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Résumé

La fraude est un problème majeur des marchés d’assurance : elle conduit à des accroissements

de coûts et donc à une hausse des primes. De ce fait, elle réduit l’efficacité des mécanismes

assurantiels de partage des risques. Le 1er Octobre 2019, la Caisse nationale de l’assurance

maladie a publié son « Bilan 2018 des actions contre la fraude et actions de contrôles ». Selon ce

rapport, le montant des fraudes détectées et sanctionnées entre 2014 et 2018 avoisine 1,2 milliard

d’euros. En outre, la fraude à l’assurance est un phénomène endémique qui ne se cantonne pas au

domaine de la santé. Elle touche des secteurs aussi divers que l’assurance automobile, l’assurance

incendie ou la prévoyance.

L’audit est indubitablement le principal outil de lutte anti-fraude à l’assurance. En vérifiant

la validité des demandes de remboursement qui lui sont soumises, l’assureur peut recouvrer les

indus. Mais le rôle de l’audit ne se résume pas à ce recouvrement. Tout d’abord, il fait office de

menace pour les fraudeurs et possède un effet dissuasif à même de décourager, partiellement ou

totalement, leurs activités malhonnêtes. Il a aussi un rôle informationnel puisqu’il permet de

mieux comprendre les mécanismes sous-jacents et de mieux cibler les audits futurs. Or l’audit

constitue un coût sûr pour des bénéfices qui eux ne sont pas garantis. Il est donc primordial

d’analyser rigoureusement tous les avantages liés à ses différents rôles afin d’élaborer des stratégies

d’audit optimales et d’en évaluer l’efficacité.

Partant de ce constat, cette thèse en étudie les fonctions dissuasive et informationnelle. Elle

s’intéresse notamment aux effets dissuasifs dans le cadre du développement récent de méthodes

d’apprentissage statistique et de la démocratisation des données massives (Big Data). Ce

développement s’est traduit par le déploiement de solutions technologiques de lutte anti-fraude

pour un audit plus précis. On s’intéresse également aux mécanismes de collusion par lesquels des

assurés et des prestataires (opticiens, garagistes, etc.) peuvent s’entendre pour frauder. Dans la

mesure où ces prestataires traitent souvent plusieurs assurés d’un même assureur, les interactions

prestataire-assureur sont fréquentes et répétées, ce qui renforce le rôle informationnel de l’audit.
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Le premier chapitre de cette thèse est une étude empirique des effets dissuasifs de l’audit,

fruit d’une collaboration avec IBM France et PRO BTP, dans le cadre du déploiement de la

solution anti-fraude Solon. Cette analyse montre que les audits subis par un opticien ont pour

effet de réduire sa fraude future. Plus spécifiquement, l’effet dissuasif est d’autant plus fort que

la lettre d’audit est crédible, soulignant l’importance de l’engagement (« commitment ») dans la

lutte contre la fraude.

Les deuxième et troisième chapitres étudient un problème d’audit dynamique où l’auditeur

interagit de façon répétée avec des prestataires et peut apprendre des résultats de son audit.

Le deuxième chapitre utilise un modèle à deux périodes pour mettre en évidence cet effet

d’apprentissage dont la conséquence est qu’il est optimal d’auditer plus intensément au début

de la relation. Le troisième chapitre étend ce modèle à un nombre arbitraire ou infini de

périodes, et montre que l’audit optimal est d’autant plus intense qu’il reste un nombre important

d’interactions. L’intuition réside dans le fait que le coût supplémentaire d’un audit présent a des

répercussions positives sur toutes les périodes suivantes.

Enfin, le quatrième chapitre réunit les mécanismes de dissuasion et d’apprentissage dans un

même modèle dynamique. Il montre que l’apprentissage transforme la dissuasion en une menace

intertemporelle. En d’autre termes, un audité sera dissuadé aujourd’hui car il risque de détériorer

sa réputation future s’il se fait attraper en train de frauder.

Mots clés: Fraude, Assurance, Dissuasion, Apprentissage, Interactions répétées
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Introduction

Insurance fraud represents a severe and pervasive problem for all types of non-life insur-

ance.12345 Not even disaster insurance is spared by scams.6 According to the Coalition Against

Insurance Fraud (CAIF), fraud corresponds to an annual loss of $80 billion across all lines of

insurance,7 and common estimates put fraud at approximately 10% of incurred losses.8 By

generating additional costs, fraud increases the premia, as insurers pass on costs to policyholders.9

The FBI estimates the increase in premia for non-health insurance to be between $400 to $700

for the average US family.10 Therefore, fraud reduces the efficiency of risk sharing mechanisms.

In some extreme cases, it may even put insurance markets at the risk of collapsing. With ageing

populations, healthcare insurance and workers compensation will see the corresponding premia

increase, which, combined with the increase due to fraud, might drastically reduce demand for

insurance. The same situation might happen for catastrophic insurance because of climate change.

In addition, the fact that insurers pass on costs to the insured can be attributed to a form of

laxness from their part.11 As a consequence, it may deteriorate the already bad reputation

insurers have, and encourage more fraud.12

Yet, while this might be true, there are other plausible explanations for why fraud is not

systematically addressed by insurers. Indeed, fraud is a difficult issue to tackle and legal

1Auto insurance http://www.insurancefraud.org/downloads/InsuranceResearchCouncil02-15.pdf
2 Healthcare https://www.ameli.fr/fileadmin/user_upload/documents/Controles_et_Fraudes.pdf
3Disability https://www.bustathief.com/disability-fraud-disability-scam/
4Workers Compensation https://www.insurancefraud.org/scam-alerts-workers-compensation.htm
5Property https://www.insurancefraud.org/downloads/IFPA_Homeowners_Insurance_Fraud.pdf
6https://www.fbi.gov/stats-services/publications/insurance-fraud
7http://www.insurancefraud.org/statistics.htm
8e.g., Derrig (2002) and https://www.iii.org/article/background-on-insurance-fraud
9https://www.fraudny.com/youpay

10https://www.fbi.gov/stats-services/publications/insurance-fraud
11https://www.vox.com/science-and-health/2019/7/19/20698355/health-insurance-scam-united-cigna-aetna-

southwest
12https://newsroom.accenture.com/industries/insurance/one-fourth-americans-say-its-acceptable-to-defraud-

insurance-companies-accenture-survey-finds.htm
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Introduction

prosecution costs can end up being larger than the amount at stake.1314 As a consequence,

insurers exclude claims under a threshold amount from prosecution. Furthermore, defrauders can

build sophisticated fraud schemes and adapt to the insurer’s counterfraud efforts. For example,13

David Williams, a Texan kinesiologist, acquired a medical license he was not entitled to get, and

billed insurers in increments of $300. These small claims did not make the prosecution threshold

and ended adding up to about $25 million over more than four years. Figure 1 shows how an

organized medicine drug trafficking network adapted to the French CNAM’s15 efforts by changing

prescribing doctors.

Figure 1 – Adaptation of defrauders and change in drug prescribers (Source
CNAM2)

In order to address the costliness of prosecution and tackle the insurance fraud problem

appropriately, it is therefore necessary to either increase the revenues from auditing and/or

reduce its cost.

First, it is fundamental to better identify the returns from auditing. When considering the

costs and benefits from auditing, insurers often reduce auditing benefits to the immediate recovered

illegitimate reimbursements after prosecution, conditionally on the latter being successful. Yet,

13 https://www.propublica.org/article/we-asked-prosecutors-if-health-insurance-companies-care-about-fraud-
they-laughed-at-us

14https://www.claimsjournal.com/news/national/2014/08/14/253331.htm
15Caisse Nationale d’Assurance Maladie.
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Introduction

auditing may involve at least two additional mechanisms that influence generated revenues.

The first mechanism is deterrence, whereby sustained auditing represents a threat for potential

defrauders, who consequently respond by reducing their defrauding efforts. The second mechanism

is a learning one, as auditing also allows the insurer to gather some information about auditees

and defrauding methods. This information allows him to refine his auditing techniques and

better target inspections in the future, to only engage auditing costs when it is profitable. By

accounting for both mechanisms, auditing may turn out to be profitable in situations where it is

ordinarily believed not to, and therefore encourage initially reluctant insurers to address fraud

rather than pass on the related costs to policyholders.

Second, it is necessary to understand how recent developments in big data analytics can

help mitigate the costliness of auditing problem. The use of these methods in the context

of insurance fraud is spreading quickly and proving to be an efficient tool. According to a

survey by the CAIF,16 by 2016, 75% of surveyed insurers relied on anti-fraud technology for

claims fraud detection. The perceived benefits can be separated into two categories: on the

one hand, anti-fraud technology allows to handle more claims in the same timespan (mentioned

benefits include “more referrals”, “enhanced reporting” and “improved investigator efficiency”),

and, on the othe rhand, to have a more refined analysis of claim suspicion (“higher quality

referrals”,“uncovering complex or organized fraud” and “better understanding of referrals”).

Based on this premise, this thesis studies the deterrent and learning roles of auditing. It

examines the deterrent effects in the context of the recent development of machine learning

techniques and the democratization of Big Data. As a consequence, technological solutions

allowing for more accurate auditing have been deployed. This thesis also analyzes collusion

mechanisms through which policyholders and service providers (opticians, mechanics, etc.) may

collaborate to defraud. Given that these service providers usually serve several policyholders of

the same insurer, provider-insurer interactions are frequent and repeated, which strengthens the

learning role of auditing.

The first chapter is an empirical assessment of the deterrence effects of auditing. It was

conducted in collaboration with IBM France and PRO BTP, in the context of the deployment

of the Solon counter-fraud solution. This assessment shows that incurred audits decrease an

optician’s subsequent fraud. More specifically, this deterrence effect is stronger the more credible

the audit letter, underlining the importance of commitment in counter-fraud efforts.

The second and third chapters, co-authored with Pierre Picard, examine a dynamic auditing

16http://www.insurancefraud.org/downloads/State_of_Insurance_Fraud_Technology2016.pdf

3
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problem where the auditor interacts repeatedly with service providers, and can learn from

auditing outcomes. The second chapter relies on a two-period model to show the existence of a

learning effect, which consequence is that it is optimal to audit more at the beginning of the

relationship. The third chapter extends this model to an arbitrary or infinite number of periods,

and shows that the further the horizon, the larger optimal auditing. Intuition stems from the

fact that the cost of a current audit has a positive impact on all future periods proceeds.

Finally, the fourth chapter, co-authored with Pierre Picard, sets a model with both deterrence

and learning mechanisms. It reveals a reputation based deterrence effect, whereby learning turns

deterrence effects from a static threat to an intertemporal one. In other words, an auditee will be

deterred in the present because of the risk of seeing his reputation deteriorate if he gets caught

defrauding.

4



Chapter 1

Every Claim You Make I’ll be

Watching You! The Deterrence

Effects of Insurance Claim Audits 1

1This work has benefited from a collaboration with teams from IBM France and PRO BTP to whom I am
thankful. I am grateful to Pierre-Henri Darnault, Frédéric Estroumza, Lucas Girard, Yannick Guyonvarch, Alexis
Louaas, Louis Pape, Bérengère Patault, Pierre Picard and Anasuya Raj for helpful discussions and comments. I
am also grateful to Sri Srikandan for his help to make data available. This work is supported by a public grant
overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program
(reference: ANR-10-EQPX-17 - Centre d’accès sécurisé aux données – CASD). Funding from FX-Conseil, IBM
France and Labex ECODEC is gratefully acknowledged.
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Every Claim You Make I’ll be Watching You! The Deterrence Effects of Insurance Claim Audits

Abstract

Fraudulent behavior represents a serious threat to the viability of insurance markets, and

Special Investigative Units rely on auditing to tackle this problem. Rather than the recov-

ered amounts from audited fraudulent claims, it is the deterrence effects of auditing that are

believed to rationalize the non-negligible monitoring costs. Using individual-level claim submis-

sion/investigation count panel data from a health insurer, and a Poisson two-way fixed effects

estimator, I provide evidence of this deterrence effect and find that each additional incurred

audit decreases the auditee’s current submissions by 3%. I also find that the more credible the

threat, the stronger the impact of auditing. Audits that request supporting documents reduce

submissions by 4.2%, while simple warning letters have no impact. This confirms the importance

of commitment and credibility in counter-fraud measures.

JEL Classification Numbers: C23, G22, K42.

Keywords: Insurance fraud, Auditing, Deterrence, Unobserved effects, Count data.
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Every Claim You Make I’ll be Watching You! The Deterrence Effects of Insurance Claim Audits

1.1 Introduction

Insurance fraud poses a serious threat to insurance markets: with a share of 10%2 of claims

believed to be fraudulent, fraud raises the insurer’s estimation of the probability of an accident

and increases its costs, thus mechanically increasing the premia. While the recent development

and adoption of machine learning techniques for fraud detection have helped increase the accuracy

of auditing and lower its costs, these costs remain too high to rationalize the use of auditing

solely as an undue indemnity recovery tool. Instead, Special Investigative Units (SIU) experts

invoke the deterrence role of auditing: since they face the risk of being caught and incur some

damage (direct financial penalty, exclusion from the insurer’s network, reputational damage, ...),

rational defrauders are expected to reduce their defrauding efforts. However, defrauders are never

perfectly rational and many behavioral mechanisms can bias their expected reactions to auditing,

sometimes even implying an increase in post-audit fraud. For example, because of the gambler’s

fallacy,3 an auditee could expect the short term post-audit probability of investigation to be

close to zero, and try to cover the incurred damages through additional fraud. Understanding

and quantifying the magnitude of audit deterrence effects is central to the improvement of

counter-fraud measures.

In this paper, I empirically assess the deterrence effects of audits in the context of health

insurance fraud, more specifically for vision insurance. Using industrial panel data from a

French mutual insurer, I study the impact of the number of incurred audits in the past on the

number of current claim submissions. More specifically, the data covers the period following the

implementation of new counter-fraud measures in the context of a collaboration between the

insurer, PRO BTP, and a major tech firm, IBM France. These measures correspond to the use

of advanced statistical detection systems and the rationalization of audit targeting. The audits

consist in different types of letters that range from a simple warning to litigation.

I use a Poisson model with two-way fixed-effects to address the identification issues of the

problem. Firstly, the Poisson specification accounts for the discrete nonnegative nature of the

data, where a fairly large share of the number of submitted claims per individual/period is equal

to zero. The Poisson specification is also immune to the incidental parameter problem inherent to

the use of individual fixed effects in short panels, and is robust to distributional misspecification

under weak assumptions. Secondly, auditing is endogenous in that it targets defrauders who

2Derrig (2002)
3Mittone (2006) finds, in a tax evasion experiment, that the immediate post-audit rounds display a systematic

increase in evasion. He labels it the “bomb crater effect” and explains that “the subjects decides to evade
immediately after a fiscal audit because they believe that it cannot happen twice in the same place (time)”.
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submit more claims on average. The determinants of fraud are usually intrinsic unobservable

features such as morality, technical ability (fraud is a complex process), marketing ability, etc.,

so individual fixed-effects allow us to correct for this selection bias. Finally, auditing is also

endogenous with regards to timing as audits occur right after a suspicious activity has been

spotted, and fraud is seasonal.4

I provide evidence that the number of undergone audits before a given period has a negative

impact on the number of submitted claims at the considered period. I find that each additional

audit decreases the claim count by 3% on average. I argue that two mechanisms can explain this

result: first, the Service Provider’s belief about the general probability of an audit is updated

upwards after every audit, independently of the audit outcome, thus leading to a lower level of

fraud intensity in the subsequent period equilibrium. Second, if the audit reveals fraud, catching

a Service Provider (SP) defrauding gives information to the SIU who identifies the SP as being of

the dishonest type. It is akin to a reputational damage that increases the SP-specific probability

of being audited.

I also find that different types of audits have different levels of deterrence effects. Simple

warning letters have almost no impact while audit letters requesting supporting documents

induce a strong decrease (-4.2%) in subsequent claim submissions. I interpret this result in terms

of commitment: simple warnings are perceived as an empty threat, while document requests are

more credible because of how specific they are, and show the insurer’s commitment to follow up

on the threat.

This paper contributes to the large literature on criminal activity and deterrence effects.

Following the seminal contributions of Becker (1968) and Ehrlich (1973), an extensive empirical

literature has investigated the relationship between crime rates and law enforcement measures

(Craig (1987), Trumbull (1989)). In particular, Cornwell and Trumbull (1994) rely on panel

data to be able to control for unobserved heterogeneity, and present empirical evidence that

the ability of the criminal justice to deter crime is much weaker than previous results indicate.

However, they deplore the unavailability of individual level data as a limit to the assessment of

the deterrence effects of law enforcement on crime. This, on the other hand, is not a problem

for the study of tax evasion and insurance fraud, where both tax authorities and insurers have

access to granular data about the protagonists’ behavior.

4e.g, for automobile insurance fraud, Picard and Wang (2015) note that “the concentration of claims during the
last months of the policy year is compatible with seasonal fluctuations in the number of claims over the calendar
year, with peaks during vacation months (January, March, July and December)” and Dionne and Wang (2013) find
that “total theft claims of no-deductible endorsement are more common during the early months of the contract
year”.
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The empirical literature on tax evasion and audits is remarkably rich. Following the seminal

paper by Allingham and Sandmo (1972), several experimental and empirical contributions have

focused on the behavioral responses to taxpayer audits. Mittone (2006) conducts an experimental

study revealing a ’bomb-crater effect’ whereby taxpayers cheat more following an audit. Kleven

et al. (2011) use a field experiment in Denmark to examine the effects of two forms of threats,

prior (actual) audits and threat-of-audit letters, on subsequent reporting, and show that while

both have a positive effect on the subsequent declared amounts, i.e., a deterrence effect, the

effect is stronger for prior audits. They primarily interpret this difference by claiming that the

threat-of-audit letters only impact the probability of audit, while actual audits also change the

probability of detection conditional on audit. Advani, Elming and Shaw (2019) exploit a random

audit program to focus on the dynamic features of auditing and provide an alternative, yet

complementary, interpretation of the mechanisms underlying the strength of deterrence effects:

conducted audits update the information held by tax authorities and convey an auditee-specific

threat that the latter is under scrutiny.

Insurance fraud has also been scrutinized in the academic literature. Building on the costly

state verification5 framework developed by Townsend (1979), the theoretical literature studies

insurance fraud through the scope of the optimal design of contracts and verification strategies

under deterministic and random auditing (see Gollier (1987),Huberman, Mayers and Smith

(1983), Bond and Crocker (1997), Picard (2000)). Dionne, Giuliano and Picard (2008) extend

the situation to signal-based auditing in a Stackelberg model, i.e., with commitment. They

show that optimal investigation strategies have a deterrence role, whereby an audit should

still be conducted for some claims with negative expected auditing proceeds, underlying the

importance of commitment. Solutions to the no-commitment case, initially analyzed by Graetz,

Reinganum and Wilde (1986) and Mookherjee and Png (1989), are suggested in the insurance

literature: Picard (1996) and Boyer (2000) mention resorting to a common agency to centralize

insurance fraud investigations, while Khalil (1997) and Boyer (1999) focus on overcompensation

of agents as a way to limit fraud. Schiller (2006) shows that the introduction of detection

systems allowing the insurers to condition their audits on the information provided, in line with

the recent developments in machine learning techniques for detection, renders auditing more

effective and allows to reduce overcompensation. Krawczyk (2009) shows that the dynamic nature

of the interaction between the insurer and the auditee might help alleviate the commitment

5An alternative to costly state verification is the costly state falsification framework introduced by Crocker
and Morgan (1998).
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problem and suggests that the insurer should spend resources on signaling their anti-fraud

attempts. More recently, Aboutajdine and Picard (2019a) analyze the interaction between the

roles of auditing as a deterrence and a learning mechanism in a dynamic setting, revealing a

reputation-based deterrence effect: the threat faced by auditees of ruining one’s reputation (if

found to be defrauding) strengthens the deterrence effects of auditing. Empirically, the insurance

literature has extensively focused on the statistical features of detection methods (see Derrig

(2002), Tennyson and Salsas-Forn (2002), Major and Riedinger (2002), Artís, Ayuso and Guillén

(2002), Brockett et al. (2002), Viaene et al. (2002)). Notably, Tennyson and Salsas-Forn (2002)

discuss the role of auditing for both fraud detection and fraud deterrence, and show how auditing

patterns are consistent with auditors taking into account both roles. Pinquet, Ayuso and Guillén

(2007) rely on a bivariate probit model to estimate fraud rates when auditing is endogenous, i.e.,

when fraudulent cases are overrepresented in the sample and introduce selection bias. However,

neither examine the auditees’ reaction to investigation nor provide an estimation of the deterrence

impact.

To the best of my knowledge, there has been no prior attempt at assessing the deterrence

causal impact of insurance audits on fraud. This is especially striking when compared to the

profusion of empirical investigations of deterrence in tax audits. One possible reason is that

tax evasion has been at the heart of the public debate in the recent decade. Another plausible

explanation consists in the scarcity of publicly available databases, as opposed to the case of

tax evasion, and in the difficulty of accessing private ones: industrial data contains sensitive

information about the firm’s business processes, and it must comply with the local legislative

constraints regulating the access and use of individual (health) data.6 This article is therefore a

first step towards better understanding and quantifying the deterrent effects of insurance audits.

Methodologically, I rely on count data models, namely fixed-effects Poisson and NB1 negative

binomial regression models, as introduced in Hausman, Hall and Griliches (1984). This is justified

by the dependent variable being a number of submissions by a given optician at a given month,

and having a large mass on zero. Count models have also notably been used to model doctor

visits (e.g., Cameron et al. (1988)); here, we are interested in visits to an optician. Because

the data is a short panel (i.e., small T ), the question of possible inconsistency because of the

incidental parameter problem7 must be addressed: while the Poisson model is immune to it

(Wooldridge (1999)), the negative binomial’s case is debatable (Allison and Waterman (2002),

6See for example GDPR in the EU: https://eugdpr.org/.
7Lancaster (2000)
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Greene (2004), Guimarães (2008)).

The rest of the paper is organized as follows. Section 1.2 explains the research context,

describes the data and discusses my empirical strategy. Section 1.3 presents my empirical results.

Section 1.4 discusses my results and suggests some extensions. Section 1.5 concludes.

1.2 Research Setting and Empirical Strategy

1.2.1 Research Setting

1.2.1.1 The French Health Insurance System

This research is conducted in the context of the French health insurance system, which

has many specificities. Firstly, the insurance coverage is divided between two main types of

entities: the (mandatory) public social security and the (optional) mutuals. Depending on the

type of service, the shares of the price covered by each entity vary significantly. Secondly, most

reimbursements are made in the context of a third-party payment system, called “Tiers-payant”.8

Service Providers9 (SPs) submit claims to an insurer in the name of their clients, the policyholders,

and directly receive the reimbursement. Another reason SPs play a central role in the fraud

process is that they act as certifiers, and a policyholder can almost never defraud without

colluding with an SP. An SP can even defraud on his own, by submitting fictive claims. Therefore,

SPs rather than policyholders are the focus of auditing in this setting. Finally, since a large

share of health services are provided by the public sector, many health service providers have

fewer incentives to defraud as their salary is fixed and not indexed on their economic activity.

For instance, it is very rare for hospital doctors to defraud, and, when they do, their motive is

usually to allow the patient to fall within the insurance reimbursement conditions.

This is not the case for opticians who act as privately owned businesses, and we focus on them

hereafter. The case of opticians is of particular interest for several reasons. Firstly, social security

only covers an insignificant share of the price of optical products, while the mutual reimburses

most of the costs. This situation fosters fraud through two channels: it is less risky to defraud

when only one entity, the mutual, has incentives to audit, and, because of the bad reputation

private insurers have for nitpicking, defrauders may be less prone to suffer from remorse due to

the moral cost of cheating.10 Secondly, opticians provide a tangible product (glasses, lenses) in

addition to a service. This makes proving fraud easier, as there are receipts and invoices involved
8https://www.service-public.fr/particuliers/vosdroits/F167
9Doctors, pharmacists, opticians, ...

10See Tennyson (2008)
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in the process since the optician himself must purchase the materials from manufacturers. The

insurer can then ask for these supporting documents to check the validity of a claim. Finally,

French opticians are interesting in that they may also work as audiologists. This allows me to

control for a potential generality of the deterrence effects. I can then test if an audit targeting

an SP for his audiology activity has some spillovers on his optical claim submission patterns.

1.2.1.2 Claiming, Detecting, Auditing and Deterring

This study takes place after the deployment of new detection systems developed by IBM

France and the mutual PRO BTP. These systems help inform the mutual’s decision to accept or

refuse the submission of the claim ex-ante, and to audit the claim ex-post.

Figure 1.1 – Timing of claim submission and auditing

Claiming The process starts with an optician submitting a coverage request electronically to

the mutual in the name of one of its policyholders. The policyholder may be visiting the optician

for legitimate reasons, or they may be colluding to disguise an illegitimate coverage request as a

valid one. A common case involves colluders who request a reimbursement for regular glasses,

when the reimbursed is actually used to cover the price of sunglasses which are not covered by

the insurance contract.11 Fraud schemes can be very creative and leverage clauses of the contract

for other purposes than their original one. In some extreme cases, there may be no policyholder

involved, when opticians submit a totally fictive coverage request to the mutual and cash in all

the reimbursement.

The insurer receives the request and conducts a quick analysis to determine whether it falls

11The sharing of the undue reimbursement between the policyholder and the optician may involve a bargaining
process, but we do not include this aspect in our analysis. Note however that cases where the policyholder gets
all the surplus are not rare, as the optician still benefits from using all of it to reduce the charged price for the
consumer and encourage him to buy expensive glasses.
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within the terms of the contract and to assess its legitimacy. This is just a preliminary superficial

analysis and does not correspond to the actual thorough detection process. Then it either accepts

or rejects the request. If it is accepted, it becomes a confirmed claim, the optician proceeds to

deliver the service to the policyholder and the reimbursement is directly made to the optician.

Detecting At the end of the corresponding month, all accepted claims are thoroughly analyzed

in the deployed detection system. The detection process involves several statistical methods such

as rule-based red-flagging, anomaly detection and supervised learning. Its output is a flagging of

claims depending on the likelihood of being fraudulent, and the results are transferred to an SIU

within the mutual.

Auditing The SIU selects claims that it deems suspicious enough, based on the decision

systems’ outputs. The selection for auditing criteria are not fixed, and the criteria evolve in time

and are based on discussions within the auditing teams. Therefore, while flagging is not random,

it is hard to control for it explicitly without having access to an actual systematic selection

process.

Deterring Since the introduction of the new detection systems, the changes in the auditing

process are twofold: first, because of the rationalization and automation of the process, it became

possible to conduct more audits at lower costs. Second, thanks to the more sophisticated analytical

process, the audits became more accurate and the probability of finding fraud conditional on an

audit increased. According to the theoretical literature on criminal behavior and fraud (Becker

(1968), Allingham and Sandmo (1972), Dionne, Giuliano and Picard (2008)), the equilibrium

levels of fraud should decrease as a response to the increase in the probability of being investigated.

However, this is under perfect information, and auditees should instead be expected to learn

progressively about the shift in auditing patterns, through experiencing more frequent audits.

1.2.1.3 Data

My dataset includes a total of 260,592 observations: it encompasses all the claims submitted

by 16,287 opticians to the mutual during the 16 months between August 2016 and November

2017. Table 1.1 defines the main variables and Table 1.2 presents some descriptive statistics.

Over the considered period, there have been 1,088,680 claims submitted to the mutual. Figure

1.2 shows their distribution. The average optician submitted 4.18 claims per month. Standard

deviation is 6.03, meaning claim count data is over-dispersed. Decomposing the variation in

claims into between and within variation reveals heterogeneity with regards to the individual

characteristics of opticians and to the timing of claims. First, the between standard deviation is
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Table 1.1 – Definition of Variables

Variables Description
Claims Number of claims submitted in a given month by a given optician
ClaimsH Number of non suspicious claims ex-ante
ClaimsF Number of suspicious claims ex-ante
Audits Number of audits of any type
Warn Number of warning letters, not specific to any given claim
DocR Number of letters requesting supporting documents for specific claims
Rem Number of letters reminding the optician to submit the supporting

documents
Audio Number of letters requesting supporting documents for specific audiology

claims by the optician
Cxxx Cumulative variable: e.g., CAudits indicates the cumulative number of

received audits since the deployment of detection systems

Table 1.2 – Summary Statistics

Variables Mean Sd Between Sd Within Sd Min Max
Claims 4.18 6.03 5.18 3.08 0 101
ClaimsH 3.80 5.39 4.65 2.72 0 84
ClaimsF 0.37 1.56 0.90 1.27 0 97
Audits 0.0097 0.12 0.04 0.12 0 16
Warn 0.0027 0.06 0.02 0.05 0 4
DocR 0.0046 0.09 0.03 0.08 0 10
Rem 0.0013 0.04 0.01 0.04 0 6
Audio 0.0010 0.05 0.01 0.04 0 16
CAudits 0.26 1.03 0.99 0.28 0 32
CWarn 0.021 0.18 0.14 0.11 0 5
CDocR 0.12 0.50 0.46 0.19 0 18
CRem 0.05 0.37 0.36 0.08 0 15
CAudio 0.01 0.14 0.12 0.07 0 20
N = 260, 592 N = i× T i = 16, 287 T = 16

5.18. This is due to heterogeneity in the claiming profile: some opticians submit large monthly

numbers of claims, reaching a maximum of 101 claims, while others only seldom submit. This

is a consequence of many factors: some opticians correspond to major nationwide chain stores

while others can be rural small businesses. Some opticians may also interact more often with

policyholders of the mutual than others. This heterogeneity in claiming intensity might also be a

consequence of fraud: assuming honest claiming is independent of fraud, then defrauders would

submit more claims than honest opticians on average. Second, the within standard deviation

of 3.08 is a consequence to the seasonality of claiming patterns, as illustrated in Figure 1.3a.

Opticians submit fewer claims during months with low economic activity, especially during

August, as opposed to June and July. Submissions are also larger during particular periods such

as December, which is partly related to policyholders trying to use their insurance before the
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resetting of the contract for the new civil year.

Figure 1.2 – Distribution of Claims

The volume of suspicious12 claims remains marginal when compared to the volume of non

suspicious ones: a monthly average of 3.80 claims per optician are believed to be honest, while

a monthly average of 0.37 claims per optician are believed to be fraudulent. On average,

the fraudulent claims represent 8.8% of the submitted claims, which is consistent with the

10% estimate commonly used in the industry. Both fraudulent and honest claim counts are

overdispersed, in both the between and the within dimensions. However, while non suspicious

claims display similar time patterns to the general claims (see Figure 1.3b), suspicious ones

have a higher within standard deviation than their between standard deviation. This is because

opportunistic fraud timing depends highly on the season. As illustrated in Figure 1.3c, the

number of suspicious claims is remarkably larger during June and July. This is because an

important share of fraud for vision insurance consists in purchasing sunglasses, which are seldom

covered by the policy, while declaring regular glasses to the insurer, in order to reduce the

former’s price.

