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Three-dimensional modeling and experiment-driven numerical simulation of

zebra�sh escape swimming for biological applications

Abstract: Biologists use zebra�sh as an animal model to study the e�ects of genetic or

environmental factors related to human locomotor diseases in order to develop pharmacological

treatments. The general objectives of the project were 1) to develop a numerical model based

on real-world data capable of accurately simulating the escape swimming of the zebra�sh

eleuthero-embryo and 2) to provide, in addition to swimming kinematic parameters, a �ne

estimate of the energetic performance of locomotor behavior to enrich experimental studies

on locomotion. Furthermore, experiment-based numerical modeling would enhance the

understanding of locomotor behavior. For this purpose, a computational �uid dynamics code

describing the �uid �ow around a moving and deforming immersed body was used to reproduce

in silico the experimental escape response of a �ve-day post-fertilization eleuthero-embryo. The

solution of the mechanistic model, governed by the incompressible Navier-Stokes equations and

Newton's laws was approximated on a Cartesian mesh while the solid body represented by a

level-set function, was described implicitly by a penalization method. As for the deformation

kinematics, it was estimated directly from experimental locomotion videos by a Procrustes

analysis. A �rst approach based on optimal transportation has been considered to extract

the deformation velocity in two dimensions. To be faithful to three-dimensional physics, the

morphology of the zebra�sh eleuthero-embryo and the experimental escape kinematics were

reconstructed in three dimensions, by tracking Lagrangian markers on the surface of the

zebra�sh body. Thus, a new approach has been developed to estimate the deformation velocity

from experimental real data obtained by ultra-high-speed imaging after electric �eld pulse

stimulation. Zebra�sh eleuthero-embryo exhibits a highly stereotyped and complex escape

behavior consisting of three swimming modules: C-bend, counter-bend, and fast-swimming

cyclic phase. The developed approach enables high-performance and realistic numerical

simulations of real locomotion. After performing a numerical validation of the model based on

each component, a study was conducted on the energetic performance of the zebra�sh's escape

response, challenged by a change in �uid viscosity. A linear response of the cost of transport,

associated with constant energy expenditure, regardless of the �uid environment, was thus

demonstrated. This energy study can be extended to any immersed, moving, and deformable

body, and in particular, to any biological experiment such as exposure to a neuro-toxicant,

which would alter the locomotor behavior of the eleuthero-embryo. Thus, numerical simulations

may enrich the quantitative assessments of biological conditions and pharmacological treatments

which lead to disturbing or recovering the locomotor behavior.

Keywords: 3D modeling, computational �uid dynamics, imaging, bio-locomotion, zebra�sh,

swimming performance.



Modélisation tridimensionnelle et simulation numérique basée sur une approche

expérimentale de la nage de fuite du poisson-zèbre pour des applications

biologiques

Résumé : Les biologistes utilisent le poisson-zèbre comme modèle animal pour étudier les

e�ets des facteurs génétiques ou environnementaux liés aux maladies locomotrices humaines

a�n de développer des traitements pharmacologiques. Les objectifs généraux du projet étaient

1) de développer un modèle numérique basé sur des données réelles capable de simuler avec

précision la nage de fuite de l'eleuthéro-embryon de poisson-zèbre et 2) de fournir, en plus

des paramètres cinématiques de nage, une estimation �ne des performances énergétiques du

comportement locomoteur pour enrichir les études expérimentales sur la locomotion. En outre,

une modélisation numérique basée sur l'expérience pourrait améliorer la compréhension du

comportement locomoteur. Pour cela, un code de calcul de dynamique des �uides décrivant

l'écoulement des �uides autour d'un corps immergé, mobile et déformable a été utilisé pour

reproduire in silico la réponse de fuite expérimentale d'un éleuthéro-embryon de cinq jours

post-fécondation. La solution du modèle mécaniste, régie par les équations de Navier-Stokes

incompressible et les lois de Newton, a été approchée sur un maillage cartésien tandis que le

corps solide, représenté par une fonction level-set, a été décrit implicitement par une méthode

de pénalisation. Quant à la cinématique de déformation, elle a été estimée directement à

partir de vidéos expérimentales de locomotion par une Procrustes analysis. Une première

approche a été envisagée pour en extraire la vitesse de déformation, en deux dimensions, basée

sur le transport optimal. A�n d'être �dèle à la physique tridimensionnelle, la morphologie

de l'eleuthéro-embryon de poisson-zèbre et la cinématique de fuite expérimentale ont été

reconstruites en trois dimensions, par le suivi de marqueurs lagrangiens à la surface du corps

du poisson-zèbre. Ainsi, une nouvelle approche a été développée pour estimer la vitesse de

déformation à partir de données réelles expérimentales obtenues par imagerie ultra-rapide

après stimulation par impulsion de champ électrique. L'eleuthéro-embryon de poisson-zèbre

présente un comportement de fuite très stéréotypé et complexe, composé de trois modules de

nage : courbure en C, contre-courbure et phase de nage cyclique rapide. L'approche développée

permet de réaliser des simulations numériques haute-performance et réalistes de la locomotion

réelle. Après avoir e�ectué une validation numérique du modèle qui repose sur chacune de ses

composantes, une étude a été menée sur la performance énergétique de la réponse de fuite du

poisson-zèbre, altérée par un changement de la viscosité du �uide. Une réponse linéaire du

coût du transport, associée à une dépense d'énergie constante, indépendamment du milieu,

a ainsi été montrée. Cette étude énergétique peut être étendue à tout corps immergé, en

mouvement et déformable, et en particulier à toute expérience biologique comme l'exposition

à un neuro-toxique, qui altérerait le comportement locomoteur de l'éleuthéro-embryon. Ainsi,

la simulation numérique peut enrichir l'évaluation quantitative des conditions biologiques et

des traitements pharmacologiques qui conduisent à perturber ou à restaurer le comportement

locomoteur.

Mots-clés : Modélisation 3D, CFD, imagerie, bio-locomotion, poisson-zèbre, performance de

nage.
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� Nature is the source of all true knowledge. She has her own logic, her own laws,

she has no e�ect without cause nor invention without necessity. �

− Leonardo Da Vinci
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Résumé détaillé

Modélisation tridimensionnelle et simulation numérique basée sur une

approche expérimentale de la nage de fuite du poisson-zèbre pour des

applications biologiques

Contexte de la thèse

Cette thèse s'inscrit dans un cadre largement interdisciplinaire, étant le fruit d'une

étroite collaboration entre une équipe de biologistes et une équipe de modélisation multi-

physiques. L'objet de ce travail de thèse concerne la modélisation d'un phénomène

biologique : la nage de fuite d'un éleuthero-embryo de poisson-zèbre. Le poisson-

zèbre est étudié par les biologistes en tant que modèle animal pour un grand nombre

de raisons. D'abord, il s'agit d'un animal qui possède un patrimoine génétique très

proche de celui de l'homme. Cela permet d'amener les conclusions des expérimentations

animales à l'homme. Ensuite, le poisson-zèbre est un animal d'une très haute fertilité qui

possède un développement externe. Cela permet d'expérimenter dès les premiers stades

de développement sur un très grand nombre d'animaux simultanément. De plus, le

poisson-zèbre est très transparent ce qui est important pour visualiser certains processus

biologiques à l'aide de marqueurs �uorescents par exemple. Par ailleurs, comme il s'agit

d'un animal aquatique avec une très petite taille de quelques millimètres dans les premiers

stades de développement, les conditions d'élevage sont particulièrement favorables à

l'expérimentation animale. En�n, dans le cadre de l'étude de la locomotion, le poisson-

zèbre montre un mouvement de fuite qui est hautement stéréotypé, constitué d'une

courbure en C (C-bend), d'un mouvement de contre-courbure (counter-bend) et de cycles

de nage rapide. Le caractère reproductible de cette réaction de fuite est très important

pour analyser sur un grand nombre d'animaux, l'impact de molécules neurotoxiques sur

les processus biologiques impliqués dans la locomotion. Par la suite, une quanti�cation

des performances de nages après un démarrage en C (C-start) est nécessaire, a�n de

déterminer toute altération de cette réaction de fuite.

Pour l'étude de la locomotion du poisson-zèbre, le suivi des trajectoires est

généralement utilisé pour calculer la distance parcourue voire éventuellement la

xv
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vitesse moyenne ou bien l'amplitude de la courbure du corps au cours de la nage.

Les algorithmes de suivi (tracking) des poissons-zèbres les plus élaborés permettent

de suivre automatiquement le déplacement de l'ensemble de la géométrie en deux ou

trois dimensions, grâce notamment à une modélisation de la morphologie basée sur des

splines ou ellipses par exemple. Quant à l'écoulement du �uide généré dans le sillage du

poisson, il peut être analysé via la vélocimétrie par imagerie de particules (PIV ). Outre

les quantités basées sur la cinématique de nage, des études se sont employées à retrouver

des quantités comme la quantité de mouvement, la puissance moyenne via le calcul

de moments d'inertie et de rotation du corps et des méthodes de dynamique inverse.

Remonter jusqu'aux données énergétiques est particulièrement intéressant pour les

biologistes pour comprendre l'ensemble de la dynamique de la nage. C'est pourquoi les

méthodes de calcul de dynamique des �uides (CFD) sont particulièrement attrayantes

pour calculer directement à partir d'équations et donc entièrement in silico, l'écoulement

�uide, les forces hydrodynamiques exercées sur le poisson-zèbre et ainsi, la puissance

instantanée, l'énergie dépensée par le poisson-zèbre pour se mouvoir et l'e�cacité de

propulsion. Alors, les méthodes CFD permettent de modéliser l'ensemble de la nage

et de fournir des données jusqu'alors inaccessibles sur la dynamique et l'énergétique

de la nage. Dans la littérature, on peut trouver de nombreuses méthodes dédiées à la

modélisation et la simulation de locomotions aquatiques, notamment développées pour

calculer les performances de nage et alors, optimiser la géométrie du nageur ou bien sa

loi de nage, notamment pour la robotique sous-marine ou bien l'ingénierie. Cependant,

très peu d'études se sont appuyées directement sur des géométries ou lois de nages

réelles a�n de présenter des simulations numériques parfaitement réalistes. Ce travail

de thèse avait pour objectif de développer une approche numérique basée sur du calcul

CFD capable de reproduire in silico des locomotions expérimentales qui permettrait

de fournir aux biologistes des informations notamment d'un point de vue énergétique

sur les performances de nage d'un poisson-zèbre après cinq jours de développement,

soit le stade eleuthero-embryo. Ces données obtenues par combinaison d'imagerie

expérimentales et simulations numériques ont pour objectif d'étayer et préciser les e�ets

de certaines molécules toxicologiques ou pharmacologique sur la locomotion, étudiées

grâce à l'expérimentation massive sur le modèle poisson-zèbre. En dé�nitive, on se

propose dans ce travail, de développer une approche numérique CFD directement basée

sur l'expérience, destinée à enrichir les expérimentations animales. Les challenges,

nombreux, concernent d'une part, le développement numérique intégrant à la fois une

morphologie réaliste du poisson-zèbre et les déformations réelles observées par imagerie

expérimentale. D'autre part, cet outil numérique doit permettre d'aider à l'évaluation

d'e�ets biologiques dus à une altération du milieu soit par la viscosité du �uide soit par

la présence de particules neurotoxiques.
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Cadre des simulations numériques

La simulation de nageurs auto-propulsés n'est pas simple à résoudre car cela engage

une forte interaction entre le �uide et un objet solide possédant une géométrie complexe,

mobile et très déformable. Les vitesses �uide et solide sont gouvernées par leurs propres

équations : Navier-Stokes incompressible et Newton, respectivement. Cependant, la

condition de bord, à l'interface, doit être imposée à chaque pas de temps. Des méthodes

dites "body-�tted", qui maillent la surface du solide, peuvent s'avérer très coûteuses

pour mettre à jour le maillage. Au contraire, les méthodes sur maillage Cartésien

sont particulièrement adaptées pour suivre les mouvements du poisson sans avoir à

remailler le domaine de calcul au cours du temps, et sont facilement parallélisables.

C'est pourquoi, nous avons utilisé le code NaSCar développé au sein de l'équipe

Inria MEMPHIS, combinant principalement maillage Cartésien et di�érences �nies,

représentation implicite du solide via une fonction Level-set et une méthode de frontière

immergée par pénalisation. L'écoulement du �uide est alors modélisé par les équations

de Navier-Stokes incompressible pénalisées :

∇ · u = 0 in Ω, (1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+

µ

ρ
∆u + χsλ(ub − u) in Ω (2)

Dans ce système régissant la vitesse du �uide u et la pression p dans le domaine de calcul

Ω, µ et ρ désignent la viscosité dynamique et la densité du �uide tandis que ub, χs, λ

représentent la vitesse du solide, la fonction caractéristique associée au solide issue du

calcul de la Level-set soit en chaque point la distance signée à l'interface et le facteur de

pénalisation associé au terme de pénalisation χsλ(ub−u). Pour λ su�samment grand, on

impose alors une condition de non-glissement à l'interface. De plus, les vitesses proches

de l'interface ont aussi été corrigées via la méthode IPC a�n d'obtenir un ordre deux de

précision en espace. Ces équations sont résolues par une méthode à pas fractionnaire de

Chorin et Temam impliquant des étapes de prédiction, projection et correction. Quant

à la vitesse du poisson ub, on l'a modélisée comme la somme d'une partie rigide urigid

et d'une contribution déformable uε :

ub = urigid + uε = ū + uθ + uε (3)

La vitesse de translation ū et la vitesse associée à la rotation uθ peuvent alors être

calculées par les lois de la mécanique classique :

ρsVs
dū

dt
= Fhydro (4)

dJω

dt
=Mhydro (5)
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grâce au tenseur hydrodynamique Fhydro,Mhydro, J , ρs, Vs désignant respectivement

le moment d'inertie, la densité de masse et le volume du solide. Le terme restant de

déformation uε est clé pour la modélisation de la nage. Dans la littérature, ce terme est

généralement imposé par une formulation mathématique, comme une onde sinusoïdale

par exemple. L'objet de ce travail est d'extraire ces informations manquantes cruciales

que sont la déformation du poisson uε et sa géométrie χs grâce aux données d'imagerie

expérimentale. Pour cela, deux solutions ont été mises en ÷uvre pour interpoler uε et

χs à chaque pas de temps du solveur. La première approche à consister à extraire un

champ de vitesse de déformation à partir des images de la nage en vue de dessus soit

en deux dimensions. Dans ce cas, la géométrie déformée à chaque instant nous vient

directement de l'imagerie. Pour des simulations en trois dimensions, des reconstructions

tridimensionnelles de chaque déformée sont nécessaire pour calculer le champs de vitesse

de déformation entre chaque pas de temps d'acquisition. Pour ce faire, nous avons

utilisé la théorie du transport optimal qui nous permet d'interpoler le déplacement du

poisson entre chaque image expérimentale. Quant à la seconde approche, elle avait pour

but de suivre la vitesse à l'interface de manière Lagrangienne grâce à des marqueurs

Lagrangiens reconstruits à l'interface. La vitesse de pénalisation est alors entièrement

dé�nie par les vitesses Lagrangiennes des marqueurs. Cette méthode a nécessité de

reconstruire des marqueurs Lagrangiens sur toutes les déformées expérimentales du

poisson. Pour cela, nous avons d'abord généré un premier ensemble de marqueurs

dé�nissant la forme du poisson-zèbre. Ensuite, nous avons suivi ces marqueurs au

cours du temps en s'appuyant sur les déformations de la ligne médiane (midline) au

cours du temps, elles-mêmes extraites des images expérimentales. Dans tous les cas,

les images expérimentales en deux dimensions ont été utilisées, après un travail de

traitement d'image consistant principalement à recentrer chaque déformée dans son

propre référentiel (étape de Procrustes analysis).

Démarche adoptée

Les expériences de locomotion ont consisté à �lmer le mouvement de fuite d'un poisson-

zèbre grâce à une caméra ultra-rapide (jusqu'à 15 000 fps) dont l'équipe du MRGM est

équipée, placée au-dessus d'une cellule expérimentale unique au MRGM, qui peut fournir

des images de très hautes résolutions. La réaction de fuite est initiée par une impulsion

électrique (Electric Field Pulse) permettant de reproduire de manière consistante le

phénotype caractéristique. Dans le cas d'une très faible hauteur d'eau dans la cellule

expérimentale, le poisson-zèbre dégage une nage de fuite quasiment plane. En e�et,

on ne peut, à ce stade, modéliser que des nages planes étant donné le dispositif actuel

pour suivre les mouvements du poisson. L'étape suivante naturelle a été le traitement

d'image et notamment la segmentation du poisson-zèbre. Cela a pu se révéler fastidieux

étant donné que certaines parties du poisson-zèbre et notamment la �ne membrane
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constituant la queue (median �n fold) sont transparentes. C'est pourquoi, nous avons

combiné méthodes de seuillage et de classi�cation (clustering). L'étape de Procrustes

analysis était ensuite nécessaire pour obtenir la déformation du poisson-zèbre, seule

autrement dit, sans les mouvements rigides de translation et de rotation. L'algorithme

que nous avons utilisé était principalement basé sur la conservation de la quantité de

mouvement. Seulement, de nombreuses corrections ont dû être apportées dans le cas des

grandes déformations. En�n, il est important de rappeler qu'actuellement, seules deux

translations et une rotation peuvent être calculées à partir de l'imagerie 2D. Bien que des

simulations en deux dimensions ont d'abord été envisagées, notamment en développant

la première approche avec un algorithme de transport optimal, il nous a fallu rapidement

considérer des simulations en trois dimensions a�n d'avoir une modélisation de la nage

plus réaliste. En deux dimensions, la forme du poisson-zèbre était directement issue des

silhouettes segmentées alors qu'en trois dimensions, le volume 3D du poisson-zèbre a dû

être reconstruit.

Figure 1: Comparaison des vues de pro�l et dorsale entre un eleuthero-embryo de poisson-zèbre de
5 dpf (Figs. (A),(C)) et la reconstruction 3D de la surface (Figs. (B),(D)). Nombre de marqueurs
Lagrangiens sur la surface : 300 coupes transverses, 180 marqueurs par coupe. Abbréviations : median

�n fold (m�), intestin antérieur (ai), cerveau (b), nageoire caudale (cf), yeux (e), tête (h), foie (l),
nageoires pectorales (pf), rectum (r), vessie natatoire (sb), tronc (t), colonne vertébrale (vc). Échelle :
500 µm.

Pour cela, une multitude de coupes transverses issues d'une base de données a été

utilisée pour reconstituer la morphologie complexe du poisson-zèbre, de la tête à la �n

des nageoires pectorales. Pour la partie la plus postérieure, quelques coupes clés ont

été générées puis une série de coupes transverses uniformément réparties sur l'ensemble

du poisson-zèbre, a été constituée par interpolation grâce à une autre application du

transport optimal pour l'interpolation de forme. Finalement, des marqueurs Lagrangiens

ont été uniformément distribués à la surface de cette reconstruction 3D. Le résultat

obtenu (Fig. 1) est très satisfaisant puisqu'on obtient une géométrie précise et très �dèle

à la morphologie du poisson-zèbre. En particulier, notons que les nageoires pectorales

ont été conservées, étant �xes pendant la nage de fuite, et la membrane a été considérée
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comme rigide et de même densité volumique que le reste du corps. Par la suite, cette

reconstruction 3D a donc été déformée suivant les mouvements de la ligne médiane, en

considérant que chaque coupe transverse reste orthogonale à la ligne médiane.

Principaux résultats

Avant de mettre en ÷uvre l'approche développée de manière massive sur des

applications pour la biologie, nous avons d'abord réalisé de nombreuses validations des

simulations numériques 3D de la nage sur des premiers cas tests. En e�et, le code

NaSCar que nous utilisons a déjà été largement validé dans le cadre d'une loi de nage

classique. Toute l'originalité de cette nouvelle approche repose sur l'intégration des

déformations expérimentales en trois dimensions, au sein du solveur �uide-structure.

Par ailleurs, les snapshots déformés 3D ont été obtenus après un certain nombre d'étapes

: traitement d'image, Procrustes analysis, extraction de ligne médiane, génération et

reconstruction de marqueurs Lagrangiens. C'est pourquoi, diverses étapes de validation

ont été nécessaires a�n d'analyser la capacité de notre modèle à reproduire la trajectoire

expérimentale de la locomotion, ainsi que la précision et la sensibilité de la solution.

Validation

La plupart des validations ont été réalisées sur un premier cas test où la déformation

pendant la courbure en C est particulièrement importante. Après étude de la

convergence, le pas d'espace a été �xé pour toutes les simulations. On peut voir que la

trajectoire du centre de masse de la solution (Fig. 2A) est bien très bien reproduite.

En particulier, la partie la plus complexe du mouvement pendant le démarrage en C

correspond extrêmement bien. Néanmoins, la trajectoire semble diverger à partir du

début de la nage rapide. En fait, le poisson-zèbre se met à accélérer par rapport à la

nage expérimentale. Plusieurs pistes ont été envisagées a�n de comprendre la source

de cette déviation. Par exemple, l'impact de la taille du domaine de calcul et des

conditions aux bords a été étudiée. Des simulations bi-�uides ont aussi été réalisées

pour modéliser la surface de l'eau comme une surface libre. Par ailleurs, l'in�uence

d'autres paramètres comme la taille du poisson-zèbre, la viscosité du �uide ou bien la

qualité de la Procrustes Analysis a été testée, malgré une rotation du corps plutôt en

accord avec l'expérimental. En fait, la rotation n'est pas prépondérante dans la dernière

phase de la réponse de fuite. En outre, divers facteurs comme la densité de masse

pourraient a�ecter la position calculée du centre de masse. Cependant, aucune de ces

simulations n'a été fructueuse. Trois pistes n'ont toutefois pas été levées. La première

concerne l'hypothèse de mouvement plan et les deux autres points, la modélisation de la

membrane transparente (median �n fold) qui joue probablement un rôle prépondérant

dans la propulsion du poisson-zèbre. En e�et, on a considéré dans ce travail, une
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Figure 2: Exemple de simulation 3D de la réponse de fuite du poisson-zèbre. (A) Trajectoires
expérimentale et numérique du centre de masse. Les déformées 3D du poisson-zèbre sont indiquées en
arrière-plan (Échelle : 1 mm). (B) Puissance dépensée, amplitude de courbure et rotation du corps. Les
déformées correspondantes au mouvement sont indiquées par les images. (C) Illustration du sillage 3D
généré par la nage de fuite du poisson-zèbre, à t = 46 ms. Q-criterion (Isocontour) coloré par la vitesse
du �uide et poisson-zèbre représenté en rouge.

densité de masse homogène dans tout le volume 3D. En�n, nous n'avons considéré

aucune modélisation élastique, ce qui fait probablement défaut pour le median �n fold.

Malgré cette légère accélération, une analyse d'ensemble de la solution a été menée,

concernant l'écoulement du �uide (Fig. 2C) ou bien l'allure de la puissance suivant

la rotation ou la déformation (Fig. 2B). Essentiellement, on peut remarquer que le

poisson-zèbre produit un pic de puissance à chaque battement de queue, ou changement

d'in�exion de la déformation. En outre, on peut voir un délai signi�catif entre la

déformation et la rotation résultante. Le lien entre les di�érents pics de puissance et les

di�érentes amplitudes de déformation resterait à examiner précisément a�n d'améliorer

la compréhension de la nage. A�n de tester la consistance de notre approche numérique

basée sur l'expérience, nous l'avons ensuite appliquée à divers cas tests. Les résultats de

la simulation numérique précédemment étudiée ont été retrouvés dans la plupart des cas,

à un certain degré. Ainsi, toutes les trajectoires expérimentales ont été globalement très

bien reproduites. Néanmoins, une accélération de la solution numérique a de nouveau
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été perçue sur d'autres cas tests. Cela nous a amenés à considérer d'une part que la

source de cette erreur provenait certainement d'un aspect de modélisation, plutôt que

de questions numériques. D'autre part, cela démontre que nous retrouvons des résultats

très consistants d'un cas test à l'autre. La reproductibilité de notre approche numérique

nous a permis d'analyser les performances de nage pour des applications en biologie,

dans la mesure où l'erreur numérique reste négligeable devant les e�ets biologiques à

étudier.

Application à la Biologie

En termes d'application, deux objectifs étaient visés. D'abord, l'approche numérique

avait pour but d'aider les biologistes à quanti�er les performances de nage d'une réponse

de fuite altérée, notamment par le calcul de performances énergétiques. Ainsi, la

simulation numérique aidée de l'expérience, peut renseigner sur le coût de la locomotion

pour atteindre une certaine distance ou bien fuir à une certaine vitesse par exemple.

C'est pourquoi, cette approche peut parfaitement s'inscrire dans la mise en place d'un

test d'e�ort. Cela consiste à mettre à l'épreuve la nage du poisson-zèbre a�n d'en

mesurer ses performances énergétiques. L'idée est ainsi, d'étudier les e�ets de certaines

molécules à la lumière de l'impact énergétique.

La première application a naturellement consisté à calculer les performances de

fuite du poisson-zèbre, lorsque soumis à une augmentation de la viscosité du milieu.

Expérimentalement, un total de 115 réponses de fuite ont été �lmées dans six milieux

correspondants à di�érentes viscosités de �uide. Une base de données d'entre 10

et 15 �lms par condition de viscosité a donc été générée. Dans le cadre de cette

première étude, la simulation numérique a été réalisée pour 3 réponses de fuite pour

chacune des viscosités étudiées. A cela, un important résultat a été souligné par le

calcul des performances énergétiques (Fig. 3) : la puissance dépensée moyenne semble

rester stable sur la plage de viscosité étudiée. Seules des simulations basées sur des

nages réelles peuvent nous apprendre une telle information, di�cilement prévisible.

En e�et, cela implique que le poisson-zèbre s'est d'une certaine façon adapté à son

milieu, probablement contraint par une quantité d'énergie limitée. D'autres simulations

numériques basées sur des déformations �ctives nous ont même laissées à penser que cette

adaptation est signi�cativement e�cace. Par ailleurs, un second résultat remarquable

concerne l'évolution du coût de transport en fonction de la viscosité (Fig. 3). Le coût

de transport (CoT) dé�nit comme le ratio de l'énergie dépensée au totale sur la distance

parcourue lors de la fuite, est une quantité très pertinente pour mesurer une e�cacité

de la nage de fuite. Des simulations numériques réalistes ont permis de montrer que

le coût de transport est très signi�cativement corrélé à la viscosité du �uide. Cela est

important d'une part en vue de la mise en place des test d'e�orts et d'autre part, pour
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quanti�er de manière signi�cative l'impact de fortes viscosités sur la réponse de fuite,

que l'on ne peut mesurer avec la distance ou la vitesse, par exemple.
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Figure 3: Évolutions de variables calculées, associées à la dépense d'énergie, suivant la viscosité
du �uide. Pour chacune des six conditions expérimentales de viscosité associées, trois simulations
numériques ont été analysées statistiquement. (A) Puissance consommée en moyenne. (B) Coût total
du transport : ratio de l'énergie sur la distance parcourue.

Une seconde application a ensuite été développée : l'étude des e�ets de composants

neurotoxiques que l'on retrouve dans les pesticides ou dans les gaz de guerre par exemple,

sur la nage de fuite du poisson-zèbre. Dans le cadre de cette étude, préliminaire aux

applications biologiques réelles, notre méthode numérique n'a toutefois pas permis

de discriminer, ni même de tirer de conclusion remarquable suite aux calculs des

performances énergétiques. La très grande di�érence avec le cas précédent vient de

la variabilité des e�ets biologiques étudiées, beaucoup plus faibles dans la plage de

concentrations étudiées qu'avec la très grande plage de viscosités expérimentées.

Comme indiqué précédemment, nous avons aussi été en mesure de réaliser, grâce

à la méthodologie développée, des simulations numériques �ctives autrement dit, des

simulations numériques où les déformations du corps du poisson-zèbre ne correspondent

pas à celles observées expérimentalement. Ainsi, les performances de nages peuvent

être comparées au vu des déformations utilisées. Cela a surtout permis de mettre en

place un test d'e�ort numériquement (Fig. 4). En e�et, dans ce travail, la viscosité a

seulement été augmenté dans le modèle numérique. Cette première approche a permis

de démontrer que l'on pouvait e�ectivement observer des di�érences signi�catives de

performances entre deux réponses de fuites (associées à deux conditions expérimentales),

lorsque les déformations associées sont immergées dans un �uide à très haute viscosité.

La prolongation naturelle de cette étude serait évidemment de réaliser des tests d'e�orts

par l'expérimental en combinant molécules neurotoxiques et augmentation de la viscosité

du �uide, pour comparaison.

Pour conclure, ce travail de thèse a d'abord consisté à développer une méthodologie

permettant d'intégrer des données expérimentales : la déformation du poisson-zèbre ainsi

que la forme de son corps à chaque instant, au sein d'un code de simulation numérique.
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Figure 4: Mise en place d'un test d'e�ort. Toute simulation numérique repose à la fois sur les
déformations expérimentales et sur le paramètre de viscosité. Alors, on peut simuler numériquement
la nage du poisson-zèbre dans une viscosité di�érente de la condition expérimentale a�n d'ampli�er
la dépense énergétique. (A) Six viscosités di�érentes ont été utilisées expérimentalement. Les cases
colorées correspondent aux simulations numériques réalisées : vertes pour les simulations dites "réalistes"
et rouge-orange pour les simulations dites "�ctives". Pour chacune des conditions, les résultats de trois
simulations numériques ont été analysées statistiquement. (B) Impact du test d'e�ort sur la distance
parcourue. (C) Impact du test d'e�ort sur la puissance dépensée en moyenne.

Après s'être assuré de la validité et de la reproductibilité de notre approche numérique,

par di�érentes études sur les paramètres du modèle et de la simulation notamment, de

nombreuses applications de cette approche ont été démontrées via à la fois des simulations

numériques dites "réalistes" et "�ctives" telles que réalisées dans le cadre de la mise en

place d'un test d'e�ort. Expérimentalement, deux études ont été menées : l'augmentation

de la viscosité du �uide et la diminution de la concentration d'un neurotoxique particulier.

En termes de perspectives, l'approche numérique pourrait certainement être améliorée en

précisant les erreurs numériques dues à des questions de modélisation comme l'élasticité

de la membrane entourant la queue ou bien l'impact de la réduction du nombre de degrés

de liberté. Expérimentalement, de nombreuses expériences et simulations numériques

seraient encore à mener a�n d'augmenter signi�cativement la taille des études en termes

de nombre de réponses de fuite simulées. De plus, des tests d'e�orts doivent être conduits

expérimentalement a�n de compléter les analyses commencées dans ce travail de thèse.

Par ailleurs, un échantillonnage plus �n des gammes de concentrations et des simulations

sur d'autres composants chimiques seraient pertinents pour avoir une meilleure idée du

champs d'application de la méthode numérique développée.
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1.1 Representation of a typical zebra�sh C-start escape response,
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1.2 Illustration of a biological locomotion study with mutant
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zebra�sh eleuthero-embryo abnormal response (A-B). Note the di�erence
in modules timings, indicated in ms. Kinematics (C-E) such as bend
amplitude (C), tail-beat frequency (D) and swimming speed (E), between
control and morphant phenotypes raised signi�cant alterations. . . . . . . 8

1.4 De�nition of the head-tail angle, from [21]. Note only three
segments are required to compute the head-tail angle although a
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digitization and the calculation of midline curvatures. The
example extracted from [90], presents the C-start swimming kinematics
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strokes, represented by silhouettes and midline kinematics. The overall
body kinematics is well-represented by curvature along the length of the
�sh and across time (C). Convex and concave motions are illustrated in
blue and red, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Particle image velocimetry (PIV) visualization of the �ow. PIV
has been widely used to analyze the wake structure. Essentially, PIV
measurements provide an estimation of the velocity �eld of the �ow. Note
the sequence, from [90] is identical to Fig. 1.5. . . . . . . . . . . . . . . . . 10
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1.7 Example of a 2D automated tracking method, from [38]. The
model is adjusted at each time step i.e. frame (Fig. 1.7A): �rst the
model location is estimated (A) before �tting the midline of the model
(B). Note the boundary may not correspond exactly due to small out-of-
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based research algorithm. The resulting tracking results (Fig. 1.7B) are
based on zebra�sh aged of 5 dpf (A,D), 15 dpf (B,E), 28 dpf (C,F). First
row are wild-type zebra�sh while second raw are stocksteif mutants. . . . 11

1.8 Advanced automated tracking method based on projection-
based iterations, from [131]. First, we can see (Fig. 1.8A)
the construction of the in silico zebra�sh. The initial zebra�sh 3D
shape is formed by cross-sectional shapes (A), based on ellipsoidal
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track a full 3D motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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and power, from [124]. First, a swimming sequence of a 5 dpf zebra�sh
with body shapes (b)) and midline kinematics (a) are presented (Fig.
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velocity (c), angular acceleration (e) and the moments of inertia changes
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Note di�erences between body angle and heading angle are particularly
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constant phase delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.10 First 3D zebra�sh reconstructions have been generated manually.
Comparison between real picture (a) and computational shape (b) of a
5 dpf zebra�sh. The picture was taken from [58]. Such realistic surface
mesh were used to compute numerical simulations [58, 65, 67]. . . . . . . . 14

1.11 Computational studies mainly use PIV experiments to validate
escape swimming simulations. Pictures are taken from [67] (Fig.
1.11A) and [43] (Fig. 1.11B). Note all simulations reproduce the same
experimental swimming kinematics (Fig. 1.11B, (b)), from [90]. . . . . . . 17
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1.12 A �rst computational study which validated against experimental
kinematics, from [65]. The trajectory which includes seven tail-beats,
was particularly well-reproduced (Fig. 5.17A). Computational kinematics
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could not have been compared with experimental rotation as body
deformations were approximated from the heading angle and not from
the actual rotation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
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simulation against the experiment for seven tail-beats, from
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few experimental kinematics involving strong C-bend motions,
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center-of-mass trajectory (a) shows a well-reproduced kinematics although
translational and rotation di�erences might be visible. As for kinematic
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2.8A), grid nodes are at arrival locations while the departure point is
considered at the grid node for a semi-Lagrangian transportation (Fig.
2.8B). In both cases, we represented in black the silhouette associated to
the Cartesian grid; previous or next contour being in gray. . . . . . . . . . 46

2.9 After a Lagrange-like transportation step, the particle named
"old particle" is remeshed onto the Cartesian mesh, from the Lisl
Weynans' PhD [132]. The particle quantities such mass, momentum
and energy participate to the "new particle" calculations. . . . . . . . . . 47

2.10 Algorithm illustrating the interaction of the di�erent numerical
components and the link to the experimental data. . . . . . . . . . 50

3.1 Zebra�sh are reared inside and by the MRGM lab. Adult zebra�sh
are reared in large tanks while zebra�sh eleuthero-embryos and larvae are
bred inside suitable aquariums, after hatching. . . . . . . . . . . . . . . . . 54

3.2 The MRGM lab is equipped by two ultra high-speed FastCam
cameras which can record up to 15,000 fps. . . . . . . . . . . . . . . 55

3.3 Example of an escape locomotion (fast-start) of a 5 dpf zebra�sh
eleuthero-embryo. We can see how fast and large the body kinematics
is, in reaction of an electric stimulus. The zebra�sh eleuthero-embryo is
initially at rest (Fig. 3.3A) and initiates the so-called C-bend motion
(Figs. 3.3A-3.3C) where a C-shaped is formed (Fig. 3.3C). Then, the
eleuthero-embryo engages a counter-bend motion (Figs. 3.3C-3.3E).
Note the counter-bend deformation (Fig. 3.3 E) is particularly signi�cant
in this escape swimming. Generally, the C-bend constitutes a larger body
deformation. Finally, multiple fast-swimming cycles can be observed
(Figs. 3.3 E-3.3 L). The timings of the three characteristic stages of
escape swimming are given for illustrative purpose. Individual recording
at 10, 000 fps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Various illustrations of the impact of video quality on the
computed segmentation. All computed clusters are represented for
four video examples. For the �rst case, a k-means algorithm has been
used with multiple clusters, on the original video (Fig. 3.4B) and the pre-
processed video (Fig. 3.4A). Second (Fig. 3.4C) and third (Fig. 3.4D)
show the variation of background quality impact. Finally, a di�erent
camera has been used for recording the last classi�ed image (Fig. 3.4 E). . 58

3.5 Illustration of the Procrustes Analysis for two di�erent body
deformations. For subtracting the rigid motion, center-of-mass positions
of the considered body silhouette (black contours) are �rst computed
(black points). Note red contours and red points denote the output
contours and center of mass, after subtracting rigid kinematics. The
translation part of the rigid transformation consists of re-centering the
center of mass. The rotation part resides in the computation of the global
body angle relatively to vertical, for example. The body angle is also called
tilt angle. Notice the tilt angle is straightforward to estimate in case of
small deformations (Fig. 3.5B) and ill-de�ned for strong deformations
(Fig. 3.5A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Figures xxx

3.6 Rigid kinematics computed via the Procrustes Analysis step.
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morphology (Figs. (A),(C)). In the dorsal views, we can notice the
symmetry and the position of pectoral �ns while in the lateral view,
the median �n fold (m�) contour is well-reproduced. Besides, slight
discontinuities are visible in both representations which denote the shape
interpolation segments. Representative 5 dpf zebra�sh eleuthero-embryo
is shown in dorsal view (A) or in lateral view (C) with the anterior part
to the left. The median �n fold (m�) is highlighted by a dashed line.
Other abbreviations: ai, anterior intestine; b, brain; cf, caudal �n; e, eyes;
h, head; l, liver; pf, pectoral �ns; r, rectum; sb, swim bladder; t, trunk;
vc, vertebral column. Scale bar, 500 µm. . . . . . . . . . . . . . . . . . . . 78

3.19 Representations of the 3D reconstructed 5 dpf zebra�sh
eleuthero-embryo volume (level φ = 0). Notice slight discontinuities
are visible in the top (Fig. 3.19A) and side (Fig. 3.19B) views as the
volume is formed by 1602 cross-sections. With the perspective view (Fig.
3.19C), we can see how detailed the �nal representation is. . . . . . . . . 79
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3.20 Comparison in 2D of level-set transportation using remeshing
particle methods. The top row (Figs. 3.21A-3.21F) represents the
reference sequence (15, 000 fps) used for computing the deformation
velocity with optimal transportation. The middle row (Figs. 3.21G-
3.21 L) illustrates the transportation of the initial distribution (Fig.
3.21A) with the M ′4-interpolation kernel. As for the last row (Figs.
3.21G-3.21R), the M4-interpolation kernel was used instead. To validate
the deformation velocity and the advection algorithm, intermediate
transported snapshots should match the reference data. . . . . . . . . . . 81

3.21 Comparison in 2D of level-set transportation using remeshing
particle methods, based on an arbitrary initial silhouette. The top
row (Figs. 3.21A-3.21F) represents the reference sequence (15, 000 fps)
used for computing the deformation velocity with optimal transportation.
The middle row (Figs. 3.21G-3.21 L) illustrates the transportation of the
initial distribution (Fig. 3.21A) with the M ′4-interpolation kernel. As for
the last row (Figs. 3.21G-3.21R), the M4-interpolation kernel was used
instead. To validate the deformation velocity and the advection algorithm,
intermediate transported snapshots should match the reference data. . . . 82

3.22 Construction of control points using the Cartesian grid and the
level-set function. For illustration purpose, we only represented 1/25
control points including the surface and midline points. Note the green-
line denotes the horizontal section θ1 = θNθ = 0 while the orange-line
almost represents the symmetric points as the sectional plane corresponds
to θNθ/2. In that way, we only represent two surface points per cross-
sections. That is why, we do not particularly notice how symmetric the
3D reconstruction is. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.23 Representation of the B-spline approximations for two surface
longitudinal lines. As in Fig. 3.22, we only represented two
θi(i = 1, Nθ/2) per cross-sections, which are almost opposed. Note
the generated Lagrangian markers are not speci�cally inside each cross-
section but regularly spaced along the surface geodesic to create uniform
cells on the body surface. Note only 10% of all Lagrangian markers are
represented, for indicative purpose. . . . . . . . . . . . . . . . . . . . . . . 84

3.24 Example of a cross-section in which each Lagrangian marker has
been regularly spaced along the surface geodesic. We can see how
important a remeshing algorithm is, in particular for such transverse slices
with large curvatures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.25 Comparison of two 3D reconstructions based on di�erent spatial
resolution. We reduced the amount of cross-sections from the original
1602 transverse slices (top) to approximately 160 reconstructed slices
(bottom). Note we compare the lateral view (Fig. 3.25A) and the general
perspective view (Fig. 3.25B). . . . . . . . . . . . . . . . . . . . . . . . . 85

3.26 Comparison of two 3D surface mesh based on di�erent sampling
size of control points. We reduced the amount of control points form the
original 1602 transverse slices (top) to approximately 160 reconstructed
slices (bottom). Note we compare the lateral view (Figs. 3.26A, 3.26B)
and the top view (Figs. 3.26C, 3.26D). For both 3D representations, we
used the same surface mesh discretization: Ns = 300 slices and Nθ = 180
angular directions for each cross-section. . . . . . . . . . . . . . . . . . . . 86
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3.27 Comparison between our 3D surface representation (Figs.
(B),(D)) and the photos of an actual 5 dpf zebra�sh eleuthero-
embryo morphology (Figs. (A),(C)). In the dorsal views, we can
notice the symmetry and the position of pectoral �ns while in the lateral
view, the median �n fold (m�) contour is well-reproduced. Besides, notice
how the surface is smoothed by the splines. Representative 5 dpf zebra�sh
eleuthero-embryo is shown in dorsal view (A) or in lateral view (C) with
the anterior part to the left. The median �n fold (m�) is highlighted by
a dashed line. Other abbreviations: ai, anterior intestine; b, brain; cf,
caudal �n; e, eyes; h, head; l, liver; pf, pectoral �ns; r, rectum; sb, swim
bladder; t, trunk; vc, vertebral column. Scale bar, 500 µm. . . . . . . . . . 87

3.28 Perspective view of the reconstructed surface representation.
Surface mesh discretization: Ns = 300 slices and Nθ = 180 angular
directions for each cross-section. . . . . . . . . . . . . . . . . . . . . . . . . 87

3.29 Computation of 2D level-set functions φ. Outside of the body, φ < 0
(blue) while φ > 0 (red) de�nes the zebra�sh mass density. The boundary
is given by φ = 0 (dark red). . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.30 Illustration of the gradient magnitude of the level-set function.
Notice how the midline corresponds to the singular line of the gradient
(low intensity pixels inside the body). By de�nition, the level-set gradient
is 1 (red). However, we stopped the iterative process before reaching the
domain boundary. That is why the gradient is not updated everywhere
(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.31 Representation of the 1-pixel wide midline resulting from the
custom thinning algorithm. We can see the pixel-wise midline (red)
on top of the level-set gradient magnitude (shades of blue). In addition,
the zebra�sh contour is also visible through the gradient magnitude. . . . 90

3.32 Illustration of our custom tracking procedure. The red pixels
delimit the searching area for tracking the center of the head. We
represented the tracking area (red) on top of the level-set gradient
magnitude (shades of blue) as the calculation was based on an adequate
selection of low-gradient pixels. . . . . . . . . . . . . . . . . . . . . . . . . 91

3.33 Representation of the �nal pixel-wise midline computation. The
midline (red) is showed on top of the level-set gradient magnitude (shades
of blue). Notice the di�erences near the head extremity with Fig. 3.31.
Note the midline is incomplete and the extremal sections will be added
when processing the pixel-wise midline. . . . . . . . . . . . . . . . . . . . . 92

3.34 Representation of six deformed midlines representing the body
kinematics. Notice only the two surface geodesics corresponding to
θi(i = 1, Nθ/2) are displayed. Besides, we added in the Figure, the
rigid part of the midline corresponding to the head extremity. Note
the six deformed shaped correspond to the experimental frames detailed
previously in Fig. 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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3.35 Representation of six deformed midlines alongside the corresponding
surface shapes. Notice only the two surface geodesics corresponding
to θi(i = 1, Nθ/2) are displayed. Besides, we added in the Figure, the
rigid part of the midline corresponding to the head extremity. Note
the six deformed shaped correspond to the midline kinematics presented
beforehand (Fig. 3.34) and to the experimental frames detailed previously
in Fig. 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.36 Representations of the reconstructed and deformed 3D surfaces
via Lagrangian markers. Again, we represented the corresponding
surfaces of 2D illustrations in Figs. 3.34, 3.35 and experimental images
described in Figs. 3.3, 3.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.37 Signi�cant angle smoothing to improve the Procrustes Analysis.
We smoothed the original signal using a standard average �lter to remove
the spurious rotation occurring between t = 18 ms and t = 25 ms.
The smoothing e�ects are well-visible on all rotation peaks, between the
smoothed (red) and original (black) angular signals. . . . . . . . . . . . . 94

3.38 Enhancement of the Procrustes Analysis correction by using a
threshold on θε. We can see on θε (Fig. 3.38B) the highly noisy signal
and the limit of our angle calculation, approximately between times t = 18
ms and t = 25 ms. After applying a threshold (red) on the originally
computed angles (black), we observe a better approximation of rotation
peaks (Fig. 3.38A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.39 Enhancement of the Procrustes Analysis correction by smoothing
the angular step θε instead of θ. After correction, the computed
rotation angle (red) �ts the original signal (black) and ignores the
spurious calculations. Notice how slight di�erences on θε (between Fig.
3.38B and Fig. 3.39B for example) can lead to a signi�cant impact on
the global rotation of the zebra�sh eleuthero-embryo (Fig. 3.38A against
Fig. 3.39A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.40 Procrustes Analysis in 3D: a similar enhancement. All 2D angles
(Fig. 3.40A, black and red) are reproduced for comparison with the
3D outputs. Note in 3D, the computed angles (Fig. 3.40A, blue and
green) are added to the 2D angles, already subtracted to the motion.
As for the angular step (Fig. 3.40B), the proper approximation is not
straightforward as multiple �ltering and smoothing are required (green
then red then orange) to �lter the original spurious angular signal (blue). 97

4.1 Kinematic comparison between the experimental estimate
(blue) and the numerical solution (red). Note the black markers
indicated along the center-of-mass trajectory (left) correspond to the
maximal rotation timing denoted by vertical lines and associated zebra�sh
silhouettes in the rotation comparison (right). Notice the general aspect
of the numerical trajectory does correspond to the initial result. Only
the relative position of the CoM slightly changes. As for the rotation
indicated by the body angle, we can see a larger numerical error near the
C-bend (15 ms) while our solution slightly di�ers from the original one,
especially after 30 ms. The optimal transportation algorithm has been
performed on 200 × 200 segmented images. The computational domain
was re�ned to 1024× 1024 cells. . . . . . . . . . . . . . . . . . . . . . . . . 100
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4.2 Escape trajectory of a 5 dpf zebra�sh eleuthero-embryo induced
by an EFP stimulus. The considered experimental escape response
corresponds to Fig. 4.1. Notice how signi�cant the numerical error
produced on the body rotation between the experimental data (bottom)
and the numerical solution (top) is. . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Evaluation of grid convergence on escape kinematics for the
initial test case presented in Figs. 4.1, 4.2. Two di�erent mesh size
are represented: 512×512 (green) and 1024×1024 (red). The domain was
�xed at 16.000 mm2. Note the red-kinematics corresponds to previous Fig.
4.1. The impact on the center-of-mass trajectory (left) and body rotation
(right) are not important and the overall shape is identical. . . . . . . . . 102

4.4 Analysis of the numerical sensitivity of the center-of-mass
trajectory. Only few simulation parameters di�ered from each numerical
simulation. On the left, we compare the previous 512× 512 solution (red,
Fig. 4.1) with reduced domain size (pink, brown) and di�erent initial
conditions (purple). Finally, the orange solution was computed before
enhancing the numerical algorithm of optimal transportation. On the
right, we only changed the initial time frame by integrating ten additional
frames (red trajectory). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Kinematic comparisons between the experimental estimate
(blue) and the numerical solution (red). The three �gures Figs.
4.5A, 4.5B, 4.5C denote three additional and distinct experimental
responses. Note the black markers indicated along the center-of-mass
trajectory (left) correspond to the maximal rotation timing denoted
by vertical lines and associated zebra�sh silhouettes in the rotation
comparison (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.6 Comparison between two approaches based on optimal transportation
and Lagrangian markers, by considering the same test case. The
fully Eulerian simulation based on optimal transportation (green) was
performed with a 5122-grid as with previous results (Chap. 3). As
for the Eulerian-Lagrangian method (red), we used 300 Lagrangian
markers to describe the whole contour, which we combined with a 5122

