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Ondes progressives et propriétés de propagation pour un problème d'épidémiologie évolutive non-local. Résumé. Dans cette thèse nous étudions l'existence d'une onde progressive pour un système d'équations intégro-différentiels provenant de l'épidémiologie évolutive. Nous utilisons des idées issues de la théorie des systèmes dynamiques couplées à des estimations sur le comportement asymptotique des profils. Nous prouvons que les ondes progressives ont une structure assez simple découplant les variables de propagation spatio-temporelle des variables de trait phénotypique. Cette analyse nous permet de réduire le système d'équations des profils d'ondes progressives à dimension infinie à un système d'EDO à quatre dimensions. Nous prouvons l'existence d'ondes progressives pour toute vitesse d'onde supérieure à une vitesse minimale c , pourvu que le seuil épidémique R 0 , qui s'exprime en fonction de la valeur propre principale d'un certain opérateur intégral, soit strictement supérieur à 1. Cette même condition de seuil est également utilisée pour démontrer que toute onde progressive relie deux états stationnaires déterminés. Dans une deuxième partie, nous étudions les propriétés de propagation des solutions pour le même système d'équations spatialement distribué, avec une densité initiale de plantes infectées à support compact spatialement en x. Lorsque R 0 > 1, nous prouvons que la propagation se produit avec une vitesse de propagation qui coïncide avec la vitesse minimale c des ondes progressives étudiées dans la première partie. De plus, la solution du problème de Cauchy converge asymptotiquement vers une fonction spécifique pour laquelle la variable x du repère mobile et celle du phénotype y sont séparées.
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Introduction 1.1 Évolution

La théorie de l'évolution n'a pas cessé de se développer depuis sa première formulation par Darwin dans son ouvrage "L'origine des espèces" en 1859. Aujourd'hui, la théorie de l'évolution se retrouve dans toutes les disciplines de la biologie, par exemple la génomique, car le décryptage d'un génome ne peut se faire qu'avec les outils de la biologie évolutive. Le scientifique français Jean-Baptiste de Lamarck a été le premier à proposer dans son livre publié en 1809 que les espèces changent au fil du temps et en engendrent de nouvelles. Cependant, c'est Charles Darwin, puis Alfred Russel Wallace, qui ont découvert le mécanisme exact de la transformation des espèces entre elles. Inspiré par l'économiste Thomas Malthus, Darwin était conscient des conséquences de la croissance exponentielle des populations au fil du temps. Il en a déduit que les individus ne peuvent survivre que si les ressources sont suffisantes. Ceci était la première étape de la sélection naturelle. L'ouvrage de Darwin expliquait clairement le mécanisme et le comportement des espèces, mais rien n'était modélisé avec une équation mathématique. Darwin était conscient du fait que les mathématiques sont la clé de l'étude de l'évolution, il a d'ailleurs fait une fois la remarque suivante : "J'ai profondément regretté de ne pas avoir été assez loin pour au moins comprendre un petit peu les grands principes fondamentaux des mathématiques car les hommes qui les ont acquis semblent avoir un sens supplémentaire -un sixième sens."

En 1866, Gregor Mendel a mis au point le "mécanisme de l'hérédité" qui manquait à la théorie de Darwin. Il a développé quatre hypothèses qui expliquent une forme simple d'héritage dans laquelle deux allèles d'un gène sont hérités pour donner naissance à un trait parmi plusieurs dans la descendance. Ces hypothèses sont connues sous le nom des "lois de Mendel". Le premier résultat mathématique avec un intérêt porté à la génétique de l'évolution n'est apparu que des décennies après Darwin. En 1908, Godfrey Harold Hardy [START_REF] Hardy | Mendelian proportions in a mixed population[END_REF] un mathématicien britannique et Wilhelm Weinberg [START_REF] Weinberg | Ü ber den nachweis der vererbung beim menschen[END_REF] un médecin allemand, ont chacun de leur côté expliqué pourquoi les génotypes ne disparaissent pas. Plus précisément, ils ont donné des conditions suffisantes pour que les fréquences des gènes soient constantes d'une génération à l'autre. Dans leur modèle idéal, un équilibre est atteint en une seule génération. La connaissance de l'équilibre est le point de référence par rapport auquel nous pouvons mesurer le changement, et l'évolution est en fin de compte une théorie du changement. Leurs conditions étaient les suivantes : pas de mutation, pas de sélection, pas de migration, accouplement aléatoire, population infinie. Le non respect de l'une de ces conditions pourrait être responsable de l'évolution.

Par la suite, de nombreux biologistes comme Ronald A. Fisher, John Haldane et Sewall Wright ont réussi à fusionner l'évolution darwinienne et la génétique mendélienne et ont commencé à travailler sur la façon d'intégrer la génétique et la sélection naturelle dans une théorie de l'évolution. C'est alors que la nécessité de rendre la théorie de l'évolution explicitement quantitative a été préconisée. Plus précisément, Ronald Fisher est allé plus loin et a quantifié le changement, en énonçant ce qui est actuellement connu sous le nom de "théorème fondamental de l'évolution" : le taux de changement de la fitness moyenne d'une population est égal à la variance de la fitness à chaque instant dans le temps. Au début des années 1960, Motoo Kimura a mis au point un modèle biologique avec une base mathématique solide. Plus tard, au milieu des années 1970, John Maynard Smith [START_REF] Maynard | Evolution and the Theory of Games[END_REF] a introduit la théorie des jeux évolutive en biologie. Leurs études ont joué un rôle fondamental en donnant naissance à la "dynamique darwinienne" ou à la "dynamique évolutive" comme description mathématique (voir [START_REF] Nowak | Evolutionary dynamics[END_REF][START_REF] Vincent | Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics[END_REF] et les références citées).

Tous ces scientifiques ont contribué à démontrer qu'il existe des principes mathématiques selon lesquels la vie a évolué et continue d'évoluer, ces principes sont représentés par ce qui est appelé la Dynamique évolutive. L'évolution est un processus qui se produit dans une population entière, et non pour chaque membre de cette population, et elle se produit sur une période très longue, des millions et de millions d'années, pour des changements même minimes. Les individus, les gènes ou les idées peuvent changer au fil du temps, bien sûr, mais seules les populations évoluent. Depuis le début de l'étude de l'évolution, on essaye de comprendre chaque système vivant et tout ce qui en découle en termes de dynamique évolutive. Il est important de savoir que les principes fondamentaux et déterminants de la dynamique de l'évolution sont la reproduction, la sélection naturelle, la mutation et le mouvement spatial et que tout organisme vivant apparaît et est continuellement modifié par ces trois principes. La mutation et la sélection peuvent être décrites par des équations mathématiques, par conséquent l'évolution est devenue une théorie mathématique et toute idée de processus ou de mécanisme évolutif peut être étudiée dans le contexte des équations mathématiques de la dynamique évolutive.

Épidémiologie mathématique

La modélisation des épidémies a deux objectifs principaux. Le premier est de mieux comprendre les mécanismes de propagation des maladies. Pour cela, une structure mathématique est importante. Par exemple, la simple constatation que le nombre de reproduction de base dépasse le plus souvent un pour qu'une épidémie se développe, n'aurait pas pu être atteinte sans une équation mathématique. Le deuxième objectif est de prédire l'évolution future de l'épidémie. Nous pouvons prédire le nombre d'individus touchés. Dans son mémoire présenté à l'Académie des sciences de Paris en 1760, Daniel Bernoulli [START_REF] Bernoulli | Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir[END_REF] a présenté le premier modèle mathématique compartimental en épidémiologie, il a utilisé des techniques mathématiques modernes pour résoudre un problème biologique : la dynamique de la variole. Bernoulli a divisé la population en deux catégories : les susceptibles et les immunisés, ces groupes ont été modélisés à l'aide d'équations différentielles. Dans son modèle, il obtient et résout ce que nous appelons aujourd'hui une "équation logistique", qui est un cas particulier de l'équation différentielle de Bernoulli. En examinant les états stationnaires de ces équations, il a pu prévoir la perte d'espérance de vie due à la maladie [START_REF] Bernoulli | Essai d'une nouvelle analyse de la mortalité causée par la petite vérole et des avantages de l'inoculation pour la prévenir[END_REF]. Cette étude a été reprise a posteriori par Dietz et Heesterbeek [START_REF] Dietz | Daniel Bernoulli's epidemiological model revisited[END_REF]. En 1840, William Farr a effectué une analyse statistique des décès dus à la variole en Angleterre et au Pays de Galles. En 1908, Ronald Ross a découvert que le paludisme était transmis par les moustiques [START_REF] Ross | An application of the theory of probabilities to the study of a priori pathometry. part I[END_REF], il a introduit le premier modèle d'épidémiologie moderne et l'a développé plus tard en collaboration avec Hilda P. Hudso [START_REF] Ross | An application of the theory of probabilities to the study of a priori pathometry.-part II[END_REF][START_REF] Ross | An application of the theory of probabilities to the study of a priori pathometry.-part III[END_REF].

Modèle de Kermack-McKendrick

William Ogilvy Kermack et Anderson Gray McKendrick (1927[START_REF] Kermack | Contributions to the mathematical theory of epidemics II. the problem of endemicity[END_REF][START_REF] Kermack | Contributions to the mathematical theory of epidemics III. further studies of the problem of endemicity[END_REF] [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF][START_REF] Kermack | Contributions to the mathematical theory of epidemics II. the problem of endemicity[END_REF][START_REF] Kermack | Contributions to the mathematical theory of epidemics III. further studies of the problem of endemicity[END_REF], ont développé un modèle très général pour les épidémies qui a encore une influence remarquable et profonde sur l'épidémiologie théorique et a été le point de départ de nombreuses études en épidémiologie des maladies humaines, animales et végétales. Ils partent de l'hypothèse que tous les membres de la communauté sont initialement également susceptibles à la maladie. La densité au moment t des individus sains qui peuvent attraper la maladie en raison des individus infectieux sera notée S(t). La densité des individus infectieux, ceux qui ont la maladie et peuvent la transmettre, sera notée I(t). La première dynamique épidémiologique de base d'une interaction hôte-parasite peut être décrite par le système suivant d'EDO que nous appelons modèle SIR classique de Kermack Ce modèle décrit la propagation d'un parasite dans une population d'hôtes. Un hôte infecté rentre en contact avec un hôte susceptible et lui transmet l'infection, la densité d'individus migrant de non infectés à infectés est désignée par βS(t)I(t), où β est le taux de transmission de la maladie. Les hôtes infectés meurent à un taux γ. Plus précisément, le paramètre γ représente la mortalité induite par la maladie. L'une des questions importantes à laquelle il faut répondre en épidémiologie est de savoir si la fin de l'épidémie ne se produit que lorsqu'il ne reste plus d'individus susceptibles, ou si l'interaction des différents facteurs d'infection, de transmission et de mortalité peut entraîner une fin alors que de nombreux individus susceptibles sont encore présents dans la population non infectée.

Le seuil épidémique

Au début du 20ème siècle, Ronald Ross a publié une série de travaux consacrés à l'étude de la propagation du paludisme causé par les moustiques anophèles [START_REF] Ross | The prevention of malaria[END_REF]. Il a développé un modèle mathématique qui a montré que le paludisme pouvait être éradiqué que quand le nombre de moustiques par être humain était en dessous d'une valeur seuil. C'est ainsi qu'est née le concept de seuil épidémique. En 1979, Roy Anderson et Robert May ont remis au goût du jour le modèle de Kermack-McKendrick. Ils ont formulé de nombreuses nouvelles approches pour l'épidémiologie théorique, en développant des modèles mathématiques simples afin d'expliquer les expériences de laboratoire ou les données épidémiologiques, et en analysant comment les agents infectieux régulent la taille de la population de leurs hôtes. Ils ont également rétabli cette importante "théorie du seuil" introduite par Ross : l'introduction de quelques individus infectés dans une population ne provoquera une épidémie que si la densité de sujets susceptibles est supérieure à un certain seuil épidémique.

Nous considérons maintenant qu'au stade initial de l'épidémie, la densité d'individus infectieux, I(t), et que le taux de variation de la densité d'individus non infectés, dS(t)/dt, sont très faibles. Par conséquent, au cours de la phase initiale, le nombre d'individus en bonne santé ne changera pas beaucoup et restera proche de sa valeur initiale S 0 . Si nous approchons la densité d'individus en bonne santé par sa condition initiale, cela nous donne l'équation différentielle suivante cette équation modélise la croissance exponentielle de I(t), et admet la solution suivante I(t) = I 0 e (βS 0 -γ)t , Cette équation nous permet de conclure qu'une épidémie ne se développera que lorsque βS 0 -γ > 0 ce qui équivaut à βS 0 /γ > 1. Et lorsque βS 0 -γ < 0 aucune épidémie ne se développera, ce qui équivaut à βS 0 /γ < 1. Ces inégalités ont une interprétation épidémiologique simple. Puisque la durée de vie moyenne d'un individu infecté est de 1 γ , le taux auquel un hôte infecté produit de nouvelles infections est βS 0 . Le produit de ces deux quantités est le nombre moyen de nouvelles infections causées par un seul individu infecté pendant toute sa période infectieuse lorsqu'il est placé dans une population entièrement saine S 0 . L'interprétation de la quantité seuil βS 0 γ mène à la définition du nombre de reproduction de base, R 0 . Nous écrivons donc explicitement

R 0 = βS 0 γ .
En effet, lorsque I(t) est faible, une épidémie se développe lorsque chaque individu infecté ou malade produit plus d'une infection ce qui est équivalent à écrire que R 0 > 1. Dans ce cas il y aura une augmentation exponentielle du nombre d'hôtes infectés et après un certain temps, le nombre d'individus infectés atteindra un pic, une épidémie se déclenchera, c'est pourquoi R 0 > 1 est connu comme le critère d'invasion. Lorsque R 0 < 1, chaque individu infecté produit en moyenne moins d'une nouvelle infection. Par conséquent, la chaîne de transmission s'éteint, aucune épidémie ne se développera. Pour plus de précisions sur le nombre de reproduction de base, nous référons le lecteur à [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations[END_REF] [START_REF] Diekmann | On the definition and the computation of the basic reproduction ratio R 0 in models for infectious diseases in heterogeneous populations[END_REF], [START_REF] Anderson | Infectious diseases of humans[END_REF] [START_REF] Anderson | Infectious diseases of humans[END_REF], Adler (1992) [START_REF] Frederick | The effects of averaging on the basic reproduction ratio[END_REF], [START_REF] Zawolek | Studies in focus development: an optimum theorem for the dual dispersal of plant pathogens[END_REF] [START_REF] Zawolek | Studies in focus development: an optimum theorem for the dual dispersal of plant pathogens[END_REF], Jeger et van den Bosch (1994a) [START_REF] Jeger | Threshold criteria for model plant disease epidemics, 2: persistence and endemicity[END_REF]. On peut également citer l'article de Van Den Driessche et Watmough [START_REF] Van Den Driessche | Further Notes on the Basic Reproduction Number[END_REF] dans lequel les auteurs ont donné une définition et une méthode précise pour obtenir R 0 pour un modèle général d'équations différentielles ordinaires compartimental épidémique.

Dynamique de la population d'hôte

Avant de présenter le système sur lequel nous travaillons dans le cadre de cette thèse, nous considérons une autre version du modèle de . Nous considérons maintenant qu'en l'absence de l'agent pathogène, la population d'accueil S est décrite par un processus simple d'immigration-mort. Le paramètre λ spécifie le taux d'immigration constant des hôtes non infectés et δ leur taux de mortalité naturel, et les hôtes infectés meurent avec un taux δ + γ, où γ est le taux de mortalité additionnelle due à la maladie.

Le modèle mathématique se formule de la façon suivante Le produit de 1/(δ + γ) (la durée de vie moyenne de l'hôte infecté) et de βS 0 (le taux de production d'une nouvelle infection par un hôte infecté) est le nombre moyen d'infections causées par un seul hôte infecté. Le nombre d'hôtes non infectés à l'équilibre avant l'apparition de l'infection est donné par

         dS(t) dt = λ -δS(t
S 0 = λ δ . Ainsi R 0 = βλ (γ + δ)δ
représente le nombre de reproduction de base. Si R 0 < 1, alors l'agent pathogène ne peut pas se propager. Bien sûr, un seul cas peut provoquer quelques cas supplémentaires, mais la chaîne de transmission s'éteindra à nouveau. Un équilibre unique sans maladie sera alors atteint

S = λ δ I = 0.
Si R 0 > 1, le nombre d'hôtes infectés augmentera dans un premier temps de manière exponentielle et une épidémie se déclenchera. Cela conduit à un équilibre stable donné par

S = δ + γ β I = βλ -δ(δ + γ) β(δ + γ) .
Pour une description plus détaillée de ces modèles, nous nous référons également à Diekmann [START_REF] Diekmann | Mathematical tools for understanding infectious disease dynamics[END_REF][START_REF] Diekmann | The construction of nextgeneration matrices for compartmental epidemic models[END_REF].

Présentation du problème étudié

Dans cette thèse, nous décrivons mathématiquement l'évolution d'une interaction planteagent pathogène. L'étude de l'évolution des interactions hôte-parasite constitue un sujet fascinant pour les biologistes expérimentaux et théoriques. Les plantes sont susceptibles à de nombreux agents pathogènes, tels que les champignons, les bactéries, les virus. On peut trouver une liste de 13 000 pathogènes fongiques différents des plantes rien qu'aux États-Unis dans le livre de Farr et al. [START_REF] Farr | Fungi on plants and plant products in the united states[END_REF].

Au départ, en 1963, c'est Vanderplank qui, dans sa publication Plant Diseases Epidemiology and Control, a décrit les détails et défini les limites du sujet. Le livre faisait le lien entre l'épidémiologie et le contrôle des maladies des plantes, ce qui est appelé maintenant la gestion des maladies. En 1990, Campbell et Madden [START_REF] Campbell | Introduction to plant disease epidemiology[END_REF] ont décrit de nombreux principes et méthodes d'analyse et de gestion des épidémies de maladies des plantes (voir aussi [START_REF] Jones | An introduction to plant disease epidemiology[END_REF]). Nous renvoyons à [START_REF] Madden | The study of plant disease epidemics[END_REF] pour plus de recherches sur les maladies des plantes et la modélisation mathématique en épidémiologie. Dans ce livre se trouve également la justification du modèle de Kermack-McKendrick et celle du modèle de Vanderplank.

Nous nous concentrerons en particulier sur la propagation des maladies fongiques à l'échelle d'une parcelle de vigne. Par exemple, l'oïdium est la maladie fongique de la vigne la plus répandue dans la région bordelaise, voire dans le monde entier, et elle est la principale cible des traitements fongicides pour la vigne. Les maladies fongiques ont un impact important sur la vigne, provoquant même des pertes de récolte dans les cas extrêmes. Des pulvérisations de fongicides préventifs avant l'infection et de fongicides curatifs après l'infection sont appliquées pour obtenir une protection maximale et éviter le démarrage rapide de la maladie. Les agents pathogènes réagissent à l'utilisation de fongicides en développant une résistance, et l'utilisation massive de fongicides en agriculture entraîne des problèmes environnementaux et sanitaires. Pour diminuer le nombre de fongicides pulvérisés, une solution possible étudiée actuellement par les agronomes consiste à créer des variétés résistantes aux maladies.

Dispersion et équation de Fisher-KPP

Les épidémies sont des processus qui se produisent dans le temps et l'espace. Les maladies des plantes se propagent dans l'espace au fur et à mesure qu'elles évoluent dans le temps, ce processus est appelé Dispersion. Par conséquent, l'une des composantes importante dans l'étude des épidémies est la composante spatiale. Une équation de réaction-diffusion a été introduite en 1937 par le statisticien et biologiste Ronald Fisher dans le contexte de la dynamique des populations pour décrire la propagation spatiale des gènes favorables dans une population [START_REF] Fisher | The wave of advance of advantageous genes[END_REF]. La même année, les mathématiciens Kolmogorov, Petrovski et Piscounov [START_REF] Kolmogorov | Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem[END_REF] se sont également intéressés à cette équation. C'est ainsi que l'équation de Fisher-KPP est née. Cette équation s'écrit ainsi

∂ t N (t, x) -D∂ 2 x N (t, x) = f (N ), (1.3.3) 
La constante D est un coefficient de diffusion. La fonction f est appelée fonction de Fisher, elle est définie par

f (N ) = rN (1 -N ).
Fisher a recherché une solution particulière de cette équation sous la forme d'une onde progressive reliant les deux états d'équilibre donnés par les solutions de l'équation f (N ) = 0, soient N = 0 et N = 1. Ces ondes progressives se déplacent à une vitesse constante sans changer de forme et sont de la forme N (x, t) = N (ξ) avec ξ = x -ct, où c est la vitesse de l'onde. On note c la vitesse minimale des ondes progressives

c := 2 √ rD.
Une onde progressive de vitesse c existe si et seulement si c ≥ c . L'équation de Fisher-KPP a fait l'objet d'études approfondies (voir [START_REF] Paul | The approach of solutions of nonlinear diffusion equations to travelling front solutions[END_REF][START_REF] Hadeler | Travelling fronts in nonlinear diffusion equations[END_REF][START_REF] Aizik | Traveling wave solutions of parabolic systems[END_REF] et les références citées dans ces travaux). Les modèles de réaction-diffusion comme (1.3.3) permettent de prédire l'étendue spatiale d'une épidémie, notamment à travers les fronts de propagation ou les fronts progressifs associés, comme nous le verrons dans le chapitre 2.

Dans ce travail, nous considérons le gradient de maladie causé par la dispersion des spores. La description mathématique de la dispersion des spores en suspension dans l'air a été essentiellement inspirée par Van den Bosch et al. [START_REF] Van Den Bosch | Focus expansion in plant disease. I: The constant rate of expansion[END_REF][START_REF] Van Den Bosch | Focus expansion in plant disease. II: Realistic parameter-sparse models[END_REF][START_REF] Van Den Bosch | Focus expansion in plant disease. III: Two experimental examples[END_REF], les auteurs ont utilisé un modèle integro-différentiel de type Kermack-McKendrick. En outre, Jeger 1983 [58], Mafia et Berger 1998 [START_REF] Maffia | Models of plant disease epidemics. II: Gradients of bean rust[END_REF], Minogue 1986 [66], et Van den Bosch 1998 [START_REF] Van Den Bosch | Focus expansion in plant disease. I: The constant rate of expansion[END_REF], ont représenté le dépôt de spores, les infections et l'intensité des maladies à l'aide de modèles non linéaires simples. Fin 1990, Campbell et Madden [START_REF] Campbell | Introduction to plant disease epidemiology[END_REF] ont donné une description détaillée du processus de dispersion, et ont résumé ce processus par le gradient de maladie. L'objectif de l'utilisation de ces modèles est de comprendre la propagation des maladies fongiques, virales et bactériennes dans une population de plantes afin de déterminer les méthodes de contrôle de la propagation de l'infection.

Un système d'équations de réaction-diffusion non-local

Dans cette thèse, nous nous concentrons sur l'étude d'un système d'équations intégrodifférentielles non-local modélisant la propagation spatio-temporelle des épidémies dans le vignoble. L'objectif est de modéliser la dynamique épidémiologique et évolutive des agents pathogènes producteurs de spores. Plus précisément, le modèle s'écrit ainsi :

                             ∂u(t, x) ∂t = Λ -µu(t, x) -u(t, x) R M δβ(z)w(t, x, z)dz, ∂v(t, x, y) ∂t = δβ(y)u(t, x)w(t, x, y) -µ v v(t, x, y), η ∂w(t, x, y) ∂t + δ -D ∂ 2 ∂x 2 w(t, x, y) = R M J (y -y ) r(y )v (t, x, y ) dy , (1.3.4)
pour le temps t ∈ R, la position spatiale x ∈ R et la valeur du trait phénotypique y ∈ R M , avec un entier donné M ≥ 1. La fonction u = u(t, x) désigne la densité de la surface de plantes saines, v = v(t, x, y) désigne la densité de la surface de plantes infectées (c'està-dire les colonies de spores sur la surface de la plante), et w = w(t, x, y) désigne la population de spores produites dans l'environnement.

Cycle de la maladie

Dans cette partie nous décrivons en détail chaque équation du modèle afin de comprendre le mécanisme biologique sous-jacent.

Variation de u(t, x) par rapport au temps

La première équation représente la variation de la densité de surface de feuille non infectée u(t, x) par rapport au temps

∂u(t, x) ∂t = Λ -µu(t, x) -u(t, x) R M δβ(z)w(t, x, z)dz, (1.3.5)
Dans cette équation le paramètre Λ > 0 est le flux entrant de la densité de population saine et µ > 0 est le taux de mortalité naturelle des plantes. Une surface de feuille saine peut être contaminée après un contact avec les spores déposées sur celle-ci. Ces spores sont susceptibles de créer une colonie fongique. La densité de la surface nouvellement infectée est représentée par le terme suivant

u(t, x) R M δβ(z)w(t, x, z)dz,
où β est le taux de transmission de l'infection, tandis que le paramètre δ > 0 est le taux de dépôt des spores sur la surface foliaire.

Variation de v(t, x, y) par rapport au temps

La deuxième équation représente la variation temporelle de la densité de la surface infectée v(t, x, y) :

∂v(t, x, y) ∂t = δβ(y)u(t, x)w(t, x, y) -µ v v(t, x, y).
Ici µ v v(t, x) décrit la densité de la plante infectée qui meurt et δβ(y)u(t, x)w(t, x, y) est la densité de la surface nouvellement contaminée.

Variation de w(t, x, y) par rapport au temps et la dispersion spatiale

La troisième équation représente la variation temporelle et la dispersion spatiale de w(t, x, y).

η ∂w(t, x, y) ∂t + δw(t, x, y) -D ∂ 2 ∂x 2 w(t, x, y) = R M J (y -y ) r(y )v (t, x, y ) dy
Dans notre travail nous supposons que le processus de dispersion des spores se produit sur une échelle de temps beaucoup plus rapide que les échelles épidémiologiques et évolutives. Par conséquent nous pouvons supposer que la population de spores est à l'équilibre, de sorte que nous négligeons la dérivée temporelle de w dans la dernière équation en fixant η = 0. On réécrit cette équation comme suit

δw(t, x, y) - ∂ 2 ∂x 2 w(t, x, y) = R M J (y -y ) r(y )v (t, x, y ) dy.
La dispersion spatiale de la maladie dans l'espace physique est due aux spores et est décrite par un opérateur de diffusion Nous renvoyons à [START_REF] Zawolek | Studies in focus development: an optimum theorem for the dual dispersal of plant pathogens[END_REF][START_REF] Mammeri | How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale[END_REF], et aux références qui y figurent, pour des modèles similaires où la dispersion spatiale est décrite par un opérateur de diffusion. Nous pouvons mentionner le modèle représentant l'invasion d'une maladie fongique sur la vigne, étudié par [START_REF] Burie | Modeling of the Invasion of a Fungal Disease over a Vineyard[END_REF], les auteurs prennent en compte la dispersion des spores à courte et longue distance, et présentent des résultats des simulations numériques.

D ∂ 2 ∂x 2 w(t,
Le modèle que nous avons considéré entre dans la classe des modèles de mutation sélection dans lesquels la population est structurée par rapport à un trait phénotypique évolutif continu, voir [START_REF] Magal | Mutation, selection, and recombination in a model of phenotype evolution[END_REF][START_REF] Calsina | Asymptotics of steady states of a selection-mutation equation for small mutation rate[END_REF][START_REF] Calsina | Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions[END_REF] et les références citées pour une description générale de ces modèles.

Dans le contexte de ce travail, seule la population d'agents pathogènes est susceptible d'évoluer. Contrairement à la dynamique adaptative classique (voir par exemple [START_REF] Dieckmann | Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management[END_REF]) et suivant une approche suggérée dans [START_REF] Day | Applying population-genetic models in theoretical evolutionary epidemiology[END_REF][START_REF] Lion | Spatial evolutionary epidemiology of spreading epidemics[END_REF], les processus évolutifs et épidémiologiques ne sont pas séparés dans le modèle. Cette approche présente de multiples avantages et permet notamment de décrire des dynamiques transitoires hors équilibre comme dans le travail récent [START_REF] Burie | Asymptotic and transient behaviour for a nonlocal problem arising in population genetics[END_REF]. L'existence et les propriétés de concentration des solutions en régime permanent ont été réalisées dans [START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF] pour un modèle similaire sans structure spatiale, et nous renvoyons à ce travail pour des références supplémentaires.

Résultats Mathématiques

Cette thèse est divisée en deux parties. Dans la première partie, présentée dans le chapitre 2, nous étudions l'existence d'une onde progressive pour le système d'équations (1.3.5). Nous utilisons des idées issues de la théorie des systèmes dynamiques couplées à des estimations sur le comportement asymptotique des profils. Nous prouvons que les ondes progressives ont une structure assez simple découplant les variables de propagation spatio-temporelle des variables de trait phénotypique. Cette analyse nous permet de réduire le système d'équations des profils d'ondes progressives à dimension infinie à un système d'ODE à quatre dimensions. Nous prouvons l'existence d'ondes progressives pour toute vitesse d'onde supérieure à une vitesse minimale c , pourvu que le seuil épidémique R 0 , qui s'exprime en fonction de la valeur propre principale d'un certain opérateur intégral, soit strictement supérieur à 1. Cette même condition de seuil est également utilisée pour démontrer que toute onde progressive relie deux états stationnaires déterminés. Dans la deuxième partie, présentée dans le chapitre 3, nous nous intéressons au comportement asymptotique des solutions. Nous étudions les propriétés de propagation des solutions pour le système d'équations spatialement distribué (1.3.5), avec une densité initiale de plantes infectées à support compact spatialement en x. Lorsque R 0 > 1, nous prouvons que la propagation se produit avec une vitesse de propagation qui coïncide avec la vitesse minimale c des ondes progressives étudiées dans la première partie. De plus, la solution du problème de Cauchy converge asymptotiquement vers une fonction spécifique pour laquelle la variable x du repère mobile et celle du phénotype y sont séparées. 

