
HAL Id: tel-03160958
https://theses.hal.science/tel-03160958

Submitted on 5 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the flutter bifurcation in laminar flows : linear and
nonlinear modal methods

Johann Moulin

To cite this version:
Johann Moulin. On the flutter bifurcation in laminar flows : linear and nonlinear modal methods.
Fluid mechanics [physics.class-ph]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IP-
PAX093�. �tel-03160958�

https://theses.hal.science/tel-03160958
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
0I

P
PA

X
09

3

On the flutter bifurcation in laminar flows:
linear and nonlinear modal methods

Thèse de doctorat de l’Institut Polytechnique de Paris
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ABSTRACT

The flutter instability has been the focus of numerous works since the middle of the
twentieth century, due to its critical application in aeronautics. Flutter is classically
described as a linear instability using potential flow models, but viscous and non-
linear fluid effects may both crucially impact this aeroelastic phenomenon.

The first part of this thesis is devoted to the development of theoretical and nu-
merical methods for analyzing the linear and nonlinear dynamics of a typical aeroe-
lastic section — a heaving and pitching spring-mounted plate — immersed in a two-
dimensional laminar flow modeled by the incompressible Navier–Stokes equations.
A semi-analytical weakly nonlinear analysis (WNL) is first developed in order to de-
rive an amplitude equation for the flutter bifurcation. In order to bypass the inherent
limitations of this method to weak nonlinearities, we then develop a harmonic bal-
ance type method, known as the Time Spectral Method (TSM), allowing to efficiently
compute — possibly unstable — highly-nonlinear periodic flutter solutions. The
challenging task of solving the TSM equations, especially when large numbers N
of Fourier harmonics are considered, is tackled via a time-parallel Newton—Krylov
approach in combination with a new, so-called block-circulant preconditioner, for
which N-robustness is numerically demonstrated.

The second part of this thesis focuses on the physical investigation of the flut-
ter bifurcation of the spring-mounted plate. We start by revisiting the linear stabil-
ity problem using a Navier–Stokes fluid model allowing to highlight, in particular,
the effect of viscosity. Comparisons to classical quasi-steady and unsteady poten-
tial flow (Theodorsen model) theories are performed. Contrary to what happens in
potential flows, the flutter instability is shown to re-stabilize at very high reduced
velocities in viscous flows. We continue our route on the flutter bifurcation by in-
vestigating the effect of fluid nonlinearities. Low solid-to-fluid mass ratios and in-
creasing Reynolds numbers foster subcritical bifurcations. The role of leading-edge
shear layers is pointed out. For intermediate mass ratios, an unusual bifurcation
scenario that combines a supercritical bifurcation and the existence of subcritical
high-amplitude flutter solutions is discovered. We conclude our study of the flutter
bifurcation by investigating the appearance of low-frequency amplitude modula-
tions on top of a previously established periodic flutter solution. Using an original
TSM-based Floquet stability analysis, we explain this behavior by the destabilization
of the periodic solutions by a pair of complex-conjugate Floquet modes. An analysis
of the latter shows that the physical mechanism governing the instability borrows
elements from the classical flutter instability arising on steady solutions.

The last part of this thesis aims at initiating the extension of the different methods
previously evoked to large-scale three-dimensional configurations. As a first step to-
wards this long-term goal, we develop an open-source massively parallel tool, based
on the FreeFEM library and its PETSc/SLEPc interface, able to compute the nonlin-
ear steady-state flow and subsequently solve the linear stability eigenproblem, for
three-dimensional flows (the structure is fixed) possessing several tens of millions of
degrees of freedom.
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RÉSUMÉ FRANÇAIS

L’instabilité de flottement a été le sujet de nombreuses études depuis le milieu du
vingtième siècle à cause de ses applications critiques en aéronautique. Elle est clas-
siquement décrite comme une instabilité linéaire en écoulement potentiel, mais les
effets visqueux et nonlinéaires du fluide peuvent avoir un impact crucial.

La première partie de cette thèse est consacrée au développement de méthodes
théoriques et numériques pour l’analyse linéaire et nonlinéaire de la dynamique
d’une “section typique aéroélastique” — une plaque montée sur des ressorts de
flexion et torsion — plongée dans un écoulement laminaire bidimensionnel mod-
élisé par les équations de Navier–Stokes incompressibles. D’abord, on développe
une analyse faiblement nonlinéaire afin d’établir une équation d’amplitude pour
la bifurcation de flottement. Afin de dépasser la limitation aux faibles nonlinéar-
ités (i.e. faibles amplitudes) inhérente à cette approche, on met en place ensuite
une méthode de type équilibrage harmonique, connue comme la Méthode Spec-
trale en Temps (TSM). Cette dernière permet de calculer efficacement des solutions
périodiques de flottement plus fortement nonlinéaires et possiblement instables. Le
défi de la résolution numérique des équations TSM, en particulier dans le cas où
un grand nombre d’harmoniques est pris en compte, est relevé grâce au développe-
ment d’une approche parallèle en temps de type Newton–Krylov. Un précondition-
neur dit “bloc-circulant” est proposé afin d’accélérer la convergence des méthodes
de Krylov pour la résolution des équations TSM linéarisées. La robustesse au nom-
bre d’harmoniques du préconditionneur bloc-circulant est montrée numériquement.

La seconde partie de la thèse est dédiée à l’étude physique de la bifurcation de
flottement. On commence par revisiter le problème de stabilité linéaire avec une
modélisation Navier–Stokes de l’écoulement permettant de mettre en lumière, en
particulier, les effets de viscosité. On propose également une comparaison de nos
résultats avec des approches plus classiques de type quasi-statique ou instation-
naire potentiel (modèle de Theodorsen). Contrairement à ce qui est observé avec ces
dernières, on montre que dans un écoulement visqueux et instationnaire, le mode
instable de flottement est restabilisé pour de (très) grandes vitesses réduites. Notre
étude continue avec la prise en compte des effets nonlinéaires de l’écoulement. A
partir des résultats des analyses faiblement nonlinéaire et TSM, ainsi que de sim-
ulations temporelles classiques, on montre que les structures légères et les hauts
nombres de Reynolds favorisent des bifurcations de Hopf de type sous-critique. Le
rôle des couches de cisaillement de bord d’attaque dans le choix du type de la bi-
furcation (super- ou sous-critique) est mis en valeur. Pour des structures de masses
intermédiaires, un scénario de bifurcation peu habituel est obtenu (voir figure ci-
dessous) combinant une bifurcation supercritique avec l’existence de solutions péri-
odiques sous-critiques de grande amplitude. Ce scénario permet d’envisager une
explication pour des résultats expérimentaux précédemment reportés dans la lit-
térature. On achève cette partie par l’étude de l’apparition de modulations de basse
fréquence sur des solutions périodiques de flottement. En utilisant une analyse de
Floquet entièrement basée sur la méthode TSM, on explique ce comportement par la
déstabilisation d’une paire de modes de Floquet complexes conjugués. L’analyse de
la perturbation associée montre que le mécanisme physique gouvernant l’instabilité
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emprunte plusieurs caractéristiques typiques de l’instabilité classique de flottement
habituellement observée autour de solutions stationnaires.

La dernière partie de la thèse vise à initier l’extension des différentes méthodes
évoquées précédemment pour des configurations tridimensionnelles impliquant un
très grand nombre de degrés de liberté. En guise de premier pas vers cet objectif à
long terme, on développe un outil open-source massivement parallèle, basé sur les li-
brairies FreeFEM et PETSc/SLEPc, capable de (i) calculer des solutions stationnaires
puis (ii) résoudre le problème de stabilité linéaire, pour des écoulements tridimen-
sionnels (la structure est figée ici) possédant plusieurs dizaines de millions de degrés
de liberté.

Diagramme de bifurcation montrant l’évolution de l’amplitude en torsion
en fonction de l’écart au seuil critique linéaire. Ce scénario particulier
est caractérisé par l’existence de solutions périodiques sous-critiques de
grande amplitude malgré la nature supercritique de la bifurcation de flot-
tement. Les traits plein matérialisent les solutions périodiques (stables
en traits continus et instables en pointillés) calculées par la méthode TSM
alors que les cercles sont obtenus par intégration en temps classique. Sur
la droite, on montre les champs de vorticité instantanés pour des solutions

de basse et haute amplitude typiques.
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RÉSUMÉ INFORMEL

Temps de l’épopée

15/11/2016

2017–2019

14/11/2019

29/08/2020

Petit résumé informel illustré. Toute ressemblance avec des personnes ou
des situations existantes ou ayant existé ne saurait être fortuite. Vignettes
reproduites avec autorisation de TURK & DE GROOT (1982), “Génie en

balade”. Léonard, tome 6, Éditions du Lombard.
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INTRODUCTION

The interaction of fluid flows and flexible solids is ubiquitous in a wide variety of
natural systems. The vibrations of the soft palace at the origin of snoring, the oscilla-
tions of the vocal folds that produce voice, insects and birds flight or fish locomotion,
all these phenomena are driven by the interaction of moving solids and fluid flows.
Man-made systems, for their part, are also largely impacted by such fluid-structure
interactions. Most of the time, they lead to undesirable dangerous oscillatory behav-
iors of elongated flexible-enough structures like aircraft wings, tall towers or long
bridges. In some cases, on the contrary, these same interactions are deliberately trig-
gered by engineers, for example for energy harvesting purposes or for designing bio-
inspired drones. In both cases, a deep understanding of fluid-structure interactions
is required in order to accurately predict them and ultimately propose adequate de-
signs, adapted to these multiple applications. The present manuscript is dedicated
to the study of the emergence of fluid-structure instabilities, i.e. oscillatory behaviors
of coupled fluid-structure systems that emerge naturally without externally applied
forcing.

Fluid-structure instabilities: a brief overview

Systems that couple fluids and structures are prone to a wide variety of instabilities.
In this thesis, we are mainly focused on the so-called coupled-mode flutter, that we
first introduce. Then, we very briefly present a few other fluid-structure instabilities,
some of which will be occasionally met across the manuscript.

Coupled-mode flutter

The coupled-mode flutter instability occurs when two eigenmodes of a structure inter-
act through the action of fluid forces so that one of the two modes becomes unsta-
ble. This instability typically occurs on airplane wings at high velocities. From the
early years of aeroelastic studies [Bisplinghoff et al. 1955], it was understood that the
core mechanisms at the origin of wing flutter could be described using a simplified
model, referred to as a typical aeroelastic section (fig. 1). It consists in a thin airfoil sec-
tion — or more simply a thin plate in this thesis — attached to flexion (heaving) and
torsion (pitching) springs. This system is meant to mimic a two-dimensional cross
section of a three-dimensional cantilever wing that possesses flexion and torsion
modes. To physically understand the very basic mechanism of flutter, no complex
aerodynamic model is necessary. Typically, it can be assumed that the instantaneous
flow around the typical section is simply the flow around the same section, frozen
at the instantaneous angle of attack. As it ignores any effect of flow unsteadiness
this hypothesis is referred to as the steady flow hypothesis. Using the latter, it can be
shown [E. H. Dowell et al. 1989, §3.3.5], that flutter occurs when the velocity of the
incoming flow increases above the critical flutter velocity. The instability is linked to
the progressive coupling of the flexion and torsion modes as velocity increases. With
a steady flow model, this materializes as a frequency coalescence of the two modes
(fig. 2(a)). As a consequence of aeroelastic coupling, the modes progressively acquire
coupled flexion-torsion dynamics that are crucial for the emergence of the instability.
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FIGURE 2: Coupled-mode flutter instability. (a) growth rate (top) and fre-
quency (bottom) of the heaving (red) and pitching (black) eigenmodes as
a function of reduced velocity, computed with steady aerodynamics. The
exact formulation is the one presented in [Hodges et al. 2011, fig. 5.3-5.4].
The vertical dashed line represents the critical reduced velocity (b-c) Il-
lustration of the typical dynamics for flutter in (b) (red disk in (a)) and
anti-flutter in (c) (black disk in (a)). The vertical blue arrows represent
the lift force, applied at the quarter-chord point, according to thin airfoil

aerodynamics.

The unstable mode (red disk) is associated to a particular swimming-like motion [De
Langre 2002], illustrated in fig. 2(b), where the instantaneous angle of attack signal9

(−θ(t), dashed line) precedes the heaving signal (h(t), solid line) of about a quarter
period. It is easy to see from the vertical blue arrows representing the lift force that
the flow actually provides energy to the plate. On the contrary, the stabilized mode
(black disk) illustrated in fig. 2(c) corresponds to a motion where the instantaneous
angle of attack signal (−θ(t), dashed line) lags behind the heaving signal (h(t), solid
line) of about a quarter period. In this case, the flow works against the movement
of the plate. In fact, it is also a swimming motion, but for a plate moving in the op-
posite direction (i.e. to right, here). As it looks like “the opposite of flutter”, such a
motion is called anti-flutter in this manuscript.

9Across this manuscript, we adopt the trigonometric convention for orienting angles, i.e. θ > 0
nose-down. However, most of the time in the figures, we will represent the angle of attack −θ (“posi-
tive, nose-up”), as more classically done in aerodynamic studies.
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Divergence, stall flutter, vortex-induced vibrations, etc

During the early years of monoplane aviation (e.g. the Fokker D-8 combat airplane),
the passage from biplane to monoplane designs resulted in a number of failures
during high-speed dives due to the so-called divergence instability. Contrary to flut-
ter, this instability is static in the sense that it does not involve any oscillations of
the wing. Divergence is the consequence of a loss of total stiffness — the sum of
structural and aerodynamically-induced stiffnesses — at high velocities [Hodges et
al. 2011, Chapter 4]. Because of their low torsional stiffness, early monoplanes were
particularly prone to divergence in flight conditions that biplanes could withstand.

Stall flutter refers to aeroelastic instabilities that involve a stall phenomenon, or
more generally, significant flow separation. It is the consequence of a loss of total
damping — the sum of structural and aerodynamically-induced dampings — as
velocity increases. Such a situation may occur for example on a single flexion mode,
if the lift is a decreasing function of angle of attack. This typically occurs for airfoils
positioned at large angles of attack, close to stall [E. H. Dowell et al. 1989, Chapter
5], or for certain bluff-bodies like square cylinders [Païdoussis et al. 2011, Chapter 2]

All instabilities mentioned until now emerge despite a fluid that is completely
free of unsteadiness. The coupling between the structure motion and the flow is
necessary for these instabilities to occur. However, fluid on their own are known
to exhibit a wide variety of instabilities [Schmid et al. 2001; Charru 2011]. Some
of them may interact with structural modes, triggering new types of fluid-structure
instabilities. In Vortex-induced vibrations (VIV), the hydrodynamic wake instability
of bluff-bodies [Zebib 1987; Sipp et al. 2007] couples to a solid mode (the heaving
mode typically). In the nonlinear regime, such a coupling typically leads to high-
amplitude oscillations and a lock-in of the wake frequency on the solid frequency
[Williamson et al. 2004; Navrose et al. 2016]. Since a fluid unsteadiness pre-exists
to any structural motion, VIV are often thought of as the response of the solid to an
imposed external forcing of the fluid, with negligible retro-action of the solid motion
onto the flow. This vision has been proved wrong by a series of studies [Cossu
et al. 2000; Mittal et al. 2005] where a spring-mounted cylinder was shown to get
unstable at Reynolds numbers as low as half the critical Reynolds number for the
fixed cylinder. Other purely fluid instabilities, like transonic shock buffet result in
similar interactions with moving structures [Gao et al. 2017; Gao et al. 2020].

The challenges of aeroelasticity in laminar flows

The pioneering works in aeroelasticity by Glauert (1930), Theodorsen (1935) or Von
Kármán et al. (1938) made the hypothesis of inviscid flows. In the inviscid world,
the flow remains fully attached to the airfoil and the viscous effects that appear in
the boundary layers are only taken into account via a Kutta condition. For the high-
Reynolds flows typical of airplanes (Re ∼ 107 − 108, see fig. 3(d-e)), the boundary
layers are so thin that these assumptions are valid. In addition, they have the ad-
vantage of allowing analytical calculations, making these inviscid theories highly
valuable for the engineer10.

In the past decades, interest has grown in the design of smaller and slower aerial
vehicles, often globally categorized as Micro Aerial Vehicles (MAVs). Their range of
application is wide, as summarized by Mueller et al. (2003): “surveillance, commu-
nication relay links, ship decoys, and detection of biological, chemical, or nuclear

10To this day, they are still used as a template to propose new models that are valid well outside the
potential flow limit, e.g. [Brunton et al. 2013]
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FIGURE 3: Typical Reynolds numbers for a variety of aerial vehicles (e.g.
[Lissaman 1983]). (a) Robobee11(b) DelFly Micro[Croon et al. 2016] (b)
palm-sized gliding MAV [Wood et al. 2007] (c) quadrirotor Drone Volt
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materials”. In addition to these critical, often military, applications, civilian use of
MAVs has exploded in the past few years, for example for agricultural, commercial
or recreational purposes. Due to their low cruise speed and small dimensions, these
vehicles fly in regimes characterized by low- to moderate-Reynolds numbers, i.e.
Re = 10,000− 500,000 (see fig. 3(c)). Among the many challenges brought by these
new flying devices is the need for understanding the specifics of low-Reynolds num-
ber aerodynamics and their repercussion on the aeroelastic behavior. For example,
new types of aeroelastic instabilities may appear due to transitional flow features
like Laminar Separation Bubbles [Poirel et al. 2008; Yuan et al. 2013]. The current
trend in MAVs design is to further miniaturization, leading to very small unmanned
aerial vehicles of the order of a few centimeters that operate in the so-called “ultra-
low Reynolds number” regime,Re ∼ 10− 10,000 [Shyy et al. 2010]. These are often
designed for flapping flight, by mimicking insects (see fig. 3(a-b)). The very light and
flexible materials used imply strong fluid-structure interactions. Some researchers
have even hypothesized that flutter-type instabilities may help various animals sus-
tain flapping flight at reduced energetic cost [Michelin et al. 2009; Curet et al. 2013].

In the field of energy harvesting, fully passive devices that exploit coupled-mode
flutter have been proposed [Peng et al. 2009; Pigolotti et al. 2017; Boudreau et al.
2018]. For these applications, the goal is not anymore to prevent instabilities to occur
but rather to trigger vibrations at the lowest wind speed possible and yielding the
highest energy extraction possible. Here also, the relevant Reynolds numbers are
much lower than the ones encountered in classical aeronautics, typically in the low-
to moderate-Reynolds number range.

Overall, it is seen that, in addition to their purely scientific interest, aeroelastic
phenomena occurring at low Reynolds numbers are of significant interest for various
modern applications. This is the global context that motivates the studies in this
manuscript.

11Reproduced from http://www.aboutkevinma.com
12Reproduced from https://www.coavmi.com
13Reproduced from https://www.dronevolt.com
14Reproduced from https://fr.wikipedia.org/wiki/Airbus_A350_XWB
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Linear stability

The first question relative to aeroelastic instabilities is to determine the threshold
at which they first appear i.e. the parameters for which a given steady-state of an
aeroelastic system is first destabilized. This threshold is usually expressed in terms
of a non-dimensional wind velocity, called reduced velocity. Mathematically, the most
classical indicator of the stability of a steady-state is called linear stability (or asymp-
totic stability) and consists in assessing the long-term behavior (growth or decay) of
infinitesimal perturbations superposed onto the steady-state [Schmid et al. 2001]. In
practice, this comes down to computing the rightmost eigenvalues of the coupled
fluid-structure equations, linearized around the steady-state [Badcock et al. 2005].

The linear stability of spring-mounted airfoils and wings in high-Reynolds flows
has been the focus of a vast amount of works. So much that every textbook on aeroe-
lasticity contains chapters dedicated to it [Bisplinghoff et al. 1955, Ch. 8-9], [Hodges
et al. 2011, Ch. 4-5]. Due to the high Reynolds number, these studies are usually per-
formed using potential flow models, like the Theodorsen model [Theodorsen 1935]
for thin airfoils or the Doublet Lattice Method (DLM) [Albano et al. 1969] for more
general geometries. These analyses also form a key component of industrial practice
to ensure that instability thresholds (for divergence and flutter, mainly) are outside
the flight envelope of an airplane [Garrigues 2018]. During the last decade, sev-
eral research groups have focused on taking into account viscous effects so as to
improve the prediction of flutter stability in high-Reynolds transonic flows. These
configurations are characterized by the so-called transonic dip which corresponds to
a decrease of the flutter velocity threshold at transonic Mach numbers. For a heaving
and pitching spring-mounted NACA64A010 (Isogai) airfoil, comparisons of Euler-
based and RANS-based flutter stability boundaries were presented in [Badcock et al.
2011; Güner et al. 2018] and showed that viscous effects significantly affect the shape
of the transonic dip and tend to delay flutter.

When it comes to the linear stability of spring-mounted airfoils at low Reynolds
numbers, the literature is much less abundant. Some work has been done in [Le
Maître et al. 2003; Bruno et al. 2008; Brunton et al. 2013] to numerically assess the
effect of the Reynolds number on the flutter derivatives for heaving and pitching
motion, but did not extend up to examining the repercussions on the flutter ve-
locity threshold. Experimental and numerical investigations have been performed
in [Chae et al. 2013] at moderate Reynolds number, showing that viscous effects
are important for assessing coupled-mode flutter thresholds, in particular for low
solid-to-fluid mass ratios where potential flow models overestimate the threshold.
However, the Reynolds number Re ∼ 106 in their study is still quite high. Recently,
the aeroelastic stability of a spring-mounted pitching NACA0012 airfoil was inves-
tigated at transitional Reynolds numbers (Re ∼ 50000) in [Negi 2019, Paper 3] in an
effort to investigate the linear regime of the so-called “laminar separation flutter”
originally reported in the experiments of Poirel et al. (2008). Perhaps an illustrat-
ing example of the need for more studies on the effect of viscosity on flutter can be
found in [E. H. Dowell et al. 1989, p. 117] where the authors present the effect of
some nondimensional parameters on the reduced velocity threshold for flutter on a
typical aeroelastic section. Regarding the evolution of the threshold as a function of
the solid-to-fluid mass ratio, it is noticed that the two-dimensional potential theory
(Theodorsen model) predicts an infinite threshold for light enough airfoils, i.e. no
flutter is observed. It is mentioned that no clear explanation for this infinite thresh-
old has been provided. Among other hypothesis, the neglected effect of viscosity is
proposed as a possible source for this singular behavior.
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Apart from the typical aeroelastic section, the linear stability of several fluid-
structure systems has however been studied in low-Reynolds viscous flows. The
most classical of them might be the destabilization of a spring-mounted circular
cylinder due to vortex-induced vibrations [Cossu et al. 2000]. Other than that, Cisonni
et al. (2017) investigated the flutter of an elastic filament in viscous channel flow.
Goza et al. (2018) studied the flow-induced oscillations of an inverted flag. The de-
velopment of oscillations in the vertical path of freely falling or rising rigid objects
have been considered by Assemat et al. (2012), Tchoufag et al. (2014a), and Tchoufag
et al. (2014b). A flexible splitter plate attached to a rigid circular cylinder has been
studied by J. L. Pfister et al. (2020).

In light of this bibliography, we propose in this manuscript to revisit the lin-
ear stability of a typical aeroelastic section — precisely, a heaving and pitching
spring-mounted flat plate — immersed in a low-Reynolds incompressible flow.
This study will be realized in the framework of global stability analysis, similar to
the work of Tchoufag et al. (2014a).

Nonlinear effects: bifurcation study

Once the critical velocity threshold is crossed, linear stability analyses predict an un-
bounded — hence unphysical — exponential growth of the unstable eigenmode. As
the amplitude of oscillations increases, the nonlinearities of the system progressively
come at play, saturate the exponential growth and settle the solution on a periodic
orbit. This is a qualitative description of a Hopf bifurcation scenario [Nayfeh et al.
1995, §2.3].

Hopf bifurcations may be of two types. In a supercritical Hopf bifurcation, the
periodic solutions exist only after the critical threshold and the amplitude of oscilla-
tions smoothly increases from the critical point (blue line in fig. 4). On the contrary,
in a subcritical Hopf bifurcation, the branch of periodic solutions that emerges at the
critical point progresses towards lower velocities. These solutions are unstable (red
dashed line in fig. 4) but subsequently stabilize via a fold bifurcation (red line). Such
a scenario is particularly dangerous for two reasons. First, even for wind velocities
below the critical flutter threshold, high-amplitude oscillations can be observed if a
sufficient excitation (e.g. a wind gust) is applied on the system previously lying in
the stable steady state. Second, the system’s response may be different when in-
creasing or decreasing the wind velocity, due to the presence of a large hysteresis
loop.

Despite the large predominance of linear aeroelasticity in industrial practice and
undergraduate courses, the importance of nonlinear effects in aeroelastic phenom-
ena has been pointed out since the early 1950’s. The work of Woolston et al. (1955)
is often reported as the first detailed study on nonlinear flutter. The authors used
a two-degrees-of-freedom typical section set-up with a nonlinear pitching spring
and immersed in a linear unsteady potential flow. Different types of spring nonlin-
earities were considered such as a free-play, hysteresis and cubic stiffness, yielding
unstable flutter responses below the linear threshold. A vast amount of literature
followed that initial impulse [B. H. K. Lee et al. 1999a], confirming the possibility of
subcritical flutter responses due to structural nonlinearities. More realistic structure
models were then considered in an attempt to explain experimental wind-tunnel
or flight-test observations. The investigation of nonlinear beam models [M. J. Patil
et al. 2004] was motivated by the study of high-aspect ratio wings and their large
static deflections. Conversely, nonlinear plate models were used for low-aspect ratio
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wings [D. Tang et al. 1999]. The aforementioned studies — and most of the reference
cited therein — focus on modelling structural (due to nonlinear stress-strain depen-
dencies) and geometric (due to large displacements) nonlinearities, while retaining
linear potential flow models like the Theodorsen model [Yang et al. 1988; B. H. K.
Lee et al. 1999b] or the doublet-lattice method [M. J. Patil et al. 2004; D. Tang et al.
1999].

Mostly two types of aerodynamic nonlinearities were considered. First, stall-
induced nonlinearities have been investigated in relation to high-aspect ratio wings
and helicopter blades, that operate at large angles of attack. Semi-empirical fluid
models were dominantly used, like static [M. Patil et al. 2001] or dynamic [D. M.
Tang et al. 1992; D. M. Tang et al. 2004; Stanford et al. 2013] stall models. Second,
transonic nonlinearities have received growing attention since the beginning of the
2000s, in particular thanks to the development of efficient CFD tools [Thomas et al.
2002; Schewe et al. 2003; Kholodar et al. 2004; Bendiksen 2011]. Several parametric
studies have been performed, typically regarding the effect of the Mach number, the
position of the elastic axis and the structural frequency ratio [Van Rooij et al. 2017b].

In parallel to these application-oriented studies, a series of fundamental experi-
mental works have focused on the occurrence of coupled-mode flutter in moderate-
Reynolds (Re ∼ 104 − 105) flows, around zero [Dimitriadis et al. 2009; Amandolese
et al. 2013; Amandolèse 2016] or nonzero [Razak et al. 2011] static angle of attack.
These studies — in particular with zero static angle of attack — reported the exis-
tence of subcritical high-amplitude periodic solutions involving dynamic stall [Mc-
Croskey 1982; Šidlof et al. 2016]. The occurrence of such non-divergent oscillations
despite the use of mostly linear structures showed that subsonic flow nonlinearities
alone are able to saturate the exponential growth of the flutter instability. Due to the
observed importance of the pitching motion in these oscillating regimes, some ex-
perimental [Onoue et al. 2015; Zhu et al. 2020] and numerical [Amiralaei et al. 2010;
Menon et al. 2019] studies have been dedicated to pitching-only airfoils, with similar
observations of subcritical high-amplitude periodic solutions. Recently, the transi-
tional Reynolds number regime has been the focus of several works [Poirel et al.
2008; Poirel et al. 2010; Yuan et al. 2013; Barnes et al. 2018; Negi et al. 2018] showing
the highly-nonlinear behavior of the transitional unsteady boundary layers and its
connection to the occurrence of amplitude-bounded aeroelastic oscillations, specific
to the transitional regime.
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To our knowledge however, no work has been dedicated to a fundamental un-
derstanding of the nonlinear dynamics of coupled-mode flutter at low-Reynolds
numbers (fully laminar flows). Typically, no systematic investigation of the effects of
key parameters, like the mass ratio or the Reynolds number, on the type of the flutter
bifurcation has been reported. It is thus one of the objectives of this thesis to propose
a numerical exploration of the bifurcation following the coupled-mode flutter in-
stability in low-Reynolds incompressible flows, governed by the two-dimensional
Navier–Stokes equations.

Methods for nonlinear flutter analysis

To achieve such a goal, the most straightforward approach is to march in time the
system of coupled nonlinear equations that govern the structure and the fluid, via
some classical time-integration scheme (Euler, Runge-Kutta, Backward Differences,
...). Open-source or commercial codes implementing these methods are widely avail-
able and well validated. If this approach has the undeniable advantage of generality,
it also suffers from several theoretical and practical issues. On the theoretical side,
time-marching approaches, because they mimic the sequential nature of time, are
not able to remain on unstable orbits. In the context of bifurcation study, this is a
significant shortcoming since unstable periodic solutions are involved as soon as the
bifurcation is subcritical or, if it is supercritical, when secondary instabilities are trig-
gered (see below). On the more practical side, bifurcation study is mostly interested
in permanent regimes of oscillations (e.g. periodic or quasi-periodic solutions) that a
time-marching approach typically visits only after (possibly long) transient regimes.
Large amounts of unexploited data (the transients) are thus produced, leading to
large computational costs. For these reasons, more specific approaches are required
in order to successfully address the objective stated above. We introduce here two of
them, namely weakly nonlinear analyses and harmonic balance methods, that have
been used in this thesis.

Weakly nonlinear analyses A so-called Weakly NonLinear analysis (WNL) aims at
deriving the normal form associated to a bifurcation [Nayfeh 2011], which is a sim-
ple low-dimensional nonlinear equation that represents the behavior of the full sys-
tem in the vicinity of the bifurcation point. Normal forms have been obtained for
different aeroelastic instabilities like coupled-mode flutter of a typical section with
linear aerodynamics [Sedaghat et al. 2000] or a galloping oscillator [Vio et al. 2005].
Nonlinear beams were considered in [Nayfeh et al. 2012] and a dynamic stall model
in [Stanford et al. 2013]. In parallel, weakly nonlinear analyses have also been used
to compute normal forms of different hydrodynamic bifurcations occurring in lam-
inar flows [Sipp et al. 2007; Meliga et al. 2009; Meliga et al. 2012]. These studies
used the framework of global stability where the flow model directly consists in a
spatial discretization of the incompressible Navier–Stokes equations. These analy-
ses were then extended to fluid-structure problems like a spring-mounted cylinder
subjected to VIV’s [Meliga et al. 2011] or freely falling objects [Tchoufag et al. 2015].
Towards more industry-oriented applications, weakly nonlinear models, based on
Center Manifold Reduction, have been successfully developed for the transonic flut-
ter of different wings in [Woodgate et al. 2007]. In this thesis, we will use an ap-
proach similar to Tchoufag et al. (2015) and adapt it to the particular case of the
coupled-mode flutter of a typical section.
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Harmonic Balance Methods Though very well-suited for the study of a bifurca-
tion in the close vicinity of the instability threshold, weakly nonlinear approaches
rapidly yield erroneous predictions as the bifurcation parameter deviates from the
threshold [Gallaire et al. 2016]. More nonlinear methods are then required.

As a trade-off between weakly nonlinear analysis and fully nonlinear transient
time-marching, one can chose an alternative approach based on the prior knowledge
that only periodic solutions are sought close enough to the bifurcation point. In
this case, the solution can be searched under the form of a Fourier series, which
leads to the concept of Harmonic Balance Methods (HBM). These methods rely on
transforming a time-dependent problem into a system of stationary equations for
the Fourier coefficients of the unknown solution. This approach is often traced back
to the work of Krylov et al. (1949) where it was used as an analytical tool to compute
periodic solutions to nonlinear ordinary differential equations. Recently, it was re-
popularized as a time-discretization scheme for CFD-based aeroelastic computations
[Hall et al. 2002; Gopinath et al. 2005; McMullen et al. 2006]. In this thesis, we will
use the particular variant by Gopinath et al. (2005) called the Time Spectral Method
(TSM).

Behind the above mentioned advantages of HBM/TSM approaches hides a darker
side: the increasing complexity of numerically solving the corresponding system for
large frequencies or numbers of harmonics. Typically, the solution method of the
first works on TSM was to march the equations in artificial pseudo-time, using ex-
plicit schemes. However, Van der Weide et al. (2005) showed that the associated CFL
restriction depends on the number of harmonics such that the allowed timestep dras-
tically reduces — and the convergence to the periodic orbit is increasingly difficult
— as more harmonics are taken into account. The same reasoning is true for large
oscillation frequencies. Several improvements of the solution method were achieved
using implicit time-marching [Sicot et al. 2008] or Newton–Krylov solvers [Mundis
et al. 2014]. Still, the issues associated to large numbers of harmonics were displaced
to the linear solver and to the Krylov method’s preconditioner, respectively. It is only
with the works of Mundis et al. (2015) and Mundis et al. (2017) that solution methods
with iteration counts independent of the number of harmonics were reported. If the
Newton–Krylov approach seems to be the most promising, the question of finding
efficient preconditioners for the linearized TSM equations, i.e. that are robust in par-
ticular to the number of harmonics, is an active area of research. An objective of this
thesis is thus to contribute to this effort by proposing an efficient solution method
for the TSM equations based on a Newton–Krylov approach and on an adequate
preconditioning of the linearized system.

Secondary flutter bifurcations

Just like steady solutions may destabilize through (primary) instabilities, periodic
solutions may also destabilize through (secondary) instabilities. Secondary instabil-
ities of periodic flutter solutions are rarely studied in the literature. The main reason
for that is to consider that secondary bifurcations are irrelevant from the engineer’s
point of view, because an airplane should never cross — nor even get too close to
the critical threshold — thus making pointless the study of the solutions that ap-
pear above it. To that argument, one may oppose two. The first is given in by E.
Dowell et al. (2003) in the conclusion to his review on nonlinear aeroelasticity: “be-
cause of nonlinear aeroelastic effects, finite amplitude oscillations can in some cases
replace what would otherwise be the rapidly growing and destructive oscillations
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of classical flutter behavior. A careful consideration and design of favorable nonlin-
earities offers a new opportunity for improved performance and safety of valuable
wind-tunnel models, flight vehicles, and their operators and passengers.” In other
words, a detailed knowledge of the finite-amplitude oscillating solutions that occur
beyond the flutter linear threshold is a pre-requisite for the assessment of the dan-
gers associated to flying in these regimes, or if needed, to design adequate control
strategies [Livne 2018]. The second reason is a very practical consequence of the
first. Indeed, the current trend to use harmonic balance approaches for perform-
ing nonlinear aeroelastic computations raises the question of the “observability” (i.e.
the stability) of the so-computed solutions. Since harmonic balance methods are de-
signed to compute periodic solutions, independently of their stability, how can one
assess if the computed solution is the observed (stable) behavior, in reality ?

For the flutter instability, some works on secondary instabilities of flutter LCO’s
can be found, for a typical section mounted on nonlinear springs with cubic stiffness
[L. Liu et al. 2004; B. H. Lee et al. 2005; G. Liu et al. 2018]. In all cases, a transition
from periodic to quasi-periodic regimes was observed for high-enough velocity. The
investigations of secondary instabilities with nonlinear fluid models are very scarce
and, to our knowledge, always based on empirical stall models [X. Li et al. 1997].
In this thesis, we thus propose to follow a complementary path and investigate the
stability of the nonlinear periodic flutter solutions of a structurally linear typical
section, in a low-Reynolds flow modelled by the Navier–Stokes equations.

The adequate mathematical framework for assessing the stability of periodic so-
lutions is found in the theoretical work by Floquet (1883) on linear differential equa-
tions with periodic coefficients. Classically, the so-called Floquet stability of a pe-
riodic solution is assessed by analyzing the eigenvalues of the monodromy matrix
(e.g. [Peletan et al. 2013] for a review). On the other hand, in an harmonic balance
framework, the same analysis may be performed by scrutinizing the eigenvalues of
the harmonic balance equations (equivalently the TSM equations), linearized around
the periodic orbit under examination. In the logical continuation of the efforts an-
nounced above relatively to the development of efficient TSM solution methods, we
will adopt this latter approach.

The computational burden of 3D flows

From the computation of steady solutions and the analysis of their linear stability to
the TSM-based computation of periodic orbits and their Floquet stability, all nu-
merical methods evoked in the previous paragraphs heavily rely on solving the
linearized coupled fluid-structure equations, around some given solution, and for
some prescribed right-hand side. For most part of this thesis, we will use as a
model problem a typical aeroelastic section immersed in a two-dimensional Navier–
Stokes flow. Using modern computers, the linear systems arising from the spatial
discretization of the two-dimensional Navier–Stokes equations can be easily han-
dled through direct sparse solvers (e.g MUMPS [Amestoy et al. 2001]), based on the
lower-upper (LU) factorization of the system’s matrix. These solvers have the double
advantage of being very robust and mostly operated as black-boxes from the point
of view of a non-specialist user. The counterpart of that robustness lies in the rapid
growth of memory and cpu-time costs, associated with constructing and storing the
LU factorization, as the number of degrees of freedom rises. As a consequence, this
approach quickly becomes out-of-reach for three-dimensional configurations where
the number of degrees of freedom easily exceeds several tens of millions.
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For such cases, a widely used approach in hydrodynamic stability studies is to
resort to the so-called matrix-free (or time-stepping) approach [Bagheri et al. 2009a;
Loiseau et al. 2019]. It consists in re-using subroutines that are usually available
in CFD solvers (time-steppers) in order to compute steady-states (or periodic solu-
tions) and then assess their stability. Taking the example of the stability analysis of
steady solutions, the latter are first computed by time-marching the nonlinear equa-
tions, either with the classical CFD solver if the searched solution is stable or with
a stabilized version of it if the searched solution is unstable (e.g. [Shroff et al. 1993;
Åkervik et al. 2006]. Second, the eigenvalue of the Navier–Stokes Jacobian matrix
are deduced from the leading eigenvalues of an exponential-based transformation
of it, the action of which is relatively easily obtained from existing subroutines15. An
advantage of that approach is that CFD solvers are often highly optimized for large-
scale parallel computations and thus offer very efficiently implemented subroutines.
Two downsides however may be pointed out. First, stabilization techniques are not
always trivial to use as they sometimes require prior knowledge of the searched so-
lution [Åkervik et al. 2006], nor do they typically yield fast (quadratic) convergence
to the solution, as a Newton method. Second, the exponential-based transformation
implies a trade-off in the value of the timestep: small timesteps yield accurate appli-
cation of the exponential transformation (and thus accurate eigenvalues), but at the
cost of a slow convergence towards the eigenvalues [Tuckerman et al. 2000b]. The
opposite is true for large timesteps.

In order to circumvent these drawbacks, one may seek to extend the methods
that are used efficiently for two-dimensional configurations — i.e. Newton meth-
ods for the steady-state computation and shift-invert spectral transformation for
the eigenvalue computations — to three-dimensional configurations. Hence the ne-
cessity to efficiently solve high-dimensional linear problems, involving the Navier–
Stokes Jacobian matrix. To handle such high-dimensional linear problems, itera-
tive methods are the method of choice [Saad 2003]. In particular, Krylov subspace
methods are today recognize as the most efficient ones for poorly conditioned, non-
normal systems. These methods rely on projecting the original high-dimensional
linear system onto a low-dimensional subspace — the so-called Krylov subspace —
where the system can be solved with basic linear solvers for dense matrices. The
most emblematic algorithm from this class of methods is the Generalized Minimal
Residual algorithm (GMRES) [Saad et al. 1986] that applies to generic non-Hermitian
matrices. Some of the most appealing properties of Krylov methods lie in their su-
perior robustness with respect to classical, so-called stationary, iterative methods
(Jacobi, Gauss-Seidel, SOR, etc). For example, in exact arithmetic, GMRES is known
to possess a finite termination property16 and a non-increasing residual property17. Those
are clear progresses with respect to stationary methods that typically need diagonal
dominance to ensure convergence. However, for large, poorly conditioned, nonnor-
mal matrices — like the Jacobian matrix of the linearized Navier–Stokes equations
—, the convergence behavior of Krylov methods can be very slow. To remedy that,
preconditioning techniques must be used in order to reduce the condition number
of the system, that is known to (partially, for nonnormal matrices) determine the
convergence speed of the method [Liesen et al. 2004].

The research of efficient preconditioners for the incompressible linearized Navier–
Stokes is an active field of applied mathematics research [Segal et al. 2010]. One of
its particularities lies in the necessity to handle the saddle-point structure [Benzi et

15Precisely, from a subroutines that advances in time the linearized equations, of one timestep
16The exact solution is obtained in at most a number of iterations equal to the size of the system
17The residual is a decreasing function of the iteration number
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al. 2005] due to the incompressibility constraint. Significant progresses were made
through a series of works consecutive to the proposition of Benzi et al. (2006) to use
augmented Lagrangian techniques in order to improve the problematic approxima-
tion of the pressure Schur complement. The application of this technique to solve
the linearized Navier–Stokes problem for hydrodynamic stability purposes was first
proposed by M. A. Olshanskii et al. (2008). The authors performed a theoretical
study that they successfully verified on some two-dimensional numerical examples.
However, to our knowledge, the practical use of augmented Lagrangian precondi-
tioners for hydrodynamic stability eigenvalue computations was never attempted.
Our objective is thus to first assess the practical efficiency of the modified Aug-
mented Lagrangian preconditioner [Benzi et al. 2011b] for performing complete
linear stability analyses (i.e. for steady-state and eigenvalue computations) of
incompressible laminar flows. In a second step, we aim at proposing a parallel
implementation of this approach, able to handle stability analyses of large-scale
three-dimensional flows on high-performance parallel computers.

Organization of the manuscript

The manuscript organizes in three parts, that detail as follows:

1. The first part is devoted to the presentation of the different linear and nonlinear
methods that will be used subsequently for analyzing the flutter bifurcation of
the aeroelastic section.

• Chapter 1 introduces in details the typical section model used in this the-
sis. The dimensional and non-dimensional parameters are defined as well
as the governing equations. Two variants of the Arbitrary Lagrangian
Eulerian formalism, used to handle the moving fluid domain, are intro-
duced. The technical details on the finite element spatial discretization
of the Navier–Stokes equations are provided. Finally, a classical time-
marching approach for integrating the fluid-structure equations is pre-
sented, as it will serve as a reference across the manuscript. This chapter
is mostly meant to offload the rest of the manuscript from the cumber-
some technical details inherent to fluid-structure interaction.

• In chapter 2, we present in extensive details the weakly nonlinear ap-
proach for the typical aeroelastic section. We also introduce a Hessian-
based mesh adaptation framework that is used in the subsequent sections
to efficiently explore the parameter space. The chapter ends with a val-
idation of the weakly nonlinear results against reference fully nonlinear
time-marching solutions.

• Chapter 3 is dedicated to the Time Spectral Method. As a (long) preamble,
TSM is replaced in the more global zoology of harmonic balance meth-
ods. A classification borrowed from spectral methods in space is used to
organize the discussion. The core of the chapter presents the Newton—
Krylov solution method and introduces the so-called block-circulant pre-
conditioner that is at the core of the efficiency of the method when large
number of harmonics are used. A parallelization in time is also presented.
Several numerical experiments are reported to assess the robustness of the
preconditioner. The method is applied first on cases where the solution
frequency is known (forced oscillations) and then extended to the case of
unknown frequency (self-sustained oscillations).
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2. The second part of the thesis is dedicated to the physical analysis of the bi-
furcation associated to the coupled-mode flutter instability of the aeroelastic
section in laminar flows:

• We start our explorations in chapter 4 by revisiting the linear stability
analysis of the typical section in low-Reynolds number flows. In addi-
tion to coupled-mode flutter, divergence and vortex-induced vibrations
are also obtained. The thresholds for these different instabilities are com-
puted while varying the solid-to-fluid mass ratio, thus allowing to build
neutral curves for each type of instability. The effect of the Reynolds
number is explored and comparisons are proposed with classical low-
dimensional flow models such as quasi-steady models or the Theodorsen
model.

• Chapter 5 focuses on exploring the effects of low-Reynolds number fluid
nonlinearities on the type of flutter bifurcation (subcritical or supercrit-
ical). The weakly nonlinear analysis is first used to explore parametri-
cally the type of bifurcation for different solid-to-fluid mass ratios and
Reynolds numbers. A decomposition of the cubic coefficient of the nor-
mal form of the flutter bifurcation is introduced so as to identify the con-
tributions of the different nonlinearities and spatial locations with respect
to the type of the bifurcation. Then, the highly nonlinear regime is ex-
plored by using results from both the Time-Spectral Method and refer-
ence time-marching solutions. For certain parameters, a unusual bifur-
cation scenario is obtained and is discussed with respect to unexplained
experimental results in the literature.

• We conclude our exploration of the flutter bifurcation in chapter 6 by in-
vestigating the solutions obtained up to 15% above the critical velocity,
in a supercritical case. The bifurcation is first explored with reference
time-marching solutions. Then a Floquet stability analysis is performed
in order to explain the time-marching results. To that end, an original
method based on the analysis of the spectrum of the linearized TSM op-
erator is presented. The results from the Floquet analysis are analyzed
and compared to the time-marching solutions, allowing to highlight the
mechanism responsible for the observed time-marching results.

3. The third part of this thesis aims at initiating the extension of the solution
methods used in the previous chapters for two-dimensional flows, to the three-
dimensional case. It is composed of only one chapter.

• Chapter 7 focuses on performing large-scale purely hydrodynamic (the
structure is fixed) linear stability analysis of incompressible flows. To
this end, the methods used in the previous chapters for two-dimensional
configurations are extended. The core issue of the linear solver for high-
dimensional configurations is tackled by using a Krylov subspace method,
preconditioned by the modified Augmented Lagrangian preconditioner.
The performance of the preconditioner is first assessed on a two-dimensional
test case and benchmarked with respect to other state-of-the-art alterna-
tives. Then, a parallel implementation using the FreeFEM language and
its PETSc/SLEPc interface is described and tested on a large-scale three-
dimensional case.
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The results are finally summarized in the general conclusion, chapter 8, leading to
several propositions for future directions of research.
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1
MATHEMATICAL MODELS FOR A
“TYPICAL SECTION” IN VISCOUS

FLOWS

This chapter introduces in details the typical section model used in this the-
sis. The dimensional and non-dimensional parameters are defined as well as the
governing equations. Two variants of the Arbitrary Lagrangian Eulerian for-
malism, used to handle the moving fluid domain, are introduced. The technical
details on the finite element spatial discretization of the Navier–Stokes equa-
tions are provided. Finally, a classical time-marching approach for integrating
the fluid-structure equations is presented, as it will serve as a reference across the
manuscript. This chapter is mostly meant to offload the rest of the manuscript
from the cumbersome technical details inherent to fluid-structure interaction.



20 Chapter 1. Mathematical models for a “typical section” in viscous flows

1.1 Equations of motion

The highly complex problem of full three dimensional wing flutter is modeled through
a “typical airfoil section” [E. H. Dowell et al. 1989, §3.2.1]. It consists in a two-
dimensional section (fig. 1.1) that translates along the negative horizontal axis−ex at
the constant airplane cruising speed U∞. Due to the wing flexibility the section also
moves along the vertical direction ey (flexion mode) and rotates around the elastic
center (torsion mode), noted A. The movement along ey is measured by the heaving
displacement, noted h, whereas the rotation is measured by the pitching angle, noted θ.
Note that h is counted positively upwards and θ is counted positively nose-down 1.
Thus the classical definition of the angle of attack (positive nose-up) is simply −θ.

Across this manuscript, the particular section studied is a rigid flat plate of thick-
ness e and chord c, with a chord-to-thickness aspect ratio equal to c/e = 20. This
geometry is inspired by the work of Amandolese et al. (2013) who used a similar
plate for investigating experimentally the flutter bifurcation at moderate Reynolds
numbers. In addition, in our set-up the plate corners are rounded with a small ra-
dius of curvature equal to e/10. The plate mass (per unit length, as all subsequent
constants) is noted m and its moment of inertia around the elastic center Iea. The
plate is mounted on heaving and pitching springs that model the wing flexibility.
Both are attached at the elastic axis A, with respective stiffnesses Kh, Kθ . The center
of gravity G is located at a distance xcg from the elastic axis (with xcg > 0 when G
is downstream of A). The structural damping coefficients are noted Ch and Cθ . The
plate moves in a two-dimensional viscous fluid of density ρ f and dynamic viscosity
µ.

In the following, all equations are nondimensionalized with respect to the char-
acteristic length c, mass ρ f c3 and time c/U∞. This yields a set of eight nondimen-
sional parameters (in addition to the chord-to-thickness ratio) governing the coupled
problem. First, a list of purely solid parameters characterize the plate behavior: the
heaving-to-pitching frequency ratio Ω, the heaving and pitching damping ratios ζh
and ζp, the radius of gyration rθ and the non-dimensional position of the center of
gravity is noted xθ . Their precise definitions are given in table 1.1 together with their
values, that remain fixed throughout the manuscript. The reduced velocity

U∗ =
U∞

c
√

Kθ/Iea

characterizes the ratio of the horizontal plate velocity U∞ to a velocity typical of the
plate pitching mode, which has a natural frequency

√
Kθ/Iea. Alternatively it can be

seen as the inverse of the non-dimensional pitching natural frequency. On the fluid
side, the Reynolds number

Re =
ρ f U∞c

µ

characterizes the relative magnitude of the fluid inertial and viscous forces. Finally,
the level of fluid-structure coupling is quantified by the the mass ratio 2

m̃ =
m

1/2ρ f c2

1The usual aeroelastic convention is to take θ positive nose-up, to remain consistent with the clas-
sical aerodynamic definition of the angle of attack. However, the vertical displacement then must be
taken positive downwards, in order to remain in a correctly positively oriented system of axes.

2On a side note, let us mention that m̃ was defined as twice the non-dimensional solid mass in order
to avoid an annoying factor 1/2 in the right-hand side of the non-dimensional solid equations, eq. (1.3)
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that compares the typical solid and fluid mass. The strongest coupling usually arise
when m̃ ' 1, i.e. when the solid is light enough so that fluid inertial can significantly
perturb it. On the contrary, when m̃ � 1 the fluid momentum is negligible and
couplings are weaker.

All these nondimensional numbers are summarized in table 1.1, along with typ-
ical values used in this work.

A

G
c

e
ns,t

Γfs,t

Iea, Kθ , Cθ

xcg

θ

m, Kh, Ch
h

O−U∞ex

ex

ey +
ρ f , µ

FIGURE 1.1: “Typical airfoil section” model.

U∗ Ω ζh ζp

definition
U∞

c
√

Kθ/Iea

√
Kh/m
Kθ/Iea

Ch

2
√

mKh

Cθ

2
√

IeaKθ

typical values 10−2 − 101 0.8 0 0.05

rθ xθ m̃ Re

definition

√
Iea

mc2

xcg

c
m

1/2ρ f c2

ρ f U∞c
µ

typical values 0.290 0 101 − 104 101 − 104

TABLE 1.1: Non-dimensional parameters governing the flutter instability

1.1.1 Solid model: spring-mounted rigid solid

Let us start by describing the kinematics of the plate motion (cf fig. 1.2). Considering
a point x of the plate at the initial time t = 0. At time t, point x has moved to a new
position noted xt(x, t) such that

xt(x, t) = x + ξs(x, t) with ξs(x, t) = −1 t ex + h(t) ey + (R(θ(t))− I)x (1.1)

and R(θ) the rotation matrix of angle θ:

R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)

The displacement field ξs(x, t) is composed of three components respectively corre-
sponding to the horizontal constant (unit, in non-dimensional form) velocity motion,
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the heaving motion and the pitching motion. The corresponding velocity field is:

us(x, t) =
∂ξs
∂t

= −1 ex + ḣ ey + θ̇
∂R
∂θ

x

where the dot symbol is the classical representation of the time-derivative.
The equations governing the motion of the plate, submitted to the elastic restor-

ing forces, structural damping and fluid forces, are obtained using the Lagrange
equations. The corresponding derivations are classical and the reader is reported
to [Bisplinghoff et al. 1955, §3.8] (linearized version) or [Malher 2016, §1.1.2] (fully
nonlinear version) for more details. After non-dimensionalizating and introducing
the parameters of table 1.1, we obtain:

∂2h
∂t2 + xθ

(
cos θ

∂2θ

∂t2 − sin θ

(
∂θ

∂t

)2
)
+ 2ζh

(
Ω
U∗

)
∂h
∂t

+

(
Ω
U∗

)2

h =
1
m̃
CL

∂2θ

∂t2 +
xθ

rθ
2 cos θ

∂2h
∂t2 + 2ζp

(
1

U∗

)
∂θ

∂t
+

(
1

U∗

)2

θ =
1

m̃rθ
2 CM

(1.2)

where CL and CM are the lift and moment coefficients, defined as:

CL =
L�

1/2ρ f U∞
2c

, CM =
Mz
�

1/2ρ f U∞
2c2

with L� and Mz
� the (dimensional) lift and moment (about the elastic center) of the

fluid forces, per unit span. Note that eq. (1.2) naturally couples heaving and pitching
due to nonlinear inertial terms. In most classical texts, those terms are linearized
for flutter analysis [Bisplinghoff et al. 1955; E. H. Dowell et al. 1989; Hodges et al.
2011; Dimitriadis 2017]. If this is a natural approximation for studying linear flutter
dynamics, it is not the case anymore for nonlinear flutter investigations.

In the rest of this manuscript however, the nonlinear inertial terms do vanish
because we will only consider plates pitching around their center of gravity, i.e. xθ =
0, yielding structurally3 decoupled heaving and pitching equations:

∂2h
∂t2 + 2ζh

(
Ω
U∗

)
∂h
∂t

+

(
Ω
U∗

)2

h =
1
m̃
CL (1.3a)

∂2θ

∂t2 + 2ζp

(
1

U∗

)
∂θ

∂t
+

(
1

U∗

)2

θ =
1

m̃rθ
2 CM (1.3b)

Notice finally that the natural heaving and pitching frequencies can be identified as

ω0h =
Ω
U∗

and ω0θ =
1

U∗

3We will see later that a coupling is re-introduced via the fluid forces in the right-hand sides
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FIGURE 1.2: Kinematic description of the plate undergoing a constant unit
velocity translation along −ex and time-dependent heaving and pitching

motions, as described by eq. (1.1).

1.1.2 Fluid model: incompressible Navier–Stokes

The fluid dynamics are governed by the incompressible two-dimensional Navier–
Stokes equations, written in a moving domain Ωf,t:

∂ut

∂t

∣∣∣∣
xt

+∇utut −∇ ·
[
−ptI +Re−1

(
∇ut +∇uT

t

)]
= 0 xt ∈ Ωf,t

−∇ · ut = 0 xt ∈ Ωf,t

(1.4)

Having adopted the convention where the plate moves in a fluid at rest (see fig. 1.1),
a homogeneous Dirichlet boundary condition is imposed on the boundary Γin. At
the outflow boundary Γout, a natural “do-nothing” condition is imposed:

ut = 0 on Γin (1.5a)
[
−ptI +Re−1

(
∇ut +∇uT

t

)]
nf = 0 on Γout (1.5b)

with nf the outward normal to the fluid domain boundaries. The condition imposed
at the fluid-structure interface is detailed later, in section 1.1.3.

The formulation eq. (1.4) of the Navier–Stokes equations presents two shortcom-
ings. First, the time derivative, taken at xt constant, is not well defined. Indeed,
imagine having to compute the time derivative of the fluid velocity at a point xt, for
example with finite differences:

∂ut

∂t

∣∣∣∣
xt

' ut(xt, t + ∆t)− ut(xt, t)
∆t

∆t� 1

The ill-posedness arises in the possible scenario where the location xt is close enough
to the interface so that xt belongs to the fluid domain at instant t but is in the solid
domain at instant t + ∆t (or oppositely). Thus, the time-derivative has to be handled
differently for moving domains. The second shortcoming lies in the fact that the
equations are defined on a moving domain Ωf,t, that is typically dependent on the
solid variables. As a consequence, a proper linearization (a fortiori “weakly nonlin-
earization”, cf. chapter 2) of those equations would require non-trivial linearization
with respect to the domain.

To address these shortcomings, two formulations are introduced and will be used
in the next chapters. The first formulation, refered to as the “absolute velocity - ro-
tating axis” formulation, is taken from [Mougin et al. 2002] where it was proposed
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for studying falling rigid bodies. It will be used for the weakly nonlinear develop-
ments of chapter 2. The second formulation, labeled as the “reference configuration
ALE” formulation, is adapted from J.-L. Pfister (2019) where it was considered to
study the dynamics of flexible structures. It is used in this manuscript for the Har-
monic Balance approach developed in chapter 3. In the two following paragraphs,
we provide the detailed equations for the two formulations. In addition, we show
in section 1.1.2.3 that the “absolute velocity - rotating axis” equations can be derived
as a particular case of the more general “reference configuration ALE” formulation.

1.1.2.1 The “absolute velocity - rotating axis” formulation

In the “absolute velocity - rotating axis” formulation by Mougin et al. (2002), the
position of any point M in the fluid domain is written in the system of coordinates
(A, eX, eY) of which the origin is the elastic axis A and the axes are the principal axes
of the plate (see fig. 1.3). More precisely, we note X the position vector of a point M:

X = [X, Y]T =
−−→
AM(eX,eY)

where we have precised as an index the system of axis the coordinates X and Y refer
to. In (A, eX, eY), the fluid-structure interface is fixed, and is noted Γfs, where the
index reference to time t has been dropped. For unbounded flows, the fluid domain
is thus independent of the solid movement, and is consecutively noted Ωf.

Following [Mougin et al. 2002], the Navier–Stokes equations for the absolute ve-
locity U(X, t) = [U, V]T written in the rotating axes and the pressure p(X, t), read:

∂U
∂t

+ θ̇ez ∧U +∇U
(
U−W

)
−∇ · σf(p, U) = 0 (1.6a)

∇ ·U = 0 (1.6b)

with the fluid stress tensor, σf(p, U) = −pI +Re−1 (∇U +∇UT), and the “rigid-
body velocity” (or “extension velocity” 4), also written in the rotating axes:

W(ḣ, θ, θ̇) = R(θ)T(−1, ḣ)T + θ̇ez ∧ X (1.7)

The rigid-body velocity is composed of two terms: the first term accounts for trans-
lation whereas the second accounts for rotation. Note in particular that the rotation
matrix R(θ) is used in order to project the translation velocity −1ex + ḣey onto the
rotating axes.

4This denomination will become clearer in section 1.1.2.3
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FIGURE 1.3: Illustration of several quantities used in the “absolute veloc-
ity - rotating axis” Navier–Stokes equations. In particular, are shown in
red the vectors that are written in the rotating system of axes (A, eX, eY).

1.1.2.2 The “reference configuration ALE” formulation

In the Arbitrary Lagrangian Eulerian (ALE) framework [Donea et al. 2004] a fixed
reference domain, noted Ωf, is introduced in addition to the physical domain Ωf,t. A
one-to-one mappingA(x, t) links any position x in Ωf to the corresponding physical
position xt at instant t in Ωf,t.

xt = A(x, t) xt ∈ Ωf,t, x ∈ Ωf

In addition, the so-called extension displacement field ξe is defined as:

ξe(x, t) = xt − x = A(x, t)− x

In this manuscript, the reference domain is chosen to be the fluid domain in the
initial configuration, which typically corresponds to h = θ = 0. The mapping is
arbitrary as long as it conforms to the solid displacement ξs(x, t) on the (reference
configuration) interface Γfs, i.e. ξe(x, t) = ξs(x, t) on Γfs.

Using the chain-rule, the time-derivative at constant xt in eq. (1.4) can be re-
written at constant x:

∂ut

∂t

∣∣∣∣
xt

=
∂ut

∂t

∣∣∣∣
x
− (∇ut)wt (1.8)

where the extension velocity wt, defined on the deformed domain, is introduced:

wt =
∂A
∂t

∣∣∣∣
x
◦ A−1 (1.9)

Using eq. (1.8) in eq. (1.4) yields the classical ALE form of the Navier–Stokes
equations:

∂ut

∂t

∣∣∣∣
x
+∇ut (ut −wt)−∇ ·

[
−ptI +Re−1

(
∇ut +∇uT

t

)]
= 0 xt ∈ Ωf,t

−∇ · ut = 0 xt ∈ Ωf,t
(1.10)

A new convection term has appeared where the convection velocity is wt. If the
solid is fixed, then wt = 0 and the classical Eulerian Navier–Stokes is retrieved.
On the contrary, imagine the mapping A exactly follows the motion of the fluid
particles ; then wt = ut and a Lagrangian description of the Navier–Stokes equations
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is retrieved. For an arbitrary mapping, the description lies arbitrarily between the
Eulerian and Lagrangian representations.

As stated previously, we wish to obtain a formulation on a fixed domain. To that
aim, alternative fluid unknowns u and p, defined in Ωf, are introduced such that

u(x, t) = ut(xt(x, t), t) and p(x, t) = pt(xt(x, t), t) x ∈ Ωf

Using the above, eq. (1.10) may be entirely written in Ωf whereas the domain motion
is handled by the extension displacement field (e.g. [J.-L. Pfister et al. 2019]):

J(ξe)
∂u
∂t

∣∣∣∣
x
+∇uΦ(ξe) (u−w)−∇ · Σf(u, p, ξe) = 0 in Ωf (1.11a)

−∇ · (Φ(ξe)u) = 0 in Ωf (1.11b)

where the extension velocity in Ωf is

w =
∂A
∂t

∣∣∣∣
x
=

∂ξe
∂t

∣∣∣∣
x

(1.12)

The deformation gradient F = I +∇ξe, its determinant J = det F and the deforma-
tion operator Φ = JF−1 have been introduced. The fluid stress tensor, transported in
the reference configuration writes Σf = [−pI+Re−1J−1 (∇uΦ + ΦT∇uT)]ΦT.

Remark. The passage from eq. (1.10) to eq. (1.11) involves several transport the-
orems for spatial differential operators. Those may be found for example in ap-
pendix C of [J.-L. Pfister 2019].

Choice of the extension In the general case of an elastic solid, one can typically
define ξe as the solution of a pseudo-elasticity problem. If only rigid body motion is
considered, more practical analytical extensions may be easily defined. Here, we
use an analytical extension borrowed from [Persson et al. 2009]. Starting form the
rigid-body displacement field ξs(x, t) defined by eq. (1.1), we define a “blending
extension” (fig. 1.4)

ξe(x, t) = −1 t ex + b(x− xG)
(
hey + (R(θ)− I) x

)
(1.13)

with b(x) the blending function:

b(x) =





1 |x| < r1

1− f
( |x| − r1

r2 − r1

)
r1 < |x| < r2

0 |x| > r2

with f (s) = 10s3 − 15s4 + 6s5

(1.14)
With this extension, a different treatment is applied to the horizontal movement
on the one hand, and to the heaving and pitching motions on the other. For the
horizontal motion with constant velocity −1ex, it is simply propagated to the whole
mesh. On the contrary, for the heaving and pitching motions the plate kinematics
is applied to the mesh only inside a disk of radius r1 (inner circle in fig. 1.4). Far
enough from the solid, i.e. beyond a radius r2 > r1, the mesh is kept fixed (outer
circle in fig. 1.4). Between r1 and r2 the fifth order polynomial f (s) is used to connect
smoothly the two zones.
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FIGURE 1.4: Reference configuration ALE formalism with blending ex-
tension. The reference domain is illustrated in (a), where the extension
displacement field ξe is represented by orange arrows. In (b), we show
the corresponding deformed domain. The dashed circles mark the radii r1
and r2 of the blending function definition. For simplicity, the horizontal

displacement component in eq. (1.13) is set to zero.

1.1.2.3 From the “reference configuration ALE” to the “absolute velocity - rotat-
ing axis”

In this section we demonstrate how the “absolute velocity - rotating axis” formula-
tion, eq. (1.6) can be derived from eq. (1.11), by adding two simple ingredients. First,
a “rigid-body extension” displacement is substituted for the blending extension, and
second (ii) eq. (1.11) are projected along the system of axes (eX, eY) that rotate with
the plate. These developments constitute an alternative to the original derivation of
Mougin et al. (2002).

Rigid body extension The rigid extension is the simplest analytical extension pos-
sible for rigid solid in unbounded flows. It simply propagates the rigid-body motion
of the solid eq. (1.1) to the whole mesh (see fig. 1.5):

ξe(x, t) = ξs(x, t) (1.15)

Using eq. (1.15), we immediately have J = 1 and F = R(θ) such that eq. (1.11) writes:

∂u
∂t

∣∣∣∣
x
+∇uRT (u−w)−∇ ·

[
−pR +Re−1

(∇u + R∇uTR)
]
= 0 in Ωf

−∇ · (RTu) = 0 in Ωf
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FIGURE 1.5: Reference configuration ALE formalism with rigid-body ex-
tension. The reference domain is illustrated in (a), where the extension
displacement field ξe is represented by orange arrows. In (b), we show the
corresponding deformed domain. We mark in red some vectors that are
written in the rotating system of axis (eX, eY), so as to yield the “absolute
velocity - rotating axis” equations, eq. (1.6). As in fig. 1.4, the horizontal

displacement component in eq. (1.15) is set to zero for simplicity.

Projection along the rotating axes First, we consider the system of axes (eX, eY)
that rotate with the plate, as shown in red in fig. 1.5(a). We then introduce the pro-
jections U = R(θ)Tu and W = R(θ)Tw of u and w on these axes and left-multiply
eq. (1.11a) by RT, yielding

RT ∂u
∂t

∣∣∣∣
x
+∇U

(
U−W

)
−∇ ·

[
−pI +Re−1(∇U +∇UT)

]
= 0 in Ωf

−∇ ·U = 0 in Ωf

Finally noticing that

∂U
∂t

=
∂
(
RTu

)

∂t
= θ̇

∂RT

∂θ
u + RT ∂u

∂t
= θ̇

∂RT

∂θ
RU

︸ ︷︷ ︸
=−θ̇ez∧U

+RT ∂u
∂t

one obtains exactly the “absolute velocity - rotating axis” formulation eq. (1.6):

∂U
∂t

∣∣∣∣
x
+ θ̇ez ∧U +∇U

(
U−W

)
−∇ ·

[
−pI +Re−1(∇U +∇UT)

]
= 0 in Ωf

(1.16a)

−∇ ·U = 0 in Ωf
(1.16b)
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where the extension velocity projected in the rotating axes, W = R(θ)Tw, may be
developed to retrieve eq. (1.7):

W = R(θ)Tw

= R(θ)T
(( −1

ḣ

)
+ θ̇

∂R
∂θ

x
)

= R(θ)T(−1, ḣ)T + θ̇ez ∧ x.

(1.17)

1.1.3 Interface velocity continuity and interface forces

To complete the solid and fluid models presented in the previous sections, interface
conditions must be provided. First, the continuity of velocities is enforced on the
time-dependent fluid-structure interface.

ut(xt, t)−wt(xt, t) = 0 on Γfs,t (1.18)

Second, the detailed expression for the lift and moment coefficients in the right-hand
side of eq. (1.3) can now be given as a function of the fluid variables:

CL =

{
2
∫

Γfs,t

[
−ptI +Re−1

(
∇ut +∇uT

t

)]
ns,t dxt

}
· ey (1.19a)

CM =

{
2
∫

Γfs,t

[xt − xt(At)] ∧
[
−ptI +Re−1

(
∇ut +∇uT

t

)]
ns,t dxt

}
· ez (1.19b)

where the moment is specifically computed at the elastic axis At. The factor 2 in the
above expressions is due to the classical definition of the lift (resp. moment) coef-
ficient which is twice the non-dimensional lift (resp. moment). Depending on the
particular Navier–Stokes formulation (“absolute velocity - rotating axis” or “refer-
ence configuration ALE”), the interface condition are slightly remodeled.

1.1.3.1 “Absolute velocity - rotating axis”

The velocity continuity, projected on the rotating axes, becomes:

U(X, t)−W(X, t) = 0 on Γfs (1.20)

whereas the lift and moment coefficients become:

CL =

{
2
∫

Γfs

σf(U, p)Ns dX
}
· RT(θ)ey︸ ︷︷ ︸

projection of ey on the rotating axis

(1.21a)

CM =

{
2
∫

Γfs

X ∧ σf(U, p)Ns dX
}
· ez (1.21b)

where the fluid force has been appropriately projected back along the vertical direc-
tion in order to retrieve the lift coefficient.

1.1.3.2 “Reference configuration ALE”

The velocity continuity becomes:

u(x, t)−w(x, t) = 0 on Γfs (1.22)
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whereas the lift and moment coefficients become:

CL = 2
{∫

Γfs

Σf(u, p, ξe(h, θ))ns dx
}
· ey (1.23a)

CM = 2
{∫

Γfs

(R(θ)x) ∧ Σf(u, p, ξe(h, θ))ns dx
}
· ez (1.23b)

Remark. As done in section 1.1.2.3 for the momentum and mass balance, the expres-
sion of the lift and moment coefficients eq. (1.21) can be deduced from eq. (1.23) by
using the rigid-body extension eq. (1.15) and introducing U = RTu. For example,
we have for the lift:

CL = 2
{∫

Γfs

Σf(u, p, ξs)ns dx
}
· ey

= 2
{∫

Γfs

[
−pR +Re−1

(∇u + R∇uTR)
]

ns dx
}
· ey

= 2
{∫

Γfs

[
−pR +Re−1

(R∇U + R∇UT)
]

ns dx
}
· ey

= 2
{∫

Γfs

Rσf(p, U)ns dx
}
· ey

= 2
{∫

Γfs

σf(p, U)ns dx
}
·RTey

(1.24)

The last step to recover exactly eq. (1.21a) consists in noticing that x and X on
the one hand, and ns and Ns on the other, are described by the same coordi-
nates. Indeed for x and X we have x =

−−→
AM(ex,ey) = R(θ)T

(
R(θ)

−−→
AM(ex,ey)

)
=

R(θ)T−−−→At Mt(ex,ey) =
−−−→
At Mt(eX,eY) = X. The same steps can be followed to show that

ns = Ns. Using x = X and ns = Ns in the last line of the above equation yields
eq. (1.21a).

Finally a similar reasoning (not shown here) can be followed for the moment
coefficient.

1.2 Spatial discretization with the finite element method

In this section, we present the finite element spatial discretization of the Navier–
Stokes equations that will be used throughout this manuscript. For sake of concise-
ness, details are provided only for the “absolute velocity - rotating axis formulation”
(1.6). The same procedure (not reported) is followed for the “ALE reference config-
uration” equations5.

1.2.1 A weak formulation of the typical section problem

Weak imposition of the interface velocity continuity Before deriving the weak
formulation itself, we briefly discuss the strategy used to enforce the velocity conti-
nuity boundary condition eq. (1.22) on Γfs. A classical choice is to embed the Dirich-
let boundary conditions in the functional spaces the unknowns belong to. Numer-
ically (i.e. after finite element discretization), this is done by modifying a posteriori

5The interested reader may find some details for this particular formulation, in the context of an
elastic solid, in [J.-L. Pfister 2019, §1.1.5]



1.2. Spatial discretization with the finite element method 31

the discrete operators. Typically, suppose the finite element discretization of some
linear problem writes Ax = b without taking into account the Dirichlet boundary con-
ditions. And suppose also that one wants to impose the condition xi = xi on some
subset i ∈ ΓD of the degrees of freedom. Then, to impose that the finite element trial
function respects the latter boundary condition, one simply sets the lines i ∈ ΓD of
A to zero, except for the diagonal terms aii equal to 1 and then sets bi = xi. This
procedure locks the degrees of freedom xi so that the obtained solution x verifies the
desired boundary condition.

An alternative approach is to incorporate the Dirichlet condition in the weak for-
mulation via an additional constraint equation [Deparis et al. 2016; J.-L. Pfister et al.
2019]. That additional constraint comes with the introduction of the corresponding
Lagrange multiplier unknown, noted Λ, which can be conveniently defined as the
interface fluid stress exerted by the fluid on the solid:

Λ = σf(p, U)Ns (1.25)

This approach has two advantages that make it well-suited for fluid-structure ap-
plications. First, thanks to the introduction of Λ, the interface stress is a natural
unknown of the problem, thus avoiding having to compute the spatial derivatives
of U and p to evaluate the interface fluid stress (eq. (1.21)):

CL(θ, Λ) =

{
2
∫

Γfs

Λ dX
}
·RT(θ)ey

CM(Λ) =

{
2
∫

Γfs

X ∧Λ dX
}
· ez

(1.26)

Second, it has been shown in purely fluid computations that a weak imposition of
the no-slip boundary condition tends to yield better convergence properties of the
solution, in particular close to the boundary [Bazilevs et al. 2007].