Cartesian grid. Both numerical simulations have been compared against
the experimental kinematics (blue). . . . . . . . . . . . . . . . . . . . . . . 107
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4.8 Body deformations of the initial test case presented in Chapter
3. The new calculation of the bend amplitude (green) is more accurate
than the current software FLOTE bend amplitude (blue). The bottom
pictures illustrate the body kinematics corresponding to the extrema of
the bend amplitude. Besides, the three colored stages de�ne the C-bend,
counter-bend and fast-swimming phases, respectively. . . . . . . . . . . . . 109

4.9 Impacts of the 2D and 3D calculation of the center of mass. Only
minor di�erences can be seen between the 2D and 3D trajectories (Fig.
4.9A) although the overall displacement can be considerable according
to the considered body deformation (Fig. 4.9B). Note vertical lines
denote the timing of deformation extrema (Fig. 4.8). The corresponding
occurrence are also represented by markers '+' on the trajectory (Fig.
4.9A). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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4.10 Overview of the numerical solution corresponding to the original
video in Fig. 3.3 and deformation pictures in Fig. 4.8. The
zebra�sh escape motion is illustrated by six time snapshots through Figs.
4.10A-4.10F. We represented in red the zebra�sh eleuthero-embryo while
the �uid �ow is described by the so-called �uid vorticity which highlights
the rotation of the �uid rotation. We colored an iso-contour of the vorticity
with the corresponding �uid velocity magnitude. . . . . . . . . . . . . . . 111

4.11 Illustration of a 3D wake generated by a zebra�sh escape
response. The test case corresponds to the original video (Figs. 3.3, 4.8,
4.10) at t = 47 ms. We represented in red the zebra�sh eleuthero-embryo
while the �uid �ow is described by the Q-criterion, which highlights the
�uid rotation of the 3D vortices similarly to vorticity (see Chapter 2).
We colored an iso-contour of the Q-criterion with the corresponding �uid
velocity magnitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.12 Power consumption of a zebra�sh eleuthero-embryo for performing
a fast-start and two cycles of fast-swimming. The numerical power
output (black) is very noisy due to the time discretization of the solver.
Thus, the power signal is averaged every millisecond (orange) before
applying a smoothing �lter (red). Note vertical lines denote the timing of
deformation extrema (Fig. 4.8). . . . . . . . . . . . . . . . . . . . . . . . . 113

4.13 Pmean and Et from the power output. The Pmean value (horizontal
green line) is computed by averaging the smoothed power. Et is computed
by integrating the smoothed power over time. As a result, the expended
energy corresponds to the area (orange area) delimited by the power curve.114

4.14 Convergence of the numerical solution according to the
computational mesh size. All three resolutions with Nx = 315
(orange), Nx = 420 (red), Nx = 525 (green), present the same global
trend regarding the experimental trajectory. The solutions obtained by
the two most re�ned meshes are nearly identical. . . . . . . . . . . . . . . 115

4.15 Trajectory comparison between a �rst-order and a second-
order accuracy penalization method. The second-order penalization
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4.16 Numerical trajectory based on a 3D Procrustes Analysis. In the
original simulation (violet), a 3D center of mass is considered but the body
rotation is untouched. In the improved simulation (green), both the center
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Analysis processes have been conducted without the correction step. . . . 117

4.17 Illustration of the impacts of the Procrustes Analysis correction
on the center-of-mass trajectory. The improved Procrustes Analysis
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4.18 Impact of the mass volume in the Procrustes Analysis step,
on the numerical simulation. The 3D-like simulation (red) used a
Procrustes Analysis which takes into account the actual 3D mass for
computing the rotation. Instead, the 2D-like simulation (orange) has been
based on a Procrustes Analysis which considered the dorsal projection of
the 3D volume for weighting the 3D rotation calculation. Note the latter
is identical to Fig. 4.17. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.19 Comparison of the center-of-mass kinematics between experimental
measures (blue) and the numerical solution (red). Overall, the
trajectory (Fig. 4.19A) and velocity magnitude (Fig. 4.19B) are
well-reproduced despite the slight acceleration in the beginning of the
fast-swimming stage (t 32 ms). Note vertical lines denote the timing of
deformation extrema (Fig. 4.8). The corresponding occurrence are also
represented by the black markers on the trajectory. . . . . . . . . . . . . . 120

4.20 Visualization of the rotation kinematics. On the global body
rotation (Fig. 4.20A), we can see the comparison with the experimental
rotation issued from the Procrustes Analysis. In addition, we represented
the rotation velocity (Fig. 4.20B). Note vertical lines denote the timing
of deformation extrema (Fig. 4.8). . . . . . . . . . . . . . . . . . . . . . . 121

4.21 Impact of the smoothing of experimental data on the trajectory.
Initially, numerical simulations have been performed by using the raw
experimental data (orange). Afterward, we applied a mean �lter to smooth
in space the data noise, over a range of a 5-node (red) and a 11-point
(green) window. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.22 Impacts of slight di�erences in the body rotation computed by
the Procrustes Analysis on the numerical trajectory of the center
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4.23 Arti�cial variations of the center of mass. The center of mass has
been moved towards the snout (green) and towards the tail (orange).
Note colors correspond between sub�gures 4.23A and 4.23B. All three
representations are aligned on the center-of-mass position in Fig. 4.23B. . 124
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4.25 Reproducibility of experiment-driven numerical simulations. For

the viscous test cases (Fig. 4.25A), we immersed zebra�sh eleuthero-
embryos into water (A), and viscous �uids with a ratio of 1.1 (B), 2.3
(C), 5 (D), 10 (E), 15 (F) against water viscosity. For the toxicological
test cases (Fig. 4.25B), we simulated up to two drug concentrations (Figs.
(H), (I)) alongside the control group (A). Three experiments have been
simulated for each experimental condition, corresponding to each color.
For each experiment, we represented the experimental trajectory (dashed
line) and its associated numerical simulation (solid line). . . . . . . . . . . 127

5.1 Relationship between Dextran concentration and �uid dynamic
viscosity µ. Note the concentration denotes the weight/volume ratio
(w/v). The circles denote the known estimated values from [28] for 5%,
7% and 9% of Dextran concentration. The viscosity value for 1% and 3%
of Dextran solution is extrapolated from a cubic spline interpolation. . . . 133
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5.2 The body rotation computed from the Procrustes Analysis was
used to characterize the di�erent stages. The total escape time
was considered as the sum of the C-bend-driven (pink) and counter-bend-
driven (blue) rotation phases plus two cycles of fast-swimming rotation
(green). Note the example is the initial test case of Chapter 4 and dashed
lines correspond to extrema of body deformations (Fig. 4.8). . . . . . . . 134

5.3 Two distances have been computed in the entire escape
locomotion for each experiment and analyzed according to
�uid viscosity. For each viscous condition, we analyzed 11 (µw), 9 (µ1),
11 (µ2), 12 (µ5), 14 (µ10), 13 (µ15) experimental videos, for both the total
traveled distance (Fig. 5.3A) and the raw displacement (Fig. 5.3B).
Each experimental escape response is represented by an individual point.
Note we show in red the experimental cases we further modeled with the
numerical simulation. The mean value is represented alongside the SEM.
Multiple statistical comparisons can be found in Table 5.1. . . . . . . . . . 135

5.4 Several variable have been computed only in the fast-swimming
stage for each experiment and analyzed according to �uid
viscosity. For each viscous condition, we analyzed 11 (µw), 9 (µ1),
11 (µ2), 12 (µ5), 14 (µ10), 13 (µ15) experimental videos, for the fast-
swimming traveled distance (Fig. 5.4A) and 14 (µw), 14 (µ1), 15 (µ2), 13
(µ5), 14 (µ10), 13 (µ15) escape responses for the translation velocity (Fig.
5.4B), tail-beat frequency (Fig. 5.4C) and mean rotation amplitude (Fig.
5.4D). For the distance, two fast-swimming cycles were required while
other quantities can be averaged. Each experimental escape response is
represented by an individual point. Note we show in red the experimental
cases we further modeled with the numerical simulation. The mean value
is represented alongside the SEM. Multiple statistical comparisons can be
found in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.5 C-starts have also been analyzed for each experiment, according
to �uid viscosity. For each viscous condition, we analyzed 11 (µw), 5
(µ1), 9 (µ2), 11 (µ5), 9 (µ10), 10 (µ15) experimental videos, for the maximal
C-bend rotation angle (Fig. 5.5A) and 14 (µw), 14 (µ1), 15 (µ2), 13 (µ5),
14 (µ10), 13 (µ15) escape responses for the C-bend rotation velocity (Fig.
5.5B). For the maximum rotation, we only considered escape responses
where the rotation is maximum during the C-bend motion to �lter non-
stereotyped behaviors. Each experimental escape response is represented
by an individual point. Note we show in red the experimental cases
we further modeled with the numerical simulation. The mean value is
represented alongside the SEM. Multiple statistical comparisons can be
found in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
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5.6 Comparison of numerical simulation kinematics against experiments.
We represented in parallel both the experimental (�lled circles) and the
numerical (empty circles) kinematics including the fast-swimming traveled
distance (Fig. 5.6A), the fast-swimming average velocity (Fig. 5.6B),
the raw displacement (Fig. 5.6C) and the global traveled distance (Fig.
5.6D). Note for each condition, we show the mean of N = 3 escape
responses alongside the SEM. In addition, we computed the non-linear
correlations (exponential decay) for the experimental (solid line) and
numerical (dashed line) values. Finally, we annotated the results of a
Sidak's test when numerical values deviate signi�cantly from experiments.
Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001,
****: p < 0.0001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.7 Illustration of body deformation e�ects on the rigid rotation, for
all test cases. All Figs. 5.7A-5.7R correspond to an individual escape
response, each row being associated to a viscous condition. For all �gures,
we represented in blue the bend amplitude alongside the body rotation in
green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.8 Average time delay between body deformations and rotation
according to viscosity. We computed the quantity Tdef-rot to
characterize the time delay between the bend amplitude and the rotation
angle, visible in Fig. 5.7. We represented the mean (points) with the
SEM and the non-linear regression which decays at an exponential rate.
Multiple statistical comparisons can be found in Table 5.4. . . . . . . . . . 143

5.9 Flow regime: variation of Re according to the �uid viscosity.
Note the Reynolds number has been computed with the average velocity
of the complete escape simulations. We represented the mean (points)
with the SEM and the corresponding non-linear regression (solid line).
The regression decays as exp(−µ)

µ . Multiple statistical comparisons Tukey's
test can be found in Table 5.4. . . . . . . . . . . . . . . . . . . . . . . . . 143

5.10 Illustration of various advanced wake according to �uid viscosity.
We represented an example of a top-view of three-dimensional numerical
simulation for each viscosity µw (Fig. 5.10A), µ1 (Fig. 5.10B), µ2 (Fig.
5.10C), µ5 (Fig. 5.10D), µ10 (Fig. 5.10E), µ15 (Fig. 5.10F). Notice the
zebra�sh body in red and the �uid vorticity represented by an iso-contour
of the Q-criterion (Q=150), colored by velocity magnitude. Note the water
test case correspond to the initial experimental locomotion considered in
Chapter 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.11 Illustration of body deformation e�ects on the power output, for
all test cases. All Figs. 5.11A-5.11R correspond to an individual escape
response, each row being associated to a viscous condition. For all �gures,
we represented in blue the bend amplitude alongside the power in red. . . 146

5.12 Average delay between body deformation maximum and power
minimum according to viscosity. We computed the quantity Tdef-pow
to characterize the time delay between the bend amplitude and the power
cycles, visible in Fig. 4.13 for example. Data are mean ± SEM. The slope
of the linear regression is signi�cantly di�erent from zero (p=0.0007). A
Pearson correlation test showed a signi�cant correlation between Tdef-pow
and µ. Multiple statistical comparisons can be found in Table 5.5. . . . . 147
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5.13 Representation of escape swimming energetic performances
according to viscosity. For each escape response, we computed Et
(Fig. 5.13A), tPmean (Fig. 5.13B) and CoT (Fig. 5.13C). Note for each
condition, we show the mean of N = 3 locomotion alongside the SEM. The
slope of the linear regression of Pmean (Fig. 5.13B) was non-signi�cantly
di�erent from zero (p=0.0684) while the slope of the linear regression
of CoT (Fig. 5.13C) was signi�cantly di�erent from zero (p<0.0001).
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Chapter 1

General introduction

1.1 PhD context and motivations

On the one hand, the Rare Diseases Genetic and Metabolism (MRGM) is an INSERM

research group composed of biologists who actively study zebra�sh neurobiology especially

in terms of genetic, toxicology and pharmacology approaches. Therefore, zebra�sh is

used as an animal model to assess human diseases. For that purpose, they directly

work with zebra�sh animals, reared inside the laboratory. Currently, a custom-made

software is used for analyzing multiple escape responses with a very high-speed camera.

In the recent years, the MRGM team developed a speci�c electric �eld pulse (EFP)

cell to stimulate zebra�sh eleuthero-embryos in order to produce a strong, fast, and

very stereotyped zebra�sh escape response, also called C-start. On the other hand, the

MEMPHIS INRIA team developed a high-performance computational �uid dynamics

(CFD) code to simulate the �ow around immersed bodies. As an application, they

studied �sh-like swimming by tuning the body geometry and its kinematics where a

harmonic formulation was imposed. For the purpose of the study, only steady and

periodic swimming was considered. However, they recently provided algorithms to use

real-like kinematics based on given time snapshots, by focusing on optimal transportation

algorithms. Since the last 5 years, the two research teams have initiated a collaboration

which aim to combine numerical simulations with experiment-driven biological studies.

In fact, CFD simulations of �sh-like swimming are generally based on real-like body

morphology and body kinematics but generally lacks of real-world experimental data.

As for the experimental �eld, many imaging data can be generated but biologists would

desire to use a numerical tool which could help and support in assessing and quantifying

the swimming dynamics and energetics. Indeed, only kinematics can generally be

estimated through experimental imaging which may not be su�cient to quantify the

overall swimming performances. The numerical tools implemented by the MEMPHIS

team and the experimental data provided by the biologists of the MRGM research group

were signi�cant enough to build an interdisciplinary collaboration, for a multidisciplinary

1
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framework.

Afterward, my PhD was funded by an interdisciplinary grant to build and enhance the

existing tools and potential interactions between experiment-driven research in biology,

and computational and mathematical modeling. To that end, I interactively worked

with two research teams for building and elaborating a numerical process based on

experimental data which aims to explore biological questions and experiment-driven

studies. The �rst collaborations and interactions between the MRGM lab and the

MEMPHIS team have contributed to pioneer my PhD work.

Therefore, this PhD work is based on locomotion experiments and numerical simulations.

Experimental locomotions consisted of video recording of zebra�sh eleuthero-embryo

escape response after an EFP stimulation. As a result, my PhD work is core towards

both numerical modeling and experiment-driven biological studies. Finally, we aim to

integrate the experimental data i.e. escape response videos within a highly validated

CFD code to produce real-world numerical simulations. Note the body kinematics

requires to be reconstructed in 3D in-between. Thus, the following state of the art

�rst introduces the interests of both the zebra�sh model for locomotion, and numerical

simulations of �sh-like swimming. Afterward, the state-of-the-art methodology for

analyzing zebra�sh escape responses, or performing self-propelled swimmer simulations

is detailed. Following the state of the art, the general objectives of this PhD work are

presented before closing the chapter with the outline of the present thesis.

1.2 State of the art

1.2.1 Locomotion of aquatic animals

Locomotion of aquatic animals �rst captivated biologists before dragging multiple and

various research �elds which now generate more and more interdisciplinary works.

As observed in nature, the kinematics of swimming animals can vary signi�cantly

between species, according to the body morphology. First, two groups are generally

distinguished among teleost �sh species [107]: Body and/or Caudal Fins (BCF) and

Median and/or Paired Fins (MPF) kinematics which denote the body parts mainly

used for moving. Most species propel themselves with backward traveling waves along

the body. However, the traveling wave can be restrained to the tail which denotes the

so-called Carangiform swimming or moves across the entire body length, characterizing

the so-called Anguiliform swimming. Actually, Sfakiotakis et al. [107] distinguished

four swimming modes: anguiliform, subcarangiform, carangiform, thunneiform: from

the eel-like to the tuna kinematics. Besides, the swimming mode can di�er according

to the developmental stage. Indeed, �sh morphology undergoes signi�cant changes from

larval stages to adult age which considerably impacts the hydrodynamics of swimming

[80]. Fish larvae have a speci�c shape which they employ to ful�ll several needs. In the
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early developmental stages, �sh larvae do present multiple locomotion behaviors, often

related to speci�c functional needs. In this regard, we refer to the recent review of larval

�sh swimming [130] which recapitulates the larval kinematic and energetic behaviors. In

addition to the biological functions, the biomechanic powers are investigated. Regarding

zebra�sh (Danio rerio) larvae, the locomotor behaviors including fast-starts have been

well-studied since few decades [21, 31, 89, 93]. The main question constantly raised

concerns the evaluation of �sh swimming performances, by assessing the power output

required to move and propel its body alongside swimming velocity [104]. For instance,

Sir James Gray asserted in 1936 [48] that the power requirement for dolphins, which

are mammals, to reach theirs cruising speeds, had to be up to seven times higher

than actually observed energetics. Afterward, the pioneering mathematical work of Sir

James Lighthill [71�74] helped to understand the link between the body kinematics and

swimming performances under simpli�ed assumptions such as inviscid �ows, anguiliform,

and steady swimming which allowed to separate drag and thrust forces. Basically, the

body forces were estimated using analytic formulations of drag and thrust. Therefore,

�sh locomotion has originally been mainly studied through empirical observations

and theoretical analysis of hydrodynamics. The underlying questions concern the

optimal morphology or kinematics for swimming e�ciently. That is why, many studies

originated from airfoil theories by reducing the �sh body and its kinematics to a �apping

wing [33, 117]. Note Gray was one of the �rst to link aquatic locomotion and foils.

Performance studies across various marine species, analyzed Strouhal and Reynolds

number relationships, and consistently found an optimal Strouhal number matching the

empirical observations in nature [32, 40, 113, 117]. Meanwhile, digital particle image

velocimetry appeared to assess the �uid �ow velocity and the wake generated behind a

steady �sh swimming. At this stage, undulatory �sh propulsion has been well-studied

(see [62] for review) but the authors of the review highlighted the crucial need for

computational methods and the integration of intern biological processes to understand

the exterior propulsive biomechanics.

CFD has then emerged in the last decades to enlighten the links between swimming

speed, body kinematics, and swimming e�ciency [14, 15, 40]. We refer the reader to

the review of [75] to comprehend how CFD methods can expand the understanding of

�sh swimming which in turn, signi�cantly challenges the current numerical methods.

In fact, insect �ying and �sh swimming constitute speci�c and unique natural cases of

strongly unsteady phenomena within relatively steady �ows [75]. For aquatic locomotion,

unsteadiness is often generated by escape responses and complex maneuvers, �n motions,

�sh schooling, or turbulent �ows. The latter case has been reviewed in [70]. Actually,

�sh propulsion mechanics can be decomposed into an active contribution generated by

the body deformations and a passive part from the interaction between the surrounding

hydrodynamics and body morphology [36]. To visualize, passive swimming is also called

"dead �sh" swimming. Experimental studies showed a passive body can e�ectively gain

energy from upcoming vortices [5]. Recently, many numerical studies investigated into
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the performances of �sh schooling [42, 63, 64, 126]. Due to inherently numerical essence,

CFD methods naturally led to optimization issues and engineering applications. Indeed,

multiple numerical simulations of self-propelled swimmers aimed at optimizing the shape

of the swimming body alongside its kinematics, regarding the resulting performance

outputs [10, 12, 16, 43, 59, 59, 125]. Eventually, the numerical simulation can be

oriented towards bio-inspired applications such as underwater vehicles [112, 122]. Note

biomimicry also leads to the design of robotics. Among the bio-inspired robotics, we

can �nd a category which tends to support �sh swimming investigations. For instance,

a �sh body has been entirely or partly reconstructed to reproduce animal kinematics

such as C-starts and test hypotheses on the generation of propulsion [4, 34, 78, 93, 118].

This class of robotics has emerged to support biologists in experiment-driven studies

and give new biological insights [47]. In that regard, bio-inspired numerical simulations

can also be used to provide information, non-accessible in experiments [66, 69, 81,

82]. Eventually, data-driven stochastic models which describe the three-dimensional

trajectories in zebra�sh locomotion can be found to reduce and re�ne the use of zebra�sh

animals according to the experiments [91, 92].

Since the last decades, zebra�sh became a well-popular animal model regarding biological

investigations and medicine applications. On the one hand, zebra�sh animals do present

strong similarities with humans in terms of biological processes involved in locomotion:

a nervous system including brainstem, spinal cord, and muscles. Moreover, similar

physiological and pathophysiological mechanisms can be found in zebra�sh. Therefore,

human diseases and toxicological molecules can be studied through the zebra�sh model.

On the other hand, zebra�sh are very convenient as a research animal model. First, adult

zebra�sh sizes only a few centimeters in length and thus, a massive amount of zebra�sh

can be reared inside breeding facilities. Secondly, zebra�sh presents high fertility and is

oviparous. Furthermore, the development of zebra�sh is external and extremely rapid

for a vertebrate species. Early developmental stages can be observed under the stereo-

microscope. Until an advanced stage of larvae development, the transparency of the

body enables the observation of the establishment of body structures and the use of

numerous genomic and biotechnological tools. Finally, zebra�sh can easily be genetically

modi�ed. As a result, the zebra�sh model drains multiple disciplinary �elds. For

example, a complete 3D reconstruction of a larval zebra�sh brain has been performed

to construct the neuronal map [52]. Besides, the zebra�sh locomotion including the

swimming kinematics, performances, and behaviors, is well-studied from aging and

physiological �elds [44] to toxicology and pharmacology [39, 115]. In fact, the zebra�sh

locomotion behaviors have been well-described and present very stereotyped patterns

[21, 31, 89]. In particular, zebra�sh eleuthero-embryo i.e. the developmental stage

after hatching but before the �rst feeding, presents a highly stereotyped pattern when

escaping predators or any form of danger. The so-called C-start movement characterizes

the escape locomotion and is composed of three stages, described in Fig. 1.1. First, the

�sh body initiates with preparatory motion where it turns into a C-shape, also called the
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C-bend. Afterward, the eleuthero-embryo pushes away a large amount of �uid to gain

propulsion: this is the propulsive step initiated by the counter-bend. Finally, the �sh

body accelerates away from the danger by using fast-swimming undulations. Fast-starts

can be ignited with tactile [39, 89], visual and acoustic [21, 22, 30, 55, 93] or electrical

stimuli [22, 120]. The escape response from an electrical stimulus is ultra-rapid as the

electric �eld pulse (EFP) directly a�ects the Mauthner cells and thus, the peripheral

nervous system [111].

Figure 1.1: Representation of a typical zebra�sh C-start escape response, from [21].
Notice the large C-bend has a duration of t = 12 ms and the counter-bend also presents a C-
shape (frame 13, asterisk). Note the eleuthero-embryo was stimulated by acoustic vibrations and
video recording was performed at 500 frame per second (fps).

Similarly, electromyography has also been used for analyzing muscle activity and C-starts

of Polypterus senegalus [120]. The study highlights how strong the C-bend shape can be

with electric stimuli. According to the electric sensitivity, the tail gets more or less closer

to the head. Note the rotation motion is also largely a�ected during the preparatory

phase. Most of the teleost �sh species can perform a C-start when escaping predators. In

general, velocity and acceleration should be maximized as acceleration peaks and timing

of propulsive power correspond to tail-beat frequency [31]. However, turning angles which

are highly variable might have an important role, depending on the source of danger

[31]. Therefore, fast-starts are the results of a trade-o� between swimming performance,

energy consumption, and escape behavior [31]. In particular, a correlation between the

stimulus intensity and the �nal escape performance can be highlighted [120]. Strong and

weak C-bends have been compared and showed the variability in strength is increased

by the duration of stage 1 and the muscle activity during stage 2 is prevalent to the

maximum velocity [120]. C-start kinematics has also been highlighted by a computational

model which revealed it does maximize the traveled distance although higher escape

distance could be reached with �ctitious body curvatures [43]. Numerical simulations

also unveiled C-starts are energetically ine�cient [43]. Zebra�sh eleuthero-embryos can

also speeds-up using di�erent curvatures, at the expense of swimming e�ciency and
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transport costs [67]. In addition, stage 1 produces essentially rotational motions while

propulsive forces are generated during stage 2 with the highest velocity, power, and

e�ciency [67]. As for strong C-bends, zebra�sh eleuthero-embryos might intercept their

own wake without a�ecting the global swimming performance [68]. Eventually, double-

bend escape responses have been de�ned to describe speci�c deformation patterns which

increase the escape performance [31, 37]. The C-start escape response is particularly

unique and reproducible when using EFP activation. As a result, the motion describes

completely unsteady physical phenomena and the interaction with the �uid �ow can

barely be predicted. In that regard, CFD methods are key to understand the underlying

biomechanics of strong and weak C-starts. From a �uid mechanics point of view, we can

see during the two �rst stages of C-start, up to three jet �ows are produced near the

head, the mid-body, and the tail [17, 65, 67, 68, 90, 121] which then derive into vortices

shed in the wake by the tail beats. During the fast-swimming stage, two rows of vortex

rings can be observed both experimentally [90] and numerically [43, 65] which already

has been well-described in steady swimming for anguiliform swimmers [15, 59]. Note the

structure of the wake can signi�cantly change for carangiform swimmers according to the

Strouhal number [12, 14, 87, 94]. From an experimental point of view, any locomotion

misbehavior can experimentally be observed which enables to screen a large number of

pharmacological molecules on intoxicated and mutant animals when the locomotion is

a�ected (see Fig. 1.2 issued from [39] and Fig. 1.3 from [115]). In the latter case, notice

how fast-start and slow swimming kinematics show di�erent and opposite impacts in the

control locomotions, which illustrates how fast-starts do maximize the escape response

and therefore enable experiment-driven studies based on altered escape swimming. The

locomotion behavior of �shes can be altered either by genetics [22, 38, 39, 115] or the

surroundings environment. For the latter case, we can �nd in the literature experiments

with viscous �uids [28�30, 55].

As noticed by [79], zebra�sh eleuthero-embryos and larvae swim within an intermediate

�ow regime when coasting, de�ned by a Reynolds number (Re) from 101 to 103. Note

the authors de�ned the larval viscous regime as Re < 300. As the zebra�sh grows, the

swimming regime signi�cantly changes and adult zebra�sh operates naturally in inertial

Reynolds regimes (Re > 103). We assume zebra�sh eleuthero-embryos do maximize

the muscle power output when performing C-starts. In [30], zebra�sh escape responses

have been challenged with highly viscous �ows in order to analyze the resulting escape

performances. The authors suggested the escape response presents an important decrease

in maximal swimming velocity and an increase in the power output while stages timings

based on the heading angle, did not seem impacted. In [119], the authors found a phase

lag between body curvature and body muscle activation in high viscosity, when modeling

the �sh deformations as an elastic body.

As stated previously, computational models are designed to describe precisely �uid

�ows and aquatic locomotion but are challenged for reproducing real-world and highly
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Figure 1.2: Illustration of a biological locomotion study with mutant animals, from
[39]. A wild-type 5 dpf zebra�sh eleuthero-embryo shows a typical C-start escape response in
response to a touch stimulus (A) while a que-mutant animal exhibits an abnormal behavior (B).
Note times are indicated in ms. Ten body amplitudes are then represented for the three mutant
animals: bandoneon (beo) (D), accordion (acc) (E) and que (F), and wild-type zebra�sh (C).
Note only que mutants cannot perform strong amplitude C-bend.

unsteady dynamics such as C-start behaviors. That is why, CFD methods are not

commonly used for helping biological and experiment-driven research. As for the biology

�eld, swimming energetics is generally unreachable despite the importance to analyze

impacted zebra�sh swimming behaviors. Therefore, my PhD project resides in the

combination of advanced self-propelled swimmer simulations and access to real-world

experimental data including the actual experiments with zebra�sh eleuthero-embryos.

1.2.2 Methodology

We present in this chapter in detail the current state of the art of each discipline involved

in this work. Three main contributions can be identi�ed: the reconstruction of a 3D

shape alongside its escape deformations, the integration of experimental deformations

within a CFD code, and the interaction of our numerical modeling with biological

investigations. The latter point of interest resides in the implemented applications
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Figure 1.3: Second example of a biological locomotion study with mutant animals,
from [115]. Comparison of dorsal views of high-speed videos between a wild-type 3 dpf zebra�sh
response and an abhd12 -mutant zebra�sh eleuthero-embryo abnormal response (A-B). Note the
di�erence in modules timings, indicated in ms. Kinematics (C-E) such as bend amplitude (C),
tail-beat frequency (D) and swimming speed (E), between control and morphant phenotypes
raised signi�cant alterations.

considering biological issues and enlightened the potential interdisciplinary impacts of

this work. Beforehand, the general framework used by biologists to study zebra�sh

locomotion is presented. In particular, we detail the current context in the MRGM

INSERM team to perform toxicological and pharmacological studies. Above all, we

introduce the numerical framework in which our work falls such as self-propelled swimmer

simulations, generation of 3D �sh geometry for CFD, zebra�sh C-start simulations,

validation against real-world data. Finally, we focus on the work developed by the

MEMPHIS INRIA team which implemented new techniques towards future combinations

of self-propelled swimmer simulations and real-like data.

1.2.2.1 Methodology in biology research for swimming analysis

To study zebra�sh locomotion, biologists have developed various experimental methods,

especially to extract the body and swimming kinematics. Historically, the zebra�sh

kinematics has been analyzed through the midline kinematics. Two decades ago, the

midline deformation was measured via the so-called head-tail angle (Fig. 1.4), estimated
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with two segments only. Thus, the head-tail angle is maximal when the �sh is straight

undeformed. Alternatively, one can consider the bend amplitude ([115]) de�ned as the

head-tail angle supplementary such that the bend amplitude is zero when the zebra�sh

is undeformed and straight.

Figure 1.4: De�nition of the head-tail angle, from [21]. Note only three segments
are required to compute the head-tail angle although a generalization with a �ner midline
approximation is also possible.

Afterward, the midline curvature has been assessed by manually digitizing the midline

[17, 29, 30, 50, 85, 89, 90, 121] (Fig. 1.5). The center of mass was then approximated

using the midline segments. From the midline kinematics, various kinematic parameters

have been derived: tail-beat frequency, wavelength and wave amplitude, Re, swimming

speeds, and curvatures. Note, the amount of work was certainly acceptable provided the

low frequency of data acquisition (≈ 500 − 1000 frame per second (fps)). Besides, the

curvature of the head remained zero for each swimming behavior recorded [89]. Therefore,

the authors considered the head as strongly sti�. Besides, the particle image velocimetry

(PIV) technique has been used repeatedly to evaluate the �uid �ow patterns generated

by the zebra�sh eleuthero-embryo and larva's motion [29, 61, 85�87, 90, 94, 121] (Fig.

1.6). PIV methods provide an estimation of the full two-dimensional (2D) �uid velocity

�eld although the obtained resolution and accuracy are low.

In the last decade, tracking methods have been developed to track accurately the

swimming kinematics. In 2D [38], a silhouette-based method has been implemented

by superimposing a prede�ned contour shape onto the actual zebra�sh shape (see Fig.

1.7). In de�nitive, the modeling of proper geometry and a swimming motion have been

required to estimate the optimal projection onto the deformed and moved shape with a

Kalman �lter. Thus, even occlusions have been easily handled with this model. Note in

most of the 2D analyses, automated tracking, midline digitization or PIV calculations

assume the swimmer does present a planar and horizontal locomotion. Although recent

studies showed that eventually, 3D motions might occur during fast-starts [37, 93], we

can generally consider the produced pitch and roll motions are negligible. As most of

the �sh species are inherently asymmetric especially with respect to the dorso-ventral

axis, the stabilization of the body during strong maneuvers such as fast-starts still needs

to be fully understood [13]. Eventually, pectoral �ns could have an important role but

stay in most of the experimental observations, completely adducted to the body during

fast-starts [31, 89].
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Figure 1.5: Body deformations are generally computed with midline digitization
and the calculation of midline curvatures. The example extracted from [90], presents the
C-start swimming kinematics of a 5 dpf zebra�sh larva for the preparatory (A) and propulsive
(B) strokes, represented by silhouettes and midline kinematics. The overall body kinematics
is well-represented by curvature along the length of the �sh and across time (C). Convex and
concave motions are illustrated in blue and red, respectively.

Figure 1.6: Particle image velocimetry (PIV) visualization of the �ow. PIV has been
widely used to analyze the wake structure. Essentially, PIV measurements provide an estimation
of the velocity �eld of the �ow. Note the sequence, from [90] is identical to Fig. 1.5.
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(A) Model matching.

(B) Automated 2D tracking.

Figure 1.7: Example of a 2D automated tracking method, from [38]. The model is
adjusted at each time step i.e. frame (Fig. 1.7A): �rst the model location is estimated (A)
before �tting the midline of the model (B). Note the boundary may not correspond exactly due
to small out-of-plane motions. We can see how the zebra�sh is deformed for each video frame:
cross-sections stay perpendicular to the estimated midline. The 2D contour is adjusted to each
experimental frame with a speci�c projection-based research algorithm. The resulting tracking
results (Fig. 1.7B) are based on zebra�sh aged of 5 dpf (A,D), 15 dpf (B,E), 28 dpf (C,F).
First row are wild-type zebra�sh while second raw are stocksteif mutants.

In 3D, the surface of a �sh has �rst been reconstructed manually [78, 93] before modeling

the surface with ellipsoidal cross-sections [80] and tracking the midline deformations by

using 2 orthogonal views [23]. Recently, a more accurate model has been created

to automatically reconstruct the full experimental kinematics in 3D from iterative

projections onto the targeted shape [124, 131] (see Fig. 1.8). Usually, tracking algorithms

enable to enhance and automate the computation of swimming kinematics. In addition,

accurate Lagrangian-like tracking enabled to estimate the dynamics and simple energetic

quantities of the zebra�sh locomotion by using inverse-dynamics methods [124, 131] (see

Fig. 1.9). However, the power consumption remains to be accurately and reliably

computed.
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(A) 3D modeling. (B) Automated 3D tracking.

Figure 1.8: Advanced automated tracking method based on projection-based
iterations, from [131]. First, we can see (Fig. 1.8A) the construction of the in silico
zebra�sh. The initial zebra�sh 3D shape is formed by cross-sectional shapes (A), based on
ellipsoidal parameterisation (B) of body (green) and median �n-fold (blue). Afterward, the
3D reconstruction is deformed (C) by prescribing a parameterisaion of the curvature along the
midline (red line) at control points (dots). Transverse sections stay plane and orthogonal to
the midline. Secondly, we can see (Fig. 1.8B) the overlap between tracked in silico(green) and
experimental shapes across time through three camera views. Thus, multiple orthogonal views
are required to reconstruct and track a full 3D motion.

1.2.2.2 Self-propelled swimmer simulations

In order to obtain a precise computation of the swimming performance, CFD methods

have been extensively used as they are speci�cally designed to numerically compute

the �uid �ow, the �sh motion, and the resulting energetics from the �ow equations.

Indeed, the full understanding of active swimming and biomechanics has been enabled

by the CFD �eld. Basically, CFD simulations consist of computing the solution of the

governing equations at each time step. As outputs, the numerical simulation provides

the pressure map and the 3D velocity �eld of the whole computational domain alongside

the velocity of the immersed zebra�sh body, and all the forces and torques exerted

onto the body surface. As a result, we can recover the �ow vorticity characterizing the

vortex shedding and all the desired energetic quantities derived from the instantaneous

power expended by the zebra�sh to compensate hydrodynamic forces. Generally, the

�uid velocity and pressure are solved by approximating the so-called Navier-Stokes

equations while the body kinematics is computed from the classical Newton's laws

which govern rigid motions. Nevertheless, the swimmer is also a deforming body with

speci�c deformation kinematics. In the case of self-propelled swimmers, a numerical

simulation needs to tackle three major bottlenecks to be realistic. On the one hand, the

immersed �sh body has to be handled adequately to obtain accurate, consistent, and

fast computations. Indeed, the computational meshes and numerical methods employed

are prevalent to obtain a proper simulation. As stated before, the solution of the

governing equations is updated at each time step across the whole computational domain

meaning the domain is discretized with a massive amount of points, which then de�ne

the computational mesh. Thus, all the computed quantities are located within the mesh
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(A) (B)

Figure 1.9: Inverse-dynamics approaches have been used to estimate forces and
power, from [124]. First, a swimming sequence of a 5 dpf zebra�sh with body shapes (b)) and
midline kinematics (a) are presented (Fig. 1.9A). In addition, are computed the translational
speed of the center of mass (c) and the forces (d) in the direction (continuous line) or orthogonal
(dotted line) to velocity vector. Note blue and red markers correspond to extrema of body
rotation and are not exactly synchronized with swimming speed maxima. Secondly, we can see
(Fig. 1.9B) rotational variables such as body (black) and heading (green) angles (a), angular
velocity (c), angular acceleration (e) and the moments of inertia changes (b,d). Power can also
be estimated through inverse-kinematics (f). Note di�erences between body angle and heading
angle are particularly highlighted through blue and red markers. In particular, we can see a
constant phase delay.

nodes. However, the information about the �sh body such as its position or velocity,

has to be accessible to the computational mesh. In fact, two classes of methods can

generally be distinguished: body-�tted and immersed boundary methods. The �rst

family denotes numerical schemes based on body-�tted grids i.e. the contour of the

�sh body is represented by mesh points. Instead, the latter class of methods provides

the immersed body information implicitly via appropriate numerical schemes. Body-

�tted methods are widely used to accurately represent the surface and facilitate the

surface calculations. Nevertheless, the computational costs are often prohibitive for

3D moving and deforming objects such as large and fast �sh turns. In such cases,

the mesh might require adaptions or a complete remeshing step, to follow the �sh

movements accordingly. Instead, immersed boundary methods handle straightforwardly

any body motions with simple and �xed meshes such as Cartesian grids. The main

limitation resides in the accuracy provided at the interface. That is why, only a few
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studies use body-�tted meshes in the literature for self-propelled swimmers. Apart from

early tadpole [76, 77] and eel simulations [24, 59], a series of papers have performed

arbitrary Lagrangian-Eulerian (ALE) simulations based on overset grids [58, 65�68].

Besides, multiple variations of the original immersed boundary method (IBM) (Peskin

1972 [99]) can be found in the literature. Since the last decade, the immersed boundary

is taken into account with an original [119] or an hybrid [16, 17, 45] IBM, smooth

particle hydrodynamics (SPH) [51], remeshing vortex methods [41, 43, 125], a constraint-

based formulation [27, 98, 108] or a so-called Brinkman penalization method [9�12]. A

complete review of IBM-based simulations can be found in [110]. On the other hand, the

geometry of the zebra�sh and its body deformations have to be prescribed thoughtfully

as they are key to simulate real-like �sh locomotion, especially if we are interested in

real-world swimming performances. After a start in 2D simulations [10, 24, 119], 3D �sh-

locomotion simulations have emerged in the recent years. The �rst 3D reconstructions

of �sh geometry used simple mathematical shapes such as cubic splines [12, 43, 125] or

ellipsoidal cross-sectional views [41, 51, 59, 108]. Note triangular meshes are not common

with IBM excepted for speci�c methods [16, 17, 45]. The bluegill sun�sh was one of the

�rst species to be meshed in 3D with triangular elements, based on computed tomography

(CT) scans [17]. The �rst real-like zebra�sh eleuthero-embryo 3D reconstruction was

obtained by manual digitization [58, 65, 67] (see Fig. 1.10). Moreover, an ellipse-based

model has been calibrated with few manual digitization of the zebra�sh surface [49].

As introduced before, an enhanced ellipse-based model computed through a projection-

based and experiment-driven �tting algorithm [124, 131] has also been used for CFD

simulations [129]. Eventually, 3D models have been reconstructed from actual images

[11].

Figure 1.10: First 3D zebra�sh reconstructions have been generated manually.
Comparison between real picture (a) and computational shape (b) of a 5 dpf zebra�sh. The
picture was taken from [58]. Such realistic surface mesh were used to compute numerical
simulations [58, 65, 67].

In general, 3D reconstructions of �sh body deformations consider the �sh body as a

beam model where each cross-section remains orthogonal to the midline across the
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deforming movement [12, 23, 30, 38, 131]. In addition, only rigid transformations a�ect

each cross-section i.e. assuming neither shear stress nor dilatation are involved in the

deformation process. Moreover, the volume mass density is considered as homogeneous

in most of the 3D zebra�sh modeling such as [131] even though the posterior of zebra�sh

eleuthero-embryos is surrounded by a thin membrane also called median �nfold (MFF)

and composed of di�erent cells than the body cells. Furthermore, the so-called MFF

which will later develop into median �ns is a structure which highly contributes to

propulsion and escape performances. However, only a few studies have modeled the

complexity of this structure and its deformation behavior in the case of large body

bending [123]. Therefore, the role of the MFF during fast-start responses would still

require more investigation [75].

As for the body kinematics, most of the self-propelled swimming simulations have

historically modeled the swimming deformations as an harmonic wave meaning the

midline kinematics is modeled with a sinusoidal function including the tail-beat frequency

and the desired envelope amplitude [9, 10, 12, 16, 24, 41, 43, 51, 58, 59, 66, 67, 69, 108,

125]. The formulation is then prescribed by altering either the midline curvature or its

lateral excursion. Indeed, mathematicians �rst investigated the steady, periodic, and

inline motions to separate thrust and drag and compute the swimming e�ciency and

propulsive power. Afterward, C-starts, burst-and-coast or turn motions observed for

food capturing have been derived with custom amplitude functions [10, 43, 58, 67, 69].

Eventually, bio-inspired studies recovered the tail-beat frequency and amplitude envelope

directly from experimental observations [66, 67]. In de�nitive, the body deformations

have for a long time been represented by a swimming law to describe the undulatory

motion, eventually calibrated with observations. Note the body deformations are

imposed and therefore substitute to any elastic modeling step. Thus, only a few studies

modeled the actual biomechanics which produce the body deformation. For instance,

a neuro-mechanical model has been developed in [98, 119]. Besides, �sh deformations

can also be described by a beam model [25]. Eventually, the bending moment has

been recovered from direct numerical simulations combined with a biomechanic model

[129]. In the latter study, the body deformations are recovered via the swimming

kinematics from the 3D experimental tracking meaning no rigid motion is then computed.

Furthermore, notice unsteady behaviors and particularly strong C-starts constitute

challenging kinematics to enforce directly with a mathematical model and that is why,

studies [68] have recovered the body kinematics from actual experimental observations of

C-starts, under strong assumptions. Indeed, the authors considered the body's rotation

could be reduced to the so-called heading angle which basically denotes the swimming

direction of the head. The limits of this assumption have been enlighten by the authors

in [124, 131] (Fig. 1.9). Indeed, they found the heading angle is shifted in time

relatively to the actual body angle, the delay being roughly half a period. Essentially,

the body angle which also denotes the CFD rigid rotation has been estimated by

integrating over the contribution of each mass element. To determine the rotation of
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deformed body shapes, only a few alternatives can be found in the literature. In [50],

a singular value decomposition (SVD) has been used to estimate the main orientation

of the elongated body, in the case of slow swimming motions. Such algorithms can

be generalized in speci�c situations to the so-called Kabsch algorithm which �nds the

optimal rotation matrix considering an a�ne transformation. This rotation searching

also known as a Procrustes problem, is crucial to compute the deformation components

of body kinematics. Finally, note the authors of [65] and [27, 49] used an experimental

midline curvature as input to the numerical simulation of a larval zebra�sh locomotion.

The swimming kinematics might also be be directly extracted from the manually [17]

or automated [129, 131] midline tracking from experimental videos. To our knowledge,

the previous studies achieved an important and original step towards experiment-driven

numerical simulations. Nevertheless, the rigid kinematics of the body was not calculated

but prescribed.

The main limitations of self-propelled numerical simulations reside in the lack of proper

validations against actual experimental data, especially in the case of C-start simulations.

In [49], the experimental and numerical �uid �ows near the pectoral �ns have been

highlighted and compared by using methylene blue dye. Most of the time, computational

studies have been validated against velocity �elds issued from PIV [17, 43, 66, 67]

(Fig. 1.11). Only few have directly compared the actual experimental and numerical

kinematics such as speed and trajectory (Figs. 1.13, 1.12, 1.14) [27, 65, 67, 68].

Finally, �rst developments have been initiated for reconstructing the 3D body deformations

from a series of experimental images [11]. As a consequence, very few computational

studies have performed numerical simulations of zebra�sh larval aperiodic swimming

and validated against experimental data to reproduce, support, and re�ne biological

experiments.

1.2.3 The MRGM research group of the University of Bordeaux

The MRGM team is composed of biologists and hospital medical practitioners which

notably work on the troubles and human diseases a�ecting the neuronal and locomotor

system. To that end, the research group developed and works routinely with the zebra�sh

model to prospect the di�erent behaviors induced by various zebra�sh stimulations

such as visual, acoustic, and electric stimuli, in response to genetic or environment

changes (see for example Fig. 1.3). In particular, the MRGM team investigates the

e�ects of organophosphorus (OP) compounds used, for example, as pesticides, �ame

retardants, or warfare nerve agents. This family of toxicants a�ects signi�cantly the

zebra�sh escape locomotion (Fig. 1.15). The team notably developed a complete in-house

cell for stimulating zebra�sh eleuthero-embryos with an EFP system and recording the

resulting locomotor behaviors with a high-precision recording system. The experimental

EFP cell is particularly unique as entirely implemented by the MRGM team. To our
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(A) A 2D PIV comparison for a 3D numerical
simulation [67] .

(B) PIV comparisons for both 2D and 3D numerical
simulations [43].

Figure 1.11: Computational studies mainly use PIV experiments to validate escape
swimming simulations. Pictures are taken from [67] (Fig. 1.11A) and [43] (Fig. 1.11B).
Note all simulations reproduce the same experimental swimming kinematics (Fig. 1.11B, (b)),
from [90].
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(A)

(B)

Figure 1.12: A �rst computational study which validated against experimental
kinematics, from [65]. The trajectory which includes seven tail-beats, was particularly well-
reproduced (Fig. 5.17A). Computational kinematics results of the swimming bout (Fig. 5.17B)
include the swimming velocity, displacement, angular velocity and body angle. Note the body
rotation could not have been compared with experimental rotation as body deformations were
approximated from the heading angle and not from the actual rotation.

knowledge, no similar cell has been constructed although the technique of EFP has

previously been performed [111]. Regarding EFP videos, the biologists generally record

multiple eleuthero-embryo escape responses for each stimulation and desire to know the

response time to the signal, also called latency, the total traveled distance, and the overall

displacement of each individual zebra�sh eleuthero-embryo. Eventually, other kinematic

quantities such as speed or deformation amplitudes (see Fig. 1.3 and Fig. 1.16) are also

investigated to enhance the global understanding.

To that end, the team uses a custom software developed and implemented by the group

of [22] which is able to track each mass density i.e. all individual eleuthero-embryos

and compute the overall swimming kinematics and body deformations (see Fig. 1.17).

In fact, the software does not track speci�cally the center of mass of each zebra�sh but

estimates on each video frame, the point the most central in the eleuthero-embryo's head.