Fronts d'ondes pour des systèmes non locaux spatialement structurés en épidémiologie évolutive

                           ∂ ∂t S(t, x) = -βS(t, x) +∞ -∞ I(t, x )M (x -x )dx ∂ ∂t I(t, x) = βS(t, x) +∞ -∞ I(t, x )M (x -x )dx -γI(t, x) ∂ ∂t R(t, x) = γI(t, x) (1.4.6) M (x -x ) est
S(x -ct, t), I(x -ct, t), R(x -ct, t) , où c est la vitesse de l'onde.
Il a démontré que de telles solutions n'existent pas pour c < c .

En 1977, Aronson [START_REF] Aronson | The asymptotic speed of propagation of a simple epidemic[END_REF] observe que le problème (1.4.6) est équivalent au problème scalaire 

∂ ∂t R(t, x) = - 1 R 0 R(t, x)t + 1 R 0 1 -exp -R 0 +∞ -∞ R(t, x )M (x -x )dx + 1 R 0 I 0 , où R → 1 -exp -R 0 +∞ -∞ R(t, x )M (x -x )
c quand R 0 > 1 : si S 0 ≡ 1, I 0 (x) = 0 pour tout x suffisamment grand et R 0 ≡ 0, alors on a • lim t→+∞ R(t, x + ct) = 0, si c > c , localement uniformément en x,
• lim t→+∞ R(t, x + ct) = α si c ∈ (0, c ) , localement uniformément en x, avec α est la solution positive de l'équation 1 -α = exp(-αR 0 ). Quand R 0 ≤ 1, R(t, x + ct) s'approche de zéro pour tous les c positifs, de sorte qu'il n'y a pas de propagation.

Diekmann [START_REF] Diekmann | Thresholds and travelling waves for the geographical spread of infection[END_REF][START_REF] Diekmann | Run for your life. A note on the asymptotic speed of propagation of an epidemic[END_REF] et Thieme [START_REF] Thieme | The asymptotic behaviour of solutions of nonlinear integral equations[END_REF][START_REF] Thieme | Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations[END_REF], ont considéré des simplifications similaires et ont étudié l'existence de solutions d'ondes progressives (voir aussi [START_REF] Thieme | Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models[END_REF]) et la vitesse asymptotique de propagation. Afin d'étudier la dispersion dans l'espace, De Mottoni et al. 1979 [START_REF] De Mottoni | Asymptotic behavior for a system describing epidemics with migration and spatial spread of infection[END_REF] ont ajouté des termes de diffusion au modèle de Kendall 

           ∂ ∂t S(t, x) = ∆S(t, x) + µ -σS(t, x) -S(t, x) Ω I(t, x )M (x , x)dx ∂ ∂t I(t, x) = D∆I(t, x) + S(t, x) Ω I(t, x )M (x, x )dx -γI(t,
             ∂ ∂t S(t, x) = D 1 ∆S(t,
(S(x -ct), I(x -ct)) avec S(+∞) = S 0 , S(-∞) = a ∈ (0, S 0 ), I(+∞) = I(-∞) = 0,
où a est une constante. Ils ont en particulier montré que : si D 1 > 0 et D 2 > 0, si R 0 > 1 alors pour tous c ≥ c = 2 (βS 0 -γ)D 2 il existe une constante a = a * ∈ (0, S 0 ) telle qu'une onde progressive existe. Aucune onde progressive n'existe quand R 0 ≤ 1 ou c < c .

L'existence et la non-existence de solutions non triviales en matière d'ondes progressives ont été rigoureusement étudiées par Ducrot et Magal 2009 [START_REF] Ducrot | Travelling wave solutions for an infection-age structured model with diffusion[END_REF] pour le modèle de réaction-diffusion épidémique suivant, structuré dans l'espace et en âge d'infection [START_REF] Cheng | Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed transmission[END_REF]. Nous renvoyons également à la revue bibliographique de Ruan [START_REF] Ruan | Spatial-temporal dynamics in nonlocal epidemiological models. In Mathematics for life science and medicine[END_REF] et aux références qu'elle contient.

                                       ∂ ∂t S(t, x) = D 1 ∆ x S(t, x) -S(t, x) a + 0 β(a)i(t, a, x)da, ∂ ∂t i(t, a, x) + ∂ ∂a i(t, a, x) = D 2 ∆ x i(t, a, x) -γ(a)i(t, a, x), a ∈ (0, a + ) i(t, 0, x) = S(t, x) a + 0 β(a)i(t, a, x)da, x ∈ R, t ≥ 0 S(0, x) = S 0 (x), i(0, a, x) = i 0 (a, x) (1.4.
La propagation spatiale pour les problèmes de mutation-sélection a également été prise en compte dans la littérature récente. On peut, par exemple, se référer à Alfaro, Coville et Raoul [START_REF] Alfaro | Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF] pour l'existence d'ondes progressives pour certains modèles écologiques, et à Alfaro, Berestycki et Raoul [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF] pour l'étude de la propagation spatiale et de l'adaptation pour une population en couplant l'évolution spatiale avec les changements climatiques. Nous renvoyons également à [START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF][START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF] pour d'autres aspects de la propagation des fronts (concentration, propagation spatiale) dans les problèmes écologiques couplant la structure spatiale avec la structure continue des traits phénotypiques en utilisant le cadre de Hamilton-Jacobi.

Il existe peu de travaux sur la propagation spatiale dans les problèmes d'épidémiologie évolutive que nous étudierons au chapitre 3. Et nous renvoyons le lecteur aux travaux récents de Griette et Raoul [START_REF] Griette | Existence and qualitative properties of travelling waves for an epidemiological model with mutations[END_REF] et Girardin [START_REF] Girardin | Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior[END_REF][START_REF] Girardin | Non-cooperative Fisher-KPP systems: asymptotic behavior of traveling waves[END_REF] où la partie évolutive est modélisée par des structures discrètes.

Principaux résultats du chapitre 2 : ondes progressives pour un système dynamique évolutif non-local

Ce chapitre a fait l'objet d'une publication en collaboration avec mes directeurs Jean-Baptiste Burie et Arnaud Ducrot dans le Journal of Differential Equations [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF].

Nous considérons le système (1.3.4), mais pour plus de simplicité, nous adimensionnalisons les paramètres en choisissant µ = 1, D = 1, et δ = 1.

Ainsi, après simplification, le modèle (1.3.4) devient 

                             ∂u(t, x) ∂t = Λ -u(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v(t, x, y) ∂t = β(y)u(t, x)w(t, x, y) -µ v v(t, x, y), 1 - ∂ 2 ∂x 2 w(t, x, y) = R M J (y -y ) r(y )v (t,
                             ∂u(t, x) ∂t = Λ -u(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v(t, x, y) ∂t = u(t, x)w(t, x, y) -µ v v(t, x, y), 1 - ∂ 2 ∂x 2 w(t, x, y) = R M Θ(y)Θ(y )J (y -y ) v (t, x, y ) dy ,
(1.4.12)

pour t ∈ R, x ∈ R et y ∈ R M .
Nous appelons Θ fonction de fitness.

Étude de l'opérateur intégral L

Nous introduisons maintenant l'opérateur

L sur L p (R N ) pour p ∈ [1, ∞) qui est défini par L[ϕ](y) = Θ(y) R M J(y -y )Θ(y )ϕ(y )dy , y ∈ R M , ( 1.4.13) 
Cet opérateur modélise l'évolution dans l'espace des valeurs phénotypiques. Le noyau J décrit les mutations d'une souche d'agent pathogène ayant une valeur phénotypique y ∈ R N à un autre avec une valeur phénotypique y ∈ R N . Le but de ce travail est d'étudier l'existence et les propriétés qualitatives des ondes progressives pour le problème (1.4.12) reliant l'équilibre dit "sans maladie" (équilibre spatialement homogène) 

(U, V (.), W (.)) = (Λ, 0, 0) ∈ R × L 1 (R M ) × L 1 (R M ). ( 1 
Ω = y ∈ R M : Θ(y) > 0 .
Nous supposons également que β : R M → R avec β ≡ 0 est une fonction continue positive avec un support compact et qu'il existe une certaine constante K > 0 telle que

0 ≤ β(y) ≤ KΘ(y), ∀y ∈ R M .
En outre, nous supposons que le noyau de mutation J est continu et satisfait J(-y) = J(y) pour tous les y ∈ R M , et que

J ∈ L 1 (R M ) ∩ L ∞ (R M ), J > 0 et R M J(y)dy = 1.
En utilisant les hypothèses ci-dessus, nous en déduisons que L est un opérateur linéaire positif borné, compact sur L p (R M ) et qu'il est également un opérateur auto-adjoint dans L 2 (R M ). Il est en outre irréductible sur les ensembles invariants L p (Ω) ⊂ L p (R M ), pour tout p ∈ [1, ∞]. Nous écrivons ici L p (Ω) ⊂ L p (R M ) en étendant par zéro les fonctions en dehors de Ω. En conséquence, l'opérateur L admet une décomposition spectrale avec des valeurs propres positives {λ n } n≥1 telle que

λ 1 > λ 2 ≥ λ 3 ≥ • • • ≥ λ n avec lim n→∞ λ n = 0.
L'ensemble correspondant de vecteurs propres {ϕ n } n≥1 forme une base hilbertienne de L 2 (Ω) et ϕ 1 > 0 sur Ω et λ 1 = ρ (L) le rayon spectral de l'opérateur L.

(1.4.15)

Notons que ϕ n L 2 (R) = 1, ∀n. De plus, rappelons que le rayon spectral, ρ(L), ainsi que les vecteurs propres

ϕ n ∈ L 1 (Ω) ∩ L ∞ (Ω) ne dépendent pas de p ∈ [1, ∞), pour tout n ≥ 1.
R. Djidjou-Demasse et al. [START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF], ont également modélisé les mutations dans l'espace des traits phénotypiques en utilisant un opérateur intégral. Nous renvoyons à leur travail et aux références citées dans celui-ci pour plus de détails sur les propriétés spectrales de L.

Seuil et équilibre épidémique

Comme nous l'avons expliqué précédemment, le nombre de reproduction de base R 0 joue un rôle très important dans l'existence de l'équilibre endémique et par conséquent dans celui d'une onde progressive reliant l'équilibre sans maladie à l'équilibre endémique, ce nombre est donné ici par R 0 défini par

R 0 = λ 1 Λ µ v . (1.4.16)
Lorsque R 0 est inférieur ou égal à 1, alors le système n'admet pas d'état stationnaire non trivial positif alors que lorsque R 0 > 1, il possède un équilibre endémique unique, donné par (U,

V (•), W (•)) = (U * , V * ϕ 1 (•), W * ϕ 1 (•)), où      (U * , V * , W * ) = Λ R 0 , R 0 -1 λ 1 β 1 , R 0 -1 β 1 ∈ R 3 , β 1 = R M β(y)ϕ 1 (y)dy > 0.
(1.4.17)

Nous introduisons également

(U * , V * , W * ) = (Λ, 0, 0) ∈ R 3 , (1.4.18)
de sorte que l'équilibre sans maladie défini dans (1.4.14) devient

(U * , V * ϕ 1 (•), W * ϕ 1 (•)) .

Ondes progressives

Nous sommes maintenant en mesure de définir une onde progressive dans le sens suivant : (1.4.18). Remarque 1.4.2. Dans cette définition des ondes progressives nous ne prescrivons pas le comportement du profil quand ξ → ∞. En gros, nous montrerons dans la suite que si une telle onde progressive existe, alors R 0 > 1 et cette solution converge vers l'équilibre endémique unique quand ξ → ∞.

(i) U ∈ C 1 (R) ∩ L ∞ (R), (V, W ) ∈ C 1 (R; L 1 (R M )) × C 2 (R; L 1 (R M )) et sup ξ∈R V (ξ, •) L 1 (R M ) + W (ξ, •) L 1 (R M ) < ∞; (ii) U > 0 sur R, V > 0 et W > 0 sur R × Ω ; (iii) le profil (U, V, W ) satisfait lim ξ→-∞    U (ξ) V (ξ, y) W (ξ, y)    =    U * V * ϕ 1 (•) W * ϕ 1 (•)    dans R × L 1 (R M ) × L 1 (R M ), où (U * , V * , W * ) est défini dans

Système d'équations du profil de l'onde progressive :

Un profil d'onde progressive avec une vitesse c > 0 est une solution du problème suivant

                             c d dξ U (ξ) = Λ -U (ξ) -U (ξ) Ω β(z)W (ξ, z)dz, c ∂ ∂ξ V (ξ, y) = U (ξ)W (ξ, y) -µ v V (ξ, y), 1 - ∂ 2 ∂ξ 2 W (ξ, y) = L [V (ξ, •)] (y), (1.4.19) lim ξ→-∞    U (ξ) V (ξ, y) W (ξ, y)    =    U * V * ϕ 1 (•) W * ϕ 1 (•)    dans R × L 1 (Ω) × L 1 (Ω), ξ ∈ R, y ∈ Ω, (1.4.20) où Ω ⊂ R M est l'ensemble ouvert défini par Ω = y ∈ R M : Θ(y) > 0 .
Ce système d'équations intégro-différentiel est complété par les propriétés de régularité, de positivité et de caractère borné des solutions telles qu'elles sont indiquées dans la définition 1.4.1.

Dans notre analyse, nous pouvons réécrire la troisième équation du modèle (1.4.19) de la façon suivante

W (ξ, y) = R K(ξ -ξ )L [V (ξ , •)] (y)dξ avec K(ξ) = 1 2 e -|ξ| .

Vitesse minimale des ondes

Nos principaux résultats sur l'existence et l'unicité des ondes progressives ne dépendent pas seulement du seuil R 0 , mais aussi de la vitesse des ondes.

Pour définir la vitesse minimale des ondes, nous utilisons un argument heuristique habituel. Soit (U, V, W ) un profil d'onde avec une vitesse c > 0. Nous supposons que (V, W ) → (0, 0) exponentiellement quand ξ → -∞ et nous utilisons l'antsatz

V (ξ, y) ≈ e λξ φ(y) et W (ξ, y) ≈ e λξ ψ(y) quand ξ → -∞,
avec le taux de décroissance exponentielle λ > 0, tandis que U (ξ) ≈ Λ pour ξ << 1. Ici, φ et ψ sont deux fonctions positives données dans L 1 (Ω). En utilisant cet antsatz dans le sous-système (V, W ) de (1.4.19) et en rappelant l'expression (1.4.16) de R 0 , cela nous permet de définir la fonction K = K(c, λ) pour (c, λ) ∈ R + × R de la façon suivante :

K(c, λ) := 1 -λ 2 (cλ + µ v ) -µ v R 0 . (1.4.21)
Cette équation nous permet de définir ce que nous appellerons la vitesse minimale de l'onde progressive lorsque R 0 > 1 comme étant la borne inférieure de tous les c > 0 tels qu'il existe un λ > 0 solution de l'équation caractéristique K(c, λ) = 0.

Definition 1.4.3. Vitesse minimale c Lorsque R 0 > 1 nous définissons c > 0 par c = inf {c > 0 : ∃λ > 0, K(c, λ) = 0} = inf λ∈(0,1) µ v (R 0 -1 + λ 2 ) λ(1 -λ 2 ) .
Dans la suite, cette quantité c > 0 est appelée la vitesse minimale.

Avant d'énoncer les principaux résultats du chapitre 2, il est important de mentionner que la preuve de tous les résultats est basée sur la projection du profil (V, W ) sur les vecteurs propres (ϕ n ) de l'opérateur linéaire L. Ainsi, nous considérons pour chaque n ≥ 1 les fonctions V n et W n définies par

(V n , W n ) (ξ) = Ω (V, W ) (ξ, y)ϕ n (y)dy, ∀ξ ∈ R, (1.4.22) 
de sorte que (U, V n , W n ) satisfont le système infini d'EDOs suivant pour n ≥ 1.

                               c d dξ U (ξ) = Λ -U (ξ) -U (ξ) ∞ n=1 β n W n (ξ), c d dξ V n (ξ) = U (ξ)W n (ξ) -µ v V n (ξ), 1 - d 2 dξ 2 W n (ξ) = λ n V n (ξ), (1.4.23) 
et

β n = R M β(y)ϕ n (y)dy. Lorsque β n ≥ 0, V n ≥ 0 et W n ≥ 0,
ce système d'équations peut être considéré comme un problème de ressource-consommateur. Ici, U représente l'unique ressource tandis que les composantes V n représentent les consommateurs en compétition pour cette ressource unique U . En ce sens, la structure simple des ondes progressives qui sera énoncée dans le Théorème 1.4.2 n'est pas surprenante puisque la composante V 1 correspond au plus fort compétiteur (λ 1 > λ n pour tous les n ≥ 2). Ce comportement écologique est généralement appelé le principe d'exclusion compétitive. Nous nous référons à [START_REF] Iggidr | Global analysis of new malaria intrahost models with a competitive exclusion principle[END_REF] et aux références qui y figurent pour l'étude d'un tel phénomène pour une large classe de systèmes d'EDO issus de la biologie.

Cependant, dans le contexte de ce travail, la situation est quelque peu différente puisque les composantes (V n , W n ) ne correspondent pas à des densités de population. En effet, elles peuvent changer de signe puisque les vecteurs propres ϕ n , pour n ≥ 2, n'ont pas de signe constant. Pour la même raison, les coefficients β n , avec n ≥ 2, ne sont pas nécessairement positifs. Le manque de positivité des composantes implique des difficultés nouvelles qui ont été surmontées dans ce travail.

Non-existence des ondes progressives

Nous commençons par exprimer les conditions sur le seuil épidémique R 0 et sur la vitesse c pour lesquelles il n'existe pas d'ondes progressives. Notre résultat est le suivant Théorème 1.4.1. (Non existence) (1.4.12) n'a pas de solution d'ondes progressives.

(i) Si R 0 ≤ 1 alors le problème
(ii) Si R 0 > 1 alors le problème (1.4.12) n'admet aucune solution d'ondes progressives pour une vitesse c ∈ (0, c ).

Afin de démontrer théorème 1.4.1, nous commençons par quelques préliminaires sur les propriétés générales du profil d'ondes progressives (U, V, W ), en particulier, nous décrivons quelques résultats de régularité et de compacité. L'utilisation des propriétés de régularité et de compacité sera utile pour démontrer l'importante propriété de persistance forte pour (V 1 , W 1 ) dans un repère mobile. Plus précisément, nous supposons R 0 > 1. Soit c 0 > 0 et soit (U, V, W ) un profil d'onde progressive associé à la vitesse c 0 > 0, nous montrons que pour tous les c ∈ (0, c )

lim inf t→∞ V 1 ((c 0 -c)t) > 0 et lim inf t→∞ W 1 ((c 0 -c)t) > 0.
La preuve de la propriété de persistance forte est basée sur la construction d'une soussolution inspirée de [START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF] pour une équation parabolique, ainsi que sur des arguments de persistance.

Le Théorème 1.4.1 (ii) est une conséquence directe de la propriété de persistance forte. En effet, nous argumentons par contradiction en supposant qu'il existe un profil d'onde (U, V, W ) avec une vitesse c ∈ (0, c ). D'une part, rappelons qu'en raison de la définition d'une onde progressive énoncée précédemment, on a

V 1 (ξ) := Ω V (ξ, y)ϕ 1 (y)dy → 0 as ξ → -∞. D'autre part, choisissons c ∈ (c, c ). La propriété de persistance forte assure que lim inf t→∞ V 1 ((c -c )t) = lim inf ξ→-∞ V 1 (ξ) > 0,
une contradiction qui conclut la preuve du Théorème 1.4.1 (ii).

Pour démontrer le Théorème 1.4.1 (i), nous supposons que R 0 ≤ 1, nous devons montrer que pour c > 0 on a (U, V, W ) = (Λ, 0, 0). Pour cela, nous considérons la suite (ξ n ) n≥0 telle que les limites suivantes

   lim n→∞ U (ξ n + ξ) = U ∞ (ξ), lim n→∞ V n 1 (ξ n + ξ) = V 1,∞ (ξ) et V 1,∞ (0) = sup R V 1,∞ . La fonction V 1,∞ vérifie l'équation suivante R 0 R K(ξ ) sup R V 1,∞ -V 1,∞ (ξ ) dξ + (1 -R 0 ) sup R V 1,∞ ≤ 0.
En utilisant cette équation, nous pourrons conclure la preuve après avoir discuté de plusieurs cas :

1) Si R 0 < 1 alors sup R V 1,∞ = 0, par conséquent sup R V = 0 ce qui assure que W (ξ) ≡ 0 and U (ξ) ≡ Λ. La preuve est complétée dans ce cas. 2) Si R 0 = 1. Dans cette situation, on obtient que V 1,∞ (ξ) ≡ sup R V 1,∞ est une fonction constante, ce qui nous ramène au premier cas si sup R V 1,∞ = 0. Par conséquent, la preuve se termine par l'absurde en supposons que sup R V 1,∞ > 0.

Propriétés qualitatives des ondes progressives

Notre deuxième résultat principal concerne certaines propriétés qualitatives des ondes progressives pour (1.4.12), lorsqu'elles existent, dans le cas restant R 0 > 1 et quand c ≥ c . 

V = V (ξ) > 0 et Ŵ = Ŵ (ξ) > 0 telles que (i) (V (ξ, y), W (ξ, y)) ≡ V (ξ)ϕ 1 (y), Ŵ (ξ)ϕ 1 (y) (ii) La fonction U (ξ), V (ξ), Ŵ (ξ) vérifie le système d'équations suivant                    c d dξ U (ξ) = Λ -U (ξ) -β 1 U (ξ) Ŵ (ξ), c d dξ V (ξ) = U (ξ) Ŵ (ξ) -µ v V (ξ), λ 1 V (ξ) + d 2 dξ 2 -1 Ŵ (ξ) = 0, ξ ∈ R, (1.4.24) et le comportement à l'infini lim ξ→-∞    U (ξ) V (ξ) Ŵ (ξ)    =    Λ 0 0    et lim ξ→∞    U (ξ) V (ξ) Ŵ (ξ)    =    U * V * W *    , (1.4.25) où l'état stable positif (U * , V * , W * ) est défini dans l'équation (1.4.17), de plus λ 1 = ρ(L) et β 1 = R M β(y)ϕ 1 (y)dy > 0.
Pour démontrer ce théorème, nous supposons que R 0 > 1 et nous considérons (U, V, W ) un profil d'ondes progressives associé une vitesse c ≥ c .

Notre stratégie pour démontrer le théorème 1.4.2 est de montrer que

|V n (ξ)| = O (V 1 (ξ)) as ξ → ±∞, pour tout n ≥ 2.
Plus précisément, nous étudions d'abord la décroissance exponentielle de

V 1 (ξ) et W 1 (ξ) quand ξ → -∞.
Ensuite, en utilisant un argument de comparaison ad hoc nous comparons V n avec V 1 quand ξ → ±∞. Ces étapes nous permettrons de compléter la preuve de la première partie du théorème, à savoir (V n , W n ) ≡ (0, 0) pour tout n ≥ 2. Enfin, nous utilisons des arguments de type Lyapunov pour en déduire le comportement asymptotique du profil d'onde quand ξ → ∞, c'est-à-dire la convergence des profils d'ondes vers l'état d'équilibre endémique à ξ = ∞. La preuve de ce résultat est basée sur une application appropriée d'un théorème d'analyse complexe dû à Ikehara. Un tel théorème a été appliqué avec succès par Carr et Chmaj dans [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF] pour décrire le taux de décroissance exponentielle des ondes progressives de divers problèmes. Nous renvoyons également à [START_REF] Guo | Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system[END_REF] où cette méthodologie a ainsi été appliquée.

Sur la figure 1.4.2, on peut voir la population infectée s'étendre spatialement avec un profil concentré autour de la valeur du trait phénotypique y = 0, 5, qui est le maximum de la fonction fitness Θ. Les valeurs des paramètres sont :

Λ = 1, µ = 1, µ v = 1.1, β(y) = 1.u 0 (x) = Λ µ , v 0 (x, y) = e -(y-0.1) 2 e -(x-0.3) 2 et w 0 (x, y) = 0. La fonction fitness Θ(y) = max(0, (y -0.4)(0.6 -y)). Le noyau de mutation J(y) = e -| y ε |
2ε , ε = 0.1. La solution est affichée pour un temps t assez grand.

Existence d'ondes progressives pour c ≥ c

Le résultat précédent (Théorème 1.4.25) permet de montrer que les profils d'ondes de (1.4.12) ont une forme simple et que l'étude de l'existence des ondes progressives se réduit à l'étude du problème (1. Pour le cas sur-critique, nous utilisons une méthodologie assez standard basée sur la construction de sur et sous-solutions appropriées. Ensuite, nous utilisons le théorème du point fixe de Schauder pour obtenir l'existence de solutions pour un problème similaire posé sur un intervalle borné et enfin nous faisons tendre la longueur de cet intervalle vers l'infini pour obtenir la solution.

Pour le cas critique, à savoir pour la vitesse d'onde minimale c = c , nous considérons une suite (c n ) de vitesses strictement supérieures à c que nous faisons tendre vers c . En utilisant des translations ad hoc couplées à des arguments de type Lyapunov dans l'esprit de ceux utilisés dans la preuve du théorème 1.4.2 (ii), nous sommes en mesure de compléter la preuve du théorème 1.4.3.

Propriétés de propagation asymptotique

Après avoir établi l'existence des ondes progressives dans la première partie de cette thèse, nous introduisons la deuxième partie. Nous étudions certaines propriétés dynamiques, et étudions les propriétés de propagation asymptotique pour le système de réaction-diffusion épidémique (1.4.10).

La notion de vitesse de propagation a été introduite par Aronson et Weinberger [START_REF] Aronson | Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation[END_REF][START_REF] Aronson | Multidimensional nonlinear diffusion arising in population genetics[END_REF] dans les années 70 pour l'équation scalaire de réaction-diffusion. Suivant la même approche, Thieme [START_REF] Thieme | Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread[END_REF] a étudié le comportement asymptotique de la solution de l'équation intégrale non linéaire suivante

v(t, x) = v 0 (t, x) + t 0 R N g(v(t -s, x + y))K(s, |y|)dsdy, (1.4.26) 
où v(t, x) est la densité de la population infectée, pour t ≥ 0, x ∈ R N , g non linéaire et K représente le noyau de l'opérateur intégral. L'auteur a prouvé un résultat de persistance important en trouvant une constante c * > 0 considérée comme une vitesse asymptotique de la propagation de la population et un intervalle

[v * , v * ] avec 0 < v * ≤ v * < ∞ tel que, 1) pour tout c ∈ (0, c * ), v(t, x) ∈ [v * , v * ] pour tout t > 0 suffisamment grand et |x| ≤ ct,
2) pour tout c > c * , la densité v(t, x) de la population infectée tend vers zéro quand t → ∞, pour |x| ≥ ct.

On trouve également dans cette publication, les conditions pour lesquelles la densité de population se stabilise asymptotiquement, c'est-à-dire v * = v * . Thieme et Zhao [START_REF] Thieme | Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models[END_REF] ont établi l'existence des vitesses asymptotiques de propagation, ainsi que l'existence des ondes progressives de l'étude de l'équation (1.4.26), ils ont montré que la vitesse de propagation de coïncide avec la vitesse minimale des ondes progressives monotones, dans le cas où la fonction g(v, s, y) est monotone en v (voir aussi Fang et Zhao [START_REF] Fang | Existence and uniqueness of traveling waves for non-monotone integral equations with applications[END_REF]). Fang et al. [START_REF] Fang | Spreading speeds and travelling waves for nonmonotone time-delayed lattice equations[END_REF] pour des équations à retard sur des lattices et Hsu et Zhao [START_REF] Hsu | Spreading speeds and traveling waves for nonmonotone integrodifference equations[END_REF], Wang et Castillo-Chavez [START_REF] Wang | Spreading speeds and traveling waves for non-cooperative integro-difference systems[END_REF] pour des équations et systèmes intégro-différentiels. On peut également mentionner les travaux récents de Wang dans [START_REF] Wang | Spreading speeds and traveling waves for non-cooperative reactiondiffusion systems[END_REF] qui étudie une classe de systèmes de réaction-diffusion non coopératifs et les travaux de Ducrot [START_REF] Ducrot | Convergence to generalized transition waves for some Holling-Tanner prey-predator reaction-diffusion system[END_REF] pour une étude d'une classe spécifique de systèmes de réaction-diffusion prédateurs-proies.

A. Ducrot [START_REF] Ducrot | Spatial propagation for a two component reaction-diffusion system arising in population dynamics[END_REF] a étudié de manière approfondie la propagation spatiale pour le système de réaction-diffusion à deux composantes suivant

   (∂ t -d∆)S(t, x) = Λ -γS(t, x) -βS(t, x)I(t, x), (∂ t -∆)I(t, x) = [βS(t, x) -(γ + µ)]I(t, x) (1.4.27) pour t > 0 et x ∈ R N pour les entiers N ≥ 1 et complétés avec des données initiales S(0, x) = S 0 (x), I(0, x) = I 0 (x)
. Il a d'abord démontré que la solution est uniformément bornée. Ensuite il a montré que l'infection se propage à la même vitesse que celle obtenue à partir de l'équation linéarisée à l'équilibre sans maladie et l'état de la population après l'épidémie a été étudié de manière exhaustive. Suivant des arguments similaires, d'autres travaux ont été réalisés par A. Ducrot, T. Giletti et H. Matano [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF] pour l'étude du comportement asymptotique des solutions. Dans cette partie de la thèse, nous étudions le comportement asymptotique et la vitesse asymptotique de propagation pour le système (1.4.10), lorsque la quantité initiale d'infectieux, v 0 = v 0 (x, y) ≥ 0, est une fonction à suppport compact par rapport à la variable x. En gros, dans ce cas et lorsque R 0 > 1, nous montrerons que l'infection se propage à la vitesse c , la vitesse minimale des ondes progressives du Chapitre 2. En outre, le profil de l'infection, v = v(t, x, y), sépare asymptotiquement les variables spatiotemporelles de la variable du trait phénotypique, y ∈ R M .