Weak formulation Let us start by defining the functional spaces in which the fluid
velocity, pressure and Lagrange multiplier are sought:

VU =
{

f ∈ H1(Ωf) s.t. f = 0 on Γin

}

V p =
{

f ∈ L2(Ωf)
}

VΛ =
{

f ∈ H−1/2(Γfs)
}

By multiplying the fluid momentum equation eq. (1.6a) by some test function, ψU ∈
VU, and integrating over Ωf, we have:

∫

Ωf

∂U
∂t
·ψU

︸ ︷︷ ︸
:=
〈

∂U
∂t , ψU

〉
+
∫

Ωf

{
uθez ∧U +∇U (U−W(uh, h, uθ))−∇ · σf(p, U)

}
·ψU

︸ ︷︷ ︸
:=
〈
RU(U, p, uh, θ, uθ) , ψU

〉
= 0

(1.27)
Then, the divergence term is integrated by part where the inflow and outflow contri-
butions respectively disappear due to the test functions being null on Γin and to the
“do-nothing” outflow condition and where the definition eq. (1.25) of the interface
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Lagrange multiplier is used:
〈
RU(U, p, uh, θ, uθ) , ψU

〉
=
∫

Ωf

{uθez ∧U +∇U (U−W(uh, h, uθ))} ·ψU

+
∫

Ωf

σf(p, U) : ∇ψU +
∫

Γfs

Λ ·ψU

Note that the interface integral comes with a positive sign due to the definition of Λ

that uses the inward normal to the fluid domain, Ns.
The weak formulations corresponding to the continuity equation eq. (1.6b) and

to the interface velocity constraint eq. (1.20) are directly obtained by projecting the
strong equations along ψp ∈ V p and ψΛ ∈ VΛ:

〈
R p(U) , ψp

〉
= −

∫

Ωf

∇ ·U ψp = 0
〈
RΛ(U, uh, θ, uθ) , ψΛ

〉
Γfs

=
∫

Γfs

{U−W(uh, h, uθ)} ·ψΛ = 0
(1.28)

In order to complete the weak formulation of the coupled problem, we introduce
the heaving and pitching velocities, uh = ∂h/∂t and uθ = ∂θ/∂t thanks to which
the solid equations (1.3) can be formulated only with first order in time derivatives.
Then, the above definitions of uh, uθ and the solid equations are simply multiplied
by adequate test functions ψh, ψθ , ψuh , ψuθ that are numbers in R. Gathering together
the fluid (eq. (1.27) and (1.28)) and solid weak formulations finally yields the coupled
fluid-structure weak form for the typical section problem:

〈
ψ , M

∂q
∂t

+R(q)
〉

=

{
∂h
∂t
− uh

}
ψh

+

{
∂θ

∂t
− uθ

}
ψθ

+

{
∂uh

∂t
+ 2ζh

Ω
U∗c

uh +
Ω2

U∗c
2 h− 1

m̃
CL(θ, Λ)

}
ψuh

+

{
∂uθ

∂t
+ 2ζp

1
U∗c

uθ +
1

U∗c
2 θ − 1

rθ
2m̃
CM(Λ)

}
ψuθ

+
〈∂U

∂t
, ψU

〉
+
〈
RU(U, p, uh, θ, uθ) , ψU

〉

+
〈
R p(U) , ψp

〉

+
〈
RΛ(U, uh, θ, uθ) , ψΛ

〉
Γfs

=0

(1.29)

where we have introduced the vector q = [h, θ, uh, uθ , U, p, Λ]T of all unknowns, the
corresponding test function ψ = [ψh, ψθ , ψuh , ψuθ , ψU, ψp, ψΛ]T, the symbolic opera-
tors M that accounts for terms proportional to a time-derivative and R that gathers
all remaining terms. The first two lines correspond to the definition of the heaving
and pitching velocities, the third and fourth lines are the momentum balances along
the heaving and pitching degrees of freedom. The fifth and sixth lines are the classi-
cal Galerkin weak form of the Navier–Stokes equations. The last line is the constraint
imposing the continuity of velocity on Γfs.
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By an abuse of notation, we will often refer to the strong equations corresponding
to the weak form eq. (1.29) using:

M
∂q
∂t

+R(q) = 0 (1.30)

where

M =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




R(q) =




−uh
−uθ

2ζhΩU∗−1uh + Ω2U∗−2h− m̃−1CL(θ, Λ)

2ζpU∗−1uθ + U∗−2θ − m̃−1rθ
−2CM(Λ)

RU(U, p, uh, θ, uθ)
R p(U)

RΛ(U, uh, θ, uθ)




1.2.2 Finite elements discretized problem

To obtain the discrete problem corresponding to eq. (1.29), a Delaunay triangulation
T∆ = {K} of Ωf is built, with typical element size ∆. The infinite dimensional func-
tional spaces VU, V p, VΛ are approximated by corresponding finite element spaces
VU

∆ , V p
∆ and VΛ

∆ defined below. For velocity and pressure P2 and P1 elements, re-
spectively, are used so that the classical inf–sup Ladyženskaja–Babuška–Brezzi (LBB)
condition for the incompressibility constraint is fulfilled [Fortin et al. 1991]. For the
interface Lagrange multiplier, P1 elements are used.

VU
∆ =

{
f ∆ ∈ C0(Ωf) s.t. f ∆|K ∈ P2(K), ∀K ∈ T∆, f ∆ = 0 on Γfs

}

V p
∆ =

{
f∆ ∈ C0(Ωf) s.t. f∆|K ∈ P1(K), ∀K ∈ T∆

}

VΛ
∆ =

{
f ∆ ∈ C0(Γfs) s.t. f ∆|K ∈ P1(K), ∀K ∈ T∆

}

Each of theses spaces is generated by the corresponding finite element basis

VU
∆ = span

(
ψU

0 , ψU
1 , ..., ψU

ndof,U−1

)

V p
∆ = span

(
ψ

p
0 , ψ

p
1 , ..., ψ

p
ndof,p−1

)

VΛ
∆ = span

(
ψΛ

0 , ψΛ
1 , ..., ψΛ

ndof,Λ−1

)

such that the finite dimensional approximations U∆ ∈ VU
∆ , p∆ ∈ V p

∆ and Λ∆ ∈ VΛ
∆ to

U, p and Λ can be decomposed as:

U∆(X, t) =
ndof,U−1

∑
i=0

Ui(t)ψU
i (X)

p∆(X, t) =
ndof,p−1

∑
i=0

pi(t)ψ
p
i (X)

Λ∆(X, t) =
ndof,Λ−1

∑
i=0

Λi(t)ψΛ
i (X)

(1.31)

where the Ui(t), pi(t) and Λi(t) are the (time-dependent) finite element degrees of
freedom. Finally, for the solid part, the unknowns h, uh, θ and uθ are discrete by
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nature. As a consequence, the corresponding test and trial functions are simply the
trivial base function of R, i.e., the scalar "one".

Using eq. (1.31) in eq. (1.29) the discrete problem is then obtained and writes:

M(q∆)
∂q∆

∂t
+ R(q∆) = 0 (1.32)

where the solid and fluid degrees of freedom are stored in

q∆ =
(

h, θ, uh, uθ , U0, ..., Undof,U−1, p0, ..., pndof,p−1, Λ0, ..., Λndof,Λ−1

)T

M(q∆) =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 MU,τ(q∆) 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




R(q∆) =




−uh
−uθ

2ζhΩU∗−1uh + Ω2U∗−2h− m̃−1CL(θ, Λ∆)

2ζpU∗−1uθ + U∗−2θ − m̃−1rθ
−2CM(Λ∆)

RU(q∆)
Rp(q∆)
RΛ(q∆)




The discrete residuals for the incompressibility and interface velocity constraints are
vectors defined by

[Rp(q∆)]i =
〈
R p(U∆) , ψ

p
i

〉
0 ≤ i < ndof,p

[
RΛ(q∆)

]
i =

〈
RΛ(U∆, uh, θ, uθ) , ψΛ

i

〉
Γfs

0 ≤ i < ndof,Λ

For the fluid momentum equation, we slightly modify the classical Galerkin formu-
lation in eq. (1.29), as seen in the next paragraph.

Streamlined Upwind Petrov–Galerkin (SUPG) stabilization of the fluid momen-
tum equation In the advection-dominated regime, it is known that the classical
Galerkin finite element discretization eq. (1.27) of advection-diffusion equations gen-
erates numerical oscillations in the solution. In order to avoid such oscillations
— that are likely to appear for the highest Reynolds numbers investigated in this
manuscript (O(104)) — we stabilize the finite element method using the Stream-
line Upwind Petrov–Galerkin (SUPG) [Brooks et al. 1982] technique. The latter has
been used through the last four decades to stabilize the Navier–Stokes equations for
both steady–state and time-dependent nonlinear solutions. It is based on adding
to the classical Galerkin test function for the fluid momentum equation, ψU, a con-
vected component ∇ψU(U −W). This new test function introduces artificial dif-
fusion along the streamlines of the field (U −W), which provides some damping
of the numerical oscillations. The amount of artificial diffusion is governed by a
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space-dependent parameter noted τ.

τ =
ξ(Pe∆)∆

2‖U−W‖ with Pe∆ =
‖U−W‖∆
Re−1 and ξ(x) =

{
x/3 if x ≤ 3
1 if x > 3

where ∆ is a typical mesh size6 and Pe∆ is the element Péclet number.
Using the SUPG test function, ψU + τ∇ψU(U−W), instead of the pure Galerkin

test function ψU, the vector RU and matrix MU,τ that define the discretized Navier–
Stokes momentum equation read

[
RU(q∆)

]
i =

〈
RU(U∆, p∆, uh, θ, uθ) , ψU

i

〉

+
〈
RU(U∆, p∆, uh, θ, uθ) , τ∇ψU

i (U∆ −W(uh, θ, uθ))
〉

0 ≤ i < ndof,U

and

[MU,τ(q∆)]ij :=
〈

ψU
j , ψU

i

〉
+
〈

ψU
j , τ∇ψU

i (U∆ −W(uh, θ, uθ))
〉

0 ≤ i, j < ndof,U

In both cases, the first term on the right-hand side corresponds to the classical Galerkin
formulation, eq. (1.27), whereas the second term is the SUPG contribution. If τ = 0,
the pure Galerkin formulation is retrieved. Note that due to SUPG, MU,τ now de-
pends on the solution q∆, through the SUPG test function. For the same reason,
an additional level of nonlinearity in q∆ is introduced in RU. As a consequence, it
is seen that additional nonlinearities appear in the discretized problem due to the
SUPG formulation, that are not present in the original Galerkin weak problem.

1.3 Time-integration algorithm

In this section, we present the algorithm used to obtain general time-dependent
solutions of the typical section problem. Let us start by recalling below the solid
model eq. (1.3) (formulated at first order in time by introducing uh = ∂h/∂t and
uθ = ∂θ/∂t):

∂

∂t




h
θ

uh
uθ




︸ ︷︷ ︸
:= qs

+




−uh
−uθ

2ζhΩU∗c
−1uh + Ω2U∗c

−2h− m̃−1CL

2ζpU∗c
−1uθ + U∗c

−2θ − rθ
−2m̃−1CM




︸ ︷︷ ︸
:= Rs(qs, (CL, CM))

= 0 (1.33)

For convenience, we introduce in eq. (1.33) the vector qs that gathers the solid de-
grees of freedom. As for the fluid model, we use the Navier–Stokes equations with
ALE formalism written in the deformed domain Ωf,t eq. (1.10) and accompanied with

6In practice, the size of a (triangular) mesh element is taken as the diameter of its circumscribed
circle, given by the hTriangle keyword in the FreeFEM language.
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the velocity continuity condition at the fluid-structure interface eq. (1.18):

∂ut

∂t

∣∣∣∣
x
+∇ut (ut −wt(qs))−∇ ·

[
−ptI +Re−1

(
∇ut +∇uT

t

)]
= 0 xt ∈ Ωf,t(qs)

(1.34a)

−∇ · ut = 0 xt ∈ Ωf,t(qs)
(1.34b)

ut −wt(qs) = 0 xt ∈ Γfs,t(qs)
(1.34c)

Notice that we have precised in eq. (1.34) the dependence of the fluid problem on
qs, through the interface condition and the shape of the fluid domain.

1.3.1 Temporal scheme

Time-discretization is performed using the Backward Differences Formula of order
q (BDFq) that approximates the time-derivative of a quantity φ at instant n + 1 by

∂φ

∂t

∣∣∣∣
t=tn+1

' Dφn+1 =
1

∆t

(
α0φn+1 +

q

∑
i=1

αiφ
n+1−i

)
(1.35)

where φn the short notation for φ(tn). In the following, we use the BDF2 scheme
which defines by α0 = 3/2, α1 = −2 and α2 = 1/2. This leads to the time-discretized
versions of eq. (1.33)

Dqn+1
s + Rs(qn+1

s , (CL, CM)n+1) = 0 (1.36)

and eq. (1.34)

Dun+1
t +∇un+1

t

(
un+1

t −wt(qn+1
s )

)
−∇ ·

[
−pn+1

t I +Re−1
(
∇un+1

t +∇un+1
t

T
)]

= 0

in Ωf,t(qn+1
s )

−∇ · un+1
t = 0 in Ωf,t(qn+1

s )

un+1
t −wt(qn+1

s ) = 0 on Γfs,t(qn+1
s )

(1.37)

1.3.2 Fluid-structure pressure-segregation algorithm

The coupled nonlinear problem constituted by eq. (1.36) and (1.37) is solved us-
ing the pressure segregation method proposed in [Badia et al. 2007]. It consists
in mixing fixed-point iterations for handling the fluid-structure coupling with a
pressure-correction scheme [Guermond et al. 2006] for the incompressible Navier–
Stokes problem. In the following, we provide some insights on this method.

Fixed-point iterations for fluid-structure coupling Consider the fluid Dirichlet-to-
Neumann Steklov-Poincaré operator Sf

Sf : qn+1
s → (CL, CM)n+1

that associates to the solid state qn+1
s , the lift and moment coefficients (CL, CM)n+1

obtained by solving eq. (1.37). Symmetrically, define the solid Neumann-to-Dirichlet
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Steklov-Poincaré operator S −1
s

S −1
s : (CL, CM)n+1 → qn+1

s

that associates the solid state qn+1
s verifying eq. (1.36) to the lift and momentum

coefficients (CL, CM)n+1.
Using the Steklov-Poincaré operators, the coupled problem eq. (1.36)–(1.37) is

equivalently described as a fixed point of the operator S −1
s ◦Sf:

qn+1
s = S −1

s (Sf(qn+1
s ))

Then, a classical method to obtain qn+1
s is to perform fixed-point iterations, in-

dexed by k:
qn+1,k+1

s = S −1
s (Sf(qn+1,k

s )) (1.38)

Application of Sf The first step of the fixed-point iteration eq. (1.38) is to compute
(CL, CM)n+1,k+1 = Sf(q

n+1,k
s ). This is a nonlinear problem due to the Navier–Stokes

convection term. It can be solved by using pressure-correction iterations, indexed
by 0 ≤ l < lmax, that read:

• Step 1: Advection-diffusion

Dun+1,k+1,l+1
t +∇un+1,k+1,l+1

t

(
un+1,k+1,l

t −wt(qn+1,k
s )

)

−∇ ·
[
−pn+1,k+1,l

t I +Re−1
(
∇un+1,k+1,l+1

t +∇un+1,k+1,l+1
t

T)]
= 0

in Ωf,t(qn+1,k
s )

un+1,k+1,l+1
t −wt(qn+1,k

s ) = 0 on Γfs,t(qn+1,k
s )

(1.39)

• Step 2: Pressure-correction

∇2
(

pn+1,k+1,l+1
t − pn+1,k+1,l

t

)
=

α0

∆t
∇ · un+1,k+1,l+1

t in Ωf,t(qn+1,k
s )

∇
(

pn+1,k+1,l+1
t − pn+1,k+1,l

t

)
· nf = 0 on Γfs,t(qn+1,k

s )
(1.40)

Thanks to the pressure-correction approach, velocity and pressure are computed in
a decoupled manner. First, the new velocity estimate un+1,k+1,l+1

t is obtained in
step 1 by solving a linear (note indeed that the advection velocity is taken at the
previous step, l) advection-diffusion problem. Then, in step 2, the pressure esti-
mate is corrected by solving a simple Poisson problem. With this approach, at a
general iteration l, the velocity field is not necessarily divergence-free nor verifies
the nonlinear Navier–Stokes momentum equation. However, at convergence of the
pressure-correction iterations l = lmax, velocity and pressure do not evolve anymore:
un+1,k+1,lmax

t = un+1,k+1,lmax−1
t and pn+1,k+1,lmax

t = pn+1,k+1,lmax−1
t . As a consequence,

the left-hand side of eq. (1.40) is zero, which guarantees that incompressibility is en-
forced. In addition, the advection-diffusion problem eq. (1.39) has converged to the
nonlinear Navier–Stokes momentum equation since the velocity is everywhere the
same.
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Application of S −1
s The second step of the fixed-point iteration eq. (1.38) is to

compute qn+1,k+1
s = S −1

s ((CL, CM)n+1,k+1). This is a linear7 problem for qn+1,k+1
s

that is straightforwardly solved with a direct method.

Mixed iterations In the end, solving the coupled problem eq. (1.36) and (1.37) re-
quires two nested loops: an outer fixed-point loop (eq. (1.38)) to handle the fluid-
structure coupling and an inner pressure-correction loop (eq. (1.39) and (1.40)) to
handle the Navier–Stokes nonlinearity and the incompressibility constraint. To avoid
that and hopefully obtain a more efficient algorithm, we follow [Badia et al. 2007]
and perform only one loop. This is equivalent to using only lmax = 1 pressure-
correction iteration per application of Sf. The mixed iteration is stopped when the
difference between two consecutive iterates of the pressure and solid state are below
some specified relative tolerances:

∥∥∥pn+1,k+1
t − pn+1,k

t

∥∥∥
L2∥∥∥pn+1,k

t

∥∥∥
L2

< tolp and

∥∥∥qn+1,k+1
s − qn+1,k

s

∥∥∥
R4∥∥∥qn+1,k

s

∥∥∥
R4

< tols

In practice, we used tolp = 10−4 and tols = 10−6.

7It is linear because we use xθ = 0, else it would be nonlinear according to eq. (1.2)
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2
A WEAKLY NONLINEAR SOLVER

FOR FLUTTER BIFURCATION
ANALYSIS

This chapter presents in extensive details the weakly nonlinear approach for the
typical aeroelastic section. We also introduce a Hessian-based mesh adaptation
framework that is used in the subsequent chapters to efficiently explore the pa-
rameter space. The chapter ends with a validation of the weakly nonlinear results
against reference fully nonlinear time-marching solutions.



40 Chapter 2. A weakly nonlinear solver for flutter bifurcation analysis

2.1 Introduction

One of the goals of this manuscript is to explore the possible scenarios for the flut-
ter bifurcation for different combinations of non-dimensional parameters, like the
Reynolds number or the solid-to-fluid mass ratio. To do so efficiently, the classi-
cal time-integration approach (section 1.3) is not well-suited, not only due to its
high computational cost, but also because its typical output is a general transient
solution, not particularly relevant to bifurcation analysis where permanent regimes
(limit cycle oscillations) are searched. As an alternative, methods have been devel-
oped to derive nonlinear reduced-order models that yield lower computational cost
and possibly more adapted outputs [Lucia et al. 2004; Badcock et al. 2011; Fabre et al.
2018].

Close enough to the bifurcation threshold, a general mathematical form that de-
scribes the nonlinear dynamics of a system is known as the normal form [Nayfeh et al.
1995, §2.3.2]. For a codimension-one bifurcation like flutter, it is a simple nonlinear
equation for a complex amplitude variable that governs the amplitude of the oscil-
lations. As a consequence, once the normal form is known, the system’s response
can be computed at negligible computational cost. In addition, key properties of the
system, like the sub- or supercritical nature of the bifurcation (cf section 2.3.5), can
be deduced directly from the normal form coefficients, without solving it.

Various methods may be applied to derive the normal form. In the context of
hydrodynamic global stability studies, several researchers have used the method of
multiple scales [Nayfeh et al. 1995, §2.3.6], often referring to it as weakly nonlinear
analysis. In this method, the solution is expanded as a power series of a (small) devi-
ation from the linear instability threshold, yielding a sequence of equations govern-
ing each order. For a Hopf bifurcation, the normal form typically emerges at third
order as a result of a compatibility condition that needs to be enforced to ensure
a well-posed problem. Such analysis have proved an interesting tool for explor-
ing the bifurcations occurring in a variety of viscous flows around bluff-bodies: e.g.
the classical two-dimensional cylinder flow [Sipp et al. 2007; Gallaire et al. 2016]
or three-dimensional flows around disks [Meliga et al. 2009] and rotating spheres
[Citro et al. 2016]. This approach has been extended by Tchoufag et al. (2015) for a
fluid-structure application, namely, the study of the fluttering and spiraling motion
of buoyancy-driven disks in viscous flows. For aeroelastic applications, nonlinear
reduced-order models1 have been derived for the transonic flutter of commercial
airplane wings [Woodgate et al. 2007] and for the roll instability of a delta wing
[Badcock et al. 2008], using an Euler flow model. These models were derived using
center manifold reduction [Nayfeh et al. 1995, §2.3.4]. With this strategy, the analyt-
ical aspects are drastically reduced in comparison to the method of multiple scales,
so that the approach becomes mostly numerical. If this is well-suited for practical
integration in a previously developped CFD code, it however provides less insights
in the mechanisms that govern the solution at the different orders. Note finally that
in [Carini et al. 2015] the normal forms for the cylinder flow bifurcation, obtained
through the multiple scales and center manifold approaches, were compared and
yielded consistent results.

In this manuscript, we opt for the method of multiple scales due to its more an-
alytical nature. The present chapter is dedicated to the construction and validation
of the weakly nonlinear solver that will ultimately give the normal form representa-
tion of the flutter bifurcation for the typical section model introduced in the previous

1Strictly speaking, they are not normal forms ...
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chapter. In section 2.2, we start by briefly recalling the physical models. Then, the
weakly nonlinear approach itself is detailed in section 2.3 leading to a sequence of
partial differential equations to solve. Finally, in section 2.4, some numerical aspects
of the solver are detailed such as the SUPG-stabilized finite element discretization
and a Hessian-based mesh adaptation framework. This numerical section ends with
a validation of the solver implementation.

2.2 Equations of motion: typical section in viscous flow

Before diving into the weakly nonlinear analysis of the typical section problem, we
briefly recall the governing equations, that have been presented in details in chap-
ter 1. The plate movement is defined by the heaving displacement h and pitching
angle θ. A linear model is considered for the structure so that h and θ are both gov-
erned by classical damped linear oscillator equations (with a fluid forcing term). The
heaving and pitching velocities, uh and uθ respectively, are also introduced so that
the problem is kept first order in time. The fluid is described by the incompress-
ible Navier–Stokes equations, formulated in the “absolute velocity - rotating axis”
formalism, introduced in section 1.1.2.1. This particular formalism is used because
it combines the following double advantage. First, it is written on a fixed fluid do-
main, which allows exact linearization (and “weakly nonlinearization”) with respect
to the solid degrees of freedom. Second, it presents a moderate algebraic complex-
ity in the sense that the movement of the physical fluid domain only materializes
through a grid velocity contribution −W(θ, uh, uθ) in the convection velocity and a
rotation term uθez ∧U. As a consequence, the cumbersome analytical manipulations
involved in the proposed weakly nonlinear analysis remain of reasonable complex-
ity2

Re-using the symbolic operators introduced in eq. (1.30), the governing equa-
tions for the typical section problem write, in strong form:

M
∂q
∂t

+R(q; U∗) = 0 (2.1)

with

q =




h
θ

uh
uθ

U
p
Λ




, M =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




and the nonlinear evolution operator:

R(q; U∗) =




−uh
−uθ

2ζhΩU∗−1uh + Ω2U∗−2h− m̃−1CL(Λ, θ)

2ζpU∗−1uθ + U∗−2θ − m̃−1rθ
−2CM(Λ)

uθez ∧U +∇U
(
U−W(uh, θ, uθ)

)
−∇ · σf(p, U)

−∇ ·U
U−W(uh, θ, uθ)




2In other words, the task would be much more painful with the “reference configuration ALE”
formalism of section 1.1.2.2 ...
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where the dependence of R on the reduced velocity U∗ is recalled for clarity. As a
consequence, eq. (2.1) is a system of seven equations that detail as follows. The two
first lines correspond to the definition of the heaving and pitching velocities and the
third and fourth lines to the solid momentum equations. The fifth and sixth lines
are the Navier–Stokes momentum equation and incompressibility constraint. The
last line enforces the continuity of velocity on the fluid-structure interface Γfs. All
the following weakly nonlinear developments are performed using the strong form
eq. (2.1) of the governing equations.

2.3 Weakly nonlinear analysis

In this section, we present a weakly nonlinear analysis of eq. (2.1), using the method
of multiple scales [Nayfeh et al. 1995]. Noting U∗c the linear critical velocity threshold
at which the flutter instability occurs, we seek to reconstruct the (weakly) nonlinear
solution for U∗ close to U∗c . The reduced velocity is thus developed as

1
U∗2 =

1
U∗c

2 + ε2∆U∗ (2.2)

with 0 < ε � 1 quantifying the deviation from the threshold. Note that the param-
eter ∆U∗ = ±1 is only introduced to handle the two possible bifurcation scenarios.
Indeed, if the bifurcation is supercritical, then we seek solutions for U∗ ≥ U∗c , which
requires ∆U∗ = −1. On the contrary, if the bifurcation is subcritical, we seek so-
lutions for U∗ ≤ U∗c , which requires ∆U∗ = +1. Note also that we have opted for
developing directly U∗−2 = U∗c

−2 + ε2∆U∗ instead of U∗ = U∗c + ε2∆U∗ , for example.
This choice is motivated by the work of Gallaire et al. (2016) who showed that, in the
case of the vortex shedding bifurcation behind a circular cylinder, developing the
parameter as it naturally appears in the equation (i.e. Re−1, instead ofRe) improves
the accuracy of the weakly nonlinear analysis. On the practical side, this choice also
has the advantage of avoiding additional calculatory steps that arise when expand-
ing U∗−2 from the expansion of U∗.

The multiple scales approach consists in seeking for a solution q under a series
form:

q = q0 + εq1(t0, t1, t2, t3, ...) + ε2q2(t0, t1, t2, t3, ...) + ε3q3(t0, t1, t2, t3, ...) + ... (2.3)

where the qi are functions of space (implicit here) and of a series of timescales ti. In
addition, the physical time is decomposed along the different timescales:

∂t = ∂t0 + ε∂t1 + ε2∂t2 + ε3∂t3 + ... (2.4)

By injecting eq. (2.3) and eq. (2.4) in the governing equations eq. (2.1), one can
determine, at each order εi a system of equations for εiqi. In order to facilitate the
analytical developments, the nonlinear terms that involve trigonometric functions,
(i.e. R(θ), W(uh, θ, uθ) and CL(Λ, θ)) are pre-developed in series of ε powers in sec-
tion 2.A.

2.3.1 Zero-th order: steady solution

Gathering all terms at order ε0, it is immediately obtained that q0 is a steady solution
at U∗ = U∗c , i.e.

R(q0; U∗c ) = 0 (2.5)
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2.3.2 First order: linear stability

At order ε1, the linearized equations at U∗ = U∗c are obtained, which write symboli-
cally:

M ∂t0 q1 +J (q0; U∗c )q1 = 0 (2.6)

where the Jacobian operator J (q0; U∗c ) = ∂R/∂q|U∗=U∗c
is defined by:

J (q0; U∗c )q1 =




−uh1
−uθ1

2ζhΩU∗c
−1uh1 + Ω2U∗c

−2h1 − m̃−1
[

∂CL
∂θ θ1 +

∂CL
∂Λ Λ1

]

2ζpU∗c
−1uθ1 + U∗c

−2θ1 − m̃−1rθ
−2 ∂CM

∂Λ Λ1

uθ1ez ∧U0 +∇U1 (U0 −W0) +∇U0

(
U1 − ∂W

∂q q1

)
−∇ · σf(p1, U1)

−∇ ·U1

U1 − ∂W
∂q q1




(2.7)
where the derivative of the grid velocity with respect to the state q is such that

∂W
∂q

q1 =
∂W
∂uh

uh1 +
∂W
∂θ

θ1 +
∂W
∂uθ

uθ1

The first order solution q1 to eq. (2.6) can be viewed as a superimposition of the
so-called global modes q̂k

q1 = ∑
k

Ak
ε(t1, ..., t3)q̂ke(λk+iωk)t0 + c.c. (2.8)

with the amplitudes Ak
ε(t1, ..., t3) depending only on the slow timescales (ti, i > 1)

and the q̂k defined as the eigenvectors of the linear stability eigenproblem [Sipp et
al. 2010]:

σkM q̂k +J (q0; U∗c )q̂
k = 0 (2.9)

where σk = λk + iωk is the corresponding eigenvalue.
By definition, at U∗ = U∗c , all global modes are stable (λ < 0) except for the

critical mode, noted q̂c, which has a purely imaginary eigenvalue 0 + iωc. As a con-
sequence, only the critical mode is kept in the sum eq. (2.8), such that

q1 = Aε(t1, ..., t3)q̂ceiωct0 + c.c. (2.10)

2.3.3 Second order

At order ε2, the following forced linear problem is obtained:

M ∂t0 q2 +J (q0; U∗c )q2 = −M ∂t1 q1 +F2(q1, q1) (2.11)
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with the right-hand side forcing term:

F2(qa, qb) =




0
0

m̃−1CL2,11(qa, qb)
0

−uθ aez ∧Ub −∇Ua

(
Ub − ∂W

∂q qb

)
+∇U0 W2,11(qa, qb)

0
W2,11(qa, qb)




Note that the order ε2 contributions from the lift coefficient CL2,11 and grid velocity
W2,11 are bilinear functions, defined in section 2.A.

Due to the particular shape of q1, eq. (2.10), the first forcing term in the right-
hand side of eq. (2.11) is resonant, meaning that it vibrates at the critical eigenfre-
quency ωc which is an eigenvalue of the linearized operator in the left-hand side:

M ∂t1 q1 = M ∂t1 Aεq̂ceiωct0 + c.c.

In general, such a resonant excitation yields a diverging response, which is not ac-
ceptable for a bounded physical weakly nonlinear solution. In order to avoid that,
the Fredholm alternative [Sipp et al. 2007; Meliga et al. 2009] is invoked by stating
that the resonant forcing term must be orthogonal to the kernel of the adjoint linear
operator, i.e. to the adjoint critical mode q†

c . For now, we report the exact defini-
tion of the adjoint modes to section 2.3.6 but we precise already the definition of the
scalar product used to define orthogonality:

〈qa, qb〉 = ha
? hb +uha

? uhb + θa
? θb +uθ a

? uθb +
∫

Ωf

{Ua
? ·Ub + pa

?pb}+
∫

Γfs

{Λa
? ·Λb}

where the ? sign indicates the complex conjugate. Exploiting the bi-orthogonality
property of the direct-adjoint basis, the Fredholm alternative gives:

〈
q†

c , M ∂t1 q1

〉
= 0 =⇒ ∂t1 Aε = 0 (2.12)

which turns out to simply cancel the resonant forcing term.
Plugging eq. (2.10) into the second (non-resonant) forcing term of eq. (2.11) yields

four contributions:

F2(q1, q1) = |Aε|2 (F2(q̂c, q̂?
c ) +F2(q̂?

c , q̂c))

+
(

A2
εF2(q̂c, q̂c)e2iωct0 + c.c.

)

Due to linearity, the second-order solution can then be written as the sum of the
individual responses to each forcing term:

q2 = |Aε|2q̂|A|
2

2 +
(

A2
εq̂A2

2 e2iωct0 + c.c.
)

(2.13)

with q̂|A|
2

2 and q̂A2

2 , two time-independent functions verifying

J (q0; U∗c )q̂
|A|2
2 = F2(q̂c, q̂?

c ) +F2(q̂?
c , q̂c) (2.14a)

[2iωc M +J (q0; U∗c )] q̂A2

2 = F2(q̂c, q̂c) (2.14b)
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2.3.4 Third order: Stuart–Landau equation

At order ε3, we obtain another forced linear system:

M ∂t0 q3 +J (q0; U∗c )q3 =−M ∂t2 q1 −M ∂t1 q2 − ∆U∗L q1

+F3,21(q2, q1) +F3,111(q1, q1, q1)
(2.15)

where

L =




0 0 0 0 0 0 0
0 0 0 0 0 0 0

Ω2 0 ζhΩU∗c 0 0 0 0
0 1 0 ζpU∗c 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




with the following forcing terms:

F3,21(qa, qb) =




0
0

m̃−1CL3,21(θa, θb)
0

−uθ aez ∧Ub − uθbez ∧Ua + ...
...−∇Ua

(
Ub − ∂W

∂q qb

)
−∇Ub

(
Ua − ∂W

∂q qa

)
+∇U0 W3,21(qa, qb)

0
W3,21(qa, qb)




and

F3,111(qa, qb, qc) =




0
0

m̃−1CL3,111(θa, θb, θc)
0

∇Ua W2,11(qb, qc) +∇U0 W3,111(qa, qb, qc)
0

W3,111(qa, qb, qc)




As for the second order forcing, the order ε3 contributions from the lift coefficient
CL3,21 and CL3,111, and from the grid velocity W3,21 and W3,111 are defined in sec-
tion 2.A.

Using eq. (2.12) in eq. (2.13), we obtain ∂t1 q2 = 0, which directly cancels the
second term in the right-hand side of eq. (2.15). In the four remaining forcing terms,
we use the particular forms of q1 (eq. (2.10)) and q2 (eq. (2.13)). It is then observed
that the forcing may be split between resonant and non-resonant terms. In particular,
the resonant part writes

−M ∂t2 Aε q̂c − ∆U∗AεL q̂c + |Aε|2AεFres(q̂c, q̂|A|
2

2 , q̂A2

2 )



46 Chapter 2. A weakly nonlinear solver for flutter bifurcation analysis

with

Fres(q̂c, q̂|A|
2

2 , q̂A2

2 ) =F3,21(q̂
|A|2
2 , q̂c) +F3,21(q̂A2

2 , q̂?
c )

+F3,111(q̂c, q̂c, q̂?
c ) +F3,111(q̂c, q̂?

c , q̂c) +F3,111(q̂?
c , q̂c, q̂c)

(2.16)
As already done at second order, the Fredholm alternative must again be invoked

to ensure a well-behaved expansion despite the presence of the above resonant forc-
ing. It leads to the following compatibility condition:

〈
q†

c ,−M ∂t2 Aε q̂c − ∆U∗AεL q̂c + |Aε|2AεFres(q̂c, q̂|A|
2

2 , q̂A2

2 )
〉
= 0 (2.17)

The Stuart–Landau equation — also referred to as amplitude equation — of the
flutter instability is finally deduced from eq. (2.17):

∂t A = α

(
U∗c

2

U∗2 − 1

)
A + β|A|2A (2.18)

after defining a rescaled amplitude A = εAε and using eq. (2.2) to re-introduce U∗ as
the bifurcation parameter. The normal form coefficients α and β only depend on the
solutions previously computed at orders ε0 to ε2 and on the adjoint critical mode.
They read:

α = − 1
U∗c

2

〈
q†

c , L q̂c
〉

〈q†
c , M q̂c〉

β =

〈
q†

c , Fres(q̂c, q̂|A|
2

2 , q̂A2

2 )
〉

〈q†
c , M q̂c〉

(2.19)

2.3.5 Solutions of the Stuart–Landau equation

To solve the Stuart–Landau equation, we introduce the time-dependent module R(t)
and phase φ(t) of the complex amplitude A(t) = R(t)eiφ(t). The latter expression
is injected in eq. (2.18), the real and imaginary part are separated and we obtain
— supposing R is different from the trivial zero solution — a coupled system of
equations for R(t) and φ(t):

∂tR = Re (α)

(
U∗c

2

U∗2 − 1

)
R +Re (β) R3

∂tφ = Im (α)

(
U∗c

2

U∗2 − 1

)
+ Im (β) R2

(2.20)
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Linear solutions Let us first consider the case where R is sufficiently small so that
the nonlinear term in eq. (2.18) (or eq. (2.20)) is negligible. From eq. (2.20), we im-
mediately obtain:

R(t; U∗) = Cte
1 exp

[
Re (α)

(
U∗c

2

U∗2 − 1

)

︸ ︷︷ ︸
:= λlin(U∗)

t

]

φ(t; U∗) = Im (α)

(
U∗c

2

U∗2 − 1

)

︸ ︷︷ ︸
:= ωlin(U∗)

t + Cte
2

with Cte
1 and Cte

2 two unspecified (they would be specified by initial conditions) real-
valued constants. Note in passing the dependence of R and φ in the parameter U∗.
Using the above expressions in combination with eq. (2.3) and eq. (2.10), the first-
order response — in the pitching degree of freedom, for example — reads:

θ(t; U∗) = 2Cte
1 |θ̂c| cos

[
(ωc + ωlin(U∗)) t + Cte

2 + φθc

]
eλlin(U∗) t (2.21)

where |θ̂c| and φθc are the modulus and phase of the pitching degree of freedom in
the critical mode, q̂c. First, we note that, Cte

1 being unspecified, the amplitude of the
oscillation is free, and would only be fixed by additional initial conditions. Then, in
the cos function, we see that ωlin is a correction of the oscillation frequency when
U∗ departs from the critical flutter threshold U∗c . As for λlin, it is seen to predict
the growth rate of the flutter mode when U∗ 6= U∗c . More precisely, for Re (α) < 0
(resp. Re (α) > 0), λlin is positive — i.e. oscillations grow exponentially — when
U∗ > U∗c (resp. U∗ < U∗c ). For an instability like flutter, which typically occurs
when increasing the reduced velocity i.e. when U∗ > U∗c , we thus necessarily have

Re (α) < 0 (2.22)

Nonlinear periodic solutions In this manuscript we are mostly interested in the
permanent nonlinear flutter regimes, i.e. we do not study the transients. As a conse-
quence we seek after periodic solutions of the Stuart–Landau equation. The period-
icity hypothesis allows to write that the modulus R does not depend on time. The
∂tR term in eq. (2.20) is thus zero so that we directly obtain

R(U∗)2 =
Re (α)

Re (β)

(
1− U∗c

2

U∗2

)
(2.23a)

φ(t; U∗) =
(
Im (β)

Re (α)

Re (β)
− Im (α)

)(
1− U∗c

2

U∗2

)

︸ ︷︷ ︸
:= ωnl(U∗)

t + Cte (2.23b)

where Cte is an arbitrary real-valued constant that fixes the LCO phase. Using the
above expressions in combination with eq. (2.3) and eq. (2.10), we again reconstruct
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the pitching first-order response as:

θ(t; U∗) = 2

√√√√Re (α)

Re (β)

(
1− U∗c

2

U∗2

)
|θ̂c| cos

[
(ωc + ωnl(U∗)) t + Cte + φθc

]
(2.24)

where |θ̂c| and φθc are the modulus and phase of the pitching degree of freedom in
the critical mode, q̂c. Similarly to the linear case detailed in the previous paragraph,
the pulsation ωnl represents a correction to the critical flutter frequency ωc when de-
parting from U∗c . This time, the correction is nonlinear: it can be seen as the sum of
the linear correction ωlin (that depends on α only) introduced in the previous para-
graph, and of a nonlinear contribution that depends on β.
Recalling that in the case of flutter we have Re (α) < 0 (eq. (2.22)), the sign of Re (β)
is of particular interest. Indeed, according to eq. (2.23a), R can be properly defined
for U∗ above U∗c only if Re (β)/Re (α) > 0, i.e. Re (β) < 0. In this case the bifur-
cation is supercritical, as shown in the upper left cell of table 2.1. On the contrary,
if Re (β)/Re (α) < 0 i.e. Re (β) > 0, then R can be properly defined only for U∗

below U∗c , which means that the bifurcation is subcritical (lower left cell of table 2.1).
For completeness, we have also represented in the right column of table 2.1 the two
possible cases when Re (α) > 0. Overall, the sign of Re (β) alone gives the nature of
the bifurcation.

Re (α) < 0 Re (α) > 0

Re (β) < 0

supercritical

U∗
c

supercritical

U∗
c

Re (β) > 0

subcritical

U∗
c

subcritical

U∗
c

TABLE 2.1: Nature of the bifurcation depending on the signs of Re (α) and
Re (β). In each cell of the table, an amplitude–vs–U∗ diagram is shown.
The central horizontal branch always represents the trivial R = 0 solu-
tion. By convention, the solid (resp. dashed) lines represent stable (resp.

unstable) solutions.

2.3.6 Continuous adjoint equations

At order 2 and 3, the adjoint q†
c of the critical eigenmode is projected onto the res-

onant forcings to obtain compatibility conditions. In this paragraph we provide
the definition of the adjoint modes. First, we formally define the adjoint operators
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J †(q0) and M † of J (q0) and M through the classical variationnal statement :
〈(

σ?M † +J †(q0; U∗c )
)

q†, q
〉

=
〈

q†, (σM +J (q0; U∗c )) q
〉

∀q, q† (2.25)

with q† =
(
h†, θ†, uh

†, uθ
†, U†, p†, Λ†,

)T
the adjoint variable to q. We recall that the

scalar product defines as 〈qa, qb〉 = ha
? hb +uha

? uhb + θa
? θb +uθ a

? uθb +
∫

Ωf
{Ua

? ·Ub + pa
?pb}+∫

Γfs
{Λa

? ·Λb}. Then, the adjoint q† of the (direct) eigenpair (σ, q̂) is defined as the
eigenvector of the adjoint operator with eigenvalue σ?:

σ?M †q† +J †(q0; U∗c )q
† = 0 (2.26)

Let us now derive an explicit strong form for eq. (2.26). To that end, we use
the definition eq. (2.25) and explicitly develop its right-hand side which represents
a weak formulation for the direct linearized eigenproblem eq. (2.9). It is obtained
using the same steps3 as detailed in section 1.2.1 for the nonlinear problem such that
only the result is stated here:
〈(

σ?M † +J †(q0; U∗c )
)

q†, q
〉

=
〈

q†, (σM +J (q0; U∗c )) q
〉

=

{σh− uh} h†?

+ {σθ − uθ} θ†?

+

{
σuh + 2ζh

Ω
U∗c

uh +
Ω2

U∗c
2 h− 1

m̃

[
∂CL

∂θ
θ +

∂CL

∂Λ
Λ

]}
uh

†?

+

{
σuθ + 2ζp

1
U∗c

uθ +
1

U∗c
2 θ − 1

rθ
2m̃

∂CM

∂Λ
Λ

}
uθ

†?

+
∫

Ωf

{
σU + uθez ∧U0 +∇U (U0 −W0) +∇U0

(
U−

(
∂W
∂uh

uh +
∂W
∂θ

θ +
∂W
∂uθ

uθ

))}
·U†?

+
∫

Ωf

σf(U, p) : ∇U†? −
∫

Ωf

∇ ·U p†? +
∫

Γfs

Λ ·U†?

+
∫

Γfs

{
U−

(
∂W
∂uh

uh +
∂W
∂θ

θ +
∂W
∂uθ

uθ

)}
·Λ†?

where it is recalled that Λ = σf(p, U)Ns (cf eq. (1.25)). We need several ingredients to
reorganize this weak formulation. First, we notice that (∇U0U) ·U†? = ∇U0

TU†? ·
U and define lΛ = 2 RT(θ0)ey and mΛ = 2 ez ∧ X such that

∂CL

∂Λ
Λ = 2

∫

Γfs

(
RT(θ0)ey

)
·Λ =

∫

Γfs

lΛ ·Λ

∂CM

∂Λ
Λ = 2

∫

Γfs

(X ∧Λ) · ez =
∫

Γfs

mΛ ·Λ

Then, we integrate by part the “perturbation convection by the baseflow” term
∫

Ωf

{∇U (U0 −W0)} ·U†? = −
∫

Ωf

{
∇U†? (U0 −W0)

}
·U+

∫

∂Ωf

{
((U0 −W0) ·Nf)U†?

}
·U

where one notices that the boundary integral on ∂Ωf can be reduced to Γout because
it is zero both on Γin (due to U = 0) and on Γfs (due to U0−W0=0). Finally gathering

3Namely, integration by part of the viscous stress term, incorporation of the farfield boundary con-
ditions and of the definition of Λ
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the different terms, we obtain a weak formulation where q is viewed as the test
function:
〈(

σ?M † +J †(q0; U∗c )
)

q†, q
〉
=

{
σh†? +

Ω2

U∗c
2 uh

†?
}

h

+

{
σθ†? +

1
U∗c

2 uθ
†? − 1

m̃
∂CL

∂θ
uh

†? −
∫

Ωf

(
∇U0

TU†?
)
· ∂W

∂θ
−
∫

Γfs

Λ†? · ∂W
∂θ

}
θ

+

{
σuh

†? + 2ζh
Ω
U∗c

uh
†? − h†? −

∫

Ωf

(
∇U0

TU†?
)
· ∂W

∂uh
−
∫

Γfs

Λ†? · ∂W
∂uh

}
uh

+

{
σuθ

†? + 2ζp
1

U∗c
uθ

†? − θ†? +
∫

Ωf

(ez ∧U0) ·U†? −
∫

Ωf

(
∇U0

TU†?
)
· ∂W

∂uθ
−
∫

Γfs

Λ†? · ∂W
∂uθ

}
uθ

+
∫

Ωf

{
σU†? −∇U†? (U0 −W0) +∇U0

TU†?
}
·U +

∫

Γout

{
((U0 −W0) ·Nf)U†?

}
·U

+
∫

Ωf

σf(U†?, p†?) : ∇U−
∫

Ωf

∇ ·U†? p +
∫

Γfs

Λ†? ·U

+
∫

Γfs

{
U†? − 1

m̃
lΛuh

†? − 1
rθ

2m̃
mΛuθ

†?
}
·Λ

A last integration by part of the diffusion term, and an adequate cancellation of all
boundary terms leads to the strong form of the continuous adjoint equations:

σ?h† +
Ω2

U∗c
2 uh

† = 0

σ?θ† +
1

U∗c
2 uθ

† − 1
m̃

∂CL

∂θ
uh

† −
∫

Ωf

(
∇U0

TU†
)
· ∂W

∂θ
−
∫

Γfs

Λ† · ∂W
∂θ

= 0

σ?uh
† + 2ζh

Ω
U∗c

uh
† − h† −

∫

Ωf

(
∇U0

TU†
)
· ∂W

∂uh
−
∫

Γfs

Λ† · ∂W
∂uh

= 0

σ?uθ
† + 2ζp

1
U∗c

uθ
† − θ† +

∫

Ωf

(ez ∧U0) ·U† −
∫

Ωf

(
∇U0

TU†
)
· ∂W

∂uθ
−
∫

Γfs

Λ† · ∂W
∂uθ

= 0

σ?U† −∇U† (U0 −W0) +∇U0
TU† −∇ · σf(U†, p†) = 0 in Ωf

−∇ ·U† = 0 in Ωf

U† − 1
m̃

lΛuh
†? − 1

rθ
2m̃

mΛuθ
†? = 0 on Γfs

(2.27)
with the adjoint inflow and outflow boundary conditions

U† = 0 on Γin

σf(U†, p†)nf + ((U0 −W0) ·Nf)U† = 0 on Γout

and the definition of the adjoint Lagrange multiplier on Γfs : Λ† = σf(U†, p†)Ns.

2.3.7 Summary

In the end, the weakly nonlinear solver detailed in this chapter allows to compute
the approximate nonlinear behavior of the typical section at the cost of solving the
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following sequence of — mostly linear, at the exception of eq. (2.28a) — problems:

R(q0; U∗c ) = 0 (2.28a)
(iωcM +J (q0; U∗c )) q̂c = 0 (2.28b)

(
−iωcM

† +J †(q0; U∗c )
)

q†
c = 0 (2.28c)

J (q0; U∗c )q̂
|A|2
2 −F2(q̂c, q̂?

c )−F2(q̂?
c , q̂c) = 0 (2.28d)

[2iωc M +J (q0; U∗c )] q̂A2

2 −F2(q̂c, q̂c) = 0 (2.28e)

of which the Stuart–Landau equation is deduced:

∂t A = α

(
U∗c

2

U∗2 − 1

)
A + β|A|2A

α = − 1
U∗c

2

〈
q†

c , L q̂c
〉

〈q†
c , M q̂c〉

β =

〈
q†

c , Fres(q̂c, q̂|A|
2

2 , q̂A2

2 )
〉

〈q†
c , M q̂c〉

Obviously, solving for a periodic flutter solution with this analysis comes at much
lower numerical cost than performing a classical time-integration of the governing
equations (see section 1.3) or even a Harmonic-Balance type calculation (see chap-
ter 3). From a more theoretical point of view, the weakly nonlinear analysis provides
some insights on how each order generates the next one through the forcing terms
in the right-hand sides of eq. (2.11) and (2.15). Furthermore, we will see in chapter 5
that the semi-analytical expression of the normal form coefficient β allows to de-
compose it in individual contributions coming from different sources of nonlinear-
ity, ultimately shedding some light on the physical origin of the sub- or supercritical
nature of the flutter bifurcation.

2.4 Numerical solution

In this section, we present the numerical approach used to obtain approximate so-
lutions to the sequence of problems, eq. (2.28). First, the equations are discretized
in space using a SUPG-stabilized finite element method and the algorithms used to
solve the discrete problems are briefly presented. Then, a mesh adaptation frame-
work is proposed with the objective of avoiding a manual mesh design for each new
Reynolds number investigated. This will come in particularly handy for the wide
parametric explorations exposed in chapter 4 and chapter 5. The section ends with
some validation results.

2.4.1 SUPG-stabilized finite elements discretization

The SUPG-stabilized finite element method [Brooks et al. 1982] is used to discretize
in space the sequence of problems eq. (2.28). The weak statements that define the
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discrete problems then read

〈ψ + τ Ladv[q0](ψ), R(q0)〉 = 0 (2.29a)
〈ψ + τ Ladv[q0](ψ), (iωcM +J (q0)) q̂c〉 = 0 (2.29b)

〈
ψ − τ Ladv[q0](ψ),

(
−iωcM

† +J †(q0)
)

q†
c

〉
= 0 (2.29c)

〈
ψ + τ Ladv[q0](ψ), J (q0)q̂

|A|2
2 −F2(q̂c, q̂?

c )−F2(q̂?
c , q̂c)

〉
= 0 (2.29d)

〈
ψ + τ Ladv[q0](ψ), [2iωc M +J (q0)] q̂A2

2 −F2(q̂c, q̂c)
〉

= 0 (2.29e)

with ψ =
(
ψh, ψuh , ψθ , ψuθ , ψU, ψp, ψΛ

)T the (Galerkin) test function taken in R×
R × R × R × VU × V p × VΛ, where the functional spaces VU, V p and VΛ are de-
fined in section 1.2.1. The SUPG stabilization is introduced thanks to the operator
Ladv[q0](ψ) =

(
0, 0, 0, 0,∇ψU (U0 −W0) , 0, 0

)T which convects the fluid velocity
test function with convection velocity U0 −W0. Obviously, the SUPG contribution
is zero for all equations, except the fluid momentum equation. Note that in the ad-
joint problem, the convection velocity is − (U0 −W0), as visible in the strong form
eq. (2.27). This is the reason why a minus sign is used in front of the SUPG con-
tribution in eq. (2.29c). More details about the SUPG formulation (definition of the
stabilization parameter τ, etc) are provided in section 1.2.2 where it was applied to
discretize the fully nonlinear problem.

Discrete problems The discrete problems corresponding to eq. (2.29) are obtained
by decomposing the test and trial functions in a finite element basis, as already done
in section 1.2.2. The Taylor–Hood (P2, P1) finite element pair is used for (U, p), and
P1 elements are used for Λ. The discrete problems finally write

R(q0; U∗c ) = 0 (2.30a)
(

iωcM(q0) + J(q0; U∗c )
)

q̂c = 0 (2.30b)
(
− iωcM†(q0) + J†(q0; U∗c )

)
q†

c = 0 (2.30c)

J(q0; U∗c )q̂
|A|2
2 − F2(q̂c, q̂?

c )− F2(q̂?
c , q̂c) = 0 (2.30d)

(
2iωcM(q0) + J(q0; U∗c )

)
q̂A2

2 − F2(q̂c, q̂c) = 0 (2.30e)

The discrete nonlinear residual R and the mass matrix M(q0) were already defined
in details — i.e. block-by-block — in eq. (1.32). For the Jacobian matrix J(q0; U∗c ), we
provide in section 2.B the detailed block definition that results from the weak form
eq. (2.29b). The block definitions of the other discrete operators can be similarly
deduced from the corresponding weak forms and are not further detailed.

“Stabilize last” vs “stabilize first”: a brief discussion One may notice that a
choice was made to stabilize the weakly nonlinear equations, while “weakly non-
linearizing” the stabilized nonlinear equations would have been a possible alter-
native. From now, let us refer to these two approaches as weakly-nonlinearize-
then-stabilize and stabilize-then-weakly-nonlinearize, respectively. The choice of the
weakly-nonlinearize-then-stabilize approach is motivated by the two following rea-
sons. First, by stabilizing last, we avoid overburdening the already cumbersome
weakly nonlinear derivations with additional highly nonlinear stabilization terms.



2.4. Numerical solution 53

(a) Stabilize-then-adjointize

−0.5

0

0.5

Re
(
U†) · ex

(b) Adjointize-then-stabilize

FIGURE 2.1: Adjoint critical eigenvectors obtained with stabilize-then-
adjointize (a) vs adjointize-then-stabilize (b) approaches. Oscillations of
the size of the mesh elements are observed with the first approach while

totally avoided with the second.

Second, we also settle the issue of adjoint consistency. Indeed, it is known that the
weak form resulting from SUPG stabilization is not adjoint consistent [Collis et al.
2002; Cyr et al. 2014], meaning that a stabilize-then-adjointize strategy4 does not
produce a consistent discretization of the continuous adjoint operator, J †. In con-
trast, the adjointize-then-stabilize strategy does. Several studies have reported the
superiority of the adjointize-then-stabilize approach in terms of accuracy of the finite
element approximation, for example in the context of optimal control problems [Col-
lis et al. 2002] or a posteriori adjoint-based error estimation [Cyr et al. 2014]. For the
flow of interest in this work, we illustrate adjoint inconsistency in fig. 2.1. Whereas
the stabilize-then-adjointize approach (a) produces an adjoint critical eigenvector
with element-sized oscillations close to the plate, the adjointize-then-stabilize ap-
proach (b) yields a perfectly smooth solution. Such observations are consistent, for
example, with the work of Hicken et al. (2011, fig. 1) and motivate the use of the
adjointize-then-stabilize approach for the present work. The main downside of this
approach, however, is that a discretization of the adjoint problem is not simply ob-
tained anymore by trans-conjugating the discretization of the direct problem. In-
stead, a dedicated routine must be implemented to build the discretization of the
stabilized adjoint equations.

2.4.2 Solution method

The nonlinear problem eq. (2.30a) is solved with Newton iterations. The Jacobian
matrix that is needed at each Newton iteration is computed by analytical differen-
tiation of the stabilized weak formulation, except for the stabilization parameter τ
which is kept constant. The linear system to be solved at each Newton iteration is
handled with the sparse LU solver MUMPS [Amestoy et al. 2001], which is used
from FreeFEM’s interface to PETSc [Balay et al. 2019].

To achieve a quick convergence to the critical eigenmode, we directly solve for
the critical triplet (q̂c, ωc, U∗c ), defined by:

(
iωcM + J(q0; U∗c )

)
q̂c = 0

q̂H
c Mq̂c − 1 = 0

Im
(

ĥc

)
= 0

(2.31)

4More precisely, stabilize-then-adjointize consists in taking as a discrete approximation to J † the
Hermitian transpose of the SUPG-dicretized linear operator, JH
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where eq. (2.30b) is re-stated in the first line, the second line is an (arbitrary) nor-
malization of the eigenvector and the third line is a (arbitrary) phase condition that
sets the imaginary part of the heaving degree of freedom to zero. Note the depen-
dence of the Jacobian in U∗c . The above problem is nonlinear and is solved again
with Newton iterations. Due to the limited radius of convergence of the Newton it-
erations, a good enough initial guess must be provided. To that end, an extraction of
the rightmost eigenvalues of (σM + J(q0; U∗))q̂ = 0 is first performed with SLEPc’s
Krylov–Schur algorithm [Hernandez et al. 2005] (with shift-invert spectral transfor-
mation) for different U∗ spanning a large enough range that contains U∗c . Then, the
triplet (q̂, ω, U∗) corresponding to the growth rate nearest to zero is taken as an ini-
tial guess. If one has previously obtained a critical triplet for physical parameters
close enough to the current ones, it is also possible to take that former solution as
an initial guess. In practice, this is the most frequent situation when we explore the
(m̃,Re) parameter space (see chapter 4 and chapter 5).

Once the direct critical mode is known, the adjoint critical mode is obtained by
performing some Krylov-Schur iterations on eq. (2.30c), using a shift close to −iωc
for quick convergence.

Finally, the second order problems eq. (2.30d)–(2.30e) consist in simple linear
solves that we perform again with MUMPS.

2.4.3 Mesh adaptation loop

The quantities involved in the weakly nonlinear analysis possess very different spa-
tial supports. An illustration of that is provided in fig. 2.2. The steady solution
(a), the direct eigenmode (b, top) and the second order forcings (c) are seen to have
strong structures in the boundary layers and in the wake. Differently, the adjoint
mode (b, bottom) has structures close to the plate and upstream. In addition to
that, the spatial support of the function will significantly change when varying the
Reynolds number across the range of interest in the subsequent chapters, 10 ≤ Re ≤
104 (cf chapter 4 and chapter 5). To cope with those difficulties and make the physi-
cal exploration as automatical as possible, we use mesh adaptation. A feature-based
strategy [Alauzet et al. 2016] is adopted where the metrics is provided by the inter-
section5 of the individual metrics adapted to the Hessian of the following weakly
nonlinear quantities:

U0, V0,
∣∣∣Ûc

∣∣∣,
∣∣∣V̂c

∣∣∣,
∣∣∣U†

c

∣∣∣,
∣∣∣V†

c

∣∣∣,
∣∣∣Û|A|

2

2

∣∣∣,
∣∣∣V̂ |A|

2

2

∣∣∣,
∣∣∣ÛA2

2

∣∣∣,
∣∣∣V̂A2

2

∣∣∣,
∣∣ fβf

∣∣

The last quantity, fβf , corresponds to the volume distribution of β. Indeed, by de-
veloping the scalar product in the numerator of the definition of β, eq. (2.19), we
have

β =
F

uh
res(q̂c, q2

|A|2 , q2
A2
) uh

†
c
?

〈q†
c , M q̂c〉

+
∫

Ωf

F U
res(q̂c, q2

|A|2 , q2
A2
) ·U†

c
?

〈q†
c , M q̂c〉︸ ︷︷ ︸

= fβf
(X)

+
∫

Γfs

F Λ
res(q̂c, q2

|A|2 , q2
A2
) ·Λ†

c
?

〈q†
c , M q̂c〉

where F uh
res, F U

res and F Λ
res are the components of Fres along uh, U and Λ, respec-

tively. The second contribution is seen to be a volume integral of a quantity defined
in the fluid domain. We identify its integrand, noted fβf , as the spatial distribution
(or “density”) of β. As seen in fig. 2.2(d), this quantity is highly localized close to

5A definition of the intersection of metrics can be found, for example, in the PhD manuscript of
Frazza (2018) (§5.2.3)
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the plate leading edge and is believed to be an additional pertinent indicator about
where the mesh should be refined to capture β at best. Note that fβf will be used
again in chapter 5, for physical discussion on the origin of the nonlinearities.

In FreeFEM, the previously described mesh adaptation can be simply performed
by using the interface to BAMG [Hecht 2006]:

thFadapted=adaptmesh(thF, [uFb,vFb], // U0, V0

[uFDmod,vFDmod], //
∣∣∣Ûc

∣∣∣,
∣∣∣V̂c

∣∣∣
[uFAmod,vFAmod], //

∣∣U†
c
∣∣,
∣∣V†

c
∣∣

[uF20mod,vF20mod], //
∣∣∣Û|A|

2

2

∣∣∣,
∣∣∣V̂ |A|

2

2

∣∣∣
[uF22mod,vF22mod], //

∣∣∣ÛA2

2

∣∣∣,
∣∣∣V̂A2

2

∣∣∣
betaspatialmod, //

∣∣ fβf

∣∣
nbvx=1e6,ratio=1.5,nbsmooth=20,

hmin=1e-9,hmax=1,err=0.01);

Obviously, the metric used to obtain an adapted mesh is computed from the
solution on a previous mesh. As a consequence, mesh adaptation is actually a non-
linear process that we handle with the “fixed-point” loop described in algorithm 1.

Algorithm 1: Mesh adaptation for weakly nonlinear analysis

Data: (Re, m̃, ...), thF, q0, q̂c, U∗c , ωc, q̂|A|
2

2 , q̂A2

2 , α, β, fβf

while {(∆U∗c > tolU∗c ) or (∆α > tolα) or (∆β > tolβ)} do
U∗c old = U∗c , αold = α, βold = β ;

thF=AdaptMesh(thF,q0,q̂c,q†
c ,q̂|A|

2

2 , q̂A2

2 , fβf) ;
q0=SolveOrder0(thF,q0) ;
[q̂c,U∗c ,ωc,q†

c ]=SolveOrder1(thF,q0,q̂c,U∗c , ωc) ;

[q̂|A|
2

2 , q̂A2

2 ]=SolveOrder2(thF,q0,q̂c) ;

[α, β, fβf]=BuildStuartLandau(thF,q0,q̂c,q†
c ,q̂|A|

2

2 , q̂A2

2 ) ;

∆U∗c =
|U∗c −U∗c old|
|U∗c old|

, ∆α =
|α− αold|
|αold|

, ∆β =
|β− βold|
|βold|

;

end

For a given set of physical parameters, an adequate initial guess for the mesh and
different weakly nonlinear quantities are provided. The loop starts by adapting the
mesh to the current solution, given the set of sensors. Then, the sequence of weakly
nonlinear problems eq. (2.30) is solved. First, a new q0 is computed on the adapted
mesh, given an initial guess. Then, the first order direct/adjoint problems are solved
with the current q0 and given an initial guess for q̂c

6. The second order problems are
solved given the newly computed q0 and q̂c. The weakly nonlinear solve completes
with the building of the Stuart–Landau equation, i.e. its coefficients α and β. The
spatial distribution of β is also an output, as it is used for the next mesh adaptation
iteration. The loop is stopped when the mesh and the solution are considered to be
converged. Here, we used a criteria based on the relative variations of U∗c , α and β.
The tolerances were set to 0.01. In practice, the number of mesh adaptation iterations
needed for convergence depends on the initial guess. Most of the time however, a

6An initial guess is needed for the direct mode since it is computed with a Newton method, cf
section 2.4.2
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weakly nonlinear run is performed starting from the solution at a previous nearby
parameter set. In this case, two iterations were enough7.

For a prescribed interpolation error of 0.01 and a given set of physical parame-
ters, the final adapted mesh is composed of 3.31 · 104 triangles and is illustrated in
fig. 2.2(e). The mesh is seen to well adapt to the features from the different sensors.
In the wake, streamwise elongated elements are obtained so as to efficiently capture

the variation of U0, Ûc, Û|A|
2

2 and ÛA2

2 . In the upstream part, the mesh is similarly re-
fined but, this time, to capture the adjoint mode structure (bottom half of fig. 2.2(b)).
Close to the plate, both the leading and trailing edge are particularly refined. The
leading edge refinement is the consequence of the sharp variations of the steady-
state, direct mode and second-order responses in that area. On the contrary, the
trailing edge refinement is due to the adjoint mode. Now zooming on the (upper)
leading edge in fig. 2.3, we observe several highly localized regions of extreme mesh
refinement. If these appear largely over-refined with respect to the steady-state so-
lution (fig. 2.3(a)), they are essential for capturing the extremely sharp variations of
fβf (fig. 2.3(b)).

7In the case the initial guess is taken at a nearby different set of physical parameters, we forced at
least 2 mesh adaptations in order for the mesh to be adapted, at least once, to a solution at the target
physical parameters.
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FIGURE 2.2: Hessian-based adaptation of the computational mesh to vari-
ous flow sensors arising in the weakly nonlinear analysis: the steady-state
solution U0 (a), the direct and adjoint critical modes |Ûc|, |U†

c | (b), the sec-

ond order responses |Û|A|
2

2 |, |ÛA2

2 | (c) and the spatial distribution | fβf
| of

the normal form coefficient β (d). The resulting adapted mesh is shown in
(e). This example is given forRe = 2682.81 and m̃ = 1000.
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(a) (b)

FIGURE 2.3: Zoom on the leading edge of the adaptated mesh of fig. 2.2(e).
The mesh is superimposed in (a) on the steady solution and in (b) on the

spatial distribution | fβf
| of the normal form coefficient, β.

2.4.4 Validation

Validating the weakly nonlinear solver itself is not an easy task as no established
benchmark exists for weakly nonlinear flutter solutions in laminar incompressible
flows. However, it is possible to compare the weakly nonlinear results to time-
accurate simulations obtained with a classical time-stepping approach (see section 1.3),
that we consider as reference. In fig. 2.4, the weakly nonlinear predictions (gray
lines) are compared with permanent regime time-accurate simulations (black disks)
on a range of U∗. On the upper figure (a), we show the (nonlinear) flutter fre-
quency. In the weakly nonlinear framework, the latter is reconstructed as ωc +
ωnl(U∗) whereas it is simply extracted from the DNS time signal, using Fast Fourier
Transform. On the lower figure (b), the amplitude of the pitching degree of freedom
is presented, where the weakly nonlinear result is obtained through the first order
reconstruction eq. (2.24).

Notice first that in both figures, the linear stability threshold, predicted from the
eigenproblem eq. (2.9), is in agreement with the DNS results that start oscillating
precisely at U∗c = 4.96. This gives confidence in the stability analysis part of the
weakly nonlinear analysis. Focusing now the part U∗ > U∗c , we observe in fig. 2.4(a)
a perfect agreement of the flutter frequencies on the whole range of reduced veloci-
ties. The situation is slightly different for the pitching amplitude which are in good
agreement only for U∗ close enough to U∗c . We point out the fact that this increas-
ing gap between WNL and DNS as we move away from the stability threshold is
expected. It is classicaly the result of higher order nonlinear effects coming into play
and that are not captured with the present third-order weakly nonlinear approach.
Similar trends can be found for example in [Gallaire et al. 2016] for the study of the
vortex shedding bifurcation around a circular cylinder, in [Vio et al. 2007] for the gal-
loping instability, in [Tchoufag et al. 2015] for the study of buoyancy-driven bodies
or in [Woodgate et al. 2007; Gai et al. 2016] for the flutter instability.

Overall, the weakly nonlinear solver — and as part of it, the linear stability
solver — is shown to be consistent with reference DNS solutions. In passing, we
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note that the DNS code is implemented without any SUPG stabilization, and in ad-
dition, with an Arbitrary Lagrangian Eulerian framework that is different from (but
consistent with) the “absolute velocity-rotating axis” formulation of the weakly non-
linear solver. As a consequence, the good agreement between these two different
approaches is considered a satisfying sign of the correctness of the weakly nonlinear
solver and its implementation. Further evidence of that will be given in chapter 5 for
different sets of physical parameters and with additional comparison to Harmonic
Balance calculations.
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FIGURE 2.4: Validation of the weakly nonlinear analysis. The weakly
nonlinear results (gray lines) for frequency (a) and pitching amplitude
(b) are compared with reference time-accurate (DNS) solutions (disks)

(Re = 500, m̃ = 1000).

2.5 Conclusion

In this chapter, we presented a weakly nonlinear approach based on the method of
multiple scales that allows to derive a normal form for the flutter bifurcation, us-
ing a typical aeroelastic section immersed in an incompressible Navier–Stokes flow.
The numerical solution of this semi-analytical approach has been addressed using a
SUPG-stabilized finite element spatial discretization. A particular focus was put on
the discretization of the adjoint problem for which it was shown that stabilizing the
continuous adjoint equations leads to significantly smoother solutions than “adjoin-
tizing” the discrete stabilized direct equations. Then, a Hessian-based mesh adapta-
tion framework was proposed where the adaptation metric is built as the intersec-
tion of various quantities involved in the weakly nonlinear analysis. In particular, a
scalar field, noted fβf(X), that reflects the spatial distribution of the nonlinear normal
form coefficient β was taken into account. Its small wavelength variations close to
the plate leading edge could then be accurately captured, hopefully leading to more



60 Chapter 2. A weakly nonlinear solver for flutter bifurcation analysis

efficient computation of β. Finally, the weakly nonlinear predictions were verified in
comparison to results from a classical fully nonlinear time-marching solver, yielding
consistent results.
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APPENDIX

Appendix 2.A Development in ε series of trigonometric non-
linearities

This appendix provides the decomposition in ε power series of quantities used in the
“absolute velocity - rotating axis” formulation and that involve trigonometric non-
linearities: the rotation matrix, R(θ) and the quantities that depend on it, W(uh, θ, uθ)
and CL(Λ, θ).

First, we seek for a ε-power series for cos θ and sin θ. To ease calculations, we
consider, as an intermediate step, the case θ0 = 0. A nonzero θ0 component is in-
troduced back a few lines below. Let us approximate cos and sin functions with a
Taylor development8 around 0:

cos(θ) = 1− θ2

2
+ o(θ3)

sin(θ) = θ − θ3

6
+ o(θ3)

Injecting in the above expressions the ε-series decomposition of θ (with θ0 = 0 here)

θ = εθ1 + ε2θ2 + ε3θ3 + ...

we obtain ε-series for cos θ and sin θ:

cos(θ) = 1− ε2 1
2

θ1
2 − ε3θ1θ2 + ...

sin(θ) = εθ1 + ε2θ2 + ε3
(

θ3 −
1
6

θ1
3
)
+ ...

From the above, it is easy to define the ε-series for R(θ), including a nonzero θ0
through:

R(θ) =R
(

θ0 +
(
εθ1 + ε2θ2 + ε3θ3 + ...

) )

=R(θ0)R(εθ1 + ε2θ2 + ε3θ3 + ...)

=R(θ0)

[(
1 0
0 1

)
+ ε

(
0 −θ
θ 0

)
+ ε2

(− 1
2 θ1

2 −θ2

θ2 − 1
2 θ1

2

)
+ ε3

( −θ1θ2 −(θ3 − 1
6 θ1

3)
θ3 − 1

6 θ1
3 −θ1θ2

)
+ ...

]

R(θ) =R(θ0) + ε
∂R
∂θ

θ1 + ε2
[

∂R
∂θ

θ2 + R2,11(θ1, θ1)

]
+ ε3

[
∂R
∂θ

θ3 + R3,21(θ2, θ1) + R3,111(θ1, θ1, θ1)

]
+ ...

8In practice, order 3 is sufficient in the Taylor expansion since the weakly nonlinear analysis is
pushed up to order 3 only
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with

∂R
∂θ

θ = R(θ0)

(
0 −θ
θ 0

)
R2,11(θa, θb) = −

1
2

R(θ0)

(
θaθb 0

0 θaθb

)

R3,21(θa, θb) = R(θ0)

(−θaθb 0
0 −θaθb

)
R3,111(θa, θb, θc) = R(θ0)

1
6

(
0 θaθbθc

−θaθbθc 0

)

Replacing R(θ) by its ε-series, we can derive the series for the solid/grid velocity
W(uh, θ, uθ) = R(θ)T(−U∞, uh)

T + uθez ∧ X:

W(uh, θ, uθ) =W(0, θ0, 0) + ε
∂W
∂q

q1 + ε2
[

∂W
∂q

q2 + W2,11(q1, q1)

]

+ε3
[

∂W
∂q

q3 + W3,21(q2, q1) + W3,111(q1, q1, q1)

]
+ ...

where the following functions are defined:

∂W
∂q

q =
∂RT

∂θ
θ (−U∞, 0)T + R(θ0)

T (0, uh)
T + uθez ∧ X ,

W2,11(qa, qb) = R2,11(θa, θb)
T (−U∞, 0)T +

∂RT

∂θ
θa (0, uhb)

T ,

W3,21(qa, qb) = R3,21(θa, θb)
T (−U∞, 0)T +

∂RT

∂θ
θa (0, uhb)

T +
∂RT

∂θ
θb (0, uha)

T ,

W3,111(qa, qb, qc) = R3,111(θa, θb, θc)
T (−U∞, 0)T + R2,11(θa, θb)

T (0, uhc)
T

Similarly for the lift coefficient CL(Λ, θ) = 2
∫

Γfs

{
Λ ·RT(θ)ey

}
, we can write:

CL(Λ, θ) =CL(Λ0, θ0) + ε
∂CL

∂q
q1 + ε2

[
∂CL

∂q
q2 + CL2,11(q1, q1)

]

+ε3
[

∂CL

∂q
q3 + CL3,21(q2, q1) + CL3,111(q1, q1, q1)

]
+ ...

where the following functions are defined:

∂CL

∂q
q = 2

∫

Γfs

{
Λ ·RT(θ0)ey + Λ0 ·

∂RT

∂θ
θey

}

CL2,11(qa, qb) = 2
∫

Γfs

{
Λ0 ·R2,11(θa, θb)

Tey + Λa ·
∂RT

∂θ
θbey

}

CL3,21(qa, qb) = 2
∫

Γfs

{
Λ0 ·R3,21(θa, θb)

Tey + Λa ·
∂RT

∂θ
θbey + Λb ·

∂RT

∂θ
θaey

}

CL3,111(qa, qb, qc) = 2
∫

Γfs

{
Λ0 ·R3,111(θa, θb, θc)

Tey + Λa ·R2,11(θb, θc)
Tey

}
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Appendix 2.B Operators of the SUPG-discretized eigenprob-
lem eq. (2.30b)

In this appendix, we provide the detailed expressions of the matrices involved in
the SUPG-discretized eigenproblem eq. (2.30b). The weak formulation defining the
discrete operators is given by eq. (2.29b), whereas the finite element test and trial
spaces have been defined in section 1.2.2. Here we simply recall that the fluid ve-
locity, pressure and interface Lagrange multiplier are searched in the finite element
spaces VU

∆ , V p
∆ and VΛ

∆ respectively. The corresponding basis are noted:

VU
∆ = span

(
ψU

0 , ψU
1 , ..., ψU

ndof,U−1

)

V p
∆ = span

(
ψ

p
0 , ψ

p
1 , ..., ψ

p
ndof,p−1

)

VΛ
∆ = span

(
ψΛ

0 , ψΛ
1 , ..., ψΛ

ndof,Λ−1

)

Let us now detail the matrices J(q0, U∗) and M(q0) that appear in eq. (2.30b). For
convenience, we split the solid and fluid unknowns such that eq. (2.30b) writes:

iωc

(
Ms 0
0 Mf(q0)

)

︸ ︷︷ ︸
= M(q0)

(
q̂sc
q̂fc

)
+

(
Jss(q0, U∗c ) Jsf(q0)

Jfs(q0) Jff(q0)

)

︸ ︷︷ ︸
= J(q0, U∗c )

(
q̂sc
q̂fc

)
= 0

where the solid unknowns are gathered in q̂sc = (ĥc, θ̂c, ûhc, ûθc)
T and the fluid finite

element degrees of freedom in q̂fc = (Ûc, p̂c, Λ̂c)T.
The linearized solid problem is defined by

Ms =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




Jss(q0, U∗) =




0 0 −1 0
0 0 0 −1

Ω2U∗−2 − 1
m̃

∂CL
∂θ

∣∣∣
q0

2ζhΩU∗−1 0

0 U∗−2 0 2ζpU∗−1




Jsf(q0) =




0 0 0
0 0 0
0 0 − 1

m̃
∂CL
∂Λ

∣∣∣
q0

0 0 − 1
m̃rθ

2
∂CM
∂Λ




Note that ∂CL/∂Λ|q0
and ∂CM/∂Λ are row matrices respectively defined by [∂CL/∂Λ|q0

]j =

2
∫

Γfs
{ψΛ

j ·RT(θ0)ey} and [∂CM/∂Λ]j = 2
∫

Γfs
{X ∧ψΛ

j } · ez.
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The linearized fluid problem is defined by

Mf(q0) =




MU,τ(q0) 0 0
0 0 0
0 0 0


 , Jff(q0) =




Aτ(q0) BT
τ(q0) IT

Λ

B 0 0
IΛ 0 0




Jfs(q0) =




0 Dθ(q0) Duh(q0) Duθ
(q0)

0 0 0 0
0 −Wθ(q0) −Wuh(q0) −Wuθ

(q0)




where MU,τ(q0) is the mass matrix on the velocity space that incorporates the SUPG
stabilization term. It was already defined in eq. (1.32) and is recalled below for con-
venience:

[MU,τ(q0)]ij =
∫

Ωf

{
ψU

j ·
(
ψU

i + τ∇ψU
i (U0 −W0)

)}

Matrices Aτ and BT
τ correspond to the linearized convection-diffusion and pressure

gradient operators (with stabilization):

[Aτ(q0)]ij =
∫

Ωf

{
∇ψU

j (U0 −W0) +∇U0 ψU
j

}
·ψU

i +
∫

Ωf

ν∇sψ
U
j : ∇ψU

i + ...

