks C1,k,

{C2,k}, . . . , {CD,k}, {Cx,k} randomly. Codebook

C1,k :=
{
unk(j) : j = 1, . . . ,

⌊
2nR

(F )
k

⌋}
(A.56)

is generated by picking all entries i.i.d. according to PU . For each j ∈
{

1, . . . ,
⌊
2nR

(F )
k

⌋}
, codebook

C2,k(j) :=
{
vn1,k(i1|j) : i1 = 1, . . . ,

⌊
2nR

(S1)
k

⌋}
(A.57)

is generated by picking the t-th entry of codeword vn1,k(i1|j) independently of all other entries and codewords

according to the distribution PV1,k|U (·|uk,t(i)). Here, uk,t(i) denotes the t-th entry of codeword unk(i). For

each d ∈ {2, . . . ,D− 1}, and each tuple (j, i1, . . . , id−1) in
{

1, . . . ,
⌊
2nR

(F )
k

⌋}
×
∏d−1
`=1

{
1, . . . ,

⌊
2nR

(S`)

k

⌋}
,

codebook

Cd+1,k(j, i1, . . . , id−1) :=
{
vnd,k(id|j, i1, . . . , id−1) : id = 1, . . . ,

⌊
2nR

(Sd)

k

⌋}
(A.58)

is generated by picking the t-th entry of codeword vnd,k(id|j, i1, . . . , id−1) independently of all other entries

according to the distribution PVd,k|Vd−1,k
(·|vd−1,k,t(id−1|j, i1, . . . , id−2)). Here, vd−1,k,t(id−1|j, i1, . . . , id−2)

denotes the t-th entry of codeword vnd−1,k(id−1|j, i1, . . . , id−2).

Finally, for each tuple (j, i1, . . . , iD−1) in
{

1, . . . ,
⌊
2nR

(F )
k

⌋}
×
∏D−1
`=1

{
1, . . . ,

⌊
2nR

(S`)

k

⌋}
, codebook

Cx,k(j, i1, . . . , iD−1) :=
{
xnk(`|j, i1, . . . , iD−1) : ` = 1, . . . ,

⌊
2nR

(SD)

k

⌋}
(A.59)

is generated by picking the t-th entry of codeword xnk(`|j, i1, . . . , iD−1) independently of all other entries

according to the distribution PXk|VD−1,k
(·|vD−1,k,t(iD−1|j, i1, . . . , iD−2)). Here, vD−1,k,t(iD−1|j, i1, . . . , iD−2)
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denotes the t-th entry of codeword vnD−1,k(iD−1|j, i1, . . . , iD−2). Reveal all codebooks to all terminals.

Encoding: Tx k sends codeword

xnk
(
M

(SD)
k |M (F )

k , . . . ,M
(SD−2)
k ,M

(SD−1)
k

)
Decoding: Each Rx k performs the following steps. Given that it observes Y n

k = ynk , it first looks for a

unique index ĵ such that

(unk(ĵ), ynk ) ∈ T (n)
ε (PUY ). (A.60)

If none or more than one such index ĵ exist, Rx k declares an error. Otherwise, it declares M̂ (F )
k = ĵ, and

sends

Q
(1)
k→k+1 = ĵ (A.61)

to its right neighbour, Rx k + 1.

With the message Q(1)
k−1→k, Rx k obtains from its left-neighbour, it looks for an index î1 such that

(
unk(ĵ), vn1,k (̂i1|ĵ), unk−1(Q

(1)
k−1→k), y

n
k

)
∈ T (n)

ε (PUV1U ′Y ). (A.62)

If none or multiple such index î1 exist, Rx k declares an error. Otherwise, it declares M̂ (S1)
k = î1 and sends

Q
(2)
k→k+1 = î1 (A.63)

to its right neighbour, Rx k + 1.