Pour analyser la répartition spatiale, il faut surmonter le principe de l'absence de comparaison. Une telle difficulté survient généralement lors de l'étude de l'interaction prédateurproie et pour les systèmes épidémiques comme celui que nous considérons dans ce travail. Notre analyse étend certaines idées de systèmes dynamiques tirées de [START_REF] Ducrot | Spatial propagation for a two component reaction-diffusion system arising in population dynamics[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF] à la diffusion non-locale, pour surmonter le principe du manque de comparaison, tandis que la forme asymptotique (séparation des variables) quand t → ∞ de la solution du problème de Cauchy que nous étudions dans le chapitre 2 ((3.1.2)-(3.1.4)) est obtenue par une comparaison minutieuse des projections de la solution dans l'ensemble des modes propres de l'opérateur lié au noyau de mutation.

La dynamique de propagation pour de tels problèmes non monotones a été peu étudiée dans la littérature et aucune méthode générale n'a été développée. Assez récemment, une analyse des propriétés de propagation pour les solutions de systèmes non coopératifs et non compétitifs (du type épidémie et proie-prédateur) a été réalisée. Nous renvoyons le lecteur à [START_REF] Ducrot | The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal[END_REF][START_REF] Girardin | Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior[END_REF][START_REF] Guo | The spreading speed of an sir epidemic model with nonlocal dispersal[END_REF][START_REF] Li | Traveling waves and entire solutions for an epidemic model with asymmetric dispersal[END_REF][START_REF] Morris | Individual variability in dispersal and invasion speed[END_REF][START_REF] Pan | Asymptotic spreading in a Lotka-Volterra predator-prey system[END_REF][START_REF] Wu | The spreading speed for a predator-prey model with one predator and two preys[END_REF][START_REF] Zhao | The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries[END_REF].

Principaux résultats du chapitre 3 : Propriétés de propagation asymptotique pour un système dynamique évolutif non-local

Dans cette partie, nous considérons le même système d'équations que celui du chapitre 2

                           ∂u ∂t (t, x) = Λ -µu(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v ∂t (t, x, y) = β(y)u(t, x)w(t, x, y) -µ v v(t, x, y), δw(t, x, y) -D ∂ 2 w ∂x 2 (t, x, y) = R M J (y -y ) r(y )v (t, x , y ) dy , (1.4.28)
Ensuite, nous simplifions à nouveau ce modèle en fixant δ

= D = µ = 1. Soit K = K(x), la solution fondamentale de l'opérateur elliptique 1 - ∂ 2 ∂x 2 , c'est à dire K(x) = 1 2 e -|x| , x ∈ R, (1.4.29) 
alors le système (1.4.28) se réécrit comme le système non-local suivant

             ∂u ∂t (t, x) = Λ -u(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v ∂t (t, x, y) = β(y)u(t, x)w(t, x, y) -µ v v(t, x, y), (1.4.30)
avec pour conditions initiales

u(0, x) = u 0 (x), v(0, x, y) = v 0 (x, y), (1.4.31)
et où nous avons fixé

w(t, x, y) = R R M K(x -x )J (y -y ) r(y )v (t, x , y ) dx dy . (1.4.32)
Nous réintroduisons également le numéro de reproduction de base R 0 donné par 

R 0 = λ 1 Λ µ v , ( 1 
J est positif, continu et J ∈ L 1 (R M ) ∩ L ∞ (R M ). De plus, J est symétrique par rapport à l'origine, c'est-à-dire J(-y) = J(y) pour tout y ∈ R M , et il vérifie R M J(y)dy = 1.
Enfin, pour chaque R > 0, la fonction y -→ sup y ≤R J(y+y

) appartient à L 1 (R M ). b) Les fonctions r, β : R M → R sont continues, positives et bornées. Elles présentent le comportement suivant (r(y), β(y)) → (0, 0) quand y → ∞. La fonction produit y → r(y)β(y) appartient à L 1 (R M ) et n'est pas identiquement nulle.
Nous imposons également des hypothèses pour les données initiales (u 0 , v 0 ).

Hypothèses 1.4.5. Nous supposons que Grâce à la fonction γ, nous pouvons définir l'espace à poids L 2 γ (R M ) comme étant l'ensemble des fonctions mesurables sur R M tel que R M f 2 (y)γ(y)dy < ∞. En particulier, nous avons

(u 0 , v 0 ) ∈ C 0 b (R; R + ) × C 0 b (R; L 1 + (R M )) satisfait (i) 0 ≤ u 0 (x) ≤ Λ pour tout x ∈ R ; (ii) la fonction x → R M v 0 (x, y)dy est à support compact, R M r(y)v 0 (x, y)dy ≡ 0 et il existe une constante c 0 > 0 telle que 0 ≤ v 0 (x, y) ≤ c 0 β(y) pour y ∈ R M p.p. et pour tout x ∈ R. Nous montrons que pour tout (u 0 , v 0 ) ∈ C 0 b (R; R + ) × C 0 b (R; L 1 + (R M )), le système (1.4.30) admet une solution unique positive et définie globalement t → (u(t), v(t)) qui est continuellement différentiable de [0, ∞) à valeurs dans C 0 b (R; R + ) × C 0 b (R; L 1 + (R M )). Soit Ω = {y ∈ R M , r(y)β(y) > 0} ⊂ R M , c
f ∈ L 2 γ (R M ) si f est mesurable et f √ γ ∈ L 2 (R M ).
La norme de L 2 γ (R M ), désignée par • 2,γ , est donnée par

f 2,γ = R M f 2 (y)γ(y)dy 1/2 , ∀f ∈ L 2 γ (R M ).
Nous définissons également l'opérateur de mutation linéaire borné L ∈ L L 1 (R M ) de la façon suivante

L[ϕ](y) = R M β(y)J(y -y )r(y )ϕ(y )dy , ∀ϕ ∈ L 1 (R M ), (1.4.34)
ainsi que son opérateur adjoint formel,

L * ∈ L L 1 (R M ) , donné par L * [ϕ](y) = R M r(y)β(y )J(y -y )ϕ(y )dy , ∀ϕ ∈ L 1 (R M ). (1.4.35)
Ces deux opérateurs positifs jouissent de la propriété Perron-Frobenius suivante.

Proposition 1.4.6. Soit λ 1 = ρ(L) qui désigne le rayon spectral de l'opérateur L. Les affirmations suivantes sont alors vraies

(i) ρ(L) > 0 et il existe une fonction propre positive ϕ 1 ∈ C b (R M ) ∩ L 2 γ (R M ) ∩ L p + (R M ), pour tous les p ∈ [1, ∞], associée à λ 1 . Dans la suite, il est normalisé de sorte que ϕ 1 2,γ = 1. De plus, ϕ 1 est positif sur Ω. (ii) ρ(L * ) = ρ(L) et la fonction positive ϕ * 1 := γϕ 1 ∈ L p + (R M ) pour tout p ∈ [1, ∞]
est une fonction propre de L * associée à ρ(L). De plus, elle est positive sur Ω.

En utilisant la notation ci-dessus, nous introduisons P 1 la projection orthogonale formelle de v ∈ L 1 (R M ) sur le sous-espace propre ker (ρ(L) -L) engendré par ϕ 1 , le vecteur propre principal de L, c'est-à-dire

P 1 ϕ = R M ϕ(y)ϕ * 1 (y)dy ϕ 1 , ∀ϕ ∈ L 1 (R M ).
Remarque 1.4.7. L'opérateur intégral L est maintenant symétrique lorsqu'il est défini sur l'espace avec poids

L 2 γ (R M ).
Nous définissons maintenant la vitesse minimale de l'onde c comme dans le Chapitre 2 par

c := inf 0<λ<1 µ v λ R 0 1 -λ 2 -1 .
(1.4.36)

Théorème principal

Notre résultat principal se présente de la façon suivante 

lim t→∞ sup x∈R v(t, x, •) -P 1 v(t, x, •) 2,γ = 0. Soit v 1 = v 1 (t, x) défini par v 1 (t, x) = R M v(t, x, y)ϕ * 1 (y)dy, (1.4.37) de sorte que P 1 v(t, x, •)(y) = v 1 (t, x)ϕ 1 (y),

Etapes de la preuve du résultat principal

Propriété de propagation extérieure, Théorème 1.4.4 (ii).

Pour cette démonstration nous utilisons une sur-solution ad hoc v1 (t, x) = φ 0 e -λ 0 (x-ct) , ∀x ∈ R, t ≥ 0, pour l'équation suivante

∂ t v 1 (t, x) ≤ λ 1 ΛK * v 1 (t, •)(x) -µ v v 1 (t, x), ∀t ≥ 0, ∀x ∈ R. (1.4.38) soit c 1 un réel tel que c 1 > c > c . Ensuite, sup x≥c 1 t v1 (t, x) = φ 0 e -λ 0 (c 1 -c)t → 0, as t → ∞,
Propriété de propagation intérieure, Théorème 1.4.4 (iii).

La preuve de cette section décrira le comportement pour t 1 de la solution dans la région |x| ≤ ct, pour les vitesses c telles que 0 ≤ c < c . On peut se restreindre à la région 0 ≤ x ≤ ct pour c ∈ [0, c ) puisque le cas -ct ≤ x ≤ 0 s'en déduit par symétrie du problème. L'objectif principal de cette section est de démontrer que v 1 = v 1 (t, x) (voir (3.2.12)) reste uniformément positif dans le temps, dans ces régions.

Pour cette preuve, nous définissons

T ⊂ C 0 b (R 2 ; R + ) × C 0 b R 2 ; L 1 + (R M ) l'ensemble des limites des translations de l'orbite (u, v) par (ũ, ṽ) ∈ T ⇐⇒ il existe une suite (t n ) n≥0 avec t n → ∞ et une suite (x n ) n≥0 ⊂ R telle que (ũ(t, x), ṽ(t, x, •)) = lim n→∞ (u(t + t n , x + x n ), v(t + t n , x + x n , •)) , pour la topologie de C loc (R 2 ) × C loc R 2 ; L 1 (R M ) .
Nous obtenons alors la propriété de séparation suivante : pour tout (ũ, ṽ) ∈ T , on a soit (ũ, ṽ) ∈ T ≡ (Λ, 0), soit,

R M ṽ(•, •, y)ϕ * 1 (y)dy > 0 on R × R.
Cette propriété de séparation nous permet de partitionner l'ensemble T comme suit

T = ∂T ∪ • T and ∂T ∩ • T = ∅,
dans laquelle nous avons noté ∂T = {(Λ, 0)} et

• T = {(ũ, ṽ) ∈ T , ṽ ≡ 0} = (ũ, ṽ) ∈ T , R M ṽ(•, •, y)ϕ * 1 (y)dy > 0 on R × R .
A présent, pour démontrer le théorème 1.4.4 (iii), nous suivons la méthodologie développée dans [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF] et nous divisons notre argumentation en trois étapes. Nous étudions d'abord la propriété de propagation ponctuelle faible avant de traiter la propriété de propagation ponctuelle forte, pour finalement conclure avec celle de propagation uniforme.

Lemme 1.4.8. Propriété de propagation ponctuelle faible.

Soit η ∈ (0, c ). Il existe alors ε = ε(η) > 0 tel que pour tout (ũ, ṽ) ∈ • T , on a lim sup t→∞ ṽ1 (t, ct) ≥ ε(η), ∀c ∈ [0, c -η]. Ici ṽ1 = ṽ1 (t, x) est donné par ṽ1 (t, x) = R M ṽ(t, x, y)ϕ * 1 (y)dy, ∀(t, x) ∈ R 2 .
Ce lemme montre que ṽ1 ne converge pas vers 0 uniformément quand t → ∞ pour x = ct. Pour le démontrer, nous utilisons un argument de comparaison pour un problème non-local sur un repère mobile. Plus précisément, nous raisonnons par contradiction en supposant qu'il existe une suite (ũ n , ṽn )

∈ • T , une suite (t n ) n≥1 , avec t n → +∞ as n → +∞ et une suite (c n ) n≥1 avec 0 ≤ c n ≤ c -η, ∀n ≥ 1 telle que ∀n ∈ N * , ∀t ≥ 0, ṽn 1 (t n + t, c n (t n + t)) ≤ 1 n .
Pour cela, nous montrons d'abord que, à une sous-suite près, on a

lim n→∞ ũn (t + t n , x + c n (t + t n )) = Λ, uniformément pour t ≥ 0 et localement uniformément pour x ∈ R. Cette limite nous permet d'obtenir pour c n 0 ∈ (c 0 -δ, c 0 + δ) et pour (ũ n 0 , ṽn 0 ) ∈ • T l'inégalité suivante, pour tout t ≥ t n 0 et x ∈ [-R + c n 0 t, R + c n 0 t] : ∂ t ṽn 0 1 (t, x) ≥ λ 1 Λ(1 -ε)K * ṽ1 n 0 (t, x) -µ v ṽ1 n 0 (t, x).
Nous construisons ensuite une sous-solution de ṽn 0 1 (t, x) sur l'intervalle borné [-R + c n 0 t, R + c n 0 t]. Nous montrons que la sous-solution est non-bornée, et par conséquent ceci contredit le caractère borné de la solution ṽn 0 1 et termine la preuve de ce Lemme.

Lemme 1.4.9. Propriété de propagation ponctuelle forte.

Soit η ∈ (0, c ). Il existe alors ε = ε(η) tel que pour tous les (ũ, ṽ) ∈ • T , nous avons lim inf t→∞ ṽ1 (t, ct) > ε(η), ∀c ∈ [0, c -η]. (1.4.39)
Ici, comme précédemment, ṽ1 est donné par ṽ1 (t, x) = R M ṽ(t, x, y)ϕ * 1 (y)dy.

Ce lemme montre que la solution ṽ1 reste loin de zéro quand t → ∞ le long de la trajectoire x = ct, pour c < c . La preuve s'inspire de certaines idées de la théorie des systèmes dynamiques et plus spécifiquement de la théorie de la persistance uniforme. Lemme 1.4.10. Propriété de propagation uniforme.

Soit η ∈ (0, c ), alors il existe ε(η) > 0 tel que lim inf t→∞ inf 0≤x<(c -η)t ṽ1 (t, x) ≥ ε(η).
Enfin, dans la troisième étape de la preuve, nous prouvons maintenant que cette propagation est uniforme pour 0 ≤ x < ct, avec 0 < c < c . La preuve est inspirée de celle de Lemma 5.7 dans [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF]. Nous démontrons le lemme en trouvant une contradiction à la propriété de propagation ponctuelle forte énoncée dans le lemme précédent.

Séparation asymptotiques des variables, Théorème 1.4.4 (i).

Dans la section 3.6 nous prouvons le résultat de séparation asymptotiques des variables. Tout d'abord, pour cette preuve, nous considérons que les hypothèses 1.4.4 et 1.4.5 sont satisfaites. Ensuite, nous définissons la fonction θ :

R M → R + par θ = rβ ∈ L 2 (R M ).

Nous définissons également la fonction

v := √ γv ∈ C 1 ([0, ∞), C 0 b (R, L 2 (R M )), Ensuite, nous définissons l'opérateur linéaire M 2 ∈ L (L 2 (Ω)) par M 2 [f ](y) = θ(y) Ω J(y -y )θ(y )f (y )dy , ∀f ∈ L 2 (Ω).
Nous pouvons démontrer que l'opérateur M 2 est irréductible et compact sur L 2 (Ω). De plus, comme J est symétrique, M 2 est auto-adjoint. Elle admet donc une décomposition spectrale avec des valeurs propres positives {λ k } k≥1 telles que

λ 1 = ρ(M) = ρ(M 2 ) et λ 1 > λ 2 ≥ • • • ≥ λ k ≥ • • • ≥ 0 avec lim k→∞ λ k = 0,
Dans [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF][START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF], les auteurs ont donné plus de détails sur ces opérateurs intégraux non-locaux. Les vecteurs propres correspondants {φ k } k≥1 forment une base Hilbert de L 2 (Ω). Nous savons également que la fonction propre

ϕ * 1 = γϕ 1 de l'opérateur L * satisfait ϕ * 1 = γ 1/2 φ 1 sur Ω.
Soit maintenant vk la projection de v par rapport au vecteur propre

φ k , c'est-à-dire vk (t, x) = Ω v(t, x, y)φ k (y)dy. Puisque v = γ 1/2 v et ϕ * 1 = γ 1/2 φ 1 sur Ω, nous avons l'égalité suivante v1 (t, x) = R M v(t, x, y)ϕ * 1 (y)dy = v 1 (t, x).
En projetant l'équation en v du problème (1.4.30), nous obtenons le système infini suivant d'EDOs pour k ≥ 1 et (t,

x) ∈ R + × R ∂ t vk (t, x) = λ k u(t, x)K * vk (t, x) -µ v vk (t, x).
Soit (U, V ) ∈ T , l'orbite complète obtenue comme limite des translations des solutions (u, v) du problème (1.4.30).

Soit V = γ 1/2 V . L'orbite limite (U, V ) vérifie pour tout k ≥ 1 et tout pour (t, x) ∈ R 2 l'équation suivante. ∂ t Vk (t, x) = λ k U (t, x)K * Vk (t, x) -µ v Vk (t, x), où nous avons posé Vk (t, x) = Ω V (t, x, y)φ k (y)dy.
Pour démontrer le théorème 1.4.4 (i), nous montrons que

Vk (t, x) ≡ 0 on R 2 , ∀k ≥ 2.
Pour cela, et puisque Pour cela, nous définissons

λ k → 0 quand k → ∞ et puisque R 0 = λ 1 Λ µv > 1, nous définissons l'entier k 0 ≥ 2 par k 0 := min{k ≥ 2 : µ v -λ k Λ > 0}. ( 1 
R 1 = λ 2 Λ µ v < R 0 , et comme k 0 ≥ 3 on a 1 ≤ R 1 < R 0 .
De façon analogue à c , nous définissons c ∈ (0, c ) par Cette dernière propriété se prouve par comparaison avec une sur-solution qui dépend de l'orbite complète projetée sur le premier mode, c'est à dire V1 .

c := inf 0<λ<1 µ v λ R 1 1 -λ 2 -1 .
Ceci conclut la démonstration du théorème 1.4.4 (i)

Chapter 2

Travelling wave solutions for a non-local evolutionary-epidemic system

In this work we study the travelling wave solutions for a spatially distributed system of equations modelling the evolutionary epidemiology of plant-pathogen interaction. Here the mutation process is described using a non-local convolution operator in the phenotype space. Using dynamical system ideas coupled with refined estimates on the asymptotic behaviour of the profiles, we prove that the wave solutions have a rather simple structure. This analysis allows us to reduce the infinite dimensional travelling wave profile system of equations to a fourth dimensional ode system. The latter is used to prove the existence of travelling wave solutions for any wave speed larger than a minimal wave speed c , provided some parameters condition expressed using the principle eigenvalue of some integral operator. It is also used to prove that any travelling wave solution connects two determined stationary states.

Introduction

In this manuscript we investigate the existence and some properties of the travelling wave solutions for a non-local integro-differential system of equations that describes the spatial evolutionary epidemiology of a fungal disease of plants.

From the evolutionary point of view, the model we considered enters the class of selection mutation models in which the population is structured with respect to a continuous phenotypic evolutionary trait, see [START_REF] Calsina | Asymptotics of steady states of a selection-mutation equation for small mutation rate[END_REF][START_REF] Calsina | Asymptotic profile in selection-mutation equations: Gauss versus Cauchy distributions[END_REF][START_REF] Magal | Mutation, selection, and recombination in a model of phenotype evolution[END_REF] and references therein for a general description of these models.

In the context of this work only the pathogen population is susceptible to evolve. Contrary to classical adaptive dynamics (see e.g. [START_REF] Dieckmann | Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management[END_REF]) and following an approach suggested in [START_REF] Lion | Spatial evolutionary epidemiology of spreading epidemics[END_REF][START_REF] Day | Applying population-genetic models in theoretical evolutionary epidemiology[END_REF], the evolutionary and epidemiological processes are not separated in the model. This approach has multiple advantages and in particular it allows to describe non-equilibrium transient dynamics as in the recent work [START_REF] Burie | Asymptotic and transient behaviour for a nonlocal problem arising in population genetics[END_REF]. The existence and concentration properties of steady state solutions has been carried out in [START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF] for a similar model without spatial structure, and we refer to this work for additional references.

In this note, the spatial dispersion of the disease is due to the spores and is described thanks to a diffusion operator as in [START_REF] Mammeri | How changes in the dynamic of crop susceptibility and cultural practices can be used to better control the spread of a fungal pathogen at the plot scale[END_REF][START_REF] Zawolek | Studies in focus development: an optimum theorem for the dual dispersal of plant pathogens[END_REF]. More precisely, the model reads as follows

                             ∂u(t, x) ∂t = Λ -µu(t, x) -u(t, x) R M δβ(z)w(t, x, z)dz, ∂v(t, x, y) ∂t = δβ(y)u(t, x)w(t, x, y) -µ v v(t, x, y), ∂w(t, x, y) ∂t + δ -D ∂ 2 ∂x 2 w(t, x, y) = R M J (y -y ) r(y )v (t, x, y ) dy , (2.1.1)
posed for time t ∈ R, spatial position x ∈ R and phenotypic trait value y ∈ R M , with some given integer M ≥ 1. The functions u = u(t, x) , v = v(t, x, y) and w = w(t, x, y) denote the densities of the healthy plant population, the infected plant population (i.e. the plant surface bearing spore colonies), and the population of spores produced in the environment, respectively.

Here, Λ > 0 is the influx of new healthy population density, µ > 0 and µ v > 0 are the natural and infected plant death rates respectively. The healthy population becomes contaminated by contact with the spores falling on the foliar surface that create a fungal colony with the transmission rate β, the parameter δ > 0 is the spores deposition rate, D is the diffusion coefficient for the spores dispersal in the environment. The spores are produced by the colonies on the infected plant population of trait value y with rate r(y ). The spores population mutates from trait y to trait y proportionally to the kernel value J(y -y ).

Using parameter rescaling we choose µ = 1, D = 1, and δ = 1 for simplicity. Moreover, we assume that the spores dispersal process occurs on a much faster time scale than the epidemiology and evolutionary ones, and consequently we may assume that the spore population is at equilibrium so that we neglect the time derivative of w in the last equation of (2.1.1). Thus after simplification model (2.1.1) becomes

                             ∂u(t, x) ∂t = Λ -u(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v(t, x, y) ∂t = β(y)u(t, x)w(t, x, y) -µ v v(t, x, y), 1 - ∂ 2 ∂x 2 w(t, x, y) = R M J (y -y ) r(y )v (t, x, y ) dy . (2.1.2)
In order to handle the above system of equations, we first rewrite it under a more suitable form by setting ṽ(t, x, y) := r(y) β and omitting the tilde for notational simplicity, Problem (2.1.2) rewrites as follows:

                             ∂u(t, x) ∂t = Λ -u(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v(t, x, y) ∂t = u(t, x)w(t, x, y) -µ v v(t, x, y), 1 - ∂ 2 ∂x 2 w(t, x, y) = R M Θ(y)Θ(y )J (y -y ) v (t, x, y ) dy , (2.1.4) for t ∈ R, x ∈ R and y ∈ R M .
The aim of this note is to investigate the existence and qualitative properties of the travelling wave solutions for the above problem (2.1.4) connecting the so-called disease free equilibrium to a non-negative and non trivial equilibrium, the endemic one, when it exists. Here the disease free equilibrium corresponds to the spatially homogeneous equilibrium (U, V (.), W (.)) = (Λ, 0, 0

) ∈ R × L 1 (R M ) × L 1 (R M ). (2.1.5)
In order to go further in the description of the endemic steady state, we assume here and throughout this note that the following properties hold true Assumption 2.1.1. We assume:

a) The mutation kernel J is continuous and satisfies J(-y) = J(y) for all y ∈ R M ,

J ∈ L 1 (R M ) ∩ L ∞ (R M ), J > 0 and R M J(y)dy = 1.
b) The fitness function Θ : R M → R is non-negative, compactly supported and continuous. We denote by Ω ⊂ R M the open set defined by

Ω = y ∈ R M : Θ(y) > 0 .
c) We also assume that β : R M → R with β ≡ 0 is a non-negative continuous function with compact support and there exists some constant K > 0 such that Under the above assumption and more particularly using a) and b), the bounded linear operator L, on L p (R N ) for p ∈ [1, ∞), defined by

0 ≤ β(y) ≤ KΘ(y), ∀y ∈ R M .
L[ϕ](y) = Θ(y) R M J(y -y )Θ(y )ϕ(y )dy , y ∈ R M , (2.1.6)
is positive, compact on L p (R M ) and it is also a self-adjoint operator in L 2 (R M ). It is furthermore irreducible on the invariant sets L p (Ω) ⊂ L p (R M ), for any p ∈ [1, ∞). Here we understand L p (Ω) ⊂ L p (R M ) by extending by zero the functions outside Ω. As a consequence the operator L admits a spectral decomposition with positive eigenvalues {λ n } n≥1 such that

λ 1 > λ 2 ≥ λ 3 ≥ • • • ≥ λ n with lim n→∞ λ n = 0.
The corresponding set of eigenvectors {ϕ n } n≥1 forms a Hilbert basis of L 2 (Ω) and ϕ 1 > 0 on Ω and λ 1 = ρ (L) the spectral radius of L.

(2.1.7)

Note that in particular ϕ n L 2 (R) = 1, ∀n. Also, recall that the spectral radius, ρ(L), does not depend on p ∈ [1, ∞) as well as the eigenvectors ϕ n ∈ L 1 (Ω) ∩ L ∞ (Ω), for any n ≥ 1. We refer to [START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF] for more details on the spectral properties of L.

Next, the existence of the endemic equilibrium, and consequently of a travelling wave connecting the disease free equilibrium to the endemic one, is related to the epidemic threshold R 0 given by

R 0 = λ 1 Λ µ v . (2.1.8)
When R 0 ≤ 1 then the system does not admit non-trivial non-negative stationary state while when R 0 > 1 it possesses a unique endemic equilibrium, given by

(U, V (•), W (•)) = (U * , V * ϕ 1 (•), W * ϕ 1 (•)),
where

(U * , V * , W * ) = Λ R 0 , R 0 -1 λ 1 β 1 , R 0 -1 β 1 ∈ R 3 , (2.1.9)
and

β 1 = R M β(y)ϕ 1 (y)dy > 0. We also introduce (U * , V * , W * ) = (Λ, 0, 0) ∈ R 3 , (2.1.10)
so that the disease free equilibrium defined in (2.1.5) becomes (U * , V * ϕ 1 (•), W * ϕ 1 (•)).

In order to investigate travelling wave solution for (2.1.4), we define a travelling wave, in a rather weak sense, as follows. (u(t,x),v(t,x,y),w(t,x,y)) of (2.1.4) is said to be a travelling wave with speed c > 0 if it has the following form (u(t, x), v(t, x, y), w(t, x, y)) ≡ (U (ξ), V (ξ, y), W (ξ, y)) with ξ = x + ct, wherein (U, V, W ) is referred to as the wave profile, and if (U, V, W ) furthermore satisfies the following properties

(i) U ∈ C 1 (R) ∩ L ∞ (R), (V, W ) ∈ C 1 (R; L 1 (R M )) × C 2 (R; L 1 (R M )) and sup ξ∈R V (ξ, •) L 1 (R M ) + W (ξ, •) L 1 (R M ) < ∞; (ii) U > 0 on R, V > 0 and W > 0 on R × Ω; (iii) the profile (U, V, W ) satisfies lim ξ→-∞    U (ξ) V (ξ, y) W (ξ, y)    =    U * V * ϕ 1 (•) W * ϕ 1 (•)    in R × L 1 (R M ) × L 1 (R M ), wherein (U * , V * , W * ) is defined in (2.1.10).
The above definition of travelling wave solutions is rather mild in the sense that we do not prescribe the behaviour of the profile as ξ → ∞. Roughly speaking we will show in the sequel that if such a travelling wave does exist then R 0 > 1 (see (2.1.8)) and it converges to the unique endemic equilibrium as ξ → ∞. Here it is easy to check that any travelling profile (U, V, W ) satisfies

V (ξ, y) = W (ξ, y) = 0, ∀ξ ∈ R, y / ∈ Ω.
Hence in the above definition, one may consider (U,

W ) ∈ C 1 (R; L 1 (Ω)) × C 2 (R; L 1 (Ω))
and replace R M by Ω. Now according to the above definition, a travelling wave profile with speed c > 0 becomes a solution of the following problem

                             c d dξ U (ξ) = Λ -U (ξ) -U (ξ) Ω β(z)W (ξ, z)dz, c ∂ ∂ξ V (ξ, y) = U (ξ)W (ξ, y) -µ v V (ξ, y), 1 - ∂ 2 ∂ξ 2 W (ξ, y) = L [V (ξ, •)] (y).
(2.1.11)

This integro-differential system of equations is posed for ξ ∈ R, y ∈ Ω and supplemented together with the regularity, positivity and boundedness properties as stated in Definition 2.1.3 as well as the limit behaviour at ξ = -∞:

lim ξ→-∞    U (ξ) V (ξ, y) W (ξ, y)    =    U * V * ϕ 1 (•) W * ϕ 1 (•)    in R × L 1 (Ω) × L 1 (Ω),
(2.1.12)

Note that the last equation in (2.1.11) also rewrites as follows

W (ξ, y) = R K(ξ -ξ )L [V (ξ , •)] (y)dξ with K(ξ) = 1 2 e -|ξ| .
(2.1.13)

In our analysis we shall make use of both formulations, either as the third equation in (2.1.11) or as the latter integral equation.