Regarding audits, a monthly average of 0.0097 claim per optician is audited. Auditing is

therefore very rare, as it is costly and capacity constrained. It is also endogenous and targeted

towards suspicious individuals, which explains the large standard deviation at 0.1256. A between

standard variation of 0.04 shows that some opticians receive particularly intense scrutiny, and the

maximum number of audits received by a given optician at a given month is as large as 16. The

12Based on the ex-ante suspicion scoring of detection systems.

15



Every Claim You Make I’ll be Watching You! The Deterrence Effects of Insurance Claim Audits

Figure 1.3 – Claim submission and time dependence

(a) Number of Claims per Month (b) Number of ClaimsH per Month

(c) Number of ClaimsF per Month (d) Number of Audits per Month

within variation is even larger with a 0.12 corresponding standard deviation, meaning auditing is

also heterogeneous in timing. This is illustrated in Figure 1.3d. Understanding the concentration

of auditing in some months rather than others is more subtle than the concentration of claims.

It is an indirect function of the claiming pattern, as audit target claims in the months following

submission, but it is also a function of unobservable random events such as a sudden change in

the auditing policy of the mutual.

The audits can be of different types. Warning letters are basic deterrence tools that are

sent after some suspicious general claiming patterns are detected, but without specific enough

fraud signals at the claim level. If specific signals are observed, the SIU sends letters requesting

supporting documents for the corresponding claims. These documents can be purchasing orders

for glasses or lenses, or quotes for the offered service. The document requesting letters may also

mention that the policyholder will be asked whether he did receive the service/product. The
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latter is one of the cases where fraud is the less tedious to prove, especially when the optician

defrauded on his own, without colluding with the policyholder. A third type, reminder letters,

complementing the document request, may be sent in case of no response from the optician.

This lack of response may for example be due to opticians not accepting to comply because they

still do not perceive the threat as credible. Finally, an optician may receive a letter requesting

documents for an audiology claim. It is not clear if such letter has an effect at the mutual level,

where it would deter fraud even for the optical claims, or if it shifts fraud from audiology claims

to optical ones.

Another quantity of interest is the cumulative number of incurred audits. In the context of

the deployment of the new detection systems, the increase in the probability of being audited is

only perceived by auditees through actually received audits. Thinking of auditees as Bayesians

who update their belief accordingly, the higher the number of audits received in the past, the

higher the updated probability of being audited, and the lower the probability of fraud. During

the considered 16 months period, an average optician had received an average of 0.26 audits in

the previous months.

1.2.2 Empirical Strategy

1.2.2.1 Evaluation Framework

Poisson estimator We evaluate the impact of the auditing history on the claiming submission

pattern through a two-way fixed-effects Poisson model. We rely on the panel structure of the

data to control for both individual and time effects. This estimation specifies the conditional

mean as an exponential regression function, i.e., the Poisson parameter µ for i ∈ {1, .., 16287}

and t ∈ {1, .., 16}

µit = E[yit|xit, αi] (1.1)

= αiexp(x
′
itβ) (1.2)

= αiλit. (1.3)

The Fixed-Effects Poisson estimator is obtained from the regression

µit = E
[
Claimsit|CAuditsit, τ t, αi

]
, τ t = {τst = 1{s = t}|s ∈ {1, .., 16}} (1.4)

= αiexp
(
βAudCAuditsit +

16∑
s=1

βsτst + εit
)
,
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for auditing impacts regardless of type, and from the regression

µit = E
[
Claimsit|CWarnit, CDocRit, CRemit, CAudioit, τ t, αi

]
(1.5)

= αiexp
(
βWCWarnit + βDCDocRit + βRCRemit + βACAudioit +

16∑
s=1

βsτst + νit
)

for type-dependent auditing impacts.

The individual specific effect αi is not identified in this model because of the incidental

parameter problem, as detailed in Section 1.2.2.2. Therefore, the model does not identify the

marginal effect of auditing, given for regressor xj by

MEitj = ∂E[yit|xit, αi]
∂xitj

= αiexp(x
′
itβ)βj = βjE[yit|xit, αi].

Instead, results are interpretable as semi-elasticities. For a one unit change in a discrete variable

xitj , the proportionate change in E[yit|xit, αi] is

E[yit|xitj + 1,x−jt, αi]− E[yit|xit, αi]
E[yit|xit, αi]

= αiexp(x
′
itβ)(exp(βj)− 1)
αiexp(x

′
itβ)

= exp(βj)− 1 ≈ βj ,

for βj small.

NB1 estimator The Negative Binomial NB1 estimator includes an overdispersion parameter

φi in the conditional mean specification

µit = E[yit|xit, αi, φi] = αiλit
φi

.

Contrary to the Poisson case where the expectation and the variance are equal, the conditional

variance is now a multiple of the mean

Vit = E[(yit − µit)2|xit, αi, φi] = µit × (1 + αi
φi

), (1.6)

where the multiplicative term (1 + αi/φi) is larger than one, thus the overdispersion. The

estimator is then obtained by conditional MLE from the conditional joint density for the ith

observation

P
[
yi1, .., yiT

∣∣∣∣ T∑
t=1

yit

]
=
(∏

t

Γ(λit + yit)
Γ(λit)Γ(yit + 1)

)
× Γ(

∑
t λit)Γ(

∑
t yit + 1)

Γ(
∑
t λit +

∑
t yit)

. (1.7)
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1.2.2.2 Identification Strategy

Figure 1.4 – Directed Acyclic Graph for equation (1.4)

The two-way Fixed-Effects Poisson specification allows me to control for several confounders

while avoiding the incidental parameter problem. I explain hereafter how I do so and discuss the

type of effects the obtained coefficients identify. The Directed Acyclic Graph (DAG) in Figure

1.4 represents the relationship between variables.

Endogeneity of auditing and unobserved individual characteristics Auditing’s main

objective is to identify and target defrauders. It is therefore endogenous by nature. Running a

Hausman test to decide between fixed and random effects yields a test statistic of 334.88, which

is significant at the 0.01% level, thus confirming the severity of the selection bias in this setting.

Including individual fixed effects allows to control for a significant share of the unobserved

variation in claiming generated by persistent individual characteristics. This is due to the

fact that some of the main determinants of claiming, both honest and fraudulent, are fixed in

time. Honest claiming is driven by location (urban vs. rural), marketing ability (attracting

clients, building relationships), the type of optical store (major chain vs. personal business), etc.

Fraudulent claim counts are influenced by morality and personal norms, technical ability (fraud

is a complex process), social ability (convincing a visiting policyholder to collude and defraud),

etc.

Incidental parameter problem
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The fixed-effects Poisson case The major drawback of fixed-effects in non linear models

for data from a short panel is the incidental parameter problem. The three leading exceptions are

models with additive errors, multiplicative errors (e.g., Poisson), and the logit model. By analogy

with differencing in the linear case, the αi are eliminated in the Poisson case by quasi-differencing

E[yit|xi1, .., xiT , αi] = αiexp(x
′
itβ) = αiλit, under strict exogeneity. (1.8)

Averaging over time, E[yi|xi1, .., xiT ] = αiλi. Then, substracting from (1.8),

E
[
(yit − (λit/λi)yi)|αi, xi1, .., xiT

]
= 0,

thus getting rid of the individual component αi. A consequence, using the law of iterated

expectations is

E
[
xit
(
yit − (λit/λi)

)]
= 0. (1.9)

Finally, the fixed-effects Poisson estimator is obtained from the sample counterpart of equation

(1.9).

The NB1 case The NB1 is also immune to the incidental parameter problem because, as

shown in equation (1.7), the individual terms αi and φi are not involved.

Endogenous timing of audits Audit timing is endogenous because, as illustrated in Figure

1.3d, audit numbers are not balanced in time. Explanations for this endogeneity include the

fact that audits follow fraud-prone months, thus displaying seasonality, and are correlated with

the general trend: audit numbers increase because of learning-by-doing at the SIU levels, but

submissions also follow a positive trend (population growth, ageing of the population, see Asterès

(2015) and Trevien (2015)).

The inclusion of time fixed effects deals with the endogeneity of the timing of audits.

Strict Exogeneity In equation (1.8), I assumed strict exogeneity to get rid of the non

contemporaneous regressors. Strict endogeneity is usually written as

E[εit|CAuditsi1, .., CAuditsiT , τt, αi] = 0. (1.10)
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I argue that strict exogeneity holds because of two reasons. Firstly, the impact of auditing, past

and present, on claiming is entirely conveyed by the total number of incurred audits before

the submission. Because my auditing explanatory variable is the cumulative number of audits

CAudits, past audits do not directly affect current outcomes, and all relevant information is

contained in CAudits. Secondly, the question of whether εit is independent of future audits(
CAuditsis|s > t

)
must be addressed. Indeed, as shown by the blue arrow in Figure 1.4, the

outcome Claimsit from time t might affect future treatments. This is because an increase in

claims with suspicious signals increase the probability of being selected for auditing in subsequent

periods. My argument is that the generation of suspicious signals is already accounted for by

the individual component αi, the time component τtt, and the contemporaneous audits CAudits.

Indeed, fraud is very organized and planned, rather than opportunistic. If not enough collusion

opportunities arise spontaneously, some opticians may call former customers, inviting them to

visit the store and use their insurance for new glasses.

Auditing only affects the fraudulent subset of claims The DAG in Figure 1.4 only in-

cludes one arrow emerging from the CAudits variable, directed towards the fraudulent component

of the claim count. This assumption means that auditing only impacts fraudulent submissions.

Indeed, honest claims stem from policyholders visiting an optician for a legitimate need, and

there is no reason why an audited optician would refuse to serve legitimate policyholders. This

assumption allows me to interpret any change in submission due to auditing as a change in

fraudulent activity.

Average audit effects on the audited Finally, the regression estimates obtained from

equations (1.4) and (1.5) can be interpreted as an average audit effect on the audited (AAEA),

which is what I am interested in rather than the common average treatment effect (ATE). Indeed,

my goal is to assess the efficiency of the deployed detection systems in terms of deterrence, so I

am specifically interested in the deterrent effects conditional on the selection process generated

by these systems. This AAEA should be expected to be higher than the ATE. An ATE estimate

provided by a perfectly random selection would indeed include honest opticians for whom auditing

impacts should be null, according to the previous assumption that audits should only affect

fraudulent claims. These audits targeting honest claims would then drive the average estimated

effect towards zero. My AAEA estimate, on the opposite, selects primarily defrauders for which

there is deterrence potential. In addition, the selection process generated by the detection systems
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is such that a defrauder is less likely to be audited as soon as he reduces fraud. Otherwise, had

he continued being audited, the measured impact of auditing would have been lower, if not null.

1.3 Empirical Results

1.3.1 Impact of general auditing on claim submission

We consider first the general impact of past audits on submitted claims, regardless of the

type of the audits. Table 1.3 provides the regression results for the regular Poisson estimator,

the one-way Fixed-Effects Poisson (FEP) estimator, the two-way Fixed-Effects Poisson (2FEP)

estimator, and the two-way Fixed-Effects NB1 (2FENB1) estimator.

Table 1.3 – General auditing impact on number of submitted claims

Dependent Var
Claims
Indep Variables Poisson FEP 2FEP 2FENB1
Constant 1.430*** 1.243***

(0.011) (0.020)
CAudits -0.002 -0.018** -0.030*** -0.042***

(0.008) (0.008) (0.008) (0.010)
Sep16 0.214*** 0.264***

(0.009) (0.009)
Oct16 0.235*** 0.284***

(0.009) (0.009)
Nov16 0.214*** 0.273***

(0.009) (0.009)
Dec16 0.341*** 0.389***

(0.009) (0.009)
Jan17 0.307*** 0.345***

(0.009) (0.009)
Fev17 0.292*** 0.342***

(0.009) (0.009)
Mar17 0.398*** 0.451***

(0.009) (0.009)
Apr17 0.315*** 0.362***

(0.009) (0.010)
May17 0.268*** 0.326***

(0.009) (0.009)
Jun17 0.367*** 0.424***

(0.010) (0.010)
Jul17 0.353*** 0.393***

(0.010) (0.010)
Aug17 0.071*** 0.098***

(0.010) (0.010)
Sep17 0.266*** 0.328***

(0.010) (0.010)
Oct17 0.293*** 0.353***

(0.010) (0.010)
Nov17 0.283*** 0.354***

(0.010) (0.010)
N 260,592 258,656 258,656 258,656

Standard errors in parenthesis. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.

When unobserved heterogeneity is not accounted for, i.e., for the Poisson estimator, cumulative
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past audits have no impact on claim submission. The corresponding coefficient is equal to -0.002

and not significant at any level. As expected from the discussion in Section 1.2.2.2, as soon as

unobserved effects are accounted for through fixed-effects, results drastically change and become

significant. Under the FEP specification, each additional audit reduces the average number of

submissions by 1.8% and the result is significant at the 5% level.

Adding time fixed-effects in the 2FEP specification further reduces the coefficient, and each

additional audit decreases claiming by 3.0%, a result significant at the 1% level. It confirms

the endogeneity of the timing of audits and the existence of an omitted variable bias when not

accounted for. The coefficients for the time dummies illustrate the seasonality and time trend of

claiming. Note that all time coefficients are positive: since August 2016 serves as a basis, and

August being the month with the least economic activity in France, it is intuitive that all other

months witness higher submissions on average. In addition, even August 2017 has a positive

coefficient, revealing the positive time trend in claim submission. This is confirmed by the fact

that the other months that we observe twice in 2016 and 2017, that’s to say September, October

and November, have higher coefficients in 2017 than in 2016. Figure 1.5 illustrates the auditing

deterrent effects by comparing observed and counterfactual submissions based on the 2FEP

results.

Figure 1.5 – Counterfactual Submissions at the individual level
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Finally, using the 2FENB1 model to account for over-dispersion confirms the negative impact

of cumulative audits while all results remain significant at the 1% level. Each additional audit is

now reducing submission counts by 4.2%. The 2FENB1 results are roughly similar to the 2FEP,

although they indicate stronger auditing effects and stronger time effects.

These results underline the transition of equilibrium defrauding intensity from higher levels

to lower ones, because of the change in the opticians belief about the probability of being audited,

consistent with the predictions of crime and deterrence models (Becker (1968), Allingham and

Sandmo (1972), Dionne, Giuliano and Picard (2008)). The impact of auditing on claim count can

also be interpreted as a mass shift in the Poisson point mass function, as illustrated in Figure 1.6.

Auditing shifts probability mass from submission numbers larger than the “no audits” Poisson

parameter µ (= to 513 in Figure 1.6) to smaller submission numbers. Moving from no audits to

3 audits, submission counts between 0 and 4 become more frequent, while submissions above 5

claims are less likely than before. Moving to 10 audits, the shift becomes more important for

counts smaller or equal to 3, and there is almost no change in the probability of observing 4

claims, compared to the situation where 3 audits have been incurred.

Figure 1.6 – Deterrence as a probability point mass shift to the left

13This is a fictive example to illustrate the change in the probability mass function. Because of the incidental
parameter problem, we cannot estimate the individual specific parameter.
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1.3.2 Impact on claim submissions depending on auditing type

I now estimate the effect of each type of audits on submission patterns separately. Regression

results for each specification are shown in Table 1.4.

Starting again from the regular Poisson estimator results, I find that simple warning letter

increase claim submissions by 1.9%, while being audited for audiology claims induces the optician

to increase his optical submissions by 5.5%. Both results are significant at the 1% level. On the

other hand, and while their coefficients are negative, neither document requesting letters nor

reminder letters are significant at any level.

Table 1.4 – Type-specific auditing impact on number of submitted claims

Dependent Var
Claims
Indep Variables Poisson FEP 2FEP 2FENB1
Constant 1.425*** 1.247***

(0.010) (0.017)
CWarn 0.019*** 0.009** -0.003 0.046***

(0.009) (0.009) (0.009) (0.011)
CDocR -0.020 -0.034** -0.042*** -0.062***

(0.016) (0.016) (0.015) (0.020)
CRem -0.035 -0.042 -0.061 -0.081**

(0.036) (0.040) (0.040) (0.037)
CAudio 0.055*** 0.062*** 0.041*** 0.030

(0.015) (0.016) (0.016) (0.028)
Sep16 0.213*** 0.264***

(0.009) (0.007)
Oct16 0.234*** 0.284***

(0.009) (0.009)
Nov16 0.213*** 0.272***

(0.009) (0.009)
Dec16 0.340*** 0.389***

(0.009) (0.010)
Jan17 0.307*** 0.344***

(0.009) (0.010)
Fev17 0.292*** 0.342***

(0.009) (0.008)
Mar17 0.397*** 0.450***

(0.009) (0.009)
Apr17 0.314*** 0.361***

(0.009) (0.009)
May17 0.267*** 0.324***

(0.009) (0.010)
Jun17 0.366*** 0.421***

(0.010) (0.009)
Jul17 0.351*** 0.389***

(0.010) (0.010)
Aug17 0.069*** 0.094***

(0.010) (0.010)
Sep17 0.264*** 0.324***

(0.010) (0.010)
Oct17 0.291*** 0.348***

(0.010) (0.012)
Nov17 0.281*** 0.349***

(0.010) (0.012)
N 260,592 258,656 258,656 258,656

Standard errors in parenthesis. Significance levels: * p < 0.1, ** p < 0.05, *** p < 0.01.
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Once again, accounting for unobserved heterogeneity changes both the size and the significance

of the coefficients. For the FEP estimator, document requesting audits are now significant at the

5% level and each one of them reduces claim submissions by 3.4% on average. Simple warning

letters have a smaller positive impact which is less significant than before (5% level). Results

do not change much for reminder letters and audio letters. When adding time fixed-effects in

the 2FEP model, new estimates indicate no significant effect for warning letters, and document

requesting letters reduce claim submissions by 4.2% (significant at the 1% level). The impact of

reminder letters remains insignificant while the impact of audio letters remains significant at the

1% level, but decreases to 4.1%.

Finally, 2FENB1 results are this time different from the 2FEP. They refute any significant

impact of audiology audits on optical claims. They also show that simple warnings have a

significant positive impact (+4.6%) on claims submissions, while document requests have a

stronger negative impact (-6.2%), both significant at the 1% level. Reminder letters are now

significantly reducing claims submissions by 8.1% (significant at the 5% level).

This second set of results decomposes the impact of auditing depending on the type of audits,

and shows the importance of commitment and credibility for deterrence. Because document

requesting letters mention specific claims to be investigated, and because these claims are likely

to be fraudulent, they convey an idea of credibility of the threat. On the contrary, warning letters

are likely to be perceived as empty threats because they do not target specific claims: while they

still show that the auditor is keeping an eye on submissions, these letters hint that it has no

solid ground for litigation, and may even encourage the optician to defraud more. The case of

reminder letters may be explained as follows: these letters are only sent after a document request

letter, when the optician does not provide the documents in time or did not stop misbehaving.

Then, they could capture a delayed deterrence reaction of opticians who were not sufficiently

convinced by the initial letters. Finally, audio letters triggering an increase in optical submissions

seems to indicate that auditees do not perceive the audit threat at the mutual level, but as

specific to the activity targeted. It would indicate that when feeling monitored for audiology

claims, defrauder opticians shift their illegitimate efforts to optical claims.

1.4 Discussion: Limits and Extensions

In this Section, I discuss the robustness of my results and suggest extensions. Section 1.4.1

examines the extent of issues that may arise from not correctly accounting for overdispersion and
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from deviating from strict exogeneity. Section 1.4.2 suggests extensions that are implementable

with the currently available data. Section 1.4.3 suggests other extensions that would require

complementary data.

1.4.1 Limits

Robustness to overdispersion In order to account for the overdispersion of the claim data,

I have included a two-way fixed-effects NB1 estimator in my results. While results from 2FEP

and 2FENB1 were roughly similar in Section 1.3.1, they did differ to some extent in Section

1.3.2. I argue hereafter that 2FEP estimates should be preferred to 2FENB1 estimates.

First of all, notice that, suprisingly, the 2FENB1 estimates include a constant. More generally,

time-invariant regressors are identified in this model, which lead Allison and Waterman (2002) to

argue that it is not strictly speaking a fixed-effects model. In addition, Guimarães (2008) shows

that the fixed-effects NB1 model places a very strong restriction on the relationship between the

individual characteristic αi and the NB1 overdispersion parameter φi.

One alternative is to estimate a regular NB2 model with fixed effects. However, this last

model is not immune to the incidental parameter problem, although simulations by Allison and

Waterman (2002) and Greene (2004) suggest that the resulting bias may not be too large for a

moderately small panel dimension.14

On the other hand, the 2FEP estimator has very strong robustness properties as long as the

conditional mean in equation (1.8) is correctly specified. The distribution of yit given (xi, αi) is

unrestricted and there can be overdispersion or underdispersion in the latent variable model.15

Because of how large the cross section dimension of my data is (i = 16, 287), consistency of the

2FEP estimator guarantees the robustness to overdispersion of the corresponding estimates.

Strict exogeneity Deviating from strict exogeneity would question the obtained estimated.

However, I argue that it would not threaten the major interpretation of my results, that is that

auditing has a negative effect.

If the strict exogeneity assumption is violated, then it is most likely because there is feedback

from the explained variable to future explanatory variables. In other words, higher auditing in

the future provides information about present error terms, in that positive error terms could

be associated with more fraudulent claiming and thus with more future audits. Still, positive

14Greene (2004) considers moderately small to mean T ≥ 5. My data therefore falls into this definition with
T = 16.

15See Wooldridge (2002), Section 19.6.4 “Fixed Effects Poisson Estimation”.
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correlation between current error and future audits would mean upward biased estimators.

Therefore, in this case, a negative impact of auditing should be stronger than measured because

of the bias.

Finally, future work could correct for lack of strict exogeneity by using the method of

moments estimators proposed by Wooldridge (1997), to deal with lag models with possible

feedback. He suggests residual functions using future dependent and explanatory variables that

lead to conditional moment restrictions of the form

rit(β) ≡ yit − yit+1[exp(xitβ)/exp(xit+1β)], t = 1, .., T − 1,

E[rit(β0)|xi1, .., xit] = 0.

1.4.2 Extensions for the available dataset

Multi-valued treatments The models used in this analysis assume auditing impacts to be

linear in the number of audits. One way to account for non-linearity is to resort to multi-valued

treatment effects models described in Cattaneo (2018) and Cattaneo (2010).

Heterogenous treaments effect and timing In this article, I do not control for heterogeneity

in timing and in treatment. Yet, as argued before, there must be heterogeneity in auditing effects,

and audits are not delivered at the same time to different auditees. The recent literature on

these topics for classic treatment settings (see Goodman-Bacon (2018) and de Chaisemartin and

D’Haultfoeuille (2019)) has shown that consistent estimation is not straightforward.

Intensive margin and count-continuous models By focusing on auditing effects on claim

counts, I only measure the extensive margin of auditing effects, and neglect the intensive margin.

For example, some claims may still be submitted after audit, but with smaller monetary amounts.

There is also a distinction to be made between the type of effect auditing has from the extensive

and intensive margins perspective. The first case is when all subcomponents of a claim are

illegitimate, and the claim would not be submitted under strong enough deterrence effects.

The second case is when a claim with a legitimate basis is still submitted, but with a smaller

corresponding amount, because the illegitimate component is abandoned due to deterrence effects.

Finally the third case is a mixed one, where the claim has a legitimate basis, but the charged

price, after reimbursement, is still too large for the policyholder. An illegitimate component

could be added to the claim by the optician to encourage the policyholder to purchase the
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product.16 Then, under strong enough deterrence, the claim would not be submitted even if it

has a legitimate component.

One way to account for both the extensive and intensive margins is to use bivariate count-

continuous models (see Meghir and Robin (1992) and Praag and Vermeulen (1993)).

Network effects and spillovers Direct auditing is not the only channel for deterrence effects.

There may be spillovers through network effects that may spread the investigation threat

more efficiently than expected. In the context of tax evasion, Boning et al. (2018) provide

evidence of these network effects and control for connection through common tax preparers,

geographic neighborhood, and parent-subsidiary relationship. This analysis can be extended

to my dataset by defining connection between opticians as treating the same policyholder, or

policyholders with a common ophtalmologist. This would specifically capture the effect of auditing

on networks of defrauders, where opticians may collude between themselves, and eventually

with an ophthalmologist, to exchange social security numbers of their policyholders and submit

fictive claims to the mutual in a systematic and premeditated manner. Then, the first question

is to understand whether auditing one of the members of this network has an impact on other

members. The second question is to identify whether there are central agents in the networks

that an optimal but capacity constrained auditing strategy should targeted first (see for example

Ballester, Calvó-Armengol and Zenou (2006)).

1.4.3 Extensions with richer data

Post-audit outcomes to qualify claims as honest or fraudulent In the currently available

dataset, distinction between suspicious and non-suspicious claims was made ex-ante, based on the

preliminary detection systems’ outputs. While this ex-ante qualification does give us information

about suspicion and fraud levels, it is not perfectly correlated to the real status of the claim. For

example, following a successful audit, future suspicion is systematically increased, independently

of the signals generated by future claims. This artificially decreases the number of future non-

suspicious claims and increases the number of future suspicious claims. Then the estimated

impact of auditing on honest counts will be biased downwards while the estimated impact of

fraudulent claims will be biased upwards. Post audit qualification would help circumvent this

measurement issue.

16e.g., the policyholder needs glasses, but the price is still too large after reimbursement, so the optician declares
lenses that he does not deliver, but instead uses the related reimbursement to reduce the price for the glasses.
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Shift of fraud to competitors with less efficient counter fraud measures It would be

interesting to control for the existence of outside options for defrauders, namely the existence

of other insurers/mutuals with less sophisticated detection systems. The intuition is that a

defrauder is more likely to be deterred by the mutual of interest if he can shift his fraudulent

activity to a less audit prone insurer. But this would require data on competitors.

1.5 Conclusion

This paper provides evidence of the existence of deterrence effects in insurance audits and

quantifies their impact on claim submissions. Using a two-way Fixed-Effects Poisson and NB1

estimators, I isolate these deterrence effects from other confounding factors such as unobserved

heterogeneity and time distribution of audits.

I show that each additional audit incurred in the past reduces claim submission counts by 3%.

In addition, specifically credible audits reduce submissions by 4.2% on average, while non-credible

ones have no impact, or may even encourage fraud by conveying a lack of commitment from the

auditor.

Yet, this is just a preliminary analysis of insurance auditing deterrence effects. There are

several directions in which these results can be extended and complemented. Opening the black

box of selection for audit is probably the most important one. Using signals gathered by an

insurer to allocate her auditing resources would help instrument selection for audit and better

control for the time varying component of endogeneity.
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Chapter 2

Preliminary Investigations for Better

Monitoring: Learning in Repeated

Insurance Audits 1

1This chapter a joint work with Pierre Picard. We are grateful to seminar participants at CREST for helpful
discussions and comments.
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Abstract

Audit mechanisms frequently take place in the context of repeated relationships between

auditor and auditee. This paper focuses attention on the insurance fraud problem in a setting

where insurers repeatedly verify claims satisfied by service providers (e.g., affiliated car repairers

or members of managed care networks). We highlight a learning bias that leads insurers to

over-audit service providers at the beginning of their relationship. The paper builds a bridge

between the literature on optimal audit in insurance and the exploitation/exploration trade-off

in multi-armed bandit problems.

JEL Classification Numbers: D82, D83, G22, L21.

Keywords: Ex-post moral hazard, Insurance fraud, Optimal auditing, Learning.
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2.1 Introduction

Claim fraud represents a serious threat to insurance markets: by artificially inflating the

frequency and the cost of reported losses, defrauders lead to higher insurance premiums and

they contribute to jeopardizing the efficiency of risk sharing mechanisms. Besides the free-riding

problem that it poses, large scale fraud may even endanger the sustainability of the insurance

markets that are prone to fraud.

Insurance claim fraud is sometimes referred to as a form of ex-post moral hazard in that it

occurs after an (alleged) accident, for example when policyholders build up their claim or when

they announce accidents that never actually happened. It essentially differs from ex-ante moral

hazard through the associated timing (before/after the accident) and the modus operandi of

addressing these inefficiencies: while principals tend to rely on a contract design approach to

distort the agent’s incentives in an ex-ante context (without being able to monitor the agent’s

effort), the ex-post situation is usually addressed through costly auditing in order to check what

actually occurred.

The economic literature has mainly examined these issues through the lens of the costly state

verification approach, whose foundations were laid by the seminal papers of Townsend (1979)

and Gale and Hellwig (1985). Within this setting, it is assumed that the insurer can verify

the true value of claims by incurring an audit cost.2 The audit may be either deterministic,

random or guided by signals perceived by the insurer. In particular, Mookherjee and Png (1989)

establish that random auditing dominates deterministic auditing, while Dionne, Giuliano and

Picard (2008) build a scoring methodology to show how audits are triggered by signals observed

by the insurer. In one way or another, an optimal claim monitoring strategy achieves a trade-off

between the additional costs of more frequent audits and the advantages of a more efficient fraud

detection. The deterrence effect highlighted by Dionne, Giuliano and Picard (2008) is an example

of such an advantage: they consider a setting where more frequent audits reduce the frequency

of fraud, and they show that some individually unprofitable audits should be performed because

of this deterrence effect.

Audit may also play an important role for gathering evidence about the auditee (e.g., does

he seem to have a penchant for dishonest behavior?), an information that may be useful at later

stages. Indeed, claimants (or service providers with whom they collude) may have some intrinsic

and hard to observe characteristics that affect their propensity to defraud. Audit may help the

2Bond and Crocker (1997), develop the costly state falsification approach, where it is the defrauder who may
incur some expenses to misrepresent her loss.
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insurer to mitigate this informational asymmetry about claimants’ type.3

The learning dimension is particularly relevant when it comes to repeated audits. Consider for

instance the health insurance fraud case when there is a third party involved beside the insurer

and the policyholders. Health service providers (doctors, opticians, pharmacists, etc.) play a

central role since collusion between providers and policyholders is usually a necessary condition

for fraud to take place. Furthermore, health care providers interact on a regular basis with the

insurer, as they provide services to many policyholders and during several periods. Because of

this repeated interaction, health insurers’ anti-fraud efforts often focus on service providers as

much as on policyholders. The same logic applies to property insurance, when insurers interact

with car repairers or construction companies, sometimes within a network of affiliated service

providers.

The purpose of the present paper is to investigate how such repeated interactions affect the

optimal audit strategy. We will show that the insurer may find it optimal to perform unprofitable

audits, because of a learning effect. In short, auditing is a way to gather information that can be

used at later stages of the auditor-auditee interaction. This learning dimension may lead the

insurer to perform audits beyond what would be optimal from a purely instantaneous standpoint.