+
∫

Ωf

τ
{
∇ψU

j (U0 −W0) +∇U0 ψU
j −Re−1∇2ψU

j

}
· ∇ψU

i (U0 −W0)

[
BT

τ(q0)
]

ij
=
∫

Ωf

{
−ψ

p
j ∇ ·ψU

i + τ∇ψ
p
j · ∇ψU

i (U0 −W0)
}

whereas B is the classical (Galerkin) divergence matrix:

[B]ij := −
∫

Ωf

∇ ·ψU
j ψ

p
i

Matrix IΛ is a mass matrix defined on the interface Lagrange multiplier space. The
column matrices Wθ , Wuh and Wuθ

transmit the solid velocity to the fluid at the
interface, whereas the shape derivatives Dθ , Duh and Duθ

represent the effect of a solid
movement on the Navier–Stokes momentum equation:

[Wθ(q0)]i =
∫

Γfs

∂W
∂θ
·ψΛ

i

[Wuh(q0)]i =
∫

Γfs

∂W
∂uh
·ψΛ

i

[Wuθ
(q0)]i =

∫

Γfs

∂W
∂uθ
·ψΛ

i

[Dθ(q0)]i =
∫

Ωf

{
−∇U0

∂W
∂θ

}
·
(

ψU
i + τ∇ψU

i (U0 −W0)
)

[Duh(q0)]i =
∫

Ωf

{
−∇U0

∂W
∂uh

}
·
(

ψU
i + τ∇ψU

i (U0 −W0)
)

[Duθ
(q0)]i =

∫

Ωf

{
−∇U0

∂W
∂uθ

+ ez ∧U0

}
·
(

ψU
i + τ∇ψU

i (U0 −W0)
)
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3
A TIME SPECTRAL SOLVER FOR
PERIODIC FLUTTER SOLUTIONS

USING BLOCK-CIRCULANT
PRECONDITIONING

This chapter is dedicated to the presentation of a harmonic-balance-type ap-
proach, known as the Time Spectral Method (TSM). As a (long) preamble, TSM
is considered in the more global context of harmonic balance methods. A classi-
fication borrowed from spectral methods in space is used to organize the discus-
sion. The core of the chapter presents a Newton—Krylov solution method and
introduces the so-called block-circulant preconditioner that is at the core of the
efficiency of the proposed method, when large number of harmonics are used. A
strategy for a time-parallel implementation is presented. Several numerical ex-
periments are reported in order to assess the robustness of the preconditioner, in
particular for large numbers of harmonics. The method is applied first on a case
where the solution frequency is known (forced oscillations) and then extended
to the case of unknown frequency (self-sustained oscillations), using a Schur
complement approach.
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3.1 Introduction

The preliminary results obtained with weakly nonlinear analysis in chapter 2 show
that when nonlinearity becomes strong enough — typically when U∗ deviates sig-
nificantly from the critical threshold U∗c — the weakly nonlinear analysis predicts
less and less accurately the fully nonlinear dynamics. To overcome that shortcom-
ing — and yet, avoid resorting to classical, but costly, time-stepping algorithms (cf
section 1.3) — we propose to use a Harmonic Balance approach.

Harmonic Balance Methods (HBM) are a class of theoretical/numerical meth-
ods devoted to the research of periodic solutions to nonlinear systems of ordinary
(ODE) or partial (PDE) differential equations. The mathematical foundation of the
method lies in the ability to search for periodic solutions under the form of Fourier
series.The first reference to the name “Harmonic Balance” is often traced back to the
work of Krylov et al. (1949) where it was used to compute analytical solutions to
generic (weakly) nonlinear equations1. In its original form, the method solves for
the unknown Fourier coefficients of the solution. This may lead to possibly cumber-
some analytical aspects as the system of nonlinear equations verified by the Fourier
coefficients must be derived, before it is eventually solved by any means available.

The method has been actively used in various fields of physics, such as electri-
cal engineering [Gilmore et al. 1991] and nonlinear vibrations mechanics [Krack et
al. 2019], where the study of periodic solutions to nonlinear equations is ubiquitous.
In the aeroelasticity community, Harmonic Balance analyses have been performed to
study low-dimensional systems of ODE’s, such as pitching an plunging rigid airfoils
with linear analytical fluid models and structural nonlinearities [Shen 1959; Lauren-
son et al. 1980; Price et al. 1995; D. Tang et al. 1998; L. Liu et al. 2004; L. Liu et al.
2005]. With the progress of computers, moderate size systems such as arising from
spatial discretization of reasonable two-dimensional fluid flows were considered in
theoretical fluid mechanics works [Carte et al. 1995; Fabre et al. 2018; Rigas et al.
2020].

Consistently with the growing use of CFD-based aeroelasticity for industrial pur-
poses, HBM has received renewed interest starting with the work of Hall et al. (2002)
who relied on the use of discrete Fourier transforms in order to formulate a time-
domain HBM, later christened High-Dimensional Harmonic Balance Method [L. Liu
et al. 2006]. In this approach, the analytical manipulations required to derive the
equations verified by the Fourier coefficients are avoided so that the method is well-
suited to the highly nonlinear and high-dimensional systems arising from the spatial
discretization of the Euler or Navier–Stokes equations on industrial configurations.
In addition, this formulation has the advantage of being more easily implementable
into pre-existing CFD codes. From there, different names have been introduced
for similar methods. With the Nonlinear Frequency Domain Method McMullen et al.
(2006) searched for the solution in the frequency domain using a pseudo-spectral ap-
proach to compute the nonlinear terms. With the Time Spectral Method, [Gopinath et
al. 2005] used the same formulation as [Hall et al. 2002], but proposed an alterna-
tive way of computing the spectral time-derivative operator which avoids the use
of any Fourier transform. The different variant of Hall’s Harmonic Balance Method,
have been used to compute solutions to various periodically forced two- and three-
dimensional problems: pitching/plunging airfoils [Hall et al. 2002; Gopinath et al.

1The method is also known as the Equivalent Linearization Method or also Describing Function Method
as it allows to derive, thanks to the hypothesis harmonic oscillation, an equivalent linear representation
for the nonlinear terms of the equation (cf. [Dimitriadis 2017, §4.3])
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2005; Leffell et al. 2014], helicopter rotors [Leffell et al. 2014], wind turbines [Leffell
et al. 2016], turbomachines [Van der Weide et al. 2005], etc. Also, in order to handle
self-sustained limit cycle oscillations, several strategies have been proposed to deal
with the unknown frequency [Thomas et al. 2002; McMullen et al. 2006; Ekici et al.
2011; Yao et al. 2015; Yao et al. 2018]. Recently, HBM has been nested in outer algo-
rithms used to determine directly flutter thresholds [Thomas et al. 2018; Prasad et al.
2018; H. Li et al. 2018; He et al. 2018], or to perform unsteady shape optimisation
[Thomas et al. 2005; Mader et al. 2012; Choi et al. 2014; Blondeau et al. 2019].

In Harmonic Balance Methods, all Fourier coefficient — or equivalently, all time
instants for time-domain HBM — are searched together, in a coupled fashion. As a
consequence, the number of degrees of freedom grows not only with spatial dis-
cretization, but also with time discretization. Thus, high-dimensional problems
arise, even with reasonable spatial discretizations, when one takes into account grow-
ing numbers of harmonics. The question of the efficient and robust numerical so-
lution of HBM formulations is thus a critical, on-going research focus, in the per-
spective of large-scale applications. Originally, the HBM equations were explicitly
marched in pseudo-time until a steady-state was reached. However, the CFL num-
ber used for pseudo-time marching depends on the maximal resolved frequency
[Van der Weide et al. 2005] so that the pseudo timestep must be decreased as the
number of harmonics and/or the physical frequency increase, thus yielding very
slow convergence to steady-state. To overcome this issue, implicit pseudo-timestepping
has been proposed by Sicot et al. (2008), who solve the linear system at each pseudo-
time step through block-Jacobi fixed-point iterations. As the number of harmon-
ics increases, the diagonal dominance of the implicit matrix decreases so that the
pseudo timestep is limited in this approach also, but this time to guarantee proper
convergence of stationary block-Jacobi iterations. To circumvent that issue, several
authors considered the use of linear solvers that do not require diagonal dominance
for convergence, such as the Generalized Minimal RESidual method (GMRES). The
performance of the approach is then entirely driven by one’s ability to find a good
preconditioning strategy. In [Woodgate et al. 2009] a block incomplete lower up-
per factorization was proposed, in [Su et al. 2010] a multigrid strategy with Gauss-
Seidel smoother, in [Mundis et al. 2014] (Block-Colored) Gauss-Seidel was used as a
preconditioner, either with or without the temporal coupling terms and defect cor-
rection iterations. In [Mundis et al. 2015], the authors proposed to rewrite the un-
knowns so as to group together all instants at one spatial location2. Then, block
Gauss-Seidel iterations were used as a preconditioner, with redefined blocks of size
[number of steady-state unkowns per cell× number of instants]. With this strategy,
wave-number independant GMRES iteration counts were obtained, despite a pre-
conditioner of complexity O(N3), where N is the number of harmonics. In [Mundis
et al. 2017; Leffell et al. 2016], approximate factorization-based preconditioners have
been proposed, showing similar wave-number independence but with a complexity
brought back to O(N2).

The objectives of the present chapter are two-fold. First, we propose an unified
overview of the different Harmonic Balance Methods that appeared in the aeroelas-
ticity literature through the years. By adopting a generic classification historically
used for spectral methods (in space) [Canuto et al. 1988], we rigorously compare the
different alternatives. This first step ultimately motivates our choice to opt for the
Time Spectral Method, as formulated by Gopinath et al. (2005). The second objec-
tive of the chapter is to tackle the challenging task of the numerical solution of the

2in the way a new physical equation would be added to the model ...
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TSM problem. To this end, we adopt a Newton–Krylov approach, for which a new
preconditioning strategy, based on circulant matrix properties, is introduced for the
efficient solution of the linearized TSM equations. A parallel-in-time implementa-
tion is presented and its performance is assessed through two numerical examples:
(i) a NACA0012 profile forced in plunging motion and (ii) the self-sustained flutter
LCO developing on the spring-mounted plate studied in chapter 4. For the second
case an original way of dealing with the additional frequency unknown, through
Schur complements, is proposed.

3.2 Harmonic Balance methods

In this section, we present the Harmonic Balance approach and compare the different
variants that have emerged in the literature through the years. For simplicity, we
consider some generic system of K equations, of which a T-periodic solution vector
q(t) ∈ RK is sought:

M
∂q
∂t

+ R(q) = f (t) (3.1)

with R(q) the stationary residual and f (t) a T-periodic forcing term. The forcing is
here meant in a very general sense and may consist in practice in a volume source
term or in imposed boundary conditions (cf section 3.4.1 for the latter). In eq. (3.1),
the frequency ω = 2π/T is known, as it is imposed by f . For sake of clarity, we
remain in that case in all section 3.2. The case with unknown ω and zero forcing
term is handled in section 3.4.2.

Fourier decomposition of the solution Due to the T-periodicity, the unknown ex-
act solution q and the imposed forcing term f can be written as their Fourier series

q(t) =
∞

∑
k=−∞

q̂keikωt f (t) =
∞

∑
k=−∞

f̂keikωt (3.2)

with Fourier coefficients:

q̂k =
1
T

∫ T

0
q(t) e−ikωt f̂k =

1
T

∫ T

0
f (t) e−ikωt (3.3)

As any numerical method, Harmonic Balance relies on approaching the exact
solution q by a finite dimensional approximation noted qN . Because of its spectral
convergence property [Canuto et al. 1988, §2.1.1] the truncated Fourier series offers
a good ansatz for qN . The Harmonic Balance approach thus relies on searching solu-
tions of the form:

qN(t) =
N

∑
k=−N

q̂keikωt (3.4)

where the coefficients q̂k, k = −N...N form the finite set of unknowns, with N the
truncation order.

Finding the q̂k can be done via two main approaches. In the first approach, known
as the Galerkin formulation, the equations governing the q̂k are derived by requir-
ing that the residual of eq. (3.1) be orthogonal to any of the 2N + 1 Fourier basis
functions. In the second approach, known as the collocation formulation, the govern-
ing equations eq. (3.1) are enforced in a point-wise manner on a predefined grid of
2N + 1 time instants. This classification, though not widely used when referring to
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(time) Harmonic Balance methods, is commonly used in the literature using spectral
methods for space discretization (Canuto et al. 1988, Chapter 3). It is adopted here
because it provides a rigorous and general framework to present and compare the
wide variety of Harmonic Balance methods that have emerged through the years.

3.2.1 Garlerkin approach: frequency-domain HBM

Introducing the Fourier decompositions 3.2 in eq. (3.1), testing against the Fourier
basis functions and invoking the orthogonality property of the Fourier basis3, one
can derive a system of equations for the unknowns q̂k:

ikωM q̂k + R̂k = f̂k ∀k ∈ [−N ...N] (3.5)

where f̂k are the (known) Fourier coefficients of the forcing term eq. (3.3) and R̂k are
the unknown Fourier coefficient of R(qN):

R̂k =
1
T

∫ T

0
R(qN(t)) e−ikωt (3.6)

For future convenience, this system is rewritten in matrix form:

ωD̂q̂ + R̂ = f̂ (3.7)

where
D̂ = i diag(−N M, ..., N M) (3.8)

is a block-diagonal matrix with diagonal blocks equal to ikM, k ∈ [−N, N] and

q̂ = (q̂−N , ..., q̂N)
T R̂ = (R̂−N , ..., R̂N)

T f̂ = ( f̂−N , ..., f̂N)
T

The system of equations eq. (3.7) is not well-posed, because it possesses only
2N + 1 equations for the 2 × (2N + 1) unknowns that are the solutions harmon-
ics (q̂−N , ..., q̂N) and the residual harmonics (R̂−N , ..., R̂N). All the methods intro-
duced hereinafter allow specifying the dependence of the residual harmonics with
the solution harmonics, that can be formally denoted R̂(q̂). Once this dependence is
specified, the new system of equations writes

ωD̂q̂ + R̂(q̂) = f̂ (3.9)

We now introduce the different methods that allow to specify the dependence of
residual harmonics with the solutions harmonics. In the Analytical Harmonic Bal-
ance Method developed in section 3.2.1.1, this dependence is obtained analytically
in the spectral domain. In pseudo-spectral method introduced in section 3.2.1.2 the
Fourier transform is used so that this dependence can be more easily evaluated in
the temporal domain.

3The orthogonality of the Fourier basis, noted here {φk}k∈[−N,N], φk(t) = eikt, with respect to the
L2(0, T) scalar product, reads as follows, with the star denoting the complex conjugate:

1
T

∫ T

0
φk(t)φl(t)

? dt = δkl =

{
1 if k = l
0 else
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3.2.1.1 Analytical Harmonic Balance Method (AHBM)

A first choice is to express R̂(q̂) analytically by injecting qN into R(q) and then in-
voking the orthogonality property of the Fourier basis to isolate the residual Fourier
coefficients R̂m.

For a simple example, suppose the residual is bilinear (typically, the Navier–
Stokes convection term) R(q) = N (q, q). We have:

R(qN(t)) = N
((

N

∑
k=−N

q̂keikωt

)
,

(
N

∑
l=−N

q̂leilωt

))

= ∑
m

∑
−N≤k,l≤N

k+l=m

N (q̂k, q̂l)ei(k+l)ωt

= ∑
|m|≤N

∑
−N≤k,l≤N

k+l=m

N (q̂k, q̂l)ei(k+l)ωt + ∑
|m|>N

∑
−N≤k,l≤N

k+l=m

N (q̂k, q̂l)ei(k+l)ωt

(3.10)
where we have separated in the last line the contributions that vibrate at frequencies
lower (first sum) and higher (second sum) than the truncation frequency Nω. Plug-
ging the above expression in the definition of R̂m eq. (3.6) and using the Fourier basis
orthogonality gives the analytical expression of the residual harmonics as a function
of the solutions harmonics q̂k:

R̂m = ∑
−N≤k,l≤N

k+l=m

N (q̂k, q̂l) (3.11)

In particular, we note that the high-frequency terms in eq. (3.10) (second sum) vanish
naturally in the process, thanks to orthogonality. The full nonlinear residual

R̂(q̂) =
(

R̂−N , ..., R̂N

)T

is then explicitly specified as a function of q̂, using eq. (3.11).
In the rest of this manuscript, this method is referred to as the Analytical Harmonic

Balance Method (AHBM). It is attractive because it allows to formulate the problem
completely in the frequency domain and brings an analytical understanding of the
generation of contributions at the different orders due to the nonlinear terms. Such
an approach was used first by Carte et al. (1995) and more recently by Fabre et al.
(2018) for computing periodic solutions of the laminar incompressible flow develop-
ping in the wake of a circular cylinder. In addition, Rigas et al. (2020) used it to study
the nonlinear transition scenarios in the boundary layer over a flat plate. Also, the
interested reader will find pedagogical examples using this approach in the context
of aero-elasticity in the book of Dimitriadis (2017).

However, AHBM is tractable only for systems with “simple” enough nonlineari-
ties, i.e. typically polynomial and of low order. Indeed, as the order of the nonlinear-
ity increases, more and more complex convolutions are needed leading to cumber-
some analytical expressions. In addition, from the numerical point of view, the cost
of evaluating R̂(q̂) scales with Np where p is the order of the polynomial nonlinear-
ity. Contrary to the other approaches introduced below, this cost depend on p and
quickly becomes large for highly nonlinear problem. Finally, nonpolynomial nonlin-
earities, as often encountered in turbulence models (e.g. the RANS Spalart-Allmaras
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model) or in fluid-structure interaction (e.g. [Richter 2015]), cannot be handled di-
rectly. Of course, some tricks can be used to deal with this issue, like the definition
of additionnal unknowns [Hall et al. 2002] or — as was considered temporarily in
this thesis — the use of power series to reformulate the problem with only polyno-
mial nonlinearities. In any case, large computational and analytical costs are still
expected.

3.2.1.2 Pseudo-spectral Harmonic Balance Method

In order to overcome the drawbacks of the Analytical Harmonic Balance Method
exposed above, R̂(q̂) can be evaluated using a pseudo-spectral approach. This relies
on evaluating the residual in the time domain at a number of discrete time instants,
say the 2N + 1 equidistant points tn = Tn/(2N + 1) with n = 0, ..., 2N, and then
recast it back to the frequency domain, using Discrete Fourier Transform. Let us first
introduce Discrete Fourier Transform, and then use it to define the pseudo-spectral
HBM.

3.2.1.2.a Discrete Fourier Transform

The discrete Fourier series of q is defined as:

IN [q](t) =
N

∑
k=−N

q̃keikωt (3.12)

where the q̃k are the discrete Fourier coefficients, defined as:

q̃k =
1

2N + 1

2N

∑
n=0

q(tn)e−ikωtn (3.13)

Let us recall that, in general, the discrete Fourier coefficients of a signal q are different
from the continuous ones defined by eq. (3.3) (e.g. [Canuto et al. 1988, eq. (2.1.29)]).
They become identical if q contains only frequencies lower than the truncation fre-
quency Nω4.

The Discrete Fourier Transform (DFT) can be viewed as a linear mapping be-
tween the 2N + 1 instantaneous values q = (q(t0), ..., q(t2N))

T and the 2N + 1 dis-
crete Fourier coefficients q̃ = (q̃−N , ..., q̃N)

T through eq. (3.13). For convenience, this
mapping is written in matrix form:

q̃ = Fq

with (F)kn =
1

2N + 1
e−ikωtn k ∈ [−N, N] , n ∈ [0, 2N]

(3.14)

In addition, the inverse Discrete Fourier Transform F−1 is defined as:

q = F−1q̃

with
(

F−1
)

nk
= eikωtn n ∈ [0, 2N] , k ∈ [−N, N]

(3.15)

4Or, in other words, if the grid of the {tn}n∈[0,2N+1] respects the Shannon criteria for the signal q.
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For more clarity, F and F−1 are also written in developed form:

F =
1

2N + 1




1 eiNωt1 . . . eiNωt2N

...
...

1 1 . . . 1
...

...
1 e−iNωt1 . . . e−iNωt2N




(3.16)

and

F−1 =




1 . . . 1 . . . 1
e−iNωt1 1 eiNωt1

...
...

...
e−iNωt2N . . . 1 . . . eiNωt2N


 (3.17)

Remark. With the convention adopted in this manuscript, the F is almost a unitary
matrix, since F−1 = (2N + 1)FH, where the H superscript denotes the Hermitian
conjugate.

3.2.1.2.b Pseudo-spectral HBM

Having introduced the Discrete Fourier Transform in the previous paragraph, the
pseudo-spectral approach consists in approximating the continuous Fourier coeffi-
cients of the residual R̂ = (R̂−N , ..., R̂N)

T by its discrete Fourier coefficients R̃ =
(R̃−N , ..., R̃N)

T:
R̂(q̂) ' R̃(q̂) = FR

(
F−1q̂

)
(3.18)

The rightmost term of eq. (3.18) defines a three-steps process to evaluate R̃(q̂) that
details as follows:

1. Evaluate the approximate solution qN at the instants tn = Tn/(2N + 1) with
n = 0, ..., 2N, using inverse Discrete Fourier Transform:

q = F−1q̂ q = (qN(t0), ..., qN(t2N))
T (3.19)

2. Compute the residual at each instant from the instanteanous values gathered
in q:

R(q) = (R(qN(t0)), ..., R(qN(t2N)))
T (3.20)

3. Transfer the residual back in the frequency domain using a Discrete Fourier
Transform:

R̃ = FR (3.21)

Let us now make some comments. First, note that in step 1, we directly link the
continuous (instead of the discrete) Fourier coefficients q̂ to q through DFT. This is
valid because, by definition, the approximate solution has a bandwidth equal to
N. Thus, the Shannon criteria is respected, by construction, on the 2N + 1 instants
sampling grid, making the discrete and continuous Fourier coefficients equal. On
the contrary, in step 3., the notation R̃ is used instead of R̂, to insist on the fact
that the discrete Fourier coefficients of R(qN) are obtained, not the continuous ones.
Indeed, in general, nothing guarantees that the Shannon criteria is enforced for the
residual R(qN). Aliasing errors are then introduced and R̃ is only an approximation
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of R̂, as specified in eq. (3.18). The approach presented here is thus an approximate
Galerkin method, hence the name pseudo-spectral. The interested reader is reported
to section 3.2.3.2 for further discussion about aliasing error.

To our knowledge, in the Harmonic Balance litterature, the pseudo-spectral ap-
proach has been first used by McMullen et al. (2006) who labeled it Nonlinear Fre-
quency Domain method. Compared to AHBM presented above, this method does not
require any analytical development and is readily applicable to any R(q). In addi-
tion, the cost of evaluating R̂(q̂) is dominated by the DFT and thus scales with N2

(the evaluation of the 2N + 1 instantaneous residuals costs only N and is neglected
here). In practice, further acceleration is possible [McMullen et al. 2006] by using
Fast Fourier Transform instead of DFT, bringing back the cost to N log N.

3.2.2 Collocation approach : time-domain HBM

Differently from the Galerkin approach which is obtained by orthogonal projection
of the residual on the Fourier basis (eq. (3.5)), the collocation approach consists in
enforcing eq. (3.1) in a pointwise manner, at the nodes of the temporal grid tn =
Tn/(2N + 1), n = 0, ..., 2N:

M
∂qN

∂t

∣∣∣∣
t=tn

+ R(qN(tn)) = f (tn) ∀n ∈ [0, 2N + 1] (3.22)

By time-differentiating the Fourier series form of qN eq. (3.4), and evaluating its
Fourier coefficients via DFT (eq. (3.13)), a spectral approximation to the time deriva-
tive in the above equation can be obtained (see [Trefethen 1996; Gopinath et al. 2005]
for a detailed derivation):

∂qN

∂t

∣∣∣∣
t=tn

' ω
2N

∑
k=0

dkqN(tn+k) with dk =





1
2
(−1)k+1 csc

(
πk

2N + 1

)
if k 6= 0

0 if k = 0
(3.23)

Note that here, the index n + k must be understood “modulo 2N + 1” due to period-
icity.

For convenience, eq. (3.22) is re-written in matrix form:

ωDq + R(q) = f (3.24)

with
q = (qN(t0), ..., qN(t2N))

T

R = (R(qN(t0)), ..., R(qN(t2N)))
T

f = ( f (t0), ..., f (t2N))
T

and where ωD is the spectral time-derivative operator. Due to eq. (3.23), it possesses
a particular block-circulant structure:

D =




0 d1 M . . . d2N M

d2N M 0
. . .

. . . . . . d1 M
d1 M d2N M 0




(3.25)

The obtained formulation, eq. (3.24) and (3.25), is often referred to as the Time
Spectral Method (TSM) [Gopinath et al. 2005]. However, a variant can be obtained by
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using an alternative and equivalent definition of D, based on Fourier transforms:

D = F−1D̂F (3.26)

With that definition, the time derivative is applied by (i) computing the Fourier co-
efficient of qN with DFT, (ii) applying the time derivative in the spectral domain5

thanks to matrix D̂ (see the definition, eq. (3.8)) and (iii) casting the result back in the
time domain with inverse DFT. Authors that use eq. (3.26) instead of eq. (3.25) often
refer to the collocation formulation as the High-Dimensional Harmonic Balance method
[Hall et al. 2002; L. Liu et al. 2006; LaBryer et al. 2009].

A particularity of the operator D is that it is global, in the sense that the value
of the derivative at instant tn depends on the value of the function at all other in-
stants. Thus, the cost of applying D in the form given by eq. (3.25) scales with N2.
With the alternative definition eq. (3.26), the cost seems at first sight even higher,
since a direct and an inverse DFT are needed, with a cost of N2 each. However, it is
well-known that costly DFT can always be replaced by much more economical Fast
Fourier Transforms, that only cost N log N. Here appears the main interest of eval-
uating the time-derivative via eq. (3.26): it decreases the application cost from N2 to
N log N.

3.2.3 Comparison of the Galerkin and collocation approaches

The three Harmonic Balance formulations introduced previously are now compared.
First, we show that the pseudo-spectral Galerkin and the collocation approaches are
equivalent. Second, we discuss the only difference between the Analytical Harmonic
Balance Method and the other formulations, which is the existence of aliasing errors
in the latter.

3.2.3.1 Equivalence between the pseudo-spectral Galerkin and collocation ap-
proaches

By combining eq. (3.5) and (3.18), the pseudo-spectral Galerkin reads:

ωD̂q̂ + FR
(

F−1q̂
)
= f̂ (3.27)

Since the Shannon criteria is respected for qN on the temporal grid {tn}n∈[0,2N], the
continuous Fourier coefficients q̂ are equal to the discrete ones, q̃, and thus can be
evaluated with DFT from the instantaneous values, i.e. q̂ = Fq. Using also the fact
that f̂ = Ff6 yields

ωD̂Fq + FR (q) = Ff (3.28)

Then, left-multiplying the above equation by F−1, the Time Spectral Method eq. (3.24)
is retrieved:

ω F−1D̂F︸ ︷︷ ︸
=D

q + R (q) = f (3.29)

where the spectral differentiation operator D is identified using eq. (3.26). Thus, the
pseudo-spectral Harmonic Balance Method and Time Spectral Method are simply
the frequency domain and time domain versions of the same method.

5It simply corresponds to multiplying each harmonic q̃k by ik
6Again, the direct link between the instantaneous values of f and its continuous Fourier coefficients

can only be computed with DFT if the Shannon criteria is respected for f . We suppose it is ...
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3.2.3.2 Aliasing error

The aliasing phenomena arises when a signal is sampled on a grid that fails to en-
sure the Shannon criteria. In the context of Harmonic Balance methods, aliasing
introduces a particular error, called aliasing error, that adds to the more classical trun-
cation error due to neglecting harmonics higher than N.

As we shall see next, the aliasing error can be easily identified in the context of
the pseudo-spectral Galerkin approach presented in section 3.2.1.2. We mention here
that, due to the equivalence, demonstrated in section 3.2.3.1, between the Galerkin
pseudo-spectral and collocation approaches, the latter is, as the former, subjected to
aliasing errors.

With the Galerkin pseudo-spectral approach, we recall that the discrete Fourier
coefficients of the residual are used as an approximation of the continuous ones, as
stated in eq. (3.18). However, from classical textbooks, e.g. [Canuto et al. 1988, eq.
(2.1.29)], it is known that the discrete and continuous Fourier coefficients are linked
by the following relation:

R̃k = R̂k +
+∞

∑
m=−∞

m 6=0

R̂k+(2N+1)m

︸ ︷︷ ︸
aliasing error

k ∈ [−N, N] (3.30)

where the aliasing error naturally appears as the difference between the R̃k and the
R̂k. In other words, the k-th harmonics of the residual computed with a pseudo-
spectral approach is a mixture of the “true” continuous Fourier coefficient R̂k and an
infinite number of contributions at frequencies k + (2N + 1)m, m ∈ Z− {0}. This
is linked to the fact that, once sampled on the 2N + 1-points grid {tn}n∈[0,2N], the
Fourier basis functions of the form k + (2N + 1)m are indistinguishable, eikω tn =
ei(k+(2N+1)m)ω tn ; they are aliases. In the end, due to aliasing errors, the pseudo-
spectral approach does not solve the original Galerkin Harmonic Balance equations
eq. (3.5) but a perturbed version of it that includes the aliased contributions:

ikωM q̂k + R̂k +
+∞

∑
m=−∞

m 6=0

R̂k+(2N+1)m = f̂k ∀k ∈ [−N ...N] (3.31)

In eq. (3.30), it is clear that, if the bandwidth of the residual signal R(qN(t)) is
higher than N, then their exist nonzero R̂k for k > N, and the aliasing error term
is nonzero. In practice this is necessarily the case as soon as the residual is non-
linear since nonlinear interactions between harmonics of qN lower than N generate
harmonics of R(qN) higher than N. An example of that in the case of a quadratic
nonlinearity is given below.

Example. Let us go back to the example introduced in section 3.2.1.1 where R(q) =
N (q, q) is bilinear. In that case, the continuous Fourier coefficients of R(qN), ob-
tained in eq. (3.11), are:

R̂m = ∑
−N≤k,l≤N

k+l=m

N (q̂k, q̂l)
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where it is seen that the highest possible non-zero harmonics is m = 2N > N. Then,
from equation eq. (3.30) we have, for example for harmonics k = 0, 1, N:

R̃0 = R̂0 + 0︸︷︷︸
aliasing error

R̃1 = R̂1 + R̂−2N︸ ︷︷ ︸
aliasing error

R̃N = R̂N + R̂−(N+1)︸ ︷︷ ︸
aliasing error

Finally, note that in comparison to either the Galerkin pseudo-spectral or col-
location approaches, the Analytical Harmonic Balance Method (section 3.2.1.1) is
aliasing-free because the aliased contributions are removed by construction, see eq. (3.11).
In other words, due to aliasing errors, the Analytical Harmonic Balance Method ac-
tually solves a different system of equations than the two other approaches.

3.2.3.3 Synthetic view

We conclude the section by providing a synthetic view in table 3.1. On the one hand,
the Galerkin methods (first line) are formulated in the frequency domain where the
unknowns are the Fourier coefficients. The nonlinear terms R̂ are either computed
analytically yielding a truly spectral aliasing-free method (first column), or com-
puted in time-domain and brought back to frequency domain with DFT yielding
an aliasing-prone pseudo-spectral method (second column). On the other hand, the
collocation methods (second line) are formulated in the time domain where the un-
knowns are a set of instantaneous values spanning the period. By construction, the
collocation methods are pseudo-spectral in the sense that they suffer from aliasing
errors. Aliasing-free — or at least less aliasing-prone — time-domain methods have
not been reviewed in this work but some strategies have been considered by dif-
ferent researchers, such as the use of Fourier filtering in [LaBryer et al. 2009] or the
addition of spectral viscosity in [Huang et al. 2014].

Spectral
(aliasing-free)

Pseudo-spectral
(aliasing-prone)

Galerkin
(frequency
domain)

• Analytical Harmonic Balance
Method (AHBM)

• Nonlinear Frequency Domain
Method (NLFD)

Collocation
(time

domain)

• HDHBM + Fourier filtering

• HDHBM + spectral viscosity

• High-Dimensional Har-
monic Balance Method
(HDHBM)

• Time Spectral Method
(TSM)

TABLE 3.1: Summary of the different Harmonic Balance-based methods
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3.3 Numerical solution of the Time Spectral Method

In the previous sections, we have presented the Harmonic Balance framework. Dif-
ferent formulations have been introduced and compared. In the present section, we
focus on the Time Spectral Method (TSM) that will be used in practice in the rest of
this manuscript (see chapter 5 and 6), because of its generality and ease of imple-
mentation for highly nonlinear equations. We now expose the algorithmic details
for the numerical solution of the TSM equation eq. (3.24), that is recalled below for
convenience:

ωDq + R(q) = f (3.32)

Because TSM yields a stationary system of equations, Newton iterations (sec-
tion 3.3.1) are a natural choice to reach fast convergence to the solution. However,
the Newton iterations mostly rely on the solution of the linearized TSM system,
which attains very large dimensions for typical fluid-structure problems. The del-
icate issue of its solution is tackled in section 3.3.2 and 3.3.3 where we introduce
a new preconditioning strategy based on the almost circulant pattern of the TSM
Jacobian matrix. The section ends with section 3.3.4 where a (time-)parallelization
strategy is described. As in section 3.2, we mainly discuss the forced case f (t 6= 0)
while the extension to autonomous systems is addressed in section 3.4.2.

3.3.1 Newton method

For convenience, let us start by introducing the residual RTSM(q) of the TSM system,
eq. (3.32), in the case of an imposed frequency:

RTSM(q) = 0 with RTSM(q) = ωDq + R(q)− f (3.33)

The above nonlinear system is solved with a Newton-like method, the i-th iteration
of which reads: (

1
τ

M + JTSM(qi)

)
δq = −RTSM(qi)

qi+1 = qi + δq
(3.34)

where M = diag(M, ..., M) is a block-diagonal matrix and JTSM the TSM Jacobian
defined by

JTSM(q) =
∂RTSM

∂q

∣∣∣∣
q
= ωD + J with J =

∂R
∂q

∣∣∣∣
q
= diag(J(q(t0)), ..., J(q(t2N)))

(3.35)
The TSM Jacobian can also be written in block form, which reads:

JTSM(q) =




J(q(t0)) ωd1M . . . ωd2N M

ωd2N M J(q(t1))
. . .

. . . . . . ωd1M
ωd1M ωd2N M J(q(t2N))




(3.36)

where one can identify the diagonal blocks that are provided by J, and the off-
diagonal blocks that are provided by the time-derivative contribution ωD.

The pseudo timestep τ introduced in eq. (3.34) has no physical meaning. It is
numerical parameter only used to improve the robustness of the nonlinear iterations
when the system is particularly stiff, see e.g. [Crivellini et al. 2011]. It is defined from
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a CFL number:
τ =

hK CFL
U∞

(3.37)

with hK the local mesh size. For the first iterations, a small CFL is generally used
as it avoids over-corrections when the Newton iterate qi is far from convergence
and the likely blow-up of the algorithm. As

∥∥RTSM(qi)
∥∥

2 decreases, CFL is progres-
sively increased until it reaches infinity. In that limit, the classical Newton method
is retrieved and, with it, the quadratic convergence properties that can drastically
accelerate convergence with respect to the case of a constant finite CFL. Note finally
that in the TSM literature, it is common to use a CFL definition that depends on the
maximum resolvable frequency Nω: τ = hK CFL/(U∞ + Nω hK) [Sicot et al. 2008;
Antheaume et al. 2011; Gopinath et al. 2006; Mundis et al. 2014]. With this defini-
tion, the pseudo timestep naturally decreases as N or ω increase, thus changing the
properties of the linear system eq. (3.34) and making assessment of N-robustness
less natural. Recently, researchers targeting wavenumber independent TSM precon-
ditioning [Mundis et al. 2015; Mundis et al. 2017] have switched back to using the
classical definition of CFL eq. (3.37), that we adopt as well.

3.3.2 Solution of the linearized TSM equations

At each Newton iteration eq. (3.34), a K × (2N + 1) unknowns linearized TSM sys-
tem must be solved: (

1
τ

M + JTSM
)

x = y (3.38)

Sparse LU solvers A first robust and simple alternative to numerically solve eq. (3.38)
is to use sparse direct linear solvers based on LU factorization (MUMPS, SuperLU,
etc). However, direct solvers are known to be highly memory intensive for large
number of unknowns, and even more so when the sparsity of the matrix decreases.
In the case of the TSM Jacobian, both effects are combined. Indeed, not only the to-
tal number of unknowns increases while refining the spatial (K large) and/or time
(N large) discretization, but in addition, the sparsity pattern fills up as N increases.
These trends can be better grasped with the numerical example provided in table 3.2,
where some features of the mono-instant and TSM Jacobians are reported, for a sim-
ple 2D flow. It is seen that both the size of the TSM system and the average number
of nonzero coefficients per row linearly increases with N. A direct consequence is
that the LU solver (MUMPS here) requires more and more memory and time to
factorize JTSM. More importantly, these increasing costs scale approximately with
N2. As a result, when TSM is applied to space discretizations of the Navier–Stokes
equations, even in 2D, the memory requirements quickly become out of reach for
practical computations.
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size # of nnz per row memory [MB] time [s]

J(q(ti)) 47,510 28 90 1
JTSM(N = 1) 142,530 48 1,011 23
JTSM(N = 2) 237,550 68 3,055 103
JTSM(N = 3) 332,570 88 6,199 323

TABLE 3.2: Computational cost of using the direct sparse solver MUMPS
on the full TSM linearized problem eq. (3.38). The size, average number of
nonzero coefficients per row, peak factorization memory and factorization
time are shown for the one-instant Jacobian and the TSM Jacobian with
different N. The system considered in this example is the finite element
Taylor–Hood discretization of the classical 2D laminar flow around a cir-
cular cylinder at Re = 55. The (spatial) mesh is made of 10,385 triangles,

yielding K = 47,510 degrees of freedom per instant.

Preconditioned Krylov subspace methods To circumvent the untractable mem-
ory requirements associated with the direct linear solvers highlighted in the previ-
ous paragraph, we propose to use an iterative Krylov subspace method to solve
eq. (3.38), namely, the Generalized Minimal RESidual algorithm (GMRES) [Saad
1993]. In brief, GMRES searches the solution of eq. (3.38) in a low-dimensional sub-
space of dimension m� K× (2N + 1), known as a Krylov subspace:

Km

((
1
τ

M + JTSM
)

, r0

)
= span

{
r0,
(

1
τ

M + JTSM
)1

r0, ...,
(

1
τ

M + JTSM
)m−1

r0

}

with r0 some vector. Building Km thus only requires to apply 1/τ M + JTSM to a
given sequence of vectors. One of the most powerful results for Krylov methods is
that they are known to converge in at most in K × (2N + 1) iterations (e.g. Liesen
et al. 2004 for a review). However, the convergence rate remains highly dependent
on the particular problem. For problems as complex as the linearized TSM system,
preconditioning is required to obtain solutions in reasonable cpu-time [Mundis et
al. 2014; Mundis et al. 2015; Mundis et al. 2017]. In the following, we use right pre-
conditioning, i.e., GMRES is applied to the following preconditioned linear system,
instead of directly to eq. (3.38):

(
1
τ

M + JTSM
)

P−1z = y (3.39)

where P is the preconditioner. The wanted solution x is finally retrieved by solving

Px = z

A good preconditioner is an operator P that combines the two following proper-
ties: (i) the spectrum of (1/τM + JTSM)P−1 is well clustered around 1 and (ii) ap-
plying P−1 to a given vector has a low cost. A qualitative rule of thoughts to obtain
such a preconditioner is that P−1 should be a good enough but cheap approximation
of 1/τM + JTSM.
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3.3.3 A block-circulant preconditioner for the TSM Jacobian

We now introduce the so-called block-circulant preconditioner, designed in this thesis.
First, let us recall the block structure of the linearized TSM system eq. (3.38):

1
τ

M + JTSM =




1
τ

M + J(t0) ω d1M . . . ω d2N M

ω d2N M
1
τ

M + J(t1)
. . .

...
...

. . . . . . ω d1M

ω d1M . . . ω d2N M
1
τ

M + J(t2N)




(3.40)

The preconditioner we propose is based on the observation that the above system
matrix possesses a pattern very close to a circulant matrix. More precisely, only
the diagonal blocks break the circulant pattern, because the stationary Jacobian J
is evaluated at a different time instant on each line. In order to retrieve a circulant
matrix, we need to replace all the J(ti) on the diagonal by a same matrix. We propose
to use the Jacobian evaluated on the mean flow J(q̃0), so that the block-circulant
preconditioner PC is formed:

PC =




1
τ

M + J(q̃0) ω d1M . . . ω d2N M

ω d2N M
1
τ

M + J(q̃0)
. . .

...
...

. . . . . . ω d1M

ω d1M . . . ω d2N M
1
τ

M + J(q̃0)




(3.41)

Here, we choose to use the Jacobian evaluated at the mean flow J(q̃0) as the di-
agonal but we could opt instead, for example, for the mean Jacobian, J̃0. This al-
ternative is currently explored by Diogo Ferreira Sabino (PhD student at ONERA-
DAAA/MAPE) who is testing the circulant preconditioner for compressible flow
applications, using ONERA’s discontinuous Galerkin code, AGHORA. Note that, if
the Jacobian depends linearly on the state — as in the incompressible Navier–Stokes
case in fixed domain — then the two alternatives are mathematically equivalent.
However, their algorithmic cost strongly differs. On the one hand, using J(q̃0) re-
quires to (i) form q̃0 and (ii) build the Jacobian at q̃0, where step (i) is cheap (linear
combination of vectors) and step (ii) is more costly. On the other hand, using J̃0 does
not require any new construction of Jacobian matrix from a solution vector, but re-
quires to combine linearly the 2N + 1 mono-instant Jacobian matrices, J(ti). These
being matrices of already large dimensions (size of the spatial discretization), manip-
ulating them can reveal cumbersome. This issue is expected to be particularly strin-
gent in the perspective of a parallel implementation, as proposed in section 3.3.4,
where assembling J̃0 would require to communicate the J(ti) between processes. It is
probable that passing such large objects between processes deteriorates the parallel
performance of the solver. In any case, quantitative comparisons would be needed
in order to further compare these alternatives.

Application of P−1
C In a preconditioned GMRES algorithm, one needs to provide

a routine that efficiently applies the preconditoner’s inverse P−1
C to a given vector,

say xin, and stores it in xout. This comes down to solving a system PCxout = xin.
Despite the block-circulant form of PC, such systems still cannot be handled with
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direct solvers (cf section 3.3.2), as PC possesses the same size and sparsity pattern
as the original system matrix, 1/τ M + JTSM. Instead, we exploit the fact that block-
circulant matrices can be block-diagonalized using the discrete Fourier transform:

PC = F−1 P̃C F

where the block-diagonal matrix P̃C is defined as

P̃C =




P̃C−N
. . .

P̃C0
. . .

P̃C N




and P̃Ck =

(
1
τ
+ iωk

)
M + J(q̃0)

(3.42)
The above property simply follows from the fact that

PC =

(
1
τ

M + J(q̃0))

)
I + ωD

PC =

(
1
τ

M + J(q̃0))

)
F−1IF + ω F−1D̂F

PC = F−1
[(

1
τ

M + J(q̃0))

)
I + ωD̂

]
F

where I = diag(I, ..., I) is the (2N + 1) × (2N + 1) block-identity matrix (I is the
K× K identity). Going from the first to the second line, we used eq. (3.26) to express
D as a function of D̂. Also, let us stress the fact that 1/τ M + J(q̃0) is a not a (2N +
1)× (2N + 1) block-matrix but only one “instantaneous” block, of dimension K×K.
This is the reason why we can permute 1/τ M + J(q̃0) and F−1 when going from the
second to the third line7.

In the end, the preconditioner inverse simply reads:

P−1
C = F−1P̃C

−1
F (3.43)

Thus applying P−1
C to some vector only requires: one DFT, 2N + 1 solves with the

complex shifted one-instant Jacobian matrix at the mean flow P̃Ck and finally an
inverse DFT.

Equivalent preconditioner in the Fourier space To gain some insights into the
expected performance of the circulant preconditioner, it is helpful to consider the
preconditioned linearized TSM system in the Fourier space. For simplicity, we take
τ = +∞ here. Left-multiplying eq. (3.39) by F, and using eq. (3.43) we have:

(
FJTSMF−1

)
P̃C

−1x̃ = ỹ

with, x̃ = Fx and ỹ = Fy. The above equation is a linear system where we identify
the system matrix FJTSMF−1 and the preconditioner P̃C. On the one hand, the matrix

7This is most simply seen in the case K = 1 where 1/τ M + J(q̃0) is a scalar ...
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FJTSMF−1 develops as:

FJTSMF−1 = ωD̂ + FJF−1 =



−iωNM + J̃0 J̃−1 . . . J̃−N J̃N . . . J̃1

J̃1 −iω(N − 1)M + J̃0 J̃−1
. . . . . .

...
...

. . . . . . . . . . . . J̃N

J̃N
. . . . . . . . . J̃−N

J̃−N
. . . . . . . . . . . .

...
...

. . . . . . J̃1 iω(N − 1)M + J̃0 J̃−1

J̃−1 . . . J̃−N J̃N . . . J̃1 iωNM + J̃0




where the J̃k are the discrete Fourier coefficient of J(q(t)). On the other hand, from
its definition eq. (3.42), the preconditioner P̃C is seen to correspond to the diagonal
of the above matrix where J(q̃0) substitutes for J̃0. As a consequence, the block-
circulant preconditioner for TSM is close to a block-diagonal preconditioner in the
Fourier space. It is thus expected that the preconditioner will perform greatly in
cases where J̃0 dominates over the J̃k for |k| ≥ 1, or by extension for the cases where
the solution around which the system is linearized verifies “q̃0 � q̃k”.

3.3.4 Parallel implementation

To handle efficiently large number of harmonics, the TSM solution method is imple-
mented in parallel. Each one of the 2N + 1 unknown instants q(tn) is handled by a
different MPI process, so that the number of degrees of freedom per process remains
constant for all N. The Jacobian matrix JTSM (cf eq. (3.36)) is distributed by rows:
each processor possesses the entire row of the matrix corresponding to the degrees
of freedom it handles. In practice this comes down to storing J(q(tn)), M and the
coefficients dn.

Due to the global nature of the spectral derivative operator, the time derivative
at each instant depends on the solution at all other instants. If the instants are dis-
tributed in parallel, then a “brute force” way of computing those time derivatives is
to make each process send its local solution to all 2N other processes, and then com-
pute the derivatives locally. This strategy has two downsides, that may become cum-
bersome as N increases. First, it means that each process stores all 2N + 1 instants,
at least during the time derivative computation. Second, it requires 2N × (2N + 1)
parallel communications of a vector of size K. In order to bypass those shortcom-
ings, we rather adopt a “round-robin” strategy (fig. 3.1), as proposed by Mundis et
al. (2017). At the first round-robin iteration, each process Pn passes its local solution
q(tn) only to its neighbor Pn+1, which stores it in the same memory slot as it used
to store its own local solution q(tn+1) in. Each process Pn+1 is then able to add the
contribution proportional to q(tn) to its local time derivative, i.e. ωd2N M q(tn). By
performing a total of 2N + 1 such iterations, each process has been given access to
all instants (and finally gets back its own local instant). Contrary to the brute force
approach, the round-robin strategy requires to store only one vector of the size K of
the spatial discretization per process8. In addition, only 2N + 1 communications to
a direct neighbor are performed.

8In practice we store the received solution in a temporary second container, so we actually store
two vectors of size K...
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FIGURE 3.1: Computation of global operators through a “round-robin”
strategy. Each line corresponds to a process and each column to a round-
robin iteration. In the circles, we indicate the instant possessed by the
process at the beginning of the current round-robin iteration. The arrows
materialize the parallel communications. The last column gives the distri-

bution of the instants at the end of the round-robin loop.

Note that an identical round-robin strategy is used to perform the direct and
inverse DFT’s needed in the application of the circulant preconditioner.

Finally, it is worth noticing that this implementation of the spectral derivative
operator leads to a cost of 2N matrix vector product of the type M q(tk) and as much
vector summations per process. As a consequence, even supposing infinitely fast
communications between processes, this implementation cannot scale better than
linearly in terms of wall-clock time. The same is true in the preconditioner applica-
tion, where DFT is used.

3.4 Numerical results

In this section, we study the performance of the circulant preconditioner on two nu-
merical examples. The first configuration is a NACA0012 profile forced in heaving
motion at different frequencies. The second configuration is the spring-mounted flat
plate introduced in chapter 1, undergoing a self-sustained flutter instability. For this
second case, the solution method presented in section 3.3 is extended to the case
where the frequency is unknown.

3.4.1 NACA0012 in forced heaving motion

A NACA0012 profile, immersed in a flow with uniform upstream velocity U∞ex, is
forced to oscillate along the vertical direction (heaving motion):

h(t) = h1 sin(ωt)
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where h1 = 0.08 is the non-dimensional9 plunging amplitude and ω the reduced
frequency. The Reynolds number based on the chord is Re = 1850. The numeri-
cal values specified here are taken from [Leffell et al. 2014]. However, contrary to
those authors who considered a slightly compressible flow (Ma = 0.2), we use the
incompressible Navier–Stokes equations. In addition, we vary the forcing frequency
between ω = 0.1 and 3.6. In particular, we will see that a high-frequency like ω = 3.6
provides a challenging test case from the point of view of the numerical solution of
the TSM equations, because a high number of harmonics must be taken into account
to capture its temporal behavior.

In all the numerical examples of section 3.4, we handle the moving fluid domain
with the “Reference configuration ALE” formalism introduced in section 1.1.2.2. The
spatial discretization is taken care of, as in section 1.2.2, with the (Galerkin) finite
element method. It yields a discretized system of equations similar to eq. (3.1):

M(q)
∂q
∂t

+ R(q) = f (t)

We note that the above system is not strictly identical to eq. (3.1) since the mass
matrix depends here on q. This is due to the fact that, in the “Reference configuration
ALE” fluid momentum equation eq. (1.11a), the mesh deformation Jacobian appears
in front of the time-derivative. From the TSM solution method point of view, the
main consequence is that M(q) must also be “averaged” when building the block-
circulant preconditioner PC:

PC =




1
τ

M(q̃0) + J(q̃0) ω d1M(q̃0) . . . ω d2N M(q̃0)

ω d2N M(q̃0)
1
τ

M(q̃0) + J(q̃0)
. . .

...
...

. . . . . . ω d1M(q̃0)

ω d1M(q̃0) . . . ω d2N M(q̃0)
1
τ

M(q̃0) + J(q̃0)




Other than that, the solution method applies as presented in section 3.3.

3.4.1.1 Reference DNS solution and TSM time-convergence

Let us start by describing a reference solution that has been computed using the
time-stepping algorithm presented in section 1.3, with a number of time steps per
period equal to 1400. Vorticity snapshots of the obtained periodic solution are pre-
sented in fig. 3.2 for three values of ω. The wake is seen to strongly evolve between
(a) ω = 0.4 where it is quasi-steady and (c) ω = 3.6 where it is highly unsteady with
strong vortices being shed. For each frequency, time and Fourier representations of
the vertical velocity at point P = (2, 0) are shown in rightmost part of the figure. At
the low-frequency ω = 0.4, the velocity signal is strongly dominated by the funda-
mental frequency. As ω increases, the third, fifth and seventh harmonics increase in
amplitude, so that the high-frequency case ω = 3.6 presents a more complex time
behavior featuring abrupt variations of the velocity at point P when a vortex goes
through.

9We recall (cf section 1.1) that in this manuscript, we non-dimensionalize using the airfoil chord c,
far-field velocity U∞ and fluid density ρ f as reference length, velocity and density, i.e. h = h�/c and
ω = ω�c/U∞, where the dimensional quantities are marked with the � symbol.
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FIGURE 3.2: NACA0012 airfoil forced in plunging motion at different fre-
quencies ω. Vorticity snapshots are shown on the left whereas the time
signal of vertical velocity at point P is shown on the right (top: temporal

series, bottom: Fourier spectrum).
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In fig. 3.3, we present a study of the convergence of the TSM solution towards
the previously described reference solution, as the number of harmonics N increases.
Only the case with forcing frequency ω = 3.6 is shown as it is the hardest to con-
verge, due to the presence of higher harmonics. In fig. 3.3a, the vertical velocity
signal at the probe point (P) is shown for N = 5 (squares) and N = 10 (triangles).
The symbols correspond to the TSM collocation points tn whereas the thin solid lines
show the Fourier series reconstruction on the continuous time interval. Finally, the
reference solution is marked by a thick black solid line. Clearly, for N = 5, the veloc-
ity signal is polluted by point-to-point oscillations of significant amplitude. These
oscillations reduce for N = 10, though still visible, for example just before ωt = π.
For N = 20 (not shown) they are not observed anymore. In fig. 3.3b, the time conver-
gence of the TSM solution is analyzed by looking at the vorticity field at t = 0 for in-
creasing N. In agreement with what was observed on the velocity probe, the N = 5
solution contains small spatial wavelength oscillations in the wake. Those oscilla-
tions, are still present for N = 10, though with smaller wavelength and lower am-
plitude. Above N = 20 the oscillation are not visible anymore and a smooth wake,
similar to the one the reference solution fig. 3.2c is retrieved everywhere, showing
that TSM has converged.

The strong non-physical high-frequency oscillations described above for N = 5
may seem unexpected. Indeed, according to the reference time-stepping computa-
tion, fig. 3.2c, the harmonics higher than the fifth are negligible in the vertical veloc-
ity signal at the probe P. As a consequence, one would expect that with N = 5 the
truncation error due to neglecting harmonics higher than the fifth would be small
and the obtained solution should be close to the reference. However, we have seen
in section 3.2.3.2 that TSM, as any pseudo-spectral method, suffers from aliasing er-
rors in addition to classical truncation errors. As a consequence, despite N = 5 is
likely to yield small truncation error, it may still present large aliasing error. An-
other argument in favor of explaining the oscillations by aliasing error is that they
are high-frequency: this is in qualitative agreement with the aliasing phenomenon
that tends to pollute the low-harmonics equations with high-frequency residual con-
tributions, see eq. (3.31).

3.4.1.2 Assessment of the TSM solver performance

We now assess the numerical performance of the proposed TSM solution method.
To do so, we perform several TSM computations for different forcing frequencies
and numbers of harmonics. The nonlinear iterations are provided by the Newton
method presented in section 3.3.1, where each linear system of the form eq. (3.34)
is solved by the GMRES algorithm, preconditioned by the block-circulant precondi-
tioner proposed in section 3.3.3. The numerical pseudo time-step τ = hK CFL/U∞,
introduced in the Newton iteration eq. (3.34), is governed by the following CFL law:

CFL = max
(

min

(
CFLmin

r1.5
i

(i + 1− i0) , CFLmax

)
, CFLmin

)

where ri =
∥∥RTSM(qi)

∥∥
2 /
∥∥RTSM(qi0)

∥∥
2 is the residual reduction factor between

the current iteration i and the iteration i0 at which the CFL starts to vary. For i < i0,
we keep CFL = CFLmin. In the following, we use i0 = 2. The Newton iterations
are stopped when the l2 norm of the nonlinear residual

∥∥RTSM(q)
∥∥

2 is lower than
10−9. The GMRES relative tolerance is set to 10−4 and the Krylov subspace size is
set to m = 200, with no restart allowed. The initial guess for both the Newton and
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FIGURE 3.3: Effect of the number of harmonics N on the TSM solutions.
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the GMRES iterations is the zero vector. Note that for such a rough initial guess, the
use of a small enough CFL — here CFLmin = 100 — for the first Newton iterations
is necessary so as to avoid blow-up of the Newton method.

Linear solver performance First we want to measure the performance of the lin-
ear solver alone. To do so, we report in table 3.3 the number of GMRES iterations
performed at the last Newton step. The advantage of taking the last Newton step
is that the maximal CFL (CFLmax = 1010 here) is always reached, yielding the true
linearized TSM system, without any additional term. Thus, the performance of the
preconditioner can be assessed without it ”getting help” from a potentially large di-
agonally dominant contribution (the 1/τ M term in eq. (3.40)). We note that another
possibility would have been to report the average number of GMRES iterations per
Newton step accross the whole Newton run. We however think this measure is less
faithful, as the CFL evolution — i.e. the magnitude of 1/τ M term — is not a param-
eter of the method. It rather depends on the path taken by the Newton algorithm
to converge. For example, if the algorithm stays for a while in a region where the
CFL is low, the average number of GMRES iterations per Newton step will decrease
because those low CFL iterations benefit from a better conditioned system.

Coming back to table 3.3, we observe first that for low forcing frequencies ω ≤
0.4, the GMRES iterations count is always around 10 and is completely independent
of N. For higher frequencies (ω = 0.8 and 1), a mild N-dependence is observed,
particularly visible when comparing N = 20 and N = 40. This difference of behav-
ior between full N-robustness at low ω and mild N-dependence at higher ω is not
explained. For the highest forcing frequency ω = 3.6, the maximum number of 200
iterations is reached. This deterioration could be expected due to the fact that substi-
tuting J(q̃0) to the instantaneous Jacobian J(q(tn)), as done for building the circulant
preconditioner (see eq. (3.41)), is likely to be a less and less good approximation as ω
increases. Indeed, it is shown in fig. 3.4 that, in the wake, the instantaneous solution
becomes very different from the mean solution as ω increases.

ω
N

3 5 10 20 40

0.1 9 9 10 9 9
0.2 9 9 9 9 9
0.4 9 9 9 9 9
0.8 22 21 22 25 37
1 38 34 42 50 86

3.6 200 200 200 200 200

TABLE 3.3: Performance of the block-circulant preconditioner for different
forcing frequencies and number of harmonics. For each couple (ω, N), we
report the number of GMRES iterations at the last Newton iteration (for

which infinite CFL is always reached).
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FIGURE 3.4: Instantaneous solution vs mean flow for different reduced
frequencies. (Re = 1850, h0 = 0.08, N = 10).

Finally, we study the efficiency of the linear solver in terms of wall-clock time
in fig. 3.5. For different numbers of harmonics, the total wall-clock time spent in
solving the linearized TSM system at the last Newton iteration is marked by cross
symbols. Despite the N-independent GMRES iteration counts (see numbers between
parenthesis) for the chosen forcing frequency (ω = 0.1), it is observed that the wall-
clock time scales linearly with N. To understand this behavior, the linear solution
process is split into two phases that are: preconditioner set-up (red) and GMRES
routine (blue). The preconditioner set-up is then further split into two contributions.
The first contribution, shown in light red, consists in the building of PC (i.e. com-
puting the mean solution q̃0, constructing J(q̃0) and setting-up all distributed PETSc
objects). The second contribution, shown in dark red, consists in the LU factorization
of the diagonal blocks of P̃C. The GMRES phase is also split into two contributions.
First, the time spent in applying the matrix vector product (light blue) and second,
the time spent in applying the preconditioner (dark blue). At this level of detail, we
observe that the two phases scale differently. On the one hand, the preconditioner
set-up phase is roughly independent of N. This is because the most time-consuming
operations of this phase, that are (i) the assembly of J(q̃0), and (ii) the LU factor-
ization of the diagonal blocks of P̃C, are both purely sequential operations. They
are thus ideally parallelized. On the other hand, the GMRES phase scales linearly
with N. This is in fact the best expected scenario, given the implementation of the
spectral derivative operator through eq. (3.25) and our DFT-based preconditioner (cf
section 3.3.4 for details). In other words, we stress here the fact that this linear scaling
is not a consequence of a poor implementation of parallelism, but an intrinsic limi-
tation of using DFT-based time-global operators. Still, a parallel implementation is
significantly better than a purely sequential one, that would scale quadratically with
N.
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FIGURE 3.5: Wall-clock time spent in the solution of the linear system
at the last Newton iteration, for different N. The forcing frequency is
ω = 0.1. The total time (cross symbols) is split into two phases: pre-
conditioner set-up (red) and GMRES routine (blue). The preconditioner
set-up is further split into the building of the preconditioner (light red)
and the LU factorization of its diagonal blocks (dark red). The GMRES
phase is split into the time spent applying the matrix vector product (light
blue) and applying the preconditioner (dark blue). Finally, the GMRES

iteration counts are recalled between parenthesis.

Nonlinear solver performance Having assessed the efficiency of the circulant pre-
conditioner for solving the linearized TSM system, we now focus on the perfor-
mance of the full Newton–Krylov method. In fig. 3.6 we report the evolution of
the l2 norm of the nonlinear residual

∥∥RTSM(q)
∥∥

2, the number GMRES iterations
and the CFL as a function of the nonlinear iterations. Three forcing frequencies are
compared. Let us focus first on the lowest frequency case, ω = 0.4 (circles). We
observe two phases in the evolution of the nonlinear residual: in the first phase, the
residual slowly decreases as the CFL number is low, whereas in the second phase a
fast quadratic convergence typical of the Newton method is retrieved, thanks to the
CFL reaching high enough values. Finally, the GMRES iteration count shows that
convergence of the linear solver is reached (up to the chosen tolerance of 10−4) at
each Newton iteration. The case ω = 1 (triangles) behaves similarly though with
higher GMRES iteration counts, which is consistent with the results of table 3.3. For
ω = 3.6, the GMRES algorithm is unable to converge to the required tolerance above
some critical CFL value (' 103 here). As a consequence, only approximate Newton
increments eq. (3.34) are computed, yielding a degraded nonlinear convergence even
with high CFL.

In fig. 3.7, we investigate the robustness of the Newton–Krylov approach when
increasing the number of harmonics. At low enough forcing frequency (ω = 0.4,
fig. 3.7a), all indicators reported exactly superimpose, showing the robustness of the
approach, for N between N = 3 and N = 40. For a higher forcing frequency ω = 1,
similar robustness is observed in terms of nonlinear residuals. However, as already
mentioned in table 3.3, the GMRES iterations count mildly degrades for high N.
This does not impair nonlinear convergence as GMRES still converges, but surely
increases10 the wall-clock time necessary for convergence.

10... in addition to the “incompressible” linear increase of wall-clock time with N due to the linear
solver (see fig. 3.5)
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FIGURE 3.6: Performance of the Newton–Krylov approach different re-
duced frequencies: ω = 0.4 (circles), ω = 1 (triangles), ω = 3.6 (squares).

The number of harmonics is N = 20.
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FIGURE 3.7: Performance of the Newton–Krylov approach when increas-
ing the number of harmonics: N = 3 (crosses), N = 5 (circles), N = 10
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Comparison of PC to the block-Jacobi preconditioner We conclude our study by
comparing the proposed approach to a more classical one based on block-Jacobi it-
erations. In order to allow straighforward comparison, we use here block-Jacobi as
a preconditioner for GMRES like in [Mundis et al. 2014; Mundis et al. 2015; Mundis
et al. 2017] (referred to as “GMRES-EX” there), and not as fixed-point iteration as in
[Sicot et al. 2008]. The block-Jacobi preconditioner writes:

PBJ =




1
τ

M(q(t0)) + J(q(t0)) 0 . . . 0

0
1
τ

M(q(t1)) + J(q(t1))
. . .

...
...

. . . . . . 0

0 . . . 0
1
τ

M(q(t2N)) + J(q(t2N))




(3.44)
yielding the following advantages over PC. First, all blocks involved are already
assembled as parts of the TSM Jacobian. Second, no going back and forth between
physical and Fourier spaces are needed. Finally, the one-instant linear systems to
be solved are real-valued and can be directly handled by pre-existing (linearized)
steady-state solvers.

In fig. 3.8, we propose a comparison of the nonlinear convergences obtained with
PC (circles) and PBJ (crosses). The same indicators as in figures 3.6 and 3.7 are shown
again. However, due to the difference of cost in applying P−1

C and P−1
BJ , the indicators

are monitor versus wall-clock time, instead of Newton iterations.
For the one harmonic case N = 1 (fig. 3.8a), the block Jacobi approach is seen

to converge about 30% faster than the circulant preconditioner. For such a low N,
the GMRES algorithm always converges with both PBJ and PC, thus yielding the fast
Newton convergence properties. Despite a much higher GMRES iteration count, the
block Jacobi strategy is more efficient in this case, due to lower set-up and precondi-
tioner application costs (not shown).

Now turning to the case N = 5 (fig. 3.8b), it is seen that with block-Jacobi, GM-
RES is mostly unable to converge and always reaches the maximum 200 iterations
after 400 seconds. As a consequence, the Newton increments are not computed pre-
cisely and the nonlinear convergence stalls around

∥∥RTSM(q)
∥∥

2 ' 10−3. On the
contrary, the circulant preconditioner, thanks to its N-robustness conserves proper
GMRES convergence, and thus yields the expected quadratic Newton convergence.
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FIGURE 3.8: Comparison of the Newton–Krylov solver convergence using
preconditioner PC (circles) or PBJ (crosses). The cases N = 1 is shown in

(a) whereas N = 5 is shown in (b). The forcing frequency is ω = 0.4.
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3.4.2 Flutter instability of a 2DOF spring-mounted plate: a case with un-
known frequency

Having demonstrated the efficiency of the Newton–Krylov approach in the previ-
ous paragraphs, we are now interested in using it in order to compute the self-
sustained periodic solutions that emerge from the flutter instability of the 2DOF
spring-mounted plate, presented in chapter 1 (and further studied in chapter 4 to
6). Contrary to the previous test case, the movement of the solid is not imposed
anymore, but is an unknown of the problem.

When dealing with self-sustained LCO’s the frequency ω is an additional un-
known of the problem. As a consequence, an additional equation must be added to
the TSM equations, in order to ensure a well-posed problem. Typically, this addi-
tional equation sets the phase of the researched LCO. We choose to impose that the
pitching angle reaches an extremum at t0, which yields using the spectral derivation
operator, eq. (3.23):

θ̇(t0) '
2N

∑
n=0

dnθ(tn) = 0

In the following, we refer to this equation as the phase constraint. From there, a
Newton–Krylov method could be applied, for some given reduced velocity U∗, to
the TSM system augmented by the phase constraint.

In this work, we rather opt for a slightly different approach, inspired from [He
et al. 2018], where the imposed parameter is not the bifurcation parameter (U∗ here)
but rather an observable of the researched solution. Typically, this observable may
be the pitching angle amplitude, noted Aθ . Thus, in this strategy U∗ is yet another
unknown of the problem. The accompanying additional scalar equation, referred to
as the amplitude constraint, fixes the (extremum, cf the phase constraint) value of θ at
t0:

θ(t0) = Aθ

As a consequence, the nonlinear system to be solved writes:

RTSM,sel f (q, [ω, U∗]) =
(

RTSM(q, [ω, U∗])
C(q)

)
= 0

with C(q) =
(

∑2N
n=0 dnθ(tn)

θ(t0)−Aθ

) (3.45)

where C(q) gathers the two additional constraints introduced above.

Remark. In the case U∗ is a parameter (and not an unknown), the amplitude con-
straint is not introduced and C would be a simply: C(q) = ∑2N

n=0 dnθ(tn).

Preconditioning of the bordered Jacobian matrix The Jacobian of eq. (3.45) presents
a typical bordered structure:

JTSM,sel f (q, [ω, U∗]) =
(

JTSM(q, [ω, U∗]) b(q, [ω, U∗])
c(q)T 0

)

with b(q, [ω, U∗]) =
∂RTSM

∂ [ω, U∗]T

∣∣∣∣∣
q,[ω,U∗]

and c(q) =
∂C
∂q

∣∣∣∣
q

(3.46)
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An optimal preconditioner for the bordered Jacobian can be built from the U
block of the following block-LU factorisation of JTSM,sel f :

JTSM,sel f =

(
JTSM b

cT 0

)
=

(
I 0

cTJTSM−1 I

)

︸ ︷︷ ︸
L

(
JTSM b

0 S

)

︸ ︷︷ ︸
U

with S = −cTJTSM−1b the 2-by-2 Schur complement of the additional unknowns
block [ω, U∗]. The preconditioned matrix JTSM,sel f U−1 has only ones as eigenvalues
and would yield GMRES to converge in at most two iterations [Silvester et al. 2001].

Applying U−1 requires first to build S. This can be done, only once per Newton
iteration, by computing the image of the canonical basis of R2 by S, using its defi-
nition. The cost of that operation amounts to two solves for JTSM−1. Then, at each
GMRES iteration, one must (i) apply S−1 and (ii) solve for JTSM−1. Overall, the costs of
one solution for the bordered linearized system amounts to at most four solves for
JTSM−1: two to build S and two, at most, to converge GMRES. However, the question
of the required accuracy for those four solves is then posed, which leads to cumber-
some empirical studies.

Instead, we choose to use as the preconditioner an approximate version of U
where each occurrence of JTSM is replaced by the circulant preconditioner PC, yield-
ing:

Pauto
C =

(
PC b
0 SC

)
with SC = −cTPC

−1b

The cost of this strategy amounts to:

• two applications of PC
−1, performed only once during preconditioner set-up,

in order to build SC.

• computing the dense inverse of SC

• at each GMRES iterations: one application of S−1
C , one matrix-vector product

with b and one application of PC
−1.

The dominant cost is obviously to apply PC
−1. Since this is done only once per GM-

RES iteration, the cost of the iteration for the banded system is roughly equivalent
to that of the forced case.

Results Flutter LCO’s are searched at Re = 500 and m̃ = 103. According to the
physical investigations reported later in this manuscript (see fig. 4.7b), the critical
velocity is U∗c = 4.96 and the critical frequency ωc = 0.167. Following the approach
exposed above, we seek for the triplet [q, ω, U∗] for two imposed maximum pitch-
ing angles Aθ = 5◦ and Aθ = 10◦. The unstructured mesh is composed of 15,274
triangles, yielding K = 71,496 degrees of freedom per instant. The nonlinear toler-
ance is set to 10−9, the GMRES tolerance to 10−4 and the Krylov space size to 200 (no
restart allowed). An initial guess for the Newton iterations is set by superimposing
the steady solution and the critical flutter eigenmode obtained through linear stabil-
ity analysis in chapter 4, multiplied by a small arbitrary amplitude. Thanks to this
reasonable initial guess, the solution forAθ = 5◦ could be converged with a constant
infinite CFL = +∞ (exact Newton method). The latter solution then served as an
initial guess for the case Aθ = 10◦, which again converged with CFL = +∞.

The two LCO solutions are shown in fig. 3.2. The vorticity snapshots on the left
part of the figure are taken at t = 0, which corresponds to maximal instantaneaous
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angle of attack due to the phase constraint. AtAθ = 5◦, the flow remains attached to
the plate all along the period whereas at Aθ = 10◦ a recirculation region, marked by
the black solid line, forms over the whole plate. In the wake, the shear layers remain
“stable” in the sense that no vortex formation is observed. This is expected due to
the low frequency of the LCO ω ' 10−1 in both cases. On the right part of fig. 3.2, it
is seen that for both amplitudes, the angle of attack (solid line) has a nearly harmonic
behavior. On the contrary, the lift coefficient (dashed) contains higher harmonics at
Aθ = 10◦. This is linked to the more important nonlinearity of the flow, consecutive
to the appearance of the recirculation region.

In table 3.4, the number of Newton steps and average GMRES iteration counts
per Newton step are reported for the two amplitudes and different N. The number
of Newton iterations is low for both amplitudes, which is expected from the “good
enough” initial guess we use. In addition, the Newton and GMRES iteration counts
are both independent of N, showing that the robustness properties of the circulant
preconditioner observed in forced case are conserved in the self-sustained case.

Aθ

N
1 3 5 10 20

5◦ 7/28 7/27 7/27 7/26 7/26
10◦ 7/74 7/64 7/66 8/62 8/62

TABLE 3.4: Performance of the TSM solver for the self-sustained flutter
LCO test case. Each cell of the table is formatted like: “number of Newton

iterations / average number of GMRES iterations”.

3.5 Conclusion

Using the established classification of spectral methods in space from [Canuto et
al. 1988], we proposed a synthetic view of the different HBM methods used in the
aeroelasticity literature through the last twenty years. First, the direct application of
a Galerkin procedure, using the Fourier basis, leads to what we refer to as the An-
alytical Harmonic Balance Method. In this method, the unknowns are the Fourier
coefficients of the solution, and possibly cumbersome analytical manipulations are
required to derive the equations verified by each of them. For more complex sys-
tems (highly nonlinear and/or high-dimensional), those analytical manipulations
can be advantageously avoided by adopting a pseudo-spectral approach. This is
the Nonlinear Frequency Domain Method. Another possibility is to directly for-
mulate the problem in the time-domain, through a collocation approach. The High-
Dimensional Harmonic Balance Method and the Time Spectral Method both use this
strategy while they only differ in the way they evaluate the spectral time-derivative
term. All three methods pseudo-spectral approaches (NLFD, HDHBM and TSM)
were shown to be strictly equivalent so that they can simply be considered as dif-
ferent implementations of the pseudo-spectral scheme. The Analytical Harmonic Bal-
ance Method on the other hand remains a different method as it is, by construction,
a truly spectral (aliasing-free) approach.

In the rest of the chapter, we detailed a solution method for the TSM equations
based on a Newton–Krylov approach. The high-dimensional linear system arising
at each Newton iteration is solved using the GMRES algorithm for which we pre-
sented a new preconditioner called circulant preconditioner. The latter is obtained
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FIGURE 3.9: Spring-mounted thin plate undergoing coupled mode flutter
LCO’s of different amplitudes Aθ . Vorticity snapshots at t = 0 are shown
on the left where solid lines mark the recirculation area. The temporal
series of angle of attack (solid line) and lift coefficient (dashed) are shown

on the right. (Re = 500, m̃ = 103)
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by replacing the diagonal blocks of the TSM Jacobian matrix with the Jacobian eval-
uated at the mean flow. The resulting preconditioner being circulant, its inverse is
efficiently computed in the frequency domain. The proposed approach has been im-
plemented in a parallel-in-time manner in the FreeFEM library and then tested on
two numerical examples.

The first example consisted in a NACA0012 airfoil forced in plunging motion
at different frequencies. The performance of the linear solver alone was first investi-
gated. For forcing frequencies up to ω ' 0.8, nearly N-independent (for 1 ≥ N ≥ 40)
GMRES iteration counts were obtained for solving the linearized TSM problem with-
out any pseudo time-step. For higher frequencies, a mild N-dependence of the GM-
RES iteration count was observed, which could not be explained. From a wall-clock
time point of view, the linear solve was decomposed into two phases: preconditioner
set-up and GMRES. The preconditioner set-up was seen to yield N-independent
wall-clock time, due to its mostly sequential nature. On the contrary, the GM-
RES phase, which actively relies on operators with a dense-in-time pattern (spectral
derivative operator and discrete Fourier transforms), showed linear scaling with N,
as expected. On the downside, the circulant preconditioner was seen to exhibit a sig-
nificant dependence on ω. This dependence is intrinsic to the its construction as the
mean flow approximation, that yields the circulant structure, is less and less verified
for high ω. Then, the performance of the nonlinear solver was exposed. First, the
Newton iteration count logically increases with ω, due to the more and more nonlin-
ear nature of the solution. Second, because the nonlinear solver is fully independent
of N (typically, the pseudo CFL number is only function of the spatial discretiza-
tion), the N-robustness of the linear solver directly transfers to the nonlinear solver,
thus yielding robust path to the LCO solution (in terms of iteration counts). The im-
portance of using a robust linear solver was even more obvious when replacing the
circulant preconditioner with a block-Jacobi preconditioner. Despite its lower setup
and application costs, the block-Jacobi preconditioner was shown to be quickly out-
performed when N was greater than 2− 3. This is due to the quick degradation of
GMRES iteration counts, ultimately yielding highly inaccurate linear solves, as N
increases.