The study of travelling waves, and more generally spatial propagation, for spatially structured epidemic systems is an active interest subject since the last decades. The literature on this topic is very rich. Here we do not intend to provide an exhaustive bibliography on the topic. We only give few references and, one may refer for instance to the work of Hosono and Ilyas [START_REF] Hosono | Traveling waves for a simple diffusive epidemic model[END_REF] for the existence of wave solutions for a diffusive model without vital dynamics. We also refer to [START_REF] Cheng | Traveling waves of a nonlocal dispersal Kermack-McKendrick epidemic model with delayed transmission[END_REF][START_REF] Ducrot | Travelling wave solutions for an infection-age structured epidemic model with external supplies[END_REF][START_REF] Hsu | Corrigendum: Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models[END_REF][START_REF] Li | Traveling waves and entire solutions for an epidemic model with asymmetric dispersal[END_REF][START_REF] Wang | Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission[END_REF][START_REF] Liang | Travelling waves of a delayed sir epidemic model with nonlinear incidence rate and spatial diffusion[END_REF] for studies of non-local versions (including non-local dispersal, age structure, time delay) for this model. We also refer to the survey paper of Ruan [START_REF] Ruan | Spatial-temporal dynamics in nonlocal epidemiological models. In Mathematics for life science and medicine[END_REF] and the references cited therein.

Spatial propagation for mutation selection problems have also been considered in the recent literature. One may for instance refer to Alfaro, Coville and Raoul [START_REF] Alfaro | Travelling waves in a nonlocal reaction-diffusion equation as a model for a population structured by a space variable and a phenotypic trait[END_REF] for the existence of travelling waves for some ecological models, and to Alfaro, Berestycki and Raoul [START_REF] Alfaro | The effect of climate shift on a species submitted to dispersion, evolution, growth, and nonlocal competition[END_REF] for the study of the spatial spread and adaptation for ecological population coupling spatial evolutionary with climate changes. We also refer to [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF][START_REF] Bouin | A Hamilton-Jacobi approach for a model of population structured by space and trait[END_REF][START_REF] Mirrahimi | Asymptotic analysis of a selection model with space[END_REF] for other aspects of front propagation (concentration, spatial spread) in ecological problems coupling spatial structure together with continuous phenotypic trait structure by using Hamilton-Jacobi framework.

There are also few works on spatial propagation in evolutionary epidemiology problems. And we refer the readers to the recent works of Griette and Raoul [START_REF] Griette | Existence and qualitative properties of travelling waves for an epidemiological model with mutations[END_REF] and Girardin [START_REF] Girardin | Non-cooperative Fisher-KPP systems: asymptotic behavior of traveling waves[END_REF][START_REF] Girardin | Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior[END_REF] where the evolutionary part is modelled by discrete structures.

As mentioned above, in this work we study travelling wave solutions for (2.1.11)-(2.1.12). Here the mutation part is modelled by a continuous structure so that the system is infinite dimensional. In order to study travelling wave solutions for the above problem, one our main result, detailed in the next section, relies on a finite dimensional reduction. Roughly speaking, we shall show that any wave solution have a very simple shape so that the above infinite dimensional problem reduces to a fourth-dimensional ode system. This specific reduction allows us to obtain refined information on the wave profiles and it is used to study both the existence of solutions as well as the behaviour of the epidemic waves at ξ = ∞.

Main results

In this section we state and discuss the main results that will be proved in this manuscript.

To that aim we first define the so-called minimal wave speed that will be denoted by c in the sequel. Its definition relies on a usual linear heuristic argument. Let (U, V, W ) be a wave profile with speed c > 0. We assume that (V, W ) → (0, 0) exponentially as ξ → -∞ and we use the antsatz V (ξ, y) ≈ e λξ φ(y) and W (ξ, y) ≈ e λξ ψ(y) as ξ → -∞, with the exponential decay rate λ > 0 while U (ξ) ≈ Λ for ξ < < -1. Here φ and ψ are two given positive function in L 1 (Ω). Plugging this antsatz into the (V, W )-subsystem in (2.1.11) yields

   (cλ + µ v ) φ = Λψ, (1 -λ 2 ) ψ = Lφ, ⇔    (cλ + µ v ) φ = Λψ, 1 Λ (1 -λ 2 ) (cλ + µ v ) φ = Lφ.
Since φ > 0, Perron Frobenius theorem for compact, positive and irreducible operators in Banach lattice (see [START_REF] Meyer-Nieberg | Banach lattices. Universitext[END_REF]) implies that φ = kϕ 1 for some k > 0 and

1 Λ 1 -λ 2 (cλ + µ v ) = λ 1 = ρ(L).
Recalling the expression (2.1.8) of R 0 , this allows us to define the function K = K(c, λ) for (c, λ) ∈ R + × R as follows:

K(c, λ) := 1 -λ 2 (cλ + µ v ) -µ v R 0 . (2.2.14)
Lemma 2.2.1. The function K enjoys the following properties when R 0 > 1 :

(i) The function λ → K(c, λ) is concave on [0, +∞) for any c > 0 and reaches its maximum for λ ∈ (0, 1) .

(ii) For all c ∈ R, K(c, 0) < 0 and K(c, 1) < 0.

(iii) The function c → K(c, λ) is strictly increasing for any λ ∈ (0, 1). Moreover ∀λ ≥ 0, K(0, λ) < 0 and for any λ ∈ (0, 1), lim c→+∞ K(c, λ) = +∞.

Proof. We have

∂ 2 λ K(c, λ) = -6cλ -2µ v and ∀c > 0, ∂ λ K(c, 0) = c > 0 and ∂ λ K(c, 1) = -2c -2µ v < 0,
then (i) follows. Properties (ii) and (iii) are straightforward.

This lemma allows us to define what we shall call the minimal wave speed when R 0 > 1 as follows. 

µ v (R 0 -1 + λ 2 ) λ(1 -λ 2 ) .
In the sequel, this quantity c > 0 is referred to as the minimal wave speed.

Using the above definition we are now ready to state our main results. To that aim recall that the set of hypothesis 2.1.1 is satisfied throughout this note.

We start by expressing conditions on the epidemic threshold R 0 and on the speed c for which no travelling wave solution exists.

Theorem 2.2.3 (Non existence).

The following non existence results hold true: 1.4) does not have any travelling wave solution.

(i) If R 0 ≤ 1 then Problem (2.
(ii) If R 0 > 1 then Problem (2.

1.4) does not admit any travelling wave solution with

wave speed c ∈ (0, c ).

Our next result is concerned with some qualitative properties of the travelling wave solutions for (2.1.4), when they exist, in the remaining case R 0 > 1 with wave speed c ≥ c . Theorem 2.2.4 (Qualitative properties). Assume that R 0 > 1. Let (U, V, W ) be a travelling wave profile for some speed c ≥ c according to Definition 2.1.3. Then there exist two smooth real functions V = V (ξ) > 0 and Ŵ = Ŵ (ξ) > 0 such that

(i) (V (ξ, y), W (ξ, y)) ≡ V (ξ)ϕ 1 (y), Ŵ (ξ)ϕ 1 (y) (ii)
The function U (ξ), V (ξ), Ŵ (ξ) satisfies the following system of equations

                   c d dξ U (ξ) = Λ -U (ξ) -β 1 U (ξ) Ŵ (ξ), c d dξ V (ξ) = U (ξ) Ŵ (ξ) -µ v V (ξ), λ 1 V (ξ) + d 2 dξ 2 -1 Ŵ (ξ) = 0, ξ ∈ R, (2.2 
.15)

and the limit behaviours at ξ = ±∞:

lim ξ→-∞    U (ξ) V (ξ) Ŵ (ξ)    =    Λ 0 0    and lim ξ→∞    U (ξ) V (ξ) Ŵ (ξ)    =    U * V * W *    , (2.2.16)
wherein the positive steady state (U * , V * , W * ) is defined in (2.1.9). In (2.2.15) above, λ 1 = ρ(L) and we have set

β 1 = R M β(y)ϕ 1 (y)dy > 0.
The above result shows that the wave profiles of (2.1.4) have a simple shape and that the investigation of such special solutions reduces to the study of Problem (2.2.15)-(2.2.16) with R 0 > 1 and for wave speed c ≥ c . The existence of solutions for this reduced system of equations is ensured by our next result. Theorem 2.2.5 (Existence of travelling wave solutions for c ≥ c ). Assume that R 0 > 1.

Then for each wave speed c ≥ c , Problem (2.2.15)-(2.2.16) admits -at least -a positive solution.

The proof of these results is based on the projection of the travelling profile (V, W ) on the eigenvectors (ϕ n ) of the linear operator L. Thus, we consider for each n ≥ 1 the functions V n and W n defined by

(V n , W n ) (ξ) = Ω (V, W ) (ξ, y)ϕ n (y)dy, ∀ξ ∈ R, (2.2.17) 
then (U, V n , W n ) satisfy the following infinite system of ode's for n ≥ 1

                               c d dξ U (ξ) = Λ -U (ξ) -U (ξ) ∞ n=1 β n W n (ξ), c d dξ V n (ξ) = U (ξ)W n (ξ) -µ v V n (ξ), 1 - d 2 dξ 2 W n (ξ) = λ n V n (ξ), (2.2.18) 
and

β n = R M
β(y)ϕ n (y)dy. When β n ≥ 0, V n ≥ 0 and W n ≥ 0, this system of equations can be viewed as a consumer-resources problem. Here U stands for the single resource while the V n -components stand for the consumers competing for the single resource U . In that sense, the simple structure for the wave solutions stated in Theorem 2.2.4 is not surprising since the V 1 -component corresponds to the strongest one (λ 1 > λ n for all n ≥ 2). This ecological behaviour is usually referred to as the competitive exclusion principle. We refer to [START_REF] Iggidr | Global analysis of new malaria intrahost models with a competitive exclusion principle[END_REF] and the references therein for the studies of such a phenomenon for a large class of ode systems arising in biology.

However, in the context of this work, the situation is somehow different since the (V n , W n )-components do not correspond to populations' densities and they may change sign since the eigenvectors ϕ n , for n ≥ 2, do not have a constant sign. For the same reason, the coefficients β n , with n ≥ 2, are not necessarily non-negative. The lack of positivity for the components implies new difficulties that are, in particular, overcome in this work.

This article is organized as follows. We start with some preliminaries followed by the proof of Theorem 2.2.3 in Section 3. In particular we state and prove a key property that will be used throughout the article, see Theorem 2.3.3 hereafter, for the persistence behaviour of the component (V 1 , W 1 ) in suitable "moving frames".

Next, Section 4 is devoted to the proof of Theorem 2.2.4. For this, we describe the asymptotic behaviour of (V 1 , W 1 ) near -∞. This allows to prove that (V n , W n ) ≡ (0, 0) for n ≥ 2 by using suitable comparison arguments, which implies Theorem 2.2.4 (i). Next, Theorem 2.2.4 (ii) is proved by using Theorem 2.3.3 and a Lyapunov like argument.

Finally in Section 5 we prove Theorem 2.2.5. This proof follows from a suitable fixed point argument in the case c > c , while the case c = c is handled by using a limiting procedure, letting c → c , and Lyapunov like arguments again.

Proof of Theorem 2.2.3

This section is devoted to the proof of the non existence result stated in Theorem 2.2.3. In section 3.1 we start with some preliminaries on the general properties of the travelling wave solutions and we prove an important persistence like property stated in Theorem 2.3.3 that will be used again for the proof of Theorem 2.2.4, in particular Theorem 2.2.3 (ii) is a direct consequence of Theorem 2.3.3. Then in section 3.2 we prove Theorem 2.2.3 (i).

Preliminaries

We start this section with some general properties stated in Lemma 2.3.1 for the travelling wave profile (U, V, W ). In particular we prove regularity and compactness results.

Next, using this lemma we are able to prove Theorem 2.3.3 which is a strong persistence property for (V 1 , W 1 ) in some moving frames. The proof is based on the construction of a subsolution inspired by [START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF] for some parabolic equation, see Lemma 2.3.7, together with persistence arguments and a separation property on the set of profile translates defined in (2.3.21). Lemma 2.3.1. Let c > 0 be given and (U, V, W ) be a travelling wave profile -according to Definition 2.1.3 -with wave speed c. Then the following holds true: (i) there exists ε > 0 such that the function U satisfies ε ≤ U (ξ) ≤ Λ for all ξ ∈ R;

(ii) the functions V and W satisfy

V ∈ C 1 R; L p (R M ) ∩ L ∞ R; L ∞ (R M ) for all p ∈ [1, ∞), W ∈ C 2 R; L p (R M ) ∩ L ∞ R; L ∞ (R M ) for all p ∈ [1, ∞);
(iii) for each p ∈ [1, ∞) the sets {y → V (ξ, y), ξ ∈ R} and {y → W (ξ, y), ξ ∈ R} are relatively compact in L p (Ω) .

Proof. We first prove (i). To do so note that, since W ≥ 0, U satisfies

c d dξ U (ξ) ≤ Λ -U (ξ), ∀ξ ∈ R.
Hence it readily follows that U (ξ) ≤ Λ for any ξ ∈ R. Next U satisfies

c d dξ U (ξ) ≥ Λ -U (ξ) [1 + M ] with M := β ∞ sup ξ∈R W (ξ, •) L 1 (Ω) . Thus U (ξ) ≥ ε := Λ 1+M for all ξ ∈ R. For (ii), note that since V ∈ C 1 (R; L 1 (Ω)) ∩ L ∞ (R; L 1 (Ω)) then, since J ∈ L 1 (R M ) ∩ L ∞ (R M ), ξ → L[V (ξ, •)] belongs to C 1 (R; L p (Ω) and L ∞ (R; L p (Ω) for any p ∈ [1, ∞).
Next from (2.1.13), it follows that W belongs to C 2 (R; L p (Ω) and L ∞ (R; L p (Ω) for any p ∈ [1, ∞). From the V -equation of (2.1.11) we furthermore obtain

∂ ∂ξ V (ξ, y)e µv ξ c = U (ξ) c W (ξ, y)e µv ξ c
and integrating the latter equation from -∞ to ξ yields

V (ξ, y) = ξ -∞ U (ξ ) c W (ξ , y)e µv (ξ -ξ) c
dξ .

(2. 3.19) and it follows that V belongs to C 1 (R; L p (Ω)) and L ∞ (R; L p (Ω)) for any p ∈ [1, ∞).

To prove (iii) we apply Frechet-Kolmogorov theorem. To that aim fix p ∈ [1, ∞) and let us first show that {L

[V (ξ, •)], ξ ∈ R} is relatively compact in L p (R M ). Note first that since L[V (ξ, •)](y) = 0 for y / ∈ Ω and Ω is bounded, it is sufficient to show that lim h→0 L[V (ξ, •)](• + h) -L[V (ξ, •)] L p (R M ) = 0 uniformly for ξ ∈ R. ( 2 

.3.20)

To see this, note that one has, for all ξ ∈ R and

y ∈ R M , L[V (ξ, •)](y + h) -L[V (ξ, •)](y) =[Θ(y + h) -Θ(y)] R M J(y + h -y )Θ(y )V (ξ, y )dy -Θ(y) R M [J(y -y ) -J(y + h -y )]Θ(y )V (ξ, y )dy .
Hence, using Young inequality, one obtains

L[V (ξ, •)](• + h) -L[V (ξ, •)] L p (R M ) ≤ Θ(• + h) -Θ(•) L p Θ L ∞ J L ∞ sup ξ∈R V (ξ, •) L 1 + Θ 2 L ∞ J(•) -J(• + h) L p sup ξ∈R V (ξ, •) L 1 .
Because of the continuity of translation in L p (R M ), (2.3.20) 

(U (ξ + s), V (ξ + s, •), W (ξ + s, •)) , s ∈ R} is relatively compact is C loc (R) × C loc (R; L p (Ω)) × C loc (R; L p (Ω)) for any p ∈ [1, ∞).
The regularity and compactness properties described in the above lemma and remark will be useful for proving our main key theorem below.

Theorem 2.3.3. Assume that R 0 > 1. Let c 0 > 0 be given and let (U, V, W ) be a travelling wave profile with speed c 0 > 0.

Define V 1 = V 1 (ξ) > 0 and W 1 = W 1 (ξ) by V 1 (ξ) := R M V (ξ, y)ϕ 1 (y)dy and W 1 (ξ) := R M W (ξ, y)ϕ 1 (y)dy.
Then, for all c ∈ (0, c ), one has

lim inf t→∞ V 1 ((c 0 -c)t) > 0 and lim inf t→∞ W 1 ((c 0 -c)t) > 0.
Remark 2.3.4. As it will be clear from our proof below, the above theorem remains valid when (U, V, W ) is a travelling wave profile according to Definition 2.1.3 (i)-(ii). Property (iii) is not needed for this theorem. 

lim inf ξ→∞ V 1 (ξ) > 0 and lim inf ξ→∞ W 1 (ξ) > 0.
Proof of Corollary 2.3.5. To prove (a), let us argue by contradiction by assuming that there exists a wave profile (U, V, W ) with a speed c ∈ (0, c ). On the one hand, recall that due to Definition 2.1.3, one has

V 1 (ξ) := Ω V (ξ, y)ϕ 1 (y)dy → 0 as ξ → -∞.
On the other hand, choose c ∈ (c, c ). Then Theorem 2.3.3 ensures that

lim inf t→∞ V 1 ((c -c )t) = lim inf ξ→-∞ V 1 (ξ) > 0,
a contradiction that completes the proof of (a). Next to prove (b), we choose c ∈ (0, c ) and applying Theorem 2.3.3 we get as c > c > c , lim inf

t→∞ V 1 ((c -c ) t) > 0 and lim inf t→∞ W 1 ((c -c ) t) > 0,
and the result follows. We now prove Theorem 2.3.3. Proof of Theorem 2.3.3. As the theorem is obvious for c = c 0 , we assume in the sequel that c = c 0 .

Before going to the proof of this theorem let us introduce some useful notations and remarks that will be used along this proof. According to Remark 2.3.2 we define the set of the translates of (U, V, W ) as follows

T = cl {(U (s + •), V (s + •, •), W (s + •, •)) : s ∈ R} , (2.3.21)
where cl denotes the closure with respect to the topology of

C loc (R) × C loc (R; L 1 (Ω)) × C loc (R; L 1 (Ω)).
Recall that this set is also compact for the topology of

C loc (R)×C loc (R; L p (Ω))× C loc (R; L p (Ω)) for any p ∈ [1, ∞).
In other words one has

Ũ , Ṽ , W ∈ T ⇐⇒ there exists a sequence (ξ n ) n≥0 such that Ũ , Ṽ , W = lim n→∞ (U (ξ n + •), V (ξ n + •, •), W (ξ n + •, •)) , for the topology of C loc (R) × C loc (R; L p (Ω)) × C loc (R; L p (Ω)) for any p ∈ [1, ∞).
Now it easy to check that the above convergence also holds true for the stronger topology of

C 1 loc (R) × C 1 loc (R; L p (Ω)) × C 2 loc (R; L p (Ω))
for any p ∈ [1, ∞). Furthermore, any limit point Ũ , Ṽ , W ∈ T is a non-negative solution of (2.1.11) in which we have set c = c 0 .

As a consequence we obtain that, for any Ũ , Ṽ , W ∈ T , it holds that: either Ũ , Ṽ , W ≡ (Λ, 0, 0), or, Ω Ṽ (•, y)ϕ 1 (y)dy > 0 and Ω W (•, y)ϕ 1 (y)dy > 0 on R.

(2.3.22)

The above separation property readily follows from the fact that the non-negative functions Ṽ1 := Ω Ṽ (•, y)ϕ 1 (y)dy and W1 := Ω W (•, y)ϕ 1 (y)dy, satisfy the following system of equations

         c d dξ Ṽ1 (ξ) = Ũ (ξ) W1 (ξ) -µ v Ṽ1 (ξ), λ 1 Ṽ1 (ξ) + d 2 dξ 2 -1 W1 (ξ) = 0, ξ ∈ R, with inf{ Ũ (ξ), ξ ∈ R} > 0.
Hence one gets T = {(Λ, 0, 0)}∪H where the set H denotes the set of non-trivial (positive) limit points, that is

H = Ũ , Ṽ , W ∈ T , Ṽ , W ≡ (0, 0) = Ũ , Ṽ , W ∈ T , Ω Ṽ (•, y)ϕ 1 (y)dy > 0 and Ω W (•, y)ϕ 1 (y)dy > 0 on R .
We now turn to the proof of Theorem 2.3.3. This proof will follow different steps and we start with a technical lemma that will be used in the sequel to construct a suitable estimate from below. Recall that K, the fundamental solution of the second order operator 1 -d 2 dx 2 , is given by

K(x) = 1 2 e -|x| , ∀x ∈ R.
Now we fix c ∈ (0, c ). And recall that R 0 > 1. Hence, due to Lemma 2.2.1, as c < c we have sup λ≥0 K(λ, c) < 0. Then fix ε > 0 small enough such that max

λ∈[0,1] 1 -λ 2 (cλ + µ v ) -µ v λ 1 Λ(1 -ε) < 0, (2.3.23) 
Define for R > 0 the operator

Q R [ϕ](x) := -cϕ (x) + λ 1 Λ(1 -ε) R -R K(x -y)ϕ(y)dy -µ v ϕ(x).
Then the following lemma holds true:

Lemma 2.3.6. For α ∈ (-1, 1) define ϕ R,α (x) := e αx cos πx 2R , ∀x ∈ (-R, R).
There exist some positive constants M 0 and R 0 such that

∀R > R 0 , ∃α R > 0, ∀x ∈ (-R, R), Q R [ϕ R,α R ](x) ≥ M 0 ϕ R,α R (x). (2.3.24)
The proof of this lemma is inspired from [START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF].

Proof. Let λ R = α + i π 2R and Λ ε = (1 -ε)Λ then Q R [ϕ R,α ](x) = Re e λ R x (-cλ R -µ v ) + λ 1 Λ ε R K(x -y)e λ R y dy -λ 1 Λ ε |y|>R K(x -y)e λ R y dy ,
and as R K(x -y)e λ R y dy = (1 -λ 2 R ) -1 e λ R x , we have Q R [ϕ R,α ](x) = Re e λ R x -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R -λ 1 Λ ε |y|>R K(x -y)e λ R y dy
Now we explicitly compute the last term in the brackets above, firstly

Re +∞ R K(x -y)e λ R y dy = e x 2 Re +∞ R e (λ R -1)y dy = e x 2 Re e R(λ R -1) 1 -λ R = e x+(α-1)R 2 Re i 1 -λ R , hence Re i 1 -λ R = - 2πR 4R 2 (1 -α) 2 + π 2 < 0 Next we similarly have Re -R -∞ K(x -y)e λ R y dy = - 2πR 4R 2 (1 + α) 2 + π 2 < 0 Therefore Q R [ϕ R,α ](x) ≥ Re e λ R x -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R = e αx cos πx 2R Re -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R -e αx sin πx 2R Im -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R
Now we claim that there exists α 0 ∈ (0, 1) such that for all R large enough, there exists α R ∈ (0, 1) such that lim R→+∞ α R = α 0 and

Im -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R = 0.
Indeed, one readily computes that

Im -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R = - cπ 2R + λ 1 Λ ε π R α 1 -α 2 + π 2 4R 2 2 + π 2 α 2 R 2
Next let y = π 2R and F (α, y) := -c +

2λ 1 Λεα (1-α 2 +y 2 ) 2 +4y 2 α 2 , then Im -cλ R -µ v + λ 1 Λ ε 1 -λ 2 R = π 2R F (α, y)
The equation F (α, 0) = 0 possesses a unique solution α 0 ∈ (0, 1). It is easy to check that ∂ α F (α 0 , 0) = 0 so that, thanks to the implicit function theorem, there is a branch of solutions α(y) ∈ (0, 1) close to α 0 for all y small enough. We set α R = α(1/R) and the claim is proved.

Finally let G(α R , R) := Re -cλ R -µ v + λ 1 Λε 1-λ 2 R , then due to (2.3.23) lim R→+∞ G(α R , R) = - 1 1 -α 2 0 (cα 0 + µ v )(1 -α 2 0 ) -λ 1 Λ ε > 0,
and this leads to (2.3.24) for R large enough and concludes the Lemma 2.3.6. Now we continue this section with the following important lemma. Proof. To prove this lemma fix c ∈ (0, c ) and we split our arguments into two parts. In a first step, we shall show that the above statement holds for W1 and, in the second, we shall prove it for Ṽ1 .

First step:

As mentioned above, in this first step, let us prove that there exists ε > 0 such that for any ( Ũ , Ṽ , W ) ∈ H it holds that lim sup t→+∞ W1 ((c 0 -c)t) ≥ ε.

To do so, we argue by contradiction by assuming that there exists a sequence

(U n , V n , W n ) ∈ H such that ∀n ∈ N * , lim sup t→+∞ W n 1 ((c 0 -c)t) ≤ ε n , with 0 < ε n < 1 n . (2.3.25)
Here the sequence of functions V n 1 and W n 1 are defined, for any n ≥ 0 and for ξ ∈ R, by

V n 1 (ξ) = Ω V n (ξ, y)ϕ 1 (y)dy and W n 1 (ξ) = Ω W n (ξ, y)ϕ 1 (y)dy.
In particular, the above condition means that there exists a sequence

(t n ) n≥1 with t n → ∞ as n → ∞ such that ∀n ∈ N * , ∀t ≥ 0, W n 1 ((c 0 -c)(t n + t)) ≤ ε n . (2.3.26)
Now let us show that, up a sub-sequence, one has

lim n→∞ (V n 1 , W n 1 ) (x + (c 0 -c)(t n + t)) = (0, 0) , (2.3.27)
uniformly for t ≥ 0 and locally uniformly for x ∈ R.

To do so, we argue by contradiction by assuming that there exist a bounded sequence

(x n ) n≥1 ⊂ R with x n → x ∞ ∈ R as n → ∞ and a sequence of positive number (s n ) n≥1 such that lim inf n→∞ [V n 1 (ξ n + x n ) + W n 1 (ξ n + x n )] > 0 with ξ n = (c 0 -c)(t n + s n ). (2.3.28) Set Ũ n (x), Ṽ n (x, •), W n (x, •) := (U n (ξ n + x), V n (ξ n + x, •), W n (ξ n + x, •)) , so that Ũ n , Ṽ n , W n ∈ H ⊂ T , ∀n ≥ 1. Since T is compact, one may assume that, for any p ≥ 1, Ũ n , Ṽ n , W n → Ũ , Ṽ , W ∈ T , for the topology of C loc (R) × C loc (R; L p (Ω)) × C loc (R; L p (Ω)).
Next, on the one hand, (2.3.26) ensures that Ω W (0, y)ϕ 1 (y)dy = 0.

Since ϕ 1 (y) > 0 on Ω this means that W (0, y) = 0 on Ω and thus that Ṽ , W ≡ (0, 0). On the other hand, (2.3.28) ensures that

Ω W (x ∞ , y)ϕ 1 (y)dy + Ω Ṽ (x ∞ , y)ϕ 1 (y)dy > 0,
a contradiction and (2.3.27) follows.

Using the same argument we also obtain that, possibly along a sub-sequence, one has

lim n→∞ (V n , W n ) (x + (c 0 -c)(t n + t), y) = (0, 0) ,
uniformly for t ≥ 0 and locally uniformly for x ∈ R with values in L p (Ω) for any p ≥ 1 while lim 

n→∞ U n (x + (c 0 -c)(t n + t)) = Λ, ( 2 
:= (c 0 -c)t n 0 , U n 0 (x + (c 0 -c)t + ξ 0 ) ≥ Λ(1 -ε), ∀t ≥ 0, x ∈ [-R, R]. (2.3.30) Now set v(t, x) := Ω V n 0 (x + (c 0 -c)t + ξ 0 , y)ϕ 1 (y)dy, w(t, x) = Ω W n 0 (x + (c 0 -c)t + ξ 0 , y)ϕ 1 (y)dy,
and let us observe that v > 0 and w > 0 satisfies the system of equations

                 ∂ ∂t + c ∂ ∂x v(t, x) = U n 0 (x + (c 0 -c)t + ξ 0 )w(t, x) -µ v v(t, x), 1 - ∂ 2 ∂x 2 w(t, x) = λ 1 v (t, x) ⇔ w(t, •) = λ 1 K * v(t, •).
As a consequence of (2.3.30), we obtain that the function v > 0 satisfies

∂ t v(t, x) -Q R [v(t, •)] (x) ≥ 0, ∀t ≥ 0, x ∈ [-R, R], (2.3.31)
where Q R is defined in Lemma 2.3.6. On the other hand, since v(0, x) > 0, there exists η small enough such that

∀x ∈ (-R, R), v(0, x) ≥ ηψ(0, x),
wherein we have set (see Lemma 2.3.6)

ψ R (t, x) =    e M 0 t ϕ R,α(R) (x), if x ∈ (-R, R), 0, otherwise.
Thanks to Lemma 2.3.6 and (2.3.31), we readily obtain, due to the comparison principle, that ∀x ∈ R, ∀t ≥ 0, ṽ(t, x) ≥ ηψ R (t, x), and it follows that v(t, 0) → ∞ as t → ∞. This contradicts the boundedness of the travelling wave profile (U, V, W ). This completes the proof of the first step.

Second step: Now we establish that the property for W1 proved in the first step also holds for Ṽ1 , namely there exists ε > 0 such that for any ( Ũ , Ṽ , W ) ∈ H it holds that lim sup

t→+∞ Ṽ1 ((c 0 -c)t) ≥ ε.
The proof of this statement is similar to the one of the first step and it is thus omitted. This completes the proof of the lemma. Equipped with Lemma 2.3.7 we are able to complete the proof of the theorem.