To highlight this effect, we will rely on a simple model with two types of service providers

(honest and dishonest) and where the likelihood of submitting an invalid claim is exogenous

and type-dependent. Thus we abstain from analyzing the strategic interaction between the

insurer and policyholders. We focus attention on the role of service providers as mandatory

intermediaries who certify claims, without examining the collusion process between providers and

claimants.4 Dishonest providers may certify invalid claims on purpose, while honest providers

may only do it unintentionally. The insurer has beliefs about the type of each service provider

and his decision consists in choosing the probability with which he audits each provider over the

course of two consecutive periods. Auditing a claim allows the insurer to discover whether it is

valid or invalid, but in the latter case, it does not reveal if the misbehavior was done on purpose

or unintentionally. Auditing a claim allows the insurer to update his belief about the type of the

service provider.

We find that, at the first period, the insurer has an incentive to perform some unprofitable

audits, in order to improve his information about the service providers’ type, and this additional

3Dionne, Giuliano and Picard (2008) introduce this hidden heterogeneity under the form of a cost reflecting
the policyholder’s moral sense that affects the probability of defrauding. Still, this cost remains unobservable by
the insurer and does not come into play to assess the probability of a claim being fraudulent.

4Bourgeon, Picard and Pouyet (2008) analyze the collusion between service providers ans policyholders when
insurers have networks of affiliated providers.
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information will allow him to more efficiently focus his auditing strategy at the second period.

Ultimately, deviating from a strategy that would be guided by instantaneous expected gains,

proves to be profitable. It corresponds to insisting on preliminary investigations early in the

relationship to better monitor the agents later on.

This conclusion reveals an exploration/exploitation dilemma analogous to the multi-armed

bandit problem in machine learning5. In this approach, a player is repeatedly facing a slot

machine with multiple arms. He must choose an arm at each period, each arm providing a

random payoff with imperfectly known stationary distribution. The player faces a trade-off

between playing the most profitable arm according to early beliefs, and playing different arms in

order to refine his beliefs. Exploring new arms induces an opportunity cost of not exploiting

the arm that is the most profitable according to the current information, but this may allow

the player to discover that other arms are in fact more profitable. Similarly, in our model, by

trading current revenue for information, the better informed insurer gets a higher future payoff

that compensates the initial loss.

The rest of the paper is organized as follows. In Section 2.2, as a preliminary stage, we

consider a single period model where audit is not repeated and we characterize the corresponding

optimal auditing strategy. In Section 2.3, we extend our model to account for repeated audits.

We exhibit the competing roles of auditing as sources of revenue and information, and we define

the insurer’s dynamic optimization problem that will be solved by backward induction. Hence,

we start by characterizing how available information is used at the second period and, in a second

stage, we deduce how the first period audit should be performed. We show that the learning

effect leads the insurer to audit more at the beginning of the relationship, with the magnitude

depending on the informativeness of the audit and on the degree of short-sightedness of the

insurer. In Sections 2.2 and 2.3, we restrain ourselves to a simple model where all claims have

the same value. Section 2.4 extends our results to a more general setting with variable claim

values. The final section concludes. Proofs are in the Appendix.

2.2 Single Period Auditing

2.2.1 Setting

Let us start by considering an insurer who interacts with a population of service providers

(SPs) during a single period. SPs are mandatory intermediaries between insurer and insured.

5See Sutton and Barto (1998) and Bergemann and Välimäki (2008).
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In particular, they certify the claims filed by policyholders, which means that they attest that

the claims actually correspond to the value of the services paid by the policyholders following

the event covered by the insurance policy. Each SP transmits exactly one claim with value

normalized to 1 to the insurer, with the claim being either valid or invalid. Invalid claims should

not lead to insurance payments. They may be transmitted either in good faith (for instance

because the SP makes an error due to imperfect information about the circumstances of the loss)

or in bad faith with the intention of defrauding.

SPs are heterogeneous when it comes to their propensity to transmit invalid claims. There

are many possible determinants of this propensity, among which the sense of moral values, which

is negatively correlated with the propensity to defraud, or the ability to build complex defrauding

schemes.6 Hereafter, we consider that each SP may be either honest (H) or dishonest (D). Honest

SPs only transmit invalid claims by error (they are always in good faith), while dishonest SPs

may transmit invalid claims either by error or intentionally (they may be in bad faith). Hence a

type H is less likely to transmit invalid claims than a type D. We include this aspect by defining

probabilities P(Inv|H) = pH and P(Inv|D) = pD of submitting an invalid claim by type H and

type D, respectively, such that pH < pD.

There is a continuum of SPs with mass 1 and the insurer has initial belief π ∈ [0, 1] for each

SP that represents the a priori probability that the SP is of type D. The prior π is distributed in

[0, 1] with density f(π) and c.d.f F (π) in the population of SPs. While we consider this prior as

given, we may consider that it has been induced by signals (including the outcome of audits)

that have been previously perceived by the insurer about each SP. These beliefs may be biased

or not among SPs, i.e., the expected value
∫ 1

0 πf(π)dπ may or may not be equal to the true

proportion of dishonest SPs in the continuum.

Each claim may be audited and, in that case, the insurer observes whether it is valid or

invalid. The audit is costly and represents the fundamental constraint that the insurer faces

when it comes to choosing audit targets. It costs c to investigate a claim, with pH < c < pD.

Claims found to be invalid are not paid, inducing a net proceed of 1 − c. No penalty is

paid to the insurer by SPs whose invalid claims are detected by the audit. Hence, auditing

a claim is profitable (in expected terms) only when it has been certified by a dishonest SP.

From the insurer’s point of view, an SP with prior π transmits invalid claims with probability

p̄(π) = pDπ + pH(1− π) and the corresponding expected net proceed of auditing is p̄(π)− c.

6While defrauding in plain sight may occur (hoping for inattention of the insurer), it usually takes some effort
to construct a defrauding scheme. For example, some opticians may provide sunglasses to their clients, but they
certify that they have delivered regular glasses.
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2.2.2 Auditing Strategy, Objective Function and Optimization Problem

For each SP, the insurer must decide whether an audit will be performed or not. We define

an auditing strategy as a function x(·) : [0, 1]→ [0, 1] that assigns a probability x(π) of being

audited to each SP with belief π. For a given auditing strategy, the net expected proceed of

audits is written as

Ω(x(·)) =
∫ 1

0

[
p̄(π)− c

]
x(π)f(π)dπ. (2.1)

The optimization problem of the insurer is written as

max
x(·)

Ω(x(·))

s.t. 0 ≤x(π) ≤ 1 ∀π ∈ [0, 1].

Lemma 2.1. The single period optimal auditing strategy x∗(π) consists in auditing all claims

transmitted by SPs with associated beliefs π ≥ π∗ and not auditing claims when π < π∗, i.e.,

x∗(π) =
{

1 if π ∈ [π∗, 1]
0 if π ∈ [0, π∗)

}
= 1{π≥π∗},

where the threshold π∗ is

π∗ = c− pH
pD − pH

with p̄(π∗)− c = 0.

Lemma 2.1 is unsurprising: one should only perform audits that are individually profitable,

which amounts to focusing audits on SPs with π such that p̄(π)− c ≥ 0.

2.3 Two-Period Auditing: The Learning Effect

Because SPs take care of many policyholders, they repeatedly interact with the insurer. For

the sake of simplicity, we assume that this interaction takes place during two consecutive periods

i = 0, 1. There are different beliefs at the beginning of each period and the insurer’s strategy is

based on these beliefs. From now on, variables of interest will be indexed by the corresponding

periods (πi, xi,Ωi)i∈{0,1}. The insurer’s inter-temporal objective function depends on both period

specific objective functions Ω0 and Ω1, the latter being weighted by γ > 0.7 His optimization

7If γ ∈ (0, 1) it can be simply interpreted as a discount factor. Period 1 can also be viewed as the aggregation
of all future proceeds without restriction about the value of γ.
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problem is written as

max
x0(·),x1(·)

Ω0 + γE0[Ω1]

s.t. 0 ≤ x0(π0) ≤ 1 ∀π0 ∈ [0, 1],

s.t. 0 ≤ x1(π1) ≤ 1 ∀π1 ∈ [0, 1],

where E0 corresponds to the expected value operator at the beginning of period 0, i.e., before

performing audit during this period.

2.3.1 Auditing as a Source of Information

Period 0 audits allow the insurer to update his belief at the beginning of period 1. Depending

on whether an audit has been performed and, if it has been, whether the claim was valid or

invalid (Val and Inv, respectively), the updated beliefs π̃1 are deduced from initial beliefs π0

through Bayes’ Law:

π̃1 =



P(D|audit, Inv) = A(π0) = pDπ0
p̄(π0) ,

P(D|audit, V al) = B(π0) = (1−pD)π0
1−p̄(π0) ,

P(D|no audit) = π0,

(2.2)

with

B(π0) < π0 < A(π0),

A′ > 0, A′′ < 0,

B′ > 0, B′′ > 0.

Hence, A(π0) and B(π0) are the probabilities that the SP is dishonest if a period 0 audit

revealed that the claim was invalid or valid, respectively. In particular, an invalid claim detected

by audit leads the insurer to increase his beliefs that the SP is dishonest, i.e., A(π0) > π0, and it

is the other way around if audit reveals that the claim was valid, i.e., B(π0) < π0. Of course,

beliefs are unchanged if there is no audit.

For illustrative purposes, Figures 3.1 and 2.2 describe the degree of informativeness of an

audit as a function of parameters pH and pD. In Figure 3.1, the graphs of functions A(·) and

B(·) are symmetric on each side of the 45◦ line. This is due to the specific condition pH + pD = 1.
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Figure 2.1 – Updating Priors According to the Auditing Status (pD = 0.9, pH = 0.1)

Maintaining this assumption, Figure 3.5a shows that bringing pH and pD closer makes both

learning curves less concave/convex and closer to the 45◦ line, underlining the fact that the audit

is less informative in this case. Figures 3.5b and 3.5c illustrate the extreme case where the audit

is respectively totally informative (pH = 0 and pD = 1) and not informative at all (pH = pD,

both types behave the same way). Relaxing the pH + pD = 1 assumption, Figures 3.5d, 3.5e

and 2.2f exemplify the asymmetry of informativeness between invalidity and validity of a claim:

in 3.5d, both probabilities of defrauding are rather low, so stumbling upon a valid claim does

not say much, while finding a claim to be invalid induces a stronger change in the belief. The

opposite happens in 3.5e where both types defraud often, with the validity status becoming more

informative.

This aspect of auditing suggests some influence of period 0 auditing outcomes on period 1

auditing decisions. The information revealed at period 0 may lead to an expected efficiency gain

at period 1. To express this idea, let us denote ω(π1, x1) =
[
p̄(π1)− c

]
x1 the expected gain of an

audit performed at period 1 with probability x1 under belief π1.

Let π̃1 be the updated belief. This is a random variable defined by equation (3.1) whose

distribution depends on initial beliefs π0 and on the period 0 auditing probability x0(π0).
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Figure 2.2 – Updating functions for different parameters

(a) pD = 0.6, pH = 0.4 (b) pD = 1, pH = 0 (c) pD = pH

(d) pD = 0.12, pH = 0.08 (e) pD = 0.92, pH = 0.88 (f) pD = 0.98, pH = 0.88

Proposition 2.1. The optimal period 1 optimal audit strategy x∗1(·) is such that

E0[ω(π̃1, x
∗
1(π̃1))|π0, x0(π0)] ≥ ω(π0, x

∗
1(π0)) ∀π0 ∈ [0, 1]

with a strict inequality if there exists π1 ∈ [0, 1] such that x∗1(π1) 6= x∗1(π0) and P(π̃1 = π1|π0) > 0.

Proposition 2.1 implies that period 0 auditing increases the insurer’s period 1 expected payoff

if it affects the period 1 auditing strategy: its informational value translates into an increase in

period 1 net proceeds, besides its period 0 income maximization value.

2.3.2 Inter-temporal Optimization Problem

Period 0 expected auditing profit is written as

Ω0(x0(·)) =
∫ 1

0

[
p̄(π0)− c

]
x0(π0)f0(π0)dπ0,

where f0(π0) is the density of prior beliefs.

The updating process corresponds to a mapping of period 0 beliefs into period 1 beliefs, thus

changing the latter’s distribution depending on the chosen period 0 strategy. Let f1(·) be the

density of period 1 updated beliefs. It depends on period 0 auditing strategy and then it is

written as f1(π1|x0(·)). Period 1 expected auditing profit is written as

Ω1(x0(·), x1(·)) =
∫ 1

0

[
p̄(π1)− c

]
x1(π1)f1(π1|x0(.))dπ1.

The inter-temporal optimal auditing strategy of the insurer can now be characterized by
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backward induction. At period 1, the insurer follows the optimal single period strategy x∗1(·)

characterized by Lemma 2.1. Hence the optimal period 1 expected net proceed of auditing

Ω∗1(x0(·)) = Ω1(x0(·), x∗1(·)) is written as

Ω∗1(x0(·)) =
∫ 1

0

[
p̄(π1)− c

]
1{π≥π∗}f1(π1|x0(.))dπ1

=
∫ 1

π∗

[
p̄(π1)− c

]
f1(π1|x0(.))dπ1.

Given this period 1 optimal strategy, the period 0 optimal strategy x∗0(·) is an optimal solution

to

max
x0(·)

Ω0(x0(·)) + γE0[Ω∗1(x0(·))]

s.t. 0 ≤ x0(π0) ≤ 1 ∀π0 ∈ [0, 1].

2.3.3 Effect of period 0 audit on the audit decision at period 1

In order to show how period 0 audit affects the decision to audit at period 1, let us define πa

and πb by

A(πa) = π∗, πa = π∗pH
π∗pH + (1− π∗)pD

,

B(πb) = π∗, πb = π∗(1− pH)
π∗(1− pH) + (1− π∗)(1− pD) .

One easily checks that

0 < πa < π∗ < πb < 1.

We have A(π) ≥ π∗ if and only if π ≥ πa and B(π) ≥ π∗ if and only if π ≥ πb. Hence, πa is

the lowest belief such that, if found invalid at period 0, the SP will be audited at period 1 and

πb is the highest belief such that, if found valid at period 0, the SP will be not be audited at

period 1.

These thresholds lead us to Lemma 2.2 in which we express the probability of auditing at

period 1 as a function of the period 0 belief and auditing outcomes.

Lemma 2.2. The effect of period 0 audit on the audit decision x1 at period 1 is characterized
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by Table 2.1.

Table 2.1 – Period 1 audit decision x1 as a function of period 0 beliefs and audit
outcomes

π0 ∈ [0, πa) [πa, π∗) [π∗, πb) [πb, 1]

Audit and Valid 0 0 0 1

No Audit 0 0 1 1

Audit and Invalid 0 1 1 1

Figures 2.3 and 2.4 illustrate this relationship between the outcomes of the period 0 audit

and the obtained posteriors.

Figure 2.3 – Period 0 priors and period 1 auditing

Lemma 2.2 directly yields the probability of being audited at period 1 conditionally on π0

and x0(π0). This is written as

P(π1 ≥ π∗|π0 ∈ [0, πa)) = 0,

P(π1 ≥ π∗|π0 ∈ [πa, π∗)) = p̄(π0)x0(π0),

P(π1 ≥ π∗|π0 ∈ [π∗, πb)) = p̄(π0)x0(π0) + 1− x0(π0),

P(π1 ≥ π∗|π0 ∈ [πb, 1]) = p̄(π0)x0(π0) + 1− x0(π0) + (1− p̄(π0))x0(π0) = 1.
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Figure 2.4 – Period 1 beliefs as a consequence of Period 0 audit outcomes

For instance, when π0 ∈ [π∗, πb), there will be an audit at period 1 either if, at period 0, an

audit revealed an invalid claim or if there was no audit, which occurs with probability p̄(π0)x0(π0)

and 1− x0(π0) respectively. The other cases can be interpreted similarly.

Lemma 2.3. The inter-temporal objective function can be rewritten as

Ω0(x0(·)) + γE0[Ω∗1(x0(·))] =
∫ 1

0

[
C(π0) +K(π0)x0(π0)

]
f0(π0)dπ0,

where functions C(·) and H(·) are defined in Table 2.2 and K(π0) = p̄(π0) − c + γH(π0). In

particular, K(π0) is a continuous piecewise linear function such that

K(π0) < 0 if π0 ≤ πa and K(π0) > 0 if π0 > π∗,

K(π0) = p̄(π0)− c for π0 ∈ (0, πa) ∪ (πb, 1),

K(π0) > p̄(π0)− c for π0 ∈ (πa, πb).

Lemma 2.3 decomposes the inter-temporal objective function into components that explicit

the impact of x0(·) on current and future audit proceeds. C(π0) represents the proceeds of period

1 audits when the SP is not audited at period 0, and thus this term is not affected by x0(π0).

Beliefs π0 in [0, πa) and [πa, π∗) are smaller than π∗, and thus, if the corresponding SPs are not

audited at period 0, neither will they be at period 1. Hence, any benefit/loss from these beliefs is
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Table 2.2 – Definition of C(·) and H(·).

π0 C(π0) H(π0)

[0, πa) 0 0

[πa, π∗) 0 p2
Dπ0 + p2

H(1− π0)− p̄(π0)c

[π∗, πb) γ
[
p̄(π0)− c

]
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− [p̄(π0)− c]

[πb, 1] γ
[
p̄(π0)− c

]
0

necessarily the consequence of being audited at period 0, which gives C(π0) = 0. This is different

for beliefs in [π∗, πb) and [πb, 1] because they correspond to cases where initial beliefs π0 are

higher than π∗. Consequently, the SPs will be audited at period 1 and there are some proceeds

from period 1 that do not depend on x0(·), hence the presence of γ in C(·).

K(π0) represents the proceeds over the two periods that are affected by period 0 audit.

p̄(π0)− c in K(π0) represents the period 0 proceeds resulting from being audited at that period,

while H(π0) corresponds to the period 1 proceeds that are affected by period 0 audits through

the belief updating process. For instance, an SP with π0 ∈ [πa, π∗) will be audited at period 1

if an audit revealed an invalid claim at period 0 (because π1 ≥ π∗ in that case) and the term

p2
Dπ0 + p2

H(1− π0)− p̄(π0)c corresponds to the expected net proceeds. H(π0) = 0 in [0, πa) and

[πb, 1], although for different reasons: in [0, πa), regardless of the outcome of the audit, updated

beliefs will remain below π∗ and will never be audited at period 1, while in [πb, 1], whatever

happens at period 0, all beliefs remain above π∗ and the claim will always be audited at period

1. Function K(π0) is illustrated in Figure 2.5.

2.3.4 Inter-temporal Optimal Auditing Strategy

Proposition 2.2. An optimal period 0 strategy x∗0(·) is characterized by π∗∗ ∈ (πa, π∗) such that

x∗0(π0) = 0 if π0 ∈ [0, π∗∗),

x∗0(π0) ∈ [0, 1] if π0 = π∗∗,

x∗0(π0) = 1 if π0 ∈ (π∗∗, 1].

The threshold π∗∗ is given by

π∗∗ = π∗
1 + γpH

1 + γpH + γ(pD − c)
< π∗,
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Figure 2.5 – K(π0) for (pD = 0.9, pH = 0.1, c = 0.5, γ = 1)

and is such that

K(π∗∗) = 0 and p̄(π0)− c < 0 ∀π0 ∈ [π∗∗, π∗). (2.3)

Proposition 2.2 shows that, accounting for the impact of period 0 auditing on period 1,

posterior beliefs lead the insurer to audit a higher number of SPs at period 0 than in the

instantaneous audit problem analyzed in Section 2.2. The belief threshold above which claims

should be audited is now π∗∗ instead π∗, with π∗∗ < π∗. An interesting aspect is that these

additional auditees π0 ∈ [π∗∗, π∗) are such that the corresponding individual expect net proceeds

of audit are negative (equation (2.3)): in other words, in spite of the negative impact on period

0 audit proceeds, the information gathered generates enough (discounted) profit at period 1

to compensate this initial loss. Figure 2.6 illustrates this deviation from the single period

myopic auditing and Figure 2.7 shows in orange the additional period 1 positive net proceeds

γ
∫
H(π0)f0(π0)dπ0 that come from auditing down to π∗∗.8

The extent of the informational value of auditing is illustrated by the comparative statics

properties of π∗∗. If γ = 0, i.e., if the insurer at time 0 does not care about period 1, then

π∗∗ = π∗ since the informational value of auditing at t = 0 serves no purpose. If γ → +∞,

i.e., if the insurer only cares about period 1 profit, then π∗∗ → πa and he seeks to get the

maximum information from period 0. Of course, there’s no point in having π∗∗ lower than πa

8This result shows some similarity with the analysis of the deterrence effect by Dionne, Giuliano and Picard
(2008). They show that some claim should be audited although the corresponding expected gain is negative. This
is due to the deterrence effect of auditing: more intense monitoring discourages fraud and it should lead the insurer
to audit below the individual claim profitability threshold.
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Figure 2.6 – Learning vs Myopic

(a) Learning Effect at t = 0 (b) Myopic at t = 0

Figure 2.7 – x0(π0)K(π0) for (pD = 0.9, pH = 0.1, c = 0.5, γ = 1)

as the additional information would not be useful at period 1. The new auditing limit, like the

myopic one, also depends on c: if c = pH then π∗∗ = π∗ = 0 and if c = pD then π∗∗ = π∗ = 1, as

in both case there is no more trade-off between information and revenue. Finally, if we write

c = αpD + (1 − α)pH with α ∈ (0, 1), then π∗ = α and π∗∗ → π∗ when pD −→ pH . When pD

comes closer to pH , the separating power of the audit decreases until it becomes uninformative,

and at the limit pD = pH there is no more distinction between types D and H.

2.4 Variable Claim Value

A large part of the economic analysis of insurance fraud has focused attention on optimal

auditing strategies when policyholders may file smaller or larger claims, and on the way the
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insurer’s audit strategy depends on the size of the claim.9 Let us consider how this approach

may be affected by the learning mechanism.

2.4.1 Deterministic Value

As a preliminary step, let us consider the case where the size of all claims takes some arbitrary

value ` ∈ R+. This size is still fixed, but not necessarily equal to 1. The belief threshold π∗ now

depends on ` and is defined by

π∗ = 1 if ` ≤ c

pD
,

p̄(π∗)`− c = 0 if c

pD
< ` <

c

pH
,

π∗ = 0 if c

pH
≤ `.

Therefore

π∗(`) = max
{

0,min
{

1, c/`− pH
pD − pH

}}
.

Equivalently we may define a threshold `∗ for the claim size

`∗(π) = c

pH + (pD − pH)π = c

p̄(π) ∀π ∈ [0, 1],

and, for beliefs π, auditing is profitable if ` ≥ `∗(π).

A straightforward extension of the results of Section 2.3, with the same claim size ` at each

period, shows that the first period optimal auditing threshold becomes

π∗∗(`) = π∗(`)× 1 + γpH
1 + γpH + γ(pD − c/`)

.

As π∗∗(·) is strictly decreasing from ( c
pD
, c
pH

) to (0, 1), we can also define a function `∗∗(·) :

[0, 1] −→ [ c
pD
, c
pH

] as

`∗∗(0) = c

pH
,

`∗∗(π) = (π∗∗)−1(π) for π ∈ (0, 1),

`∗∗(1) = c

pD
.

9See Picard (2013) for a survey.
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In the two period setting, a claim ` certified by an SP with associated belief π0 will be audited if

` ≥ `∗∗(π0).

The set of claims ∆∗ for which audit is profitable within a single period setting (with belief π

and claim size `) is defined by

∆∗ = {(π, `)|π∗(`) ≤ π ≤ 1} = {(π, `)|`∗(π) ≤ `}.

In a two period setting, with claim size ` at both periods, claims should be audited at period

0 if (π0, `) ∈ ∆∗∗, where

∆∗∗ = {(π0, `)|π∗∗(`) ≤ π0 ≤ 1} = {(π0, `)|`∗∗(π0) ≤ `},

with ∆∗ ⊂ ∆∗∗.

Figure 2.8 – Auditing thresholds π∗(`) and π∗∗(`) with a variable claim value `

2.4.2 Random Homogeneous Value

Let us move on now to the more interesting case where the size of the claims is a random

variable drawn from a known distribution at the beginning of each period. Let ˜̀i denote this
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random variable with density gi(·) and c.d.f. Gi(·) on [0, Li] for i = 0, 1. For simplicity, we

assume that ˜̀i has the same probability distribution for both types of SPs, and thus ˜̀i and π0

are independently distributed. The value of a claim is observed at each period before deciding to

audit or not. Now, an audit strategy is written as xi(πi, `i) at period i = 0, 1.

Lemma 2.4. The inter-temporal objective function can be written as

Ω0(x0(·, ·)) + γE0
[
Ω∗1(x0(·, ·))

]
=
∫

[0,1]

∫
[0,L0]

[
C(π0) +K(π0, `0)x0(π0, `0)

]
g0(`0)f0(π0)d`0dπ0, (2.4)

where

K(π0, `0) = p̄(π0)`0 − c+ γH(π0),

H(π0) = p̄(π0)Φ(A(π0)) + (1− p̄(π0))Φ(B(π0))− Φ(π0),

C(π0) = γΦ(π0),

with H(π0) > 0 if π0 ∈ (0, 1) and H(0) = H(1) = 0, and

Φ(π) =
∫ L1

`∗(π)

[
p̄(π)`1 − c

]
g1(`1)d`1,

where `∗(π) = c
p̄(π) .

Lemma 2.3 and Lemma 2.4 are similar and can be interpreted the same way. In particular,

the two terms in the integral of formula (2.4) correspond to the parts of cumulated expected

proceeds according to whether they are affected by period 0 audit or not .

Proposition 2.3. The optimal period 0 auditing strategy x∗0(π0, `0) is such that

x∗0(π0, l0) = 1 if π0 > π∗∗(`0),

where π∗∗(·) : [0, L0] −→ [0, 1], with π∗∗(`0) < π∗(`0) for all `0 ∈ [0, L0].10

Proposition 2.3 extends Proposition 2.2 to the case of claims with variable size, and its

interpretation is similar. In an instantaneous setting, where learning effects would be ignored,

an audit should be performed if the belief π0 is larger than π∗(π0). The threshold is decreasing
10Proposition 2.3 only states that π∗∗(`0) < π∗(`0) for all `0. Additional assumptions would allow us to show

that K(π0) is monotonous and thus that claims should not be audited when π0 < π∗∗(`0).
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with `0 because the larger the claim, the larger the potential gain from auditing. When learning

effects are taken into account, the threshold decreases. Claim (π0, `0) should be audited at period

0 when π∗∗(`0) < π0 < π∗(`0) although such audit is not profitable in expected terms.

2.5 Conclusion

This article aimed at characterizing the learning dimension of auditing when there is a

repeated interaction between auditor and auditee. The insurance claim fraud problem with

potentially dishonest service providers was an application example, but the same question arises

in many other settings, such as tax audits and, more generally, the verification of compliance with

law. In our model, the insurer has imperfect information about the service providers’ type, and,

as in the machine learning multi-armed bandit approach, he extends his audit activity beyond

the desire for immediate short-term gain. Compared to a myopic strategy only focusing on short

term profit, the longsighted insurer faces an inter-temporal trade-off between the immediate

gain from fraud detection, and the future profit made possible by more intense auditing. This

learning effect leads the longsighted insurer to increase his monitoring efforts and to put some

individually unprofitable claims under scrutiny. This result remains valid when the setting is

extended to a more general framework with claims of varying size: the learning effect shifts the

frontier in the belief-claim size space, beyond which an audit should be performed.

These results may be extended in many directions that would be worth exploring. Firstly, we have

limited ourselves to a simple two-period model. Extending our analysis to an arbitrary number of

periods would allow us to take into account the possibility to exclude and replace service providers

when their dishonesty becomes very probable, and also to analyze the convergence features of our

model when the number of periods is large. A parallel could also be drawn between our problem

and the so-called greedy/ε-greedy strategies in bandit problems, when the latter outperform the

former in the long-run (see Chapter 2 in Sutton and Barto (1998)). Another interesting issue

would consist in considering the case where service providers are concerned by multiple claims at

each period. The auditing strategy would have to specify how many claims will be monitored.

Audit costs may also reflect a potential source of heterogeneity between claims which could lead

the insurer to abstain from auditing some claims with high audit costs. Furthermore, strategic

defrauders could resort to manipulation of auditing costs as a protective device against auditing

(see Picard (2000)). Most importantly, our model postulates an exogenous fraud rate reflected

in the frequency of invalid claims for honest and dishonest service providers. Endogenizing
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the frequency of invalid claims would be of particular interest, in order to study the strategic

interaction between insurers, service providers and claimants, in a setting where learning and

deterrence effects would coexist. Finally, the paper highlights the relevance of more intense

investigations during the first stages of repeated interactions between principal and agent, and

this conclusion is far more general than the insurance fraud problem. Analyzing whether this

conclusion fits with actual monitoring processes would be an empirical extension that would

be worth exploring, for better understanding the behavior of insurers facing claim fraud and in

other contexts.
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2.6 Appendix

Proof of Lemma 2.1. Let us write the expected profit from the auditing strategy x(.) at a single

period

Ω =
∫ 1

0

[
p̄(π)− c

]
x(π)f(π)dπ.

The corresponding problem has a point-wise maximization structure, therefore:

x(π) = 1 if π > π∗,

x(π) ∈ [0, 1] if π = π∗,

x(π) = 0 if π < π∗,

where

π∗ = c− pH
pD − pH

.

Proof of Proposition 2.1. Let π̃1(π0) be the period 1 belief as a function of prior belief π0. It is

a random variable defined by

π̃1(π0) =


π1a = A(π0) with probability qa = x0(π0)p̄(π0),
π1b = B(π0) with probability qb = x0(π0)(1− p̄(π0)),
π1c = π0 with probability qc = 1− x0(π0),

with E0[π̃1(π0)] = qaπ1a + qbπb + qcπ1c = π0.

By a point-wise maximization argument, for all π1, the optimal auditing strategy x∗1(π1)

maximizes

x1[p(π1)− c]

s.t. 0 ≤ x1 ≤ 1,

and thus we have

x∗1(π1i)[p(π1i)− c] ≥ x∗1(π0)[p(π1i)− c] for i = a, b, c.
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Therefore

E0[ω(π̃1, x
∗
1(·))|π0] =

∑
i=a,b,c

qix
∗
1(π1i)[p(π1i)− c]

≥ x∗1(π0)
∑

i=a,b,c
qi[p(π1i)− c]

= x∗1(π0)
[
p
( ∑
i=a,b,c

qiπ1i
)
− c
]

= x∗1(π0)[p(π0)− c]

= ω(π0, x
∗
1(π0)).

This inequality is strict if x∗1(π1i) 6= x∗1(π0) for some i = a and/or i = b.

Proof of Lemma 2.2. We have π1 ∈ {B(π0), π0, A(π0)} depending on the period 0 scenario.

1. If 0 ≤ π0 < πa

(a) In all cases: B(π0) ≤ π0 ≤ A(π0) < A(πa) = π∗ =⇒ π1 < π∗.