In conferencing round d with d ∈ {3, . . . ,D − 1}, Rx k obtains Q(d)
k−1→k from its left-neighbour, and

looks for an index îd

(
unk(ĵ),vn1,k (̂i1|ĵ), . . . , vnd,k (̂id|ĵ, î1, . . . , îd−1), unk−1(Q

(1)
k−1→k),

vn1,k−1(Q
(2)
k−1→k), . . . , v

n
d−1,k−1(Q

(d)
k−1→k), y

n
k

)
∈ T (n)

ε (PUV1...VdU ′V ′1 ...V ′dY ). (A.64)

If none or more than one such index îd exist, an error is declared. Otherwise, Rx k declares M̂ (S`)
k = îd

and sends

Q
(d)
k→k+1 = îd (A.65)

to its right neighbour, Rx k + 1.
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In conferencing round D, Rx k obtains Q(D−1)
k−1→k from its left-neighbour and looks for an index ˆ̀

(
unk(ĵ), vn1,k (̂i1|ĵ), . . . , vnD−1,k (̂iD−1|ĵ, î1, . . . , îD−2), xnk (̂iD|ĵ, î1, . . . , îD−1), unk−1(Q

(1)
k−1→k),

vn1,k−1(Q
(2)
k−1→k), . . . , v

n
D−1,k−1(Q

(D−1)
k−1→k), y

n
k

)
∈ T (n)

ε (PUV1...VD−1XU ′V ′1 ...V
′
D−1X

′Y ). (A.66)

If none or multiple such index ˆ̀ exist, an error is declared. Otherwise, Rx k declares M̂ (SD)
k = ˆ̀.

Analysis: Decoding in (A.60) is successful with probability tending to 1 as n→∞, if

R
(F )
k < I(U ;Y ) (A.67)

Decoding in (A.62) is successful with probability tending to 1 as n→∞, if

R
(S1)
k < I(V1;Y,U

′|U). (A.68)

Decoding in (A.64) is successful with probability tending to 1 as n→∞, if

R
(Sd)
k < I(Vd;Y, V

′
d−1|Vd−1), d ∈ {2, . . . ,D− 1}. (A.69)

The last decoding step in (A.66) is successful with probability tending to 1 as n→∞, if

R
(SD)
k < I(X;Y,X ′|VD−1). (A.70)

The conferencing constraint is satisfied by (A.55). Apply Fourier-Motzkin elimination to (A.55), (A.67),

(A.68),(A.69) and (A.70). Achievability of the pairs (4.18) follows then by a rate-transfer argument.

A.2 Proofs of Chapter 5

A.2.1 Coding Scheme and Analysis in the Hexagonal Model

In this appendix we prove that the Tx/Rx set associations proposed in Subsection 5.3.2 are permissible and

we provide details on how to compute the corresponding MG pairs and cooperation prelogs.

118



APPENDIX A. PROOFS 119

No Cooperation Scheme

Fig. 5.5a shows the active Txs in yellow and the silenced Txs in white. It is easily seen that transmissions

in yellow cells do not interfere, as they pertain to non-neighbouring cells.

More formally, we consider two different Txs k and k′ in the active set Tactive defined in (5.60), and we

prove by contradiction that Tx k′ cannot be in the neighbouring set ITx,k of Tx k. Assume that k′ ∈ ITx,k.

Then, by (5.58), either (ak′ = ak + 1, bk′ = bk + 1) or (ak′ = ak − 1, bk′ = bk − 1). Each of these two cases

however violates the active set condition (5.60), which implies

(ak + bk) mod 3 = 0 and (ak′ + bk′) mod 3 = 0. (A.71)

We thus obtained the desired contradiction.

To see that the scheme achieves a sum-MG of Sno-coop we notice that in the limit as K →∞, the active

set Tactive defined in (5.60) includes a third of all Txs simply because a third of the integer pairs (a, b) satisfy

(a+ b) mod 3 = 0 and because for each integer pair (a, b) there corresponds a Tx.

Coding scheme to transmit only “slow” messages with CoMP reception or transmission

As mentioned in the main body, and as is easily seen in Figure 5.5b, the silenced set Tsilent consists of all

cells that are exactly D
2 + 1 cell hops away from the next master cell. All other cells have a master cell that

lies less than D
2 + 1 cell hops away. In other words, each master cell is surrounded by D/2 layers of active

cells sending “slow" messages, where in total these D/2 layers contain
∑D/2

i=1 6i = 3
4D(D + 2) cells. Such a

subnet is then surrounded by a layer of 6 · (D
2 + 1) = 3D + 6 silenced cells, each lying D/2 + 1 cell hops

away from the master cell. Among these layer-(D/2 + 1) cells, 6 of them (namely the corner cells) belong

to the silenced layer of three different master cells, and the remaining 3D belong to the silenced layer of

two master cells.

