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In particular, the author shows a thematic and chronological evolution of his research interests:

(i) The first part, following his post-doctoral work, is concerned with the development of new algorithms for non-smooth optimization.

(ii) The second part is the heart of his research in 2020. It is focused on the analysis of machine learning methods for graph (signal) processing.

(iii) Finally, the third and last part, oriented towards the future, is concerned with (automatic or not) differentiation of algorithms for learning and signal processing.

Introduction

Organization. This Habilitation à Diriger des Recherches manuscript is organized into three chapters and this introduction. The three chapter are both thematical and "chronological" 1 :

• Chapter 1 is concerned with non-smooth optimization which is the area of expertise that I developed at the end of my Ph.D. and postdoc. It is in some sense my "past".

• Chapter 2 presents my contribution to some problems arising in the context of graph (signal) processing. It is my main area of research at writing time. I will call it my "present".

• Chapter 3 is a perilous mix of my works related to algorithmic differentiation. It

is not yet an area of research that I explore systematically, nevertheless I believe it will be my "future".

It is possible to read each chapter in an almost independent way. Almost because for instance the Lasso is defined in chapter 1 and re-used in chapter 3.

Disclaimer on my previous works. This introduction is dedicated to a quick overview of my research contributions since 2015 starting from my postdoctoral activity. During my Ph.D. thesis (SV-PhD1) my main focus was the analysis of variational methods for low complexity regularization such as sparse regularizations, low-rank minimization, etc. It was concerned with recovery guarantees and sensitivity analysis of convex optimization problems by combining a data fidelity and a regularizing functional promoting solutions conforming to some notion of low complexity related to their non-smoothness points.

Several publications in journal (SV-C11; SV-J11; SV-J10; SV-J9) or conferences / workshops (SV-C8; SV-C7; SV-C9; SV-C10; SV-C11; SV-J11; SV-C5; SV-C6) are the byproduct of this doctoral work. Two papers (SV-J8; SV-J4) associated to this theme have been published during the period 2015-2020, but are not described in details in this manuscript since most of the content can be found in my Ph.D. thesis (SV-PhD1) or in the review chapter (SV-BC1).

I believe this area of research is still very interesting, and I follow with attention the work from one side by Jingwei Liang and Clarice Poon on extension of the use of partial smoothness, and on the other side the work by Franck Iutzeler, Guillaume Garrigos and Jér ôme Malick (in collaboration with Jalal Fadili and Gabriel Peyré) focused on mirror-stratifiable regularization.

I also made the choice of not discussing my collaboration (SV-C3; SV-C4) with Rémi Gribonval and Yann Traonmilin on designing "good" regularization functionals because it is an ongoing work which is not mature enough to be summarized in a thesis chapter.

Chapter 1 -Past: Optimization for sparse-like models

My 1-year postdoc with Antonin Chambolle was focused on improving my knowledge on optimization, and more specifically on how to derive new algorithms to solve concrete problems. The zoology of optimization techniques, even for first-order methods, is nowadays quite dense, and it is out of the scope of this document to try to provide a unified point of view. Instead, I will present three directions:

(i) Nesterov's acceleration for alternating minimization ;

(ii) Better primal-dual gap estimation through dual extrapolation ;

(iii) Revisiting the Support Vector Regression to include constraints, with a focus on oncological applications.

Alternate minimization. With Antonin Chambolle and Pauline Tan, we proposed (SV-J6) a method to accelerate (in the [START_REF] Nesterov | Introductory lectures on convex optimization[END_REF] sense) alternate minimization algorithms which involve two variables coupled by a quadratic penalization. This kind of problem arises when one try to evaluate proximity operator of function of the form f = f 1 • A + f 2 • B where f 1 , f 2 are (strongly) convex functions and A, B linear operators. Since the work of [START_REF] Boyle | A method for finding projections onto the intersection of convex sets in Hilbert spaces[END_REF], we know that performing alternate minimization in the dual space allows to compute such proximity operators. Our contribution was to show that we can accelerate this minimization using FISTA-type overrelaxation [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] as proposed by Chambolle and Pock (2015) in the case where f 1 , f 2 are strongly convex with enjoying a linear rate of convergence. The main application was to show that we can parallelize on GPU a modified version of the Total Variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] to achieve very fast performance.

Extrapolation techniques for coordinate descent. With Alexandre Gramfort, Mathurin Massias and Joseph Salmon, we tackled in (SV-J2) the issue of correctly estimating the dual gap used as a stopping criterion in coordinate descent algorithms applied to sparse generalized linear models. Using [START_REF] Anderson | Iterative procedures for nonlinear integral equations[END_REF] acceleration methods as recently advocated by [START_REF] Scieur | Regularized nonlinear acceleration[END_REF], we showed that it is possible to significantly improve the estimation of the lack of optimality both from a theoretical and practical point of view. A significant contribution (done by M. Massias) of this work is to provide a drop-in scikit-learn [START_REF] Pedregosa | Scikit-learn: machine learning in Python[END_REF] Lasso estimator class which include this extrapolation method along with working-set and safe-rule improvements.

Support Vector Regression and immuno-oncology. With my Ph.D. student Quentin Klopfenstein, we are currently working with medical researchers in immuno-oncology. It led us (SV-P4) to consider the addition of linear constraints to the Support Vector Regression [START_REF] Drucker | Support Vector Regression Machines[END_REF] estimator. We showed that the popular Sequential Minimal Optimization (SMO) algorithm, proposed by [START_REF] Platt | Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines[END_REF], can be adapted to this setting. Preliminary results on immuno-oncology dataset is provided in the context of a simplex constraint, along with synthetic results on isotonic and non-negative constraints.

Chapter 2 -Present: Graphs and signals on graph

The intersection between graph theory and statistics / machine learning is one of my major research activity at the moment. Many methods proposed in the literature do not take into account the fine structures (geometric or not) behind the underlying data. Such structures can often be modeled by graphs. A refined analysis of the underlying graph influence is still missing and most of the literature neglects, for simplicity, the underlying graph structure, or uses linear estimators to overcome these issues. Here, I mainly focus on the use of robust non-linear regularizations to deal with inverse problems or classification tasks on such signals. More precisely, I have at the moment four lines of research in this area:

(i) Oracle properties of non-linear regularization for graph signal retrieval ;

(ii) Geometric analysis of these regularizations ;

(iii) Analysis of the spectral clustering in a dynamic setting ;

(iv) Convergence and stability of Graph Convolutional Networks.

Oracle properties of Graph-Slope. With Pierre Bellec and Joseph Salmon, we proposed an estimator (SV-J5) coined Graph-Slope which is an adaptation to the graph setting of the SLOPE [START_REF] Bogdan | SLOPE-adaptive variable selection via convex optimization[END_REF] estimator, also known as ordered 1 regularization [START_REF] Zeng | The Ordered Weighted 1 Norm: Atomic Formulation, Dual Norm, and Projections[END_REF] in the signal community. Our main contribution was to show that the optimal denoising rate of Graph-Slope was better than the one already proved by H ütter and [START_REF] Rigollet | Optimal rates for total variation denoising[END_REF] for Graph-TV. This analysis also provides a way to choose in a principled way the regularization parameters. We also show empirical performance on simulated data based on a splitting method (forward-backward on the dual).

Geometry of sparse analysis regularization a.k.a, Graph-Lasso. With Abdessamad Barbara and Abderrahim Jourani, we (SV-J3) start the investigation of the geometric structure of the solution set of Graph-TV when there is no uniqueness. We showed that a "largest" solution (i.e., less edge-sparse) are in fact a typical solution, and that a primal-dual interior point method allows to retrieve one. We performed a more refined analysis (SV-P3) with Xavier Dupuis where we connect the sparsity level of a solution with the corresponding face of the solution set (which is a polytope). It could be seen as a particular, but more precise, result of the work of [START_REF] Boyer | On representer theorems and convex regularization[END_REF], or more generally as a representer theorem.

Spectral clustering for dynamic stochastic block model. In a different context, we studied a dynamic stochastic block model with Nicolas Keriven (SV-P1), and how one can improve the standard spectral clustering with such prior. It follows the line of work of Lei and Rinaldo (2015a) for the regular stochastic block model and Pensky and Zhang (2019a) with a different time smoothing. By the way, we provided the first (to our knowledge) bound on normalized Laplacian matrix concentration, which is a probabilistic result of interest in itself.

Convergence and stability of Graph Convolutional Networks. Leveraging our work (SV-P1), Alberto Bietti, Nicolas Keriven and I studied (SV-C2) properties of Graph Convolutional Networks (GCNs) by analyzing their behavior on standard models of random graphs, where nodes are represented by random latent variables and edges are drawn according to a similarity kernel. This allows us to overcome the difficulties of dealing with discrete notions such as isomorphisms on very large graphs, by considering instead more natural geometric aspects. We obtained the convergence of GCNs to their continuous counterpart as the number of nodes grows. Our results are fully nonasymptotic and are valid for relatively sparse graphs with an average degree that grows logarithmically with the number of nodes. We then analyze the stability of GCNs to small deformations of the random graph model.

Chapter 3 -Future: Differentiated algorithmic I use the term differentiated algorithm (often coined adjoint program in the automatic differentiation community) here to focus on the fact that we do not take advantage of the automatic part of automatic differentiation which is at the core of many of the ideas of differentiable programming.

With my collaborators, we used the differentiation of algorithms towards two main goals:

(i) refitting of estimators to reduce their bias ;

(ii) selection of hyperparameters of regularized models.

Algorithmic refitting. It is well known that convex methods such as the Lasso or total variation regularization induced a bias which is seen as a contraction of the large coefficients for sparse models towards zero. Together with Charles Deledalle, Nicolas Papadakis and Joseph Salmon, we proposed (SV-J7) a systematic way to perform the debiasing of such methods along the computation of the estimator instead of relying on a two-step procedure. In order to achieve this single step procedure, we compute the differentiation of the algorithm with respect to the observation. With the same co-authors, such strategy was further extended (SV-J1) to the analysis group Lasso to obtained stronger guarantees on the refitted estimator.

(Hyper)parameters selection. Concerning the selection of hyperparameters, I explored two different approaches (with two different teams) both taking their sources in the analysis of differentiated algorithms. The first line (SV-C1), in collaboration with Quentin Bertrand, Mathieu Blondel, Alexandre Gramfort, Quentin Klopfenstein and Joseph Salmon, is focused on the differentiation of a block coordinate descent algorithm to solve the Lasso problem. We showed that we can take advantage of the row and column-sparse structure of the Jacobian to improve the running time of hypergradient method to select the trade-off parameter. The other line (SV-P2), in collaboration with Patrice Abry, Barbara Pascal and Nelly Pustelnik, is an extension of a line of work (SV-J10) we started in 2014 with Charles Deledalle, Jalal Fadili and my Ph.D. advisor Gabriel Peyré on risk estimation via Stein lemma [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF]. We showed that SUGAR can be adapted to correlated noise model, and we applied it to a texture segmentation problem. I do not develop this work in this manuscript because the rigorous presentation of the tools needs more space than other contributions.

Book chapter

(SV-BC1) [START_REF] Vaiter | Model Selection with Low Complexity Priors[END_REF]. "Low Complexity Regularization of Linear Inverse Problems". In: Sampling Theory, a Renaissance, pp. 103-153. eprint: arXiv:1407.1598.

Conferences or workshops

(SV-C1) Bertrand, Quentin, Quentin Klopfenstein, Mathieu Blondel, [START_REF] Massias | Dual Extrapolation for Sparse Generalized Linear Models[END_REF]. "Implicit differentiation of Lasso-type models for hyperparameter optimization". In: ICML. eprint: arXiv:2002.08943. (SV-C2) Keriven, Nicolas, Alberto Bietti, and Samuel Vaiter (2020) [START_REF] Vaiter | Model Consistency of Partly Smooth Regularizers[END_REF]. "Optimality of 1-norm regularization among weighted 1-norms for sparse recovery: a case study on how to find optimal regularizations". In: NCMIP. eprint: arXiv:1803.00773. (SV-C4) Traonmilin, Yann, Samuel Vaiter, and Rémi Gribonval (2018). "Is the 1norm the best convex sparse regularization?" In: iTWIST. eprint: arXiv: 1806.08690. (SV-C5) Vaiter, Samuel, Gabriel Peyré, and Jalal Fadili (2013a). "Robust Polyhedral Regularization". In: SAMPTA. eprint: arXiv:1304.6033. (SV-C6) -(2013b). "Robustesse au bruit des régularisations polyhédrales". In: GRETSI. (SV-C7) Deledalle, Charles-Alban, Samuel Vaiter, Gabriel Peyré, Jalal Fadili, and Charles Dossal (2012a). "Proximal Splitting Derivatives for Risk Estimation". In: NCMIP. (SV-C8) -(2012b). "Risk estimation for matrix recovery with spectral regularization". In: ICML (sparsity workshop). eprint: arXiv:1205.1482. (SV-C9) -(2012c). "Unbiased Risk Estimation for Sparse Analysis Regularization". In: ICIP. (SV-C10) Vaiter, Samuel, Charles-Alban Deledalle, Gabriel Peyré, Jalal Fadili, and Charles Dossal (2012). "The Degrees of Freedom of the Group Lasso". In: ICML (sparsity workshop). eprint: arXiv:1205.1481. (SV-C11) Vaiter, Samuel, Gabriel Peyré, Charles Dossal, and Jalal Fadili (2012). "Robust Sparse Analysis Regularization". In: PICOF.

Thesis

(SV-PhD1) [START_REF] Deledalle | Stein Unbiased GrAdient estimator of the Risk (SUGAR) for multiple parameter selection[END_REF]. "Low Complexity Regularizations of Inverse Problems". PhD thesis.
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Past: Non-smooth First-order Optimization

This chapter covers the following contributions:

• (SV-J6): Antonin [START_REF] Chambolle | Accelerated Alternating Descent Methods for Dykstra-like problems[END_REF]. "Accelerated Alternating Descent Methods for Dykstra-like problems". In: J Math Imaging Vis 59.3, pp. 481-497.

• (SV-J2): Mathurin [START_REF] Massias | Dual Extrapolation for Sparse Generalized Linear Models[END_REF]. "Dual Extrapolation for Sparse Generalized Linear Models". In: 21.234, pp. 1-33. eprint: arXiv:1907.05830.

• (SV-P4): Quentin Klopfenstein and Samuel Vaiter (2019). Linear Support Vector Regression with Linear Constraints. Tech. rep. eprint: arXiv:1911.02306.