Regarding the standard resolution and height of the camera to the cell, the resulting error

should be negligible. As for the body deformations, the in-house software �ts on each

video frame a few straight lines or segments to approximate the midline and compute
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(A) (B)

Figure 1.13: An important computational study which compared a C-start
simulation against the experiment for seven tail-beats, from [67]. On the left (Fig.
1.13A), computational (red) and experimental (black) trajectory of the center of mass (A) are
compared alongside the silhouettes of experimental (gray) and computational (red) zebra�sh,
taken at three times: initial, end of C-bend and �nal time. Note the whole swimming bout
is approximately 150 ms long and the C-bend amplitude is not particularly strong. On
the right (Fig. 1.13B), are represented the swimming performances including speed (A),
power and e�ciency (B), heading angular speed (C) and heading angle (D). As a result,
velocity and heading angle peaks seem to be associated with tail-beat frequency unlike heading
angular velocity. Note no rotation comparison has been conducted as body deformations were
approximated from the heading angle and not from the actual rotation. As for power and
e�ciency, only the average per tail-beat has been computed.

the so-called bend amplitude, supplementary to the head-tail angle which denotes the

angle formed by the head segment and the tail segment. We refer the reader to [22] for

further details about the tracking software implementation.

As a result, individual kinematics is not always satisfying but the average escape

behaviors are well-captured by the in-house tracking software. In addition, occlusions

when zebra�sh trajectory lines are crossing and eleuthero-embryo's silhouettes are

overlapping between each other, are well-handled in most cases. However, tracking

methods which provide �ner accuracy and better kinematic outputs are particularly

interesting for biologists. Above all, any variable or advanced method which would

help in understanding the �sh behavior or even better, capturing particular locomotor

misbehaviors are attractive towards biologists.
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Figure 1.14: A �ctitious oriented computational study �rst validated against few
experimental kinematics involving strong C-bend motions, from [68]. The considered
swimming bout was formed by three tail-beats only which lasted approximately 35 ms. Overall,
the comparison of center-of-mass trajectory (a) shows a well-reproduced kinematics although
translational and rotation di�erences might be visible. As for kinematic variables, only the
translation velocity (b), heading angular velocity (c) and heading velocity (c) have been
compared with no proper comparison of body rotation which might be more important than
heading angle.

Figure 1.15: Impacts of an organophosphorus toxic molecule on the bend amplitude,
from [60]. The OP experiment has been conducted with three replicates (rows) for control
(A) and exposed (B) animals. Note the zebra�sh is exposed to the chemical molecule before
stimulating and studying the resulting escape response. As a result, the bend amplitude was
found signi�cantly impacted especially regarding the tail-beat frequency and its regularity. In
addition, the chemical compound e�ects are still visible after 300 ms while the escape response
is completed for control motions.
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Figure 1.16: The MRGM research team studies the impacts of pharmacological
treatments on zebra�sh locomotion through high-speed video and standard
kinematic analyses. In particular, the bend amplitude (de�ned in Fig. (B)) can be interesting
to compare a standard escape behavior (C) and an abnormal escape response (D). Figs. (C)
and (D) were obtained with the FLOTE tracking software [22].

(A) (B) (C)

(D)

Figure 1.17: Insights of the main outputs of the custom and automated zebra�sh
tracking software named FLOTE, from [22]. Basically, the software tracks individually
zebra�sh eleuthero-embryos within a group escape response. For each eleuthero-embryo, the
software tracks the head trajectory and few midline segments (Fig. 1.17D), to compute the
bend amplitude (Fig. 1.17A), the heading angle (Fig. 1.17B) and the traveled distance (Fig.
1.17C).
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1.2.4 The framework of the MEMPHIS team of the University of

Bordeaux

In the same time, the MEMPHIS team worked since many years on modeling and

simulating �sh-like locomotion [8�12, 53]. Across these multiple computational studies,

an in-house numerical code has been built for simulating the �ow around multiple

immersed, rigid, and deforming moving bodies in three-dimensions. The code called

NaSCar (NAvier-Stokes CARtesian) is designed speci�cally to solve complex geometries

and movements on a Cartesian grid. As several numerical studies in the literature

about self-propelled swimmers, most of the �sh-like simulations have been implemented

by using a geometry derived from airfoils (Fig. 1.18) and imposing harmonic body

kinematics to compute and study �sh propulsion and swimming e�ciency with steady

and periodic motions. However, they recently focused on modeling real-like �sh

morphologies (Fig. 1.19) and above all, prescribing custom body kinematics using

advanced mathematical techniques such as optimal transportation algorithms. The

latter implementation combined the development of optimal transportation algorithms

[18] with 3D �sh reconstructions to extract body deformations directly from experimental

imaging.

Figure 1.18: Example of a 3D �sh modeling from spline formulations, generated by
the MEMPHIS team [12]. We can see how �sh-like shapes have been derived from airfoil
geometry. In addition, the surface mesh used is well-structured with multiple transverse slices
along the �sh midline.

Thus, both optimal transportation implementations and complex CFD simulations

including the developments of numerical schemes and high performance computing

(HPC) tools, are part of historical topics of the MEMPHIS research team.
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(A) 3D reconstruction.

(B) Views of real photos, midline and level-set.

Figure 1.19: 3D reconstruction of a mackerel (from [11]) generated directly from
images. The mackerel (Fig. 1.19A) is modeled from dorsal and lateral views where the contour
and midlines are recovered from the computation of a level-set function (Fig. 1.19B). The
particular image-based procedure assumes the transverse silhouettes across cross-sections do not
change signi�cantly and thus can be modeled simply.

1.3 Main objectives

In de�nitive, we aimed to develop a numerical approach which combines direct numerical

simulations and experimental imaging to compute realistic and experiment-driven

simulations. Indeed, our primary goal was to drive the numerical simulations with

experimental body kinematics to reproduce the escape kinematics of zebra�sh eleuthero-

embryos, observed in biological experiments. Note the multi-disciplinary approaches

might be essential to fully understand the biomechanics involved in complex and

biological systems. Actually, the �nal goal was to provide a numerical tool to biologists

to support experiment-based biological studies about locomotion. To that end, biologists

particularly desired to use modeling results which are robust and reliable, �ner than

experimental analysis, and eventually inaccessible via the usual tracking methods and

kinematic analysis. In particular, mathematical and computational modeling can

provide new insights about the swimming dynamics and energetics which drive the

resulting kinematics. Besides, those quantities may be key to enlighten the biological

mechanisms involved in escape locomotion and detect eventual escape misbehaviors

or highlight swimming performance defects. In consequence, biological experiments

need to be conducted to validate the numerical results, illustrate the interests of a

global experiment-driven numerical approach, and eventually enrich the understanding
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of toxicological and pharmacological drug impacts, by performing a large number of

numerical simulations. Indeed, experimental kinematics are aimed to be embedded

inside CFD simulations, precisely to study and support actual biological experiments.

1.4 Outline of the thesis

On the whole, various objectives need to be answered, from mathematical modeling to

biological experiments and its eventual interactions. To that end, this work is divided

into four main chapters to extensively expand the methodological process and provide a

few biological applications. In fact, each chapter is part of a global development process

despite particular disciplines. Indeed, we emphasize all chapters are complementary

and essential to each other. For implementing this global approach, several disciplines

were involved such as mathematical modeling, high-performance computing, numerical

solving, biological experiments, image processing, estimation of experimental body

kinematics, 3D modeling, animal modeling, biomechanics. We present in detail the

questions raised by each topic throughout the main chapters.

Following this general introduction, the second chapter (Chapter 2) presents the

mathematical framework including modeling hypotheses, governing equations, and

numerical solving, especially regarding the implemented method to handle and integrate

complex solid motions such as moving and highly-deforming zebra�sh escape swimming.

Essentially, this chapter provides general tools to understand the fundamentals of

numerical simulations. In particular, we based our approach on Cartesian grids combined

with a volume penalization method and the use of level-set techniques and Lagrangian

descriptions of the solid interface. Note the existing CFD code was developed by the

MEMPHIS team.

The third chapter (Chapter 3) details the major contributions I developed to embed

actual experimental data to the CFD code. Basically, all the major steps which take place

between initial experiments and �nal numerical simulations are presented. Across the

thesis, it involved image processing algorithms, optimal transportation theory, Procrustes

Analysis techniques, 3D modeling such as reconstruction, tracking, and deformations.

Notice, each step was important and required investigation and validations.

Afterward, we present the validation of the global experiment-based numerical approach

(Chapter 4) which includes validation of the general methodology, validation against

experimental kinematics, sensitivity analysis for speci�c parameters, and the overall

reproducibility of experiment-driven numerical results. This chapter is essential to

evaluate the robustness, reliability, accuracy, and consistency of our method. In that

regard, experimental swimming performances have to be well-reproduced to analyze

further energetic quantities.

Therefore, we dedicated the last chapter (Chapter 5) to biological applications which

mainly consisted of computing the energetic performances of experimental escape
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kinematics. However, we altered the experimental body kinematics to challenge the

zebra�sh escape response and numerical modeling as well. In fact, two studies are

presented: a viscosity study where the surrounding �uid viscosity has been modi�ed,

and the impact of toxicological drugs. Nevertheless, �ctitious simulations will also be

introduced to support in answering biological questions. Eventually, the implementation

of e�ort tests will be introduced to link viscous �ows and toxicant exposures, �ctitious

simulations, and actual swimming performances.

Finally, a general conclusion (Chapter 6) will close this work by recapitulating the

main results regarding the model validation or the biological applications, the di�erent

methodological steps and the main limitations, and giving few insights about future

perspectives.





Chapter 2

Implementation background of CFD

numerical simulation

Numerical simulations consist of solving a set of equations which models a complex

system from biological processes and physical phenomena, to �uid and structural

mechanics, by approximating numerically the considered variables across time and

space. The calculation of �uid �ows is represented by the so-called CFD. In CFD,

the complexity of the �ow is characterized by the �ow regime which is de�ned by Re:

from steady and laminar states to highly turbulent �ows. Direct numerical simulation

(DNS) is a particular class of CFD which computes the most accurate solutions, directly

from Navier-Stokes equations and with no additional modeling such as turbulence

models or average quantities. In this work, we used direct numerical simulations

to compute the �ow generated by zebra�sh swimming i.e. a moving and deforming

body in water. To that end, we �rst need to precise the mathematical framework

which models the system. Afterward, a computational mesh has to be de�ned to

approximate the solution in a discrete space. Then, speci�c numerical schemes which

represent the approximation algorithms, are considered according to the mathematical

modeling and the computational mesh. The last step of the process concerns the actual

implementation which often includes algorithmic and parallel programming issues, and

the actual computation of the solution on supercomputers. Therefore, we describe in this

chapter the general equations which govern the �uid �ows and the rigid displacements

of an immersed and moving rigid body alongside its discrete counterpart. In this work,

we considered the solid body was governed by Newton's laws which could be computed

in parallel to the approximation of incompressible Navier-Stokes equations. Besides, we

detail how we handled the computational mesh and numerical schemes according to the

solid body displacements. Essentially, we used a penalization method combined with a

level-set representation and a Cartesian mesh. Finally, we precise how body swimming

deformations are taken into account in the whole process, especially with the aim of

embedding experimental body kinematics. The in-house �nite-di�erence and Cartesian

27
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solver was developed in the MEMPHIS Inria team by Michel Bergmann and has been

validated several times across various studies. That is why we present only a brief

overview of the numerical code and refer the reader to [9�12] for further details.

2.1 General description

Figure 2.1: Computational domain composed of a �uid domain surrounding an
immersed solid body.

Let Ω be a bounded computational domain and Ωf and Ωs be the �uid and solid domains,

respectively as illustrated in Fig. 2.1. Thus, the domain Ω is partitioned as Ω = Ωf ∪
Ωs. Let de�ne Γf = ∂Ω and Γs = ∂Ωs as the respective �uid and solid boundaries.

The general governing equations for the �uid �ow are the incompressible Navier-Stokes

equations, written as:

∇ · u = 0 in Ωf , (2.1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u in Ωf , (2.2)

where ρ, µ, ν = µ/ρ are the density, the dynamic viscosity and the kinematic viscosity

of the �uid, respectively. To close the system, initial and boundary conditions at ∂Ωf =

Γs ∩ Γf are imposed. In fact, those equations form a complex system which does not

have analytic solutions. Therefore, we need to discretize Ωf to approximate the solution

into a discrete space. We emphasize the boundary condition u = ub imposed at Γs is

the most important to consider when implementing numerical schemes. Actually, the

body boundary condition is crucial as its implementation is precisely what distinguishes

most of the numerical methods. Eq. (2.1) describes the mass conservation equation with
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the incompressibility condition. Eq. (2.2) is derived from the momentum conservation

equation within an Eulerian framework. The left hand side of Eq. (2.2) is constituted of

an acceleration term under an Eulerian form which can be written as a time derivative

plus a non-linear convection term. As for the right hand side, it represents the main

forces which control the �ow formed by a pressure gradient and a di�usive viscous term.

As a result, both �uid velocity u and pressure p need to be solved to know the state of

the �uid across time.

Note Navier-Stokes equations can also be written under a dimensionless form to describe

�uid �ows with simple, dimensionless, and characteristic quantities. In that framework,

we can analyze and compare �ow solutions by considering the �ow regime only, regardless

of the dimensions of the physical problem for example. Let introduce characteristic

quantities such as characteristic velocity U , time T , distanceD and pressure P . Let de�ne

the associated dimensionless quantities: u∗ = u/U , t∗ = t/T , x∗ = x/D, p∗ = p/P .

Incompressible and dimensionless Navier-Stokes equations are then written as:

∇ · u∗ = 0 in Ωf , (2.3)

∂u∗

∂t∗
+ (u∗ · ∇)u∗ = −∇p∗ +

1

Re
∆u∗ in Ωf , (2.4)

where the so-called Reynolds number Re is a dimensionless number de�ned as the ratio

of inertia forces due to the convection over the viscous terms:

Re =
ρU ×D

µ
(2.5)

Note in the case of �sh-like swimming, we de�ned Re:

Re =
ρV × l
µ

(2.6)

where V denotes the average swimming speed of the �sh body and l, the total length

of the �sh, at rest. The dimensionless form can be used to analyze the di�erent terms

in various �ow regimes. At low Re, the viscous forces are predominant over the inertial

term. On the opposite, highly non-linear e�ects are present in high Reynolds regimes

which leads to turbulence. Re is an indicator of the �ow regime ranging from the laminar

and viscous �ows to turbulent regimes. Zebra�sh eleuthero-embryos generally evolve

in intermediate �ow regimes which correspond to a Reynolds range from Re = 50 to

Re = 900 [89]. In what follows, we preferred the �rst form with the actual physical

dimensions as we aim to simulate the data of actual experiments.

As explained, Navier-Stokes equations require to be discretized on a computational mesh,

to be approximated. However, we want to simulate the �ow generated around a solid and

deformable moving body. Thus, the body movements need to be considered for choosing

an adequate mesh combined with a proper representation of the interface. Indeed, the

choice of computational mesh and body interface handling is crucial to properly impose
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the boundary conditions of the �uid �ow within the Navier-Stokes solver. Essentially,

the solver needs to know the position of the body in order to adequately enforce the no-

slip boundary condition u = ub at the interface. Hereafter, we brie�y introduce various

interface representations which involve di�erent numerical solvers.

2.2 Interface processing

Before detailing numerical schemes, we present the representation of the body interface

we used. As a preamble, we introduce various examples of meshes to handle an immersed

body.

2.2.1 Preamble

Basically, the computational mesh is either adjusted to the body or the solid body is

immersed within the main computational grid. That is why, two classes of numerical

methods can generally be distinguished according to the considered mesh. In particular,

the no-slip boundary condition is straightforward to prescribe in case of a so-called body-

�tted mesh i.e. when mesh nodes are directly located on the �uid-structure interface

(Fig. 2.2).

(A) Unstructured. (B) Structured.

Figure 2.2: Representation of a cylinder in 2D, with a body-�tted mesh. Note the
mesh composed of triangular cells (Fig. 5.15A) or quadrangles (Fig. 5.15B) can be either
unstructured (Fig. 5.15A) or structured (Fig. 5.15B).

The mesh is called structured when cells are regularly connected i.e. a repetitive pattern

is visible while unstructured meshes often generated by automated mesh generators have

irregular connectivity. Thus, structured and body-�tted meshes are easy to handle but

require speci�c methods and geometries. Instead, unstructured meshes such as triangular

grids are widely used to represent complex geometries. In both cases, the solid interface

is well-represented by �uid nodes. However, the numerical method has to be adapted

dynamically and its implementation might be di�cult. While body-�tted meshes might

be convenient to represent and communicate with complex structure boundaries, we can



Implementation background of CFD numerical simulation 31

see the mesh needs to be adjusted dynamically in case of a moving body. In consequence,

the node distribution has to be computed again according to the body displacements and

such operations are costly and require special attention. Solid bodies are then processed

in a completely explicit way by adapting the body-�tted mesh. That is why, body-

�tted methods often demand high computational costs, especially in the case of complex

geometries and large body deformations such as actual �sh body shapes and eleuthero-

embryo escape responses.

(A) A Cartesian
grid.

(B) Lagrangian
markers.

Figure 2.3: Sketches of Cartesian grids on top of cylinder in 2D. Note the mesh is
well-structured but not adapted to the body geometry. Eventually, Lagrangian markers might
be computed (Fig. 5.17B).

As opposed to body-�tted meshes, �xed meshes can be considered to circumvent

complex and highly-demanding mesh adaptation. In particular, Cartesian grids which

are structured meshes formed by rectangular cells, in 2D are particularly simple to

use. However, the body interface is no longer captured by a �uid mesh. On the

one hand, di�erent numerical methods have to be considered to enforce the boundary

conditions at the interface, in an implicit way. On the other hand, the computational

cost required to mesh explicitly complex geometries and remesh large movements,

vanishes. Furthermore, multiple bodies can be immersed in the computational mesh

with no supplementary cost to numerical methods. The counter-part resides in the

tracking of the body and the numerical accuracy reached at the interface. To that end,

numerical methods have been developed to capture the interface via a level-set function

for example, or track the interface via Lagrangian markers, for example. Indeed, the

position of an immersed solid body is generally handled either with interface-capture or

front-tracking methods. Besides, Cartesian structured grids are largely preferred in a

massive parallel context regarding load balancing, communications loads, and memory

usage for instance. In consequence, no supplementary work is required for simulating

various experiments including di�erent animals and body kinematics. In what follows,

I will describe an immersed body can be well-captured by level-set methods as our

numerical approach is entirely based on Cartesian grids combined with an implicit

interface capture. Nevertheless, Lagrangian markers have also been used to represent

the body interface and provide alternative and accurate methods to compute particular
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quantities involving surface integrals for example. Thus, the Lagrangian representation

is detailed afterward.

2.2.2 An Eulerian body representation: a level-set function

Two body-related information is mainly required: its position across time represented

by the body characteristic χs, alongside the associated body velocity at the boundary

ub. As we use an immersed boundary approach to take into account the body velocity,

we also chose to represent the body implicitly via a so-called level − set function φ,

to simply capture complex swimming motions. The essence of a level-set function is

to represent the signed distance to the body interface with a constant and normalized

gradient ‖∇φ‖ = 1. Therefore, the level-set is positive for all the Cartesian grid nodes

located inside the body and negative for the �uid nodes while the level zero corresponds

to the �uid-structure interface. This technique was �rst introduced by Osher and Sethian

in 1988 [95] which designed the level-set approach to capture interfaces e�ciently. With a

level-set approach, the Heaviside function χs is then de�ned according to φ: χs = H(φ).

The solid velocity ub is an Eulerian velocity �eld which will be implicitly recovered when

computing the velocity of Cartesian grid nodes located near the boundary, in particular.

Therefore, the interface is transported by updating the level-set function φ at each time

step with the computed velocity �eld u. The transportation equation which captures

the body motions is:
∂φ

∂t
+ (u · ∇)φ = 0 in Ω (2.7)

Note the outward normal unit vector can be recovered with a level-set approach with:

n =
∇φ
‖∇φ‖

(2.8)

Level-set techniques are important to capture any complex topology in a straightforward

fashion. The main drawback of level-set methods resides in the loss of accuracy near

the interface. On the one hand, the solid velocities need to be properly embedded into

the computed global velocity u. On the other hand, body volume (or surface in 2D)

is not properly conserved across time as the signed distance property is not. This is a

well-known property and that is why, the signed distance function should be recomputed

from time to time when moving the level-set via Eq. (2.7). Several methods exist to

generate the level-set �eld in a discrete mesh. When considering immersed solid bodies,

fast-marching techniques have been developed [105, 106] to solve the so-called Eikonal

equation :

‖∇φ‖ = 1 (2.9)
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Moreover, Russo and Smereka [101] developed an algorithm for solving the distance

function, based on the following partial di�erential equation (PDE):

∂φ

∂t
= sgn(φ0)(1− ‖∇φ‖)φ(x, 0) = φ0(x) (2.10)

We refer the reader to [101] to �nd further information about the original numerical

implementation. The order of the method can be enhanced with the addition of high-

accuracy numerical schemes such as ENO andWENO non-oscillatory method families. In

the next chapter, details about the numerical method we used for generating a zebra�sh

level-set will be provided.

Figure 2.4: Eulerian representation of the immersed solid body alongside
Lagrangian markers.

Note in the case where the immersed body is also meshed with Lagrangian markers in

complement to the level-set approach as illustrated in Fig. 2.4, the level-set computation

is straightforward as we can directly approximate the distance function at a Cartesian

grid node by the minimal distance to the Lagrangian markers.

2.2.3 A Lagrangian body representation: a surface mesh

Alternatively, front-tracking methods use Lagrangian markers for describing the body

boundary. A certain amount of discrete points are regularly distributed along the

interface to describe its shape and motion. Indeed, the interface can be tracked across

time if the velocity ub of each Lagrangian point is known. In that case, the solid boundary
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is transported via the Lagrangian description:

dx

dt
= ub (2.11)

Figure 2.5: Description of an immersed solid body with Lagrangian markers at the
surface. The θ rotation within each slice represents how the indexation is performed in 3D. In
2D, one single loop around the contour is su�cient.

In this work, we discretized the body surface on top of the level-set representation of the

immersed body, to e�ectively track the boundary motions and enable accurate surface

computations. We used a structured mesh with Ns transverse slices composed of Nθ

points uniformly spread across the contour of each slice (see Fig. 2.5). In that way, each

point at the surface can be tracked individually across time and we can use the surface

mesh to directly transport the immersed body at each time step with the body kinematics

at the surface. Therefore, only the velocity at the surface is required to transport the

body with the previously described Lagrangian transportation 2.11. Afterward, the level-

set function is then computed to provide the body characteristic required to penalize

the velocity u. The construction of a structured mesh which is based on the midline

kinematics to orientate each slice adequately as within beam deformation models, ensures

each point can be Lagrangian-like tracked across time. In de�nitive, the surface is meshed

with a large number of surface elements formed by Ns ×Nθ points.

On the whole, the main drawback of �xed Cartesian grids and immersed body boundary,

concerns the loss of precision near the interface as the computational grid does not

exactly �t the immersed body. That is why several methods have been extensively

developed to enhance the order of accuracy near the body boundary either in terms of

body representation by sharp Lagrangian tracking or via the enforcement of the body

boundary condition when solving the �uid governing equations. The latter issues are

tackled by the class of immersed boundary methods.
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2.2.4 Immersed boundary methods

Hereafter, we brie�y present various ways of enforcing the interface boundary condition

of the so-called immersed boundary methods (IBM). For further precision, we refer the

reader to the complete reviews of IBM [84, 110]. The original IBM term was introduced

by Peskin (1972) [99] to simulate biological blood �ows but can generally encompass

more globally all methods based on �xed Cartesian grids, which enforce the proper

velocity of the interface into the �uid solver. In fact, IBM tend to transfer the e�ects

of the immersed body boundary into the governing equations. First, notice governing

equations are solved in the whole computational domain including the nodes of the body

due to the inherently-immersed boundaries we consider. Thus, computations of interior

or near-interface body nodes need to be modi�ed accordingly within an IBM framework.

Within the whole class of IBM, we can generally distinguish two approaches: the so-called

continuous forcing and discrete forcing methods. The �rst modi�es the continuous form

of governing equations while the latter acts directly on the discretized system.

Discrete forcing approaches

Among the discrete forcing IBM, we can cite two well-known approaches: the so-called

ghost-cell and cut-cell methods [84, 110, 134]. Generally, the ghost-cell method takes

place within a �nite-di�erence framework to model accurately the location of the body

interface inside the Cartesian grid. In particular in the case of a curved interface which

crosses Cartesian cells, one can de�ne �uid and solid nodes alongside the so-called ghost

nodes which correspond to solid nodes which have at least one �uid node among its

neighbors. Ghost nodes then de�ne the near-boundary region where the velocity needs to

be corrected by using speci�c interpolations. Initial ghost-�uid methods used Cartesian

interpolations while recent ghost-cells methods founded the interpolation along boundary

normal direction [83]. Note in discrete forcing methods, the pressure boundary condition

also needs to be imposed which is not required for continuous approaches. As for cut-cell

methods [134], the goal is to provide a conservative approach by using control volumes

formed by rectangular and trapezoidal cells de�ned by the crossing boundary. Indeed, we

estimate each near-boundary cell is divided into two trapezoidal parts by the interface.

Therefore, cut-cell methods are well-adapted for �nite-volume schemes where �ux have

to be computed in each cell. In the case of near-boundary cells, the numerical �ux are

based on the control volumes. Notice for all discrete forcing methods, sharp interfaces are

considered which requires proper tracking of the interface. Instead, continuous forcing

methods may take into account the body boundary via sharp or di�use interfaces.
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Continuous forcing approaches

Actually, the original IBM developed by Peskin (1981) enforces a localized forcing term

in the momentum equation for an elastic boundary, in a di�use narrow-band near the

interface while tracking the elastic interface in a Lagrangian way [84]. This method has

then been extended to rigid interfaces by considering a spring model with an important

sti�ness. Secondly, more general approaches which are part of �ctitious domain methods

model the body regions as �uid regions with rigidity properties [46] while another class

of IBM views the whole �uid region as a porous media. The latter encompasses the

boundary condition through the addition of a Brinkman penalty term into the momentum

equation. These methods denote the so-called penalization approaches [3]. On the

whole, many continuous forcing approaches consider a di�usive interface. Finally, other

continuous forcing methods do conserve the sharp-interface property by using a hybrid

staggered-non-staggered approach (see [45, 110]).

As explained previously, in this work we considered a �xed Cartesian grid which we

combined with a level-set approach, the tracking of Lagrangian markers, and the

implementation of an IBM. Historically, in the region of Bordeaux and particularly in the

Institute of Mathematics of Bordeaux (IMB), several research groups have developed,

implemented, and extensively worked with penalization methods in a CFD framework

[3]. The volume penalization method computes identical equations for both solid and

�uid regions but penalizes the body region nodes accordingly. More details about the

penalization method are provided in the next section.

2.3 Penalization method

In this section, we detail the penalized model of the incompressible equations of Navier-

Stokes before unveiling the actual discretization and the numerical schemes that we

mainly used in this work for the numerical resolution.

2.3.1 Penalized equations

As explained previously, volume penalization methods have been developed to take into

account the e�ects of body velocity in the framework of a moving and deforming body,

immersed inside a �xed and Cartesian computational mesh. Thus, in the penalization

method, the numerical approach is monolithic: we see the whole domain as one single

phase, viewed as a porous media in which the permeability is considerably lower inside

the immersed body. The previous incompressible Navier-Stokes equations 2.1-2.2 are

penalized as:

∇ · u = 0 in Ω, (2.12)
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∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u + χsλ(ub − u) in Ω (2.13)

where χs and λ are the body characteristic function and the penalty coe�cient,

respectively. The body characteristic denotes the Heaviside function χs = 1 in Ωs, 0 otherwise.

The penalty parameter λ we imposed to 108 can be seen as the inverse of a very low

permeability coe�cient. Thus, the boundary condition u = ub at Γs is implicitly imposed

through the penalization term χsλ(ub − u). This penalized form of incompressible

Navier-Stokes equations is equivalent to the initial system with a no-slip condition at

the interface, in the limit λ → ∞ [3]. Besides, the penalized system converges towards

the initial Navier-Stokes system with a convergence rate in O(
√

1/λ) [56].

As for the Γf -boundary conditions, we used a mix of wall and free-�ow conditions,

detailed in chapter 4. In our problem, the body and the �uid are initially at rest and no

�uid �ow is imposed through the domain boundaries. The previous penalized equations

2.12-2.13 are then discretized with �nite-di�erence schemes described underneath.

Basically, the numerical solution of the �nest meshes tends to the real solution in

the limit of numerical approximations. The purpose of numerical schemes is to converge

to the proper solution with a certain order of accuracy while being numerically stable.

2.3.2 Discretization

Incompressible penalized Navier-Stokes equations have been discretized by considering

a cell-centered and collocated arrangement of the primitive variables (u, p). We can

see there is no explicit equation for solving pressure. In fact, pressure can be seen as

a Lagrange multiplier for the incompressibility constraint. Therefore, the pressure is

implicitly governed by the continuity equation 2.12. Historically, numerical approaches

consisted of fractional-step schemes to process u and p. For instance, Semi-Implicit

Method for Pressure Linked Equations (SIMPLE [97], [84]) conserved a pressure term

for solving the momentum equation before applying a pressure correction. Instead,

we preferred the so-called Chorin-Temam predictor-corrector scheme [26, 116] which

consists of decoupling pressure and velocity by solving the momentum equation for the

velocity and a Poisson equation for the pressure before correcting the velocity to satisfy

the incompressibility constraint. Due to the continuity equation, no explicit pressure

boundary conditions are required when solving the Poisson equation.

Let develop the so-called Chorin-Temam scheme which updates the primitive variables

(u, p) from the previous time step, in multiple steps. To that end, let introduce

intermediate variables u∗, u∗∗ and p∗. Let de�ne the space-discretized convective and

di�usive terms as: C = (u · ∇)u and D = ∆u. The di�usive term has been discretized

in time either explicitly or implicitly via a Crank-Nicholson scheme while a second-order

accuracy Adams�Bashforth fractional-step scheme was used for the convective term.

Indeed, an implicit implementation may be useful to circumvent the viscous stability
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condition in case of highly viscous �ow regimes while an explicit scheme is required for

the convective term due to its non-linearity. As for the global temporal scheme, we used

a standard �rst-order discretization. Finally, the penalty term is described implicitly

by using a second-order (ub2) or �rst-order (ub1) accuracy for boundary conditions

at the interface Γs. As a result, the previous penalized momentum equation 2.13 was

discretized in time as:

un+1 − un

∆t
= −(

3

2
Cn − 1

2
Cn−1)

− 1

ρ
∇pn+1

+
µ

2ρ
(Dn+1 +Dn)

+ χn+1
s λ(un+1

b2
− un+1)

Intermediate variables u∗∗, u∗, p∗ are then introduced in the previous equation as:

un+1 − u∗∗

∆t
+

u∗∗ − u∗

∆t
+

u∗ − un

∆t
= −(

3

2
Cn − 1

2
Cn−1)

− 1

ρ
∇(pn+1 − pn + pn)

+
µ

2ρ
(D∗ +Dn)

+ χn+1
s λ(un+1

b2
− un+1)

In consequence, each term is incorporated within a solving step. First, we solve u∗ during

the projection step:

u∗i − un
i

∆t
= −(

3

2
Cni −

1

2
Cn−1
i )− 1

ρ
(∇pn)i +

µ

2ρ
(D∗i +Dn

i ) + χn+1
s λ(ub1,i

− u∗i ) (2.14)

where the convective Ci =
∑
j

∂ujui
∂xj

and di�usive Di =
∑
j

∂2ui
∂2xj

terms are discretized in

space with a third-order upwind and a second-order central �nite di�erence schemes,

respectively. Note we preferred upwind schemes for the convection term to have better

stability than centered �nite-di�erence schemes. At the end of this �rst step, we obtain

the intermediate velocity �eld u∗ which is a priori not divergence free and the pressure

term is not properly de�ned. That is why, we need to perform a correction step by

computing Eq. (2.12). Therefore, we want to �nd the pressure pn+1 such that ∇·u∗∗ = 0

using the equations:
u∗∗ − u∗

∆t
= −1

ρ
(∇pn+1 −∇pn) (2.15)

∇ · u∗∗ = 0 (2.16)

The divergence of Eq. (2.15) gives :

∇ · u∗ =
∆t

ρ
∆(pn+1 − pn) (2.17)
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which provides the following Poisson equation :

∇ · u∗ =
1

ρ
∆Φ (2.18)

with Φ = ∆t(pn+1 − pn). The considered boundary conditions in ∂Ω for the Poisson

problem are homogeneous Neumann conditions for the pressure in order to not impact

the computed velocity during this projection step. Note a face-centered velocity U∗ is

required in 2.18 instead of the collocated variables:

∇ ·U∗ =
1

ρ
∆Φ (2.19)

In that way, both velocities and Φ are face-centered and we limit the occurrence of

spurious pressure oscillations due to pressure and velocity locations. The face-centered

velocity needs to be computed with the proper corrections of pressure gradients regarding

face-centered (fc) and cell-centered (cc) locations:

U∗ = u∗fc + ∆t((∇pn)cc − (∇pn)fc) (2.20)

The linear system formed by the discrete equations 2.19 is solved using iterative and

Krylov subspace methods such as Conjugate Gradient (CG) or BiConjugate Gradient

Stabilized (BCGS) methods. After this projection step, the pressure and velocity are

then corrected as:

pn+1 = pn +
Φ

∆t
(2.21)

u∗∗ = u∗ − 1

ρ
∇Φ (2.22)

Let assume the body velocity at the boundary un
b is known at time tn. The last step

regarding the �uid solver consists of transporting χns to χ
n+1
s and penalizing the velocities

located near the body surface Γs to reach a second-order accuracy at the interface. The

major issue with IBM is the proper approximation of the immersed interface i.e. proper

�uid velocities near the interface. With no special correction, the solid velocity is enforced

at Cartesian grid nodes which is only �rst-order accuracy in space as we do not model

curved interfaces adequately. In what follows, I will only brie�y present the image point

correction (IPC) algorithm we used to recover a second-order accuracy near the interface.

We refer the reader to [9, 53] for further details.

The computed velocity of near-boundary nodes also called the ghost cell (gc) is penalized

with the symmetric point to the interface (see Fig. 2.6). Basically, we penalize each

ghost node using the symmetrical value relatively to the interface and located inside the

immersed body:

ub2 = ub1 − φ(
∂u

∂n
)|φ=0 (2.23)

un+1 − u∗∗
∆t

= χgcλ(ub2 − un+1) (2.24)
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Figure 2.6: Sketch of the IPC method in a two-dimensional case, from [9]. The IPC
is applied to the Ghost points using the symmetric points. The value of the symmetric point is
based on an interpolation of its four neighboring �uid points. The original penalty method is
applied on the other solid points. Figure and caption extracted from [9].

where u∗∗ is the velocity computed at the end of the correction step which we penalize

with the IPC method. Note we use the level-set function to recover the distance to the

interface and the outward normal unit vector. After this correction step, all the collocated

variables u and p are updated to time tn+1 = tn + ∆t. Notice the time step ∆t can be

variable according to stability conditions determined with the �uid velocity. Finally, we

described how the �uid velocities are computed and updated in each time step when the

body velocity of the previous time iteration is known alongside the position of the solid

body boundary Γs. Note the body boundary velocity �eld un
b which is also processed

with an Eulerian point of view, constitutes one of the remaining unknown for updating

the �uid velocity from un to un+1, alongside its position via the body characteristic χns .

Insights about body computations are provided in the next section.

2.4 Body dynamics

2.4.1 A deforming body: decomposition of body velocity

In general, I previously introduced the immersed body as a moving and deforming solid

object. Indeed, we did not model the body boundary as an elastic interface. In fact,

most of the time, we described the immersed body as solid and rigid. Nevertheless, we

remind the reader the goal is to study �sh-like swimming and more precisely, experimental

zebra�sh escape swimming. For self-propelled bodies, rigid kinematics which is generally

issued from Newton's laws cannot be su�cient to describe an auto-propelled motion.
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Indeed, in that case, we do not describe the motion of a rigid body which undergoes

the surroundings state. Instead, we study the movements which are generated by the

body itself. That is why, supplementary information is required to represent the body

deformations. For a moving solid object, the body velocity at the surface ub is composed

of a translation velocity ū = uCoM and a rotation velocity uθ. Considering a solid object,

the latter is given by uθ = ω ∧ r, ω being the angular velocity and r = x− xCoM is the

distance to the center of mass. As for a deforming body, we assumed the body velocity can

be decomposed into the rigid velocities and an additional deformation velocity denoted

uε:

ub = urigid + uε = ū + uθ + uε (2.25)

The rigid terms are determined by the solid dynamics and the computation is described

in what follows. As for the deformation velocity, the information is generally prescribed

by imposing movements from Lagrangian markers or midline kinematics and curvature.

For example, harmonic formulations can constitute an easy and simple way to implement

�sh-like kinematics, especially for modeling a steady, cyclic and in-line motion. Herein,

the essence of this work resides in the computation of both the deformation term uε and

the body shape. In particular, this work di�ers from the literature by computing the

body deformations from experimental imaging. Indeed, the choice of uε is crucial

to obtain realistic body kinematics and that is why, we preferred to directly use

experimental observations. To that end, experimental videos were �rst post-processed

and segmented to obtain the 2D body shape at each experimental frame. Afterward, a

Procrustes Analysis step was required to realign each frame and subtract any rotation

between consecutive frames. The Procrustes Analysis aimed at recovering and isolating

the deformation motions. Besides, we investigated various techniques to extract the

deformation velocity from experimental data and recover the body characteristic. These

major contributions developed for both 2D and 3D simulations, will be the focus of the

next chapter. Actually, we extensively used two main methods which either compute the

experimental deformation velocity �eld uε or provide surface Lagrangian markers which

enable to track the body kinematics through experimental imaging. That is why, the

discretization and computations of body dynamics may di�er according to the Eulerian

or Lagrangian point of view.

2.4.2 Rigid body dynamics, forces and torques

The rigid body kinematics can directly be computed from Newton's laws - the law

of conservation of momentum for solid objects. Indeed, the translation and rotation

velocities of the center of mass are recovered with the solid mechanics equations :

ρsVs
dū

dt
= Fhydro (2.26)
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dJω

dt
=Mhydro (2.27)

where ρs = ρ is the solid mass density, Vs the solid volume, J is the inertia matrix and

Fhydro,Mhydro the hydrodynamic forces and torques exerted onto the solid body. The

hydrodynamic forces and torques are computed by integrating the hydrodynamic tensor

T over the surface:

T(u, p) = −pI + µ(∇u +∇uT ) (2.28)

Fhydro = −
∮

Γs

T(u, p) · ndS (2.29)

Mhydro = −
∮

Γs

T(u, p) ∧ rdS (2.30)

Afterward, the numerical calculation of hydrodynamic terms may di�er according to the

representation of the body. Indeed, the body surface is not well-described when using

implicit and fully Eulerian approaches such as level-set techniques while Lagrangian

markers might precisely be computed to discretize and directly integrate surface integrals.

Both paradigms are then enlightened in what follows.

2.4.3 Power

The instant consumed power due to hydrodynamic forces is simply derived from the

computed boundary velocity ub and the hydrodynamic tensor T based on �uid variables

(u, p) as:

P =

∫
Γs

(−
∮

dS
T(u, p) · nδS) · ubdS (2.31)

where n denotes the outward unit vector to the body surface. Note the torques and

angular velocity are implicitly introduced within this formulation as uθ is present in ub.

Similarly, the deformation velocity also contributes to the generation of hydrodynamic

forces and torques via the penalty term and thus, is taken into account in the power

output calculations. As a result, instant power quanti�es the power required by the

zebra�sh body to overcome the surroundings forces and move its body through. As

noticed, this power incorporates both the contributions of passive and active parts

represented by rigid and deformation kinematics, respectively. Therefore, it is important

to note that the power output cannot exactly neither well-represent the available internal

biological power nor characterize the power instantly consumed by the muscles and

locomotor activity of the zebra�sh animal. However, the whole motion is originated

from the production of body kinematics only provided no exterior source nurture the

�uid �ow motion and the body swimming movements. In consequence, the consumed

power does e�ectively represent the total power required by zebra�sh eleuthero-embryos

to swim. Furthermore, the total work expended between time ti and time tf can be
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derived by integrating the instant power over time:

E =Wtotal =

∫ tf

t=ti

Pdt ≈
tf∑
t=ti

Pidt (2.32)

Note the continuous quantity P is described numerically by the time-discrete power Pi.

Basically, the hydrodynamic forces represent the forces exerted by the surrounding �uid

onto the immersed body. The output power is the power the body has to expend in

order to move through the �uid forces at time t. The work is the consumed power over

time while expended energy E is the total amount of work. Generally, the total amount

of work which represents the total expended energy, can be particularly important to

analyze the energetic e�ciency of a system by separating the useful work from the rest.

Thus, the classic Froude e�ciency which is de�ned as:

ηFr =
Wuseful

Wtotal
(2.33)

can also be computed in the case of self-propelled swimmers by determining the

parts of the work which contribute the most to propulsion for example. In the

case of simple deformation laws such as harmonic traveling waves, the useful work

is formed by forces which drive the body forward, associated with the forward velocity.

Given the straightforward de�nition, simple body kinematics was often imposed to

study swimming performances. However, only the global amount of work can be

computed in case of complex body deformations such as zebra�sh escape responses as

we cannot generally distinguish the most important contributions to escape swimming

performances. Therefore, alternative energetic quantities need to be de�ned to assess

the escape swimming performance. As �shes produce body kinematics to travel, one can

also de�ne the cost of transport (CoT) which corresponds to the energy expended per

distance unit:

CoT =
E

dtotal
(2.34)

where dtotal is the total traveled distance between time ti and time tf in the sense of

the total sum of in�nitesimal distances traveled across time and not the raw Euclidean

displacement between �nal and initial time. The cost of transport is particularly

attractive for escape kinematics as it measures the energetics invested by zebra�sh to

travel its center of mass over a certain distance. Thus, the CoT is minimized for large

traveled distances or low energetic consumption. Notice, the escape swimming speed

may be required to be analyzed alongside CoT to provide a �ner understanding of escape

swimming performances.

Besides, we de�ned the �ow vorticity as the quantitative variable which measures the

rotation of the �ow to enlighten where the vortices are located in the wake. Thus, the

�uid vorticity is given by:

Ω = ∇∧ u (2.35)
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Finally, let de�ne the Q-criterion as :

Q =
1

2
(‖Ω2‖ − ‖S2‖) (2.36)

where Ω and S are the symmetric and asymmetric parts of the velocity gradient,

respectively which also represent the vorticity and rate of strain tensors. The Q-criterion

is often preferred to the vorticity when illustrating the generated wake behind a self-

propelled swimmer.

As we presented the general governing equations alongside important energetic quantities

for �sh-like swimming, we detail in what follows the di�erent calculations performed for

both Eulerian and Lagrangian points of view.

2.4.4 Swimming body dynamics: a fully Eulerian framework

Hereafter, we present how body dynamics are computed at each time step, when the

state of the �uid �ow is known and only an Eulerian representation is used through

the level-set function. Again, we remind the reader the body deformation velocity �eld

uε which is used to recover ub, is extracted from experimental imaging data and more

precisely, locomotion videos. Therefore, we denoted ∆it the acquisition time between

two consecutive experimental frames and δit the time between the current computational

time and the last experimental image.

As explained previously, the rigid velocity composed of the translation and rotation

motions, is computed at each grid nodes within the body i.e. where the level-set

function φ is positive. In addition, a global deformation velocity must be computed.

Basically, we know the initial and �nal density distributions ρ0 and ρ1 and we need the

deformation velocity �eld to transport ρ0 to ρ1 during the time step ∆it (see Fig. 2.7).

This speci�c requirement is a key approach which was originally initiated in 2D to extract

the deformation velocity from experimental video frames. The numerical solution is the

optimal transportation and will be the focus of an entire section in the next chapter. Let

assume uε is known. At each time step, the level-set function needs to be transported

to its proper position regarding the rigid and deformation velocity of the body.

Transportation of the body

For the deformation velocity, the level-set is actually implicitly deformed by using the

experimental video frames. Nevertheless, computational time and acquisition time rarely

correspond. That is why, the deformation velocity is also used to interpolate intermediate

snapshots of the level-set. In this work, level-set snapshots are interpolated by optimal

transportation (Fig. 2.7). Afterward, the level-set function needs to be transported

according to the rigid velocity. In de�nitive, the level-set function is updated from the
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Figure 2.7: Recovering the body shape at each time step from experimental frames
of level-set �elds. Nt video frames are available. Each computational time step is located
between two experimental frames nt and nt + 1. With an Eulerian representation, each frame is
a level-set function of the body which describes the mass density distribution ρ. We denotes ρ0

and ρ1 the two density distributions at nt and nt + 1. The deformation velocity �eld uε de�nes
the transportation of ρ0 to ρ1. Note the index i refers to experimental images.

previous time step by updating its shape from the deformation velocity �eld, and its

location by rigid transportation.

The level-set function can be transported by solving the advection equation 2.7. To

circumvent the issues of volume conservation explained previously, we used a Lagrangian

point of view to transport the level-set function of each Cartesian grid node adequately

(Fig. 2.8):
dx

dt
=

xn+1
i − xn

i

dt
= ui (2.37)

which are derived from the Lagrangian form of the transportation equation 2.7:

du

dt
= 0 (2.38)

Notice a grid node is rarely transported to another grid location. That is why, Eq. 2.37

is actually written as:
dx

dt
=

xa − xd

dt
= ui (2.39)

where xd, xa denote the departure and arrival locations, respectively. Thus, the

grid node associated with the rigid velocity ui can be viewed either as the departure

(semi-Lagrangian) or the arrival point (Lagrangian) (see Fig. 2.8). The numerical
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Xd

Xa

(A) Lagrangian scheme.

Xd

Xa

(B) Semi-Lagrangian
scheme.

Figure 2.8: Sketches of Lagrangian and semi-Lagrangian transportation schemes,
with Cartesian grids. For a Lagrangian scheme (Fig. 2.8A), grid nodes are at arrival locations
while the departure point is considered at the grid node for a semi-Lagrangian transportation
(Fig. 2.8B). In both cases, we represented in black the silhouette associated to the Cartesian
grid; previous or next contour being in gray.

scheme is then de�ned according to the adopted point of view. In the Lagrangian

transportation case, a direct solution consists of �nding the original particle location

at time tn: xd = xa − dtun
i before interpolating the signed distance i.e. level-set

function and the deformation velocity from the nodes surrounding xd. Indeed, the

deformation velocity �eld also needs to be transported to follow its associated level-

set function and deform it in the next time step. Thus, level-set and deformation

properties of xa = xn+1
i are directly issued from interpolation at xd. However, we may

encounter troubles for singular cases where a �uid node becomes a solid node. Indeed,

in this particular case, the deformation velocity is not well-de�ned. To overcome such

numerical issues, we implemented a semi-Lagrangian scheme coupled with a remeshing

particle advection method [132]. The semi-Lagrangian method consists of performing

the opposite trajectory: we transport the particle located at xd = xi
n to its new position

at time tn+1: xa = xi
n + dtui before re-distributing the transported properties of the

particle onto the Cartesian grid. In that way, we can transport both the signed distance

function and the deformation velocity of each grid node.

Remeshing particle methods have been developed to solve Euler equations with Lagrangian

�uid particles and recover the global variables such as density and momentum onto a

Cartesian grid. The purpose is to conserve the �uid particle properties while the particles

move across the Cartesian mesh. Once transported, the particle is remeshed within a

certain zone of in�uence as illustrated in Fig. 2.9. The distance function is remeshed by

using interpolation kernels which can be found in [132].
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Figure 2.9: After a Lagrange-like transportation step, the particle named "old
particle" is remeshed onto the Cartesian mesh, from the Lisl Weynans' PhD [132].
The particle quantities such mass, momentum and energy participate to the "new particle"
calculations.