2. If πa ≤ π0 < π∗

(a) Invalid claim: π1 = A(π0) ≥ A(πa) = π∗ =⇒ π1 ≥ π∗.

(b) Valid or No Audit

i. π1 = B(π0) < π0 < π∗ =⇒ π1 < π∗.

ii. π1 = π0 < π∗ =⇒ π1 < π∗.

3. If π∗ ≤ π0 < πb

(a) Invalid or No Audit

i. π1 = A(π0) > π0 ≥ π∗ =⇒ π1 ≥ π∗.

ii. π1 = π0 ≥ π∗ =⇒ π1 ≥ π∗.

(b) Valid claim:

i. π1 = B(π0) < B(πb) = π∗ =⇒ π1 < π∗.

4. If πb ≤ π0 ≤ 1

(a) In all cases: B(πb) = π∗ ≤ B(π0) ≤ π0 ≤ A(π0) =⇒ π1 ≥ π∗.

The period 1 audit decision represented in Table 2.1 follows from the fact that there is an audit

at period 1 if and only if π1 ≥ π∗.
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Proof of Lemma 2.3. Let Π0(π0) be the expected inter-temporal net proceeds of auditing an SP

of type π0. Let (the random variable) π̃1 be the updated belief at period 1. We have

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
+ γE0

[
x∗1(π̃1)

(
p̄(π̃1)− c

)
|π0
]

= x0(π0)
[
p̄(π0)− c

]
+ γE0

[
1{π̃1≥π∗}

(
p̄(π̃1)− c

)
|π0
]
.

If π0 ∈ [0, πa), we always have π̃1 < π∗ and

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
.

If π0 ∈ [πa, π∗), then π̃1 ≥ π∗ if audit reveals an invalid claim (i.e., π̃1(π0) = A(π0)), which

happens with probability p̄(π0)x0(π0). Thus, in that case we have

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
+ γp̄(π0)x0(π0)

[
p̄(A(π0))− c

]
= x0(π0)

[
p̄(π0)− c

]
+ γp̄(π0)x0(π0)

[
p2
D

π0
p̄(π0) + p2

H

1− π0
p̄(π0) − c

]
= x0(π0)

[
p̄(π0)− c

]
+ γx0(π0)

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c
]

= x0(π0)
[
p̄(π0)− c+ γ

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c
]]
.

If π0 ∈ [π∗, πb), then π̃1 ≥ π∗ if audit reveals an invalid claim (i.e., π̃1(π0) = A(π0) with

probability p̄(π0)x0(π0)) or if there is no audit (i.e., π̃1(π0) = π0 with probability 1 − x0(π0)).

Hence

Π0(π0) = x0(π0)
[
p̄(π0)− c

]
+ γ

[
p̄(π0)x0(π0)

[
p̄(A(π0))− c

]
+ (1− x0(π0))

[
p̄(π0)− c

]]

= x0(π0)
[
p̄(π0)− c

]
+ γ

[
p̄(π0)− c

]
+ γx0(π0)

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− p̄(π0) + c
]

= γ
[
p̄(π0)− c

]
+ x0(π0)

(
p̄(π0)− c+ γ

[
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− p̄(π0) + c
])
.

If π0 ∈ [πb, 1], then we always have π̃1 ≥ π∗, and thus

Π0(π0) = γ
[
p̄(π0)− c

]
+ x0(π0)

[
p̄(π0)− c

]
.

The expected net proceeds for an SP of type π0 can therefore be written as:

Π0(π0) = C(π0) + x0(π0)K(π0),
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where

K(π0) = p̄(π0)− c+ γH(π0),

and functions C(·) and H(·) are given in Table 2.3.

Table 2.3 – Definition of C(·) and H(·).

π0 C(π0) H(π0)

[0, πa) 0 0

[πa, π∗) 0 p2
Dπ0 + p2

H(1− π0)− p̄(π0)c

[π∗, πb) γ
[
p̄(π0)− c

]
p2
Dπ0 + p2

H(1− π0)− p̄(π0)c− [p̄(π0)− c]

[πb, 1] γ
[
p̄(π0)− c

]
0

We obtain

Ω0(x0(·)) + γΩ∗1(x0(·)) =
∫ 1

0
Π0(π0)f0(π0)dπ0

=
∫ 1

0

[
C(π0) +K(π0)x0(π0)

]
f0(π0)dπ0.

The piecewise linearity of K(π0) comes from the fact that p̄(π0) is linear in π0. In addition,

H(πa) = p2
Dπa + p2

H(1− πa)− p̄(πa)c

= p̄(πa)
[
p̄(A(πa))− c

]
= p̄(πa)

[
p̄(π∗)− c

]
= 0.

Thus

K(πa) = p̄(πa)− c = lim
π→π−a

K(π).

Notice also that

K(π∗) = p2
Dπ
∗ + p2

H(1− π∗)− p̄(π∗)c− [p̄(π∗)− c]

= p2
Dπ
∗ + p2

H(1− π∗)− p̄(π∗)c

= lim
π→π∗−

K(π).
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Finally, by definition of π∗ = B(πb), we have

c = p̄(B(πb))

= pD
(1− pD)πb
1− p̄(πb)

+ pH
(
1− (1− pD)πb

1− p̄(πb)
)
,

and

p2
Dπb + p2

H(1− πb)− p̄(πb)c = (p̄(πb)− c).

This implies

K(πb) = p̄(πb)− c = lim
π→π−

b

K(π),

which proves that K(·) is continuous. Finally, from the definition of K(·)

∀π0 ∈ [0, 1] K(π0) = p̄(π0)− c+ γH(π0)

≥ p̄(π0)− c.

We also have

∀π0 > π∗ K(π0) ≥ p̄(π0)− c > 0,

and

∀π0 ≤ πa K(π0) = p̄(π0)− c < 0.

Proof of Proposition 2.2. Point-wise maximization yields

x∗0(π0) = 0 if K(π0) < 0,

x∗0(π0) ∈ [0, 1] if K(π0) = 0,

x∗0(π0) = 1 if K(π0) > 0.
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Therefore, the threshold π∗∗ ∈ [πa, π∗) satisfies K(π∗∗) = 0 and

K(π∗∗) = p̄(π∗∗)− c+ γH(π∗∗)

=
(
1 + γ(pD + pH − c)

)
(pD − pH)π∗∗ + (pH − c)

(
1 + γpH

)
.

Using K(π∗∗) = 0 gives

π∗∗ = π∗
1 + γpH

1 + γpH + γ(pD − c)
< π∗.

Proof of Lemma 2.4. Let ∆ = [0, 1] × [0, L1]. The optimal strategy at period 1 defined by

x∗1(·, ·) : ∆ −→ [0, 1] is such that

x∗(π1, `1) =
{

1 if (π1, `1) ∈ ∆∗,
0 otherwise.

The associated period 1 objective function is

Ω1(x0(·, ·), x∗1(·, ·)) = Ω∗1(x0(·, ·)),

and thus the inter-temporal objective is written as a function of x0(·, ·)

Ω0(x0(·, ·)) + γE0
[
Ω∗1(x0(·, ·))

]
.

Since the random variable ˜̀i is independent of the type, we may write

Ω0(x0(·, ·)) =
∫ ∫

(π0,`0)∈∆

[
p̄(π0)`0 − c

]
x0(π0, l0)f0(π0)g0(`0)d`0dπ0.

There is an audit at period 1 if (π1, `1) ∈ ∆∗, and thus we have

Ω∗1(x0(·, ·)) =
∫ ∫

(π1,`1)∈∆

[
p̄(π1)`1 − c

]
x∗(π1, `1)g1(`1)f1(π1|x0(·, ·))dπ1d`1

=
∫
π1∈[0,1]

∫ L1

`∗(π1)

[
p̄(π1)`1 − c

]
g1(`1)f1(π1|x0(·, ·))d`1dπ1

=
∫
π1∈[0,1]

Φ(π1)f1(π1|x0(·, ·))dπ1,
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where `∗(π1) = c/p̄(π1) and

Φ(π1) =
∫ L1

`∗(π1)

[
p̄(π1)`1 − c

]
g1(`1)d`1.

Note that Φ(π1) is the expected net proceeds at period 1 of auditing an SP with belief π1.

Therefore, by analogy with Section 2.3 and using a point-wise maximization argument, the

inter-temporal expected net proceeds of an SP characterized by (π0, `0) are written as

Π0(π0, `0) = x0(π0, `0)
[
p̄(π0)`0 − c

]
+ γ

[
x0(π0, `0)p̄(π0)Φ(A(π0))...

...+x0(π0, `0)(1− p̄(π0))Φ(B(π0))...

...+(1− x0(π0))Φ(π0)
]
.

Rearranging the terms in Π0(π0, `0) yields

Π0(π0, `0) = C(π0) +K(π0, `0)x0(π0, `0),

where

K(π0, `0) = p̄(π0)`0 − c+ γH(π0),

H(π0) = p̄(π0)Φ(A(π0)) + (1− p̄(π0))Φ(B(π0))− Φ(π0),

C(π0) = γΦ(π0).

Simple calculations give

Φ′(π1) = (pD − pH)
∫ L1

c
p̄(π1)

`1g1(`1)d`1 > 0,

and

Φ′′(π1) = (pD − pH)2 c2

p̄(π1)3 g1
( c

p̄(π1)
)
> 0.

Thus, Φ(·) is increasing and convex. Using p̄(π0)A(π0) + (1− p̄(π0))B(π0) = π0 gives H(π0) > 0

if π0 ∈ (0, 1). In addition, A(1) = B(1) = 1 and A(0) = B(0) = 0 imply H(0) = H(1) = 0.

Proof of Proposition 2.3. Lemma 2.4 shows that x∗0(π0, `0) = 1 if K(π0, `0) > 0 and that

x∗0(π0, `0) = 0 if K(π0, `0) < 0. Let π0 ∈ (π∗(`0), 1). Since H(π0) > 0 and p̄(π0)`0 − c ≥ 0, and
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H(1) = 0 and p̄(1)`0 − c > 0, we have

K(π0, `0) > 0.

This implies that ∆∗ is included in the optimal auditing set at period 0. In addition,K(π∗(`0), `0) >

0 implies, by continuity of K(·), that there exists π∗∗(`0) smaller than π∗(`0) such that

K(π0, `0) > 0 ∀π0 ∈ (π∗∗(`0), π∗(`0)).

We deduce that

x∗0(π0, l0) = 1 if π0 > π∗∗(`0).
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Chapter 3

Should I Stalk or Should I Go? An

Auditing Exploration/Exploitation

Dilemma 1

1This chapter a joint work with Pierre Picard. We are grateful to conference participants at APRIA, ARIA
and ESEM annual meetings, as well as seminar participants at CREST for helpful discussions and comments.
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3-

Abstract

We consider a fraud inspection problem where service providers are central to the fraud

generating process, either as the main protagonists or as colluding third parties. Because

interactions are repeated between the auditor (insurer, tax collector, environmental regulation

agency, etc.) and auditees (doctors, tax preparers, waste management subcontractors, etc.),

auditing behaves as a learning mechanism to separate the wheat (honest agents) from the chaff

(defrauders). We analyze a Bayesian inspector’s dynamic auditing problem in the face of fraud,

and characterize its optimal strategy as a strategic exploration/one-armed bandit one. The

insurer faces the well-known reinforcement learning exploration/exploitation trade-off between

gathering information for higher future profits (exploration) and prioritizing immediate profits

(exploitation). We then derive optimal auditing strategies with multiple auditees and capacity

constraints as the solution to a k-armed bandit problem. We finally investigate the extents to

which learning occurs under optimality in terms of how much information is obtained and how

quickly it is obtained.

JEL Classification Numbers: D82, D83, G22, L21.

Keywords: Fraud, Dynamic optimal auditing, Information acquisition, Armed bandit.

62



Should I Stalk or Should I Go? An Auditing Exploration/Exploitation Dilemma

3.1 Introduction

When an auditor can monitor an auditee’s action at some cost, the auditing decision comes

down to balancing between investigation-generated gains and losses. These gains and losses

usually include the administrative costs of auditing, the proceeds from recovering undue payments

in case of a fraud-revealing audit, and the profits drawn from a deterrence effect when defrauders

are threatened to be spotted. But another non-immediate (and less scrutinized) motivation

for monitoring may arise: information acquisition. When auditees are heterogeneous and the

auditor’s optimal action is not type-constant, the latter could benefit from learning more about

the auditee. For example, in insurance, policyholders may differ in their propensity to defraud:

it would be optimal for the insurer to audit “low morality” types more since they defraud

frequently enough to amortize auditing costs, with significant deterrence effects. On the contrary,

“high morality” types usually submit invalid claims by mistake, rendering them impervious to

incentives, and unfrequently enough for net proceeds of auditing to be negative. While this

morality is not directly observable, the repeated fraud patterns may convey information about the

true type, provided an audit is conducted. This situation is obviously not restricted to insurance

fraud and is relevant to multiple settings where fraud and auditing can take place. Tax evasion,

environmental compliance and subcontractor fraud all fall in its scope and share a common

feature, that is the repeated character (annually, monthly or even daily) of auditor-auditee

interactions.2 But an audit is costly, and gains from uncertainty reduction may not be profitable.

When are they then?

To answer this question, we consider a dynamic programming problem where a decision

maker (DM), the auditor, faces a non-strategic auditee who takes an action that may be invalid.

We willingly restrict the occurrence of fraud to a simple non-strategic stochastic process in order

to single out the information acquisition effect and exclude the deterrence one. The DM can

choose to inspect the auditee at each period and reveal whether there was fraud. As a Bayesian,

he acquires information by updating his belief about the auditee’s type, conditionally on the

outcome of the auditing decision. Our goal is to understand if this learning opportunity alters

the DM’s myopic optimal auditing policy and how. In particular, we are interested in the role of

the time horizon (finite or infinite), the time preference and the efficiency of the information

acquisition mechanism in reducing uncertainty.

Our main result states that this learning opportunity induces the DM to extend the inspection

2The frequency of interactions can also be explained by the existence of intermediaries who provide services to
several agents: e.g.,car repairers or heath service providers in insurance, tax preparers for tax evasion
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target set to some auditees whose immediate auditing proceeds are negative. In other words,

the DM faces a trade-off between not auditing to avoid losing money at the expense of not

learning anything, and auditing with a negative expected immediate proceed while acquiring

knowledge for more accurate future audits. The DM’s inter-temporal strategy takes the shape of

a cut-off in the belief space, whereby he audits all agents above the threshold and ignores the ones

below. With a finite-horizon, this cut-off is increasing in time, implying that more exploration

takes place early on in the relationship: since the information acquired is about a time-invariant

type, any information obtained at a given period is useful for all remaining periods, and, the

further the horizon, the easier it is to amortize the one-time information acquisition cost. At

the last period, the threshold is the one-period myopic one and excludes auditees with negative

auditing proceeds. With an infinite horizon, the cut-off is unsurprisingly constant, lower than

the myopic/no-learning threshold, and corresponds to the limit of the finite-horizon first period

belief threshold when the total number of periods tends to infinity. As for the time preference,

a more patient DM will be willing to explore more to enjoy the future information-generated

additional profits. More importantly, when the DM is indifferent between the present and the

future, i.e., when the discount rate tends to one, total exploration takes place in the infinite

horizon setting: all beliefs are audited, as it takes a finite time and cost to reach a given level of

belief precision, and an undiscounted infinite number of periods are left to take optimal actions

and amortize the initial finite cost.

The intuitive concept underlying this set of results is the classical Exploration versus Ex-

ploitation dilemma: the DM must choose between playing his best option according to his current

knowledge at the risk of being mistaken, or diversify his actions early on to refine his beliefs and

take more accurate actions later on. This dilemma arises particularly in Reinforcement Learning

problems, in particular Bandit problems. We establish that our dynamic programming problem

is nothing but a Strategic Exploration/One-Armed Bandit one, i.e. a bandit with a risky arm

(auditing) and a safe arm (not auditing). The value function is then analogous to the well-known

Gittins index, which allows us to extend our main result to the case of multiple auditees and

capacity constraints. Another interpretation of our problem, in line with the One-Armed Bandit

approach, is that of an optimal stopping problem: the cut-off threshold defines a stopping time

as the moment when the belief process crosses the threshold. In our fraud inspection problem,

auditing has the peculiarity of being both the learning action and the profit generating action.

Therefore, the DM’s cut-off decision comes down to a trade-off between stopping early enough in

case of a honest type (low stopping time/large threshold), and not excluding a dishonest type in
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case of mistaken initial beliefs (large stopping time/low threshold). In contrast to our approach,

the classical setting is one where the learning action (e.g., attention allocation, price revelation)

is chosen first, then the profit generating action (buying, selling, etc.) is taken, and the DM’s

decision is the stopping time, which consequently never goes to infinity.

A second set of results elaborates on the specificity of the information acquisition process

and its implications in terms of optimal auditing. We start by answering the question of when

(in)complete/(in)adequate learning occurs, as defined by Easley and Kiefer (1988) and Aghion

et al. (1991), and show that the answer lies in the distribution of optimal stopping times. Then,

we focus on the efficiency of information gathering, i.e., the speed of convergence of the belief

process to the true state. To do so, we first exploit the (sub/super)-martingale feature of the

Bayesian belief process and focus on the Doob-Meyer predictable component.

These features relate to several strands of the academic literature. Our approach relies on

the seminal work of Townsend (1979) and Gale and Hellwig (1985) on Costly State Verification

where a principal can costly reveal some hidden information before taking the action. We extend

the literature on optimal auditing3 by characterizing the scheme of optimal strategies under

dynamic information acquisition in a multi-period setting.4 One important aspect through which

our conclusions differ from previous ones is that our cutoff is in a belief space rather than on

monetary amounts associated to fraud. Our main result bears a striking resemblance with that of

Dionne, Giuliano and Picard (2008) as the auditor is induced to monitor auditees with negative

expected payoff, although for different reasons. For us, this is motivated by the perspective of

future profits due to sequential learning, while the motivation stems from a static deterrence effect

in their case. This dynamic aspect with information gathering links our work to the literature

on sequential experiments and optimal stopping, following the seminal papers by Wald (1945)

and Arrow, Blackwell and Girshick (1949). These optimal stopping problems are intrinsically

related to bandit ones5 and our model is easily reinterpreted as a One-Armed Bandit problem,

bringing our work close to the literature on Bandits in economics (Bergemann and Välimäki

(2008)) and on Reinforcement Learning (Sutton and Barto (1998)). More generally, it relates to

the literature on dynamic information acquisition by a decision maker, as in Easley and Kiefer

(1988) and Aghion et al. (1991).

The rest of the paper is organized as follows: Section 4.2 introduces the model. Section 3.3

characterizes the inter-temporal optimal auditing strategy and its interpretations in terms of

3see Picard (2013) for a comprehensive review.
4This work extends our previous analysis of the two-period case, see Aboutajdine and Picard (2018).
5see Ferguson (2004).
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bandits and optimal stopping. Section 3.4 focuses on the extents to which learning by auditing

happens and its informativeness as a function of the problem’s parameters. Section 3.5 concludes.

All proofs are in the Appendix.

3.2 The Model

3.2.1 Setting

We consider a world inhabited by two protagonists: an auditor and an auditee. The

fundamental aspect of their interaction in this context is that it is repeated in time. Practically, it

relates to the fact that many interactions occur between an auditing party and a service provider

(SP). The SP can be the direct entity contractually related to the auditor, such as subcontractors

who are major suppliers of a client firm or public institution. The SP can instead act as a

third party to perform a commercial act and/or certify actions, such as health service providers

(dentists, opticians,etc.) or tax preparers. Thirs party SPs handle therefore the cases of several

policyholders of the same insurer or of several taxpayers, thus the frequent interaction with the

auditor.6 Hereafter, we restrict the auditee to be an SP, and use, for the sake of simplicity and

without loss of generality, the terminology of insurance fraud. The auditor becomes the insurer,

the auditee is an SP, and the SP’s action is to submit a claim.

The SP channels one and only one claim at each period with value 1, each claim being

either valid or invalid. The invalidity of a claim may result from honest mistakes or actual

ill-disposed voluntary intent to defraud. The probability of submitting invalid claims depends on

the SP’s intrinsic type, with the SP being either honest (type H, transmits invalid claims only

involuntarily) or dishonest (type D, transmits invalid claims both voluntarily and involuntarily).

Because of this, a D type is more prone to submitting invalid claims than an H type, and

we consider that he does so with probability pD, while this probability is pH for an H type,

with pH < pD. Hence, the SP is a non-strategic7 entity and his actions are represented by an

exogenous Bernoulli process of parameter pi.

Types are time-invariant private information, unobservable to the insurer. But the latter,

based on his experience and his observations, has a subjective belief π that the SP is of type D.

In other words, the insurer attaches probability π to the fact that the SP is of type D. An SP

6We know for a fact that anti-fraud efforts in health insurance focus on service providers, as their collaboration
is a necessary condition for fraud to occur, and they may even defraud without the insureds knowledge. The case
of tax preparers is less obvious, but Boning et al. (2018) suggest that they can play an important role in anti-fraud
efforts.

7Reminder: this is important to isolate the information effect from the deterrence effect.
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to whom the auditor assigns a prior π will therefore, from the insurer’s point of view, submit

an invalid claim with probability p̄(π) = (1− π)pH + πpD. The insurer may audit a claim and

reveal its true status, valid or invalid: when invalid, the auditor gets back the illegitimate amount

of 1. This decision is represented by the choice of an auditing strategy x ∈ [0, 1], which is the

probability with which the auditor will investigate the claim submitted by the SP. Since the only

information available to the auditor is the prior, the auditing strategy is a function of π.

It costs c ∈ (pH , pD) to perform an audit, inducing a net proceed of 1− c when a claim is

found invalid, and −c when it is found valid. In expectation, the net proceed of auditing an SP

with prior π is p̄(π)− c. In particular, if the type was known, auditing a dishonest SP would

yield an expected net proceed of pD − c > 0 while auditing an honest one would yield pH − c < 0.

This difference in the profitability of auditing between types of SPs is what may motivate the

insurer to acquire information.

Finally, interactions take place over an arbitrary number of periods T ≥ 1.8 Each period

is indexed by t ∈ {1, 2, .., T} and the initial period t = 1 is the beginning of the insurer-SP

relationship. The period 1 initial prior may be considered as initialized at some arbitrary value

(e.g. 0.5 if no relevant information is available) or based on some other observable characteristics

of the SP. The total number of periods over which the interactions take place may be interpreted

as the “lifespan” of an SP. For example, if an insurer checks the channeled claims every month

and a pharmacist works for 30 years (i.e., 360 months), then T = 360. Whenever necessary,

the time-dependent variables of interest will be indexed by both the period at which they are

considered and the total number of periods, i.e., by (t, T ) ∈ {1, .., T} × N∗. Otherwise, we will

restrain the indexation to t ∈ {1, .., T}.

3.2.2 Information Acquisition

Period t audits also allow the insurer to update his beliefs at the beginning of period t+ 1.

Depending on whether an audit has been performed and, if so, whether the claim was valid

or invalid (Val and Inv, respectively), posterior beliefs π̃t+1 are deduced from initial beliefs πt

through Bayes’ Law:

π̃t+1 =


P(D|audit, Inv) = ϕAI(πt) = pDπt

p̄(πt) ,

P(D|audit, V al) = ϕAV (πt) = (1−pD)πt
1−p̄(πt) ,

P(D|no audit) = ϕNA(πt) = πt,

(3.1)

8The model is now a generalization of the two-period model considered by Aboutajdine and Picard (2018).
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with

ϕAV (πt) < πt < ϕAI(πt), (3.2)
ϕ′AI > 0, ϕ′′AI < 0,
ϕ′AV > 0, ϕ′′AV > 0.

The updating mechanism is such that an invalid claim increases the belief that an SP is dishonest

Figure 3.1 – Updating Functions

(πt+1 = ϕAI(πt) > πt) while a valid claim decreases it (πt+1 = ϕAV (πt) < πt). Either way, both

cases imply that the insurer acquires information about the auditee’s true type. On the contrary,

not auditing leaves the beliefs unchanged since no relevant information is obtained.

As the setting is dynamic, the evolution of beliefs in times constitutes a stochastic belief

process 〈πt〉 with a natural filtration Ft, and, because it is governed by Bayes Law, the process

behaves as a martingale.

Lemma 3.1. The belief process 〈πt〉 is a martingale under the auditor’s probability measure P

EP[π̃t+1|Ft] = πt.

In addition, with some auditing (i.e. x > 0), under state of the world H (respectively D) and
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the associated probability measures PH (resp. PD), the belief process 〈πt〉 is a supermartingale

(resp. a submartingale). With an infinite horizon, the process converges to the true belief about

the state of the world

i - EH [π̃t+1|Ft] ≤ πt and πt
PH−−−−−→ 0.

ii - ED[π̃t+1|Ft] ≥ πt and πt
PD−−−−−→ 1.

Figure 3.2 – Simulated convergence of priors to the true beliefs

Corollary 3.1. The posterior π̃t+1 is a mean-preserving spread of the prior πt.

Figure 3.2 illustrates the convergence of beliefs for each type, with the same initial belief

π1. This convergence of the Bayesian beliefs to the truth under systematic auditing means

that auditing acts as a separating tool to isolate dishonest SPs from honest ones. Figure 3.3

simulates over T = 1000 periods the trajectories of beliefs for a population of 2000 SPs, half

honest half dishonest. At period 1, the population is uniformly distributed across priors, and

a Bernoulli process is drawn for each SP’s fraud behavior, resulting in a corresponding belief

process realization under systematic auditing (i.e., x = 1). The progressive separation of types, as

a convergence of beliefs to both ends of the spectrum, is such that, after enough time, dishonest

SPs end up on the right, while honest ones are on the left.

In the following, we go back to a situation where the insurer faces one single SP.
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Figure 3.3 – Distribution of priors after repeated audits (T = 1000).

(a) t = 1 (b) t = 50 (c) t = 100

(d) t = 250 (e) t = 500 (f) t = 1000

3.2.3 A Dynamic Programming Problem

3.2.3.1 The one-period/myopic problem

When T = 1, the problem is myopic, the auditor has no future profits to take into account,

and information acquisition is not relevant. The auditor has objective function

ΩT (π, x) = u(π, x) = (p(π)− c)x,

and solves for the value function

VT (π) = max
x(π)∈[0,1]

ΩT (π, x).

Because of the linearity of the objective function in x, optimal auditing has a bang-bang solution

characterized by a threshold π+ above which auditing proceeds are positive. In other words, the

auditors targets only individually profitable claims. The value function is consequently piece-wise

linear in π.

Lemma 3.2. For T = 1, the optimal auditing strategy is bang-bang

x∗T (π)


= 0 if π < π+,

∈ (0, 1) if π = π+, where π+ = c−pH
pD−pH ∈ (0, 1),

= 1 if π > π+.

Figure 3.4 illustrates the myopic problem’s objective function, optimal policy and value
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function.

Figure 3.4 – Myopic objective, policy and value functions.

(a) ΩT (π) (b) x∗T (π) (c) VT (π)

3.2.3.2 The multi-period problem

With a multi-period setting, the existence of future periods and their interactions with the

present through the learning process alters the objective function at any t < T ,

Ωt(πt, xt) = u(πt, xt) + δEt
[
Vt+1(π̃t+1)|xt

]
, (3.3)

and

Vt(πt) = max
xt∈[0,1]

Ωt(πt, xt),

where δ represents time-discounting.9 Denote also with the superscript d the average dis-

counted counterparts Ωd
t = 1∑T

j=t δ
j−t

Ωt and V d
t = 1∑T

j=t δ
j−t
Vt. Our problem is now a dynamic

programming one with parameters [δ, u,P(π̃t+1), x].

In a finite horizon setting, this problem can be solved by backward induction.Therefore,

the total number of periods T is important and we will occasionally index functions by {t, T}

rather than just {t}. The (piece-wise) linearity features of the objective/value functions persist

through time and the corresponding optimal auditing strategies remain bang-bang. Lemma 3.3

characterizes all these features.

Lemma 3.3. The objective function Ωt,T (π, x) is

i - linear in x, continuous and piece-wise linear in π,

ii - ∂Ωt,T
∂x

∣∣∣
π
is continuous and increasing in π, ∂Ωt,T

∂x

∣∣∣
π=1

> 0 and ∂Ωt,T
∂x

∣∣∣
π=0

< 0,

9Our model may be extended to the case where the horizon T is random, and δ includes a termination
probability.
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iii - and there exists a threshold π∗t,T ∈ (0, 1) defined uniquely by ∂Ωt,T
∂x

∣∣∣
π∗t,T

= 0.

The optimal auditing strategy x∗t,T (·) is bang-bang: x∗t,T (π) = 1{π≥π∗t,T }.

The value function Vt,T (π) verifies

i - Vt,T (π) = Ωt,T (π, x∗t,T (π)) = max(0,Ωt,T (π, 1)),

ii - it is continuous and piece-wise linear in π,

iii - it is convex in π (as the maximum of linear functions).

Figure 3.5 illustrates the Lemma 3.3 statements. Figure 3.5a illustrates the fact that optimal

auditing is bang-bang. Figure 3.5b represents a possible shape of the intertemporal optimal

auditing thresholds, with one threshold for each period. At this stage, we can’t say anything

more about these thresholds other than that they are lower than π+. Figure 3.5c illustrates the

fact that the objective function at time t where the insurer audits with probability one is null for

the corresponding threshold π∗t . Finally, Figures 3.5d and 3.5e show how the value function is

obtained either as the maximum between 0 and the objective function under certain auditing, or

as the maximum of linear functions. At this stage of the paper, these linear functions appear in

the proof of Lemma 3.3, but we don’t know more about their signification.

At any time t ∈ {1, .., T − 1}, the objective function in equation (3.3) differs from the myopic

one through the second expectation term, which represents the impact of current auditing decision

xt on expected future auditing proceeds through its effects on beliefs. Lemma 3.4 describes this

component’s dependence on xt.

Lemma 3.4. The component Et
[
Vt+1(π̃t+1)|xt

]
is increasing in xt and always positive.

In other words, current auditing increases expected future proceeds because of an exploration

effect: the information gathered at the current period allows more accurate audits in the future.

The objective function can therefore be decomposed into an exploitation and an exploration

component

Ωt(πt, xt) =
Exploitation︷ ︸︸ ︷
u(πt, xt) +δ

Exploration︷ ︸︸ ︷
Et
[
Vt+1(π̃t+1)|xt

]
.