Convex problems and first-order schemes

This chapter is concerned with convex minimization problems in finite dimension of the form argmin

x∈R d F(x) + G(x), (1.1) 
where F, G ∈ Γ 0 (R d ) are two lower-semicontinuous (lsc), convex and proper real-valued functions on R d . Typically, the first function F will enjoy nice smoothness properties such as C 1,1 (continuously differentiable functions with Lipschitz gradients) regularity whereas G will does not share such smoothness assumption.

Solving a problem as (1.1) without additional assumptions is possible through the use of the so-called a Forward-Backward scheme [START_REF] Lions | Splitting algorithms for the sum of two nonlinear operators[END_REF] which use iterates of the form

x k+1 = prox γf (x k -γ∇F(x k )),
with 0 < γ < 2/β where β is the Lipschitz constant of ∇F and prox γf (x)

def.

= argmin

x∈R d 1 2γ ||z -x|| 2 2 + f(x) (1.2)
is the proximity operator of f. However, computing prox γf (x) in closed-form is potentially as hard as solving the initial problem! The two following sections study two specific cases where using the structure of the problem we are able to achieve a better splitting strategy than merely separating smooth and non-smooth terms.

Alternate minimization for Dykstra-like problems

This section describes the content of the journal article (SV-J6) written in collaboration with Antonin Chambolle and Pauline Tan, published in 2017 in J. Math. Imaging Vis.

In several applications, such as total variation regularization or disparity estimation, one may be concerned with a problem (1.1) of the form argmin

x∈R d F(x) + k i=1 f i (A i x) def. = G(x)
, where f i are "simple" convex functions and A i are linear operators (not necessarly with the same codomain). Most of the time, computing this proximity operator in closed form is tedious, but assuming that we know how to compute the proximity operator of each f i , Dykstra splitting allow to evaluate the proximity operator of f in an efficient way. [START_REF] Boyle | A method for finding projections onto the intersection of convex sets in Hilbert spaces[END_REF] algorithm idea is to perform alternative minimization on a dual problem of (1.2) which have the specific form argmin

(y 1 ,...,y k )∈R n 1 ו••×R n k 1 2 || k i=1 A i y i -c|| + k i=1 g i (y i ).
(1.3)

From now on, I present our result for the case k = 2 to simplify the exposition, i.e., , we consider the problem argmin

(x,y)∈R n ×R m E(x, y) def. = 1 2 ||Ax + By -c|| + f 1 (x) + g 2 (y), (1.4)
where f, g are convex, proper, lower-semicontinuous functions, A, B two linear operators.

We also consider M, N two symmetric positive semidefinite operators which represent metrics on which we compute the proximal step.

Our main contribution was to show (theorecally and pratically) that in order to solve (1.4), it is possible to alternate between K 1 proximal step on x and L 1 proximal step on y, instead of simply performing alternate step (K = L = 1). Moreover, it is possible to accelerate this multistep alternating minimization with a FISTA-like acceleration [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. This scheme is described in Algorithm 1.

For this algorithm, we were able to prove a O(1/t 2 ) rate, more precisely we have the following theorem

Theo r e m 1 .1 Let (x t , y t ) be computed using Algorithm 1 starting from initial point (x 0 , y 0 ), using the acceleration = True, and let (x , y ) be a minimizer of E.

Then, one has the global rate

E(x t , y t ) -E(x , y ) 2 ||x -x 0 || 2 M/K + ||y -y 0 || 2 N/L+B * B (t + 1) 2 . (1.5)
If it turns out that g 1 and g 2 are strongly convex, it is possible to slighlty adapt Algorithm 1 in order to the get a linear rate of convergence. We do not enter into the details here to avoid technicalities, and refer to (SV-J6) for more details.

O pen Qu e s t i o n 1 .1 Algorithm 1 performs overrelaxation only on one variable. Empirically, it is possible to do it on every variables. Is is possible to analyze this variant from a theoretical point of view? More precisely, (i) Is it possible to prove a O(1/t 2 ) rate of convergence?

(ii) If yes, do we improve the constant on the bound? Moreover, it is assumed that the computation of the proximal steps are exact. Since, there is a lot of inner iterations, is it possible to prove such as result in the context of inexact minimization?

We applied this algorithm to a slight modification1 of the standard isotropic discretization of the Total Variation [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The basic idea in dimension 2 is to consider separately the set of pixels (i, j) + {0, 1} 2 whenever (i, j) are even and odd. More precisely, given an image u = (u i,j ) ∈ R n×m , we define for (i, j)

∈ [n] × [m] tv i,j (u) = √ 2 (u i+1,j -u i,j ) 2 + (u i+1,j+1 -u i,j+1 ) 2 + (u i+1,j+1 -u i+1,j ) 2 + (u i,j+1 -u i,j ) 2 1/2
. This quantity can be seen as a "4-pixels cyclic Total Variation". If one wants to enjoy the strongly convex case, it is also possible to smooth it in a Huber fashion by using for ε > 0,

tv ε i,j (u) = tv i,j (u) -ε if tv i,j (u) 2ε tv i,j (u) 2 4ε otherwise.
It is also possible to adapt it to tensors to take into account multiple channels (color images). To simplify the exposition, we keep the discussion on the single channel case.

Using this tv, we define the regularization

f(u) = (n-1)/2 i=1 (m-1)/2 j=1 tv (ε) 2i,2j (u) + n/2 -1 i=1 m/2 -1 j=1 tv (ε) 2i+1,2j+1 (u) 
.

We will denote by J e (u) the first sum above, and by J o (u) the second one. This decomposition is depicited in Figure 1.1. The problem min u ||u -u 0 || 2 + f(u) has a dual of the form (1.4) which allows to use Algorithm 1. Indeed, given i, j, we denote by

D i+1/2,j u = u i+1,j -u i,j if 1 i n -1, 1 j m, and D i,j+1/2 u = u i,j+1 -u i,j if 1 i n, 1 j m -1.
Then, we call D o u the 'odd' part of Du and D e u the even part, that is

D o u = ((D i+1/2,j u, D i,j+1/2 u, D i+1/2,j+1 u, D i+1,j+1/2 u)) i,j odd
and D e u is define in the same way but for even indices i, j. It follows that and the same holds for J e , replacing D o with D e and 'odd' with 'even'. We will denote

J o ε (u) = sup{ ξ, D o u -ε 2 |ξ| 2 : ||(ξ i+1/2,j , ξ i,j+1/2 , ξ i+1/2,j+1 , ξ i+1,j+1/2 )|| 2 2 ∀(i, j) odd}
ξ o = ((ξ i+1/2,j , ξ i,j+1/2 , ξ i+1/2,j+1 , ξ i+1,j+1/2 )) i,j odd , ξ e = ((ξ i+1/2,j , ξ i,j+1/2 , ξ i+1/2,j+1 , ξ i+1,j+1/2 )) i,j even .
Hence, the dual problem reads min

(ξ e ,ξ o ) D o, * ξ o + D e, * ξ e -u † 2 + f(ξ e ) + g(ξ o ), (1.6) 
where D O pen Qu e s t i o n 1 .2 The cyclic property on the grid allows to parallelize the computation on 4-bytes block of memory (for grayscale images). An interesting perpespective is to understand of which kind of graph (see chapter 2) it is possible to parallelize such scheme.

The GPGPU code for this article 2 is available online. We used a standard image of size 512 × 512 which a dynamic inside the range [0, 255]. Our stopping criterion is as before by checking that the square root of the dual over the size of the image is less than 0.1 which is an upper bound of the root mean-square error (RMSE). The dual gap is computed at each iteration. If such a bound is not obtained after 10000 iterations, we stop the alternating minimization. In term of distributed computing, we choose to use thread blocks of size 16 × 16.

The use of Huber-TV induces better performances, in term of execution time or raw number of iterations. We first study the influence of ε in Figure 1.2 We compare both the case where the inner iterations are done with a Newton step and with a simple descent, both with 5 steps. For every experience in the following, we consider 20 repetitions of the experiment, and average the time obtained. Moreover, all time benchmarked are reported minus the memory initialization time. We fix the value of λ = 30.0. Note that choosing ε too big is however problematic in term of quality of approximation of the true Total Variation regularization.

A similar study can be performed for the influence of λ, see Figure 1.2. Again, we compare both the case where the inner iterations are done with a Newton step and with a descent, both with 5 steps. We let vary λ over [1,36] and fix the value of ε = 0 (exact-TV) and also ε = 0.1. Note that the execution time scales nicely with the dimension of the image. For instance, running our algorithm for ε = 0.1 and λ = 20.0 took 800ms for a 2048 × 2048 image and 4s for a 4096 × 4096 image.

Dual extrapolation for sparse-like problems

This section describes the content of the preprint (SV-J2) written in collaboration with Alexandre Gramfort, Mathurin Massias and Joseph Salmon, and submitted to J. Mach. Learn. Res.

We consider a sparse problem of the form

x ∈ argmin

x∈R p n i=1 f i (x ϕ i ) + λ||x|| 1 def. = P(x) , (1.7)
where all f i are closed, convex and proper functions. They are moreover assumed to be differentiable with Lipschitz gradients with a common 1/γ Lipschitz constant. The two more used instances of Equation (1.7) are the Lasso [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], where f i is the quadratic loss f i (t) = 1 2 (y i -t) 2 with Lipschitz constant γ = 1, and Sparse Logistic regression [START_REF] Koh | An interior-point method for large-scale l 1 -regularized logistic regression[END_REF], where f i are the logistic loss f i (t) = log(1 + exp(-y i t)) with Lipschitz constant γ = 4.

A dual problem of Equation (1.7) reads:

θ = argmax θ∈∆ Φ - n i=1 f * i (-λθ i ) def. = D(θ) , (1.8)
where

∆ Φ = θ ∈ R n | ||Φ θ|| ∞ 1 . The KKT conditions read: ∀i ∈ [n], θi = -f i (x ϕ i )/λ (1.9) ∀j ∈ [p], x j θ ∈ ∂| • |(x j ) (1.10)
Using Slater's condition, for any (x, θ) ∈ R p × ∆ Φ , one has D(θ) P(x), and D( θ) = P(x).

The duality gap G(x, θ)

def.

= P(x) -D(θ) can thus be used as an upper bound for the suboptimality of a primal vector x: for any ε > 0, any x ∈ R p , and any feasible θ ∈ ∆ Φ :

G(x, θ) = P(x) -D(θ) ε ⇒ P(x) -P(x) ε.
(1.11) Thus, using the link equation (1.9), a natural way [START_REF] Mairal | Sparse coding for machine learning, image processing and computer vision[END_REF] to construct a dual feasible point θ (t) ∈ ∆ Φ at iteration t, when only a primal vector x (t) is available, is to use the "scaled residuals":

θ (t) res def. = -∇F(Φx (t) )/ max(λ, ||Φ ∇F(Φx (t) )|| ∞ ).
(1.12)

Our contribution was to "improve" this control of sub-optimality by using a dual extrapolation based on properties of Vector AutoRegressive (VAR) sequences following the work of [START_REF] Scieur | Regularized nonlinear acceleration[END_REF]. Let K > 0 a fixed integer. For K coordinate descent epochs, let r (t) = y -Φx (t) be the residuals at epoch t of the algorithm. We define the extrapolated residuals as

r (t) acc =        r (t) , if t K, K k=1 c k r (t+1-k) , if t > K. (1.13) where c = (c 1 , . . . , c K ) ∈ R K is defined 3 as ĉ = (U (t) U (t) ) -1 1 K 1 K (U (t) U (t) ) -1 1 K . (1.14) with U (t) = [r (t+1-K) -r (t-K) , . . . , r (t) -r (t-1) ] ∈ R n×K .
We proved the following result

Theo r e m 1 .2 Assume that Problem (1.7) has a unique solution. Then, the dual accelerated iterates (r

(t)
acc ) t∈N defined by Algorithm 2 converges linearly to its limit.

The extrapolated feasible point is then

θ (t) acc def.
= -∇F(r

(t) acc )/ max(λ, ||Φ ∇F(r (t) acc )|| ∞ ).
(1.15)

Additionally, to impose monotonicity of the dual objective, and guarantee a behavior at least as good at θ res , we use as dual point at iteration t:

θ (t) = argmax θ∈{θ (t-1) ,θ (t) acc ,θ (t) 
res } D(θ).

(1.16)

O pen Qu e s t i o n 1 .3 Theorem 1.2 proof is based on the fact that the dual iterates are an asymptotic VAR sequence. It would be interesting to study the VAR property of more general estimators such as multitask Lasso or generic partly smooth regularizations [START_REF] Lewis | Active sets, nonsmoothness, and sensitivity[END_REF] e.g., ∞ regularization, in order to exploit Aitken/Anderson (Anderson, 1965) acceleration as in [START_REF] Scieur | Regularized nonlinear acceleration[END_REF].

The estimator-specific λ max refers to the smallest value giving a null solution (for instance λ max = ||Φ y|| ∞ in the Lasso case and λ max = ||Φ y|| ∞ /2 for sparse logistic regression. For the Lasso (Figure 1.3a) and Logistic regression (Figure 1.3b), we illustrate the applicability of dual extrapolation. Monotonicity of the duality gap computed with extrapolation is enforced via the construction of Equation (1.16). For all problems, the figures show that θ acc gives a better dual objective after sign identification, with a duality gap sometimes even matching the suboptimality gap. They also show that the behavior is stable before identification.

Support Vector Regression with linear constraints

This section is focused on the work of my Ph.D. student Quentin Klopfenstein (SV-P4).

Quentin was my Master 2 student in 2015 when he began an internship at Centre Georges-Franc ¸ois Leclerc specialized in oncology research. He was exposed to a medical field called immuno-oncology. Tumor tissue is a complex microenvironment largely invaded by multiple immune cells. The complexity of this microenvironment is still not fully addressed. Knowing the global immune composition of tumors is thus of major importance. The development of new technologies like single cell approaches makes it possible to get a better view of the heterogeneity of tumors. To get use of (a) Lasso, on news20 for λ = λ max /5. this information, inverse problem methods for transcriptomic data were reported to allow the estimation of the abundance of member cell types in a mixed cell population.