Discretizations

As the computational mesh considered herein is not body-�tted and the body surface

cannot be approximated by an implicit representation, we computed hydrodynamic

forces and torques via alternative formulations based on a dynamic control volume Ωf (t)

surrounding the immersed body, which are actually equivalent to Eqs. 2.29-2.30:

F = − d

dt

∫
Ωf (t)

udV +

∫
∂Ωf (t)

(T + (u− uf )⊗ u)ndS −
∫
∂Ωs

((u− ub)⊗ u)ndS

M = − d

dt

∫
Ωf (t)

r ∧ udV +

∫
∂Ωf (t)

r ∧ (T + (u− uf )⊗ u)ndS −
∫
∂Ωs

r ∧ ((u− ub)⊗ u)ndS

where r = x − xCoM. Forces and torques applied onto the body are then computed

from the momentum conservation equation through the control volume. Similarly, the

resulting instant power can also be computed via the control volume approach. Basically,

the power is computed from the �uid kinetic energy and the dissipation of viscous forces

through the control volume. We refer the reader to [10] for more details. In this

work, we will prefer to compute energetic quantities via surface integrations by using

discrete Lagrangian markers as we meshed the zebra�sh body surface with a particularly

important amount of elements.

2.4.5 Swimming body dynamics: an Eulerian-Lagrangian framework

In this section, we present how body dynamics are computed at each time step, when

the state of the �uid �ow is known by using Lagrangian markers in addition to the

level-set function. Note the surface mesh formed by Lagrangian markers and previously

described in section 2.2.3, is required for computing accurate body-related quantities:

surface forces and torques, body volume, body center-of-mass, body inertia matrix.
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Transportation

In the case of a Lagrangian framework for describing the contour of the body, the level-

set function can directly be computed from Lagrangian markers, at each time step.

Therefore, there is no need to deform the level-set function via a deformation velocity

�eld. As for rigid transportation, Lagrangian markers are directly transported by rigid

velocity. However, two pieces of information still need to be computed: the boundary

velocity required for �uid penalization and the intermediate snapshots corresponding to

computational time. On the one hand, intermediate shapes between each consecutive

acquisition time are straightforward to obtain by linear interpolation of Lagrangian

markers for example. On the other hand, boundary velocity is simply computed at each

time step, by the consecutive positions of Lagrangian markers. Therefore, Lagrangian

markers have to be accurately tracked across time. The generation of proper Lagrangian

markers on the body surface is detailed in the next chapter.

Discretizations

As the surface of the body is well-described with discrete Lagrangian markers, the

hydrodynamic forces and torques can be directly computed by integrating the hydrodynamic

tensor T over the surface elements dse:

Fhydro ≈ −
∑
e∈Γs

T(u, p) · ndse = −
Ns∑
l=1

Nθ∑
θi=1

T(u, p) · ndse (2.40)

Mhydro ≈ −
∑
e∈Γs

T(u, p) ∧ redse = −
Ns∑
l=1

Nθ∑
θi=1

T(u, p) ∧ redse (2.41)

where re = xe − xCoM, u and p are calculated from Lagrange interpolations.As

previously, notice that forces and torques could have also been computed by using

the control volume approach brie�y described previously. Nevertheless, we preferred the

surface integration method given the density of the surface mesh we constructed.

2.4.6 Free swimming

In de�nitive, we obtain a system of six equations: three equations for the ū-components

plus three equations for the ω-components. Considering such a system, the swimming of

the �sh body is entirely determined by six equations. However, if we want to impose a

speci�c motion we can reduce the system by locking the desired degree of freedom. For

instance, two rotations and one translation have to be locked to obtain a (xy)-planar
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motion which is written as: 
ρsVs

dūx
dt = Fhydrox

ρsVs
dūy
dt = Fhydroy

ūz = 0

(2.42)


ωx = 0

dJω
dt =Mhydro

y

ωz = 0

(2.43)

Most of our 3D simulations have been performed with an imposed planar motion as

3D motions are very sensible to any slight angle variation which can lead to unstable

3D swimming. Furthermore, large 3D rotations are produced in case of an asymmetric

body geometry as with �sh geometries. In fact, these spurious rotations and instabilities

are mainly due to the geometrical shape of the posterior and the tail of the �sh which

produces the propulsion. Indeed, the tail is generally very thin relatively to its width

which creates natural unstable 3D motions. As for the actual swimming motion, �shes

can follow a planar motion but they have biological resources to be able to stabilize

themselves which we did not model. For example, pectoral �ns can be important for

stabilization.

2.5 Implementation

The whole NaSCar code where the previous numerical elements have been implemented

is an in − house solver developed and validated by Michel Bergmann within the

MEMPHIS team. NaSCar constitutes a Navier-Stokes solver to compute �uid �ows

around immersed bodies, on top of a Cartesian grid. Basically, the body is represented

by a level-set but a surface mesh with Lagrangian markers can be provided to enable

surface computations. Similarly, the CFD code can be run either in 2D or in 3D. In

this work, we started with 2D simulations and a full Eulerian approach before going into

more accurate and realistic 3D simulations with Lagrangian markers.

Experimental data consists of �sh deformations extracted from escape swimming videos.

In 2D, the data are composed of 2D level-set describing the immersed body shape.

In addition, the deformation velocity �eld is also required as input to the CFD code.

Instead, in 3D, input data are a series of 3D deformed snapshots corresponding to the

experimental video frames, described by a surface mesh and Lagrangian markers. At

each time step, two pieces of information are needed from the experimental imaging data:

the instant body shape and the deformation velocity generated by body kinematics to

penalize the computed �uid velocities and transport the body geometry (Eulerian). The

explicit deformed geometry of the body which is either a contour in 2D or a surface

in 3D, is required to directly calculate the deformation velocity and to circumvent
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Figure 2.10: Algorithm illustrating the interaction of the di�erent numerical
components and the link to the experimental data.
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the transportation to the next time step with the deformation velocity (Lagrangian).

Indeed, the body deformation is also tracked while transporting a deformed body

shape by rigid velocities which enables to implicitly transport the level-set by updating

it. The interpolation at a computational time of the input data is performed either

using the deformation velocity in 2D (Eulerian) or with simple linear interpolation of

Lagrangian markers (Lagrangian). Therefore, the next chapter focuses on the extraction

and reconstruction of body shapes and body deformation velocities from experimental

video imaging of zebra�sh eleuthero-embryo escape locomotion.





Chapter 3

Generation of input data from

experimental videos

This chapter presents all the di�erent contributions which shape the input data of the

CFD code, from the experimental videos of actual escape locomotion to the computation

of deformation velocity in 2D or the complete reconstruction in 3D of the swimming

video. This elaboration process begins with the experimental data. A complete view of

the experimental procedure is provided. The image processing algorithm is then brie�y

detailed. The essence of this step is to realign the video frames onto the center of mass to

remove the rigid displacements using a Procrustes Analysis step. Afterward, two classes

of methods were developed. On the one hand, we can derive the deformation velocity by

using the theory of optimal transportation. On the other hand, we can generate body

surface meshes with Lagrangian markers from the extraction of the midline. In 3D, a

second step of Procrustes Analysis needs to be performed, especially to take into account

the 3D center of mass into the computation of rotation. A review of a few validations

required at each step is provided but most of the de�nitive numerical process validations

will be provided in Chapter 4.

3.1 Experimental set-up

The experiments have been run with wild-type zebra�sh eleuthero-embryos aged of 5 days

post-fertilization (dpf) and reared within the zebra�sh housing facility of the MRGM lab.

Basically, the experiments consisted of recording the zebra�sh escape locomotion after

being stimulated by an EFP. In this section, we brie�y present the animal housing facility

before detailing the experimental setup for video recording.

53
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(A) Insight of zebra�sh breeding
facilities.

(B) Zebra�sh
eleuthero-embryo
production unit.

Figure 3.1: Zebra�sh are reared inside and by the MRGM lab. Adult zebra�sh
are reared in large tanks while zebra�sh eleuthero-embryos and larvae are bred inside suitable
aquariums, after hatching.

3.1.1 Zebra�sh husbandry

The 5 dpf eleuthero-embryos were obtained by natural mating and raised in embryo

water containing 86 µg/ml Instant Ocean (Aquarium Systems, Sarrebourg, France), 0.55

mM CaSO4, 2H2O (Alfa Aesar, CAS n°10101-41-4), dissolved in reverse-osmosis puri�ed

water, at 28 ± 1 °C, with an 11L:13D photoperiod. At 5 dpf, the zebra�sh eleuthero-

embryos were transferred in highly-�ltered �sh water, before performing an electric �eld

pulse motor response (EFPMR) test and recording the resulting escape response on the

top of the experimental cell. Beforehand, �uid solutions or chemical compound exposure

were eventually prepared to experiment speci�c conditions. Further details are provided

in Chapter 5 regarding the experimental conditions used.

3.1.2 Ultra high-speed camera setup

During each recording session, the temperature of the experimental chamber was

controlled and �xed at 28± 2 °C. The recording set-up was formed by an EFP module

synchronized with an ultra-rapid camera, installed on the top of an experimental cell (Fig.

3.2). All experimental imaging was then processed by the Photron FASTCAM Viewer

software (PFV4). The experimental cell consisted of circular-like in-house electrodes

mounted inside a 5 cm-diameter Petri dish (Fig. 4.7A).

Two ultra-high-speed cameras have been used. First, we used a Photon FASTCAM SA3-

120K camera (Photron USA Inc., San Diego, CA, USA) for which we essentially tested

our numerical approach: from image processing to optimal transportation results. This
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Figure 3.2: The MRGM lab is equipped by two ultra high-speed FastCam cameras
which can record up to 15,000 fps.

camera was used with a 256× 256 image resolution and 15, 000 fps acquisition frequency

which was considerable to obtain very close frames. Then, we used a second high-speed

camera namely Photron FASTCAM Mini WX100, for quality enhancement, which could

also reach up to 15, 000 fps. However, a frame rate of 10, 000 fps was found more suitable

for our experimental procedure. All ultra-high-speed cameras were mounted with a Sigma

105 mm F2.8 EX DG macro lens and positioned on the top of the experimental cell (40

cm-height). With the latter camera, the image resolution (512 × 420) enabled to cover

a window of approximately 13.1 × 10.700 mm2. We calibrated the pixel dimensions by

using a graduated ruler at a millimeter scale. Regarding the important resolution, we

found the pixel size approximately corresponded to δpx = 0.026 mm and δpx = 0.030 mm,

for Mini WX100 and SA3-120K, respectively. Given the zebra�sh eleuthero-embryos are

sized of approximately 4 mm at 5 dpf, the camera window covered less than three

times the eleuthero-embryo's length. As a consequence, we needed to track e�ciently

the zebra�sh movements, especially after the stimulation. Regarding the high image

resolution and the relative distance of the camera, the cell lighting needed to be adjusted

accordingly. Indeed, we also equipped the experimental cell with a lighting system

underneath, to increase the image contrast between the zebra�sh silhouette and the �uid

background. The plate was illuminated from below by an LLUB White LED Blacklight

50×50 (PHLOX, Aix-en-Provence, France) adjusted to 15% using a Gardasolft RT 220-20

led light controller(Gardasoft, Cambridge, UK). The light intensity in the experimental

platform, measured using an ILT1400 radiometer (International Light technologies Inc.,

Peabody, MA, USA), was approximately 800 µW/cm2.

In this work, we used ultra-high-resolution images in time and space, mainly due to our

numerical process to track the zebra�sh motion and above all, the stimulation system

we used. In that regard, zebra�sh eleuthero-embryos do have a slow cruising swimming

motion and can perform slight accelerations composed of turns, especially to reach food or

when responding to visual stimulations. However, the purpose of the experimental set-up

is to stimulate zebra�sh eleuthero-embryos in order to obtain an EFPMR which produces

large, ultra-fast, and stereotyped fast-start escape deformations. As a consequence, an

important resolution was required to capture accurately the body deformations along

with the zebra�sh silhouette. Pools up to �ve eleuthero-embryos may be positioned in
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the stimulation cell. However, we only considered individuals for biological experiments

(Chapter 5) to avoid altered experimental conditions in terms of imaging or locomotor

behavior. Thus, the eleuthero-embryo was individually positioned in the stimulation

chamber and a 20 V EFP was applied for 10 ms, driving an ultra-rapid escape response.

Individual videos were recorded for each experimental condition in order to calculate

mean measurements and thus integrate the variability of escape responses and biological

animals. All statistics were conducted by using GraphPad Prism v8.02�g, GraphPad

Software, Inc.

As explained, the camera was synchronized with an EFP system to start the recording

while initiating the electric pulse in the experimental cell. The actual shape of the

custom electro-magnetic signal is known but not shown as the EFP cell developed by

the MRGM team will be published. For each experiment, the Petri dish was �lled with

4 ml of pure �uid which approximately corresponded to a �uid height slightly above

h = 2 mm (without the presence of electrodes). In that way, zebra�sh eleuthero-embryos

can move freely but the motion tends to stay horizontal and planar within such small

heights of �uid. Indeed, the major constraint of our model resided in the three degree-

of-freedom (3-DoF) motion as we are not able yet to track full 3D motions. In addition,

despite our e�orts for �ltering many times the �uid solution, micro particles may still be

present and pollute the video and a relative thin layer of �uid could limit the amount

of micro-contaminant. Eventually, the image focus was facilitated when only recording

planar motions.

3.1.3 A fast-start escape response

Hereafter is presented a standard zebra�sh escape locomotion in water (Fig. 3.3),

recorded by the Mini WX100 ultra-rapid camera at 10, 000 fps. In this case, the eleuthero-

embryo was recorded individually to avoid any perturbation from the surroundings. We

can see the eleuthero-embryo is considered at rest when the body is straight undeformed.

Note we easily measured the total eleuthero-embryo's length by using the �rst image

frame. The tail tip is formed by a thin transparent membrane which can be visible with

such high-resolution images. In this experimental case, the eleuthero-embryo was sized

of approximately 4.2 mm. Note all measured lengths are given in total length i.e. from

the snout tip to the tail tip, including the MFF.

Although only a few frames are represented, we can clearly identify the three di�erent

phases of a stereotyped escape response: the C-bend and counter-bend motions followed

by the fast-swimming stage. Normally, the C-bend deformation is larger than the

counter-bend one. However, these preparatory and propulsive stages are variable from

one zebra�sh eleuthero-embryo to another, especially considering each eleuthero-embryo

can perceive the EFP di�erently. In what follows, we largely base the description of our

numerical process on these particular video frames. After recording such swimming
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(A) t = 0 ms (B) t = 5 ms (C) t = 10 ms (D) t = 15 ms

(E) t = 20 ms (F) t = 25 ms (G) t = 30 ms (H) t = 35 ms

(I) t = 40 ms (J) t = 45 ms (K) t = 50 ms (L) t = 55 ms

Figure 3.3: Example of an escape locomotion (fast-start) of a 5 dpf zebra�sh
eleuthero-embryo. We can see how fast and large the body kinematics is, in reaction of
an electric stimulus. The zebra�sh eleuthero-embryo is initially at rest (Fig. 3.3A) and initiates
the so-called C-bend motion (Figs. 3.3A-3.3C) where a C-shaped is formed (Fig. 3.3C). Then,
the eleuthero-embryo engages a counter-bend motion (Figs. 3.3C-3.3E). Note the counter-bend
deformation (Fig. 3.3 E) is particularly signi�cant in this escape swimming. Generally, the
C-bend constitutes a larger body deformation. Finally, multiple fast-swimming cycles can be
observed (Figs. 3.3 E-3.3 L). The timings of the three characteristic stages of escape swimming
are given for illustrative purpose. Individual recording at 10, 000 fps.

videos, each image needed to be processed according to the image quality and the

swimming kinematics.

3.2 Image processing

After the recording of each individual escape swimming with ultra-high frame rates,

from 10, 000 to 15, 000 fps, we conserved between approximately 500 and 1000 video

frames per experimental recording as we only focused on the �rst stages of the fast-start:

C-bend, counter-bend and only two cycles of fast swimming which corresponds to four

tail-beats. As explained before, the image resolution was directly related to the chosen

acquisition frequency: 512 × 420 at 10, 000 fps and 256 × 256 at 15, 000 fps. A custom

Matlab code has been developed to process the experimental videos. Basically, each
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frame is segmented and analyzed afterward, essentially to realign all zebra�sh eleuthero-

embryos and eliminate the swimming rigid motion produced between each consecutive

image. The algorithm has been supported by multiple variations, implemented to handle

a large spectrum of video quality and image formats.

(A) (B)

(C) (D)

(E)

Figure 3.4: Various illustrations of the impact of video quality on the computed
segmentation. All computed clusters are represented for four video examples. For the �rst
case, a k-means algorithm has been used with multiple clusters, on the original video (Fig. 3.4B)
and the pre-processed video (Fig. 3.4A). Second (Fig. 3.4C) and third (Fig. 3.4D) show the
variation of background quality impact. Finally, a di�erent camera has been used for recording
the last classi�ed image (Fig. 3.4 E).

The image segmentation process represents a key step to extract the proper zebra�sh

silhouette from the background pixels. To that end, we used clustering methods namely

k-means although a simple pixel-wise threshold could also be considered. However,

clustering methods have been found more robust to properly separate the zebra�sh

pixels from the background pixels. Indeed, threshold methods had two main drawbacks.

First, the de�nition of the threshold value was not straightforward to be accurate

enough near the body boundary. Indeed, when using such high-resolution images, the

eleuthero-embryo's boundary was not easily-de�ned. Moreover, we needed to choose

a threshold independently to each frame and experimental video. Finally in our case,

special attention was required to not drag spurious contaminant particle masses into the

silhouette of the zebra�sh body. Similarly, the tail of the zebra�sh needed to be accurately

captured in each frame. When considering threshold methods, the tail was regularly
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vanishing. That is why, we eventually over-classi�ed the pre-processed video before

automatically separating the set of clusters into two regions: the zebra�sh eleuthero-

embryo and the �uid background. In that way, we ensured to segment adequately,

regardless of the video quality. Indeed, the quality of the segmentation process could

highly di�er from one experimental video to another (see Fig. 3.4). Therefore, we

implemented a robust and reliable segmentation process to automatically extract the

zebra�sh mass across di�erent videos. Our image processing is structured with three

steps. First, we compute the rigid motion before smoothing the experimental data.

Finally, we proceed to segment each frame while subtracting the rigid kinematics. The

�rst image processing step is presented in detail in the �rst loop of Algorithm 1. As

explained previously, the center-of-mass coordinates can only be de�ned pixel-wise, at

�rst. Similarly, the tilt angle is very noisy considering how high the acquisition frequency

is. That is why, we considered to smooth the swimming parameters before realigning

each slice accordingly.

(A) A large deformation
example.

(B) A small deformation
example.

Figure 3.5: Illustration of the Procrustes Analysis for two di�erent body
deformations. For subtracting the rigid motion, center-of-mass positions of the considered
body silhouette (black contours) are �rst computed (black points). Note red contours and red
points denote the output contours and center of mass, after subtracting rigid kinematics. The
translation part of the rigid transformation consists of re-centering the center of mass. The
rotation part resides in the computation of the global body angle relatively to vertical, for
example. The body angle is also called tilt angle. Notice the tilt angle is straightforward to
estimate in case of small deformations (Fig. 3.5B) and ill-de�ned for strong deformations (Fig.
3.5A).

The calculation of rigid swimming kinematics are performed via the Procrustes Analysis

step. Actually, the Procrustes Analysis is key to our experiment-based approach as this

step enables to recover the body deformations i.e. body kinematics, from experimental

imaging (Fig. 3.5). For instance, Fig. 3.6 represents the rigid kinematics i.e. center-

of-mass translation and rotation, of the previously introduced experimental case (Fig.

3.3). The main goal of a Procrustes Analysis step is to estimate the rigid transformation

between two consecutive body silhouettes in order to subtract all rigid kinematics from
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body silhouettes. As a result, all center-of-mass positions are realigned to the frame

center and all body tilt rotations are subtracted to �t the initial silhouette orientation.

Note the straight silhouette of the initial frame has also been rotated to �t the vertical

line. We emphasize the overall di�culty raised by the Procrustes Analysis process

resides in the computation of the tilt angle (Fig. 3.5). In fact, the computation may

be straightforward for a straight body (Fig. 3.5B) but the problem can also be ill-

posed in the case of large deformations (Fig. 3.5A). In the latter case, the global body

angle may not be well-de�ned. Therefore, spurious rotation motions might be introduced

for large deformations (see Fig. 3.6B, between images 200-300), when computing the

rigid deformation between straight and deformed body silhouettes. That is why, a

correction algorithm has been developed to accurately estimate the body rotation of

strong deformations, by using the surrounding experimental body kinematics. This

additional step will be detailed further at the end of the chapter (see section 3.5).

Algorithm 1: Image processing: segmentation and Procrustes Analysis

Input: Video images (top-views of zebra�sh swimming), smoothed rigid swimming
kinematics

Data: 2D grayscale images, JPEG or TIFF formats
Output: Segmented and realigned data: the body deformations
foreach Image do

Segmentation

Adjust image histogram, threshold low and high intensity pixels
Cluster using k-means algorithm (number of classes between 3 and 15)
Threshold clusters in two groups, �lter

Rigid kinematics

Compute the Center-of-Mass coordinates
Resize and Center on a 300× 300 grid
Reorient with the last computed tilt angle
Compute the new tilt angle:
interpolation from Barycentric coordinates and the pixel-wise tilt angle,

relatively to the vertical
Reorient by subtracting the tilt angle

Smoothing

Smooth the discrete tilt angle series
Smooth the pixel-wise Center-of-mass series

foreach Image do
Segmentation

Adjust image histogram, threshold low and high intensity pixels
Cluster using k-means algorithm (number of classes between 3 and 15)
Threshold clusters in two groups, �lter

Subtracting rigid kinematics

Resize and Center on a 300× 300 grid, using the smoothed Center-of-Mass
Reorient by subtracting the smoothed tilted angle
Resize and Center on a 200× 200 grid (optional vertical shift), �lter

Finally, the last step consisted of realigning each video image with the smoothed

swimming kinematics after the segmentation step. This second loop (see Algorithm 1)
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Figure 3.6: Rigid kinematics computed via the Procrustes Analysis step. The center-
of-mass trajectory (Fig. 3.6A) and the tilt angle (Fig. 3.6B) have been smoothed (red) to
eliminate the data noise (black).

is nearly identical to the �rst one, except for the computation of rigid kinematics. The

center of mass was directly approximated using the average coordinates of the body

silhouette. Similarly, the global rotation motion which we de�ned as a tilt angle i.e.

the representation of the body angle at rest, was computed as a barycentric quantity

by evaluating the tilt angle of each pixel, relatively to the center of mass. Indeed, we

weighted each pixel with the distance to the center of mass, to de�ne the barycentric

coordinates. Notice we did not directly rotate the current image according to the initial

frame. Instead, we subtracted each angle relatively to the previous image. As a result,

the subtracted angle was well-de�ned. Finally, we centered each segmented image inside

a 200× 200 grid. Eventually, a slight shift in length is performed if required.

For illustration purpose, we represented in Fig. 3.7 the segmentation and realignments

results based on the previously introduced experimental video (Fig. 3.3).

3.3 Optimal transportation

In this section, we brie�y describe the optimal transportation theory and the main

interest for our applications. First, the optimal transportation theory was considered

to extract the deformation velocity �eld from the segmented and aligned 2D video

frames. Secondly, recent variations of optimal transportation problem provided an

e�cient solution for shape interpolation issues. After the brief introduction to optimal

transportation, we present how we actually used those algorithms. For more details, we

refer the reader to the papers our work is based upon [6, 18, 109]. In particular, the

regularized problem we used for 3D reconstruction of zebra�sh shape [109] is detailed in

Appendix A, alongside various illustrations of theoretical and numerical advances. The

optimal transportation algorithms developed by the MEMPHIS team [18] have been
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(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.7: Illustration of the image processing output: segmented and realigned
zebra�sh silhouettes. Various morphological operations and boundary �lters have been
performed to regularize the body boundary shape. We represented the set of video frames
corresponding to Figs. 3.3A (Fig. 3.7A), 3.3C (Fig. 3.7B), 3.3 E (Fig. 3.7C), 3.3G (Fig.
3.7D), 3.3 I (Fig. 3.7E) and 3.3K (Fig. 3.7 F). The color scale is de�ned by zeros (blue) in the
background pixels and ones (red) inside the zebra�sh body. Segmented output images are sized
of 200× 200 pixels.

used to extend the work initiated by Bergmann et al. [11] which originated the idea of

computing the deformation velocity �eld from images.

3.3.1 Preamble

The question of optimal transportation is an old problem originated by the French

mathematician and engineer Gaspard Monge for real-world mass transfer issues (1781,

[88]). Then, Leonid Kantorovich (1942, [57]) transferred the problem of optimal

transportation to economics as a resource allocation problem which ignited new interests

with the raise of linear programming. Afterward, Yann Brenier rewrote the optimal

transportation issue with a dynamic formulation issued from a �uid mechanics point of

view, which dragged new �elds of interest. More recently, Cedric Villani contributed to

provide new insights about optimal transportation theory [127, 128] and the multiple

links to fundamental mathematics and physics with entropy questions. In the last decade,

several disciplines gained interest in optimal transportation theory and its applications,

such as image processing, machine learning and computer graphics, computational
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geometry. For computational optimal transportation, we refer the reader to reviews

[96, 100, 102].

Figure 3.8: Title page of the Monge's Memoire introducing the optimal
transportation problem. [88]

Monge introduced the optimal transportation problem with the Mémoires sur les déblais

et les remblais, in 1781 [88] (Fig. 3.8). The initial question was to transport a certain

amount of soil to another location by considering the cost to transport each elementary

molecule of mass. Monge de�ned the cost of transport c(x,y) of each elementary molecule

with the mass m, to move from site x to emplacement y = T (x) as proportional to the

distance d between initial and �nal locations: c(x,y) = md(x,y) = m‖T (x)− x‖. As a
result, the total cost to transport a pile of sand from one place to another was de�ned

as: C =
∑

x d(x, T (x))m. The Monge's goal was to �nd the optimal transportation map

T : x 7→ y = T (x) for which the total cost of transport C is minimum.

Let introduce the notation of [109] with X ⊂ Rn be a metric space which represents a

bounded domain such as a surface or image plane. Let de�ne d : (x, y) ∈ Rn × Rn 7→
‖y − x‖Lp ∈ R+ a Lp-distance function, µ, ν be two probability measures on X and

ρ0, ρ1 be two mass density distributions on X. The Monge problem is then de�ned as

�nding the optimal transportation map T such that T transports µ to ν: T#µ = ν and

T minimizes the cost function:

C =

∫
X
c(x, T (x))dµ(x) =

∫
X
d(x, T (x))pdµ(x) (3.1)

When considering the transportation of mass densities ρ0 to ρ1, the cost functional (3.1)

becomes:

C =

∫
X
c(x, T (x))ρ0(x)dx =

∫
X
d(x, T (x))pρ0(x)dx (3.2)

Note Monge originally considered the problem with p = 1. In what follows, we will only

consider the Euclidean distance (p = 2): d(x,y) = ‖y−x‖ =
√∑

i(yi − xi)2. Obviously,
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the additional implicit constraint was the mass conservation during the transportation:∫
X
ρ0(x)dx =

∫
T (X)

ρ1(x)dx (3.3)

During the mid-XXth century, major contributions have been developed by the Russian

mathematician and economist Leonid Kantorovich which led to a Nobel prize in

economics in 1975. Basically, Kantorovich considered the optimal transportation problem

as a resource allocation question. In that case, the original distribution of resources needs

to be transported to a new con�guration, optimally. Unlike Monge which searched for

the optimal displacement of mass particles, Kantorovich desired to transport an amount

of resource from production sites x to �nal sites y by minimizing the total cost of

the transport c(x,y). In consequences, the total cost to allocate all resources from

the di�erent production sites to �nal sites is then de�ned as: C =
∑

x

∑
y c(x,y)pxy

where pxy denotes the amount of resources allocated from site x to site y. Obviously,

the underlying constraint resides in the conservation of resources during the allocation

operation:
∑

x(
∑

y pxy) =
∑

y(
∑

x pxy). As a result, Kantorovich aimed to �nd the

allocation map p while minimizing C. In the discrete case, we have to minimize the

quantity C =
∑

i,j cijpij considering the transportation and cost matrices under the

conservation constraints
∑

i pij = pj ,
∑

j pij = pi. The solution of the discrete problem

has been well-studied and can be computed by using linear programming such as the

so-called Simplex algorithm. Let consider the initial and �nal density distributions µ

and ν also called marginals, and π a transportation plan i.e. a probability measure on

X ×X. The quantity π(x,y) denotes the amount of resources or mass transported from

position x within the initial con�guration µ to position y inside the arriving distribution

ν. The so-called Monge-Kantorovich problem (MKP) formulation consists of �nding the

optimal transportation plan π such that
∫
y π(x,y) = µ(x) and

∫
x π(x,y) = ν(y) which

minimizes the total cost:

C =

∫
X×X

c(x,y)dπ(x,y) (3.4)

When considering the cost functional as the Euclidean distance, we can de�ne the so-

called Wasserstein metric [109]:

W2(µ, ν) = (inf
π

∫
X×X

‖y − x‖2dπ(x,y))1/2 (3.5)

Obviously, the L2-Wasserstein distance can also be de�ned for the initial Monge

formulation:

W2(ρ0, ρ1) = (inf
T

∫
X
‖T (x)− x‖2ρ0(x)dx)1/2 (3.6)

The optimal transportation problem has then been revisited by Benamou and Brenier [6]

with a �uid mechanics point of view. The major contribution of Benamou and Brenier

was to introduce a time variable within the optimal transportation problem of Monge
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and provide a dynamic optimal transportation formulation. Let consider a �uid bounded

domain Ω ⊂ Rn and the �uid density ρ(x, t) and velocity v(x, t) �elds. In �uid mechanics,

the continuity equation is written as:

∂ρ

∂t
+∇ · (ρv) = 0 (3.7)

Let ρ0 and ρ1 be the two initial and �nal mass density distributions corresponding to

time t = 0 and t = 1:

ρ(x, t = 0) = ρ0(x) (3.8)

ρ(x, t = 1) = ρ1(x) (3.9)

Under the previous framework, the Wasserstein distance can then be written as:

W2
2 (ρ0, ρ1) = inf

(ρ,v)

∫ 1

t=0

∫
Ω
‖v(x, t)‖2ρ(x, t)dxdt (3.10)

Brenier proved the existence and uniqueness of the solution T of problem (3.6) when T is

derived from a convex function Ψ: T = ∇Ψ [20, 127, 128]. Notice that when combining

this result with the constraint (3.3) and its corresponding Jacobian ∇T , we obtain the

so-called Monge Ampère Equation (MAE), a non-linear and elliptic equation written as:

ρ0(x) = det(∇T (x))ρ1(T (x)) = det(∇2Ψ(x))ρ1(∇Ψ(x)) (3.11)

Note Benamou and Brenier also proved in [6] the Lagrangian coordinates X(x, t)

describing the optimal path are given by:

X(x, t) = x+ t(∇Ψ(x)− x) = (1− t)x+ tT (x) (3.12)

This well-known property also called McCann's interpolation illustrates how the optimal

path is provided by straight-line trajectories. Thus, rotating movements are not well-

captured with the optimal transportation theory (see Appendix A). Besides, it shows how

optimal transportation solution enables to simply interpolate and recover intermediate

densities between ρ0 and ρ1. Thus, optimal transportation is basically a displacement

interpolation method for mass densities. Indeed, it is important to note classical linear

interpolation does not compute a displacement interpolation when applied to mass

densities (Fig. 3.9).

In fact, the displacement of mass density cannot be directly interpolated as we do

not have a proper Lagrangian representation of mass particles. That is why, optimal

transportation is important to �nd the optimal transportation map and thus, the unique

associated velocity v. As previously, Brenier demonstrated the existence and uniqueness
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Figure 3.9: Comparison between linear and Wasserstein interpolations for
computing intermediate Gaussian densities. Initial (t = 0) and �nal (t = 1) densities
ρ0 and ρ1 are represented in yellow and black, respectively. Both initial and �nal density are
normalized. We represented three intermediate densities, corresponding to t = 0.25 (red), t = 0.5
(violet), and t = 0.75 (purple).

of the solution v of the problem (3.10) and v is derived from a potential Φ:

v = ∇Φ (3.13)

More precisely, the potential Φ denotes a Lagrange multiplier which verify the Hamilton-

Jacobi equation:

∂Φ +
1

2
‖∇Φ‖2 = 0 (3.14)

Equation (3.14) shows the optimal solution v can be computed from pressureless Euler

equations.

Besides, the �uid mechanics approach enlightens how the Monge-Kantorovich problem

is related to a minimization of energy. Indeed, the term 1
2ρ‖v‖

2 simply represents the

kinetic energy. Actually, optimal transportation problems may also be viewed through

the Least Action Principle which can be stated as: "Nature, in making its e�ects, always

acts by the simplest means possible." or in French:

� Maintenant, voici ce principe, si sage, si digne de l'être suprême: lorsqu'il arrive

quelque changement dans la Nature, la quantité d'Action employée pour ce changement

est toujours la plus petite qu'il soit possible. � - Maupertuis, 1744 "Accord between

di�erent laws of Nature that seemed incompatible" (Mémoires de l'Académie Royale des

Sciences Année 1744 pp. 417-426, 1748)

Although theoretical results might e�ectively link optimal transportation to the Least

Action Principle developed by Lagrange, optimal transportation can essentially be

interpreted as a minimization of energy between two states, which in return might be

viewed as a consequence of the Least Action Principle applied toward natural phenomena
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such as �sh displacements and associated biomechanics. Therefore, the optimal path

to transport a density distribution ρ0 to ρ1 is given by minimizing the kinetic energy

across time. Initially, we focused our interest on the optimal transportation theory to

compute the deformation velocity �eld which transports the zebra�sh segmented mass ρ0

to the consecutive body density ρ1, based on the assumption zebra�sh eleuthero-embryos

naturally follow an optimal path to deform themselves.

3.3.2 Numerical approaches to optimal transportation problems

In the last decade, optimal transportation methods have emerged and become well-

popular in applied mathematics across multiple and various disciplinary �elds from

economics, image processing, and �uid mechanics to population dynamics and machine

learning. Optimal transportation problems span over full discrete, semi-discrete, and

continuous problems. Therefore, more and more numerical methods have been developed

speci�cally for each problem and to enhance the overall precision and computational time

and e�ciency, especially for "real-world" problems with a massive amount of data. In

what follows, I brie�y introduce recent approaches to compute optimal transportation

solutions. Nevertheless, I strongly refer the reader to complete and exhaustive reviews

such as [96, 100, 102] for further details.

As stated before, since the mid-XXth century, the allocation problem raised by

Kantorovich was tackled by linear algebra and combinatory theory, and linear optimization.

For instance, discrete resource allocation problems can be solved by simplex, Hungarian

or auction algorithms. Note linear programming represents costly methods with

a computational complexity of O(N3 logN). Semi-discrete optimal transportation

problems which consider Dirac masses either for the source or the target distribution

have been studied via Laguerre or Voronoi diagrams.

As for full continuous optimal transportation problems, the choice of the numerical

approach depends essentially on the nature of the problem. First, a robust computational

algorithm was designed and developed by Benamou and Brenier (BB) to compute

mass density and velocity along the optimal path between two con�gurations, by

solving an augmented Lagrangian within the �uid mechanics framework [6]. Alternative

methods derived from the Douglas-Rachford (DR) algorithm, have then been considered

when solving the general minimization problem minx F (Kx) + G(x). In particular,

proximal operators and primal-dual proximal splitting methods have also been used

for solving an optimal transportation problem [96]. For more details, we refer to

review of [96]. More recently, a monotone and consistent numerical method called

MA-LBR (for Monge-Ampère with Lattice Basis Reduction) has been developed to

discretize the Monge-Ampère operator (3.11) [7], which takes advantage of the lattice

geometry via the calculation of M-obtuse superbases. The recent advances about relaxed

optimal transportation algorithms we used are detailed in Appendix A. Gradient-based
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minimization methods were also implemented to optimize a mass-preserving mapping by

multiple iterations [2]. In what follows, we mainly describe one speci�c approach based

on pressureless Eulerian equations and linearization of the Monge-Ampère equation.

Both Eulerian and Lagrangian implemented approaches [18] are based on that idea

which consists of converging toward the optimal solution from an initial guess.

A pressureless Eulerian approach

As introduced previously, the optimal solution T = ∇Ψ of the initial Monge's problem

veri�es the MAE equation (3.11) and the solution (ρ,u = ∇Φ) of the dynamic

formulation (3.10) for transporting the mass density distribution ρ0 onto ρ1, veri�es

the pressureless Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0 (3.15)

∂ρu

∂t
+∇ · (ρu⊗ u) = 0 (3.16)

ρ(·, t = 0) = ρ0(·), ρ(·, t = 1) = ρ1(·) (3.17)

Bouharguane et al fully developed in [18] both Lagrangian and Eulerian approaches by

providing two e�cient numerical methods for solving "real-world" optimal transportation

problems. On the one hand, the Lagrangian approach consists of Newton iterations

after linearizing the MAE operator, embedded into a continuation algorithm to enhance

the robustness and convergence of the algorithm. On the other hand, the Eulerian

point of view for computing optimal transportation solutions is designed to determine

a �uid velocity �eld. Given the nature of the experimental data on which we desire to

apply in parallel multiple optimal transportation calculations, we preferred the Eulerian

algorithm to circumvent supplementary issues regarding the continuation process. Thus,

we focused our attention onto the pressureless Eulerian approach implemented (Fig.

3.10) and detailed in [18]. Basically, the iterative algorithm consists of �nding (ρn,un)

such that ρn → ρ0 in the limit n → ∞, while the transportation operation T gives

Tun(ρn)→ ρ1. The initial guess is (ρ0, u0) which transports ρn to ρ̃n via the momentum

conservation (3.16) is corrected with the term ũ = ∇Φ̃ by solving the following Poisson

problem derived from equation (3.15):

∇(
ρ1 + ρ̃n1

2
∇Φ̃) = ρ̃n1 − ρ1 (3.18)

where ρ̃n denotes the density after the transportation of ρn. Note ρ̃n is not equivalent

to ρ1 while un is not optimal. Afterward, we compute backward equation (3.16) to

transport ρ̃n with un onto the initial plan, which gives ρn+1 and the corrected velocity

un+1 = un + αũn. The complete Eulerian algorithm described in [18] can be found in

Fig. 3.10.
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Figure 3.10: Eulerian-based algorithm for approximating a pressureles Eulerian
solution, from [18]. Note the equation system referred at steps 3 and 5 are Euler equations
(3.15-3.16-3.17). The algorithm can be explained as an iterative approach to reduce the numerical
error between the expected density after advection and the targeted mass distribution.

As for the numerical schemes used, we considered a second-order centered �nite-di�erence

scheme for solving equation (3.18) while the pressureless momentum equation (3.16) was

computed via the remeshing particle method introduced in the previous chapter [132].

Hereafter is presented the interpolation Kernel K (3.20) we considered to remesh each

quantity α onto the Cartesian mesh after a Lagrangian-like advection:

α̃i =
∑
q

αqK(
xi − xq
dx

) (3.19)

where:

K(x) = M ′4(x) =


1− 5x2/2 + 3|x|3/2 if |x| ≤ 1

(2− |x|)2(1− |x|)/2 if |x|1 <≤ 2

0 if |x| ≥ 2

(3.20)

Note both Lagrangian and Eulerian numerical methods are based on the assumption

mass densities ρ0 and ρ1 are close enough. Indeed, the Lagrangian technique is founded

on the linearization of the velocity map while the Eulerian approach improves the initial

velocity guess by estimating the adequate correction term. Therefore, the implemented

algorithms are more robust and present satisfying and fast convergence results for closed

mass distributions. In [18], computational methods have essentially been validated

against the literature such as the BB algorithm, on standard test cases with gaussian

transportation (Fig. 3.11).

In particular, the authors highlighted how fast Lagrangian and Eulerian algorithms are

(few seconds) with respect to the BB algorithm (a few minutes). In our case, the

computational time is particularly important given the number of optimal transportation

problems we need to perform on real-world data meaning high-resolution datasets. That

is why, in what follows, we preferred those speci�c computational methods which focus on

computational time at the expense of robustness or convergence accuracy. To conclude,

the Lagrangian and Eulerian algorithms have shown we can �nd the optimal path
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Figure 3.11: Illustration of an Eulerian-based solution of optimal transportation
between two gaussian distributions, from [18]. Notice the initial and �nal gaussians do
have essentially the same support as the gaussian center is not translated. However, the �nal
gaussian is deformed with respect to the initial density. The optimal path of the gaussian to
transport (i.e. deform) ρ(t = 0) onto ρ(t = 1) is shown at t = 0.25,t = 0.5 and t = 0.75, for a
200× 200 grid size.

to deform a certain mass distribution onto the targeted deformation. Eventually, a

more signi�cant amount of real-world transportation tests, based on complex and large

datasets could be considered to challenge the numerical algorithms.

3.3.3 Application: recovering the deformation velocity �eld

The previously described Eulerian approach has been used to extract the 2D velocity

�eld from the experimental data of zebra�sh locomotion. At the beginning of the

present chapter, we speci�cally explained how experimental images were post-processed,

segmented, and realigned via the Procrustes Analysis step. As a result, we obtained the

overall silhouette of the zebra�sh eleuthero-embryo at each image time step tnt = nt×∆it

(we refer the reader to Fig. 2.7). Two pieces of information are still required to complete

each iterative time step (see the algorithmic sketch in Fig. 2.10): the deformation

velocity uε at each computational time step and the zebra�sh silhouette. Actually,

only the deformation velocity �eld required to deform the segmented eleuthero-embryo

ρ0 = ρ(t = nt) onto the target silhouette ρ1 = ρ(t = nt + 1), is needed to interpolate

the intermediate silhouette and velocity �elds at time tn. Indeed, the optimal path

follows a straight line between times nt and nt+1 which enables straightforward optimal

transportation interpolations. Thus, we tackled the initial question of recovering the 2D

deformation velocity �eld (Fig. 3.12) with the optimal transportation theory and more

precisely, the Eulerian algorithm developed by [18].

In de�nitive, we used optimal transportation theory mainly for two applications. On the

one hand, we extracted a 2D velocity �eld for each video snapshot which is crucial to

model the deformation velocity and to interpolate the intermediate zebra�sh silhouettes,

in the CFD code. On the other hand, we used the regularized optimal transportation for

reconstructing the 3D shape of zebra�sh eleuthero-embryo, based on a transverse-slice

database. In particular, we implemented a massive amount of Wasserstein interpolations

to generate the intermediate cross-sections. Indeed, the second application of optimal

transportation is presented hereafter which concerns the interpolation of mass densities,

required for reconstructing the 3D shape of a 5 dpf zebra�sh eleuthero-embryo. In the

next section, we detail the reconstruction of a 3D zebra�sh shape from a massive amount
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Figure 3.12: Optimal transportation theory is used to estimate the deformation
velocity between two consecutive snapshots ρ0 and ρ1 of zebra�sh swimming. The
extraction of the deformation velocity �eld is based on the assumption all translation and rotation
have been removed between the two snapshots. In addition, intermediate zebra�sh deformations
and velocity are reconstructed from experimental deformation velocity �elds. This �gure directly
follows the previous computational sketch introduced in the previous chapter (Fig. 2.7).

of histological cross-sections. To that end, we especially used Wasserstein interpolations

to generate the intermediate transverse shape, the complete procedure being presented in

Appendix A. Essentially, the interpolation of cross-sections is based on e�cient Sinkhorn

iterations [109] which approximate a regularized solution i.e. a cross-sections with

smoothed contours. In what follows, we will show that the impacts of regularization

are minimal and eventually negligible.

3.4 3D Reconstruction of the entire swimming motion

To run 3D simulations, we needed to reconstruct in 3D the 2D segmented video frames

to provide to the CFD code, a set of 3D snapshots describing the zebra�sh body

kinematics. Two steps were fundamentals. First, we needed to generate a full 3D

zebra�sh model which describes accurately the morphology of actual zebra�sh eleuthero-

embryos. Secondly, we needed to reconstruct the zebra�sh model for each deformed 2D

silhouette corresponding to each video frame. The latter step was not straightforward

and is presented with the whole methodology process: from the initial targeted implicit

approach to the de�nitive Lagrangian reconstruction process. Note this crucial step

could also be considered in 2D by reducing the initial 3D zebra�sh modeling to a

2D zebra�sh model. Besides, we introduced in the previous Chapter 2 the two body

representations we used: either an implicit volume via a level-set distance function or

an explicit description of the body surface via Lagrangian markers (see Fig. 2.5). The

choice of body representation was essentially determined by the methodology we use to

deform the zebra�sh model. That is why in the �rst step, we initially reconstructed the

3D body volume using voxels which will be used to compute the 3D level-set function

before constructing the Lagrangian markers as presented in the previous chapter (Fig.

2.5).
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3.4.1 Initial 3D reconstruction

We �rst generated a full 3D zebra�sh based on serial histological cross-sections to

describe the characteristic shape of zebra�sh eleuthero-embryo. The base idea was

to obtain a zebra�sh volume by concatenating multiple transverse slices from the

snout to the tail. In particular, the head of a 5.5 days post-fertilization zebra�sh was

reconstructed up to the pectoral �ns from high-resolution serial sections generated by

[52]. Indeed, Hildebrand et al. [52] generated a massive amount of transverse slices

for two zebra�sh eleuthero-embryos aged of 5.5 and 7 dpf to analyze the brain sections

and the larval neuronal system. Eventually, the authors obtained cutting-edge results

by using advanced electronic-microscopy imagery. The high-resolution database is an

open-access resource which was made available by NeuroData and hosted at http://

neurodata.io/data/hildebrand16 and http://zebrafish.link/hildebrand16 [52].

We chose to base our 3D reconstruction on the generated database as no equivalent

imagery exists to our knowledge and we desire to compute a real-like zebra�sh eleuthero-

embryo shape. The database is composed of 18, 627 high-resolution cross-section images

uniformly spaced of 60 nm and widespread from the snout to the pectoral �ns included

which constitutes the most complex part, approximately one-third of the entire body

of the zebra�sh eleuthero-embryo morphology. By using high-resolution electronic

microscopy, each section was composed of 1024 × 1024 pixels to represent a window

of 758.8 nm × 1024 nm. For experimental reasons, certain cross-sections have been

eliminated due to too weak quality which reduced the number of slices to 16, 212. As

a result, some sections were regularly missing across all the dataset. Nevertheless, we

obtained a satisfying enough precision of the description of the zebra�sh morphology by

using only 1 slice out of 80 slices. In de�nitive, we used 203 high-resolution sections,

uniformly spaced of ∆z = 4.8 µm.

An image processing step was then required to segment all cross-sections into body

silhouettes meaning binary masks as only the exterior contour needs to be captured.

Indeed, the interior anatomy was super�uous and useless to reconstruct the body shape.

Basically, an intensity threshold was found su�cient to generate proper binary masks

of the transverse contours. However, speci�c corrections have been required for several

cross-sections. First, the contour of multiple transverse images was not closed, especially

regarding the natural gill openings. Large openings raised issues as morphological

operations were not su�cient to complete the segmentation. In that case, we set up and

superposed two ellipses to arti�cially close each body boundary adequately. Eventually,

one side of the contour was slightly detached within a few slices located near the beginning

of pectoral �ns, which arti�cially deforms the body silhouette. The detachment, probably

due to experimental manipulation, was much more signi�cant on the left side of the

body. As a result, we symmetrized the whole database to directly enforce a generic

symmetry of the reconstructed eleuthero-embryo's geometry. The symmetry axis was

found by using the so-called Hough algorithm designed to �nd any symmetry property.

http://neurodata.io/data/hildebrand16
http://neurodata.io/data/hildebrand16
http://zebrafish.link/hildebrand16
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(A)
ns = 14, 413

(B)
ns = 13, 213

(C)
ns = 7, 693

(D)
ns = 3, 533

(E) ns =
14, 413new

(F) ns =
13, 213new

(G) ns =
7, 693new

(H) ns =
3, 533new

Figure 3.13: Few examples of image corrections applied to the original dense dataset.
First row refers to original data while second row denotes the corresponding transformed
transverse slices. First column (Figs. 3.13A, 3.13E) shows the cross-section issued from the
eleuthero-embryo's retina, with axial mirroring. Second column (Figs. 3.13B, 3.13F) represents
a speci�c case with an arti�cial mass on the top of the head, removed before mirroring. Third
column (Figs. 3.13C, 3.13G) illustrates the lack of contour information for segmenting the
cross-section and the approximation used. Pectoral �ns are visible in last column (Figs. 3.13D,
3.13H) alongside the large mass detachment on the left side, mirrored.