The myopic threshold π+ = π∗T,T divides the belief space into two segments where exploitation

and exploration effects may go in different directions (see Table 3.1): above π+, both components

are increasing in xt, while below π+, the exploitation effect is decreasing in xt, discouraging

auditing, while the exploration one is increasing in xt, encouraging it.
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Figure 3.5 – Time t policy, objective and value functions

(a) Optimal Policy Function (b) Auditing thresholds

(c) Objective function (d) Vt = max(0,Ωt(π, 1))

(e) Vt = max(Linearfunctions)
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Table 3.1 – Marginal effects of auditing

(0, π+) (π+, 1)

Exploitation ∂
∂xu - +

Exploration ∂
∂xEt[Vt+1] + +

Objective ∂
∂xΩt,T (π) ? +

The exploration and exploitation effects are thus conflicting on (0, π+). The exploitation

component is maximized for π∗t = π+. The exploration component is maximized for π∗t = 0. We

can therefore identify the sequence (π∗t ), illustrated in Figure 3.5b, as a measure of the dynamic

balance between exploitation and exploration. As illustrated in Figure 3.6, the closer π∗t to 0,

the more the auditor explores, and the closer π∗t to π+, the more he exploits.

Figure 3.6 – Levels of Exploration/Exploitation

Our goal hereafter is to understand how this optimal balance between exploration and

exploitation behaves through time, i.e., to characterize the sequence (π∗t ).

3.3 Exploration vs Exploitation: Auditing to Separate theWheat
from the Chaff

In this section, we present our main results about the evolution of optimal auditing thresholds

as functions of time and discounting, and we relate our problem to classical learning problems.

In Section 3.3.1, we answer our question of interest for the finite horizon case, then take the limit

when T tends to infinity to characterize the infinite horizon solution in Section 3.3.2. Finally we

interpret our problem as an optimal stopping one in Section 3.3.3 and as a Bandit one in 3.3.4.

3.3.1 Finite horizon optimal auditing

The inclusion of the exploration component at early periods encourages more auditing by

decreasing the optimal thresholds. In addition, the larger the discount rate δ, the stronger the

exploration effect. These results are stated in Proposition 3.1.
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Proposition 3.1 (Finite Horizon Optimal Thresholds). The existence of the learning opportunity

changes the auditing efforts as

i - the optimal thresholds sequence (π∗t,T )t∈{1,..,T} is strictly increasing, i.e., there is more

exploration in the early stages of the relationship,

ii - the optimal level of exploration depends on the remaining number of periods (π∗t,T = f(T−t))

and for all i ∈ {0, 1, ..t− 1}, π∗t,T = π∗t−i,T−i = π∗1,T−t+1,

iii - the sequence of first period thresholds (π∗1,T )T∈N∗ is strictly decreasing,

iv - the optimal levels of exploration are increasing with the DM’s patience, i.e., for any

t ∈ {1, .., T − 1}:

∂π∗t,T
∂δ

< 0 and lim
δ→0

π∗t,T (δ) = π+.

Figure 3.7 – Finite Horizon Thresholds and Value Function

(a) Optimal Policy Function (b) Optimal Thresholds

(c) Learning Opportunity (d) Optimal Threshold and Discounting
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Statement i means that, for a given number of periods, the earlier the audit, the larger the

auditing set (π∗t,T , 1]. Figure 3.7a illustrates this through the fact that the optimal thresholds

are increasing in time. This is due to the fact that interacting for a longer time with auditees

induces the auditor to learn more about them, even when their claims are believed to be non

profitable to audit at that point in time. Because information gained from the current period

audit increases all subsequent periods’ expected auditing proceeds, the generated gains cover the

one-time preliminary expenses. In terms of exploration/exploitation, the auditor explores more at

the beginning, hoping to identify dishonest types soon enough to exploit them later. Statement ii

formalizes this dependence on the remaining number of periods. As shown in Figure 3.7b, starting

at period 1 with a horizon T = 5 yields the same optimal thresholds as starting at period 5 with

a horizon T = 9: in both cases, there are 4 periods remaining, and (π∗t,5)t∈{1,..,5} = (π∗t,9)t∈{5,..,9}.

As a consequence, the average discounted value function V d
t,T is larger than the myopic value

function VT,T , and the difference represents the learning opportunity, as illustrated in Figure 3.7c.

Statement iii is a direct consequence of statements i and ii because of the backward induction

nature of the solution, and conveys the idea that, at the beginning of the relationship, more

exploration takes place if there are more periods remaining (i.e. T increases). Statement iv tells

us that the more patient the insurer, the more exploration takes place as more weight is put on

the remaining periods. However, if the auditor is not patient, optimal auditing sequences tend to

the myopic/one-period threshold π+. Figure 3.7d illustrates this last statement.

Observe that the increasing optimal thresholds mean that there is more auditing at the

beginning of the relationship. Mittone (2006) notes in a tax evasion experiment that auditing

may act as en “educating” mechanism when applied early. Participants audited at the beginning

show less propensity to defraud in subsequent periods, even is they are no longer audited. On

the contrary, subjects not audited before the second part of the experiments continue defrauding

and are hardly deterred. Our result provides an alternative information based motivation for

intense auditing earlier in an auditor-auditee relationship.

3.3.2 Infinite horizon optimal auditing

With an infinite horizon, the optimal auditing strategy is characterized in Proposition 3.2

below.

Proposition 3.2 (Infinite Horizon Optimal Thresholds). The infinite-horizon problem is obtained

by taking the limit T −→∞
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i - The optimal thresholds sequence (π∗t,T )t∈N∗ is time independent, i.e. constant and equal to

π∗∞ = limT→∞ π
∗
1,T ≥ 0.

ii - The infinite horizon objective function V∞(π) is convex in π as the supremum of an infinite

countable family of linear functions.

iii - Total exploration occurs when the DM is patient enough

lim
δ→1

π∗∞(δ) = 0.

Figure 3.8 – Infinite Horizon Thresholds and Value Functions

(a) Convergence of Optimal Thresholds (b) Infinite Horizon Optimal Thresholds

(c) V d
∞ for (pD, pH , c, δ) = (0.8, 0.2, 0.5, 0.8) (d) V d

∞ for (pD, pH , c, δ) = (1, 0, 0.5, 1)

Statements i is illustrated in Figure 3.8a and Figure 3.8b, while statement ii is illustrated in

Figure 3.8c. According to statement iii, a necessary and sufficient condition for all priors to be

audited at the initial period when T becomes arbitrarily large is for the auditor to be patient

enough, i.e., δ close enough to 1. The underlying intuition is that, while additional auditing

allows to have refined information and better targeted audits, the lower the initial period prior,
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the longer the insurer has to wait before he can derive positive proceeds for the corresponding

SPs.

Example 3.1. Assume (pD, pH) = (1, 0). In this context, types are revealed after only one period

as ϕAI = 1 and ϕAV = 0. Then, the objective function is given by

Ω∞(π, x) =
(
π − c+ π

∑
i≥1

δi(1− c)
)
x

=
(
π − c+ π(1− c) δ

1− δ
)
x

=
(
π(1− δc

1− δ )− c
)
x.

Then π∗∞ verifies π(1−δc
1−δ )− c = 0⇒ π∗∞ = (1−δ)c

1−δc and

V∞(π) =
(
π(1− δc

1− δ )− c
)
1{π>π∗∞}.

Figure 3.8d illustrates the average discounted value function V d
∞ as a linear function when δ → 1,

as linear combination with weights π and 1− π between per period payoffs 1− c and 0. Indeed, in

this case, with probability π, the auditee is dishonest and the average future payoff per period is

1− c, and with probability 1− π the average future payoff per period is 0, as auditing is stopped.

Current period proceeds do not appear as they are amortized over an infinite undiscounted number

of periods.

3.3.3 Dynamic auditing as an optimal stopping problem

A consequence of 3.1 and 3.2 is that once it is optimal to not audit at a given period, not

auditing is optimal at all subsequent periods. This is due to the fact that our optimal auditing

problem can be formulated as an optimal stopping problem, as shown in Proposition 3.3 below.

Proposition 3.3. Let τ be a stopping time with respect to (Ft)t∈{1,..,T}, where T ∈ N ∪ {∞},

and define W1,τ (π1, δ) as the expected proceeds of systematically auditing for τ periods, starting

from a prior π1 and with time discounting δ,

W1,τ (π1, δ) = E
[ τ−1∑
j=1

δj−1u(π̃j , 1)
]
, and W1,1(π1, δ) = 0.
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Then, for ν = 1{
⋃
j∈{1,..,T}{π̃j < π∗j }}, the optimal stopping time τ∗, defined as

τ∗ = νmin
{
t ∈ {1, .., T}

∣∣∣1{π̃t < π∗t }
}

+ (1− ν)(T + 1),

verifies

V1,T (π1, δ) = W1,τ∗(π1, δ) = max
τ

W1,τ (π1, δ).

Figure 3.9 illustrates the optimal stopping rule. When auditing is systematic, in Figure

3.9a, beliefs for both types converge towards the true belief. Under the optimal strategy, in

Figure 3.9b, type H stops being audited after 89 periods, because the corresponding belief

drops below the optimal threshold. Type D, on the contrary, continues being audited until

the end. This optimal stopping rule defines an optimal stopping region in the belief space at

each period t as SRt = {π|π < π∗t }. As soon as the belief process 〈πt〉 generated under the

optimal auditing strategy is lower than π∗t , auditing and learning stop, and consequently the

belief remains constant.

Figure 3.9 – Optimal auditing as an optimal stopping rule

(a) Constant auditing (x = 1) (b) Optimal Auditing

This formulation as an optimal stopping problem allows us to better understand what are the

linear functions of which V1,T is the maximum (Figure 3.5e). proposition 3.4 formalizes this idea.

Proposition 3.4. There exists an integer M ∈ N∪{∞} and a partition
⋃
m∈{1,..,M}Ψm of (0, 1)

defined as

(π, π′) ∈ Φ2
m ⇐⇒ ∀ω = (ω1, .., ωT ), τ∗(ω, π) = τ∗(ω, π′),
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where ω is a trajectory of the fraud generating process. Then, V1,T (π) is linear on each Ψm, and

the family of linear functions of which V1,T is the maximum corresponds to the linear functions

on Ψm.

Proposition 3.4 means that the value function is linear on intervals of beliefs for which auditing

stops at the same time for all priors of the same interval. In other words, the trajectories of the

belief process for a realization ω are such that the time t belief is either higher or lower than π∗t ,

for all the initial beliefs belonging to the same interval.

In particular, with a finite horizon, one such interval is defined as {π|π > ϕt−TAV (π∗T )}. This

is the set of beliefs that are so large that they are always audited, because updating will never

bring them below an optimal threshold. In this case, the corresponding optimal stopping time is

always equal to T + 1, and

V1,T ((π1, δ)) = W1,T+1(π1, δ) =
T∑
j=1

δj−1E[u(π̃j , 1)]

=
T∑
j=1

δj−1u(E[π̃j ], 1)

=
T∑
j=1

δj−1u(π1, 1), from the martingale property.

This shows that for the highest beliefs, the average discounted value function is equal to the

myopic value function.

3.3.4 Dynamic auditing as an armed bandit problem

Optimal stopping problems are also intimately related to Bandit problems. Bandit problems

are settings where a slot machine, referred to as a “bandit”, has k + 1 arms that yield different

payoffs. All arms but one have payoffs governed by an unknown random variable, the last

arm representing an outside option with known deterministic payoff that may be normalized

to 0. A gambler must choose a limited number of arms to play at each period, and can

update his beliefs about the payoffs after observing the outcome of his play. He thus faces an

exploration/exploitation dilemma between choosing once and for all the best arm at the initial

period, or explore by updating his choice given the accumulated experience. Hereafter, we place

ourselves in an infinite horizon setting, but results are valid in the finite horizon problem.
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3.3.4.1 One-armed bandit

We start with the most simple setting for a Bandit problem: the One-Armed Bandit. In this

setting the player only faces one risky arm with returns (X1, X2, .., Xn, ...), and one safe arm

with deterministic return λ at each period. Arms are characterized by their Gittings Index.

Definition 3.1 (Gittins Index for an arm). For an arm characterized by the returns (X1, X2, .., Xn, ...),

and N a stopping time, its Gittins Index is given by

Λ(δ) = sup
N≥1

{
E(
∑N

1 δj−1Xj)
E(
∑N

1 δj−1)

}
.

Thus, the safe arm has a Gittins Index equal to λ/(1− δ)). The optimal policy is given by

the Gittins Index Theorem for a One-Armed Bandit, whereby it is optimal to play the risky arm

if Λ(δ) > λ/(1− δ). Otherwise, it is optimal to use the safe arm once and for all.

In our setting, the risky arm is auditing and the associated return are a function of the

belief π. Its has a Gittins Index Λ(π, δ) that depends on π. The risky returns are given by

Xj = u(π̃j , 1). The safe arm corresponds to not auditing, with λ = 0. When the Gittins Index of

the risky arm is larger than 0, it is equivalent to the condition π > π∗∞.

Proposition 3.5.

Λ(π1, δ) > 0⇐⇒ π1 > π∗∞.

This is a direct consequence of the fact that V∞(π1) = E[
∑τ∗

1 δj−1u(π̃j , 1)] and V∞(π1) > 0

for π1 > π∗∞.

3.3.4.2 k-armed bandit

This characterization of our problem as a Bandit one allows us to answer the question of

what happens with multiple auditees and capacity constrained auditing. Multi-Armed Bandits

optimal strategies consist in Gittins Index Rules.

Definition 3.2 (Gittins Index Rule). A decision rule that at each stage chooses an arm that

has the highest Gittins index is called a Gittins index rule.

The Gittins Index Theorem shows that such rules are optimal.

Theorem (The Gittins Index Theorem). For a k-armed bandit problem with independent arms

and geometric discounting, any Gittins index rule is optimal.

81



Should I Stalk or Should I Go? An Auditing Exploration/Exploitation Dilemma

We show in Proposition 3.6 that, in the context of our auditing problem, the Gittins Index

Rule is equivalent to auditing arms by order of highest prior.

Proposition 3.6. Given an initial prior π1, using a Gittins Index Rule is equivalent to auditing

the highest priors in priority, conditional on the priors being larger than π∗∞.

Λ(π1, δ) > Λ(π′1, δ)⇐⇒ π1 > π′1 (> π∗∞).

Figure 3.10 – 6-armed bandit with a capacity constrained audit (k = 2)

(a) Example 1 (b) Example 2

Therefore, we can derive the optimal auditing strategy when there are multiple auditees and

a capacity constrained audit. Let there be a population of auditees of size n. Let there also be a

capacity constraint on auditing:

n∑
i=0

xi,t ≤ k.

Then an optimal strategy is to audit by decreasing prior until the constraint is binding or the

optimal threshold π∗∞ is reached. Figure 3.10 shows two examples of a 6-armed bandit when

k = 2. The two auditees, one of each type, with the lowest initial prior at π∗1 − ε are never

audited, because the outside option is more valuable since the beginning. In both examples, the

type D starting at a prior of 0.7 is kept in the auditing pool. The other type D, starting at a

lower prior of 0.3 is excluded from auditing in Figure 3.10a after a certain number of periods

where it competes with the other two auditees of type H. In Figure 3.10b, this other type D, is

kept in the auditing pool even if its prior decreases sharply at first. The two type H auditees are

both excluded after a finite time.
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3.4 The Extents of Learning

After showing how the possibility of learning through audits alters optimal auditing strategies,

we now focus on different aspects of the learning process. First, in Section 3.4.1, we examine

how much information the DM gets on average, i.e., how often he gets to know the truth, or at

least how often he learns enough to take the optimal action. Second, in Section 3.4.2, we focus

on the speed at which information is gathered, i.e., how fast we approach the truth.

3.4.1 How much can the DM learn?

We are hereafter interested in the question of whether the DM gets to learn the truth, i.e.,

how often the belief process converges to the true belief. In the Optimal Learning academic

literature,10 this question is addressed through the concepts of complete and adequate learning

(e.g., Easley and Kiefer (1988), Aghion et al. (1991)). Complete learning occurs when, with

probability one, the agent acquires the true information about the state of the world. Adequate

learning is a weaker version of complete learning, whereby it occurs when, “with probability one,

the agent acquires enough information to allow him to obtain the true maximum payoff” (i.e.,

“learning everything worth knowing”).

Aghion et al. (1991) address the question of characterizing situations where adequate learning

obtains or does not obtain. More specifically, they ask the question of whether adequate learning

is the generic outcome. One situation where they find adequate learning to obtain is the

undiscounted case, i.e., δ −→ 1.11 This is exactly analogous to Statement iii in proposition 3.2:

because of the absence of discounting, the optimal threshold tends to 0, which means systematic

auditing, and therefore convergence of the belief process to its true value (Lemma 3.1). However,

they argue that adequate learning is not the generic outcome, and define partial learning as

occurring when the agent acquires adequate knowledge with probability strictly between 0 and 1.

They suggest, through an informal discussion, that partial learning is the generic outcome.

Hereafter, we show that we can formally answer this question in our setting. With an infinite

horizon, complete, adequate, and partial learning can be formulated through the distribution of

the optimal stopping times. With a finite horizon, the comparison is not possible as we cannot

talk about the convergence of beliefs.

10In this literature, the horizon is usually infinite.
11Other exhibited situations where adequate learning occurs include smoothness and quasi-concavity, or

analyticality of the payoff function
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Infinite horizon In the infinite horizon setting, adequate learning occurs if, in the case of a

type H, the belief converges to a limit for which there is no auditing, or if, in the case of a type

D, the belief converges to a limit for which there is auditing. In other words, conditional on

type H, adequate learning occurs when τ∗ < ∞, and the belief process drops to a value πlim

below π∗∞. The belief therefore converges to πlim since auditing stops. Conditional on type D,

adequate learning occurs when τ∗ =∞, auditing never stops, and the belief process converges to

1. Definition 3.3 formalizes this idea and Proposition 3.7 answers the question of genericity.

Definition 3.3 (Adequate learning in infinite horizon). Let τ∗ be the stopping time τ∗ = inf(t ∈

N∗|πt < π∗∞). For an initial prior π1, adequate learning occurs with probability

P(AL|π1) = π1P(τ∗ =∞|D,π1) + (1− π1)(1− P(τ∗ =∞|H,π1)),

= π1P(τ∗ =∞|D,π1) + (1− π1). (3.4)

Proposition 3.7. In this setting, partial learning is the generic outcome for all initial priors π1

0 < P(AL|π1) < 1, ∀π1 ∈ (0, 1). (3.5)

In particular

P(AL|π1 < π∗∞) = (1− π1). (3.6)

Adequate learning is never obtained because it is too strong a condition. Adequacy is always

obtained conditional on type H, but never for type D. When the initial prior is below the optimal

threshold, adequate learning occurs if the auditee is of type H, i.e., with probability (1−π1), but

not for type D, as he is never audited. This means P(τ∗ =∞|D,π1) = 0 and explains equation

(3.6). When the initial prior is larger than π∗∞, there is a non null probability, conditional on

type D, for the belief process to hit the optimal threshold, and P(τ∗ =∞|D,π1) < 1. Example

3.2 below provides a special case where P(τ∗ =∞|D,π1) is computable.

Example 3.2 (Infinite horizon Gambler’s Ruin). When pD + pH = 1, the updating functions are

symmetrical (ϕAI = ϕ−1
AV ). Given an infinite horizon threshold π∗∞ and an initial prior π1, the

updating functions define a partition of (0, 1) =
⋃
k∈Z Φk =

⋃
k∈Z (ϕkAI(π1), ϕk+1

AI (π1)], and there

exists a k∗ such that π∗∞ ∈ Φk∗ . Then the problem is analogous to a Gambler’s Ruin problem with
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a biased toss, where the player wins with probability pD > 1
2 and has initial fortune k∗. Thus

P(τ∗ =∞|D,π1) =
{

0 if k∗ ≥ 0,
1− ( pD

1−pD )k∗ if k∗ < 0,

and, when π1 > π∗∞, partial learning occurs, with adequate learning happening with probability

P(AL|π1) = π1(1− ( pD
1− pD

)k∗) + (1− π1).

3.4.2 How fast can the DM learn?

Figure 3.11 – Updating functions for different parameters

(a) pD = 0.6, pH = 0.4 (b) pD = 1, pH = 0 (c) pD = pH

(d) pD = 0.12, pH = 0.08 (e) pD = 0.92, pH = 0.88 (f) pD = 0.98, pH = 0.88

Lemma 3.1 shows that the belief process is a martingale and converges to the true belief.

Now, we are interested in how fast information is accumulated, and how this speed of information

acquisition is related to the parameters of the model.

Figure 4.3b shows the updating functions {ϕAI , ϕAV } for different values of the parameters

(pD, pH). The first intuition is that the more polarized the behaviors of types H and D, i.e., the

larger pD − pH , the more informative the audit. The extreme case pD − pH = 1 is illustrated

in Figure 3.11b. In this case, auditing is perfectly informative, as observing an invalid claim

implies that the auditee is type D, while observing a valid claim implies he is of type H. On the

contrary, when pD = pH (Figure 3.11c), types behave the same way and auditing reveals nothing

about the type. The second intuition is related to the informativeness of extreme behaviors.

i.e., when for a fixed difference pD − pH , either pD is close to 1 or pH is close to 0. If pD ≈ 1,

observing a valid claim is a strong sign that the auditee is of type H, as shown in Figure 3.11f.

If pH ≈ 0, observing an invalid claim is a strong sign that the auditee is of type D.
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3.4.2.1 Doob-Meyer decomposition

In proposition 3.8, we use the Doob-Meyer decomposition for submartingales and super-

martingales to decompose the belief processes under both states of the world H and D. This

decomposition allows us to identify the magnitude of information acquisition.

Proposition 3.8. [Information acquisition] Under states of the world H and D, we can decom-

pose the stochastic process of updated beliefs thanks to the Doob-Meyer decomposition.

i Under PH , π̃t = MH
t +PHt where MH

t is a martingale and PHt is a decreasing and predictable

process.

ii PHt = −(pD − pH)
∑t−1
i=1 π̃i

[
ϕAI(π̃i)− ϕAV (π̃i)

]
< 0

iii Under PD, π̃t = MD
t +PDt where MD

t is a martingale and PDt is an increasing and predictable

process.

iv PDt = (pD − pH)
∑t−1
i=1

(
1− π̃i

)[
ϕAI(π̃i)− ϕAV (π̃i)

]
> 0

The predictable process P it represents the average gain in information under the true state

i ∈ {H,D}

Ei[π̃t|π1] = π1 + Ei[P it |π1].

3.4.2.2 Informativeness and exploration

The decomposition in Proposition 3.8 allows us to quantify the amount of information

obtained at each stage and to understand how it affects the optimal level of exploration. From

the expression of Pt, we can see that the difference β = pD − pH plays an important role. This is

rather intuitive in that a larger difference means more polarized behavior between the Honest and

Dishonest behaviors. Proposition 3.9 formalizes the idea that the more polarized the behavior,

the larger |PHt | and |PDt |, and the more information is gathered on average.

Proposition 3.9. At any time t, the predictable process PHt is increasing in pH and decreasing

in pD

∂PHt
∂pH

> 0 and
∂PHt
∂pD

< 0,
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and the predictable process PDt is increasing in pD and decreasing in pH

∂PDt
∂pD

> 0 and
∂PDt
∂pH

< 0.

Behaviors are more polarized when pD increases and/or pH decreases. When it is the case,

PHt is smaller, and since PHt < 0, the average decrease in the belief |PHt | is larger, and beliefs

converge towards the true belief 0 faster. The reasoning is analogous for type D as, when

behaviors are more polarized, PDt is larger. As PDt > 0, the average increase in the belief PDt is

larger and beliefs converge towards the true belief 1 faster.

The impact of a more efficient learning, in the sense that belief processes converge faster, is

such that optimal thresholds are lower, and more exploration takes place under optimal auditing

at each period. Figure 3.13 illustrates different optimal threshold sequences for different levels of

polarization of behaviors β = pD − pH .

Figure 3.13 – Polarized and extreme fraud behaviors induce more exploration

3.5 Conclusion

This article investigates the role of learning in the context of fraud inspection when inspec-

tor/inspectee interactions are repeated. Auditing acts as a learning mechanism that isolates the
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dishonest (worth auditing) types from the honest (unprofitable to audit) types.

Our first set of results shows how future auditing proceeds are always increasing in the current

auditing efforts, but current proceeds may be negative. Optimal auditing relies then on an

exploration/exploitation trade-off consisting in balancing auditing-diminished present proceeds

and auditing-enhanced discounted future proceeds. Because learning-generated advantages

reverberate through all future periods, the number of remaining periods positively impact

auditing efforts. As a weighting of future proceeds, low discounting encourages learning through

auditing and complete exploration occurs in an infinite horizon when the auditor is indifferent

between present and future proceeds.

Our second set of results examines the particularities of our learning process: we first show

that, in our setting, partial learning is the generic outcome. Second, we identify the average

change in the belief process as the predictable component of a Doob-Meyer decomposition of

the belief process in each state of the world. This average change is larger when dishonest and

honest types behave very differently, as the separating power of auditing is then stronger.
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3.6 Appendix

3.6.1 Proofs

3.6.1.1 Proof of Lemma 3.1

Proof. At period t+ 1, with prior πt and auditing decision xt

EP[π̃t+1|Ft, xt]

= xt[p(π)ϕAI(πt) + (1− p(π))ϕAV (πt)] + (1− xt)[ϕNA(πt)]

= xt[pDπt + (1− pD)πt] + (1− xt)πt

= πt

ED[π̃t+1|Ft, xt]

= xt[pDϕAI(πt) + (1− pD)ϕAV (πt)] + (1− xt)[ϕNA(πt)]

= xt[p(π)ϕAI(πt) + (1− p(π))ϕAV (πt) + (pD − p(π))(ϕAI(πt)− ϕAV (πt))] + (1− xt)πt

= πt + xt[(pD − p(π))︸ ︷︷ ︸
≥0

(ϕAI(πt)− ϕAV (πt))︸ ︷︷ ︸
≥0

]

≥ πt

EH [π̃t+1|Ft, xt]

= xt[pHϕAI(πt) + (1− pH)ϕAV (πt)] + (1− xt)[ϕNA(πt)]

= xt[p(π)ϕAI(πt) + (1− p(π))ϕAV (πt) + (pH − p(π))(ϕAI(πt)− ϕAV (πt))] + (1− xt)πt

= πt + xt[(pD − p(π))︸ ︷︷ ︸
≤0

(ϕAI(πt)− ϕAV (πt))︸ ︷︷ ︸
≥0

]

≤ πt

Finally, the convergence of the belief process to the true belief is a direct consequence of the

Martingale Convergence Theorem for bounded martingales.

3.6.1.2 Proof of Corollary 3.1

Proof. This is a direct consequence of the martingale property.

3.6.1.3 Proof of Lemma 3.2

This is straightforward as

• p(π)− c is strictly increasing in π, strictly negative for π = 0 and strictly positive for π = 1,
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• π+ is then uniquely defined,

• sign
(
∂ΩT
∂x

)
= sign(π − π+),

• then x∗T = 1{π ≥ π+}.

3.6.1.4 Proof of Lemma 3.3

Proof. We proceed by backward induction for t ∈ {1, .., T}.

At the final stage t = T : The objective function

ΩT,T (π, x) = u(π, x) = (p(π)− c)x,

is trivially (piece-wise) linear in π, linear in x. Its derivative with regards to x

∂ΩT,T

∂x

∣∣∣
π

= p(π)− c = (pD − pH)π + pH − c,

is increasing in π, is equal to pD − c > 0 for π = 1 and to pH − c < 0 for π = 0. It implies the

existence of a threshold π∗T,T ∈ (0, 1) such that

∂ΩT,T

∂x

∣∣∣
π∗T,T

= 0,

and

x∗T,T (π)


= 0 if π < π∗T,T ,

∈ (0, 1) if π = π∗T,T ,

= 1 if π > π∗T,T .

Then, the value function

VT,T (π) = max
(
0, p(π)− c

)
,

is (piece-wise) linear in π and convex as the maximum of the finite family of linear functions

indexed by IT

IT = {0, p(π)− c}.

90



Should I Stalk or Should I Go? An Auditing Exploration/Exploitation Dilemma

At any stage t ∈ {1, .., T − 1}: The objective function

Ωt,T (π, x) = u(π, x) + δEt
[
Vt+1,T (π̃t+1)

]
,

= (p(π)− c)x+ δ
[
x
(
p(π)Vt+1,T (ϕAI(π)) + (1− p(π))Vt+1,T (ϕAV (π))

)
+ (1− x)Vt+1,T (π)

]
,

is trivially linear in x as x appears only in the transition probabilities, while Vt+1,T is independent

of x. In addition, by induction, Vt+1,T is piece-wise linear in π. It implies, for every π ∈ (0, 1),

the existence of a couple (α, β) ∈ R2 such that

Vt+1,T (π) = απ + β.

Therefore,

p(π)Vt+1,T (ϕAI(π)) = p(π)
(
αϕAI(π) + β

)
= αpDπ + p(π)β,

p(π)Vt+1,T (ϕAV (π)) = (1− p(π))
(
α
′
ϕAV (π) + β

′) = α
′(1− pD)π + (1− p(π))β′ ,

and Ωt,T is piece-wise linear in π. It is also continuous in π as the sum of functions continuous

in π. Its derivative with regards to x verifies

∂Ωt,T

∂x

∣∣∣
π

= p(π)− c+ δ
[
p(π)Vt+1,T (ϕAI(π)) + (1− p(π))Vt+1,T (ϕAV (π))− Vt+1,T (π)

]
,

∂Ωt,T

∂x

∣∣∣
π=0

= pH − c < 0,

∂Ωt,T

∂x

∣∣∣
π=1

= pD − c > 0.

In addition, a second derivative with regards to π

∂Ωt,T

∂x∂π

∣∣∣
π

= pD − pH + δ
[
α(ϕAI(π))pD + α(ϕAV (π))(1− pD)− α(π)

]
,

> 0,
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is strictly positive,12 thus defining the threshold π∗t,T . Since the optimal action is either to audit

or not to audit, the value function can be expressed as

Vt,T (π) = max
(
Ωt,T (π, 0),Ωt,T (π, 1)

)
= max

(
0, p(π)− c+ δVt+1(π̃t+1)

)
= max

(
0, p(π)− c+ δ[p(π)Vt+1(ϕAI(π)) + (1− p(π))Vt+1(ϕAV (π))]

)
.

Then, for any element fl(π) of the linear functions family It+1 such that Vt+1(π) = maxfl∈It+1 fl(π),

reasoning as previously, p(π)fli(ϕAI(π)) and (1 − p(π))fli(ϕAV (π)) are linear in π, therefore

p(π)Vt+1(ϕAI(π)) and (1 − p(π))Vt+1(ϕAV (π)) are maximums of families of linear functions.

Finally, using usual properties of sums or maximums, scalar multiplication of maximums and

maximums of maximums, there exists a family It of linear functions such that

Vt(π) = max
fl∈It

fl(π).

As the maximum of a finite family of linear functions, Vt(π) is continuous, piece-wise linear and

convex in π.

3.6.1.5 Proof of Lemma 3.4

Proof. This is a direct consequence of the martingale property, the convexity of Vt+1 in π and

Jensen’s inequality:

∂

∂xt
Et[Vt+1(π̃t+1)|xt] = p(πt)Vt+1(ϕAI(πt)) + (1− p(πt))Vt+1(ϕAV (πt))− Vt+1(πt)

> Vt+1
(
p(πt)ϕAI(πt) + (1− p(πt))ϕAV (πt)− πt

)
≥ 0.