P(β (t) ) -D(θ (t) res ) P(β (t) ) -D(θ (t) acc ) P(β (t) ) -P( β)
The modelization done is that the RNA extracted from the tumor is seen as a mixed signal composed of different pure signals coming from the different types of cells. This signal can be unmixed knowing the different pure RNA signal of the different types of cells. In other words, y will be the RNA signal coming from a tumor and Φ will be the design matrix composed of the RNA signal from the isolated cells. The number of rows represent the number of genes that we have access to and the number of columns of Φ is the number of cell populations that we would like to quantify. The hypothesis is that there is a linear relationship between Φ and y. As said above, we want to estimate proportions which means that the estimator has to belong to the probability simplex

∆ n = {x : x i 0 , i x i = 1}.
In immuno-oncology, the current state-of-the-art method is proposed by [START_REF] Newman | Robust enumeration of cell subsets from tissue expression profiles[END_REF] which is an unconstrained ν-SVR (Sch ölkopf et al., 1999) followed by the projection onto the non-negative orthant and then followed by a 1 projection.

We proposed to impose these constraints to the original optimization problem, and more generally to consider linear constaints using the primal form:

min x,x 0 ,ξ i ,ξ * i ,ε 1 2 ||x|| 2 + C(νε + 1 n n i=1 (ξ i + ξ * i )) subject to x T ϕ i + x 0 -y i ε + ξ i y i -x T ϕ i -x 0 ε + ξ * i ξ i , ξ * i 0, ε 0 Ax b Γ x = d,
(1.17)

where The algorithm (algorithm 3) that we propose uses the structure of the dual problem of (1.17). If the set {x ∈ R n , Ax b, Γ x = d} is not empty then, one observes that strong duality holds for (1.17). Moreover, the dual problem of (1.17) is min (1.18) and the equation link between primal and dual is

A ∈ R k 1 ×p , Γ ∈ R k 2 ×p , β ∈ R p , ξ, ξ * ∈ R n and β 0 , ε, ∈ R.
α,α * ,γ,µ 1 2 (α -α * ) T Q(α -α * ) + γ T AA T γ + µ T Γ Γ T µ + 2 n i=1 (α i -α * i )γ T Aϕ i -2 n i=1 (α i -α * i )µ T Γ ϕ i -2γ T AΓ T µ + y T (α -α * ) + γ T b -µ T d subject to 0 α ( * ) i C n 1 T (α + α * ) Cν 1 T (α -α * ) = 0 γ j 0,
x = - n i=1 (α i -α * i )ϕ i -A T γ + Γ T µ.
The objective function f which we will write in the stacked form as:

f(θ) = θ T Qθ + l T θ, where θ =     α α * γ µ     , l =     y -y b -d     ∈ R 2n+k 1 +k 2 , Q =     Q -Q XA T -XΓ T -Q Q -XA T XΓ T AX T -AX T AA T -AΓ T -Γ X T Γ X T -Γ A T Γ Γ T     =     X -X A -Γ     X T -X T A T -Γ T is a square matrix of size 2n + k 1 + k 2
Our main result is the following theorem.

Theo r e m 1 .3 For any given τ > 0 the sequence of iterates {θ k }, defined by the generalized SMO algorithm, converges to an optimal solution of the optimization problem (1.18).

We let f as the objective function of Problem (1.18) and ∇f ∈ R 2n+k 1 +k 2 its gradient.

We will also say that (i, j) is a violating pair of variables if one of these two conditions is satisfied:

i ∈ I up (α), j ∈ I low (α) and ∇ α i f < ∇ α j f i ∈ I low (α), j ∈ I up (α) and ∇ α i f > ∇ α j f.
We will say that j is a τ-violating variable for the block γ if ∇ γ j f + τ < 0. We will say that j is a τ-violating variable for the block µ if |∇ µ j f| > τ.

Studiying the optimality condition of (1.18), we define the update between iterate k and iterate k + 1 of the generalized SMO algorithm to be:

(i) if the block α is selected and (i, j) is the most violating pair of variable then the update will be as follows:

α k+1 i = α k i + t * α k+1 j = α k j -t * , where t * = min(max(I 1 , - (∇ α i f-∇ α j f) (Q ii -2Q ij +Q jj ) ), I 2 ) with I 1 = max(-α k i , α k j -C n ) and I 2 = min(α k j , C n -α k i ).
(ii) if the block α * is selected and (i * , j * ) is the most violating pair of variable then the update will be as follows:

(α * i ) k+1 = (α * i ) k + t * (α * j ) k+1 = (α * j ) k -t * ,
where t * = min(max(I 1 , -

(∇ α * i f-∇ α * j f) (Q ii -2Q ij +Q jj ) ), I 2 ) with I 1 = max(-(α * i ) k , (α * j ) k -C n )
and

I 2 = min((α * j ) k , C n -(α * i )) k . (iii)
if the block γ is selected and i is the index of the most violating variable in this block then the update will be as follows:

γ k+1 i = max(- ∇ γ i f (AA T ) ii + γ k i , 0).
(iv) if the block µ is selected and i is the index of the most violating variable in this block then the update will be as follows: • From a theoretical perspective, we would like to derive a rate of convergence of this Generalized SMO algorithm. More generally, studying properties of the greedy (block) coordinate descent seems interesting, even if most practical applications use nowadays cyclic or random CD.

µ k+1 i = - ∇ µ i f (Γ Γ T ) ii + µ k i .
• From an applicative perspective, we would like to investigate why the SVR seems to outperform other regression methods in the context of immunooncological data.

The code, written by Quentin Klopfenstein, for the different regression settings is available on a GitHub repository4 , each setting is wrapped up in a package and is fully compatible with scikit learn [START_REF] Pedregosa | Scikit-learn: machine learning in Python[END_REF] BaseEstimator class. We present here some results for the simplex regression.

We compared the RMSE of our estimator to the Simplex Ordinary Least Squares (SOLS) and to the estimator proposed in the biostatics litterature that is called Cibersort on a real biological dataset where the real quantities of cells to obtain were known. The dataset can be found on the GEO website under the accession code GSE11103 5 . For this example n = 584 and p = 4 and we have access to 12 different samples that are our repetitions. Following the same idea than previous benchmark performed in this field of application, we increased the level of noise in the data and compared the RMSE of the different estimators. Gaussian and Laplacian distributions of noise were added to the data. The choice of the two hyperparameters C and ν was done using 5-folds cross validation on a grid of possible pairs. The values of C were taken evenly spaced in the log 10 base between [-5, -3], we considered 10 different values. The interval of C is different than the simulated data because of the difference in the range value of the dataset. The values of ν were taken evenly spaced in the linear space between [0.05, 1.0] and we also considered 10 possible values.

Algorithm 1 M u lt i s t e p Alt e r nat i n g M i n i m i z at i o n input : Metric M, N, number of inner loops K, L 1, (x 0 , y 0 ) an initialization, accelerate a boolean 

t ← 0 θ 0 ← 0 x0 ← x 0 , ȳ0 ← y 0 , ẙ0 ← y 0 while stopping criterion unsatisfied do // Perform K proximal steps on x xt+1 0 ← xt for k = 0, . . . , K -1 do xt+1 k+1 ← argmin x∈R n g 1 (x) + 1 2 ||Ax + B ẙt -c|| 2 2 + 1 2 ||x -xt+1 k || 2 M xt+1 ← xt+1 K xt+1 ← 1 K K k=1 xt+1 k // Perform L proximal steps on y ŷt+1 0 ← ȳt for l = 0, . . . , L -1 do ŷt+1 l+1 ← argmin y∈R m g 2 (y) + 1 2 ||Ax t+1 + By -c|| 2 2 + 1 2 ||y -ŷt+1 l || 2 N ŷt+1 ← y t+1 L ỹt+1 ← 1 L L l=1 ŷt+1 l if accelerate = True then // Over-relaxation of y θ t+1 ← (1 + 1 + 4(θ t ) 2 )/2 xt+1 = xt+1 + θ t -1 θ t+1 (x t+1 -xt ) + θ t θ t+1 (x t+1 -xt+1 ) ȳt+1 = ỹt+1 + θ t -1 θ t+1 ( ỹt+1 -ỹt ) + θ t θ t+1 ( ŷt+1 -ỹt+1 ) ẙt+1 = ỹt+1 + θ t -1 θ t+1 ( ỹt+1 -ỹt ) else xt+1 = xt+1 ȳt+1 = ỹt+1 ẙt+1 = ỹt+1 t ← t + 1 return xt , ỹt Algorithm 2 c yc l i c C D f o r Pro b l e m 1 .7 w i t h dua l e x t r a p o l at i o n input : Φ, y, λ, x (0) , ε param : T , K = 5, f dual = 10 Φx ← Φx (0) , θ (0) ← -∇F(Φx (0) )/ max(λ, ||Φ ∇F(Φx (0) )|| ∞ ) for t = 1, . . . , T do if t = 0 mod f dual then // compute
θ (t ) ← argmax D(θ) | θ ∈ {θ (t -1) , θ (t ) acc , θ (t ) res } ; // robust dual extr. with (1.16) if P(x (t) ) -D(θ (t ) ) < ε then break; for j = 1, . . . , p do x (t+1) j ← ST x (t) j - γx j ∇F(Φx) ||x j || 2 ), γλ ||x j || 2 Φx ← Φx + (x (t+1) j -x (t) j )x j return x (t) , θ (t )
Algorithm 3 Ge n e r a l i z e d S M O a l g o r i t h m input : Φ, ν, y param : τ > 0

Initializing α 0 ∈ R n , (α * ) 0 ∈ R n , γ 0 ∈ R k 1 and µ 0 ∈ R k 2 in F and set k = 0 while ∆ > τ do i ← argmin i∈I up ∇ α i f j ← argmax i∈I low ∇ α j f i * ← argmin i∈I * up ∇ α * i f j * ← argmax i∈I * low ∇ α * j f ∆ 1 ← ∇ α j f -∇ α i f ∆ 2 ← ∇ α * j f -∇ α * i f ∆ 3 ← -min j∈{1,...,k 1 } ∇ γ j f ∆ 4 ← max j∈{1,...,k 2 } |∇ µ j f| ∆ ← max(∆ 1 , ∆ 2 , ∆ 3 , ∆ 4 )// Select the maximal violating variables if ∆ = ∆ 1 then α k+1 ←Solution of subproblem for α i and α j if ∆ = ∆ 2 then (α * ) k+1 ← Solution of subproblem for α i * and α j * if ∆ = ∆ 3 then u = argmin i∈{1,...,k 1 } ∇ γ i f γ k+1 ← Solution of subproblem for γ u else u = argmax i∈{1,...,k 2 } |∇ µ i f| µ k+1 ← Solution of subproblem for µ u k ← k + 1 return θ k = α k , (α * ) k , γ k , µ k 2 

Present: Graphs and Machine Learning

This chapter is an overview of my work on graph (signal) processing. In particular, it is extracted from the following works:

• (SV-J3): Abdessamad [START_REF] Barbara | Maximal Solutions of Sparse Analysis Regularization[END_REF]. "Maximal Solutions of Sparse Analysis Regularization". In: J Optim Theory Appl 180.2, pp. 371-396. eprint: arXiv:1703.00192. 

Graphs and signals on graphs

Graphs and matrices associated to a graph Let G = (V, E) be an undirected graph on n vertices, meaning that up to an isomorphism V = [n], and p edges, i.e., 2-set of V which can be identified to E = [p]. This graph can be represented by several matrices.

• Adjacency matrix. The adjacency matrix A of G is defined as A ∈ R n×n such that A ij = 1 if i and j are connected, and 0 otherwise. Note that A is symmetric.

• Incidence matrix. The edge-vertex incidence matrix ∆ ∈ R p×n is defined as

(∆ ) e,v =        +1, if v = min(i, j) -1, if v = max(i, j) 0, otherwise, (2.1) 
where e = {i, j}.

• Combinatorial Laplacian matrix. The matrix L C (A) = ∆∆ is the so-called combinatorial graph Laplacian of G. The Laplacian L C is invariant under a change of orientation of the graph. It is also defined as L C (A) = D(A) -A where D(A) is the (diagonal) degree matrix

D(A) = diag ((d i ) n i=1 ) where d i = n j=1
A ij .

• Normalized Laplacian matrix. An alternative Laplacian is commonly used for instance in community detection

L N (A) = Id -D(A) -1 2 AD(A) -1 2 ,
the so-called "Normalized Laplacian". We use the convention that 0

-1 2 = 0 in the notation D(A) -1 2 .
Inverse problems on a graph we consider the following inverse problem for a signal over a graph. Assume that each vertex i ∈ [n] of the graph carries a signal x i . One observes the vector y ∈ R q and aims to estimate x ∈ R n , i.e.,

y = Φx + ε , (2.2)
where ε ∼ N(0, σ 2 Id q ) is a noise vector. We will say that an edge e = {i, j} of the graph carries the signal (∆ x ) e . A signal x ∈ R n has few discontinuities if ∆ x has few nonzero coefficients, i.e., ||∆ x || 0 is small, or equivalently if most edges of the graph carry the constant signal. In particular, if ||∆ x || 0 = s, we say that x is a vector of ∆ -sparsity s.

Geometry of Graph Total-Variation

This section describes the content of (SV-J3) written in collaboration with Abessamad Barbara and Aberrahim Jourani, published in J. Optim. Theory. Appl.. It also covers (SV-P3), a work in collaboration with Xavier Dupuis to appear in SIAM J. Optim..

We focus here on a convex regularization promoting edge-sparsity in the context of a linear inverse problem/regression problem where the regularization reads:

min x∈R n 1 2n ||y -Φx|| 2 2 + λ||∆ x|| 1 (2.3)
where y ∈ R q is a observation/response vector, Φ : R n → R q is the sensing/acquisition linear operator and λ > 0 the hyper-parameter used as a trade-off between fidelity and regularization. Note that at this point, we do not make any assumption on the incidence matrix ∆ or the acquisition operator Φ.

In a serie of works, I was interested with my coauthors on the following issue:

When the solution set of eq. (2.3) is not reduced to a singleton, what is its "geometry"?

In (SV-J3), we provided a geometrical interpretation of a solution with a maximal ∆support, namely the fact that such a solution lives in the relative interior of the solution set. More precisely, we are concerned with the characterization of a vector of maximal ∆ -support, i.e., a solution of (2.3) such that for every x ∈ X, ||∆ x|| 0 ||∆ x + || 0 . We denote by S the set of solution of (2.3) which have maximal D-support. Clearly this set is well-defined and contained in X. Our result is the following.