By these considerations, and because master cells themselves also send “slow" messages,

lim
K→∞

|Tslow|
K

=
1 + 3

4D(D + 2)
3
4(D + 2)2

=
4 + 3D(D + 2)

3(D + 2)2
, (A.72)

and as a result, by (5.14) and (5.15), the proposed cell association achieves the MG pair (S(F ) = 0, S(S) =

S
(S)
max) with S

(S)
max defined in (5.65).

With CoMP reception, the scheme does not send any Tx-cooperation messages but only Rx-cooperation
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messages. To calculate the Rx-cooperation prelog, notice that for each Rx k we have γRx,k = i ∈

{1, . . . ,D/2} if Rx k lies i hops away from the next master cell. Since in a given subnet Tsubnet formed by

a master cell and its surrounding τ − 1 layers, there are 6i Rxs with γRx,k = i, for each i = 1, . . . ,D/2:

2
∑

k∈Tsubnet

γRx,k = 2

D/2∑
i=1

6i2 =
D(D + 2)(D + 1)

2
, (A.73)

and by similar considerations as leading to (A.72):

lim
K→∞

2
∑

k∈Tslow γRx,k

K
=

D(D + 2)(D + 1)/2
3
4(D + 2)2

=
2D(D + 1)

3(D + 2)
. (A.74)

Since limK→∞
QK,Rx
K = 6, according to (5.16) the required Rx-cooperation prelog equals

µ
(r)
Rx,S = L · D(D + 1)

9(D + 2)
. (A.75)

With CoMP transmission, this scheme does not require any Rx-cooperation messages and consumes a

Tx-cooperation prelog of µ(t)Tx,S = µ
(r)
Rx,S.

Coding Scheme to transmit both “fast” and “slow” messages with CoMP reception

Notice that the set of silenced cells Tsilent here coincides with the set of silenced cells Tsilent for the scheme

sending only “slow" messages when D′ = D− 2 cooperation rounds are permitted.

We next determine the fraction of “fast" versus “slow" Txs. To this end, notice that the fraction is the

same in each subnet, so we only consider the subnet containing the D/2− 1 layers around the master cell

situated at the origin. This subnet is characterized by

Tsubnet0 =

{
k : max{|ak|, |bk|, |ak − bk|} <

D
2
− 1

}
(A.76)

It can be shown that by Assumption (5.59), the number of “fast" Txs in subnet Tsubnet0 equals

|Tfast ∩ Tsubnet0| =
D2

4
− D

2
+ 1, (A.77)
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and the number of “slow" Txs in Tsubnet0 equals

|Tslow ∩ Tsubnet0| =
D2

2
−D. (A.78)

By similar considerations as leading to (A.72) (but where D needs to be replaced by D− 2), we then obtain

that

lim
K→∞

|Tfast|
K

=
D2

4 −
D
2 + 1

3D2

4

=
D2 − 2D + 4

3D2 (A.79)

and

lim
K→∞

|Tslow|
K

=
D2

2 −D
3D2

4

=
2D2 − 4D

3D2 (A.80)

This establishes the achievability of the MG pair (5.67).

We analyze the required cooperation prelog of the described scheme. As in the previous subsection,

γTx,k = γRx,k = i for every Tx/Rx k that lies i cell hops away from its next master cell, for i = 1, . . . ,D/2−1.

Moreover, for each “fast” Tx k with γTx,k ∈ {1, . . . ,D/2 − 2} the size of the “slow” interfering set I(S)k is

equal to 6, and when γTx,k = D/2− 1 the size of this set is equal to 3 for the corner “fast”-Txs and is equal

to 4 for the other “fast”-Txs of this layer. To calculate the average cooperation prelog, it is required to

calculate the number of “fast”-Txs each with γTx,k = i. We can prove that for each i ∈ {1, . . . , D
2 − 1}:

|{k ∈ Tfast ∩ Tsubnet0 : γTx,k = i}| = 6

(
(2i− 1)− mod (2i− 1, 3)

3
− i+ mod (3− mod (i, 3), 3)