The second example, which consisted in computing self-sustained flutter LCO’s,
was the opportunity to extend our strategy to the case where a few additional un-
knowns have to be solved for (the frequency typically, but not only). To handle the
associated scalar constraints, the circulant preconditioner was coupled with a Schur
complement approach, at nearly no additional cost per GMRES iterations. The ob-
tained preconditioner showed the same N-robust features as in the forced case.

Overall, the Newton–Krylov approach with block-circulant preconditioning was
shown to provide an efficient, yet imperfect, algorithm for computing complex non-
linear LCO solutions, such as the one obtained for ω = 3.6 in our forced NACA0012
test case. In order to further assess its performance, we propose, as a future work,
to compare the present preconditioner with the approximate factorization precon-
ditioner of [Mundis et al. 2017], that appears to be one of the current references for
aeroelastic applications.

As it is implemented, the main drawback of the our solver is its linear scaling
in wall-clock time with respect to N. A straightforward solution to that issue is to
follow Ramezanian et al. (2017), by implementing both the spectral derivative and
the circulant preconditioner through parallel-in-time fast Fourier transforms. With
an efficient implementation, this should bring the scaling down to log N.
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Another possible direction of research is to improve the solver/preconditioner
performance for highly nonlinear cases exhibiting strong harmonic contents. A sug-
gestion is to investigate the effect of adding numerical viscosity in time to the clas-
sical TSM scheme. This may be motivated, for example, by the fact that Leffell et al.
(2014) noted as a side remark that very high forcing frequencies (like ω = 6) could
only be computed by adding artificial viscosity. On the positive side, we mention
that the circulant preconditioner could be easily adapted to the addition of a viscous
second order spectral derivative in time, due to the similar structure of the linearized
operator.

Finally, we should mention that, in the perspective of larger scale three-dimensional
applications, it is important that efficient solvers exist to handle the complex-valued
mono-instant problems that arise on the diagonal of eq. (3.42). In the framework of
laminar incompressible Navier–Stokes, this challenge is partially addressed in chap-
ter 7.
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APPENDIX

Appendix 3.A Discretized operators for the numerical exam-
ples of section 3.4

In this section we provide the expressions of the discrete (in space) operators that
are substituted for the generic problem eq. (3.1) in the numerical examples of sec-
tion 3.4. We first present the coupled fluid-structure case used in section 3.4.2. Then,
the particular case of section 3.4.1 where the solid is forced with heaving motion
is deduced. In all cases, the “reference configuration ALE” formalism, introduced
in section 1.1.2.2, is used. The weak formulations are obtained by following steps
exactly similar to the ones detailed for the “absolute velocity – rotating axis” for-
malism, in section 1.2.1. In particular, the velocity continuity condition on the fluid
interface is imposed weakly, by introducing the corresponding Lagrange multiplier,
noted λ = Σ f ns, where we recall Σ f is the viscous stress tensor, written in the refer-
ence configuration.

Finite elements are used for spatial discretization of the Navier–Stokes equations:
(P2,P1) for (u, p) and P2 for λ. All operators defining the finite element discretiza-
tion of a differential operator are defined by their weak formulations.

3.A.1 Coupled problem: spring-mounted plate

The coupled problem for the numerical example of section 3.4.2 is detailed in this
section.

3.A.1.1 Nonlinear equations

The solid and fluid equations are grouped under the generic form:
(

Ms 0
0 Mf(qs)

)
∂

∂t

(
qs
qf

)
+

(
Rs(qs, qf)
Rf(qf, qs)

)
= 0 (3.47)

with the solid qs = (h, θ, uh, uθ)
T and fluid qf = (u, p, λ)T unknowns, and where

Ms =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 Mf(qs) =




Mu(qs) 0 0
0 0 0
0 0 0




with Mu(qs) is similar to a mass matrix on the velocity space, but incorporates a
dependence in qs through the Jacobian of the extension deformation:

Mu(qs) =
∫

Ωf

J(ξe(qs)) u · ǔ
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The discrete stationary residuals write

Rs =




−uh
−uθ

2ζh
Ω
U∗c

uh +
Ω2

U∗c
2 h− 1

m̃
CL(λ)

2ζp

(
1

U∗

)
uθ +

(
1

U∗

)2

θ − 1
m̃rθ

2 CM(θ, λ)




, Rf =




Ru
Rp
Rλ




where the three components of the Rf are

Ru(u, p, λ, qs) :=
∫

Ωf

{∇uΦ(ξe(qs)) (u−w(qs))} · ǔ

+
∫

Ωf

Σ f (u, p, ξe(qs)) : ∇ǔ +
∫

Γfs

λ · ǔ

Rp(u, qs) := −
∫

Ωf

{
Φ(ξe(qs))

T : ∇u
}

p̌

Rλ(u, qs) :=
∫

Γfs

(u−w(qs)) · λ̌

3.A.1.2 Linearized equations

Linearizing the “reference configuration ALE” formalism is a cumbersome process,
previously considered in the thesis of J.-L. Pfister (2019). Here, for sake of brevity,
we limit ourselves to giving the final result. Consider a base (time-dependent) state,
noted qs0 = (h0, θ0, uh0, uθ0)

T and qf0 = (u0, p0, λ0)
T. The linearization of eq. (3.47)

around (qs0, qf0) yields:
(

Ms 0
0 Mf(qs0)

)
∂

∂t

(
qs
qf

)
+

(
Jss Jsf
Jfs Jff

)(
qs
qf

)
= 0 (3.48)

where the linearized solid problem is defined by

Jss =




0 0 −1 0
0 0 0 −1

Ω2U∗−2 0 2ζhΩU∗−1 0
0 U∗−2 − 1

m̃rθ
2

∂CM
∂θ 0 2ζpU∗−1




Jsf =




0 0 0
0 0 0
0 0 − 1

m̃
∂CL
∂λ

0 0 − 1
m̃rθ

2
∂CM
∂λ




and the linearized fluid problem by

Jff =




A BT IT
λ

B 0 0
Iλ 0 0


 Jfs =




Duh Duθ Duuh Duuθ

Dph Dpθ 0 0
0 −Wθ −Wuh −Wuθ
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Matrices A and B are the finite element discretizations of the linearized Navier–
Stokes convection-diffusion and divergence operators:

A :=
∫

Ωf

{
∇u′Φ(ξe(qs0)) (u0 −w(qs0)) +∇u0Φ(ξe(qs0))u

′} · ǔ

+
∫

Ωf

{
Re−1 G(u′, ξe(qs0))Φ(ξe(qs0))

T
}

: ∇ǔ

B := −
∫

Ωf

{
Φ(ξe(qs0))

T : ∇u′
}

p̌

whereas Iλ is a mass matrix defined on the interface Lagrange multiplier space. Ma-
trices Wθ , Wuh and Wuθ

transmit the solid velocity to the fluid at the interface,

Wθ :=
∫

Γfs

∂w
∂θ

θ′ · λ̌ Wuh :=
∫

Γfs

∂w
∂uh

u′h · λ̌ Wuθ
:=
∫

Γfs

∂w
∂uθ

u′θ · λ̌

whereas the shape derivatives Duh, Duθ , Duuh , Duuθ
represent the effect of a solid

movement on the Navier–Stokes momentum equation:

Duh :=
∫

Ωf

{
∇u0Φ′

(
∂ξe
∂h

h′
)(

u0 −w(qs0)

)}
· ǔ

+
∫

Ωf

Σ f
′
(

∂ξe
∂h

h′
)

: ∇ǔ

+
∫

Ωf

J′
(

∂ξe
∂h

h′
)

∂u0

∂t
· ǔ

Duθ :=
∫

Ωf

{
∇u0Φ′

(
∂ξe
∂θ

θ′
)(

u0 −w(qs0)

)
−∇u0Φ

(
ξe(qs0)

)
∂w
∂θ

θ′
}
· ǔ

+
∫

Ωf

Σ f
′
(

∂ξe
∂θ

θ′
)

: ∇ǔ

+
∫

Ωf

J′
(

∂ξe
∂θ

θ′
)

∂u0

∂t
· ǔ

Duuh :=
∫

Ωf

{
−∇u0Φ

(
ξe(qs0)

)
∂w
∂uh

u′h

}
· ǔ

Duuθ
:=
∫

Ωf

{
−∇u0Φ

(
ξe(qs0)

)
∂w
∂uθ

u′θ

}
· ǔ

and Dph, Dpθ represent the effect of a solid movement on the Navier–Stokes conti-
nuity equation:

Dph := −
∫

Ωf

{
Φ′
(

∂ξe
∂h

h′
)T

: ∇u0

}
p̌

Dpθ := −
∫

Ωf

{
Φ′
(

∂ξe
∂θ

θ′
)T

: ∇u0

}
p̌

Remark. The last term in Duh and Duθ comes from the linearization of the term
J(ξe(qs))

∂u
∂t in the fluid momentum equation, with respect to solid variables. Be-

cause it is proportional to ∂u0
∂t , this term vanishes if u0 is a steady state, like in

global stability analysis. Here, u0 is a periodic orbit, thus the term should be kept
for exact linearization.
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The different linearized operators that appear in the shape derivatives are de-
tailed below. First, the linearization of Σ f = (−p0I + Re−1G)ΦT with respect to
ξe:

Σ f
′ (ξe

′) = Re−1 G′
(
ξe
′) Φ

(
ξe(qs0)

)T

+

(
−p0I +Re−1G

(
u0, ξe(qs0)

))
Φ′
(

ξe
′
)T

Second, the linearization of G = J−1
(∇uΦ + ΦT∇uT) with respect to ξe:

G′
(
ξe
′) = 1

J(ξe0)

(
∇u0Φ′(ξe

′)+Φ′(ξe
′)T∇uT

0

)
− J′(ξe

′)
J2(ξe0)

(
∇u0Φ(ξe0)+ΦT(ξe0)∇uT

0

)

Third, the linearization of J = det(F) with respect to ξe:

J′(ξe
′) = Φ(ξe0)

T : ∇ξe
′

Finally, for two-dimensional flows, the deformation operator Φ = JF−1 is linear:

Φ(ξe) =

(
1 + ∂ξy

∂y − ∂ξx
∂y

− ∂ξy
∂x 1 + ∂ξx

∂x

)
and Φ′(ξe

′) = Φ(ξe
′)

3.A.2 Forced problem: solid with imposed heaving motion

The forced fluid problem for the numerical example of section 3.4.1 is detailed in this
section. The NACA0012 profile is forced along the heaving direction, as described
by the following solid vector:

qforc
s (t) =




h1 sin(ωt)
ω h1 cos(ωt)

0
0




3.A.2.1 Nonlinear equations

Only the fluid equations are kept from eq. (3.47):

Mf(qforc
s (t))

∂qf

∂t
+ Rf(qf, qforc

s (t)) = 0 (3.49)

with qf = (u, p, λ)T gathering the fluid unknowns.

Remark. Due to the highly nonlinear form of the ALE equations, most contributions
involving to the solid forcing qforc

s (t) cannot in practice be transferred to the right-
hand side, as an external forcing. Instead, they are kept in operator Rf which is thus
a nonlinear operator in qf, with time-dependent periodic coefficients.

3.A.2.2 Linearized equations

The linearized problem around the fluid state qf0 reduces to

Mf(qforc
s (t))

∂qf

∂t
+ Jff(qf0, qforc

s (t))qf = 0 (3.50)
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4
LINEAR STABILITY OF A TYPICAL

SECTION IN VISCOUS
INCOMPRESSIBLE FLOWS

We revisit, for low-Reynolds laminar incompressible flows, the linear stability
analysis of a typical aeroelastic section consisting in a thin plate mounted on
flexion and torsion springs. A global stability framework is adopted for the cou-
pled fluid-structure system. Depending on the reduced velocity U∗ and steady
angle of attack, we show that the global stability framework captures four types of
flow-induced instabilities — vortex-induced vibrations at low U∗ and coupled-
mode/single-mode flutter and divergence at high U∗ — that are often studied
with separate flow models. Neutral curves for these instabilities are presented in
the parametric plane composed of the solid-to-fluid mass ratio and the reduced
velocity. At a particular, low, value of the mass ratio, noted m̃I I , a codimension-
two point is found where both flutter and divergence occur at the same critical
reduced velocity. For mass ratios higher than m̃I I , flutter occurs prior to di-
vergence whereas divergence precedes flutter (if it exists at all) for mass ratios
below m̃I I . In addition, for very high U∗, a restabilization of the flutter mode is
observed. The effect of the Reynolds number is then investigated on the range
10 ≤ Re ≤ 104, showing in particular that this high-U∗ restabilization of
flutter is caused by viscosity. The global stability results are finally compared
to more classical fluid modelizations based on quasi-steady models or on the
Theodorsen theory, both calibrated using the static aerodynamic coefficients. If
all approaches converge for the low-frequency flutter that occurs at large mass
ratios (m̃ > 103), they significantly differ for the higher-frequency flutter occur-
ring at low mass ratios (m̃ ∼ 10), where quasi-steady models are overconserva-
tive while the (recalibrated) Theodorsen model is unconservative. For some low
value of the mass ratio, the Theodorsen model predicts a neutral curve asymptot-
ically tending towards infinity. With the full Navier–Stokes approach, no such
asymptote is observed as the neutral curved “folds back” so as to allow the high-
U∗ restabilization of the flutter mode. Overall, our findings show that accurate
predictions of the flutter thresholds, in particular for low mass ratios, require
taking into account the viscous effects.
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4.1 Introduction

The assessment of flutter linear stability is often performed using potential flow
models, like the Theodorsen model [Theodorsen 1935] or the Doublet Lattice Method
(DLM) [Albano et al. 1969]. These elegant and low-computational-cost methods
have encountered a great success for the computation of aeroelastic stability of high-
speed aircraft in industrial practice [Garrigues 2018]. However, since the middle
of the twentieth century, it has been pointed out that classical aeroelastic (potential
flow) methods are not consistent with experimental results for low mass ratio ap-
plications, typical of hydrofoils [Woolston et al. 1951; Abramson 1969; Besch et al.
1971; Chae et al. 2013]. For example, for a two-dimensional foil section mounted
on heaving and pitching springs (a “typical aeroelastic section”), it is well-known
that the Theodorsen model predicts a critical flutter velocity asymptotically tending
towards infinity, for some low value of the mass ratio (e.g. [E. H. Dowell et al. 1989,
fig. 3.27] or [Hodges et al. 2011, fig. 5.14]). This often yields an overestimated (un-
conservative) prediction of the experimental flutter thresholds for low mass ratios,
in the region of the asymptote [Chae et al. 2013]. No uniform theory that would ac-
curately capture fluid-structure instabilities at these low mass ratio seems to be gen-
erally accepted in the literature. As a consequence, the most widely used method to
this day consists in time-marching the coupled nonlinear fluid-structure equations
[Young et al. 2012], using a Reynolds Average Navier–Stokes approach for turbu-
lence modeling. In several of these studies, viscosity is cited as the main source
of difficulty, despite the high-enough Reynolds numbers used in hydrofoil applica-
tions, Re ∼ 106. If viscous effects are already problematic for these high-Reynolds
configurations, their impact is expected to be even stronger for modern applications,
like Micro-Aerial Vehicles [Mueller et al. 2003; Shyy et al. 2010], that combine (very)
low-Reynolds numbers (10 ≤ Re ≤ 105), low mass ratios and very flexible wings.

The effect of Reynolds number on the fluid forces exerted on a forced heaving
and pitching thin streamlined plate was investigated by Bruno et al. (2008), using an
indicial function approach. In the large range they studied, from Re = 10 to Re =
105, the flutter derivatives were shown to significantly depend on the Reynolds
number. As a consequence, large discrepancies with respect to Theodorsen’s po-
tential theory were reported at low Re, leading the authors to recommend not to
use the latter for such flows. A possible modelling approach for fluid forces at low-
Reynolds flows was proposed by Brunton et al. (2013). The authors considered a
generalized Theodorsen’s model by identifying empirical versions of the analytical
potential flow parameters in the original model, like the added mass, damping and
stiffness coefficients or the Theodorsen function. This generalization allowed the
authors to significantly improve the lift prediction on a pitch oscillating flat plate at
Re = 100, for a wide range of reduced frequencies. However, in these studies, the
impact of the viscous flow model on the aeroelastic stability was not investigated.
Recently, the aeroelastic stability of a spring-mounted pitching NACA0012 airfoil
was investigated at transitional Reynolds numbers (Re ∼ 50000) in [Negi 2019, Pa-
per 3] in an effort to investigate the linear regime of the so-called “laminar separation
flutter” originally reported in the experiments of Poirel et al. (2008).

For systems other than a typical airfoil section, the fluid-structure linear stability
has been successfully studied in several (very) low-Reynolds viscous flows. The
most classical of them might be the destabilization of a spring-mounted circular
cylinder due to vortex-induced vibrations [Cossu et al. 2000]. In addition, Cisonni
et al. (2017) investigated the flutter of an elastic filament in viscous channel flow.
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Goza et al. (2018) studied the flow-induced oscillations of an inverted flag. The de-
velopment of oscillations in the vertical path of freely falling or rising rigid objects
has been considered by Assemat et al. (2012), Tchoufag et al. (2014a), and Tchoufag
et al. (2014b). A flexible splitter plate attached to a rigid circular cylinder has been
studied by J. L. Pfister et al. (2020). In these studies, the fluid-structure stability is as-
sessed with a so-called global stability approach [Sipp et al. 2007] where the leading
(i.e. rightmost) eigenvalues of the linearized fluid-structure operator, including the
incompressible Navier–Stokes equations, are directly computed. A more detailed
presentation of this approach for fluid-structure instabilities can be found in [Tcho-
ufag et al. 2014a] in the case of rigid structures and in [J.-L. Pfister et al. 2019; Negi
et al. 2019] for various approaches suitable for generic elastic solids.

In this study, we propose to revisit the linear stability of a “typical aeroelastic
section” consisting in a rigid, heaving and pitching spring-mounted thin plate, im-
mersed in two-dimensional laminar incompressible flows, using a global stability
approach. A second goal of this work is to assess how differently a full Navier–
Stokes fluid modeling predicts flutter, in comparison to simpler, less computation-
ally intensive models. The chapter is organized as follows. In section 4.2, we very
briefly recall the models and methods used to investigate the linear stability of a
spring-mounted plate. In section 4.3, we present the different types of instabilities
that appear depending on the reduced velocity and steady angle of attack. Then, in
section 4.4, we parametrically explore the effect of the solid-to-fluid mass ratio and
Reynolds number for the plate at zero steady angle of attack. The chapter ends in
section 4.5 with a comparison of the present viscous analysis with simplified models
such as quasi-steady approaches or the classical Theodorsen model.

4.2 Problem settings and methods

We consider in this chapter the system presented in section 1.1 which is composed
of a rigid plate mounted on heaving and pitching springs and immersed in a two-
dimensional incompressible viscous flow. Eight non-dimensional parameters, sum-
marized in table 1.1, define the system. Five of them — the heaving-to-pitching
frequency ratio Ω, the structural dampings ζh, ζp, the radius of gyration rθ and the
position of the elastic axis xθ — are kept fixed to the values already specified in ta-
ble 1.1. In particular, the elastic axis is positionned at the mid-chord (xθ = 0). The
three other parameters, that are the solid-to-fluid mass ratio m̃ = m/(1/2ρ f c2), the
Reynolds number Re = ρ f U∞c/µ and the reduced velocity U∗ = U∞/(c

√
Kθ/Iea),

vary in the present chapter.
The dynamics of the spring-mounted plate is governed by two (damped) linear

oscillator equations eq. (1.3), whereas the flow verifies the incompressible Navier–
Stokes equations. This system of coupled equations, described in detail in chapter 1,
is formally written here as the following first-order in time evolution equation

M
∂q
∂t

+R(q) = 0 (4.1)

where the variable q = (h, θ, uh, uθ , U, p, Λ)T gathers all variables necessary to de-
scribe the fluid-solid interaction. These first four scalar variables allow describing
the dynamics of the rigid plate. They are the heaving h and pitching θ displace-
ments, as well as the corresponding velocities uh and uθ . The incompressible flow is
described with the velocity U and pressure p fields. Finally, the variable Λ defined
at the fluid-solid interface represents the local stress exerted by the fluid onto the
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solid. The exact definition of the linear operator M in front of the time-derivative
and of the nonlinear residual vector R are given in eq. (1.30). In this residual, the
first four components corresponds to the two coupled damped harmonic oscillators,
written as a first-order problem in time. The fifth and sixth component correspond
to the Navier–Stokes momentum and mass conservation equation, written using the
“absolute velocity - rotating axis” formalism described in section 1.1.2.1. The last
equation corresponds to the equality of fluid and solid velocities at the fluid-solid
interface. Again, we refer to chapter 1 for more details.

Linear stability analysis To explore the occurrence of flutter, we investigate the
linear stability of steady solutions q0(X) of eq. (4.1), i.e. we search the conditions in
which small amplitude time-dependent perturbations, noted εq1(X, t), are able to
develop around q0 in a self-sustained manner. To that end, the solution is decom-
posed as the sum of the steady solution and the small perturbation:

q(X, t) = q0(X) + εq1(X, t) ε� 1 (4.2)

In addition, the perturbation is further decomposed in the form of global modes
[Sipp et al. 2010]:

q1(X, t) = q̂(X)eσ t σ = λ + iω

Plugging the above in eq. (4.1) yields the steady nonlinear problem eq. (2.5) for q0
and the eigenproblem eq. (2.9), that are recalled for convenience:

R(q0, U∗c ) = 0 (4.3a)
σM q̂ +J (q0, U∗c )q̂ = 0 (4.3b)

where σ is complex eigenvalue and q̂ the corresponding complex-valued eigenvec-
tor. The long term stability of the steady solution is assessed by scrutinizing the
eigenvalue spectrum of eq. (4.3b). If all eigenvalues have negative real parts (λ < 0)
the system is stable in the sense that any infinitesimal perturbation will eventually
decay to zero. If at least one eigenvalue has positive real part (λ > 0) then the system
is unstable. The case λ = 0 describes a situation where a perturbation will neither
be amplified nor damped, and is said neutrally stable.

A Newton method for neutral curves computation From a physical point of view,
sets of parameters for which an eigenmode is neutrally stable are of particular inter-
est since they define boundaries, called neutral curves, between stable and unstable
regions of the parametric space. For the present study, we are typically interested
(e.g. fig. 4.9) in computing neutral curves in the (m̃, U∗) parametric space for dif-
ferent modes of interest. In other words, we search curves of the form U∗c = f (m̃),
where U∗c is a critical value of U∗, i.e. a value of U∗ for which the mode of interest
is neutrally stable. A naive way to do so is, for each m̃, to vary U∗ in a wide enough
range, compute the spectrum of eq. (4.3b) and find the particular value(s) of U∗ for
which a mode switches from λ < 0 to λ > 0. This naive approach is particularly
inefficient as it requires to compute the full spectrum on a whole interval of U∗ in
order to extract in the end only one critical mode q̂c, the corresponding critical fre-
quency ωc and U∗c . In order to bypass those shortcomings, we solve directly for the
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critical triplet (q̂c, ωc, U∗c ) that verifies:

(iωc M +J (q0, U∗c )) q̂c = 0 (4.4a)

q̂H
c M q̂c − 1 = 0 (4.4b)

C (q̂c) = 0 (4.4c)

The first equation ensures that the mode is a critical eigenmode of eq. (4.3b), whereas
the second and third equations are arbitrary scalar conditions that are required to ob-
tain a well-posed problem. In practice, they respectively fix the norm and phase of
the eigenvector. For dynamic instabilities (i.e. ωc 6= 0: flutter or VIV in our case), we
impose as a phase condition that the heaving degree of freedom has a zero real part:
C (q̂c) = Re

(
ĥc

)
. For static instabilities (i.e. ωc = 0, divergence in our case), a phase

condition is irrelevant, and we can simply degenerate it to ωc = 0. The obtained sys-
tem eq. (4.4) is nonlinear due to the dependence of the Jacobian operator in U∗c and
to the presence of ωc in front of the mass matrix term, in the first equation. We solve
it with Newton iterations. Note in addition that we had to wrap the resolution of
eq. (4.4) in a pseudo arc-length algorithm, in order to properly handle the occurrence
of turning points in the different computed neutral curves (see fig. 4.9).

We end this section by mentioning that all the problems mentioned above are are
discretized in space using the SUPG-stabilized finite element method presented in
section 1.2.2.

4.3 Different types of flow-induced vibrations

In this section, we expose the linear stability results obtained by solving eq. (4.3).
First, the leading eigenmodes are described in section 4.3.1 for a particular set of
non-dimensional parameters. Then, by varying the reduced velocity in section 4.3.2
and the steady angle of attack in section 4.3.3, four types of instabilities are observed.

4.3.1 Leading eigenmodes

Consider the flow around the plate at Re = 2900. The steady solution q0, at which
the fluid-structure Jacobian is evaluated, is simply the steady flow around the plate
fixed at h = θ = 0. Such a flow, shown in fig. 4.1a, is mostly attached to the plate,
even at the leading edge, due to the low Reynolds number. At the blunt trailing
edge, a small recirculation area, characterized by backwards flow, is observed inside
the region marked by the thin black line.

The rightmost eigenvalues1 of eq. (4.3b) are shown in fig. 4.1b for particular val-
ues of the mass ratio m̃ = 1000 and reduced velocity U∗ = 4.7. First, one unstable
mode, marked by a red dot, is observed at a low frequency ω = 0.17. This frequency
is of the order of O(1/U∗), which corresponds to the natural (non-dimensional)
solid frequencies, ω0θ = 1/U∗ (pitching) and ω0h = Ω/U∗ (heaving). The struc-
ture of the corresponding eigenvector is shown in fig. 4.2a. The pressure field of the
eigenmode, represented by the blue-white colormap, is mainly concentrated near
the leading edge. As can be seen from the displacement field of the plate (orange
arrows), this unstable mode couples heaving and pitching motions. By comparing
the minimums of the heaving and pitching signals presented in the right part of the
figure, we observed that their phase shift is such that pitching (dashed line) precedes

1i.e. the eigenvalues with largest real part λ
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heaving (solid line). This feature is a typical signature of the coupled-mode flutter
instability, as mentioned in the introduction to this manuscript (see the discussion of
fig. 2(b)). This mode thus corresponds to a classical flutter mode.

Close to the flutter mode, another low-frequency mode (black dot, ω = 0.15), sta-
ble this time, stands out in fig. 4.1b due to its relatively small damping in comparison
with the rest of modes marked by the black “plus” signs. Again, the corresponding
eigenmode is shown in fig. 4.2b and presents very similar features to the flutter mode
with a coupling between heaving and pitching motions and a pressure field concen-
trated near the leading edge. However, contrary to the flutter mode, the phase shift
is now such that pitching (dashed) lags behind heaving (solid). Due to those proper-
ties “similar and opposite” to the flutter mode, this mode is an anti-flutter mode (see
also the discussion of fig. 2(c) in the general introduction to this manuscript).

All other modes in fig. 4.1b are stable, most of them being strongly damped (no-
tice the different scales on the left and right of the “zigzag” sign in the figure). They
are qualified as fluid modes here, in the sense that they are already observed when
the solid is fixed, i.e. they are present in the spectrum of the fluid-only Jacobian
matrix. Among these modes, the one marked by the blue disk on the figure is re-
markable, due to its nearly zero growth rate and high frequency ωwake = 11.2. The
eigenvector structure presented in fig. 4.2c shows completely different features from
the flutter and anti-flutter modes previously described. First, the solid contribu-
tion to the mode is negligible, meaning that the flow perturbation generated by this
mode does not produce significant efforts on the plate. This is indeed observed in
the pressure field representation where the fluctuations develop only in the wake of
the plate in the form of a succession of downstream-convected, small-wavelength
patterns. This feature is typical of the eigenmode associated with the instability of
the recirculation region in the wake of a bluff body (e.g. [Jackson 1987; Sipp et al.
2007]). In the following, it is thus referred to as the wake mode. Finally, we mention
that the critical Reynolds number for the wake mode, in the case of a fixed plate, is
about Rec,wake ' 2925 (or equivalently ReH

c,wake ' 145 if the Reynolds is based on
the plate’s thickness, H) and the thickness-based Strouhal number is S te ' 0.08.

4.3.2 Varying the reduced velocity: from VIV to coupled-mode flutter and
divergence

When varying the reduced velocity U∗, the three leading modes marked by disks in
fig. 4.1b move in the complex plane, giving rise to different types of instabilities. In
fig. 4.3, we mark by solid lines the paths of those three leading modes as U∗ is varied
between 0.05 and 8. For comparison purposes, the position of the modes at U∗ = 4.7
(case of fig. 4.1b) is recalled with the disks symbols. The direction of increasing U∗

is materialized on each path by an arrow. Finally, the path of the uncoupled (solid-
only) heaving and pitching modes are shown with thin dashed lines.

First, it is observed that the path followed by the red eigenvalue is mostly close
to the real (vertical) axis, which is also the locus for the uncoupled heaving mode.
For that reason, we refer to the red mode as the heaving mode. For most values of
U∗, the heaving mode is slightly damped but gets unstable at two different locations
in the complex plane. On the one hand, at high-frequency ω ' 11, the heaving mode
interacts with the wake mode (blue) and destabilizes, as emphasized in the zoomed-
in view proposed in the upper-right part of the figure. The interaction is even more
obvious when visualizing the eigenmode structure (fig. 4.4a): the mode’s pressure
field has the typical features of the stable wake mode (cf fig. 4.2c), whereas the solid
movement is largely dominated by heaving motion. Note that the destabilization of
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FIGURE 4.1: Linear stability analysis of the steady baseflow illustrated in
4.1a. The spectrum of the fluid-structure operator J at (U∗ = 4.7, Re =
2900, m̃ = 1000) is shown in 4.1b. The leading mode, marked with a red
disk, is slightly unstable and is responsible for the flutter instability. It is
depicted in fig. 4.2a. All modes marked by crosses correspond to the fluid
modes that are present without any fluid structure coupling. In particular,

the high-frequency wake mode (blue disk) is presented in fig. 4.2c.

a fluid-structure system due to the interaction of a solid mode and a wake mode has
been extensively documented in the circular cylinder flow configuration, using both
global stability analysis [Cossu et al. 2000; Meliga et al. 2011; Navrose et al. 2016] and
nonlinear time-accurate simulations [Mittal et al. 2005; Singh et al. 2005; Navrose
et al. 2016] in the past twenty years. The second destabilization observed occurs
in a low-frequency zone around ω ' 0.1 and results in the flutter mode already
described in section 4.3.1.

Focusing now on the black mode, it stays close to the solid-only pitching mode
locus at low U∗, before it suddenly deviates to reach zero frequency and finally
destabilizes, as show in the zoomed-in view of the lower-right part of fig. 4.3. The
corresponding eigenmode is presented in fig. 4.4b. The destabilization of the pitch-
ing mode by a static instability (ω = 0) is an example of the classical divergence
instability [Bisplinghoff et al. 1955, Chapter 8]. Note that here, the divergence mode
includes both heaving and pitching displacements. However, it is known that diver-
gence is possible with only the pitching degree of freedom, for example in the thin
airfoil theory limit [E. H. Dowell et al. 1989, §2.1].

For sake of completeness, we provide in fig. 4.5 a complementary (and more
practical) representation for the flutter and divergence instabilities, by following the
red and black eigenvalues as a functions of U∗. The growth rate and frequency are
both normalized by the pitching natural frequency ω0θ = 1/U∗, in order to avoid
large variations in frequency. It is clear in fig. 4.5 that for U∗ → 0, the red and black
modes respectively tend towards the solid-only eigenmodes:

λh + iωh

ω0θ
= (−Ωζh + iΩ

√
1− ζh

2) = 0 + 0.8× i

λθ + iωθ

ω0θ
= (−ζp + i

√
1− ζp

2) = −0.05 + 0.999× i
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(a) Unstable flutter mode (red disk)
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(b) Stable “anti-flutter” mode (black disk)
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(c) Wake mode (blue disk)

FIGURE 4.2: Visualisation of the three leading eigenmodes of fig. 4.1b. For
each subfigure, the left part represents a snapshots of the mode at t=3π/4,
where the blue colormap represents the pressure field, while the arrows
materialise the solid displacement (orange) and velocity (red) vectors. On
the right part, we show the time signals for the vertical displacement (solid
line) and pitching angle (dashed line). The modes are normalized to unit

solid mechanical energy.
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FIGURE 4.3: Loci of the three leading eigenvalues represented by disks in
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in red, pitching in black). The arrows indicate the direction of increasing
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plane.
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(a) Unstable VIV mode (U∗ = 0.0716).
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FIGURE 4.4: Eigenmodes corresponding to the (heaving) VIV and diver-
gence instabilities observed in fig. 4.3. The orange (resp. red) arrows rep-
resent the displacement (resp. velocity) vectors whereas the pressure field

is visualized by the blue colormap.

where we recall Ω is the heaving-to-pitching natural frequency ratio. As U∗ in-
creases, the frequencies of the branches first approach each other while growth rates
slightly decrease. Around U∗ = 4, both branches have equal frequency and a brutal
increase of the growth rate of the heaving branch is observed so that the heaving
branch goes unstable at U∗c = 4.5. As a consequence, flutter is linked to the coales-
cence of the heaving and pitching frequencies. Hence the name coupled-mode flutter,
usually associated to that instability [De Langre 2002]. The reduced velocity at which
flutter is triggered is called the critical flutter velocity and is denoted U∗c in the fol-
lowing. For even higher U∗, the pitching branch finally gets unstable for a reduced
velocity U∗D = 7.4, through the static divergence instability reported before. U∗D is
called the divergence velocity.

Let us finally mention that in the particular case studied here, it is the heav-
ing branch that gets unstable via the flutter instability. However, by changing the
damping parameters ζh and ζp, we could observe different scenarios where it is the
pitching branch that gives rise to flutter. In all cases however, the common feature is
the coalescence of the heaving and pitching frequencies, prior to flutter.

4.3.3 Increasing the steady angle of attack: from coupled-mode to single-
mode flutter

In this paragraph, we vary the steady angle of attack of the plate and study how this
impacts the occurrence of the flutter instability. In other words, we want to impose
the value of the baseflow pitching angle θ0 6= 0 as a parameter, and then study the
linear stability of this steady solution. Mathematically however, this cannot be done
freely since θ0, h0 and the corresponding fluid variables (U0, p0, Λ0) are already fully
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FIGURE 4.5: Evolution of the flutter and anti-flutter eigenmodes, marked
respectively by the red and black disks in fig. 4.1b, as a function of the
reduced velocity (Re = 2900, m̃ = 1000). The flutter critical velocity
U∗c is defined as the reduced velocity for which the flutter mode repre-
sented in fig. 4.2a becomes unstable. For even higher U∗, a static diver-
gence instability occurs for U∗ > U∗D. As U∗ → 0 both branches tend
towards the solid-only eigenmodes. For the particular parameters used
in the figure, those modes reduce to σ = i 0.8 ω0θ (heaving mode) and

σ = (−0.05 + i 0.999)ω0θ (pitching mode).

constrained by the steady-state problem, eq. (4.3a). As a consequence, an additional
artificial “degree of freedom” must be added to the system in order to add the de-
sired constraint on θ0. This degree of freedom is introduced as a pre-stress term in the
pitching spring, which yields a “pre-stressed” version of the solid model, eq. (1.3):

∂2h
∂t2 + 2ζh

(
Ω
U∗

)
∂h
∂t

+

(
Ω
U∗

)2

h =
1
m̃
CL(Λ, θ)

∂2θ

∂t2 + 2ζp

(
1

U∗

)
∂θ

∂t
+

(
1

U∗

)2

(θ − θps) =
1

rθ
2m̃
CM(Λ)

(4.5)

where θps is the parameter that tunes the magnitude of the pre-stress. A steady
solution (U0, p0, Λ0, h0, 0, θ0, 0) of the fluid-structure problem, using the above pre-
stressed solid model then verifies:

(
Ω
U∗

)2

h0 =
1
m̃
CL(Λ0, θ0)

(
1

U∗

)2

(θ0 − θps) =
1

rθ
2m̃
CM(Λ0)

(4.6)

Since we impose θ0, the unknowns are now
(
U0, p0, Λ0, h0, θps

)
and verify eq. (4.6)

(and the Navier–Stokes equations). The solution is trivially obtained in two steps.
First, a fluid-only steady solution (U0, p0, Λ0) is computed for a plate with a pitching
angle equal to the imposed θ0. Second, θps and h0 are obtained from eq. (4.6). With
that procedure, we obtain a steady solution of the coupled problem that possess the
desired θ0. Note that h0 will vary depending on θ0: the higher θ0, the higher the lift
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CL(Λ0, θ0), and thus the higher h0. However, it is clear that the value of h0 has no
physical meaning (and no impact on stability) since the steady flow is invariant by
a vertical translation, and the linearized fluid-structure problem eq. (4.3b) does not
depend on h0.

Turning now to the presentation of the results, let us fix the value of the Reynolds
number to Re = 500. As shown in fig. 4.6b, the flow remains attached to the plate
until −θ0 = 7◦. For these low angles of attack, the lift and moment coefficient are
moslty linear functions of θ0. For −θ0 = 8◦ a large recirculation area, delimited by
a thin black line, appears and covers the whole plate. At this angle, the lift and
moment coefficient presented in fig. 4.6a start to plateau. For −θ0 > 10◦, the recircu-
lation region keeps growing (not shown) and a slight decrease of the magnitude of
the lift and moment coefficients is observed. This behaviour is similar to a classical
stall phenomenon. However stall is here less brutal than it is in high-Reynolds aero-
dynamic flows. This “lighter” stall is a known feature of low-to-moderate Reynolds
flows around plates [Amandolese et al. 2013] or airfoils [Mahbub Alam et al. 2009].
Finally, note that for −θ0 ≥ 9.8◦, the steady baseflow has such a large recirculation
region that it is hydrodynamically unstable (dashed line in fig. 4.6a) due to a clas-
sical wake mode (not shown) becoming unstable with frequency ω ' 4. Thus, for
−θ0 ≥ 9.8◦, the baseflow lift and moment coefficients reported here are to be used
with caution, as wake unsteadiness is likely to make them progressively drift away
from their mean-flow counterparts, observed experimentally. In any case, the subse-
quent discussion on the flutter instability will be restricted to 0◦ ≤ −θ0 ≤ 10◦, thus
avoiding any unsteady fluid effects.

In fig. 4.7a, we present the evolution of the heaving (red lines) and pitching (black
lines) modes as the reduced velocity is increased, and for different θ0. For the case
θ0 = 0◦ (dashed lines), the typical coupled-mode flutter (CMF) scenario detailed in
section 4.3.2 is observed, with the frequencies of the two modes approaching each
other and giving rise to the instability. For 0 < −θ0 < 7, the same coupled-mode
flutter behavior is still observed. Note that, as −θ0 increases, the branch giving rise
to CMF transitions from the heaving branch (case −θ0 = 0◦, dashed) to the pitching
branch (case −θ0 = 6◦, dash-dotted). In addition, the critical threshold for CMF
is progressively delayed to higher values: from U∗c = 4.95 at −θ0 = 0◦ to U∗c =
6.05 at 6.8◦. For −θ0 ≥ 7, the scenario qualitatively changes as the instability is
triggered on the pitching mode (black solid curve, −θ0 = 10◦) despite the absence
of any frequency coalescence. This type of flutter which only involves a one-mode
pitching motion (see the eigenvector represented in fig. 4.8c) is referred to as pitching
single-mode flutter (pSMF). The transition from CMF to pSMF around −θ0 ' 7 is
accompanied by a brutal change in the variation of U∗c with θ0, as shown in fig. 4.7b.
In the pSMF range, the critical velocity decreases with increasing angle of attack.
Overall, the critical eigenmodes for different angles of attack represented in fig. 4.8,
show clearly the transition between a coupled heaving and pitching flutter (CMF) at
low incidence and a pitch-dominated flutter (pSMF) at higher incidence.

It is interesting to note that the features reported above have been observed ex-
perimentally, for example by Razak et al. (2011), where the flutter instability on
a heaving and pitching NACA0012 profile was shown to transition from CMF to
pSMF as the static angle of attack is increased. The higher Reynolds number (Re '
105) and different airfoil profile used in this study does not allow a quantitative
comparison with our results, but brings the idea that the mechanisms at play in
those two different configurations are similar. However, further investigations of
that statement are needed, in particular with respect to the cohabitation of coupled-
mode flutter and laminar separation flutter [Poirel et al. 2008; Poirel et al. 2012] for
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FIGURE 4.7: Transition from coupled-mode flutter (CMF) to pitching
single-mode flutter (pSMF) as the steady angle of attack increases. When
the steady solution is stalled (−θ0 > 9◦), a single-mode flutter on the heav-

ing mode (hSMF) is also triggered. (Re = 500, m̃ = 103)

these transitional Reynolds numbers.
For −θ0 = 10◦, we notice in fig. 4.7a that, in addition to the pitching mode (solid

black line) becoming unstable around U∗c = 4.8, the heaving mode (solid red line)
is also very close to unstable. It actually does become (slightly) unstable around
U∗c = 5.2, giving rise to a (secondary) heaving single-mode flutter (hSMF), where the
eigenmode mainly oscillates along the heaving degree of freedom. The frequency at
criticity is close to the one of the natural heaving mode, i.e. ωc

hSMF = Ω/U∗c
hSMF ∼

0.15. This low-frequency indicates that hSMF is another aeroelastic instability, well-
separated from the high-frequency wake-mode (ωwake = 4 at −θ0 = 10◦). The criti-
cal velocity for hSMF is materialized in fig. 4.7b by the red disk. We should mention
that hSMF could have been anticipated already by observing the negative slope of
the lift curve fig. 4.6a at−θ0 = 10◦. Indeed, using quasi-steady arguments, it is well-
known that a negative steady lift slope may induce negative aerodynamic damping
on an only-heaving body, provided the Glauert–Den Hartog criterion is met [Paï-
doussis et al. 2011, §2.2], which we verified (not shown) it is here for −θ0 = 10◦.

4.4 Parametric explorations

In the previous section, we exhibited four types of flow-induced instabilities, de-
pending on the reduced velocity and steady angle of attack. For the rest of the study,
we focus on the case with zero steady angle of attack, and parametrically explore the
effect of mass ratio and Reynolds number.

4.4.1 Effect of mass ratio

When varying the mass ratio m̃, similar destabilization scenarios to those depicted
in fig. 4.3 and fig. 4.5 are found for the VIV, flutter and divergence modes, but with
different values of the critical thresholds. In this paragraph, we aim at studying the
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FIGURE 4.8: Visualisation of the critical flutter eigenmodes at three dif-
ferent angles of attack. For each subfigure, the left part represents a snap-
shots of the mode at t=3π/4, where the blue colormap represents the pres-
sure field, while the arrows materialise the solid displacement (orange)
and velocity (red) vectors. On the right part, we show the time signals for

the vertical displacement (solid line) and pitching angle (dashed line).
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effect of m̃ on the instability thresholds. In other words, we wish to compute neutral
curves for each instability, in the plane (m̃, U∗).

In fig. 4.9, we show the evolution of the critical flutter, divergence and VIV
thresholds as a function of m̃. Three different regions are then defined in the plane
(m̃, U∗) corresponding to regions where the flutter mode (red area), the divergence
mode (grey area) or the the VIV mode (blue area) are unstable. Conversely, in the
non-shaded area of the plane, all eigenvalues have negative real parts and the sys-
tem is linearly stable. First, we observe that the divergence boundary U∗D = f (m̃) is
a straight line with slope 1/2 in the log-log plane. This tendency can be analytically
explained in the hypothesis of pure pitching motion and thin airfoil theory, for which
the analytical expression for the divergence threshold is U∗D =

√
rθ

2/(π/2) m̃ [E. H.
Dowell et al. 1989, §2.1] 2, where we recall rθ is the radius of gyration (cf table 1.1).

The flutter boundaries behave similarly to the divergence boundary at high m̃
with a slope close to 1/2. As m̃ decreases, the slope attenuates until the critical
velocity reaches a minimum around m̃ ' 20. For even lower m̃, i.e. around m̃ ' 7,
the neutral curve encounters a turning point. As a consequence, no unstable flutter
mode is observed for very low m̃ ≤ 7, in the investigated velocity range. A second
consequence of the “turning” of the flutter neutral curve is that in cases where flutter
can develop (i.e. m̃ > 7), there exists a reduced velocity higher than U∗c for which the
flutter mode restabilizes. To our best knowledge, this restabilization of the flutter
mode was never reported in the literature and the underlying physical mechanism
is to be precised. For now, we continue with the description of fig. 4.9 and will come
back later on that issue (cf section 4.4.2 and fig. 4.15).

At the intersection of the flutter and divergence neutral curves, a codimension-
two point can be identified for a particular mass ratio m̃I I ' 11 and U∗ ' 0.9. At
this point, both the flutter and divergence modes are neutrally stable and can be
involved in the observed nonlinear dynamics. Typically, the simultaneous presence
of these two modes may explain the occurrence of so-called “dynamic divergence”
[Chae et al. 2013; Chae et al. 2016] where a combination of oscillations and mean
deviation of the wing/plate may be observed in the nonlinear regime. These studies
were performed at higher Reynolds numbers than ours (Re ' 106), on a different
2D section (NACA0016 airfoil) and with different structural parameters. However,
the range of dynamic divergence reported there is roughly m̃ ∈ [1.6, 6.3], which is
the same order of magnitude as the values found in the present work. Note that the
effect ofRe on the value of m̃I I is studied in the next section (fig. 4.13).

Turning finally to the VIV instability region, represented in blue, we observe first
that no matter the mass ratio, VIV always occur at much lower values of U∗ than
the flutter and divergence instabilities. The shape of the VIV area strongly depends
on the mass ratio. At high enough m̃, two separated VIV regions are observed. The
lower one is a nearly constant interval of reduced velocities between m̃ = 20 and
m̃ = 103, whereas the upper one vanishes around m̃ = 102. The existence of two sep-
arated regions of VIV is related to the existence of the two solid modes that resonate
with the vortex-shedding mode at different U∗. In the upper region, the resonance of
the vortex-shedding mode occurs with the pitching mode when ω0θ = 1/U∗ ' ωw,
i.e. U∗ ' 0.09 (upper dashed line). In the lower region, it occurs with the heaving
mode when ω0h = Ω/U∗ ' ωw, i.e. U∗ ' 0.07 (lower dashed line). Towards the
low m̃, the two VIV regions widen and ultimately merge in one large unique region.
Let us mention that the widening of the VIV region at low mass ratio has also been

2This expression is obtained by stating that, at the critical divergence velocity, the torsionnal spring
elastic force is balanced by the fluid moment from thin airfoil theory: U∗D

−2 θ = 1/(rθ
2m̃)π/2 θ.
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FIGURE 4.9: Neutral curves in the plane (m̃, U∗) for flutter (red area, thick
line), divergence (gray area, dashed thick line) and VIV (blue area, thin
line) instabilities (Re = 2900). The thin horizontal dashed lines material-
ize the reduced velocities for which the heaving (lower line) and pitching

(upper line) natural frequencies equal the VIV mode frequency ωw.

observed in the case of an only-heaving spring-mounted cylinder [Navrose et al.
2016]3.

We end that section by proposing in fig. 4.10 an alternative visualization for the
neutral curves already shown in fig. 4.9. Indeed, it may seem inconsistent to the
reader that the neutral curve for the static divergence instability depends on mass
ratio m̃: considering a fluid with fixed density, m̃ is simply proportional to the solid
mass, which should have no effect on a static (divergence) instability. In fact, the
∝
√

m̃ behavior of U∗D is only an artifact of the definition of the reduced velocity, that
is: dimensional velocity U∞ divided by natural pitching frequency, which depends
itself on solid mass. A more sound choice of non-dimensional parameter is thus to
replace the reduced velocity by the non-dimensional dynamic pressure, noted q∗,
that represents the ratio between the fluid inertial forces and solid elastic forces4:

q∗ =
U∗2

m̃rθ
2 =

1
2 ρ f U∞

2

Kθ/c2 (4.7)

This is done in fig. 4.10 where the neutral curves are shown in the (m̃, q∗) plane. The
expected constant divergence threshold (in terms of dynamic pressure) is retrieved,
together with the idea that flutter boundaries (in terms of dynamic pressure) are
also independent of m̃, at high enough m̃. Notice finally that against intuition, low
m̃ require higher q∗ to trigger flutter. In other words, the lighter the structure, the
higher must be the typical fluid pressure forces with respect to the solid elastic forces.

To conclude, fig. 4.9 and 4.10 can be thought of as representations of two different
“dimensional” behaviors. In the one hand, if one changes solid mass while maintain-
ing constant solid natural frequencies, then fig. 4.9 faithfully traduces the trend for the
dimensional critical wind velocity as a function of solid mass5. On the other hand,

3Note however that their bifurcation parameter wasRe instead of the reduced velocity.
4This number is also referred to as the Cauchy number in the literature
5Rigorously, we note that the Reynolds number is kept fixed in fig. 4.9 and 4.10. Experimentally

however, if the dimensional wind velocity is varied in a given fluid and for a given size of the plate,
Re will vary. The effects of Reynolds are studied in the next section.
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FIGURE 4.10: Alternative representation, using dynamic pressure q∗, of
the neutral curves of fig. 4.9. Same color conventions are used.

if one changes solid mass while maintaining constant solid stiffness, then fig. 4.10 is
the more natural representation. Obviously, in practical wing design, the engineer
usually navigates somewhere in between those two “idealized” situations due to the
inter-dependence of stiffness (Young modulus) and mass (density) for real-life ma-
terials (cf Ashby’s material property charts [Ashby 1999]). In the remaining of this
chapter, we use U∗ or q∗ depending on the features we wish to highlight.

4.4.2 Effect of Reynolds number

In the previous sections we explored the linear behavior of the spring-mounted plate
by varying some classical aeroelastic parameters that are the reduced velocity and
the mass ratio. We now exploit the full potential of a global stability approach by
studying how viscosity affects flutter and divergence. Its effect on the VIV instability
is left aside and we refer the interested reader to dedicated works on this aspect
[Meliga et al. 2011; Navrose et al. 2016].

Influence of Reynolds on the steady baseflow As a first step to understand the
effect of the Reynolds number on flutter and divergence, we give in fig. 4.11 some
insights into the steady baseflow solution at Re = 10, Re = 110, Re = 500 and
Re = 2900. First, the corresponding solutions (at zero incidence) are presented in
fig. 4.11c to illustrate the clear evolution of flow features as Re increases. The base-
line case Re = 2900 possesses the classical features of a high-speed flow with uni-
form velocity far enough from the plate and sharp velocity gradients concentrated
in a thin enough boundary layer6. As Reynolds decreases, the boundary layer thick-
ens so much that diffusion effects finally dominate the whole represented domain
at Re = 10. In fig. 4.11a, we present the lift and moment (evaluated at the elastic
axis, which is the mid-chord in this manuscript) coefficients at those four Reynolds
numbers, as a function of angle of attack7. For Re = 10, CL and CM evolve al-
most linearly with angle of attack, in the range of angles investigated. Indeed, for

6Obviously, due to the low Reynolds number, compared to classical aerodynamics flows (planes,
...), the thickness is still of the order of the plate thickness.

7Due to the sign convention used in this work, the angle of attack as traditionally defined in aero-
dynamics — i.e. positive nose-up — is equal to −θ. Hence the choice to represent CL = f (−θ) and
−CM = f (−θ) in fig. 4.11a.
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such a low Reynolds, the nonlinear Navier–Stokes equations tend towards the linear
Stokes problem. The slope of the lift coefficient is around 3.22, which is compara-
ble to the results of Sun et al. (2001) and Sun et al. (2004), who reported a slope of
2.8 at Re = 13.57. The comparison between our work and Sun’s is however only
qualitative since his studies took into account compressible (Ma = 0.2) and rar-
efaction effects that may be non-negligible at such low Reynolds numbers [Sun et
al. 2001]. As the Reynolds number increases, the aerodynamic coefficients depend
more and more nonlinearly on the angle of attack. At Re = 500, a plateau appears
for |θ| > 10◦. At Re = 2900, the plateau transforms into a stronger drop of both
CL and CM, and occurs at lower |θ| ' 3◦. The increase of Reynolds also leads to a
significant increase of the slope at θ = 0◦, as observed in fig. 4.11a. More quantita-
tively, from fig. 4.11b we see that betweenRe = 10 and the baseline caseRe = 2900
investigated in the previous section, the slopes are multiplied by two.

To conclude, we like to remind that the results presented here are for steady
Navier–Stokes solutions that may not necessarily be observed in practice, because
unstable. More precisely, it was previously checked that the zero incidence solution
is stable for all Re ≤ 2900. However, it is likely to not be the case for every angle
of attack considered in fig. 4.11. The systematic check of linear stability was not per-
formed here for each angle of attack, and the reader is reported to section 4.3.3 for
such an investigation, at Re = 500. In any case, our purpose in this section is to
study viscosity effects on flutter and divergence instabilities around θ = 0◦. These
only depends on the linearized aerodynamics around θ = 0◦, which are character-
ized by the slopes of the aerodynamic coefficients at zero.

Flutter and divergence thresholds for different Reynolds In fig. 4.12, we show
the flutter (solid lines) and divergence (dashed lines) neutral curves in the (m̃, q∗)
plan and for three different Reynolds numbers spanning three orders of magnitude:
Re = 10 (brown), Re = 110 (gray) and Re = 2900 (black). For each Reynolds num-
ber, the divergence instability occurs above the corresponding dashed lines, while
the flutter instability occurs inside the corresponding solid curve. First, it is ob-
served that the critical dynamic pressure for divergence decreases as Re increases.
By classical arguments [E. H. Dowell et al. 1989, §2.1], this change can be linked to
the increase in the slope of the steady lift and moment coefficients, previously re-
ported in fig. 4.11b. A similar trend is observed for the flutter threshold in the high
m̃ limit. In addition, the restabilization of flutter for high q∗ is more and more de-
layed whenRe increases. This suggests that this restabilization is typically a viscous
effects, which would explain why it was never reported — to the author’s knowl-
edge — since most existing flutter studies use potential flow models. More insights
on that aspect are provided in section 4.5 where we compare the present approach
with the classical (potential) Theodorsen theory. Finally, we note a large change in
the position of the turning point between Re = 10 and Re = 110. Indeed, between
those two Reynolds, its position drops from m̃ ' 300 to m̃ ' 20. Between Re = 110
and the baseline case used in the previous section at Re = 2900, further shift is
observed but in much less important proportion (from m̃ ' 20 to m̃ ' 10).

Due to the wide variations of the high-q∗ limit of the flutter region, two scenar-
ios are possible, depending on Re. At high-enough Re, the “classical scenario” is
observed, where, as one increases q∗, the flutter mode destabilizes first, remains un-
stable, and finally the divergence mode destabilizes. At low Reynolds (Re = 10),
the flutter mode destabilizes first, restabilizes — leaving the system stable on some
range of q∗ — and finally divergence is trigerred.
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FIGURE 4.11: Features of the steady flow for different Reynolds numbers.
In (a), the CL(θ) and CM(θ) curves for Re = 10 (dashed), Re = 110 (dot-
ted), Re = 500 (dashdotted) and Re = 2900 (solid) are shown. In (b), the
slopes of those curves at θ = 0 are tabulated. In (c), we present the steady

solutions associated to the different Reynolds at zero incidence.
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FIGURE 4.12: Linear stability neutral curves for flutter (solid lines) and
divergence (dashed lines) instabilities in the plane (m̃, q∗) for different
Reynolds numbers: Re = 10 (brown),Re = 110 (gray),Re = 2900 (black).
For a clear identification of the stable/unstable regions, the reader is re-

ported to fig. 4.10.

4.4.3 Full parametric exploration of flutter thresholds in the (m̃,Re) plane

In order to provide an intermediate conclusion to our parametric explorations, we
propose a synthetic view of the results obtained in sections 4.3.2 to 4.4.2 for the flut-
ter instability. To that aim, we represent critical flutter quantities in the (m̃,Re) pa-
rameter space. By “critical” we refer to the low U∗ (or equivalently low q∗) end of
the flutter area in fig. 4.9, as it is the threshold of interest for typical aeronautical
applications.

In fig. 4.13(a), we start with showing the critical flutter velocity U∗c in the (m̃,Re)
plane. With this representation, the mass ratio clearly has a dominant effect on the
value of U∗c , in comparison to the Reynolds number. This is the U∗c ∝

√
m̃ trend al-

ready highlighted in fig. 4.9. To see more clearly the effect ofRe, it is better to switch
to the representation of the flutter threshold in terms of the critical dynamic pres-
sure q∗c , as proposed in fig. 4.13(b). Indeed, with this representation, the “automatic”
∝
√

m̃ of the flutter threshold that dominates fig. 4.13(a) is eliminated, leaving place
to a clearer visualization of the destabilizing effect of increasing Re. By comparing
fig. 4.13(a) and (b), we clearly see that depending on the chosen representation of
the flutter threshold (U∗c or q∗c ), decreasing the mass ratio can either be seen, for all
Re, as destabilizing (a) or slightly stabilizing (b). We refer the reader to the end of
section 4.4.1 for a discussion on the “dimensional” interpretation of using either U∗c
or q∗c as a flutter threshold. The last map, fig. 4.13(c) provides additional information
on the frequency of the flutter mode at criticity, ωc. Similarly as in fig. 4.13(a), the
flutter frequency is dominantly governed by the mass ratio with the general trend
that heavier (resp. lighter) structures yield low-frequency (resp. high-frequency)
flutter.

We conclude this paragraph by discussing the boundaries of the flutter domain
represented in the three maps of fig. 4.13. At low mass ratios, the flutter domain is
limited by the codimension-two point evidenced in fig. 4.9 and marked here by the
thin dashed curve. Indeed, for m̃ < m̃I I the flutter threshold, if it exists at all, is
triggered after divergence occurs. For clarity, we prefer to remove this scenario from
fig. 4.13, which is the reason why, the region m̃ < m̃I I has been shaded in gray. At
high Reynolds number, we choose to limit the exploration to Re ≤ 104. Also, the
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FIGURE 4.13: Influence of mass ratio and Reynolds number on different
critical quantities for flutter instability.

horizontal dashed line materializes the critical Reynolds number, Rec,wake ' 2925,
for the wake instability developing on the fixed plate. Indeed, for Re > Rec,wake,
the steady baseflow is not stable anymore so that flutter thresholds obtained with
stability analyses of steady-states, as performed here, are questionable. A stability
analysis based on the mean flow (time-averaged over the vortex-shedding period) or
even on the Floquet stability of the vortex-shedding periodic solution may be more
appropriate.

4.5 Comparison to simplified fluid models

In this section, we wish to compare the flutter stability results from the global sta-
bility approach with simplified fluid models like the classical Theodorsen theory
[Theodorsen 1935] or a quasi-steady model [E. H. Dowell et al. 1989, §3.4.2.2]. Ob-
viously, vortex-induced vibrations are out of the scope of this section as none of
those models can capture a wake instability. We start by briefly recapitulating the
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basics of Theodorsen’s theory in section 4.5.1, and the quasi-steady approach in sec-
tion 4.5.2. The procedure used to calibrate both models with steady viscous flow
data is explained in section 4.A. In section 4.5.3, numerical comparisons for the flut-
ter thresholds prediction are exposed.

4.5.1 Theodorsen’s model

In his seminal paper, Theodorsen (1935) proposed analytical expressions for the fluid
lift and moment applied on an infinitely thin flat plate, force to oscillate in pitch and
plunge motions. In the original theory, the effect of an additional trailing edge flap
was included, but is omitted here. The theory uses the framework of (unsteady)
potential flows and is derived by separating the solution into two contributions: a
non-circulatory and a circulatory part. The non-circulatory part is obtained with the
classical steps of (steady) potential flow theory: (i) Joukowski’s conformal transfor-
mations, (ii) distribution of sources and sinks on the plate so as to find a potential
that satisfies the boundary condition (continuity of normal velocity) and (iii) (un-
steady) Bernoulli theorem in order to finally retrieve a pressure distribution from
the potential field. As the non-circulatory part does not satisfy the Kutta condition
at the trailing edge, Theodorsen adds a circulatory contribution. It consists in a
distribution of bound vortices on the plate, with the corresponding distribution of
counter-rotating vortices in the wake. With such a set-up, the Kutta condition can
be satisfied, while still enforcing the boundary condition on the plate and so that the
full total circulation is maintained to zero. The workplan sketched above yields the
following expressions for the lift and moment coefficients. The interested reader is
reported to the enlightening work of Bisplinghoff et al. (1955, §5.6) for a step-by-step
derivation of those.

CL = −π

2
[
θ̇ + ḧ− aθ̈

]
︸ ︷︷ ︸

non-circulatory

+C(k)
dCstat

L
dθ

∣∣∣∣
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[
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(
1
4
− a
)

θ̇

]
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π

4
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1

16
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2

)
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1
4
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)

θ̇
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︸ ︷︷ ︸
circulatory

(4.8)
where a is the nondimensional distance between the elastic axis and the mid-chord8

(counted positively when the elastic axis is downstream of the mid-chord), and
where C(k = ω/2) is the Theodorsen function, which can be analytically expressed
using Hankel functions (c.f. [Bisplinghoff et al. 1955]). The circulatory terms in
eq. (4.8) have a typical form composed of the steady lift and moment slopes at zero
incidence, dCstat

L /dθ|θ0 and dCstat
M /dθ|θ0 , multiplied by an effective angle of attack

θ + ḣ + (1/4− a)θ̇ and the Theodorsen function. The second circulatory term in CM
is more difficult to interpret physically. As for the non-circulatory term, they mainly
provide added mass to the system.

In the circulatory parts, the slopes dCstat
L /dθ|θ0 and dCstat

M /dθ|θ0 of the steady lift
and moment curves are used to define the unsteady response. In the original theory,

8Given our particular plate set-up, the mid-chord is also the center of gravity. In addition, we place
the elastic axis at the center of gravity (xθ = 0), thus a = 0
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the thin airfoil theory values naturally arise:

dCstat
L

dθ

∣∣∣∣
θ0

= −2π
dCstat

M
dθ

∣∣∣∣
θ0

=
π

2
(1 + 4a)

However, several authors (e.g. [Amandolese et al. 2013; Brunton et al. 2013]) have
shown that calibrating the original Theodorsen model with “true values” — i.e. val-
ues extracted from experimental or numerical steady Cstat

L − θ and Cstat
M − θ curves —

yields much better agreement for non-potential flows.

4.5.2 Quasi-steady models

In the limit of low frequency, a usual approximation is to consider that the fluid
“adapts instantaneously to the solid movement”. Then, the fluid forces and mo-
ments can be derived from computations of steady forces and moments, using ap-
propriate boundary conditions. This type of approximation is usually referred to
as the quasi-steady hypothesis. Multiple variants of quasi-steady models have been
proposed through the years [E. H. Dowell et al. 1989, §3.4.2.2]. We use two of them
in the following.

It is expected that the quasi-steady hypothesis will have a restricted range of
validity. However, the obvious ease of implementation of that analysis, which re-
lies exclusively on steady measurements and/or theory, makes it a worthwhile first
guess for flutter analysis. For that reason, we think it is useful comparing its results
to the global stability approach.

Quasi-Steady Model 1 In this first quasi-steady model (QSM1) one considers that
the fluid reacts on such a fast time scale to solid movement that it sees the solid as
moving at a constant velocity. The instantaneous lift and moment are then equal to
the steady lift and moment, taken at an effective angle of attack θ + ḣ + (1/4− a)θ̇.
This effective angle of attack is composed of the “geometric” angle of attack θ, plus
two contributions proportional to ḣ and θ̇. The ḣ contribution is easily justified by
considering a heaving only motion. Indeed, in that case, the instantaneous solid
velocity is simply −1 ex + ḣey. This configuration is identical to the one where the
plate moves at velocity −1 ex with incidence θ ' ḣ, hence the ḣ contribution. Giv-
ing an interpretation for the term (1/4− a)θ̇ in terms of effective angle of attack is
less trivial because a constant angular velocity motion yields a different local veloc-
ity at each location on the surface of the plate. Thus it cannot be taken easily into
account through a unique effective angle of attack. As a consequence, this second
contribution is mainly seen here as an inheritance from Theodorsen’s theory. Fur-
ther physical interpretation is discussed for example in [Hodges et al. 2011, §5.5]
or [Païdoussis et al. 2011, §2.7.2]. Finally, it is supposed that the motion is of small
amplitude, hence, only the linearized dependency of the steady lift and moment are
kept, yielding QSM1:

CL =
dCstat

L
dθ

∣∣∣∣
θ0

[
θ + ḣ +

(
1
4
− a
)

θ̇

]

CM =
dCstat

M
dθ

∣∣∣∣
θ0

[
θ + ḣ +

(
1
4
− a
)

θ̇

] (4.9)

Quasi-Steady Model 2 The second quasi-steady model (QSM2) we use in this sec-
tion is simply the limit of the Theodorsen model eq. (4.8) when the frequency is small
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ω → 0. In that case, the Theodorsen function tends towards C(k)→ 1, yielding:

CL = −π

2
[
ḧ− aθ̈

]
︸ ︷︷ ︸

added mass

−π

2
θ̇ +

dCstat
L

dθ

∣∣∣∣
θ0

[
ḣ +

(
1
4
− a
)

θ̇

]

︸ ︷︷ ︸
added damping

+
dCstat

L
dθ

∣∣∣∣
θ0

θ

︸ ︷︷ ︸
added stiffness

CM =
π

4

[
aḧ−

(
1

16
+ 2a2

)
θ̈

]

︸ ︷︷ ︸
added inertia

+
π

4

(
2a− 1

2

)
θ̇ +

dCstat
M

dθ

∣∣∣∣
θ0

[
ḣ +

(
1
4
− a
)

θ̇

]

︸ ︷︷ ︸
added damping

+
dCstat

M
dθ

∣∣∣∣
θ0

θ

︸ ︷︷ ︸
added stiffness

(4.10)
where it is now easy to identify constant (i.e. independent of frequency) added mass,
damping and stiffness coefficients. QSM2 can be seen as an extension of QSM1
where an additional damping term and — more importantly — added mass effects
have been added.

4.5.3 Numerical comparison of the flutter predictions

Before numerically comparing the Theodorsen and quasi-steady models to the global
stability approach, we stress the fact that to calibrate these models, need to compute
the slope of the lift and moment curves at zero incidence. This may of course be
done by fitting linear functions to the lift and moment curves fig. 4.11. However, the
process of building the nonlinear curve for each value of the Reynolds number and
fitting a line to it is cumbersome and overkill (we only need the linear behavior). As
an alternative, we rather use a linearized approached, detailed in section 4.A, that
allows to extract directly the slopes of interest from the linearized response of the
fluid to an increment of angle of attack.

In fig. 4.14 (a) and (b), we show how the slopes of the lift and moment curves at
θ0 = 0 vary with the Reynolds number. In comparison, the theoretical values from
thin airfoil theory are materialized by thin horizontal dashed lines. Wide variations
of slopes are obtained: for example the lift slope goes from 3.2 at Re = 10 to more
than 12 at Re = 104. The very large slopes observed for Re > Rec,wake (on the
right of the vertical dashed line) are however to be taken cautiously, as we remind
that they are computed from steady Navier–Stokes solutions, which are unstable at
those high Reynolds numbers. In particular, the abrupt increase of the slopes around
Re = 7000 is likely to be unphysical. Further investigations are needed to precisely
assess that assumption.

We compare in fig. 4.14 (c) the (lower) critical dynamic pressure q∗c for 10 ≤
Re ≤ 104 and a large mass ratio m̃ = 104 predicted by the three different flow mod-
els: full Navier–Stokes (solid line), Theodorsen (dotted red line) and QSM1 (dotted
gray line) and QSM2 (dotted blue line). For completeness, the original (i.e. non-
calibrated) Theodorsen prediction is shown with red horizontal dashed line. It is
observed that the calibration with viscous slopes yields a good agreement between
both the Theodorsen and quasi-steady models and the global stability results. The
fact that the Theodorsen and quasi-steady models are very close to each other is
expected, due to the low frequency of the flutter instability arising at such a high
mass ratio (ωc = O(10−2)). On the contrary, the non-calibrated Theodorsen theory
is only valid for a particular Reynolds number, that happens to present steady slopes
close to the thin airfoil theory predictions. Note that in the present case, it turns out
that this Reynolds is very close to the critical Reynolds for the wake destabilization,
Rec,wake. Whether this is a coincidence or a more broadly shared feature remains an
opened question.
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FIGURE 4.14: Calibration of Theodorsen and quasi-steady models with
the slopes of the steady Cstat

L (θ) and Cstat
M (θ) curves, evaluated at θ0 = 0.

The slopes of the lift and moment coefficients are shown as a function of
Re in (a) and (b) respectively. The critical dynamic pressure computed
with full Navier–Stokes (solid line), Theodorsen (dotted red) and quasi-
steady models (QSM1 in dotted gray and QSM2 in dotted blue) are pre-
sented in (c) for a large mass ratio m̃ = 104. The horizontal dashed line
shows the threshold predicted by original (non-calibrated) Theodorsen
theory. The vertical dashed line materializes the critical Reynolds for the

wake instability.

Having verified that all four models perform similarly in the case of a high m̃,
low ωc flutter, we now assess whether the simplified models accurately reproduce
the particular shape of the flutter neutral curve in the (q∗, m̃) space, shown in sec-
tion 4.4.1. In fig. 4.15, the neutral curves obtained for the four different models are
presented, at Re = 2900. The Navier–Stokes curve (solid line), Theodorsen curve
(dotted red) and quasi-steady curves (QSM1 in dotted gray and QSM2 in dotted
blue) are presented. It is observed that, in the limit of large m̃, all three curves
converge as expected. As m̃ decreases, QSM1 and QSM2 quickly diverge from the
Navier–Stokes and Theodorsen predictions, and both predict a lower threshold. In
particular, QSM1 is over-conservative as q∗c strongly decreases with m̃. The fact that
QSM2 is significantly better than QSM1 shows that the added mass effects — that
are the major difference between QSM1 and QSM2 — should not be neglected. The
Theodorsen model remains close enough to the Navier–Stokes prediction down to
m̃ ' 102 whereas, for lower mass ratios, q∗c is overestimated. Finally, we notice
that Theodorsen and QSM2 predict an abrupt increase of q∗c to infinity for m̃ ' 10,
whereas Navier–Stokes predicts the neutral curve should turn back. To shed some
light onto that behavior, let us recall the results of fig. 4.12. It was shown there that
as Re increases, the point where the neutral curve turns back to higher m̃ is shifted
to higher and higher q∗. If the Theodorsen model is now viewed as an asymptotic
model for Navier–Stokes as Re → ∞, then it should possess a turning point shifted
to q∗ → ∞. In other words, the Theodorsen neutral curve should never turn back,
which is exactly what we observe in fig. 4.15.
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FIGURE 4.15: Comparison of the neutral curves in the (m̃, q∗) plane at
Re = 2900 given by the Navier–Stokes (solid line), Theodorsen (dotted
red) and quasi-steady (QSM1 in dotted gray and QSM2 in dotted blue)

flow models.

4.6 Conclusion

In this chapter, we revisited the linear stability of a typical aeroelastic section with an
incompressible Navier–Stokes flow model. The linear stability of this fluid-structure
system was assessed by using a global fluid-structure stability approach, which con-
sists in scrutinizing the leading eigenvalues of the linearized fluid-structure opera-
tor.

Four types of instabilities were observed through extensive parametric explo-
rations. First, a classical coupled-mode flutter occurred at high-enough reduced ve-
locity (or equivalently high dynamic pressure) due to the convergence of the heav-
ing and pitching frequencies. For even higher velocity, a static divergence instability
was found. For low reduced velocities, vortex induced vibrations instabilities occur,
as the hydrodynamic wake mode interacts with the heaving (or pitching) mode. By
varying the angle of attack of the steady solution, we showed how the flutter insta-
bility progressively transitions from a coupled-mode flutter involving both heaving
and pitching motions to a single-mode flutter involving only the pitching mode.
This transition is concomitant with the appearance of a large recirculation region on
the plate suction side. Overall, the main interests of the global stability approach
used in this work is its ability to investigate the stability of steady-state solutions
that present nonlinear flow features, like recirculation regions, and thus to capture a
variety of fluid-structure instabilities with one uniform flow model.

After having identified these different instabilities, a parametric exploration of
the effect of mass ratio and Reynolds number was proposed, in the case of zero
steady angle of attack. Neutral curves were computed in the (m̃, U∗) (or alternatively
(m̃, q∗)) plane. For all mass ratios, vortex-induced vibrations occurred on a range of
reduced velocities centered around two well-defined values that correspond to the
coincidence of the pitching (resp. heaving) frequencies with the hydrodynamic wake
instability frequency. Decreasing the mass ratio tends to widen the range of reduced
velocity where vortex-induced vibrations occur. At a particular, low, mass ratio m̃I I

(about m̃I I ∼ 10 at Re = 500) a codimension-two point is found where both flutter
and divergence occur at the same critical reduced velocity. For mass ratios higher
than m̃I I , flutter occurs prior to divergence whereas divergence precedes flutter (if
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it exists at all) for mass ratios below m̃I I . In addition, it was shown that for low
mass ratios slightly below m̃I I , the flutter neutral curve “folds back” towards higher
reduced velocities and mass ratios. For a fixed mass ratio, this implies that flutter re-
stabilizes for (very) high reduced velocities. By varying the Reynolds number, it was
shown that high Reynolds postpone this high-U∗ restabilization of the flutter mode,
leading us to attribute this unexpected behavior to viscosity effects. This trend is
consistent with the potential Theodorsen model (Re → ∞) that predicts a vertical
asymptote of the flutter neutral curve for some mass ratio slightly below m̃I I .