Here again we split the argument into two parts. We first start with V 1 . The proof for W 1 is similar and thus will be omitted. To consider the uniform positivity for V 1 , we again argue by contradiction by assuming that lim inf

t→∞ V 1 ((c -c 0 )t) = 0.
Thanks to Lemma 2.3.7, there exists ε > 0 such that

lim sup t→+∞ V 1 ((c -c 0 )t) ≥ ε, (2.3.32)
therefore there exist a sequence (t n ) n≥1 , that tends to ∞ as n → ∞, and a sequence (h n ) n≥1 ⊂ (0, ∞) such that, for any n ≥ 1,

       V 1 ((c 0 -c)t n ) = ε 2 , V 1 ((c 0 -c)t) ≤ ε 2 , ∀t ∈ [t n , t n + h n ], V 1 ((c 0 -c)(t n + h n )) ≤ 1 n , (2.3.33)
next, let us define, setting ξ n = (c -c 0 )t n , the sequence of functions

U n (ξ) = U (ξ n + ξ), V n (ξ, y) = V (ξ n + ξ, y), W n (ξ, y) = W (ξ n + ξ, y),
as well as

V n 1 = V n 1 (ξ) and W n 1 = W n 1 (ξ) by (V n 1 , W n 1 ) (ξ) = Ω (V n , W n ) (ξ, y)ϕ 1 (y)dy.
Due to the compactness properties derived in Lemma 2.3.1, possibly along a sub-sequence, one has

(U n , V n , W n ) → Ũ , Ṽ , W ∈ T , locally uniformly, (V n 1 , W n 1 ) → Ṽ1 , W1 , locally uniformly,
with Ṽ1 and W1 defined similarly as V n 1 and W n 1 with Ṽ and W respectively. Observe the first condition in (2.3.33) ensures that Ṽ1 (0) = ε/2 so that Ũ , Ṽ , W ∈ H. One may also observe that the sequence of positive number (h n ) arising in (2.3.33) is unbounded. Indeed, if (h n ) were bounded then h n → h ∞ ≥ 0 along a suitable subsequence and the last condition in (2.3.33) ensures that Ṽ1 ((c-c 0 )h ∞ ) = 0, a contradiction with Ũ , Ṽ , W ∈ H. As a consequence, one may assume, possibly along a sub-sequence, that h n → ∞ as n → ∞ and the second condition in (2.3.33) 

implies that Ṽ1 ((c -c 0 )t) ≤ ε 2 , ∀t ≥ 0.
And, since Ũ , Ṽ , W ∈ H, this contradicts Lemma 2.3.7 and completes the proof of the theorem for the V -component.

As mentioned above, the proof of the property for the W -component is similar and omitted. This completes the proof of Theorem 2.3.3. We assume that R 0 ≤ 1. Let (U, V, W ) be a wave profile with speed c > 0. Let us show that the profile is trivial, namely (U, V, W ) = (Λ, 0, 0). To do so, set

End of the proof of

(V 1 , W 1 ) (ξ) := Ω (V, W )(ξ, y)ϕ 1 (y)dy, ξ ∈ R,
and recall that V 1 satisfies c d dξ V 1 (ξ) = λ 1 U (ξ) R K(ξ -ξ )V 1 (ξ )dξ -µ v V 1 (ξ),
with K defined in (2.1.13) and that U (ξ) ≤ Λ. Consider a sequence (ξ n ) n≥0 such that

V 1 (ξ n ) → sup R V 1 as n → ∞,
as well as the shifted functions

U n (ξ) := U (ξ+ξ n ), V n 1 (ξ) := V 1 (ξ n +ξ), and (V n , W n )(ξ, y) := (V, W )(ξ + ξ n , y).
Possibly along a sub-sequence, one may assume that

U n (ξ) → U ∞ (ξ) and V n 1 (ξ) → V 1,∞ (ξ),
for the topology of C loc (R) and C loc (R) while

(V n , W n )(ξ, y) → (V ∞ , W ∞ )(ξ, y) in C loc (R, L p (Ω)) for p ≥ 1. Now note that the function V 1,∞ satisfies the equation c d dξ V 1,∞ (ξ) = λ 1 U ∞ (ξ) R K(ξ -ξ )V 1,∞ (ξ )dξ -µ v V 1,∞ (ξ), (2.3.34) together with U ∞ ≤ Λ and V 1,∞ (0) = sup R V 1,∞ . Taking ξ = 0 into the above limit equation yields sup R V 1,∞ = λ 1 µ v U ∞ (0) R K(ξ )V 1,∞ (ξ )dξ ≤ R 0 R K(ξ )V 1,∞ (ξ )dξ , that also rewrites, since R K(ξ )dξ = 1, as R 0 R K(ξ ) sup R V 1,∞ -V 1,∞ (ξ ) dξ + (1 -R 0 ) sup R V 1,∞ ≤ 0. If R 0 < 1 then sup R V 1,∞ =
0 and then sup R V = 0 and V (ξ) ≡ 0. And, this ensures that W (ξ) ≡ 0 and U (ξ) ≡ Λ. Thus the proof of (i) is over in that case.

Consider now the limit case R 0 = 1. In this situation, one

obtains that V 1,∞ (ξ) ≡ sup R V 1,∞ is a constant function. As above, if sup R V 1,∞ =
0, the proof of (i) is over. Hence, assume by contradiction that sup R V 1,∞ > 0. Then, we infer from (2.3.34) that U ∞ (ξ) = Λ since R 0 = 1. Now to reach a contradiction, we need to investigate the equations (see (2.1.11)) for U ∞ ≡ Λ and W ∞ . Note that they satisfy

           0 = Ω β(z)W ∞ (ξ, z)dz, ∀ξ ∈ R 1 - ∂ 2 ∂ξ 2 W ∞ (ξ, y) = L [V ∞ (ξ, •)] (y).
Multiplying the W ∞ -equation by β(y) and integrating over Ω yields:

Ω Ω β(y)Θ(y)J(y -y )dy Θ(y )V ∞ (ξ, y )dy = 0, ∀ξ ∈ R.
Since βΘ ≡ 0 and J > 0 (see Assumption 2.1.1) then V ∞ ≡ 0 and therefore, since

V 1,∞ (ξ) = Ω V ∞ (ξ, y)ϕ 1 (y)dy, one obtains that V 1,∞ ≡ 0, a contradiction with sup R V 1,∞ > 0, that completes the proof of Theorem 2.2.3 (i).

Proof of Theorem 2.2.4

In this section, we are concerned with the proof of Theorem 2.2.4. Throughout this section we assume that R 0 > 1 and we fix (U, V, W ) a travelling wave profile with a speed c ≥ c . Recall that we denote by V 1 and W 1 the functions

(V 1 , W 1 ) (ξ) = Ω (V, W ) (ξ, y)ϕ 1 (y)dy, ∀ξ ∈ R,
and more generally, for n ≥ 2, we set

(V n , W n ) (ξ) = Ω (V, W ) (ξ, y)ϕ n (y)dy, ∀ξ ∈ R.
Our strategy to prove Theorem 2.2.4 is to show that

|V n (ξ)| = O (V 1 (ξ)) as ξ → ±∞, for any n ≥ 2.
Next we show that V n (ξ) ≡ 0, for any n ≥ 2, by using a refined comparison argument.

Here let us mention that Assumption 2.1.1 c) will be crucially used. These steps will allow us to complete the proof of the first part of Theorem 2.2.4, namely (V n , W n ) ≡ (0, 0) for all n ≥ 2. Finally, we make use of suitable Lyapunov like arguments to prove the second part of the theorem, that is the convergence of wave profiles to the endemic steady state at ξ = ∞. This section is split into three parts. We first investigate the exponential decay of V 1 (ξ) and W 1 (ξ) as ξ → -∞. Next we compare V n with V 1 as ξ → ±∞ and prove the first part of the theorem. Finally we derive the asymptotic behaviour of the wave profile as ξ → ∞.

Exponential decay of

(V 1 , W 1 ) as ξ → -∞
In this section we derive a precise exponential decay property for (V 1 , W 1 ) near -∞. It is related to the positive roots, λ, of the characteristic equation K(c, λ) = 0 defined in (2.2.14). Before stating the main result of this section, recall that we assume R 0 > 1. And, according to the formula of c in Definition 2.2.2 and the properties of the function K stated in Lemma 2.2.1, it holds that (i) When c > c , the equation K(c, λ) = 0 has two real positive roots 0 < λ < λ < 1 and no other complex root with non-negative real part.

(ii) When c = c , the equation K(c, λ) = 0 has a single positive root with multiplicity two 0 < λ < 1 and no other complex root with non-negative real part.

With these notations, the main result of this section reads as follows:

Proposition 2.4.1 (Exponential decay as ξ → -∞). There exist two positive constants

k V > 0 and k W > 0 such that lim ξ→-∞ e -λ ξ (V 1 (ξ), W 1 (ξ)) = (k V , k W ) if c > c ; and lim ξ→-∞ |ξ| -1 e -λ ξ (V 1 (ξ), W 1 (ξ)) = (k V , k W ) if = c .
Here λ is introduced above and corresponds to the smallest positive root of the equation

K(c, λ) = 0.
The proof of this result is based on a suitable application of Ikehara's Theorem in complex analysis. Such a theorem has been successfully applied by Carr and Chmaj in [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF] to describe the decay rate of travelling waves for some different problem. We also refer to [START_REF] Guo | Existence and uniqueness of traveling waves for a monostable 2-D lattice dynamical system[END_REF] where this methodology has been applied to study other travelling wave problems. In the sequel, we extend the methodology developed in [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF] to our specific travelling wave system.

Firstly we prove the following lemma Lemma 2.4.2. Let c ≥ c , there exists γ ∈ (0, 1) such that

V 1 (ξ) = O e γξ and W 1 (ξ) = O e γξ as ξ → -∞.
Proof. As in [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF], the idea of the proof is to first show that ξ -∞ V 1 (s)ds = O e λξ and ξ -∞ W 1 (s)ds = O e λξ as ξ → -∞ for some λ > 0, and then that it implies

V 1 (ξ) = O e λξ and W 1 (ξ) = O e λξ as ξ → -∞. Due to the definition (2.1.8) of R 0 > 1, we have λ 1 (Λ -ε) = µ v R 0 -λ 1 ε.
Thus we are able to choose ε > 0 small enough such that

λ 1 (Λ -ε) = µ v + N with N > 0,
and since lim ξ→-∞ U (ξ) = Λ there exists ξ 0 such that U (ξ) ≥ Λ -ε for ξ < ξ 0 , and the equation for V 1 , namely,

cV 1 (ξ) = λ 1 U (ξ)K * V 1 (ξ) -µ v V 1 (ξ), (2.4.35) leads to cV 1 (ξ) ≥ (µ v + N )(K * V 1 )(ξ) -µ v V 1 (ξ), ∀ξ < ξ 0 .
We first show that

W 1 = λ 1 K * V 1 is integrable on (-∞, ξ)
. By integrating (2.4.35) from y to ξ we get

c ξ y V 1 (s)ds ≥ (µ v + N ) ξ y K * V 1 (s)ds -µ v ξ y V 1 (s)ds, ∀ξ < ξ 0 , then c (V 1 (ξ) -V 1 (y)) ≥ (N + µ v ) ξ y K * V 1 (s)ds -µ v ξ y V 1 (s)ds, c (V 1 (ξ) -V 1 (y)) ≥ µ v ξ y R (K(s -x)V 1 (x)dx -V 1 (s)) ds + N ξ y K * V 1 (s)ds, c (V 1 (ξ) -V 1 (y)) ≥ µ v ξ y R K(s ) 1 0 s V 1 (s + ts )dtds ds + N ξ y K * V 1 (s)ds
therefore by applying Fubini's theorem we obtain

c (V 1 (ξ) -V 1 (y)) ≥ µ v R s K(s ) 1 0 (V 1 (ξ + ts ) -V 1 (y + ts )) dtds + N ξ y K * V 1 (s)ds, thus since lim y→-∞ V 1 (y) = 0, we have µ v R s K(s ) 1 0 (V 1 (ξ + ts ) -V 1 (y + ts )) dtds -→ µ v R s K(s ) 1 0 V 1 (ξ + ts )dtds ,
as y → -∞ by Fubini's Theorem and Lebesgue's Dominated Convergence Theorem. Thus

K * V 1 and W 1 = λ 1 K * V 1 are integrable on (-∞, ξ) and N ξ -∞ K * V 1 (s)ds ≤ cV 1 (ξ) -µ v R s K(s ) 1 0 V 1 (ξ + ts )dtds .
It readily follows that V 1 is also integrable on (-∞, ξ) using equation (2.4.35), indeed since ∀ξ ∈ R, U (ξ) ≤ Λ, we have

c ξ -∞ V 1 (s)ds ≤ λ 1 Λ ξ -∞ K * V 1 (s)ds -µ v ξ -∞ V 1 (s)ds, ξ -∞ V 1 (s)ds ≤ λ 1 Λ µ v ξ -∞ K * V 1 (s)ds - c µ v V 1 (ξ). Now let Ṽ1 (ξ) = ξ -∞ V 1 (s)ds,
Thus (2.4.35) can be written as

cV 1 (ξ) ≥ (N + µ v )K * Ṽ1 (ξ) -µ v Ṽ1 (ξ). (2.4.36)
Then, as for K * V 1 and V 1 above, we prove that K * Ṽ1 and Ṽ1 are integrable on (-∞, ξ).

Let Q(ξ) = +∞ ξ K(s)ds. Note that since K(s) = K(-s), ∀s, then we have ξ -∞ K * Ṽ1 (s)ds = R Ṽ1 (t)Q(t -ξ)dt = R Ṽ1 (s + ξ)Q(s)ds.
Nest by integrating (2.4.36) we obtain

c Ṽ1 (ξ) ≥ (µ v + N ) R Ṽ1 (s + ξ)Q(s)ds -µ v ξ -∞
Ṽ1 (s)ds, (2.4.37) since Ṽ1 is increasing we have the estimate

∞ 0 Ṽ1 (s + ξ)Q(s)ds ≥ ∞ 0 Ṽ1 (ξ -s)Q(s)ds,
and the following identities hold true

∞ 0 Ṽ1 (ξ -s)Q(s)ds = 0 -∞ Ṽ1 (s + ξ)Q(-s)ds = 0 -∞ Ṽ1 (s + ξ)[1 -Q(s)]ds. Thus R Ṽ1 (s + ξ)Q(s)ds ≥ 0 -∞
Ṽ1 (s + ξ)ds and we get from inequality (2.4.37)

c µ v + N Ṽ1 (ξ) ≥ ξ -∞ Ṽ1 (s)ds ≥ ξ ξ-r Ṽ1 (s)ds ≥ r Ṽ1 (ξ -r), therefore c r (µ v + N )
Ṽ1 (ξ) ≥ Ṽ1 (ξ -r), for r > 0 and ξ < 0.

This implies that for all r large enough and γ > 0 there is some P < 1 such that Ṽ1 (ξ -r) ≤ P Ṽ1 (ξ). Let h(ξ) ≡ Ṽ1 (ξ)e γξ , where γ = 1 r ln 1 P > 0. Then h(ξ -r) = Ṽ1 (ξ -r)e γξ e -γr ≤ Ṽ1 (ξ)e γξ = h(ξ), and thus h is bounded. We recover that Ṽ1 (ξ) = O e γξ as ξ → -∞. Now we choose γ < 1 and prove that K * Ṽ1 = O(e γξ ). Recall that K(ξ) = 1 2 e -|ξ| . Then as V 1 is bounded on R and as Ṽ1 (ξ) ≤ M e γξ for ξ small enough, then straightforward computations lead to

K * Ṽ1 (ξ) ≤ M 2 e γξ + M 2(1 -γ) e ξ + κ 2 e ξ ,
where κ is some constant, hence the desired result. Using again equation (2.4.35), and U ≤ Λ, we have

cV 1 (ξ) ≤ λ 1 Λ(K * V 1 )(ξ) -µ v V 1 (ξ),
by integrating this inequality on (-∞, ξ) we readily obtain that V 1 (ξ) = O e γξ , then as above it follows that 

W 1 (ξ) = λ 1 K * V 1 (ξ) = O(
cU (ξ) = Λ -U (ξ) -U (ξ) R M β(z)W (ξ, z)dz, (2.4.38) 
and let Z(ξ) = Λ -U (ξ) ≥ 0, we have lim ξ→-∞ Z(ξ) = 0. Then (2.4.38) reads

cZ (ξ) = -(1 + b(ξ))Z(ξ) + Λb(ξ), where b(ξ) = R M β(z)W (ξ, z)dz.
Next to estimate the above quantity we make use of Assumption 2.1.1 b) and c). To that aim, recall that ϕ 1 , the principal eigenvector of L is defined by

λ 1 ϕ 1 (y) = Θ(y) Ω J(y -y )Θ(y )ϕ 1 (y )dy , y ∈ Ω.
Hence, since J > 0, one obtains that ϕ 1 (y) ≥ mΘ(y), ∀y ∈ Ω, wherein, recalling that Ω is compact, the positive constant m is defined by

m = 1 λ 1 inf y∈Ω Ω J(y -y )Θ(y )ϕ 1 (y )dy > 0.
Next, using Assumption 2.1.1 c), one gets

β(y) ≤ K m ϕ 1 (y), ∀y ∈ Ω, and b(ξ) ≤ K m W 1 (ξ) = O(e γξ )
Next, straightforward computations lead to 

Z(ξ) = Z(a)e
Z(ξ) = Λ ξ -∞ b(y)e -ξ-y c e -1 c ξ y b(s)ds dy ≤ Λ ξ -∞ b(y)dy = O(e γξ ),
then Z(ξ) = O(e γξ ), which concludes the proof of the Lemma. We resume the proof of Proposition 2.4.1. Thanks to Lemma 2.4.2 we can now define the two-sided Laplace transforms of V 1 and W 1 for λ ∈ C such that 0 < Re λ < γ as

L {V 1 }(λ) = R e -λx V 1 (x)dx, L {W 1 }(λ) = R e -λx W 1 (x)dx. K(c, λ) = 0 does not have any zeroes with Re λ = λ other than λ = λ . Therefore, V 1 (λ) = 0 -∞ V 1 (s)e -λs ds writes          V 1 (λ) = H 1 (λ) λ -λ if c > c V 1 (λ) = H 1 (λ) (λ -λ) 2 if c = c , with H 1 analytic in the strip 0 < Re λ < λ .
Next, from the equation

cV 1 (ξ) = U (ξ)W 1 (ξ) -µ v V 1 (ξ), (2.4.41) 
we notice that V 1 (ξ)e µv ξ c = e µv ξ c U (ξ)W 1 (ξ) ≥ 0, so that ξ → V 1 (ξ)e µv ξ c
is increasing. Let p = µv c , and V1 (ξ) := e pξ V 1 (ξ), we apply Proposition 2.4.4 to V1 . As we have

V1 (λ) = V 1 (λ -p), this shows that there exists k V > 0 such that          lim ξ→-∞ V1 (ξ) e (p+λ )ξ = k V , if c > c lim ξ→-∞ V1 (ξ) |ξ|e (p+λ )ξ = k V , if c = c , which implies the result of Proposition 2.4.1 for V 1 .
The same arguments apply to W 1 . In particular, ξ → W 1 (ξ)e µv ξ c is increasing since

W 1 (ξ)e µv ξ c = W 1 (ξ)e µv ξ c + µ v c W 1 (ξ)e µv ξ c , = λ 1 e µv ξ c R K(y)V 1 (ξ -y)dy + λ 1 µ v c e µv ξ c R K(y)V 1 (ξ -y)dy, = λ 1 e µv ξ c R K(y) V 1 (ξ -y) + µ v c V 1 (ξ -y) dy, = λ 1 K * V 1 (ξ)e µv ξ c
. This concludes the proof of Proposition 2.4.1.

Proof of Theorem 2.2.4 (i)

To prove Theorem 2.2.4 (i) we show that the following proposition holds true.

Proposition 2.4.5. It holds that

∀ n ≥ 2, V n ≡ 0, W n ≡ 0. (2.4.42)
Proof. The proof of this Proposition is divided into three steps. In the first step we show that (V n , W n ) is dominated by (V 1 , W 1 ) as ξ → -∞ for n large enough. In the second step we state a Lemma that implies V n ≡ 0, W n ≡ 0 for these values of n. In the third step we prove that the result of the first step is also valid for the remaining finite number of values n, then we apply again the second step Lemma to conclude.

First step:

In this first step we show that there exists N 0 ≥ 2 such that for all n ≥ N 0 +1 we have

V n (ξ) = O(V 1 (ξ)), W n (ξ) = O(W 1 (ξ)), as ξ → -∞.
To prove this we show that (V n , W n ) decreases exponentially to 0 faster than (V 1 , W 1 ) as ξ → -∞ thanks to a perturbation argument.

Indeed, let

Y n (ξ) =    V n (ξ) W n (ξ) W n (ξ)    ,
then Y n satisfies an asymptotically autonomous equation of the form

Y n (ξ) = L n Y n (ξ) + M (ξ)Y n (ξ), (2.4.43) 
where L n , a constant matrix, and M (ξ) are given by

L n =    -µv c Λ c 0 0 0 1 -λ n 1 0    and M (ξ) =    0 U (ξ)-Λ c 0 0 0 0 0 0 0    , with M (ξ) → 0 as ξ → ∞.
Moreover, thanks to Proposition 2.4.1 and Lemma 2.4.3, we have as

ξ → -∞ ∀k ∈ (0, λ ), V 1 (ξ) = O(e kξ ), W 1 (ξ) = O(e kξ ), M (ξ) = O(e kξ ),
while the characteristic polynomial of L n reads

-cλ 3 -µ v λ 2 + cλ n + (µ v -λ n Λ) = 0.
For a fix c > 0 , λ n → 0 as n → +∞, and this characteristic polynomial with λ n = 0 simplifies to -cλ 3 -µ v λ 2 + cλ n + µ v = 0, whose roots are 1, -1, -µv c . Recall also that λ < 1. As a consequence, there exists some N 0 large enough and k close enough to λ such that for all n ≥ N 0 , L n has a unique eigenvalue γ n with a non-negative real part, moreover γ n is real and γ n > k.

Next, we know by definition of the travelling wave that V n and W n are bounded on R as well as their derivatives. Therefore

Y n (ξ) = O(e aξ ) with a = 0, as ξ → -∞,
We are ready to apply a perturbation argument for the asymptotically autonomous equation (2.4.43). We use a result of [START_REF] Mallet-Paret | The Fredholm alternative for functional-differential equations of mixed type[END_REF] stated in the more general framework of differential difference equations of mixed type. Thus we deduce from proposition 7.2, p. 31 in [START_REF] Mallet-Paret | The Fredholm alternative for functional-differential equations of mixed type[END_REF] that for some ε > 0 we have

Y n (ξ) = K n e γnξ + O e (γn+ε)ξ , as ξ → -∞,
where K n ∈ R 3 is a constant. As we chose γ n > k, we have the following result

Y n (ξ) = O(Y 1 (ξ)), ∀ n ≥ N 0 ,
which concludes the first step of the proof.

Second step:

In this step we prove the following Lemma which implies (2.4.42) for all n ≥ N 0 , where N 0 has been defined in the previous step.

Lemma 2.4.6. Let n ≥ 2 be given. If V n (ξ) = O(V 1 (ξ)) as ξ → -∞, then ∀ξ ∈ R, V n (ξ) = W n (ξ) = 0. Proof. From (2.2.18), V n satisfies cV n (ξ) = λ n U (ξ)K * V n (ξ) -µ v V n (ξ), ∀ξ ∈ R.
Let us set ξ = x + ct, Ṽn (t, x) := V n (x + ct), and define

F n ( Ṽ )(t, x) = λ n U (x + ct)K * Ṽ (t, x) -µ v Ṽ (t, x), so that we have ∂ t Ṽn (t, x) -F n ( Ṽn (t, x)) = 0, ∀t, x ∈ R. Next, since V n (ξ) = O(V 1 (ξ)
) as ξ → -∞ and since, thanks to Corollary 2.3.5 (b), we have lim inf ξ→∞ V 1 (ξ) > 0, we know that there exists c n > 0 such that

| Ṽn (0, x)| ≤ c n Ṽ1 (0, x), ∀x ∈ R.
(2.4.44)

Now we readily compute, for any parameter α, that

∂ t c n e -αt Ṽ1 (t, x) -F n c n e -αt Ṽ1 (t, x) =c n e -αt -α Ṽ1 (t, x) + (λ 1 -λ n )U (x + ct)K * Ṽ1 (t, x) . ( 2.4.45) 
Recall that K * Ṽ1 = λ 1 W1 . Due to Corollary 2.3.5 (b), lim inf ξ→∞ V 1 (ξ) and lim inf ξ→∞ W 1 (ξ) are positive and thanks to Proposition 2.4.1, we readily prove that there exists some constant k 1 > 0 such that

K * Ṽ1 (t, x) ≥ k 1 Ṽ1 (t, x), ∀t, x ∈ R.
Moreover, λ 1 > λ n and recalling Lemma 2.3.1 (i), there exists ε > 0 such that ∀ξ ∈ R, U (ξ) ≥ ε, hence for α > 0 small enough,

∂ t c n e -αt Ṽ1 (t, x) -F n c n e -αt Ṽ1 (t, x) ≥ 0.
Hence, by the comparison principle, we recover that for some α > 0

|V n (x + ct)| ≤ c n e -αt V 1 (x + ct), ∀t, x ∈ R. (2.4.46) 
Letting t → ∞, this implies that V n (ξ) = 0, ∀ξ ∈ R, and consequently that W n (ξ) =

1 λn (K * V n ) (ξ) = 0 for all ξ ∈ R.
Third step: In this last step we prove that max n=2,...,N 0

|V n (ξ)| = O(V 1 (ξ)), as ξ → -∞. (2.4.47) 
Then, (2.4.42) for n = 2, . . . , N 0 is a consequence of Lemma 2.4.6 and this concludes the proof of Proposition 2.4.5.

To prove (2.4.47) we proceed by contradiction. Thus we assume that there exists

ξ m → -∞ and c m → ∞ such that max n∈{2,..,N 0 } |V n (ξ m )| ≥ c m V 1 (ξ m ),
then this shows that there exists n 1 ∈ {2, .., N 0 } such that, up to a subsequence,

|V n 1 (ξ m )| = max n∈{2,..,N 0 } |V n (ξ m )| with lim m→+∞ V 1 (ξ m ) |V n 1 (ξ m )| = 0.
Now we introduce the non-negative function v as follows

v(ξ m , y) = 1 |V n 1 (ξ m )| V (ξ m , y), i.e. v(ξ m , y) = N 0 n=1 V n (ξ m ) |V n 1 (ξ m )| ϕ n (y),
and we define, up to a subsequence,

α n = lim m→+∞ V n (ξ m ) |V n 1 (ξ m )| ,
In particular we have

α 1 = 0 and α n 1 = -1 or 1, moreover lim m→+∞ v(ξ m , y) = N 0 n=2 α n ϕ n (y) ≥ 0 in L 1 (Ω),
we claim that the non-negativeness of this limit implies that α n = 0, ∀n ∈ {2, .., N 0 }, which contradicts |α n 1 | = 1, so that (2.4.47) holds true. Indeed, to prove our claim we define

Φ(t) = N 0 n=2 α n e λnt ϕ n ∈ L 1 (Ω),
Φ is the solution of the Cauchy problem

dΦ(t) dt = LΦ(t), Φ(0) = N 0 n=2 α n ϕ n ≥ 0 a.e.,
with the positive operator L defined in (2.1.6). Therefore

Φ(t) = N 0 n=2 α n e λnt ϕ n ≥ 0 a.e.
Firstly, assume that λ 2 is a simple eigenvalue of the operator L, then as t → ∞

lim t→∞ e -λ 2 t Φ(t) = α 2 ϕ 2 ≥ 0 a.e.,
since ϕ 2 changes sign on Ω, this implies α 2 = 0. Next, if λ 2 is a multiple value of multiplicity k, then the same argument proves that φ2 = k+1 n=2 α n ϕ n ≥ 0 a.e., and that L( φ2 ) = λ 2 φ2 , which is impossible as only the first eigenvector, ϕ 1 , of L does not change sign on Ω. Then again α 2 = 0, and by repeating the same process, we get α n = 0, ∀n ∈ {2, .., N 0 }.

End of the proof of Theorem 2.2.4

In this section we complete the proof of Theorem 2.2.4 (ii). From the previous section, we have already obtained that if (U, V, W ) is a solution of (2.1.11) then

V (ξ, y) = V 1 (ξ)ϕ 1 (y) and W (ξ, y) = W 1 (ξ)ϕ 1 (y),
and therefore (U, V 1 , W 1 ) becomes a solution of (2.2.15), namely it satisfies the system of equations defined for ξ ∈ R

                   c d dξ U (ξ) = Λ -U (ξ) -β 1 U (ξ)W 1 (ξ), c d dξ V 1 (ξ) = U (ξ)W 1 (ξ) -µ v V 1 (ξ), λ 1 V 1 (ξ) + d 2 dξ 2 -1 W 1 (ξ) = 0.
To complete the proof of the theorem, it is sufficient to investigate the behaviour of (U, V 1 , W 1 ) as ξ = ∞ and show that (2.2.16) holds true. Recall that thanks to Corollary 2.3.5 (b) we have lim inf

ξ→∞ V 1 (ξ) > 0 and lim inf ξ→∞ W 1 (ξ) > 0. (2.4.48) 
Now to complete our proof we shall make use of a Lyapunov like argument. Consider the function

V [U, V 1 , W 1 ] = aU * g U U * + bV * g V 1 V * -dW * g W 1 W * W 1 (ξ),
where g is the function defined as g(s) = s -1 -ln s and the coefficient a, b, d are defined by

a = λ 1 , b = λ 1 β 1 and d = µ v β 1 .
Straightforward algebra yields

d dξ V [U, V 1 , W 1 ](ξ) ≤ -λ 1 (U -U * ) 2 U -µ v β 1 W * W 1 W 1 2 ≤ 0. (2.4.49)
Because of (2.4.48) and Lemma 2.3.1, the function

V [U, V 1 , W 1 ](ξ) is bounded when ξ → ∞.
we denote by L ∈ R its limit as ξ → ∞.