3
+ 1

)
.(A.81)

By the above argument and Assumption (5.59), thus the number of “fast”-Txs each with γTx,k = D
2 − 1 is

∣∣∣∣{k ∈ Tfast ∩ Tsubnet0 : γTx,k =
D
2
− 1

}∣∣∣∣ = D− 2. (A.82)

By (A.77) and (A.82), we have

∣∣∣∣{k ∈ Tfast ∩ Tsubnet0 : γTx,k 6=
D
2
− 1

}∣∣∣∣ =
D2

4
− D

2
+ 1− (D− 2) =

D2 − 6D + 12

4
(A.83)

We can then conclude that

∑
k∈Tfast∩Tsubnet0

|I(S)k | =
∑

k∈Tfast∩Tsubnet0
γTx,k 6=D

2
−1

|I(S)k |+
∑

k∈Tfast∩Tsubnet0
γTx,k=

D
2
−1

|I(S)k |
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= 6

(
D2 − 6D + 12

4

)
+ 4(D− 8) + 18 =

(D− 2)(3D− 4)

2
. (A.84)

According to (5.9), the Tx-cooperation prelog required for the scheme is

µ
(r)
Tx,both = L · (D− 2)(3D− 4)

9D2 . (A.85)

Notice next that for each “slow” Tx k with γRx,k ∈ {1, . . . ,D/2− 2} the “fast” interfering set I(F )
k is of

size 3, and for each “slow” Tx k with γRx,k = D/2− 1 it is of size 2. Notice that, since the total number of

Rxs with γRx,k = i is equal to 6i, then by the RHS of (A.81), we can conclude that

|{k ∈ Tslow ∩ Tsubnet0 : γRx,k = i}| = 2 (2i− 2 + mod (2i− 1, 3) + mod (3− mod (i, 3), 3)) . (A.86)

We thus have:

∑
k∈Tslow∩Tsubnet0

(
|I(F )
k |+ 2γRx,k

)
(A.87)

=
∑

k∈Tslow∩Tsubnet0
γRx,k 6=D

2
−1

|I(S)k |+
∑

k∈Tslow∩Tsubnet0
γRx,k=

D
2
−1

|I(S)k |+ 2

D
2
−1∑
i=1

i× |{k ∈ Tslow ∩ Tsubnet0 : γRx,k = i}|

= +3

(
D2

2
− 3D + 4

)
+ 2× 4

(
D
2
− 1

)
+ 6 + 2

D
2
−1∑
i=1

i (4i−mod (i, 3))

=
4D3 + 3D2 − 42D + 112

12
. (A.88)

Thus according to (5.10), the average Rx-cooperation prelog required by the scheme is

µ
(r)
Rx,both = L · 4D3 + 3D2 − 42D + 112

54D2 . (A.89)

Coding scheme to transmit both “fast” and “slow” messages with CoMP transmission

We choose the same cell association as in the previous subsection.

To analyze the cooperation prelog, notice that because we chose the same cell association as for the

scheme with CoMP reception, the parameters γTx,k = γRx,k and the single-round Rx-cooperation prelog

coincides with the single-round Tx-cooperation prelog in the previous scheme of Subsection A.2.1, i.e.,

µ
(t)
Rx,both = µ

(r)
Tx,both. To calculate the average Tx-cooperation prelog, we first consider the q-term in (5.13),
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Figure A.1: Illustration of the scheme without cooperation in the sectorized hexagonal network.

which characterizes the number of quantization messages describing the “slow" signals that are counted

twice: once for the CoMP transmission and once for the interference mitigation at “fast" Txs. Since

the master Tx is a “fast”-Tx, then 6 such messages are counted twice and also for each “fast”-Tx k with

γTx,k ∈ {1, . . . , D
2 − 2}, 2 messages are double-counted. Therefore,

q = 6 + 2

(
D2 − 6D + 12

4
− 1

)
=

D2

2
− 3D + 10. (A.90)

We then conclude that

∑
k∈Tslow∩Tsubnet0

2γTx,k +
∑

k∈Tfast∩Tsubnet0

|I(S)k | − q =
4D3 − 3D2 − 6D− 8

12
. (A.91)

Thus, according to (5.13), the average Tx-cooperation prelog required by the scheme is

µ
(t)
Tx,both = L · 4D3 − 3D2 − 6D− 8

54D2 . (A.92)

A.2.2 Coding Schemes and Analysis in the Sectorized Hexagonal Model

In this appendix we prove that the Tx/Rx set associations proposed in Subsection 5.4.2 are permissible and

we provide details on how to compute the corresponding MG pairs and cooperation prelogs.