The chapter was concluded by comparing the stability predictions obtained from
the global Navier–Stokes stability approach to several variants of quasi-steady ap-
proaches and to the Theodorsen model. After a proper calibration of these models
using the slopes of the viscous steady Cstat

L − θ and Cstat
M − θ curves, it was shown

that all approaches provide accurate enough prediction of flutter thresholds for the
low-frequency flutter, ωc = O(10−2), which typically occurs at high mass ratios. As
mass ratio is decreased, the quasi-steady models become quickly irrelevant and sig-
nificantly underestimate the flutter threshold. The Theodorsen model remains close
enough to the Navier–Stokes results down to m̃ ' 102. Contrary to quasi-steady
approaches, Theodorsen tends to overestimate the threshold, which makes it a more
accurate but unconservative stability criteria. Typically, at m̃ = 102 the flutter thresh-
old is overestimated by about 10% by Theodorsen with respect to Navier–Stokes. As
a consequence, if accuracy is required in the evaluation of flutter thresholds, it is
believed that the modelization of the unsteady viscous effects through the global
stability approach is more adequate, in particular at low mass ratios close to m̃I I .
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APPENDIX

Appendix 4.A Computation of the steady lift and moment
slopes with Navier–Stokes model

The slopes dCstat
L /dθ and dCstat

M /dθ at θ0 = 0 are computed using the following lin-
earized approach. Suppose a steady solution qf0 = (U0, p0, Λ0)T is known for the
flow at incidence θ0 We recall that the aerodynamic coefficients can be computed
directly from the interface stress variable (eq. (1.26)):

CL(θ, Λ) =

{
2
∫

Γfs

Λ dX
}
·RT(θ)ey

CM(Λ) =

{
2
∫

Γfs

X ∧Λ dX
}
· ez

Differentiating the above lift coefficient with respect to θ, the slope of the lift coeffi-
cient CL(θ, Λ) at θ0 writes:

dCstat
L

dθ

∣∣∣∣
θ0

=
∂Cstat

L
∂θ

∣∣∣∣
θ0,Λ0

+
∂Cstat

L
∂Λ

∣∣∣∣
θ0,Λ0

∂Λ

∂θ
(4.11)

with

∂Cstat
L

∂θ

∣∣∣∣
θ0,Λ0

δθ =

{
2
∫

Γfs

Λ0

}
· ∂RT

∂θ

∣∣∣∣∣
θ0

δθey

∂Cstat
L

∂Λ
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θ0,Λ0

δΛ =

{
2
∫

Γfs

δΛ

}
·RT(θ0)ey

A similar derivation for the moment derivative leads to:

dCstat
M

dθ

∣∣∣∣
θ0

=
∂Cstat

M
∂θ

∣∣∣∣
Λ0︸ ︷︷ ︸

= 0

+
∂Cstat

M
∂Λ

∣∣∣∣
Λ0

∂Λ

∂θ
= 2

∫

Γfs

X ∧ ∂Λ

∂θ
dX (4.12)

where the first term is zero because CM does not explicitly depend on θ.
The only unknown quantity in eq. (4.11) and eq. (4.12) is the interface stress in-

crement ∂Λ/∂θ due to a variation in θ. An equation for that quantity can be derived
by differentiating the nonlinear steady-state fluid residual Rf = (RU, Rp, RΛ)T —
composed of the fluid momentum equation, mass balance equation and the inter-
face velocity continuity condition, cf section 1.2.2 for the definitions) — with respect
to θ:

dRf

dθ

∣∣∣∣
θ0

=
∂Rf

∂qf

∣∣∣∣
θ0

∂qf

∂θ
+

∂Rf

∂qs

∣∣∣∣
θ0

∂qs

∂θ
= 0

with qf = (U, p, Λ)T the fluid variables and qs = (h, uh, θ, uθ)
T the solid variables.

In the above equation appear the linearization of the fluid residual with respect to
fluid variables ∂Rf/∂qf (i.e. the fluid-only Jacobian matrix) and the linearization
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of the fluid residual with respect to the solid variables ∂Rf/∂qs. These operators
have already been used and noted Jff and Jfs, respectively, when deriving the linear
stability eigenproblem in chapter 2 (more precisely in the appendix detailing their
discrete version, section 2.B). Using the latter, the above equation rewrites:

Jff
∂qf

∂θ
= −Jfs

∂qs

∂θ

= −Jfs (0, 0, 1, 0)T

Jff
∂qf

∂θ
=



−Dθ

0
Wθ




where Dθ and Wθ respectively are the derivatives of the fluid momentum equation
and interface velocity continuity condition, with respect to θ. This linear system can
be solved for ∂qf/∂θ, which finally yields the slopes dCstat

L /dθ and dCstat
M /dθ through

eq. (4.11) and eq. (4.12).
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5
EFFECT OF FLUID NONLINEARITY

ON THE FLUTTER BIFURCATION OF
A TYPICAL SECTION

We investigate numerically the role of incompressible flow nonlinearities on the
periodic flutter of a thin plate mounted on a system of bending/torsion linear
springs located at its center of mass. The steady flow solution gets unstable to
linear flutter eigenmodes at a critical reduced velocity. Close to that threshold,
limit cycle oscillations of the plate appear for lower or higher reduced velocities,
depending on the nature of the bifurcation. A weakly nonlinear analysis is first
developed to compute the coefficients of the cubic amplitude equation that de-
termine the subcritical or supercritical nature of the bifurcation. A parametric
investigation of the effect of the solid-to-fluid mass ratio and Reynolds num-
ber shows that the bifurcation is supercritical at very low Reynolds numbers
Re < 90 independently of the mass ratio. At intermediate Reynolds numbers,
90 < Re < 2000, it gets subcritical on a range of low-to-moderate mass ra-
tios. For larger values of the Reynolds number 2000 < Re, the bifurcation
is (almost) always subcritical independently of the mass ratio. The bifurcation
scenarios are further investigated at the Reynolds number Re = 500 with the
Time Spectral Method (TSM) allowing to compute accurately periodic solutions
with large amplitude oscillations. The transition from a supercritical to a sub-
critical bifurcation when decreasing the mass ratio from high values is scruti-
nized, revealing a double-fold bifurcation scenario at intermediate mass ratio. In
this scenario, the bifurcation is supercritical, as shown by the weakly nonlinear
analysis, but a fold bifurcation of limit cycle solutions occurs slightly above the
critical reduced velocity, leading to (unstable) limit cycle oscillations at lower
reduced velocity. The second fold of periodic solutions finally leads to the branch
of large amplitude oscillations that are observed in time-marching simulations.
This double-fold scenario is discussed in light of experimental results by Aman-
dolese et al. (2013).
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5.1 Introduction

The flutter phenomenon is well understood as a linear instability in the sense that,
above some critical velocity threshold, the coupled fluid-structure system possesses
a pair of complex conjugate eigenvalues with a positive growth rate. These aspects
were revisited in chapter 4 with a particular focus on the role of fluid viscosity.

However, if the governing equations are nonlinear — and they should be, be-
cause Nature is —, the unbounded exponential growth predicted by linear theory
is saturated at some point, leading to finite amplitude oscillations via a Hopf bifur-
cation. Depending on the nature of the nonlinearity at play, the flutter bifurcation
may be of a supercritical or subcritical nature. For a supercritical bifurcation, linear
analysis usually provides a conservative stability criteria since the LCO amplitude
grows smoothly from the bifurcation point. In the subcritical case however, large
amplitude stable solutions exist below the linear threshold. Finite amplitude per-
turbations can then suddenly transition the system from a stable steady-state to a
high-amplitude solution.

The occurrence of subcritical flutter was first reported by [Woolston et al. 1955;
Woolston et al. 1957] using a nonlinear pitching spring with cubic stiffness and
freeplay and an indicial function approach for the incompressible aerodynamics.
In particular they showed that a soft torsion spring1 leads to flutter oscillations well
below the linear threshold. In contrast a hard spring preserves a supercritical flutter.
Numerous investigations on the role of nonlinear spring stiffness have confirmed
and enriched those findings (e.g. [B. H. K. Lee et al. 1999b] and references therein,
or more recently [Padmanabhan et al. 2018]). The common hypothesis that a hard
pitching spring leads to supercritical flutter was then nuanced by Coller et al. (2004)
who exhibited some counter examples, using center manifold theory. In all above
mentioned studies, the aerodynamics were modeled through variants of unsteady
thin airfoil theory [Theodorsen 1935; Bisplinghoff et al. 1955] which is linear.

More recently, efforts to model nonlinear aerodynamics have been made. In the
transonic regime, [Schewe et al. 2003] showed experimental evidence of strong fluid
nonlinear effects that limit the amplitude of flutter oscillation. In particular, coexist-
ing flutter LCO’s were found for a supercritical2 NLR 7310 airfoil. The coexistence
of these solutions was later reproduced with Euler-based numerical simulations and
attributed to different dynamical behaviors of shocks on the upper and lower surface
of the (asymmetrical) NLR 7310 airfoil (see §7.2 in the review by Bendiksen (2011)).
Numerical investigations by [Thomas et al. 2002] reported both super- and subcriti-
cal bifurcations on a transonic symmetrical NACA64A010A airfoil, using Harmonic
Balance solutions of the Euler equation. In [Van Rooij et al. 2017a], parametric inves-
tigations of the flutter bifurcation of a supercritical NLR7301 airfoil in inviscid tran-
sonic flows were reported. In particular, the effect of the heaving-to-pitching natural
frequency ratio was investigated. In [Thomas et al. 2004], evidence was provided
on the role of viscosity in the transonic regime by comparing aeroelastic Harmonic
Balance solutions of the Euler and RANS Spalart Allmaras models. In this work,
viscosity tends to have a “hardening” effect, i.e. drives the bifurcation towards su-
percritical.

Turning now to the subsonic regime, nonlinear fluid effects on flutter have often
been investigated in the context of airfoils pitching around a nonzero static angle of

1A soft spring (resp. hard spring) is a spring with decreasing (resp. increasing) stiffness as deforma-
tion increases

2Here, supercritical has nothing to do with the nature of flutter, but refers to these airfoils shapes
that delay the apparition of supersonic regions on the suction side.
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attack, close to the static stall angle, by either using reduced order models (e.g. the
ONERA stall model in [D. Tang et al. 2002; Stanford et al. 2013]), experiments [Razak
et al. 2011; Bhat et al. 2013] or numerical simulations [Menon et al. 2019]. Recently,
the transitional Reynolds number regime has been the focus of several experimental
and numerical works [Poirel et al. 2008; Poirel et al. 2010; Yuan et al. 2013; Barnes
et al. 2018; Negi et al. 2018] that aimed at explaining the occurrence of amplitude-
bounded aeroelastic oscillations — the so-called “laminar separation flutter” — that
are particular to the transitional regime. For airfoils at zero static angle of attack
undergoing classical coupled-mode flutter, nonlinear fluid effects were mostly in-
vestigated experimentally. In [Dimitriadis et al. 2009; Šidlof et al. 2016], the flutter of
spring-mounted NACA0012 airfoil was investigated, whereas a similar study was
conducted in [Amandolese et al. 2013], replacing the airfoil profile with a rigid flat
plate. Both studies were performed at a moderate Reynolds, Re ' 104. Each time,
hysteresis and subcritical LCO’s were reported, showing that not only transonic non-
linearities can saturate the flutter oscillation growth. In addition, Amandolese et al.
(2013) showed the co-existence of low- and high-amplitude LCO solutions in a range
of post-critical flow velocities. By ensuring that the experimental set-up yielded an
“as linear as possible” solid model, they suggested that nonlinear aerodynamic ef-
fects are the origin of the observed behavior. However, the exact nature of the phys-
ical phenomenon involved remains an open question. Finally, we note that due to
the mostly experimental nature of these investigations, the effect of the governing
non-dimensional parameters is not easy to grasp, as they are often varied simulta-
neously. For example, increasing the wind velocity increases the reduced velocity
and the Reynolds number together. Knowing that the Reynolds number typically
governs the amount of nonlinearity in the fluid model, a separate evaluation of its
effect would nevertheless be valuable. Similarly the effect of solid-to-fluid mass ra-
tio is rarely investigated alone despite its known major effect on the critical flutter
frequency (see chapter 4), and hence, on the amount of fluid unsteady effects.

In this work, we aim at isolating and understanding the role of incompress-
ible fluid nonlinearities on the flutter bifurcation of a spring-mounted heaving and
pitching plate. To that aim we consider a purely linear solid model immersed in a
two-dimensional Navier–Stokes flow. The chapter is organized as follows. In sec-
tion 5.2, the physical model and computational approaches are briefly described. In
section 5.3, the effect of mass ratio and Reynolds number on the type of flutter is
investigated, using a weakly nonlinear approach. In addition, we take advantage of
the weakly nonlinear formalism to exhibit a scalar field that quantifies how much
the different regions of the flow contribute to the type of bifurcation. Finally, in sec-
tion 5.5, the fully nonlinear regime is visited where radically different flow features
are observed for supercritical and subcritical cases. In the process, a particularly
interesting scenario is discovered, where two stable solutions coexist for a given re-
duced velocity. This scenario enlightens the experimental results of Amandolese et
al. (2013).

5.2 Governing equations and numerical methods

We investigate the nonlinear dynamics of a rigid plate mounted on heaving and
pitching springs and immersed in a two-dimensional incompressible viscous flow.
As discussed in section section 1.1, eight non-dimensional parameters defined in
table 1.1, govern that fluid-structure interaction problem. As always in this thesis,
five of them — the heaving-to-pitching frequency ratio Ω, the structural dampings
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ζh, ζp, the radius of gyration rθ and the position of the elastic axis xθ — are kept fixed
to the values already specified in table 1.1. The parameters that vary in the present
chapter are the solid-to-fluid mass ratio m̃ = m/(1/2ρ f c2), the Reynolds number
Re = ρ f U∞c/µ and the reduced velocity U∗ = U∞/(c

√
Kθ/Iea)

The dynamics of the spring-mounted plate is governed by two (damped) linear
oscillator equations eq. (1.3), whereas the flow verifies the incompressible Navier–
Stokes equations. This system of coupled equations, described in detail in chapter 1,
is formally written here as the following first-order in time evolution equation

M
∂q
∂t

+R(q) = 0 (5.1)

where the variable q = (h, θ, uh, uθ , U, p, Λ)T gathers all variables necessary to de-
scribe the fluid-solid interaction. The first four scalar variables allow describing the
dynamics of the rigid plate. They are the heaving h and pitching θ displacements,
as well as the corresponding velocities uh and uθ . The incompressible flow is de-
scribed with the velocity U and pressure p fields. Finally, the variable Λ defined
at the fluid-solid interface represents the local stress exerted by the fluid onto the
solid. The exact definition of the linear operator M in front of the time-derivative
and of the nonlinear residual vector R are given in eq. (1.30). In this residual, the
first four components corresponds to the two coupled damped harmonic oscillators,
written as a first-order problem in time. The fifth and sixth component correspond to
the Navier–Stokes momentum and mass conservation equations. The last equation
corresponds to the equality of fluid and solid velocities at the fluid-solid interface.
Again, we refer to chapter 1 for more details.

Several (numerical) methods are used in the following to compute the unsteady
nonlinear solutions that emerge close to the critical reduced velocity U∗c where steady
solutions of the above equation (R(q) = 0) get linearly unstable (see chapter 4 for
more detailed investigations on the linear stability of the system). These nonlinear
unsteady solutions often consist in time-periodic solutions, also referred to as Limit
Cycle Oscillations (LCO), that can be computed using either classical time-marching
method (see section 5.2.1) or nonlinear modals methods specifically developed to
compute periodic solutions (see section 5.2.2). In this work, the following modal
methods are used: the weakly-nonlinear analysis (WNL) introduced in details in
chapter 2 and the Time Spectral Method (TSM) presented in chapter 3. The weakly-
nonlinear analysis is a semi-analytical method based on the assumption of weak
nonlinear effects and thus tends to be valid close to the critical reduced velocity U∗c .
It is mainly used in the following to determine the supercritical or subcritical na-
ture of the flutter bifurcation. On the other hand, the Time Spectral Method allows
computing nonlinear periodic solutions independently of their amplitude (strength
of the nonlinearity). In both cases, those modals methods give access to unstable
LCO, which can not be determined with a time-marching method, unless stabiliza-
tion techniques are implemented [Jallas et al. 2017; Shaabani-Ardali et al. 2019].

5.2.1 Time-marching simulations of nonlinear solutions

A Backward Differences Formula of order two (BDF2) is used to approximate the
time derivative:

∂q
∂t

∣∣∣∣ (tn) '
3q(tn)− 4q(tn−1) + q(tn−2)

2∆t
(5.2)
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yielding the following implicit nonlinear system at each timestep

M q(tn) +
2∆t

3
R(q(tn)) =

4
3

q(tn−1)−
1
3

q(tn−2)

The latter is solved using the pressure segregation method proposed in Badia et al.
2007 which consists in mixing a pressure correction approach [Guermond et al. 2006]
to handle the incompressibility constraint with Dirichlet–Neumann fixed-point iter-
ations for handling the fluid–structure coupling. Solving the implicit nonlinear sys-
tem is thus decomposed in solving a sequence of simpler linear problems that are: (i)
a linear advection-diffusion equation for the fluid velocity, (ii) a Poisson problem for
the pressure increment and (iii) a four-by-four3 linear (the solid dynamics are fully
linear due to the elastic axis being at the center of mass) solid problem. The fluid
problems are space-discretized using the well-known Taylor–Hood (P2, P1) finite
element pair for (velocity,pressure) via the finite element library FreeFEM [Hecht
2012]. The discrete problems are solved in parallel with preconditioned Krylov
subspace methods from the PETSc library [Balay et al. 2019], accessed through its
FreeFEM interface. More details about the algorithm can be found in section 1.3.

5.2.2 Methods for periodic nonlinear solutions

We now describe the weakly-nonlinear analysis in §5.2.2.1 and the time spectral
method in §5.2.2.2, that both allow to determine periodic nonlinear solutions. Com-
pared to the time-marching simulations, these methods can be used to compute both
stable and unstable Limit Cycle Oscillations.

5.2.2.1 Weakly nonlinear analysis

In the vicinity of the critical reduced velocity U∗c , the amplitude of the LCO are ex-
pected to be small. That property can be used to approximate the periodic solution
and thus to efficiently determine the supercritical or subcritical nature of the bifur-
cation. As detailed in chapter 2, the weakly nonlinear approximation is based on
a development of the solution in the vicinity of the critical velocity. The departure
from the critical velocity is written

1
U∗2 =

1
U∗c

2 + ε2∆U∗ (5.3)

with ε is a small positive parameter and the integer ∆U∗ = ±1 is introduced to
choose the departure side. According to the methods of multiple scales [Nayfeh et
al. 1995], the solution q is then searched in the form of a series of ε powers:

q = q0 + ε
(

Aεq̂ceiωct + c.c.
)

︸ ︷︷ ︸
q1

+ε2q2 + ε3q3 + ... (5.4)

where q0 is solution of the steady-state equation eq. (2.5) at the critical velocity U∗c
and the first-order solution q1 is proportional to the marginally stable eigenmode q̂c
oscillating at frequency ωc. The small but finite-size complex amplitude A = εAε of

3Recall the heaving and pitching velocities have been introduced to formulate the problem at first
order in time...
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this critical eigenmode is solution of the well-known Stuart–Landau equation:

dA
dt

= α

(
U∗c

2

U∗2 − 1

)
A + β|A|2A (5.5)

where the complex coefficient α drives the linear term while the complex coefficient
β drives the cubic nonlinear term. As explained in chapter chapter 2, this ampli-
tude equation results from a compatibility condition obtained at third-order in (5.4),
which gives the following definition of the linear α and nonlinear β coefficients,

α = − 1
U∗c

2

〈
q†

c , L q̂c
〉

〈q†
c , M q̂c〉

and β =

〈
q†

c , Fres(q̂c, q̂|A|
2

2 , q̂A2

2 )
〉

〈q†
c , M q̂c〉

. (5.6)

The linear coefficient α only depends on the critical eigenmode qc while the non-
linear coefficient β also depends on the second-order solution q2. Both coefficients
depends on the critical adjoint eigenmode q†

c . The exact definition of the scalar prod-
uct 〈·, ·〉, linear operators L and M and residual vector Fres is given in section 2.3.

Once these coefficients are determined, the dynamics of the Limit Cycle Os-
cillations is obtained by injecting the polar decomposition of the amplitude A =
Reiωnlt+φ in (5.5), yielding first that the real amplitude R satisfies

dR
dt

= Re (α)

(
U∗c

2

U∗2 − 1

)
R +Re (β)R3 (5.7)

Searching for periodic solutions, we have dR/dt = 0, such that eq. (5.7) yields either
the trivial solution R = 0 (which gives the base flow solution q0) or the non-zero
amplitude solution

R2 =
Re (α)

Re (β)

(
1− U∗c

2

U∗2

)
(5.8)

The existence of the LCO thus clearly depends on the sign of Re (α)/Re (β). If
Re (α)/Re (β) > 0 (resp. Re (α)/Re (β) < 0), then the LCO exists for flutter ve-
locities above (resp. below) the critical value. To determine the supercritical of sub-
critical nature of the bifurcation, we also need to know the stability of the trivial so-
lution R = 0 on both sides of the critical value. This is given by the sign of the linear
term in (5.7). In the following, we will always consider the case where Re (α) < 0,
so that the trivial solution gets unstable for U∗ > U∗c . Summarizing in fig. 5.1, the
bifurcation is then supercritical if Re (β) < 0 while it is subcritical if Re (β) > 0.

The frequency of the LCO ω = ωc +ωnl is the sum of the linear critical frequency
ωc and the non-linear correction ωnl given by

ωnl =

(
Im (β)

Re (α)

Re (β)
− Im (α)

)(
1− U∗c

2

U∗2

)
. (5.9)

Knowing this frequency and the real amplitude R from (5.8), we can reconstruct ana-
lytically the first-order approximation for any components of the LCO. In particular,
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U∗
c

(a) Supercritical, β̃ > 0
(Re (α) < 0, Re (β) < 0)

U∗
c

(b) Subcritical, β̃ < 0
(Re (α) < 0, Re (β) > 0)

FIGURE 5.1: Nature of the bifurcation depending on the signs of Re (β)
and given Re (α) < 0. The amplitude is represented as a function of U∗.
The central horizontal branch always represents the trivial R = 0 solu-
tion that becomes unstable for U∗ > U∗c . By convention, the solid (resp.

dashed) lines represent stable (resp. unstable) solutions.

the temporal evolution of the pitching angle is given by

θ(t) = 2

√√√√ 1
β̃

(
1− U∗c

2

U∗2

)
cos [(ωc + ωnl)t + φ + φθc ] (5.10)

where we have introduced the normalized quantity β̃

β̃ =
Re (β)

Re (α)|θ̂c|2
(5.11)

From eq. (5.10), the amplitude of the pitching motion is seen to depend only on β̃
and the deviation to the threshold given by the factor 1− (U∗c /U∗)2. As a conse-
quence β̃ — its inverse, exactly — quantifies how fast the amplitude of the pitching
oscillations grows when moving away from U∗c . More precisely, a large positive β̃
corresponds to a supercritical bifurcation with slowly increasing amplitude whereas
a very negative β̃ indicates a strongly subcritical bifurcation. When β̃ = 0, the cubic
nonlinear term in the amplitude equation (5.5) vanishes. This means that the non-
linearities at stake order ε3 are not strong enough to saturate the linear growth of
the flutter instability. In such cases, the weakly nonlinear analysis must typically
be pushed at higher order. We chose not to pursue this path and simply note that
results of the weakly nonlinear analysis around β̃ = 0 should be interpreted with
caution. To confirm them, we will rather consider the strongly nonlinear analysis
developed below, in section 5.2.2.2.

Identifying fluid and geometric nonlinearities The nature of the bifurcation is
entirely driven by the scalar quantity β̃, defined in eq. (5.11). We now propose a
decomposition of this quantity into two contributions that quantify the so-called
fluid and geometric nonlinearities, that we define below.

To do so, we start from the definition (5.6) of the nonlinear coefficient β where
the resonant forcing Fres (exactly defined in eq. (2.16)) is formally written as

Fres(q̂c, q̂|A|
2

2 , q̂A2

2 ) =
(
0, 0, F uh

res, 0, F U
res, 0, F Λ

res
)T

(5.12)

With the above, we highlight that the resonant forcing has non-zero components
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only for the heaving momentum equation (third component), the Navier–Stokes mo-
mentum equation (fifth) and the velocity continuity equation at the fluid-solid inter-
face (seventh). The terms F uh

res and F Λ
res are due to the trigonometric nonlinearities

inherent to the rotation movement of the plate. Indeed, in the heaving equation, the
lift obtained in the rotating frame (eX, eY) must be projected back onto the laboratory
vertical axis ey (cf eq. (1.21a)). In the interface boundary condition, it is the vertical
velocity of the plate that must be projected in the rotating axes (cf eq. (1.20)). These
terms thus correspond to nonlinearities introduced by the particular geometry of the
plate motion (a rotation). They are hereafter referred to as geometric nonlinearity. On
the contrary, the term F U

res is generated by fluid nonlinearities of the Navier–Stokes
momentum equation, which are the convection term — including the modification
of the convective velocity by the domain’s motion — and the uθez ∧U term due to
the use of the “absolute velocity – rotating axis” formalism for handling fluid do-
main motion (cf section 2.2). Based on that decomposition of the resonant forcing,
and recalling that the adjoint mode writes q† = (h†, θ†, uh

†, uθ
†, U†, p†, Λ†)T, we can

thus develop the nonlinear coefficient β as the sum

β = βf + βg

of the fluid βf and geometric βf contributions defined as

βf =
∫

Ωf

fβf(X)dΩ and βg =
F uh

res uh
†?

〈q†
c , M q̂c〉

+
∫

Γfs

F Λ
res ·Λ†?

〈q†
c , M q̂c〉

dΓ .

The scalar field fβf(X) in the definition of the fluid contribution is defined as

fβf(X) =
U†? ·F U

res(q̂c, q2
|A|2 , q2

A2
)

〈q†
c , M q̂c〉

and will be used to determine flow regions where the nonlinearity is at play. This
quantity can be assimilated to different local quantities previously introduced in the
literature to assess the regions of the flow that are most decisive to linear instabili-
ties. The so-called wavemaker [Huerre et al. 1990; Gianetti et al. 2007], for example,
writes as the product of the local norms of the adjoint and direct modes. It quantifies
the drift of an eigenvalue of the linear stability problem to a spatially localized feed-
back force. Closer to our expression of fβf , Marquet et al. (2015b) have introduced a
way of decomposing an eigenvalue of the (fluid) stability problem as the integral of
a local quantity, called endogeneity, that writes U†? · (J UÛ) with J U the Jacobian
of the fluid problem (formulated here only with velocity, for simplicity). Both these
approaches have been applied to the vortex shedding instability behind a circular
cylinder (see [Paladini et al. 2019] for a direct comparison) and evidenced the sen-
sitive regions of the flow. In our study, it is the fluid contribution to the nonlinear
coefficient βf that is decomposed as the integral of a local quantity, fβf . The latter
may thus been seen as a (weakly) nonlinear extension of the endogeneity concept,
where the resonant forcing is projected onto the adjoint mode instead of the linear
operator.

Obviously, the decompositions proposed above hold also for the normalized
quantity β̃ that we use in the following instead of β, for reasons explained before.
Specifically,

β̃ = β̃f + β̃g , β̃f =
Re (βf)

Re (α)|θc|2
β̃g =

Re
(

βg
)

Re (α)|θc|2
(5.13)
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and

β̃f =
∫

Ωf

f̃βf(x) , f̃βf =
Re
(

fβf

)

Re (α)|θc|2
(5.14)

5.2.2.2 Time Spectral Method

To investigate LCOs with large amplitudes, and in particular the subcritical flutter
solutions, we consider the Time Spectral Method (TSM), belonging to the family of
harmonic balance methods, that is designed to compute periodic solutions. A short
explanation is provided here, and the reader is referred to chapter chapter 3 for a
detailed derivation.

In the Time Spectral Method, a spectral approximation of the time derivative in
eq. (5.1) is considered, i.e.

∂q
∂t

∣∣∣∣ (tn) ' ω
2Nh

∑
k=0

dkq(tn+k) (5.15)

where ω = 2π/T is the (unknown) frequency of the T-periodic solution and the
period is discretized by the grid composed of the 2Nh + 1 instants tn = n/(2Nh +
1)T, n = 0, ..., 2Nh. The coefficients dk are given by

dk =





1
2
(−1)k+1 csc

(
πk

2Nh + 1

)
if k 6= 0

0 if k = 0
(5.16)

Note that the index n + k must be understood modulo 2Nh + 1 due to periodicity.
Compared to the second-order BDF formula eq. (5.2) used in time-marching simula-
tions that depends only on three consecutive time instants, the above time-spectral
derivative depends on all 2Nh + 1 instants. Using eq. (5.15), the time-dependent gov-
erning equations can be recast into a system of 2Nh + 1 coupled time-independent
equations that writes:

ω D Q + R(Q) = 0 (5.17)

where the solution and residual vector are

Q =




q(t0)
...

q(t2Nh)


 and R(Q) =




R(q(t0))
...

R(q(t2Nh))


 (5.18)

The time-spectral derivation matrix D is defined (cf eq. (3.25)) from the the coeffi-
cients (5.16). As the LCO frequency ω is unknown, one additional scalar equation
is required to close the system. This equation may be arbitrary chosen and we here
impose that the pitching velocity is zero, uθ = 0, at instant t = 0. The time-spectral
solutions thus satisfy the system of equation (6.9) augmented with one scalar con-
straint. Its total size is (2Nh + 1)× K + 1 where K is the number of degrees of free-
dom used for the spatial discretization of q. To obtain accurate solutions, the number
of harmonics Nh (equivalently, the number of instants 2Nh + 1) and the number of
spatial degrees of freedom K may quickly grow. Efficient numerical methods are
then required to obtain time-spectral solutions with adequate discretizations. To ad-
dress this challenging task, a solver was proposed in chapter section 3.3 based on
the combination of a Newton–Krylov strategy with the so called “block-circulant”
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preconditioner. This numerical method has been used to obtain results shown in the
next section.

5.2.3 Cross-validation of numerical methods

The implementation of the weakly-nonlinear and time-spectral methods are vali-
dated by comparison with results of the time-marching simulations performed at
the mass ratio m̃ = 1000 and the Reynolds numberRe = 500.

The frequency and the maximal pitching angle are depicted in Figure fig. 5.2a
and fig. 5.2b, respectively, as a function of the reduced velocity. The reference results,
corresponding to time-marching simulations performed with about 1400 timesteps
per period, are reported with black dots in the figures. Results of the weakly-nonlinear
analysis, shown with the grey curve, matches fairly well the time-marching results
especially close to the critical reduced velocity. For the maximal value of the pitching
angle (Figure fig. 5.2b), the disagreement clearly increases with the reduced velocity.
Such a disagreement is expected and was already reported, for instance by [Gal-
laire et al. 2016] for the vortex shedding behind a circular cylinder. Interestingly,
the frequency prediction is much better. Turning now to results of the time-spectral
method with Nh = 20 (squares), they compare very well with time-marching results,
for all values of the reduced velocity considered here. The critical flutter velocity U∗c
corresponds to that predicted by the linear stability analysis. In addition, the peri-
odic evolution of the lift coefficient (Figure fig. 5.2c) and pitching amplitude (Fig-
ure fig. 5.2d) obtained with the time-spectral method and time-marching simulation
also perfectly match. Similar agreements were obtained for other sets of parameters
(m̃,Re).

5.3 Type of the flutter bifurcation with weakly nonlinear anal-
ysis

The first objective of this section is to understand the effect of the mass ratio and
Reynolds number on the sub- or supercritical nature of the flutter bifurcation, using
the weakly nonlinear analysis (§5.3.1). Results of the decomposition approach, pre-
viously introduced in eq. (5.13), are then presented to quantify the distinct effect of
the hydrodynamic and geometric nonlinearities on the bifurcation (§5.3.2).

Before addressing those objectives, we start by presenting a typical coupled-
mode flutter LCO, obtained at Re = 500, m̃ = 1000 and U∗ = 1.016U∗c . The so-
lution is reconstructed in time (at second order) using eq. (5.4). In fig. 5.3a, the time
signals for the heaving displacement (solid line) and pitching angle (dashed line)
are purely sinusoidal. This is consistent with the signals obtained with TSM and
time-marching computations using similar parameters in fig. 5.2. The heaving and
pitching motion oscillate with a phase shift such that the instantaneous angle of at-
tack −θ is “in advance” with respect to the heaving motion — here by slightly less
than half a period. This phase shift is a typical feature of the coupled-mode flutter
instability, as recalled in the introduction to this manuscript (cf fig. 2). The lift (solid
line) and moment (dashed line) coefficient signals, presented in the central part of
fig. 5.3a, vibrate almost in phase with respect to each other, and with respect to the
pitching angle shown above. Over one period of oscillation, this motion allows the
extraction of a small, but positive, mean power from the flow to the solid (equal
to the power dissipated by the structural damping). In fig. 5.3b, four snapshots of
the vorticity field are presented. The flow features fully attached shear layers that
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FIGURE 5.2: Comparison of numerical results obtained with time-
marching simulations and modal methods for m̃ = 1000 and Re = 500.
The frequency (a) and the maximal pitching angle (b) of the LCO are pre-
sented as a function of reduced velocity for the weakly nonlinear analysis
(gray solid line), the time spectral method (Nh = 20, squares) and the
time-marching simulations (1400 timesteps per period, black dots). The
vertical dashed line indicates the critical flutter velocity. Periodic evolu-
tion of (c) the lift coefficient and (d) the pitching angle are depicted for
the time-spectral method and time-marching simulations (using the same

symbols) for the reduced velocity U∗ = 5.22.
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FIGURE 5.3: Weakly nonlinear flutter LCO at Re = 500, m̃ = 1000 and
U∗/U∗c = 1.016. In (a) we present the time signals of the heaving dis-
placement (solid) and pitching angle (dashed) (top part), the lift (solid)
and moment (dashed) coefficients (central part) and the power transmit-
ted by the fluid forces to the solid (bottom part). In (b), vorticity snapshots

corresponding to four instants in the period are shown.
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evolve quasi-steadily in time, consistently with the low frequency ω ' 0.17 of the
flutter instability at the chosen set of parameters. One notice that in these snapshots,
the wake seems to almost “rotate as a block” with the plate. Close to the plate, this is
indeed the correct physical flow (as will be seen later in fig. 5.13). Far from the plate,
this block-rotation becomes increasingly unphysical and is entirely due to the weakly
nonlinear nature of the method. This is not problematic however since the nature of
the flutter bifurcation, that we explore in this section, is an asymptotic feature that is
fully determined by the cubic coefficient of the normal form, eq. (5.5).

5.3.1 Effects of mass ratio and Reynolds number on the bifurcation
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β̃ 0.99 1 1 1.01 1.01
0

10

20

U∗/U∗
c

θ m
a
x

FIGURE 5.4: Nature of the flutter bifurcation at different mass ratio and
constant Re = 500. The value of the criticality indicator β̃, built from
weakly nonlinear analysis, is shown as a function of mass ratio. In
the insert the amplitude of θ is represented as a function of U∗/U∗c for
the different mass ratio marked with solid symbols on the main curve
(m̃ = 20, 30, 60, 80, 120, 200). Note that we do not investigate the range
m̃ < 12 materialized by the gray area, since for those low mass ratio a
static divergence mode is already unstable when the flutter threshold U∗c
is reached (cf fig. 4.9). This scenario is out of the validity assumptions of

the present weakly nonlinear analysis.

We first investigate the effect of the solid-to-fluid mass ratio on the bifurcation
for the fixed Reynolds number Re = 500. For each mass ratio, the critical reduced
velocity for flutter is first found. Then, the non-dimensional quantity β̃ that governs
the supercritical or subcritical nature of the bifurcation, and defined in eq. (5.11), is
computed. The evolution of β̃ as a function of the mass ratio m̃ is shown in fig. 5.4.
Three regions are observed in the figure. For high mass ratio m̃ > m̃u, the bifurca-
tion is supercritical (β̃ > 0). For intermediate values in the range m̃l < m̃ < m̃u,
the bifurcation is subcritical (β̃ < 0). And finally, for lower mass ratio m̃ < m̃l,
the bifurcation gets back to supercriticality. The transition values are m̃l = 13.5
and m̃u = 70 for the Reynolds number Re = 500 considered here. We recall that
those values should be considered with caution, since they correspond to β̃ = 0 for
which the cubic amplitude equation (5.5) degenerates, as explained previously. To
account for the nonlinear effects in that case, the quintic amplitude equation should
be considered but this is out of the scope of the present paper. Instead, the effect of
higher-order nonlinearities close to m̃u will be investigated in section 5.5 using time-
spectral method or time-marching simulations. We note also that the supercritical
region at low mass ratio is of very small extension since it is bounded on its lower
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FIGURE 5.5: Effect of mass ratio and Reynolds number on the type of
the flutter bifurcation. The colormap represents the criticality indicator β̃
in the (m̃,Re) plane, whereas the dotted line indicates the contour β̃ =
0 which separates subcritical and supercritical cases. The gray area on
the left represents mass ratios m̃ < m̃I I(Re), for which a divergence is
the primary instability (see fig. 4.9). The upper horizontal dashed line
materializes the critical Reynolds Rec,wake above which the wake of the

fixed plate becomes unstable.

end by a region (grey in the figure) where divergence instability occurs for reduced
velocity lower than the critical flutter velocity.

Let us now focus on the inset of fig. 5.4 which shows the bifurcation diagrams
corresponding to several values of m̃. Since the critical reduced velocity varies with
the mass ratio, we show the amplitude of θ as a function of the ratio between the
reduced velocity and its critical value. The color of the different curves corresponds
to the color of the solid circles in the main figure. As expected, the LCO branches
exists above (resp. below) the threshold for supercritical (resp. subcritical) bifurca-
tions displayed with orange (blue) colors. If the sign of β̃ gives the nature of the
bifurcation, its absolute value |β̃| indicates the strength of the nonlinearity and con-
sequently the growth of the LCO amplitude when moving away from the threshold
U∗ = U∗c . This is clearly observed in fig. 5.4 by comparing the growth of the pitch-
ing amplitude when moving away from the threshold (inset) with the corresponding
values of β̃ (main figure). For large values of |β̃|, the maximal pitching amplitude
of the LCO grows slowly. The nonlinear effects are strong compared to the linear
growth and the saturation occurs for small amplitudes. On the other hand, for small
values of |β̃|, the maximal pitching amplitude of the LCO grows abruptly close to
the threshold. The nonlinearity being weak, the saturation occurs for larger ampli-
tudes

By additionally varying the Reynolds number, we determine the transition be-
tween supercritical and subcritical bifurcations in the parameter space (m̃,Re). Fig-
ure 5.5 displays the isocontours of β̃ in that parameter space, with positive values (in
blue) indicating a supercritical bifurcation and negative values (in red) indicating a
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subcritical bifurcation. The black dotted curve highlights the transition between su-
percritical and subcritical regions. Supercritical bifurcations occurs predominantly
for large mass ratio and low Reynolds number. For very low Reynolds number (for
instance Re = 20), decreasing the mass ratio rapidly leads to the divergence in-
stability occurring prior to the flutter instability. This region is shaded in grey and
the dashed curve m̃I I(Re) corresponds to codimension-two points where the flutter
and divergence modes are both neutrally stable at the same reduced velocity. For
Reynolds number above Re ∼ 90 (square symbol) and below Re ∼ 2000, the bi-
furcation changes from supercritical to subcritical when decreasing the mass ratio.
This is the scenario previously described in fig. 5.4 (Re = 500) around m̃ = m̃u. For
very low mass ratios, the opposite transition from subcritical to supercritical again
is also retrieved (m̃ = m̃l). The low mass ratio supercritical region is very narrow as
we quickly reach the codimension-two curve. When increasing the Reynolds num-
ber, one notices that the lower transition mass ratio m̃l only slightly varies. On the
contrary, the upper transition mass ratio m̃u strongly increases. As a consequence,
for Reynolds numbers higher than Re ∼ 2000, the bifurcation is subcritical for all
mass ratios reported in the figure (and above m̃l). Interestingly, the upper transi-
tion mass ratio m̃u seems to asymptotically tend to infinity when Re approaches
some value just below the critical Reynolds for the vortex-shedding instability of
the fixed plate, Rec,wake ' 2925 (horizontal dashed line). For Reynolds numbers
above Rec,wake (horizontal dashed line), the results of the weakly nonlinear analy-
sis should be interpreted cautiously since the vortex-shedding mode is unstable in
addition to the flutter mode, thus requiring in theory a two-mode weakly nonlinear
analysis [Meliga et al. 2012]. Still, we observe an abrupt transition from subcritical
to supercritical for Re ' 104 and large mass ratio. This point is further discussed in
section 5.4.

5.3.2 Fluid and geometric nonlinearities

The solid model considered in this thesis is purely linear as it is composed of two
damped linear oscillators: one for heaving and one for pitching (cf eq. (1.3)). Still,
the rotational motion of the plate induces nonlinearities that we refer to as geometric
nonlinearities and that add up to the inherent fluid nonlinearity of the Navier–Stokes
equations. As shown in section 5.2.2.1, the weakly-nonlinear analysis allows iden-
tifying analytically those two contributions and determining how much they con-
tribute to the global nature of the flutter bifurcation, using the decomposition (5.13)
of the quantity β̃.
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FIGURE 5.6: Fluid and geometric nonlinearities. (a) Fluid β̃f (dashed line)
and geometric β̃g (dotted line) contribution to the nonlinear coefficient β̃

(solid line) as a function of the mass ratio, (b) Spatial distribution of f̃βf
(x)

(its integral over the domain gives the value of the fluid contribution β̃f)
for two values of the mass ratio corresponding to a supercritical bifurca-
tion (top,m̃ = 1000) and a subcritical bifurcation (bottom, m̃ = 63). The

Reynolds number isRe = 540.

Figure 5.6a displays the evolution of the fluid β̃f and geometric β̃g contributions
to the nonlinear coefficient β̃ as a function of the mass ratio for the fixed Reynolds
number Re = 540. In that case, we recall that the bifurcation is supercritical for
large (m̃ > m̃u ) and low (m̃ < m̃l ) values of the mass ratio, while it is subcritical for
intermediate values (m̃l < m̃ < m̃u). For all values of the mass ratio, the contribution
of the geometric nonlinearity (dotted curve) is positive and, in most cases, it is small
compared to the fluid contribution (dashed line), that evolves very similarly to the
total contribution (solid line). In particular, the upper transition at m̃u from a super-
to sub-critical bifurcation is clearly driven by the fluid nonlinearity. On the other
hand, around the lower transition at m̃l, the geometric and fluid nonlinearity have
opposite contributions of equal strength. For small enough values of the mass ratio,
the total contribution is even positive. Thus, the transition from sub-critical to super-
critical around m̃l is driven by the geometric nonlinearity.

In cases where the bifurcation is driven by the fluid nonlinearity, we can deter-
mine the flow regions that mostly contribute by examining the spatial distribution of
the scalar field f̃βf(X), defined in (5.14). Its integral over space gives the fluid contri-
bution β̃f. Figure 5.6b displays f̃βf for two mass ratios corresponding to a supercrit-
ical bifurcation (top figure, m̃ = 1000) and a subcritical bifurcation (bottom figure,
m̃ = 63). Largest values of f̃βf are obtained close to the plate, and more specifically
close to the leading-edge. For the largest mass ratio (top), the symmetric shear lay-
ers emerging from the leading-edge corners strongly contribute to the supercritical
nature of the bifurcation. For the lowest mass ratio (bottom), this effect is (almost)
entirely opposite and the bifurcation gets subcritical. The shear-layers around the
leading-edge are thus the flow region responsible for the upper transition around
m̃u
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FIGURE 5.7: Instantaneous vorticity field around the fixed plate for (a) a
steady solution at Re = 2682 and unsteady solutions at (b) Re = 8325

and (c)Re = 104.

5.4 A mean flow approach for the bifurcation analysis at high
Reynolds number and mass ratio

For the highest mass ratios, m̃ ' 104, the weakly nonlinear analysis predicts a bru-
tal transition from subcritical to supercritical for large Reynolds numbers, Re ' 104

(see fig. 5.5). After discussing the physical relevance of the linear and weakly nonlin-
ear flutter analysis for such high Reynolds numbers, an alternative mean flow-based
approach is proposed and applied.
First, we recall that linear stability analysis predicts the destabilisation of a vortex-

shedding mode for Reynolds number above Rec,wake ' 2925 (cf horizontal dashed
line in fig. 5.5), with a frequency ωwake ' 11.2 much higher than the flutter fre-
quency. Therefore, the weakly nonlinear analysis developed around the base flow is
questionable as the latter may not represent the physical flow seen by the plate below
the critical flutter velocity. To better illustrate that discrepancy, time-marching simu-
lations of the flow around the fixed rigid plate (not mounted on the two springs)
have been performed for various Reynolds numbers. Snapshots of the vorticity
fields are displayed in fig. 5.7. For Rec,wake < Re . 8500, the flow unsteadiness
is mainly visible in the wake (see fig. 5.7-b)) with vortices of opposite signs that
are alternatively shed at the trailing edge. The flow unsteadiness at the leading
edge and around the plate is very weak and barely visible. For higher values of
the Reynolds number, as Re = 104 corresponding to fig. 5.7(c), large fluctuations
are clearly visible around the plate. More specifically, small vortices are shed from
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FIGURE 5.8: Spatial distribution of the streamwise velocity for the base
(upper halves) and mean (lower halves) flow at Reynolds numbers Re =

8325 andRe = 104. The black curves delimit the recirculation regions.
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FIGURE 5.9: Comparison of the baseflow (crosses) and mean flow (circles)
linear stability spectra atRe = 104, m̃ = 104 and U∗ = 10.7.

the leading-edge shear layers, travel downstream along the plate and interact with
the trailing-edge vortices. For a thorough investigation of the interaction between
those leading-edge and trailing-edge vortices when varying the plate’s length, we
refer to [Hourigan et al. 2001]. Here, we focus on the effect of the flow unsteadiness
on the (time-averaged) mean flow, that are shown and compared to the base flow
in fig. 5.8. For Re = 8325 (top figure), the difference between the base (upper half)
and mean (lower half) flows is large in the wake. The main effect of the fluctuations
is to decrease the recirculation region at the trailing edge. The two symmetric re-
circulation regions located around the leading-edge corners are very similar in the
base and mean flows. For Re = 104 (bottom figure), the stream-wise extent of the
leading-edge recirculation regions clearly decreases in the mean flow.

In the following, we propose to take into account this mean-flow distortion in
the nonlinear analysis of the flutter instability. Close to the critical Reynolds num-
ber Rec,wake for vortex-shedding, a rigorous weakly nonlinear analysis may be per-
formed around a critical set of parameters (mass ratio and Reynolds number) where
the vortex-shedding and flutter modes get simultaneously unstable. This type of
two-mode expansion was successfully applied, for example, by Meliga et al. (2012)
for studying mode selection during vortex breakdown in swirling jets. Far from the
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FIGURE 5.10: Linear flutter analysis performed with the base and mean
flows for m̃ = 104. (a) Critical reduced velocity as a function of the
Reynolds number obtained with base (solid line) and mean (circles) flow
analyses. The critical Reynolds number Rec,wake for the onset of vortex-
shedding is depicted with the vertical dashed line. (b) Spatial distribution
of the pressure field for the (real part of) flutter eigenmode obtained ar
Re = 8325 and Re = 104 using the base flow (upper halves) and the
mean flow (lower halves). Black curves delimit the recirculation regions

in the base and mean flows.

critical Reynolds number, the two-mode weakly nonlinear analysis may not be ac-
curate. Rather than focusing on this rigorous analysis, we propose a simpler alterna-
tive that replaces the base flow q0 by the hydrodynamic mean-flow q in the weakly
nonlinear expansion eq. (5.4). With this approach the weakly nonlinear analysis
can be performed taking into account only the flutter mode, since all hydrodynamic
modes of the meanflow are stable (see fig. 5.9). By doing so, we partially retain the
nonlinear interaction between purely-hydrodynamic fluctuations and flutter insta-
bility, since the hydrodynamic mean-flow accounts for the nonlinear interaction of
flow harmonics. However, we neglect the dynamic interaction between the purely-
hydrodynamic harmonics and the flutter harmonics. That assumption is reasonable
as the vortex-shedding frequency (ωwake = 11.2 at Rec,wake) is much higher than
the flutter frequency (ω ' 0.1 for m̃ = 104). In other words, the hydrodynamic
vortex-shedding is time-averaged at the slow time scale of the flutter phenomenon.
In the weakly nonlinear analysis around the mean flow, we thus analyze the non-
linear behavior of the low-frequency flutter instability that develops on the mean
hydrodynamic flow

Let us first examine results of the linear flutter analysis of a plate of mass ra-
tio m̃ = 104. Figure 5.10(a) shows the critical reduced velocity as a function of the
Reynolds number obtained with the base (solid curve) and mean (circles) flow anal-
yses. They are very similar in both analyses, for all values of the Reynolds number.
The marginally stable flutter modes obtained for the Reynolds numbers Re = 8325
and Re = 104 are shown in fig. 5.10(b) using the real part of the pressure fields.
In both analyses and at both Reynolds numbers, they display larger values and
gradients around the reattachement of the leading-edge recirculation regions. At
Re = 8325, the baseflow and mean flow modes are very similar in the leading-edge
region. This is in agreement with the similar velocity threshold reported in 5.10(a).
For Re = 104, the baseflow and mean flow modes are still qualitatively similar,
but the latter is slightly shifted upstream, consistently with the shortening of the
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leading-edge recirculation region in the mean flow. This shift however appears to
have only a small effect on the critical velocity shown in 5.10(a).

Let us now consider results of the weakly nonlinear analysis by examining more
specifically the nonlinear coefficient β̃ defined in 5.11 and related to the strength
of the cubic nonlinear term in the amplitude equation. Figure 5.11(a) displays that
quantity, computed with the base (solid line) and mean (circles) flow, as a function
of the Reynolds number. Results for the base flow indicate that, when increasing
the Reynolds number up to Re ≈ 8500, the bifurcation is more and more subcrit-
ical since β̃ is more and more negative. Above that Reynolds number, β̃ abruptly
increases until it gets positive. For Re = 104, the weakly nonlinear analysis of the
base flows thus predicts a supercritical bifurcation. This is the behaviour already ob-
served in fig. 5.5 for high Reynolds numbers and mass ratios. Results for the mean
flow are very similar up to Re ≈ 7000− 8000. Above Re = 8000, the mean flow
results start to deviate from the baseflow analysis, but keep the same trend. The
difference becomes striking forRe above∼ 9500 where the bifurcation remains sub-
critical in the mean flow analysis whereas it becomes brutally supercritical in the
baseflow analysis. To further understand that behaviour, we display in 5.11(b) the
spatial distribution of f̃βf whose integral over the computational domain is almost 4

equal to β̃. The upper plot displays the scalar field obtained with the base (upper)
and mean (lower) flow at Re = 8325. In both cases, largest values are localized in
the shear layer of the leading-edge recirculation regions. As noticed previously, the
flow unsteadiness in those regions is very weak for that Reynolds number, and the
mean flow is very similar to the base flow. This explains that β̃ are almost equal for
the base and mean flow analyses. The wake of the plate, where the base and mean
flow are very different, does not contribute at all to β̃ which explains why the short-
ening of the recirculation bubble in the mean flow does not impact β̃. The lower plot
in 5.11(b) displays f̃βf forRe = 104. In this case, the mean flow distribution is clearly
shifted upstream in comparison to the baseflow and the variations of f̃βf are less im-
portant than in the baseflow analysis. Overall, we note that the large impact of the
mean flow on the value of β̃ is only due to mild differences in the balance between
the supercritical (blue lobes) and subcritical (red lobes) regions.

4It was checked that geometric part β̃g almost does not contribute to β̃ for the chosen mass ratio
(m̃ = 104).
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FIGURE 5.11: Weakly nonlinear flutter analysis performed around the
base or mean flows for m̃ = 104. (a) Nonlinear coefficient β̃ as a func-
tion of the Reynolds number obtained with the base (solid line) and mean
(circles) flow analyses. Negative and positive values correspond to sub-
critical and supercritical bifurcation, respectively. (b) Spatial distribution
of the nonlinear fluid contribution f̃βf

, (cf eq. (5.14)) is presented for both
the base and mean flow analyses atRe = 8325 andRe = 104. The integral

of that contribution gives the dominant contribution to β̃.

In the end, the proposed mean flow-based weakly nonlinear analysis shows that
the type of the flutter bifurcation is strongly impacted by switching from baseflow to
mean flow analysis forRe higher than≈ 8000. This is linked to the fact that for such
Reynolds numbers, unsteadiness occurs close to the leading edge and changes the
topology of the leading edge shear layers, which are the most contributing regions
to β̃. On the contrary, vortex shedding in the trailing edge area does not affect β̃.
In any case, the present analysis, is not meant as a rigorous analysis, but rather as a
way of stressing that results in fig. 5.5 must be taken with caution for high Reynolds
numbers. In addition, it underlines again the critical role of the leading edge shear
layers in deciding the type of the flutter bifurcation, and hence the need for accurate
fluid modeling.

5.5 Bifurcation scenarios at low Reynolds numberRe = 500

In this section, we focus on the bifurcation scenarios occurring at the low Reynolds
number Re = 500 when varying the mass ratio and the reduced velocity. As seen
in fig. 5.5, for that Reynolds number, the weakly nonlinear analysis predicts a tran-
sition from a supercritical bifurcation at high mass ratio (m̃ ∼ 1000) to a subcritical
bifurcation at lower mass ratio (m̃ ∼ 60). We further explore those bifurcation sce-
narios using, in addition to the weakly nonlinear analysis valid close to the critical
reduced velocities, the time spectral method (TSM) and time-marching simulations.
The supercritical and subcritical bifurcation scenarios are described in §5.5.1 and
§5.5.2, respectively. For intermediate mass ratios (when the nonlinear coefficient of
the amplitude equation is close to zero), a more complex scenario is examined in
§5.5.3 and is discussed in light of experimental results by Amandolese et al. 2013.
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FIGURE 5.12: Supercritical bifurcation for m̃ = 1000 and Re = 500. (a)
Maximal pitching angle and (b) angular frequency as a function of the re-
duced velocity ratio U∗/U∗c (with U∗c = 4.95). (c) Phase diagram of the
periodic solution U∗/U∗c = 1.016 in the map (θ, CM). The black and grey
lines correspond to a branch of solutions obtained with time spectral and
weakly nonlinear methods, respectively, while black circles correspond to
results of time-marching simulations. The cross in (c) is the steady solu-

tion.

5.5.1 Supercritical bifurcation at high mass ratio

Diagrams corresponding to a supercritical bifurcation are displayed in fig. 5.12 for
the mass ratio m̃ = 1000. The maximal pitching angle is shown as a function of the
reduced velocity in fig. 5.12(a) where the solid curve and black dots correspond to
results of TSM (with 2Nh + 1 = 41 instants) and time-marching simulations (with
about 1400 timesteps per period), respectively. The thin gray lines, materializing the
weakly nonlinear results, are superimposed for comparison. For all reduced veloci-
ties, TSM and time-marching simulations superimpose perfectly so that we can not
only conclude that TSM is accurate enough with this number of instants, but also
that the LCO solutions are stable5. The solution amplitude smoothly increases when
increasing the reduced velocity above U∗c . The maximum pitching angles is about
8◦ at U∗/U∗c = 1.05. This is a relatively low amplitude, in comparison with those
achieved for subcritical bifurcations, presented in the following. A consequence of
these low amplitudes is that the weakly nonlinear approach (thin gray line) yields
satisfying pitching amplitude predictions up to, say, U∗ = 1.05U∗c . In fig. 5.12(b),
we show the bifurcation diagram for the oscillation frequency. On the considered
interval of reduced velocity, the frequency only slightly decreases, in fact following
a 1/U∗ trend which is the typical frequency of the natural solid modes. In particular,
we remark that the weakly nonlinear analysis (thin gray line) perfectly captures the
frequency evolution. For a given reduced velocity, U∗/U∗c = 1.016 (filled circles in
(a)), the solution obtained with TSM (solid black line) is represented in in fig. 5.12(c),

5Here, we evaluate the stability of TSM solutions by simply restarting a time-marching computation
from the TSM solution: if the time-marching solution remains on the periodic orbit predicted by TSM,
then we consider the TSM solution stable, if not, we consider it unstable.
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in the θ−CM map6. The elliptic shape of the obtained orbit shows that both the plate
displacement and moment coefficient follow a mostly harmonic evolution.

(a) t = 0 (b) t = T0/4

(c) t = 2 T0/4 (d) t = 3 T0/4

FIGURE 5.13: Supercritical bifurcation. Snapshots of vorticity for the low-
amplitude LCO at m̃ = 1000 and U∗/U∗c = 1.016.

The spatial distribution of the vorticity is depicted in fig. 5.13 at four instants
of the period. At all instants, the flow remains attached to the plate and closely
resembles the weakly nonlinear solution already shown in fig. 5.3. This further con-
firms the mildly nonlinear nature of this LCO. Furthermore, the flow also resembles
the steady solution (see fig. 4.6b), which is in agreement with the low-frequency
ω ' 0.17 characterizing this supercritical LCO. In other words, this LCO is a mildly
nonlinear quasi-steady periodic solution.

5.5.2 Subcritical bifurcation at low mass ratio

We now consider the lower mass-ratio m̃ = 60 for which the weakly-nonlinear anal-
ysis predicts a subcritical bifurcation . The bifurcation and phase diagrams are dis-
played in fig. 5.14 as for the supercritical bifurcation presented above. At the critical
reduced velocity (U∗ = U∗c ), an unstable LCO branch emerges and progresses to-
wards lower reduced velocities with increasing amplitude. The branch predicted by
the weakly-nonlinear analysis (dashed grey curve) is clearly of too high amplitude
compared to the branch obtained with the TSM (dashed black line), showing that
strong nonlinear effects are at play, that can be only captured with the latter method.
As the reduced velocity is further decreased, the amplitude of the pitching angle
drastically increases when getting close to U∗ ' 0.93U∗c . This is observed for the
TSM branch but not for the weakly-nonlinear branch. In fact, the weakly nonlin-
ear analysis cannot approximate the turning point observed at U∗ ' 0.93U∗c , unless
considering high-order terms in the expansion eq. (5.4), so as to obtain a quintic am-
plitude equation. When the branch turns and folds back with increasing U∗, the

6We recall that, throughout the thesis, we use the trigonometric convention for orienting angles,
i.e. θ > 0 nose-down. Thus, we chose to represent −CM as a function of −θ in fig. 5.12(c), in order to
obtain a figure respecting the more classical "positive, nose-up" convention of aerodynamic studies.
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FIGURE 5.14: Subcritical bifurcation for m̃ = 60 and Re = 500. Same
legend as in fig. 5.12. The critical reduced velocity is U∗c = 1.33. The
dashed curves corresponds to unstable LCO. The LCO displayed in (c)

corresponds to U∗ = 0.95U∗c .

pitching amplitude increases drastically in a small range of reduced velocity. For
the reduced velocity U∗ = 0.95U∗c , two solutions coexist: a low-amplitude LCO of
maximal pitching angle θmax ∼ 20◦ and a high-amplitude LCO of maximal pitching
angle θmax ∼ 40◦. Note that the nonlinearity is so strong that we could not compute
the high-amplitude LCO branch using the TSM method, because the performance
of the block-circulant preconditioner deteriorates too much for very large fluctu-
ations, as explained in table 3.3. Still it is successfully used to capture the unstable
branch of periodic solution that cannot be obtained with time-marching simulations,
while the latter are reserved for computing the high-amplitude branch of solutions
(marked with black symbols), that are stable and still periodic. For the largest re-
duced velocity considered here (U∗ ' 1.08U∗c ), the maximal pitching angle is very
large, around 60◦. Contrary to the pitching amplitude, the oscillation frequency,
shown in fig. 5.14(b), does not vary significantly. The large-amplitude branch pos-
sesses a slightly higher frequency than the unstable low-amplitude branch, but the
global trend is, as in the supercritical case, dictated by the natural solid frequencies
(not shown).

The unstable and stable LCO solutions co-existing at U∗/U∗c = 0.95 are dis-
played in fig. 5.14(c) in the θ − CM map, with dashed and solid lines, respectively.
The central cross materializes the steady (stable here) solution and the thin gray
dashed line the weakly nonlinear prediction. In contrast to the supercritical case (see
fig. 5.12(c)), both LCO orbits are far from ellipses. In particular, the large amplitude
stable LCO (solid line) presents multiple local maxima of the moment coefficient.
When the reduced velocity is decreased, the two solutions get closer and closer, un-
til they collide and disappear for U∗ < 0.93. This is a saddle-node bifurcation of
periodic orbits.

Snapshots of vorticity are shown in fig. 5.15 for the (a) unstable low-amplitude
and (b) stable high-amplitude solutions. In comparison with the periodic solution
shown in fig. 5.13 for the supercritical bifurcation, the flow unsteadiness is stronger
in both cases. For the low-amplitude solution in fig. 5.15(a), weak leading-edge vor-
tices of opposite signs are alternatively formed in the shear layers on the plate’s
suction side, when the extremal values of the pitching angle are reached at t = 0
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and t = T/2. These leading-edge vortices are then shed in the wake during the up-
stroke and downstroke phases, respectively. This vortex-shedding was not observed
for the lower amplitude solution of the supercritical bifurcation since the shear-
layers evolve quasi-steadily in this case. For the high-amplitude solution shown in
fig. 5.15(b), the vortex-shedding pattern is more complex. First, we note that the vor-
ticity field satisfies the spatio-temporal symmetry ωz(x,−y, t + T/2) = −ωz(x, y, t)
i.e. the pattern of the vorticity fields during the first and second half-periods are
symmetric and of opposite sign. Thus, we can focus on describing only the first
half-period.

At t = 0, the plate is at maximal pitching angle. A large recirculation region,
delimited by the thin black line on the figure, (almost) covers the plate. A strong
clockwise-oriented (blue) leading edge vortex is being fed by the detached upper
leading-edge shear layer. In addition, an elongated counter-rotating (red) vortic-
ity layer occupies the plate’s upper surface. At t = T/8, the leading-edge vortex
detaches from the feeding shear layer. Due to its large size, its centroid is already lo-
cated above the plate’s trailing edge. Concomitantly, a weaker secondary clock-wise
leading-edge vortex is growing in the upper shear layer. Under the influence of the
primary vortex, the counter-rotating upper side shear layer progressively detaches
from the plate’s surface. At t = 2T/8, the primary vortex has been shed in the wake,
whereas the secondary vortex detaches from the feeding shear layer. In addition,
the counter-rotating upper side shear layer has evolved into a better defined weak
counter-rotating vortex. At t = 3T/8, the primary clockwise vortex has paired to-
gether with the weak counter-rotating vortex in the wake, forming a dipole. The sec-
ondary clockwise vortex is also shed in the wake so that the flow is fully re-attached
on the upper side of the plate. Notice also the detached flow on the lower side of the
plate which constitutes the early stage of the sequence of events in the lower shear
layer symmetric to the one we are currently describing in the upper shear layer. At
the plate’s trailing edge, a tertiary weak clockwise vortex is being formed due the
nose-down pitching motion of the plate that induces an upstream movement of the
trailing edge. At t = T/2, this tertiary clockwise vortex appears more clearly as it
is shed in the wake. For completeness, we can even guess a quaternary (very weak)
clockwise vortex being formed at the trailing edge, and later released in the wake at
t = 5T/8. Overall, the above reported shedding of vortices at the leading-edge is
typical of the so-called dynamic stall phenomenon that has been widely studied for
lifting surfaces undergoing prescribed motions, historically at high Reynolds num-
bers for helicopter applications [Carr 1988] and more recently at lower Reynolds
numbers for understanding insects and birds flight [Eldredge et al. 2019].

In order to get more detailed insights into the role of the different vortical struc-
tures involved in the dynamic stall of the high-amplitude LCO, we propose in fig. 5.16
a more detailed description of the generation of the three dominant structures of
that solution — i.e. the primary and secondary clockwise vortices and the counter-
rotating vortex — and their connection to lift and moment forces. The LCO solution
is presented in the h−CL and θ−CM maps in the center of the figure. On a side note,
we notice that, contrary to the θ− CM orbit which is composed of one clockwise ori-
ented loop, the h− CL orbit presents a more complex pattern of five loops (the three
larger are well visible in the figure, the two small ones are found at the extremities of
the orbit). Because these loops have opposite orientations, the average power pro-
vided by the fluid to the solid over one period along the heaving direction is neg-
ligible (by three orders of magnitude) with respect to the work along the pitching
direction. Resuming now the description of the vortical structures and their connec-
tion the aerodynamic forces, six points marked by letters from (a) to (f) are chosen
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FIGURE 5.15: Vorticity snapshots of the two coexisting flutter LCO’s in
the subcritical case (m̃ = 60, U∗/U∗c = 0.95).
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FIGURE 5.16: Description of the high-lift generation process of the high-
amplitude stable solution in subcritical flutter (m̃ = 60, U∗/U∗c = 0.95).
For each instant from (a) to (f), the vorticity (colored contours) and pres-
sure (black isolines, negative values are dashed) fields are presented,

along with a few streamlines in orange.
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on the orbit and the corresponding snapshots are presented in fig. 5.16. For com-
parison with fig. 5.15b, the vorticity field is represented, together with the pressure
isocontours (black lines, negative contours with dashed line) and some streamlines
(orange). Starting at point (a), we are just before the instant of maximum pitching
angle. The upper leading edge shear layer is progressively detaching, thus creating
a recirculation region down to the midchord. The low-pressure area at the leading
edge induces a lift and strongly clockwise moment (recall the moment is computed
at the elastic axis, which is the midchord). At (b), the primary clockwise vortex in-
troduced before has formed and locates approximately above the midchord. The
low-pressure area is still on the upper side of the plate, thus conserving a high lift.
Despite it has displaced downstream with the vortex, the existence of a leading-egde
high-pressure area on the lower side of the plate (due to incoming flow) still gener-
ates a strong clockwise moment. In (c), the primary vortex and the corresponding
low-pressure area are above the trailing edge. A high-lift is still obtained but the
moment brutally drops. Besides, the secondary clockwise vortex and the counter-
rotating vortex are clearly visible at the leading edge. Between (c) and (d), the lift
drops to negative values due to the upper side low-pressure area leaving the plate
with the primary vortex. In the same interval of time, the moment slightly mitigates
its drop thanks to the low-pressure leading edge regions associated to the secondary
vortices. In (e) and (f), the lift and moment continue decreasing (i.e. anti-clockwise
for the moment) due to the fact that all the upper side low-pressure area has left the
surface of the plate, with the secondary vortices.

Overall, the previous descriptions of the supercritical (fig. 5.13) and subcritical
(fig. 5.15(b) and 5.16) show that the super and sub-critical stable solutions are linked
to radically different flows. In the supercritical case, the quasi-steady shear layers
remain attached to the plate accross the cycle, whereas in the subcritical case, leading
edge shear layers dynamically roll-up into a series of vortices of various strength and
signs that generate strongly nonlinear lift and moment coefficients. We mention that
this crucial importance of the shear layers was announced already in the analysis of
the spatial decomposition of β̃f proposed in section 5.3.2 where these regions where
shown to decide the type of the bifurcation.

5.5.3 Double-fold bifurcation scenario at intermediate mass ratio

For intermediate mass ratio, there exists a transition between a supercritical and a
subcritical bifurcation, that is identified, in the weakly nonlinear analysis, when the
nonlinear coefficient vanishes, i.e. β̃ = 0. However, results of the weakly nonlinear
analysis are then of limited interest since, at third-order, all nonlinear terms vanish.
Rather than considering the effect of higher-order terms in the development, we
again use time spectral and time-marching simulations to investigate the nonlinear
saturation of the LCOs at those intermediate mass ratio.

As for the previous bifurcation scenarios, we display the maximal pitching am-
plitude and frequency as a function of the reduced velocity in fig. 5.17(a) and (b),
respectively. At the critical reduced velocity U∗c , the bifurcation is supercritical in
agreement with the weakly nonlinear prediction (grey curve) giving birth to a branch
of stable low-amplitude LCO’s. The amplitude growth away from U∗c is very quick
as the solution already reaches about 10◦ when the reduced velocity only exceeds U∗c
of less than one percent. This is the consequence of the small positive value of β̃ for
this set of parameter (see fig. 5.4). On this branch, the solution is mostly harmonic
as shown by the corresponding elliptic orbit in fig. 5.17c (inner solid line orbit). The
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FIGURE 5.17: Bifurcation for intermediate mass ratio m̃ = 120 (Re = 500).
Same legend as in fig. 5.12. The critical reduced velocity is U∗c = 1.78. The

three LCO displayed in (c) corresponds to U∗/U∗c = 1.006.

vorticity field (not shown) is similar to fig. 5.13 despite the higher oscillation fre-
quency, ω ∼ 0.5, shown in (b). Then, instead of the expected smooth increase of
the LCO amplitude with increasing U∗ away from the threshold, a first fold bifur-
cation is observed for U∗/U∗c ' 1.007, leading to an unstable medium amplitude
LCO branch. Traveling further along the medium amplitude branch, a second fold
point is guessed, but as for the case m̃ = 60, could not be reached with TSM for nu-
merical reasons. Beyond the second fold, a high-amplitude stable branch of LCO’s
is retrieved using DNS. On this branch, the solutions resembles fig. 5.15(b). On the
range of reduced velocities between U∗c and 1.007U∗c , the system thus possesses three
nested LCO solutions, as shown in fig. 5.17c for U∗ = 1.006U∗c . The small and large
amplitude LCO’s are stable (solid lines) whereas the medium amplitude LCO is un-
stable (dashed line).

As a consequence, the case m̃ = 120 gives rise to a non-standard bifurcation
scenario where a supercritical Hopf is followed by two folds. Two important re-
marks then need to be made. First, because the second turning point is located for
U∗ < U∗c , stable high-amplitude periodic solutions exist below the linear velocity
threshold, despite the supercritical nature of the primary bifurcation. Second, if we
suppose the system to be on the low amplitude branch, then, as one increases U∗, a
brutal change of the system response will be observed around U∗/U∗c ' 1.007, when
the low amplitude branch disappears at the first fold, and the system consequently
jumps to the large amplitude branch. In addition, if one now decreases U∗ from
the high amplitude branch, an hysteretic behavior is expected, as the system will go
back to the steady baseflow solution only for U∗/U∗c < 0.98 (where the second fold
point is located), instead of U∗/U∗c = 1.

We conclude this section by proposing in fig. 5.18 a synthetic view of the three
different bifurcation scenarios observed before atRe = 500. In this figure, we gather
the results for m̃ = 60, 120 and 1000 previously shown in fig. 5.14, 5.17 and 5.12,
respectively. The evolution of the pitching angle and oscillation frequency as a func-
tion of reduced velocity are reproduced, together with an additional representation
of the heaving amplitude. The horizontal axis represents the ratio of U∗ to U∗c so
that all bifurcations conveniently start at the same point. However, it should be kept
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in mind that the critical reduced velocities for these three mass ratios are different
(from U∗c = 1.33 at m̃ = 60 to U∗c = 4.95 at m̃ = 1000). The pitching amplitude plot
(a) is meant as a summary and the reader is reported to the figures corresponding
to the individual mass ratios for a complete description. For the heaving amplitude
(not shown until now), we notice that varying the mass ratio does not affect much
the heaving amplitude: for example, at U∗ = 1.05U∗c , the heaving amplitude simply
goes from about 0.3 at m̃ = 1000 and m̃ = 120 to 0.4 at m̃ = 60. In comparison,
the pitching amplitude goes from 10◦ to about 60◦. This induces the idea that the
difference between the high-amplitude subcritical LCO’s and the low-amplitude su-
percritical LCO’s is mainly in the pitching motion. Finally, in (c) we first observe that
for all mass ratios, the frequency evolves along a 1/U∗ trend imposed by the natural
solid frequencies that are materialized by the thin dotted (heaving) and dash-dotted
(pitching) lines. The low-amplitude solutions at the highest mass ratios (m̃ = 1000,
orange) are rather associated to the heaving frequency, whereas the high-amplitude
solutions at lower mass ratios shift towards the pitching frequency. Overall, the oc-
currence of large amplitude LCO’s (and subcritical flutter) is associated with an in-
crease of the oscillation frequency. It can be interpreted that high enough frequencies
are necessary to generate the highly unsteady vortex shedding pattern associated to
the large amplitude LCO’s (see fig. 5.15b).
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FIGURE 5.18: Transition from subcritical to supercritical bifurcations at
low Reynolds number (Re = 500) when increasing the mass ratio ( m̃ = 60
in blue, m̃ = 120 in grey and m̃ = 1000 in orange). (a) Maximal pitching
angle, (b) maximal heaving displacement and (c) frequency of the LCO
as a function of U∗/U∗c . Dots and curves correspond to results of time-
marching and time-spectral methods, respectively, while solid and dashed
curves distinguish stable from unstable LCOs. In (c), the natural heav-
ing and pitching frequencies are represented by dotted and dash-dotted

curves, respectively.

5.5.4 Experimental evidence of the double-fold scenario

In [Amandolese et al. 2013], the flutter response of a system similar to the one used
in this work was investigated experimentally, in a wind tunnel. In particular, the
assumption of a fully linear solid model that is used throughout the present work,
was verified, at least for angles of attack lower than 25◦. The characteristics of their
spring-mounted plate, summarized in table 5.1, are similar to ours though not iden-
tical. In this paragraph we aim at comparing the bifurcation diagram obtained by
these authors with the present work. If fitting our solid parameters to the experimen-
tal ones would have been possible, our 2D Navier–Stokes fluid model is not reliable
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c/e xθ Ω ζh ζp rθ

exp. [Amandolese et al. 2013] 23 0.08 0.78 0.002 0.015 0.35
present work 20 0 0.8 0 0.05 0.29

TABLE 5.1: Comparison of the parameters of the plate used by [Aman-
dolese et al. 2013] with the present work.

at Reynolds as high as the one used experimentally (Re ∼ 3 · 104). Therefore, the
following comparison is only qualitative.

By varying the wind velocity, the authors obtained the bifurcation diagrams that
are reproduced in fig. 5.19a. High-amplitude subcritical responses and strong hys-
teresis, similar to the results of fig. 5.14 were observed. If those features are com-
patible with a classical subcritical Hopf scenario, the presence of the low amplitude
response for U∗/U∗c ' 1.08, marked by a red disk, remained unexplained by the
authors. In fig. 5.19b, the bifurcation diagram for (m̃,Re) = (120, 500) is repro-
duced. To ease the comparison with fig. 5.19a, a red disk symbol is added on the
low-amplitude branch. By comparing the pitching (left) and heaving (right) ampli-
tude diagrams, we see that the major difference between the low-amplitude and the
high-amplitude branches is in the pitching dynamics. Indeed, whereas the pitching
amplitude is almost tripled at U∗/U∗c ' 1.007 when going from the low-amplitude
to the high-amplitude branch, the heaving amplitude only increases of about 40%.
These qualitative features are present in both the experimental results and in our nu-
merical example. As a consequence, it can be argued that the supercritical Hopf bi-
furcation followed by two folds offers a possible explanation for the experimentally
observed co-existence of (stable) low-amplitude supercritical and large-amplitude
subcritical solutions.
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FIGURE 5.19: Qualitative comparison of the supercritical double-fold sce-
nario exposed in fig. 5.18 with wind-tunnel data from [Amandolese et al.
2013]. Pitching (left) and heaving (right) amplitude results are given for
(a) the experimental results (m̃ = 2100, Re ' 30000) and (b) the present
numerical results (m̃ = 120, Re = 500). For the description of (a), see
fig. 5.18. In (b), circles (resp. crosses) mark increasing (resp. decreasing)

wind velocity.