Theo r e m 2 .1 Let x ∈ X. Then x is a maximally ∆ -supported solution if, and only if, x ∈ ri X (or equivalently if x ∈ ri S). In other words,

S = ri S = ri X.
In (SV-P3), we refined this analysis to understand better the geometry of the polytope of the solutions at the price of more complicated statement.

In the spirit of [START_REF] Boyer | On representer theorems and convex regularization[END_REF], we first considered the compact polyhedron (Ker ∆ ) ⊥ ∩ B 1 , which is isomorphic to the projection of B 1 onto the quotient of the ambient space by the lineality space Ker D * . We showed that the convex polyhedron (Ker D * ) ⊥ ∩ B 1 is compact (i.e. is a convex polytope). It admits extreme points that belong to (Ker D * ) ⊥ ∩ ∂B 1 . And it is possible to do an "algebraic test": given x ∈ (Ker D * ) ⊥ ∩ ∂B 1 , s = sign(D * x), and J = cosupp(D * x),

x ∈ ext((Ker D * ) ⊥ ∩ B 1 ) ⇔ (Ker D * ) ⊥ ∩ (Ds) ⊥ ∩ Ker D * J = {0}.
The analysis of the level set (Ker ∆ ) ⊥ ∩ B 1 allows to derive the following result.

Theo r e m 2 .2 Let x ∈ ri(X), s = sign(∆ x), and

F = B r ∩ {x ∈ R n : ∆s, x = r} with r = ∆ x 1 . Then X = (x + Ker Φ) ∩ F.
It follows that

X = (x + Ker Φ) ∩ {x ∈ R n : sign(∆ x) s}, ri(X) = (x + Ker Φ) ∩ {x ∈ R n : sign(∆ x) = s}, dir(X) = Ker Φ ∩ Ker ∆ J (where J = cosupp(s)).
Moreover, the faces of X are exactly the sets of the form {x ∈ X : J ⊂ cosupp(∆ x)} with J ⊂ J; their relative interior is given by {x ∈ X : J = cosupp(∆ x)} and their direction by Ker Φ ∩ Ker ∆ J .

As an application, we show that "most" intersection of affine subspaces with the unit ball can been seen as a solution set of (2.3).

C oro l l a r y 2 .1 Let r 0 and A be an affine subspace such that ∅ = A ∩ B r ⊂ ∂B r . Then there exist Φ, y and λ > 0 such that the solution set of (2.3) is X = A ∩ B r and Ker Φ = dir(A).

From a practical point of view, these results add another argument towards the need for a good choice of regularizer/dictionary when a user seeks a robust and unique solution to its optimization problem. This work is mainly of theoretical interest since numerical applications should deal with exponential algorithms with respect to the signal dimension. Note however that in the case of the expected sparsity level of the maximal solution is logarithmic in the dimension, the enumeration problem is in this case tractable. We believe that these results will help other theoretical works around sparse analysis regularization, such as performing sensitivity analysis with respect to the dictionary used in the regularization.

O pen Qu e s t i o n 2 .1 Extension of our results to non-convex sparse analysis penalizations such as • p with 0 < p < 1 is an interesting research direction, where face decomposition of the polytope unit-ball needs to be replaced with stratification of semi-algebraic sets.

Oracle inequalities for graph signal estimators

This section describes the content of (SV-J5) written in collaboration with Pierre Bellec and Joseph Salmon, published in Electron. J. Statist. in 2017.

We consider a denoising problem i.e., q = n and Φ = Id. We consider here the so-called Graph-Slope variational scheme:

x := βGS ∈ argmin x∈R p 1 2n ||y -x|| 2 + ||∆ x|| [λ] ,
(2.4)

where

||∆ x|| [λ] = p j=1 λ j |∆ x| ↓ j , (2.5) with λ = (λ 1 , . . . , λ p ) ∈ R p satisfying λ 1 λ 2 • • • λ p
0, and using for any vector θ ∈ R p the notation (|θ| ↓ 1 , . . . , |θ| ↓ p ) for the non-increasing rearrangement of its amplitudes (|θ 1 |, . . . , |θ p |). According to [START_REF] Bogdan | SLOPE-adaptive variable selection via convex optimization[END_REF],

|| • || [λ] is a norm over R p if and only if λ 1 λ 2 • • • λ p 0
with at least one strict inequality. This is a consequence of the observation that if λ 1 λ 2 • • • λ p 0 then one can rewrite the Slope-norm of θ as the maximum over all τ ∈ S p (the set of permutations over [p]), of the quantity p i=1 λ j |θ τ(j) |:

||θ|| [λ] = max τ∈S p p j=1 λ j |θ τ(j) | = p j=1 λ j |θ| ↓ j .
(2.6)

If λ 1 = λ 2 = • • • = λ p then ||θ|| [λ]
= λ 1 ||θ|| 1 for all θ ∈ R p , so that the minimization problems (2.3) and (2.4) are the same. On the other hand, if λ j > λ j+1 for some j = 1, . . . , p -1, then the optimization problems (2.3) and (2.4) differ. For instance, if λ 1 > λ 2 > 0, all coefficients of ∆ x are equally penalized in the Graph-Lasso (2.3), while coefficients of ∆ x are not uniformly penalized in the Graph-Slope optimization problem (2.4).

Our result on this estimator is the following For any integer s and weights λ = (λ 1 , . . . , λ p ), define

Λ(λ, s) = s j=1 λ 2 j 1/2 . (2.7)
Theo r e m 2 .3 Assume that the Graph-Slope weights λ 1 • • • λ p 0 are such that the event

1 n ||∆ † ε|| * [λ]
1/2

(2.8) has probability at least 1/2. Then, for any δ ∈ (0, 1), we have with probability at least

1 -2δ 1 n ||x -x || 2 inf s∈[p]    inf x∈R n ||∆ x|| 0 s 1 n ||x -x || 2 + 1 2n 3nΛ(λ, s) 2κ(s) + σ + 2σ 2 log(1/δ) √ n 2    ,
(2.9)

where Λ(•, •) is defined in (2.7) and the compatibility factor κ(s) is defined as

κ(s) inf v∈R n :3Λ(λ,s)||∆ v|| 2 > p j=s+1 λ j |∆ v| ↓ j ||v|| ||∆ v|| 2 .
(2.10) Theorem 2.3 does not provide an explicit choice for the weights λ 1 • • • λ p . These weights should be large enough so that the event (2.8) has probability at least 1/2. We discussed in our paper (SV-J5) an MCMC approach to ensure this event, and also a theoretical approach. We detail here only the second approach based on the following result. Let us first write

ρ(G) = max j∈[p] ||(∆ ) † e j || ,
following the notation in (H ütter [START_REF] Rigollet | Optimal rates for total variation denoising[END_REF].

C oro l l a r y 2 .2 Assume that the Graph-Slope weights λ 1 . . . λ p 0 satisfy for any j ∈ [p]

nλ j 8σρ(G) log(2p/j).

(2.11)

Then, for any δ ∈ (0, 1), the oracle inequality (2.9) holds with probability at least

1 -2δ.
Under the same hypothesis as Theorem 2.3 but with the special choice nλ j = 8σρ(G) log(2p/j) for any j ∈ [p], then for any δ ∈ (0, 1), we have with probability at least 1 -2δ

1 n ||x -x || 2 inf s∈[p],x∈R n ||∆ x|| 0 s 1 n ||x -x || 2 + σ 2 n 48ρ 2 (G)s κ 2 (s) log 2ep s + σ 2 n (2 + 16 log 1 δ ) .
(2.12) We used FISTA on the dual problem1 to solve the Graph-Slope denoising problem.

Note that if λ 1 = • • • = λ p = λ, then the event (2.8) reduces to (∆ ) † ε ∞ nλ/2. The random variable (∆ ) † ε ∞ is
To illustrate the behavior of Graph-Slope, we first propose two synthetic experiments in moderate dimension. The first one is concerned with the so-called "Caveman" graph and the second one with the 1D path graph.

For these two scenarios, we analyze the performance following the same protocol. For a given noise level σ, we use the bounds derived in Theorem 2.3 (we dropped the constant term 8) and in (H ütter and Rigollet, 2016), i.e.,

λ GL = ρ(G)σ 2 log(p) n and (λ GS ) j = ρ(G)σ 2 log(p/j) n ∀j ∈ [p] . (2.13)
For every n 0 between 0 and p, we generate 1000 signals as follows. We draw J uniformly at random among all the subsets of [p] of size n 0 . Then, we let Π J be the projection onto Ker ∆ J and generate a vector g ∼ N(0, Id n ). We then construct x = c(Id -Π J )g where c is a given constant (here c = 8). This constrains the signal x to be of ∆ -sparsity at most p -n 0 .

We corrupt the signals by adding a zero mean Gaussian noise with variance σ 2 , and run both the Graph-Lasso estimator and the Graph-Slope estimator. We then compute the mean of the mean-squared error (MSE), the false detection rate (FDR) and the true detection rate (TDR). To clarify our vocabulary, given an estimator x and a ground truth x , the MSE reads (1/n)||x -x|| 2 , while the FDR and TDR read, respectively,

FDR(x, x ) =    |{j∈[p]| j∈supp(∆ x) and j ∈supp(∆ x )}| | supp(∆ x)| if ∆ x = 0 0 if ∆ x = 0, (2.14) and TDR(x, x ) =    |{j∈[p]| j∈supp(∆ x) and j∈supp(∆ x )}| | supp(∆ x )| , if ∆ x = 0, 0, if ∆ x = 0, (2.15)
where for any

z ∈ R p , supp(z) = j ∈ [p] | z j = 0 .
Example on Caveman The caveman model was introduced to model small-world phenomenon in sociology. Here we consider its relaxed version, which is a graph formed by l cliques of size k (hence n = lk), such that with probability q ∈ [0, 1], an edge of a clique is linked to a different clique. In our experiment, we set l = 4, k = 10 (n = 40) and q = 0.1. We provide a visualisation of such a graph in Figure 2.1a. For this realization, we have p = 180. The rewired edges are indicated in blue in Figure 2.1a whereas the edges similar to the complete graph on 10 nodes are in black. The signals are generated as random vectors of given ∆ -sparsity with a noise level of σ = 0.2. Figure 2.1b shows the weights decay.

Figures 2.1c-2.1e represent the evolution of the MSE and TDR in function of the level of ∆ -sparsity. We observe that while the MSE is close between the Graph-Lasso and the Graph-Slope estimator at low level of sparsity, the TDR is vastly improved in the case of Graph-Slope, with a small price concerning the FDR (a bit more for the Monte Carlo choice of the weights). Hence empirically, Graph-Slope will make more discoveries than Graph-Lasso without impacting the overall FDR/MSE, and even improving it.

Example on a path: 1D-Total Variation The classical 1D-Total Variation corresponds to the Graph-Lasso estimator βGL when G is the path graph over n vertices, hence with p = n -1 edges. In our experiments, we take n = 100, σ = 0.6 and a very sparse gradient (s = 4). According to these values, and taking a random amplitude for each step, we generate a piecewise-constant signal. We display a typical realization of such a signal in Figure 2.2a. Figure 2.2b shows the weights decay. Note that in this case, the Monte-Carlo weights shape differs from the one in the previous experiment. Indeed, they are adapated to the underlying graph, contrary to the theoretical weights λ GS which depend only on the size of the graph. Figures 2.2c-2.2e represent the evolution of the MSE and TDR in function of the level of ∆ -sparsity. Here, Graph-Slope does not improve the MSE significantly. However, as for the caveman experiments, Graph-Slope is more likely to make more discoveries than Graph-Lasso for a small price concerning the FDR.

Guarantees for the dynamic stochastic block model

This section describes the content of (SV-P1) written in collaboration with Nicolas Keriven, submitted to Eletronic Journal of Statistics.

The goal of a clustering algorithm is to give an estimator Θ of the node memberships Θ, up to permutation of the communities labels. We consider the following measure of discrepancy between Θ and an estimator Θ (Lei and Rinaldo, 2015b):

E( Θ, Θ) = min Q∈P k 1 n || ΘQ -Θ|| 0 , (2.16)
where P k is the set of permutation matrices of [k] and || • || 0 counts the number of nonzero elements of a matrix. While other error measures are possible, as we will see one can generally relate them to a spectral concentration property, which will be the main focus of this paper.

In the dynamic case, a possible goal is to estimate Θ 1 , . . . , Θ t for all time steps simultaneously [START_REF] Xu | Continuous Empirical Characteristic Function Estimation of Mixtures of Normal Parameters[END_REF]Pensky and Zhang, 2019b). Here we consider a slightly different goal: at a given time step t, we seek to estimate Θ t with the best precision possible, by exploiting past data. In general, this will give rise to methods that are computationally lighter than simultaneous estimation of all the Θ t 's, and more amenable to streaming computing, where one maintains an estimator without having to keep all past data in memory. Naturally, such methods could be applied independently at each time step to produce estimators of all the Θ t 's, but this is not the primary goal here.

Spectral Clustering (SC) algorithm Spectral Clustering [START_REF] Ng | On Spectral Clustering: Analysis and Algorithm[END_REF] is nowadays one of the leading methods to identify communities in an unsupervised setting. The basic idea is to solve the K-means problem [START_REF] Lloyd | Least Squares Quantization in PCM[END_REF] on the K leading eigenvectors E K of either the adjacency matrix or (normalized) Laplacian. Solving the K-means, i.e., obtaining

( Θ, C) ∈ Argmin Θ∈R n×K ,C∈R K×K ||ΘC -E K || 2 F , (2.17)
is known to be NP-hard, but several approximation algorithms, such as [START_REF] Kumar | A Simple Linear Time (1 + ε)-Approximation Algorithm for k-Means Clustering in Any Dimensions[END_REF], are known to produce 1 + δ approximate solutions ( Θ, Ĉ)

|| Θ Ĉ -E K || 2 F (1 + δ)|| Θ C -E K || 2 F .
The SC is summarized in Algorithm 4.

Algorithm 4 Spectral Clustering algorithm Data: Matrix M ∈ R n×n (typically adjacency or normalized Laplacian), number of communities K, approximation ratio δ > 0. Result: Estimated communities Θ ∈ R n×K . Compute the K leading eigenvectors E K of M. Obtain a (1 + δ)-approximation ( Θ, Ĉ) of (2.17). Return Θ.