No cooperation scheme

Figure A.1 shows the active Txs in yellow and the silenced Txs in white. It is easily seen that transmissions

in yellow sectors do not interfere, as they pertain to non-neighbouring sectors. This scheme requires no
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cooperation messages and achieves the sum MG in (5.79).

Coding scheme to transmit only “slow” messages with CoMP reception

To transmit only “slow” messages we use the scheme proposed in Subsection 5.1.3. See the cell association

of this network in Fig. 5.9 for D = 4 where Txs in white sectors are deactivated, Txs in yellow or blue

sectors send “slow” messages. As can be seen from this figure, the master cell of each subnet (the center

cell) is surrounded by D/2 − 1 fully active layers of cells and one semi-active layer of cells. Each semi-

active layer consists of 3 fully active corner cells, 3 fully deactivated corner cells and 3D − 6 non-corner

cells of one deactivated sector and 2 active sectors. Notice that corner cells are shared among three

master cells and non-corner cells are shared between two master cells. Thus in order to create subnets of

3 + 3
∑D/2−1

i=1 6i+ (3D− 3) = 9D2/4− 3D/2 active sectors, we need to deactivate (3D− 6)/2 + 9/3 = 3D/2

sectors per subnet.

By these considerations

lim
K→∞

|Tslow|
K

=
9D2/4− 3D/2

9D2/4
=

3D− 2

3D
, (A.93)

and as a result, by (5.14) and (5.15), the proposed cell association achieves the MG pair (S(F ) = 0, S(S) =

S
(S)
max) with S

(S)
max defined in (5.80).

With CoMP reception, this scheme does not use any Tx-cooperation messages and for each Rx k, γRx,k

takes values over the set {1, . . . ,D/2}. Thus in a given subnet Tsubnet formed by a master cell and its

surrounding D
2 layers, there are 6i Rxs with γRx,k = i, where if i ∈ {1, . . . D

2 − 1} these 6i Rxs send in

total 18i Rx-cooperation messages to the next master Rx, and if i = D
2 , they send 3D− 3 Rx-cooperation

messages to the mater Rx. We thus conclude that

2
∑

k∈Tsubnet

γRx,k = 2× 3

D/2−1∑
i=1

6i2 + D(3D− 3) =
3D2(D− 1)

2
. (A.94)

and by similar considerations as leading to (A.93):

lim
K→∞

2
∑

k∈Tslow γRx,k

K
=

(3D2(D− 1))/2
3D2

4

= 2(D− 1). (A.95)

Since limK→∞
QK,Rx
K = 6, according to (5.16) the required Rx-cooperation prelog equals

µ
(r)
Rx,S = L · (D− 1)

3
. (A.96)
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Coding scheme to transmit both “fast” and “slow” messages with CoMP reception

See the cell association of this network in Fig. 5.9 for D = 4 and in Fig. 5.10 for D = 8 where Txs in

white sectors are deactivated, Txs in yellow sectors send “fast” messages and Txs in blue sectors send “slow”

messages. We next determine the fraction of “fast” versus “slow” Txs. To this end, notice that the fraction

is the same in each subnet. In each layer-i with i ∈ {1, . . . , D
2 }, of a given subnet Tsubnet, each non-corner

cell has 1 “fast” sector whereas among the 6 corner cells only three of them have 1 “fast” sector each. Thus

the number of “fast” Txs in subnet Tsubnet equals

|Tfast ∩ Tsubnet| =

D
2∑
i=1

(6i− 3) =
3D2

4
, (A.97)

and the number of “slow” Txs in this subnet equals

|Tfast ∩ Tsubnet| =
6D2

4
− 3D

2
. (A.98)

By similar considerations as leading to (A.93), we then obtain that

lim
K→∞

|Tfast|
K

=
3D2

4
9D2

4

=
1

3
(A.99)

and

lim
K→∞

|Tslow|
K

=
6D2

4 −
3D
2

9D2

4

=
2D− 2

3D
. (A.100)

This establishes the achievability of the MG pair (5.82).