5.6 Conclusion

Using a weakly nonlinear analysis, we showed that the flutter bifurcation is strongly
affected by the solid-to-fluid mass ratio and the Reynolds number. For very low
Re < 90, the bifurcation is always supercritical. For intermediate Reynolds num-
ber, 90 < Re . 2000, the bifurcation is supercritical at high mass ratios m̃ > m̃u,
transitions to subcritical on a range of mass ratios m̃l < m̃ < m̃u and finally goes
back to supercritical for very low mass ratios below m̃l. For the highest Reynolds
numbers considered in this study, 2000 . Re < 10000, the bifurcation is subcritical
for all mass ratios. In the rest of the study we mostly focused on an intermediate
Reynolds number of Re = 500. We proposed a decomposition of the cubic coeffi-
cient in the amplitude equation that allows to determine how the different nonlin-
earities of the model contribute to the sub- or super-critical behavior. It was shown
that geometric nonlinearities — the ones that are due to the rotation of the plate —
mostly drive the low mass ratio transition, at m̃ = m̃l whereas, the fluid nonlinear-
ities coming from the Navier–Stokes momentum equation clearly drive the upper
mass ratio transition, at m̃ = m̃u. By further decomposing the fluid nonlinear contri-
bution in space, we demonstrated that the nature of the upper mass ratio transition is
mostly decided by the shear layers at the plate leading edge. In order to investigate
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the highly-nonlinear solutions that appear away from the threshold we combined re-
sults from the Time Spectral Method and reference time-marching simulations. For
high mass ratio (m̃ = 1000), where the bifurcation is supercritical, stable periodic
solutions with low amplitude appear above the critical reduced velocity U∗c . These
solutions oscillate at a low frequency leading to quasi-steady flow features with well-
attached shear layers. On the contrary, for a low mass ratio (m̃ = 60), where the
bifurcation is subcritical, high-amplitude periodic solutions are observed down to
0.94U∗c . These solutions possess a higher oscillation frequency and are characterized
by strong unsteady fluid effects involving the shedding of multiple vortical struc-
tures. The largest vortical structure corresponds to a strong leading-edge dynamic
stall vortex that is generated when the plate reaches high angles of attack. Finally,
at an intermediate mass ratio (m̃ = 120), we presented an unusual scenario where
the bifurcation is supercritical but still allows high-amplitude solutions below the
critical velocity. This situation is made possible by the succession of two fold bifur-
cations of LCO’s that follow the original supercritical Hopf bifurcation. We ended
the study with a discussion of the double-fold scenario in light of previous experi-
mental results by Amandolese et al. (2013) where both low-amplitude supercritical
solutions and high-amplitude subcritical solutions were observed. It is proposed
that the double-fold scenario provides a consistent explanation for these previously
unexplained results.
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APPENDIX

Appendix 5.A Grid convergence study

The sensitivity of the weakly nonlinear results with respect to computational do-
main size and grid refinement are presented in fig. 5.20a, for a subcritical case (m̃ =
1000,Re = 2682.81). In the first column, the radius of the computational domain R
is reported. In the second column, the interpolation error for the mesh adaptation
process (cf section 2.4.3) is given whereas the corresponding number of triangles is
reported in the third column. The last three columns present respectively the criti-
cal flutter velocity, the critical frequency and the normalized quantity β̃ defined in
eq. (5.11). From the first to the fourth row, the computational mesh is refined. It
is observed that the linear quantities,U∗c and ωc, are both almost converged already
with the coarsest mesh. On the contrary, β̃ converges slowlier with the grid. This is
easily linked to the small scale variations of its spatial distribution, as illustrated in
fig. 5.11(b).

In the last three rows, the dependence of the results as a function of the compu-
tational domain size is explored. It is seen again that the linear quantities are very
robust, while β̃ more significantly depends on R. With the smallest domain, R = 10,
the obtained β̃ deviates about 7% from the reference value obtained at R = 50. In any
case, it should be kept in mind that these variations of a few percent are negligible
in regards to the physical variations observed in fig. 5.5.

R err ntri U∗c ωc β̃

20 3 · 10−2 16,662 4.576 0.1808 −18.94
20 1 · 10−2 36,750 4.576 0.1809 −19.17
20 5 · 10−3 65,434 4.575 0.1809 −19.18
20 3 · 10−3 100,362 4.575 0.1809 −19.18
10 1 · 10−2 33,444 4.530 0.1828 −20.93
30 1 · 10−2 43,194 4.571 0.1811 −19.65
50 1 · 10−2 58,280 4.565 0.1813 −19.59

(a) Grid sensitivity table

R

(b) Computational
domain

FIGURE 5.20: Grid sensitivity of the weakly nonlinear analysis at (m̃ =
1000,Re = 2682.81).
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6
LOW-FREQUENCY MODULATION

OF FLUTTER SOLUTIONS: A
FLOQUET ANALYSIS BASED ON
THE TIME SPECTRAL METHOD

The flutter oscillations of a thin plate mounted on a system of bending/torsional
springs and immersed in a laminar incompressible flow are investigated numer-
ically for a low Reynolds number Re = 500 and a large solid-to-fluid mass
ratio m̃ = 1000. Time-marching simulations of the fluid-solid interaction show
that, when increasing the reduced velocity above the critical value U∗c , periodic
oscillations of the plate are first observed as a consequence of the classical (pri-
mary) flutter instability of the steady solution. These oscillations, of moderate
frequency ω0 ∼ 0.16 are characterized by a well-behaved flow that remains
mostly attached to the plate during the motion. For slightly larger reduced ve-
locity, a low-frequency modulation of the oscillations is observed, where the plate
reaches higher angles of attack and the flow more massively detaches. Drawing a
Poincaré map clearly indicates that this quasi-periodic solution is a torus attrac-
tor. To explain the emergence of the quasi-periodic solutions, a Floquet stability
analysis is performed. The latter fully relies on the Time Spectral Method, not
only to compute the unstable periodic limit cycle oscillations, but also to deter-
mine the leading Floquet modes. We show that an asynchronous Floquet mode
gets unstable for values of the reduced velocity where quasi-periodic solutions
are observed. The low modulation frequency ω is well predicted by the Floquet
analysis in the vicinity of the critical velocity for the secondary instability. An
analysis of the pitching and heaving components of the Floquet mode and the
associated perturbation reveals that the low-frequency modulation is linked to
the continuous drift of the phase difference between pitching and heaving across
the modulation period. This is made possible by the fact that the pitching angle
predominantly oscillates at a slightly higher frequency ω0 + ω than the heaving
displacement which dominantly oscillates at ω0−ω. When the pitching motion
precedes the heaving motion, energy is extracted from the flow with perturbation
dynamics that are reminiscent of the classical flutter instability, and the pertur-
bation amplitude increases. On the contrary, when heaving precedes pitching,
the solid energy is dissipated into the flow via so-called “anti-flutter” dynamics,
and the perturbation amplitude decreases.
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6.1 Introduction

The flutter linear instability that occurs on a heaving and pitching spring-mounted
typical section [E. H. Dowell et al. 1989, §3.3.5] gives a rise to a Hopf bifurcation, as
the consequence of the destabilization of a pair of complex conjugate fluid-structure
eigenmodes of the steady configuration where the section is horizontal. For reduced
velocities above the critical threshold for flutter, this pair of eigenmodes grows ex-
ponentially until the system’s nonlinearity come into play and saturate their growth.
Then, periodic regimes with well defined amplitude, referred to as Limit Cycle Os-
cillations (LCO), are observed. In the case of a supercritical flutter bifurcation, that
is the focus of this chapter, the amplitude of the LCO is usually expected to grow
smoothly as the reduced velocity increases. However, LCO solutions — just like
steady solutions — can be unstable and transition, through secondary instabilities,
to richer temporal behaviors, like quasi-periodic oscillations or even chaos [Nayfeh
et al. 1995].

Several researchers have reported the destabilization of flutter LCO on two de-
grees of freedom spring-mounted typical aeroelastic sections. The vast majority of
these works investigated various types of nonlinearities in the structure, while keep-
ing the fluid modeling linear (steady, quasi-steady or Theodorsen models). For ex-
ample, in [L. Liu et al. 2004; B. H. Lee et al. 2005], a cubic stiffness nonlinearity in the
pitch spring and coupled to Theodorsen’s model for the fluid was investigated. In
[Zhang et al. 2017; G. Liu et al. 2018], the cubic stiffness was put in the degree of free-
dom governing an added external store while steady thin airfoil theory was used for
the fluid. These authors showed that for high enough reduced velocities, the flutter
LCO undergoes low-frequency amplitude modulations, which are attributed to the
destabilization of a pair of complex conjugate Floquet modes [G. Liu et al. 2018].
Using different types of structural nonlinearities, e.g. freeplay or hysteresis, a wide
zoology of dynamics may be observed, as exposed in the comprehensive review by
B. H. K. Lee et al. (1999a). Regarding the effect of fluid nonlinearities, the literature
is much scarcer and — to the authors’ best knowledge — always based on empirical
dynamic stall models. Using such a fluid model, X. Li et al. (1997) showed that a
structurally linear airfoil with nonzero static angle of attack transitions from stable
static equilibrium, to flutter LCO, and finally to chaos, through a “quasi-periodic
route to chaos”. More recently, similar quasi-periodic oscillations were reported in
[Jian et al. 2009], for a structurally nonlinear high-aspect-ratio wing.

Mathematically, the asymptotic linear stability of a periodic orbit is carried on
using Floquet stability analysis [Floquet 1883]. This analysis typically consists in
computing the so-called Floquet multipliers, that are complex numbers that quantify
the growth/decay and frequency of infinitesimal perturbations that may develop on
top of a previously established LCO. The most widely spread numerical approach is
to obtain the Floquet multipliers as the eigenvalues of the monodromy matrix Φ, de-
fined as the operator that propagates a perturbation q′(t) over one period T0 of the
LCO: q′(t + T0) = Φq′(t). Building Φ can be quite a cumbersome task, as it requires
K (K being the number of degrees of freedom) time-integrations of the linearized
governing equations, across one period T0. More details on different variants of this
approach can be found, for example, in [Peletan et al. 2013]. When high-dimensional
physical models — typically, the spatially discretized Navier–Stokes equations —
are used, K becomes so large that building Φ is not feasible. In that case, only a few
dominant Floquet multipliers are computed, using Arnoldi type algorithms [Barkley
et al. 1996; Elston et al. 2004; Deng et al. 2016; Jallas et al. 2017; Shaabani-Ardali et
al. 2019]. In this case, the linearized governing equations must be time-marched
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only a number of time equal to the size of the Krylov subspace times the number
of Arnoldi iterations, which is always much smaller than K. In these approaches,
based on time-marching the linearized equations, another challenge is to first com-
pute the base LCO solution of which Floquet stability is then computed. If the LCO
is stable, this can be simply done by time-marching the nonlinear equations on a
long enough interval of time. If the LCO is unstable however, stabilization tech-
niques must be devised in order for the time-marching approach to settle on these
naturally unstable LCO solutions. Several methods have been proposed to achieve
such a task, but are often based on the prior knowledge of a property of the targeted
LCO. For example, if the LCO is known to possess some spatial symmetry, the latter
can be directly imposed in the time-marching algorithm [Elston et al. 2004; Deng
et al. 2016]. When only a spatio-temporal symmetry property of the LCO is known,
specific stabilization techniques are used to artificially damp the symmetry-breaking
components from the time-marching solution [Jallas et al. 2017; Shaabani-Ardali et
al. 2019]. In parallel to these time-domain approaches, some researcher [L. Liu et
al. 2004; G. Liu et al. 2018] have opted for frequency-domain approaches, often re-
ferred to as Harmonic Balance Methods (HBM). These methods impose the temporal
periodicity of the researched solution by decomposing it as a (truncated) Fourier se-
ries. As a consequence, no a priori knowledge on the LCO is required to compute
it, which gives HBM a significant advantage over the aforementioned time-domain
approaches. The reader is reported to chapter 3 for extensive details on Harmonic
Balance Methods. In addition to its ability to arbitrary compute LCO’s regardless of
their stability, HBM also offers the capacity to assess Floquet stability by computing
the Floquet exponents as the eigenvalues of the linearized HBM equations [Decon-
inck et al. 2006; Lazarus et al. 2010; Krack et al. 2019]. As a consequence, and despite
some known shortcomings mostly related to sorting the Floquet exponents [Lazarus
et al. 2010], Harmonic Balance Methods appear as an appealing alternative for LCO
stability analysis.

In this work, we study the stability of flutter LCO solutions that develop on a
two degrees of freedom spring-mounted plate, immersed in a viscous incompress-
ible flow. Whereas the solid model is purely linear, we are interested in the effect of
the fluid nonlinearities, contained in the Navier–Stokes equations. To that purpose,
we use a particular type of HBM, referred to as the Time Spectral Method (TSM)
[Gopinath et al. 2005] to efficiently compute flutter LCO’s. The TSM equations are
solved thanks to the Newton–Krylov solver previously developed in section 3.3.
Then, we show how the Floquet stability of those LCO’s can be assessed through
an eigenvalue analysis of the Jacobian of the TSM equations. An advantage of this
approach is that it naturally fits in the TSM framework and heavily relies on routines
already developed for the Newton–Krylov TSM solver.

The rest of the chapter organizes as follows. Section 6.2 starts by a brief summary
of the equations governing the motion of the spring-mounted plate. Then, after re-
calling some elements of Floquet theory (section 6.2.2), we introduce in section 6.2.3
a TSM-based approach for first computing periodic flutter solutions and then as-
sessing their Floquet stability. Section 6.3 gathers the presentation and analysis of
the numerical results. We start by reporting in section 6.3.1, using time-marching
computations, the emergence of low-frequency modulations on top of small ampli-
tude flutter LCO’s, for high-enough reduced velocities. Then, in section 6.3.2, these
modulations are explained by a linear instability of the flutter LCO, due to the desta-
bilization of a pair of complex conjugate Floquet modes. In section 6.3.3, we recon-
struct the physical perturbation associated to the pair of unstable modes, allowing us
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to shed some light on the physical mechanism governing the appearance of the low-
frequency modulation in the fully nonlinear time-marching solutions (section 6.3.4).

6.2 Governing equations and TSM-based numerical approach
for Floquet stability analysis

6.2.1 Governing equations

We investigate the non-linear dynamics of a rigid plate mounted on heaving and
pitching springs with respective stiffness Kh and Kθ and immersed in a two-dimensional
incompressible viscous open flow with far-field velocity U∞. As discussed in sec-
tion section 1.1, eight non-dimensional parameters defined in table 1.1, govern that
fluid-structure interaction problem, namely, the heaving-to-pitching frequency ratio
Ω, the structural damping ratios ζh, ζp, the radius of gyration rθ , the position of the
elastic axis xθ (zero here), the solid-to-fluid mass ratio m̃, the Reynolds number Re
and the reduced velocity U∗ In this chapter, only the reduced velocity is varied while
all other parameters are kept fixed to values specified later. The reduced velocity is
defined as the ratio of the far-field fluid velocity to a velocity typical of the natural
pitching mode, U∗ = U∞/(c

√
Kθ/Iea), where c is the plate’s chord and Iea is its

moment of inertia with respect to the elastic axis.
The dynamics of the spring-mounted plate is governed by two (damped) linear

oscillator equations eq. (1.3), that are recalled here:
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with CL the lift coefficient and CM the moment coefficients about the elastic axis
(which is the mid-chord here). The flow is modeled with the two-dimensional in-
compressible Navier–Stokes equations, for which an Arbitrary Lagrangian-Eulerian
(ALE) framework (written in a reference domain) is used to handle fluid domain mo-
tion [J.-L. Pfister et al. 2019]. The equations have been previously stated in chapter 1
(see eq. (1.11)) to which the interested reader is reported for more details.

In the following, the coupled system constituted by the solid and fluid equations
is written formally as a first-order in time evolution operator:

M (q)
∂q
∂t

+R(q) = 0 (6.2)

where the variable q = (h, θ, uh, uθ , u, p, λ)T gathers all variables necessary to de-
scribe the fluid-solid interaction. The first four scalar variables allow describing the
dynamics of the rigid plate. They are the heaving h and pitching θ displacements, as
well as the corresponding velocities uh and uθ . The incompressible flow is described
with the velocity u and pressure p fields. Finally, the variable λ, defined at the fluid-
solid interface, represents the local stress exerted by the fluid onto the solid. System
(6.2) is composed of seven equations: the first four correspond to the solid model
eq. (6.1), written as a first-order problem in time. The fifth and sixth equations are
the Navier–Stokes momentum and mass conservation equations. The last equation
corresponds to the equality of fluid and solid velocities at the fluid-solid interface.
Note that the mass matrix M (q) depends here on the unknown solution q. This is
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due to the particular reference configuration ALE framework used to formulate the
Navier–Stokes equations, where the Jacobian of the mesh deformation field appears
in front of the time derivative (see eq. (1.11a)).

6.2.2 Linear stability analysis of Limit Cycle Oscillations

Limit Cycle Oscillations (LCO) are periodic solutions q0(t) of (6.2) that can loose
stability via linear instabilities. In this work, the linear stability of LCO’s is assessed
through a Floquet stability analysis which consists in evaluating the asymptotic fate
of perturbations q′ that develop around the LCO. To that aim, the solution is decom-
posed as the sum of the periodic solution q0(t) and an infinitesimal perturbation
q′(t):

q(t) = q0(t) + ε q′(t) ε� 1 (6.3)

By injecting this ansatz solution in eq. (6.2), we obtain at order ε0 the equation gov-
erning the LCO, i.e.

M (q0)
∂q0

∂t
+R(q0) = 0 with q0(t + T0) = q0(t) (6.4)

and at order ε1 the equation governing the perturbation, i.e.

M (q0(t))
∂q′

∂t
+J (q0(t)) q′ = 0 (6.5)

where the Jacobian operator of the coupled problem, linearized around q0, is defined
as

J (q0(t)) = ∂R/∂q|q0(t) + ∂M /∂q|q0(t) ∂q0/∂t

In the present fluid-structure formulation, since the mass matrix depends on the
state variable, the derivative of M (q) with respect to q appears in the definition
of J (q). Obviously, for physical systems with formalism less intricate than the
present one, M is generally a constant mass matrix, and we simply retrieve J (q0(t)) =
∂R/∂q|q0(t).
Following Floquet’s theory [Floquet 1883], the solutions to a linear system with peri-
odic coefficients, like eq. (6.5), can be found as a superposition of Floquet form signals:

q′(t) = q◦(t)eσ t + c.c. (6.6)

where q◦(t) is a T0-periodic function, called Floquet mode, and σ = λ + iω ∈ C is
the Floquet exponent. Inserting the Floquet form in eq. (6.5) we find that (σ, q◦(t)) are
(generalized) eigenpairs of a spatio-temporal linear operator:

σM (q0(t)) q◦ +
(

M (q0(t))
∂

∂t
+J (q0(t))

)
q◦ = 0 (6.7)

By solving eq. (6.7), the linear stability of the base LCO q0(t) is thus determined
from the growth rate of the Floquet exponents λ. If all λ < 0, then any perturbation
is asymptotically damped and the LCO is linearly asymptotically stable. On the
contrary, if at least one exponent verifies λ > 0, the corresponding perturbation
grows exponentially and the LCO is linearly unstable. In the next paragraph, we
focus on the numerical solution of the base LCO problem eq. (6.4) and the Floquet
eigenproblem eq. (6.7) using a type of space-time discretization, called Time Spectral
Method, well-suited to periodic problems.
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6.2.3 A Time Spectral Method-based approach for Floquet stability anal-
ysis

The Time Spectral Method [Gopinath et al. 2005] is used for the computation of
the LCO (6.4) and of the Floquet exponents/modes (6.7). It consists in discretizing
time on a periodic grid tn = T0n/(2N + 1), n = 0, ..., 2N of 2N + 1 instants, where
T0 = 2π/ω0 is the (a priori unknown) period of the solution and N is the number
of harmonics captured. The time derivative of any periodic field is approximated at
the grid points using a spectral approximation:

∂q
∂t

∣∣∣∣ (tn) ' ω0

2N

∑
k=0

dkq(tn+k) (6.8)

where the coefficients dk are given by

dk =





1
2
(−1)k+1 csc

(
πk

2N + 1

)
if k 6= 0

0 if k = 0

LCO computation based on TSM Using the spectral time-derivative approxima-
tion eq. (6.8), the time-dependent equations (6.4) governing the LCO can be recast
into a system of 2N + 1 coupled time-independent equations that writes:

ω0 D Q0 + R(Q0) = 0 (6.9)

where the solution and residual vector are

Q0 =




q0(t0)
...

q0(t2N)


 and R(Q0) =




R(q0(t0))
...

R(q0(t2N))


 (6.10)

and the time-spectral derivative matrix is defined as

D =




0 d1 M (q0(t0)) . . . d2N M (q0(t0))

d2N M (q0(t1)) 0
. . .

. . . . . . d1 M (q0(t2N−1))
d1 M (q0(t2N)) d2N M (q0(t2N)) 0




(6.11)
Since the frequency ω0 is unknown, an additional equation is necessary to close the
system. In practice, this equation is an arbitrary condition that fixes the phase of the
LCO. In this work, we chose impose that the pitching velocity is zero, uθ = 0, at
instant t = 0. Finally, we mention that in our TSM solver, the reduced velocity U∗

is not directly imposed as a parameter. Instead, it is a second additional unknown
of the problem. As for the frequency, a new scalar equation is provided to close the
system, and consists in imposing the amplitude θmax of the pitching motion.

The TSM problem eq. (6.9), augmented with the additional phase and amplitude
constraints introduced above is a nonlinear system of equation with a large number
of degrees of freedom, (2N + 1)× K + 2 with K the number of degrees of freedom
corresponding to the finite element spatial discretization of q. This problem is solved
using a Newton–Krylov approach that combines classical Newton iterations with a
Krylov subspace linear solver [Saad 1993] to tackle the challenging high-dimensional
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linear problems arising at each Newton iteration. An adequate preconditioner for
the Krylov method, proposed in chapter 3, is built using the so-called block-circulant
preconditioner for the TSM equations and a Schur complement approach for the
two additional scalar (phase and amplitude) constraints. The interested reader will
find extensive details regarding the formulation, implementation, validation and
numerical performance of the above described TSM solver in chapter 3.

Floquet mode/exponent computation based on TSM The eigenproblem eq. (6.7)
is discretized in time and space using again the Time Spectral and Finite Element
methods, respectively. This yields the following fully discrete problem of dimension
(2N + 1)× K:

σM Q◦ + (ω0D + J)Q◦ = 0 (6.12)

where σ = λ + iω is the complex Floquet exponent associated to the Floquet mode
Q◦, defined as

Q◦ =




q◦(t0)
...

q◦(t2N)




The block-diagonal mass M and Jacobian J matrices write

M =




M (q0(t0)) 0 . . . 0

0 M (q0(t1))
. . .

...
...

. . . . . . 0
0 . . . 0 M (q0(t2N))




and

J =




J (q0(t0)) 0 . . . 0

0 J (q0(t1))
. . .

...
...

. . . . . . 0
0 . . . 0 J (q0(t2N))




At this stage, it must be mentioned that the proposed approach is found to be
very similar to the Floquet–Fourier–Hill method, originally devised as an analytical
tool by Hill (1886), and more recently re-popularized as a numerical method [Decon-
inck et al. 2006; Lazarus et al. 2010]. The major difference resides in the fact that in the
Floquet–Fourier–Hill method, a frequency-domain Harmonic Balance discretization
of eq. (6.7) is used, instead of a time-domain here.

Numerical solution of the Floquet eigenproblem The size of the matrices involved
in eq. (6.12) is (2N + 1)K × (2N + 1)K, which quickly grows with both the spatial
discretization (N) and the temporal discretization (K). As a consequence — and con-
trary to previous works [Deconinck et al. 2006; Lazarus et al. 2010] who focused on
low-dimensional systems, K ' O(1) —, the spectrum of eq. (6.12) cannot be ob-
tained at reasonable cost with classical dense algebra algorithms, even for low N.
Instead, we perform Krylov–Schur iterations on the shifted-and-inverted eigenprob-
lem :

σ̃Q◦+TQ◦ = 0

with σ̃ = (σ− s)−1 and T = [sM + (ω0D + J)]−1 M

in order to converge a few eigenvalues of interest, near the user-defined shift s ∈ C.
By moving s along the imaginary axis (λ ' 0), one can monitor the destabilization



180 Chapter 6. Low-frequency modulation of flutter solutions

Krylov–Schur it. Linear solver calls total GMRES it. Wall-clock time

6 714 27,540 1h06min

TABLE 6.1: Cost of a Krylov–Schur run for the following numerical pa-
rameters: s = 1+ 0i, nev = 40, ncv = 200, N = 5, tolGMRES = tolKS = 10−6.

The corresponding spectrum is shown in fig. 6.1(a).

of Floquet modes. As only matrix-vector products with T are needed in the Krylov–
Schur iterations, T is never assembled. Only its action x = Tz on a given vector
z is computed through one matrix-vector product y = Mz and one solve of the
linear system [sM + (ω0D + J)] x = y. Finally, noticing that the latter system is very
similar to a Newton step of the nonlinear TSM solver, we simply re-use the block-
circulant preconditioned GMRES solver already used in the nonlinear solver (see
chapter 3). The typical cost of a Krylov–Schur run is presented in table 6.1 where
we compute the 40 Floquet multipliers closest to the (real-valued for this case) shift
s = 1, using N = 5 harmonics (i.e 11 temporal grid points). The obtained spectrum
is the one presented in fig. 6.1(a). With a Krylov space of size 200, we need 6 Krylov–
Schur interations to converge all 40 eigenvalues to 10−6. This corresponds to 714
linear solves (GMRES calls), for a total amount of 27,540 GMRES iterations (i.e. as
much applications of the circulant preconditioner and matrix-vector product with
[sM + (ω0D + J)]). This corresponds to about 40 GMRES iterations per linear solve.
Using the time-parallel implementation detailed in section 3.3.4, the total wall-clock
time is about an hour.

Overall, it appears that most of the matrices and routines involved in the build-
ing and subsequent solution of eq. (6.12) are bricks of the Newton-Krylov TSM solver
used for computing LCO solutions. In particular, the matrix ω0D + J is simply the
Jacobian of the TSM system, eq. (6.9). As a consequence, the Floquet eigenproblem
can be assembled and solved by moslty re-using the computational routines of the
nonlinear solver. From a practical point of view, we point out however that all com-
putational routines must be adapted to handle complex algebra if one is to use a
shift with nonzero imaginary part.

Periodicity of the Floquet exponents and choice of the relevant modes In this
paragraph we point out the periodicity property of the Floquet exponents and ex-
plain how it affects the choice of the physically relevant eigenpairs amongst all
eigenpairs (σ, q◦(t)) of eq. (6.12).

In fig. 6.1(a), we show a typical spectrum of the leading Floquet exponents ob-
tained from the numerical solution of eq. (6.12). The spectrum presents a repeating
pattern — except at the upper and lower extremities, on which we will come back
below — along the imaginary axis, with period ω0. The observed periodicity of
the Floquet exponents originates from the fact that the Floquet form of the linear
perturbation q′(t), introduced in eq. (6.6), in fact admits an infinity of equivalent
representations, indexed by the integer p ∈ Z:

q′(t) = q◦,p(t)e(σ+ip ω0)t + c.c. with q◦,p(t) =
∞

∑
n=−∞

q̂◦nei(n−p)ω0t (6.13)
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where the q̂◦n are the Fourier coefficients of the ω0-periodic Floquet mode:

q◦(t) =
∞

∑
n=−∞

q̂◦neinω0t

Varying the index p simply “displaces” multiples of the base LCO frequency ω0 from
the Floquet mode to the Floquet exponent and vice-versa. However, the real physical
perturbation q′(t) associated to each couple (σ + ipω0, q◦,p(t)) is left unchanged by
changing p, as shown by eq. (6.13). As a direct consequence, it is easily verified that
if (σ, q◦(t)) is an eigenpair of eq. (6.7), then all the (σ + ipω0, q◦,p(t)), p ∈ Z are also
eigenpairs. Thus, the spectrum of Floquet exponents is iω0-periodic, as observed in
fig. 6.1(a).

In theory, this periodicity implies that only the eigenvalues in a section of the
complex plane of extension ω0 along the imaginary axis are representative of the
whole spectrum. In practice however, truncation effects due to finite N (here N = 5)
break that periodicity, as observed in the upper and lower extremities of the spec-
trum in fig. 6.1(a). The physically relevant eigenvalues (i.e. the ones that respect the
periodicity) must then be carefully separated from the non-relevant ones (i.e. the
ones that break the periodicity). In this work, the distinction is made by looking at
the Fourier spectrum of the corresponding Floquet mode. As an example, we show
in fig. 6.1(b) the Fourier spectrum of the dominant Floquet exponent (marked by a
gray disk in (a)). If the harmonics of the mode well decrease to zero on the extrem-
ities of the computational spectrum [−Nω0, Nω0] (e.g. the central Fourier spectrum
in (b)), then the mode is well converged (in time), and thus physically relevant. On
the contrary, if the harmonics are large at one of the extremities of the Fourier spec-
trum (see the upper or lower spectra in (b)), then the mode is ill-converged and
thus discarded for physical analysis. Once all ill-converged exponents have been
excluded, it is usually more convenient to represent LCO stability using the Floquet
multipliers µ = eσ T0 represented in fig. 6.1(c), instead of the exponents. Indeed,
with the multiplier the aforementioned, purely mathematical, periodicity of the ex-
ponents naturally disappears due to µ = e(σ+ipω0) T0 = eσ T0 , for any p ∈ Z.
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FIGURE 6.1: Floquet stability of the base LCO q0(t) computed at U∗ =
5.45. The Floquet exponents obtained as a raw output of a Krylov–Schur
run (s = 1, N = 5) are shown in (a). For a particular exponent marked
by a gray disk (and its periodically repeating representations), the Fourier
spectrum of the corresponding mode is shown in (b). Due to the periodic-
ity of the exponents, only one pattern (with properly converged modes) is
needed to assess Floquet stability (yellow area). In practice, the exponents
representation is advantageously replaced by the Floquet multipliers rep-
resentation (c), where the (mathematical) periodicity of the exponents nat-

urally disappears.
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6.2.4 Time-marching simulations

In order to compute solutions with unspecified time behavior (e.g. not only periodic
solutions), we use a classical time-stepping approach to march in time the coupled
equations eq. (6.2). A Backward Differences Formula of order two (BDF2) approxi-
mates the time derivative:

∂q
∂t

∣∣∣∣ (tn) '
3q(tn)− 4q(tn−1) + q(tn−2)

2∆t

yielding the following nonlinear system at each timestep:

3
2∆t

M (q(tn)) q(tn) +R(q(tn)) =
4

2∆t
q(tn−1)−

1
2∆t

q(tn−2)

The latter is solved using the pressure segregation method proposed in Badia et al.
2007 which consists in mixing a pressure correction approach [Guermond et al. 2006]
to handle the incompressibility constraint with Dirichlet–Neumann fixed-point iter-
ations for handling the fluid–structure coupling. Solving the implicit nonlinear sys-
tem is thus decomposed in solving a sequence of simpler linear problems that are:
(i) a linear advection-diffusion equation for the fluid velocity, (ii) a Poisson problem
for the pressure increment and (iii) a four-by-four linear1 solid problem. The fluid
problems are space-discretized using the well-known Taylor–Hood (P2, P1) finite
element pair for (u, p) via the finite element library FreeFEM [Hecht 2012]. The dis-
crete problems are solved in parallel with preconditioned Krylov subspace methods
from the PETSc library [Balay et al. 2019], accessed through its FreeFEM interface.
More details about the algorithm can be found in section 1.3.

6.3 Results

From now, we investigate the dynamics of typical section of mass ratio m̃ = 103, im-
mersed in an incoming uniform flow characterized by the Reynolds number Re =
500. As in chapters 4 and 5, the heaving-to-pitching frequency ratio Ω and the struc-
tural damping coefficients, ζh, ζp are set to Ω = 0.8, ζh = 0 and ζp = 0.05, respec-
tively. For this set of parameter, we recall that a flutter instability occurs at the critical
reduced velocity U∗c = 4.96 (see chapter 4). In chapter 5, we showed that the Hopf bi-
furcation that results from the flutter linear instability is supercritical. The branch of
Limit Cycle Oscillation (LCO) emerging at U∗c is characterized by a low fundamental
frequency ω0 ' 0.16− 0.17. Due to their low frequency, these LCO’s are considered
as quasi-steady solutions. Now, we investigate the unsteady nonlinear solutions that
exist for a reduced velocity significantly above the critical flutter threshold, for U∗

between U∗c and 1.2U∗c . Using time-marching simulations, we first explore and char-
acterize in section 6.3.1 the different solutions that naturally emerge on that velocity
range. Depending on the reduced velocity, periodic or quasi-periodic solutions are
found. The Time Spectral Method is then used in section 6.3.2, firstly to compute the
LCO solutions that exist on the whole considered range of reduced velocities, and
secondly to investigate their linear stability. In section 6.3.3, we reconstruct the real
perturbation associated to the leading pair of Floquet multipliers and analyze it in
order to understand the physical mechanism at play in the transition from periodic

1The solid dynamics are fully linear due to the elastic axis being at the center of mass
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to quasi-periodic solutions. We conclude in section 6.3.4 with a detailed compari-
son of the linear stability (Floquet) results and the fully nonlinear (time-marching)
solutions.

6.3.1 From periodic to quasi-periodic solutions

Time-marching simulations are performed on a triangular grid of 15,274 triangles,
starting from the steady solution as initial condition. The time step ∆t is chosen
so that the CFL number CFL = U∞∆t/∆ (with U∞ the far-field velocity and ∆ the
typical size of the smallest triangle) is around 50. This corresponds to about 3000
timesteps per fast period2 (T0). The simulations are run for a time long enough so
that a permanent regime is reached for each reduced velocity.
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FIGURE 6.2: (a) Periodic and (b) quasi-periodic oscillations of the pitching
angle displayed with time series (left column) and Fourier spectra (right
column) for two reduced velocities above the critical flutter velocity U∗c .
ω0 corresponds to the fundamental frequency of the periodic solution,

while ω is the small frequency shift.

Figure 6.2 displays the temporal evolution of the pitching angle and its Fourier
spectrum for two values of the reduced velocity. For U∗ = 1.06 U∗c , slightly above
the critical reduced velocity, the solution is periodic with a frequency ω0 = 2π/T0 =

2“Fast period” refers in this chapter to the period of the primary flutter instability at U∗c , see below
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0.16. The amplitude of the harmonic oscillating at 3ω0 is very small when exam-
ining the pitching angle. However, the periodic LCO is not harmonic since higher
amplitude harmonics, not shown here, are observed in the flow. Snapshots of the
periodic evolution of the vorticity are shown in fig. 6.3(a-d). The dynamics consist
in a coupled heaving and pitching motion of the plate, typical of the flutter insta-
bility. During the plate’s oscillation, the flow is mainly attached to the plate, and
it is slightly detached only for the highest angle of attack (around 9◦ here) reached
during the plate’s oscillation.

When increasing the reduced velocity to U∗ = 1.1U∗c , the fast flutter oscillations
are still observed in fig. 6.2(b), but their amplitude is now modulated by a slow fre-
quency ω = 2π/T. The spectrum exhibits multiple peaks appearing around the
fundamental frequency, at frequencies ω0 − 2ω, ω0 − ω, ω0 + ω, ω0 + 2ω, etc ...
Since the two frequencies ω and ω0 are not commensurable (ω ' ω0/19), this solu-
tion is quasi-periodic. The flow evolution of this quasi-periodic solution is shown in
fig. 6.3(e-h) at four instants of the slow period T ' 19T0, corresponding to the local
maxima of the pitching angle marked by colored disks in fig. 6.2(b). The flow sep-
aration is much more pronounced especially in the motion’s phase where the plate
reaches the largest pitching angle, close to 12◦ (see fig. 6.3(h)).
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIGURE 6.3: (a-d) Periodic and (e-h) quasi-periodic solutions displayed
with the streamwise velocity field. The periodic solution obtained for
U∗ = 1.073U∗c is displayed at four instants of the period (a) t = 0,
(b)t = T0/4, (c)t = T0/2 and (d) t = 3T0/4. The slow evolution of the
quasi-periodic solution obtained for U∗ = 1.1U∗c is shown by displaying
the solution at the four instants marked by colored disks in fig. 6.2(b). The
thin black curves, corresponding to the contour of zero streamwise veloc-

ity, delimit regions of flow recirculation.

To gain some more insights in the periodic and quasi-periodic nature of these
two solutions, we display in fig. 6.4(a-b) their temporal evolution in the map θ −
CL. The periodic solution (a) evolves on a simple orbit whereas the quasi-periodic
solution (b) evolves on a thick orbit. Only one modulation period is depicted here,
for visualization purpose, but with more slow periods, the orbit visits the whole
thickness.
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FIGURE 6.4: (a-b) Temporal evolution in the map (−θ, CL) of the (a)
periodic solution at U∗/U∗c = 1.060 and (b) the quasi-periodic evolu-
tion at U∗/U∗c = 1.10. (c-d) Poincaré section defined as the hyperplane{

θ̇ = 0, θ̈ > 0
}

for the (c) periodic solution and (d) quasi-periodic so-
lutions. Points are colored according to the time at which they where

reached.

To show that this quasi-periodic solution is a torus attractor, the Poincaré sec-
tions is displayed in fig. 6.4(c-d). It is defined as the hyperplane

{
−θ̇ = 0, ,−θ̈ < 0

}
,

which contains all local maxima of the instantaneous angle of attack. In practice, the
Poincaré sections is build by sampling the lift coefficient and pitching angle each
time the latter passes through a local maximum. So, by construction, the Poincaré
section is a discrete set of points. A total of about 800 fast periods (T0) — i.e. of
equivalently 42 slow periods (T) — is computed during the permanent regime in
order to build a representative section. The periodic solution, seen in fig. 6.4(c), is a
single point, since the lift coefficient has always the same value when the angle of at-
tack reaches its maximal value. On the other hand, the quasi-periodic solution seen
in fig. 6.4(d) is a closed curve, which is not continuously visited when time grows.
This is highlighted by coloring each point of this curve with the time at which it is
visited. As time grows, new points are added on that curve without superimposing
to a previous one, thus progressively filling the closed curve. This shows that the
quasi-periodic solution is a torus attractor (e.g. [Nayfeh et al. 1995]).
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FIGURE 6.5: (a) Local maxima of the pitching angle for the periodic (sin-
gle circle) and quasi-periodic (multiple circles) solutions as a function of
the reduced velocity ratio. The filled black circle at U∗/U∗c = 1.06 corre-
sponds to the maximum pitching angle (−θ) of the periodic solution (see
fig. 6.2a) whereas the colored filled circles at U∗/U∗c = 1.10 correspond
to four local maxima of the pitching angle in the quasi-periodic solution
(see fig. 6.2b). (b) Fundamental frequencies (circles) of the solutions as
a function of the reduced velocity ratio. In the periodic range, only one
fundamental frequency ω0 exists, while in the quasi-periodic range two
fundamental frequencies ω0 and ω are visible. In (a) and (b), the bottom
horizontal line corresponds to the steady solution with the plate horizon-

tal (solid when stable, dashed when unstable).

Finally, we display in fig. 6.5 the solutions obtained when varying the reduced
velocity in the range 1 < U∗/U∗c < 1.2. Maximal values of pitching angles are
shown in fig. 6.5(a) as a function of the reduced velocity ratio. The stable and unsta-
ble steady solutions, corresponding to θmax = 0◦, are depicted with solid and dashed
lines, respectively. We clearly see that a supercritical branch of periodic solutions,
corresponding to a single circle for a reduced velocity, emerges above the critical
reduced velocity U∗c , where the steady solution gets unstable. Quasi-periodic solu-
tions, characterized by multiple circles, are obtained when increasing the reduced
velocity above U∗ = 1.073U∗c . The incommensurate frequencies ω0 and ω character-
izing those quasi-periodic oscillations are shown in fig. 6.5(b). A slight decrease of
the fast frequency ω0 is observed when increasing the reduced velocity, whereas the
modulation frequency ω appears constant, at the scale of the representation (cf also
fig. 6.11b)
Those diagrams clearly suggest that, like the periodic LCOs emerge from a linear in-
stability of the steady solution, the quasi-periodic solutions result from a secondary
instability, i.e. an instability of the periodic LCO. This scenario is investigated in the
next paragraph by performing a Floquet analysis of the periodic LCO.

6.3.2 Floquet stability analysis of flutter LCO’s

For reduced velocity U∗ > 1.073U∗c , only quasi-periodic solutions are obtained with
time-marching simulations. To compute periodic solutions and investigate their lin-
ear stability, we use the time spectral methods described in §6.2.3.

We first examine the accuracy of the time-spectral methods for computing the
periodic base solutions and its leading Floquet multiplier by varying the number of
harmonics N (equivalently the number of instants 2N + 1) and the size of the mesh
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used for spatial discretisation. Up to N = 20 harmonics (2N + 1 = 41 instants) have
been used for the computations of periodic solutions as well as Floquet modes. Let
us recall that with our TSM solver, the reduced velocity is not imposed in practice as
a parameter for computing the base LCO’s. Instead, the reduced velocity is an un-
known of the computation where an additional constraint is imposed by prescribing
the pitching amplitude θmax.

N 1 3 5 10 20

ω0
M0 0.14859 0.15316 0.15315 0.15315 0.15315
M1 0.14859 0.15315 0.15314 0.15314 0.15314

CLmax
M0 0.6031 0.6886 0.7047 0.7084 0.7083
M1 0.6030 0.6886 0.7048 0.7085 0.7083

U∗/U∗c
M0 1.12653 1.09980 1.10006 1.10002 1.10002
M1 1.12659 1.09984 1.10011 1.10006 1.10006

λ(·10−5)
M0 −7.5015 1.7963 1.7866 1.7550 1.7548
M1 −7.0844 1.8014 1.7916 1.7559 1.7597

ω(·10−3)
M0 9.2168 9.5138 9.5379 9.5341 9.5341
M1 9.2187 9.5145 9.5388 9.5350 9.5350

TABLE 6.2: Effect of the number of harmonics N and mesh refinement
Mi on the accuracy of the periodic base solutions (top) and leading Flo-
quet exponent (bottom) both computed with time spectral methods. For
all computations, the pitching amplitude is imposed to θmax = 10◦ (U∗

is an unknown), as demanded in practice by our TSM solver (cf sec-
tion 6.2.3). The corresponding reduced velocity of the converged solution
is U∗/U∗c = 1.10. For the periodic base solution, we report the frequency
ω0, the maximum lift coefficient, and the reduced velocity. The growth
rate λ and frequency ω are shown for the Floquet exponents. The two
meshes M0 and M1 are made of 15,274 and 28,394 triangles, respectively.

Table 6.2 displays results of this convergence study for an imposed pitching am-
plitude, θmax = 10◦. In the upper part of the table, we report first some quantities
related to the baseflow: its frequency ω0, the maximum lift coefficient CLmax reached
over a period and the reduced velocity corresponding to the imposed θmax. For the
frequency ω0, spectral convergence is very fast since only three harmonics are re-
quired to capture it up to the fourth significant digits. In comparison, the case N = 1
clearly deviates. Convergence of the lift coefficient is significantly more difficult
since the convergence of the fourth digit is only reached with N = 20. For the re-
duced velocity, convergence lies in between: easier than for lift but harder than for
frequency. Then, we examine the sensitivity of the leading Floquet exponent to the
number of harmonics N and grid size. The growth rate converges towards 1.755 10−5

(four significative digits) using N = 10 harmonics. Except for the erroneous result
obtained with N = 1, which predicts a stable Floquet mode, the growth rates ob-
tained with a smaller number of harmonics are fairly good. For instance, with only
N = 3 harmonics, the growth rate is predicted to 2 significative digits. The con-
vergence of the frequency ω is quite similar. Finally, for all quantities considered,
doubling the number of triangles in the mesh (from M0 to M1) barely modifies the
results. As a consequence, all results shown hereinafter are obtained with the mesh
M0.

The stability of the periodic base solution computed for U∗ = 1.073U∗c is now
addressed. This solution is very similar to the one displayed in fig. 6.2 and fig. 6.3.
The main effect observed on the base LCO when increasing the reduced velocity (not



190 Chapter 6. Low-frequency modulation of flutter solutions

0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Re (µ)

I
m
(µ
)

(a)

−0.01

−0.005

0

0.005

λ

(b)

1 1.1 1.2

0.006

0.008

0.01

U∗/U∗
c

ω

(c)

FIGURE 6.6: (a) Floquet multipliers computed for the periodic base flow
shown in fig. 6.3 for the reduced velocity U∗/U∗c = 1.073. The stability
boundary (unit circle) is depicted by the dashed curve. (b-c) Evolution
of the growth rate λ and frequency ω of the leading Floquet mode (black
dots in figure a) as a function of the reduced velocity. The mode becomes

unstable at a critical velocity U∗/U∗c ' 1.078.

shown here) is the growing pitching and heaving amplitude as well as the widening
of the recirculation region. The four leading Floquet multipliers computed for that
periodic solution are shown in fig. 6.6(a). We recall first that the Floquet multiplier
µ = 1 is not of interest when addressing the stability of the periodic solution. Indeed,
it is easily verified3 that the time-derivative of the periodic solution (∂q0/∂t) is an
eigenvector of eq. (6.7), associated to the exponent σ = 0 (or equivalently Floquet
multiplier µ = 1). The Floquet multipliers of interest when addressing the stability
of the periodic base flow are marked with black dots in the figure. In the present case,
this is a pair of complex conjugate that gets unstable when increasing the reduced
velocity, as seen in fig. 6.6(b) and (c) that present the growth rate and frequency as a
function of U∗/U∗c . We recall that the frequency of the Floquet mode is associated to
the argument φ of the Floquet multiplier according to ω = (φ/2π)ω0. As clearly vis-
ible in fig. 6.6(b), the argument of the Floquet multiplier is small, and the frequency
associated to the asynchronous Floquet mode is also small. For U∗/U∗c = 1.100, we
have (φ/2π) ' 0.0622, indicating that ω is approximately 6% of the fundamental
frequency ω0. From the non-integer value of the ratio ω0/ω ' 16.07, we see that the
new period T = 2π/ω introduced by the Floquet mode is not a multiple of the fun-
damental period T0. The oscillating part of the perturbation, defined by neglecting
the exponential growth as

q̃(t) = q◦(t) eiω t + c.c. = 2 [Re (q◦(t)) cos(ωt)− Im (q◦(t)) sin(ωt)] (6.14)

3take q = q0 in eq. (6.2) and derive with respect to time
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FIGURE 6.7: Periodic evolution of the flow and solid displacement fields
for the unstable Floquet mode (with positive frequency ω > 0) at
U∗/U∗c = 1.10. The streamwise velocity (red and blue) and solid dis-
placement (orange arrows) fields are shown for the (a-d) real and (e-h)
imaginary parts of the Floquet mode at instants (a,e) t = 0, (b,f) t = T0/4,

(c,g) t = T0/2 and , (d,h) t = 3T0/4.

is thus a quasi-periodic function with two fundamental frequencies4: the low fre-
quency ω introduced by the Floquet exponent and the high frequency ω0 = 2π/T0
or the ω0-periodic mode, q◦(t).

The temporal evolution of the quasi-periodic perturbation q̃ is directly linked to
the periodic evolution of the real and imaginary parts of the Floquet mode, q◦. More
precisely, because ω is much smaller than ω0, we have according to eq. (6.14) that
q̃(t) ' 2Re (q◦(t)) on an interval length T0 centered on ωt ' 0. Similarly, q̃(t) '
2 Im (q◦(t)) on an interval centered on ωt ' π/2. The real and imaginary parts
of q◦(t) are displayed in fig. 6.7(a-d) and (e-h), respectively, at four instants of the
fast period T0. The flow perturbations of the real and imaginary parts have similar
spatial distribution, except at instants of the base flow period when the plate reaches
its extrema positions (see figure a and e). At these instants, the flow perturbation

4The question whether these frequencies are commensurable or not cannot be answered with nu-
merical computations. However, the continuous nature of the Poincaré sections obtained in the fully
nonlinear regime with time-marching computations (see fig. 6.4(d)) tend to indicate that they are not.
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FIGURE 6.8: Periodic evolution of the (a-c) heaving (squares) and pitch-
ing (circles) components and (d-f) lift (squares) and moment (circles) co-
efficients for the unstable Floquet mode (with positive frequency ω > 0)
at U∗/U∗c = 1.10. (g-h) Instantaneous power provided by the fluid to
the solid: total power (thick line), heaving power (squares) and pitching
power (circles). The real and imaginary parts of the time signals are dis-
played in (a,d,g) and (b,e,h), respectively. The modulus of the Fourier
harmonics are presented in (c,f). (i) Mean power of the real (black) and
imaginary (red) parts of the signal corresponding to the time series in (g)

and (f) respectively.

is of much larger magnitude and located closer to the plate for the real part of the
Floquet mode. We note that such a large flow perturbation is associated to a weak
plate displacement (displayed by the orange arrows). This may be attributed to large
solid inertial effects due to the high mass ratio used in this study, m̃ = 103.

The periodic evolution of the plate’s displacements is more visible in fig. 6.8(a-b).
First, for both the real and imaginary parts displayed in (a) and (b) respectively, the
heaving (squares) and pitching (circles) perturbation evolve harmonically in time.
This is also assessed by the Fourier spectrum presented in fig. 6.8(c) where the first
harmonic largely dominates. For the real part, heaving and pitching evolve almost
in phase with pitching lagging slightly behind heaving. Oppositely, for the imag-
inary part, the signals are clearly out of phase with pitching preceding heaving of
about T0/4. Focusing on the heaving signal (squares), its magnitude is higher in the
imaginary part than in the real part. The opposite is true for the pitching signal. The
periodic evolution of the lift (squares) and moment (circles) coefficients are shown in
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fig. 6.8(d-e), with the corresponding Fourier spectrum displayed in fig. 6.8(f). Differ-
ently from the solid degrees of freedom, the aerodynamics loads have a more com-
plex time-behavior, typically involving higher harmonics, as shown in the Fourier
spectra. Again, a clear difference is observed between the real and imaginary parts.
However, this difference seems to be more involved than a simple phase shift (and
rescaling), as for the solid components. For example, this can be seen by compar-
ing the respective magnitude of the two local maxima of the lift coefficient in (d)
and (e). To evaluate how the dynamics of the real/imaginary parts of the Floquet
mode reflects in terms of energy transfer between the fluid and the plate, we show
in fig. 6.8(e-f) the total power provided by the fluid to the solid (thick line) for each
part of the signal:

PRe = Re (CL
◦)Re (u◦h) +Re (CM

◦)Re (u◦θ )
PIm = Im (CL

◦) Im (u◦h) + Im (CM
◦) Im (u◦θ )

In addition the power associated to the individual heaving (squares) and pitching
(circles) motions are represented separately. In both (g) and (h) we first observe that
most of the variations in instantaneous power are provided by the heaving power,
whereas the pitching power varies only marginally. In addition, the total power is
roughly oscillating around zero in the real part whereas it is shifted towards positive
values in the imaginary part. As a consequence, the mean power over one period T0
significantly differs between the two signals. This is shown in (i) where we represent
the mean power corresponding to the different signals in (g) and (h) (using the same
conventions). For the real part (black), the total mean power is around 0.25 · 10−3 and
is constituted of heaving an pitching contributions of the same order of magnitude.
Turning now to the imaginary part (red), the total mean power is about four times
higher. In addition, it is entirely provided by the heaving degree of freedom, while
the pitching degree of freedom produces zero mean power.

6.3.3 Analysis of the quasi-periodic perturbation: a “generalized flutter”
instability

In the previous section, we described the spatio-temporal features of the Floquet
mode q◦(t). In this section, we reconstruct the quasi-periodic perturbation q̃ (see
eq. (6.14)) and investigate its dynamics, allowing us to better understand the phys-
ical origin of the low-frequency modulation. These dynamics give rise to what we
refer to as a generalized flutter instability.

In fig. 6.9, we present the temporal evolution of the oscillating part of the per-
turbation, q̃, defined by eq. (6.14), for U∗/U∗c = 1.100. The different signals are rep-
resented on an interval of 17 T0, which allows to visualize one full oscillation at the
modulation frequency ω (the period of the modulation is T = T0/(φ/2π) ' 16.07 T0

at U∗/U∗c = 1.100). In fig. 6.9(a), the signal of h̃ (solid line) and θ̃ (dashed line) are
shown. They both possess the typical shape of a high-frequency oscillation at a
frequency about ω0, modulated by the low frequency ω. However, the latter mod-
ulation is not phased for both signals so that they do not reach their modulation
maxima simultaneously. More than that, the phase shift between both signals con-
tinuously drifts. This can be seen, for example, by taking the heaving signal as a
reference and realizing that the pitching signal is continuously “getting ahead” (i.e.
shifting to the left) of heaving. Alternatively, we show in fig. 6.9(b) a measure “per
fast period” of the phase difference between heaving and pitching. More precisely,
the 17T0 long signal is divided into 17 subintervals of length T0. On each of these, the
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FIGURE 6.9: Time representation of the oscillating part, q̃ = q◦(t)eiω t +
c.c., of the perturbation generated by the pair of unstable Floquet modes
at U∗/U∗c = 1.10. (a) Heaving (solid line) and pitching (dashed line) sig-
nals. (b) Average phase shift between pitching and heaving over each fast
period T0. (c) Power transmitted by the fluid to the solid. In all figures,
the vertical dashed lines materialize the periods of maximal fluid energy
extraction by the solid and maximal solid energy dissipation by the fluid.
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phase difference is measured as the interval of time between the two closest maxima
of −θ̃ and h̃. By convention, the phase shift is defined in [−π, π] and is positive
(resp. negative) when pitching (resp. heaving) precedes heaving (resp. pitching). In
the figure, it is clearly seen that the phase difference visits the whole interval [−π, π]
(two times, precisely) during the slow frequency oscillation. This continuous drift
of the phase shift between heaving and pitching is made possible by the fact that
both signals do not dominantly oscillate at the same frequency. This can be seen
first by simply counting the number of local maxima in the heaving and pitching
signals across the 17 T0 interval of fig. 6.9(a): they amount respectively to 16 and
18. A second indication of that fact can be deduced from the Fourier spectra of the
Floquet mode, presented in fig. 6.8(c). Indeed, the harmonics of the quasi-periodic
perturbation, ̂̃q, are directly linked to the ones of the Floquet mode by:

̂̃q(ν) =





q̂◦n if ν = nω0 + ω

q̂◦
?
−n if ν = nω0 −ω

0 else
(6.15)

As a consequence, by observing that |ĥ◦−1| > |ĥ◦+1| in fig. 6.8(c) (squares), we de-

duce that |̂̃h(ω0 − ω)| > |̂̃h(ω0 + ω)|. Conversely, from |θ̂◦+1| > |θ̂◦−1| (circles), we

obtain that |̂̃θ(ω0 + ω)| > |̂̃θ(ω0 − ω)|. Both these analyses reflect the fact that the
pitching signal dominantly vibrates at a slightly higher frequency, ω0 + ω, than the
heaving signal which vibrates at ω0 −ω.

In fig. 6.9(c), we monitor the energy exchange between fluid and solid through
the instantaneous power P̃f transmitted by the fluid forces to the solid. It is seen that
depending on the phase inside the slow oscillation, the fluid either provides (P̃f > 0)
or dissipates (P̃f < 0) energy from the solid. For example, between 2T0 and 3T0, the
fluid always provides energy to the solid, whereas between 6T0 and 7T0, the fluid
almost always dissipates solid energy. In average over the modulation period, the
fluid provides energy to the solid. By comparing fig. 6.9(b) and (c), we notice that the
extracted power is closely correlated to the phase difference. Indeed, the maximum
energy extraction from the fluid (t ∈ [2T0, 3T0]) corresponds to a phase difference
around +π/2, whereas the maximum solid energy dissipation (t ∈ [6T0, 7T0]) corre-
sponds to a phase difference close to −π/2.

Let us further explore that link by zooming on the two particular subintervals
[2T0, 3T0] and [6T0, 7T0] in fig. 6.10(a) and fig. 6.10(b), respectively. The time sig-
nal for h̃ (solid line) and −θ̃ (dashed line) are reproduced from fig. 6.9, along with
snapshots of the instantaneous perturbation pressure field p̃ (blue isocontours) and
perturbation displacement vectors (orange arrows). The black isoline demarcates
the recirculation area of the base LCO (u0 · ex < 0). We note that at each snapshot,
the fields are represented in the deformed configuration corresponding to the LCO
only. In other words, the position of the plate corresponds to q0(t) alone. To re-
construct the full displacement of the perturbed solution q0(t) + εq̃(t), one has to
add to the represented position of the plate, the perturbation displacement direction
materialized by the orange arrows (multiplied by the arbitrary constant ε). For the
subinterval [2T0, 3T0] (a), the perturbation displaces the plate around the LCO posi-
tion with a movement where the pitching motion precedes the heaving motion by
a phase difference around +π/2 (phase quadrature). From the pressure field, we
observe that the flow mostly works positively on the plate. For example at t = 2 T0
(snapshot (i)), one easily deduces from the pressure distribution on the plate that
the moment (calculated around the midchord) is clockwise-oriented. At the same
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FIGURE 6.10: Temporal evolution of the quasi-periodic perturbation on
two periods corresponding to (a) maximal fluid energy extraction by the
solid and (b) maximal solid energy dissipation by the fluid, both indi-
cated with vertical dashed lines in fig. 6.9. The heaving and pitching
displacement are show with solid and dashed lines, respectively. Snap-
shots (i) to (viii) are taken at the instants t = n T0, t = (n + 1/8) T0, ...,
t = (n + 7/8) T0 (n = 2 in (a) and n = 6 in (b)). They show the pertur-
bation pressure field (blue contours, negative contours are dashed) and
displacement vector (orange arrows). The thin black contour represents
the recirculation zone of the LCO. The unperturbed position of the plate

is displayed in these figures.
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time, the pitching velocity is also clockwise-oriented (cf dashed line in the central
figure), thus yielding positive work on the pitching degree of freedom. Similarly,
at t = (2 + 1/8)T0 (snapshot (ii)) or t = (2 + 2/8)T0 (snapshot (iii)), the lift force
is clearly oriented upwards, while the heaving velocity is positive; the work on the
heaving degree of freedom is then again positive. This intuitively explains why, on
average, during the period [2T0, 3T0] the solid is extracting energy from the fluid
(cf fig. 6.9(c)). Overall, it is remarked the perturbation dynamics described here are
highly similar to the one of the classical flutter mode that develops on steady solu-
tions, and that we previously investigated in fig. 4.2a.

Turning now to the subinterval [6T0, 7T0] in (b), the movement presents somehow
opposite features. First, the heaving motion now precedes the pitching motion with
a phase difference around −π/2. As a result, from the perturbation displacement
vectors (orange arrows), we have the impression of a mode “the other way around”
in comparison to (a), i.e a classical flutter mode but where the flow would originate
from the right. From the pressure fields we observe that the flow now mostly works
against the plate’s movement. For example, at t = (6 + 2/8)T0 (snapshot (iii)) or
t = (6 + 3/8)T0 (snapshot (iv)), the lift is clearly downwards, while the perturba-
tion’s heaving velocity is oriented upwards (cf solid line in the central figure). The
opposite situation occurs at t = (6 + 7/8) T0 (snapshot (viii)) with upwards lift and
downwards heaving motion. This analysis is in agreement with the average nega-
tive power of the fluid forces during the period [6T0, 7T0] (cf fig. 6.9(c)). Here, we
make the symmetric observation to the one made for (a): the perturbation dynamics
on the interval [6T0, 7T0] are very close to the (stable) so-called anti-flutter mode that
was exhibited in the case of a steady baseflow in fig. 4.2b.

As a consequence of the above analysis of periods [2T0, 3T0] and [6T0, 7T0] we
can argue that the dynamics of the unstable Floquet mode oscillates on the slow
timescale between subintervals with flutter-like dynamics that provide energy to
the solid from the flow, and subintervals with anti-flutter-like dynamics that dissi-
pate solid energy in the flow. During the former, the solid motion amplitude in-
creases, whereas it decreases during the latter, thus yielding a low-frequency ampli-
tude modulation. In other words, the observed instability can be viewed as a kind
of generalized coupled-mode flutter that, contrary to the classical one, develops on
top of a previously established flutter LCO.

6.3.4 Comparison with time-marching results

After having studied in details the destabilization of the Floquet mode and the as-
sociated perturbation, we now wish to compare the Floquet predictions to the refer-
ence fully nonlinear time-marching solutions, previously presented in section 6.3.1.

In fig. 6.11(a), we start by comparing the pitching amplitude of the periodic orbits
computed with TSM (thick lines) to the time-marching results (circles) previously
exposed in fig. 6.5(a). As usual, we represent stable (resp. unstable) orbits with a
solid (resp. dashed) line. The bottom horizontal line simply recalls the existence
of an unstable steady solution (zero pitching amplitude). For low reduced veloci-
ties, where time-marching predicts periodic solutions, TSM and time-marching per-
fectly agree, as expected. For higher reduced velocities, the time-marching solutions
become quasi-periodic in agreement with the destabilization of the TSM solution
(dashed lines) occurring at U∗ = 1.078U∗c according to the Floquet stability anal-
ysis (cf fig. 6.6). For such high velocities, the agreement between time-marching
and TSM is necessary lost on the pitching amplitude as TSM cannot predicts the
global maximum reached by the plate across the slow modulation. For example, at
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FIGURE 6.11: Comparison of Floquet analysis and time-marching results.
(a) Bifurcation diagram for the pitching amplitude comparing the periodic
orbits computed with TSM (thick lines) to the time-marching results (cir-
cles) previously shown in fig. 6.5(a). (b) Bifurcation diagram comparing
the fundamental frequency ω0 (upper curve) of the periodic orbits and the
frequency of their leading Floquet mode ω (lower curve) to the dominant
frequencies of the time-marching computations (circles). In both figures,

stable (resp. unstable) LCO’s are marked by solid (resp. dashed) lines.

U∗ = 1.165 U∗c , the quasi-periodic solution visits the whole range [5.5◦, 14.5◦], to be
compared with the 12◦ predicted by TSM. Still, it can be considered that TSM pre-
dicts a “representative” pitching amplitude since the LCO amplitude is always in-
cluded in the range visited by the quasi-periodic solution. In fig. 6.11(b), we compare
the fundamental frequency ω0 of the base LCO obtained with TSM (upper solid line)
and the low-frequency ω introduced by the unstable Floquet mode (lower solid line)
to the two fundamental frequencies of the time-marching solutions (circles). The lat-
ter are identified through a FFT analysis of the signal. First, it is observed that the
high frequency in the time-marching solutions is in very good agreement with the
TSM periodic orbits for all U∗, even when the periodic orbits are unstable (dashed
line). This shows that the low-frequency modulation has a very small effect on the
fast-frequency ω0 that is mostly decided by the underlying periodic solution. This
is in contrast with the pitching amplitudes shown in (a) that are clearly impacted
by the modulation. The low-frequency ω is accurately predicted by the Floquet ex-
ponent for U∗ close to the instability threshold, U∗ = 1.078U∗c , whereas the trend
for growing U∗ is not accurately captured. Similarly to what happens for the vortex
shedding bifurcation around a circular cylinder (eg. [Sipp et al. 2007]), this devia-
tion can be safely attributed to the nonlinear effects that come in play when moving
away from the instability threshold.

Qualitative reconstruction of the time-marching solutions based on the Floquet
mode We conclude this work by showing how superposing the base LCO q0 and
the linear perturbation q̃ generated by the unstable pair of Floquet modes compares
to the fully nonlinear time-marching solution. First, we must point out an a pri-
ori inconsistency between the perturbation and the fully nonlinear quasi-periodic
time-marching results. Indeed, whereas the perturbation q̃ features two modulation
amplitude maxima per slow period (see fig. 6.9(a)), the fully nonlinear solution has
only one amplitude maximum per slow period (see fig. 6.2(b)). To understand and
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FIGURE 6.12: Reconstruction of the full perturbed pitching solution
θ0(t) + εθ′(t) (red line). For comparison, the LCO component θ0(t) is
shown with thin black solid line, whereas the perturbation component
εθ′(t) is shown with thin black dashed line. The perturbation amplitude ε

is arbitrary, for easy visualization.

dissipate this apparent discrepancy, we need to reconstruct the perturbed solution
q0(t) + εq̃(t), which is the sum of the base LCO and the (oscillating part of) the
perturbation. In theory, this quantity is — given an adequate amplitude ε — a first
order approximation of the corresponding nonlinear quasi-periodic solution.

Results of that reconstruction are presented in fig. 6.12 where we show the pitch-
ing components for the LCO θ0(t) (thin solid black line), the perturbation εθ̃(t) (thin
dashed black line) and the reconstructed perturbed solution θ0(t) + εθ̃(t) (thick red
line) over the same interval of length 17 T0 as in fig. 6.9. Note that the perturba-
tion amplitude ε is arbitrarily chosen for easy visualization. As a consequence, only
the LCO solution amplitude has a physical meaning here. By comparing the recon-
structed perturbed solution (red line) and the perturbation alone (dashed line) we
immediately see that the reconstructed solution yields a signal with only one mod-
ulation amplitude maximum per slow period, in agreement with the time-marching
results. Looking more closely at the signals, it is intriguing to observe that the max-
ima of modulation amplitude in the reconstructed solution (in red) do not neces-
sarily match with the maxima of modulation amplitude in the perturbation alone
(dashed). For example, around t = 2 T0, the perturbation is at a maximum of mod-
ulation amplitude while the reconstructed solution is close to a minimum. To better
understand this feature, it is convenient to think of the reconstructed solution as
the superposition of two oscillating signals, θ0 and θ̃, that dominantly oscillate at
very close, but different, frequencies: ω0 for θ0 and ω0 + ω for θ̃ (cf the discussion
around eq. (6.15)). As a consequence, the phase difference of both signals contin-
uously changes in time, which results in an interference-like phenomenon. When
the waves are in-phase — as is the case at the seventh local maximum of the recon-
structed solution (see vertical arrow in the figure) — the interference are construc-
tive and the amplitude of the perturbed solution is higher than the amplitude of the
LCO alone. On the contrary, when the waves are out-of-phase — as is the case at
the fifteenth local maximum of the reconstructed solution (see vertical arrow in the
figure) — the interference are destructive and the amplitude of the perturbed solu-
tion is lower than the amplitude of the LCO alone. In other words, the amplitude
of the reconstructed solution depends only very partially on the amplitude of the
perturbation alone; the key dependence is the phase between the base LCO and the
perturbation.

In fig. 6.9(b), we showed that the perturbation q̃ is characterized by a continu-
ous drift of the phase difference between the heaving and pitching motions. This
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key feature was driven by the fact that pitching vibrates slightly faster than heav-
ing. We now wish to assess if these dynamics are retrieved in the fully nonlinear
solutions. In fig. 6.13, we propose a comparison of the Fourier spectrum of the base
LCO q0 (solid peaks) and Floquet perturbation q̃ (dashed peaks) with respect to the
fully nonlinear quasi-periodic time-marching solution (gray lines). We focus on a
range of frequencies centered on ω0 since the higher harmonics are negligible in the
solid dynamics of the Floquet mode (see fig. 6.8(c)). Looking first at the spectra of
the heaving motion (a), we make several observations. First, the amplitude of the
ω0 harmonic in the quasi-periodic time-marching solution is well predicted by the
periodic TSM solution, despite the fact that it is unstable. Second, the dashed peaks
ω0±ω coming from the Floquet perturbation are slightly shifted with respect to the
time-marching peaks. This is directly linked to the overestimation of the modulation
frequency ω with Floquet analysis for reduced velocities as far from the threshold
as U∗ = 1.10U∗c (cf fig. 6.11(b)). Third, we notice that several additional peaks at
frequencies ω0 ± nω are present in the time-marching solution while they are not
predicted by the Floquet analysis. This is typically a manifestation of the nonlin-
ear effects that saturate the growth of the Floquet mode away from the threshold.
Similar observations can be made for the pitching signal presented in fig. 6.13(b).
Finally, by comparing the ω0 − ω and ω0 + ω peaks in the time-marching heaving
signal fig. 6.13(a), we observe that, aside from the ω0 component inherited from the
flutter LCO, the heaving dominantly vibrates on the ω0 − ω harmonic (the scale is
logarithmic, the difference in amplitude between the ω0 ± ω is about one order of
magnitude). It is remarked that this hierarchy between the harmonics amplitudes
is retrieved in the Floquet perturbation (squares). A symmetric observation is made
in fig. 6.13(b) for the pitching signal for which both the time-marching solution and
the Floquet perturbation agree on the fact that the dominant frequency is ω0 + ω.
These comparisons show that the difference in the heaving and pitching frequen-
cies, that characterizes the linear Floquet perturbation q̃, also characterizes the fully
nonlinear quasi-periodic solutions. This arguments tends to show that the linear
mechanism described in section 6.3.3, by which flutter-like and anti-flutter-like dy-
namics alternate during the low-frequency modulation, is present also in the fully
nonlinear regime.
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FIGURE 6.13: Comparison of the Fourier spectra of the base LCO q0 (solid
peaks) and Floquet perturbation q̃ (dashed peaks) with respect to the fully
nonlinear quasi-periodic time-marching solution (gray lines) for the heav-
ing (a) and pitching (b) degrees of freedom (U∗/U∗c = 1.10). The ampli-

tude ε of q̃ is arbitrary.
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6.4 Conclusion

This work was aimed at investigating the self-sustained motion of a spring-mounted
plate in a laminar viscous flow, above the critical reduced velocity threshold U∗c at
which the classical flutter instability occurs. For the parameters of the study, the flut-
ter bifurcation was supercritical (soft flutter) and gave rise to periodic solutions for
U∗c < U∗ < 1.078 U∗c . Above 1.078 U∗c , the solutions became quasi-periodic and were
characterized by a slow amplitude modulation of the fast flutter oscillations. This
transition from periodic to quasi-periodic solutions was investigated by analyzing
the linear (asymptotic) Floquet stability of the periodic solutions that underlie the
observed solution at all reduced velocities. In order to first compute these — possi-
bly unstable — LCO’s, and then assess their Floquet stability, we proposed an origi-
nal approach based on the Time Spectral Method (TSM). For each reduced velocity,
the periodic solution was first computed by solving the TSM problem (with un-
known frequency). Then, the Floquet stability of the periodic solution was assessed
by computing its leading Floquet exponents, that turn out to be the eigenvalues of
the linearized TSM operator. Using this method, we showed that the appearance of
quasi-periodic solutions is due to the destabilization of a pair of complex conjugate
asynchronous Floquet modes. The analysis of the perturbation associated to this
unstable pair of modes revealed that the low-frequency modulation was linked to
the alternation of fast periods where the mean power of the fluid forces exerted on
the solid is positive/negative. During the positive mean power periods, the linear
perturbation dynamics were reminiscent of the unstable flutter mode, that develops
classically on steady solutions (cf chapter 4), and that is characterized by a pitching-
heaving phase shift around +π/2. On the contrary, during the negative mean power
periods, the dynamics of the perturbation resembled the stable, so-called anti-flutter-
like mode, for which the pitching-heaving phase shift is around −π/2. This alter-
nation of flutter-like and anti-flutter-like dynamics was made possible by the fact
that the heaving and pitching signals in the linear perturbation do not oscillate at
the same frequency. As a consequence, they continuously drift with respect to each
other, thus allowing a continuous change of the pitching-heaving phase shift. The
last part of this chapter was dedicated to the comparison of the fully nonlinear re-
sults from time-marching simulations and the Floquet linear stability results. It was
verified that Floquet stability accurately predicts both the reduced velocity threshold
for the appearance of the quasi-periodic solutions and, close enough to the thresh-
old, the frequency of the modulation. In addition, we observed in a fully nonlinear
solution, far enough from the Floquet instability threshold, that the heaving and
pitching signals present different dominant frequencies. This is in agreement with
the analysis of the linear Floquet perturbation and tends to show that the mecha-
nism described for the Floquet perturbation is also at play in the nonlinear regime
and sustains the amplitude modulation.
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7
AUGMENTED LAGRANGIAN

PRECONDITIONER FOR
LARGE-SCALE HYDRODYNAMIC

STABILITY ANALYSIS

Hydrodynamic linear stability analysis of large-scale three-dimensional config-
urations is usually performed with a “time-stepping” approach, based on the
adaptation of existing solvers for the unsteady incompressible Navier–Stokes
equations. We propose instead to solve the nonlinear steady equations with
the Newton method and to determine the largest growth-rate eigenmodes of
the linearized equations using a shift-and-invert spectral transformation and
a Krylov–Schur algorithm. The solution of the shifted linearized Navier–Stokes
problem, which is the bottleneck of this approach, is computed via an iterative
Krylov subspace solver preconditioned by the modified augmented Lagrangian
(mAL) preconditioner [Benzi et al. 2011b]. The well-known efficiency of this pre-
conditioned iterative strategy for solving the real linearized steady-state equa-
tions is assessed here for the complex shifted linearized equations. The effect
of various numerical and physical parameters is investigated numerically on a
two-dimensional flow configuration, confirming the reduced number of itera-
tions over state-of-the-art steady-state and time-stepping-based preconditioners.
A parallel implementation of the steady Navier–Stokes and eigenvalue solvers,
developed in the FreeFEM language, suitably interfaced with the PETSc/SLEPc
libraries, is described and made openly available to tackle three-dimensional
flow configurations. Its application on a small-scale three-dimensional problem
shows the good performance of this iterative approach over a direct LU factor-
ization strategy, in regards of memory and computational time. On a large-scale
three-dimensional problem with 75 million unknowns, a 80% parallel efficiency
on 256 up to 2,048 processes is obtained.
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7.1 Introduction

Over the past century, hydrodynamic linear stability theory was developed to un-
derstand the early stage of laminar-turbulence transition in parallel flows, such as
boundary layers and shear flows [Drazin et al. 2004]. In the local stability theory,
the growth or decay of perturbations developing on parallel flows, described with
mono-dimensional velocity profiles, is investigated assuming a normal form decom-
position. The resulting eigenproblem is of small size and does not require large
computational resources to be solved. Although the local stability theory (mono-
dimensional) was then extended to the description of spatially developing flows [Huerre
et al. 1990], the linear stability analysis of truly two- and three-dimensional flows
has gained in popularity since the beginning of the century [Theofilis 2003; Chomaz
2005; Bagheri et al. 2009b; Sipp et al. 2010; Theofilis 2011; Dijkstra et al. 2014; Loiseau
et al. 2019] thanks to the development of computational resources and numerical
tools allowing (a) to compute steady solutions of the governing equations and (b)
to determine the most unstable eigenmodes of the linearized equations around this
steady solution. An efficient and highly-parallel numerical tool is proposed in the
present paper to achieve these two steps in the case of the incompressible Navier–
Stokes equations.