In the dynamic case, a typical approach to exploit past data is to replace the adjacency matrix A t with a version "smoothed" in time A smooth t , and feed either P = A smooth t or the corresponding Laplacian L = L(A smooth t ) to the classical SC algorithm. In (Pensky and Zhang, 2019b), the authors consider the smoothed adjacency matrix as an average over its last r values:

A unif t = 1 r r-1 k=0 A t-k . (2.18)
Note that, in the original paper, the authors sometimes consider non-uniform weights due to potential changes in time of the connectivity matrix B t , but in our case we consider a fixed B, and thus uniform weights 1 r . In this paper, we will also consider the "exponentially smoothed" estimator proposed by (Chi et al., 2007;[START_REF] Chi | On evolutionary spectral clustering[END_REF][START_REF] Xu | Evolutionary spectral clustering with adaptative forgetting factor[END_REF], which is computed recursively as:

A exp t = (1 -λ)A exp t-1 + λA t .
(2.19) for some "forgetting factor" λ ∈ (0, 1], and A exp 0 = A 0 . Compared to the uniform estimator (2.18), this kind of estimator is somewhat more amenable to streaming and online computing, since only the current A exp t needs to be stored in memory instead of the last r values A t , A t-1 , . . . , A t-r+1 . Note however that A exp t may be denser that a typical adjacency matrix, so the memory gain is sometimes mitigated depending on the case.

Stochastic Block Model Notations:

• K the number of communities. Each node belongs to exactly one community.

• Θ ∈ {0, 1} n×K the 0 -1 matrix representing the memberships of nodes, where for each node i, Θ ik = 1 indicates that it belongs to the kth community, and is 0 otherwise.

• B ∈ [0, 1] K×K is a symmetric connectivity matrix

• For i < j, we have

A ij | {Θ ik = 1, Θ j = 1} ∼ Ber(B k ),
and Ber(p) indicates a Bernoulli random variable with parameter p.

• P = ΘBΘ ∈ R n×n the matrix storing the probabilities of connection between two nodes off its diagonal.

We have E(A) = P -diag(P).

Typically, B has high diagonal terms and low off-diagonal terms. We will consider B of the form

B = α n B 0 , (2.20)
for some α n ∈ (0, 1) and B 0 ∈ [0, 1] K×K whose elements are denoted by b (0)

k . It is known that the rate α n when n → ∞ is the main key quantity when analyzing the properties of random graphs. Typical settings include α n ∼ 1 (dense graphs), α n ∼ 1/n (sparse graphs), or middle grounds such as α n ∼ log n n , usually referred to "relatively sparse" graphs.

For some maximum and minimum community sizes n max n K and n min n K , we define the set of admissible community sizes

N def. = {(n k ) K k=1 | n min n k n max , k n k = n}, and nmax def. = max (n ) ∈N,k K n b (0) k , nmin def. = min (n ) ∈N,k K n b (0) k .
(2.21)

These quantities are such that the expected degree will be comprised between α n nmin and α n nmax . For simplicity, we will sometimes express our results with B 0 equal to:

B 0 = (1 -τ)Id K + τ1 K 1 K . (2.22)
In other words, B contains α n on its diagonal and τα n outside. For this expression of B 0 , we have nmax = (1 -τ)n max + nτ, and similarly for nmin . Interestingly, in the case of balanced communities n max , n min ∼ n K , we have then

nmin , nmax ∼ n if τ ∼ 1, n K if τ ∼ 1 K .
Dynamic SBM The Dynamic SBM (DSBM) is a random model for generating adjacency matrices A 0 , . . . , A t at each time step. Each A i will be generated according to a classical SBM with constant number of nodes n, number of communities K and connectivity matrix B, but changing node memberships Θ t . Note that several works consider changing number of nodes [START_REF] Xu | Stochastic Block Transition Models for Dynamic Networks[END_REF] or changing connectivity matrix (Pensky and Zhang, 2019a), but for simplicity we assume that they are constant in time here. I also focus on the deterministic model of the membership, i.e., the simplest one, adopted in (Pensky and Zhang, 2019a), is to consider that Θ 0 , . . . , Θ t are deterministic variables contrary to Markov chain model as in [START_REF] Yang | Detecting communities and their evolutions in dynamic social networks-a Bayesian approach[END_REF]. In this case, we will assume that only a number s n of nodes change communities between each time step t -1 and t, and denote ε n = s/n this relative proportion of nodes. We will also assume that at all time steps, the communities sizes are comprised between some n min and n max , which will typically be of the order of n/K for balanced communities.

From Spectral Clustering to spectral norm concentration. As described in (Lei and Rinaldo, 2015b), a key quantity for analyzing SC algorithm is the concentration of the adjacency matrix around its expectation in spectral norm. As a first contribution, we prove the following lemma, which is a generalisation of this result to the normalized Laplacian.

L emm a 2 .1 Let P = ΘBΘ correspond to some SBM with K communities, where n max , n max and n min are respectively the largest, second-largest and smallest community size. Assume B = α n B 0 for any B 0 with smallest eigenvalue γ. Let P be an estimator of P, and Θ be the output of Algorithm 4 on P with a (1 + δ)-approximate k-means algorithm. Then

E( Θ, Θ) (1 + δ) n max K nα 2 n n 2 min γ 2 || P -P|| 2 , (2.23)
Similarly, if L is an estimator of L(P) and Θ is the output of Algorithm 4 on L, it holds that

E( Θ, Θ) (1 + δ) n max K n2 max nn 2 min γ 2 || L -L(P)|| 2 .
(2.24)

When B 0 is defined as (2.22), we have γ = 1 -τ.

Concentration. In (Pensky and Zhang, 2019b) 

= min(1, √ nα n ε n ),
(2.25) they show that, for an optimal choice of window size r ∼ 1 ρ

(PZ) n
, it holds that

||A unif t -P t || nα n ρ (PZ)
n .

(2.26)

In particular, the concentration is better if ρ (PZ) n = o(1), that is:

ε n = o 1 α n n .
(2.27)

In other words, there is an improvement if we assume sufficient smoothness in time, which then leads to a better error rate E( Θ, Θ)

K 2 ρ (PZ)
n α n n when using A unif t in the SC algorithm. Note that, with this proof technique, a constant smoothness ε n ∼ 1 does not improve the error rate.

We remark that, despite the assumption on the smoothness and the availability of more data, the result above still assumes the relative sparse case. However, with sufficient smoothness, it should be possible to weaken the hypothesis made on the sparsity α n , since intuitively, if there is more data available where the communities are almost the same as the present time step, the density of edges should not need to be as large. We solve this in the following theorem, which is our central contribution.

Theo r e m 2 .4 Consider a DSBM with a fixed B 0 . Define

ρ n def. = min 1, √ nmax α n ε n .
(2.28) Assume t t min def.

= log( ρn αnn )

2 log(1-ρ n ) , and For all ν > 0, there is a universal constant C ν such that, with probability at least 1 -n -ν , it holds that (2.30) This result improves over the results by Pensky and Zhang (2019a) in several ways:

α n ρ n log n n . ( 2 
||A smooth t -P t || C ν √ nα n ρ n .
(i) First, we improve ρ (PZ) n to ρ n by replacing n with nmax n. In the case where (B 0 ) k stays bounded, for instance if it is defined as (2.22) with τ ∼ 1 K , we have nmax ∼ n K and this improves the bound (2.30) compared to (2.26). (ii) We also extend the result to the exponential estimator with the right choice of forgetting factor.

(iii) More importantly, the main feature of our result is the weaker condition (2.29), which relates the sparsity and the smoothness of the DSBM. Strinkingly, if

ε n ∼ n/ nmax log 2 n , (2.31)
which is a slight strengthening of (2.27), then our result is valid in the sparse regime α n ∼ 1 n , which is a significant improvement compared to previous works. In any case, if we have exactly α n ρ n ∼ log n n , then as previously Lemma 2.1 yields that E( Θ, Θ) → 0 when K = o( log n).

O pen Qu e s t i o n 2 .3 We did not discuss how to select in practice the various parameters of the algorithms such as the number of communities K or the forgetting factor λ, as well as the analysis of varying K, n, or B. An outstanding conjecture about the sparse case and ε n ∼ 1 is formulated by [START_REF] Ghasemian | Detectability thresholds and optimal algorithms for community structure in dynamic networks[END_REF].

To our knowledge, the normalized Laplacian in the DSBM has never been studied theoretically. Our result is the following.

Theo r e m 2 .5 Consider the deterministic DSBM with B satisfying (2.22), and either the uniform estimator A smooth t = A unif t with r ∼ 1 ρ n or the exponential estimator

A smooth t = A exp t with λ = ρ n . Assume t t min .
For all ν > 0, there exist universal constants C ν , C ν > 0 such that: if

α n ρ n C ν µ B log n nmin , (2.32)
then with probability at least 1 -n -ν , it holds that

||L(A smooth t ) -L(P t )|| C ν µ B nρ n n2 min α n .
(2.33)

In the case of balanced communities, the result of theorem 2.5 combined with lemma 2.1 yields the same error rate than in the case of the adjacency matrix with theorem 2.4 and lemma 2.1, even in terms of K when nmin , nmax ∼ n K . Note however that in the latter, the condition (2.32) is slightly stronger than (2.29). In practice however, it is well-known that the normalized Laplacian generally performs better.

O pen Qu e s t i o n 2 .4 This spectral concentration of the normalized Laplacian, which shows that ||L(A) -L(P)|| → 0 in the relatively sparse case, may have consequences in other asymptotic analyses of the spectral convergence of the normalized Laplacian [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Tang | Limit theorems for eigenvectors of the normalized Laplacian for random graphs[END_REF][START_REF] Levie | Transferability of Spectral Graph Convolutional Neural Networks[END_REF].

Graph Convolutional Networks on Large Random Graphs

This section describes the content of (SV-C2) written in collaboration with Alberto Bietti and Nicolas Keriven, accepted at NeurIPS.

Graph Convolutional Networks (GCN) [START_REF] Bruna | Spectral Networks and Locally Connected Networks on Graphs[END_REF][START_REF] Defferrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF][START_REF] Kipf | Semi-Supervised Learning with Graph Convolutional Networks[END_REF] are deep architectures defined on graphs inspired by classical Convolutional Neural Networks (CNN). In the past few years, they have been successfully applied to, for instance, node clustering [START_REF] Bruna | Community Detection with Graph Neural Networks[END_REF], semi-supervised learning [START_REF] Kipf | Semi-Supervised Learning with Graph Convolutional Networks[END_REF], or graph regression [START_REF] Kearnes | Molecular graph convolutions: moving beyond fingerprints[END_REF][START_REF] Gilmer | Neural Message Passing for Quantum Chemistry[END_REF], and remain one of the most popular variant of Graph Neural Networks (GNN). We refer the reader to the review papers [START_REF] Bronstein | Geometric Deep Learning: Going beyond Euclidean data[END_REF][START_REF] Wu | A Comprehensive Survey on Graph Neural Networks[END_REF].

Many recent results have improved the theoretical understanding of GNNs. While some architectures have been shown to be universal [START_REF] Maron | On the Universality of Invariant Networks[END_REF][START_REF] Keriven | Universal Invariant and Equivariant Graph Neural Networks[END_REF] but not implementable in practice, several studies have characterized GNNs according to their power to distinguish (or not) graph isomorphisms [START_REF] Xu | How Powerful are Graph Neural Networks?[END_REF][START_REF] Chen | On the equivalence between graph isomorphism testing and function approximation with GNNs[END_REF][START_REF] Maron | Provably Powerful Graph Networks[END_REF] or compute combinatorial graph parameters [START_REF] Chen | Can graph neural networks count substructures?[END_REF]. However, such notions usually become moot for large graphs, which are almost never isomorphic to each other, but for which GCNs have proved to be successful in identifying large-scale structures nonetheless. Under this light, a relevant notion is that of stability: since GCNs are trained then tested on different (large) graphs, how much does a change in the graph structure affect the result? In this fashion, classical CNNs on images have been shown to be robust to deformations of the space [START_REF] Mallat | Group Invariant Scattering[END_REF][START_REF] Bietti | Group invariance, stability to deformations, and complexity of deep convolutional representations[END_REF]. However the notion of "deformation" is somewhat ill-defined on discrete graphs, and most stability studies use purely discrete metrics that may not be intuitive in representing large-scale structures (Gama, Bruna, and Ribeiro, 2019b).

In statistics and machine learning, there is a long history of modelling large graphs with random models, see for instance [START_REF] Bollobas | Random Graphs[END_REF][START_REF] Goldenberg | A survey of statistical network models[END_REF][START_REF] Kolaczyk | Statistical Analysis of Network Data: Methods and Models[END_REF][START_REF] Matias | Modeling heterogeneity in random graphs through latent space models: a selective review[END_REF] and references therein for reviews. Latent space models represent each node as a vector of latent variables and independently connect the nodes according to a similarity kernel applied to their latent representations. This large family of random graphs models includes for instance the classical Erd ös-Rényi model, Stochastic Block Models (SBM) [START_REF] Holland | Stochastic blockmodels: First Steps[END_REF], random geometric graphs [START_REF] Penrose | Random Geometric Graphs[END_REF], or ε-graphs [START_REF] Calder | Improved spectral convergence rates for graph Laplacians on epsilon-graphs and k-NN graphs[END_REF], among many others [START_REF] Matias | Modeling heterogeneity in random graphs through latent space models: a selective review[END_REF]. A key parameter in such models is the so-called sparsity factor α n that controls the number of edges in O(n 2 α n ) with respect to the number of nodes n. The dense case α n ∼ 1 is the easiest to analyze, but often not realistic for real-world graphs. On the contrary, many questions are still open in the sparse case α n ∼ 1 n [START_REF] Abbe | Community detection and stochastic block models: recent developments[END_REF]. A middle ground, which will be the setting for our analysis, is the so-called relatively sparse case α n ∼ log n n , for which several non-trivial results are known (Lei and Rinaldo, 2015b; SV-P1), while being more realistic than the dense case.

Notations. The norm || • || denotes the Euclidean norm for vector and spectral (operator) norm for matrices. We denote by B(X) the space of bounded real-valued functions on X equipped with the norm ||f|| ∞ = sup x |f(x)|. Given a probability distribution P on X, we denote by L 2 (P) the Hilbert space of P-square-integrable functions endowed with its canonical inner product. For multivariate functions

f = [f 1 , . . . , f d ] and any norm || • ||, we define ||f|| = ( d i=1 ||f i || 2 ) 1 2 . For two probability distributions P, Q on R d , we define the Wasserstein-2 distance W 2 2 (P, Q) = inf{E||X -Y|| 2 | X ∼ P, Y ∼ Q},
where the infimum is over all joint distributions of (X, Y). We denote by f P the push-forward of P by f, that is, the distribution of f(X) when X ∼ P. A graph G = (A, Z) with n nodes is represented by a symmetric adjacency matrix A ∈ {0, 1} n×n such that a ij = 1 if there is an edge between nodes i and j, and a matrix of signals over the nodes Z ∈ R n×d z , where z i ∈ R d z is the multi-dimensional signal at node i.