To analyze the cooperation prelog of the described scheme, Figure 5.10 shows that for each “fast”

Tx/Rx k with γRx,k ∈ {1, . . . ,D/2 − 1} the size of the “slow” interfering set I(S)k is equal to 4, and when

γRx,k = D/2 the size of this set is equal to 2 for the three of the corner “fast” Txs and is equal to 3 for the

others. Considering the fact that the number of “fast” Txs with γRx,k = D
2 equals 3D− 3, we thus conclude

that

∑
k∈Tfast∩Tsubnet

|I(S)k | = 4

(
3D2

4
− (3D− 3)

)
+ 3× 2 + 3(3D− 6) = 3D(D− 1). (A.101)
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According to (5.9), the average Tx-cooperation prelog required for the scheme is

µ
(r)
Tx,both = L · (D− 1)

9D
. (A.102)

Fig. 5.10 also shows that the size of the “fast” interference set I(F )
k is equal to 2 for each “slow” Tx k.We

thus conclude that

∑
k∈Tslow∩Tsubnet

|I(F )
k |+ 2γRx,k = 6D− 9 + 3

D
2
−1∑
i=1

(6i− 3) + 4

D
2
−1∑
i=1

i(6i− 3) + 6

D
2
−1∑
i=1

3i (A.103)

=
D(2D2 − 5)

2
. (A.104)

Thus according to (5.10), the average Rx-cooperation prelog required by the scheme is

µ
(r)
Rx,both = L · 2D2 − 5

9D
. (A.105)

A.3 Proofs of Chapter 6

A.3.1 Proof of the Converse to Theorem 9

Fix K and realizations of the sets Tactive and Tfast. Following the steps in (A.2) in Appendix A.1.1, we

prove that for each k ∈ Tactive:

R
(F )
k +R

(S)
k +R

(F )
k+1

≤ 1

2
log(1 + (1 + |hk,k+1|2)P) +

1

2
log(1 + |hk,k+1|2)

+ max{− log |hk,k+1|, 0}+
εn
n
, (A.106)

where R(F )
k+1 is the rate of the “fast” message at Rx k+ 1, which is either 0 or equal to R(F ). For simplicity,

we abbreviate the RHS of (A.106) by ∆, and we sum up this bound for all values of k ∈ Tactive:

∑
k∈Tactive

(
R

(F )
k +R

(S)
k +R

(F )
k+1

)
≤ |Tactive| ·∆. (A.107)
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Taking expectation over (A.106) and dividing by K, we obtain:

E[R̄(S)] +R(F )(ρρf + ρ2ρf ) ≤ ρ ·∆, (A.108)

because the expected number of indices k ∈ Tactive for which R(F )
k = R(F ) equals ρ · ρf and the expected

numbers of indices k ∈ Tactive for which R(F )
k+1 = R(F ) equals ρ2 · ρf . Dividing by 1

2 logP and letting P→∞

proves (6.21).

A.3.2 Proof of the Converse to Theorem 10

Fix K and realizations of the sets Tslow and Tfast. Following the steps in (A.2) in Appendix A.1.1, we can

prove that for each k ∈ Tslow:

R
(S)
k +R

(F )
k+1 ≤

1

2
log(1 + (1 + |h|2)P) +

1

2
log(1 + |h|2) + max{− log |h|, 0}+

εn
n
, (A.109)

where R(F )
k+1 is the rate of the “fast” messages at Rx k+ 1, which is either 0 or equal to R(F ). For simplicity,

we abbreviate the RHS of (A.109) by ∆̃, and we sum up this bound for all values of k ∈ Tslow:

∑
k∈Tslow

(
R

(S)
k +R

(F )
k+1

)
≤ |Tslow| · ∆̃. (A.110)

Equivalently:

KR̄(S) +
∑

k∈Tslow
k+1∈Tfast

R(F ) ≤ |Tslow| · ∆̃ (A.111)

Taking expectation over (A.111) and dividing by K, we obtain:

E[R̄(S)] +R(F )
(
ρ2ρf (1− ρf )

)
≤ ρ(1− ρf ) · ∆̃. (A.112)