The positivity is straightforward as

Vt(π) ≥ Ωt(π, xt = 0) = δVt+1(π) ≥ .. ≥ δT−tVT (π) ≥ 0.

12Because pD − pH = maxα
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3.6.1.6 Proof of Proposition 3.1

Proof. We proceed by backward induction.

Initialization Stage t = T − 1: The objective function verifies

∂ΩT−1,T
∂x

∣∣∣
π

= p(π)− c+ δ
[
p(π)VT,T (ϕAI(π)) + (1− p(π))VT,T (ϕAV (π))− VT,T (π)

]
,

and, since VT,T (π) = 0 below π∗T,T and ϕAV (π) < π < ϕAI(π),

∂ΩT−1,T
∂x

∣∣∣
π∗T,T

= δp(π∗T,T )VT,T (ϕAI(π∗T,T )) > 0.

As π∗T−1,T is defined by ∂
∂xΩT−1,T

∣∣∣
π∗T−1,T

= 0 and ∂
∂xΩT−1,T is strictly increasing in π, it implies

π∗T−1,T < π∗T,T .

At any stage t ∈ {1, .., T − 2}: The objective function verifies

∂Ωt,T

∂x

∣∣∣
π

= p(π)− c+ δ
[
p(π)Vt+1,T (ϕAI(π)) + (1− p(π))Vt+1,T (ϕAV (π))− Vt+1,T (π)

]
,

and, since Vt+1,T (π) = 0 below π∗t+1,T and ϕAV (π) < π < ϕAI(π),

∂Ωt+1,T
∂x

∣∣∣
π∗t+1,T

= 0 = p(π∗t+1,T )− c+ δ
[
p(π∗t+1,T )Vt+1,T (ϕAI(π∗t+1,T ))

]
,

thus, by subtraction,

∂Ωt,T

∂x

∣∣∣
π∗t+1,T

= δ
[
p(π∗t+1,T )(Vt+1,T − Vt+2,T )(ϕAI(π∗t+1,T ))

]
,

Since at prior π and time t+ 1, playing the sequence (x∗t+1,T , x
∗
t+2,T , .., x

∗
T,T ) is optimal and yields

Vt+1,T (π), it dominates any other sequence, in particular (x∗t+2,T , x
∗
t+3,T , .., x

∗
T,T , 0), which yields

Vt+2,T (π). Hence

Vt+2,T (ϕAI(π∗t+1,T )) ≤ Vt+1,T (ϕAI(π∗t+1,T )).

In addition, since ϕAI(π∗t+1,T ) > π∗t+2,T , then Ak(π∗t+1,T ) > π∗t+k+1,T for k ∈ {1, T − t− 1}, and

the corresponding belief transitions happen with strictly positive probability ∈ (pT−tH , pT−tD ). It im-
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plies that the sequence (x∗t+2,T , x
∗
t+3,T , .., x

∗
T,T , x

∗
T,T ) strictly dominates (x∗t+2,T , x

∗
t+3,T , .., x

∗
T,T , 0).

Therefore

Vt+2,T (ϕAI(π∗t+1,T )) < Vt+1,T (ϕAI(π∗t+1,T )).

In the end

∂Ωt,T

∂x

∣∣∣
π∗t+1,T

> 0 = ∂Ωt,T

∂x

∣∣∣
π∗t,T

.

Since ∂Ωt,T
∂x is a strictly increasing function of π,

π∗t,T < π∗t+1,T .

This proves statement i. Statement ii is a direct consequence by backward induction. Statement

iii is a result of both these statements as

π∗1,T = π∗2,T+1 > π∗1,T+1.

As for the impact of δ, when δ → 0, the result is straightforward as the problem comes down to

the myopic one. A simple backward induction from stage t = T − 1 shows that

∂

∂δ
Vt,T (π, δ) > 0, ∂

∂x∂δ
Ωt,T > 0,

implying that, since π∗t,T (δ) solves for ∂
∂xΩt,T

∣∣∣
π,δ

= 0 and ∂Ω
∂x is decreasing in π,

∂π∗t,T
∂δ

< 0.

3.6.1.7 Proof of Proposition 3.2

Proof. Statement i is a direct consequence of (π∗t,T )T/inN∗ being decreasing and bounded below

by 0. Statement ii comes from the fact that at each stage the value function is the maximum of

a finite family of linear functions.

As for Statement iii, assume that it is not true,i.e., limδ→1 π
∗
∞(δ) = π > 0. Then, for π < π,

V∞(π) = 0. Consider the profits of the auditor under strategy (xt = 1)1≤t≤t. Because of the
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linearity of u and the martingale property of beliefs

E1
[ t∑
i=1

δi−1u(π̃i, 1)
]

= 1− δt

1− δ u(π, 1).

With probability π, the auditee is initially believed to be of typeD, and because of the convergence

of beliefs to the true state, there exists r ∈ (0, 1) and a time tr such that

P
(
π̃tr > π+ + ε|D, (xt)1≤t≤tr = 1

)
> r.

Then, consider the alternative strategy (xalt )t defined as

xalt = 1{t≤tr} + 1{t>tr}1{πtr>π++ε},

with corresponding expected profits higher than

1− δtr
1− δ u(π, 1)︸ ︷︷ ︸

<0

+πr δtr

1− δ u(π+ + ε, 1)︸ ︷︷ ︸
>0

.

When δ tends to one, the left hand side term is finite, while the right hand side term goes to

infinity. This last result contradicts the fact that V∞(π) = 0.

3.6.1.8 Proof of Proposition 3.3

Proof. First, τ∗ is indeed a stopping time as it is defined by the process 〈πt〉 that is by definition

adapted to the filtration (Ft)t∈{1,..,T}. In addition,

∀t < τ∗, π̃t ≥ π∗t , (3.7)

∀t ≥ τ∗, π̃t = π̃τ∗ < π∗τ∗ < π∗t . (3.8)

Equation (3.7) is true because otherwise, by definition of τ∗ as a minimum of times at which

the previous inequality is verified, τ∗ ≤ t. In equation (3.8), the first equality relies on the fact

that once audit stops, i.e., at τ∗, priors remain constant, the following inequality stems from

the definition of τ∗, and finally the last inequality stems from the fact that the sequence (π∗t )t is

increasing, from Proposition 3.1.
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Then rewriting the value function yields

V1,T (π1, δ) = E
[ T∑
j=1

δj−1u(π̃j ,1{π̃j ≥ π∗j })
]

= E
[ T∑
j=1

δj−1u(π̃j , 1)1{π̃j ≥ π∗j }
]

= E
[ τ∗∑
j=1

δj−1u(π̃j , 1)
]
, from Eq. (3.7) and (3.8)

= W1,τ∗(π1, δ).

Finally, τ∗ maximizes W because otherwise, there would be another stopping time based auditing

strategy that would maximize W and yield auditing proceeds strictly higher than V1,T (π1, δ),

which would be contradictory.

3.6.1.9 Proof of Proposition 3.4

Proof. For a given π1 and the corresponding optimal stopping rule τ∗

W1,τ∗(π1, δ) = E[
τ∗−1∑
j=1

δj−1u(π̃j , 1)]

=
∑
ω

P(ω)
τ∗(ω)−1∑
j=1

δj−1u(πj(ω), 1).

Using the same reasoning as in the proof of Lemma 3.3, u(πj(ω), 1) is a linear function of the

initial belief π1, u(πj(ω), 1) = αj(ω)π1 + βj(ω). Thus

∂W1,τ∗

∂π1
=
∑
ω

P(ω)
τ∗(ω)−1∑
j=1

δj−1αj(ω).

This is the slope of the value function at π1. In addition, notice that for π′1 < π1 such that they

are not in the same Ψm

τ∗(π′1, ω) ≤ τ∗(π1, ω)

and there exists at least one trajectory ω′ such that the inequality is strict. Otherwise, by

definition of the intervals Ψ, π′1 and π1 would be in the same Ψm. Then

∂W1,τ∗

∂π1

∣∣∣
π′1
<
∂W1,τ∗

∂π1

∣∣∣
π1
.
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This last inequality shows that the linear functions slopes are increasing in π, as shown in Figure

3.5e.

3.6.1.10 Proof of Proposition 3.6

Proof. We first show the direct implication of the equivalence. Denoting τ∗(π) and τ∗(π′) the

optimal stopping times for each prior

Λ(π, δ) > Λ(π′, δ)⇒
E[
∑τ∗(π)
j=1 δj−1u(π̃j , 1)]

E[
∑τ∗(π)
j=1 δj−1]

>
E[
∑τ∗(π′)
j=1 δj−1u(π̃′j , 1)]

E[
∑τ∗(π′)
j=1 δj−1]

⇒
E[
∑τ∗(π)
j=1 δj−1u(π̃j , 1)]

E[
∑τ∗(π)
j=1 δj−1]

>
E[
∑τ∗(π)
j=1 δj−1u(π̃′j , 1)]

E[
∑τ∗(π)
j=1 δj−1]

⇒ E[
τ∗(π)∑
j=1

δj−1u(π̃j , 1)] > E[
τ∗(π)∑
j=1

δj−1u(π̃′j , 1)]

⇒ π > π′.

Then, for the indirect implication

π > π′ ⇒ ∀ω, u(πj(ω), 1) > u(π′j(ω), 1)

⇒
E[
∑τ∗(π′)
j=1 δj−1u(π̃j , 1)]

E[
∑τ∗(π′)
j=1 δj−1]

>
E[
∑τ∗(π′)
j=1 u(π̃′j , 1)]

E[
∑τ∗(π′)
j=1 δj−1]

= Λ(π′, δ)

⇒ Λ(π, δ) ≥
E[
∑τ∗(π′)
j=1 δj−1u(π̃j , 1)]

E[
∑τ∗(π′)
j=1 δj−1]

> Λ(π′, δ).

3.6.1.11 Proof of Proposition 3.7

Proof. Because of the (1 − π1) component, it is sufficient to show that P(τ∗ = ∞|D,π1) < 1.

This is straightforward as there exists some l ∈ N such that ϕlAV (π1) < π∗∞ ≤ ϕl−1
AV (π1).13 This

is the prior obtained from auditing as long as π1 ≥ π∗∞ and observing valid claims every time,

which happens with probability (1− pD)l. Therefore, P(τ∗ =∞|D,π1) ≤ 1− (1− pD)l.

3.6.1.12 Proof of Proposition 3.8

Proof. Let 〈It〉 be the Bernoulli process representing the fraud outcome at period. Then

PH(It = 1) = pH and PD(It = 1) = pD. The updated prior under a given state of the world H

13If π1 < π∗∞, then l = 0.

97



Should I Stalk or Should I Go? An Auditing Exploration/Exploitation Dilemma

or D can be written as

π̃t+1 = It+1ϕAI(π̃t) + (1− It+1)ϕAV (π̃t)

= π̃t +
(
It+1 − p̄(π̃t)

)[
ϕAI(π̃t)− ϕAV (π̃t)

]

In particular

ED[π̃t+1|Ft] = π̃t +
(
pD − p̄(π̃t)

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
= π̃t +

(
1− π̃t

)(
pD − pH

)[
ϕAI(π̃t)− ϕAV (π̃t)

]

and

EH [π̃t+1|Ft] = π̃t +
(
pH − p̄(π̃t)

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
= π̃t − π̃t

(
pD − pH

)[
ϕAI(π̃t)− ϕAV (π̃t)

]

One decomposition into a martingale and a predictable process is given, under state of the world

D, by

π̃t = MD
t + PDt

MD
t is a martingale and PDt is predictable and increasing

PDt = (pD − pH)
t−1∑
i=1

(
1− π̃i

)[
ϕAI(π̃i)− ϕAV (π̃i)

]
MD

1 = π̃1

PD1 = 0
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We can verify that MD
t is indeed a Martingale by induction (it is verified at t = 1)

ED[MD
t+1|Ft] = ED[π̃t+1 − PDt+1|Ft]

= ED[π̃t+1|Ft]− PDt+1

= ED[It+1ϕAI(π̃t) + (1− It+1)ϕAV (π̃t)|Ft]− PDt+1

= π̃t +
(
1− π̃t

)(
pD − pH

)[
ϕAI(π̃t)− ϕAV (π̃t)

]
− PDt+1︸ ︷︷ ︸

=−PDt

= π̃t − PDt

= MD
t

Finally, because of the unicity of the Doob-Meyer decomposition, the above decomposition is the

only one.

The same reasoning yields the decomposition under state of the world H

π̃t = MH
t + PHt

MH
t is a martingale and PHt is predictable and increasing

PHt = (pD − pH)
t−1∑
i=1

(
1− π̃i

)[
ϕAI(π̃i)− ϕAV (π̃i)

]
MH

1 = π̃1

PH1 = 0.

Positivity of PDt and negativity of PHt are direct consequences of inequalities (3.2).

3.6.1.13 Proof of Proposition 3.9

Proof. From the formulas for the updating functions

ϕAI = pDπ

p(π) and ϕAV = (1− pD)π
(1− p(π)) ,
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we derive the derivatives with respect to pD and pH

∂ϕAI
∂pD

= pHπ(1− π)
p(π)2 > 0 and

∂ϕAV
∂pD

= −(1− pH)π(1− π)
(1− p(π))2 < 0,

∂ϕAI
∂pH

= −pDπ(1− π)
p(π)2 < 0 and

∂ϕAV
∂pH

= (1− pD)π(1− π)
(1− p(π))2 > 0.

Finally, taking the derivatives of PHt and PDt and using the above derivatives yields the final

result.
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Chapter 4

You’ll Give Yourself a Bad Name:

Reputation Effects in Repeated

Audits 1

1This chapter a joint work with Pierre Picard. We are grateful to conference participants at EGRIE annual
meetings for helpful discussions and comments.
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Abstract

In principal-agent problems, the repetition of interactions in a dynamic setting may alter the

equilibrium outcomes. In insurance fraud, the frequency of auditor-auditee interactions is higher

when there is collusion between policyholders and service providers (e.g., car repairers, health

care providers...). The same service provider usually handles claims filed by many policyholders

affiliated to the same insurer, and thus the insurer-service provider interactions are repeated with

reputation effects. We analyze this issue in a repeated game where the insurer may potentially

face a dishonest service provider who colludes with policyholders. The insurer has beliefs about

the type (honest or dishonest) of the service provider and she may verify the truthfulness of the

claim through costly audits. The reputation of the service provider corresponds to these beliefs

and changes over time, and misbehaving deteriorates this reputation. In the end, it may lead

to a breach of contract and thus represents a threat that may deter from defrauding. We show

that, at early periods, the insurer audits agents who would not be monitored in a static setting

because their reputation is good enough. Corresponding dishonest agents who slipped under

the radar and have an initially good reputation do not defraud systematically at early periods,

as opposed to the instantaneous game. In addition, auditing efforts for medium reputations

are lower as dishonest agents want to preserve the possibility of defrauding later. Both aspects

corresponds to a reputation-based deterrence mechanism, where the fear of deteriorating one’s

reputation acts as a discipline device for dishonest service providers.

JEL Classification Numbers: C73, D82, D83, G22.

Keywords: Insurance fraud, Dynamic optimal auditing; Reputation; Learning; Deterrence.
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4.1 Introduction

Many principal-agent relationships have a repeated nature, and from period to period, the

principal may improve its knowledge of some hidden information of the agent. This situation

arises in many problems of fraud inspection such as, for instance, the relationship between a firm

and a subcontractor, or between a tax authority and a tax payer. In this paper, we consider the

case of insurance fraud where insurers have repeated relationships with service providers who

may be honest or dishonest.

Insurance fraud is a fundamental and complex problem for insurance markets. It is funda-

mental because it heavily distorts the risk-sharing mechanisms upon which insurance contracts

rely, and without which insurance markets might collapse. It is also complex because auditing is

motivated by mechanisms whose roles overlap and are hard to disentangle. Is an audit revealing

no fraud synonymous of failure? Or does is it just mean it completely deters fraud? How can

information acquisition still motivate an audit if in the end deterrence is too strong to learn

anything valuable?

The purpose of this paper is to combine both deterrence and informational aspects of auditing

in a single framework to analyze their interactions. To do so, we model a repeated game

between an insurer and a (honest or dishonest) auditee. The repeated character of interactions is

particularly relevant when there is collusion between policyholders and service providers (SPs).

As a single SP (e.g., car repairer or health service provider) may serve several policyholders of

the same insurer, he interacts with the latter on a frequent basis. An SP acts as an expert who

certifies2 the claim, without which a fraud cannot occur, making an SP’s complicity a necessary

condition for cheating. Honest types may only certify invalid claims by mistake. Dishonest types

on the other hand may defraud willingly by voluntarily certifying an illegitimate claim. Auditing

is only profitable when fraudulent activity is large enough, and dishonest types rationally balance

the risk of being caught with the potential gain from fraud. This is true even in a static setting

when deterrence effects rely on the auditee’s reaction to the threat of an audit. Informational

effects come into play once interactions are repeated: based on the previous outcomes, the insurer

has beliefs about the auditee’s type, i.e., a reputation, on which the auditing decision depends.

Our main result shows that this combination exhibits a reputation-based deterrence effect

that is two-fold: first, the set of auditees is larger at earlier periods and includes auditees whose

reputation is good enough not to be audited in a static setting. Second, the insurer needs to

2i.e., that the policyholder has received a service and made a payment in return.

103



You’ll Give Yourself a Bad Name: Reputation Effects in Repeated Audits

deploy less auditing efforts at earlier periods to deter auditees who would have been audited at

later ones. Interestingly, this is the result of the interaction of two mechanisms, corresponding

respectively to the deterrence and to the learning effects. With reputation effects, an auditee

balances the intertemporal costs and benefits of cheating in the present: an audit today still

threatens him as before, but being caught may also hinder the future opportunities of defrauding

because the reputation worsens. The second mechanism of the reputation-based deterrence

effects relies in the discriminatory power of auditing. Inspection allows the insurer to improve

her information and to better audit in the future periods, or even exclude a dishonest auditee

from his affiliation network.

These aspects relate to several strands of the academic literature. First and foremost, this

article contributes to the literature on optimal auditing for insurance fraud.3 Following the work

of Townsend (1979) and Gale and Hellwig (1985) on the Costly State Verification approach,

it considers the problem of conducting an audit when the latter is costly. It tackles questions

related to the relevance of random auditing, thus expanding the analysis of Mookherjee and

Png (1989) by conditioning the levels of auditing on the reputation of auditees. Extending the

idea of Costly State Falsification developed by Crocker and Morgan (1998), it exhibits a form of

opportunity cost for the auditee to not defraud in order to mislead the auditor into believing

he is not dishonest. More specifically, our work relates to the analysis of the different roles of

auditing, besides recovering illegitimate payments. Dionne, Giuliano and Picard (2008) focus on

auditing as a deterrence tool in a static Stackelberg game, and show that some claims should

still be audited in spite of being individually unprofitable to audit. In Aboutajdine and Picard

(2018) and Aboutajdine and Picard (2019b), we consider an alternative situation where there is

no deterrence4 but the auditor can learn about the auditee’s type in a multiperiod framework.

The present article addresses the problem of combining both deterrence and information in a

single framework.

Second, an important feature of our model, namely being a repeated game with monitoring,

relates our work to the inspection games literature (see Avenhaus, Von Stengel and Zamir (2002)

for a literature review). Originally applied to arms control and disarmament, these models have

also been used for accounting and auditing problems in economics. Borch (1990) evokes the

potential application of inspection games to the economics of insurance, specifically to ex-ante

moral hazard problems where the insured has to take special measures to avoid accidents. In

3Picard (2013) offers a comprehensive review of this literature.
4i.e., the type dependent behavior of auditees is given and not affected by the risk of being spotted.
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our setting, the problem is one of ex-post moral hazard (submitting a claim, valid or invalid,

after the occurrence of a potential accident). Inspection games have also been applied to tax

evasion settings. Rubinstein (1979) examines a case where an audit might unjustly target an

honest auditee and shows that, while a one-shot game gives no choice but to set a large penalty, a

repeated game allows for a more lenient policy that also induces the auditee to comply. Greenberg

(1984) proposes an auditing scheme where individuals are separated into different groups with

different auditing levels. Auditees move between groups depending on the previous cheating

outcome. Another example of repeated game where cheating history is given by Reinganum

and Wilde (1986). They apply the sequential equilibrium concept in a model where income

reporting is a source of information for the tax inspector. More recently, Varas, Marinovic and

Skrzypacz (2018) analyze a firm’s reputation for quality problem, with an inspector who can

conduct costly inspections. Notably, in their model, monitoring plays both an incentive and an

informational role. Finally, the existence of an optimal information acquisition dimension to

the insurer’s problem relates it to the exploration/exploitation dilemma. It places our work in

the continuity of the strategic experimentation literature and bandit problems (see Bergemann

and Välimäki (2008)).In Aboutajdine and Picard (2019b), we show that the optimal auditing

with learning but no deterrence problem is akin to a regular one-armed bandit problem where

playing the risky arm corresponds to auditing, and playing the safe arm to not auditing. This is

because the auditees are non-strategic and honest and dishonest auditees always submit a claim.

In this paper, we relax both these assumptions. The underlying bandit problem becomes far

more complex as it involves information collection even when no action is taken, which is related

to the restless bandit literature (introduced by Whittle (1988)). It also involves strategic arms

whose rewards depend on the player’s strategy (e.g., Braverman et al. (2017)). Both topics have

been rarely tackled in the academic literature, especially in the case of strategic armed bandits.

The rest of the paper is as follows: Section 4.2 presents the model, Section 4.3 characterizes

our main results and Section 4.4 shows how our problem is related to bandit problems.Section

4.5 concludes. All proofs are in the Appendix.

4.2 Model

4.2.1 Notations and main assumptions

We consider the relationship between an insurer (she) and a service provider (SP, he) during

T periods indexed by t = 1, ..., T . The SP is in touch with policyholders and he certifies their
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claims (i.e., he asserts that he delivered the service required by the event described in the claim,

at the price reported by the policyholder). The SP may certify at most one claim per period to

the insurer (certifying more claims would signal that he behaves in a fraudulent way). The SP

may be honest or dishonest, i.e. of type H or D, respectively, and the insurer has beliefs about

the SP ’s type.

Claims are valid or invalid, and invalid claims may have been filed involuntarily (by error) or

voluntarily (by fraud). A claim is involuntary invalid when the policyholder wrongly but honestly

thought that the loss at the origin of the claim should be covered by the insurance policy, and

the service provider does not observe any wrongdoing. Claims are voluntary invalid when the

policyholder and the SP collude: the policyholder files a claim certified by the SP in order to

trigger the payment of an insurance indemnity not included in the contractual coverage (e.g.,

falsifying a claim by inventing an event that did not occur, or misrepresenting the circumstances

of this event). Honest SPs only certify invalid claims involuntarily, while dishonest SPs may

certify invalid claims knowing that they are invalid. In short, insurance fraud takes the form of

invalid claims that are willfully transmitted to the insurer by policyholders, with the complicity

of dishonest service providers.

Let p0 and pH be the probability for an SP to certify a valid claim or to certify involuntarily

an invalid claim, whatever the SP’s type, with p0 + pH < 1. Let yt ∈ [0, 1] the probability for a

dishonest SP to wilfully certify an invalid claim at period t when he has no claim to truthfully

certify, which occurs with probability 1− p0 − pH . In what follows, yt will be referred to as the

fraud probability of a type D SP, which corresponds to the voluntary certification of an invalid

claim with probability yt(1− p0 − pH) when the SP is of type D. The insurer may audit a claim,

which costs c to her, and we denote xt ∈ [0, 1] the probability of auditing a claim filed at period t.

Audit reveals whether the claim is valid ot not. Usually, in the case of an invalid claim, audit does

not allow the insurer to establish whether this was intentional or unintentional, i.e., whether this

was fraud or simply an error. In both cases, no indemnity is paid to the policyholder. When a

fraudulent invalid claim is audited, the insurer may detect fraud unambiguously with probability

α ∈ [0, 1).

Remark 1. In a formally equivalent way, our model may also be interpreted as corresponding

to the relationship between a firm and a sub-contractor supplying spare parts, assembled by

the firm into a finished product. Each year, the firm expresses its needs under the form of

new product specifications (e.g., additional safety or quality criteria), and the sub-contractor
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answers by transmitting a forecast report about expected additional costs induced by the change in

product specifications. In this interpretation of the model, p0 is the probability that the change

in specifications actually induces unavoidable additional costs. However, with probability pH

the additional expected costs reported by the sub-contractor simply reflect a misunderstanding

of the firm’s requirements, or the fact that it is unaware of costless ways to comply with the

firm’s requirement (e.g., by using different inputs or by subcontracting itself with another firm

for some parts of the product to be supplied). Such misunderstandings may be cleared by the

firm through an audit of the sub-contractor’s report. However, the announced additional costs

may also result from the willingness of a dishonest sub-contractor to falsify its true cost, possibly

through a cost-accounting manipulation, which may be detected with probability α if the forecast

report is audited.

We wish to focus attention on the case where proving fraud is difficult, possibly impossible,

and thus we postulate that α is small, possibly zero . More precisely, we assume

0 ≤ α < p0
p0 + pH

. (4.1)

Each claim corresponds to a contractual insurance indemnity I, while defrauding costs ω to

a dishonest SP. We may interpret ω as the expenses incurred by the SP and by the policyholder

to falsify the claim (i.e., to prevent the insurer to immediately detect that the claim is invalid

without any audit). Hence I − ω is the collusive gain in case of undetected fraud, to be shared

between the dishonest SP and the policyholder. For simplicity, we assume that collusion takes

the form of a take-or-leave it offer made by the SP to the policyholder, with the whole collusive

surplus I − ω being allocated to the SP, but this is an unimportant assumption in our analysis.

More importantly, we assume:

c < (1− p0)I, (4.2)

(p0 + pH)c > pHI. (4.3)

According to assumption (4.2), if the insurer knows with certainty that the SP is of type D and

that he systematically defrauds (i.e., y = 1), then it is profitable to audit the claim, because the

audit cost c is lower that the expected recouped indemnity (1− p0)I. Conversely, according to

assumption (4.3), if the insurer knows with certainty that the SP is of type H, then it is not

worthwhile to audit the claim, because the audit cost c is larger than the expected recouped
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indemnity pHI/(p0 + pH) associated with involuntary errors.

The insurer offers a multi-period contract to the SP at the beginning of period 1, whereby

the SP is allowed to act as an insurance intermediary from t = 1 to t = T , which consists in

certifying claims filed by policyholders. At period 1, the insurer has initial beliefs π1 ∈ (0, 1)

about the SP’s type: π1 is the probability that the SP is of type D, and thus 1 − π1 is the

probability that he is of type H.5 At each period t = 2, ..., T , the insurer has updated beliefs πt

deduced from πt−1 and from the scenario that occurred at period t− 1. A breach of contract

takes place at the beginning of period t only if the insurer can prove unambiguously that the SP

is dishonest.6 In such a case, another contract is offered to a new SP for the remaining periods

t, t+ 1, ..., T , with insurer’s beliefs π ∈ (0, 1) about this new SP.

For any fraudulent claim filed at period t, the expected profit of the dishonest SP involved in

the collusion is the difference between his gain I − ω if there is no audit, and his loss ω in the

case of an audit, weighted by the probabilities 1− xt and xt, respectively. Since a type D SP

defrauds with probability yt(1− p0 − pH). We may denote

Π(xt, yt) = yt(1− p0 − pH)[(1− xt)(I − ω)− xtω], (4.4)

his expected profit drawn from fraud at period t.

We also denote

C(xt, yt, πt) = I[p0 +K(πtyt)]− xt[IK(πtyt)− c(p0 +K(πtyt))] (4.5)

the expected cost of the insurer at period t, where

K(πtyt) = pH + πtyt(1− p0 − pH) (4.6)

is the probability of an invalid claim at period t when the SP is of type D with probability πt.

This probability is the sum of pH , which is the probability of an invalid claim transmitted by error,

and of πtyt(1− p0 − pH) which is the probability of a fraudulent claim. The expected insurer’s

cost C(xt, yt, πt) is the difference between the expected insurance indemnity I[p0 +K(πtyt)] and

the expected net proceeds from audit xt[IK(πtyt)− c(p0 +K(πtyt))].

5This may correspond to the fraction of dishonest individuals in a population, in which the SP is randomly
drawn. Initial beliefs may also be affected by business references or by other signals informative about the SP’s
honesty.

6A breach of contract without evidence of dishonesty would lead to bad faith penalty imposed by a court.
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Five scenarios may occur at each each period t = 1, ..., T , denoted st ∈ S with

S = {AF,AI,AV,NA,NC}.

These scenarios are detailed in Table 4.1. The objective of the insurer is to minimize her

discounted expected cost, and the objective of a type D SP is to maximize his discounted

expected profit from fraud. We denote δ ∈ (0, 1] the discounting factor, common to the insurer

and to the SP.

Table 4.1 – Possible scenarios at a given period

Scenario Details Auditor’s Cost
AF A claim is filed, audit reveals an invalid claim, fraud is proved c
AI A claim is filed, audit reveals an invalid claim, no fraud is proved c
AV A claim is filed, audit reveals a valid claim I + c
NA A claim is filed, no audit is performed I
NC No claim is filed 0

4.2.2 Definition of an equilibrium

Let ht = (s1, s2, ..., st−1) ∈ St be the history of the relationship between the insurer and the

SP before period t, with t ≥ 1. This history affects the expected profit of a type D SP and

the expected cost of the insurer only through its effect on beliefs πt. We make the following

assumptions about strategies and beliefs:

1. Strategies are Markovian: they define audit and fraud decisions at period t as functions

of the insurer’s beliefs at the same period, and they are denoted xt(πt) and yt(πt) for all

t = 1, ..., T .

2. Beliefs πt depend on previous beliefs πt−1 and on the scenario st−1 that occurred at the

previous period, and we will write them as: πt = πt(πt−1, st−1) for all t = 2, ..., T .