Graph Convolutional Networks (GCN). GCNs are defined by alternating filters on graph signals and non-linearities. We use analytic filters (said of order-k if β = 0 for k + 1):

h : R → R, h(λ) = k 0 β k λ k .
(2.34)

We write h(L) = k β k L k , i.e., we apply h to the eigenvalues of L when it is diagonalizable. A GCN with M layers is defined as follows. The signal at the input layer is

Z (0) = Z with dimension d 0 = d z and columns z (0) j ∈ R n .
Then, at layer , the signal

Z ( ) ∈ R n×d with columns z ( ) j ∈ R n is propagated as follows: ∀j = 1, . . . d +1 , z ( +1) j = ρ d i=1 h ( ) ij (L)z ( ) i + b ( ) j 1 n ∈ R n , (2.35) 
where h

( ) ij (λ) = k β ( ) ijk λ k are learnable analytic filters, b ( ) j 
∈ R are learnable biases, and the activation function ρ : R → R is applied pointwise. Once the signal at the final layer Z (M) is obtained, the output of the entire GCN is either a signal over the nodes denoted by Φ A (Z) ∈ R n×d out or a single vector denoted by ΦA (Z) ∈ R d out obtained with an additional pooling over the nodes: (2.36) where θ ∈ R d M ×d out , b ∈ R d out are the final layer weights and bias, and Φ A (Z) i ∈ R d out is the output signal at node i. This general model of GCN encompasses several models of the literature, including all spectral-based GCNs [START_REF] Bruna | Spectral Networks and Locally Connected Networks on Graphs[END_REF][START_REF] Defferrard | Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering[END_REF], or GCNs with order-1 filters [START_REF] Kipf | Semi-Supervised Learning with Graph Convolutional Networks[END_REF] which are assimilable to message-passing networks [START_REF] Gilmer | Neural Message Passing for Quantum Chemistry[END_REF], see [START_REF] Wu | A Comprehensive Survey on Graph Neural Networks[END_REF][START_REF] Bronstein | Geometric Deep Learning: Going beyond Euclidean data[END_REF] for reviews. For message-passing networks, note that almost all our results would also be valid by replacing the sum over neighbors by another aggregation function such as max. We assume (true for ReLU, modulus, or sigmoid) that the function ρ satisfies:

Φ A (Z) def. = Z (M) θ + 1 n b , ΦA (Z) def. = 1 n n i=1 Φ A (Z) i ,
|ρ(x)| |x|, |ρ(x) -ρ(y)| |x -y|.
(2.37)

Two graphs G = (A, Z), G = (A , Z ) are said to be isomorphic if one can be obtained from the other by relabelling the nodes. In other words, there exists a permutation matrix σ ∈ Σ n , where Σ n is the set of all permutation matrices, such that

A = σ • A def. = σA σ and Z = σ • Z def.
= σZ , where "σ•" is a common notation for permuted matrices or signal over nodes. In graph theory, functions that are invariant or equivariant to permutations are of primary importance (respectively, permuting the input graph does not change the output, or permutes the output). These properties are hard-coded in the structure of GCNs:

Φ σ•A (σ • Z) = σ • Φ A (Z) and Φσ•A (σ • Z) = ΦA (Z).
Convergence of Graph Convolutional Networks. We show that a GCN applied to a random graph G ∼ Γ will be close to the corresponding c-GCN applied to Γ . In the invariant case, ΦA (Z) and ΦW,P (f) are both vectors in R d out . In the equivariant case, we will show that the output signal Φ A (Z) i ∈ R d out at each node is close to the function Φ W,P (f) evaluated at x i . To measure this, we consider the (square root of the) Mean Square Error at the node level: for a signal

Z = [z 1 , . . . , z n ] ∈ R n×d out , a function f : X → R d out and X = [x 1 , . . . , x n ], we define MSE X (Z, f) def. = (n -1 n i=1 ||Z i -f(x i )|| 2 ) 1/2 .
In the following theorem we define the shorthand D X (ρ)

def. = c Lip. c min √ d x + c max +c Lip. c min log n X ρ .
Theo r e m 2 .6 Let Φ be a GCN and G be a graph with n nodes generated from a model Γ , denote by X its latent variables. There are two universal constants c 1 , c 2 such that the following holds. Take any ρ > 0, assume n is large enough such that

n c 1 D X (ρ) 2 + 1 ρ , and the sparsity level is such that α n c 2 c max c -2 min • n -1 log n. Then, with probability at least 1 -ρ, MSE X (Φ A (Z), Φ W,P (f)) R n def. = C 1 D X ρ d n -1 2 + C 2 (nα n ) -1 2 , || ΦA (Z) -ΦW,P (f)|| R n + C 3 log(1/ρ)n -1 2 .
Theo r e m 2 .7 Adopt the notations of Theorem 2.6. For r = 1, 2, define the distribution Q r = Φ W r ,P r (f r ) P r . With probability 1 -ρ, we have

min σ 1 n i ||Φ A 1 (Z 1 ) i -Φ A 2 (Z 2 ) σ(i) || 2 W 2 (Q 1 , Q 2 ) + R n + C 1 ( 1 n dz + (C 2 + log 1 4 1 ρ ) 1 n 4 ) (2.39)
where C 1 and C 2 are defined in the supplementary material. When f 1 and f 2 are piecewise Lipschitz, the last terms are replaced by C 1 (

1 n min(dx,dz) + (C 2 + log 1 4 1 ρ ) 1 n 4 ) for some C 1 , C 2 .
In other words, we express stability in terms of a Wasserstein metric between the pushforwards of the measures P r by their respective c-GCNs representations. By definition, the l.h.s. of (2.39) is invariant to permutation of the graphs G r . Moreover, for ϕ ∈ Σ P we have Φ W ϕ ,P (f • ϕ) P = Φ W,P (f) (ϕ P) = Φ W,P (f) P, and therefore the r.h.s. of (2.39) is also invariant to permutation. We can now analyze directly stability c-GCNs to deformation of random graph models, and obtain finite-sample bounds through these results.

Stability of continuous GCNs to small deformations. Assume from now on that X ⊂ R d . For a random graph model Γ = (P, W, f), we consider deformation-based perturbations to P, W, or f, given a diffeomorphism τ : X → X. Because the random graph is defined on the support of P, we will assume that the perturbations ϕ(x) = x -τ(x) stay on this support and are such that ϕ P is absolutely continuous w.r.t P with Radon-Nikodym derivative q ϕ (x) = dϕ P/dP(x) satisfying ∀x ∈ X, q ϕ (x), q ϕ (x) -1 C P,ϕ < ∞.

(A1)

In addition to ∇τ ∞ , the following quantity will also be useful to control the size of deformations:

N P (ϕ) := sup x∈X |q ϕ (x) -1| . (2.40)
When ϕ is the identity, or when it leaves P invariant (e.g., a translation when P is the Lebesgue measure, a rotation when P is the surface measure on the sphere, or more generally, if ϕ is an element of a transformation group and P is the corresponding Haar measure), then we have q ϕ = 1, so that N P (ϕ) measures how much ϕ deviates from such neutral elements and thus quantifies the size of deformations. In particular, when P is proportional to the Lebesgue measure and ∇τ ∞ < 1, we have q ϕ (x) = det(I -∇τ(x)) -1 ; then, for small enough ∇τ ∞ , we obtain N P (ϕ) d ∇τ ∞ , where d is the dimension of X, recovering the more standard quantity of [START_REF] Mallat | Group Invariant Scattering[END_REF]. In this case, we also have the bound C P,ϕ 2 d if we assume ∇τ ∞ 1/2. Nevertheless, our definitions allow us to extend this to more general choices of measures P. When the measure ϕ P is not absolutely continuous w.r.t. P, most of our stability results do not apply, but they still provide insight by applying a small amount of Gaussian noise to the data distribution P, as in smoothed analysis.

Assumptions on the random graphs. We will often assume that the kernel W satifies

C w := sup x |W(x, x )|dP(x ) < ∞, (integrability), (A2) W(x, x ) = w(x -x ), (translation-invariance). ( A3 
)
It includes for instance Gaussian kernels or ε-graph kernels as special cases. In contrast to Euclidian domains, (A3) does not suffice to make the Laplacian operator equivariant to translations (since P is an arbitrary measure in general), but still allows us to derive stability guarantees under additional assumptions. We will assume the kernel w is differentiable, with |∇w(x)| decreasing with |x|, and make the following integrability assumptions, for a given measure P,

C ∇w := sup x∈X |∇w((x -x )/2)| • |x -x|dP(x ) < ∞. (A4)
While C w and C ∇w can be easily bounded when w, ∇w and X are bounded, they are typically much smaller than such naive bounds when w and ∇w are well localized in space with fast decays, e.g., for the Gaussian kernel or a smooth ε-graph kernel with compact support.

Changes to W and P. We first consider applying deformations to the kernel W, which amounts to a perturbation to the edge structure of the graph. For GCNs, this affects the Laplacian operator used for the filters, and could be seen as a perturbation of the "graph shift operator" in the framework of Gama, Bruna, and Ribeiro (2019b). The following result, shows that in this case the stability of equivariant GCN representations is controlled by the deformation size ∇τ ∞ , and does not depend on the change-ofmeasure quantity N P (ϕ). We write W τ (x, x ) = W(x -τ(x), x -τ(x )). We also consider random graphs generated by a perturbation of P through a push-forward ϕ(x), leading to a measure ϕ P, which corresponds to a change in the node distribution. For an invariant c-GCN, with the final averaging layer acting as a "pooling" operation which builds invariance to the translation component in ϕ, we obtain the following result, which does not require a translation-invariant kernel, but displays a dependence on the change-of-measure quantity N P (ϕ).

Theo r e m 2 .8 -( K e r n e l a n d d i s t r i b u t i o n d e f o r m at i o n ) Consider an equivariant GCN representation Φ W,P (f) on a random graph Γ = (P, W, f). As-sume (A2), (A3), (A4) and ∇τ ∞ 1/2. We have W 2 (Φ W τ ,P (f) P, Φ W,P (f) P) (2.41) where C only depends on the graphs through C w , C ∇w , and c min .

Φ W τ ,P (f) -Φ W,P (f) L 2 (P) C ∇τ ∞ f ,
Consider now an invariant GCN representation ΦW,P (f) on a random graph Γ = (P, W, f). Assume (A1) and (A2). We have ΦW,ϕ P (f) -ΦW,P (f) 2 CN P (ϕ) f , where C only depends on the graphs through C w , C P,ϕ , and c min .

Deformations of the signal f. Finally, we consider deformations of the signal on the graph, i.e., a deformation L τ f(x) = f(x -τ(x)), and show a bound similar to the ones in the Euclidian case (2.38). For an invariant c-GCN with a final pooling operation, we obtain the following stability bound.

Theo r e m 2 .9 -( S i g na l d e f o r m at i o n ) Consider an invariant GCN representation ΦW,P (f) on a random graph Γ = (P, W, f). Assume (A1), (A2), (A3), (A4), and ∇τ ∞ 1/2. We have

ΦW,P (L τ f) -ΦW,P (f) 2 (C 1 N P (ϕ) + C 2 ∇τ ∞ ) f ,
where C 1 and C 2 only depend on the graphs through C w , C ∇w , C P,ϕ , and c min .

Interestingly, while the Laplacian here is fixed, part of our proof of this result relies on combining results for the perturbed Laplacians from the above two results in order to propagate the deformation operator L τ throughout the layers. This results in a dependence on both ∇τ ∞ and N P (ϕ). When P is proportional to the Lebesgue measure, since N P (ϕ) is controlled by ∇τ ∞ , the GCN is invariant to translations and stable to deformations, similar to Euclidian domains [START_REF] Mallat | Group Invariant Scattering[END_REF].

O pen Qu e s t i o n 2 .5 It would be useful to improve the dependence of our bounds on regularity properties of the filters, as done in (Gama, Bruna, and Ribeiro, 2019b) for the discrete setting, while preserving the mild dependence on the number of filters.

In the same vein, finer results may be obtained in particular cases: e.g., the case where X is a sub-manifold can be studied under the light of Riemannian geometry, stability bounds on SBMs may be expressed with a direct dependence on their parameters, or more explicit stability bounds may be obtained when the (c-)GCN is a structured architecture like the scattering transform on graphs (Gama, Bruna, and Ribeiro, 2019a).

Convergence results can also be obtained for many other models of random graphs like k-Nearest Neighbor graphs [START_REF] Calder | Improved spectral convergence rates for graph Laplacians on epsilon-graphs and k-NN graphs[END_REF]. This chapter is written around these papers:

• (SV-J7): Charles-Alban [START_REF] Deledalle | CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration[END_REF]. "CLEAR: Covariant LEAst-square Re-fitting with applications to image restoration". In: SIAM J Imaging Sci 10.1, pp. 243-284. eprint: arXiv:1606.05158.

• (SV-J1): Charles-Alban Deledalle, Nicolas Papadakis, et al. (2020). "Block based refitting in 12 sparse regularisation". In: J Math Imaging Vis (to appear). eprint: arXiv:1910.11186.

• (SV-C1): Quentin Bertrand et al. (2020). "Implicit differentiation of Lasso-type models for hyperparameter optimization". In: ICML. eprint: arXiv:2002.08943.

• (SV-P2): Barbara Pascal et al. (2020). Automated data-driven selection of the hyperparameters for total-variation based texture segmentation. Tech. rep. eprint: arXiv: 2004.09434.

Differentiation of an algorithm

We consider algorithms whose solutions x(y) are obtained via an iterative scheme of the form

x k = γ(a k ), a k+1 = ψ(a k , y). (3.1)
Here, a k ∈ A is a sequence of auxiliary variables, ψ : A × R n → A is a fixed point operator in the sense that a k converges to a , and γ : A → R p is non-expansive (i.e., 1-Lipschitz) entailing x k converges to x = γ(a ).