Dividing by 1
2 logP and letting P→∞ proves (6.36).
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Titre: Réseaux avec contraintes de latence mixtes

Mots clés: Contraintes de latence mixtes, réseaux d’interférence, gain de multiplexage

Résumé: Les réseaux de communication sans fil mod-
ernes doivent s’adapter à différents types de trafic de
données avec des contraintes de latence différentes. Les
applications vidéo sensibles à la latence, en partic-
ulier, représentent une part croissante du trafic de don-
nées. En outre, les réseaux modernes doivent accepter
des débits de données élevés, ce qu’ils peuvent faire
par exemple avec des terminaux coopératifs ou avec
l’assistance de relais tels que les drones. Cependant,
la coopération introduit généralement des retards de
communication supplémentaires et n’est donc pas ap-
plicable au trafic de données sensibles à la latence.
Cette thèse porte sur les réseaux d’interférence avec
des contraintes de latence mixtes et sur les architec-
tures de systèmes où des émetteurs et/ou des récep-
teurs voisins peuvent coopérer.
Nous proposons différents schémas de codage pour per-
mettre la transmission simultanée de messages sensi-
bles et insensibles à la latence. Pour les schémas pro-
posés, nous analysons les gains de multiplexage (MG)
qu’ils réalisent sur le réseau de transfert intercellulaire
souple de Wyner, le réseau symétrique de Wyner, le

réseau hexagonal et le réseau hexagonal sectorisé.
Nous proposons, de surcroît, des schémas de codage
similaires en fonction de différents types d’activité
aléatoire de la part des usagers du réseau. Nous consid-
érons plus particulièrement deux configurations. Dans
la première configuration, chaque émetteur envoie tou-
jours des données insensibles à la latence et reçoit aléa-
toirement des données sensibles à la latence. Dans la
seconde configuration, les arrivées de données sensibles
et insensibles à la latence sont aléatoires, et chaque
transmetteur n’envoie ou ne reçoit qu’un seul type de
données à un instant donné.
Nous étudions aussi un réseau d’accès radio "cloud"
avec des contraintes de latence mixtes.Lorsque le rap-
port signal / bruit (SNR) est élevé, nos résultats dé-
montrent que, pour des capacités frontales modérées,
le MG maximal pour les messages sensibles à la latence
reste inchangé sur une large gamme de petits et moyens
MG de messages sensibles à la latence. La somme des
MG est donc améliorée si certains messages peuvent
être décodés directement aux stations de base.

Title: Networks with Mixed Delay Constraints

Keywords: Mixed delay constraints, Interference Networks, Multiplexing Gain

Abstract: Modern wireless communication networks
have to accommodate different types of data traf-
fic with different latency constraints. In particular,
delay-sensitive video-applications represent an increas-
ing portion of data traffic. Modern networks also have
to accommodate high total data rates, which they can
accomplish for example with cooperating terminals or
with helper relays such as drones. However, coopera-
tion typically introduces additional communication de-
lays, and is thus not applicable to delay-sensitive data
traffic. This thesis focuses on interference networks
with mixed-delay constraints and on system architec-
tures where neighbouring transmitters and/or neigh-
bouring receivers can cooperate.
We propose various coding schemes that can simulta-
neously accommodate the transmission of both delay-
sensitive and delay-tolerant messages. For the pro-
posed schemes we analyze the multiplexing gains
(MG) they achieve over Wyner’s soft hand-off network,

Wyner’s symmetric network, the hexagonal network
and the sectorized hexagonal network.
We further propose similar coding schemes for scenar-
ios with different types of random user activity. We
specifically consider two setups. In the first setup, each
active transmitter always has delay-tolerant data to
send and delay-sensitive data arrival is random. In the
second setup, both delay-tolerant and delay-sensitive
data arrivals are random, and only one of them is
present at any given transmitter.
Additionally, we also study a cloud radio access net-
work with mixed delay constraints. At high signal-to-
noise ratio (SNR), our results show that for moder-
ate fronthaul capacities, the maximum MG for delay-
sensitive messages remains unchanged over a large
regime of small and moderate MGs of delay-sensitive
messages. The sum MG is thus improved if some of the
messages can directly be decoded at the base stations.
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