Obviously, only the proper half of each section was conserved and mirrored. Moreover,

speci�c imperfections needed to be manually corrected on a few slices only. Note the

pectoral �ns have not been removed and have been untouched for each corresponding

slice. Few examples of slice transformations are given in Fig. 3.13 and the resulting

volume of the subset of enhanced transverse sections, is detailed in Fig. 3.14. Note the

impact that a slight interfering mass can have without speci�c correction.

At this developmental stage, the morphology is characterized by the anterior part

including the head and the anterior part of the trunk. As for the most posterior part of

the trunk, from the pectoral �ns to the tail tip, the general shape is much less complex

and much more generic. We assumed the main di�erences from one cross-section to

another one, were the position of the center of mass of the section and the vertical

height of the body as well as the MFF i.e. the thin, transparent and typical membrane

formed of few cells only which surrounds the posterior section and particularly the tail

of zebra�sh eleuthero-embryos. At 5 dpf, a zebra�sh eleuthero-embryo sizes around 3.8

mm (total length). Considering the space step of the 203 anterior cross-sections, 595

additional slices were required on the posterior part to obtain equidistant spacing across
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(A) top view. (B) lateral
view.

(C)
perspective
view of the
bottom.

(D)
perspective
view of the

top.

Figure 3.14: Detailed views of the original dataset after slice processing. Operations
essentially consisted of segmenting, mirroring, realigning, resizing, enhancing and correcting the
contour. Concatenation of a binary transformed dataset. Note the arti�cial mass on the top of
the head (emphasized in Figs. 3.13B, 3.13F) is well-visible if not removed.

the total length. To that end, we used a lateral view of a 8 dpf zebra�sh larva (Fig. 3.15),

as a precise view was available at that time including in-house histological transverse

section dataset (data not shown). Based on that view, we manually constructed up

to 34 transverse sections (Fig. 3.16) at key locations of the trunk and tail, regarding

the variation of body morphology to automatically interpolate the remaining set of

cross-sections. In fact, the posterior part of a 5 dpf zebra�sh eleuthero-embryo can be

well-characterized by the key transverse slices of a 8 dpf zebra�sh larva, after scaling.

The developmental di�erence was considered as not important as the larval posterior

part is generic enough and an adequate scaling process was considered afterward. From

the lateral view, we extracted two sets of information: the vertical position of the center

of mass of each transverse slice, and the heights of MFF parts proportionally to the body

size. As for the pro�le of the cross-sections, we identi�ed four typical silhouettes: the

body near the pectoral �ns, the body surrounded by the thin membrane with eventually

the digestive apparatus accordingly to the position, and the single thin membrane which

forms the tail tip. The base shape of the body was based on the last transverse section

of the database and two transformed histological slices. The MFF was modeled as a

vertical line with a very thin width (few pixels). We chose the position of the 34 key slices

along the body length depending on the signi�cant changes of the body morphology

i.e. heights variations. Furthermore, all slices including the anterior cross-sections have

been resized (300 × 300 pixels corresponding to ∆x = 1.68622 µm), realigned onto the

respective center of mass, and vertically shifted according to the pro�le view.

As explained, the remaining slices then need to be interpolated from the key cross-

sections. We chose to incorporate the anterior transverse slices to the key slices to

recover the total zebra�sh 3D volume by essentially computing any desired number of

transverse slices uniformly spread across the body length. Obviously, the space step

could not be greater than the current space step of anterior sections ∆z = 4.8 µm
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Figure 3.15: Morphology overview of a 8 dpf zebra�sh larva. From the three original
lateral (top), dorsal (center) and ventral (bottom) views of a 8 dpf zebra�sh larva, we mainly
used the lateral pro�le to dimension each key slice according to the vertical position, and the
median �nfold and body proportions. The shape of the body in key slices has been based on
the histological slice represented on the posterior part of the body. Note the histological head
sections from the snout to the position indicated near pectoral �ns, were generated from an
high-resolution dataset of cross-sections of a 5 dpf zebra�sh eleuthero-embryo, as illustrated by
the last available cross-section. Eventually, the length-height ratio was adjusted to �t a 5 dpf
zebra�sh morphology.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

(21) (22) (23) (24) (25) (26) (27) (28) (29) (30)

(31) (32) (33) (34)

Figure 3.16: Series of the 34 generated key cross-sections used to reconstruct the
whole posterior part of the zebra�sh eleuthero-embryo. Note the presented transverse
slices are well-aligned vertically but are not uniformly spaced along the eleuthero-embryo's length.
Instead, each slice corresponds to a precise location. Notice the key slices enable the interpolation
from the nearby pectoral �ns (Fig. (1)) to the tail tip (Fig. (34)).
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to conserve the original precision. Therefore, the �nal space step had to be smaller

to show the current space step is not �xed and can be tuned. That is why, we chose

a space step twice �ner ∆z = 2.4 µm which led to a stack of 1602 transverse slices.

As for the interpolation, we used an innovative shape interpolation method based on

the computation of regularized barycenters of Wasserstein distances via the Sinkhorn

algorithm, described in Appendix A. Basically, we imposed the number of cross-sections

to interpolate between each consecutive key slices. To that end, we especially used

Wasserstein interpolations to generate the intermediate transverse shape. Therefore,

each interpolated slice was considered as the barycenter of the consecutive slices in

the sense of Wasserstein distance and we performed multiple Wasserstein interpolations

(A.15) for each consecutive segments [vk; vk+1]. Unlike linear interpolation, optimal

transportation results can produce natural interpolations, as explained in the previous

section. The Sinkhorn algorithm is particularly well-designed to shape interpolations

when no explicit description of the surface is available. Instead, the surface is implicitly

generated via the regularization of mass density distributions i.e. the mass of the body

in each cross-section. As a result (Fig. 3.17), we obtained smoothed cross-sections and

the regularization di�ered for each interpolation segment due to geometric di�erences

across the transverse slices (vk). Notice the regularization parameter γ was �xed at

γ = 7.000×10−4 for all interpolation segments. Cross-sections were found too smoothed

with γ = 1.000 × 10−3 while convergence issues were raised at γ = 5.000 × 10−4.

Indeed, numerical issues are raised in the Gaussian kernel in the limit of γ → 0. In

the literature, generalizations of the Sinkhorn algorithm have been developed to stabilize

the Sinkhorn iterations [103] or accelerate the convergence rate [114]. However, the

di�erences of regularization and mass variations were not a problem in our case although

small discontinuities were visible (see Fig. 3.17). Indeed, the resulting output was

then post-processed to normalize each cross-section density and segment with a simple

threshold, the �nal zebra�sh 3D reconstruction.

Overall, we obtained a 3D volume represented by 1602× 300× 300 voxels in which the

body surface was regularized according to each consecutive Wasserstein interpolation.

The surface of the resulting 3D volume is then di�use and somewhat discontinuous

between near each key section, even after normalizing each transverse slice with the

maximum density. Nevertheless, the interior mass was nearby one while the outer

voxels were mostly zeros as the initial key slices had been segmented into binary images

(masks). To conclude, we used a threshold to properly segment the resulting 3D volume

describing the zebra�sh eleuthero-embryo morphology. The discontinuities have been

neglected regarding the massive amount of cross-sections used. Besides, the pectoral �ns

have been surprisingly well-reconstructed by optimal transportation. Notice the optimal

transportation algorithm computed very satisfying results with non-compact density

distributions (pectoral �ns) especially near the transitional areas i.e. the apparition

and vanishing of pectoral �ns. The last step consisted of scaling the resulting 3D volume

according to a 5 dpf zebra�sh eleuthero-embryo based upon the ratio of height over
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(A) top view.

(B) lateral view.

Figure 3.17: Illustration of the Sinkhorn algorithm output in the case of a zebra�sh
shape interpolation. Both top-view (Fig. 3.17A) and side-view (Fig. 3.17B) show the impact
of the regularization of transverse slices. Moreover, we can see how variable the �nal density is
within each cross-section. Besides, a slight and variable discontinuity can be observed between
each consecutive interpolation segment. Notice the 3D surface is well-approximated by post-
processing the represented output accordingly. Note we thresholded the maximal density to
value = 0.1 for the illustration purpose.

length which resulted in a 5 dpf zebra�sh volume (Fig. 3.18) with a 3.834mm total

length and formed by voxels sized of 2.25172 × 2.4 µm3. In de�nitive, we computed

a stack of transverse silhouettes which constituted the �rst 3D reconstruction of a 5

dpf zebra�sh eleuthero-embryo. Note the computed 3D representation is implicit as the

precision on the surface entirely relies on the amount of voxel.

After the reconstruction of a �rst 3D volume, the deformed shapes corresponding to each

video frame were required as input to the CFD code. The �rst initial way to deform the

3D zebra�sh model is brie�y presented although it has not been a success. Afterward,

the �nal deformation process will be entirely described.
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Figure 3.18: Comparison between our 3D reconstruction (Figs. (B),(D)) and the
photos of an actual 5 dpf zebra�sh eleuthero-embryo morphology (Figs. (A),(C)). In
the dorsal views, we can notice the symmetry and the position of pectoral �ns while in the lateral
view, the median �n fold (m�) contour is well-reproduced. Besides, slight discontinuities are
visible in both representations which denote the shape interpolation segments. Representative
5 dpf zebra�sh eleuthero-embryo is shown in dorsal view (A) or in lateral view (C) with the
anterior part to the left. The median �n fold (m�) is highlighted by a dashed line. Other
abbreviations: ai, anterior intestine; b, brain; cf, caudal �n; e, eyes; h, head; l, liver; pf, pectoral
�ns; r, rectum; sb, swim bladder; t, trunk; vc, vertebral column. Scale bar, 500 µm.

3.4.2 3D Deformations: a failed process

How can we deform a 3D volume according to experimental kinematics ? In the previous

section, we already extracted the body kinematics from the top-view experiment videos.

At the same time, we assumed and modeled the entire swimming motion as horizontal

and planar, only meaning no depth motion is present. As a result, we could consider

the deformation is actually identical within each horizontal plane across the vertical axis

and well-represented by the 2D velocity �eld resulting from the optimal transportation

computation, as we considered the zebra�sh body entirely rigid. That is why, we initially

desired to deform each horizontal plane of the 3D reconstructed model according to

the 2D top-view deformation velocity �eld. The idea was a priori feasible but was

essentially based on two assumptions. First, the deformation velocity had to be highly

accurate and embed much more constraints than the previous usage: an input velocity

�eld to the 2D CFD code. Secondly, the actual transportation scheme for deforming

each horizontal section had also to be high-order accurate. In fact, none of these two key

conditions was realized with the current algorithms. Let unfold the initial deformation

process. First, the resolution and dimensions of the 3D computed volume formed by

1602 × 300 × 300 voxels, had to be matched against the video frames from which we
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extracted the deformation velocity �eld (200 × 200 image resolution). In that regard,

we transformed the 3D computed volume accordingly while reducing the number of cells

to 2003 for data-reducing reasons. As for the deformation itself, we used the implicit

technique introduced in the previous Chapter 2: the level-set method. We computed the

level-set distance function from the segmented 3D volume with the Russo and Smereka

algorithm [101] which we enhanced by using a classic WENO5 scheme to compute the

�rst-order upwind derivatives and generalized to three dimensions. Basically, equation

(2.10) is discretized as:

φn+1
i,j = φni,j −∆tS(φ0

i,j)G(φ) (3.21)

where φi,j(t = 0) = φ0
i,j , S(φ) = sgn(φ), G(φ) = ‖Dupwindφi,j−1‖ and Dupwind denotes a

combination of upwind (x, y)-�rst-order derivatives computed with the WENO5 scheme.

In de�nitive, the Russo et Smereka algorithm computes the signed distance function φ

such as ∇φ = 1 with an iterative algorithm, initialized with the 3D mask φ0 describing

the zebra�sh body with binary voxels.

(A) top view. (B) lateral view.

(C) perspective view.

Figure 3.19: Representations of the 3D reconstructed 5 dpf zebra�sh eleuthero-
embryo volume (level φ = 0). Notice slight discontinuities are visible in the top (Fig. 3.19A)
and side (Fig. 3.19B) views as the volume is formed by 1602 cross-sections. With the perspective
view (Fig. 3.19C), we can see how detailed the �nal representation is.

As for transporting the level-set function, we considered the following advection equation:

∂φ

∂t
+∇ · (uφ) = 0 (3.22)

After the level-set computation, the actual contour is accessible via the level zero φ = 0.

We used the level-set function to only transport the interior points of the body. The

goal was essentially to transport each horizontal plane of the level-set function according

to equation (3.22). Indeed, we aim to transport the initial 3D level-set function to

the �nal deformed image from the experimental video which represents more than
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60 ms in real-time. When reaching each frame of the video, we use the corresponding

deformation velocity previously computed. As for the advection scheme, we implemented

the remeshing particle advection methods introduced in the previous Chapter 2 and used

in section 3.3.2, which are designed in particular to solve Euler equations (see [132, 133]).

In the case of incompressible �ows i.e. ∇u = 0, equation (3.22) is equivalent to the

transportation equation (2.7). Nevertheless, optimal transportation does not generally

enforce incompressibility conditions. That is why, equation (2.7) could not be used a

priori to transport the level-set function. However, we compared our remeshing particle

algorithm with a more standard numerical scheme for a validation purpose. In particular,

we �rst solved equation (2.7) on basic 2D test cases by using an incompressible velocity

�eld and a WENO5 spatial scheme in order to minimize spatial inaccuracy, coupled

with a 3rd-order Runge-Kutta scheme (RK3) in time. As explained in the previous

Chapter 2, the signed distance property tends to not be conserved over time. That is

why, we regularly recomputed the distance function. Based on the few standard test

cases used, both methods provided a global second-order accuracy in space which was

su�cient to use the remeshing particle method with the velocity �eld issued from optimal

transportation calculations.

In particular for remeshing, we used various interpolation kernels such as kernels M4

or M ′4 (see Eq. 3.20) to reach a second-order interpolation (M4) and third-order

interpolation (M ′4). Note M4 is more di�usive and M ′4 is well-popular for CFD particle

methods [132, 133]. However, we could not obtain a satisfying deformed 3D volume as

we rapidly observed unexpected behaviors: all the horizontal slices rapidly converged

toward an identical silhouette, after hundreds of image steps (few tens of ms). We

replicated the 3D advection issues in the 2D case by transporting the initial top-view to

match the intermediate reference snapshot sequence used for computing the deformation

velocity with optimal transportation (see Figs. 3.20, 3.21). First, we only transported

the initial snapshot of the reference sequence (Fig. 3.20). Similarly, the body silhouette

could not have been conserved after only hundreds of image steps ∆it, when using the

M ′4-kernel. Nevertheless, we were able to observe the e�ective motion of the interior

particles of the body according to the deformation velocity �eld. In particular, we

observed the interior body particles tended to aggregate near the body contours used for

computing the velocity �eld. Concerning the M4-kernel-based advection, we observed

intermediate snapshots were in good accordance with reference data. Besides, no

spurious interior displacements seemed to be produced. However, horizontal slices do

not correspond to the initial top-view of the reference sequence. Therefore, we applied

the same particle advection algorithms to an arbitrary initial horizontal slice (Fig. 3.21).

As a result, the initial contour was clearly not conserved, regardless of the interpolation

kernel used. In addition, the contours of intermediate reference snapshots seemed to

always be recovered. Furthermore, we observed non-desired spurious behaviors from

the deformation velocity �eld such as the transportation of mass particles between the

head and the tail tip when in proximity. In de�nitive, any transportation of a compact
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mass density non-corresponding to initial reference silhouette produced spurious e�ects

due to the deformation velocity �eld. In fact, optimal transportation does not generally

enforce incompressibility conditions. As explained in Appendix A, algorithms can be

developed to generalize the original optimal transportation problem by including an

incompressibility penalization for example. We investigated those algorithms to enhance

the optimal transportation solution by adding incompressibility or rigidity properties

but the adaptation to our current algorithm (described in the previous section) was

not straightforward. Actually, those questions constitute the focus of a whole class of

optimal transportation investigations, previously described in section A.1.

(A) (B) (C) (D) (E) (F)

(G) (H) (I) (J) (K) (L)

(M)
t=0ms

(N)
t=10ms

(O)
t=20ms

(P)
t=30ms

(Q)
t=40ms

(R)
t=50ms

Figure 3.20: Comparison in 2D of level-set transportation using remeshing particle
methods. The top row (Figs. 3.21A-3.21F) represents the reference sequence (15, 000 fps)
used for computing the deformation velocity with optimal transportation. The middle row (Figs.
3.21G-3.21 L) illustrates the transportation of the initial distribution (Fig. 3.21A) with theM ′4-
interpolation kernel. As for the last row (Figs. 3.21G-3.21R), the M4-interpolation kernel was
used instead. To validate the deformation velocity and the advection algorithm, intermediate
transported snapshots should match the reference data.

In de�nitive, the deformation velocity uε has been computed between each consecutive

2D frames ρ0 and ρ1 via an optimal transportation algorithm. In 2D, the deformed

silhouettes were directly provided by the segmented frames ρ. By construction, the

deformation velocity was only used for the computational times between ρ0 and ρ1, in

particular to interpolate the intermediate silhouettes. Instead, in 3D, several deformation

velocity properties especially the interior velocity �eld, have been required to conserve

the slice contour at each vertical plane across time. Moreover, the accumulation of

numerical errors was inevitable regarding the number of total time steps required to

transport from the initial shape to the �nal video time. As a consequence, we considered
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Figure 3.21: Comparison in 2D of level-set transportation using remeshing particle
methods, based on an arbitrary initial silhouette. The top row (Figs. 3.21A-3.21F)
represents the reference sequence (15, 000 fps) used for computing the deformation velocity with
optimal transportation. The middle row (Figs. 3.21G-3.21 L) illustrates the transportation
of the initial distribution (Fig. 3.21A) with the M ′4-interpolation kernel. As for the last row
(Figs. 3.21G-3.21R), theM4-interpolation kernel was used instead. To validate the deformation
velocity and the advection algorithm, intermediate transported snapshots should match the
reference data.

an alternative approach to deform the 3D volume across time based on the experimental

midline kinematics.

3.4.3 3D Deformations: a Lagrangian idea

The essence of the new approach was based on the construction and tracking of

Lagrangian markers across the zebra�sh surface. In the previous chapter 2, we brie�y

explained how to recover the signed distance function from Lagrangian markers. At

this stage, we have already computed the 3D zebra�sh level-set function from the

initial volume. Besides, there is no need in resizing the number of voxels to 2003,

unlike the previous approach. Thus, the level-set function has been computed with a

2000× 300× 300-sized domain to conserve the initial high precision. Note the length of

the reconstructed volume is parallel to the axes such that the midline corresponds simply

to a straight line from the snout to the tail tip, �tting the Cartesian mesh excepted at

extremal points where the body boundary position are interpolated from the level-set

information at the mesh nodes. As for the description of the body surface, we used
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the structured representation detailed in the previous chapter 2, which consisted of

discretizing the midline in Ns uniformly-spread transverse slices and discretizing the

contour of each cross-section into Nθ points distributed across 360° with a constant

angular frequency. For that purpose, we �rst interpolated the body contour (φ = 0)

of each transverse slice �tting the Cartesian grid using bilinear interpolations of the

level-set function in the near-interface cells (see Fig. 3.22). For accuracy reasons, we

combined the interpolation with a dichotomy process to �nd the body interface. In total,

we needed Nθ − 1 uniformly distributed surface points per cross-section.

0 1 2 3 4
scale (mm)

Figure 3.22: Construction of control points using the Cartesian grid and the level-
set function. For illustration purpose, we only represented 1/25 control points including the
surface and midline points. Note the green-line denotes the horizontal section θ1 = θNθ = 0
while the orange-line almost represents the symmetric points as the sectional plane corresponds
to θNθ/2. In that way, we only represent two surface points per cross-sections. That is why, we
do not particularly notice how symmetric the 3D reconstruction is.

Secondly, we interpolated the midline and the Nθ−1 lines from the snout to the tail tip,

into Ns points using B-splines namely Bezier curves. To be more precise, B-splines are

not interpolation curves but approximation methods. Bezier curve starting and ending

points correspond to the extremal points of the set to approximate. The tangents at

starting and ending points point toward the neighbor point. The Ns−2 remaining points

are computed from the so-called De Casteljau algorithm which consists of a recursive

algorithm to compute Ns−2 barycenters. Indeed, let assume we know Nc control points

which de�ne Nc−1 segments and we desire to �nd the coordinate of the mid-point (Ns/2)

in the Bezier curve. We can de�ne the mid-point of each segment to de�ne Nc − 1 new

control points. After Nc − 1 iterations, we obtain the desired point of the Bezier curve.
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Figure 3.23: Representation of the B-spline approximations for two surface
longitudinal lines. As in Fig. 3.22, we only represented two θi(i = 1, Nθ/2) per cross-sections,
which are almost opposed. Note the generated Lagrangian markers are not speci�cally inside
each cross-section but regularly spaced along the surface geodesic to create uniform cells on the
body surface. Note only 10% of all Lagrangian markers are represented, for indicative purpose.

After the B-splines computations, we obtain a surface mesh structured by the cross-

sections. However, the resulting mesh was signi�cantly non-uniform as the curvature

was not taken into account. Indeed, let consider two di�erent cross-sections: a circle and

a vertical ellipse. For each case, we compute two joined Bezier curves. In the circular case,

the barycenter at t = 0.25 is strictly located at θ = π/4. However, the corresponding

point in the elliptical case is located between θ = π/4 and θ = π/2, relatively to the

cross-section curvature as the curvilinear abscissa travels more or less distance in the

same time t = 0.25, to join θ = π from θ = 0. We show an example with a transverse

slice of the posterior part of the body (Fig. 3.24). Therefore, we enhanced the B-spline

searching algorithm to obtain uniformly spread markers in curvilinear distance instead

of the original constantly spread in time barycenters. The �nal reconstructed surface

mesh was considered well-satisfying with Ns ×Nθ = 300× 180 Lagrangian markers (see

Fig. 3.23).

Note the resolution of the reconstructed 3D volume in terms of cross-sections (Fig. 3.25)

i.e. the number of control points, is predominant in the resolution of the computed

surface regarding a chose amount of slices (see Fig. 3.26). The main advantage of

Bezier Curves resides in the approximation of 1602 control points instead of a direct

interpolation which is not necessary. As a result, we obtain a well-smoothed surface

explicitly described by Lagrangian markers (see Figs. 3.27, 3.28). Besides, note we only

considered the most exterior body boundary to de�ne the control points, essentially to
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Figure 3.24: Example of a cross-section in which each Lagrangian marker has been
regularly spaced along the surface geodesic. We can see how important a remeshing
algorithm is, in particular for such transverse slices with large curvatures.

(A) (B)

Figure 3.25: Comparison of two 3D reconstructions based on di�erent spatial
resolution. We reduced the amount of cross-sections from the original 1602 transverse slices
(top) to approximately 160 reconstructed slices (bottom). Note we compare the lateral view
(Fig. 3.25A) and the general perspective view (Fig. 3.25B).

model the exterior of pectoral �ns and then considering the pectoral �ns as adducted to

the body. In de�nitive, we constructed an explicit surface entirely described by a set of

Ns × Nθ uniformly-distributed Lagrangian markers, from the 3D level-set calculation.

The resulting representation of the zebra�sh eleuthero-embryo is horizontal and straight

i.e. non-deformed, symmetric with a generic-like shape and sized of 3.834mm length.

The last step regarding every experimental zebra�sh eleuthero-embryo consisted of

adjusting the total length, including the median �n-fold represented herein, by scaling

each dimension accordingly.

The second step was to reconstruct the 3D surface of each 2D video frame meaning

deforming the initial 3D surface according to the observed 2D experimental deformations.

More precisely, we considered each perpendicular cross-section stays perpendicular to
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Figure 3.26: Comparison of two 3D surface mesh based on di�erent sampling size
of control points. We reduced the amount of control points form the original 1602 transverse
slices (top) to approximately 160 reconstructed slices (bottom). Note we compare the lateral
view (Figs. 3.26A, 3.26B) and the top view (Figs. 3.26C, 3.26D). For both 3D representations,
we used the same surface mesh discretization: Ns = 300 slices and Nθ = 180 angular directions
for each cross-section.

the midline across the motion, similarly to Euler-Bernoulli beam deformation models. In

that way, we consider each cross-section as entirely rigid meaning the body deformations

could be reduced to the midline kinematics. Therefore, the complete deformation

process performed for each video frame was straightforward: we re-positioned each rigid

transverse slice perpendicularly to the deformed midline and regarding its curvilinear

abscissa along the midline. Beforehand, the midline had to be computed from the top-

view segmented experimental frames. Let detail the complete reconstruction, step by

step. For each 2D deformed and segmented image, we �rst computed the corresponding

level-set function (Fig. 3.29) using the Russo and Smereka algorithm from the 2D masks,

as described previously. Afterward, we computed the midline from the gradient of the

level-set function. Indeed, the gradient of the signed distance function (Fig. 3.30) is

singular and discontinuous on the midline as the midline is located half-way from the

body boundary, by de�nition. Nevertheless, the level-set function is only computed on

a discrete and Cartesian grid formed by the image pixels. A �rst set of pixels have been

computed via a threshold on the level-set gradient. Then, we performed a so-called

thinning algorithm after eventually completing the set of thresholded pixels.
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Figure 3.27: Comparison between our 3D surface representation (Figs. (B),(D))
and the photos of an actual 5 dpf zebra�sh eleuthero-embryo morphology (Figs.
(A),(C)). In the dorsal views, we can notice the symmetry and the position of pectoral �ns
while in the lateral view, the median �n fold (m�) contour is well-reproduced. Besides, notice
how the surface is smoothed by the splines. Representative 5 dpf zebra�sh eleuthero-embryo is
shown in dorsal view (A) or in lateral view (C) with the anterior part to the left. The median �n
fold (m�) is highlighted by a dashed line. Other abbreviations: ai, anterior intestine; b, brain;
cf, caudal �n; e, eyes; h, head; l, liver; pf, pectoral �ns; r, rectum; sb, swim bladder; t, trunk;
vc, vertebral column. Scale bar, 500 µm.

Figure 3.28: Perspective view of the reconstructed surface representation. Surface
mesh discretization: Ns = 300 slices and Nθ = 180 angular directions for each cross-section.
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(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.29: Computation of 2D level-set functions φ. Outside of the body, φ < 0 (blue)
while φ > 0 (red) de�nes the zebra�sh mass density. The boundary is given by φ = 0 (dark red).

To that end, we developed a custom algorithm which selects appropriate pixels according

to the con�guration of the midline and the distance to the body boundary, to reduce

the midline to a 1-pixel wide line connected by the selected pixels (see Fig. 3.31). This

step was important as the pixel-wise discrete midline was very sensible to the gradient

threshold while the latter was �xed empirically - according to each experimental video.

On the whole, the main concern which remains is the precision of extremal points. Indeed,

only a subset of the actual midline could have been found with this method as the singular

line of the level-set gradient cannot be de�ned straight from the tail tip to the snout of the

head. However, the remaining parts of the midline could be described by raw segments to

the extremal points of the body as we can legitimately model the head kinematics with

a rigid motion. As for the tail, the rigid description is clearly acceptable considering

the close proximity to the tail tip. Three operations remained to properly compute

the midline. First, we normalized the total length by adjusting the length of the tail

segment to match the non-deformed body length. Secondly, the head extremity of the

pixel-wise discrete midline which roughly corresponds to the center of the head, required

special attention. Indeed, the position of the head extremity was hardly accurate. Our

whole deformation process is fundamentally based on the assumption the midline can

be tracked across time. In particular, the extremity of the midline needed to be tracked

accurately to avoid spurious phenomena. To that end, we developed an algorithm based

on the level-set gradient (Fig. 3.32) to automatically track and correct the ending point
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(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.30: Illustration of the gradient magnitude of the level-set function. Notice
how the midline corresponds to the singular line of the gradient (low intensity pixels inside the
body). By de�nition, the level-set gradient is 1 (red). However, we stopped the iterative process
before reaching the domain boundary. That is why the gradient is not updated everywhere
(blue).

of the pixel-wise discrete midline. However, manual corrections could be needed at some

points, according to the experimental data. Those corrections essentially consisted of

monitoring the tracking the end-point of the discrete midline and manually correcting

either the discrete midline or the discrete gradient or the thresholds, in the case of

tracking issues. Figure 3.33 shows the �nal pixel-wise midlines after thinning, tracking,

and eventual corrections.

Finally, each midline was smoothed and interpolated into Ns discrete points (Fig. 3.34)

via Bezier curves exactly as presented previously. On the whole, the computation of the

midline was not straightforward and required special attention at multiple key points

and could be very time-consuming in reason of the desired accuracy considering the

high-resolution data in time and space.

After recovering the Ns Lagrangian markers of each deformed midline, the last step

simply consisted of putting back the corresponding transverse slices, perpendicularly to

the discrete midline (Fig. 3.35). Again, we underline how all this whole reconstruction

process is obviously to be considered for 2D simulations. Besides, we can emphasize that

each step of this 3D methodology has been previously implemented and validated with

the contour of a zebra�sh surface in 2D.
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(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.31: Representation of the 1-pixel wide midline resulting from the custom
thinning algorithm. We can see the pixel-wise midline (red) on top of the level-set gradient
magnitude (shades of blue). In addition, the zebra�sh contour is also visible through the gradient
magnitude.

In de�nitive, we reconstructed a 3D zebra�sh eleuthero-embryo shape, tracked the

midline kinematics from the experimental videos, and generated in 3D the body

deformation motions (see Fig. 3.36). Two points are keys to construct the proper

body kinematics. First, special attention was required to process the midline and

e�ectively track the head extremity across time. It is crucial in our approach as we

desire to generate a surface mesh with Lagrangian markers. Secondly, the Procrustes

Analysis step is essential to ensure no rigid motion is present within the reconstructed

body kinematics in 3D. In that regard, we perform an additional Procrustes Analysis

step to take into account the position of the center of mass in 3D.

3.5 Procrustes Analysis

After the reconstruction in 3D of the body kinematics, a second step of Procrustes

Analysis has to be performed by considering a 3D center of mass. On the one hand,

the center of mass is computed regarding the 3D shape series instead of the top-

view silhouettes. On the other hand, the tilt angle computation is also disturbed as

we considered a barycentric calculation for determining the average tilt angle of the
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(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.32: Illustration of our custom tracking procedure. The red pixels delimit the
searching area for tracking the center of the head. We represented the tracking area (red) on top
of the level-set gradient magnitude (shades of blue) as the calculation was based on an adequate
selection of low-gradient pixels.

zebra�sh body. In de�nitive, the �rst step detail in the previous section enabled the 3D

reconstruction and a second step is required to correct the body kinematics afterward.

For that purpose, we basically used the same approach as described in 2D. However,

we found our methodology could lead to important inaccuracies during the Procrustes

Analysis operation. That is why, we detail in this section, the key points to properly

compute the rigid rotation of the zebra�sh eleuthero-embryo, especially during the large

C-bend and counter-bend motions. More highlights will be provided in the following

chapter concerning the importance of a three-dimensional Procrustes Analysis.

3.5.1 Computing the rotating motion in 2D

Issues have been raised when analyzing attentively the angle output of the Procrustes

Analysis performed during the image processing step. For instance, we can see in Fig.

3.6, a slight angular drop occurring between t = 18 ms and t = 25 ms. Actually, a

slight angular shift as observed in Fig. 3.6, can produce very apparent and arti�cial

motions. Indeed, if the computed rigid angle is not representative of the actual rotation

then we introduce spurious rotating movements within the body deformation motions.

That is why, special attention is required regarding the tilt angle of the body. In fact,
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(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.33: Representation of the �nal pixel-wise midline computation. The midline
(red) is showed on top of the level-set gradient magnitude (shades of blue). Notice the di�erences
near the head extremity with Fig. 3.31. Note the midline is incomplete and the extremal sections
will be added when processing the pixel-wise midline.

the calculation is not straightforward as the eleuthero-embryo can bend its body into

large deformations. The angle between two consecutive 3D shapes is well-de�ned even

for C-shapes. However, we preferred to compare each 3D shape against a straight line,

mainly for accuracy reasons. Indeed, the rigid angle between two consecutive shapes can

be computed by searching for the optimal projection. The numerical error performed

on the dichotomy for instance is therefore accumulated at each additional video frame.

As we work with hundreds of video frames, the cumulative error was found rapidly too

signi�cant. Nevertheless, the angle computed relatively to a straight line is no more well-

de�ned, especially for large deformations and C-shapes. That is why, we can observe non-

natural rotation angles around the large body kinematics. To correct these phenomena

accordingly, we �rst proposed to smooth the angle shape resulting from the Procrustes

Analysis. We can see in Fig. 3.37 the global smoothing e�ects on the kinematics from

Fig. 3.6.

This technique could be acceptable for a few test cases but we desire to build an

automated process for experiment-based biological studies. In that regard, the smoothing

parameters are not straightforward to generalize. Furthermore, notice the applied

smoothing is global and not localized near the spurious e�ects. In terms of raw results,

the spurious angle phenomenon vanished at least at �rst sight. Indeed, the main
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Figure 3.34: Representation of six deformed midlines representing the body
kinematics. Notice only the two surface geodesics corresponding to θi(i = 1, Nθ/2) are
displayed. Besides, we added in the Figure, the rigid part of the midline corresponding to the
head extremity. Note the six deformed shaped correspond to the experimental frames detailed
previously in Fig. 3.7.
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Figure 3.35: Representation of six deformed midlines alongside the corresponding
surface shapes. Notice only the two surface geodesics corresponding to θi(i = 1, Nθ/2) are
displayed. Besides, we added in the Figure, the rigid part of the midline corresponding to the
head extremity. Note the six deformed shaped correspond to the midline kinematics presented
beforehand (Fig. 3.34) and to the experimental frames detailed previously in Fig. 3.7.



Generation of input data from experimental videos 94

(A) t = 0 ms (B) t = 10 ms (C) t = 20 ms

(D) t = 30 ms (E) t = 40 ms (F) t = 50 ms

Figure 3.36: Representations of the reconstructed and deformed 3D surfaces via
Lagrangian markers. Again, we represented the corresponding surfaces of 2D illustrations in
Figs. 3.34, 3.35 and experimental images described in Figs. 3.3, 3.7.

0 100 200 300 400 500 600 700
number of images

100

75

50

25

0

25

50

75

 (d
eg

°)

Figure 3.37: Signi�cant angle smoothing to improve the Procrustes Analysis. We
smoothed the original signal using a standard average �lter to remove the spurious rotation
occurring between t = 18 ms and t = 25 ms. The smoothing e�ects are well-visible on all
rotation peaks, between the smoothed (red) and original (black) angular signals.
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di�culty resided in the lack of criteria to predict the misbehavior of our Procrustes

Analysis computation. Nevertheless, the rigid rotation was not subtracted directly

between image n and the image at rest initially at time tn = 0. As explained in the

image processing section, the global subtraction was performed step by step: each image

n is �rst reoriented according to the previous image n − 1 before the calculation of

the tilt angle. In consequences, we compute an intermediate angular step θε between

the two consecutive images n and n − 1 which constitutes the �nal rotation angle θ

when accumulated: θn =
∑

1≤i<n+1 θ
i→i+1
ε . We reproduced in Fig. 3.38A, the wrong

approximation of the rigid angle, and we show the shape of the angular steps across

video frames (Fig. 3.38B). As we can see with the large spike, the angular step θε

parameter embedded the rotation error.
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(A) Global tilt angle θ.
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(B) Intermediate tilt angle θε.

Figure 3.38: Enhancement of the Procrustes Analysis correction by using a
threshold on θε. We can see on θε (Fig. 3.38B) the highly noisy signal and the limit of
our angle calculation, approximately between times t = 18 ms and t = 25 ms. After applying a
threshold (red) on the originally computed angles (black), we observe a better approximation of
rotation peaks (Fig. 3.38A).

Thus, we tend to correct the angular step θε instead of the cumulative rotation θ. In

Fig. 3.38, we �xed a threshold at |θε| = 2. The resulting body rotation was acceptable.

However, the approach seemed not automated and robust enough, again. Finally, we

considered again smoothing methods, for the angular step θε instead of the global output

θ.

Figure 3.39 illustrates how we smoothed the θε-signal while excluding the spurious part.

The cumulative rotation θ obtained was found particularly accurate with the original

rotation computation. All the Procrustes Analysis have been performed by integrating

this θε section. Note we signi�cantly enhanced the Procrustes Analysis process although

the characterization of the spurious parts still remained to some extent, arbitrary. Notice

the 3D shapes are obtained based on the 2D Procrustes Analysis. Therefore, the potential

angular steps between 3D shapes are expected to be minimal. Besides, the eventual

remaining rigid angles will be added to the 2D rigid rotation.
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(A) Global tilt angle.
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(B) Intermediate tilt angle θε.

Figure 3.39: Enhancement of the Procrustes Analysis correction by smoothing the
angular step θε instead of θ. After correction, the computed rotation angle (red) �ts the
original signal (black) and ignores the spurious calculations. Notice how slight di�erences on θε
(between Fig. 3.38B and Fig. 3.39B for example) can lead to a signi�cant impact on the global
rotation of the zebra�sh eleuthero-embryo (Fig. 3.38A against Fig. 3.39A).

3.5.2 Computing the body rotation in 3D

When performing a similar process in 3D meaning the computation of the center of mass

followed by the calculation of the intermediate tilt angle. An identical 2D-phenomenon

has been raised regarding the global angle θ (Fig. 3.40A) and the angular step θε (Fig.

3.40B, blue). Note we also reproduced in Fig. 3.40A the 2D results on which the 3D

outputs are computed. As for the angular step θε, multiple �ltering and smoothing

methods have been required to eliminate the spurious noise. The main di�culty was due

to the small variations and amplitudes of the signal, which we expected.

We focused our attention on performing an accurate representation of the experimental

rigid kinematics. However, it is important to have a non-sensitive procedure as we want to

obtain consistent results, regardless of the loss of precision during the Procrustes Analysis

process. To that end, the next chapter presents the validation cases we considered

to validate the entire work�ow and more precisely the integration of the experimental

kinematics within the CFD code.
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(B) Intermediate tilt angle θε.

Figure 3.40: Procrustes Analysis in 3D: a similar enhancement. All 2D angles
(Fig. 3.40A, black and red) are reproduced for comparison with the 3D outputs. Note in
3D, the computed angles (Fig. 3.40A, blue and green) are added to the 2D angles, already
subtracted to the motion. As for the angular step (Fig. 3.40B), the proper approximation is not
straightforward as multiple �ltering and smoothing are required (green then red then orange) to
�lter the original spurious angular signal (blue).





Chapter 4

Validation of the global numerical

approach

Previously, we presented our global numerical approach which combines a high-performance

CFD code with experimental data. The CFD implementation has already been widely

validated against various standard test cases in 2D and 3D [8�10, 12]. However,

we strongly embedded the experimental vision within the numerical approach. As a

consequence, the �rst important step was to validate our numerical process accordingly.

Minor test cases regarding the major contributions of our work have primarily been

detailed in Chapter 3. However, the validation of the global process was crucial in

order to use it for applications in biology and experiments of zebra�sh locomotion. In

particular, we introduce the �rst results obtained in 2D which have primarily been based

on the fully Eulerian point of view via optimal transportation, before using Lagrangian

markers. For more realistic simulations, we present the �rst numerical validation case in

3D for which we based the choice of the main simulation parameters, sensitivity analyses

of the global methodology such as data noise, or Procrustes Analysis impacts, and the

analysis of the mathematical model relatively to the experiment-based approach.

4.1 2D numerical simulations

4.1.1 Fully Eulerian: optimal transportation

The �rst numerical results we present hereafter have been obtained by estimating

the deformation velocity issued from 200 × 200 experimental snapshots. Afterward,

deformation velocity and experimental snapshots have been used as input to the 2D

CFD code (NaSCar) described in Chapter 2. Before performing considerable numerical

simulations, we �rst adjusted speci�c numerical details such as image segmentation,

actual �sh length, or the study of convergence of the optimal transportation iterative

99
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algorithm. Nevertheless, the resulting comparison between experimental and numerical

kinematics showed slight discrepancies (Fig. 4.1), which seemed to be localized around

speci�c time points such as C-bend and counter-bend movements which involve important

rotation motions. Overall, these results suggested the global center-of-mass trajectory

can be well-reproduced by numerical simulations.
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Figure 4.1: Kinematic comparison between the experimental estimate (blue) and
the numerical solution (red). Note the black markers indicated along the center-of-mass
trajectory (left) correspond to the maximal rotation timing denoted by vertical lines and
associated zebra�sh silhouettes in the rotation comparison (right). Notice the general aspect
of the numerical trajectory does correspond to the initial result. Only the relative position of
the CoM slightly changes. As for the rotation indicated by the body angle, we can see a larger
numerical error near the C-bend (15 ms) while our solution slightly di�ers from the original one,
especially after 30 ms. The optimal transportation algorithm has been performed on 200× 200
segmented images. The computational domain was re�ned to 1024× 1024 cells.

The direct comparison of experimental and numerical snapshots can also be seen in

Fig. 4.2 hereafter. The numerical errors we observed by previously analyzing the

zebra�sh kinematics are clearly visible on the snapshot series, especially regarding the

rotation motion. Besides, we can see the �uid vorticity which indicates the rotational

movements present inside the �uid �ow computed in the snapshots of the numerical

solution. Eventually, the instantaneous velocity of the �uid could also be displayed as

the CFD code computes the velocity of the whole computational domain at each time

step.
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0 ms 9.2 ms 14.4 ms 22.4 ms 28.4 ms 40.8 ms

Figure 4.2: Escape trajectory of a 5 dpf zebra�sh eleuthero-embryo induced by an
EFP stimulus. The considered experimental escape response corresponds to Fig. 4.1. Notice
how signi�cant the numerical error produced on the body rotation between the experimental
data (bottom) and the numerical solution (top) is.

In order to reduce the discrepancy between experimental and numerical center-of-mass

trajectories and assess the consistency of our computational method, we performed a

few numerical tests. In particular, we investigated the e�ects of the mesh size, boundary

conditions, domain size, water viscosity, initial zebra�sh orientation, and various impacts

of the optimal transportation algorithm. The grid convergence is represented in Fig.

4.3 by comparing a 512 × 512 Cartesian mesh with a 1024 × 1024 computational

grid. Despite slight di�erences in overall trajectories, we considered the numerical

convergence as nearly attained with a 512 × 512 computational domain. However,

coarser meshes signi�cantly degraded the numerical solution as the level-set function and

deformation velocity �elds have to be computed with a minimum resolution. Moreover,

the experimental data spatial step was �xed at approximately δix = 2.760 × 10−2 mm

and thus, the resolution of the deformation velocity �eld was in the vicinity of the

computational grid resolution i.e. δx = 3.100× 10−2 mm for the 512× 512 mesh.

Actually, we estimate the spatial resolution for which we have computed the deformation

velocity �eld is important and should be linked to the choice of the computational grid

size. When modifying the domain size, initial positioning, or optimal transportation

parameters related to computational convergence, we observed slight variations of the

numerical solutions while conserving the same trajectory shape (see Fig. 4.4, left).

Furthermore, we observed the choice of the initial frame could have an impact on

the overall trajectory, essentially by modifying the escape direction (see Fig. 4.4,

right). Usually, we chose the �rst frame such that no rigid movement is visible

before. For instance, no signi�cant trajectory di�erence was observed with additional

time frames before the initial time of the red-simulation. However, non-signi�cant

silhouette variations could appear due to the segmentation noise which would generate

spurious deformation velocity, especially when considering an acquisition frequency of

15, 000 fps. Therefore, our results suggest the choice of the initial frame could a�ect

the �nal computed trajectory. As for the rotation, we did not observe signi�cant
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Figure 4.3: Evaluation of grid convergence on escape kinematics for the initial
test case presented in Figs. 4.1, 4.2. Two di�erent mesh size are represented: 512 × 512
(green) and 1024 × 1024 (red). The domain was �xed at 16.000 mm2. Note the red-kinematics
corresponds to previous Fig. 4.1. The impact on the center-of-mass trajectory (left) and body
rotation (right) are not important and the overall shape is identical.
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Figure 4.4: Analysis of the numerical sensitivity of the center-of-mass trajectory.
Only few simulation parameters di�ered from each numerical simulation. On the left, we compare
the previous 512 × 512 solution (red, Fig. 4.1) with reduced domain size (pink, brown) and
di�erent initial conditions (purple). Finally, the orange solution was computed before enhancing
the numerical algorithm of optimal transportation. On the right, we only changed the initial
time frame by integrating ten additional frames (red trajectory).
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di�erences between each numerical simulation. In order to assess the variability of

numerical errors without further analysis of data sensitivity, we conducted automated

numerical simulations on additional test cases. Indeed, the objective is to develop a

high-performance, robust, and consistent numerical tool which can be automated on

large experimental samples with only simple experiment-based or segmentation-wise

parameters to tune. To that end, three supplementary escape simulations shown in Fig.

4.5, have been performed with identical acquisition frame rate, optimal transportation

algorithm, domain and mesh sizes as the 512 × 512 green-simulation presented in Figs.

4.3, 4.4.

As a result, we can see the numerical simulation was highly variable according to the

experimental locomotion. In particular, the case in Fig. 4.5A presents the proper

swimming gait excepted the escape swimming direction does not correspond to the

actual observations. In addition, the eleuthero-embryo seems to slightly accelerate, at

the beginning of the fast-swimming module. In the second escape response (Fig. 4.5B),

the fast-swimming gait does correspond to the experimental speed, rotation, and escape

direction. However, the C-bend is not well-reproduced as a large error can be seen in the

body angle. That is why, the numerical trajectory is shifted during the C-start although

the following escape modules are well-approximated. As for the third escape simulation,

large errors are made at all stages of the C-start. Such result strongly suggested that

more investigations are required into all the di�erent modeling steps: image processing,

Procrustes Analysis, optimal transportation, CFD choices and simulation parameters, in

order to understand, limit and enhance the accumulation of data noise and numerical

errors which can lead in some cases to non-signi�cant numerical simulations.

On the whole, optimal-transportation-derived numerical simulations raised several

questions. On the one hand, the overall attained precision was not satisfying enough. For

instance in the �rst initial escape response, the general trajectory or rotation shapes were

found consistently similar despite multiple simulation modi�cations. That is why, we

concluded that the numerical modeling required important enhancements. For example,

the dimension of the problem should probably have an important role in the observed

di�erences. Indeed, zebra�sh eleuthero-embryos do swim in three dimensions although

the general motion stays horizontal and planar. For 2D simulations, we considered both

�uid �ows and zebra�sh morphology in 2D, which in consequence impacts signi�cantly

the resulting computed zebra�sh locomotion. On the other hand, we observed negligible

to large numerical errors according to the considered test case which implied our

numerical approach is highly sensitive and dependent on the experimental video and

its associated body deformations. Again, further investigations would be required

to prospect the origin of numerical errors. As for optimal transportation results, we

highlight the convergence rate and precision were also found highly dependent on the two

considered experimental frames. For instance, two consecutive optimal transportation

calculations could provide di�erent numerical behaviors according to the experimental
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Figure 4.5: Kinematic comparisons between the experimental estimate (blue) and
the numerical solution (red). The three �gures Figs. 4.5A, 4.5B, 4.5C denote three
additional and distinct experimental responses. Note the black markers indicated along the
center-of-mass trajectory (left) correspond to the maximal rotation timing denoted by vertical
lines and associated zebra�sh silhouettes in the rotation comparison (right).
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data. However, di�erences of convergence in optimal transportation calculation should

be negligible provided a minimal amount of iterations are performed. Nevertheless,

our results suggest a trade-o� has to be reached between the numerical precision such

as optimal transportation accuracy and convergence, and the data noise naturally

generated during the segmentation (in space) and image processing algorithms (in time).