Two main numerical approaches exist to carry out a linear stability analysis. The
first one is the “time-stepping” [Loiseau et al. 2019] or “matrix-free” [Bagheri et al.
2009b] approach based on the use of existing unsteady nonlinear solvers, developed
in Computational Fluid Dynamics (CFD). The “matrix-free” denomination indicates
that the action of matrices onto vectors is obtained without assembling them. The
unsteady solvers are adapted to compute steady solutions and to extract the eigen-
modes of largest growth rate, relevant in linear hydrodynamic stability analysis. For
computing steady (stable or unstable) solutions, stabilization procedures, such as
the recursive projection method [Shroff et al. 1993], the selective frequency damping
method [Åkervik et al. 2006], or more recently the BoostConv algorithm [Citro et al.
2017], are applied together with the unsteady nonlinear solver. The computation of
leading eigenvalues is then achieved by noticing that the operations performed at
each iteration of the linearized time-stepping solver correspond to an exponential-
based transformation of the Jacobian operator [Bagheri et al. 2009b; Loiseau et al.
2019]. Classical Krylov subspace-based methods like Arnoldi or Krylov–Schur are
then commonly used to compute the eigenvalues of the exponential operator with
largest magnitude, which are also the leading (rightmost) eigenvalues of the Jaco-
bian operator. One of the advantages of this approach is the computational-time
efficiency of applying one time-step of the unsteady solvers. Indeed, these solvers
are often highly optimized, not only thanks to very scalable parallel implementa-
tion, but also because efficient numerical algorithms have been developed for solv-
ing the time-discretized problems (e.g., splitting [Karniadakis et al. 1991] or frac-
tional step [Kim et al. 1985] methods). The drawback of the this approach is the
slow convergence of the Arnoldi method induced by the use of time-steppers. In-
deed, small time-steps are required for an application of the linearized time-stepper
to approximate accurately the exponential transformation [Tuckerman et al. 2000b].
This leads to a large number of so-called “outer” iterations (in the 103–104 range) to
converge only a few eigenvalues. The efficiency of the “time-stepping” approach is
thus mainly based on fast outer iterations at the expense of a large number of such
iterations in the Arnoldi process. Note that other strategies for computing matrix
exponential allow to relax the small time-step constraint and thus provide better
convergence properties [Caliari et al. 2014; Rostami et al. 2018].
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The second existing numerical approach to perform linear stability analysis in
hydrodynamics [Sipp et al. 2010] is referred here to as the “matrix-based” approach.
It relies on the assembly of sparse matrices resulting from the spatial discretization
of the underlying problem and the solution of corresponding linear systems using
existing parallel libraries that implement direct sparse LU factorization of those ma-
trices (MUMPS [Amestoy et al. 2001], SuperLU [X. S. Li 2005]). The steady-state so-
lutions are then computed by solving the steady nonlinear equations with a (quasi-
)Newton method. An invert-based spectral transformation of the Jacobian operator,
like the shift-and-invert [Christodoulou et al. 1988; Ehrenstein et al. 2005; Sartor et
al. 2015; Sipp et al. 2010] or Cayley [Cliffe et al. 1993; Meerbergen et al. 1996; Mack
et al. 2010] transformations, is then applied with a Krylov subspace-based method
(typically, the Arnoldi method [Saad 1980]) to determine the leading eigenvalues.
The Newton method and the shift-and-invert strategy allow, respectively, to achieve
fast convergence towards the steady solution and the leading eigenvalues. Usually,
the number of Newton iterations is around 10 or so to compute a steady solution,
while it may require a few hundred outer iterations in the Arnoldi algorithm to com-
pute a few eigenvalues. This reduced number of applications comes at a price: it
requires the ability to invert the linearized steady (and generally shifted) Navier–
Stokes equations. Consequently, it has mainly been used for linear stability anal-
ysis of two-dimensional flow configurations, for which the number of unknowns
remains limited (not much greater than 105 unknowns) and the Jacobian matrices re-
main sparse, so that the LU factorization is affordable. The “matrix-based” strategy
is particularly efficient for the eigenvalue computation, since the time-consuming
LU factorization of the sparse Jacobian matrix is done once for all, while only the
forward elminations and back substitutions are repeated at each outer iteration. The
main drawback of this approach is the large amount of memory needed to perform
factorization, especially for three-dimensional flow configurations [Marquet et al.
2015a]. For large-scale hydrodynamics problems, the high cost of forming the Ja-
cobian matrix explicitly, and the prohibitive memory requirements of direct solvers
drove many authors [Bagheri et al. 2009a; Loiseau et al. 2014; Citro et al. 2015] to-
wards the “matrix-free” strategy.

At the early beginning of nineties, Tuckerman [Tuckerman 1989; Mamun et al.
1994; Tuckerman et al. 2000b] proposed to improve the slow convergence of the
“matrix-free” approach by using a Newton method (resp. a shift-and-invert strat-
egy) for the steady-state (resp. eigenvalue) computation, while still using an exist-
ing unsteady solver. This method is based on the observation that one can adapt
a (linearized) unsteady solver in order to apply, to some given vector, the steady
Navier–Stokes Jacobian operator, left-preconditioned by the (unsteady) Stokes op-
erator. Thus, this technique provides a cheap “matrix-free” way of preconditioning
the Navier–Stokes Jacobian operator by the (unsteady) Stokes operator, for use in-
side Krylov subspace linear solvers typically. The method is nowadays known as
the “Stokes” preconditioning technique and has been largely applied during the
last decades for the computation of steady-state and leading eigenvalues [Barkley
et al. 1997; Bergeon et al. 1998; Tuckerman et al. 2000a; Mercader et al. 2006; Tuck-
erman 2015]. Recently, it has been adapted and applied to the determination of
resolvent modes in large-scale three-dimensional configurations [Brynjell-Rahkola
et al. 2017]. In the Stokes preconditioning technique, the time-step of the linearized
unsteady solver becomes a parameter of the preconditioner. Large time-steps usu-
ally provide better preconditioning, but make the application of one linearized time
iteration harder. More details and improvements of the method can be found in
[Beaume 2017]. In any case, the performance of this method remains limited by the
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efficiency of the (unsteady) Stokes operator to precondition the linearized steady
Navier–Stokes operator.

In the present paper, we propose to develop a “matrix-based” specific solver for
performing linear stability analysis, which relies on state-of-the-art preconditioners
for the linearized steady incompressible Navier–Stokes equations, thus avoiding the
use of direct solvers on the full problem. Over the last decades, various promising
approaches have been developed aiming at overcoming the two main difficulties of
this problem: the saddle-point structure of the equations deriving from the incom-
pressibility constraint and the absence of a (small) time-step parameter that greatly
enhances the convergence of iterative algorithms, due to the resulting diagonal dom-
inance of the matrix. Among those steady preconditioners are the well-known SIM-
PLE preconditioner [Patankar et al. 1983], the more recent Pressure Convection–
Diffusion (PCD) preconditioner proposed by [Kay et al. 2002], as well as the original
augmented Lagrangian (AL) [Benzi et al. 2006; Benzi et al. 2011a; Heister et al. 2013]
and modified augmented Lagrangian (mAL) [Benzi et al. 2011b; Benzi et al. 2011c;
Benzi et al. 2011a; Benzi et al. 2013] preconditioners. Several authors showed the su-
periority of the modified augmented Lagrangian approach over other state-of-the-
art alternatives for solving the Oseen and linearized incompressible Navier–Stokes
equations [Segal et al. 2010; He et al. 2016]. Moreover, a very recent work [Farrell et
al. 2018] proposed an efficient and highly scalable steady Navier–Stokes solver based
on the original augmented Lagrangian preconditioner. If the augmented Lagrangian
strategy has been regularly used for steady-state computations, it was never tested
on practical case of eigenvalue computations. A work in that direction was how-
ever proposed by Olshanskii and Benzi [M. A. Olshanskii et al. 2008], who adapted
the original augmented Lagrangian preconditioner to solve the shifted linearized
Navier–Stokes equations. They showed theoretically and numerically that AL was
robust to a real-valued shift on a variety of 2D flow configurations. Complex-valued
shifts, as needed in practice to efficiently explore the complex plane with a shift-and-
invert strategy, were not considered.

The first objective of the present paper is to assess the efficiency of the modified
augmented Lagrangian preconditioner for the computation of steady-state solutions
with a Newton method and leading eigenvalues with a complex shift-and-invert
strategy. The second objective is to describe, and test on a three-dimensional flow
configuration, an open-source parallel implementation of the modified augmented
Lagrangian preconditioner for linear stability analysis purposes, using the FreeFEM
finite element library [Hecht 2012] interfaced with PETSc [Balay et al. 2019] and
SLEPc [Hernandez et al. 2005]. The full code is made available at https://github.
com/prj-/moulin2019al.

The paper is organized as follows. The governing equations required to carry
out the linear stability analysis of incompressible flows are introduced in section 7.2.
The Newton method used to solve the steady nonlinear equations and the eigen-
solver based on the shift-and-invert strategy are also described. The preconditioning
technique and the modified augmented Lagrangian preconditioner are introduced
in section 7.3. The parallel implementation is detailed in section 7.4. Numerical re-
sults are given in section 7.5. First we examine, on a two-dimensional problem, the
effect of various numerical and physical parameters on the performance of the mAL
preconditioner for solving the complex shifted linearized Navier–Stokes problem.
Then we compare the performance of mAL with other state-of-the-art precondition-
ers. Finally, we evaluate the performance of the proposed parallel implementation
by first comparing it to a sparse direct solver on a small-scale three-dimensional test

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
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case and then, by testing its scalability on a large-scale configuration that cannot be
afforded with a direct sparse solver.

7.2 Methods for linear stability analysis in hydrodynamics

7.2.1 Governing equations

Let us consider an incompressible flow, described by the two-dimensional (resp.
three-dimensional) velocity field u = [u, v]T (resp. u = [u, v, w]T) and the pressure
field p, that satisfy the incompressible Navier–Stokes equations:

∂u
∂t

+ (u · ∇)u +∇p− 1
Re
∇2u = 0 , −∇ · u = 0

The Reynolds number is defined asRe = U∞L/ν, where U∞ and L are characteristic
velocity and length used to make non-dimensional the velocity and pressure fields,
and ν is the kinematic viscosity. For conciseness, the Navier–Stokes equations are
rewritten in a state-space form as follows

M∂q
∂t

+R(q) = 0, M =

(
1 0
0 0

)
, R(q) =

(
(u · ∇)u +∇p−Re−1∇2u

−∇ · u

)

(7.1)
where q = (u, p)T is the state-space vector. Base flows, denoted hereinafter qb(x),
are time-independent (steady) solutions of the Navier–Stokes equations (7.1) and
thus satisfy the nonlinear steady Navier–Stokes equations

R(qb) = 0. (7.2)

Linear stability of base flows is investigated by superimposing infinitesimal pertur-
bations q′(x, t) to the base flow solution, i.e. q(x, t) = qb(x) + εq′(x, t), where ε is
an infinitesimal parameter. After inserting this decomposition into eq. (7.1), using
the definition eq. (7.2) of the base flow and neglecting high-order terms in ε, one
obtains the linearized Navier–Stokes equations governing the temporal evolution of
the infinitesimal perturbation,

M∂q′

∂t
+J (qb)q′ = 0, where J (qb) =

(
(ub · ∇)(•) + (• · ∇)ub −Re−1∇2• ∇•

−∇ · • 0

)

is the Jacobian operator defined around the base flow qb. The long-term evolution
of any infinitesimal perturbation is conveniently described by assuming a spectral
decomposition of perturbations as q′ = q̂(x)eσt + c.c., where q̂(x) is a complex spa-
tial field whose temporal evolution is exponential and given by the complex number
σ = λ + i!. λ is the growth rate and ω is the angular frequency. Inserting this modal
decomposition into the above linearized equations shows that σ and q̂ are respec-
tively eigenvalues and eigenmodes of the generalized eigenproblem:

σM q̂ + J (qb) q̂ = 0. (7.3)

The stability of the base flow is then determined by considering the leading eigen-
mode q̂0 associated to the eigenvalue σ0 = λ0 + i!0 with the largest real part λ0.
When the growth rate of the leading eigenmode is negative (λ0 < 0), all the eigen-
values have negative real parts, and the base flow is linearly stable since any per-
turbations superimposed to the base flow is damped at sufficiently large time. On



210
Chapter 7. Augmented Lagrangian Preconditioner for

Large-Scale Hydrodynamic Stability Analysis

the other hand, when the growth rate of the leading eigenmode is positive (λ0 > 0),
the perturbation will grow in time and the base flow is linearly unstable [Sipp et al.
2010].
A linear stability analysis thus consists first in computing a base flow, which is a
solution of the steady Navier–Stokes eq. (7.2), and then in determining the leading
eigenvalues/eigenmodes of the eigenproblem (7.3) with the largest growth rate.

7.2.2 Spatial discretization

In the present paper, a finite element method is used for the spatial discretization
of the nonlinear steady equations (7.2) and of the linear eigenproblem (7.3) on a d-
dimensional (d = 2, 3) domain Ω. A grad–div stabilizated weak formulation [M.
Olshanskii et al. 2009] of eq. (7.2) is used, which consists in finding ub in VΓ ={

u ∈ (H1(Ω))d, s.t. u = uΓ on Γ
}

and pb in Q = L2(Ω) such that:

Ru(qb; ǔ) = 〈ub · ∇ub, ǔ〉+ 〈Re−1∇ub,∇ǔ〉 − 〈pb,∇ · ǔ〉+ γ〈∇ · ub,∇ · ǔ〉 = 0
(7.4a)

Rp(qb; p̌) = −〈∇ · ub, p̌〉 = 0 (7.4b)

for all (ǔ, p̌) in V0 ×Q, where 〈•, •〉 denotes the L2 inner-product and V0 = {u ∈
(H1(Ω))d, s.t. u = 0 on Γ} is the velocity space with vanishing velocity on the
boundary Γ. The weak residuals of the momentum and mass conservation equa-
tions are Ru and Rp, respectively. The last term in the momentum residual Ru is
the grad–div stabilization (also called augmentation) term that corresponds to the
weak form of −γ∇ (∇ · ub), with γ ≥ 0 a numerical parameter. In the above con-
tinuous weak formulation, the stabilization term strictly vanishes on the solution:
〈∇ · ub,∇ · ǔ〉 = 0. Indeed, the divergence-free condition 〈∇ · ub, p̌〉 = 0 is satisfied
for all p̌ ∈ Q, and in particular for ∇ · ǔ ∈ Q.

A Delaunay triangulation of the domain Th = {K}, consisting in triangular
(d = 2) or tetrahedral (d = 3) elements K, is used. In order to satisfy the inf–sup
Ladyženskaja–Babuška–Brezzi (LBB) condition (see [Fortin et al. 1991]), the Taylor–
Hood finite element pair is chosen, so that the discrete velocity uh

b and pressure ph
b

are sought respectively in V h
Γ = {uh ∈ C0(Ω), s.t. uh

∣∣
K ∈ P2(K), ∀K ∈ Th , uh =

uΓ on Γ} and Qh = {ph ∈ C0(Ω), s.t. ph
∣∣
K ∈ P1(K), ∀K ∈ Th}. Note that, with the

Taylor–Hood finite element pair, the discrete divergence of the velocity test func-
tions does not belong to the discrete pressure space, i.e. ∇ · ǔh 6∈ Qh. Therefore,
contrary to the continuous case, the stabilization term does not vanish from the dis-
crete momentum equation (〈∇ · uh

b ,∇ · ǔh〉 6= 0), and the discrete solution depends
on the value of the stabilization parameter γ. Here, the grad–div stabilization is
mainly introduced to improve, thanks to an efficient preconditioner (see section 7.3),
the iterative solution of linear systems involved when solving the nonlinear discrete
equations (7.5). The question of whether the grad–div stabilized discrete solution is
closer or further from the continuous weak solution is out of the scope of this pa-
per. However, several studies (e.g. [M. A. Olshanskii 2002; M. A. Olshanskii et al.
2004; M. Olshanskii et al. 2009; Linke et al. 2011; Heister et al. 2013]) showed that
the grad–div stabilization often improves the mass conservation property and the
velocity error of the discrete solution, for adequate values of γ. Numerical experi-
ments are performed in section 7.5.2.1 to assess the accuracy of the stabilized discrete
solution and to determine adequate values of γ.
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Such a discretization yields the following discrete version of the nonlinear base
flow eq. (7.2):

R(qh
b) = 0 (7.5)

where qh
b denotes now the vector of coefficients of uh

b and ph
b in the finite elements

basis.
The generalized eigenproblem (7.3) is discretized similarly, yielding

σ M q̂h + J(qb
h) q̂h = 0 (7.6)

where M and J(qb
h), the finite element matrices obtained after discretization of the

massM and Jacobian operator J (qb
h), are respectively defined as

M =

(
Mu 0

0 0

)
and J(qb

h) =

(
Aγ BT

B 0

)
. (7.7)

The rectangular matrix B is the discretization of the divergence operator and its
transpose BT represents the discrete gradient. The mass matrix on the velocity space
Mu can be written as a 3-by-3 block diagonal matrix corresponding to the three ve-
locity components. The 3-by-3 block matrix Aγ = A + γΓ is the sum of A, which
represents the linearized diffusion and convection terms in the momentum conser-
vation equation, and Γ, obtained after discretization of the grad–div stabilization
term. They write:

Aγ =




Auu + γΓuu Auv + γΓuv Auw + γΓuw
Avu + γΓvu Avv + γΓvv Avw + γΓvw
Awu + γΓwu Awv + γΓwv Aww + γΓww


 , Mu =




Mu 0 0
0 Mv 0
0 0 Mw


 .

(7.8)
In the following, we will mostly refer to the discrete solutions. Therefore, the super-
script h is dropped unless confusion is possible.

7.2.3 Nonlinear steady-state solver

The nonlinear solution qb of the discrete problem eq. (7.5) is obtained by the classical
Newton method. The approximated solution at the kth iteration is obtained as

qk
b = qk−1

b + δqk
b, (7.9)

where δqb
k denotes the solution increment, obtained by solving the linear problem

J(qk−1
b ) δqk

b = −R(qk−1
b ) (7.10)

where J(qk−1
b ) is the Jacobian matrix defined in eq. (7.7) with the known approxima-

tion of the steady solution qk−1
b . The solution of this linear system is repeated for

each iteration of the Newton algorithm, that is considered to be converged when the
l2 norm of the residual ||R(qb)||2 is below some numerical tolerance.

7.2.4 Linear eigensolver

The Krylov–Schur algorithm [Stewart 2002] is used in the present study to solve
the generalized eigenproblem (7.6). In order to compute the leading eigenvalues,
which lie in the complex plane close to the zero growth-rate axis (λ = 0) for any
frequency ω, a shift-and-invert spectral transformation is first applied, yielding the
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transformed eigenproblem

µ q̂ + Tq̂ = 0, T = (J(qb) + sM)−1 M (7.11)

where s = sr + isi is the so-called complex shift. The eigenvalues µ of the trans-
formed problem are related to the eigenvalues σ of eq. (7.6) through µ = (σ− s)−1

while the eigenvectors are left unchanged by the spectral transformation. Like the
classical power method, the Krylov–Schur algorithm allows to compute the eigen-
values of largest magnitude. When applied to the transformed problem, it gives the
eigenvalues µ of largest magnitude, which correspond to the eigenvalues σ closest
to the complex shift s. To determine the leading eigenvalue of eq. (7.6), the eigen-
problem (7.11) is solved for several values of the complex s close to the real axis,
spanning appropriately the imaginary axis. For each eigenvalue computation, the
Krylov–Schur algorithm requires multiple “matrix–vector” applications of the ma-
trix T. In other words, repeated solutions of the linear system (J(qb) + sM) qo = qi
are required, where the right-hand side vectors qi are given by the Krylov–Schur
algorithm.

In the present work, linear stability analysis is thus performed using a nonlinear
steady-state solver and a linear eigensolver, that both rely on multiple solutions
of linear systems involving the complex shifted Jacobian matrix (J + s M). For the
steady-state solver, this matrix reduces to the real Jacobian matrix J as the complex
shift vanishes s = 0. The next section introduces a preconditioned iterative method
used to solve efficiently such systems.

7.3 An augmented Lagrangian approach for the shifted Jaco-
bian matrix

As explained in the previous section, the main challenge of an hydrodynamic stabil-
ity analysis is to solve efficiently the following linear equation:




Aγ,uu + sMu Aγ,uv Aγ ,uw BT
u

Aγ,vu Aγ ,vv + sMv Aγ ,vw BT
v

Aγ ,wu Aγ ,wv Aγ,ww + sMw BT
w

Bu Bv Bw 0







uo
vo
wo
po


 =




ui
vi
wi
pi


 (7.12)

where Aγ,αβ = Aαβ + γΓαβ (α, β = u, v, w), qo = (uo, vo, wo, po)T is the solution
vector and qi = (ui, vi, wi, pi)

T is a right-hand side vector. In the perspective of
large-scale computations, we must avoid the use of direct solvers applied directly
to eq. (7.12), due to their huge memory cost [Marquet et al. 2015a]. Instead, we
use the flexible Generalized Minimal Residual algorithm (GMRES) [Saad 1993] for
solving iteratively eq. (7.12). The shifted-Jacobian matrix being indefinite and ill-
conditioned, the use of an iterative method without preconditioning is inefficient
as it requires a very large number of iterations [Tuckerman 2015]. To improve the
numerical efficiency of the iterative solution, the above linear system is replaced by
the right-preconditioned linear system:
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Aγ,uu + sMu Aγ ,uv Aγ,uw BT
u

Aγ,vu Aγ,vv + sMv Aγ ,vw BT
v

Aγ,wu Aγ,wv Aγ ,ww + sMw BT
w

Bu Bv Bw 0


P−1




ũo
ṽo
w̃o
p̃o


 =




ui
vi
wi
pi


 (7.13)

where the matrix P is the so-called preconditioner and (ũo, ṽo, w̃o, p̃o)T is an interme-
diate solution. The final solution is found by solving the following linear system

P




uo
vo
wo
po


 =




ũo
ṽo
w̃o
p̃o


 (7.14)

The GMRES algorithm is applied to the right-preconditioned eq. (7.13) which, in
addition to matrix–vector products with the shifted-Jacobian matrix, requires the
repeated application of P−1, i.e., the solution of eq. (7.14). A good preconditioner
achieves a compromise between a fast application of the preconditioner and a small
number of iterations to solve the preconditioned system.

The augmented Lagrangian preconditioner allows to solve iteratively the Oseen
[Benzi et al. 2006; Benzi et al. 2011b; Benzi et al. 2011a; Heister et al. 2013] and lin-
earized Navier–Stokes equations [Benzi et al. 2011c; M. A. Olshanskii et al. 2008]
in a very limited number of iterations, regardless of the mesh refinement and the
Reynolds number value. Nevertheless, these interesting properties are counterbal-
anced by the difficulty of solving iteratively the coupled (two or three-dimensional)
velocity subproblem arising in the application of the original preconditioner, as it re-
quires highly specific multigrid solvers [Benzi et al. 2006; Farrell et al. 2018]. In order
to circumvent this particular issue, the so-called modified augmented Lagrangian
(mAL) preconditioner was introduced in [Benzi et al. 2011b]. It is derived from the
original augmented Lagrangian preconditioner by neglecting either the lower block
matrices [Benzi et al. 2011b] or the upper block matrices [He et al. 2016], as follows

PmAL =




Aγ ,uu + sMu 0 0 0
Aγ ,vu Aγ,vv + sMv 0 0
Aγ,wu Aγ,wv Aγ,ww + sMw 0

Bu Bv Bw Sp


 , (7.15)

where Sp is an approximation of the pressure Schur complement−B (Aγ + sMu)
−1 BT.

Rather than being explicitly specified, this matrix is defined by the action of its in-
verse as

Sp
−1 = −(γ +Re−1)Mp

−1 − sLp
−1, (7.16)

where Mp is the mass matrix and Lp the Laplacian matrix, both defined on the dis-
crete pressure space. Note that, for base flow computations s = 0, only the first
term remains in the definition of the approximated Schur complement eq. (7.16).
The lower block-triangular version of the preconditioner is chosen for practical rea-
sons explained in section 7.4. In the original preconditioner proposed by [Benzi et
al. 2006; Benzi et al. 2011b], the augmentation term of the Jacobian matrix Γ was
defined algebraically as BTMp

−1B, thus requiring two sparse matrix products to be
constructed explicitly. As proposed in [Heister et al. 2013], the construction cost can
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significantly be reduced by building the matrix Γ from the finite element discretiza-
tion of the grad–div stabilization term. They showed that Γ is then the sum of the
algebraic augmentation BTMp

−1B and of a stabilization matrix. The efficiency of the
mAL preconditioner is thus conserved while significantly reducing the construction
costs. Finally, the grad–div augmentation matrix Γ is much more sparse than its al-
gebraic counterpart, thus motivating our choice for this implementation of the mAL
preconditioner, in the perspective of large-scale three-dimensional computations.

7.4 Parallel implementation with FreeFEM and its interface
to PETSc/SLEPc

For realistic three-dimensional geometries, the approach derived in the previous sec-
tions requires the solution of nonlinear systems and generalized eigenproblems of
large dimensions. Thus, high-performance computing becomes necessary. The goal
of this section is to show how this is done using a finite element domain specific
language, FreeFEM [Hecht 2012; Jolivet et al. 2012], interfaced with distributed lin-
ear algebra backends, PETSc [Balay et al. 2019] and SLEPc [Hernandez et al. 2005].
A thorough introduction of these libraries may be found in their respective man-
uals1,2,3. Our implementation is openly available at https://github.com/prj-/
moulin2019al and the rest of this section follows the available source code.

7.4.1 Outer solvers

In this section, we describe how the outer solvers (i.e. the nonlinear steady-state
solver and the eigensolver) are implemented.

The Newton method described in section 7.2.3 is implemented using FreeFEM.
Only the inversion of the Jacobian matrix J of eq. (7.10) is performed by PETSc. Given
a FreeFEM distributed version of the Jacobian matrix dJ, PETSc options defining the
linear solver for eq. (7.10) are set using the following FreeFEM syntax:

set(dJ, sparams = params, fields = vX[], names = names,

schurPreconditioner = S, schurList = listX[]);

The keyword sparams is a string defined by the user gathering the PETSc run-
time options for the Krylov subspace solver (KSP) and preconditioner (PC). The in-
terested reader should refer to PETSc manual for details on the use of runtime op-
tions. The keywords fields, names, schurPreconditioner, and schurList allow to
implement specific block preconditioners, like mAL, and their use is detailed in the
next sections.

For the eigenvalue computation presented in section 7.2.4, only the finite element
matrices are built by FreeFEM. Then, the Krylov–Schur algorithm is performed en-
tirely by SLEPc through the use of the eigenvalue problem solver framework (EPS),
which is called from within FreeFEM.

1https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
2http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
3http://slepc.upv.es/documentation/slepc.pdf

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
https://doc.freefem.org/pdf/FreeFEM-documentation.pdf
http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://slepc.upv.es/documentation/slepc.pdf
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int k = EPSSolve(dJ, dM, vectors = vec, values = val, sparams = '
& params,

fields = vX[], names = names, schurPreconditioner = S, '
& schurList = listX[]);

// solves the eigenvalue problem dJq̂ = σdMq̂

Contrary to the case of the linear solver interface, two matrices dJ and dM that
define the generalized eigenproblem (7.6) must now be passed to SLEPc. In addition,
sparams must also contain the SLEPc runtime options defining the eigensolver.

7.4.2 Inner mAL-preconditioned linear solvers

The inner linear solves of system eq. (7.12) with a mAL-preconditioned GMRES re-
quire the implementation of the block structure of the preconditioner (eq. (7.15)).
This is done in PETSc by using the so-called fieldsplit structure that gives to the
users a high-level of abstraction to define operators by blocks. The following PETSc
runtime options define such a preconditioner:

string params = paramsXYZ + " " + paramsP + " " + paramsKrylov +

" -pc_type fieldsplit -pc_fieldsplit_type multiplicative";

The desired lower block-triangular structure of the preconditioner is obtained
by the use of PETSc keyword multiplicative. The strings paramsXYZ and paramsP

respectively contain the innermost velocity and pressure block solvers options that
will be detailed later on. The string paramsKrylov contains the definition of the
Krylov subspace linear solver. For example, one should simply write paramsKrylov '
& = "-ksp_type fgmres" to use the flexible GMRES. In order to implement the
modified augmented Lagrangian preconditioner PmAL through the fieldsplit struc-
ture, in 3D, the four fields u, v, w, and p must be defined. Assuming the problem is
formulated in the full vectorial finite element space Wh, containing the velocities and
pressure unknowns, one must be able to differentiate the degrees of freedom belong-
ing to each field. To that aim a finite element function taking a different integer value
for each one of the four fields is defined in FreeFEM and passed to PETSc/SLEPc
through the keyword fields. Then, for simplicity, each field is attributed a name
that will be used to identify it when defining the different innermost solvers associ-
ated to the diagonal blocks of PmAL, c.f. section 7.4.3. Those names are contained in
an array of strings, that is provided to the solver through the keyword names.

Wh [vX, vY, vZ, p] = [1, 2, 3, 4]; // numbering of each field

string[int] names(4); // prefix of each field

names[0] = "vX"; // x-velocity
names[1] = "vY"; // y-velocity
names[2] = "vZ"; // z-velocity
names[3] = "p"; // pressure

Approximate Schur complements The default setting in PETSc, when using a
multiplicative fieldsplit preconditioner, is to define the preconditioner as the lower
block triangular part of the system matrix in eq. (7.12). Thus, on the block diagonal of
such a preconditioner, one would have Aγ ,uu + sMu, Aγ,vv + sMv, Aγ,ww + sMw and
the null matrix. In order to implement PmAL, one must replace, in the preconditioner
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only, the default operator for the pressure field (the null matrix) by the ones neces-
sary to implement the desired Schur complement approximation eq. (7.16). This
is done in PETSc using PCFieldSplitGetSubKSP to retrieve the operators linked to
each field of the fieldsplit structure and then KSPSetOperators to set the new oper-
ators that define eq. (7.16).

When the shift s is null, for base flow computations, the approximate Schur
complement only requires the assembly of one operator: (γ + Re−1)−1Mp. This
is done in FreeFEM as shown below, and then passed to PETSc with the keyword
schurPreconditioner.

matrix[int] S(1); // array with a single matrix

varf vSchur(p, q) = int3d(th, qforder = 3)

(-1.0/(gamma + 1.0/Re) * p * q); // eq. (7.16) with s = 0
S[0] = vSchur(Qh, Qh); // matrix assembly

For eigenvalue computations, two auxiliary operators are now needed: (γ +
Re−1)−1Mp and s−1Lp. The construction in FreeFEM is performed using the follow-
ing lines, and then again passed to SLEPc with the keyword schurPreconditioner.

matrix<complex>[int] S(2); // array with two matrices

complex scale;

varf vMp(p, q) = int3d(th, qforder = 3)(scale * p * q); // eq. (7.7)

scale = 1.0/(gamma + 1.0/Re);

S[0] = vMp(Qh, Qh); // first matrix assembly

macro grad(p)[dx(p), dy(p), dz(p)]// macro for computing ∇p
varf vLp(p, q) = on(3, p = 1) // inlet boundary condition

+ int3d(th, qforder = 2)(scale * (grad(p)' * grad(q)));

// shift value s
complex s = getARGV("-shift_real", 1.0e-6) + '

& getARGV("-shift_imag", 0.6) * 1i;

scale = 1.0/s;

S[1] = vLp(Qh, Qh); // second matrix assembly

Finally, we note that the operators needed for the Schur complement approxima-
tion are built on the pressure space Qh. However, in FreeFEM, it is not possible to
know a priori the correspondence between the numbering of Wh, where the full solu-
tion is defined, and Qh. To circumvent this issue, we compute this correspondence in
FreeFEM from an interpolation between Qh and Wh, and then pass it to PETSc/SLEPc
with the keyword schurList:

Qh pIdx; // function from the pressure space

pIdx[] = 1:pIdx[].n; // numbering of the unknowns of Qh

// renumbering into the complete space by doing an interpolation '
& on Wh

Wh [listX, listY, listZ, listP] = [0, 0, 0, pIdx];

7.4.3 Innermost velocity and pressure linear solvers

The approximate inverse of the diagonal blocks in eq. (7.15) are defined using off-
the-shelf iterative methods from PETSc. For each velocity field, the GMRES is used,
right-preconditioned by an additive Schwarz method (ASM) with one-level of alge-
braic overlap, as well as exact LU factorizations for each subdomain solver. These
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factorizations are carried out by MUMPS [Amestoy et al. 2001]. A maximum Krylov
dimension of 50 is prescribed and the GMRES is stopped when the relative unpre-
conditioned residual norm is lower than 10−1. In our implementation, the PETSc
runtime options defining the approximate inverse of the diagonal velocity blocks
are contained in the string paramsXYZ detailed below:

real tolV = getARGV("-velocity_tol", 1.0e-1); // default to 10−1

// monodimensional velocity solver

string paramsV = "-ksp_type gmres -ksp_converged_reason '
& -ksp_pc_side right " +

"-ksp_rtol " + tolV + " -ksp_gmres_restart 50 -pc_type asm " +

"-pc_asm_overlap 1 -sub_pc_type lu '
& -sub_pc_factor_mat_solver_type mumps";

// each velocity component gets the same monodimensional solver

// defined by paramsV

string paramsXYZ = "-prefix_push fieldsplit_vX_ " + paramsV + " '
& -prefix_pop"

+ " -prefix_push fieldsplit_vY_ " + paramsV + " '
& -prefix_pop"

+ " -prefix_push fieldsplit_vZ_ " + paramsV + " '
& -prefix_pop";

For the pressure Schur complement approximate inverse eq. (7.16), the PETSc
runtime options defining the solver are contained in the string paramsP. We must
distinguish the cases of the base flow and eigensolvers. For the former (s = 0),
only the action of Mp

−1 has to be evaluated. For that purpose, we use at most five
iterations of the Jacobi-preconditioned conjugate gradient algorithm:

string paramsP = "-prefix_push fieldsplit_p_ " +

"-ksp_type cg -ksp_max_it 5 -pc_type jacobi -prefix_pop";

For the eigensolver (s 6= 0), the action of the inverse of the Schur complement is
approximated by the sum of the action of (γ +Re−1)Mp

−1 and sLp
−1. This is done

through PETSc composite preconditioner:

string paramsP = "-prefix_push st_fieldsplit_p_ " +

"-ksp_type preonly -pc_type composite " +

"-prefix_push sub_0_ " + // action of (γ +Re−1)Mp
−1

"-pc_type bjacobi -sub_pc_type icc -prefix_pop " +

"-prefix_push sub_1_ " + // action of sLp
−1

"-pc_type gamg -pc_gamg_square_graph 10 -prefix_pop " +

"-prefix_pop";

Here only one application of the block Jacobi preconditioner with ICC(0) sub-
solvers [Chan et al. 1997] is used for approximating the mass matrix inverse while
one V-cycle of GAMG [Adams et al. 2004] is used for the Laplacian term.

7.5 Numerical results

The efficiency of the modified augmented Lagrangian (mAL) preconditioner is in-
vestigated in this section by performing the linear stability analysis of two- and
three-dimensional flow configurations described in section 7.5.1. The two-dimensional
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computations are always performed on one process as they are of limited size. For
the three-dimensional case, the fully parallel implementation presented in section 7.4
is used. The influence of various numerical and physical parameters, such as the
augmentation parameter, the mesh size and the Reynolds number, is first assessed
in section 7.5.2 for the two-dimensional configuration, before comparing the per-
formance of mAL preconditioner with other block preconditioners (PCD, SIMPLE,
Stokes) in section 7.5.3. The efficiency of the parallel implementation is finally inves-
tigated in section 7.5.4 for the three-dimensional configuration.

7.5.1 Two- and three-dimensional test cases

The two-dimensional flow configuration is sketched in fig. 7.1a. A thin plate of
height h and thickness t = h/6 is immersed in an incoming flow of uniform ve-
locity U∞. The size of the computational box indicated in the figure and the flow
variables are made non-dimensional using h as characteristic length and U∞ as char-
acteristic velocity, so that the Reynolds number is defined as Re = U∞h/ν, where ν
is the kinematic viscosity.
Triangulations of the computational domain are obtained with the internal mesh
generator of FreeFEM. The no-slip boundary condition u = v = 0 is applied on the
plate, symmetry boundary conditions (∂yu = 0 and v = 0) are applied at the top and
bottom boundaries of the computational domain, and a stress-free boundary condi-
tion is applied at the outlet boundary.
A typical steady solution of the incompressible Navier–Stokes equation is displayed
in fig. 7.2a for Re = 40. The flow recirculates in two symmetric regions in the wake
of the plate, as indicated by the streamlines. The linear stability analysis of this base
flow yields the eigenvalue spectrum shown in fig. 7.2c with circles. A pair of com-
plex conjugate unstable eigenvalues is found (λ > 0) characterized by an angular
frequency ω = 0.70. For a lower value of the Reynolds numberRe = 30, this eigen-
value is stable as shown by the square symbols. The real part of the eigenmode
associated to this leading eigenvalue is depicted in fig. 7.2b with isocontours of the
streamwise velocity. The spatial structure of this eigenmode breaks the symmetry of
the steady solution and is responsible for the onset of the well-known Von Kármán
vortex-street that becomes visible behind bluff bodies once the exponential growth
of the linear instability saturates due to nonlinearities.
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FIGURE 7.1: Two-dimensional and three-dimensional flow configura-
tions. Sketch of the computational domains used for (a) the two-
dimensional plate of height h = 1 and thickness t = 1/6 and (b) the
three-dimensional plate of span L = 2.5 immersed in an upstream uni-

form streamwise flow U∞.
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FIGURE 7.2: Results of the linear stability analysis for the two-dimensional
configuration. Streamwise velocity u of (a) the steady-state solution and
(b) the real part of the unstable eigenmode. (c) Eigenvalues are depicted
with circles in the complex plane (growth rate λ and frequency ω). The
unstable region is shown in gray. Only eigenvalues with positive frequen-

cies are shown, the spectrum being symmetric.

The three-dimensional flow configuration is a plate of height and thickness iden-
tical to the two-dimensional plate, but of finite length L in the spanwise direction z,
as sketched in fig. 7.1b. The computational domain is discretized using Gmsh [Geuzaine
et al. 2009] by a Delaunay mesh composed of 17 million tetrahedra, which are then
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partitioned between processes with ParMETIS [Karypis et al. 1998]. Using Taylor–
Hood finite element pair, cf. section 7.2.2, this leads to a total of 75 million unknowns.
The boundary conditions are similar to those detailed above for the two-dimensional
configuration.
The linear stability analysis of this flow configuration has been performed by [Mar-
quet et al. 2015a] who determined the neutral curves of various unstable eigen-
modes in the range of Reynolds number 40 ≤ Re ≤ 200 and length 1 ≤ L ≤ 6.
Here, we specifically investigate the plate of length L = 2.5 for the Reynolds num-
ber Re = 100. The steady solution, depicted in fig. 7.3a, exhibits a large three-
dimensional recirculation region in the wake of the plate. The stability analysis per-
formed in [Marquet et al. 2015a] revealed that two pairs of complex eigenvalues
get unstable above Re ' 101 for this parameter choice, with respective angular fre-
quencies of ω ' 0.3 and ω ' 0.57. Hereinafter, we focus on the high-frequency
eigenmode, depicted in fig. 7.3b. As shown in the figure, the three-dimensional
eigenmode breaks the top/bottom symmetry of the steady-state solution, as for the
two-dimensional plate.
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FIGURE 7.3: Linear stability analysis for the three-dimensional flow
around of plate of spanwise length L = 2.5 and Re = 100. Streamwise
velocity contours of (a) the steady solution and (b) the high-frequency un-

stable eigenmode (ω = 0.57) are presented.

7.5.2 Influence of numerical and physical parameters

We investigate in this section the influence of various numerical and physical pa-
rameters on the performance of the mAL preconditioner. Tests are performed on
the two-dimensional flow configuration previously introduced. The effect of the
augmentation parameter on the preconditioner efficiency and solution accuracy is
reported in section 7.5.2.1. The performance of the preconditioner is tested in sec-
tion 7.5.2.2 for many values of the complex shift parameter used in the shift-and-
invert strategy to compute the leading eigenvalues. The behavior of the precondi-
tioner in regards to the mesh refinement and the Reynolds number is finally tested
in section 7.5.2.3.
In all the numerical tests performed in this section, the full GMRES without restart
is used in order to fairly assess the performance of the preconditioner. The diago-
nal blocks defined by the mAL preconditioner eq. (7.15) are here inverted using the
sparse direct solver MUMPS.
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7.5.2.1 Effect of the augmentation parameter

The effect of the augmentation parameter γ on the performance of the mAL pre-
conditioner is first assessed by considering the number of GMRES iterations. Using
the Newton method described in section 7.2.3, steady solutions are computed for
the Reynolds number Re = 40 and several values of the augmentation parameters
reported in the first columns of table 7.1a and table 7.1b, that correspond to results
obtained with a coarse mesh (14,674 triangles) and a finer mesh (1.29 · 105 triangles),
respectively. The GMRES relative tolerance being fixed to 10−6, the average num-
bers of inner (GMRES) iterations per outer (Newton) iteration are reported in the
second columns of those tables. For both meshes, there exists an optimal value of
the augmentation parameter, γ ' 1, for which a minimum number of iterations is
reached. Similar observations are reported in other studies [Benzi et al. 2011b; Benzi
et al. 2011c; Heister et al. 2013; Benzi et al. 2013; He et al. 2016] for different flow
configurations such as the lid-driven cavity flow, the backward facing step or the
flow over a flat plate. Note also that the number of iterations is quite similar for the
coarse and fine meshes, regardless of the augmentation parameter value. For the
optimal γ, the average number of inner iterations is around 50.

As briefly discussed in section 7.2.2, the introduction of the grad–div stabiliza-
tion term in the weak formulation 7.4a does not modify the conservation of mo-
mentum at the continuous level, since the continuous solution is divergence-free.
However, with the spatial discretization chosen in the present study (Taylor–Hood
finite element), the divergence of the velocity is only weakly satisfied and the grad–
div stabilization term modifies the discrete momentum equation. The augmentation
parameter has therefore an influence on the accuracy of the discrete solution. To
assess this effect, a reference steady solution, denoted (ur

b, pr
b), is computed without

stabilization parameter (γ = 0) on a very-fine mesh made of 5.13 · 105 triangles.
The corresponding leading eigenvalue denoted σr is also computed. The two last
columns of table 7.1a and table 7.1b report the relative errors of the steady velocity
and the leading eigenvalue computed with the coarse and fine meshes, respectively,
for several values of γ. Examining first the results obtained with the coarse mesh
(see table 7.1a), a minimal error is obtained for γ ' 1, not only for the steady solu-
tion but also for the leading eigenvalue. When the mesh is refined (see table 7.1b),
a minimal error is still obtained for γ ' 1, although less pronounced. Compared
to results obtained with the coarse mesh, the relative error is decreased whatever
the value of the augmentation parameter. As expected, the augmentation parameter
less affects the accuracy of the discrete solution when the mesh is refined, since the
discrete solution tends towards the continuous solution. It is worth noticing that the
use of the stabilization term can significantly improve the accuracy of the solution.
For instance, the accuracy of the eigenvalue obtained for the coarse mesh with γ = 1
is identical to the one obtained for the fine mesh without stabilization γ = 0. In
other words, the same accuracy is obtained but with ten times fewer mesh elements.

The present results clearly indicate that γ ' 1 is an optimal value from both
the solution accuracy point of view and the preconditioning efficiency point of view
when considering not only steady solutions, as reported before [Heister et al. 2013],
but also leading eigenvalues. As a consequence, in the following, we consider that
γ can be chosen on preconditioning efficiency criteria only without compromising
accuracy.
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γ
# of

GMRES
iterations

∥∥uh
b − ur

b

∥∥
2∥∥ur

b

∥∥
2

|σh − σr|
|σr|

0 860 2.8 · 10−4 9.8 · 10−4

10−1 191 2.1 · 10−4 7.9 · 10−4

100 52 8.4 · 10−5 1.1 · 10−4

101 337 4.4 · 10−4 1.5 · 10−3

102 >1,000 1.3 · 10−3 4.6 · 10−3

(A) Coarse mesh (14,674 triangles)

# of
GMRES
iterations

∥∥uh
b − ur

b

∥∥
2∥∥ur

b

∥∥
2

|σh − σr|
|σr|

873 3.2 · 10−5 1.1 · 10−4

194 2.7 · 10−5 1.1 · 10−4

53 1.4 · 10−5 5.4 · 10−5

363 2.7 · 10−5 8.5 · 10−5

>1,000 6 · 10−5 2.1 · 10−4

(B) Fine mesh (1.29 · 105 triangles)

TABLE 7.1: Effect of the grad–div augmentation parameter γ on the mAL
preconditioning efficiency and the solution accuracy. For both tables, the
first column indicates values of γ. The second column represents the av-
erage number of mAL preconditioned GMRES iterations per Newton iter-
ation. The last two columns give the relative errors of the steady solution
and the leading eigenvalue compared with a reference solution (ur

b, σr)
computed on a very fine mesh without stabilization (γ = 0).

7.5.2.2 Effect of the shift parameter

The shift-and-invert strategy, adopted in the present study to compute the eigen-
values with largest real part, requires to specify the complex value s = sr + isi that
appears in the spectral transformation section 7.2.4. When investigating the transi-
tion of a steady solution from a stable to an unstable state, a common practice is to
choose the shift parameter as a pure imaginary number, i.e. s = isi, and to vary the
imaginary part in order to compute complex eigenvalues with growth rates close to
λ = 0. Depending on the flow configuration investigated, the steady solution may
get unstable for eigenmodes characterized by very different frequencies. Ideally, the
number of preconditioned GMRES iterations should be insensitive to the value of
the complex shift, for the Krylov–Schur algorithm to converge rapidly whatever the
eigenvalue of interest. To the best of our knowledge, only the case of a real-valued
shift has been considered so far, either positive when solving the unsteady Oseen
problem [Benzi et al. 2011b; Heister et al. 2013] or negative when solving the lin-
earized Navier–Stokes equation [M. A. Olshanskii et al. 2008].

Here, we vary s in the whole complex plane and assess its effect on the efficiency
of the mAL preconditioner by performing the following numerical experiment. The
linear system eq. (7.12) is solved with right-hand side vectors whose coefficients are
randomly generated in [0, 1] + [0, 1]i, as done for instance in [Benzi 2008]. The Jaco-
bian matrix J of the linear system is computed with the steady solution at Re = 40
and the augmentation parameter γ = 0.7. In other words, only the inner solver is
studied, no outer iteration (Newton or Krylov–Schur) is performed. The isocontours
shown in fig. 7.4 in the complex plane (sr, si) correspond to the number of inner (GM-
RES) iterations required to decrease the relative residual to 10−6. The red circles are
eigenvalues of the Jacobian matrix. First, the number of iterations increases when
the shift gets closer to any eigenvalue. In that case, the matrix J+ sM involved in the
spectral transformation (7.2.4) becomes singular, leading to a very ill-conditioned
linear system and thus high iteration counts. Second, the number of iterations is
reduced when increasing sr. Solving the linear system for sr < 0 is generally more
expensive than for sr > 0. According to [M. A. Olshanskii et al. 2008], this is due to
the indefiniteness of the velocity block Aγ + sMu in eq. (7.12) for sufficiently large
negative values of sr. On the contrary, the velocity block is definite when sr > 0. The
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FIGURE 7.4: Influence of the complex shift. Isocontours represent the
number of GMRES iterations needed to solve the linear system (7.13) with
the mAL preconditioner, depicted in the complex plane (sr, si), and com-
puted for Re = 40 and γ = 0.7. The red circles are the eigenvalues of the

Jacobian matrix (7.6).

contribution of the shift can be interpreted as a (positive definite) time-step term,
which reinforces the diagonal dominance of the problem and thus improve its spec-
tral properties. For more details, the reader can refer to [Benzi et al. 2011b, section
2.6], where the mAL preconditioner is used to solve the unsteady Oseen problem.
Finally, no particular trend is observed in the number of inner iterations when fixing
the real part sr and varying the imaginary part si, except when getting closer to an
eigenvalue. For sr = 0, the number of iterations is roughly constant for si < 0.5 and
increases around si = 0.6 due to the proximity of the unstable eigenvalue marked
by the red circle. By further increasing si, the number of iterations then decreases.

7.5.2.3 Effect of the mesh refinement and Reynolds number

The modified augmented Lagrangian preconditioner allows to compute steady so-
lution in a number of GMRES iterations independent of the mesh refinement, as pre-
viously observed in table 7.1, and mildly dependent of the Reynolds number [Benzi
et al. 2011b; Benzi et al. 2011a]. The influence of the mesh refinement and Reynolds
number on the number of iterations needed to solve the complex-shifted linear sys-
tem eq. (7.12) has not been investigated so far. The numerical experiment consists
in solving the linear system to the relative tolerance of 10−6 for right-hand side vec-
tors with randomly generated coefficients as explained before. First, the Reynolds
number is fixed (Re = 40) as well as the augmentation parameter (γ = 0.7) while
the mesh refinement changes. The number of inner GMRES iterations is reported in
fig. 7.5a as a function of the number of triangles. The curves correspond to different
values of the (purely imaginary) shift. Clearly, the iteration count is independent
of the mesh refinement, regardless of the shift. Second, a fixed mesh refinement
is chosen (14,828 triangles) and the linear system is solved for different values of
the Reynolds number in the range [10; 500] for different shift values. As reported
in [Benzi et al. 2011c] when computing steady solutions, the optimal value of the
augmentation parameter that minimizes the number of iterations depends on the
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Reynolds number. The optimal value of γ has been first determined for each value
of Re. For Re = 10, the optimal value is γ ' 1.2 and it decreases to γ ' 0.4 for
Re = 500. These optimal values of γ have been determined for s = 0 but are used
in the following regardless of the values of s. The number of iterations is depicted
in fig. 7.5b as a function of the Reynolds number. The mAL preconditioner shows a
mild degradation of its performance asRe increases, independently of the values of
the shift. The increase of the number of inner iterations is proportional to Re0.5 in
this numerical experiment.
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FIGURE 7.5: Effect of mesh refinement (a) and Reynolds number (b) on
mAL preconditioning efficiency. The GMRES iteration count for solv-
ing eq. (7.12) to a relative tolerance of 10−6 is presented for different shifts:

s = 0 ( ), s = 0.3i ( ), s = 0.6i ( ) and s = 1i ( )

As a conclusion, the modified augmented Lagrangian preconditioner exhibits
interesting properties for performing efficiently a linear stability analysis using a
shift-and-invert strategy: robustness with respect to a complex-valued shift, mesh
independence, and a mild deterioration asRe increases.

7.5.3 Comparison with other block preconditioners

The mAL preconditioner is one of many other preconditioners developed to solve
the steady incompressible Navier–Stokes equations. Among them, we select the
Pressure Convection–Diffusion (PCD) [Kay et al. 2002] and the SIMPLE [Patankar et
al. 1983] preconditioners, widely used and easily implemented, and compare their
performance with those of the mAL preconditioner. In addition, we also test the
unsteady Stokes preconditioner [Tuckerman 1989] which has gained in popularity
in the hydrodynamic stability community [Tuckerman et al. 2019], as it can be easily
implemented using existing time-steppers so as to compute base flows and leading
eigenvalues [Tuckerman et al. 2000b]. In our implementation however, the Stokes
preconditioner is itself applied using a nested Krylov subspace method instead of
an existing time-stepper. More details on those preconditioners are given in sec-
tion 7.B but it is worth recalling here that they are designed for classical Galerkin
discretization of the Navier–Stokes equations. Therefore, their application to the it-
erative solution of eq. (7.12) is meant for γ = 0, i.e. without grad–div stabilization
terms.
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The numerical test case consists in solving iteratively eq. (7.12) with a random
right-hand side vector, as detailed before, for a large relative tolerance equal to 10−3

to limit the number of iterations. The shift is fixed to s = 0 since it was shown in
section 7.5.2.3 that the mAL preconditioner depends very weakly on the shift param-
eter when the mesh is refined or the Reynolds number is increased. All innermost
block solutions are performed using exact LU factorizations. The PCD and SIMPLE
preconditioners are parameter-free, unlike the mAL and Stokes preconditioners. For
the latter, the optimal values of the parameter (γ for mAL and a time-step like pa-
rameter for Stokes) are determined for each values of the Reynolds number.

The effect of the mesh refinement and Reynolds number on the number of inner
iterations, studied in the previous paragraph for the mAL preconditioner, is assessed
here for all the other preconditioners. Results are compared in fig. 7.6. This number
of iterations is a good measure to compare the efficiency of the different precondi-
tioners, in a first approximation, because for each inner iteration, the application of
all preconditioners requires the solution of subproblems with similar complexities4.
Therefore, the computational time of one inner iteration is roughly similar for all
preconditioners.

All the preconditioners are independent of the mesh refinement, as shown in
fig. 7.6a, except for the SIMPLE preconditioner for which the number of inner iter-
ations slightly increases whith the number of triangles. Interestingly, the number
of iterations is significantly less for mAL and PCD (around 50) than for Stokes and
SIMPLE (around 1, 000). Note that for the two preconditioners depending on a pa-
rameter (mAL and Stokes), their optimal value was found to be independent of the
mesh refinement.

The effect of the Reynolds number is reported in fig. 7.6b. For all tested pre-
conditioners, the number of iterations increases with the Reynolds number, but
with different slopes. The mAL preconditioner exhibits the best performance for all
Reynolds numbers, except for low Reynolds number (Re < 20) where PCD is more
efficient. However, the number of iterations obtained with the PCD preconditioner
increases strongly for larger values of the Reynolds number (Re > 80). The mAL
and SIMPLE preconditioners exhibit a similar trend: the number of iterations scales
with the Reynolds number asRe0.5. However, it is significantly larger with SIMPLE
than with mAL, regardless of the Reynolds number. At lowRe, the Stokes precondi-
tioner behaves similarly to the SIMPLE preconditioner, but for largerRe, it degrades
significantly and exhibits the same trend as the PCD preconditioner. Finally, when
considering the number of iterations, the mAL preconditioner is undoubtedly the
best preconditioner. We note that, contrary to the mesh dependence study, the opti-
mal parameters of mAL and Stokes showed some variations with respect toRe.

4two scalar velocity solves and one pressure Schur complement solve for mAL and Stokes; one
vectorial velocity solve and one pressure Schur complement solve for PCD and SIMPLE
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FIGURE 7.6: Influence of (a) the number of mesh elements and (b) the
Reynolds number Re on the number of inner iterations required to solve
eq. (7.12) with the mAL ( ), PCD ( ), SIMPLE ( ), and Stokes
( ) preconditioners. The relative tolerance is set to 10−3 and the shift to

zero.

Let us now compare the computational time for applying the four precondition-
ers. To that aim, the direct LU factorizations used until now for the innermost ve-
locity blocks solvers are replaced by GMRES right-preconditioned with an ILU(2)
method (as implemented in PETSc). The choice of an innermost iterative solution
allows for a more comprehensive interpretation of the computational time, since
it accounts for the various complexities in solving iteratively the velocity blocks
involved in the different preconditioners. Moreover, such an innermost iterative
solution is necessary when considering large-scale three-dimensional problems, as
shown in the next section. The relative tolerance of the inner (resp. innermost) GM-
RES is fixed to 10−3 (resp. 10−2). The computational times obtained with the four
preconditioners are reported in fig. 7.7 for Re = 40 (left) and Re = 100 (right). The
total time is split into the time spent in computing matrix–vector products, in apply-
ing the global preconditioner, and in constructing the global Krylov subspace. The
inner iteration counts are given between parenthesis. Note that it may be slightly
higher than what is presented in fig. 7.6 since the velocity blocks are now solved
only approximately. All computations are run on a standard laptop computer.

For the low Reynolds number Re = 40, the mAL and PCD preconditioners
are about ten times faster than the SIMPLE and Stokes preconditioners5. For this
Reynolds number, the PCD preconditioner is comparable with the mAL precondi-
tioner, as it is only 40% slower. However, when the Reynolds number is increased
to Re = 100, the performance of PCD degrades significantly with respect to mAL,
as it is now about five times slower. The computational times are not given for
the SIMPLE and Stokes preconditioners because they largely exceed 2,100 seconds.
The deterioration in the computational time of the PCD preconditioner when the
Reynolds number is increased, is in agreement with the growth in the number of
iterations observed before. For even higher Reynolds numbers Re > 100, the mAL
preconditioner is expected to be increasingly more interesting than its competitors.

5note that the time for building the inner Krylov subspace is very small for the Stokes precondi-
tioner at Re = 40, despite a large number of iterations. This is due to the fact that, in the implementa-
tion detailed in section 7.B, the Stokes preconditioner is itself applied with a nested iterative method.
Therefore, no Krylov subspace of dimension 947 is actually built
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As a conclusion, this benchmark shows that, compared to other widely used
preconditioners, mAL provides a more efficient approach for solving eq. (7.12) on a
configuration typical of two-dimensional external flows around bluff bodies. In par-
ticular, among the alternatives tested here, it is the only preconditioner combining a
mesh-independent iteration count and a mild degradation withRe0.5, making it the
most efficient preconditioner forRe > 20.
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FIGURE 7.7: Comparison of the performance of various preconditioners
on the two-dimensional test case (14,828 triangles). The total time is split
between matrix–vector products, applying the preconditioner, and build-
ing the Krylov subspace. The number of global GMRES iterations is given
between parenthesis. System eq. (7.12) is solved to a relative tolerance of
10−3. For Re = 100, the hatched bars correspond to preconditioners for
which the total time largely exceeded 2,100 seconds and is not reported
in details. The velocity blocks in the preconditioners are solved itera-
tively to a relative tolerance of 10−2 using an innermost GMRES, right-
preconditioned with ILU(2). The pressure blocks are solved exactly with
MUMPS. These times will depend on the particular preconditioners used
for solving the diagonal blocks. Therefore, those results should be consid-

ered qualitatively.

7.5.4 Performance of the parallel implementation

In this section, the performance of the parallel implementation detailed in section 7.4
is tested on the three-dimensional configuration presented in section 7.5.1. First, a
coarse mesh is used, in order to be able to compare our approach with the direct
parallel solver MUMPS. Then, the full size 3D configuration presented before is con-
sidered to test the parallel performance of our approach on a problem that a direct
solver could not handle at a reasonable memory cost.

7.5.4.1 Comparison with a direct solver on a small-scale 3D configuration

Despite its large memory requirements, some authors have used the “matrix-based”
approach, combined with direct solvers for the arising linear systems, to perform
the stability analysis of three-dimensional flows [Marquet et al. 2015a; Iorio et al.
2014]. In this section, we aim at comparing the performance of this approach to
ours. To that end, the three-dimensional test case is considered using a coarse mesh
of 1.1 million tetrahedra (4.8 million unknowns), in order to keep the memory con-
sumption of the direct solver reasonable. The computations are performed on Sator,
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an ONERA cluster composed of 620 nodes with two fourteen-core Intel Broadwell
clocked at 2.4 GHz. The direct solver we compare ourselves to is MUMPS.

7.5.4.1.a Nonlinear solver

In this section, the Newton nonlinear tolerance and the GMRES relative tolerance are
both set to 10−6. In fig. 7.8a we report the average wall-clock time per Newton itera-
tion for the mAL and MUMPS approaches, as a function of the number of processes.
On the top x-axis, we report the amount of available memory corresponding to each
number of processes. First, as expected, the memory requirements of our approach
are lower than with MUMPS: we observe that MUMPS cannot be run on less than
224 processes, which corresponds to an available memory of 1,024 GB, whereas the
mAL approach can be run on 28 processes (128 GB). Note that the memory require-
ments of the mAL approach could be even lower by using iterative methods for the
subdomain solvers of the innermost ASM-preconditioned GMRES iterations. More-
over, thanks to good scalability properties and the absence of a full LU factorization
at each Newton iteration, the mAL approach is clearly faster than MUMPS (about
ten times with 448 processes).

7.5.4.1.b Eigensolver

For the eigensolver, the Krylov–Schur tolerance is 10−6 whereas the inner relative
tolerance is 10−3. Note that we use a larger tolerance for the inner linear solve than
for the outer Krylov–Schur solver. Indeed, contrary to what is often recommended
in the literature (e.g., [Roman et al. 2018, § 3.4.1]), we observed that it was not nec-
essary to use a smaller tolerance for the inner solution of eq. (7.12) in order to keep
a satisfying accuracy on the computed eigenvalues. More details on that aspect may
be found in section 7.C.

We show in fig. 7.8b the total wall-clock time for computing 5 eigenvalues closest
to the shift s = 0.6i, using mAL and MUMPS as inner solvers, as a function of the
number of processes. The available memory is again reported on the top x-axis. Sim-
ilar conclusions as for the nonlinear solver can be made for memory consumption
with a multiplication factor of two, due to the use complex instead of real algebra.
From a wall-clock time point of view, we observe, as for the nonlinear solver, that
the mAL approach possesses much better scalability than MUMPS, which leads to a
faster computation. We note however that MUMPS is harder to beat with an itera-
tive approach when used in the eigensolver than in the nonlinear solver. The reason
is that, in the Krylov–Schur method, the very high cost of forming the full LU fac-
torization is greatly amortized by the many inner solves realized with it, whereas in
the Newton method, each inner solve requires to build the factorization again.

As a conclusion, the mAL approach presents the double advantage of being
much less memory-intensive than the direct solver and also faster, even for the un-
favorable case of eigenvalue computations.
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FIGURE 7.8: Comparison of mAL ( ) and MUMPS ( ) as inner
solvers on (a) the nonlinear solver and (b) the eigensolver. The computa-
tion are performed on the three-dimensional test case using a coarse mesh
(4.8 million unknowns) and γ = 0.3. The grey area indicates when the LU
factorization is not feasible due to too large memory requirements. The

dashed line represents ideal scalability.

7.5.4.2 Parallel performance on a large-scale 3D configuration

In this section, the 3D plate configuration is used, with a fine mesh, resulting in 75
million unknowns. The parallel performance of our implementation is investigated
for the nonlinear base flow solver and eigenvalue solver.

Results were obtained on Curie, a system composed of 5,040 nodes with two
eight-core Intel Sandy Bridge clocked at 2.7 GHz. The interconnect is an Infini-
Band QDR full fat tree and the MPI implementation exploited was bullxMPI ver-
sion 1.2.9.2. All binaries and shared libraries were compiled with Intel compilers
and Math Kernel Library support (for dense linear algebra computations) version
18.0.1.163. Recent releases of FreeFEM and PETSc/SLEPc were used (version 3.61
and 3.9.3 respectively). In all following plots and tables, the time spent in the finite
element kernel is never accounted for because we are mostly interested in the per-
formance of the preconditioner. Only the time spent in PETSc or SLEPc is reported.

7.5.4.2.a Nonlinear solver

In this paragraph, we investigate the parallel performance of the nonlinear steady-
state solver. The inner Krylov solver is the flexible GMRES algorithm [Saad 1993],
which is stopped when the relative unpreconditioned residual norm is lower than
10−1. The Newton method is stopped when the l2 norm of the residual is lower
than 10−6. As an initial guess for the computation at Re = 100, a solution at a
lower Reynolds number Re = 50 is first computed using a higher nonlinear outer
tolerance of 10−4. Also note that in this preprocessing step, all the domain decompo-
sition information obtained from ParMETIS partitioning is dumped and will be used
in successive runs for the nonlinear and generalized eigenvalue solvers. In table 7.2,
the numerical performance of the nonlinear solver are reported. One may notice that
even if a high relative tolerance is used to stop the flexible GMRES, very few New-
ton iterations (second column) are needed for the solver to converge, independently
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FIGURE 7.9: Scalability of the 3D nonlinear solver with respect to the num-
ber of processes.

of the number of subdomains (first column). The number of mAL-preconditioned
inner iterations needed to reach convergence, averaged over all Newton iterations,
is reported in the third column. It is seen not to depend on the number of pro-
cesses. Eventually, in the last three columns, we show the average number of ASM-
preconditioned innermost iterations needed for each velocity block of PmAL to reach
the desired convergence tolerance of 10−1 (see section 7.4.3). A slight increase is ob-
served with the number of processes. This is an expected feature of simple one-level
domain decomposition methods, like the additive Schwarz method, that are known
to not scale numerically [Dolean et al. 2015].

P # of Newton
iterations

# of iterations
per Newton it.

# of iterations
per field (x, y, z)

256 6 83 30 12 19
512 5 81 31 13 20

1,024 5 84 35 15 21
2,048 5 84 44 17 27

TABLE 7.2: Numerical performance of the 3D nonlinear solver with re-
spect to the number of processes (Re = 100). The second column repre-
sents the number of Newton outer iterations, the third is the number of
mAL-preconditioned inner GMRES iterations per Newton step. The last
three columns correspond to the average number of ASM-preconditioned
innermost GMRES iterations for each velocity block per inner iteration.

In fig. 7.9, the scalability of our implementation is shown, using the run with 256
processes as the reference, and going up to 2,048 processes. The parallel efficiency of
this approach remains above 83%. The fact that one additional Newton iteration is
needed with 256 processes has to be highlighted, since it does improve the efficiency.
Other than that, because exact LU factorizations are used as subdomain solvers in
the additive Schwarz method used for each velocity field, the setup phase scales
superlinearly (see the second column of the table in fig. 7.9). Moreover, because
the number of iterations needed for the corresponding solvers only grows slightly,
as shown in the three last columns from table 7.2, the solution phase also scales
appropriately.
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7.5.4.2.b Eigensolver

We now evaluate the parallel performance of the eigensolver. The tolerance on the
Krylov–Schur algorithm is 10−6 whereas the relative tolerance for the inner linear
solver is set6 to 10−4. The main difference with the Newton method is that the mul-
tiple inner linear solves involve the very same shifted operator (J+ sM) and precon-
ditioner PmAL. To improve the performance of the eigensolver, let us show first the
effect of using a recycled Krylov method for solving these systems, instead of the
standard GMRES. This can be done by switching from the KSP objects of PETSc to
the iterative methods of the HPDDM library [Jolivet et al. 2016] which handle sub-
space recycling. In particular, the flexible GCRO-DR method is used, with a recycled
subspace between each linear solves of dimension five. The following lines allow to
switch between PETSc and HPDDM Krylov methods from within FreeFEM:

int recycle = getARGV("-recycle", 0); // use GMRES by default

int restart = getARGV("-restart", 200); // default to 200

real innerTol = getARGV("-inner_tol", 1.0e-4); // default to 10−4

string paramsKrylov = (recycle == 0 ? "-st_ksp_type fgmres " +

"-st_ksp_monitor -st_ksp_rtol " + innerTol +

" -st_ksp_gmres_restart " + restart + " -st_ksp_max_it 1000"

:

"-st_ksp_type hpddm -hpddm_st_krylov_method gcrodr " +

"-hpddm_st_recycle " + recycle + " -hpddm_st_max_it 1000" +

" -hpddm_st_verbosity 4 -hpddm_st_gmres_restart " + restart +

" -hpddm_st_tol " + innerTol + " -hpddm_st_variant flexible");

In fig. 7.10, the number of mAL-preconditioned inner linear iterations needed for
each iterative method (FGMRES or FGCRO-DR) to solve the sequence of linear sys-
tems of the first iteration of the Krylov–Schur algorithm is reported. For this particu-
lar Krylov–Schur iteration, fifteen systems have to be solved. When using FGMRES,
it corresponds to a total of 3,751 inner linear iterations. When using FGCRO-DR, it
corresponds to only 2,209 inner linear iterations. Even though the solutions of all
fifteen systems are not rigorously equal when switching from FGMRES to FGCRO-
DR, after the first iteration of the eigensolver, convergence is reached for the two
eigenpairs closest to the shift: −1.03 · 10−2 + 0.57i and −7.81 · 10−2 + 0.57i.

In all the following runs, FGCRO-DR is used in order to reduce the number of
inner iterations. The number of Krylov–Schur iterations needed to retrieve the re-
quested eigenpairs is reported in the second column of table 7.3. In the third column
is the average number of solved linear systems per eigensolver iteration. The av-
erage number of mAL-preconditioned FGCRO-DR iterations (inner iterations) per
linear solve (outer iteration) is presented in the fourth column whereas the last three
columns contain the average number of innermost iterations for each velocity field,
per application of PmAL. It was not possible to have the code run on 256 processes
due to memory requirements significantly higher than for the nonlinear solver. In-
deed, we switch from a real-valued to a complex-valued problem and the additional
operators M and Lp are assembled explicitly. In table 7.4, the scalability of our imple-
mentation is shown, using the run with 512 processes as the reference, and going up
to 2,048 processes. The parallel efficiency of this approach is approximately the same
as for the nonlinear solver, though on a narrower range of process counts, remaining
above 82%.

6for the same reasons explained in 7.5.4.1.b, we use a larger tolerance for the inner linear solves
than for the outer Krylov–Schur algorithm (see also section 7.C)
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FIGURE 7.10: Effect of a recycled Krylov method on the performance of
the eigensolver. The number of mAL-preconditioned inner iterations for
the flexible GMRES and GCRO-DR algorithms is compared for each linear

solve of a Krylov–Schur iteration.

P # of eigensolver
iterations

# of linear
solves

# of iterations
per linear

solve

# of iterations
per field (x, y, z)

512 7 7 120 7 10 11
1,024 7 8 127 7 10 13
2,048 7 8 119 10 13 17

TABLE 7.3: Numerical performance of the 3D eigensolver with respect to
the number of processes. The second and third columns represent respec-
tively the number of Krylov–Schur iterations and the number of linear
solves (outer iterations) per Krylov–Schur iteration. The fourth column is
the number of mAL-preconditioned FGCRO-DR inner iterations per lin-
ear solve. The last three columns correspond to the average number of
innermost ASM-preconditioned GMRES iterations for each velocity sub-

block per inner iteration.

P Setup (s) Solve (s) Speedup

512 55.3 39,160.7 −
1,024 25.7 24,508.3 1.6
2,048 27.1 11,849.9 3.3

TABLE 7.4: Scalability of the 3D eigensolver with respect to the number of
processes.
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7.6 Conclusion

The stationary base flow as well as the eigenvalue computations involved in hydro-
dynamic linear stability analysis require multiple solutions of linear systems based
on the (shifted) Jacobian operator of the incompressible steady Navier–Stokes equa-
tions. To solve such systems on large-scale configurations involving hundreds of
millions of unknowns, we proposed to use a Krylov subspace linear solver like the
flexible GMRES algorithm, preconditioned by the modified augmented Lagrangian
(mAL) preconditioner [Benzi et al. 2011b]. On a two-dimensional bluff-body flow,
we studied numerically the performance of the mAL preconditioner for linear stabil-
ity analysis purposes. We showed in particular that this approach handles efficiently
complex-valued shifts and thus is well-suited for the computations of eigenvalues
with possibly large frequencies, using the shift-and-invert spectral transformation.
Then, the mAL preconditioner was tested against some other widely used steady-
state (PCD, SIMPLE) and time-stepping-based (Stokes) preconditioners, all of them
used in a sequential version. The mAL preconditioner was shown to require lower
numbers of GMRES iterations and to be faster than all its competitors.

In order to perform large-scale three-dimensional stability analysis computa-
tions, a parallel implementation of the mAL preconditioner was presented and is
made available online: https://github.com/prj-/moulin2019al. The FreeFEM fi-
nite element language was used as a discretization kernel whereas PETSc and SLEPc
were used as distributed linear algebra backends. First, a comparison with the par-
allel direct solver MUMPS was presented on a three-dimensional bluff-body flow
configuration, using a coarse enough mesh to make the LU factorization possible.
The mAL approach required about one tenth as much memory and had better strong
scaling properties. Despite the attractiveness of a direct linear solver — when it can
be afforded — for the eigenvalue computations (the factorization is done once and
re-used multiple times), the mAL approach turned out to be a faster alternative than
the direct approach, thanks to its much better parallel performance. Finally, the im-
plementation was used on a fine mesh resulting in 75 million unknowns and showed
satisfying strong scaling properties up to 2,048 processes, for both the base flow and
eigenvalue computations. The role of subspace recycling between the multiple con-
secutive linear solves, inside the Krylov–Schur eigensolver, was tested and allowed
significant performance gains.
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APPENDIX

Appendix 7.A Reproducibility

In addition to the few extracts of the code used in the paper, the interested reader
can find the complete FreeFEM code in the following repository: https://github.
com/prj-/moulin2019al.

Appendix 7.B Definition of other block preconditioners

Here are defined the classical block preconditioners for incompressible Navier–Stokes
that are compared to the modified augmented Lagrangian approach in section 7.5.3.
Contrary to mAL, those preconditioners do not require an augmentation. Thus, they
are used without grad–div stabilization (γ = 0). Versions that incorporate a complex
shift s are proposed here.

Pressure convection–diffusion preconditioner The pressure convection–diffusion
(PCD) preconditioner was proposed by [Kay et al. 2002]:

PPCD =

(
A + sMu BT

0 Sp

)
, (7.17)

with Sp
−1 = −Mp

−1(Fp + sMp)Lp
−1, where Fp is a convection–diffusion opera-

tor built on the pressure space. Compared to the classical PCD preconditioner for
steady-state Navier–Stokes equations, the shift contribution sMp is added to the
pressure Schur complement approximation.

SIMPLE preconditioner The SIMPLE preconditioner was proposed as a solver by
[Patankar et al. 1983]. We use its preconditioner version [Elman et al. 2008]:

PSIMPLE =

(
A + sMu 0

B Sp

)(
I diag(A + sMu)−1BT

0 I

)
, (7.18)

and Sp
−1 = −

[
Bdiag(A + sMu)−1BT]−1

.

Stokes preconditioner The Stokes preconditioning approach was popularized by
[Tuckerman et al. 2000a] in the hydrodynamic stability community. Tuckerman’s
idea is two-fold:

1. preconditioning the linearized Navier–Stokes problem eq. (7.12) by the Stokes
problem, i.e.,

PStokes =

(
AStokes + sMu BT

B 0

)
,

https://github.com/prj-/moulin2019al
https://github.com/prj-/moulin2019al
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with AStokes = D+∆t−1Mu and D contains only the diffusion terms. Note that
the time-step contribution ∆t has no physical meaning here: it only represents
some numerical parameter of the preconditioner. A case-dependent optimal
value may exist, as reported in [Beaume 2017]. We determined this optimal
value numerically.

2. applying the preconditioner by adapting a pre-existing time-stepping code,
which significantly reduces the development costs. In this work however, we
prefer to apply PStokes

−1 by using a few inner iterations of GMRES, precondi-
tioned by:

PStokes, inner =

(
AStokes + sMu BT

0 Sp

)
,

with Sp
−1 = −Re−1Mp

−1 − (∆t + s)Lp
−1 [Cahouet A N et al. 1988]. A large

relative tolerance of 10−2 is set for the inner iterations, as we observed that
further convergence of the inner iterations did not improve the convergence of
the outer GMRES iterations. Obviously, AStokes being block diagonal, apply-
ing PStokes, inner

−1 naturally requires two scalar velocity solves (in 2D) and one
pressure solve.

Note that, in section 7.5.3, the GMRES iteration count reported for the Stokes pre-
conditioner corresponds to the total number of applications of PStokes, inner necessary
to converge eq. (7.12) to the desired tolerance.

Appendix 7.C Linear solver tolerance and eigenvalue conver-
gence criterion

In cases where an iterative linear solver is used, the action of (J + sM)−1, required
when applying the spectrally transformed operator T in the Krylov–Schur algorithm
(see section 7.2.4), is approximated using some user-defined tolerance. As a conse-
quence, matrix T in eq. (7.11) is replaced by some approximation T̃. It is usually
recommended to set the tolerance for the linear solver lower than the one prescribed
to the eigensolver, so that the imprecision of the linear solver does not pollute the
eigensolver accuracy (see e.g. [Roman et al. 2018, § 3.4.1]). Here, we re-evaluate this
statement numerically on the two-dimensional test case presented in section 7.5.1.

The following numerical experiment is performed. We solve the eigenprob-
lem (7.11) using a mAL-preconditioned GMRES algorithm to apply (J + sM)−1. The
relative tolerance of the GMRES algorithm εlin is varied between 10−8 and 10−1 while
the tolerance of the Krylov–Schur algorithm εeig is kept constant to 10−6. Only one
eigenvalue, closest to the shift s = 0.7i, is demanded. In the second column of ta-
ble 7.5, the number of GMRES iterations required to apply (J + sM)−1 is shown.
The value is averaged over all applications of (J + sM)−1 to compute the demanded
eigenvalue. In the third column, the total number of applications of T̃ is shown.
In the last three columns, we monitor the eigenvalue and the discrete l2 norm of
the eigenproblem residual. It is observed that one can in practice increase εlin well
above εeig = 10−6, without compromising significantly the accuracy of the com-
puted eigenvalue. At least up to εlin = 10−3, the computed eigenvalue is converged
to satisfying accuracy, for a cost divided by two with respect to the “safe choice”
εlin = 10−6. Increasing εlin may thus allow some performance improvement.