As a result, for almost all y and for any direction d ∈ R n , the directional derivatives D k x = J xk (y)d and D k a = J a k (y)d can be jointly obtained with x k and a k as

           x k = γ(a k ), a k+1 = ψ(a k , y), D k x = Γ a D k a , D k+1 a = Ψ a D k a + Ψ y d, (3.2) 
where Γ a = ∂γ(a) ∂a a k , Ψ a = ∂ψ(a,y) ∂a a k and Ψ y = ∂ψ(a k ,y) ∂y y

. Interestingly, in all considered cases, the cost of evaluating Γ a , Ψ a and Ψ y is about the same as the one of evaluating γ and ψ. As a result, the complexity of (3.2) is of about twice the complexity of (3.1). In practice, Γ a , Ψ a and Ψ y can be implemented either thanks to their closed form expression or in a black box manner using automatic differentiation.

Covariant refitting of estimators

This section describes the content of (SV-J7) written in collaboration with Charles Deledalle, Nicolas Papadakis and Joseph Salmon published in SIAM J. Imag. Sci.. It also covers (SV-J1) with the same co-authors in a marginal way.

Given the artifacts induced by convex regularization, many approaches have been developed to re-enhance the quality of the solutions, e.g., to reduce the loss of contrast and staircasing for instance for Total Variation (TV) regularization. We refer to these approaches as boosting. Most of them consist in solving the regularization iteratively based on the residue Φx -y, or a related quantity, obtained during the previous iterations. Among them, the well-known Bregman iterations [START_REF] Osher | An iterative regularization method for total variation-based image restoration[END_REF] is often considered to recover part of the loss of contrast for isotropic Total Variation (TViso). Other related procedures are twicing [START_REF] Tukey | Exploratory data analysis[END_REF], boosting with the 2 loss (B ühlmann [START_REF] Yu | Boosting with the L 2 loss: regression and classification[END_REF], unsharp residual iteration [START_REF] Charest | On iterative regularization and its application[END_REF], SAIFboosting [START_REF] Milanfar | A tour of modern image filtering: New insights and methods, both practical and theoretical[END_REF][START_REF] Talebi | How to SAIF-ly boost denoising performance[END_REF], ideal spectral filtering in the analysis sense [START_REF] Gilboa | A total variation spectral framework for scale and texture analysis[END_REF] and SOS-boosting [START_REF] Romano | Boosting of Image Denoising Algorithms[END_REF]. While these approaches reduce the bias in the estimated amplitudes, the support of the original solution is not guaranteed to be preserved in the boosted solution, even though this one may correspond to the support of the sought image x. The gray surface is a piece-wise affine mapping that models the evolution of x in an extended neighborhood of y. The light red affine plane is the model subspace, i.e., the set of images sharing the same jumps as those of the solution x(y). The red triangle is the restriction of the model subspace to images that can be produced by TV. Finally, the pink dot represents the re-fitting R inv x (y) as the orthogonal projection of y on M x(y).

Invariant refitting. The model subspace associated to an a.e. differentiable estimator x is defined at almost all points y ∈ R n by the affine subspace of R

p M x(y) = x(y) + Im [J x(y)] , (3.3) 
where J x(y) ∈ R p×n is the Jacobian matrix of x taken at y.

The invariant re-fitting associated to an a.e. differentiable estimator y → x(y) is given for almost all y ∈ R n by

R inv x (y) = x(y) + J(ΦJ) + (y -Φx(y)) ∈ argmin x∈M x(y) 1 2 ||Φx -y|| 2 2 , ( 3.4) 
where J = J x(y) is the Jacobian matrix of x at the point y. In the following, we use the notation J when no ambiguity is possible. Note that when x(y) ∈ Im[J], then M x(y) = Im[J] and R inv x (y) = J(ΦJ) + (y).

In fact, the model subspace captures only what is linearly invariant through x w.r.t. small perturbations of y. In particular, it fails at capturing some of the desirable relationships between the entries of y and the entries of x(y), what we call the covariants. These relationships typically encode some of the local smoothness and non-local interactions between the entries of the solution x(y). Figure 3.1.(a) illustrates the invariant re-fitting in the case of a 1D total-variation denoising example ( 1 analysis estimator). It recovers the jumps of the underlying signal (adding an extra one), but systematically under-

D x,z ∈ argmin h∈H ||Φh(z) -z|| 2 2 , (3.5)
where H is the set of maps h : R n → R p satisfying, for all y ∈ R n , (i) Affine map:

h(y) = Ay + b for some A ∈ R p×n , b ∈ R p , (ii) Covariant preserving: J h (z) = ρJ x(z) for some ρ ∈ R, (iii) Coherent map: h(Φx(z)) = x(z).
These assumptions are natural as they state that a guess based re-fitting of x for z should be, in prediction, as close as possible to z. Of course, it should satisfy some extra conditions. First, the estimator should be easy to compute, and so we choose a first order approximation, leading to a locally affine estimator. Second, the relative variation of the original estimator w.r.t. the input should be preserved to capture, not only the invariant features of the estimator but also its first-order behavior, capturing both its singularities and smoothness. Third, applying a re-fitting step to the prediction obtained by the original estimator at z should not modify it. The purpose of re-fitting is to be close to y, while also preserving the structure of x(z). Hence, if y = Φx(z), the result should be unaltered

Theo r e m 3 .1 Let x be an estimator from R n to R p differentiable at z ∈ R p . Then, for δ = z -Φx(z), the guess based covariant least-square re-fitting, defined in Equation (3.5), exists, is unique if ΦJδ = 0, and is given by (3.6) where J = J x(z) is the Jacobian matrix of x at the point z.

D x,z (y) = x(z) + ρJ(y -Φx(z)) where ρ =    ΦJδ, δ ||ΦJδ|| 2 2 if ΦJδ = 0 , 1 otherwise , 
Moreover, if ΦJ is an orthogonal projector, then ρ = 1

Using D x,z defined in Theorem 3.1, we can now give an explicit definition of CLEAR as R x(y) = D x,y (y). The Covariant LEast-square Re-fitting associated to an a.e. differentiable estimator y → x(y) is, for almost all y ∈ R n , given by

R x(y) = x(y) + ρJ(y -Φx(y)) with ρ =    ΦJδ, δ ||ΦJδ|| 2 2 if ΦJδ = 0 , 1 otherwise , (3.7) 
where δ = y -Φx(y) and J = J x(y) is the Jacobian matrix of x at the point y. This estimator can be seen as the solution of a constrained least-square as decribed in our work (SV-J7). It has several interesting properties:

Theo r e m 3 .2 We have following statements:

• Let y → x(y) be an a.e. differentiable estimator. Then for almost all y ∈ R n , one has R x(y) ∈ M x(y).

• Suppose that ΦJ is an orthogonal projector. Then, R x(y) = x(y) + J(y -Φx(y)), and, ΦR x(y) = ΦR inv x (y).

• Assume that JΦx(y) = x(y). Then, the covariant re-fitting reads R x(y) = (1ρ)x(y) + ρJy.

• Let x(y) be the unique a.e. differentiable solution of

x(y) = argmin Figure 3.2 illustrates the evolution of performance, measured in terms of mean squared error (MSE), of both aniso-TV and its re-fitting version as a function of the regularization parameter λ. Two images are considered: Cameraman, an approximate piece-wise constant image (top), and a truly piece-wise constant image (bottom). This experiment highlights that optimal results for both approaches are not reached at the same λ value.

Visual inspection of the optima shows that due to the bias, the optimal solution of aniso-TV is reached for a λ value promoting a model subspace that is not in accordance with the underlying signal: typically the presence of an overload of (barely visible) transitions in homogeneous areas. These transitions become clear when looking at the re-fitted version where each small region is re-fitted on the noisy data, revealing an excessive residual variance. Conversely, the optimal λ value for the re-fitting seems to retrieve the correct model, i.e., with transitions that are closely in accordance with the underlying signal. Comparing their relative performance, when both are used at their own optimal λ, reveals that our re-fitting brings a significant improvement if the underlying image is in fact piece-wise constant.

Handling more invariants. For TViso like models, the joint projection on the support with conservation of the direction (or orientation) of (∆ x) i has been proposed in [START_REF] Brinkmann | Bias reduction in variational regularization[END_REF]. Extension to second order regularization such as TGV [START_REF] Bredies | Total generalized variation[END_REF] are investigated in [START_REF] Burger | Convergence rates and structure of solutions of inverse problems with imperfect forward models[END_REF] in the context of partially order spaces and approximate operators Φ. In a parallel line of research, it has been proposed in [START_REF] Weiss | Contrast invariant SNR and isotonic regressions[END_REF] to respect the inclusion of the level lines of x in the refitting by solving an isotonic regression problem. O pen Qu e s t i o n 3 .1 We focused here on solutions of variational regularizations. However, it could be apply to any kind of estimators. An interesting line of work would be to study the behavior of CLEAR-like estimator on inverse problem solved by deep learning methods e.g., [START_REF] Zhang | Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[END_REF][START_REF] Zhang | FFDNet: toward a fast and flexible solution for CNN-based image denoising[END_REF]. Prelimary experiments show that residual-based CNNs are good candidates to be "refitted".

Algorithm 5 Im p. F. I t e r d i f f. (proposed) input : Φ, y, λ, n iter jac init : J = 0 // sequentially compute coef. & Jacobian Get x = Lasso(Φ, y, λ) and its support Ŝ. dr = -Φ :, ŜJ Ŝ ;

// trick for cheap updates for k = 0, . . . , n iter jac -1 do for j ∈ Ŝ do if Lasso then J old = J j ; dr j -= ϕ j (J j,: -J old ) ; // O(n) return x, J fixed-point equation:

x(λ) The former can be differentiated w.r.t. λ leading to a closed form solution for the Jacobian J (λ) of the Lasso. Indeed, let Ŝ be the support of the vector x(λ) . Suppose that Φ Ŝ Φ Ŝ 0 , then a weak Jacobian Ĵ = Ĵ(λ) of the Lasso writes:

Ĵ Ŝ = -nλ Φ Ŝ Φ Ŝ -1
sign x Ŝ, (3.17) Ĵ Ŝc = 0.

(3.18)

This formula shows that the Jacobian of the weighted Lasso Ĵ(λ) ∈ R p×p is row and column sparse. This is key for algorithmic efficiency.

Prop o s i t i o n 3 .1 Assuming the Lasso solution x is unique, then Algorithm 5 converge toward the implicit differentiation solution Ĵ defined in Equation (3.17). Moreover once the support has been identified the convergence of the Jacobian is linear and its limit does not depend on the initial starting point J (0) .

As an illustration, Figure 3.3 shows the times of computation of a single gradient ∇ λ L(λ) and the distance to "optimum" of this gradient as a function of the number of iterations in the inner optimization problem for the forward iterative differentiation, the backward iterative differentiation, and the proposed algorithm (Algorithm 5). The backward iterative differentiation is several orders of magnitude slower than the forward and our implicit forward method. Moreover, once the support has been identified Table 3.1: Summary of cost in time and space for each method

• F. Iterdiff.: forward differentiation (SV-J10), [START_REF] Franceschi | Forward and reverse gradient-based hyperparameter optimization[END_REF] which jointly computes the regression coefficients x as well as the Jacobian Ĵ.

Secondly, the ones not based on hyperparameter gradient:

• Grid-search: as recommended by [START_REF] Friedman | Regularization paths for generalized linear models via coordinate descent[END_REF], we use 100 values on a uniformly-spaced grid from λ max to λ max -4 log(10).

• Random-search: we sample uniformly at random 100 values taken on the same interval as for the Grid-search [λ max -4 log(10); λ max ], as suggested by [START_REF] Bergstra | Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms[END_REF].

• Bayesian: sequential model based optimization (SMBO) using a Gaussian process to model the objective function. We used the implementation of [START_REF] Bergstra | Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms[END_REF]. 3 The constraints space for the hyperparameter search was set in [λ max -4 log(10); λ max ], and the expected improvement (EI) was used as aquisition function.

The cost and the quantity computed by each algorithm can be found in Table 3.1. The backward differentiation [START_REF] Domke | Generic methods for optimization-based modeling[END_REF] is not included in the benchmark since it was several orders of magnitude slower than the other techniques (see Figure 3.3). This is due to the high cost of the BCD algorithm in backward mode, see Table 3.1.

When using the held-out loss, each dataset (X, y) is split in 3 equal parts: the training set (Φ train , y train ), the validation set (Φ val , y val ) and the test set (Φ test , y test )

For the Lasso and the held-out loss, the bilevel optimization reads: shows the loss ||y test -Φ test x(λ) || 2 on the test set (independent from the training set and the validation set). This illustrates how well the estimator generalizes. Firstly, it can be seen that on all datasets the proposed implicit forward differentiation outperforms forward differentiation which illustrates Proposition 3.1 and corroborates the cost of each algorithm in Table 3.1. Secondly, it can be seen that on the 20news dataset (Figure 3.4, top) the implicit differentiation convergence is slower than implicit forward differentiation, forward differentiation, and even slower than the grid-search. In this case, this is due to the very slow convergence of the conjugate gradient algorithm [START_REF] Nocedal | Numerical optimization[END_REF] when solving the ill-conditioned linear system.

O pen Qu e s t i o n 3 .2 Extensions to block coordinate descent to solve group Lasso or group sparse logistic regression is the next logical step of our work. I also intend to explore the possibility to leverage in the first step the availability of state-of-theart Lasso solvers, involving for instance screening rules, in order to achieve better performance.
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  Log. reg., on rcv1 (train) for λ = λ max /20.
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 13 Figure 1.3: Dual objectives with classical and proposed approach, for Lasso (left), Logistic regression (right). The dashed line marks sign identification (support identification for Multitask Lasso).

  We recover • isotonic constraints with A the incidence matrix of a directed acyclic graph, Γ = 0, b = 0 and d = 0 ; • non-negative constraints with A = -I p , b = 0, C = 0 and d = 0 ; • simplex constraints with A = -I p , b = 0, Γ = 1 and d = 1.
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 14 Figure 1.4: The Root Mean Squared Error (RMSE) as a function of the Signal to Noise Ration (SNR) is presented on a real dataset where noise was manually added.Two different noise distribution were tested: Gaussian and Laplacian. Each point of the curve is the mean RMSE of 12 different response vectors and we repeated the process four times for each level of noise. This would be equivalent to having 48 different repetitions.