Indeed, we work with high-resolution data in space and time which could produce

spurious movements and deformations and thus signi�cantly degrade the computed

solution. Note the accumulation of data noise and the associated accumulation of

optimal transportation numerical errors could also be considered as an explanation to

computational misbehaviors or bad numerical CFD solutions relatively to the expected

experimental trajectory. Finally, the core method we used to extract the deformation

velocity �eld from the experimental images might not be well-suited for our application,

although optimal transportation is designed in theory to minimize the energy required

for swimming and more precisely, deforming the body kinematics. In fact, general

optimal transportation algorithms are well-known to not capture all motions and

physics. In particular, neither rotation motions nor tangential velocity cannot be

well-estimated by optimal transportation due to the intrinsic translation property: the

optimal path corresponds to straight lines (see Chapter 3). Therefore, minor errors

might be introduced in the computed deformation velocity at certain locations on

the silhouette, according to the actual body kinematics. Speci�c generalizations of a

few optimal transportation algorithms have been developed to tackle those issues (see

Appendix A).

In de�nitive, the optimal transportation computation was based on a validated and

e�cient Eulerian algorithm, with spatial-and-temporal high-resolution experimental

images, after the segmentation and image-processing step. Numerical simulations have

been performed across four experimental escape responses, with various segmentation,

transportation, or simulation parameters. On the whole, we obtained satisfying results

in some speci�c cases and large numerical errors in other cases. In particular, certain

center-of-mass trajectories have been entirely or partly well-reproduced while the body

rotation was poorly computed, especially during C-bend motions. In addition, the

numerical errors have been found highly-variable across di�erent experimental test cases

which limits the reproducibility of an automated process. We see four limitations in

the use of optimal transportation in such real-world applications. First, a fast and

robust computational method is required to handle large datasets. The robustness

and precision of the Eulerian algorithm we used might be improved. However, this

is a minor consideration given a large amount of data in time. Secondly, the output

deformation velocity �eld is strongly correlated to the image segmentation, image

Procrustes Analysis, and optimal transportation accuracy. If the �rst two steps are not

well-approximated, optimal transportation cannot compute the expected velocity �eld.

Above all, a numerical noise is present in the experimental and segmented data which

could transfer into spurious oscillations in the computed velocity �eld. An adequate
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trade-o� might be needed between the data resolution in time and space, and the optimal

transportation overall precision. Third, the Eulerian algorithm we considered computes

the original Monge optimal solution without imposing speci�c and additional physical

constraints such as incompressibility or rigidity (see Appendix A). Therefore, spurious

mass displacements might occur during optimal transportation, which do not represent

faithfully the actual deformations. We estimate further investigations would be needed

to understand and enhance our optimal-transportation approach. Finally, we compared

2D simulations with 3D animals and experiments. Thus, 3D numerical simulations

would be an important step towards real-like simulations and valid comparisons against

experiments.

4.1.2 Fully Eulerian vs Lagrangian markers

In the previous Chapters 2 and 3, we introduced two main approaches to embed the

experimental kinematics into the CFD solver which use either optimal transportation

and a deformation velocity �eld, or Lagrangian markers and midline deformations.

The representation of the zebra�sh body di�ers drastically between the two methods:

either fully Eulerian via a level-set approach, or Eulerian-Lagrangian by directly

tracking the Lagrangian markers. Although fully Eulerian results have previously been

presented, additional simulations have been performed in 2D to compare the Eulerian

and Lagrangian approaches with an identical computational mesh (Fig. 4.6). Note this

present escape response was recorded with the Mini WX100 camera and at a di�erent

frame rate as previously: 10, 000 fps instead of 15, 000 fps. Basically, we considered

those settings to obtain a higher video quality and above all, to track in a simpler way

the zebra�sh eleuthero-embryo such that a minimum amount of tail-beats were recorded.

The present test case will be described in more details in the next section.

Both methodology have been widely described in Chapter 3. On the one hand, the

optimal-transportation-based approach might be less suitable than previously due to

the frame rate decrease. Indeed, the considered optimal transportation algorithm was

particularly designed toward very close frames. Nevertheless, we implemented the

correction algorithm within the Procrustes Analysis step in the present test case, unlike

in the previous escape locomotions. Afterward, the imaging data were slightly regularized

for the computation of optimal transportation. On the other hand, the 2D process used

for generating the Lagrangian markers required for the Eulerian-Lagrangian approach,

and reconstructing the body deformations of the contour, is identical to the presented

3D implementation (Chapter 3). Note Lagrangian markers have been found to be more

di�cult to generate in case of ultra-high or lower acquisition frequency, especially for

tracking the midline with a minimum amount of data noise. Indeed, we highlighted the

major bottleneck of this approach may reside in the tracking algorithm which would

require enhancements to be robust across a wide range of space and time resolutions.
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Figure 4.6: Comparison between two approaches based on optimal transportation
and Lagrangian markers, by considering the same test case. The fully Eulerian
simulation based on optimal transportation (green) was performed with a 5122-grid as with
previous results (Chap. 3). As for the Eulerian-Lagrangian method (red), we used 300
Lagrangian markers to describe the whole contour, which we combined with a 5122 Cartesian
grid. Both numerical simulations have been compared against the experimental kinematics
(blue).

Besides, important spatial and time �ltering were required in 2D to smooth the input

data i.e. contours of Lagrangian markers. Otherwise, spurious e�ects were observed in

the level-set computation from Lagrangian markers.

As a result, both numerical simulations presented the same kinematic trend and could

not reproduce the global experimental kinematics. Nevertheless, the Eulerian and

Lagrangian simulations presented a similar trajectory, based on identical simulation

parameters. The input data processing constituted the main di�erences in the CFD

code. In fact, the construction of the input data might be prevalent to compare the two

approaches. First, the optimal transportation algorithm can handle very strong C-bend

motions where the tail would overlap with the head of the zebra�sh eleuthero-embryo

from the top-view at least, while the level-set function cannot be reconstructed from

the Lagrangian markers in that case. Secondly, the whole deformation velocity �eld

is computed through the optimal transportation algorithm in the �rst approach and

thus cannot be easily validated due to the complex motions involved. Instead, the

boundary velocity is simply recovered from the reconstruction of Lagrangian markers,

which is entirely monitored step-by-step in the latter approach. Therefore, it seems

optimal transportation algorithms directly compute the deformation velocity �eld at

the expense of implicit and potentially spurious mass transportation which is not

straightforward to validate. In contrast, the Eulerian-Lagrangian approach can easily
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be enhanced but requires more data processing and above all, is based on an important

modeling assumption: the Euler-Bernoulli beam deformation theory which states each

cross-section remains orthogonal to the midline throughout the entire escape motion.

Actually, complex escape responses might also involve di�erent body deformations

although the Euler-Bernoulli hypothesis seems reasonable. Eventually, it is important

to note the presented numerical simulations may not be fully converged. However, the

large discrepancy observed between numerical simulations and experimental kinematics

strongly suggests 3D modeling is required to perform more accurate and realistic

numerical simulations. That is why, 3D numerical simulations are considered and

validated in what follows, based on the construction and tracking of Lagrangian markers.

That is why, 3D numerical simulations are considered and validated in what follows,

based on the construction and tracking of Lagrangian markers.

4.2 A �rst experimental 3D test case

The �rst 3D numerical simulations were performed on the initial test case presented in

the previous chapter (Figs. 3.34, 3.35, 3.3, 3.7, 3.36).

4.2.1 Preamble

D = 5 cm

h ~ 2 mm

Electrodes

LED light plate

(A) Experimental cell.

L

h

L

(B) Computational
domain.

Figure 4.7: Illustration of the experimental cell and the computational 3D domain.

Fluid dynamic viscosity and density were chosen to µ = 0.83 mPa.s and ρ = 1000

kg/m3. As for the zebra�sh body, we assumed the body mass density is homogeneous and

constant, equal to the �uid density. As discussed in [131], mass variations are naturally

present in the zebra�sh larval body especially for the MFF and the yolk sac. However,

we can reasonably assume no signi�cant variations of mass density are present. As

introduced before, the 3D computational domain is constituted of a rectangular Cartesian

mesh and represents a sub-domain of the experimental cell (see Fig. 4.7). Naturally, the

zebra�sh eleuthero-embryo is free to explore the circular cell. However, we selected the
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experimental videos in which the eleuthero-embryo stays in the focal �eld of the camera.

Thus, we chose the physical dimensions to be of the same magnitude order (L ≈ 12

mm), except we initially centered the zebra�sh eleuthero-embryo's reconstruction to

limit boundary e�ects. As for the boundary conditions, we imposed free conditions

appropriately on tangential velocities u‖ and orthogonal velocity u⊥ as:

u⊥ = 0,
∂u‖

∂x‖
= 0 (4.1)

Moreover, we �xed the height of the domain at 2 mm which approximately corresponds to

the experimental water depth: the actual water height being higher due to the presence of

electrodes. As for the bottom boundary, we imposed a wall condition with a homogeneous

Dirichlet condition: ubot = 0. The mesh size was chosen such that: δx = 1.429 ×
10−5 mm. Eventually, the domain size was increased while keeping the same spatial

step, particularly when the domain was found too small. Indeed, at the end of the

fast-swimming stage, the eleuthero-embryo might reach the domain boundaries. That is

why, boundary conditions cannot interfere with interior velocity and pressure. No inlet

or outlet conditions are then imposed. Initially, we assumed no �uid or body motion is

present and the zebra�sh eleuthero-embryo is well-balanced such that no 3D motion is

modeled.

Figure 4.8: Body deformations of the initial test case presented in Chapter 3. The
new calculation of the bend amplitude (green) is more accurate than the current software FLOTE
bend amplitude (blue). The bottom pictures illustrate the body kinematics corresponding to the
extrema of the bend amplitude. Besides, the three colored stages de�ne the C-bend, counter-bend
and fast-swimming phases, respectively.
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Before conducting the numerical simulation, we computed the global bend amplitude

from the midline discretization by using the original de�nition (Fig. 1.16). The resulting

bend amplitude represents body deformations. As we used more than 300 midline

segments, our calculation provided a better approximation of body kinematics than the

actual tracking software namely FLOTE (see Fig. 4.8). In the �rst considered test case,

we can notice both the C-bend and counter-bend motions are strongly deformed (see

Fig. 4.8).
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Figure 4.9: Impacts of the 2D and 3D calculation of the center of mass. Only minor
di�erences can be seen between the 2D and 3D trajectories (Fig. 4.9A) although the overall
displacement can be considerable according to the considered body deformation (Fig. 4.9B).
Note vertical lines denote the timing of deformation extrema (Fig. 4.8). The corresponding
occurrence are also represented by markers '+' on the trajectory (Fig. 4.9A).

All numerical simulations have essentially been compared with the experimental trajectory

as it constitutes in general, a good and reliable indicator of the overall escape kinematics.

Indeed, we preferred to emphasize the center-of-mass trajectory comparison as the

rotation calculation is considerably based on the Procrustes Analysis which introduces

slight numerical errors. Instead, the experimental trajectory was directly obtained from

the segmentation and 2D Procrustes Analysis processes. Note di�erences between 2D

and 3D center-of-mass calculations have only a minor impact on the resulting trajectory

(see Fig. 4.9). In what follows, we will highlight the 3D computation is particularly

prevalent to the Procrustes Analysis and the computation of body rotation as the

center of mass varies considerably for high deformations and high rotation motions

(Fig. 4.9B). Kinematic quantities such as trajectory and velocities are very useful to

validate the numerical simulation against the experimental data as swimming kinematics

is generally accessible via standard tracking software. Notice we reconstructed in 3D the

whole escape swimming motion by deforming the midline kinematics. In consequence,

other measurements could be conducted with our model, such as the snout or tail

tracking to provide the associated velocity and thus, information about tail propulsion.

Given the deformation velocity and simple modeling of forces and torques, inverse-

kinematics methods have recovered the overall swimming power [124]. Instead, the

solution computed by the numerical simulation is complete, very accurate, minimizes

the number of assumptions, and provides more information about the �uid �ow as we
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describe not only the body dynamics but the whole �uid dynamics and its interactions.

For instance, for the current numerical simulation, we represented the �uid �ow (Fig.

4.10) in addition to the eleuthero-embryo's displacements for the deformation extrema

denoted by the vertical lines in Fig. 4.8. An example of a 3D wake is also provided (Fig.

4.11) to give supplementary insights.

(A) t = 11 ms (B) t = 21 ms

(C) t = 32 ms (D) t = 40 ms

(E) t = 47 ms (F) t = 54 ms

Figure 4.10: Overview of the numerical solution corresponding to the original video
in Fig. 3.3 and deformation pictures in Fig. 4.8. The zebra�sh escape motion is illustrated
by six time snapshots through Figs. 4.10A-4.10F. We represented in red the zebra�sh eleuthero-
embryo while the �uid �ow is described by the so-called �uid vorticity which highlights the
rotation of the �uid rotation. We colored an iso-contour of the vorticity with the corresponding
�uid velocity magnitude.

Therefore, we can observe through the numerical simulation all the �uid movements

occurring during the escape response of a zebra�sh eleuthero-embryo. In particular, we
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Figure 4.11: Illustration of a 3D wake generated by a zebra�sh escape response. The
test case corresponds to the original video (Figs. 3.3, 4.8, 4.10) at t = 47 ms. We represented
in red the zebra�sh eleuthero-embryo while the �uid �ow is described by the Q-criterion, which
highlights the �uid rotation of the 3D vortices similarly to vorticity (see Chapter 2). We colored
an iso-contour of the Q-criterion with the corresponding �uid velocity magnitude.

can see how the eleuthero-embryo pushes away a whole arc of �uid for each tail-beat.

Afterward, the circular �uid jet is forming rings which eventually dissipates later on.

Each vorticity ring e�ectively describes a pair of �uid vortices with two opposite rotation

velocity. Notice how important the arc of �uid produced by the counter-bend motion is

(Fig. 4.10E) compared to the C-bend beat (Fig. 4.10B). In the last illustration (Fig.

4.10F), we can see two rings on the left from the tail-beat occurring after the C-bend,

the jet of �uid due to the tail-beat occurring after the counter-bend, and the premises

of a double row of vortices generated during the fast-swimming tail-beats.

Furthermore, the numerical code computes the forces and torques applied on the body

surface, resulting from the interaction with the �uid �ow and the body dynamics. In

consequence, global power consumption can be visualized across all time steps (see Fig.

4.12). The power consumption corresponds to the power expended at each time step by

the zebra�sh body to counter the �uid forces and move its body accordingly. Therefore,

we only calculated the mechanical power of the zebra�sh body and we assumed the

mechanical power represents the biological power produced by muscles. Note that not all

muscle power is not necessary for leisure locomotion but in the case of an escape response

via an EFP, all the available power is expected to be used by muscles to maximize the

escape motion.

Given the noisy numerical signal, we post-processed the power output by averaging the

power consumption over a time window of one millisecond. Afterward, we smoothed the

averaged power to obtain a smooth and accurate estimation of the expended power across

time. The smoothing step is particularly important as the actual power consumption

is continuous while the numerical power output is largely discontinuous due to time

discretization for computing the numerical solution. As a result, we can see the power

shape is also formed by multiple peaks occurring during each tail-beat. Indeed, the
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Figure 4.12: Power consumption of a zebra�sh eleuthero-embryo for performing a
fast-start and two cycles of fast-swimming. The numerical power output (black) is very
noisy due to the time discretization of the solver. Thus, the power signal is averaged every
millisecond (orange) before applying a smoothing �lter (red). Note vertical lines denote the
timing of deformation extrema (Fig. 4.8).

minima of the power are well-synchronized with deformation kinematics. Regarding the

maxima, they do not seem correlated with the bend amplitude. Indeed, the power reaches

its maximum in the �rst tail-beat i.e. when deforming into a C-shape from rest while

the power required for deforming the eleuthero-embryo's body during the counter-bend

motion, is less important.

From the power output, we computed four quantities: the maximal power (Pmax)

(in mW), the mean power (Pmean) (in mW), the total expended energy (Et) (in mJ)

and the CoT (in J/m) of the zebra�sh escape swimming (Fig. 4.13). Pmax was not

considered as important as the other quantities as it is not correlated to a speci�c part of

the escape motion. However, Pmean, Et and CoT were found very interesting to study.

Notice Pmean is based on the averaged and discontinuous power output but we estimate

all mean powers are identical, in the limit of an accurate enough smoothing step. Indeed,

in the case of escape response movements and C-starts, no standard e�ciency such as

the Froude e�ciency could be de�ned by extracting the useful work from the total work,

unlike steady and periodic swimming. As a result, we de�ned an additional performance

quantity called CoT , as the ratio of total energy over the total traveled distance. In

the literature, the mass of the �sh is generally also taken into account. However, we

used 5 dpf zebra�sh eleuthero-embryos, which are considered of the same mass as the

total length is approximately of the same magnitude order at this age. Therefore, the

CoT is decreased either by a smaller amount of energy or a larger traveled distance.
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Figure 4.13: Pmean and Et from the power output. The Pmean value (horizontal green
line) is computed by averaging the smoothed power. Et is computed by integrating the smoothed
power over time. As a result, the expended energy corresponds to the area (orange area) delimited
by the power curve.

Table 4.1: Energetic performances of the test case presented in Fig. 4.13.

Pmax (mW) Pmean (mW) Et (mJ) CoT (J/m)

2.181× 10−2 0.998× 10−2 5.118× 10−4 7.140× 10−5

It is an important quantity as the ratio compares the energetics with the kinematic

quantity which the eleuthero-embryo a priori maximizes during the escape response.

As an example, the energetic performances of the test case depicted in Fig. 4.13 are

presented in Table 4.1.

Before performing numerical simulations, we needed to �x the global simulation process

which includes the choice of simulation parameters, computational domain, mesh size,

Procrustes Analysis and penalization method, by using the current test case.

4.2.2 Simulation methodology

4.2.2.1 Grid convergence

Beforehand, we evaluated the optimal computational mesh size. Numerical schemes

are constructed such that the computed and approximated numerical solution converges

towards the exact solution in the limit of δx → 0. However, a trade-o� needs to be

found between numerical accuracy and the mesh size which impacts the computational

time. That is why, we compared in Fig. 4.14, three mesh size: ∆x = 3.810× 10−2 mm,
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Table 4.2: Evaluation of the impact of grid convergence in energetics.

Nx Pmax (mW) ∆r
Pmax

Pmean (mW) ∆r
Pmean

420 2.174× 10−2 - 1.016× 10−2 -
315 2.008× 10−2 7.617× 10−2 0.924× 10−2 9.012× 10−2

525 2.308× 10−2 6.182× 10−2 1.077× 10−2 6.041× 10−2

Nx Et (mJ) ∆r
Et

CoT (J/m) ∆r
CoT

420 5.206× 10−4 - 7.302× 10−5 -
315 4.714× 10−4 9.463× 10−2 6.910× 10−5 5.361× 10−2

525 5.514× 10−4 5.910× 10−2 7.562× 10−5 3.566× 10−2

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the chosen size Nx = 420.

∆x = 2.857×10−2 mm, ∆x = 2.286×10−2 mm which represents approximately a regular

increase of 30% in mesh size: the respective mesh size being Nx = 315, Nx = 420,

Nx = 525.

5 4 3 2 1 0 1 2
X-axis (mm)

4

3

2

1

0

Y-
ax

is 
(m

m
)

EXP
NUM_4202

NUM_3152

NUM_5252

Figure 4.14: Convergence of the numerical solution according to the computational
mesh size. All three resolutions with Nx = 315 (orange), Nx = 420 (red), Nx = 525 (green),
present the same global trend regarding the experimental trajectory. The solutions obtained by
the two most re�ned meshes are nearly identical.

Only with three di�erent grid resolution, we can conclude the solution is well-converged

from ∆x = 2.857× 10−2 mm i.e. Nx = 420 as a �ner grid does not seem to signi�cantly

improve the numerical approximation. However, a coarser grid slightly di�ers in the end

of the fast-swimming stage. As a result, we mainly used ∆x = 2.857 × 10−2 mm for all

the following numerical simulations.

The impacts of the computational grid size on the resulting energetics have been

recapitulated in Table 4.2. Overall, no signi�cant e�ect is visible on the energetic

quantities although Et and CoT are slightly better in the 525-case. In consequence, the

center-of-mass trajectory is more sensitive to grid size relatively to energetics.
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Table 4.3: Evaluation of the impact of the penalization method.

Pen Pmax (mW) ∆r
Pmax

Pmean (mW) ∆r
Pmean

order1 2.181× 10−2 - 0.998× 10−2 -
order2 2.288× 10−2 4.924× 10−2 1.024× 10−2 2.616× 10−2

Pen Et (mJ) ∆r
Et

CoT (J/m) ∆r
CoT

order1 5.118× 10−4 - 7.255× 10−5 -
order2 5.259× 10−4 2.754× 10−2 7.391× 10−5 3.507× 10−2

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the chosen size Nx = 420.

4.2.2.2 Order of the penalization method

Based on the previously �xed mesh size, we evaluated the e�ects of a second-order

accuracy penalization method (Fig. 4.15). The corresponding comparison of energetic

performances can be found in Table 4.3.
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Figure 4.15: Trajectory comparison between a �rst-order and a second-order
accuracy penalization method. The second-order penalization method (red) and the
standard �rst-order penalization method (orange) have both been described in chapter 2.

Only a slight di�erence is noticeable in kinematics when using a higher-order penalization

scheme near the interface. As for the energetic performance, the variation is not

signi�cant enough relatively to the cost in computational time. Indeed, the second-

order penalization accuracy was found approximately 30% longer which is considerable

regarding the overall gain in precision. As a result, we considered the �rst-order accuracy

for the penalization scheme provided the space step of the grid was �ne enough meaning

∆x = 2.857× 10−2 mm.
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4.2.2.3 A 3D Procrustes Analysis

In the previous chapter, we detailed the Procrustes Analysis process we used for obtaining

the body deformations without rigid movements. In particular, the calculation of body

rotation was not straightforward. That is why, we �rst assessed the importance of a 3D

Procrustes Analysis (Fig. 4.16). The impact is signi�cant and particularly noticeable

during the C-start stage: the direction at the end of the counter-bend corresponds to

the experimental one. Instead, the body rotation is not important enough with no 3D

calculation of the rotation.
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Figure 4.16: Numerical trajectory based on a 3D Procrustes Analysis. In the original
simulation (violet), a 3D center of mass is considered but the body rotation is untouched. In
the improved simulation (green), both the center of mass and the body rotation are computed
in 3D. Note all Procrustes Analysis processes have been conducted without the correction step.

Then we compared the actual consequences of our enhancement step in the Procrustes

Analysis step (Fig. 4.17). As previously, the numerical trajectory �ts much more with

the experimental data when we use proper body deformations meaning a consistent

Procrustes Analsysis process.

All the previous numerical simulations have been quanti�ed by considering the energetic

performances (Table 4.4). Overall, relative numerical errors are of the order of a few

percent and the improvements in body rotation do not impact signi�cantly the energetic

performance, unlike the swimming kinematics.

Afterward, we also considered the 3D volume mass to compute adequately the 3D body

rotation during the 3D Procrustes Analysis step. The comparison of the associated

numerical simulations (Fig. 4.18) raised no signi�cant di�erence between the two
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Figure 4.17: Illustration of the impacts of the Procrustes Analysis correction on
the center-of-mass trajectory. The improved Procrustes Analysis results in a slightly better
simulation (orange) compared to a basic Procrustes Analysis-based simulation (green). Note the
latter is identical to Fig. 4.16.

Table 4.4: Evaluation of the impact of the 2D Procrustes Analysis.

PA Pmax (mW) ∆r
Pmax

Pmean (mW) ∆r
Pmean

2D-like 2.153× 10−2 - 0.989× 10−2 -
noCor 2.253× 10−2 4.649× 10−2 1.018× 10−2 2.996× 10−2

noRot 2.297× 10−2 6.666× 10−2 0.970× 10−2 1.866× 10−2

PA Et (mJ) ∆r
Et

CoT (J/m) ∆r
CoT

2D-like 5.070× 10−4 - 7.112× 10−5 -
noCor 5.244× 10−4 3.440× 10−2 7.356× 10−5 3.426× 10−2

noRot 4.987× 10−4 1.627× 10−2 7.061× 10−5 7.180× 10−3

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the numerical simulation

performed with a "2D-like" and corrected rotation computation in the Procrustes Analysis step.

Procrustes Analysis methods. As a result, we only considered "3D-like" Procrustes

Analysis in the following simulations as the computation of the 3D tilt angle is more

realistic.

All the previous numerical simulations have been quanti�ed by considering the energetic

performances (Table 4.5). Overall, the relative numerical errors are inferior to 1%

regardless of the Procrustes Analysis method. As previously, these results suggest the

Procrustes Analysis step a�ects especially the swimming kinematics with no considerable

change in energetics.
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Figure 4.18: Impact of the mass volume in the Procrustes Analysis step, on the
numerical simulation. The 3D-like simulation (red) used a Procrustes Analysis which takes
into account the actual 3D mass for computing the rotation. Instead, the 2D-like simulation
(orange) has been based on a Procrustes Analysis which considered the dorsal projection of the
3D volume for weighting the 3D rotation calculation. Note the latter is identical to Fig. 4.17.

Table 4.5: Evaluation of the impact of the 3D Procrustes Analysis.

PA Pmax (mW) ∆r
Pmax

Pmean (mW) ∆r
Pmean

3D-like 2.181× 10−2 - 0.998× 10−2 -
2D-like 2.153× 10−2 1.259× 10−2 0.989× 10−2 9.699× 10−3

PA Et (mJ) ∆r
Et

CoT (J/m) ∆r
CoT

3D-like 5.118× 10−4 - 7.140× 10−5 -
2D-like 5.070× 10−4 9.378× 10−3 7.112× 10−5 3.923× 10−3

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the numerical simulation

performed with a "3D-like" and well-smoothed rotation computation (smooth1.3) in the Procrustes Analysis step.

4.2.3 Numerical validation

In this particular escape motion, the two �rst modules namely the C-bend and counter-

bend motions i.e. times between 0 and 32 ms, are very well-reproduced regarding the

direction of the center-of-mass trajectory or the center-of-mass velocity (Fig. 4.19).

This result is particularly remarkable considering how strong the C-bend and counter-

bend deformations are. Nevertheless, the numerical simulation overestimates the velocity

produced during the fast-swimming stage. Indeed, the zebra�sh body accelerates as soon

as it engages the �rst tail-beat of fast-swimming. In parallel, the computed rotation (Fig.

4.20) is less accurate from time t = 32 ms, especially in the last tail-beat around time

t = 54 ms, and in consequence, the resulting escape swimming direction does di�er

slightly from the experimental one (Fig. 4.19). Moreover, notice the center-of-mass

velocity reached during the counter-bend motion is identical to the C-bend translation
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Figure 4.19: Comparison of the center-of-mass kinematics between experimental
measures (blue) and the numerical solution (red). Overall, the trajectory (Fig. 4.19A)
and velocity magnitude (Fig. 4.19B) are well-reproduced despite the slight acceleration in
the beginning of the fast-swimming stage (t 32 ms). Note vertical lines denote the timing
of deformation extrema (Fig. 4.8). The corresponding occurrence are also represented by the
black markers on the trajectory.
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Figure 4.20: Visualization of the rotation kinematics. On the global body rotation (Fig.
4.20A), we can see the comparison with the experimental rotation issued from the Procrustes
Analysis. In addition, we represented the rotation velocity (Fig. 4.20B). Note vertical lines
denote the timing of deformation extrema (Fig. 4.8).

speed despite stronger deformation kinematics. In fact, the bend amplitude seems to

only a�ect the body rotation as both rotation angle and rotation velocity are higher for

the counter-bend motion than for the C-bend.

4.2.4 A sensitivity analysis

In this section, we present the various test cases we conducted to assess the limits of our

numerical approach. In particular, we intended to reduce the numerical error due to the

fast-swimming acceleration.
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Table 4.6: Evaluation of the impact of the data-smoothing �lter.

�lt Pmax (mW) ∆r
Pmax

Pmean (mW) ∆r
Pmean

5 2.181× 10−2 - 0.998× 10−2 -
no 0.119 4.470 5.838× 10−2 4.848
11 1.839× 10−2 1.568× 10−1 0.831× 10−2 1.672× 10−1

�lt Et (mJ) ∆r
Et

CoT (J/m) ∆r
CoT

5 5.118× 10−4 - 7.140× 10−5 -
no 29.978× 10−4 4.858 38.967× 10−5 4.457
11 4.276× 10−4 1.645× 10−1 6.059× 10−5 1.514× 10−1

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the chosen size Nx = 420.

4.2.4.1 Data noise

As the 3D snapshots are reconstructed directly from the experimental video frames and

are above all based on the midline movements, a numerical noise is naturally present.

This data noise is particularly emphasized when the acquisition frequency is important

meaning experimental video frames are very close due to the numerical error introduced

in the midline approximation step.
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Figure 4.21: Impact of the smoothing of experimental data on the trajectory.
Initially, numerical simulations have been performed by using the raw experimental data
(orange). Afterward, we applied a mean �lter to smooth in space the data noise, over a range of
a 5-node (red) and a 11-point (green) window.

The comparison of di�erent smoothing values (Fig. 4.21) showed a reasonable data

smoothing namely the 5-smoothing, is su�cient to preserve the global trend of the center-

of-mass trajectory. More important values such as the 11-smoothing should be avoided

as the center of mass and the Lagrangian markers might be too much impacted. Note

the energetics has been recapitulated in Table 4.6. Similarly, we did not smooth in

time the Lagrangian markers as we observed signi�cant deviations in the center-of-mass
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Table 4.7: Evaluation of the impact of the 3D Procrustes Analysis.

PA Pmax (mW) ∆r
Pmax

Pmean (mW) ∆r
Pmean

3D-like 2.181× 10−2 - 0.998× 10−2 -
smooth1 2.183× 10−2 1.277× 10−3 1.000× 10−2 1.408× 10−3

smooth1.5 2.139× 10−2 1.889× 10−2 0.995× 10−2 2.772× 10−3

PA Et (mJ) ∆r
Et

CoT (J/m) ∆r
CoT

3D-like 5.118× 10−4 - 7.140× 10−5 -
smooth1 5.142× 10−4 4.701× 10−3 7.144× 10−5 5.541× 10−4

smooth1.5 5.119× 10−4 3.541× 10−4 7.110× 10−5 4.210× 10−3

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the numerical simulation

performed with a "3D-like" and well-smoothed rotation computation (smooth1.3) in the Procrustes Analysis step.

calculation in 3D. As a result, we only smoothed the experimental data using a 5-window

mean �lter to represent the actual body kinematics without a�ecting the numerical

results.

4.2.4.2 Procrustes Analysis variations

We need to assess the impact of the �nal smoothing step on the rotation. Indeed, we

used a mean �lter after a spline-interpolation step to reconstruct the experimental body

rotation. However, the reconstructed body rotation eventually slightly di�ered from the

original experimental data due to the smoothing parameter. Thus, we evaluated the

impact of the Procrustes Analysis step on the body rotation and the resulting numerical

simulation, by assessing the numerical error introduced in the smoothing step of the

improved Procrustes Analysis (Fig. 4.22).
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Figure 4.22: Impacts of slight di�erences in the body rotation computed by the
Procrustes Analysis on the numerical trajectory of the center of mass.

All the previous numerical simulations have been quanti�ed by considering the energetic

performances (Table 4.7). Overall, the relative numerical errors are inferior to 1%

regardless of the Procrustes Analysis smoothing parameter. As previously, these results

suggest the Procrustes Analysis step a�ects especially the swimming kinematics with no

considerable change in energetics.
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4.2.4.3 Mass variations

Similarly, we also evaluated the impacts of a di�erent center-of-mass position. Due to

several factors such as segmentation errors, geometry approximation, or 2D imaging,

the position of the center of mass might not correspond to the actual center-of-mass

movements. That is why, we arti�cially moved the center of mass either near the head

or toward the posterior to analyze its in�uence on the body rotation and the resulting

swimming trajectory (Fig. 4.23).
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(A) Numerical simulations: trajectory. (B) Arti�cial
CoM-displacement.

Figure 4.23: Arti�cial variations of the center of mass. The center of mass has been
moved towards the snout (green) and towards the tail (orange). Note colors correspond between
sub�gures 4.23A and 4.23B. All three representations are aligned on the center-of-mass position
in Fig. 4.23B.

As expected, both test runs do not seem reasonable, especially for rotation motions.

Nevertheless, these numerical tests suggest the center of mass is well-approximated

during the C-bend and counter-bend motions while numerical errors seem to be

introduced during the fast-swimming stage. Indeed, we can see the direction of the

fast-swimming phase might �t better with the experiment if the center of mass were

located slightly back towards the tail. Therefore, it seems the mathematical model

is lacking from supplementary information about biomechanics phenomena occurring

during fast swimming.

4.2.4.4 Bi-�uid

Finally, we veri�ed no boundary e�ects were a�ecting the numerical solution. For

that purpose, we �rst increased the domain size, especially for the last fast-swimming

movements where the zebra�sh is close to the domain boundary. Secondly, we also

varied the vertical position relatively to the bottom surface or alternatively, modi�ed
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the boundary conditions. In conclusion, the computational domain boundary does not

impact the overall numerical simulation. In particular, we emphasize an important test

case: the modeling of the top boundary as a free-surface in the case where the zebra�sh

is close to the boundary. To that end, we performed bi-�uid simulations (Fig. 4.24)

by representing both air and water mediums. Indeed, we can assume the experimental

zebra�sh eleuthero-embryo is slowed during the fast-swimming stage due to the proximity

of the free-surface as the experimental �uid height could eventually be inferior to 2 mm.
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Figure 4.24: Changing boundary conditions: a bi-�uid simulation.

The trajectory seems to be slightly degraded by conducting a bi-�uid simulation while

energetic quantities do not signi�cantly di�er (Table 4.8). Most importantly, we can

observe an identical acceleration in the fast-swimming stage. This result suggests the

zebra�sh acceleration is not caused by boundary e�ects. In de�nitive, we tested various

modeling changes to reduce the fast-swimming stage acceleration with no considerable

results. On the one hand, we observed an important deviation between the numerical

and experimental solutions which persisted with simple simulation changes. On the

other hand, the kinematic di�erence might be due to modeling issues speci�c to the

considered escape experiment. In order to assess our numerical model accuracy and

isolate particular experimental di�erences, we conducted experiment-driven numerical

simulations on a larger experimental sample.

4.3 Reproducibility

To study the reproducibility of our numerical and experiment-driven approach, we

compared the numerical solution against the experimental trajectory over a large
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Table 4.8: Evaluation of the impact of the free-surface modeling.

Phase Pmax ∆Pmax Pmean ∆Pmean

Water 2.181× 10−2 - 0.998× 10−2 -
Bi-Fluid 2.167× 10−2 6.456× 10−3 1.062× 10−2 6.367× 10−2

Phase Et ∆Et CoT ∆CoT

Water 5.118× 10−4 - 7.140× 10−5 -
Bi-Fluid 5.509× 10−4 7.651× 10−2 6.965× 10−5 2.451× 10−2

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the numerical simulation

performed with only a single water phase.

experimental dataset. The description of the dataset will be provided in Chapter 5. In

this section, we only focus our attention on the numerical validation of the methodology

on various body kinematics (see Fig. 4.25). To be more precise, we altered the body

kinematics either by a �uid viscosity change (Fig. 4.25A) or by exposure to chemical

compounds (Fig. 4.25B).

In Fig. 4.25A-(A), we represented again the initial test case in green. In the two

other escape responses, the numerical acceleration starts just after having performed

the C-bend motion. In Fig. 4.25A-(B), only both the red and brown-experiments

provide a slight increase in the speed of the numerical solution after the C-bend motion.

All kinematic quantities including body rotation and velocity are well-reproduced for

the two other experiments. In Fig. 4.25A-(C), only the green-experiment kinematics

is well-reproduced while the pink-experiment provides a satisfying simulation where

the zebra�sh eleuthero-embryo produces a minor speed increase. The grey-experiment

simulation accelerates after the C-bend motion. In Fig. 4.25A-(D), only the orange-

experiment simulation performs a minor acceleration relatively to the experimental

speed. The other two numerical simulations reproduce the experimental kinematics

with satisfying precision. In Fig. 4.25A-(E), the green-experiment kinematics is

very well-reproduced by the numerical simulation. As for the other two experiments,

the numerical simulations are very satisfying despite minor di�erences against the

experimental kinematics. In Fig. 4.25A-(F), a minor acceleration is visible in the

grey-experiment numerical simulation while only minor di�erences can be seen in other

numerical simulation kinematics.

Similarly to water simulations (Fig. 4.25A-(A)), a numerical acceleration can be

observed for all three experiments of Fig. 4.25B-(G), clearly visible after the C-bend

motion. In Figs. 4.25B-(H),(I) only minor di�erences are visible in kinematics such as

velocity, especially after the C-bend motion. Only the green-experiment is particularly

well-reproduced.

All relative numerical errors regarding the main kinematic variables: raw displacement,

total traveled distance, fast-swimming traveled distance, and fast-swimming average

velocity, have been recapitulated in Table 4.9, for each experiment. We highlight

numerical errors could reach up to 30%, even in the case of overall satisfying results.

At �rst view, the best numerical simulations seem to provide smaller displacement
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Figure 4.25: Reproducibility of experiment-driven numerical simulations. For the
viscous test cases (Fig. 4.25A), we immersed zebra�sh eleuthero-embryos into water (A), and
viscous �uids with a ratio of 1.1 (B), 2.3 (C), 5 (D), 10 (E), 15 (F) against water viscosity.
For the toxicological test cases (Fig. 4.25B), we simulated up to two drug concentrations (Figs.
(H), (I)) alongside the control group (A). Three experiments have been simulated for each
experimental condition, corresponding to each color. For each experiment, we represented the
experimental trajectory (dashed line) and its associated numerical simulation (solid line).
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Table 4.9: Numerical validation: relative numerical errors of translation kinematics. Note we
quanti�ed the trajectory comparisons recapitulated in Fig. 4.25. Bold values denote a relative
error inferior to 30%.

run Displacement (%)
Total traveled
distance (%)

Fast-swimming
traveled distance (%)

Fast-swimming
average velocity (%)

A
blue 14.523 16.652 26.335 27.332

orange 44.253 35.422 54.154 55.634
green 22.048 9.561 25.632 24.821

B
red 24.969 22.536 39.819 40.824
violet 8.623 8.701 20.675 18.159
brown 29.434 31.244 45.130 45.130

C
pink 15.449 12.274 28.470 25.660
grey 32.096 23.101 40.526 38.699
yellow 11.148 9.734 24.535 25.277

D
cyan 16.190 8.665 19.687 18.638
blue 11.929 3.647 11.177 11.190

orange 33.438 24.779 37.071 37.114

E
green 1.707 4.996 4.043 4.611
red 6.787 1.250 5.916 6.180
violet 12.867 8.983 10.609 11.237

F
brown 14.303 6.692 10.890 11.595
pink 31.810 19.009 25.285 24.950
grey 40.324 15.925 21.759 22.320

G
blue 21.908 16.729 32.703 31.894

orange 25.837 25.410 37.195 36.119
green 21.563 18.358 35.004 31.518

H
red 6.010 9.436 21.361 20.978
violet 4.655 4.359 11.011 11.008
brown 20.093 15.197 23.929 20.961

I
pink 11.700 14.484 20.544 21.527
grey 27.041 19.924 29.940 27.460
yellow 10.740 11.850 11.468 12.460
cyan 11.381 12.110 24.336 18.927

For each quantity q, the relative numerical error ∆r
q denotes the relative di�erence with the experimental value.

errors. For example, both all escape responses in Fig. 4.25B-(H) are well-reproduced

but numerical errors for the brown simulation seem important by reaching up to 20%

while both displacement and total traveled distance errors seem reasonable for the red

and violet simulations. Instead, small errors can be obtained for the total traveled

distance with no signi�cance as the zebra�sh is clearly accelerating (see the green

simulation in Fig. 4.25A-(A) or the brown simulation in Fig. 4.25A-(F)). These

important numerical errors might be due to relatively long escape times combined with

the presence of small modeling issues which we highlighted previously. In addition, note

multiple sources of errors may accumulate regarding either the numerical solution or

the experimental approximations especially in the case of experiment-based numerical

simulations. However, multiple statistical comparisons Tukey's tests were performed

for both 4.25A and 4.25B datasets, and showed all relative numerical errors were not

dependent on the experimental conditions (Table 4.10).
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Table 4.10: A one-way ANOVA and multiple comparison Tukey's test: Evaluation of numerical
errors across all experimental conditions.

Traveled distance Displacement Fast-swimming Distance Fast-swimming Velocity

µw vs. µ1 ns (>0.9999) ns (0.9871) ns (>0.9999) ns (>0.9999)
µw vs. µ2 ns (0.9765) ns (0.967) ns (0.9967) ns (0.9849)
µw vs. µ5 ns (0.8879) ns (0.9817) ns (0.7254) ns (0.6981)
µw vs. µ10 ns (0.3934) ns (0.358) ns (0.0717) ns (0.0838)
µw vs. µ15 ns (0.9482) ns (>0.9999) ns (0.5169) ns (0.5343)
µ1 vs. µ2 ns (0.9710) ns (>0.9999) ns (0.9972) ns (0.996)
µ1 vs. µ5 ns (0.8737) ns (>0.9999) ns (0.7354) ns (0.7862)
µ1 vs. µ10 ns (0.3758) ns (0.6954) ns (0.0739) ns (0.1093)
µ1 vs. µ15 ns (0.9390) ns (0.9584) ns (0.5271) ns (0.628)
µ2 vs. µ5 ns (0.9992) ns (>0.9999) ns (0.9281) ns (0.9608)
µ2 vs. µ10 ns (0.7848) ns (0.7773) ns (0.1509) ns (0.2291)
µ2 vs. µ15 ns (>0.9999) ns (0.919) ns (0.7761) ns (0.8749)
µ5 vs. µ10 ns (0.0.9269) ns (0.7239) ns (0.5338) ns (0.6157)
µ5 vs. µ15 ns (>0.9999) ns (0.9469) ns (0.9989) ns (0.9997)
µ10 vs. µ15 ns (0.8556) ns (0.2749) ns (0.7418) ns (0.7752)

Traveled distance Displacement Fast-swimming Distance Fast-swimming Velocity

H2O vs. DMSO0.1 ns (>0.9999) ns (0.9589) ns (>0.9999) ns (0.9828)
H2O vs. CPO100 ns (0.3389) ns (0.2124) ns (0.2122) ns (0.1456)
H2O vs. CPO150 ns (0.7289) ns (0.4219) ns (0.2929) ns (0.1879)
DMSO0.1 vs. CPO100 ns (0.3662) ns (0.4023) ns (0.2281) ns (0.2425)
DMSO0.1 vs. CPO150 ns (0.7648) ns (0.7093) ns (0.3149) ns (0.317)
CPO100 vs. CPO150 ns (0.8224) ns (0.9022) ns (0.9792) ns (0.9851)

For each kinematic variable, we show the experimental and numerical impacts between each viscosity condition (N=3)

by summarizing the p-value. Statistics from a 1-way ANOVA Tukey's test. non-signi�cant (ns): p≥0.05, *: p<0.05, **:
p<0.01, ***: p<0.001, ****: p<0.0001.

In de�nitive, all numerical simulations are overall very satisfying as experimental

kinematics is well-reproduced. Nevertheless, in speci�c experiments, the numerical

solution seems to overestimate the center-of-mass velocity which may increase the

traveled distance, displacements, or a signi�cant change in the �nal escape direction.

Particular direction changes might be raised by Procrustes Analysis errors, especially

in the estimation of body rotation. Furthermore, in several experiments, the numerical

simulation was found extremely accurate relatively to the experimental swimming

kinematics regarding all kinematic variables: trajectory, velocity, or rotation. Finally,

note only few numerical simulation escape directions such as green-and-orange-experiments

(Fig. 4.25A-(A)) or the pink-experiment (Fig. 4.25B-(I)) di�er considerably from the

experimental escape response after two cycles of fast swimming. Similarly, it seems a

few amount of numerical simulations as in Figs. 4.25A-(D),(E),(F) present smaller

swimming amplitudes regarding the center-of-mass trajectory.

4.4 Additional considerations

In consequence, we also examined attentively the presence of 3D motions such as pitch

and roll rotations. Indeed, we remind the reader the zebra�sh eleuthero-embryo is inside

a 3D medium whereas our 3-DoF mathematical model constrains the movements to a

horizontal planar motion. Therefore, signi�cant numerical errors could be raised in case

of the apparition of experimental pitch and roll motions. However, no considerable, if
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any, 3D movements were visible on the experimental video. Furthermore, the eleuthero-

embryo zebra�sh morphology is constituted of an anterior mass section and a posterior

mass body surrounded by a thin layer of cells namely the MFF. Thus, the mass density

might not be homogeneous due to the di�erences in texture. Actually, it is one of the

reasons we arti�cially modi�ed the center-of-mass position. Another reason could be

the di�erence in geometry between our 3D reconstruction and the actual biological and

unique shape. For instance, the thickness of the MFF might be important to zebra�sh

propulsion. As an additional remark, notice our numerical model considers the zebra�sh

eleuthero-embryo as entirely rigid meaning we did not implement any elastic model in

addition to the experimentally observed body kinematics. Nevertheless, elastic modeling

could be considered for certain parts of the zebra�sh body such as the MFF, and might

enhance the numerical error. Similarly, note both the head and tail tip have been

modeled with a rigid segment during the tracking and deformation reconstruction step.

First, the head section can be considered rigid as a strong sti�ness can experimentally be

measured near the head region [89]. Secondly, the tail tip might be very important for

generating the zebra�sh propulsion and a signi�cant error might be generated although

the length of the segment is negligible. On the one hand, we analyzed and proposed

various solutions to understand and reduce the numerical error to the experiment, for

one speci�c test case. On the other hand, the numerical error might be highly variable

according to the considered body kinematics. Therefore, we next analyzed the numerical

error performed on the center-of-mass trajectory on a wide range of experimental test

cases.

To conclude the numerical validation, we initially found numerical errors could be

important according to the body kinematics. Consequently, we strongly interacted

with the mathematical model in order to reduce the numerical error of the initial

experimental case i.e. the acceleration occurring during the fast-swimming stage.

The presented results suggest our numerical approach may overestimate the zebra�sh

propulsion mainly produced by the posterior part and the tail. Despite the possible

presence of 3D movements in experiments or a non-homogeneous zebra�sh eleuthero-

embryo mass, the numerical acceleration might essentially be explained by elastic parts

of the body not taken into account in this initial mathematical modeling. Finally, we

then used our numerical simulations for studying the escape swimming performances

of the validation cases, applied towards biological applications. The next chapter will

focus on the description of these biological experiments, the corresponding swimming

performance, and the interests of such a powerful numerical tool.



Chapter 5

Applications to biology

This chapter presents how our numerical process and CFD simulations can be embedded

within a full experiment-driven biological study. Biologists of the MRGM lab use

zebra�sh eleuthero-embryos as an animal model for human pathologies and more precisely

for studying the locomotion processes and the underlying biological mechanisms. In the

previous chapters, we detailed the computational implementation and the full process

of swimming reconstruction and CFD simulations. After controlling and verifying that

the numerical solution obtained from a few experimental videos, was consistent enough,

we �rst aimed to deeply analyze the original outputs provided by the CFD, in terms

of energetics, performances, and wake structure while challenging the reproducibility

of our numerical model on a wider basis of experimental escape responses. Ideally,

computational modeling should enable the di�erentiation of locomotor misbehavior

from stereotyped escape responses, by using the supplementary and original information

about swimming performance. To that end, we focused on two experimental studies.

First, a complete study of swimming performances in viscous �ows has been conducted.

Afterward, we considered a speci�c chemical compound to alter the zebra�sh escape

response and initiate a �rst step toward toxicological experiments.