Definition 4.1. A Markov Subgame Perfect Bayesian Equilibrium (in short, an Equilibrium) is

characterized by strategies x∗t (.) : [0, 1]→ [0, 1] and y∗t (.) : [0, 1]→ [0, 1] for all t = 1, ...T defining

actions x∗t (πt), y∗t (πt) as functions of beliefs, and by belief updating functions π∗t (.) : [0, 1]× S →

[0, 1] for all t = 2, ...T defining updated beliefs π∗t (πt−1, st−1) as functions of previous beliefs and

previous period scenario, such that:

1. For all t = 1, ...T and all belief πt ∈ [0, 1], x∗t (πt) minimizes

Ct(xt, y∗t (πt), πt) = C(xt, y∗t (πt), πt) +
T−t∑
θ=1

δθEπ̃t+θ
[
C(x∗t+θ(π̃t+θ), y∗t+θ(π̃t+θ), π̃t+θ)

]
,
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w.r.t. xt ∈ [0, 1], where, for all θ = 1, ..., T − t, π̃t+θ denotes the random beliefs deduced

from strategies xt, x∗t+1(.), ...x∗T (.) and y∗t (.), y∗t+1(.), ...y∗T (.), and from the belief updating

functions π∗t+1(.), ..., π∗T (.).7

2. For all t = 1, ...T and all beliefs πt ∈ [0, 1], y∗t (πt) maximizes

Πt(x∗t (πt), yt, πt) = Π(x∗t (πt), yt, πt) +
T−t∑
θ=1

δθE˜̃πt+θ
[
Π(x∗t+θ(˜̃πt+θ), y∗t+θ(˜̃πt+θ), ˜̃πt+θ)],

w.r.t. yt ∈ [0, 1], where, for all θ = 1, ..., T − t, ˜̃πt+θ denote the random beliefs deduced

from strategies x∗t (.), x∗t+1(.), ...x∗T (.) and yt, y∗t+1(.), ...y∗T (.), and from the belief updating

functions π∗t+1(.), ..., π∗T (.).

3. For all t = 1, ...T and all (πt−1, st−1) that can be reached with positive probability on the

equilibrium path, the belief updating functions π∗t (πt−1, st−1) are deduced from strategies

x∗t−1(πt−1), y∗t−1(πt−1) through Bayes Law when st−1 6= AF , and π∗t (πt−1, st−1) = π when

st−1 = AF .

Hereafter, for all t = 1, .., T , the optimized cost and payoff are defined as functions of πt

alone:

C∗t (πt) = Ct(x∗t (πt), y∗t (πt), πt) and Π∗t (πt) = Πt(x∗t (πt), y∗t (πt), πt).

For simplicity of comparison, we can also define their average discounted counterparts as

C
∗
t (πt) = 1∑T−t

θ=0 δ
θ
C∗t (πt) and Π∗t (πt) = 1∑T−t

θ=0 δ
θ
Π∗t (πt).

4.2.3 Instantaneous game

Let us start with the one-period model, i.e., T = 1 without repeated interaction between

insurer and SP. We refer to this case as the instantaneous game. Its equilibrium is characterized

in Proposition 4.1.

Proposition 4.1. An equilibrium of the instantaneous game (i.e., when T = 1) is given, for an

7In other words, π̃t+θ = π∗t+θ(π̃t+θ−1, s̃t+θ−1) for θ = 1, ..., T − t, where s̃t+θ−1 is distributed in S with
probabilities induced by strategies x∗t+θ−1(π̃t+θ), y∗t+θ−1( π̃t+θ) when θ = 2, ..., T − 1 and by strategies xt, y∗t (πt)
when θ = 1. Similarly for ˜̃πt+θ.
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initial belief π at the beginning of the period, by x∗1(π) = x̂(π), y∗1(π) = ŷ(π), where

x̂(π) = x̂ and ŷ(π) = π̂

π
if π > π̂,

x̂(π) = 0 and ŷ(π) = 1 if π ≤ π̂,

where

π̂ = (p0 + pH)c− pHI
(1− p0 − pH)(I − c) ∈ (0, 1), (4.7)

x̂ = I − ω
I
∈ (0, 1). (4.8)

Figure 4.1 – Instantaneous Equilibrium Auditing and Fraud

Proposition 4.1 is very intuitive. π̂ is the threshold such that, when π < π̂, there is not enough

incentives for triggering an audit, and a type D SP always defraud, i.e., x∗1(π) = 0 and y∗1(π) = 1.

When π > π̂, a type D SP should defraud with probability less than one, for otherwise the

insurer would systematically trigger an audit. In that case, the fraud probability y∗1(π) = ŷ(π) =

π̂/π ∈ (0, 1) makes the insurer indifferent between auditing and not auditing. Symmetrically, the

equilibrium audit probability x∗1(π) = x̂ ∈ (0, 1) makes the type D SP indifferent defrauding and
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not defrauding. The equilibrium is thus in mixed strategies when π > π̂.

Figure 4.2 – Instantaneous Equilibrium Cost

A simple calculation shows that the equilibrium cost of the insurer may be written as

Ĉ(π) = C(x̂(π), ŷ(π), π) =
{
IJ(π) if π < π̂,

p0I
2/(I − c) if π ≥ π̂,

(4.9)

where

J(π) = p0 + pH + π(1− p0 − pH)

or equivalently

Ĉ(π) = C(x̂(π), ŷ(π), π) = inf{IJ(π), p0I
2/(I − c)}. (4.10)

Hence, when π < π̂, there is no audit and the expected costs increases linearly with the

probability of a type D SP. When π1 ≥ π̂, the reputation of the SP is bad enough for auditing

with positive probability to be worthwhile, and the equilibrium expected cost reaches an upper

bound p0I
2/(I − c).
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4.3 Reputation-based Deterrence

In the following we are interested in multiperiod settings where T ≥ 2. In Section 4.3.1, we

explain how the insurer refines his beliefs through Bayesian updating and how this may induce

players to deviate from the myopic strategies. We also define two types of reputation-based

deterrence effects. In Section 4.3.2, we solve the game for two periods and show that only one type

of reputation-based deterrence occurs, unless fraud can be proved unambiguously. Section 4.3

shows that, with three periods, both types of reputation-based deterrence take place, regardless

of the possibility to unambiguously prove fraud. Finally, Section 4.3.4 gives sufficient conditions

for the first type of reputation-based deterrence effect to happen for more than three periods.

4.3.1 Learning and the inter-temporal threat of an audit

At the end of period t, whether a claim was submitted or not and the outcome of a potential

audit allow the insurer to refine his beliefs about the SP’s type.

If a claim was submitted and an audit reveals unambiguously that the claim was fraudulent,

the contract between the SP and the insurer is breached . In that case, another contract is

offered for period t+ 1 to a new SP. Since the insurer has beliefs π about the type of this new

SP, we have

πt+1 = π if st = AF.

Using Bayes law yields the updated beliefs for all other scenarios for initial beliefs πt and strategy

yt ≡ yt(πt). Simple calculations yield

πt+1 = ϕAF (πt, yt) = π when st = AF,

πt+1 = ϕAV (πt, yt) = πt when st = AV,

πt+1 = ϕAI(πt, yt) = πt[pH + yt(1− α)(1− p0 − pH)]
pH + πtyt(1− α)(1− p0 − pH) when st = AI,

πt+1 = ϕNA(πt, yt) = πt[p0 + pH + yt(1− p0 − pH)]
p0 + pH + πtyt(1− p0 − pH) when st = NA,

πt+1 = ϕNC(πt, yt) = πt(1− yt)
1− πtyt

when st = NC.

113



You’ll Give Yourself a Bad Name: Reputation Effects in Repeated Audits

Functions ϕAI(πt, yt), ϕNA(πt, yt) are increasing and concave w.r.t. πt, and ϕNC(πt, yt) is

increasing and convex w.r.t. πt, with

ϕNC(πt, yt) < πt < ϕNA(πt, yt) < ϕAI(πt, yt), (4.11)

for all πt ∈ (0, 1], yt ∈ [0, 1], where the last inequality results from assumption (4.2).

Figure 4.3 plots the updating functions for low fraud (Figure 4.3a, yt = 0.4) and high fraud

(Figure 4.3b, yt = 0.8). The higher the fraud probability, the more different the updating

functions, and the more information obtained from updating. It also shows how an SP can

influence his reputation. By defrauding more, his reputation is damaged more when caught

defrauding. In other words, there is a trade-off for the SP between immediate gains from fraud,

and long-term gains from preserving his reputation.

Figure 4.3 – Updating functions for (p0 = 0.2, pH = 0.1)

(a) yt = 0.4 (b) yt = 0.8

Definition 4.2 (Reputation-based fraud deterrence). In a multiperiod setting (i.e., T ≥ 2), an

equilibrium may exhibit a reputation-based fraud deterrence effect in the extensive and/or in the

intensive margins.

An equilibrium at period t exhibits a reputation-based fraud deterrence effect in the extensive

margin when there exists an interval (a, b], with a < b ≤ π̂, such that x∗t (πt) > 0 and/or y∗t (πt) < 1

when πt ∈ (a, b].

An equilibrium at period t exhibits a reputation-based fraud deterrence effect in the intensive

margin when there exists an interval [d, e), with with π̂ ≤ d < e, such that x∗t (πt) < x̂ and/or

y∗t (πt) < ŷ(πt) when πt ∈ [d, e).

In words, an equilibrium displays a reputation-based fraud deterrence effect in the extensive
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margin when, at period t ∈ {1, ..., T − 1}, the insurer audits claims with positive probability

and/or the type D SP defrauds with probability less than one, under beliefs πt ∈ (0, π̂) for which

there would be systematic fraud without audit at the equilibrium of the instantaneous game. In

this case, auditing increases in the extensive margin as SPs with priors below the instantaneous

profitability threshold π̂ enter the auditing pool. Alternatively, fraud decreases in the extensive

margin as SPs with priors below the instantaneous threshold π̂ exit the systematic fraud pool.

As can be expected from the characterization of the instantaneous game equilibrium, when

πt < π̂, auditing claims cannot be profitable to the insurer if her calculation is only based on

the auditing cost at the same period. However, auditing also allows the insurer to improve her

information about the SP’s type, which may be useful to her in the next period. The threat of

being more precisely identified as a type D at the beginning of the following period reduces the

propensity of a dishonest SP to defraud, hence the possibility of an equilibrium where there is

auditing and no-systematic fraud because of this learning process.

An equilibrium displays a reputation-based fraud deterrence effect in the intensive margin

when, at period t ∈ {1, ..., T − 1}, the insurer audits claims with positive but lower probability

than the instantaneous auditing probability, and/or the type D SP defrauds with a probability

lower than the instantaneous defrauding probability. In this case, auditing decreases in the

intensive margin as the insurer needs to put in less auditing efforts to make a type D indifferent.

Alternatively, fraud decreases in the intensive margin as a type D needs to defraud less to make

the auditor indifferent.

Since optimal auditing and optimal fraud depend on the reputation πt, the evolution of

beliefs through learning may change the optimal inter-temporal auditing and defrauding strate-

gies. Hereafter, we will primarily focus on how the set of beliefs πt with a pure equilibrium

(x∗(πt), y∗(πt)) = (0, 1) evolves in time, i.e., on the first type of reputation-based deterrence. In

that perspective, let us define the optimal thresholds (π∗t )t∈{1,..,T} as follows.

Definition 4.3. For any t ∈ {1, .., T}, let

π∗t = sup {π ∈ [0, 1]|∀µ ∈ (0, π), (x∗t (µ), y∗t (µ)) = (0, 1)} (4.12)

π∗t is the belief threshold under which there is no deterrence, i.e., the insurer does not audit

and type D SPs always defraud. In particular, at time T , π∗T = π̂. This is a direct consequence

of the fact that at the last period T , there is no subsequent period through which learning in T

might influence optimal policies, and the equilibrium is the instantaneous one. In addition, the
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existence of reputation-based deterrence in the extensive margin at time t is equivalent to having

π∗t < π̂.

4.3.2 T = 2: Reputation-based deterrence in the intensive margin only

To establish the possibility of such a learning-based deterrence effect, we will first consider a

two-period model, i.e., the case where T = 2. Period 2 is the last period, and thus the equilibrium

of the instantaneous game described in Proposition 4.1 is also an equilibrium of at period 2. In

other words, period 2 equilibrium strategies are

x∗2(π2) = x̂(π2),

y∗2(π2) = ŷ(π2),

where functions x̂(.) and ŷ(.) correspond to the definition given in Proposition 4.1.

In addition to the current period myopic cost, the insurer takes into account the future cost

that depends on the outcome of the current period, and on the corresponding updating transition.

Let y∗1(π1) be the period 1 equilibrium fraud and define the period 1 thresholds πNA1 and πNC1 as

ϕNA(πNA1 , y∗1(πNA1 )) = π̂ ϕNC(πNC1 , y∗1(πNC1 )) = π̂.

We have

πNA1 < π̂ < πNC1 .

4.3.2.1 Case where unambiguously proving fraud is impossible (α = 0)

Proposition 4.2. When T = 2 and α = 0, the t = 1 equilibrium exhibits no reputation-based

fraud deterrence effect in the extensive margin as π∗1 = π̂. In addition, for all priors, equilibrium

fraud is the instantaneous fraud y∗1 = ŷ(π1). However, the auditor makes less auditing efforts for

intermediate reputations π1 ∈ (π̂, πNC1 ), as x∗1(π1) = ̂̂x on this interval, with

̂̂x = (I − ω)(1− δ(1− p0 − pH))
I

= (1− δ(1− p0 − pH))x̂ < x̂.

Thus, we have reputation-based fraud deterrence effects in the intensive margin.

Figures 4.4 represent the optimal audit, fraud and average discounted cost as functions of
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Figure 4.4 – Audit, fraud and average discounted cost at (t, T ) = (1, 2)

(a) x∗1(π) (b) y∗1(π)

(c) C∗1(π)

initial belief π = π1. Figure 4.4a shows that there is no reputation-based deterrence in the

extensive margin in the penultimate period as π∗T−1 = π∗1 = π̂. On the opposite, reputation-based

fraud deterrence in the intensive margin occurs, as [d, e) = [π̂, πNC1 ). Indeed, the payoff of a type

D has two components, a current period one, equivalent to the myopic payoff, and a subsequent

period one, equal to δ(1− y1)(1− p0 − pH). The derivative of the current period component is

equal to 0 for x1 = x̂ from Proposition 4.1. Thus the total derivative is equal to −δ(1− p0− pH),

independent of x1. Consequently, for x1 = x̂, type D’s best response is y1 = 0, and the myopic
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equilibrium cannot be an equilibrium at t = 1 in (π̂, πNC1 ). Figure 4.4b illustrates the fact that

the optimal fraud level at equilibrium does not change. Figure 4.4c illustrates the equilibrium

optimal average discounted cost and shows the decrease in cost thanks to the learning effect.

Intuitively, this decrease occurs for intermediate reputations (πNA1 , πNC1 ) for which uncertainty

reduction is the most effective.

4.3.2.2 Case where it may be possible to unambiguously prove fraud (α > 0)

Before considering a T = 3 setting, we focus on the case where fraud can be proven

unambiguously, i.e., α > 0.

Proposition 4.3. When T=2, the equilibrium exhibits a reputation-based fraud deterrence effect

in the extensive margin when α > 0 and π < π̂.

In other words, the proof of Proposition 4.3 shows that there is an interval (πα1 , π̂) where

y∗1(π) < 1 and x∗1(π) > 0, meaning auditing to trigger deterrence effects is an equilibrium

strategy, while there would have been no equilibrium auditing in this same interval in a purely

instantaneous setting. This is a very intuitive result: when there is a positive probability to

unambiguously detect fraud, the possibility to replace the defrauder by another SP with better

reputation provides an additional incentive to audit claims at period 1. This creates a credible

threat for type D SPs, and consequently fraud is reduced and auditing occurs with positive

probability for some π1 smaller than π̂.

4.3.3 T = 3: Reputation-based deterrence in the extensive and the intensive

margins

As for Section 4.3.2, it will be useful to define some thresholds. First, because of the notation,

the first period from the T = 2 case becomes the second one, and the previous thresholds are

now denoted πNA2 and πNC2 . Let y∗1(π1) be the period 1 equilibrium fraud when T = 3 and define

the period 1 thresholds πNA1 and πNC1 as

ϕNA(πNA1 , y∗1(πNA1 )) = πNA2 ϕNC(πNC1 , y∗1(πNC1 )) = πNC1 .

We have

πNA1 < πNA2 < π̂ < πNC2 < πNC1 .

118



You’ll Give Yourself a Bad Name: Reputation Effects in Repeated Audits

Proposition 4.4. Assume π < π̂,and

p0 + pH <
1− π̂
2− π̂ , (4.13)

1−
√
c

I
<

I − c
2I − c . (4.14)

Then, for T = 3, the t = 1 equilibrium exhibits a reputation-based fraud deterrence effect in the

extensive margin regardless of α as π∗1 < π̂.

Condition (4.13) is a sufficient condition for the proposition to hold. It is made to make

the proof easier, but it is not necessary. It may be interpreted as an assumption about the

importance of fraud: the probability that a type D is in a position to defraud is 1 − p0 − pH ,

and according to (4.13), this probability should be larger than 1/(2− π̂). (4.14) is a condition on

I and c under which (4.2), (4.3) and (4.13) are compatible. Contrary to Proposition 4.3, it is

valid also when α = 0.

Figures 4.5 represent simulation8 results for the optimal audit, fraud and average discounted

cost at the first period when there are three periods in total. Figure 4.5a shows that there is

some reputation-based deterrence in the first period as π∗T−2 = π∗1 < π̂. . Figure 4.5b shows

that the optimal fraud level decreases in comparison to the instantaneous benchmark on the

interval (π∗1, πNC2 ) as a result of this reputation-based deterrence effect. Figure 4.5c illustrates

the equilibrium optimal average discounted cost and shows the decrease in cost thanks to the

accumulation of learning in time. Notably, the set of beliefs for which a decrease occurs is larger

in the first period (green curve) than in the second/penultimate period.

Therefore, both types of reputation-based deterrence effects come into play. First, for priors

in the interval [π̂, πNC1 ), auditing is lower than in the myopic equilibrium. More specifically, in the

interval [π̂, πNC2 ), fraud is also lower than in the myopic equilibrium. Both situations correspond

to reputation-based deterrence in the intensive margin. Strikingly, the simulation results indicate

that the mixed equilibrium auditing may drop to 0 above π̂.Second, for priors in the interval

(π∗t+1, π̂], there is a mixed equilibrium with some fraud and non systematic deterrence. This is a

reputation-based deterrence effect in the extensive margin, whereby priors (π∗t+1, π̂] are included

in the auditing set while they are not in the myopic equilibrium.

The proof relies on a very intuitive approach, where we look, for a prior π0
T−2 < π̂ and

close enough to π̂, at a difference in costs ξ(π0
T−2). This quantity is the difference between the

8For (p0, pH , c, I) = (0.3, 0.15.0.44, 1). Assumptions (4.2),(4.3),(4.13) and (4.14) are compatible for these
values.
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Figure 4.5 – Audit, fraud and average discounted cost at (t, T ) = (1, 3)

(a) x∗(π) (b) y∗(π)

(c) C∗t (π)

auditor’s cost under myopic strategies (xT−2, yT−2 = (0, 1)) and the cost the auditor deviates to

systematic auditing ((xT−2, , yT−2) = (1, 1).

ξ(π0
T−2) = ∆C + δ∆EΨT−1 + δ2∆EΨT , where π0

T−2 −→ π̂−.

The first term is the difference between both strategies in the instantaneous costs, the second

the proceeds from T − 1 and the last one the proceeds from T . Figure 4.6 plots each component
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to compare them in the vicinity of π̂. The only term that is positive, i.e., for which a deviation

towards systematic auditing is unprofitable, is the current period term. The two other terms

are, as shown in the proof, negative. Remembering the definition of π̂ in equation (4.7), this

is the prior that equalizes auditing and not auditing instantaneous costs. Therefore, ∆C tends

to 0 when the prior gets closer to π̂. However this is not sufficient to trigger auditing below π̂:

∆EΨT−1, the difference in costs between auditing and not auditing in the intermediary period

T − 1 is smaller in absolute value than ∆C (see Figure 4.6b). The T − 1 term, as a term that

account for information gains, is negative, but also tends towards 0 when approaching π̂. This is

why there is no reputation-based deterrence effect below π̂ at T = 2. Finally, including a third

period adds the ∆EΨT term to the balance. This term is negative, but does not tend to 0 at π̂

(see green line in Figure 4.6a).

Figure 4.6 – Multi-period costs in the vicinity of π̂

(a) Period 1, 2 and 3 costs (b) Period 1 and 2 costs (zoom)

Let us again think about the situation under scrutiny through the lens of deviation towards

total auditing, i.e., x = 1. Figure 4.7 plots the period 1 average discounted cost under the second

period equilibrium actions (x∗2, y∗2). It also plots the period 1 average discounted cost under

a deviation from the previous action consisting in systematically auditing. We see that this

deviation becomes profitable above π∗1, hence the reputation-based deterrence effect. Note also

the discontinuity of the blue curve, i.e., under a myopic equilibrium, at the prior π̂. This is

because auditing, which means resorting with probability x∗1 > 0 to transitions ϕAI and ϕAV

instead of ϕNA, becomes profitable at soon as π > π∗1, but does not come into play until π̂. When

it does all of a sudden, the related cost saving makes the cost curve discontinuous.
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Figure 4.7 – C1(x1, y1, π) for T = 3

4.3.4 Multiperiod setting

In a multiperiod setting where T ≥ 3, Proposition 4.5 shows that if the horizon is far enough

and the insurer is patient enough, reputation-based fraud deterrence in the extensive margin

takes place.

Proposition 4.5. For an arbitrary number of periods T , there is reputation-based deterrence if

the remaining relationship is long enough, i.e., for t such that

(1− p0 − pH)δ(1− δ
T−t)

1− δ > 1,

which is true for T − t large enough, provided the auditor is patient enough

δ >
1

2− p0 − pH
.

In words, for δ large enough, a type D SP whose reputation is just below the threshold π̂ will

have an incentive to deviate from the instantaneous equilibrium ŷ(π̂ − ε) = 1 if T − t is large

enough. Intuitively, if the auditor never audits in the neighborhood just below π̂ and expects a

type D to systematically defraud, then not observing a claim leads him to believe once and for
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all that the scrutinized auditee is of type H. In this context, by deviating, an auditee of type D

will masquerade as a type H for the remaining of the relationship and defraud systematically

with no fear of being audited. These future accumulated profits are increasing with the number

of remaining periods and the discounting factor, which explains the existence of thresholds in

the proposition. In other words, the threat of a future audit deters fraud at the beginning of the

relationship.

4.4 Auditing with Deterrence and Learning Effects and the Rest-
less Bandit Problem

In this section, we provide a short description of the relationship between our auditing

problem and the restless bandit problem. We leave a formal resolution of the problem for future

work. We also set aside the strategic arms aspect.

A fundamental assumption in the regular bandit literature is that the reward associated to

each arm only evolves if the arm is chosen. In Aboutajdine and Picard (2019b), this was true

because not auditing had an updating function equal to the identity function. In this paper, not

auditing corresponds to the updating functions ϕNA and ϕNC , which means that an arm (an

SP) not played (audited) still sees the associated belief evolve. This is due to the difference in

claim submission between types. A type D submits valid and mistakenly invalid claims with

the same probability as a type H, but the type D also voluntarily submits invalid claims, which

means he submits more claims on average than the type H. Therefore, even without auditing,

observing a claim indicates that an SP is more likely to be of type D.

This is an important aspect as we can no longer rely on an optimal stopping formulation of

the problem. Even if the belief drops below the threshold π∗t , auditing does not stop and may

resume if the belief goes back above the threshold through non auditing based updating.

Figure 4.8 – Belief trajectories for a type D under myopic strategies

(a) Example 1 (b) Example 2 (c) Example 3
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Figure 4.9 – Belief trajectories for a type H under myopic strategies

(a) Example 1 (b) Example 2 (c) Example 3

Figures 4.8 and 4.9 show simulations of the trajectories of beliefs for a type D and a type H

under myopic strategies at all periods, but with updating. Although not realistic, as an insurer

who updates beliefs cannot plausibly use myopic strategies, these examples still illustrate the

ideas above. In Figure 4.8a, the belief converges to the true one, even after starting below the

threshold. In addition, beliefs in Figures 4.8b and 4.8c do cross the threshold more than once

before converging to the true belief. In the case of a type H, once he reaches the zone where no

auditing is conducted below the threshold, it is sufficient for him to not claim once to see his

belief become equal to 0, the true belief. However, as shown by the random draw in Figure 4.9b,

if a claim is submitted right after entering the no auditing zone, the SP’s belief remains strictly

above 0. In addition, these trajectories are obtained under myopic strategies when type D SPs

and the insurer do not adapt their behavior earlier in the relationship. Therefore, there is no

guarantee that the true beliefs 0 and 1 will be the only stationary points asymptotically.

Therefore, our dynamic auditing problem with deterrence and learning is related to a complex

class of bandit problems where the reward distribution of non-played arms still evolves and arms

adapt to the player’s strategy.

4.5 Conclusion

This paper has analyzed the insurance fraud problem when the auditor faces strategic

auditees with a reputation. The objectives of auditing are threefold: recovering illegitimate

claims, deterring fraud and learning about auditees’ types, and their effects overlap. The main

result of our paper is that the combination of information learning by auditing and strategic

behavior of auditees produces a reputation-based deterrence effect as a result of their interaction.

An important but ambitious extension of our analysis would be to approach it as a bandit

problem, but, as discussed in the last section of the paper, the problem is particularly complex.
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One possibility would be to decompose the problem and start with an intermediary setting.

Going back to the model of Aboutajdine and Picard (2019b), one could relax only the assumption

of having both types submit exactly one claim per period, and keep auditees non-strategic. Then,

our problem would be a restless bandit problem, without strategic arms.
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4.6 Appendix

4.6.1 Proof of Proposition 4.1

Proof. Under an audit strategy x1(.), the best response y1(π1) of a type D SP under insurer’s

belief π1 is obtained by maximizing Π(x1(π1), y1, π1) w.r.t. y1 ∈ [0, 1], which gives

y1(π1) = 1 if (I − ω)[1− x1(π1)]− ωx1(π1) > 0, (4.15)

y1(π1) ∈ [0, 1] if (I − ω)[1− x1(π1)]− ωx1(π1) = 0, (4.16)

y1(π1) = 0 if (I − ω)[1− x1(π1)]− ωx1(π1) < 0. (4.17)

Under a fraud strategy y1(.), the best response x1(π1) of the insurer under belief π1 is obtained

by minimizing C(x1, y1(π1), π1) w.r.t. x1 ∈ [0, 1], which gives

x1(π1) = 1

if c[p0 + pH + π1y1(π1)(1− p0 − pH)]− I[pH + π1y1(π1)(1− p0 − pH)] < 0 (4.18)

x1(π1) ∈ [0, 1]

if c[p0 + pH + π1y1(π1)(1− p0 − pH)]− I[pH + π1y1(π1)(1− p0 − pH)] = 0, (4.19)

x1(π1) = 0

if c[p0 + pH + π1y1(π1)(1− p0 − pH)]− I[pH + π1y1(π1)(1− p0 − pH)] > 0. (4.20)

If x1(π1) = 1, then (4.17) gives y1(π1) = 0. Using (4.3) and (4.20) yields x1(π1) = 0, hence

a contradiction. Thus, we have x1(π1) < 1. In other words, systematic auditing cannot be an

equilibrium outcome.

If x1(π1) ∈ (0, 1), then (4.16) gives y1(π1) = ŷ(π1), with ŷ(π1) ∈ (0, 1) if π1 > π̂, and

ŷ(π1) = 1 if π1 ≤ π̂. Using (4.15) and (4.16) gives x1(π1) = x̂ ∈ (0, 1) when ŷ(π1) ∈ (0, 1), i.e.,

when π1 > π̂, and x1(π1) ≤ x̂ when ŷ(π1) = 1, i.e., when π1 = π̂. Hence, there exists a mixed

equilibrium where no player audits or defrauds with certainty, such that

x∗1(π1) = x̂ ∈ (0, 1) and y∗1(π1) = ŷ(π1) ∈ (0, 1) if π1 > π̂,

Finally, if x1(π1) = 0, then (4.15) gives y1(π1) = 1, and (4.20) is satisfied if π1 ≤ π̂. Hence
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there exists an equilibrium such that

x∗1(π1) = 0 and y∗1(π1) = 1 if π1 ≤ π̂.

Patching up these cases yields the characterization provided in Proposition 4.1.

4.6.2 Joint proof of Propositions 4.2 and 4.3

Proof. Assume π < π̂. Let πAI(π1, y1), πNA(π1, y1) and πNC(π1, y1) defined by

ϕAI(πAI , y1) = π̂,

ϕNA(πNA, y1) = π̂,

ϕNC(πNC , y1) = π̂,

with

πAI(π1, y1) < πNA(π1, y1) < π̂ < πNC(π1, y1),

for all π1, y1.

Consider period 1 equilibrium strategies x∗1(π1) and y∗1(π1). Let us denote K∗(π1) ≡

K(π1y
∗
1(π1)) and

∆ = p0I
2

(I − c) − IJ(π),

with ∆ > 0 from π < π̂.

According to initial beliefs π1, five possible cases have to be distinguished.

Figure 4.10 – Proof cases

Case 1 : π1 is such that πNA(π1, y
∗
1(π1)) < π1 < π̂.
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In the case of an audit when a claim is filed, we have

π2 = π1 < π̂ with prob. p0
p0 +K∗(π1) , (4.21)

π2 = π < π̂ with prob. απ1y
∗
1(π1)(1− p0 − pH)
p0 +K∗(π1) , (4.22)

π2 = ϕAI(π1, y
∗
1(π1)) > π̂ with prob. K

∗(π1)− απ1y
∗
1(π1)(1− p0 − pH)

p0 +K∗(π1) . (4.23)

If there is no audit, we have

π2 = ϕNA(π1, y
∗
1(π1)) > π̂. (4.24)

The insurer chooses x1 in [0, 1] in order to minimize

C(x1, y
∗
1(π1), π1) + δEπ̃2

[C(x∗2(π̃2), y∗2(π̃2), π̃2]

= C(x1, y
∗
1(π1), π1) + δEπ̃2

C(x̂(π̃2), ŷ(π̃2), π̃2).

Using (4.9) and (4.21)-(4.24) shows that x1 minimizes

I + x1

[
c− I K∗(π1)

p0 +K∗(π1)

]
+ δx1

[
p0

p0 +K∗(π1)IJ(π1)

+απ1y
∗
1(π1)(1− p0 − pH)
p0 +K∗(π1) IJ(π) + K∗(π1)− απ1y

∗
1(π1)(1− p0 − pH)

p0 +K∗(π1) × p0I
2

I − c

]

+δ(1− x1) p0I
2

I − c
,

in [0, 1]. Since the function to be minimized is linear w.r.t. x1, we deduce

x1


= 1
∈ [0, 1]

= 0
if [p0 +K∗(π1)]c− IK∗(π1) + δp0

[
J(π1)I − p0I

2

I − c

]

+δαπ1y
∗
1(π1)(1− p0 − pH)[IJ(π)− p0I

2

I − c
]
< 0
= 0
> 0

.
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This gives

x1


= 1
∈ [0, 1]

= 0
if y∗1(π1)

>

=
<

f(π1) (4.25)

where

f(π1) = k

π1
[π̂ − η(π̂ − π1)] , (4.26)

and

k = I − c
I − c+ δα∆ ∈ (0, 1],

η = δp0I

I − c
∈ (0, 1)

with f ′(π1) < 0 and f(π̂) < 1 if α > 0 and f(π̂) = 1 if α = 0, because k < 1 when α > 0 and

k = 1 when α = 0. Note also that f(π∗∗) = 1 with

π∗∗ = π̂
I − c− δp0I

I − c− δp0I + δα∆ = π̂
k(1− η)

k(1− η) + 1− k , (4.27)

and π∗∗ < π̂ if α > 0, and π∗∗ = π̂ if α = 0.