Next, consider an increasing sequence of real numbers {ξ n } n≥0 , such that ξ n → ∞ as n → +∞ and consider the sequences

{U n (ξ) = U (ξ + ξ n )} n≥0 , {V n (ξ) = V 1 (ξ + ξ n )} n≥0 and {W n (ξ) = W 1 (ξ + ξ n )} n≥0 .
Then, due to Arzela-Ascoli theorem and elliptic regularity, possibly along a sub-sequence one may assume that U n , V n and W n converge respectively towards some non-negative functions U ∞ , V ∞ and W ∞ , locally uniformly for 

ξ ∈ R. Furthermore (U ∞ , V ∞ , W ∞ )
inf R U ∞ > 0, inf R V ∞ > 0 and inf R W ∞ > 0. Since V [U n , V n , W n ] (ξ) = V [U, V 1 , W 1 ] (ξ n + ξ), one obtains that V [U n , V n , W n ] (ξ) → L ≡ V [U ∞ , V ∞ , W ∞ ] (ξ) locally uniformly for ξ ∈ R as n → ∞. Hence (2.4.49) implies that, for all ξ ∈ R, 0 = d dξ V [U ∞ , V ∞ , W ∞ ](ξ) ≤ -λ 1 (U ∞ -U * ) 2 U ∞ -µ v β 1 W * W ∞ W ∞ 2 ≤ 0. This yields U ∞ (ξ) ≡ U * and W ∞ (ξ) ≡ 0. Since (U ∞ , V ∞ , W ∞ ) is a solution of (2.2.15), it follows that (U ∞ , V ∞ , W ∞ ) (ξ) ≡ (U * , V * , W * ) ,
and, since the sequence {ξ n } is arbitrary, it follows that

lim ξ→∞ (U, V 1 , W 1 ) (ξ) = (U * , V * , W * ) ,
and this completes the proof of Theorem 2.2.4 (ii).

Proof of Theorem 2.2.5

In this section we prove the existence of travelling wave solution and complete the proof of Theorem 2.2.5. To that aim we split this section into two parts. We first investigate the existence of travelling wave solutions for the super-critical wave speed, namely c > c and then we consider the critical case c = c . For the super-critical case, we use a rather standard methodology based on the construction of suitable lower and upper solutions.

Then we make use of Schauder fixed point theorem to obtain the existence of solutions for a similar problem posed on a bounded interval and finally we let the length of this interval going to infinity to obtain a suitable solution in the super-critical case. This methodology has been widely used in the literature in particular in the last decade, see e.g. [START_REF] Berestycki | Quenching and propagation in KPP reaction-diffusion equations with a heat loss[END_REF][START_REF] Chen | Traveling waves for a lattice dynamical system arising in a diffusive endemic model[END_REF][START_REF] Ducrot | Travelling wave solutions for an infection-age structured model with diffusion[END_REF]. Therefore in the sequel we only give a sketch of this construction. In the second part we construct a solution for the critical case, namely for the minimal wave speed c = c . To that aim, we make use of a suitable limiting argument c n c . And, using suitable normalization conditions coupled with Lyapunov like arguments in the spirit of the ones used in the proof of Theorem 2.2.4 (ii), we are able to complete the proof of Theorem 2.2.5.

Existence of super-critical travelling waves: c > c

Throughout this section we assume R 0 > 1 and we fix c > c . Recall also that the characteristic equation K(c, λ) has two positive roots 0 < λ < λ < 1 and that

K(c, λ)    > 0 if λ < λ < λ , < 0 if λ ∈ (0, λ ) ∪ (λ , ∞).
Now to prove Theorem 2.2.5 for the super-critical speed c, we consider the following problem: find positive functions (U, V, W ) satisfying the system

         c dU dξ = Λ -µU (ξ) -U (ξ)β 1 W (ξ), c dV dξ = U (ξ)W (ξ) -µ v V (ξ), λ 1 V (ξ) + (∆ ξ -1)W (ξ) = 0, ξ ∈ R, (2.5.50) 
together with the behaviour (U, V, W )(ξ) → (Λ, 0, 0) as ξ → -∞. To do so, one will make use of the construction of suitable sub and super-solution pairs that is summarized in the next computational lemma.

Lemma 2.5.1.

There exist α > 0, k > 0, k 1 , k 2 > 0, and η > 0 small enough such that the functions

U (ξ) = Λ, U (ξ) = Λ -αe λ ξ , V (ξ) = ke λ ξ , V (ξ) = V (ξ) 1 -k 1 e ηξ , W (ξ) = e λ ξ , W (ξ) = W (ξ) 1 -k 2 e ηξ ,
satisfy the following differential inequalities

cU = Λ -U , cU ≤ Λ -U -β 1 U W on R, (2.5.51 
)

cV ≥ U W -µ v V , 1 -∂ 2 ξ W ≥ λ 1 V , on R, (2.5.52 
)

cV ≤ U W -µ v V , 1 -∂ 2 ξ W ≤ λ 1 V , on R. (2.5.53) 
The proof of this computation lemma follows from straightforward algebra. In particular, since K(c, λ ) = 0 we can set

k = Λ cλ + µ v = 1 -λ 2 λ 1
so that inequalities (2.5.52) actually are equalities. Using the above lemma, one may consider a fixed point problem to handle (2.5.50) on a bounded interval (-a, a) for some a > 0 large enough. To that aim, fix a > 0 and consider the set

C a = { W ∈ C ([-a, a]) ; max (0, W ) ≤ W ≤ W }.
Note that it is a closed and convex subset of C ([-a, a]), endowed with the uniform convergence topology. Next consider the map F a : C a → C ([-a, a]) defined by

F W = W,
wherein W is obtained by the resolution of the following system of equations:

                         c dU dξ = Λ -U (ξ) -β 1 U (ξ) W (ξ), ξ ∈ (-a, a), U (-a) = max (0, U (-a)) , c dV dξ = U (ξ) W (ξ) -µ v V (ξ), ξ ∈ (-a, a], V (-a) = max (0, V (-a)) , λ 1 V (ξ) = 1 -d 2 dξ 2 W (ξ), ξ ∈ (-a, a), W (±a) = max (0, W (±a)) .
Note that from the U -equation, one obtains that U ≤ U ≤ U . Using this estimate for U one obtains, from the V -equation, that max (0, V ) ≤ V ≤ V and finally the W -equation yields max (0, W ) ≤ W ≤ W . To summarize, this means that

F a (C a ) ⊂ C a ,
and since F a is a completely continuous operator on the Banach space C ([-a, a]), the Schauder fixed point theorem applies and ensures the existence of a fixed point W = W a ∈ C a for the map F a . This argument ensures, for each a > 0, the existence of functions (U a , V a , W a ), defined in [-a, a], with

U ≤ U a ≤ U , max (0, V ) ≤ V a ≤ V , max (0, W ) ≤ W a ≤ W ,
and satisfying the problem

                         c dUa dξ (ξ) = Λ -U a (ξ) -β 1 U a (ξ)W a (ξ), ξ ∈ (-a, a), U a (-a) = max (0, U (-a)) , c dVa dξ (ξ) = U a (ξ)W a (ξ) -µ v V a (ξ), ξ ∈ (-a, a], V a (-a) = max (0, V (-a)) , λ 1 V a (ξ) = 1 -d 2 dξ 2 W a (ξ), ξ ∈ (-a, a), W a (±a) = max (0, W (±a)) .
(2.5.54) Before completing the sketch of the proof of Theorem 2.2.5, we claim that there exist some constants M, M , M > 0 such that for all a > 0 large enough one has

U a (ξ) ≤ M, V a (ξ) ≤ M , W a (ξ) ≤ M , ∀ξ ∈ [-a, a].
(2.5.55)

To see this, let P a := U a + β 1 V a , from (2.5.54) we readily infer that

c dP a dξ (ξ) = Λ -U a (ξ) -µ v β 1 V a (ξ), ξ ∈ (-a, a)
with P a (-a) = max (0, U (-a)) + β 1 max (0, V (-a)) that converges to 0 as a → ∞. Then, there exists a constant κ > 0 possibly depending on µ v and β 1 such that c dP a dξ (ξ) ≤ Λ -κP a (ξ), ξ ∈ (-a, a), hence dP a dξ (ξ) ≤ max Λ κ , P a (-a) , ξ ∈ (-a, a), and (2.5.55) follows for U a and V a . Next, thanks to the strong maximum principle applied to the two last equations of (2.5.54), we have

W a (ξ) ≤ max (W (-a), W (a), λ 1 M ) ,
and since W (-a) → 0, W (a) → -∞ as a → ∞, the result follows for W a .

Equipped with the uniform bound, one may complete the proof of Theorem 2.2.5. Indeed take a sequence {a n } n≥0 tending to ∞ as n → ∞. Consider the sequence of functions:

(U n , V n , W n ) = (U an , V an , W an ) .
Because of (2.5.55), Arzela-Ascoli theorem and elliptic regularity, one may assume, possibly along a sub-sequence, that

(U n , V n , W n ) → (U, V, W
) locally uniformly for ξ ∈ R, the limit function (U, V, W ) is bounded (see (2.5.55)), is a solution of (2.5.50) and satisfies on R

U ≤ U ≤ U , max (0, V ) ≤ V ≤ V , max (0, W ) ≤ W ≤ W .
These last inequalities ensure that V ≡ 0 and W ≡ 0 and (U, V, W ) (ξ) → (Λ, 0, 0) as ξ → -∞.

Finally, since (U, V, W ) is uniformly bounded, Theorem 2.2.4 (ii) applies and shows that (U, V, W ) converges to (U * , V * , W * ) at ξ = ∞ and this completes the proof of Theorem 2.2.5 for c > c .

Remark 2.5.2. In the above construction, one may observe that the uniform bound for the solutions (U, V, W ) is independent of the wave speed c > c . This fact will be used in the next section to handle the critical case c = c using a suitable limiting argument.

Existence of critical travelling waves: c = c

In this section we discuss the existence of travelling wave profile for the critical wave speed c = c . To do so, we make use of section 2.5.1 and we consider a sequence of wave speeds c n > c such that c n c as n → ∞ and an associated sequence of travelling wave profiles (U n , V n , W n ) with wave speed c n . Next, since for all n ≥ 0, one has

lim ξ→-∞ (U n , V n , W n )(ξ) = (U * , V * , W * ) and lim ξ→∞ (U n , V n , W n )(ξ) = (U * , V * , W * ), we select a sequence (ξ n ) n such that V n (ξ n ) = V * +V * 2
for all n ≥ 0, and we normalize the sequence of solutions such that V n (0) = V * +V * 2 for all n ≥ 0. This is possible due to the translation invariance of the system up to the change (U n , V n , W n ) by (U n , V n , W n )(• + ξ n ). Next due to Remark 2.5.2 and the proof of Lemma 2.3.1, there exists some constant K > 0 independent of c such that

U n + V n + W n ≤ K and U n ≥ K -1 , ∀n ≥ 0.
(2.5.56)

Hence due to Arzela-Ascoli theorem and elliptic regularity, possibly along a sub-sequence not re-labelled, one may assume that

(U n , V n , W n ) → (U, V, W ) locally uniformly on R as n → ∞.
This limit function (U, V, W ) becomes a bounded non-negative solution of the system

                   c d dξ U (ξ) = Λ -U (ξ) -β 1 U (ξ)W (ξ), c d dξ V (ξ) = U (ξ)W (ξ) -µ v V (ξ), λ 1 V (ξ) + d 2 dξ 2 -1 W (ξ) = 0, ξ ∈ R.
together with the normalisation condition V (0) = V * +V *
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, and with U + V + W ≤ K and U ≥ K -1 (see (2.5.56)). Now to complete the proof of the theorem for the critical wave speed, it is sufficient to show that lim Hence the same argument as the Lyapunov like one we used in section 2.4.3 ensures (2.5.58). And setting

V [U, V, W ] (ξ) := aU * g U U * + bV * g V V * -dW * g W W * W 1 (ξ),
one recalls that ξ → V [U, V, W ](ξ) is decreasing and goes to zero as ξ → ∞. A similar argument as the one developed for ξ = ∞ in section 2.4.3 shows that if

lim ξ→-∞ V [U, V, W ] (ξ) < ∞, then (U, V, W )(ξ) → (U * , V * , W * ) as ξ → -∞ and then V [U, V, W ] (ξ) → 0 as ξ → -∞.
Hence, in that case one obtains that V [U, V, W ](ξ) ≡ 0 so that (U, V, W )(ξ) ≡ (U * , V * , W * ) that contradicts the normalisation condition V (0) < V * . As a consequence, one obtains that lim

ξ→-∞ V [U, V, W ] (ξ) = ∞.
Now take a decreasing sequence {ξ n } going to -∞ as n → ∞. And consider the sequence of function (U n , V n , W n ) = (U, V, W ) (• + ξ n ) and assume, due to Arzela-Ascoli theorem and elliptic estimates, that (U n , V n , W n )(ξ) → (U ∞ , V ∞ , W ∞ )(ξ) locally uniformly. Let us show that (V ∞ , W ∞ ) (ξ) ≡ (0, 0). Assume by contradiction that (V ∞ , W ∞ )(ξ) ≡ (0, 0). Due to the separation property (2.3.22) this means that V ∞ > 0 and W ∞ > 0. On the other hand, one has

lim n→∞ V [U n , V n , W n ] (ξ) = V [U ∞ , V ∞ , W ∞ ] (ξ) locally uniformly on R,
and, locally uniformly for ξ ∈ R,

lim n→∞ V [U n , V n , W n ] (ξ) = lim n→∞ V [U, V, W ] (ξ n + ξ) = ∞. Therefore one gets V [U ∞ , V ∞ , W ∞ ] (ξ) = ∞, ∀ξ ∈ R.
Therefore, due to the definition of the function g, this contradicts V ∞ > 0 and W ∞ > 0. This proves that (V ∞ , W ∞ ) ≡ (0, 0). As a consequence, since {ξ n } is arbitrary, this implies that lim ξ→-∞ (V, W ) (ξ) = (0, 0), and then U (ξ) → Λ as ξ → -∞. This completes the proof of Theorem 2.2.5.

Chapter 3

Spreading Speed for a non-local evolutionary epidemic system

We investigate spreading properties of solutions for a spatially distributed system of equations modelling the evolutionary epidemiology of plant-pathogen interactions. In this work the mutation process is described using a non-local convolution operator in the phenotype space. We prove that spreading occurs with a definite spreading speed that coincides with the minimal speed of the travelling wave solutions discussed in [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF]. Moreover, the solution of the Cauchy problem asymptotically converges to some specific function for which the moving frame variable and the phenotype one are separated.
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Introduction

In this note we investigate the long time behaviour and asymptotic speed of spread for the following spatially structured epidemic system of equations

                           ∂u ∂t (t, x) = Λ -µu(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v ∂t (t, x, y) = β(y)u(t, x)w(t, x, y) -µ v v(t, x, y), δw(t, x, y) -D ∂ 2 w ∂x 2 (t, x, y) = R M J (y -y ) r(y )v (t, x , y ) dy , (3.1.1)
posed for time t ∈ R + , spatial location x ∈ R and phenotypic trait value y ∈ R M , for some fixed integer M ≥ 1. The above system is supplemented with some non negative initial conditions u(0, x) = u 0 (x), v(0, x, y) = v 0 (x, y), (3.1.2)

whose specific properties are detailed in Section 2 below.

The above system of equations describes the spatial evolutionary epidemiology of a fungal disease within a spatially distributed plant population.

In [START_REF] Van Den Bosch | The evolution of plant pathogens in response to host resistance: factors affecting the gain from deployment of qualitative and quantitative resistance[END_REF], a similar non spatial but more detailed model has been introduced to investigate the gain achieved by the deployment of a crop variety resistant to the disease before this resistance is overcome. The model makes it possible to predict the evolution of some phenotypic traits of the pathogen such as the spore infection efficiency in response to the resistance of the plant host. More recently, a spatially explicit stochastic simulation model has been devised to achieve the same study in [START_REF] Rimbaud | Assessing the durability and efficiency of landscape-based strategies to deploy plant resistance to pathogens[END_REF] allowing various deployment strategies in space and time and taking into account realistic landscapes.

Model (3.1.1)-(3.1.2) describes the evolution in time of healthy plant density u(t, x) with respect to the spatial location x ∈ R, of infected plant density v(t, x, y) (i.e. the plant surface density bearing spore colonies) where y is the phenotypic trait of the disease variant, and of density of spores produced in the environment w(t, x, y).

The parameters of the model are the following. The vital dynamics parameters are Λ > 0 the influx of healthy plant density while µ > 0 and µ v > 0 are the healthy and infected plant death rates respectively. The disease transmission rate depends on the trait value y and is denoted by β. Contamination of the plant occurs due to the deposition on the foliar surface of the spores released in the environment by the fungal colonies. The production rate of spores by the colonies denoted by r is the second parameter that depends on the phenotypic trait. Spores produced by a colony associated to a trait value y may mutate to trait y with respect to the probability kernel J. We have assumed that the spores dispersal obeys a rapid diffusion process of coefficient D before settling on the plant surface with deposition rate δ.

Before going further, we simplify this model using parameter rescaling by setting δ = D = µ = 1. Let K = K(x) denotes the fundamental solution of the elliptic operator 1 -∂ 2 ∂x 2 , that is

K(x) = 1 2 e -|x| , x ∈ R, (3.1.3) 
then system (3.1.1) rewrites as the following non-local system

             ∂u ∂t (t, x) = Λ -u(t, x) -u(t, x) R M β(z)w(t, x, z)dz, ∂v ∂t (t, x, y) = β(y)u(t, x)w(t, x, y) -µ v v(t, x, y), (3.1.4) 
wherein we have set

w(t, x, y) = R R M K(x -x )J (y -y ) r(y )v (t, x , y ) dx dy . (3.1.5)
In a previous work, see [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF], the authors studied the existence of travelling solutions for the above system of equations, namely (3.1.1) or equivalently (3.1.4). Introducing the so-called basic reproduction number R 0 given by

R 0 = λ 1 Λ µ v , ( 3.1.6) 
where λ 1 > 0 is the principal eigenvalue of some non-linear operator related to the mutation kernel J, the authors proved the existence of a unique endemic steady state if and only if R 0 > 1 as well as the existence of travelling wave solutions connecting the disease free steady state (u, v) = (Λ, 0) and this unique endemic steady state, for any wave speed c greater than some minimal speed c > 0. Furthermore, the authors also proved that any travelling wave solutions (with speed c) exhibit a simple shape, separating the moving frame spatial variable, x -ct, from the phenotype trait variable, y ∈ R M .

As mentioned above, the aim of the work is to study the long time behaviour of (3.1.2)-(3.1.4) as well as the asymptotic speed of spread of infection, when the initial amount of infection, v 0 = v 0 (x, y) ≥ 0, is a compactly supported function with respect to the x-variable. Roughly speaking in that case and when R 0 > 1, we shall show that the infection spreads with the speed c , the minimal wave speed of the travelling waves. Furthermore the profile of infection, v = v(t, x, y), asymptotically separates the spatiotemporal variables from the phenotype trait variable, y ∈ R M . To analyse the spatial spread for System (3.1.4), one has to overcome the lack of comparison principle. Such a difficulty typically arises when studying predator-prey interaction and epidemic systems, such as the one we consider in this work. The description of spatial propagation for diffusive predator-prey systems and epidemic problems has a long history. In particular, travelling wave solutions have been exhibited for a wide range of systems. For epidemic problems, we refer for instance to [START_REF] Ruan | Spatial-temporal dynamics in nonlocal epidemiological models. In Mathematics for life science and medicine[END_REF] for a survey, and to [START_REF] Girardin | Non-cooperative Fisher-KPP systems: asymptotic behavior of traveling waves[END_REF][START_REF] Griette | Existence and qualitative properties of travelling waves for an epidemiological model with mutations[END_REF] and the references therein for results on reaction-diffusion systems with mutations.

The spreading dynamics for such non-monotone problems has been scarcely studied in the literature and as far as we know no general method has been developed. Quite recently analysis of the spreading properties for the solutions of non-cooperative and noncompetitive systems (of epidemic and predator-prey type) has been performed. We refer the reader to [START_REF] Ducrot | Spatial propagation for a two component reaction-diffusion system arising in population dynamics[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF][START_REF] Girardin | Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior[END_REF][START_REF] Guo | The spreading speed of an sir epidemic model with nonlocal dispersal[END_REF][START_REF] Li | Traveling waves and entire solutions for an epidemic model with asymmetric dispersal[END_REF][START_REF] Morris | Individual variability in dispersal and invasion speed[END_REF][START_REF] Pan | Asymptotic spreading in a Lotka-Volterra predator-prey system[END_REF] for system with local diffusion, to [START_REF] Ducrot | The spreading speed and the minimal wave speed of a predator-prey system with nonlocal dispersal[END_REF][START_REF] Zhao | The effect of nonlocal reaction in an epidemic model with nonlocal diffusion and free boundaries[END_REF] for non-monotone systems with nonlocal diffusion. We also refer to [START_REF] Ducrot | Asymptotic spreading speeds for a predator-prey system with two predators and one prey[END_REF][START_REF] Wu | The spreading speed for a predator-prey model with one predator and two preys[END_REF] for studies of the spreading behaviour for three interacting (competitive coupled with predator-prey interactions) species.

In this note, our analysis extends some dynamical system ideas taken from [START_REF] Ducrot | Spatial propagation for a two component reaction-diffusion system arising in population dynamics[END_REF][START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF] to non-local diffusion, to overcome the lack of comparison principle, while the asymptotic shape (separation of the variables) as t → ∞ of the solution of the Cauchy Problem (3.1.2)-(3.1.4) is obtained by a careful comparison of the projections of the solution over all the eigenmodes of the mutation kernel operator. This work is organized as follows: Section 2 is devoted to the Assumptions and to the main result of this work, namely Theorem 3.2.4. We also briefly state some results on the spectral properties of some non-local operator involved in the modelling of the mutations. Section 3 deals with preliminary results needed for the proof of Theorem 3.2.4. In particular we prove the well-posedness and asymptotic compactness properties of the solutions of Model (3.1.4). The next sections contain the proofs of our main result. In Section 4, we prove the outer spreading property while the inner spreading one is handled in Section 5. Finally, Section 6 is concerned with the proof of the asymptotic variables separation result. Section 3.2. Assumptions and main results Note that the support of the continuous function γ is the closure of Ω. Now let L 2 γ (R M ) be the weighted L 2 -space defined as the set of measurable functions on R M such that R M f 2 (y)γ(y)dy < ∞. In particular we have

f ∈ L 2 γ (R M ) if f is measurable and f √ γ ∈ L 2 (R M ).
The norm of L 2 γ (R M ), denoted by • 2,γ , is given

f 2,γ = R M f 2 (y)γ(y)dy 1/2 , ∀f ∈ L 2 γ (R M ).
Before going to our main spreading result, we need to introduce the mutation operator and some spectral properties. Consider the bounded linear mutation operator L ∈ L L 1 (R M ) defined as follows

L[ϕ](y) = R M β(y)J(y -y )r(y )ϕ(y )dy , ∀ϕ ∈ L 1 (R M ), (3.2.7) 
as well as its formal adjoint operator, L * ∈ L L 1 (R M ) , given by

L * [ϕ](y) = R M r(y)β(y )J(y -y )ϕ(y )dy , ∀ϕ ∈ L 1 (R M ). (3.2.8) 
Then these two positive operators enjoy the following Perron-Frobenius property. 

(R M ) ∩ L 2 γ (R M ) ∩ L p + (R M ), for all p ∈ [1, ∞], associated to λ 1 .
In the sequel it is normalized so that ϕ 1 2,γ = 1. Moreover, ϕ 1 is positive on Ω.

(ii) ρ(L * ) = ρ(L) and the non negative function ϕ *

1 := γϕ 1 ∈ L p + (R M ) for all p ∈ [1, ∞] is an eigenfunction of L * associated to ρ(L). Moreover it is positive on Ω.
Using the above notation, let us introduce P 1 the formal orthogonal projection of v ∈ L 1 (R M ) on the eigenspace ker (ρ(L) -L) spanned by ϕ 1 , the principal eigenvector of L, that is

P 1 ϕ = R M ϕ(y)ϕ * 1 (y)dy ϕ 1 , ∀ϕ ∈ L 1 (R M ).
As recalled in the introduction, we define R 0 as in (3.1.6) where λ 1 = ρ(L) and throughout that work that R 0 > 1.

This condition is always assumed and not recalled. Now we define the minimal wave speed c as in [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF] by

c := inf 0<λ<1 µ v λ R 0 1 -λ 2 -1 , (3.2.9)
Note that c is related to the function K(c, λ) defined by

K(c, λ) := 1 -λ 2 (cλ + µ v ) -µ v R 0 . (3.2.10)
Through the following characterisation: c satisfies the following assertions

      
∀c ∈ (0, c ), K(c, λ) < 0, ∀λ ∈ (0, 1), K(c , λ) = 0 has a unique solution in (0, 1), ∀c > c , K(c, λ) = 0 has two solutions in (0, 1). (3.2.11) This property will also be used in our analysis.

We are now able to state the main spreading result we shall prove in this note. It reads as follows. γ (R M ) and as t goes to infinity, the v-component of the solution converges towards its projection on the eigenspace spanned by ϕ 1 in the following sense

lim t→∞ sup x∈R v(t, x, •) -P 1 v(t, x, •) 2,γ = 0. Let v 1 = v 1 (t, x) be defined as v 1 (t, x) = R M v(t, x, y)ϕ * 1 (y)dy, (3.2.12 
) Note that the above result shows that the epidemics propagates with the spreading speed c as time goes to infinity. Moreover in the phenotype trait space, the distribution of the persistent variants of the disease follows the shape of the principle eigenvector ϕ 1 = ϕ 1 (y). This shape strongly depends on the three functions J, r and β. Conditions for this eigenfunction to be unimodal, and thus for the population to be roughly monomorphic, has been discussed in [START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF] in the case where the mutation kernel is narrow.

so that P 1 v(t, x, •)(y) = v 1 (t, x)ϕ 1 (y).

Preliminary results

Well-posedness of Model (3.1.4)

To prove the existence of the solutions of the Cauchy Problem (3.1.2)-(3.1.4), we rewrite the system as an abstract ODE. To that aim, let us recall the definition of L in (3.2.7) and of the spatial kernel K in (3.1.3). Next, let us consider the bounded linear operator

L : C 0 b (R, L 1 (R M )) → C 0 b (R, L 1 (R M )) be defined as L[ψ](x, •) = β(•) R R M K(x -x )J (• -y ) r(y )ψ (x , y ) dx dy , (3.3.13) as well as L ∈ L C 0 b (R, L 1 (R M )); C 0 b (R) by L[ψ](•) = R M L[ψ](•, y) dy. (3.3.14)
Using the above bounded operators, we now turn to the well posedness of the Cauchy problem associated to (3.1.4). To do so consider the Banach space

E = C 0 b (R) × C 0 b (R, L 1 (R M )) and its positive cone E + = C 0 b (R, R + ) × C 0 b (R, L 1 + (R M )). Consider the map F : E → E given by F (X) = Λ -u -u L[v] u L[v] -µ v v , ∀X = u v ∈ E.
Hence, setting

X(t) = (u(t, •), v(t, •, •)) T ∈ E, Problem (3.1.2)-(3.1.4
) rewrites as the following ODE on the Banach space E: (ii) Let (u 0 , v 0 ) ∈ E + be some initial data satisfying Assumption 3.2.2. Then the associated solution solution (u, v) satisfies

dX(t) dt = F (X(t)), t ≥ 0 with X(0) = (u 0 , v 0 ) T ∈ E + . ( 3 
0 ≤ u(t, x) ≤ Λ, ∀t ≥ 0, x ∈ R,
and there exists some constant M > 0 such that 0 < v(t, x, y) ≤ M β(y), for (t, x) ∈ R + × R and a.e. y ∈ R M .

Proof. First note that the map F is locally Lipschitz continuous on E so that (3.3.15) admits a unique maximal solution in X ∈ C 0 ([0, T max ), E) for some T max > 0. Now let M > 0 be given. Then λ ≥ max(µ v , 1 + β ∞ r ∞ M ) we have F (X) + λX ∈ E + for all X ∈ E + with X E ≤ M . As a consequence the local solution X belongs to C 0 ([0, T max ), E + ) for all initial data X 0 ∈ E + .

Next to prove the boundedness of the solution, let X 0 = (u 0 , v 0 ) T ∈ E + be given and let (u, v) denotes the corresponding maximal solution. First note that since v ≥ 0 then u satisfies

∂ t u ≤ Λ -u(t, x),
that is, for all t and x u(t, x) ≤ Λ + (u 0 (x) -Λ)e -t . (3.3.16) This shows that u is bounded. Now set

n(t, x) = u(t, x) + R M v(t, x, z)dz.
Then, integrating the v-equation in (3.1.4) with respect to the variable y and adding-up the u-equation yields

∂ t v(t, x) = Λ -u(t, x) -µ v R M v(t, x, z)dz, that implies ∂ t n(t, x) ≤ Λ -min(1, µ v )n(t, x).
This yields

n(t, x) ≤ n(0, x)e -t min(1,µv) + Λ min(1, µ v )
1 -e -t min (1,µv) , ∀t ≥ 0, ∀x ∈ R.