5.1 A Viscosity study

The primary locomotion experiments consisted of modifying the eleuthero-embryo's

surroundings and more precisely the dynamic �uid viscosity. Note the dynamic viscosity

is one of the �uid parameters which characterizes the �ow regime and can be directly

tuned in the CFD code. However, one of the main questions resides in the body

kinematics. Indeed, we do not know a priori what is the impact of a hydrodynamic

regime change on the zebra�sh body and more precisely on its escape deformation.

Above all, the body deformations include passive motion generated by the surrounding

�uid �ow and the active part created by the zebra�sh eleuthero-embryo. In this regard,

131
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the interaction between passive and active swimming remains largely unknown. That is

why, numerical simulations could help in understanding the zebra�sh escape behaviors.

In de�nitive, the chapter introduces the experimental study before developing the main

computational results from the experiment-based simulations and additional explorations

on viscosity change. This section constitutes the preview of a larger computational study

for the toxicological and pharmacological investigations which will be introduced in the

next section.

5.1.1 Experimental protocol

We have conducted all the experiments within the MRGM biology research team.

Basically, all experiments consisted of recording escape swimming movements as

described in Chapter 3. Nevertheless, we explained the general recording procedure with

no speci�c experimental protocol. In this section, we focus on particular experiments

in which we modi�ed the �uid dynamic viscosity in order to challenge the zebra�sh

escape response. Eventually, numerical simulations will be performed afterward, to

reproduce the experimental results and complete the collected data to analyze the

escape performances under important viscous forces. We chose to �rst challenge zebra�sh

eleuthero-embryos with highly viscous �uids as dynamic viscosity is a direct parameter of

the governing Navier-Stokes equations (see Chapter 2). Thus, viscosity is one of the few

simulation parameters which can be tuned both in the computational and experimental

model. To that end, we �rst prepared viscous solutions by dissolving solid powder of

Dextran 500 (Pharmacosmos A/S, Holbaek, Denmark) into highly-�ltered �sh water.

Dextran has been well-used in the literature across experimental biology [28, 30, 55, 79]

mainly for its physical properties. First, Dextran aqueous solutions are Newtonian

�uids [28, 30] which means the shear stress is proportional to the shear rate. Moreover,

Dextran aqueous solution modi�es the water dynamic viscosity while the �uid density

remains untouched [1]. Note the so-called Dextran 500 denotes dextran molecules with

a molecular weight of 500, 000 Da. The direct relationship between the concentration of

Dextran 500 and the �uid dynamic viscosity has been extrapolated from the literature

[28].

We considered Dextran concentrations of 0%, 1%, 3%, 5%, 7%, 9% corresponding

to a dynamic viscosity of 0.83 mPa.s, 1.1 mPa.s, 2.3 mPa.s, 5 mPa.s, 10 mPa.s,

15 mPa.s at 28 °C, respectively (see Fig. 5.1). In what follows, we refer to each

respective viscous condition as: µw, µ1, µ2, µ5, µ10, µ15. To conduct this biological

study, we used eleuthero-embryos aged of 5 dpf. For the experimental protocol, we

essentially individually immersed eleuthero-embryo into the prepared viscous solutions,

after rinsing it before the transit to limit the potential introduction of water inside

the viscosity experimental cell. For each individual, we recorded between three and

�ve escape responses. After the experiment, videos were reviewed in order to conserve
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Figure 5.1: Relationship between Dextran concentration and �uid dynamic viscosity
µ. Note the concentration denotes the weight/volume ratio (w/v). The circles denote the known
estimated values from [28] for 5%, 7% and 9% of Dextran concentration. The viscosity value for
1% and 3% of Dextran solution is extrapolated from a cubic spline interpolation.

the best escape video corresponding to each eleuthero-embryo. In total, we obtained

approximately 85 escape locomotions in viscous �ows and more than 30 escape swimming

in water, at 10, 000 fps. Again, we eliminated all low-quality videos in terms of imaging

and motion capture duration, which resulted in a set of 70 plus 14 experimental videos,

including between 10 and 15 videos per viscous condition. Each fast-start video has

then been post-processed to analyze the swimming kinematics while segmenting the �rst

90 ms of the escape locomotion, according to the custom Matlab algorithm detailed

in Chapter 3. Notice we only analyzed the swimming kinematics of the C-bend and

counter-bend motions as well as two cycles of fast swimming i.e. 4 complete tail-beats,

based on the calculation of rotation motion via the Procrustes Analysis (Fig. 5.2).

However, particular videos have not been able to capture all the fast-swimming tail-

beats with a highly stereotyped pattern. In the end, we selected N = 3 escape videos per

viscosity condition, based on both experimental and modeling constraints. Indeed, we

�rst chose escape responses which were the most stereotyped while performing four fast-

swimming tail-beats, at least. Additionally, we avoided at maximum near-boundary and

non-responsive zebra�sh. Afterward, we selected the best experimental motion regarding

modeling constraints which include good image quality for the segmentation step i.e.

satisfying focus and clear �uid, eleuthero-embryo at rest initially i.e. straight body and

above all, planar escape response which is the strongest hypothesis of the model. Finally,

we currently cannot model with Lagrangian markers the strongest C-bend motions where

the tail of the eleuthero-embryo touches or crosses over its head. Given the number of

constraints, we chose to drastically reduce the number of experimental escape videos to

run our numerical modeling with high-quality experimental imaging.
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Figure 5.2: The body rotation computed from the Procrustes Analysis was used
to characterize the di�erent stages. The total escape time was considered as the sum of
the C-bend-driven (pink) and counter-bend-driven (blue) rotation phases plus two cycles of fast-
swimming rotation (green). Note the example is the initial test case of Chapter 4 and dashed
lines correspond to extrema of body deformations (Fig. 4.8).

5.1.2 Experimental kinematic performance

From the 2D Procrustes Analysis, the kinematic analysis consisted of computing various

quantities between the three phases de�ned by the tilt angle meaning the body rotation

(Fig. 5.2): the �rst rotation phase (pink) is due to C-bend motion while the second

rotation (blue phase) is driven by the counter-bend. The last four rotation motions

(green) are caused by the fast-swimming cycles. Notice the tilt angle does not necessarily

correspond to the bend amplitude which represents the deformation amplitude and at

this stage, the body deformation has not been quanti�ed yet. For our speci�c recording

conditions, the in-house tracking FLOTE software available at the MRGM lab could

not compute properly and accurately the angular deformations on such high-resolution

datasets in space and time (see Fig. 4.8). Unlike the bend amplitude which is calculated

after extracting the midline kinematics, the body rotation is directly accessible through

the Procrustes Analysis. That is why, all kinematic quantities were de�ned based on body

rotation and not the body deformation, in a �rst stage. In particular, we distinguished

the fast-swimming rotation stage from the C-start-driven motions which can be more

variable according to the escape response. Similarly, the initial time was based on

the apparition of the �rst rotation movement as the rotation was more sensitive to

deformations than translation kinematics, and that we observed a highly variable latency

time, up to 20 ms i.e. 200 video frames. First, we computed the total traveled distance

and the global raw displacement associated (Fig. 5.3). The �rst distance corresponds

to the exact distance traveled by the 2D center of mass while the latter is the length

of the straight line connecting the initial and �nal center-of-mass positions. Biologists
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use displacements in addition to distances in order to measure the escape performance.

In the case of misbehavior, the center of mass might travel a lot without covering an

important displacement from the starting point. Obviously, both distances would present

the same trend in case of a normal escape behavior i.e. moving away from the danger, the

stimulated position. We can see both distances are strongly impacted by �uid viscosity

as we can notice a rapid decay (Fig. 5.3). Above all, notice how reproducible the results

are: each viscous condition can easily be represented by a few points only as kinematics

were highly stereotyped and impacted by viscosity. Note we only computed the distances

when the escape response included the four tail-beats of fast swimming.
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Figure 5.3: Two distances have been computed in the entire escape locomotion for
each experiment and analyzed according to �uid viscosity. For each viscous condition,
we analyzed 11 (µw), 9 (µ1), 11 (µ2), 12 (µ5), 14 (µ10), 13 (µ15) experimental videos, for both the
total traveled distance (Fig. 5.3A) and the raw displacement (Fig. 5.3B). Each experimental
escape response is represented by an individual point. Note we show in red the experimental
cases we further modeled with the numerical simulation. The mean value is represented alongside
the SEM. Multiple statistical comparisons can be found in Table 5.1.

In addition to the latency time, C-start motions and more precisely the C-bend and

counter-bend amplitudes were found highly variable, as demonstrated by the C-start

rotations (Fig. 5.5) which impacted the overall changes in the escape direction within

the experimental cell (Fig. 5.4D). That is why, we measured several quantities based on

the fast-swimming stage only (Fig. 5.4) including the fast-swimming traveled distance

(Fig. 5.4A), the fast-swimming average velocity (Fig. 5.4B), the fast-swimming tail-beat

frequency (Fig. 5.4C), and fast-swimming rotation amplitude (Fig. 5.4D). We assumed

the tail-beat frequency of body deformations is well-approximated by body rotations as

only one tail-beat is performed during every rotation change. As for the fast-swimming

amplitude, it denotes the mean amplitude of rotation during the last four tail-beats. As

previously, the kinematic results were overall very consistent and reproducible, except for

the rotation amplitude (Fig. 5.4D). Due to the high variability explained before, which

essentially translates into important exploratory movements especially in water, the latter

variable will not be considered in what follows. As for the fast-swimming distance (Fig.

5.4A) and velocity (Fig. 5.4B), the trends seem as similar as the global distance and
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displacements. In fact, the tail-beat frequency which constitutes the most representative

variable of the actual body deformations, seems to present a minor decrease over the

considered �uid viscosity range (Fig. 5.4C).
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(C) Tail-beat frequency.

H 2
O m 1 m2 m 5 m 10 m 15

0

20

40

60

80

F
as

t-
sw

im
m

in
g

ro
ta

ti
o

n
am

p
lit

u
d

e
(d

eg
°)

(D) Rotation amplitude.

Figure 5.4: Several variable have been computed only in the fast-swimming stage for
each experiment and analyzed according to �uid viscosity. For each viscous condition,
we analyzed 11 (µw), 9 (µ1), 11 (µ2), 12 (µ5), 14 (µ10), 13 (µ15) experimental videos, for the fast-
swimming traveled distance (Fig. 5.4A) and 14 (µw), 14 (µ1), 15 (µ2), 13 (µ5), 14 (µ10), 13 (µ15)
escape responses for the translation velocity (Fig. 5.4B), tail-beat frequency (Fig. 5.4C) and
mean rotation amplitude (Fig. 5.4D). For the distance, two fast-swimming cycles were required
while other quantities can be averaged. Each experimental escape response is represented by
an individual point. Note we show in red the experimental cases we further modeled with the
numerical simulation. The mean value is represented alongside the SEM. Multiple statistical
comparisons can be found in Table 5.1.

As mentioned before, additional variables have been extracted to quantify the C-start

deformations, including the maximum rotation angle due to C-start motions, or the

angular velocity between C-bend and counter-bend rotations (Fig. 5.5). Note only escape

responses where the maximal rotation is attained during the C-bend, have been selected

regarding the maximum C-bend rotation (Fig. 5.6A), in order to analyze the most

stereotyped locomotions. Despite the important variability, we can see the maximum

rotation is overall decreasing for high-viscous �ows, especially when compared against
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water (Fig. 5.5A). Similarly, we can also see a slight angular velocity decrease for viscous

�ows (Fig. 5.5B).
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(A) Maximal rotation angle.
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(B) C-start angular velocity.

Figure 5.5: C-starts have also been analyzed for each experiment, according to �uid
viscosity. For each viscous condition, we analyzed 11 (µw), 5 (µ1), 9 (µ2), 11 (µ5), 9 (µ10),
10 (µ15) experimental videos, for the maximal C-bend rotation angle (Fig. 5.5A) and 14 (µw),
14 (µ1), 15 (µ2), 13 (µ5), 14 (µ10), 13 (µ15) escape responses for the C-bend rotation velocity
(Fig. 5.5B). For the maximum rotation, we only considered escape responses where the rotation
is maximum during the C-bend motion to �lter non-stereotyped behaviors. Each experimental
escape response is represented by an individual point. Note we show in red the experimental
cases we further modeled with the numerical simulation. The mean value is represented alongside
the SEM. Multiple statistical comparisons can be found in Table 5.1.

For each kinematic variable, we performed one-way ANOVA statistical tests combined

with multi-comparison tests, to analyze in more detail the di�erences of the kinematic

variables between each viscosity condition (Table 5.1). Translation kinematics represented

by distances, displacement, and velocities, has been found signi�cantly impacted by �uid

viscosity, excepted between µw and µ1 for the displacement and the distance traveled

during fast-swimming, and between µ10 and µ15 for the displacement and the average

fast-swimming velocity. The rotation performance which includes maximal rotation

and C-start angular velocity seems to be considerably di�erent between water and

viscous �ows, especially for the angular velocity of the C-start. In fact, the four

other variables are hardly signi�cant between high-viscous �ows excepted the tail-beat

frequency between speci�c viscous conditions.

In de�nitive, we observed zebra�sh eleuthero-embryos tended to perform lighter C-bend

motion (Fig. 5.5A) which produces weaker and slower rotation movements during

the C-start, in viscous �ows (Fig. 5.5B). Rigid rotation kinematics was consistent

with translation kinematics described by velocity and traveled distances which were

drastically decayed over the viscosity range (Figs. 5.3A, 5.3B, 5.4A, 5.4B). As for

the tail-beat frequency which may represent the body kinematics, we observed a minor

decrease over the viscosity which can result in signi�cant di�erences, between distant

viscosity conditions (Fig. 5.4C).
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Table 5.1: A one-way ANOVA and Tukey's test: Evaluation of viscosity on the di�erent
kinematic variables.

Disp. Total Dist. Dist. Velocity

µw vs. µ1 ns * ns *
µw vs. µ2 *** **** **** ****
µw vs. µ5 **** **** **** ****
µw vs. µ10 **** **** **** ****
µw vs. µ15 **** **** **** ****
µ1 vs. µ2 **** **** **** ****
µ1 vs. µ5 **** **** **** ****
µ1 vs. µ10 **** **** **** ****
µ1 vs. µ15 **** **** **** ****
µ2 vs. µ5 **** **** **** ****
µ2 vs. µ10 **** **** **** ****
µ2 vs. µ15 **** **** **** ****
µ5 vs. µ10 ** **** *** *
µ5 vs. µ15 **** **** **** ****
µ10 vs. µ15 ns * * ns (0.0582)

Tail-beat freq. Rot. Amp. CBmax Ang. Velocity

µw vs. µ1 * ns ns ****
µw vs. µ2 *** ns * ****
µw vs. µ5 **** *** ** ****
µw vs. µ10 **** **** ** ****
µw vs. µ15 **** **** **** ****
µ1 vs. µ2 ns ns ns ns
µ1 vs. µ5 ns *** ns ns
µ1 vs. µ10 * **** ns ns
µ1 vs. µ15 **** *** * ns (0.0511)
µ2 vs. µ5 ns ns ns ns
µ2 vs. µ10 ns ns (0.0531) ns ns
µ2 vs. µ15 *** ns (0.0776) ns ns (0.0787)
µ5 vs. µ10 ns ns ns ns
µ5 vs. µ15 ** ns ns ns
µ10 vs. µ15 ns (0.0572) ns ns ns

For each kinematic variable, we show the experimental impact of viscosity between each condition (N=10-15) by

summarizing the p-value. Non-signi�cant (ns): p ≥0 .05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

In what follows, we focused on the translation variables associated to the center of mass,

as the body rotation was not as straightforward to compute as the center-of-mass position

as it required an intermediate Procrustes Analysis step. Moreover, the body rotation was

more complex to characterize with simple variables. Furthermore, we observed the four

translation variables were much more impacted than rotation by viscous �ows and thus

were su�cient to analyze the viscous e�ects. As explained previously, we only conserved

the three best videos per viscosity condition for conducting the numerical simulations.

Nevertheless, we considered the reduced sample may characterize the whole experiments,

as the viscosity impacts seemed to be particularly important and stereotyped.

5.1.3 Impacts of numerical simulations

Afterward, we performed N = 3 numerical simulations per viscosity condition, associated

with the subset of experimental data previously described. First, we compared the

resulting kinematics against the experiments (Fig. 5.6). Unlike previous Figs. 5.3,

5.4, notice we represented all results according to viscosity to assess precisely the

correlation with the �uid viscosity. Overall, we can see an identical general trend
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according to �uid viscosity for all kinematic variables: a rapid exponential decay which

tends to attain a plateau for viscosity values higher than µ5 (Fig. 5.6). As for the

numerical comparison, the general shape of kinematics is generally well-reproduced in

numerical simulation excepted in µw, µ1, and µ2 �uids where all kinematic quantities

from numerical simulations, are slightly overestimated. This comparison can be directly

related to the comparison of the center-of-mass trajectories (Fig. 4.25) where most of

the numerical simulations were found very satisfying. Only a few simulations seemed

to accelerate in the fast-swimming phase with, no speci�c correlation to the medium

viscosity, as analyzed in Chapter 4.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

Viscosity m (mPa.s)

F
a

st
-s

w
im

m
in

g
d

is
ta

nc
e

(m
m

)

****

****

**

(A) Fast-swimming distance.

0 2 4 6 8 10 12 14 16
0.0

0.1

0.2

0.3

Viscosity m (mPa.s)

F
a

st
-s

w
im

m
in

g
ve

lo
ci

ty
(m

/s
)

****

****

**

(B) Fast-swimming velocity.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

Viscosity m (mPa.s)

D
is

p
la

ce
m

e
n

t
(m

m
)

***
**

*

(C) Displacement.

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

Viscosity m (mPa.s)

T
ra

ve
le

d
D

is
ta

nc
e

(m
m

)

**
**

(D) Traveled distance.

Figure 5.6: Comparison of numerical simulation kinematics against experiments. We
represented in parallel both the experimental (�lled circles) and the numerical (empty circles)
kinematics including the fast-swimming traveled distance (Fig. 5.6A), the fast-swimming average
velocity (Fig. 5.6B), the raw displacement (Fig. 5.6C) and the global traveled distance (Fig.
5.6D). Note for each condition, we show the mean of N = 3 escape responses alongside the SEM.
In addition, we computed the non-linear correlations (exponential decay) for the experimental
(solid line) and numerical (dashed line) values. Finally, we annotated the results of a Sidak's test
when numerical values deviate signi�cantly from experiments. Non-signi�cant (ns): p ≥ 0.05, *:
p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

Therefore, the impacts of numerical errors and overall viscosity e�ects have been analyzed

with a two-way ANOVA test (Table 5.2). As a result, the impact of the numerical

error can be neglected given that viscosity a�ected kinematic variations by 90% whereas
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Table 5.2: A two-way ANOVA test: Evaluation of kinematic impacts of numerical simulations
and �uid viscosity.

Traveled distance Velocity Displacement Distance
Source of Variation % TV % TV % TV % TV

Viscosity µ 92.84 **** 90.16 **** 87.77 **** 88.09 ****
From exp. to num. values 2.905 **** 4.467 **** 4.472 **** 6.609 ****
Interaction 1.481 * 2.702 *** 1.301 * 3.205 ***

Summary of the two-way ANOVA test regarding numerical modeling and viscous impacts based on N=18 experimental

and numerical data, including % of total variation (TV). Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***:

p < 0.001, ****: p < 0.0001.

simulations had an impact up to 6.6%. In de�nitive, numerical simulations do not

reproduce exactly experimental kinematics in low-viscous �ows but the biomechanical

response was found highly sensitive to viscosity change. As viscosity e�ects were largely

predominant in kinematic variables compared to numerical errors, the numerical solutions

have then been studied regardless of the numerical error, although important impacts

were found on low-viscous �ows.

Afterward, multi-comparison statistical tests have been conducted to analyze the e�ects

of viscous �ows on numerical solutions (Table 5.3). As a result, we found numerical

simulations reproduce well enough the global biomechanical e�ects due to viscosity

change. Most of the multiple comparisons raised an identical trend between experimental

and numerical kinematics. Note experimental statistics di�er from Table 5.1 as we

strongly reduced the data-set from the original experiment. This result was expected as

we demonstrated viscosity change was largely prevalent compared to simulation in�uence.

Nevertheless, note the numerical simulation overestimated the discrepancy for a few

comparisons: two close comparisons for the displacement, and fast-swimming errors

between high viscous �ows. Thus, it is important to note those speci�c comparisons

should be analyzed with special attention. In fact, fast-swimming variables such as

velocity or traveled distance may not be well-suited to analyze numerical simulations

as they do not assess accurately the actual e�ects of viscosity, which is consistent with

previous analyses in Chapter 4. Indeed, we observed the most important numerical errors

occur most of the time during the fast-swimming stage. That is why, global variables

should be preferred to analyze biological e�ects. In conclusion, nearly all comparisons

between the three highest �uid viscosity were non-signi�cant for all variables while water

and low-viscosity �uids di�ered signi�cantly from highly-viscous �ows.

As for rotation motions, we did not compare speci�c quantities as explained previously.

However, we noticed rotation peaks are not synchronized with bend amplitude extrema

(see Figs. 5.2, 5.7). In fact, a constant delay between the occurrence of each peak was

observed. In consequence, the time delay Tdef-rot between body deformations and body

rotation was determined by averaging the six time di�erences. Therefore, the time delay

was quanti�ed for each escape response to precise the relationship with viscosity (Fig.

5.8). As a result, the delay observed in water was not due to numerical approximations
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Table 5.3: A one-way ANOVA and multiple comparison Tukey's test: Evaluation of
experimental and numerical impacts across the di�erent viscosity conditions.

Traveled distance Displacement Fast-swimming distance Fast-swimming velocity

Tukey's multiple
comparisons test exp num exp num exp num exp num

µw vs. µ1 ns ns ns ns ns ns ns ns
µw vs. µ2 *** **** ns ns *** **** *** ****
µw vs. µ5 **** **** ** *** **** **** **** ****
µw vs. µ10 **** **** *** **** **** **** **** ****
µw vs. µ15 **** **** *** **** **** **** **** ****
µ1 vs. µ2 * *** ns (0.0931) * (0.0287) ** *** ** ****
µ1 vs. µ5 **** **** *** **** **** **** *** ****
µ1 vs. µ10 **** **** **** **** **** **** **** ****
µ1 vs. µ15 **** **** **** **** **** **** **** ****
µ2 vs. µ5 ** ** ns (0.0601) * (0.0297) ** *** ns (0.2102) ** (0.0046)
µ2 vs. µ10 *** **** ** *** *** **** * ****
µ2 vs. µ15 **** **** ** *** *** **** ** ****
µ5 vs. µ10 ns ns ns ns ns (0.4539) * (0.0326) ns (0.5596) * (0.048)
µ5 vs. µ15 ns ns ns ns ns (0.1216) * (0.0214) ns (0.1557) * (0.0116)
µ10 vs. µ15 ns ns ns ns ns ns ns ns

For each kinematic variable, we show the experimental and numerical impacts between each viscosity condition (N=3)

by summarizing the p-value. Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p <

0.0001.

and in addition, both the deformation and the rotation tended to be synchronized in the

highest viscous �ows.

In fact, the observed time delay between body deformations and the rigid rotation can

be seen as a result of the inertia motion which is particularly present in high Reynolds

�ows. Re (see Eq. 2.6) was computed by using the average velocity of the entire escape

simulation (Fig. 5.9). As a result, the general shape described previously (Figs. 5.6, 5.8)

can be highlighted via Re which describes the �ow regime, as explained in Chapter 2.

Above all, highly inertial �ow regimes generate an important inertia motion represented

by the delay between the body kinematics and the corresponding �uid motions i.e.

the rigid body rotation. Instead, high-viscosity �ows enable a direct impact of body

deformations by producing almost instantly the associated body rotation. As with

distance and velocity, the time delays in rotation and Re were analyzed statistically

between all viscosity values (Table 5.4). As a result, variations as similar as translation

kinematics can be observed (Table 5.3). In de�nitive, the whole kinematics represented

by traveled distances, fast-swimming velocity, displacement, and Tdef-rot is well-

consistent with the Reynolds shape.

Furthermore, the visualization of the wake generated by the zebra�sh escape response

was also very consistent with Re (see Fig. 5.10). Indeed, the produced vortex shedding

phenomenon decreased dramatically according to �uid viscosity. These observations are

mainly due to the presence of highly viscous forces which inhibit the generation of further

vortices. Indeed, vortices are produced by the �uid �ow moved during each tail-beat and

body deformations but cannot remain in the �uid. That is why, a rapid dissipation of

the wake can be observed in high viscous �ows, especially for �uid viscosity higher than

µ5.
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Figure 5.7: Illustration of body deformation e�ects on the rigid rotation, for all
test cases. All Figs. 5.7A-5.7R correspond to an individual escape response, each row being
associated to a viscous condition. For all �gures, we represented in blue the bend amplitude
alongside the body rotation in green.
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Figure 5.8: Average time delay between body deformations and rotation according
to viscosity. We computed the quantity Tdef-rot to characterize the time delay between the
bend amplitude and the rotation angle, visible in Fig. 5.7. We represented the mean (points)
with the SEM and the non-linear regression which decays at an exponential rate. Multiple
statistical comparisons can be found in Table 5.4.
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Figure 5.9: Flow regime: variation of Re according to the �uid viscosity. Note
the Reynolds number has been computed with the average velocity of the complete escape
simulations. We represented the mean (points) with the SEM and the corresponding non-linear

regression (solid line). The regression decays as exp(−µ)
µ . Multiple statistical comparisons Tukey's

test can be found in Table 5.4.

On the whole, we highlighted how all experiment-driven numerical simulations have

well-reproduced the physical mechanisms caused by high-viscous �ows. In particular,

simple and accessible kinematic variables have been compared against experimental

measurements such as traveled distances or velocity magnitude. However, kinematic

variables were found not suitable to assess and quantify highly viscous �ows, especially

in the case of a tiny subset of experimental data with only three escape responses per

viscosity condition. Obviously, the integration of more test cases would certainly provide

�ner results. In addition, kinematic variables need to be analyzed as a whole to provide

full insights about the swimming performance of the escape response which is complex

due to the di�culty to characterize rotation motions. Similarly, body deformations could
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(A) µw (B) µ1

(C) µ2 (D) µ5

(E) µ10 (F) µ15

Figure 5.10: Illustration of various advanced wake according to �uid viscosity. We
represented an example of a top-view of three-dimensional numerical simulation for each viscosity
µw (Fig. 5.10A), µ1 (Fig. 5.10B), µ2 (Fig. 5.10C), µ5 (Fig. 5.10D), µ10 (Fig. 5.10E), µ15 (Fig.
5.10F). Notice the zebra�sh body in red and the �uid vorticity represented by an iso-contour of
the Q-criterion (Q=150), colored by velocity magnitude. Note the water test case correspond to
the initial experimental locomotion considered in Chapter 4.
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Table 5.4: A one-way ANOVA and multiple comparison Tukey's test: Evaluation of both Re
and Tdef-rot variations across the di�erent viscosity conditions.

Re Tdef-rot

µw vs. µ1 **** **
µw vs. µ2 **** ****
µw vs. µ5 **** ****
µw vs. µ10 **** ****
µw vs. µ15 **** ****
µ1 vs. µ2 **** ns (0.0752)
µ1 vs. µ5 **** ***
µ1 vs. µ10 **** ****
µ1 vs. µ15 **** ****
µ2 vs. µ5 * ns
µ2 vs. µ10 ** **
µ2 vs. µ15 ** **
µ5 vs. µ10 ns ns
µ5 vs. µ15 ns ns
µ10 vs. µ15 ns ns

For both Re and Tdef-rot, we show the variations between each viscosity condition (N=3) by summarizing the p-value.

Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

be directly analyzed and compared to predict the overall swimming performances but

are also not straightforward to study due to the complexity of zebra�sh escape behavior.

Therefore, we studied the swimming energetic performances to enhance the swimming

performance understanding. Swimming kinematics is caused by body deformations

and body kinematics is generated by the underlying biomechanics related to zebra�sh

muscles, locomotor system, and its energetic capacity. That is why, we assumed the study

of zebra�sh energetic performances could provide �ner information about the biological

processes involved in locomotion, especially in the case of EFP stimulation which is

assumed to maximize the escape response capacity. Thus, zebra�sh escape energetic

performances in highly viscous �ows are recapitulated in what follows.

5.1.4 Energetic performances

First of all, numerical simulation enabled to compute accurately the power consumption

across the escape swimming for all body kinematics (Fig. 5.11). In particular, we can

see the power shape is composed of multiple peaks such that one single power spike

is occurring during each tail-beat. Moreover, power minimums seem to occur for each

bend amplitude change (denoted by vertical dashed lines). As a result, the power output

seems to be well-synchronized with the body deformations, unlike the body rotation.

The zebra�sh propulsion is a priori mainly generated by the tail-beats but a proper

analysis of the tail tip velocity did not show a signal as synchronized as with the bend

amplitude. Thus, we can assume the zebra�sh power output is essentially based on

the body kinematics timing. At �rst, the previous assertion seems reasonable as body

deformations are related to muscle activity and we assume the muscle activity can be

estimated through the hydrodynamic power we compute i.e. the power required by the
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Figure 5.11: Illustration of body deformation e�ects on the power output, for all
test cases. All Figs. 5.11A-5.11R correspond to an individual escape response, each row being
associated to a viscous condition. For all �gures, we represented in blue the bend amplitude
alongside the power in red.
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zebra�sh eleuthero-embryo body to compensate for pressure and viscous �uid forces (see

Chapter 2). Therefore, we used the escape responses challenged in high-viscosity �uids

to test our observations. To that end, we calculated the average time delay Tdef-pow

(Fig. 5.12) between power minimums and bend amplitude peaks similarly to Tdef-rot

(Fig. 5.8). Although Tdef-pow was correlated to �uid viscosity (Fig. 5.12), all time

delays were found inferior to 1 ms except for the highest viscous �ow, slightly above the

average and the 1 ms-threshold. Indeed, we considered 1 ms as a threshold value given

the numerical noise present in the power signal (see Fig. 4.12), due to a large amount

of CFD time steps. In de�nitive, we consistently observed the same synchronization

for each experiment, and no considerable changes have been found according to �uid

viscosity, excepted minor delays for µ15-simulations, which were e�ectively signi�cant

(see Table 5.5). However, the µ15 result may be due to the particular high amount of

CFD iterations observed for highly viscous �ows, which increased the data noise.
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Figure 5.12: Average delay between body deformation maximum and power
minimum according to viscosity. We computed the quantity Tdef-pow to characterize the
time delay between the bend amplitude and the power cycles, visible in Fig. 4.13 for example.
Data are mean ± SEM. The slope of the linear regression is signi�cantly di�erent from zero
(p=0.0007). A Pearson correlation test showed a signi�cant correlation between Tdef-pow and
µ. Multiple statistical comparisons can be found in Table 5.5.

As explained in the previous Chapter 4, we de�ned three main quantities to analyze

the escape power for each zebra�sh escape locomotion: Pmean, Et and CoT . Thus, we

studied the swimming energetic performances through these three variables (Fig. 5.13).

First, we can see the expended energy is almost identical regardless of the �uid viscosity

(Fig. 5.13A). Indeed, the global energy shape seems to correspond to a slight and low

variation in low and intermediate viscosity �ows before increasing in µ15-�ows; the non-

linear regression being in the form of µ exp(µ). That is why, signi�cant di�erences are

found when comparing viscous �ows against µ15 (Table 5.6). Unlike the expended energy,

Pmean seems to remain around a �xed value and no correlation with viscosity is visible

(Fig. 5.13B). Those results suggest in particular zebra�sh eleuthero-embryo cannot

consume more than a �xed amount of power, regardless of the �uid viscosity, to produce

maximal C-start escape responses. As for the CoT (Fig. 5.13C), we emphasize the
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Table 5.5: A one-way ANOVA and multiple comparison Tukey's test: Evaluation of Tdef-pow
variations across the di�erent viscosity conditions.

Tdef-pow

µw vs. µ1 ns
µw vs. µ2 ns
µw vs. µ5 ns
µw vs. µ10 ns
µw vs. µ15 *
µ1 vs. µ2 ns
µ1 vs. µ5 ns
µ1 vs. µ10 ns
µ1 vs. µ15 ns (0.0958)
µ2 vs. µ5 ns
µ2 vs. µ10 ns
µ2 vs. µ15 ns (0.0586)
µ5 vs. µ10 ns
µ5 vs. µ15 ns
µ10 vs. µ15 ns

We show the variations of Tdef-pow between each viscosity condition (N=3) by summarizing the p-value.

Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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Figure 5.13: Representation of escape swimming energetic performances according
to viscosity. For each escape response, we computed Et (Fig. 5.13A), tPmean (Fig. 5.13B) and
CoT (Fig. 5.13C). Note for each condition, we show the mean of N = 3 locomotion alongside the
SEM. The slope of the linear regression of Pmean (Fig. 5.13B) was non-signi�cantly di�erent from
zero (p=0.0684) while the slope of the linear regression of CoT (Fig. 5.13C) was signi�cantly
di�erent from zero (p<0.0001). Pearson correlation tests showed a signi�cant correlation between
CoT and µ (Fig. 5.13C) and a non-signi�cant correlation between Pmean and µ (Fig. 5.13B).
Multiple comparisons Tukey's test can be found in Table 5.6.
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Table 5.6: A one-way ANOVA and multiple comparison Tukey's test: Evaluation of energetic
performances between the di�erent viscosity conditions.

Et Pmean CoT

µw vs. µ1 ns ns ns
µw vs. µ2 ns * ns
µw vs. µ5 ns ns **
µw vs. µ10 ns ns ****
µw vs. µ15 * ns ****
µ1 vs. µ2 ns ns ns
µ1 vs. µ5 ns ns **
µ1 vs. µ10 ns ns ****
µ1 vs. µ15 ** ns ****
µ2 vs. µ5 ns ns *
µ2 vs. µ10 ns ns ****
µ2 vs. µ15 ** ** ****
µ5 vs. µ10 ns ns **
µ5 vs. µ15 * ns ****
µ10 vs. µ15 ns (0.0672) ns ****

For all energetic variables, we show the variations between each viscosity condition (N=3) by summarizing the p-value.

Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

particularly strong linear correlation according to �uid viscosity. Although viscous forces

are proportional to dynamic �uid viscosity µ, this result was not a priori straightforward

as the hydrodynamic power is formed by a pressure term in addition to the viscous

force term. Nevertheless, viscous forces might be predominant in the CoT given the

presence of highly viscous �ows, which might explain the linear correlation of the CoT

with respect to viscosity. As previously, we highlighted the energetic variations by

performing multi-comparisons ANOVA statistical tests (Table 5.6). In particular, the

CoT enlightened high-viscosity di�erences in energetic behaviors. For instance, the CoT

measured signi�cant di�erences between µ5, µ10, µ15 whereas kinematic variables such

as distance and velocity measured non-signi�cant di�erences. Indeed, the CoT provides

�ner information than swimming kinematics in the highest viscosity �ows, due to its

linear shape. Thus, we can see highly signi�cant di�erences between high-viscosity �ow

solutions. In de�nitive, energetic performances complete the kinematic analysis and

can provide supplementary insights about the underlying biomechanics which govern

zebra�sh eleuthero-embryo locomotion.

5.1.5 Impacts of body deformations: a �ctitious approach

To obtain more information about the power involved in �sh-like swimming in nature,

we used our numerical model as a �ctitious approach to study viscosity change. To be

more precise, we separated the modi�cation of body kinematics from the �uid viscosity

change by simulating the swimming performance across the viscosity range, from a �xed

body deformation. Previously, we brie�y described how body kinematics is modi�ed

across �uid viscosity, by using the tail-beat frequency or angular measurements. In

particular, we observed a slight decrease in tail-beat frequency according to viscosity. As
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detailed previously, swimming energetic performances provided additional information

which neither swimming kinematics nor body kinematics could provide. However,

performance di�erences observed through energy consumption or CoT are caused both

by �uid viscosity and the resulting modi�cations in body kinematics. That is why, we

investigated the impact of body deformations on the escape swimming performances.

As the considered body deformations may not correspond to the actual deformations,

we performed �ctitious numerical simulations by modifying the �uid dynamic viscosity

(Fig. 5.14).

As a result, the actual zebra�sh body reaches similar traveled distances or escape speeds

at an inferior energetic cost. Indeed, body deformations observed experimentally in

water (def-µw) would have shown poor swimming performances by expending a lot of

more power (Figs. 5.14C-5.14E) for identical kinematics (see Figs. 5.14A, 5.14B). Thus,

the zebra�sh eleuthero-embryo actually alters its body kinematics to adapt to a di�erent

environment. This result would suggest µw-deformations are hardly adequate in viscous

�ows. Furthermore, the zebra�sh eleuthero-embryo could actually minimize its CoT

(Fig. 5.14E) to escape with a maximal performance in terms of swimming kinematics

(Figs. 5.14A, 5.14B). Nevertheless, the power output required by the eleuthero-embryo

to escape with µw-body deformations in viscous �ows would be higher than the actual

amount of energy expended by the eleuthero-embryo, which is certainly limited to the

observed value (Figs. 5.14C, 5.14D). Thus, these results suggest the zebra�sh eleuthero-

embryo alters its body deformations to expend all the available power with maximal

e�ciency. To assess this assertion, the frequency of µw-body kinematics was also modi�ed

to compare the resulting swimming performances with the actual body deformations in

viscous media. Indeed, the swimming performances of modi�ed µw-deformations (def-

H2O
freq) immersed in viscous �ows and actual body deformations used in viscous �ows

were compared in order to analyze the e�ects of �ctitious body kinematics (see Fig.

5.15). In particular, the µw-body deformations (def-H2O) were altered such that the

same amount of energy is expended, relatively to actual experiments. To that end, the

acquisition time has been increased by 30%. As a result, we �rst observed we e�ectively

obtained an identical amount of Et by a tail-beat frequency modi�cation of 30% (see Fig.

5.15C). The results also suggest the traveled distance may be correlated to expended

energy as no signi�cant change was observed between actual and �ctitious traveled

distances (Fig. 5.15A). Besides, it seemed Pmean was slightly decreased (Fig. 5.15D)

while the swimming velocity was signi�cantly reduced (Fig. 5.15B). On the one hand,

the amount of consumed power on average seems to be correlated to the escape velocity

output. Note those trends can partly be explained by the relationship between body

kinematics and power output. Indeed, power maxima were hardly impacted by frequency

modi�cation. Thus, an important decrease in frequency was required to strongly decrease

the energetic output. That is why, Pmean was impacted alongside the velocity. On the

other hand, we highlight the �ctitious body deformations have been found less e�cient

than actual experiments as the resulting motion was signi�cantly slower (Fig. 5.15B)
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Figure 5.14: Comparison of escape swimming performances according to viscosity
for �ctitious and actual body deformations. The previously described swimming
performances based on experimental body kinematics (solid lines) are represented in parallel
to �ctitious simulations (dashed lines). Eventual experimental kinematics are represented in
dash-dotted lines. The so-called �ctitious simulations denote viscous simulations based on body
deformations observed in water (µw). For each escape response, we computed the total traveled
distance (Fig. 5.14A), the total average velocity (Fig. 5.14B), Et (Fig. 5.14C), Pmean (Fig.
5.14D) and CoT (Fig. 5.14E). Note for each condition, we show the mean of N = 3 locomotion
alongside the SEM. The slopes of the linear regressions of �ctitious Pmean (Fig. 5.13B) and
�ctitious CoT (Fig. 5.13C) were signi�cantly di�erent from zero (p<0.0001). The corresponding
Pearson correlation tests showed signi�cant correlations.
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Figure 5.15: Comparison of actual swimming performances in µ5 against �ctitious
numerical simulations where the µw-deformations have been altered. To be more
precise, we decreased the tail-beat frequency of 30% to expend the same amount of energy than
µ5-body kinematics. In particular, we mainly compared the kinematics of µw (def-H2O), µ5 (def-
µ5) deformations, and altered µw-deformations (def-µfreqw ). The results of �ctitious simulations
in µ5-�uid are described by traveled distance (Fig. 5.15A), average velocity (Fig. 5.15B), and
the swimming energetics represented by Et (Fig. 5.15C) and Pmean (Fig. 5.15D). Note for each
condition, we show the mean of N = 3 locomotion alongside the SEM. Statistics from a one-way
ANOVA and Tukey's test. Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p <
0.001, ****: p < 0.0001.

while expending the same amount of energy (Fig. 5.15C). On the whole, we illustrated

zebra�sh eleuthero-embryos adapt its body kinematics to the surrounding �uid in order

to gain e�ciency with �xed energy expenditure.

Finally, we used both the experimental data and numerical modeling to initiate the

implementation of an e�ort test to be used by biologists. Let consider altered escape

responses which are hardly distinguishable by analyzing either strictly body deformations

or rigid kinematics. Moreover, energetic variables might not be �ne enough to provide

signi�cant di�erences between the two considered escape motions. The e�ort test
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Figure 5.16: A �rst e�ort test: comparison of escape swimming performances for
two escape conditions against �ctitious simulations in high viscous �ows (µ15). For all
considered variables (total traveled distance (Fig. 5.16A), total average velocity (Fig. 5.16B), Et
(Fig. 5.16C), Pmean (Fig. 5.16D) and CoT (Fig. 5.16E)), we compared two experimental escape
conditions (def-µw(µw) and def-µ1(µ1)) against their �ctitious counterparts in high viscosity
�uids (def-µw(µ15)% and def-µ1(µ15)). Note for each condition, we show the mean of N = 3
locomotion alongside the SEM. Statistics from a one-way ANOVA and Tukey's test. Non-
signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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consists of increasing the �uid viscosity to amplify tiny di�erences in body kinematics

and quantify the resulting escape swimming performances with better accuracy. To

demonstrate such capabilities, we focused on µw and µ1 escape deformations (def-µw
and def-µ1, respectively) which we immersed into µ15 �uid viscosity (see Fig. 5.16). Note

experimental body kinematics in µx-�uid are denoted def-µx. No signi�cant di�erences

have originally been found between µw (def-µw(µw)) and µ1 (def-µ1(µ1)) neither in

swimming kinematics (Figs. 5.16A, 5.16B) nor energetic performances (Figs. 5.16C,

5.16D, 5.16E). Thus, we simulated the corresponding escape swimming responses within

high-viscosity �ows (µ15-conditions). As a result, we found signi�cant di�erences between

the considered escape kinematics (def-µw(µ15)) and (def-µ1(µ15)), in escape energetic

performances including Et (Fig. 5.16C), CoT (Fig. 5.16E) and above all Pmean (Fig.

5.16D), which emphasized the actual di�erences between µw and µ1 body kinematics.

This result constituted the �rst step towards the implementation of an e�ort test based

on energetic performances and viscous �ows, in order to highlight biological e�ects after

exposure to low concentrations of toxicants.

5.2 A Toxicological study

As a second application of our experiment-driven numerical approach, we considered

more biological-oriented experiments. Generally, biologists expose zebra�sh eleuthero-

embryos to particular drugs or chemicals to observe the main e�ects on escape swimming

behavior. To that end, we �rst considered Chlorpyrifos-oxon (CPO) as a toxicant

molecule which directly inhibits acetylcholinesterase at the neuromuscular junction and

thus, directly a�ects the locomotor system. This molecule is well-studied alongside

other organophosphorus (OP) which can be found in pesticides or chemical warfare

nerve agents.Very low CPO concentrations were used which did not appear to a�ect the

swimming kinematics of the EFP escape response. The aim of this preliminary work was

to set up the conditions for an e�ort test by increasing the viscosity of the medium after

exposure to the neurotoxicant and EFP stimulation. Numerical simulations could then

enable access to energetic variables in addition to swimming kinematics, such as power

and expended energy which cannot be computed directly from the experimental data. As

introduced previously, our numerical approach may also enable to perform e�ort tests

in order to analyze more accurately toxicological e�ects. By considering toxicological

experiments, e�ort tests could be conducted both experimentally and numerically, unlike

for the viscous modi�cation. However in this work, we only focused as a �rst step, on

numerical e�ort tests.



Applications to biology 155

5.2.1 Experimental protocol

Individual videos were recorded for each condition in order to calculate a mean

measurement. This section focuses on toxicological experiments and more particularly

by using CPO toxicants. Zebra�sh eleuthero-embryo was individually stimulated in

water after having been exposed for 1 h to a nanomolar concentration of CPO. The CPO

is stored as a stock solution with DMSO which is used as a solvent. DMSO does not a

priori a�ects the locomotor system at low concentration. Therefore, a DMSO exposure

is required in parallel to CPO for the control animals as DMSO was used as a vehicle

solution for CPO. Each experiment consisted of two parts. First, zebra�sh eleuthero-

embryos were exposed to the chemical compounds by immersing the eleuthero-embryo

into a solution with the presence of DMSO only or DMSO plus CPO. Afterward, we

recorded up to three escape responses per eleuthero-embryo in the �rst 10 min after

chemical exposure. On the one hand, only a few EFP stimulations have to be performed

as the same eleuthero-embryo might be over-challenged and thus behave di�erently.

Moreover, the amount of time was limited due to the rapid dissipation of the molecule

e�ects into the zebra�sh biological system. Indeed, zebra�sh escape locomotion has been

found to be partially recovered around ten minutes after the exposure, according to the

exposition time or the toxicant concentration. On the other hand, several stimulations

might be required to obtain a satisfying escape video representing the altered C-start

escape swimming and including C-bend and counter-bend motions plus two cycles of

fast-swimming. The typical phenotype induced by high CPO concentrations consists

of balance loss and strong inhibition of locomotor activity which may result in an

important body contraction [35]. With low concentrations, the three phases of the

C-start are still well-perceptible as no such phenotype has been observed except for

slight balance loss which cannot be modeled with our 3-DoF modeling. That is why,

we also made sure the eleuthero-embryo was initially straight horizontal and did not

show visible 3D motions. On the whole, we experimented two CPO concentrations: 100

nM and 150 nM alongside the control DMSO with a 0.1% concentration (v/v). We

denote each respective experimental condition as: CPO100 (DMSO 0.1% plus CPO 100

nM), CPO150 (DMSO 0.1% plus CPO 150 nM) and DMSO0.1. Pools of �ve eleuthero-

embryos were exposed to the toxicant in six-well micro-plates in a total volume of 4 ml.

Neurotoxicant stock solutions in 100% DMSO were diluted in �sh water to achieve the

desired working nominal concentration in 0.1% DMSO. Animals were exposed to CPO

for 1 h. At the end of the exposure period, eleuthero-embryos were rinsed twice in clean

�sh water before performing the EFPMR test. Maximum three eleuthero-embryos per

well have been individually stimulated, under the t = 10 min time limit. As a result,

a total of 39 DMSO0.1, 42 CPO100 and 32 CPO150 escape responses were recorded.

As previously with the viscosity experiments, only the kinematics of one single video

per eleuthero-embryo was analyzed which resulted in 16 DMSO0.1, 13 CPO100, and 11
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CPO150 escape responses. In the end, we only conserved three DMSO0.1-and-CPO100-

escape swimming and four CPO150-escape responses, for modeling purpose. Modeled

escape responses have been selected based on experimental and modeling constraints

identical to the previous viscosity study.

5.2.2 Experimental kinematic performance

Similarly to the previous viscosity study, we �rst measured the global swimming

kinematics by total traveled distance and displacement (Fig. 5.17), fast-swimming

kinematics by traveled distance, swimming speed, tail-beat frequency, and rotation

amplitudes (Fig. 5.18), and additional variables regarding the C-start characterization

such as maximal C-bend angle or C-start angular velocity (Fig. 5.19).

H 2
O

DM
SO

CPO 10
0

+DM
SO

CPO 15
0

+D
M

SO

0.000

0.002

0.004

0.006

0.008

T
ra

ve
le

d
di

st
an

ce
(m

)

(A) Traveled distance.

H 2
O

DM
SO

CPO 10
0

+DM
SO

CPO 15
0

+D
M

SO

0.000

0.002

0.004

0.006

0.008

D
is

p
la

ce
m

e
n

t(
m

)

(B) Displacement.