  Figure 2.1: Relaxed caveman denoising

Figure 3

 3 Figure 3.1: (a) Solutions of 1D-TV and our re-fitting on a noisy signal. (b) Illustration of the invariant re-fitting in a denoising problem of dimension p = 3.The gray surface is a piece-wise affine mapping that models the evolution of x in an extended neighborhood of y. The light red affine plane is the model subspace, i.e., the set of images sharing the same jumps as those of the solution x(y). The red triangle is the restriction of the model subspace to images that can be produced by TV. Finally, the pink dot represents the re-fitting R inv x (y) as the orthogonal projection of y on M x(y).

  G being convex and G being 1-homogeneous. Then, JΦx(y) = x(y) a.e. . Covariant refitting with algorithmic differentiation. In the most general case, the computation of the covariant re-fitting can be performed in two steps. As J(y -Φx(y)) depends on x(y), the original iterative scheme (3.1) must be run first. In the second step, J(y -Φx(y)) is obtained with the differentiated version (3.2) on the direction of the residual d = y -Φx(y). As a result, x(y) is computed twice, first by (3.1), next by (3.2). It leads to an overall complexity about three times the one of the original algorithm. Nevertheless, in several cases, one can avoid the first step by running (3.2) only once. towards R x(y), one needs a small β > 0 as shown in the next theorem. In practice, β can be chosen as the smallest available positive floating number.Provided Ker Φ ∩ Ker Γ = {0}, there exists a solution given implicitly, see (SV-J11), asx(y) = U(ΦU) + y -λU(U Φ ΦU) -1 U (∆) I s I ,(3.13) for almost all y and whereI = supp(∆ x(y)) = i ∈ [m] | (∆ x(y)) i = 0 is called the ∆ -supportof the solution, s I = sign((∆ x(y)) I ), U is a matrix whose columns form a basis of Ker[∆ I c ] and ΦU has full column rank. Theo r e m 3 .3 Assume that x satisfies (3.13) with ΦU full-column rank 1 . Let α > 0 be the minimum non zero value 2 of |∆ x | i for all i ∈ [m]. Choose β such that ασ > β > 0. Then, the sequence xk = R x k (y) defined in (3.12) converges to the re-fitting R x(y) of x(y) = x .
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 32 Figure 3.2: Experiment with aniso-TV: (top) poorly piece-wise constant case. (bottom) pure piece-wise constant case. (a) Noise-free x 0 . (b) Noisy y = x 0 + w. (e) MSE of x(y) and its re-fitting R x(y) w.r.t. λ. Two values of λ are selected corresponding to (c) re-fitting for a sub-optimal λ, (d) original for a sub-optimal λ, (f) original for the optimal λ, (g) re-fitting for the optimal λ.
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 3 Figure 3.4 (top) shows on 3 datasets the distance to the "optimum" of ||y val -Φ val x(λ) || 2 as a function of time. Here the goal is to find λ solution of (3.19). The "optimum" is chosen as the minimum of ||y val -Φ val x(λ) || 2 among all the methods. Figure3.4 (bottom) 

  . "Convergence and Stability of Graph Convolutional Networks on Large Random Graphs". In: NeurIPS. eprint: arXiv:2006.01868. (SV-C3) Traonmilin, Yann and Samuel

  •, * is the adjoint of D • ,

	f(ξ e ) =	ε 2λ |ξ e | 2 if for all i, j even, ||(ξ i+1/2,j , ξ i,j+1/2 , ξ i+1/2,j+1 , ξ i+1,j+1/2 )|| 2 2λ 2 , +∞ else
	and g(ξ o ) is defined similarly.

  the maximum of p correlated Gaussian random variables with variance at most σ 2 ρ(G) 2 , so that (2.8) has probability at least 1/2 provided that λ is of order (ρ(G)σ/n) log p.O pen Qu e s t i o n 2 .2 Extending Theorem 2.3 and Corollary 2.2 to the context of inverse problem instead of denoising is an open and difficult problem. A first step would be to extend the results of[START_REF] Rigollet | Optimal rates for total variation denoising[END_REF] to the case of general inverse problems.Corollary 2.2 is an improvement w.r.t. the bound provided in H ütter and Rigollet, 2016, Theorem 2 for the TV denoiser (also sometimes referred to as the Generalized Lasso) relying on 1 regularization defined in Eq. (2.3). Indeed, the contribution of the second term in Corollary 2.2 is reduced from log(ep/δ) (in H ütter and Rigollet, 2016, Theorem 2) to log(2ep/s). Thus the dependence of the right hand side of the oracle inequality in the confidence level δ is significantly reduced compared to the result of H ütter and Rigollet, 2016, Theorem 2. A similar bound as in Corollary 2.2 could be obtained for 1 regularization adapting the proof fromBellec, Lecué, and Tsybakov, 2018, Theorem 4.3. However such a better bound would be obtained for a choice of regularization parameter relying on the ∆ -sparsity of the signal. The Graph-Slope does not rely on such a quantity, and thus Graph-Slope is adaptive to the unknown ∆ -sparsity of the signal.

,

  Pensky and Zhang analyze the dynamic case with Lei and Rinaldo's proof technique. They consider the deterministic DSBM model in the almost sparse case α n

	log n n	and the uniform estimator (2.18).
	Defining a factor	
	ρ (PZ) n	

  ||Φ :,j || 2 -ne λ ||Φ :,j || 2 sign xj ;

		// trick for cheap update
	// diff. Equation (3.15) w.r.t. λ
	J j +=	ϕ j dr

// O(n)

  O(2pn iter ) O(npn iter + np 2 n iter )

	Mode	Computed	Space	Time
		quantity		
	F. Iterdiff.	J	O(p)	O(2npn iter )
	B. Iterdiff.	J v		
	Implicit	J v	O(p)	O(npn iter + ŝ3 )
	Imp. F. Iterdiff.	J	O(p)	O(npn iter + nŝn iter jac )

We showed in (SV-J6) that this is indeed a discretization in term of Γ -convergence.

Available at https://github.com/svaiter/ftvp.

If this matrix is not invertible, it is sufficient to use a lower value of K

https://github.com/Klopfe/LSVR

The dataset can be downloaded from the https://www.ncbi.nlm.nih.gov/geo/Gene Expression Omnibus website under the accession code GSE11103.

Implementation available at: https://github.com/svaiter/gslope_oracle_inequality.

https://github.com/hyperopt/hyperopt

Remerciements

We see that when there is no noise in the data (SNR = ∞) both Cibersort and SSVR estimator perform equally. The SOLS estimator already has a higher RMSE than the two others estimator probably due to the noise already present in the data. As the level of noise increases, the SSVR estimator remains the estimator with the lowest RMSE in both gaussian and laplacian noise settings.

This manuscript highlights the work of the author since he was nominated as "Chargé de Recherche" (research scientist) at Centre national de sa nomination comme "Chargé de Recherche" au Centre national de la recherche scientifique (CNRS

It is known in the literature that using the normalized Laplacian is often more appropriate than the adjacency matrix. If we where to use the latter, a normalization by (α n n) -1 would be necessary (Lei and Rinaldo, 2015b). However, α n is rarely known, and can change from one case to the other. The normalized Laplacian is adaptative to α n and does not require any normalisation.

Example of applications. Invariant GCNs are typically used for regression or classification at the graph level. Theorem 2.6 shows that the output of a discrete GCN directly approaches that of the corresponding c-GCN. Equivariant GCNs are typically used for regression at the node level. Consider an ideal function f * : X → R d out that is well approximated by an equivariant c-GCN Φ W,P (f) in terms of L 2 (P)-norm. Then, the error between the output of the discrete GCN Φ A (Z) and the sampling of f * satisfies with high probability MSE X (Φ A (Z), f * )

) using a triangle inequality, Theorem 2.6 and Hoeffding's inequality.

From discrete to continuous stability. [START_REF] Mallat | Group Invariant Scattering[END_REF] studied the stability to small deformation of the wavelet-based scattering transform, which was extended to more generic learned convolutional network, e.g., [START_REF] Bietti | Group invariance, stability to deformations, and complexity of deep convolutional representations[END_REF][START_REF] Qiu | DCFNet: Deep Neural Network with Decomposed Convolutional Filters[END_REF], and tries to establish bounds of the following form for a signal representation Φ(•):

where

is the deformed signal and N(τ) quantifies the size of the deformation, typically through norms of its jacobian ∇τ, such as ∇τ ∞ = sup x ||∇τ(x)||. The first step is to exploit the previous convergence result to deport the stability analysis from discrete to continuous GCNs. While the invariant case is immediate, the equivariant case requires more care. Let G 1 and G 2 be two random graphs with n nodes drawn from models Γ 1 and Γ 2 , and the parameters of a GCN Θ. In the invariant case, we can directly apply Theorem 2.6 and the triangle inequality to obtain that || ΦA 1 (Z 1 ) -ΦA 2 (G 2 )|| || ΦW 1 ,P 1 (f 1 ) -ΦW 2 ,P 2 (f 2 )|| + 2R n . We can therefore directly study the robustness of ΦW,P (f) to deformations of the model. The equivariant case is more complex. Since there are no implicit ordering over the nodes of G 1 and G 2 , one cannot directly compare the output signals of the equivariant GCN. To compare two graph representations, a standard approach in the study of stability has been to define a metric that minimizes over permutations σ of the nodes (e.g., (Gama, Bruna, and Ribeiro, 2019a;Gama, Bruna, and Ribeiro, 2019b)). Theorem 2.7 relates this to a Wasserstein metric between the continuous outputs. (3.9)

The computations of x(y) and Jy are then sufficient to compute the re-fitting R x(y). As a result, in the case of algorithmic differentiation, (3.2) can be run once to get R x(y) since using d = y provides directly x(y), Jy and subsequently ρ. Compared to the two step approach, the complexity of the re-fitting reduces to about twice the one of the original step from (3.1).

We instantiate Algorithm (3.2) to the case of the primal-dual sequence of [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] for solving (2.3). We let

where the projection of z over B λ is done component-wise as

(3.11)

The sequence x k converges to a solution x of the 1 analysis problem [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF].

It is easy to check that the primal-dual sequence defined in (3.10) can be written in the general form considered in (3.1). As a result, we can use the algorithmic differentiation based strategy described by (3.2) as follows: for the initialization x0 = ṽ0 = 0 ∈ R p , z0 = 0 ∈ R m , and for β = 0, as

where

Recall that the re-fitting is R x k (y) = xk , since JΦ is an orthogonal projector.

Remark that the algorithmic differentiation of (3.10) is exactly (3.12) for β = 0, hence, xk = R x k (y). However, if one wants to guarantee the convergence of the sequence xk

Parameter selection for the Lasso

This section describes the content of (SV-C1) written in collaboration with Quentin Bertrand, Mathieu Blondel, Alexandre Gramfort, Quentin Klopfenstein and Joseph Salmon.

The generic hyper-gradient problem can be expressed as a nested bi-level optimization problem. In the context of the Lasso, for a given differentiable criterion C : R p → R (e.g., hold-out loss or SURE), it reads:

Computing the weak Jacobian Ĵ(λ) of the inner problem is the main challenge, as once the hypergradient ∇ λ L(λ) has been computed, one can use usual gradient descent,

), for a step size ρ > 0. Note however that L is usually nonconvex and convergence towards a global minimum is not guaranteed. In this work, we propose an efficient algorithm to compute Ĵ(λ) for Lasso-type problems, relying on improved forward differentiation.

We show that forward iterative differentiation of block coordinate descent (BCD), a state-of-the-art solver for Lasso-type problems, converges towards the true gradient. Crucially, we show that this scheme converges linearly once the support is identified and that its limit does not depend of the initial starting point. These results lead to the proposed algorithm (Algorithm 5) where the computation of the Jacobian is decoupled from the computation of the regression coefficients. The later can be done with stateof-the-art convex solvers, and interestingly, it does not require solving a linear system, potentially ill-conditioned.

Our starting point is the key observation that Lasso-type solvers induce a fixed point iteration that we can leverage to compute a Jacobian. Indeed, proximal BCD algorithms [START_REF] Tseng | Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization[END_REF], consist in a local gradient step composed with a softthresholding step (ST), e.g., for the Lasso:

where ST(t, τ) = sign(t) • (|t| -τ) + for any t ∈ R and τ 0 (extended for vectors component-wise). The solution of the optimization problem satisfies, for any α > 0, the . Influence on the number of iterations of BCD (in the inner optimization problem) on the computation time (left) and the distance to "optimum" of the gradient ∇ λ L(λ)(right) for the Lasso estimator. The "optimum" is here the gradient given by implicit differentiation).

(after 20 iterations) the proposed implicit forward method converges faster than other methods. Note also that in Proposition 3.1 the Jacobian for the Lasso only depends on the support (i.e., the indices of the non-zero coefficients) of the regression coefficients x(λ) . In other words, once the support of x(λ) is correctly identified, even if the value of the non-zeros coefficients are not correctly estimated, the Jacobian is exact, see [START_REF] Sun | Are we there yet? Manifold identification of gradient-related proximal methods[END_REF] for support identification guarantees.

All the experiments are written in Python (by Quentin Bertrand and Quentin Klopfenstein) using Numba [START_REF] Lam | Numba: A LLVM-based Python JIT Compiler[END_REF] for the critical parts such as the BCD loop. We compare our gradient computation technique against different methods as decribed below. We have used the same vanilla BCD algorithm for each of them. We stop the Lasso-types solver when f(x (k+1) )-f(x (k) )

f(x (0) ) < ε tol , where f is the cost function of the Lasso or wLasso and ε tol a given tolerance. The tolerance is fixed at ε tol = 10 -5 for all methods throughout the different benchmarks. For each hypergradient-based method, the gradient step is combined with a line-search strategy following the work of [START_REF] Pedregosa | Hyperparameter optimization with approximate gradient[END_REF]. Since the function to optimize L is not convex, initialization plays a crucial role in the final solution as well as the convergence of the algorithm. For instance, initializing λ = λ init in a flat zone of L(λ) could lead to slow convergence. In the numerical experiments, the Lasso is initialized with λ init = λ max -log(10), where λ max is the smallest λ such that 0 is a solution of the Lasso.

We now compare the empirical performance of implicit forward differentiation algorithm to different competitors. Competitors are divided in two categories. Firstly, the ones relying on hyperparameter gradient:

• Imp. F. Iterdiff.: implicit forward differentiation (proposed) described in Algorithm 5.

• Implicit: implicit differentiation, which requires solving a ŝ × ŝ linear system.