This ensures that the positive solutions of (3.3.15) are globally bounded in time, and thus globally defined. Now since v(t) is uniformly bounded in C 0 b (R; L 1 (R M )), there exists some constant N > 0 such that L[v(t, •, •](x) ≤ N, ∀t ≥ 0, ∀x ∈ R.

We now infer from the u-equation that

∂ t u(t, x) ≥ Λ -(1 + N )u(t, x),
so that, for all t ≥ 0 and x ∈ R, we get

u(t, x) ≥ Λ 1 + N + u 0 (x) - Λ 1 + N e -(1+N )t ,
and (i) follows.

To check (ii), first note that the estimate for u directly follows from (3.3.16). Let us now complete the proof for the v-estimate. To see this recall that Problem (3.1.4) writes for the non-negative v-component

∂ t v(t, x, y) = β(y)u(t, x)K * J * (rv)(t, x, y) -µ v v(t, x, y).
(3.3.17)

Next since 0 ≤ u ≤ Λ and J * (rv) is bounded uniformly for t ∈ R + , x ∈ R and y ∈ R M , here exists some constant M 1 > 0 such that

∀(t, x, y) ∈ R + × R × R M , ∂ t v(t, x, y) ≤ M 1 β(y) -µ v v(t, x, y),
Then, for any t ≥ 0 and x, z ∈ R one has

∂ t (u(t, z) -u(t, x)) 2 = 2(u(t, z) -u(t, x)) -u(t, z) + u(t, x) -u(t, z) L[v](t, z) + u(t, x) L[v](t, x) ,
that rewrites as

∂ t (u(t, z) -u(t, x)) 2 = -2(u(t, z) -u(t, x)) 2 -2(u(t, z) -u(t, x)) 2 L[v](t, x) -2u(t, z)(u(t, z) -u(t, x)) L[v](t, z) -L[v](t, x) . Since L[v] ≥ 0, this implies ∂ t (u(t, z) -u(t, x)) 2 ≤ -2(u(t, z) -u(t, x)) 2 -2u(t, z)(u(t, z) -u(t, x)) L[v](t, z) -L[v](t, x) .
Now since u 0 ≤ Λ one has u ≤ Λ and Young inequality ensures that

∂ t (u(t, z) -u(t, x)) 2 ≤ -(u(t, z) -u(t, x)) 2 + Λ 2 L[v](t, z) -L[v](t, x) 2 .
Next integrating this inequality with respect to time between 0 to t for some t ≥ 0 leads us to Next we similarly prove that functions v(t, x, •) satisfies the second estimate in (3.3.18). To that aim, recall that for t ≥ 0, x, z ∈ R and y ∈ R M one has

(u(t, z) -u(t, x)) 2 ≤ (u 0 (z) -u 0 (x)) 2 e -t + Λ 2 sup 0≤τ ≤t L[v](τ, z) -L[v](τ, x)
∂ t (v(t, x, y) -v(t, z, y)) = -µ v (v(t, x, y) -v(t, z, y)) + u(t, x) L[v](t, x, y) -u(t, z) L[v](t, z, y).
Hence, integrating the above equation from 0 to t ≥ 0 yields

v(t, x, y) -v(t, z, y) = (v 0 (x, y) -v 0 (z, y)) e -µvt + t 0 e -µv(t-s) u(s, x) L[v](s, x, y) -u(s, z) L[v](s, z, y) ds.
Then taking the L 1 (R M )-norm with respect to y leads to

v(t, x, •) -v(t, z, •) L 1 (R M ) ≤ v 0 (x, •) -v 0 (z, •) L 1 (R M ) e -µvt + t 0 e -µv(t-s) R M u(s, x) L[v](s, x, y) -u(s, z) L[v](s, z, y) dy ≤ v 0 (x, •) -v 0 (z, •) L 1 (R M ) e -µvt + t 0 e -µv(t-s) |u(s, x) -u(s, z)| L[v](s, x, •) L 1 (R M ) ds + Λ µ v L[v](s, x, •) -L[v](s, z, •) L 1 (R M )
.

By coupling (3.3.19) with first estimate in (3.3.18) we obtain

v(t, x, •) -v(t, z, •) L 1 (R M ) ≤ v 0 (x, •) -v 0 (z, •) L 1 (R M ) e -µvt + |u 0 (x) -u 0 (z)| t 0 e -µv(t-s) e -1 2 s L[v](s, x, •) L 1 (R M ) ds + M K(z + •) -K(x + •) L 1 (R) t 0 e -µv(t-s) L[v](s, x, •) L 1 (R M ) ds + Λ µ v M 1 K(z + •) -K(x + •) L 1 (R) .
Finally thanks to the uniform bound for v provided in Proposition 3

.3.1, L[v](t, x, •) L 1 (R M )
is also uniformly bounded for t ≥ 0 and x ∈ R. Hence we readily obtain that there exist some constants M 2 > 0 and M 3 > 0 such that for all t ≥ 0, x and z ∈ R we have

v(t, x, •) -v(t, z, •) L 1 (R M ) ≤ v 0 (x, •) -v 0 (z, •) L 1 (R M ) e -µvt + α(t)M 2 |u 0 (x) -u 0 (z)| + M 3 K(z + •) -K(x + •) L 1 (R)
with α(t) := t 0 e -µv(t-s)-1 2 s ds, satisfying α(t) → 0 as t → +∞. Finally note that the bound for the time derivatives directly follows from the equations for u and v together with the uniform bound provided in Proposition 3.3.1. The lemma is proved. Proof of Corollary 3.3.6. We apply Arzelà-Ascoli theorem. Let A > 0 be given and j 0 ≥ 0 large enough such that t j ≥ A, for all j ≥ j 0 . Next, since t j → ∞ as j → ∞, we infer from Lemma 3.3.4 that the sequence (u j , v j ) j≥j 0 is equi-continous for (t, x) ∈ [-A, A] 2 in R × L 1 (R M ). Hence, to complete the proof of the corollary, it is sufficient to show that for all (t, x) ∈ [-A, A] 2 , the sequence (v j (t, x, •)) j≥j 0 is relatively compact in L 1 (R M ). By integrating the v-equation, we obtain v j (t, x, y) = v 0 (x + x j , y)e -µv(t+t j ) + K j (t, x, y), with K j (t, x, y) := t -t j e -µv(t-s) u(s, x + x j )L[v j (s, x, •)](y)ds.

For any (t, x) ∈ [-A, A] 2 , since v 0 (x, y)e -µv(t+t j ) → 0 as j → ∞ in L 1 (R M ) it is sufficient to show that the sequence (K j (t, x, •)) j≥j 0 is relatively compact in L 1 (R M ) applying Fréchet-Kolmogorov theorem. Thanks to the boundedness property of the solutions (Proposition 3.3.1) and the operator estimate of Lemma 3.3.3 (ii) we firstly have, for any R, R > 0

y≥R K j (t, x, y)dy ≤ Λ t -t j e -µv(t-s) y≥R L[v j (s, x, •)](y)dy ds ≤ M sup y ≥R β(y) r ∞ y ≥R sup y ≤R +1 J(y + y )dy + sup y ≥R r(y ) ,
for some constant M > 0 independent of j ≥ j 0 . This implies thanks to Assumption 3.2.1 that lim R→∞ y ≥R K j (t, x, y)dy = 0 uniformly with respect to j ≥ 0.

Next, let h ∈ R M be given. Due to Lemma 3.3.3 (i) and the boundedness property of the solutions, there exists some constant M such that, for all j ≥ j 0 one has

τ h K j (t, x, •) -K j (t, x, •) 1 ≤ M r ∞ ( τ h β -β ∞ + β ∞ τ h J -J 1 ) , which implies thanks to Assumption 3.2.1 as J ∈ L 1 (R M ) and β is uniformly continuous that lim h→0 τ h K j (t, x, •) -K j (t, x, •) 1 = 0.
The proof of the Corollary is complete.

Spectral properties of L

In this subsection, we prove Proposition 3.2.3. Thanks to Lemma 3.3.3 the operator L is compact. Let us recall that Ω = {y ∈ R M , r(y)β(y) > 0}. Let M the compact operator defined as the restriction of L to L 1 (Ω), that is

M[f ](y) = Ω β(y)J(y -y )r(y )f (y )dy , f ∈ L 1 (Ω).
We have β(y)J(y -y )r(y ) > 0, ∀y, y ∈ Ω. Therefore, thanks to Theorem 6.6 in [START_REF] Schaefer | Banach lattices and positive operators[END_REF], M is irreducible and admits a principal eigenpair (λ 1 , ψ 1 ) ∈ R + ×L 1 + (Ω) with λ 1 = r(M) > 0 and ψ 1 (y) > 0, a.e. in Ω.

Next, the function

ϕ 1 ∈ L 1 + (R M ) defined as ϕ 1 (y) =    ψ 1 (y) if y ∈ Ω, β(y) λ 1 Ω J(y -y )r(y )ψ 1 (y )y . if y ∈ R M \Ω. satisfies Lϕ 1 = λ 1 ϕ 1 . Moreover, as r ∈ L ∞ (R M ), J ∈ C 0 b (R M )∩L 1 + (R M ) and β ∈ C 0 b (R M ), ϕ 1 = 1 λ 1 βJ * (rϕ 1 ) implies that ϕ 1 ∈ C 0 b (R M ) ∩ L p + (R M
) for all p ≥ 1 and ϕ 1 > 0 on Ω. Then, since ϕ 2 1 γ = rβ λ 2 1 (J * (rϕ 1 )) 2 , we readily prove that ϕ 1 ∈ L 2 γ (R M ) and we choose ϕ 1 to satisfy ϕ 1 2,γ = 1.

Let us now prove that r(L) = r(M). We first have that r(L) ≥ r(M) > 0. Next, using compactness of L (cf. Lemma 4.2.10 in [START_REF] Meyer-Nieberg | Banach lattices. Universitext[END_REF]), L has a positive eigenfunction φ ∈ L 1 + (Ω) associated to r(L), i.e. Lφ = r(L)φ. Then, the restriction of φ to L 1 (Ω) is a positive eigenfunction of M, hence r(L) is a positive eigenvalue of M associated to a positive eigenfunction. However Corollary 4.2.15 (Frobenius Theorem) in [START_REF] Meyer-Nieberg | Banach lattices. Universitext[END_REF] implies that for any eigenvalue µ of M with |µ| < r(M), the corresponding eigenfunction ψ does not have a constant sign, therefore r(L) = r(M).

Recall that L

* : L 1 + (R M ) → L 1 + (R M
), the formal adjoint of L, in defined in (3.2.8). Exchanging r an β, we readily prove that this operator is compact as for the proof of Lemma 3.3.3. Moreover, as J is symmetric, the following identity holds

R M f (y)L[g](y)dy = R M L * [f ](y)g(y)dy, ∀f, g ∈ L 1 (R M ) ∩ L ∞ (R M ). ( 3 

.3.20)

Next define ϕ * 1 = γϕ 1 . Then from the above identity one has

γϕ 1 = χ {β>0} r λ 1 J * (rϕ 1 ), we notice that ϕ * 1 ∈ L ∞ (R M )∩L 1 + (R M
), and as λ 1 ϕ 1 = βJ * (rϕ 1 ), the identity χ {β>0} ϕ 1 = ϕ 1 holds on R M and we have for all y

∈ R M β(y)L * ϕ * 1 (y) = r(y)β(y) R M β(y )J(y -y )χ {β>0} (y ) r(y ) β(y ) ϕ 1 (y )dy , = r(y)β(y) R M
r(y )J(y -y )ϕ 1 (y )dy , = r(y)Lϕ 1 (y) = λ 1 r(y)ϕ 1 (y), which implies L * ϕ * 1 = λ 1 ϕ * 1 . Next, as above the restriction of the operator L * to L 1 (Ω) is also irreducible and since ϕ * 1 is non negative, we obtain that (λ 1 , ϕ * 1 ) is a principal eigenpair of L * with λ 1 = r(L) = r(L * ).

Proof of Theorem 3.2.4 (ii)

To prove Theorem 3.2.4 (ii), we construct a suitable super-solution v1 . First notice that due to the symmetry of the kernel K (see (3.1.3) and (3.1.5)) if (u(t, x), v(t, x, y)) is some solution of (3.1.4) then (u(t, -x), v(t, -x, y)) is also solution of (3.1.4) for the initial condition (u 0 (-x), v 0 (-x, y)). Therefore, in this proof it suffices to consider the case x ≥ ct, for some c > c , the case where x ≤ -ct can be handled similarly.

Here let (u, v) be a solution of (3.1.4) with initial data (u 0 , v 0 ) satisfying Assumption 3.2.2.

Next let us recall that the operator L is defined in (3.2.7). Now recalling that u 0 ≤ Λ (see Assumption 3.2.2) using assertion (ii) of Proposition 3.3.1 ensures that u(t, x) ≤ Λ for all t ≥ 0 and x ∈ R. As a consequence we have ∂ t v(t, x, y) = u(t, x)K * L[v(t, x, •)](y) -µ v v(t, x, y), ≤ ΛK * L[v(t, x, •)](y) -µ v v(t, x, y).

Recalling the definition of v 1 = v(t, x) in (3.2.12), multiplying this inequality by ϕ * 1 (y) ≥ 0 and integrating over R M we readily find Let us recall that K (defined in (3.1.3)) is non-negative. Let c > c be given and fixed. We now look for a super-solution of (3.4.21) of the form v1 (t, x) = φ 0 e -λ(x-ct) , for some positive constant φ 0 > 0 and λ ∈ (0, 1), to be chosen later. Note that, for all t ∈ R and x ∈ R one has ∂ t v1 (t, x) -λ 1 ΛK * v1 (t, •)(x) + µ v v1 (t, x)

∂ t v 1 (t, x) ≤ ΛK * R M L[v(t, x, •)](y)ϕ * 1 (y)dy -µ v v 1 (t, x), ∀t ≥ 0, x ∈ R.
= φ 0 e -λ(x-ct) cλ + µ v -λ 1 Λ (1 -λ 2 ) .

Now recall that K(c, λ) = (1 -λ 2 )(cλ + µ v ) -µ v R 0 with µ v R 0 = λ 1 Λ ( see (2.2.14)). Hence, since c > c , due to (3.2.11) there exists λ 0 ∈ (0, 1) such that K(c, λ 0 ) = 0. We now choose λ = λ 0 so that the function v1 satisfies

∂ t v1 (t, x) -λ 1 ΛK * v1 (t, •)(x) + µ v v1 (t, x) = 0, ∀(t, x) ∈ R 2 .
Finally as v 0 is compactly supported, the function x → v 1 (0, x) is also compactly supported, and we choose φ 0 large enough such that v1 (0, x) = φ 0 e -λ 0 x ≥ v 1 (0, x), ∀x ∈ R.

Hence v1 becomes a super-solution and we end up with the following upper-bound v 1 (t, x) ≤ v1 (t, x) = φ 0 e -λ 0 (x-ct) , ∀x ∈ R, t ≥ 0. Now let c 1 be any real such that c 1 > c > c . Then, sup x≥c 1 t v1 (t, x) = φ 0 e -λ 0 (c 1 -c)t → 0, as t → ∞, therefore as c > c can be chosen arbitrary close to c Theorem 3.2.4 (ii) holds true in the case x ≥ ct and consequently for |x| ≥ ct as well. This concludes the proof of Theorem 3.2.4 (ii).

Proof of Theorem 3.2.4 (iii)

This section will present the behaviour for t 1 of the solution in the region |x| ≤ ct for some 0 ≤ c < c . Here we only focus on the region of the form 0 ≤ x ≤ ct for c ∈ [0, c ) since the case where -ct ≤ x ≤ 0 can be handled similarly like in the proof of Theorem 3.2.4 (ii).

Throughout this section we fix an initial data (u 0 , v 0 ) satisfying Assumption 3.2.2 and we denote by (u, v) the corresponding solution of (3.1.4). We also denote by v 1 = v 1 (t, x) the function defined for t ≥ 0 and x ∈ R by (3.2.12). Sinve r(y)v 0 (x, y) ≡ 0 on R × R M (see Assumption 3.2.2 (ii)) then, according to Remark 3.3.2 one has v 1 > 0 on (0, ∞) × R. Recall also that throughout this section, we assume that R 0 > 1. The main purpose of this section is to prove that v 1 = v 1 (t, x) (see (3.2.12)) remains uniformly positive in the large time, in such regions.

In order to state our results let us introduce some useful notations and remarks that will be used along in this section. We define T ⊂ C 0 b (R 2 ; R + ) × C 0 b R 2 ; L 1 + (R M ) the set of the limits of the translates of the orbit (u, v) as (ũ, ṽ) ∈ T ⇐⇒ there exist a sequence (t n ) n≥0 with t n → ∞ and a sequence (x n ) n≥0 ⊂ R such that (ũ(t, x), ṽ(t, x, •)) = lim n→∞ (u(t + t n , x + x n ), v(t + t n , x + x n , •)) ,

for the topology of C loc (R 2 ) × C loc R 2 ; L 1 (R M ) . The following lemma holds true. It is a slight variant of lemma 3.6 in [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF] that takes into account the dependence of Q R,c with respect to the variable c. We also refer to [START_REF] Diekmann | Run for your life. A note on the asymptotic speed of propagation of an epidemic[END_REF][START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF] where compactly supported sub-solutions for linear non-local problems have been constructed. We apply Lemma 3.5.4 with c 0 = c ∞ , which defines some M 0 , R 0 , δ and the family of functions ϕ R,α R,c . Let R some constant such that R > R 0 . Using (3.5.27) there exists n 0 large enough such that c n 0 ∈ (c 0 -δ, c 0 + δ) and for (ũ n 0 , ṽn 0 ) ∈ • T we have ũn 0 (t + t n 0 , x + c n 0 (t + t n 0 )) ≥ Λ(1 -ε), ∀t ≥ 0, ∀x ∈ [-R, R],

(3.5.29) so that ∀t ≥ t n 0 , ∀x ∈ [-R + c n 0 t, R + c n 0 t], ∀y ∈ Ω, ∂ t ṽn 0 (t, x, y) = β(y)ũ n 0 (t, x) [K * J * (rṽ n 0 )](t, x, y) -µ v ṽn 0 (t, x, y) ≥ Λ(1 -ε)β(y)[K * J * (rṽ n 0 )](t, x, y) -µ v ṽn 0 (t, x, y), thus multiplying this equation by ϕ * 1 and integrating over Ω gives for all t ≥ t n 0 and x ∈ [-R + c n 0 t, R + c n 0 t]

∂ t ṽn 0 1 (t, x) ≥ λ 1 Λ(1 -ε)K * ṽ1 n 0 (t, x) -µ v ṽ1 n 0 (t, x).
By setting ψ(t, x) := e M 0 t ϕ R,α R,cn 0 (x), we have for all t ∈ R and x ∈ (-R, R) As (ũ n 0 , ṽn 0 ) ∈ • T , ṽn 0 1 (t n 0 , x) is positive for all x ∈ R and there exists κ > 0 such that ṽn 0 1 (t n 0 , x) ≥ κ ψ(t n 0 , x), ∀x ∈ (-R + c n 0 t n 0 , R + c n 0 t n 0 ).

∂ t ψ(t, x) ≤ c n 0 ∂ x ψ(t, x) + λ 1 Λ(1 -ε) R -R K(x -x )ψ(t,
Let us define the function w = w(t, x) on [t n 0 , ∞) × R by w(t, x) =    ṽn 0 1 (t, x) -κ ψ(t, x) for (t, x) ∈ [t n 0 , ∞) × (-R + c n 0 t, R + c n 0 t), ṽn 0 1 (t, x) for t ≥ t n 0 and x ∈ (-R + c n 0 t, R + c n 0 t).

We thus have w(t n 0 , x) ≥ 0, ∀x ∈ [-R + c n 0 t n 0 , R + c n 0 t n 0 ], moreover w(t, x) = ṽn 0 1 (t, x) ≥ 0, ∀x ∈ (-R + c n 0 t, R + c n 0 t), ∀t ≥ t n 0 , while for all t ≥ t n 0 and x ∈ (-R + c n 0 t, R + c n 0 t) ∂ t w(t, x) ≥ λ 1 Λ(1 -ε)

R+cn 0 t -R+cn 0 t K(x -z)w(t, z)dz -µ v w(t, x).
Then we use a comparison lemma to prove that w is non-negative. The following lemma is inspired from Lemma 4.7 in [START_REF] Zhang | Propagation phenomena for a two species lotka-volterra strong competition system with nonlocal dispersal[END_REF]. Lemma 3.5.5. Assume that K ∈ L 1 + (R). Let d > 0 and µ ∈ R be given. For any t 0 and T > t 0 , assume that f is a continuous function on [t 0 , T ] × R that is absolutely continuous with respect to t ∈ [t 0 , T ] for any x ∈ R. Assume that X, Y are continuous functions on [t 0 , T ] with X < Y . If f satisfies

      
∂ t f (t, x) ≥ dK * f (t, x) -µf (t, x), ∀t ∈ [t 0 , T ], ∀x ∈ (X(t), Y (t)), f (t, x) ≥ 0, ∀t ∈ (t 0 , T ], ∀x ∈ R \ (X(t), Y (t)), f (t 0 , x) ≥ 0, ∀x ∈ [X(t 0 ), Y (t 0 )], (3.5 . We aim to prove that g ≥ 0 on Ω * T . Assuming that this assertion is false, then g(t, x) < 0 for some (t, x) ∈ Ω T * . We are able to define g inf = inf (t,x)∈Ω T * g(t, x) < 0 as g is a bounded function on the closure of Ω T * . Let (t n , x n ) a sequence of Ω T * such that g(t n , x n ) → g inf as n → ∞. Integrating (3.5.32) we find g(t n ,x n ) = g(t 0 , x n ) + +d 

g(t n , x n ) ≥ d R K(z)dz + m (t n -t 0 )g inf > 1 2 g inf .
As n → ∞, we obtain g inf > 1 2 g inf , which contradicts g inf < 0. Hence g and f are non-negative functions on Ω * T . The same argument can be repeated until T * = T . This concludes the proof of the lemma.

Applying the above lemma, we find that ∀x ∈ [-R + c n 0 t, R + c n 0 t], ∀t ≥ t 0 , ṽn 0 1 (t, x) ≥ κ ψ(t, x), and it follows that ṽn 0 1 (t, c n 0 t) → ∞ as t → ∞. This contradicts the boundedness of the solution and completes the proof of Lemma 3.5.1.

Second step: Pointwise strong spreading

Lemma 3.5.6. Let η ∈ (0, c ) be given. Then there exists ε = ε(η) such that for all (ũ, ṽ) ∈ with v 1 (t, x) = R M ṽ(t, x, y)ϕ * 1 (y)dy, ∀(t, x) ∈ R + × R.

Proof. We argue again by contradiction by assuming that there exist a sequence (ũ n , ṽn ) n≥1 ∈ that up to a subsequence converge towards (û ∞ , v∞ ) for the topology of C loc (R 2 ) × C loc R 2 ; L 1 (R M ) due to the compactness properties of T . The third inequality in (3.5.35) yields vn 1 (0, 0) ≤ 1/n, so that v∞ 1 (0, 0) = 0 and v∞ ∈ T \

• T = ∂T , hence v∞ ≡ 0 and thus v∞ 1 ≡ 0. Now as ṽn 1 (-h n , -c n h n ) = ε(η)/2 for all n, we have v∞ 1 (-h, -ch) = ε(η)/2 > 0, a contradiction with v∞ 1 ≡ 0. Next, let us define the sequence of functions in T , also denoted by (û n , vn ) for simplicity, as follows ûn (t, x) = ũn (t + t n , x + ct n ), vn (t, x, y) = ṽn (t + t n , x + ct n , y), that possibly along a subsequence converges towards (û ∞ , v∞ ) for the topology of C loc (R 2 )× C loc R 2 ; L 1 (R M ) . Observe that by (3.5.35) we can ensure v1 (0, 0) = ε(η)/2 so that (û, v) ∈ 

Third step: Uniform spreading

In Lemma 3.5.6, we showed that some point-wise spreading property occurs locally in any moving frame with constant speed c < c . We prove now that this spreading is uniform for 0 ≤ x < ct, with 0 < c < c . As already mentioned above, the case where x is negative can be handled similarly using the symmetry of the kernel function K. Proof. The proof is inspired by the proof of Lemma 5.7 in [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF].

From the above estimate and recalling that | Vk | ≤ M k and that Vk satisfies (3.6.41), the comparison principle applies and ensures that | Vk (s + t, x)| ≤ M k e -αt , ∀t ≥ 0, ∀(s, x) ∈ R 2 .

This proves that Vk ≡ 0. This ends the proof of the lemma. Note that if k 0 = 2 then the proof of Theorem 3.2.4 (i) is over. Indeed, in that case, one has for any (U, V ) ∈ T and all (t, x) ∈ R 2

γ(•)V (t, x, •) = ∞ k=1 Vk (t, x)φ k (•) in L 2 (Ω), that reads as V (t, x, •) = V 1 (t, x)ϕ 1 (•).
To complete this section, we investigate the case where k 0 ≥ 3 and we shall also prove that each projection of the solution v onto the eigenvalues λ 2 ≥ • • • ≥ λ k 0 -1 vanishes in the large time, uniformly in space.

To go further in our analysis, let us define

R 1 = λ 2 Λ µ v < R 0 .
Note that since k 0 ≥ 3 one has 1 ≤ R 1 < R 0 .

And, similarly to the definition of c , we define c ∈ [0, c ) by

c := inf 0<λ<1 µ v λ R 1 1 -λ 2 -1 .
Using these notations, we split our argument into two parts. We first inquire of the behaviour of vk for |x| ≥ ct for c > c and t 1, before going to the region |x| ≤ ct for some speed c ∈ [0, c ) and t 1. First the following result holds. Proof. Fix k ∈ {2, • • • , k 0 -1} and c > c . We only consider the case x ≥ ct, while the case x ≤ -ct can be handled similarly. Similarly to the proof of Theorem 3.2.4 (ii), we look for a super solution vk (t, x) = M k e -µ(x-ct) for some M k > 0 and µ ∈ (0, 1). Replacing the expression of vk in (3.6.40), one obtains ∂ t vk (t, x) -λ k u(t, x)K * vk (t, x) + µ v vk (t, x)

= M k e -µ(x-ct) cµ + µ v -λ k u(t, x) 1 1 -µ 2 , ∀(t, x) ∈ R + × R.
Since c > c , there exists µ ∈ (0, 1) such that

cµ + µ v = λ 2 Λ 1 -µ 2 .

  dt = βS 0 I(t) -γI(t), S 0 = S(0), I 0 = I(0)

  x, y), D est le coefficient de diffusion pour la dispersion des spores dans l'environnement, et δw(t, x, y) est la nouvelle densité de spores déposées sur les feuilles. Dans la partie droite de l'équation, le processus de mutation est représenté par R M J (y -y ) r(y )v (t, x, y ) dy.

Figure 1 . 1 :

 11 Figure 1.1: Cycle de reproduction de spores

  le noyau qui mesure l'influence des individus infectés à l'emplacement x dans l'espace sur l'infection des individus sains et susceptibles à l'emplacement x dans l'espace, de sorte que +∞ -∞ M (x )dx = 1. Kendall souhaitait démontrer l'existence d'une onde progressive. En 1965 [61], il a prouvé que pour R 0 = βS 0 γ > 1 et constante, il existe c > 0 tel que le système (1.4.6) admet des ondes progressives non triviales pour tout c ≥ c , de la forme

Théorème 1 . 4 . 2 (

 142 Propriétés qualitatives). Supposons que R 0 > 1. Soit (U, V, W ) un profil d'ondes progressives pour une certaine vitesse c ≥ c selon la définition 1.4.1. Il existe alors deux fonctions réelles régulières

  4.24)-(1.4.25) avec R 0 > 1 et pour la vitesse d'onde c ≥ c .

Figure 1 . 2 :

 12 Figure 1.2: Onde progressive

.4. 33 )Hypothèses 1 . 4 . 4 .

 33144 Où λ 1 = ρ(L) est le rayon spectral d'un opérateur L linéaire lié au noyau de mutation J. Avant de présenter notre résultat principal énoncé dans le Théorème 1.4.4 ci-dessous, nous avons d'abord formulé quelques hypothèses importantes sur les fonctions qui dépendent du trait phénotypique, J, r et β. Nous supposons que a) le noyau de mutation

  'est un ensemble ouvert non vide. Nous définissons également la fonction positive γ : R M → R + comme γ(y) = r(y) β(y) si β(y) > 0, et 0 ailleurs.

alors v 1

 1 bénéficie de la propriété de propagation asymptotique suivante : (ii) Propriété de propagation extérieure Pour tous les c > c , on a lim t→∞ sup |x|≥ct v 1 (t, x) = 0. (iii) Propriété de propagation intérieure Pour tous les 0 ≤ c < c on a lim inf t→∞ inf |x|≤ct v 1 (t, x) > 0. Le résultat ci-dessus montre que les épidémies se propagent à la vitesse c quand le temps t tend vers l'infini. De plus, dans l'espace des traits phénotypiques, la distribution de la population infectée prend la forme du vecteur propre principal ϕ 1 = ϕ 1 (y). Cette forme dépend des trois fonctions J, r et β. Les conditions pour que cette fonction propre soit uni-modale, et pour que la population infectée soit monomorphe, ont été discutées dans [29] dans le cas où le noyau de mutation a un support étroit.

  Nous avons alors divisé notre argumentation en deux parties. Nous nous intéressons d'abord au comportement de vk pour |x| ≥ ct où c > c et prouvons par comparaison que lim t→∞ sup |x|≥ct |v k (t, x)| = 0. Puis, dans la région |x| ≤ ct pour une certaine vitesse c ∈ [0, c ), nous avons lim t→∞ sup |x|≤ct |v k (t, x)| = 0.