Figure 5.17: Two distances have been computed in the entire escape locomotion
for each experiment and analyzed according to drug exposure. For each toxicological
condition, we analyzed 11 (µw), 6 (DMSO0.1), 4 (CPO100), 5 (CPO150) experimental videos,
for both the total traveled distance (Fig. 5.17A) and the raw displacement (Fig. 5.17B).
Each experimental escape response is represented by an individual point. Note we show in red
the experimental cases we further modeled with the numerical simulation. The mean value is
represented alongside the SEM. Multiple statistical comparisons can be found in Table 5.7.

First, a multi-comparison statistical test has been conducted to evaluate the experimental

trend (Table 5.7). As a result, no considerable toxicological e�ects have been observed

through most of the kinematic variables. Only the fast-swimming average velocity

and the tail-beat frequency demonstrated signi�cant di�erences between water and

DMSO0.1, water and CPO100, and between DMSO0.1 and CPO150.

As previously with the viscosity study, we selected N = 3 experimental escape response

per experimental condition, which satis�ed the demanding constraints required for

numerical modeling. In the process, we also tried to choose representative experimental

locomotions with respect to the mean of the original kinematics. Note we actually
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Figure 5.18: Several variables have been computed only in the fast-swimming stage
for each experiment and analyzed according to chemical molecule exposure. For
each toxicological condition, we analyzed 11 (µw), 6 (DMSO0.1), 4 (CPO100), 5 (CPO150)
experimental videos, for the fast-swimming traveled distance (Fig. 5.18A) and 11 (µw), 16
(DMSO0.1), 13 (CPO100), 11 (CPO150) escape responses for the translation velocity (Fig.
5.18B), tail-beat frequency (Fig. 5.18C) and mean rotation amplitude (Fig. 5.18D). For
the distance, two fast-swimming cycles were required while other quantities can be averaged.
Each experimental escape response is represented by an individual point. Note we show in red
the experimental cases we further modeled with the numerical simulation. The mean value is
represented alongside the SEM. Multiple statistical comparisons can be found in Table 5.1.
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Figure 5.19: C-start response has also been analyzed for each experiment, according
to chemical compound exposure. For each toxicological condition, we analyzed 11 (µw), 5
(DMSO0.1), 6 (CPO100), 6 (CPO150) experimental videos, for the maximal C-bend rotation
angle (Fig. 5.19A) and 11 (µw), 16 (DMSO0.1), 13 (CPO100), 11 (CPO150) escape responses
for the C-bend rotation velocity (Fig. 5.19B, Stage-2 de�ned by counter-bend and C-bend
rotations). For the maximum rotation, we only considered escape responses where the rotation
is maximum during the C-bend motion to �lter non stereotyped-behaviors. Each experimental
escape response is represented by an individual point. Note we show in red the experimental
cases we further modeled with the numerical simulation. The mean value is represented alongside
the SEM. Multiple statistical comparisons can be found in Table 5.1.

Table 5.7: A one-way ANOVA and Tukey's test: Evaluation of toxicant exposure on the
di�erent kinematic variables.

Disp. Total Dist. Dist. Velocity

H2O vs. DMSO0.1 ns ns ns ***
H2O vs. CPO100 ns ns ns *
H2O vs. CPO150 ns ns ns ns
DMSO0.1 vs. CPO100 ns ns ns ns
DMSO0.1 vs. CPO150 ns ns ns **
CPO100 vs. CPO150 ns ns ns ns (0.0846)

Tail-beat freq. Rot. Amp. CBmax Ang. Velocity

H2O vs. DMSO0.1 **** ns (0.0616) ns ns
H2O vs. CPO100 *** ns ns *
H2O vs. CPO150 ns ns ns ns
DMSO0.1 vs. CPO100 ns ns ns ns
DMSO0.1 vs. CPO150 * ns ns ns
CPO100 vs. CPO150 ns ns ns ns

For each kinematic variable, we show the experimental impact of viscosity between each condition (N=11-16) by

summarizing the p-value. Non-signi�cant (ns): p ≥ 0.05, *: p< 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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Table 5.8: A two-way ANOVA test: Evaluation of kinematic impacts of numerical simulations
and drug exposure.

Traveled distance Velocity Displacement Distance
Source of Variation % TV % TV % TV % TV

Chemical exposure 7.172 ns 26.73 ns 3.356 ns 3.231 ns
From exp. to num. values 33.63 **** 33.46 **** 20.86 **** 60.69 ****
Interaction 2.245 ns 3.537 * 2.197 ns 4.032 ns

Summary (Sum.) of the two-way ANOVA test regarding numerical modeling and drug exposure impacts based on

N=13 experimental and numerical data, including % of total variation (TV). Non-signi�cant (ns): p ≥ 0.05, *: p <

0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

selected N = 4 experimental videos for CPO150-conditions, as kinematic results were

highly more variable.

5.2.3 Impacts of numerical simulations

Numerical simulations have then been performed for each experimental condition. Note

we simulated N = 3 experimental escape response for µw, DMSO0.1, and CPO100

conditions while N = 4 experimental locomotions have been considered for the CPO150-

condition due to higher variability observed in the biological phenotype. This work

constituted a preliminary computational study in order to provide �rst numerical results

for biological applications. That is why, only a few experiments have been modeled.

Beforehand, we compared the numerical simulations against the experiments (Fig. 5.20).

Although escape responses seemed well-reproduced at �rst (see Chapter 4), all considered

kinematic variables were over-estimated due to minor accelerations, for all toxicological

conditions. Previously, we showed numerical errors were not correlated to chemical

compounds (Chapter 4). That is why, all numerical distances (Figs. 5.20A, 5.20C,

5.20D) and velocity (Fig. 5.20B) were found signi�cantly higher than experimental

measurements.

Afterward, we evaluated and compared more speci�cally the toxicological e�ects between

the experiments and the numerical kinematics (Fig. 5.21). As a result, experimental

kinematics was not a�ected by the chemical compounds exposure in the conditions

used, as observed within the original data-set, unlike the previous viscosity study where

kinematic variables were found very sensitive to viscosity change. Similarly, numerical

simulations did not present any particular e�ects. In addition to one-way ANOVA tests,

two-way ANOVA statistical tests have also been conducted to analyze both chemical

exposures and impacts of numerical simulations (Table 5.8). As previously analyzed, the

in�uence of numerical errors was signi�cantly larger than toxicant e�ects. In de�nitive,

the whole biological impact on translation kinematics meaning the lack of considerable

e�ects due to toxicants, has been well-reproduced by numerical simulations although a

constant error seems to be introduced for all chemical-exposure experiments.

For information, we also computed Re from numerical simulations (Fig. 5.22) in order

to illustrate the swimming regime in which zebra�sh eleuthero-embryos evolve after
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Figure 5.20: Comparison of numerical simulation kinematics against toxicological
experiments. We represented in parallel both the experimental (�lled circles, colored bars) and
the numerical (empty circles, white bars) kinematics represented by the fast-swimming traveled
distance (Fig. 5.20A), the fast-swimming average velocity (Fig. 5.20B), the raw displacement
(Fig. 5.20C) and the global traveled distance (Fig. 5.20D). Note for each condition, we show
the mean of escape responses alongside individual values and the SEM. Statistics from a multiple
comparisons Sidak's test. Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p <
0.001, ****: p < 0.0001.

chemical exposure to low concentrations. As all escape responses have been performed

in water, the �ow regime was expected to not change considerably although chemical

exposure could have a�ected dramatically the escape swimming speed.

In de�nitive, zebra�sh eleuthero-embryos seem to not have been a�ected by chemical

exposure at the concentrations used, regarding the considered kinematic variables. On

the one hand, a larger sample size might be required to observe larger biological e�ects

of toxicants due to the high variability and lack of control among individuals. On the

other hand, slight di�erences between altered body kinematics might be emphasized by

numerical simulations.
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Figure 5.21: Comparison of toxicological e�ects between numerical simulation
kinematics and experiments. We represented in parallel both the experimental (�lled circles,
colored bars) and the numerical (empty circles, white bars) kinematics represented by the fast-
swimming traveled distance (Fig. 5.21A), the fast-swimming average velocity (Fig. 5.21B),
the raw displacement (Fig. 5.21C) and the global traveled distance (Fig. 5.21D). Note for
each condition, we show the mean of escape responses alongside individual values and the SEM.
Statistics from two distinct multiple comparisons Tukey's tests for experimental and numerical
kinematics. Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p
< 0.0001.
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Figure 5.22: Flow regime: variation of Re according to chemical compound
exposure. Note Re has been computed with the average velocity of the complete escape
simulations. We represented the mean and the SEM. Non-signi�cant variations have been found.
Statistics from a one-way ANOVA and Tukey's test. Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05,
**: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

5.2.4 Energetic performances

First of all, we computed the power output for all chemical-exposed test cases (Fig.

5.23). Regarding energetic performances, we computed for each escape response

Et, Pmean and the CoT , as in the previous study. Due to the high variability in

experimental kinematics and the overall close kinematics between each experimental

condition, energetic measurements also showed no particular variation (see Fig. 5.24).

As with kinematic quantities, no supplementary amount of energy has been expended

or saved by intoxicated zebra�sh eleuthero-embryos. In fact, the result cannot be as

highlighted as in viscous �ows due to the lack of characterization of the impact of toxicant

conditions. Statistical tests have been conducted to demonstrate chemical exposure had

no particular impacts on energetic performances.

Although no statistical variation can be emphasized by the di�erent energetic quantities,

a slight decrease in DMSO seems visible, especially regarding the mean power. The

poor results of our numerical approach with a more real-like biological application

have several explanations due to chemical concentration used, type of toxicant used,

experimental process, sample size, mathematical modeling and numerical errors, which

will be reviewed hereafter. Nevertheless, potential chemical-exposure e�ects could be

observed in the case of speci�c e�ort tests, which may amplify potential di�erences in

swimming performances.
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Figure 5.23: Illustration of body deformation e�ects on the power output, for all
exposed test cases. All Figs. 5.23A-5.23M correspond to an individual escape response, each
row being associated to a toxicant condition. For all �gures, we represented in blue the bend
amplitude alongside the power output in red.
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Figure 5.24: Representation of escape swimming energetic performances according
to chemical molecule exposure. For each escape response, we computed Et (Fig. 5.24A),
Pmean (Fig. 5.24B) and CoT (Fig. 5.24C). Note for each condition, we show the mean of N = 3
locomotion alongside individual values and the SEM. Statistics from a one-way ANOVA and
Tukey's test. Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p
< 0.0001.

5.2.5 Mix with numerical viscosity: a �rst numerical e�ort test

As introduced previously, di�erent e�ort tests can be conducted when considering

toxicological or pharmacological experiments as the zebra�sh eleuthero-embryo can be

challenged by �uid viscosity, either experimentally, or numerically. Numerical simulations

can easily be performed using di�erent �uid viscosity provided the Reynolds regime does

not increase dramatically. For low-Reynolds numbers, only numerical stability might

raise slight issues if not handled carefully. We demonstrated in the previous viscosity

study, zebra�sh eleuthero-embryos can actually adapt its body deformations to the

surroundings, by using e�cient and adapted body kinematics. Therefore, experimental

and numerical e�ort tests constitute very di�erent tests as potential adaptations cannot

be modeled by numerical e�ort tests. In contrast, zebra�sh eleuthero-embryos may adapt
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its kinematics when performing experimental e�ort tests. Note the full experimental

study needs to be conducted to investigate the response to viscosity after being exposed

to chemical compounds. As a preliminary work, we �rst assumed impacts of chemical

compounds would be more sensible to a numerical e�ort test as no e�cient adaptation

is incorporated. Considerable energetic performances have already been emphasized

by performing such an e�ort test in the previous viscosity study. That is why, we

implemented in a straightforward fashion �rst numerical e�ort tests by performing

�ctitious numerical simulations in highly viscous �ows based on chemical-exposed

zebra�sh body deformations. To that end, we �rst considered µ5 and µ10 �uid conditions

(see Fig. 5.25).

As a result, no signi�cant variation was found for the three viscous media, in total

traveled distance (Fig. 5.25A), Et (Fig. 5.25C), and CoT (Fig. 5.25E). For the

µ5 viscosity, neither Pmean (Fig. 5.25D) nor the average velocity (Fig. 5.25B) was

particularly a�ected. However, a signi�cant impact has been observed on the total

average velocity in the µ10-viscous condition. As noticed before when modifying

the swimming frequency, it seems Pmean was also slightly impacted by the µ10 �uid

condition. Therefore, those results suggest zebra�sh eleuthero-embryos might be less

e�cient after being exposed to chemical compounds when immersed in highly viscous

�ows. Nevertheless, no di�erence could have been highlighted between control animals

i.e. DMSO-exposed, and [DMSO+CPO]-exposed eleuthero-embryos which was not

expected. Indeed, the previous viscosity study had strongly suggested viscous �ows

can amplify considerably minor di�erences in swimming performances. Presently, all

di�erences between DMSO-exposed and [DMSO+CPO]-exposed experiments seemed to

be preserved throughout the viscosity increase. Thus, the numerical e�ort test has been

found to be less e�cient in the case of toxicological experiments, which may be due

to the impacts we can observe on the power output (see Fig. 5.23). Indeed, it seems

power outputs have been slightly a�ected by chemical exposure as power peaks seem to

be less pronounced relatively to H2O or viscous escape responses. As a consequence,

the energetic quantities we de�ned for characterizing the power output may need to be

complemented by other measurements, more adapted toward toxicological e�ects.

5.3 Conclusion

The experiment-driven numerical approach was performed onto two types of biological

experiments of 5 dpf eleuthero-embryo escape responses. First, a full viscosity study

has been explored both experimentally and numerically. Secondly, the e�ects of a

neurotoxicant on the kinematic and energetic performances have been investigated. The

important factor which drives biologists towards numerical modeling resides in the ability

to compute accurate experimental swimming energetic performances while simulating

viscous �ow conditions. Thus, the viscosity factor has been studied extensively in order
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Figure 5.25: E�ort test: comparison of escape swimming kinematic and energetic
performances according to chemical compound exposure and �uid viscosity (µw-µ5-
µ10). For each escape response, we computed the total traveled distance (Fig. 5.25A), the
average velocity (Fig. 5.25B), the total expended energy (Fig. 5.25C), the mean power output
(Fig. 5.25D) and the cost of transport (Fig. 5.25E). For all considered variables, we compared
three experimental escape conditions (def−H2O(µw), def−DMSO(µw) and def−CPO100(µw))
against their �ctitious counterparts in high viscosity �uids (def −H2O(µ5), def −DMSO(µ5),
def − CPO100(µ5), and def − H2O(µ10), def − DMSO(µ10), def − CPO100(µ10)). Note for
each condition, we show the mean of N = 3 locomotion alongside the SEM. Statistics from three
distinct one-way ANOVA and Tukey's test are shown for each viscous condition, respectively.
Non-signi�cant (ns): p ≥ 0.05, *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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to implement experimental or numerical e�ort tests via our numerical tool. Beforehand,

the numerical results provided by numerical simulations have been discussed in Chapter

4 to ensure all computed quantities would faithfully represent the real-world phenomena.

In particular, numerical errors obtained on both viscous and toxicological experiments

have been compared and highlighted a slight over-estimation of experimental kinematics

although most of the numerical simulations tended to well-reproduce experimental

trajectories. For all experimental conditions, we only modeled three escape responses.

In the viscosity study, the modeled data-set has been considered as well-representative of

the original experiments. Furthermore, viscosity changes were predominant in kinematic

variations, compared to numerical errors as swimming kinematics was found very

sensitive to viscosity. In particular, low-viscosity conditions provided considerably

di�erent kinematic results except between µw and µ1 while no signi�cant variations have

been observed between the three highest viscous �ows. However, energetic quantities

provided multiple supplementary amounts of information. First, both the amount of

energy expended or consumed power were nearly constant regardless of �uid viscosity.

In addition, the CoT was found linearly dependent on �uid viscosity which enabled

to highlight signi�cantly high viscous �ow di�erences. Nevertheless, very close body

deformations as between µw and µ1 have not been emphasized by energetic performances.

That is why, a �rst e�ort test has been performed by immersing µw and µ1 body

kinematics into higher viscous �ows, numerically. As a result, signi�cant impacts have

been observed in consumed power and CoT between those �ctitious simulations. As

for toxicological experiments, the e�ects of CPO dissolved in DMSO0.1% have been

investigated. Thus, zebra�sh eleuthero-embryos have been exposed to DMSO, and

DMSO plus CPO before the stimulation. As CPO might a�ect eleuthero-embryo's body

balance, only low concentrations have been considered. Swimming kinematic variables

suggested higher escape response variability relatively to viscous experiments. Besides,

only three escape responses per chemical compound exposure have been modeled and

thus, the considered experimental escape responses may not properly represent the

actual e�ects of CPO on escape locomotion. Moreover, numerical simulations had a

more important impact than toxicological treatments onto escape motions as no speci�c

toxicological e�ects have been observed. In this case, swimming energetic performances

have not particularly enhanced the analysis of DMSO, and DMSO plus CPO results.

That is why, we then challenged the original experimental conditions by performing

a numerical e�ort test based on chemical-exposed zebra�sh eleuthero-embryos. We

numerically increased the �uid viscosity to observe di�erent energetic behaviors. As a

result, we only observed a signi�cant impact on the average velocity when immersed in

µ10-viscosity, between non-exposed and chemical-exposed zebra�sh eleuthero-embryos.

These results suggest that we added an important amount of biases which might have

lessened considerably either the biological e�ects due to toxicological treatments or the

e�ort test e�ciency. First, only escape locomotions which were the least a�ected by

chemicals in terms of visual phenotype, were considered. Thus, we might have chosen
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only the less sensitive zebra�sh eleuthero-embryos. Secondly, we performed numerical

simulations with only less than �ve experimental escape responses to represent a high

variability phenotype, especially compared to the weak impact of chemical compounds

on swimming kinematics. Therefore, statistical di�erences are more di�cult to highlight

due to the tiny sample size. Thirdly, we only considered low concentrations of toxicants

to not produce important phenotypes we cannot properly model. Thus, we do not

know whether zebra�sh eleuthero-embryos are a�ected by such low concentrations.

Finally, although numerical errors were negligible in the viscosity study due to high

sensitivity to �uid viscosity, numerical errors might have larger impacts with �ner

biological experiments. In particular, we emphasized the largest numerical errors might

be due to modeling issues such as 3D motions or elastic parts of the body. According to

the biological impacts of CPO, our mathematical model might not encompass precisely

the e�ects of such toxicant. That is why, the choice of this chemical compound might

also be questionable as maybe not well-suited to our numerical modeling. Further

experiments and simulations such as e�ort tests would be required to provide larger

insights. Furthermore, other neurotoxicants must be investigated.



Chapter 6

General conclusion and perspectives

In this chapter, the essence of the experiment-driven numerical approach will be

recapitulated �rst. Secondly, the numerical and modeling validation test data have been

summarized. The results of our computational model when applied toward biological

studies including a viscosity and a toxicological study are recalled in a larger context.

Afterward, the main limitations of our numerical approach are discussed regarding either

the general approach used or the methodology used in biological studies. Finally, the

main perspectives of this work might enable are developed. The work carried out as

part of this PhD project will be formalized in the form of scienti�c manuscripts, the

�rst of which being Ravel et al., Modeling escape response of zebra�sh eleuthero-embryo

reveals energetic constraints and e�cient body deformation adaptation to viscous �ows

(manuscript in preparation).

6.1 Overview

An experiment-driven numerical approach has been developed to realistically assess the

swimming performances of moving and deforming bodies immersed within �uid �ows.

In particular, our approach focused on zebra�sh eleuthero-embryo escape swimming

but could be generalized to biomimicry, engineering, or any �eld involving motions

with experimental imaging data. The goal was to develop a numerical tool able to

simulate the motion of the body in a realistic way while providing supplementary

amounts of information about the swimming performances. That is why, this work was

oriented toward an approach directly based on experimental imaging data. As for the

swimming performances, biologists are particularly interested in energetic performances

as it links directly with the underlying biological processes and biomechanics such as

muscle activity or locomotor system which produce the swimming kinematics we can

observe. Thus, the energetic performances are particularly attractive to enhance the

understanding of swimming and enable to capture �ner and additional amounts of

169
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information to explain swimming kinematics. To that end, CFD methods were involved

as they constitute an important numerical tool to provide complete insights of �ow

motions alongside its interaction with immersed bodies which includes the calculation

of body motion due to �uid forces. In the case of �sh-like swimming simulations,

self-propelled �sh-like motions are generally focused on steady and cyclic movements

which are modeled via mathematical formulations such as harmonic body deformations

[9, 10, 12, 16, 24, 41, 43, 51, 58, 59, 66, 67, 69, 108, 125]. Eventually, the mathematical

model might be calibrated using experimental observations but do not generally represent

speci�c experimental kinematics [66, 67]. In the literature, only a few studies have

integrated experimental swimming kinematics at the cost of actual body computations

i.e. the computation of body kinematics via Newton's laws [27, 65, 67, 68]. Others

have directly incorporated experimental kinematics into a CFD framework without a

full �uid-structure interaction [49, 129].

In this work, we �rst extracted the body kinematics from experimental imaging by

using the optimal transportation theory as it is particularly adapted to �nding the

optimal deformation path followed by each pixel of the zebra�sh silhouette. However,

2D numerical simulations were not in good accordance with experimental kinematics

although particular simulations might seem well-satisfying. In fact, the results suggested

an accumulation of several errors due to the Eulerian representation of both the silhouette

i.e. imaging approximations and the deformation velocity �eld. This could be due to

optimal transportation approximations which are based on segmented and aligned

zebra�sh images. Indeed, the Procrustes Analysis step required to subtract rigid

kinematics to obtain the aligned original body deformations might also a�ect the

resulting velocity �eld. Finally, 2D numerical simulations are based on 2D hypotheses

which may not be adequate to model a 3D motion. As a result, we obtained very

sensitive numerical simulations especially regarding the trajectory comparison across

various experimental escape responses. In addition to realistic body deformations,

we aimed to base numerical simulations on a faithful representation of the zebra�sh

eleuthero-embryo in 3D.

In the literature, only a few studies have reconstructed the whole morphology of a

zebra�sh eleuthero-embryo and larva in 3D [58, 65, 67, 124, 131]. In this work, we

used a high-resolution transverse-section dataset combined with the dorsal and lateral

views of a zebra�sh eleuthero-embryo to interpolate the 3D zebra�sh shape by using

optimal transportation. The resulting 3D reconstruction has then been processed to

be represented by Lagrangian markers. We then used the initial and straight 3D

reconstruction and the extraction of the experimental kinematics of the midline to

deform the 3D shape according to midline deformations. For this purpose, we assumed

each cross-section remains orthogonal to the midline during deformations as previous

studies [12, 23, 25, 30, 38, 131]. As a result, we tracked the deformation velocity at

the surface via Lagrangian markers. Finally, we enhanced and adapted the Procrustes

Analysis towards 3D deformations which separate accurately the rigid rotation from the
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body deformations.

In the literature, few groups have implemented e�cient and automated algorithms to

track the zebra�sh body across the locomotion either in 2D [38] or in 3D [131], by �tting

a zebra�sh model to experimental images. In our case, the eleuthero-embryo model has

been reconstructed on top of each deformed midline and thus, we tracked the midline

kinematics instead of the zebra�sh silhouette displacements. As for the Procrustes

Analysis, most of the advanced studies which integrated the experimental kinematics

into a CFD code [65, 67, 68] mainly considered the body rotation could be represented

by the heading angle. Recently, in an inverse-dynamics framework [124, 131], body

angular quantities have been computed through the momentum conservation. Actually,

we used a similar method to compute the body angle i.e. tilt angle as the implemented

2D Procrustes Analysis can be viewed as an estimation of the momentum conservation.

Eventually for straight-line swimming, SVD techniques can be used to obtain the

direction of the �sh frame of reference [50]. Finally, we can �nd few studies which

directly prescribed the full experimental swimming kinematics including both rigid and

deformation motions, to the CFD solver, what bypasses the Procrustes Analysis step

[49, 129]. Therefore, our experiment-driven numerical approach embeds the experimental

deformations while computing the rigid kinematics from body dynamics equations. It is

important to note the body deformations are not modeled from an elastic or a biological

model, unlike few groups which implemented a full neuro-mechanical model for �sh

swimming [98, 119]. Besides, others have reconstructed the bending moments from the

force distribution to characterize the body deformations [129]. In this work, only the

bend amplitudes have been calculated while tracking the midline kinematics.

In terms of numerical validation, we �rst studied the convergence of 3D numerical

simulations according to the considered computational mesh. Afterward, the importance

of a proper Procrustes Analysis has been illustrated. The actual numerical validation

against an experimental case showed overall satisfying accordance although a slight

acceleration has been observed during the fast-swimming stage of the zebra�sh escape

response. Nevertheless, the most complex body deformations which consist of a C-

shape and a string counter-bend motion, have been well-reproduced. A sensitivity

analysis for various parameters such as Procrustes Analysis parameters and center-of-

mass approximations, boundary e�ects and 3D modeling, and data noise processing, has

then been conducted. The objectives were to show the impacts of particular parameter

choices on the overall simulation and the resulting swimming performances and to explain

accurately the numerical error between experimental and numerical kinematics which

especially occurred during the fast-swimming stage. As a result, swimming energetic

performances do not change considerably even though swimming kinematics might be

slightly altered. Above all, the results suggest mathematical modeling is more prevalent

in the observed numerical error than various numerical approximations. In particular, we

highlighted 3D motions and elastic deformations might have an important role. Finally,

the reproducibility of our experiment-driven numerical approach has been analyzed
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based on numerical simulations performed with viscous and toxicological experiments.

Thus, most of the experiments have been well-reproduced except few over-estimations

of the trajectory as in the initial test case. In de�nitive, �rst numerical validations

were very satisfying although the numerical errors raised might be considerable. In the

literature, only few numerical approaches have been validated directly against the actual

experiments [27, 65, 67, 68]. Indeed, computational studies generally either compare

the solution with the experimental �ow through PIV or other numerical studies. As a

result, the overall kinematics were overall very satisfying. However, these preliminary

results have not been validated over a wide range of test cases including short and long

escape responses, weak and strong C-starts, or even altered escape locomotions. In this

work, the impacts of numerical errors and more largely the sensitivity of the numerical

method have been extensively investigated.

In addition to evaluating the performance of our numerical tool, viscous and toxicological

experiments have been conducted to assess the impacts of our computational model.

The �rst application consisted of modifying the actual �uid viscosity to analyze various

swimming performances for a �ow regime ranging from Re = 10 to 1000. As a result, an

exponential decay has been observed in kinematic variables including traveled distance,

raw displacement, and average velocity which tended to not di�erentiate high-viscosity

�ows. Afterward, we highlighted zebra�sh eleuthero-embryos seem to expend a limited

amount of energy and consume an identical amount of power across the escape motion

for all �uid viscosity conditions. Moreover, we de�ned the CoT to measure the escape

e�ciency as the ratio of expended energy over the traveled distance, and the CoT

increased linearly according to �uid viscosity which was particularly interesting to

observe signi�cant di�erences in highly viscous �ows. Besides, viscous experiments have

been used to initiate the implementation of �ctitious simulations such as e�ort tests which

demonstrated great capabilities by considering water and viscous body deformations.

The actual biological application consisted of zebra�sh eleuthero-embryo exposure to

speci�c chemical compounds as DMSO or CPO, before maximizing the eleuthero-

embryo's escape response by EFP stimulation. As discussed previously, numerical

simulations did not provide considerable insights on molecule e�ects, supplementary

to the experimental observations as no impact could have been emphasized, either in

kinematic or energetic performances. That is why, a numerical e�ort test has also been

performed by simulating �ctitious viscous escape responses. However, results were found

hardly signi�cant due to several experimental and numerical limitations. Note a whole

viscosity study has been speci�cally conducted both experimentally and numerically

in order to implement an automated e�ort test capable of measuring an alteration of

the locomotor system Notice e�ort tests are particularly attractive as �uid viscosity

can be modi�ed directly within the computational code and thus, both experimental

and numerical e�ort tests could be analyzed and compared. In the literature, only

few experimental viscosity studies have been conducted by using a Newtonian �uid

[28�30, 55]. However, very few have analyzed EFPMR as EFP stimulations have only
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emerged in recent years. In addition, no study has analyzed the swimming kinematics

of zebra�sh eleuthero-embryo across a wide range of �uid viscosity. Danos et al. [30]

found in particular that escape response timings and stage duration were conserved

by viscosity change. In this work, traveled distances and fast-swimming velocity have

been found decaying over viscosity but no signi�cant variation has been observed

regarding stage duration. As for computational studies, several groups have numerically

modi�ed the dynamic viscosity to change the Reynolds regime of �sh swimming [66, 119].

Nevertheless, numerical simulations were necessarily counter-factual as the considered

body deformations were not "real-world" kinematics. Besides, our results seemed in

good accordance with the few existing results as the swimming speed has been found

to be reduced approximately by 50 % between µw and µ10 [66, 119], which is similar to

the fast-swimming decay observed when performing the �ctitious simulations. To our

knowledge, e�ort tests have not been exploited in the literature as both experimental

and numerical studies need to be conducted.

6.2 Main limitations

On the one hand, we discussed the limitations of our numerical approach. First, the

extraction of the midline kinematics was not straightforward to compute given the

high-resolution in space and time of the experimental imaging data. In particular, the

tracking of the zebra�sh head has to be handled carefully to not degrade signi�cantly

the resulting 3D body reconstruction and its deformation velocity. Then, the following

Procrustes Analysis had to be processed carefully to not introduce spurious rotation

movements within body deformations, although energetic performances do not seem

highly sensitive to smoothing parameters. The general limitations of the experiment-

based numerical simulations reside �rst in the three degree-of-freedom motion modeling

due to zebra�sh morphology. Indeed, we observed the zebra�sh eleuthero-embryo

was unstable in the water column when we did not impose speci�c constraints and

modeled the entire motion as free-swimming, due to the characteristic asymmetry of

the zebra�sh eleuthero-embryo shape regarding the dorso-ventral axis in particular. In

addition, we conducted various test cases to explore the source of the acceleration in

kinematics with respect to experimental measurements. Only three hypotheses have not

been challenged: the actual zebra�sh shape, the homogeneity of mass density, and the

elastic component of speci�c deformations. Indeed, we do not know how important the

role of the zebra�sh shape is. In particular, the MFF measurements might be re�ned

to correspond more adequately to the actual zebra�sh shape, especially regarding its

thickness. As for the mass density, the MFF does certainly have a di�erent mass density

with respect to the rest of the body given the particular biological di�erence. However,

the importance of such di�erence is largely unknown as all previous studies in the

literature have modeled mass density as homogeneous [131].. Regarding elasticity, the
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hypothesis concerns both the MFF which might not be as rigid as modeled in this work,

and the tail tip which was modeled as slightly rigid to impose an identical length for

each 3D reconstruction. Again, further investigations might be required to understand

entirely the origin of numerical errors mainly observed in the center-of-mass trajectory

and the corresponding velocity. On the other hand, we discussed the limitations of the

experimental methodology used for demonstrating the potential of our experiment-driven

numerical approach. First, the biological phenotype had to be predominant relatively

to numerical errors due to the modeling considerations described previously. Viscous

experiments were particularly signi�cant and reproducible which enabled a reliable

analysis of numerical simulations. However, toxicological experiments with the molecules

used, showed no signi�cant results which lessened the potential insights provided by

numerical simulations. Secondly, the modeled experiment had to be representative of the

experimentally observed phenotypes. For instance, each viscous experiment considered

toward modeling was representing the experimental observations on swimming and

body kinematics. Instead, chemical-exposure experiments were more di�cult to model

simply due to the higher variability in escape responses with intermediate chemical

concentrations. Indeed, high CPO concentrations (> 200 nM) escape responses could

not be modeled as they highly impacted the locomotor behavior while low concentrations

might not be relevant enough to be emphasized by numerical simulations. The amount

of di�erence in body kinematics required to observe signi�cant energetic performances

through numerical simulations is complex to predict due to the potential interference

with numerical errors. More importantly, the number of experimental escape responses

considered had to be tuned according to biological e�ects observed in kinematics. For

instance, we were able to observe signi�cant results in energetic performances by using

only three experimental videos per viscous condition. Instead, the numerical results

obtained with the toxicological study strongly suggest a larger sample size is certainly

needed to provide a �ner analysis of the actual energetic performances. The main

constraints for performing numerical simulations in a massive amount reside both in the

quality of experimental videos and in the process of midline tracking which is currently

neither optimized nor fully automated. Finally, the choice of the considered toxicant

might be important due to its potential biological e�ects. Therefore, other chemical

compounds and conditions need to be explored. Indeed, swimming performances

might be enlightened by molecules which a�ect directly the muscle activity while

numerical simulations might be challenged when considering molecules which a�ect the

neurological system and thus can potentially impact the zebra�sh body balance for

example. We underline biological processes can a priori be emphasized by numerical

simulations provided it falls into our mathematical modeling framework. Finally, the last

limitation might be the counter-part to the main contribution developed in this work: we

focused on performing point-to-point numerical simulations regarding the corresponding

experiments to obtain speci�c and realistic swimming performances. Nevertheless, we

need to perform several numerical simulations to obtain global insights regarding a
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particular experiment, although numerical simulations would probably require a less

amount of data and therefore fewer animals to be enrolled in experimental studies.

6.3 Application perspectives

As discussed previously, further investigations would be required to reduce the numerical

error between the numerical solution and experiments. Nevertheless, the numerical error

might be acceptable to analyze speci�c biological e�ects provided the phenotype can be

well-modeled by our numerical approach. In that case, several numerical simulations

might be needed to properly reproduce the biological response. However, we underlined

an e�ort test might additionally be conducted to emphasize altered escape responses.

Besides, multiple toxicological and pharmacological treatments could be experimented

to challenge swimming energetic performances either naturally or combined with an

e�ort test. In de�nitive, underlying biological processes and mechanisms mainly

produce the experimentally observed body kinematics. Each body deformation is

directly causing the �nal swimming kinematics. That is why, the resulting swimming

kinematics can be directly computed through CFD provided the 3D experimental

body deformations are known. Thus, we developed a numerical approach capable

of simulating escape responses associated with speci�c body kinematics. However,

biological experiments require several zebra�sh eleuthero-embryos and multiple escape

responses. In consequence, many numerical simulations are needed to assess overall

biological e�ects. As a result, numerical simulations cannot currently be used for

predicting biological experiments as experimental body deformations are required.

Eventually, intermediate body deformations could be interpolated between two drug

or chemical concentrations for instance, by using Wasserstein barycenters or arti�cial

intelligence. Indeed, we can �nd in the recent literature a few studies which used

deep reinforcement learning and neural networks to estimate speci�c body deformations

[42, 63, 64, 126]. As biologists can conduct experiments and provide a massive amount

of data of high spatial and temporal resolutions, those tools might be e�cient to help in

predicting particular deformations. As for Wasserstein barycenters, they could be used

to provide a mean escape response among multiple experimental escape responses, in the

sense of Wasserstein measures. Such an approach could be extended towards a better

representation of experimental phenotypes and swimming performances. Excepted for

those particular developments, numerical simulations might be used for prediction in the

framework of e�ort tests. Indeed, we might be able to predict how a chemical compound-

exposed zebra�sh eleuthero-embryo should perform into high-viscosity �ows after a few

calibration experiments as conducted in this work, with no drug or chemical exposure.

Afterward, only the actual chemical-exposed experiments are required to run e�ort

tests based on chemical-exposed zebra�sh eleuthero-embryos. Therefore, we can reduce

signi�cantly the number of experiments needed. Besides, we already demonstrated
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in this work, only a few experimental locomotions might be required to obtain �ne

numerical results in terms of energetic performances, whereas experimental studies often

require a larger amount of experimental kinematics. In addition, this work strongly

suggests the number of experimental conditions such as chemical concentrations might

be reduced due to the potential of �ner comparisons by using energetic performances

or e�ort tests. Therefore, our experiment-driven numerical approach can be considered

as an important tool to support biologists in experiment-driven studies while reducing

the number of animals used in experiments and replacing experimental conclusions with

numerical estimations of swimming performances. Finally, note we particularly focused

on modeling zebra�sh swimming and experimental escape phenotypes although this

work can be extended to any study which aims to simulate the �ow around an immersed

body moving with an experimental deformation, based on experimental imaging data.

In particular, our work might bring speci�c insights into engineering and biomimicry

applications.



Appendix A

Optimal transportation

A.1 Optimal transportation generalization: how to integrate

rigid motions

In [6], the authors have developed an algorithm to solve the space-time problem (3.10). In

that regard, Benamou and Brenier transformed (ρ, v) into conservative variables (ρ,m =

ρv) to de�ne a saddle-point problem via a Lagrangian formulation:

inf
(ρ,m)

sup
Φ
L(Φ, ρ,m) (A.1)

where the Lagrangian L is constructed from the Lagrange multiplier Φ and the constraints

(3.7) and (3.9) as:

L(Φ, ρ,m) =

∫ 1

t=0

∫
Ω

|m|2

2ρ
− ∂tΦρ−∇Φ ·m−

∫
Ω

Φ(·, 0)ρ0 − Φ(·, 1)ρ1 (A.2)

Therefore, solving the saddle-point problem (A.1) is equivalent to the dynamic formulation

(3.10) with its corresponding constraints (3.7), (3.9). To that end, Benamou and Brenier

�rst rewrote problem (A.1) with new notations:

sup
µ=(ρ,m)

inf
(Φ,q)

F (q) +G(Φ)+ < µ,∇t,xΦ− q > (A.3)

In this saddle-point problem, the variable µ = (ρ,m) can be considered as the Lagrange

multiplier of the constraint∇t,xΦ−q. Finally, Benamou and Brenier de�ned the so-called

augmented Lagrangian:

Lr(Φ, q, µ) = F (q) +G(Φ)+ < µ,∇t,x − q > +
r

2
< ∇t,xΦ− q,∇t,xΦ− q > (A.4)
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which solves an equivalent saddle-point problem to Eq. (A.3). Note previous Lagrangian

formulations are generally used to solve problems of the form: minx∈H F (Kx) + G(x)

where K is a bounded linear operator, H an Hilbertian space and F,G simple functions.

The �nal saddle-point problem is then solved via iterations of the Uzawa algorithm with

respect to Φn, qn and µn. The resulting algorithm namely the so-called Benamou-Brenier

(BB) algorithm is described in details in [6]. Basically, the algorithm corresponds to an

Alternating Direction Method of Multiplier (ADMM) (see review [96]). Performed on

few standard transportation tests, the BB algorithm showed remarkable results (Fig.

A.1).

Figure A.1: Illustration of a computational optimal transportation solving by using
the BB algorithm, from [6]. The example is based on the transportation of vertical ellipse to
an horizontal ellipse, using a 32× 64× 64 grid, 400 iterations and periodic boundary conditions.
In particular, we can see the impacts of periodic boundary conditions: densities are splitting
across the boundary if the path is shorter.

The BB algorithm is particularly interesting as it is based on an Augmented Lagrangian

formulation which can easily be modi�ed. That is why, most of the generalized algorithms

for solving optimal transportation problems are focusing on the BB algorithm.

The �rst issue with optimal solutions comes from boundary conditions. Previously, we

illustrated (Fig. A.1) how periodic boundary conditions can a�ect the optimal path. Such

considerations are well-known and can easily be implemented accordingly in numerical

methods as in Lagrangian and Eulerian algorithms we used [18]. Furthermore, we

previously described how an optimal path necessarily follows a straight line trajectory.

This basic property can become a crucial limitation as rotational motions cannot be

approximated via an optimal transportation computation. To visualize the modeling
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issue, let consider two initially vertical gaussians and two �nal horizontal gaussian

distributions. Although a gaussian rotation is expected, the optimal motion is actually

attained by splitting the mass density of each gaussian distributions (see Fig. A.2).

Figure A.2: Representation of the well-known mass-splitting phenomenon with
two gaussian distribution, from [54]. The two gaussian densities are initially vertical
and we target a π/2-rotation. However, there is no speci�c constraint which imposes the
shape preservation. Note three intermediate state are represented between the initial and �nal
con�gurations.

Indeed, the mass density can be split accordingly as long as the whole mass distribution

follows an optimal path in the sense of the L2-Wasserstein metric. Therefore, basic

optimal transportation algorithm such as BB algorithm or Lagrangian and Eulerian

algorithms we used [18], cannot prevent spurious mass movements especially when

considering complex and real-world mass density such as zebra�sh larval body kinematics.

As a consequence, we investigated into potential optimal transportation spurious e�ects

and the most visible and striking result we can highlight resided in the mass transfer

from the tail tip to the head, occurring during the C-bend motion. However, further

unexpected behaviors might occur with no possibility to properly isolate and emphasize.

In the literature, we can �nd generalized optimal transportation algorithms which impose

physical constraints such as rigidity or incompressibility conditions [19, 54]. The goal of

such penalizations or �ow constraints is to preserve the compactness and local properties

of the mass densities. For instance, standard optimal transportation validation tests such

as the rotation of two gaussian distributions demonstrated a considerable improvement

regarding the conservation of physics (see Fig. A.3).

Figure A.3: Physic-like properties are imposed to recover proper rotation and mass
movements, from [54]. The rotation of gaussians shows the impact of translation (left) and
rigid (right) penalization: rigid constraints embed a rigid rotational motion.
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On the whole, we do know spurious a�ects are occurring in the computed deformation

velocity �eld, due to speci�c properties of optimal transportation explained in this

section. However, we do not know the exact limitations of standard optimal transportation

with our speci�c application: extracting a velocity �eld from experimental body

kinematics of a living animal. In that regard, we investigated into the integration

of incompressible and above all rigid penalization techniques within our real-world

application. On the one hand, Lagrangian and Eulerian algorithms were not particularly

designed for simple modeling enhancements and would require more investigations. On

the other hand, the BB algorithm on which these penalizations have previously been

carried out was found unable to provide satisfying results with such a large amount of

high-resolution data. In particular, we desired to perform BB iterations to assess the

importance of spurious optimal transportation phenomena, but the lack of a well-de�ned

convergence criterion and straightforward characterization of numerical parameters for

complex, high-resolution data and real-like �ows emphasized the BB algorithm was not

well-suited.

A.2 A regularized formulation: the Sinkhorn algorithm

Finally, new advances developed particularly fast and e�cient optimal transportation

computational methods, by relaxing the classic MKP (3.4). In what follows, I will

essentially and repidly present all the framework detailed in [109]. Thus, we refer the

reader to [109] and recent reviews [100], [102] for all the theoretical and implementation

details. Regularized optimal transportation methods have been initially developed to

de�ne a smooth similarity measure between probability measures and fast to compute,

notably for machine-learning [103], inverse problem and imagery �elds. However, this

method demonstrated great capabilities in shape interpolation and image reconstruction

techniques [109]. In this PhD work, regularized optimal transportation has been used

precisely to reconstruct a full 3D volume of a zebra�sh eleuthero-embryo. The present

approach was found very e�cient to rapidly reconstruct a massive amount of density

distributions. The shape interpolation we considered consisted in �nding the density

distribution at a certain barycenter of two regularized-shape distributions. As explained

previously, linear interpolations cannot be implemented with no proper Lagrangian

representation of cross-section shapes. Therefore, regularized optimal transportation

is particularly suitable. The main idea consists in regularizing the MKP by adding an

Entropic term which makes the optimization problem strictly convex.

First, let de�ne the Entropy H(π) as:

H(π) = −
∫
X×X

π(x, y) lnπ(x, y)dxdy (A.5)
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The entropy-regularized L2-Wasserstein distance is then de�ned as:

W2
2,γ(µ, ν) = inf

π

∫
X×X

‖y − x‖2π(x, y)dxdy − γH(π) (A.6)

where γ > 0 is a regularization parameter. In the limit γ = 0, problem (A.6) is equivalent

to (3.5) while the solution of the suboptimal problem is smoothed according to the choice

of γ. As a consequence, we do not consider the exact optimal transportation problem

and instead, we regularize MKP by introducing an Entropic penalty. Besides, let de�ne

the so-called Kullback-Leibler (KL) divergence:

KL(π|K) =

∫
X×X

π(x, y)(ln
π(x, y)

K(x, y)
− 1)dxdy (A.7)

Then, the di�usion-based approximation of regularized Wasserstein metric can be written

as:

W2
2,Kγ (µ, ν) = γ(1 + min

π
KL(π|Kγ)) (A.8)

when considering the distance to a gaussian kernel Kγ :

Kγ(x, y) = e
− d(x,y)

2

γ (A.9)

Let consider λ1, λ2, two Lagrange multiplier of the two constraints on π. We can

demonstrate the optimality condition are necessarily given by: π(x, y) = Kγ(x, y)e
λ1(x)+λ2(y)

γ .

The unique Lagrange multipliers are thus given by:

λ1 = −γ log(

∫
Ω
Kγ(x, y)e

λ2(y)
γ dν(y))

λ2 = −γ log(

∫
Ω
Kγ(x, y)e

λ1(x)
γ dµ(x))

which are solved via the so-called Sinkhorn algorithm. Let discretize the previous

continuous framework. The transportation plan π is necessarily of the form:

π = D(u)KγD(v) (A.10)

where D denotes a diagonal matrix, u,v are unique vectors which verify the constraints:∑
j

πij =
∑
j

uiKγ,ijvj = µ (A.11)

∑
i

πij =
∑
i

uiKγ,ijvj = ν (A.12)

The so-called Sinkhorn algorithm computes u and v via iterative projections:

ui ← µ/(Kγv)i

vj ← ν/(KTγ u)j
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The Sinkhorn algorithm converges towards the unique optimal solution. The main

advantage for using the gaussian kernel Kγ is to faster the numerical computation

of Sinkhorn iterations. Indeed, the application of a gaussian �lter can easily be

approximated by convolution operations. In particular, the product Kγu can be reduced

to its most signi�cant terms via convolutions. That is why, we used Kernel convolutions

to compute the products Kγv and KTγ u which enabled the computation of the regularized

optimal transportation problem on large data-sets.

Finally, let de�ne the so-called Wasserstein barycenter problem:

inf
µ

∑
λkW2

2 (µ, µk) (A.13)

where the (λk) are the weights corresponding to a speci�c barycenter of densities (µk).

Therefore, problem (A.13) de�nes a barycenter between probability measures (µk) in the

sense of L2-Wasserstein metric. By considering the previous discrete Sinkhorn iterations,

the barycentric distribution is given by:

(µλ)i = Πk(ui(Kγv)i)
λk (A.14)

In [109], the authors have illustrated Wasserstein barycenter problems with several

examples by computing intermediate shapes. By de�nition, Wasserstein barycenters are

much more well-suited to shape interpolation than linear interpolation (see Fig. A.5).

Figure A.4: Comparison between linear interpolation and Wasserstein barycenters,
from [109]. Initially, four distributions are provided as input: a disk, two gaussians, a 5-pointed
and a 4-pointed stars. Then all intermediate shapes are computed either with linear interpolation
(left) or Wasserstein barycenter (right). We can see the di�erence between a classic interpolation
and a Mc Cann's interpolation: the mass density is actually transported, according to an optimal
path.

In facts, the strict interpolation problem is more straightforward than Wasserstein

barycenter as only two densities are needed as input to compute the intermediate

distributions along the optimal transportation path.

On the whole, barycenter problems can lead to various and multiple applications

especially after de�ning a smooth metric to measure similarities. We refer to reviews
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Figure A.5: Illustrations of two di�erent applications: barycenter of multiple
distributions and interpolation between two distributions, from [109]. Obviously, the
interpolation problem (right) is a particular case of the general barycenter question (left). We
can see how the Wasserstein metric and particularly regularized Wasserstein metric is useful to
measure similarities between a priori di�erent distributions. Note how smoothed the generated
shapes are.

[100], [102] which provide a wide spectrum of applications. In our case, we only focus on

Wasserstein interpolations with a two-dimensional shape interpolation application. In

the case of two mass density, the time interpolation in the sense of the dynamic point of

view, is given by:

log(µt)i = t log((u1)i(Kγv1)i)) + (1− t) log((u2)i(Kγv2)i)) (A.15)

In the discrete context of Sinkhorn iterations, time interpolation µt (A.15) is computed

at the end of Sinkhorn iterations via the convolution of the gaussian kernel:

log(µt)i =
∑
k

λk log((uk)i(Kγvk)i)) (A.16)
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