Consider now the optimal choice of a type D SP (in the case where he has the opportunity to

certify a fraudulent claim, which occurs with probability 1−p0−pH). Let EF
[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
and EN

[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
be the period 2 expected fraud profit of a type D SP in case of

fraud or no-fraud at period 1 respectively. Here ˜̃π2 denotes period 2 beliefs in each case (fraud

F and no fraud N), and these beliefs depend on initial beliefs π1, on the type D SP strategy

y∗1(π1), and on s1. For beliefs and equilibrium strategies such that πNA(π1, y
∗
1(π1)) < π1 < π̂, if

the SP defrauds, we have

˜̃π2 =


ϕAI(π1, y

∗
1(π1)) > π̂ in the case of an audit without

unambiguous proof of fraud,
ϕNA(π1, y

∗
1(π1)) > π̂ if there is no audit.

In both case, the SP’s expected profit at period 2 is zero. This is also the case, it an audit

provides an unambiguous proof of fraud. Hence, we have

EF
[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
= 0.
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If the type D SP does not defraud, no claim is filed and thus, we have

˜̃π2 = ϕNC(π1, y
∗
1(π1)) < π̂,

which gives

EN
[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
= (1− p0 − pH)(I − ω).

Hence, at period 1, the type D best response is given by maximizing

y1
{

[1− x∗1(π1)]I − x∗1(π1)ω + δEF
[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
− δEN

[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]}
,

w.r.t. y1 in [0, 1], which gives

y1


= 1
∈ [0, 1]

= 0
if [1− x∗1(π1)](I − ω)− x∗1(π1)ω − δ(1− p0 − pH)(I − ω)

< 0
= 0
> 0

,

or equivalently

y1


= 1
∈ [0, 1]

= 0
if x∗1(π1)

<

=
>

x∗∗, (4.28)

with

x∗∗ = (1− δ(1− p0 − pH))(I − ω)
I

∈ (0, 1). (4.29)

Suppose x∗1(π1) = 1. Then (4.25) gives y∗1(π1) ≥ f(π1) > 0, and (4.39) implies x∗1(π1) ≤ x∗∗ <

1, hence a contradiction. If x∗1(π1) = 0, then (4.25) gives y∗1(π1) ≤ f(π1) < 1, and (4.39) gives

x∗1(π1) ≥ x∗∗ > 0, which once again is a contradiction. Hence, we have x∗1(π1) ∈ (0, 1), and (4.25)

implies y∗1(π1) = f(π1), with π∗∗ ≤ π1 < π̂. When π∗∗ < π1 < π̂, we have y∗1(π1) = f(π1) ∈ (0, 1),

and (4.39) gives x∗1(π1) = x∗∗ ∈ (0, 1). When π1 = π∗∗, we have y∗1(π1) = f(π1) = 1, and (4.39)

gives x∗1(π1) ≤ x∗∗.

Such an equilibrium exists if ϕNA(π1, y
∗
1(π1)) < π1 < π̂ or, equivalently, if ϕNA(π1, y

∗
1(π1)) > π̂

and π1 < π̂. This is equivalent to

π∗NA < π1 < π̂,
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where

π∗NA = π̂
[
1− k(1− π̂)(1− p0 − pH)

p0 + pH + kη(1− π̂)((1− p0 − pH)
]
< π̂.

Hence, an equilibrium exists with x∗1(π1) = x∗∗ ∈ (0, 1) and y∗1(π1) = f(π1) ∈ (0, 1) if

sup{π∗NA, π∗∗} < π1 < π̂, which requires α > 0. Everything else given, we have π∗NA <

π∗∗, when k is small enough, which corresponds to α small. If α = 0 and x∗1(π1) > 0, we

would have y∗1(π1) ≥ f(π1) > 0 if π1 < π̂, hence a contradiction.Thus, we have x∗1(π1) = 0 and

y∗1(π1) = 1 when α = 0.

Case 2 : π1 is such that πAI(π1, y
∗
1(π1)) < π1 < πNA(π1, y

∗
1(π1)).

In the case of an audit when a claim is filed, we have

π2 = π1 < π̂ with prob. p0
p0 +K∗(π1) , (4.30)

π2 = π < π̂ with prob. απ1y
∗
1(π1)(1− p0 − pH)
p0 +K∗(π1) , (4.31)

π2 = ϕAI(π1, y
∗
1(π1)) > π̂

with prob. K
∗(π1)− απ1y

∗
1(π1)(1− p0 − pH)

p0 +K∗(π1) . (4.32)

If there is no audit, we have

π2 = ϕNA(π1, y
∗
1(π1)) < π̂. (4.33)

In this case, the insurer chooses x1 in [0, 1] in order to minimize

I + x1

[
c− I K∗(π1)

p0 +K∗(π1)

]
+ δx1

[
p0

p0 +K∗(π1)IJ(π1)

+απ1y
∗
1(π1)(1− p0 − pH)
p0 +K∗(π1) IJ(π) + K∗(π1)− απ1y

∗
1(π1)(1− p0 − pH)

p0 +K∗(π1) × p0I
2

I − c

]
δ(1− x1)IJ(ϕNA(π1, y

∗
1(π1)),
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in [0, 1]. We deduce

x1


= 1
∈ [0, 1]

= 0
if [p0 +K∗(π1)]c− IK∗(π1) + δI[pH(1− p0 − pH)

−K∗(π1)I(1− p0)− c
I − c

− α∆π1y
∗
1(π1)(1− p0 − pH)]

< 0
= 0
> 0

.

This gives after simplification

x1


= 1
∈ [0, 1]

= 0
if y∗1(π1)

>

=
<

g(π1) (4.34)

where

g(π1) = k

π1

[
p0π̂ + ηpH(π̂ − π1)

p0 + kη(1− p0 − pH)(1− π̂)

]
, (4.35)

with g′(π1) < 0. Note that

f(π∗NA) = g(π∗NA) = kπ̂(p0 + pH)
p0 + pH − k(1− η)(1− π̂)(1− p0 − pH) ,

which corresponds to the continuity between cases 1 and 2 at π1 = π∗NA. Reasoning as in Case

1 shows that when α > 0 there exists an equilibrium in mixed strategies x∗1(π1) = x∗∗∗ ∈ (0, 1)

and y∗1(π1) = g(π1) ∈ (0, 1) if sup{π∗AI , π∗∗∗} < π1 < π∗NA and π∗NA < π∗∗, where π∗AI and x∗∗∗

are defined by πAI(π1, y
∗
1(π1)) = π̂ , or equivalently ϕAI(π1, y

∗
1(π1)) > π̂, and by g(π∗∗∗) = 1,

respectively. x∗∗∗ is the audit probability that makes the typeD SP indifferent between defrauding

or not-defrauding.

Case 3 : π1 is such that π1 < πAI(π1, y1).

Straight forward calculation shows that x∗1(π1) = 0 and y∗1(π1) = 1 in that case. This case

holds when π1 < sup{π∗AI , π∗∗∗}.

Case 4 : π̂ is such that π̂ < π1 < πNC(π1, y
∗
1(π1)).

When α = 0, in the case of an audit when a claim is filed, we have

π2 = π1 > π̂ with prob. p0
p0 +K∗(π1) , (4.36)

π2 = ϕAI(π1, y
∗
1(π1)) > π̂ with prob. K∗(π1)

p0 +K∗(π1) . (4.37)
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If there is no audit, we have

π2 = ϕNA(π1, y
∗
1(π1)) > π̂. (4.38)

In this case the type D chooses y1 in [0, 1] in order to maximize

y1
{

[1− x∗1(π1)]I − x∗1(π1)ω + δEF
[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
− δEN

[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]}
,

w.r.t. y1 in [0, 1], which gives

y1


= 1
∈ [0, 1]

= 0
if [1− x∗1(π1)](I − ω)− x∗1(π1)ω − δ(1− p0 − pH)(I − ω)

< 0
= 0
> 0

,

or equivalently

y1


= 1
∈ [0, 1]

= 0
if x∗1(π1)

<

=
>

̂̂x, (4.39)

with
̂̂x = (I − ω)(1− δ(1− p0 − pH))

I
= (1− δ(1− p0 − pH))x̂ ∈ (0, 1). (4.40)

Consider now the optimal choice of the insurer. She has to minimize

C(x1, y
∗
1(π1), π1) + δEπ̃2

[C(x∗2(π̃2), y∗2(π̃2), π̃2] = C(x1, y
∗
1(π1), π1) + δ

[ p0I
2

I − c

]
.

The second period cost is independent of x1. Indeed, all outcomes NA,AV and AI lead to

posteriors larger than π̂. Therefore, the insurer is made indifferent for the myopic fraud level

ŷ(π1) = π̂
π1
∈ (0, 1).

For α = 0, the equilibrium in Case 4 is then given by

x∗1(π1) = (I − ω)(1− δ(1− p0 − pH))
I

< x̂ and y1(π1) = π̂

π1
.

Case 5 : π̂ is such that π1 > πNC(π1, y
∗
1(π1)).

In this case, all priors in period 2 obtained from π1 through updating are larger than π̂. Then

the expectation of period 2 cost is known and independent of x1

Eπ̃2
[C(x∗2(π̃2), y∗2(π̃2), π̃2] = p0I

2

I − c
.

133



You’ll Give Yourself a Bad Name: Reputation Effects in Repeated Audits

The type D has to maximize

y1
{

[1− x∗1(π1)]I − x∗1(π1)ω + δEF
[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]
− δEN

[
Π(x̂(˜̃π2), ŷ(˜̃π2), ˜̃π2)

]}
,

where the period 2 terms are all equal to zero since all updated beliefs are larger than π̂.

Therefore, the period 1 equilibrium audit and fraud are the myopic ones, for beliefs larger than

πNC(π1, y
∗
1(π1))

x∗1(π1) = x̂ = I − ω
I

and y∗1(π1) = ŷ(π1) = π̂

π1
.

4.6.3 Proof of Proposition 4.4

Proof. Let T = 3. We already know that the proposition is valid when α > 0, and thus we may

restrict the proof to the case α = 0. Let

Ψ(π) = inf{IJ(π), p0I
2/(I − c)}.

Ψ(π) is the expected cost of the insurer at the equilibrium of the instantaneous game, under

beliefs π. Hence,

C(x∗T (πT ), y∗T (πT ), πT ) = Ψ(πT ),

for all πT in [0, 1], since T is the last period of the game. Furthermore, when α = 0, the

equilibrium strategies of period T − 1 also coincide with those of the instantaneous game, with

C(x∗T−1(πT−1), y∗T−1(πT−1), πT−1) = Ψ(πT−1),

for all πT−1 in [0, 1].

Assume

x∗T−2(πT−2) = x̂(πT−2), (4.41)

y∗T−2(πT−2) = ŷ(πT−2), (4.42)
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for all πT−2 ∈ [0, 1]. Let π0
T−2 ∈ (0, π̂), π0

T−2 close to π̂. (4.41) and (4.42) imply

x∗T−2(π0
T−2) = 0,

y∗T−2(π0
T−2) = 1.

Consider a deviation of the insurer’s strategy from x∗T−2(π0
T−2) = 0 to xT−2(π0

T−2) = 1. Let

ΨN
T−1 and ΨA

T−1 denote the insurer’s expected cost at period T − 1 for beliefs π0
T−2, if she does

not deviate (No audit) and if she deviates (Audit) at period T − 2.

Consider first the case where the insurer does not deviate from her equilibrium strategy

x∗T−2(π0
T−2) = 0. We have

πT−1 = 0 with prob. (1− π0
T−2)(1− p0 − pH), (4.43)

πT−1 = ϕNA(π0
T−2, 1) > π̂ with prob. 1− (1− π0

T−2)(1− p0 − pH), (4.44)

and thus

EΨN
T−1 = I(p0 + pH)(1− π0

T−2)(1− p0 − pH)

+ p0I
2

I − c
[1− (1− π0

T−2)(1− p0 − pH)],

where the expected value of the insurer’s cost is conditional on period T − 2 belief π0
T−2.

When the insurer deviates from her equilibrium strategy to xT−2(π0
T−2) = 1, we have

πT−1 = 0 with prob. (1− π0
T−2)(1− p0 − pH), (4.45)

πT−1 = π0
T−2 with prob. p0, (4.46)

πT−1 = ϕAI(π0
T−2, 1) > π̂ with prob. 1− (1− π0

T−2)(1− p0 − pH)− p0, (4.47)

and thus

EΨA
T−1 = I(p0 + pH)(1− π0

T−2)(1− p0 − pH)

+Ip0[p0 + pH + π0
T−2)(1− p0 − pH)]

+ p0I
2

I − c
[1− (1− π0

T−2)(1− p0 − pH)− p0].

We deduce

∆EΨT−1 ≡ EΨA
T−1 − EΨN

T−1 = −p0I(1− p0 − pH)(π̂ − π0
T−2). (4.48)
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Consider now the strategies played at period T following either an audit or no audit at period

T − 2, and denote ΨA
T and ΨN

T the corresponding expected costs.

Suppose first that no audit has been performed at period T − 2. Consider the two cases that

may occur.

If πT−1 = 0, we have πT = 0, and thus

E[ΨN
T (πT ) | πT−1 = 0] = I(p0 + pH). (4.49)

If πT−1 = ϕNA(π0
T−2, 1), we have

πT ≥ ϕsT−1(ϕNA(π0
T−2, 1), ŷ(ϕNA(π0

T−2, 1)), (4.50)

in all scenarios sT−1 that may occur at period T − 1. Note that

ϕNA(π̂, 1) = π̂

p0 + pH + π̂(1− p0 − pH)

and thus

ϕsT−1(ϕNA(π̂, 1), ŷ(ϕNA(π̂, 1)) = ϕsT−1

(
ϕNA(π̂, 1), π̂

ϕNA(π̂, 1)

)
= π̂

1− p0 − pH
π̂ + (1− π̂)(p0 + pH)

> π̂,

where the inequality results from (4.13). Consequently, we have

ϕsT−1(ϕNA(π0
T−2, 1), ŷ(ϕNA(π0

T−2, 1)) > π̂, (4.51)

when π0
T−2 is close to π̂. Hence, (4.44) and (4.45) show that πT > π̂ when π0

T−2 is close to π̂, in

all possible scenarios following πT−1 = ϕNA(π0
T−2, 1).

Consequently, we have

E[ΨN
T (πT ) | πT−1 = ϕNA(π0

T−2, 1)] = p0I
2

I − c
, (4.52)
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and using (4.43),(4.44),(4.49) and (4.52) gives

EΨN
T = (1− π0

T−2)(1− p0 − pH)(p0 + pH)I

+[1− (1− π0
T−2)(1− p0 − pH)] p0I

2

I − c
,

where the expected value of the insurer’s cost at period T is conditional on beliefs π0
T−2.

Suppose now that an audit has been performed at period T − 2. Consider the three cases that

may occur.

If πT−1 = 0, as in the previous case we have πT = 0, and

E[ΨN
T (πT ) | πT−1 = 0] = I(p0 + pH). (4.53)

If πT−1 = π0
T−2, then using x∗T−1(π0

T−2) = x̂(π0
T−2) = 0 and y∗T−1(π0

T−2) = ŷ(π0
T−2) = 1 gives

πT = 0 with prob. (1− π0
T−2)(1− p0 − pH),

πT = ϕNA(π0
T−2, 1) > π̂ with prob. 1− (1− π0

T−2)(1− p0 − pH).

If πT−1 = ϕAI(π0
T−2, 1), we have ∆

πT ≥ ϕst(ϕAI(π0
T−2, 1), ŷ(ϕAI(π0

T−2, 1)), (4.54)

in all scenarios sT−1 that may occur at period T − 1. Since ϕAI(π0
T−2, 1) > ϕNA(π0

T−2, 1), using

(4.13) yields πT > π̂ in all scenarios that may occur at period T−1, following πT−1 = ϕAI(π0
T−2, 1).

Hence, we have

EΨA
T = (1− π0

T−2)(1− p0 − pH)(p0 + pH)I

+p0
[
(1− π0

T−2)(1− p0 − pH)(p0 + pH)I

+[1− (1− π0
T−2)(1− p0 − pH)] p0I

2

I − c
]
]

+[1− (1− π0
T−2)(1− p0 − pH)] p0I

2

I − c
.
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We obtain

∆EΨT ≡ EΨA
T − EΨN

T = p0(1− π0
T−2)(1− p0 − pH)

×
[
(p0 + pH)I − p0I

2

I − c

]
= −p0Iπ̂(1− p0 − pH)(1− π0

T−2). (4.55)

Finally, a deviation from x∗T−2(π0
T−2) = 0 to xT−2(π0

T−2) = 1 induces a change ∆C in insurance

cost at period T − 2 defined by

∆C = C(1, 1, π0
T−2)− C(0, 1, π0

T−2)

= cp0 − (I − c)[ph + (1− p0 − pH)π0
T−2],

where cp0 is the expected audit cost for valid claims and (I − c)[ph + (1− p0 − pH)π0
T−2] is the

expected value of recouped indemnities, net of audit cost, for detected invalid claims.

Let

ξ(π0
T−2) = ∆C + δ∆EΨT−1 + δ2∆EΨT ,

the discounted expected variation in the insurer’s cost after the deviation. We have ∆C → 0

and ∆EΨT−1 → 0 when π0
T−2 → π̂, and thus ξ(π0

T−2)→ −δ2p0Iπ̂(1− p0 − pH)(1− π̂) < 0 when

π0
T−2 → π̂, which shows that the deviation is profitable to the insurer when π0

T−2 is close to

π̂.

4.6.4 Proof of Proposition 4.5

Assume there exists t ≥ 1 such that y∗t,T (πt) = 1 for πt ∈ [π̂ − ε, π̂] ≡ A where ε > 0. Assume

an SP of type D with reputation πt has no legitimate claim to channel and either defrauds with

certainty (yt,T = 1) or does nothing (yt,T = 0). If the SP deviates and yt,T = 0, then, by Bayes

law, πt+1 = 0 and he will be able to defraud in all subsequent periods without being auditied

(since x∗t,T = 0 at any time t). Denoting EF [V (π̃t+1)|πt] and EN [V (π̃t+1)|πt] the time t discounted

expected gain over periods t, t+ 1, .., T of a type D with reputation πt who respectively defrauds

(F, yt,T = 1) or does not defraud (N,yt,T = 0), for πt ∈ [π̂ − ε, π̂], we then have

138



You’ll Give Yourself a Bad Name: Reputation Effects in Repeated Audits

EN [V (π̃t+1)|πt] = (I − ω)(1− p0 − pH)
T−t∑
i=1

δi

= (I − ω)(1− p0 − pH)δ(1− δ
T−t)

1− δ , (4.56)

If the type D SP chooses to defraud with yt,T = 1, then πt+1 = ϕNA(πt, 1) with probability

(1− x∗t,T (πt,T )) and πt+1 = ϕAI(πt, 1) with probability (x∗t,T (πt,T )). Therefore πt+1 > π̂ in both

cases for ε small enough. Then, at period t+ 1, the equilibrium is a mixed one and the SP of

type D is indifferent between defrauding or not. So the optimal expected gain at time t+ 1 is

obtained by looking at total fraud yt,T = 1. In particular, if he defrauds with certainty when

given the chance at all subsequent periods, his priors πt+i will always increase and stay above π̂.

Therefore, the SP no longer has any expected gain starting from period t+ 1 if he defrauds with

certainty at period t. Then

EN [V (π̃t+1)|πt,T ] = (I − ω)(1− x∗t,T (πt,T ))− ωx∗t,T (πt)

≤ (I − ω), (4.57)

Equations (4.56) and (4.57) imply that a sufficient condition for

EN [V (π̃t+1)|πt] > EF [V (π̃t+1)|πt],

is given by

(1− p0 − pH)δ(1− δ
T−t)

1− δ > 1,

which is true for T − t large enough if

δ >
1

2− p0 − pH
.
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This thesis tackles the insurance fraud problem through the scope of optimal auditing,

specifically when there exist intermediaries between the insurer and its policyholders, and they

interact with the insurer on frequent basis.

Chapter 1 focuses on the magnitude of auditing deterrence effects on opticians who might

defraud, in the context of the introduction of a fraud detection system. By allowing for cost-

effective and better targeted audits, this system turns auditing into a more credible threat. As a

consequence, opticians with the most suspicious claims are now audited while it might not have

been the case pre-detection system, and their defrauding efforts decrease as a consequence of

auditing. This decrease is the strongest for audits who request specific supporting documents,

corroborating the idea that commitment and credibility are fundamental ingredients of counter-

fraud measures.

Chapter 2 considers auditing as a learning mechanism. When auditor/intermediaries interac-

tions are repeated, the auditor can use information gathered early in the relationship to perform

better targeted audits later on. In this framework, optimal auditing strategies take the shape of

a threshold in the reputation of intermediaries where reputations worse than the threshold are

audited. Earlier in the relationship, this threshold is lower, meaning that more intermediaries are

targeted. Furthermore, this threshold is decreasing in the claim value, as, all else being equal,

expected proceeds from a successful audit are larger.

Chapter 3 extends Chapter 2’s framework to an arbitrarily long relationship. Thresholds are

decreasing in the number of remaining periods, and tend to a lower bound threshold when the

number of periods goes to infinity. In other words, the further the time horizon, the stronger

the learning generated profits from auditing, and the more auditees are monitored at the first

stages of the relationship. Auditing is then a mechanism to separate the wheat from the chaff,

by progressively excluding honest intermediaries from the auditing pool and isolating dishonest

ones for future audits. The auditor’s propensity to learn is also increased by polarized behavior
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between honest and dishonest auditees, because auditing is more informative.

Finally, Chapter 4 builds on Chapters 2 and 3 and combines both deterrence and learning

mechanisms in the same dynamic game theoretic model. Contrary to the previous chapters where

learning allowed the auditor to directly generate more auditing proceeds in the future, learning

now affects the auditor’s optimal strategies indirectly by strengthening the deterrence mechanism,

revealing a reputation-based deterrence mechanism. In addition to the threat of being caught for

a current defrauding attempt, a dishonest auditee must face the risk of worsening his reputation

for future periods. Such a reputation is generated through the learning mechanism of auditing.

As a consequence, the auditor audits more at an early period and the dishonest auditee defrauds

less. This change in auditing/fraud takes two forms. First, auditing increases in the extensive

margin in that auditees with good enough reputations to not be audited in the stage game are

now investigated with a non null probability at the early stage. The latter auditees, who would

have defrauded with certainty in the stage game, only defraud with probability strictly smaller

than one at the early stage. Second, auditing decreases in the intensive margin for auditees with

bad enough reputations to be audited in the stage game. Because of this reputation-based threat,

the auditor needs to make less auditing efforts to deter dishonest auditees while the latter need

to defraud less to discourage the former from systematically auditing.

Future research In Chapter 1, empirical results emphasize the importance of commitment in

auditing. Chapter 4 does not take this aspect into account as auditing and fraud decisions are

simultaneous. An interesting and straightforward extension would be to consider a Stackelberg

game where the auditor has first-mover advantage and can commit to his auditing strategy.

In Chapters 2 to 4, information acquisition played a central role, either as the only mechanism

at stake (Chapters 2 and 3), or, more importantly, as a deterrence strengthening mechanism

(Chapter 4). This aspect connects this work to the recent and growing literature on Information

Design9 and suggests several directions to extend the obtained results. For example, introducing

information theoretic tools10 to accurately characterize uncertainty reduction through auditing

and how it impacts equilibrium strategies could reveal new insights about the trade-off between

exploration and exploitation. In addition, an interesting question that arises in Chapter 3 was

to understand how close to the truth did the auditor get. Because, in said chapter, the auditee

was non strategic, the auditor ended up learning the truth, or at least learning enough to obtain

9See Hörner and Skrzypacz (2017) for a recent review.
10See Neyman and Okada (1999), Lehrer and Smorodinsky (2000), Zhong (2017).
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his optimal payoff. This is not guaranteed in the model from Chapter 4 as the strategic auditee

seeks to maintain his reputation good enough. The concept of merging11 captures the idea

that a subjective belief becomes closer to the truth when sufficient observations are made, and

could help understand how beliefs would behave asymptotically in an infinite horizon version of

Chapter 4’s model.12 Another direction would be to reformulate the dynamic game theoretic

model from Chapter 4 as a restless bandit problem with strategic arms.13 As explained Chapter

4, this class of problems is particularly complex, and an initial, but intermediary step, might

be to start by reconsidering the model from Chapter 3 without strategic auditees, but with

alternative information acquisition mechanisms other than auditing. Finally, another class of

bandit problems that would be of interest is the class of bandits with correlated arms. In this

thesis, arms, i.e., auditees, are independent from one another, which excludes the possibility

of informational externalities. Yet, if we consider arms to be categories of claims rather than

auditees, a natural intuition would be to expect that claims of the same category would be

correlated and that, with decreasing informational returns to auditing, it would be optimal to

audit a strict subset of claims of the same category, and diversify auditing to include some claims

of each category.

Finally, this thesis leaves aside the legal and contractual dimension of the insurance fraud

problem. First, learning effects and information acquisition are constrained by privacy laws, for

example to guarantee a right to be forgotten.14 In the case of France, CNIL15 has issued a Single

Authorization16 governing personal data processing and storage in the context of counter-fraud

efforts. One requirement is for suspicious cases who have not been unambiguously proved to

be fraudulent to be deleted within six months. Even cases proved to be fraudulent cannot be

stored more than five years. Second, fraud can also be tackled through contract design. The

insurance academic literature provides several examples of optimal contracts under fraud.17 In

this thesis’ setting, one could wonder to which extent can dynamic contract design help mitigate

the insurance fraud problem.

11See Blackwell and Dubins (1962), Lehrer and Smorodinsky (1996), Lehrer and Smorodinsky (2000).
12See for example Gossner and Tomala (2008) for a bound for the distance between the belief and the truth

under costly learning in sequential settings.
13Not to be confused with strategic bandits where several players facing the same bandit might collabo-

rate/compete, but the arms are still non-strategic. See Bolton and Harris (1999), Keller, Rady and Cripps (2005),
Rosenberg, Solan and Vieille (2007).

14See GDPR in the EU https://gdpr-info.eu/issues/right-to-be-forgotten/
15Commission nationale de l’informatique et des libertés, https://www.cnil.fr/en/home
16https://www.cnil.fr/sites/default/files/typo/document/FICHE_05_assurance.pdf
17See for example Bond and Crocker (1997), Crocker and Morgan (1998), Picard (2000).
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Titre : Effets de dissuasion et d’apprentissage dans l’audit de la fraude à l’assurance

Mots clés : Fraude, assurance, dissuasion, apprentissage, interactions répétées

Résumé : La fraude à l’assurance est une me-
nace majeure pour les marchés assurantiels dont
le traitement passe par la conception de politiques
d’audit crédibles et ciblées. Cette thèse étudie les
mécanismes de dissuasion et d’apprentissage dans
l’audit de la fraude l’assurance, notamment quand des
prestataires (garagistes, opticiens, etc.) jouent le rôle
d’intermédiaires entre l’assureur et les assurés. Le
premier chapitre est une étude empirique des effets
dissuasifs de l’audit, fruit d’une collaboration avec IBM
France et PRO BTP, dans le cadre du déploiement
de la solution anti-fraude Solon. Cette analyse montre
que les audits subis par un opticien ont pour effet de
réduire sa fraude future. Plus spécifiquement, l’effet
dissuasif est d’autant plus fort que la menace d’au-
dit est crédible, soulignant l’importance de l’engage-
ment dans la lutte contre la fraude. Les deuxième et
troisième chapitres étudient un problème d’audit dy-
namique où l’information joue un rôle central. L’au-
diteur y interagit de façon répétée avec des presta-
taires non-stratèges et peut apprendre à propos de

leur propension à frauder sur la base des résultats
de l’audit. Le deuxième chapitre utilise un modèle à
deux périodes pour mettre en évidence cet effet d’ap-
prentissage, dont la conséquence est qu’il est opti-
mal d’auditer plus intensément au début de la re-
lation. Le troisième chapitre étend ce modèle à un
nombre arbitraire ou infini de périodes, et montre que
l’audit optimal est d’autant plus intense qu’il reste
un nombre important d’interactions futures. L’intuition
réside dans le fait que davantage d’audit au présent,
quoique coûteux, a des répercussions information-
nelles positives sur toutes les périodes suivantes.
Enfin, le quatrième chapitre réunit les mécanismes
de dissuasion et d’apprentissage dans un même
modèle dynamique de réputation, avec des presta-
taires stratèges. Il montre l’existence d’une forme de
dissuasion réputationnelle où l’apprentissage trans-
forme la dissuasion en une menace intertemporelle.
En d’autres termes, un prestataire sera davantage
dissuadé dans le présent car il risque de détériorer sa
réputation future s’il se fait attraper en train de frauder.

Title : Deterrence and learning effects in insurance fraud audits

Keywords : Fraud, insurance, deterrence, learning, repeated interactions

Abstract : Insurance fraud is a serious threat to in-
surance markets and is tackled through the design
of credible and targeted auditing policies. This thesis
studies the deterrence and learning mechanisms of
insurance fraud audits, especially when service provi-
ders (car repairers, opticians, etc.) act as intermedia-
ries between the insurer and the policyholders. The
first chapter is an empirical assessment of the deter-
rence effects of auditing. It was conducted in collabo-
ration with IBM France and PRO BTP, in the context
of the deployment of the Solon counter-fraud solu-
tion. This assessment shows that incurred audits de-
crease an optician’s subsequent fraud. More specifi-
cally, the more credible the audit threat, the stronger
this deterrence effect, emphasizing the importance of
commitment in counter-fraud efforts. The second and
third chapters examine a dynamic auditing problem
where information plays a central role. The auditor
interacts repeatedly with non-strategic service provi-
ders and can learn about their propensity to defraud

from the auditing outcomes. The second chapter re-
lies on a two-period model to show the existence of
this learning effect, whose consequence is that it is
optimal to audit more at the beginning of the relation-
ship. The third chapter extends this model to an ar-
bitrary or infinite number of periods, and shows that
the further away the time horizon, the larger the opti-
mal auditing efforts. Intuition stems from the fact that
more auditing in the present, though costly, has a po-
sitive informational impact on all future periods. Fi-
nally, the fourth chapter combines the deterrence and
learning mechanisms in the same dynamic reputa-
tion model, with strategic service providers. It reveals
a reputation-based deterrence effect, where learning
turns deterrence into an intertemporal threat. In other
words, a service provider will be deterred more stron-
gly in the present because of the risk of seeing his
future reputation deteriorate if he gets caught defrau-
ding.
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