  (y) v(t, x, y) and w(t, x, y) := r(y)β(y)w(t, x, y), Next by setting Θ(y) = r(y)β(y) and β(y) := β(y) r(y) , (2.1.3)

Remark 2 . 1 . 2 .

 212 Coming back to the original system (2.1.2) and recalling the change of notation(2.1.3), one may notice that the estimate in Assumption 2.1.1 c) is satisfied as soon as r(y) > 0 for all y ∈ R M .

Definition 2 . 1 . 3 .

 213 An entire solution

Definition 2 . 2 . 2 (

 222 Minimal wave speed c ). When R 0 > 1 we define c > 0 by c = inf {c > 0 : ∃λ > 0, K(c, λ) = 0} = inf λ∈(0,1)

Theorem 2 . 3 .3 has the following corollary Corollary 2 . 3 . 5 .

 23235 Assume that R 0 > 1, then (a) Theorem 2.1.11 (ii) holds true: there is no travelling wave solution with wave speed c ∈ (0, c ). (b) If c > c , then the travelling wave profile satisfies

Lemma 2 . 3 . 7 .

 237 For any c ∈ (0, c ) there exists ε > 0 such that for any ( Ũ , Ṽ , W ) ∈ H it holds that lim sup t→+∞ Ṽ1 ((c 0 -c)t) ≥ ε, and lim sup t→+∞ W1 ((c 0 -c)t) ≥ ε, wherein we have set, for ξ ∈ R, Ṽ1 (ξ) = Ω Ṽ (ξ, y)ϕ 1 (y)dy and W1 (ξ) = Ω W (ξ, y)ϕ 1 (y)dy.

  ds dy, so that letting a → -∞, we obtain

  V, W ) (ξ) = (U * , V * , W * ) , (2.5.57) and lim ξ→∞ (U, V, W ) (ξ) = (U * , V * , W * ) . (2.5.58) To achieve this let us observe that the normalisation condition ensures that V > 0 and W > 0. Then Theorem 2.3.3 and subsequent Remark 2.3.4 imply lim inf ξ→∞ V (ξ) > 0 and lim inf ξ→∞ W (ξ) > 0.

Proposition 3 . 2 . 3 .

 323 Let λ 1 = ρ(L) denote the spectral radius of the operator L. Then the following assertions hold true (i) ρ(L) > 0 and there exists a non negative eigenfunction ϕ 1 ∈ C b

Theorem 3 . 2 . 4 .

 324 Let Assumptions 3.2.1 and 3.2.2 be satisfied. Then the solution (u, v) of (3.1.4) with initial conditions (u 0 , v 0 ) satisfies the following properties. (i) Separation of variables for large times: The function v belongs to C b [0, ∞) × R; L 2

Then v 1

 1 enjoys the following asymptotic speed of spread: (ii) Outer spreading property: For all c > c it holds that lim t→∞ sup |x|≥ct v 1 (t, x) = 0. (iii) Inner spreading property: For all 0 ≤ c < c it holds that lim inf t→∞ inf |x|≤ct v 1 (t, x) > 0.

.3. 15 )Proposition 3 . 3 . 1 .

 15331 Next the following well posedness result holds. The following assertions hold (i) Let X(0) = (u 0 , v 0 ) T ∈ E + be given. Then System(3.1.4) with initial data (u 0 , v 0 ) (or equivalently(3.3.15)) admits a unique globally defined solutionX(t) = (u(t), v(t)) ∈ C 1 ([0, ∞), E + ),that is furthermore uniformly bounded in E while u satisfies lim inf t→∞ inf x∈R u(t, x) > 0.

2 ,

 2 combined with(3.3.19), it yields the first estimate in(3.3.18).

Thanks to equation ( 3 . 2 .

 32 [START_REF] Bouin | Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration[END_REF], we can fix ε > 0 such that for all 0 ≤ c ≤ c -η we have maxλ∈[0,1] 1 -λ 2 (cλ + µ v ) -λ 1 Λ(1 -ε) < 0. Now let Q R,c defined as Q R,c [ϕ](x) := -cϕ (x) + λ 1 Λ(1 -ε) R -R K(x -x )ϕ(x )dx -µ v ϕ(x).

Lemma 3 . 5 . 4 .

 354 For α ∈ (-1, 1) define ϕ R,α (x) := e αx cos πx 2R , ∀x ∈ (-R, R).For any c 0 ∈ [0, c -η], there exist some positive constants M 0 , R 0 and δ such that for all (R, c)∈ (R 0 , ∞) × ((c 0 -δ, c 0 + δ) ∩ [0, c -η]) there exists α R,c ∈ (-1, 1) such that the function ϕ R,α R,c satisfies ∀x ∈ (-R, R), Q R,c [ϕ R,α R,c ](x) ≥ M 0 ϕ R,α R,c (x).(3.5.28)

tn t 0 0 Y

 00 y∈R\(X(s),Y (s)) K(x n -y)g(s, y)dyds+ d tn t (s) X(s) K(x n -y)g(s, y)dyds + m tn t 0 g(s, x n )ds,so that thanks to(3.5.30) the two first terms of the right-hand side of this equality are non-negative and

•TRemark 3 . 5 . 7 .

 357 , we have lim inf t→∞ ṽ1 (t, ct) > ε(η), ∀c ∈ [0, c -η].(3.5.33)Herein, as before, ṽ1 is given by ṽ1(t, x) = R M ṽ(t, x, y)ϕ * 1 (y)dy.Here again, the proof of the above lemma given below also applies to the original solution (u, v). Hence for each η ∈ (0, c ) there exists ε = ε(η) > 0 such that lim inf t→∞ v 1 (t, ct) ≥ ε(η), ∀c ∈ [0, c -η],

•T

  . Moreover, we havevn 1 (t + t n , c n (t + t n )) ≤ ε(η)/2, ∀t ∈ [0, h n ],with h n → ∞ as n → ∞ (up to a subsequence) and c n → c such that 0 ≤ c ≤ c -η, therefore thanks to to the locally uniform convergence we obtain as n → ∞ thatv∞ 1 (t, ct) ≤ ε(η) 2 , ∀t ≥ 0,in particular we have lim sup t→∞ ṽ∞ 1 (t, ct) ≤ ε(η)/2. As (û, v) ∈• T and 0 ≤ c ≤ c -η, this contradicts Lemma 3.5.1 and completes the proof of Lemma 3.5.6.

Lemma 3 . 5 . 8 .

 358 Let η ∈ (0, c ), then there exists ε(η) > 0 such thatlim inf t→∞ inf 0≤x<(c -η)t R M v(t, x, y)ϕ * 1 (y)dy ≥ ε(η).

Lemma 3 . 6 . 2 .

 362 For all k ∈ {2, • • • , k 0 -1} and c > c , it holds that lim t→∞ sup |x|≥ct |v k (t, x)| = 0.

  -McKendrick

			        	dS(t) dt dt dI(t)	= -βS(t)I(t) = βS(t)I(t) -γI(t)	(1.2.1)
	et infectieuse sont désignés respectivement par	dS(t) dt	et	dI(t) dt	.
	           	dS(t) dt	= -taux auquel les individus susceptibles sont infectés ,
	          	dI(t) dt -taux auquel les individus infectieux atteignent la fin de la période infectieuse , = + taux auquel les individus susceptibles sont infectés

Dans ce modèle, nous négligeons la dynamique de la population hôte : il n'y a pas de mort ou de naissance naturelle. Les taux de variation de la densité de la population saine

Definition 1.4.1. Onde progressive.

  

	Une solution entière (u(t, x), v(t, x, y), w(t, x, y)) de (1.4.12) est une onde progressive avec
	une vitesse c > 0 si elle a la forme suivante
	(u(t, x), v(t, x, y), w(t, x, y)) ≡ (U (ξ), V (ξ, y), W (ξ, y)) avec ξ = x + ct,
	où (U, V, W ) est appelé profil de l'onde, et si (U, V, W ) satisfait en outre les propriétés
	suivantes

  M ) et quand t tend vers l'infini, la composante v de la solution converge vers sa projection sur l'espace propre engendré par ϕ 1 dans le sens suivant

Théorème 1.4.4. Supposons que les hypothèses 1.4.4 et 1.4.5 sont satisfaites. La solution (u, v) de (1.4.30) pour les conditions initiales (u 0 , v 0 ) vérifie les propriétés suivantes. (i) Séparation des variables en temps grand La fonction v appartient à C b [0, ∞) × R; L 2 γ (R

  follows and the family {L[V (ξ, •)], ξ ∈ R} is relatively compact in L p (R M ). From this, it readily follows, using (2.1.13), that {W (ξ, •), ξ ∈ R} is relatively compact in L p (R M ) and thus in L p (Ω). Formula(2.3.19) allows us to conclude the same compactness property for the family {V (ξ, •), ξ ∈ R}. This completes the proof of the lemma.

	Remark 2.3.2. Because of the above lemma and since the family of functions {ξ →
	(V (ξ + s, •), W (ξ + s, •), s ∈ R} is equi-continuous on the compact sets with values in
	L

p (Ω) × L p (Ω), for any p ∈ [1, ∞), it follows from Arzela-Ascoli theorem that the family {ξ →

  .3.29) uniformly for t ≥ 0 and locally uniformly for x ∈ R. With this last estimate and equipped with Lemma 2.3.6 we are able to complete the proof of Lemma 2.3.7. Fix ε > 0 as in (2.3.23). Fix R > R 0 large enough where R 0 is the value provided by Lemma 2.3.6. Using (2.3.29), there exists n 0 large enough such that, setting ξ 0

Theorem 2.2.3

  Theorem 2.2.3 (ii) has already been proved thanks to Corollary 2.3.5. It remains to prove Theorem 2.2.3 (i).

  Then due to(3.3.20) we get∂ t v 1 (t, x) ≤ ΛK *

	R M	L * [ϕ * 1 ](y)v(t, x, y)dy -µ v v 1 (t, x),
	then it follows that	
	∂	

t v 1 (t, x) ≤ λ 1 ΛK * v 1 (t, •)(x) -µ v v 1 (t, x), ∀t ≥ 0, ∀x ∈ R. (

3

.4.21) 

  x )dx -µ v ψ(t, x). Now let ψ(t, x) := ψ(t, x -c n 0 t), we have ∀t ≥ t n 0 , ∀x ∈ (-R + c n 0 t n 0 , R + c n 0 t n 0 ) ∂ t ψ(t, x) = ∂ t ψ(t, x -c n 0 t) -c n 0 ∂ x ψ(t, x -c n 0 t)

∂ t ψ(t, x) ≤ λ 1 Λ(1 -ε) R -R K(x -c n 0 t -x )ψ(t, x )dx -µ v ψ(t, x) ∂ t ψ(t, x) ≤ λ 1 Λ(1 -ε) R+cn 0 t -R+cn 0 t K(x -z) ψ(t, z)dz -µ v ψ(t, x).

  Thanks to Lemma 3.5.1, there exists ε(η) > 0 such that for all n ≥ 1 ) n≥1 , that tends to ∞ as n → ∞, and a positive sequence (h n ) n≥1 such that, for any n ≥ 1, One may observe that the sequence of positive number (h n ) arising in (3.5.35) is unbounded. Indeed, by contradiction we assume that (h n ) is bounded and converges towards h up to a subsequence. Then let us define the following functions (û n (t, x), vn (t, x, y)) := (ũ n (t + t n + h n , x + c n (t n + h n )), ṽn (t + t n + h n , x + c n (t n + h n ), y) ∈ T

	lim sup t→+∞	ṽn 1 (t, c n t) ≥ ε(η),	(3.5.34)
	therefore there exist a sequence (t n     ṽn		
	  		

•

T and a converging sequence

(c n ) n≥1 with 0 ≤ c n ≤ c -η and c n → c ∈ [0, c -η] as n → ∞ such that lim inf t→+∞ ṽn 1 (t, c n t) < 1 n . 1 (t n , c n t n ) = ε(η) 2 , ṽn 1 (t, c n t) ≤ ε(η) 2 , ∀t ∈ [t n , t n + h n ], ṽn 1 (t n + h n , c n (t n + h n )) ≤ 1 n .

(3.5.35)

Remerciements

Recall that we chose γ < 1. Then, as we have -W (2.4.39) applying the Laplace transform to equation (2.4.35), we have

so that combined with (2.4.39) and the expression (2.1.8) of R 0 we readily obtain the following identity

where K(c, λ) is given by the characteristic equation (2.2.14).

We are now able to use a property of Laplace transforms, see [START_REF] Widder | The Laplace Transform[END_REF]. The two-sided Laplace transform of a positive function is analytic in a strip {λ ∈ C, 0 < Re λ < A} for some positive real A, and it has a singularity at λ = A.

Let c ≥ c be fixed. Recall that λ < 1 denotes the smallest positive solution of the equation K(c, λ) = 0.

Then, thanks to Lemma 2.4.3 one has (Λ -U (ξ)) = O(e γξ ), as ξ → -∞. Therefore, we get (Λ -U )W 1 = O(e 2γξ ) and L {(Λ -U )W 1 } is analytic on the strip {λ ∈ C : 0 ≤ Re λ < 2γ}. Using identity (2.4.40) and repeating the previous argument, one obtains that L {W 1 } is analytic on the strip {0 < Re λ < λ } with a singularity at λ = λ < 1. Thanks to (2.4.39), L {V 1 } satisfies the same property.

To conclude the proof of Proposition 2.4.1 we use a version of Ikehara's Theorem for one-sided Laplace transforms (again, see [START_REF] Carr | Uniqueness of travelling waves for nonlocal monostable equations[END_REF][START_REF] Widder | The Laplace Transform[END_REF]): 

where k > -1 and H is analytic in the strip 0 < Re λ < λ . Then

where Γ denotes the usual Gamma function.

To apply this Proposition, we can rewrite (2.4.39), (2.4.40) as

s)e -λs ds is analytic for Re λ > 0, and we proved that L {(Λ -U )W 1 }(λ) is analytic for 0 < Re λ < 2λ . Also the characteristic equation

Assumptions and main results

In this section we state and discuss the main results that will be proved in this manuscript. Before going to our main spreading result, Theorem 3.2.4 below, we first need to introduce our main assumptions, preliminary materials and useful notations. We first deal with the phenotype trait specific functions, J, r and β. Along this note we assume the following set of hypothesis Assumption 3.2.1. We assume that a) the mutation kernel J is positive, continuous and

symmetric with respect to the origin, that is J(-y) = J(y) for all y ∈ R M , and it has a unit mass that is

Moreover for every R > 0, the function y -→ sup y ≤R J(y +y ) belongs to L 1 (R M ).

b) Functions r, β : R M → R are both continuous, non-negative and bounded. They enjoy the following behaviour (r(y), β(y)) → (0, 0) as y → ∞.

The product function y → r(y)β(y) belongs to L 1 (R M ) and is not identically zero.

We now turn to the assumptions we shall impose for the initial data (u 0 , v 0 ) arising in (3.1.2). To do so, for each ordered Banach space X, with positive cone X + , we denote by C 0 b (I; X) and C 0 b (I; X + ) the space of bounded continuous functions on the non empty set I into X and X + , respectively.

We now make the following assumption on the initial conditions of problem system (3.1.4).

Assumption 3.2.2. We assume that

r(y)v 0 (x, y)dy ≡ 0 and there exists some constant c 0 > 0 such that 0 ≤ v 0 (x, y) ≤ c 0 β(y) a.e. for y ∈ R M and for all x ∈ R.

First note that for any (u

) admits a unique non negative and globally defined solution r(y)v 0 (x, y)dy ≡ 0 and since J > 0 and K > 0 one readily obtains that the solution (u, v) satisfies v(t, x, y) > 0, for all t > 0, x ∈ R and a.e. for y ∈ {β > 0}.

On the other hand when the function x → R M r(y)v 0 (x, y)dy ≡ 0 then R M r(y)v(t, x, y)dy ≡ 0 on [0, ∞) × R and thus v(t, x, y) = 0 for all (t, x) ∈ (0, ∞) × R and a.e. for y ∈ Ω.

Compactness properties of the solutions

In this section, we investigate asymptotic compactness for the positive solutions of (3.1.4), provided by Proposition 3.3.1. We start by deriving some estimates for the operator L, defined in (3.2.7).

Lemma 3.3.3. Under assumption 3.2.1 the linear bounded operator

(ii) Let R, R > 0 be given. Then for all ϕ ∈ L 1 (R M ) one has

Proof. All assertions but (ii) are straightforward using Young inequality for convolution products. For assertion (ii) we consider a smooth and non-negative function χ R ≤ 1 defined as follows

On the one hand we have

while on the second hand

and (ii) follows.

) denote the corresponding solution for t ≥ 0. Then there exists some constant M > 0 such that for all t ≥ 0, for all x, h ∈ R we have

where α(t) is a positive function tending to 0 as t → ∞. Moreover there exists some constant M such that for all t ≥ 0 and x ∈ R

Remark 3.3.5. If we assume that u 0 and v 0 are furthermore uniformly continuous on R into R and L 1 (R M ), respectively, then the functions u and v are uniformly continuous from [0, ∞) × R into R and L 1 (R M ), respectively.

Corollary 3.3.6 (Asymptotic compactness of the orbits). Let (u 0 , v 0 ) ∈ E + be given such that u 0 ≤ Λ. Let (u(t), v(t)) denotes the corresponding solution for t ≥ 0. Let (t j ) j≥0 be a sequence of positive numbers tending to ∞ as j → ∞ and (x j ) j≥0 ⊂ R be a given sequence. Then the sequence of function (u j , v j ) ⊂ E given for t ≥ -t j and x ∈ R by

Proof of Lemma 3.3.4 . To prove the lemma, we make use of a ideas developed in [START_REF] Thieme | Global stability of the endemic equilibrium in infinite dimension: Lyapunov functions and positive operators[END_REF] (see Theorem 4.2 in this paper). First recall that L and L are defined in (3.3.13) and (3.3.14), respectively. Let (u 0 , v 0 ) ∈ E + be given with u 0 ≤ Λ, and let (u(t), v(t)) denote the corresponding solution of (3.1.4). Since t → (u(t), v(t)) is uniformly bounded in E, we readily obtain the following preliminary regularity estimate: there exists some constant M 1 > 0 such that for all t ≥ 0, x, z ∈ R, one has

Next the function u = u(t, x) satisfies the following equation

Due to Lemma 3.3.4 (and Corollary 3.3.6), observe that T is non empty and it is a compact set when endowed with the topology of C loc (R 2 ) × C loc R 2 ; L 1 (R M ) . Note that since (u 0 , v 0 ) satisfies Assumption 3.2.2, Proposition 3.3.1 ensures that that there exists M > Λ -1 large enough such that for all (ũ, ṽ) ∈ T one has Note also that for any (ũ, ṽ) ∈ T becomes a non-negative entire solution of the system (3.1.4).

As a consequence we obtain the following separation property: for any (ũ, ṽ) ∈ T , it holds that either (ũ, ṽ) ∈ T ≡ (Λ, 0), or,

To see this let (ũ, ṽ) ∈ T be given. Assume that there exists (t

Then ṽ(t 0 , x 0 , y) = 0 a.e. for y ∈ Ω. Next since (ũ, ṽ) is an entire solution of (3.1.4) then the function ṽ1 (t, x)

with ṽ1 (t 0 , x 0 ) = 0. Since ũ > 0 and K > 0 we infer that ṽ1 (t, x) ≡ 0 on R × R, that is ṽ ≡ 0 on R 2 × Ω, then ṽ ≡ 0 on R 2 × R M due to the second estimate in (3.5.22) and thus ũ = Λ. The separation property follows.

This separation property allows us to split the set T as the following disjoint union

wherein we have set ∂T = {(Λ, 0)} and

Now to prove Theorem 3.2.4 (iii) we closely follow the methodology developed in [START_REF] Ducrot | Spreading speeds for multidimensional reaction-diffusion systems of the prey-predator type[END_REF] and we split our argument into three steps. We first study pointwise weak spreading property before dealing with pointwise strong spreading, to finally conclude to the uniform spreading, as stated in Theorem 3.2.4 (iii).

First step: Pointwise weak Spreading

In this subsection we aim at proving the following lemma. Lemma 3.5.1. Let η ∈ (0, c ) be given. Then there exists ε = ε(η) > 0 such that for all (ũ, ṽ)

Herein ṽ1 = ṽ1 (t, x) is given by

Remark 3.5.2. The proof of the above lemma given below also applies to the original solution (u, v) due to the asymptotic compactness of the solution (see Corollary 3.3.6). Hence for each η ∈ (0, c ) there exists ε = ε(η) > 0 such that

Proof. To prove the lemma, we argue by contradiction by assuming that there exist a sequence (ũ n , ṽn )

Below, up to a subsequence, we assume that

Now we make the following claim Claim 3.5.3. Up to a subsequence, one has

uniformly for t ≥ 0 and locally uniformly for x ∈ R.

To prove this claim we argue again by contradiction by assuming that there exist a bounded sequence ( 

and vn

Since T is compact one may assume that, up to a subsequence, there exists some (û ∞ , v∞ ) such that (û n , vn ) → (û ∞ , v∞ ) ∈ T for the topology of

v∞ (t, x, y)ϕ * 1 (y)dy. Next observe that (3.5.24) ensures that v∞ 1 (0, 0) = 0 and thus v1 ≡ 0 due to the separation property (3.5.23) while (3.5.26) ensures that v∞ 1 (0, x ∞ ) > 0, a contradiction that completes the proof of our claim.

Moreover using the same arguments we obtain that along a subsequence, we have

uniformly for t ≥ 0 and locally uniformly for x ∈ R.

Let v 1 (t, x) = R M v(t, x, y)ϕ * 1 (y)dy. Assume by contradiction that there exist a sequence (t n ) n≥1 that tends to ∞ as n → ∞ and a converging sequence

(3.5.36)

Let δ > 0 and η > 0 be such that c ∞ + δ < c -η . Let us introduce the sequence of time (t n ) n≥1 by

Let us first observe that the sequence (c n t n ) cannot have a bounded subsequence. Indeed if a subsequence were bounded then (3.5.36) implies, that possibly along a subsequence,

x) ≡ 0 locally uniformly with respect to t, x.

In particular, v 1 (t n , 0) → 0 as n → ∞, which contradicts Remark 3.5.7 with c = 0. Hence c n t n → ∞ and equivalently t n → ∞. Due to Remark 3.5.7, there exists ε(η ) > 0 such that for n large enough

Since t n < t n and v 1 (t n , c n t n ) → 0 (due to (3.5.36)), we define for all n large enough the time tn by

Next define for all n large enough the sequence of functions

so that, for all n large enough one has

Choose a subsequence such that (

that the first condition above ensures that (u ∞ , v ∞ ) ∈

• T , while the condition ensures, as for the proof of Lemma 3.5.6, that t n -tn → ∞. We finally end up with

that contradicts Lemma 3.5.6. This concludes the proof of Lemma 3.5.8.

Proof of Theorem 3.2.4 (i)

Along this section we assume that Assumption 3.2.1 is satisfied. Then we define the function θ : R M → R + by θ = rβ.

Let us recall that due to Assumption 3.2.1, one has θ = θ(y) ∈ L 2 (R M ). Throughout this section let (u, v) denotes the solution of (3.1.4) with an initial data (u 0 , v 0 ) satisfying Assumption 3.2.2. Now recalling the estimate for v provided in Proposition 3.

Due to the above remark, let us define

and since Supp v(t, x, •) ⊂ Supp β for all (t, x) ∈ R + × R, then rv = θv and we readily retrieve that v satisfies the following equation

Let us recall that Ω = {y ∈ R M , θ(y) > 0}, so that Supp v(t, x, •) ⊂ Ω for all t, x. Next wet define the linear operator M 2 ∈ L (L 2 (Ω)) by

As in the proof of Proposition 3.2.3, we can prove that the operator M 2 is irreducible and compact on L 2 (Ω). Moreover as J is symmetrical M 2 is self-adjoint. Therefore it admits a spectral decomposition with positive eigenvalues {λ k } k≥1 such that

see also [START_REF] Rizk | Travelling wave solutions for a non-local evolutionary-epidemic system[END_REF][START_REF] Djidjou-Demasse | Steady state concentration for a phenotypic structured problem modeling the evolutionary epidemiology of spore producing pathogens[END_REF] for more details. The corresponding eigenvectors {φ k } k≥1 form a Hilbert basis of L 2 (Ω). We have φ 1 > 0 while the other eigenvectors for k ≥ 2 have no constant sign. Actually we have a correspondence between the eigenfunctions φ 1 of the operators M 2 and ψ 1 of M:

Since the principal eigenfunction ϕ 1 of L was chosen to satisfy the normalization condition ϕ 1 2,γ = 1 and since γ 1/2 ϕ 1 = γ 1/2 ψ 1 on Ω with Supp γ = Ω, we have

Here again we use the definition of the set of the limit shifted orbits, T , defined in the previous section. Recall that for each sequence (t n ) ⊂ R + with t n → ∞ as n → ∞ and sequence (x n ) ⊂ R, Corollary 3.3.6 implies that, up to a subsequence, the sequence of functions (t, x, y) → (u(t + t n , x + x n ), v(t + t n , x + x n , y)) converges towards some function (t, x, y) → (U (t, x), V (t, x, y)) ∈ T with respect to the

) and (3.6.37) holds so that, Lebesgue convergence theorem ensures that the sequence of functions (t, x, y) → (u(t + t n , x + x n ), v(t + t n , x + x n , y)) converges towards the complete orbit (t, x, y) → (U (t, x), V (t, x, y)), with V (t, x, y) := γ(y)V (t, x, y), with respect to the topology of

Now let vk be the projection of v with respect to the eigenvector φ k , i.e. vk (t, x) = Ω v(t, x, y)φ k (y)dy.

Since v = γ 1/2 v and ϕ * 1 = γ 1/2 φ 1 on Ω, the following equality holds

By projecting the equation (3.3.17) we obtain the following infinite system of ODEs for k ≥ 1 and (t,

(3.6.40)

while any limit orbit (U, V ) satisfies for any k ≥ 1 and any for (t,

wherein we have set Vk (t, x) = Ω V (t, x, y)φ k (y)dy.

To prove Theorem 3.2.4 (i) we shall show that for all (U, V ) ∈ T one has Vk (t, x) ≡ 0 on R 2 , ∀k ≥ 2.

To proceed let us first prove that for all (U, V ) ∈ T one has Vk (t, x) ≡ 0 for all k ≥ 2 large enough. To do so, since λ k → 0 as k → ∞ and since R 0 = λ 1 Λ µv > 1, let us define the integer k 0 ≥ 2 by

Our first result reads as follows.

Lemma 3.6.1. For each (U, V ) ∈ T one has, for all k ≥ k 0 ,

Let (U, V ) ∈ T and k ≥ k 0 be given. Let us show that Vk ≡ 0. To that aim, recall that Vk is bounded by some constant M k > 0. Then consider the function Vk (t, x) = M k e -αt . Note that, since U ≤ Λ and R K(x)dx = 1, one has, for all s ∈ R and t ≥ 0

Hence, since u ≤ Λ (see Proposition 3.3.1), we obtain

Moreover, since v 0 is compactly supported with respect to x, there exists M k such that

With this choice of µ and M k , vk is a super solution of |v k |. The result follows as in the proof of Theorem 3.2.4 (ii).

To complete the proof of Theorem 3.2.4 (i), we investigate the large time behaviour of vk in some region |x| ≤ ct for some c ∈ (c , c ). To that aim, we fix c 1 ∈ (c , c ) and we consider the set T 1 ⊂ T by

Now, since c 1 > c , to complete the proof of Theorem 3.2.4 (i), it is sufficient to prove the following lemma. Lemma 3.6.3. For any (U, V ) ∈ T 1 and all k ∈ {2, • • • , k 0 -1} it holds that:

The above lemma roughly follows from the spreading property for v 1 , as stated in Theorem 3.2.4 (iii) coupled with a suitable comparison argument. Proof. Let (U, V ) ∈ T 1 be given. We first claim that Claim 3.6.4. On has

Proof of Claim 3.6.4.

First recall that due to (3.6.39) one has V 1 = V1 . Next let c ∈ (c 1 , c * ) be given. Then Lemma 3.5.8 implies that there exists ε > 0 such that lim inf

This rewrites as lim inf for the topology of C loc (R 2 ) × C loc R 2 ; L 1 (R M ) . Now (3.6.43) implies that there is some T > 0 such that for all t, x ∈ R that satisfy t + t n ≥ T and |x + x n | ≤ c (t + t n ), one has v1 (t + t n , x + x n ) ≥ ε /2. Then, passing to the limit n → ∞ we retrieve that ∀t, x ∈ R, V1 (t, x) ≥ ε /2 and the claim is proved. Now fix k ∈ {2, • • • , k 0 -1}. Then thanks to (3.6.37), the projections Vk are uniformly bounded. Due to the uniform positivity of V1 provided in Claim 3.6.4, there exists some positive constant C 1 such that

Since Vk is uniformly bounded, for any s ∈ R, there exists a constant M k > 0 such that | Vk (s, x)| ≤ M k V1 (s, x), ∀(s, x) ∈ R 2 .

(3.6.44)

Next due to Proposition 3.3.1, there exists ε > 0 such that U (t, x) ≥ ε for all (t, x) ∈ R 2 . Let α be some positive constant to be chosen later. Let s ∈ R be given and set v1 (t, x) := M k e -αt V1 (s + t, x).

Then we readily compute that, for any (t, x) ∈ R Setting l = t + s and letting t → ∞ we obtain that ∀(l, x) ∈ R 2 , Vk (l, x) = 0 and this completes the proof of the lemma.