Finally, the interpretation of the last column of table 7.5 deserves some further
explanation. Indeed, one can observe that, for εlin = 10−1 and εlin = 10−2, despite
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the fact that we kept εeig = 10−6, the Krylov–Schur algorithm considered it had con-
verged to an appropriate eigenvalue, while the residual was still above εeig. The
reason to that observation is that most Arnoldi-based eigensolver packages, such
as SLEPc, use convergence criteria based on the residual of the transformed prob-
lem eq. (7.11), not the original one eq. (7.6). As a consequence, the effect of using a
large linear tolerance εlin is to apply an approximate operator T̃ far from the exact
one. But the eigenvalues of T̃ can be computed to any prescribed tolerance by the
Krylov–Schur algorithm. Note that, in SLEPc, a workaround is to use the option
-eps_true_residual which forces the computation of the residual on the original
problem eq. (7.6) and thus is free from any approximation linked to the underlying
linear solver. In this case, the effect of using a large linear tolerance εlin would be
to make the convergence of the Krylov–Schur algorithm increasingly slow (or even
impossible). This option being more costly, it should however be avoided for large-
scale computations.

εlin

# of GMRES
iterations per
linear solve

# of linear
solves

λ ω ‖σMq̂ + J(qb)q̂‖2

10−1 15 12 4.48 · 10−2 6.90 · 10−1 1.5 · 10−4

10−2 28 10 3.77 · 10−2 7.01 · 10−1 2.6 · 10−6

10−3 36 8 3.75 · 10−2 7.01 · 10−1 9.5 · 10−7

10−4 45 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−5 53 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−6 62 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−7 71 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

10−8 80 8 3.75 · 10−2 7.01 · 10−1 9.2 · 10−7

TABLE 7.5: Effect of linear solver tolerance on eigenvalue computation
(Re = 40, γ = 0.7, εeig = 10−6, s = 0.7i)
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8
CONCLUSION & PERSPECTIVES

8.1 Conclusion

This thesis represents an effort towards a better understanding of the bifurcation
associated to the flutter instability in low-Reynolds viscous incompressible flows,
using specifically designed linear and nonlinear methods such as global linear sta-
bility analysis, weakly nonlinear analysis, Harmonic Balance-type computations and
Floquet stability analysis.

Theoretical and numerical methods for nonlinear flutter analysis

The first part of this thesis was dedicated to the introduction of different linear and
nonlinear methods well-suited to the investigation of fluid-structure instabilities in
viscous incompressible flows, and in particular to the flutter instability.

In chapter 1, we started by introducing the typical section model: a heaving and
pitching spring-mounted rigid plate immersed in a viscous incompressible two-
dimensional flow. Following the general spirit of this thesis, which is to focus on
fluid modelling, we used a simple dynamically linear solid model composed of
two degrees of freedom (heaving and pitching), each of them being governed by
a damped oscillator equation. The flow, for his part, is modelled with the two-
dimensional incompressible Navier–Stokes equations. Thanks to this approach, com-
plex nonlinear flow features, like boundary layers, recirculations regions, dynamic
stall vortices, etc, can be captured. To properly handle the movement of the fluid
domain, two variants of the Arbitrary Lagrangian Eulerian framework were intro-
duced. First, the so-called “absolute velocity - rotating axis” which is only valid
for open flows and rigid-body motion but has the advantage of analytical simplic-
ity. Second, the ”reference configuration ALE” formulation, which has none of these
limitations but at the cost of significant technical complications. It was shown that
the “absolute velocity - rotating axis” formalism is in fact a special case of the ”refer-
ence configuration ALE”, where a rigid-body extension is used and the momentum
equations are projected onto the rotating axes. Finally, an algorithm for perform-
ing unsteady time-marching computations of the coupled system was presented,
based on the combination of a pressure segregation approach to handle the incom-
pressibility constraint and fixed-point Dirichlet-to-Neumann iterations for ensuring
strong fluid-structure coupling.

In order to perform efficient investigations of the flutter bifurcation without re-
sorting to fully nonlinear time-marching computations, a weakly nonlinear analysis
was introduced in chapter 2. Using the method of multiple scales, a normal form
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(amplitude equation) for the flutter bifurcation was derived in a semi-analytical fash-
ion. Indeed, in this method, the nonlinear interactions between the different scales
and the time dependence are handled analytically while a spatial discretization of
the Navier–Stokes equations is still needed. With the objective to parametrically ex-
plore the effects of the Reynolds number, a Hessian-based mesh adaptation frame-
work was proposed so as to adapt to the different flow features that appear when
varying Reynolds in the range of interest of the subsequent chapters, 10 ≤ Re ≤ 104.
In addition, thanks to a spatial decomposition of the cubic coefficient of the normal
form, it was realized that small-scale structures, localized around the plate leading
edge, may participate to the determination of the nature of the flutter bifurcation.
Mesh adaptation is then particularly well-suited for performing an adequate and
automatic spatial discretization of these structures.

Anticipating the shortcomings of the weakly nonlinear analysis for computing
highly-nonlinear flutter solutions, a harmonic balance-type approach known as the
Time Spectral Method (TSM) was then introduced in chapter 3. With this approach,
only periodic solutions are searched but without any hypothesis on the strength of
the nonlinearity, i.e. on the amplitude of the oscillations. This yields several ad-
vantages for bifurcation study purposes that are: (i) the ability to compute possibly
unstable periodic solutions and (ii) a direct targeting of the permanent regime of in-
terest — the periodic orbits — without going through often long transient regimes.
Before diving into the core of the chapter, which is the numerical solution of the TSM
equations, we proposed a synthetic overview and consistent classification (table 3.1)
of several variants of harmonic balance methods that have appeared through the
years. We hope this effort may help the interested reader dive into this abundant
and keen-on-acronyms literature. Solving the TSM problem mentioned above con-
sists in solving a nonlinear system of 2N + 1 “steady-state” equations, with N the
number of harmonics taken into account, that are globally coupled via a source term
that accounts for the time-derivative. A so-called Newton–Krylov solution method
is adopted, which consists in solving the high-dimensional linear system arising at
each Newton iteration using a Krylov subspace method, here the GMRES algorithm.
For adequate convergence of GMRES, we presented a new preconditioner for the
TSM Jacobian matrix, referred to as the “block-circulant preconditioner”. It consists
in replacing the diagonal blocks of the original TSM Jacobian, which are the steady
Navier–Stokes Jacobians evaluated at the 2N + 1 instants of the temporal grid, by
a unique matrix that is here chosen as the steady Navier–Stokes Jacobian evaluated
at the mean flow. The resulting preconditioner possesses a block-circulant pattern,
which implies that it can be block-diagonalized by the Fourier transform. Efficient
inversion of the block-circulant preconditioner is thus possible in the Fourier space.
Numerical testing of this solution method, both for imposed frequency (forced sys-
tems) and unknown frequency (autonomous systems) test cases, showed that it pos-
sesses good N-robustness properties. A comparison with a more classical block-
Jacobi preconditioner showed largely superior performances of the block-circulant
preconditioner for moderate and large numbers of harmonics (5 ≤ N ≤ 40). This
N-robustness property makes the block-circulant preconditioner particularly well-
suited for computing LCO’s with high harmonics.

Flutter bifurcation analysis in viscous flows

The second part of this manuscript mainly focused on the exploration of the flutter
bifurcation. The succession of chapters took us on an increasingly nonlinear journey,
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from the study of the linear stability of the typical section in chapter 4, to the explo-
ration of the sub-/super-critical nature of the associated bifurcation in chapter 5,
and finally to the investigation of a secondary instability of flutter LCO solutions in
chapter 6.

In chapter 4, we revisited the linear stability of the typical aeroelastic section
with an incompressible Navier–Stokes flow model. Four types of instabilities were
observed through extensive parametric explorations: classical coupled-mode flutter
and static divergence at high-enough reduced velocities, vortex-induced vibrations
at low reduced velocities, and a transition from coupled-mode flutter to single-mode
flutter as the steady angle of attack of the plate increases. Overall, the main inter-
ests of the global stability approach used in this work is its ability to investigate
the stability of steady-state solutions that present nonlinear flow features (recircu-
lation regions, etc) and thus to capture, with one flow model, a variety of fluid-
structure instabilities that must usually be investigated with dedicated flow models.
After having identified these different instabilities, a parametric exploration of the
effect of mass ratio and Reynolds number was proposed, in the case of zero steady
angle of attack. Neutral curves for coupled-mode flutter, divergence and vortex-
induced vibrations were computed in the (m̃, U∗) (or alternatively (m̃, q∗)) plane. For
all mass ratios, vortex-induced vibrations occurred on a range of reduced velocities
centered around two well-defined values that correspond to the coincidence of the
pitching (resp. heaving) frequencies with the hydrodynamic wake instability fre-
quency. At a particular, low, mass ratio m̃I I , a codimension-two point was found
where both flutter and divergence occur at the same critical reduced velocity. For
mass ratios higher than m̃I I , flutter occurs prior to divergence whereas divergence
precedes flutter (if it exists at all) for mass ratios below m̃I I . In addition, it was
shown that for low mass ratios slightly below m̃I I , the flutter neutral curve “folds
back” towards higher reduced velocities and mass ratios, thus allowing the flut-
ter mode to restabilize at (very) high reduced velocities. By varying the Reynolds
number, it was shown that high Reynolds postpone this restabilization of the flutter
mode, leading us to attribute this unexpected behavior to viscosity effects. Compar-
isons of the stability predictions obtained from the global Navier–Stokes stability ap-
proach to several variants of quasi-steady approaches and to the Theodorsen model
(previously calibrated with steady viscous aerodynamics coefficients). For the low-
frequency flutter mass ratio occurring at large mass ratios, it was shown that all ap-
proaches provide accurate enough prediction of flutter thresholds. As mass ratio is
decreased however, the critical flutter frequency decreases and the quasi-steady and
Theodorsen models progressively deviate from the reference Navier–Stokes neutral
curve. As a consequence, if accuracy is required in the evaluation of flutter thresh-
olds, it is believed that the modelization of the unsteady viscous effects through the
global stability approach is more adequate, in particular at low mass ratios where
the Theodorsen model was found to be unconservative.

Having gained a parametric vision of the linear flutter instability in the previous
chapter, an objective of chapter 5 was to enrich this vision with nonlinear elements.
Using weakly nonlinear analysis, we determined the normal form associated to the
flutter bifurcation on a large domain of the (m̃,Re) parametric plane, 10 ≤ m̃ ≤ 104

and 10 ≤ Re ≤ 104. This allowed us to draw a “criticity map” (fig. 5.5) that rep-
resent, with one scalar indicator, the sub- or super-critical nature of the flutter bi-
furcation. A general trend could be observed that is: low mass ratios and high-
Reynolds numbers foster subcritical bifurcations. In order to get further insights
into the physical mechanisms at the origin of these transitions, we proposed a de-
composition of the cubic normal form coefficient, allowing to separate contributions
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from different physical origins (fluid vs geometric nonlinearities) and from different
spatial locations in the flow. Applying this approach, we showed that the transi-
tion from super- to sub- critical when decreasing the mass ratio at fixed Reynolds
number is primarily dictated by the fluid nonlinearity, and more specifically, by the
behavior of the leading-edge shear layers. In a second step, we explored the highly
nonlinear regime of the flutter bifurcation at a fixed Reynolds number (Re = 500),
using a combination of TSM and time-marching computations. For high mass ratio,
where the bifurcation is supercritical, stable periodic solutions with low amplitude
appear above the critical reduced velocity U∗c . These solutions oscillate at a low fre-
quency leading to quasi-steady flow features with well-attached shear layers. On
the contrary, for a low mass ratio (m̃ = 60), where the bifurcation is subcritical,
high-amplitude periodic solutions were observed below the critical velocity. These
solutions possess a higher oscillation frequency and are characterized by a strong
dynamic stall phenomenon. Finally, at an intermediate mass ratio (m̃ = 120), we
discovered an unusual scenario where the bifurcation is supercritical but still allows
high-amplitude highly-unsteady solutions below the critical velocity. This situation
is made possible by the succession of two-fold bifurcations of LCO’s that follow
the original supercritical Hopf bifurcation. We ended the study by noting that the
double-fold scenario is consistent with previous unexplained experimental results
by Amandolese et al. (2013), where both low-amplitude supercritical solutions and
high-amplitude subcritical oscillations were observed.

In the case of the supercritical flutter bifurcations occurring at large mass ratios,
it was observed that the periodic solutions that exist immediately above the critical
velocity U∗c transition to quasi-periodic oscillations with slow amplitude modula-
tions, for reduced velocities higher than 1.078 U∗c . This transition was the focus of
chapter 6 where we analyzed the linear (asymptotic) Floquet stability of the peri-
odic solutions that underlie the observed quasi-periodic solutions. In order to first
compute these — possibly unstable — LCO’s, and then assess their Floquet stability,
we proposed an original approach, entirely based on the Time Spectral Method. Us-
ing this method, we showed that the appearance of quasi-periodic solutions is due
to the destabilization of a pair of complex conjugate asynchronous Floquet modes.
An analysis of the pitching and heaving components of these modes and the as-
sociated perturbation revealed that the low-frequency modulation is linked to the
continuous drift of the phase difference between pitching and heaving perturba-
tion signals across the modulation period. This is made possible by the fact that the
pitching angle predominantly oscillates at a slightly higher frequency than the heav-
ing displacement. When the pitching motion precedes the heaving motion, energy
is extracted from the flow with perturbation dynamics that are reminiscent of the
classical flutter instability, and the perturbation amplitude increases. On the con-
trary, when heaving precedes pitching, the solid energy is dissipated into the flow
via so-called “anti-flutter” dynamics, and the perturbation amplitude decreases.

Towards large-scale linear stability analysis

The last part of this thesis aimed at initiating the extension of the different numerical
methods (global linear stability, WNL, TSM, Floquet-TSM) successfully used in the
previous chapters for studying the flutter bifurcation of a 2D typical section, to large-
scale 3D configurations.
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A first step towards this long-term goal is presented in chapter 7, where we fo-
cused on performing purely hydrodynamic (the structure is frozen) global stabil-
ity analysis of three-dimensional incompressible flows. We proposed to use pre-
conditioned Krylov-subspace methods for solving the high-dimensional linearized
Navier–Stokes system, which constitutes the critical building brick of both the steady
flow computation via a Newton method and the eigenvalue computation via shift-
invert Krylov–Schur iterations. With that strategy, the main issue is to find a good
preconditioner for the linearized incompressible Navier–Stokes equations. After a
performance study and a 2D benchmark against several other state-of-the-art pre-
conditioners, we opted for the so-called modified Augmented Lagrangian (mAL)
preconditioner. Then, a parallel implementation of the mAL preconditioner us-
ing the FreeFEM finite element language and its interface to PETSc/SLEPc was
presented and made available online. Three-dimensional numerical experiments
showed that the proposed approach generally outperforms the more “basic” ap-
proach of solving the linear systems with a (parallel) direct solver, like MUMPS. In
particular, the mAL-preconditioned Krylov subspace solver featured much better
parallel performance. Finally, we showed that the proposed implementation was
able to perform the linear stability analysis of a high-dimensional problem with
about 75 million unknowns, with satisfying strong scaling properties up to 2,048
processes.

8.2 Perspectives

Amplitude-robust TSM preconditioning

Though robust to the number of harmonics, the performance of the block-circulant
TSM preconditioner, proposed in the present manuscript, was seen to significantly
deteriorate for increasing LCO amplitudes. For some of the very-high-amplitude
flutter LCOs encountered in this work (typically, fig. 5.15b), the block-circulant pre-
conditioner was unable to sufficiently decrease the linear solver residual, thus caus-
ing a stagnation of the nonlinear residual and preventing the Newton method to
converge in reasonable amounts of time. Here, we circumvented the issue by us-
ing time-marching computations for computing these particularly challenging solu-
tions. However, a TSM solution robust also for these cases would be highly valuable.
Towards this goal, we suggest several directions of research. First, from the point of
view of the TSM preconditioner itself, it would be interesting to compare the per-
formance of the block-circulant preconditioner to the current state-of-the-art in the
transonic aeroelastic literature, which seems to be the work of Mundis et al. (2017).
Another interesting preconditioning strategy may be to consider multigrid-in-time
preconditioners [Falgout et al. 2014], where the linearized problem is solved subse-
quently on a series of temporal grids with different coarsening. Finally, as noted in
the work of Leffell et al. (2014), some highly-nonlinear TSM solutions may need the
addition of numerical viscosity (in time) in order to converge. Thus, it is possible
that our inability to converge the highest-amplitude flutter solutions is partly due
to insufficient stability properties of the original TSM scheme, for these particular
cases. As a consequence, in our opinion, the interaction between the solver’s — in
particular the preconditioner’s — performance and the TSM scheme (with or with-
out numerical viscosity) should be carefully studied, even before trying to further
improve the preconditioner.
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Understanding the low-mass-ratio and high-Reynolds sub-/super-critical
transitions

In chapter 5, we investigated in detail the high-mass-ratio sub-/super-critical tran-
sition (m̃ = m̃u in fig. 5.4). However, two other transitions have been left mostly
unexplored: the low-mass-ratio sub-/super-critical (m̃ = m̃l) at fixed Reynolds num-
ber and the high-Reynolds transition at fixed, high, mass ratio. Both this transition
should be object of further investigations. In particular, the high-Reynolds transi-
tion occurs typically at very large mass ratio that yield low-frequency flutter. As a
consequence, it is likely that (quasi-)steady flow models can be used to explain this
transition. In other words, it is likely that the nature of the bifurcation could be pre-
dicted directly from the analysis of the curve representing the steady aerodynamic
coefficient as a function of angle of attack.

Criticity maps for the flutter bifurcation: effect of the typical section profile

Throughout the present manuscript, the typical section investigated consisted in a
thin rectangular plate. Naturally, the question of the robustness of the presented
bifurcation scenarios with respect to the section shape is in order. Typically, an inter-
esting continuation of the studies of chapter 5 would be to produce criticality maps,
similar to fig. 5.5, but for various section shapes: airfoils in particular, but also other
section representative of bridge decks, for example. To this end, the mesh adaptation
strategy proposed in chapter 2 should come in particularly handy.

Flutter bifurcation at higher Reynolds: turbulence modeling and effect of
coherent fluid fluctuations

Another intriguing perspective from chapter 5 is to push the parametric explorations
to higher Reynolds numbers, so as to progressively extend the study to regimes typ-
ical of classical airplane flight. Indeed, knowing whether airplanes are likely to un-
dergo subcritical flutter or not could have a major impact on the degree of confidence
an engineer can put in flutter assessment via classical linear stability analyses, and
as a consequence, in the way flutter margins are estimated.

On this route towards higher-velocity flows, significant extensions of the present
work will be needed. First, the increase in Reynolds number supposes an adequate
modelization of turbulence. Given the critical importance of the leading-edge shear
layers and dynamic stall vortex, highlighted for the high-mass-ratio super-/sub-
critical transition (m̃u), the chosen turbulence model should be able to accurately
predict such complex unsteady nonlinear behaviors at high-Reynolds numbers. For
transitional Reynolds numbers, the issue is even more delicate as laminar separation
bubbles should be appropriately modeled given their impact on the aeroelastic be-
havior [Poirel et al. 2008]. If the accurate modelization of laminar separation bubbles
is known to be a challenging CFD problem, recent progresses in that area [Bernardos
et al. 2019] should be reviewed for flutter bifurcation study purposes. The second
extension consists in relaxing the incompressibility constraint used across this thesis
and would be eventually required in order to tackle flows typical of airliners that fly
in the transonic regime.
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Tools for flutter bifurcation study with increasingly complex flow models

Generally speaking, the progressive complexification of the fluid model, whether it
is due to turbulence of compressibility aspects, makes it increasingly cumbersome1

to use an analytical technique such as the weakly nonlinear analysis proposed in this
thesis. On the other hand, the Time Spectral Method for his part, is less impacted by
increasing the flow model complexity. Indeed, in modern CFD codes, TSM is seen
as an additional temporal scheme and is thus naturally compatible with any flow
model. As a consequence, a possible approach for studying the flutter bifurcation in
complex turbulent transonic flows is to only resort to TSM solutions (and to time-
marching computations for reference). Still, it may be considered that some features
of the weakly nonlinear analysis are of great practical interest: in particular its ability
to represent the type of bifurcation with only one scalar value, determined from the
normal form coefficients. One could then wonder if it is possible to extract, from
a fully nonlinear TSM solver, only the information needed to establish the normal
form of the bifurcation.

Large-scale linear stability analysis of elastic structures in viscous flows

A natural continuation of the developments in chapter 7 is to extend the proposed
approach, and in particular the modified Augmented Lagrangian preconditioner, in
order to perform large-scale parallel linear stability analysis of elastic structures in
three-dimensional flows. In practice, this work has already started in the course
of this thesis, using the “Lagrangian-based” approach for linear stability of fluid-
structure systems proposed in [J.-L. Pfister et al. 2019]. Preliminary numerical tests
of the parallel implementation have been successfully run on a two-dimensional
configuration. A large-scale three-dimensional demonstrator will hopefully be soon
achieved.

1And in our opinion, highly unlikely and undesirable ...





247

BIBLIOGRAPHY

ABRAMSON, H. N. (1969). “Hydroelasticity: a review of hydrofoil flutter”. Applied
Mechanics Reviews 22.2, pp. 115–121.

ADAMS, M., BAYRAKTAR, H., KEAVENY, T., and PAPADOPOULOS, P. (2004). “Ultra-
scalable Implicit Finite Element Analyses in Solid Mechanics with over a Half a
Billion Degrees of Freedom”. In: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing. SC04. IEEE Computer Society, 34:1–34:15.

ÅKERVIK, E., BRANDT, L., HENNINGSON, D. S., HŒPFFNER, J., MARXEN, O., and
SCHLATTER, P. (2006). “Steady solutions of the Navier-Stokes equations by selec-
tive frequency damping”. Physics of Fluids 18.6, pp. 1–5.

ALAUZET, F. and LOSEILLE, A. (2016). “A decade of progress on anisotropic mesh
adaptation for computational fluid dynamics”. CAD Computer Aided Design 72,
pp. 13–39.

ALBANO, E. and RODDEN, W. P. (1969). “A Doublet-Lattice Method for Calculating
Lift Distributions on Planar and Non-Planar Configurations in Subsonic Flows”.
AIAA Journal 7.2, pp. 279–285.

AMANDOLESE, X., MICHELIN, S., and CHOQUEL, M. (2013). “Low speed flutter and
limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel”.
Journal of Fluids and Structures 43, pp. 244–255.

AMANDOLÈSE, X. (2016). “Low Speed Flutter and Post-Critical Behaviour of Flat
Plate and Naca0018 Section Models in a Wind Tunnel”. In: First International Sym-
posium on Flutter and its Application, pp. 447–455.

AMESTOY, P., DUFF, I., L’EXCELLENT, J.-Y., and KOSTER, J. (2001). “A fully asyn-
chronous multifrontal solver using distributed dynamic scheduling”. SIAM Jour-
nal on Matrix Analysis and Applications 23.1, pp. 15–41.

AMIRALAEI, M. R., ALIGHANBARI, H., and HASHEMI, S. M. (2010). “An investi-
gation into the effects of unsteady parameters on the aerodynamics of a low
Reynolds number pitching airfoil”. Journal of Fluids and Structures 26.6, pp. 979–
993.

ANTHEAUME, S. and CORRE, C. (2011). “Implicit Time Spectral Method for Periodic
Incompressible Flows”. PhD thesis.

ASHBY, M. F. (1999). Material Selection in Mechanical Design. Butterwort. Oxford. arXiv:
arXiv:1011.1669v3.

ASSEMAT, P., FABRE, D., and MAGNAUDET, J. (2012). “The onset of unsteadiness of
two-dimensional bodies falling or rising freely in a viscous fluid: A linear study”.
Journal of Fluid Mechanics 690, pp. 173–202.

BADCOCK, K. J., TIMME, S., MARQUES, S., KHODAPARAST, H., PRANDINA, M., MOT-
TERSHEAD, J. E., SWIFT, A., DA RONCH, A., and WOODGATE, M. A. (2011). “Tran-
sonic aeroelastic simulation for instability searches and uncertainty analysis”.
Progress in Aerospace Sciences 47.5, pp. 392–423.

https://arxiv.org/abs/arXiv:1011.1669v3


248 Bibliography

BADCOCK, K. J., WOODGATE, M. A., ALLAN, M. R., and BERAN, P. S. (2008). “Wing-
rock limit cycle oscillation prediction based on computational fluid dynamics”.
Journal of Aircraft 45.3, pp. 954–961.

BADCOCK, K. J., WOODGATE, M. A., and RICHARDS, B. E. (2005). “Direct Aeroelastic
Bifurcation Analysis of a Symmetric Wing Based on the Euler Equations”. Journal
of Aircraft 42.3, pp. 731–737.

BADIA, S. and CODINA, R. (2007). “On some fluid–structure iterative algorithms
using pressure segregation methods. Application to aeroelasticity”. International
Journal for Numerical Methods in Engineering 72.1, pp. 46–71.

BAGHERI, S., ÅKERVIK, E., BRANDT, L., and HENNINGSON, D. S. (2009a). “Matrix-
Free Methods for the Stability and Control of Boundary Layers”. AIAA Journal
47.5, pp. 1057–1068.

BAGHERI, S., SCHLATTER, P., SCHMID, P. J., and HENNINGSON, D. S. (2009b). “Global
stability of a jet in crossflow”. Journal of Fluid Mechanics 624, pp. 33–44. arXiv:
1010.3766.

BALAY, S., ABHYANKAR, S., ADAMS, M. F., BROWN, J., BRUNE, P., BUSCHELMAN, K.,
DALCIN, L., DENER, A., EIJKHOUT, V., GROPP, W., KARPEYEV, D., KAUSHIK, D.,
KNEPLEY, M., MAY, D., MCINNES, L. C., MILLS, R. T., MUNSON, T., RUPP, K.,
SANAN, P., SMITH, B., ZAMPINI, S., ZHANG, H., and ZHANG, H. (2019). PETSc
Web page.

BARKLEY, D. and TUCKERMAN, L. S. (1997). “Stokes preconditioning for the inverse
power method”. In: Lecture Notes in Physics : Proc. of the Fifteenth Int’l. Conf. on Nu-
merical Methods in Fluid Dynamics. Ed. by P. KUTLER, J. FLORES, and J.-J. CHAT-
TOT. New York: Springer, pp. 75–76.

BARKLEY, D. and HENDERSON, R. D. (1996). “Three-dimensional Floquet stabil-
ity analysis of the wake of a circular cylinder”. Journal of Fluid Mechanics 322,
pp. 215–241.

BARNES, C. J. and VISBAL, M. R. (2018). “On the role of flow transition in laminar
separation flutter”. Journal of Fluids and Structures 77, pp. 213–230.

BAZILEVS, Y. and HUGHES, T. J. (2007). “Weak imposition of Dirichlet boundary con-
ditions in fluid mechanics”. Computers and Fluids 36.1, pp. 12–26.

BEAUME, C. (2017). “Adaptive Stokes Preconditioning for Steady Incompressible
Flows”. Communications in Computational Physics 22.02, pp. 494–516.

BENDIKSEN, O. O. (2011). “Review of unsteady transonic aerodynamics: Theory and
applications”. Progress in Aerospace Sciences 47.2, pp. 135–167.

BENZI, M. (2008). “Block preconditioning of real-valued iterative algorithms for com-
plex linear systems”. IMA Journal of Numerical Analysis 28, pp. 598–618.

BENZI, M., GOLUB, G. H., and LIESEN, J. (2005). “Numerical solution of saddle point
problems”. Acta Numerica 14, pp. 1–137.

BENZI, M. and OLSHANSKII, M. A. (2006). “An Augmented Lagrangian-Based Ap-
proach to the Oseen Problem”. SIAM Journal on Scientific Computing 28.6, pp. 2095–
2113.

https://arxiv.org/abs/1010.3766


Bibliography 249

BENZI, M. and OLSHANSKII, M. A. (2011a). “Field-of-Values Convergence Analy-
sis of Augmented Lagrangian Preconditioners for the Linearized Navier–Stokes
Problem”. SIAM Journal on Numerical Analysis 49.2, pp. 770–788.

BENZI, M., OLSHANSKII, M. A., and WANG, Z. (2011b). “Modified augmented La-
grangian preconditioners for the incompressible Navier-Stokes equations”. In-
ternational Journal for Numerical Methods in Fluids 66.4, pp. 486–508.

BENZI, M. and WANG, Z. (2011c). “Analysis of Augmented Lagrangian-Based Pre-
conditioners for the Steady Incompressible Navier–Stokes Equations”. SIAM Jour-
nal on Scientific Computing 33.5, pp. 2761–2784.

BENZI, M. and WANG, Z. (2013). “A parallel implementation of the modified aug-
mented Lagrangian preconditioner for the incompressible Navier-Stokes equa-
tions”. Numerical Algorithms 64.1, pp. 73–84.

BERGEON, A., HENRY, D., BENHADID, H., and TUCKERMAN, L. S. (1998). “Marangoni
convection in binary mixtures with Soret effect”. Journal of Fluid Mechanics 375,
pp. 143–177.

BERNARDOS, L. F., RICHEZ, F., and GLEIZE, V. (2019). “RANS modeling of Laminar
Separation Bubbles around Airfoils at Low Reynolds conditions”.

BESCH, P. K. and LIU, Y.-N. (1971). Flutter and divergence characteristics of four low mass
ratio hydrofoils. Tech. rep. Naval Ship Research and Development Center.

BHAT, S. S. and GOVARDHAN, R. N. (2013). “Stall flutter of NACA 0012 airfoil at low
Reynolds numbers”. Journal of Fluids and Structures 41, pp. 166–174.

BISPLINGHOFF, R. L., ASHLEY, H., and HALFMAN, R. L. (1955). Aeroelasticity.

BLONDEAU, C. and LIAUZUN, C. (2019). “A modular implementation of the time
spectral method for aeroelastic analysis and optimization on structured meshes”.
In: International Forum on Aeroelasticity and Structural Dynamics. Savannah, Geor-
gia.

BOUDREAU, M., DUMAS, G., RAHIMPOUR, M., and OSHKAI, P. (2018). “Experimen-
tal investigation of the energy extraction by a fully-passive flapping-foil hydroki-
netic turbine prototype”. Journal of Fluids and Structures 82, pp. 446–472.

BROOKS, A. N. and HUGHES, T. J. R. (1982). “Streamline upwind/Petrov-Galerkin
formulations for convection dominated flows with particular emphasis on the
incompressible Navier-Stokes equations”. Computer Methods in Applied Mechanics
and Engineering 32.1-3, pp. 199–259.

BRUNO, L. and FRANSOS, D. (2008). “Evaluation of Reynolds number effects on flut-
ter derivatives of a flat plate by means of a computational approach”. Journal of
Fluids and Structures 24.7, pp. 1058–1076.

BRUNTON, S. L. and ROWLEY, C. W. (2013). “Empirical state-space representations
for Theodorsen’s lift model”. Journal of Fluids and Structures 38, pp. 174–186.

BRYNJELL-RAHKOLA, M., TUCKERMAN, L. S., SCHLATTER, P., and HENNINGSON,
D. S. (2017). “Computing Optimal Forcing Using Laplace Preconditioning”. Com-
munications in Computational Physics 22.05, pp. 1508–1532.



250 Bibliography

CAHOUET A N, J. and CHABARD, D. J.-P. (1988). “Some fast 3D finite element solvers
for the generalized Stokes problem”. International Journal for Numerical Methods in
Fluids 8, pp. 869–895.

CALIARI, M., KANDOLF, P., OSTERMANN, A., and RAINER, S. (2014). “Comparison
of software for computing the action of the matrix exponential”. BIT Numerical
Mathematics 54.1, pp. 113–128.

CANUTO, C., HUSSAINI, M. Y., QUARTERONI, A., and ZANG, T. A. (1988). Spectral
Methods in Fluid Dynamics. Springer-Verlag.

CARINI, M., AUTERI, F., and GIANNETTI, F. (2015). “Centre-manifold reduction of
bifurcating flows”. Journal of Fluid Mechanics 767, pp. 109–145.

CARR, L. W. (1988). “Dynamic stall progress in analysis and prediction”. Journal of
Aircraft 25.1.

CARTE, G., DUŠEK, J., and FRAUNIÉ, P. (1995). “A spectral time discretization for
flows with dominant periodicity”. Journal of Computational Physics 120.2, pp. 171–
183.

CHAE, E. J., AKCABAY, D. T., LELONG, A., ASTOLFI, J. A., and YOUNG, Y. L. (2016).
“Numerical and experimental investigation of natural flow-induced vibrations
of flexible hydrofoils”. Physics of Fluids 28.7, p. 075102.

CHAE, E. J., AKCABAY, D. T., and YOUNG, Y. L. (2013). “Dynamic response and sta-
bility of a flapping foil in a dense and viscous fluid”. Physics of Fluids 25.

CHAN, T. F. and VAN DER VORST, H. A. (1997). “Approximate and Incomplete Fac-
torizations”. In: Parallel Numerical Algorithms. Springer, pp. 167–202.

CHARRU, F. (2011). Hydrodynamic Instabilities. Cambridge University Press.

CHOI, S., LEE, K., POTSDAM, M. M., and ALONSO, J. J. (2014). “Helicopter rotor de-
sign using a time-spectral and adjoint-based method”. Journal of Aircraft 51.2,
pp. 412–423.

CHOMAZ, J.-M. (2005). “Global Instabilities in Spatially Developing Flows: Non-
Normality and Nonlinearity”. Annual Review of Fluid Mechanics 37.1, pp. 357–
392.

CHRISTODOULOU, K. N. and SCRIVEN, L. E. (1988). “Finding Leading Modes of a
Viscous Free Surface Flow: An Asymmetric Generalized Eigenproblem”. J. Sci.
Comput. 3.4, pp. 355–406.

CISONNI, J., LUCEY, A. D., ELLIOTT, N. S., and HEIL, M. (2017). “The stability of a
flexible cantilever in viscous channel flow”. Journal of Sound and Vibration 396,
pp. 186–202.

CITRO, V., LUCHINI, P., GIANNETTI, F., and AUTERI, F. (2017). “Efficient stabilization
and acceleration of numerical simulation of fluid flows by residual recombina-
tion”. Journal of Computational Physics 344.April, pp. 234–246.

CITRO, V., GIANNETTI, F., LUCHINI, P., and AUTERI, F. (2015). “Global stability and
sensitivity analysis of boundary-layer flows past a hemispherical roughness ele-
ment”. Physics of Fluids 27.8, p. 084110.



Bibliography 251

CITRO, V., TCHOUFAG, J., FABRE, D., GIANNETTI, F., and LUCHINI, P. (2016). “Linear
stability and weakly nonlinear analysis of the flow past rotating spheres”. Journal
of Fluid Mechanics 807.2016, pp. 62–86.

CLIFFE, K. A., GARRATT, T. J., and SPENCE, A. (1993). “Eigenvalues of the discretized
Navier-Stokes equation with application to the detection of Hopf bifurcations”.
Advances in Computational Mathematics 1.3, pp. 337–356.

COLLER, B. and CHAMARA, P. (2004). “Structural non-linearities and the nature of
the classic flutter instability”. Journal of Sound and Vibration 277.4-5, pp. 711–739.

COLLIS, S. S. and HEINKENSCHLOSS, M. (2002). Analysis of SUPG Method Applied to
the Solution of Optimal Control Problems. Tech. rep. March. Houston: Rice Univer-
sity.

COSSU, C. and MORINO, L. (2000). “On the Instability of a Spring-Mounted Circular
Cylinder in a Viscous Flow at Low Reynolds Numbers”. Journal of Fluids and
Structures 14.2, pp. 183–196.

CRIVELLINI, A. and BASSI, F. (2011). “An implicit matrix-free Discontinuous Galerkin
solver for viscous and turbulent aerodynamic simulations”. Computers and Fluids
50.1, pp. 81–93.

CROON, G. de, PERÇIN, M., REMES, B., RUIJSINK, R., and DE WAGTER, C. (2016). The
DelFly.

CURET, O. M., SWARTZ, S. M., and BREUER, K. S. (2013). “An aeroelastic instabil-
ity provides a possible basis for the transition from gliding to flapping flight”.
Journal of the Royal Society Interface 10.80.

CYR, E. C., SHADID, J., and WILDEY, T. (2014). “Approaches for Adjoint-Based A
Posteriori Analysis of Stabilized Finite Element Methods”. SIAM Journal on Sci-
entific Computing 36.2, A766–A791.

DE LANGRE, E. (2002). Fluides et solides. Editions Ecole Polytechnique.

DECONINCK, B. and NATHAN KUTZ, J. (2006). “Computing spectra of linear op-
erators using the Floquet-Fourier-Hill method”. Journal of Computational Physics
219.1, pp. 296–321.

DENG, J. and CAULFIELD, C. P. (2016). “Dependence on aspect ratio of symmetry
breaking for oscillating foils: Implications for flapping flight”. Journal of Fluid
Mechanics 787, pp. 16–49.

DEPARIS, S., FORTI, D., GRANDPERRIN, G., and QUARTERONI, A. (2016). “FaCSI: A
block parallel preconditioner for fluid–structure interaction in hemodynamics”.
Journal of Computational Physics 327, pp. 700–718.

DIJKSTRA, H. A., WUBS, F. W., CLIFFE, A. K., DOEDEL, E., DRAGOMIRESCU, I. F.,
ECKHARDT, B., GELFGAT, A. Y., HAZEL, A. L., LUCARINI, V., SALINGER, A. G.,
PHIPPS, E. T., JUAN, S. U., SCHUTTELAARS, H., TUCKERMAN, L. S., and THIELE,
U. (2014). “Numerical bifurcation methods and their application to fluid dynam-
ics: Analysis beyond simulation”. Communications in Computational Physics 15.1,
pp. 1–45.

DIMITRIADIS, G. (2017). Introduction To Nonlinear Aeroelasticity. John Wiley & Sons,
Ltd.



252 Bibliography

DIMITRIADIS, G. and LI, J. (2009). “Bifurcation Behavior of Airfoil Undergoing Stall
Flutter Oscillations in Low-Speed Wind Tunnel”. AIAA Journal 47.11, pp. 2577–
2596.

DOLEAN, V., JOLIVET, P., and NATAF, F. (2015). An Introduction to Domain Decomposi-
tion Methods: Algorithms, Theory and Parallel Implementation. SIAM.

DONEA, J., HUERTA, A., PONTHOT, J.-P., and RODRÍGUEZ-FERRAN, A. (2004). “Arbi-
trary Lagrangian–Eulerian Methods”. In: Encyclopedia of Computational Mechanics.
Chap. 14.

DOWELL, E., EDWARDS, J., and STRGANAC, T. (2003). “Nonlinear aeroelasticity”.
Journal of Aircraft 40.5, pp. 857–874.

DOWELL, E. H., CURTISS, H. C., SCANLAN, R. H., and SISTO, F. (1989). A modern
Course in Aeroelasticity. Springer.

DRAZIN, P. G. and REID, W. H. (2004). Hydrodynamic stability. Cambridge university
press.

EHRENSTEIN, U. and GALLAIRE, F. (2005). “On two-dimensional temporal modes
in spatially evolving open flows: The flat-plate boundary layer”. Journal of Fluid
Mechanics 536, pp. 209–218.

EKICI, K. and HALL, K. C. (2011). “Harmonic Balance Analysis of Limit Cycle Oscil-
lations in Turbomachinery”. AIAA Journal 49.7, pp. 1478–1487.

ELDREDGE, J. D. and JONES, A. R. (2019). “Leading-edge vortices: Mechanics and
modeling”. Annual Review of Fluid Mechanics 51.August 2018, pp. 75–104.

ELMAN, H. C., HOWLE, V. E., SHAHID, J., SHUTTLEWORTH, R., and TUMINARO,
R. S. (2008). “A taxonomy and comparison of parallel block multi-level precondi-
tioners for the incompressible Navier–Stokes equations”. Journal of Computational
Physics 227.3, pp. 1790–1808.

ELSTON, J. R., SHERIDAN, J., and BLACKBURN, H. M. (2004). “Two-dimensional flo-
quet stability analysis of the flow produced by an oscillating circular cylinder in
quiescent fluid”. European Journal of Mechanics, B/Fluids 23.1, pp. 99–106.

FABRE, D., CITRO, V., FERREIRA SABINO, D., BONNEFIS, P., SIERRA, J., GIANNETTI,
F., and PIGOU, M. (2018). “A Practical Review on Linear and Nonlinear Global
Approaches to Flow Instabilities”. Applied Mechanics Reviews 70.6, p. 060802.

FALGOUT, R. D., FRIEDHOFF, S., KOLEV, T. V., MACLACHLAN, S. P., and SCHRODER,
J. B. (2014). “Parallel time integration with multigrid”. SIAM Journal on Scientific
Computing 36.6, pp. C635–C661.

FARRELL, P. E., MITCHELL, L., and WECHSUNG, F. (2018). “An augmented lagrangian
preconditioner for the 3d stationary incompressible navier–stokes equations at
high reynolds number”. arXiv: arXiv:1810.03315v1.

FLOQUET, G. (1883). “Sur les équations différentielles linéaires à coefficients péri-
odiques”. In: Annales scientifiques de l’École normale supérieure. Vol. 12, pp. 47–88.

FORTIN, M. and BREZZI, F. (1991). Mixed and Hybrid Finite Element Methods. Springer-
Verlag.

FRAZZA, L. (2018). “3D anisotropic mesh adaptation for Reynolds Averaged simula-
tions”. PhD thesis. Université Pierre et Marie Curie.

https://arxiv.org/abs/arXiv:1810.03315v1


Bibliography 253

GAI, G. and TIMME, S. (2016). “Nonlinear reduced-order modelling for limit-cycle
oscillation analysis”. Nonlinear Dynamics 84.2, pp. 991–1009.

GALLAIRE, F., BOUJO, E., MANTIC-LUGO, V., ARRATIA, C., THIRIA, B., and MELIGA,
P. (2016). “Pushing amplitude equations far from threshold: Application to the
supercritical Hopf bifurcation in the cylinder wake”. Fluid Dynamics Research
48.6, pp. 1–12.

GAO, C. and ZHANG, W. (2020). “Transonic aeroelasticity: A new perspective from
the fluid mode”. Progress in Aerospace Sciences August, p. 100596.

GAO, C., ZHANG, W., LI, X., LIU, Y., QUAN, J., YE, Z., and JIANG, Y. (2017). “Mecha-
nism of frequency lock-in in transonic buffeting flow”. Journal of Fluid Mechanics
818, pp. 528–561.

GARRIGUES, E. (2018). “A Review of Industrial Aeroelasticity Practices at Dassault
Aviation for Military Aircraft and Business Jets”. AerospaceLab Journal 14, pp. 1–
34.

GEUZAINE, C. and REMACLE, J.-F. (2009). “Gmsh: A 3-D finite element mesh gen-
erator with built-in pre- and post-processing facilities”. International Journal for
Numerical Methods in Engineering 79.11, pp. 1309–1331.

GIANETTI, F. and LUCHINI, P. (2007). “Structural sensitivity of the first instability of
the cylinder wake”. Journal of Fluid Mechanics 581, pp. 167–197.

GILMORE, R. J. and STEER, M. B. (1991). “Nonlinear circuit analysis using the method
of harmonic balance—a review of the art. Part I. Introductory concepts”. Interna-
tional Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 1.1,
pp. 22–37.

GLAUERT, H. (1930). “The force and moment on an oscillating aerofoil”. Vorträge aus
dem Gebiete der Aerodynamik und verwandter Gebiete 1, pp. 88–95.

GOPINATH, A. K. and JAMESON, A. (2005). “Time Spectral Method for Periodic Un-
steady Computations over Two-and Three-Dimensional Bodies”. In: 43rd AIAA
Aerospace Sciences Meeting and Exhibit. Reno.

GOPINATH, A. K. and JAMESON, A. (2006). “Application of the Time Spectral Method
to Periodic Unsteady Vortex Shedding”. In: 44th AIAA Aerospace Sciences Meeting
and Exhibit. Reno, Nevada.

GOZA, A., COLONIUS, T., and SADER, J. E. (2018). “Global modes and nonlinear anal-
ysis of inverted-flag flapping”. Journal of Fluid Mechanics 857, pp. 312–344. arXiv:
1709.09745.

GUERMOND, J. L., MINEV, P., and SHEN, J. (2006). “An overview of projection meth-
ods for incompressible flows”. Computer Methods in Applied Mechanics and Engi-
neering 195.44-47, pp. 6011–6045.

GÜNER, H., DIMITRIADIS, G., and TERRAPON, V. E. (2018). “Inviscid and viscous
flow modeling for FAS transonic flutter calculations”. In: 31st Congress of the In-
ternational Council of the Aeronautical Sciences, ICAS 2018, pp. 1–10.

HALL, K. C., THOMAS, J. P., and CLARK, W. S. (2002). “Computation of unsteady
nonlinear flows in cascades using a harmonic balance technique”. AIAA Journal
40.5, pp. 879–886.

https://arxiv.org/abs/1709.09745


254 Bibliography

HE, X. and VUIK, C. (2016). “Comparison of Some Preconditioners for the Incom-
pressible Navier-Stokes Equations”. Numerical Mathematics 9.2, pp. 239–261.

HE, X., VUIK, C., and KAIJ, C. (2018). “Combining the Augmented Lagrangian Pre-
conditioner with the Simple Schur Complement Approximation”. SIAM Journal
on Scientific Computing 40.3. arXiv: arXiv:1302.5877.

HECHT, F. (2012). “New development in FreeFem++”. J. Numer. Math. 20.3-4, pp. 251–
265.

HECHT, F. (2006). BAMG : Bidimensional Anisotropic Mesh Generator. Tech. rep. Uni-
versité Pierre et Marie Curie.

HEISTER, T. and RAPIN, G. (2013). “Efficient augmented Lagrangian-type precondi-
tioning for the Oseen problem using Grad-Div stabilization”. International Journal
for Numerical Methods in Fluids 71.1, pp. 118–134.

HERNANDEZ, V., ROMAN, J. E., and VIDAL, V. (2005). “SLEPc: A Scalable and Flexi-
ble Toolkit for the Solution of Eigenvalue Problems”. ACM Transactions on Math-
ematical Software 31.3, pp. 351–362.

HICKEN, J. E. and ZINGG, D. W. (2011). “The role of dual consistency in functional ac-
curacy: Error estimation and superconvergence”. 20th AIAA Computational Fluid
Dynamics Conference 2011 June, pp. 1–18.

HILL, G. W. (1886). “On the part of the motion of the lunar perigee which is a func-
tion of the mean motions of the sun and moon”. Acta Mathematica 8.1, pp. 1–36.

HODGES, D. H. and PIERCE, G. A. (2011). Introduction to structural dynamics and aeroe-
lasticity, second edition. Vol. 9780521195, pp. 1–247.

HOURIGAN, K., THOMPSON, M., and TAN, B. (2001). “Self-sustained oscillations in
flows around long blunt plates”. Journal of Fluids and Structures 15.3-4, pp. 387–
398.

HUANG, H. and EKICI, K. (2014). “Stabilization of High-Dimensional Harmonic Bal-
ance Solvers Using Time Spectral Viscosity”. AIAA Journal 52.8, pp. 1784–1794.

HUERRE, P. and MONKEWITZ, P. A. (1990). “Local and global instabilities in spatially
developing flows”. Annual review of fluid mechanics 22.1, pp. 473–537.

IORIO, M. C., GONZÁLEZ, L. M., and FERRER, E. (2014). “Direct and adjoint global
stability analysis of turbulent transonic flows over a NACA0012 profile”. Inter-
national Journal for Numerical Methods in Fluids 76.3, pp. 147–168.

JACKSON, C. P. (1987). “A finite-element study of the onset of vortex shedding in
flow past variously shaped bodies”. Journal of Fluid Mechanics 182, pp. 23–45.

JALLAS, D., MARQUET, O., and FABRE, D. (2017). “Linear and nonlinear perturbation
analysis of the symmetry breaking in time-periodic propulsive wakes”. Physical
Review E 95.6, pp. 1–15.

JIAN, Z. and JINWU, X. (2009). “Nonlinear Aeroelastic Response of High-aspect-ratio
Flexible Wings”. Chinese Journal of Aeronautics 22.4, pp. 355–363.

JOLIVET, P., DOLEAN, V., HECHT, F., NATAF, F., PRUD’HOMME, C., and SPILLANE, N.
(2012). “High performance domain decomposition methods on massively paral-
lel architectures with freefem+”. Journal of Numerical Mathematics 20.3-4, pp. 287–
302.

https://arxiv.org/abs/arXiv:1302.5877


Bibliography 255

JOLIVET, P. and TOURNIER, P.-H. (2016). “Block iterative methods and recycling for
improved scalability of linear solvers”. In: Proceedings of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis. IEEE Press,
p. 17.

KARNIADAKIS, G. E., ISRAELI, M., and ORSZAG, S. A. (1991). “High-order splitting
methods for the incompressible Navier-Stokes equations”. Journal of Computa-
tional Physics 97.2, pp. 414–443.

KARYPIS, G. and KUMAR, V. (1998). “A Parallel Algorithm for Multilevel Graph Par-
titioning and Sparse Matrix Ordering”. Journal of Parallel and Distributed Comput-
ing 48.1, pp. 71–95.

KAY, D., LOGHIN, D., and WATHEN, A. (2002). “A Preconditioner for the Steady-
State Navier–Stokes Equations”. SIAM Journal on Scientific Computing 24.1, pp. 237–
256.

KHOLODAR, D. B., DOWELL, E. H., THOMAS, J. P., and HALL, K. C. (2004). “Limit
Cycle Oscillation of a Typical Airfoil in Transonic Flow”. Journal of Aircraft 41.5,
pp. 1067–1072.

KIM, J. and MOIN, P. (1985). “Application of a fractional-step method to incompress-
ible Navier-Stokes equations”. Journal of Computational Physics 59.2, pp. 308–323.

KRACK, M. and GROSS, J. (2019). Harmonic Balance for Nonlinear Vibration Problems,
p. 159.

KRYLOV, N. M. and BOGOLIUBOV, N. N. (1949). Introduction to non-linear mechanics.
Princeton University Press.

LABRYER, A. and ATTAR, P. J. (2009). “High dimensional harmonic balance dealias-
ing techniques for a Duffing oscillator”. Journal of Sound and Vibration 324.3-5,
pp. 1016–1038.

LAURENSON, R. M. and TRN, R. M. (1980). “Flutter analysis of missile control sur-
faces containing structural nonlinearities”. AIAA Journal 18.10, pp. 1245–1251.

LAZARUS, A. and THOMAS, O. (2010). “A harmonic-based method for computing
the stability of periodic solutions of dynamical systems”. Comptes Rendus Mé-
canique 338.9, pp. 510–517.

LE MAÎTRE, O. P., SCANLAN, R. H., and KNIO, O. M. (2003). “Estimation of the flutter
derivatives of an NACA airfoil by means of Navier-Stokes simulation”. Journal
of Fluids and Structures 17.1, pp. 1–28.

LEE, B. H. K., PRICE, S. J., and WONG, Y. S. (1999a). “Nonlinear aeroelastic analysis
of airfoils: bifurcation and chaos”. Progress in Aerospace Sciences 35, pp. 205–334.

LEE, B. H. K. and JIANG, L. (1999b). “Flutter of an Airfoil With a Cubic Restoring
Force”. Journal of Fluids and Structures 13, pp. 75–101.

LEE, B. H., LIU, L., and CHUNG, K. W. (2005). “Airfoil motion in subsonic flow with
strong cubic nonlinear restoring forces”. Journal of Sound and Vibration 281.3-5,
pp. 699–717.

LEFFELL, J. I., MURMAN, S. M., and PULLIAM, T. H. (2014). “Time-Spectral Rotorcraft
Simulations on Overset Grids”. June, pp. 16–20.



256 Bibliography

LEFFELL, J. I., SITARAMAN, J., LAKSHMINARAYAN, V. K., and WISSINK, A. M. (2016).
“Towards Efficient Parallel-in-Time Simulation of Periodic Flows”. January, pp. 4–
8.

LI, H. and EKICI, K. (2018). “A novel approach for flutter prediction of pitch–plunge
airfoils using an efficient one-shot method”. Journal of Fluids and Structures 82,
pp. 651–671.

LI, X. and FLEETER, S. (1997). “Dynamic stall generated airfoil oscillations including
chaotic responses”. Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference 1, pp. 11–23.

LI, X. S. (2005). “An Overview of SuperLU: Algorithms, Implementation, and User
Interface”. ACM Transations on Mathematical Software 31.3, pp. 302–325.

LIESEN, J. and TICHÝ, P. (2004). “Convergence analysis of Krylov subspace meth-
ods”. GAMM-Mitteilungen 27.2, pp. 153–173.

LINKE, A., REBHOLZ, L. G., and WILSON, N. E. (2011). “On the convergence rate of
grad-div stabilized Taylor-Hood to Scott-Vogelius solutions for incompressible
flow problems”. Journal of Mathematical Analysis and Applications 381.2, pp. 612–
626.

LISSAMAN, P. B. S. (1983). “Low-reynolds-number airfoils”, pp. 223–239.

LIU, G., LV, Z. R., LIU, J. K., and CHEN, Y. M. (2018). “Quasi-periodic aeroelastic
response analysis of an airfoil with external store by incremental harmonic bal-
ance method”. International Journal of Non-Linear Mechanics 100.December 2017,
pp. 10–19.

LIU, L., THOMAS, J. P., DOWELL, E. H., ATTAR, P., and HALL, K. C. (2006). “A com-
parison of classical and high dimensional harmonic balance approaches for a
Duffing oscillator”. Journal of Computational Physics 215.1, pp. 298–320.

LIU, L. and DOWELL, E. H. (2004). “The Secondary Bifurcation of an Aeroelastic
Airfoil Motion: Effect of High Harmonics”. Nonlinear Dynamics 37, pp. 31–49.

LIU, L. and DOWELL, E. H. (2005). “Harmonic Balance Approach for an Airfoil with
a Freeplay Control Surface”. AIAA Journal 43.4, pp. 802–815.

LIVNE, E. (2018). “Aircraft active flutter suppression: State of the art and technology
maturation needs”. Journal of Aircraft 55.1, pp. 410–450.

LOISEAU, J. C., BUCCI, M. A., CHERUBINI, S., and ROBINET, J. C. (2019). “Time-
stepping and krylov methods for large-scale instability problems”. Computational
Methods in Applied Sciences 50, pp. 33–73. arXiv: 1804.03859.

LOISEAU, J. C., ROBINET, J. C., CHERUBINI, S., and LERICHE, E. (2014). “Investi-
gation of the roughness-induced transition: Global stability analyses and direct
numerical simulations”. Journal of Fluid Mechanics 760, pp. 175–211.

LUCIA, D. J., BERAN, P. S., and SILVA, W. A. (2004). “Reduced-order modeling: New
approaches for computational physics”. Progress in Aerospace Sciences 40.1-2, pp. 51–
117.

MACK, C. J. and SCHMID, P. J. (2010). “A preconditioned Krylov technique for global
hydrodynamic stability analysis of large-scale compressible flows”. Journal of
Computational Physics 229.3, pp. 541–560.

https://arxiv.org/abs/1804.03859


Bibliography 257

MADER, C. A. and MARTINS, J. R. (2012). “Derivatives for Time-Spectral Computa-
tional Fluid Dynamics Using an Automatic Differentiation Adjoint”. AIAA Jour-
nal 50.12, pp. 2809–2819.

MAHBUB ALAM, M., ZHOU, Y., YANG, H. X., GUO, H., and MI, J. (2009). “The ultra-
low Reynolds number airfoil wake”. Experiments in Fluids 48.1, pp. 81–103.

MALHER, A. (2016). “Amortisseurs passifs non linéaires pour le contrôle de l’instabilité
de flottement”. PhD thesis. Université Paris-Saclay.

MAMUN, C. K. and TUCKERMAN, L. S. (1994). “Asymmetry and Hopf bifurcation in
spherical Couette flow”. Physics of Fluids 7.1, pp. 80–91.

MARQUET, O. and LARSSON, M. (2015a). “Global wake instabilities of low aspect-
ratio flat-plates”. European Journal of Mechanics - B/Fluids 49, pp. 400–412.

MARQUET, O. and LESSHAFFT, L. (2015b). “Identifying the active flow regions that
drive linear and nonlinear instabilities”. arXiv: 1508.07620.

MCCROSKEY, W. J. (1982). “Unsteady airfoils”. Annual Review of Fluid Mechanics 14,
pp. 285–311.

MCMULLEN, M., JAMESON, A., and ALONSO, J. (2006). “Demonstration of Nonlinear
Frequency Domain Methods”. AIAA Journal 44.7, pp. 1428–1435.

MEERBERGEN, K. and ROOSE, D. (1996). “Matrix transformations for computing
rightmost eigenvalues of large sparse non-symmetric eigenvalue problems”. IMA
Journal of Numerical Analysis 16.3, pp. 297–346.

MELIGA, P. and CHOMAZ, J. M. (2011). An asymptotic expansion for the vortex-induced
vibrations of a circular cylinder. Vol. 671, pp. 137–167.

MELIGA, P., CHOMAZ, J. M., and SIPP, D. (2009). “Global mode interaction and pat-
tern selection in the wake of a disk: A weakly nonlinear expansion”. Journal of
Fluid Mechanics 633, pp. 159–189.

MELIGA, P., GALLAIRE, F., and CHOMAZ, J.-M. (2012). “A weakly nonlinear mecha-
nism for mode selection in swirling jets”. Journal of Fluid Mechanics 699, pp. 216–
262.

MENON, K. and MITTAL, R. (2019). “Flow physics and dynamics of flow-induced
pitch oscillations of an airfoil”. Journal of Fluid Mechanics 877, pp. 582–613.

MERCADER, I., BATISTE, O., and ALONSO, A. (2006). “Continuation of travelling-
wave solutions of the Navier – Stokes equations”. International Journal for Numer-
ical Methods in Fluids 52.7, pp. 707–721.

MICHELIN, S. and LLEWELLYN SMITH, S. G. (2009). “Resonance and propulsion per-
formance of a heaving flexible wing”. Physics of Fluids 21.7. arXiv: 0906.2804.

MITTAL, S. and SINGH, S. (2005). “Vortex-induced vibrations at subcritical Re”. Jour-
nal of Fluid Mechanics 534, pp. 185–194.

MOUGIN, G. and MAGNAUDET, J. (2002). “The generalized Kirchhoff equations and
their application to the interaction between a rigid body and an arbitrary time-
dependent viscous flow”. International Journal of Multiphase Flow 28.11, pp. 1837–
1851.

https://arxiv.org/abs/1508.07620
https://arxiv.org/abs/0906.2804


258 Bibliography

MUELLER, T. J. and DELAURIER, J. D. (2003). “Aerodynamics of small vehicles”. An-
nual Review of Fluid Mechanics 35, pp. 89–111.

MUNDIS, N. L. and MAVRIPLIS, D. J. (2014). “An Efficient Flexible GMRES Solver for
the Fully-coupled Time-spectral Aeroelastic System”. January, pp. 1–25.

MUNDIS, N. L. and MAVRIPLIS, D. J. (2015). “Wave-number Independent Precondi-
tioning for GMRES Time-spectral Solvers”. 53rd AIAA Aerospace Sciences Meeting
January, pp. 1–21.

MUNDIS, N. L. and MAVRIPLIS, D. J. (2017). “Toward an optimal solver for time-
spectral fluid-dynamic and aeroelastic solutions on unstructured meshes”. Jour-
nal of Computational Physics 345.April, pp. 132–161.

NAVROSE and MITTAL, S. (2016). “Lock-in in vortex-induced vibration”. J. Fluid
Mech 794, pp. 565–594.

NAYFEH, A. H., GHOMMEM, M., and HAJJ, M. R. (2012). “Normal form represen-
tation of the aeroelastic response of the Goland wing”. Nonlinear Dynamics 67,
pp. 1847–1861.

NAYFEH, A. H. (2011). The Method of Normal Forms. Second, Up. Wiley-VCH.

NAYFEH, A. H. and BALACHANDRAN, B. (1995). Applied nonlinear dynamics : analyti-
cal, computational, and experimental methods. Wiley, p. 685.

NEGI, P. S., VINUESA, R., HANIFI, A., SCHLATTER, P., and HENNINGSON, D. S. (2018).
“Unsteady aerodynamic effects in small-amplitude pitch oscillations of an air-
foil”. International Journal of Heat and Fluid Flow 71.November 2017, pp. 378–391.

NEGI, P. S. (2019). “Stability and transition in pitching wings”. PhD thesis. Royal
Institute of Technology in Stockholm.

NEGI, P. S., HANIFI, A., and HENNINGSON, D. S. (2019). “Global stability of rigid-
body-motion fluid-structure-interaction problems”. 1962, pp. 1–38. arXiv: 1910.
09605.

OLSHANSKII, M., LUBE, G., HEISTER, T., and LÖWE, J. (2009). “Grad–div stabilization
and subgrid pressure models for the incompressible Navier–Stokes equations”.
Computer Methods in Applied Mechanics and Engineering 198.49, pp. 3975–3988.

OLSHANSKII, M. A. and REUSKEN, A. (2004). “Grad-Div stabilization for Stokes
equations”. Mathematics of Computation 73.248, pp. 1699–1718.

OLSHANSKII, M. A. (2002). “A low order Galerkin finite element method for the
Navier–Stokes equations of steady incompressible flow: a stabilization issue and
iterative methods”. Computer Methods in Applied Mechanics and Engineering 191.47,
pp. 5515–5536.

OLSHANSKII, M. A. and BENZI, M. (2008). “An Augmented Lagrangian Approach
to Linearized Problems in Hydrodynamic Stability”. SIAM Journal on Scientific
Computing 30.3, pp. 1459–1473.

ONOUE, K., SONG, A., STROM, B., and BREUER, K. S. (2015). “Large amplitude flow-
induced oscillations and energy harvesting using a cyber-physical pitching plate”.
Journal of Fluids and Structures 55, pp. 262–275.

https://arxiv.org/abs/1910.09605
https://arxiv.org/abs/1910.09605


Bibliography 259

PADMANABHAN, M. A., DOWELL, E. H., and PASILIAO, C. L. (2018). “Computational
Study of Aeroelastic Limit Cycles due to Localized Structural Nonlinearities”.
Journal of Aircraft 55.4, pp. 1531–1541.

PAÏDOUSSIS, M. P., PRICE, S. J., and DE LANGRE, E. (2011). Fluid Structure Interactions
: Cross-Flow-Induced Instabilities. Cambridge. New York.

PALADINI, E., MARQUET, O., SIPP, D., ROBINET, J. C., and DANDOIS, J. (2019). “Var-
ious approaches to determine active regions in an unstable global mode: Appli-
cation to transonic buffet”. Journal of Fluid Mechanics 881.M, pp. 617–647.

PATANKAR, S. V. and SPALDING, D. B. (1983). “A calculation procedure for heat,
mass and momentum transfer in three-dimensional parabolic flows”. Numerical
Prediction of Flow, Heat Transfer, Turbulence and Combustion, pp. 54–73.

PATIL, M. J. and HODGES, D. H. (2004). “On the importance of aerodynamic and
structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio
wings”. Journal of Fluids and Structures 19.7, pp. 905–915.

PATIL, M. and HODGES, D. (2001). “Limit-cycle oscillations in high-aspect-ratio wings”.
Journal of Fluids and Structures 15, pp. 107–132.

PELETAN, L., BAGUET, S., TORKHANI, M., and JACQUET-RICHARDET, G. (2013). “A
comparison of stability computational methods for periodic solution of nonlinear
problems with application to rotordynamics”. Nonlinear Dynamics 72.3, pp. 671–
682.

PENG, Z. and ZHU, Q. (2009). “Energy harvesting through flow-induced oscillations
of a foil”. Physics of Fluids 21.12, pp. 1–9.

PERSSON, P.-O., BONET, J., and PERAIRE, J. (2009). “Discontinuous Galerkin solution
of the Navier–Stokes equations on deformable domains”. Computer Methods in
Applied Mechanics and Engineering 198.17-20, pp. 1585–1595.

PFISTER, J. L. and MARQUET, O. (2020). “Fluid-structure stability analyses and non-
linear dynamics of flexible splitter plates interacting with a circular cylinder
flow”. Journal of Fluid Mechanics, pp. 1–38.

PFISTER, J.-L. (2019). “Instabilities and optimization of elastic structures interacting
with laminar flows”. PhD thesis. Université Paris-Saclay.

PFISTER, J.-L., MARQUET, O., and CARINI, M. (2019). “Linear stability analysis of
strongly coupled fluid–structure problems with the Arbitrary-Lagrangian–Eulerian
method”. Computer Methods in Applied Mechanics and Engineering 355, pp. 663–
689.

PIGOLOTTI, L., MANNINI, C., BARTOLI, G., and THIELE, K. (2017). “Critical and post-
critical behaviour of two-degree-of-freedom flutter-based generators”. Journal of
Sound and Vibration 404, pp. 116–140.

POIREL, D., HARRIS, Y., and BENAISSA, A. (2008). “Self-sustained aeroelastic oscil-
lations of a NACA0012 airfoil at low-to-moderate Reynolds numbers”. Journal of
Fluids and Structures 24.5, pp. 700–719.

POIREL, D. and YUAN, W. (2010). “Aerodynamics of laminar separation flutter at a
transitional Reynolds number”. Journal of Fluids and Structures 26.7-8, pp. 1174–
1194.



260 Bibliography

POIREL, D. and MENDES, F. (2012). “Experimental Investigation of Small Amplitude
Self- Sustained Pitch-Heave Oscillations of a NACA0012 Airfoil at Transitional
Reynolds Numbers”. In: 50th AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition. Nashville, pp. 2012–40.

PRASAD, R., KIM, H., CHOI, S., and YI, S. (2018). “High fidelity aeroelastic analysis
based flutter prediction”. AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, 2018 210049, pp. 1–9.

PRICE, S. J., ALIGHANBARI, H., and LEE, B. H. (1995). The aeroelastic response of a
two-dimensional airfoil with bilinear and cubic structural nonlinearities.

RAMEZANIAN, D., REZA AHRABI, B., and MAVRIPLIS, D. (2017). “An Order NlogN
Parallel Newton_Krylov Solver for Time Spectral Problems”. June, pp. 1–20.

RAZAK, N. A., ANDRIANNE, T., and DIMITRIADIS, G. (2011). “Flutter and Stall Flut-
ter of a Rectangular Wing in a Wind Tunnel”. AIAA Journal 49.10, pp. 2258–2271.

RICHTER, T. (2015). “A monolithic geometric multigrid solver for fluid-structure in-
teractions in ALE formulation”. International Journal for Numerical Methods in En-
gineering 104, pp. 372–390.

RIGAS, G., SIPP, D., and COLONIUS, T. (2020). “Non-linear input/output analysis:
application to boundary layer transition”. arXiv: 2001.09440.

ROMAN, J. E., CAMPOS, C., ROMERO, E., and TOMÁS, A. (2018). “SLEPc Users Man-
ual Scalable Library for Eigenvalue Problem Computations”.

ROSTAMI, M. W. and XUE, F. (2018). “Robust Linear Stability Analysis and a New
Method for Computing the Action of the Matrix Exponential”. SIAM Journal on
Scientific Computing 40.5, A3344–A3370.

SAAD, Y. (1980). “Variations on Arnoldi’s method for computing eigenelements of
large unsymmetric matrices”. Linear Algebra and its Applications 34, pp. 269–295.

SAAD, Y. (1993). “A Flexible Inner-Outer Preconditioned GMRES Algorithm”. SIAM
Journal on Scientific Computing 14.2, pp. 461–469.

SAAD, Y. and SCHULTZ, M. H. (1986). “GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems”. SIAM Journal on Scientific
and Statistical Computing 7.3, pp. 856–869.

SAAD, Y. (2003). Iterative Methods for Sparse Linear Systems. Second edi. Society for
Industrial and Applied Mathematics. arXiv: 0806.3802.

SARTOR, F., METTOT, C., and SIPP, D. (2015). “Stability, Receptivity, and Sensitivity
Analyses of Buffeting Transonic Flow over a Profile”. AIAA Journal 53.7, pp. 1980–
1993.

SCHEWE, G., MAI, H., and DIETZ, G. (2003). “Nonlinear effects in transonic flutter
with emphasis on manifestations of limit cycle oscillations”. Journal of Fluids and
Structures 18.1, pp. 3–22.

SCHMID, P. J. and HENNINGSON, D. S. (2001). Stability and Transition in Shear Flows.
New York: Springer.

SEDAGHAT, A., COOPER, J. E., WRIGHT, J. R., and LEUNG, A. Y. (2000). “Limit cycle
oscillation prediction for aeroelastic systems with continuous non-linearities”.
41st Structures, Structural Dynamics, and Materials Conference and Exhibit May 2014.

https://arxiv.org/abs/2001.09440
https://arxiv.org/abs/0806.3802


Bibliography 261

SEGAL, A., UR REHMAN, M., and VUIK, C. (2010). “Preconditioners for incompress-
ible Navier-Stokes solvers”. Numerical Mathematics 3.3, pp. 245–275. arXiv: fld.1
[DOI: 10.1002].

SHAABANI-ARDALI, L., SIPP, D., and LESSHAFFT, L. (2019). “Vortex pairing in jets
as a global Floquet instability: modal and transient dynamics”. Journal of Fluid
Mechanics 862, pp. 951–989.

SHEN, S. F. (1959). “An Approximate Analysis of Nonlinear Flutter Problems”. Jour-
nal of the Aerospace Sciences 26.x, pp. 25–31.

SHROFF, G. M. and KELLER, H. B. (1993). “Stabilization of unstable procedures: the
recursive projection method”. SIAM Journal on Numerical Analysis 30.4, pp. 1099–
1120.

SHYY, W., AONO, H., CHIMAKURTHI, S. K., TRIZILA, P., KANG, C. K., CESNIK, C. E.,
and LIU, H. (2010). “Recent progress in flapping wing aerodynamics and aeroe-
lasticity”. Progress in Aerospace Sciences 46.7, pp. 284–327.

SICOT, F., PUIGT, G., and MONTAGNAC, M. (2008). “Block-Jacobi Implicit Algorithms
for the Time Spectral Method”. AIAA Journal 46.12, pp. 3080–3089.
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Titre : Sur la bifurcation de flottement en écoulement laminaire: méthodes modales linéaires et nonlinéaires

Mots clés : interaction fluide-structure, flottement, analyse de stabilité linéaire, analyse faiblement nonlinéaire,
méthodes d’équilibrage harmonique, méthodes de Krylov préconditionnées

Résumé : L’instabilité de flottement a été le sujet
de nombreuses études depuis le milieu du vingtième
siècle à cause de ses applications critiques en
aéronautique. Elle est classiquement décrite comme
une instabilité linéaire en écoulement potentiel, mais
les effets visqueux et nonlinéaires du fluide peuvent
avoir un impact crucial.
La première partie de cette thèse est consacrée
au développement de méthodes théoriques et
numériques pour l’analyse linéaire et nonlinéaire de
la dynamique d’une “section typique aéroélastique”
— une plaque montée sur des ressorts de flexion et
torsion — plongée dans un écoulement laminaire bi-
dimensionnel modélisé par les équations de Navier–
Stokes incompressibles. D’abord, on développe une
analyse faiblement nonlinéaire pour étudier le régime
basse amplitude, puis, une approche d’équilibrage
harmonique, connue comme la Méthode Spectrale
en Temps (TSM), de façon à capturer des solutions
de flottement plus fortement nonlinéaires. Le défi de
la résolution numérique des équations TSM est re-
levé grâce au développement d’un approche parallèle
en temps de type Newton–Krylov, combinée à un

préconditionneur spécialement développé, dit “bloc-
circulant”.
La seconde partie de la thèse est dédiée à l’étude
physique de la bifurcation de flottement. On com-
mence par revisiter le problème de stabilité linéaire en
mettant en lumière, en particulier, les effets de visco-
sité. On poursuit avec l’étude des effets nonlinéaires
fluides: les structures légères et les hauts nombres de
Reynolds favorisent des bifurcations sous-critiques.
On achève cette partie en étudiant l’apparition de
modulations de basse fréquence sur des solutions
périodiques de flottement. On explique ce comporte-
ment par une instabilité linéaire (Floquet) de cycle li-
mite.
La dernière partie de la thèse vise à initier l’extension
des différentes méthodes évoquées précédemment
pour le cas de configurations tridimensionnelles à
grande échelle. En guise de premier pas vers cet ob-
jectif à long terme, on développe un outil open-source
massivement parallèle capable de réaliser l’analyse
de stabilité linéaire hydrodynamique (structure figée)
d’écoulements tridimensionnels possédant plusieurs
dizaines de millions de degrés de liberté.

Title : On the flutter bifurcation in laminar flows: linear and nonlinear modal methods

Keywords : fluid-structure interaction, flutter, linear stability analysis, weakly nonlinear analysis, harmonic
balance methods, preconditioned Krylov subspace methods

Abstract : The flutter instability has been the focus
of numerous works since the middle of the twentieth
century, due to its critical application in aeronautics.
Flutter is classically described as a linear instability
using potential flow models, but viscous and nonlinear
fluid effects may both crucially impact this aeroelastic
phenomenon.
The first part of this thesis is devoted to the develop-
ment of theoretical and numerical methods for ana-
lyzing the linear and nonlinear dynamics of a “typical
aeroelastic section” — a heaving and pitching spring-
mounted plate — immersed in a two-dimensional la-
minar flow modeled by the incompressible Navier–
Stokes equations. First, we develop a semi-analytical
weakly nonlinear analysis to efficiently study the small
amplitude regime. Second, we develop a harmonic
balance-type method, known as the Time Spectral
Method (TSM), in order to tackle highly-nonlinear per-
iodic flutter solutions. The challenging task of sol-
ving the TSM equations is tackled via a time-parallel
Newton–Krylov approach in combination with a new,
so-called block-circulant preconditioner.

The second part of the thesis focuses on the physi-
cal investigation of the flutter bifurcation. We start by
revisiting the linear stability problem using a Navier–
Stokes fluid model allowing to highlight, in particular,
the effect of viscosity. We continue our route on the
flutter bifurcation by investigating the effect of fluid
nonlinearities: low solid-to-fluid mass ratios and in-
creasing Reynolds numbers foster subcritical bifurca-
tions. We conclude our study by investigating the ap-
pearance of low-frequency amplitude modulations on
top of a previously established periodic flutter solution.
We explain this behavior by a (Floquet) linear instabi-
lity of periodic solutions.
The last part of the thesis aims at initiating the ex-
tension of the different methods previously evoked
to large-scale three-dimensional configurations. As a
first step towards this long-term goal, we develop an
open-source massively parallel tool, able to perform
hydrodynamic (the structure is fixed) linear stability
analysis of three-dimensional flows possessing seve-
ral tens of millions of degrees of freedom.
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